
Dissertation 

 

 

 

 

 

Submitted to the 

Combined Faculties for the Natural Sciences and Mathematics 

Of the Ruperto-Carola University of Heidelberg, Germany 

 

 

 

 

 

For the degree of 

Doctor of Natural Sciences 

 

 

 

 

 

Presented by 

Brandon H. Cline 

Born in Jefferson, Texas, USA 

Oral Examination: April 11th 2011 

 



 

 

 

 

 

 

The role of the Cholinergic System on Plasticity 
in the Basolateral Nucleus of the Amygdala 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referees: Prof. Dr. Klaus Unsicker 

  Prof. Dr. Andreas Draguhn



Table of Contents 

Cline 2010  i 

Table of Contents 

ABSTRACT ...................................................................................................................................................... IV 

ZUSAMMENFASSUNG .................................................................................................................................... IV 

ABBREVIATIONS ............................................................................................................................................ VI 

1 INTRODUCTION ....................................................................................................................................... 1 

2 LITERATURE REVIEW ............................................................................................................................... 2 

2.1 CHOLINERGIC SYSTEM ................................................................................................................................. 2 

2.1.1 Discovery of Acetylcholine ................................................................................................................ 3 

2.1.2 Acetylcholine Synthesis, Release, and Metabolism ........................................................................... 5 

2.1.3 Acetylcholine Transmission ............................................................................................................... 5 

2.1.4 Cholinergic Receptors ....................................................................................................................... 6 

2.1.5 Muscarinic Cholinergic Receptors ..................................................................................................... 6 

2.1.6 Nicotinic Cholinergic Receptors ......................................................................................................... 7 

2.2 CHOLINERGIC PROJECTIONS.......................................................................................................................... 9 

2.2.1 Basal Forebrain ................................................................................................................................. 9 

2.2.2 Brain Stem ......................................................................................................................................... 9 

2.2.3 Identification of Cholinergic Neurons.............................................................................................. 10 

2.2.4 Characteristics of Cholinergic Neurons ........................................................................................... 10 

2.3 ACETYLCHOLINE NEUROMODULATION .......................................................................................................... 11 

2.3.1 Intrinsic Modulation ........................................................................................................................ 11 

2.3.2 Network Modulation ....................................................................................................................... 11 

2.3.3 Learning and Memory ..................................................................................................................... 12 

2.4 FIELD RECORDINGS ................................................................................................................................... 13 

2.4.1 Long-term Potentiation ................................................................................................................... 13 

2.4.2 Hebbian Synapse ............................................................................................................................. 13 

2.4.3 Finding LTP ...................................................................................................................................... 13 

2.4.4 Induction of LTP .............................................................................................................................. 14 

2.4.5 Paired Pulse Facilitation .................................................................................................................. 15 

2.5 PLATEAU FIRING ...................................................................................................................................... 16 

2.6 THE AMYGDALA ....................................................................................................................................... 17 

2.6.1 Connectivity .................................................................................................................................... 17 

2.6.2 Learning and Memory ..................................................................................................................... 18 

2.7 P75 NEUROTROPHIN RECEPTOR .................................................................................................................. 19 

2.7.1 p75
NTR 

signaling ............................................................................................................................... 19 

2.7.2 p75
NTR

 transgenic mice.................................................................................................................... 20 

2.7.3 Known p75 deficits .......................................................................................................................... 20 

3 OBJECTIVES ........................................................................................................................................... 23 

4 MATERIALS ............................................................................................................................................ 24 

4.1 ELECTROPHYSIOLOGY ................................................................................................................................ 24 



Table of Contents 
 

Cline 2010 ii 

4.1.1 Equipment ....................................................................................................................................... 24 

4.1.2 Slice Preparation ............................................................................................................................. 25 

4.1.3 Gas Assembly .................................................................................................................................. 25 

4.1.4 Chemicals ........................................................................................................................................ 26 

4.2 GENOTYPING ........................................................................................................................................... 26 

4.2.1 Equipment ....................................................................................................................................... 26 

4.2.2 Primers ............................................................................................................................................ 26 

4.2.3 PCR .................................................................................................................................................. 27 

4.3 IMMUNOHISTOCHEMISTRY ......................................................................................................................... 27 

4.3.1 Equipment ....................................................................................................................................... 27 

4.3.2 Markers ........................................................................................................................................... 27 

4.4 SOLUTIONS ............................................................................................................................................. 27 

5 METHODS .............................................................................................................................................. 29 

5.1 ELECTROPHYSIOLOGY ................................................................................................................................ 29 

5.1.1 Slice Preparation ............................................................................................................................. 29 

5.1.2 Electrophysiological Recording ....................................................................................................... 29 

5.1.3 Biocytin Neuronal Labeling ............................................................................................................. 31 

5.1.4 Data Analysis .................................................................................................................................. 32 

5.2 IMMUNOHISTOCHEMISTRY ......................................................................................................................... 33 

5.2.1 Biocytin Development ..................................................................................................................... 33 

5.2.2 ChAT Staining .................................................................................................................................. 33 

5.2.3 ChAT Analysis .................................................................................................................................. 34 

5.3 MICE ..................................................................................................................................................... 34 

5.4 GENOTYPING ........................................................................................................................................... 35 

5.4.1 DNA Extraction ................................................................................................................................ 35 

5.4.2 PCR .................................................................................................................................................. 35 

5.4.3 Gel Electrophoresis ......................................................................................................................... 36 

6 RESULTS ................................................................................................................................................ 37 

6.1 IMMUNOHISTOCHEMISTRY ......................................................................................................................... 37 

6.1.1 ChAT Staining .................................................................................................................................. 37 

6.2 ELECTROPHYSIOLOGY ................................................................................................................................ 39 

6.2.1 Effect of Atropine and Eserine on fEPSPs ........................................................................................ 40 

6.2.2 Paired Pulse Facilitation .................................................................................................................. 41 

6.2.3 Characterization of BL and La neurons ........................................................................................... 46 

6.2.4 BL neurons show persistent firing ................................................................................................... 46 

6.2.5 SI afferent stimulation exhibits a biphasic effect in BL neurons ...................................................... 47 

6.3 P75
NTR 

MICE ........................................................................................................................................... 53 

6.3.1 Genotyping...................................................................................................................................... 53 

6.3.2 Effect of Atropine and Eserine on fEPSPs ........................................................................................ 53 

6.3.3 Paired Pulse Facilitation in p75
EXIV

 animals ..................................................................................... 55 

6.4 LTP ....................................................................................................................................................... 58 

6.4.1 LTP induction in wt animals ............................................................................................................ 58 

6.4.2 LTP induction in p75
EXIV

 animals...................................................................................................... 58 

6.4.3 Cholinergic challenge of LTP ........................................................................................................... 60 



Table of Contents 
 

Cline 2010 iii 

7 DISCUSSION ........................................................................................................................................... 61 

7.1 IMMUNOHISTOCHEMISTRY ......................................................................................................................... 61 

7.1.1 ChAT Staining .................................................................................................................................. 61 

7.1.2 Cholinergic challenge of fEPSPs ...................................................................................................... 62 

7.1.3 Cholinergic challenge of paired pulse facilitation ........................................................................... 63 

7.1.4 Plateau firing .................................................................................................................................. 64 

7.2 LTP ....................................................................................................................................................... 66 

7.2.1 p75
EXIV

 vs wt animals ....................................................................................................................... 66 

7.2.2 Cholinergic challenge of LTP ........................................................................................................... 68 

8 CONCLUSION ......................................................................................................................................... 69 

8.1 PLATEAU FIRING ....................................................................................................................................... 69 

8.2 CHOLINERGIC CHALLENGE .......................................................................................................................... 69 

8.3 LTP ....................................................................................................................................................... 70 

8.4 SUMMARY .............................................................................................................................................. 70 

9 OUT LOOK ............................................................................................................................................. 71 

10 REFERENCES .......................................................................................................................................... 72 

11 TABLES AND FIGURES ............................................................................................................................ 83 

12 APPENDIX .............................................................................................................................................. 84 

13 ACKNOWLEDGMENTS ........................................................................................................................... 86 

 



Abstract 

Cline 2010  iv 

Abstract 

The amygdala and the cholinergic system play important roles in learning and 

memory. The amygdala receives substantial cholinergic innervation and in itself ex-

presses differences in this innervation. p75NTR is one of the primary receptors of cho-

linergic neurons and transgenic mice that are missing exon IV of the p75 neurotro-

phin receptor locus, display a change in cholinergic innervation. The loss of p75NTR 

can induce changes in learning and memory so it was hypothesized p75EXIV animals 

would display an enhancement in cholinergic induced plasticity in the amygdala, due 

to increased cholinergic innervation in these mice, and a difference between the BL 

and La nuclei would be seen. As expected, ChAT immunohistochemistry showed a 

stark difference in cholinergic innervation between the BL and La nuclei of the amyg-

dala. Field potential recordings, as well as PPF and LTP, did not show any differences 

between BL and La in wt animals therefore sharp microelectrode recording and a 

standard plateau firing paradigm were used to determine intrinsic differences in pro-

jection neurons for the BL and La nuclei. Sharp recordings revealed a difference in 

plateau firing induction for BL neurons as well as a hyperpolarizing membrane deflec-

tion. As in wt animals, there were no differences seen between the BL and La for 

field recordings in ko mice; although, paired pulse facilitation and LTP elucidated a 

reduction in transmitter release as well as disrupted postsynaptic maintenance in 

p75EXIV animals as compared to wt. Field potential recordings with cholinergic chal-

lenge also indicated a difference in cholinergic signaling in p75EXIV animals. In contrast 

with the original hypothesis, p75EXIV animals did not display an enhancement of cho-

linergic induced plasticity in the amygdala but rather impairment. 

Zusammenfassung 

Die Amygdala und das cholinerge System spielen eine wichtige Rolle bei Lern- und 

Gedächtnisprozessen. Die Amygdala wird sehr reichhaltig von cholinergen Fasern 

innerviert und zeigt dabei in sich selbst ausgeprägte Unterschiede bezüglich dieser 
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Innervation. P75NTR ist einer der primären Rezeptoren cholinerger Neurone und 

transgene Mäuse, welchen der Gen-Lokus Exon IV des p75-Neurotrophinrezeptors 

fehlt, haben eine phänotypisch deutlich veränderte cholinerge Innervation. Der 

Verlust des P75-Neurotrophinrezeptors kann Veränderungen bezüglich von Lern- und 

Gedächtnisprozessen induzieren. Bei entsprechenden transgenen P75ExIV-Mäusen 

wurde eine durch das cholinerge System induzierte erhöhte Plastizität in der 

Amygdala aufgrund der hier generell reichhaltigeren cholinergen Innervation und 

diesbezüglich auch Unterschiede zwischen BL- und La-Nukleus postuliert. ChAT-

immunohistochemische Untersuchungen zeigten dabei erwartungsgemäß, dass sich 

die entsprechende Innervation bei beiden Kernen erheblich unterscheidet. Durch 

extrazelluläre Feldpotentialableitungen (fEPSPs), sowohl PPF-Messungen und auch 

Registrierung der LTP, konnten bei Wildtyp-Mäusen keine Unterschiede zwischen BL- 

und La-Kern gezeigt werden. Daher wurden intrazelluläre Ableitungen mit der 

Glasmikroelektrode und standartisierte plateau-firing Paradigmen angewandt, um 

etwaige Unterschiede bezüglich der intrinsischen Eigenschaften der jeweiligen 

Projektionsneurone beider Kerne zu untersuchen. So konnte gezeigt werden, das die 

Induktion des plateau firing bei BL-Neuronen und La-Neuronen verschieden ist und 

dass BL-Neuronen eine Hyperpolarisationsablenkung des Membranpotentials zeigen. 

Bei Knockoutmäusen konnten durch fEPSP-Messungen ebenso keinerlei 

Unterschiede zwischen BL- und La-Kern festgestellt werden, wenn auch PPF- und 

LTP-Messungen bei transgenen Tieren im Vergleich zu Wildtypmäusen eine etwas 

verringerte Transmitterausschüttung sowie einen veränderten Zeitverlauf der LTP 

aufzeigten. Wurden fEPSPs unter cholinerger Anregung gemessen, war bei den 

transgenen P75ExIV-Tieren das cholinerge Signaling verändert. Im Gegensatz zur 

ursprünglichen Hypothese war die durch das cholinerge System induzierte Plastizität 

in der Amygdala bei P75ExIV-Mäusen nicht erhöht, sondern sogar reduziert. 
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Abbreviations 

* p < 0.05 

** p < 0.01 

*** p < 0.001 

µl micro liter 

µs micro second  

2-APB  Diphenylboric acid 2-aminoethyl ester 

AcCoA acetyl-Coenzyme A 

ACh acetylcholine 

AChE acetylcholinesterase 

AChRs acetylcholine receptor(s) 

aCSF artificial cerebral spinal fluid 

AD Alzheimer’s Dieseas 

AHP after hyperpolerization 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid 

AP action potential 

BDNF brain derived neurotrophic factor 

BFCNs basal forebrain cholinergic neurons 

BL basolateral nucleus 

BLA basolateral amygdala 

BM basomedial nucleus 

BV basoventral 

CaMKII calcium/calmodulin-dependent protein kinase II 

CAN  calcium activated nonspecific cation current 

Ce central nucleus 

CED cambridge electronic design 

ChAT choline acetyltransferase 

CHT sodium dependant choline transporter 
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CNS central nervous system 

CS conditioned stimulus 

DAG diacyglycerol 

DAPI 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride 

DG Dentate Gyrus 

DNA dxeoxyribonucleic acid 

EC external capsule 

EEG electroencephalogram 

E-LTP early phase long term potentiation 

fEPSPs field excitatroy synaptic potential(s) 

fp field potential 

FST fine science tools 

GDP guanosine diphospate 

GEF guanine nucleotide exchange factor 

GPCRs G protein coupled receptors 

GTP  guanosine triphospate 

HDB horizontal limb of the diagonal band of Broca 

HFS high frequecncy stimulation 

HS horse serum 

Hz Hertz 

IAHP afterhyperpolerization current 

IP3 inositol 1,4,5-triphosphate 

ISI interstimulus interval 

KCa calcium activated potassium current 

ko knock out animal 

La lateral nucleus 

LGIC ligand gated ion channel 

LTD  long term depression 

L-LTP late phase long term potentiation 
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LTP long term potentiation 

mAChRs muscarinic acetylcholine receptor(s) 

Me medial nucleus 

mGluR metabotropic glutamate receptors 

ml mililiter 

ms milisecond 

MS medial septum 

MΩ mega ohm 

nA nano ampre 

nAChRs nicotinic acetylcholine receptor(s) 

NB nucleus basalis 

NbM nucleus basalis of meynert 

NGF nerve growth factor 

NMDAR N-Methyl-D-Aspartate Receptor 

NT-4  neurotrophin 

NTRs neurotrophin receptor(s) 

PB phosphate buffer 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PFA paraformaldehyde 

PFC prefrontal cortex 

PIP2 phosphatidylinositol 4,5-bisphosphate 

PKC protein kinase C 

PLC phospholipase C 

PNS peripheral nervous system 

PPF paired pulse facilitation 

PTP post tetanic potentiation 

PTSD post traumatic stress disorder 

REM rapid eye movement 
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RT room temperature 

s second 

sem standard error of the mean 

SI substantia innominata 

SK small conductance calcium-activated K potassium channels 

TBE tris-borate-EDTA 

TNFR necrosis factor receptor 

TrkA tropomyosin receptor kinase A 

UR unconditioned response 

US unconditioned stimulus 

VAChT vesicular ACh transporter 

VDB vertical band of Broca 

VGCCs voltage gated calcium channel 

VM membrane potential 

wt wild type animal 
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1 Introduction 

Classically seen as the region responsible for emotions and emotion based learning, 

the amygdala is now being implicated in other forms of learning as well as cognitive 

performance. It displays a key feature in the consolidation of memory as greater 

amygdala activation determines which sensory inputs will be stored long term rather 

than transiently. Experiences that are able to provoke a strong amygdala response 

generally give rise to late phase long term potentiation (L-LTP) resulting in lasting and 

sustainable plasticity and therefore memory retention; whereas weakly evoked 

amygdala responses usually result in the deterioration over time of resulting memo-

ries or their complete lack of retention [1]. 

