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Numerisch exakte Dynamik der wechselwirkenden Vielteilchen-Schrödingergleichung für
Bose-Einstein Kondensate: Vergleich mit Bose-Hubbard und Gross-Pitaevskii Theorie –
In dieser Dissertation wird die Vielteilchenphysik von wechselwirkenden Bose-Einstein Kon-
densaten in Fallen durch Lösen der Vielteilchen-Schrödingergleichung analysiert. Besonde-
rer Wert wird auf die Diskussion von Kohärenz und Fragmentation gelegt, sowie deren Be-
ziehung zu reduzierten Dichtematrizen. Der erste Teil der Arbeit beschäftigt sich mit dem
Grundzustand eines Bose-Einstein Kondensats in einer Falle und den zugehörigen Korrelati-
onsfunktionen. Danach wird die Dynamik eines bosonischen Josephson-Kontakts untersucht.
Durch numerisches Lösen der zeitabhängigen Vielteilchen-Schrödingergleichung konnten die
ersten exakten Resultate in der Literatur zu diesem Thema erhalten werden. Es stellt sich
heraus, daß die Standardnäherungen des Gebiets, Gross-Pitaevskii Theorie und das Bose-
Hubbard Modell hier versagen, selbst bei schwacher Wechselwirkung und innerhalb ihres
erwarteten Gültigkeitsbereichs. Für stärkere Wechselwirkung konnte ein neuartiges Equili-
brationsphänomen entdeckt werden, das mit starken Korrelationen einhergeht. Durch Ver-
gleich mit exakten Resultaten wird gezeigt, daß eine Symmetrie des Bose-Hubbard Modells
zwischen attraktiver und repulsiver Wechselwirkung als Modellartefakt betrachtet werden
muß. Eine konzeptuelle Neuerung dieser Arbeit sind zeitabhängige Wannierfunktionen, eine
Verallgemeinerung der gewöhnlichen Wannierfunktionen. Aus dem Variationsprinzip werden
Bewegungsgleichungen für zeitabhängige Wannierfunktionen hergeleitet. Durch Vergleich mit
exakten Resultaten der Vielteilchen-Schrödingergleichung wird gezeigt, daß Gittermodelle bei
geringem Mehraufwand durch den Einsatz von zeitabhängigen Wannierfunktionen stark ver-
bessert werden können.

Numerically exact dynamics of the interacting many-body Schrödinger equation for Bose-
Einstein condensates: comparison to Bose-Hubbard and Gross-Pitaevskii theory – In this
thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving
the many-body Schrödinger equation. Particular emphasis is put on coherence, fragmentation
and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate
and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction
is investigated by solving the time-dependent many-body Schrödinger equation numerically
exactly. These are the first exact results in literature in this context. It is shown that the
standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model
fail at weak interaction strength and within their range of expected validity. For stronger
interactions the dynamics becomes strongly correlated and a new equilibration phenomenon
is discovered. By comparison with exact results it is shown that a symmetry of the Bose-
Hubbard model between attractive and repulsive interactions must be considered an artefact
of the model. A conceptual innovation of this thesis are time-dependent Wannier functions.
Equations of motion for time-dependent Wannier functions are derived from the variational
principle. By comparison with exact results it is shown that lattice models can be greatly
improved at little computational cost by letting the Wannier functions of a lattice model
become time-dependent.
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Chapter 1

Introduction

1.1 The path to Bose-Einstein condensation

Bose-Einstein condensation was first proposed as a theoretical concept in the first half of
the last century. When the Indian physicist Satayendra N. Bose investigated the statistics
of photons, he discovered that the thermal distribution of photons is not of the Maxwell-
Boltzmann type [1]. Nowadays, particles that obey the distribution function derived by
Bose are known as bosons. Albert Einstein was impressed by Bose’s work and extended
it to a gas of massive, noninteracting particles [2]. Einstein realized that for sufficiently low
temperatures a large fraction of particles would occupy the state of lowest energy. At absolute
zero temperature all particles would “condense” into the lowest energy state and hence behave
all in the same manner. The idea of Bose-Einstein condensation was born and the search for
Bose-Einstein condensates began.

The first candidate for a physical system exhibiting Bose-Einstein condensation was su-
perfluid liquid 4He, as suggested by F. London in 1938 [3]. However, interactions between
particles in superfluid liquid 4He are strong, in stark contrast to the noninteracting particles
in Einstein’s model. Already back then it was expected that interactions would strongly mod-
ify the physics of Bose-Einstein condensation. This is indeed the case. Theoretical results
and modern experiments suggest that the fraction of condensed particles in superfluid liquid
4He is no larger than about 7%, even at absolute zero temperature [4–7].

The search for Bose-Einstein condensates therefore soon extended to other systems, see
Ref. [8] for an overview. In the 1980s novel laser and magnetic based cooling techniques
were developed that allowed experimentalists to cool dilute gases of neutral atoms down
to extremely low temperatures, see Refs. [9–11] for overviews of these techniques. After
a long spell of nearly successful experiments Carl Wieman and collaborators envisaged a
path towards Bose-Einstein condensation in dilute, atomic alkali gases [12, 13]. This path
eventually proved to be successful. Two main ingredients of this procedure were the creation
of an extremely good vacuum and evaporative cooling. In 1995 Bose-Einstein condensation
in dilute alkali gases was achieved for the first time in a series of experiments using Rubidium
in the group of Eric Cornell and Carl Wieman, Lithium in the group of Randall Hulet and
Sodium in the group of Wolfgang Ketterle [14–16]. However, in the Lithium experiment
the data had to be reanalyzed and unambiguous results were published only in 1997 [17,18].
Only six years after the first realization of Bose-Einstein condensates in experiments, Wieman,
Cornell and Ketterle were awarded the Nobel Prize in Physics “for the achievement of Bose-
Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of
the properties of the condensates” [19]. For a more detailed account of the history of the first
Bose-Einstein condensates, see Refs. [18, 20].

In the years after 1995 two major new developments accelerated progress in the field of ul-
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tracold atoms. The first was the possibility to tune the interaction strength between particles
by using Feshbach resonances [21,22]. Thus, it became possible to go from weakly to strongly
interacting Bose-Einstein condensates. The second development was progress in the shaping
of trap geometries. While many of the first experiments were carried out in single-well traps,
sophisticated trapping techniques allowed to shape almost arbitrary traps. In particular,
traps with several potential minima soon became popular. Nowadays, multi-well traps and
whole lattices of wells are commonly used in experiments [23–26]. Through the combination
of the above developments, it even became possible to strongly confine the atoms in some of
the spatial dimensions and thereby to realize quasi two- and one-dimensional Bose-Einstein
condensates. The range of physical phenomena accessible to ultracold gases is vast, for exam-
ple the interference of matter waves, tunneling, Josephson-like effects and strongly correlated
bosons to name just a few. The field has also extended to ultracold fermions and the forma-
tion of ultracold molecules. Recent overviews of the developments in the field are given in
Refs. [23–28].

1.2 Theories for Bose-Einstein condensates

Although Einstein’s ideal gas model is at the origin of the theory of Bose-Einstein condensa-
tion it is too crude to describe any of the experiments to date. One of the most important
features of ultracold trapped Bose gases is that they are highly inhomogeneous, interacting
many-body systems of finite size. The size and shape of the condensates are generally de-
termined by the trap geometry, the number of particles and the interparticle interaction. A
variation of any of these parameters can have large effects on the properties of the conden-
sates. The role of interparticle interactions is particularly important. An early experiment
using about 80000 sodium atoms showed that the density distribution the condensate was at
least three to four times broader than that of a gas of noninteracting particles [29]. Interac-
tions in ultracold Bose gases are therefore not negligible and have to be taken into account
in theoretical treatments. Interactions lead to new collective effects which are very exciting,
but also greatly complicate the theory of Bose-Einstein condensates.

The equation that governs all properties of Bose-Einstein condensates of dilute, atomic
gases is the interacting many-body Schrödinger equation. However, this equation is difficult
to solve even for few particles, and approximations are usually indispensable. Certainly the
most popular of these approximative methods is the celebrated Gross-Pitaevskii theory which
was developed independently by Eugene P. Gross and Lev P. Pitaevskii in 1961 [30,31]. With
Gross-Pitaevskii theory it is possible to investigate inhomogeneous, interacting condensates
in arbitrary trap geometries. At first sight it seems to be a formidable general purpose theory
for Bose-Einstein condensates. The only assumption on which Gross-Pitaevskii theory rests is
that the quantum state is fully condensed at all times. This is also its major drawback, since
it is impossible to tell for a given system whether this assumption is justified or not, without
going beyond Gross-Pitaevskii theory. The previously mentioned example of superfluid liquid
4He, where no more than about 7% of all particles are believed to be condensed, proves that
this question is a very relevant one in interacting Bose systems.

Another important aspect of trapped, interacting Bose-Einstein condensates which did not
receive much attention until recently is the fact that not only the interaction strength, but
also the trap geometry can have a strong influence on the nature of a condensate. While the
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conceptually simplest condensates are fully condensed, other types of condensates exist. In so
called fragmented condensates two or more single-particle quantum states are occupied by a
large number of atoms [32]. Fragmented condensates were initially thought to be unphysical
[32]. The contrary is the case, especially in double-well and multi-well traps. As it turns
out, already the ground state of condensates in such traps is fragmented, provided that the
separating potential barrier is high enough [33–41]. When long-range interparticle interactions
are present also the ground state of single-well traps can be fragmented [42]. While fully
condensed systems behave like classical fields such as coherent light pulses in optical fibers or
certain kinds of water waves, fragmented condensates have no simple classical equivalent and
cannot be described by Gross-Pitaevskii theory.

Apart from Gross-Pitaevskii theory another very popular approximation for the theoretical
description of trapped ultracold bosons is the Bose-Hubbard model [43–46]. Unlike Gross-
Pitaevskii theory, the Bose-Hubbard model is capable of describing fragmented condensates.
However, it makes explicit use of the trap potential which, strictly speaking, is assumed to be a
lattice of potential wells. It is therefore not as generally applicable as Gross-Pitaevskii theory.
Within the framework of the Bose-Hubbard model bosons are allowed to move through the
lattice by hopping from one lattice site to a neighboring one. By construction it is a spatially
discrete lattice model and thereby very different from Gross-Pitaevskii theory.

Both of these models, Gross-Pitaevskii theory and the Bose-Hubbard model are often used
to explain experiments. In fact, the literature on Bose-Einstein condensates relies heavily,
almost exclusively on these two approximations. However, very little is known about the true
physics which is governed by the many-body Schrödinger equation. Very recently, a new,
strictly variational many-body method has been developed for bosons [47–49]. The method
is known as the Multiconfigurational time-dependent Hartree for bosons, or short MCTDHB.
This method made it possible for the first time to solve the time-dependent many-boson
Schrödinger equation for large numbers of particles. Thus, it became possible to obtain exact

results on the many-body dynamics of Bose-Einstein condensates in arbitrary trap geometries
from first principles. The thereby obtained results reveal without exception that even for the
simplest cases and on short time scales the true physics of interacting many-boson systems is
far richer than what can be anticipated based on Gross-Pitaevskii theory or the Bose-Hubbard
model, see Refs. [41, 47,48,50–58]. Some of these results are the topic of this thesis.

1.3 Overview of this thesis

This thesis is organized as follows. In Chapter 2 we review the most important concepts
of the theory of ultracold bosons. We begin with the many-body Hamiltonian, its different
representations and show how the Schrödinger equation can be obtained from a variational
principle. The representation of a many-body wave function in a finite basis set and its
implications are discussed. We then introduce reduced density matrices, summarize their
properties and discuss their relation to observables. At the end of the Chapter we review the
criterion for Bose-Einstein condensation and classify regimes of interacting bosons.

In Chapter 3 we review general methods for Bose-Einstein condensates and give a self-
contained derivation of the Multiconfigurational time-dependent Hartree for bosons method.
We also show that the celebrated Gross-Pitaevskii equation is contained in this method as a
special case.
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Chapter 4 discusses the most commonly used lattice models for the quantum dynamics of
ultracold bosons as far as they are relevant to this work. In particular these are the two-
mode Gross-Pitaevskii model and the Bose-Hubbard model for two sites. A short overview
of related topics, such as Wannier functions, self-trapping and commonly employed validity
criteria for the Bose-Hubbard model is given.

In Chapter 5 we turn to a specific physical example of a trapped Bose-Einstein condensate
and focus on the ground state of one thousand bosons in a one-dimensional double-well po-
tential at different barrier heights. We solve the time-independent many-body Schrödinger
equation and monitor how the ground state becomes more and more fragmented with in-
creasing barrier height. This transition manifests itself in the correlation functions and the
coherence of the condensate. In the limits of a low and a very high barrier we show that
a mean-field description is applicable, while the state is a true many-body state in between
those limits. The strongest correlations are shown to occur there.

Chapter 6 is devoted to the dynamics of bosonic Josephson junctions, obtained by solv-
ing the time-dependent many-body Schrödinger equation numerically exactly for up to one
hundred particles. The exact results are compared to those of the most popular theories of
the field, Gross-Pitaevskii theory and of the Bose-Hubbard model. Both of these theories are
shown to deviate from the exact results after short times and at weak interaction strengths.
Self-trapping is shown to be largely suppressed by the many-body dynamics at weak inter-
actions. For stronger interactions we find self-trapping for some time on the full many-body
level and a completely novel equilibration dynamics which is accompanied by a quick loss of
coherence. The resulting many-body state is found to be highly correlated and many-fold
fragmented.

Chapter 7 extends the study of bosonic Josephson junctions and investigates the dynamics
for attractive and repulsive interactions of equal magnitude, studied here by comparing Bose-
Hubbard and numerically exact results of the many-body Schrödinger equation. It is shown
that a symmetry of the Bose-Hubbard model dictates an equivalence between the evolution
in time for attractive and repulsive interactions. The many-body Schrödinger equation does
not possess this symmetry and consequently the dynamics of the attractive and repulsive
junctions are different.

In Chapter 8 we present a concept to generalize Wannier functions. In particular we allow
Wannier functions to depend on time and show how equations of motion for these time-
dependent Wannier functions can be derived from a variational principle. The concept is
general and can be applied to any lattice model that employs Wannier functions. As an
example we show this explicitly for the Bose-Hubbard model. In a quantum quench scenario
the results of the Bose-Hubbard model with time-independent and time-dependent Wannier
functions are compared to numerically exact results of the many-body Schrödinger equation.
Thereby it is shown that lattice models can be greatly improved through the use of time-
dependent Wannier functions at little extra computational cost.



Chapter 2

General Theory

In this Chapter we review the most important concepts of the theory of ultracold bosons.
We begin with the many-body Hamiltonian, its different representations and show how the
Schrödinger equation can be obtained from to the time-dependent variational principle. The
representation of a many-body wave function in a finite basis set and its implications are
discussed. We then introduce reduced density matrices, summarize their properties and
discuss their relation to observables. At the end of the Chapter we review the criteria for
Bose-Einstein condensation and classify regimes of interacting bosons.

2.1 The field operator

All theories and models used in this work can be cast into the same framework if the (spinless)
bosonic Schrödinger picture field operator Ψ̂(r) is taken as a starting point. Here, we work
in D-dimensions. In one-dimension (1D) we set r = x. Ψ̂(r) satisfies the usual bosonic
commutation relations

[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r − r′),

[
Ψ̂(r), Ψ̂(r′)

]
= 0. (2.1)

It is convenient to expand Ψ̂(r) in a complete set of orthonormal single-particle functions
{φk} = {φ1, φ2, φ3, ...}, which we will call orbitals for brevity. The orbitals are usually taken
as a set of previously known, time-independent functions, e.g. plane waves or harmonic
oscillator eigenfunctions. However, it is important to realize that in the most general case
neither does the set {φk} have to be known, nor is it necessary that the orbitals be time-
independent. In the following we will assume that the orbitals {φk(r, t)} are time-dependent

and form a complete orthonormal set at all times

〈φk|φj〉 = δkj . (2.2)

Of course this includes also the special case where the orbitals are time-independent: φk(r, t) =
φk(r). The expansion of the time-independent field operator Ψ̂(r) in the time-dependent basis
set {φk(r, t)} then reads

Ψ̂(r) =

∞∑

k=1

b̂k(t)φk(r, t). (2.3)

The time-dependent annihilation and creation operators bk(t) and b†j(t) obey the commutation
relations [

b̂k(t), b̂
†
j(t)

]
= δkj (2.4)
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for bosons at any time. Substituting Eq. (2.3) into the first of Eqs. (2.1) results in the closure
relation ∞∑

k=1

φk(r, t)φ
∗
k(r

′, t) = δ(r − r′), (2.5)

which expresses the fact that the time-dependent set of orbitals {φk(r, t)} is complete.

2.2 The many-body Hamiltonian

The Hamiltonian of a system of N spinless particles interacting via pairwise interactions is
given by

H =
N∑

i

h(ri) +
N∑

i<j

W (ri − rj). (2.6)

Here

h(r) = −1

2

∂2

∂r2 + V (r) (2.7)

is a one-body Hamiltonian consisting of a kinetic part T (r) and an external potential V (r). We
work in dimensionless units where ~ = m = 1. The connection to a real physical Hamiltonian
will be made whenever appropriate. W (r − r′) is the two-body interaction potential. The
Hamiltonian H can also be explicitly time-dependent, e.g. because of a time-dependent
one-particle potential V (r, t), but here we restrict the discussion to the case where H is
time-independent. In second quantized form the many-body Hamiltonian (2.6) then reads

Ĥ =

∫
drΨ̂†(r)h(r)Ψ̂(r) +

1

2

∫
dr

∫
dr′Ψ̂†(r)Ψ̂†(r′)W (r − r′)Ψ̂(r)Ψ̂(r′) (2.8)

or equivalently after substituting the representation for the field operator given in Eq. (2.3)

Ĥ =
∑

k,q

b̂†k(t)b̂q(t)hkq(t) +
1

2

∑

k,s,l,q

b̂†k(t)b̂
†
s(t)b̂l(t)b̂q(t)Wksql(t). (2.9)

Here, the matrix elements of h(r) and W (r − r′) are given by

hkq(t) =

∫
drφ∗

k(r, t)h(r)φq(r, t),

Wksql(t) =

∫
dr

∫
dr′ φ∗

k(r, t)φ
∗
s(r

′, t)W (r − r′)φq(r, t)φl(r
′, t). (2.10)

If the set of orbitals {φk} is time-independent the matrix elements (2.10) are also time-
independent and only have to be evaluated once in a computation. However, for time-
dependent orbitals the matrix elements (2.10) have to be evaluated at every time step of
a computation. In fact, the evaluation of the matrix elements (2.10) can become the perfor-
mance limiting factor then, especially if computations are done in two and three dimensions.
In Appendix A we present an algorithm for the efficient evaluation of the interaction matrix
elements Wksql(t) and the one-body matrix elements hkq(t). In both cases the advantages of
the fast Fourier transform can be exploited.
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2.3 The time-dependent variational principle

The physical laws of optics, classical mechanics, quantum mechanics, electrodynamics, general
relativity and elementary particle physics can be derived from variational principles. While
the time-independent variational principle in quantum mechanics can be found in virtually
any introductory textbook, the time-dependent version of it is less known. In this section we
review the time-dependent variational principle for quantum mechanics, on which all of the
numerical methods used in this work can be based. We follow the exposition of Ref. [59] and
start from the Lagrangian

L[Ψ(t), Ψ∗(t)] =

〈
Ψ(t)

∣∣∣∣Ĥ − i
∂

∂t

∣∣∣∣ Ψ(t)

〉
, (2.11)

where the wave function Ψ(t) is required to be normalized at all times 〈Ψ(t)|Ψ(t)〉 = 1. We
write Ψ̇ ≡ ∂

∂tΨ(t) for the time derivative. The equations of motion are then determined by

the principle of least action δS = 0. Using 〈Ψ|Ψ̇〉 = −〈Ψ̇|Ψ〉 it can be verified that arbitrary
variations of the action functional

S[Ψ, Ψ∗] =

∫ t1

t0

dt′L[Ψ(t′), Ψ∗(t′)] (2.12)

with respect to 〈Ψ| and |Ψ〉 yield the Schrödinger equation and its hermitian conjugate

Ĥ|Ψ〉 = i|Ψ̇〉
〈Ψ|Ĥ = −i〈Ψ̇|, (2.13)

where we have assumed a hermitian Hamiltonian Ĥ† = Ĥ. In all practical computations the
variations will not be taken with respect to the wave function itself, but rather an ansatz for
the wave function must be made, containing parameters. The variation is then taken with
respect to these parameters. By including more and more parameters into the ansatz wave
function, the accuracy can improved successively until convergence is reached.

2.4 The many-boson wave function

It is a well known fact that any wave function of identical fermions can be expanded in a
complete set of Slater determinants. The bosonic equivalent of a Slater determinant is called
a permanent. In this work we are dealing with bosons only, and we will also use the term
configuration interchangeably with the term permanent. For a given set of M time-dependent
orbitals {φ1, ..., φM} and N bosons a total of

(
N+M−1

N

)
permanents

|n1, n2, . . . , nM ; t〉 =
1√

n1!n2! · · ·nM !

(
b̂†1(t)

)n1
(
b̂†2(t)

)n2 · · ·
(
b̂†M (t)

)nM |vac〉 (2.14)

can be constructed by distributing the N bosons over the M orbitals. We collect the occu-
pations in the vector ~n = (n1, n2, . . . , nM ), where n1 + n2 + . . . + nM = N . The most general
ansatz for the many-body wave function |Ψ(t)〉 of N identical bosons is a linear combination
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of such time-dependent permanents

|Ψ(t)〉 =
∑

~n

C~n(t) |n1, n2, . . . , nM ; t〉 , (2.15)

where the summation in (2.15) runs over all
(
N+M−1

N

)
permanents. Of course, if M goes to

infinity then the ansatz (2.15) for the wave function becomes exact since the set of permanents
|n1, n2, . . . , nM ; t〉 spans the complete N -particle Hilbert space.

In all practical computations M is finite and the set of orbitals {φ1, ..., φM} only approxi-
mates a complete set. Using the orbitals {φ1, ..., φM} as an approximation to a complete set,
the finite size representations of the field operator Ψ̂M and the closure relation read

Ψ̂M (r; t) =
M∑

k=1

b̂k(t)φk(r, t). (2.16)

and
M∑

k=1

φk(r, t)φ
∗
k(r

′, t) = δM (r − r′; t), (2.17)

both of which are generally time-dependent. Here δM (r−r′; t) is the finite size approximation
of a true delta function. For any function that lies within the Hilbert space spanned by the
orbitals {φ1, ..., φM}, Ψ̂M and δM act like their exact equivalents, Eqs. (2.3) and (2.5). For
any finite M ansatz for the wave function the finite M representation of the many-body
Hamiltonian can be obtained by substituting the respective finite M expansion for the field
operator, Eq. (2.16), into Eq. (2.8). This allows for a comparison of all methods discussed in
this work on the same footing.

We note that allowing the orbitals {φ1, ..., φM} to depend on time is a generalization of the
conventional expansion in a time-independent basis set that does not lead to any additional
complications as far as quantities at a single time t are concerned. In principle any time-
dependent set of orthonormal orbitals {φ1, ..., φM} could be chosen. However, this additional
freedom is most effectively used, if the orbitals are determined by the time-dependent varia-
tional principle [59]. In Sec. 3.1 we discuss the Multiconfigurational time-dependent Hartree
for bosons method (MCTDHB), which does exactly that. If the orbitals {φ1, ..., φM} are not
allowed to depend on time, only the coefficients C~n(t) in the ansatz wave function (2.15) re-
main time-dependent and Eqs. (2.16) and (2.17) constitute time-independent approximations
of the exact field operator, Eq. (2.3), and the exact closure relation, Eq. (2.5).

The ansatz (2.15) is the most general M -orbital many-boson ansatz possible. Less general
ansatz wave functions are common in the literature. In the theory of many-particle systems
the following distinction is made based on the form of the ansatz wave function. An ansatz

for a many-boson wave function is a

• mean-field ansatz, if it consists of a single permanent, or a

• many-body ansatz otherwise.

The MCTDHB method mentioned above uses the most general M -orbital ansatz (2.15) and
is therefore a many-body method. If only M = 1 orbital is used in Eq. (2.15) the ansatz wave
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function becomes a single permanent, i.e. a mean-field ansatz, with all N particles in one
orbital. The celebrated Gross-Pitaevskii theory discussed in Sec. 3.2 is of this type. In the
two-mode Gross-Pitaevskii model, discussed in 4.2, a restricted ansatz is made for the orbital
of Gross-Pitaevskii theory. The model is therefore a mean-field model that approximates
Gross-Pitaevskii theory. Lastly, the Bose-Hubbard model, discussed in Sec. 4.3, uses a many-
body ansatz for the wave function, but unlike in MCTDHB the orbitals are not allowed to
depend on time.

2.5 Reduced density matrices and their eigenfunctions

We consider a given wave function Ψ(r1, . . . , rN ; t) of N identical, spinless bosons with spatial
coordinates ri. The p-th order reduced density matrix (RDM), is defined by

ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) =
N !

(N − p)!

∫
Ψ(r1, . . . , rp, rp+1, . . . , rN ; t)

×Ψ∗(r′1, . . . , r
′
p, rp+1, . . . , rN ; t)drp+1 . . . drN , (2.18)

where the wave function is assumed to be normalized 〈Ψ(t)|Ψ(t)〉 = 1. The p-th order RDM,
Eq. (2.18), can be regarded as the kernel of the operator

ρ̂(p) =
N !

(N − p)!
TrN−p

[
|Ψ(t)〉〈Ψ(t)|

]
(2.19)

in Fock space, where TrN−p[·] specifies taking the partial trace over N − p particles. Since
the wave function is symmetric in its coordinates, it does not matter over which particles the
trace is taken. In what follows, we add |Ψ〉 as an additional subscript if a result is only valid
for states |Ψ〉 of a particular form. The diagonal ρ(p)(r1, . . . , rp|r1, . . . , rp; t) is the p-particle
probability distribution at time t normalized to N !/(N − p)!.

In order to discuss observables not only in real space, but also in momentum space, we
define the Fourier transform of a function f(r1, . . . , rp) of p D-dimensional coordinates ri by

f(k1, . . . ,kp) =
1

(2π)pD/2

∫
dpr e−i

Pp
l=1 klrlf(r1, . . . , rp). (2.20)

By applying the Fourier transform, Eq. (2.20), to the 2p coordinates r1, . . . , rp and r′1, . . . , r
′
p

in Eq. (2.18), the momentum space representation of ρ̂(p):

ρ(p)(k1, . . . ,kp|k′
1, . . . ,k

′
p; t) =

N !

(N − p)!

∫
Ψ(k1, . . . ,kp,kp+1, . . . ,kN ; t)

×Ψ∗(k′
1, . . . ,k

′
p,kp+1, . . . ,kN ; t)dkp+1 . . . dkN (2.21)

is obtained. The diagonal ρ(p)(k1, . . . ,kp|k1, . . . ,kp; t) in momentum space is the p-particle
momentum distribution at time t, normalized to N !/(N − p)!.

The p-th order RDM ρ(p) can be expanded in its eigenfunctions, leading to the representa-
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tions

ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) =
∑

i

n
(p)
i (t)α

(p)
i (r1, ..., rp, t)α

(p)
i

∗
(r′1, ..., r

′
p, t) (2.22)

and

ρ(p)(k1, . . . ,kp|k′
1, . . . ,k

′
p; t) =

∑

i

n
(p)
i (t)α

(p)
i (k1, ...,kp, t)α

(p)
i

∗
(k′

1, ...,k
′
p, t). (2.23)

Here, n
(p)
i (t) denotes the i-th eigenvalue of the p-th order RDM and α

(p)
i the corresponding

(symmetric) eigenfunction in real space. The momentum space representation can be obtained

by applying the Fourier transform to the real space eigenfunctions. All eigenfunctions α
(p)
i are

normalized to one. The eigenfunctions are known as natural p-functions and the eigenvalues as
natural occupations. For p = 1 and p = 2 the eigenfunctions are known as natural orbitals and

natural geminals, respectively. We order the eigenvalues n
(p)
i (t) for every p non-increasingly,

such that n
(p)
1 (t) denotes the largest eigenvalue of the p-th order RDM. The normalization of

the many-body wave function and Eqs. (2.18),(2.22) and (2.23) put the restriction

∑

i

n
(p)
i (t) =

N !

(N − p)!
(2.24)

on the eigenvalues of the p-th order RDM. Thus the largest eigenvalue n
(p)
1 (t) is bounded

from above by [60,61]

n
(p)
1 (t) ≤ N !

(N − p)!
. (2.25)

Lower bounds on n
(p)
1 (t) can be derived, relating RDMs of different order [62,63].

2.6 Two-body expectation values and geminals

For a system of identical particles interacting via two-body interactions only it is possible
to express the expectation value of the many-body Hamiltonian (or any other two-body
operator) by an expression involving only the second order RDM of the system. Consider a
general many-body Hamiltonian of the type given in Eq. (2.6), i.e. consisting of one-body
operators h(ri) and two-body operators W (ri − rj). It is then useful to define the reduced

Hamiltonian operator

K(r1, r2) = h(r1) + h(r2) + (N − 1)W (r1 − r2). (2.26)

Following Refs. [60,61] and making use of the time-dependent natural geminals α
(2)
i (r1, r2, t)

the expectation value of the energy E can then be expressed at any time through the equation
[41]:

E =
1

2
N

∑

i

n
(2)
i (t)

∫
dr1dr2α

(2)∗

i (r1, r2, t)K(r1, r2)α
(2)
i (r1, r2, t). (2.27)
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The expression (2.27) is usually written for time-independent states, but it holds equally
well in the dynamical case [41]. Note that the many-body wave function does not appear
explicitly in Eq. (2.27). In order to determine the energy spectrum of a system of identical
particles it is therefore tempting to devise a variational procedure that minimizes Eq. (2.27)
by variations over the Hilbert space of two-particle functions. However, the requirement of a
totally symmetric (or antisymmetric) many-body wave function puts an additional constraint
on the space of allowed two-particle functions which is not easy to satisfy. This is known as
the N -representability problem [60,61]. The determination of tight bounds on eigenvalues of
RDMs is therefore an active field of research. We will not go any further into the details of
these approaches to many-body physics and refer the reader to the literature [60,61].

