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Abstract

Subject of this paper is the development of an a posteriori error estima-
tor for nonstationary incompressible flow problems. The error estimator is
computable and able to assess the temporal and spatial discretization errors
separately. Thereby, the error is measured in an arbitrary quantity of inter-
est because measuring errors in global norms is often of minor importance
in practical applications. The basis for this is a finite element discretization
in time and space. The techniques presented here also provide local error
indicators which are used to adaptively refine the temporal and spatial dis-
cretization. A key ingredient in setting up an efficient discretization method
is balancing the error contributions due to temporal and spatial discretiza-
tion. To this end, a quantitative assessment of the individual discretiza-
tion errors is required. The described method is validated by an established
Navier-Stokes benchmark.
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1. Introduction

This work is devoted to the development of efficient discretization tech-
niques for numerically solving nonstationary incompressible flow problems.
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Since in contrast to stationary problems we have to deal with the discretiza-
tion in time as well as in space, one of the main topics in setting up such an
efficient algorithm is to obtain quantitative information about the temporal
and spatial discretization error. This is a key ingredient because within an
efficient algorithm one has to decide which discretization has to be refined to
reduce the discretization error in the most efficient way.

Adaptive methods are widely used in the context of finite element dis-
cretizations of partial differential equations, see, for example, [1] or [2] for
an overview. In [3] and [4], adaptive time-stepping methods for the incom-
pressible Navier-Stokes equations are discussed. However, a uniform spatial
discretization is applied. On the other hand, in [5], a spatially adaptive (and
uniform in time) strategy for the nonstationary Navier-Stokes equations is
developed which is based on a posteriori error estimates in the energy-norm.

However, error estimation with respect to global norms such as the energy-

norm sometimes is not very efficient since in flow problems one is often
only interested in a specific functional value of the solution, the so-called
quantity of interest. Hence, the goal of the numerical simulation of a flow
problem is the efficient computation of this single number. This quantity
might, for instance, be the mean drag- or lift-coefficient of an obstacle which
is surrounded by the fluid. In this case, the efficiency of an algorithm for
numerically computing this quantity has to be measured by means of the
reduction of the discretization error in the quantity of interest rather than
in global norms since the latter usually do not provide useful bounds for the
error in the quantity of interest.

The results presented in this work have been developed in the PhD thesis
of the author, see [6]. They are an extension of the methodology developed
in [7] to nonstationary flow problems allowing for the simultaneous adapta-
tion of the temporal and spatial discretization. We will derive a posteriori
error estimators which quantitatively assess the discretization error measured
in the quantity of interest and separate the influence of the temporal and the
spatial discretization. This separation will allow us to set up an efficient
algorithm for the adaptive refinement of the temporal and the spatial dis-
cretization.

The key to rigorous a posteriori error estimation is a coupled variational
formulation of the underlying equations. It allows to apply Galerkin finite
element methods not only for the discretization in space, but also for the
discretization in time. The use of space-time finite element discretizations
enables the application of residual based a posteriori error estimation. Space-
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time Galerkin methods have already been applied successfully to the simu-
lation of incompressible flows, see, for example, [8], [9], [10], or [11] as well
as [12] (referred to as General Galerkin G2 ). While the first references do
not consider adaptivity, in [12] also an adaptive algorithm for nonstationary
flow problems based on a posteriori error estimation is developed. However,
the author does not separate the temporal and spatial discretization error.
Instead, the temporal refinement is linked to the spatial refinement.

In this paper, we consider nonstationary incompressible flows described
by the incompressible Navier-Stokes equations, given in the dimensionless
form as

∂tv − ν∆v + (v · ∇)v +∇p = f in I × Ω,

∇ · v = 0 in I × Ω,

v(0) = v0 in Ω

(1)

with a time interval I = (0, T ), computational domain Ω ⊆ R
d, d ∈ { 2, 3 },

kinematic viscosity ν, volume forces f , and initial values v0. These equations
have to be supplemented by appropriate boundary conditions. For sake of
simplicity, we will assume no-slip Dirichlet boundary conditions.

The corresponding variational formulation reads as follows: For f ∈
L2(I,H−1(Ω)d) and v0 ∈ L2(Ω)d find u := (v, p)T ∈ X such that

∫

I

{
(∂tv,ψ) + a(u)(ϕ)

}
dt+ (v(0)− v0,ψ(0))

=

∫

I

(f ,ψ) dt ∀ϕ := (ψ, χ)T ∈ X (2)

with the semi-linear form

a(u)(ϕ) = ν(∇v,∇ψ) + ((v · ∇)v,ψ)− (p,∇ ·ψ) + (∇ · v, χ),

where (·, ·) denotes the inner product on L2(Ω) (or L2(Ω)d) and the space X
is given as

X :=
{
u = (v, p)T

∣∣∣ v ∈ L2(I,H1
0 (Ω)

d), ∂tv ∈ L2(I,H−1(Ω)d),

p ∈ L2(I, L2(Ω)/R)
}
.

For questions on existence and uniqueness of solutions, we refer to [13].

3



Remark 1.1. In applications, we will sometimes be confronted with configu-
rations in which Dirichlet boundary conditions for the velocity are not pre-
scribed on the whole boundary. Instead, there will be some part Γout of the
boundary representing an outlet. Then, we apply natural boundary condi-
tions on Γout:

ν∂nv − pn = 0.

This type of boundary condition implicitly normalizes the pressure such that
it is already uniquely determined without the usual mean value constraint.
Hence, the spaces in which the solutions are sought have to be modified to

v ∈
{
v ∈ H1(Ω)d

∣∣∣ v
∣∣
∂Ω\Γout

= 0

}
, p ∈ L2(Ω).

For more information on this free outflow boundary condition as well as
results concerning existence and uniqueness of solutions, we refer to [14].

Furthermore, we consider a functional J : X → R representing the quan-
tity of physical interest. This functional is given as a sum

J(u) =

T∫

0

J1(u(t)) dt+ J2(u(T )),

where of course J1 or J2 may be zero. This choice covers the following
two typical situations: The quantity of interest is a mean value of a given
functional (J1), or one is interested in a terminal value J2(u(T )).

Let ukh = (vkh, pkh)
T be a solution of the discretized version of (2). Then

we aim at the a posteriori error estimation with respect to J of the following
type:

J(u)− J(ukh) ≈ ηk + ηh,

where ηk describes the error due to the discretization in time and ηh the error
due to the discretization in space.

The outline of this paper is as follows: In Section 2, we describe the
space-time finite element discretization of (2). Section 3 is devoted to the
derivation of a posteriori error estimates for the discretization error with
respect to the quantity of interest J . The error estimates assess separately
the error due to the discretization in time and in space and are obtained by
using the solution of a (linear) dual equation. In Section 4, we describe the
numerical realization of the derived error estimates and an adaptive algorithm
for successive improvement of the accuracy. In Section 5, numerical results
are presented, illustrating the behavior of the method.
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2. Discretization

In this section, we describe the discretization of the weak formulation of
the incompressible Navier-Stokes equations (2). The discretization in space
as well as in time will be done by means of Galerkin finite element methods.

In the following subsection, we present the semi-discretization in time by
discontinuous Galerkin (dG) methods. Subsection 2.2 then deals with the
discretization in space of the arising semi-discrete problems. This is done
by continuous Galerkin finite element methods. For technical reasons, we
use piecewise polynomial functions of the same degree for the velocity and
the pressure component. Hence, the Babuška-Brezzi stability condition is
not fulfilled. Therefore, we have to apply stabilization techniques. This is
done by the so-called local projection stabilization (LPS) and is described in
Subsection 2.3 in more detail.

2.1. Discretization in time

To introduce the semi-discretizations in time, we partition the time in-
terval Ī = [0, T ] into

Ī = { 0 } ∪ I1 ∪ · · · ∪ Im ∪ · · · ∪ IM

with subintervals Im := (tm−1, tm] of length km := tm−tm−1 using time points

0 = t0 < t1 < · · · < tm < · · · < tM = T.

