
Ruprecht-Karls-Universität Heidelberg
Institute of Computer Science

Research Group Parallel and Distributed Systems

Masterthesis

Model and simulation of power consumption and
power saving potential of energy efficient cluster

hardware

Name Timo Minartz
Student number 2676380
Supervised by Julian M. Kunkel, Prof. Thomas Ludwig
Date of submission Heidelberg, August 27, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32581787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Timo Minartz
Matrikelnummer: 2676380

Diese Masterarbeit ist von mir selbstständig angefertig und verfasst. Es sind keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt worden. Weiter wurden die Grundsätze und Empfehlun-
gen “Verantwortung in der Wissenschaft” der Universität Heidelberg beachtet.

Unterschrift

Heidelberg, den 27. August 2009

Danksagung

Herrn Prof. Ludwig danke ich für die Übernahme der Betreuung der Arbeit und seine Hilfestel-
lungen und nützlichen Anregungen.

Entscheidend zum Gelingen dieser Arbeit beigetragen hat Julian Kunkel. Er hat mit mir fast
täglich zusammengearbeitet und mich mit seinen Ideen, konstruktiven Beiträgen und seinem
Engagement umfangreich unterstützt.

Stephan Krempel möchte ich für seine Hilfe bei der Nutzung der ResourceUtilizationTrac-
ingLibrary und der PowerTracingLibrary danken.

Jörg, Michael und Philipp möchte ich für das Korrekturlesen und den damit verbundenen
Änderungsvorschlägen danken.

Der größte Dank gilt meinen Eltern und Großeltern, die mir das Studium in Heidelberg und
Aachen überhaupt erst ermöglicht haben. Sie haben mir neben ihrer großzügigen finanziellen
Unterstützung auch immer moralisch zu Seite gestanden.

Besonderer Dank gilt Isabell, für all ihre Geduld mit mir.

Abstract

In the last years the power consumption of high performance computing clusters has become a growing
problem because number and size of cluster installations raised and still is raising. The high power
consumption of the clusters results from the main goal of these clusters: High performance. With a
low utilization the cluster hardware consumes nearly as much energy as when it is fully utilized. In
these low utilization phases the cluster hardware can theoretically turned off or switched to an lower
power consuming mode.

In this thesis a model is designed to estimate the power consumption of the hardware with and
without energy saving mechanism. With the resulting software it is possible to estimate the cluster
power consumption for different configurations of a parallel program. Further energy aware hardware
can be simulated to determine an upper bound for energy savings without performance leakage.

The results show that is a great energy saving potential for energy aware hardware even in high
performance computing. This potential should motivate research in mechanism to control the energy
aware hardware in high performance clusters.

Contents

1. Introduction 6
1.1. Definitions . 7
1.2. High Performance Computing Clusters . 7
1.3. Project Goals . 9

2. Energy Aware Hardware 11
2.1. Overview of Hardware . 11
2.2. Managing of Energy Aware Hardware with ACPI . 13
2.3. Analysis of Energy Saving Potential . 14

3. Estimation of Cluster Power Consumption 16
3.1. Model . 17
3.2. Determination of Component Power Consumption . 18
3.3. Power Consumption Estimation Strategies . 19

3.3.1. Simple Strategy . 20
3.3.2. Optimal Strategy . 20
3.3.3. Approach Strategy . 21
3.3.4. Multiple State Strategy . 21

3.4. Example Power Estimation . 23

4. Software Design 26
4.1. Software environment . 26
4.2. Stresstest . 26
4.3. Implementation . 27

4.3.1. Interfaces . 27
4.3.2. Model . 28
4.3.3. Tests and Guidance . 29

5. Assessing Energy Efficiency of Jacobi PDE Solver 30
5.1. Cluster Environment . 30
5.2. Description of Jacobi PDE Solver . 32
5.3. Methodology . 33
5.4. Experiments . 35

5.4.1. Fixed Problem Size . 35
5.4.2. Increasing Problem Size with Number of Nodes 37
5.4.3. Communication Intensive vs. Calculation Intensive 39
5.4.4. Non-Cached I/O . 41

6. Evaluation 43
6.1. Component Power Consumption . 43
6.2. Model Verification . 47
6.3. Strategies Applied to Program Runs . 49
6.4. Energy Efficient Sleeping . 56
6.5. Efficient Devices . 57

7. Summary, Conclusion and Future Work 60

A. Appendix 63

1. Introduction

In the last years the power consumption of high performance computing clusters has become a
growing problem because number and size of cluster installations raised and still is raising. In times
of “Green IT” the installations and especially their power consumption have to be legitimated.

For example the fastest public and official listed cluster has a peak power consumption of about
2483.47 kW (see table 1.2, discussed in section 1.2). If this cluster reaches a power saving of 1 %, this
results in power savings of about 200 MWh per year (see equation 1.1). Assuming 0.05e per kWh 1

these are savings of about 10.000e/year. This saving is equivalent to about 108 t CO2 produced
when generating the energy in a power plant. The same amount of CO2 is produced when driving
about 630.000 km by car 2. For the second listed cluster these values have to be triplicated based on
the higher peak power consumption of this specific cluster.

2483.47 kW ∗ 1

100
∗ 24 h ∗ 365

≈ 596.03 kWh per day ∗ 365

≈ 217.55 MWh per year

(1.1)

The high power consumption of the clusters results from the main goal of these clusters: High
performance. This goal has impact on the hardware, the worst case cooling scenarios and the resulting
energy consumption. If these clusters are fully utilized, this is maybe the most energy efficient way to
get this calculation power. But with a low utilization the hardware consumes nearly as much energy
as when it is fully utilized. Based on this relationship between peak and idle power consumption of
components the loss of energy can take place. Of course it is tried to eliminate these low utilization
phases, but they still arise due to hardware bottlenecks, load balancing problems and problem specific
behavior.

In these low utilization phases the cluster hardware can theoretically turned off or switched to an
lower power consuming mode if the component supports this feature.

In chapter 2 an overview of energy aware hardware in today’s desktop and server systems is given
to evaluate possible hardware for an energy efficient cluster.

Based on the approach to switch off unused hardware components a model is developed to estimate
the power consumption of the hardware with and without energy saving mechanism in chapter 3.
With “trace files” containing information about the utilization on the one hand and the knowledge
of the components utilization based power consumption on the other hand the power consumption of
each hardware component can be estimated. The component utilization based power consumption
can be gained from experimental setups described in this work.

The software resulting from this model is described in chapter 4.
Chapter 5 assesses various parallel program runs on the cluster of the Research Group Parallel and

Distributed Systems at the University of Heidelberg. Each program run and the associated measured
power consumption is analyzed in consideration of the configuration, the run time and the power
consumption.

With these program runs the model and the resulting software are evaluated in chapter 6, the
measured power consumption values are compared with the estimated ones of the software. Further
energy aware hardware is simulated to determine upper bounds for energy savings without perfor-
mance leakage. This simulation is based on several strategies for switching to low power consuming

1a normal household price is about 0.15e, but cluster operators get special prices
2based on average emission of vehicle registrations in Germany 2007, http://www.watt.de/CO2_Rechner.aspx, last

checked on August 27, 2009

6

http://www.watt.de/CO2_Rechner.aspx

1. Introduction

modes in low utilization phases. The estimated power consumption under usage of the different
strategies is analyzed based on different program and hardware configurations to show the potential
of energy savings.

1.1. Definitions

Table 1.1.: Definitions

Name Unit Description

Energy J 1 J = 1 kg m2 s−2, one joule is defined as the
amount of work done by a force of one newton
moving an object through a distance of one me-
ter [Phy04]

Power W V A, watt, equivalent to energy per second
(J s−1). Meaning the rate at which energy is
generated and consumed [Phy04]

Energy Wh 1 Wh = 3600 Ws = 3600 J [Phy04]
Thermal design power
(TDP)

W represents the average maximum power the cool-
ing system in a computer is required to dissipate

Performance Flops Floating point operations per second [Top]
Power Efficiency Flops / W Power efficiency measured in performance per

power [Gre]
Speedup − t1 t

−1
n , t1 = run time for one process, tn = run

time for n processes [Lud08a]

1.2. High Performance Computing Clusters

This chapter gives an introduction into cluster computing. It starts with the formal definition followed
by some applications to motivate the building of cluster systems. Further the problem of energy
consumption and some methods to resolve it are described.

Cluster computing is defined as the usage of lots of connected and homogeneous hardware com-
ponents for high performance computing (HPC) [Lud08a]. In earlier days, clusters were built by
connecting normal desktop PCs by a network. These clusters are called Beowulf-Clusters. Each of
these PCs is called cluster node. The nodes have common hardware components like CPU, main
memory (RAM), hard disks, network cards (NIC), main board etc. Because a cluster usually is
controlled by a master node over network, the other nodes do not have Human Interface Devices
(HID) like keyboard, mouse or monitor. To manage and monitor the cluster and its components
an operating system (usually UNIX based) and cluster software is required which isn’t described in
detail here.

Today high performance clusters are mainly built by special business units of different companies
like HP, IBM, Cray and SGI. An overview of high performance cluster systems is given by the or-
ganization Top500.org [Top]. This organization biannually ranks clusters from all over the world
by performing a benchmark called LINPACK and publishes the results at the International Super-
computing Conference 3. The benchmark used in LINPACK is to solve a dense system of linear
equations [Top]. Based on this specific calculation and the time needed to perform this task perfor-
mance is calculated in Flops. The fastest system of the June 2009 list reaches 1105000 GFlops while
normal desktop computers reach between 1 and 8 GFlops (mainly dependent on the CPU).

3http://www.supercomp.de, last checked on August 27, 2009

7

http://www.supercomp.de

1. Introduction

Implied by the LINPACK benchmark HPC systems are mainly used for solving complex numerical
problems. These problems are native to many domains of science like fluid mechanics, bio-informatics,
physics, climate research etc.

For getting program code to run on a cluster environment, the original algorithm (called sequential
program code) has to be parallelized. On these high performance clusters usually techniques such as
MPICH 4, OpenMP 5 or a combination of both (Hybrid Programming) are used. While MPI (Mes-
sage Passing Interface) communicates as the name implies with sending messages to other processes
possibly located on other nodes (distributed memory), OpenMP is used for communication among
threads in the same address space (shared memory, mainly the same node).

To parallelize code for a high performance cluster the main challenge apart from producing a
correct program is to create a scalable program. In this context scalable means that incrementing
the number of nodes or processes proportionally decreases the run time of the algorithm. Scalability
of some parallel algorithm is limited based on the particular sequential algorithm. But if an algorithm
is scalable in general, the programmer’s challenge is to locate and minimize waiting times resulting
from communication or hardware bottlenecks. To understand a parallel program (especially its
communication schema) and to locate the bottleneck of the program its code can be instrumented
to generate a trace file. This trace file contains information about the communication schema of the
processes, hardware usage etc. By analyzing this file potential bottlenecks (software and/or hardware
based) can be identified and further analyzed.

Because of the performance driven development of the hardware (and the software) the energy
consumption of the hardware has become a real problem in the last years. This is mainly based
on the high power density. For example Intel’s Pentium-I processor (1993) has a maximal power
consumption of 14 W at a chip size of 292 mm2 and a resulting power density of about 4.8 W/cm2.
Intel’s Itanium2 processor (Fanwood, 2004) has a maximal power consumption of 130 W, a chip size
of 374 mm2 and a resulting power density of about 34.7 W/cm2 (about 7 times higher).

Out of this, not only the direct energy consumption of hardware has to be considered, the cooling
of the hardware must be regarded as well. The power fed into the hardware results in heat which
has to be dissipated. Because of the space requirement of a cluster installation which might be a
few hundred square meters these rooms have to be fully air-conditioned. This results in a power
consumption (for the Top 3 installations, see table 1.2) between 2 and 7 MW 6. Interestingly, there is
a big difference between the energy consumption of the three systems. While the peak performance
differs in a range of 400 TFlops, especially the first and the second ranked systems differ in peak
performance in about 70 TFlops (about 5 %). But the power consumption differs in about 4.5 MW
(about 280 %).

Table 1.2.: Abstract of TOP500 List (June 2009) for supercomputers [Top]. The power value is given in
kW for the entire system, the Rpeak value is given in TFlops (1012 floating point operations per
second).

Rank Computer Vendor Year Cores Rpeak Peak power

1 Roadrunner IBM 2008 129600 1456.70 TFlops 2483.47 kW
2 Jaguar Cray Inc. 2008 150152 1381.40 TFlops 6950.60 kW
3 JUGENE IBM 2009 294912 1002.70 TFlops 2268.00 kW

To compare installations on the basis of their power consumption and their performance, there
is another ranking called Green500 [Gre]. The installations are ranked by MFlops/W to get the
performance in relation to the power consumption (power efficiency). In table 1.3 the top 3 systems
from table 1.2 and the first rank system are listed. It is interesting to see that the first system in the

4http://www.mcs.anl.gov/research/projects/mpi/mpich1, last checked on August 27, 2009
5http://openmp.org/wp, last checked on August 27, 2009
6enough to sustain a city of between 8, 000 to 28, 000 inhabitants

8

http://www.mcs.anl.gov/research/projects/mpi/mpich1
http://openmp.org/wp

1. Introduction

Green500 list nearly reaches 100 MFlops more per watt than the first system in the Top500 list. The
aforementioned difference between the two first ranked systems in the Top500 list is clearly reflected
in the Green500 list: The Jaguar system (with the highest peak power consumption of the system
listed in table 1.2) only ranks at position 90.

Table 1.3.: Abstract of Green500 List (June 2009) for supercomputers [Gre]. The total power value is given
in kW for the entire system, the efficiency is given in MFlops (106 floating point operations per
second) per watt.

Rank Computer Efficiency Peak power TOP500 Rank

1 BladeCenter 536.24 MFlops/W 34.63 kW 422
4 Roadrunner 444.94 MFlops/W 1456.70 kW 1
18 JUGENE 363.98 MFlops/W 1002.70 kW 3
90 Jaguar 152.36 MFlops/W 1381.40 kW 2

But the trend to save energy (and lower the costs) is not new to big computer system installations.
Datacenters for example are cluster installations with more general purpose to store and analyze
data (for example Google stores information about search queries in large datacenters) or to maintain
different servers (for example an Internet service provider, ISP). These datacenters have a commercial
use and have to be economically in their costs. Due to this, the performance is not the primary goal
(as in HPC). Also the different usage of the cluster allows to develop energy saving mechanisms. For
example a data center of an ISP which rents web servers. Each web server is realized as a virtual
machine and multiple virtual machines are located on one node. This can be done because web
servers often are under utilized and do not need the performance of a whole node. If a server needs
more performance, the virtual machine can migrate to another (yet unused) node. If the performance
is not necessary, the unused node can be turned off to conserve energy.

Another approach is to use the waste heat. This heat can be used to heat water (e.g. for a heating
system or a swimming pool). It is also possible to use the environment for cooling (for example cold
winter air) instead of mechanical cooling.

Some of these concepts are already applied to HPC, but with savings in the energy consumption
of the hardware these concepts can be improved.

1.3. Project Goals

This project’s main goal is to motivate further research of energy saving mechanism in high per-
formance computing environments. The usage of energy efficient components have been rejected in
reference to the possible performance loss and the higher acquisition costs. But it is possible that
the increased calculation time due to reduced performance results in a even better energy efficiency
of the hardware.

The approach based on reducing the component idle power consumption affects the total power
consumption twice: First the component power consumption is decreased and second less lost heat
has to be dissipated. The usage of hardware that support different working modes for high and low
utilization times promises power savings with small or even without performance loss if used in the
right way.

This work is a first step with the first intention to assess the energy consumption of different cluster
components and program configurations.

The second intention is to simulate the power consumption and possible power savings with and
without reducing performance for each component to motivate further research of the mentioned
ideas.

For this purpose a model is designed which calculates the power consumption for each component
based on the component’s utilization. Further the components power consumption at zero utilization

9

1. Introduction

(idle) and full utilization (load) is used to estimate the power consumption. The information about
the utilization is gained from trace files, while the zero and full utilization values are gained from
experiments.

With different strategies it is possible to estimate the power consumption with different hardware
and power saving characteristics.

The estimated power consumption must be interpreted as an upper bound for power savings that
can be reached with energy aware hardware. Based on the specific program traces the monetary
evaluation of these hardware components is possible: The energy savings can be compared with the
acquisition costs of the specific hardware.

This is interesting for clusters built for different application types, because the different types
have different utilization profiles. For example some applications are communication intensive (high
utilization of the network card), some other applications are IO intensive (high utilization of the disk
subsystem). With different utilization profiles from different workload some resources aren’t fully
utilized (for example the performant disk subsystem for the communication intensive application).
For clusters built up for one application type the hardware is usually optimized for this workload to
prevent idle times.

Especially for waiting times resulting from hardware bottlenecks and/or problem specific behavior
the estimation of the power consumption is useful. Phases with partial utilization of specific hardware
devices can be identified. With modification of the parallel algorithm the device utilization can be
changed to phases with full and zero utilization respectively to make efficient device power state
changes possible.

The power savings can be monetary calculated for the specific program, configuration and the
hardware. This has advantages for the cluster operator, but also advantages for the hardware vendor
and further researches.

10

2. Energy Aware Hardware

This chapter gives an overview of energy aware hardware components which can be used to build
up an energy efficient cluster. For this purpose, the energy saving potential of each component is
discussed by analyzing several research approaches.

Energy aware hardware in the context of this thesis is hardware, that supports different operating
modes, each of these with a different power consumption. When decreasing the power consumption
from one mode to another mode, some functions of the specific component must be changed or turned
off to save energy. To reuse these functions the component must switch back to the previous mode.
This switching can result in latency and additional energy consumption, because the hardware must
be reactivated (e.g. spin up the hard disk). This trade-off has to be considered when using energy
aware hardware. The concrete capabilities of hardware components are discussed in the following
section.

