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Abstract

In this work, we apply a fluid-structure interaction method to a long axis heart valve simulation. Our method of choice is based on a
monolithic coupling scheme for fluid-structure interaction, where the fluid equations are rewritten in the ‘arbitrary Lagrangian Eulerian’
framework. To prevent back-flow of waves in the structure due to its hyperbolic nature, a damped structure equation is solved on an
artificial layer that prolongates the computational domain. This coupling is stable on the continuous level. To reduce the increased
computational cost in presence of the artificial layer, we refine the meshonly regions of interest. To this end, a stationary version of
goal-oriented mesh refinement is part of our numerical tests. The results show that heart valve dynamics can be simulated with our
proposed model.
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1. Introduction

Cardiovascular diseases represent a major part on the mortal-
ity in industrialized countries. For this reason, there is an increas-
ing demand from the medical community for rigorous and quanti-
tative investigations of the human cardiovascular system [21, 18].
However, the complexity of the circulatory system makes mod-
eling and simulation challenging because there are many funda-
mental ingredients taking into account.

In this work, we focus on a main component of the circula-
tory system: the heart. More specifically, we are interested in
modeling and simulation of the aortic heart valve, which pumps
oxygenated blood from the left ventricle in the aorta. Such pro-
cesses imply the interaction of blood with the heart walls and the
vessel walls. The mathematical method of choice to construct ap-
propriate models and simulations is the fluid-structure interaction
approach. Beyond that, fluid-structure interaction have signifi-
cant influence in bio-mechanics [10, 19, 21, 16].

There exist various approaches to model heart valve dynam-
ics. Usually, they are considered as fluid-structure interaction
problems that can be solved by different solution approaches
[17, 24, 20, 23, 25]. Here, we use the ‘arbitrary Lagrangian-
Eulerian’ framework (ALE) that is frequently used in the liter-
ature to model fluid-structure interaction problems.

The problem is solved by a monolithic solution algorithm be-
cause one has to overcome the well-known added-mass effect that
occurs when the density of fluid and structure are of same order
like in hemodynamics [7]. In addition, a closed setting for the
equations is necessary for rigorous goal-oriented error estimation
[4]; that is explained below for a stationary case.

By construction, the ALE approach is not capable to model
topological changes, which occur when two valves touch each
other. However, this point is of less importance in our studies,
because we focus on boundary conditions for the structure on the
outflow section. This subject should not be neglected because the
radius of the aorta may vary in a range of5−10 per cent between
diastole and systole (the two phases in a cardiac cycle) [21]. This

is a large displacement of the blood vessel wall that effects both
the flow field and the blood vessel dynamics itself.

In the last years, a lot of effort has been spent to model ap-
propriate descriptions for fluid and pressure conditions on the ar-
tificial outflow boundary [13, 12, 16, 11], which are related to the
flow field. Consideration of appropriate structure conditions be-
comes important when dealing with large deflections of the blood
vessel walls. In particular, we are interested in the capability
to absorb outgoing waves (i.e. energy) to prevent back flow of
waves.

To the best of our knowledge, this topic is novel and others
have just begun with investigations [14]. Here, the authors con-
sider flow rate conditions of the fluid problem and a complete set
of (non-defective) boundary conditions for the structure problem
on the artificial outflow section.

Originally, energy absorption problems arise in acoustic and
electromagnetic wave propagation [2, 9]. Various approximate
boundary conditions have been used to absorb incoming waves.
For complex situations they have some major disadvantages, for
instance, accumulation of error contributions over the whole time
interval. To avoid these problems, higher order derivatives of the
problem at hand can be used, which makes implementation diffi-
cult. Another approach to eliminate reflections was suggested by
appending an artificial layer to the computational domain. This
layer is supposed to absorb the waves. Especially, one can use a
perfectly matched layer (PML) [3]. We employ this idea to ex-
tend the computational domain that is used to absorb the outgoing
waves for our fluid-structure interaction problem.