The discretization parameter k is given as a piecewise constant function by
setting k

∣∣
Im

:= km for m = 1, . . . ,M .
Using the subintervals Im, let us define the following semi-discrete spaces

Xr
k for r ∈ N0:

Xr
k :=

{
uk = (vk, pk)

T
∣∣∣ vk(0) ∈ L2(Ω)d, vk

∣∣
Im

∈ Pr(Im, H
1
0 (Ω)

d),

pk
∣∣
Im

∈ Pr(Im, L
2(Ω)/R), m = 1, . . . ,M

}

⊆ L2(I,H1
0 (Ω)

d × L2(Ω)/R),

where Pr(Im, Y ) denotes the space of polynomials up to degree r on Im with
values in Y .

To account for the possible discontinuity of a function uk at time points
tm, we introduce the notation

u+
k,m

:= lim
ε↓0

uk(tm + ε), u−
k,m

:= lim
ε↓0

uk(tm − ε), [uk]m := u+
k,m − u−

k,m.
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Figure 1: Notation of discontinuous functions uk in the case r = 1

Thus, u+
k,m is the limit “from above” while u−

k,m denotes the limit “from below”.
[uk]m then is the “jump” of uk(t) at t = tm, see Figure 1.

The dG(r) semi-discretization of the incompressible Navier-Stokes equa-
tions (2) reads: Find uk = (vk, pk)

T ∈ Xr
k such that

M∑

m=1

∫

Im

{
(∂tvk,ψ) + a(uk)(ϕ)

}
dt+

M−1∑

m=0

([vk]m,ψ
+
m) + (v−

k,0,ψ
−
0 )

=

∫

I

(f ,ψ) dt+ (v0,ψ−
0 ) ∀ϕ = (ψ, χ)T ∈ Xr

k . (3)

Remark 2.1. Due to the discontinuity of the test functions, the dG(r) dis-
cretizations decouple into time stepping schemes. For example, the dG(0)
discretization is a variant of the backward Euler method, while the dG(1)
discretization, after applying quadrature rules to the temporal integrals, cor-
responds to some implicit Runge-Kutta method.

2.2. Discretization in space

In this subsection, we describe the discretization in space of the semi-
discrete problems obtained in the previous subsection. To this end, we use
two- or three-dimensional shape-regular meshes, see, e. g., [15]. A mesh con-
sists of quadrilateral or hexahedral cells K which form a non-overlapping
cover of the computational domain Ω ⊆ R

d. The corresponding mesh is de-
noted by Th = {K }, where the discretization parameter h is defined as a
cellwise constant function by setting h

∣∣
K
= hK with the diameter hK of the

cell K.
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Th T2h

Figure 2: Two-dimensional mesh Th (with hanging nodes) organized in a patch-wise man-
ner with corresponding coarser mesh T2h

Remark 2.2. In order to ease mesh refinement, we allow cells to have nodes
which lie on midpoints of faces or edges of neighboring cells. But at most one
such hanging node is permitted on each face or edge. There are no degrees
of freedom corresponding to these irregular nodes and the value of a finite
element function is determined by pointwise interpolation, see [16] for more
details.

On the mesh Th, we construct a conforming finite element space V s
h ⊂

H1(Ω) in a standard way:

V s
h :=

{
v ∈ C(Ω)

∣∣∣ v
∣∣
K
∈ Qs(K) for K ∈ Th

}
⊆ H1(Ω).

We use isoparametric elements, i. e., Qs(K) consists of shape functions ob-
tained via Q̂s(K̂)d transformations of polynomials in Q̂s(K̂) defined on the
reference cell K̂ = (0, 1)d where

Q̂s(K̂) = span





d∏

j=1

x
αj

j

∣∣∣∣∣∣
αj ∈ { 0, . . . , s }



 .

In addition, we will require that the mesh is organized in a patch-wise man-
ner. That is, Th is obtained by uniform refinement of a coarser mesh T2h,
such that we can always combine four (d = 2) or eight (d = 3) adjacent
cells of Th to obtain one cell of T2h. Such macro-cells are called patches (see
Figure 2).

To obtain the formulation of the fully discrete problem, we allow dynamic
mesh change in time, but the time steps km are kept constant in space. To
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this end, we associate with each time point tm a mesh T m
h and corresponding

(spatial) finite element spaces V sv ,m
h and V

sp,m

h . We then define the following
space-time finite element space:

Xr,s
kh

:=
{
ukh = (vkh, pkh)

T
∣∣∣ vkh(0) ∈ (H0

h)
d, vkh

∣∣
Im

∈ Pr(Im, (H
m
h )d),

pkh
∣∣
Im

∈ Pr(Im, L
m
h ), m = 1, . . . ,M

}

⊆ L2(I,H1
0 (Ω)

d × L2(Ω)/R),

where
Hm

h := V sv ,m
h ∩H1

0 (Ω) and Lm
h := V

sp,m

h ∩ L2(Ω)/R.

Because of the conformity of Hm
h and Lm

h , we have Xr,s
kh ⊆ Xr

k .
Then, the cG(s)dG(r) formulation of problem (2) reads: Find ukh =

(vkh, pkh)
T ∈ Xr,s

kh such that

M∑

m=1

∫

Im

{
(∂tvkh,ψ) + a(ukh)(ϕ)

}
dt+

M−1∑

m=0

([vkh]m,ψ
+
m) + (v−

kh,0,ψ
−
0 )

=

∫

I

(f ,ψ) dt+ (v0,ψ−
0 ) ∀ϕ = (ψ, χ)T ∈ Xr,s

kh . (4)

Remark 2.3. The notation cG(s)dG(r), representing a space-time finite el-
ement discretization with continuous piecewise polynomials of degree s in
space and discontinuous piecewise polynomials of degree r in time, is taken
from [17].

2.3. Stabilization

The fully discrete formulation does not lead to a stable approximation
of problem (2) unless the spatial finite element spaces Hm

h and Lm
h fulfill

the Babuška-Brezzi inf-sup-stability condition. Especially the cases of equal-
order trial spaces, i. e., sv = sp = s, which are favorable from the implementa-
tional point of view, do not fulfill this condition. Therefore we either have to
use mixed finite element methods like the Taylor-Hood element (see [18]) or
add stabilization terms. For implementational reasons, we apply equal-order
trial spaces and apply the local projection stabilization, see, e. g., [19, 20].

To give a precise definition of the modified fully discrete formulations, we
introduce a spatial interpolation operator Ih : V s,m

h → Ṽ s,m
h into a subspace
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Ṽ s,m
h ⊆ V s,m

h which is given as

Ṽ s,m
h

:=

{
V 1,m
2h for s = 1,

V 1,m
h for s = 2.

The interpolation onto the mesh T2h in the case s = 1 is easily computable
if the mesh possesses the patch structure introduced above. Using the in-
terpolation operator Ih, we define the filtering operator π : V s,m

h → V s,m
h

by
π := id−Ih.

The filtering operator π : (V s,m
h )d → (V s,m

h )d is defined analogously compo-
nentwise. Let us further extend these operators in time by defining point-wise

(πpkh)(t) := πpkh(t) and (πvkh)(t) := πvkh(t).