2.1. Overview of Hardware

CPU

The analysis starts with the most power consuming component, the Central Processing Unit (CPU).
Because the CPU consumes between 15 % (in idle mode) and 50 % (CPU load) of a mobile device’s
power [MV04], a lot of research has already been done to reduce the energy consumption of this
component. But until now, the developed energy saving mechanisms are not used in high performance
cluster hardware because of potential performance loss.

The energy consumption of a CPU depends on several factors: The frequency f , the core voltage
V , the level of chip activity α and a factor C dependent on the capacitance of the chip [MV04].
Equation 2.1 describes the power consumption of a CPU.

PCPU = α C V 2 f (2.1)

The linear effect of the “level of chip activity” α shows that the CPU still consumes lots of energy,
even if not utilized (because the chip is still active and α is not zero). This is the main problem of
components without energy saving mechanisms. The core voltage V effects the power quadratically,
while the other factors only have a linear effect. Further reducing the core voltage results in a reduced
frequency. Out of this, the main approach is to reduce the core voltage (and so the frequency) in
phases of low utilization. These technologies are called “SpeedStep Technology” (for Intel processors)
and “Cool’n’Quiet” (for AMD processors). To manage the energy consumption without lowering the
frequency, today’s processor hardware components can be switched on and off with fine granularity.
This way it is possible to disable whole cores (in case of multicore processors) or core functions, such
as first/second level cache or Hyperthreading. Intel already introduced a technology to manage the
processor’s energy consumption at this level called “Intelligent Power Capability”. Newer desktop,
server and especially notebook processors provide the introduced energy saving features.

Disk

In today’s computer systems the hard disk drive is a moderate power consuming components [MV04].
But in idle mode (drive not serving any requests) the platters are still spinning. This leads to a great
potential for energy saving when platters are spinned down for idle times. Servers with a low mean
utilization do not use the disks frequently and the platters could spin down. This is one of the
most popular approaches, because the angular velocity ω of the motor has a quadratic effect on

11

2. Energy Aware Hardware

the power consumption (see equation 2.2, Ke is the motor voltage constant and R is the motor
resistance) [GSKF03].

Pdisk =
K2

e ω
2

R
(2.2)

Today’s hard disks support several modes to reduce energy consumption: Unloading the heads,
parking the heads, reducing the RPM (revolutions per minute) when idle and powering of the motor.
Reducing the RPM only is possible if the heads are parked in the parking zone because of the danger
of head crashes.

The approach of DRPM (Dynamic Rotations Per Minute) [GSKF03] is a method explored for
dynamically controlling the speed at which drives spin. With this approach, energy is saved while
preserving high availability (because writing is still possible at lower RPM). But today’s hard drives
do not offer these multi-speed operating modes.

While most approaches try to reduce the power consumption of the mechanical parts of the disk,
there also is an approach to reduce the power consumption of the electrical parts [HSRJ08]. This
paper shows that the energy required to access data is affected by physical location on a drive. Also,
the size of data transfers has measurable effects on power consumption.

Network

Research about the power consumption of the Internet [GS03] and Ethernet LANs [GS07b] shows
that big networks like the Internet or even campus LANs have a low mean utilization, while network
components like network interface cards and switches consume as much energy as when under load.
Because of this, some research has been made in order to reduce power consumption of network
interface cards and corresponding switches. Gupta and Singh designed a Dynamic Ethernet Link
Shutdown (DELS) algorithm leading to significant benefits in energy savings with little noticeable
impact on packet loss or delay [GS07a]. They also published an approach to use the low-power
modes of network interfaces [GS07b]. This approach uses hardware that is designed to change link
rate for saving power in battery-operated devices. They developed an algorithm to change the link
rate if the link is idle or under-utilized. Another approach is to design a network interface card
containing a secondary processor and an Embedded OS including the networking stack and a flash
storage [AHC+09]. This NIC can handle network applications while the other components such as
main CPU etc. are asleep. Under use of application-level triggers the host wakes up for specified
applications or packets.

On the other hand research has been made for power management in LAN switches [GGS04].
This work examines methods to reduce the power consumption in switches dynamically using low-
power states depending upon traffic activity at each interface and analyzes the impact of sleeping on
layer 2 protocols (example for a layer 2 protocol: the Address Resolution Protocol (ARP)). Another
approach is to manage the power consumption of network devices with power consumption policies.
By monitoring the power consumption of “EnergyWise” devices it is possible to manually select
different energy policy settings to start managing the network’s energy consumption [Aud09].

Memory

Main memory of desktop or server systems often is optimized for performance. Out of this, at
low utilization times the main memory only is partially used. Moona et al. [MCH07] analyzed the
effect of changing memory performance for different applications and implemented Dynamic Memory
Switching for Linux. A kernel daemon migrates pages to different banks (fixed sized sections of
Rambus RDRAM modules) and turns unused banks off. Switching a bank off means that a bank
switches from Active to Nap, similarly bank on means switching from Nap to Active (see table 2.1).
The Nap state is a sleep state with a very small latency to wake up.

Another approach is based on the high peak power consumption of main memory. Diniz et al.
propose techniques that limit consumption by adjusting the power states of the memory devices as
a function of the load on the memory subsystem [DGJB07]. This leads to an optimization problem

12

2. Energy Aware Hardware

Table 2.1.: Specifications of Rambus RDRAM for a 32 MB bank [MCH07], 2 GB RDRAM consumes approx-
imately 16 W.

Power State Power Active Components

Active 300 mW Refresh, clock, row, col decoder
Standby 180 mW Refresh, clock, row decoder
Nap 30 mW Refresh, clock
Powerdown 3 mW Refresh

for the memory controller to select the different power states. This technique is not limited to
RDRAM-based memory subsystems, they can treat entire DDR modules as well as single RDRAM
chips.

Remaining components

There are some other remaining components in a cluster node which also consume energy, like the
uninterrupted power supply (UPS), the main board with North- and Southbridge, various ports
(USB etc.), graphics card and fans. These components are not discussed here because on one hand
it is difficult to determine and control their actual power consumption, and on the other hand these
components are more or less dependent on the already discussed components. But one component
needs to be separately mentioned: the power supply. The power supply’s task is to change the
voltages from one level to another level, mainly from the power grid voltage (e.g. 220 V) to 3,5 V and
12 V for the node components. But this change is not lossless, this energy loss is generally transferred
as heat to the power supply. The relation of the input and the output power of the power supply,
called efficiency, ranges from 60 % up to 95 % (for a SMPS, switched-mode power supply) [AH03].
But the efficiency of the power supplies does not only differ from device to device, the main problem
is that the efficiency depends on the load. So usually for low and high utilization the efficiency is
better than for medium utilization. Due to the fact that there is no relation between the performance
of a node and the efficiency of its power supply, there is no obstacle to use SMPS’s (apart from the
acquisition costs) in high performance clusters to reduce energy loss.

2.2. Managing of Energy Aware Hardware with ACPI

The presented energy saving mechanisms of the different components of a cluster are partially con-
trolled by the component itself, but the operating system has a better overview over the components.
Hence the energy management usually is performed by the operating system using the Advanced
Configuration and Power Management Interface (ACPI) [CCC+05]. The ACPI specification is an
open standard for unified operating system-centric device configuration and power management. The
system is divided into several states: The Global System States (G0-G3), the Device Power States
(D0-D3), the Sleeping States (S1-S5), the Processor Power States (C0-C3) and the Device and Pro-
cessor Performance States (P0-Pn). Generally state 0 is the “Working” state with the highest power
consumption. To increase the state means to decrease energy consumption and to increase wake-up
time (latency) of specified device or system. The last state implicates the “Mechanical Off” for
the component (exception: Sleeping State S5 implies the “Soft Off” state). The Device and Pro-
cessor Performance States imply the Processor State C0 and the Device State D0, but a different
performance level (e.g. using a mobile device with battery or power supply).

An explicit overview of the different states is located in the appendix. Based on these state
specifications, hardware vendors can implement reactions for state changes occurring for ACPI-aware
components.

In reality in the power state the component could decide to disable internal circuits if it stays

13

2. Energy Aware Hardware

ready all the time. For instance the processor could disable the ALU per instruction if it can turn it
on rapidly, i.e. without performance loss, by knowing the future instructions in the pipeline.

2.3. Analysis of Energy Saving Potential

The introduced energy saving mechanisms for the different hardware components are yet partially
under development in today’s computer systems.

The mechanisms of the CPU are well developed and used in today’s energy aware computer systems.
This is based on three aspects: At first, the CPU is one of the most power consuming components. At
second, the CPU is one of the most heat generating components, so reducing the power consumption
for the CPU means reducing the heat which reduces the fan RPM. This in turn reduces the energy
consumption and -especially for mobile devices- the noise of the whole system. The third aspect is
that switching the different power states for a CPU has (compared to the other components) the
lowest wake-up times ranging between a few nanoseconds and some milliseconds.

The hard disk mechanisms are also used in today’s energy aware systems, especially mobile devices.
The wake up time for the disks are a multiple of the wake-up time of a CPU, but the operative point
are the caching capabilities of the main memory for hard disk tasks. Data can be written to the
main memory while the disk is powering on and the writing task itself can wait until the disk is in
operating mode. This can be handled in the background without users notice (with small amounts
of data).

The mechanisms for main memory, network cards and switches are not used in today’s systems,
because the hard- and software for these tasks are still in development. In the past, there has only
been small interest in developing algorithms for these components, because the power consumption is
only a fractional amount of a mobile system [MV04]. Other components, that are not relevant for high
performance computing (e.g. LCD panels) are more interesting concerning the energy consumption.

In today’s research the main memory, network cards and switches are also included based on the
growing networks like the Internet or campus LANs, the increasing number of datacenters, clusters
and also personal computers and mobile devices.

For high performance clusters these parts are more relevant, because of the sum of the individual
components. If a network card has an energy saving potential of maybe 5 %, this is not really
interesting for a desktop or even a mobile system. But for a cluster with about 6000 network cards,
the aggregated savings are interesting.

But why are the mechanisms (e.g. for CPU and disk) not used in high performance clusters?
The main point is that in high performance computing the time overhead for switching between

different power states can increase the computing time significantly even with small state change
durations. High performance algorithms have lots of fine tuning to minimize time overheads. For
this tuning, each algorithm is analyzed to find waiting times (e.g. MPI Barrier) and these times
have to be minimized. Lots of algorithms are also based on topology specific communication schemes
and network responding times. Out of this, small influences for the responding time of components
can significantly reduce the performance. If the performance is reduced, the calculating time for the
whole cluster increases and hence the power consumption.

Another point is that the caching capabilities for the data to be written to disk are restricted.
Some parallel programs are using the whole main memory for calculation. These parameters are
specified by the developer to increase the calculating performance. A typical use case is called
checkpointing. For this, the working datastructures (in this case, the bulk part of the main memory)
are written to disk. This is done for backup purposes, because most algorithms calculate for days,
weeks and even months or years. If the program crashes or a hardware failure occurs, the calculation
can be restarted using the checkpoint data. If a checkpoint should be written, disks have to be in
working state (because no caching is possible) to avoid performance degradation. Because usually
the operating system manages the ACPI states of the hardware, no information for the future disk
use is available and so the influence on the computing time can not be minimized.

The main requirements to control energy saving without reducing performance is the information
which hardware component is used when. There are two main ideas how this information can be

14

2. Energy Aware Hardware

gained: First, the programmer of the parallel algorithm knows when components are used, so he can
publish this information (like instrumenting the code). Secondary the program trace can be analyzed
to gain the typical usage of the components. A second run of the same (or similarly) program can use
this profile created in the first run. With this information, the components can change their ACPI
levels to decrease the power consumption and wake up before the specific component is used.

But these concrete approaches are not discussed in this work.

15

3. Estimation of Cluster Power Consumption

In this chapter different models for estimation of power consumption of a cluster environment are
explained and discussed. After the discussion of these models the chosen model is described in detail.
Section 3.2 contains an approach to determine the input values for the modeled components. To
estimate the power consumption different strategies are described in sections 3.3 and 3.4.

There are two main ideas to estimate the power consumption of a specific program run on a cluster.
The first idea is to gain knowledge about the power consumption of specific operations in a computer
system (like writing a block to disk or assigning a variable). With this information, a program run
can be simulated and the power consumption can be estimated. A simulator to analyze parallel
programs and the underlying cluster hardware is in development at the Research Group Parallel
and Distributed Systems. The power consumption has a high accuracy because the data about the
specific operations is cumulated in a very granular way via the simulator. To calculate the power
consumption with different energy-aware features of the hardware, the simulator offers a realistic
environment to develop different strategies to use these features.

But this realistic environment has the disadvantage of its high complexity. Intelligent hardware
and software is using lots of mechanisms to optimize the hardware access such as caches. Therefore,
if a program for example writes a block on disk, there is almost no knowledge about when this block
is really written on disk. It is possible that this block is held in the cache and only if enough blocks
are in the cache, the data is written to disk. It is also possible that the block should be overwritten
or deleted, so the writing does not have to be performed. The only way to sustain the real hardware
access by the simulator is to implement the caching algorithms. But this a complex feature on the
one hand and on the other hand the information about the caching algorithms is typically are kept
secret by the hardware vendors.

Apart from the hardware caching mechanisms there are other optimizations on different layers,
starting at the compiler optimizations over operating system based optimizations to optimizations
of the file system, especially with intelligent cluster file systems such as PVFS 1. Of course there are
also optimizations for other hardware components, especially CPU and NIC, with similar behavior.

The second approach is to collect the utilization data in a coarse-granular way. This data can
be collected in fixed timesteps (for example by the operating system) and appended to a trace file
containing information about the specific program (such as MPI calls). The trace file can be analyzed
after the program run to estimate the power consumption based on the components utilization. With
this utilization data it is possible to evaluate the future component’s utilization when analyzing
the trace. The inactive times can be identified and considered in the calculation of the power
consumption. It is possible to consider sleeping times for the affected devices without affecting the
calculating time. In this way an upper bound for energy saving can be calculated.

The granularity of the utilization values is based on the mechanism used to collect the data. If
data is collected too frequently, the CPU is busy with collecting the utilization data. That is why the
frequency has to be adjusted to a level with adequate granularity without affecting the performance.

This second model will be described detailed in the next section.

1http://www.pvfs.org, last checked on August 27, 2009

16

http://www.pvfs.org

3. Estimation of Cluster Power Consumption

3.1. Model

In general, the power consumption of a cluster environment is the sum of the power consumption of
its components (nodes, switches and cooling environment). The power consumption for the cooling
environment simply can be included in a model. This consumption depends on the power consump-
tion of the other components. Every watt needed by a component like a CPU or a switch results in
waste heat which has to be cooled down. The power consumption for cooling can be easily estimated
by multiplying the consumption of all other components with an environment based factor. For to-
day’s HPC installations this usually is the factor 2, each watt produced has to be cooled down using
one watt for air conditioning. But in future installations this factor will be decreased (e.g. increasing
the operating temperature of cluster environments so that the outer air can be used for cooling).

The power consumption of the switch is nearly independent of the net utilization, it consumes
as much power when active as when it is inactive. Hence, the power consumption of a switch is
a constant, which can be added to the node’s power consumption. For this reason, the estimation
of the node’s consumption is the main challenge. The power consumption of a node is the sum of
the node’s hardware power consumption. Some of these hardware components (like CPU or power
supply) have a bigger effect on the power consumption than other components. And for almost every
component the power consumption is based on the utilization (a calculating CPU uses more energy
than an idle one).

The chosen model contains abstractions for the following components: CPU, memory, disk, NIC
and the power supply. These components are grouped to a node. The sum of the power consumptions
for all components of a node is the node consumption. It is possible to include a percental overhead
for other components like main board etc.. The power consumption of each component based on
the utilization is linearly interpolated from two values: The first one is the power consumption at
zero utilization and the second is the power consumption at full utilization. This results in a power
consumption / utilization graph like shown in figure 3.1.

Figure 3.1.: Power consumption / utilization graph for a specific component. At zero utilization this com-
ponent has a power consumption of 80 W, at full utilization 100 W. For every other utilization
value the power consumption is interpolated linearly.

In reality, the power consumption / utilization graph is not linear and the characteristics are
different for each component. But this information is not easy to obtain: The majority of hardware
vendors does not publish this information and the equipment for taking detailed measurements has
not been applicable. To measure an indicated value for a specific component special equipment is
needed, because the power consumption for a CPU (without main board) for different utilization
values is not measurable easily. Out of this, only the two values for high and low utilization are used.
The concrete measuring is described in section 3.2.

Further the power consumption for modeling the different ACPI states is needed. The power
consumption for Device Power State 0 is as already mentioned linearly interpolated. For all other
non-working states (1− 3) no interpolation has to be done, because the components are in a sleeping
mode where the power consumption is independent from the utilization. Different working states
where for example the CPU is used at a lower frequency (C-States) are not modeled here, because
the trace file does not contain this information and the cluster’s hardware (see next chapter) does

17

3. Estimation of Cluster Power Consumption

not support this feature (in general, it is possible to get statistics about the CPU frequency, e.g. with
PowerTop 2). To switch to a different ACPI Power State two further values are needed: The duration
for switching and the energy consumption for switching. If a disk is switched from ACPI Device
State 3 (deeper sleep) to Device State 0 (working), this takes a few seconds. And also some energy
is needed to spin up the disk to the required revolutions per minute. These values are depending on
the component and the concrete change, so for every state change (incrementing and decrementing)
values can be considered. The switching between two not sequenced states is realized by sequential
incrementing or decrementing respectively until the desired state is reached.

