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Modelle erörtern konnte.

Prof. Dr. Andreas Irmen und Prof. Dr. Timo Göschl möchte ich für die zwischenzeitliche
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Chapter 1

Introduction

1.1 Overview

The trade-off between price stability and output stabilization is in the centre of mone-

tary policy-making. This trade-off enters many macroeconomic models as the central

bank is assumed to minimize some loss function consisting of inflation deviations and

output deviations from some specific targets (see for example Barro and Gordon (1983),

Woodford (1999)). The policy instrument to control these variables is the short-term

interest rate.

Monetary policy-making is usually conducted in committees, whose members may have

conflicting interests. This is evident for the Governing Council of the European Central

Bank or the Board of Governors of the Federal Reserve System in the United States

(Heinemann and Hüfner (2004) and Meade and Sheets (2005)). In this thesis we take a

closer look at monetary policy committees. In particular, we address how decision rules

and transparency requirements concerning such rules in monetary policy committees

should be designed. In particular we concern ourself with the following two issues:

1. Which type of majority rule should be applied in the monetary policy committee?

2. Should the public know which decision rule the monetary policy committee ap-

plies and should the central bankers release their information about economic

shocks?

To address these questions, standard monetary models with aggregate demand and sup-

ply shocks are introduced and we assume that a committee decides about the interest-

rate change according to some voting rule. We develop a flexible majority rule, where

the majority for interest-rate changes depends itself on the size of the interest-rate
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CHAPTER 1. INTRODUCTION

change.

Our main findings are: First, a well-designed flexible majority rule can improve welfare

compared to a fixed majority rule in a simple shock structure. This insight is robust,

if we apply more complex shock structures or if we introduce a simple dynamic setup.

Second, transparency regarding the rule has ambiguous effects on welfare and it may

not be necessary to publish the decision rule, but within our framework, we can provide

a best combination of a decision rule and an information setup.
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CHAPTER 1. INTRODUCTION

1.2 The Structure of the Thesis

The thesis is organized as follows: In chapter 2 we introduce the model and proof the

first main insight in a simple setting, called the baseline model. In chapter 3 we relax

the assumptions and show that our main insight is robust under many circumstances.

In chapter 4 we slightly change our baseline model in order to examine the effects of

transparency within our framework and chapter 5 discusses the results and concludes.

Flexible Majority Rules for Central Banks (Chapter 2)

In chapter 2, we introduce our main model, which is based on Gersbach and Pachl

(2006) and on Gersbach and Pachl (2009), a shorter version of the paper. We consider

a monetary policy committee, which decides about interest-rate changes in a monetary

union. Aggregated social losses of the monetary union are based on a utilitarian welfare

criterion and consist of the weighted sum of the loss functions of the member countries.

The loss functions of the member countries are quadratic in the difference between the

actual union-wide interest rate and the desired country interest rate. We consider the

possibility that the monetary union is hit by a shock, which divides the union into two

parts. After this, one part desires an interest-rate change, while the other wants to

retain the status quo. Our main assumption, which drives the model, is the monotonic

dependence of the shock size on the size of the affected region: The larger the affected

part of the monetary union, the larger the shock is. Furthermore, we assume that the

central bankers decide according to their home preferences. Within this framework, we

compare a simple majority rule (SM), where any interest-rate change requires more

than 50% of the votes and a flexible majority rule (FM). A FM -rule is characterized

by the property that the larger the desired interest-rate change, the larger the required

number of votes. Our main findings are, that the FM -rule is superior to the SM -rule

and if the votes of the members of the committee are weighted properly, the FM -rule

can even mimic the first-best solution for any aggregated shock scenario.

Extensions of the Model (Chapter 3)

In chapter 3, we relax some assumptions of the baseline model of the previous chapter.

First, we drop the assumption of quadratic losses and allow for more general functional

forms and show that, with some regularity condition, our main result still holds. Second,

we assume that the union is hit by a weighted averaged shock, which changes aggregated

social losses. We compare this with our utilitarian welfare criterion and show, that we

can construct a similar FM -rule. Third, we allow for different shocks in the same

direction at the same time, which includes the scenario, that we may have a large

effect in one country and a small effect in another country, while another part is not

8



CHAPTER 1. INTRODUCTION

affected at all. In this setting, the result for any shock scenario the FM -rule is at least

as good as the SM -rule does not hold anymore. However, we can show that if a shock

event divides the monetary union into three regions, the size of the desired interest-rate

change linearily depends on the size of the affected region and all events occur with the

same probability, the FM -rule is still superior compared to the SM -rule with regard to

expected social losses of the monetary union. Fourth, we consider simultaneous shocks

in different directions and can show that a well-designed FM -rule is still superior to

the SM -rule. Fifth, we examine a dynamic setup with the assumptions that there exist

a long-run equilibrium interest rate and fast decaying shocks. In this setup, we can

also show that the FM -rule is better than the SM -rule.

Transparency (Chapter 4)

In chapter 4 we derive a loss function dependent on the actual interest-rate change,

the expected interest-rate change, and the shock size, incorporating the framework

of Gersbach (2003) into our model. We assume that the central bank obtains a fully

informative signal about the shock. In a static framework, we examine the impact

of transparency comparing three different information setups. First, the central bank

does not release any information about the shock, but the public is informed about the

decision rule (Opacity 1). Second, the central bank releases the information about the

shock, but the public is not informed about the decision rule (Opacity 2). Third, the

public is informed about both the shock and the applied decision rule (Transparency).

It turns out that the welfare effects of the different information setups are ambiguous

and the ranking depends on the shock size and the applied decision rule. But the

combination of Opacity 1 with the FM -rule is never worse than any other combination.

Discussion and Conclusion (Chapter 5)

Chapter 5 discusses and concludes.

The longer proofs and examples are given in the appendix.

9



Chapter 2

Flexible Majority Rules for Central
Banks

2.1 Introduction

We propose a flexible majority rule for central banks. The flexible majority rule works

as follows: Within a pre-specified time frame, the size of the majority necessary for

adopting a change in the interest rate depends on the change in the interest rate itself.

For small changes in the interest rate, only a small share of the votes is required, possi-

bly even less than 50%. For large interest-rate changes, a larger majority is necessary,

tending towards total unanimity.

We consider a model where N ≥ 2 central bankers, representing countries, regions,

or different constituencies within a country, decide on monetary policy. The central

bank loss function is composed of the weighted loss functions of countries, regions, or

constituencies. This is the typical case for the European Central Bank (ECB), but also

applies to the Federal Reserve (Fed). In our example, we consider the ECB when the

monetary union is hit by a shock dividing the union into two parts. After this, one part

desires a change in monetary policy, while the other part wants to retain the status

quo. For instance, some countries may be affected negatively by a negative supply or

demand shock, and concern for their own country’s welfare makes them want to ease

monetary policy through interest-rate cuts. Other countries not affected by the shock

will prefer no change in the interest rate. Under simple majority rules, a change in

the interest rate will occur if, and only if, a simple majority of votes desires a change.

Under flexible majority rules, small changes in the interest rate will only require a small

share of supporting votes and, hence, a small number of countries to agree, whereas

large changes in the interest rate require large majorities.

10



CHAPTER 2. FLEXIBLE MAJORITY RULES FOR CENTRAL BANKS

The key advantage of the flexible rule is that if a number of countries are hit by a

shock, they can partially ease the consequences through a small small interest-rate

change. Larger changes in the interest rate, however, require larger majorities, which

can only be achieved if a larger number of countries are affected by the shock. The

flexible majority rule aligns the severity of shocks and the socially desirable change

in the interest rate. The drawbacks of simple majority rules and unanimity rules

(possible exploitation by minorities, unanimity rules creating extreme veto power) can

be overcome by flexible majority rules.

We distinguish between two cases. First, the vote of every central banker has the same

weight; second, the vote of a central banker is weighted to the same degree as his

country is weighted in the central bank loss function. Our main results are as follows:

First, in both cases the flexible majority rule always leads to smaller central bank losses

than the simple majority rule. Second, if every vote is weighted as described above,

flexible majority rules can implement the socially optimal solution. Third, it is socially

optimal for small interest-rate changes within a particular time frame to be brought

about by minorities – either one large country or a set of small countries. Similarly, it

is socially desirable for large interest-rate changes to require large majorities. The main

intuition for our results is that flexible majority rules of the kind described above can

mimic aggregate social loss minimization, which calls for small interest-rate changes

when shocks are small and affect only a few countries and large interest-rate changes

when shocks are larger and affect many countries.

2.2 Relation to the Literature

2.2.1 Regional Bias in Central Bank Decisions

A socially desirable procedure for making decisions in central bank committees has

been the focus of a substantial body of recent literature.

Three areas have been investigated. First, the debate about optimal institutional design

of the ECB has focussed on its degree of centralization. Von Hagen and Süppel (1994),

Lohmann (1997), de Grauwe, Dewachter, and Aksoy (1999) and Bindseil (2001) have

highlighted the advantages of a stronger role for the centrally-nominated ECB.1 Berger

(2006) suggests several ways of improving the organization of the ECB Governing

Council. We suggest that flexible majority rules may partially function as a substitute

1The advantages of centralization have gained renewed interest in the current process of EU-
enlargement (Baldwin, Berglof, Giavazzi, and Widgren (2001), and Berger, de Haan, and Inklaar
(2003)).
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for lack of centralization at the ECB.

Second, regional considerations appear to play a substantial role in central banks’

decision-making, as has been suggested by Heinemann and Hüfner (2004) for the ECB.

Meade and Sheets (2005) have highlighted the fact that the policymakers of the Federal

Reserve System of the United States (especially in the Federal Open Market Committee

(FOMC)) take into account developments in regional unemployment when casting votes

on monetary policy.2 From a theoretical point of view, Sophocles and Skotida (2008)

suggest that there can be welfare gains if the central bank board of a monetary union

includes country specific characteristics rather than only focussing on union-wide ag-

gregated variables, and we suggest that flexible majority rules promise efficiency gains

for central banks of a monetary union.

Third, there is a growing literature on the importance and effects of having monetary

policy devised by a committee rather than by individuals. In her survey, Sibert (2006)

suggests that an ideal monetary policy committee should not have more than five mem-

bers.3 Other recent papers provide specific arguments suggesting that monetary policy

conducted by a committee is preferable to a single policy-maker. Gerlach-Kirsten (2006)

derives this conclusion in a theoretical study on interest-rate-setting in monetary pol-

icy committees, and Blinder and Morgan (2005) provide support with an experimental

study. We suggest that flexible majority rules might further enhance the efficiency of

committee decision-making on monetary policy.4

2.2.2 Efficient Collective Decision-Making

On a broad conceptual level, our paper addresses the optimal design of majority rules,

which has a long tradition in economic and political science.

In every collective decision problem, the question arises how a decision rule should

2Other sources of heterogeneity are explicitly found for the FOMC and Monetary Policy Committee
(MPC) of the Bank of England (BoE). Concerning to Havrilesky and Gildea (1995) there is a difference
in the voting behaviour between the subgroups of Federal Reserve Presidents and Federal Reserve
board members of the FOMC. Examining the voting behaviour of the FOMC for the period from 1966
– 1996 Chappel, McGregor, and Vermilyea (2005) affirmed this view. A similar finding is described in
Riboni and Ruge-Murcia (2008b), who claim that the voting behaviour of the MPC members depends
on their career background (whether it is academic, private sector or BoE intern careers) or if their
memberships in the MPC are internal or external. In contrast Besley, Meads, and Surico (2008)
conclude that this difference in voting behaviour is much less distinctive.

3For a survey of the composition and voting procedures of most of the central bank committees
throughout the world see Lybek and Morris (2004), Nitsch, Berger, and Lybek (2008) or Fry, Julius,
Roger, Mahadeva, and Sterne (2000).

4Dixit and Jensen (2000) model the way in which governments could influence the central bank by
offering incentive contracts.
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be designed in order to achieve socially desirable outcomes. One of the most widely

employed decision rules is the simple majority rule, where a proposal is accepted if

it obtains more than 50% of the votes. For example, in countries with a democratic

constitution, most of the processes in which politicians are elected and parliamentary

decisions are taken follow the simple majority rule. An early discussion of when this

rule may be optimal can be found in Rae (1969) and Taylor (1969). May (1952) has

shown that the simple majority rule satisfying a number of axioms, always has a unique

outcome.

Nevertheless, the simple majority rule is not optimal in all cases. The classic work by

Buchanan and Tullock (1962) shows that a majority other than 50% might be optimal.

Other majorities are realized, for example, in the veto or the unanimity rule in the

United Nations Security Council, or the 2
3

majority needed for an amendment of the

constitution in the Federal Republic of Germany. As shown in many papers for well-

defined frameworks simple majority rules can be improved by other voting procedures.

For instance Caplin and Nalebuff (1988) show that a super majority or 64-% rule has

the desirable property of the elimination of cycles.5

For the decision-making process in a monetary policy committee, Brückner (1998)

shows that if the aggregated welfare measure is the weighted sum of preferences of the

deciding members of a monetary union, then it could be welfare-enhancing to depart

from the simple majority rule. This can also include leaving the principle of ”one man,

one vote” with even neglecting some members in the voting process, if their weight in

the welfare measure is very small. Bullard and Waller (2004) suggest that in a two

generations model, where the young generation has the majority, shortcomings of the

simple majority rule can be overcome if the status quo can only be changed if the

younger generation convinces at least some part of the older generation. As in the

previous paper in Berentsen and Strub (2009), the minority is also endowed with some

veto power, which, in an extreme case, means that the majority can make the minority

only a take-it-or-leave-it offer and the status quo is only changed if the minority agrees.

Bó (2006) designs a more complicated voting process. In a first constitutional step, the

committee determines the majority, which is needed to change the policy variable. In

a second step, firstly the committee decides with simple majority about the direction

of the change and secondly with the previously determined majority about the size

of the change. Riboni and Ruge-Murcia (2010) consider a similar setup, but in their

5An early example in history for the use of the two-thirds majority rule is the voting process of
the conclave, the election scheme for the pope. The two-thirds majority rule was firstly implemented
by Pope Alexander III in the 3. Council of the Lateran (1179) and the detailed design followed in the
2. Council of Lyon by Pope Gregor X (1274). In Saari (1994), it is suggested, that the reason for the
implementation of this rule is its stability property.
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framework, the majority for the change in size is set ad hoc and is not an outcome of a

pre-stage. Additionally, they propose an agenda-setting model, where the chairman of

the committee makes a proposal for the change of the policy variable and the committee

is only allowed to accept or reject it. In Matsen and Røisland (2005), four general

scenarios are examined. First, the committee minimizes a union-wide loss function,

which is entered only by aggregated union wide variables. Second, the loss function is

the sum of the member loss functions. Third, every member of the committee decides

according to his home preferences and the change is set due to a simple majority rule,

and fourth, the change is set by the average of the desired changes of the committee

members.

Fixed majorities can, however, very often lead to inefficiencies from a utilitarian per-

spective. Consider, for example, a collective decision problem where two groups have

preferences located at two extremes. If one group is at least as big as the fixed majority

needed in this decision problem,6 it can always overrule the other group, which may

lead to serious dissatisfaction on the part of the minority (see for instance Guinier

(1994) and the classic work of de Tocqueville (1850)) and which is not optimal from a

utilitarian perspective. As in other political decision processes, Brückner (2000) and

Tarkka (1997) suggest side payments or transfers in order to compensate the minority.

In our paper, we design flexible majority rules that can imitate a first-best solution in

a utilitarian sense within a specified framework.

Furthermore, in the recent past there has been renewed interest in new decision rules.

Casella (2005) suggests a system of storable votes, where voters can choose between

the possibility of voting now or storing the vote and having an additional vote in the

future. Erlenmeier and Gersbach (2001) have suggested that one might use flexible

majority rules for public good provision. When a community has to decide whether

to accept a new project and thus faces a simple yes/no decision, the authors show

that it can be welfare-enhancing to make the required majority for the adoption of the

project proposal depend on the share of individuals taxed under the proposal. In this

paper, we design flexible majority rules for monetary policy, where a committee has to

choose an element, i.e. a short-term interest rate, from a one-dimensional policy space,

i.e. from a continuum of possible alternatives.7 This approach incorporates various

aspects of the above-quoted literature. First, we consider an aggregated loss function

6In this case the majority has to be greater than 50%.
7There are real-world examples of flexible majority rules, as has been pointed out by Amihai

Glazer in personal communications. For instance, when a person buys property in Irvine in southern
California, he signs a contract making him a member of a homeowner association that provides local
public goods and has the right to levy annual fees. The share of votes required to implement an
increase in the fees depends on the proposed fee change.
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for the union.8 Second, the votes of the committee members are weighted, and third,

we abandon also the simple majority rule.

2.2.3 Decision Making in the ECB and the Fed

In order to embed our theoretical model in the actual situation of decision making in

monetary policy, we briefly describe the frameworks, of the two most important central

banks, the ECB and the Fed.

With the introduction of the euro on 1.1.1999, the members of the European Monetary

Union (EMU) fully delegated monetary policy onto the ECB. The statute of the Euro-

pean System of Central Banks (ESBC) and the ECB9 defines the Governing Council

(GC) as the main authority conducting monetary policy, including decisions about the

key interest rates and the supply of the reserves in the ECB (Article 12.1). The GC

consists of the six members of the executive board10 and the governors of the national

central banks of the current 16 member states,11 whose currency is the euro (Article

10.1), and each member of the GC has one vote (Article 10.2). Basically, the GC acts

under a voting scheme of simple majority and all votes are weighted equally12 (Article

10.2.). Although Article 10.2 in combination with Article 12.1 indicates that the GC

decides about interest-rate changes with a simple majority rule, as mentioned in Euro-

pean Central Bank (2009) (p.92), the actual decision process is not known, since the

minutes of the meetings of the GC are not published, and several statements of main

figures of the GC can be read in such a way so as to indicate that interest-rate changes

are made following a consensus.13 We already mentioned that for some decisions the

8In an extension we show that our findings hold also for a specific union wide loss function in the
sense of Matsen and Røisland (2005).

9If not otherwise specified, the following articles refer to European Union (2008).
10During the implementation of the ECB the number of executive board members need not to be

six, but was restricted to a minimum of four (formerly Article 50), see European Central Bank (2004)
(p.27) and European Union (2008) (p.250).

11March 2010.
12Exceptions are decisions concerning the eurosystem financial matters, such as increases of the

capital key or the transfer of foreign reserve assets. In these cases the votes of the governors are
weighted according to the national central bank’s shares of the subscribed capital of the ECB (Article

10.3), while the votes of the executive board members are weighted zero. Additionally, there exist
decisions where a larger quorum than 50% is needed, concerning mainly fundamental questions of the
framework of the ECB (Articles 14.4, 20, 47).

13Duisenberg (2000a): “First, there was no formal vote. Again, as I has hoped and as it was, it was

a consensus decision.“ Duisenberg (2000b): “You will be aware that I never comment on that. We

had an intensive discussion, a prolonged discussion, which was very useful and, in the end, resulted in

a consensus on what we had to do.“ Issing (2006):“It does not matter whether this opinion is shared

by everyone or by only a rough majority. Consensus certainly does not mean that there is a need for

implicit unanimity...“. Trichet (2008):“As you know, we do not vote and have never voted in the past.

Today, we took a consensus decision...“.
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votes of the members of the GC are weighted. But in the future, another change in

the voting rights will arise from the successive enlargement of the EMU. At 1.1.1999

eleven countries started with the euro and in the year 2003, it was decided to introduce

a rotation system of voting rights of the governors of the national central banks in case

the number of members of the GC exceeds 21 (number of governors 15) (European

Union (2003)). Although with the introduction of the euro in Slovakia this criterion

was met, the rotation system was postponed until the number of governors in the GC

exceeds 18 (European Union (2009)). When this new criterion is met only 15 governors

obtain a voting right and voting rights will rotate every month (usually there are two

meetings per month and once per month a decision is made about the interest rates).

The frequency of obtaining a voting right is a monotonically increasing function of the

weight14 of the country in the EMU (European Central Bank (2009)). Officially the

ECB insists that they do not abandon the principle of one-member one-vote, but since

over time a country has fewer voting rights the smaller it is, there is at least some

weighting in the future.15

In contrast to the ECB, the FOMC, the decision-making body of the Federal Reserve

System, already has rotating voting rights. The FOMC consists in general of seven

members of the Board of Governors16 with permanent voting rights and five out of

twelve presidents of the reserve banks. In the group of presidents, only the president of

the New York Fed has a permanent voting right, while with the remaining 11 presidents,

the four voting rights are rotated annually (The Federal Reserve System (2005)). But as

it is also determined in the future rotation scheme of the ECB, the other presidents have

the right to attend the meetings of the FOMC and thus can also influence monetary

policy decisions, since the FOMC acts also under a consensus principle (The Federal

Reserve System (2008)).

14The weight wi of country i is calculated as follows: wi = 5
6

ynom
i

ynom
EMU

+ 1
6

bsi

bsEMU
with ynom

i Gross Do-

mestic Product at market prices and bsi aggregated balance sheet of Monetary Financial Institutions
(MFI) of country i. According to this ranking, the governors are divided into different groups with
different frequencies of voting rights. This ranking is usually done every five years or when a new
country introduces the euro.

15Note that together with the statements in footnote 13, this weighting is not that important
compared to an introduction of a rigorous voting rule, since the governors without a voting right are
still members of the GC and they have the right speak in the meetings.

16Actually there are two vacancies (March 2010).
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2.3 The Model

We consider a monetary union consisting of N ∈ N (N ≥ 2) countries, which make

joint decisions on monetary policy in a single central bank such as the ECB. Countries

are denoted by k (k = 1, 2, ..., N). The monetary policy is decided in a central bank

council where each country k delegates a central banker representing the interest of

country k. We assume that the social loss function17 for every single country is given

by

Lk
t = (it − ĩkt )

2 . (2.1)

The variable it denotes the interest rate adopted by the central bank in period t (t ∈ Z),

and ikt is the interest rate that is optimal for country k (it, i
k
t ∈ R

+
0
). Overall social

losses, based on a weighted-utilitarian welfare criterion, are assumed to be given by

L =
N∑

k=1

gkL
k , (2.2)

with gk ∈ (0, 1) and the normalization
∑N

k=1 gk = 1, where gk are the weights of the

countries representing, for example, differences in GDP or in population.

We assume that in the past at t−1, the union has been in long-term equilibrium and the

adopted interest rate it−1 has been optimal. Given this status quo, we assume that the

monetary union is hit by a supply or demand shock ǫ dividing the union into two parts.