This allows us to state the following modified fully discrete formulation of
problem (2): Find ukh = (vkh, pkh)

T ∈ Xr,s
kh such that

M∑

m=1

∫

Im

{
(∂tvkh,ψ) + a(ukh)(ϕ) + smh (ukh)(ϕ)

}
dt+

M−1∑

m=0

([vkh]m,ψ
+
m)

+ (v−
kh,0,ψ

−
0 ) =

∫

I

(f ,ψ) dt+ (v0,ψ−
0 ) ∀ϕ = (ψ, χ)T ∈ Xr,s

kh . (5)

Here, the additional terms are given by

smh (u)(ϕ) :=
∑

K∈T m
h

{
(∇πp, αK,m∇πχ)K + ((v · ∇)πv, δK,m(v · ∇)πψ)K

}

with u = (v, p)T and ϕ = (ψ, χ)T . The cell-wise stabilization parameters
αK,m and δK,m are given as

αK,m = α0
h2
K

6ν + hK ‖vkh‖K
and δK,m = δ0

h2
K

6ν + hK ‖vkh‖K + hK

km

with some constants α0 and δ0. For details on the choice of these parameters,
we refer, for instance, to [21] or [22]. In our computations, we chose α0 =
δ0 = 0.3.
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3. A posteriori error estimation

This section is dedicated to the development of an a posteriori error es-
timator which measures the discretization error in a functional J . The error
estimator developed here is an extension of concepts already published in [7].
It separates the total discretization error into contributions due to the dis-
cretization in time and in space. The reliable quantitative error estimation
is a key ingredient in setting up an adaptive algorithm during which the
temporal and spatial discretization errors are balanced and simultaneously
decreased.

To this end, we state a slightly more general version of the abstract result
of [23]:

Lemma 3.1. Let Y be a function space and L and L̃ be three times Gâteaux

differentiable functionals on Y . We seek a stationary point y1 of L on a

subspace Y1 ⊆ Y : Find y1 ∈ Y1 such that

L′(y1)(δy1) = 0 ∀δy1 ∈ Y1. (6)

This equation is approximated by a Galerkin method using the functional L̃
on a subspace Y2 ⊆ Y . Hence, the discrete problem seeks y2 ∈ Y2 such that

L̃′(y2)(δy2) = 0 ∀δy2 ∈ Y2. (7)

If the continuous solution y1 additionally fulfills

L′(y1)(y2) = 0 (8)

with the approximative solution y2, we have for arbitrary ỹ2 ∈ Y2 the error

representation

L(y1)−L̃(y2) =
1

2
L′(y2)(y1−ỹ2)+

1

2
(L−L̃)′(y2)(ỹ2−y2)+(L−L̃)(y2)+R, (9)

where the remainder term R is given by means of e := y1 − y2 as

R =
1

2

1∫

0

L′′′(y2 + se)(e, e, e) · s · (s− 1) ds.
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Proof. We write by the main theorem of calculus

L(y1)− L̃(y2) = L(y1)− L(y2) + (L− L̃)(y2)

=

1∫

0

L′(y2 + se)(e) ds+ (L− L̃)(y2).

Using the trapezoidal rule

1∫

0

f(s) ds =
1

2
f(0) +

1

2
f(1) +

1

2

1∫

0

f ′′(s) · s · (s− 1) ds

for approximating the integral, supplies

L(y1)− L̃(y2) =
1

2
L′(y2)(e) +

1

2
L′(y1)(e) +R+ (L− L̃)(y2).

Because of (6) and (8), we have

L′(y1)(e) = 0.

Due to assertion (7), we may replace L′(y2)(e) by

L′(y2)(y1 − ỹ2) + L′(y2)(ỹ2 − y2) = L′(y2)(y1 − ỹ2) + (L− L̃)′(y2)(ỹ2 − y2)

for arbitrary ỹ2 ∈ Y2. This completes the proof.

As mentioned in Section 1, we assume the functional J to be given in the
form

J(u) =

T∫

0

J1(u(t)) dt+ J2(u(T ))

where of course J1 or J2 may be zero. In order to apply the abstract error
representation formula of Lemma 3.1, we introduce the Lagrangians L : X ×
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X → R, L̃ : Xr
k ×Xr

k → R, and L̃h : Xr,s
kh ×Xr,s

kh → R by

L(u, z) := J(u) +

∫

I

{
(f − ∂tv,w)− a(u)(z)

}
dt− (v(0)− v0,w(0)),

L̃(uk, zk) := J(uk) +
M∑

m=1

∫

Im

{
(f − ∂tvk,wk)− a(uk)(zk)

}
dt

−

M−1∑

m=0

([vk]m,w
+
k,m)− (v−

k,0 − v
0,w−

k,0),

L̃h(ukh, zkh) := L̃(ukh, zkh)− Sh(ukh, zkh)

with

Sh(ukh, zkh) :=
M∑

m=1

∫

Im

smh (ukh)(zkh) dt.

Remark 3.1. The Lagrange multipliers z = (w, q)T , zk = (wk, qk)
T , and

zkh = (wkh, qkh)
T introduced in this context, are usually called dual variables

in contrast to the primal variables u = (v, p)T , uk = (vk, pk)
T , and ukh =

(vkh, pkh)
T .

Using the Lagrangians, we can express the functional values of the con-
tinuous, semi-discrete, and fully discrete solution as follows:

J(u) = L(u,ϕ) ∀ϕ ∈ X, (10a)

J(uk) = L̃(uk,ϕ) ∀ϕ ∈ Xr
k , (10b)

J(ukh) = L̃h(ukh,ϕ) ∀ϕ ∈ Xr,s
kh . (10c)

Since we want to separate the influences of the temporal and spatial dis-
cretization, we split the total discretization error as

J(u)− J(ukh) = (J(u)− J(uk)) + (J(uk)− J(ukh)),

where u denotes the continuous solution, uk the semi-discrete solution of
the dG(r) discretization in time, and ukh the fully discrete solution of the
cG(s)dG(r) discretization. Note that these solutions are given as the first
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component of stationary points of the corresponding Lagrangians, since

L′
z
(u, z)(ϕ) = 0 ∀ϕ ∈ X,

L̃′
z
(uk, zk)(ϕ) = 0 ∀ϕ ∈ Xr

k ,

L̃′
h,z(ukh, zkh)(ϕ) = 0 ∀ϕ ∈ Xr,s

kh

are just the equations for the continuous, semi-discrete and fully discrete
problem.

We are now able to state the following theorem:

Theorem 3.2. Let (u, z)T , (uk, zk)
T , and (ukh, zkh)

T denote stationary

points of L, L̃, and L̃h on different discretization levels, i. e.,

L′(u, z)(δu, δz) = L̃′(u, z)(δu, δz) = 0 ∀(δu, δz)T ∈ X ×X,

L̃′(uk, zk)(δuk, δzk) = 0 ∀(δuk, δzk)
T ∈ Xr

k ×Xr
k ,

L̃′
h(ukh, zkh)(δukh, δzkh) = 0 ∀(δukh, δzkh)

T ∈ Xr,s
kh ×Xr,s

kh .

Then, there hold the following error representation formulas for the dis-

cretization errors in time and space:

J(u)− J(uk) =
1

2
L̃′(uk, zk)(u− ũk, z − z̃k) +Rk,

J(uk)− J(ukh) =
1

2
L̃′(ukh, zkh)(uk − ũkh, zk − z̃kh)

+
1

2
S ′
h(ukh, zkh)(ũkh − ukh, z̃kh − zkh) + Sh(ukh, zkh)

+Rh.

Here, (ũk, z̃k)
T ∈ Xr

k × Xr
k and (ũkh, z̃kh)

T ∈ Xr,s
kh × Xr,s

kh can be chosen

arbitrarily and the remainder terms Rk and Rh have the same structure as

in Lemma 3.1.

Proof. Due to (10), we may especially write

J(u)− J(uk) = L(u, z)− L̃(uk, zk) = L̃(u, z)− L̃(uk, zk), (11a)

J(uk)− J(ukh) = L̃(uk, zk)− L̃h(ukh, zkh). (11b)

Here, we have used the fact that

J(u) = L(u, z) = L̃(u, z),
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since the first component v of u ∈ X is continuous and hence the additional
jump terms in L̃ compared to L vanish. Next, we apply Lemma 3.1 with

L = L̃, L̃ = L̃, Y1 = X ×X, Y2 = Xr
k ×Xr

k for (11a),

L = L̃, L̃ = L̃h, Y1 = Xr
k ×Xr

k , Y2 = Xr,s
kh ×Xr,s

kh for (11b).