2.7 Correlation functions and RDMs

Equivalent to Eq. (2.18), the p-th order RDM can be defined using field operators as

ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) = 〈Ψ(t)|Ψ̂†(r′1) . . . Ψ̂†(r′p)Ψ̂(rp) . . . Ψ̂(r1)|Ψ(t)〉
(2.28)

where the Schrödinger field operators satisfy the usual bosonic commutation relations Eqs.
(2.1). The representation given in Eq. (2.28) shows that the p-th order RDM is identical to
the p-th order correlation function at equal times [41, 64, 65]. Here we only consider spatial
correlations, i.e. correlations at equal times. For correlations at different times there is no
equivalence like Eq. (2.28) between correlation functions and RDMs.

2.8 Definition and signatures of n-th order coherence

Apart from the p-particle distributions themselves, either in real space or in momentum
space, it is also of great interest to compare the p-particle probabilities to their respective
one-particle probabilities. Thereby, it becomes possible to identify effects that are due to
the quantum statistics of the particles. The normalized p-th order correlation function of an
N -boson system at time t is defined by [64]

g(p)(r′1, . . . , r
′
p, r1, . . . , rp; t) =

ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t)√∏p
i=1 ρ(1)(ri|ri; t)ρ(1)(r′i|r′i; t)

(2.29)

and is the key quantity in the definition of spatial coherence.

Full spatial n-th order coherence is only obtained if ρ(p) factorizes for all p ≤ n into a
product of one complex valued function E(r, t) of the form

ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) = E∗(r′1, t) · · · E∗(r′p, t)E(rp, t) · · · E(r1, t). (2.30)

In this case one finds |g(p)| = 1 for all p ≤ n by substituting Eq. (2.30) into Eq. (2.29). For
n > 1 Eq. (2.30) cannot be satisfied exactly by any N -particle state. However, if all N bosons
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occupy the same orbital a maximally coherent N -particle state is obtained and

|g(p)(r′1, . . . , r
′
p, r1, . . . , rp; t)| =

N !

(N − p)!Np
(2.31)

for all p ≤ N [66]. Independent of the degree of coherence g(p) = 0 for p > N . We note that
the absolute value of g(1) is always bounded from above by one, but there is no upper bound
on g(p) if p > 1.

The diagonal g(p)(r1, . . . , rp, r1, . . . , rp; t) of the normalized p-th order correlation function
in real space is a measure for the degree of p-th order coherence. The simultaneous detection
probabilities at positions r1, . . . , rp are correlated (anticorrelated) if the real space diagonal
of g(p) is greater (less) than one.

Note that if Eq. (2.30) holds in real space, it also holds in momentum space, as can be
seen by Fourier transforming each of the 2p variables in Eq. (2.30). It is therefore possible to
define the normalized p-th order correlation function in momentum space by

g(p)(k′
1, . . . ,k

′
p,k1, . . . ,kp; t) =

ρ(p)(k1, . . . ,kp|k′
1, . . . ,k

′
p; t)√∏p

i=1 ρ(1)(ki|ki; t)ρ(1)(k′
i|k′

i; t)
. (2.32)

Equivalent to the situation in real space g(p)(k1, . . . ,kp,k1, . . . ,kp; t), the diagonal of Eq.
(2.32), expresses the tendency of p momenta to be measured simultaneously. The simul-
taneous detection probabilities of momenta k1, . . . ,kp are correlated (anticorrelated) if the
momentum space diagonal of g(p) is greater (less) than one. We note that the p-th order
momentum distribution, the diagonal of ρ(p) in momentum space, depends on the entire p-th
order RDM ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t), see Appendix B. Thus, the diagonal of g(p) in mo-
mentum space provides information about the coherence of |Ψ(t)〉 which is not contained in
the diagonal of g(p) in real space and vice versa.

2.9 1st and 2nd order RDMs, correlations and coherence

The fact that many-body quantum systems interact generally via two-body interaction po-
tentials makes the RDMs of first and second order particularly important. For example the
expectation value of any two-body operator can be represented by an integral involving the
second-order RDM only, see Sec. 2.6. In this section we summarize the most important re-
sults about the RDMs of first and second order. For the first order RDM the following set of
equations holds:

ρ(1)(r1|r′1; t) = N

∫
dr2dr3 · · · drN Ψ(r1, r2, . . . , rN ; t)Ψ∗(r′1, r2, . . . , rN ; t)

=
〈
Ψ(t)

∣∣∣Ψ̂†(r′1)Ψ̂(r1)
∣∣∣ Ψ(t)

〉

=
∑

k,q

ρkq(t)φ
∗
k(r

′
1, t)φq(r1, t), (2.33)



1st and 2nd order RDMs, correlations and coherence 13

where expressions for the matrix elements of the one-body density matrix ρkq(t) =
〈
Ψ

∣∣∣b̂†k b̂q

∣∣∣ Ψ
〉

for bosons [39] are listed in Appendix C. Similarly, the reduced two-body density matrix of
Ψ(t) is given by

ρ(2)(r1, r2|r′1, r′2; t) = N(N − 1)

∫
dr3 . . . drN Ψ(r1, r2, rp+1, . . . , rN ; t)

×Ψ∗(r′1, r
′
2, r3, . . . , rN ; t)

=
〈
Ψ(t)

∣∣∣Ψ̂†(r′1)Ψ̂
†(r′2)Ψ̂(r2)Ψ̂(r1)

∣∣∣ Ψ(t)
〉

=
∑

k,s,l,q

ρkslq(t)φ
∗
k(r

′
1, t)φ

∗
s(r

′
2, t)φl(r2, t)φq(r1, t), (2.34)

where the matrix elements of the two-body density matrix ρkslq(t) =
〈
Ψ

∣∣∣b̂†k b̂
†
sb̂lb̂q

∣∣∣ Ψ
〉

for

bosons [39] are collected in Appendix C.

The upper bound on the largest eigenvalue of the p-th order RDM, Eq. (2.25), reduces for
p = 1 and p = 2 to

n
(1)
1 (t) ≤ N

n
(2)
1 (t) ≤ N(N − 1) (2.35)

A lower bound on the largest natural geminal occupation number is given by [62]

n
(2)
1 (t) ≥ n

(1)
1 (t)[n

(1)
1 (t) − 1]. (2.36)

The inequality

N(N − 1) ≥ n
(2)
1 (t) ≥ n

(1)
1 (t)[n

(1)
1 (t) − 1]. (2.37)

thus bounds the largest natural geminal occupation number from below and from above. The
quantities ρ(r; t) ≡ ρ(1)(r|r; t) and ρ(k; t) ≡ ρ(1)(k|k; t) are known as the one-particle density
and the one-particle momentum distribution, respectively. We remind the reader that these
quantities are normalized to N . Similarly, ρ(2)(r, r′|r, r′; t) and ρ(2)(k1,k2|k1,k2; t) are known
as the two-particle density and the two-particle momentum distribution, respectively. Both
are normalized to N(N − 1).

A maximally coherent N -boson state is a state in which all N particles occupy the same
orbital and satisfies

|g(1)(r′1, r1; t)| = |g(1)(k′
1,k1; t)| = 1

|g(2)(r′1, r
′
2, r1, r2; t)| = |g(2)(k′

1,k
′
2,k1,k2; t)| = 1 − 1/N, (2.38)

see Eq. (2.31). First order coherence is mathematically defined as the factorization of g(1) into
a product of a single function, see Eq. (2.30). The absolute value of g(1) can be determined
experimentally by Young double slit experiments under the following assumptions. If Imax

(Imin) is the maximal (minimal) measured intensity on a screen behind a double slit with the
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slits located at positions r′1 and r1, then

v =
Imax − Imin

Imax + Imin
(2.39)

is known as the fringe visibility. If the bosons are noninteracting and if the slits are illuminated
with equal intensity then the fringe visibility is given by v = |g(1)(r′1, r1; t0)|. Here, t0 is the
time of release from the slits. More details on the relation between the fringe visibility and g(1)

can be found in textbooks on quantum optics, e.g. Ref. [67]. Apart from photons such double
slit experiments have also been done using Bose-Einstein condensates, see e.g. Ref. [68].
However, if interactions during the expansion behind the slit are not negligible, there is no
simple relation between the fringe visibility and g(1). In other words, the interaction between
the particles can modify the observed interference pattern [69–71].

In order to determine the degree of coherence of a given system, it is necessary to quan-
tify how well Eq. (2.30) is satisfied. However, Eq. (2.30) is a mathematical definition that
cannot easily be determined from measurements. However, the quantities |g(1)(r′1, r1; t0)|2,
g(2)(r1, r2, r1, r2; t) and g(2)(k1,k2,k1,k2; t) are accessible in experiments. The last two are
the diagonals of g(2) in real and in momentum space and can be computed as ratios of expec-
tation values. Deviations from their maximally obtainable values (2.38) are a measure for the
coherence of a quantum state. We note that g(1)(k′

1,k1; t0) does not contain any additional
information about the coherence of a state that goes beyond what can be concluded from
g(1)(r′1, r1; t0) alone. The reverse is true for g(2)(r1, r2, r1, r2; t) and g(2)(k1,k2,k1,k2; t).

A visualization of the degree of coherence is highly desirable, as it helps to understand the
coherence limiting factors in an intuitive manner. In one-dimensional systems |g(1)(r′1, r1; t)|2
can be represented as a two-dimensional plot. Similarly, the diagonals of g(2) in real and in
momentum space can be represented as two-dimensional plots. In Chapters 5 and 6 we will
visualize the degree of first- and second-order coherence of a one-dimensional system.

2.10 Definition of Bose-Einstein condensation and fragmentation

The natural orbital occupation numbers n
(1)
i serve to define Bose-Einstein condensation.

According to Penrose and Onsager [4], a system of identical bosons is said to be condensed,
if the largest eigenvalue of the first-order RDM is of the order of the number of particles in
the system, i.e.

n
(1)
1 = O(N). (2.40)

This definition of Bose-Einstein condensation has the advantage that it is well defined for
interacting systems. While Penrose and Onsager made explicit use of a thermodynamic limit
procedure in their work, this definition can equally well be applied to a system of a finite

number of particles. In the special case that n
(1)
1 = N , the system is said to be fully condensed

since then all particles occupy the same orbital. An N -boson state with n
(1)
1 = N is maximally

coherent and satisfies Eqs. (2.38), i.e. |g(1)| = 1 and g(2) = 1−1/N . States in which the largest
natural orbital occupation number is very close to N are known as depleted condensates. To

be definite we will call systems that satisfy n
(1)
1 /N > 95% depleted condensates in this work.

In case that more than one natural orbital occupation number is of the order of the number
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of particles,

n
(1)
1 , n

(1)
2 , ... = O(N), (2.41)

the condensate is said to be two-fold fragmented, three-fold fragmented, etc., according to

Nozières and Saint James [32]. The sum over all n
(1)
i for i ≥ 2 is known as the fragmentation

of the condensate. Fragmented condensates were initially thought to be unphysical, but
it turns out that already the ground state of trapped Bose-Einstein condensates is often
fragmented [33–42].

2.11 Classification of interacting regimes of trapped Bose-gases

In this section we briefly review the regimes of interacting Bose-gases. We have chosen to
follow the classification scheme of Ref. [72, 73] here, since the results collected there on the
statics of trapped Bose-Einstein condensates are the most rigorous available in the literature
to date. For our purposes it is sufficient to restrict the discussion here to the one-dimensional
(1D) case. We therefore write r = x and assume here that the interparticle interaction
potential in Eq. (2.2) is given by W (x − x′) = λ0δ(x − x′).

The mean density n̄ (of a stationary state) is defined as [72,73]

n̄ =

∫
ρ(x; 0)2/N. (2.42)

For homogeneous systems on an interval of length L the line density is simply n̄ = N/L. The
parameter

γ = λ0/n̄ (2.43)

is then known as the Lieb-Liniger parameter [74]. The parameter γ appeared first in the
exact treatment of a homogeneous Bose gas on a ring, where the parameter range 0 ≤ γ ≤ 2
is known as the weak coupling limit, since the ground state energy in the thermodynamic
limit can then be well approximated by perturbation theory [74]. Here we will call γ the
Lieb-Liniger parameter also in the case of inhomogeneous systems, since the definition of
n̄ in Eq. (2.42) is generally applicable. In Refs. [72, 73] the following classification of one-
dimensional interacting regimes was made:

• the ideal gas regime: γ ≪ N−2

• the 1D Gross-Pitaevskii regime : γ ≈ N−2

• the 1D Thomas-Fermi regime: N−2 ≪ γ ≪ 1

• the Lieb-Liniger regime: γ ≈ 1

• the Girardeau-Tonks regime: γ ≫ 1.

This classification is motivated by the rigorous mathematical results for the ground states
of trapped condensates assuming an asymptotically homogeneous trapping potential and
usually the limit N → ∞ at constant Nλ0. We note that a potential V (x) is asymptotically
homogeneous, if V (ax) = asV (x) for some s > 0 asymptotically in the limit x → ∞. The
first three regimes belong to the limit of weak interactions, with the third one being a special
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case of the second. The last two are characterized by strong interactions and were termed
the ’true’ 1D regimes.

It is important to realize that the naming convention above stems from the rigorous math-
ematical results obtained in the limit of an infinite number of particles. For any finite system
this naming convention may or may not be appropriate. In Chapter 5 we will investigate the
ground state of N = 1000 bosons in a trap with γ = 5× 10−5 and show explicitly that Gross-
Pitaevskii theory fails there, although according to the above scheme it should be valid. In
Chapters 6 and 7 we will show how the two most popular theories of the field, Gross-Pitaevskii
theory, and the Bose-Hubbard model fail to describe the dynamics of a bosonic Josephson
junction deep within the regime where they are expected to be valid. We will also show that
exciting new many-body effects exist at the beginning of the 1D Thomas-Fermi regime. In
view of these facts the naming convention in the classification scheme above can be misleading
when a finite number of particles is considered.



Chapter 3

General methods for the quantum dynamics of identical

bosons

We now turn to the description of the numerical methods used in this work. In Sec. 3.1 we give
a self-contained explanation of the multiconfigurational time-dependent Hartree for bosons
(MCTDHB) method. The MCTDHB method can be considered as the systematic many-
body generalization of Gross-Pitaevskii theory. In Sec. 3.2 it is shown how the celebrated
Gross-Pitaevskii equation can be recovered from MCTDHB as a special case.

3.1 Multiconfigurational time-dependent Hartree for bosons

(MCTDHB)

3.1.1 Introduction

The dynamics of non-relativistic many-body quantum systems is generally determined by the
time-dependent many-particle Schrödinger equation [75,76]. Although this equation is linear,
it can only be solved analytically in rare exceptions. Thus approximations and/or numerical
methods are indispensable. A straightforward approach is to diagonalize the Hamiltonian in
some time-independent basis set and to construct the solution of the Schrödinger equation
at some time from the eigenvectors and energy eigenvalues thereby obtained. This approach
which is known as direct diagonalization or configuration interaction is unfortunately limited
to systems of small size and weak interaction strength. Moreover, the quality of the results
obtained depends crucially on the chosen basis set. This problem has been known for a long
time and in molecular physics a cure to this problem was proposed a long time ago. The
idea is to use a time-adaptive optimized basis set [77–79]. A particularly efficient variant of
this idea led to the multi-configuration time-dependent Hartree approach (MCTDH) which
has been successfully applied to multi-dimensional dynamical systems consisting of distin-
guishable particles [80–86]. Of course, also systems of (few) indistinguishable particles can be
investigated using MCTDH [87–94]. However, in order to treat systems consisting of a large
number of identical particles it is crucial to exploit the symmetry of the many-body wave
function under particle exchange.

The challenge to exploit this symmetry was first taken on for identical fermions. MCTDHF
– the fermionic version of MCTDH – was developed independently by different groups several
years ago [95–97]. MCTDHF is presently employed to study correlations effects in few-electron
systems [98–100]. More recently, a bosonic version of MCTDH, called MCTDHB [47,48] has
been developed. The bosonic case is particularly interesting because – unlike fermions – a
very large number of bosons can reside in a relatively small number of orbitals. Thereby it
has become possible to investigate the true many-body dynamics of a large number of bosons
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quantitatively. As a first application of MCTDHB, the many-body dynamics of the splitting a
condensate in a trap was studied in [47]. The MCTDHB method was then applied to problems
such as the dynamics of condensates in double-wells [48], the investigation of correlations
and coherence of trapped condensates [41], the dynamic formation of fragmentons and cat
states [50, 53], the buildup of coherence between two initially independent subsystems [51],
as well as the optimal control of number squeezing and atom interferometry [52,55,58]. Very
recently the first numerically exact results on the quantum dynamics of a bosonic Josephson
junction [54,57] and for a quantum quench scenario could be obtained, see Chapter 8. We note
that it is possible to unite the fermionic and the bosonic methods in a common framework [101]
and to extend the theory to mixtures of identical particles with particle conversion [102].

3.1.2 The MCTDHB wave function

The ansatz for the MCTDHB wave function |Ψ(t)〉 is of the most general form given in
Eq. (2.15)

|Ψ(t)〉 =
∑

~n

C~n(t) |n1, n2, . . . , nM ; t〉 , (3.1)

where the summation in (3.1) runs over all
(
N+M−1

N

)
time-dependent permanents, gener-

ated by distributing N bosons over M orbitals as defined in Eq. (2.14). In MCTDHB the
orbitals {φk(r, t)} = {φ1(r, t), ..., φM (r, t)} are determined variationally which makes them
time-dependent, see below.

The finite size representation, Eq. (2.16), of the field operator, Eq. (2.3), then takes on the
form

Ψ̂M (r; t) =
M∑

k=1

b̂k(t)φk(r, t), (3.2)

which is also time-dependent.

3.1.3 Derivation of the MCTDHB equations

To derive the set of equations-of-motion for the multi-configurational time-evolution of iden-
tical bosons [47, 48, 101], we employ the Lagrangian formulation of the time-dependent vari-
ational principle [59]. Thus, we substitute the many-body ansatz (3.1) into Eq. (2.12) and
enforce the constraint of orthonormality between the orbitals {φk(r, t)} by Lagrange multi-
pliers µkj(t). The functional action of the time-dependent Schrödinger equation then reads:

S [{C~n}, {φk}] =

∫
dt





〈
Ψ

∣∣∣∣Ĥ − i
∂

∂t

∣∣∣∣ Ψ

〉
−

M∑

k,j

µkj(t) [〈φk|φj〉 − δkj ]



 . (3.3)

We recall that the orbitals {φk(r, t)} and coefficients {C~n(t)} are independent variables (ar-
guments) of the action (3.3). Our strategy is first to take expectation values and only sub-
sequently perform the variation and require stationarity of the action with respect to the
arguments {φk(r, t)} and {C~n(t)}.

To perform the variation of the action (3.3) with respect to the orbitals we express the
expectation value of Ĥ − i ∂

∂t appearing in (3.3) in a form which explicitly depends on the
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orbitals. This can be done by resorting to the first and second order RDMs ρ(1)(r1|r′1; t) and
ρ(2)(r1, r2|r′1, r′2; t), Eqs. (2.33) and (2.34). The expectation value in (3.3) then reads

〈
Ψ

∣∣∣∣Ĥ − i
∂

∂t

∣∣∣∣ Ψ

〉
=

M∑

k,q=1

ρkq

[
hkq −

(
i
∂

∂t

)

kq

]
+

1

2

M∑

k,s,l,q=1

ρkslqWksql − i
∑

~n

C∗
~n

∂C~n

∂t
,

(3.4)
where the time-derivative i ∂

∂t is written as a one-body operator,

i
∂

∂t
=

∑

k,q

b̂†k b̂q

(
i
∂

∂t

)

kq

,

(
i
∂

∂t

)

kq

= i

∫
φ∗

k(r, t)
∂φq(r, t)

∂t
dr (3.5)

and for brevity we have dropped the time-argument everywhere. The matrix elements hkq

and Wksql were defined in Eqs. (2.10).

Representation (3.4) is very useful because the only explicit dependence on the orbitals
{φk(r, t)} is contained in the matrix elements hkq,

(
i ∂
∂t

)
kq

and Wksql, whereas the elements
ρkq and ρkslq of the first and second order RDMs do not depend explicitly on the orbitals. See
Appendices C and D for explicit expressions of these quantities. It is convenient to collect
the elements ρkq in a matrix ρ(t) = {ρkq(t)}.

The variation of the functional action (3.3) with respect to the orbitals is now straightfor-
ward. Using the fact that the {φk(r, t)} are orthonormal functions to eliminate the Lagrange
multipliers µkj(t), we obtain the following set of equations-of-motion for the time-dependent
orbitals in which the particles reside, j = 1, . . . , M :

P̂i
∣∣∣φ̇j

〉
= P̂


ĥ |φj〉 +

M∑

k,s,l,q=1

{ρ(t)}−1
jk ρkslqŴsl |φq〉


 ,

P̂ = 1 −
M∑

j′=1

∣∣φj′ 〉〈φj′
∣∣ , (3.6)

where

Ŵsl(r, t) =

∫
φ∗

s(r
′, t)Ŵ (r − r′)φl(r

′, t)dr′ (3.7)

are local time-dependent potentials and φ̇j ≡ ∂φj

∂t . Examining Eq. (3.6) we see that elim-

inating the Lagrange multipliers µkj(t) has emerged as a projection operator P̂ onto the
subspace orthogonal to that spanned by the orbitals. This projection appears both on the
left- and right-hand-sides of Eq. (3.6), making (3.6) a cumbersome coupled system of integro-
differential non-linear equations.

To simplify the equations-of-motion (3.6) we recall that the many-body wave function (2.15)
is invariant to unitary transformations of the orbitals, compensated by ’reverse’ transforma-
tions of the coefficients. Fortunately, there exists one specific unitary transformation which
guarantees without introducing further constraints that [80,81]

〈
φk|φ̇q

〉
= 0, k, q = 1, . . . , M (3.8)
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are satisfied at any time. Obviously, if conditions (3.8) are satisfied at any time, the orbitals
remain orthonormal functions at any time. This representation simplifies considerably the
equations-of-motion (3.6) for the orbitals, j = 1, . . . , M :

i
∣∣∣φ̇j

〉
= P̂


ĥ |φj〉 +

M∑

k,s,l,q=1

{ρ(t)}−1
jk ρkslqŴsl |φq〉


 ,

P̂ = 1 −
M∑

j′=1

∣∣φj′ 〉〈φj′
∣∣ . (3.9)

The projector P̂ remaining on the right-hand-side of Eq. (3.9) makes it clear that conditions
(3.8) are indeed met at any time throughout the propagation of the orbitals. In practice,
the meaning of these conditions is that the temporal changes of the {φk(r, t)} are always
orthogonal to the {φk(r, t)} themselves. This property introduced by the MCTDH developers
[80,81] generally makes the time propagation of Eq. (3.9) robust and stable and can thus be
exploited to maintain accurate propagation results at lower computational costs.

To complete the derivation, we perform the variation of (3.3) with respect to the coefficients
which is easily done after expressing the expectation value of Ĥ−i ∂

∂t in a form which explicitly
depends on the {C~n(t)}. The following result then emerges:

H(t)C(t) = i
∂C(t)

∂t
(3.10)

with

H~n~n′(t) =

〈
n1, n2, . . . , nM ; t

∣∣∣∣Ĥ − i
∂

∂t

∣∣∣∣ n′
1, n

′
2, . . . , n

′
M ; t

〉
, (3.11)

where the vector C(t) collects the coefficients {C~n(t)}. The matrix elements of Ĥ − i ∂
∂t

with respect to two general configurations |n1, n2, . . . , nM ; t〉 and |n′
1, n

′
2, . . . , n

′
M ; t〉 are easily

evaluated using the general rules for permanent expectation values [39]. The rules used are
collected in Appendix D. Finally, making use of conditions (3.8) we obtain the familiar
equations-of-motion for the propagation of the coefficients,

H(t)C(t) = i
∂C(t)

∂t
(3.12)

with
H~n~n′(t) =

〈
n1, n2, . . . , nM ; t

∣∣∣Ĥ
∣∣∣ n′

1, n
′
2, . . . , n

′
M ; t

〉
. (3.13)

The coupled equation sets (3.6) for the orbitals {φj(r, t)} and (3.10) for the expansion
coefficients {C~n(t)}, or equivalently, Eqs. (3.9) and (3.12) constitute the MCTDHB equa-
tions [47,48]. For an implementation the set of coupled equations (3.9) and (3.12) are better
suited. Very recently a parallel version of MCTDHB has been implemented using a novel map-
ping technique [49]. We note that by propagation in imaginary time the MCTDHB equations
also allow to determine ground and excited states of interacting many-boson systems.

The MCTDHB equations-of-motion become an exact representation of the time-dependent
many-particle Schrödinger equation in the limit where M goes to infinity. In practice, M is
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of course finite, This is where the employment of time-dependent, variationally determined
orbitals – which is at the heart of MCTDHB – is of great advantage. As mentioned earlier
the number of permanents used in MCTDHB is

(
N+M−1

N

)
. This is a very rapidly growing

function of of the number of orbitals and the number of bosons, and actually nothing spe-
cific to MCTDHB. It is simply the number of permanents that can be assembled from M
orbitals and N particles. However, any other method using time-independent orbitals will
need substantially more orbitals, i.e. a larger M , to achieve the same accuracy as MCTDHB.
In Appendix F we have included a comparison between an expansion in time-independent
and optimized, time-dependent orbitals which illustrates this point.

MCTDHB therefore provides a mathematically sound and optimal procedure to converge
to the exact solution of the many-body Schrödinger equation. This is done as follows. A
computation for N bosons is first carried out using just one orbital M = 1. As we will
show in Sec. 3.2 the restriction of MCTDHB to M = 1 orbital results in the Gross-Pitaevskii
equation. The same computation is then repeated using increasingly more orbitals until
no appreciable change in the results is detected, i.e. until the results have converged. If
convergence is obtained the results are exact.

3.2 Gross-Pitaevskii theory

In this section we derive the celebrated Gross-Pitaevskii mean-field theory and show how it
can be obtained as a special case of MCTDHB. We follow the exposition of Ref. [103]. In
Gross-Pitaevskii theory the ansatz for the many-boson wave function |Ψ(t)〉 is

|Ψ(t)〉 = |N ; t〉 , (3.14)

By comparison with Eq. (2.15) we find that the Gross-Pitaevskii ansatz amounts to choosing
M = 1, i.e. the many-body wave function is approximated a single time-dependent permanent
in which all N particles occupy the same orbital. There are no coefficients C~n(t) to be
determined in this ansatz, because only a single permanent is used.

The finite size representation, Eq. (2.16), of the field operator, Eq. (2.3), then takes on the
form

Ψ̂M (r; t) = b̂1(t)φ1(r, t), (3.15)

i.e. the field operator is approximated by an expansion over precisely one time-dependent
orbital.

As an interparticle interaction potential we choose W (r − r′) = λ0δ(r − r′). In order to
derive equations of motion we substitute the Gross-Pitaevskii ansatz, Eq. (3.14), into the
action functional of the time-dependent many-body Schrödinger equation, Eq. (3.3), and
perform a variation with respect to the orbital. We thereby obtain

N
[
h(r) + λ0(N − 1)|φ1(r, t)|2

]
φ1(r, t) = µ11(t)φ1(r, t) + iNφ̇1(r, t). (3.16)

The Lagrange multiplier µ11(t) appearing on the right-hand side of Eq. (3.16) can be absorbed
into φ1 by shifting its global phase

φ1(r, t) = φ̃1(r, t)e
−i

R t dt′µ11(t′)/N . (3.17)
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Substituting Eq. (3.17) back into Eq. (3.16) and dropping the tilde and the subscript on
φ̃1(x, t) we arrive at the celebrated Gross-Pitaevskii equation [30,31] as it is standardly written

iφ̇(r, t) =
[
h(r) + λ0(N − 1)|φ(r, t)|2

]
φ(r, t). (3.18)

Instead of eliminating µ11(t) by making the phase choice in Eq. (3.17) one can of course
first determine µ11(t) by multiplying Eq. (3.16) with

∫
φ∗

1(r, t) from the left. Substituting
the result for µ11(t) back into Eq. (3.16) yields the MCTDHB orbital equation of motion for
M = 1 in the form given in Eq. (3.6)

P̂iφ̇1(r, t) = P̂
[
h(r) + λ0(N − 1)|φ1(r, t)|2

]
φ1(r, t). (3.19)

By shifting the global phase of the orbital through the assignment

φ1(r, t) = e+
R t dt′<φ1|φ̇1>φ̃1(r, t) (3.20)

we arrive after substituting (3.20) into Eq. (3.19) and dropping the tilde and the subscript
on φ̃1(x, t) at

iφ̇(r, t) = P̂
[
h(r) + λ0(N − 1)|φ(r, t)|2

]
φ(r, t). (3.21)

Obviously, Eq. (3.21) and Eq. (3.18) are equivalent as they only differ in the assignment of
a global time-dependent phase for the orbital. Eq. (3.21) is nothing else but the MCTDHB
orbital equation of motion for M = 1 in the form given in Eq. (3.9).