One part is affected by the shock, while the other part is not. We use the subset K to

denote the countries affected by the shock, with K ⊆ N = {1, 2, ..., N} and |K| = n the

number of the affected countries. W.l.o.g., we will analyze only positive realizations of

shocks and thus possible increases in the interest rate, as negative realizations would

lead to corresponding declines in the interest rate.

We illustrate the working of flexible majority rules in a simple setting. First, we assume

that if a shock occurs, every affected country is hit by the same aggregate shock. Second,

we assume that the larger the aggregate economic weight of the countries affected by

a shock, the more sizable the shock is. This idea is illustrated by a banking crisis (see

Elsinger, Lehar, and Summer (2006)). Suppose that a regional banking crisis occurs,

caused by a regional negative supply or demand shock and that this crisis triggers

defaults of borrowers at banks. If the banking crisis is moderate, other banks in other

countries might not be affected much, as only a limited number of loan defaults in the

17See e.g. Woodford (2003). Gersbach and Hahn (2001) show that this functional form of losses can
be obtained if supply shocks are normally distributed. Riboni and Ruge-Murcia (2008a) choose a sim-
ilar loss function, which is set ad hoc and the different bliss-points are motivated with a disagreement
of the ”correct” economic model or different information sets of the decision makers.
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European interbank market connecting all banks will occur. If the regional banking

crisis is more severe and many banks have to default on their interbank loans, banks

in other regions may not be able to repay their outstanding debts and may default as

well, so that a larger fraction of the monetary union is hit by the banking crisis.18

Our assumption results in a strictly monotonically increasing shock function ǫ(GK),

with GK representing the aggregate economic weight of the affected countries, given by

GK =
∑

k∈K gk and ǫ(0) = 0. For a country k ∈ K, we assume that its desired interest-

rate change ĩkt is an increasing function of the shock size ǫ(GK), whilst an unaffected

country does not desire any interest-rate change. The desired interest rate ĩkt of country

k ∈ N can then be written as

ĩkt (ǫ(GK)) = γk∆ĩt(ǫ(GK)) + it−1 (2.3)

where γk is a geographical indicator variable describing whether a country is affected

by the shock or not and γk is then given by

γk =

{
1 for k ∈ K
0 otherwise

(2.4)

∆ĩt(ǫ(GK)) is the desired interest-rate change (related to the long-term equilibrium

it−1) if the shock ǫ has occurred, with ∆ĩt(ǫ = 0) = 0. Summing up all subsets of

N , we obtain 2N possible different shock scenarios in the union represented by K.19

We assume that these shocks are distributed according to an arbitrary probability

distribution. In particular, we denote by pK the probability that all countries in K are

affected by the shock, with
∑

allK pK = 1.

If we consider that it can be written as

it = it−1 + ∆it (2.5)

where ∆it is the actual interest-rate change from period t − 1 to period t and with

(2.3), we can write

Lk
t = (∆it − γk∆ĩt)

2 (2.6)

18 In some regard we have seen such a contagion process during the recent financial crisis, although
not only within a European Monetary Union, but in a global context. But, since most of this work
was done before the year 2008, the current crisis is not really incorporated in this model. For example,
we do not deal with the case, that the lower bound of zero interest-rate-setting is reached and the
central bankers have to think about other instruments than interest-rate-setting in order to implement
monetary policy decisions.

19Note that degeneracies are possible if the gi’s are specified. For example, g1 = 0.05, g2 = 0.1,
g3 = 0.2, g4 = 0.3, g5 = 0.35. Although ǫ(g1 +g5) = ǫ(g2 +g4), these are considered to be two different
shocks, because the shock does not affect the same countries.
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In the following, we drop the time index t, since we are focussing on the specific period

from t − 1 to t and do not consider permanent shocks.20 Now we can write the social

loss function of the union in any specific shock scenario, denoted by LK, as21

LK = GK

(
∆i (GK) − ∆ĩ (GK)

)2
+ (1 − GK) (∆i (GK) − 0)2

=
(
∆i (GK) − GK∆ĩ (GK)

)2
+ GK(1 − GK)

(
∆ĩ (GK)

)2
(2.7)

For simplicity of exposition, we write (where suitable) in the following:

∆i (GK) = ∆iK and ∆ĩ (GK) = ∆ĩK (2.8)

The expected social loss function is then given by

E[L] =
∑

allK

pKLK (2.9)

2.4 First-Best Solution

Since LK represents the losses in every single shock scenario K, the expected losses

E(L) are minimized if every single LK(∆iK) is minimized. From equation (2.1) we see

that LK(∆iK) is a parabola with the minimum at ∆i∗K = GK∆ĩ(GK). Thus in every

single shock scenario, the optimal change in the interest rate is given by

∆iK = ∆i∗K = GK∆ĩ(GK) (2.10)

which results in first-best losses of

L∗
K = GK(1 − GK)∆ĩ(GK) (2.11)

and we end up with optimal expected losses of

[E(L)]∗ =
∑

allK

pKGK(1 − GK)∆ĩ(GK) (2.12)

Note that the desired interest-rate change of a country affected by the shock is mono-

tonically increasing in the size of the shock. The larger the shock, the larger the desired

interest rate of the affected countries to stabilize the shock. In the following, we will

calculate expected losses for different collective decision rules determining ∆iK. Then

we compare their expected losses among themselves and with the first-best solution.

20We could also motivate the dropping of the time index by assuming the central bankers to be
myopic.

21Note that we leave out ǫ and write ∆ĩ and ∆i directly as functions of GK, because ∆ĩ is a strictly
increasing function of ǫ, and ǫ is strictly increasing in GK.
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2.5 Constitution

To examine decision rules for central banks, we consider a constitutional design prob-

lem where governments of the monetary union decide which decision rule the central

bank of the union will use. The selection of the decision rule is governed by the una-

nimity rule and occurs under a veil of ignorance, i.e. at a time when shocks are not yet

known and no conflicts of interest are present. The remaining process is as follows:

Stage 1: Central bankers in the council observe whether or not their countries and
other countries are affected by the shock.

Stage 2: The council decides on the change in the interest rate in accordance with
the decision rule.

We will restrict rules to democratic decision processes where each central banker has

one vote, which may or may not be weighted by gk, their weight in the overall social

loss function. The time-line of the events and decisions is illustrated in the following

figure 2.1:

it−1

t − 1

it

t

ǫ

U

ĩkt

�

time

decision rule

	
-

Status quo with an imple-
mented decision rule and
long-term equilibrium in-
terest rate it−1

Shock ǫ occurs and central
bankers forming their pre-
ferences about their desired
interest rate ĩkt

Implementation of interest
rate it according to the de-
cision rule

Figure 2.1:

Pattern of the decision process
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2.6 Decision Rules

We distinguish between simple majority (SM ) and flexible majority (FM ) decision

rules.

SM : it−1 will be changed in t if, and only if, a change receives a majority of more

than 50% of the votes. The central bank implements the maximal interest-rate

change that receives a majority of 50% of the votes when the interest rate is

varied starting from it−1. Equivalently, the central bank implements the preferred

interest-rate change of the median voter.22

FM : it−1 will be changed in t if the proposed interest-rate change denoted by ∆î

(∆î ∈ IR) obtains a share of α(∆î) votes with α(.) monotonically increasing

and α ∈ [0, 1]. The central bank implements the maximum interest-rate change

∆î = ∆it that receives a share of α(∆î) votes when the interest rate is varied

starting from it−1.

Practically, the FM-rule can be applied as follows. The council votes about interest

changes in ascending order: 0 < ∆î1 < ∆î2 < .... As soon as an interest-rate change

does not obtain the required share of votes, the last interest-rate change, which has

gained the required share, will be implemented by the central bank. The important

feature of flexible majority rules is that the size of the majority α depends on the

proposed interest-rate change ∆î. We will see that it is optimal for small interest-

rate changes to require a small share of votes, while large interest-rate changes require

a large share of supporting votes. The simple majority rule represents the standard

median voter outcome.

22When preferences are one-dimensional and single-peaked as in this paper, starting from any status
quo, the median voters’ most preferred outcome is the maximal change of the status quo that receives
a simple majority of votes.
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We now proceed as follows: We examine each decision rule separately and provide

the comparison afterwards. The maximum interest-rate change for which a supporting

majority exists will be chosen. We analyze both the case where every country has only

one vote, and the case where the vote of every country is weighted with its importance

for overall welfare gk. In the following we describe four different decision rules:

1. a simple majority rule without weighted votes, denoted by SMnw.

2. a simple majority rule with weighted votes, denoted by SMw.

3. a flexible majority rule without weighted votes, denoted by FMnw.

4. a flexible majority rule with weighted votes, denoted by FMw.

2.6.1 Simple Majority Rules

In this part we briefly discuss the outcomes of simple majority rules, first without

weighted votes, and second with weighted votes. For a given shock scenario K, we

define by ∆iSMnw

K the interest-rate change under the SMnw-rule and by ∆iSMw

K the

interest-rate change under the SMw-rule.

1. SMnw: Simple Majority Rule without weighted votes

In this case, every country has one vote and the interest-rate is only changed, if

more than 50% of the central bankers vote for a change. Hence, the change is

zero, if the number of the affected countries is less than or equal to N
2
. Otherwise,

the affected countries implement their desired interest-rate change ∆ĩK since they

have the majority. Then, the interest-rate change is given by

∆iSMnw

K =







∆ĩK if |K| > N
2

0 otherwise
(2.13)

and social losses under the SMnw-rule are determined by

LSMnw

K =







GK

(
∆ĩK

)2
if |K| ≤ N

2

(1 − GK)
(
∆ĩK

)2
if |K| > N

2

(2.14)

The expected social losses can be calculated as

E
(
LSMnw

K

)
=

∑

all |K|≤N
2

pKGK

(
∆ĩK

)2
+

∑

all |K|> N
2

pK(1 − GK)
(
∆ĩK

)2
(2.15)
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The simple majority rule without weighted votes exhibits both kinds of ineffi-

ciencies associated with collective decisions. First, interest-rate changes are not

implemented and are also too small, if less than half of the countries are affected

by a shock. Second, adopted interest-rate changes are too large if more than half

of the countries are affected by a shock but simultanously they have a weight of

less than 50%.

2. SMw: Simple Majority Rule with weighted votes

In this case every vote is weighted with the corresponding weight gk of the over-

all social loss function (equation (2.2)). Compared to the SMnw-rule, now the

interest-rate is only changed if the weighted sum of the affected countries is larger

than 1
2
. Then the interest-rate change under the SMw-rule is given by

∆iSMw

K =







∆ĩK if GK > 1
2

0 otherwise
(2.16)

and social losses under the SMw-rule are given by

LSMw

K =







GK

(
∆ĩK

)2
if GK ≤ 1

2

(1 − GK)
(
∆ĩK

)2
if GK > 1

2

(2.17)

The expected social loss are calculated as

E
(
LSMw

K

)
=

∑

all GK≤ 1
2

pKGK

(
∆ĩK

)2
+

∑

all GK> 1
2

pK(1 − GK)
(
∆ĩK

)2
(2.18)

The simple majority rule with weighted votes slightly improves the outcome of the

SMnw-rule, since now a large number of small countries cannot overrule anymore

a small number of large countries, if for example the aggregated weight of the

large countries is larger than 50% and they are the only countries affected by a

shock.

2.6.2 Flexible Majority Rules

In this part we modify the rule that the interest rate can only be changed with the fixed

majority of more than 50% of the votes. We change to flexible majority rules, where

the required share of votes depends on the size of the proposed interest-rate change.

Again, we discuss flexible majority rules without (FMnw) and with (FMw) weighted
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votes and for a given shock scenario K, we define by ∆iFMnw

K the interest-rate change

under the FMnw-rule and by ∆iFMw

K the interest-rate change under the FMw-rule.

1. FMnw: Flexible Majority Rule without weighted votes

We introduce a flexible majority rule (FMnw) that will prove to be welfare-

enhancing compared to the SMnw-rule. In particular, we define the FMnw-rule

as follows:

αFMnw(∆î) =







0 if ∆î = 0
1
N

if 0 < ∆î ≤ ∆I(1)
2
N

if ∆I(1) < ∆î ≤ ∆I(2)
...

N−1
N

if ∆I(n − 2) < ∆î ≤ ∆I(n − 1)

1 if ∆I(n − 1) < ∆î

(2.19)

where ∆I(n) is given by

∆I(n) =







min
K

{GK∆iK} s.t. |K| = n if n ≤ N
2

max
K

{GK∆iK} s.t. |K| = n if n > N
2

(2.20)

with n the number of countries affected. Note that αFMnw(∆î) is monotonically

increasing in ∆î, since ∆I(n) is monotonically increasing in n. The flexible

majority rule has the following property: Small interest-rate changes require a

small share of votes, while large interest-rate changes require a large share of

supporting votes.

In the following proposition, we show which interest-rate changes result in any

shock scenario K by applying the FMnw-rule defined in equation (2.19).

Proposition 1

For any shock scenarios K the FMnw-rule defined by αFMnw , the monetary policy

committee implements an interest-rate change of

∆iFMnw

K =







∆I(n) if |K| = n ≤ N
2

∆ĩK if |K| = n > N
2

and ∆I(n) ≥ ∆ĩK

∆I(n) if |K| = n > N
2

and ∆I(n) < ∆ĩK

(2.21)

24



CHAPTER 2. FLEXIBLE MAJORITY RULES FOR CENTRAL BANKS

Proof of proposition 1:

The reasoning for this is as follows:

(i) Suppose K is fixed and |K| = n ≤ N
2
. For the FMnw-rule we obtain

∆iFMnw

K = ∆I(n) = {minK′{GK′∆iK′} s.t. |K′| = n} (where K′ ⊆ N de-

notes, similar to the definition of K, the countries affected by the shock),

since the affected countries desire an interest-rate change of ∆ĩK but they

can only change the interest rate up to ∆I(n) < ∆ĩK.

(ii) Suppose K is fixed, |K| = n > N
2

and ∆I(n) ≥ ∆ĩK. For the FMnw-rule

we obtain ∆iFMnw

K = ∆ĩK, since the desired interest-rate change ∆ĩK of the

affected countries is less than their possible interest-rate change ∆I(n) =

{maxK′{GK′∆iK′} s.t. |K′| = n}.
(iii) Suppose K is fixed, |K| = n > N

2
and ∆I(n) < ∆ĩK. For the FMnw-rule

we obtain ∆iFMnw

K = ∆I(n) = {maxK′{GK′∆iK′} s.t. |K′| = n}, since the

affected countries desire an interest-rate change of ∆ĩK but they can only

change the interest rate up to ∆I(n) < ∆ĩK.

The social losses under the FMnw-rule are then given by

LFMnw

K =







(
∆I(n) − GK∆ĩK

)2
+ GK(1 − GK)

(
∆ĩK

)2
if |K| = n ≤ N

2

(1 − GK)
(
∆ĩK

)2
if |K| = n > N

2
and

∆I(n) ≥ ∆ĩK

(
∆I(n) − GK∆ĩK

)2
+ GK(1 − GK)

(
∆ĩK

)2
if |K| = n > N

2
and

∆I(n) < ∆ĩK
(2.22)

and expected social losses are calculated as
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E
(
LFMnw

K

)
=

∑

all |K|≤N
2

and

all |K|=n> N
2

with ∆I(n)<∆ĩK

pK

((
∆I(n) − GK∆ĩK

)2
+ GK(1 − GK)

(
∆ĩK

)2
)

+
∑

all |K|> N
2

with ∆I(n)≥∆ĩK

pK(1 − GK)
(
∆ĩK

)2

(2.23)

This also improves the SMnw-rule. The intuition for this is as follows. With the

FMnw-rule, an interest rate from the interval [∆iSMnw

K , GK∆ĩK] or [GK∆ĩK, ∆iSMnw

K ]

is adopted. Hence, the FMnw-rule represents a compromise between countries af-

fected by the shock and the other countries, which is welfare-enhancing compared

to the SMnw-rule.

2. FMw: Flexible Majority Rule with Weighted Votes

Now, we flexible majority rule (FMw), where both the required votes for an

interest-rate change depend on the size of the desired interest-rate change and

the votes are weighted with their corresponding weight of the overall social loss

function. It turns out that we can construct a FMw-rule that minimizes E[L].

According to the first-best solution (equation (2.10)), for every shock scenario K
we know that we should aim to implement

∆iFMw

K = ∆i∗K = GK∆ĩK (2.24)

via the FMw-rule. In proposition 2 we establish the existence of an optimal

flexible majority rule.

Proposition 2

There exists a function αFMw(∆î), which determines for every interest-rate change

the necessary share of votes such that under this flexible majority rule αFMw(∆î),

the central bank committee will always implement an interest-rate change that

minimizes the social loss function (2.7) for every given shock scenario K and

αFMw(∆î) is given by
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αFMw(∆î) =







G(1) = 0 if ∆î = 0

G(2) if 0 < ∆î ≤ G(1)∆ĩ(1)
G(3) if G(1)∆ĩ(1) < ∆î ≤ G(2)∆ĩ(2)...

G(2N−1) if G(2N−2)∆ĩ(2N−2) < ∆î ≤ G(2N−1)∆ĩ(2N−1)

G(2N ) = 1 if G(2N−1)∆ĩ(2N−1) < ∆î

(2.25)

where G(k) (k = 1...2N) is the ordered ascending row of all GK with

0 = G(1) < G(2) ≤ G(3) ≤ ... ≤ G(2N−1) < G(2N ) = 1 (2.26)

and ∆ĩ(k) = ∆ĩ(G(k)) (in cases of indifferences with GK = GK′ (K 6= K′) the

ordering is randomly chosen, since in this case the numbering is not crucial).

Proof of Proposition 2:

First, observe that αFMw(∆î) is monotonically increasing in the interest-rate

change ∆î. Second, for every shock scenario G(k) one has ∆ĩ(k) ≥ G(k)∆ĩ(k). But

since ∆ĩ(k) is the desired interest-rate change of the affected countries and due

to the construction of αFMw the interest-rate change G(k)∆ĩ(k) is the maximum

interest-rate change a group of countries with economic weight G(k) can imple-

ment, in a pairwise ascending ballot the interest rate is changed up to G(k)∆ĩ(k).

With the unique relation of G(k) −→ GK, this directly implies, that under the

FMw-rule the optimal interest-rate change ∆iFMw

K = ∆i∗K is implemented in

a given shock scenario K. Altogether, αFMw minimizes expected overall social

losses, because expected overall social losses E[L] are the weighted sum of all LK,

with the probability weights pK.

Under the FMw-rule this leads in every shock scenario K to an interest-rate

change of

∆iFMw

K = GK∆ĩK (2.27)

by inserting equation (2.27) in (2.7) social losses are given by

LFMw

K = GK(1 − GK)
(
∆ĩK

)2
(2.28)
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and the expected losses are calculated as

E
(
LFMw

K

)
=
∑

allK

pKGK(1 − GK)
(
∆ĩK

)2
(2.29)

An immediate consequence of proposition 2 is the following corollary:

Corollary 1

Applying αFMw leads to the first-best solution.

Corollary 1 follows from the observation that a first-best solution means im-

plementing the interest-rate change that minimizes LK for every single shock

scenario. Therefore, corollary 1 follows directly from (2.27).

As a very simple example, we consider a case with two countries g1 = 0.3, g2 = 0.7

and ∆ĩ{∅} = 0, ∆ĩ{1} = 1, ∆i{2} = 2 and ∆ĩ{1,2} = 3. The optimal function

αFMw(∆îK) is then given by

αFMw(∆î) =







0 if ∆î = 0

0.3 if 0 < ∆î ≤ 0.3

0.7 if 0.3 < ∆î ≤ 1.4

1 if 1.4 < ∆î

(2.30)

αFMw is calculated by determining the optimal interest-rate change ∆i∗K and

subsequent inversion. We obtain ∆i∗{1} = 0.3 · 1 = 0.3 and ∆i∗{2} = 0.7 · 2 = 1.4.

Applying this flexible majority rule, we see that no interest-rate change occurs

when no country is affected, whereas a change of 3 occurs when all countries are

affected, because in this case every country wants exactly a change of 3. If only

the smaller country is affected, it will desire a change of 1. But with its share

of 30% of the total votes, it can only implement a change up to 0.3. Since its

private losses are decreasing in [0, 0.3], the central bank will adopt a change of

0.3 in the interest rate. By the same argument, the change in interest rate will

be 1.4 when only the large country is affected, which has a share of 70% of the

votes.

This flexible majority rule further improves the outcome, since it aligns the re-

quired votes for an interest-rate change with the size of the optimal interest-rate

change in any shock scenario. Note that the functionality of the flexible majority

rule highly depends on the assumption that the larger the affected region, the

larger the desired interest-rate change of the affected countries. Later on, we

show that our result still holds for a broader class of loss functions and another

aggregation process.
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2.7 Comparison of the Different Decision Rules

In this section we formally compare the different decision rules defined in the previous

chapter and their outcomes. This is summarized in the following proposition

Proposition 3

In any given shock scenario K we have

(i) LFMw

K ≤ LSMw

K ≤ LSMnw

K

(ii) LFMw

K ≤ LFMnw

K ≤ LSMnw

K

(2.31)

The proof is given in Appendix 6.1. The intuition for this finding is as follows.

Since the FMw-rule guarantees the first-best outcome, the first part of the inequalities

(2.31) from proposition 3 follows directly from corollary 1.

In order to see, that the SMw-rule is improving compared to the SMnw-rule, consider

the case where the interest-rate changes of the SMw and SMnw-rule fall apart for a

specific shock scenario. First, if GK > 1
2

and the number of the affected countries

n ≤ N
2

the interest-rate change under the SMw-rule and the SMnw-rule deviate in

different directions from the optimal interest-rate change ∆i∗K = GK∆ĩK, but the devi-

ation from the optimal interest-rate change is less for the SMw-rule and thus, because

of the symmetry of aggregated social losses, SMw outperforms SMnw. In the opposite

case (GK ≤ 1
2

and n > N
2
), the same argumentation leads to the superiority of SMw

over SMnw. The improvement of the FMnw-rule compared to the SMnw-rule follows

from a similar consideration. Again the distance to the optimal interest-rate change is

diminished compared to SMnw-rule. But in this case both decision rules (FMnw and

SMnw) deviate ∆i∗K in the same direction. Explicitly with the FMnw-rule, an inter-

est rate from the interval [∆iSMnw

K , GK∆iK] or [GK∆iK, ∆iSMnw

K ] is adopted. Hence, as

already earlier stated, the FMnw-rule represents a compromise between countries af-

fected by the shock and the other countries. Thus, the FMnw-rule is welfare-enhancing

compared to the SMnw-rule.

