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Abstract

Genome function in higher eukaryotes involves major changes in the spatial organization
of the chromatin fiber. Nevertheless, our understanding of chromatin folding is remarkably
limited. Experimental results suggest that chromatin loops not only impact transcriptional
regulation but also act as a major epigenetic mechanism, playing a pivotal role in the ob-
served compartmentalization of chromosomes. However, a unified description of chromatin
folding comprising various experimental results is still lacking. After showing that the the-
ory of compact polymers is inconsistent with experimental data, we develop a new model
for chromatin based on probabilistic formation of loops. This Random-Loop-Model cor-
rectly describes folding into a confined sub-space of the nucleus as well as the observed
cell-to-cell variation, suggesting a close relation between expression-dependent compaction
and local variations in the looping probabilities. We find that formation of loops is highly
beneficial for the nucleus to maintain order and to accomplish entropy-driven segregation
of chromosomes. A dynamic model is proposed, showing that the formation of loops can
be accomplished solely on the basis of diffusional motion without invoking active mech-
anisms. Such a dynamic model provides a unified explanatory framework of chromatin
folding, yielding testable predictions, which for the first time consistently explain many
experimental findings.

Zusammenfassung

Die Steuerung der Genexpression in héheren Eukaryonten erfordert grofiere Verdanderungen
in der rdumlichen Anordnung der Chromatinfiber. Nichtsdestotrotz ist unser Wissen tiber
die Struktur von Chromosomen duflerst begrenzt. Wie experimentelle Resultate zeigen, be-
influssen Chromatin-Schleifen nicht nur Genexpression, sondern wirken als epigenetischer
Mechanismus, welcher eine entscheidende Rolle bei der Bildung von Chromosomenterrito-
rien spielen. Trotz dieses Wissens gibt es noch kein einheitliches Modell der Chromatinfal-
tung unter Integration verschiedenster experimenteller Resultate. Wir zeigen, dass Chro-
mosome sich anders verhalten, als es die klassische Polymertheorie vorhersagt. Ausgehend
von der Annahme probabilistischer Schleifenbildung wird ein das neue Random-Loop-
Modell entwickelt. Diese Modell erklart sowohl die Faltung von Chromosomen in einen be-
grenzten Teilraum des Zellkerns als auch die beobachtete hohe Variabilitét zwischen Zellen.
Die Ergebnisse zeigen eine mogliche Verbindung zwischen expressionsabhéngiger Kompak-
tifizierung und der lokalen Schleifenwahrscheinlichkeit. Wir finden, dass Schleifenbildung
ein treibende Kraft im Zellkern ist um sowohl Ordnung als auch Chromosomensegrega-
tion aufrechtzuhalten. Ein dynamisches Modell wird présentiert, in dem Loops sich ohne
aktive Mechanismen lediglich aufgrund von Diffusion bilden und welches eine expression-
sabhéngige Chromatinstruktur postuliert. Es erklért eine grofie Anzahl experimenteller
Resultate mittels eines einheitlichen Modells und liefert tiberpriifbare Vorhersagen fiir
weitere Experimente.
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Chapter 1

Scope and Intentions

A short overview over topics and aims

1.1 Introduction

The cell nucleus is a main constituent of eukaryotic organisms and yet its complexity
prevents detailed knowledge of its function. The genome content is carried by the chro-
mosomes: compactly folded polymers consisting of DNA and histone proteins. Whereas
during mitosis chromosomes are found in an extremely condensed state, the chromatin
fiber inside the interphase nucleus has a much more decondensed organization. However,
at this stage of the cell cycle, highly coordinated processes such as transcription, repli-
cation and DNA repair take place, making a random folding of the chromatin fiber very
unlikely. The haploid human genome consists of 23 chromosomes with a total of more
than 3 billion basepairs (bp), which constitute the building blocks of the genome and are
carrier of information. In diploid cells, about 2 meters of double-stranded DNA have to
be densely packed into a nucleus which has a diameter on the order of 10 ym. Folded into
a compact globule, these 2 meters of DNA with an average diameter being only about 2
nm could be packed into a sphere of radius 1.8 pm, which indeed is much smaller than the
diameter of the nucleus. On the other hand, a typical non-condensed human chromosome
of a length of 100 Mb in good solvent would extend to about 130 pm, a scale much larger
than the diameter of the nuclear envelope.

The DNA content, which is the same for each cell of the organism, has to be highly
accessible by numerous proteins such as transcription factors, polymerases and regulatory
elements. Given that gene activity strongly depends on cell differentiation, higher eukary-
otes have to provide versatile epigenetic mechanisms for gene regulation. The folding of
the genome in the interphase nucleus of eukaryotic cells is done on multiple scales of length
and degrees of compaction. The basic filament is the DNA double helix which, in a first
stage of compaction, is wrapped in a 1-and-3/4 turn around histone cores. About 147 bp
(basepairs) are associated with each histone octamer constituting the nucleosome. The
chromatin fiber is a complex of nucleosomes and linker DNA forming a beads-on-a-string
type of filament with a diameter of about 11 nm [1]. In-vitro experiments provide evidence
that this structure in turn condenses under certain salt conditions to an even more com-
pact structure of 30 nm, but both its regularity and its existence in living cell nuclei are
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16 1. Scope and Intentions

still under debate [2, 3, 4, 5]. Stunningly, even less is known about the structural organiza-
tion on the scale above 30 nm. Up to now, experimental techniques have been limited by
the resolution of conventional light microscopes of about 200 nm, requiring indirect assays
for investigating chromatin folding. Several experimental techniques have been applied:
Fluorescent labeling of large parts of a chromosome yields results on structure, shape and
position of chromosomal regions [6] or even of entire individual chromosomes [7]. Labeling
two loci of a chromosome with a fluorescent marker was successfully used to establish
a relationship between the genomic distance g of these markers and its average physical
distance in yeast [8], drosophila [9, 10] and human cells [11, 12].

Despite our lack of knowledge on the detailed folding mechanisms of chromatin in
interphase nuclei, there is now abundant evidence that genome function is tightly related to
chromatin folding on several length scales. The one-dimensional distribution of genes along
the chromosome is far from being random: the Human Transcriptome Map [13] reveals a
clustering of active genes as well as inactive genes into certain domains, which have been
named ridges and anti-ridges [6]. Various experiments have shown that the 3D organization
of chromatin depends on transcriptional activity: Active genes tend to be located in the
nuclear interior while inactive genes are found more often at the nuclear periphery [6,
14, 15]; the converse behavior is observed in some experiments [16]. Moreover, a change
in the transcriptional state of a gene can have direct influence on its positioning inside
the nucleus [17, 18]. Transcriptional active regions (ridges) were observed to have a more
open structure than inactive regions (anti-ridges) [6]. Fluorescence in situ hybridization
(FISH) has allowed the positioning of fluorescent markers at specific points along the
genome. The relationship between mean square distance (MSD) of two fluorescent markers
and their genomic separation has revealed significant differences in compaction between
ridges and anti-ridges [12]. Gene-rich and transcriptional active regions are less compact
than gene-poor regions. Importantly, above genomic separations of 5-10 Mb, the mean
square displacement between two FISH markers does not depend any longer on genomic
separation. This study indicated a folding of chromatin regions and entire chromosome
arms into a confined sub-space of the nucleus with an average diameter of about 2 pm.

The theory of linear polymers predicts that a semi-dilute solution of chromosomes,
as it can be found inside the nucleus, displays a strong intermingling between different
chromosomes. Amazingly, experiments reveal that this is not the case. Rather, chromo-
somes are separated into distinct chromosome territories [7], whose relative positions and
ellipsoidal shape varies from cell to cell [19].

Intra-chromosomal as well as inter-chromosomal contacts or loops have been inten-
sively analyzed in the past few years both experimentally and theoretically as a possible
mechanism for transcriptional regulation and genome folding. Yet, chromatin loops seem
to be an ubiquitous feature of genome organization and genome function. Transcriptional
regulation is often controlled by regulatory motifs such as enhancers and silencers. These
can be located tens of kb up to several Mb apart from the target gene which they regu-
late [20, 21]. One possible interaction mechanism is spatial proximity of regulatory element
and target gene which requires the looping out of intervening DNA. 3C experiments have
demonstrated that this is indeed the case in the 3-globin locus [22]. One idea put forward
to explain chromatin loops is the existence of transcription factories or active chromatin
hubs, where active polymerases cluster and thereby co-locating genes and regulatory ele-
ments [23, 24]. 3C and 4C techniques have since then provided evidence that indeed loops
up to several Mb exist in interphase cells [20, 25]. However, the detailed mechanisms and
driving forces of looping are still under debate.
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The understanding of intra-chromatin interactions and chromatin looping on genome
structure and organization can be deepened by polymer models which are able to shed
light on the effects of specific types of chromatin-chromatin interactions. Coarse-grained
models are especially useful since they neglect all molecular details, thus shaping an over-
all picture of the major driving forces and organizational principles of chromatin folding.
Polymer models have been successfully used to explain certain experimental results. The
conclusions of these models differ strongly, depending on the experimental data set they
refer to. One of the first models that has been proposed was a random walk in the confined
geometry of a sphere [26]. This model predicts a random walk behavior for short genomic
separations while for large genomic separations the mean square distance shows a leveling-
off. The Random-Walk/Giant-Loop Model (RWGL) was proposed to explain data from
Yokota et al. [11, 27] and assumes giant loops of several Mb regularly positioned along a
random walk backbone. This model exhibits two regimes, both showing a random walk
behavior of different slope on the short and large scale. The multi-loop-subcompartment
(MLS) model [28, 29] assumes loops in the 100kb-range to form rosette-like structures con-
nected by a backbone. Another study shows that some FISH measurements are compatible
with an out-of-equilibrium worm-like chain model [30].

In fact, none of the polymer models proposed so far has succeeded in establishing a de-
tailed connection between genome folding and function. Even worse, they are inconsistent
with important aspects of experimental evidence. The folding into a confined sub-space
of the nucleus is not observed for the RWGL and the MLS model [11, 28]. Other mod-
els impose confinement by means of the boundary conditions [26, 31], thus these models
are unable to make predictions about the mechanisms leading to this behavior. Interest-
ingly, the experimental evidence for loops on all scales, many of them being specific and
functional, has been neglected in any of the polymer models.

1.2 Intention of this thesis

In this thesis, my intention is to bridge the gap between the abundant experimental evi-
dence for a tight connection between genome folding and function and statistical polymer
models. The intention is to present a polymer model which incorporates recent experi-
mental data and provides a consistent explanatory framework of higher-order chromatin
organization spanning the length scale from a few hundred kb to the complete chromosome
and further explaining the formation of chromosome territories.

In principal, the main aim of building models of physical or biological systems is not
to have a complete theory of the specific system. Rather models aim at explaining the
available experimental data by introducing only a minimal set of parameters with which
the data can be described and predictions derived in a satisfactory way . The question
of what is considered “satisfactory” depends on the application. For example, a simple
model of a “real“ gas, say oxygen, is the ideal gas model. It is minimal in the sense that it
keeps only the coordinates and impulses of the particles and neglects mutual interactions
and the extension of the molecule. This model is good at explaining several experimental
observations, but by far not all. Phenomena like phase transitions can only be explained
by a model having pair interactions and excluded volume. For an even more detailed
description of the system, further parameters like the electron spins are necessary.

The same can be said of the biological system ”cell nucleus®. A lot of experimental
information is available. In a simple picture, the nucleus contains 46 DNA polymers and a
solvent. However, there is much more to this. DNA is not a homogeneous polymer, rather
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it has a specific sequence of basepairs with a specific function. Proteins manipulate and
form the DNA, and thermal equilibrium might be disturbed by ATP-consuming agents.
Constructing a model explaining all these tiny details would not only be impossible, even
worse it would distract the attention from the general laws guiding chromatin organization
to very locus-specific properties. Lacking detailed knowledge of all functional mechanisms
controlling and maintaining higher eukaryotes, it is reasonable to subsume interactions
between chromatin and proteins or solvent only effectively into the model. Here, we
are interested in general laws reigning the life of higher eukaryotes. Thus our aim is to
present a polymer model based on abundant experimental input, which is in agreement
with biological observations both qualitatively as well as quantitatively and has further
predictive power to stimulate biological experiments in the near future.

In the following, I list the eight major experimental hallmarks of chromatin organi-
zation and its connection to genome function, which, among others, the polymer model
presented in this thesis aims at explaining.

B 1. Experimental evidence for loops on all scales. The 4C and 5C technique
has provided evidence that loops exist on all scales (~ 2.4.2) spanning genomic
separations from several bp to many Mb [25].

B 2. Dynamics of loop formation. Various studies revealed that loops are closely
related to transcriptional regulation (cf. section 2.4), indicating that the nuclear
organization is highly dynamic allowing the formation of loops depending on the
transcriptional processes required.

B 3. Confined folding of a chromosome into a sub-space of the nucleus. FISH
experiments revealed that human chromosomes 1 and 11 fold into a confined sub-
space of the nucleus with a diameter of about 2 um, being far below the diameter
of the nucleus (~ 2.3.4).

B /. Large cell-to-cell variation. Distance measurements using FISH markers re-
veal a large cell-to-cell variation in the measured distribution of distances. These
fluctuations are even larger than one would predict from a random walk polymer
model which naturally exhibits large fluctuations due to the conformational degrees
of freedom. None of the proposed models can explain such variation, thus it remains
a crucial point to develop a polymer model with a fluctuation regime larger than
that of a random walk.

B 5. Different levels of compaction of gene-rich and gene-poor regions. Abundant
experimental evidence suggests a strong dependence of chromatin folding on the local
transcriptional state. Gene-rich and transcriptional active regions have a more open
structure than gene-poor regions [6, 12]. Amongst the polymer models presented in
chapter 3 only the MLS model takes chromatin heterogeneity into account.

B 6. Sub-diffusional motion of labeled chromatin loci. Measurements of interphase
chromosome dynamics are rare. Little or no motion has been detected for chromatin
domains in the size range of chromosome territories (1 ym) over time scales of several
hours [32]. The motion of a specific active gene (GAL) has been measured in vivo in
yeast nuclei [17]. Cabal and co-workers found anomalous diffusion with g;(¢) ~ 4.
Dynamics are addressed in the model of Rosa et al. [30], recovering only the typical
dynamics of semi-flexible polymers on short time scales with gy () ~ %25,
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B 7. Formation of chromosome territories. Compartmentalization of chromosomes
in the interphase nucleus into distinct territories has been postulated by early cytolo-
gists and was confirmed in the last decades by chromosome painting and fluorescence
in situ hybridization approaches [33, 7, 34]. The mechanisms maintaining the seg-
regation have not been fully elucidated up to now, suggestions range from purely
entropic effects [35] to results of non-equilibrium dynamics [30].

B 8. Aspherical shape of chromosome territories. Experimental studies reveal a
non-spherical shape of CTs [36, 37]. This is in contrast to a compact globule state
of chromatin. Mouse chromosomes exhibit an aspherical shape best approximated
by ellipsoids with axis ratios 4.5:2.9 : 1.

1.3 The structure of this thesis

In chapter 2 the necessary biological background information is provided. Rather than
being meant as a complete reference of cell biology (cf. Ref. [38]), I will concentrate on
introducing basic principles and open questions of chromatin folding and explaining bio-
logical terms and experimental techniques referred to in the following chapters. Hopefully,
it serves as a reference for unclear terms or background information while reading this
thesis.

An introduction to notions and scaling laws of polymer physics is given in chapter 3.
Here, the interested reader will find information about simple polymer models like the
random walk and self-avoiding walk model as well as a short overview over other chromatin
models proposed so far.

In chapter 4 simulations of the globular state polymer model are presented. The glob-
ular state model or variants thereof have been proposed for chromatin organization in
several studies [31, 39]. From our simulational data we derive measures for comparison
to experiments and show that neither the globular state model nor the random walk or
self-avoiding walk model describe the folding state of chromatin.

The available experimental evidence of loops leads us to propose the Random Loop
(RL) model in chapter 5. The basic ideas and assumptions of the model are presented.
Results for a semi-analytical implementation assuming a homogeneous chromatin fiber are
derived and compared to experimental data. Both the confined folding of chromatin as
well as the large cell-to-cell variation found in experiments are well reproduced by this
model.

In chapter 6 a major short-coming of the analytical Random Loop model is lifted: the
negligence of excluded volume. Molecular Dynamics simulations are conducted to obtain
sample conformations. We find that excluded volume effects do not alter the qualitative
behavior of the model.

Gene-rich and gene-poor chromatin regions display a pronounced difference in the
compaction. This heterogeneity of the fiber is incorporated in the analytical Random
Loop model in chapter 7. We conjecture that local differences in compaction are related
to local differences in the looping probability, making chromatin loops the major mediators
of a tight connection between genome folding and function. We find excellent agreement
with FISH measurements on human chromosome 11 spanning genomic separations from
several hundred kb to the complete length of the chromosome arm.

What is the benefit for nature to form rather large-sized loops for transcriptional
regulation? This question will be investigated in the following two chapters. In chapter 8
we study a system of two loops constrained to either a catenated topology or a bonded,



20 1. Scope and Intentions

non-catenated topology. The latter can be used as a toy model for loops attached to
transcription hubs [24]. A tendency towards segregation in comparison to similar systems
of linear chains is observed, indicating an important role of loop formation in chromosome
compartmentalization.

To quantitatively analyze the effect of ring closure, i.e. looping, we study the effective
potential of mean force between their centers of mass (~ chapter 9). Indeed, the transition
from a linear to a ring polymer induces a strong increase in the entropic repulsion between
two rings or loops. Thus, an evolutionary motif for the formation of ring polymers or
loops is possibly given by its support in creating distinct polymeric compartments with
little intermingling.

After having discussed the general benefits of chromatin looping using simple systems
of ring polymers, we turn back to chromatin in chapter 10 to answer the question how
large loops can form inside the nucleus. We establish a dynamic Monte Carlo method and
demonstrate that large loops form solely on the basis of diffusional motion. This Dynamic
Loop model provides a unified description of chromatin folding on the basis of dynamic loop
formation without invoking active transport mechanisms. We derive testable quantitative
predictions on many structural and conformational properties of chromosomes. In fact, for
the first time, a huge amount of experimental evidence from FISH distance measurements,
4C/5C data, diffusion measurements up to the formation of chromosome territories and
its shape can be explained consistently in the framework of one model.

While the studies on ring polymers served as a simplistic model system to assess the
effects of loops, the effective potential between more complex looped polymers, i.e. our
model chromosomes, is investigated in chapter 11. We find that chromatin looping strongly
increases the repulsive interactions between chromosomes and imposes kind of order on
the system, the effects being much stronger than for a system of two rings.

An approach combining novel high-resolution localization microscopy data with sta-
tistical methods and the Dynamic Loop model is presented in chapter 12, clearly showing
how the theoretical concepts developed in this thesis can be applied to study chromatin
structure. Finally, in chapter 13, we present methods to quantitatively analyze images
from confocal light microscopy to determine differences between stem cells and differen-
tiated cell types with respect to the distribution of active and inactive genes inside the
nucleus.



Chapter 2

The Organization of Life

Biological Background

The work described in this thesis comprises two scientific disciplines, which once were con-
sidered being quite distinct: biology and physics. Nowadays, concepts of physics are more
and more applied to biological problems. The approach pursued in the following chapters
is to consider the biological system from a statistical mechanics point of view: Chromatin
fibers are modeled as polymers, i.e. many particle systems subjected to certain bonded
and non-bonded interactions. In order for the thesis to be understandable for readers of
different disciplines we provide the basic background information on the biological system
under consideration in this chapter. The basic concepts of polymer physics and chromatin
models are outlined in the next chapter.

2.1 The Cell — Building block of life

Although living species covering our planet are highly diverse, all kinds of life evolve
from the same “building block”: the cell. While prokaryotic cells (like bacteria) are often
independent, eukaryotic cells are usually part of multicellular organisms. Each cell is
surrounded by a plasma membrane made up of a lipid bilayer. Its purpose is to protect the
cell from its surrounding environment and maintain the integrity of the chemical system
inside. Both nutrients as well as waste materials have to pass this kind of semi-permeable
membrane with its huge number of receptors, channels and pumps for regulating the
inflow and outflow. Eukaryotic cells are stabilized by a scaffold called cytoskeleton, which
amongst others supports cell growth and motility as well as the separation of daughter
cells during division. Each cell is a functional unit on its own: It can take up nutrients
from the environment, convert these into energy and reproduce itself. Importantly, each
cell contains the whole script, i.e. the instructions, for carrying out these functions.

The molecular basis of life is the same independent of the organism. Hereditary infor-
mation is stored in form of double-stranded polymers (deoxyribonucleic acid, DNA), the
linear sequence of bases acting as a code for life (~ 2.2). This DNA in eukaryotic cells is
separated from the cytoplasm by the nuclear envelope, a double layer of membrane. Such
a compartmentalization is an important organizational feature found over and over again,
which in case of the nucleus ensures a fast catalysis of biochemical reactions by providing
and keeping up a high concentration of necessary proteins. One important task of DNA is
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Figure 2.1: The left-hand image shows a sketch of a typical eukaryotic cell with the following
subcellular components: (1) nucleolus, (2) nucleus, (3) ribosome, (4) vesicle, (5) rough endoplasmic
reticulum (ER), (6) Golgi apparatus, (7) Cytoskeleton, (8) smooth endoplasmic reticulum, (9)
mitochondria, (10) vacuole, (11) cytoplasm, (12) lysosome, (13) centrioles within centrosome. The
right-hand image shows endothelial cells under the microscope. Nuclei are stained blue with DAPI,
microtubules are marked green by an antibody and actin filaments are labeled red with phalloidin.
Tmages are adapted from [40].

to store and provide the sequence building plan for proteins. A gene is roughly defined as
a segment of DNA corresponding to one protein. Interestingly, the human genome consists
of about 98.5% non-coding regions, i.e. regions which do not code for a protein. These
regions are often involved in transcriptional regulation, controlling which genes have to be
transcribed at a certain time (~ 2.4.1).

Transcription is the process of reading information stored in the DNA, i.e. the specific
sequence of base pairs A, T, G and C. The information is copied into an RNA strand
complementary to the DNA sequence, which in the next step is modulated into messenger
RNA (mRNA). This mRNA can diffuse through the cell nucleus and pass the nuclear
membrane. Once outside the nucleus, the ribosomes — large complexes of protein and
RNA — use the mRNA code as a template to assemble a specific sequence of amino acids
to a protein.

During its lifetime, each cell runs through different stages of development, i.e. the
cell cycle. This is the mechanism by which an organism is created out of one single cell
at birth and by which cells in living organisms are permanently renewed. The cell cycle
consists of four distinct phases, which are commonly known as (G; phase, S phase, G2
phase and M phase [38]. The G1, S and G5 phases together are called interphase. During
S-phase DNA duplication occurs, i.e. the DNA content of the cell is doubled, while the
G1 and G5 gap phases provide time for the cell to grow and increase their mass of proteins
and other substances. The M phase is divided into mitosis, where the DNA is condensed
into chromosomes and cell divisions takes place and cytokinesis, where cytoplasmic division
occurs. One stage of the mitosis is the metaphase, in which highly condensed chromosomes
align in the middle of the cell before being separated into the daughter cells.

2.2 Chromatin — The carrier of information

Life on earth is strongly dependent on the ability to store, retrieve and translate the genetic
instructions required to make and maintain a living organism. These instructions are
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Figure 2.2: Stages of chromatin compaction. A. The chemical structure of nucleotides is shown
exemplarily for one AT and one GC base pair. B. The double helix structure of DNA. C. The
formation of the nucleosome. First, histone proteins H3 and H4 as well as H2A and H2B form
dimers, which are then composed to tetramers and finally to a histone octamer. Together with
the DNA wrapped around this octamer, the complex forms the nucleosome core particle. D.
Proposed structures of the 30 nm chromatin fiber depending on the nucleosome repeat length
ranging from 177 to 207 bp. E. Schematic view of the stages of chromatin compaction. Starting
from a linear polymer, DNA folds around histone octamers forming a beads-on-a string like fiber
of diameter 10 nm. Little is known about higher-order structures inside the interphase nucleus.
During metaphase chromosomes condense to very compact and stiff objects making them robust
for cell division. Images adapted from [40].

stored in the DNA. DNA (deoxyribonucleic acid) is made up of two long polymers, whose
building units are called nucleotides. Each nucleotide consists of a sugar and phosphate
backbone to which a molecule, the base, is attached. This base molecule is either adenine
(A), cytosine (C), guanine (G) or thymine (T). Typically, in living cells, DNA does not
exist as a single-stranded polymer, rather two strands of DNA are aligned to a double
helix (Fig. 2.2A and B). This double helix structure of DNA has been discovered in 1953
by Watson and Crick [41] using X-ray diffraction. The two DNA strands run in opposite
directions to each other and are therefore aligned anti-parallel. Each base of one strand is
bonded to a base on the second strand, which is twined around the first one. The chemical
properties of the bases ensure that only A-T and G-C bonds exist, an observation which
is called complementary base pairing. The diameter of such a DNA strand is about 22 A,
the length scale of a nucleotide unit is 3.3 A.

2.2.1 From DNA to the 10 nm chromatin fiber

The one-dimensional sequence of A, T, G and C codes the building plans for life. A haploid
human genome consists of about 3.2 billion basepairs, resulting in a strand of 2 meters,
if unfolded. 23000 protein-coding genes are encoded in this vast amount of DNA, about
98.5% of the sequences are non-coding [42]. The detailed function of most of the non-
coding regions, which amongst others are made up of tandem repeats and transposable
elements, is not known. Some non-coding regions, however, contain important regulatory
sequences crucial for controlling transcriptional activity. In fact, regulatory sequences exist
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for nearly each gene, providing for example binding sites for specific proteins (~ 2.4.1).

DNA inside the interphase nucleus is highly compacted. This is achieved by proteins
that successively coil and fold it into higher levels of organization [38]. The basic filament
is the DNA double helix (Fig. 2.2A). In a first step of compaction this double helix is
wrapped around histone octamers interconnected by stretches of linker DNA. Histone
octamers are constituted of pairs of the four core histones H2A, H2B, H3 and H4, which
are evolutionary amongst the most highly conserved proteins. About 146 basepairs of
DNA are wrapped around this histone core in a 1.65 left-handed super-helical turn [43].
Eventually, a linker histone H1 is attached at the entry-exit point of the DNA, fixating
the structure of this nucleosome core particle (Fig. 2.2C). However, such linker histones
are sometimes missing [5], allowing for a locally higher flexibility of the fiber. The typical
shape of the nucleosome core particle is a cylinder with a radius of ~ 5 nm and a height of
~ 6 nm [44]. The complex of nucleosome core particles and linker DNA forms a beads-on-
a-string type of fiber called chromatin. This loose structure with a diameter of about 10
nm has been observed using high-resolution X-ray analyses at low salt concentrations in
vitro, while at physiological salt concentrations the chromatin fiber adopts a more compact
state with a diameter of about 30 nm [45].

Although, histones bind non-specifically to DNA, the local regulation of histone binding
is supposed to be an important regulatory mechanism (~ 2.3.2).

2.2.2 The 30 nm chromatin fiber

While the structure of the nucleosome core particle is well-known, higher-order structures
are still an open issue of research. Electron microscopy reveals a transition from a beads-
on-a-string like structure of 10 nm to a more compacted state of 30 nm on raising the salt
concentration towards physiological values of 100 mM in vitro [45, 46]. The detailed align-
ment and regularity of nucleosomes, however, remained highly controversial (Fig. 2.2D).
Mainly two competing classes of models have been proposed for the structure of this 30
nm fiber, the solenoid models [47, 45] and zig-zag models [3, 48].

The solenoidal-type of models predict successive nucleosomes to form a helical struc-
ture, the axis of the core particles being aligned perpendicular to the solenoidal axis. The
entry-exit angle of the DNA wound around the histone octamers is stabilized by linker
histones H1 and H5 and faces inward towards the axis of the solenoid. Thus, this model
requires the linker DNA to be bent between neighboring nucleosomes, inducing a cost of
energy.

The other class of models assumes successive nucleosomes to be located on opposite
sites of the fiber, the linkers between them being straight. Such a cross-linker model results
in a zig-zag structure of the fiber and allows changes in the compaction level without a
change in topology.

A geometrical approach, the two-angle model, was developed by Schiessel [1], where
chromatin structure is described by three parameters: (a) the linker length b, (b) the
entry-exit angle o of the DNA and (c) rotational angle 5 between nucleosomes. It was
shown by Diesinger et al. that such a model allows for a variety of chromatin structures
from cross-linker to solenoidal structures [49]. Consistent with experimental observations
that linker histone H1 is sometimes missing, the two-angle model was extended to allow
for such vacancies [5].



2.3. The connection between genome folding and function 25

2.2.3 Higher-order folding in interphase and metaphase

The higher-order structures of chromatin above the scale of the chromatin fiber are not
well characterized. However, there is extensive evidence that chromatin loops do exist
in the interphase nucleus. Various studies have indicated that the chromatin fiber forms
loops that at their bases may be attached to a still poorly defined structure that is called
nuclear scaffold/matrix [50]. Recent investigations show that the formation of chromatin
loops involves specific proteins, including SatB1 [51], CTCF and other insulator binding
proteins [52]. Other studies have revealed long-range chromatin-chromatin interactions
due to transcription factories in which transcriptionally active genes at different positions
on a chromosome and from different chromosomes come together [20]. In the next sec-
tion (v 2.3), we present several experimental results on chromatin folding in the size range
of a few kb to the scale of the whole chromosome. In section (~ 2.4) the importance of
loops as a possible mediator for the connection between genome folding and function is
pointed out.