As part of the overall limbic system, the amygdala shares connections with the hip-

pocampus, the entorhinal cortex, dentate gyrus as well as other cortices [2]. It re-

ceives substantial innervations from the Nucleus Basalis of Meynert (N. Meynert) 

linking it with basal forebrain cholinergic neurons (BFCNs). The primary cholinergic 

ligand is Acetylcholine, which binds to either nicotinic acetylcholine receptors (nA-

ChRs) or muscarinic acetylcholine receptors (mAChRs) [3]. Survival of BFCNs is highly 

dependent upon the neurotrophin Nerve Growth Factor (NGF) and its high affinity 

receptor tropomyosin receptor kinase A (TrkA). NGF has also been shown to facilitate 

neurotransmission between the N. Meynert and that of the amygdala [4].  

Degeneration of Basal Forebrain Cholinergic Neurons has been shown to be one of 

the principal contributing factors to Alzheimer’s disease (AD). The loss of BFCNs gives 

rise to lower innervation of cortical regions resulting in memory lost, the inability to 

retain new information, as well as attention deficits [5]. One of the primary causes 

for this loss of neurons is the lack of binding of NGF to TrkA receptors. Mice that are 

lacking TrkA receptors show a substantial decrease in amygdala cholinergic innerva-

tion as well as decimation in the size of cholinergic neurons [6], whereas mice that 
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are lacking the low affinity neurotrophin receptor p75NTR have an increase in the 

amount of afferent amygdala cholinergic fibers as well as larger neuronal size [7]. 

As already stated, the amygdala is now being seen as playing a pivotal role in 

memory consolidation. The ability of the amygdala to modulate other members of 

the limbic system has been demonstrated in great detail of late. Electrical stimulation 

of the amygdala can reinforce LTP in the Dentate Gyrus (DG) as well as transform 

early phase LTP (E-LTP) into L-LTP [8]. The ability of the amygdala to produce persis-

tent firing due to cholinergic modulation has also been demonstrated [9]. It is 

thought that persistent firing gives a single neuron the ability to retain transient in-

formation until such information can be consolidate. 

The cholinergic system is integral to the central and peripheral nervous systems and 

to the neuromuscular junction of skeletal and smooth muscles. Due to its wide dis-

tribution, the cholinergic system has an extremely broad physiological relevance 

both in normal and pathological states [10]. In the brain, the cholinergic system plays 

a central role in analgesia, cognition, memory and neuroprotection, whereas in the 

skeletal muscle the system is responsible for contraction. Impairment in cholinergic 

transmission results in selective loss of cholinergic neurons with subsequent neuro-

pathological conditions. 

2 Literature Review 

2.1 Cholinergic System 

The broad scope of the cholinergic system is far too vast for the purposes of this dis-

sertation. It is involved in regulating the CNS [11], PNS [12], as well as other areas 

where the cholinergic system is considerably overlooked; and plays a role in matters 

such as cell proliferation and differentiation [13]. Highly specialized systems, such as 

that of the immune system, have their own integrated cholinergic system [10, 14]. 

Therefore, the brief literature review here will focus on the cholinergic system of the 

basal forebrain.   
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2.1.1 Discovery of Acetylcholine 

The existence of neurotransmitters is a process that took 35 years and much contro-

versy to fully establish. It was tempestuously contested whether transmission across 

synapses was electrical or chemical and the early trailblazers were forced to work 

with the peripheral nervous system (PNS) prolonging the debate for another 30 years 

in the central nervous system (CNS) [15].  

Henry Hallett Dale is contributed as being the first to discover acetylcholine. While 

working with the fungus ergot, Dale extracted multiple compounds which mimicked 

either sympathetic or parasympathetic nerve stimulation including an amine, with 

similar properties to adrenaline, histamine, and ergotoxine, with properties similar to 

acetylcholine, and finally acetylcholine [16, 17]. Acetylcholine is not a normally oc-

curring substance in ergot but as chance favors the prepared, the ergot happened to 

be infected with the bacterium Bacillus acetylcholini and since cholinesterase is also 

not naturally present in ergot, there was an abundance of stable acetylcholine [15]. 

Dale also made a substantial contribution to the understanding of synaptic transmis-

sion as he observed that acetylcholine and muscarine exhibited the same effects at 

some sites but not others. However, low doses of nicotine displayed the same effect 

as acetylcholine at sites where muscarine did not. Thus Dale foreshadowed that the 

effects must be due to “receptor substances” and he labeled the differences as mus-

carinic and nicotinic [18]. Dale also observed that the effect of acetylcholine was “in-

tense”, “immediate” and “extraordinarily evanescent” and thus concluded that an 

esterase must also exists which rapidly breaks down acetylcholine into acetic acid 

and an inactive choline [19].  

Otto Loewi has been distinguished as the first to demonstrate that synaptic transmis-

sion was indeed chemical although it was not conclusively accepted for a conspicu-

ously length of time. It is best to describe the work of Loewi through his own words:  

The night before Easter Sunday of that year I awoke, turned on the light, and jotted down a few 

notes on a tiny slip of thin paper. Then I fell asleep again. It occurred to me at six o’clock in the 
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morning that during the night I had written down something most important, but I was unable to 

decipher the scrawl. The next night, at three o’clock, the idea returned. It was the design of an ex-

periment to determine whether or not the hypothesis of chemical transmission that I had uttered 

seventeen years ago was correct. I got up immediately, went to the laboratory, and performed a 

simple experiment on a frog heart according to the nocturnal design.  

The hearts of two frogs were isolated, the first with its nerves, the second without. Both hearts were 

attached to Straub cannulas filled with a little Ringer solution. The vagus nerve of the first heart was 

stimulated for a few minutes. Then the Ringer solution that had been in the first heart during the 

stimulation of the vagus was transferred to the second heart. It slowed and its beats diminished just 

as if its vagus had been stimulated. Similarly, when the accelerator nerve was stimulated and the 

Ringer from this period transferred, the second heart speeded up and its beats increased. [20] 

Loewi named the first substance secreted via stimulation of the vagus nerve Va-

gusstoff and the other Acceleransstoff. His initial publication “Über humorale Über-

tragbarkeit der Herznervenwirkung” [21] started what would be a fire storm debate 

as to whether or not synapses did indeed release chemicals for the next 30 years. For 

their revolutionary work, both Dale and Loewi were awarded The Nobel Prize in 

Physiology or Medicine in 1936. A better appreciation of the two men can be ob-

tained from reading Feldberg 1970 [22] and Dale 1962 [23]. 
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2.1.2 Acetylcholine Synthesis, Release, and Metabolism 

Acetylcholine (ACh) synthesis is facili-

tated by the enzyme choline acetyl-

transferase (ChAT) in nerve terminals. 

The enzyme catalyzes the acetylation 

of choline by acetyl-Coenzyme A (Ac-

CoA) which is derived from glucose 

[24]. Following synthesis, ACh is then 

transferred into synaptic vesicles via a 

vesicular ACh transporter (VAChT) 

where it is stored until release [25].  

Release occurs when cholinergic neurons are sufficiently depolarized creating an ac-

tion potential (AP) allowing synaptic vesicles to bind to the presynaptic terminal and 

releasing ACh into the synaptic cleft via exocytosis. Upon release, ACh is quickly hy-

drolyzed by the enzyme acetylcholinesterase (AChE) into choline and acetate. AChE is 

extremely efficient as one molecule of AChE has the ability to hydrolyze 5000 mole-

cules of ACh per second [26, 27]. Choline is then returned to the presynaptic terminal 

via a high affinity, sodium dependent choline transporter (CHT) located at the plasma 

membrane of cholinergic neurons [28, 29].  Since ChAT and VAChT are both neces-

sary for the creation and storage of ACh, markers for ChAT and VAChT are acceptable 

means for elucidating cholinergic neurons [30, 31].  

2.1.3 Acetylcholine Transmission 

The mode of transmission of acetylcholine is under great scrutiny at the moment due 

to its brazen contradictory effects. It is suggested that there exist underlying basal 

levels of ACh that incur fluctuations and thus accounts for the actions of ACh; imply-

ing a form of volume transmission. Volume transmission being that, neurotransmit-

ter release moves into the extra synaptic space and produces effects by binding to 

receptors outside the synapse [32]. On the other side of the coin, is the more classi-

cal form of neurotransmitter release known as wired transmission. This being the 

Figure 2.1.1 | ACh Synthesis and Hydrolysis ACh is acety-

lated with choline by AcCoA. It is hydrolyzed into acetate 

and choline via AChE 
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case that ACh is released into the synaptic cleft and its actions are solely contrived in 

the synapse; bringing forth yet two more arguments of phasic or tonic action [33].  

 Figure 2.1.2 | The main characteristics of wired and volume transmission In the wired model of cholinergic 

neurotransmission (a), the presence and high catalytic activity of AChE restricts the neurotransmission to clas-

sic synapses or junctional complexes. By contrast, in the volume model of cholinergic neurotransmission (b), 

most presynaptic cholinergic terminals in the cortex do not form junctional complexes and so neurotransmis-

sion is mediated by ACh that escapes hydrolysis because of insufficient or regulated availability and/or activity 

of AChE. This ACh reaches the extracellular space and can stimulate non-junctional nAChRs and mAChRs. 

Adapted from Sater et al 2009 [34] 

2.1.4 Cholinergic Receptors 

Cholinergic receptors, also known as acetylcholine receptors (AChRs) are classified 

either as muscarinic acetylcholine receptors (mAChRs) or as nicotinic acetylcholine 

receptors (nAChRs). Both receptor types respond to their endogenous ligand ACh, 

however, as their name implies, only muscarinic receptors respond to muscarine 

while nicotinic receptors respond to nicotine. 

2.1.5 Muscarinic Cholinergic Receptors 

Muscarine was first discovered when the psychopharmacological actions of the 

mushroom Amanita muscaria were being investigated in 1869 [35]. There are be-

lieved to be possibly 9 different subdivisions of muscarinic receptors [36] the current 

consensus is that there exist 4 pharmacologically identified subdivisions designated 

with upper case letters as M1-M4 and 5 immunologically/genetically identified re-

ceptor subclasses identified with lower case letters as m1-m5 [37, 38].   Muscarinic 
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receptors consist of single unit proteins folded into  7 transmembrane domains and a 

large cytoplasmic domain between regions 5 and 6 [39]. mAChRs belong to the super 

class of G protein coupled receptors (GPCRs) and thus induce signal transduction via 

catalyzing the exchange of guanosine diphospate (GDP) for guanosine triphosphate 

(GTP) when activated, acting as a guanine nucleotide exchange factor (GEF) [40, 41]. 

As with all GPCRs, muscarinic receptors can further be classified by the type of the G 

protein they are associated with; primarily due to the alpha subunit which deter-

mines which downstream effectors are activated upon the disassociation of the G 

protein complex. When mAChRs are activated, the G protein disassociates into α and 

βγ subunits, which in turn, activate corresponding downstream effectors [42, 43]. 

Classically, most attention has been giving to the alpha subunit which is further di-

vided into four subtypes determining its activation capacity. However, the capacity of 

the beta-gamma complex to primarily activate ion channels is becoming ever more 

lucid [43]. Table one illustrates the mAChRs subtypes along with their associated G 

proteins, including their known second messenger cascades.  

Table 2.1.1 | mAChRs: signal transduction 

 mAChR subtype    

 M1 M2 M3 M4 M5 

Preferred sig-
nal transduc-
tion 

Gq/11 

PLC/IP3/DAG/CA2+ 

PKC 

Gi/o 

AC 
(inhibition) 

Gq/11 

PLC/IP3/DAG/CA2+ 
PKC 

Gi/o 

AC 
(inhibition) 

Gq/11 

PLC/IP3/DAG/CA2+ 
PKC 

      
PLC, phospholipase-C; IP3, inositol 1,4,5-triphosphate; DAG, diacyglycerol; PKC, protein kinase C; AC, adenylate 

cyclase Adapted from Langmead et al 2008 [44] 

2.1.6 Nicotinic Cholinergic Receptors 

Tobacco and indirectly nicotine has been used for thousands of years. The genus Ni-

cotiana received its name from the French ambassador Jean Nicot who introduced 

tobacco to France and indirectly the whole of Europe. Wilhelm Heinrich Posselt and 

Karl Ludwig Reimann coined the term alkaloid and gave nicotine its name in their 

thesis submission to the University of Heidelberg in 1828 as they were the first to 

successfully isolate nicotine in its pure form [45]. Ironically, the pioneering research 

in nicotine was conducted by the R. J. Reynolds Tobacco Co. which is now the second 
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largest tobacco company in the U.S.A and continues to lead research in the fields of 

nicotine addiction and Alzheimer’s Disease therapeutics [46]. 

Unlike mAChRs, nAChRs are ligand gated ion channel receptors (LGIC) that consist of 

five subunits (α,β, γ, δ,ε) surrounding a cation permeable core. Each subunit has four 

transmembrane segments, a long N-terminal domain, an intracellular loop between 

transmembrane segments 3 and 4, and finally a short C-terminal domain [47]. Neu-

ronal nicotinic receptors are composed of heteromer combinations of α (2-6) and β 

(2-4) subunits as well as homomers of α7 and α9 and finally heteromers of α9 and 

α10 subunits [48]. The combination of nAChRs subunits determines the channel ki-

netics for the given receptor as well as its physiopharmacological properties. Current-

ly the best understood neuronal receptor types are the α4β2 heteromer and the α7 

homomer , however, the diverse possible subunit combinations gives rise to a near 

infinite possibility of nAChR receptor types [49]. Nicotinic receptors exist primarily in 

three principal states: activated, inactivated, and desensitized. In the desensitized 

state, the channel is inactivated and incapable of ligand binding. Upon ligand binding 

(usually 2 ligands), the channel becomes activated and permeable to K+, Na+, and 

Ca2+ ions. The ratio between which ions are permeable or favored is directly related 

to the subunits constituting the nAChR. Presynaptically located, nAChRs can directly 

induce neurotransmitter release via the influx of Ca+2 or indirectly through activating 

voltage gated calcium channels (VGCCs). Postsynaptically, nAChRs can activate intra-

cellular signaling cascades and gene transcription [50].   
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2.2 Cholinergic Projections 

In 1967, Lewis and Shute made the first substantial contributions to the understand-

ing of cholinergic neurons and their projections [51-53]. Then sixteen years thereaf-

ter, Mesulam introduced a Ch classification system to distinguish cholinergic groups 

based upon their topographical location as well as their cortical and subcortical pro-

jections [54].  

2.2.1 Basal Forebrain 

Cholinergic neurons of the basal forebrain innervate the entire cerebral cortex and 

contain the cholinergic areas Ch1 to Ch4 based upon Mesulam nomenclature [54]. 

Ch1 neurons refer to cholinergic neurons of the medial septum (MS) which project 

primarily to the hippocampus but as well to the cingulated cortex, olfactory bulb and 

hypothalamus [55]. Cholinergic neurons of the vertical limb of the diagonal band of 

Broca (VDB) are classified as Ch2 and project also primarily to the hippocampus along 

with the fore mentioned projections of Ch1 [55]. Ch3 neurons comprise those of the 

horizontal limb of the diagonal band (HDB) and constitute the major cholinergic 

pathway of the olfactory bulb [56]. The final cholinergic constituent of the basal 

forebrain is area Ch4 which refers to the densest set of cholinergic neurons located 

in the nucleus basalis of Meynert (NbM) also commonly referenced as nucleus basal-

is (NB) or substantia innominata (SI). The NB projects primarily to the amygdala as 

well as to the rest of the cerebral cortex that does not receiving other cholinergic 

projections [57]. 

2.2.2 Brain Stem 

The brainstem cholinergic system consists of four cholinergic cell groups Ch5 to Ch8. 

Ch5 designates cholinergic cells in the pedunculopontine nucleus, and Ch6 cells in 

the laterodorsal tegmental nucleus and rostral brainstem. The Ch5 and Ch6 cells pro-

ject to the thalamus. Ch7 cells in the medial habenula innervate the interpeduncular 

nucleus, and Ch8 cells in the parabigeminal nucleus project to the superior colliculus 

[54, 58].     
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2.2.3 Identification of Cholinergic Neurons  

For the identification of cholinergic neurons, there are numerous methods and 

markers available. The most widely used methods consist of immunohistochemistry, 

immunocytochemistry, in situ hybridization, as well as polymerase chain reaction 

(PCR) and its derivatives [59].  Commonly used markers for cholinergic neurons in-

clude choline acetyltransferase, vascular acetylcholine transporter, acetylcholines-

terase, and finally the choline high affinity transporter [60-62]. It is generally accept-

ed that identification with either ChAT or VChAT is conclusive enough for cholinergic 

neurons. AChE, as a cholinergic marker, is considered to be unspecific and therefore 

normally only used in conjunction with another marker. CHT, although considered a 

highly specific conclusive cholinergic marker, is limited to nerve terminals and there-

fore not as widely used [63]. 