From proposition 3 follows directly the following corollary:

Corollary 2

(i) E
(
LFMw

K

)
< E

(
LSMw

K

)
≤ E

(
LSMnw

K

)

(ii) E
(
LFMw

K

)
≤ E

(
LFMnw

K

)
< E

(
LSMnw

K

)
(2.32)

This follows from the property, that E[LK] is the weighted sum of all LK and the

possibility of equality of first SMw and SMnw and second FMw and FMnw for example
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is fulfilled if every country has the same weight (i.e gk = 1
N

for all k). The comparison

of SMw and FMnw is ambiguous. In the following table we list in general cases the

relation between SMw and FMnw for different shock scenarios K. For simplicity we

exclude GK = 0, 1.

GK n ∆I(n) ∆i∗ ∆iFMnw

K ∆iSMw

K LFMnw

K − LSMw

K

1. < 1
2

≤ N
2

GK∆ĩK ∆I(n) 0 < 0

2. < 1
2

> N
2

≥ ∆ĩK GK∆ĩK ∆ĩK 0 > 0

3. = 1
2

> N
2

≥ ∆ĩK GK∆ĩK ∆ĩK 0 = 0

4. = 1
2

> N
2

< ∆ĩK GK∆ĩK ∆I(n) 0 < 0

5. > 1
2

≤ N
2

GK∆ĩK ∆I(n) ∆ĩK
<
> 0

6. > 1
2

> N
2

< ∆ĩK GK∆ĩK ∆I(n) ∆ĩK < 0

7. > 1
2

> N
2

≥ ∆ĩK GK∆ĩK ∆ĩK ∆ĩK = 0

Table 2.1:
Comparison of FMnw and SMw.

The entries in the last column of the table can directly be verified by comparing the

absolute differences |∆i∗ − ∆iFMnw

K | and |∆i∗ − ∆iSMw

K |. For the rows, we obtain

1. ∆i∗ ≥ ∆I(n) > 0 =⇒ LFMnw

K < LSMw

K .

2. ∆ĩK − ∆i∗ = (1 − GK)∆ĩK > GK∆ĩK, since GK < 1
2

=⇒ LFMnw

K > LSMw

K .

3. ∆ĩK − ∆i∗ = (1 − GK)∆ĩK = GK∆ĩK, since GK = 1
2

=⇒ LFMnw

K = LSMw

K .

4. ∆I(n) − ∆i∗ < (1 − GK)∆ĩK = GK, since GK = 1
2

=⇒ LFMnw

K < LSMw

K .

5. ∆i∗ − ∆I(n)
<
> (1 − GK)∆ĩK, since GK > 1

2
=⇒ LFMnw

K
<
> LSMw

K .

6. ∆i∗ ≤ ∆I(n) < ∆ĩK =⇒ LFMnw

K < LSMw

K .

7. ∆iFMnw

K = ∆iSMw

K =⇒ LFMnw

K = LSMw

K .

If we revisit the construction of the FMnw-rule in equations (2.19) and (2.20), we

observe that this rule is somehow ad hoc defined, in order to improve SMnw. Therefore,

we introduce two further construction principles for a flexible majority rule without

weighted votes. First a rule denoted by FMnw′ , which is oriented at the already defined
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FMnw-rule. This means, we do not violate the property to be better than the SMnw-

rule in every shock scenario K, but we try to improve the social outcome compared to

the FMnw-rule. Second, we abandon the property to be better than the SMnw-rule in

every shock scenario K and mainly consider to minimize expected overall social losses

with a rule denoted by FMnw′′ .

1. FMnw′ :

We define αFMnw′ as follows,

αFMnw′ (∆î) =







0 if ∆î = 0
1
N

if 0 < ∆î ≤ ∆I ′(1)
2
N

if ∆I ′(1) < ∆î ≤ ∆I ′(2)
...

N−1
N

if ∆I ′(n − 2) < ∆î ≤ ∆I ′(n − 1)

1 if ∆I ′(n − 1) < ∆î

, (2.33)

where ∆I ′(n) is obtained from the following minimization problem:

min
∆I′(1)...∆I′(N−1)

{
∑

allK

pKLK

} s.t. ∆I ′(n) ≤ ∆I ′(n + 1)
for all n = 1, 2...N − 2

s.t. LFMnw′

K ≤ LSMnw

K

(2.34)

The existence of αFMnw′ follows directly from the existence of αFMnw , since αFMnw

satisfies the constraints in the minimization problem of equation (2.34). This

decision rule is by definition ex ante and ex post not worse than the SMnw-rule.

2. FMnw′′ :

In this case, we can abandon the assumption that for all K the flexible majority

rule without weighted votes should not be worse than the SMnw-rule and focus

only on the expected losses. But in this case, it is possible that after the real-

ization of a specific shock K and the implementation of an interest rate change

according to FMnw′′ , the outcome is worse than that of SMnw and thus there

exists a K, such that ex post SMnw is better than FMnw′′ . Similarly to the

definition of αFMnw′ we define αFMnw′′ as,
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αFMnw′′ (∆î) =







0 if ∆î = 0
1
N

if 0 < ∆î ≤ ∆I ′′(1)
2
N

if ∆I ′′(1) < ∆î ≤ ∆I ′′(2)
...

N−1
N

if ∆I ′′(n − 2) < ∆î ≤ ∆I ′′(n − 1)

1 if ∆I ′′(n − 1) < ∆î

, (2.35)

where ∆I ′′(n) is obtained from the following minimization problem:

min
∆I′′(1)...∆I′′(N−1)

{
∑

allK

pKLK

}

s.t. ∆I ′′(n) ≤ ∆I ′′(n + 1)
for all n = 1, 2...N − 2

(2.36)

Since this rule has another degree of freedom compared to FMnw′ it follows

directly that E[LFMnw′′

K ] ≤ E[LFMnw′

K ], but the general statement, that for all K
we obtain LFMnw′′

K ≤ LSMnw

K , is not true anymore.

In order to illustrate the different decision rules, in appendix 6.2.1 (B Examples) we

provide a detailed example, where in particular we calculate the different flexible ma-

jority rules. The intuition underlying the advantages of flexible majority rules runs

as follows: It is socially desirable for small interest-rate changes to be possible if only

a small part of the union is affected by a shock. This is not possible under simple

majority rules, because the 50% majority always fully determines the monetary policy.

By contrast, applying flexible majority rules means that minorities can also change the

interest rate to a small degree. Additionally, for the social optimum large interest-rate

changes should only be possible if a large part of the union is really affected by a shock.

But again, simple majority rules already provide the possibility for large interest-rate

changes if only less than 50% of the union is affected. Under flexible majority rules,

the larger the interest-rate change, the larger the required share of votes. This means

that large interest-rate changes can require a share of votes larger than 50%.
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Chapter 3

Extensions of the Model

In this chapter, we extend our model in different directions. At first, we vary the social

loss function, in which one the one hand we leave the quadratic form and assume only

a convex, single-peaked, form and on the other hand we assume that the social target

is not evaluated from a utilitarian aggregation, but it is set ad hoc focussing on an

averaged shock to the union. Second, we leave the strict separation of the union in

only two parts (affected by the shock and not affected) and allow for heterogeneous

shocks differing in size and direction, and third we introduce a dynamic setup, in which

shocks can occur in every period.

3.1 Different Loss Functions

3.1.1 General Convexity

In the previous chapter, we used the standard approach with a quadratic loss function,

which is widely applied in the context of monetary policy (see i.e Svensson (2003) and

Woodford (2003)). Following Duarte (2009) this approach entered monetary policy

the first time in the work of Poole (1970) and Kareken (1970). But within their

approach, only a quadratic loss in deviation from an output target entered the objective

function, while in our approach, although it is one-dimensional in interest-rate change,

the loss function is derived from a standard loss function, which is both quadratic in

deviations from an output target and an inflation target. Such an approach can be

found in Sargent and Wallace (1975), who consider an ad hoc loss function which is

quadratic in output and prices. This model is followed by the seminal paper of Kydland

and Prescott (1977), who start with a general loss function that depends on a policy

variable and an agent’s decision variable. Throughout their paper they later focus
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for computational reasons on quadratic losses, which are motivated by a second-order

approximation. But this approximation is not further explained in detail. Most of

the current models, as well as ours, are based on a framework developed in Barro and

Gordon (1983), followed by Rogoff (1985). Regarding Duarte (2009), the ”quadratic

approach” attained monetary policy from optimal control theory and two theoretical

papers by Theil (1957) and Simon (1956), who showed the certainty equivalence under

quadratic losses. But afterwards this approach was widely adopted without further

motivation, until Rotemberg and Woodford (1997), followed by Erceg, Henderson, and

Levin (2000), gave a rigorous treatment of deriving a quadratic loss function based on

a Taylor expansion of a general welfare function. But in recent years, this approach has

been increasingly criticized. Kim and Kim (2003) generally discuss the limitations of log

linearization and second-order approximations of a general welfare measure in different

model setups. Others, often referring to Cukierman and Meltzer (1986), generally

attack the quadratic approximation asking for asymmetric or skewed loss functions.

This view is represented by Goodhart (2001), who qualitatively argues for a skewed

loss function, or Chadha and Schellekens (1999) and al Nowaihi and Stracca (2003),

who explicitly apply more general and asymmetric functional forms. For example the

increasing risk-averse type L1 = |x− x̃|α (α > 0), which includes the quadratic form at

α = 2 or the constant absolute risk averse typ1 L2 = Θ(x̃−x)eβ1(x̃−x) +Θ(x− x̃)eβ2(x−x̃)

(with the Heavyside2) function Θ(.) and β1, β2 > 0). In this context, there has been

also developed a literature which models preferences with the so-called linex-function

L3 = 1
γ2

(
eγ(x−x̃) − γ(x − x̃)

)
introduced in economics by Varian (1974), which also

incorporates the quadratic case in the limit of γ → 0. For example, this functional

form is applied in Ruge-Murcia (2003), Nobay and Peel (2003), and Surico (2008).

Generally, we denote with x ∈ IR the decision variable and with x̃ the target, in which

we assume w.l.o.g. x̃ > 0.

In order to integrate our model in this body of literature, we replace our loss function

with a more general functional form and show that our results hold for a much broader

class of preferences. Generally, social losses for any single central banker k are just

a function depending on the interest-rate change ∆i and his target γk∆ĩ, which are

represented by

L = L(∆i, γk∆ĩ(GK)) (3.1)

1Note that in case β1 6= β2, losses are asymmetric with respect to deviations below and above
target x̃.

2

Θ(y) =

{
0 if y ≤ 0
1 if y > 0

, y ∈ IR .
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In contrast to the previous assumption, we abstract from the quadratic shape of social

losses and we only claim for L(., .) to be twice continuously differentiable and strictly

convex in the first variable (interest-rate change). Since the following discussion applies

for the general case of aggregated losses of a union, in which the target of the affected

part is an increasing function in the size of the affected part, we replace ∆i with x,

∆ĩ(GK) with x̃(G), in which G corresponds to the weight GK of the affected set K of

the union. At this point, we repeat that G ∈ [0, 1], x̃(G = 0) = 0 and d
dG

x̃(G) ≥ 0,

while we omit G = 0, 1 if this would lead to unallowable mathematical operations. In

this general case of social losses, we show in proposition 4 that aggregated social losses

given by the convex combination of the affected and unaffected part

L = GL(x, x̃(G)) + (1 − G)L(x, 0) (3.2)

have, in combination with single-peakedness at the target x̃, a unique optimum and

with some further assumption (see proposition 5) it is generally possible to construct

a flexible majority rule, which leads to the first-best solution.

Proposition 4

Suppose social losses are strictly convex in x and single-peaked at x̃(G), then aggregate

social losses have a unique optimum.

Proof of Proposition 4:

Single-peakedness, convexity, and twice continuously differentiability imply

(i) ∂L(x,x̃(G))
∂x

>
< 0 if x >

< x̃(G)

(ii) ∂2L
∂x2 > 0

The FOC3 for the overall social optimum is given by

∂L
∂x

= 0 ⇐⇒ ∂L(x, x̃(G))

∂x
=

G − 1

G
· ∂L(x, 0)

∂x
(3.3)

Condition (3.3) has a unique solution x∗ ∈ [0, x̃(G)], since

(i) ∂L(x,x̃(G))
∂x

and ∂L(x,0)
∂x

are increasing in x. (convexity)

(ii) ∂L(x,x̃(G))
∂x

< 0 and ∂L(x,0)
∂x

> 0 for x ∈ (0, x̃(G)). (single-peakedness)

(iii) ∂L(x,x̃(G)))
∂x

∣
∣
∣
x=x̃(G)

= L(x,0)
∂x

∣
∣
∣
x=0

= 0 and G−1
G

< 0 for G ∈ (0, 1). (TDC4)

3First-order condition.
4Twice continuously differentiable.
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Hence the solution x∗ ∈ [0, x̃(G)] of equation (3.3) is a local optimum. The uniqueness

of x∗ as a global minimum is obtained by the SOC,5 which is given by

∂2LK

∂x2
= G

∂2L(x, x̃(G))

∂x2
+ (1 − G)

∂2L(x, 0)

∂x2
> 0 (3.4)

Condition (3.4) holds, because of the convexity of L(x, x̃(G)) in x. This implies that

L is globally convex and therefore the local minimum ∆x∗ is also a global minimum.

In proposition 4 we derived the first-best solution but in order to ensure that it is pos-

sible to implement this outcome via a flexible majority rule according to proposition 2

in section 2.6.2, we need x∗ to be increasing in G. The necessary condition for this

property is calculated in the following proposition:

Proposition 5

Suppose 1
G2 · ∂L(x∗,0)

∂x∗ > ∂2L(x,x̃(G))
∂x∗ ∂x̃

· ∂x̃
∂G

then x∗(G) is monotonically increasing in G.

Proof of Proposition 5:

If we insert the optimum x∗(G) into the FOC in equation (3.3) and differentiate both

sides with respect to G, we obtain

∂2L(x∗(G),x̃(G))
∂(x∗)2

∂x∗

∂G
+ ∂2L(x∗(G),x̃(G))

∂x∗ ∂x̃
∂x̃
∂G

= 1
G2

∂L(x∗(G),0)
∂x∗ + G−1

G
∂2L(x∗(G),0)

∂(x∗)2
∂x∗

∂G

⇐⇒
∂x∗

∂G

[
∂2L(x∗(G),x̃(G))

∂(x∗)2
+ 1−G

G
∂2L(x∗(G),0)

∂(x∗)2
︸ ︷︷ ︸

>0

]

= 1
G2

∂L(x∗(G),0)
∂x∗ − ∂2L(x∗(G),x̃(G))

∂x∗ ∂x̃
∂x̃
∂G

(3.5)

which implies the condition given in proposition 5.

Altogether we have shown, that convexity and single-peakedness guarantees a unique

optimizer of aggregated social losses. Together with the condition

1

G2

∂L(x∗, 0)

∂x∗
>

∂2L(x, x̃(G))

∂x∗ ∂x̃

∂x̃

∂G

from proposition 5, we know from the proof of proposition 2 in section 2.6.2, that we

can construct a flexible majority rule with weighted votes, which leads to the optimal

outcome. Furthermore, all other results hold under the same conditions, as the con-

struction of the flexible majority rule without weighted votes and the use of simple

5Second order condition.
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majority rules do not depend on the quadratic specification of preferences. In the fol-

lowing, we examine the previously addressed loss functions L1, L2 and L3, questioning,

if they meet the criterions for the existence of a flexible majority rule. In order to

examine a broader family of functions, we relax the assumption of continuously differ-

entiability of functions to the case of distributions and regard two functions which are

not differentiable in their extremum.

(i) For L1(x, x̃) = |x − x̃(G)|α with (α > 1)6 we obtain:7

d2L1

dx2
= α(α − 1)(x − x̃(G))(Θ(x − x̃(G)) − Θ(x̃(G) − x)) (3.6)

x∗(G) = argmin
x

{GL1(x, x̃(G)) + (1 − G)L1(x, 0)} =
x̃(G)

1 + A1(G)
(3.7)

with A1(G) =
(

1−G
G

) 1
α−1 . From equations (3.6) and (3.7) we directly obtain, that

L1 is strictly convex in x, if α > 1, which also implies that x∗(G) is monotonically

increasing in G, since we obtain

dx∗(G)

dG
= x∗(G)
︸ ︷︷ ︸

>0

(dx̃(G)

dG
︸ ︷︷ ︸

>0

+
A1(G)

(1 + A1(G))(α − 1)(1 − G)G
︸ ︷︷ ︸

>0

)

> 0 (3.8)

(ii) For L2(x, x̃) = Θ(x̃(G) − x)eβ1(x̃−x) + Θ(x − x̃)eβ2(x−x̃(G)) (β1, β1 > 0) we obtain:

d2L2

dx2
= β2

1Θ(x̃(G) − x)eβ1(x̃−x) + β2
2Θ(x − x̃)eβ2(x−x̃(G)) > 0 (3.9)

x∗(G) = argmin
x

{GL2(x, x̃(G)) + (1 − G)L2(x, 0)}

=







0 if x̃(G) ≤ A2(G)
β1

1
β1+β2

(β1x̃(G) − A2(G)) if A2(G)
β1

< x̃(G) < −A2(G)
β2

x̃(G) if x̃(G) ≥ −A2(G)
β2

(3.10)

with A2(G) = ln
(

β2

β1

1−G
G

)

. We can directly see that L2 is convex and x∗(G) is

increasing in G, since A2(G) is monotonically decreasing in G. Note that there

exist parameter constellations, in which firstly x∗(G) is constant with x∗(G) = 0

and secondly x∗(G) coincides with the regional optimum of the affected part of

the union with x∗(G) = x̃(G). But this does not affect the functionality of the

flexible majority rule.

6Note, that for α ≤ 1 L1 is not strictly convex in x.
7We use d|y|

dy
= −Θ(y) + Θ(y) and d2|y|

dy2 = δ(y), with δ(y) represents the Dirac delta distribution
and y ∈ IR.
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(iii) For L3 = 1
γ2

(
eγ(x−x̃(G)) − γ(x − x̃(G))

)
with γ > 0, we obtain

d2L3

dx2
= eγ(x−x̃(G)) (3.11)

x∗(G) = argmin
x

{GL3(x, x̃(G)) + (1 − G)L3(x, 0)} = x̃(G) − A3(G) (3.12)

with A3(G) = 1
γ

ln(G + (1 − G)eγx̃(G)) ∈ (0, x̃(G)). We see that convexity is

directly fulfilled and x∗(G) is increasing in G since we have
dx∗(G)

dG
=

γG
dx̃(G)

dG
+eγx̃(G)−1

γ(G+(1−G)eγx̃(G))
> 0

Altogether we could show, that our setup of flexible majority rules applies to a broad

class of loss functions, which include some concrete loss functions applied in monetary

policy beyond the quadratic approach.8

3.1.2 Weighted Averaged Shock

In this section we compare our weighted utilitarian welfare criterion of the previous sec-

tions with another approach, in which the central bank focusses on weighted economic

shocks. In our model, this can be incorporated by defining the aggregated social losses

of the union by9

L̄K(∆iK) =
(
∆iK − ∆ĩ (ǭ (GK))

)2
(3.13)

where ǭ (GK) is the weighted average shock of the whole union given by

ǭ (GK) = GKǫ (GK) + (1 − GK)ǫ(0) = GKǫ (GK) (3.14)

L̄K is minimized by

∆iK = ∆īK = ∆ĩ (GKǫ (GK)) (3.15)

If we compare ∆īK with the minimizer ∆i∗K of the weighted utilitarian loss function

introduced, we observe that ∆īK has the same properties as ∆i∗K (i.e both are increas-

ing in GK and ∆īK, ∆i∗K < ∆ĩK for 0 < GK < 1). Hence, we can again apply our

construction principle and flexible majority rules will also be welfare-enhancing under

such circumstances.

8Note that another widely applied type of loss function, the constant relative risk-averse type

L4 = (x−x̃(G)+1)(1−ρ)

1−ρ
, only meets the convexity criterion for ρ < 0, but this case is similar to L1.

9We are grateful to a referee for this suggestion.
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3.2 Heterogeneous Shocks

So far our model induces a division of the union into two parts. One part is affected by

the shock, the other part is not affected. In this section, we extend our model to the

case, whereby the union can be hit by different shocks at the same time. In particular,

we distinguish between two different cases.

First, we assume, that shocks can differ in size, but not in their direction. For example,

suppose that one part is hit by a large shock, another part by a smaller one and the re-

maining part is not affected. We continue to assume that the shock increases in the size

of the affected region. This means, we allow that some of the 2N possibilities of forming

a region K and representing shocks in the baseline-model may occur simultaneously.

Second, we assume, that shocks can differ also in direction (i.e positive and negative),

but with the restriction, that only one positive and one negative shock can occur within

one period. This means, that in this setup, the union is divided into three regions. One

part desires an increase in interest rates, another part a decrease, and the remaining

part wants no change at all.

Since we have shown in the baseline-model, that decision rules with weighted votes are

better than without, in the following we compare only the FMw-rule and SMw-rule

and abandon the FMnw-rule and SMnw-rule.

3.2.1 Extended Shock Scenario

In our baseline-model, the monetary union is separated into two parts by a shock

whereby one part desires to remain at the status quo and the other part desires one

unique interest-rate change. This means, that the countries of the affected part are

assumed to have all the same preferences about an interest-rate change. Now we

introduce an extended shock scenario denoted by E , which allows us to divide the

union into more than two subgroups after E has occurred. In an extended shock

scenario E , we still assume that there is one part of the union that is not affected by

the shock and all countries forming this group do not desire an interest-rate change.

But the other part affected by “some” shock is not treated as a homogeneous group

anymore. Now, it is possible, that different countries of the latter group desire different

interest-rate changes. We define this in a similar way as in the baseline shock scenario

described in chapter 2.3. We assume, that affected countries represented by K are

forming subgroups Ki with Ki∩Kj = ∅ (i 6= j and i, j ∈ {1, 2, ... , 2N}), since a country

cannot simultaneously be an element of two subgroups and
⋃

i Ki = K. The countries
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forming a subset Ki are assumed to be affected by the same shock, which is defined by

the same function ǫ(.) introduced in equation 2.3. Thus, since the subset Ki has the

aggregated weight GKi
, this group is affected by a shock of size ǫ(GKi

). An extended

shock scenario is formally defined by

E =: {ǫ(GK1), ǫ(GK2), ..., ǫ(GKm
)} ,

⋃m
i=1 Ki = K Ki ∩ Kj = ∅, m ∈ {1, 2, ... , 2N} and Ki 6= ∅

(3.16)

where we assumed w.l.o.g Ki 6= ∅, because this excludes the trivial case K = ∅ and

degeneracies, if we would allow an extended shock scenario E with 0 ∈ E .