Because the components are grouped in nodes, the ACPI Global System States are all associated
components in the equivalent ACPI Device State.

Based on this model for the power consumption in each ACPI Device State and the utilization from
the trace file the power consumption can be estimated. This process is modeled as a Replay: For each
fixed step (defined by the stepsize of the utilization values in the trace file) the power consumption
for each component is calculated. This process (without usage of the ACPI Power States) is the
simplest strategy for power estimation and adequate to the real power consumption, because the
cluster hardware is (with one exception, see section 5.1) not ACPI capable. However with the input
values of the different ACPI State consumptions a potential power saving can be calculated, when
putting components to a higher ACPI State (e.g. lower power consumption) when inactive. Different
strategies for putting components to sleep (mainly based on the character of the component and the
utilization) have been developed and implemented. These strategies are described in detail in the
next section.

3.2. Determination of Component Power Consumption

As discussed in the last section the following values are needed to estimate the component power
consumption:

• power consumption without utilization

• power consumption with full utilization

• power consumption in ACPI Device Power States 1− 3 (sleeping states)

• energy consumption and duration for switching the ACPI Device Power States

One way to identify the power consumption can be using data sheets of each hardware vendor.
But the data published in these data sheets is mainly based on marketing strategies. So nearly every
vendor defines or re-defines some power consumption values, but the concrete data is not significant
in most of the cases, especially for different utilization phases. To distinct these values standardized
benchmarks are needed, but these benchmarks do not exist yet.

But if the power consumption of a component doesn’t differ significantly between high and low
utilization phases, or in general it has a low power consumption, benchmarks are too inaccurate.
The measuring of the component based power consumption is in this respect a problem as not each
component has a direct power cable supply. The components located on the main board (such as
CPU, main memory, network card) are served by the main board, so the specifying energy into
individual component consumption is only approximately possible. When using a stresstest for
different components the relation between the components have to be considered (e.g. an Ethernet
card possibly utilizes the CPU). This second level utilization is not insignificant, but is not easy to
measure because of fast switching between high and low utilization.

Of course this component based measuring is the most accurate way, but is not possible without
special measuring equipment.

With the measuring equipment available at Research Group Parallel and Distributed Systems it is
possible to measure the power consumption at node level. The different utilization of each component

2http://www.lesswatts.org/projects/powertop, last checked on August 27, 2009

18

http://www.lesswatts.org/projects/powertop

3. Estimation of Cluster Power Consumption

has influence on the node power consumption and out of this the difference between the component
power consumption with different utilization can be measured.

In this approach especially the characteristics of the power supply have to be considered. On one
hand the power supply’s overhead (for converting the voltage) have to be deducted to determine the
components power consumption. On the other hand the charge process of the supply’s capacitors is
dependent on the specific device and not urgently results in equivalent power consumption. When
components need more power for a short time period this is not recognizable when measuring the
node consumption, because the needed power is stored in the power supply’s capacitors. If for
example a component increases its power consumption for 1 millisecond by 10 W, this can possibly
result in a different power consumption for the power supply (e.g. increasing power consumption for
10 milliseconds by 1 W).

The resulting procedure to determine the power consumption of selective components is combi-
nation of measuring the node power consumption and using the hardware vendor data sheets. To
determine the idle power consumption different sets of components can be removed from one cluster
node and the power consumption can be measured when entering the BIOS (basic input/output
system) of the node (each resulting power consumption is named BIOScomponents). For the utilized
power consumption a stresstest has been implemented to stress different sets of components (each
resulting power consumption is named STRESScomponents). Based on the limited capability to stress
and remove components the modeling of components is limited (e.g. the stressing of the network
card results amongst other in stressing the network controller whose increased power consumption is
included in the power consumption of the network card).

The idle and utilized power consumption for each component based on the total power consumption
is calculated as follows: At first, each measured value (from the stresstest and the idle power consump-
tion) is multiplied by the power supply efficiency to get the power consumption without the overhead
of the power supply. With the node consumption with different hardware configurations in idle mode
the idle power consumption for each component (except the CPU) can be calculated (MEM0 =
BIOSMEM,others −BIOSothers, DISK0 = BIOSDISK,MEM,others −BIOSMEM,others, . . .). Also the
difference between the idle and utilized hardware can calculated subtracting the idle power consump-
tion (CPUdiff = STRESSCPU −BIOSALL,MEMdiff = STRESSCPU,MEM −STRESSCPU , . . .).
With these values and the idle power consumption the utilized power consumption for the compo-
nents (without the CPU) can be calculated (MEM1 = MEM0 + MEMdiff , . . .). When using the
utilized power consumption for the CPU from the vendors data sheet the idle power consumption of
the CPU can be calculated the same way.

The resulting power consumption values for idle and utilized components can be compared with
further hardware vendor data sheets if available.

The power consumption for the other ACPI Device Power States (1−3) and the energy consumption
and duration for switching the ACPI Device Power States must be extracted from various data sheets
of comparable hardware, because the concrete hardware is not ACPI capable.

3.3. Power Consumption Estimation Strategies

To estimate the power consumption of a cluster four different strategies have been implemented.
These strategies are component based, so every component in a node can use a different strategy.
The four strategies are named Simple Strategy, Optimal Strategy, Approach Strategy and MultipleState
Strategy.

The first strategy estimates the power consumption without the usage of any power saving mecha-
nism. For the Simple Strategy, every single timestep is evaluated independently. The other strategies
are look ahead strategies, which take different decisions based on future utilization values. The
Optimal Strategy decides to put a component into sleep mode if the future utilization is zero for
sufficient timesteps and wakes it up before it is used again. Because such zero utilization times are
not frequently for some components such as a CPU, the Approach Strategy puts a component into
sleep if the utilization is under a specified level, e.g. 5 %. At the end of the low utilization phase an
equivalent phase with high utilization is performed to adjust the utilization. The last strategy assigns

19

3. Estimation of Cluster Power Consumption

different levels of utilization to different ACPI Device States. This is useful for components like the
main memory. If the main memory utilization is under 50 %, half of the banks can theoretically
be switched off to save energy. These four strategies are explained and discussed in detail in the
next subsections. For this, an example utilization graph is created for a single component. Based
on this utilization, for each strategy the resulting power consumption graph is shown to explain the
differences between the strategies.

3.3.1. Simple Strategy

To estimate the real power consumption without energy aware hardware the power consumption for
each hardware component has to be interpolated. To interpolate, the consumption values for low
and peak utilization have to be defined. The power consumption Pcurr for a given utilization ucurr
and the power consumption at ACPI Device State 0 PACPI00%

(zero utilization) and PACPI0100%

(full utilization) is calculated in equation 3.1.

Pcurr = (PACPI0100%
− PACPI00%

) ucurr + PACPI00%
(3.1)

Each timestep of the given utilization is evaluated (the step power consumption is calculated with
equation 3.1) independently, hence the power consumption values are as granular as the utilization
values. The power consumption for the component is the accumulated sum of the step power con-
sumptions (power consumption per step), the power consumption for the node is the accumulated
sum of its components power consumption.

Because the calculated power consumption only depends on the utilization and the ACPI Device
Power States this strategy can also be used to estimate the power consumption with energy efficient
hardware. Energy efficient hardware means hardware that consumes less energy when not utilized.

3.3.2. Optimal Strategy

The Optimal Strategy uses the different ACPI Device Power States of the component. This strategy
calculates the minimal power consumption without reducing the performance, because components
only change to sleep mode if the component is not used and wake up before the component is used
again. Only the ACPI Device Power States 0 (working) and 3 (deepest sleep) are used. The decision if
a component switches to sleep mode depends on different factors: The duration of the zero utilization
phase, the power saving potential of the state change (Pdiff, difference of power consumption ACPI0
and ACPI3), the duration of the state change (tchange , sum duration ACPI0 to ACPI3 and duration

ACPI3 to ACPI0) and the energy of the state change (Echange, also the sum of both changes). With
these values the minimal duration of a zero utilization phase toptimal can be calculated, for which

sleeping reduces the power consumption without reducing performance (see equation 3.2).

toptimal =
Echange

Pdiff
+ tchange (3.2)

The algorithm 1 describes the procedure in detail for a node with Optimal Strategy.
In difference to the power consumption with the Simple Strategy the component uses the sleep mode

at the zero utilization phase and wakes up before it is used again. Therefore the power consumption
is decreased without increasing the calculating time. Because the future utilization in concrete runs
of parallel programs is not known, the output of the Optimal Strategy is an approximated upper
bound for power saving.

20

3. Estimation of Cluster Power Consumption

Algorithm 1 Optimal Strategy

Require: All components in state ACPI0 (working)
for step = 1 to countSteps do

for device in nodeComponents do
if device is working then

if device’s future utilization is zero for at least toptimal steps then

device go to sleep mode (ACPI3)
end if

else
{device is sleeping}
if device’s future utilization is not zero for at least tACPI3-ACPI0 steps then
device go to working mode (ACPI0)

end if
end if

end for
end for

3.3.3. Approach Strategy

Because some components do not have zero utilization phases but low utilization phases, the Approach
Strategy has been developed. The intention is to simulate more energy efficient characteristics. If a
component works for example 10 seconds with a low utilization of 10 %, the same work could be done
working 1 second with a utilization of 100 %. This results in 9 seconds with zero utilization where
the component can switch to sleep mode. The rearrangement of load can be thought of reordering
the code. However, in reality this might not be possible due to dependencies between calls etc..

The calculation of the minimal time for an efficient state change is now dependent on a tolerance
value δ. The timesteps with a utilization lower than δ will be rearranged if the count of timesteps
under the specified tolerance is greater or equal tapproach (see equation 3.3). The rearrangement of

load results in a zero utilization phase (toptimal) and the utilization phase containing the equivalent

load (tload). The equivalent load is the aggregated utilization for the duration of toptimal before
the rearrangement.

tapproach = toptimal + tload (3.3)

The algorithm 2 describes the procedure in detail for a node with Approach Strategy.
This strategy provides also an upper bound for power saving. In contrast to the Optimal Strategy

the strategy rearranges the utilization, which more likely than not affects the calculating time of the
parallel program because of the dependencies inside the code and/or the hardware. If for example
the CPU is utilized 10 seconds with a mean value of 10 % for sending a message over network, the
bottleneck is the NIC or the bus system. And a utilization of the CPU with 100 % for one second
would not solve that problem. In this case another approach is needed, so it could be determined if
other calculations in the parallel program can be pushed to utilize the CPU with the remaining 90 %.
Out of this, the output produced by the Approach Strategy shows scopes where power saving could
be scheduled. In the above example an approach to eliminate the bottleneck (e.g. a faster NIC) can
increase the performance and possibly decrease the power consumption. It must be evaluated in the
concrete use case if the faster NIC consumes more power than the CPU saves.

3.3.4. Multiple State Strategy

The last strategy is an extension of the Optimal Strategy to use multiple ACPI Device Power States.
This allows to model another use case: Its possible for a component to use different states with
different power consumptions and wake up times. A component to use this strategy is the main
memory, because the main memory will never reach a zero utilization phase. Neither could it be put

21

3. Estimation of Cluster Power Consumption

Algorithm 2 Approach Strategy

Require: All components in state ACPI0 (working)
for step = 1 to countSteps do

for device in nodeComponents do
if device is working then

if device’s future utilization is lower than tolerance δ for at least tapproach steps then

device go to sleep mode (ACPI3)
rearrange device’s utilization

end if
else
{device is sleeping}
if device’s future utilization is not zero for the next tACPI3-ACPI0 steps then
device go to working mode (ACPI0)

end if
end if

end for
end for

to sleep if only utilized with 10 %. But if the memory is split into multiple banks on the main board,
some of these banks can be turned off if not utilized. It is also possible to use this strategy for the
ACPI Processor Performance States (P-States), because if the CPU is for example utilized about
50 %, it is possible to lower the frequency, but it is not recommended to go in sleep mode.

For the Multiple State Strategy multiple utilization levels (u1, u2, u3, u4) have to be defined to trigger
a state change. If the utilization is under the specified value (for example u1 = 0.75) the state change
from ACPI Device Power State 0 to ACPI Device Power State 1 is triggered. For increasing the
ACPI Device Power State (and decreasing the power consumption) the time tmin can be calculated
based on the future utilization steps and the next higher utilization level. The algorithm 3 describes
the procedure in detail for a node with Multiple State Strategy.

Algorithm 3 Multiple State Strategy

Require: All components in state ACPI0 (working)
Require: level[4] containing utilization levels u1, u2, u3 and u4

for step = 1 to countSteps do
for device in nodeComponents do
currentState = device’s current ACPI Device Power State
if currentState < 3 then

calculate tmin based on currentState and currentState+1
if device’s future utilization is lower level[currentState+ 1] for the next tmin steps then
device go to State ACPIcurrentState+ 1

end if
end if
if currentState > 0 then

for each state of the lower states do
calculate twakeUp for the change from currentState to state

if device’s future utilization is greater level[state] in one of the next twakeUp steps then
device go to state ACPIstate

end if
end for

end if
end for

end for

22

3. Estimation of Cluster Power Consumption

3.4. Example Power Estimation

In this section the previous described strategies are used to estimate the power consumption for an
example component. Based on this component and a given utilization the different approaches of
the strategies are visualized and compared.

First the input values for the example component have to be specified (see table 3.1). These values
are chosen to see the difference of the strategies and aren’t based on a real component.

Table 3.1.: Power schema for example power estimation component. The power schema contains the power
consumption for the different ACPI Device Power States and the energy and duration for changing
these.

Power schema entry Value

PACPI00%
80 W

PACPI0100%
100 W

PACPI1 75 W
PACPI2 50 W
PACPI3 25 W
Level u [1.0, 0.75, 0.5, 0.25]
EACPI0-ACPI1,EACPI1-ACPI2,EACPI2-ACPI3 0 Wh
EACPI3-ACPI2,EACPI2-ACPI1,EACPI1-ACPI0 0.01 Wh
tACPI0-ACPI1,tACPI1-ACPI2,tACPI2-ACPI3 0 ms
tACPI3-ACPI2,tACPI2-ACPI1,tACPI1-ACPI0 500 ms

Not all strategies are using all entries in the power schema, so the definition of the level u and
the power consumption for the ACPI Device Power State 1 and 2 is only used for the Multiple
State Strategy (PACPI1 and PACPI2 respectively). The energy consumption for switching the ACPI
Device Power States and the associated duration is used in the strategies Optimal Strategy and
Approach Strategy, because the energy consumption (and duration respectively) of the change from
state 0 to state 3 is the sum of the changes from state 0 to state 1, 1 to 2 and 2 to 3. The specification
of these values is of course not necessary for Simple Strategy, because no energy saving mechanism is
considered in this strategy. Only the power consumption values for zero and full utilization in ACPI
Device Power State 0 are used (PACPI00%

and PACPI0100%
respectively).

Second the input utilization has to be specified (see figure 3.2(a)). The domain axis is divided in
timesteps, timestep 1 is the timestep from 0→ 1 and so on. This utilization has been chosen to see
effects for each strategy.

The resulting power consumptions for each strategy are summarized in table 3.2.

Table 3.2.: Summary of example component energy consumption and savings for each strategy.

Strategy Total energy consumption Saving

Simple 0.38 Wh
Optimal 0.334 Wh 12.1 %
Approach 0.303 Wh 20.3 %
Multiple State 0.278 Wh 26.8 %

The energy consumption of 0.38 Wh for the Simple Strategy is equivalent to the energy consumption
without using ACPI Device Power States. The visualization of the power consumption is shown in
figure 3.2(b)). When comparing the power consumption with the utilization (figure 3.2(a)) the

23

3. Estimation of Cluster Power Consumption

characteristics are mainly the same, because the power consumption graph is the upset and shifted
graph of the utilization. The maximal power consumption is 100 W at the full utilization phase at the
beginning, decreasing with the utilization to 80 W after 10 seconds where the zero percent utilization
phase occurs.

With the Optimal Strategy the power consumption of this zero utilization phase can be decreased
to 25 W (see figure 3.2(c)) when switching to ACPI Device Power State 3. This results in savings
of 12.1 % compared to Simple Strategy. The switching is possible, because the duration of the zero
utilization phase is 3 seconds, and the minimal duration for an efficient state change is toptimal =

2654 ms (see equation 3.4).

toptimal =
EACPI0-ACPI3 + EACPI3-ACPI0

PACPI0 − PACPI3
+ (tACPI0-ACPI3 + tACPI3-ACPI0)

=
0.01 Wh

80 W− 25 W
+ 2000 ms =

360000 Wms

55 W
+ 2000 ms

≈ 2654 ms

(3.4)

Using the Approach Strategy with a tolerance δ = 0.1 phases with a utilization lower than 10 %
will possibly be rearranged. In this example the energy consumption can be decreased in the 9 %
utilization phase before the zero utilization phase when rearranging the utilization. The three steps
with 9 % utilization result in one step with 27 % utilization, thus tload = 1 sec.

The rearranging is possible, because the duration of the phase under the specified level δ is 6
seconds, and the minimal duration for an efficient state change is tapproach = 3654 ms (see equation

3.5).

tapproach = toptimal ∗ tload

≈ 2654 ms + 1 sec

= 3654 ms

(3.5)

Figure 3.2(e) shows the recalculated utilization based on figure 3.2(a). The utilization phase lower
than δ (from timestep 7 to times step 12) is summarized in a 27 % utilization phase at the end
(timestep 12). The resulting power consumption is shown in figure 3.2(f) and is equivalent to the
calculation with the Optimal Strategy and the rearranged utilization.

When comparing the Multiple State Strategy power consumption (see figure 3.2(d)) with the one
calculated with Optimal Strategy multiple ACPI Device Power States are used. With this granular
levels a energy saving of about 26.8 % for this example is possible, because every utilization change
in the example results in a different ACPI Device Power State.