During metaphase, chromosomes condense to very compact structures differing vastly
from those of interphase. The chromosomes adopt its classical form known from light
microscopy images, optimized for stiffness and strength allowing an easy division and
transport into the daughter cells. The structure of these condensed chromosomes is as-
sumed to be loops attached to a still poorly defined central scaffold of proteins. In this
thesis, however, we concentrate on folding motifs in the interphase nucleus, i.e. where
chromatin displays a much more open and flexible structure.

2.3 The connection between genome folding and function

Despite the lack of knowledge on the detailed folding pathways of chromatin inside the
interphase nucleus of higher eukaryotes, an emerging opinion is that genome folding is
tightly connected to its function. Clearly, chromatin has to be accessible to a variety
of proteins to maintain functions like transcription, repair and duplication, while at the
same time being quite compact. Live cell imaging is limited currently by the resolution
of conventional light microscopy of about 200 nm, making it impossible to track single
chromatin fibers inside the cell. Therefore, indirect approaches are necessary to obtain
structural information. It should be noted, however, that localization light microscopy
allows for an alternative approach on studying nanostructure (~ chapter 12). Here, we
shortly present experimental evidence for function-dependent chromatin folding, all of
which is important for creating computational models of chromatin in the course of this
work.

2.3.1 Non-random alignment of active and inactive regions along the 1D
genome

The arrangement of genes along the one-dimensional genome is far from random. Inves-
tigation of the gene activity is conducted using genome-wide messenger RNA expression
profiles. Relating this expression data with the location of genes, gene expression pro-
files have been generated for any chromosomal region. This Human Transcriptome map
revealed that highly expressed genes are clustered in distinct regions. These regions of
increased gene density and transcriptional activity are called ridges. Similarly, gene-sparse
regions with little transcriptional activity (anti-ridges) are detected [53, 13]. Figure 2.3
displays gene density and transcriptional activity for the g-arms of human chromosome 1
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and 11. Markedly active regions (ridges) are labeled green, inactive regions (anti-ridges)
red. Clearly, genes are not distributed randomly along the fiber.

2.3.2 The histone code

The three-dimensional folding of chromatin is connected to genome function on several
scales. On the smallest scale, modifications of histone tails induce a local change in com-
paction. It has long been suggested that the histones, by their tight binding to the DNA,
are participating in regulatory functions. Post-translational modifications of histones are
assumed to carry the information about distinct DNA-templated programs [54, 43], a hy-
pothesis called histone code. A pivotal role is taken over by the histone tails, long charged
strands protruding from the surface of the chromatin fiber making up about 25-30 % of
the individual histones [4], offering a variety of possible interactions with proteins. These
tails can be chemically modified by adding or removing several chemical modifications
like acetyl, phosphoryl and methyl groups. How can such modifications participate in
transcriptional regulation? For example, histones H3 tri-methylated on lysine 27 are pre-
dominantly found on gene promoters of repressed genes, while tri-methylated histones H3
on lysine 4 accumulate on promoters of active genes [55]. While certain modifications
directly lead to an opening up of the chromatin structure, allowing access of proteins to
DNA, specific regulatory proteins also contain distinct binding sites for specific histone
modifications with a high binding affinity [56].

2.3.3 3D organization of sub-chromosomal regions dependents on transcrip-
tional activity

On a broader scale of a few mega basepairs, the 3D organization of sub-chromosomal
regions has been shown to significantly depend on transcriptional activity. Goetze and
co-workers [6] fluorescently labeled stretches of chromosomes belonging to ridges and anti-
ridges in the size range of 1-10 Mb and determined shape and volume of such regions.
It turned out that ridges are less condensed and more irregularly shaped, while anti-
ridges adopt a more compact structure being closer to a sphere. Transcriptional activity
also influences the positioning of chromatin inside the interphase nucleus: Gene-rich and
transcriptional active regions are in tendency more located towards the nuclear interior
while anti-ridges tend to locate at the periphery. Similar results are obtained studying
locations of individual genes. Active genes tend to be located in the nuclear interior while
inactive genes are found more often at the nuclear periphery [6, 14, 15], the converse
behavior is observed in some experiments [16]. Moreover, a change in the transcriptional
state of a gene can have direct influence on its positioning inside the nucleus [17, 18].

2.3.4 Folding of chromosomes into sub-nuclear domains

While the folding pathways of chromatin cannot be visualized by light optical methods,
labeling two loci of a chromosome with a fluorescent marker was successfully used to
establish a relationship between genomic distance g between these markers and its mean
square physical distance in yeast [8], drosophila [9, 10] and human cells [11, 12]. This
FISH technique has been applied on the g-arms of chromosomes 1 and 11 in primary
human fibroblasts, because the Human Transcriptome Map shows that these chromosome
arms contain pronounced gene dense and transcriptionally highly active regions, as well
as gene-poor areas with low activity (Fig. 2.3A and [13]).
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Figure 2.3: Experimental data. A. Domains of different transcriptional activity and gene density
(ridges and anti-ridges) are shown on the Human Transcriptome Map of the g-arms of chromosomes
1 and 11. Each vertical line in the map represents a specific gene. The length of the line depicts its
median transcription over a moving window of 49 genes. Ridges are indicated by green boxes, anti-
ridges by red ones. The colored arrows above the map designate the ridge and anti-ridge regions
where spatial distances between pairs of BAC probes were measured, using FISH. The tail of each
arrow indicates the position of the reference BAC for that set of measurements. Physical distances
of the reference BAC to loci at increasing genomic distances in the direction of the arrowhead were
measured in 3D using confocal microscopy. B. Plots show the mean square physical distances
<R2> as a function of the genomic distance for ridges (green) and anti-ridges (red) on chromosome
1 and 11 in the 0.5 to 10 Mb range. Data points in green and red correspond to the ridges and
anti-ridges, respectively. Measurements were made corresponding to the colored arrows shown in
panel A C. The mean square displacement <R2> is shown as a function of genomic distance in the
25 to 75 Mb range. Measurements were made corresponding to the black arrows shown in panel
A. Error bars represent standard error. Image from Sandra Goetze.

Figure 2.3A shows the transcriptome map of the 1q and 11q areas. The starting points
of the arrows above the maps indicate the positions of the reference FISH probes. The
arrowheads mark the locations of the FISH probe having the largest genomic distance
to the reference probe. All physical distances have been determined with respect to the
reference probe. Green arrows and green data points refer to ridges, red ones to anti-
ridges. Black arrows in Fig. 2.3A indicate long distance measurements beyond ridge and
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Figure 2.4: A. FISH (Fluorescence in situ hybridization) labeling of all 24 different human
chromosomes (1-22, X and Y) in a fibroblast nucleus, each with a different combination of in total
seven fluorochromes. Shown is a mid-plane of a deconvoluted image stack which was recorded by
wide-field microscopy. B. False color representation of all chromosome territories visible in this
mid-section after computer classification. Images adopted from Ref. [34]

anti-ridge domains. Physical distances were measured in 3D space between the centers of
gravity of the 3D FISH signals of the individual BAC probes.

Plots of the mean square distance as a function of the genomic distance, covering a
large part of the g-arm of chromosome 1 (27 Mb) and essentially the complete g-arm of
chromosome 11 (75 Mb), are shown in Fig. 2.3C. Results show that the average physical
distance to the reference probe does not increase at genomic distances beyond 3 to 10
Mb. The maximal distances are in the 1.5 to 2.5 pm range, similar to the size-range of
chromosome territories and well below the diameter of the cell nucleus. The observed
leveling off is most probably related to the limited space that chromosomes occupy in
interphase, i.e. the chromosome territories [7]. Fig. 2.3B shows how the mean square
physical distance to the reference FISH probe depends on the genomic distance for the
ridge and anti-ridge domains on chromosome 1q and on chromosome 11q. Above about
3 Mb genomic distance the measured physical distances level off, similar as seen for long
genomic distances (Fig. 2.3C). Average physical distances for anti-ridges are smaller than
observed for ridges, reflecting their different degrees of compaction, agreeing with earlier
measurements [6, 57].

2.3.5 The formation of chromosome territories

While chromosomes during metaphase condense into rod-like structures, interphase chro-
mosomes are organized more like a fluffy polymer. Although one would expect from clas-
sical polymer theory that polymers in a semi-dilute or dense solution strongly intermingle,
the contrary is observed for chromosomes inside the interphase nucleus. Indications for
the existence of chromosome territories have been already found in the 1970ies using mi-
crobeam UV irradiation techniques [58]. Since the possibility of visualization of whole
chromosomes via fluorescence in situ hybridization (FISH), unambiguous evidence was
given that indeed chromosomes occupy distinct territories inside the cell [59, 33, 34]. The
amount of intermingling between different chromosomes and its connection to transcrip-
tional regulation are still under discussion, however, a recent experimental study suggests
an overlap volume of about 20% [60]. Contradictory experimental evidence exists con-
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Figure 2.5: A cartoon of gene regulatory mechanisms. Transcription of a gene (red) requires
a promoter where RNA polymerase II can bind to, often including the TATA box binding site.
Throughout the genome, various enhancers or silencers are positioned controlling the expression
level. In this biological model it is assumed that a complex of polymerase and regulatory proteins
bind to the promoter, while the enhancers attach to the mediator complex. The intervening DNA
thus is looping out.

cerning the regularity of chromosome positions inside the interphase nucleus. Conclusions
range from the claim that chromosomes are highly ordered [61] to a random localization
of territories [62].

2.4 Chromatin loops as a mediator of the folding-function rela-
tionship

Intra-chromatin contacts are presumed to act on the interface between genome folding
and function. They will play the pivotal role for the polymer models developed in this
thesis and it will be shown that experimental findings from a variety approaches can be
consistently explained by models correctly incorporating chromatin looping. Here, evi-
dence for long-range transcriptional control via looping and the corresponding techniques
are described.

2.4.1 Gene regulation and long-range control

The smallest part of the human genome actually codes for genes (~ 2.2.1). In earlier
times it has been proposed that these non-coding regions are non-functional; recent years,
however, have revealed, that such regions contain lots of regulatory sequences. Mapping
of regulatory elements showed that their number is significantly larger than the number
of genes [63]. In a simplified picture, five types of regulatory elements can be identified:
promoters, enhancers, silencers, insulators and locus control regions. Transcriptional reg-
ulation requires the interplay of multiple regulatory elements as well as accessibility to
specific genomic regions. Generally, a one-to-one correspondence between regulatory ele-
ments and target genes can not be established; rather, genes and regulatory elements form
a complex network of interacting genomic elements [22].
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Figure 2.6: A. Sketch of 3C, 4C and 5C techniques (adapted from [40]). In the first step,
two co-localized DNA regions (blue and red strand) are cross-linked. Using restriction enzymes
the cross-linked fragments are separated and then ligated. After reversal of cross-linking further
method-specific processing is done, fragments are amplified and analyzed. B. Results from 4C ex-
periments [25]. Contact frequencies (y-scale) of genomic segments along chromosome 8 and 10 with
the Rad23a locus (black arrow) are measured for liver and brain cells. Rad32a is an ubiquitously
expressed DNA repair gene residing in a gene-dense cluster consisting of many housekeeping genes
on chromosome 8. The data indicates that both long-range intrachromosomal interactions as well
as interchromosomal interactions are abundant. Distinct differences are found between fetal and
liver cells, indicating a regulatory function of chromatin contacts. Data has been kindly provided
by Wouter de Laat.

Promoters are regions of DNA, which facilitate the transcription of a particular gene
by providing binding sites for RNA polymerase II, the enzyme which transcribes a gene
producing mRNA. They are located close to the transcription start site, typically about
10 to 100 basepairs upstream. For type II RNA polymerase to function properly, gen-
eral transcription factors like chromatin remodeling complexes or activator proteins are
required to initiate transcription [38].

Binding sites for activator proteins are provided by enhancer regions along the genome.
Each gene can have several specific enhancer regions associated with it positioned upstream
or downstream of the gene. Enhancers can be located many kb up to several Mb away
from the gene they regulate [20] and are even found in gene deserts, regions spanning
over 500 kb containing no genes [64]. Surprisingly, binding of an activator protein to an
enhancer located distant to the target gene in terms of genomic separation can increase
its transcription level. Just as enhancers facilitate gene expression, there exist regions of
DNA, where regulatory factors can bind to, which downregulate transcriptional activity.
These regions are called silencers.

A sketch of the possible interaction mechanism between gene regulatory sequences,
transcription factors (specific proteins) and the promoter-gene region upon transcription
is displayed in Figure 2.5.

2.4.2 Long-range control mediated by chromatin loops

The existence of enhancers located far away from the target gene they regulate raises the
question, how interactions with this gene are accomplished. It has been suggested that
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such a long-range control involves enhancer and promoter regions to come into physical
contact [65]. Several novel experimental techniques have since then provided evidence,
that indeed transcriptional control involves higher-order folding of the chromatin fiber
into 3D structures, bringing regulatory elements into close contact. The intervening DNA
then has to loop out.

At the heart of techniques studying long-range chromosomal contacts is what is called
Chromosome Conformation Capture (3C). It is a high-throughput molecular biology tech-
nique initially used to study the folding of yeast chromosomes [66], but successfully ex-
tended to the study of complex loci in mammalian cells [21]. 3C based techniques have
become a standard tool to investigate structural properties and spatial organization of
chromatin with respect to gene regulation.

The technique involves five experimental steps (for a review and discussion of limi-
tations and problems refer to Ref. [67]). The initial step consists of formaldehyde cross-
linking, fixating DNA-protein and protein-protein complexes and thereby cross-linking
interacting chromatin segments. In a next step a restriction enzyme is added, which sepa-
rates non-cross-linked DNA from the cross-linked one. Generally, four- or six-base-cutters
are used, ensuring that all relevant regulatory elements are dissected. Then, cells are
isolated, diluted and ligation enzymes are added. Thus, ends of cross-linked DNA seg-
ments are likely to be ligated. After reversal of the cross-linking, the resulting 3C library
consists of linear DNA fragments with specific restriction ends (based on the choice of
the enzyme) and a central restriction site corresponding to the site of ligation. In a final
step, using polymerase chain reaction (PCR), the fragments of interest are amplified to
semi-quantitatively assess the occurrence frequencies of certain restriction fragments.

Several improvements have been applied to the 3C technique. While 3C allows for the
determination of interactions between two specific sites, the 4C technology [25] provides
a complete interaction map between one specific site (the bait) and all other inter- and
intra-chromosomal sites. Interactions in about one million cells can be determined at the
same time. The 5C [68] and Hi-C [39] methods allow for establishing a complete two-
dimensional map of interactions. A schematic overview of the techniques as well as results
from 4C measurements are given in Figure 2.6.

Important findings from these experimental approaches are that intra-chromosomal
interactions drop rapidly with increasing genomic separation. The half-width of the curve
lying at about 20 kb for yeast [66] and being larger in mammalian cells. 4C experiments
revealed that physical chromatin-chromatin interactions can be found on the scale of
several tens of Mb [25], the interactions being cell-type specific. Long-range contacts
have been confirmed by FISH experiments on the single cell level, showing that only a
small fraction of cells (5-15%) actually forms a detected specific contact. Such a large
cell-to-cell variation is typical in biological experiments and might be related to dynamic
looping interactions, a hypothesis which will be assessed in this thesis. Recently, the Hi-C
technique provided evidence that long-range contact probabilities on the scale between
500 kb and 7 Mb decay with a power-law p.(I) ~ 1.08 [39].

2.4.3 Three-dimensional structure of loops: Transcription factories, CTCF
and the nuclear matrix

While the connection between chromatin loops and transcriptional regulation could be
well-established by 3C/4C/5C and FISH techniques, the detailed three-dimensional struc-
ture imposed on chromosomes by gene regulatory mechanisms still remains elusive. The
picture of one gene associated with a complex machinery of regulatory elements and pro-
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teins (Figure 2.5) is probably an oversimplification.

Several mechanisms have been proposed for the three-dimensional organization of chro-
matin loops. One recurrent idea is that genes and regulatory elements form so called
transcription factories or hubs where regulatory elements and a high concentration of
transcription factors assemble to initiate transcription [20]. It was conjectured that such
an aggregation is driven by macromolecular crowding in a self-organized manner, the
high concentration of transcription factors and genes facilitating gene expression [23]. It
has been shown that the RNA polymerase II concentration is not uniformly distributed
throughout the nucleus, rather certain foci of high concentration have been detected [69].
The number of these ”transcription factories“ visible in the cell nucleus is much smaller
than the number of genes, rendering it likely that many genes are assembled in one tran-
scription factory [70]. Importantly, such a formation of transcription factories is dynamic.
It has been shown that individual genes are transcribed in pulses of production, temporary
silenced genes being located far away from the transcription factory [71, 72].

Another structure which has been associated with the formation of chromatin loops is
the so-called "nuclear matrix* or "nuclear scaffold®. It is defined as the network of fibers
found throughout the inside of the cell nucleus comparable to the cytoskeleton. Originally,
a scaffold where loops are attached has been detected by electron microscopy of histone-
depleted chromosomes [73]. Specific DNA regions called S/MARs and associated proteins
are supposed to attach DNA to the scaffold. However, the existence of these structures in
vivo is discussed controversially [74].

Recent investigations indicate the the formation of chromatin loops involves specific
proteins, including SatB1 [51], insulator proteins and CTCF [52]. The CTCF protein [75] is
evolutionary highly conserved in higher eukaryotes, indicating its vital importance. CTCF
is a CCCTC-binding factor and the human genome contains of about 15000 binding sites
for this protein. It has been shown that CTCF is involved in the regulation of many genes,
both concerning activation and repression [76]. More importantly, CTCF seems to play an
important role in chromatin looping. Indeed, it has been observed that CTCF is required
for looping in the beta-globin cluster [77].

2.4.4 Implications for a model of chromatin

The few sections on the biology of the cell might have provided the reader with a short
and rather tiny selection of the abundant experimental data available. Most of the data
are very locus-specific, studying for example the influence of certain proteins on specific
genes. Clearly, no model of chromatin can capture all the details of such a complex system
including amongst others heterogeneous gene content, protein activity or ATP-mediated
non-equilibrium effects. In the next chapter (~ chapter 3) we will argue why a coarse-
graining of this system is inevitable. Especially, the abundance of specific and non-specific
protein-DNA interactions requires a more abstract view on chromatin folding. The key
principles a polymer model should include can be summarized in the following way

e Chromatin loops are an abundant regulatory and folding motif and exist on all scales

e Chromatin looping is dynamic and cell-type specific, i.e. different looping configu-
rations are found from cell to cell

e Chromatin looping is related to transcriptional activity

In this thesis, polymer models will be proposed and compared covering the experimental
evidence for loops and specific folding mechanisms.



Chapter 3

Polymer models of chromatin

In this chapter, basic concepts of polymer physics are addressed. The first sections are
meant to give the reader an overview over basic concepts in and theoretical foundations of
the physics of large polymeric macromolecules. For a comprehensive and detailed review
of polymer physics we want to refer the reader to Refs. [78, 79, 80]. The second part of this
chapter is dedicated to presenting the most prominent polymer models that have been used
to explain higher-order folding motifs of chromatin. We will discuss the assumptions, the
results and the short-comings of each of these models. It should become clear that none of
the polymer models proposed so far offers a functional and unified framework of chromatin
organization comprising all experimental evidence listed in section 1.2. The reader familiar
with polymer physics and chromatin models might want to skip this chapter.

3.1 Statistical Physics of Polymers

A polymer is a macromolecule composed of a large number of small chemical units, aligned
in a repetitive sequence by chemical interactions. The small chemical units are called
“monomers”, the number of monomers constituting a polymer is called the “chain length”
or degree of polymerization N.

The degree of polymerization can be huge; we have seen in section 2.2 that the degree
of polymerization of a typical human chromosome is in the order of N ~ 10® base pairs.
Given this large number of particles, it is evident that concepts of statistical physics have
to be applied to study the properties of such polymers. Characteristic measures are given
as mean values, displaying an ensemble average over the huge conformational space one
single polymer can explore.

We will present the freely-jointed chain model (~ 3.1.1) to introduce typically used
measures for polymeric complexes. Then, the Gaussian chain model is presented (~ 3.1.2),
which lies at the heart of the Random Loop Model (chapter 5) and many other chromatin
models [26, 11]. The behavior of polymer chains with excluded volume interactions is
developed (~ 3.1.3), which will be required in chapter 6. The effect of the solvent and
the transition to a globular state polymer, which has been proposed for chromatin or-
ganization, is introduced (~ 3.1.4). Finally, the principles and theory of coarse-graining

33
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Figure 3.1: A model polymer of the freely

jointed chain (FJC) model. The beads are rep- Re
resented by blue circles, which are connected

by linkers of fixed width b. The coordinates

are constrained to a lattice in this illustra-

tion. The FJC model allows beads to over-

lap, which happens two times in the sample

conformation.

and scaling, which are necessary for every large-scale description of a long polymer are
emphasized (~ 3.1.6).

3.1.1 The freely jointed chain model

The simplest polymer model which can be thought of is the freely jointed chain model.
Let the positions of the monomeric units be denoted by ry,...,ry. Adjacent monomers r;
and r;y1 are connected by a rigid linker of length 6. There are no constraints concerning
the angle between two linkers imposed on the system and two monomers are allowed to
overlap. An illustration is shown in Fig. 3.1, where, for simplicity, the configurational
space is limited to positions on a lattice.

The spatial extend of the polymer is given by its end-to-end distance

N-1
R.=ry-11 =) b,
i=1

where b; = r;;1 — r; denotes the bond vector between the monomeric units ¢ and ¢ 4 1.
The mean squared end-to-end distance <R§> can be easily calculated,

N—-1N-1 N
(RZ) =3 > (bibj) = > (b?) = N2 (3.1)
i=1 j=1 i=1

as the correlations between different bond vectors vanish due to the models assumptions
((b;b;) = b2 (cos§) = 0 for i # j).

The mean squared end-to-end distance represents the typical size of a polymer, and
we just found that this size is proportional to N%?. In fact, this does not come as a big
surprise as there is a one-to-one connection between the freely jointed chain and Brownian
motion. Consider a particle at position ry at time t; = 0. In each time step, the particle
moves a certain distance b without memory of its covered path so far (Brownian motion).
After N time steps, the particle has moved on average a distance (R?) = b*N. If we track
the positions of the particle at the intermediate times, rq,...,ry, and connect the path of
the particle, the resulting trajectory is a freely jointed chain. Due to this correspondence,
polymer chains without excluded volume interactions (~ 3.1.3) are called random walks.
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3.1.2 The Gaussian Chain model

In contrast to the assumptions of the freely jointed chain model, chemical bonds possess
a certain intrinsic flexibility, resulting in a fluctuating bond distance b. A model, which
is often used to model random walk polymers and which overcomes this problem, is the
Gaussian chain model. This model assumes that each bond vector b follows a Gaussian

distribution,
3 \*2 3b?

The conformational distribution function of a chain of length N is then given by

N-1
P(ry,...,ry) = HP(HH—T@') . (3.3)
i=1

The Gaussian distribution of the bond length p(b) can be thought of as a system
of beads connected by harmonic springs. Thus, the Gaussian chain is equivalent to a
many-body system with interaction energy

N—-1
kY (rigr — 1) . (3.4)

=1

DN

U(rl,...,rN):

The equilibrium probability distribution of the monomer positions is given by the Boltz-
mann factor P(ry,...,ry) = exp(—U/kpT), the correspondence to eq. (3.3) is obtained

by setting
3

T

An important measure for any polymer model directly related to FISH distance mea-
surements between two markers (cf. section 2.3.4) is the distribution of the vector ry, —ry,
between any two beads n and m.

kT .

K

P(r, —ry) :/drl.../drNP(rl,...,rN)é(rn—rm) )

This quantity can be calculated easily for a Gaussian chain [81],

P(r, —ry,) = (3>3/2 exp ( 3 (v, — rm)2> : (3.5)

272 |n — m)| 202|n — m

A direct conclusion is that the conformational average is given by
<(rn — rm)2> = |n —m|b?. (3.6)

Specifically, for the end-to-end distance we find
(RZ) = Nb*. (3.7)

Not surprisingly, this result is the same as for the freely jointed chain model [eq. (3.1)]:
The detailed form of the short-range interaction potential represented by the bond vector
distribution p(b) [eq. (3.2)] does not influence large-scale quantities like the mean squared
end-to-end distances. The central limit theorem in statistics [82] guarantees that the
distribution of the end-to-end distance R. = > b; converges to a Gaussian distribution
for independent bond vectors b; in the limit of large V.
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Figure 3.2: The gyration ellipsoid of a poly-
mer. The gyration ellipsoid describes the three-
dimensional distribution of monomers in space.
Both the typical size and shape of the polymer
can be derived from the tensor’s invariants.

For looping polymers which we will introduce later, it is convenient to use the radius
of gyration R, as a measure of size. It is generally given by

5 1 N N )
(R5) = DI ((ri=1))°) . (3.8)

i=1j=1
For the Gaussian chain we find
2 A R
<Rg>:2]v2;;|z—]\b = N (3.9)

In fact, the mean squared radius of gyration is an invariant of the gyration tensor,
which measures the distribution of monomers in the system. It is defined by

Syn = % S aDal). (3.10)

Here x() is the coordinate vector of the ith monomer with respect to the polymer’s center
of mass and the subindex denotes its Cartesian components. The eigenvalues Ay < Ay < A3
correspond to the squared lengths of the principal axes of gyration. The squared radius
of gyration is the trace of the gyration tensor

R =X+ X+ 3.

The ratios of the eigenvalues indicate the deviation from a sphere-like shape of the poly-
mer. It is well-known that the gyration tensor for random walks in good solvent has a
pronounced asphericity [83, 84], given by (A3) : (A2) : (A1) — 12 : 2.7 : 1. Figure 3.2
shows an illustration of a polymer chain and its gyration ellipsoid, clearly revealing an
anisotropic shape.

Ideal chains, as the universality class of models without excluded volume interactions
are often called, exhibit certain scale invariant features, which can be used for comparison
to experimental data from biology. First, the proportionality of the characteristic size
of a polymer coil to chain length N is independent of the bond length or the specific
distribution of bond vectors p(b). Second, the ratio between the mean squared end-to-end
distance and the radius of gyration is always

R/R> =6,
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More importantly, the Gaussian character of the distribution function eq. (3.5) implies for

example that
(RE)/(R2)" =513,

a value independent of any length scale involved in the model. We will make use of these
quantities in chapters 4-10.

3.1.3 Effects of excluded volume — the self-avoiding walk

The polymer models presented in the last sections did not take into account interactions
other than short-range bonded ones. As a result, the model permits the chain to fold back
onto itself, allowing beads to occupy the same position in space. In physical systems, this
is impossible as each monomer occupies a finite volume. In a lattice system such as the
one presented for the freely jointed chain model in Fig. 3.1, it is easy to take into account
excluded volume interactions: We subject any polymer to the condition that each lattice
site is allowed to be occupied by maximally one monomeric unit. Such a model is called the
self-avoiding walk, and there exist a lot of Monte Carlo algorithms for unbiased sampling
of these polymers. The Verdier-Stockmayer [85] algorithm is based on local moves of the
monomers and thus one Monte Carlo step can be easily related to physical time scales of
the system allowing exploration of the dynamical behavior. More efficient for sampling
equilibrium self-avoiding walk conformations of large chains is the pivot algorithm [86, 87],
where global conformational changes are induced in one Monte Carlo step.

The size of a chain with excluded volume is larger than that of a corresponding ideal
polymer. This can be easily seen: The more compact the polymer is, the larger is the
possibility of overlap. Thus, the configurational space is restricted with a bias towards
more open conformations compared to ideal chains. In 1949, Flory devised a simple
argument [88] to estimate the size of a swollen chain by considering two counteracting
forces. Firstly, the free energy contribution of constraining the end-to-end distance vector
to R is given by (according to eq. (3.5))

3
2Nb?

Fi(R) = —kgTIn P(ry —11) = kgT R?. (3.11)
While F) penalizes a strong elongation of the chain, excluded volume interactions act
against a strong compression of the polymer. In a mean field argument only considering
two-body interactions, this free energy contribution F5 is proportional to the square of the
local concentration ¢ ~ N/R? and the strength of the excluded volume interaction v,
2 3 N?

Fy(R) ~ kpTv.c*R°> = kBTvcﬁ . (3.12)

Minimizing the free energy F' = F} + F5 with respect to R yields a scaling of the average

size of the polymer with
R~ N35.

Thus, a general scaling law arises for random walks as well as self-avoiding walks,
(R2) ~ N%. (3.13)

The exponent v = 0.5 for a random walk is exact. The exponent for a self-avoiding walk
has been estimated by perturbation calculations to v = 0.588(1) [89], a value quite close
to the crude estimate by Flory.
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3.1.4 Effects of the solvent — transition to the globular state

Normally, a polymer is dissolved in some solution, i.e. small molecules compared to the
polymer’s size surrounding the chain. The models discussed so far do not take into account
the effect of the solvent. This assumptions correspond to the athermal situation where
the interactions between the solvent molecules and the chain molecules can be neglected.
Normally this is not the case. DNA, for example, is a highly negatively charged polymer
(it carries 2~ per A [1]) and interacts with counterions from the solvent. Nevertheless,
the use of athermal models is often justified. The negative charge in DNA is screened
by counterions with a screening length of about 10 nm [1], i.e. on a very small scale
compared to the chromatin fiber’s extension. To take into account the effect of the solvent,
interaction energies between neighboring elements are introduced: —e,, (polymer segment
— polymer segment), —e,s (solvent molecule — polymer segment) and —e,s (solvent—solvent
interaction). It can be shown [80] that the resulting interaction term in the mean field
free energy has the same functional form as in the athermal case, eq. (3.12),

2

N
F2 = k:BTUﬁ y

where the excluded volume parameter v comprises the additional interactions

v =v.(1 — 2x), x ~ kgT %(epp + €55) — €ps
Without going into detail, it is clear that the behavior of the system changes at x = %,
where the free energy changes sign. Indeed, for large positive y-values, the monomer-
solvent interaction dominates and the system tries to minimize the polymer-solvent surface.
A polymer in such a “bad solvent” adopts a sphere-like conformational state where the
mean-square end-to-end distance is solely dependent on the size of the system, i.e.

