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Abstract. Subject of this paper is an analysis of the behavior of the pres-
sure on dynamically changing spatial meshes during the computation of
nonstationary incompressible flows. In particular, we are concerned with
discontinuous Galerkin finite element discretizations in time. Here it is
observed that whenever the spatial mesh is changed between two time
steps the pressure in the next time step will diverge with order k−1. We
will proof that this behavior is due to the fact, that discrete solenoidal
fields lose this property under changes of the spatial discretization. In
addition we will numerically study the fractional-step-θ scheme, and
discuss why the divergence is not observed when using this time dis-
cretization. Finally we will derive a possible way to circumvent this
problem.
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1. Introduction

In this paper, we consider nonstationary incompressible flows described by
the incompressible Navier-Stokes equations, given in the dimensionless form
as

∂tv − ν∆v + (v · ∇)v + ∇p = f in I × Ω,

∇ · v = 0 in I × Ω,

v(0) = v0 in Ω

(1.1)

with a time interval I = (0, T ), computational domain Ω ⊆ R
d, d ∈ { 2, 3 },

kinematic viscosity ν, volume forces f , and initial values v0. These equations
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have to be supplemented by appropriate boundary conditions. For sake of
simplicity, we will consider no-slip Dirichlet boundary conditions.

The computational costs of numerically solving nonstationary flow prob-
lems are comparatively high due to the complex structure of such problems,
especially when dealing when three-dimensional geometries. Thus, it is crucial
to apply adaptive refinement techniques to reduce the size of the approxima-
tive problem without reducing the accuracy of the approximation. To be most
efficient in capturing the dynamics of a nonstationary flow problem, it seems
desirable to use so-called dynamic meshes for the discretization in space. That
is, one uses possibly different meshes for different time points. Thus, one can
efficiently resolve and track fronts marching through the domain, for example.

Adaptive methods are widely used in the context of finite element dis-
cretizations of partial differential equations, see, for example, [34] or [14] for
an overview. Applications to nonstationary incompressible flow problems can
be found, e. g., in [2], [21], or [5, 29]. However, while the usage of dynamically
changing spatial meshes seems straight forward in the context of Galerkin
finite element discretizations, it provides some pitfalls if one is interested in
the approximation of the pressure. The aim of this paper is to describe and
analyze this problem and to present a way to circumvent it. The results pre-
sented in this paper have been developed to a great extent in the PhD thesis
of the first author, see [29].

The discretization of the nonstationary incompressible Navier-Stokes
equations (1.1) will be done by means of space-time finite element methods.
To this end, we state the variational formulation of (1.1) which reads as
follows: For f ∈ L2(I, H−1(Ω)d) and v0 ∈ L2(Ω)d find u := (v, p)T ∈ X
such that
∫

I

{
(∂tv,ψ) + ν(∇v, ∇ψ) + ((v · ∇)v,ψ) − (p, ∇ ·ψ) + (∇ · v, χ)

}
dt

+ (v(0) − v0,ψ(0)) =

∫

I

(f ,ψ) dt ∀ϕ := (ψ, χ)T ∈ X, (1.2)

where (·, ·) denotes the inner product on L2(Ω) (or L2(Ω)d) and the space
X is given as

X :=
{
u = (v, p)T

∣∣∣ v ∈ L2(I, H1
0 (Ω)d), ∂tv ∈ L2(I, H−1(Ω)d),

p ∈ L2(I, L2(Ω)/R)
}

.

For questions on existence and uniqueness of solutions, we refer to [30].

Remark 1.1. In applications, we will sometimes be confronted with configu-
rations in which Dirichlet boundary conditions for the velocity are not pre-
scribed on the whole boundary. Instead, there will be some part Γout of the
boundary representing an outlet. Then, we apply natural boundary condi-
tions on Γout:

ν∂nv − pn = 0.
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This type of boundary condition implicitly normalizes the pressure such that
it is already uniquely determined without the usual mean value constraint.
Hence, the spaces in which the solutions are sought have to be modified to

v ∈
{
v ∈ H1(Ω)d

∣∣∣ v
∣∣
∂Ω\Γout

= 0

}
, p ∈ L2(Ω).

For more information on this free outflow boundary condition as well as
results concerning existence and uniqueness of solutions, we refer to [20].

The rest of this paper is structured as follows. We start by describing
the discretization of the nonstationary Navier-Stokes equations in Section 2.
Then, in Section 3 we will consider a well known benchmark problem to illus-
trate the behavior of the pressure once the spatial discretization is changed
over time. That section concludes by stating a model problem that exhibits
the same behavior. We then analyze the behavior both numerically as well
as analytically in Section 4. This articles concludes with Section 5 where we
will demonstrate how the problem can be circumvented.

2. Discretization

In this section, we describe the discretization of the weak formulation of the
time-dependent incompressible Navier-Stokes equations (1.2). The discretiza-
tion in space as well as in time will be done by means of Galerkin finite
element methods.

2.1. Discretization in time

For the semi-discretization in time, we use discontinuous Galerkin (dG) meth-
ods. To this end, we partition the time interval Ī = [0, T ] into

Ī = {0} ∪ I1 ∪ · · · ∪ Im ∪ · · · ∪ IM

with subintervals Im := (tm−1, tm] of length km := tm − tm−1 using time
points

0 = t0 < t1 < · · · < tm < · · · < tM = T.

The discretization parameter k is given as a piecewise constant function by
setting k

∣∣
Im

:= km for m = 1, . . . , M .

The dG(r) semi-discretization of the incompressible Navier-Stokes equa-
tions (1.2) then seeks a solution uk = (vk.pk)T which is piecewise polynomial
of degree r on each subinterval Im. For further details, we refer to [31] or
[5, 29].

Remark 2.1. Due to the discontinuity of the test functions, the dG(r) dis-
cretizations decouple into time stepping schemes. For example, the dG(0)
discretization is a variant of the backward Euler method, while the dG(1)
discretization, after applying quadrature rules to the temporal integrals, cor-
responds to some implicit Runge-Kutta method.
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2.2. Discretization in space

For the discretization in space of the semi-discrete problems obtained in the
previous subsection, we use continuous Galerkin (cG) methods. To this end,
we use two- or three-dimensional shape-regular meshes, see, e. g., [10]. A mesh
consists of quadrilateral or hexahedral cells K which form a non-overlapping
cover of the computational domain Ω ⊆ R

d, d ∈ { 2, 3 }. The corresponding
mesh is denoted by Th = { K }, where the discretization parameter h is
defined as a cellwise constant function by setting h

∣∣
K

= hK with the diameter
hK of the cell K.

Remark 2.2. In order to ease mesh refinement, we allow cells to have nodes
which lie on midpoints of faces or edges of neighboring cells. But at most one
such hanging node is permitted on each face or edge. There are no degrees
of freedom corresponding to these irregular nodes and the value of a finite
element function is determined by pointwise interpolation, see [9] for more
details.

On the mesh Th, we construct a conforming finite element space V s
h ⊂

H1(Ω) in a standard way:

V s
h :=

{
v ∈ C(Ω)

∣∣∣ v
∣∣
K

∈ Qs(K) for K ∈ Th

}
⊆ H1(Ω),

where Qs(K) denotes the space of isoparametric elements of degree s.
To obtain the formulation of the fully discrete problem, we allow dy-

namic mesh change in time, but the time steps km are kept constant in space.
To this end, we associate with each time point tm a mesh T m

h and correspond-
ing (spatial) finite element spaces V sv,m

h and V
sp,m

h . Finally, we set

Hm
h := V sv,m

h ∩ H1
0 (Ω) and Lm

h := V
sp,m

h ∩ L2(Ω)/R.

Then, the cG(s)dG(r) discretization seeks a solution ukh = (vkh, pkh)T with
ukh

∣∣
Im

∈ Pr(Im, (Hm
h )d × Lm

h ) for each m = 1, . . . , M . More details can be

found again in [5, 29].

