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 ABSTRACT 

 

I 

 

MEMORY DIAGNOSTIC IN TIME SERIES ANALYSIS 
The objectives of this thesis is to evaluate the reliability of different periodogram-based 

estimation techniques and their non-spectral alternatives, implemented in the free software 

environment for statistical computing and graphics R, in distinguishing time series sequences 

with different memory processes, specifically to discriminate (1) two different classes of 

persistent signals within fractal analysis, fractional Brownian motions (fBm) and fractional 

Gaussian noises (fGn) (2) nonstationary and stationary ARFIMA (p,d,q) processes as well as 

(3) short- and long-term memory properties of the latter, and to assess the accuracy of the 

corresponding estimates. After a brief introduction into time- and frequency-domain analyzes 

fundamental concepts such as the ARFIMA methodology and fractal analysis for modeling 

and estimating long-(LRD) and short-range dependence (SRD) as well as (non)stationary of 

time series are presented. Furthermore, empirical studies utilizing time series analysis of long 

memory processes as diagnostic tools within psychological research are demonstrated. Three 

simulation studies designed to solve the abovementioned methodological problems represent 

the main field of this thesis, i.e., the reliable identification of different memory as well as 

specific statistical properties of ARFIMA and fractal time series and the assessment of 

estimation accuracy of the procedures under evaluation, and thus, based on the empirical 

findings, recommending the most reliable procedures for the task at hand. 

 

Keywords: time series, time-and frequency domain analyzes, ARFIMA, stationary, long-

range dependence, periodogram analyzes. 
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1 INTRODUCTION 

Glass, Willson, and Gottman (1975), McCleary and Hay (1980), and Gottman (1981) 

introduced time series procedures to social and behavioral sciences three decades ago and thus 

challenged the popular view that most psychological phenomena can be viewed as randomly 

distributed in time around a more or less stable mean. Since then researchers from different 

fields of psychology have recognized the advantages of time series methods to capture 

dependence and instability in their empirical data. Persistent autocorrelations in the data 

generating process indicates long-range dependence (LRD) or, in other words, a process with 

long memory. Long memory implies statistical dependence between observations separated 

by a large number of time units (Beran, 1994) as opposed to processes with short-range 

dependence (SRD), whose autocorrelations decay quickly as the number of observation 

increases. Gilden et al. (Gilden, 1997, 2001; Gilden & Wilson, 1995a,b; Gilden et al., 1995) 

demonstrated in experiments including mental rotation, lexical decision, shape and color 

discrimination or visual search that persistent autocorrelations account for even more 

variability in the data than most standard manipulations in cognitive psychology. 

Wagenmakers et al. (2004) confirmed these findings employing the ARFIMA methodology in 

their analyzes. Van Orden et al. (2003), Wagenmakers et al. (2004) and Ward & Richard 

(2001) found LRD in automatic cognitive performances such as word naming or simple 

reaction times. Chen et al. (1997, 2001), Delignières et al. (2004) and Ding et al. (2002) 

observed persistent correlations in human rhythmic activities such as tapping or other tasks 

requiring coordination or synchronization of motor and cognitive activities. Delignières, 

Fortes & Ninot (2004) reported LRD in time series of self-esteem and physical self as well as 

in human gait (Hausdorff et al, 1999), force production tasks (Pressing, 1999), brain activity 

(Linkenkaer-Hansen, 2002), heart rate fluctuations or other biological phenomena (Hausdorff 

& Peng, 1996), demonstrating the prevalence of long memory processes in human science and 
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the need for reliable diagnostic tools for identifying processes with different memory 

properties. 

Various analyzing techniques for model fitting and parameter estimation of different 

process types, e.g., different periodogram-based methods and non-spectral alternatives are 

freely available in the statistical software R. The evaluation of their diagnostic abilities in 

identifying time series with different memory properties within the ARFIMA (p,d,q) 

methodology and fractal analysis is the main objective of this thesis.  

 This paper is divided into six parts. Following the introduction in Chapter 1, Chapter 2 

presents two major approaches of the time series paradigm: time- and frequency-domain 

analyzes and their fundamental concepts. Chapter 3 focuses on time series with long memory, 

especially on the modeling, identification and estimation of LRD by means of ARFIMA and 

fractal analysis. Empirical studies within the psychological research implementing time series 

analysis to distinguish between clinical and normal groups are demonstrated in Chapter 4. 

However, the foremost work of this thesis can be found in Chapter 5. Three simulation studies 

evaluating the diagnostic capability of different periodogram-based estimation methods and 

their non-spectral alternatives to distinguish between stationary and nonstationary LRD 

processes as well as between stationary SRD and LRD processes are designed to empirically 

determine the most reliable estimation method for the rigorous discrimination of qualitative 

different process types. 
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2 TIME SERIES ANALYSIS: MAJOR APPROACHES 

There are two related methods for the analysis of time series data. The first approach includes 

frequency-domain methods such as harmonic analysis, periodogram analysis, and spectral 

analysis (Warner, 1998, p. 186). The second approach is a set of time-domain methods 

formally called Box-Jenkins-ARIMA modeling, a strategy proposed by Box and Jenkins 

(1970). Both approaches examine time series data from different perspectives. Frequency-

domain methods essentially decompose the variance of a time series into variance that is 

accounted for by a set of sinusoidal cyclic components while time-domain methods detect 

pattern in the data such as coefficients that describe consecutive elements of the series from 

specific time-lagged or previous elements. Although pursuing different objectives both 

approaches are mathematically equivalent. For example, time series that are well explained by 

certain kinds of second-order autoregressive models with large coefficients in time-domain 

will also tend to have a rather large and broad peak at the low frequency end of the spectrum 

in frequency-domain, thus implying a relatively high percentage of the variance in the time 

series is accounted for by long cycles (Warner, 1998, p. 187).  

The objective of this chapter is to provide a brief introduction to the frequency- and 

time-domain methods. A detailed description of the frequency-domain methods can be found 

in Bloomfield (2000). Warner (1998) provides a thorough introduction to methods for 

detecting and describing cyclic patterns in time series data. A detailed comparison of both 

frequency- and time-domain approaches is provided by Gottman (1981).
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2.1 Frequency-Domain Analysis  

Exploring cyclical patterns explaining the variance of a time series is the main concern in 

frequency-domain methods. A couple of well-related statistical methods used to detect cycles 

in time-series data are harmonic analysis, periodogram analysis, and spectral analysis. The 

common ground of these methods is the sinusoid for representing cycles, i.e., the waveform of 

the trigonometric sine or cosine function, and the basis for estimating the spectral density 

function assessing the variance of an observed time series. 

2.1.1 Basic Notation and Principles 

A periodic function is a function that repeats its values in regular intervals or periods. 

Trigonometric functions like the sine or cosine function are the most prominent 

representatives of periodic functions. They repeat over intervals of length 2π, and serve as 

models for cycles. For example, different sine waves can be modeled by varying the mean 

(μ), the angular frequency (ω), the phase (ϕ), and the amplitude (A) of the function 

 )2sin()/2sin()sin( ϕ+π+μ=ϕ+τπ+μ=ϕ+ω+μ= ftAtAtAYt  

The wave length or frequency(f) of a sine or cosine function is typically expressed in terms of 

the number of cycles per unit time and given by 

π
ω

τ 2
1
==f , 

where τ denotes the period or the length of the cycle, i.e., the distance from one peak to the 

next. Since the period of a sine or cosine function is defined as the length of time required for 

one full cycle, it is the reciprocal of the frequency.  
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Time series with a length equal to a power of 2 can be approximated by a Fourier 

representation, where the series length (T) determines the number of the frequencies. For 

series with odd number of observations, there exist (T-1)/2 different frequencies:  

T
jf j = , j = 1, 2, 3, …, 

2
)1( −T  

corresponding  to cycles of period T, T/2, T/3,…, 2 time units, inferring the fastest detectable 

frequency is 

5.02/1 ==f  or πππω =⋅== 22/12f .  

Furthermore,  

tbtattAA ω+ω=ϕω+ϕω=ϕ+ω sincos)cossinsin(cos)sin( , 

as a sum of sine waves can be written as:  

)sin( jjj
j

tA ϕω +∑  or ∑ +
j

jjjj tbta )sincos( ωω , 

where  

2/122 )( jjj baA +=  and 1cossin 22 =+ jj ϕϕ . 

 

Because sine and cosine functions of the same period are independent from each other  

any standardized time series can be approximated as a set of orthogonal functions 

t
j

jjjjt utbtaY ++= ∑ )sincos( ωω , 

where ut ∼iid (0,1). The parameters aj and bj discriminating different time series can be 

obtained by least-square estimations  

∑
−

=

=
1

0
cos2ˆ

T

t
jtj tY

T
a ω  and ∑

−

=

=
1

0
sin2ˆ

T

t
jtj tY

T
b ω ,  

respectively. 
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2.1.2 Harmonic Analysis 

When the cycle length is determined by a previous analysis, harmonic analysis can be used to 

break down a periodic function into components, each expressed as a sine or cosine function, 

i.e., to model the cyclic component of a time series by estimating the mean, phase and 

amplitude of the sinusoid. However, usually several approximate cycle lengths that account 

for relatively large proportions of the variance in the data are identified, so harmonic analysis 

has to fit cycles with different periods until a cycle length or period is identified for which the 

goodness of fit is particularly strong, requiring the cycle length itself does not change over 

time. 

2.1.3 Periodogram 

The periodogram is a non-parametric method that can be seen as a generalization of harmonic 

analysis, where not just the parameters for one, but for a set of frequencies are estimated. The 

number of frequencies is determined by the length of the series. If the number of observation 

is even, the periodogram presents the total sum of squares of (T)/2+1 different frequencies. If 

the number is odd, the sum of squares of (T-1)/2+1 different frequencies are provided with an 

additional frequency of zero corresponding to an infinite cycle implying an infinite period. 

The sum of squares at each frequency can be obtained through  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

2

ˆ

2
ˆ 22

jj ba
T  with ∑

−

=

=
1

0

2cos2ˆ
T

t
jtj tfY

T
a π  and ∑

−

=

=
1

0

2sin2ˆ
T

t
jtj tfY

T
b π . 

The power or variance of the series is computed by the total sum of squares divided by T. 

Equal spaced time series are inherently limited to detecting frequencies between 0 and 0.5 or 

0 and π in radians, respectively. As illustrated in Figure 2.1.1, in a deterministic periodic time 

series (right upper panel), the peaks of the periodogram occur at corresponding frequencies 

(right lower panel), while for a completely random series (left upper panel) its variance is 
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approximately equally distributed across all possible frequencies, so illustrated in Figure 2.1.1 

(left lower panel). Both series are characterized by a stable mean and variance, whereas the 

variance of a process changing over time is not defined, and likewise is its spectrum (Crato, 

96). The periodogram can be obtained through  

∑
−

=

π+π
π

=
1

0

2)2sinˆ2cosˆ(
4
1)(

T

t
ftbftafI . 

If we write  

( )22 ˆˆ
2
1)( ffT

fI βα +=  
2
10 ≤≤ f  

then I(f) is called the sample spectrum, i.e., a Fourier cosine transformation of the 

autocovariance function estimate und thus an operation converting functions from time to 

frequency domain. 

Figure 2.1.1. Spectral density functions (lower panel) of a purely random or white noise-process ut 

∼iid(0,1) (left column), a process with a seasonal component and a downward trend (right column), 

and the plots of their corresponding series (upper panel). 
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2.1.4 Spectral Analysis 

Although the periodogram analysis is a useful technique in assessing whether there is a strong 

cyclic component in a time series, it may break down when applied to time series with 

stochastic cycles, because its most serious liability is that the sampling errors associated with 

the sums of squares estimates are quite large. Hence, different methods of deriving the power 

spectrum from the periodogram and thus minimizing the estimates sampling error were 

developed. A common technique is the so called smoothing, a process in which each 

periodogram intensity is replaced by a weighted average that includes intensity estimates for a 

few neighboring frequencies. Different Smoothing procedures can be distinguished by the 

width of the window, i.e., the number of neighboring frequencies included in the weighted 

average, and the magnitude of the weights used. Some smoothing windows like the Daniell 

window give equal weight to all included frequencies, whereas others give more weight to 

frequencies near the center of the window than to frequencies near the edges, like the Tukey-

Hamming smoothing. As a result, the graph of the weighting function may have different 

shapes. For example, a Daniell window looks like a rectangle, whereas other popular 

smoothing procedures have a bell shape, like the Tukey-Hamming smoothing. In general, 

determining the proper width of the window is usually a predicament, because detecting 

distinct cycles requires the use of narrow windows associated with large sampling errors. 

With increasing bandwidth more and more values are averaged and thus relatively adjacent 

peaks will be melded in one.  

In general, the main objective of the frequency-domain method is the identification of 

major cyclic components explaining the variance in an observed time series by estimating the 

spectral density. Deterministic cycles appear in the periodogram as clear peaks whose height 

increase with sample size. For time series that are not strictly periodic, random changes of 

frequencies are typical, hence, the periodogram analysis is associated with problems. 
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Therefore smoothed versions of the power spectrum provide more reliable estimates of the 

spectral density function. 

2.2 Time-Domain Analysis 

The main objective in frequency-domain is the identification of major cyclic components 

explaining the variance in an observed time series. In time domain, the primary goal is to 

identify certain patterns to infer to the underlying data-generating process consisting of 

deterministic and/or stochastic components by means of autocovariances and 

autocorrelations. When the process has been identified, the dependency structure of the series 

can be modeled and forecasts generated. 

2.2.1 Basic Notation and Principles 

Many time series consist of elements that are serially dependent and the consecutive elements 

of the series can be described by specific, time-lagged or previous observations. Here, the 

underlying data generating mechanism is a so called autoregressive process: 

tptptt uY...YY +++= −− φφ 11  where φ are the autoregressive model parameters, p specifies the 

order of the dependence, and ut is a sequence of purely independent and identically distributed 

random variables or innovations. An autoregressive process will only be stable if the 

autoregressive parameters are within a certain range, else past effects would accumulate and 

the values of the successive Yt  would move towards infinity. 

Furthermore, each observation of a time series can be affected by a past innovation 

that cannot be accounted for by the autoregressive component, i.e., a series is made up of a 

random error component and a linear combination of prior random shocks, formally called a 

moving average process: qtqttt uθ...uθuY −− −−−= 11  where θ are the moving average model 

parameters, q specifies the order of the dependence, and, once again, ut is a sequence of 
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purely independent and identically distributed random variables or innovations. Since a 

moving average equation can be rewritten or inverted into an autoregressive form, the range 

of the moving average parameters are restricted as well.  

Finally, a process can be made up by autoregressive and moving average components  

as well. Such a process is called a mixed autoregressive-moving average process:  

1111 −− ++= tttt uuYY θφ . 

 A special type of a discrete stochastic process is an integrated process ttt aYY += −1 , 

where the random part at can be generated by any ARMA process. The term ‘integrated’ 

implies that the impact of the random component on the series does not dissipate over time. 

As a result, the process shows instability in level. That is why the integrated process with 

at∼iid N (0,σ2) is also called random walk. 

2.2.2 Stationary vs. Nonstationary Processes 

Identifying the underlying data generating mechanism of a stochastic process requires that its 

mean and/or variance is/are constant or independent of time, a quality formally called 

stationary. Before modeling, processes with time-varying mean or a time-varying variance 

have to be properly transformed and the proper transformation method depends on the cause 

of the instability. For example, a random walk process can also presented as the sum of 

random shocks where a particular shock is remembered forever. If a constant is added to the 

equation ttt uYY ++α= −1 , the process is called random walk with drift or stochastic trend 

where α is formally called the drift parameter. Mean and Variance of random walks increase 

over time, a behavior called nonstationary. Computing the first differences 1−−=Δ ttt YYY  

results in a difference stationary (DS) process. In general, if a time series has to be 

differenced d times to be transformed in a stationary series, the series is called integrated of 

order d. If, however, a non-constant term is added to a stochastic process, his behavior will be 
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determined by a deterministic time trend implying a nonstationary process with constant 

variance but changing mean. Here, stationarity is achieved by polynomial detrending of the 

data, which is then said to be trend stationary (TS).  

While integrated time series exhibit an infinite memory, the deviations from the trend 

line of processes with deterministic trends do not contribute to the long-run development of 

the series and therefore misclassifications of the series type can lead to unnecessary 

detrending of stationary series (overdifferencing) or underdifferencing of nonstationary data. 

Although there has been some debate in the literature arguing that overdifferencing is a less 

serious error than underdifferencing, all kind of inappropriate transformations are 

consequential for subsequent statistical analyzes and should therefore be omitted. For an 

overview, consult Maddala & Kim (1998) or Stadnytska (2009c). Ayat and Burridge (2000), 

Elder and Kennedy (2001), and Stadnytska (2009c) describe testing strategies for determining 

whether the nonstationary-causing component of a time series is deterministic or stochastic.  

2.2.3 Sample (Partial-) Autocorrelation Function 

In the time domain the underlying data-generating mechanism can be identified by the sample 

autocorrelation function (SAC) and the sample partial autocorrelation function (SPAC). 

According to Bowerman and O’Connell (1993, p.442) the SAC of the original time series 

values Yb, Yb+1,…,Yn at lag k denoted by rk is 

∑

∑

=

−

=
+

−

−−
=

n

bt
t

kn

bt
ktt

k

YY

YYYY
r

2)(

))((
  where 

)1( +−
=

∑
=

bn

z
Y

n

bt
t

 

The SAC measures the linear relationship between time series observations separated 

by a lag of k time units (rk will always be between –1 and +1). 
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The SPAC of the original time series values (see Bowerman and O’Connell,1993) 

p.453) at lag k is 

 

⎪
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The SPAC computes correlations between time series values that are k time periods apart after 

controlling for correlations at intermediate lags, i.e., partial autocorrelation between Yt and Yt-k 

after removing the effects of intermediate observations. The rkk also ranges between –1 and +1 

with values near ± 1 indicating a strong correlation.  

Plotted against the lag length k, rk and rkk, respectively, give the so called correlogram 

of the sample autocorrelation SAC and sample partial autocorrelation function SPAC, 

respectively. A nonstationary stochastic process, specifically a random walk or integrated 

process of order one with an autoregressive term φ=0.5 and its SAC and SPAC is shown in 

Figure 2.2.1 (upper panel). If the SAC of nonstationary series exhibits meaningful 

autocorrelations up to a lag of about one-quarter the length of the time series - as illustrated - 

instability in the mean due to a stochastic or deterministic trend is indicated. Properly 

transformed, the SAC of the first differences 1−−=Δ ttt YYY  (lower panel) exhibits the typical 

signature of a pure autoregressive processes with no significant autocorrelations.
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Figure 2.2.1. Simulated integrated process of order one and length T=100 with one autoregressive 

term φ=0.5 (upper panel), its first differences 1−−=Δ ttt YYY  (lower panel), and their corresponding 

correlograms. The dotted line in the correlograms marks two standard errors.  

Moving average terms, too, exhibit specific patterns or signatures, as illustrated in 

Figure 2.2.2. For example, a significant partial autocorrelation at lag k is equal to the 

estimated autoregressive component in an autoregressive process, while a significant 

autocorrelation is an indication for the presence of a moving average term. Significant 

correlations in correlograms are called spikes. The correlograms of the white noise process 

illustrated in Figure 2.2.2, exhibit no spikes at all since the underlying data-generating process 

is random. Hence, it contains neither autoregressive nor moving average terms. The SPAC of 

the mixed process indicates two moving average terms, one at lag 1 and one at lag 2, while in 

fact the simulated process is mixed with only one autoregressive and one moving average 

term. In general, the probability for the successful identification of correlative structures in 

stochastic processes by means of their SAC and SPAC, respectively, declines with the 

complexity of the underlying data-generating process. 
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Figure 2.2.2. Simulated stationary processes, from top to bottom: white noise, a simple autoregressive 

process with φ=0.5, a simple moving average process with θ=0.5 and a mixed process with φ=0.5 and 

θ=0.3. The dotted line in the correlograms marks two standard errors.  

2.2.4 Box-Jenkins ARIMA Modeling 

The ARIMA strategy proposed by Box and Jenkins (1970) offers a large class of models to 

describe a wide spectrum of time series behavior. Based on a systematic approach a 
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preliminary model is fitted and validated by statistical tests. The procedure is repeated as 

necessary until a model is chosen that best fits the data. 

There are three basic model components: AR (autoregressive), MA (moving average), 

and a combined ARMA (autoregressive moving average) part (for autoregressive, moving 

average and mixed processes see Chapter 2.2.1, p.9). When regular differencing (see Chapter 

2.2.2, p.10) is applied together with AR and MA, they are referred to as ARIMA, with an ‘I’ 

short for ‘integrated’, which references the differencing procedure. Additionally, there are 

model components available describing seasonal phenomena, i.e., the so called SAR (seasonal 

autoregressive) and SMA (seasonal moving average), as well as for modeling the 

interdependence of multivariate time series (VAR-models). 

In ARIMA(p,d,q) models, AR terms are represented by the parameter p reflecting the 

number of preceding observations influencing the current value. The parameter q of the MA 

term assesses how many previous random shocks must be taken into account to capture the 

dependency present in the time series. Finally, the parameter d refers to the order of 

differencing needed to stabilize the time series. For example, an ARIMA(1,1,1) model 

represents a nonstationary integrated process of order 1 with one autoregressive and one 

moving average term, that becomes stationary by taking its first differences 1−−=Δ ttt YYY . 

The Box-Jenkins Method is one of the most widely used methodologies for the 

analysis of time series data. It is popular because of its generality, it can handle any series, 

stationary or not, with or without seasonal components, and it is implemented in a wide range 

of statistical software (Maddala & Kim, 1998, p.17). The minimum prerequisites for precise 

modeling by the Box-Jenkins method are around 200 observations assessed on a five-point 

Likert-scale, as demonstrated by a simulation study (Braun & Werner in Werner, 2005, p. 

165ff). The Box-Jenkins method consists of five consecutive steps, i.e., four stages of the so 
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called model building process plus a forecasting stage. However, a plot of the original data 

should always be run as a starting point. 

Differencing to achieve stationarity: The correlograms of a nonstationary series does 

not decay (see Chapter 2.2.2). After determining whether the nonstationary-causing 

component of a time series is deterministic or stochastic (see testing strategy in Stadnytska, 

2009c), successive differencing of the original series, providing the cause of the nonstationary 

is a stochastic trend, can be taken until the correlogram dampens. 

Identification of a tentative model: The appropriate orders of the AR and/or MA 

components are obtained by examining the correlograms. For a basic AR model with just one 

autoregression term, that is, p=1, the theoretical autocorrelation function decays exponentially 

or with a damped sine wave or both, while the theoretical partial autocorrelation function 

exhibits a significant spike at lag 1 and cuts off after that. For a basic MA model with q=1, the 

theoretical autocorrelation function exhibits a significant spike at lag 1 and cuts off after that, 

while the theoretical partial autocorrelation function declines exponentially. For mixed 

models with order p and q both correlograms decline exponentially. When analyzing an 

empirical series, a tentative or preliminary model is identified by comparing the theoretical 

correlograms with the behavior of the SAC and SPAC of the empirical data. Obviously, this 

step involves more of a judgmental procedure than the use of any clear-cut rules. 

Estimation of the model: Having identified a preliminary model, the next step is to 

estimate the corresponding parameters through conditional least squares (CLS), 

unconditional least squares (ULS) or full maximum likelihood (ML) algorithms by 

minimizing the differences between the empirical data and the ‘theoretical’ data generated by 

the model calculated for the different values of ARMA coefficients. Comparing the 

performance of the different estimation algorithms for different models, Fang (2005) 

concludes that tests based on CLS are more reliable than those based on ML or ULS. 
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Diagnostic checking or identification revisited: Having estimated an ARIMA model, it 

is necessary to revisit the question of identification to see if the selected model can be 

improved: Some of the estimated parameters may be insignificant or there may be several 

competing models. There are two penalty function criteria often used that reflect the 

closeness of fit and the number of parameters estimated. One is the Akaike Information 

Criterion (AIC) and the other is the Schwarz Bayesian Information Criterion (BIC). If p is the 

total number of parameters estimated, we have  

pnpAIC 2ˆlog)( 2 += σ     and .logˆlog)( 2 npnpBIC += σ  

Here n is the sample size and )./(ˆ 2 pnSSE −=σ  From several competing models the one with 

the lowest AIC or BIC is chosen. In addition, the correlation pattern of the residuals of the 

chosen model have to be checked for serial correlations. Box and Pierce (1970) suggest 

looking at not just the first order autocorrelation of the residuals but of all orders. They 

suggest calculating  

2

1 k

m

r
TQ ∑ =

= ρ , 

where kρ  is the autocorrelation of lag k and T is the number of observations in the series. If 

autocorrelations up to certain lags are simultaneously equal to zero, the residuals are white 

noise and the chosen model under investigation is appropriate.  

Forecasting: In general, there are two basic approaches to forecasting time series: the 

self-projecting time series and the cause-and-effect approach. Cause and effect methods’ 

forecasts are based on underlying series that are believed to cause the behavior of the original 

series. Self-projecting time series use only the observed time series data to generate forecasts. 

The latter approach is typically less expensive to apply and requires far less data and is useful 

for short to medium-term forecasting. Gujarati (2003) differentiates five forecasting 

approaches based on time series data: exponential smoothing, single-equation regression 
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methods, simultaneous-equation regression models, the Box and Jenkins method, and vector 

autoregression. The univariate version of  the Box and Jenkins forecasting technique is a self- 

projecting forecasting method. For example, the lead-one forecast is computed by 

substituting, into the formula defining the model, the observed (past) value with the estimates 

of the past error term. These errors terms can be estimated recursively: they are simply the 

past forecast errors. To compute the optimal forecast beyond lead one, forecasts for future 

observations and zeros for future error terms are simply substituted.  

To sum up, the Box and Jenkins methodology represents a flexible class of models 

that can be used to represent the behavior of a wide class of time series. It is popular because 

of its generality, it can handle any series, stationary or not, with or without seasonal elements, 

and it is well-documented by a variety of statistical software. It is perhaps the last factor that 

contributed most to its popularity. See also Box et al. (1994), Bowerman and O’Connell 

(1993), Brockwell and Davis (2002), and Makridakis et al. (1998) for a detailed treatment of 

the Box-Jenkins methodology.  

2.2.5 Automated Model Identification 

The model identification strategy of the Box and Jenkins methodology, as described in 

Chapter 2.2.4, consists of examining the behavior of the sample autocorrelation and partial 

autocorrelation functions and compares it with the theoretical ARIMA patterns, involves more 

of a judgmental procedure than the use of any clear-cut rules. Not only for accurate 

forecasting, but also in theory testing, where model identification represents the main 

objective of the analysis, serious conceptual consequences can be caused by model 

misspecification. For example, autoregressive processes are characteristic for internal 

temporal regularity, however, moving average processes predominantly represent systems 

determined by external and occasional events.  
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Autoregressive structures are typically found in processes representing addictive 

behavior. For example, Palaniappan (2005) proposed a second order AR model to 

discriminate alcoholics using single trial gamma band VEP signals distracted from the 

Electroencephalogram (EEG) from alcoholic (n=10) and control subjects (n=10). Rosel and 

Elósegui (1994) examined the daily cigarette-consumption of nine male and 20 female 

smokers over a 12-week period. 75% of the series assessed were identified as autoregressive 

models of order one typical for daily smokers when nicotine addiction plays a prominent role 

in maintaining the behavior. Velicer, Redding, Richmond, Greeley and Swift (1992) provide 

an excellent example how several popular tobacco-consumption models representing highly 

addictive smoking behavior are well-described by AR models. Occasional substance use, 

however, seems to depend more on intermittent and external events, and is predominantly 

represented by moving average models.  

In addition to the model identification technique of the Box and Jenkins methodology, 

automated model identification methods may help the researcher to reduce the ambiguity 

often experienced by the interpretation of the correlograms. Velicer and Harrop (1983) 

demonstrated that only 28% of simulated series were correctly classified by highly trained 

judges using the Box and Jenkins approach. Therefore an abundance of attempts have been 

made during the last three decades to develop more reliable methods for identifying the 

underlying pattern of stochastic processes. 

Choi (1992) published a survey classifying automated methods into three categories: 

penalty function methods (e.g., BIC or MINIC of Rissannen, 1978; Schwarz, 1978; AIC of 

Akaike, 1974), innovation regression methods (e.g., HR of Hannan & Rissanen, 1982; KP of 

Koreisha & Pukkila, 1990), and pattern identification methods (e.g., Corner Method of 

Beguin, Gourieroux & Montfort, 1980;  ESACF and SCAN of Tsay & Tiao, 1984, 1985).  
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Stadnytska, Braun, and Werner (2006) evaluated automated model identification 

methods for stationary processes and provided a review on Monte Carlo simulations 

employing further identification methods. They compared the performance of three automated 

procedures available in current versions of SAS for Windows, SCAN, ESACF and MINIC, in 

identifying the internal structure of the simulated processes. Regardless of model, 

parameterization and sample size, the automated methods correctly identified the true model 

in about 60% of trials conducted or selected parsimonious nearly equivalent mathematical 

representations. In a subsequent study, Stadnytska, Braun and Werner (2006b) examined the 

performance of SCAN and ESACF for nonstationary processes and found 79% of correct 

identifications for SCAN and 80% for ESACF. For some models and parameterizations, the 

accuracy of SCAN and ESACF was disappointing. As a result, an elaborated strategy for 

model selection combining different techniques was developed and demonstrated on two 

empirical examples. 
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3 LONG-RANGE DEPENDENCE 

Time series with long-range dependencies are widespread in nature and have been extensively 

studied in hydrology and geophysics (Hurst, 1965; Mandelbrot et al., 1968, 1975). More 

recently, time series with so called long memory  have been observed in DNA sequences 

(Peng et al., 1992, 1994), cardiac dynamics (Peng et al., 1993; Makikallio, 1999), internet 

traffic (Willinger et al., 1996), meterology (Koscielny-Bunde et al., 1998; Montanari, 2000), 

geology (Malamud and Turcotte, 1999) and even ethology (Alados and Huffman, 2000), 

where behavioral sequences of wild chimpanzees in Tanzania were shown to exhibit long-

range correlations. In economics and finance, long-range dependency, too, has a long history 

(for a review see Baillie and King, 1996; Mandelbrot, 1997). In psychology processes with 

long memory, i.e., correlated noise were first observed in controlled cognitive experiments by 

Gilden, Thornton & Mallon (1995), such as mental rotation, lexical decision, shape and color 

discrimination.  