<R§> ~ N?/3 (globular state). (3.14)

Again, we find the universal scaling law eq. (3.13) with an exponent of v = 1/3. In case of
low x-values, the solvent-monomer interaction is weak, thus the polymer adopts the swollen
state known from the self-avoiding walk, the scaling exponent becoming v =~ 0.588.

When increasing the temperature, i.e. the interaction parameter y, the polymer un-
dergoes a transition from the compact globular state (¥ = 1/3) to the swollen state
(v = 0.588). The transition temperature for this coil-globule transition is x = 1/2. The
transition point is characterized by the chains following the ideal gas law, i.e. an exponent
of v = 1/2. This behavior has been explained by an exact counterbalance of the entropic
gain of chain expansion and the energy loss of volume link attraction at the transition
point [79].

3.1.5 Intermingling in polymeric solutions

An interesting question concerning chromatin organization is why chromosomes arrange
into distinct territories (cf. sections 1.2 and 2.3.5). An enormous amount of information
about a concentrated solution of polymers in solution can already be obtained by scaling
theory [78] such as phase separation, fluctuations and osmotic pressure. I will not go
into the details here, which can be read everywhere [80, 78], rather the main conclusion
concerning intermingling is presented.
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Levels of coarse—graining for chromatin
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Figure 3.3: Levels of coarse-graining for chromatin. The basic filament is the DNA double helix.
Its detailed structure becomes negligible when looking at the chromatin fiber. On a scale above 100
nm, the chromatin fiber itself can be viewed as a flexible string, which in turn is approximated by a
bead-linker model on a scale above the persistence length [, of the flexible string. It should become
clear that for large-scale quantities, such a bead-linker model is fully sufficient and molecular details
can be effectively subsumed into the average bead length b (partly adapted from [40]).

Consider a number of polymers in solution (good solvent, x < 1/2), the concentration
being given by c. If the concentration is very small, the polymer coils do not overlap and
display their ideal behavior (dilute regime). At a certain concentration threshold ¢*, the
coils begin to overlap. This threshold is reached when the global concentration ¢ becomes
comparable to the local concentration inside one polymer, i.e.

= % ~ N1—3V )
Importantly, for large IV, the overlap concentration becomes very small. Consider the case
of chromatin: We assume in a coarse-grained model the Kuhn segment length to be 300
nm [30]. In a densely packed 30 nm fiber, this corresponds to a chromatin stretch of about
30 kb [90]. Given the typical size of a human chromosome of 100 Mb, the effective chain
length of flexible monomeric units is N = 3400. The overlap density is thus

F~1.5%x1073.

Given a concentration of chromatin of about 10% inside the cell nucleus we can see that
the chains should indeed be strongly overlapping.

3.1.6 A question of scale — Coarse graining and bending rigidity

Each polymer has a certain rigidity, inducing a cost of energy to bend it strongly on a short
scale. The extreme case is a rigid rod, like a ski stick, which can hardly be bent at all (of
course it can, luckily, but by far not as strong as a parcel string). The freely jointed chain
is basically composed of N connected rigid rods, which at their attachment points are
fully flexible. This behavior is seldom found in nature. Rather, on an atomistic level and
for small deformations, classical elastical theory can be applied using Hooke’s deformation
law. This model is called the worm-like chain model. While the freely jointed chain model
assumes that the correlation between bond vectors vanish, i.e. (b;b;) = b? (cos0;;) (i # ),
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this is not the case for a worm-like chain. For this model and for many others, the
correlations decay exponentially with the contour separation s = |i — j|,

(cosB(s)) = exp(—s/lp) .

The factor [, characterizes polymer flexibility and is called the persistence length.

Double-stranded DNA has a persistence length of about /, = 50 nm. The physical
meaning of this length is that below this length scale, the polymer has a memory of the
chain direction, while above it does not. Thus, the memory of a direction prevails only for
a finite distance on the order of [,. Polymers which are much larger than the persistence
length are flexible. In fact, a long macromolecule contains basically Neg ~ L/, flexible
sections. Here L denotes the contour length of the polymer. Imagine you are traveling
along the contour of this polymer and put a marker on it every time a distance of ~ [,
is covered. Take these markers as the beads of a polymer, which are connected by rigid
linkers. From the considerations of the Gaussian chain we find that

(R2) ~ BNeg ~ (L/L,)2 ~ Ll

Thus, each sufficiently long macromolecule can be described by a simple polymer model
above the scale where bending rigidity plays a role.

Actually this comes quite handy, as modeling a chromosome with all one hundred
million basepairs in detail would not be great fun and probably prolong the time to get
a PhD considerably. The method of going from a detailed description to a large-scale
description is called coarse-graining. In fact, it is due to the general validity of the Gaussian
chain model (besides excluded volume interactions) for long polymers that this model is
often called the “standard model of polymer theory” [79].

Moreover, it is not even necessary to stop the coarse-graining procedure on the length
scale of the persistence length [,. The presumed persistence length of chromatin is on
the order of 40-250 nm [91], thus using a packing density of about 10 nm/kb [90] would
still require simulated chain lengths of N a 4000 — 25000. Gaussian chains display an
interesting scaling behavior. Starting from a description with N monomers at positions
ri,...,ry and an average bond length b, we pick out every JY monomer at positions
ro,rj,...,rnj,...,rnxy with N* = N/J. Owing to the central limit theorem these
monomers again form a Gaussian chain and the large-scale properties can be described on
an equal footing using a rescaled segment length b* obtained by setting

b N* = b2N .

Figure 3.3 displays the transition from the DNA double helix to a more coarse-grained
description of the fiber. Looking at the 10 nm chromatin fiber, it seems irrelevant which
structure prevails on the scale of the base pairs. Looking on the fiber from an even wider
perspective, the nucleosomes turn out to be irrelevant and the view as a flexible polymer
emerges.

3.2 Models of chromatin

Now, we have a basic understanding of polymer physics, and we know that polymer
models obey simple scaling laws. In the following sections, more complicated polymer
models that have been proposed for explaining chromatin folding are presented. All of
them are somehow based on the simple models, i.e. the random walk, self-avoiding walk
or globular state model.
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Figure 3.4: Sketch of a random walk in a confined space. A. In the model by Hahnfeldt et
al. [26], chromatin is modeled as a random walk confined by a sphere of radius A. The distance
R? between two markers (red and green label) are measured. B. Qualitative plot of the results.
For distances smaller than the radius of the confining sphere A, the model displays a random walk
behavior. When genomic separations get larger and the distance R? between two markers is in the
order of the sphere radius, the mean square distance adopts a plateau level.

3.2.1 Random walk in a confined space

Fluorescent in situ hybridization (FISH) has allowed the determination of the physical
distance between two chosen points on one specific chromosome for a large number of
cells. The resulting relation between the mean squared physical distance <R2> and genomic
separation g between the markers can be compared to polymer model predictions, e.g. the
universal scaling law eq. (3.13). In 1992, it was proposed that chromatin organization on
the scale below 2 mega basepairs (Mb) can be described by a random walk model [92].
The model is based upon 2D-FISH measurements of interphase chromosomes in the size
region of 100 kb to 2000 kb.

Based on identical measurements up to 4 Mb, Hahnfeldt et al. [26] proposed another
model for the overall organization of chromatin. This model roughly takes into account
the geometry of the nucleus by modeling a chromosome as a Gaussian polymer subjected
to forces that confine it to a sphere of radius A (see Fig. 3.4A). Such a model predicts
that on scales from 0.1 Mb to 1.5 Mb, chromatin folding is equivalent to an unconstrained
random walk model. On scales larger than 1.5 Mb, the model predicts a leveling-off as
the mean square distance between two FISH probes feels the confinement of the sphere.
The asymptotic value of the mean square displacement <R2> clearly is in the order of the
sphere radius A. A sketch of the relation between mean square displacement and contour
length in comparison to a random walk is shown in Fig. 3.4B.

A comparison of the model to recent experimental FISH data (Fig. 2.3) shows that
the leveling-off is predicted correctly. However, the plateau level observed in experiments
is far below the typical diameter of the cell nucleus, whereas the model predicts a leveling
off at a physical distance comparable to the nuclear diameter. Furthermore, this model
does not take into account experimental evidence for loops and is in disagreement with
the observed large cell-to-cell variation [12, 93].
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Figure 3.5: Illustration of the Random Walk / Giant-Loop (RWGL) model. A. Sketch of the
RWGL model. The chromatin fiber (green) is attached to a random walk backbone (red), which
might be related to the nuclear matrix/scaffold. In between the attachment points, the chromatin
fiber forms loops of about 3 Mb. B. Numerical results for the mean square distance <R2> between
two beads separated by genomic separation g. The loop-size is 3 Mb, the Kuhn segment length is
assumed to be 300 nm, corresponding to 30 kb.

3.2.2 The Random Walk / Giant - Loop model

Yokota et al. conducted FISH measurements in human Go/Gj cells spanning the whole size
range of human chromosome 4 [27]. The physical distance between two FISH probes was
detected on a small scale (0.15 — 3.5 Mb) as well as on the scale of the whole chromosome
(up to 200 Mb). These measurements revealed a biphasic behavior with two different
regimes of structural chromatin organization, the transition region being at about 2 Mb.
On both scales, a random-walk behavior was proposed, whereas the slope, i.e. the effective
segment length, is much smaller on the scale above 2 Mb.

To explain the observed folding behavior, Sachs et al. [11] proposed a model where
flexible chromatin loops of size 3 Mb are attached to a random-walk backbone. This
backbone has been related to the hypothesis of a flexible nuclear matrix /scaffold (~ 2.4.3)
to which DNA and chromatin fibers are attached. A sketch of the model is displayed in
Fig. 3.5A. Consider a chain of length N, the monomer positions being denoted by ry,...rxy.
The backbone is given by a Gaussian chain (cf. section 3.1.2), i.e. the interaction potential
is set to

1 N1
UO = 5/4}0 Z H riy1 —I; H2 .
i=1
Giant loops are introduced by harmonic interactions between any two beads nJ and (n +
1)J where n is an integer and J determines the loop size. Thus, the complete interaction
potential is given by
N/J
U="U+ 5f Z | P = Tnt1)s [

m=1

Obviously, such a model predicts a random-walk type of behavior on the scale below
the size of a loop J. Typical oscillations are induced by the loops in the mean square
distance vs. genomic separation plots (see Fig. 3.5B). They are an artifact from assuming
loops of a fixed size of 3 Mb.
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subcompartments

Figure 3.6: Sketch of the Multi-Loop-

Subcompartment model. In this model,

chromatin is subdivided into subcompartments

/ consistent of 120 kb sized loops. The subcom-
linker chromatin partments are connected by linker chromatin.

On a large scale, the folding of the chromatin fiber can be described by a simple
random walk, which is given by the backbone. Loops perturb this behavior by the typical
oscillations, but nevertheless, the mean square distance is on average linear in the genomic
separation. Speaking in terms of scaling theory, the random walk has been effectively
rescaled with the loops being the effective monomers.

The RWGL model has several short-comings. Amongst others, the already mentioned
oscillations are model artefacts. Secondly, loops of fixed size are not found in experimental
data, rather 4C experiments revealed loops on all length scales [25]. More importantly,
while the model is in agreement with data from 2D FISH, it does not display the strong
leveling-off observed in recent 3D FISH experiments [12]. Measurements of Trask and
coworkers [26, 11, 27, 94] did not show such leveling off of physical distances at large
genomic distances. At least in part, this discrepancy can be explained by the fact that
these authors used different cell fixation and FISH labeling methods, which preserve the
structure of the nucleus less well than those used in Ref. [12]. Also, most measurements
have been carried out two-dimensionally. Together, this is likely to results in systematic
distortions of their data sets.

Sachs et al. [11] derive a Rayleigh probability density for the mean square distance
between two markers. Such a probability distribution predicts the ratio between the
standard deviation o and the distance (R) to be a constant: o/ (R) ~ 0.94. In fact, the
experimental data show a similar ratio. We will make frequent use of such ratios in later
chapters. A result will be that deviations from the random-walk polymer models only show
up in the ratios of higher-order moments starting from the 4 moment (cf. section 4.5).

3.2.3 The Multi-Loop-Subcompartment model

Early studies indicated the existence of loops with a size of about 100 kb [95], while giant
loop structures as predicted by the RWGL model have not been found [28]. Ongoing re-
search activity focused on the territorial organization of interphase chromosomes. It was
shown by microbeam UV radiation [58] and later by fluorescence labeling techniques [7]
that chromosomes indeed tend to be segregated into distinct territories (~ 2.3.5). The
Multi-Loop-Subcompartment (MLS) model [28, 29] was proposed to connect these exper-
imental findings with a computational model.

Chromatin is organized into subcompartments according to the MLS model. Each sub-
compartment consists of several 120 kb sized loops. The subcompartments itself are con-
nected with each other by chromatin fragments in the size range of the intra-compartment
loops, i.e. about 120 kb (see Fig. 3.6). It was shown [29] that different subcompartments
do not overlap to a large extend, a finding which is in agreement with a FISH study [6] re-
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vealing little intermingling between chromatin regions on the same fiber. The MLS model
predicts interphase chromosomes to be in a rather compact state on the scale above 10
Mb, i.e. the mean square displacement between two markers scales with genomic distance
g as <R§> ~ g1/3. Although it was concluded in Ref. [29] that this state corresponds to
a condensed globular state as presented in section 3.1.4, this is not true. We will find in
a detailed study in chapter 4 that this scaling law is only valid for end-to-end distances.
On a short scale below 10 Mb, the MLS model predicts a random-walk type of folding.

The dynamic formation of rosette-like structures was investigated by Odenheimer et
al. [96]. In this study, chromatin was modeled as a regular block copolymer with attractive
and repulsive sequences. Clearly, starting from a linear chain, attractive sequences arrange
into rosette-like structures in this model, the repulsive segments looping out. By variation
of the distance between attractive segments, the loop size could be varied. The best
agreement with experimental data was found for 120kb-sized loops.

The short-comings of the MLS model are with respect to experimental data from 3D
FISH measurements (Fig. 2.3 and Ref. [12]) that it does not predict a leveling-off on the
large scale. Furthermore, the evidence for loops on all scales is not incorporated into this
model.

3.2.4 Other models

In 1994, Sikorav and co-workers [97] discussed the process of mitotic chromosome conden-
sation. They modeled the transition from interphase chromosomes to condensed mitotic
chromosomes as a coil-globule transition of molten polymers. A simple estimate of the
disentanglement time 7,4 for a typical human chromosome (100 Mb) yields 74 &~ 500 years.
It was concluded that a the enzyme topoisomerase II is required substantially to speed
up this process. Rosa and co-workers [30] reversed this argument and suggested that in-
terphase nuclei never equilibrate. They argue based on simulations of long linear chain
molecules that chromosomes behave like solutions of unentangled ring polymers, which
display a segregation due to topological constraints. The experimental evidence for loops
has not been included into this model. Furthermore, the worm-like chain polymers in this
study do not display the sub-diffusional regime of experimental data with g;(¢) ~ t%4,
rather the typical dynamics of polymers in the melt of g;(t) ~ t°> is found.

Emanuel et al. [31] proposed recently, that chromatin organization can be explained
by a globular state polymer model. Indeed simulations on the scale below 5 Mb are in
agreement with experimental data from Fig. 2.3. Naturally, compact polymers display a
leveling-off in the mean square displacement due to the assumption of a confined geometry.
In chapter 4 we will investigate thoroughly whether the globular state model can explain
experimental data.

Grosberg [98] and recently Lieberman-Aiden and co-workers [39] proposed that chro-
matin is organized as a fractal globule. In contrast to the equilibrium globular state
model (~ 3.1.4), such a model represents a long-lived, non-equilibrium knotless conforma-
tion. The average distance between two loci scale as g/3 for a fractal globule, inconsistent
with the leveling-off observed on the scale of whole chromosomes.
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Chapter Summary

The three-dimensional organization of chromatin is highly complex and yet its detailed
mechanisms are poorly understood. Polymer models like the random walk, self-avoiding
walk and globular state have been proposed, although on the scale above 10 Mb folding
into a confined space is observed. In this study a careful analysis of data from fluores-
cence in situ hybridization (FISH) is conducted to investigate whether a random walk or
self-avoiding walk polymer model provide an adequate description of chromatin folding on
the short scale. Lacking detailed knowledge on the conformational properties of globular
state polymers, we perform Monte Carlo simulations to sample compact conformations
on a cubic L x L x L lattice with different occupancy fractions by modifying a recently
proposed algorithm. The system sizes studied extend up to N = 256 000 monomers, going
well beyond the limits of older publications on compact polymers. We analyze several
conformational properties of these polymers, including segment correlations and screening
of excluded volume. Most importantly we propose a scaling law for the end-to-end dis-
tance distribution and analyze the moments of this distribution. It shows universality with
respect to different occupancy fractions, i.e. system densities. We further analyze the dis-
tance distribution between intrachain segments, which turns out to be of great importance
for biological experiments. We apply these new findings to the problem of chromatin fold-
ing inside interphase nuclei and show that — although chromatin is in a compacted state
— the classical theory of compact polymers does not explain recent experimental results.

4.1 Introduction

It is futile to develop a polymer model which explains cellular processes in every detail.
Rather polymer models aim at explaining the available experimental data by introducing
only a minimal set of parameters with which the data can be described in a satisfactory
way. It is exactly the idea behind coarse-graining that for large-scale properties of polymer
chains, the molecular and atomistic details can be neglected. Accepting this aim, we can
ask what is the simplest polymer model one can think of? Surely, it is the random
walk (RW), introduced in section 3.1.2. Its only parameters are the chain length N and
the linker length b, no other interactions are considered. The self-avoiding walk (SAW,
sec. 3.1.3) is the natural extension of this model, including excluded volume interactions,
but nothing else. For both models, we found in chapter 3 that the mean squared end-to-end
distance scales like

(RZ) ~ N%, (4.1)

where v = 0.5 for a random walk and v ~ 0.588 for a self-avoiding walk.

Referring to Fig. 2.3 we immediately find that a random walk or a self-avoiding walk
cannot be a satisfying description of chromatin folding on the scale above 5-10 Mb. The
data clearly shows a scaling of (R?)(N) ~ O(1), inconsistent with a RW or a SAW
polymer model. However we can ask, whether chromatin organization on the short scale
is dominated by such a model. Although the RW model seems unlikely in the first place,
as chromatin segments have a certain volume and therefore a repulsive interaction, an
effective random walk behavior might stem from the effect of the enzyme topoisomerase-
II, which is able to let a strand of DNA pass through another one, effectively removing
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topological constraints. Indeed, it has been proposed based on older experiments on 2D
FISH, that chromatin organization shows a random walk behavior [92] on the scale below

2 Mb.

It was already mentioned that a polymer chain with excluded volume interactions
undergoes a transition to a compact polymer, also called globular state, when solvent-
monomer interactions are less favorable than monomer-monomer interactions (~ 3.1.4).
A globular polymer is characterized by its dimensions, e.g. the radius of gyration, scaling
with N1/3, resulting in a nearly uniform monomer concentration inside a globule of a
certain radius scaling with N/3. In fact, 2D FISH measurements on chromatin revealed
in the regime of genomic separations between 10 Mb and 20 Mb a scaling of the root
mean square displacement of about g°-32 [29], g being the genomic separation between the
FISH markers. However, these measurements were intrachain distances and not end-to-
end distances, and we will show below that this difference makes a drastic effect on the
scaling.

Polymers in a globular or compact state are quite abundant in nature. Many polymers
in living organisms tend to organize in a compact way, the prime example are proteins [99].
A lot of studies have been devoted to the problem of protein folding starting from the
sampling of random compact conformations [100, 101].

While for the random walk and self-avoiding walk there exist a lot of studies on their
conformational and statistical properties [79, 102, 103], which can be compared to exper-
imental data, this is not the case for globular polymers. However, in the last few years
several Monte Carlo algorithms have been proposed to study compact polymers based
on the idea of Hamiltonian paths [104, 105, 106]. A Hamiltonian path on some graph G
with set of vertices V and edges £ is defined as a path which visits each vertex V € V
exactly once. Obviously, Hamiltonian paths studied on a cubic lattice are prime examples
of maximally compact polymers where the number of nearest neighbor contacts is maxi-
mized. However, the exact enumeration of all possible conformations is not feasible as the
computer resources needed grow exponentially with growing system size [107]. Thus such
studies are limited to rather small system sizes which probably do not reflect the proper-
ties of compact polymers in the limit of large chain lengths N. Therefore, several Monte
Carlo techniques have been developed to sample a representative ensemble of Hamiltonian
paths on a cubic lattice. One important aspect of such an algorithm is that sampling of
conformations is done in an unbiased way. Two algorithms have been shown to fail this
test [104, 106]. Recently, Mansfield proposed an algorithm which is shown to produce
unbiased samples to a high degree of certainty [105].

The scope of this study is three-fold. First of all, we compare chromatin folding to a
random walk and self-avoiding walk polymer model by looking at the scaling of the mean
square distance between the FISH markers in relation to genomic separation g, at the
distributions of distances at a fixed separation g and its moments. Then, we extend the
algorithm proposed by Mansfield [105] in order to study not only maximally compact con-
formations where all lattice sites on a cubic lattice are occupied, but also conformations
in less dense systems with density p # 1. By using a highly parallel system we generate
chains of lengths much larger than the ones studied in previous publications. The largest
system size for p = 1 is L = 55, the largest chain length studied is N = 256 000 for a
density of p = 0.5. We analyze several statistical and conformational properties of these
compact conformations being of general interest for polymer theory. Special interest is
on the distance distribution between the end points of the chain as well as the distance
distribution between smaller segments of the chain. Stunningly this quantity has not
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been analyzed in previous publications, although it is of severe importance for biologi-
cal applications as the distributions can be compared directly to experimental data [12].
Furthermore, we provide a comparison of compact polymers to a polymer melt of equal
density, which has been suggested to behave similarly [79, 106]. Finally, we apply the
results of our simulational study of compact polymers to recent experimental data con-
cerning the folding of chromatin inside the interphase nucleus. We show that chromatin
on a scale above 150 kb does not organize simply in a compact state as the behavior of
the mean square displacement with genomic distance might suggest [12, 31], but shows
important hallmarks of a more disordered system.

4.2 Is chromatin organized as a random walk or self-avoiding
walk?

4.2.1 Scaling of the mean square displacement

The mean square distance between two segments of a polymer chain is an important mea-
sure as it allows direct comparison to experimental data from FISH measurements, where
the mean square displacement between two markers is obtained in relation to genomic
separation g. As already stated in section 3.1, the mean square distance between the end
points of a chain of length N scales as N2 with v = 0.5 (RW) or v = 0.588 (SAW)
independent of the models parameters.

We compare the FISH data to the scaling law by dividing out its leading order term
g% (g being the genomic separation between the FISH markers). By using this kind of
plot, deviations from the scaling become more visible than with the unscaled plot, where
differences between the exponents v = 0.5 and v = 0.588 are hardly distinguishable. If one
of the models tested would be correct, the data should be on a straight line. The results
can be seen in Fig. 4.2 for both the RW and SAW model. Red and green data points are
FISH measurements of Roel van Driel’s lab in Amsterdam [12], blue data are 2D FISH
data of Yokota et al. [11]. Obviously, for all data sets the ratio (R?) /g?” displays a slope
unequal zero both for the random walk as well as the self-avoiding walk. Thus, neither
the random walk nor the self-avoiding walk correctly predicts chromatin organization on
the short scale.

In fact, the results might be caused by effects of looking at intrachain distances instead
of end-to-end distances. The scaling law eq. (4.1) makes predictions only on end-to-end
distances. It can be easily seen that for a random walk, where segments do not feel the
existence of each other, the scaling law is the valid for intra-chain distances n < N as
well [cf. eq (3.6)]. For a self-avoiding walk, the situation is different: The chain ends have
more entropic degrees of freedom and therefore behave differently. To study finite-size
and intra-chain effects, we have simulated self-avoiding walks using the pivot algorithm
introduced by Kennedy [87] on a 3D cubic lattice. In Fig. 4.1B the scaled mean square
intra-chain distance (R2) /n?” between two segments is shown versus contour length n.
Obviously there are deviations from the scaling law when looking at intrachain distances.
On top, the scaling law (4.1) is only asymptotically valid for large N. As can be seen in
Fig. 4.1A the asymptotic limit, in which the scaling law becomes valid, starts at N = 500.
In order to exclude the possibility that these approximations invalidate our results, we
introduce other quantities, which are also important for the globular state analysis below.
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Figure 4.1: Scaling and finite size behavior of self-avoiding walks. Simulations of SAWs have
been performed using the fast pivot algorithm [87] on a 3D cubic lattice. A. The mean square
displacement between the end-points of a chain in dependence of the chain length N. Data is
scaled with N2” v = 0.588 to highlight deviations from the scaling law eq. (4.1) for finite chain
length. Starting from about N = 500, a the scaling law is approximated well. B. Scaling of
intrachain distances ( R2) with contour length n. Shown is the mean square distance between two
monomers separated by n for a chain of length NV = 2000. The grey line represents the asymptotic
behavior for the end-to-end distances. Intra-chain distances display deviations from scaling. C.
End-to-end distance and intrachain distance distribution P(r) compared to the asymptotic scaling
law eq. (4.2). Data is scaled with the root mean squared value of the corresponding distances.
For this plot, chains of length N = 2000 were used. The distribution of intra-chain distances is
measured between two beads separated by n = 1000 monomers. Again we find small deviations for
intrachain distances from the scaling law. D. The moment ratio ¢4 = <R4> / <R2> for intrachain
distances of a chain of length N = 2000. The grey line represents the asymptotic value of the
end-to-end distance distribution for self-avoiding walks.

4.2.2 Distance distributions

For each genomic separation g, the data from Roel’s lab is given as a set of distances R
measured in about 50 — 100 cell nuclei. Instead of looking at the second moment of the
distribution (R?), we can also look at the distance distribution P(R). This distribution
then contains all the information available.

The end-to-end distributions for the RW and SAW model are known to follow the
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Figure 4.2: Test of the RW and SAW polymer model on experimental data. Shown is the scaled
mean square distance <R§> /N?" between two FISH markers vs. genomic separation g. Red data
points are short distance measurements on chromosome 1 in a anti-ridge region, green data points
in a ridge region on the same chromosome [12]. Blue data points are taken from Ref. [27]
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where R, = /(R2) is the root mean squared end-to-end distance.

In case of a random walk, this is just the Gauss distribution averaged over the angles,
resulting in 6 = 1/(1 —v) = 2 and p = 2; for a self-avoiding walk, the exponents are
different and can be estimated by scaling arguments [108] to 6 = 1/(1—v) ~ 1/(1—-0.588) ~
2.427 and p ~ 2.28 [79].

Again, we first make sure that the distribution of intrachain distances P(r) does not
differ strongly from the distance distribution of the end-to-end distances in the SAW
model. Fig. 4.1C shows both the end-to-end distance distribution as well as intrachain
distance distribution for n = N/2 for a chain length of N = 2000. The self-avoiding walks
in this figure have been simulated using the pivot algorithm introduced by Kennedy [87]
on a 3D cubic lattice. The distribution function P(r) is scaled according to eq. (4.2) with
the root mean squared end-to-end distance and the root mean squared intrachain distance
V/(R?2) respectively. Although there are deviations for intrachain distances, the curves are
still in reasonable agreement.

In Fig. 4.3 the distribution of the data for a genomic separation of g = 1.87 Mb is
compared to the random walk and the self-avoiding walk distance distribution. Obviously,
it is not possible to make statistically significant conclusions about which model fits better.
The number of available data points of 50 — 100 values are far to small to obtain reasonable
histograms. Thus, distribution functions are not a good measure for testing models.

scaling law [79]

4.2.3 Moment ratios of the distribution

In search for a more precise comparison of experimental data to a polymer model, we had
the idea of looking at ratios of higher-order moments of the distribution, especially

2 3 R4
(a) cQ:gﬁ, (b) :i? (©) C4:<<R2>>2' (13)

Generally speaking, given a probability distribution function f(x), the information
about the distribution is stored in all its moments m,, = (f"(x)), (n =1,...,00). While
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experimental data is not precise enough to compare the distribution function, i.e. all
higher-order moments, to the model predictions (as the standard error of the experimen-
tal distribution’s moments gets larger the larger the moment), the first few higher-order
moments might still yield important information.

The ratios of higher-order moments eq. (4.3) are important from various aspects. First,
they are dimensionless, i.e. allow for a quantitative comparison between experiment and
model independent of adjustable length scales. Second, these moment ratios carry infor-
mation about the fluctuations, thus the cell-to-cell variation, in the data.

To calculate the moment ratios of eq. (4.3) for the random walk and self-avoiding walk,
we start from the distribution function P(r) of eq. (4.2). We can determine the parameters
A and B by the following normalization conditions

/ P(r)dr = 1 / P2 P(r)dr = R? (4.4)
0 0
and obtain 5/

r (“TH) B

r(42) r(5)

Here I'(-) denotes the Gamma function, which interpolates the factorial function. Substi-
tuting the results for A and B in eq. (4.2) we can carry out the moment integrations and
obtain

)
L F(##(); ()?1)2 (4.6)
r"
()1 ()
G

For a random walk (u =2, § = 2), we find
co = 1.178, c3 = 1.571, c4s =5/3 (4.7)



52 4. The conformational properties of compact polymers

—
(@)

,_\

[6;]
-
!