The major disadvantage of this approach is higher compu-
tational cost due to solving both the complete fluid equations
and structure equations on an artificial domain. To overcome
this drawback, we could solve reduced equations in the artifi-
cial layer; or using an initial coarser mesh in the artificial part;
or refining the mesh automatically during the solution process,
but only in regions of interest . We present a combination of the
two latter issues. For unsteady test cases, we coarsen the initial
mesh by hand in the artificial domain. Moreover, we apply the
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2 FLUID-STRUCTURE PROBLEM

Dual Weighted Residual (DWR) method to drive an automatic
mesh adaption during the solution process [4]. This approach is
challenging for time-dependent coupled problems and still under
investigation [8, 22, 29]. For this reason, we only test a simplified
version, to verify if the method is capable to deal with heart valve
configurations.

The paper is organized as follows: In Section 2, we describe
the equations for both the fluid and structure, including a damped
hyperbolic equation. After, we formulate the problem in a mono-
lithic setting. Section 3 is devoted to a brief description of the
discretization process. In addition, we state a stabilization tech-
nique for the convective term that is based on streamline dif-
fusion. Temporal discretization is based on the shifted Crank-
Nicolson scheme, for spatial discretization a Galerkin finite ele-
ment approach is used. A Newton method is applied to solve the
non-linear system. In Section 4, we introduce the DWR method
that is used as an indicator for goal-oriented mesh adaption. In
the last section, numerical tests will be presented to exemplify our
proposed methods. The parameters for both the material and ge-
ometry are taken from literature and were discussed with a med-
ical doctor.

2. Fluid-structure problem

We introduce some notation and study the interaction of an
incompressible Newtonian fluid and a structure of hyperbolic
type [13].

2.1. Notation

We denote byΩ ⊂ Rd, d = 2, 3, the domain of the fluid-
structure interaction problem. This domain is supposed to be
time independent but consists of two time dependent subdomains
Ωf (t) and Ωs(t). The interface between both domain is de-
noted byΓi(t) = ∂Ωf (t) ∩ ∂Ωs(t). The initial (or later ref-
erence) domains are denoted byΩ̂f and Ω̂s, respectively, with
the interfaceΓ̂i. Further, we denote the outer boundary with
∂Ω̂ = Γ̂ = Γ̂D ∪ Γ̂N whereΓ̂D and Γ̂N denote Dirichlet and
Neumann boundaries, respectively.

We adopt standard notation for the usual Lebesgue and
Sobolev spaces and their extensions by means of the Bochner
integral for time dependent problems [28]. We use the notation
(·, ·)X for a scalar product on a Hilbert spaceX and〈·, ·〉∂X for
the scalar product on the boundary∂X. For the time dependent
functions on a time intervalI, the Sobolev spaces are defined
by X := L2(I;X). Concretely, we useL := L2(I;L2(Ω))
andV := H1(I;H1(Ω)) = {v ∈ L2(I;H1(Ω)) : ∂tv ∈
L2(I;H1(Ω))}.

2.2. The coupled problem

The equations for fluid and structure are defined in their nat-
ural frameworks. The fluid problem reads:

ρf ∂tvf |Â + ρf (vf −w) ·∇vf − divσf = 0 in Ωf (t),

divvf = 0 in Ωf (t),

vf = vD onΓf,in(t), σnf = gf,N onΓf,out(t). (1)

with the Cauchy stress tensorσf . The (undamped) structure
problem is defined by:

ρ̂s∂
2
t ûs − d̂iv(F̂ Σ̂s) = 0 in Ω̂s,

ûf = 0 on Γ̂s,D, F̂ Σ̂sns = 0 on Γ̂i. (2)

with the second Piola-Kirchhoff tensor̂Σs and the deforma-
tion gradientF̂ . The coupling conditions are given by (with

det(F̂ ) = J):

ûf = Ext( ûs|Γ̂i
), Ωf (t) = Â(Ω̂f , t), ŵ = ∂tûf in Ω̂f ,

v̂f = ŵ onΓi(t), F̂ Σ̂sns + Ĵf σ̂F̂
−T

f n̂f = 0 on Γ̂i. (3)

The stress tensors,σf andΣ̂s, are defined as

σf := −pfI + ρfνf (∇vf +∇vT
f ),

Σ̂s := (λs(trÊ)I + 2µsÊ), Ê =
1

2
(F̂

T
F̂ − I).