3.1 Definition  

According to Leite and Rocha (2007), a stationary process zttY ∈)( is said to have long-range  

correlations, if there exist a real number ] [1,0∈γ  and a constant 0>pc such that 

,,)( ∞→≈
−

kkck
γ

ρρ  where [ ]
))(var(

)1(),(cov)(
ty
tytyk +

=ρ  

is the autocorrelation function. Alternately, a stationary process zttY ∈)( is said to have long-

range correlations if there exists a real number ] [1,0∈β and a constant 0>fc  such that 

0,)( →≈
−

ωωω
β

fcf , where (.)f  is the spectral density function. 
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3.2 Modeling Long-Range Dependence 

If a series exhibits long memory, there are persistent temporal dependencies between 

observations widely separated in time resulting in hyperbolically decaying autocorrelations 

and low-frequency spectral distributions. On the other hand, quickly declining 

autocorrelations and predominantly high-frequency spectral distributions describe the low-

order correlation structure of a series with short-term dependence. 

3.2.1 ARFIMA Methodology 

In the Box and Jenkins methodology, the ARIMA model parameters d, p and q, described in 

Chapter 2.2.4, p.14, are indicative of the correlation pattern of a stochastic process. An 

ARIMA (0,0,0) or white noise is a random sequence with no memory at all. ARIMA (p,0,q) 

models with small values of p or q represent stationary processes that are predictable only 

from their immediate past, that is, they possess only short memory. Their autocorrelations 

decay quickly as the number of intervening observations increases. However, an 

autoregressive process of order one with φ=.99 can generate autocorrelations over hundreds of 

lags, which is plausible, since an AR(1) model with φ=1 can be written as an ARIMA(0,1,0) 

model representing an integrated process of order 1 that is equivalent to the sum of random 

terms ∑= tt aY . As a consequence, the impact of a particular random term does not dissipate 

over time resulting in persistent autocorrelations and infinite memory. Finite memory or long-

range dependence, however, can be modeled through the differencing parameter d, if we 

allow it to take on continuous values. These processes can be modeled by the autoregressive 

fractional integrated moving average (ARFIMA) methodology suggested by Granger & 

Joyeux (1980) and Hosking (1981), allowing the simultaneous modeling of short- and long-

memory components, where low-lag autocorrelations can be modeled through the parameters 

p and q while the fractional differencing parameter d captures the long-range dependencies of 
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a series. The effect of d on distant observations decays hyperbolically, in contrast to the 

exponential decay due to the effects of the short-range parameters p and q. 

An ARFIMA process is both stationary and invertible when –0.5<d<0.5. For 0.5≥d≤1, 

the process is nonstationary with noninvertible ARMA representations. Values of d from the 

interval (-0.5;0) suggest antipersistence, that is, adjacent values are negatively correlated in 

contrast to the positively correlated values of persistent processes with d>0. Finite long 

memory can be modeled with 0<d<0.5. The upper bound d<0.5 is needed, because for d≥0.5 

the process is nonstationary, in particular, the usual definition of the spectral density of Yt 

would  lead  to  a  nonintegrable  function,  and  the  case of  d≥0.5  can be reduced to the case 

-0.5<d≤0.5 by taking appropriate differences. For example, the first differences of a 

nonstationary ARFIMA process with d=0.7 result in a stationary solution with d=-0.3 (for 

mathematical details see Beran, 1994, p.61).  

Figure 3.2.1 illustrates the behavior of long memory processes without short-term 

components. From top to bottom, the SAC of different ARFIMA(0,d,0) processes with T=400  

and varying values of d demonstrates the typical characteristics of series with long-range 

dependence: hyperbolically decaying autocorrelation and an increasing spectral density 

function as the frequency tends to zero are more prominent the higher the value of d is, i.e., 

the stronger the long-range dependence is.  
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Figure 3.2.1. Plots of simulated stationary ARFIMA (0,d,0) process with varying d and T=400 (left column), 

their autocorrelation (center column) and spectral density function (right column). The dotted line in the 

autocorrelation function marks two standard errors.  

3.2.2 Fractal Analysis 

Alternatively, persistent processes may be modeled within the framework of Fractal 

Geometry, which is rooted in the works of the late 19th and early 20th century mathematicians, 

who found their fancy in generating complex geometrical structures from simple objects like a 
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line, triangle or square, the so called initiators, by applying a simple rule or transformation, 

the so called generator, in an infinite number of iterative steps resulting in a complex 

structure rich in detail at every scale of observation (Eke et al., 2002, p.82), a concept 

commonly known as self-similarity. Self-similar processes were first introduced by 

Kolmogorov (1941), but statisticians did not seem to have been aware of the existence or 

statistical relevance of such processes, until Mandelbrot and van Ness (1968) introduced them 

into statistics. Self-similarity, where the scaling is identical in all directions, needs to be 

distinguished from self-affinity, where in one direction the proportions between the enlarged 

pieces are different from those in the other (Eke et al., 2002, p.84). For example, 

physiological time series are self-affine temporal structures due to a restriction of range or 

observation time or by the physical nature of the processes (Eke et al, 2000, p.413). For ideal 

mathematical fractal processes, however, the range over which there is self-similarity is 

infinite.  

In this context, self-similarity is defined in terms of the distribution of the process 

(Beran, 1994, p.48): Let Yt be a stochastic process with continuous time parameter t. Yt is 

called self-similar with the self-similar parameter H, if for any positive stretching factor c, the 

rescaled process with time scale ct, c-H
tcY  is equal in distribution to the original process Yt. 

Thus, typical sample paths of a self-similar process look qualitatively the same, irrespective of 

the distance they are looked at.  

The self-similar parameter H or Hurst exponent representing the probability that an 

event in a time series is followed by a similar event deviates from 0.5, can be any real number 

in the range (0;1). It is named after the famous hydrologist Hurst (1965) investigating the 

question how to regulate the flow of the Nile River. For each value of ( )1,0∈H , there is 

exactly one Gaussian process Xi  that is the stationary increment of a self-similar process Yt.  

Xi is called fractional Gaussian noise or fGn, the corresponding but nonstationary self-similar 
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process Yt is called fractional Brownian motion or fBm (Beran, 1994, p.55). Differencing fBm 

creates fGn and summing fGn produces fBm, i.e., the cumulating summation of an fGn signal 

results in an fBm signal. Hence, the related processes are characterized by the same Hurst 

exponent. FGn and fBm are fractal processes that can be persistent (H>0.5) or anti-persistent 

(H<0.5). Anti-persistence implies negative correlations and persistence positive correlations 

between the successive increments of a time series. Mandelbrot and van Ness (1968) 

introduced fBm as a generalization of ordinary Brownian motion with H= 0.5, which is a 

well-known stochastic process that can be represented as the random movement of a single 

particle along a straight line. Mathematically, Brownian motion is the integral of Gaussian 

noise. 

Figure 3.3.2. illustrates the different change in behavior of stationary fGn (upper panel) 

and nonstationary fBm (lower panel) processes and T=400 depending on the magnitude of H 

by means of simulated data. Both signal types become unstable, the more H approaches one. 

However, if instability in levels is disregarded, fGn signals with large H coefficients are 

rougher, whereas fBm signals become smoother the more H approaches zero. For an overview 

on recent developments in fractal analyzes in psychological and behavioral research, see 

Delignières et al. (2005). 

 H=0.1 H=0.3 H=0.6 H=0.9 

fG
n 

fB
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Figure 3.2.2. Illustration of the change in behavior of fractal signals as H approaches one. Simulated 

fGn processes (upper panel), simulated fBm processes (lower panel), each with T=400 observations. 
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3.3 Identifying long-range dependence 

The common aim of ARFIMA or fractal analysis is to identify the typical signatures like a 

hyperbolically decaying autocorrelation function, a spectral density increasing without limit 

as the frequency tends to zero and self-similarity. Fractal methods are diverse, but their 

approaches have one thing in common: they employ a power law relationship on fitting their 

proposed model to data pairs of log frequency versus log power for finding the scaling 

exponent (see Eke, 2002) from the regression slope. The working hypothesis is, that behind 

the seemingly random but in fact complex fluctuations of a signal one may find a time-

invariant mechanism that one wishes to describe with the smallest possible numbers of 

parameters.  

3.3.1 Time Domain Methods 

In time domain, a common technique, as described in Chapter 2.2.4, p.14, for identifying 

short-range dependence is by means of examining the correlograms. For example, 

exponentially decaying sample autocorrelation functions and significant spikes are indicative 

of autoregressive components in a process. Long memory is characterized by a slow decay of 

the correlations proportional to 22 −Hk . For 0.5<H<1, the SAC should therefore exhibit a slow 

decay, in particular, follow a hyperbolic curve proportional to 22 −Hk . However, it is difficult 

to distinguish between hyperbolic or exponential curves especially for different values of H. 

For example, the closer H gets to one, the slower the autocorrelation plot decays. Another 

difficulty is, that long memory is an asymptotic notion and correlations at high lags can not be 

estimated reliably. A more suitable plot can be obtained by taking the logarithms on both 

sides of the correlogram. If the asymptotic decay is hyperbolic, for large lags the points in the 

plot should be scattered around a straight line with a negative slope approximately equal to 

2H-2. In contrast, for short memory processes, the log-log correlogram should show 
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divergence to minus infinity at a rate that is at least exponential. According to Beran (1994, p. 

92), autocorrelation correlograms are mainly useful in cases where long-range dependence is 

strong or for very long time-series. A detailed description of the usefulness of the sample 

correlations and partial correlations for detecting long memory can be found in Beran (1994, 

p. 89). 

A very different approach, introduced by Peng et al. (1994), is the so called Detrended 

Fluctuation Analysis, a modified root mean square analysis of highly nonstationary data, by 

removing nonstationary trends from long-term correlated time series. First, the signal is 

summed and the mean is subtracted, then the local trend is estimated in non-overlapping 

boxes of equal length, using a least square fit on the data. For a given box-size n the 

fluctuation is determined as a variance upon the local trend, i.e., the root mean square of its 

differences, and calculates the fluctuation  

2
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For self-similar fBm processes of length N with non-overlapping windows of size n, the 

fluctuation F depends on n in a power law fashion, where the slope of the line relating to log 

F(n) to log n determines the scaling exponent α. If the original series is an fGn signal, then Yj 

will be an fGn signal and in this case α = H, whereas if the original series is an fBm signal, Yj 

will be a summed fBm and α = H+1. 

Many more heuristic methods to detect long-range dependence were suggested. Well 

known is the R/S statistic Q, which was first proposed by Hurst (1965). The R/S statistic is 

computed and plotted against the lag k. For long memory processes, the points in the R/S plot 

should be scattered randomly around a straight line with a slope H >0.5, for sufficiently large 

lags k. According to Beran (1994), the estimate of the R/S statistic can be misleading if there 
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is a slowly decaying trend in a nonstationary time series with only short-term memory, that is, 

the values of Q are the same as in a process with long memory. 

Another method is the log-log plot of )var( nX  versus n, the so called variance plot, 

based on one of the properties of long memory processes that the variance of the sample mean 

converges slower to zero than n-1. For long memory processes the points in the plot for large 

lags are expected to be scattered around a straight line with a negative slope approximately 

equal to 2H-2. In the case of short-range dependence or independence the slope is steeper. In 

principle, the weaknesses of the variance plot are the same as for the R/S plot and the log-log 

correlogram. 

3.3.2 Frequency Domain 

In the frequency domain, the power spectrum density analysis (PSD) models self-similarity of 

long memory structures by means of the power exponent β. Time series with long-range 

dependence have self-similar power-spectra with a spectral density proportional to the 

reciprocal of the frequency S(f)∝ 1/f β, where f is the frequency and S(f) the corresponding 

squared amplitude. Plotted on a log-log scale log S(f) versus log(f), the power exponent β is 

estimated by calculating the negative slope -β. However, the signal has to be preprocessed 

before applying the fast Fourier transform FFT, that is, the mean has to be subtracted and 

each value of the series has to be multiplied with a parabolic window (so called windowing) 

2)1
1

2(1)( −
+

−=
N

jjW  for j=1,2,…N. 

Thirdly, bridge detrending (so called endmatching) is performed by subtracting from the data 

the line connecting the first and last point of the series. Finally the fitting of β excludes the 

high-frequency power estimates (f>7/8 of maximal frequency), termed low. This method was 

proven by Eke et al. (2000) to provide more reliable estimates of the spectral index or power 
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exponent β, and was designated as lowPSDwe. Combining the various transformation leads to 

different results (see Chapter 5, p.52, for a thorough investigation).  

Illustrated in Figure 3.3.1 (left column) is the power spectrum of a white noise 

process. It is an approximately straight line with a slope of zero, thus, β=0. The spectral 

density of a random walk, otherwise known as Brownian or brown noise because it is the kind 

of signal produced by Brownian motion, is proportional to 1/f 2, thus, β=2 (center column). 

Time series with β=1 are called pink, flicker, burst or 1/f noise (right column). In general, 

differencing increases the power spectrum slope by 2, and integrating decreases the slope by 

2.  

To summarize, for a process without memory β=0, with infinite memory β=2, and in 

the case of long memory, β can vary from 0.5 to 1.5. For short memory processes, the log-log 

power spectrum in not a straight line because random variation at the lower frequencies leads 

to a breakdown of the linear relationship and results in a flat plateau at frequencies close to 

zero 

ARIMA (0, 0, 0) 
WHITE NOISE 

no memory 

ARIMA (0, 1, 0) 
RANDOM WALK 

infinite memory 

ARFIMA 
(0, 0.4, 0) 

long memory 

 
 

Figure 3.3.1. Log-log power spectra for series with T=400. 

Eke et al. (2000) and Delignières et al. (2006) recommended to use the periodogram 

analysis for distinguishing fGn and fBm signals since it can be applied to both stationary 

fractal noises and nonstationary motions. Signals with -1<β<+1 and 1<β<+3 closely resemble 
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fGn and fBm signals, respectively. For a detailed description of the periodogram method see  

Beran (1994), Gilden (2001), Handel and Chung (1993), Kasdin (1995), and Pilgram and 

Kaplan (1998). 

3.3.3 Relation between Measures  

Chapters 3.3.1, p.27, and 3.3.2, p.29, demonstrated the diversity of methods modeling and 

identifying fractal time series. A detailed description of the relationship between exact fractal 

time series generated according to the dichotomous fGn/ fBm model of random signals and its 

fractal descriptors, H and β can be found in Eke et al. (2000). For example, fractal noises and 

motion of the same H have β values that differ by two, leading to the equations  

2
1+

=
βH  for fGn and 

2
1−β

=H  for fBm. 

The relationship of H and d is given by Hosking (1984), who demonstrated that self-

similar hyperbolically decaying autocorrelations of fractional series can be parsimoniously 

modeled by means of the differencing parameter d of the Box-Jenkins ARIMA methodology. 

The ARIMA (0,d,0) process can be thought of as the result of applying fractional differencing 

to a white noise series. The process is a kind of fractional noise, and its properties are similar 

to those of fractional Gaussian noise. If the H parameter of fGn satisfies H=d+0.5, then both 

fGn and the ARIMA (0,d,0) process have correlations ρk that behave asymptotically as k2d-1 

(Hosking, 1984, p.1900). Since Gaussian white noise, the process without memory, is the 

ARFIMA (0,0,0), and the discrete analogue of ordinary Brownian motion is the ARFIMA 

(0,1,0), the following relationships hold:  

β = 2d and 
2

12 +
=

dH  in the fGn case. 

The Detrended Fluctuation Analysis proposed by Peng et al. (1993), as introduced in 

Chapter 3.4.1, p.39, measures the extent of long-range correlations in time series by 
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calculating the slope of a double logarithmic plot of the average fluctuation F as a function of 

the interval size n. The relation between α and the Hurst coefficient is H=α for fGn and H=α-

1 for fBm, while β = 2d = 2α - 1 for both fractal signals. 

Figures 3.3.2 and 3.3.3 illustrate the typical behavior of the SAC, the periodogram and 

the log-log power spectrum of simulated fractal signals with T=400 and varying H. The series 

in Figure 3.3.2 are stationary fractal noises. For H=0 the series is a pure random noise und 

thus, ARIMA (0,0,0) with d=0 and a slope close to zero, that is, β=0. H=0.5 separates anti-

persistent (H<0.5) and persistent (H>0.5) series, as demonstrated by corresponding negative 

or positive spikes in the SAC (left column). Extreme values of H are associated with large 

negative and positive slopes, respectively, thus a power exponent close to ⏐1⏐ due to a 

concentration of power in high or low frequencies. Finally, as H grows larger, the stationary 

series approximate the border of nonstationarity, i.e., d=0.5, resulting in persistent 

autocorrelations and infinite memory. The simulated series illustrated in Figure 3.3.3. are 

nonstationary fBm signals with infinite memory, a SAC dying down extremely slowly with 

predominating low frequencies in the spectral density plot, especially the closer H gets to 1. 

Brownian motion with H=0.5, that is, the Random Walk or otherwise known as an 

ARIMA(0,1,0) process separates anti-persistent and persistent fBms.  

For H=0.5, the observations of an fBm are not independent, as it is in the fGn case, but 

its successive increments ttt uYYY =−=Δ −1 are uncorrelated. Brownian motion with H = 0.5 

separates anti-persistent and persistent fBms, but the pattern of the SAC does not allow the 

identification of positive or negative correlations between adjacent values, as in the fGn case, 

since the SAC of a nonstationary series dies down extremely slowly. 
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Figure 3.3.2. Graph, SAC, spectral density and log-log power spectra with slope for simulated 

stationary fGn signals with T=400. 
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Figure 3.3.3. Graph, SAC, spectral density and log-log power spectra with slope for simulated 

nonstationary fBm signals with T=400.  
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Table 3.3.1 summarizes the relations between α, β, d, and H. Table 3.3.2 shows the parameter 

values and ranges desribing (fractional) Brownian Motions and (fractional) Gaussian Noises. 

Table 3.3.1. Theoretical relationships between parameters capturing long-range dependence. 

 d α β HfGn HfBm 

d − α − .5 2
β  HfGn − .5 HfBm + .5 

α d +.5 − 2
1+β  HfGn  HfBm + 1 

β 2d  2α − 1 − 2HfGn − 1 2HfBm + 1 

HfGn d +.5 α 2
1+β  − − 

HfBm d −.5 α − 1 2
1−β  − − 

 

Table 3.3.2. Fractional processes and their specific parameter value and range. 

 α β H d 

Random Walk =  
Ordinary  
Brownian Motion 

1.5 2 .5 1 

White Noise=  
Ordinary  
Gaussian Noise 

.5 0 .5 0 

fGn 
[0; 1] 

 [0; .5) AntiP 
 (.5; 1] Pers 

[-1; 1] 
 [-1; 0)AntiP 
 (0; 1] Pers 

[0; 1] 
 [0; .5)AntiP 
 (.5; 1] Pers 

[-.5; .5] 
 [-.5; 0)AntiP 
 (0; .5] Pers 

fBm 
[1; 2] 

 [1; 1.5) AntiP 
 (1.5; 2] Pers 

[1; 3] 
 [1; 2)AntiP 
 (2; 3] Pers 

[0;1] 
 [0;.5)AntiP 
 (.5; 1] Pers 

[.5; 1.5] 
 [.5; 1)AntiP 
 (1; 1.5] Pers 

 

3.4 Estimating long-range dependence 

Numerous procedures for estimating long memory parameters H and d have been developed 

during the last years (Beran, 1994). Wagenmakers et al. (2004) demonstrated by simulation 
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that the most popular measure for long-range dependence used in psychology, i.e., the slope 

of the log–log power spectrum, may not be conclusive, since it is unduly affected by 

processes that are short-range dependent (for more information, see Chapter 5, p.53). Because 

spurious elevation in the presence of short memory is a general weakness of most long 

memory measures, the authors proposes, that in order to establish the presence of long-range 

dependence in human cognition, it is necessary to test against the hypothesis of short-range 

dependence, e.g., a first-order AR model plus additive white noise. They advocate the use of 

ARFIMA(p,d,q) time series modeling as a principle method that allows for inferential testing 

of long memory and the simultaneous estimation of both short- and long-term coefficients. 

Furthermore, Caccia et a. (1997), Cannon et al. (1997), Delignières et al. (2006), and 

Eke et al. (2000, 2002) systematically evaluated different classical fractal analysis methods 

for estimating H, such as the rescaled range analysis, the scaled windowed variance method or 

the dispersional analysis. Taqqu et al. (1995) and Taqqu and Teverovsky (1998) described and 

compared various procedures for estimating d and H such as the Whittle estimator, the 

aggregated variance, or the absolute value method. Reisen, Abraham, and Toscano (2000) 

evaluated parametric and semiparametric estimators of the fractional differencing parameter d 

for stationary ARFIMA models. Stadnytska and Werner (2006) compared the performance of 

the conditional sum of square procedure for estimating d proposed by Chung (1996) with the 

exact maximum likelihood approach of Sowell (1992). The most prevalent estimators for 

capturing long-range dependence are listed below in alphabetical order.  

The Detrended Fluctuation Analysis DFA proposed by Peng et al. (1993) reveals the 

extent of long-range correlations in time series by means of the scaling exponent α. As 

implied by its name, it was conceived as a method for detrending variability in a sequence of 

events. Initially, the series has to be integrated and divided into intervals of equal length n. In 

each interval a least squares regression is fit to the data. Next, the series is transformed by 
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subtracting the local trend. The root-mean-square fluctuation of the series is calculated. This 

computation is repeated over all possible interval length to characterize the relationship 

between the average fluctuation F(n) and the interval size. For long memory processes, F(n) 

increases with interval length. Expecting the power law  F(n) ∝ nα, the DFA procedure 

estimates α by calculating the slope of a double logarithmic plot of F as a function of n. α is 

converted into H according to α=H  for fGn and 1H −α=  for fBm. PSD and DFA are 

methods for estimating H and can be applied to both fGn and fBm series. 

The Geweke and Porter-Hudak (1983) algorithm GPH estimates d using the linear 

regression of the log periodogram on a deterministic regressor. The GPH is the ordinary least 

squares estimator of the slope parameter in this regression considering only the lowest 

frequency ordinates of the log periodogram. Unlike some ML procedures constraining 

estimates of d to be not greater than 0.5, the Sperio and Geweke and Porter-Hudak methods 

are not restricted in this way. Therefore, they can be directly applied to nonstationary data.  

The hurstSpec method estimates H via spectral regression by a modification of the 

periodogram method. It compensates for the fact that on a log-log plot most of the frequencies 

fall on the far right. Thus, they exert a very strong influence on the least-squared line fitted to 

the periodogram. The frequency axis is divided into logarithmically equally spaced boxes. 

Afterwards, the periodogram values corresponding to the frequencies inside the box are 

averaged. According to Taqqu et al. (1995) several of the values at very low frequencies are 

left untouched as there are so very few of them to begin with.  

The Maximum Likelihood Methods estimate d optimizing the fit of the assumed 

(p,d,q) model to the autocovariance function of the data. The exact maximum likelihood 

approach was proposed by Sowell (1992). There exist a number of faster approximate 

algorithms. The ML estimator of d implemented in R is the approximate method of Haslett 

and Raftery (1989). In contrast to the techniques described above, this procedure additionally 
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provides short-range dependency estimates of p and q. The range of d is confined to (0; 0.5] 

considering only stationary persistent ARFIMA series. 

The Power Spectral Density method models self-similarity of long memory structures 

by means of the power exponent β. Time series with long-range dependence have self-similar 

power-spectra with a spectral density proportional to the reciprocal of the frequency S(f)∝ 

1/fβ. The power spectrum S(f) determines how much power (i.e., variance or amplitude) is 

accounted for by each frequency (f) in the series. For ordinary Gaussian noise, β is 0. 

Brownian motion is characterized by β =2. Time series with β=1 are called pink, flicker, burst 

or 1/f noise. The original PSD procedure estimates β by calculating the negative slope of the 

line relating log S(f) and log f. The high-frequency spectral estimates are usually excluded 

from fitting for the spectral slope, and only frequencies close to zero are employed for the 

analysis. Fougere (1985), Eke et al. (2000), Delignières et al. (2006) and Stadnytska et al. 

(2009c) demonstrated that transformations like bridge detrending or windowing can improve 

estimation.  

The Sperio method proposed by Reisen (1994) estimates the memory parameter d by 

means of the regression equation employing the smoothed periodogram function for modeling 

the spectral density. 

The Whittle method is like PSD based on the spectral density function and estimates H 

by minimizing a function containing the periodogram and the spectral density at a specified 

frequency. For details, see Taqqu & Teverovsky (1998) and Beran (1994). This procedure can 

handle either fGn or fBm data. 
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3.4.1 Software 

The free software environment for statistical computing and graphics R1 allows the estimation 

of the memory parameters d, H and α while allowing the user to add additional functionality 

by defining new functions. Being under constant development, various packages are available 

in R, covering a very wide range of modern statistics. Within the R framework, ARFIMA 

analysis can be performed by means of the fracdiff package whereas the estimators of fractal 

analysis are implemented in the package fractal. 

The following d estimators are available in the package fracdiff: (1) the Geweke-

Porter-Hudak estimator GPH , (2) the approximate maximum likelihood estimator by Haslett 

and Raftery fracdiff, (3) the smoothed periodogram approach by Reisen Sperio, (4) the 

Whittle estimator Whittle, (5) the modified periodogram method hurstspec, and (8) the DFA 

approach are implemented in the fractal package. Descriptions of the packages and 

procedures are provided at http://ftp5.gwdg.de/pub/misc/cran/). Whittle, Sperio, GPH, and 

fracdiff estimate d, DFA estimates α,  while hurstSpec and provides and estimate of H.  

In their recent study Stroe-Kunold, Stadnytska, Werner and Braun (2009) compared the 

accuracy of different estimators of long memory parameters implemented in R for fGn 

signals. As a result, Whittle was the most accurate estimator of d, independent of 

parameterizations and sample sizes. For persistent series, the performance of fracdiff was 

comparable to that of Whittle. For estimating H, hurstSpec was the best method. The DFA 

approach can be used a priori to distinguish between fGn and fBm. A comprehensive study 

evaluating the performance of estimators implemented in R concerning their ability to 

distinguish between fractional Brownian motions and fractional Gaussian noises, stationary 

and nonstationary processes, and short and long memory series can be found in Chapter 5.

                                                 

1 R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. 
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4 TIME SERIES RESEARCH IN PSYCHOLOGY 

A number of recent research works apply fractal methods to psychological or behavioral 

variables, that were previously conceived as highly stable and fluctuations in successive 

measurements were considered as randomly distributed and uncorrelated in time. As such, a 

sample of repeated measures was assumed to be normally distributed around its mean value, 

and noise could be discarded by averaging. This methodological standpoint was implicitly 

adopted in most classical psychological researches (for a deeper analysis, see Gilden, 2001; 

Slifkin & Newell, 1998). In other words, temporal ordering of data points was ignored and the 

possible correlation structure of fluctuations was clearly neglected. The application of fractal 

methods, nevertheless, often remains rudimentary: analyzes are limited to the use of a unique 

method, the collected series are sometimes too short for a valid assessment, and more 

generally the theoretical background of fractals and related methods is not fully exploited. 

The recent theoretical and methodological refinements of fractal analyzes (see, e.g., Eke et al., 

2000; 2002) appear largely unknown in the psychological community.  

4.1 Review of Empirical Findings 

Long memory processes are characterized by the power exponent β of the spectral density 

function varying from 0.5 to 1.5. Time series with β =1 are called pink or 1/f noise, a fractal 

process resembling a wide range of natural phenomena such as heart beat rhythmus, brain 

activity or human coordination. A bibliography currently containing more than 1400 

interdisciplinary publications on 1/f noise can be found under: http://www.nslij-

genetics.org/wli/1fnoise/. In psychological research fractal noise was initially detected in 

controlled cognitive performances (Gilden, Thornton & Mallon, 1995). Using spectral 
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analysis techniques, Gilden and his colleagues demonstrated in experiments including mental 

rotation, lexical decision, shape and color discrimination or visual search that persistent 

autocorrelations account for even more variability in the data than most standard 

manipulations in cognitive psychology (Gilden, 1997, 2001; Gilden & Wilson, 1995; Gilden 

et al., 1995).  

Van Orden et al. (2003), Wagenmakers et al. (2004), and Ward and Richard (2001) 

found that long-range dependencies in automatic cognitive performances, such as word 

naming or simple reaction times, are of lower magnitude than in tasks requiring cognitive 

control, and therefore less empirical support for the existence of long-term dependence in 

automatic tasks compared to controlled cognitive performances (Wagenmakers et al., 2005). 

Chen et al. (1997, 2001), Delignières et al. (2004), and Ding et al. (2002) observed 

persistent correlations in human rhythmic activities such as tapping or other tasks requiring 

the coordination or synchronization of motor and cognitive activities with estimated power 

exponents ranging from 0.5 to 1.7 and a perfectly straight line reflecting pink noise in the log-

log power spectra of most fitted series. Since long-range dependence is a characteristic 

property of successively produced time intervals, such as in un-paced or continuous tapping, 

Madison and Delignières (in press) examined the effect of auditory feedback on long-range 

correlation in ISIP series under conditions of eliminated or diminished sensory feedback (ISIP 

is short for isochronous serial interval production, commonly referred to as finger tapping or 

continuation tapping, in which a participant attempts to function as a metronome in the 

absence of external temporal cues). They hypothesized that serial dependence in such tasks 

could be related to a close-loop regulation process, in which the current interval is determined 

by preceding ones. They found that the quality of sensory feedback affects the serial 

dependence, e.g., diminished sensory information tends to increase the Hurst exponent for 

short inter-onset intervals, but decreases it for long intervals.  
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Aks and Sprott (2003) detected 1/f noise in visual perception, where the timing of 

perceptual reversals of Necker cubes served as an independent variable. Spectral analysis of 

40 series detected 1/f noise in 80% of the cases with regression slopes varying from –0.6 to –

0.9 assuming a stabilizing function of binocular disparity in perception. Disparity may either 

filter out extraneous information or signal the system to rely more on previous percepts. 

However, more studies and methodologies employing rigorous testing of alternative 

hypotheses to 1/f noise are necessary to verify this assumption. 