In the second case, we have Y2 ⊆ Y1 since Xr,s
kh ⊆ Xr

k . Hence, we can take
Y := Y1 and condition (8) is fulfilled automatically.

For the first case, he have to choose Y := Y1 + Y2 since Xr
k 6⊆ X. Thus,

we must check condition (8) which reads

L̃′(u, z)(uk, zk) = 0

or equivalently

L̃′
u
(u, z)(uk) = 0 and L̃′

z
(u, z)(zk) = 0.

We only show the proof of the second condition

L̃′
z
(u, z)(zk) = 0. (12)

The first one can be handled analogously. Due to the continuity of the first
component of the continuous solution u with respect to time, the jump terms
and the initial condition in L̃ vanish on u ∈ X. Hence, equation (12) may
be rewritten as

M∑

m=1

∫

Im

{
(f − ∂tv,wk)− a(u)(zk)

}
dt = 0.

By construction, the continuous solution u fulfills
∫

I

{
(∂tv,ψ) + a(u)(ϕ)

}
dt =

∫

I

(f ,ψ) dt ∀ϕ = (ψ, χ)T ∈ X. (13)

Since X is dense in L2(I,H1
0 (Ω)

d × L2(Ω)/R) with respect to the norm of
L2(I,H1

0 (Ω)
d×L2(Ω)/R) and since there are no time derivatives on ψ in (13),

this equation also holds true for all ϕ ∈ L2(I,H1
0 (Ω)

d × L2(Ω)/R). The in-
clusion zk ∈ Xr

k ⊆ L2(I,H1
0 (Ω)

d×L2(Ω)/R) then implies that condition (12)
is fulfilled.

Finally, the assertion of the theorem is a direct consequence of Lemma 3.1
applied to the separated errors (11).
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Introducing the primal and dual residual

ρ(u)(ϕ) := L̃′
z
(u, z)(ϕ),

ρ∗(u, z)(ϕ) := L̃′
u
(u, z)(ϕ),

the result of Theorem 3.2 may be rewritten as

J(u)− J(uk) ≈
1

2

{
ρ(uk)(z − z̃k) + ρ∗(uk, zk)(u− ũk)

}
, (14a)

J(uk)− J(ukh) ≈
1

2

{
ρ(ukh)(zk − z̃kh) + ρ∗(ukh, zkh)(uk − ũkh)

}
, (14b)

where we have neglected the remainder terms Rk and Rh as well as the addi-
tional terms due to stabilization which can be assumed to be small because
they contain small stabilization parameters. At least, numerical results show
that they are indeed negligible, see Section 5.

4. Numerical realization

In this section, we give details on the numerical realization of the a poste-
riori error estimators developed in the previous section. The error estimators
involve the continuous, semi-discrete, and fully discrete dual solutions z ∈ X,
zk ∈ Xr

k , and zkh ∈ Xr,s
kh . They are given as solutions of

L′
u
(u, z)(ϕ) = 0 ∀ϕ ∈ X,

L̃′
u
(uk, zk)(ϕ) = 0 ∀ϕ ∈ Xr

k ,

L̃′
h,u(ukh, zkh)(ϕ) = 0 ∀ϕ ∈ Xr,s

kh .

We want to show the precise form of these derivatives, i. e., the equations the
dual solutions have to fulfill. The continuous dual solution z = (w, q)T ∈ X
is the solution of

∫

I

{
(ψ,−∂tw) + a′(u)(ϕ, z)

}
dt+ (ψ(T ),w(T ))

=

∫

I

J ′
1(u)(ϕ) dt+ J ′

2(u(T ))(ϕ(T )) ∀ϕ = (ψ, χ)T ∈ X, (15)
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where we have integrated by parts which is admissible for functions in X,
see, for instance, [24]. The semi-discrete dual solution zk = (wk, qk)

T ∈ Xr
k

and the fully discrete dual solution zkh = (wkh, qkh)
T ∈ Xr,s

kh fulfill

M∑

m=1

∫

Im

{
(ψ,−∂twk) + a′(uk)(ϕ, zk)

}
dt−

M−1∑

m=0

(ψ−
m, [wk]m) + (ψ−

M ,w−
k,M)

=

∫

I

J ′
1(uk)(ϕ) dt+ J ′

2(u
−
k,M)(ϕ−

M) ∀ϕ = (ψ, χ)T ∈ Xr
k (16)

and

M∑

m=1

∫

Im

{
(ψ,−∂twkh) + a(ukh)(ϕ, zkh) + smh

′(ukh)(ϕ, zkh)
}
dt

−
M−1∑

m=0

(ψ−
m, [wkh]m) + (ψ−

M ,w−
kh,M)

=

∫

I

J ′
1(ukh)(ϕ) dt+ J ′

2(u
−
kh,M)(ϕ−

M) ∀ϕ = (ψ, χ)T ∈ Xr,s
kh , (17)

respectively.
Note that for solving the dual problems (17), the primal solution ukh

is needed on the whole time interval Ī due to the nonlinear structure of the
primal problem. A common way to deal with this difficulty is to apply check-
pointing techniques which reduce the required amount of memory because
the primal solution is only stored on so-called checkpoints. The drawback is
that we have to solve the (nonlinear) primal problem more often to recover
the primal solution between two checkpoints. More information on check-
pointing can be found, for instance, in [25], [26] or [27]. However, since in
the last years the capacities of main memory and hard disk drives have been
growing rapidly, we propose to store the primal solution over the whole time
interval. For two-dimensional simulations, this can often be done by only
using the main memory, while in three spatial dimensions we suggest storing
the data on hard disk. Even though the access of reading and writing from
and to hard disk is much slower than the access to main memory, this can
be assumed to be still much faster than solving several time steps of the
nonlinear primal problem more than once. For a discussion of this topic, we
also refer to [28].
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4.1. Numerical evaluation of the error estimator

Let us now consider the numerical evaluation of the error estimator devel-
oped in the previous section for the cG(s)dG(0) and cG(s)dG(1) discretiza-
tion with s ∈ { 1, 2 }. Since the quantities ũk, z̃k, ũkh, and z̃kh can be
chosen arbitrarily in the corresponding spaces, the so-called weights, i. e.,
u− ũk, z − z̃k, and so on, are mainly interpolation errors. We approximate
these interpolation errors by higher order reconstructions of the discrete so-
lutions. This approach relies on the “super-closeness” of the derivatives of
these higher order interpolations to those of the continuous solution, see [23]
for more details on this topic and alternative approaches.

We introduce the following linear operators for approximating the weights
in the error estimator:

v − ṽk ≈ Π
(v)
k
vk, vk − ṽkh ≈ Π

(v)
h
vkh,

p− p̃k ≈ Π
(p)
k pk, pk − p̃kh ≈ Π

(p)
h pkh,

w − w̃k ≈ Π
(v)
k
wk, wk − w̃kh ≈ Π

(v)
h
wkh,

q − q̃k ≈ Π
(p)
k qk, qk − q̃kh ≈ Π

(p)
h qkh.