The viscosity and the density of the fluid are denoted byνf and
ρf , respectively. The elastic structure is characterized by the
Lamé coefficientsµs, λs.

The principal unknowns are the fluid velocitŷvf : Ω̂f ×

R+ → R3, the fluid pressurêp : Ω̂f × R+ → R, the struc-
ture displacement̂us : Ω̂s × R+ → R3, and the fluid domain
displacement (mesh motion)̂uf : Ω̂f × R+ → R3. The ALE
mapping is denoted bŷA and transforms the reference configu-
rationΩ̂f of the fluid to the physical domainΩf (t). The variable
ŵ defines the fluid domain velocity. Furthermore, any function
q̂ ∈ Ω̂ is defined onΩ by q(x) = q̂(x̂) for x = Â(x̂, t).

2.3. Construction of the ALE mapping

The fluid mesh motion is reconstructed by posing an addi-
tional equation that is driven by the motion of the interfaceΓi(t),
i.e.,Â = ûs on Γ̂i, leading toŵ = v̂s on Γ̂i. Further, we fix the
inlet and outlet boundary parts bŷuf = 0 on Γ̂f,inlet∪ Γ̂f,outlet. In
the fluid domain̂Ωf the transformationÂ is arbitrary but should
satisfy certain regularity conditions (C1-diffeomorphism) [13].
In particular, the fluid mesh is constructed by solving an harmonic
problem (for stationary configurations) or a biharmonic equation
(for large mesh deformations without re-meshing). We solve:
{
∆ûf = 0 in Ω̂f (harmonic),
∆2ûf = 0 in Ω̂f (biharmonic),

{
ûf = 0 on Γ̂f,inlet ∪ Γ̂f,outlet (harmonic),
ûf = ∂nû = 0 on Γ̂f,inlet ∪ Γ̂f,outlet (biharmonic)

{
ûf = ûs on Γ̂i.

2.4. Considerations on the damped wave equation

In the last years, a lot of effort has been spent in modeling
appropriate boundary conditions for the fluid and pressure for the
inlet and outlet boundaries [21, 11, 13, 14]; and many references
cited therein. To overcome this deficiency, we prolongate the
computational domain. Second, it is not clear which boundary
conditions should be imposed for the structure on the outlet part.
In the artificial extension of the computational domain, therefore,
we use a damped version of the structure equations, to absorb
incoming waves preventing structure reflections.

The modified structure problem in the extended domainΩ̂ext
s

is defined by:

ρ̂s∂
2
t ûs − d̂iv(F̂ sΣ̂) + γw∂tûs − γs∂td̂iv(F̂ sΣ̂) = 0,

with γs, γw ≥ 0. Here, the first damping terms is referred
to ‘weak damping’ whereas the second one is called by ‘strong
damping’ because the full operator is used for damping.

In the following, we pose a standard mixed formulation of the
structure equations in̂Ωext

s :

ρ̂s∂tv̂s − d̂iv(F̂ sΣ̂) + γwv̂s − γs∂td̂iv(F̂ sΣ̂) = 0,

ρ̂s∂tûs − v̂s = 0, (4)
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Remark2.1. The modified structure Problem 4 reduces to the
original Problem 2 by setting the damping parameters toγw =
γs = 0. Therefore, we are dealing in the following only with
Problem 4 inΩ̂s.

2.5. Stability of the coupled problem

In this section, we discuss the stability and give an extension
of the a priori energy balance result for the coupled problem [13],
chapter 9. We work in a monolithic framework where the in-
terface conditions are exactly balanced. The energy loss in time
is due to the fluid viscosity and the damping terms in the wave
equation.

Proposition 2.1. We assume that the conditionsvf = 0 on
∂Ωf (t)\Γi(t), and F̂ sΣ̂ns = 0 on ∂Ω̂s\Γ̂i hold. First, we
get:

d

dt

[
ρf
2
||vf ||

2
Ωf (t) +

ρ̂s
2
||v̂s||

2
Ω̂s

+

∫

Ω̂s

W (Ê) dx̂

]

+ γw||v̂s||
2
Ω̂s

− γs(∂td̂iv(F̂ sΣ̂), ∂tûs)Ω̂s

+ 2νf ||D(vf)||
2
Ωf (t)

= 0.