Remark 2.3. The notation cG(s)dG(r), representing a space-time finite el-
ement discretization with continuous piecewise polynomials of degree s in
space and discontinuous piecewise polynomials of degree r in time, is taken
from [15].

2.3. Stabilization

The fully discrete formulation does not lead to a stable approximation of
problem (1.2) unless the spatial finite element spaces Hm

h and Lm
h fulfill

the Babuška-Brezzi inf-sup-stability condition. This condition states (see, for
example, [17]) that there is a constant β independent of h such that

inf
ph∈Lm

h

sup
vh∈(Hm

h
)d

(ph, ∇ · vh)

‖ph‖ ‖∇vh‖
≥ β > 0. (2.1)

Especially the cases of equal-order trial spaces, i. e., sv = sp = s, which are fa-
vorable from the implementational point of view, do not fulfill condition (2.1).
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To obtain stable approximations, one has to use mixed finite element meth-
ods like the Taylor-Hood element (sv = 2, sp = 1, for example). For more
details on this topic, we refer to [22] and [7] or [17]. Alternatively one may
add stabilization terms. For implementational reasons, we use equal-order
trial spaces and apply the so-called local projection stabilization (LPS), see,
e. g., [3, 4].

For the computation of the subsequent examples we used the two finite
element packages deal.II [13] and Gascoigne [16].

3. Problem description and reduction to a model problem

In this section, we discuss a particular problem which arises when using dy-
namic meshes in the approximation of solutions of the incompressible Navier-
Stokes equations. The outline of this section is as follows: In the first Sub-
section 3.1, we present a simulation of the benchmark problem “Laminar
Flow Around a Cylinder“ (see [28]) using the cG(1)dG(1) discretization on
dynamic meshes. We are then concerned to consider a simpler model problem
in order to analyze the effects. Hence, in Subsection 3.2, we show that the ef-
fects shown in Subsection 3.1 are not specifically related to the Navier-Stokes
equations, but can already be seen when solving the linear Stokes equations
on dynamic meshes. We will see that while the approximations of the ve-
locities are quite satisfactory, the approximation of the pressure on dynamic
meshes deteriorates.

3.1. Description of the problem

In this subsection, we aim at computing the lift-coefficient in the two-dimen-
sional benchmark problem “Laminar Flow Around a Cylinder”, see [28] for
a detailed description of the setting as well as the precise formula for the
lift-coefficient.

The time-dependent inflow condition is given by

v1(t,x) =
6 sin( πt

8 s )

(0.41 m)2
x2(0.41 m − x2) m s−1, v2(t,x) = 0 m s−1

which yields a time-dependent Reynolds number of 0 ≤ Re(t) ≤ 100 for t ∈
I = (0 s, 8 s). On the outflow boundary, we apply the “do nothing” boundary
condition, see [20]. On the remaining part of the boundary, no-slip boundary
conditions are employed.

In this example, we apply the cG(1)dG(1) discretization. After five it-
erations of adaptive temporal and spatial refinement using dynamic meshes,
following [5, 29], the temporal evolution of the lift-coefficient looks as depicted
in Figure 1.

We note slight oscillations in the lift-coefficient, for example, near t =
7.25 s. Further investigations in Section 3.2 show that such oscillations espe-
cially occur when switching from one spatial mesh to another. In the following
sections, we are going to numerically analyze these oscillations.
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Figure 1. Lift-coefficient clift after five adaptation cycles

3.2. Reduction to model problem

In this section, we will show that the oscillations in the lift-coefficient shown
in the last section are caused by errors located solely in the discrete pressure
when switching from one spatial mesh to another. This effect can already be
observed when solving the linear Stokes equations instead of the nonlinear
Navier-Stokes equations. Furthermore, these errors also arise when applying
uniform refinement of a mesh. We state a model problem on a polygonally
bounded domain in order to avoid special effects from the approximation of
a curved boundary.

Let us first show that the arising problems are not related to the time-
dependent inflow boundary condition. To this end, we remove the oscillatory
sine-term from the inflow condition and reduce the inflow velocity to

v1(t,x) =
1.2

(0.41 m)2
x2(0.41 m − x2) m s−1, v2(t,x) = 0 m s−1.

This yields a constant Reynolds number of Re = 20 with a stationary solution.
Since the effects we want to study can already be seen when working with
the simplest temporal discretization, we apply the cG(1)dG(0) discretization
which here coincides with the backward Euler scheme since there are no forces
f depending on time. We again focus on computing the lift-coefficient whose

reference value in this configuration is given as c
(ref)
lift = 0.010618948146, see,

for example [26].

We use the time interval I = (0 s, 8 s) with different spatial meshes.
Denoting the meshes on (2 s, 4 s] ∪ (6 s, 8 s] with Th, we use the mesh T2h on
[0 s, 2 s]∪(4 s, 6 s]. That is, we perform uniform refinement of the spatial mesh
at t = 2 s and t = 6 s, whereas at t = 4 s uniform coarsening is applied. The
evolution of the lift-coefficient for a uniform time step size of k = 1.5625 ·
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Figure 2. Temporal evolution of the lift-coefficient

(a) Mesh T2h

(b) Mesh Th

Figure 3. Spatial meshes used for the computation of the
lift-coefficient

10−3 s on the time interval [0.5 s, 8 s] is shown in Figure 2. We neglect the
beginning of the time interval where a singularity in the pressure evolves for
t → 0 due to compatibility conditions that are not fulfilled with the initial
condition v0 = 0, see, for instance, [19]. The spatial meshes T2h and Th used
in these computations are depicted in Figure 3.

We observe that precisely in the first time step on the new mesh the lift-
coefficient deteriorates. We also note that these errors are even larger than
in the example presented in the previous subsection.

In the remaining part of this section, we will show that these errors
occurring when switching the spatial mesh are solely located in the discrete
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pressure. Furthermore, we will show that these effects are not specifically re-
lated to the nonlinearity of the Navier-Stokes equations or to higher Reynolds
numbers, but also arise when solving the linear Stokes equations with ν = 1.
Therefore, we introduce a linear model problem with known analytical (sta-
tionary) solution on a polygonally bounded domain. This simple setting al-
lows us to study the phenomenon presented here. For sake of simplicity, we
use the cG(1)dG(0) discretization here, too.

Hence, we want to find (v, p)T such that

∂tv − ∆v + ∇p = f in I × Ω,

∇ · v = 0 in I × Ω,

v = 0 in { 0 } × Ω,

v = 0 on I × ∂Ω.

(3.1)

Further, let I = (0, 9) and Ω = (−1, 1)2. Let f be given in such a way
that (3.1) possesses the stationary solution

v(x) =

(
cos2( πx1

2 ) cos( πx2

2 ) sin( πx2

2 )
− cos( πx1

2 ) sin( πx1

2 ) cos2( πx2

2 )

)
,

p(x) = cos( πx1

2 ) sin( πx1

2 ) cos( πx2

2 ) sin( πx2

2 ).

We subdivide Ī = I(1) ∪ I(2) ∪ I(3) with

I(1) = [0, 3], I(2) = (3, 6], I(3) = (6, 9].

On I(1) and I(3) we use a uniform spatial mesh of cell size 2h, whereas on
the subinterval I(2) a uniform spatial mesh of cell size h is used. That is, we
switch the spatial mesh uniformly from 2h to h at t = 3 and from h to 2h at
t = 6. The subintervals are chosen long enough for the discrete solution to
reach the stationary limit on each mesh.