As seen in the previous section the energy saving increases with each strategy, in the case of the
Multiple State Strategy a saving of 26.8 % is possible. But based on the input values a quantification
of the energy saving potential is still not possible, but it comes clear that an energy saving potential
is existent. Which the choice of the strategy the power saving varies: When using the Approach
Strategy in the main case this strategy saves more energy as Optimal Strategy. But this strategy
recalculates the utilization, thus the state changes of the Approach Strategy are hints for the developer
of the algorithm to review possible code modifications to change the hardware utilization. The Optimal
Strategy is an upper bound for energy saving because the hardware switches to power saving modes in
every utilization phase where it is efficient possible. With Simple Strategy it is possible to estimate
the power consumption of the hardware as granular as the input values (for the utilization and the
state power consumption) is specified.

24

3. Estimation of Cluster Power Consumption

(a) Example utilization to compare the different strategies
for power estimation.

(b) Power consumption with Simple Strategy based on uti-
lization from figure 3.2(a).

(c) Power consumption with Optimal Strategy based on uti-
lization from figure 3.2(a).

(d) Power consumption with Multiple State Strategy based
on utilization from figure 3.2(a).

(e) Rearrangement of utilization with ApproachStrategy
based on figure 3.2(a).

(f) Power consumption with Approach Strategy based on
utilization from figure 3.2(e).

25

4. Software Design

This chapter is a description of the software design to realize the power estimation model and the
stresstest. Furthermore the requirements for the implemented software are discussed. After describing
the related projects at Research Group Parallel and Distributed Systems to create and analyze traces,
the concrete implementation model of the software components and its interfaces will be illustrated.
Hence an overview of the testing concept and the external package dependencies is given.

4.1. Software environment

The project HDPowerEstimation has multiple related projects developed at the Research Group
Parallel and Distributed Systems. These projects are used to create and visualize program traces. To
create traces of MPI programs a wrapper has been implemented (HDMPIwrapper). This wrap-
per uses the ResourcesUtilizationTracingLibrary and the PowerTracingLibrary to capture
utilization of components and the power consumption of nodes respectively. While the Resource-
sUtilizationTracingLibrary queries the components utilization from the operating system, the
PowerTracingLibrary uses an external power meter to measure the power consumption. The
mentioned projects are building the tracing environment to generate traces. Each of these projects
is implemented in the C programming language. A graphical overview of the tracing components is
given in the next chapter in figure 5.1. To visualize the trace files a viewer has been implemented
based on Jumpshot 1 named Sunshot. This viewer is implemented in Java. To support the traces the
Java project HDTraceFormat has been implemented. This project includes the model of the trace
data and reading, editing and writing support for the trace files. A detailed interaction description
of the Java-based projects is given in the subsection “Interfaces” in this chapter.

4.2. Stresstest

The already mentioned stresstest is implemented as an independent MPI program in C++ program-
ming language.

The stresstest is divided into six phases, in which a different set of components is stressed. In the
first phase no component is stressed (idle phase). In the second phase the network and one CPU
are stressed when sending a specified count of blocks to another MPI process located on another
node. In the third phase the CPUs are stressed, first only one followed by both CPUs (or cores,
based on the concrete hardware). The stressing of the CPUs is realized as an assignment in a loop
with a specified count of iterations. In the fourth phase the main memory and one CPU are stressed
allocating the whole memory and writing values into the allocated memory. The fifth phase stresses
the disk, the main memory and the CPU. After allocating the whole memory the memory is written
to disk multiple times. In the sixth and last phase all components are stressed performing the sum
of the further mentioned phases.

Each component based stresstest is implemented using threads. Out of this, the parallelization of
the work is possible (for example the last phase in the stresstest, which starts different parallel jobs).

1http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm, last checked on August 27,
2009

26

http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm

4. Software Design

4.3. Implementation

The requirements for the concrete implementation of HDPowerEstimation are mainly based on
the previous described model and the interfaces. As first the interfaces are explained followed by the
concrete implemented model. An overview about the testing concept finishes this section.

4.3.1. Interfaces

The main goal is to integrate this project into the existing tracing environment. Figure 4.1 shows
the relevant interfaces to the projects.

Figure 4.1.: Interfaces of HDPowerEstimation. The component utilization can be read from an XML-
File or from HDTraceFormat. The estimated power consumption can be visualized using
JFreeCharts or using Sunshot.

The main interface is the one to HDTraceFormat, because this project contains the capability
to read and write traces. Reading the traces is important to get the component based utilization
values. It is also possible to get the power consumption per node from the trace file, but this is not
the regular use case. This capability has been implemented to verify the estimation and is used in
the following chapter to evaluate the software. Writing the trace file is important to visualize the
estimated component based energy consumption. Out of this, it is possible to analyze the MPI calls,
the component utilization and the estimated energy with Sunshot.

But the project should also work stand-alone without any dependencies to the tracing environ-
ment. Out of this, the software has capabilities to read the input values specification (via XML or
commandline) and visualize the estimated power consumption with JFreeChart 2. JFreeChart
has various types of diagrams to visualize different types of data sets. Because the utilization data
is organized in steps, this array based data can be converted into a XYSeriesCollection. This can
be visualized using a XYStepChart which represents the data in fixed steps (as given from the trace
files). The resulting JChart has a user interface which allows the user to change the appearance of
the plot. It is also possible to print and to save the plot (in PNG format).

2http://www.jfree.org/jfreechart, last checked on August 27, 2009

27

http://www.jfree.org/jfreechart

4. Software Design

4.3.2. Model

To realize the previous discussed model some central datastructures are implemented in Java lan-
guage. The class ACPIDevice contains all information specific for a node’s component, especially
the power schema, the current utilization, the current ACPI state, the current power consumption
in watt and the total power consumption in Wh. The instances of ACPIDevice can be grouped us-
ing the abstract classes Node and Cluster. This grouping also contains the current and total power
consumption with overhead for components that are not modeled (main board etc.) and potential
overhead of the power supply. To distinct the utilization based power consumption a class Replay is
implemented. Each Replay has a list of ReplayItems for the specific replay. The ReplayItem contains
an instance of the class ReplayDevice which encapsulates the ACPIDevice and associated data like
utilization and power consumption for each step. ReplayItem also contains an implementation of the
interface PlayStrategy. For each step in the specific replay and the specific strategy the utilization of
the ACPIDevice changes and stores the power consumption for the last step using class DeviceData.
After replaying the class DeviceData contains the step based utilization and power consumption for a
specific component. The DeviceData can be visualized using the implementation of the interface Visu-
alizer (current implementations CommandLineVisualizer, LineChartVisualizer and StepChartVisualizer).
It is also possible to export the specific Replay with the ReplayExporter into the trace format.

The model of the replay is visualized in figure 4.2 as an class diagram showing the interaction of
the mentioned classes.

Figure 4.2.: Class diagram of the replay package

28

4. Software Design

4.3.3. Tests and Guidance

The different packages of the project are tested using JUnit 3, a unit testing framework. The
code coverage of the tests ensures the program functionality and shows the usage of each unit.
To ensure the functionality after code changes a test suite running all tests is located in the test
folder, which ought to be executed when finished editing. The test case PVSClusterTest shows the
usage of HDPowerEstimation. The devices used to replay a trace file are adjusted to the cluster
specification at the research group (see next chapter). To adjust a fine granular logging level (class
specific) the logging functions are implemented using log4j 4.

3http://www.junit.org, last checked on August 27, 2009
4http://logging.apache.org/log4j, last checked on August 27, 2009

29

http://www.junit.org
http://logging.apache.org/log4j

5. Assessing Energy Efficiency of Jacobi PDE
Solver

In this chapter the energy efficiency of a specific parallel program on a cluster is assessed. Section 5.1
describes the education cluster at Research Group Parallel and Distributed Systems at the University
of Heidelberg. In section 5.2 the concrete parallel program is described. The following sections contain
the testing methodology and the conducted experiments. In the next chapter the energy saving potential
is analyzed based on the assess of the energy consumption of different cluster components gained from
this chapter.

5.1. Cluster Environment

Determining the power consumption of hardware components in a cluster environment is heavily
dependent on the specific hardware, a composition of different sources for the data is needed. For
this specific test setup the following components are modeled: CPU, NIC, main memory, disk, power
supply and an overhead for the remaining components. A node at the PVS cluster (education cluster
of Research Group Parallel and Distributed Systems) has 2 Intel Xeon Northwood CPU’s (dual
socket, single core) with 1024 MB RAM main memory divided into two 512 MB memory bars. Each
node has a local P-ATA disk and a Gigabit network card using TCP/IP. The specific hardware of
a PVS-Cluster node is ACPI aware. The concrete energy savings features are not in use, because
these are too old to be effectively manageable. The processor it the only exception. The processor
lowers its power consumption when in zero utilization phases using Advanced Power Management
(which performs CPU Idle calls). Additionally the processor has a temperature control mechanism:
If a specified temperature (between 63 to 70 degree Celsius) is exceeded, the processor uses NOOP’s
to lower the temperature and so the power consumption does.

The temperature control mechanism depends on the utilization, the uptime and the cooling ca-
pabilities. Because the tracing environment at its present state does not collect temperature values
this characteristic is ignored at the moment.

A node of the PVS cluster is running Ubuntu 8.04 (SMP-Kernel 2.6.30) via NFS with mpich2
version 1.0.8 and PVFS (version 2.8.1) as parallel filesystem. If using a parallel filesystem such as
PVFS as underlying filesystem further performance gains are possible. The parallel filesystem is
spread over a variable count of disks, each administrated by a PVFS data server. As a result files
are spread over multiple disks to increase the writing and reading performance.

The tracing can be realized by a software wrapper which intercepts a set of function calls and logs
information on their invocation. Each function call is implemented to write some statistics (time of
call, duration etc.) and to call the original function. In the case of a parallel MPI program usually
the library calls the wrapped MPI library. For this, the program code does not need to be modified,
it only has to be linked against the wrapper library instead of the original MPI library. When
the instrumented program code is started, each process generates a trace file. These process-specific
trace files can be merged to create a global communication schema. In the case of HDMPIwrapper
additional information is logged to each trace file: The ResourcesUtilizationTracingLibrary logs
the utilization of each loggable component of a node (CPU utilization in percent, memory usage in
bytes, network usage in bytes, disk usage in blocks). The PowerTracingLibrary logs the amperage
in A, the voltage in V and the resulting power consumption in W also on node level. To trace
the power consumption an external power meter (LMG-450 of ZES ZIMMER Electronic Systems)
is used. This power meter has a high accuracy and allows to trace the power consumption of four
cluster nodes. A graphical view on the tracing environment is given by figure 5.1.

30

5. Assessing Energy Efficiency of Jacobi PDE Solver

Figure 5.1.: Tracing environment at the PVS cluster. Each node is attached to an external power meter. The
node based power consumption and the component based utilization are included in the trace file
generated by the MPI library wrapper.

31

5. Assessing Energy Efficiency of Jacobi PDE Solver

5.2. Description of Jacobi PDE Solver

As an example parallel program partdiff-par has been chosen. This program solves a PDE (partial
differential equation) with an iterative method (Jacobi iteration method). The PDE uses a quadratic
matrix with given boundary values as input and calculates the inner values through iteration (the
calculating complexity depends on the boundary values). In each iteration for each matrix value a
new value is calculated based on the surrounding matrix values of the previous iteration. To calculate
the matrix values with a set of processes the matrix can be divided into almost equal sized blocks.
Each parallel process (identified by a rank) works with one of these blocks. After each iteration
(when every process finished its block) the last matrix line of process r has to be exchanged with the
first matrix line of process r+1 to gain the input values for the next iteration. The data partitioning
is shown in figure 5.2 for a 11×11 matrix and 3 processes. Each of the processes gets a 5×11 matrix
and calculates a 3× 9 sub matrix (because of the surrounding values). If one iteration finished, rank
0 sends line 4 to rank 1 and rank 1 sends line 5 to rank 0. Similarly lines 7 and 8 are exchanged.

Figure 5.2.: Partitioning of the matrix in partdiff-par. Each rank gets an equal part of the matrix (5 lines)
while the border lines are saved in each neighbor rank. These are the lines that have to be
exchanged after each iteration.

The resulting overhead (exchanging the matrix lines, partitioning the matrix etc.) is the “paral-
lelization overhead”. This parallelization overhead affects the speedup of a parallel program. The
speedup itself is limited by a fragment of not parallelizable actions in the code. For this reason the
speedup in general is limited and in the best case the doubling of the calculating nodes divides the
program run time by two (called optimal scaling). For partdiff-par the communication overhead is
not constant (for each new process two more lines have to be exchanged per iteration) and there is
no additional dynamic load balancing implemented. That is why the scaling of partdiff-par is not
optimal.

As already mentioned the calculation complexity depends on the boundary values of the matrix.
With the boundary values the program can be switched to calculation intensive and communication
intensive mode respectively. Because the PVS cluster uses TCP/IP network, the communication
results in frequent utilization of the CPU. With other network types (for example Myrinet [Lud08a])
the utilization of the CPU can be reduced.

To avoid data loss in case the program crashes (e.g. due to hardware failures) it is possible to
use checkpointing. For this, after a fixed count of iterations every process writes its current working
matrix to disk. With this checkpointing data the program can be restarted. The writing to disk uses

32

5. Assessing Energy Efficiency of Jacobi PDE Solver

an implementation of the MPI-IO specification 1 which allows to parallelize the IO.
To sum up the program partdiff-par has been chosen for experiments due to the following features:

• the calculation-communication-relation is flexible based on the input values for the boundary
values of the matrix

• the component utilization depends on the checkpointing frequency and the calculation-
communication-relation

• the consideration of a parallel filesystem is possible

• partdiff-par is a real application and no synthetic benchmark

With a set of different test setups and resulting trace files on the one hand the general relation
between the test setup and the power consumption can be analyzed. On the other hand the measured
power consumption can be compared with the estimated one. Some test setups are configured to
fill the main memory with the working datastructures (the matrix) to avoid caching of the writing
operations. The matrix size has to be specified in interlines, the resulting size in MB is calculated as
follows:

(interlines ∗ 8 + 9)2 ∗ 2 ∗ 8/1024/1024 (5.1)

The first bracket contains the count of elements in the matrix. This factor is multiplied with 2,
because the Jacobi iterative calculation method is based on the values from the last iteration and
so the matrix is stored twice. The factor 8 is the size of a double value on a 32-Bit architecture.
With 950 interlines this results in approximately 880 MB for the two matrices. The operating system
uses about 100 to 150 MB of the main memory and so the node main memory with 1024 MB is
completely filled. When using the checkpointing mechanism to write the matrix to disk of course
only one matrix is written (about 440 MB). When using multiple nodes the matrix is split into equal
sized parts. This results in 1300 interlines for two nodes, 1600 interlines for three nodes and 1800
interlines for four nodes.

5.3. Methodology

The previously described parallel program partdiff-par has been traced with different setups: Multiple
counts of nodes, multiple counts of MPI processes, multiple counts of PVFS servers and different
program parameters (different count of iterations, different matrix size and different boundary values
to increase the calculating part of the program).

An overview about the measured energy consumptions is given in table 5.1. In the table the count
of interlines (to determine the matrix size), the PVFS nodes (nodes on which PVFS servers are
running) and the MPI nodes (nodes on which MPI processes are running) identify one table row.
The standard setup is to iterate five times and to start one process (PVFS and MPI respectively) per
node. The checkpointing mechanism is activated to write every iteration the matrix to disk. This is
unrealistic for real programs, but appropriate for tests.

For all mentioned setups the non-collective IO version is chosen. In this setup using collective
and non-collective IO results in a similar performance and energy consumption. A table with all
measured and estimated setups is located in the appendix (table A.3).

For some of the setups the power has been estimated to gain comparable values, the accuracy of
the estimation is discussed in chapter 6. The program partdiff-par prints out the calculation time
after finishing its job. The calculation time includes the checkpointing, but does not include the
final output of the results. Based on the setup the calculation time and the overall run time differ
significantly for short jobs, for longer jobs its nearly the same.

1http://www.mpi-forum.org/docs/docs.html, last checked on August 27, 2009

33

http://www.mpi-forum.org/docs/docs.html

5. Assessing Energy Efficiency of Jacobi PDE Solver

T
a
b

le
5
.1

.:
E

n
er

gy
co

n
su

m
p
ti

o
n

a
n

d
ca

lc
u

la
ti

o
n

ti
m

e
fo

r
d
iff

er
en

t
se

tu
p
s

o
f

p
ar

td
iff

-p
ar

.

S
e
tu

p
E

n
e
rg

y
c
o
n

su
m

p
ti

o
n

in
W

h
C

a
lc

u
la

ti
o
n

ti
m

e
in

se
c

In
te

rl
in

e
s

P
V

F
S

n
o
d

e
s

M
P

I
n

o
d

e
s

n
o
d

e
0
6

n
o
d

e
0
7

n
o
d

e
0
8

n
o
d

e
0
9

T
o
ta

l

8
0
0

-
n

o
d

e0
6

0.
24

9
-

-
-

0.
24

9
5

8
0
0

n
o
d

e0
6

n
o
d

e0
6

2.
12

5
-

-
-

2.
12

5
44

8
0
0

n
o
d

e0
6-

07
n

o
d

e0
6,

n
o
d

e0
9

1.
11

7
1.

06
0

-
0.

87
9

3.
05

6
22

8
0
0

n
o
d

e0
6

n
o
d

e0
6-

09
2.

11
3

1.
67

4
1.

62
5

1.
63

3
7.

04
5

43
8
0
0

n
o
d

e0
6-

07
n

o
d

e0
6-

09
1.

20
7

1.
11

1
0.

96
0.