2.2.4 Characteristics of Cholinergic Neurons 

The prime characteristic of basal forebrain cholinergic neurons (BFCNs) is their ex-

pression of the tropomyosin receptor kinase A (TrkA) and the binding of the endoge-

nous ligand nerve growth factor (NGF) gives the BFCNs their respected phenotype 

[64]. Most BFCNs also express all neurotrophin receptors in varying ratios but it is the 

loss of TrkA expression which leads to the onset of mild cognitive impairment and 

later Alzheimer’s disease [65]. While a vast majority of BFCNs also express the low 

affinity p75NTR receptor, more than 90 percent in the MS and diagonal band of Borca 

[66], there exist a subpopulation of cholinergic neurons in the nucleus basalis which 

do not. Cholinergic lesions with 192 IgG-saporin directed against p75NTR abolishes 

BFCNs in all areas except for that of the NB and cholinergic neurons in this area show 

high ChAT reactivity but very low p75NTR expression following 192 IgG-saporin [67, 

68]. 
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2.3 Acetylcholine Neuromodulation  

The cholinergic system plays a pivotal role in modulating learning and memory, 

arousal, sleep, and cognition [69]. It achieves these effects through the modification 

of intrinsic functions on the neuronal level as well as setting the oscillatory tone on 

the network level [33].     

2.3.1 Intrinsic Modulation 

Intrinsically, ACh modifies action potential adaptation as well as membrane potential 

and resistance. It is believed that one of the primary purposes of ACh modulation is 

to limit intrinsic neuronal excitability and thus increase the fidelity of extrinsic excita-

tion [70]. The increased intrinsic inhibition also functions as a  neuroprotective 

mechanism against over excitation [71]. Intrinsic inhibition and  excitation from af-

ferent projections  facilitates network contiguity during ACh release [33]. Both nA-

ChRs and mAChRs have the ability to activate slow conductance calcium activated 

potassium channels (SK) [70, 72]. SK channels are heteromeric complexes of SK-α 

subunits and calmodulin and are gated by changes in intracellular Ca2+ in a voltage-

independent manner [73, 74]. These channels are activated by Ca2+ binding to cal-

modulin that induces conformational changes resulting in channel opening [75]. SK 

channel activation results in K+ ions entering the cell and driving cell hyperpolariza-

tion forming the medium part of which is commonly referred to as the after hyperpo-

larization current (IAHP) [76]. The after hyperpolarization current is typically initiated 

by the firing of action potentials and its primary action is to limit AP firing causing ad-

aptation and decreasing firing frequency [77]. Paradoxically, the IAHP is both en-

hanced and abolished by ACh activation of mAChRs in pyramidal neurons located in 

the basolateral nucleus of the amygdala [70].      

2.3.2 Network Modulation 

Acetylcholine plays an essential role in the network integration of neurons of various 

cortical regions allowing for the processing of information via oscillatory synchroniza-

tion occurring primarily in the beta and gamma ranges (12 to 80 Hz) [78]. Cholinergic 
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Figure 2.3.1 | ACh on cortical dynamics High ACh 

levels enhances afferent input through action of nA-

ChRs and suppresses feedback excitation via presyn-

aptic inhibition of glutamate release through mAChRs. 

Low ACh levels results in weaker afferent input and a 

strengthening of excitatory feedback. Adapted from 

Hasselmo 2006 [69] 

activity is closely associated with cortical arousal [79] and is also strongly linked with 

enhanced sensory processing in the cortex [80] including heightened top-down in-

teractions, from higher associative cortices to lower sensory cortices [81]. Activation 

of nAChRs facilitates afferent inputs to the cortex, whereas the activation of mAChRs 

is important for enhancing intra laminar connections [82]. Muscarinic receptor acti-

vation is associated with gamma frequency oscillations and arousal [83]. In contrast, 

enhanced cortical activation by nicotine is associated with increased visual attention 

and working memory [84] including an increase in beta rhythm generation [85]. Ace-

tylcholine induces hippocampal oscillations in the 40 Hz range via the activation of 

mAChRs; the oscillation is dependent upon rhythmic inhibition through γ-

aminobutyric acid A receptors (GABAA) [86]. As in the hippocampus, nAChR induced 

beta rhythms in the auditory cortex are also dependent upon the activation of 

GABAARs [78].  

2.3.3 Learning and Memory      

Acetylcholine agonists enhance memory 

and learning performance when applied 

to brain regions associated with such 

learning and memory task at hand, 

whereas ACh antagonists disrupt per-

formance [87, 88]. The underlying cellu-

lar mechanisms for the effect of ACh on 

learning and memory include the en-

hancement of afferent input relative to 

excitatory feedback, regulation of inhibi-

tion and oscillations, increased persis-

tent spiking for active maintenance, and 

augmentation of synaptic modification (LTP) [69]. High levels of acetylcholine en-

hances the fidelity of sensory inputs via the activation of nAChRs allowing infor-

mation encoding while inhibiting the retrieval of already stored information by  de-
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creasing excitatory feedback through presynaptic inhibition elicited by the activation 

of mAChRs. Low levels of ACh reduce information from afferent sensory inputs and 

increases excitatory feedback by the removal of presynaptic inhibition and causing 

greater spiking activity and allowing the consolidation of newly learned information 

[33, 89].  

2.4 Field Recordings 

2.4.1 Long-term Potentiation 

LTP is the prolonged strengthening of synapses between neurons following brief but 

intense activation. It is believed to be one of the primary processes underlying the 

neuronal correlation to learning and memory.    

2.4.2 Hebbian Synapse 

In 1949, Donald Hebb revolutionized the way neuronal plasticity was viewed. Hebb 

predicted that plasticity was driven by the temporal juxtaposition of pre- and 

postsynaptic activity. Arguably Hebb’s most quoted statement, "When an axon of cell A is 

near enough to excite B and repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, 

is increased" [90] led to what is commonly referred to has Hebb’s Rule and is popularly 

summarized as “Neurons that fire together wire together”.  Hebb also argued that 

neurons functioned in cell assemblies and postulated that a specific function of the 

Hebbian synapse was the conversion of short term memory into that of long term 

[91].   

2.4.3 Finding LTP 

Hunting for synaptic analogues to learning, many techniques were deployed follow-

ing the postulations of Hebb. One of the building blocks was that of facilitation 

shown by Feng in 1941, which consists of the ability of an excitatory synapse to re-

lease more neurotransmitters following a single synaptic activation [92]. Following 

up on facilitation, in 1955 Cragg and Hamlyn demonstrated augmentation in the hip-

pocampus [93]. Augmentation occurs when a synapse is repeatedly activated and 
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there is an enhancement of synaptic response during and briefly following the re-

peated activations. Edging ever closer to a working demonstration of the Hebbian 

synapse, many groups reported on the ability of post tetanic potentiation (PTP) to 

induce fleeting synaptic augmentation following the initial activation. PTP is the abil-

ity of low frequency stimulation, generally below that of 50 Hz, or a short, high fre-

quency stimulation to briefly induce an enhancement of synaptic excitability. Yama-

moto and McIlwain came extremely close in 1966 when they elicited what was 

termed PTP, due to the short potentiation duration, using a 10 second 100 Hz stimu-

lation paradigm [94]. Finally, in 1973 Bliss and Loemo induced what they, at the time, 

called long lasting potentiation [95] which was later coined long-term potentiation in 

1975 by Douglas [96]. What was believed to be the long sought mechanism underly-

ing learning and synaptic plasticity was found and Hebb’s Rule became firmly 

grounded [97, 98].   

2.4.4 Induction of LTP 

Classical induction of LTP is in agreement with the Hebbian synapse in that presynap-

tic activity induces substantial postsynaptic activation resulting in the potentiation of 

the synapse. This form of LTP induction is N-Methyl-D-Aspartate Receptor (NMDAR) 

dependent. Presynaptic activity depolarizes the postsynaptic neuron through the ac-

tivation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPA) 

[99-101]. Upon sufficient depolarization, the magnesium block of NMDARs is allevi-

ated in the postsynaptic neuron [102]. Upon removal of the voltage dependent Mg2+ 

ion blockade, NMDARs then become permeable to potassium, sodium and calcium 

ions [103]. The increased concentration of Ca2+ in the postsynaptic neuron through 

NMDA receptors is the principle initiator of LTP [104]. Ca2+ build up in the postsynap-

tic neuron triggers an increase in the amount of AMPA receptors present on the neu-

ron’s membrane, which thus further depolarizes the postsynaptic neuron activating 

more NMDARs and further increasing the levels of Ca2+ [105]. When Ca2+ concentra-

tions reach a sufficient level, then calcium/calmodulin-dependent protein kinase II 

(CaMKII) is activated [106, 107]. CaMKII autophosphorylation leads to the induction 
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of LTP by phosphorylating AMAPRs which increases their conductance to Na+ ions 

and thus synaptic potentiation [108].  

Most LTP studies have been conducted in the hippocampus and are the classical 

NMDAR dependent form of LTP [109]. However, other brain regions express other 

forms of LTP and the hippocampus also expresses non NMADAR dependent LTP. 

Generally LTP induction, which is not dependent upon the NMDA receptor, is termed 

non-Hebbian; as presynaptic activation is not a requisite for its induction. This non 

NMDAR dependent form of LTP requires the activation of G protein coupled recep-

tors and the release of internal Ca+2 stores via activation of the inositol 1,4,5-

triphosphate pathway [110, 111]. In hippocampus, non-Hebbian LTP is mediate by 

the activation of metabotropic glutamate receptors (mGluR) while in the amygdala, 

this form of LTP is dependent upon the activation of mAChRs [110, 112, 113]. Alt-

hough the receptor types are different in both brain areas, the primary mechanisms 

underlying LTP induction are virtually the same. Activation of GPCRs activates phos-

pholipase C (PLC) which induces IP3 and diacylglycerol (DAG) production from the hy-

drolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) [111, 114]. IP3 causes the re-

lease of intracellular Ca+2 from endoplasmic reticulum stores initiating LTP induction 

by triggering the buildup of AMPARs on the cell membrane while DAG activates pro-

tein kinase C (PKC) [112]. In turn, PKC phosphorylates AMPA receptors increasing 

their conductance to sodium ions resulting in the potentiation of the synapse [115].   

2.4.5 Paired Pulse Facilitation 

Paired pulse facilitation is a short term enhancement of a synapse on a time scale of 

hundreds of milliseconds. It is primarily considered to be a presynaptic phenomenon 

in which a second postsynaptic potential is enhanced relative to the first if the se-

cond potential quickly follows the first. The enhancement is considered to be the re-

sult of a transient increase in calcium levels in the presynaptic terminal resulting 

from the first pulse [116, 117]. The ratio of the second pulse compared to that of the 

first is used to determine if facilitation or depression took place, which both are con-
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sidered short term forms of synaptic plasticity. A PPF ratio greater than that of 1 in-

dicates that the synapse has under gone facilitation whereas all ratios blow that of 1 

are an indication of synaptic depression. The rational of PPF is twofold: first the activ-

ity of the presynapse determines the extent of transmitter release which in turn de-

termines the amount of activation at the postsypase (first pulse); second, the residu-

al calcium level in the presynaptic cell determines the magnitude of the second 

paired pulse in relation to the first pulse (second pulse). This gives rise to the necessi-

ty to determine the intensity of the first pulse as well as the time frame between the 

first and second pulses [117].  When PPF is induced following LTP, it is controversially 

considered to be indicative of whither LTP occurred pre- or postsynaptically as re-

ports are conflicting [118, 119].     

2.5 Plateau Firing 

Plateau firing, also referred to as plateau potential, persistent activity, or persistent 

firing, is a phenomenon in which single cells repeatedly fire action potentials for a 

sustained period following initial induction. It is believed to be a cellular mechanism 

for maintaining working memory as well as performing cognitive processes such as 

reward based decisions [120, 121]. Currently there are two concepts for how persis-

tent firing occurs, either intrinsically through a calcium activated nonspecific cation 

current or by reverberations in neuronal networks providing reciprocal positive 

feedback [122, 123]. Neurons which display intrinsic firing have been shown to 

demonstrate graded firing levels in direct response to depolarizing and hyperpolariz-

ing pulses which can either increase or decrease firing frequency respectively [9, 

124]. It is currently believed that the mechanism underlying graded firing exists of 

two opposing calcium dependent currents with differing calcium concentration 

thresholds. In normal conditions, the calcium activated potassium current (KCa) ex-

ceeds that of the calcium activated nonspecific cation current (CAN) so that persis-

tent firing does not occur. When the initial stimulus is strong enough, calcium influx 

can surpass a necessary threshold for CAN activation and persistent firing will take 

place. Spiking can be further increased by increasing CAN conductance with a second 
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stimulus and greater calcium influx. Firing can be degraded or ceased by membrane 

repolarization and reducing CAN conductance and replacing the KCa current above 

the CAN current. It is believed that biochemical processes such as phosphorylation 

and dephosphorylation set calcium threshold levels. Entry of calcium through voltage 

gated channels during action potential firing is essential for maintaining the CAN cur-

rent but insufficient to increase CAN conductance providing stable levels of firing 

[121, 122].      

2.6 The Amygdala 

The amygdala is a structurally and functionally heterogeneous collection of nuclei 

that is classically viewed to be the “emotional center” of the brain. First being identi-

fied and named by Friedrich Burdach [125], it is still under some controversy over its 

actual existence as a structure [126]. The amygdala is composed of two primary 

complexes, the centralmedial; containing the central (Ce) and medial (Me) nuclei and 

the Basolateral complex (BLA); which contains the lateral (La), basolateral (BL), ba-

somedial (BM), and basoventral (BV) nuclei [127, 128]. Growing from the ground-

breaking work of Pavlov [129], the amygdala has been considerably connected to 

conditioning, primarily that of fear, and emotional behavior [130-134]. As of late, 

more understanding is emerging in the relationship of the amygdala and memory, in 

particular consolidation [1, 33, 135, 136], and that of cognition [137-141].      

2.6.1 Connectivity 

Vast sensory input arrives at the amygdala from advanced levels of visual, auditory, 

and somatosensory cortices. The olfactory system and polysensory brain regions, 

such as the parahippocampal gyrus and the perirhinal cortex, also project profusely 

to the amygdala [142, 143]. The primary target of sensory input is the La while pro-

cessing of this information emerges almost exclusively in the BL via intrinsic connec-

tions between the two nuclei [144, 145]. Projections from the amygdala target a 

wide sphere of structures including the prefrontal cortex (PFC), striatum, sensory 

cortices, hippocampus, perirhinal cortex, entorhinal cortex, as well as the basal fore-
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brain. The amygdala also targets subcortical structures that are related to physiologi-

cal responses such as autonomic and hormonal [146]. Subcortical projections origi-

nate in the Ce while projections to cortex and striatum arise from the BL [147].  

2.6.2 Learning and Memory 

Learning of new information and the ability to recall this information later is crucial 

for survival. A single acute traumatic experience can induce an intense life long 

memory which is dependent upon BLA activation [148]. Stressful and emotional 

events are well remembered and it is believed that hormones and neurotransmitters 

released during such events are responsible for the enhanced memory formation [1]. 

The infusion of epinephrine, norepinephrine or corticosterone enhances memory 

while lesions of the BLA block this enhancement [149]. Intra amygdala infusions of 

cholinergic agonist and antagonist enhance and inhibit, respectively, memory in-

duced via many forms of behavioral animal training [150]. Stress hormone induced 

amygdala memory enhancement is also dependent upon cholinergic activation as 

muscarinic antagonist blocks such effects [151]. It has been shown that lesions of the 

BLA or its efferents severely impair learning and memory consolidation but do not 

extinguish such learning, thus indicating that the amygdala modulates other brain 

regions and is not the primary memory locus [152, 153]. In this regard, amphetamine 

infused into the caudate nucleus enhanced memory of visual cued training while 

amphetamine infused into the hippocampus enhanced spatial memory, yet amphet-

amine infused into the amygdala was able to enhance both types of memory. Inacti-

vation of either the hippocampus or the caudate nucleus with lidocaine blocked spa-

tial or visual memory respectfully, but amygdala inactivation had no effect on either 

memory type [153]. BLA electrical stimulation also modulates hippocampus LTP [154] 

and enhances induction of LTP in the dentate gyrus [155] while BLA lesions block the 

induction of LTP in the dentate gyrus [156]. Not limited to inducing strong amygdala 

activation, acute stress, as well as chronic stress, induces plasticity changes within 

the amygdala and thereby making the amygdala oversensitive to future stressful 

stimuli [157-159]. This enhanced amygdala response due to plasticity changes leads 
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to increases in anxiety, mood related disorders, as well as severe emotional disorders 

such as post-traumatic stress [160].             