Delignières, Fortes and Ninot (2004) reported long-range dependencies in time series 

of self esteem and physical self while employing different methods. Long-range dependencies 

were also found in human gait (Hausdorff et al., 1997, 1999); force production tasks 

(Pressing, 1999); brain activity (Linkenkaer-Hansen, 2002); heart rate fluctuations or other 

biological phenomena (Hausdorff & Peng, 1996). Delignieres and Torre (in press) reassessed 

Hausdorf’s data indicating altered fractal dynamics of human gait, that is, reduced stride-

interval correlations with aging and Huntington’s disease (Hausdorff et al., 1997), and 

confirmed the presence of genuine fractal correlations in stride interval series in self-paced 

conditions using ARFIMA/ARIMA modeling. However, in contrast with Hausdorff (1997), 

the correlations did not appear when walking is paced by a metronome, i.e., the source of 1/f 

noise is still at work in this condition, but expressed differently under the influence of a 

continuous coupling process. 

In social psychology, Correll (2008) postulated that latencies in simple computer tasks 

typically reveal 1/f noise, but the magnitude of the noise decreases as tasks become more 

challenging. He hypothesizes a correspondence between 1/f noise and effort, leading to the 

prediction that increasing effort would reduce 1/f noise. In two experiments the author 

examined the relationship between an individual's attempts to avoid bias (measured in Study 

1, manipulated in Study 2) and 1/f noise in implicit measures of stereotyping and prejudice. In 
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each study, participants making an effort to modulate the use of racial information showed 

less 1/f noise than participants who made little or no effort. 

In any case, the origin of the fluctuations remains in question. There have been 

considerations that this very specific kind of fluctuation plays an essential role in the stability 

of behavior as well as in the adaptability and flexibility of organisms. A number of 

hypotheses have been proposed for accounting for this phenomenon, however, currently, two 

categories of explanations can be discerned: The first one seeks a general explanation for the 

existence of 1/f noise. For example, Kello, Beltz, Van Orden, and Turvey (2007) consider 1/f 

fluctuations as the natural outcome of self-organization processes in complex systems. 

Cognitive functions are conceived as metastable patterns of neural and behavioral activity, 

and this metastability generates intrinsic fluctuations that universally exhibit the 1/f 

fluctuations. According to this point of view, 1/f noise is supposed to manifest in all aspects of 

behavior, as long as the same behavior is repeated consistently with minimal perturbation 

(Beltz & Kello, 2006). 

A second line of reasoning seeks for domain-specific explanations. Here, 1/f noise is 

supposed to emerge from specific underlying processes within the system, and consequently 

local models should be proposed that take the serial properties of behavior into account, as 

well as their alteration under various experimental conditions (Delignières, Torre & Lemoine, 

2008; West & Scaffeta, 2003).  

The following studies may be exemplary for the domain specific approach. They 

demonstrate that specific underlying processes, e.g., reaction time sequences or certain EEG 

brain waves of healthy and clinical groups are represented by different models and thus 

demonstrating the use of time series analysis as diagnostic tools for  the discrimination or 

identification of clinical groups. 
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4.2 Response Variability in Attention-Deficit Disorder  

An empirical study of Gilden and Hancock (2007) provides an excellent example how time-

series methods can be used in assessing dysfunctions, using the example of attention-

deficit/hyperactivity disorder (ADHD). ADHD is one of the most common neurobehavioral 

disorders of childhood and can persist through adolescence and into adulthood. Currently the 

causes are unknown. A person with ADHD has a chronic level of inattention, impulsive 

hyperactivity, or both, such that daily functioning is compromised. The symptoms of the 

disorder must be present at levels that are higher than expected for a person's developmental 

stage and must interfere with the person's ability to function in different settings (e.g., in 

school and at home). A person with ADHD may struggle in important areas of life, such as 

peer and family relationships, and school or work performance. The American Psychiatric 

Association's Diagnostic and Statistical Manual-IV, Text Revision (DSM-IV-TR), estimates 

that 3%-7% of U.S. American children suffer from ADHD. Some studies have estimated 

higher rates in community samples. ADHD is diagnosed approximately three times more 

often in boys than in girls. Three types of ADHD have been established according to which 

symptoms are strongest in the individual: (1) the predominantly inattentive type, to whom it is 

hard to organize or finish a task, to pay attention to details, or to follow instructions or 

conversations. The person is easily distracted or forgets details of daily routines; (2) the 

predominantly hyperactive-impulsive type, where a person is fidging and talking a lot. It is 

hard to sit still for long (e.g., for a meal or while doing homework). Smaller children may run, 

jump or climb constantly. The individual feels restless and has trouble with impulsivity. 

Someone who is impulsive may interrupt others a lot, grab things from people, or speak at 

inappropriate times. It is hard for the person to wait their turn or listen to directions. A person 

with impulsiveness may have more accidents and injuries than others; and (3) the combined 

type, where symptoms of the above two types are equally predominant in a person.  
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 In a review article on the neuroscience of ADHD, Castellanos and Tannock (2002, 

p.624) remarked that high response variability (HV) is the one ubiquitous finding in ADHD 

research across a variety of speeded reaction time tasks, laboratories, and cultures. A common 

laboratory practice in speeded response paradigms is to use young adults displaying vigilance, 

stamina, and speed. In this case, the RTs are considered to reflect a chain of processes: 

perceptual analysis, response mapping, and response execution (Pashler & Johnston, 1998). 

Although HV data might also arise from the chaining of these processes, it seems likely that 

the frequent large RTs in such data are an indication of intrusions associated with loss of 

vigilance (becoming lost or distracted). If the episodes of inattention are randomly 

interspersed in the trial sequence, then they might not distort the underlying patterns created 

by the normal execution chain. In terms of cell means, data with episodes of inattention might 

then be characterized as simply being slower and more variable than data without such 

episodes. However, random processing glitches would potentially have a more deleterious 

effect on the autocorrelation function, and for this reason, the power spectrum might be a 

more powerful tool than distributional statistics for characterizing HV data.  

Gilden and Hancock (2007) constructed an experiment with the single purpose of 

collecting data with extreme individual differences in RT variability. The task chosen was 

randomly drawn letters from a set of four (R, Q, G, and F), presented at different angles of 

rotation. On half of the trials the letter was mirror-reflected. The observer’s task was to 

determine if the letter was mirror-reflected or not (pressing ‘1’ on the keyboard if it was not, 

and ‘2’ if it was). Each observer completed a single block of 480 trials. Initially, students with 

little or no ADHD symptoms attending psychology classes at the University of Texas were 

recruited, who tended to generate low variability data (LV). In order to find reliable sources of 

HV data, young adults diagnosed with ADHD in alcohol recovery (i.e., members of 
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Alcoholics Anonymous, AA) were recruited, since alcohol abuse and ADHD symptoms go 

hand in hand.  

Figure 4.2.1 shows example RT histories for a task that involved determining if the 

second and fourth letters in a five-place letter string were the same or different. In this RT 

study, the observers were instructed to respond as quickly as possible without making too 

many errors.  

 

Figure 4.2.1. Reaction time sequences from high- and low-variability observers in the mental rotation 

task. These sequences were taken from the two observers at the median variability for their respective 

groups (Gilden and Hancock, 2007, p.798) 

The bottom panel is an example of typical data from an undergraduate, and the top panel 

shows the data produced by an unmediated adult diagnosed with the combined type of 

ADHD. The standard deviation of the ADHD data is three times larger with many extremely 

high peaks. This observer seems to be cycling through some kind of process that is 

continuously interrupted by large and random perturbations. 
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 As illustrated in Figure 4.2.2, the waves running through the RT data were of different 

amplitudes in the two groups, implying the two groups generated RT histories with different 

forms of autocorrelation. The low variability (LV) power spectrum is quite similar to what is 

generically produced by normal adults in mental rotation and other choice RT tasks (Gilden, 

1997, 2001). The high variability (HV) spectrum, however, does not resemble any published 

spectrum for RT sequences. 

 

Figure 4.2.2. Average power spectra of reaction time sequences for the high and low-variability 

groups (Gilden and Hancock, 2007, p.800). 

A dual source model was fitted that specified how white and correlated noises are 

mixed together to produce the bowed spectra illustrated in Figure 4.2.2. As a result, the LV 

group generated RT noise was about 28% 1/f and 72% white noise. The HV parameter were 

quite different, i.e., the signal was mostly white noise (92%) and 8% resembling a random 

walk.  

To summarize, the spectral analysis of the RT data revealed an entirely different 

correlation structure for the two groups, that HV data are not simply LV data with higher 

gain, as might be concluded from the display of mean trends. HV data contain random walk, 

created by a process that perseveres, that is, a process in which new states are built from their 

immediate predecessors. The principal difference between data derived from people who can 
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maintain vigilance and data from those who cannot is literally in the noise. Normal 

undergraduates produce large amounts of 1/f noise as a natural consequence of decision 

making. People with attention deficits generate an erratic signal that develops from the 

intrinsic pressure of being asked to make a speeded response. This finding must serve as a 

caution to researchers who wish to use speeded judgment to test theories of attention 

dysfunction.  

Similar findings have been confirmed by Johnson et al. (2008). 128 children with and 

without ADHD were asked to perform a deliberately boring computer task, to see how often 

the children made mistakes and drifted off task. The children were grouped according to 

whether they possessed two copies or one/no copies of a genetic risk marker for ADHD 

located on a gene that codes for the neurotransmitter dopamine’s D4 receptor. Interestingly, 

the children with no copy of the risk marker and the clinical diagnosis of ADHD performed 

significantly more poorly on the task than the children with ADHD and at least one copy of 

the risk marker, but only on the elements of the task that reflected slow drifting attention. On 

the measures that reflected moment-to-moment control of attention, there was no effect of the 

genetic marker, just a clinical group difference: children with ADHD performed more poorly 

than the typically developing children, and were significantly more variable in the slow-

frequency domain than the control children. These findings led the researchers to propose that 

there may be a genetic basis to this variance and propose a new theory about the role of the 

dopamine D4 receptor in controlling the release of the neurotransmitter noradrenalin in the 

prefrontal cortex, the area of the brain heavily involved in attention. 
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4.3 Long-Range Temporal Correlations and Major Depression 

Neuroimaging has revealed robust large-scale patterns of high neuronal activity in the human 

brain in the classical eyes-closed wakeful rest condition, pointing to the presence of a baseline 

of sustained endogenous processing in the absence of stimulus-driven neuronal activity. This 

baseline state has been shown to differ in major depressive disorder. More recently, several 

studies have documented that despite having a complex temporal structure, baseline 

oscillatory activity is characterized by long-range temporal (auto-)correlations (LRTC) that 

are highly replicable within and across subjects.  

An empirical study of Linkenkaer-Hansen et al. (2005) recorded neuromagnetic 

activity in patients with a major depressive disorder and in healthy control subjects during 

eyes-closed wakeful rest and quantified the long-range temporal correlations in the amplitude 

fluctuations of different frequency bands. In a balanced design (n =20), the ongoing brain 

activity of unmediated and unipolar depressed (according to DSM-IV, 1994) outpatients as 

well as healthy comparison subjects were measured with magnetoencephalography during 

eyes-closed wakeful rest for 16 min. The resulting data was separately analyzed using the 

Detrended Fluctuation Analysis DFA proposed by Peng et al. (1993) (see Chapter 3.4, p.36), 

i.e., the amplitude fluctuations of the ongoing activity in three frequency ranges: 3–7, 7–13, 

and 15–29 Hz, referred to as theta, alpha, and beta oscillations, respectively. The cross-section 

analysis of group differences of the oscillation amplitudes by a two-way ANOVA with the 

between-factor group (controls, patients) and within-factor location (occipitoparietal and left 

and right temporocentral regions), did not yield a main effect of group nor of location, that is, 

there was no significant main effect in the mean amplitude of theta-, alpha-, or beta-frequency 

bands. However, theta oscillations were significantly smaller in amplitude in the 

occipitoparietal and right temporocentral regions in patients with a major depressive disorder 

compared with the healthy control subjects.  
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The analysis of the long-range temporal correlations of the DFA coefficient by means 

of ANOVA yielded a main effect of group, caused by a larger DFA exponent in the control 

subjects, and location, caused by a larger DFA exponent of theta oscillations in the 

occipitoparietal region (see Table 4.3.1). Larger DFA coefficients means a slower decay in 

temporal correlations. Furthermore, there was a significant main effect for alpha-oscillations 

in the occipitoparietal region, and a significant main effect for beta oscillations and group. 

The DFA exponents of the theta oscillations in the depressive patients were very close to the 

theoretical value of 0.50 for uncorrelated data. 

Table 4.3.1. Group differences in DFA exponents and oscillation amplitudes. 

The significance levels from the ANOVA are indicated as follows: *p<0.05; **p<0.01. Amp, 
Amplitude; LSM, left temporocentral; OP, occipitoparietal; RSM, right temporocentral (Linkenkaer-
Hansen et al. , 2005). 

 

Furthermore, the authors tested whether the LRTC was related to the severity of 

depression in the patients. A strong linear correlation was observed between the DFA 

exponents of theta oscillations detected over the left temporocentral region and the score in 

the Hamilton Depression Rating Scale. Thus, the more depressed the patient, the less 

‘autocorrelated’ are the amplitude fluctuations in the theta-frequency band , however not for 

the occipitoparietal and right temporocentral cortices. The correlation of DFA exponents and 

Hamilton scores was contrasted by a lack of correlation between DFA exponents and the theta 

amplitudes or between amplitudes and the Hamilton score, thus, it is the temporal dynamics 
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of these oscillations rather than the ability to generate them that is adversely affected by the 

major depressive disorder.  

Figure 4.3.1 displays the amplitude envelope of theta oscillations in the left 

temporocentral region for epochs of 100s in three representative depressive patients and three 

control subjects. The exact fluctuation patterns are distinct from subject to subject, but it is 

not possible to discriminate the patients from the control subjects after visual inspection. In 

this sense, the DFA has indeed revealed a “hidden” difference in the complex structure of the 

amplitude fluctuations of ongoing oscillations. 

 

 

Figure 4.3.1. Amplitude fluctuations of the theta oscillations in the left temporocentral region over the 

course of 100s are displayed for three representative patients (left column) and control subjects (right 

column) (Linkenkaer-Hansen et al., 2005). 

Recent reports suggest that many but not all functional abnormalities found during a 

depressive episode recover after pharmacological or psychotherapeutic treatment (Castren, 

2005). Thus, future studies should seek to establish whether the long-range temporal 

autocorrelations in theta oscillations increase with the recovery from a depressive episode, or 

whether the absence of LRTC represents trait abnormalities. 
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5 SIMULATION STUDIES 

The review of the empirical findings (see Chapter 4.1, p.40) revealed several methodological 

issues to be clarified. While long memory, i.e., the 1/f noise phenomenon, is one of the topics 

dominating the current intraindividual psychological research (Delignières et al., 2004; Ding 

et al., 2002; Gilden, 1997, 2001; Gilden & Hancock, 2007; Torre et al., 2007b; Van Orden et 

al., 2003; Wagenmakers et al., 2004), the following issues determine the actual 

methodological discussion within this research field: 

1. The reliable classification of fractal signals as fractional Gaussian noises or 

fractional Brownian motions. Caccia et al. (1997), Cannon et al. (1997), Delignières et 

al. (2006) and Eke et al. (2000; 2002) systematically evaluated different classical 

fractal analysis methods for estimating H such as rescaled the range analysis (R/S), the 

scaled windowed variance method (SWV), or the dispersional analysis (Disp). These 

studies revealed that most of the methods performed well within a given class, that is 

fGn or fBm, but led to inconsistent results for the other. Consequently, the accurate 

estimation of the fractal parameter H (see chapter 3.2.2, p.24) requires the 

identification of the data-generating signal before the application of fractal analysis. 

Eke et al. (2000) and Delignières et al. (2006) recommended to use of the power 

exponent β of the periodogram analysis (see Chapter 3.3.2, p.29) for distinguishing 

fGn and fBm signals since it can be applied to both stationary fractal noises and 

nonstationary motions. For example, signals with -1<β<+1 and +1<β<+3 are almost 

identical with fGn and fBm signals, respectively. For β close to one, a zone of 

uncertainty is to be expected, as well as for the region around d=0.5 corresponding to 

the border of nonstationary within the ARFIMA analysis. However, the majority of 
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methods for estimating d can handle only stationary processes. This leads to the 

evaluation of different periodogram-based estimators as reliable classification tools of 

fractal signals. 

2. The reliable discrimination of stationary and nonstationary processes. A process is 

said to be stationary if its mean, variance and covariance are stable over time. In the 

ARFIMA framework, this is the case for processes with d<0.5, where the impact of 

each and every innovation (see Chapter 2.2.1, p.9) is always final. With d≥0.5 

ARFIMA processes become unstable due to a stochastic trend. In this case, the impact 

of the innovations become extremely persistent, but not yet permanent. Innovations 

with a permanent impact are found in the case of ARIMA processes with d=1, hence, 

they are called processes with infinite memory. Obviously, the value of the fractional 

differencing parameter d does not only determine whether a series is stationary or not, 

but also its underlying memory. For d=0, a process displays short memory, while 

finite long memory is characteristic for processes with 0<d<0.5. However, Rangarajan 

and Ding (2000), Thornton and Gilden (2005), and Wagenmakers et al. (2004; 2005) 

observed that short memory time series may mimic the statistical properties of long 

memory processes. To explore this problem further, determining the memory property 

of processes within the ARFIMA framework will be the third main issue. 

3.  The accurate discrimination of short-term and long-term dependence in time series. 

In the ARFIMA framework, allowing the simultaneous modeling of short- and long-

term dependencies, the memory property of a process crucially depends on the value 

of the fractional differencing parameter d. The process displays short memory for d=0 

and the finite long memory for 0<d<0.5. To solve this problem, different methods for 

identifying long-run developments have been proposed. Naturally, they are functions 

of their employed estimators, thus their performance is resting on the quality of the 
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estimation of the fractional differencing parameter d. A region of uncertainty is 

expected around the border of d=0, as well as an impact of the number and magnitude 

of the short memory coefficients.  

The overall objective of this chapter therefore is, to evaluate the performance of different 

periodogram-based estimators and non-spectral alternatives within the fractal analysis and 

ARFIMA framework as diagnostic tools for reliably distinguishing between stationary and 

nonstationary fractal signals and ARFIMA processes, as well as between ARFIMA series 

with short and long memory. Strategies for the reliable classification of fractal signals, 

(non)stationary processes and processes with different memory properties will be developed 

based on the empirical results. Furthermore, the most accurate estimation techniques for the 

task at hand will be determined. 

5.1 Study 1: Distinguishing Fractal Signals 

5.1.1 Introduction 

Currently, there are two main fields determining the discussion on persistent autocorrelation, 

that is, the search for explanations of the phenomena of long-range dependence (Van Orden et 

al., 2003; Wagenmakers et al., 2005), as well as the development of methods for a precise 

estimation of the persistency parameters and the reliable discrimination of series with long-

lasting autocorrelations from those with small and transient ones (Delignières et al., 2006; 

Farrell et al., 2006b; Thornton & Gilden, 2005; Torre et al, 2007a; Wagenmakers et al., 2004). 

Aiming at providing a contribution to the latter, Caccia et al. (1997), Cannon et al. (1997), 

Eke et al. (2000, 2002), and Delignières et al. (2006) systematically evaluated different 

classical fractal analysis methods for estimating H (for a detailed description of the fractal 

parameter H see Chapter 3.2.2, p.24). Revealing that most estimators performed well only 

within an appropriate class (fGn or fBm), the authors concluded, that the accurate estimation 
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of H requires the identification of the class of the series before the application of fractal 

analysis. According to Eke et al. (2002), until recently researchers were not aware of the 

necessity of this step, resulting in a number of questionable empirical analysis and theoretical 

implications.  

Taqqu et al. (1995) and Taqqu and Teverovsky (1998) described and compared 

various procedures for estimating d and H such as the Whittle estimator, the aggregated 

variance, or the absolute value method. Reisen, Abraham, and Toscano (2000) evaluated 

parametric and semiparametric estimators of the fractional differencing parameter d for 

stationary ARFIMA models. Stadnytska and Werner (2006) compared the performance of the 

conditional sum of square procedure (CSS) for estimating d with the exact maximum 

likelihood approach of Sowell (1992). 

5.1.2 Background 

Mandelbrot (1975) introduced the term ‘fractal’ (from the latin fractus, meaning ‘broken’) to 

characterize spatial or temporal phenomena that are continuous but not differentiable. Every 

attempt to split a fractal into smaller pieces results in the resolution of more structure, and 

therefore displays ‘self-invariant’ properties. Within the fractal geometry there are two classes 

of fractal signals, fractional Brownian motion (fBm) and fractional Gaussian noise (fGn). 

Both can be characterized by the same Hurst exponent )1,0(∈H  (see Figures 3.3.2 and 3.3.3). 

While the successive increments of fractal processes with H=0.5 are uncorrelated, for H 

within the range of [0; 0.5) they are antipersistent implying negative correlations, and for H 

within the range of (0.5; 1], they are persistent implying positive correlations between 

successive increments. For H=0.5 fGn corresponds to ordinary Gaussian noise, a stationary 

process with constant mean and variance, while fBm corresponds to ordinary Brownian 

motion, a nonstationary process with stationary increments. The main difference between fBm 
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and ordinary Brownian motion is that, while both are nonstationary processes, the increments 

in Brownian motion are independent Gaussian noise, while in fractional Brownian motion 

they are dependent.  

5.1.3 Modifications of Estimation Methods 

Numerous procedures for estimating persistency have been developed both in fractal analysis 

and within the ARFIMA framework. This study focuses on methods able to classify fractal 

signals as fGn or fBm directly by estimating the power exponent β of the regression slope 

within spectral analysis, indirectly by computing the scaling exponent α  of the DFA method 

proposed by Peng et al. (1993), and the fractional differencing parameter d in the time 

domain. 

The power exponent of the Power Spectral Density method PSD typically is –1≤β<1 

for fGn processes, while 1<β≤3 represents fBm processes. The DFA allows the discrimination 

of fractal signals, as the scaling exponent α varying from 0 to1 implies fGn, and exponents 

from 1 to 2 represent fBm processes. Note that 12 −= αβ  for both fractal signals, thus, both 

parameter allow a definitive classification of a series as fGn or fBm signal simply by the 

magnitude of the coefficient, provided precise parameter estimation of the respective method. 

In this study, the following modifications estimating β, α and H were evaluated: 

Modification of the PSD Method 

Eke et al. (2000) and Delignières et al. (2006) advocated to use the periodogram analysis PSD 

for fractal signals since it can be applied to both stationary fractal noises and nonstationary 

motions. It estimates the so-called power exponent β of a series to determine the signal class, 

since persistent processes have self-similar power-spectra with a spectral density proportional 

to the reciprocal of the frequency S(f)∝ 1/f β.  The power spectrum S(f) determines how much 
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power (i.e., variance or amplitude) is accounted for by each frequency (f) in the series. For 

ordinary Gaussian noise, β is 0, while Brownian motion is characterized by β=2. The power 

exponent of an fGn process can be any real value in the range of (-1;1), while estimates of 

1ˆ >β suggest fBm or nonstationary processes. 

 The original PSD procedure estimates β̂  by calculating the negative slope of the line 

relating log S(f) and log f. The high-frequency spectral estimates are usually excluded from 

fitting for the spectral slope, and only frequencies close to zero are employed for the analysis. 

For example, Taqqu and Teverovsky (1996) used the lowest 10% of the frequencies for their 

calculations. Different modifications of the periodogram method have been suggested to 

improve estimation. Fougere (1985) showed in simulation experiments that end matching or 

bridge detrending (subtracting from the data the line connecting the first and last points), and 

applying a parabolic window before analysis, improves the consistency of estimates for fBm 

signals. The parabolic window for a series of length T is a function that multiplies each value 

in the series and is given by:  

2

1
1T

j21)j(W ⎟
⎠
⎞

⎜
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⎛ −

+
−= for j=1,…,T. 

 According to Eke et al. (2000), estimation accuracy depends on the order of the 

transformation steps: better results were achieved if parabolic window preceded the step of 

end matching. Therefore they proposed the method designated as lowPSDwe consisting of the 

following operations: subtracting the mean of the series from each value; applying a parabolic 

window to the data (w), performing bridge detrending (e) and estimating β excluding 7/8 of 

the high frequency power estimates (low).  

Delignières et al. (2006) compared the performance of lowPSDwe with the original 

periodogram algorithms. Both methods were able to distinguish between fGn and fBm and 
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showed comparable performance in series with a true H exponent ranging from 0.3 to 0.7. 

For low and high coefficients, however, the results were ambiguous. For instance, the 

original PSD clearly outperformed lowPSDwe in short fBm series with H=0.2 and was 

significantly inferior in fGn series with H=0.9. Adopting the notation introduced by Eke et al. 

(2002), lowPSDwe implies the following order of operations: (1) subtracting the mean of the 

series from each value, (2) applying a parabolic window to the data (w), (3) performing end 

matching (e), and finally (4) estimating β excluding 7/8 of high frequency power estimates 

(low). In this study, the operations described were combined to 8 different PSD versions 

yielding different results in a preliminary study: lowPSD, lowPSDe, lowPSDw,lowPSDwe, PSDwe, 

PSDew, PSDw and PSDe. The R-code for lowPSDwe is attached.  

Modifications of the DFA Method 

The Detrended Fluctuation Analysis DFA proposed by Peng et al. (1993) reveals the extent of 

long-range correlations in time series by means of the scaling exponent α. As implied by its 

name, it was conceived as a method for detrending variability in a sequence of events. 

Initially, the series has to be integrated and divided into intervals of equal length n. In each 

interval a least squares regression is fit to the data. Next, the series is transformed by 

subtracting the local trend. The root-mean-square fluctuation of the series is calculated. This 

computation is repeated over all possible interval length to characterize the relationship 

between the average fluctuation F(n) and the interval size. For long memory processes, F(n) 

increases with n. Expecting the power law F(n) ∝ nα , the DFA procedure estimates α by 

calculating the slope of a double logarithmic plot of F as a function of n (see also Chapter 

3.4.1). 

Own modifications of the DFA method implemented in R were renamed by adding the 

initials jw (after its author, Prof. Joachim Werner). Furthermore, the DFAjw2 and DFAjw8 
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modifications specify the successive augmentation of the interval size by 2 and 8, 

respectively. Further DFA modifications are DFAjwL2 and DFAjwL6, were the ratio of the 

successive scales was set to 2 and 6, respectively. These modifications led to 5 different DFA 

variations to be evaluated in the current study: DFAbridge, DFAjw2, DFAjw8, DFAjwL2, 

DFAjwL6 

Modifications of th  HurstSpec Method 

The HurstSpec method, implemented in R, is a function to estimate the Hurst parameter H of 

a time series by linear regression of the log spectrum versus log frequency (see Chapter 3.4, 

p.35). However, this approach is a modification of the periodogram method compensating for 

the fact that on a log-log plot most of the frequencies fall on the far right, and thus exerting a 

strong influence on the least-squared line fitted to the periodogram while dividing the 

frequency axis into logarithmically equally spaced boxes. In the ‘smoothed’ version of hSpec, 

here called hSpecsm, the periodogram values corresponding to the frequencies inside the box 

are averaged. According to Taqqu et al. (1995) several of the values at very low frequencies 

are left untouched. Additionally, the ‘wosa’ or Welch’s overlapped segment averaging 

method, here called hSpecwo, as well as the ‘multitaper’ method, here called hSpecmu, was 

used. The latter is based on multitaper spectrograms with averaged spectrum estimates 

obtained by first windowing the time series with a collection of orthogonal taper functions. 

All hSpec modifications are already implemented in R. For this study, all modifications were 

complemented with the return function for outputting β
)

and were renamed accordingly by 

adding the prefix ‘exp’ resulting in ExphSpec, ExphSpecsm, ExphSpecwo and ExphSpecmu.  

To summarize, stationary fractal noises and nonstationary motions can be both 

characterized by the same Hurst exponent, therefore other methods like the power exponent β 

in frequency domain or the scaling exponent α and the fractional differencing parameter d in 
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time domain have to be used for classifying fractal signals, which can be then converted into 

H by known relations (see Chapter 3.3.3, p.31). The objectives of this study is to evaluate the 

above mentioned methods by computing the percentage of signal misclassification and 

determining the accuracy of estimation to develop a strategy for reliably classifying fractal 

signals and estimating their corresponding parameter. 

5.1.4 Method  

The reliability of the abovementioned methods as well as the Whittle and Sperio method (see 

Chapter 3.4, p.38) is tested by simulated fGn and fBm processes with known Hurst coefficient 

by means of the option lmSimulate (the R-code is attached) of the R package fractal (for 

details, consult the R documentation at http://ftp5.gwdg.de/pub/misc/cran/). The procedure is 

based on the Davies-Harte technique (1987) developed for the generation of exact fractional 

Gaussian noise. The Fractal Package of R also includes the standard versions of the DFA and 

hSpec method. Descriptions of the packages and procedures are provided at 

http://ftp5.gwdg.de/pub/misc/cran/). The R code is also available at 

http://www.stat.osu.edu/~pfc/software/ (see Craigmile, 2003).  

For this study, fGn and fBm signals with H variations from 0.1 to 0.9, each replicated 

a 1000 times, are used. Manipulated are the following independent variables:  

- class of signal: fGn, fBm  

- value of H: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

- length of series T. 128, 265, 512, 1024, 2048 

- estimation methods:  

- 8 PSD versions estimating β̂ : lowPSD, low PSDe, low PSDw, low PSDwe, PSDe, PSDew, 

PSDw, PSDwe; 

- 4 ExphSpec versions estimating β̂ : ExhSpec, ExhSpecsm, ExhSpecwo, ExhSpecmu;  
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- 5 DFA versions estimating α) : DFAbridge, DFAjw2, DFAjw8, DFAjwL2, DFAjwL6 

- 2 methods estimating d̂ : Whittle, Sperio 

As quality criterion the following dependent variables were computed:  

- percentage of signal misclassification (MISCLASS) of β
)

,α)  and d̂ . β
)

>1 (ExphurstSpec 

and PSD methods), α) >1 (DFA methods) and d̂ >0.5 stand for fBm, β
)

<1, α) <1 and 

d̂ <0.5 stand for fGn series, respectively. 

- mean (M), standard error (SE) of H
)

 received from the transformed values of β
)

, α)  and d̂  

(see Table 3.3.1, p.39) for better comparability. 

- minimum (MIN), maximum (MAX) from β
)

, α)  and d̂ , respectively.  