94
3

4.
22

1
23

8
0
0

n
o
d

e0
6-

09
n

o
d

e0
6-

09
0.

62
8

0.
67

5
0.

60
7

0.
61

2
2.

52
2

13
8
0
0

N
F

S
n

o
d

e0
6-

09
2.

78
5

2.
74

3
2.

86
1

3.
05

5
11

.4
43

73
9
5
0

(p
ow

er
es

ti
m

at
ed

)
n

o
d
e0

6
n

o
d

e0
6

3.
83

5
-

-
-

3.
83

5
81

1
1
00

n
o
d

e0
6
-0

7
n

o
d

e0
6,

n
o
d

e0
9

2.
20

5
1.

95
3

-
1.

74
4

5.
90

2
42

1
4
00

n
o
d

e0
6

n
o
d

e0
6,

n
o
d

e0
8-

09
9.

31
6

-
7.

54
2

7.
28

9
24

.1
47

20
1

1
6
00

n
o
d

e0
6

n
o
d

e0
6-

09
13

.2
52

10
.3

38
10

.4
02

10
.7

10
44

.7
03

28
5

1
6
00

n
o
d

e0
6
-0

9
n

o
d

e0
6-

09
3.

37
5

3.
23

7
3.

05
6

3.
16

2
12

.8
31

65
1
6
00

-
n

o
d

e0
6-

09
0.

56
1

0.
55

6
0.

69
5

0.
53

7
2.

34
8

6
1
6
00

n
o
d

e0
6
-0

9
n

o
d

e0
6-

09
(×

2)
3.

20
8

3.
57

7
3.

35
4

3.
22

2
13

.3
62

69
16

0
0

-
n

o
d

e0
6-

09
(×

2)
0.

53
4

0.
51

1
0.

49
5

0.
65

3
2.

19
2

4
16

0
0

(5
0

it
er

a
ti

o
n

s)
n

o
d

e0
6-

09
n

o
d

e0
6-

09
33

.4
84

32
.3

85
35

.6
64

32
.3

12
13

3.
84

5
77

3
16

0
0

(c
al

c
in

te
n

si
ve

)
n

o
d

e0
6
-0

9
n

o
d

e0
6-

09
5.

16
8

5.
58

9
5.

26
6

5.
17

9
21

.2
02

11
2

16
0
0

(c
al

c
in

te
n

si
ve

)
n

o
d

e0
6
-0

9
n

o
d

e0
6-

09
(×

2)
4.

61
8

4.
43

2
4.

51
8

4.
90

8
18

.4
76

93
18

0
0

(p
ow

er
es

ti
m

at
ed

)
n

o
d
e0

6-
09

n
o
d

e0
6-

09
6.

50
3

7.
07

7.
08

6.
98

9
27

.6
41

14
6

18
0
0

(p
ow

er
es

ti
m

at
ed

)
n

o
d
e0

6-
09

n
o
d

e0
6-

09
(×

2)
6.

19
7

5.
97

8
6.

10
2

5.
71

5
23

.9
92

12
6

34

5. Assessing Energy Efficiency of Jacobi PDE Solver

The first presumption from looking at table 5.1 is that the proportion between the energy consump-
tion per node and the program run time is linear. The plot in figure 5.3 shows the proportion between
the two quantities, it is nearly linear. But there is also variance between the energy consumption
values which will be analyzed in the following with comparing different setups.

Figure 5.3.: Energy consumption per node in relation to program run time in seconds.

5.4. Experiments

5.4.1. Fixed Problem Size

At first the power efficiency for solving a fixed sized problem is analyzed. The setup includes a
different number of nodes, different file systems and various count of PVFS servers. The problem
size is 800 interlines, so caching the write operations is possible (even if using a single node to solve
the problem). Table 5.2 shows the different setups, the total energy consumption, the mean power
consumption per node (total energy consumption / run time / number of nodes) and the run time.
For one setup the IO (the checkpointing) is turned off, this results in a run time of 5 seconds and a
energy consumption of 0.249 Wh for one node. When turning IO on (checkpointing every iteration)
and using one PVFS server the resulting energy consumption is 2.125 Wh (850 %). The run time is
44 seconds (880 %) so the main cause for the energy consumption of the IO is the increased run time.
But more interesting is the proportion between the count of nodes and the energy consumption.
Figures 5.4(a) and 5.4(b) show the energy consumption and the run time for each test setup.

The setup with one node (one PVFS server, one MPI process) solves the problem in 44 seconds,
while the setup with two MPI and PVFS processes takes only 22 seconds. This acceleration is mainly
based on the fact that three nodes are used. On one node only one single PVFS server is started
and on another node only one single MPI process. The usage of three nodes increases the energy
consumption to 3.056 Wh. To sum up: The run time is divided by 2 while the energy consumption
is multiplied with 1.5, hence the energy efficiency is better. When using four nodes with four MPI
processes and PVFS servers respectively the run time is 13 seconds (about 70 % savings) while the
total energy consumption is 2.522 Wh (about 19 % overhead). This is even more energy efficient than
the configuration with two MPI processes.

35

5. Assessing Energy Efficiency of Jacobi PDE Solver

Table 5.2.: Results of tracing with fixed interlines 800. If not specified, one process per node (PVFS and MPI
respectively). The mean power consumption is per node.

Setup Consumption Calculation time

Config PVFS nodes MPI nodes Total energy Mean power

0,1 - node06 0.249 Wh 179.29 W 5 sec
1,1 node06 node06 2.125 Wh 173.86 W 44 sec
2,2 node06-07 node06,node09 3.056 Wh 166.75 W 22 sec
1,4 node06 node06-09 7.045 Wh 147.42 W 43 sec
2,4 node06-07 node06-09 4.221 Wh 165.13 W 23 sec
4,4 node06-09 node06-09 2.522 Wh 174.74 W 13 sec
NFS,4 NFS node06-09 11.443 Wh 141.09 W 73 sec

(a) Total energy consumption

(b) Run time

(c) Mean power consumption per node

Figure 5.4.: Fixed problem size. For each setup the problem size is 800 interlines and the number of nodes
and PVFS and MPI processes varies.

36

5. Assessing Energy Efficiency of Jacobi PDE Solver

If using less PVFS servers than MPI processes the energy consumption and the run time increases.
For the example configuration of one PVFS server and four MPI processes this is mainly based on
the increased waiting time: When using one PVFS server and MPI process on one node, both CPUs
are utilized (one for calculation, one for communication) and the waiting times are minimized. Using
less than four PVFS servers for four MPI processes results in under-utilization of one CPU on each
node where no PVFS server is started. The relation of one PVFS server to multiple MPI nodes
results in a network bottleneck, because all MPI processes have to send their matrix parts to the one
node where the PVFS server is started. Because of the CPU intensive TCP/IP protocol this results
in further utilization of the CPU of the PVFS server node.

Figure 5.4(c) shows the mean power consumption in watt for each setup. The setups with the
highest total energy consumption have the lowest mean power consumption. When comparing the
mean power consumption of the previously mentioned PVFS setup (about 150 W) with the power
consumption of a node with one CPU active (about 170 W, see previous section) the nodes are fully
under-utilized. And based on the high idle power consumption and the increased run time the total
energy consumption increases.

For the NFS setup the mean power consumption is even lower (about 140 W), the run time even
higher (both by reason of further increased waiting times) and the resulting total energy consumption
increases to the maximum of this test set.

To sum up this test set: The energy efficiency is scaling down with the utilization of the nodes
(especially the CPU’s). Out of this, the solution of a fixed sized problem with parallelization increases
the energy efficiency if the component’s utilization is constant and the run time decreases. Hence, it
is more energy efficient (and even more performant) to use multiple nodes with caching than using
only one node.

5.4.2. Increasing Problem Size with Number of Nodes

The following test set contains different setups with parameters to adjust the problem size, hence for
every node added to the test setup the matrix size is increased. Using 800 interlines (about 630 MB)
for one node this results in 1100 interlines for two nodes, 1400 interlines for three nodes and 1600
interlines for four nodes. On each node a PVFS server is started to handle the IO issues. To solve
the 1200 MB problem with this configuration the running time is 42 seconds and the total energy
consumption is 5.902 Wh (see figures 5.5(a) and 5.5(b)).

Table 5.3.: Results of tracing with adjusted problem size. If not specified, one process per node (PVFS and
MPI respectively) and 5 iterations for the Jacobi algorithm. The mean power consumption is per
node.

Setup Consumption Calculation time

Config Inter. PVFS nodes MPI nodes Total energy Mean power

1,1 800 node06 node06 2.125 Wh 173.86 W 44 sec
3,2 1100 node06-07 node06,node09 5.902 Wh 168.60 W 42 sec
4,4 1600 node06-09 node06-09 12.831 Wh 177.67 W 65 sec
4,8 1600 node06-09 node06-09 (×2) 13.362 Wh 174.31 W 69 sec

Comparing these values with the setup for one node these are savings of about 5 % for the run time
and an increasing of the energy consumption of about 179 %. Solving the equivalent problem with
the four node setup (with four MPI processes) the run time is 65 seconds with a energy consumption
of 12.831 Wh. This is an increasing of the run time (about 47 %) as well as of the energy consumption
(about 500 %).

37

5. Assessing Energy Efficiency of Jacobi PDE Solver

(a) Total energy consumption

(b) Run time

(c) Energy consumption per node

(d) Mean power consumption per node

Figure 5.5.: Increasing problem size with number of nodes

38

5. Assessing Energy Efficiency of Jacobi PDE Solver

The parallelization of this problem results in a higher energy consumption per node (see figure
5.5(c)), but a more or less equal mean power consumption of about 175 W (see figure 5.5(d)). Out of
this the parallelization does not further increase the node’s mean utilization, but the communication
overhead resulting in a higher power consumption by reason of the run time increase. Hence, the
decreasing of the run time (for one node it would be 44 sec∗4 = 176 sec instead of 65 sec) results in an
increasing of the energy consumption (for one node: 2.125 Wh ∗ 4 = 8.5 Wh instead of 12.831 Wh).
Using both CPUs mainly for calculating (setup with eight MPI processes) does consolidate this
character. This configuration increases the run time and the energy consumption instead of showing
a profit. This is based on the limited scaling: The parallelization overhead (communication, data
partitioning etc.) consumes also calculating time and especially energy.

5.4.3. Communication Intensive vs. Calculation Intensive

For the next test set the problem size and the number of nodes is constant, on each node a PVFS
server is running. For each setup the boundary values of the input matrix are adjusted to control
the communication / calculation proportion. When increasing the calculating time and of IO. Of
course increasing the calculation time results in increasing the run time, because the same data has
to be written to disk. The different setups are started with four and eight MPI processes per node
respectively. When comparing the energy consumption and duration for each run (figures 5.6(a) and
5.6(b)) increasing the calculation time results in higher energy consumption and duration.

Table 5.4.: Results of tracing with 1600 interlines. On four nodes four and eight MPI processes are started
respectively (extract from table 5.1). The mean power consumption is per node.

Setup Consumption Calculating time

Config MPI processes Intensive Total energy Mean power

comm,4 4 communication 12.831 Wh 177.66 W 65 sec
comm,8 8 communication 13.362 Wh 174.29 W 69 sec
calc,4 4 calculation 21.202 Wh 170.37 W 112 sec
calc,8 8 calculation 18.476 Wh 178.80 W 93 sec

Starting eight MPI processes result in increasing run time and energy consumption for the com-
munication intensive setup. This is mainly based on the parallelization overhead, which prevails the
performance increase. For the calculation intensive program the increasing of the MPI processes
results in performance increases because the second CPU can be used efficiently for calculation. The
parallelization overhead from switching from four MPI processes to eight MPI processes is still the
same, but the proportion of the total run time decreases.

The mean power consumption of each node (figure 5.6(c)) only differs within a small range: The
lower utilization of the calculation intensive setup with four MPI processes (because one CPU is
most of the time idle) results in a lower mean power consumption. The setup with eight MPI
processes increases the mean power consumption because both CPUs are used for calculation. For
the communication intensive setup this is not the case, because the waiting times of the CPUs (based
on the parallelization overhead), decreases the mean power consumption when changing from four
to eight MPI processes.

39

5. Assessing Energy Efficiency of Jacobi PDE Solver

(a) Total energy consumption

(b) Run time

(c) Mean power consumption per node

Figure 5.6.: Communication intensive vs. calculation intensive. Test setup with 1600 interlines, four nodes
and four PVFS-servers. The setups are calculation and communication intensive respectively,
each with four and eight MPI processes

40

5. Assessing Energy Efficiency of Jacobi PDE Solver

5.4.4. Non-Cached I/O

The following test setup is partially based on estimated energy consumption values. The different
results are summarized in table 5.5. The goal of this setup is to compare different problem sizes (to
avoid caching of the IO operations) based on different count of nodes and MPI processes respectively.
With a matrix size of 800 interlines caching of the IO operations is possible for one node, with a
matrix size of 950 interlines no caching optimization is possible (same with 1600 and 1800 interlines
respectively for four nodes).

Table 5.5.: Consumption and run time for different setups of partdiff-par with growing interlines and number
of calculating nodes (no cache version). The energy consumption for 950 and 1800 interlines
respectively is estimated. The mean power consumption is per node.

Setup Consumption Calculation time

Config Inter. PVFS nodes MPI nodes Total energy Mean power

1,800 800 node06 node06 2.125 Wh 173.86 W 44 sec
1,950 950 node06 node06 3.835 Wh 170.44 W 81 sec
4,1600 1600 node06-09 node06-09 12.831 Wh 177.67 W 65 sec
8,1600 1600 node06-09 node06-09 (×2) 13.362 Wh 174.31 W 69 sec
4,1800 1800 node06-09 node06-09 27.640 Wh 170.38 W 146 sec
8,1800 1800 node06-09 node06-09 (×2) 23.991 Wh 171.37 W 126 sec

While the problem size from 600 interlines to 850 interlines increases of about 13 % the energy
consumption increases by about 80 % (see figure 5.7(a)) and the run time by about 84 % (see figure
5.7(b)). When increasing the problem size from 1600 interlines to 1800 interlines (27 %) the energy
consumption is increased by 115 % for four processes and by 70 % for eight processes while the run
time is increased by 125 % and 83 % respectively. The energy consumption in each case heavily
depends on the run time. In the cached setup the change from four to eight processes doesn’t
decrease the run time in contrast to the non-cached setup. This mainly is based on the nearly equal
mean power consumption per node in the non-cached setup (see figure 5.7(d)) and the decreased run
time when using eight MPI processes.

The energy consumption is mainly dependent on the program run time and the component utiliza-
tion. The run time is mainly dependent on the program run and the scaling of the concrete algorithm.
If the run time is increased based on component’s idle times the total energy consumption is also in-
creased, because the power consumption between the idle and utilized power consumption of a node
is too small to reach energy savings with an increased run time and lower utilization. If comparing
the mean power consumption of lower utilization runs with higher utilization runs the max measured
difference is about 10 W. When using efficient device power states to reduce power consumption the
increasing of the run time results in much better energy efficiency.

41

5. Assessing Energy Efficiency of Jacobi PDE Solver

(a) Total energy consumption

(b) Run time

(c) Energy consumption per node

(d) Mean power consumption per node

Figure 5.7.: Non-Cached I/O. Different configurations of partdiff-par with growing interlines and number of
calculating nodes (no cache version).

42

6. Evaluation

After assessing the measured energy consumption of different configurations of partdiff-par with the
PVS cluster hardware the model to estimate the component power consumption is evaluated. The goal
of this chapter is to test the power estimation model described in the last chapters and to perform
first experiments. The first step is to determine the component power consumption of a node at the
specific cluster at Research Group Parallel and Distributed Systems at the University of Heidelberg.
Using a power meter one of the cluster nodes is measured in different hardware configurations and
utilization phases. Using the traces generated in the last chapter and the component consumptions as
input for HDPowerEstimation it is possible to estimate and analyze the power consumption with
different strategies and compare these values with the measured power consumption. The sections 6.4
and 6.5 contain first experiments with simulated energy aware hardware.

6.1. Component Power Consumption

To determine the component power consumption as discussed in section 3.2 the zero utilization values
the nodes’ power consumption is measured with different hardware configurations. To estimate the
power consumption of the utilized components the stresstest described in section 4.2 is used. The
power consumption in the ACPI Device Power States 3 is also estimated for each component in this
section.

To estimate the component’s power consumption of the modeled components three assumptions
have been made.

• At first, the ACPI power saving consumption of the processor (see section 5.1) is taken as zero
utilization power consumption. This results in an increased gradient for the utilization / power
consumption graph for this component, but the processor uses this power saving mode in real
program runs therefore it has to be considered.

• At second the efficiency of the power supply has to be defined. For the specific power supply a
constant efficiency of 65 % is assumed [AH03]. In general a utilization based efficiency is more
precise and should be used if known.

• At third the overhead for the other node’s components is assumed to be utilization independent.

For determining the zero utilization values the nodes’ power consumption is measured with different
hardware configurations. The resulting power consumptions are shown in table 6.3.

The stresstest trace is visualized in figure 6.1, each of the six phases is labeled with roman numerals:

I. Idle (no component is stressed)

II. NIC

III. CPUs

IV. Main memory

V. Disk

VI. All (all components are stressed)

43

6. Evaluation

Table 6.1.: Node power consumption with different hardware without utilization. The power consumption
includes all possible overheads because the power meter is connected between the power grid and
the node’s power supply.

Hardware included Node power consumption

2 CPUs 120.9 W
2 CPUs + main memory 137.8 W
2 CPUs + main memory + disk 144.6 W
2 CPUs + main memory + disk + NIC 145.8 W

Figure 6.1.: Trace visualized with Sunshot for one stressed node. The first time line visualizes the power
consumption measured with the power meter in fixed timesteps of 100 milliseconds. The next
six lines visualize the different components utilization in timesteps of 1 second. The different
components are (from top to bottom): CPU0, CPU1, hard disk, memory usage, network card
(incoming traffic) and network card (outgoing traffic).