The errors
∥∥∇(v − vkh)

∥∥ and ‖p − pkh‖ for a uniform step size of k ≈

2 · 10−4 and mesh size h = 2−4 are shown in Figure 4. As we can see, both
the velocity and the pressure approximation show a transient phenomenon
when switching the spatial mesh. However, while the approximation of the
velocity component is quite satisfactory, the transient phenomenon in the
pressure component is superposed by an additional error which causes the
approximation of the pressure to deteriorate under a change of the spatial
mesh, see Figure 5. The larger errors near t = 0 stem from the fact that
we do not start the simulation with the stationary solution, but rather with
v0 = 0. Hence the error compared to the stationary limit is large.

In the next section, we will further analyze how these errors behave
under systematic refinement of the temporal and spatial discretization.

4. Analysis of the problem

Subsection 4.1 focuses on the precise numerical analysis of the error that oc-
curs after changing the spatial mesh. To this end, we apply the cG(s)dG(0)
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Figure 5. Errors
∥∥∇(v − vkh)

∥∥ (left) and ‖p − pkh‖ (right)
near t = 6

and the cG(s)dG(1) discretization to our model problem. We especially inves-
tigate the behavior of the error under systematic refinement of the temporal
and the spatial discretization. Furthermore, we present some results using
the inf-sup-stable Q2/Q1-Taylor-Hood element (see, for instance, [22]) for
the spatial discretization to show that the effects are not induced by stabiliza-
tion. Finally in Subsection 4.2, we analytically investigate the phenomenon
discussed in this article.

4.1. Behavior of the error under temporal and spatial refinement

In this subsection, we numerically analyze the behavior of the error described
in the last section. We especially consider systematic uniform refinement of
the temporal and spatial discretization. The analysis will be done by means
of the model problem presented in the previous section. Thereby, we are
going to consider the equal-order cG(1) and cG(2) discretizations in space
together with the local projection stabilization as well as the inf-sup-stable
Q2/Q1-Taylor-Hood element. For the temporal discretization we will apply
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Table 1. ‖p − pkh‖ under spatial refinement for the dG(0)
time discretization with different spatial discretizations

level cG(1) cG(2) Q2/Q1

t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.88·10−1 4.94·10−1 2.44·10−2 5.47·10−2 2.95·10−2 5.19·10−2

2 5.67·10−2 1.82·10−1 3.41·10−3 1.21·10−2 2.81·10−3 9.15·10−3

3 1.89·10−2 5.74·10−2 7.45·10−4 2.95·10−3 5.24·10−4 2.08·10−3

4 6.00·10−3 1.77·10−2 1.84·10−4 7.36·10−4 1.27·10−4 5.10·10−4

order 1.66 1.70 2.02 2.00 2.04 2.03

the dG(0) and dG(1) method as well as the fractional-step-θ scheme, which is
a popular time-stepping scheme often used in computational fluid dynamics,
see [8], [18], [25] or [32, 33].

In what follows, the behavior of the error in the pressure under sys-
tematic uniform refinement of the spatial or the temporal discretization is
studied for different spatial and temporal discretizations. Since the error is
concentrated to the first time step on a new mesh, we especially focus on its
development there.

4.1.1. Spatial refinement. This subsection is dedicated to the numerical anal-
ysis of the error in the pressure under uniform refinement of the spatial dis-
cretization. To this end, we fix the temporal discretization which is either the
dG(0), dG(1), or fractional-step-θ method. We always use a uniform time
step size of k = 3 · 10−2. As in the previous section, we use the mesh T2h on
I(1) and I(3), whereas on I(2) the mesh Th is used. We study the development
of the error in the pressure component for h → 0.

When using the dG(0) discretization in time, we obtain the results
shown in Table 1. The corresponding results for the dG(1) time discretiza-
tion are given in Table 2. Using the fractional-step-θ scheme for the temporal
discretization leads to the results which are presented in Table 3. Since the
mesh size of the initial coarse grid is h = 1

4 , refinement level 1 corresponds to

h = 1
8 and 2h = 1

4 , refinement level 2 corresponds to h = 1
16 and 2h = 1

8 , etc.
The orders of convergence given in the last lines are numerically computed
from the values on the two finest discretizations.

We can conclude that the error in the pressure component in the first
time step on a new spatial mesh converges for h → 0 (at least) with the same
order as the overall spatial discretization error.

4.1.2. Temporal refinement. In this subsection, the development of the pres-
sure error under systematic uniform refinement of the temporal discretization
is considered, that is we consider the case k → 0. To this end, we fix the spatial
discretization which is either the equal-order cG(1) or cG(2) method together
with local projection stabilization or the inf-sup-stable Q2/Q1-Taylor-Hood
element. The spatial mesh Th used on the subintervals I(2) is given by two
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Table 2. ‖p − pkh‖ under spatial refinement for the dG(1)
time discretization with different spatial discretizations

level cG(1) cG(2) Q2/Q1

t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 4.51·10−1 4.78·10−1 4.34·10−2 4.53·10−2 5.41·10−2 3.85·10−2

2 3.96·10−2 1.31·10−1 4.53·10−3 1.19·10−2 4.28·10−3 8.74·10−3

3 1.51·10−2 4.87·10−2 7.75·10−4 2.95·10−3 5.68·10−4 2.07·10−3

4 5.81·10−3 1.73·10−2 1.85·10−4 7.36·10−4 1.28·10−4 5.10·10−4

order 1.38 1.49 2.07 2.00 2.15 2.02

Table 3. ‖p − pkh‖ under spatial refinement for the
fractional-step-θ time discretization with different spatial dis-
cretizations

level cG(1) cG(2) Q2/Q1

t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 8.00·10−2 3.45·10−1 1.04·10−2 4.43·10−2 9.27·10−3 4.46·10−2

2 3.27·10−2 1.40·10−1 2.51·10−3 9.76·10−3 2.11·10−3 8.72·10−3

3 1.34·10−2 4.24·10−2 6.25·10−4 2.39·10−3 5.33·10−4 2.07·10−3

4 5.15·10−3 1.40·10−2 1.50·10−4 5.96·10−4 1.28·10−4 5.10·10−4

order 1.38 1.60 2.06 2.00 2.06 2.02

Table 4. ‖p − pkh‖ under temporal refinement for the
cG(1) discretization with different temporal discretizations

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 3.12·10−1 5.16·10−1 4.75·10−1 6.39·10−1 1.04·10−1 1.48·10−1

2 5.52·10−1 8.86·10−1 9.83·10−1 1.39·10+0 1.75·10−1 1.49·10−1

3 1.02·10+0 1.63·10+0 1.97·10+0 2.89·10+0 2.33·10−1 1.49·10−1

4 1.96·10+0 3.14·10+0 3.90·10+0 5.90·10+0 2.71·10−1 1.49·10−1

order −0.94 −0.95 −0.99 −1.03 −0.22 0.00

uniform refinements of the coarse grid, i. e., h = 1
16 . On the subintervals I(1)

and I(3) the corresponding mesh T2h is employed.