2.7 p75 Neurotrophin Receptor  

The p75NTR is the first member of the tumor necrosis factor receptor (TNFR) super-

family to be characterized and is structurally characterized as having four, tandemly 

arranged,  cysteine-rich, extracellular domains consisting of a sequence of 40 amino 

acids and an intracellular death domain [161, 162]. p75NTR has the ability to bind all 

neurotrophins with low affinity but only NGF, BDNF and NT-4 have been shown to 

induce signaling [163-165]. A characteristic of p75NTR which distinguishes it from oth-

er TNFRs is the existence of a disulfide linked dimer formed via cysteinyl residues 

within the transmembrane domains. These transmembrane domains are necessary 

for p75NTR interaction with other neurotrophin receptors (NTRs) [166, 167].  

2.7.1 p75NTR signaling 

Paradoxically, activation of the p75 neurotrophin receptor has the ability to promote 

neuronal survival as well as induce apoptosis. For general purposes, it is accepted 

that lone activation of p75NTR induces apoptosis while the synergetic activation of 

p75NTR with another NTR promotes survival [168].  Upon binding NGF, p75NTR forms a 

asymmetric complex which allows interaction with only one tyrosine kinase receptor 

such as TrkA and thus, improving the affinity of TrkA to NGF [169]. p75NTR is cleaved 

by α-secretase freeing the extracellular domain preventing the further binding of 

neurotrophic factors, however the transmenbrane domain is still able to interact 

with tyrosine kynase receptors. Following α-secretase cleavage, p75NTR is further 

cleaved by γ-secretase freeing the intracellular domain which is then translocated to 

the cell nucleus. Surprisingly, NGF binding to p75NTR inhibits γ-secretase cleavage 

[170]. Interestingly it has been discovered that the precursors to mature neu-

rotrophic factors also bind to p75NTR inducing apoptosis, so far this has been shown 

to be the case for proNGF as well as proBDNF [171]. However, the most striking 

p75NTR signaling is that the cleaved intracellular tail has been shown to induce apop-
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tosis autonomously [172].  Aside from inducing apoptosis and promoting cell surviv-

al, p75NTR is also capable of regulating neurite growth, reduction, and repair [173]. 

Signaling induced by p75NTR can best be surmised as being dependent on the activat-

ing ligand as well as p75NTR ‘s promiscuity as a coreceptor.    

2.7.2 p75NTR transgenic mice 

There currently exist two forms of transgenic mice with regard to p75NTR. The first 

mouse was produced by deleting 3 of the 4 cysteine-rich extracellular domains by 

targeting exon III of the locus. This prevented the ability of p75NTR to bind any neu-

rotrophic factors; however the deletion left the transmembrane and intracellular re-

gions. This shorten formed of the receptor was termed s-p75NTR and was revealed to 

be coexpressed with the full length receptor at lesser quantities during embryonic 

development. Therefore, exon IV of the p75NTR locus was deleted to give a full abla-

tion of the receptor. Transgenic mice expressing the truncated s-p75NTR receptor are 

referred to as p75EXIII while mice with a complete ablation of the receptor are called 

p75EXIV [174]. Unfortunately it has been shown that the exon IV transgenic mouse al-

so displays a truncated version of the receptor which is capable of signaling [175]. 

Figure 2.7.1 | p75NTR Locus The full length (upper) and short (lower) forms of the p75
NTR

 locus. Above the loci 

are the corresponding exon domain numbers. In the truncated locus, domain III is deleted leaving behind the 

first 2 extracellular domains, the transmembrane and intracellular domains. The short locus is left behind in 

p75
EXIII

 mice whereas p75
EXIV

 mice are thought to be lacking both forms  

2.7.3 Known p75 deficits 

Mice lacking the exon III or exon IV region of the locus show specific phenotypes and 

deficits. Lesioning of neurons expressing the p75 receptor by various methods such 

as 192-IgG injections also leads to specific deficits related to the loss of the low affini-

ty nerve growth factor receptor. Exon IV animals show mobility problems due to hind 

limb ataxia [174], which also hampers the ability for nullizygous male mice to breed 



Literature Review 

Cline 2010 21 

(own observations) as well as a thinning of blood vessels resulting in fewer births of 

ko animals [174]. Both transgenic mouse lines show an increase in target innervation 

by cholinergic afferents as well as an increase in cholinergic neuronal size; interest-

ingly the number of cholinergic neurons is reduced [7, 174]. Aside from deficits in 

neuronal development, a loss of the receptor or the lesioning of neurons which ex-

press it greatly interferes with varying forms of learning and memory [176-179].   

Most studies concerning the loss of the p75 receptor and changes in plasticity have 

been performed in hippocampus. p75EXIV animals have demonstrated an impairment 

in LTD maintenance but no difference in LTP when induced by Schaffer collateral 

stimulation and recorded in region CA1. The mice also showed alterations in AMPA 

receptor subunits GluR2 and GluR3 [180]. It was further reported that signaling of 

proBDNF via p75NTR enhanced LTD in hippocampus and p75 ko animals showed re-

duced expression of NMDA receptor subunit NR2B which is uniquely involved in LTD 

[181].     
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Table 2.7.1 | Phenotype of p75NTR-deficient mice 

Cell population Phenotype 

Dorsal root gan-

glia 

Reduced neuronal survival due to impaired trkA signaling 

Failure of Schwann cells to migrate and related effects on axonal growth 

Basal forebrain Increased cholinergic neuron size, neurotransmitter expression and axonal 

branching in the adult, Increased/decreased cholinergic neuron number (contro-

versial) 

Superior cervical 

ganglia 

Increased neuron number during period of developmental cell death 

Retinal ganglia 

neurons 

Increased neuron number during period of developmental cell death 

Trigeminal neu-

rons 

Increased neuron number during period of developmental cell death 

Spinal motor neu-

rons 

Increased neuron number during period of developmental cell death 

Facial motor neu-

rons 

Increased survival following axotomy 

Hippocampal neu-

rons 

Increased survival after seizure, Increased dendritic branching and spine density, 

Altered LTD 

Spiral ganglion 

neurons 

Progressive hearing loss 

Subventricular 

zone 

Reduced adult neurogenesis 

Vasculature Thinner blood vessels 

Hepatic stellate 

cells 

Inhibited hepatocyte proliferation, and liver regeneration 

Alternative splice 

forms 

Low levels of an extracellularly truncated death-inducing protein are expressed 

on certain congenic backgrounds in each of the two strains 

Summary of the phenotype displayed by transgenic mice for the p75 neurotrophin receptor adapted from Un-

derwood et al 2008 [182] 
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3 Objectives 

The amygdala plays a substantial role in learning and memory and is a key regulator 

of memory consolidation. It also displays one of the highest cholinergic densities in 

the brain; as such, it was desired to elucidate differences in plasticity based upon 

cholinergic innervation of the BL and La nuclei of the amygdala. Since the vast major-

ity of cholinergic projection neurons in the substantia innominata also display the 

p75 neurotrophin receptor, and it has been shown that ko animals for p75NTR show 

significant augmentation of cholinergic innervation, plasticity differences in p75EXIV 

mice were also studied.   

ChAT immunohistochemistry was used to determine cholinergic innervation differ-

ences between the BL and La as well as a determination of stimulation and recording 

sites for electrophysiological experiments. 

Field potential recordings and sharp microelectrode recordings were used to deter-

mine if differences in cholinergic density plays a role in plasticity in the La and BL 

amygdala nuclei. 

LTP was used to determine if p75EXIV animals had an enhancement of LTP related to 

increased cholinergic innervation.  

Field potential recordings were conducted to study differences in the amygdala be-

tween p75EXIV ko and wt animals and if the variation in cholinergic fiber density plays 

a role. 

Paired Pulse Facilitation was used to elucidate any change in presynaptic transmitter 

release as well as possible changes in cholinergic mediated presynaptic inhibition be-

tween p75EXIV mice and wt animals.  

Biocytin staining was used to complement electrophysiological neuronal characteri-

zation as a further determination of projection neurons based upon their morpholo-

gy.  
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4 Materials 

4.1 Electrophysiology 

4.1.1 Equipment 

A.M.P.I. Master 8 programmable stimulator 

ISO-flex stimulus isolator 

A.M.P.I.  

Hameg HM507 50 MHz CombiScope  

oscilloscope 

HAMEG Instruments GmbH 

Axon Instruments AxoClamp 2B amplifier with remote 

buzzer  

two  HS-2A-x0.1LU head stages 

Molecular Devices 

CED Micro 1401 mk 2 data acquisition unit 

Spike2 and Signal software 

Cambridge Electronic Design Lim-

ited 

Gilson Miniplus3 Peristaltic Pump  

with 2 channel head 

Gilson, Inc. 

NI EMPS-07 modular housing 

two DPA-2FS filters 

npi electronic GmbH 

FST Interface Recording Chamber 

TR-200 temperature regulator 

Fine Science Tools GmbH 

Schott KL 1500 LCD cold halogen lamp SCHOTT AG 

Askania SMT4 stereomicroscope  

with stand 

Mikroskop Technik Rathenow 

GmbH 

Siskiyou manual micromanipulator  

SD-MX110R 

SD-MGB 3.0 base 

SD-MX630R hydraulic drive 

Siskiyou Corporation 

Märzhäuser MM33 manual 

micromanipulators with base 

Märzhäuser Wetzlar GmbH & Co. 

KG  

Active Air Suspension Isolation Table including 

working plate granite with stainless steel top 

Steel Faraday Cage 

Borosilicate glass microelectrodes with  

filament 

Science Products GmbH 



Materials 

Cline 2010 25 

Sutter Instrument P-97 Flaming/Brown 

Micropipette Puller 

Sutter Instrument Company 

Exadrop precision gravity infusion B. Braun Melsungen AG 

Bipolar stainless steel electrode Rhodes Medical Instruments Inc. 

Flexible silicone rubber heater Minco Worldwide Headquarters 

Nanoliter 2000 Injector World Precision Instruments 

Slice Holding Chamber University of Heidelberg 

4.1.2 Slice Preparation 

Non-Sterile Scalpel Blades #20 
Non-Sterile Scalpel Blades #10 
Standard Pattern Scissors- Large Loops 
sharp/blunt 14.5cm 
Scalpel Handle #4- 13cm 
Extra Thin Iris Scissors- 10.5cm 
Scalpel Handle #3- 12cm 
Spring Scissors- 10mm Blades Angled   Side 
Dumont #7b Medical Forceps- Inox Standard Tip 
Halsted-Mosquito Hemostats- 12.5cm 
Dumont #7 Forceps- Titanium Biologie 
Dumont #2AP Forceps- Inox Epoxy Coated 
Dumont #5 Mirror Finish Forceps- Inox Biologie 

Fine Science Tools GmbH 

Pattex Blitz Pinsel Henkel KGaA 

Multifix razor blades Apollo Herkenrath GmbH  
& Co. KG 

Vibroslice MA752 Campden Instruments 

4.1.3 Gas Assembly 

Carbogen (95% O2 5%CO2) 
Compressed air 

Air Liquide 

PUN 6x1BL pneumatic tubing Festo 

Tygon tubing LabMarket GmbH 

Couplings and adapters neoLab Migge Laborbedarf-Vertriebs 
GmbH 

Messer 3-O-200 BG88 and 3-D-200 Pressure regu-
lators 

Messer Group GmbH 
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4.1.4 Chemicals 

Apamin 
UCL 1648 
2-APB 
APV (AP-5) 
Atropine 
Kynurenic Acid 
Eserine (Physostigmine) 
CNQX 
Picrotoxin (Cocculin) 
Biocytin 
Carbachol 
Glucose 

Sigma-Aldrich 

NaCl J.T. Baker Inc. 

NaHCO3 
KCl 
CaCl2 
MgSO4 

Carl Roth GmbH + Co. KG 

NaH2PO4 Grüssing GmbH 

4.2 Genotyping 

4.2.1 Equipment 

Mastercycler PCR cycler 
Thermomixer comfort 

Eppendorf AG 

Alphaimager mini gel  
documentation system 

Alpha Innotech 

PowerPac 300 Bio Rad Laboratories 

EasyPhor gel chamber Biozym Scientific GmbH 

Thermo printer P93DW Mitsubishi  

Vortex Genie 2 Scientific Industries 

4.2.2 Primers 

Mp75Ex4-S3 
5'-TGT-TGG-AGG-ATG-AAT-TTA-GGG-3' 

Metabion International AG 

2590 
5'-GAT-GGA-TCA-CAA-GGT-CTA-CGC-3' 

Pgk-2 
5'-AAG-GGG-CCA-CCA-AAG-AAC-GG-3' 

  



Materials 

Cline 2010 27 

4.2.3 PCR 

QuickExtract DNA Extraction Solution EPICENTRE Biotechnologies 

Platinum Taq DNA Polymerase 
10X PCR buffer 
 50 mM MgCl 
100 mM dNTP set 
TrackIt  50 bp DNA Ladder 
TrackIt  Cyan⁄Orange Loading Buffer 

Invitrogen 

4.3 Immunohistochemistry 

4.3.1 Equipment 

Leica VT100 S vibrating blade microtome Leica Microsystems 

Super Frost Plus slides R. Langenbrinck Labor und Medizintechnik 

Axioplan2 Imaging Zeiss 

Axiocam HRc Zeiss 

Stretching Table OTS 40 Medite GmbH 

4.3.2 Markers 

DAPI Boehringer 

Alexa Fluor Molecular Probes 

ChAT Chemicon 

Biotinylated IgG Vector Laboratories 

Streptavidin Cy3 Jackson ImmunoResearch 

4.4 Solutions 

50x TAE buffer 

242 g Tris  

57.1 ml acetic acid 

100 ml 0,5 M EDTA (pH 8)  
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1x PBS 

8 g NaCl  

0.2 g KCl  

1.15g Na2HPO4   

0.2 g KH2PO4  

to 1 L distilled water 

 

0.1 M PB 

2.62 g NaH2PO4  

14.41 g Na2HPO4  x 2 H2O  

to 1 L distilled water 

 

4% PFA 

40 g PFA 

to 1 L 0.1 M PB 

 

Mowiol 

2.4 g Mowiol  

6 g Glycerol  

6 ml Distilled water 

12 ml 0.2M Tris (pH 8.5) 

 

3% HS 0.3% Triton in PBS 

6 ml HS 

0.6 ml Triton 

to 200 ml with PBS 

 

Ringer 

NaHCO3  26 mM 

KCl  3 mM 

CaCl2  1.6 mM 

MgSO4  1.8 mM 

Glucose  10 mM 

NaCl  124 mM 

NaH2PO4  1.25 mM 
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5 Methods 

5.1 Electrophysiology 

5.1.1 Slice Preparation 

Acute horizontal brain slices were prepared from adult mice following decapitation 

under diethyl-ether anesthesia. The brain was then rapidly removed and placed into 

ice cold artificial cerebral spinal fluid (aCSF) saturated with carbogen gas. After an 

incubation time of 20 minutes, the brain was then hemisected in the midsagittal 

plane and the cerebellum was removed.  It was then cut dorsally 30 degrees from 

rostral to caudal and fixed along this edge with a cyanoacrylate adhesive (Pattex Blitz 

Pinsel) to the cutting block so that the brain was sitting oblique to the block surface 

with the ventral side upward and the hemisections facing another caudally. The cut-

ting block was then submerged in ice cold aCSF saturated with carbogen and 400µm 

thick horizontal sections, containing the hippocampus, amygdala, entorhinal and 

perirhinal cortices and substantia innominata, were then cut using a Campden vi-

broslicer from lateral to medial. Horizontal slices were then placed into a holding 

chamber (built in house) and incubated for at least one hour, after which slices were 

transferred to an interface recording chamber (FST) and held at 33° C ±1 degree for 

at least another hour. 

5.1.2 Electrophysiological Recording 

Horizontal slices were placed in an interface recording chamber (FST) and allowed to 

accumulate at least for one hour to continuous profusion of aCSF at a rate of 2 ml 

min-1 and a temperature of 33° C ±1 degree. Extracellular field potential recordings 

were then recorded using an Axoclamp-2B amplifier (Molecular Devices) in conjunc-

tion with a DPA-2FS extracellular amplifier (npi Electronics). Signals were filtered on-

line at 1 kHz and digitized at 5–10 kHz by an analog to digital computer interface 

(CED) and then were stored using Spike2 software (CED). Field potential (fp) record-

ings were obtained with aCSF filled borosilicate glass electrodes with a tip resistance 
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of 1 MΩ placed in either the La, BL or both of the amygdala which was identified with 

a dissecting microscope using trans-illumination.  An extracellular bipolar electrode 

(Rhodes Medical Instruments) was used to induce synaptic fp responses by local 

stimulation of the external capsule. Pulses (0.1 ms, 4–25 V) were delivered with an 

Iso-Flex stimulus isolator (AMPI) triggered by a Master-8 pulse generator. 