Second, the following energy decay property holds:

E(t) = E(0)−

∫ t

0

2νf ||D(vf)||
2
Ωf (t) dτ

−

∫ t

0

[
γw||v̂s||

2
Ω̂s

dτ − γs(∂τ d̂iv(F̂ sΣ̂), ∂τ ûs)Ω̂s
dτ

]
.

The density of elastic energyW is defined in [13]. From this re-
lation, the constitutive stress tensor for the STVK material can be
derived easily. The total energy of the coupled system at time step
t is denoted byE(t).

2.6. Monolithic formulation of the coupled problem

The monolithic setting of the coupled equations of Problem
1 with 4 via the conditions in Eqn (3) is derived in the same
manner as [27]. In particular, all equations are defined (and
solved) in the reference configuration̂Ω = Ω̂f ∪ Ω̂s. To solve
the non-linear problem, we introduce a semi-linear form and
write in compact notation: Find̂U = {v̂, û, p̂} ∈ X̂, where

X̂
0
:= {v̂D + V̂

0
} × {ûD + V̂

0
} × L̂, such that

∫ T

0

Â(Û)(Ψ̂) dt =

∫ T

0

F̂ (Ψ̂) dt ∀Ψ̂ ∈ X̂
0
. (5)

The linear form is given bŷF (Ψ̂) ≡ 0 because we neglect vol-
ume forces. The semi-linear form̂A(Û)(Ψ̂) is defined by

Â(Û)(Ψ̂) = (Ĵ ρ̂f∂tv̂, ψ̂
v
)Ω̂f

+ (ρ̂f Ĵ(F̂
−1

(v̂ − ŵ) · ∇̂)v̂), ψ̂
v
)Ω̂f

+ (Ĵσ̂f F̂
−T

, ∇̂ψ̂
v
)Ω̂f

+ (ρ̂s∂tv̂, ψ̂
v
)Ω̂s

+ γw(v̂, ψ̂
v
)Ω̂s

+ γs(∂td̂iv(F̂ sΣ̂), ψ̂
v
)Ω̂s

+ (Ĵσ̂sF̂
−T

, ∇̂ψ̂
v
)Ω̂s

+ (∂tû, ψ̂
u
)Ω̂s

− (v̂, ψ̂
u
)Ω̂s

+ (σ̂mesh, ∇̂ψ̂
u
)Ω̂f

− 〈σ̂mesĥnf , ψ̂
u
〉Γ̂i

+ (d̂iv (ĴF̂
−1
v̂), ψ̂

p
)Ω̂f

+ (p̂, ψ̂
p
)Ω̂s

. (6)

3. Discretization

For temporal integration of Problem 5, we use the shifted
Crank-Nicolson scheme based on finite differences that was de-

veloped for our ALE scheme in [26]. Spatial discretization in the
reference configuration̂Ω is treated by a conforming Galerkin
finite element scheme, leading to a finite dimensional subspace
X̂h ⊂ X̂. The discrete spaces are based on theQc

2/P
dc
1 element

for the fluid problem. The structure problem is discretized by the
Qc

2 element. The non-linear problem is solved by the Newton
method where the Jacobian is derived by exact linearization of
the directional derivatives [26].

3.1. Residual based stabilization

Modeling blood flow at the exit of the aortic valve leads to a
convection dominated problem with a Reynolds number∼ 4500
[15]. For this reason, we need to stabilize our formulation. The
first ideas goes back to [6]. Our method of choice is a stream-
line upwind Petrov-Galerkin (SUPG) method. In the case of pure
fluid problems it is a well-known drawback that additional bound-
ary layers appear in the pressure approximation. This leads to
a decrease in accuracy near the boundary. From computational
point of view, the second disadvantage comes from the necessity
to compute second derivatives because we are dealing with the
strong formulation. Especially, in case of fluid-structure interac-
tion problems this is a serious drawback. In our computations,
we only used a simplified version because that worked fine in our
numerical tests. The definition inΩf (t) reads:

sSUPG(Ukh)(Ψ)

:=
M∑

m=1






∫

Im

∑

K∈T m
h

(ρfvf ·∇vf , δK,m(vkh ·∇)ψv)K






with

δK,m = δ0
h2
K

6νf + hK ||vkh||K
, δ0 = 0.1.