For the cG(1) discretization in space, we obtain the results of Table 4.
The corresponding results for the cG(2) discretization are given in Table 5,
whereas Table 6 shows the results obtained with the inf-sup-stable Q2/Q1-
Taylor-Hood element. Here, refinement level 1 corresponds to a time step
size of k = 1.875 · 10−3, refinement level 2 to k = 9.375 · 10−4, etc. As in the
previous subsection, the order of convergence is numerically computed from
the values of the two finest discretizations.
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Table 5. ‖p − pkh‖ under temporal refinement for the
cG(2) discretization with different temporal discretizations

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.56·10−2 2.38·10−2 4.31·10−2 3.15·10−2 5.41·10−3 1.07·10−2

2 4.87·10−2 4.00·10−2 8.66·10−2 6.12·10−2 8.44·10−3 1.16·10−2

3 9.38·10−2 7.28·10−2 1.75·10−1 1.24·10−1 1.05·10−2 1.24·10−2

4 1.83·10−1 1.38·10−1 3.54·10−1 2.54·10−1 1.16·10−2 1.29·10−2

order −0.96 −0.92 −1.02 −1.03 −0.14 −0.06

Table 6. ‖p − pkh‖ under temporal refinement for the
Q2/Q1 discretization with different temporal discretizations

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 2.80·10−2 2.35·10−2 4.70·10−2 2.97·10−2 5.26·10−3 1.00·10−2

2 5.35·10−2 4.05·10−2 9.42·10−2 5.94·10−2 8.33·10−3 1.12·10−2

3 1.03·10−1 7.38·10−2 1.91·10−1 1.23·10−1 1.04·10−2 1.22·10−2

4 2.01·10−1 1.40·10−1 3.85·10−1 2.51·10−1 1.15·10−2 1.28·10−2

order −0.96 −0.92 −1.01 −1.03 −0.15 −0.07

We observe that under uniform refinement of the temporal discretization
the error in the pressure component when uniformly refining the spatial mesh
increases like O(k−1) for the dG(0) and the dG(1) discretization whereas for
the fractional-step-θ scheme this error is almost independent of k. The reason
for this behavior of the fractional-step-θ scheme will be clarified in Remark 5.1.
For uniform coarsening of the spatial mesh we observe the same behavior.

Since the support of this error is exactly one time step, this shows the
behavior of a Dirac approximation and hence the error, for example, in mean
functional values involving the pressure, does not vanish for k → 0.

4.2. Theoretical investigation

This section presents a theoretical investigation of the behavior of the pres-
sure approximation when switching the spatial mesh. To this end, we consider
the inf-sup-stable Q2/Q1-Taylor-Hood element for the spatial discretization
in combination with the backward Euler time-stepping scheme. As our numer-
ical results indicate it will be sufficient to consider one step of the backward
Euler method during which the spatial discretization is changed to explain
the undesired behavior of the pressure. As in the previous subsections, we
consider uniform refinement or coarsening of a uniformly refined mesh. Fur-
thermore, we assume the domain Ω ⊆ R

d, d ∈ { 2, 3 }, to be polygonally
bounded and convex.
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Let (v, p)T ∈ H1
0 (Ω)d×L2(Ω)/R be the unique solution of the stationary

Stokes problem for ν = 1:

(∇v, ∇ψ) − (p, ∇ ·ψ) = (f ,ψ) ∀ψ ∈ H1
0 (Ω)d,

(∇ · v, χ) = 0 ∀χ ∈ L2(Ω)/R.
(4.1)

Then, this solution also satisfies (v, p)T ∈ H2(Ω)d × H1(Ω) as well as the a
priori estimate

‖v‖H2(Ω) + ‖p‖H1 ≤ C ‖f‖ , (4.2)

see [24] and [12].

Let a uniform decomposition TH of Ω ⊆ R
d into cells be given. We

define the following conforming finite element spaces for the Taylor-Hood
element:

HH :=
{

vH ∈ C(Ω)
∣∣∣ vH

∣∣
K

∈ Q2(K) ∀K ∈ TH

}
∩ H1

0 (Ω),

LH :=
{

pH ∈ C(Ω)
∣∣∣ pH

∣∣
K

∈ Q1(K) ∀K ∈ TH

}
∩ L2(Ω)/R.

Let (vH , pH)T ∈ Hd
H ×LH be the approximate solution on the mesh TH , that

is

(∇vH , ∇ψ) − (pH , ∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
H ,

(∇ · vH , χ) = 0 ∀χ ∈ LH .
(4.3)

Uniformly refining or coarsening the mesh TH yields a spatial mesh Th and
the corresponding finite element spaces

Hh :=
{

vh ∈ C(Ω)
∣∣∣ vh

∣∣
K

∈ Q2(K) ∀K ∈ Th

}
∩ H1

0 (Ω),

Lh :=
{

ph ∈ C(Ω)
∣∣∣ ph

∣∣
K

∈ Q1(K) ∀K ∈ Th

}
∩ L2(Ω)/R.

Performing one backward Euler step with step size k, seeks the solution
(vkh, pk

h)T ∈ Hd
h × Lh of

1

k
(vkh,ψ) + (∇vkh, ∇ψ)

− (pk
h, ∇ ·ψ) =

1

k
(vH ,ψ) + (f ,ψ) ∀ψ ∈ Hd

h,

(∇ · vkh, χ) = 0 ∀χ ∈ Lh.

(4.4)

Using the H-projection P̃hvH of vH into Hd
h as initial value in the backward

Euler step, yields the solution (v̂kh, p̂k
h)T ∈ Hd

h × Lh of

1

k
(v̂kh,ψ) + (∇v̂kh, ∇ψ)

− (p̂k
h, ∇ ·ψ) =

1

k
(P̃hvH ,ψ) + (f ,ψ) ∀ψ ∈ Hd

h,

(∇ · v̂kh, χ) = 0 ∀χ ∈ Lh.

(4.5)
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Here, P̃hvH is given as the first component of the solution (P̃hvH , p̃H
h )T ∈

Hd
h × Lh of

(P̃hvH ,ψ) − (p̃H
h , ∇ ·ψ) = (vH ,ψ) ∀ψ ∈ Hd

h,

(∇ · P̃hvH , χ) = 0 ∀χ ∈ Lh.
(4.6)

Lemma 4.1. The functions vkh defined by (4.4) and v̂kh defined by (4.5) coin-

cide. Further, there exists a function v0

h ∈ Hd
h and a sequence k → 0 such

that the sequence vkh fulfills
∥∥∥vkh − v0

h

∥∥∥ → 0 (k → 0).

Proof. If we subtract equation (4.5) from (4.4), we obtain

1

k
(vkh − v̂kh,ψ) + (∇(vkh − v̂kh), ∇ψ)

− (pk
h − p̂k

h, ∇ ·ψ) = −
1

k
(p̃H

h , ∇ ·ψ) ∀ψ ∈ Hd
h,

(∇ · (vkh − v̂kh), χ) = 0 ∀χ ∈ Lh,

(4.7)

where we have applied (4.6) to obtain the right-hand side. Testing (4.7) with
ψ = vkh − v̂kh ∈ Hd

h and χ = pk
h − p̂k

h leads to

1

k

∥∥∥vkh − v̂kh

∥∥∥
2

+
∥∥∥∇(vkh − v̂kh)

∥∥∥
2

= 0,

where the other terms cancel out due to the second equation of (4.7). Hence,
we have vkh = v̂kh.

When testing equation (4.4) with ψ = vkh and χ = pk
h, we obtain

1

k

∥∥∥vkh
∥∥∥

2

+
∥∥∥∇vkh

∥∥∥
2

=
1

k
(vH ,vkh) + (f ,vkh)

and hence ∥∥∥vkh
∥∥∥ ≤ ‖vH‖ + k ‖f‖ .

Since vH and f do not depend on time, we conclude that
∥∥vkh

∥∥ remains
bounded for k → 0. Hence, there is at least one sequence k → 0 and a
function v0

h ∈ Hd
h such that

∥∥∥vkh − v0

h

∥∥∥ → 0 (k → 0).

�

Since Hd
h is finite dimensional, vkh converges to v0

h in every norm, even

point-wise. For the following we define the L2-projection Ph : L2(Ω)d → Hd
h

as usual by

(Phf ,ψ) = (f ,ψ) ∀ψ ∈ Hd
h.

We are now prepared to proof the observed divergence of the pressure as
k → 0.
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Lemma 4.2. The function v0

h ∈ Hd
h given by Lemma 4.1 is uniquely deter-

mined by v0

h = P̃hvH . Let pk
h ∈ Lh be given by (4.4), then either

a) P̃hvH = PhvH or b)
∥∥∥pk

h

∥∥∥ ≥ C
1

k

with some constant C > 0 independent of k.