For LTP induction, an input/output (I/O) response curve was constructed by varying 

the intensity of single-pulse stimulation and then averaging 6 responses at each in-

tensity. The stimulus intensity that evoked a mean fp equal to 50% of the maximum 

amplitude was then used for all subsequent stimulations (duration: 0.1 ms frequen-

cy: 0.1 Hz). A stable baseline was obtained by presenting a single stimulus (100 µs 

duration) every 10 seconds. Once a stable baseline of responses was obtained for at 

least 20 min, HFS was delivered as 2 trains at a frequency of 100 Hz (duration: 1 s, 30 

s apart). Drug-induced changes in baseline activity were considered. Subsequent re-

sponses to single stimuli were recorded for at least 60 min, and their amplitude was 

quantified as percent change with respect to baseline. 

Paired Pulse Facilitation (PPF) was performed by delivering 2 pulses (duration: 0.1 ms 

frequency: 0.1 Hz) with an inter-stimulus interval (ISI) of 10 to 100 ms and a stimula-

tion intensity which evoked a potential equal to 50% of the maximum amplitude fol-

lowing an I/O curve and baseline. The amplitude of each pulse was quantified as per-

cent change to baseline or as a ratio between the second and first pulse. Pulses were 

delivered in PPF and LTP paradigms as already stated in the extracellular methods as 

well as placement of the stimulator and recording electrodes see Fig. 6.2.1 in Results 

section and Fig. 11.1.2 appendix.  

Intracellular recordings were obtained using sharp microelectrodes pulled on a 

Brown-Flaming puller P-97 (Sutter Instruments) from 1.5-mm borosilicate glass with 

filament and backfilled with 2 molar potassium-acetate resulting in a tip resistance of 

60– 120 MΩ. Signals were amplified using an Axoclamp-2B amplifier and were digital-

ly stored using Spike 2 laboratory software (CED). Intracellular potentials were rec-
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orded in bridge mode and the bridge balance was monitored and compensated 

throughout the experiments. Resting membrane potential was determined by sub-

traction of the tip potential following withdrawal from the cell. Input resistant was 

calculated by current injections (intensity: 0.2 to 0.4 nA duration: 200 ms) through 

the recording electrode and measuring the resultant voltage deflections. Membrane 

potential was manually adjusted by intracellular injection of DC current through the 

recording electrode and holding recorded cells to near firing threshold when eliciting 

persistent activity. An extracellular bipolar electrode was used to induce synaptic re-

sponses by stimulation of the substantia innominata (SI) or within the BLA. Trains of 

pulses (0.1 ms, 5–20 V) were delivered at 10–100 Hz for 0.1–10 s with an Iso-Flex 

stimulus isolator (AMPI) triggered by a Master-8 pulse generator. 

Plateau firing was induced using a standard paradigm [124]. In the presence of 10 

µM carbachol, cells were held near AP threshold and a suprathreshold 4 s 0.3 to 0.4 

nA pulse was given to induce plateau firing. Alternatively, 1 µM eserine was bath ap-

plied and an extracellular bipolar electrode was used to stimulate cholinergic SI af-

ferents. The cell was either held near AP threshold and SI stimulation (10 Hz) was 

used to induce plateau firing or while the cell was at VM rest, repeated SI stimulation 

was given once every 30 s at 10 to 50 Hz to induce plateau firing. SI stimulation 

strength was always subthreshold and was given between 8 and 14 mV with 10 mV 

and 10 Hz being the most prevalent.          

5.1.3 Biocytin Neuronal Labeling 

During intracellular recordings some neurons were labeled with biocytin in order to 

elucidate cell morphology. Sharp microelectrodes were prepared as previously stated 

with the exception that the tips were first filled with biocytin and then the electrodes 

were back filled with 2 molar potassium acetate. Biocytin was prepared by dissolving 

in Milli-Q water. Following experimental recordings, biocytin was injected using puls-

es of positive and negative current at 0.4 nA with a varying duration of 10 to 200 ms. 

Slices were left in the interface chamber, after current injections, for a minimum of 
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20 minutes to allow biocytin to diffuse throughout the cell arborization. Slices were 

then removed from the interface chamber and placed into 4% PFA in PB overnight at 

4° C. 

5.1.4 Data Analysis 

Extracellular data were collected and averaged with Signal 2 software (CED). Field 

potential amplitude was defined as the absolute DC voltage of a vertical line running 

from the minimal point of the fp to its intersection with a line running tangent to the 

points of fp onset and offset. It is assumed that the recorded negative wave reflects a 

summation of both excitatory post-synaptic potentials and synchronized action po-

tentials (population spike component) [183, 184] Watanabe et al. [184] have carried 

out intracellular recordings of evoked potentials and confirmed that the latency of 

peak negative fps (5–6 ms) corresponds well with that of intracellular recorded ac-

tion potentials, indicating that the extracellular recorded sharp negativity is a popula-

tion spike. Therefore, the amplitude of fps was analyzed. In addition, the slope 

measure in the lateral amygdala is more sensitive to variability and signal noise, mak-

ing it difficult to analyze [183]. To calculate the significance of differences between 

groups, the Mann-Whitney test was primarily used (GraphPad Prism). P < 0.05 was 

considered significant. Where the Mann-Whitney test (2 groups, one factor) was not 

applicable then either Kruskal-Wallis (3 or more groups, one factor) or Two-way 

ANOVA (3 or more groups and 2 or more factors) were performed with their appro-

priate posttest. To express and compare changes of fp amplitudes between groups in 

LTP paradigms, the averaged responses from either the 20 to 30 or 50 to 60 min pe-

riod after HFS were used. PPF responses were analyzed by a ratio comparison of the 

averaged signals of pulse 2 to pulse 1 [(P2 - P1 x 100%)/P1] and plotted as a ratio of 

pulse 2 to pulse 1. All data are shown as mean ± sem unless otherwise stated. 

Intracellular data were analyzed offline using Spike 2 software (CED). The amplitude 

of the SI afferent stimulus induced deflection was measured in relation of the mem-
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brane potential and presented as mean ± sem. Peristimulus histograms were per-

formed using Spike 2 as needed.  

5.2 Immunohistochemistry 

5.2.1 Biocytin Development 

Slices were stored overnight in 4% PFA in PB then transferred to a 24 well plate. Slic-

es were washed using 1% PBS, repeated 3 times for 5 minutes each wash. Incubation 

for 2 hours at room temperature was then performed using Streptavidin-Cy3 in PBS 

(concentration: 1:1500-1:2000, volume: 250-500 µl/well). Slices were then rewashed 

with PBS, as stated, followed immediately by a counter stain with DAPI (concentra-

tion 1:100000) for 2 minutes at room temperature. Two washes, in PBS as previously 

mentioned, were then conducted followed by a quick wash in Milli-Q water for 30 

seconds. Slices were then allowed to dry and were mounted and cover-slipped using 

Mowiol on a glass slide.  

5.2.2 ChAT Staining 

Animals were transcardially perfused with PBS followed by 4% PFA. The brain was 

then removed and stored in 4% PFA at 4° C. Horizontal slices with a thickness of 25 to 

40 µm were cut on an automated, vibrating, blade microtome (Leica Microsystems) 

and collected in PB solution. Slices were then washed 3 times in PBS for a period of 5 

minutes each wash followed by membrane permeabilization with 0.4% Triton-X 100 

in PBS for 30 minutes. Slices were re-washed, as stated above, and a blocking solu-

tion consisting of 3% horse serum and 0.3% Triton-X in PBS was applied for the dura-

tion of 1 hour. A repeated wash cycle as stated was performed followed by incuba-

tion with ChAT antibody (concentration: 1:100 in 1% HS|0.1% Triton-X|PBS) for a 2 

day period at 4° C. Again a wash cycle was executed on the slices and incubation with 

the secondary antibody at a concentration of 1:1000 was carried out either over 

night at 4° C or at room temperature for 5 hours. Following secondary antibody incu-

bation, slices were re-washed and counterstained with DAPI (1:100000) for 2 

minutes. A final wash (3 X PBS and 1 X Milli-Q water) was administered and slices 
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were then dried and mounted on glass slides with Mowiol. Alternatively, in order to 

strengthen fidelity in small fiber tracts, in place of the normal secondary antibody a 

biotinylated antibody was used (concentration: 1:2000, incubation: 2 hours RT). Slic-

es were then washed as previously stated proceeded by incubated with Streptavidin-

Cy3 (1:2000) for 2 hours at room temperature. The regular protocol was then fol-

lowed until mounting. Staining was carried out using a free floating technique and a 

volume of 500 µl for all steps. 

5.2.3 ChAT Analysis 

Slices were observed and photographed using an Axoplan 2 microscope coupled to 

an Axiocam HRc digital camera (Zeiss). RGB images were then analysed using ImageJ 

software (NIH). Areas corresponding to the BL and La nuclei were manually selected 

according to brain atlases [185, 186] and RGB pixels were converted into intensity 

values based upon the formula V=(R+G+B)/3 using standard weighing (R=0.299, 

G=0.587, B=0.114). The Mann-Whitney test was used to determine statistical differ-

ence and data are reported as mean ± sem. Photos were merged, when applicable, 

and adjusted for contrast and brightness using Adobe Photoshop CS4 for presenta-

tion. All analyses were performed on unedited images and images were obtained us-

ing a calibrated standard conducted on multiple slices.    

5.3 Mice 

p75EXIV mice, which were originally created in a 129/SvJ strain and backed crossed 

into a C57/BL6 strain, were bred in house. Homozygous, heterozygous and wild type 

animals were maintained. Wild type C57/BL6 animals were ordered via normal sup-

pliers. p75EXIV animals were originally provided by Prof. Dr Yves-Alain Barde (Universi-

ty of Basel, Switzerland).    
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5.4 Genotyping 

5.4.1 DNA Extraction 

Tail tips obtained from experimental animals were used for DNA extraction. The tails 

were placed into 1.5 ml microcentrifuge tubes and 200 µl of QuickExtract DNA Ex-

traction Solution 1.0 was added to each tube. The tubes were then vortexed for 15 

seconds and placed into a thermomixer pre-heated to 65° C and incubated for 6 

minutes. Following initial incubation, the tubes were again vortexed for 15 seconds 

and a final incubation was carried out at 98° C for 2 minutes. Genomic DNA was then 

stored at -20° C or immediately used for PCR. 

5.4.2 PCR 

Due to the incompatibility of the primers for genotyping, two PCR reactions were 

created for each DNA sample. A master mix was created with the following compo-

nents according to manufacturer’s protocol: Taq DNA Polymerase, MgCl2, dNTPs, PCR 

reaction buffer, primers (mix A: 2590/Mp75Ex4-S3, mix B: 2590/Pgk-2), and sample 

DNA. The reactions were then filled with the necessary amount of pure water for ei-

ther 20 µl or 50 µl reactions. PCR was then carried out using the following program:  

CNTRL TUBE 
1. HOLD 95° C  ENTER 
2. T=95° C 0:03:00 
3. T=95° C 0:00:30 
4. T=58° C 0:00:30 
5. T=72° C 0:01:00 
6. GOTO 3 REP 39 
7. T=72° C 0:10:00 
8. HOLD 6° C ENTER 

END  
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5.4.3 Gel Electrophoresis 

A 1.5% agarose solution was created by adding 3 grams of agarose to 200 ml of 1% 

TBE buffer and heating in a microwave. The solution was allowed to cool for approx-

imately 10 minutes allowing the addition of ethidium bromide. The solution was then 

poured into a gel electrophoresis chamber and allowed to solidify. 10 to 20 µl of am-

plified product was then pipetted in to the corresponding well for each product and 

the gel was then run for 1.5 to 2 hours. Visualization was then carried out under UV 

light and the gel was photographed for analysis.  
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6 Results  

6.1 Immunohistochemistry 

6.1.1 ChAT Staining 

Based upon observations in the literature as well as brain atlases [185, 186], it was 

decided that a horizontal slice preparation would be the best method for electro-

physiological studies. 25 to 40 µm horizontal slices from adult mice were incubated 

with a specific antibody for choline acetyltransferase and counterstained with DAPI 

to determine cholinergic cell and fiber locations. The slices included the hippocam-

pus, amygdala, entorhinal and perirhinal cortices and substantia innominata and 

were on the same plane as slices prepared for electrophysiology. Based upon ChAT 

immunohistochemistry, stimulation sites were determined for LTP, fEPSPs, and intra-

cellular electrophysiological studies. Differences in fiber density observed between 

the BL and La were also measured using ImageJ. 

ChAT immunohistochemistry showed a clear separation between the BL and La nu-

clei based upon cholinergic fiber density (Fig. 6.1.1). The stria terminalis also dis-

played reactivity against the ChAT antibody. Cholinergic neurons were observed cau-

dal medial to the BL nucleus of the amygdala corresponding with the area of the sub-

stantia innominata which is also the location of the nucleus basalis of Meynert. ChAT 

positive fiber tracts could be observed between that of the SI and the BL nucleus; fi-

bers of the External Capsule were also distinguishable and showed limited ChAT re-

activity.  
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Figure 6.1.1 | ChAT Immunohistochemistry Immunohistochemistry in 25 µm horizontal slice preparation. (A) 4 

X collage of horizontal slice showing SI, substantia innominata; BL, basolateral; La, lateral; and LV, lateral ven-

tricle. Arrows indicate the fiber tract of the external capsule. (B) 10 X of cholinergic neurons located in the SI, 

source of amygdala cholinergic innervation. (C) 4 X showing cholinergic fibers as well as cholinergic neurons 

originating in the SI and projecting to the amygdala. Arrows indicate cholinergic afferents and neuron. Scale 

bars for A and C are 100 microns and 50 microns for B. 
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Measurement of intensity using ImageJ software revealed a highly significant differ-

ence for ChAT reactivity between that of the BL and La amygdala nuclei as revealed 

by the Mann-Whitney test (Fig. 6.1.2). The mean intensity for the BL and La were 

34.60 ± 1.057 and 27.47 ± 0.8166 (p ≤ 0.001) respectively. 

Figure 6.1.2 | ChAT Intensity (A) 25 µm horizontal slice showing areas measured for intensity using ImageJ 

software based on RGB color vectors and the formula V=(R+B+G)/3 with standard weightings of RGB. Arrows 

depict fibers of the EC. Scale bar equals 100 microns (B) Mann-Whitney test between La and BL of the BLA. 

Data is presented as mean ± sem.  

La: mean 27.47; sem, 0.8166 | BL: mean 34.60; sem 1.057 ***p < 0.001 N: 5 

6.2 Electrophysiology 

Based upon ChAT immuno-

histochemistry, it was decid-

ed that for field potential re-

cordings stimulation would 

be applied to the fiber tract 

of the external capsule while 

recording electrodes would 

either be positioned in the La 

or BL of the amygdala. Con-

trol experiments were then 

conducted to determine the best placement of the stimulating electrode in relation 

to the recording electrodes in order that a stable and reproducible signal could be 

Figure 6.2.1 | Horizontal Slice Diagram depicting the plane of the hor-

izontal slice preparation used for field recordings, PPF, and LTP and 

the approximate placements of stimulator and microelectrodes. Modi-

fied from Paxinos 1998 [186]  
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obtained. When the desired field excitatory postsynaptic potentials were sufficiently 

reproducible, preliminary experiments were then performed to determine if EC fiber 

stimulation could elucidate a cholinergic modulation of the fEPSPs.  

6.2.1 Effect of Atropine and Eserine on fEPSPs 

Since ChAT immunohistochemistry revealed a significant difference between the BL 

and La of the amygdala for cholinergic innervation, fEPSPs were recorded in both nu-

clei during cholinergic challenge in order to show a physiological difference as well. 

Excitatory postsynaptic field potential recording did not reveal any differences be-

tween the BL and La with or without cholinergic challenge (Fig. 11.1.1, appendix); 

therefore, data from both nuclei were combined. Cholinergic challenge did however 

significantly alter the field potential as can be seen in figure 6.2.2.   

Figure 6.2.2 | Cholinergic challenge of fEPSPs Field potentials initiated with a stimulus which produced an 

amplitude 50% of maximum. (A) 10 µM atropine caused a potentiation of the fEPSP which reached a maximum 

at 20±5 minutes. 1 µM eserine inhibited the fEPSP reaching a maximum at 20±10 minutes. (B) Mann-Whitney 

analysis revealed a significant effect of atropine and eserine on the fEPSP. All drugs were bath applied. Data 

shown mean ± sem. Atropine: mean 250.6 ± 4.468 | Eserine: mean 47.48 ± 2.114 ***p ≤ 0.001 N: 5 
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Bath application of 10 µM atropine, a competitive selective antagonist of mAChRs, 

and 1 µM eserine, a slowly degraded inhibitor of AChE, were able to significantly po-

tentiate or inhibit fEPSPs respectively. EC fiber stimulation was given at a strength 

elucidating a postsynaptic potential equal to that of 50% of the maximum amplitude. 