For more details on the choice of these parameters, we refer to
[5].

4. Adaptive Mesh Refinement for Stationary Problems

To overcome the computational cost to solve our problem, es-
pecially due to the artificial layer, we discuss three different mesh
refinement procedures to our problem. Because of the complex-
ity of the overall problem, we study the quantitative aspects of
mesh refinement only for stationary test cases. First results (to
different steady-state configurations) from other authors are al-
ready known [8, 29, 22].

However, the first two refinement procedures (global and
smoothness-based) have been used also for the non-stationary nu-
merical examples. We use:

• Global mesh refinement;

• Smoothness-based mesh refinement;

• Goal-oriented mesh refinement with the dual weighted
residual (DWR) method.

The first procedure is self-explaining. For the second type, we
measure the jumps of the first derivatives over edges, which cor-
responds to a measure of the smoothness of the discrete solution.
The third type will be subject of the discussion in the following.
For coupled problems this formulation is still under investigation
and becomes costly for space-time dependent problems. For this
reason, we test our configuration in a stationary setting, where we
only scale the inflow velocity such that a steady state solution is
obtained.
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4.1. Goal oriented mesh adaption with the DWR method

The Galerkin approximation to Problem 5 (neglecting the
time derivatives and stabilization terms), reads: FindÛh =

{v̂h, ûh, p̂h} ∈ X̂h, whereX̂
0
:= {v̂D+V̂

0
}×{ûD+V̂

0
}×

L̂, such that

Â(Ûh)(Ψ̂h) = F̂ (Ψ̂h) ∀Ψ̂h ∈ X̂
0

h. (7)

The solutionÛh is used to calculate an approximationJ(Ûh)

of the goal-functionalJ(Û). This functional can be evaluation
of point values (deflection of the valve), line integrals (computa-
tion of stresses), or domain integrals. To derive an computable
representation of the approximation errorJ(Û) − J(Ûh), we
introduce a dual variablêZ, and obtain [4]:

Lemma 4.1. For any solution of Eqn(5) and 7, we have the error
representation

J(Û)− J(Ûh)

=
1

2
ρ(Ûh)(Ẑ − Ψ̂h) +

1

2
ρ∗(Ûh, Ẑh)(Û − Φ̂h) +R

(3)
h

for all {Φ̂h, Ψ̂h} ∈ X̂h × X̂h and with the primal and dual
residuals:

ρ(Ûh)(Ẑ − Ψ̂h) := −A(Ûh)(·),

ρ∗(Ûh, Ẑh)(Û − Φ̂h) := J ′(Ûh)(·)−A(Ûh)(·, Ẑh)

The remainder term isR(3)
h is cubic in the primal and dual er-

rors. This error identity can be used to drive an automatic mesh
refinement process and/or can be adopted to estimate the error.

The dual variableẐ is computed by the corresponding (lin-
earized) dual problem

A(Ψ̂h, Ẑh) = J(Ψ̂h), ∀Ψ̂h ∈ X̂h. (8)

The dual Problem 8 can be solved by global higher approxima-
tion or local higher interpolation. To obtain a ‘computable’ ver-
sion of the error identity, we set up some assumptions. First,
we neglect the remainder termR(3)

h . Second, we are only inter-
ested in automatic mesh refinement and we use only the primal
residual to estimate the error. Moreover, we neglect the structure
damping terms because their influence in stationary setting is suf-
ficient small. Fourth, we transform (as originally suggested) the
error identity by cell-wise partial integration into the strong form,
leading to challenging structure of the Laplacian term of the fluid
equations. Because, we are only dealing with moderate deforma-
tions, we assume (while computing the error) thatF̂ = I and
J = 1, and a symmetric stress tensor:

(Ĵσ̂lapF̂
−T

, ∇̂ψ̂
v
)Ω̂f

, σ̂lap := ρ̂fνf (∇̂v̂f F̂
−1

+ F̂
−T

∇̂v̂T
f ),

leading to

(σ̂lap, ∇̂ψ̂
v
)Ω̂f

, σ̂lap := ρ̂fνf (∇̂v̂f ).