Proof. Let v0

h ∈ Hd
h and k → 0 be any sequence such that vkh → v0

h, the
existence of such objects is ensured by Lemma 4.1.

We note that (4.4) is equivalent to the algebraic system
(
M + kA kB

−BT 0

)(
xk

yk

)
=

(
bk

0

)
(4.8)

with

M =
(
(ψj ,ψi)

)
i,j=1,...,NH

, A =
(
(∇ψj , ∇ψi)

)
i,j=1,...,NH

,

B =
(
−(χj , ∇ ·ψi)

)
i=1,...,NH ,
j=1,...,NL

and right-hand side

bk =
(
(vH ,ψi) + k(f ,ψi)

)
i=1,...,NH

where we use the representations

vkh =

NH∑

j=1

xk
jψj and pk

h =

NL∑

j=1

yk
j χj .

Here,
{
ψj
∣∣ j = 1, . . . , NH

}
is a basis of Hd

h while
{

χj

∣∣ j = 1, . . . , NL

}
is

a basis of Lh. This especially means

Mxk + kAxk + kByk = bk. (4.9)

Since vkh converges point-wise to v0

h, we have xk → x0 with

v0

h =

NH∑

j=1

x0
jψj .

For k → 0, we have

bk → b0 =
(
(vH ,ψi)

)
i=1,...,NH

= Mx̄,

because vH and f do not depend on time, and x̄ ∈ RNH is given by

PhvH =

NH∑

j=1

x̄jψj .

In virtue of (4.9), we conclude that kyk converges for k → 0, too. By
passing to the limit k → 0 in (4.9), we obtain

Mx0 +By0 = Mx̄. (4.10)
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where y0 is the limit of kyk for k → 0. Equation (4.10) may equivalently be
written as

(v0

h,ψ) − (p0
h, ∇ ·ψ) = (PhvH ,ψ) = (vH ,ψ) ∀ψ ∈ Hd

h,

which together with the second equation in (4.8) states that v0

h is just the

H-projection of vH into Hd
h. In particular v0

h is uniquely determined and
convergence in Lemma 4.1 is obtained for any sequence k → 0.

The Lagrange multiplier p0
h ∈ Lh herein is given as

p0
h =

NL∑

j=1

y0
j χj .

To continue we note that if y0 = 0, we then have x0 = x̄ or equivalently

PhvH = v0

h = P̃hvH . Otherwise y0 6= 0, hence there is j ∈ { 1, . . . , NL }
with y0

j 6= 0 and thus by definition

kyk
j 6→ 0.

This means there exists some constant C > 0 such that
∣∣∣yk

j

∣∣∣ ≥ C
1

k
or

∥∥∥pk
h

∥∥∥ ≥ C
1

k
.

�

Remark 4.3. If Th is obtained from TH by uniform refinement, then we obvi-
ously have HH ⊆ Hh as well as LH ⊆ Lh and thus the L2-projection from
HH onto Hh is the identity mapping. As a consequence, we have PhvH = vH .
However, in general, we have

(∇ · vH , χ) 6= 0

for χ ∈ Lh r LH also in this case and hence PhvH 6= P̃hvH .

In the remaining part of this section, we want to show that the pressure
approximations p̂k

h obtained through equation (4.5) remain bounded for k →
0.

To do so we introduce some auxiliary quantities: Analog to (4.3), let
the approximate solution (vh, ph)T ∈ Hd

h × Lh of the Stokes problem on the
mesh Th be given by

(∇vh, ∇ψ) − (ph, ∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd
h,

(∇ · vh, χ) = 0 ∀χ ∈ Lh.
(4.11)

Then in addition to the H-projection P̃hv of the continuous velocity v defined

by (4.6) we consider the V -projection R̃hv of the continuous velocity v into

Hd
h. It is given as the first component of the solution (R̃hv, r̃h)T ∈ Hd

h × Lh

of
(∇R̃hv, ∇ψ) − (r̃h, ∇ ·ψ) = (∇v, ∇ψ) ∀ψ ∈ Hd

h,

(∇ · R̃hv, χ) = 0 ∀χ ∈ Lh.
(4.12)
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Lemma 4.4. The pressure p̂k
h obtained from (4.5) is bounded independent of

k.

Proof. Subtracting 1
k

times the first equation of (4.6) from the first equation
of (4.4) leads to

1

k
(vkh − P̃hvH ,ψ) + (∇vkh, ∇ψ) −

1

k
(kpk

h − p̃H
h , ∇ ·ψ) = (f ,ψ) ∀ψ ∈ Hd

h

or equivalently

1

k
(vkh − P̃hvH ,ψ) + (∇(vkh − P̃hvH), ∇ψ) −

1

k
(kpk

h − p̃H
h , ∇ ·ψ)

= (f ,ψ) − (∇P̃hvH , ∇ψ) ∀ψ ∈ Hd
h.

By testing with ψ = vkh − P̃hvH ∈ Hd
h, we obtain

1

k

∥∥∥vkh − P̃hvH

∥∥∥
2

+
∥∥∥∇(vkh − P̃hvH)

∥∥∥
2

= (f ,vkh − P̃hvH) − (∇P̃hvH , ∇(vkh − P̃hvH)), (4.13)

because the other terms cancel out due to the second equations of (4.4) and
(4.6).

We then have for arbitrary ψ ∈ Hd
h

∣∣∣(∇P̃hvH , ∇ψ)
∣∣∣ =

∣∣∣(∇(P̃hvH − R̃hv), ∇ψ)

+(∇(R̃hv − v), ∇ψ) + (∇v, ∇ψ)
∣∣∣

≤
{∥∥∥∇(P̃hvH − R̃hv)

∥∥∥

+
∥∥∥∇(R̃hv − v)

∥∥∥
}

‖∇ψ‖ +
∣∣(∆v,ψ)

∣∣

≤ C
{

h−2
∥∥∥P̃hvH − R̃hv

∥∥∥

+ h−1
∥∥∥∇(R̃hv − v)

∥∥∥+ ‖∆v‖
}

‖ψ‖

≤ Ch−2
{∥∥∥P̃hvH − P̃hv

∥∥∥+
∥∥∥P̃hv − v

∥∥∥

+
∥∥∥v − R̃hv

∥∥∥+ h
∥∥∥∇(R̃hv − v)

∥∥∥

+ h2 ‖∆v‖
}

‖ψ‖ ,

(4.14)

where in the penultimate line inverse estimates have been used. We will now
treat each term separately.

By subtracting the H-Projection of v from (4.6), we obtain

(P̃hvH − P̃hv,ψ) − (p̃H
h − p̃h, ∇ ·ψ) = (vH − v,ψ) ∀ψ ∈ Hd

h,

(∇ · (P̃hvH − P̃hv), χ) = 0 ∀χ ∈ Lh.
(4.15)
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Testing with ψ := P̃hvH − P̃hv and χ := p̃H
h − p̃h yields

∥∥∥P̃hvH − P̃hv
∥∥∥

2

= (vH − v, P̃hvH − P̃hv)

and hence due to the Cauchy-Schwarz inequality
∥∥∥P̃hvH − P̃hv

∥∥∥ ≤ ‖vH − v‖ .

Using standard approximation results (see, for instance, [17]) and the a priori
estimate (4.2), we obtain
∥∥∥P̃hvH − P̃hv

∥∥∥ ≤ ‖v − vH‖ ≤ CH2
{

‖v‖H2 + ‖p‖H1

}
≤ CH2 ‖f‖ . (4.16)

In order to estimate the next term, we note that from (4.6) we have

(P̃hv − v,ψ) = (p̃h, ∇ ·ψ) ∀ψ ∈ Hd
h.

Testing with ψ := vh − P̃hv and recalling that

(∇ · vh, χ) = (∇ · P̃hv, χ) = 0 ∀χ ∈ Lh,

we conclude

(P̃hv − v,vh − P̃hv) = (p̃h, ∇ · (vh − P̃hv)) = 0.