Both atropine and eserine demonstrated a time dependent action on the fEPSPs (Fig. 

6.2.2). Application of atropine resulted in a gradual potentiation of the field potential 

and reached a maximum at approximately 15 to 20 minutes. Eserine inhibition of the 

field potential began at approximately around 5 to 15 minutes while a maximum ef-

fect was seen between 20 and 30 minutes. Eserine application of greater than 20 

minutes eventually resulted in the complete inhibition of the field potential signal. A 

physiological cholinergic difference for fEPSPs between the BL and La was not ob-

served; however, cholinergic antagonization or agonization did significantly either 

enhance or diminish the field potential respectively.   

6.2.2 Paired Pulse Facilitation 

Control experiments for PPF were first 

performed to determine the optimal in-

ter stimulus interval that should be used 

for subsequent cholinergic challenge. 

The ISI was varied from 10 to 100 milli-

seconds which elucidated a maximal fa-

cilitation at 40 ms (Fig. 6.2.3). A signifi-

cant difference was not observed be-

tween the lateral or basolateral nuclei 

of the amygdala and therefore data 

from both sites were combined. An ISI 

greater than 100 ms resulted in an ex-

ponential decrease in the paired pulse 

ratio and therefore were not conducted after initial pilot studies. Based upon the re-

sults obtained, it was decided that all subsequent experiments would be performed 

Figure 6.2.2 | PPF ISI paired pulse facilitation with 

varying inter stimulus intervals from 10 to 100 ms. at 

50% maximum amplitude. N: 3 

ISI (ms) mean sem ISI (ms) mean sem 

10 1.046 0.03114 60 1.431 0.02653 

20 1.353 0.02357 70 1.429 0.02347 

30 1.494 0.03729 80 1.465 0.01876 

40 1.591 0.02436 90 1.445 0.02988 

50 1.517 0.03851 100 1.394 0.03496 
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using an ISI of 30 ms and a stimulation intensity which induced an amplitude for the 

first pulse consisting of 50% maximum. The chosen ISI and stimulus intensity would 

allow for facilitation/depression to occur but would not produce a ceiling/floor effect 

when challenged.  

Initial experiments demonstrated that eserine application was able to inhibit the 

field potential induced by EC fiber stimulation. Eserine inhibits the degradation of ac-

etylcholine in the synaptic cleft by blocking acetylcholinesterase and thereby allow-

ing the accumulation of ACh. During fiber stimulation in the presence of eserine, the 

amount of ACh in the synaptic cleft depends upon the frequency, duration and inten-

sity of the stimulation; due to this, it was decided to test the effect of carbachol 

(CCh), a non-selective AChR agonist which is resistant from AChE, on the field poten-

tial. This allowed for a more stable level of ACh at the synaptic cleft which could be 

manipulated with the concentration of CCh used. Paired pulse facilitation was im-

plemented to determine if the cholinergic effect was occurring pre- or post synapti-

cally. 

When paired pulses were delivered at a stimulus intensity of 50% maximum baseline 

it was observed with CCh as well as with eserine that the fEPSPs were abolished (Fig. 

6.2.4 A). In order to test if this was a true inhibition or a change in threshold, stimula-

tions of 2, 4 and 6 mV were given above initial baseline during CCh application (Fig. 

6.2.4 A, Fig. 6.2.5 D). At all carbachol concentrations the threshold was increased cor-

responding in relation to the concentration of CCh and this increased threshold was 

reversed with the application of atropine; however, atropine could not reverse the 

baseline inhibition of the fEPSP at 50% maximum amplitude. 
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Figure 6.2.4 | PPF with Carbachol challenge (A) Time course showing CCh inhibition of the fEPSPs. Stimula-

tions at 2, 4 and 6 mV above initial baseline were given to demonstrate an increase in firing threshold and not 

a complete inhibition of the field potential by CCh. Application of 10 µM atropine did not block the increased 

threshold. (B, C,D) PPF for stimulations at 2, 4 and 6 mV above baseline show that although CCh inhibited the 

fEPSP it increased the PPF ratio. CCh 0.5, 5 and 10 µM and atropine 10 µM were all bath applied. BL and La 

combined. N: 3 
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Since carbachol was able to severely inhibit the field potential at a baseline of 50%, 

which was irreversible with atropine, it was decided to use a baseline of 80% maxi-

mum amplitude. Carbachol was still able to significantly reduce the overall fEPSP 

amplitude but at the new baseline level atropine application was able to reverse this 

inhibition and induce potentiation (Fig. 6.2.5 A). The potentiation is in agreement 

with fEPSPs studies when atropine is applied alone. The reversal of the CCh induced 

inhibitions at 80% but not at 50% maximum amplitude also evidences an increased 

threshold as with the stimulus challenges in figure 6.2.4 A which showed significant 

differences with respect to CCh concentration as well as stimulus intensity as re-

vealed by Two-way ANOVA with Bonferroni posttest (Fig. 6.2.5 D). The paired pulse 

ratio was also increased with CCh in a dose dependent manner indicating a presyn-

aptic inhibition via mAChR activation as seen in figure 6.2.5 C. Paired pulse facilita-

tion shows that the enhanced field potential in the presence of atropine is due to the 

disinhibition of the presynapse while eserine and carbachol increase the PPF ratio by 

augmenting presynaptic inhibition as well as enhancing transmitter release for the 

second pulse. 
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Figure 6.2.5 | PPF with CCh challenge at 80% maximum  (A) Time course showing CCh inhibition of the fEPSPs. 

Application of 10 µM atropine was able to reverse the CCh inhibition and cause potentiation. (B, C) Kruskal-

Wallis analysis with Dunns Multiple Comparison Test showed a very significant and highly significant difference 

in the PPF ratio for CCh concentrations at 0.5 and 5 µM respectively N: 3. Atropine blocked the increased ratio. 

(D) Stimulations of 2, 4 and 6 mV above baseline to test effect of CCh on threshold baseline was at 50% maxi-

mum amplitude Two-way ANOVA with Bonferroni posttest revealed a highly significant difference between 

CCh and stimulus ***p < 0.001 N: 3 Bonferroni summary can be seen in table below (A, B, C) Baseline stimula-

tion was at 80% maximum amplitude All drugs were bath applied. BL and La combined. 

C Ringer 0.5 CCh 5 CCh 5 CCh+Atro 

mean 1.262 1.548 3.953 1.346 
sem 0.02125 0.02200 0.1986 0.02269 
p n/a ** *** Ns 

N=3     

     

D 2 mV 4 mV 6 mV 2 v 4 mV p 2 v 6 mV p 4 v 6 mV p 

0.5 CCh 36.35 82.31 104.7 *** *** * 
5 CCh 54.74 124.0 107.4 *** *** ns 
10 CCh 7.922 28.71 25.86 Ns ns ns 
10 + atro 112.4 212.1 182.3 *** *** ** 

N=3       
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6.2.3 Characterization of BL and La neurons 

Only neurons which had characteristics of typical projection neurons were measured 

[70]. Some cells were filled with biocytin (10 from 82) for morphological characteriza-

tion. 

Figure 6.2.6 | Characterization of neurons (A) Sample characterization of a typical BL neuron negative and 

positive current injection was given at 1,2, 3 and 4 nA 200 ms duration VM 76 mV (B) Biocytin filled neuron de-

veloped with a Streptavidin-Cy3 protocol. Picture displays only the R channel (RGB) and is adjusted for bright-

ness and contrast. Location of neuron was superficial in slice and found in BL nucleus. Scale bar is 25 microns 

6.2.4 BL neurons show persistent firing 

As it was already shown that neurons in the lateral amygdala nucleus were capable 

of producing persistent activity during cholinergic activation [9], it was decided to 

test this phenomenon in the BL which displays greater cholinergic fiber density. Ini-

tial experiments were first conducted in the presence of 10 µM carbachol and direct 

current injection to hold the cell membrane near firing threshold. A four second 

pulse was then delivered to induce plateau firing. In the presence of CCh using 

standard techniques, BL neurons showed persistent activity. Stimulation of choliner-

gic SI afferents in the presence of 1 µM eserine was then used to determine if persis-

tent firing could be induced in BL neurons via cholinergic synaptic activation. As in  
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Figure 6.2.7 | Persistent firing in BL neurons (A) Persistent activity induced with continuous DC injection to 

just below threshold and a 4 s 0.4 nA pulse in the presence of 10 µM CCh. N=27 (B) Persistent activity induced 

with DC injection to just below threshold and cholinergic fiber stimulation at 10 Hz followed by a 4 s 0.4 nA 

pulse in the presence of 1 µM eserine. N=23 (A,B) lower traces show direct current injection. All experiments 

were done during glutamatergic and gabaergic blockade using 2 mM kynurenic acid and 100 µM picrotoxin 

respectively. All drugs were bath applied. Starting VM for A and B was 71.2 and 73 mV respectively. 

CCh experiments, the cell was held just below firing threshold with direct current in-

jection. A four second, 10 Hz fiber stimulation was given to release ACh followed by a 

four second, 0.4 nA pulse to induce plateau firing. All experiments were done during 

glutamatergic and gabaergic synaptic blockade using kynurenic acid, a non-selective 

antagonist at NMDA and AMPA/kainate receptors, and picrotoxin a GABAA antago-

nist. As already shown in La neurons, induction of plateau firing in BL neurons was 

possible with a standard carbachol paradigm and by synaptic release of ACh via acti-

vation of SI afferents in the presence of eserine as shown in figure 6.2.7. 

6.2.5 SI afferent stimulation exhibits a biphasic effect in BL neurons 

During testing for plateau firing in BL neurons of the amygdala, it was observed that 

a small cohort of these neurons (8 out of 23) displayed an inhibitory effect following 

stimulation of cholinergic SI afferents. All of these neurons displayed a hyperpolariza-

tion following afferent stimulation and afferent activation was able to fully or partial-

ly inhibit 4 second DC injection which normally induced action potential firing (6 from 

8). Experiments were performed during synaptic blockade by application of kynuren-
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ic acid and picrotoxin as well as ACh augmentation with eserine. As with persistent 

firing studies, afferent stimulation was always given at an intensity that did not pro-

duce action potentials. The stimulus intensity and frequency was varied between 8 

and 14 mV and 10 to 50 Hz respectively. Duration of the stimulus was either 2 or 4 

seconds and the inter stimulus interval was 30 seconds or greater. It was observed 

that SI afferent activation with an ISI that was less than 30 seconds would lead to epi-

leptic like firing and loss of cell. 

Figure 6.2.8 demonstrates a cell which did not exhibit a strong deflection at resting 

VM  following afferent stimulation but did demonstrate inhibition of a 4 second 0.4 

nanoampere DC pulse delivered closely after afferent activation. A 2 second 10 Hz 

stimulation with an ISI of 30 seconds was able to almost fully inhibit the DC pulse; 

stimulation of 40 Hz frequency was able to completely inhibit the direct current in-

jection. A lapse of at least 45 seconds between stimulation negated cholinergic affer-

ent activation. Change in stimulation intensity, duration or membrane potential (less 

negative) did not have an observed effect on DC pulse inhibition. 

Figure 6.2.8 | Cholinergic afferent inhibition in BL neurons Stimulation of cholinergic afferents was able to 

induce inhibition of DC current injection AP fringing in BL neurons. (A) At VM rest, a subthreshold 10 mV 10 Hz 

stimulation of cholinergic afferents was able to partially block a 4 s 0.4 nA suprathreshold current injection. 

Repetition of the stimulation every 30 s was able to elicit greater inhibition but never a full block of the current 

injection. (B) A 10 mV 40 Hz stimulation of cholinergic afferents was able to fully inhibit the suprathreshold DC 

injection. 2 mM kynurenic, 100 µM picrotoxin and 1 µM eserine were all bath applied. Starting VM 70.2 mV 
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Atropine was added to the bath to determine if activation of cholinergic afferents 

was indeed responsible for the observed inhibition in some BL neurons. Figure 6.2.9 

shows the effect of atropine on afferent stimulation and DC injection. A 2 second 10 

Hz pulse with an intensity of 8 mV elicited a hyperpolarization in VM. Upon atropine 

application this hyperpolarization was completely abolished. Increasing the stimula-

tion duration to 4 seconds, the frequency to 50 Hz and the intensity to 14 mV did not 

cause a change in the atropine block of VM deflection by cholinergic afferent activa-

tion. Inhibition of 4 second direct current injection was also abolished in the pres-

ence of atropine. The observed hyperpolarization induced by SI afferent activation 

could be reversed at a more negative VM which was between 20 and 25 mV more 

negative than VM rest. 
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Figure 6.2.9 | Atropine block of cholinergic inhibition (A) A subthreshold stimulation of cholinergic afferents 

at 10 Hz 8 mV induced a hyperpolarization of VM at rest which was reversed at a more negative VM. (B) Bath 

application of 10 µM atropine was able to suppress cholinergic afferent induced membrane deflection at 

stronger stimuli of 14 mV and 10/50 Hz. (C) Inhibition of suprathreshold 0.4 nA 4 s DC injection by a 10 Hz 14 

mV afferent stimulation was also blocked in the presence of 10 µM atropine. 2 mM kynurenic, 100 µM picro-

toxin,   1 µM eserine and 10 µM atropine were all bath applied. Starting VM was at 70.5 mV N: 3 

Hyperpolarization and the inhibition of 4 second DC pulse following cholinergic acti-

vation, by stimulation of SI afferents, did not interfere with the ability of these BL 

neurons to induce plateau firing. Figure 6.2.10 displays a BL neuron which showed 

hyperpolarization as well as inhibition of direct current following SI afferent activa-
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tion. Acetylcholine release by 10 Hz stimulation at 13 mV was able to completely in-

hibit a 0.2 nA 4 s DC pulse which without prior SI afferent stimulation was able to in-

duce action potentials for the duration of the pulse. Following repeated ACh release 

the 0.2 nA DC pulse showed an increase in firing rate when it did not immediately fol-

low SI activation and came within a time window of less than 45 seconds of the last 

10 Hz stimulus. In order to test the effect of SI afferent stimulation on plateau firing, 

10 Hz 2 second stimulation at 13 mV was given every 30 seconds. This caused a grad-

ual depolarization of membrane potential and eventual plateau firing. Initial plateau 

firing lasted for 65 s before subsiding and VM was allowed to return to rest. SI affer-

ents were then activated as before and again the cell displayed plateau firing which 

lasted until continues DC injection was given to drive the cell to resting membrane 

potential.  

A total of 82 neurons were measured (BL: 66 La: 16) of which 62 showed persistent 

firing (BL: 50 La: 12). 23 of the 50 BL neurons were tested for SI stimulation induced 

plateau firing in the presence of eserine. Interestingly, 8 of these neurons showed a 

hyperpolarizing membrane deflection which was not observed in the La following 

cholinergic afferent stimulation. 6 of the 8 neurons also demonstrated partial or full 

inhibition of a DC pulse which normally elicited AP firing following SI stimulation; 

however, this inhibition did not affect the induction of plateau firing. Results are 

summarized in table 6.2.1 below.   

Table 6.2.1 | Summary of intracellular recordings 

 BL La 

Total Number 66 16 
Membrane potential (VM) 71.2 ± 4.5 70.2 ± 5.2 
afferent stimulation deflection (mV) 9.44 ± 3.38 n/a 
Persistent firing 50 12 
In CCh/eserine 27/23 7/5 
Membrane deflection 8 n/a 
Pulse inhibition 6 n/a 
Biocytin filled 7 3 
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Figure 6.2.10 | Induction of plateau firing from VM rest (A) A 13 mV 10 Hz stimulation of cholinergic afferents 

was able to fully block a 0.2 nA 4 s suprathreshold direct current injection. (B) Afferent stimulation every 30 s 

was able to initiate plateau firing which ceased after 65 s. (C) Further stimulations were able to re-induce plat-

eau firing that lasted until quenched by continuous hyperpolarizing DC injection. (D) The firing frequency of 

suprathreshold 0.2 nA current injection was increased when given between 10 and 20 s following multiple af-

ferent stimulations revealed by peristimulus histogram analysis. 2 mM kynurenic, 100 µM picrotoxin and 1 µM 

eserine were all bath applied. Starting VM 67.8 mV 
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6.3 p75NTR mice 

6.3.1 Genotyping 

p75EXIV animals were genotyped as described in methods. The wild type primer mix-

ture (2590/Mp75Ex4-S3) revealed a band consisting of 345 bp while the ko primer 

mixture (2590/Pgk-2) had a band at 475 bp. Heterozygous animals displayed both 

bands as seen in figure 6.3.1. 