The operators Π
(v)
k

, Π
(p)
k as well as Π

(v)
h

and Π
(p)
h are chosen as

cG(s)dG(0):

Π
(v)
k

:= I
(1)
k

− id, Π
(v)
h

:= I
(2s)
2h − id,

Π
(p)
k

:= I
(1)
k − id, Π

(p)
h

:= I
(2s)
2h − id,

where I
(1)
k is given as in Figure 3(a) and I

(1)
k

acts component-wise as

I
(1)
k .

cG(s)dG(1):

Π
(v)
k

:= I
(2)
2k − id, Π

(v)
h

:= I
(2s)
2h − id,

Π
(p)
k

:= I
(2)
2k − id, Π

(p)
h

:= I
(2s)
2h − id,

where I
(2)
2k is given as in Figure 3(b) and I

(2)
2k acts component-wise as

I
(2)
2k .
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tm tm+1tm−1

Im

uk

I
(1)
k uk

(a) Continuous piecewise linear interpolation of a dis-
continuous piecewise constant function

tm tm+1tm−1

Im

uk

I
(2)
2k uk

(b) Continuous piecewise quadratic interpolation of a
discontinuous piecewise linear function

Figure 3: Interpolation operators I
(1)
k

and I
(2)
2k
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The spatial interpolation operators I
(2)
2h : V 1

h → V 2
2h (for s = 1) into the space

of bi- or tri-quadratic trial functions and I
(4)
2h : V 2

h → V 4
2h (for s = 2) into

the space of bi- or tri-quartic trial functions can easily be computed if the
underlying mesh possesses a patch structure, see Figure 2. These spatial
interpolation operators are extended into time point-wise by

(I
(2s)
2h ukh)(t) := I

(2s)
2h (ukh(t)).

The last step in making the derived a posteriori error estimators com-
putable is to replace all unknown solutions appearing either in the weights
or in the residuals by the fully discrete versions, i. e., we replace

ρ(uk)(z − z̃k) by ρ(ukh)(Πkzkh)

and
ρ∗(uk, zk)(u− ũk) by ρ∗(ukh, zkh)(Πkukh)

with Πkzkh := (Π
(v)
k
wkh,Π

(p)
k qkh)

T and Πkukh := (Π
(v)
k
vkh,Π

(p)
k pkh)

T . The
replacement in the weights is well accepted while the replacement in the
residuals, i. e., the replacement of the linearization point, might seem critical.
One could think of replacing the unknown solutions also by higher order
interpolations as we did in the weights. However, in our numerical examples
we see that this additional effort is not necessary to obtain quantitatively
good results.

Remark 4.1. This observation is also substantiated by the fact that the re-
placement of the linearization point introduces an additional error which
usually is of higher order. This can be seen as follows: The introduced error
can be expressed as

L̃′(ζk)(ζ−ζ̃k)−L̃′(ζkh)(ζ−ζ̃k) =

1∫

0

L̃′′(ζkh+s(ζk−ζkh))(ζk−ζkh, ζ−ζ̃k) ds

with ζ = (u, z)T , ζk = (uk, zk)
T , and ζkh = (ukh, zkh)

T . By choosing an
appropriate interpolant for ζ̃k, this identity shows that the discussed replace-
ment introduces an error of the order O(h2k) whereas the total discretization
error usually is not better than O(h2 + k) in the case of a cG(1)dG(0) dis-
cretization. For more details, we refer to [28] or [7].
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Proceeding as proposed, we obtain the following a posteriori error esti-
mator

J(u)− J(ukh) ≈ ηk + ηh

with

ηk :=
1

2

{
ρ(ukh)(Πkzkh) + ρ∗(ukh, zkh)(Πkukh)

}
,

ηh :=
1

2

{
ρ(ukh)(Πhzkh) + ρ∗(ukh, zkh)(Πhukh)

}
.

To get an impression of what terms have to be evaluated, we present
exemplarily for the backward Euler variant of the cG(s)dG(0) discretization
their precise form. To this end, temporal integrals involving ukh and zkh are

approximated by the box rule whereas those involving I
(1)
k
ukh and I

(1)
k
ukh

are evaluated using the trapezoidal rule. This leads to the following repre-
sentation:

ρ(ukh)(Πkzkh) =
M∑

m=1

{
(Vm − Vm−1,Wm −Wm−1)

+
km
2
a(Um)(Zm −Zm−1)

+
km
2
(f(tm−1),Wm−1)−

km
2
(f(tm),Wm)

}
,

ρ∗(ukh, zkh)(Πkukh) =
M∑

m=1

{km
2
a′(Um)(Um −Um−1,Zm)

−
km
2
J ′
1(Um)(Um −Um−1)

}
,

ρ(ukh)(Πhzkh) =
M∑

m=1

{
km(f(tm), I

(2s)
2h Wm −Wm)

− kma(Um)(I
(2s)
2h Zm −Zm)

− (Vm − Vm−1, I
(2s)
2h Wm −Wm)

}

− (V0 − v
0, I

(2s)
2h W0 −W0),
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ρ∗(ukh, zkh)(Πhukh) =
M∑

m=1

{
kmJ

′
1(Um)(I

(2s)
2h Um −Um)

− kma
′(Um)(I

(2s)
2h Um −Um,Zm)

+ (I
(2s)
2h Vm−1 − Vm−1,Wm −Wm−1)

}

+ J ′
2(UM )(I

(2s)
2h UM −UM )

− (I
(2s)
2h VM − VM ,WM ).

Similar expressions are obtained for the cG(s)dG(1) discretization. Of course,
quadrature rules of higher order have to be applied in order to exactly eval-
uate the temporal integrals.

The a posteriori error estimators developed above serve for two purposes:
Firstly, the quantitative assessment of the discretization error and secondly
the adaptive refinement of the underlying discretizations in order to efficiently
improve the accuracy. For the second aim, the information of the error
estimators has to be localized to cell-wise or node-wise contributions. These
quantities are then called local error indicators.

To this end, we split the overall error estimators into their contributions
on each subinterval Im by

ηk =
M∑

m=1

ηmk and ηh =
M∑

m=0

ηmh ,

where the interval-wise error estimators are defined analogously to the global
error estimators by

ηmk :=
1

2

{
ρm(uk)(z − z̃k) + ρ∗m(uk, zk)(u− ũk)

}
,

ηmh :=
1

2

{
ρm(ukh)(zk − z̃kh) + ρ∗m(ukh, zkh)(uk − ũkh)

}
,

but involve only those parts ρm and ρ∗m of the global residuals ρ and ρ∗

belonging to the subinterval Im or to the initial time t = 0 for m = 0.
While the hereby obtained local contributions ηmk for the temporal dis-

cretization error can directly be used for an adaptive refinement of the tem-
poral discretization, the spatial contributions have to be localized further:

ηmh =
∑

K∈T m
h

ηmh,K , m = 0, . . . ,M.
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However, a simple splitting into cell-wise contributions leads to a large over-
estimation of the actual error due to oscillatory behavior of the residuals,
see [29]. A commonly used way to overcome this difficulty is to apply cell-
wise integration by parts in space, see, e. g., [30, 23]. The resulting local error
indicators involve the strong residual of the equation as well as jumps of the
discrete solution over faces of cells.

Another way of overcoming this problem which we applied in our com-
putations and which avoids having to evaluate strong residuals and jumps
over faces of cells was presented in [31]. For details on the application of this
approach to nonstationary problems, we refer to [7] and [6].

For setting up an efficient adaptive algorithm, it is essential that the
temporal error estimator ηk is independent of the refinement of the spatial
discretization and vice versa. We will see in Section 5, that this is (almost)
the case for both ηk and ηh. However, the local contributions ηmh depend
linearly on the local size km of the subintervals Im because

ηh =
M∑

m=0

ηmh .

It is important to get rid of this dependence since otherwise the spatial
error indicators would decrease, for instance, while keeping the spatial dis-
cretization fixed and only refining the temporal discretization. Therefore, we
introduce spatial error indicators η̂mh,K independent of km and hence usable
in a simultaneous mesh adaption algorithm as presented below by rescaling:

η̂mh,K :=
T

km
ηmh,K , K ∈ T m

h , m = 0, . . . ,M.