We have thereby shown that the Gross-Pitaevskii equation in its conventional form, Eq.
(3.18) is equivalent to MCTDHB with M = 1. For the numerical solution of the Gross-
Pitaevskii equation the form Eq. (3.21) is clearly preferable as the projector P̂ ensures that
the change in the orbital at every time step is orthogonal to the orbital itself. If Eq. (3.21) is
implemented no computing time is wasted on a meaningless integration of the phase of φ(r, t)
which usually changes rapidly if Eq. (3.18) is solved directly.

It is clear that the Gross-Pitaevskii ansatz for the wave function, Eq. (3.14), is only the
simplest possible ansatz for the many-body wave function in Eq. (2.15). More than one time-
dependent orbital will generally be necessary in order to obtain qualitatively correct results,
see the discussion at the end of Sec. 3.1. It is also instructive to take a look at the finite size
representation of the Gross-Pitaevskii field operator, Eq. (3.15). If Gross-Pitaevskii theory
is valid, only one single term, b̂1(t)φ1(r, t), is relevant in the exact expansion of the field
operator, Eq. (2.3), at any time. For all practical purposes it is then irrelevant whether the
exact expression, Eq. (2.3), or Eq. (3.15) is used in the computation of any physical quantity.
Generally, this is of course not the case.

For a given system of identical bosons it is possible to assess a posteriori whether Gross-
Pitaevskii theory is valid by solving the same problem using MCTDHB with M > 1. If
the results using M > 1 orbitals do not differ noticeably from the Gross-Pitaevskii results,
Gross-Pitaevskii theory is valid.

It would be of great interest to have a rigorous criterion that allows to determine a priori

whether or not Gross-Pitaevskii theory is applicable for a given system of a finite number
of bosons. No such criterion is known to date, not even for the ground state. In the limit
of an infinite number of particles N → ∞ and keeping Nλ0 constant such criteria do exist,
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see the classification scheme in Sec. 2.11 and Refs. [72, 73]. In the same limit it can even be
proven that Gross-Pitaevskii theory is valid for the dynamics of a condensate released from a
trap [104]. For a finite number of interacting bosons such statements are generally incorrect,
as can already be concluded from the analysis of exactly solvable models [74, 105–107]. In
inhomogeneous systems already the ground state of a finite number of particles is often
fragmented even if the interaction strength is very small [33–36,38–41].





Chapter 4

Lattice models for the quantum dynamics of identical

bosons

In the previous Chapter two general theories, MCTDHB and Gross-Pitaevskii theory were
discussed, and it was shown that Gross-Pitaevskii theory is a special case of MCTDHB.
These methods are general in the sense that no assumptions were made about the system of
bosons apart from the ansatz for the many-body wave function. In this Chapter we discuss
models that are popular in the description of ultracold bosons in (quasi-) periodic potentials,
namely the Bose-Hubbard model and the discrete nonlinear Schrödinger equation. These
two methods have in common that both employ Wannier functions as a single-particle basis.
For our purposes it will be sufficient to restrict the discussion to the case of 1D double-well
potentials. We begin with a discussion of the Wannier functions and the parameters that
appear in the two models.

4.1 Wannier functions of a double-well potential

Given a strictly periodic potential in 1D, the single-particle eigenfunctions of the potential
are known as Bloch waves. The so called Wannier functions are then constructed as linear
superpositions of the Bloch waves. Wannier functions have the appealing property to be real
and localized at the minima of the periodic potential [108]. It is customary to apply the
concept of Wannier functions also to not strictly-periodic potentials, such as optical lattices,
double- and multi-well potentials. In the context of bosonic Josephson junctions –the topic of
Chapters 6 and 7 – double-well potentials are of particular importance. We therefore consider
a symmetric double-well potential

V (−x) = V (x) (4.1)

and denote the eigenfunctions by φ1, φ2, φ3, . . . with energies e1, e2, e3, . . . . The single-particle
ground state of V (x) is symmetric φ1(−x) = φ1(x) and the first excited state antisymmetric
φ2(−x) = −φ2(x). Left- and right-localized orbitals

φL,R(x) =
1√
2

(
φ1(x) ± φ2(x)

)
(4.2)

can then be constructed from φ1(x) and φ2(x). The orbitals φL,R are orthonormal to one
another and satisfy φL(−x) = φR(x). For sufficiently high barriers the orbitals φL and φR

are localized in the left and the right well of the double-well potential. Using the orbitals
φL,R as a single-particle basis allows for an intuitive picture of bosons populating either the
left or the right orbital.

From the orbitals φL,R, the one-body Hamiltonian h(x) = −1
2

∂2

∂x2 + Vdw(x), and the inter-
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action potential W (x − x′) = λ0δ(x − x′) the matrix elements

U = WRRRR = WLLLL = λ0

∫
dx|φL(x)|4

J = −hRL = −hLR =
e2 − e1

2
= −

∫
dxφ∗

L(x)h(x)φR(x)

ǫ = hLL = hRR =
e1 + e2

2
=

∫
dxφ∗

L(x)h(x)φL(x) (4.3)

can be computed that will be useful in following sections. U parameterizes the on-site inter-
action energy, J the hopping from site to site and ǫ is the energy of a single particle localized
residing in either of the orbitals φL or φR. In a lattice ǫ lies in the middle of the lowest band
which consists here of just two states and has a width of 2J = e2 − e1. The energy difference
between the first and the second excited state

egap = e3 − e2 (4.4)

is the equivalent of the first band gap in a lattice.

4.2 The two-mode Gross-Pitaevskii model

In the literature on bosonic Josephson junctions the Gross-Pitaevskii mean-field approxi-
mation plays a crucial role since equations of motion that resemble the superconducting
Josephson junction equations can be derived from it, if a few additional assumptions are
made [44, 109–111]. The procedure described here, can be easily be applied to lattices and
the resulting equations are also known as discrete nonlinear Schrödinger equations. We briefly
review the procedure and start from the Gross-Pitaevskii equation, Eq. (3.18). Let φ(x, t) be
the Gross-Pitaevskii orbital in Eq. (3.18) and V (x) a symmetric double-well potential, as in
Eq. (4.1). In the two-mode Gross-Pitaevskii model the ansatz

φ(x, t) = dL(t)φL(x) + dR(t)φR(x) (4.5)

is then made. The finite size representation (3.15) of the Gross-Pitaevskii field operator then
reads

Ψ̂M (x; t) = b̂1(t)

(
dL(t)φL(x) + dR(t)φR(x)

)
. (4.6)

Substituting the ansatz (4.5) into Eq. (3.18) multiplying with
∫

φ∗
L,R from the left, keeping

only the lowest order terms only and approximating N − 1 ≈ N results in the two-mode
Gross-Pitaevskii model [44, 109]

i
d

dt
dL(t) = UN |dL(t)|2dL(t) − J dR(t)

i
d

dt
dR(t) = UN |dR(t)|2dR(t) − J dL(t). (4.7)

The parameters U and J defined in Eq. (4.3) and we have chosen the origin of the energy
such that ǫ = 0. In a different context an exact analytical solution of the equations (4.7) was
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found a long time ago [112]. This two-mode model can be mapped onto a classical nonlinear
pendulum, see Refs. [109,110]. The parameter

Λ =
UN

2J
(4.8)

characterizes the interaction strength in the two-mode Gross-Pitaevskii model.

The analytic solution of the two-mode Gross-Pitaevskii model predicts that from some
critical interaction strength Λc onwards the density remains trapped in one well forever [44,
109,112]. More precisely, for Λ > Λc the long term average of the density in each of the wells
can be different from N/2:

lim
T→∞

1

T

∫ T

0
dt N |dL(t)|2 6= N

2
, (4.9)

at least within the two-mode Gross-Pitaevskii model. This phenomenon is known as self-

trapping. Self-trapping as it is defined above is a unique feature of the two-mode Gross-
Pitaevskii model. In this strict form self-trapping does not exist, because the trapping poten-
tial is symmetric and the many-body eigenstates are parity eigenstates. We will come back
to this point at a later stage. Nevertheless, the time scale on which self-trapping is lost can
become very large in the full many-body description.

4.3 The Bose-Hubbard model

In this section we briefly review the Bose-Hubbard model [43–46], which is the standard many-
body model for the description of ultracold bosons in double-well, multi-well and (quasi-)
periodic external potentials. We treat here only the case of a 1D double-well potential. More
detailed accounts can be found, e.g. in Refs. [44, 111,113,114].

We consider again a symmetric double-well potential V (x), as in Eq. (4.1). In the Bose-
Hubbard model the ansatz for wave function |Ψ(t)〉 is

|Ψ(t)〉 =
∑

~n

C~n(t) |nL, nR〉 , (4.10)

where nL + nR = N is fixed and the summation in (4.10) runs over all
(
N+1

N

)
= N + 1

time-independent permanents, generated by distributing N bosons over the two orbitals φL

and φR:

|nL, nR〉 =
1√

nL!nR!

(
b̂†L

)nL
(
b̂†R

)nR |vac〉 . (4.11)

With the ansatz (4.10) the finite M representation of the field operator, Eq. (2.16) takes on
the form

Ψ̂M (x) = b̂LφL(x) + b̂RφR(x). (4.12)

Note that Eqs. (4.10) and (4.11) are qualitatively different from those of the most general
ansatz, given in Eqs. (2.15) and (2.14) because the orbitals here are not allowed to depend
on time. This implies that significantly more bands are generally needed than when time-
dependent orbitals are used. In Appendix F we have included an example which illustrates
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this point. Substituting (4.12) into Eq. (2.8) the many-body Hamiltonian takes on the form

Ĥ =
∑

k,q=L,R

b̂†k b̂qhkq +
1

2

∑

k,s,l,q=L,R

b̂†k b̂
†
sb̂lb̂qWksql, (4.13)

where now all matrix elements hkq and Wksql are time-independent and real in contrast to
the general case, see Eq. (2.9). As in Sec. 3.2 we choose W (x − x′) = λ0δ(x − x′) as an
interparticle interaction potential. If the central barrier of the potential V (x) is high enough,
all two-body matrix elements in which not all indices are equal, e.g. WRLLL, are much smaller
than the matrix element U = WLLLL = WRRRR. Therefore, all two-body matrix elements
except for WLLLL and WRRRR are neglected in the Bose-Hubbard model. With the choice
ǫ = 0 we finally arrive at the Bose-Hubbard Hamiltonian for a double well potential as it is
standardly written

ĤBH = −J
(
b̂†Lb̂R + b†Rb̂L

)
+

U

2

(
b̂†Lb̂†Lb̂Lb̂L + b̂†Rb̂†Rb̂Rb̂R

)
. (4.14)

In the above derivation it was first assumed that the many-body wave function can be ex-
panded at all times in the Wannier functions of the lowest band, see Eq. (4.10). Secondly,
it was assumed that the Hamiltonian in Eq. (4.13) can be further simplified by neglecting
all off-diagonal terms in the two-body part. Whether these approximations are justified for
a given system can be determined a posteriori by comparison with the exact solution of the
many-body Schrödinger equation for the same problem.

However, it would be highly desirable to have a criterion that allows to assess the applicabil-
ity of the Bose-Hubbard model a priori. No rigorous criterion is known to date. The available
criteria all make explicit use of the parameters U and J and thereby of the noninteracting
system. For example, the standard criterion requires that [44]

NU

∆E
≪ 1, (4.15)

where ∆E is the single-particle level spacing of either of the wells in the harmonic oscillator
approximation. The criterion (4.15) can be motivated by considering the many-boson states
that can be constructed from the lowest band as a set of quasi-degenerate states and applying
perturbation theory. The state the highest in energy has an energy Ne2. The lowest state in
the next band has an energy Ne3, so the energy difference between these states is N(e3−e2) =
Negap. By considering the operator

∑
i<j λ0δ(xi−xj) as a perturbation to the noninteracting

system, the energy corrections to the unperturbed many-boson states of the lowest band
are of the order N2U in first order perturbation theory. A necessary requirement for the
applicability of quasi-degenerate perturbation theory is that the first order energy correction
is small compared to the distance to other energy levels, in formulas

NU

egap
≪ 1. (4.16)

The criterion (4.16) is stricter than (4.15) since egap is always smaller than ∆E. For a state
with all N bosons at a given site the energy needed to add another particle at that site is NU
within the Bose-Hubbard model, where it is implicitly used that ǫ = 0. NU can therefore be



The Bose-Hubbard model 29

interpreted as the chemical potential of this particular state. The criterion (4.16) therefore
also allows the interpretation that the chemical potential µ should be well below the band
gap egap

µ

egap
≪ 1 (4.17)

the criterion (4.16) can also be evaluated using other methods besides the Bose-Hubbard
model. We note that the criteria (4.15) and (4.16) place an upper bound on the number
of particles, which the authors of Ref. [44] estimated to be in the hundreds of particles for
typical parameter values in a three-dimensional setup with just two energy levels below the
barrier. In Chapter 6 we will show that even if the criterion (4.17) is satisfied the Bose-
Hubbard model can fail to describe the physics by comparison with the exact solution of the
many-body Schrödinger equation.





Chapter 5

Reduced density matrices and coherence of trapped

interacting bosons

The first- and second-order correlation functions of trapped, interacting Bose-Einstein con-
densates are investigated numerically on a many-body level from first principles. Correlations
in real space and momentum space are treated. The coherence properties are analyzed. The
results are obtained by solving the many-body Schrödinger equation. It is shown in an ex-
ample how many-body effects can be induced by the trap geometry. A generic fragmentation
scenario of a condensate is considered. The correlation functions are discussed along a path-
way from a single condensate to a fragmented condensate. It is shown that strong correlations
can arise from the geometry of the trap, even at weak interaction strengths. The natural or-
bitals and natural geminals of the system are obtained and discussed. It is shown how the
fragmentation of the condensate can be understood in terms of its natural geminals. The
many-body results are compared to those of mean-field theory. The best solution within
mean-field theory is obtained and the limits in which mean-field theories are valid are de-
termined. In these limits the behavior of the correlation functions is explained within an
analytical model. The results of this Chapter have been published in Ref. [41].

5.1 Introduction

The computation of correlation functions in interacting quantum many-body systems is a chal-
lenging problem of contemporary physics. Correlations between particles can exist in time,
in real space or in momentum space. Since the first experimental realization of Bose-Einstein
condensates (BECs) in ultracold atomic gases [14–16], great experimental and theoretical
progress has been made in the determination of the coherence and the correlation functions
of ultracold bosons. Over the years experiments have measured more and more accurately
first, second and to some extent even third order correlations of trapped BECs, see [115–122].

Theoretically, the correlation functions of trapped, interacting BECs have been investigated
in numerous works, see e.g. Refs. [65, 123–128]. While analytical approaches from first
principles are usually restricted to treat homogeneous gases without any trapping potential,
numerical methods can overcome this restriction. It is important to note that the shape of
the trapping potential can have a substantial impact on the nature of the quantum state.
This is particularly true for issues concerning condensation [4] and fragmentation of Bose
systems [32]. For example, the ground state of weakly interacting condensates in harmonic
traps is almost fully condensed, while the ground state of double-well potentials can be
fragmented or condensed, depending on the height of the barrier, the number of particles and
the interaction strength [33–36,38,39,41,73].

In this Chapter we investigate first- and second-order correlations of trapped, interacting
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condensates and their coherence properties depending on the trap geometry from first princi-
ples. Our results are obtained by solving the many-body Schrödinger equation of the interact-
ing system numerically. From this many-body solution we extract the first- and second-order
reduced density matrices which allow us to compute all real and momentum space first- and
second-order correlations and in particular the fragmentation of the condensate. For illustra-
tion purposes we consider a stationary system in the ground state to show how many-body
effects can become dominant when the trap geometry is varied. Here, we are working in
a parameter regime where according to the classification scheme given in Refs. [72, 73] and
Sec. 2.11 Gross-Pitaevskii theory should be applicable. We stress that our results cannot be
described using Gross-Pitaevskii theory.

As a numerical method to solve the interacting many-body problem we use the MCTDHB
method [47, 48]. In order to identify true many-body effects in the correlation functions, we
compare our many-body results with those based on the most general mean-field approach,
which is known as the best mean-field (BMF) solution and will be discussed below. A
general method to compute this best mean-field solution was developed recently [34–38]. For
completeness we compare the many-body results also to the results of Gross-Pitaevskii theory.

In order to understand first- and second-order correlations in an intuitive way, we develop
an analytical mean-field model which explains the general structure of our results in those
regions where many-body effects can be safely neglected.

5.2 Numerical methods

The goal of this Chapter is to investigate the first- and second-order correlation functions and
the coherence of trapped interacting bosons. In some cases, when the general form of the wave
function is known a priori, an exact solution can be obtained, either by solving transcendental
equations or by exploiting mapping theorems, see e.g. [74, 105–107, 128–133]. However, in
general it is necessary to solve the full many-body Schrödinger equation numerically in an
efficient way. Here we employ the MCTDHB method [47,48] to achieve this goal, see Sec. 3.1
for an explanation. We compare these many-body results with those of Gross-Pitaevskii
and best mean-field theory. For an explanation of Gross-Pitaevskii theory and its relation
to MCTDHB see Sec. 3.2. For ground states the best mean-field wave function is given by
that particular mean-field wave function that minimizes the energy expectation value. The
BMF solution can coincide with the Gross-Pitaevskii mean-field solution, but this is by no
means necessary. In fact, it has been shown [34–38] that the GP mean-field is not always the
energetically-lowest mean-field solution. A more detailed account of BMF theory is given in
Appendix E and in Refs. [34–38].

5.3 A generic example of a trapped condensate

5.3.1 General remarks

In order to examine correlation functions of Bose-condensed systems, we now turn to a specific
one-dimensional example. Generally, a trapped condensate will reside in a trapping potential
that displays some number of potential maxima and minima. For simplicity we will study the
correlation functions of repulsively interacting bosons in a double-well trap. In order to isolate
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physical effects that are due to the trapping geometry and not to dynamical parameters such
as the rate at which the barrier is raised, etc., we restrict our discussion to the ground state
at different barrier heights. The restriction to a stationary state allows us to omit the time
argument in all physical quantities for the rest of this Chapter. Double-well systems have
the interesting property that depending on the height of the barrier and/or the interaction
strength, the ground state undergoes a transition from a single to a fragmented condensate
[33, 35, 38, 39]. We will show how this transition from a condensed state to a fragmented
condensate manifests itself in the correlation functions. The dynamics of a similar system
has been investigated recently in the context of a dynamically raised barrier [47].

5.3.2 Trap parameters and interaction strength

Our starting point is the general many-body Hamiltonian given in Eq. (2.6) with a symmetric
external potential that consists of a harmonic trap with an additional central barrier of
variable height

V (x) =
1

2
x2 + A e−x2/2σ2

, (5.1)

where A is the height of the potential barrier and σ = 2 a fixed width. The potential V (x) in
Eq. (5.1) approaches x2/2 rapidly as x → ∞ and is therefore asymptotically homogeneous. As
an interaction potential we choose W (x−x′) = λ0δ(x−x′) and fix the interparticle interaction
at λ0 = 0.01 The stationary Schrödinger equation HΨ = EΨ is then solved at barrier heights
ranging from A = 0 to A = 30 for N = 1000 bosons. In the computations using MCTDHB
we restrict the number of orbitals to M = 2, yielding a total of

(
N+1

N

)
= 1001 variationally

optimized permanents. The distinction between variationally optimized and non-optimized
permanents is crucial as is demonstrated in an example in Appendix F.

The connection to a real physical Hamiltonian is done as follows. For a given length scale
L and a given boson of mass m the unit of energy is ~

2/(mL2) and the unit of the coupling
parameter is ~

2/(mL). For example if 87Rb is chosen as a boson and L = 1µm as a length
scale then one energy unit equals (2π~)116 Hz. With this choice of units the largest barrier
height is about (2π~)3.5 kHz, with a distance of about 8µm between the minima of the trap.
Of course other choices can be made.

5.3.3 Condensed state

We begin with a discussion of the ground state energy as a function of the barrier height.
The ground state energy per particle of the many-body solution, EMCTDHB/N (blue), is
shown in Fig. 5.1 (top). EMCTDHB/N increases with the height of the central barrier. The
energy differences per particle of the many-body and the BMF solution with respect to the
GP solution, (EMCTDHB − EGP )/N (blue) and (EBMF − EGP )/N (red), are shown in the
inset of Fig. 5.1 (top). The energy difference (EMCTDHB −EGP )/N is negative, because the
interacting system can lower its energy by depleting the condensate. At low barrier heights
the GP mean-field is the best mean-field and thus (EBMF − EGP )/N = 0. A comparison of
the energy scales of Fig. 5.1 and its inset reveals that the energy of the many-body solution,
the BMF solution and the GP solution are very close at all barrier heights. The nature of
the many-body ground state at different barrier heights varies nevertheless very strongly, as
shown below.
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Figure 5.1: Energy per particle, natural orbital and natural geminal occupations of the ground state of N =
1000 bosons at λ0 = 0.01 in a harmonic trap with a central barrier. Shown is the dependence on the barrier
height. Top: energy per particle E/N of the many-body solution. Inset: energy difference per particle between
the best mean-field and the GP solution, (EBMF −EGP )/N (triangles), and between the many-body and GP

solution, (EMCTDHB − EGP )/N (circles). Middle: the eigenvalues n
(1)
1 and n

(1)
2 of the first-order RDM

ρ(1)(x1|x
′
1). The ground state fragments with increasing barrier height. Bottom: the eigenvalues n

(2)
1 ,n

(2)
2 and

n
(2)
3 of the second-order RDM ρ(2)(x1, x2|x

′
1, x

′
2). The dashed lines in the middle and bottom panel indicate

upper and lower bounds on the largest eigenvalue of the first- and second-order RDMs. See text for details.
The quantities shown are dimensionless.
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Fig. 5.1 (middle) shows the occupations n
(1)
1 /N and n

(1)
2 /N of the first and second natural

orbitals of the many-body wave function as a function of the barrier height, computed with

MCTDHB. The largest eigenvalue of the first-order RDM, n
(1)
1 , is only restricted by Eq. (2.25)

and can therefore take on any value between 0 and N . The dashed lines indicate these upper

and lower bounds on n
(1)
1 . At low barrier heights only one natural orbital is significantly

occupied. Therefore, we refer to the parameter range 0 ≤ A ≤ 13 as the condensed regime,
in accordance with the definition of Penrose and Onsager [4]. The occupation of the second
natural orbital is due to the two-body interaction between the particles. However, it remains
below 1% for all barrier heights A ≤ 13 and is even below 10/00 at A = 0.

Since n
(1)
1 ≈ N in the condensed regime, the upper and the lower bounds, Eqs. (2.25) and

(2.36), on the largest eigenvalue of the second-order RDM, n
(2)
1 , are almost equal. Therefore,

n
(2)
1 is constrained to take on a value very close to N(N −1). Consequently, there can be only

one significantly occupied natural geminal. This is confirmed in Fig. 5.1 (bottom), where the
natural geminal occupations are shown as a function of the barrier height. For the purpose
of describing first- and second-order correlations it is therefore legitimate to approximate the
many-body wave function in this regime by a single permanent |N, 0〉 in which all N bosons

occupy the first natural orbital α
(1)
1 (x1).

Note that the natural orbitals and the natural geminals are generally complex functions.
However, the ground state wave function is real and hence the natural orbitals and the natural
geminals are real functions. The first column of Fig. 5.2 shows the first (red) and the second
(blue) natural orbitals of the many-body solution at barrier heights A = 0, 13, 19, 24, from top
to bottom. The first and the second natural orbitals are symmetric and antisymmetric about

the origin, respectively. At A = 0 the first natural orbital, α
(1)
1 (x1), takes on the shape of a

broadened Gaussian, reflecting the repulsive interaction between the particles. The second

natural orbital, α
(1)
2 (x1), has a higher kinetic energy than the first one due to the node at

the center of the trap. Additionally, the second natural orbital forces the particles to occupy
regions of the trap where the trapping potential is higher. There is an energy gap between
the one-particle energies of the first and second natural orbital. The occupation of the second
natural orbital is therefore very small in the purely harmonic trap at the chosen interaction
strength.

As the barrier height is varied from A = 0 up to A = 13, the natural orbitals deform to fit
the new shape of the external potential. The central peak of the first natural orbital splits
into two maxima which become localized at positions x1 = ±d/2, where d is the distance
between the wells of the external potential.

At the center of the trap, where the barrier is raised, the first natural orbital develops a local
minimum in order to minimize the potential energy. The second natural orbital on the other
hand has a node at the center of the trap at any barrier height. Its maximum and minimum
are localized at the minima of the external potential. As the barrier is raised, the energy gap
between the first two natural orbitals decreases. However, the increase of the depletion of

the condensate from n
(1)
2 /N < 10/00 at A = 0 to n

(1)
2 /N ≈ 1% at A = 13 cannot be explained

in this single particle picture. On a single particle level the ground state would be fully

condensed at any finite barrier height, i.e. n
(1)
2 = 0. The reason for the observed increase in

the depletion lies in the fact that for repulsively interacting many-boson systems in multi-well
setups it becomes energetically more favourable to fragment as the barrier between the wells
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Figure 5.2: Natural orbitals and geminals at different barrier heights. First column: the natural orbitals
α

(1)
1 (x1) (dashed red line) and α

(1)
2 (x1) (solid blue line) of the many-body solution at different barrier heights

A = 0, 13, 19, 24, from top to bottom. The trapping potential is shown as a dashed-dotted black line in the first
column. The state of the system changes from condensed to fragmented between A = 13 and A = 24. Second
to fourth columns: natural geminals α

(2)
1 (x1, x2), α

(2)
2 (x1, x2) and α

(2)
3 (x1, x2) from left to right at the same

barrier heights as above. While the natural orbitals remain qualitatively unchanged during the fragmentation
transition, the natural geminals take on their final shapes only when the system becomes fully fragmented. At
low barrier heights only one natural geminal is occupied. At high barriers three natural geminals are occupied,
see Fig. 5.1. The total energy is minimized by the occupation of a natural geminal that contributes practically
nothing to the interaction energy. See text for more details. The quantities shown are dimensionless.
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is raised [33, 35, 37–39]. In some The increase in energy which results from the occupation
of orbitals with a higher one-particle energy can be outweighed by a decrease in interaction
energy. This effect becomes dominant at barrier heights above A = 13, see Secs. 5.3.4 and
5.3.5.

The second to fourth column of Fig. 5.2 show (from left to right) the first three natural

geminals α
(2)
i (x1, x2) at the same barrier heights as above. From the numerical many-body

simulation we find that the natural geminals in the condensed regime are approximately given
by symmetrized products of the natural orbitals:

|α(2)
1 〉 = |2, 0〉, |α(2)

2 〉 = |1, 1〉, |α(2)
3 〉 = |0, 2〉, (5.2)

where |m1, m2〉 denotes a state with m1 particles in the first and m2 particles in the second

natural orbital. Only the first natural geminal, α
(2)
1 (x1, x2), is significantly occupied in the

condensed regime. Due to the two-body interaction between the particles there is a small
occupation of the second and third natural geminal. However, at low barrier heights their
occupation is largely suppressed, due to the gap between the single particle energies of the

first and second natural orbital. Since the geminals α
(2)
2 (x1, x2) and α

(2)
3 (x1, x2) contain the

second natural orbital in their expansion, see Eq. (5.2), their occupation increases the total
energy at low barrier heights.

Since n
(2)
1 ≈ N(N −1) in the condensed regime, the only substantially contributing natural

geminal in the equation for the energy expectation value, Eq. (2.27), is α
(2)
1 (x1, x2). The shape

of α
(2)
1 (x1, x2) is therefore particularly interesting. It has four maxima of similar height,

located at positions x1 = x2 = ±d/2 and x1 = −x2 = ±d/2, see the second panel in the

second row of Fig. 5.2. Since α
(2)
1 (x1, x2) has peaks on the diagonal at x1 = x2 = ±d/2, it

contributes to both, the one-particle part and the interaction part of the energy.

In contrast to the first natural geminal, α
(2)
2 (x1, x2) and α

(2)
3 (x1, x2) both exhibit node lines

going through the region where the central barrier is raised. As the energy gap between the

single particle energies of the natural orbitals α
(1)
1 (x1, x2) and α

(1)
2 (x1, x2) decreases, so does

the energy gap between the natural geminals. Similar to the discussion of the natural orbital
occupations above, this argument in terms of an energy gap does not explain the increase of
the occupation of the second and third natural geminal when the barrier is raised. Without
interactions the occupation numbers of all but the first natural geminal would be exactly
zero.

It will be demonstrated in Sec. 5.3.5 that fragmented states allow the occupation of geminals
that contribute very little to the interaction energy as opposed to condensed states. Thereby,
the system can lower its energy, once the barrier is high enough.

5.3.4 From condensation to fragmentation

At barrier heights 13 < A < 24, one finds that the occupation of the second natural orbital

n
(1)
2 /N increases continuously from below 1% to almost 50%. The condensate fragments in

this regime according to the definition of fragmented condensates [32]. In this regime we find
numerically that many permanents contribute to the wave function and, therefore, we refer
to the range of barrier heights 13 < A < 24 as the many-body regime.

Along with the natural orbital occupations the natural geminal occupations change as
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well. Three natural geminals become occupied with increasing barrier height, see Fig. 5.1. In
the many-body regime, the upper and lower bounds, Eqs. (2.25) and (2.36), on the largest

eigenvalue of the second-order RDM, n
(2)
1 , no longer restrict n

(2)
1 to a narrow region. In fact,

n
(2)
1 takes on a value somewhere in between these bounds.