Figure 6.3.1| p75
EXIV

 genotyping (A) gel showing wt animal and ht animal (B) PCR bands corresponding to a ko 

animal and a ht animal. 

6.3.2 Effect of Atropine and Eserine on fEPSPs  

Atropine and eserine significantly potentiated or inhibited the field potential in wt 

animals. Since it is known that p75EXIV animals show a substantial increase in cholin-

ergic innervation bath application of 10 µM atropine and 1 µM eserine was given 

during fEPSP induction using a stimulus which produced a field potential amplitude 

50% of maximum to determine if p75EXIV animals showed differences compared to 

their wild type (wt) counterparts. The maximum effect of atropine on fEPSPs was ob-

served between 15 and 20 minutes from onset which coincides with wt animals. Un-

like wt mice, p75EXIV animals showed no potentiation in the presence of atropine. Ap-

plication of eserine was able to inhibit the field potential in p75EXIV mice but to a less-

er degree as compared to wt mice (Fig. 6.3.2 A, B). The effect of eserine began 

around 5 to 15 minutes following initial application also corresponding to observa-

tions in wt mice, however, unlike wt mice; p75EXIV animals did not show a complete 

inhibition in the field potential after bath application of 30 minutes or more as was 

seen in wt animals as well there was only a negligible increase of fEPSPs threshold in 

p75EXIV animals. In the presence of atropine, p75EXIV animals in fact showed a signifi-

cant depreciation of the field potential (Fig. 6.3.2 A) in contrast with wt mice which 

showed a highly significant potentiation (Fig. 6.2.2 B). Interestingly, atropine applica-
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tion decreased the variability of fEPSPs in p75EXIV animals allowing for this signifi-

cance which otherwise would not have been seen. Unlike in wt animals, atropine did 

not reverse the effect of eserine inhibition back to baseline levels or above in p75EXIV 

mice.  

Figure 6.3.2 | Cholinergic challenge of fEPSPs in p75EXIV mice (A) Challenge of fEPSPs in p75EXIV mice show-

ing significant and highly significant inhibition of the fEPSP for atropine and eserine respectively. (B) compari-

son of cholinergic challenge between wt and p75EXIV animals. Atropine was able to produce a highly signifi-

cant potentiation in wt animals whereas p75EXIV showed a significant inhibition. In both wt and p75EXIV mice 

eserine showed a highly significant inhibition of the fEPSP, however; the degree of inhibition was greater in wt 

animals. 10 µM atropine and 1 µM eserine were bath applied.  

Mann-Whitney test data showed as mean ± sem. 

A atropine eserine B atropine wt atropine ko eserine wt eserine ko 

mean 94.48 70.17 mean 250.6 94.48 47.48 70.17 
sem 1.403 2.161 sem 4.468 1.403 2.114 2.161 
p * *** p *** *** 

N=3   N=3     

As compared to wt animals, p75EXIV animals display an attenuated response to eser-

ine as well as to atropine. The inhibitory effect of the fEPSP in the ko animals is signif-

icantly reduced and the ability of atropine to reverse this inhibition is not present nor 

does atropine cause any potentiation of the fEPSP when applied alone. Wild type and 

ko animals do not show a significant difference in the field potential response during 

application of normal ringer (wt: 2.378 ± 0.2266 ko: 2.578 ± 0.2805, p=ns, N=5). The 
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p75 receptor seems to play a crucial role in cholinergic mediated presynaptic inhibi-

tion; however, a reduced response to cholinergic inhibition in p75EXIV mice does not 

cause an increase in normal field potentials. 

6.3.3 Paired Pulse Facilitation in p75EXIV animals 

Building on the cholinergic challenge of 

fEPSPs, paired pulse facilitation was 

performed in p75EXIV animals. In order 

to determine if there was a difference in 

the ISI for the p2:p1 ratio, preliminary 

test were done as before using a stimu-

lus which produced a field potential 

amplitude of 50% maximum for pulse 

one and an ISI ranging from 10 to 100 

milliseconds. p75EXIV animals showed a 

maximum ratio at 30 ms (Fig. 6.3.3) as 

compared with wt animals which dis-

played the maximum p2:p1 at 40 ms 

(Fig. 6.2.3). To eliminate the possibility of a ceiling effect, p75EXIV animals were tested 

at an ISI of 20 ms. Since eserine was able to increase the PPF ratio at 30 ms, in order 

to maintain congruence with wt animals, PFF test were also performed with an ISI of 

30 ms. During preliminary PPF trials, wt animals showed a relative stable p2:1 be-

tween 50 to 100 ms and an exponential decrease following 100 ms (Fig. 6.2.3), 

p75EXIV animals, however began to decline after 70 ms (Fig. 6.3.3). Eserine increased 

the instability in the PPF ratio after 40 ms whereas atropine induced stability (Fig. 

6.3.4). Two-way ANOVA with Bonferroni posttest however revealed that the eserine 

instability was insignificant, whereas atropine had a significant affect by preserving 

the increased p2:p1 ratio for ISIs 50 to 100 ms. This is in contrast to wt animals 

where atropine returned the PPF ratio back to baseline levels. At 20 and 30 ms inter-

stimulus intervals, p75EXIV mice, to a lesser extent, resembled their wt counterparts. 

Figure 6.3.1 | PPF ISI paired pulse facilitation with 

varying inter stimulus intervals from 10 to 100 ms. at 

50% maximum amplitude. N: 5 

ISI (ms) mean sem ISI (ms) mean sem 

10 1.025 0.03211 60 1.128 0.03832 

20 1.167 0.04039 70 1.073 0.02864 

30 1.295 0.06380 80 0.9957 0.08622 

40 1.264 0.03393 90 0.8771 0.04509 

50 1.138 0.02555 100 0.9155 0.009926 
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Figure 6.3.4 | Paired pulsed facilitation p75EXIV ISIs PPF in p75
EXIV

 mice at ISIs between 10 and 100 ms. (A) 

application of eserine insignificantly disrupted the p2:p1 ratio (B) atropine did not fully restore p2:p1 to base-

line levels but did significantly maintain a stable level similar to ISI 40 in baseline conditions for ISIs 40 to 100 

ms. Data are presented as mean ± sem summary of Two-way ANOVA with Bonferroni posttests are in table 

below 

 ringer eserine atropine ringer vs eser ringer vs atro eser vs atro 

10 1.025±0.026 1.172±0.050 1.056±0.024 ns ns ns 
20 1.167±0.036 1.391±0.036 1.203±0.029 *** ns ** 
30 1.295±0.053 1.445±0.051 1.331±0.040 ns ns ns 
40 1.264±0.032 1.343±0.028 1.239±0.018 ns ns ns 
50 1.138±0.021 1.020±0.029 1.257±0.026 ns ns *** 
60 1.128±0.047 1.179±0.046 1.226±0.028 ns ns ns 
70 1.073±0.042 0.913±0.026 1.247±0.030 * * *** 
80 0.988±0.060 1.040±0.068 1.272±0.030 ns *** *** 
90 0.877±0.048 1.014±0.053 1.241±0.027 ns *** *** 
100 0.915±0.020 1.042±0.043 1.215±0.023 ns *** * 

N=5       
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As previously stated PPF experiments in wt and ko animals were conducted using an 

ISI of 30 and 20 ms respectively to avoid a celling effect. To compare ko and wt ani-

mals, an ISI of 30 ms was also utilized in the ko animals. Two-way ANOVA analysis 

with Bonferroni posttest did not reveal any differences between p75EXIV and wt ani-

mals at either 20 or 30 ms ISIs (Fig. 6.3.5). Both groups displayed significant differ-

ences in the PPF ratio between eserine and atropine except at ISI 30 ms for ko ani-

mals. The overall effect of eserine or atropine on the PPF ratio was not as strong in 

p75EXIV mice as in wt coinciding with field potential results. Wild type animals showed 

an overall general increased PPF ratio and reach a maximum PPF at a longer ISI than 

ko mice indicating that the loss of the p75 receptor interferes with normal transmit-

ter release. A summary of the results are found in the corresponding table below Fig. 

6.3.5.   

Figure 6.3.5 | Paired Pulse Facilitation p75EXIV mice vs wt PPF was carried out at 20 ms to eliminate the 

chance of a ceiling effect and at 30 ms to compare with wt animals. Data: Two-way ANOVA with Bonferroni 

posttests, plotted as mean ± sem.   

 wt eserine wt atropine ko eserine ko atropine 

20 1.500±0.036 1.183±0.029 1.391±0.036 1.203±0.029 
30 1.554±0.051 1.320±0.040 1.445±0.051 1.331±0.040 
20 vs wt atro *** vs ko atro ns vs ko atro **  
30 vs wt atro *** vs ko atro ns vs ko atro ns  
20 vs ko eser ns    
30 vs ko eser ns    

N=5     
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6.4 LTP 

6.4.1 LTP induction in wt animals 

LTP indcution in wt animals was performed using a standard high frequency stimulus 

paradigm consisting of a stimulus that induced 50% amplitude of the maximum for 

field potentials and induced via external capuslue stimulation (Fig. 6.2.1). Wild type 

animals showed a stable, higly significant LTP (159.9 ± 0.6127 ***p < 0.001; N=5) that 

could be meausered for at least 60 minutes or longer (Fig. 6.4.1 A). Baseline and LTP 

was stable through out recordings and induction of LTP occurred in approximately 

60% of induction attempts. As no differences were observed between the La and BL, 

data was combined (Fig. 11.1.1, appendix). 

6.4.2 LTP induction in p75EXIV animals 

Induction in ko animals occurred in only about 35% of attempts and did not last for 

longer than 35 ± 10 minutes (Fig. 6.4.1 B). The standard paradigm as used in wt mice 

had to be modified in that the induction baseline of 50% maximum amplitude did not 

induce LTP and therefore, the baseline induction amplitude was between 50 and 60% 

of the maximum field potential induced with EC stimulation. Baseline as well as LTP 

showed greater variability and it was often the case that a stable baseline of 20 

minutes could not be obtained. However p75EXIV did show a significant potentiation 

compared to baseline on the same level as wt animals (161.4 ± 1.100 ***p < 0.001; 

N=5) Input/output curves did not reveal any differences between p75EXIV and wt mice 

(Fig. 6.4.2). In all attempts, it was never possible to achieve a stable LTP in p75EXIV an-

imals for 60 min or longer as in wt mice, indicating that the p75 neurotrophin recep-

tor may play an important function in LTP maintenance.  
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Figure 6.4.1 | LTP LTP in wt and p75EXIV mice induced by HFS stimulation (A,B) Time course for LTP in wt and 

ko (C,D) Mann-Whitney analysis of last 10 min for wt and min 20 to30 for ko reveals highly significant LTP po-

tentiation in both wt and ko mice (E,F) Kruskal-Wallis analysis with Dunns Multiple Comparison Test shows no 

significant difference between wt and ko mice at 20-30 min (E) and highly significant differences for 50 to 60 

min (F). It must be noted that for B time 30-60 min and for F the N for ko animals is only 2. 

(C,D) wt: 159.9 ± 0.6127 | ko: 161.4 ± 1.100 ***p < 0.001 n: 5 (E) wt: 159.9 ± 0.6127 | ko: 161.4 ± 1.100 ns n: 5 

(F) wt: 159.9 ± 0.7012 ko: 78.22 ± 4.193 wt n: 5 ko n: 2 
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Figure 6.4.2 | I/O curves I/O curves for p75EXIV mice and wt mice Two-way ANOVA with Bonferroni posttests 

reveals no differences between wt and p75EXIV mice N: 5 

6.4.3 Cholinergic challenge of LTP 

Bath application of either 1 µM eserine or 10 µM atropine before HFS induction was 

used to determine a cholinergic effect on LTP in wt animals. As expected based upon 

fEPSPs, eserine prohibited LTP induction. Since eserine application caused an in-

crease in threshold, a higher intensity HFS stimulus (80% of maximum amplitude) 

was also given resulting in either no LTP or short lived LTP lasting 2 to 5 minutes and 

in rare occasions, induction of LTD. As all observations were not readily reproducible 

with higher intensity HFS data are not shown. Also in congruence with fEPSPs, atro-

pine blocked LTP formation as it already created potentiation greater than that nor-

mally reached by standard HFS induction. Due to lack of animals, experiments were 

not repeated in p75EXIV mice.  

Figure 6.4.3 | Cholinergic challenge of LTP Challenge of LTP by either esering or atropine show no effect. 

Mann-Whitney N: 5 

 

 wt ko p 

3 1.409 ± 0.179 1.316 ± 0.260 ns 

4 2.063 ± 0.192 2.293 ± 0.293 ns 

5 2.460 ± 0.189 2.757 ± 0.254 ns 

6 2.715 ± 0.208 3.048 ± 0.211 ns 

7 2.882 ± 0.227 3.149 ± 0.211 ns 

8 2.736 ± 0.073 2.904 ± 0.528 ns 
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7 Discussion 

7.1 Immunohistochemistry  

7.1.1 ChAT Staining 

As was expected, in control animals, ChAT immunohistochemistry showed a signifi-

cant difference between the amygdala nuclei BL and La. This corresponds with what 

has been previously reported in the literature and provides a basis for the relative 

few differences observed between the two nuclei during electrophysiological record-

ings. ChAT staining also provided strong support that the horizontal slice preparation 

was a suitable means for subsequent electrophysiological studies in that the BL and 

La nuclei were readily accessible and identifiable, cholinergic SI afferents could easily 

be stimulated and both nuclei received SI innervation on this plane, the fiber tract of 

the EC was also intact providing a stimulation site for cortical afferent input for both 

the BL and La nuclei. What could also be seen in the horizontal slice preparation, but 

was not investigated, was the clear difference in cholinergic innervation of the 

amygdala as compared to other brain areas as previously reported [187].  

Cholinergic projections to the amygdala from the SI appear to be the only known 

cholinergic pathway in the basal forebrain that do not necessarily express the p75 

neurotrophin receptor as elucidated with IgG-saporin injections; suggesting at least 

two types of cholinergic projections to the amygdala [67, 68]. Although the BL 

showed significantly higher intensity for ChAT as compared to the La when measured 

with ImageJ, the subsequent electrophysiology deployed here failed to elucidate a 

strong cholinergic difference between the two nuclei except for intrinsic studies. This 

also corresponds with what has already been reported where differences are readily 

seen in patch studies but not field studies despite the known difference in cholinergic 

innervation of the BL and La nuclei and resulting in reference given only to the full 

BLA and no distinction being made between the individual BL and La nuclei. 
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7.1.2 Cholinergic challenge of fEPSPs 

Bath application of 1 µM eserine or 10 µM atropine was able to inhibit/block and po-

tentiate the field potential in both the BL and La of wt animals respectively. In p75EXIV 

animals, the effect of eserine or atropine on the fp was attenuated. Atropine in 

p75EXIV actually resulted in a slight depreciation in sharp contrast to the high potenti-

ation in the wt animals. The attenuation of the inhibitory effect of eserine in ko ani-

mals can be attributed to a lower release of ACh as p75 depleted cells do show a 3.7 

fold decrease in ACh levels [188]; however, the lower release did not affect the fp for 

p75EXIV animals in normal ringer. A possible explanation for this is discussed in the 

next section as it relates to differences seen in paired pulse facilitation.   

Activation of mAChRs inhibits presynaptic transmitter release through activation of 

gabaergic interneurons and this is the most obvious explanation for the seen de-

crease in fESPs for wt mice. As well, in the case of atropine potentiation in wt ani-

mals, it can also be argued that the effect is due to blockade of mAChRs by atropine 

allowing an increase of the fp by greater transmitter release [33, 69, 189]. The ob-

served inhibitory effect of acetylcholine agonist is in agreement in studies elsewhere. 