This scaling has the following special property: If the rescaled spatial error
indicators η̂mh fulfill

η̂mh =
∑

K∈T m
h

η̂mh,K < TOL,

we then have for the whole spatial error estimator

ηh =
M∑

m=0

ηmh =
M∑

m=0

km
T

η̂mh <
TOL

T

M∑

m=0

km = TOL.
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Remark 4.2. If the cells to be refined within an adaptive mesh refinement
procedure are not chosen by a tolerance-based selection criterion, the simpler
rescaling

η̂mh,K :=
1

km
ηmh,K

is sufficient.

This supplies us with two sets of error indicators which will be used
within the adaptive algorithm presented in the next subsection for an efficient
automatic adaptation of the temporal and spatial discretizations. These sets
are given by

Σk := { ηmk | m = 1, . . . ,M } and Σh :=
{
η̂mh,K

∣∣∣ K ∈ T m
h , m = 0, . . . ,M

}
.

Remark 4.3. Note that for efficiency reasons it is necessary to treat the cell-
wise error indicators of all spatial meshes simultaneously rather than for each
mesh separately. If we used M + 1 different sets of cell-wise error indicators

Σm
h :=

{
η̂mh,K

∣∣∣ K ∈ T m
h

}
, m = 0, . . . ,M,

for deciding which cells should be refined, we would probably obtain a rather
inefficient spatial discretization. This becomes clear if we assume, for ex-
ample, that the error indicators on one subinterval are much smaller than
those on another subinterval. Using, for instance, a fixed fraction strategy
for selecting the cells to be refined leads to cells that are marked to be re-
fined although the corresponding error indicators are smaller than the error
indicators of cells in other meshes which might not be refined. The other
way around, we also observe inefficiency when marking cells for coarsening.
Even if their error indicators might be small compared to other cells in the
same mesh, their contribution to the spatial discretization error still might be
large compared to cells in other meshes. However, applying a fixed fraction
strategy to the full set of error indicators Σh does not produce such inefficient
meshes because the error indicators are sorted “globally”.

4.2. Adaptive algorithm

In this subsection, we present an adaptive refinement algorithm which
uses the developed a posteriori error estimators of Section 3 to automatically
adjust the temporal and spatial discretizations in order to efficiently increase
the accuracy. To obtain efficient discretizations, it is essential to equilibrate
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the temporal and spatial discretization errors and keep them balanced under
further refinement. This requires a precise quantitative assessment of both
discretization errors as it is available with the derived error estimators (see
Section 5 for numerical results).

If the functional value J(u) is to be computed to a given accuracy TOL,
this can be achieved by refining each discretization as long as the corre-
sponding part of the error is greater than TOL

2
. However, this might lead to

an inefficient algorithm, especially in the case when the temporal and spa-
tial discretization error are unbalanced in the beginning. Furthermore, the
desired accuracy TOL might be too small to be achieved with the given com-
putational resources. In the sequel, we present an adaptive algorithm which
balances the initial temporal and spatial discretization errors and keeps them
balanced during further refinement without having to prescribe a certain ac-
curacy TOL. This leads to an algorithm which uses the given computational
resources efficiently in order to achieve an accuracy as good as possible.
The stopping criterion therefore is based on reaching a prescribed maximum
number of degrees of freedom (determined by the given architecture) which
must not be exceeded rather than on reaching the desired accuracy TOL. Of
course, these stopping criterions can easily be exchanged by instead checking
if

|η| = |ηk + ηh| ≤ TOL,

at least under consideration of the problem mentioned above.
As already mentioned, the goal of an efficient adaptive refinement algo-

rithm has to be the equilibrated reduction of the temporal and spatial dis-
cretization error. To this end, we introduce an equilibration constant κ ≥ 1
(usually κ ≈ 3 in our numerical examples) and propose to proceed as in
Algorithm 1.

Remark 4.4. The behavior of Algorithm 1 strongly depends on the choice of κ.
Choosing κ too small, results in a slower reduction of the overall discretization
error because only the temporal or spatial discretization is refined while the
temporal and spatial discretization error actually are of the same size. On the
other hand, choosing κ too large, makes the algorithm inefficient because both
discretizations are refined although the total discretization error is dominated
by only the temporal or the spatial discretization error. Numerical tests show
κ ≈ 3 to be a good choice.

When refining a discretization, the cells (or time intervals) which are to
be refined are chosen using sets Σk or Σh of error indicators like the ones
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Algorithm 1 Adaptive refinement algorithm
1: Choose an initial temporal and spatial discretization Tk0,h0 .
2: Set n = 0.
3: loop
4: Compute the primal and dual solution uknhn

and zknhn
.

5: Evaluate the a posteriori error estimators ηkn and ηhn
.

6: if the maximum number of degrees of freedom is reached then
7: return
8: if |ηkn | > κ |ηhn

| then
9: Adapt the temporal discretization.

10: else if |ηhn
| > κ |ηkn| then

11: Adapt the spatial discretization.
12: else
13: Adapt the temporal and spatial discretization.
14: Increase n.

shown at the end of the previous section. Thus, we have to select subsets
ΣR

k ⊆ Σk or ΣR
h ⊆ Σh indicating which cells (or time intervals) should be

refined. As already noted in Remark 4.3, the selection of the spatial cells to
be refined is done simultaneously on all meshes T m

h , m = 0, . . . ,M .
For the selection of the subsets ΣR

k or ΣR
h , several standard approaches

are available like error balancing or fixed fraction strategies. However, for
the computations in this paper, a quite different approach was used which is
described in [32, 33] or [6].

5. Numerical results

In this section, we present some numerical results achieved by applying
the proposed adaptive algorithm in combination with different temporal and
spatial discretizations to the incompressible Navier-Stokes equations (1).

5.1. Example 1

Let us first consider the following model problem on the two-dimensional
unit square Ω = (0, 1)2 and final time T = 1: We set ν = 1 and choose the
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force f in such a way that the exact solution (v, p)T is given by

v(t,x) =

(
sin(t) sin2(πx1) sin(πx2) cos(πx2)
− sin(t) sin(πx1) cos(πx1) sin

2(πx2)

)
,

p(t,x) = sin(t) sin(πx1) cos(πx1) sin(πx2) cos(πx2).

The initial and boundary conditions are set to

v = 0 in { 0 } × Ω,

v = 0 on (0, 1)× ∂Ω.

We aim at computing the functional value

J(u) =
1

2

∫

Ω

∣∣v(1,x)
∣∣2 dx

at final time T = 1. The exact value can be computed to be

J(u) =
3

64
sin2(1) ≈ 0.03319094148157365.

First, we present the numerical justification for the splitting of the total
discretization error into a temporal and spatial contribution. In Tables 1
and 2, the independence of the temporal error estimator on the refinement
of the spatial discretization and vice versa can be seen. This is an important
feature in equilibrating both discretization errors during the adaptive algo-
rithm presented in Section 3. Here and in the rest of this paper, N denotes
the number of degrees of freedom of one spatial mesh while M denotes the
number of subintervals. Also note the very good agreement of the spatial
error estimators between both temporal discretizations (columns three and
four in Tables 1 and 2) as well as the agreement of the temporal error esti-
mators (columns five and six of these tables) when using either the cG(1) or
the cG(2) discretization in space.