This onset of fragmentation manifests itself also in the BMF solution which jumps from a
GP type permanent |N, 0〉 in the condensed regime to a fully fragmented solution of the form
|N/2, N/2〉. Note that already at barrier heights A ≥ 14 this fragmented solution is lower
in energy than a GP type permanent. At this barrier height the many-body solution is only
slightly depleted, see Fig. 5.1.

If we compare the natural orbitals in Fig. 5.2 at barrier height A = 19 with those at A = 13,
we note that they look very similar, apart from the fact that the peaks are slightly farther
apart, and the first natural orbital is closer to zero at the center of the trap. The energies
of the first two natural orbitals are almost degenerate and the total energy is minimized by
the occupation of both natural orbitals. Without interactions the system would remain in a
condensed state, since the single particle energies of the first and the second natural orbitals
remain separated at any finite barrier height. Note that in the absence of interactions the
natural orbitals are the eigenfunctions of ĥ. However, as we noted in Sec. 5.3.3, a system of
repulsively interacting bosons in multi-well traps can lower its energy by occupying several
natural orbitals, once the barrier is high enough [35–39]. This is precisely the reason for the
observed onset of fragmentation.

In the many-body regime the natural geminals are no longer symmetrized products of the

natural orbitals. If we compare α
(2)
1 (x1, x2) in Fig. 5.2 at barrier heights A = 13 and A = 19,

we see that the peaks on the diagonal at x1 = x2 = ±d/2 decrease, whilst the peaks on the
off-diagonal at x1 = −x2 = ±d/2 increase when the barrier is raised. The opposite is true

for the third natural geminal α
(2)
3 (x1, x2): the off-diagonal maxima at x1 = −x2 = ±d/2

have decreased, whilst the diagonal minima at x1 = x2 = d/2 are now more negative. On

the other hand, the second natural geminal, α
(2)
2 (x1, x2), is still well approximated by a

symmetrized product of the first and second natural orbital. The behavior of the natural
geminals is qualitatively different from that displayed by the natural orbitals. In contrast
to the natural orbitals, the natural geminals do change their shape during the fragmentation
transition. They only obtain their final forms, when the fragmentation transition is completed,
see Fig. 5.2 and Sec. 5.3.5.

5.3.5 Fully fragmented state

When the central barrier is raised to values A ≥ 24, the two parts of the condensate be-

come truly independent. The natural orbital occupations approach n
(1)
1 = n

(1)
2 = N/2, which

reflects the fact that the energies associated with the first and second natural orbitals de-
generate at infinite barrier heights. The many body wave function can then be adequately
approximated by a single permanent of the form |N/2, N/2〉, i.e. with equal numbers of
particles in the first and the second natural orbitals. Therefore, we refer to barrier heights
A ≥ 24 as the fully fragmented regime. The additional energy, necessary for the occupation
of the second natural orbital, is outweighed by a lower interaction energy. Note that this final
form of the wave function is anticipated by the BMF solution at barrier heights A ≥ 14.
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The natural geminal occupations approach

n
(2)
1 = N(N/2), n

(2)
2 = n

(2)
3 = N/2(N/2 − 1) (5.3)

in the fully fragmented regime. These are the values that follow from the BMF solution.

It is only at barrier heights A ≥ 24 that the natural geminals take on their final shapes,
compare the third and fourth rows of Fig. 5.2. If we expand the natural geminals in the basis
of natural orbitals at these barrier heights, we find that

|α(2)
1 〉 =

1√
2

(
|2, 0〉 − |0, 2〉

)

|α(2)
2 〉 = |1, 1〉

|α(2)
3 〉 =

1√
2

(
|2, 0〉 + |0, 2〉

)
(5.4)

holds to a very good approximation. The first and third natural geminals have equal con-
tributions coming from the first and the second natural orbitals. The question arises, why
their occupations are different, about 50% and 25%, respectively. Subtracting the permanents
|2, 0〉 and |0, 2〉 from one another yields a geminal which is localized on the off-diagonal, see

α
(2)
1 (x1, x2) in Fig. 5.2 at A = 24. Adding the permanents |2, 0〉 and |0, 2〉 yields a geminal

which is localized on the diagonal, see α
(2)
3 (x1, x2) in Fig. 5.2 at A = 24. It is easy to see

from the shape of the natural geminals in the fourth row of Fig. 5.2 that the integrals over
the one-body part in Eq. (2.27) are approximately the same for each of the natural geminals.
Given the occupations in Eq. (5.3), the first natural geminal contributes about one half of the
one-body energy, whereas the second and the third natural geminal contribute about a fourth

each. The situation is different for the two-body part of the Hamiltonian. Since α
(2)
2 (x1, x2)

and α
(2)
3 (x1, x2) are localized on the diagonal, they do contribute to the interaction energy.

In contrast, α
(2)
1 (x1, x2) is almost zero at coordinate values x1 ≈ x2 and, due to the contact

interaction W (x − x′) = λ0δ(x − x′), it practically does not contribute to the interaction
energy. At high barriers a fragmented state allows the system to lower its energy through the
occupation of a natural geminal which is localized on the off-diagonal.

By evaluating the Lieb-Liniger parameter γ as defined in Eq. (2.43) we find that γ ≈ 5×10−5

at all barrier heights and according to the classification scheme in Sec. 2.11 the system should
have been deep in the 1D Thomas-Fermi limit and hence no fragmentation should have
occured. This was obviously not the case, the system fragmented and we conclude that even
at a particle number of N = 1000 finite size effects can still dictate the nature of the quantum
state.

We would like to make a remark on the validity of the present MCTDHB computation
for high barriers. For high barriers the whole system can be considered as composed of two
separate condensates. To describe the depletion of each condensate it would be necessary to
employ M = 4 orbitals. We use only M = 2 orbitals in the many-body computation and
cannot describe this depletion. We justify the use of M = 2 orbitals by noting that at A = 0
the system is almost fully condensed, and the depletion can be safely neglected, see Fig. 5.1.
Therefore, we assume that the depletion of each of the two condensates can be neglected,
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when the barrier is very high. This claim is supported by a computation that we carried
out in the harmonic trap at the same interaction strength λ0 = 0.01 for 500 particles. The
depletion was found to be even less than for N = 1000 particles.

5.4 First order correlations

5.4.1 General analytical considerations

We now describe the first-order correlations in an analytical mean-field model for the two
limiting cases of a condensed and a fully fragmented system. In these cases mean-field theory
has been shown to be well applicable, see Sec. 5.3. For our purposes the exact shape of the

natural orbitals α
(1)
1 (x1) and α

(1)
2 (x1) is unimportant. Consider a normalized one-particle

function, Φ(x), which is localized at the origin. Φ(x) may vary in shape, but is always
assumed to resemble a Gaussian. Similarly, we define translated copies Φ1(x) = Φ(x + d/2)
and Φ2(x) = Φ(x−d/2) of Φ(x), where the previously defined distance d between the minima
of the potential wells is taken to be large enough to set products of the form Φ1(x)Φ2(x) to
zero. Since Φ is localized in some region around the origin, Φ1 is localized in a region L to
the left and Φ2 in a region R to the right of the origin.

Condensed state

In the condensed regime, 0 ≤ A ≤ 13, only one natural orbital, α
(1)
1 (x1), is significantly

occupied. Therefore, we approximate the first-order reduced density operator of the system
by that of a condensed state |N, 0〉

ρ̂
(1)
|N,0〉 = N |α(1)

1 〉〈α(1)
1 |. (5.5)

It then follows from Eq. (2.29) that

|g(1)
|N,0〉(x

′
1, x1)|2 = 1. (5.6)

At zero barrier height, the first natural orbital is a Gaussian, broadened by interactions.

Therefore, we write α
(1)
1 (x1) = Φ(x1), and hence the one-particle density distribution and the

one-particle momentum distribution are of the form

ρ
(1)
|N,0〉(x1|x1) = N |Φ(x1)|2, (5.7)

ρ
(1)
|N,0〉(k1|k1) = N |Φ(k1)|2. (5.8)

Since Φ(x1) is a broadened Gaussian, its Fourier transform Φ(k1) is also close to a Gaussian,
but narrower in comparison to a non-interacting system. The momentum distribution of
the repulsively interacting system in the harmonic trap is therefore narrower than that of a
non-interacting system.

We now turn to the case corresponding to A ≈ 13, where the system is still condensed,
but the first two natural orbitals are spread out over the two wells. We model the natural
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orbitals by

α
(1)
1 (x1) =

1√
2

[
Φ1(x1) + Φ2(x1)

]
, α

(1)
2 (x1) =

1√
2

[
Φ1(x1) − Φ2(x1)

]
. (5.9)

In this case one obtains [134]:

ρ
(1)
|N,0〉(x1|x1) =

N

2
|Φ1(x1)|2 +

N

2
|Φ2(x1)|2, (5.10)

ρ
(1)
|N,0〉(k1|k1) = N [1 + cos(k1d)]|Φ(k1)|2 (5.11)

for the density and the momentum distribution. We note that the one-particle momentum
distribution displays an oscillatory pattern in momentum space at a period which is deter-
mined by the separation d of the centers of the two wells.

Fully fragmented state

In the true many-body regime, 13 < A < 24, where many permanents contribute to the wave
function, a mean-field model is bound to fail. However, in the fully fragmented regime it is
possible to consider the whole system as two separate condensates, and hence a mean-field
description is again applicable. Therefore, we now turn to the case corresponding to A ≥ 24,
where the system is fully fragmented and the many-body state is given by |N/2, N/2〉. The
first-order density operator then reads:

ρ̂
(1)
|N/2,N/2〉 =

N

2
|α(1)

1 〉〈α(1)
1 | + N

2
|α(1)

2 〉〈α(1)
2 |. (5.12)

Since the natural orbitals remain qualitatively unchanged during the fragmentation transi-

tion, we approximate α
(1)
1 (x1) and α

(1)
2 (x1) by Eqs. (5.9) and obtain for the density and the

momentum distribution [134]:

ρ
(1)
|N/2,N/2〉(x1|x1) =

N

2
|Φ1(x1)|2 +

N

2
|Φ2(x1)|2, (5.13)

ρ
(1)
|N/2,N/2〉(k1|k1) = N |Φ(k1)|2. (5.14)

We note that the one-particle momentum distribution of independent condensates does not
contain an oscillatory component and is identical to the momentum distribution of a single,
localized condensate of N particles within this model, see Eq. (5.8). For the normalized
first-order correlation function one finds

|g(1)
|N/2,N/2〉(x

′
1, x1)|2 =

{
1 if x1, x

′
1 ∈ L or x1, x

′
1 ∈ R,

0 otherwise.
(5.15)

Whereas the state |N, 0〉 is fully first-order coherent, the fragmented state |N/2, N/2〉 is
only first-order coherent in a restricted and generally disconnected region. Each of the two
condensates is first-order coherent, but the mutual coherence which is present in the condensed
regime is lost.
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5.4.2 Numerical results

We now turn to the discussion of first-order correlations. In particular, we are interested
in effects that are due to the true many-body nature of the wave function. Along with our
many-body results we plot the corresponding results of the BMF solution. From the discussion
in Sec. 5.3 it is clear that we expect many-body effects to occur during the fragmentation
transition at barrier heights 13 < A < 24. In the condensed and in the fully fragmented
regime we expect that the many-body results are well approximated by those of the BMF
solution. In these cases we can understand the structure of the correlation functions on the
basis of the analytical mean-field model of Sec. 5.4.1.

The first column of Fig. 5.3 shows the one-particle density distribution ρ(1)(x1|x1) of the
many-body solution (blue line) and that of the BMF solution (red line with triangles) at the
barrier heights A = 0, 13, 19, 24, from top to bottom. It is remarkable that the one-particle
densities obtained from either the many-body wave function or the BMF solution give results
that cannot be distinguished from one another at any barrier height.

In a purely harmonic trap, A = 0, the one-particle density takes on the form of an
interaction-broadened Gaussian. At higher barriers, the density splits into two parts that
are localized in each of the wells. At A = 13, the one-particle density has developed two
separated peaks. Note that the system is still in the condensed regime at this barrier height
and must be considered a single condensate, despite the spatial separation between the two
peaks.

When the central barrier is raised further to values 13 < A < 24 the condensate fragments,
see Fig. 5.1. At a barrier height of A = 19 the system is halfway on its way from a condensed to
a fully fragmented condensate. Many permanents contribute to the many-body wave function
and one may wonder how this transition manifests itself in observable quantities. However,
apart from a small shift of the center of the two peaks and a reduction at the center of the
trap, ρ(1)(x1|x1) remains largely unaffected by this transition. If the barrier is raised further
to A = 24, the fragmentation transition is largely completed. Also during the transition
from a true many-body state to a fully fragmented state there is no visible indication of this
transition in the one-particle density.

The second column of Fig. 5.3 shows the one-particle momentum distribution ρ(1)(k1|k1)
at the same barrier heights as before. At A = 0, the one-particle momentum distribution
is given by a squeezed Gaussian, in agreement with Eq. (5.8). At A = 13 the one-particle
momentum distribution has developed an oscillatory pattern, typical of a single condensate
spread out over two wells. The structure of ρ(1)(k1|k1) is well reproduced by Eq. (5.11) of the
analytical mean-field model. Up to this barrier height the BMF solution is almost identical
to the many-body wave function, and therefore the respective momentum distributions are
indistinguishable, see the two upper panels in the second column of Fig. 5.3.

When the system enters the many-body regime, 13 < A < 24, the momentum distribution
of the many-body solution deforms to a Gaussian-like envelope, modulated by an oscillatory
part. The BMF momentum distribution, on the other hand, already takes on the form
characteristic of two separate condensates. It agrees with the prediction of Eq. (5.14), which
is clearly different from the many-body result. This merely reflects the fact that the many-
body wave function is inaccessible to mean-field methods in the many-body regime.

When the state becomes fully fragmented at A = 24, the many-body momentum distribu-
tion and the BMF momentum distribution become indistinguishable again, consistent with an



 0

 0.2

 0.4
ρ(1)(x1|x1)/N

 0

 0.2

 0.4

 0

 0.2

 0.4

 0

 0.2

 0.4

-6 -3  0  3  6
x1

 0

 0.4

 0.8

 1.2

ρ(1)(k1|k1)/N

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

-2  0  2
k1

 0

 0.2

 0.4

 0.6

 0.8

 1
|g(1)(x’1,x1)|2

-6
-3
 0
 3
 6

x’ 1
-6
-3
 0
 3
 6

x’ 1

-6
-3
 0
 3
 6

x’ 1

-6 -3  0  3  6
x1

-6
-3
 0
 3
 6

x’ 1

Figure 5.3: Density distribution, momentum distribution and first-order coherence. The first two columns
show the one-particle density ρ(1)(x1|x1)/N and the one-particle momentum distribution ρ(1)(k1|k1)/N of the
many-body solution (solid blue lines) and of the BMF solution (dashed red line), respectively. From top to
bottom the height of the central barrier is A = 0, 13, 19, 24. The BMF result agrees well with the many-body
result for a large range of barrier heights. Only at A = 19, in the many-body regime, deviations are visible
in the momentum distribution. See text for details. The third column shows the absolute value squared of
the normalized first-order correlation function |g(1)(x′

1, x1)|
2 at the same barrier heights. An initially coherent

condensate splits into two separate condensates which are no longer mutually coherent. Only the coherence
within each of the wells is preserved. The quantities shown are dimensionless.
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explanation in terms of two independent condensates, see Eq. (5.14). Compared to ρ(1)(k1|k1)
at A = 0, the momentum distribution is broader at A = 24, because the density distribution
in each of the two wells is narrower than that in the harmonic trap.

The third column of Fig. 5.3 shows the absolute value squared of the normalized first-order
correlation function |g(1)(x′

1, x1)|2 of the many-body solution only. Here and in all following
graphs of correlation functions we restrict the plotted region by a simple rule. To avoid
analyzing correlations in regions of space where the density is essentially zero, we plot the
respective correlation function only in regions where the density is larger than 1% of the
maximum value of the density in the entire space. We apply the same rule also in momentum
space.

At zero barrier height |g(1)(x′
1, x1)|2 is very close to one in the region where the density is

localized. The system is first-order coherent to a very good approximation and the mean-
field formula Eq. (5.6) applies. As the barrier is raised to A = 13 the coherence between the
two peaks, e.g. at x1 = −x′

1, is slightly decreased, while the coherence within each of the
peaks is preserved. Note that the density at the center of the trap is already below 1% of the
maximal value in this case. Despite this separation the system remains largely condensed, but
deviations from Eq. (5.6) are visible. If the barrier is raised further to A = 19, the coherence
of the system on the off-diagonal decreases quickly. Although the bosons in each well remain
coherent among each other, the overall system is only partially coherent. At barrier heights
A ≥ 24, the coherence between the two wells is entirely lost. This is also the scenario that
the BMF solution anticipates, see Eq. (5.15).

It is remarkable that not only the density, but also the momentum distribution obtained
within mean-field theory agree so well with the many-body result, when the system is not in
the true many-body regime. This would not be the case if we had restricted the mean-field
approach to the GP equation, as we will show now.

Up to barrier heights A = 13 the many-body system is condensed, and the BMF solution
coincides with the GP solution. The BMF, and therefore also the GP solution provide good
approximations to the interacting many-body system. Above A = 13 the results obtained
with the GP mean-field become qualitatively wrong as the barrier is raised. To illustrate this
point, we plot the GP results corresponding to those of Fig. 5.3 at barrier heights A = 19
(top) and A = 24 (bottom) in Fig. 5.4. A comparison of the respective one-particle densities,
shown in the first column of Fig. 5.3 and Fig. 5.4, reveals no visible difference. The GP
mean-field reproduces the density distribution at all barrier heights correctly. However, the
GP solution fails at the description of the momentum distribution and the normalized first
order correlation function, compare the second and third columns of Figs. 5.3 and 5.4 at the
same barrier heights. The reason for the failure of the GP mean-field is the assumption that
all bosons occupy the same orbital. It is by construction incapable to describe fragmented
condensates.

5.5 Second order correlations

5.5.1 General analytical considerations

In this subsection we extend the analytical mean-field model of Sec. 5.4.1 to describe second-
order correlations.



Second order correlations 45

 0

 0.2

 0.4
ρ(1)(x1|x1)/N

 0

 0.2

 0.4

-6 -3  0  3  6
x1

 0

 0.4

 0.8

 1.2

ρ(1)(k1|k1)/N

 0

 0.4

 0.8

 1.2

-2  0  2
k1

 0

 0.2

 0.4

 0.6

 0.8

 1
|g(1)(x’1,x1)|2

-6
-3
 0
 3
 6

x’ 1

-6 -3  0  3  6
x1

-6
-3
 0
 3
 6

x’ 1
Figure 5.4: Density distribution, momentum distribution and first-order coherence obtained by using the GP
equation for high barriers. The first two columns show the GP one-particle density ρ(1)(x1|x1)/N (left) and
the GP one-particle momentum distribution ρ(1)(k1|k1)/N (middle) at barrier heights A = 19 and A = 24
(solid green lines). In the first column the trapping potential is also shown (dashed-dotted black line). The
GP equation models the density well, but fails at the computation of the momentum distribution, compare
with Fig. 5.3. The third column shows the absolute value squared of the normalized first-order correlation
function |g(1)(x′

1, x1)|
2 computed with the GP equation at the same barrier heights. The normalized first-order

correlation function is incorrectly described by the solution of the GP equation. The quantities shown are
dimensionless.

Condensed state

We found in Sec. 5.3.3 that only one natural geminal is significantly occupied in the condensed
regime, where the many-body state is approximately given by a single permanent in which
all bosons occupy the same single particle state. Therefore, we approximate the second order
reduced density operator in the condensed regime by that of the state |N, 0〉:

ρ̂
(2)
|N,0〉 = N(N − 1)|α(2)

1 〉〈α(2)
1 |, (5.16)

where α
(2)
1 (x1, x2) = α

(1)
1 (x1)α

(1)
1 (x2) is the permanent in which two bosons reside in the first

natural orbital α
(1)
1 . For the condensed state |N, 0〉 one finds that up to corrections of order

O(1/N) the state is second-order coherent:

g
(2)
|N,0〉(x1, x2, x1, x2) = 1 − 1

N
, (5.17)

g
(2)
|N,0〉(k1, k2, k1, k2) = 1 − 1

N
. (5.18)

Thus, there are practically no two-body correlations if N ≫ 1. At zero barrier height the

first natural orbital takes on the shape of a broadened Gaussian, α
(1)
1 (x1) = Φ(x1), where

Φ(x) is defined in Sec. 5.4.1. The first natural geminal then reads α
(2)
1 (x1, x2) = Φ(x1)Φ(x2).
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It follows that the two-particle density and the two-particle momentum distribution factorize
up to corrections of order O(1/N) into products of the respective one-particle distributions:

ρ
(2)
|N,0〉(x1, x2|x1, x2) = N(N − 1)|Φ(x1)|2|Φ(x2)|2, (5.19)

ρ
(2)
|N,0〉(k1, k2|k1, k2) = N(N − 1)|Φ(k1)|2|Φ(k2)|2. (5.20)

At the barrier height A = 13, the system is condensed but spread out over the two wells.

Then, using Eqs. (5.9) to approximate α
(1)
1 , we find

ρ
(2)
|N,0〉(x1, x2|x1, x2) =

N(N − 1)

4

[
|Φ1(x1)Φ1(x2)|2 + |Φ1(x1)Φ2(x2)|2 +

|Φ2(x1)Φ1(x2)|2 + |Φ2(x1)Φ2(x2)|2
]
, (5.21)

ρ
(2)
|N,0〉(k1, k2|k1, k2) = N(N − 1)[1 + cos(k1d)][1 + cos(k2d)]

×|Φ(k1)Φ(k2)|2 (5.22)

for the two-particle density and the two-particle momentum distribution. Apart from a cor-
rection of order O(1/N), the two-particle density and the two-particle momentum distribution
are again products of the respective one-particle distributions.

Fully fragmented state

In Sec. 5.3.5 we found that three natural geminals are occupied in the fully fragmented regime,
see Eq. (5.3). The occupations of Eq. (5.3) hold exactly for a state of the form |N/2, N/2〉.
Therefore, we approximate the second-order reduced density operator in the fully fragmented
regime by that of the state |N/2, N/2〉:

ρ̂
(2)
|N/2,N/2〉 = N

N

2
|α(2)

1 〉〈α(2)
1 | + N

2

(
N

2
− 1

)
|α(2)

2 〉〈α(2)
2 | +

N

2

(
N

2
− 1

)
|α(2)

3 〉〈α(2)
3 |, (5.23)

where the natural geminals |α(2)
i 〉 are given by Eq. (5.4). In contrast to the condensed state,

the normalized second-order correlation function of the fully fragmented state has a more
complicated structure due to the different terms contributing to Eq. (5.23). We approximate
the natural geminals using Eqs. (5.9) and find

ρ
(2)
|N/2,N/2〉(x1, x2|x1, x2) =

N

2

(
N

2
− 1

) [
|Φ1(x1)Φ1(x2)|2 + |Φ2(x1)Φ2(x2)|2

]

+
N

2

N

2

[
|Φ1(x1)Φ2(x2)|2 + |Φ2(x1)Φ1(x2)|2

]
(5.24)

and

ρ
(2)
|N/2,N/2〉(k1, k2|k1, k2) = N(N − 1)

(
1 +

N

N − 1

cos[(k1 − k2)d]

2

)
|Φ(k1)Φ(k2)|2 (5.25)



Second order correlations 47

for the two-particle density and the two-particle momentum distribution. This representation
allows us to identify the first two terms in Eq. (5.24) as contributions coming from two separate
condensates of N/2 bosons each, with condensate wave functions Φ1(x1) and Φ2(x1). The
third term in Eq. (5.24) is due to the fact that the bosons in the two separated condensates
are identical particles. For the normalized second-order correlation function one finds:

g
(2)
|N/2,N/2〉(x1, x2, x1, x2) =

{
1 − 2

N if x1, x2 ∈ L or x1, x2 ∈ R

1 otherwise,
(5.26)

which mimics a high degree of second-order coherence. However, when g(2) is evaluated on
the diagonal in momentum space, one finds

g
(2)
|N/2,N/2〉(k1, k2, k1, k2) =

(
1 − 1

N

) (
1 +

N

N − 1

cos[(k1 − k2)d]

2

)
, (5.27)

which displays an oscillatory behavior and deviates significantly from a uniform value of one.

Hence the system is clearly not coherent, see Sec. 2.5. The fact that g
(2)
|N/2,N/2〉(k1, k2, k1, k2)

oscillates while g
(2)
|N/2,N/2〉(x1, x2, x1, x2) is almost constant, illustrates the necessity to examine

both quantities in order to quantify second order spatial coherence. A description of second
order correlations in terms of ρ(2)(x1, x2|x1, x2) and g(2)(x1, x2, x1, x2) alone is incomplete,
and ρ(2)(k1, k2|k1, k2) and g(2)(k1, k2, k1, k2) have to be taken into account. Although this
may seem obvious in the present case of a fully fragmented state, this reduction of coher-
ence is more intricate in a state which is only partially fragmented, see following subsection.
Whether g(2)(x1, x2, x1, x2) and g(2)(k1, k2, k1, k2) together suffice to characterize second order
coherence (possibly up to a phase factor) is a matter of further study.

5.5.2 Numerical results

In this subsection we discuss the second-order correlations of the many-body solution. We
compare the results to those of the BMF solution. When mean-field theory gives a good
approximation to the many-body results, we also compare with the analytical mean-field
model of Sec. 5.5.1.

The first two columns of Fig. 5.5 show the two-particle density ρ(2)(x1, x2|x1, x2) of the
many-body (left) and BMF (right) solutions at barrier heights A = 0, 13, 19, 24, from top
to bottom. At zero barrier height ρ(2)(x1, x2|x1, x2) is localized at the center of the trap.
The two-particle density factorizes approximately into a product of the one-particle densities:
ρ(2)(x1, x2|x1, x2) ≈ ρ(1)(x1|x1)ρ

(1)(x2|x2). This remains true up to barrier heights A = 13,
where the condensate is spread out over the two wells. The BMF result approximates the
many-body result well in the condensed regime, and the structure of ρ(2)(x1, x2|x1, x2) is that
of Eqs. (5.19) and (5.21) at barrier heights A = 0 and A = 13, respectively.

When the barrier is raised further to A = 19, the system fragments. Many permanents
contribute to the wave function in this regime and there is no simple formula that relates
the occupations of the natural orbitals to the two-particle density. Similar to the one-particle
density, described in Sec. 5.4.2, the two-particle density seems to take no notice of the tran-
sition from a single to a fragmented condensate. It remains practically unchanged during the
transition, apart from a slight shift of the peaks away from each other as the barrier is raised.



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12
ρ(2)(x1,x2|x1,x2)/N(N-1)

-4

 0

 4

x 2

-4

 0

 4

x 2

-4

 0

 4

x 2

-4  0  4
x1

-4

 0

 4

x 2

-4  0  4
x1

 0

 0.5

 1

 1.5

 2
ρ(2)(k1,k2|k1,k2)/N(N-1)

-1

 0

 1

k 2

-1

 0

 1

k 2

-1

 0

 1

k 2

-1  0  1
k1

-1

 0

 1

k 2

-1  0  1
k1

Figure 5.5: Two-particle density and two-particle momentum distribution at different barrier heights. The first
two columns (from left to right) show the two-particle density ρ(2)(x1, x2|x1, x2)/N(N − 1) of the many-body
(left) and BMF (right) wave function for the barrier heights A = 0, 13, 19, 24, from top to bottom. At low
barrier heights (A = 0, 13) the system is condensed, and the two-particle density factorizes into a product of the
one-particle densities. At higher barriers (A = 19, 24), the system fragments and the two-particle density does
not factorize into a product of the one-particle densities. The fragmentation transition is not visible in the two-
particle density. The results of the many-body and BMF wave function cannot be distinguished at any barrier
height. The third and fourth column show the two-particle momentum distribution ρ(2)(k1, k2|k1, k2)/N(N−1)
of the many-body (left) and BMF (right) solution at the same barrier heights as above. The transition from
a condensed state to a fragmented state is clearly visible. At A = 19 the BMF solution does not reproduce
the many-body results. The system is in a true many-body state, inaccessible to mean-field methods. At
even higher barriers A ≥ 24 the system fully fragments, and a mean-field description is applicable again. The
quantities shown are dimensionless.
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At even higher barriers, A ≥ 24, the many-body state becomes fully fragmented and the
wave function approaches |N/2, N/2〉. In this limit it is again possible to describe the two-
particle density on a mean-field level. Therefore, the analytical results of Sec. 5.5.1 for the
fully fragmented state should apply. In fact, the structure of ρ(2)(x1, x2|x1, x2) in the fully
fragmented regime is that predicted by Eq. (5.24).

The two-particle density of the condensed state just below the fragmentation transition and
of the fully fragmented state above the fragmentation transition cannot be distinguished. It
is easily verified, that Eqs. (5.21) and (5.24) give rise to the same two-particle density profile
up to corrections of order O(1/N).

In contrast, the fragmentation transition is clearly visible in the two-particle momentum
distribution. In the third and fourth columns of Fig. 5.5 the two-particle momentum distri-
bution ρ(2)(k1, k2|k1, k2) of the many-body (left) and BMF (right) wave function are shown.

In the condensed regime the two-particle momentum distribution is approximately given
by the product of one-particle momentum distributions of a single condensate. This agrees
with the analytical predictions of Eq. (5.20) at barrier height A = 0 and Eq. (5.22) at A = 13.
The mean-field picture is appropriate here.