Table 3.3.1 (see Chapter 3.3, p.39) presents the transformation rules of the scaling 

exponent α) , power exponent β
)
 and fractional differencing parameter d̂  into the Hurst 

exponent H
)

 (For comparability, all received estimations had to be transformed into H
)

 before 

computing the dependent variables M and SE, while the computation of MIN and MAX are 

based on the untransformed estimations as given by the various methods. A true fGn signal 

was misclassified if estimated 1>β
)

 by the PSD and exphSpec versions, 1>α
)  by the DFA 

methods and d̂ >0.5 by Whittle and Sperio. Correspondingly, an fBm signal was 

misclassified by 1<β
)

, 1<α
)  and 50.d̂ < , respectively. 

All computations were performed with R version 2.7.2. 

5.1.5 Results  

This chapter investigates the accuracy of the estimation methods under evaluation first by 

comparing the estimates’ standard error and bias. The assessment of the estimators’ ability of 

reliably classifying fractal signals is considered thereafter, taking the percentage of 

misclassifications into account.  
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Since in empirical settings the true structure is never known, a strategy for the 

estimation of the long memory parameter is recommended to identify the estimator(s) with the 

smallest number of false decisions regardless of signal type, parameterization and sample 

size. An additional investigation of the minimal and maximal estimates received from those 

procedures performing best will be done, so it may give the researcher an idea what to expect 

in the case of a single analysis of an empirical series. 

Accuracy of Estimation  

The analysis of the accuracy of the procedures under evaluation requires the transformation of 

the estimated scaling exponent α) , power exponent β
)

 and the fractional differencing 

parameter d̂ , given by the DFA, PSD and ExphSpec methods as well as Sperio and Whittle, 

respectively, into the Hurst exponent H
)

 first (see Chapter 3.3, p.35).  

The quality of parameter estimation is assessed by computing the averaged standard 

error and bias of each estimation (over 1000 replications) for each level of the independent 

variable, signal type, H and time series length T (see Table 3.3.1, p.35). Hereby special 

consideration will be given to the sign of the bias, since a negative bias for fBm series with 

small H coefficients as well as a positive bias for fGn signals with large coefficients may lead 

to misinterpretation of the true signal. Therefore the bias on the edge of the 1/f boundary, that 

is, of fGn series with H=0.9 and fBm series with H=0.1 will be given special attention.  

Standard Error  

The mean standard error (for the previously transformed values) of H
)

 for fGn and fBm series 

for the different sample sizes is shown in Table 5.1.2. The values presented in the table are the 

SEs averaged over all H and additionally averaged over all sample sizes (right column). 

Overall, there is only little effect of sample size on standard error for both signal types and the 
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SE decreases about one fourth up to one half from the smallest to the largest sample size. The 

range between the smallest and largest SE – averaged over all parameters and sample sizes – 

is about one third larger in fBm series. 

Independently of signal type, parameterization and sample size, the largest SEs are 

delivered by the PSD estimates employing only frequencies close to zero in the analysis as 

well as Sperio, while the PSD modifications including the high-frequency spectral estimates 

show distinctively less variability. They are the estimates with the smallest SEs in the fBm 

case, followed by Whittle and the DFA methods. In fGn series the DFA variations and 

Whittle, followed by the PSD methods including the high-frequency spectral estimates deliver 

the smallest standard errors, regardless of parameterization and sample size. Independently of 

signal type, the ExphSpec methods are slightly superior compared to the lowPSD 

modifications but show more variability than the DFA methods, Whittle and the PSD methods 

just applying a parabolic window and /or bridge detrending to the data. 

Table 5.1.2  Mean standard error (SE) for fGn and fBm series at T= 128, 512, 1024, 2048, regardless 

of parameterization (parameter averaged SE), and regardless of parameterization and sample size 

(parameter and sample size averaged SE). The data is sorted in ascending order by the parameter and 

sample size averaged SE. 

Mean Standard Error SE 

T 

(Parameter Averaged SE ) 

Signal 

Type 
Method 

128 256 512 1024 2048 

Parameter and Sample Size 
Averaged SE 

DFAjwL2 0.0018 0.0012 0.0009 0.0007 0.0006 0.0010 

DFAjwL6 0.0019 0.0014 0.0011 0.0008 0.0008 0.0012 

fGn 

Whittle 0.0026 0.0017 0.0012 0.0008 0.0006 0.0014 
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DFAjw8 0.0018 0.0015 0.0014 0.0014 0.0014 0.0015 

DFAjw2 0.0020 0.0017 0.0015 0.0015 0.0015 0.0016 

DFAbridge 0.0031 0.0021 0.0015 0.0011 0.0008 0.0017 

PSDw 0.0033 0.0022 0.0015 0.0010 0.0007 0.0017 

PSDew 0.0033 0.0023 0.0016 0.0012 0.0008 0.0018 

PSDe 0.0037 0.0025 0.0018 0.0013 0.0009 0.0020 

ExphSpecmu 0.0041 0.0026 0.0018 0.0012 0.0008 0.0021 

ExphSpecwo 0.0041 0.0027 0.0018 0.0012 0.0008 0.0021 

PSDwe 0.0040 0.0027 0.0019 0.0014 0.0010 0.0022 

ExphSpec 0.0050 0.0032 0.0021 0.0014 0.0009 0.0025 

ExphSpecsm 0.0066 0.0042 0.0029 0.0022 0.0018 0.0036 

Sperio 0.0062 0.0050 0.0041 0.0033 0.0027 0.0043 

lowPSD 0.0110 0.0068 0.0044 0.0029 0.0020 0.0054 

lowPSDw 0.0120 0.0074 0.0048 0.0032 0.0022 0.0059 

lowPSDe 0.0141 0.0096 0.0067 0.0049 0.0035 0.0078 

 

lowPSDwe 0.0151 0.0103 0.0073 0.0053 0.0038 0.0084 

PSDe 0.0031 0.0021 0.0014 0.0010 0.0007 0.0017 

PSDw 0.0034 0.0023 0.0015 0.0011 0.0007 0.0018 

PSDew 0.0034 0.0023 0.0015 0.0011 0.0007 0.0018 

DFAjwL2 0.0029 0.0022 0.0017 0.0014 0.0012 0.0019 

Whittle 0.0029 0.0022 0.0018 0.0015 0.0014 0.0020 

PSDwe 0.0039 0.0026 0.0018 0.0012 0.0008 0.0020 

DFAjwL6 0.0031 0.0022 0.0021 0.0014 0.0017 0.0021 

DFAbridge 0.0044 0.0032 0.0024 0.0018 0.0015 0.0027 

DFAjw8 0.0033 0.0029 0.0027 0.0026 0.0026 0.0028 

ExphSpec 0.0049 0.0033 0.0024 0.0019 0.0015 0.0028 

fBm 

ExphSpecmu 0.0055 0.0036 0.0023 0.0015 0.0011 0.0028 
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DFAjw2 0.0037 0.0032 0.0030 0.0028 0.0027 0.0031 

ExphSpecwo 0.0067 0.0043 0.0026 0.0016 0.0011 0.0033 

ExphSpecsm 0.0062 0.0042 0.0031 0.0026 0.0022 0.0037 

Sperio 0.0060 0.0048 0.0040 0.0032 0.0027 0.0042 

lowPSDe 0.0106 0.0070 0.0046 0.0031 0.0021 0.0055 

lowPSDw 0.0111 0.0075 0.0049 0.0033 0.0022 0.0058 

lowPSDwe 0.0111 0.0072 0.0054 0.0038 0.0026 0.0060 

 

lowPSD 0.0110 0.0074 0.0054 0.0038 0.0026 0.0061 

 

Figures 5.1.1 and 5.1.2 show the standard error (SE), averaged over 1000 replications, 

of all DFA, ExphSpec and PSD methods as well as Whittle and Sperio on the 1/f border, that 

is, for fGn series with H=0.9 (Figure 5.1.1) and fBm series with H=0.1 (Figure 5.1.2), both for 

T=128, 265, 512, 1024 and 2048.  
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Figure 5.1.1. SE for the different PSD, ExphSpec and DFA modifications as well as Whittle and 

Sperio (presented in alphabetical order) in fGn series with H=0.9 at T=128, 256, 512, 1024 and 2048. 

 Overall, the standard error for fGn series with H=0.9 ranges from 0.0025 (DFAjwL2) 

to 0.0122 (lowPSDwe) at T=128 and from 0.0006 (Whittle) to 0.0029 (DFAjw2) at T=2048.  
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There is no clear effect of sample size on standard error for DFAjw2 and DFAjw8 with a 

larger SE at T=2048 than at T=1024 for both procedures. Overall, the smallest SEs for fGn 

series with H=0.9 are obtained by the Whittle method as well as the PSD modifications 

including the high-frequency spectral estimates in their analysis. They are followed by the 

ExphSpec methods which outperform the DFA modifications at H=0.9. The lowPSD 

modifications exhibit distinctly large standard errors in short series but perform much better 

in long series with even less variability than Sperio, DFAjw2 and DFAjw8.  
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Standard error (SE) in fBm series with H=0.1 

Figure 5.1.2. SE for the different PSD, ExphSpec and DFA modifications as well as Whittle and 

Sperio in fBm series (presented in alphabetical order) with H=0.1 at T=128, 256, 512, 1024 and 2048. 

The standard error for fBm series with H=0.1 ranges from 0.0025 (DFAjwL2) to 

0.0117 (lowPSDwe) at T=128 and from 0.0007 (PSDe , PSDew , Whittle, PSDw , PSDwe ) to 

0.0030 (Sperio) at T=2048 and is therefore quite similar to the fGn case at H=0.9. On the 1/f 

boundary, there is a small effect of sample size on standard error for all procedures under 

evaluation. As in the fGn case, the smallest standard errors are delivered by the PSD 

modifications including the high-frequency spectral estimates in their analysis and the Whittle 



CHAPTER 5 SIMULATION STUDIES                       

 

69

 

method, followed by the ExphSpec procedures. The largest variability in fBm series with 

H=0.1 is, as in fGn series with H=0.9, demonstrated by the lowPSD modifications and Sperio.  

 To summarize, the superiority of the DFA methods in delivering the smallest standard 

errors in fGn series does not hold on the edge of the 1/f boundary. There, the PSD estimates 

using all frequencies for the fitting of the spectral slope and the Whittle estimates have 

demonstrated the least variability of all procedures under evaluation, independently of signal 

type and sample size and deliver the smallest standard errors of all procedures under 

evaluation. In general, those PSD estimates excluding the high-frequency spectral estimates as 

well as Sperio are associated with large standard errors, independently of signal type, 

parameterization and time series length. However, accuracy of estimation requires not only 

low variability but also a little bias ( H)Ĥ(Mean − ). Latter will be investigated in the 

following section.  

Bias 

While estimates with little or no bias are a necessary prerequisite for accurate estimation, 

large negative biases for fGn as well as large positive biases for fBm series, especially on the 

edge of the 1/f boundary, may even foster the reliable identification of fractal signals. 

Therefore not only the bias but also the sign of the bias will be given special consideration. 

First, we start with the bias modulus ( HHMean −)ˆ( ) for fGn and fBm series at T= 

128, 256, 512, 1024, 2048, independently of parameterization, and averaged over all 

parameter and sample sizes (right column), as shown in Table 5.1.3. There is a clear effect of 

sample size on bias for both signal types. In the fGn case, distinctly small biases, 

independently of sample size, are delivered by lowPSD. Coefficients of fGn series with low 

values of H are generally underestimated by both procedures, whereas estimations of large 

values are positively biased. The largest bias modulus of all procedures under evaluation in 

the fGn case is delivered by lowPSDe and lowPSDwe. Both methods overestimate the true 
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parameter, regardless of parameterization and sample size. Fairly good results are delivered 

by the DFA variations (not DFAbridge) and Sperio, which are also part of the least biased 

methods in fBm series after lowPSDe. The performance of the Exphspec methods worsens in 

fBm series with a bias modulus about twice the size than in the fGn case. DFAbridge and 

Whittle are distinctively biased, independently of signal type. In fGn series with small 

coefficients Whittle generally underestimates the true parameter but delivers a positive bias 

for series with H≥0.6, whereas all parameterizations in fBm series are clearly underestimated. 

All DFA estimates are positively biased, except for fBm series with H=0.1. 

Table 5.1.3. Bias Modulus (|Mean )ˆ(H -H |) for fGn and fBm series and T= 128, 256, 512, 1024, 2048, 

averaged over all parameters, and additionally averaged over all sample sizes (right column). The data 

is sorted in ascending order by the parameter and sample size averaged bias modulus. 

Mean Bias Modulus 

T 

(Parameter Averaged ) 

Signal 

Type 
Method 

128 256 512 1024 2048 

Parameter and 
Sample Size 

Averaged  

lowPSD 0.0171 0.0126 0.0130 0.0130 0.0087 0.0129 

lowPSDw 0.0342 0.0202 0.0140 0.0140 0.0086 0.0182 

 DFAjw8  0.0257 0.0197 0.0235 0.0235 0.0325 0.0249 

 DFAjw2  0.0279 0.0286 0.0329 0.0329 0.0373 0.0319 

Sperio 0.0565 0.0386 0.0273 0.0273 0.0156 0.0330 

 DFAjwL6  0.0624 0.0671 0.0177 0.0177 0.0123 0.0355 

 DFAjwL2  0.0657 0.0468 0.0337 0.0337 0.0204 0.0401 

PSDw 0.0461 0.0438 0.0439 0.0439 0.0416 0.0439 

PSDew 0.0766 0.0551 0.0383 0.0383 0.0259 0.0469 

PSDe 0.0867 0.0640 0.0427 0.0427 0.0273 0.0527 

fGn 

ExphSpecwo 0.0688 0.0567 0.0502 0.0502 0.0392 0.0530 
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ExphSpecsm 0.0961 0.0571 0.0440 0.0440 0.0329 0.0548 

ExphSpec 0.0750 0.0599 0.0507 0.0507 0.0397 0.0552 

ExphSpecmu 0.0758 0.0594 0.0513 0.0513 0.0395 0.0555 

PSDwe 0.1103 0.0808 0.0542 0.0542 0.0284 0.0656 

Whittle 0.0781 0.0712 0.0688 0.0688 0.0655 0.0705 

DFAbridge 0.1628 0.1313 0.1095 0.1095 0.0820 0.1190 

lowPSDe 0.4807 0.4023 0.3077 0.3077 0.1780 0.3353 

 

lowPSDwe 0.5783 0.4744 0.3611 0.3611 0.2052 0.3960 

lowPSDe 0.0695 0.0078 0.0175 0.0201 0.0155 0.0261 

 DFAjwL2  0.0636 0.0526 0.0436 0.0364 0.0310 0.0454 

lowPSDw 0.0718 0.0824 0.0634 0.0441 0.0300 0.0583 

 DFAjwL6  0.0751 0.0710 0.0728 0.0387 0.0569 0.0629 

lowPSDwe 0.0665 0.0932 0.0986 0.0773 0.0527 0.0777 

Sperio 0.1259 0.0945 0.0786 0.0687 0.0707 0.0877 

 DFAjw8  0.1253 0.0997 0.0939 0.0858 0.0842 0.0978 

lowPSD 0.1110 0.1251 0.1237 0.0929 0.0617 0.1029 

 DFAjw2  0.1273 0.1117 0.0993 0.0904 0.0871 0.1032 

ExphSpec 0.0994 0.0946 0.0993 0.1106 0.1183 0.1044 

PSDwe 0.1171 0.1060 0.1014 0.1035 0.1083 0.1073 

PSDew 0.0958 0.1041 0.1098 0.1136 0.1149 0.1077 

PSDw 0.1052 0.1073 0.1092 0.1132 0.1148 0.1099 

ExphSpecsm 0.1696 0.1000 0.0929 0.0949 0.0927 0.1100 

PSDe 0.1141 0.1146 0.1160 0.1170 0.1168 0.1157 

DFAbridge 0.1583 0.1369 0.1165 0.1016 0.0895 0.1206 

Whittle 0.1431 0.1317 0.1279 0.1272 0.1277 0.1315 

ExphSpecmu 0.2631 0.1831 0.1217 0.0848 0.0605 0.1426 

fBm 

ExphSpecwo 0.3167 0.2219 0.1439 0.0947 0.0648 0.1684 
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Figures 5.1.3 and 5.1.4 show the bias ( HHMean −)(
)

), averaged over 1000 replications, 

of all DFA, ExphSpec and PSD methods as well as Whittle and Sperio on the edge of the 1/f 

boundary, i.e., for fGn series with  H=0.9 (Figure 5.1.3) and fBm series with H=0.1 (Figure 

5.1.4), both for T=128, 265, 512, 1024, 2048. Except for some DFA methods and Sperio, 

there is a clear effect of signal type on the sign of the bias. FGn series with H=0.9 are 

generally overestimated, while fBm series with H=0.1 are underestimated. 

Obvious is the distinct overestimation of DFAbridge in the fGn case that may lead to 

many erroneous decisions of the series as fBm signals. The remaining DFA methods (except 

DFAjwL2) deliver fairly small negative biases. lowPSDw and  
lowPSD are least biased in the 

parameter estimation of fGn series, whereas DFAbridge, ExphSpec, lowPSDwe and Whittle 

clearly overestimate H with the largest biases of all procedures under evaluation. For the 

Whittle method, the bias even becomes larger with increasing sample size. Fairly good results 

are likewise obtained for H=0.9 just as in the analysis of the bias regardless of 

parameterization for the remaining DFA modifications (not DFAbridge) and Sperio. 
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Bias ( H)Ĥ(Mean − ) in fGn series with H=0.9 

Figure 5.1.3. Bias for the different PSD, ExphSpec and DFA modifications and Whittle and Sperio in 

fGn series (presented in alphabetical order) with H=0.9 at T=128, 256, 512, 1024 and 2048. 
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The ExphSpec methods’ estimations are less biased in fBm series with H=0.1 with 

ExphSpecsm delivering the third smallest bias of all estimators under evaluation, surpassed 

and followed by the PSD methods excluding the high-spectral estimates for the fitting of the 

spectral slope. lowPSDwe performing second best is the only method (next to ExphSpecsm at 

T=128) overestimating the true parameter in short series (for T≤512), while all other estimates 

are negatively biased, regardless of sample size. 

Distinctly underestimated, with little or no effect of sample size on bias, is the Hurst 

coefficient in fBm series with H=0.1 by the PSD procedures employing the high-spectral 

estimates in their analysis as well as Whittle and the DFA modifications (except DFAbridge). 
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Bias ( H)Ĥ(Mean − ) in fBm series with H=0.1 

Figure 5.1.4. Bias for the different PSD, ExphSpec and DFA modifications and Whittle and Sperio in 

fBm series (presented in alphabetical order) with H=0.1 at T=128, 256, 512, 1024 and 2048. 

To summarize, the PSD estimations employing all frequencies in their analysis, the 

Whittle as well as the DFA estimates show the least variability of all methods under 

evaluation, regardless of sample size and parameterization. On the edge of the 1/f boundary, 

the PSD estimates including the high-frequency spectral estimates, perform best. However, 

the PSD methods excluding the high-frequency spectral estimates, as well as the DFA 



CHAPTER 5 SIMULATION STUDIES                       

 

74

 

methods and Sperio are least biased regardless of sample size and parameterization. On the 

edge of the 1/f boundary, the true parameter is overestimated in fGn and underestimated in 

fBm series. Here, the PSD methods employing only the frequencies close to zero in their 

analysis deliver satisfying results for both signal types. Fairly small biases are also obtained 

by the DFA methods (not DFAbridge) in the fGn case and ExphSpecsm in fBm series.  

In conclusion, the PSD estimates employing only the frequencies close to zero are 

least biased but highly variable. Associated with somewhat larger biases but small standard 

errors are the DFA methods, except DFAbridge, which is clearly biased for both signal types. 

Classification of fractal signals 

The analysis of the reliable classification of the procedures under evaluation is based on the 

non-transformed estimations given by the procedures under evaluation, that is, the power 

exponent β
)

 of the PSD and ExphSpec methods, the scaling exponent α)  of the DFA 

procedures and the fractional differencing parameter d̂ given by Whittle and Sperio. Recall, 

for the PSD and ExphSpec methods, fGn typically exhibits a power exponent –1≤β<+1, while 

+1>β≤ +3 represents fBm processes. For DFA, the scaling exponent α varying from 0<α<1 

implies fGn, and exponents from 1 to 2 represent fBm processes, for Whittle and Sperio d<+1 

represent fGn and d>+1represent fBm processes. Note that H=α for fGn and H=α-1 for fBm, 

α=d+0.5, d=β/2 as well as β<1 for fGn and β>1 for fBm, so α, β and d allow a definitive 

classification of a series as fGn or fBm simply by the magnitude of the parameter estimation.  

First, to determine the reliability of the procedures under evaluation the percentage of 

misclassification of each estimator is computed in a fully-crossed factorial design, i.e., for all 

levels of H, T and signal type. Second, minimum and maximum value of the non-transformed 

estimations of the most reliable tools are presented to give the researcher an idea what to 

expect in a single analysis. 
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Percentage of misclassifications 

The analysis of the classification of fractal signals shows a considerable effect of 

parameterization and signal type on misclassification. All fGn series with H≤0.6, independent 

of sample size, are properly classified as fGn signals by all procedures under evaluation, 

except by the PSD methods employing only the frequencies close to zero in the analysis, 

which may be due to the high variability of this group (see Table 5.1.2). Thus only the 

percentage of misclassifications for H≥0.7 will be tabulated.  

Table 5.1.4 shows the percentage of misclassifications of fGn series with H=0.7, 0.8 

and 0.9 at T=128, 265, 512, 1024 and 2048 and in addition the percentage of 

misclassifications averaged over all sample sizes. Overall, there is a clear effect of sample 

size on the percentage of wrong decisions. At H=0.7, only DFAjwL6 and Whittle correctly 

identify all fGn series as such in 100% of all cases. Only few false decisions for series with 

T≤256 are obtained by the remaining DFA methods with the exception of DFAbridge. All 

PSD estimates employing only the frequencies close to zero in their analysis perform 

distinctly poor with a percentage of misclassifications up 48% for short series with T=128. 

For fGn series with H=0.8, again, Whittle and the DFA group (except DFAbridge) deliver the 

least amount of misclassifications, followed by the PSD modifications including the high-

frequency spectral estimates in their analysis. Still, more than half of all estimation methods 

under evaluation manage to correctly classify fGn series with T>512 and DFAjw8 correctly 

identifies practically all series independently of sample size.  

On the edge of the 1/f boundary, that is for fGn series with H=0.9, DFAjw8 and 

DFAjw2 still manage to correctly identify in more than 90% of all trials the true fGn signal. 

The DFA modifications’ results is in sharp contrast to that of DFAbridge, which delivers an 

average of about 60% of wrong decisions which is the worst performance of all procedures 



CHAPTER 5 SIMULATION STUDIES                       

 

76

 

under evaluation. The PSD variations including all frequencies for the fitting of the spectral 

slope perform better in identifying the true fGn signal than the lowPSD group. However, for 

PSDwe (19%) and lowPSDw(24%) the results aren’t distinctly different.  

Table 5.1.4. Percentage of misclassification for fGn series with H=0.7, 0.8, and 0.9, at T= 128, 256, 

512, 1024, 2048, and averaged for all sample sizes. The data is sorted in ascending order by the results 

averaged independently of sample size (right column). 

% of misclassifications for fGn series 

T 
H Method 

128 256 512 1024 2048

sample sized 

averaged 

DFAjwL6 0 0 0 0 0 0 

Whittle 0 0 0 0 0 0 

DFAjw8 0 0.1 0 0 0 0.02 

DFAjwL2 0.1 0 0 0 0 0.02 

DFAjw2 0.1 0.1 0 0 0 0.04 

PSDw 0.5 0 0 0 0 0.1 

ExphSpecwo 0.8 0 0 0 0 0.16 

PSDe 0.9 0 0 0 0 0.18 

ExphSpecmu 1.0 0.1 0 0 0 0.22 

PSDew 1.4 0 0 0 0 0.28 

PSDwe 2.2 0.1 0 0 0 0.46 

Sperio 2.9 0.8 0.4 0.1 0 0.84 

ExphSpec 4.9 0.2 0 0 0 1.02 

DFAbridge 10.6 0.8 0.1 0 0 2.3 

ExphSpecsm 11.0 1.0 0 0 0 2.4 

lowPSD 17.5 7.4 1.3 0 0 5.24 

0.7 

lowPSDw 18 6.8 2.1 0.1 0 5.4 
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lowPSDe 38.7 27.6 12.8 2.3 0.2 16.32  

lowPSDwe 48.4 38.2 20.9 5.1 0.4 22.6 

DFAjw8 1.4 0.3 0.3 0 0 0.40 

Whittle 2.5 0.4 0 0 0 0.58 

DFAjw2 2.3 0.8 0.4 0.1 0 0.72 

DFAjwL2 5.0 0.4 0.1 0 0 1.10 

PSDw 6 0.4 0 0 0 1.28 

PSDe 7.9 1.1 0 0 0 1.80 

DFAjwL6 6.9 2.1 0.2 0 0 1.84 

PSDew 9.8 1 0 0 0 2.16 

ExphSpecmu 10.1 1.9 0.2 0 0 2.44 

ExphSpecwo 10.0 2.2 0.2 0 0 2.48 

PSDwe 12.1 1.8 0 0 0 2.78 

Sperio 9.1 5.5 3.7 2 0.4 4.14 

ExphSpec 20.4 7.2 1.4 0 0 5.80 

lowPSD 26.4 17.9 6.6 1.4 0 10.46 

ExphSpecsm 35.3 14.2 3.5 0.6 0.1 10.74 

lowPSDw 26.2 17.8 8 2.8 0 10.96 

DFAbridge 40.7 20.4 7.9 0.3 0 13.86 

lowPSDe 40.2 31.6 20.2 7 0.8 19.96 

0.8 

lowPSDwe 47.6 39.7 29.1 12.3 2.3 26.20 

DFAjw8 10.6 9.6 6.4 5.3 4.8 7.3 

DFAjw2 12.3 10.2 6.8 5.6 4.8 7.9 

DFAjwL2 28.2 14.9 6.0 2.0 0 10.2 

DFAjwL6 26.4 22.7 5.2 5.3 1.3 12.2 

PSDw 30.1 20.3 9 2.9 0.5 12.56 

0.9 

PSDe 37 25.4 12.4 2.9 0.3 15.6 
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Sperio 20.1 19.9 17.5 13.8 8.2 15.9 

PSDew 38.2 27.8 14.2 4.8 0.6 17.12 

ExphSpecmu 42.9 28.7 16.5 5.3 0.3 18.7 

ExphSpecwo 41.4 30.1 18.5 5.6 0.5 19.2 

PSDwe 41.1 32.5 16.2 5.6 0.7 19.22 

lowPSDw 36.7 33.8 24.5 18.4 6.8 24.04 

lowPSD 41.1 33.9 25 15.6 5.8 24.28 

ExphSpec 49.4 37.3 23.4 10.3 1.5 24.4 

Whittle 32.3 33.5 26.7 20.2 12.9 25.12 

lowPSDe 45.3 46.5 36.5 24.2 11.5 32.8 

ExphSpecsm 64.1 44.7 34.8 27.0 18.1 37.7 

lowPSDwe 51.7 54.1 44 33.2 15.7 39.74 

 

DFAbridge 72.3 75.4 67.9 54.7 40.4 62.14 

 

Table 5.1.5 shows the percentage of misclassifications of fBm series with H=0.1, 0.2 

and 0.3 at T=128, 265, 512, 1024 and 2048 and in addition the percentage of 

misclassifications averaged over all sample sizes and parameters. Overall, there is a clear 

effect of sample size on the amount of false decisions, except for fBm series with H=0.1. 

There, the percentage of misclassification even increases for longer series for some Exphspec 

methods, the PSD modifications including all frequencies for the fitting of the spectral slope, 

and Whittle. 

For H=0.1 ExphSpecsm delivers surprisingly good results due to only about 9% of 

misclassifications in long series with T=2048, whereas the PSD modifications including all 

frequencies in their analysis clearly outperform the lowPSD group in the identification of the 

true fGn signals and vice versa in the fBm case, at least for low values of H. However, the 

superiority of the DFA group in the fGn case can’t be repeated in fBm series. The PSD 
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modification including all frequencies as well as Whittle completely fail in the classification 

of fractal signals if presented an fBm series with H=0.1, regardless of sample size, because 

they misclassify the true fBm signals in almost 100%. 

For fBm series with H=0.2 the lowPSD group is having more trouble in identifying the 

true signal. However, the ExphSpec group is doing surprisingly well, only surpassed by 

DFAbridge with an average of 1.6% of false decisions. Series with T>256 are all correctly 

classified. Even Whittle is delivering good results with only about 6.7% of false decisions. 

The DFA group (except DFAbridge) and the PDS modifications including all frequencies in 

their analysis perform worst but still deliver only up to a third of wrong decisions compared to 

up to 100% of misclassifications in fBm series with H=0.1. 

With increasing parameter value the amount of misclassification decreases 

dramatically. The worst performance at H=0.3 are about 7% of false identifications of the true 

fBm signal. The largest amount of erroneous decisions are obtained by the lowPSD group, 

DFAjw8 and DFAjw2. There is a clear deterioration in the performance of the lowPSD group, 

compared to the performance of the remaining estimators with increasing coefficient value. 

Again, DFAbridge (almost up to 100% of correct decisions), the ExphSpec methods and 

Whittle deliver surprisingly good results with practically no false decisions for sample sizes 

with T>256. 
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Table 5.1.5. Percentage of misclassification for fBm series with H=0.1, 0.2, and 0.3, at T= 128, 256, 

512, 1024, 2048, and averaged over all sample sizes. The data is sorted in ascending order by the 

results averaged over all sample sizes (right column). 