This can be transformed easily into the strong formulation. Ba-
sically, the same idea is used for the constitutive tensor of the
structure:

(F̂ Σ̂s, ∇̂ψ̂
v
)Ω̂s

, Σ̂s := (λs(trÊ)I + 2µsÊ).

The structure tensor is approximated by

Σ̂s := (λs(trÊ)I + 2µsÊ) ≈ 2µsÊ

≈ 2µs
1

2
(∇̂û+ ∇̂ûT ) ≈ (µs∇̂û).

From this, we obtain the following (simplified) error representa-
tion:

J(Û)− J(Ûh) ≈ ρ(Ûh)(Ẑ − Ψ̂h)

:=
∑

K̂∈Th

{(−ρ̂f Ĵ(F̂
−1

(v̂ − ŵ) · ∇̂)v̂ + ρfνf∆vh, ẑ
v − ψ̂

v

h)K̂f

+
1

2
([Ĵσ̂f F̂

−T
n̂f ], ẑ

v − ψ̂
v

h)∂K̂f\∂Ω̂

+ (d̂iv (ĴF̂
−1
v̂), ẑp − ψ̂

p

h)K̂f

+ (σ̂mesh, ẑ
u − ψ̂

u

h)K̂f

+
1

2
([σ̂mesĥnf ], ẑ

u − ψ̂
u

h)∂K̂f\∂Ω̂

+ (µs∆ûh, ẑ
v − ψ̂

v

h)K̂s

+
1

2
([σ̂sn̂s], ẑ

v − ψ̂
v

h)∂K̂s\∂Ω̂

− (ρ̂sv̂h, ẑ
u − ψ̂

u

h)K̂s
− (p̂, ẑp − ψ̂

p

h)K̂s
.

Remark4.1. Using the strong formulation for the error compu-
tation might be costly for the DWR method in space and time.
Especially, one should not neglect the transformation around the
Laplacian. How this can be achieved in an efficient way, is still
an open question for fluid-structure interaction problems.

5. Numerical Tests

We discuss two numerical examples that are based on the
same configuration and parameters. We start by presenting a pro-
totypical unsteady heart valve simulation. Our aim is to verify
the proposed structure outflow conditions. To this end, the valves
have sufficient distance to avoid touching and resulting difficul-
ties.

Because we extend the channel to compute the damped wave
equation that can absorb out-coming waves, one major disadvan-
tage is the computational cost. This can be overcome with (at
least) two different solutions. First, we use a (hand-made) coarser
mesh in the artificial domain. Second, which brings us to the nu-
merical Example 2, we use automatic adaptive mesh refinement
with the DWR method.

The (reference) configuration̂Ω of the test case is illustrated
in Fig. 1.

H D

Soft structure Structure with dampingStiff structure

L L
extheart L

aorta

d A(t)

Figure 1: Configuration (in cm):Lheart+Laorta = 6.0, Lext =
12, H = 2.9, D = 2.5, d = 0.1.

Inflow and boundary conditions
A time dependent parabolic velocity inflow profile is pre-

scribed onΓ̂in (left boundaryH), sketched in Fig. 2, for the
first test case. This inflow profile is scaled by a constant factor
0.1. For the second test, we choose a constant inflow velocity
v̂D = 10cm/s leading to a steady-state solution.
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The ‘do-nothing’ condition is used on̂Γout (right boundary
D in Fig. 1).
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Figure 2: Interpolated flow rate profile for one cardiac cycle.

The structure is fixed at̂Γin andΓ̂out and it is left free at the
outer elastic walls, to allow them to move.

Quantities of comparison and their evaluation
We evaluate the deflections in bothx- andy-direction at the

tails of one heart valve at the pointA(0) = (3.64, 0.35), and the
wall stresses at the upper wall between fluid and structure in the
aorta (over the lengthLaorta).