In the many-body regime the two-particle momentum distribution ρ(2)(k1, k2|k1, k2) con-
tains contributions from many permanents. The resulting ρ(2)(k1, k2|k1, k2) has a structure
that lies somewhat in between the two results, Eqs. (5.22) and (5.25), obtained within the
analytical mean-field model. The BMF solution is fully fragmented and does not provide
an accurate approximation to the many-body two-particle momentum distribution in this
regime, see Fig. 5.5, third and fourth columns in the third row from above.

When the barrier is raised to A = 24, the many-body state becomes fully fragmented and
the mean-field picture is again applicable. The pattern of a single coherent condensate has
now vanished completely in favor of a pattern characteristic of two separate condensates. The
pattern agrees well with the structure predicted by Eq. (5.25).

Similar to our results on first order correlations, discussed in Sec. 5.4.2, the fragmentation
transition shows up in the two-particle momentum distribution, but not in the two-particle
density. While this behavior is predictable in the limiting cases of a condensed and a fully
fragmented state, it is necessary to solve the many-body problem to determine the limits
of such mean-field approximations. Particularly the behavior in between the two mean-field
limits is only accessible to many-body approaches.

We will now address the second-order coherence of the system. The first two columns of
Fig. 5.6 show the diagonal of the normalized second order correlation function g(2)(x1, x2, x1, x2)
of the many-body (left) and the BMF (right) solutions. Note the scale! The Eqs. (5.17) and
(5.26) of the analytical mean-field model of Sec. 5.5.1 predict very small correlations in the
two-particle density of the condensed and the fragmented state. This is confirmed in the
first column of Fig. 5.6. In the condensed regime at zero barrier height the effects of the
depletion of the condensate on g(2)(x1, x2, x1, x2) are visible. Almost no two-particle density
correlations are present. This is equally true in the case of a single condensate spread out
over the two wells and also in the many-body regime. Above the fragmentation transition,
the present computation of the many-body solution cannot describe effects on g(2) that are
due to the depletion of the condensate. However, since depletion effects are negligible in the
harmonic trap, we are reassured that they are also negligible in the fully fragmented regime,
see Sec. 5.3.5. The BMF solution predicts almost identical two-body density correlations, see
second column of Fig. 5.6.
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Figure 5.6: Second order coherence at different barrier heights. The first two columns (from left to right) show
the diagonal of the normalized second-order correlation function in real space g(2)(x1, x2, x1, x2) of the many-
body (left) and BMF (right) solution at barrier heights A = 0, 13, 19, 24, from top to bottom. g(2)(x1, x2, x1, x2)
is very close to one at all barrier heights. Note the scale! The system seems to be second-order coherent and
the results of the many-body and BMF solution agree well with each other. The third and fourth column
depict the diagonal of the normalized second-order correlation function in momentum space g(2)(k1, k2, k1, k2)
of the many-body (left) and BMF (right) solution at the same barrier heights. The fragmentation transition
is clearly visible between A = 13 and A = 24. At A = 19 there are strong many-body correlations between
the momenta (local maxima in black color) and g(2)(k1, k2, k1, k2) exhibits a complicated pattern, see text
for more details. A mean-field description fails here. In the limit of high barriers, A ≥ 24, the correlations
of the many-body state become again describable by those of the BMF solution. The quantities shown are
dimensionless.



Second order correlations 51

On the basis of g(2)(x1, x2, x1, x2) alone, the many-body state appears to be second-order
coherent at all barrier heights. A high degree of second-order coherence requires Eq. (2.30)
to hold to a very good approximation for p = 1 and p = 2. This in turn requires the

largest eigenvalues of the first- and second-order RDM to be n
(1)
1 ≈ N and n

(2)
1 ≈ N(N − 1),

respectively. We have already demonstrated in Sec. 5.3 that these conditions are only satisfied
in the condensed regime. Therefore, it is obviously tempting, but wrong to conclude from
g(2)(x1, x2, x1, x2) ≈ 1 that the system is second-order coherent. This misconception is due to
the fact that g(2)(x1, x2, x1, x2) only samples a small part of the first and second-order RDMs
of the system.

So, how does the decrease of coherence manifest itself in second order correlation functions?
For second-order coherence to be present, at least approximately, also g(2)(k1, k2, k1, k2) has
to be close to one. The third and fourth column of Fig. 5.6 show g(2)(k1, k2, k1, k2) of the
many-body (left) and BMF (right) solution. At zero barrier height the system is indeed
highly second-order coherent since only one natural orbital is significantly occupied. Not
only g(2)(x1, x2, x1, x2), but also g(2)(k1, k2, k1, k2) is very close to one here. However, at
A = 13 when the many-body state is still condensed, g(2)(k1, k2, k1, k2) starts to develop a
structure.

When the barrier is raised to values above A = 13, the structure becomes more and more
pronounced. In the many-body regime at A = 19, we find that g(2)(k1, k2, k1, k2) has a
complicated behavior and deviates significantly from values close to one, thereby proving
that strong correlations are present. Note that the interaction between the particles is weak
and that the strong correlations are due to the transition from a single to a fragmented
condensate. This transition is in turn induced by a change of the shape of external potential.
Varying the shape of the external potential therefore provides a means to introduce strong
correlations between the particles. The strongest correlations (black spots in the third panel of
the third row of Fig. 5.6) occur at those values where the two-body momentum distribution
has local minima. At the values of k1 and k2, where the strongest correlations occur, the
one-body and the two-body momentum distributions are clearly distinct from zero, see third
panel in the middle column of Fig. 5.3 and the third panel in the third row of Fig. 5.5.
Experiments that measure g(2)(k1, k2, k1, k2) in ultracold quantum gases have been carried
out recently, see e.g. [135]. An experiment that measures g(2)(k1, k2, k1, k2) would find the
strongest two-particle momentum correlations at intermediate barrier heights.

When the system becomes fully fragmented at barrier heights A ≥ 24 the structure of
g(2)(k1, k2, k1, k2) becomes more regular again. The amplitude of the correlations is smaller
than in the many-body regime, and the correlations between different momenta are modulated
by a single oscillatory structure. This structure can be well understood within the analytical
mean-field model of Sec. 5.5.1. The oscillatory part of g(2)(k1, k2, k1, k2) is determined by the
difference of the wave vectors multiplied by the distance between the wells, see Eq. (5.27).
In contrast, the correlations in the many-body regime cannot be explained by analytical
mean-field models.

Hence, we find that only in the condensed regime the system is second-order coherent
despite the fact that g(2)(x1, x2, x1, x2) ≈ 1 at all barrier heights. This merely reflects the
fact that g(2)(x1, x2, x1, x2) is only the diagonal of g(2)(x′

1, x
′
2, x1, x2). On the other hand,

g(2)(k1, k2, k1, k2) depends on all values of of ρ(2)(x1, x2|x′
1, x

′
2) and provides complementary

information about the coherence of the state. A description of second-order coherence in
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terms of g(2)(x1, x2, x1, x2) alone is therefore incomplete.

The corresponding results of the BMF solution agree well with those of the many-body
solution as long as the system is not in the many-body regime at intermediate barrier heights.
In the many-body regime the BMF result is inaccurate, but it anticipates the final form of
g(2)(x1, x2, x1, x2) in the fragmented regime.

5.6 Conclusions

In this Chapter we have investigated first- and second-order correlations of trapped interacting
bosons. For illustration purposes we have investigated the ground state of N = 1000 weakly
interacting bosons in a one-dimensional double-well trap geometry at various barrier heights
on a many-body level. The interaction strength was such that according to the classification
scheme in Sec. 2.11 the system should have been in the 1D Thomas-Fermi regime where
many-body effects are highly suppressed and the ground state should have been of the Gross-
Pitaevskii type at any barrier height. This was not the case. The work in this Chapter thereby
proves that great care must be taken when exact results for infinite numbers of particles are
taken over to finite systems. Obviously, N = 1000 particles are not enough to justify the
limit of an infinite number of particles.

We have obtained the many-body results by solving the many-body Schrödinger equation
with the recently developed MCTDHB method. This allowed us to compute from first prin-
ciples the natural orbitals and the natural geminals of a large interacting many-body system,
together with their occupation numbers. To our knowledge this is the first computation of
the natural geminals of an interacting many-body system of this size.

Depending on the height of the double-well barrier we found that there are three different
parameter regimes. At low barriers the ground state is condensed and the many-body wave
function is well approximated by a single permanent of the form |N, 0〉. At high barriers the
ground state becomes fully fragmented and can be well approximated by a single permanent
of the form |N/2, N/2〉. At intermediate barrier heights, where the transition from a single
to a fragmented condensate occurs, the ground state becomes a true many-body wave func-
tion to which many permanents contribute. We have demonstrated that the transition to a
fragmented state results in the occupation of a natural geminal that contributes very little to
the interaction energy. The overall energy of the system can be lowered by the occupation of
such a geminal, and the ground state becomes fragmented.

We have shown how the transition from a condensed to a fully fragmented ground state
manifests itself in the one- and two-particle momentum distributions. However, the transition
is not captured by the one- and two-particle density distributions, not even in the many-body
regime.

In order to determine the coherence of the state during the fragmentation transition,
we have computed the first- and second-order normalized correlation functions g(1)(x′

1, x1),
g(2)(x1, x2, x1, x2) and g(2)(k1, k2, k1, k2). In the condensed regime, a high degree of coher-
ence is indeed present in the ground state wave function. First and second order correlations
were found to be negligible at the interaction strength and particle number chosen for our
computation. However, with increasing barrier height correlations between the momenta of
the particles build up. These correlations were found to be very strong in the many-body
regime at intermediate barrier heights. The ground state at high barriers was found to be
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correlated, but not as strongly as the ground state at intermediate barrier heights.

While the transition from a virtually uncorrelated state to a correlated one is clearly visible
in g(1)(x′

1, x1) and g(2)(k1, k2, k1, k2), the transition hardly shows up in g(2)(x1, x2, x1, x2).
A description of second-order coherence in terms of g(2)(x1, x2, x1, x2) alone is, therefore,
incomplete and can lead to wrong predictions.

For comparison we have computed results based on (i) the best approximation of the many-
body wave function within mean-field theory, the BMF wave function, and (ii) the Gross-
Pitaevskii solution. We found that the GP wave function is identical to the BMF solution
up to some barrier height. However, once the true many-body solution starts to fragment
the BMF wave function is no longer given by a GP type permanent |N, 0〉, but rather by a
fragmented state of the form |N/2, N/2〉. In the true many-body regime neither the GP, nor
the BMF solution provide an adequate approximation to the many-body wave function, and
the predicted correlations are inaccurate.

While the GP mean-field is only accurate at low barrier heights, the BMF solution provides
a very good approximation to the true many-body wave function at low and high barriers.
We have shown that the GP mean-field predicts qualitatively wrong results at high barriers.
The BMF only fails at intermediate barrier heights where the true many-body wave function
becomes a superposition of many permanents. Such many-body effects can, by construction,
not be captured by mean-field methods.

In the mean-field regimes at high and low barriers we have provided an analytical mean-
field model that allows us to understand the general structure of the computed correlation
functions.

Our work sheds new light on the first- and second-order correlation functions of interacting
many-body systems. The variation of the shape of the trapping potential allows one to change
the physics of the system from mean-field to strongly correlated many-body physics. Particu-
larly, the many-body regime in between the condensed and the fully fragmented regimes was
shown to be very rich and promises exciting results for experiments to come.





Chapter 6

Exact quantum dynamics of a bosonic Josephson

junction

The quantum dynamics of a one-dimensional bosonic Josephson junction is studied by solv-
ing the time-dependent many-boson Schrödinger equation numerically exactly. Already for
weak interparticle interactions and on short time scales, the commonly-employed mean-field
and many-body methods are found to deviate substantially from the exact dynamics. The
system exhibits rich many-body dynamics like enhanced tunneling and a novel equilibration
phenomenon of the junction depending on the interaction, attributed to a quick loss of coher-
ence. Most results of this Chapter have recently been published in Ref. [54]. Here we have
included a detailed discussion of the fragmentation of the condensate and further studies in
the self-trapping regime.

6.1 Introduction

Recent experiments on interacting Bose-Einstein condensates in double-well traps have led
to some of the most exciting results in quantum physics, including matter-wave interfer-
ometry [136, 137], squeezing and entanglement [138, 139] as well as work on high-precision
sensors [140]. Particular attention has been paid to tunneling phenomena of interacting
Bose-Einstein condensates in double-wells, which in this context are referred to as bosonic
Josephson junctions. Explicitly, Josephson oscillations and self-trapping (suppression of tun-
neling) with Bose-Einstein condensates have been predicted [44, 109] and recently realized
in experiments [141, 142], drawing intensive interest, see, e.g., [44, 54, 109–111, 141–151] and
references therein. Nearly all works available in the literature on Josephson junctions are for
repulsive interaction. In the following we therefore assume repulsive interaction.

In Chapter 5 we have investigated the correlation functions and the coherence of the ground
state of a trapped condensate. Here we study the dynamics of a trapped condensate. Until
recently the dynamics of bosonic Josephson junctions had been studied exclusively on the
basis of Gross-Pitaevskii theory, discrete Gross-Pitaevskii models and on the basis of the
Bose-Hubbard model, but not on the basis of the many-body Schrödinger equation. Here we
fill this gap by providing the first numerically exact results in literature on the many-body
quantum dynamics of a 1D bosonic Josephson junction [54]. This is made possible by a
breakthrough in the solution of the time-dependent many-boson Schrödinger equation. We
use the exact solution to check the current understanding of bosonic Josephson junctions –
commonly described by the popular Gross-Pitaevskii mean-field theory and the Bose-Hubbard
many-body model – and to find novel phenomena. The results of the Gross-Pitaevskii and
Bose-Hubbard theories are found to deviate substantially from the full many-body solution,
already for weak interactions and on short time scales. In particular, the well-known self-
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trapping effect is greatly reduced. We attribute these findings to a quick loss of the junction’s
coherence not captured by the common methods. For stronger interactions and on longer time
scales, we find a novel equilibration dynamics in which the density and other observables of
the junction tend towards stationary values. We show that the dynamics of bosonic Josephson
junctions is much richer than what is currently known.

6.2 Theories for bosonic Josephson junctions

In the following we assume that the bosonic Josephson junction consists of N interacting
bosons trapped in an external, symmetric double-well potential.

6.2.1 Exact many-body Schrödinger dynamics

To compute the exact time evolution of a 1D bosonic Josephson junction, we solve the time-
dependent many-boson Schrödinger equation using the MCTDHB method, as explained in
Sec. 3.1 and Refs. [47, 48]. To be precise, we solve the equation

i
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (6.1)

numerically, where Ĥ is the full many-body Hamiltonian given in Eq. (2.8) and the ansatz

for the many-boson wave function |Ψ(t)〉 is of the most general form (2.15). By successively
increasing the number of time-dependent orbitals M in the ansatz wave function (2.15) we
obtain convergence and thereby numerically exact results for a large number of particles. The
present results rely on a novel mapping of the many-boson configuration space in combination
with a parallel implementation of MCTDHB, allowing the efficient handling of millions of
time-dependent, optimized permanents [49].

6.2.2 Bose-Hubbard many-body dynamics

A popular approximative method for the description of bosonic Josephson junctions is the
Bose-Hubbard many-body model restricted to two sites [44, 111]. In Sec. 4.3 it was shown
under what assumptions the Bose-Hubbard Hamiltonian (4.14) can be obtained from the full
Hamiltonian (2.8), and what assumptions are made about the ansatz for the Bose-Hubbard
wave function (4.10). We refer the reader to Sec. 4.3 for further details on the Bose-Hubbard
model. We will compare predictions of the Bose-Hubbard model with the results of the exact
solution of the time-dependent many-body Schrödinger equation.

6.2.3 Gross-Pitaevskii and two-mode Gross-Pitaevskii mean-field dynamics

Gross-Pitaevskii theory is a popular approximative method in the theory of Bose-Einstein
condensates and it was shown in Sec. 3.2 that Gross-Pitaevskii theory is a special case of
the MCTDHB method, namely the case, where precisely one orbital is used. The ansatz for
the many-body wave function, Eq. (2.15), then consists of a single permanent in which all
bosons reside in one time-dependent orbital. For more details on Gross-Pitaevskii theory see
Sec. 3.2. We will compare the predictions of Gross-Pitaevskii theory with those of the exact
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solution of the time-dependent many-body Schrödinger equation. In the context of bosonic
Josephson junctions an approximation to Gross-Pitaevskii theory, known as the two-mode
Gross-Pitaevskii model is actually more popular than Gross-Pitaevskii theory [44, 109]. We
have reviewed the two-mode Gross-Pitaevskii model earlier and refer the reader to Sec. 4.2
for further details.

6.3 Observables of the bosonic Josephson junction

Having computed the many-boson wave function |Ψ(t)〉, we focus on the evolution of the

following quantities to analyze the dynamics of the Josephson junction. The eigenvalues n
(1)
i

of the first order RDM, ρ(1)(x|x′; t), Eq. (2.33), determine the extent to which the system is
condensed or fragmented. They are known as natural orbital occupations and their role in
Bose-Einstein condensation has been discussed in Sec. 2.10. As is common in the analysis of
bosonic Josephson junctions, the “survival probability” of the system in, e.g., the left well, is
obtained by integrating the density ρ(x; t) ≡ ρ(1)(x|x′ = x; t) over the left well,

pL(t) ≡ 1

N

∫ 0

−∞
dx ρ(x; t). (6.2)

In the exposition of two-mode Gross-Pitaevskii theory in Sec. 4.2 we have touched upon the
point of self-trapping. In order to quantify self-trapping it will be useful to consider the
time-averaged survival probability

p̄L(T ) =
1

T

∫ T

0
dt pL(t). (6.3)

As was shown in Ref. [112] the analytical solution of the two-mode Gross-Pitaevskii model
discussed in Sec. 4.2 can remain trapped for infinite times, p̄L(T → ∞) 6= 0.5. Such solu-
tions cannot exist on the many-body level, since the potential is symmetric and therefore all
eigenstates are parity eigenfunctions. For finite barrier height they are non-degenerate and
hence the density always tunnels through the barrier. The question is only how long does
it take. On the many-body level self-trapping can therefore only exist for a finite time and
p̄L(T → ∞) = 0.5. Finally, we use the normalized first-order correlation function

g(1)(x′, x; t) =
ρ(1)(x|x′; t)√
ρ(x, t)ρ(x′, t)

(6.4)

to quantify the system’s degree of spatial coherence [41,65]. Normalized correlation functions
were introduced in Sec. 2.8 and their signatures in experiments have been summarized in
Sec. 2.9.

6.4 Details of the bosonic Josephson junction

We now turn to the details of the 1D bosonic Josephson junction considered in this work.
The Hamiltonian used in this Chapter is of the form given in Eq. (2.6).
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Figure 6.1: Preparation procedure. Shown is the density (red line) of the many-body ground state in one
trap (left) and the subsequent switch to a different potential in which the system evolves in time (right). The
trapping potential (thick black line) changes from harmonic (left) to a symmetric double well (right). The
parameter values shown for the system shown here are M = 8, N = 20, λ = λ0(N − 1) = 0.152. Also shown
are the single-particle energy levels (thin black lines) in the respective trapping potentials. The lowest four
single-particle energy levels e1 = 0.473, e2 = 0.518, e3 = 1.352 and e4 = 1.611 of the double-well potential V (x)
(right) are lower than the barrier height V (0) = 1.667

We employ a contact potential W (x − x′) = λ0δ(x − x′) for the interparticle interaction
potential. To parameterize the interaction strength we use the parameter λ = λ0(N − 1),
which appears naturally in the full many-body treatment and also in Gross-Pitaevskii the-
ory. We quote the corresponding values of Λ, the interaction parameter in the two-mode
Gross-Pitaevskii model defined in Eq. (4.8), and the values of U/J , which parameterizes the
interaction strength within the Bose-Hubbard model.

The symmetric double-well potential V (x) is generated by connecting two harmonic po-
tentials V±(x) = 1

2(x ± 2)2 with a cubic spline in the region |x| ≤ 0.5. The lowest four
single-particle energy levels e1 = 0.473, e2 = 0.518, e3 = 1.352 and e4 = 1.611 of V (x) are
lower than the barrier height V (0) = 1.667. The trap parameters defined in Eq. (4.3) then
take on the following values. The width of the lowest band is 2J = e2 − e1 = 0.045 which is
much smaller than the band gap energy, Eq. (4.4), egap = e3 − e2 = 0.834. With this choice
of units the on-site one-body energy is ǫ = hLL = hRR = 0.495. For noninteracting particles
localized in one of the orbitals φL,R the tunneling oscillation period is tRabi = π/J = 140.66.

As we are working in 1D here λ0 is determined by the scattering length as and the transverse
confinement ω⊥ [152]. We now give some realistic experimental parameters for the cases
considered below. As an example we choose L = 1µm and 87Rb as a boson. Note that other



Preparation and propagation of the many-boson wave function 59

realistic choices can be made. The unit of energy ~
2

mL2 then corresponds to (2π~)116 Hz
and the potential V (x) has the following characteristics: barrier height V (0): (2π~)193.9 Hz,
distance between the minima: 4µm, width (FWHM): 1.418µm, tRabi=192.4 msec.

To realize the cases considered in this work as and ω⊥ can be chosen as follows. For λ=0.152,
N=20 (100): as=1.28 (0.246) nm, ω⊥

2π =363.4 Hz. For λ=0.245, N=20 (100): as=2.06 (0.396)
nm, ω⊥

2π =363.4 Hz. For λ=4.9, N=10 (100): as=5.31nm, ω⊥
2π =5962 (542.0) Hz.

6.5 Preparation and propagation of the many-boson wave function

In all our computations N bosons are prepared at t = 0 in the exact many-body ground state
of the potential V+(x) and then propagated in the potential V (x) as depicted schematically
in Fig. 6.1. Within the Bose-Hubbard framework this procedure amounts to starting from
the state in which all bosons occupy the orbital φL, i.e. from the state |nL, nR〉 = |N, 0〉. As
a guideline for the interaction strength we note that within the framework of the two-mode
Gross-Pitaevskii model, such initial states are predicted to remain self-trapped if Λ > Λc = 2
[44,109]. We will consider interaction strengths below, in the vicinity of and above Λc.

6.6 Results for weak interactions

6.6.1 Below the self-trapping transition point Λ < Λc

We begin our studies with a weak interaction strength λ = 0.152, leading to U/J = 0.140
(0.027) and Λ = 1.40 (1.35) for N = 20 (100) bosons, which is well below the two-mode Gross-
Pitaevskii transition point for self-trapping Λc = 2. In the upper two panels of Fig. 6.2 the
full many-body results for pL(t) are shown together with those of Gross-Pitaevskii and Bose-
Hubbard theory. The full many-body dynamics is governed by three different time scales. On
a time scale of the order of a Rabi cycle, pL(t) performs large-amplitude oscillations about
pL = 0.5, the long time average of pL(t). The amplitude of these oscillations is damped out
on a time scale of a few Rabi cycles and marks the beginning of a collapse and revival (not
shown) sequence [44], which is also found on the full many-body level. On top of these slow
large-amplitude oscillations, a higher frequency with a small amplitude can be seen. In a
single-particle picture these high frequency oscillations can be related to contributions from
higher excited states in the initial wave function. However, a single particle picture fails to
describe the dynamics, as we shall now show.

While the initial wave function |Ψ(t = 0)〉 is practically fully condensed – the fragmentation
of the system is less than 10−4 (10−5) for N = 20 (100) bosons – the propagated wave function
|Ψ(t)〉 quickly becomes fragmented. In the upper two panels of Fig. 6.3 the fragmentation
of the full many-body results are shown together with those of Gross-Pitaevskii and Bose-
Hubbard theory. The fragmentation increases to about 33% (26%) at t = 3tRabi for N = 20
(100) particles. If we evaluate the Lieb-Liniger parameter γ, as defined in Eq. (2.43) we find
γN2 = 0.41 (0.39). According to the classification scheme in Sec. 2.11 the interactions are
very weak and the system is at the border of the ideal gas regime to the 1D Gross-Pitaevskii
regime. We remind the reader that the classification scheme in Sec. 2.11 is motivated by
rigorous mathematical results for the ground states of trapped Bose-Einstein condensates,
in the limit N → ∞ at constant λ. Based on these results one may speculate that also the
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Figure 6.2: Full quantum dynamics of a 1D bosonic Josephson junction below (Λ < Λc) and above (Λ > Λc)
the transition to self-trapping as defined by the two-mode Gross-Pitaevskii theory. Shown is the full many-
body result (solid blue lines) for the probability of finding a boson in the left well, pL(t). For comparison,
the respective Gross-Pitaevskii (solid black lines) and Bose-Hubbard (solid magenta lines) results are shown
as well. The parameter values are: (a) N = 20, λ = 0.152 and (b) N = 100, λ = 0.152 (Λ < Λc), (c) N = 20,
λ = 0.245 and (d) N = 100, λ = 0.245 (Λ > Λc). The Gross-Pitaevskii and Bose-Hubbard results are found
to deviate from the full many-body results already after short times. The insets show the convergence of the
full many-body results. (a),(c): M = 2 (solid purple line), M = 4 (solid red line), M = 6 (solid green line),
M = 8 (solid blue line). The M = 2 results are seen to deviate slightly from the converged results for M ≥ 4.
(b),(d): The results for M = 2 (solid purple line) and M = 4 (solid blue line) are shown. All quantities shown
are dimensionless.
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Figure 6.3: Natural orbital occupations n
(1)
i (t) for the same parameter values as in Fig. 6.2. Shown is the

full many-body result (solid blue lines) together with the respective Gross-Pitaevskii (solid black lines) and
Bose-Hubbard (solid magenta lines) results. The full many-body result is seen to fragment quickly in all cases
shown. While the Bose-Hubbard results follow qualitatively the full many-body results for λ = 0.152 in (a) and
(b), this is not the case for slightly stronger interaction at λ = 0.245 shown in (c) and (d). In all cases shown
only two natural orbitals of the full many-body result are macroscopically occupied. The Gross-Pitaevskii
result has only one natural orbital and is therefore restricted to a fully condensed system at all times. All
quantities shown are dimensionless.
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exact, finite N dynamics approaches the Gross-Pitaevskii result if N is increased at constant
λ. Based on the available exact data there is no such trend. For both particle numbers we
find strong fragmentation after short times, making a many-body treatment indispensable,
already at this weak interaction strength. However, we note that the exact solution for 100
bosons fragments slightly slower here than that for 20 bosons.

The respective Gross-Pitaevskii results for pL(t) oscillate back and forth at a frequency close
to the Rabi frequency and resemble the full many-body dynamics only on a time scale shorter

than half a Rabi cycle. The poor quality of the Gross-Pitaevskii mean-field approximation
is, of course, due to the fact that the exact wave function starts to fragment while the Gross-
Pitaevskii dynamics remains condensed by construction.

The Bose-Hubbard result for pL(t) reproduces many features of the exact solution at this
interaction strength for both N = 20 and N = 100 particles. The large-amplitude oscillations
collapse over a period of a few Rabi cycles and revive at a later stage (not shown). Also the
Bose-Hubbard solution quickly becomes fragmented, starting from the left localized state,
which is totally condensed. The fragmentation of the Bose-Hubbard wave function for N = 20
(100) particles at t = 3tRabi is essentially the same as the respective value of the exact solution.
However, differences between the exact and the Bose-Hubbard result are visible even on time
scales less than half a Rabi cycle. Not only are the amplitudes obviously different, but also
the frequencies contained in pL(t). Furthermore, the Bose-Hubbard solutions do not exhibit
a high frequency oscillation on top of the slow large-amplitude oscillations; a difference which
is related to the fact that the Bose-Hubbard orbitals are time-independent and thus, not
determined variationally at each point in time. Note that pL(t) is a quantity in which all

spatial degrees of freedom have been integrated out. Visible differences in pL(t) imply that
it is not only the densities ρ(x, t) which must differ, but also all correlation functions.

The insets of Fig. 6.2(a),(b) demonstrate the convergence of the many-body dynamics
results. In particular and somewhat unexpectedly, the number of time-dependent orbitals
needed to describe the bosonic Josephson junction dynamics quantitatively is M = 4, even
below the transition point for self-trapping. These orbitals are determined variationally at

each point in time, implying that any method using time-independent orbitals will need
substantially more orbitals to achieve the same accuracy.

6.6.2 Around the self-trapping transition point Λ ≈ Λc

One of the central phenomena often discussed in the context of bosonic Josephson junctions
is the celebrated transition to self-trapping [44, 109, 141, 142]. In what follows we would like
to study the dynamics of a bosonic Josephson junction from the full many-body perspective
at an interaction strength where self-trapping is supposed to occur.

The interaction strength is taken to be λ = 0.245, leading to U/J = 0.226 (0.043) and
Λ = 2.26 (2.17) for N = 20 (100) particles. Hence, the system is just above the critical value
for self-trapping Λc = 2 [44, 109]. The results for N = 20 and N = 100 are collected in
Fig. 6.2(c),(d). We find that the full many-body solutions exhibit indeed some self-trapping
on the time scale shown, with p̄L(3tRabi) = 0.66 (60). The fragmentation of the condensate
for N = 20 (100) bosons increases from initially less than 10−4 (10−5) to about 28% (18%)
after three Rabi cycles, as can be seen in the lower two panels of Fig. 6.3.

For the Lieb-Liniger parameter we find γN2 = 0.66 (0.64) here. Again, according to
Sec. 2.11 the interactions are very weak and the system is at the border of the ideal gas
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regime to the 1D Gross-Pitaevskii regime. Nevertheless, Gross-Pitaevskii theory is – as before
– inapplicable, even on time scales shorter than tRabi/2. Note also that the Gross-Pitaevskii
result does not show any sign of self-trapping at this interaction strength, despite the fact that
Λ > Λc. Interestingly, after three Rabi cycles the many-body results now fragment less than
for weaker interaction. In contrast to the situation at weaker interaction both many-body
results for N = 20 and N = 100 bosons seem to fragment similarly quickly for this λ. Based
on these results there is no indication that the dynamics becomes less fragmented for larger
numbers of particles at constant λ.