% of misclassifications for fBm series 

T 
H Method 

128 256 512 1024 2048

sample sized 

averaged 

ExphSpecsm 22.6 30.7 22.9 14.6 8.8 19.92 

lowPSDwe 33.8 28.1 21.2 19.5 13.9 23.3 

DFAbridge 41.8 35.3 27.1 16.1 7.1 25.48 

lowPSDe 38.5 33.6 27.8 24.6 14.6 27.82 

lowPSD 39.2 37.7 28.8 28.2 16.9 30.16 

lowPSDw 44.2 40.4 32.4 28.9 18.9 32.96 

Sperio 54.7 48.6 37.2 25.9 19.4 37.16 

ExphSpec 47.1 54.6 61.3 76.9 86.6 65.3 

DFAjw2 83.6 75.9 63.8 56.5 47.2 65.4 

DFAjw8 89.7 80.6 68.6 58.3 48.3 69.1 

ExphSpecwo 57.1 60.9 69.5 79.9 93.6 72.2 

ExphSpecmu 56.5 62.3 72.1 84.1 95 74 

DFAjwL2 87.7 87.2 84 73.7 57.4 78 

DFAjwL6 90.6 96.2 85.4 82.8 65.7 84.14 

PSDwe 92.0 98.3 99.9 100 100 98.04 

Whittle 94.4 97.4 99 99.9 100 98.14 

PSDew 93.3 98.7 100 100 100 98.4 

PSDw 94.1 99.3 100 100 100 98.68 

0.1 

PSDe 95.2 99.3 99.9 100 100 98.88 

DFAbridge 7.0 1.0 0 0 0 1.60 0.2 

ExphSpecsm 5.9 2.6 0.9 0.2 0.2 1.96 
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ExphSpecmu 7.6 3.5 0.2 0.1 0 2.28 

ExphSpecwo 8.8 3.3 0.4 0.1 0 2.52 

ExphSpec 9.4 3.6 0.5 0.1 0 2.72 

Whittle 23.9 7.8 1.7 0 0 6.68 

DFAjwL2 29.4 16.9 5.6 1.2 0 10.62 

lowPSD 25.8 16.3 8.5 2.2 0.3 10.62 

lowPSDwe 25.2 17.9 8.5 2.2 0.4 10.84 

lowPSDe 28.0 19.1 9.0 2.6 0.1 11.76 

lowPSDw 29.4 23.9 10.5 3.6 0.8 13.64 

Sperio 32.7 20.5 12.6 4.1 2.9 14.56 

DFAjwL6 37.6 29.1 16.8 2.1 4.2 17.96 

DFAjw8 41.4 27.8 17.1 15.8 12.7 22.96 

DFAjw2 38.8 29.8 19.7 17.3 13.9 23.90 

PSDwe 40.0 35.0 29.2 24.5 12.2 28.18 

PSDew 38.8 37.6 29.7 23.5 12.9 28.50 

PSDe 41.9 40.2 30.2 24.3 12.4 29.80 

 

PSDw 43.7 41.4 34.9 26.0 14.3 32.06 

DFAbridge 0.2 0 0 0 0 0.04 

ExphSpec 0.6 0.3 0 0 0 0.2 

ExphSpecmu 0.7 0.2 0 0 0 0.2 

ExphSpecwo 0.7 0.2 0 0 0 0.2 

Whittle 1.6 0 0 0 0 0.32 

ExphSpecsm 0.9 0.9 0.1 0 0 0.4 

PSDwe 3.5 1.0 0.1 0 0 0.92 

PSDw 4.9 1.1 0 0 0 1.2 

PSDew 4.8 1.3 0.1 0 0 1.24 

0.3 

PSDe 5.2 1.1 0 0 0 1.26 
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DFAjwL2 5.7 0.9 0.1 0 0 1.3 

DFAjwL6 9.8 2.5 1.3 0 0 2.7 

lowPSD 14.8 7.6 1.7 0.2 0 4.86 

Sperio 14.8 7.5 2.9 0.9 0.4 5.3 

lowPSDwe 17.7 7.3 1.7 0.2 0 5.38 

DFAjw8 12.5 5.2 4.1 2.2 3.1 5.4 

lowPSDw 17.1 9.3 2.6 0.2 0 5.84 

lowPSDe 19.7 8.9 2.0 0.2 0 6.16 

 

DFAjw2 14.9 8 5.9 4.1 3.6 7.3 

 

In addition, the percentage of misclassification for fractal signals averaged over all 

parameter at T=128, 265, 512, 1024, and 2048, and averaged over all parameter and sample 

sizes is shown in Table 5.1.6. The parameter averaged results for fGn series confirm the 

findings shown in Table 5.1.4 for H=0.7, 0.8, and 0.9. The DFA methods (not DFAbridge) 

and the PSD modifications including the high-frequency spectral estimates in their analysis 

are the most reliable estimators for correctly identifying fGn signals, with even less than 1% 

of misclassifications for DFAjw8 and DFAjw2, independently of parameterization and time 

series length. In contrast, the lowPSD and ExphSpec methods as well as DFAbridge are clearly 

less qualified for the identification of an fGn series, especially lowPSDe and lowPSDwe with up 

to 30% of false decisions. 

Interestingly, those procedures with the poorest performance in the fGn case are the 

most powerful in the identification of fBm series. ExphSpec and DFAbridge correctly identify 

in more than 95% of all cases the true fBm signal, regardless of parameterization and sample 

size. The remaining DFA methods and the PSD modifications including the high-frequency 

spectral estimates in their analysis are the least reliable estimators in the fBm case. The 
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performance of ExphSpec, ExphSpecwo and ExphSpecmu as well as Whittle and Sperio are 

mediocre at best for both fractal signals. 

Table 5.1.6. Percentage of misclassification of fractal signals averaged over all parameter at T=128, 

256, 512, 1024, and 2048, and averaged over all parameter and sample sizes. The data is sorted in 

ascending order by the results averaged over all sample sizes and parameter (right column). 

% of misclassification 

T 

(averaged over all parameter) 

Signal 

Type 
Method 

128 256 512 1024 2048

averaged over parameter and 
sample size 

DFAjw8 1.33 1.11 0.74 0.59 0.53 0.86 

DFAjw2 1.63 1.23 0.80 0.63 0.53 0.97 

DFAjwL2 3.70 1.70 0.68 0.22 0.00 1.26 

PSDw 4.07 2.30 1.00 0.32 0.06 1.55 

DFAjwL6 3.70 2.76 0.60 0.59 0.15 1.56 

PSDe 5.09 2.94 1.38 0.32 0.03 1.95 

PSDew 5.50 3.20 1.58 0.53 0.07 2.18 

Sperio 3.67 2.92 2.40 1.77 0.96 2.34 

ExphSpecmu 6.00 3.41 1.86 0.59 0.03 2.38 

ExphSpecwo 5.80 3.59 2.08 0.62 0.06 2.43 

PSDwe 6.17 3.82 1.80 0.62 0.08 2.50 

Whittle 3.87 3.77 2.97 2.24 1.43 2.86 

ExphSpec 8.34 4.97 2.76 1.14 0.17 3.48 

lowPSD 11.94 7.09 3.70 1.89 0.64 5.05 

lowPSDw 12.22 7.08 3.88 2.37 0.76 5.26 

ExphSpecsm 12.51 6.66 4.26 3.07 2.02 5.70 

fGn 

DFAbridge 13.84 10.73 8.43 6.11 4.49 8.72 
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lowPSDe 47.90 38.17 19.73 5.76 1.39 22.59  

lowPSDwe 56.93 47.67 28.94 10.81 2.10 29.29 

ExphSpecsm 3.37 3.80 2.66 1.64 1.00 2.49 

DFAbridge 5.44 4.03 3.01 1.79 0.79 3.01 

lowPSDwe 11.38 6.48 3.52 2.43 1.59 5.08 

lowPSD 11.12 7.33 4.39 3.40 1.91 5.63 

lowPSDe 13.77 7.73 4.36 3.04 1.63 6.11 

lowPSDw 13.23 8.91 5.13 3.63 2.19 6.62 

Sperio 12.53 8.78 5.93 3.43 2.52 6.64 

ExphSpec 6.38 6.50 6.87 8.56 9.62 7.58 

ExphSpecwo 7.41 7.16 7.77 8.89 10.40 8.32 

ExphSpecmu 7.21 7.33 8.03 9.36 10.56 8.50 

DFAjwL2 13.73 11.67 9.97 8.32 6.38 10.01 

DFAjw8 16.47 12.70 10.04 8.50 7.14 10.97 

DFAjw2 16.09 12.93 10.07 8.71 7.21 11.00 

Whittle 13.32 11.69 11.19 11.10 11.11 11.68 

DFAjwL6 15.56 14.21 11.50 9.43 7.77 11.69 

PSDwe 15.14 14.92 14.36 13.83 12.47 14.14 

PSDew 15.28 15.29 14.42 13.72 12.54 14.25 

PSDe 15.88 15.62 14.46 13.81 12.49 14.45 

fBm 

PSDw 15.93 15.76 14.99 14.00 12.70 14.68 

 

When analyzing empirical time series, the researcher may have some hypotheses about 

the signal type and internal dependency structure, however, only the series length is known 

for sure. Hence, the percentage of misclassification, independent of signal type and 

parameterization, for the different sample sizes T=128, 265, 512, 1024, and 2048, as well as 

averaged over signal type, paramterization and sample size, in shown in Table 5.1.7. 



CHAPTER 5 SIMULATION STUDIES                       

 

85

 

Table 5.1.7. Percentage of misclassification of fractal signals averaged over signal type and 

parameter, at T=128, 512, 1024, 2048, and averaged over signal type, parameter and sample size. The 

data is sorted ascending by the percentage of misclassification independent of parameterization, 

sample size and signal type. 

% of misclassification 

T 

(averaged over signal type and 
parameter) 

Method 

128 256 512 1024 2048 

averaged over signal type, 
parameter,  

and sample size 

ExphSpecsm 7.94 5.23 3.46 2.36 1.51 4.10 

Sperio 8.10 5.85 4.17 2.60 1.74 4.49 

ExphSpecwo 6.61 5.37 4.92 4.76 5.23 5.38 

ExphSpecmu 6.61 5.37 4.94 4.97 5.29 5.44 
lowPSD 11.53 7.20 4.04 2.64 2.01 5.49 

ExphSpec 7.36 5.73 4.81 4.85 4.89 5.53 

DFAjwL2 8.72 6.68 5.32 4.27 3.19 5.64 

DFAbridge 9.64 7.38 5.72 3.95 2.64 5.87 

DFAjw8 8.90 6.91 5.39 4.54 3.84 5.92 
lowPSDw 12.73 7.99 4.51 3.00 1.47 5.94 

DFAjw2 8.86 7.08 5.43 4.67 3.87 5.98 

DFAjwL6 9.63 8.48 6.05 5.01 3.96 6.63 

Whittle 8.59 7.73 7.08 6.67 6.27 7.27 

PSDw 10.00 9.03 7.99 7.16 6.38 8.11 

PSDe 10.48 9.28 7.92 7.07 6.26 8.20 

PSDew 10.39 9.24 8.00 7.13 6.31 8.21 

PSDwe 10.66 9.37 8.08 7.23 6.27 8.32 
lowPSDe 30.83 22.95 12.04 4.40 1.51 14.35 

lowPSDwe 34.16 27.07 14.23 7.62 2.84 17.19 
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Averaged over signal type, parameter, and sample size, ExphSpecsm and Sperio 

deliver the least amount of misclassifications with less than 5% false decisions for the 

identification of fractal signals with T≥512, suggesting that time series with long-term 

dependence structures should consist of a minimal of around 500 observations. Table 5.1.7 

also shows that Exphspecsm renders the least percentage of false decisions independently of 

sample size and should therefore be the first choice of all procedures under evaluation – 

regardless of time series length – for the classification of a fractional series as motion or 

noise. However, if the analysis suggests an fGn process, a reanalysis with DFAjw8 or 

DFAjw2 is suggested because of their superiority in the fGn case. 

Figure 5.1.5 visualizes the interdependence of signal type and estimator performance. 

While ExphSpecsm is clearly outperforming Sperio in the fBm case, the percentage of false 

decisions in fGn signals is obviously much smaller for Sperio. There is little or no effect of 

sample size on the correlation of signal type and estimator performance, but a clear effect on 

the amount of false decisions resulting in only few misspecifications on the edge of the 1/f 

boundary.
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Figure 5.1.5. Percentage of misclassifications received from ExphSpecsm and Sperio for fGn and fBm 

signals of H=0.1-0.9 with T=128, 256, 512, 1024, and 2048. 

    Sperio           ExphSpecsm 
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Furthermore, it may be interesting to know what to expect in a single analysis, that is, 

to know the extreme values given by ExphSpec and Sperio received over 1000 replications. 

Therefore the minimum and maximum values of estimation as well as the percentage of 

misclassification received by ExphSpecsm and Sperio are presented in Table 5.1.8 for fGn 

signals, in Table 5.1.9 for fBm signals. In the fGn case, there is a positive association between 

the magnitude of the extremes and percentage of misclassifications, i.e., the more extreme the 

minimum or maximum values, the larger the number of false decisions. In the fBm case a 

negative association between the magnitude of the extreme values and the number of false 

decisions can be observed: the smaller the percentage of misclassification, the more extreme 

are the minimum and maximum values.  

Table 5.1.8. Minimum and Maximum value of estimations (β
)

, d̂ ) and percentage of 

misclassifications received for fGn series by ExphSpecsm and Sperio. 

ExphSpecsm (β
)

)  Sperio ( d̂ ) 

T Htrue Min Max 

% 

misclass Min Max 

% 

misclass 

0.1 -1.0557 0.4284 0 -1.0947 0.1647 0 

0.2 -1.0987 0.6580 0 -1.0993 0.2637 0 

0.3 -1.0290 0.7012 0 -0.9958 0.5767 0.1 

0.4 -0.6264 0.9022 0 -0.7724 0.3843 0 

0.5 -0.3683 1.0218 0.1 -0.7554 0.6475 0.3 

0.6 -0.5656 1.1296 2.1 -0.7381 0.5957 0.5 

0.7 -0.0421 1.3254 11.0 -0.7581 0.7084 2.9 

0.8 -0.0778 1.3902 35.3 -0.7038 0.7856 9.1 

12
8 

0.9 0.1716 1.6291 64.1 -0.3840 0.9217 20.1 

0.1 -0.5805 0.3160 0 -0.8793 0.1076 0 

25
6 

0.2 -0.7122 0.4506 0 

 

-0.9384 0.1648 0 
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0.3 -0.2769 0.5835 0 -0.9555 0.1731 0 

0.4 -0.2710 0.7160 0 -0.5944 0.2761 0 

0.5 -0.0399 0.8446 0 -0.5472 0.4374 0 

0.6 0.0879 0.9494 0 -0.5203 0.5034 0.1 

0.7 0.0317 1.0697 1.0 -0.3879 0.6206 0.8 

0.8 0.3108 1.2256 14.2 -0.4340 0.6982 5.5 

 

0.9 0.4688 1.3067 44.7 -0.3233 0.8505 19.9 

0.1 -0.3951 0.2326 0 -0.8074 -0.0217 0 

0.2 -0.1749 0.3592 0 -0.6640 0.0308 0 

0.3 -0.1791 0.5134 0 -0.7268 0.1683 0 

0.4 -0.0044 0.6611 0 -0.5965 0.3301 0 

0.5 0.0554 0.7366 0 -0.4609 0.3469 0 

0.6 0.3189 0.8492 0 -0.3860 0.4579 0 

0.7 0.3192 0.9326 0 -0.5033 0.5761 0.4 

0.8 0.4558 1.1334 3.5 -0.4646 0.6401 3.7 

51
2 

0.9 0.5005 1.1793 34.8 -0.1092 0.7518 17.5 

0.1 -0.2970 0.2092 0 -0.7430 -0.0494 0 

0.2 -0.1949 0.3380 0 -0.6370 -0.0123 0 

0.3 -0.0171 0.4630 0 -0.5238 0.1038 0 

0.4 0.1362 0.6033 0 -0.6488 0.2189 0 

0.5 0.2501 0.6628 0 -0.3731 0.3070 0 

0.6 0.3625 0.8238 0 -0.2766 0.3965 0 

0.7 0.4227 0.9024 0 -0.2111 0.5037 0.1 

0.8 0.5353 1.0289 0.6 -0.0623 0.6024 2 

10
24

 

0.9 0.7229 1.1299 27.0 -0.0327 0.7993 13.8 

0.1 -0.1843 0.1973 0 -0.7128 -0.1478 0 

20
48

 

0.2 -0.0585 0.3334 0 

 

-0.5776 -0.0583 0 
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0.3 0.0614 0.4069 0 -0.5488 0.0529 0 

0.4 0.1574 0.5295 0 -0.4053 0.1275 0 

0.5 0.2918 0.6931 0 -0.4499 0.2805 0 

0.6 0.4131 0.7553 0 

 

-0.2604 0.3406 0 

0.7 0.4890 0.8713 0  -0.1082 0.4987 0 

0.8 0.6175 1.0014 0.1  -0.0373 0.5577 0.4 

 

0.9 0.7429 1.0940 18.1  0.0957 0.6069 8.2 

 

Table 5.1.9. Minimum and Maximum value of estimations (β
)

, d̂ ) and percentage of 

misclassifications received for fBm series by ExphSpecsm and Sperio. 

ExphSpecsm (β
)

)   Sperio ( d̂ ) 

T Htrue MIN MAX 

% 

MISCLASS  MIN MAX 

% 

MISCLASS 

0.1 -0.847 2.3534 22.6 -0.4107 1.1422 54.7 

0.2 -0.1306 2.9986 5.9 -0.2097 1.1632 32.7 

0.3 0.1664 3.3014 0.9 -0.1410 1.3668 14.8 

0.4 0.3712 3.3086 0.7 0.0671 1.4410 6.8 

0.5 1.0502 3.5642 0 0.1429 1.5212 2.2 

0.6 1.207 3.773 0 0.2292 1.4893 1.3 

0.7 1.1622 4.2308 0 0.2769 1.6182 0.3 

0.8 0.9754 4.0122 0.1 0.5046 1.5020 0 

12
8 

0.9 0.8492 4.5458 0.1 0.5107 1.7156 0 

0.1 0.0258 1.8608 30.7 -0.1554 1.0527 48.6 

0.2 0.4362 2.2644 2.6 0.0522 1.1142 20.5 

0.3 0.3804 2.5496 0.9 0.1198 1.2595 7.5 

25
6 

0.4 1.1146 2.7162 0 

 

0.3178 1.3534 2 
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0.5 1.1268 2.9296 0 0.3767 1.4371 0.2 

0.6 1.209 3.0826 0 0.2562 1.5291 0.2 

0.7 1.4114 3.3932 0 0.5299 1.5071 0 

0.8 1.4004 3.6272 0 0.6658 1.5278 0 

 

0.9 1.5414 3.6612 0 0.8013 1.6991 0 

0.1 0.4646 1.7284 22.9 -0.0376 0.9570 37.2 

0.2 0.5216 1.992 0.9 0.2099 1.1011 12.6 

0.3 0.7142 2.2706 0.1 0.2713 1.1600 2.9 

0.4 1.2024 2.4992 0 0.3538 1.2258 0.6 

0.5 1.4686 2.6084 0 0.3892 1.3353 0.1 

0.6 1.6264 2.8906 0 0.6171 1.4016 0 

0.7 1.7222 3.0232 0 0.6013 1.4468 0 

0.8 1.5858 3.1258 0 0.5351 1.5941 0 

51
2 

0.1 1.7762 3.412 0 0.8288 1.6589 0 

0.1 0.53 1.5404 14.6 0.1138 0.9357 25.9 

0.2 0.9318 1.9268 0.2 0.2117 1.0147 4.1 

0.3 1.1488 2.2114 0 0.3604 1.1014 0.9 

0.4 1.3916 2.368 0 0.5713 1.2310 0 

0.5 1.5962 2.5132 0 0.5939 1.2781 0 

0.6 1.8776 2.7518 0 0.7023 1.3947 0 

0.7 1.7874 2.9508 0 0.7858 1.4407 0 

0.8 1.8152 3.0756 0 0.8166 1.5678 0 

10
24

 

0.9 1.9534 3.2968 0 0.9352 1.5269 0 

0.1 0.7592 1.5038 8.8 0.1067 0.8782 19.4 

0.2 0.901 1.9006 0.2 0.3086 0.9832 2.9 

0.3 1.137 2.1518 0 0.4525 1.0963 0.4 20
48

 

0.4 1.5556 2.292 0 

 

0.5760 1.1722 0 
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0.5 1.748 2.431 0 0.6967 1.2470 0 

0.6 1.8678 2.593 0 

 

0.7499 1.3219 0 

0.7 1.786 2.7964 0  0.8076 1.3822 0 

0.8 1.837 3.0982 0  0.8856 1.4683 0 

 

0.9 1.8222 3.1766 0  0.9647 1.5072 0 

 

5.1.6 Conclusions 

In this study the performance of the 8 PSD, 4 ExphSpec and 5 DFA versions as well as the 

Whittle and Sperio methods as classification tools for fractal signals has been empirically 

evaluated by means of simulated fGn and fBm signals with H variations of 0.1 to 0.9, and T 

variations of 128, 265, 512, 1024, 2048, each replicated a 1000 times. 

Regardless of signal type, parameterization and sample size, ExphSpecsm and Sperio 

perform best followed by the remaining ExphSpec variations and lowPSD. On the average, all 

procedures under evaluation correctly identify the true signal in more than 85% of all series 

with T≥512 (more than 90% of series with T≥1024 and 96% of series with T=2048). 

ExphSpecsm and Sperio correctly classify the true signal in more than 95% for T≥512 

suggesting both as adequate tools for a preliminary classifications of time series as Gaussian 

noises or Brownian motions in fractal signals with about 500 observations. 

However, if the result of an empirical analysis suggests an fGn signal, a reanalysis 

with DFAjw8 and DFAjw2 is suggested, since both misclassify fGn signals in less than 1%, 

independently of sample size. If the preliminary empirical analysis suggests an fBm signal, a 

reanalysis with DFAbridge will surely confirm the results, since both ExphSpecsm and 

DFAbridge perform best in classifying fBm signals regardless of sample size with around 3% 

or less false decisions. 
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Nevertheless, if a single analysis of an empirical time series of T≥128 with 

ExphSpecsm should result in an estimated beta somewhere around one, there is still a chance 

of misclassification. The analysis of the extreme values has demonstrated. that ExphSpecsm 

produces estimates greater than one in the case of true fGn series of H≥0.6 even at T≥1024 as 

well as estimates smaller than one in the case of true fBm series of H≤0.2 and T≥1024. 

Therefore a reanalysis with Expecmu, ExphSpecwo or DFAbridge might be in order, since 

these procedures perform almost as well as ExphSpecsm.  

However, the underlying structure of a time series may not be known, the number of 

observation surely is. Hence, after the preliminary classification the researcher may look into 

Table 5.1.6 to determine the best procedure for the suggested signal type and given time series 

length. For example, in short fGn series with T≤256, DFAjw8 and DFAjw2 outperform 

DFAjwL2, whereas the latter is superior in classifying longer fGn series with T≥512. 

If the signal type is adequately determined, an accurate parameter estimate of an fGn 

series may be received through the DFA variations DFAjwL2 and/or DFAjwL6, which have 

delivered estimates with the smallest standard errors of all procedures under evaluation in the 

fGn case. Estimates with the smallest standard error in the fBm case are best obtained by the 

PSD methods including the high-frequency spectral estimates for the fitting of the spectral 

slope as well as DFAjwL2 or Whittle, leaving DFAjwL2 as the procedure delivering an 

estimation of the fractional parameter with the least variability of all procedures under 

evaluation. However, on the edge of the 1/f boundary, the smallest SEs for fGn series with 

H=0.9 and fBm series with H=0.1, are received by the PSD methods including the high-

frequency spectral estimates as well as the Whittle method. 

Although more variable, the PSD estimates excluding the high-frequency spectral 

estimates, as well as the DFA methods and Sperio are least biased, independently of signal 
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type, sample size and parameterization. On the edge of the 1/f boundary, the PSD methods 

employing only the frequencies close to zero in their analysis deliver the least biased 

estimates for both signal types. 

To summarize, the most reliable preliminary classification tools of fractal signals are 

ExphSpecsm and Sperio. If an fGn signal is identified, a reanalysis with DFAjw8 and 

DFAjw2 is suggested. Furthermore, all DFA estimates (not DFAbridge) have proven to be 

least variable and biased, independently of signal type, parameterization and sample size. The 

most accurate estimator for the respective signal type and parameterization as well as given 

sample size may be obtained by using the results of Tables 5.1.2 and 5.1.3 as guidelines, since 

the estimation accuracy highly depends on signal type, parameterization and sample size. 

5.2 Study 2: Distinguishing (Non-)Stationary Processes 

5.2.1 Introduction 

One of the main concepts of time series analysis is the stationarity of processes, that is, to 

determine if a time series’ mean, variance and covariance are stable over time. While the 

memory of stationary series is always final, that of nonstationary processes may be not 

depending on the cause of the nonstationarity. In the ARFIMA framework, processes with 

differencing parameters smaller than 0.5 are stationary, while models with d≥0.5 are unstable 

due to a stochastic trend and usually require differencing as a stabilizing transformation. 

Therefore, misclassifications of the series type could lead to unnecessary transformation of 

stationary processes, that is, overdifferencing or underdifferencing of nonstationary data. 

There has been some debate in the literature arguing that overdifferencing is a less serious 

error than underdifferencing. Nevertheless, all kind of inappropriate transformations are 

consequential for subsequent statistical analyzes and should be omitted. For an overview, 

consult Maddala & Kim (1998) or Stadnytska (2009c). 
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Stationary and nonstationary ARFIMA processes exhibit different memory properties. 

Stationary series with 0<d<0.5 have autocovariances that decay much more slowly than those 

of ARMA processes and therefore possess long memory. In nonstationary series with 0.5≤d<1 

the impact of the series innovations are very persistent but not permanent, however, in 

processes with d=1 the impact of random shocks persist forever. Hence, they possess an 

infinite memory. 

The distinction between stationary and nonstationary ARFIMA processes is also 

important within the cointegration framework, since cointegration is commonly defined as a 

stationary relation between nonstationary variables (Granger, 1981, 1986).  

Special procedures called unit root tests were developed to prove stationarity 

conditions. Test versions available in popular statistical packages like R, SAS or EViews 

typically check the null hypothesis d=1 against d=0, thus they are not appropriate for 

differentiating between fractionally integrated series. Implementation of approaches specially 

designed for fractional data like Lagrange Multiplier tests by Robinson (1994) or Tanaka 

(1999) demand some additional programming. A computationally simple testing technique 

proposed by Dolado et al. (2002) requires a reasonable pre-estimate of d. In the fractional case 

it is also possible to test for stationarity employing Wold type tests by obtaining a point 

estimate of the memory parameter and building confidence intervals around it assuming a 

normal distribution (Geweke & Porter-Hudak, 1983; Robinson, 1992; Sowell, 1992). Test 

properties in this case, however, strongly depend on procedures used for estimating d. 

Different evaluation studies for various estimators of the fractional differencing 

parameter d have revealed that (1) the most accurate procedures, like the exact maximum 

likelihood approach ML proposed by Sowell (1992), can handle only stationary processes, 

i.e., d is constrained by the ML optimization algorithm to be not greater than 0.5, (2) methods 
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that can be directly applied to nonstationary data are often distinctly biased, (3) the magnitude 

of the bias strongly depends on parameterizations, and (4) semiparametric procedures (GPH, 

Sperio) tend to yield large confidence intervals, whereas the precision of parametric methods 

(Whittle, ML) depends on the correct specification of the model (Hauser et al., 1999; Reisen 

et al., 2001; Smith et al., 1997; Stadnytska & Werner, 2006; Stroe-Kunold et al., 2009; Taqqu 

et al., 1995; Taqqu & Teverovsky, 1996).  

To sum up, stationary and nonstationary processes exhibit different memory 

characteristics. These properties can be identified by the magnitude of the ARFIMA 

differencing parameter d, and thus allowing the proper transformation of the data for further 

statistical analysis as well as the choice of the suitable estimator, since some estimation 

methods are constraint to stationary processes with strongly biased results for nonstationary 

series.  

The main goal of the following study is to evaluate the ability of estimators 

implemented in R as well as own modifications to reliably classify stationary and 

nonstationary ARFIMA series. Not only fractal noises but also more complex models with 

either one AR- or MA-term or both will be considered to investigate to what extend the 

(additional) presence of short-term component(s) may affect the reliability of the procedures 

under evaluation. Since the fractional differencing parameter d and the scaling exponent α  of 

the DFA methods and power exponent β  of the ExphSpec and PSD variations (see Chapters 

3.4.3 and 5.1.3) are related by 122 −== αβ d , the DFA, ExphSpec and PSD methods 

evaluated in Chapter 5.1 (see Chapter 5.1.3, p.56)  are also considered next to Whittle, Sperio, 

and GPH (see Chapter 3.4.3) as direct estimators of d. 

In addition to the investigation to what extend the above mentioned procedures may 

qualify as diagnostic tools for the preliminary classification of stationary or nonstationary 
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ARFIMA series, the accuracy of the fractional differencing parameter estimates of the 

methods under evaluation will be assessed, too. 

5.2.2 Method 

The reliability of the abovementioned methods is tested by simulated ARFIMA processes 

with known differencing parameter d by employing the command fracdiff.sim of the R 

package fracdiff (for details, consult the R documentation at 

http://ftp5.gwdg.de/pub/misc/cran/). The R-code for the different stationary and nonstationary 

ARFIMA models is attached. For this study, ARFIMA series with d variations from 0.1 to 

0.9, each replicated a 1000 times, are used. Manipulated are the following independent 

variables:  

- value of d: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9; 

- Model: ARFIMA (0,d,0); ARFIMA (1,d,0) with autoregressive parameters ranging 

from +/–0.2 to +/–0.8 by step of 0.2; ARFIMA (0,d,1) with moving average 

coefficients from +/–0.2 to +/–0.8 by step of 0.2; ARFIMA (1,d,1) with the same 

autoregressive parameterizations as in the (1,d,0) case combined with the moving 

average coefficient  θ=0.3; 

- length of series T= 128, 265, 512, 1024, 2048; 

- 20 estimation methods: 

- estimating d̂ : Whittle, Sperio, GPH; 

- estimating β̂ : ExphSpec, ExphSpecsm, ExphSpecwo, ExphSpecmu, lowPSD, 

lowPSDe, lowPSDw, lowPSDwe, PSDe, PSDew, PSDw, PSDwe;  

- estimating α̂ : DFAbridge, DFAjw2, DFAjw8, DFAjwL2, DFAjwL6; 
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As a quality criterion the following dependent variables were computed:  

- percentage of signal misclassification (MISCLASS) of the nontransformed estimations 

d̂ , β
)

and α) : d̂≥0.5 (Whittle, Sperio, GPH), β
)
≥1 (ExphurstSpec and PSD methods) and 

α) ≥1 (DFA methods) stand for nonstationarity, d̂ <0.5, β
)

<1 and α) <1 stand for 

stationarity series, respectively. 

- Mean (M), standard error (SE) of the transformed estimates (all estimates are transformed 

prior for comparison, see Table 3.3.1, p.35) , minimum (MIN), maximum (MAX) of the 

original estimations d̂ , β
)

and α) , respectively. 