Parameters
For the fluid, we use densityρf = 1gcm−3, and the vis-

cosity νf = 0.03cm2s−1. The elastic structure is character-
ized by the densityρs = 1gcm−3, the Poisson ratioνs = 0.3,
and the Lamé coefficientsµheart = 108gcm−1s−2, µvalve =
5.0 ∗ 105gcm−1s−2, µaorta = 106gcm−1s−2. The (weak)
damping parameter is given byγw = 104, the other oneγs = 0.

Results of Test 1
One cardiac cycle has time lengthT = [0s, 0.9s]. Four time

cycles are used to run the computation. The time step sizes are
chosen in a range oft = 0.02s − 0.002s to detect convergence
with respect to time. We solve the problem on three different
mesh levels to observe space convergence. The results are illus-
trated in Table 1.

The qualitative behavior of the solution can be studied in Fig.
3. The qualitative behavior for other damping parametersγw are
discussed in [27].

Figure 3: Grids of the long axis of the aortic heart valve at three
different time stepst1 = 0s, t2 = 0.130s, andt3 = 0.350s.

In Fig. 4, we observe the same qualitative behavior of the
physical quantities for the last three cardiac cycles.
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Figure 4: Evaluation ofy-displacement atA(t) and wall stress in
y-direction along the upper wall ofLaorta.

Figure 5: Meshes with 188, 926, and 4685 cells obtained by the
Dual Weighted Residual estimator.
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Table 1: Results for the first numerical test. Left:y displacement of pointA(t), measured in[cm]. Right: results for the measurement
of the wall stresses iny direction, measured in[gcm−1s−2]

Deflections iny direction Wall stresses iny direction
DoF k[s] max min max min
5553 0.02 0.4745 0.03222 1075.85 −1763.74
5553 0.002 0.2225 0.01244 979.261 −1644.37
5553 0.001 0.1467 0.00372 865.705 −1423.05
21522 0.02 0.5395 0.00200 1060.42 −1783.44
21522 0.002 0.5676 0.01102 1116.00 −1884.87
21522 0.001 0.5651 0.01068 1116.59 −1887.65
84726 0.002 0.5501 −0.0454 1106.27 −1867.74
84726 0.001 0.5477 −0.0440 1109.84 −1869.06

Table 2: Numerical Test 2: Displacements of the control pointA for a sequence of mesh levels of locally refined meshes with the DWR
method

Cells DoF A(x)[10−4cm] A(y)[10−4cm]
188 3996 2.6153 8.7667
233 5136 2.6921 9.1156
479 10556 2.7576 9.1793
926 20232 2.7674 9.1706
1721 37484 2.7700 9.1636
2882 62912 2.7742 9.1629
4685 101804 2.7763 9.1621

Results of Test 2
In this test case, we consider a steady-state solution to our

problem by scaling the inflow profile. In Table 2 the deflections
in both principal directions are displayed for a sequence of locally
refined meshes with the DWR method.
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Figure 6: Error of the pointy-evaluation at the tailA(t) of the
upper valve versus number of degrees of freedom, for uniform re-
finement, the weighted indicator obtained by the Dual Weighted
Residual method, and smoothness-based indicators.

A comparison between the three proposed refinement types
is made in Fig. 6. The reference value for the error determination
is computed on a very fine mesh obtained by global refinement
and extrapolation of the solution. We monitor the same conver-
gence rate for both global refinement and mesh adaption with the
DWR method. However, we detect a better constant when using
the DWR method. The corresponding meshes are displayed in

Fig. 5 for three exemplary solutions. The (heuristic) indicator
performs worse than the other two procedures and is no option
for this numerical test case.

6. Conclusions

In this work, we proposed a monolithic fluid-structure frame-
work to simulate a two-dimensional long axis heart valve. The
computational domain was prolongated by an artificial layer to
prevent backflow of structure waves. To reduce computational
cost, we developed a simplified DWR estimator for mesh adap-
tion. We plan to extend this concept to time dependent cases. In
further studies, we will investigate the influence of the damping
parameters. Moreover, we plan to couple the model with absorb-
ing boundary conditions for the fluid part.
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