Yajeya et al. [190] showed that carbachol dose dependently suppressed the excitato-

ry postsynaptic potential in BL and La neurons using a sharp microelectrode protocol 

and stimulation of the external capsule to elicit orthodromic EPSPs. This carbachol 

induced suppression of the EPSP was completely blocked by application of atropine 

which is in agreement with the field studies presented here. The ability of atropine to 

potentiate the fESP as shown here is implied in the study by Yajeya et al. but he 

makes note of the necessity for further investigation on the intrinsic effect of atro-

pine on the ESP as his report did not look at atropine applied alone. As it is known 

that the cholinergic system plays a vital role in information processing for the amyg-

dala, these data here suggest possible learning/memory impairment for p75EXIV mice 

as they have a significant change in their response to cholinergic challenge. 
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7.1.3 Cholinergic challenge of paired pulse facilitation  

The p2:p1 ratio reached a peak in wt animals at an ISI of 40 milliseconds while p75EXIV 

mice showed a peak at 30 ms indicating a difference in transmitter release probabil-

ity for the two groups as such; wt animals show a greater release probability as com-

pared to ko animals. This coincides with fEPSPs results in that the wt mice demon-

strate stronger fp inhibition during eserine application as compared to ko animals as 

a result of stronger mAChR activation. It also provides a possibly explanation for the 

differences between p75EXIV mice and wt mice with regard to atropine application. 

Since wt animals have greater transmitter release probability, it can be suggested 

that 1: the basal level of ACh in p75EXIV animals is lower (due to release probability) 

giving rise to a larger fp in baseline, (due to diminished presynaptic inhibition via 

mAChRs) which was not significant to wt animals, resulting in a lower effect of atro-

pine and 2: since the stimulation site of the EC is not exclusively cholinergic, it can 

also be suggested that release probability as a whole for p75EXIV
 is diminished so that 

in the presence of atropine and muscarinic block, glutamate release is also lower 

than that of wt animals resulting in no potentiating effect for ko animals as in wt. It 

has been shown that lesioning of neurons which express p75NTR results in reduced 

basal levels of acetylcholine as well as release [191].  

The data here evidence that both ACh levels and release probability are most likely 

working together. I/O curves for p75EXIV display a more exponential curve and reach 

plateau faster than that of wt animals indicating stronger field potentials; however, 

there were no significant differences in I/0 curves between ko and wt animals. The 

p2:p1 ratio is increased significantly more in wt animals as ko mice in the presence of 

eserine indicating greater presynaptic inhibition for the wt mice and indirectly a 

greater release probability of ACh. Application of atropine returns the PPF ratio back 

to baseline levels for wt mice at all ISIs whereas in p75EXIV animals, atropine does not 

fully return the ratio to baseline levels. This is especially true for ISIs greater than 40 

ms where the ratio stays elevated which could also indirectly hint at a stronger fp for 

p75EXIV mice due to a lack of presynaptic inhibition via mAChR activation which was 
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not seen during fp induction in normal ringer. Finally, it must also be noted that NGF 

and ACh have a synergetic relationship in that NGF release augments the release of 

ACh as well as the reuptake of choline for greater ACh production. Likewise, ACh re-

lease enhances the release of NGF creating a positive feedback loop [192]. Most im-

portantly, it has recently been reported that the enhanced release of ACh by NGF is 

dependent upon the p75 neurotrophin receptor [193]; providing the best explana-

tion for the observed cholinergic differences seen here which indicate lower ACh re-

lease/levels in p75EXIV animals. Coinciding with data from cholinergic challenge of the 

field potential, the discrepancy in PPF between wt and p75EXIV animals also gives cre-

dence to a disruption in the normal cholinergic response for these animals as well as 

a high probability for problems associated with learning and memory. The PPF data 

here are in agreement with reports that carbachol increased the paired pulse ratio in 

the entorhinal cortex via presynaptic inhibition [194] which was blocked by atropine. 

A CCh induced increase of the PPF ratio was also observed in the hippocampus [195].  

7.1.4 Plateau firing 

It was possible to initiate plateau firing in neurons of the basolateral and lateral 

amygdala nuclei by two standard methods that have been previously reported [9, 

124]. During bath application of carbachol, in both nuclei plateau firing was induced 

by holding VM to just below threshold (10 to 12 mV more negative) with direct cur-

rent injection and eliciting plateau firing with a 0.2 to 0.4 nA 4 second suprathreshold 

pulse. As well, persistent activity could also be induced in both nuclei in the presence 

of eserine, using the same VM hold technique and stimulating cholinergic substantia 

innominata afferents directly before the suprathreshold pulse. However, unlike what 

has been reported for La neurons [9] as well as the data presented here, it was also 

possible to induce plateau firing in BL neurons by continuously stimulating SI affer-

ents every 30 seconds from VM rest.  

A possible explanation for the differences in plateau induction between the BL and 

La is the greater cholinergic innervation of the BL. This would provide for greater ace-
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tylcholine release resulting in a possible larger rise in postsynaptic calcium levels by 

mAChR activation of the IP3 cascade. This in turn, leads to a gradual depolarization 

and eventual action potential firing and is in line with a non NMDAR form of LTP 

which has been coined LTPIP3 [110] 

Another phenomenon that was present in BL neurons but absent in La was the ability 

of SI afferent stimulation to cause a hyperpolarizing membrane deflection. When a 

suprathreshold DC pulse was given immediately following this deflection it was 

blocked. Neurons that displayed this VM hyperpolarized deflection were still able to 

produce plateau firing following repeated 30 second ISI SI afferent stimulation. Again 

greater cholinergic innervation of the BL could account for this observed difference. 

Muscarinic acetylcholine receptors also activate SK channels causing a brief hyperpo-

larization of membrane potential, yet this only occurs when ACh acts on soma and 

proximal dendrites [70]. Greater cholinergic innervation of the BL would provide 

greater probability that ACh could act at somatic and proximal dendritic sites as well 

as distal dendritic sites, where in the La, most ACh activity would only occur distally. 

The data here also show that the ability of SI stimulation to inhibit a suprathreshold 

pulse was dependent upon stimulation frequency and not duration or intensity 

providing evidence this inhibition could be related to the frequency of SK channel ac-

tivation. Stronger SI stimulation intensities resulted in greater membrane depolariza-

tion and a higher probability of AP firing most likely due to greater ACh release and 

stronger induction of the IP3 pathway. It has been shown that IP3 pathway blockade 

prevents plateau firing in La neurons [9] and SK channel block increases mAChR in-

duced membrane depolarization as well as AP firing [70].  

In line with this study but using a LTP paradigm, Park et al. [196] showed that car-

bachol was able to induce a transient depression of the field potential in the lateral 

amygdala yet also induce a form of LTP both the depression and LTP were observed 

in the presence of picrotoxin. The initial transient depression did not interfere with 

the ability of CCh to induce a postsynaptic form of LTP which was dependent upon 
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the cAMP pathway. Both the initial transient depression as well as the induced L-LTP 

could be blocked by atropine. Inhibition of the cAMP pathway blocked LTP induction 

by carbachol but not the initial transient inhibition. This is in agreement with the da-

ta presented here that the membrane deflection seen following SI stimulation in BL 

neurons did not interfere with the ability of these neurons to induce plateau firing 

initiated by repeated SI stimulation every 30 seconds suggesting that the initial de-

flection is presynaptic and, coinciding with previous reports, the plateau potential is 

a postsynaptic event relying on second messenger cascades [9].   

The cholinergic system appears to be able to modulate both network activity and in-

trinsic activity in the amygdala. Presynaptic inhibition controls network excitability 

while activation of SK channels can regulate the excitability of single neurons regard-

less of network activity. Still, even when individual neurons or the network are re-

ceiving substantial inhibition, acetylcholine can act postsynaptically via second mes-

senger pathways to induce plateau firing in individual neurons or LTP in the network.     

7.2 LTP 

7.2.1 p75EXIV vs wt animals 

Wt and p75EXIV animals did not differ in LTP potentiation as compared to baseline; 

however, LTP of 60 minutes or greater was not possible to achieve in ko animals with 

the standard HFS induction paradigm deployed here. The loss of the p75 neurotro-

phin receptor could disrupt postsynaptic calcium release and thereby hindering LTP 

maintenance which is virtually always a postsynaptic event. Still, with other induction 

paradigms such as TBS, or other experimental conditions such as GABAergic synaptic 

blockade, LTP duration of 60 minutes or greater might be achieved in these animals. 

HFS was selected here since it is generally considered to be a more robust induction 

paradigm and it has been shown that TBS fails to elicit LTP in the amygdala via EC fi-

ber stimulation [197]. As it is generally agreed that L-LTP is dependent upon protein 

synthesis, it may also be that the lack of the p75 neurotrophin receptor disrupts pro-

tein synthesis in p75EXIV mice and therefore L-LTP. It has been shown in hippocampal 



Discussion 

Cline 2010 67 

LTP that the lack of BDNF interacting with TrkB disrupts HFS induced LTP and pre-

vents the formation of L-LTP [198]. Cleary the lack of the p75 receptor disrupts HFS 

LTP in p75EXIV animals as a higher intensity stimulus must be deployed of 50 to 60% 

maximum amplitude and L-LTP is lacking in these mice. So a synergy between NGF, 

p75NTR and TrkA could be necessary for L-LTP protein synthesis as well.    

In the data here, p75EXIV animals have a clear disruption in LTP in that LTP was never 

induced for a period longer than 30 minutes and required a stronger induction as 

that for wt animals. However, LTP was not fully abolished in these animals suggesting 

that p75EXIV animals may show learning deficits based upon the type of learning as 

not all task would be dependent on L-LTP. This corresponds well with the field poten-

tial and PPF studies in that the p75EXIV animals are showing a clear impairment in 

normal ACh response but not a complete lack thereof.  

There is currently little reported about these animals in the literature and what is 

available is conflicting. Catts et al. [199] showed that p75NTR -/- animals demon-

strated impairment in the Morris water maze along with decreased neurogenesis and 

higher cell death of new cells. They suggested that the findings are most likely a re-

sult of altered circuitry due to the loss of p75NTR. Barrett et al. [200] showed con-

flicting results in that they reported p75NTR -/- animals demonstrated enhanced spa-

tial memory as revealed by the Morris water maze and enhanced hippocampal LTP. 

The differences in the studies could be related to the background strain of the ani-

mals used. Barrett reports using a 129/Sv strain and the animals are p75EXIII mice 

which still possess a truncated p75NTR allele while Catts animals were backcrossed 

into a C57/BL6 strain and procured from Jackson Laboratories indicating the mice 

were also p75EXIII. While the report from Barrett also contradicts the LTP data here, it 

must also be noted the strain difference, that the animals here were p75EXIV which do 

not possess the truncated allele and experimental design. Despite the early conflict-

ing reports it is clear that animals lacking the p75NTR have disruptions in learning 

and memory.        
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7.2.2 Cholinergic challenge of LTP 

Eserine applied before induction was able to block LTP induction by increased pre-

synaptic inhibition whereas atropine application preceding induction showed no ef-

fect. Following LTP induction, application of either eserine or atropine did not disrupt 

LTP indicating that LTP maintenance is most likely postsynaptic and it has been 

shown that LFS stimulation following LTP induction via the EC fiber pathway also did 

not affect LTP [197]. Of interesting note, LFS induction of LTP was also possible in the 

amygdala only via stimulation of EC fibers which resulted in a slow onset, greater 

than 60 minutes and dependent upon protein synthesis further indicating postsynap-

tic maintenance [201]. Unfortunately due to a lack of p75EXIV animals, cholinergic 

challenge of LTP was not performed. It has been shown that in the hippocampus at-

ropine will either enhance or suppress LTP induction depending on the induction site 

although the reported enhancement was not significant [202, 203]. 
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8 Conclusion 

8.1 Plateau firing 

Intrinsic plateau firing differed between the BL and La amygdala nuclei as greater 

cholinergic innervation of the BL allows stronger ACh release at somatic and proximal 

dendritic sites which gives rise to a robust biphasic effect of ACh which is not ob-

served in La neurons where ACh primarily only acts at distal dendritic sites. Distal 

dendritic activation causes an inhibition of the after hyperpolarization current allow-

ing excitation, whereas proximal and somatic activation creates a competition be-

tween small conductance, calcium activated, potassium channels, which cause hy-

perpolarization, and the inhibition of the AHP. BL neurons in the presence of eserine 

displayed this biphasic effect of ACh seen as a hyperpolarization membrane deflec-

tion following cholinergic SI afferent stimulation. As well, repeated cholinergic affer-

ent stimulation every 30 s was able to induce plateau firing in BL neurons during es-

erine application but not in La neurons. As with the initial hypothesis, the higher cho-

linergic innervation of the BL, compared to that of the La, causes a difference in in-

trinsic firing properties of projection neurons of both nuclei.       

8.2 Cholinergic Challenge  

Unlike sharp recordings, extracellular field recordings did not elucidate a difference 

between the BL or La nuclei. Application of eserine or carbachol always caused a 

time dependent reduction of the field potential which could be blocked and reversed 

by atropine. Eserine also increased the threshold properties for the field potential. 

When atropine was bath perfused alone, it induced a substantial potentiation of the 

fp.    

Contradictory to the initial hypothesis, p75EXIV did not demonstrate a greater re-

sponse to cholinergic challenge as was expected due to the increased cholinergic fi-

ber density for these animals. These mice showed an attenuation of the presynaptic 

inhibitory effect of eserine as well as no potentiation to atropine alone in fEPSPs ex-
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periments. Paired pulse facilitation revealed that the ko animals have a lower release 

probability as well as reduced presynaptic inhibition as evidence by a smaller PPF ra-

tio as compared with their wt counterparts.   

8.3 LTP 

It was also predicted that the p75EXIV mice would show enhanced LTP when initiated 

in a way that the cholinergic system would be activated. Compared to wt animals, 

p75EXIV showed a disruption in LTP induction as the HFS paradigm had to be carried 

out at higher stimulus intensity in these animals. They also only showed LTP in essen-

tially 34% of induction attempts as compared to 60% for wild types. The level of LTP 

reached was comparable to wt when correlated at 20 to 30 minutes; however, p75 

mice never showed LTP for 60 minutes or more. In fact, only 2 out of 5 animals test-

ed, demonstrated LTP for greater than 30 minutes and these two quickly fell below 

baseline levels.        

Agreeing with fEPSPs studies, there were no differences seen between the BL or La 

nuclei. Unlike fEPSPs experiments, cholinergic challenge did not affect LTP induction 

or maintenance in wt animals. It was not seen if this was the case in p75EXIV animals 

due to insufficient mice. 

8.4 Summary 

Projection neurons of the BL and La show intrinsic firing differences due to higher 

cholinergic innervation of the BL. 

The differing cholinergic innervation of the BL and La does not affect fEPSPs or LTP. 

p75EXIV mice have lower release probability resulting in an attenuated cholinergic re-

sponse. 

p75EXIV mice show a disruption in LTP induction as well as a lack of L-LTP in a HFS LTP 

induction paradigm. 
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9 Out Look 

It would be necessary to further study LTP in the p75EXIV animals as the numbers here 

are insufficient to draw proper conclusions. However, the evidence of a lack of L-LTP 

is quite interesting and this should be followed up along with at least western blot 

analysis. 

Intracellular recordings in the p75EXIV animals would also need to be done as well 

with blockade of SK channels to fully understand intrinsic differences underlying cho-

linergic responses between wt and ko animals. 

Finally, behavior experiments that coincide with the amygdala LTP paradigms pre-

sented here such as fear conditioning or learned helplessness would be of great in-

terest.  
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Figure 8.4.1 | BL vs La control Control studies to test differences between the BL and La nuclei of the amygda-

la. (A) Field potential recordings revealed no differences between the BL and La for normal ringer (not shown) 

or challenge with either 10 µM atropine or 1 µM eserine. (B) No difference in LTP magnitude was seen be-

tween the BL or La. (C,D) Paired Pulse Facilitation did not elucidate a difference between the BL or La in normal 

ringer (not shown) or with cholinergic challenge (10 µM atropine, 1 µM eserine) Drugs were bath applied. All 

data were analyzed using Mann-Whitney and presented as mean ± sem. (A,C,D) Were graphed together for 

simplicity. 

 A B C D 

 eserine atropine n/a eserine atropine eserine atropine 

BL 41.35 ± 2.677 
255.0 ± 

6.857 
159.6 ± 4.185 

1.554 ± 

0.051 
1.32 ± 0.04 

1.391 ± 

0.036 

1.203 ± 

0.029 

La 48.4 ± 2.96 
247.0 ± 

10.05 
160.2 ± 3.407 

1.514 ± 

0.060 

1.375 ± 

0.041 

1.401 ± 

0.039 

1.234 ± 

0.022 

p ns ns ns ns ns ns ns 

n 5 5 3 5 
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Figure 8.4.2 | Stimulator and Electrode Placements (A) Diagram depicting the plane of the horizontal slice 

preparation used for field recordings, PPF, and LTP and the approximate placements of stimulator and microe-

lectrodes. (B) Placements of stimulator and microelectrodes for simultaneous recording in BL and La during  fp, 

PPF, and LTP paradigms. (C) Placements during intracellular recording in either La or BL. Modified from Paxinos 

1998 [186] 
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