5.2.3 Results 

In the following chapter the accuracy of the estimation methods under evaluation is studied 

first by assessing the estimations’ standard error and bias. The procedures’ capability of 

reliably distinguishing stationary and nonstationary processes are considered thereafter while 

taking the percentage of misclassifications into account. Since in empirical settings, i.e., with 

non-simulated data, the true structure is never known, a strategy for reliably classifying 

(non)stationary ARFIMA processes, regardless of process type, model or parameterization, 

will be developed. An additional investigation of the extreme parameter estimates of those 

procedures performing best will be done, so it may give the researcher an idea what to expect 

in the case of a single analysis of an empirical time series. 

Accuracy of Estimation  

The analysis of the accuracy of the procedures under evaluation requires the transformation of 

the estimated scaling exponent α)  and power exponent β
)

, given by the DFA and PSD and 

ExphSpec methods respectively, into the fractional differencing parameter d̂  (see Chapter 

5.2.2 and Table 5.2.1).  
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The quality of parameter estimation is assessed by computing the mean standard error 

and bias of each estimation (over 1000 replications) for each level of the independent 

variables, i.e., model, process type (stationary or nonstationary), value of d, and time series 

length T (see Chapter 5.2.2). Special consideration will be given to the sign of the bias, as 

even a small positive bias in stationary processes with d<0.5, or a small negative bias for 

nonstationary processes with d>0.5, around the border of nonstationary, may lead to 

misclassification of a series as nonstationary or stationary, respectively. 

Standard Error  

Overall, there is only a small effect of sample size on standard error (SE), independently of 

model type, process type and d. Generally, the standard errors at T=128 are about two to four 

times the magnitude compared to T=2048, and are smallest for Whittle and the PSD methods 

including the high-frequency spectral estimates for the fitting of the spectral slope, and largest 

for GPH and Sperio. Since the standard error always decreases with increasing sample size, 

only SEs at T=2048 are tabulated. Table 5.2.2 shows the procedures with the first two smallest 

and largest SEs, i.e., those estimates with the smallest and largest variability, for ARFIMA 

(0,d,0) series at T=2048, received from 1000 replications. 

Table 5.2.2. Procedures with the first two smallest and largest standard errors for ARFIMA(0,d,0) 

series at T=2048, received from 1000 replications. 

Model d Smallest SE  Largest SE 

0.1 
Whittle 

.0005 

PSDew, PSDw 

.0007 
 

GPH 

.0035 

lowPSDwe 

.0030 

0.4 
Whittle 

.0006 

PSDe, PSDw, PSDew, PSDwe 

.0007 
 

GPH 

.0034 

Sperio 

.0029 

0d0 

0.5 
Whittle 

.0006 

PSDe,PSDw, PSDew 

.0007 
 

GPH 

.0034 

Sperio 

.0029 
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0.9 

PSDe, PSDw, PSDew, PSDwe 

.0007 

Whittle 

.0008 
 

DFAjw2 

.0038 

DFAjw8 

.0037 

 

Regardless of parameterization, the smallest standard errors for estimating the 

fractional differencing parameter d in fractal noises are obtained by Whittle and the PSD 

procedures also including the high frequencies in their analysis, the largest SEs by GPH, 

Sperio and the DFA variations. As demonstrated in Table 5.2.2, there is only little variability 

in the procedures’ performances within the model albeit distinctively different process types, 

that is, stationary and nonstationary processes. 

For the more complex models, the additional presence of short-term components has 

no effect on the standard error’s behavior, i.e., extreme values and range of the SE is almost 

identical in fractional noise with and without short-term dependencies. Hence, only the 

methods receiving the first two smallest and largest SEs of the ARFIMA(1,d,0), 

ARFIMA(0,d,1) and ARFIMA(1,d,1) series (all at d=0.4 and T=2048) are shown in Table 

5.2.3. 

Table 5.2.3. Procedures with the first two smallest and largest standard errors for ARFIMA(0,d,0), 

ARFIMA(0,d,1), and ARFIMA(1,d,1) series at d=0.4 and T=2048, received from 1000 replications. 

Model φ,θ Smallest SE  Largest SE 

θ=0.2 
PSDe, PSDw, PSDew, 

PSDwe 
.0007 

ExphSpecmu, 
ExphSpecwo 

.0008 
 GPH 

.0036 
DFAjw2 

.0029 

θ=0.4 
PSDe, PSDw, PSDew,  

PSDwe,Whittle 
.0007 

ExphSpecmu 
.0008  GPH 

.0035 
Sperio 
.0029 

θ=0.6 PSDe, PSDw, PSDew 
.0007 

PSDew, 
ExphSpecmu 

.0007 
 GPH 

.0035 
Sperio 
.0029 

(0,d,1) 

θ=0.8 PSDw 
.0007 

PSDew, PSDe, 
ExphSpecmu 

.0008 
 GPH 

.0036 
lowPSDwe 

.0034 
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φ=0.2 Whittle 
.0006 

PSDe, PSDw, 
PSDew, PSDwe 

.0007 
 GPH 

.0036 
Sperio 
.0029 

φ=0.4 Whittle, PSDe 
.0006 

,PSDew, PSDwe, 
PSDw 
.0007 

 GPH 
.0035 

Sperio 
.0029 

φ=0.6 
Whittle, PSDe, PSDew, 

PSDwe 
.0007 

PSDw, 
ExphSpecmu, 
ExphSpecwo 

.0008 

 GPH 
.0034 

Sperio 
.0029 

(1,d,0) 

φ=0.8 
Whittle, PSDe, PSDew, 

PSDwe 
.0007 

ExphSpecmu 
.0008  GPH 

.0034 
Sperio 
.0028 

φ=0.2  
θ=0.3 

Whittle 
.0006 

PSDe, PSDew, 
PSDw 
.0007 

 GPH 
.0035 

DFAjw2 
.0029 

φ=0.4  
θ=0.3 

Whittle 
.0007 

PSDe, PSDwe, 
PSDew, , PSDw 

.0008 
 GPH 

.0035 
DFAjw2 

.0029 

φ=0.6  
θ=0.3 

Whittle 
.0006 

PSDe, PSDwe, 
PSDew, PSDw 

.0007 
 GPH 

.0034 
DFAjw2 

.0028 

(1,d,1) 

φ=0.8  
θ=0.3 

Whittle 
.0007 

PSDe, PSDwe, 
PSDew, PSDw 

.0008 
 GPH 

.0034 
Sperio 
.0027 

 

Obviously, there is no effect of model type and parameterization on the variability of 

parameter estimation. Whittle as well as the PSD methods including only windowing and/or 

endmatching deliver the smallest standard errors over all model types and parameter values. 

GPH and Sperio as well as the DFA variations perform likewise consistent, yet their estimates 

show the largest variability of all procedures under evaluation, regardless of model type and 

parameterization. 

Bias 

Another measure of accuracy next to the standard error is the bias ( ddMean −)ˆ( ) of the 

estimate. While a small standard error will surely promote the correct identification of the true 

data-generating process, a smaller bias may in some cases lead to more false decisions than a 

larger deviation. For example, a small positive bias overestimating the fractional differencing 

parameter of a stationary process on the border of nonstationary leads to misclassification as a 
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nonstationary series, while a large but negative bias would have lead to the right conclusion, 

even though the estimate would have been distinctively biased. Hence, not only the absolute 

magnitude but also the sign of the bias is relevant and has to be investigated.  

To determine the accuracy of estimation, first, the bias modulus of all procedures 

under evaluation at T=2048 will be compared, followed by a more refined analysis of the sign 

of the bias at the different levels of d, φ, and θ. 

For ARFIMA (0,d,0) series, there is no clear effect of sample size and 

parameterization on bias for all procedures. With no short-term memory coefficients present, 

the sample size and parameter averaged bias modulus in ARFIMA (0,d,0) series is smallest 

for lowPSDw (0.0096), Whittle (0.0098), and GPH (0.0189), and largest for DFAbridge 

(0.0980) and lowPSDw (0.0917). 

Table 5.2.4. shows the sample size and parameter averaged bias modulus of ARFIMA 

(0,d,0) series considering stationary and nonstationary ARFIMA (0,d,0) processes separately.  

For stationary series, the averaged bias modulus is smallest for lowPSD (0.0054), ExphSpecmu 

(0.0073), and GPH (0.0075), and largest for lowPSDwe (0.1543) and lowPSDe (0.1142). For 

nonstationary series with d≥0.5, the averaged bias modulus is smallest for Whittle (0.0083) 

and lowPSDw (0.0104). Clearly, the PSD estimates excluding the high frequencies from their 

analysis are less biased in nonstationary processes, except for lowPSD with an exceptionally 

small bias in stationary noises. Furthermore, the superiority of the ExphSpec methods in 

stationary series does not hold in the nonstationary case.  
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Table 5.2.4. Sample size and parameter averaged bias modulus for stationary and nonstationary 

ARFIMA(0,d,0) series, received from 1000 replications. The data is sorted in ascending order. 

Stationary series   Nonstationary series Type 

of 

Model Estimator 
Sample size and parameter 

averaged bias modulus 

 
Estimator 

Sample size and parameter 

averaged bias modulus 

lowPSD 0.0054  Whittle 0.0083 

ExphSpecmu 0.0073  lowPSDw 0.0116 

 GPH  0.0075  lowPSDe 0.0151 

ExphSpecwo 0.0076  Sperio 0.0258 

lowPSDw 0.0077   DFAjwL2  0.0283 

 Whittle  0.0121  GPH 0.0291 

 DFAjwL2  0.0148  lowPSD 0.0315 

ExphSpec 0.0165  lowPSDew 0.0328 

PSDew 0.0194   DFAjwL6  0.0408 

PSDe 0.0200  lowPSDwe 0.0433 

 DFAjwL6  0.0217  ExphSpecmu 0.0525 

PSDwe 0.0227  ExphSpec 0.0594 

PSDw 0.0257  ExphSpecwo 0.0614 

ExphSpecsm 0.0375  PSDwe 0.0628 

 Sperio  0.0402  PSDew 0.0656 

 DFAjw8  0.0581  PSDe 0.0699 

 DFAjw2  0.0663  PSDw 0.0715 

DFAbridge 0.0914   DFAjw8  0.0784 

lowPSDew 0.1123   DFAjw2  0.0835 

lowPSDe 0.1142  DFAbridge 0.1075 

(0,d,0) 

lowPSDwe 0.1543  ExphSpecsm 0.1220 
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Table 5.2.5 shows the sample size and parameter averaged bias modulus for stationary 

and nonstationary ARFIMA (0,d,1), ARFIMA(1,d,0), and ARFIMA(1,d,1) series. While the 

Whittle and the lowPSD estimates are least biased in fractional noise, the Whittle estimates are 

distinctively biased in the presence of additional short memory parameters. Stationary and 

nonstationary ARFIMA (0,d,1) series are estimated best by GPH and the PSD methods 

excluding the high-frequency spectral estimates for the fitting of the spectral slope. In the 

autoregressive case, i.e., in nonstationary and stationary ARFIMA(1,d,0) series, their 

performance is surpassed by Sperio and some of the DFA variations while d̂  in mixed 

ARFIMA(1,d,1) series is least biased if estimated by Sperio and GPH. 

Table 5.2.5. Sample size and parameter averaged bias modulus for stationary and nonstationary 

ARFIMA(0,d,1), ARFIMA(1,d,0), and ARFIMA(1,d,1) series, received from 1000 replications. The 

data is sorted in ascending order.  

Stationary series   Nonstationary series Type 

of 

Model Estimator 
Sample size and parameter 

averaged bias modulus 

 
Estimator 

Sample size and parameter 

averaged bias modulus 

GPH 0.0651  lowPSDew 0.0543 

lowPSD 0.0882  GPH 0.0577 

lowPSDw 0.0990  lowPSDwe 0.0581 

Sperio 0.1083  lowPSDe 0.0590 

lowPSDew 0.1663  lowPSD 0.0741 

ExphSpecsm 0.1822  lowPSDw 0.0838 

lowPSDe 0.1893  Sperio 0.0874 

DFAbridge 0.1997  ExphSpecsm 0.1416 

lowPSDwe 0.2448  DFAbridge 0.2074 

 DFAjw2  0.2483   DFAjw2  0.2377 

(0,d,1) 

 DFAjw8  0.2545   DFAjw8  0.2556 
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 DFAjwL2  0.2753  ExphSpec 0.2572 

 DFAjwL6  0.2949  ExphSpecwo 0.2688 

ExphSpec 0.3013  ExphSpecmu 0.2746 

ExphSpecwo 0.3163   DFAjwL2  0.3031 

ExphSpecmu 0.3169   DFAjwL6  0.3402 

PSDwe 0.3279  Whittle 0.3519 

PSDe 0.3414  PSDwe 0.4243 

PSDew 0.3467  PSDew 0.4305 

Whittle 0.3726  PSDe 0.4333 

 

PSDw 0.3986  PSDw 0.4419 

Sperio 0.0546  Sperio 0.0508 

GPH 0.0740   DFAjw2  0.0655 

lowPSDw 0.0805   DFAjw8  0.0772 

lowPSD 0.0889  GPH 0.0833 

 DFAjw2  0.0945   DFAjwL2  0.1692 

 DFAjw8  0.1141   DFAjwL6  0.1836 

lowPSDe 0.1513  lowPSDe 0.1915 

lowPSDew 0.1564  lowPSDw 0.2052 

lowPSDwe 0.1808  lowPSDew 0.2099 

 DFAjwL2  0.2323  lowPSDwe 0.2143 

 DFAjwL6  0.2481  lowPSD 0.2180 

ExphSpecsm 0.2523  ExphSpecsm 0.2949 

ExphSpecwo 0.3204  ExphSpec 0.3163 

ExphSpecmu 0.3210  DFAbridge 0.3193 

ExphSpec 0.3323  PSDe 0.3391 

PSDw 0.3480  PSDw 0.3394 

(1,d,0) 

DFAbridge 0.3612  PSDew 0.3435 
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PSDe 0.3613  PSDwe 0.3452 

PSDew 0.3622  Whittle 0.3629 

PSDwe 0.3674  ExphSpecmu 0.3723 

 

Whittle 0.4279  ExphSpecwo 0.3826 

Sperio 0.0558  Sperio 0.0494 

GPH 0.0638  GPH 0.0723 

lowPSDw 0.0738   DFAjw2  0.0747 

lowPSD 0.0779   DFAjw8  0.0804 

 DFAjw2  0.0904  lowPSDe 0.0804 

 DFAjw8  0.0962  lowPSDw 0.0863 

lowPSDe 0.1562  lowPSDew 0.1010 

lowPSDew 0.1590  lowPSD 0.1037 

 DFAjwL2  0.1592  lowPSDwe 0.1097 

 DFAjwL6  0.1631   DFAjwL2  0.1218 

ExphSpecsm 0.1834   DFAjwL6  0.1330 

lowPSDwe 0.1893  PSDw 0.1729 

PSDw 0.1927  PSDe 0.1731 

PSDe 0.1969  PSDew 0.1749 

PSDew 0.1977  PSDwe 0.1755 

PSDwe 0.1997  Whittle 0.2048 

ExphSpecwo 0.2177  ExphSpec 0.2197 

ExphSpecmu 0.2178  ExphSpecsm 0.2365 

ExphSpec 0.2234  DFAbridge 0.2377 

Whittle 0.2300  ExphSpecmu 0.2521 

(1,d,1) 

DFAbridge 0.2483  ExphSpecwo 0.2606 
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These findings lead to the conclusion, that d̂  is least biased in fractional processes without 

short-term dependencies if estimated by Whittle and lowPSD, whereas in the presence of an 

additional moving average coefficient, GPH estimates of d are less distorted. However, in the 

presence of an additional short-term autoregressive parameter, Sperio’s estimates are least 

biased. 

 Since the Sperio method delivers rather small biases in the autoregressive and mixed 

case, its behavior will be visulaized more detailed. Figure 5.2.1 shows the bias of the Sperio’s 

estimates for the different values of d for ARFIMA (0,d,0) series, when plotted separately for 

T=128, 256, 512, 1024, and 2048.  

Figure 5.2.1. Bias ( ddMean −)ˆ( ) of the Sperio estimates for ARFIMA (0,d,0) series with d=0.1-0.9, 

received from 1000 replications each, with separate lines for each step of  sample size.  

Overall, Sperio underestimates the true d with only few overestimations in long nonstationary 

series. As Figure 5.2.1 demonstrates, extending a time series length does not necessarily lead 

to more accurate estimations of d. Sperio’s estimates at d≥0.7 are clearly less biased for 

smaller sample sizes (T=512 and 1024) than for long series with T=2048, and even of equal 
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magnitude as some short series’ estimates (T=256 and d≥0.8). Since Sperio and GPH deliver 

the least biased estimates in series with additional short memory parameter present, and the 

Whittle estimates are quite accurate in the estimation of d in fractional noise, their biases, 

depending on model type and parameterization, is shown in the following figures. 

Figure 5.2.2 shows the bias ))ˆ(( ddMean −  received by Sperio, GPH and Whittle in 

long ARFIMA (0,d,0) series with T=2048 for all steps of the fractional differencing 

parameter. Regardless of parameterization, the Whittle procedure’s estimates are clearly least 

biased with only slight underestimation of the true parameter in stationary and more 

pronounced overestimation of d in nonstationary series.  
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Figure 5.2.2. Bias ( ddMean −)ˆ( ) of the Sperio, GPH and Whittle estimates in ARFIMA (0,d,0) 

series with d=0.1 to 0.9, at T=2048, each over 1000 replications. 

The course of the Sperio estimate is similar to that of Whittle but with larger biases, especially 

in the stationary case. GPH’s biases are exclusively positive and increase with growing 

parameter value. Hence, Sperio performs satisfactorily only within the region of 0.5≤d≤0.6, 

GPH within the region of 0.2≤d≤0.3, while the Whittle estimates are quite accurate over a 
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much broader range, i.e., over all stationary series as well as nonstationary series with small 

coefficients. 

The visualization of the bias’ behavior for the models with additional short-term 

memory parameter(s) will not take the Whittle method into account, since it delivers large 

biases in the estimation of d for ARFIMA models with one autoregressive and/or moving-

average parameter present. Hence, only the results of the Sperio and GPH procedures for 

ARFIMA(0,d,0) series are shown in Figure 5.2.3. 

  

 (0
,d

,1
) 

  

Figure 5.2.3. Bias ( ddMean −)ˆ( ) of the Sperio and GPH estimates for all levels of d of ARFIMA 

(0,d,1) series, at T=2048. 

Figure 5.2.4 shows the bias ( ddMean −)ˆ( ) of the Sperio and GPH estimates for all levels of d of 

ARFIMA (1,d,0) and ARFIMA (1,d,1) series, all at T=2048. 
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Figure 5.2.4. Bias ( ddMean −)ˆ( ) of the Sperio and GPH estimates for all levels of d of ARFIMA 

(1,d,0) and ARFIMA (1,d,1) series, all at T=2048. 

In the case of the additional presence of large short-term memory coefficients 

(θ,φ=0.8), the bias of the Sperio and GPH estimates is alike for the different values of d. 

Moving average series with large coefficients are exclusively underestimated, while series 
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dominated with a large autoregressive coefficient are exclusively overestimated, with smaller 

biases for GPH in MA-, and for Sperio in AR-processes.  

Since processes with a large moving average coefficient are clearly overestimated and 

processes with a large autoregressive parameter present are distinctively underestimated by 

both procedures, it is expected, that nonstationary series dominated by large moving average 

parameters may be more often falsely identified as stationary series, whereas stationary series 

dominated by large autoregressive parameters may be more frequently classified as 

nonstationary 

Classification of (non)stationary series 

The analysis of the classification of series as stationary and nonstationary is based on the non-

transformed estimates of the different procedures. Recall, that a true stationary ARFIMA 

series is correctly identified as such if the fractional differencing parameter, as estimated by 

Whittle, Sperio and GPH, is smaller than 0.5. Likewise for the PSD and ExphSpec methods, 

if β
)

<1, and for the DFA procedures if α) <1. Correspondingly, an true nonstationary 

ARFIMA series is correctly identified if d̂≥0.5, 1≥β
)

, and 1≥α) , respectively.  

First, the reliability of each procedure under evaluation is determined by computing 

the percentage of misclassifications in a fully-crossed factorial design, i.e., for all levels of 

model type, d and T. Then the percentage of wrong decisions averaged over parameter, 

sample size, and process types (stationary and nonstationary), and additionally averaged over 

both stationary and nonstationary series, is computed, to ascertain the probability of each 

procedure under evaluation to correctly identify the underlying process type in the case of a 

single analysis of an empirical time series. Finally, the minimum and maximum values of the 

non-transformed estimates of the procedures performed best are tabulated, so that the 

researcher may have an idea what to expect in the case of a single analysis. 
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Percentage of Misclassification 

The analysis of the misclassification of fractional ARFIMA processes shows a considerable 

effect of parameterization, sample size and model type on the amount of false decisions. 

Table 5.2.6 shows the percentage of misclassifications of ARFIMA (0,d,0) series at d=0.1-0.9 

and averaged over all parameters, at T=2048, received from 1000 replications. All stationary 

series with d≤0.3 and nonstationary series with d≥0.8 are correctly identified as such in more 

than 95% of all trials by all methods under evaluation. However, the behavior of the different 

methods is highly variable. Procedures like ExphSpec and two of its modifications, DFAjwL2 

as well as Whittle manage to correctly classify all stationary and nonstationary series 

regardless of parameterization in 100% of all cases, except for series with d=0.5, while there 

are at least some erroneous decisions for almost all parameter values for  GPH and lowPSDwe. 

The largest amount of false decisions around the border of nonstationary (d=0.5) is delivered 

by the PSD methods using just windowing and/or endmatching for the fitting of the spectral 

slope (with about twice the amount of false decisions than the PSD variations using only the 

frequencies close to zero for their analysis), albeit these methods perform perfectly in the 

identification of stationary series.  
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Table 5.2.6. Percentage of misclassifications for ARFIMA(0,d,0) series with d=0.1-0.9, and averaged 

over all parameters (right column), at T=2048, received from 1000 replications. The data is assorted in 

ascending order by % of misclassification averaged over all parameters. 

% of misclassifications for ARFIMA(0,d,0) series 

dtrue  

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Averaged over all parameters

DFAbridge 0 0 0 14.1 2.9 0 0 0 0 1.9 

ExphSpecsm 0 0 0 11 19.7 0.6 0.1 0 0 3.5 

ExphSpec 0 0 0 0 38.2 0 0 0 0 4.2 

ExphSpecwo 0 0 0 0 41.9 0 0 0 0 4.7 

ExphSpecmu 0 0 0 0 44 0 0 0 0 4.9 

Whittle 0 0 0 0 46.8 0 0 0 0 5.2 

lowPSD 0 0  0 4.8 46.1 4.3 0 0 0 6.1 

lowPSDe 0 0 0.4 9.3 40.9 4.9 0 0 0 6.2 

lowPSDew 0 0 0.9 11.4 38.7 5.5 0.5 0 0 6.3 

lowPSDwe 0.1 0.3 1.5 15.1 35.2 4.7 0.3 0 0 6.4 

lowPSDw 0 0 0 6.1 47.5 6.5 0.3 0.1  0 6.7 

DFAjwL2 0 0 0 0 64 0 0 0 0 7.1 

Sperio 0 0 0.5 10.8 51.5 13.4 1.3 0.3 0 8.6 

DFAjwL6 0 0 0 0 72 8 0 0 0 8.9 

GPH 0 0.1 3.5 20.6 43.4 16.2 1.3 0.7 0 9.5 

PSDwe 0 0 0 0 97.3 2.8 0 0 0 11.1 

PSDew 0 0 0 0 97.9 3.2 0 0 0 11.2 

PSDe 0 0 0 0 98.4 3 0 0 0 11.3 

PSDw 0 0 0 0 98.6 3.7 0 0 0 11.4 

DFAjw8 0 0 0 4 74 28 14 0 0 13.3 

DFAjw2 0 0 0 6 74 30 14 0 0 13.8 
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Clearly, the superior method in the classification of fractional noise with d=0.5 and 

averaged over all parameters is DFAbridge, with more than 98% of correct identifications, 

independently of parameterization. 

Table 5.2.7 shows the percentage of misclassifications for ARFIMA(0,d,1) series with 

θ =0.2 and 0.8, at d=0.1-0.9, and averaged over all parameters, at T=2048, received from 1000 

replications. The pattern of misclassification for the different procedures in moving average 

processes is similar to that identified in the case of fractional noise. Practically no false 

decisions are observed for ARFIMA(0,d,1) series at 0.3≤d≥0.8. The biggest portion of 

misclassification for all series is ascertained for d=0.5 and 0.6, with best results for 

DFAbridge with only about one third of false decisions at d=0.5. Again, the PSD methods 

including all frequencies in the analysis falsely identify almost all series at the border of 

nonstationary (d=0.5, 0.6). 

 With an increasing moving average coefficient, the portion of misclassifications 

increases particularly for nonstationary series. All nonstationary ARFIMA(0,d,1) series, 

regardless of parameterization, at θ=0.8, are misclassified as stationary by the PSD methods 

including all frequencies in their analysis. The true d of fractional series with small moving 

average parameter values is, as in the fractional noise case, best classified by DFAbridge and 

ExphSpec, while series with large moving average coefficients are best identified by Sperio 

and GPH. 
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Table 5.2.7. Percentage of misclassifications for ARFIMA(0,d,1) series with θ =0.2 and 0.8, at d=0.1-

0.9 and averaged over all parameters, at T=2048, received from 1000 replications. The data is assorted 

in ascending order by % of misclassification averaged over all parameters. 

% of misclassifications for ARFIMA(0,d,1) series 

dtrue  

Method θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Averaged 
over all 

parameters 

DFAbridge 0 0 0 0.2 36.9 0 0 0 0 4.1 

ExphSpecsm 0 0 0 4 35.4 1.8 0 0 0 4.6 

lowPSDew 0 0 0.4 11.3 43.8 4.5 0.6 0 0 6.7 

lowPSD 0 0 0  3.8 51.3 5.7 0.1 0 0 6.8 

lowPSDe 0 0 0.9 12.3 46.4 5 0.3 0 0 7.2 

lowPSDwe 0 0.5 2.3 16.8 42 4.6 0.3 0 0 7.4 

lowPSDw 0 0 0.1 5.9 54.1 6.6 0.6 0 0 7.5 

Sperio 0 0 0.4 8.6 51.5 14.9 2.1 0.1 0 8.6 

GPH 0 0.2 3.1 21 44.4 12.6 2.9 0.7 0.2 9.5 

DFAjwL2 0 0 0 0 90 10 0 0 0 11.1 

ExphSpecwo 0 0 0 0 99 5.7 0 0 0 11.6 

ExphSpecmu 0 0 0 0 99.6 6.2 0 0 0 11.8 

ExphSpec 0 0 0 0 98.2 7.8 0 0 0 11.8 

DFAjw2 0 0 0 0 78 24.1 6 4.4 0 12.5 

DFAjw8 0 0 0 0 80 24 6.1 4 0 12.7 

DFAjwL6 0 0 0 0 96 20.1 6.3 0 0 13.6 

Whittle 0 0 0 0 100 81.8 0 0 0 20.2 

PSDwe 0 0 0 0 100 100 39.1 0 0 26.6 

PSDe 0 0 0 0 100 100 39.7 0 0 26.6 

PSDew 

0.2 

0 0 0 0 100 100 39.8 0 0 26.6 
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PSDw  0 0 0 0 100 100 43.3 0 0 27.0 

GPH 0 0.1 0.9 8.6 59.6 25.5 6.1 1.2 0 11.3 

Sperio 0 0 0.3 3.3 73.3 27.2 5.8 0.2 0 12.2 

lowPSDwe 6 4.2 3.6 5.6 91 74.1 30.9 4.8 0.1 24.5 

lowPSDew 0 0 0.1 0.2 98.5 82.9 34.9 5.2 0.2 24.7 

lowPSDe 1.7 1.2 1 1.7 95.1 83.2 36.8 5 0.1 25.1 

lowPSD 0 0 0 0 100 94.1 42.1 4 0 26.7 

DFAjw2 2.3 1.8 0.1 0 100 81.8 44.2 13.9 2.1 27.4 

lowPSDw 0 0 0 99.9 93.7 47.2 8.1 0.3 0 27.7 

DFAjw8 1.4 1.2 0 0 100 88 58.1 17.9 2 29.8 

ExphSpecsm 0 0 0 0 100 99 65.7 8.9 0 30.4 

DFAbridge 0 0 0 0 100 100 100 90.5 7.2 44.2 

DFAjwL6 0 0 0 0 100 100 100 84 20 44.9 

DFAjwL2 0 0 0 0 100 100 100 96 20 46.2 

ExphSpec 0 0 0 0 100 100 100 100 92.7 54.7 

Whittle 0 0 0 0 100 100 100 100 98.9 55.4 

ExphSpecmu 0 0 0 0 100 100 100 100 100 55.6 

ExphSpecwo 0 0 0 0 100 100 100 100 100 55.6 

PSDe 0 0 0 0 100 100 100 100 100 55.6 

PSDew 0 0 0 0 100 100 100 100 100 55.6 

PSDw 0 0 0 0 100 100 100 100 100 55.6 

PSDwe 

0.8 

0 0 0 0 100 100 100 100 100 55.6 

 

Table 5.2.8 shows the percentage of misclassifications for ARFIMA(1,d,0) series with 

φ =0.2 and 0.8, at d=0.1-0.9, and averaged over all parameters, at T=2048. Overall, fractional 
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series with an additional autoregressive parameter present are less often misclassified than 

fractional moving average processes.  

Table 5.2.8. Percentage of misclassifications for ARFIMA(1,d,0) series with φ =0.2 and 0.8, at d=0.1-

0.9 and averaged over all parameters, at T=2048, received from 1000 replications. The data is assorted 

in ascending order by % of misclassification averaged over all parameters. 