44

6. Evaluation

The full utilization power consumption of the disk and the network card are not measurable with
the current measurement equipment, because the power consumption is lower than the one for the
stressed CPU even though the CPU is utilized while stressing disk and NIC. This most likely is
based on fast switching between high and low utilization for the CPU resulting in a lower power
consumption than for full utilization. Out of this, the difference between the low and high utilization
of the disk and the network card respectively is assumed to be small and is approximated.

Table 6.2.: Node power consumption in different phases of the stresstest (see figure 6.1). These values include
also the power supply overhead.

Hardware stressed Node power consumption

− (idle) 124 W
1 CPU 170 W
2 CPUs 216 W
1 CPU + NIC 142 W
1 CPU + main memory 174 W
1 CPU + main memory + disk 142 W
2 CPUs + main memory + disk + NIC (full utilization) 220 W

With the TDP value of the CPU’s vendor data sheet [Fol04] all component’s consumptions can be
calculated based on the described model in section 3.2 using the measured differences for the power
consumption (see tables 6.2 and 6.3).

Table 6.3.: Component power consumption for zero and full utilization without power supply overhead.

Hardware component Power consumption

0 % 100 %

CPU 28.1 W 58 W
main memory 10.985 W 13.585 W
network card 0.78 W 2 W
disk 4.42 W 7.02 W
overhead (rest of system) 6.305 W 6.305 W

When comparing the components power consumption contingent (figure 6.2) the two CPUs con-
sume about 71 % of the idle system and about 80 % of the utilized system.

For estimating the power consumption the ACPI Device Power State 3 consumptions must be
specified. Table 6.4 shows the components’ consumption in ACPI Device Power State 3 for the
modeled components for one PVS cluster node (typical values from desktop and mobile components).

The ACPI values for the CPU are based on the values for a Intel Centrino Core Duo 1.8 GHz
CPU (mobile edition). This CPU consumes about 53 W when fully utilized and 12 W, 7 W and 1 W
in different ACPI Device Power States [Int09]. Hence, a value of 4 W for the power consumption in
ACPI Device Power State 3 has been chosen. The duration for decreasing the ACPI Device Power
States is taken from ACPI table of the operating system 1 which is 17µs = 0.017 ms for the Centrino
Duo processor.

The power consumption values of the main memory are estimated based on Moona’s assump-
tions [MCH07]. The ACPI Device power state consumption for the disk are extracted from Hylic’s
work [HSRJ08], while the NIC values are extracted from Agarwal’s work [AHC+09].

1File /proc/acpi/processor/CPU0/power on Ubuntu 8.04

45

6. Evaluation

(a) Idle power consumption, all components are utilized 0 %. (b) Load power consumption, all components are utilized
100 %.

Figure 6.2.: Visualization of the component power consumption (without power supply overhead) in percent.

Table 6.4.: Power schema (inclusive ACPI values) of a PVS cluster node

Power schema entry CPU Main memory Disk NIC

PACPI0100%
58 W 13.585 W 7.02 W 2 W

PACPI00%
28.1 W 10.985 W 4.42 W 0.78 W

PACPI3 4 W 0.1 W 2 W 0.2 W
EACPI0−ACPI3 2.74 ∗ 10−7 Wh 1.1 ∗ 10−8 Wh 0.001 Wh 1 ∗ 10−6 Wh
EACPI3−ACPI0 2.74 ∗ 10−7 Wh 1.1 ∗ 10−8 Wh 0.026 Wh 0.001 Wh
tACPI0−ACPI3 0.017 ms 0.006 ms 1000 ms 0.1 ms
tACPI3−ACPI0 0.017 ms 0.006 ms 4000 ms 0.1 ms

46

6. Evaluation

Missing values have been approximated using the max power consumption. For example the energy
consumption for increasing the CPU ACPI Device Power State has been determined by multiplying
the duration with the max power consumption of 58 W.

As seen in this section the component based power consumption is based on multiple assumptions.
Most of these assumptions are based on the fact that measuring the node’s power consumption is
not precisely enough to determine the component power consumptions (as described in section 3.2).
Hence, the measurement environment is adequate to distinct the node power consumption (for example
of different program runs), but provides only limited insight into the component power consumption.

6.2. Model Verification

The following section contains the evaluation of the implemented program HDPowerEstimation.
For this purpose, the knowledge about the component specific power consumption gained in this chapter
and the utilization of each component described from the different traces is used as input for the
program. After discussing the accuracy of HDPowerEstimation the project is used to determine
the energy saving potential for different traces when using ACPI aware hardware and energy efficient
devices in general respectively.

Table 6.5 shows the results with different strategies for different traces already discussed in the
last sections. The deviance between the measured energy consumption values and the ones estimated
with Simple Strategy (without usage of ACPI states) ranges from 1.2 % to 3.2 % for the specific traces.
Based on the non determinism of the parallel program the measured energy consumption values have
a deviance of about 1 % for multiple runs. Out of this, a deviance of about 3 % is acceptable. For
short program traces (about a few seconds) the energy estimation deviance with Simple Strategy
can reach about 20 %. This is based on the tracing methodology: The PowerTracingLibrary is
started before the ResourcesUtilizationTracingLibrary and finished after it. This can result in
different durations of the utilization and the power consumption of about one second, which is not
recognizable for longer traces, but for shorter ones. The estimation of the energy consumption for
all mentioned traces is appended to this work (see table A.3).

Table 6.5.: Measured and estimated energy consumption for different setups of partdiff-par

Setup Energy consumption in Wh

Measured Estimated Deviance in %

stresstest 16.697 16.468 1.370
calculation intensive 21.202 20.571 2.977
communication intensive (50 iterations) 133.845 138.126 3.198
communication intensive 12.831 12.620 1.638
calculation intensive (×2) 18.476 18.251 1.187
communication intensive (×2) 13.362 13.557 1.453

The traces only contain a small number of nodes (maximum four nodes because of the limited
number of power outlets of the power meter) and the maximum run time of a traced program is
about 10 minutes. To complete the evaluation of the accuracy different traces from different parallel
programs should be used with an increased run time and a multiple number of nodes. Also the
estimation heavily depends on the input values for the component consumption. The quality of these
values could be improved using special power meters at the component level (e.g. power meter plug
between the power supply and the hard disk to determine the hard disk’s power consumption).

In the following the energy saving potential of the different ACPI strategies is evaluated based on
the estimated power consumption (with Simple Strategy).

47

6. Evaluation

Table 6.6.: Estimated energy consumption with different strategies for different setups of partdiff-par. Each
setup with 5 iterations and 1600 interlines (except the stresstest).

Setup Energy consumption in Wh Savings in %

Config Intensive Simple Optimal Approach Optimal Approach

stresstest - 16.468 14.852 14.083 9.813 14.482
4,calc calc 20.571 19.071 18.260 7.290 11.230
- comm (50 iterations) 138.126 132.640 129.08 3.971 6.546
4,comm comm 12.620 12.183 11.719 3.460 7.142
8,calc calc (×2) 18.251 17.394 17.027 4.723 6.731
8,comm comm (×2) 13.557 12.957 12.591 4.420 7.116

Based on these ACPI Device Power State values the Optimal Strategy reaches power savings of
nearly 9.8 % for the stresstest trace (see table 6.6). This replay does not include changes in the
component utilization, out of this the value of 9.8 % is an upper bound for power saving without
changes to the parallel program.

With the Approach Strategy a decrease in energy consumption of about 14.5 % is possible. But
this strategy assumes the parallel program to better utilize its component to get longer and more
low utilization phases for using the more energy efficient ACPI states. In general, savings of 3.5 % to
9.8 % are possible for all traces using the Optimal Strategy, in case of the Approach Strategy savings
of 6.5 % up to 14.5 % are possible (see figure 6.3).

Figure 6.3.: Energy consumption for different traces (see tables 6.5 and 6.6).

48

6. Evaluation

The savings of about 9.8 % in case of the stresstest results from the high idle times, extra idle
time is integrated in the program to determine the idle power consumption of the node. Also the
CPU’s are only partially utilized based on the specific stressed components. On the other hand
the saving of only 3.5 % for the setup with four MPI processes results from the high utilization of
the components (both CPUs are used: One for calculating, one for IO). Hence, the low utilization
phases to use the ACPI states are rare. But this heavy IO load of this configuration is not typical for
parallel programs. For the setup with the higher calculation proportion the energy consumption can
be further decreased based on the idle times of the PVFS server. Using eight instead of four MPI
processes results in a smaller saving because the idle times are decreased.

6.3. Strategies Applied to Program Runs

Figure 6.4.: Total power consumption of measured value and the simulated one.

In the following the estimated power consumption for each strategy is discussed in detail for the
stresstest trace. Figure 6.4 visualizes the measured power consumption (with the power meter) and
the estimated one (with Simple Strategy) for the stressed node with Sunshot. The characteristics
of the time lines are similar, the utilization based power consumption model seems to reflect the
measured power consumption. But there are also some phases of the estimated time line (e.g. the
network stress phase) where the characteristics differ. This is based on multiple facts:

• the trace utilization in not as granular as the measured power consumption (interval size 1 sec
vs. 100 ms)

• the stepsize is not exact 1 sec and 100 ms respectively for each step (the specification of HD-
TraceFormat allows varying step sizes)

• this difference can be based on the effects of the power supply (see subsection 3.2).

In figure 6.5 the estimated power consumption for each component and the associated utilization
is shown. The sum of the components and the node overhead is multiplied with the power supply
overhead and the resulting total power consumption is shown in figure 6.4. The power consumption
of each component is only depends on the utilization and the component specific utilization / power
consumption relation (as defined in the model).

Figure 6.6 visualizes the power consumption in watt for each component of the stressed node with
HDPowerEstimation. After the zero utilization phase of about 20 seconds both CPUs frequently
change their utilization and the resulting power consumption. The power consumption for this
component has its minimum at 26 W and the maximum at 58 W. The power consumption of the
both CPUs affect the node power consumption, because the other components consume max. 3 W
more based on utilization.

49

6. Evaluation

F
ig

u
re

6
.5

.:
C

o
m

po
n

en
t

ba
se

d
po

w
er

co
n

su
m

p
ti

o
n

a
n

d
m

ea
su

re
d

u
ti

li
za

ti
o
n

.

50

6. Evaluation

Figure 6.6.: Stresstest with Simple Strategy

When using the Optimal Strategy (see figure 6.7) for the estimation of the power consumption the
frequency of the power consumption changes is much higher as for the Simple Strategy because of
the additional ACPI state changes. The power consumption of the CPU now varies between 4 W
(power consumption in ACPI Device Power State 3) and 58 W (power consumption in ACPI Device
Power State 0 with full utilization). Also the other components are using the ACPI Device Power
States, especially the networking interfaces and the disk (based on their low total utilization). Only
the main memory is not using any states, because it has no zero utilization phases.

The table 6.7 shows the detailed energy saving for each component, the count of state changes (to
ACPI Device Power State 3 and back to ACPI Device Power State 0) and the sleeping time (time in
ACPI Device Power State 3).

Table 6.7.: ACPI overview for stresstest trace with Optimal Strategy, run time 385 sec

Component Esimple Eoptimal Savings State changes Time in ACPI state 3

CPU0 5.312 Wh 4.844 Wh 8.8 % 11 70 sec
CPU1 4.160 Wh 3.524 Wh 15.3 % 39 95 sec
Disk 0.480 Wh 0.414 Wh 13.9 % 1 130 sec
NIC (in) 0.100 Wh 0.100 Wh 0 % 0 0 sec
NIC (out) 0.084 Wh 0.084 Wh 0 % 0 0 sec
Main memory 1.389 Wh 1.389 Wh 0 % 0 0 sec

Total 11.524 Wh 10.354 Wh 10.2 % 51 295 sec

The percental savings are higher than the ones from table 6.6, because in this table only the ACPI
aware components are considered, the node and power supply overhead is ignored (because both are
constant for this setup). Even if the components are sleeping about 15 % of the run time, the saving
is only about 10 %. This is based on the small (estimated) energy saving potential of the disk and the
NIC, because of the small difference between the idle power consumption and the power consumption

51

6. Evaluation

Figure 6.7.: Stresstest with Optimal Strategy

in ACPI Device Power State 3 compared with the CPU.
If reducing the disk energy consumption about 13 % lots of energy can be saved in a cluster with a

much higher count of disks. The greatest savings can be gained with the second CPU on the stressed
node, a saving of about 15 % is possible. The energy saved by this device (0.636 Wh) is about 50 % of
the total saved energy (1.17 Wh), for both CPUs about 90 %. As expected the component with the
highest power consumption has also the highest energy saving potential. Based on the small state
changes duration the CPU can change frequently and without much run time overhead and power
loss to energy efficient operation modes. The main memory and the network card are not changing
their ACPI Device Power State, because the utilization of these components is not zero.

Replaying the stresstest trace with Approach Strategy results in further decreasing of the power
consumption (see figure 6.8). If the utilization of a component is below the specified level of 10 % the
Approach Strategy tries to use efficient ACPI Device Power State changes. This results in smoothing
the power consumption of each component. But if the utilization is greater than 10 % (for one
timestep) the component changes back to ACPI Device Power State 0. In the worst case this step is
followed by another low utilization phase and the component switches back to ACPI Device Power
State 3. This strategy has to be improved to avoid this peak utilization phases.

The table 6.8 shows the detailed energy savings for each component and the count of state changes
for Approach Strategy. This strategy decreases the power saving by about 4 % (compared to the
Optimal Strategy) while the count of state changes is increased by nearly 130 % (based on the recal-
culation of the component’s utilization). Especially for the second CPU the number of state changes
is increased (based on the frequent utilization changes). Also the main memory performs one state
change based on a short low utilization period of nearly one second, because the changes for the main
memory are assumed to be neither energy nor time consuming (compared to the e.g. the disk). The
sleeping time for the NIC is increased (especially for the incoming traffic) because the mean utiliza-
tion for these devices is low and these phases result in sleeping times with the Approach Strategy. But
based on the low peak power consumption for this component this behavior does not decrease the
total energy consumption significantly, even if the total percental sleeping time is now about 50 %.
With this strategy the energy savings of the CPU’s are also nearly 90 % of the total savings.

52

6. Evaluation

Figure 6.8.: Stresstest with Approach Strategy

Table 6.8.: ACPI overview for stresstest trace with Approach Strategy, run time 385 sec

Component Esimple Eapproach Savings State
changes

Time in ACPI
state 3

CPU0 5.312 Wh 4.800 Wh 9.7 % 17 156 sec
CPU1 4.160 Wh 3.103 Wh 25.4 % 93 265 sec
Disk 0.480 Wh 0.418 Wh 13.0 % 3 307 sec
NIC (out) 0.100 Wh 0.066 Wh 33.7 % 3 298 sec
NIC (in) 0.084 Wh 0.042 Wh 49.9 % 1 346 sec
Main memory 1.389 Wh 1.386 Wh 0.2 % 1 1 sec

Total 11.524 Wh 9.815 Wh 14.8 % 118 1373 sec

53

6. Evaluation

Figure 6.9 visualizes the power consumption with Approach Strategy for the stresstest with Sun-
shot, especially the estimated energy states for each component are visualized. The energy states
for Simple Strategy are not interesting, because each component is in ACPI Device State 0 (working
state, blue colored fractions of the time line). The ACPI Device State 3 (sleeping state) is colored
green. Having a look at the component “HDD WRITE” the power consumption increases where
the state change from state 3 to state 0 occurs (because the disk has to be accelerated) at about
120 seconds in the time line. The state change is marked as pink fragment in the state time line.
After the state change the disk power consumption is the same as in Simple Strategy. But before this
change the disk (in state 3 and sleeping) consumes only a fractional part of the power consumption
with Simple Strategy. The change in general is possible because the disk is not utilized for the first
120 seconds. For the other components these state change fragments do not occur because of the
durations for the changes are supposed to be smaller (5 seconds for the disk and 0.03 milliseconds
for the CPU).

In this section has been shown that the accuracy of HDPowerEstimation ranges between 1 and
4 % for traces with a duration longer than a few seconds. With this estimation of the power con-
sumption of a cluster node it is possible to determine the power consumption of a cluster based on a
specific program trace.

On the basis of the stresstest trace the further strategies Optimal Strategy and Approach Strategy
have been evaluated. With Optimal Strategy savings on device level of about 10 % are possible. This
means if an algorithm exist to switch unused devices off without any resulting time overhead, the max
savings are 10 % for this specific trace.

These savings are on device level, therefore the total savings can be much higher: If the power supply
produces a percental overhead, the total overhead is also reduced. This total node power consumption
has also impact on the air conditioning system, because the saved energy does not produce any waste
heat which has to be dissipated.

The experiments in this subsection include basic analysis of energy saving potential based specific
configurations of the parallel program partdiff-par. These configurations result in higher utilization of
the hardware and performance increments. The alternative is to use configuration resulting in lower
utilization of hardware to get the possibility of switching to energy efficient sleeping modes.

Further the power saving potential of energy efficient devices in general (without sleeping phases)
is estimated to motivate further research in the development of energy efficient devices.

54

6. Evaluation

F
ig

u
re

6
.9

.:
E

st
im

a
te

d
co

m
po

n
en

t
ba

se
d

po
w

er
co

n
su

m
p
ti

o
n

(A
p

pr
oa

ch
S

tr
at

eg
y)

o
f

st
re

ss
te

st
vi

su
a
li

ze
d

w
it

h
S

u
n

sh
ot

55

6. Evaluation

6.4. Energy Efficient Sleeping

In this test set multiple program configurations without checkpointing and a various count of MPI
processes are traced. Based on these traces the proportion between calculating and sleeping devices is
analyzed. Table 6.9 shows the estimated energy consumption and the measured run time for different
setups. The program partdiff-par is configured with a various count of iterations, each of these runs
with 4 and 8 MPI processes respectively.