—
~

o

\al

(R?) /(R)?
= —
N w

T T
_._‘I—Q—|
—

s
g

4

ey
Py

e
et

——
—

o

=1

.
=——
—a—

H
=
T
u
i
I
=, 2w
Hil
.

—
o
—
- F
[
o

3.4 : — :
32 ]
3| i
w28+ i
T 26 |
~ 244
< 22}
(& 2-_{ & ¥{
~ 18+ ¢ % T
TEL R TaTy MRtap 1 Lol 1
14 E E i %—'-ihﬂ-%igvl tI _l_%‘_l-j_”'l'- | Jl-é-
- 7 AT TR
0.1 1 10
4.4 : :
4r I RW T
o 36 SAW 1
% 32} ]
< 28} f
v =, ot R
~— 2 F ‘ * k 3 *® i
LA z}it.!‘}"l L] A -2F &8
16 F m = [l o = A ~ T e
1.2 o BB —
0.1 1 10

genomic distance [Mb]

Figure 4.4: Higher-order moment ratios cs, cs and ¢4 (cf. equation (4.3)) of the self-avoiding walk
and random walk polymer model compared to experimental data. The following experimental data
is shown: Human fibroblasts Chrl [12]: W anti-ridge region, M ridge region, o long distance mea-
surements; Human fibroblasts Chr 11 [12]: e long distance measurements; Murine Igh locus [109],
¢ pre-pro-B cells, © pro-B cells. The data displays strong deviations towards larger fluctuations in
comparison to the random walk (RW), self-avoiding walk (SAW) and globular state (GS) polymer
model.

and for a self-avoiding walk (p = 2.28, § = 2.427)

cp=1.139,  ¢3=1435, ¢4 =1.506. (4.8)

We test how the ratios change when looking at intrachain distances for the SAW model.
Fig. 4.1D shows that the moment ratio ¢4 for contour length n < N is always below the
value given in eq. (4.8) for the end points of the chain. Thus, fluctuations are larger for the
end-points, a result which is expected due to their increased entropic degrees of freedom.

Fig. 4.4 displays a comparison of the ratios for experimental data from human chro-
mosome 1 and 11 [12] and the murine Igh locus [109] with the ratios for the random and
self-avoiding walk. Interestingly, the experimental moment ratios are significantly above
the values obtained from both polymer models. Especially the higher-order moments c4



4.3. Monte Carlo simulations of compact polymers 53

deviate strongly. As the moments of the ratios for intrachain distances n are even below
the end-to-end value for a self-avoiding walk, we now have an unambiguous proof that
the results from Fig. 4.2 are not due to effects of evaluating distances far away from the
chain ends. Clearly neither the random walk nor the self-avoiding walk model fits the
experimental data.

4.3 Monte Carlo simulations of compact polymers

4.3.1 The Algorithm

To create conformations of compact polymers on a cubic lattice we use a modified version
of the algorithm Mansfield [105] proposed for sampling Hamiltonian paths. Recall that a
Hamiltonian Path is defined as a path on a graph G (here a simple cubic lattice), which
visits each vertex exactly once. In terms of a polymer on a cubic lattice, this means
that each lattice site is occupied. The algorithm of Mansfield is a Metropolis Monte Carlo
technique and is one of the few known algorithms except exact enumeration methods which
is unbiased, i.e. every allowed conformation is sampled with equal probability. While other
proposed algorithms for sampling Hamiltonian paths have been shown to produce biased
results [104, 106], Mansfield proved in his paper [105] ergodicity for small lattices by exact
enumeration and devised a method providing strong evidence that the algorithm is ergodic
for even larger lattices.

Here, we are not only interested in Hamiltonian paths, which only make up a subset
of compact polymers but also in compact conformations within the finite temperature
regime where p # 1. Therefore, we have to allow vacancies on the simulation lattice. This
is done by modifying the algorithm such that it also handles lattices where not all vertices
are occupied by introducing a reptation step for the chain ends. We do not consider any
interactions between the solvent (i.e. the vacancies on the lattice) and the monomers,
therefore having an athermal chain.

Consider a cubic lattice of dimension L x L x L, each lattice side r = (x,y, z) is either
occupied or unoccupied. The connectivity information of the chain itself is stored in a
linked list £ of lattice sites. The algorithm then works as follows:

1. Randomly select one of the two ends of the chain, the coordinates denoted by rg.

2. Randomly select one of the six neighboring sites of rg on the cubic lattice, denoted
by rn.

3. Test if rn lies outside the lattice. If so, proceed with (5), otherwise proceed with

(4).

4. Test if the lattice site ri is occupied. If the lattice site is occupied and rg lies at
the head of the list £, we reverse the part of the list lying above ry. If rg lies at the
tail of the list £, we reverse the part of the list lying below ry. If the lattice site is
unoccupied we do a reptation move, i.e. we append the position rn to the head (if
rg is currently head) or to the tail (if rg is currently tail) of the list and remove the
other end of the list.

5. Take the new conformation (if or if not it has changed) as the current configuration.

The two types of Monte Carlo moves (list reversal and reptation) are visualized in Fig. 4.5.
The algorithm equals the one proposed by Mansfield for compact polymers with p = 1, as
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Figure 4.5: The two different Monte Carlo
moves for the sampling of compact polymers.
Shown is a simplified example on a 2-D lattice
with a chain of length N = 13. Each monomer
carries a number, indicating its position in the
linked list £. A. Half-list reversal move. The
end-monomer 1 is selected and the neighbor with
list index 6 is randomly chosen. The list reversal
moves the end-point of the chain to a different
position. B. Reptation move. If the neighboring
lattice site is empty, a new monomer is added at
the top of the list £ and the last list element is
deleted.

in this case reptation steps are not possible. The only change applied to the algorithm is
that we allow for a reptation step in (4) whenever the lattice site ry is unoccupied.

4.3.2 Ergodicity and unbiased sampling

The algorithm is a Monte Carlo technique, which means that we have to make sure that
it produces unbiased samples. Unbiased means that

e the algorithm samples the complete configuration space
o each allowed configuration is sampled with equal probability

Unbiased sampling is ensured if the algorithm satisfies detailed balance and ergodicity [110].
A Markov process is said to satisfy detailed balance if the transition rates P;; between
each pair of states i and j obey the equation [111]

Bijmi = Py

P;; denotes the transition probability to get from state 7 to state j, m; and m; denote the
equilibrium probabilities of being in state ¢ and j, respectively. In the case of athermal
chains, each possible conformation satisfying the excluded volume constraint has equal
statistical weight m; = m, thus the detailed balance criterion reduces to

P =Pj

Obviously, this criterion is satisfied by the algorithm.
The proof of ergodicity is much more complicated. Mansfield proved ergodicity for
p = 1 and small lattices, and he devised a method providing strong evidence that the

Figure 4.6: For the 2 x 2 x 2 lat-
tice only the three shown Hamiltonian
Paths exist after summarizing them
with respect to the symmetry oper-
ations on the cubic lattice
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algorithm is ergodic for any lattice size. However, it is not clear a priori that ergodicity
is satisfied even for p < 1. The reptation algorithm on its own is non-ergodic [111] as
a conformation can get trapped in a state where no more reptation moves are possible.
However, this problem is resolved here: Whenever there is no free adjacent lattice site to
a chain end, the algorithm performs a half-list reversal such that the chain’s end moves to
another lattice site.

One method to test ergodicity is to exactly enumerate all possible walks on a given
lattice with size L, x L, x L, and density p and to compare the exact probability for
one conformation to the probability that the Monte Carlo algorithm samples this specific
conformation. As the number of possible conformations increases very rapidly with system
size (for a 33-lattice we have about 5 million conformations) it is necessary to handle
conformations related by symmetry as one and the same. Although this procedure may
ignore biases within one symmetry class, this procedure is justified as we only look at
properties that do not change by symmetry operations.

In addition to the symmetry operations we also want to drop the distinction between
the start and the end of the chain. This is necessary as the algorithm of Mansfield [105] is
only ergodic with this condition. Again, this has no influence on the measures we analyze
later.

Exact enumeration is done using a recursive back-tracking algorithm: We start from a
certain lattice site ry and let the chain grow step by step. At some point, we have either
reached the target chain length IV, then we save this as a valid conformation; or we are
stuck at a chain length n < N and there is no possibility for further growth. Then we
go one step back to a chain of length n — 1 and test the other possible directions. We
repeat this procedure until all conformations are enumerated for each start lattice site
rs. Of course, exact enumeration is restricted to very small lattice sizes, on a 2 X 2 x 2
lattice with p = 1 there are 144 possible conformations, on a 3 x 3 x 3 lattice there are
already 4 960 608. After exact enumeration of the conformations, we collect them in certain
symmetry classes A;. One symmetry class summarizes all conformations related by one
of the 47 symmetry operations on a cubic lattice, translational shift or path reversal.

Let p; be the probability for a conformation to fall in equivalence class A;, determined
by exact enumeration. Next, we sample a number K of independent conformations using
the Monte Carlo algorithm and determine the relative abundances ¢; of a sampled con-
formation to belong to equivalence class A;. Under the assumption that the algorithm is
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Table 4.1: The probabilities g; for a Hamiltonian Path generated by the Monte Carlo algorithm
on a 2 x 2 x 2 to fall into on of the three symmetry classes (see Fig. 4.6) compared to the resulting
probabilities p; of exact enumeration.

conformation number 1 2 3
pi (exact enumeration) 1/3 1/3 1/3
¢; (sampling) 0.3333 0.3334 0.33331

indeed unbiased, the probability that k samples fall in equivalence class A; is given by
K _
Pi(k) = <k>pf<1 — )<,

Thus, the random variable

qi — Pi
;= _ 4.9
‘ pi(1—p;) (4.9)
K

is normal distributed with mean zero and variance equal to unity.

To test our ergodicity calculations, we use the well-known results for p = 1 on a lattice
of dimensions 2 x 2 x 2. Only three symmetry classes A; exist here, displayed in Fig. 4.6,
each of them having the exact probability of p; = 1/3. We samples K = 10000000
conformations using the Monte Carlo algorithm and determined the relative abundances
g; for the conformations falling into symmetry class A; . The results are shown in table 4.1
and display very good ergodicity.

Fig. 4.7 displays the ergodicity tests on a 3 x 3 x 3 lattice for different monomer
densities p. There are 51 704 symmetry classes for N = 27 and 2 750 classes for N = 10
on this lattice. We find that the ¢; are in a very good approximation normal distributed
for different chain length N. Deviations from the normal distribution most probably are
due to the fact that the ¢; are not independent. As there is no reason to believe that
ergodicity is broken for larger lattice sizes, our modified algorithm most probably satisfies
ergodicity.
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Table 4.2: Fitting parameters for autocorrelation times. The exponential and integrated auto-
correlation times Teq, and 7;,; were determined for different system sizes L. Then, for each density
simulated, the obtained autocorrelation times were fitted to the function 7(N) = c¢N¢.

P d(Te:Bp) C(Texp) d(Tmt) C(Tint)
0.1 1.07(1) 5.07(36) 1.05(1) 6.2(5)
0.5 0.995(3) 2.50(6) 0.97(2) 3.1(4)
1 0.954(3) 2.32(5) 0.926(4) 2.94(10)

4.3.3 Autocorrelation times

As the algorithm only changes one bond per Monte Carlo step, subsequent conformations
are highly correlated. A lot of subsequent Monte Carlo steps have to be performed until
conformations get uncorrelated. Following Mansfield [105], we calculate the autocorrela-
tion function Cy, () of the observable N, which is defined as the number of bonds oriented
along the z-direction. We then determine the exponential decay time of the correlations
by a fit to the function f(x) = exp(—t/7ezp) and obtain the exponential autocorrelation
time 7Tezp(p, N). This is the time scale defining how long we have to wait initially before
sampling any conformations. On the other hand, the integrated autocorrelation time 7;y,;
tells us how many Monte Carlo steps have to be carried out until we have a subsequent
independent conformation. From Fig 4.8 one can see that 7;,:(p, N) as a function of N
has a power-law behavior. We fit the correlation times to the function

(o, N) = c(p) N

and obtain the results shown in table 4.2. Two conformations can be considered un-
correlated after 27;,, Monte Carlo steps [111]. Based on these results we write out a
conformation after 14N steps for p = 0.1 and 6N steps for p > 0.1.

4.4 Conformational properties of compact polymers

In this section we present results on the conformational properties of compact polymers
using the algorithm described above. We performed extensive simulations for three differ-
ent densities p = 0.1,0.5 and 1.0. For each density a broad range of system sizes has been
studied. For p = 0.1 we did simulations up to L = 130, for p = 0.5 the largest system size
studied is L = 80 and for p = 1.0 we were limited by computing time to L = 55. Thus the
largest simulated chains are made up of N = 166 375 monomers for p = 0.1, N = 256 000
for p = 0.5 and N = 219700 for p = 0.1. For each density and system size we sampled
between 20000 up to one million conformations, depending on the system size.

4.4.1 End-to-end distance statistics

One characteristic length scale of a polymer is given by the mean squared end-to-end
distance (~ 3.1.1), i.e. the distance between the two endpoints of the chain, which is
often denoted by (R?). Obviously, (R?) depends on the total length of the chain, which is
denoted by the number of monomers N and in our case related to the system size L. The
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Figure 4.9: Probability distribution of the end-to-end distances for compact polymers. The
distributions are scaled with the root mean squared end-to-end distance R = +/(R2) = aN'/3
where the parameter a is determined by a fit according to table 4.3. For each density systems of
different size fall on top of each other. For p = 0.1 system sizes vary from L = 10 to L = 130,
for p = 0.5 we analyzed systems from L = 10 to L = 80 and for p = 1 the lattices used range
from L = 10 to L = 55. The black lines represent a two-parameter fit to the empirical distribution
function eq. (4.11), the fitting parameters are listed in eq. (4.12). For comparison, the dotted line
shows the distribution of two random points on a cubic lattice obeying excluded volume.

relation between the mean squared end-to-end distance and the number of monomers can
be written in terms of a scaling law for polymers in good solvents,

<R§> ~ N? (4.10)

For random walks, i.e. polymers where excluded volume effects are ignored, it can be
shown straightforwardly that the scaling exponent is v = 0.5 [79]. For self-avoiding walks
in good solvents, where excluded volume effects are taken into account, the polymer is
more swollen compared to the random walk (~ 3.1.3). The resulting exponent is not
known exactly, but estimated by field theoretical methods to v ~ 0.588 [89]. A compact
polymer on the other hand is characterized by an exponent of v = 1/3 representing a
globular shape with homogeneous density (~ 3.1.4). The scaling law /(R2) = bN'/3 is
also valid for the compact conformations studied here. Table 4.3 shows values for the
parameter b determined by a fit to the data for different densities p.

While a scaling law for the end-to-end distance distribution P(r) for self-avoiding
walks has been proposed long ago by Fisher [108], it remains unclear whether there is
kind of universal scaling law for the end-to-end distribution of compact polymers as well.
Moreover it is not known what is the functional form of this scaling function. As L is the
only length scale in our system, which is related to R = \/(R2) = bN'/3 = bp!/3L, there
is a good chance that the distributions scale with r/R. This leads us to propose a scaling
law for the distributions similar to that of a random walk or self-avoiding walk [see also

eq. (4.2)], )
P(r)= 2 (;)Mexp [—B (;) ] . (4.11)

While for the random walk as well as the self-avoiding walk, the exponents p and § are
well-known [egs. (4.7) and (4.8), see for example the book [79]] and we have already con-
centrated on these two cases in sec. 4.2, we now want to determine these exponents for the
compact polymers studied here. The parameters A and B are given by the normalization
conditions [eq. (4.4) and eq. (4.5)], thus there are two remaining parameters p and 0.
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P b a Table 4.3: The effective monomer size deter-

mined by a fit to the function (R?) = bEN?/3 =
0.1 1.50(2) 0.696(7) a?L? for each density p. Obviously, the effective
0.5 0.89(7) 0.712(5) monomer size decreases with increasing density.
1 0.71(1) 0.71(1)

In Fig. 4.9 it is shown that the scaling with R holds very well for different densities p.
The analytic form of P(r) approximates the data fairly well although deviations from the
data are larger than for a self-avoiding walk, as the normalization condition above neglects
the fact that end-to-end distances cannot extend beyond v/2L.

We fit the theoretical distribution function P(r) to the data for three different p-values
and obtain:

p=01: p=189(3) &=294(4) (4.12)
p=05: p=187(4) &=2091(6)
p=1.0:  p=190(3) §=2094(5)

The errors given here and in the following are the asymptotic standard errors from the
least squares fit performed by the program gnuplot (version 4.2). Within these fitting
errors, the exponents 1 and § are the same for different densities p, suggesting that these
values show some universal features of compact polymers. On average we obtain from the
above data

p=1.889(65),  &=2.932(89). (4.13)

In a recently published paper Jacobsen [112] determined the scaling exponent p in the case
p = 1.0 by fitting a power-law function P(r) = r* to the end-to-end distance distribution
for small r. Although we came across this paper only when ours was already published,
he found a similar scaling exponent p = 1.85 4 0.02.

Comparing experimental data to the distribution function P(r) is not always the
method of choice, especially when the number of data points is too small for creating
reasonable histograms. Here, we analyze dimensionless ratios of moments of the end-to-
end distance distribution as given in eq. (4.3), having the advantage that no adjustable
parameter is present. The ratios of interest here are

() (B (7')

Cq =

(R)*’ (R%)*"

We have already derived (m~ 4.2.3) that for a random walk and a self-avoiding walk, the
ratios ¢; are constants not depending on any model parameters (such as linker length [).
Here we show that this is also the case for compact polymers and we determine its values.
The ratio plots are shown in Fig. 4.10. A fit yields the values

co =1.1395(5) g =1.421(2) ¢4 = 1.458(1)

Obviously, there are significant differences from a RW, however differences from a SAW
behavior become only visible in the fourth order ratio c4. We demonstrate in section 4.5
how this information can be used to characterize the behavior of biopolymers.
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Instead of determining the moments by the raw simulational data we can determine the
moments by the analytic function P(r) given in eq. (4.11) with the parameters obtained
by the fit [eq. (4.13)]. Using the analytical formulas of equation (4.6) we obtain

co = 1.140(6) c3 = 1.43(2) cqy = 1.488(24)

The errors are calculated here by evaluating ¢; for all values of p and § in the range of
their fitting errors and determining the maximum deviation from the average value. The
values are compatible with the ones calculated directly by a fit to the simulation data
within the range of the errors. Deviations become large for larger moments reflecting the
approximative character of the scaling function P(r).

4.4.2 Intrachain distance statistics

In the past a lot of effort has been undertaken to study the end-to-end distributions of
self-avoiding walks [108]. For random walks, this problem is easily solved analytically. In
the last section we studied these distributions for compact polymers which has not been
done so far. We found a similar scaling function as for random and self-avoiding walks with
exponents which seem to be universal for compact polymers of different densities and chain
lengths. However, from the experimental point of view one is not only interested in the
distance between end points of a compact polymer, but also in the distance distribution
between two arbitrary monomers along the chain which are separated by a certain contour
length n. For example, this quantity becomes important in experiments measuring the
spatial arrangement of two fluorescently labeled parts of the human genome [12] (Fig. 2.3).
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Therefore, we have to evaluate how the distribution changes when looking at intrachain
segments.

It is most interesting to look at the moment ratios as these are easiest to compare
to experimental data, which quite often do not provide enough data points to obtain a
complete distribution function. For the largest chains simulated the moment ratios are
shown in Fig. 4.11 for various contour length n. The mean values are averages both over

different positions along one chain as well as over the set of sampled conformations C. The
kth moment is thus evaluated as

Rk 11 & C ok
<n>_@N7_nZZHri+n_ri [l

CceC i=1

Here, rZC denotes the position of the ith monomer of the conformation C out of the set of
sampled conformations C.

For small contour length n the moment ratios are peaked and reach the value of a
random-walk. This is due to the screening effect in compact polymers, which is in detail
analyzed in section 4.4.5. However, the ratios pretty fast fall below the ratios for self-
avoiding walks and stay mostly constant. There is only a small increase for the ratios
where the contour length approaches the chain length N, indicating that the chain ends
have more freedom for fluctuations than parts embedded in the middle of the chain.
We want to stress here that for sufficiently large contour lengths the moment ratios for
intrachain distances are smaller than those for the end-to-end distances.
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4.4.3 End-point statistics

It is an open question, raised for example in Ref. [106], whether the positions of the end
points of a compact polymer are correlated or not. It was suspected that an entropic cost
associated with local rearrangement around the chain’s ends might cause some effective
attraction or repulsion between them. Let r; = (21,41, 21) and ro = (x2,y2, 22) denote
the end point vectors with respect to the center of the simulation box. Lua et al. [106]
showed then for Hamiltonian paths up to L = 10 that the end point correlation coefficient

po AT (4.14)

(23) (23)

is negative for small lattice sizes but pretty fast approaches the correlation between discon-
nected points only obeying excluded volume and the chess board theorem [106]. The latter
theorem states that, if we mark adjacent vertices on the lattice graph with different colors
similar to a chess board, then the end points of a chain with even numbers of monomers
are sitting on lattice sites with different color while the end points of a chain with an
odd number of monomers are positioned on lattice sites of same color. This restriction
has to be taken into account when comparing to randomly positioned points, as this is
an inherent feature of the lattice model but not of the ensemble of compact polymers in
general. However it becomes more and more negligible the larger the lattice size.

Here we study the correlation coefficient ¢ for lattice sizes much larger than in [106].
Note that the coordinates in eq. (4.14) are taken with respect to the center of the simulation
cube. Fig. 4.12 shows that there are negative correlations for all densities considered, which
approach zero for larger lattice sizes. The only deviations are for p = 1 (i.e. Hamiltonian
paths) and even lattice sizes, which obviously is an effect of the lattice geometry and
the chess board theorem and therefore no intrinsic property of compact polymers. These
results are in very good agreement with the results by Lua et al. [106], suggesting that
there are no end-point correlations in the N — oo limit.

We also analyzed the mean square displacement of the endpoints from the center of the
cube in order to answer the question whether the polymer tends to arrange such that the
endpoints predominantly locate in the center of the cube or at its periphery. Being located
in the center of the cube might be disadvantageous due to entropic reasons. Fig. 4.13 shows
that for p = 0.5 and p = 1 the points are predominantly shifted towards the periphery of
the cube, while for p = 0.1 the points are located more in the interior of the cube.

4.4.4 Correlations of intrachain segments

Consider two arbitrary points on a polymer with coordinates r1 = (x1,y1,21) and ro =
(x2,Y2, 22). As for the end points of the chain, we can pose the question whether the coor-
dinates of these points are correlated by evaluating the correlation coefficient of eq. (4.14)
We assume the coordinates ry and ry to be given with respect to the center of mass of the
polymer. A value of ¢ = 0 indicates that there is no correlation between the coordinates
r; and ro, i.e. they effectively behave like two randomly chosen points on the cubic lattice.
A value ¢ # 0 indicates an effective attraction or repulsion. Fig. 4.14 shows the correlation
coefficient in dependence of the contour length n between the segments. While for short
contour length there are high correlations because of the connectivity of the chain, these
correlations decay fast and for larger contour length correlations are nearly vanished. This
is in stark contrast to the behavior of a self-avoiding walk, where (negative) correlation
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effects are dominant even on the length of the whole chain. This result is in perfect agree-
ment with the scaling theory developed by De Gennes [78], which predicts that on the
length scale of the compact system, parts of the chain become practically independent. If
the scaling theory is correct then the decay length of the correlations ng, which we define
as the length where ¢(ng) ~ 1/e, should be related to the system size L. We test this
prediction by evaluating the ratio r = (R?(ng)) /L? where (R%*(n4)) is the mean square
displacement between the end points of a segment of length ngy. For the largest system
sizes studied we find the values » =~ 0.31 for p = 1, r = 0.31 for p = 0.5, r = 0.29 for
p = 0.1. As r-values are nearly equal for systems of completely different size and density
there is strong evidence that the decay of the position correlations is directly related to
the system size.
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4.4.5 Screening of excluded volume in compact polymers

Much is known about polymer melts, where a number of polymers with degree of poly-
merization N is placed in a system with volume fraction ®. Below a critical concentration
(or volume fraction) ®*, the polymers do not feel the existence of the others and basically
behave like self-avoiding walks in a good solvent. This critical concentration ®* is given by
the volume fraction where the free coils with extension (R?), ~ N?” begin to overlap [78].
The index 0 indicates here the limit ® — 0. The value of the critical concentration scales
like N
* o NGBl
VR, N

At volume fractions above ®* the polymers begin to feel each other and the system can
be described by the correlation length £&. On scales larger than this correlation length,
the chains effectively behave like ideal coils, a theorem most often referred to as Flory
theorem. On a scale smaller than £ excluded volume effects still play a dominant role. By
scaling arguments one finds [78] that

é— ~ (1)71//(31171) )

Here we want to investigate the question whether there is a fundamental difference
between a polymer melt with volume fraction ® and a compact polymer, i.e. a melt with
degree of polymerization N = ®L3. Consider an arbitrary segment of a compact polymer
of length N,,. We impose on N,, the condition that the extent of this segment must be
smaller than the system size in order to avoid effects of the confinement to play a role. We
now ask whether these segments of length N,, of our compact polymers behave different
from a polymer with degree of polymerization N, in a corresponding melt. The analysis
of positional and angular correlation effects which are decaying pretty fast suggests that
a part of the chain should not “feel” that it is connected with a part far away.

The theory of polymer solutions predicts that there is a crossover from a self-avoiding
walk behavior to a random walk behavior on the short scale [113]. Fig. 4.15 shows that
this crossover becomes indeed apparent in the mean square displacement for short contour
lengths in compact polymers. While for p = 0.1 we find a self-avoiding walk type of scaling
with exponent v = 0.588 for contour lengths up to n = 50, the maximal dense system
behaves more like a random walk with v = 0.5 indicating the screening of excluded volume
in this system.

To analyze the screening length we have to look in more detail at the structure function
of parts of the chains. The structure function is defined as

T
S(q)=<N > el > (4.15)

q

The brackets denote a spherical average over all g-vectors of equal magnitude and over
all conformations. The sum is over a subchain of length /V,, whose position vectors are
denoted by rg...ry; One expects these subchains to behave like random walks on

m*

distances larger than ¢ and self-avoiding walks on distances smaller than &, i.e.

) 2\1/2 _ 2r
R A (4.16)

S Y
(q) qil/y’ 5 > 277-‘- > 1
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In Fig. 4.16 the structure function is shown for chain segments of length N, = 100.
One can immediately see that the system with p = 0.1 shows a range of g-values, where
excluded volume is not screened, extending much beyond the length scale of a single bond.
On the other hand for p = 0.5 excluded volume interactions are screened very fast resulting
in ideal chain behavior over a wider range of g-values. We can determine the screening
length by performing a linear fit with slope —2 for small g-values (but beyond the scale
where asymptotic behavior sets in) and a linear fit with slope —1/v for large g-values (but
away from the length scale of a single bond). We then extract the value g¢ where the
crossover between the two regimes occurs and obtain the following screening lengths

P
p=0.1": G~ 06 — ¢ =" ~105
Vi3
2
p=05 G188 o §="" 5
3
2
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dg

For p = 1 the system seems to be that dense that excluded volume is shielded on the
order of a bond length, therefore the scaling regime where S(q) ~ ¢~ V¥ does not show off
any more. This result does not come as a big surprise as the screening length £ is related
to the average mesh size in the system [78]. This mesh size is — as every lattice site is
occupied — approximately equal to unity.

4.4.6 The gyration tensor

The shape of a a polymer is described by its gyration tensor. The gyration tensor is
defined as

L ().
_ 0),.(i) 4.1
Smn N ;:1 ol (4.17)

Here, r(® is the coordinate vector of the ith monomer and the subindex denotes its Carte-
sian components. The eigenvalues A\; < Ao < A3 give the squared lengths of the principal
axes of gyration. The ratios of the eigenvalues indicate the deviation from a sphere-like
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Figure 4.16: Structure function of chain segments of length N,,, = 100 for compact polymers
with different densities. For the calculation the largest simulated system sizes for each density
was used. The value of the segment length was chosen such that the radius of gyration of the
segments is way below the system size. Shown is also the scaling regimes where S(q) ~ ¢~2 and
S(q) ~ ¢~ /¥, From a fit to the curves one can determine the crossover value g¢ which determines
the screening length.

shape of the polymer. It is well-known, for example, that the gyration tensor for self-
avoiding walks and random walks in good solvent has a pronounced asphericity. This
asphericity shows up in the asymptotic ratios of the eigenvalues, namely [83, 84]

(A3) s (Ag) : (\) —12:2.7:1 for a RW
(A3) 1 (Aa) : (M) = 14:298: 1 for a SAW

For Hamiltonian paths it is clear that there can be no asphericity in a symmetric simulation
box as every lattice site is occupied. However it is not clear a priori that this holds true
for less dense systems, where a crossover to the self-avoiding walk behavior might occur.
Fig. 4.17 shows the ratio (A3) : (A1). For p = 0.1 a pronounced deviation from the
symmetry shows up for small N, but evidently, this deviation vanishes for large system
sizes.

4.5 Is chromatin organized as a compact polymer?

In section 4.2 it was shown using different measures derived from the distance distribution
of two FISH markers separated by a certain distance g along the contour of the chain, that
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chromatin is not organized as a random walk and self-avoiding walk polymer, neither on
the short nor on the long scale. After having studied the properties of compact polymers,
we can apply the same measures to see whether chromatin is organized in a globular state.