% of misclassifications for ARFIMA(1,d,0) series 

dtrue  

Method φ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Averaged 
over all 

parameters 

ExphSpecmu 0 0 0 10.7 0.1 0 0 0 0 1.2 

ExphSpecwo 0 0 0 11.4 0.3 0 0 0 0 1.3 

ExphSpec 0 0 0 17.1 1 0 0 0 0 2 

DFAjwL2 0 0 0 0 25.1 0 0 0 0 2.8 

PSDw 0   0  0 26.4 0.1 0  0  0   0 2.9 

PSDe 0  0  0  30.6 0.1  0 0  0  0  3.4 

PSDew 0   0 0  34.1 0.1 0  0   0 0  3.8 

PSDwe  0  0 0  36.3  0 0   0  0 0  4.0 

DFAjwL6 0 0 0 2 33.6 3.4 0 0 0 4.3 

ExphSpecsm 0 0 0 26.2 12.3 0.4 0 0 0 4.3 

lowPSDe  0 0  0.5 11 40.5 4.3  0 0  0  6.3 

lowPSDew  0 0  0.7 13.4 39 4.4 0.1 0  0  6.4 

lowPSD 0 0 0 7 46.5 4.6 0.1 0 0 6.5 

lowPSDw 0 0 0 7 47 6.4 0.2 0 0 6.7 

lowPSDwe 0 0.1 2.3 17 36.6 4.7 0.2 0 0 6.8 

DFAbridge 0 0 0.4 70.8 0.3 0 0 0 0 7.9 

Sperio 0 0 0.3 11.4 53.1 16 2.1 0.1 0 9.2 

GPH 

0.2 

0 0.1 3 21.3 43.5 15 2.7 0.4 0.2 9.6 
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Whittle 9.2 0 0 98.6 0 0 0 0 0 11 

DFAjw8 0 0 0 4 65.1 28 7.8 21 0 11.9 

DFAjw2 

 

0 0 0 4 69.2 30.8 9.9 4.1 0 13.1 

Sperio 0 0 2.1 23.7 33.3 6.7 1 0 0 7.4 

GPH 0.1 0.5 9 35.7 30.2 7.6 1.1 0.3 0.2 9.4 

DFAjw8 0 0 3 37.3 30.7 14.8 2.2 0 0 9.8 

DFAjw2 0 0 2.1 29.9 35.8 17.2 8 0 0 10.3 

lowPSDw 0  6.1 49.6 92.4 0   0 0  0   0 16.5 

lowPSD 0  4.2 49.6 94.8 0.1 0   0  0  0 16.5 

lowPSDe 0.4 14.7 59.3 96.1 0  0   0 0  0  18.9 

lowPSDew 0.4 12.2 63.6 96.1 0  0   0  0 0  19.1 

lowPSDwe 2 19.5 67.5 96.4 0.2 0   0  0  0 20.6 

DFAjwL6 2.1 22.9 90 100 0 0 0 0 0 23.9 

ExphSpecsm 2.8 65.4 97.7 100 0 0 0 0 0 29.5 

DFAjwL2 3.2 75.8 100 100 0 0 0 0 0 31.0 

DFAbridge 99.3 100 100 100 0 0 0 0 0 44.4 

ExphSpec 100 100 100 100 0 0 0 0 0 44.4 

ExphSpecmu 100 100 100 100 0 0 0 0 0 44.4 

ExphSpecwo 100 100 100 100 0 0 0 0 0 44.4 

Whittle 100 100 100 100 0 0 0 0 0 44.4 

PSDe 100 100 100 100 0 0 0 0 0 44.4 

PSDew 100 100 100 100 0 0 0 0 0 44.4 

PSDw 100 100 100 100 0 0 0 0 0 44.4 

PSDwe 

0.8 

100 100 100 100 0 0 0 0 0 44.4 

 

Furthermore, the pattern of misclassification for fractional autoregressive processes 

appears to be diametrically opposed to that of moving average processes. When the short-term 
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parameter value increases, most estimators, especially the PSD methods including all 

frequencies in the analysis, misclassify stationary series in the autoregressive and 

nonstationary series in the moving average case. However, as in the moving average case, the 

fractional parameter d of purely fractional autoregressive series is best classified by Sperio 

and GPH, except when the short memory parameters are low. 

Table 5.2.8 shows the  percentage of misclassifications for ARFIMA(1,d,1) series with 

φ =0.2 and 0.8, and θ=0.3, at d=0.1-0.9, and averaged over all parameters for series, at 

T=2048. In mixed fractional processes with small short memory coefficients, DFAbridge and 

ExphSpec deliver the smallest amount of false decisions, just as in the fractional noise and 

moving average case with small values of θ. However, as the autoregressive parameter 

increases while at the same time the moving average parameter value remains small, the 

identification pattern of the mixed process resembles that of the purely fractional 

autoregressive process with high amounts of misclassification for stationary series. As in the 

pure autoregressive case, Sperio and GPH deliver (almost) best results in the mixed case, 

however, they are surpassed by DAFjw8 in ARFIMA(1,d,1) series with φ =0.8 and θ=0.3. 

Again, Sperio and GPH deliver best results in mixed series when the autoregressive 

coefficient is large. However, in the mixed case DAFjw8 is performing exceptionally well and 

even surpasses GPH. 
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Table 5.2.9. Percentage of misclassifications for ARFIMA(1,d,1) series with φ =0.2, 0.8, and θ =0.3, 

at d=0.1-0.9 and averaged over all parameters, at T=2048, received from 1000 replications. The data is 

assorted in ascending order by % of misclassification averaged over all parameters. 

% of misclassifications for ARFIMA(1,d,1) series 

dtrue  

Method φ,θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Averaged over all 

parameters 

DFAbridge 0 0 0 1.3 17.8 0 0 0 0 2.1 

ExphSpecsm 0 0 0 5.2 30.7 1.3 0 0 0 4.1 

lowPSD 0 0 0  4.9 47.7 6.4 0.2 0 0 6.6 

lowPSDew 0 0 0.5 10.3 42.3 6.2 0.1 0 0 6.6 

lowPSDe 0 0.1 1.1 9 43.1 6.2 0.2 0 0 6.6 

lowPSDwe 0 0.4 1.9 14.9 38.4 5.6 0 0 0 6.8 

lowPSDw 0  0 0.1 6.2 51.8 8.2 0.2 0 0 7.4 

Sperio 0 0 0.7 8.9 53.3 15.2 2.5 0 0 9 

GPH 0 0.1 2.9 19.4 42.9 15.4 2.9 0.2 0 9.3 

ExphSpec 0 0 0 0 90.9 2.7 0 0 0 10.4 

ExphSpecwo 0 0 0 0 93.6 1.2 0 0 0 10.5 

ExphSpecmu 0 0 0 0 95.5 1.3 0 0 0 10.8 

DFAjwL2 0 0 0 0 94.1 5.9 0 0 0 11.1 

Whittle 0 0 0 0 100 3.3 0 0 0 11.5 

DFAjwL6 0 0 0 0 93 25.1 1.9 0 0 13.1 

DFAjw8 0 0 0 2 79.7 35.3 13.7 1.4 1 14.8 

DFAjw2 0 0 0 2.1 80.1 34.8 14.6 1.3 1.1 14.9 

PSDwe 0 0 0 0 100 86.4 0.4 0 0 20.8 

PSDew 0 0 0 0 100 86.9 0.4 0 0 20.8 

PSDw 0 0 0 0 100 87.3 0.3 0 0 20.8 

PSDe 

φ 
= 

0.
2,

 θ
 =

  0
.3

 

0 0 0 0 100 89.5 0.3 0 0 21.1 



CHAPTER 5 SIMULATION STUDIES                       

 

121

 

DFAjw8 0 0 3.8 25.8 24.2 13 2 1 0 7.8 

Sperio 0 0 2.3 22.9 35.7 7.8 1.2 0 0 7.8 

GPH 0 1.2 7.7 33.8 29.9 7.1 1.5 0 0.1 9 

DFAjw2 0 0 4 26.1 29.9 20.2 2.8 1 0 9.3 

lowPSDw 0.2 4.3 45.7 91.1 0.2 0 0 0 0 15.7 

lowPSD 0.1 3.1 47.4 92.8 0.3 0 0 0 0 16.0 

DFAjwL6 0 8.1 52 97.9 0 0 0 0 0 17.6 

lowPSDew 0.5 10.6 58.5 93.8 0.6 0 0 0 0 18.2 

lowPSDe 0.4 10 59.8 93.8 0.1 0 0 0 0 18.2 

lowPSDwe 1.9 16.7 62.6 93.7 0.1 0 0 0 0 19.4 

DFAjwL2 0 16.2 91.8 100 0 0 0 0 0 23.1 

ExphSpecsm 0.4 36.1 91.6 99.6 0 0 0 0 0 25.3 

DFAbridge 58 99.8 100 100 0 0 0 0 0 39.8 

PSDw 68.7 100 100 100 0 0 0 0 0 41.0 

PSDew 80.1 100 100 100 0 0 0 0 0 42.2 

PSDwe 81.4 100 100 100 0 0 0 0 0 42.4 

PSDe 81.5 100 100 100 0 0 0 0 0 42.4 

ExphSpec 94.6 100 100 100 0 0 0 0 0 43.8 

ExphSpecmu 96.4 100 100 100 0 0 0 0 0 44 

ExphSpecwo 96.1 100 100 100 0 0 0 0 0 44 

Whittle 

φ 
= 

0.
8,

 θ
 =

  0
.3

 

100 100 100 100 0 0 0 0 0 44.4 

 

Although the underlying structure of a time series may be merely hypothesized, the 

sample size is always known. Hence, the probability of a given time series length of being 

correctly classified as stationary or nonstationary is analyzed by computing the percentage of 

misclassifications for each sample size, averaged over model type and parameterization.  



CHAPTER 5 SIMULATION STUDIES                       

 

122

 

The portions of misclassification for the different models, independent of 

parameterization, for ARFIMA(0,d,0), ARFIMA(0,d,1), ARFIMA(1,d,0), and 

ARFIMA(1,d,1) series, and the different sample sizes is given in Table 5.2.10. Also listed are 

the portions of misclassification averaged over model type and parameterization, and the total 

portion of misclassification averaged over model type, parameterization, and sample size. The 

data is sorted in ascending order by the model, parameterization, and sample size averaged 

portion of misclassification.  

The tabulated data may give the researcher the opportunity to choose the procedure 

performing best depending on the information at hand. If only sample size is known, Sperio 

and GPH deliver the smallest portion of misclassification, closely followed by ExphSpecsm. 

However, if the model type has been already determined, a more precise information may be 

obtained by looking up the best results in the appropriate column. For example, the chances of 

misclassification of a fractional noise process of sample size T=1024 is less than 4% if the 

fractional differencing parameter d is estimated by DFAbridge, compared to almost 11% if 

estimated by Sperio, assuming that the underlying structure of the series to be analyzed 

corresponds indeed to an ARFIMA(0,d,0) process.  

 In summary, short ARFIMA(0,d,0) series are best classified as stationary or 

nonstationary by Whittle and the ExphSpec methods, whereas DFAbridge performs better in 

long series with T≥1024.  Regardless of length, the number of false decisions in fractional  

series with additional short-term memory parameters are least for Sperio and GPH.  
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Table 5.2.10. Percentage of misclassifications for the parameter averaged ARFIMA(0,d,0), 

ARFIMA(0,d,1), ARFIMA(1,d,0), and ARFIMA(1,d,1) series at T=128, 256, 512, 1024, and 2048, 

received from 1000 replications. Also listed are the portions of misclassification averaged over model 

type and parameterization, and the total portion of misclassification averaged over model type, 

parameterization, and sample size. The data is sorted in ascending order by the model, parameter and 

sample size averaged portion of misclassification. 

% of misclassifications 

Method T (0,d,0) (0,d,1) (1,d,0) (1,d,1)
Model and 
parameter 
averaged  

Model, parameter and 
sample size averaged 

128 20 28.8 21.2 21.2 22.8 

256 16.1 22.3 16.2 16.7 17.8 

512 13.1 16.5 12.9 12.9 13.9 

1024 10.7 12.8 10.1 10 10.9 

Sperio 

2048 8.6 10 8.3 8.6 8.9 

14.9 

128 21.3 26.8 24.9 24.2 24.3 

256 17.2 20.7 19.5 19.5 19.2 

512 13.7 16.5 15.3 15.1 15.2 

1024 11 12.5 11.7 11.5 11.7 

GPH 

2048 9.5 10.1 9.3 9.2 9.5 

16 

128 15.3 23.5 30.4 25.9 23.8 

256 10.4 22.8 25.2 20.7 19.8 

512 6.3 20.1 20.5 16.8 15.9 

1024 4.8 16.6 17.1 13.6 13.0 

ExphSpecsm 

2048 3.5 14.4 13.4 10.6 10.5 

16.6 

128 16 41.8 22.1 21.5 25.4 

256 15.6 36 17.8 17.1 21.6 

512 15.3 29.8 13.6 14.5 18.3 

DFAjw8 

1024 14 24.9 10.8 12.3 15.5 

18.9 
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 2048 13.3 19.6 10.5 11.3 13.7  

128 17.3 39.9 21.5 20.6 24.8 

256 16.9 34.8 17 17.6 21.6 

512 16.7 28 13.5 15.2 18.4 

1024 14.7 23.8 11.7 13.3 15.9 

DFAjw2 

2048 13.8 18.6 11.8 12.1 14.1 

19 

128 11.6 41.2 27.8 23.3 26.0 

256 8.7 37.8 23.6 20.3 22.6 

512 8.9 33.9 19.4 17.4 19.9 

1024 6.7 30.5 16.7 13.1 16.8 

DFAjwL2 

2048 7.1 25.6 12.1 10.8 13.9 

19.8 

128 24.8 27.6 26.4 26.2 26.3 

256 17.7 21.2 19.5 19.4 19.4 

512 11.8 17.0 14.1 13.8 14.2 

1024 8.4 14.5 10.5 10.4 11.0 

lowPSD 

2048 6.1 13.3 8.3 8.2 9.0 

19.9 

128 10.6 31.9 28.4 22.8 23.4 

256 7.1 31.1 26.7 20.6 21.4 

512 4.7 31.5 25 19.7 20.2 

1024 4.3 32.2 23.5 18.8 19.7 

ExphSpecwo 

2048 4.7 32.5 22.2 18.5 19.5 

20.8 

128 10 32 28.7 22.9 23.4 

256 6.8 31.8 26.8 20.6 21.5 

512 4.8 32.2 24.9 19.6 20.4 

1024 4.4 32.6 23.4 18.9 19.8 

ExphSpecmu 

2048 4.9 32.8 22.2 18.5 19.6 

20.9 

DFAbridge 128 12.5 32.3 35.7 26.9 26.9 21.1 
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256 8.1 29.4 32.7 23.9 23.5 

512 6 26.7 29.7 21.3 20.9 

1024 3.8 24.1 26.3 18.9 18.3 

 

2048 1.9 21.5 23.5 16.6 15.9 

 

128 11.9 30.7 30.5 24.6 24.4 

256 7.7 30.4 27.6 21.5 21.8 

512 5.4 31.1 25.8 19.9 20.6 

1024 4.1 31.5 23.9 19 19.6 

ExphSpec 

2048 4.2 31.9 22.6 18.6 19.3 

21.1 

128 26.8 29.7 27.6 27.3 27.9 

256 19.8 23.1 20.6 20.8 21.1 

512 13.1 18.6 15.0 14.6 15.3 

1024 9.5 15.6 11.1 11.0 11.8 

lowPSDw 

2048 6.7 13.9 8.6 8.7 9.5 

21.4 

128 14.4 43.7 28.7 23.9 27.7 

256 12.2 42.6 28.9 22.8 26.6 

512 12.4 36.2 18.6 16.1 20.8 

1024 7.1 33.8 19.6 16.1 19.2 

DFAjwL6 

2048 8.9 27.4 10.2 10.8 14.3 

21.7 

128 9.2 42.2 31.6 22.1 26.3 

256 7.2 40.5 31.8 21.6 25.3 

512 5.9 39.2 32 21.2 24.6 

1024 5.5 38.5 32.2 20.6 24.2 

Whittle 

2048 5.2 38.2 32.6 20 24.0 

24.9 

128 33.6 42.6 31.7 33.2 35.3 

256 25.6 33.8 24.5 25.5 27.4 

lowPSDew 

512 15.1 23.3 17.6 17.8 18.5 

25.7 
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1024 9.6 15.5 12.4 12.4 12.5  

2048 6.3 12.4 9.3 9.2 9.3 

 

128 34.8 43.4 32.0 34.0 36.1 

256 26.5 36.2 24.9 25.9 28.4 

512 17.0 27.6 17.8 18.6 20.2 

1024 10.1 18.2 12.4 12.6 13.3 

lowPSDe 

2048 6.2 12.8 9.3 9.1 9.3 

26.8 

128 35.6 43.7 33.5 35.1 37.0 

256 28.7 37.5 26.8 28.0 30.3 

512 19.2 29.8 19.9 20.9 22.4 

1024 11.3 20.3 13.7 14.0 14.8 

lowPSDwe 

2048 6.4 12.9 10.0 9.8 9.8 

28.6 

128 13.9 46.3 30.3 22.6 28.3 

256 12.3 46.2 29.0 21.4 27.2 

512 11.9 46.1 28.3 20.8 26.8 

1024 11.9 45.7 27.8 20.3 26.4 

PSDw 

2048 11.4 45.6 27.6 20.1 26.2 

33.7 

128 12.8 45.7 31.9 23.5 28.5 

256 11.4 45.9 30.3 22.0 27.4 

512 11.1 45.8 29.4 21.3 26.9 

1024 11.5 45.6 28.6 20.7 26.6 

PSDew 

2048 11.2 45.5 28.2 20.5 26.4 

33.9 

128 12.4 45.3 32.5 24.0 28.5 

256 10.9 45.7 30.8 22.4 27.5 

512 10.9 45.7 29.7 21.4 26.9 

1024 11.3 45.5 28.9 20.8 26.6 

PSDwe 

2048 11.1 45.5 28.4 20.6 26.4 

34 
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128 13.0 46.6 31.8 23.6 28.7 

256 11.6 46.3 30.3 22.1 27.6 

512 11.6 46.0 29.3 21.3 27.1 

1024 11.3 45.7 28.6 20.9 26.6 

PSDe 

2048 11.3 45.6 28.2 20.6 26.4 

34.1 

 

Independent of parameterization, model type and sample size, GPH and Sperio have 

shown to be the most reliable methods in distinguishing (non-)stationary fractional processes 

with or without additional long-memory parameters. Therefore their portions of 

misclassification for all levels of d as well as autoregressive and moving average parameter 

are visualized in Figures 5.2.5, 5.2.6, and 5.2.7.  

Overall, the largest amount of misclassification for both procedures is at the border of 

nonstationary. There, the number of false decisions increases along with a growing moving 

average coefficient, but decreases with a growing autoregressive influence, suggesting that 

reliable classification in the presence of additional short-term paramter(s) is hampered only if 

the short memory component is a moving average term. Furthermore, stationary series and 

series at the border of nonstationary with d=0.5 are most reliably identified by the Sperio 

method, whereas GPH performs better in nonstationary series.  
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Figure 5.2.5. Percentage of misclassifications for Sperio and GPH of ARFIMA (0,d,0) series with 

d=0.1 to 0.9, at T=2048. 

0 10 20 30 40 50 60 70 80

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

%

d

0 10 20 30 40 50 60 70 80

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

%

d

(0
,d

,1
) 

0 10 20 30 40 50 60 70 80

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

%

d

0 10 20 30 40 50 60 70 80

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

%

d

Figure 5.2.6. Percentage of misclassifications for Sperio and GPH of ARFIMA (0,d,1) series with 

d=0.1 to 0.9, at T=2048. 
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Figure 5.2.7. Percentage of misclassifications for Sperio and GPH of ARFIMA (1,d,0) and ARFIMA 

(1,d,1) series with d=0.1 to 0.9, at T=2048. 
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After having ascertained Sperio and GPH as the most reliable method of all 

procedures under evaluation for distinguishing ARFIMA series as stationary or nonstationary 

by means of the fractional differencing parameter d, it may be interesting to know what to 

expect in the case of a single analysis of an empirical series, that is to know the minimum and 

maximum values of the estimates. Hence, the extreme estimates of Sperio and GPH, i.e., their 

minimum and maximum estimates at dtrue=0.5 and T=2048, are shown in Table 5.2.11.  

Table 5.2.11. Minimum and maximum value of the fractional differencing parameter estimate d̂  at 

dtrue=0.5 and T=2048, received by Sperio and GPH . 

Sperio GPH 

Model type φ,θ MIN MAX MIN MAX 

(0,d,0)  0.1821 0.7570 0.1986 0.9297 

0.2 0.1325 0.7378 0.0408 0.8488 

0.4 0.1870 0.7465 0.1623 0.7817 

0.6 0.1107 0.7788 0.0117 0.8364 
(0,d,1) 

0.8 0.1513 0.8714 0.0917 0.8090 

0.2 0.1128 0.7875 0.0950 0.8259 

0.4 0.1606 0.7948 0.1430 0.9370 

0.6 0.2194 0.7801 0.1672 0.8283 
(1,d,0) 

0.8 0.2621 0.8154 0.1428 0.8573 

0.2 0.2013 0.7484 0.0944 0.8072 

0.4 0.1469 0.7249 0.1816 0.8503 

0.6 0.1811 0.7614 0.1623 0.8818 
(1,d,1) 

0.8 0.2304 0.7705  0.1990 0.8891 
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Obviously, Sperio’s range is smaller than that of the GPH method, at least in most 

cases, with an average range of 0.6 for Sperio and 0.72 for the GPH procedure, independent 

of model type and parameterization.  

5.2.4 Conclusions 

The performance of the 8 PSD, 4 ExphSpec and 5 DFA variations as well as GPH, Sperio and 

the Whittle method as diagnostic tools to distinguish between stationary and nonstationary 

ARFIMA processes has been empirically evaluated by means of Monte Carlo simulations.  

Although DFAbridge performs best in correctly distinguishing stationary and 

nonstationary fractional noises, the estimator fails if there are additional short-memory 

parameters present. 

 Overall, 88% of all ARFIMA(0,d,0), 69% of all ARFIMA(0,d,1), 78% of all 

ARFIMA(1,d,0) and 81% of all ARFIMA(1,d,1) series were correctly identified, with an 

average of 79% of correct decisions independent of model type, parameterization, sample 

size, and procedure. 

Over all model types and parameterizations, the Sperio method proposed by Reisen 

(1994) and the Geweke and Porter-Hudak (1983) algorithm have proven to be the most 

reliable classification tools of all procedures under evaluation, followed by the smoothed 

version of the HurstSpec method (ExphSpecsm). 

 Independently of model type, parameterization and sample size, Sperio and GPH 

manage to correctly distinguish stationary from nonstationary fractional ARFIMA series in 

around 90%, if T≥1024, with superior performance of Sperio in stationary (96%) and Sperio 

in nonstationary series (87%). Both methods (and likewise all other procedures under 

evaluation) are distinctively more successful if the short memory parameter present is 
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autoregressive and not moving average, suggesting that there is an effect of the underlying 

structure on the bias and not just model complexity on the number of false decisions. Small 

parameter values of d are associated with negative, large parameter values of d with positive 

biases (both advantageous for the correct identification of stationary and nonstationary series, 

respectively), except in series with large short memory parameter values. Here, the bias is 

either exclusively negative, as in the pure moving average model, or exclusively positive as in 

the pure autoregressive or in the mixed model with a large autoregressive and small moving 

average coefficient. Hence, nonstationary series dominated by large moving average 

parameters are more often falsely identified as stationary, whereas series dominated by 

autoregressive parameters are more frequently classified as nonstationary.  

 Overall, the Whittle and the PSD (including all frequencies) estimates of d show the 

least variability. Furthermore, d̂  is least biased in fractional noise if estimated by Whittle and 

lowPSD, whereas in the case of the presence of an additional moving average parameter GPH’s 

estimates are least biased. If the fractional series, however, are dominated by a short-term 

autoregressive parameter, Sperio’s estimates deliver the smallest bias of all procedures under 

evaluation. 

To summarize, the Sperio or GPH procedure is recommended for a preliminary 

determination if an empirical process is stationary or nonstationary. However, if an empirical 

analysis suggests fractional noise without short memory, a reanalysis using DFAbridge is 

suggested. If confirmed, d̂  may be most accurate if estimated by the Whittle method. 

However, if the empirical analysis suggests additional short memory components, GPH may 

as well be used for the estimation of d in the moving average and Sperio in the autoregressive 

case. Since only autoregressive dominated mixed models have been investigated in the current 

study, it can only be speculated that the superiority of GPH in moving average models will 
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uphold in mixed models dominated by large MA parameters, as it has been the case with 

Sperio in the autoregressive dominated mixed model. 

5.3 Study 3: Distinguishing Short and Long Memory 

5.3.1 Introduction 

Since some statistical properties of time series with short-term dependence components may 

mimick those of long memory processes (Rangarajan and Ding, 2000; Thornton and Gilden, 

2005; Wagenmakers et al., 2004, 2005), several techniques for specification or classification 

of processes with different memory properties have been proposed. Wagenmakers et al. 

(2004, 2005) developed a method in which the ARMA model, describing short-term memory 

processes, is competitively tested against the ARFIMA model, representing long memory 

processes. The authors suggested determining the maximum likelihood of a time series under 

the ARMA and ARFIMA models, respectively, and then selecting the appropriate 

representation using the Akaike’s Information Criterion (AIC). Alternatively, a spectral 

classifier procedure was proposed by Thornton and Gilden (2005), in which the likelihood of 

a time series is estimated by comparing its power spectrum with the spectra of the competing 

memory model. In simulation experiments conducted by Farrell et al. (2006a, b), the spectral 

classifier method of Thornton and Gilden (2005) was compared with the ARFIMA approach 

of Wagenmakers et al. (2004). Both procedures proved to be equally effective in 

discriminating between long and short memory series.  

Farrell and colleagues advocated the ARFIMA method because it is widely available 

in statistical packages such as R (a freely available software increasingly used in the social 

and behavioral sciences), it is easily extendable to different sample sizes and more complex 

models, and the theoretical properties of the ARFIMA models are well known, whereas those 

of e.g., spectral classifiers, have yet to be explored. 
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An evaluation of the ARFIMA procedure by Torre et al. (2007a) found out that this 

method presented a bias favoring the detection of long-range dependence: pure ARMA series 

were falsely identified as ARFIMA with d different from 0. An important rate of false 

identifications of long memory models was observed, especially when autoregressive or 

moving average coefficients were low. Employing the Bayes Information Criterion (BIC) 

instead of the AIC provided better results for some parameterizations.   

To sum up, the value of the fractional differencing parameter d of an ARFIMA 

process determines the memory property of the series. It possesses short memory for d=0 and 

finite long memory for 0<d<0.5. Methods proposed for distinguishing series with different 

long-run developments are functions of the employed estimators, thus their performance is 

determined by the quality of estimation of the fractional differencing parameter.  

Therefore, the aim of the following Monte Carlo study is to evaluate the performance 

of those estimators delivering the smallest bias and standard error in Chapter 5.2, i.e., the 

Whittle and Sperio estimators as well as the Geweke- Porter-Hudak (GPH) algorithm. In 

addition, the approximate ML algorithm of Haslett and Raftery fracdiff (for a description, see 

Chapter 3.4, p.37) will be evaluated. In contrast to Whittle, Sperio and GPH, this procedure 

additionally provides short-range dependency estimates of p and q. The range of d is confined 

to [0;0.5] considering only stationary persistent ARFIMA series.  

5.3.2 Method 

The reliability of the abovementioned methods is tested by simulated AR(FI)MA processes 

with with varying long- and short term parameters by employing the command fracdiff.sim of 

the R package fracdiff (for details, consult the R documentation at 

http://ftp5.gwdg.de/pub/misc/cran/). The R-code for generating AR(FI)MA processes is 
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attached. For this study, only stationary AR(FI)MA series with d variations from 0 to 0.4, 

each replicated a 1000 times, are used. Manipulated are the following independent variables:  

- value of d: 0, 0.1, 0.2, 0.3, 0.4; 

- model: AR(FI)MA(1,d,0) with autoregressive parameters ranging from +/–0.2 to +/–

0.8 by step of 0.2; ARFIMA(0,d,1) with moving average coefficients from +/–0.2 to 

+/–0.8 by step of -0.2; ARFIMA(1,d,1) with the same autoregressive parameterization 

as in the (1,d,0) case combined with the moving average value θ=-0.3; 

- length of series T= 128, 256, 512, 1024, 2048; 

- 4 procedures estimating d̂ : Whittle, Sperio, GPH, fracdiff; 

As a quality criterion the following dependent variables were computed:  

- percentage of deviations from the true parameter ( 0.1dd% >−ˆ ),  

- Mean (M), standard error (SE), mean square error (MSE), minimum (MIN) and maximum 

(MAX) values; 

5.3.3 Results 

In the following chapter the accuracy of the estimation methods under investigation is studied 

first by assessing the percentage of estimates deviating more then +/-0.1 from the 

corresponding true parameter. Special consideration will be given to the zone of uncertainty 

[0;0.1]. The behavior of the procedures delivering the smallest portion of deviations, 

independent of parameterization, and independent of parameterization and sample size will be 

computed. Finally, Mean (M), standard error (SE), mean square error (MSE), minimum 

(MIN), and maximum (MAX) values of the most accurate estimates, i.e., most reliable method 

for distinguishing short and long memory structures in ARFIMA series will be tabulated. 
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Deviations from the true parameter 

In general, all deviations from the true parameter, regardless of procedure, become larger with 

increasing short memory parameter value and decreasing sample size. Figure 5.3.1 and 5.3.2 

show the percentage of estimates for each method deviating more than +/-0.1 from the 

corresponding true parameter, at T=128, 265, 512, 1024 and 2048 for ARFIMA(0,d,1), 

ARFIMA(1,d,0), and ARFIMA(1,d,1) series with d=0 and d=0.1.  
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Figure 5.3.1. Percentage of deviations ( 1.0ˆ% >−dd ) for fracdiff, GPH, Sperio, and Whittle estimates in 

ARFIMA(0,d,1) series with d=0 and d=0.1. 
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Figure 5.3.2. Percentage of deviations ( 1.0ˆ% >−dd ) for fracdiff, GPH, Sperio, and Whittle estimates 

in ARFIMA(1,d,0) and ARFIMA(1,d,1) series with d=0 and d=0.1. 
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The panel clearly demonstrates the superiority of the fracdiff method regardless of 

model type and parameterization. In ARFIMA(1,0,0) and (1,0.1,0) series, both with φ=0.2 and 

T=2048, all fracdiff estimates d̂  deviate less than +/-0.1 from 0 and 0.1, respectively. Overall, 

the performance of fracdiff is in sharp contrast to that of the Whittle method with deviations 

between 80 and 100% in most cases. In purely (fractional) autoregressive series, Whittle’s 

portion of deviations even increases with growing sample size. However, Whittle outperforms 

Sperio and GPH in the mixed model with φ=0.2 and should therefore be investigated further. 