Thus, we have

∥∥∥P̃hv − v
∥∥∥

2

= (P̃hv−v, P̃hv−v) = (P̃hv−v,vh−v) ≤
∥∥∥P̃hv − v

∥∥∥ ‖vh − v‖

and therefore ∥∥∥P̃hv − v
∥∥∥ ≤ ‖v − vh‖ ≤ Ch2 ‖f‖ . (4.17)

Similarly, from (4.12) we see that

(∇(R̃hv − v), ∇ψ) = (r̃h, ∇ ·ψ) ∀ψ ∈ Hd
h (4.18)

and hence by testing with ψ := vh − R̃hv

(∇(R̃hv − v), ∇(vh − R̃hv)) = (r̃h, ∇ · (vh − R̃hv)) = 0.

This yields

∥∥∥∇(R̃hv − v)
∥∥∥

2

= (∇(R̃hv − v), ∇(R̃hv − v)) = (∇(R̃hv − v), ∇(vh − v))

≤
∥∥∥∇(R̃hv − v)

∥∥∥
∥∥∇(vh − v)

∥∥

and thus ∥∥∥∇(R̃hv − v)
∥∥∥ ≤

∥∥∇(v − vh)
∥∥ ≤ Ch ‖f‖ . (4.19)
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Before estimating
∥∥∥R̃hv − v

∥∥∥, we recall equations (4.18) and (4.19) as well

as the inf-sup stability condition (2.1) which allows us to bound ‖r̃h‖:

β ‖r̃h‖ ≤ sup
ψ∈Hd

h

(r̃h, ∇ ·ψ)

‖∇ψ‖

= sup
ψ∈Hd

h

(∇(R̃hv − v), ∇ψ)

‖∇ψ‖
≤
∥∥∥∇(R̃hv − v)

∥∥∥ ≤ Ch ‖f‖ .

(4.20)

In order to estimate
∥∥∥R̃hv − v

∥∥∥, we use a duality argument due to [1] and

[27]: Let (w, q)T ∈ H1
0 (Ω)d × L2(Ω)/R be the unique solution of

(∇ψ, ∇w) + (∇ ·ψ, q) =
(ψ,v − R̃hv)∥∥∥v − R̃hv

∥∥∥
∀ψ ∈ H1

0 (Ω)d,

−(χ, ∇ ·w) = 0 ∀χ ∈ L2(Ω)/R.

(4.21)

Since v−R̃hv

‖v−R̃hv‖
∈ L2(Ω)d, we have as for the primal problem (4.1) the a priori

estimate

‖w‖H2 + ‖q‖H1 ≤ C

∥∥∥∥
v−R̃hv

‖v−R̃hv‖

∥∥∥∥ = C. (4.22)

Testing the first equation of (4.21) with v − R̃hv ∈ H1
0 (Ω)d, we obtain

∥∥∥v − R̃hv
∥∥∥ = (∇(v − R̃hv), ∇w) + (∇ · (v − R̃hv), q).

Recalling (4.18) and the fact that

(∇ · v, χ) = (∇ ·w, χ) = (∇ · R̃hv, χ) = 0 ∀χ ∈ Lh,

we may write for arbitrary ŵh ∈ Hd
h and q̂h ∈ Lh

∥∥∥v − R̃hv
∥∥∥ = (∇(v − R̃hv), ∇(w − ŵh)

+ (∇ · (v − R̃hv), q − q̂h) − (r̃h, ∇ · (w − ŵh))

≤ C
{∥∥∥∇(v − R̃hv)

∥∥∥+ ‖r̃h‖
}{∥∥∇(w − ŵh)

∥∥+ ‖q − q̂h‖
}

.

From standard interpolation estimates, see, e. g., [6, 11] we obtain
∥∥∇(w − ŵh)

∥∥ ≤ Ch ‖w‖H2 ,

‖q − q̂h‖ ≤ Ch ‖q‖H1 .

Together with the estimates (4.19) and (4.20), we have
∥∥∥v − R̃hv

∥∥∥ ≤ Ch2 ‖f‖
{

‖w‖H2 + ‖q‖H1

}
≤ Ch2 ‖f‖ , (4.23)

where the last inequality is obtained by applying the a priori estimate (4.22).
Finally, we obviously have

‖∆v‖ ≤ ‖v‖H2 ≤ C ‖f‖ . (4.24)
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Inserting the estimates (4.16), (4.17), (4.19), (4.23), and (4.24) into (4.14)
then yields ∣∣∣(∇P̃hvH , ∇ψ)

∣∣∣ ≤ C
(
1 + ( H

h
)2
)

‖f‖ ‖ψ‖ .

Since we only consider uniform refinement or uniform coarsening, we have
H = 2h or H = 1

2 h and thus
∣∣∣(∇P̃hvH , ∇ψ)

∣∣∣ ≤ C ‖f‖ ‖ψ‖ . (4.25)

This allows us to conclude from (4.13):

1

k

∥∥∥vkh − P̃hvH

∥∥∥
2

+
∥∥∥∇(vkh − P̃hvH)

∥∥∥
2

≤ ‖f‖
∥∥∥vkh − P̃hvH

∥∥∥

+
∣∣∣(∇P̃hvH , ∇(vkh − P̃hvH))

∣∣∣

≤ C ‖f‖
∥∥∥vkh − P̃hvH

∥∥∥

and hence
1

k

∥∥∥vkh − P̃hvH

∥∥∥ ≤ C ‖f‖ . (4.26)

By using the Poincaré inequality, we also obtain from (4.25)
∣∣∣(∇P̃hvH , ∇ψ)

∣∣∣ ≤ C ‖f‖ ‖∇ψ‖ (4.27)

and therefore from (4.13) also
∥∥∥∇(vkh − P̃hvH)

∥∥∥ ≤ C ‖f‖ . (4.28)

To show that
∥∥p̂k

h

∥∥ remains bounded for k → 0, we use the inf-sup

condition and the fact that vkh = v̂kh which allows us to replace v̂kh by vkh
in (4.5):

β
∥∥∥p̂k

h

∥∥∥ ≤ sup
ψ∈Hd

h

(p̂k
h, ∇ ·ψ)

‖∇ψ‖

= sup
ψ∈Hd

h

(
1
k

(vkh − P̃hvH ,ψ) + (∇(vkh − P̃hvH), ∇ψ)

‖∇ψ‖

+
(∇P̃hvH , ∇ψ) − (f ,ψ)

‖∇ψ‖

)

≤ C
1

k

∥∥∥vkh − P̃hvH

∥∥∥+
∥∥∥∇(vkh − P̃hvH)

∥∥∥

+ sup
ψ∈Hd

h

∣∣∣(∇P̃hvH , ∇ψ)
∣∣∣

‖∇ψ‖
+ C ‖f‖

≤ C ‖f‖ .

Here, the estimates (4.26), (4.27), and (4.28) have been used. Since the right-
hand side is independent of k, we have shown that

∥∥p̂k
h

∥∥ remains bounded for
k → 0. �
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Remark 4.5. The arguments used above to show that
∥∥pk

h

∥∥ ≥ C 1
k

if there
is a χ ∈ Lh such that (∇ · PhvH , χ) 6= 0 are not restricted to the case
of uniform refinement or coarsening of the meshes. Actually, they directly
carry over to the case of arbitrary refinement or coarsening of cells. The
estimate for the boundedness of

∥∥p̂k
h

∥∥ can be generalized as long we are able

to bound
∥∥∥∇P̃hvH

∥∥∥ and
∥∥∥∆̃hP̃hvH

∥∥∥ where ∆̃hP̃hvH denotes the discrete

Stokes operator of P̃hvH given by

(∆̃hP̃hvH ,ψ) = −(∇P̃hvH , ∇ψ)

∀ψ ∈ Hd
h ∩

{
ψ
∣∣ (∇ ·ψ, χ) = 0 ∀χ ∈ Lh

}
.