The Bose-Hubbard results deviate from the true dynamics even earlier. They greatly
overestimate the self-trapping and coherence of the condensate. According to the Bose-
Hubbard model the condensate would only be 13% (11%) fragmented for N = 20 (100) at
t = 3tRabi, which is not the case. Similarly, we find p̄L(3tRabi) = 0.74 (0.76) for the Bose-
Hubbard results, which is considerably larger than the respective results of the exact solution.
This trend also continues for stronger interactions, see below.

Let us briefly discuss the applicability of Gross-Pitaevskii theory and the Bose-Hubbard
model to the cases considered above. We have already evaluated the Lieb-Liniger parameter
γ for the cases above and found that all cases discussed so far lie deeply in the regime
of applicability of Gross-Pitaevskii theory according to the classification scheme given in
Refs. [72, 73] and Sec. 2.11. Gross-Pitaevskii theory failed in all cases after short times. We
have thereby clearly shown a failure of Gross-Pitaevskii theory within its range of expected
validity.

According to the criterion (4.17) discussed in Sec. 4.3 the Bose-Hubbard model is expected
to be valid when the chemical potential µ is well below the band gap egap and the initial
state lies within the first band [44]. These conditions are well satisfied. We find µ/egap ≈ 1

14
and 1

9 for the cases shown in Fig. 1(a),(b) and Fig. 1(c),(d), respectively and independent of
whether we use the full many-body solution or the Bose-Hubbard model to evaluate µ. The
chemical potential is here computed as the energy difference of the initial state of N + 1 and
N particles at the same λ0 and ǫ as defined in Eq. (4.3) is taken as the origin of energy.

The overlap integral of the initial states’ first natural orbital with the left Bose-Hubbard
orbital is 0.9991(!) in all cases; the initial states are therefore essentially given by the Bose-
Hubbard state |N, 0〉. The results do not depend significantly on this tiny difference. We have
thereby also shown a clear failure of the Bose-Hubbard model within its range of expected
validity.

6.7 Results for stronger interactions

6.7.1 Self-trapping at Λ ≈ 10Λc

It was shown in Sec. 6.6.2 that the self-trapping effect of the full many-body solution increased
with increasing interaction strength. Gross-Pitaevskii theory and the Bose-Hubbard model
were shown to deviate substantially from the exact results at weak interaction strengths. How-
ever, as a trend we found that by increasing the interaction strength the system fragmented
less over same periods of time. Should this trend continue for stronger interactions Gross-
Pitaevskii theory would have to become more accurate with increasing interaction strength,
a rather unexpected situation.
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Figure 6.4: Full quantum dynamics of a 1D bosonic Josephson junction at Λ = 18.1. Top: as in Fig. 6.2 the
full many-body result (blue line) for the probability of finding a boson in the left well, pL(t), is shown. The full
many-body solution is self-trapped on the time scale shown with p̄L(2tRabi) = 0.93. Note the scale. Bottom: as
in Fig. 6.3 the natural orbital occupations are shown (lines). For comparison, the respective Gross-Pitaevskii
(solid black lines) and Bose-Hubbard (solid magenta lines) results are shown as well. The parameter values are
N = 20, λ = 1.96, M = 8. Since the full many-body solution shows little fragmentation the Gross-Pitaevskii
result is close to the full many-body one. The Bose-Hubbard result differs qualitatively. All quantities shown
are dimensionless.

In order to investigate this more carefully, we consider N = 20 bosons at an interaction
strength λ = 1.96, leading to U/J = 1.81 and Λ = 18.1. Hence, the system is high above
the critical value for self-trapping Λc = 2 [44, 109]. Here, we find γN2 ≈ 6.2 and according
to Sec. 2.11 Gross-Pitaevskii theory should be applicable, since the system is at the border
between the 1D Gross-Pitaevskii and the 1D Thomas-Fermi regime. Interestingly, at the same
time the criterion (4.17) gives µ/egap ≈ 1/3 for the full many-body result and µ/egap ≈ 1 for
the Bose-Hubbard model, which implies that based on the criterion (4.17) the Bose-Hubbard
many-body model is not expected to be valid, but Gross-Pitaevskii mean-field theory is.
There is clearly a discrepancy here between the criteria for Gross-Pitaevskii theory and the
Bose-Hubbard model.

In the top panel of Fig. 6.4 the many-body result for pL(t) is shown together with the
respective results of Gross-Pitaevskii theory and the Bose-Hubbard model. Note the change
of scale! It is clearly seen that the self-trapping effect is much more pronounced on the time
scale shown. The oscillations now have a much higher frequency and the Gross-Pitaevskii
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result follows the full many-body result for about half a Rabi cycle before it deviates again.
Both the full many-body and the Gross-Pitaevskii result are self-trapped on the time scale
shown with high frequency oscillations of pL(t) about the same value. More precisely, we find
p̄L(2tRabi) = 0.93 for the full many-body and the Gross-Pitaevskii result. The Bose-Hubbard
result does not follow the full many-body result at any time. It is almost completely trapped,
p̄L(2tRabi) = 0.99, and oscillates sinusoidally with a very small amplitude. These sinusoidal
oscillations can be understood by approximating the Bose-Hubbard Hamiltonian by a two-
level system in the limit of strong interactions [153]. Obviously, the true dynamics is very
different from the Bose-Hubbard dynamics.

The lower panel of Fig. 6.4 reveals that the fragmentation of the full many-body result is
indeed much smaller here, than for the weaker interacting cases discussed in Sec. 6.6. This ex-
plains the relatively good performance of Gross-Pitaevskii theory. The Bose-Hubbard model,
just like Gross-Pitaevskii theory does not fragment strongly at this interaction strength and
describes a nearly condensed system. Here we find the peculiar situation where the Gross-
Pitaevskii mean-field theory is more accurate than the Bose-Hubbard many-body model.
This clearly demonstrates the importance of time-dependent, variationally determined or-
bitals: as long as the system remains largely condensed a mean-field theory using only one
time-dependent orbital can give more accurate results than a many-body model employing
two time-independent orbitals. Nevertheless, even though Gross-Pitaevskii theory gives qual-
itatively similar results we note that M = 8 orbitals were needed to obtain convergence for
the results shown in Fig. 6.4. The full many-body dynamics remains complex, even though
only one natural orbital is macroscopically occupied.

The following general statement about the relationship between self-trapping and coherence
can be inferred from our full many-body results: The longer the system stays coherent the
more self-trapping is present. We find this statement to be true at all interaction strengths
and all particle numbers considered in this work.

As discussed in Sec. 4.2 self-trapping was first predicted based on the two-mode Gross-
Pitaevskii model. It was also discussed earlier in this chapter that self-trapping in real
physical systems can only exist for finite times because the density always tunnels from one
well to the other. The question is only how long does it take.

Predictions about the time scale on which self-trapping is lost have been published in the
literature based on the Bose-Hubbard model, see e.g. Ref. [147], where cases up to Λ = 500
were considered. It can clearly be seen from results shown in Figs. 6.2 and 6.4 that the
Bose-Hubbard model cannot be used to predict such quantities even if Λ ≈ Λc = 2.

6.7.2 Equilibration at Λ ≈ 25Λc

Let us increase the interaction strength even further to λ = 4.9, which is even higher above
the self-trapping transition point. This leads to U/J = 9.55 (0.869) and Λ = 47.8 (43.4) for
N = 10 (100) bosons. Note that we now use ten instead of twenty bosons to demonstrate
convergence. The energy per particle of the full many-body wave function is now E/N = 1.22
(1.28) for N = 10 (100) bosons, which is still below the barrier height V (0) = 1.667. We then
find γN2 = 9.7 (17.7) and according to Sec. 2.11 Gross-Pitaevskii theory should be valid since
the system is in the 1D Thomas-Fermi regime. At the same time the applicability criterion
for the Bose-Hubbard model, Eq. (4.16), is not fulfilled since µ/egap = 1.6 (1.7) if the full
many-body solution is used to compute µ. Although here we are at least outside the range of
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Figure 6.5: Emergence of equilibration of the density at interaction strength λ = 4.9. Top: same as Fig. 6.2,
but for N = 10 (solid blue line) and N = 100 (solid green line). The respective Bose-Hubbard (solid magenta
lines) results are on top of each other. In contrast to the Bose-Hubbard dynamics which is completely self-
trapped, the full many-body dynamics is not. pL(t) tends towards its long-time average pL = 0.5. For N = 100
particles M = 4 orbitals were used. The inset shows the convergence of the full many-body solution for N = 10
bosons: M = 4 (solid black line), M = 10 (solid blue line), M = 12 (solid red line). The M = 4 result follows
the trend of the converged M = 12 result. Bottom: corresponding natural orbital occupations for N = 10
bosons. The system becomes fragmented and roughly four natural orbitals are macroscopically occupied. All
quantities are dimensionless.

expected validity of the Bose-Hubbard model, it is interesting to see what Gross-Pitaevskii
theory and the Bose-Hubbard model fail to describe. Fig. 6.5(top) shows the full many-body
results for N = 10 and N = 100 bosons together with those of the Bose-Hubbard model. The
two Bose-Hubbard results lie on top of each other. In complete contrast to the Bose-Hubbard
dynamics, for which pL(t) remains trapped in the left well, the full many-body dynamics
shows no self-trapping. Instead, a very intricate dynamics results, leading to an equilibration
phenomenon, in which the density of the system tends to be equally distributed over both
wells.

The system’s full many-body dynamics is again strongly fragmented as can be seen in

Fig. 6.5(bottom), which depicts the natural-orbital occupations n
(1)
i for N = 10 particles.

This rules out any description of the system by Gross-Pitaevskii theory which always predicts
condensation. Also shown are the natural-orbital occupations of the Bose-Hubbard model,
which wrongly describes a fully condensed system although, in principle, this model can
describe fragmentation.

The strong fragmentation of the system implies the presence of strong correlations. This
can be seen in the two upper panels of Fig. 6.6, which show the full many-body result for the
first-order correlation function g(1)(x′, x; t) of N = 10 bosons at times t = 0 and t = 10tRabi.
The fragmentation of the initial state is only ≈ 2%, leading to an almost flat g(1)(x′, x; 0).
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Figure 6.6: Dynamics of the first order correlation function for λ = 4.9 at which the equilibration phenomenon
of Fig. 6.5 occurs. Shown is |g(1)(x′, x; t)|2 of N = 10 bosons at different times. Top left: full many-body result
at t = 0. The initial state exhibits coherence over the entire extent of the system. Top right: full many-body
result at t = 10tRabi. The coherence is lost. The system is incoherent even on short length scales. Bottom
left: Bose-Hubbard result at t = 0. Bottom right: Bose-Hubbard result at t = 10tRabi. In contrast to the full
many-body result, the Bose-Hubbard wave function remains completely coherent.

This reflects the fact that the system is initially coherent over its entire extent. At t = 10tRabi

the coherence of the system is completely lost even on length scales much shorter than its
size, see upper right panel of Fig. 6.6. Note that also g(1)(x′, x; t) tends to equilibrate. The
respective Bose-Hubbard results for g(1)(x′, x; t) are shown in the two lower panels of Fig. 6.6
and in contrast display no visible loss of coherence.

6.8 Conclusions

Let us briefly summarize. We have obtained exact results for the full many-body dynamics of
a 1D bosonic Josephson junction. The dynamics is found to be much richer than previously
reported. In particular, the predictions of the commonly-employed Gross-Pitaevskii and Bose-
Hubbard theories are found to differ substantially from the exact results, already after short
times and relatively weak interactions. These differences are associated with the development
of fragmentation and correlations not captured by the standard theories. It was found that
the more self-trapping is present in the junction, the more the dynamics is coherent. For
stronger interactions, where the standard theories predict coherence and self-trapping, we
find a completely different dynamics. The system becomes fragmented, spatial coherence is
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lost and a long-time equilibration of the junction emerges. We hope our results stimulate
experiments.



Chapter 7

Quantum dynamics of attractive versus repulsive

bosonic Josephson junctions: Bose-Hubbard and

full-Hamiltonian results

The quantum dynamics of one-dimensional bosonic Josephson junctions with attractive and
repulsive interparticle interactions is studied using the Bose-Hubbard model and by numerical-
ly-exact computations of the full many-body Hamiltonian. A symmetry present in the Bose-
Hubbard Hamiltonian dictates an equivalence between the evolution in time of attractive
and repulsive Josephson junctions with attractive and repulsive interactions of equal magni-
tude. The full many-body Hamiltonian does not possess this symmetry and consequently the
dynamics of the attractive and repulsive junctions are different.

7.1 Introduction

The quantum dynamics of interacting Bose-Einstein condensates is an active and lively re-
search field [113,114]. Here, one of the basic problems studied is the dynamics of tunneling of
interacting Bose-Einstein condensates in double-wells, which in this context are referred to as
bosonic Josephson junctions. The dynamics of bosonic Josephson junctions has drawn much
attention both theoretically and experimentally, see, e.g., Refs. [44,54,109–111,141–151] and
references therein.

In this Chapter we compare the dynamics of one-dimensional bosonic Josephson junctions
with attractive and repulsive interparticle interactions. Explicitly, we compare systems where
the magnitude of attractive and repulsive interactions is the same. We prepare the interacting
bosons in one well, and then monitor the evolution of the systems in time. We compute and
analyze the respective dynamics both within the two-site Bose-Hubbard model often employed
for this problem as well as within the full Hamiltonian of the systems. The main result of this
Chapter, shown both analytically and numerically, is that within the Bose-Hubbard model the
dynamics of the attractive and repulsive junctions is equivalent. In contrast, the dynamics
of attractive and repulsive junctions computed from the full many-body Hamiltonian are
different from one another. As a complementary result we provide here for the first time
in literature numerically-exact quantum dynamics of an attractive Josephson junction, thus
matching our recent calculations on repulsive Josephson junctions [54].
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7.2 Theory

7.2.1 The Bose-Hubbard Hamiltonian

We begin with the two-site Bose-Hubbard Hamiltonian Eq. (4.14)

ĤBH(U) = −J
(
b̂†Lb̂R + b̂†Rb̂L

)
+

U

2

(
b̂†Lb̂†Lb̂Lb̂L + b̂†Rb̂†Rb̂Rb̂R

)
(7.1)

for a symmetric double well potential V (−x) = V (x). We remind the reader that the Bose-
Hubbard Hamiltonian (7.1) can be derived by choosing W (x− x′) = λ0δ(x−x′) in Eq. (2.6),
substituting the approximation,

Ψ̂(x) = b̂LφL(x) + b̂RφR(x) (7.2)

for the field operator, Eq. (2.3), into the second quantized representation (2.8) of the full
many-body Hamiltonian

Ĥ =

∫
dxΨ̂†(x)h(x)Ψ̂(x) +

λ0

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x), (7.3)

neglecting the off-diagonal interaction terms and choosing the energy origin such that ǫ =
hLL = hRR = 0. The orbitals φL,R are constructed from the ground and the first excited state
of V (x) and have been defined in Eq. (4.2). For more details on the Bose-Hubbard model we
refer the reader to Sec. 4.3.

7.2.2 Attractive-repulsive symmetry of the Bose-Hubbard Hamiltonian

There is an interesting symmetry connecting the Bose-Hubbard Hamiltonian (7.1) with re-
pulsive Ĥ(U) and attractive Ĥ(−U) interactions of equal magnitude [154–157]. Explicitly,
defining the unitary operator (transformation)

R̂ =
{

b̂L → b̂L, b̂R → −b̂R

}
, (7.4)

it is easy to see that [156,157]
R̂Ĥ(U)R̂ = −Ĥ(−U). (7.5)

What is the impact of the symmetry (7.4) and the resulting relation (7.5) on the evolution in
time of attractive and repulsive bosonic Josephson junctions? In order to find this out we will
restrict the discussion to a system of N bosons initially prepared as mentioned above in, say,

the left well, |N, 0〉 = 1√
N !

(
b̂†L

)N
|vac〉. Its evolution in time is simply given by e−iĤ(U)t |N, 0〉.

7.2.3 Symmetry of observables

As in Chapter 6 we define the “survival probability” of finding the bosons in the left well as
a function of time by

pL(t; U) =
1

N

∫ 0

−∞
dx

〈
N, 0

∣∣∣e+iĤ(U)t
[
Ψ̂†(x)Ψ̂(x)

]
e−iĤ(U)t

∣∣∣ N, 0
〉

, (7.6)
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where the expression 〈. . .〉 is the system’s density and accordingly the time-averaged “survival
probability” by

p̄L(T ; U) =
1

T

∫ T

0
dtpL(t; U). (7.7)

just as in Sec. 6.3. Plugging the expansion of the field operator, Eq. (7.2) into the “survival
probability” and after some algebra the final result reads:

pL(t; U) =

(
1 −

∫ 0

−∞
dxφ2

L(x)

)
−

(
1 − 2

∫ 0

−∞
dxφ2

L(x)

)
· 1

N
×

{〈
N, 0

∣∣∣cos[Ĥ(U)t]b̂†Lb̂L cos[Ĥ(U)t] + sin[Ĥ(U)t]b̂†Lb̂L sin[Ĥ(U)t]
∣∣∣ N, 0

〉}
. (7.8)

In obtaining the r.h.s. of (7.8) we made use of the facts that the expectation value of b̂†Lb̂L

(hermitian operator) is real, and that
∫ 0
−∞ dxφL(x)φR(x) = 0.

Employing the R̂ symmetry (7.4) to the pL(t; U) matrix element (7.8) and making use of
relation (7.5), one immediately finds that

pL(t;−U) = pL(t; U), (7.9)

which concludes our first proof. In other words, the “survival probability” of bosons is iden-
tical for attractive and repulsive interactions (of equal magnitude) within the Bose-Hubbard
model. We emphasize that the result (7.9) holds at all times t. Therefore, also the respective
time-averaged “survival probabilities” are the same within the Bose-Hubbard model:

p̄L(T ; U) = p̄L(T ;−U). (7.10)

Next, we discuss the impact of the symmetry (7.4) on the eigenvalues of the first order RDM
within the two-site Bose-Hubbard model. As discussed in Sec. 2.10 the eigenvalues of the
first order RDM of a Bose system determine the extent to which the system is condensed
or fragmented [39–41]. For the two-site Bose-Hubbard problem the first order RDM can be
written as a two-by-two matrix:

ρ(1)(t; U) =

(
ρLL(t; U) ρLR(t; U)
ρ∗LR(t; U) ρRR(t; U)

)
, (7.11)

where ρLL(t; U) =
〈
N, 0

∣∣∣e+iĤ(U)tb̂†Lb̂Le−iĤ(U)t
∣∣∣ N, 0

〉
, and ρLR(t; U) and ρRR(t; U) are given

analogously. Plugging the symmetry (7.4) into each of the matrix elements of ρ(1)(t; U)
and making use of relation (7.5), one can straightforwardly express the first order RDM for
attractive interaction as follows:

ρ(1)(t;−U) =

(
ρLL(t; U) −ρ∗LR(t; U)
−ρLR(t; U) ρRR(t; U)

)
. (7.12)

Obviously, the matrices (7.11) and (7.12) have the same characteristic equation, and hence the
same eigenvalues. We have thus shown that, within the Bose-Hubbard model, the eigenvalues
of the first order RDM do not depend on the sign of interparticle interaction, which constitutes
our second proof. Again, this result holds for any time t. In particular, the Bose-Hubbard
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Figure 7.1: Bose-Hubbard versus full-Hamiltonian, numerically-exact dynamics of attractive and repulsive
Josephson junctions. Shown is the “survival probability” as a function of time, pL(t), computed with the full
many-body Hamiltonian for attractive (solid green line) and repulsive (solid blue line) interaction. MCTDHB
with M = 8 orbitals was used for the full many-body results. The Bose-Hubbard result (dashed magenta line)

is for both attractive and repulsive interactions. The parameters used are N = 20, |U|
J

= 0.226, |λ0| = 0.0129,

and tRabi = 140.66. The inset shows the ratio p
(−)
L /p

(+)
L of attractive to repulsive “survival probabilities” as

a function of time. The black–solid line is the full-Hamiltonian results which exhibit a complex dynamics,
whereas the dashed–magenta line is the Bose-Hubbard result, showing no dynamics at all. All quantities are
dimensionless.

model attributes identical condensation and fragmentation levels to attractive and repulsive
systems.

7.3 Bose-Hubbard vs. full Hamiltonian exact results

To illustrate the above findings we plot in Figs. 7.1 and 7.2 the “survival probability” and
occupation numbers, respectively, as a function of time for repulsive and attractive interac-
tions. As a system we choose the same double-well potential V (x) as in Chapter 6, formed
by connecting two harmonic potentials V±(x) = 1

2(x ± 2)2 with a cubic spline in the region
|x| ≤ 0.5. The Rabi oscillation period is tRabi = π/J = 140.66. As an interaction strength

we choose |λ0| = 0.0129, leading to |U |
J = 0.226. With these parameter values we monitor

dynamics of N = 20 bosons.

As predicted by Eq. (7.9) and Eqs. (7.11),(7.12), the Bose-Hubbard dynamics for attractive
and repulsive junctions are identical. For the time-averaged “survival probability” we find
p̄L(3tRabi;±U) = 0.74.

We now move on to the dynamics computed with the full many-body Hamiltonian Ĥ.
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Figure 7.2: Bose-Hubbard versus full-Hamiltonian, numerically-exact dynamics of attractive and repulsive
Josephson junctions. Shown are the occupation numbers of the first order RDM as a function of time, n

(1)
i (t),

computed with the full many-body Hamiltonian for attractive (solid green line) and repulsive (solid blue line)
interaction. The Bose-Hubbard result (dashed magenta line) is for both attractive and repulsive interactions.
The two-site Bose-Hubbard dynamics has two occupation numbers only. The full-Hamiltonian dynamics has
many occupation numbers. It is seen that the occupation numbers n

(1)
i>2(t) are essentially zero. The parameters

used are the same as in Fig. 7.1. All quantities are dimensionless.

In Chapter 6, we presented the first numerically-exact solution of a 1D repulsive bosonic
Josephson junction. This exact solution allowed us to unveil novel phenomena associated
with the quick loss of the junction’s coherence [54]. As in Chapter 6 we use here the MCT-
DHB method [47, 48, 101] to compute the exact solution of the time-dependent many-body
Schrödinger equation using the full many-body Hamiltonian Ĥ. The MCTDHB method is
explained in Sec. 3.1.

Solving the time-dependent many-body Schrödinger equation with the MCTDHB method
allows us to report here the first numerically-exact results in literature on a bosonic Joseph-
son junction for attractive interaction, thus matching our recent calculations on repulsive
bosonic Josephson junctions [54]. The results of the computations with the full many-body
Hamiltonian are collected in Figs. 7.1 and 7.2. It is clearly seen that the dynamics of the
attractive and repulsive junctions are distinct from each other, and that each is different
from the Bose-Hubbard dynamics. For the time-averaged “survival probability” we find
p̄L(3tRabi; U) = 0.66 for repulsive and p̄L(3tRabi;−U) = 0.79 for attractive interaction in
contrast to the Bose-Hubbard result p̄L(3tRabi;±U) = 0.74.

Let us analyze these findings. We first note, in the context of the above analytical re-
sults on the Bose-Hubbard dynamics, that the full Hamiltonian Ĥ does not possesses the
symmetry (7.4) connecting the dynamics of attractive and repulsive systems. This is be-
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cause Ĥ contains off-diagonal interaction terms as well as all other terms neglected in the
Bose-Hubbard Hamiltonian (7.1). From this “mathematical” discussion alone, we do not
expect the dynamics of attractive and repulsive junctions to be equivalent as found above
for the Bose-Hubbard dynamics. What do we expect on physical grounds? Intuitively, we
know that attractive bosons like to be together, whereas repulsive bosons tend to repel each
other. These tendencies are exactly what we see in Fig. 7.1. The full-Hamiltonian’s “survival
probability” is larger (smaller) for attractive (repulsive) interaction than the Bose-Hubbard
“survival probability”, at least up to t/tRabi = 1.5. In other words, the Bose-Hubbard “sur-
vival probability” underestimates the “survival probability” for attractive and overestimates
it for repulsive interaction for short and intermediate times. For longer times, as can be seen
in Fig. 7.1, the dynamics becomes more complex and anticipating the differences between
the exact and the Bose-Hubbard dynamics cannot rest on the above-mentioned physical intu-
ition alone. Finally, Fig. 7.2 presents a complementary picture of the dynamics of occupation
numbers. It has been shown in [54] that the Bose-Hubbard dynamics underestimates frag-
mentation and overestimates coherence of repulsive bosonic Josephson junctions. We may
analogously anticipate that the reverse happens with attractive interactions, which indeed is
the physical picture unveiled in Fig. 7.2.

Let us conclude. We have shown, both analytically and numerically, that a symmetry
present in the two-site Bose-Hubbard Hamiltonian dictates an equivalence between the evo-
lution in time of attractive and repulsive bosonic Josephson junctions. The full many-body
Hamiltonian does not possess this symmetry and consequently the dynamics of the attrac-
tive and repulsive junctions are distinct. The Bose-Hubbard dynamics underestimates the
“survival probability” and overestimates fragmentation of attractive one-dimensional bosonic
Josephson junctions and the reverse is true for repulsive junctions. Note that the parameters
used here are within the range of expected validity of the Bose-Hubbard model for Josephson
junctions [44]. The clear deviations from the numerically-exact results show that criteria for
the validity of the Bose-Hubbard model which have been derived for static junctions cannot
be transferred for dynamically evolving junctions (also see [54]). The present investigation
of attractive versus repulsive junctions sheds additional light on the restrictions of the Bose-
Hubbard model to describe dynamics.

As an outlook, we mention that an analogous symmetry to (7.4) can be found for the multi-
site Bose-Hubbard model. Consider the multi-site one-dimensional Bose-Hubbard model:

ĤBH(U) = −J
∑

j

(b̂†j b̂j+1 + b̂†j+1b̂j) +
U

2

∑

j

b̂†j b̂
†
j b̂j b̂j . (7.13)

Then,
R̂BHĤBH(U)R̂BH = −ĤBH(−U) (7.14)

where R̂BH =
{

b̂2j → b̂2j , b̂2j−1 → −b̂2j−1

}
. The extension to the Bose-Hubbard model of

orthorhombic lattices in higher dimensions is straightforward. It would be interesting to
search for the consequences of this symmetry in the dynamics of attractive and repulsive
bosons in a lattice.



Chapter 8

Time-dependent Wannier functions

A method to generalize the concept of Wannier functions is presented. While conventional
Wannier functions are time-independent we allow Wannier functions to depend on time. By
deriving equations of motion for these time-dependent Wannier functions from a variational
principle we show that it is possible to exploit this additional freedom to improve lattice
models. As an example we show this explicitly for the Bose-Hubbard model in a quantum
quench scenario. The improvement due to the use of time-dependent Wannier functions is
quantified by comparison with exact results of the time-dependent many-body Schrödinger
equation.

8.1 Introduction

At the heart of many lattice models is the idea of lattice site localized functions which are
commonly referred to as Wannier functions. Strictly speaking Wannier functions are only de-
fined for purely periodic potentials, but the term is used more generally. Wannier functions
are constructed from (energetically) nearly-degenerate eigenfunctions of a one-body problem,
e.g. the Bloch waves in strictly periodic potentials or the doublets in double-wells, see Chap-
ter 4. In lattice models the Hamiltonian in its second-quantized form is expanded in the
basis Wannier functions used. The fact that even the Wannier functions of adjacent lattice
sites have little overlap motivates the neglect of terms in the Hamiltonian. Lattice models
are therefore classified according to how many terms are kept. For example, the number of
bands used distinguishes single-band from multi-band models and the coupling to neighbor-
ing lattice sites determines whether the model contains nearest-neighbor interactions, next
nearest-neighbor interactions and so on. Most models are restricted to a single band and
no more than next nearest-neighbor interactions, which is of great advantage in numerical
and analytical computations. Eventually an appealing picture of particles hopping from one
lattice site to another emerges. Probably the most prominent of such lattice models are
the Hubbard model [158–163] for fermions and its bosonic counterpart, the Bose-Hubbard
model [43], both of which are single-band models with nearest-neighbor interaction.

The restriction to a single band and the neglect of terms in the Hamiltonian simplifies
the solution of lattice models, but makes them also less accurate. In fact, it has recently
become clear that single-band models can be far too restrictive and can miss the true physics
[54, 57, 164–166] even when the parameters are chosen such that certain validity criteria are
fulfilled, see Refs. [54, 57] and Chapter 6. Due to a lack of reliable validity criteria it is
unfortunately not clear what the range of validity of such models really is. One way to answer
this question is to compare their results to exact solutions of the many-body Schrödinger
equation, as done in Chapter 6 using the MCTDHB method. Another option would be to
successively include more of the previously neglected terms and bands until convergence is
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reached. This second path is restricted to systems of small size if conventional Wannier
functions are used, because the number of basis functions grows quickly beyond what is
computationally feasible. A straightforward solution to this dilemma is to include only certain
classes of many-body basis functions in a computation, e.g. by enforcing an energy cutoff
on the many-body basis. Unfortunately, such procedures lack size-consistency [167, 168], a
crucial requirement if the obtained results are to be extrapolated to larger systems, which
is usually desired. It is therefore important to examine the possibilities to make the best
possible choice for the Wannier functions, in order to minimize the number of bands needed
for convergence.