In Tables 3 and 4, we present the development of the total discretization
error J(u) − J(ukh) as well as the spatial and temporal error estimators
ηh and ηk during an adaptive run with local refinement of the temporal
and spatial discretization using dynamic meshes for the cG(1)dG(0) and
cG(2)dG(1) discretization, respectively. Here, Nmax denotes the number of
degrees of freedom of the finest spatial mesh used whereas Ntot denotes the
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Table 1: Independence of one part of the error estimator on the refinement of the other
discretization: dG(0) discretization in time, cG(1) or cG(2) discretization in space

N M ηh ηk
cG(1) cG(2) cG(1) cG(2)

243 40 3.8136 ·10−04 4.2374 ·10−04

867 40 4.1703 ·10−04 4.2887 ·10−04

3267 40 — — 4.2620 ·10−04 4.2922 ·10−04

12675 40 4.2848 ·10−04 4.2924 ·10−04

49923 40 4.2905 ·10−04 4.2924 ·10−04

3267 10 1.9876 ·10−04 1.5554 ·10−06

3267 20 2.0636 ·10−04 1.6150 ·10−06

3267 40 2.1009 ·10−04 1.6442 ·10−06 — —
3267 80 2.1194 ·10−04 1.6586 ·10−06

3267 160 2.1286 ·10−04 1.6656 ·10−06

Table 2: Independence of one part of the error estimator on the refinement of the other
discretization: dG(1) discretization in time, cG(1) or cG(2) discretization in space

N M ηh ηk
cG(1) cG(2) cG(1) cG(2)

243 40 −5.4041 ·10−07 −5.7303 ·10−07

867 40 −5.6914 ·10−07 −5.7818 ·10−07

3267 40 — — −5.7621 ·10−07 −5.7851 ·10−07

12675 40 −5.7795 ·10−07 −5.7853 ·10−07

49923 40 −5.7839 ·10−07 −5.7853 ·10−07

3267 10 2.1389 ·10−04 1.6741 ·10−06

3267 20 2.1379 ·10−04 1.6732 ·10−06

3267 40 2.1377 ·10−04 1.6731 ·10−06 — —
3267 80 2.1377 ·10−04 1.6730 ·10−06

3267 160 2.1377 ·10−04 1.6728 ·10−06
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Table 3: Adaptive refinement on dynamic meshes with equilibration for the cG(1)dG(0)
discretization

Ntot Nmax M ηh ηk J(u)− J(ukh) Ieff

2673 243 10 2.82 ·10−03 1.39 ·10−03 5.42 · 10−03 1.29
5655 867 12 8.26 ·10−04 8.33 ·10−04 1.96 · 10−03 1.18
18621 3267 14 2.25 ·10−04 5.04 ·10−04 8.05 · 10−04 1.10
91113 12435 18 6.32 ·10−05 2.71 ·10−04 3.57 · 10−04 1.07
162657 12435 26 6.07 ·10−05 1.41 ·10−04 2.08 · 10−04 1.03
767913 47859 34 1.94 ·10−05 8.51 ·10−05 1.03 · 10−04 0.98
1402389 47859 54 1.87 ·10−05 4.48 ·10−05 6.23 · 10−05 0.98
7419177 177627 82 6.36 ·10−06 2.63 ·10−05 3.18 · 10−05 0.97

total number of degrees of freedom of the space-time discretization. The last
column shows the effectivity index Ieff which is given by

Ieff :=
J(u)− J(ukh)

ηk + ηh
.

Looking at these tables, we observe for finer discretizations Ieff ≈ 1 which
shows the very good quantitative estimation of the discretization error. We
also note the equilibration of the temporal and spatial discretization error
achieved during refinement.

A comparison of different refinement strategies for the cG(1)dG(0) and
cG(2)dG(1) discretization is depicted in Figures 4 and 5, respectively. We
use the following labeling:

• “uniform”: We apply uniform refinement to the temporal and spatial
discretization in each iteration.

• “adaptive”: We apply adaptive refinement to the temporal and spatial
discretization together with the proposed equilibration strategy. The
spatial mesh is fixed on the whole time interval.

• “dynamic”: We apply adaptive refinement to the temporal and spatial
discretization together with the proposed equilibration strategy. The
spatial meshes may vary from subinterval to subinterval.
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Table 4: Adaptive refinement on dynamic meshes with equilibration for the cG(2)dG(1)
discretization

Ntot Nmax M ηh ηk J(u)− J(ukh) Ieff

5103 243 10 4.49 ·10−04 −1.71 ·10−05 3.84 · 10−04 0.89
6975 867 10 3.03 ·10−05 −2.89 ·10−05 4.12 · 10−06 2.81
27243 3267 12 1.68 ·10−06 −3.47 ·10−06 −2.43 · 10−06 1.35
106167 12675 14 1.12 ·10−07 −6.20 ·10−07 −5.12 · 10−07 1.01
233067 12675 20 1.21 ·10−07 −8.82 ·10−08 3.76 · 10−08 1.15
1028019 49923 24 1.01 ·10−08 −1.77 ·10−08 −8.78 · 10−09 1.15
7651347 197571 40 7.57 ·10−10 −2.56 ·10−09 −1.92 · 10−09 1.07

Even for this example with smooth solution, we achieve a reduction factor
of about 50–100 in the degrees of freedom needed for reaching a certain
accuracy when using adaptive refinement in time and space compared to
uniform meshes. In situations where the dynamics in space are larger than
here, one can also achieve a greater reduction factor between the adaptive
refinement on a fixed spatial mesh and dynamic meshes.

The size of the time steps obtained in the last iteration for the cG(1)dG(0)
discretization is depicted in Figure 6. The other discretization leads to similar
adaptive refinement at the end of the time interval. This is not very surprising
since the functional J only acts at final time T = 1 and the solution is mainly
driven by the force f and not by problem inherent dynamics.

Finally, we show in Figure 7 exemplarily for the cG(1)dG(0) discretization
a sequence of adaptively refined meshes obtained in the last iteration using
dynamic meshes. Note that the mesh is much more refined to the end of the
time interval. Actually, the mesh is kept coarse and constant for t ∈ [0, 0.6].

5.2. Example 2

As a second application, we consider the benchmark configuration “Lam-
inar Flow Around a Cylinder”, see [34]. The geometry is depicted in Fig-
ure 8. Aim of the simulation is the efficient computation of the mean drag-
coefficient.

The kinematic viscosity is set to ν = 10−3 m2 s−1 while the density is
given by ρ = 1kg m−3. As initial condition v(0 s,x) = 0m s−1 is chosen.
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Figure 6: Adaptively determined time step size k with the cG(1)dG(0) discretization

(a) t = 0.00 (b) t = 0.80 (c) t = 0.90 (d) t = 0.92

(e) t = 0.94 (f) t = 0.96 (g) t = 0.98 (h) t = 1.00

Figure 7: Spatial meshes at different time points obtained with the cG(1)dG(0) discretiza-
tion
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Figure 8: Geometry for the benchmark configuration “Laminar Flow Around a Cylinder”

The inflow condition on the left side of the domain is prescribed as

v1(t,x) =
6 sin( πt

8 s
)

(0.41m)2
x2(0.41m− x2) m s−1, v2(t,x) = 0m s−1.

On the outflow boundary on the right side of the computational domain, we
apply natural boundary conditions. We refer to [14] for more information
on these boundary conditions. On all other boundaries, we prescribe no-slip
Dirichlet boundary conditions. The final time is set to T = 8 s. This setting

leads to a Reynolds number Re(t) = Ū(t)D
ν

based on the mean inflow velocity

Ū(t) =
2

3
v1(t, 0m, 0.205m) = sin

(πt
8 s

)
m s−1

and the diameter of the obstacle D = 0.1m of 0 ≤ Re(t) ≤ 100 for 0 s ≤ t ≤
8 s.

Remark 5.1. Due to the nonhomogeneous Dirichlet boundary conditions, the
variational formulation has to be modified. Instead of seeking u = (v, p)T ∈
X satisfying

∫

I

{
(∂tv,ψ)+a(u)(ϕ)

}
dt+(v(0)−v0,ψ(0)) = 0 ∀ϕ = (ψ, χ)T ∈ X, (18)

we seek a solution u = (v, p)T ∈ (vΓ, 0)
T +X satisfying (18) where vΓ is a

divergence-free extension of the Dirichlet boundary conditions.
This modification also influences the derivation of the a posteriori error

estimators because now the primal solution no longer is an admissible test
function for the dual problem and hence in Lemma 3.1, we have

L′(y1)(e) 6= 0.
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This leads to additional terms in the a posteriori error estimators which are
of the following form:

ρ∗(u, z)(u− ũk) and ρ∗(uk, zk)(uk − ũkh). (19)

However, these terms can be approximated using the same higher order re-
construction techniques as in Section 4.1 to replace (19) by

ρ∗(Ikukh, Ikzkh)(Πkukh) and ρ∗(Ihukh, Ihzkh)(Πhukh)

with some interpolation operators Ik and Ih.