We showed that on dynamic spatial meshes bounded pressure approx-
imations are only possible if the L2-projection of the velocity from the first
mesh is divergence-free with respect to the test functions of the new mesh.
Otherwise, the pressure approximation contains 1

k
times the Lagrange multi-

plier occurring in the H-projection of the old velocity field into the new finite
element space which leads to the unbounded behavior for k → 0.

5. Solution of the problem

The following Subsection 5.1 presents some attempts to solve the problem
discussed in this article.

5.1. Attempts to solve this problem

We have seen in the previous section that the error in the pressure occurring
when switching the spatial mesh decreases with (at least) the same order as
the spatial discretization error for h → 0, but increases like O(k−1) for k → 0.
We showed that this effect does not originate from the stabilization since the
inf-sup-stable Taylor-Hood element also produces qualitatively the same error.
In this subsection, we discuss some attempts to overcome this problem and
obtain pressure approximations which remain bounded for k → 0.

We also showed analytically that the error in the pressure approxima-
tion which is solely located in the first time step on a new spatial mesh is
unavoidable if the L2-projection of the old velocity field is not divergence-free
with respect to test functions of the new finite element space for the pressure.
However, the proposed approach to solving this problem namely taking the
divergence-free L2-projection as initial values on the new spatial mesh might
be too costly to perform each time the mesh is changed. Therefore, we present
two alternatives to the H-projection that might be easier to implement or
less costly which might be able to deal with this phenomenon, too. To sum
up, the three “ideas” discussed in this section are:

Divergence-free L2-projection (H-projection):.
After computing (Vm−1, Pm−1)T ∈ (Hm−1

h )d × Lm−1
h first compute a

projection Ṽm−1 of Vm−1 into (Hm
h )d which is divergence-free with
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Table 7. ‖p − pkh‖ for the cG(1) discretization with differ-
ent temporal discretizations and H-projection

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 3.47·10−2 1.27·10−1 3.77·10−2 1.28·10−1 3.08·10−2 1.25·10−1

2 3.42·10−2 1.25·10−1 3.51·10−2 1.25·10−1 3.12·10−2 1.24·10−1

3 3.48·10−2 1.24·10−1 3.49·10−2 1.24·10−1 3.28·10−2 1.24·10−1

4 3.57·10−2 1.24·10−1 3.57·10−2 1.24·10−1 3.42·10−2 1.24·10−1

order −0.04 0.00 −0.03 0.00 −0.06 0.00

respect to test functions in (Hm
h )d and use this projection as initial

values for the next time step. The projection is determined by

(Ṽm−1,ψ) − (P̃ , ∇ ·ψ) = (Vm−1,ψ) ∀ψ ∈ (Hm
h )d,

(∇ · Ṽm−1, χ) = 0 ∀χ ∈ Lm
h .

(5.1)

Divergence-free H1

0
-projection (V -projection):.

Same procedure as for “Divergence-free L2-projection”, but this time
the projection is determined by

(∇Ṽm−1, ∇ψ) − (P̃ , ∇ ·ψ) = (∇Vm−1, ∇ψ) ∀ψ ∈ (Hm
h )d,

(∇ · Ṽm−1, χ) = 0 ∀χ ∈ Lm
h .

(5.2)

Repeating one time step:.
After computing (Vm−1, Pm−1)T ∈ (Hm−1

h )d ×Lm−1
h repeat the current

time step to determine approximations (Ṽm−1, P̃m−1)T ∈ (Hm
h )d × Lm

h

for t = tm−1, but already in the finite element spaces corresponding to

t = tm. One can hope that then only P̃m−1 contains this error and since

Ṽm−1 is divergence-free with respect to test functions in Lm
h this error

does not occur again when computing (Vm, Pm)T ∈ (Hm
h )d × Lm

h using

the initial values Ṽm−1.

For the equal-order spatial discretizations cG(1) and cG(2) the varia-
tional formulations given above have to be stabilized, of course. This is also
done by means of the local projection stabilization.

Since the behavior of the pressure error already is of the right order
for h → 0, we discuss in this subsection only the influence of the presented
“ideas” on the development of the error under uniform temporal refinement.
We repeat the investigation of Section 4.1.2 using the proposed modifications.

5.1.1. H-projection. In this subsection, we present the development of the
pressure error when using the H-projection of the old velocity field into the
new finite element space as initial values when switching the spatial mesh.

The results under uniform temporal refinement are listed in Tables 7–9
for the cG(1), cG(2), and Q2/Q1 spatial discretization, respectively.
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Table 8. ‖p − pkh‖ for the cG(2) discretization with differ-
ent temporal discretizations and H-projection

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 5.73·10−3 1.48·10−2 5.54·10−3 1.30·10−2 5.29·10−3 1.27·10−2

2 6.97·10−3 1.73·10−2 7.82·10−3 1.59·10−2 7.81·10−3 1.64·10−2

3 7.67·10−3 1.99·10−2 8.72·10−3 1.93·10−2 8.64·10−3 1.98·10−2

4 7.69·10−3 2.19·10−2 8.36·10−3 2.17·10−2 8.24·10−3 2.20·10−2

order 0.00 −0.14 0.06 −0.17 0.07 −0.15

Table 9. ‖p − pkh‖ for the Q2/Q1 discretization with dif-
ferent temporal discretizations and H-projection

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 6.44·10−3 1.03·10−2 4.74·10−3 9.63·10−3 5.23·10−3 9.83·10−3

2 8.48·10−3 1.12·10−2 7.79·10−3 1.08·10−2 8.27·10−3 1.10·10−2

3 1.02·10−2 1.21·10−2 1.01·10−2 1.19·10−2 1.04·10−2 1.20·10−2

4 1.13·10−2 1.27·10−2 1.13·10−2 1.26·10−2 1.14·10−2 1.27·10−2

order −0.15 −0.07 −0.16 −0.08 −0.13 −0.08

Table 10. ‖p − pkh‖ for the cG(1) discretization with dif-
ferent temporal discretizations and V -projection

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 1.18·10−1 1.47·10−1 7.23·10−2 1.47·10−1 8.35·10−2 1.24·10−1

2 1.59·10−1 1.47·10−1 1.32·10−1 1.47·10−1 1.33·10−1 1.24·10−1

3 1.99·10−1 1.47·10−1 1.87·10−1 1.47·10−1 1.73·10−1 1.24·10−1

4 2.28·10−1 1.47·10−1 2.24·10−1 1.47·10−1 1.99·10−1 1.24·10−1

order −0.20 0.00 −0.26 0.00 −0.20 0.00

We can conclude that using the H-projection of the velocity of the last
time step into the new finite element space as initial values leads to pressure
errors which are bounded for k → 0 as predicted by our analysis in Section 4.2.
Actually, the pressure error becomes almost independent of k.

5.1.2. V -projection. In this subsection, we present the development of the
pressure error when using the V -projection of the old velocity field into the
new finite element space as initial values when switching the spatial mesh.

The results under uniform temporal refinement are listed in Tables 10–
12 for the cG(1), cG(2), and Q2/Q1 spatial discretization, respectively.