Following the idea of Fig. 4.2, we first divide out the leading order term N2/3 of the
scaling law for the squared end-to-end distances of compact polymers. If the data scales
with this exponent, the ratio (R?) /N 2/3 should be independent of the contour length.
We use data up to genomic distances of 2 Mb to keep away from distances at which
leveling-off begins. Fig. 4.18 indicates that a scaling with » = 1/3 is more consistent with
experimental data, indicating a considerably more compact state than predicted by the
RW or SAW models.

Although in the globular state model, the end-to-end distances scale with an exponent
of v =1/3, we know from the analysis of the self-avoiding walk (Fig. 4.1) that deviations
exist for distances between two intrachain segments in the presence of excluded volume.
While these deviations do not exist for the random walk polymer model and are small for
the self-avoiding walk model, the situation is completely different for the globular state.
Intrachain distances are displayed in Fig. 4.19 for a system with density p = 0.5 and
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% 500 distances are marked by red
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scaling law for the end-to-end

0% distances N?”, v being 1/3.
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Figure 4.20: Higher-order moment ratio ¢4 = <R4> / <R2>2 for experimental data and polymer
models. Shown is the value of ¢4 for the random walk (RW), self-avoiding walk (SAW) and globular
state (GS) model. The following experimental data is shown: Human fibroblasts Chr1 [12]: B anti-
ridge region, M ridge region, o long distance measurements; Human fibroblast Chr 11 [12]: e long
distance measurements; Murine Igh locus [109], 4 pre-pro-B cells, ¢ pro-B cells. Experimental
measurements display larger fluctuations, i.e. c4-values, than the polymer models.

different chain lengths. The mean square displacement shows a leveling-off and adopts a
plateau level in the order of the linear system size L. The leveling-off is a direct consequence
of the confined space the system is put in. The scaling law <R2> ~ N?_ however, is
regained for the end-to-end distances marked by the red line in Fig. 4.19.

As both experimental data [12] and the globular state display a leveling-off in the
mean square displacement, it has been proposed, that a globular state model can explain
chromatin folding [31]. To test this hypothesis, we conduct a more sensitive test by
looking at the moment ratios [cf. eq. (4.3)]. It was shown in Fig. 4.4 that the moment
ratios display pronounced differences from a random walk or self-avoiding walk. They
have been determined in section 4.4.1 for compact polymers. The ratio ¢4 is displayed in
Fig. 4.20 together with the data from Roel van Driel’s lab [12] as well as data from another
group [109]. Interestingly, the moment ratios for globular polymers are below the ratios
of a self-avoiding walk, thus they perform even worse in comparison to experimental data.

4.6 Conclusions

In this chapter, we compared experimental data from FISH measurements to three fun-
damental polymer models, the random walk, the self-avoiding walk and the globular state
model.

We found that the distribution of measured distances Py(r) for a certain genomic
separation ¢ is, due to insufficient data, not a good measure. By dividing out the leading
order term of the scaling law (R*) ~ N* we found, that chromatin is not organized as
a RW or SAW, a fact even better represented in the dimensionless ratios of the higher-
order moments of the distance distribution [eq. (4.3)]. Interestingly, the fluctuations in the
experimental data are much larger than predicted even by a random walk model, which
naturally has quite large fluctuations (Fig. 4.4).

For compact polymers, little information was available on the intra-chain distance dis-
tributions, thus we performed extensive simulation runs to evaluate the conformational
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properties of compact polymers. The algorithm we use here is basically the one proposed
by Mansfield [105] for unbiased sampling Hamiltonian paths on a cubic L x L x L lattice.
The algorithm was modified by allowing vacancies on the cubic lattice such that we were
able to sample compact polymers in the regime where T'# 0 — or in terms of the lattice
occupancy fraction p # 1. Using a highly parallel computing system we sampled confor-
mations up to chain lengths of N = 256 000 and three different densities p = 0.1, p = 0.5
and p = 1.

While a lot of studies are devoted to the properties of compact polymers, little attention
has been paid to the end-to-end distance distribution as well as to the distribution of
intrachain segments within a globular polymer. However, this information is crucial for
comparison to experimental data [12]. Importantly, the moment ratios turned out to be
independent of the system density p and approach a constant value in the limit of infinite
chain length. The moment ratios of compact polymers were found to be

co =1.1395(5) ¢35 =1.421(2) ¢4 = 1.458(1)

and thus are smaller than for the random walk or self-avoiding walk. The corresponding
moments for intrachain distances were resembling the random walk behaviour on the scale
of a few segments due to the screening effect, but pretty fast falling below the values of
the endpoint distances (Fig. 4.11).

While the mean square displacement of intrachain distances of compact polymers dis-
plays a leveling-off (Fig. 4.19), the moment ratios clearly reveal, that experimental data is
not described by a globular state. This falsifies a recent study [31] where it was claimed,
based on the same experimental data used here, that chromatin might be explained by a
globular state model. Thus, chromatin organization seems to be more complex than sim-
ple models would predict. The experimental values for the higher-order moments already
guide the way to a more realistic model. The ratios are measures of the fluctuations in
the system, and these fluctuations seem to be too small in all models presented so far.
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Chapter Summary

Genome function in higher eukaryotes involves major changes in the spatial organization
of the chromatin fiber. Nevertheless, our understanding of chromatin folding is remarkably
limited. Polymer models have been used to describe chromatin folding. However, none of
the proposed models gives a satisfactory explanation of experimental data. Particularly,
they ignore that each chromosome occupies a confined space, i.e. the chromosome territory.
Here, we present a polymer model that is able to describe key properties of chromatin over
length scales ranging from 0.5 to 75 Mb. In contrast to other polymer models, this random
loop (RL) model takes into account abundant experimental evidence of loops existing in a
broad range of sizes and of loop attachment points varying from cell to cell. Assuming a
homogeneous fiber with a random walk folding of the polymer backbone, the model defines
a probability ‘P for two monomers to interact, creating loops of a broad size range. Model
predictions are compared to systematic measurements of chromatin folding of the g-arms
of chromosomes 1 and 11. The experimentally observed folding into a confined space as
well as the large cell-to-cell variation is correctly predicted by this RL model.

5.1 Introduction

The chromatin fiber inside the interphase nucleus of higher eukaryotes is folded and com-
pacted on several length scales (~ 2.2). Lacking high resolution live cell imaging tech-
niques, indirect approaches have been applied to obtain information about chromatin
folding on the scale above the detailed level of the chromatin fiber, e.g. fluorescence in
situ hybridization (FISH) to measure the relationship between the physical distance be-
tween genomic sequence elements (in pm) and their genomic distance (~ 2.3.4). There
have been several attempts to explain the folding of chromatin in the interphase nucleus
using polymer models (~ 3.2). The strength of polymer models is their ability to make
predictions on the structure of chromatin by pointing out the driving forces for observed
folding motifs. These predictions can then be tested experimentally. However, a polymer
model that is able to explain chromatin folding spanning different length scales is still
lacking.

Although random walk models have been proposed for chromatin structure below 2
Mb, we have given unambiguous evidence using more sensitive analysis methods than in
Refs. [92, 11] based on FISH data from several groups [27, 12], that chromatin folding is
neither in a random walk, self-avoiding walk or compact globular state (~ chapter 4).
These results hold true both on the short scale (< 2 —10 Mb) as well as on the large scale
(> 10 Mb).

Folding at larger length scales has been explained using several models (~ 3.2). Two
polymer models have been proposed that introduce loops into the problem of chromatin
folding. One is the random-walk/giant-loop (RWGL) model (~ 3.2.2), which assumes a
RW-backbone to which loops of about 3 Mb are attached [11]. A second model, the multi-
loop-subcompartment (MLS) model (~ 3.2.3), proposes rosette-like structures consisting
of multiple 120 kb loops [28, 29]. None of these models is able to describe the folding
of chromatin at all relevant length scales. All predict that the physical distance between



5.2. Basic model assumptions 73

two FISH markers monotonously increases with the genomic distance. Clearly, this is
incorrect at bigger length scales, since the chromatin fiber is geometrically confined by
the dimensions of the cell nucleus. More so, individual chromosomes have been shown
to occupy subnuclear domains that are much smaller than the nucleus itself, i.e. the
chromosome territories with sizes in the range of one to a few micrometers [7]. Evidently,
an intrinsic property of the chromatin fiber inside the cell nucleus is that it assumes
a compact state that cannot be described by classic polymer models. This raises the
fundamental question of what physical principles make chromatin fold in a limited volume.

Importantly, a feature that has been neglected in any of the polymer models is that ex-
perimental data displays huge cell-to-cell variations, which cannot be explained by simple
polymer models (cf. Fig. 4.20). Intriguingly, these fluctuations are larger than for a ran-
dom walk, which, due to lack of excluded volume, only has a minimum of conformational
constraints, therefore displaying large fluctuations.

The Random Loop model which is introduced in this chapter, amongst others over-
comes these limitations of older polymer approaches on chromatin folding. In fact, the
objective of this Random Loop model is much broader, aiming at offering a unified explana-
tory framework for the connection between genome folding and function. Abundant exper-
imental evidence indicates that this connection is maintained by chromatin loops (~ 2.3),
which seem to constitute a key mechanism for transcriptional regulation [20, 25]. Amongst
others, the model predicts a confined folding of chromosomes, the formation of chromo-
some territories and the large cell-to-cell variation based on probabilistic or dynamic loop
formation. Indeed, we want to approach a model explaining all of the experimental obser-
vations addressed in section 1.2.

In this chapter, we first introduce the basic assumptions of the Random Loop (RL)
model. The model presented in section 5.2 is quite general and allows for several realiza-
tions. The first one, assuming a homogeneous fiber without excluded volume interactions,
qualifies for a partly analytical solution (~ 5.3). Although not explaining each experi-
mental issue, this homogeneous RL model predicts the confined folding and cell-to-cell
variation. Heterogeneity of the chromatin fiber, excluded volume interactions and the
dynamics of loop formation will be incorporated in later chapters.

5.2 Basic model assumptions

We will now introduce the core ideas of the Random Loop (RL) model. They originate from
reconciling experimental approaches on chromatin folding with evidence for its relationship
to function. A possible link between genome folding and function is given by experimental
data from nC (n = 3,4,5) experiments (~ 2.4.2), where a map of specific chromatin-
chromatin contacts is established, showing that

1. chromatin-chromatin contacts do exist on all scales from a few kb to several tens of
Mb [25]

2. the number of interactions rapidly decreases with genomic separation [66, 39]

3. loops or contacts are closely related to transcriptional regulation. Contacts found in
4C experiments [25] show significant differences in liver and brain cells, indicating a
dependence on the differentiation state of the cell.

On the other hand FISH experiments probing structure of chromatin reveal that
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1. chromosomes are confined to a subspace of the nucleus, the mean square distance
between two FISH markers does not increase above about 2 pm [12].

2. chromosomes as a whole segregate into distinct territories [7]. Also, small regions of
about 10 Mb chromatin on the same chromosome tend to segregate [6].

3. FISH measurements display a strong cell-to-cell variation exceeding the values of
normal polymer models

4. compaction is different depending on transcriptional activity [6, 12]

How can we bring these results together? We start our considerations with a linear
polymer such as a random walk or a self-avoiding walk. Further interactions are necessary
to obtain a leveling-off in the mean-square distance between two markers. These interac-
tions might well be given by the loops, however, chromatin models with loops proposed so
far, fail to explain important aspects of experimental data (~ 3.2). The key idea is now
to introduce disorder or dynamics in the loop formation process, leading to the following
model assumptions:

e The backbone of the chain is a linear polymer, either with or without excluded
volume, i.e a sequence of N monomers with coordinates ry,...,ry, where adjacent
ones are connected by a linker.

o Additionally, the polymer forms intra-chromatin contacts, i.e. monomer ¢ might
interact with monomer j in an attractive fashion. This corresponds e.g. to regulatory
elements coming into contact with the target sequence they regulate.

o Contacts in the model are not fixed, rather the interactions are probabilistic and/or
dynamic. This leads to different loop configurations either in the ensemble space or
in time.

o Interactions are allowed on a broad range of scales.

In this general formulation, the RL model incorporates important available experimen-
tal evidence on loops: Amongst others it allows for loops on all scales (4C experiments [25])
and does not require loops to exist in all cells at the same time. Playing an important role
in transcriptional regulation, loops probably only persist as long as activation/repression of
a gene is necessary, allowing the cell to form other regulatory contacts afterwards without
running into topological problems. This is confirmed by FISH control experiments [25],
showing that abundant and significant contacts revealed by 4C are only found in about
5-10% cells of a population.

The probabilistic loop formation can be achieved by different methods and some of
them will be presented in the next few chapters: Analytical results can be obtained to
some extend for a Gaussian chain as a backbone with probabilistic Gaussian interactions
(see below). Molecular Dynamics simulations of this model with excluded volume inter-
actions are demonstrated in chapter 6. To incorporate transcriptional heterogeneity into
the RL model, we extend it by defining looping probabilities locally, resulting in a stun-
ning agreement with experimental data (chapter 7). Finally, in chapter 10, we present a
dynamic model where loop formation is achieved without long-range interactions.
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5.3 The homogeneous Random Loop Model in the annealed and
quenched average

5.3.1 The Hamiltonian

To set up our Random Loop Model in an analytically tractable way, we neglect effects of
excluded volume and consider a Gaussian chain (~ 3.1.4) as backbone,

N
K
UGaussian = UO = § Z || ry —rj_1 ||2 . (51)
j=1

In addition to the random walk backbone, we allow each bead to interact with any other
via a harmonic potential, resulting in the complete interaction term

N
1
U= UGaussian + 5 Z Rij || r; —rj H2 )
1<j
li—j>1
where k;; = kj; are the spring constants between the loop attachment points. This

potential has already been proposed by Sachs et al. [11]. Here we extend it according
to the model’s assumptions: The loop attachment points and interactions are not fixed,
rather they are probabilistic. This kind of disorder is achieved by choosing the x;; as
Bernoulli distributed random variables, i.e.

k with probability P
Kij = . L (5.2)
0 with probability 1 — P
The potential can be rewritten in the form
1 Y , 1 )
U=§Z“ij Hrz—fj\l:zzfﬂjllri—l‘jﬂ : (5.3)
i<j i,j=0
J#i

where r;; = for |i — j| = 1.

Thus, loops are implemented by a Gaussian potential in this model and the loop at-
tachment points are chosen randomly between all pairs of non-adjacent beads ¢, j. Similar
potentials are found in case of random resistor networks [114].

5.3.2 Quenched or annealed ensemble?

The principal aim is to calculate ensemble averages, like the mean square distance <R,21>
between two arbitrary beads separated by n monomers allowing direct comparison to FISH
measurements.

Averages of an observable A in a system with Hamiltonian H are calculated using the
partition sum Z = Trexp (—(GH),

1
(A) = Z Tr[Aexp (—0H)] . (5.4)
The Hamiltonian of the Random Loop Model, however, depends on both statistical
variables ry,...,ry representing the conformational degrees of freedom and a set of ran-
dom variables representing the disorder x;; (Fig. 5.1). The sequence in which the averaging
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Figure 5.1: The Random Loop
model averages over (a) the ther- .
mal disorder and (b) over possi-
ble configurations of loops. Two
sample conformations of the en- R
semble can be seen in this figure.
Loop connections are drawn by
red dotted lines.

procedures have to be executed, depends on the typical time scales over which the dis-
order, i.e. the loop attachment points, (74is) and the conformational degrees of freedom
(Teq) change.

If the random variables change fast, i.e. 745 < T¢q, the disorder average has to be
carried out at the same time as the average over the conformational variables, resulting
in a free energy

F=—kThn(Z2({r:}))y. - (5.5)

The braces (-),,, denote the average over the set of random variables {x;;}. This ensemble
is called the annealed ensemble.

In the opposite case, when the time scale over which the loop attachment points change
is large compared to the equilibration time of the polymer, i.e. 745 > 7o, the average
over the disorder has to be evaluated after all other averages. In this quenched average we
calculate the free energy as

F=—(kThhZ({r:}). - (5.6)

Most of our work in this section concentrates on the calculation of the quenched aver-
age, assuming that once loops have formed, the cell has enough time to adopt at least a
local equilibrium-like state. If this was not the case, it would be hard for the regulatory
mechanisms to behave in a controlled way. However, the question of time scales has not
been answered yet. The life-time of loops is unknown as both FISH as well as 3C/4C/5C
techniques are performed in a fixated environment, unable to evaluate any dynamics.
Recently, a computer simulational study [30] suggested that chromatin is never in an equi-
librated state on a global scale. However, this study neglected the effect of topoisomerase
I1, which was shown to greatly reduce the disentanglement time of polymers [97].

5.3.3 The quenched average

Here we want to calculate the mean square distance <r% ;) between two beads I and
J, allowing for a direct comparison to FISH measurements (Fig. 2.3). To calculate the
quenched average, we choose a fixed set of random variables {x;;} and first average over
the thermal fluctuations. The probability density for a bead conformation (rg,...,ry) in
the canonical ensemble is given by the Boltzmann factor

P(rg,...ty)=C (_k:BUT> , (5.7)

where C' is a normalization constant and U = U(ry,...ry) is the total potential energy
of the chain.



5.3. The homogeneous Random Loop Model in the annealed and quenched average 77

We now eliminate the degrees of freedom stemming from the translational invariance
of the problem by setting ro = 0 (the absolute position of the chain in space is irrelevant
for distances between beads).

Due to the Gaussian character of the probability density P, the spatial dimensions
factorize,

P(ry,...,vNn) = Pi(z1,...,2Nn) - Pi(y1,- - yn) - Pi(z1,. .., 2N)

and we can concentrate on the one-dimensional density function P;. By an easy calculation
omitted here, P; can be rewritten,

1
Pi(z1,...,zn) = Cy exp(—iXTKX) , (5.8)
where X = (z1,...,2x)7 and
Yokt  —kKi2 ... —Kin
J#1 N
—K21 Zj:() /ﬁ?gj . —K9N
K= J#2 . (5.9)
—KN1 —KN2 ces ZJJ\-T:O KNj
J#EN

From now on, we assume the x;;’s to be given in units of k7. We have not made any
assumptions yet concerning the spring constants (i.e. basically the matrix entries) x;;.
In the following we only assume that K is a symmetric and regular matrix, so that P;
in eq. (5.8) turns out to be a multivariate normal distribution with mean g = 0 and
covariance matrix ¥ = K~!. The marginal distribution for two arbitrary beads I and J,

N
P(.’L'[,I’J):/.../ H P((L‘l,...,x]\[), (5.10)
it
can be evaluated by standard methods for normal distributions. Going back to three

dimensions we obtain after some basic integral evaluations the joint probability density
for the distance between two beads I and J,

N 1 1
P(|r;—r = P(rry) = Cr¥; ex [ ri
(lrr —xs ) (1) LS o+ o1 — 201, 1Y

Here
S=K 1= (Uz‘j)i,j
and C' is the normalization constant. Using
1 1

2055 +orr — 201y

and calculating the correct normalization we obtain
4 s
P(rrj) = —T2 7%, exp {—Fr%} (5.11)

VT

and finally

3
<T%J>thermal = /T%JP(T[J)d'I"[J = ﬁ = 3(O'JJ +orr — QU[J) .
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The bracket delimiters here denote the average over the thermal ensemble of N 4 1 beads
interacting via a given, but fixed harmonic potential.

We have now derived a general formula for the mean square distance between two ar-
bitrary beads of the chain where each bead may interact with any other via an harmonic
potential. This quantity turned out to depend only on the matrix K, or more accurately
speaking, on its inverse. Now we want to specify the matrix K, which contains all infor-
mation about the interactions. Our model assumes the chromatin fiber to have a random
walk backbone, meaning that we have to set k;; = x with |i — j| = 1. Furthermore, chro-
matin forms loops whose size and positions are randomly distributed along the chain. In
a first approach, we choose the x;; to be Bernoulli distributed random variables, as given
in eq. (5.2). Only being a constant scaling factor, x can be set to unity. Thus, our model
has two adjustable parameters, namely the chain length N and the probability P.

The resulting matrices { K} represent an ensemble of diagonally dominated band ran-
dom matrices and each matrix of this ensemble represents a loop configuration. This
ensemble of random matrices has been investigated recently [115]. We are interested in
the ensemble average of the mean square distance, i.e. in the quantity

<T%J> = <<T%J>thermal>dis =3((0s0)ais T (1D ais — 2{017) ais) (5.12)

where the average over the ensemble of loops is performed as a quenched average and is
equivalent to averaging over the ensemble of random matrices given by the above con-
straints.

Our simple model presented here assumes homogeneity of the chromatin fiber, i.e.
translational invariance. Thus, we are not interested in the mean square distance between
two specific beads ¢ and j, rather in an averaged distance between two beads separated

by n monomers,
1 N—n

(R2) = N_onrl 2% (rFirn) - (5.13)

7=

The average over the ensemble {K} of random matrices cannot be performed analy-
tically. To obtain approximate results for <R,2l>, we randomly select a subset of matrices
K and calculate its inverse using the C library CLAPACK [116]. From this inverse matrix,
the thermal average eq. (5.12) can be obtained. We then average over the resulting mean
square distances between any two beads and several realizations of the matrix K according
to eq. (5.13).

5.3.4 Results and comparison to experiments

Our polymer model makes use of coarse-graining, since it is impossible to model a long fiber
like a chromosome in detail. Restrictions are given by computing time, which basically
depends on the size of the matrix K. Choosing a matrix size (chain length) of N = 1000
is a good compromise between required computing time and the level of coarse-graining.
Using a coarse-graining approach implies that we neglect details on a scale below the
effective segment length being 150 kb in the following figures. Therefore we cannot resolve
those loops that have been investigated in some gene-expression systems like the §-globin
locus. This, however, does not affect the possibility of confined folding on the large scale,
rather it leads to a rescaling of the effective Kuhn length. Us being interested in large
scale chromatin organization, it is thus justified to neglect these loops on the short scale.
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The mean square distance

We evaluate the mean square distance for our model, where we allow loops on all scales.
The spatial distance <R,21> between two beads separated by n monomers is shown in Fig. 5.2.
At short contour lengths, <R%> grows similar to a random walk, but soon a leveling-off
can be observed being fairly ~ O(1) due to the attractive long-range interactions. While
the contour length approaches N, the mean square distance again rises to a random-walk
like behavior. This is a chain-end-effect which is not of interest to us, as experiments only
measure intra-chain distances. Firstly, this effect is due to the construction of the loops, as
the probability for having a loop with a larger size becomes increasingly small. Secondly,
the entropic degrees of freedom for the chain ends are larger than for intrachain segments.

Thus, adding long-range interactions like loops yields completely different traits than
a simple random walk or self-avoiding walk model. No scaling behavior where <R2> ~ N?%

vy
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Figure 5.3: Mean square distance <R%> between two chain segments in relation to their contour
length separation n for the Random Loop model with loops restricted to certain sizes. The chain
length is N = 1000. In A. only loops in the interval of sizes [l1, l2] = [2, s] are formed. The resulting
scaling behavior is still the random walk type <Ri> ~ n, but with a rescaled segment length. B
shows the model where only loops of sizes ¢ in the range [N — s, N| are admitted. While large loops
seem to be responsible for the collapse of the chain, they alone cannot explain the experimental
data. In both figures, the looping probability P is chosen such that the mean number of loops per
configuration is 100.
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can be recovered any more.
It is an interesting question, whether it is really necessary to have loops on all scales
to obtain such a leveling-off. As already mentioned, in all polymer models presented so
far, including the RWGL (~ 3.2.2) as well as the MLS model (~ 3.2.3) the loop sizes
were basically fixed. One might ask, whether small loops (in the order of 100 kb to 1 Mb)
already lead to the leveling-off, or whether loops on all scales up to 80 Mb are necessary.
In order to restrict the loop sizes ¢ to lengths between [l1, (2], we redefine the random

variables k;; by setting
iy — {n W?th probale?ty P 7 i< li— <l

0 with probability 1 — P

kij =0 otherwise

First, the loop sizes are restricted to not extending a certain size: ¢ € [1,s]. Results
in Fig. 5.3A show that introducing small loops still results in a scaling (R2) ~ n, not
yielding the experimentally observed <R%> ~ O(1), although the slope becomes smaller,
meaning that the effective segment length has been rescaled. In Fig. 5.3B we analyzed the
ensemble where only large loops in the range [N — s, N| were allowed. Obviously, large
loops are responsible for forcing the chain to collapse, but the behavior on intermediate
lengths does not fit experimental data. Therefore loops on all scales are needed to obtain
the leveling-off observed in experiment.

Comparison to experimental data

In Fig. 5.4 the model is compared to the experimental data for different values of P. Two
new scaling parameters have to be introduced, the segment length in physical units (e.g.
nm) and the segment length in base pairs. The data is shown for a segment length of
300 nm and 150 kb. The latter is the size of the fluorescent markers used in experiments,
rendering it unnecessary to model on a more detailed scale. The model quite well explains
the leveling-off at genomic distances above a few Mb as well as the increase at small
genomic distances. As we have shown in section 4.2 that for small genomic distances a
random walk behaviour is incorrect, this random-walk-based model does not yield perfect
results here.

On the large scale, adding long-range interactions forcing the polymer to form loops
yields completely different traits than a simple random walk or self-avoiding walk model.
Note that the probabilities P are chosen very small, meaning that a few loops suffice
to obtain this leveling-off. The number of independent randomly chosen entries r;; is
C=(N—-1)(N—-2)/2 for a N x N-matrix and therefore the average number of loops per
configuration is given by C - P. With P = 4 x 107° and N = 1000 one has an average of
about 20 loops.

It was already mentioned in section 4.2 that plotting (R2) versus n is not a very
sensitive method to check for the correctness of a model. Dimensionless higher-order
moments were introduced [eq. (4.3)], being a measure of the fluctuations in the ensemble.
They give much stronger evidence for the correctness of a model, as these ratios are
related to the distribution of the distances and not only its average value. Here we focus
on the fourth order ratio ¢4 = <R4> / <R2>2, being plotted in Fig. 5.5 for different looping
probabilities. On the scale of a few polymer segments, fluctuations are similar to the
random walk value due to the random walk backbone. However, the fluctuations increase
quickly to values around c4 =~ 2. These values are significantly larger than the random
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Figure 5.4: Experimental data from FISH measurements compared to the Random Loop model
with loops on all scales. The data is taken from Ref. [12] and includes short and long distance sets
in human interphase cells. The results of the Random Loop model are shown for N = 1000 and
different values of P, assuming a segment length of 150 kb.

walk value and already quite close to the data. The Random Loop model thus shows a
good agreement with experimental data, performing much better than previous models.
The large values of ¢4 arise in our model from the disorder average. Importantly, if we do
not carry out the disorder average, but calculate ¢4 for a fixed loop configuration over the
distribution function in eq. (5.11), we exactly obtain the random walk value ¢4 = 5.0/3.0.
Thus, probabilistic or dynamic loop formation seems to be an indispensable property of
chromatin organization.

5.3.5 The annealed ensemble

The calculations presented in section 5.3.3 resemble a quenched average procedure: First,
the average over the thermal ensemble, i.e. the coordinates r; are carried out, and only in
the end, the observable is disorder-averaged. Here we want to document some calculations
for the annealed ensemble, where the average over the set of random variables {r;; } is taken
simultaneously with the average over the statistical variables {r;}.

The partition sum for one configuration of random variables {x;;} is given by

2k} = /dr1 . dry exp(=U(r1,...,tn)) . (5.14)
The annealed average over the disorder can then be carried out

(Z)ais = (2R = D2 2UmiDp({kis}) - (5.15)
{ra;}
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The last sum is over all possible sets of x;;, p being the probability measure acting on the
space of {k;;}. Using the definition of x;; from eq. (5.2), we find

<Z>dis:/drl...drNexp(—Uo) < I[ PV —1)+1], (5.16)

i<j—1
where

1,
Vij = exp (—21% || r;—rj ||2) (517)

and Uy is the Gaussian chain part of the potential, eq. (5.1). Introducing an effective
potential
Ut =Up— Y log[l+7P(Vij —1)], (5.18)
i<j—1

the annealed average can be written as

Zann = (Z) g = /dr1 coodryexp (—Ueg) - (5.19)

Adjacent beads are interacting with the normal harmonic potential, while non-adjacent
beads are interacting via the potential

V(r)=—log {1 +P <exp (—; K 7"2) - 1” . (5.20)

The effective potential has two parts: Adjacent beads with |i — j| = 1 keep their at-
tractive harmonic potential, while all non-adjacent beads interact via a pairwise attractive
potential V(7). The partition sum in (5.19) cannot be evaluated analytically and therefore
we do not obtain an expression for the mean square distance in the annealed case. This
potential V(r), displayed in Fig. 5.6, is characterized by a minimum at r = 0, while for
large r it reaches a plateau at V(r — o0) = —log(1l — P).

It is interesting to perform a low temperature approximation; a series expansion around
r = 0 up to second order gives

V(r)= %sz (5.21)

— a harmonic potential with effective spring constant Pk.