In an extended shock scenario E , we have m+1 groups, which have in general different

preferences concerning the interest-rate change. The countries in the set N \⋃m
i=1 Ki,

who prefer the status-quo and the countries forming the sets Ki (i = 1, 2, ...m), who

desire interest-rate changes10 of ∆ĩ(ǫ(GKi
))). This is again similarly defined as in

equation 2.3 and we use in the following

∆ĩKi
= ∆ĩ(ǫ(GKi

)) and ∆iE = ∆i(E) (3.17)

where ∆i(E) is the interest-rate change in extended shock scenario E under some de-

cision rule, while ∆iFMw

E and ∆iSMw

E are the explicit interest-rate changes under FMw

and SMw respectively.

For example consider a union consisting of four countries with the weights g1, g2, g3 and

g4. A possible extended shock scenario is then given by E = {ǫ(g1 + g4), ǫ(g2)}. This

implies that countries 1 and 4 desire together an interest-rate change of ∆ĩ(ǫ(g1 + g4)),

country 2 desires a change of ∆ĩ(ǫ(g2)), while country 3 desires to remain at the status

quo.

With this extension, we obtain with the utilitarian aggregation for union-wide social

losses in an extended shock scenario E

LE =
∑

allKi∈E
GKi

(
∆iE − ∆ĩKi

)2
+ (1 −∑allKi∈E

GKi
) (∆iE)

2

=
(
∆iE −

∑

allKi∈E
GKi

∆iKi

)2
+ CE

(3.18)

and CE :=
∑

allKi∈E
GKi

(
∆ĩKi

)2 −
(∑

allKi∈E
GKi

∆ĩKi

)2
a term not depending on the

10Note that although Ki ∩ Kj = ∅, it is possible that GKi
= GKj

and ǫ(GKi
), ǫ(GKj

) ∈ E (i 6= j).
But although both groups desire the same interest-rate change, this differs from the case, where these
sets form a common subgroup, since then, they desire an interest-rate change
∆ĩ(ǫ(GKi

) + ǫ(GKj
)) > ∆ĩ(ǫ(GKi

))).
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implemented interest-rate change. Furthermore, the number of possible extended shock

scenarios NE :=
∑N

l=0

(
N
l

) [∑l
k=1

(
l
k

)]

, including the shock scenarios of the baseline

model.11

We observe, that in an extended shock scenario E the optimal interest-rate change is

given by

∆i∗E =
∑

allKi∈E

GKi
∆ĩKi

(3.19)

the weighted sum of all desired interest-rate changes ∆ĩKi
in the affected subsets Ki.

The time-line with an extended shock scenario is similar as in figure 2.1. We have

only to replace the single shock ǫ with the extended shock scenario E . Anything else

remains the same, but note that the desired interest rates (i.e. interest-rate changes)

include now all subgroups Ki with desired interest-rate changes of ∆ĩKi
.

Again, we want to compare the FMw-rule, formerly derived in equation 2.25 with the

SMw-rule. We repeat, that this implies, regarding equations 2.27, that with a share of

G votes one can implement an interest-rate change of

∆iFMw(G) = G∆ĩ(G) (3.20)

where we dropped the index K and we assume that G ∈ {G(1), G(2), ..., G(2N )} (for the

ordering see equation 2.26). In the following, we show, that in general the FMw-rule

is not first-best anymore and that even in the simple case, in which the union is only

divided into three parts by an extended shock scenario, there exist extended shock

scenarios, such that SMw outperforms FMw. In order to more deeply understand

the relation between the FMw-rule and the SMw-rule, we examine the case, that the

monetary union is divided in three parts by an extended shock scenario in detail. It

turns out, that although not under all circumstances, but in most cases, the FMw-rule

is still better than the SMw-rule. At least, we can show, that if we assume that ∆ĩ(G)

is a linear function of G and all extended shock scenarios are uniformly distributed

(i.e. every extended shock scenario E occurs with the same probability, denoted by pE),

that expected losses under the FMw-rule are smaller than under the SMw-rule.

11
(
0
1

)
:= 1.
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3.2.1.1 FMw-rule and First-Best

In order to characterize the effect of the concept of extended shock scenarios onto

the FMw-rule, we provide a simple example, which shows that the FMw does not

always lead anymore to the first best outcome. The intuition is as follows: Suppose an

extended shock scenario E has occurred, then the optimal interest-rate change for the

union would be ∆i∗E =
∑

allKi∈E
GKi

∆ĩKi
. But if all affected regions Ki form a coalition,

they can change interest rate up to

∆iE =

(
∑

allKi∈E

GKi

)

∆ĩ(
∑

allKi∈E

GKi
) >

∑

allKi∈E

GKi
∆ĩKi

In general, it is possible that there exists a desired interest-rate change ∆ĩKi
of an

affected region, which is larger than the optimal interest-rate change ∆i∗E and simulta-

neously this region joins a coalition with other (larger) affected regions Kj in order to

implement an interest-rate change of at least ∆ĩKi
. This can be seen in the following

example:

Suppose

(i) the union consists of three countries with (g1, g2, g3) = (0.25, 0.35, 0.4).

(ii) ∆ĩ(ǫ(G)) is given by ∆ĩ(ǫ(G)) = G.

(iii) Country 2 and 3 are separately affected by a shock, which means

E = {ǫ(g2), ǫ(g3)} = {ǫ(0.35), ǫ(0.4)}.

The optimal interest-rate change is then ∆i∗E = 0.352 + 0.42 = 0.2825. But since

countries 2 and 3 can change together the interest rate up to ∆iFMw(0.35 + 0.4) =

0.752 = 0.5625, the FMw-rule implements in this extended shock scenario the desired

interest-rate change of ∆ĩ(g2) = 0.35 of the smaller affected country, an interest-rate

change which is larger than the optimal interest-rate change. The reason for this is,

that both affected countries are allowed to change the interest rate even by a larger

amount than the desired change of 0.4 of the larger country. But since the smaller

country could not gain anything by exceeding its desired interest-rate change, country

2 will leave the coalition after having voted for its desired interest-rate change of 0.35.

Following the reasoning of the previous example, we prove proposition 6. We claim

that the property of a possible violation of the first-best condition in the baseline-model

by the FMw-rule in an extended shock scenario E depends on a specific shape of the

function ∆ĩ(G).
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Proposition 6

Suppose ∆ĩ(G) is strictly concave or convex, or concave and convex parts of ∆ĩ(G)

alternate. Then, there exist a shock function ∆ĩ(G) and a specific extended shock

scenario E , such that the implemented interest-rate change, applying the FMw-rule, is

not optimal: ∆iFMw

E 6= ∆i∗E .

Proof of proposition 6:

In the example with (g1, g2, g3) = (0.25, 0.35, 0.4), ∆ĩ(ǫ(G)) = G and extended shock

scenario Ej = {ǫ(g2), ǫ(g3)}, we have seen that ∆i∗E 6= ∆iFMw

E . But since ∆ĩ(ǫ(G)) = G

is linear in G, there exists always a slight perturbation δ(G) (0 < |δ(G)| ≪ G) of

∆ĩ(G)=G, such that the perturbed shock function ∆ĩδ(G) := ∆ĩ(G) + δ(G) has a non-

zero curvature and ∆iFMw

E 6= ∆i∗E still holds.

Proposition 6 shows, that in general FMw is not optimal anymore under the circum-

stances of extended shock scenarios. The outcome depends highly on the shape of the

functional forms and the size of the affected regions.

3.2.1.2 FMw-rule versus SMw-rule

We have already seen, that FMw is not first-best anymore. Thus, we turn to the com-

parison of FMw and SMw. Since it is very plausible, that with no further restrictions,

we always can find an example (i.e. an extended shock scenario E) in which SMw is ex

post better than FMw. Therefore, we restrict ourselves to the case, where the union

is only divided into three parts: The first part is not affected and the affected part

is divided into two subgroups. We assume that the non-affected part has weight G0

and w.l.o.g. G1 ≤ G2 are the corresponding weights of the two affected regions, with

G0, G1, G2 ∈ {G(1), G(2), ..., G(2N )}, with G0 + G1 + G2 = 1. In the following, we show

that even in this simple setup, the relation between FMw and SMw is not unique. In

table 3.1 we provide all outcomes comparing FMw and SMw for all possible relations12

of G1 and G2.

The verification for the entries in table 3.1 are given in appendix 6.1 (A Proofs) in

argumentation 1.

In table 3.1 we see, that in most cases the FMw-rule is better or least as good as the

SMw-rule. But there are also three cases in which, in specific parameter settings, the

12Note, that this is sufficient, since G1 and G2 fully determine G0 by G0 = 1 − G1 − G2.
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G2 > 1
2

G2 ≤ 1
2
∧ G1 + G2 > 1

2
G1 + G2 ≤ 1

2

∆iFMw

E = (G1 + G2)∆ĩ(G1 + G2) + + ±

≥ ∆i∗E + = ±
∆iFMw

E = ∆ĩ(G1)

< ∆i∗E ± = +

∆iFMw

E = G2∆ĩ(G2) + + +

Table 3.1:
This table shows the comparison of the FMw-rule and SMw-rule, when the union is
divided into three regions by an extended shock scenario for the different possible cases.
G1 and G2 are the weights of the affected regions (w.l.o.g. 0 < G1 ≤ G2).

”+“ means FMw is better than SMw.

”=“ means FMw is as good as SMw.

”±“ means that the comparison of FMw and SMw is ambiguous, and the decision,
which decision rule is the better one, depends simultaneously on the size of the
affected regions and the curvature of the shock function ∆i(G).

SMw-rule might be better than the FMw-rule. This implies that ex ante, we cannot

generally conclude that the FMw-rule is better than the SMw-rule, because if the cases

where SMw is better than FWw have a very large probability of occurrence, they can

totally outweigh the cases where FMw is better than SMw, regarding the expected

value of the overall loss function. But nevertheless, if the probability distribution does

not put that much weight on the possibilities whereby the SMw-rule is better than the

FMw-rule, then, ex ante FMw will be better. This is also supported by the fact, that

there exists no case, in which SMw is definitely better than FMw, independent of the

shape of the shock function.
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As a consequence of table 3.1, we obtain the following corollary

Corollary 3

Suppose the weights gk of the countries are given and there exists an extended shock

scenario E such that LFMw

E > LSMw

E . Then, there exists a probability distribution

P (X = E) with the probability pE for an extended shock scenario E , such that

E(LFMw) > E(LSMw) (3.21)

where E(LFMw) =
∑

all E pELFMw

E and E(LSMw

E ) is defined accordingly.

Proof of corollary 3:

Since all extended shock scenarios include also the shock scenarios that the union

is only separated into two regions, there exists a E ′ 6= E with LFMw

E ′ < LSMw

E ′ (E ′

another extended shock scenario). Then choose pE such that pE(LFMw

E − LSMw

E ) >
∑

all E ′ pE ′(LFMw

E ′ − LSMw

E ′ ) which is always possible for pE almost 1 and all pE ′ very

small.

Corollary 3 shows, that it is also possible that ex ante the FMw-rule is worse than the

SMw-rule. Of course, this not very surprisingly, since a finite probability distribution

is just a weighting of the events and can therefore be chosen properly, but nevertheless

it is still interesting, that there exist both, parameter constellations in which SMw is

better than FMw in a single extended shock scenario and also ex ante expected losses

of SMw are smaller than the losses of FMw.

3.2.1.3 Ex Ante Comparison of FMw and SMw

Since we have seen in chapter 3.2.1.2, that the relation between the FMw-rule and the

SMw-rule highly depends on the functional form ∆ĩ(.), the extended shock scenario E ,

and the probability distribution represented by pE , we conclude with an investigation

of a very simple setup. First, we assume a linear dependency between desired interest-

rate changes and the economic weight G of affected regions. As we have already seen,

then FMw is not always first-best anymore and there exists extended shock scenarios

E = {G1, G2}, such that SMw is better than FMw (see table 3.1). Additionally, we

assume, that all possible extended shock scenarios occur with the same probability.

With this assumptions, we can show the following proposition 7.
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Proposition 7

Suppose the shock function, including the desired interest-rate changes, is given by

∆ĩ(G) = A · G (A > 0), pE ′ = pE (∀ E , E ′) and the union consists of three countries,

represented by their weights g1, g2 and g3. Then

E(LFMw) < E(LSMw) (3.22)

In order to proof proposition 7, we show, that if the weight of the largest member of

the union is not greater than 1
2
, the FMw-rule is ex post not worse than the SMw-rule.

Lemma 1

Suppose the union consists of three countries with weights gi ≤ 1
2

(i, = 1, 2, 3) and

∆ĩ(G) = G =⇒ LFMw

E ≤ LSMw

E for all E .

The proofs of lemma 1 and proposition 7 are given in appendix 6.1 (A Proofs).

The setup of a linear shock function and the uniform probability distribution can

be interpreted as a benchmark case, since in practice, it is not easy to determine

the curvature of the shock function and the true probability distribution. Therefore,

we choose the linear form, as a compromise between concavity and convexity, and

the uniform probability distribution is motivated by the fact, that if we do not know

anything about the probability distribution, the uniform distribution can be interpreted

as the distribution over all possible distributions. Altogether we have shown, that with

further restrictions on parameters and functions, FMw tends still to be “better” than

SMw.

3.2.2 Separating Shock Scenario

So far, we consider only shock scenarios in which affected countries desire only positive

interest-rate changes. In the previous chapter, we already extended our baseline-model

with the possibility, that the monetary union is divided by a shock into more than two

regions. But nevertheless the desired interest rates of affected countries, although now

they can differ, are still only positive. In some cases, this does not seem very plausible

in practice, especially with regard to the ECB, where we often have the discussion

between a “dovish” or “hawkish” monetary policy within the ECB governing council.

For example, it is almost certain, that in July 2008 in the prelude of the interest rate

rise of the ECB, there was a discussion in the central bank board meeting whether to

raise or to cut interest rates. In order to incorporate preferences differing in direction

in our model, we introduce another simple shock scenario, denoted by separating shock
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scenario within our framework. A separating shock scenario is derived from an extended

shock scenario with |E| = 2 (i.e. now we allow for the division of the affected region K
into two subsets, denoted by K+ and K−). In more detail a separating shock scenario

E± is defined as:

E± = {ǫ(GK+), ǫ(−GK−)} (3.23)

with GK+ , GK− ∈ {G(1), G(2), ..., G(2N )}, K+∩K− = ∅ and K+∪K− = K in which in this

case K denotes only the property that a country, element of K, is affected. Furthermore,

we have to extend ǫ(.) to the negative part of the number line. This is done by point

reflection of ǫ at the origin. This implies that ǫ(−GK−) = −ǫ(GK−). Consider for

example a union that consists of three countries with weights g1, g2 and g3. Then, we

obtain 16 additional separating shock scenarios complementing the one-direction shock

scenarios of the baseline model.

{ǫ(g1), ǫ(−g2)} , {ǫ(g1), ǫ(−g3)} , {ǫ(g2), ǫ(−g3)} ,
{ǫ(g1 + g2), ǫ(−g3)} , {ǫ(g1 + g3), ǫ(−g3)} , {ǫ(g2 + g3), ǫ(−g1)}
{ǫ(−g1), ǫ(+g2)} , {ǫ(−g1), ǫ(+g3)} , {ǫ(−g2), ǫ(+g3)} ,
{ǫ(−g1 − g2), ǫ(+g3)} , {ǫ(−g1 − g3), ǫ(+g3)} , {ǫ(−g2 − g3), ǫ(+g1)}

For completeness, we have to define the desired interest-rate changes if a country is

an element of negatively hit set K−. For simplicity, we also assume, ∆ĩ(.) to be point

symmetric to the origin. This implies:

∆ĩ(ǫ(−GK−)) = −∆ĩ(ǫ(GK−)) = −∆ĩ(GK−) (3.24)

Again, we introduce the short-cuts

∆ĩK+ := ∆ĩ(ǫ(GK+))

∆ĩK− := ∆ĩ(ǫ(−GK−)) = −∆i(ǫ(GK−))

∆iE± := ∆i(E±)

(3.25)

With this notation we obtain for the aggregated social loss function:13

13Note that ∆ĩK− is negative.
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LE± = GK+

(
∆iE± − ∆ĩK+

)2
+ GK−

(
∆iE± − ∆ĩK−

)2
+ (1 − GK+ − GK−) (∆iE±)2

=
(
∆iE± −

(

>0
︷ ︸︸ ︷

GK+∆ĩK+ + GK−∆ĩK−
︸ ︷︷ ︸

<0

))2
+ C±

(3.26)

with C± := GK+

(
∆ĩK+

)2
+GK−

(
∆ĩK−

)2−
(

GK+∆ĩK+ + GK−∆ĩK−
j

)2

independent from

∆iE± . Hence, the optimal interest-rate change is given by

∆i = ∆i∗E± =

>0
︷ ︸︸ ︷

GK+∆ĩK+ + GK−∆iK−
︸ ︷︷ ︸

<0

(3.27)

Observe, that it is not possible to apply directly the FMw-rule defined in the baseline-

model, since there is no instruction on how to deal with the fact, that we have two

regions differing in their desired interest-rate changes. In order to address this question,

we introduce a two-step voting process for a flexible majority rule. In a first step, central

bankers decide secretly using the SMw-rule whether the interest rate will be lowered

or raised,14 but the votes are collected personalized in the sense, that after the voting,

the aggregated weight of the votes for a raising, a lowering, and abstention are known15

(similar pre-stages in a voting process about monetary policy are discussed in Bó (2006)

and Riboni and Ruge-Murcia (2010)). Second, the losing weights without abstentions

are aggregated and the decision about the amount of the interest-rate change follows

a modified functional form of required majorities compared to the FMw-rule. This

flexible majority rule is denoted by FME±

w and defined as

FME±

w -rule:

(i) The weights of the losing votes in the SMw-voting stage about the direction of an

interest-rate change are aggregated without the votes of abstention and denoted

by Ḡ ∈ {G(1), G(2), ..., G(2N )}.

(ii) The monetary policy committee decides about the amount of the interest-rate

change in which a group with a share of G ∈ {G(1), G(2), ..., G(2N )} can change

the interest rate according to

14Note, that a set K+ or K− does not necessarily need a weight of GK+ or GK− larger than 50% ,
since we never excluded abstention and, in contrast to the baseline-model, for a central banker it is
not a priori obvious to fail with abstention.

15We disregard possible problems in a dynamic setup arising from the fact, that since the set of
members of the monetary union is finite and generally gk 6= gl (l 6= k and k, l ∈ {1, 2, ...N}), ex post
it could be partially possible to assign the voting to the decisions of, “raise, lower, and abstention”.
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∆iFME±

w (ν,G, Ḡ) := (−1)ν(G∆i(G) − Ḡ∆i(Ḡ)) (3.28)

with ν = 0 if the outcome of the SMw-voting stage has been an increase and

ν = 1 if the outcome has been a decrease.

Now, we fully specify the FME±

w -two-stage-rule:

FME±

w -two-stage-rule

(i) Central bankers decide with the SMw-rule whether the interest is lowered or

raised.

(ii) Central bankers decide according to the FME±

w -rule about the ultimate interest-

rate change.

In the following we compare the FME±

w -two-stage-rule and the SMw-rule and show the

following proposition:

Proposition 8

(i) The FME±

w -two-stage-rule is not first-best in every separated shock scenario.

(ii) The FME±

w -two-stage-rule is never worse than the SMw-rule in every separated

shock scenario.

The proof is given in appendix 6.1 (A Proofs).

The intuition for this result is as follows. In the first step of the FME±

w -two-stage-rule

we apply the SMw-rule to determine only the direction of an interest-rate change. Since

in the second step, this information about the direction can already be incorporated

into the following decision about the size of the interest-rate change, the outcome can

be improved compared to a decsion process in which we apply only the SMw-rule.
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3.3 Dynamic Setting

We already mentioned, that so far, we do not consider a dynamic setting within our

framework (i.e. a sequential interest-rate change from period t = 0 to period t = 1 to

period t = 2 etc.). This addresses the problem of how to change interest rates from

period to period. Consider for example the following sequence of events.

1. t = 0, the union is in a long-run equilibrium with i0 = i∗.

2. At the end of t = 0 a shock occurs, dividing the union into two regions, one is

affected by a shock and desires an interest-rate change, while the other region

prefers the status quo.

3. At the beginning of period t = 1, the central bankers change, due to their applied

decision rule, the interest rate and we obtain i1 = i0 + ∆i1 = i∗ + ∆i1.

4. Assume the shock decays within one period, no other shock occurs and thus at

the end of period t = 1, the union returns to an economic environment close

to the long-run equilibrium. In this case, it is plausible, that the central bank

committee prefers to return to an interest rate of i∗. This means, in the voting

process, a retraction of the interest rate increase ∆i1 of the previous period should

receive a majority. But since our framework defined the loss function of a single

central banker as Lk
t = (it − ĩkt )

2 with ĩkt = γk∆ĩt(ǫ(GK)) + it−1 (see equations 2.1

and 2.3), this implies that, from period t = 1 to period t = 2, when no new

shock occurs, the preferred interest-rate change of central banker k would be

ĩk2 = i1 +0 = i∗ +∆i1. Hence, an interest rate cut back to i∗ would fail to receive

a majority.

Therefore, we assume that central banker’s calculate their losses concerning a long-run

equilibrium interest rate i∗ as bliss point,16 which changes their losses to

Lk
t = (i∗ − ĩkt )

2 (3.29)

Similarly, we calculate the desired interest rate ĩkt of the k-th central banker and the

actual interest-rate change it in period t with i∗ as reference:

ĩkt = γk∆ĩt(ǫ(GK)) + i∗

it = i∗ + ∆it

(3.30)

16This long-run interest rate i∗ can also depend on time, for example if the conditions of the general
framework of the union are changing, but we will skip this in the following, because we assume that
this change is small compared to a desired change, if a member is hit by a shock. Another possibility
is to say, that central bankers can only unanimously change the long-run bliss point i∗.

50



CHAPTER 3. EXTENSIONS OF THE MODEL

Furthermore, in order to keep our dynamic setup as simple as possible, we assume, that

shocks decay, within one period and from period to period we apply our baseline-model.

This means, every shock in every period divides the union only in two regions. The

dynamic sequence of events is illustrated in figure 3.1.