Using the V -projection of the old velocity into the new finite element
space also leads to pressure errors which remain bounded for k → 0.
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Table 11. ‖p − pkh‖ for the cG(2) discretization with dif-
ferent temporal discretizations and V -projection

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 6.08·10−3 1.20·10−2 4.86·10−3 1.19·10−2 4.90·10−3 9.98·10−3

2 7.84·10−3 1.21·10−2 7.39·10−3 1.21·10−2 7.65·10−3 1.01·10−2

3 9.34·10−3 1.22·10−2 9.33·10−3 1.22·10−2 9.49·10−3 1.02·10−2

4 1.03·10−2 1.23·10−2 1.04·10−2 1.23·10−2 1.04·10−2 1.03·10−2

order −0.14 −0.01 −0.16 −0.01 −0.13 −0.01

Table 12. ‖p − pkh‖ for the Q2/Q1 discretization with dif-
ferent temporal discretizations and V -projection

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 5.78·10−3 8.83·10−3 4.34·10−3 8.81·10−3 4.74·10−3 8.82·10−3

2 7.61·10−3 8.87·10−3 7.11·10−3 8.86·10−3 7.53·10−3 8.87·10−3

3 9.10·10−3 8.92·10−3 9.11·10−3 8.91·10−3 9.37·10−3 8.92·10−3

4 1.00·10−2 8.95·10−3 1.01·10−2 8.95·10−3 1.02·10−2 8.95·10−3

order −0.14 0.00 −0.15 −0.01 −0.12 0.00

Table 13. ‖p − pkh‖ for the cG(1) discretization with dif-
ferent temporal discretizations and repeating one time step

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 8.57·10−2 7.47·10−1 4.66·10−2 7.48·10−1 4.64·10−2 1.47·10−1

2 1.52·10−1 7.50·10−1 1.01·10−1 7.51·10−1 9.90·10−2 1.48·10−1

3 2.45·10−1 7.52·10−1 2.11·10−1 7.52·10−1 1.71·10−1 1.49·10−1

4 3.36·10−1 7.52·10−1 3.21·10−1 7.52·10−1 2.31·10−1 1.49·10−1

order −0.46 0.00 −0.61 0.00 −0.43 0.00

5.1.3. Repeating one time step. In this subsection, we present the develop-
ment of the pressure error when repeating the last time step of the old spatial
mesh on the new one to determine the initial values for the first real time
step on the new mesh.

The results under uniform temporal refinement are listed in Tables 13–
15 for the cG(1), cG(2), and Q2/Q1 spatial discretization, respectively.

We observe for all spatial discretizations that repeating one time step
leads to a slower increase of the error in the pressure when switching the
spatial mesh from T2h to Th and to an almost constant error when switching
from Th to T2h.
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Table 14. ‖p − pkh‖ for the cG(2) discretization with dif-
ferent temporal discretizations and repeating one time step

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 4.14·10−3 4.41·10−1 3.26·10−3 4.46·10−1 2.95·10−3 1.01·10−2

2 6.06·10−3 4.36·10−1 5.09·10−3 4.39·10−1 5.14·10−3 1.05·10−2

3 8.40·10−3 4.31·10−1 7.96·10−3 4.33·10−1 8.11·10−3 1.14·10−2

4 1.04·10−2 4.27·10−1 1.03·10−2 4.28·10−1 1.03·10−2 1.22·10−2

order −0.31 0.01 −0.37 0.02 −0.34 −0.10

Table 15. ‖p − pkh‖ for the Q2/Q1 discretization with dif-
ferent temporal discretizations and repeating one time step

level dG(0) dG(1) fractional-step-θ
t = 3 + k t = 6 + k t = 3 + k t = 6 + k t = 3 + k t = 6 + k

1 3.61·10−3 9.33·10−3 2.53·10−3 9.01·10−3 4.10·10−3 9.60·10−3

2 5.74·10−3 1.00·10−2 4.70·10−3 9.66·10−3 7.12·10−3 1.07·10−2

3 8.16·10−3 1.10·10−2 7.72·10−3 1.08·10−2 9.66·10−3 1.18·10−2

4 1.01·10−2 1.20·10−2 1.00·10−2 1.19·10−2 1.11·10−2 1.26·10−2

order −0.31 −0.13 −0.37 −0.14 −0.20 −0.09

Remark 5.1. We remark that the behavior of the fractional-step-θ scheme
is hardly a surprise given the results from Section 4.1.2. However, after our
analysis in Section 4.2 we can now explain, why the fractional-step-θ scheme
doesn’t show the undesired divergence of the pressure even without modifi-
cations. Namely we saw that the divergence of the pressure is localized to
the first time step after changing the mesh. However, in the fractional-step-
θ scheme this is only the first substep of a complete time step. Hence, one
ignores this “solution” as it is only an intermediate quantity.

5.2. Application to the benchmark problem

We have seen that all three “ideas” are able to (almost) remove the O(k−1)
increase in the pressure error while the H-projection performed best.

In this subsection, in order to compare all strategies, we return to the
benchmark configuration “Laminar Flow Around a Cylinder” with constant
inflow and Reynolds number Re = 20 which possesses a stationary solu-
tion. The discretization used here is again the cG(1)dG(0) method involv-
ing local projection stabilization. In Figure 6, the temporal evolution of the
lift-coefficient is depicted for different choices of the initial value. For com-
pleteness, we also show the results of the fractional-step-θ scheme combined
with a cG(1) discretization in space and local projection stabilization. The
upper picture shows the development when switching the spatial mesh from
T2h to Th which corresponds to a uniform refinement, while the lower picture
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shows the lift-coefficient when switching from Th to T2h which corresponds
to a uniform coarsening. The labeling of the different curves is as follows:

• “original”: No additional operations are performed when switching the
spatial mesh.

• “H-projection”: When switching the spatial mesh, the H-projection of
the old velocity into the new finite element space is used as initial values
for the new time step.

• “V -projection”: When switching the spatial mesh, the V -projection of
the old velocity into the new finite element space is used as initial values
for the new time step.

• “repeat”: When switching the spatial mesh, the last time step is repeated
already on the new mesh to obtain initial values.

When looking at the upper picture of Figure 6, we note the large error in the
lift-coefficient for the “original” method. The curves of the “H-projection”
and “V -projection” show a slightly different temporal evolution where the
“H-projection” approaches the “original” curve faster. Repeating one time
step leads to a temporal evolution of the lift-coefficient which is close to the
values produced by the fractional-step-θ scheme.

If we consider the lower picture of Figure 6 which shows the temporal
evolution of the lift-coefficient under a uniform coarsening of the spatial mesh,
we observe quite large differences between the different strategies. While the
“H-projection” mainly eliminates the large error of the “original” curve and
stays very close to it elsewhere, the other “ideas” lead to completely different
temporal evolutions of the lift-coefficient. Of course, for t → ∞, those values
converge to the same stationary limit as the other methods. The fractional-
step-θ scheme mainly leads to the same evolution of the lift-coefficient as the
“H-projection”.

To terminate this subsection, let us reconsider the initial time-dependent
benchmark problem. Figure 7 show the temporal evolution of the lift-coeffi-
cient after five iterations of adaptive temporal and spatial refinement using
dynamic meshes in combination with the H-projection each time the spa-
tial mesh is changed. We observe that the oscillations showing up without
using the H-projection when changing the spatial mesh (see Figure 1) have
vanished. Furthermore, we note a slightly different temporal evolution of the
lift-coefficient, especially at the end of the time interval. This is due to the
fact that the adaptive refinement leads to different meshes and time step sizes
when applying the H-projection. However, the temporal evolution depicted
in Figure 7 is closer to that of the exact solution, see [23].

Conclusions

In this article we analyzed the behavior of the pressure on changing spatial
meshes during the computation of nonstationary incompressible fluid flows
for several time stepping schemes. In particular we showed that the discrete
pressure will in general diverge with order k−1 whenever the spatial mesh
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Figure 6. Temporal evolution of the lift-coefficient for dif-
ferent initial values

is changed between two time steps. This behavior is proven, for the dG(0)
time-discretization, to be due to the fact that discrete solenoidal vector fields
lose this property under changes of the discrete spaces. Finally some possible
ways to circumvent the divergence of the pressure are proposed and tested
numerically.
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