Although we cannot present results for the mean square distance between to two
beads here, in chapter 6 the effective potential is implemented via Molecular Dynamics
simulations to obtain these results.
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5.3.6 Limiting cases without disorder

Although neglecting excluded volume interactions, the RL model presented above does
not allow for a rigorous analytical solution. In the quenched ensemble it is impossible
to calculate the disorder average while the annealed ensemble renders the evaluation of
the disorder-averaged partition sum futile. In the quenched case, sample averages can
be calculated using numerical matrix inversion techniques (~ 5.3.3). Two special cases
exist where the model can be solved analytically: The limiting cases where no disorder
is present. P = 0 is the situation of a normal Gaussian Chain with spring constant k.
It is well-known (~ 3.1.4) that the mean square distance between two beads separated
by n monomers is given by (R2) = 2n. The other limit, P = 1, corresponds to a fully
connected network of beads. Assuming that all beads interact with spring constant k, we
can solve this problem analytically. Here, we basically do not deal with a linear chain any

more. The interaction matrix K = (k;;); ; in this case writes

b Nk for i=j (5.22)
Y —K for i#j ‘

By an easy calculation one can show that the inverse matrix is given by

2 .
oy = f e for 1= (5.23)
ﬁ for 1 #]

Recall our definition of the chain at the beginning of section 5.3.3: Although we have an
N x N-matrix our chain has N + 1 beads, as we set ro = 0. Inserting into eq. (5.12) yields

3
<Ri> = <Ti2j> = (Nt 1)r/2 (5.24)

Within this system two beads are interacting with an effective harmonic potential with
Kef = (N + 1)k/2.

Of major interest is the case where P = 1, but where adjacent beads interact with
a different spring constant than loops, i.e. ki = & for |i — j| = 1 and k;; = & for
li — j| > 1. We were not able to solve this case analytically. One might take this system
as a model for the low-temperature limit of the annealed case in eq. (5.21) where & is
replaced by an effective interaction # = Px. On a more general footing this case might
also be regarded as a model for a system where the random attraction with probability P
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and loop spring constant x has been replaced by an average attraction with probability
P =1 and loop spring constant Pk. It is clear a priori that such a potential will lead to a
collapse of the chain, as all beads are interconnected. In Fig. 5.7 we chose s =k =1 and
P =4 x 1079 as the reference curve. In comparison with the case of average attraction
(P =1,k = 1,k = P) the leveling-off is much less pronounced. Of course it is possible
to come into close agreement with the reference curve by choosing another interaction
constant. For our reference curve one would have to lower A by about one order of
magnitude, corresponding to P ~ 2 x 1075 ( < 1 loop per chain!). Although one could fit
the data with these averaged attraction potential concerning the mean square distance,
this would not be true for the higher-order moment ratios. And, even more important,
such a potential surely will not exist in the cell.

5.4 Conclusions

In this chapter, a polymer model was presented which lifts major short-comings of the ones
having been proposed so far. These models, either assuming no loops or loops of a fixed
size, do not satisfactorily explain both the folding into a confined sub-space [12] of the
nucleus as well as a huge cell-to-cell variation. Experiments show that the chromatin fiber
inside the human cell nucleus is ruled by two different folding regimes: At small genomic
distances, i.e. below ~ 3—10 Mb the data increases monotonicly with genomic separation.
At larger genomic distances there is a leveling-off to a scaling behavior <R2> ~ O(1)
(Fig. 2.3), indicating the presence of long-range interactions.

The Random Loop model introduced here incorporates the experimental evidence for
the existence of loops of a broad range of sizes, which are not fixed but varying from
cell-to-cell or over time. We have presented the general assumptions (~ 5.2) of the RL
model, which can be implemented in several ways. For example, excluded volume can be
integrated and the pathways of loop formation can be varied. In this chapter, a possi-
ble implementation was proposed, which can be solved partly analytically by neglecting
excluded volume interactions and restricting interactions to harmonic potentials. Thus,
the backbone is a Gaussian chain and the probabilistic loops are introduced by random
harmonic interactions. Using a homogeneous model, where the looping probability P is
constant along the contour of the chain, we have shown that (R2) only depends on the
interaction matrix K [eq. (5.9)]. Each non-diagonal matrix entry, corresponding to one
random loop, was chosen to be —k with probability P or 0 otherwise. The average over
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the ensemble of loop configurations then turned out to be equivalent to averaging over
the specific ensemble of random matrices with fixed P. We found that random loops on
all length scales explain the leveling-off observed in experiment, while restricting the loop
sizes to only large loops (in the order of 50 - 100 Mb) or small loops (100 kb - 10 Mb)
does not fit the data.

In contrast to the Random-Walk/Giant-Loop model [11] we do not assume fixed-size
and regularly placed loops. Importantly, the average over the ensemble of different loop
configurations turns out to be necessary to obtain the leveling-off observed in experiment.
Its importance also becomes apparent when looking at higher-order moments (Fig. 5.5):
Here the RWGL model would yield the same result as the random walk, CEWGL = 5/3,
whereas the disorder averaging leads to larger fluctuations.

We have already shown (~ 4.5) that on short genomic distances a scaling with v = 1/3
fits the experimental data best compared to a self-avoiding and random walk. In this
section, we did not focus further on the regime below 5 Mb, as this homogeneous model
by design cannot explain differences in compaction of gene-rich and gene-poor regions
(ridges and anti-ridges). The short distance regime will be covered by extending the
model to include heterogeneity in chapter 7.

In the present study we have neglected the effect of excluded volume. On genomic dis-
tances above a few Mb the existence of a small number of loops can explain the leveling-off
without the need for introducing excluded volume interactions. The role of excluded vol-
ume inside the cell nucleus on the spatial chromatin properties remains an open question,
because of the impact of an enzyme called topoisomerase II, which is capable of cutting the
DNA double strand in order to let another strand pass through it. This event might well
give rise to a random-walk-like statistics, depending on the frequency of these events. In
the next chapter, we investigate the effects of excluded volume using Molecular Dynamics
simulations.



A schematic view on the three-dimensional organization of chromosomes inside the cell
nucleus according to the Random Loop model.
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Chapter Summary

Remarkably little is known about the higher-order folding motifs of the chromatin fiber
inside the cell nucleus. Folding depends amongst others on local gene density and tran-
scriptional activity and plays an important role in gene regulation. Strikingly, at fiber
lengths above 5 to 10 Mb the measured mean square distance <R2> between any two
points on the chromatin fiber is independent of polymer length. In chapter 5 the Random
Loop model was introduced, explaining the confined folding of chromatin into a sub-space
of the nucleus by introducing loops of a broad size range. Here, we extend the analyti-
cal model by incorporating excluded volume interactions. We study the impact of such
interactions, which possibly have a major impact on the confined folding, by setting up
Molecular Dynamics simulations to create sample conformations. We find that the quan-
titative behavior of the model, i.e. the folding into a confined sub-space of the nucleus,
is not affected by excluded volume interactions. The results are in good agreement with
experimental data from FISH measurements on human chromosome 1 and 11.

6.1 Introduction

The Random Loop (RL) model introduces two important features that have not been ad-
dressed by polymer models for chromatin up to now. First, it takes into account that intra-
chromosomal interactions, i.e. loops, vary from cell to cell and therefore measurements are
an average over an extended ensemble larger than the purely thermodynamic one. This en-
semble is represented in the model by assigning a probability for looping, resulting in a huge
number of different sets of loop attachment points (disorder average). Secondly, in contrast
to the Random-Walk/Giant-Loop (~ 3.2.2) and Multi-Loop-Subcompartment (~ 3.2.3)
model, it allows for a broad range of loop sizes. The assumption of fixed-sized loops in
the Random-Walk/Giant-Loop model, for example, leads to a random walk behavior on
a scale larger than the loop size, with the loops playing the role of “effective monomers”.

In a first approach, the RL model assumed that the probability P for two monomers
to interact is the same for any pair of monomers [117]. Such model allows for a semi-
analytical calculation of the mean square distance (~ 5.3.3) between two markers, which
rapidly becomes independent of their genomic separation. The RL model ignored ex-
cluded volume interactions for reasons of mathematical tractability. This homogeneous
Random Loop model without excluded volume already offers an explanation for the con-
fined folding of chromatin in the interphase nucleus and, more importantly, yields large
distance fluctuations similar to the experimental data. Evidently, an intrinsic property
of the chromatin fiber inside the cell nucleus is that it assumes a state that cannot be
described by a random walk or self-avoiding walk polymer model. The incorporation of
looping disorder in the system, mimicking the cell-to-cell variation in loop configurations,
effects such large fluctuations compared to a random walk model. Importantly, the model
offers a framework for the connection between genome folding and function.

The Random Loop model presented so far is, despite its success in explaining large-
scale data, lacking explanation and detail concerning the following points:

1. The assumption of a phantom chain used in chapter 5 could be contested. Although
topoisomerase II might play an important role in resolving topological constraints,
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surely, chromatin is matter and therefore occupies a certain volume in space. It is
not clear, whether the leveling-off still shows up once excluded volume is introduced.

2. Experimental data (Fig. 2.3) shows different levels of compaction for gene-rich and
transcriptional active regions (ridges) and gene-poor and transcriptional inactive re-
gions (anti-ridges). Unavoidably, the RL model so far is unable to give an explanation
for this behavior.

3. Although highlighting the importance of loops on genome organization, possible
mechanisms of loop formation and their dynamics are not captured by the calcula-
tions in chapter 5.

In the course of this thesis, these short-comings will be integrated into the model,
resulting in a unified picture of chromatin folding based on the simple principle of dynamic
looping (~ chapter 10). To test, which experimental observations can be explained with
a minimal set of assumptions and parameters, in a first step, we keep the model as simple
as possible and analyze the effect of excluded volume. Because this may have a major
impact on the behavior of the model, we have analyzed how the predictions of the model
will change if we lift the limitation of phantom chains. We ask whether the consideration
of excluded volume changes the property of confined folding, i.e. whether the mean square
distance <R2> does not become independent of contour length any more. In principle, one
could expect such a breakdown of confinement. Phantom chains, as they were considered
in section 5.3, in principle could collapse onto one single point. Real polymers do not have
this possibility and at least occupy the self-volume of its constituents.

Excluded volume interactions require performing computer simulations, as analytical
calculations become intractable. We use Molecular Dynamics simulations for two reasons:
Firstly, the long-range looping interactions make Monte Carlo simulations ineffective. Sec-
ondly, a lot of tested software packages exist, like Amber [118], CHARMM [119], GRO-
MACS [120] or ESPResSo [121], which allow implementing the particles and interactions
in an efficient way.

Even more than for phantom chain calculations, simulations with excluded volume
necessitate coarse-graining of the polymer. The existence of two averaging procedures —
over the thermal ensemble as well as the ensemble of loops — require a huge amount of
independent conformations. In this study, we use a chain length of N = 300; therefore
statements should always be regarded as qualitative — not quantitative — ones.

In section 6.2 the setup of the Molecular Dynamics simulations is explained in detail,
in a way that the reader should in principle be able to redo the simulations. Results are
presented in section 6.3. Finally, the annealed ensemble (~ 5.3.5) for a phantom chain is
investigated by Molecular Dynamics simulations.

6.2 The Simulational Method

6.2.1 Molecular Dynamics

This section gives a short and general overview over Molecular Dynamics (MD) sim-
ulations, addressing the reader not so familiar with MD. A recommendable review of
Molecular Dynamics can be found in the book of Rapaport [122].

Molecular Dynamics aims at predicting and verifying properties of assemblies of mole-
cules both from a structural as well as a dynamical point of view. While the Monte Carlo
approach [111] is suited finding the equilibrium statistical properties (the equilibrium
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state) of a system, Molecular Dynamics yields the trajectory of the system in phase space
to reach this equilibrium state. (Note: Monte Carlo methods in polymer physics where
only local moves are applied, can also be mapped to dynamics [110]. This is not true
for Monte Carlo in general). Consider a system of N particles, whose coordinates and
momenta are given by r; and p; (¢ = 1,..., N) respectively. Let U({r;}) be the interaction
potential the system is subjected to.

In principle, Molecular Dynamics is nothing more than a numerical integration of the
classical Newtonian equations of motion

%Pi =F; and %Fi = pi/m;

where F; = —V,;U({r;}) is the force acting on particle i derived from the potential U.

In numerical integration, time is propagated in small steps At. Given the momenta and
impulses at time t, step-wise integration has to be performed to obtain the momenta and
impulses at time ¢+ At. One possibility of doing this is the velocity Verlet algorithm [122],
which follows the scheme [123]

1. Calculate the momenta at the intermediate time ¢ + %At

1 1
pi(t + §At) = pi(t) + QFi(t)At.
2. Integrate the particle coordinates at time ¢ + At using the momenta calculated in
step 1,

1
I‘Z‘(t + At) = I‘l‘(t) + pi(t + §At)/mz At.

3. Calculate the forces F;(t + At) from the interaction potential U using the updated
coordinates r;(t + At).

4. Calculate the momenta at time t + Atf using the updated forces
1 1
pi(t + At) = pi(t + 5At) +Fi(t+ At)§At.

Solving Newton’s equations of motions results in a constant energy ensemble, i.e. the
microcanonical or NVE ensemble. However, we are interested in a system at constant
temperature, i.e. the canonical ensemble, which resembles the biological system more than
the microcanonical. There are several possibilities to implement constant temperature in
MD simulations. One method is to draw random velocities from a Maxwell-Boltzmann
distribution from time to time, corresponding to an occasional random coupling with a
thermal bath [124]. It is also possible to introduce an extra variable representing the
thermal reservoir [123] into the dynamical equations.

For simulating chromosomes we make use of a pre-written software package developed
at the Max-Plank-Institute in Mainz [121]. This package, ESPResSo, allows to easily set
up and control the Molecular Dynamics process using the TCL scripting language.

6.2.2 Setting up the potentials

Recall that for the Random Loop Model without excluded volume and homogeneous loop-
ing probability P the Hamiltonian read

1 al 2 1 al 2
U=§Znij\|ri—rj\|ZZZmijllri—er :
1<J i,j:‘O
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We want to set up MD simulations for the Random Loop Model with excluded volume
interactions, introducing as little changes as possible to the Hamiltonian. In the following
we introduce the potentials used and explain the necessary modifications to the potential.

Excluded volume interactions

Excluded volume interactions are simulated by a so-called WCA (Weeks-Chandler-An-
dersen) potential [125], which was designed to model excluded volume interactions by a
short-range repulsive force. It has been used in several other MD studies on polymers [126].
The WCA potential is basically a truncated and shifted Lennard-Jones potential with the
following functional form,

4e (D)2 = (2)° + e r<r

UWCA(T) — ((7’) (r) Shlﬂ) cut (61)
0 2> Teut

Here 7oy = V2 and Cohift = % are chosen such that the minimum of the potential is

Uwca (Tmin) = 0, the attractive part of the Lennard-Jones interaction being cut off. The
WCA potential has two parameters ¢ and o. o defines the radius of the monomers’ hard
core. € controls the energy penalty of another monomer penetrating this hard core.

Backbone potential

Simulating polymers with excluded volume interactions renders the use of a harmonic
potential for the backbone potential as in eq. (6.2.2) impossible. A harmonic backbone
potential in principle allows two adjacent beads to adopt a huge separation larger than
their hard-core diameter o, which would result in the possibility of bond crossings. To
circumvent this problem, it is convenient to use the finitely extensible nonlinear elastic
model (FENE) potential.

—% kFENE R(Q) log(l — (T/RO)Q) r < Ry

(6.2)
400 r > Ry

Urene(r) = {

It is similar to the harmonic potential but grows to infinity at a predefined distance Ry.
The pair potential between two beads (FENE + WCA) is displayed in Fig. 6.1.
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Table 6.1: Exponential and integrated autocor- P

relation times for the energies of different confor- Texp Tint
mations for a chain of length N = 300 and different 0.0001 270.37 288.22
probabilities P. 0.0005 300.9 313.66

0.001 340.05 427.33

Loop potential

The looping potential is chosen to be the same as in the original model, i.e. a Gaussian
with Bernoulli-distributed random variables,

N
1
Uloops = ) Z Kij | xi - Xj ||2 .
1<j
li—j|>1

Here, the parameters are the looping probability P and the interaction strength ryseps (the
Kkij being either this value or zero).

Parameters

The following parameters are chosen for the simulation runs:

Ry =1.60 Kloops = 2.0
krene = 10.0 temperature T' = 1.0
c=1.0 friction I' = 0.5

e =20.0 timestep £ = 0.006

Special care is required for the relation between Ry and o. If Ry is too large, other parts
of the chain may pass through the gap between two monomers. Setting Ry = 1.60 is a
reasonable choice to prevent from such bond crossings [126].

6.2.3 Details on the implementation

As we are simulating quite dense systems, entanglement effects during the simulation can
lead to very large correlation times and we cannot ensure that the whole configuration
space is sampled in an unbiased way. As we are only interested in static (and not dynamic)
properties of the polymers, we pursue the following approach: for each conformation we
begin with a new random start configuration which is then equilibrated. Unfortunately,
for our simulations we cannot just put the chain inside the simulation box, randomly
select loops and then start the simulation. This is because a random start conformation
might have large distances between loop-attachment points. The harmonic loop potential
will accelerate these beads that much that the FENE bonds will break (meaning that a
monomer is moved in one timestep that far, that it exceeds the maximum distance Ry
to its neighboring bead, resulting in an infinite potential). Therefore we have to slowly
increase the strength of the potentials.

Averaging is required both over the conformational ensemble, the set of {x;;} being
fixed, and over the random variables {x;;}. To mimic the quenched situation, the values of
the random variables (i.e. the loop attachment points) are chosen in advance of the actual
MD simulations and kept fixed during the run. In our simulations we have generated
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500 different sequences of random variables {x;;} and for every sequence of {x;;} we have
equilibrated 300 conformations. Thus, in total we have generated 150000 conformations
for each parameter P. The necessity for this large number of conformations arises from the
averaging over the thermal ensemble as well as over the disorder, rendering the simulation
of chain lengths larger than N = 300 impossible. The scheme of the algorithm is as follows:

1. Looping pairs (i, j) are chosen randomly according to the model. This means that
each pair (4, ), (|¢ —j| > 1) forms a loop (ki; = Kjeeps) With probability P.

2. 300 conformations are simulated according to the following steps:

(a) A random walk conformation with bond length 1.2 is put into the simulation
box. The bond length is chosen such that it is near the minimum of the com-
bined FENE+WCA-potential (see Fig. 6.1).

(b) The excluded volume (WCA) is switched on slowly. This is necessary to ensure
the validity of the FENE bonds. Placing the monomers randomly might result
in overlap of the particles. A zero distance would render the WCA potential
singular; a small distance r < ¢ might result in a high repulsive potential,
causing a high velocity of the monomers. This results in the breakage of the
FENE bond, whenever the velocity causes the particle to travel larger than the
FENE cutoff distance Ry in one timestep. The method of slowly increasing
the excluded volume potential is an established method [121] and is done by
introducing a cutoff U,,; to the WCA potential such that we effectively simulate
excluded volume with the potential U(r) = min {Uwca (1), Ueut }. The cutoff is
increased slowly, finally reaching full excluded volume interactions.

(¢) Looping potential is switched on slowly, i.e. the interaction constant is increased
up to its final value kjp0ps. This prevents the monomers to speed up extremely
causing breaks of the FENE bonds.

(d) After excluded volume and looping interaction is fully present, the simulation
is run for one million MD steps (this is more than 10 times the autocorrelation
time of the radius of gyration). Then the simulation run is proceeded until the
energy distribution approaches a Gaussian shape (y>-test, see below).

3. This sequence is repeated from step 1 until 500 sequences {x;;} have been generated.

6.2.4 Equilibration of the system

To ensure that conformations are carefully equilibrated in step 2d) we pursue two tests:
One is the determination of the autocorrelation time of the radius of gyration, the other
is the distribution of energies during the simulation run.

The exponential as well as the integrated autocorrelation time of the radius of gyration
are on the order of 7 ~ 100 000 for all looping probabilities P studied here. It is commonly
agreed that conformations have relaxated after 107 MD steps. Therefore we perform at
least one million MD steps before writing out the conformation.

As a second test on equilibration we analyze the distribution of the energies of the
system. In thermodynamic equilibrium, they should obey a Gaussian distribution. If the
system is still in the progress of drifting towards equilibrium, another distribution should
become apparent. After one million MD steps are performed, the current energy of the
system is written out every 500 MD steps. The correlations between energies in the system
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Figure 6.2: Molecular Dynamics simulations of a polymer with randomly positioned loops. The
relationship between the mean square distance <Ri> between two monomers and their contour
length n is shown for different values of P. P denotes the probability that a pair of monomers
interacts. Looping probabilities used induce an average number of loops from 13 (P = 3 x 107%)
to 133 (P = 3 x 1073) per chain. The chain length is N = 300 monomers. The increase in mean
square distance at N,,, = 250 is due an increased freedom of the chain ends.

~

drop rapidly, the exponential autocorrelation time being about 200-300 MD integration
steps (see table 6.1). After having sampled 200 independent energy values, a x>-test
with five degrees of freedom is performed on a Gaussian distribution. The hypothesis of
a Gaussian distribution is accepted if the x?-value is below 3.0, giving a high confidence
that the distribution is indeed Gaussian. The conformation is written out once a Gaussian
distribution is reached.

6.3 Results

We have used Molecular Dynamics (MD) simulations to obtain chain conformations and to
introduce excluded volume interactions in the model. As two averaging processes have to
be performed, i.e. over the thermal disorder and over the ensemble of loop configurations,
simulations are very time-consuming. Since here we are only interested in large-scale be-
havior, a coarse-graining approach can be used. In our simulations we equilibrate polymers
of length N = 300. Figure 6.2 shows the results of simulations for different looping prob-
abilities P. In contrast to classical polymer models, the mean square distance becomes
independent of the contour length at intermediate length scales, resulting in a spatially
confined polymer structure. Interestingly, already a small number of loops results in an
almost complete independency of the mean square distance of the genomic distance, with-
out any additional assumptions. It is stressed that loops on all length scales are necessary
to make the spatial distance independent of contour length (see also section 5.3.4 and
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Figure 6.3: Comparison of the mean square distance between two markers in relation to genomic
separation g between the model and experimental data. Simulations have been performed using
Molecular Dynamics for various looping probabilities P (range from 5 x 107* to 3 x 1073). The
polymer chain length is N = 300 monomers and a coarse-grained monomer is equivalent to 500
kb. Experimental data shows FISH distance measurements on human chromosome 1 and 11 [12].
At this scaling the RL model correctly predicts the leveling off at genomic distances above about
10 Mb.

Ref. [117]). Looping probabilities P in Fig. 6.2 range from 3 x 10™* to 3 x 1073. A looping
probability of P implies and average of P(N —1)(IN —2)/2 loops per conformation; shown
results thus correspond to 13 up to 133 loops per N = 300 polymer. As expected, the
plateau value of <R2> rapidly decreases, as the number of loops increases and therefore the
polymer becomes more compact. For P smaller than 10~* leveling-off becomes less pro-
nounced, becoming a normal SAW model as P approaches zero. Notably, qualitatively the
same behavior is observed for the RL model ignoring excluded volume interactions [117].
We therefore conclude that at bigger length scales excluded volume interactions contribute
only to a limited extend to the behavior of the RL model.

The RL model proposes that large-scale chromatin folding is driven by chromatin
looping. The prediction of a leveling-off in the mean square distance is in agreement with
the experimental data. How can we bring theory and experiment together? The simu-
lations use a polymer with a length N = 300. By mapping a coarse-grained monomer
to 500 kb chromatin we obtain a chain of an effective length of 150 Mb, i.e. the size
range of a human chromosome. In the model the mean square distance is a complex func-
tion of the chain length N, separation between monomers N, and looping probability P:
<R2> = fN(Np, P). In this context the single variable parameter is P, as N is fixed to
300. To compare our simulation results to the experimental data we have to introduce
a scaling factor for the <R2>—axis. This factor is somewhat arbitrary and on this level of
coarsening strongly depends on monomer geometry and does not reflect biological param-
eters in a simple manner [117]. In Fig. 6.3 we have scaled the results of the simulations to
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P=0 (self-avoiding walk)

P=0.0003

Figure 6.4: Example conformations of Random Loop model polymers obtained by Molecular
Dynamics simulations. Increasing the P-value results in a strong compaction of the polymer. The
self-avoiding walk polymer (P = 0) has a very open structure. Further conformations are shown
for P = 0.0003, P = 0.0005 and P = 0.001. The number of loops is 15, 24 and 40 respectively in
case of this V = 300 polymers.

the experimental data, using 320 nm per coarse-grained monomer. This number has been
determined such that the model fits to the plateau level of the experimental data. Fig-
ure 6.3 shows that the RL model is able to qualitatively describe the large-scale genomic
distance data quite well. This is remarkable because we do not include information about
the positions along the chromatin fiber where loops are actually formed.

Example conformations for different looping probabilities are visualized in Fig. 6.4.
Obviously, introducing loops results in a strong compaction of the polymer. Note that
due to coarse-graining, each monomer represents a folded 500-kb-segment of chromatin.
As loops probably persist on the short scale below the coarse-graining length, resulting
in a compacted state of chromatin, the spherical geometry of this coarse-grained model is
justified.
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P Tewp Tint Table 6.2: Exponential and integrated autocor-

relation times 7..;, and 7;,+ for the squared radius
0.007 15032 15982 of gyration RZ. The underlying system is a chain
0.01 17875 19231 of length N = 50 in the annealed ensemble of the
0.05 17730 17494 Random Loop model, i.e. a chain subjected to the

potential given in eq. (6.3).

6.4 Simulations of the annealed ensemble

Up to now, both the calculations of the mean square distance for chains without excluded
volume (~ 5.3.3) and the simulations with excluded volume (~ 6.3) were done in the
quenched ensemble. For the annealed ensemble, it was shown in section 5.3.5 that the
average over the set of random variables {r;;} can be carried out before evaluating the
configurational integrals, yielding an effective potential for the chain, given by

N-1
Uet(r) = %m S v = Y log[1+P (expm2fimnl® ) (6.3)
i=0 i<j—1
However, an analytical calculation of the partition sum with this disorder-averaged ef-
fective potential is not possible. Here we perform Molecular Dynamics simulations with
particles subjected to this effective potential Usg. The ESPResSo software package [121]
can be easily extended to include other forces. To allow a comparison between the an-
nealed and the quenched average, the effective potential U.g has been implemented in
form of TCL script. The interaction constant is chosen to be k = & = 1 both for the
interactions between adjacent beads and for the looping interactions. Note that excluded
volume interactions are not taken into account here. The chain length studied is N = 50.

The autocorrelation times were calculated for the squared radius of gyration Rg (t) for
different values of the looping probability P. Both the integrated as well as the exponential
autocorrelation times are listed in table 6.2. The relaxation times are below 20000 MD
integration steps using a time interval of At = 0.005. Independent conformations are
obtained by writing out samples during the simulation run every 100 000 MD integration
steps.

We have evaluated the mean square distance between two beads in relation to their
contour length n for different looping probabilities ranging from P = 0.007 up to P = 0.1.

160 T T T T T T T T T
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The results are shown in Figure 6.5. A polymer with looping probability of P = 0.007,
which would correspond to an average of 8 loops per chain, displays only slight deviations
from a random-walk behavior (grey line) in the annealed ensemble. For comparison we
have added the results for the quenched average calculations for this P-value (black line),
which already shows a pronounced leveling-off in the mean square distance. Only at a
10-fold higher looping probability of P = 0.07 (corresponding to an average of 80 loops
per chain), the level of compaction is similar to that of the quenched ensemble at a P-
value of 0.007. Thus, the interaction in the annealed ensemble is much weaker than in
the quenched ensemble, and the leveling-off is only obtained for loop numbers which are
practically impossible to realize in a cell due to the topological constraints. The reason
for this behavior is that the probabilistic interactions in the annealed ensemble effectively
boil down to a mean-field attraction between all monomers of the chain, due to the short
lifetime of the loops, which has to be much smaller than the equilibration time of the chain
for the annealed ensemble to be a valid approximation.

As already mentioned, the annealed approximation is probably not valid for the sys-
tem of the cell nucleus. Here, loops are tightly connected to genome function and tran-
scriptional regulation. Thus, loops have to persist a while for the nucleus being able to
transcribe the genes.

6.5 Conclusions

In this chapter, we lifted one of the major limitations of the homogeneous Random Loop
model (~ chapter 5), i.e. the negligence of excluded volume interactions. This random
loop (RL) model predicts that loop formation is the major driving force for chromatin
compaction [117]. The RL model assumes that the measured observables, e.g. the mean
square distance between two markers, are derived from an ensemble of loop configurations
formed by interactions between different parts of the polymer with a certain probability P.
A major characteristic of the RL model without excluded volume interactions is that the
mean square distance <R2> becomes independent of the contour length at longer distances.
While the RL model without excluded volume already explains the major characteristics
of experimental FISH measurements (see Figs. 5.4 and 5.5), the negligence of excluded
volume might have a drastic effect on the folding into a confined space. Here we extended
the original RL model beyond the limitations of its original formulation (~ 5.3). We
performed extensive MD simulations to establish the effect of excluded volume on the
behavior of the RL model. It turns out that the introduction of excluded volume does not
alter the model’s main properties.

Using Molecular Dynamics simulations, we derived results for the homogeneous Ran-
dom Loop model in the annealed ensemble (~ 5.3.2). While in this ensemble, a folding into
a confined sub-space of the nucleus can still be observed, the required looping interaction
is much stronger compared to the quenched ensemble.
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Chapter Summary

The folding of chromatin on the scale above 10 Mb, where experiments measuring the mean
square distance between two FISH markers reveal that chromosomes fold into a confined
sub-space of the nucleus, has been explained by the Random Loop model in recent chapters.
However, genome function in higher eukaryotes involves major changes in the spatial
organization of the chromatin fiber, resulting in different levels of compaction dependent
on gene activity on the scale below 10 Mb. In this regime, the physical distance between
two markers increases monotonously with genomic separation. This increase has been
fitted to a power-law behavior <R2> ~ N?" in the past. The obtained scaling exponents
v displayed a huge variety strongly dependent on the chromatin region studied. In this
chapter, the aspect of different levels of chromatin compaction in different subchromosomal
domains on the scale below 10 Mb is incorporated into the Random Loop model. We
show that effective scaling exponents v strongly depend on the local looping probability,
suggesting a tight connection between the local state of compaction and loop formation.
Simulations of human chromosome 11 with different local looping probabilities for gene-
rich and gene-poor regions reveal a surprising agreement with experimental data. Thus,
the heterogeneous Random Loop model creates a quantitative and predictive framework
for the three-dimensional organization of the chromatin fiber, spanning different scales of
length and different degrees of compaction.