Figures 5.3.3 and 5.3.4 show the standard error and bias of fracdiff, GPH, Sperio and 

Whittle estimates for mixed ARFIMA(1,0,1) series with φ=0.2, θ=0.3 and φ=0.8, θ=0.3, 

respectively. Obviously, the superiority of Whittle over Sperio and GPH in the mixed model 

with φ=0.2 and θ=0.3 is due to the large standard errors delivered by Sperio and GPH which 

cannot be compensated by smaller biases, whereas in the φ=0.8, θ=0.3 parameter combination 

the deviations of the Whittle estimates from the true parameter are too large.



CHAPTER 5 SIMULATION STUDIES                       

 

139

 

 ARFIMA(0.2,0.1,0.3) 
SE

 

0,000 0,003 0,005 0,008 0,010

128

256

512

1024

2048

Whittle fracdiff GPH Sperio
 

BI
AS

 

-0,120 -0,080 -0,040 0,000 0,040

128

256

512

1024

2048

Whittle fracdiff GPH Sperio
 

Figure 5.3.3. Standard deviation (upper panel) and bias (lower panel) for fracdiff, GPH, Sperio and 

Whittle estimates in ARIMA(1,0,1) series with φ=0.2 and θ=0.3. 

Irrespectively of the magnitude of the short memory coefficient, the fracdiff estimates 

display the least variability and smallest bias and may therefore qualify as a reliable method 

for distinguishing between series with short and long memory, hence the behavior of fracdiff 

for the different values of d will be investigated more detailed. 
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Figure 5.3.4. Standard deviation (upper panel) and bias (lower panel) for fracdiff, GPH, Sperio, and 

Whittle estimates in ARIMA(1,0,1) series with φ=0.8 and θ=0.3. 

Figure 5.3.5 shows the bias ( ddMean −)ˆ( ) of fracdiff for ARIMA (0,d,1), (1,d,0) and 

(1,d,1) series for all values of d (0-0.4) and θ,φ (0.2, 0.4, 0.6, and 0.8). Apparently, fracdiff 

overestimates ARMA (d=0) and underestimates ARFIMA (d>0.1) series with an increasing 

negative bias as d gets closer to the border of nonstationary. There is a clear effect of 

parameter value only in pure moving average ARFIMA and autoregressive ARMA series. In 

pure moving average series, underestimation of the fractional differencing parameter d in 

ARFIMA series increases with growing moving average coefficient.  
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Figure 5.3.5. Bias ( ddMean −)ˆ( ) of fracdiff for ARIMA(0,d,1), (1,d,0), and (1,d,1) series with 

different values of d (0-0.4), and short memory parameter (0.2, 0.4, 0.6, and 0.8). Note, that in 

ARFIMA(1,d,1) series (lower panel), there is an additional  θ=0.3 for all steps of φ. 
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In the pure autoregressive case, the overall magnitude of the bias is smaller, and more 

distinct only for series with medium sized autoregressive coefficients. In mixed ARFIMA 

series, only the fractional differencing parameter of series with extreme parameter values of φ 

are distinctly underestimated. Hence, the estimates of d in pure ARFIMA processes are least 

biased if the short memory parameter values are low (except in the autoregressive case with 

rather small biases for series with φ=0.8). The estimation of d in mixed series is least biased in 

ARMA series with extreme and ARFIMA series with medium sized autoregressive parameter 

values. 

Tables 5.3.1-5.3.3 provide detailed results for fracdiff in ARFIMA(0,d,1), (1,d,0) and 

(1,d,1) series at T=2048. The biases shown in Figure 5.3.5 for fracdiff correspond to the 

percentage of estimates deviating more then +/-0.1 from the corresponding true paramete. For 

example, the bias in pure moving average series is most profound for large values of d and θ, 

and so is the percentage of deviation (18% at d=0.2, θ=0.8; 22% at d=0.3, θ=0.8; 27% at 

d=0.4, θ=0.8). Large portions of the deviation 0.1dd% >−ˆ  correspond to large mean square 

errors in all model types. 



CHAPTER 5 SIMULATION STUDIES                       

 

143

 

Table 5.3.1. Results for fracdiff of estimating the fractional differencing parameter d in 

ARFIMA(0,d,1) series, at T=2048, 1000 replications each.  

ARFIMA (0,d,1) 

d θ d̂
M  

d̂
SE  

d̂
MSE  d̂Min  d̂Max  1.0ˆ% >−dd  

0.2 0.0100 0.0005 0.0004 0.0000 0.1161 0.1 

0.4 0.0134 0.0008 0.0009 0.0000 0.4700 1.1 

0.6 0.0161 0.0011 0.0014 0.0000 0.3242 2.8 
0 

0.8 0.0108 0.0007 0.0006 0.0000 0.1199 0.6 

0.2 0.0903 0.0011 0.0013 0.0000 0.2158 0.1 

0.4 0.0856 0.0014 0.0021 0.0000 0.2275 0.4 

0.6 0.0740 0.0018 0.0038 0.0000 0.2845 2.7 
0.1 

0.8 0.0737 0.0017 0.0035 0.0000 0.2354 1.2 

0.2 0.1928 0.0011 0.0012 0.0921 0.2945 0.4 

0.4 0.1855 0.0013 0.0020 0.0580 0.3087 2.6 

0.6 0.1734 0.0018 0.0040 0.0080 0.3633 11.9 
0.2 

0.8 0.1582 0.0021 0.0061 0.0000 0.3314 18.3 

0.2 0.2923 0.0011 0.0012 0.1718 0.4038 0.5 

0.4 0.2829 0.0013 0.0021 0.1516 0.4043 2.9 

0.6 0.2665 0.0018 0.0043 0.1064 0.4164 12.4 
0.3 

0.8 0.2512 0.0022 0.0072 0.0000 0.4369 21.5 

0.2 0.3886 0.0010 0.0011 0.2905 0.4682 0.2 

0.4 0.3801 0.0012 0.0018 0.2520 0.4799 1.9 

0.6 0.3594 0.0016 0.0043 0.1963 0.4888 13.2 
0.4 

0.8 0.3358 0.0024 0.0097 0.0280 0.4833 27 
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Table 5.3.2. Results for fracdiff of estimating the fractional differencing parameter d in 

ARFIMA(1,d,0) series, at T=2048, 1000 replications each.  

ARFIMA(1,d,0) 

d φ d̂
M  

d̂
SE  

d̂
MSE  d̂Min  d̂Max  1.0ˆ% >−dd  

0.2 0.0094 0.0005 0.0004 0.0000 0.0957 0 

0.4 0.0124 0.0007 0.0006 0.0000 0.1228 0.1 

0.6 0.0139 0.0008 0.0008 0.0000 0.1564 1.3 

0 

0.8 0.0185 0.0010 0.0014 0.0000 0.2182 3.7 

0.2 0.0912 0.0011 0.0012 0.0000 0.1806 0 

0.4 0.0850 0.0014 0.0022 0.0000 0.2093 0.2 

0.4 0.0768 0.0018 0.0038 0.0000 0.2711 1.5 

0.1 

0.8 0.0934 0.0017 0.0028 0.0000 0.3578 3.2 

0.2 0.1877 0.0012 0.0015 0.0320 0.2962 0.9 

0.4 0.1842 0.0015 0.0026 0.0001 0.3412 4.9 

0.6 0.1721 0.0021 0.0051 0.0000 0.3556 15.7 

0.2 

0.8 0.1898 0.0017 0.0029 0.0212 0.3964 5.6 

0.2 0.2881 0.0012 0.0015 0.1436 0.3913 1.4 

0.4 0.2797 0.0016 0.0030 0.0000 0.4044 6.2 

0.6 0.2705 0.0020 0.0049 0.0224 0.4432 14.9 

0.3 

0.8 0.2900 0.0015 0.0024 0.1500 0.4708 3.8 

0.2 0.3875 0.0011 0.0014 0.1806 0.4727 1.1 

0.4 0.3753 0.0015 0.0029 0.0538 0.4760 5.9 

0.6 0.3644 0.0019 0.0049 0.1312 0.4839 12.8 

0.4 

0.8 0.3834 0.0015 0.0026 0.2482 0.4996 3.3 
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Table 5.3.3. Results for fracdiff of estimating the fractional differencing parameter d in 

ARFIMA(1,d,1) series, at T=2048, 1000 replications each.  

ARFIMA(1,d,1) 

d φ,θ d̂
M  

d̂
SE  

d̂
MSE  d̂Min  d̂Max  1.0ˆ% >−dd  

0.2. 0.3 0.0142 0.0008 0.0009 0.0000 0.2036 1.5 

0.4. 0.3 0.1028 0.0020 0.0147 0.0000 0.2668 58.4 

0.6. 0.3 0.0546 0.0035 0.0151 0.0000 0.3954 15.2 
0 

0.8. 0.3 0.0176 0.0011 0.0015 0.0000 0.2009 5.3 

0.2. 0.3 0.0948 0.0015 0.0021 0.0000 0.2814 1.7 

0.4. 0.3 0.1408 0.0028 0.0094 0.0000 0.3464 28.3 

0.6. 0.3 0.0736 0.0018 0.0039 0.0000 0.2769 1.1 
0.1 

0.8. 0.3 0.0661 0.0023 0.0063 0.0000 0.2967 5.1 

0.2. 0.3 0.1790 0.0018 0.0037 0.0000 0.3451 10.7 

0.4. 0.3 0.1902 0.0022 0.0049 0.0000 0.3917 16.6 

0.6. 0.3 0.1721 0.0021 0.0054 0.0000 0.3769 16.9 
0.2 

0.8. 0.3 0.1328 0.0031 0.0143 0.0000 0.4191 41.9 

0.2. 0.3 0.2512 0.0024 0.0082 0.0001 0.4300 25.9 

0.4. 0.3 0.2745 0.0019 0.0041 0.0463 0.4405 11.3 

0.6. 0.3 0.2667 0.0022 0.0058 0.0000 0.4171 16.5 
0.3 

0.8. 0.3 0.2157 0.0037 0.0209 0.0000 0.4579 43.5 

0.2. 0.3 0.2768 0.0026 0.0218 0.0552 0.4751 60 

0.4. 0.3 0.3673 0.0017 0.0039 0.1432 0.4826 10.6 

0.6. 0.3 0.3552 0.0022 0.0067 0.0000 0.4836 18.5 
0.4 

0.8. 0.3 0.2888 0.0043 0.0307 0.0000 0.4984 44.8 
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Independent of parameterization, the average rate of deviations of the fracdiff 

estimates ( 0.1dd% >−ˆ ), at T=2048, for pure autoregressive series, is 4%, for pure moving 

average series 6%, and for the mixed series 22%. Overall, the most accurate parameter 

estimation of d at T=2048 is obtained in pure autoregressive series with d=0 and 0.1, each at 

φ=0.2, with no deviation at all larger than +/-0.1. The poorest results are obtained for mixed 

ARFIMA series with φ=0.2,θ=0.3 at d=0.4, with only 40% of deviation smaller than +/-0.1. 

5.3.4 Conclusions 

The performance of the Whittle method, the semiparametric estimator of Reisen (Sperio), the 

Geweke and Porter-Hudak (GPH) and the approximate Maximum Likelihood Algorithm of 

Haslett and Raftery (1989) (fracdiff), all available in the R package fracdiff, as diagnostic 

tools estimating the fractional differencing parameter d to distinguish between short-and long-

term dependency structures, has been empirically evaluated by means of Monte Carlo 

simulations. The parameter d of an ARFIMA process determines the memory property of the 

series. It possesses short memory for d=0 and finite long memory for 0<d<0.5. Since methods 

proposed for distinguishing series with different long-run developments by means of d̂ , their 

performance is solely determined by the accuracy of estimation.  

 Overall, the results are highly depended on estimation techniques, parameterization 

and sample size. Only fracdiff has qualified as an accurate estimation technique for the 

classification of stationary ARMA and ARFIMA series due to exceptionally small biases. 

Although fracdiff succeeds in delivering estimates deviating less than 5% +/-0.1 from dtrue in 

short ARFIMA series (θ=0.2, d=0.1) with only T=128 observations, pure autoregressive or 

moving average ARMA or ARFIMA series should consist of at least 500 observations. For 

distinguishing mixed AR(FI)MA series, however, processes should be at least 1000 
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observations long. Depending on parameterization, fracdiff’s estimates deviate even less than 

5% +/-0.1 from the true parameter in series with T≥1024. 

 However, when applying fracdiff for determining the specific long-run development 

of an empirical time series, the researcher should bear in mind that fracdiff overestimates 

ARMA (d=0) and underestimates ARFIMA (d>0.1) series with an increasing negative bias as 

d gets closer to the border of nonstationary, and that regardless of model type.  

.
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6 GENERAL DISCUSSION 

The emphasis of this thesis is certainly on methodological issues. The primary research tasks 

has been the evaluation of the diagnostic ability of different methods within the ARFIMA and 

fractal analysis for revealing the nature of time series data, in particular, to distinguish (1) two 

different classes of persistent processes: fractional Brownian motions (fBm) and fractional 

Gaussian noises (fGn) by means of the Hurst coefficient H within the fractal analysis, (2) 

stationary and nonstationary ARFIMA (p,d,q) processes, and (3) processes with short and 

long memory by means of the parameter d within the autoregressive fractionally integrated 

moving average ARFIMA (p,d,q) framework. Chapter 4 demonstrated samples of the many 

possibilities of time series analysis techniques to deal with dynamical psychological 

phenomena containing internal temporal regularity that can be distinguished from unstable 

systems depending on external and occasional events. Even complex behavior such as the 

balancing between preservation and adaptation can be represented by means of rather simple 

and flexible time series models making processes with different memory properties 

distinguishable such as the autoregressive moving average fractionally integrated processes 

(ARFIMA) constituting as an intermediary between ARMA and ARIMA processes.  

The application of fractal methods, however, often remains rudimentary: analyzes are 

limited to the use of a unique method, the collected series are sometimes too short for a valid 

assessment, and more generally the theoretical background of fractals and related methods is 

not fully exploited. Thus, recent theoretical and methodological refinements of fractal 

analyzes (see Eke et al., 2000, 2002) appear largely unknown in the psychological 

community, although it is by now well established, that, e.g., reaction time sequences in 

normal adults often show evidence of a long-term memory process known as 1/f noise 

(Gilden, 2001; Thornton & Gilden, 2005) in that part of the data generally regarded as 
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unexplained variance, i.e., the trial-to-trial residual variability. In typical cognitive tasks, the 

1/f noise component may account for 30 to 40% of the variance when the treatment effects 

explain only about 10% (Gilden, 1997, 2001). As demonstrated in Chapter 4.2, p.44 , both 

healthy adults and adults diagnosed with ADHD produced data that displayed trends typical 

of mental rotation, although the two groups reaction time sequences had very different 

autocorrelation functions resembling 1/f noise for healthy adults, while the clinical group data 

showed substantial traces of random walk, a difference that could have been not detected by 

an ANOVA. 

Utilizing time series analysis as diagnostic tools to distinguish between qualitatively 

different processes requires adequate analyzing techniques that have been tested for their 

reliability for distinguishing qualitatively different processes, as well as accurately estimating 

the corresponding parameters. Hence, this thesis aimed to test the diagnostic capability of 

different methods within the ARFIMA and fractal analysis, in particular different 

periodogram-based methods and their non-spectral alternatives to distinguish between 

stationary fGn and nonstationary fBm signals, stationary and nonstationary ARFIMA 

processes and stationary ARMA and ARFIMA series, i.e., processes with short and long 

memory within the ARFIMA framework.  

 Since the true data generating process of the series used to evaluate the diverse 

analyzing techniques has to be known, all methods under evaluation were tested by means of 

simulated data generated by the option lmSimulate of the R package fractal and the command 

fracdiff.sim of the R package fracdiff (all computations were performed with R version 2.7.2., 

for details, consult R documentation at http://ftp5.gwdg.de/pub/misc/cran/). The R code is 

also available at http://www.stat.osu.edu/~pfc/software/ (see also Craigmile, 2003).  

In fractal analysis the adequate estimation of memory characteristics usually requires a 

preliminary classification of a time series as fractional Brownian motion (fBm) or fractional 
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Gaussian noise (fGn). Regardless of signal type and parameterization, the ‘smoothed’ version 

of the HurstSpec method (ExhpSpecsm) and the semiparametric estimator of Reisen (Sperio) 

correctly classify the true signal in more than 95% of all series with T≥512, suggesting both as 

adequate tools for a preliminary classifications of fractal series as Gaussian noise or Brownian 

motion in samples with about 500 observations (Figure 6.1 summarizes the results). If an 

empirical analysis suggests an fGn signal, a reanalysis with the non-spectral alternatives 

DFAjw8 and DFAjw2 is proposed, since both identify fGn signals in more than 99% of all 

trials, independent of sample size. If the preliminary empirical analysis suggests an fBm 

signal, a reanalysis with DFAbridge will surely confirm the results, since both ExphSpecsm 

and DFAbridge perform best in classifying fBm signals regardless of sample size with around 

3% or less false decisions. 

 

 

 

 

 

 

 

 

Figure 6.1. Recommendations for the reliable classification and accurate parameter estimation of fractional 

Gaussian noises and fractional Brownian motions. 

Classification  
of fractional Gaussian noise (fGn) vs. fractional Brownian motion (fBm); 

recommended minimal length: T≥500 

ExphSpecsm or Sperio 
→ 95% correct decisions  

 
DFAjw2 or DFAjw8 

→ 99% correct decisions  
DFAbridge 

→ 97% correct decisions  

fGn fBm

Parameter Estimation  
is least variable and biased if estimated by  

 DFAjw2, DFAjw8, DFAjwL2 or DFAjwL6 
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Furthermore, all DFA estimates (except DFAbridge) have excelled in being least 

biased and are associated with the smallest standard errors, independently of signal type, 

parameterization and sample size (for detailed information see Tables 5.1.2 and 5.1.3 as 

guidelines, since estimation accuracy highly depends on signal type, parameterization and 

sample size).  

The findings are in agreement with Delignières et al. (2006), who evaluated the ability 

of PSD, lowPSDwe, DFA, and Signal Summation Conversion (SSC) to distinguish fGn and 

fBm series, where both PSD versions were able to distinguish between fGn and fBm series 

with true H exponent ranging from 0.3 to 0.7. For low and high coefficients, however, the 

results were ambiguous. For instance, the original PSD clearly outperformed lowPSDwe in 

short fBm series with H=0.2 and was significantly inferior in fGn series with H=0.9.   

In their recent study Stroe-Kunold et al. (2009) compared the accuracy of different 

estimators of long memory parameters implemented in R for simple fGn cases, where the 

most precise method for H was hurstSpec, whereas Whittle was the best procedure for d. 

These findings are consistent with the results shown in Table 5.1.2.  

Within the ARFIMA framework, the semiparametric estimator of Reisen (Sperio) and 

the Geweke and Porter-Hudak estimator (GPH) are superior in distinguishing stationary and 

nonstationary ARFIMA series. Both procedures are based on the regression equation, 

however, Sperio uses the smoothed periodogram function as an estimate of the spectral 

density. Sperio’s and GPH’s algorithms manage to correctly separate stationary from 

nonstationary fractional ARFIMA series with T≥1024 in around 90% of all trials with 

superior performance of GPH in nonstationary and Sperio in stationary series, regardless of 

model type and parameterization. The results are summarized in Figure 6.2.  
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Figure 6.2. Recommendations for the reliable classification and accurate parameter estimation of stationary and 

nonstationary ARFIMA(p,d,q) series. 

 

No clear effect of model complexity on the rate of misclassification has been 

observed, but autoregressive series are distinctively more often correctly classified than 

moving average processes. Furthermore, the accuracy of estimating the fractional differencing 

parameter d highly depends on parameterization and sample size. Overall, Whittle and the 

PSD estimates using only windowing and/or endmatching show the least variability. 

Additionally, the Whittle estimates of d are least biased in fractional noise, the GPH estimates 

are least biased in moving average series, and the Sperio estimates in fractional series with 

one additional autoregressive term or in the mixed model with large autoregressive and small 

moving average coefficients.  

The Sperio, GPH and Whittle estimates of the fractional differencing parameter d, 

however, cannot be recommended for the classification of stationary AR(FI)MA processes 

Classification  
of stationary vs. nonstationary ARFIMA(p,d,q) series;  

recommended minimal length : T≥1024 

Sperio or GPH 
→ 90% correct decisions  

 
Sperio 

→ 96% correct decisions  
GPH 

→ 87% correct decisions  

stationary series nonstationary series 

Parameter Estimation   
is least variable and biased if estimated by  

- Whittle and the PSD methods including all frequencies in ARFIMA(0,d,0) 
- GPH in ARFIMA(0,d,q) 
- Sperio in ARFIMA(p,d,0) and ARFIMA(p,d,q) series that are dominated by   

   large autoregressive terms 
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with short and long memory dependency structures. Only the approximate Maximum 

Likelihood Algorithm of Haslett and Raftery (1989) fracdiff, available in the R package 

fracdiff, qualifies as an accurate estimation technique for the classification of stationary 

ARMA and ARFIMA series due to exceptionally small biases (averaged over all model types, 

parameterizations and sample sizes). Regardless of model type, the procedure somewhat 

overestimates ARMA (d=0) and underestimates ARFIMA (d>0.1) series with an increasing 

negative bias as d gets closer to the border of nonstationary. For reliable classification, pure 

(fractional) autoregressive or moving average series should consist of at least 500, mixed 

series of at least 1000 observations. Note, that in contrast to Sperio, GPH and Whittle, the 

range of d for fracdiff is confined to 0≤d<0.5. Hence, the method well qualified for 

distinguishing long and short memory processes cannot be utilized for the classification of 

(non)stationary series. The results are summarized in Figure 6.3. 

 

 

 

 

 

 

 

Figure 6.3. Recommendations for the reliable classification and accurate parameter estimation of short 

and long memory ARFIMA(p,d,q) series. 

Classification and Parameter Estimation 
of ARFIMA(p,d,q) series with long and short memory 

recommended minimal length  
- T≥500 for pure autoregressive or moving average processes 
- T≥1000 for mixed autoregressive moving average series 

fracdiff 
results are highly variable depending on model type and T: 

→ 95% of all parameter estimations are within the interval of 1.0ˆ% >−dd  
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To summarize, despite the variability in the performance of the procedures under 

evaluation, i.e., depending on process type, parameterization and time series length, the 

findings reported in this paper may have distinguished specific algorithms superior in the 

identification of different process properties and estimation of the corresponding parameters. 

While some of the HurstSpec methods and Sperio are superior in distinguishing fractal 

signals, Sperio, GPH and Whittle are best in the classification of (non)stationary ARFIMA 

series but not in distinguishing stationary AR(FI)MA processes with different memory 

properties, for which only the approximate Maximum Likelihood Algorithm of Haslett and 

Raftery (1989) fracdiff qualified.  

However, the author does not recommend, e.g., the Sperio method as the most reliable 

‘multi-purpose’ tool, as the procedure has been successful in fractal analysis as well as in the 

ARFIMA framework. Due to the variability in the performance of the different methods 

depending on process type, parameterization and sample size, the detailed findings should be 

considered when parsimonously planning a study by looking into the relevant Tables of 

Chapter 5, where sample size requirements as well as the optimal analyzing technique for the 

respective task may be chosen from. 
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APPENDIX 

R-code for lowPSDwe 

########################################################################### 

LowPSDwe_875 <- function(y, ...) 

{ 

n <- length(y) 

x <- y - mean(y) 

t=seq(1,n,1) 

xw=x * (1-((2*t/(n+1)) - 1)**2) 

yph <- c(x[1], x[n]) 

xph <- c(1,n) 

reg <- lm(yph ~ xph ) 

param <- coef(reg) 

xt=xw-(param[1]+param[2]*t) 

spec = spectrum(xt) 

nr=length(spec$freq) 

nn =nr* 0.125 

specfreq <- spec$freq[1:nn] 

specspec <- spec$spec[1:nn] 

logfreq <- log(specfreq)   

logspec <- log(specspec) 

lmb <- lm(logspec ~ logfreq) 

b <- coef(lmb) 

return(-b[2])   

                                     }     

###########################################################################
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Simulation of 1000 series of fractional Brownian Motion  with H=0.5, T=512   

########################################################################### 

lm.Control <- function(mod, HG, HB, N, ...) 

{ 

library(fractal) 

y <- lmSimulate(lmModel(mod, HG=HG, HB=HB, ...), n.sample=N,...) 

write.csv2(y,"y.csv") 

y=read.csv2("y.csv") 

y=y[,2] 

 v <- matrix(c(y), ncol=1) 

 write.table(v, file="sim_fbm.txt", append=TRUE, row.names=FALSE, 

                                       col.names=FALSE, sep="    ") 

HG=.01 

hb <- c(.5) 

for (HB in hb){ 

N <- c( 512)  

nrep <- 1000 

for(i in N) {     

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            cat ("REP", rep) 

                            cat ("N", i) 

                            if(HB==.01){cat("HG", HG)} else{cat("HB", HB)} 

                            lm.Control("fgn", HG=HG, HB=HB, i) 

                            if(rep > nrep) next               }}          

                                                                } 

 

########################################################################### 
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Simulation of 1000 series of fractional Gaussian Noise with H=0.5,  T=512   

########################################################################### 

lm.Control <- function(mod, HG, HB, N, ...) 

{ 

library(fractal) 

y <- lmSimulate(lmModel(mod, HG=HG, HB=HB, ...), n.sample=N,...) 

write.csv2(y,"y.csv") 

y=read.csv2("y.csv") 

y=y[,2] 

 v <- matrix(c(y), ncol=1) 

 write.table(v, file="sim_fgn.txt", append=TRUE, row.names=FALSE, 

                                       col.names=FALSE, sep="    ") 

HB=.01 

hg <- c(.5) 

for (HG in hg){ 

N <- c( 512)  

nrep <- 1000 

for(i in N) {     

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            cat ("REP", rep) 

                            cat ("N", i) 

                            if(HB==.01){cat("HG", HG)} else{cat("HB", HB)} 

                            lm.Control("fgn", HG=HG, HB=HB, i) 

                            if(rep > nrep) next               }}          

                                                                } 

 

##########################################################################
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Simulation of 1000 series of stationary ARFIMA (0,d,0) processes  with d=0.3,  T=500  

########################################################################### 

fracdiff.Control  <- function(N, ar, ma, d) 

{ 

library(fracdiff) 

y <- fracdiff.sim(n=N, ar=ar, ma=ma, d=d) 

v <- matrix(c(y$series), ncol=1) 

write.table(v, file="sim_stat0d0.txt", append=TRUE, row.names=FALSE,  

                                      col.names=FALSE, sep="    ") 

} 

D <- c(.3) 

for (d in D){ 

N<- c(500) 

nrep <- 1000 

for(i in N) {     

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            fracdiff.Control(i, ar=NULL, ma=NULL, d)   

                            if(rep > nrep) next               }}             

                                                                           } 

 

###########################################################################



 APPENDIX                     

 

174

 

Simulation of 1000 series of nonstationary ARFIMA (0,d,0) processes  with d=0.7,  T=500  

########################################################################### 

fracdiff.Control  <- function(N, ar, ma, d) 

{ 

library(fracdiff) 

r <- fracdiff.sim(n=N, ar=ar, ma=ma, d=d) 

x<-r$series 

y<-cumsum(x) 

v <- matrix(c(y), ncol=1) 

write.table(v, file="sim_instat0d0.txt", append=TRUE, row.names=FALSE,  

                                      col.names=FALSE, sep="    ") 

} 

D <- c(-.3) 

for (d in D){ 

N<- c(500) 

nrep <- 1000 

for(i in N) {     

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            fracdiff.Control(i, ar=NULL, ma=NULL, d)   

                            if(rep > nrep) next               }}             

                                                                           }     

########################################################################### 
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Simulation of 1000 series of simple stationary ARFIMA (1,d,0) processes  with φ=0.6, d=0.4,  

T=500  

########################################################################### 

fracdiff.Control  <- function(N, ar, ma, d) 

{ 

library(fracdiff) 

y <- fracdiff.sim(n=N, ar=ar, ma=ma, d=d) 

v <- matrix(c(y$series), ncol=1) 

write.table(v, file="sim_stat1d0.txt", append=TRUE, row.names=FALSE, 

                                      col.names=FALSE, sep="    ") 

} 

AR<-c(.6) 

for (ar in AR){ 

D <- c(.4) 

for (d in D){ 

N<- c(500) 

nrep <- 1000 

for(i in N) { 

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            fracdiff.Control(i, ar=ar, ma=NULL, d) 

                            if(rep > nrep) next               }} 

                                                                           } 

                                                                           } 

########################################################################### 
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Simulation of 1000 series of simple stationary ARFIMA (0,d,1) processes  with θ=0.6, d=0.4,  

T=500  

########################################################################### 

fracdiff.Control  <- function(N, ar, ma, d) 

{ 

library(fracdiff) 

y <- fracdiff.sim(n=N, ar=ar, ma=ma, d=d) 

v <- matrix(c(y$series), ncol=1) 

write.table(v, file="sim_stat1d0.txt", append=TRUE, row.names=FALSE, 

                                      col.names=FALSE, sep="    ") 

} 

MA<-c(.6) 

for (ma in MA){ 

D <- c(.4) 

for (d in D){ 

N<- c(500) 

nrep <- 1000 

for(i in N) { 

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            fracdiff.Control(i, ar=NULL, ma=ma, d) 

                            if(rep > nrep) next               }} 

                                                                           } 

                                                                           } 

########################################################################### 
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Simulation of 1000 series of mixed stationary ARFIMA (1,d,1) processes  with φ=0.6, θ=0.3, 

d=0.4,  T=500  

########################################################################### 

fracdiff.Control  <- function(N, ar, ma, d) 

{ 

library(fracdiff) 

y <- fracdiff.sim(n=N, ar=ar, ma=ma, d=d) 

v <- matrix(c(y$series), ncol=1) 

write.table(v, file="sim_stat1d1.txt", append=TRUE, row.names=FALSE, 

                                      col.names=FALSE, sep="    ") 

} 

AR<-c(.6) 

for (ar in AR){ 

MA<-c(.3) 

D <- c(.4) 

for (d in D){ 

N<- c(500) 

nrep <- 1000 

for(i in N) { 

             rep <- 0 

             for (j in 1:nrep){ 

                            rep = rep + 1 

                            fracdiff.Control(i, ar=ar, ma=ma, d) 

                            if(rep > nrep) next               }} 

                                                                           } 

                                                                           } 

########################################################################### 

 