In the following sections we show that it is possible to greatly improve lattice models by
letting the Wannier functions become time-dependent. Using the principle of least action
we will derive equations of motion for these time-dependent Wannier functions that ensure
the optimal dynamics within the given model. Of course also stationary states that are
variationally optimal within the model can be obtained, and thereby the phase diagram. The
concept of time-dependent Wannier functions presented here is general and can be applied
to fermions and bosons alike and any number of lattice sites, particles and bands. However,
for simplicity we will illustrate it for the Bose-Hubbard (BH) model only. When the Wannier
functions of the BH model are allowed to depend on time, we will refer to it as the time-

dependent Bose-Hubbard (TDBH) model, even though the underlying many-body Hamiltonian
itself does not depend on time. The thereby obtained gain in accuracy will be shown explicitly
by considering a quantum quench scenario.

8.2 Theory

The number of many-body basis functions in a lattice model is a rapidly growing function
of the number of particles N , the number of lattice sites M and the number of bands κ.
For example, in a bosonic model the number of basis functions is then

(
N+κM−1

N

)
which

grows factorially with any of the parameters. This demonstrates the necessity to optimize
the Wannier functions used. We have included an example that demonstrates this necessity
in Appendix F. For simplicity, we restrict the discussion to the case of a 1D lattice consisting
of M = 2 sites, N bosons and a single band, κ = 1. The number of basis functions is then
just

(
N+1

N

)
= N + 1.

Our starting point is the following ansatz for the two time-dependent Wannier functions

φk(x, t) =

ν∑

α=1

dkα(t)φkα(x), k = L, R (8.1)

where dkα(t) are local orbital coefficients and the functions {φLα}, α = 1, . . . , ν and {φRβ
}, β =

1, . . . , ν form two mutually orthogonal sets of functions

〈φkα |φjβ
〉 = δkjδαβ, k = L, R, (8.2)

e.g. the time-independent Wannier functions of the bands α = 1, . . . , ν. The ansatz (8.1)
then automatically satisfies

〈φL|φR〉 = 0 (8.3)
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at all times. Normalization requires that the local orbital coefficients dkα(t) satisfy

ν∑

α=1

|dkα(t)|2 = 〈φk|φk〉 = 1, k = L, R (8.4)

The ansatz for the two-mode many-body wave function thereby becomes

|Ψ(t)〉 =
∑

~n

C~n(t) |~n; t〉 ,

|~n; t〉 = |nL, nR; t〉 =
1√

nL!nR!

(
b̂†L(t)

)nL
(
b̂†R(t)

)nR |vac〉 , (8.5)

where nL + nR = N and the sum runs over all N + 1 time-dependent permanents |nL, nR; t〉.
With this ansatz the finite size representation, Eq. (2.16), of the field operator, Eq. (2.3),
takes on the form

Ψ̂M (x; t) = b̂L(t)φL(x, t) + b̂R(t)φR(x, t). (8.6)

By substituting (8.6) into the expression for the full many-body Hamiltonian, Eq. (2.8), we
arrive at the representation

ĤTD2M =
∑

k,q=L,R

b̂†k(t)b̂q(t)hkq(t) +
1

2

∑

k,s,l,q=L,R

b̂†k(t)b̂
†
s(t)b̂l(t)b̂q(t)Wksql(t), (8.7)

of the full two-mode Hamiltonian, with the matrix elements defined in Eqs. (2.10). It will be
useful to note that the interaction matrix elements can always be written as

Wksql(t) = 〈φk|Ŵsl|φq〉 (8.8)

using the definition (3.7) of Wsl(x, t). As an interaction potential we choose W (x − x′) =
λ0δ(x − x′) and define

J(t) = −hLR(t) = −hRL(t)∗,

ǫk(t) = hkk(t),

Ukk(x, t) = Wkk(x, t)

Ukkkk(t) = 〈φk|Ûkk|φk〉, (8.9)

for k = L, R. We note that if only the Wannier functions of the lowest band are used, ν = 1
in the ansatz (8.1) for the time-dependent Wannier functions, all of the time-dependent
parameters defined above reduce to those of the time-independent BH model, ULLLL(t) =
URRRR = U, J(t) = J, ǫL(t) = ǫR(t) = ǫ, as defined in Sec. 4.1. Neglecting all off-diagonal
terms in the two-body part of Eq. (8.7) we arrive at the TDBH Hamiltonian

ĤTDBH = −J(t) b̂†L(t)b̂R(t) − J∗(t) b̂†R(t)b̂L(t)

+ǫL(t) b̂†L(t)b̂L(t) + ǫR(t) b̂†R(t)b̂R(t)

+ULLLL(t) b̂†L(t)b̂†L(t)b̂L(t)b̂L(t)

+URRRR(t) b̂†R(t)b̂†R(t)b̂R(t)b̂R(t). (8.10)
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We will now derive equations of motion for the coefficients {C~n(t)} and the time-dependent
Wannier functions φL,R(x, t) by requiring stationarity of the action integral

S [{C~n}, {dkα}] =

∫
dt

{〈
Ψ

∣∣∣∣ĤTDBH − i
∂

∂t

∣∣∣∣ Ψ

〉
−

∑

m,n=L,R

µmn(t) [〈φm|φn〉 − δmn]

}
(8.11)

with respect to variations of the coefficients {C~n(t)} and the local orbital coefficients {dkα(t)}.
Here we have used the Hamiltonian ĤTDBH in S, but of course also the full two-mode
Hamiltonian ĤTD2M can be used. Note that the Lagrange multipliers µLR, µRL are actually
superfluous because Eq. (8.3) already ensures orthogonality between the orbitals φL and φR

by construction.

8.2.1 Variation with respect to the coefficients C∗
~n(t)

To take the variation with respect to the expansion coefficients C∗
~n(t) we rewrite the first part

of the integrand of (8.11) as

〈
Ψ

∣∣∣∣ĤTDBH − i
∂

∂t

∣∣∣∣Ψ
〉

=
∑

~n

C∗
~n

[∑

~n′

〈
~n; t

∣∣∣∣ĤTDBH − i
∂

∂t

∣∣∣∣~n
′; t

〉
C~n′ − i

∂C~n

∂t

]
(8.12)

and require stationarity of the action integral (8.11) with respect to the coefficients C∗
~n(t):

0 =
δS

δC∗
~n(t)

⇐⇒
∑

~n′

〈
~n; t

∣∣∣∣ĤTDBH − i
∂

∂t

∣∣∣∣~n
′; t

〉
C~n′ = i

∂C~n

∂t
(8.13)

Defining the time-dependent matrix H(t) by

H~n~n′(t) =

〈
~n; t

∣∣∣∣ĤTDBH − i
∂

∂t

∣∣∣∣~n
′; t

〉
. (8.14)

and collecting all coefficients C~n(t) in a vector C(t), Eq. (8.12) takes on the form

H(t)C(t) = i
∂C(t)

∂t
. (8.15)

The time-evolution of the coefficient vector C is unitary if the matrix H(t) is Hermitian. Since
the Hamiltonian ĤTDBH is a hermitian operator the only part that needs to be discussed is〈
~n; t

∣∣i ∂
∂t

∣∣~n′; t
〉
. When acting on permanents the time derivative can be written as

i
∂

∂t
=

∑

k,q=L,R

b̂†k b̂q

(
i
∂

∂t

)

kq

, (8.16)

where (
i
∂

∂t

)

kq

= i

∫
dx φk(x, t)∗

∂φq(x, t)

∂t
(8.17)

The normalization condition i d
dt〈φk|φq〉 = 0, then implies that

(
i ∂
∂t

)
kq

=
(
i ∂
∂t

)∗
qk

and hence
that the matrix H is hermitian. The time-evolution of the coefficient vector C is therefore
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unitary. Note that Eq. (8.2) implies

(
i
∂

∂t

)

LR

=

(
i
∂

∂t

)

RL

= 0 (8.18)

and hence the expansion (8.16) can only have non-zero matrix elements for k = q, i.e. on the
diagonal.

8.2.2 Variation with respect to the local orbital coefficients d∗
kα

(t)

In order to derive equations of motion for the time-dependent Wannier functions it is helpful

to express the expectation value
〈
Ψ

∣∣∣ĤTDBH − i ∂
∂t

∣∣∣ Ψ
〉

in a form that allows for a direct

functional derivative with respect to d∗kα
(t). Defining

hkαqβ
=

〈
φkα

∣∣∣ĥ
∣∣∣ φqβ

〉

Ukαkβkγkδ
= λ0

∫
dxφ∗

kα
(x)φ∗

kβ
(x)φkδ

(x)φkδ
(x) (8.19)

and using the expressions (2.33) and (2.34) for the first and second order RDMs we find

〈
Ψ

∣∣∣∣ĤTDBH − i
∂

∂t

∣∣∣∣ Ψ

〉
=

∑

k,q

ν∑

α,β

ρkq(t) d∗kα
(t)

(
hkαqβ

− i
d

dt

)
dqβ

(t)

+
∑

k

∑

αβγδ

ρkkkk(t) d∗kα
(t)d∗kβ

(t)Ukαkβkγkδ
dkγ (t)dkδ

(t), (8.20)

We write ∂
∂tφq(x, t) ≡ φ̇q(x, t) and note that dkα(t) = 〈φkα |φq〉. Requiring stationarity of the

action with respect to variations of the local orbital coefficients, 0 = δS
δd∗

kα
(t) , results in

∑

q=L,R

ρLq〈φLα |ĥ|φq〉 + ρLLLL〈φLα |ÛLL|φL〉 = µLL〈φLα |φL〉 + iρLL〈φLα |φ̇L〉
∑

q=L,R

ρRq〈φRα |ĥ|φq〉 + ρRRRR〈φRα |ÛRR|φR〉 = µRR〈φRα |φR〉 + iρRR〈φRα |φ̇R〉 (8.21)

for α = 1, . . . , ν. As expected on the basis of Eq. (8.3), the superfluous Lagrange multipliers
µLR and µRL do not appear in the set of equations (8.21). The remaining Lagrange multipliers
µLL and µRR can be determined from Eqs. (8.21) as

µLL =
ν∑

α=1

〈φL|φLα〉µLL〈φLα |φL〉

= ρLL

(
hLL − i〈φL|φ̇L〉

)
+ ρLRhLR + ρLLLLULLLL (8.22)
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and analogously

µRR =
ν∑

α=1

〈φR|φRα〉µRR〈φRα |φR〉

= ρRR

(
hRR − i〈φR|φ̇R〉

)
+ ρRLhRL + ρRRRRURRRR (8.23)

We now define the projectors

P̂k =
ν∑

β=1

|φkβ
〉〈φkβ

| − |φk〉〈φk|, k = L, R (8.24)

and substitute the expressions (8.22),(8.23) for the Lagrange multipliers into (8.21) and obtain

iρLL〈φLα |P̂L|φ̇L〉 = 〈φLα |P̂L


 ∑

q=L,R

ρLqĥ|φq〉 + ρLLLLÛLL|φL〉




iρRR〈φRα |P̂R|φ̇R〉 = 〈φRα |P̂R


 ∑

q=L,R

ρRqĥ|φq〉 + ρRRRRÛRR|φR〉


 . (8.25)

Multiplying each of these two equations from the left with
∑

α |φkα〉 results in

iρLLP̂L|φ̇L〉 = P̂L


 ∑

q=L,R

ρLqĥ|φq〉 + ρLLLLÛLL|φL〉




iρRRP̂R|φ̇R〉 = P̂R


 ∑

q=L,R

ρRqĥ|φq〉 + ρRRRRÛRR|φR〉


 . (8.26)

In this form the equations for the time-dependent Wannier functions of the BH model are
hard to solve. Fortunately, it is possible to simplify Eqs. (8.26) by shifting the phase of φL

and φR as follows. We define

|φ̃k〉 ≡ e−
R t dt′〈φk|φ̇k〉|φk〉 (8.27)

for k = L, R. In order to indicate that φ̃k is to be used instead of φk in any matrix element or
operator we will write k̃ instead of k in the following. Using the fact that 〈φk|φ̇k〉 = −〈φk|φ̇k〉∗
it is then easy to verify that

P̂k|φ̇k〉 = e+
R t dt′〈φk|φ̇k〉| ˙̃

φk〉
ρkqĥ|φq〉 = e+

R t dt′〈φk|φ̇k〉ρk̃q̃ĥ|φq̃〉

ρkkkkÛkk|φk〉 = e+
R t dt′〈φk|φ̇k〉ρk̃k̃k̃k̃Ûk̃k̃|φk̃〉

P̂k = P̂k̃. (8.28)
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Substituting Eqs. (8.28) into (8.26) and dropping the tilde we thereby arrive at a more
tractable form of the orbital equations of the TDBH model

i|φ̇L〉 = P̂L

[
ĥ|φL〉 +

ρLR

ρLL
ĥ|φR〉 + ρLLLLÛLL|φL〉

]

i|φ̇R〉 = P̂R

[
ĥ|φR〉 +

ρRL

ρRR
ĥ|φL〉 + ρRRRRÛRR|φR〉

]
. (8.29)

The equations of motion (8.29) ensure that at each time step the change of any orbital is or-
thogonal to itself. The solution of the equations (8.29) is much simpler than that of Eqs. (8.26)
because projectors appear now only on the right-hand side. Furthermore, Eqs. (8.29) imply
that (

i
∂

∂t

)

LL

=

(
i
∂

∂t

)

RR

=

(
i
∂

∂t

)

LR

=

(
i
∂

∂t

)

RL

= 0, (8.30)

which greatly simplifies the evaluation of the matrix H.

8.2.3 Remarks on the time-dependent Bose-Hubbard model

In the previous section we employed an ansatz (8.5) for the many-body wave function, which
allowed the Wannier functions to depend on time. The ansatz (8.5) is the most general
ansatz possible that can be constructed from two lattice site localized orbitals. By employing
the principle of least action we then derived coupled equations of motion for the coeffi-
cients {C~n}(t) of the many-body wave function and the time-dependent Wannier functions
φL(x, t) and φR(x, t). For any given initial state, consisting of coefficients {C~n(0)} and or-
bitals φL(x, 0), φR(x, 0) the solution of Eq. (8.15) together with Eqs. (8.29) is the variationally
optimal answer to the many-boson problem within the framework of the BH Hamiltonian.

For the TDBH model the number of local orbital coefficients ν should always be chosen so
large that the results do not depend on its precise value. However, if the Wannier functions φL

and φR in the TDBH model are restricted to the lowest band by setting ν = 1 in Eq. (8.1), the
TDBH model reduces to the BH model. As is well known, the BH model has only one relevant
parameter, the ratio U/J which is constant in time and within the BH model the dynamics of
all N -boson systems with the same ratio U/J is identical. Meanwhile, the TDBH model has
four real parameters ULLLL(t), URRRR(t), ǫL(t) and ǫR(t) and one complex parameter J(t),
all of which are time-dependent and are implicitly determined by the variational principle.
Thus, time-dependent Wannier functions allow for a much less restricted dynamics within
the framework of the Bose-Hubbard model, whilst keeping the appealing picture of bosons
hopping from one site to another.

Another point worth mentioning is the possibility to use time-dependent Wannier functions
as a test for the validity of any given lattice model that employs time-independent Wannier
functions. As mentioned earlier, the number of many-body basis functions of a bosonic
lattice model is

(
N+κM−1

N

)
. This number does not grow if each of the κM Wannier functions

is allowed to depend on time. The additional cost of letting Wannier functions become
time-dependent consists of solving κM equations of motion for the Wannier functions, which
depend on the coefficients {C~n(t)} and vice versa. This additional cost is usually small
compared to the cost of including another band, which means κ → κ+1. The validity of any
given lattice model can therefore be tested by comparing the results using time-dependent



82 Time-dependent Wannier functions

and time-independent Wannier functions. If the results differ, the time-independent lattice
model is inapplicable. The reverse is of course not necessarily true.

8.2.4 Implementation of the time-dependent Bose-Hubbard model

The solution of the TDBH model requires the simultaneous solution of Eqs. (8.29) and
(8.15) using Eqs. (8.30). The coefficients {C~n}(t) in Eq. (8.15) depend on the time-dependent
Wannier functions through the matrix elements J(t), ǫL(t), ǫR(t), ULLLL(t) and URRRR(t). In
turn the equations (8.29) depend on the coefficients {C~n}(t) via the matrix elements ρjk

and ρkkkk as can be seen from the identities collected in Appendix D. An implementation
of this coupled system of equations is possible and proceeds along the same lines as an
implementation of the MCTDHB equations [47, 48]. We will not go further into the details
of the implementation and refer the reader to Refs. [47, 48].

Obviously, the propagation of Eqs. (8.29) is ill-defined as soon as either ρLL or ρRR is zero.
The density matrix will then have to be renormalized to avoid a singularity. As explained in
Ref. [83] such a regularization affects only the propagation of orbitals in which no particles
reside and is therefore without effect on observable quantities. This has also been confirmed
in numerical tests of the present model. For the double-well system considered here the
regularization is necessary if the system is in either of the states |N, 0〉 or |0, N〉, i.e., when
all particles are in the left or in the right well.

8.3 Example of dynamics using time-dependent Wannier functions

In this section we illustrate explicitly how the usage of time-dependent Wannier functions
improves a lattice model. We choose a quantum quench scenario in which the interaction
strength is suddenly increased from zero to a finite value.

8.3.1 A double-well potential as a test system

In order to quantify the improvement that results from the use of time-dependent Wannier
functions as opposed to conventional, time-independent ones, we now turn to a specific ex-
ample. As an external trapping potential we choose a double-well with periodic boundary
conditions

V (x) = V0x cos(kx)2 (8.31)

on the interval [−π, π) with k = 1. The recoil energy for a boson of mass m is then given by

Er =
k2

2m
. (8.32)

We are working in dimensionless units in which ~ = m = 1 and therefore Er = 1/2. As
a depth we use V0x = 25Er. In Fig. 8.1 the potential V (x) is shown together with its
single-particle energy levels and the density of the noninteracting ground state. The six
lowest single-particle energy levels are below the barrier: e1 = 4.733Er, e2 = 4.737Er, e3 =
13.531Er, e4 = 13.650Er, e5 = 20.443Er, e6 = 21.601Er. For the Rabi oscillation period we
then find tRabi = π/J = 3025. Using, e.g., the parameters of the experiment in Ref. [176],
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Figure 8.1: Initial state of the quench dynamics. Shown is the density (thick red line) of the initial state
in the double well potential V (x) = 25Er cos2(x) (thick black line). The initial state is the noninteracting
ground state of N = 20 bosons. Also shown are the single-particle energy levels (horizontal black lines) of the
potential. The lowest six energy levels are below the barrier height V (0) = 25Er.

with 87Rb as a boson and a lattice spacing of 600 nm the Rabi oscillation period becomes
tRabi = 150.9 msec.

In the following we will study the dynamics of bosons in this potential and compare the
results of the TDBH model with those of the BH model and the exact many-body Schrödinger
equation, computed using MCTDHB. For the TDBH model we use ν = 10 local orbitals per
site, although less (about five) are necessary to obtain convergence within the model.

8.3.2 Quantum quench dynamics in a double-well potential

When a quantum system is initially prepared in the ground state of some Hamiltonian the
dynamics due to a sudden change in one of the parameters of the Hamiltonian is known as
a quantum quench. Recently, quantum quenches using ultracold bosons have received a lot
of attention in the context of superfluid to Mott insulator transitions [169, 170] as well as
thermalization and integrability [171–175].

Here, we consider a quench scenario in the double-well potential V (x) and note that such a
quench can be implemented experimentally by using Feshbach resonances. As an initial state
we use N = 20 bosons in the noninteracting ground state of V (x).
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Figure 8.2: Quantum quench dynamics in a double well. Shown are the natural orbital occupations following
a quench from λ = 0 (U/J = 0) to λ = 0.6 (U/J = 25.8) as a function of time. The results of the Bose-
Hubbard model using time-independent (magenta lines), and time-dependent (black lines) Wannier functions
are depicted together with those of the numerically exact solution of the many-body Schrödinger equation (blue
lines). If time-independent Wannier functions are used the Bose-Hubbard results deviate from the exact ones
after short times. If time-dependent Wannier functions are used the Bose-Hubbard results follow the exact
ones closely. Starting from a fully condensed state the dynamics is complex and shows oscillations between
partially and fully fragmented states.

As in the previous Chapters we use the interaction parameter λ = λ0(N−1) to characterize
the interaction strength. The quench is implemented as a sudden change of the interaction
parameter from λ = 0 to λ = 0.6. Within the Bose-Hubbard model this corresponds to a
change from U/J = 0 to U/J = 25.8. The initial state is fully condensed n(1) = N , and
therefore superfluid. We note that the BH ground state at the final interaction strength
is about 20% fragmented. In terms of the Lieb-Liniger parameter γ, the final interaction
strength is such that γN2 < 1.56, which is in the 1D Gross-Pitaevskii regime according to
the classification scheme in Sec. 2.11. The criteria (4.16) and (4.17) for the applicability
of the Bose-Hubbard model are well fulfilled and give NU/egap ≈ 1/8 and µ/egap ≈ 1/35
for the state after the quench (with µ measured from the middle of the lowest band). The
symmetry of the problem implies that J(t) remains real, ǫL(t) = ǫR(t) ≡ ǫ(t), and ULLLL(t) =
URRRR(t) ≡ U(t) at all times, which reduces the number of parameters in the TDBH model
for this problem from six to three.

In Fig. 8.2 the natural orbital occupations n
(1)
i of the TDBH model are shown together

with those of the conventional BH model and those of the many-body Schrödinger equation
obtained using MCTDHB. The MCTDHB results for the two largest natural orbital occupa-
tions using M = 2 and M = 4 orbitals coincide on the time-scale shown. For the remaining

two natural orbital occupation numbers of the M = 4 computation we find n
(1)
i /N < 4×10−5
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Figure 8.3: Quench dynamics in a double well as in Fig. 8.2. Shown is the one-particle momentum dis-
tribution of the exact solution (blue line), the Bose-Hubbard model using time-dependent (black line) and
time-independent (magenta line) Wannier functions at different times. The initial state is fully coherent and
for some time the three results have similar momentum distributions (not shown). Differences between the
results occur at later times whenever their respective natural orbital occupations differ, compare Fig. 8.2. The
Bose-Hubbard result using time-dependent Wannier functions is always much closer to the exact one than the
one using time-independent Wannier functions.

at all times. Thus, the results have converged, and the M = 4 results constitute numerically
exact results of the many-body Schrödinger equation. The exact dynamics shows rapid os-
cillations of the fragmentation. The TDBH results follow the exact ones closely for many
oscillations before deviating noticeably. These deviations prove that higher bands and/or
more of the neglected terms have to be taken into account in the TDBH model in order to
achieve quantitative agreement. The results of the conventional BH model deviate after much
shorter times from the exact ones, which proves the necessity to use time-dependent Wannier
functions.

While in real space hardly any dynamics is visible, a complex dynamics occurs in momentum
space. Fig. 8.3 shows the one-particle momentum distributions of the exact, the TDBH
and the BH result at t = 0, where they all coincide and at later times where differences
occur. Whenever the natural orbital occupations of the results are close also their one-
particle momentum distributions ρ(k; t) ≡ ρ(1)(k|k; t), defined in Sec. 2.9, are very similar.
The results of the BH model are obviously very different from those of the TDBH model
and the exact ones, which are always nearby. The differences occur whenever the respective
natural orbital occupations differ.

We have thereby shown that the use of time-dependent Wannier functions greatly improves
the BH model. Of course the initial states of the BH model and the TDBH model have to
be identical for this statement to be meaningful. The variational principle then ensures that
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Figure 8.4: Time-dependence of the hopping J(t) and the on-site interaction matrix element U(t) of the Bose-
Hubbard model with time-dependent Wannier functions for the quench in Fig. 8.2. Top: the ratio U(t)/J(t)
oscillates rapidly with a large amplitude between about 26 and 20. Note the time scale. The ratio is always
considerably smaller than its initial value (dashed line). Bottom: The ratios J(t)/J(0) and U(t)/U(0) oscillate
in time. J(t) is always larger, U(t) always smaller than its initial value. The oscillations are due to a rapid
expansion and contraction of the density following the quench. J(t) varies over almost 25%, U(t) over about
4% of its initial value. The respective BH results with time-independent Wannier functions are constant in
time and are not shown.

the orbitals φL(x, t) and φR(x, t) are optimal at any point in time. Nevertheless, we note
that even the TDBH model does not reproduce the exact many-body Schrödinger dynamics
precisely.

The ratio U/J is the only relevant parameter of the BH model if time-independent Wannier
functions are employed. In the present example the value for U/J of the BH model after the
quench is U/J = 25.8 On the other hand the TDBH model allows the wave function to evolve
more freely and U(t)/J(t) varies in time. We are now in the position to assess to what extent
the dynamics in the BH model is restricted by the assumption of time-independent Wannier
functions. In Fig. 8.4 the ratio U(t)/J(t) (top) and the time-dependent matrix elements U(t)
and J(t) (below) of the TDBH model relative to their initial values are shown. Both U(t)
and J(t) oscillate at a high frequency within bands. Note the time scale. The oscillations
are caused by the shock imposed on the system through the quench. Just after the quench
the density in each well expands due to the repulsive interaction between particles and hence
U(t) decreases, while J(t) increases. J(t) is very sensitive to these breathing oscillations. J(t)
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varies over almost 25%, U(t) over about 4%. As a result the ratio U(t)/J(t) also varies. Over
short periods of time U(t)/J(t) varies between 26 and 20, a range of about 25%! Meanwhile, if
time-independent Wannier functions are used the U and J are time-independent and the ratio
U/J = 25.8 is constant at all times. This clearly demonstrates the need for time-dependent
Wannier functions.

8.4 Conclusions

We have generalized the concept of Wannier functions by allowing Wannier functions to be
time-dependent. This additional degree of freedom can be exploited by deriving equations
of motion from the time-dependent variational principle. The concept is general and can be
applied to any lattice model that relies on Wannier functions. The additional cost of using
time-dependent instead of time-independent Wannier functions in a lattice model is small
compared to the cost of including higher bands. For any given initial state and any number
of particles, lattice sites and bands, the use of time-dependent Wannier functions results in
the variationally optimal answer within a given lattice model. Explicitly, we have derived
equations of motion for the Bose-Hubbard model with time-dependent Wannier functions.
As a numerical example we have considered a quantum quench scenario. By comparison
with the exact dynamics of the many-body Schrödinger equation we have shown that time-
dependent Wannier functions greatly improve the Bose-Hubbard model here. This is even
more surprising as the advantages of time-dependent Wannier functions were not even nearly
exploited in this example. The initial state was taken to be noninteracting and the dynamics
was heavily restricted by the symmetry of the potential and initial state. Time-dependent
Wannier functions are ideally suited for problems where these conditions are violated. In the
context of the Bose-Hubbard model it will therefore be particularly interesting to investigate
the improvement that can be obtained for example in asymmetric double-well potentials or
lattice potentials with an additional harmonic confinement. Similarly, the effects of disorder
are often studied within the framework of lattice models. Such models will greatly benefit
from time-dependent Wannier functions. Another interesting option is to study the quench
dynamics in the double-well potential here, but using a different initial state. It will also
be interesting to apply the concept of time-dependent Wannier functions to the fermionic
Hubbard model and to investigate the improvement that can be obtained there.





Chapter 9

Final remarks and outlook

In this thesis, trapped Bose-Einstein condensates were investigated based on the interacting
many-body Schrödinger equation. Studies of this kind are (still) rare due to their computa-
tional complexity. Here, numerically exact results were obtained for the dynamics of up to one
hundred identical bosons. This system size is unprecedented in literature. For the solution
of the time-dependent many-body Schrödinger equation the recently developed MCTDHB
method was used. Whenever appropriate, the results of the many-body Schrödinger equation
were compared to the standard methods of the field, Gross-Pitaevskii theory and the Bose-
Hubbard model. Thereby it was shown that the range of validity of these approximations is
far more limited than what is commonly believed, and that no reliable validity criteria for
these approximations exist to date. The true many-body physics of ultracold bosons turns
out to be much richer than what can be anticipated based on Gross-Pitaevskii theory and the
Bose-Hubbard model. This is even more so, as we have treated one of the conceptually sim-
plest cases only, namely identical bosons trapped in a one-dimensional double-well potential.
Therefore, the phenomena discovered here can only give a glimpse of what is to be expected
in more complicated systems, e.g. optical lattices, higher dimensions, mixtures of bosons,
boson-fermion mixtures and so on. Apart from the newly discovered physical phenomena, we
have presented a conceptual innovation in this work: time-dependent Wannier functions. We
have shown that lattice models can be greatly improved by letting the Wannier functions of
a lattice model become time-dependent. The Bose-Hubbard model was used as an example
to demonstrate this. However, the concept is general and can be applied to any lattice model
that employs Wannier functions. It will be interesting to investigate how much other lattice
models can be improved by using time-dependent Wannier functions. We have not included
any treatment of higher dimensional systems in this thesis, but work is in progress. Another
very interesting direction that we are currently pursuing is to map out explicitly the ranges
of validity of Gross-Pitaevskii theory and the Bose-Hubbard model. Also here work is still in
progress and results will soon be available.





Appendix A

IMEST-algorithm for 1D, 2D and 3D systems

A.1 Introduction

Often the two-body interaction potential that appears in the Hamiltonian of the many-body
Schrödinger equation depends only on the distance between the particles. In the following
we restrict the discussion to distance-dependent potentials. Note that, e.g. dipole-dipole
interactions are not of this type unless all dipoles are aligned and confined to a plane. If
a time-dependent single-particle basis is used, as for example in Gross-Pitaevskii theory or
MCTDHB, the interaction matrix elements have to be evaluated at every time step of a prop-
agation. In two and three spatial dimensions the evaluation of these integrals can become the
performance limiting factor, especially when a long-range interaction potential is employed.
For purely distance-dependent interactions the evaluation of interaction matrix elements can
be greatly sped up by making explicit use of the functional form of the interaction poten-
tial and the fast Fourier transform (FFT). Also the evaluation of the matrix elements of the
one-body Hamiltonian can be sped up by employing the FFT. The FFT is widely used tech-
nique in the propagation of nonlinear wave equations (known as split-step Fourier method)
However, this does not seem to be the case for the evaluation of interaction matrix elements
of the full many-body Hamiltonian. We therefore give here an algorithm that is ready to be
implemented and compare its performance to a brute force approach.