The mean drag-coefficient is given as

Jd(u) = −

∫

I

{
(∂tv, ψ̂d) + a(u)(ϕ̂d)

}
dt (20)

with ϕ̂d = (ψ̂d, 0)
T fulfilling

ψ̂d

∣∣
S
=

(
|I|−1 C

0

)
, ψ̂d

∣∣
∂ΩrS

= 0.

The constant C therein is chosen as

C =
2

ρŪ2D
.

Using the cG(2)dG(1) discretization with uniform refinement of the tem-
poral and spatial discretizations, we obtain for the mean drag-coefficient the
values listed in Table 5.

Now we employ the cG(1)dG(1) and cG(2)dG(1) discretization in combi-
nation with the adaptive Algorithm 1 to this problem. The results of these
computations using adaptively refined spatial meshes which are kept con-
stant over the whole time interval I = (0 s, 8 s) are shown in Tables 6 and 7.
In these tables, we use the extrapolated value Jd(u) = 1.6072872.

We observe how the spatial and the temporal discretization errors are
equilibrated and kept balanced under further refinement. Further, we note
quite a good agreement of the estimated and the actual discretization error
especially on finer discretizations which is indicated by Ieff ≈ 1.
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Table 5: Mean drag-coefficient obtained with the cG(2)dG(1) discretization and uniform
refinement

N M Jd(ukh)

2124 80 1.6178974
8088 160 1.5695421
31536 320 1.6048954
124512 640 1.6071242
494784 1280 1.6072465

extrapolated 1.6072872

Table 6: Mean drag-coefficient: Adaptive refinement with equilibration for the cG(1)dG(1)
discretization

N M ηh ηk Jd(u)− Jd(ukh) Ieff

582 80 −2.99 ·10−01 2.16 ·10−04 1.35 ·10−01 −0.45
1302 80 −9.15 ·10−02 2.80 ·10−04 1.54 ·10−01 −1.69
2280 80 −7.39 ·10−03 3.26 ·10−04 7.03 ·10−02 −9.94
5394 80 4.29 ·10−03 3.96 ·10−03 3.64 ·10−02 4.41

10998 120 4.78 ·10−03 5.82 ·10−03 1.11 ·10−02 1.05
25044 128 1.64 ·10−03 4.76 ·10−03 6.89 ·10−03 1.08
70146 256 1.14 ·10−04 7.48 ·10−04 8.34 ·10−04 0.97
70146 258 1.14 ·10−04 7.32 ·10−04 8.15 ·10−04 0.96
70146 516 1.22 ·10−04 9.85 ·10−05 1.68 ·10−04 0.76
235554 1032 4.25 ·10−05 1.33 ·10−05 6.93 ·10−05 1.24
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Table 7: Mean drag-coefficient: Adaptive refinement with equilibration for the cG(2)dG(1)
discretization

N M ηh ηk Jd(u)− Jd(ukh) Ieff

2124 80 −6.19 ·10−02 9.37 ·10−04 −1.06 ·10−02 0.17
5448 80 2.40 ·10−02 8.20 ·10−03 5.50 ·10−02 1.71
11148 160 2.38 ·10−03 4.22 ·10−03 5.47 ·10−03 0.83
27132 252 −2.29 ·10−04 7.79 ·10−04 2.09 ·10−04 0.38
27132 258 −2.29 ·10−04 7.31 ·10−04 1.55 ·10−04 0.31
27132 516 −1.92 ·10−04 9.88 ·10−05 −4.06 ·10−04 4.33
76656 1032 −3.08 ·10−05 1.33 ·10−05 −2.52 ·10−05 1.44

Remark 5.2. The dG(0) discretization in time is not considered in this sub-
section due to its high numerical dissipation which makes the use of this
discretization unfavorable for simulations in computational fluid dynamics.

Remark 5.3. We do not use dynamic spatial meshes in this example for
two reasons: On the one hand, the use of dynamic meshes leads to wrong
approximations of the drag-coefficient if no additional projection steps are
applied each time the spatial mesh is changed, see [35]. However, this would
be too costly. The other reason becomes clear if we have a look at Figure 9
where the adaptive spatial meshes corresponding to the last lines in Tables 6
and 7 are presented. We observe that in order to precisely determine the
mean drag-coefficient it is not necessary to resolve the whole van Kármán
vortex street. Only a small recirculation zone behind the obstacle is strongly
refined. Since the vortices in this region develop relatively early, we may
conclude that allowing dynamic meshes would not provide a further notable
reduction in the degrees of freedom needed to reach the same accuracy as
with adaptively refined, but fixed spatial meshes. In virtue of the additional
effort on dynamic meshes due to more frequent matrix reassembling and
the additional projection steps, we arrive at the conclusion that the use of
dynamic spatial meshes does not make sense in this case.

In Figure 10, we show the temporal evolution of the drag-coefficient cd
for all four discretizations considered here. These values correspond to the
finest adaptive discretization described in the last lines of Tables 6 and 7
with a relative error in the mean drag-coefficient of less than 5 · 10−5 which
corresponds to an absolute error of less than 8 · 10−5. We note a perfect
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(a) cG(1)dG(1) discretization

(b) cG(2)dG(1) discretization

Figure 9: Spatial meshes for the computation of the mean drag-coefficient with different
discretizations

Table 8: Maximum drag-coefficient: Comparison with reference values for different dis-
cretizations

c
(ref)
d,max = 2.950921575 t(ref)(cd,max) = 3.93625 s

Discretization cd,max

∣∣∣∣∣
cd,max−c

(ref)
d,max

c
(ref)
d,max

∣∣∣∣∣ t(cd,max)

∣∣∣∣
t(cd,max)−t(ref)(cd,max)

t(ref)(cd,max)

∣∣∣∣

cG(1)dG(1) 2.950833347 3.0 · 10−5 3.9375 s 3.2 · 10−4

cG(2)dG(1) 2.950914600 2.4 · 10−6 3.9375 s 3.2 · 10−4

agreement of all four curves. The corresponding adaptive spatial meshes are
the ones already shown in Figure 9. Due to the higher order of the cG(2)
discretization compared to the cG(1) discretization in space, the mesh in
Figure 9(a) is stronger refined than the one in Figure 9(b).

Even though we aim at efficiently computing the mean drag-coefficient
in this example, the maximum drag-coefficient is also computed very ac-
curately. A comparison of the results produced by the presented adaptive
discretizations with the reference values of [36] is given in Table 8.

Figures 11 and 12 show a comparison of different refinement strategies
for the cG(1)dG(1) and cG(2)dG(1) discretization, respectively. We use the
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Figure 10: Temporal evolution of the drag-coefficient cd obtained by different discretiza-
tions with adaptive refinement

same labeling as above.
If we compare the number of degrees of freedom needed to reach a rela-

tive error of 1 %, the required degrees of freedom can be reduced by a factor
of 5–15 using adaptive refinement with equilibration instead of uniform re-
finement, depending on the chosen discretization. This ratio increases when
aiming at higher accuracies, e. g., to approximately 70 for a relative error of
0.1 % in the case of the cG(1)dG(1) discretization.

Conclusions

In this paper we developed a goal-oriented a posteriori error estimator for
the nonstationary incompressible Navier-Stokes equations. The error estima-
tor is computable and able to assess the temporal and spatial discretization
errors separately. The discretization in time and space was done by Galerkin
finite element methods. The proposed method was validated by numerical
examples including an established Navier-Stokes benchmark.
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