Table 6.9.: Estimated energy consumption for different setups on four cluster nodes. All setups do not use
checkpointing. The count of interlines is 1600 and constant for each setup, only the count of
iterations and MPI processes is different. The savings are based on the simple consumption.

Setup Energy consumption in Wh Savings in % Time in sec

Iter. MPI processes Simple Optimal Approach Optimal Approach

5 4 2.153 1.554 1.432 27.8 33.5 6
5 8 2.141 1.610 1.598 24.8 25.4 4
100 4 18.663 13.186 14.121 29.4 24.3 105
100 8 15.262 13.983 14.105 8.4 8.6 67
200 4 36.142 26.429 27.467 26.9 24.0 209
200 8 29.048 27.007 27.101 7.0 6.7 133
500 4 90.615 71.330 69.193 21.3 24.6 536
500 8 70.592 66.253 66.218 6.1 6.2 334

The different setups with 5 iterations have only a run time of 6 and 4 seconds respectively, based on
the count of MPI processes. With 8 MPI processes the run time is 2 seconds smaller and the estimated
energy consumption with Simple Strategy is about 0.05 Wh smaller, mainly based on the shorter run
time because all 8 CPUs are used for calculating and less CPU idle times appear. If comparing the
estimated energy consumption with Optimal Strategy, the saving is decreased to 0.008 Wh compared
to the setup with 4 MPI processes, but the run time is still constant for both setups. The 4 idle CPUs
of the 4 MPI process setup can switch to ACPI Device State 3 and sleep, while the other 4 CPUs
are calculating. The parallelization overhead of the 8 MPI process setup, especially the additional
communication overhead that increases the CPU utilization and the energy savings of the 4 MPI
process setup decreases the total power consumption difference between the two setups. Using the
Approach Strategy the estimated energy consumption for 4 MPI processes is even lower than for 8
MPI processes. But this strategy affects the run time of the program, this saving can only be reached
if the hardware utilization changes (e.g. by editing the program code or by heuristics implemented
in the operating system).

Figure 6.10 visualizes the estimated energy consumption (with and without sleeping) of each setup.
For this experiment the configuration of four calculating CPUs and four sleeping CPUs can be

more energy efficient than using eight CPUs for calculating. This is based on the parallelization
overhead, which prevails the performance growth. Using 100 and 200 iterations respectively for the
Jacobi method, the run time is increased by a multiple of the run time with 5 iterations. Even with
those setups the configuration with four calculating CPUs (and sleeping of the remaining four CPUs)
is more power efficient than using eight CPUs for calculating. But the total power saving decreases.

With 500 iterations the performance growth prevails the overhead of the parallelization and using
eight CPUs for calculating decreases the total energy consumption in comparison to the setup with
four CPUs.

56

6. Evaluation

Figure 6.10.: Estimated energy consumption in Wh for different setups. All setups use four nodes. The
count of interlines is 1600 and constant for each setup, the checkpointing mechanism is not
used. Only the count of iterations and MPI processes is different. This figure is based on the
values in table 6.9.

6.5. Efficient Devices

The project HDPowerEstimation allows to change the specifications of the underlying devices to
compare different specifications for a trace. The resulting energy consumption (and the resulting
costs) can be monetary evaluated based on the hardware acquisition costs. In the following test
set multiple traces have been replayed with the Simple Strategy to estimate the power consumption
without energy aware hardware.

This test set contains the specification for each node device as explained in earlier section. As
already discussed the power consumption for zero utilization is relative high for each device. When
this overhead could be technical reduced by the hardware vendors the power efficiency can be in-
creased. Figure 6.11 shows the proportion of utilization and power consumption for one CPU at a
PVS cluster node with the current specification and with an optimal specification. The CPU with
the optimal specification would consume zero watt if not utilized, the mentioned overhead would be
omitted.

Figure 6.11.: Utilization / power consumption graph of the PVS cluster node CPU.

57

6. Evaluation

Table 6.10 shows the estimated power consumption with the Simple Strategy and with efficient
devices (CPUs, NIC, main memory and hard disk).

Table 6.10.: Estimated power consumption with Simple Strategy and efficient devices.

Setup Energy consumption in Wh

Config Inter. Iter. Intensive Simple Strategy Efficient Devices Savings in %

stresstest - - stresstest 16.468 11.554 29.83
4,calc 1600 5 calc 20.571 14.662 28.72
- 1600 50 comm 138.126 104.300 24.49
4,comm 1600 5 comm 12.620 9.1503 27.49
8,calc 1600 5 calc (×2) 18.251 13.973 23.46
8,comm 1600 5 comm (×2) 13.557 9.9154 26.85
1 PVFS 800 5 comm, 1 PVFS 6.2007 2.2676 63.430
no IO 1600 50 comm (×2), no IO 70.383 63.826 9.3157

For the stresstest trace savings of about 30 % are estimated, the minimal saving of the traces with
checkpointing is about 23 %. In these setups the savings are mainly dependent on the hardware
utilization, the setups with four MPI processes have a greater energy saving potential, because the
other four CPUs do not consume any energy when idle.

For the trace without checkpointing and better utilization of the hardware (using eight MPI pro-
cesses for four nodes) potential savings of only 9 % have been estimated. For the trace with lots of
idle times (using one PVFS server and four MPI processes on four nodes with checkpointing) the
estimated saving with efficient devices is about 63 %.

Of course the savings for well-utilized hardware are much smaller than for idle hardware. Hence,
the savings are heavily dependent on the concrete traced program and the configuration.

In the current configuration the calculation includes a percental overhead of the power supply of
35 %. It is possible to reduce this overhead, for example by a switched-mode power supply. When
using this power efficient supply the percental overhead can be reduced to about 5 % (device specific).
Hence, the resulting power consumption can be simply calculated for specific power supplies (see
equation 6.1).

Enode5%
= Enode35%

∗ 105

135
(6.1)

Also the percental energy savings can be calculated using equation 6.2.

1−
Enode5%

Enode35%

= 1−
Enode35%

∗ 105
135

Enode35%

= 1− 105

135
≈ 22.2 % (6.2)

Figure 6.12 visualizes the energy consumptions with

• efficient power supply (SMPS)

• efficient devices and

• efficient devices and the efficient power supply.

The saving when using a SMPS are constant for each setup (22 %) of the energy consumption
estimated with Simple Strategy and efficient devices respectively.

58

6. Evaluation

Figure 6.12.: Energy consumption with efficient devices and SMPS

The experiments in this section have shown the analysis capabilities of HDPowerEstimation.
Using multiple traces and device power specifications the resulting energy consumption can be esti-
mated. Especially the usage of energy efficient devices (with a low zero utilization power consumption)
has great energy saving potential for clusters in general. For specific application traces and hardware
specifications savings of about 60 % have been calculated. Also has been shown that the configuration
of the parallel environment (number of MPI processes) has influence on the power efficiency. Based
on parallelization overheads and/or hardware bottlenecks the performance growth by using other con-
figurations can result in increased power efficiency, because idle devices can switch to energy saving
modes.

59

7. Summary, Conclusion and Future Work

Computer hardware in general and cluster hardware in particular consume plenty of energy. The
power consumption mainly depends on the hardware utilization as shown in this thesis. Because
cluster components usually do not have low energy consuming modes (as opposed to mobile devices)
the power consumption in idle phases is nearly as much as in high utilization phases.

This work contains on overview of hardware with low energy consuming modes (energy aware
hardware) to evaluate possible hardware for an energy efficient cluster.

Based on this overview a model has been designed to estimate the power consumption of (energy
aware) hardware components. With this model it is possible to calculate the power consumption
based on program traces containing information about the components utilization. Therefore the
components utilization based power consumption has to be specified. The power consumption can
be estimated using different strategies to simulate low power consuming modes. These results have
to be treated as upper bounds for the energy savings, because the analysis of the trace file allows to
anticipate the future utilization of each component.

Using the education cluster of the Research Group Parallel and Distributed Systems at the Uni-
versity of Heidelberg the implemented software has been evaluated. In this context the utiliza-
tion dependent power consumption for different components of a cluster node are identified using
a stresstest. Further multiple parallel program setups have been traced to analyze the node based
power consumption with an external power meter.

Experiments showed that power consumption mainly depends on the configuration of the parallel
program and the resulting run time. Program configurations not using all hardware resources in
an efficient way result in increased run times and decreased power efficiency. Especially program
configurations resulting in hardware bottlenecks (e.g. using one PVFS server for four MPI processes
on four nodes results in a network bottleneck) are very energy inefficient.

Further the parallelization overhead has an influence on the energy efficiency by increasing the run
time without additional calculation. Setup comparisons between different number of MPI processes
and nodes show differences in energy efficiency: Even with decreased run time using more MPI
processes and nodes, the power efficiency might not increase due to the specific proportion of the
parallelization overhead.

On the other hand increasing the proportion of the calculation work results in a lower proportion
of the parallelization overhead leading to a more energy efficient behavior for this specific parallel
algorithm.

It has been shown that the difference of the power consumption per node depending on the utiliza-
tion is about 10 W (comparing a well-utilized and an under-utilized setup). This variation is small
compared to the difference of the run times of the setups. For this reason the well-utilized setup
consumes more energy by utilizing the components better but the lower run time leads to a better
energy efficiency.

Simulating energy aware hardware with low power consuming states (with the same performance
in working mode) noticeable increases the mentioned difference of about 10 W. The upper bounds
for power savings are between 0 % and 28 % depending on the hardware utilization. If less idle times
appear for a parallel program, less power can be saved using energy aware hardware. The average
power saving for all traced setups is about 11 % using an optimal strategy for device sleeping.

The energy aware hardware in setups with low utilized hardware results in better power savings
compared to setups with high utilized hardware and decreased run time. In this setup the comparison
between four and eight MPI processes on four nodes results in a better energy efficiency of the four
MPI processes setup. Due to greater difference between idle and utilized power consumption the
calculation proportion has to be further increased to reach a more energy efficient setup with eight

60

7. Summary, Conclusion and Future Work

MPI processes.
Further the power consumption using energy efficient components has been estimated. For this

experiment the power consumption of zero utilized components is assumed to be zero. This is a best
case behavior. The resulting energy consumption are the energy costs to run the application on the
cluster. With this efficient components savings between 9 % and 58 % have been estimated, also for
this setup mainly based on the components utilization. The average power saving for all traces is
about 32 %.

Conclusion and Future Work

The estimated power consumption mainly depends on the utilization granularity and the input power
consumption for zero and full utilization. The process to determine the component’s power consump-
tion can be improved using a component based power meter. Also the power estimation strategies can
be improved: The Approach Strategy can be revised to not wake up on every peak utilization value.
The mechanism can be adjusted to use the mean utilization of the future steps as input and not only
the next step’s utilization. If the trace file is extended to contain information about the power states
of the components (e.g. using PowerTop) a strategy has to be implemented that estimates the power
consumption with this further information (for real energy aware hardware).

The evaluation chapter has been shown that it is possible to estimate and monetary evaluate the
power consumption of different hardware and applications in general. This is especially interesting
for clusters designed for more than one application type. Because these clusters are designed to be
high performant for a rich variety of applications, this results in idle times of components for each
specific application. In this idle phases the hardware can be switched off to save energy. These energy
savings can be calculated against the energy aware hardware acquisition costs.

This work shows that there is a hidden energy saving potential for energy aware hardware even
in high performance computing. This potential should motivate research in mechanism to control
the energy aware hardware in high performance clusters. An idea is to analyze program traces
of applications for idle phases. Based on this analysis heuristics can be developed which try to
anticipate the future utilization of the devices. This can be done for special application types. For
example the usage of the disk subsystem in the parallel program partdiff-par discussed in this work:
The checkpointing mechanism is called after a fixed sized count of iterations. Only in this phase
the disk subsystem has to be active for the duration of the IO. This event occurs in more or less
fixed timesteps. The disk subsystem can switch to low power consuming mode the time it is not
used and switch to operating mode shortly before it is going to be used (due to the heuristics).
This scenario includes possible performance losses, because the heuristics can fail (because of load
balancing problems etc.). With HDPowerEstimation the saved energy of this scenario can be
estimated to monetary evaluate the savings.

Another potential approach is to identify phases of low utilization (e.g. with Approach Strategy)
to optimize the hardware utilization: Increase the hardware utilization to decrease the run time to
save energy or to decrease the utilization and put the hardware to sleep. The algorithm can be
optimized for both procedures. In case of the systematic decreasing of the utilization the hardware
can switch to low power consuming modes. This can be done using for example program hints to
instruct the operating system to switch the operating mode of the specific component. Using again
the example of checkpointing: Shortly before the writing starts, a command sent to the IO library
(e.g. MPICH library) instructs the device to change its operating mode. Following this approach the
power consumption can be decreased without affecting the performance.

The great power savings by using energy efficient components estimated in this work are not
surprising, but the capability to monetary evaluate concrete program traces shows the potential of this
approach. Of course, when engineering energy efficient components the resulting power consumption
is decreased. Due to the great savings with energy efficient components it is definitely imaginable to
build an high performance cluster with energy efficient components (e.g. components from mobile
devices) [faw]. The power consumption of this cluster would be a fractional amount of the power
consumption of traditional high performance clusters. The performance would be decreased, but the

61

7. Summary, Conclusion and Future Work

concrete energy efficiency has to be evaluated.
In general the evaluation of the energy efficiency of (cluster) components is difficult because no

standardized benchmarks are existing yet.
Due to the growing importance of energy awareness modeling a benchmark will be one of the first

steps in direction to energy efficient high performance clusters.

62

A. Appendix

63

A. Appendix

Table A.1.: Summary of Global System States for ACPI [CCC+05]

Global sys-
tem state

Software
runs

Latency Power con-
sumption

OS restart
required

Safe to dis-
assemble
computer

Exit state
electronically

G0 Working Yes 0 Large No No Yes
G1 Sleeping No < 0, varies with

sleep state
Smaller No No Yes

G2/S5 Soft
Off

No Long Close to 0 Yes No Yes

G3 Mechani-
cal Off

No Long RTC Battery Yes Yes No

Table A.2.: Summary of Device Power States for ACPI [CCC+05]

Device state Power consumption Device Context Retained Driver Restoration

D0 - Fully-On As needed for operation All None
D1 D0 > D1 > D2 > D3 > D2 < D2
D2 D0 > D1 > D2 > D3 < D1 > D1
D3 - Off 0 None Full initialization and load

I

A. Appendix

T
a
b

le
A

.3
.:

E
n

er
gy

co
n

su
m

p
ti

o
n

o
f

a
ll

n
o
n

-c
o
ll

ec
ti

ve
tr

a
ce

fi
le

s.
F

o
r

a
ll

tr
a
ce

fi
le

s
th

e
po

w
er

co
n

su
m

p
ti

o
n

h
a
s

be
en

es
ti

m
a
te

d
u

si
n

g
th

e
d
iff

er
en

t
st

ra
te

gi
es

a
n

d
eff

ec
ti

ve
d
ev

ic
es

re
sp

ec
ti

ve
ly

.

S
e
tu

p
E

n
e
rg

y
c
o
n

su
m

p
ti

o
n

in
W

h

M
e
a
su

re
d

S
im

p
le

O
p

ti
m

a
l

A
p

p
ro

a
ch

E
ffi

c
ie

n
t

d
e
v
ic

e
s

In
te

rl
in

es
It

er
a
ti

o
n

s
In

te
n

si
ve

P
V

F
S

M
P

I
T

ot
al

T
ot

al
D

ev
ia

n
ce

T
ot

al
S

av
in

g
T

ot
al

S
av

in
g

T
ot

al
S

av
in

g

8
00

5
co

m
m

0
1

0.
24

87
0.

19
70

20
.7

71
%

0.
16

99
13

.7
42

%
0.

17
20

12
.6

84
%

0.
11

32
42

.5
14

%
8
00

5
co

m
m

1
1

2.
12

46
2.

03
73

4.
10

80
%

2.
03

73
0

%
2.

00
99

1.
34

57
%

1.
64

05
19

.4
73

%
8
00

5
co

m
m

1
4

7.
04

46
6.

20
07

11
.9

79
%

4.
67

52
24

.6
02

%
4.

40
83

28
.9

06
%

2.
26

76
63

.4
30

%
8
00

5
co

m
m

2
4

4.
22

13
3.

83
13

9.
23

89
%

3.
23

55
15

.5
50

%
3.

10
67

18
.9

11
%

2.
03

90
46

.7
79

%
8
00

5
co

m
m

4
4

2.
52

18
2.

38
11

5.
57

90
%

2.
34

50
1.

51
63

%
2.

22
35

6.
61

90
%

1.
59

85
32

.8
65

%
9
50

5
co

m
m

1
1

-
3.

83
48

-
3.

83
48

0
%

3.
81

57
0.

49
71

%
3.

25
27

15
.1

78
%

1
40

0
5

co
m

m
1

3
24

.1
46

22
.1

60
8.

22
70

%
16

.6
06

25
.0

62
%

16
.0

37
27

.6
28

%
10

.4
12

53
.0

11
%

1
60

0
5

co
m

m
0

4
2.

34
81

1.
98

55
15

.4
44

%
1.

51
61

23
.6

41
%

1.
38

87
30

.0
56

%
0.

84
97

57
.2

00
%

1
60

0
5

co
m

m
1

4
44

.7
02

40
.7

94
8.