A.2 Interaction Matrix Evaluation by Successive Transforms

(IMEST)

We work in D dimensions and consider an interaction potential W (|y|), where |y| = |r − r′|
is the distance between two particles located at r = (x1, . . . , xD) and r′ = (x′

1, . . . , x
′
D).

Consider the matrix element

Wksql(t) =

∫ ∫
dr′drφ∗

k(r, t)φ
∗
s(r

′, t)W (r − r′)φq(r, t)φl(r
′, t). (A.1)

It is possible to define a local time-dependent potential Wsl(r, t) by

Wsl(r, t) =

∫
dr′ φs(r

′, t)∗W (r − r′)φl(r
′, t) (A.2)

For any given Wsl(r, t) the evaluation of the matrix elements Wksql(t) then reduces to a single
integral over r:

Wksql(t) =

∫
drφ∗

k(r, t)Wsl(r, t)φq(r, t). (A.3)
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Any two particle interaction potential of the form W (r, r′) = W (r−r′) has a Fourier transform
of the following form:

W (r − r′) =
1

(2π)D/2

∫
dk Ŵ (k)eik(r−r′) (A.4)

Ŵ (k) =
1

(2π)D/2

∫
dy W (y)e−iky. (A.5)

Substituting Eqs. (A.4) in the expression Eq. (A.2) results in

Wsl(r, t) =

∫
dr′ φs(r

′, t)∗
[

1

(2π)D/2

∫
dkŴ (k)eik(r−r′)

]
φl(r

′, t) (A.6)

=

∫
dk

[
1

(2π)D/2

∫
dr′φ∗

s(r
′, t)φl(r

′, t)e−ikr′
]

Ŵ (k)eikr (A.7)

If we define the function
fsl(r

′, t) = φ∗
s(r

′, t)φl(r
′, t) (A.8)

we see that the Fourier transform Ŵsl(k, t) of Wsl(r, t) can be expressed as

Ŵsl(k, t) = (2π)D/2f̂sl(k, t)Ŵ (k) (A.9)

Wsl(r, t) is then given by the inverse Fourier transform of Wsl(k, t):

Wsl(r, t) =
1

(2π)D/2

∫
dk Ŵsl(k, t)eikr. (A.10)

This way of evaluating Wsl(r, t) requires three Fourier transformations: one Fourier transform

of the interaction potential Ŵ (k), one of the function fsl(r
′, t) and one back transform of the

function Ŵsl(k, t). Numerically, Fourier transforms can be efficiently evaluated using FFT-
algorithms. In practice only two Fourier transforms are necessary at each time step since the
Fourier transform of the interaction potential Ŵ (k) does not depend on time and has to be
computed only once.

We now briefly outline how the evaluation of one-body matrix elements can be done effi-
ciently using Fourier transforms. Consider the one-body part of the many-body Hamiltonian

h(r) = −1

2

∂2

∂r2
+ V (r). (A.11)

A matrix element hkq(t) as defined in Eq. 2.10 can then be evaluated as follows.

hkq(t) =

∫
dr

(
φ∗

k(r, t) −
1

2

∂2

∂r2
φq(r, t) + φ∗

k(r, t)V (r)φq(r, t)

)
. (A.12)

The second part of the integral is easily evaluated in real space and will not be discussed any
further. There are many different ways to evaluate the first part of the integral that contains
the Laplacian in D dimensions. Here we choose to transform the orbital φq to momentum
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space, where the representation of the Laplacian becomes a diagonal matrix:

∫
drφ∗

k(r, t)
∂2

∂r2
φq(r, t) =

1

(2π)D/2

∫
dr

∫
dkφ∗

k(r, t)(−k2)φq(k, t)eikr (A.13)

Defining Φq(k, t) ≡ −k2φq(k, t), substituting

Φq(k, t) =
1

(2π)D/2

∫
dr′ Φq(r, t)e

−ikr (A.14)

into (A.13) and using the identity δ(r − r′) = (2π)D
∫

dk eik(r−r′) we find

∫
drφ∗

k(r, t)
∂2

∂r2
φq(r, t) =

∫
drφ∗

k(r, t)Φq(r, t). (A.15)

This way of evaluating the action of the Laplacian requires two Fourier transforms, which
can be efficiently implemented using the FFT algorithm.

A.3 Theory of the IMEST-algorithm in finite, discrete space

Let us assume that for any fixed r the integrand in Eq. (A.2) decays sufficiently rapidly
with |r′ − r| to approximate the integral in Eq. (A.2) by an integral over the box V =
[a1, b1]× · · ·× [aD, bD]. Without loss of generality we can assume that aj = 0 and bj = Lj for
j = 1, · · · , D. In the following we therefore work with

V = [0, L1] × · · · × [0, LD] (A.16)

. If r and r′ are restricted to V then y = r−r′ is restricted to V = [−L1, L1]×· · ·×[−LD, LD].
The orbitals φs(r),φl(r) and the interaction potential W (y) are therefore not defined on the
same domain if the integral in Eq. (A.2) is taken over V only. However, if W (y) decays

sufficiently rapidly at large distances |y| → ∞, the Fourier transform Ŵ (k) of W (r) can be
approximated by

Ŵ (k) =
1

(2π)D/2

∫ L1/2

−L1/2
. . .

∫ LD/2

−LD/2
dyW (y)e−iky. (A.17)

If we define the function w(y) = W (y1 − L1/2, . . . , yD − LD/2), then Eq. (A.17) can be
expressed as an integral over V :

Ŵ (k) =

∫

V
dyw(y)e−iky. (A.18)

The Fourier transform Ŵ (k) is then related to that of w(r) by

Ŵ (k) = ŵ(k)e+i
PD

j=1 kj
Lj
2 . (A.19)

We now make the transition to discrete space. For j = 1, ..., D we define nj grid points
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along each coordinate axis xj by

xαj
= αj∆xj , αj = 0, . . . , nj − 1, (A.20)

with ∆xj = Lj/nj . For simplicity we assume that all nj are even. Similarly, we define a grid
in momentum space by

kγj
= γj ∆kj , γj = −nj/2, . . . , nj/2 − 1, (A.21)

for j = 1, · · · , D, where ∆kj = 2π/Lj . If z(r) is a function of r we write

zα1α2...αD
= z(xα1 , . . . , xαD

). (A.22)

We then collect all points zα1α2...αD
in a single vector z. We then define the elements z̃β1β2...βD

of the D-dimensional forward discrete Fourier transform (DFT), F−, of z by

z̃β1β2...βD
=

1√
n1n2...nD

n1−1∑

α1=0

· · ·
nD−1∑

αD=0

zα1α2...αD
e−2πiα1β1/n1 . . . e−2πiαDβD/nD

= F−
β1β2...βD

(z), βj = 0, ..., nj − 1, j = 1, ..., D. (A.23)

With this definition of the forward DFT the elements of the backward DFT, F+, are given
by

zα1α2...αD
=

1√
n1n2...nD

n1−1∑

β1=0

· · ·
nD−1∑

βD=0

z̃β1β2...βD
e+2πiα1β1/n1 . . . e+2πiαDβD/nD

= F+
α1α2...αD

(z̃), αj = 0, ..., nj − 1, j = 1, ..., D. (A.24)

The elements z̃β1β2...βD
are periodic in all indices z̃β1...βj ...βD

= z̃β1...βj+nj ...βD
for j = 1, . . . , D.

The value of the Fourier transform ŵ(k) at the grid point k = (kγ1 , ..., kγD
) is then approxi-

mated by its DFT value

ŵ(β1∆k1, . . . , βD∆kD) ≈ ŵβ1β2...βD
= ∆V

√
n

(2π)D/2
w̃β1β2...βD

, (A.25)

where ∆V = ∆x1∆x2...∆xD and n = n1n2...nD. Due to the periodicity of z̃β1...βj ...βD
the first

nj/2 elements of the index βj refer to positive momenta kβj
= 0, ..., (nj/2 − 1)∆kj , and the

following nj/2 elements refer to negative momenta kβj
= −(nj/2)∆kj , ...,−∆kj . By defining

ν = β1 + β2 + ... + βD and using Eqs. (A.19) and (A.25) we find for the DFT approximation

of Ŵ (k)

Ŵ (β1∆k1 . . . βD∆kD) ≈ Ŵβ1β2...βD
= ∆V

√
n

(2π)D/2
w̃β1β2...βD

(−1)ν (A.26)

at k = (kγ1 , ..., kγD
). We collect the values of the function fsl(r, t) at the grid points r =

(xα1 , · · · , xαD
) in a single vector f(t) with elements fslα1α2···αD

(t). Analogous to Eq. (A.25)
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one finds

f̂slβ1β2···βD
(t) = ∆V

√
n

(2π)D/2
f̃slβ1β2···βD

(t) (A.27)

Ŵslβ1β2···βD
(t) = (2π)D/2f̂slβ1β2···βD

(t)Ŵβ1β2···βD

= (∆V )2
n

(2π)D/2

[
(−1)ν f̃slβ1β2···βD

(t)w̃β1β2···βD

]
(A.28)

as DFT approximations to the Fourier transforms f̂sl(k, t) and Ŵsl(k, t) at k = (kγ1 , ..., kγD
).

We collect all values f̂slβ1β2···βD
(t) in a vector f̂sl(t) and all values Ŵslβ1β2···βD

(t) in a vector

Ŵsl(t). It remains to transform Ŵsl(t) back to real space. The DFT value of Wsl(r, t) at
r = (xα1 , ..., xαD

) is then given by

Wslα1α2...αD
(t) = ∆k1 · · ·∆kD

√
n

(2π)D/2
F+

α1α2...αD
(Ŵsl(t)) (A.29)

We collect all elements Wslα1α2...αD
(t) in a vector Wsl(t) and define the vector ṽ by

ṽβ1β2...βD
=

√
n(−1)νw̃β1β2...βD

(A.30)

The elements W̃slβ1β2...βD
(t) of the DFT of Wsl are then given by

W̃slβ1β2...βD
= ṽβ1β2...βD

f̃slβ1β2...βD
(t)∆V (A.31)

and the vector Wsl(t) is obtained by applying the backward DFT F+ to W̃sl(t)

Wsl(t) = F+(W̃sl(t)). (A.32)

The IMEST-algorithm to evaluate Wsl(t) and Wksql(t) is summarized in Algorithm 1.

A.4 Performance test of the IMEST-algorithm

In this section we present a performance analysis of the IMEST-algorithm in one, two and
three dimensions. The accuracy and the speed of the IMEST-algorithm are discussed. As a
benchmark we choose the computation of the vector Wsl(t). We choose to work on a grid
with equal numbers nj = n1/D of grid points along each coordinate. For comparison we
compute Wsl(t) also by evaluating the integral in Eq. (A.2) at each grid point r separately.
We refer to the latter method as brute force (BF) evaluation.

The complexity of the IMEST-algorithm is expected to be about O(n logn) since two FFTs
are performed. The brute force algorithm on the other hand is expected to have a complexity
of O(n2) since for each of the n grid points one integral over n grid points has to be evaluated.
Fig. A.1 shows the average CPU-time needed for the evaluation of the vector Wsl(t) as a
function of nj on an AMD dual-core Opteron processor at 2.6 GHz. The times are obtained by
averaging over fifty evaluations of Wsl. Even in D = 1 dimension with nj = 8 grid points the
IMEST-algorithm is faster than the brute force algorithm. For larger grid sizes the IMEST
algorithm is orders of magnitude faster. The advantages of using the IMEST-algorithm is
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Algorithm 1 IMEST-Algorithm in D-dimensions

Evaluate w = (w0, · · · , wn−1)
Compute w̃ = F−(w)
for m = 0, ..., n − 1 do

evaluate ṽm =
√

n(−1)νw̃m with ν = β1 + ... + βD

end for

Store ṽ permanently

Choose orbitals φs and φl

for m = 0, ..., n − 1 do

evaluate fslm(t) = φs(xm, t)∗φl(xm, t)
end for

Compute f̃sl = F−(fsl(t))
for m = 0, ..., n − 1 do

evaluate ũslm(t) = ∆V f̃slm(t)ṽm

end for

Compute Wsl(t) = F+(usl(t))
Choose orbitals φk and φq

Compute Wksql(t) = ∆V
∑n−1

m=0 φ∗
k(xm)Wslm(t)φq(xm, t)

even more striking if D > 1 since the total number of grid points increases exponentially with
D. In a quantum dynamics computation the vector Wsl(t) has to be evaluated at every time
step. It is therefore possible to estimate from Fig. A.1 the limitations that the evaluation
of Wsl(t) puts on the grid size and dimensions that are feasible. If a maximally feasible
CPU-time of tmax = 1s is chosen for the evaluation of Wsl(t) then computations D = 2
and D = 3 are not feasible for nj ≥ 32 grid points, if the brute force algorithm is used.
The IMEST-algorithm makes such computations feasible. In D = 2 dimensions the cost of
evaluating Wsl via the IMEST-algorithm is roughly the same as the cost of evaluating Wsl

in D = 1 via the brute force algorithm.
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Figure A.1: Performance of the IMEST-algorithm and the brute force algorithm. Shown is the average CPU-
time needed for the evaluation of Wsl as a function of the number of grid points in each direction nj , j =
1, . . . , D (see text for details) and different dimensions D = 1, 2, 3. The times are obtained by averaging over
fifty evaluations of Wsl. The CPU-times of the IMEST-algorithm (lines with circles) are always below the
CPU-times of the brute force algorithm (lines with squares). Even in 1D the IMEST-algorithm is orders of
magnitude faster than the brute force algorithm. The larger the dimension the greater is the difference between
the CPU-times of the two algorithms. The CPU-time needed by the IMEST algorithm in 2D is about the
same as that of the brute force algorithm in 1D up to about nj = 256.





Appendix B

p-particle momentum distribution

It can be shown that the p-particle momentum distribution at large momenta is dominated
by contributions of ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) close to the diagonal, i.e. ri ≈ r′i for i =
1, . . . , p. Similarly, the p-particle distribution at low momenta is dominated by the behavior
of ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) on the off-diagonal at large distances between ri and r′i.

The p-particle RDM is related to the p-particle momentum distribution by

ρ(p)(k1, . . . ,kp|k1, . . . ,kp; t) =
1

(2π)Dp

∫
dprdpr′ e−i

Pp
l=1 kl(rl−r′l)

×ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t). (B.1)

The change of variables Ri =
ri+r′i

2 , si = ri − r′i for i = 1, . . . , p in Eq. (B.1) leads to

ρ(p)(k1, . . . ,kp|k1, . . . ,kp; t) =

∫
dps e−i

Pp
l=1 klslγ(p)(s1, . . . , sp; t), (B.2)

where

γ(p)(s1, . . . , sp; t) =

∫
dpR ρ(p)(R1 +

s1

2
, . . . ,Rp +

sp

2
|R1 −

s1

2
, . . . ,Rp −

sp

2
; t) (B.3)

is the average of the value of ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) at distances si between ri and r′i.
From Eqs. (B.2-B.3) it is clear that the p-particle momentum distribution at large momenta
is determined by the behavior of ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) at short distances, whereas at

low momenta the off-diagonal long range behavior of ρ(p)(r1, . . . , rp|r′1, . . . , r′p; t) contributes
the major part.





Appendix C

Matrix elements of the 1
st and 2

nd order RDMs

In this Appendix we list explicitly expressions for the first and second order RDMs of multi-
configurational bosonic [39] wave functions |Ψ(t)〉 =

∑
~n C~n(t) |n1, n2, . . . , nM ; t〉. We also

need a shorthand notation for a reference configuration and relevant excited configurations.
Let the reference configuration be denoted by

|~n; t〉 = |n1, . . . , nk, . . . , ns, . . . , nl, . . . , nq, . . . , nM ; t〉 . (C.1)

Then, the configuration denoted by

∣∣~nq
k; t

〉
= |n1, . . . , nk − 1, . . . , ns, . . . , nl, . . . , nq + 1, . . . , nM ; t〉 (C.2)

differs from |~n; t〉 by an excitation of one particle from the k-th to the q-th orbital;

∣∣∣~nll
kk; t

〉
= |n1, . . . , nk − 2, . . . , ns, . . . , nl + 2, . . . , nq, . . . , nM ; t〉 (C.3)

represents excitations of two particles from the k-th to the l-th orbital;

∣∣∣~nql
kk; t

〉
= |n1, . . . , nk − 2, . . . , ns, . . . , nl + 1, . . . , nq + 1, . . . , nM ; t〉 (C.4)

represents excitations of two particles from the k-th orbital, one to the q-th and the other to
the l-th orbital; and

∣∣∣~nql
ks; t

〉
= |n1, . . . , nk − 1, . . . , ns − 1, . . . , nl + 1, . . . , nq + 1, . . . , nM ; t〉 (C.5)

represents excitations of two particles, one from the k-th to the q-th orbital and a second
particle from the s-th to the l-th orbital. Note that we do not utilize excitation operators to
define the excited configurations atop the reference configuration. Rather, it is convenient for
our needs to employ a nomenclature in which the same ordering of the orbitals φ1, φ2, . . . , φM

as in Eq. (2.15) is kept in all configurations. In this nomenclature the following states are

equivalent:
∣∣∣~nql

ks; t
〉
≡

∣∣∣~nql
sk; t

〉
≡

∣∣∣~nlq
sk; t

〉
≡

∣∣∣~nlq
ks; t

〉
.

With these observations and notations, the elements of the first order RDM ρ(1)(r1|r′1; t)
of the multi-configurational ansatz |Ψ(t)〉 =

∑
~n C~n(t) |~n; t〉 are:

ρkk(t) =
∑

~n

C∗
~nC~nnk,

ρkq(t) =
∑

~n

C∗
~nC~nq

k

√
nk[nq + 1], k 6= q, (C.6)



102 Matrix elements of the 1st and 2nd order RDMs

From the hermiticity of the one-body operator we readily have ρkq(t) = ρ∗qk(t).

The elements of the second order RDM, ρ(2)(r1, r2|r′1, r′2; t), given the multi-configurational
ansatz |Ψ(t)〉 =

∑
~n C~n(t) |~n; t〉 are:

ρkkkk(t) =
∑

~n

C∗
~nC~nnk[nk − 1],

ρkkkq(t) =
∑

~n

C∗
~nC~nq

k
[nk − 1]

√
nk[nq + 1], ,

ρkkll(t) =
∑

~n

C∗
~nC~nll

kk

√
[nk − 1]nk[nl + 1][nl + 2],

ρkssk(t) =
∑

~n

C∗
~nC~nnkns, (C.7)

ρkklq(t) =
∑

~n

C∗
~nC

~nql
kk

√
[nk − 1]nk[nl + 1][nq + 1],

ρkssq(t) =
∑

~n

C∗
~nC~nq

k
ns

√
nk[nq + 1],

ρkslq(t) =
∑

~n

C∗
~nC

~nql
ks

√
nkns[nl + 1][nq + 1],

where it is understood that different indices k, s, q, l do not have the same value. All other
non-vanishing matrix elements can be computed due to the symmetries of the two-body
operator, ρkslq = ρsklq = ρskql = ρksql and its hermiticity, ρ∗kslq = ρlqks.



Appendix D

Matrix elements of the operators ĥ − i ∂
∂t

and Ŵ

In this Appendix we list rules for evaluating matrix elements with permanents [39].

We use the conventions introduced in Appendix C and the time-dependent matrix elements
of the one- and two-body operators with respect to the orbitals given in Eqs. (2.10) and (3.5)
of the main text. The non-vanishing matrix elements of the one-body operator ĥ− i ∂

∂t follow
from:

〈
~n; t

∣∣∣∣ĥ − i
∂

∂t

∣∣∣∣~n; t

〉
=

M∑

l=1

nl

[
hll −

(
i
∂

∂t

)

ll

]
,

〈
~n; t

∣∣∣∣ĥ − i
∂

∂t

∣∣∣∣~n
q
k; t

〉
=

√
nk[nq + 1]

[
hkq −

(
i
∂

∂t

)

kq

]
(D.1)

and the fact that the one-body operator ĥ − i ∂
∂t is self-adjoint,

〈
~n; t

∣∣∣∣ĥ − i
∂

∂t

∣∣∣∣~n
′; t

〉
=

〈
~n′; t

∣∣∣∣ĥ − i
∂

∂t

∣∣∣∣~n; t

〉∗
. (D.2)

The non-vanishing matrix elements of the two-body operator Ŵ follow from:

〈
~n; t

∣∣∣Ŵ
∣∣∣~n; t

〉
=

1

2

M∑

j=1

nj


[nj − 1]Wjjjj +

M∑

{i6=j}=1

niWji{ij}


 ,

〈
~n; t

∣∣∣Ŵ
∣∣∣~nq

k; t
〉

=

=
√

nk[nq + 1]


[nk − 1]Wkkkq + nqWkqqq +

M∑

{i6=k,q}=1

niWki{iq}


 ,

〈
~n; t

∣∣∣Ŵ
∣∣∣~nll

kk; t
〉

=
1

2

√
[nk − 1]nk[nl + 1][nl + 2]Wkkll,

〈
~n; t

∣∣∣Ŵ
∣∣∣~nql

kk; t
〉

=
√

[nk − 1]nk[nl + 1][nq + 1]Wkklq, (D.3)
〈
~n; t

∣∣∣Ŵ
∣∣∣~nql

ks; t
〉

=
√

nkns[nl + 1][nq + 1]Wks{lq}

where it is understood that different indices k, s, q, l do not have the same value and

Wks{lq} = Wkslq + Wksql. (D.4)
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∂t
and Ŵ

The fact that the two-body operator Ŵ is self-adjoint entails
〈
~n; t

∣∣∣Ŵ
∣∣∣~n′; t

〉
=

〈
~n′; t

∣∣∣Ŵ
∣∣∣~n; t

〉∗
.



Appendix E

Best mean-field

The exact many-body wave function of a bosonic system of N particles can always be ex-
panded in an infinite weighted sum over any complete set of permanents of N particles. We
restrict ourselves to stationary states here. In mean-field theory the exact many-body wave
function is approximated by a single permanent, see Sec. 2.4. This single permanent is built
from a number M ≤ N of orthogonal orbitals in which the N bosons reside. In the field of
Bose-Einstein condensates one particular mean-field, the Gross-Pitaevskii (GP) mean-field,
has proven to be very successful. In analogy to non-interacting BECs, in GP theory it is as-
sumed that the many-body wave function is given by a single permanent in which all particles
reside in one orbital, i.e. M = 1. A minimization of the energy functional with the GP ansatz

wave function leads to the famous Gross-Pitaevskii equation [30,31,114]. The solution of the
GP equation yields the single orbital from which the GP mean-field permanent is constructed.

However, it has been shown [34–38] that the GP mean-field is not always the energetically-
lowest mean-field solution. The assumption that all particles occupy the same orbital is too
restrictive. Especially in multi-well trapping geometries the energetically-lowest mean-field
solution can be fragmented [34–38], see also Sec. 2.5.

In order to obtain the energetically-lowest mean-field solution, it is necessary that the
ansatz for the wave function is of the most general mean-field form. Due to the variational
principle, the minimization of the respective energy functional with respect to all parameters
of the ansatz wave function will then give the best solution within mean-field theory. It is
therefore legitimate to call this mean-field solution the best mean field (BMF). A procedure to
obtain the best mean-field (BMF) solution numerically has been developed recently [34–38].

In the best mean-field approach the ansatz for the wave function |Ψ〉 is taken as a single
permanent of N bosons distributed over M time-independent orthonormal orbitals φk(r):

|Ψ〉 = |n1, n2, . . . , nM 〉 . (E.1)

Using this ansatz for the wave function, the energy functional is minimized by a variation
over the number of orbitals M , the occupation numbers ni and the orbitals φk(r) themselves
[34,38]. The variation leads to a set of coupled non-linear equations that have to be solved to
obtain the BMF solution. Thereby, the energetically most favourable permanent is selected
to approximate the true many-body wave function. The GP mean-field is contained in the
BMF ansatz as can be seen by restricting the number of orbitals to M = 1.





Appendix F

On the importance of time-dependent basis sets

F.1 Introduction

In this thesis we have made extensive use of time-dependent orbitals as a single-particle
basis set. For example the MCTDHB method, explained in Chapter 3 employs such orbitals.
Also the time-dependent Wannier functions, introduced in Chapter 8 are of this type. We
have always tried to stress the importance of time-dependent orbitals. In this Appendix we
will show by direct comparison, why the use of time-dependent orbitals is crucial for the
theoretical treatment of a many-boson system.

In dynamical problems time-dependent orbitals are generally complex functions, which
makes them difficult to represent. We will therefore not consider a dynamical example,
but rather one from statics, i.e. a stationary state. In both cases, dynamics and statics,
time-dependent basis sets can adjust optimally to the interparticle interaction strength, the
number of particles and the external potential, whereas time-independent basis sets cannot.
The conclusions that we will draw from the statics example here therefore also apply to
dynamical problems. In dynamical problems the use of time-dependent orbitals is actually
even more important, since the numerical error can accumulate.

F.2 A double-well ground state as an example

We consider the ground state of N = 1000 interacting bosons in a 1D double-well potential
of the form

V (x) =
1

2
x2 + A e−x2/2σ2

. (F.1)

As an interparticle interaction we choose W (x−x′) = λ0δ(x−x′). In Chapter 5 we also used
the potential (F.1) and varied the barrier height A at constant interaction strength λ0 = 0.01.
Here we will vary the interaction strength at constant barrier height, A = 22 and σ = 2. For

every λ0 we compute the first two natural orbitals α
(1)
1 (x) and α

(1)
2 (x) using MCTDHB (with

M = 2). We then expand these natural orbitals in time-independent Wannier functions as
follows. First we obtain the eigenstates of the noninteracting single-particle problem. These
single-particle eigenstates form doublets which we call bands. We write α for the band index.
The Wannier functions wν

j (x) with j = L, R are then constructed as linear superpositions
of the orbitals of each of the bands. There are two such Wannier functions per band. We

now expand the previously obtained natural orbitals α
(1)
k in the Wannier basis and define the

orbitals

ψ
(κ)
k (x) = N

∑

j=L,R

κ∑

ν=1

〈wν
j |α(1)

k 〉wν
j (x), (F.2)
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as approximations to the natural orbitals where N is a normalization constant. The ap-
proximation error ǫ using κ bands is then defined as the greater value of the norms of the

differences between ψ
(κ)
k and α

(1)
k for k = 1, 2

ǫ = max
k

{√∫
dx

∣∣∣ψ(κ)
k (x) − α

(1)
k (x)

∣∣∣
2
}

(F.3)

We will investigate how many bands are needed to approximate the natural orbitals α
(1)
k to

a given accuracy.

Fig. F.1 shows the natural orbitals α
(1)
k (x) together with their approximations ψ

(κ)
k (x) at

different interaction strengths for the accuracies ǫ = 0.1, 0.01, 0.001. Even for the weakest
nonzero interaction strength shown (second from above) at least κ = 3 bands are necessary
to obtain a medium accuracy of ǫ = 0.01. For stronger interaction κ = 7 and κ = 28 bands
are needed then. The corresponding sizes of the many-body basis sets are

(
N+2κ−1

N

)
which

are astronomically large. All numbers are collected in Tab. F.1.

The above discussion clearly demonstrates the necessity to use time-dependent basis sets
for many-boson systems. Compared to time-dependent, optimized basis sets computations
using time-independent basis sets are wasting computational resources at a very high rate
with little chance to obtain converged results. We stress that the same conclusions can also
be drawn from the analysis of dynamics problems, even at weak interaction strength.
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Figure F.1: Expansion of natural orbitals in Wannier functions. Shown is the first (left panels) and the second
(right panels) natural orbital of the ground state of N = 1000 bosons in a trap at different interaction strengths
λ = 0, 0.01, 0.1, 1.0 (from top to bottom). MCTDHB (thick red lines) with M = 2 orbitals was used to obtain
the natural orbitals. Also shown are the approximations ψk to the natural orbitals for different accuracies:
ǫ = 0.1 (blue), 0.01 (black), 0.001 (green). See text for details. Even at a medium accuracy of ǫ = 0.01 a large
numbers of bands κ is needed to represent the natural orbitals at any nonzero interaction strength: from top
to bottom κ = 1, 3, 7, 28. The corresponding many-body basis set sizes are astronomically large, see Tab. F.1.



interaction strength λ0 accuracy ǫ number of bands κ basis set size

0.0 0.0 1 1001

0.01 0.1 1 1001

0.01 0.01 3 ∼ 8 × 1012

0.01 0.001 3 ∼ 8 × 1012

0.1 0.1 3 ∼ 8 × 1012

0.1 0.01 7 ∼ 2 × 1029

0.1 0.001 9 ∼ 3 × 1036

1.0 0.1 16 ∼ 2 × 1059

1.0 0.01 28 ∼ 3 × 1092

1.0 0.001 33 ∼ 1 × 10105

Table F.1: Many-body basis set size. Shown is the number of many-body basis functions if Wannier functions
are used to expand the natural orbitals of N = 1000 bosons depicted in Fig. F.1. For all but the weakest
interaction strength and the lowest accuracy the number of many-body basis functions is computationally
unfeasible if Wannier functions are used as a single-particle basis set.
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