-
t = 0 t = 1

*
ǫ(GK) 6

desired
interest-rate

change

o
actual
interest-rate
change

t = 2

*
ǫ(GK′) 6

desired
interest-rate

change

o
actual
interest-rate
change

i0 = i∗

L0 = 0

3

s

∆ĩ1(GK)

0

=⇒ i1 = i∗ + ∆i1

Lk
1 = (∆i1 − ∆ĩ1(GK))2, k ∈ K

Lk
1 = (∆i1)

2, k /∈ K

3

s

∆ĩ2(GK′)

0

=⇒ i2 = i∗ + ∆i2

Lk
2 = (∆i2 − ∆ĩ2(GK′))2, k ∈ K′

Lk
2 = (∆i2)

2, k /∈ K′ (K′ ⊆ N )

Figure 3.1:

Sequence of events in a dynamic setting.

In t = 0 the union starts in the long-run equilibrium i∗. At the end of period t = 0

the shock ǫ(GK) occurs in which we also allow for negative shocks ǫ(−GK), similarly

defined as in chapter 3.3. At the beginning of period t = 1, an interest-rate change

of ∆i1 with respect to i∗ is implemented according to the applied decision rule in the

union. At the end of period t = 1, ǫ(GK) has vanished and another shock ǫ(GK′) occurs.

At this point, only the central bankers of region K′ desire an interest-rate change with

respect to i∗. Observe, that if we choose i1 as reference in case of ∆i1 < ∆ĩ2(GK′) it

is possible, that central bankers in region K′ desire an increase of interest rates, while

central bankers of the region N \K′ desire an interest-rate cut with respect to i1. But

since our reference point is i∗, only the region K′ desires an interest-rate change, while

the other central bankers prefer the status quo.
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With this setting and the change in loss functions, we still end up in the social optimum

by applying the flexible majority rule:

Proposition 9

Suppose an occurring shock ǫ dividing the union into two regions lasts only for one

period and central bankers try to minimize their loss functions

Lk
t = (i∗ − ĩkt )

2 (3.31)

from period to period. Then the FMw-rule ensures the minimization of overall social

losses in every shock scenario at time t

Lt =
N∑

k=1

gkL
k
t (3.32)

Proof of Proposition 9:

Since the bliss point in the central bankers loss functions is now the long-run interest

rate i∗ of the no-shock scenario and interest-rate changes are calculated with respect

to i∗, Lk
t can still be rewritten to Lk

t = (∆it−∆ĩt)
2. This implies that the proof follows

the same argumentation as the corresponding proof of proposition 2 in the baseline

model.

The reason for the working of the FMw-rule is that we only changed the frame of

reference. For that reason from period to period, we maintain the property of our

baseline-model, that the union is always only divided into two differing regions by a

shock. This would fail, if we allow for longer decaying shock, because in this case a

country could be hit by a new shock, while an old one has not already decayed. This

would create an additional shock situation compared to a region which was previously

not hit. Something similar would happen, if the reference is not independent of time,

since then, as we have already mentioned, a situation similar to the framework with

positive and negative shocks can occur.
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Chapter 4

Transparency

4.1 Introduction

Central bank transparency is a widely discussed topic in the literature of the last

decades. Most empirical analyses not only favour transparency but also shows that

since the 1990s central banks have started to transform from more or less opaque

institutions into more transparent regimes. But nevertheless from the theoretical side

the question of an optimal degree of transparency has still not answered in a conclusive

manner. For a recent overview, see Cruijsen and Eijffinger (2007) and Dincer and

Eichengreen (2009). Especially the effect of releasing information about the applied

economic models, that the central banks apply (Cukierman (2002)) is far from being

clear-cut. For instance Cukierman (2009) and Mishkin (2004) argue that there is a limit

of transparency, because even within central banks, there is both uncertainty about

the right economic model or the right output target. Furthermore, it is pointed out

that the communication process with the public about the right economic modelling

could be too complicated. In contrast Geraats (2008) argues that especially in the

case of the ECB, welfare can be improved by being more transparent about the central

bank’s objectives and macroeconomic forecasts as well as being more transparent in

the decision-making process.

Within this context, in our model, we can ask if it is welfare-improving or harmful if, on

the one hand, the central bank shares its economic expertise contained in the knowledge

about the shock, and on the other hand, communicates their decision process whilst

revealing its explicit decision rule.1

1 Especially the latter case is interesting since there is not much known about the decision process
in the central bank board of the ECB. Although in the constitution of the ESCB (European System
of Central Banks), it is defined that “Each member of the Government Council shall have one vote”
(Article 10), “the Governing Council shall act by simple majority” (Article 10) and the “Governing
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For that purpose we explicitly construct different information setups, in which we define

how information about the shock and the decision rule is released to public. In these

different information setups, we determine the welfare implications. Until now, we

have dealt with the information setup, in which the public is not informed about the

shock size, but they are informed about the decision rule. Now we extend this setup

with two cases. First, the public is not informed about the decision rule but they are

informed about the shock size and second the public is fully informed, both about the

decision rule and the shock size. We do not consider the case, in which the public is

neither informed about the decision rule nor the shock size, because the outcome does

not differ from the case of the initial information setup. The reason is that the public

does not expect a change in interest rate independent from the decision rule, if they are

not informed about the shock. Hence, the information about the decision rule does not

alter the reaction of the public. In order to implement the different information setups

within our model, we have to define how public expectations enter our framework. This

is done within a standard Barro-Gordon model (see Barro and Gordon (1983) or Rogoff

(1985)), where we mainly follow the approach of Gersbach (2003).

4.2 The Model and Expectations

The previous chapters are based on social loss functions for every member k of the

monetary union

Lk = (∆i − γk∆ĩ(ǫ(GK)))2 (4.1)

This loss function is derived from the assumption that the information about the shock

ǫ is not released to the public, which implies that the public expects E(ǫ) = 0, where

we assume a symmetrically distributed shock with zero mean and E(.) denoting the

expected value of a variable (Gersbach and Hahn (2001)). As a consequence this implies

that the public does not expect an interest-rate change. Within this setup, we derived

the best FMw-rule, which implements an interest-rate change of

∆iFMw = G∆ĩ(ǫ(G)) (4.2)

if the union is divided into two parts by a shock ǫ(G).2 Since we have shown in the

previous chapters that, in general, the decision rules with weighted votes outperform

Council formulate the monetary policy ... including ... key interest rates” (Article 12). We know from
several statements of board members, that there is no explicit rule which the committee follows in
their meetings (see also footnote 13).

2We dropped the index K, since we assume that the shock depends only on the size of the affected
region and it does not matter which countries have an aggregated weight of GK = G representing the
set K.
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the rules without weighted votes, we consider only decision rules with weighted votes.

In the following, we compare the setup, which we call OP1 (the central bank is still

opaque about its knowledge of the shock size, but the decision rule is known), with a

fully transparent information setup TP (the public is informed about both, the shock

size and the decision rule) and another opaque setup OP2 (the public is informed about

the shock size, but not about the decision rule). Therefore, we need to know how the

public expectations about an interest-rate change to enter the loss function, since in

information setups, where the public is informed about the size of the shock, their

expectations will not generally equal zero as in the information setup OP1.

For that purpose we introduce expectations within a standard log-linearized Barro-

Gordon model (see Barro and Gordon (1983)) similar to Gersbach (2003).3

Social losses of a central banker are defined as4

l = π2 + αy2 α > 0 (4.3)

with the Philipps-Curve

y = β(π − πe) − ǫ β > 0 (4.4)

where y denotes output, π inflation, πe expected inflation of the public and ǫ is zero

for the unaffected region and ǫ(G) for the affected part. We assume that ǫ is a shock

symmetrically distributed around zero and the absolute value of ǫ is an increasing

function of the size G of the affected region. The log of natural output is normalized

to zero and therefore we abandon a central bank output target above natural output.

This is done, because we do not want to incorporate the time inconsistency problem5 in

our analysis (Barro and Gordon (1983) and Binder (1997)). For simplicity the inflation

target is also normalized to zero. In this setup, we can focus on the pure transparency

effect, induced by the information of the public about the shock or the decision rule.

Inserting the Philipps-Curve into the loss function (4.3), we obtain

l = π2 + α(β(π − πe) − ǫ)2 (4.5)

which yields by quadratic completion

l = (1 + αβ2)

[

(π2 − aβ

1 + aβ2
(βπe + ǫ))2 +

a

(1 + aβ2)2
(βπe + ǫ)2

]

(4.6)

3This model is somewhat simpler than the aggregate supply and demand model used in Gersbach
and Hahn (2001), but social losses for OP1 can similarly derived.

4As in Gersbach (2003) social loss functions do not differ between central bankers and the public.
5Note that this is a special property of the quadratic loss function, while with more general loss

functions, especially with an asymmetric shape (see also chapter 3.1.1), the problem does not vanish
(i.e. see Surico (2008)).
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Suppose in the past, we start from a long-run optimal equilibrium with no shocks (or

already long decayed shocks) with zero inflation and an interest rate which is matching

the natural real interest rate r. A change in nominal interest rate i can then be

represented by ∆i = i − r and an expected change by ∆ie = ie − r respectively.

Together with the Fisher equation i = π + r and ie = πe + r (i.e. Woodford (2003) and

Wicksell (1898)), we can substitute inflation and expected inflation in equation (4.6)

by the interest-rate change ∆i and expected interest-rate change ∆ie. We obtain

l(∆i, ∆ie, ǫ) = (1 + αβ2)

[

(∆i − aβ

1 + aβ2
(β∆ie + ǫ))2 +

a

(1 + aβ2)2
(β∆i + ǫ)2

]

(4.7)

For further calculations we use the following short-cuts:

A :=
aβ

1 + aβ2
β B :=

aβ

1 + aβ2
C :=

a

(1 + aβ2)2
(4.8)

and redefine social losses as

l(∆i, ∆ie, ǫ) = (∆i − (A∆ie + Bǫ))2 + C(β∆ie + ǫ)2 (4.9)

where we left out the factor (1+αβ2) > 0, since this is only a monotonic transformation

which does not change the preferences.

The time-line is set as follows:

-

Decision rule
and information
setup are specified

CB observes
the shock ǫ

Public expectations
∆ie are formed

ǫ is realized

∆i is set
by the CB

Social losses
are realized

t

Figure 4.1:
Sequence of events (CB: Central Bank).
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This means, that the central bank cannot change the information setup or the decision

rule during the decision process about the interest-rate change. In the following we

explicitly define the three different information setups:

1. Opacity 1 (OP1): The information about the shock is not released and public is

informed about the decision rule (this is our baseline scenario used in the previous

chapters).

2. Opacity 2 (OP2): The information about the shock is released, but the public

does not know whether the SMw-rule or the FMw-rule is applied. The public

assigns probability p for SMw and probability (1 − p) for FMw with p ∈ [0, 1].

3. Transparency (TP ): The Public is fully informed by the central bankers. The

information about the shock is released and the public knows the decision rule

of the central bank committee.

Generally, we obtain the reaction function of a central banker by minimizing equa-

tion (4.9) with respect to ∆i and ∆ie is fixed. This yields

∆iR(∆ie, ǫ) = (A∆ie + Bǫ) (4.10)

where either the shock size ǫ(G) or zero is inserted, depending on whether the central

banker represents a country of the affected region or not.

Note that ∆iR(∆ie, ǫ) is both increasing in shock size ǫ and expected interest-rate

change ∆ie. Furthermore, the derivative of ∆iR with respect to expected interest-rate

change ∆ie is less than one, since A,B > 0 and A < 1. Inserting this in social losses

of every single central banker of the union and similarly aggregating social losses as in

the previous chapters where we defined overall social losses as the weighted sum of the

affected and the unaffected region (see equation 2.7), we obtain

L := lG + l1−G (4.11)

with

lG := Gl(∆i, ∆ie, ǫ(G)) = G
(
(∆i − (A∆ie + Bǫ(G)))2 + C(β∆ie + ǫ(G))2

)
(4.12)

for the affected region and

l1−G := (1 − G)l(∆i, ∆ie, 0) = (1 − G)
(
(∆i − A∆ie)2 + C(β∆ie)2

)
(4.13)

for the unaffected region.
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This yields

L = Gl(∆i, ∆ie, ǫ(G)) + (1 − G)l(∆i, ∆ie, 0)

= (∆i − A∆ie − GBǫ(G))2 + C(β∆ie + Gǫ(G))2+

G(1 − G)(B2 + C)[ǫ(G)]2

(4.14)

For the comparison of transparency and opacity, we need to specify a FMw-rule, that

is applied in all different information frameworks. Following the keep it as simple

as possible principle (Mishkin (2007)), we use the information setup (OP1) of the

previous chapters as a benchmark. Since the public is not informed about the shock,

the expected interest-rate change is ∆ie = 0. This yields a simple linear dependency

between the desired interest-rate change of the affected region and the shock size ǫ(G)

with ∆i = Bǫ(G). The optimal FMw-rule is therefore given by

∆iFMw(G) = GBǫ(G) (4.15)

which means that for an interest-rate change of ∆i = GBǫ(G), we need a share of G

of the votes.6

In the following, we calculate for every triple

(decision rule, shock size, information setup)

the resulting triple of

(expected public interest-rate change, implemented interest-rate change, overall social

losses)

4.3 Opacity 1

We briefly reproduce the results of the previous chapters for our specific loss function.

With rational expectations of the public, we obtain for all possible shock scenarios

∆ie = A∆ie + B

=0
︷︸︸︷

E(ǫ) =⇒ ∆ie = 0 (4.16)

6Note that although we apply the FMw-rule defined in equation (4.15), in every information setup
one can think in different information setups about other flexible majority rules, since (4.15) is only
optimally derived for OP1. But then non zero public expectations must enter the new rule, which
highly complicates a derivation.
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because the public has no information about the shock size and A ∈ (0, 1). Furthermore,

the implemented interest-rate change ∆i and therefore overall social losses depend on

the applied decision rule and the shock size ǫ(G). In the following we calculate the

aggregated social losses applying the SMw-rule and the FMw-rule.

4.3.1 Simple Majority Rule

If the decision rule is SMw we have to distinguish the cases G > 1
2

and G ≤ 1
2
, since in

the first case the affected region can change the interest rate, while in the second case

it cannot change the interest rate.

1. G > 1
2
: Since the central bankers of the effected part know the shock size ǫ(G)

and public expectations are ∆ie = 0, they change the interest rate up to their

bliss point

∆i = ∆iR(0, ǫ(G)) = Bǫ(G) (4.17)

Inserting this into the social loss functions of the affected region lG and the

unaffected region l1−G, we obtain aggregated social losses of

LOP1 = Gl(Bǫ(G), 0, ǫ(G)) + (1 − G)l(Bǫ(G), 0, 0)

= [ǫ(G)]2 (B2(1 − G) + GC)
(4.18)

2. G ≤ 1
2
: In this case the interest rate is not changed since the bliss point of the

not affected region is given by

∆i = ∆iR(0, 0) = 0 (4.19)

and aggregated social losses are calculated to

LOP1 = Gl(0, 0, ǫ(G)) + (1 − G)l(0, 0, 0)

= [ǫ(G)]2 (G(B2 + C))
(4.20)

4.3.2 Flexible Majority Rule

In this case the bliss point of central bankers affected by the shock is again given by

∆iR(0, ǫ(G)) = Bǫ(G) (4.21)

But now, due to the FMw-rule, they can only change the interest rate up to

∆iFMw = GBǫ(G) = G∆iR(0, ǫ(G)) (4.22)
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Since G ≤ 1, the possible interest-rate change of the affected region is lower than their

desired change of ∆i = Bǫ(G). This implies that they exhaust the possible change,

because their losses are decreasing in ∆i ∈ [0, Bǫ(G)] and we obtain an implemented

interest rate of ∆i = GBǫ(G). Inserting this into aggregated social losses, we obtain

LOP1 = Gl(GBǫ(G), 0, ǫ(G)) + (1 − G)l(GBǫ(G), 0, 0)

= [ǫ(G)]2 G (B2(1 − G) + C)
(4.23)

4.4 Transparency

In the transparent regime, where the public is instantaneously informed about the shock

size ǫ(G) by the central bankers, the public expectations about interest-rate change

depend also on the applied decision rule. Therefore, we cannot generally calculate the

public expectations as we have done in the case of the information setup OP1, but we

have to immediately incorporate the decision rule. Again, we start with the SMw-rule

for the cases G > 1
2

and G ≤ 1
2

and finish with the FMw-rule.

4.4.1 Simple Majority Rule

For rational expectations of the public we obtain again

∆ie = A∆ie + BE(ǫ) (4.24)

But now, we have to insert E(ǫ) = ǫ(G) if G > 1
2
, because the public is informed about

the shock size and they know that the members of the affected region can change the

interest rate as much as they desire. In the other case (G ≤ 1
2
) we obtain E(ǫ) = 0,

because in this case the public knows that the unaffected region with ǫ = 0 is the

decisive part.

1. G > 1
2
: In this case we obtain7

∆ie = A∆ie + Bǫ =⇒ ∆ie =
B

1 − A
ǫ(G) (A ∈ (0, 1)) (4.25)

7Technically, the upshifting of the interest change ∆i by the factor 1
1−A

follows from the same
considerations as in the time inconsistency problem of the Barro and Gordon (1983) model. But
since we are not assuming an output target above natural output, this problem arises only in a
regime, when the public is informed about the shock size, because otherwise the reaction function
runs through the origin and therefore the time inconsistency problem is absent. This effect is also
debated in Blanchard and Fischer (1989). Altogether this repeats the result of Gersbach (2003) if the
signal is fully informative and we set in our model G = 1.
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Note that A ∈ (0, 1) is a crucial condition in this model, because otherwise the

public would have negative expectations (or even ∆ie is undetermined if A = 1)

about the interest-rate change although the shock ǫ is positive. Since the central

bankers of the affected region can change the interest rate according to their

preferences, we obtain:

∆i = ∆iR(∆ie, ǫ(G)) = A
B

1 − A
ǫ(G) + Bǫ(G) =

B

1 − A
ǫ(G) (4.26)

and this yields overall social losses of

LTP = Gl( B
1−A

ǫ(G), B
1−A

ǫ(G), ǫ(G)) + (1 − G)l( B
1−A

ǫ(G), B
1−A

ǫ(G), 0)

= [ǫ(G)]2
(

B2(1 − G) + CG(1 + GβB/G
1−A

(βB/G
1−A

+ 2))
)

(4.27)

2. G ≤ 1
2
: In this case public knows that the central bankers of the unaffected region

are the relevant group with bliss point ∆iR(∆ie, 0), which implies

∆ie = A∆ie =⇒ ∆ie = 0 (4.28)

which again yields

∆i = ∆iR(0, 0) = 0 (4.29)

Then, overall losses are given by

LTP = Gl(0, 0, ǫ(G)) + (1 − G)l(0, 0, 0)

= [ǫ(G)]2G(B2 + C)
(4.30)

4.4.2 Flexible Majority Rule

In this regime the public knows the shock size ǫ(G) and they additionally know, that

the central bankers of the affected region can change the interest rate up to

∆iFMw = GBǫ(G) (4.31)

In the following proposition, we show that this possible interest-rate change is simul-

taneously the expected interest-rate change ∆ie of the public and the implemented

interest rate ∆i of the central bank committee.
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Proposition 10

Suppose the public is informed about the shock size ǫ(G) and additionally they know

that the central bank board decides about the interest-rate change according to the

FMw-rule, then

(i) Public expectations are ∆ie = GBǫ(G)

(ii) the central bank board implements an interest-rate change of ∆i = GBǫ(G)

Proof of proposition 10:

The bliss point of the central bankers of the affected region ∆iR(∆ie, ǫ(G)) is both

increasing in the shock size ǫ(G) (and thus in G, the size of the affected region) and

the expected interest-rate change ∆ie because

∂∆iR(∆ie, ǫ)

∂G
= B

∂ǫ(G)

∂G
> 0 and

∂∆iR(∆ie, ǫ)

∂∆ie
= A > 0 (4.32)

This implies that, if we assume ∆ie > 0, the bliss point ∆iR(∆ie, ǫ(G)) of the central

bankers in the affected region is not smaller than ∆iFMw , because

(G − 1)Bǫ(G)
∆ie

< 0 < A ⇐⇒

∆iR((∆ie, ǫ(G)) = A∆ie + Bǫ(G) > ∆iFMw(ǫ(G)) = GBǫ(G)

(4.33)

Additionally, we know that the expectations ∆ie must have the same sign as the shock,

since the slope of the reaction function ∂∆iR(∆ie,ǫ)
∂∆ie

= A is positive and smaller than one

(see figure 4.2). Then we can conclude that, firstly, the public expects an interest-rate

change of ∆ie = GBǫ(G) because they know that the bliss point of the affected region

is not less than GBǫ(G) and this is simultaneously the maximum possible interest-

rate change. Second, central bankers of the affected region have due to their reaction

function an incentive to exceed this interest-rate change, but they are also restricted

to an interest-rate change of ∆i = GBǫ(G) because of the FMw-rule.

Inserting

∆i = ∆ie = GBǫ(G) (4.34)

in the overall social losses we obtain

LTP = Gl(GBǫ(G), GBǫ(G), ǫ(G)) + (1 − G)l(GBǫ(G), GBǫ(G), 0)

= [ǫ(G)]2G (B2(1 − G(1 − A2)) + C(1 + GβB(βB + 2)))
(4.35)

62



CHAPTER 4. TRANSPARENCY

-

6

Reaction function
of the affected region
∆iR = A∆ie + Bǫ(G)

Possible interest-rate change
of the affected region
∆iFMw = GBǫ(G)

Desired interest-
rate change of the
affected region

∆i = Bǫ(G)
1−A

∆ie

∆i

Bǫ(G)

{

∆ie

∆i = ∆ie

Figure 4.2:
interest-rate change under FMw and TP

4.5 Opacity 2

In this regime, we assume that the public is informed about the shock size, but they

do not know which decision rule the central bank board is applying. We assume that

the public weights the SMw-rule with probability p ∈ [0, 1] and the FMw-rule with

probability 1 − p, where p is commonly known. The expected interest-rate change is

then the convex combination of the expected interest-rate changes of decision rules

SMw and FMw and can be written as

∆ie = p∆ieSMw
+ (1 − p)∆ieFMw

(4.36)

with ∆ieFMw
= GBǫ(G) and ∆ieSMw

= A∆ie+Θ(G− 1
2
)Bǫ(G) (with Θ(x) the Heavyside-

function. Note that following proposition 10, we can already insert GBǫ(G) for the

interest-rate change, assuming the decision rule is FMw, because we have still ∆ie ≥ 0

and thus ∆iR(∆ie, ǫ) + Bǫ(G) ≥ ∆iFMw = GBǫ(G). But we cannot insert Θ(G −
1
2
) B

1−A
ǫ(G) for the interest-rate change assuming the decision rule is SMw following

equations (4.25) and (4.28) from the transparent information setup (TP ), because

∆ieSMw
depends itself on ∆ie.