74
34

%
29

.3
70

28
.0

02
%

27
.4

90
32

.6
10

%
16

.8
75

58
.6

31
%

1
60

0
10

0
co

m
m

0
4

-
18

.4
95

-
13

.9
62

24
.5

05
%

14
.7

60
20

.1
95

%
11

.9
38

35
.4

53
%

1
60

0
20

0
co

m
m

0
4

-
35

.9
75

-
27

.9
73

22
.2

40
%

28
.9

27
19

.5
89

%
23

.6
21

34
.3

39
%

1
60

0
50

0
co

m
m

0
4

-
90

.4
47

-
75

.1
80

16
.8

80
%

73
.2

44
19

.0
19

%
60

.2
70

33
.3

64
%

1
60

0
5

co
m

m
0

8
2.

19
23

1.
93

20
11

.8
72

%
1.

50
78

21
.9

58
%

1.
47

67
23

.5
69

%
0.

94
47

51
.1

01
%

1
60

0
10

0
co

m
m

0
8

-
15

.0
56

-
14

.3
87

4.
44

80
%

14
.3

68
4.

57
03

%
13

.0
83

13
.1

04
%

1
60

0
20

0
co

m
m

0
8

-
28

.8
40

-
27

.9
30

3.
15

38
%

27
.8

83
3.

31
65

%
25

.8
50

10
.3

67
%

1
60

0
50

0
co

m
m

0
8

-
70

.3
83

-
68

.7
61

2.
30

44
%

68
.5

82
2.

55
86

%
63

.8
26

9.
31

57
%

1
60

0
5

co
m

m
4

4
12

.8
30

12
.6

20
1.

63
77

%
12

.1
87

3.
43

32
%

11
.7

25
7.

09
04

%
9.

15
03

27
.4

95
%

1
60

0
5

ca
lc

4
4

21
.2

02
20

.5
70

2.
97

67
%

19
.0

77
7.

25
99

%
18

.2
70

11
.1

80
%

14
.6

62
28

.7
23

%
1
60

0
50

co
m

m
4

4
13

3.
84

13
8.

12
3.

19
81

%
13

2.
67

3.
94

87
%

12
9.

14
6.

50
46

%
10

4.
30

24
.4

86
%

1
60

0
5

co
m

m
4

8
13

.3
62

13
.5

56
1.

45
32

%
12

.9
60

4.
39

47
%

12
.5

97
7.

07
34

%
9.

91
54

26
.8

59
%

1
60

0
5

ca
lc

4
8

18
.4

76
18

.2
56

1.
18

74
%

17
.3

99
4.

69
72

%
17

.0
36

6.
68

64
%

13
.9

73
23

.4
61

%
1
80

0
5

co
m

m
4

4
-

27
.6

40
-

26
.1

79
5.

28
51

%
25

.4
43

7.
95

08
%

20
.9

56
24

.1
83

%
1
80

0
5

co
m

m
4

8
-

23
.9

91
-

22
.4

57
6.

39
63

%
22

.0
35

8.
15

31
%

17
.6

13
26

.5
87

%
st

re
ss

te
st

-
-

0
1

16
.6

97
16

.4
68

1.
37

01
%

14
.8

57
9.

78
35

%
14

.0
91

14
.4

33
%

11
.5

54
29

.8
37

%

A
v
e
ra

g
e
:

7.
18

58
%

11
.3

67
%

13
.3

81
%

32
.8

23
%

II

A. Appendix

T
a
b

le
A

.4
.:

E
n

er
gy

co
n

su
m

p
ti

o
n

o
f

a
ll

co
ll

ec
ti

ve
tr

a
ce

fi
le

s.
F

o
r

a
ll

tr
a
ce

fi
le

s
th

e
po

w
er

co
n

su
m

p
ti

o
n

h
a
s

be
en

es
ti

m
a
te

d
u

si
n

g
th

e
d
iff

er
en

t
st

ra
te

gi
es

a
n

d
eff

ec
ti

ve
d
ev

ic
es

re
sp

ec
ti

ve
ly

.

S
e
tu

p
E

n
e
rg

y
c
o
n

su
m

p
ti

o
n

in
W

h

M
e
a
su

re
d

S
im

p
le

O
p

ti
m

a
l

A
p

p
ro

a
ch

E
ffi

c
ie

n
t

d
e
v
ic

e
s

In
te

rl
in

es
It

er
a
ti

o
n

s
In

te
n

si
ve

P
V

F
S

M
P

I
T

ot
al

T
ot

al
D

ev
ia

n
ce

T
ot

al
S

av
in

g
T

ot
al

S
av

in
g

T
ot

al
S

av
in

g

8
00

5
co

m
m

1
1

2.
10

34
1.

99
35

5.
22

87
%

1.
98

44
0.

45
28

%
1.

97
48

0.
93

38
%

1.
60

89
19

.2
89

%
8
00

5
co

m
m

2
2

2.
21

19
1.

88
32

14
.8

59
%

1.
63

95
12

.9
42

%
1.

58
98

15
.5

79
%

1.
07

32
43

.0
10

%
8
00

5
co

m
m

2
4

4.
20

61
3.

85
47

8.
35

41
%

3.
31

31
14

.0
50

%
3.

16
52

17
.8

86
%

2.
08

60
45

.8
82

%
8
00

5
co

m
m

4
4

2.
79

65
2.

59
25

7.
29

42
%

2.
52

03
2.

78
55

%
2.

44
51

5.
68

36
%

1.
79

31
30

.8
31

%
1
10

0
5

co
m

m
2

2
3.

94
91

3.
65

16
7.

53
11

%
3.

13
71

14
.0

90
%

3.
05

81
16

.2
53

%
2.

20
95

39
.4

91
%

1
40

0
5

co
m

m
1

3
25

.4
50

23
.4

81
7.

73
56

%
18

.0
07

23
.3

14
%

16
.9

51
27

.8
09

%
11

.2
35

52
.1

54
%

1
60

0
5

co
m

m
1

4
45

.5
74

41
.6

40
8.

63
25

%
30

.6
51

26
.3

88
%

28
.1

41
32

.4
18

%
17

.2
69

58
.5

28
%

A
v
e
ra

g
e
:

8.
51

93
%

13
.4

32
%

16
.6

52
%

41
.3

12
%

III

A. Appendix

Tools and Software

This thesis has been created under usage of the following tools and software.
The project HDPowerEstimation has been implemented using Eclipse Ganymede (version

3.4.2). The source code was maintained using Subversion (version 1.5.4). The class diagram 4.2
has been created using the Eclipse plug in Omondo (evaluation version).

For identifying the CPU at a PVS cluster node the tool CPUInfo 1 has been used.
The screenshots of Sunshot have been partially reworked using GIMP 2 (version 2.6.6) and

OpenOffice Draw 3 (version 3.0.1) respectively . The figures of HDPowerEstimation are created
using the PNG export function of JFreeCharts.

Further the bar charts and plots are created with Gnuplot 4, the pie charts are created with
OpenOffice Draw.

This document has been created with LATEX 5 (using the KOMA script, BibTeX and a modified
version of the alphadin style) and the text editor Emacs 6.

The software and tools used are almost all free, thanks to the efforts of Free Software Foundation 7,
and thousands of dedicated and conscientious software developers all around the world.

1http://www.alasir.com/software/cpuinfo, last checked on August 27, 2009
2http://www.gimp.org, last checked on August 27, 2009
3http://www.openoffice.org, last checked on August 27, 2009
4http://www.gnuplot.info, last checked on August 27, 2009
5http://www.latex-project.org, last checked on August 27, 2009
6http://www.gnu.org/software/emacs, last checked on August 27, 2009
7http://www.fsf.org, last checked on August 27, 2009

IV

http://www.alasir.com/software/cpuinfo
http://www.gimp.org
http://www.openoffice.org
http://www.gnuplot.info
http://www.latex-project.org
http://www.gnu.org/software/emacs
http://www.fsf.org

List of Figures

3.1. Power consumption / utilization graph for a component 17

4.1. Interfaces of HDPowerEstimation . 27
4.2. Class diagram of the replay package . 28

5.1. Tracing environment at the PVS cluster . 31
5.2. Partitioning of the matrix in partdiff-par . 32
5.3. Energy consumption per node in relation to program run time for different setups . . 35
5.4. Fixed problem size . 36
5.5. Increasing problem size with number of nodes . 38
5.6. Communication intensive vs. calculation intensive . 40
5.7. Non-Cached I/O . 42

6.1. Stresstest trace visualization with Sunshot . 44
6.2. Visualization of the component power consumption . 46
6.3. Energy estimation for different traces . 48
6.4. Total and estimated power consumption of stresstest visualized with Sunshot 49
6.5. Estimated component based power consumption (Simple Strategy) of stresstest visual-

ized with Sunshot . 50
6.6. Estimated component based power consumption (Simple Strategy) of stresstest visual-

ized with HDPowerEstimation . 51
6.7. Estimated component based power consumption (Optimal Strategy) of stresstest visu-

alized with HDPowerEstimation . 52
6.8. Estimated component based power consumption (Approach Strategy) of stresstest vi-

sualized with HDPowerEstimation . 53
6.9. Estimated component based power consumption (Approach Strategy) of stresstest vi-

sualized with Sunshot . 55
6.10. Estimated component based energy consumption with a different count of iterations

for partdiff-par without checkpointing . 57
6.11. Utilization / power consumption graph of the PVS cluster node CPU. 57
6.12. Energy consumption with efficient devices and SMPS 59

V

List of Tables

1.1. Definitions . 7
1.2. Abstract of TOP500 List (June 2009) for supercomputers 8
1.3. Abstract of Green500 List (June 2009) for supercomputers 9

2.1. Specifications of Rambus RDRAM for a 32 MB bank 13

3.1. Power schema for example power estimation component 23
3.2. Summary of example component energy consumption and savings for each strategy. . 23

5.1. Energy consumption and calculation time for different setups of partdiff-par. 34
5.2. Energy consumption and run time for different setups of partdiff-par with 800 interlines 36
5.3. Consumption and run time for different setups of partdiff-par with growing interlines

and number of calculating nodes (cache version) . 37
5.4. Consumption and run time of different setups of partdiff-par with 1600 interlines . . . 39
5.5. Consumption and run time for different setups of partdiff-par with growing interlines

and number of calculating nodes (no cache version) . 41

6.1. Idle power consumption of components of a PVS cluster node 44
6.2. Utilized power consumption of components of a PVS cluster node 45
6.3. Power schema for a PVS cluster node . 45
6.4. Power schema (inclusive ACPI values) of a PVS cluster node 46
6.5. Measured and estimated energy consumption for different setups of partdiff-par 47
6.6. Estimated energy consumption with different strategies for different setups of partdiff-par 48
6.7. Estimated component based energy consumption with Optimal Strategy for stresstest . 51
6.8. Estimated component based energy consumption with Approach Strategy for stresstest 53
6.9. Estimated component based energy consumption with a different count of iterations

for partdiff-par without checkpointing . 56
6.10. Estimated power consumption with Simple Strategy and efficient devices. 58

A.1. Summary of Global System States for ACPI [CCC+05] I
A.2. Summary of Device Power States for ACPI [CCC+05] I
A.3. Energy consumption of all non-collective trace files . II
A.4. Energy consumption of all collective trace files . III

VI

List of Algorithms

1. Algorithm for Optimal Strategy using different ACPI Device Power States 21
2. Algorithm for Approach Strategy using different ACPI Device Power States and rear-

ranging device’s utilization . 22
3. Algorithm for Multiple State Strategy using different ACPI Device Power States 22

VII

Bibliography

[AH03] Aebischer, Bernard (editor) ; Huser, Alois (editor) ; Proceedings of the 3rd Interna-
tional Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL
’03) (organizer): Energy efficiency of computer power supplies. 2003

[AHC+09] Agarwal, Yuvraj (editor) ; Hodges, Steve (editor) ; Chandra, Ranveer (editor) ;
Scott, James (editor) ; Bahl, Paramvir (editor) ; Gupta, Rajesh (editor) ; USENIX
Symposium on Networked Systems Design and Implementation (organizer): Somniloquy:
Augmenting Network Interfaces to Reduce PC Energy Usage. 2009

[Aud09] Audin, Gary: Managing LAN Switch Power. http://www.nojitter.com/blog/

archives/2009/06/managing_lan_sw.html. Version: June 2009, last checked: August
27, 2009

[Bas08] Bastian, Peter: Paralleles Höchstleistungsrechnen. Oktober 2008. – Lecture script

[CCC+05] Corporation, Hewlett-Packard ; Corporation, Intel ; Corporation, Microsoft ;
Ltd., Phoenix T. ; Corporation, Toshiba: Advances Configuration and Power Interface
Specification. December 2005

[DGJB07] Diniz, Bruno (editor) ; Guedes, Dorgival (editor) ; Jr., Wagner M. (editor) ; Bianchini,
Ricardo (editor) ; ISCA (organizer): Limiting the Power Consumption of Main Memory.
2007

[faw] Vasudevan, Vijay (editor) ; Franklin, Jason (editor) ; Andersen, David (editor) ;
Phanishayee, Amar (editor) ; Tan, Lawrence (editor) ; Kaminsky, Michael (editor)
; Moraru, Iulian (editor): FAWNdamentally Power-efficient Clusters. – accepted to
HotOS XII

[Fol04] Folsom, PAE Tech Pubs I.: Pentium(R) 4 Processor with 512-KB L2 Cache on 0.13
Micron Process and Pentium(R) 4 Processor Extreme Edition Supporting HT Technology.
February 2004

[GGS04] Gupta, Maruti (editor) ; Grover, Satyajit (editor) ; Singh, Suresh (editor) ; IEEE
ICNP (organizer): A feasibility study for power management in LAN switches. 2004

[GHJV95] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides, John: Design Patterns
- Elements of Reusable Object-Oriented Software. Addision-Wesley, 1995

[Gre] Green500: Green500 List. http://www.green500.org, last checked: August 27, 2009

[GS03] Gupta, Maruti (editor) ; Singh, Suresh (editor) ; ACM SIGCOMM’03 (organizer):
Greening of the Internet. 2003

[GS07a] Gupta, Maruti (editor) ; Singh, Suresh (editor) ; IEEE ICC’07 (organizer): Dynamic
Ethernet link shutdown for power conservation on Ethernet links. 2007

[GS07b] Gupta, Maruti (editor) ; Singh, Suresh (editor) ; IEEE INFOCOM (Minisymposium)
(organizer): Energy conservation with low power modes in Ethernet LAN environments.
2007

[GSKF03] Gurumurthi, S. ; Sivasubramaniam, A. ; Kandemir, M. ; Franke, H.: Reducing Disk
Power Consumption in Servers with DRPM. In: IEEE Computer’03 (2003), December

VIII

http://www.nojitter.com/blog/archives/2009/06/managing_lan_sw.html
http://www.nojitter.com/blog/archives/2009/06/managing_lan_sw.html
http://www.green500.org

Bibliography

[HSRJ08] Hylick, Anthony (editor) ; Sohan, Ripduman (editor) ; Rice, Andrew (editor) ; Jones,
Brian (editor): An Analysis of Hard Drive Energy Consumption. 2008

[Int09] Intel, MPG Tech P.: Intel Core2 Duo Mobile Processor for Intel Centrino Duo Mobile
Processor Technology Datasheet. September 2009

[Lud08a] Ludwig, Thomas: Cluster Computing. April 2008. – Lecture script

[Lud08b] Ludwig, Thomas: Hochleistungs- Eingabe/Ausgabe- Systeme. January 2008. – Lecture
script

[man08] Managing Energy Use in a Network with a New SNMP Power State MIB. In: Blan-
quicet, F. (editor) ; Christensen, K. (editor): Proceedings of the IEEE Conference on
Local Computer Networks, 2008, S. 509–511

[MCH07] Moona, Prof. R. ; Chole, Sharad ; Harneja, Sanchay: Memory Management using
Dynamic Memory Switching / Department of Computer Science and Engineering, Indian
Institute of Technology Kanpur. 2007. – Project Report

[MV04] Mahesri, Aqeel (editor) ; Vardhan, Vibhore (editor) ; Workshop on Power Aware
Computing Systems, 37th International Symposium on Microarchitecture (organizer):
Power Consumption Breakdown on a Modern Laptop. 2004

[NC05] Nordman, B. (editor) ; Christensen, K. (editor) ; IEEE 802 LAN/MAN Standards
Committee Plenary Session (organizer): Reducing the Energy Consumption of Network
Devices. 2005

[Phy04] Physikalisch Technische Bundesanstalt: The legal units in Germany. February
2004

[Top] Top500: Top500 List. http://www.top500.org, last checked: August 30, 2009

IX

http://www.top500.org

	Introduction
	Definitions
	High Performance Computing Clusters
	Project Goals

	Energy Aware Hardware
	Overview of Hardware
	Managing of Energy Aware Hardware with ACPI
	Analysis of Energy Saving Potential

	Estimation of Cluster Power Consumption
	Model
	Determination of Component Power Consumption
	Power Consumption Estimation Strategies
	Simple Strategy
	Optimal Strategy
	Approach Strategy
	Multiple State Strategy

	Example Power Estimation

	Software Design
	Software environment
	Stresstest
	Implementation
	Interfaces
	Model
	Tests and Guidance

	Assessing Energy Efficiency of Jacobi PDE Solver
	Cluster Environment
	Description of Jacobi PDE Solver
	Methodology
	Experiments
	Fixed Problem Size
	Increasing Problem Size with Number of Nodes
	Communication Intensive vs. Calculation Intensive
	Non-Cached I/O

	Evaluation
	Component Power Consumption
	Model Verification
	Strategies Applied to Program Runs
	Energy Efficient Sleeping
	Efficient Devices

	Summary, Conclusion and Future Work
	Appendix