7.1 Introduction

The chromatin fiber inside the interphase nucleus of higher eukaryotes is folded and com-
pacted on several length scales. Evidently, neither DNA nor chromatin are folded and
arranged homogeneously along the contour of the fiber. Different bases (A, T, G and C)
are distributed in a non-random sequence along the fiber, defining genes and non-coding
sequences. The positioning of the nucleosomes along the fiber follows a non-regular pat-
tern [127]. Proteins called “chromatin remodeling complexes” induce changes in the struc-
ture of the nucleosomes such that DNA temporarily becomes less tightly packed, making it
accessible for repair units or gene expression. Chromatin remodellers are possibly attracted
by modifications in the histone tails, which can further stabilize or destabilize chromatin
structure locally (~ 2.3.2). On the length scale of the 10 nm fiber, it is expected that nu-
cleosomal skips as well as depletion of linker histone H1 strongly influences compaction and
decompaction [5]. Genes are not distributed randomly along the one-dimensional genome,
rather gene deserts containing no or little gene content and transcriptional activity can
be observed [128]. The Human Transcriptome Map (~ 2.3.1), mapping gene content
and transcriptional activity, distinguishes between regions of increased gene density and
transcriptional activity (ridges) and gene-poor regions with little transcriptional activity
(anti-ridges) [13]. This one-dimensional sequence of genes and non-coding elements itself
influences the three-dimensional structure of chromatin. Gene deserts or anti-ridges show
distinct patterns of organization, trying to cluster, while the intervening gene rich regions
have to loop out [129]. Shape and size parameters of ridges and anti-ridges were shown to
be markedly different [6]. Ridges are in tendency located more at the nuclear periphery
while anti-ridges are positioned more towards the nuclear interior [6, 14]. Finally, FISH
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distance measurements (Figure 2.3 and Ref. [12]) reveal that ridges show different patterns
of compaction than anti-ridges, resulting in a more compact state, i.e. the mean square
distance (R?) increases more slowly with increasing genomic separation g.

It is partly due to the different local folding state of chromatin, that several studies
show pronounced differences in compaction on the scale below 10 Mb. For example,
different scaling exponents for the mean square distance <R2> ~ N2 have been determined
and models for the overall chromatin folding have been proposed based on these local
results. Based on data from Yokota et al. [27], it was shown that folding on the scale below
10 Mb is best explained by a random walk model, the scaling exponent being v = 0.5 [29].
Findings for the scale between 10 Mb to 20 Mb range from a random walk type of behavior,
which has been explained by the formation of giant loops [11] to a scaling with v = 0.32
for which the multi-loop subcompartment model has provided an explanation [28, 29].
Recently, Jhunjhunwala et al. [109] measured exponents of v ~ 0.1 — 0.2, a value being
much smaller than the globular state value (~ chapter 4).

A unified view of chromatin folding explaining these different exponents is still missing.
The Random Loop (RL) Model presented in chapter 5 does not comprise heterogeneity
of the fiber, therefore cannot explain local differences in compaction. Any two chromatin
segments were assigned the same probability to interact with each other, i.e. the looping
probability has been chosen translationally invariant. While this model correctly predicted
the folding state above 10 Mb, where a leveling-off in the mean square distance <R2> ~
O(1) between two chromatin segments was encountered, the different folding of ridges and
anti-ridges on the scale below 10 Mb still lacks a valid model description.

In this chapter the Random Loop model is extended such that it predicts the folding
state on the scale of 100 kb up to the complete chromosome arm on the basis of ran-
dom loops. The major modification to the homogeneous RL model is that we allow for
different local looping probabilities related to the transcriptional state of local chromatin
regions. We find that these different local looping probabilities can lead to different local
states of compaction. This heterogeneous model is compared to experimental data by a
direct mapping of ridge and anti-ridge regions of chromosome 11 according to the Human
Transcriptome Map and by assigning different local looping probabilities to these regions.
We show that the model correctly predicts distance measurements between three reference
BAC probes (for ridges, anti-ridges and long distances) and a second chromatin segment
on chromosome 11.

7.2 First evidence for different local looping probabilities

When measuring the mean square distance <R2> between two loci separated by genomic
distance g, the scaling exponents found vary between v = 0.1 [109] and v = 0.5 [27]
on the scale below 10 Mb. Amagzingly, the compaction found in the murine Igh locus
by Jhunjhunwala and co-workers is far below the predictions of the globular state model
(v = 1/3) which already exhibits a very compact organization. These findings have been
explained by different polymer models with the choice of the models depending on which
fits the experimentally determined scaling exponent v best [11, 26, 28]. However, a unified
model for chromatin folding is still missing.

So far, the short scale behavior of the homogeneous Random Loop model proposed
in section 5.3 has not been analyzed. Although a scaling exponent of v = 1/3 fits the
experimental data from Fig. 2.3 best on the scale below 2 Mb (see Figure 4.18), one should
be aware of the fact that the globular state model is only valid for end-to-end distances of
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Figure 7.1: The relationship between the mean square distance between two monomers and
their contour distance is shown for different values of the looping probability P. In the short
length scale regime the mean square distance follows effectively a scaling law where <R2> ~ N2,
The scaling exponent v varies over a broad range of values, depending on the looping probability
P. The figure shows data from the homogeneous model without excluded volume and for a chain
length of N = 600.

a polymer, whereas here we deal with intra-chain distances (~ 4.5). Fitting the RL model
to the experimental data shows that such a value of v can only be valid in a narrow range
of genomic distances before a plateau level is reached. Thus, the interpretation of the data
in terms of one of the classical polymer models would be an extreme oversimplification.

The behavior of the homogeneous Random Loop model for short genomic separations
is displayed in Figure 7.1. Calculations are based on a chain of length N = 600, the data
is shown up to genomic separations of n = 80 segments in order to keep away from the
region where a plateau level is reached. As excluded volume interactions do not alter the
overall properties of the model (~ chapter 6), calculations are based on the model from
section 5.3 without excluded volume, as much better statistics can be gained here. Clearly,
we find that the compaction is strongly dependent on the looping probability P, which
has been chosen between P = 1-107> and P = 8-107° corresponding to 4 to 28 loops per
coarse-grained polymer. To see whether different scaling exponents found in experiments
on the short scale below a few Mb can be explained by different looping probabilities, the
mean square distance (R2) has been fitted to the scaling law (R2) = an?®” for different
looping probabilities P for contour lengths n < 80, i.e. below the scale of the plateau level.
Interestingly, the scaling exponent v varies strongly with looping probability P. In fact,
by adjusting the P-value, nearly all exponents v below the random walk value of v = 0.5
can be obtained. Effective scaling exponents v can adopt values far below the one of the
globular state v = 1/3, rendering a very compact organization possible in agreement with
measurements in the murine Igh locus [109].

These findings indicate that the looping probability might be a cellular mechanism for
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switching between different states of compaction. Different scaling exponents v determined
in experiments thus are merely representing more than a cross-over behavior on short
genomic separations, where the plateau level is not yet reached.

7.3 Integration of short and long length scale data by the RL
model

7.3.1 The Heterogeneous Random Loop model

How do we integrate different local looping probabilities into the Random Loop model? In
principal, the RL model offers a lot of choice concerning the random variables x;;. Recall
that the potential function of the general Random Loop model (~ 5.2) was given by

N

1
U= UGaussian + 5 Z Kij || Xi — X5 ||2 .
1<J
[i—j[>1

The first potential term represents the Gaussian backbone potential [eq. (3.4)], while the
second term is responsible for loop formation. As shown in section 5.3, the thermal average
can be calculated analytically only depending on the random variables r;;

3
2 - 2 _ .
<TIJ>therma1 o 2 B(UJJ ton QUIJ) ’ (71)
where N
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The spring constants x;; have been chosen to be Bernoulli distributed random variables
with probability P in the homogeneous RL model,
1, with probability P
Kij = : . (7.3)
0, with probability 1 — P

Here, we extend the RL model to incorporate local differences in P-values, thus mak-
ing the polymer heterogeneous. Lacking experimental data on looping probabilities, in
a first approach, we assign different looping probabilities for different regions based on
the distribution of ridges and anti-ridges in the Human Transcriptome Map as shown
in Fig. 2.3A. We divide the polymer into ridge and anti-ridge regions corresponding to
the Human Transcriptome Map and define three different looping probabilities, i.e. Pg,
defining loop formation in ridge regions, Pag for anti-ridges and Pjy,te for the interaction
between such regions.

The interaction random variables x;; are thus drawn from a Bernoulli distribution with
a probability P(i,j), now depending on i and j. Here

Pr if ¢ and j are inside the same ridge domain
P(iyj) =< Par if i and j are inside the same anti-ridge domain (7.4)

Pinter if © and j are not inside the same domain
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This results in a block structure of the chromosome and the matrix K:

Pr

7DAR Pinter
Pr

(7.5)

Par

Pinter PR

Par

Along the diagonal, blocks are distributed according to the distribution of ridges and
anti-ridges along the one-dimensional Transcriptome. Inside each of the diagonal blocks,
interactions are distributed according to a Bernoulli distribution with the same probability
Pr or Par (depending on the property of being ridge or anti-ridge). Outside these blocks,
elements interact with the looping probability Pipier-

7.3.2 Results for chromosome 11

Calculations are performed for chromosome 11 as distance measurements (Figure 2.3)
span the whole g-arm comprising about 80 Mb. To map chromosome 11 on our polymer
model, we use a coarse-grained segment length of 75 kb. The g-arm of chromosome 11 is
thus represented by N = 1120 polymer segments. The Human Transcriptome Map [13]
data of chromosome 11 reveals distinct regions where genes cluster. These ridge as well as
the anti-ridge regions of the entire chromosome arm are mapped onto the chain of length
N as depicted by the Human Transcriptome Map. The mapping of ridge and anti-ridge
regions to the model polymer is shown in table 7.1 for chromosome 11. Clearly, the figure
in table 7.1 indicates that there are regions where it is not clear whether to assign it to
a ridge or anti-ridge. In order not to incorporate a fourth parameter, we crudely assign
these regions either the ridge or anti-ridge property. Especially the large region ranging
from genomic position 110 Mb to 127 Mb is mapped onto an anti-ridge region.

After mapping chromosome 11 to our model polymer, the mean square distance be-
tween two chromatin segments can be calculated. Calculations are done averaging over
different realizations of the random matrix K, i.e. different configurations of loop attach-
ment points. The mean square distance is evaluated differently than in the homogeneous
case. For the latter, the mean square distance for a certain contour length n was averaged
over all different pairs of beads (i,7) with n = |i — j|,

i=N—-n—1
<RT21> |{K}|N_nKz{:K} g <ri2’i+”>therma1 (7.6)

where { K} is a sample of random matrices randomly drawn out of the underlying ensemble.

As the polymer is no longer homogeneous, distances have to be measured by fixing the
reference segment 7 to the monomer which corresponds to the position of the reference
BAC probe used in experiments (marked by the starting point of the arrows at the top of
the figure in table 7.1). Thus, the mean square distance (R2) is calculated by

1
(B) = T KGZ{:K} (7Fn) spormar (7.7)



7.3. Integration of short and long length scale data by the RL model 105

Table 7.1: Mapping of the g-arm of chromosome 11 to the heterogeneous Random Loop model.
The g-arm is mapped onto a model polymer with segment length 75 kb, corresponding to a chain
of length N = 1120. To keep calculations efficient, not the entire chromosome is mapped, but only
a region slightly larger than the length scale of the measurements, i.e. one chromosome arm. The
Human Transcriptome Map of the g-arm of chromosome 11 is shown at the bottom. Red areas
indicate anti-ridge regions, green areas ridge regions. The starting points of the arrows above the
maps indicate the positions of the reference FISH probes. The arrowheads marks the locations of
the FISH BAC probe that has the largest genomic distance to the reference probe. All physical
distances are determined with respect to this reference probe. The table gives an overview over
the regions and the corresponding polymer segments in the calculations. The positions along
the contour of the chromosome are given according to the nomenclature in the excerpt from the
Human Transcriptome Map shown at the bottom. The g-arm is subdivided into gene-poor and
transcriptional inactive regions (anti-ridges) as well as gene-rich and transcriptional active regions
(ridges). In order not to introduce too many parameters, the regions marked white — neither
showing clear ridge or anti-ridge behavior — are roughly mapped onto either ridges or anti-ridges.
The large region ranging from chromosomal position position 110 Mb to 127 Mb is considered
to have the same looping probability as anti-ridges. Distances between polymer segments are
measured from the same reference points where the FISH BAC probes are positioned.

Mapping of Chromosome 11

region on chromosome beads in polymer model type of region

50 Mb — 55 Mb 0-67 o anti-ridge
55 Mb — 75 Mb 68 — 333 ridge

75 Mb — 110 Mb 334 - 800 o anti-ridge
110 Mb — 127 Mb 801 — 1026 o (anti-ridge)
127 Mb — 134 Mb 1027 — 1120 o anti-ridge

reference position ridge: 59.5 Mb (monomer number 126)
reference position anti-ridge: 81.6 Mb (monomer number 421)
reference position long distance: 59.5 Mb (monomer number 126)

Chromosome 11

~

s ——

| “‘M”“ | w 0 Vbl I “Hl I Lyt

| E g ‘l'l
60 70 80 90 100 110 120 130
genomic position [Mb]

median transcription

The reference segment i, of course, is different for the measurements in the ridge and
anti-ridge region. This is depicted in table 7.1. The reference BAC probe for the ridge
region as well as the long distance measurements is centered at chromosomal position
59.5 Mb, corresponding to monomer number ¢ = 126 using our mapping, which starts at
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chromosomal position 50 Mb. The reference BAC probe for measurements in the anti-ridge
region is at chromosomal position 81.6 Mb, corresponding to ¢ = 421.

We have performed calculations of the mean square distance for various parameter
sets. It turned out that the data is described best by looping probabilities being Pr =
3x1075,Par = 7x107° and Pipter = 1 x107°. The average physical distance between the
reference FISH probe and a second marker inside ridge and anti-ridge regions is displayed
in Figure 7.2. Interestingly, the RL model with these looping probabilities describes the
folding of the ridge and anti-ridge data of chromosome 11 remarkably well. Importantly,
the observed large scale behavior, i.e. the leveling-off in the mean square distance, is still
a prominent feature of the heterogeneous model. Distance measurements on the scale of
the entire chromosomal arm are depicted in Figure 7.3 both for experimental data as well
as the heterogeneous RL model. This model captures the fluctuations on the large scale
even better than the homogeneous model presented in section 5.3.

7.4 Conclusions

While the homogeneous Random Loop model explained basic principles of large-scale
chromatin folding, i.e. the folding into a confined sub-space of the nucleus and the large
cell-to-cell variation, a detailed description of folding principles on the scale below 10

10 . . . : '
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Figure 7.2: Comparison of FISH distance measurements on human chromosome 11 [12] to the
heterogeneous Random Loop model on the short scale below 12 Mb. Chromosome 11 is mapped
onto a model polymer of length N = 1120, the coarse-grained segment length is set to 75 kb.
The chromosome is divided into transcriptionally active (ridges) and inactive (anti-ridges) sections
according to the Human Transcriptome Map (table 7.1). Different looping probabilities are assigned
to ridge and anti-ridge sections. The model assumes that differences in local compaction arise due
to different local looping probabilities. Results are shown for Pr = 3 x 10~° (interaction inside
ridge sections), Par = 7 x 1075 (interaction inside anti-ridge sections) and Piger = 1 x 107°
(interactions between different sections).
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Mb has been lacking. Several polymer models have been proposed, trying to explain
experimental data from FISH distance measurements. Such experiments yielded scaling
exponents for the mean square physical distance <R2> ~ N2 ranging from v ~ 0.1 —
0.5. A similar variety can be found for the proposed models. In this chapter, we have
extended the homogeneous RL model (~ 5.3) to present a unified view of chromatin
folding, spanning different length scales and states of compaction. Such local differences in
chromatin compaction are found for instance in ridges and anti-ridges along the g-arms of
chromosomes 1 and 11 (Fig. 2.3A). The key idea is that local differences in compaction are
related to different local looping probabilities along the contour of the polymer. Instead
of developing different polymer models for differently compacted regions, such a model
would offer an explanation comprising different states of compaction, i.e. the complete
chromosome.

We presented a simple model, where local looping probabilities are assigned dependent
on transcriptional activity and gene density as depicted by the Human Transcriptome
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Figure 7.3: Comparison of FISH distance measurements on human chromosome 11 [12] to the
heterogeneous Random Loop model on the length scale of the whole g-arm. We assign each region
either the ridge or anti-ridge property according to Fig. 2.3A. In difference to Fig. 2.3A, however, in
this first approach we assign only the anti-ridge and ridge property here in order to keep the number
of freely adjustable parameters small. Parameters and calculations are the same as in Figure 7.2.
The mean square distance is plotted against the genomic separation between two FISH probes,
where the one FISH probe is held fixed at a specific reference point (starting point of the black
arrow, cf. 7.1). The red, green and white rectangles indicate whether the position of the second
marker is within a ridge or anti-ridge or within the large intergenic region, which is here assigned
the same looping probability P4r as the anti-ridge regions (see table 7.1). The data shows very
good agreement with the model except for two data points. The reason for this deviation might be
that we only distinguish between two kinds of regions here, namely ridge and anti-ridge, being a
rather rough classification of transcriptional activity. However, the heterogeneous model with this
rough distinction already leads to a good overall agreement with the data, without introducing
unnecessarily many parameters.
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Map [13]. In order not to introduce unnecessarily many parameters, different regions are
assigned either one of the two properties: gene-rich and transcriptional active or gene-poor
and transcriptional inactive. Although still highly simplifying, this explains remarkably
well the difference in compaction of ridges and anti-ridges, assuming a 2.5-fold difference
in looping probability for the studied region on human chromosome 11 (Fig. 7.2). There is
abundant experimental evidence for heterogeneous chromatin looping along the chromatin
fiber. For instance, loops with sizes in the 10 kb range have been observed in the beta-
globin locus, where gene activity is correlated with loop formation that brings together
different regulatory elements of the locus [130]. Another example are loops between
promoter and enhancer sequences, which span a broad genomic length scale in the 1 and
1000 kb range [131]. Even larger loops are associated with transcription factories, where
transcriptionally active genes from different parts of a chromosome as well as from different
chromosomes are assembled [70].

Thus, the heterogeneous RL model allows for a unified description of the folding of
the chromatin fiber inside the interphase nucleus over different length scales and explains
different levels of compaction by assuming different looping probabilities, related for in-
stance to local differences in transcription level and gene density. The heterogeneous RL
model creates a basis for explaining the formation of chromosome territories, not requiring
a scaffold or other physical confinement. While there is a lot of evidence that chromatin-
chromatin interactions play a crucial role in genome function (e.g. see [130, 70]), our
study proposes that it also plays an important role in chromatin organization inside the
interphase nucleus on the scale of the whole chromosome as well as on that of subchromo-
somal domains in the size range of a few Mb. Importantly, various aspects of the RL model
can be experimentally verified, e.g. by perturbing chromatin-chromatin interactions and
analyzing its effect on chromatin folding. Although experimental data on loop distribu-
tions are not yet available, experimental techniques such as the 4C technology [25, 68] will
allow the measuring of looping probabilities and loop size distribution along the length
of complete chromosomes. These and other experimental parameters can be incorporated
into the RL model, moving towards a stepwise more realistic polymer model for chromatin
folding in higher eukaryotes.
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Chapter Summary

The existence of a ring structure for certain polymers in nature like proteins and DNA
indicates a benefit compared to the linear form. Transcriptional regulation in higher
eukaryotes is maintained amongst others by the formation of chromatin loops. Experi-
mental studies revealed that different chromosomes as well as chromatin regions on one
single chromosome tend to be segregated into distinct territories. Here, we study a system
of two rings in both catenane and bonded topology as a toy model for the influence of
loops and topological constraints on the polymers’ conformational properties. Athermal
Monte Carlo simulations reveal that the mean square radius of gyration <R§yr> of cate-
nated or bonded rings follows a scaling exponent similar to that of isolated rings, which
in turn is close to the value of v = 0.588 for a self-avoiding walk. However, the effective
segment length is larger for catenated rings, reflecting the swelling of the polymers. The
shape of catenated and bonded rings, in contrast, shows pronounced differences even in
the limit of infinite chain length. We observe a strong tendency towards segregation for
the bonded topology in comparison to a similar ring-linear and linear-linear system. The
orientation of the rings’ gyration ellipsoids is slightly perpendicular, trying to minimize
the overlap area. These findings indicate that loops might play an important role in the
entropy-driven segregation of chromatin.

8.1 Introduction

In this chapter, we take the focus away from modeling chromatin with all its complexity
and investigate the effect of loops on the polymers’ conformational properties separated
from the detailed environment of the nucleus. A system of two ring polymers is used as
an ideal toy model to study the effect of such topological interactions.

In the recent decades, ring polymers received considerable attention. Ring polymers
differ from linear polymers in that the endpoints are connected to a cyclic form. The in-
vestigation of these polymers is not of pure theoretical interest. In fact, they are abundant
in nature. First evidence for certain DNA molecules to occur in a ring shape has been
found as early as 1962 by ultracentrifugation [132]. One year later, experimental results
indicated that the double-stranded DNA of the polyoma virus exists in a closed cyclic
structure [133, 134]. Nowadays it is clear that cyclic ring polymers are quite abundant in
organisms and the ring structure seems to play an important role in the genomic func-
tion of organisms. Amongst others, circular DNA is found in bacteria, viruses as well as
the mitochondrial DNA of eukaryotic cells. Last but not least, we tried to convince the
reader in the last chapters that loops are an ubiquitous feature of chromatin organization
in higher eukaryotes. These loops in turn can be viewed as ring polymers, although they
are not isolated from the rest of the chain.

After the early findings of cyclic DNA one succeeded to artificially produce ring poly-
mers with materials like polystyrene [135, 136, 137]. These synthetic ring polymers are
created by anionic polymerization and have the advantage that their molecular weight can
be controlled, allowing quantitative investigations on the static and dynamic properties. A
lot of attention has been given to the dynamic properties in the melt, where a reptation-
like movement was observed for ring polymers. While reptation for linear polymers is
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driven by the effect of the chain ends, it was proposed [138] that the observations might
be explained by a higher entanglement length of rings.

The conformational properties of isolated ring polymers have been extensively studied
in the past by theory and simulations [139, 140, 141] both with and without excluded
volume interactions. It was shown that self-avoiding polymer rings follow the same scaling
behavior as isolated linear polymers in the limit of infinite chain length N — 0o concerning
its static properties [142]. A lot of studies are devoted to the questions how the scaling
behaviour of the radius of gyration Rg,.(N) changes, when isolated ring polymers are
constrained to a fixed topology, i.e. knot type. It has been proposed in an analytical
argument [143] that topological constraints alone induce the same scaling as excluded
volume interactions, i.e.

Ryyr(N) ~ N (8.1)

Later, it was shown [144] that the size of a ring polymer without excluded volume in
a quenched topology displays a crossover from a random-walk type of scaling to a self-
avoiding walk type of scaling for larger chain lengths. This result was later confirmed by
numerical studies for trivially knotted ring polymers [145].

A system of several rings can display a variety of different topological states. Rings can
be either non-catenated or catenated, the degree of catenation varying. Brown et al. [146]
studied the influence of topological constraints of isolated rings and rings in a melt with
excluded volume and came up with the conclusion that topological constraints influence
the isolated chain behavior only marginally while rings in a melt exhibit dramatic changes
by turning on topological constraints. This is in agreement with a study by Miiller [147]
showing that non-catenated rings in a melt become compact with a scaling exponent of
v = 0.39. This compactification, not detected for e.g. linear polymers, already indicates
a strong effect of topology. The scaling exponent found is consistent with a Flory-type
of argument [148], where the entropy loss due to the non-catenation constraint is lin-
early dependent on the number of neighboring rings, yielding a free energy contribution
of Fi ~ kKTR3/N in three dimensions. This free energy contribution counteracts the en-
tropy loss given by Fy ~ KT N/R? arising from compaction. Minimizing the free energy
F = F)| + F, yields a scaling exponent of v = 2/5. Further computational studies led
to the proposal that the scaling exponent is a cross-over effect asymptotically moving
towards a behavior similar to compact lattice animals in a self-consistent network of topo-
logical constraints [149]. Summarizing these results, a general conclusion emerging is that
topological constraints introduced by the cyclic structure into the problem of polymeric
conformations alter conformational properties — in a melt of rings quite drastically.

While a lot of studies had their focus predominantly on the topological effects of the
non-catenation constraint in a melt, the study of catenated or bonded rings can yield fur-
ther insight into their topological interactions. Such rings are held relatively close together
by means of the constraint, therefore they can be used as an ideal model for examining
interactions between them. The catenane topology is common in nature. The equilibrium
distribution of topological states of DNA was determined by random cyclization experi-
ments of linear DNA| resulting in a broad distribution of linking numbers [150]. Later, it
was shown that this equilibrium distribution is greatly modified by the activity of type II
DNA topoisomerase, an enzyme which allows to release topological constraints [151]. Re-
cently, the effect of catenation on protein folding stability has been studied [152]. Although
chromatin is not circular inside the human interphase nucleus, there is now abundant ex-
perimental evidence that transcriptional regulation is accomplished by the formation of
polymeric loops [20, 25]. Transcription factors are assumed to have the possibility to
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aggregate inside the nucleus, building transcription hubs or factories [24] (~ 2.4.3), re-
sembling a topology of bonded rings (or loops). Such looping has recently been proposed
to have a major impact on the observed segregation of chromosomes [35].

The scope of this study is to deepen the understanding of the influence of ring structure
accompanied by the induced topological state on the conformational properties of the
polymers involved. To achieve this, we study both isolated ring polymers as well as two-
ring conformations with a fixed topology. The topological state of two ring polymers with
paths C; and Cy can be characterized by the Gauss linking number [153]

1 d d —
o = *f{ f (dry > dryr1 —r2) (8.2)
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It has to be noted that a one-to-one correspondence between the Gauss link invariant and
the topological state cannot be established. Three different topologies are investigated
exemplarily: simple catenated rings (the Hopf link, & = 1), double catenated rings (¢ = 2)
and rings which are non-catenated (® = 0) but bonded together at one monomer. While
the first two systems are interesting for DNA and protein catenanes, the latter resembles
chromatin loops assembled in transcription hubs. Effects of catenation have been analyzed
concerning dimensionality by Sikorski [154] for rings up to N = 800. He conjectured
that the dimensions and shape of a catenated polymer ring approaches the values of an
isolated ring in the limit of infinite chain length. However, a stringent analysis of the
changes in dimensionality as well as shape has not been undertaken. In this study we
focus on three points: Firstly, the changes in the dimensions characterized by the radius
of gyration and the mean square ring diameter induced by the existence of a second ring
are investigated. We carefully analyze whether the scaling exponent v is different in the
limit of infinite chain length N — oco. Secondly, we ask whether rings in a catenated
or bonded topology display a different shape than their linear counterparts. In contrast
to Sikorski’s conjecture, we find pronounced differences in the shape of isolated rings
compared to catenated or bonded rings even in the limit of large chain length. Finally,
especially with respect to the biological systems, we ask the question of whether such a
two-ring system is able intermingle freely or whether there is a tendency to segregate.
Comparison with corresponding linear counterparts provides us with evidence that indeed
topological constraints and looping lead to a more ordered and compartmentalized state.

This chapter is organized as follows: In the next section (~ 8.2) we describe the
simulation method as well as the sampling procedure. We then present results for the
dimensions of isolated rings as well as the two-ring topologies studied in section 8.3.1.
Afterwards, the influence of the topological constraints on the shape of the rings is inves-
tigated (~ 8.3.2). In the last two sections, we elaborate on their tendency to intermingle
or segregate (n 8.3.3) as well as their mutual alignment (~ 8.3.4).

8.2 The computational model

To investigate the influence of topology on the properties of ring polymers, a model system
of two ring conformations is simulated in a fixed topological state with excluded volume
interactions. The topologies studied are displayed in Figure 8.1. Dimensionality and shape
of isolated rings (Fig. 8.1A) are calculated as a reference. The catenane topology is studied
using the two simplest link types: First, the Hopf link with a Gauss linking number ¢ =1,
i.e. chain 1 passes through the surface of chain 2 exactly once (Fig. 8.1B). Secondly, double
catenated rings with a Gauss linking number ® = 2 (Fig. 8.1C). It is to be stressed at this
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catenated double catenated
isolated ring linking number 1 linking number 2
bonded ring-linear linear-linear (star)
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Figure 8.1: Different ring topologies used in this study. Isolated rings (A) are used as
the reference ensemble. Two types of linked two-ring conformations are studied: Catenated rings
with a Hopf link (B), i.e. the simplest non-trivial link type with Gauss linking number ® = 1, and
double catenated rings with ® = 2 (C). Rings without catenation, but with two monomers bonded
to each other are studied (D). Ring-linear (E) and star-shaped linear-linear (F) conformations are
simulated for purposes of comparison.

point that we do not sample the complete ensemble of rings with Gauss linking number
one or two, as the correspondence of linking number and link topology is not one-to-one.
Rather we sample the specific link types shown in Fig. 8.1 as we are interested in the
influence of the topological constraints rather than the properties of the Gauss linking
number. Non-catenated rings with ® = 0 are set up such that they are connected at one
point, this connection persisting during the time of simulations (Fig. 8.1D). To deepen
the insight into entropic and topological effects of ring closure, we study the behavior of
bonded non-catenated chains where one or both rings are cut to make a ring-linear or
linear-linear star-shaped system (Fig. 8.1E and F).