With these considerations we obtain for every shock scenario ǫ(G) an expected interest-

rate change of

∆ie = p(A∆ie + Θ(G − 1
2
)Bǫ(G)) + (1 − p)GBǫ(G) (4.37)

Again, we have to distinguish between the cases G ≤ 1
2

and G > 1
2
.
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1. G > 1
2

=⇒ Θ(G − 1
2
) = 1 =⇒ ∆ie = p(A∆ie + Bǫ(G)) + (1 − p)GBǫ(G) and we

obtain

∆ie =
p/G + (1 − p)

1 − pA
GBǫ(G) = pGBǫ(G) (4.38)

2. G ≤ 1
2

=⇒ (G − 1
2
) = 0 =⇒ ∆ie = pA∆ie + (1 − p)GBǫ(G) and we obtain

∆ie =
(1 − p)

1 − pA
GBǫ(G) = pGBǫ(G) (4.39)

where we have introduced p := p/G+(1−p)
1−pA

and p := (1−p)
1−pA

. After the calculation of the

expected interest-rate changes, the central bank board implements the interest-rate

change according to the decision rule.

4.5.1 Simple Majority Rule

As in the previous cases we distinguish between G > 1
2

and G ≤ 1
2
.

1. G > 1
2
: In this case the central bankers of the affected region can change the

interest rate according to their bliss point, which yields

∆i = ∆iR(pGBǫ(G), ǫ(G)) =
1/G + A(1 − p)

1 − pA
GBǫ(G) =

∼
pGBǫ(G) (4.40)

where we have introduced
∼
p := 1/G+A(1−p)

1−pA
= Ap + 1

G
. Inserting this into the

overall social losses, we obtain

LOP2 = (
∼
pGBǫ(G), pGǫ(G), ǫ(G)) + (1 − G)l(

∼
pGBǫ(G), pGǫ(G), 0)

= [ǫ(G)]2 (B2(1 − G) + CG(1 + GpβB(pβB + 2)))
(4.41)

2. G ≤ 1
2
: In this case, the unaffected region is the decisive group for the interest-

rate change and since their bliss point is ∆iR(pGBǫ(G), 0), they implement an

interest-rate change of

∆i = ∆iR(pGBǫ(G), 0) = ApGBǫ (4.42)

Inserting this into overall social losses, we obtain

LOP2 = Gl(ApGBǫ(G), pGBǫ(G), ǫ(G)) + (1 − G)l(ApGBǫ(G), pGBǫ(G), 0)

= [ǫ(G)]2G
(
B2 + C(1 + GpβB(pβB + 2))

)

(4.43)
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4.5.2 Flexible Majority Rule

For general G we obtain ∆i = GBǫ, since the bliss point is increasing in the expected

interest-rate change, which is also positive and thus the affected region will exhaust

their possible interest-rate change following the same argumentation as in proposi-

tion 10. But now we have to distinguish between the cases G ≤ 1
2

and G > 1
2

since the

expected interest-rate changes differ for these cases.

1. G > 1
2
: Inserting ∆i = GBǫ and ∆ie = pGBǫ into the loss function, we obtain

LOP2 = Gl(GBǫ(G), pGǫ(G), ǫ(G)) + (1 − G)l(GBǫ(G), pGǫ(G), 0)

= [ǫ(G)]2G (B2(1 − G(1 − p2A2)) + C(1 + GpβB(pβB + 2)))
(4.44)

2. G ≤ 1
2
: Inserting ∆i = GBǫ and ∆ie = pGBǫ into the loss function, we obtain

LOP2 = Gl(GBǫ(G), pGǫ(G), ǫ(G)) + (1 − G)l(GBǫ(G), pGǫ(G), 0)

= [ǫ(G)]2G
(
B2(1 − G(1 − p2A2)) + C(1 + GpβB(pβB + 2))

)
(4.45)

4.6 Transparency versus Opacity

Before we start with a detailed welfare comparison, we generally examine the difference

between two information setups in order to show that the relation of the expectations

in two different information setups play the crucial role. Suppose in two different

information setups I and J (I 6= J and I, J ∈ {OP1, OP2, TP}), the public has interest

rate expectations of ∆ieI and ∆ieJ , while central bankers change the interest rate to ∆iI

and ∆iJ respectively. Then the difference of overall social losses LI − LJ in these two

setups is given by

LI − LJ = G (l(∆iI , ∆ieI , ǫ(G)) − l(∆iJ , ∆ieJ , ǫ(G)))

+(1 − G) (l(∆iI , ∆ieI , ǫ(G)) − l(∆iJ , ∆ieJ , ǫ(G)))

= [(∆iI − A∆ieI) − (∆iJ − A∆ieJ)]

· [(∆iI − A∆ieI) + (∆iJ − A∆ieJ) − 2GBǫ(G)]

+ Cβ [∆ieI − ∆ieJ ] [β(∆ieI + ∆ieJ) + 2Gǫ(G)]

(4.46)

For the SMw-rule in every information setup I we obtain (∆iI −A∆ieI) = 0 for G ≤ 1
2

and (∆iI − A∆ieI) = Bǫ(G) for G > 1
2
, because for G ≤ 1

2
central bankers of the
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unaffected region with bliss point A∆ieI determine the interest-rate change and in the

other case interest-rate change is given by ∆iI = A∆ieI + Bǫ. Hence, in this case the

difference of overall social losses between two information setups I and J is given by

LI − LJ = Cβ [∆ieI − ∆ieJ ] [β(∆ieI + ∆ieJ) + 2Gǫ(G)] (4.47)

In the above case with the FM -rule, the interest rate is always changed to the maximum

allowed level in the realized shock scenario, which implies that in different information

setups, we obtain ∆iI = ∆iJ = ∆i. This yields for the difference of overall social losses

between two information setups I and J

LI−LJ = [∆ieI − ∆ieJ ]
[
(∆ieI − ∆ieJ)(A2 + Cβ2) + 2Gǫ(G)(AB + Cβ) − 2A∆i

]
(4.48)

Since the interest-rate change is explicitly given by ∆i = GBǫ(G), we obtain

LI − LJ = [∆ieI − ∆ieJ ]
[
(∆ieI − ∆ieJ)(A2 + Cβ2) + 2Gǫ(G)Cβ

]
(4.49)

Altogether, we obtain the general result that OP1 cannot be worse than the other

information setups, because within OP2 and TP , public expectations about interest-

rate changes are non-negative and almost always positive (the exception is TP and

G ≤ 1
2
), whilst public interest rate expectations in OP1 are vanishing, which implies

∆ieI − ∆ieOP1
≥ 0.

Now we turn to the detailed discussion of the relation between the information setups.

The comparison8 runs as follows: We pairwise calculate the difference of the overall

social losses between the different information setups given a shock scenario ǫ(G) and

the decision rule. Although we already know from the previous section that OP1 is at

least as good as OP2 or TP , for completeness we also present the explicit outcome of

the differences in overall social losses.

4.6.1 Transparency versus Opacity 2

1. SMw-rule and G > 1
2
:

In this case we obtain from equations (4.27) and (4.41)

LOP2 − LTP = [ǫ(G)]2CG2βB

(

βB(p +
1/G

1 − A
) + 2

)(

p − 1/G

1 − A

)

≤ 0 (4.50)

8We exclude in this analysis the trivial cases G = 0, 1.
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This follows from p(p = 0) = 1, p(p = 1) = 1/G
1−A

and ∂p(p)
∂p

= 1−G(1−A)
G(1−pA)2

> 0, which

implies that p ≤ 1/G
1−A

for p ∈ [0, 1], because p(p = 0) = 1 < 1/G
1−A

since A,G ∈ (0, 1)

and p(p) is monotonically increasing in p ∈ [0, 1].

2. SMw-rule and G ≤ 1
2
:

From equations (4.30) and (4.43) we obtain

LOP2 − LTP = [ǫ(G)]2CG2pβB
(
pβB + 2

)
≥ 0 (4.51)

since p ≥ 0.

3. FMw-rule and G > 1
2
:

From equations (4.35) and (4.44) we obtain

LOP2 − LTP = [ǫ(G)]2G2 (B2A2 + βB(βB(1 + p) + 2)) (p − 1) ≥ 0 (4.52)

This follows from the comparison of TP and OP2 with decision rule SMw and

G > 1
2
, because in this case we have shown that p ≥ 1 for p ∈ [0, 1].

4. FMw-rule and G ≤ 1
2
:

Similar to the case of G > 1
2

from equations (4.35) and (4.45) we obtain

LOP2 − LTP = [ǫ(G)]2G2
(
B2A2 + βB(βB(1 + p) + 2)

)
(p − 1) ≤ 0 (4.53)

This follows from p(p = 0) = 1, p(p = 1) = 0 and
∂p(p)

∂p
= − 1−A

(1−pA)2
< 0, which

implies that p ≤ 1 for p ∈ [0, 1], because p(p = 0) = 1 and p(p) is monotonically

decreasing in p ∈ [0, 1].

Altogether we have shown, that for a shock scenario with G > 1
2

and the SMw-rule

the opaque regime OP2 is better than transparency TP and in the case of G ≤ 1
2

transparency TP outperforms OP2 while for the FMw-rule the reverse relations are

true.

4.6.2 Transparency versus Opacity 1

1. SMw-rule:

(a) G > 1
2

:

In this case we obtain from equations (4.27) and (4.18)

LOP1 − LTP = −[ǫ(G)]2CG2βB
1/G

1 − A
(βB

1/G

1 − A
+ 2) < 0 (4.54)
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(b) G ≤ 1
2

:

In this case we obtain from equations (4.30) and (4.20)

LOP1 − LTP = 0 (4.55)

2. FMw-rule:

In this case we obtain from equations (4.23) and (4.35)

LOP1 − LTP = −[ǫ(G)]2G2(A2B2 + CβB(βB + 2)) < 0 (4.56)

This shows that for every shock scenario, the opaque regime OP1 is at least as good

as transparency. It is interesting to note, that both welfare outcomes coincide, in the

case of the SMw-rule and G < 1
2
, because in this case central bankers cannot profit

from output gains, since public expectations vanish also for TP .

4.6.3 Opacity 2 versus Opacity 1

1. SMw-rule:

(a) G > 1
2

:

In this case we obtain from equations (4.41) and (4.18)

LOP1 − LOP2 = −[ǫ(G)]2CG2pβB(pβB + 2) < 0 (4.57)

(b) G ≤ 1
2

:

In this case we obtain from equations (4.43) and (4.20)

LOP1 − LOP2 = [ǫ(G)]2CG2pβB(pβB + 2) ≤ 0 (4.58)

2. FMw-rule:

(a) G > 1
2

:

In this case we obtain from equations (4.44) and (4.23)

LOP1 − LOP2 = −[ǫ(G)]2G2(pA2B2 + CpβB(pβB + 2)) < 0 (4.59)

(b) G ≤ 1
2

:

In this case we obtain from equations (4.45) and (4.23)

LOP1 − LOP2 = −[ǫ(G)]2G2(pA2B2 + CpβB(pβB + 2)) ≤ 0 (4.60)
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This shows also that for every shock scenario, the opaque regime OP1 is at least as

good as the half-transparent information setup OP2, where the public is only informed

about the shock, but not informed about the decision rule. Note the interesting case,

in which the public fully misspecifies their expectations about the decision rule in the

information setup OP2. This is the case, in which the implemented decision rule is

FMw, the weight of the affected region is less than 1
2

and public weights SMw with

p = 1. This is the only case, in which OP2 is as good as OP1, because in this scenario

OP2 totally mimics the expectations about an interest-rate change of OP1, since the

public erroneously assume that the central bankers decide according to the SMw-rule

and therefore, the public expects no interest-rate change as is the case in the OP1

information setup.

4.7 Summary and Overall Comparison

In this section, we summarize our results and in table 4.1 we present the expectations

about interest-rate changes and the finally implemented interest-rate changes in the

different frameworks regarding the information setup and the decision rule. Table 4.2

ranks the different information setups based on their welfare implications, where we

exclude the polar cases p = 0, 1 in the information setup OP2, in order to obtain

unique relations between the different information setups for the remaining parameter

constellations. The rankings for p = 0, 1 are separately listed in table 4.3.

OP1 OP2 TP

SMw

G > 1
2

∆ie 0 p/G+(1−p)
1−pA

GBǫ(G) 1
1−A

Bǫ(G)

∆i Bǫ(G) 1/G+A(1−p)
1−pA

GBǫ(G) 1
1−A

Bǫ(G)

G ≤ 1
2

∆ie 0 (1−p)
1−pA

GBǫ(G) 0

∆i 0 A (1−p)
1−pA

GBǫ(G) 0

FMw

G > 1
2

∆ie 0 p/G+(1−p)
1−pA

GBǫ(G) GBǫ(G)

∆i GBǫ(G) GBǫ(G) GBǫ(G)

G ≤ 1
2

∆ie 0 (1−p)
1−pA

GBǫ(G) GBǫ(G)

∆i GBǫ(G) GBǫ(G) GBǫ(G)

Table 4.1: interest-rate changes
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G > 1
2

G ≤ 1
2

SMw OP1 ≻ OP2 ≻ TP OP1 ∼TP ≻ OP2

FMw OP1 ≻ TP ≻ OP2 OP1 ≻ OP2 ≻ TP

Table 4.2: Ranking of the different information setups for p 6∈ {0, 1}

The intuition for ranking is as follows. If the decision rule is SMw and G > 1
2

in

information setup OP2 for p < 1 public expects a lower interest-rate change than in

the transparent case (TP ) and therefore the incentive to upshift the interest rates of

the central bankers of the affected region is lower, which results in lower aggregated

welfare losses. In the case of G ≤ 1
2

we can argue in the opposite way, that public has

non-zero expectations in the information setup OP2, because the FMw-rule would allow

a slight interest-rate change, which induces the unaffected region to raise the interest

rate, which increases overall welfare losses compared to the transparent case. For the

FMw-rule the argumentation runs the other way around. For G > 1
2

the assumption,

that the decision rule could also be SMw pushes for OP2 the public expectations of

interest-rate changes further than in the transparent case TP , because in this case

the expectations are limited by the maximum allowed interest-rate change of FMw.

For G ≤ 1
2

the spurious anticipation of SMw in OP2 lowers the public expectations of

interest-rate changes compared to TP , leading to lower social losses, although finally

implemented interest-rate changes coincide. As we have seen in chapter 4.6 in our

model, the differences in overall social losses of different information setups are mainly

driven by the various expectations about interest-rate changes and, therefore, OP1 is

always at least as good as the other two information setups, because in OP1 the public

interest-rate change expectations vanish, since the public is not informed about the

shock size. This result is not really surprising, since FMw is optimally designed for

OP1 and the other information setups are incorporating this decision rule, although

this result is not totally trivial.

Take for example the case, whereby OP2 is as good as OP1 if public totally misspecifies

their expectations about the decision rule in the case whereby G ≤ 1
2

and FMw is the

decision rule (see table 4.3 and equation (4.60)), because of the misleading expecta-

tions of the public, we obtain in both information setups the same expectations about

interest-rate changes and, induced by the FMw-rule, also the same final interest-rate

change.

After this discussion, we can ask if there exists a framework of an information setup

and/or decision rule, which can outperform OP1 combined with the FMw-rule. In order
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p = 1 G > 1
2

G ≤ 1
2

SMw OP1 ≻ OP2 ∼ TP OP1 ∼ TP ∼ OP2

FMw OP1 ≻ TP ≻ OP2 OP1 ∼ OP2 ≻ TP

p = 0 G > 1
2

G ≤ 1
2

SMw OP1 ≻ OP2 ≻ TP OP1 ∼ TP ≻ OP2

FMw OP1 ≻ TP ∼ OP2 OP1 ≻ OP2 ∼ TP

Table 4.3: Ranking of the different Information setups in the polar case p = 0, 1.

to answer this question, we globally minimize the overall loss function L(∆i, ∆ie, ǫ) with

respect to ∆i and ∆ie in a given shock scenario ǫ(G). This is done in proposition 11.

Proposition 11

In any fixed shock scenario ǫ(G), the overall social loss minimum is given by

argmin
∆i,∆ie

{L(∆i, ∆ie, ǫ(G))} =

(
∆i†

∆ie†

)

= Gǫ

[(
B

0

)

− 1

β

(
A

1

)]

(4.61)

with

L(∆i†, ∆ie†, ǫ(G)) = [ǫ(G)]2 G(1 − G)
(
B2 + C

)
(4.62)

Proof of proposition 11:

The necessary condition for a minimum is ~∇(L) =
(

∂
∂∆i

∂
∂∆ie

)

L =
(

0
0

)
, which leads to

2
(

∆i−A∆ie−GBǫ(G)
−A∆i+(A2+Cβ2)∆ie+ǫ(G)(AGB+1)

)

=
(

0
0

)
⇐⇒

(
∆i
∆ie

)
=
(

∆i†

∆ie†

)

= Gǫ
[(

B
0

)
− 1

β

(
A
1

)]

.

The sufficient condition for a minimum is that the Hessian of L (Hess(L)) is posi-

tive definit for
(

∆i†

∆ie†

)

. Calculating Hess(L) we obtain

Hess(L) =

[
∂2

∂∆i2

∂2

∂∆i∂∆ie

∂2

∂∆i∆ie

∂2

∂(∆ie)2

]

L = 2

[
1

−A

−A

A2 + cβ2

]

(4.63)

Since the main minors are both positive, because M1 = ∂2

∂∆i2
L = 1 > 0 and

M2 = Det(Hess(L)) = Cβ2 > 0, we can conclude that Hess(L) is positive definit9 for

9 Note that Hess(L) is positive definite for all
(

∆i†

∆ie†

)

.
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(
∆i†

∆ie†

)

. Inserting ∆i† and ∆ie† in L(∆i, ∆ie, ǫ(G)) implies equation 4.62.

From proposition 11, we obtain that indeed there exists a vector (∆i†, ∆ie†)T such

that L(∆i†, ∆ie†, ǫ(G)) < L(GBǫ(G), 0, ǫ(G)), the outcome of OP1 combined with the

FMw-rule, because10

L(∆i†, ∆ie†, ǫ(G)) − L(GBǫ(G), 0, ǫ(G)) = − [ǫ(G)]2 GC < 0

(see equations (4.23) and (4.62)). But from proposition 11 we also obtain that generally

∆ie† < 0 and ∆i† < 0 if B < A/β. This implies that in order to globally minimize L,

we would have to look for a framework, in which the public expectations should aim in

the opposite direction than the shock ǫ(G) > 0. Additionally there exists a parameter

constellations where even the central bankers should implement an interest-rate change

∆i with an opposite sign than the shock. Since this is very counter-intuitive, in the

following we restrict the domain of (∆i, ∆ie) to the non-negative quadrant IR2+
0 . With

this restriction we show the following proposition:

Proposition 12

Suppose ∆i, ∆ie ≥ 0, ǫ(G) is fixed and overall losses of a monetary union are given by

L(∆i, ∆ie, ǫ(G)) = (∆i − A∆ie − GBǫ(G))2 + C(β∆ie + Gǫ(G))

+G(1 − G)ǫ(G)(B2 + C)
(4.64)

Then, there exists no better framework for the decision of interest-rate change than

OP1 in combination with FMw.

Proof of proposition 12:

Since (∆i†, ∆ie†)T 6∈ IR2+
0 and Hess(L) is positive definite (see footnote 9) for all

(∆i, ∆ie)T ∈ IR2, we can conclude that

argmin
∆i,∆ie≥0

{L} ∈ {(x, 0); (0, y)} with x, y ∈ IR+
0 (4.65)

because the graph of L represents an upward-opened elliptical paraboloid with the

minimum at (∆i†, ∆ie†)T . Hence, it is sufficient to show that

min
∆ie≥0

{L(0, ∆ie, ǫ(G))} > min
∆i≥0

{L(∆i, 0, ǫ(G))} (4.66)

10With the trivial exception of no shock G = 0.
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because we already know that L(∆i, 0, ǫ(G)) is minimized at ∆i = GBǫ(G) and

L(GBǫ(G), 0, ǫ(G)) is the welfare outcome of OP1 in combination with FMw. Fur-

thermore, we have ∂L(0,∆ie,ǫ(G))
∂∆ie

= 0 ⇐⇒ ∆ie = −Gǫ(G) AB+Cβ
A2+Cβ2 < 0 and therefore

argmin∆ie≥0 {L(0, ∆ie, ǫ(G))} = 0 since L(0, ∆ie, ǫ(G)) is an upward-opened parabola

in ∆ie. But L(0, 0, ǫ(G)) − L(0, GBǫ(G), ǫ(G)) = −GBǫ(G) < 0 which concludes.

Altogether we have the interesting result that within our framework the setup OP1 in

combination with FMw can only be improved, if public is misled about the direction

of the shock and for specific parameter constellations even the central bank should

change the interest rate in another direction than the shock would intuitively demand.

Anecdotally we want to point out that the ECB has increased the key interest rate in

July 2008 although the signals of the upcoming crisis could not have been overlooked

and also the public was not really surprised by this change, since inflation and also

inflation expectations (i.e. break-even inflation) were still rising at that point.
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Discussion and Conclusion

Our investigation suggests that flexible majority rules may be a useful tool for central

banks. But nevertheless there are a variety of conceptual and practical issues which

need to be dealt with.

First, allowing minorities to initiate a change in the interest rates may invite cycling

in a dynamic setting, since interest-rate changes might be revised immediately. We

showed only in a very simple case, where shocks decay within one period, how this

shortcoming of our rule could be overcome. Such undesirable cycling can be avoided

by restricting flexible majority rules to genuine majorities or a revision rule. A revision

rule stipulates that interest-rate change reversals within a particular time frame, say

a year, require a share of supporting votes larger than the share of opposing votes for

the initial interest-rate change. It is still necessary to eliminate strategic voting under

such reversal rules.

Second, most central bankers would deny, that they mainly focussing on their home

country. Instead they often argue that their focus is on the issues of the whole monetary

union, but we think, that it is useful to examine a framework like ours as a polar case,

since there is at least some heterogeneity in preferences among central bankers.

Third, in some kind our flexible majority rule can be seen as a tool of preference

aggregation, since this framework has the potential to form a broader range of coalitions

within the decision process. In this sense flexible majority rules can be seen as a

kind of a compromize between a consensus decision rule, where a small minority has a

strong veto power, which can inhibit the decision process and the widely applied simple

majority rule, whereby conversely a larger minority can easily be overruled. As we have

already mentioned, there are many real world examples, where larger majorities than

50% are needed for a change of the status quo. But of course, it is difficult to quantize

the correct majority depending on the quality of some decision. However, in the case
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of monetary policy, with the interest rate, we have an explicit quantifiable decision

variable. Therefore, we think that in this field a decision rule, in which the required

share of votes for a change depends on the size of the change itself, can improve the

yes/no character of the simple majority rule.

Fourth, with regard to the practicability of a decision rule aspect, the simplicity of

our concept of a flexible majority rule seems important. Although, we have to admit

the shortfall of our framework that in real world, we do not know the quantitative

implication of a shock ex ante, we think that introducing for example some ad hoc

step function like an interest rate change of 25 basispoints require more than 50% of

the votes 50 basispoints require 75% and more than 75 basispoints require unanimity,

could improve the decision process in a monetary policy committee.
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Appendix

6.1 A Proofs

Proof of Proposition 3:

The first part of the inequalities, LFMw

K ≤ LSMw

K and LFMw

K ≤ LFMnw

K follows directly

from proposition 2 and corollary 1, since there it is shown, that the FMw-rule imple-

ments for every shock scenario K the first-best solution and hence, the FMw-rule can

never be worse than any other decision rule.

In order to show the other inequalities, first note that for GK = 0, 1 every defined

decision rule implements the same interest-rate change. Therefore we exclude these

trivial cases in the following.

• LSMw

K versus LSMnw

K

From equations (2.14) and (2.17), we can conclude

(i) Suppose GK ≤ 1
2

and |K| ≤ N
2
, then under both decision rules the interest

is not changed and we obtain LSMw

K = LSMnw

K .

(ii) Suppose GK > 1
2

and |K| > N
2
, then both decision rules implement the same

interest changed ∆iSMnw

K = ∆iSMw

K = ∆ĩK and we obtain LSMw

K = LSMnw

K .

(iii) Suppose GK ≤ 1
2

and |K| > N
2
, then we obtain

LSMw

K − LSMnw

K = (2GK − 1)[∆ĩK]2 ≤ 0.

(iv) Suppose GK > 1
2

and |K| ≤ N
2
, then we obtain

LSMw

K − LSMnw

K = (1 − 2GK)[∆ĩK]2 ≤ 0.

and (i) − (iv) leads to LSMw

K ≤ LSMnw

K for all K
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• LFMnw

K versus LSMnw

K

From equation 2.14 and proposition 1 together with the definition of ∆I(n) in

equation 2.20 we can conclude

(i) Suppose K = n ≤ N
2
, then

LFMnw

K − LSMnw

K = (∆I(n) − GK∆ĩK)2 − (GK∆ĩK)2

= ∆I(n)(∆I(n) − 2GK∆ĩK) < 0

since ∆I(n) ≤ GK∆ĩK.

(ii) Suppose K = n > N
2

and ∆I(n) ≥ ∆ĩK, then both decision rules implement

the same interest-rate change ∆iFMnw

K = ∆iSMnw

K = ∆ĩK and we obtain

LFMnw

K = LSMnw

K .

(iii) Suppose K = n > N
2

and ∆I(n) < ∆ĩK, then

LFMnw

K − LSMnw

K = (∆I(n) − GK∆ĩK)2 − (∆ĩK − GK∆ĩK)2

= (∆I(n) − ∆ĩK)(∆I(n) + ∆ĩK − 2GK∆ĩK) < 0

since GK∆ĩK ≤ ∆I(n) < ∆ĩK.

and (i) − (iii) leads to LFMnw

K ≤ LSMnw

K for all K.

Argumentation for the entries of table 3.1

Argumentation 1

We divide the union into three regions. This means, that two regions are affected by

separate shocks and they desire different interest-rate changes and the third region is

not affected by a shock and desires therefore no interest-rate change. The weights of

the two affected regions are denoted by G1 and G2 (w.l.o.g. 0 < G1 ≤ G2 < 1), which

implies that the weight of the non-affected region is given by G0 = 1−G1 −G2. Thus,

the desired interest-rate changes for the three regions are formally given by:

Weight of the region Desired interest-rate change
G0 −→ 0

G1 −→ ∆ĩ(G1)
G2 −→ ∆ĩ(G2)
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By the monotonicity of ∆ĩ(.) we have ∆ĩ(G2) ≥ ∆ĩ(G1) and the optimal interest-rate

change for this extended shock scenario E = {ǫ(G1), ǫ(G2)} is given by1

∆i∗ = G1∆ĩ(G1) + G2∆ĩ(G2) (6.1)

In order to compare the FMw-rule and the SMw-rule, we distinguish between three

cases of possible relations between G1 and G2:

1. G2 > 1
2
: This implies, that the larger affected region can change the interest rate

alone, applying the SMw-rule.

2. G1 + G2 > 1
2

and G2 ≤ 1
2
: This implies, that two affected regions can change the

interest rate together, applying the SMw-rule.

3. G1 + G2 ≤ 1
2
: This implies, that two affected regions cannot change the interest

rate together, applying the SMw-rule.

1. G2 > 1
2
:

SMw: G2 > 1
2

=⇒ ∆iSMw = ∆ĩ(G2)

FMw: The interest-rate change will be at least G2∆ĩ(G2), since the larger re-

gion can implement this interest-rate change alone. But which interest-rate

change is actually implemented depends on the relation between

∆ĩ(G1), the desired interest-rate change of the smaller affected region, G2∆ĩ(G2),

the possible interest-rate change that the larger affected region can imple-

ment alone, and (G1 + G2)∆ĩ(G1 + G2), the interest-rate change, both af-

fected regions can implement together.

(a) (G1 + G2)∆ĩ(G1 + G2) < ∆ĩ(G1) =⇒
both affected regions vote for ∆iFMw = (G1 + G2)∆ĩ(G1 + G2), since

monotonicity of ∆ĩ(.) implies ∆ĩ(G1) ≤ ∆ĩ(G2). Furthermore, since

∆iFMw = (G1 + G2)∆ĩ(G1 + G2) =

G1∆ĩ(G1 + G2) + G2∆ĩ(G1 + G2) >

G1∆ĩ(G1) + G2∆ĩ(G2) = ∆i∗

we obtain ∆i∗ ≤ ∆iFMw < ∆iSMw , which implies LFMw < LSMw . This

is illustrated in figure 6.1

1We dropped the index E for optimal interest-rate change, since within this proof, we examine only
one specific E .
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6

-
∆i∆iSMw∆iFMw∆i∗

L

LSMw

LFMw

Figure 6.1:
Overall social losses with the FMw-rule and the SMw-rule under the conditions G2 > 1

2

and (G1 + G2)∆ĩ(G1 + G2) < ∆ĩ(G1)

(b) G2∆ĩ(G2) < ∆ĩ(G1) ≤ (G1 + G2)∆ĩ(G1 + G2) =⇒
both affected regions vote for ∆iFMw = ∆ĩ(G1), because although they

could vote together for (G1+G2)∆ĩ(G1+G2), the smaller affected region

will leave the coalition at ∆ĩ(G1), since this is the regional optimum.

For the comparison of the FMw-rule and the SMw-rule, we have to

distinguish between two more cases, whether the implemented interest-

rate change is larger or lower than the first-best interest-rate change.

i. ∆ĩ(G1) ≥ ∆i∗

In this case LFMw < LSMw , which is shown by the same argumen-

tation as in (a), because we have

∆iSMw = ∆ĩ(G2) > ∆ĩ(G1) = ∆iFMw ≥ ∆i∗

ii. ∆ĩ(G1) < ∆i∗

In this case, the comparison of the FMw-rule and the SMw-rule is

ambiguous, which is shown by the following examples:

A. Suppose ∆ĩ(G) = G, G1 = 0.37 and G2 = 0.6 =⇒
∆i∗ = G1∆ĩ(G1) + G2∆ĩ(G2) = 0.4969
∆iSMw = ∆ĩ(G2) = 0.6
∆iFMw = ∆ĩ(G1) = 0.37

=⇒
|∆iSMw − ∆i∗| = 0.1031 < 0.1269 = |∆iFMw − ∆i∗|
This implies because of the symmetry of the loss function with re-

spect to the optimum ∆i∗ that LFMw > LSMw . This is illustrated

in figure 6.2 (A).

B. Suppose ∆ĩ(G) = G, G1 = 0.27 and G2 = 0.51 =⇒
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∆i∗ = G1∆ĩ(G1) + G2∆ĩ(G2) = 0.333
∆iSMw = ∆ĩ(G2) = 0.51
∆iFMw = ∆ĩ(G1) = 0.27

=⇒
|∆iSMw − ∆i∗| = 0.177 < 0.063 = |∆iFMw − ∆i∗|
This implies because of the symmetry of the loss function with re-

spect to the optimum ∆i∗ that LFMw < LSMw . This is illustrated

in figure 6.2 (B).

6

-
∆i∆iFMw ∆iSMw∆i∗

L

LFMw

LSMw

(A)

6

-
∆i∆iSMw∆iFMw∆i∗

L

LSMw

LFMw

(B)

Figure 6.2:
Overall social losses with the FMw-rule and the SMw-rule under the conditions G2 > 1

2

and G2∆i(G2) < ∆ĩ(G1) ≤ (G1 + G2)∆ĩ(G1 + G2).
(A) ∆ĩ(G) = G, G1 = 0.37 and G2 = 0.6
(B) ∆ĩ(G) = G, G1 = 0.27 and G2 = 0.51

(c) ∆ĩ(G1) ≤ G2∆ĩ(G2) =⇒
the smaller affected region leaves the coalition also at ∆ĩ(G1), but the

larger affected region can implement the higher interest-rate change

∆iFMw = G2∆ĩ(G2) alone. Comparing the FMw-rule and the SMw-

rule, we obtain LFMw < LSMw . This follows from

2G1∆ĩ(G1)
∆ĩ(G1)≤G2∆ĩ(G2)

≤ 2G1G2∆ĩ(G2)
1>G2> 1

2

<

G1∆ĩ(G2)
G0>0
< (1 − G2)∆ĩ(G2) =⇒

(6.2)

G1(∆ĩ(G2) − ∆ĩ(G1)) < ∆ĩ(G2) − G1∆i(G1) − G2∆ĩ(G2)

2∆ĩ(G1)≤∆ĩ(G2)
=⇒

G1∆ĩ(G1)
︸ ︷︷ ︸

|∆iFMw−∆i∗|

< ∆ĩ(G2) − G1∆ĩ(G1) − G2∆ĩ(G2)
︸ ︷︷ ︸

|∆iSMw−∆i∗|

(6.3)
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2. • SMw:

G2 ≤ 1
2

and G1 + G2 > 1
2

=⇒ ∆iSMw = ∆ĩ(G1)

• FMw:

Similarly to (1.) we distinguish between three cases:

(a) (G1 + G2)∆ĩ(G1 + G2) < ∆ĩ(G1) =⇒
∆iFMw = (G1 + G2)∆ĩ(G1 + G2) (see (1.a)) and LFMw < LSMw since

∆i∗ < ∆iFMw < ∆iSMw .

(b) G2∆ĩ(G2) < ∆ĩ(G1) ≤ (G1 + G2)∆ĩ(G1 + G2) =⇒
∆iFMw = ∆ĩ(G1) (see (1.b)) and LFMw = LSMw since ∆iFMw = ∆iSMw .

(c) ∆ĩ(G1) ≤ G2∆ĩ(G2) =⇒
∆iFMw = G2∆i(G2) (see (1.c)) and LFMw ≤ LSMw since

∆iSMw ≤ ∆iFMw < ∆i∗.

3. • SMw:

G1 + G2 ≤ 1
2

=⇒ ∆iSMw = 0

• FMw:

Similarly to (1.and 2.) we distinguish between three cases:

(a) (G1 + G2)∆ĩ(G1 + G2) < ∆ĩ(G1) =⇒
∆iFMw = (G1 + G2)∆ĩ(G1 + G2) (see (1.a)) and the comparison of the

FMw-rule and the SMw-rule is ambiguous.

A. Suppose ∆ĩ(G) = G2, G1 = 9
144

and G2 = 16
144

=⇒
|∆iSMw − ∆i∗| = 4825

1443

|∆iFMw − ∆i∗| = 10800
1443

=⇒
LFMw > LSMw .

B. Suppose ∆ĩ(G) =
√

G, G1 = 9
144

and G2 = 16
144

=⇒
|∆iSMw − ∆i∗| = 91

123

|∆iFMw − ∆i∗| = 34
123

=⇒
LFMw < LSMw .

(b) G2∆ĩ(G2) < ∆ĩ(G1) ≤ (G1 + G2)∆ĩ(G1 + G2) =⇒
∆iFMw = ∆ĩ(G1) (see (1.b))
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For the comparison of the FMw-rule and the SMw-rule, we have to

distinguish between two more cases:

i. ∆ĩ(G1) ≥ ∆i∗

In this case, the comparison of the FMw-rule and the SMw-rule is

ambiguous, which is shown by the following examples:

A. Suppose ∆ĩ(G) = G2, G1 = 0.10 and G2 = 0.15 =⇒
|∆iSMw − ∆i∗| = 0.0043
|∆iFMw − ∆i∗| = 0.0056

=⇒
LFMw > LSMw .

B. Suppose ∆ĩ(G) = G3, G1 = 0.10 and G2 = 0.15 =⇒
|∆iSMw − ∆i∗| = 0.00060625
|∆iFMw − ∆i∗| = 0.00039375

=⇒
LFMw < LSMw .

ii. ∆ĩ(G1) < ∆i∗ =⇒
LFMw < LSMw because 0 = ∆iSMw < ∆iFMw ≤ ∆i∗.

(c) ∆ĩ(G1) ≤ G2∆ĩ(G2) =⇒
∆iFMw = G2∆ĩ(G2) (see (1.c)) and LFMw ≤ LSMw since

0 = ∆iSMw ≤ ∆iFMw < ∆i∗.
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Proof of lemma 1:

Suppose w.l.o.g. g1 ≤ g2 ≤ g3. If the region is divided into two regions by the

extended shock scenario (i.e. E = {ǫ(gα)} or E = {ǫ(gα + gβ)} (α 6= β, α, β = 1, 2, 3))

LFMw

E ≤ LSMw

E follows directly from corollary 1.2 Suppose that g3 < 1
2

and the union is

divided into three regions (Ej = {ǫ(gα), ǫ(gβ)} (α 6= β, α, β = 1, 2, 3)). Suppose g3 < 1
2
,

this implies, we have always the case, that G1 + G2 > 1
2

and G2 < 1
2
. This is generally

discussed in argumentation 1 of table 3.1 at point (2.) and we can conclude that

LFMw

E ≤ LSMw

E in this case. Now, only the case g3 = 1
2

is left, whereas the cases E =

{ǫ(g1), ǫ(g3)} and E = {ǫ(g2), ǫ(g3)} are also obtained by argumentation 1 of table 3.1

at point (2.). Thus E = {ǫ(g1), ǫ(g2)} with g1+g2 = g3 = 1
2

is the last case, which is left

over. This case satisfies the conditions of point (3.) in the argumentation 1 of table 3.1.

Here only for (a) and (b), it is possible to violate the inequality LFMw

Ej
≤ LSMw

Ej
. But

for (a), we have ∆iFMw = (g1 + g2)
2, ∆iSMw = 0 and ∆i∗ = g2

1 + g2
2, which implies

|∆iSMw−∆i∗|−|∆iFMw−∆i∗| = (g1−g2)
2 ≥ 0 and for (b) ∆iFMw = g1, ∆iSMw = 0 and

∆i∗ = g2
1 + g2

2, which implies |∆iSMw − ∆i∗| − |∆iFMw − ∆i∗| = 2(g2
1 + g2

2)
︸ ︷︷ ︸

≥ 1
4

− g1
︸︷︷︸

≤ 1
4

≥ 0

Proof of Proposition 7:

W.l.o.g. we assume that g1 ≤ g2 ≤ g3. For the ex ante comparison of the FMw-rule

and the SMw-rule, we have to determine the sign of E(∆LE) = E(LSMw

E − LFMw

E ).

With the uniform distribution and ∆ĩ(G) = A · G, we obtain from equation (3.18)

E(∆LE) =
∑

all E pE

[(
∆iSMw

E −∑allKi∈E
GKi

∆ĩKi

)2 −
(
∆iFMw

E −∑allKi∈E
GKi

∆ĩKi

)2
]

= A2p
∑

all E

[(
∆iSMw

E

A2 −∑allKi∈E
G2

Ki

)2

−
(

∆iFMw
E

A2 −∑allKi∈E
G2

Ki

)2
]

(6.4)

with p = pE = 1
#E

(#E := number of possible extended shock scenarios). We observe

that it is sufficient to show the proposition only for ∆i(G) = G since both decision

variables, ∆iSMw

E and ∆iSMw

E are both scaling with the linear parameter 1
A
.

We know, that LSMw

E − LFMw

E ≥ 0 if the union is only divided into two regions by a

shock (see corollary 1 and table 3.1). Additionally from lemma 1, it is sufficient to

proof this only for the case that g3 > 1
2
. This means, that we only have to deal with

points (1.) and (3.) in the argumentation 1 of table 3.1.

2We omitted the trivial cases of E = {ǫ(0)} and E = {ǫ(1)}.
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• The only candidates of E for 1.(b) with negative ∆LE are E = {ǫ(g1), ǫ(g3)}
and E = {ǫ(g2), ǫ(g3)}. But E = {ǫ(g1), ǫ(g3)} cannot satisfy the constraints of

1.(b), because g1 ≤ g2 ≤ g3 and g3 > 1
2

=⇒ g1 < 1
4

and g2
3 > 1

4
, which violates

the condition g2
3 = G2∆ĩ(G2) < ∆ĩ(G1) = g1. Thus, only E = {ǫ(g2), ǫ(g3)}

satisfying the conditions of 1.(b) remains for a negative ∆LE .

• The only candidate of E for 3.(a) and 3.(b) with negative ∆LE is E = {ǫ(g1), ǫ(g2)}.
But 3.(a) with ∆LE < 0 is not possible, because we would obtain

∆iFMw

E = (G1 + G2)∆ĩ(G1 + G2) = (g1 + g2)
2

∆iSMw

E = 0
∆i∗E = g2

1 + g2
2

(6.5)

which implies

|∆iSMw

E −∆i∗E |−|∆iFMw

E −∆i∗E | = g2
1 +g2

2 − [(g1 +g2)
2− (g2

1 +g2
2)] = (g1−g2)

2 ≥ 0

(6.6)

Thus only E = {ǫ(g1), ǫ(g2)} satisfying the conditions of 3.(b) remains for a

negative ∆LE .

In the following table, we summarize all extended shock scenarios E , the interest-rate

changes, applying the different decision rules, the optimal interest-rate change, and

the difference ∆LE between the losses of the FMw-rule and the SMw-rule. In order to

show, that E(∆LE) is positive, we must distinguish three cases:

1. Only ∆LE9 is negative.

2. Only ∆LE11 is negative.

3. ∆LE9 and ∆LE11 are simultaneously negative.

This distinction is necessary, because if ∆LE9 and ∆LE11 are simultaneously negative,

we have more constraints on g1, g2, and g3, than if they are separately negative.

1. If only ∆LE9 < 0 =⇒ E(∆LE) > 0.

This follows directly from the fact, that ∆LE9 is already outweighed by ∆LE4 and

∆LE8 :

∆LE4 + ∆LE8 + ∆LE9 = (g1 + g2)
2 + 2g1(1 − g1)g

2
2 > 0

2. If only ∆LE11 < 0 =⇒ E(∆LE) > 0.
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E ∆iFMw

E ∆iSMw

E ∆î∗E ∆LE sign

E1 = {ǫ(0)} 0 0 0 0 =
E2 = {ǫ(1)} 0 0 0 0 =
E3 = {ǫ(g1)} g2

1 0 g2
1 g4

1 +
E4 = {ǫ(g2)} g2

2 0 g2
2 g4

2 +
E5 = {ǫ(g3)} g2

3 g3 g2
3 [(1 − g3)g3]

2 +
E6 = {ǫ(g1 + g2)} (g1 + g2)

2 0 (g1 + g2)
2 (g1 + g2)

4 +
E7 = {ǫ(g1 + g3)} (g1 + g3)

2 (g1 + g3) (g1 + g3)
2 [(1 − g2)g2]

2 +
E8 = {ǫ(g2 + g3)} (g2 + g3)

2 (g2 + g3) (g2 + g3)
2 [(1 − g1)g1]

2 +
E9 = {ǫ(g1)ǫ(g2)} g1 0 g2

1 + g2
2 [(g2

1 + g2
2)]

2− ±
[g1 − (g2

1 + g2
2)]

2

E10 = {ǫ(g1)ǫ(g3)} g2
3 g3 g2

1 + g2
3 [g3 − (g2

1 + g2
3)]

2− +
[g2

3 − (g2
1 + g2

3)]
2

E11 = {ǫ(g2)ǫ(g3)} g2 g3 g2
2 + g2

3 [g3 − (g2
2 + g2

3)]
2 ±

−[g2 − (g2
2 + g2

3)]
2

Table 6.1:
”=” → ∆LE = 0 → SMw is as good as FMw, ”+” →∆LE > 0 → SMw is worse than
FMw, ”±” →∆LE

>
< 0 → SMw is ambiguous compared to FMw.

In order to proof this, we omit ∆LE9 and ∆LE10 , because they are both non-

negative in this case and therefore it is sufficient to show that3

∑8
j=1 ∆LEj

+ ∆LE11 > 0.

We define x := g1, y := g2 =⇒ g3 = 1 − x − y

V(x, y) :=
∑8

j=1 ∆LE + ∆LE11

= 4y4 + 4x4 + 8xy3 + 8x3y + 12x2y2 + 4y3 − 2x3 + 6xy2 + 2x2y

−10y2 − 3x2 − 12xy + 4x + 6y − 1
(6.7)

From the conditions of 1.(b), with G2 = g3 = 1 − x − y and G1 = g2 = y we

obtain
G2 > 1

2
=⇒ 1

2
> x + y

G2
2 < G1 =⇒ x > 1 − y −√

y
G1 ≤ (G1 + G2)

2 =⇒ y ≤ (1 − x)2

(6.8)

3To omit 9 and 10 in this case and 10 in case (3.) has no further reason, except that I had already
done many calculations with the sum of 1 to 8 and therefore realized at some point, that I can prove
my conjecture omitting 9 and 10 or 10.
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and thus the domain D of V(x, y) is given by

D :=

{

(x, y)

∣
∣
∣
∣

1

2
> x + y, x > 1 − y −√

y, y ≤ (1 − x)2, x ≥ 0, y ≥ 0

}

(6.9)

In order to show, that V(x, y) > 0 for (x, y) ∈ D, we start with the proof, that

Vx := ∂V
∂x

= 8y3 + 6y2 − 12y + 4
︸ ︷︷ ︸

aV (y)

+ 16x3 − 6x2 − 6x
︸ ︷︷ ︸

bV (x)

+ 24xy(x + y) + 4xy
︸ ︷︷ ︸

cV (x,y)

> 0

for (x, y) ∈ D̄ :=
{
(x, y)

∣
∣1
4
≥ x ≥ 0 , 1

2
≥ y ≥ 1

4

}

(6.10)

with D ⊆ D̄ (from (6.8) we have g3 > 1
2
∧ g2 > g3

3, which leads together with

g2 ≥ g1 ≥ 0 to 1
2
≥ y ≥ 1

4
and 1

4
≥ x ≥ 0).

With

ãV = 16y2 − 16y + 9
2

=⇒ aV − ãV = 8(y − 1
4
(y − 1

2
)) ≥ 0

b̃V = 2x2 − 7x =⇒ bV − b̃V = 16x(x − 1
4
)2 ≥ 0

c̃V = 10xy =⇒ cV − c̃V = (4(x + y) + 1)xy ≥ 0

(6.11)

we obtain Vx ≥ Ṽx := ãV + b̃V + c̃V for (x, y) ∈ D̄.

Observe that Ṽx(x, y) = 16y2 − 16y + 2x2 − 7x + 10xy + 9
2

((x, y) ∈ IR2) is a

paraboloid with a global minimum at (x∗, y∗) /∈ D̄, since

~∇Ṽx = 0 ⇐⇒ (x∗, y∗) =

(
16

7
,− 3

14

)

with Vx(x
∗, y∗) = −25

14
(6.12)

and

Hess(Ṽx(x
∗, y∗)) =

(
4 10
10 32

)

(6.13)

is positive definite, because Hess(Ṽx(x
∗, y∗)) has two positive eigenvalues4 λ1, λ2.

Since (x∗, y∗) /∈ D̄, we know that min(x,y)∈D̄{Ṽx} lies on the boundary of D̄. Since

D̄ is a closed rectangle in IR2, we have to compare the four minima lying on the

sides of D̄. From this, we obtain min(x,y)∈D̄{Ṽx} = 7
256

> 0 =⇒ Vx > 0 for

(x, y) ∈ D̄.

This proves, that V is increasing in x for (x, y) ∈ D̄.

Generally, we can show that V(0, y) > 0 for y ≥ 3
10

.

4Det
[

Hess(Ṽx(x∗, y∗)) − λ IE
]

= λ2 − 36λ + 28 =⇒ λ1, λ2 > 0, because
(

36
2

)2
= 324 > 28.
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V(0, y) = 4y4 + 4y3 − 10y2 + 6y − 1 (6.14)

is a Polynom of degree 4 (P (O4)) in y with the following properties:

(a) limy→±∞ V(0, y) = ∞.

(b) V (0,−3) = 107 > 0, V (0, 0) = −1 < 0, V (0, 13
44

) = 31333
937024

> 0

(c) cub4(V(0, y)) = 16399
13824

> 0

where cub4(P (O4)) is the discriminant of the associated cubic equation5 of

V(0, y) = 0.

From (c) follows that V(0, y) has only two real roots y1 and y2 (Cardano (1545)

and Ferrari (1545)) and from (b), we obtain −3 < y1 < 0 and 0 < y2 < 13
44

.

Together with (a), this implies that V(0, y) > 0 for y ≥ 3
10

> 13
44

and with Vx > 0

for (x, y) ∈ D̄ we end up with

V(x, y) > 0 for (x, y) ∈
{

(x, y)

∣
∣
∣
∣

1

4
≥ x ≥ 0 ,

1

2
≥ y ≥ 3

10

}

(6.15)

For y ≤ 3
10

, we incorporate to D̄ the constraint x > 1− y −√
y from the domain

D. Observe that 1 − y −√
y is decreasing in y, 1 − 3

10
−
√

3
10

> 1
10

and

V
(

1

10
, y

)

= 4y4 +
24

5
y3 − 232

25
y2 +

1207

250
y − 1579

2500
> 0 for y ≥ 1

4
(6.16)

5Suppose Pw(w) = w4 + aw3 + bw2 + cw + d (a, b, c, d, w ∈ IR). Within three steps, this polynom
is transformed into a polynom of degree 3 without a quadratic term:

Step 1 Pw is transformed into a polynom of degree 4 without a cubic term by w = x − a
4 =⇒

P x(x) = x4 + px2 + qx + r with p = b − 3a2/8 q = a3/8 − ab/2 + c
r = −(3a4 + 16a2b + 64ac − 256d)/256

Step 2 The cubic resolvent P y(y) of P x is given by P y(y) = y3 + αy2 + βy + γ with α = −2p
β = p2 − 4r γ = q2

Step 3 The cubic resolvent P y is transformed into a polynom of degree 3 without a quadratic term by
y = z − α

3 =⇒ P z(z) = z3 + p̃z + q̃ with p̃ = β − α2/3 q̃ = 2α3/27 − αβ/3 + γ

cub4(Pw) is then given by cub4(Pw) =
(

p̃
2

)3

+
(

q̃
2

)2

.
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because similar to equation (6.14), V
(

1
10

, y
)

has the following properties:

(a) limy→±∞ V( 1
10

, y) = ∞.

(b) V (0,−3) = 239411
2500

> 0, V ( 1
10

, 0) = −1579
2500

< 0, V ( 1
10

, 1
5
) = 19

2500
> 0

(c) cub4(V(0, y)) = 73408722673
1440000000000

> 0

((a)-(c) directly imply, that V
(

1
10

, y
)

> 0 for y ≥ 1
4
). Together with Vx > 0 for

(x, y) ∈ D̄ we obtain

V(x, y) > 0 for (x, y) ∈
{

(x, y)

∣
∣
∣
∣

1

4
≥ x ≥ 0,

3

10
≥ y ≥ 1

4
, x > 1 − y −√

y

}

(6.17)

and (6.15) together with (6.17) imply

V(x, y) > 0 for (x, y) ∈ D (6.18)

3. If ∆LE9 < 0 and ∆LE11 < 0 =⇒ E(∆LE) > 0.

Again, we omit ∆LE10 > 0 and show that
∑9

j=1 ∆LEj
+ ∆LE11 > 0.

With x := g1, y := g2 we obtain

V (x, y) :=
∑9

j=1 ∆LEj
+ ∆LE11

= 4y4 + 4x4 + 8xy3 + 8x3y + 12x2y2 + 4y3 + 8xy2 + 2x2y

−10y2 − 4x2 − 12xy + 4x + 6y − 1

(6.19)

From the conditions of 1.(b), with G2 = g3 = 1 − x − y and G1 = g2 = y we

obtain
G2 > 1

2
=⇒ 1

2
> x + y

G2
2 < G1 =⇒ x > 1 − y −√

y
G1 ≤ (G1 + G2)

2 =⇒ y ≤ (1 − x)2

(6.20)

and from the conditions of 3.(b) with G1 = g1 = x and G2 = g2 = y we obtain

G1 + G2 ≤ 1
2

=⇒ 1
2
≥ x + y

G2
2 < G1 =⇒ y2 < x

G1 ≤ (G1 + G2)
2 =⇒ y ≥ √

x − x
(6.21)

and thus the domain D of V (x, y) is given by
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D :=

{

(x, y)

∣
∣
∣
∣

1

2
> x + y, x > 1 − y −√

y, y ≤ (1 − x)2, y2 < x, y ≥ √
x − x, x ≥ 0, y ≥ 0

}

(6.22)

In order to show, that V (x, y) > 0 for (x, y) ∈ D, we start with the proof, that

Vx := ∂V
∂x

= 4(1 − 3y + 2y2 + 2y3)
︸ ︷︷ ︸

aV (y)

+ 16x3 − 8x
︸ ︷︷ ︸

bV (x)

+ 4xy + 24xy2 + 24x2y
︸ ︷︷ ︸

cV (x,y)

> 0

for (x, y) ∈ D̄ :=
{
(x, y)

∣
∣1
4
≥ x ≥ 1

16
, 1

2
≥ y ≥ 1

4

}

(6.23)

with D ⊆ D̄

(from (6.20) we have g3 > 1
2
∧ g2 > g3

3, which leads together with g2 ≥ g1 ≥ 0 and

g2
2 < g1 (see (6.21)) to 1

2
≥ y ≥ 1

4
and 1

4
≥ x ≥ 1

16
)

With

ãV = 17y2 − 152
10

y + 43
10

=⇒ aV − ãV = 8y3 − 9y2 + 16
5
y − 3

10
≥ 0

b̃V = 2x2 − 7x =⇒ bV − b̃V = 2x(4x − 1)(2x − 1) ≥ 0

c̃V = 10xy =⇒ cV − c̃V = (24(x + y) − 15
2
)xy ≥ 0

(6.24)

we obtain Vx ≥ Ṽx := ãV + b̃V + c̃V for (x, y) ∈ D̄.

• aV − ãV ≥ 0 because ∆aV := aV − ãV is a polynom of degree 3 (P (O3)) in

y with the following properties:

(a) limy→±∞ ∆av = ±∞.

(b) ∆av(0) = − 3
10

< 0, ∆av(
2
5
) = 13

250
> 0

(c) cub3(∆av) = 331
27648000

> 0

where cub3(P (O3)) is the discriminant of the cubic equation6 ∆av = 0.

From (c) follows that ∆av has exactly one real root (Cardano (1545)) y1

with 0 < y1 < 2
5

(see (b)) and together with (a) this implies that ∆av ≥ 0

for y ≥ 1
4

> 2
5
.

• bV − b̃V ≥ 0 because ∆bV := bV − b̃V is a polynom of degree 3 with three

real roots at x1 = 0, x2 = 1
4

and x3 = 1
2

and since limx→±∞ = ±∞, ∆bV

must be non-negative for x ∈ [x1, x2] = [0, 1
4
].

6Suppose P (w) = w3 + αw2 + βw2 + γ (α, β, γ, w ∈ IR), then cub3(P ) =
(

p̃
2

)3

+
(

q̃
2

)2

with

p̃ = β − α2/3 q̃ = 2α3/27 − αβ/3 + γ (see also footnote 5).
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• cV − c̃V ≥ 0 because min(x,y)∈D{24(x + y)} = 24(1
4

+ 1
16

) = 15
2
.

Observe that Ṽx(x, y) = 17y2 − 76
5
y + 12x2 − 10x + 23

2
xy + 43

10
((x, y) ∈ IR2) is a

paraboloid with a global minimum at (x∗, y∗) ∈ D̄ with Ṽx(x
∗, y∗) > 0, since

~∇Ṽx = 0 ⇐⇒ (x∗, y∗) =

(
4996

12675
,

3304

13675

)

with Ṽx(x
∗, y∗) =

43129

136750
(6.25)

and

Hess(Ṽx(x
∗, y∗)) =

(
34 23

2
23
2

24

)

(6.26)

is positive definite, because Hess(Ṽx(x
∗, y∗)) has two positive eigenvalues7 λ1, λ2.

Since the global minimum is positive and lies within D̄, we obtain directly V is

increasing in x for x ∈ D̄.

Additionally, V ( 1
16

, y) => 0 is a polynom of degree 4 with the following proper-

ties:

(a) limy→±∞ V(0, y) = ∞.

(b) V ( 1
16

,−3) => 1634393
16384

, V ( 1
16

, 0) = −12487
16384

< 0, V (0, 23
100

) = 43919521
6400000000

> 0

(c) cub4(V(0, y)) = 40110380749
824633720832

> 0

From (c) follows that V ( 1
16

, y) has only two real roots y1 and y2 and from (b),

we obtain −3 < y1 < 0 and 0 < y2 < 23
100

. Together with (a), this implies that

V ( 1
16

, y) > 0 for y ≥ 1
4

> 23
100

and with Vx > 0 for (x, y) ∈ D̄ it is shown that

V (x, y) > 0 for (x, y) ∈ D.

7Det
[

Hess(Ṽx(x∗, y∗)) − λ IE
]

= λ2 − 58λ + 2735
4 =⇒ λ1, λ2 > 0, because 582 = 3364 > 2735.
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Proof of proposition 8:

We start with the proof of (i) and w.o.l.g. GK+ ≥ GK− throughout the whole proof.

Observe in voting stage 1, the regions K+ and K− vote always for their preferred direc-

tion of interest-rate changes, because these regions cannot gain anything by deviating

to another direction or by abstention, taking into account the decision of the other

regions. This implies, that the region, which prefers to retain the status quo, in the

following denoted by K= = N \ {K+,K−} takes into account, that the affected re-

gions vote for their preferred direction of interest-rate changes. This implies, that if

K= chooses abstention ∆i = GK+∆ĩ(GK+)−GK−∆ĩ(GK−) is the implemented interest-

rate change after voting stage 2, because K+ is winning voting stage 1 and since the

preferred interest-rate change ∆ĩ(GK+) of region K+ is larger than

∆iFME±

w = GK+∆ĩ(GK+) − GK−∆ĩ(GK−)

the maximum possible interest-rate change, then ∆iFME±

w is implemented, since Ḡ =

G−
K. In order to calculate the best response of K=, we distinguish between three cases:

1. GK= > 1
2
:

Suppose K= votes for raising interest rates, then raising wins voting stage 1 and

∆i = GK+∆ĩ(GK+)−GK−∆ĩ(GK−) is the implemented interest-rate change, which

equals the outcome of abstention.

Suppose K= votes for lowering interest rates, then lowering wins voting stage 1

and interest rates are not changed in voting stage 2, because region K− cannot

lower interest rates, because GK−∆ĩ(GK−)− Ḡ∆ĩ(Ḡ) > 0 and GK+ = Ḡ. But no

interest-rate change is the preferred interest rate of K= and therefore improves

the outcome of K= compared to abstention. This implies, that region K= has an

incentive to vote together with the smaller region in voting stage 1. But since

voting in voting stage 1 is secret, K= does not know, which is the right direction.

But additionally voting together with the larger affected region does not worsen

the outcome of K=. This implies that K= randomly chooses to raise or to lower

interest rate rates.

2. GK+ > 1
2
: Suppose K= votes for raising interest rates, then again

∆i = GK+∆ĩ(GK+) − GK−∆ĩ(GK−) is implemented in voting stage 2.

Suppose K= votes for lowering interest rates, then still raising wins voting stage

1. But interest rates are changed only up to

∆i = GK+∆ĩ(GK+) − (GK= + GK−)∆ĩ(GK= + GK−) since now Ḡ = GK− + GK= .

This also improves the outcome for K= compared to abstention. But again K=
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cannot be sure about the right direction and therefore randomly chooses to raise

or to lower interest rates.

3. GK+ , GK− , GK= ≤ 1
2
:

By the same argumentation as in (1.) K= randomly chooses to raise or to lower

interest rates.

Altogether, we obtain as possible outcomes which are not first-best (see equation 3.27),

∆i = 0 in cases of GK+ 6= GK− (see (1.) and (3.)) and

∆i = GK+∆ĩ(GK+)− (GK= + GK−)∆ĩ(GK− + GK=) (see (2.)). This proofs (i) of propo-

sition 8.

Now we compare the possible outcomes calculated in (1.)-(3.) with the outcomes of

the SMw-rule in order to proof (ii). First, we directly observe that if the FME±

w -two-

stage-rule implements first-best, this can never be worse than the outcome of SMw.

Therefore, we have only to consider the three cases in which the outcome of FME±

w -

two-stage-rule can differ from first-best.

1. GK= > 1
2

and the FME±

w -two-stage-rule implements ∆i = 0, then this coincides

with the outcome of SMw, since the region K= wins the SMw vote.

2. GK+ > 1
2

and the FME±

w -two-stage-rule implements

∆i = GK+∆ĩ(GK+)− (GK= +GK−)∆ĩ(GK− +GK=). In this case SMw implements

∆i = ∆ĩ(GK+) the preferred interest-rate change of region K+ since GK+ > 1
2
.

Considering equation 3.26 it is sufficient to compare the absolute deviation of the

outcome of SMw (i.e. ∆ĩ(GK+)) from the optimal interest-rate change ∆i∗E± with

the deviation of the outcome of the FME±

w -two-stage-rule

(i.e GK+∆ĩ(GK+)− (GK= + GK−)∆ĩ(GK− + GK=)) from the optimal interest-rate

change ∆i∗E± . This directly implies

|∆ĩ(GK+) − (GK+∆ĩ(GK+) + GK−∆ĩ(GK−))|−

|GK+∆ĩ(GK+) + (GK= + GK−)∆ĩ(GK= + GK−)−

(GK+∆ĩ(GK+) + GK−∆ĩ(GK−))| > 0
⇐⇒

(1 − GK+)(∆ĩ(GK+) − ∆ĩ(1 − GK+)) > 0

which is true since GK+ > 1
2

and ∆ĩ(x) strictly monotonically decreasing for x ≤ 0

and strictly monotonically increasing for x ≥ 0.
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3. GK+ , GK− , GK= ≤ 1
2

no region has a majority and therefore interest rates are not

changed under the SMw, which coincides with the possible non-first-best outcome

of the FME±

w -two-stage-rule.

Altogether we have shown that FME±

w -two-stage-rule is never worse than the SMw.
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6.2 B Examples

6.2.1 Baseline-Model

We consider a monetary union consisting of three countries and economic weights of

g1 = 0.1, g2 = 0.2 and g3 = 0.7. Applying the ordering according to (2.26), we obtain

G(1) = 0, G(2) = 0.1, G(3) = 0.2, G(4) = 0.3, G(5) = 0.7, G(6) = 0.8, G(7) = 0.9,

and G(8) = 1. Furthermore, we assume that ∆i
(
GK

)
= 10GK and that all shocks are

uniformly distributed, which implies that pK = 1
8

for all K. The social losses in every

shock scenario of the simple majority rules SMnw and SMw can directly be calculated

from equations (2.14) and (2.17). The calculation for the flexible majority rules follows

equation (2.19) for FMnw, equation (2.33) for FMnw′ , equation (2.35) for FMnw′′ , and

equation (2.25) for FMw. Explicitly we obtain

αFMnw(∆î) =







0 if ∆î = 0
1
3

if 0 < ∆î ≤ 0.1
2
3

if 0.1 < ∆î ≤ 8.1

1 if 8.1 < ∆î

(6.27)

αFMnw′ (∆î) =







0 if ∆î = 0
1
3

if 0 < ∆î ≤ 0.2
2
3

if 0.2 < ∆î ≤ 7.2

1 if 7.2 < ∆î

(6.28)

αFMnw′′ (∆î) =







0 if ∆î = 0
1
3

if 0 < ∆î ≤ 2.65
2
3

if 2.65 < ∆î ≤ 7.25

1 if 7.25 < ∆î

(6.29)

αFMnw′′ (∆î) =







0 if ∆î = 0

0.1 if 0 < ∆î ≤ 0.1

0.2 if 0.1 < ∆î ≤ 0.4

0.3 if 0.4 < ∆î ≤ 0.9

0.7 if 0.9 < ∆î ≤ 4.9

0.8 if 4.9 < ∆î ≤ 6.4

0.9 if 6.4 < ∆î ≤ 8.1

1 if 8.1 < ∆î

(6.30)

In the following table, we compare all six different decision by means of their outcome

in all shock scenarios K and in the last row we calculate the expected social losses.
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GKj
∆i (GK) n LSMnw

K LSMw

K LFMnw

K LFMnw′

K LFMnw′′

K LFMw

K

0 0 0 0 0 0 0 0 0
0.1 1 1 0.1 0.1 0.09 0.1 0.09 0.09
0.2 2 1 0.8 0.8 0.73 0.68 3.2 0.64
0.3 3 2 6.3 2.7 6.3 6.3 6.3 1.89
0.7 7 1 34.3 14.7 33.33 32.38 15.3525 10.29
0.8 8 2 12.8 12.8 12.8 10.88 10.9625 10.24
0.9 9 2 8.1 8.1 7.29 8.1 8.0125 7.29
1 10 3 0 0 0 0 0 0

E[LK] 7.8 4.9 7.5675 7.305 5.4897 3.805

Table 6.2: Comparison of the outcomes of the different decision rules.

6.2.2 Transparency

In order to illustrate our results, we list the different welfare outcomes for parameter

values for a large (figure 6.3) and a small shock (figure 6.4). There we can see, that

indeed the outcome of OP1 in combination with FMw has the lowest overall social

losses, if we restrict ∆i and ∆ie to non-negative values. In the tables 6.3 and 6.4, we

provide the corresponding values for ∆i and ∆ie and L in the parameter setups with

A := 1/3 B := 1 β := 1 C := 1 p := 1/3, where we set G := 1/3 and ǫ(1/3) := 1 for

the small shock and G := 2/3 and ǫ(2/3) := 2 for the large shock.

Large shock (G = 2
3
): L(∆i, ∆ie, 2) = (∆i − 1

3
∆ie − 4

3
)2 + (∆ie + 4

3
)2 + 16

9

OP1 TP OP2 First Best

SMw

∆i 2 3 58
21

8
9

∆ie 0 3 16
7

-4
3

L 4 21 2252
147

16
9

FMw

∆i 4
3

4
3

4
3

8
9

∆ie 0 4
3

16
7

-4
3

L 32
9

736
81

2272
147

16
9

Table 6.3:
Social losses, expected interest-rate changes, and finally implemented interest-rate

changes in the case of a large shock.
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Small shock (G = 1
3
): L(∆i, ∆ie, 1) = (∆i − 1

3
(∆ie + 1))2 + (∆ie + 1

3
)2 + 4

9

OP1 TP OP2 First Best

SMw

∆i 0 0 1
12

2
9

∆ie 0 0 1
4

−1
3

L 2
3

2
3

43
48

4
9

FMw

∆i 1
3

1
3

1
3

2
9

∆ie 0 1
3

1
4

−1
3

L 5
9

73
81

19
24

4
9

Table 6.4:
Social losses, expected interest-rate changes, and finally implemented interest-rate

changes in the case of a small shock.

•
U

First Best

•

*

OP1(SMw)

•

W

OP1(FMw)

•?

TP (FMw)

•�

OP2(FMw)

•
6

OP2(SMw)

•
K

TP (SMw)

∆i

∆ie

L

Figure 6.3:
Overall social losses, in the case of a large shock.
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•
R

First Best

•
3

OP1(FMw)

•U

OP1(SMw)

•�

TP (SMw)

•
O

OP2(FMw)

•
o

TP (FMw)

•?

OP2(SMw)

∆i

∆ie

L

Figure 6.4:
Overall social losses, in the case of a small shock.
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