8.2.1 The Monte Carlo algorithm

To simulate ring polymers we use a coarse-grained lattice Monte Carlo method [111].
Simulations are performed on a lattice in order to simplify the handling of excluded volume.
Calculation of excluded volume interactions is thereby reduced to checking whether one
lattice site is already occupied or not. In general, our lattice algorithm should fulfill the
following three criteria: (i) it produces unbiased results, i.e. each possible conformation
out of the ensemble is sampled with equal probability, (ii) it takes into account excluded
volume interactions, i.e. two monomers are not allowed to occupy the same region in space
and (iii) using some restrictions on the moves and bond vectors it ensures that no bond
crossings can occur during a Monte Carlo step, i.e. it preserves the topological state of
the conformation.

Several lattice algorithms have been used in the past to study polymer conformations.
The Verdier-Stockmayer algorithm [85] assumes each monomer to reside on a vertex of a
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Figure 8.2: Illustration of the bond
fluctuation model. Each monomer
sits in the center of a unit cube (large
sphere), rendering all of its eight ver-
tices occupied (small spheres). Bond
vectors are allowed to fluctuate with
a maximum distance of b = v/10.

simple cubic lattice. Beads along the chain are connected by a linker with a fixed length
b of one lattice unit. Several local moves can be applied, including kink, crankshaft and
end rotation moves. The Verdier-Stockmayer algorithm has several drawbacks. Amongst
others, he is non-ergodic [110] and angles between neighboring bonds are restricted to 90°
or 180°. To overcome these problems and at the same time maintaining the advantages of
a lattice model, the bond fluctuation method has been introduced by Carmesin [155]. It
has been successfully applied to several studies on the static and dynamical properties of
polymer systems [156, 113, 147, 149].

In the bond fluctuation algorithm, each monomer resides in the center of a unit cube,
blocking all its eight vertices to be occupied by other monomers (Figure 8.2). Thus, the
implementation of excluded volume effects reduces to checking whether one of the vertices
belonging to a monomer position is already occupied or not. Clearly, the minimum bond
length is b = 2 lattice units. However, the bond length is allowed to fluctuate in a certain
range 2 < b < byax. Care has to be taken concerning the preservation of topology, which is
important here as we would like to investigate effects of topological constraints. However,
a fixed topology is accomplished automatically by putting restrictions on the allowed bond
vectors and moves. In order to resemble the dynamics of real polymers, only local motion
is applied where one monomer is moved at a time step maximally to one of its six nearest
neighbors, i.e. the change in distance is r € {0, +1}. To ensure that no bond-crossings can
occur during one local move without checking it manually every time, certain constraints
are imposed on the allowed bond vectors. Indeed, it can be shown [156] that using an
allowed set B of 108 bond vectors topology is automatically preserved. The set of vectors
we use in our simulation are

B=1{(2,0,0),(21,0),(2,1,1),(2,2,1),(3,0,0), (3,1,0)+

permutations + sign combinations}. (8.3)
Clearly, using this set of vectors, the allowed bond length is restricted to
be {2, V5, \/6,3,\/10} . (8.4)

The chain is propagated via the Metropolis Monte Carlo algorithm [111], i.e. a new
conformation is proposed and accepted with a probability of min {1,exp(—FdU)}. The
proposal of a new conformation is based on randomly selecting one monomer, followed
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Figure 8.3: Initial conformations for the Monte Carlo algorithm. Isolated rings (A) are
positioned as a square in the zy-plane, if the chain is too large to fit into the given lattice, small
humps in the z-direction are created (B). Simple catenated rings (C) are positioned perpendicular
to each other such that one ring goes through the surface of the path created by the second ring.
Bonded rings (D) are set up both as rectangles in the zy-plane, the z-coordinate differing by 2.
Between two monomers (marked blue), a bond b = (0,0, 2) is created.

by randomly selecting one of the nearest neighbors’ positions on the lattice. The energy
calculation of our athermal simulations is quite easy: If the lattice site is already occupied,
or one of the two bond vectors does not belong to the set B of allowed bond vectors, the
change in energy is U = 400 and the proposed conformation is rejected, otherwise the
change in energy is U = 0, resulting in an acceptance of the new conformation. In the
following, one Monte Carlo step (1 MCS) is defined as the number of attempted moves,
where on average each monomer has performed one trial move.

The basic source template for the program has been kindly provided by Wolfgang Paul
written in Fortran. During my PhD I have rewritten the program using C++, allowing
for a high degree of flexibility. Especially, bonds between two monomers can be arbitrarily
added and removed during the simulation run, each monomer can have several bonds
attached to it and bonds can exist between any two monomers even on different chains.
In this chapter, bonds are fixed by the start configuration and not modified during the
simulation. For isolated rings (Fig. 8.1A), each monomer has two bonds attaching it to
its nearest neighbors along the chain. The bonded topology (Fig. 8.1D) is implemented
by each monomer being connected to its neighbors along the chain. On top, a bond is
created between two monomers residing on different chains. Clearly, this bond obeys the
same rules as any other, i.e. it is restricted to the set B of bond vectors.

8.2.2 Data acquisition and autocorrelation times
The linear dimension of the simulation box is chosen between L = 256 and L = 800,

gyr
periodic boundary conditions are used, the algorithm keeps track of unfolded coordinates
so that the monomer can diffuse freely through space. The choice of the size of the
simulation box is guided by the attempt to minimize the probability that monomers which
are far apart in terms of unfolded coordinates touch each other inside the simulation
box, while at the same time keeping the effort in memory usage during the simulation
reasonable. By using this method, the chains do not feel the simulation box nor the
periodic boundaries.

As the topology cannot be changed during the simulation run, the initial conformation

ensuring L to be larger than the typical size of the polymer, L > ,/<R2 > Although
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Figure 8.4: Autocorrelation analysis of ring polymers. A. This panel shows the autocor-
relation function C(t) [eq. (8.6)] for isolated ring polymers of length N = 256. B. The integrated
autocorrelation time 7;,:(T) depending on the cut-off time T of the autocorrelation function C(t)
in panel A. The grey line marks the autocorrelation time 7;,; where the break condition eq. (8.9)
is fulfilled. C. This panel displays the integrated autocorrelation times 7;,; vs. chain length N for
the ring topologies studied. The data is shown in a log-log plot to highlight the scaling behavior
Tint ~ N? for large chain lengths N.

has to be set up with the correct topology. We demand isolated rings to be unknotted,
while simple catenated rings have to pass through each others surface spanned by their
paths exactly once. The initial conformation for isolated chains is set up as a rectangle
in the zy-plane as shown in Figure 8.3A; if the chain length is too large with respect to
the lattice size, small humps in the z-direction of two monomers are created (Fig. 8.3B).
For the simple catenated ring conformations, the second ring is positioned perpendicularly
to the first one and shifted by 2 lattice units, as shown in Figure 8.3C. Similarly, double
catenated rings are created. In case of non-catenated bonded rings, two rings are set up
comparable to the isolated case at different z-values and connected at one site (Fig. 8.3D).

As the simulation method applied here only implements local moves, one conformation
emerging from another by propagating it one Monte Carlo step differs only slightly; in other
words, both conformations are highly correlated. In order to obtain uncorrelated samples
of ring conformations, a certain number of Monte Carlo steps have to be performed, given
by the autocorrelation or relaxation time 7;,; [110]. We approximate 7 by calculating the
autocorrelation function C(t) of the squared radius of gyration A(t) = ngr(t) from the
simulation data,

K-t

R(t) = ﬁ (A(i+t) — (A)) (A7) — (4)) (8.5)
=0

ci) = g((é)) (8.6)

Here K denotes the number of Monte Carlo steps performed, C(t) gives the correlation
factor of two conformations being separated by ¢ time steps along the Markov chain gen-
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erated by the Monte Carlo algorithm. From the autocorrelation function, the integrated
autocorrelation time 7;,; is calculated. It is generally defined as

Tint =

N | —

+ i o(t) (8.7)
t=1

As simulations do not run up to infinite time, an approximation becomes necessary. Here,
we apply Sokal’s windowing procedure [157]: First, the integrated autocorrelation time is
calculated up to a certain cutoff T,

T
Ft(T) =+ Y C(t) (8.8)
t=1

N |

Then, the smallest integer T™ is determined which fulfills the criterion

T > 10 74 (T) (8.9)
Finally, the integrated autocorrelation time for the observable A(t) is defined as

Tint = Tint(T™) (8.10)

For this method to be applicable, sufficient data has to be available, meaning K = 10007;,;.
Although, in principle, the integrated autocorrelation time has to be calculated for the
(unknown) slowest relaxation mode in the system [110], we use the radius of gyration as
a measure of relaxation time following the approach from various publications [147, 149].

The integrated autocorrelation time is related to the statistical error of measurements,
27int being the factor by which the variance of the observable A(t) is larger than it would
be if the conformations were completely decorrelated. For other observables B(t), such a
simple relation can not be established. In what follows, the statistical errors are calculated
based on considering two subsequent conformations as independent after 57;,; MCS.

The autocorrelation function C(t) is shown exemplarily for isolated rings of length
N = 256 in Figure 8.4A. Clearly, the autocorrelation function displays an exponential
decay. The function of integrated autocorrelation times 7;,:(71") with cutoff T' [eq. (8.8)],
is shown in Figure 8.4B. The grey line represents the integrated autocorrelation time 7y,
determined by the break condition eq. (8.9). The autocorrelation times are displayed in
panel C for various chain lengths and topologies in a log-log plot. Autocorrelation times
increase quadraticly in the chain length, 7 ~ a/N2, the scaling constant being a ~ 2.01 for
isolated rings and a ~ 2.54 for simple catenated rings.

Simulations are performed with chain lengths ranging from N = 32 up to N = 2048.
For each chain length and topology, 8 000 to 80 000 independent conformations were cre-
ated.

8.3 Results

8.3.1 Catenation and bonding influences ring dimensions slightly

While the dimensions of linear polymers are often characterized by the mean squared
end-to-end distance (R?), which exhibits the well-known scaling law (R2) ~ N2V this is
obviously not a good measure for the size of a ring polymer, where end points are not
defined at all. Instead, one can characterize the dimensions of a ring polymer by the mean
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Table 8.1: Scaling exponents v for the mean

. . . . type 21 Vo
squared radius of gyration and ring diame-
ter. The scaling exponents have been de- isolated 0.601(1) 0.596(1)
termined by a fit to (R;,.) = b*’N?" and catenated 0.592(1)  0.5871(3)
(d*) = b>N?”2 using the least-squares algo- ~double catenated  0.594(1) 0.594(1)
rithm. Errors represent the asymptotic stan-  ponded 0. 598(1) 0. 595(1)

dard error of the fit.

square ring diameter <d2> which is defined by the average squared distance between two
monomers separated by N/2 monomers along the contour of the chain

0 11 N .
<d > - Ic| N ZZ I ciinye —ri II7 - (8.11)

ceC i=1

Here C denotes the set of sampled conformations, and r$ denote the coordinates of the it

2
gyr

as a characterization of the length scale, both for rings as well as self-avoiding walks.
It has been shown in several studies, that isolated self-avoiding ring polymers follow a

monomer in conformation ¢ € C. Furthermore, the radius of gyration <R > can be used

similar scaling law as linear polymers both for the radius of gyration <R§yr> as well as for
the ring diameter (d?),

() (),
The index 7 denotes an average over the ensemble of isolated chains. Sikorski [154] deter-
mined the scaling exponent for the radius of gyration to v = 0.587. Similar results were
found by Brown et al. [146] (v = 0.585) and Miller et al. [147] (v = 0.595). The exponents
for the mean square ring diameter are differing only slightly in these studies: v = 0.59
(Sikorski), v = 0.585 (Brown), v = 0.605 (Miller). Within the errors of the simulations,
these results show that isolated polymer rings have the same scaling exponent as linear
self-avoiding polymers.

Furthermore, Sikorski in his paper [154], analyzed these quantities for one ring con-
catenated with a second ring. His data shows that even catenated rings (® = 1) obey
a scaling law with scaling exponents v = 0.591 £ 0.002 for the radius of gyration and
v = 0.587 + 0.002 for the ring diameter, suggesting that the scaling exponents are equal
within the statistical errors. However, an analysis for the limit N — oo has not been
performed.

Here, we determine the scaling exponents v for the above mentioned topologies and
carry out a finite-size analysis to see whether the scaling exponents differ in the limit of

infinite chain length N. Figures 8.5A and B show the radius of gyration <R§yr> and the

ring diameter (d?) for chains of length up to N = 2048 in a logarithmic plot. Consistent
with other studies, we find exponents of ¥ = 0.601(1) for the radius of gyration and
v = 0.596(1) for the mean square ring diameter of single rings. For simple catenated rings
parameter fitting yields v = 0.592(1) for the radius of gyration and v = 0.5871(3) for
the ring diameter. Error estimates of the fitting parameters are based on the asymptotic
standard errors resulting from a least-squares fit using the gnuplot software (version 4.2).
Scaling exponents including other topologies are summarized in table 8.1.

It has been shown [149] that the topological constraint of non-catenation induces a
change in the scaling law from the self-avoiding walk to a globular state in a melt of
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Figure 8.5: Dimensions of ring polymers. A. and B. Log-log plots of the mean squared
radius of gyration (R2 ) (solid line) and the mean square ring diameter (d®) (dashed line) in
dependence of chain length N. Results are presented for isolated rings (solid circles), single cate-
nated rings (open circles), double catenated rings (open squares) and non-catenated bonded rings
(solid squares); separation in two figures is done for reasons of readability. Lines represent a fit

to the scaling law (-) = b2N?. C. and D. The mean squared radius of gyration <R§yr> and

ring diameter <d2> with the leading order term N?¥ of the self-avoiding walk behavior v = 0.588
divided out. In all cases standard errors are smaller than the point size.

polymers. To analyze whether the scaling exponent of a ring linked or bonded to a second
ring is actually equal in the limit of large chains, we analyze the swelling factor s,

s = <R§yr>t / <R§y,>i . (8.12)

Here (-); denotes an average over the ensemble of isolated rings, whereas (-), designates
the ensemble average over one of the two-ring topologies, i.e. catenated (® = 1), double
catenated (® = 2) or bonded (® = 0). In case of the scaling exponents being unequal,
the swelling factor would scale with s ~ N%, v # 0, thus displaying either convergence
to zero or divergence to infinity in the limit N — oo. The swelling factor is shown in
Figure 8.6 versus the inverse chain length to allow for extrapolation. We find that for
all two-ring topologies studied, the swelling factor s adopts a constant and finite value
in the limit of large chain lengths. Clearly, no divergence to infinity or convergence to
zero can be found. To obtain an estimate for the swelling factor in the large chain limit,
we perform a crude linear extrapolation assuming that in first order finite-size corrections
scale as s ~ O(1/N). We find that catenated and double catenated rings are swollen by
a factor of about 10% compared to isolated chains (catenated rings: s = 1.105(2), double
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Figure 8.6: Swelling of ring polymers in the presence of a second one.. Shown is

the swelling factor s = <R3yr> . / <R§yr>i between the mean squared radius of gyration of a ring

topologically constrained to a second ring (index ¢) and isolated rings (index ). The figure reveals
that catenated rings forming the Hopf link and double catenated rings are more swollen compared
to isolated chains by about 10%, the effect being smaller but existent for bonded rings. Data is
plotted versus the inverse chain length 1/N to allow for an extrapolation to N — oco. Such an
extrapolation results in finite values of the swelling factor s, indicating that the scaling exponents
of isolated rings and rings within a two-chain system display the same scaling exponent.

catenated rings: s = 1.090(1)). Bonded rings are smaller, their size being only about 3%
larger than isolated rings (s = 1.028(2)).

We conclude that changes in dimensionality are not as drastic by the introduction
of topological constraints as a different scaling exponent would induce. Nevertheless the
effective segment length b (the prefactor of the scaling law) becomes larger in the presence
of a second ring, thus the ring is swollen by a constant factor in comparison to isolated
chains. Comparison of the swelling factor s for bonded rings and the corresponding ring-
linear system indicates that the swelling is due to the extra material in vicinity rather
than topological constraints.

Scaling considerations suggest that both the radius of gyration and the mean square
ring diameter have to follow the same scaling law: There is only one length-scale involved
in the system, which is parameterized by the chain length and the bond length. Therefore,
the scaling exponent v has to be equal for both quantities. This can be validated by looking
at the ratio of radius of gyration to mean square ring diameter R = <R§yr> / <d2>. The
complementary quantities for linear chains are the radius of gyration and the end-to-end
distance, here the ratio <R§yT> / (R2) is a constant, which turns out to be equal to ¢ for
both the random walk as well as the self-avoiding walk polymer model [79]. The ratios R
for single and catenated rings are shown in Figure 8.7. Deviations from a constant value
are most probably due to finite-size effects, as we find R(N) — const. (N — oo) for both
single and catenated rings. Although we do not know how to correct this quantity for
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finite-size effects, for large chain length (N > 256) corrections to the limiting case seem to
be of the order of O(1/N). Linear regression yields the ratios R(N — oo) = 0.3053(2) for
isolated rings and R(N — oo) = 0.2995(3) for catenated rings. Extrapolation for double
catenated and bonded rings is more difficult, since the data shows more fluctuations, the
ratios are, however, bounded by the values for isolated and catenated rings.

8.3.2 Shape of ring polymers changes due to topological constraints

In the last section there has been given evidence that the dimensions of a ring polymer
constrained to another using the topologies in Fig. 8.1 change only with respect to the
effective segment length b and not to the scaling exponent v compared to an isolated ring,
leading only to a mild swelling of the polymer (by a factor of up to 1.10) even in the
limit of very large chains. Here, we want to analyze how the existence of a second ring
catenated or bonded to it influences the shape of this polymer. It is common to describe
the shape properties of a ring by means of the gyration tensor [158, 159]. This quantity,
represented as a 3 x 3 matrix, describes the distribution of points in space and is defined
by

1 L

Here r( is the coordinate vector of the ith monomer and the subindex denotes its Carte-
sian components. The matrix S is symmetric and positive semi-definite, thus it can be
transformed to a diagonal matrix where the three eigenvalues A\; < Ao < Az give the
squared lengths of the principal axes of gyration of the associated gyration ellipsoid. The
shape of the ellipsoid resembles the distribution of masses of the polymer containing the
monomer coordinates only in a summarized way, therefore allowing comparison between
different conformations.

The ratios of the eigenvalues (A\3) / (A1) and (A2) / (A1) indicate the deviation from a
sphere-like shape of the polymer, both having a value of unity for a sphere. It is well-known
that individual linear polymer chains display a pronounced asphericity, which shows up in



122 8. Effect of topological catenation and bonding constraints on rings and loops
A 14 ] ' ] 14 F T T T ]
= isolated rings —e—i = double-catenated rings —a—
< 12t catenated rings —e—i < 12t bonded rings —a—
~ Y\ — ~ Y\
o 10 |+ 0o © e B o 10 + B
~ 3 oo o . L i ~ g | Wy = 9 ] &
6} 1 - 6F .
< L e 4 < L i
T Y emsss o o T Y me ew ] @
S 1 £ 77 I
O 1 1 O 1 1 1
0 0.01 0.02 0.03 0.04 0 0.002 0.004 0.006 0.008
1/N 1/N
B / /
1.2 0.8 T 0.6
1L o 3 double catenated bonded
J ogl L¥et | 0OF d 04|
0.6 % o o 0.4 Fit-§3._
|~ e ] o o SIASED S .
& 8'3 = & o2 f@E-we-§o g 02 xhi,“ ¥
I catenated | [ -Dp-- 2
0 L 0 L 0 L
0 0.004 0.008 0 0.004 0.008 0 0.004 0.008
1/N 1/N 1/N

Figure 8.8: Changes in shape of two-ring conformations. A. The ratios of the average
eigenvalues (A3) /(A1) and (\2) / (A1) of the gyration tensor for single (closed circles) rings, cate-
nated rings (open circles, linking number ® = 1), double catenated rings (open squares, linking
number ¢ = 2) and rings bonded to each other (solid squares). Ratios show distinct differences
from linear chains (self-avoiding walk, dashed grey line), however differences between isolated rings
and rings catenated or bonded to a second one are more subtle. B. This panel shows the dif-
ference between the eigenvalue ratios of a ring in a two-chain conformation and isolated rings
Ap = (M), /M)y — (Me); / (M1); (B = 2,3). Ag is represented by solid diamonds, Ay by open
diamonds. The plots reveal that the shape of isolated and catenated or bonded rings is different
even in the limit of infinite chains.
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Table 8.2: Shape of ring polymers. The shape is characterized by the asphericity A, prolate-
ness P and the eigenvalue ratios (A3) : (A2) : (A1) of the gyration tensor extrapolated to N — oo.
Extrapolation has been conducted by a linear fit to the data displayed in Fig. 8.8A for chains
longer than N = 128. Fitting was done using the least-squares algorithm in gnuplot (version 4.2),
errors indicate the asymptotic standard error of the fit.

type (/\3> : <)\2> : (/\1> A P

isolated 8.23(2) : 3.22(2) : 1 0.2559(3)  0.451(2)
catenated 8.87(3) : 3.56(2) : 1 0.2602(3) 0.416(3)
double catenated 8.66(2) : 3.46(1) : 1 0.258(1) 0.424(3)
bonded 8.46(2) : 3.31(1) : 1 0.2592(3)  0.416(2)

(A3) : (Ag) 1 (M) — 12:2.7:1 (random walk)
(A3) : (Ag) 1 (M) — 14:298:1 (self-avoiding walk)

We determined the eigenvalue ratios for isolated, simple and double catenated ring
polymers and bonded rings in dependency of their chain length. Results in Figure 8.8A
show that isolated ring polymers are more spherical than their linear counterparts, in
agreement with simulations in Ref. [139]. In fact, this result does not come as a big
surprise: One would recover the linear chain result if the ring was collapsed to a linear
polymer with two strands aligned parallel to each other. However, this is only one possible
conformation and the ring has much more entropic degrees of freedom, all of them having
a less pronounced asymmetry. While the deviations between self-avoiding walks and rings
are large concerning the elongation of the polymer, differences in shape of isolated rings
and the two-ring topologies studied are more subtle. In fact, we find differences between
isolated rings compared to their counterparts in a two-ring system; the question of whether
these differences remain in the infinite chain limit, however, cannot be answered from
Figure 8.8A. Therefore a thorough extrapolation to the infinite chain limit is conducted in
Figure 8.8B for the three topologies under investigation. The figures show the difference
in the eigenvalue ratios compared to the isolated case,

Ap =)y /M)y = (M) /(A1) (B =2,3). (8.14)

Data is plotted against the inverse chain length 1/N to allow for an extrapolation to the
infinite chain limit. Linear extrapolation to N — oo indeed indicates that the difference
does not vanish for either of the topologies studied, hence the shape of an isolated ring is
significantly different to that of a ring topologically constrained to another.

A crude linear extrapolation of the eigenvalue ratios for single rings yields

(As) /(A1) — 8.23+0.02 (N — o0) (8.15)
(A2) /(M) — 3224002 (N — o0) (8.16)

These results differ slightly from data of Bishop et al. [139], where ratios of 7.76 : 3.10 :
1.00 were reported for isolated rings with excluded volume. Although this study applied
off-lattice simulations, the maximum chain length N = 64 might still be in a regime where
finite-size effects are observable.
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For catenated rings with linking number ® = 1 we obtain the ratios
(A3) : (A2) : (A1) — 8.87(3) : 3.56(2) : 1 (8.17)

A list with the ratios for double catenated rings and bonded rings is given in table 8.2.

Other publications [160, 158] use different measures for the shape of the gyration tensor.
Two of these measures are the asphericity A and the prolateness P. The asphericity value
displays deviations from the sphere-like shape of the polymer and is defined by

()\1 — )\2)2 + ()\1 — /\3)2 + (/\2 — )\3)2.

A =

(8.18)

For a rod-like shape of the gyration ellipsoid we find A = 1, while for a sphere-like
shape A = 0. The prolateness is given by

(201 — A2 — Ag)(2X2 — A1 — A3)(2A3 — A1 — A2)

P(A, Ao, A3) =
(A1, A2, A3) 2002 + A3+ 22 — Ao — Aids — Aa3)3/2

(8.19)

A positive value of P indicates a prolate shape of the gyration ellipsoid, a negative
value an oblate shape.

Prolateness and asphericity for isolated and simple catenated rings with up to N =
2048 monomers are shown in Figure 8.9. We find that the asphericity is larger for catenated
rings than for isolated rings, even in the limit of infinite chain length. Extrapolation to
N — oo yields A = 0.2559(3) for single rings and A = 0.2602(3) for catenated rings. The
result for single rings is in agreement with earlier studies [160, 158]. The prolateness is
smaller for catenated rings, but the inset of Figure 8.9 shows that differences remain even
in the limit N — oo. Linear extrapolation to N — oo yields P = 0.451(2) for isolated
rings and P = 0.416(3) for catenated rings. The values for other topologies are displayed
in table 8.2.

8.3.3 Ring structure induces entropy-driven segregation

Of major interest concerning the benefit of loop formation in proteins, DNA or chromatin
is the influence of the imposed topological constraint on the relative positioning of the
two polymers, i.e. the entropic effect of the ring structure. Catenation, for example,
sets a constraint on the maximal distance between the centers of mass of the two rings.
Intuitively, a large center-of-mass separation strongly restricts the number of accessible
conformations and therefore seems entropically unfavorable. A complete mixing of both
rings might be possible, which would also agree with the finding that catenated rings
are swollen compared to isolated ones. Similar behavior can be expected in case of non-
catenated rings bonded to each other.

Information about the segregation of the two ring polymers is given by the average

distance between the centers of mass of both rings. Let Ry, = 1/<R§yr> be the root

mean squared radius of gyration of ring 1, measuring the average distance between two
monomers on ring 1. If the chains intermingle completely, the average distance between
the centers of mass Acy given in units of the radius of gyration should be equal to unity.
However, if the rings tend to segregate, this quantity should be above unity. We first
looked at this quantity with respect to the constraint of catenation both for the case of
the Hopf link (® = 1) and the case of linking number ® = 2. We find from Figure 8.10A
that the center of mass r}; a of ring 1 is indeed positioned more distant than one radius
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Figure 8.10: Segregation of ring polymers. A. Influence of the catenation constraints with
linking number ® = 1,2 on the average distance A s between the centers of mass. Shown is data
for rings with a single link and a double link versus inverse chain length. The distances are given

relative to the radius of gyration Rgy,, = <R3yr> of one ring. Data shows that the two rings

have a tendency to segregate, which becomes stronger for larger chains. B. Influence of the ring
shape on non-catenated polymers bonded to each other. Shown is the average distance between
the centers of mass in relation to inverse chain length for a system consisting of two rings (solid
square), a ring bonded to a linear polymer (open triangles) and two linear chains(solid triangles).
Data is scaled with the radius of gyration of one ring (or one linear chain in case of the linear-linear
system). Segregation is markedly stronger for the system consisting of two rings.

of gyration Ry, from that of ring 2. Thus, the two rings are not completely overlapping
but segregate to some extend, the tendency becoming even stronger the larger the chain
length N. The question of whether the normalized distance approaches a constant value
or diverges to infinity cannot be answered from the data. Increasing the linking number
between two ring polymers forces them to be closer together, thus double catenated rings
display a smaller center-of-mass separation in relation to size (Fig. 8.10A), which however
shows a steep ascent in the long chain limit. These findings can well be explained by fixed
catenation topology: Consider two phantom ring polymers, which are brought in close
proximity. The probability of having a large linking number increases with chain length.
Thus, the probability for linking number 1 and 2 decreases, making short center-of-mass
separations unlikely in the ensemble constrained to simple catenation or double catenation.

The biological problem of chromatin folding and the effect of chromatin loops on segre-
gation can be investigated most clearly by looking at the non-catenated bonded topology
(Fig. 8.1D). In order to highlight the effect of loops, we compare this system to both the
case of a linear polymer bonded to a ring (Fig. 8.1E) and two linear polymers bonded to
each other at the central monomer (Fig. 8.1F). The center-of-mass separation is shown in
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Fig. 8.10B. As in the case of catenated rings, the center-of-mass distance is scaled with the
radius of gyration Ry, of one single ring, in case of the linear-linear system with the radius
of gyration of one linear chain. We find that the segregation of the ring-ring system is
much stronger than the ring-linear and linear-linear system. The two last mentioned sys-
tems do not have the non-catenation constraints, i.e. the accessible configurational space
is larger at short center-of-mass separations. In fact, the linear-linear system shows almost
complete intermingling, the center-of-mass separation being close to the radius of gyration
of a single chain. A general conclusion emerging from these results is that topological con-
straints imposed by looping, e.g. the non-catenation constraint, play a dominant role in
driving the segregation of close-by loops. Thus, a kind of order is induced in the system,
which cannot be accomplished by linear polymers.

By projecting the monomers to the line connecting the centers of mass we can determine
the density distribution of monomers of both chains along this line, displaying the degree
of intermingling or overlap. Figure 8.11A shows the projected line density of monomers for
a system of two catenated ring polymers along the vector connecting the centers of mass.
The data is evaluated in units of the center of mass distance, the origin being halfway
between the centers of mass. The figure shows that the polymer rings are indeed well
separated. Interestingly, as the curves for N = 128 and N = 1024 show, the overlap area
decreases with chain length. This overlap area of the two curves in Figure 8.11A is plotted
against the chain length in Figure 8.11B for the catenated systems studied. We find that
the overlap area decreases with N and reaches a constant value in the limit of N — oo
both for rings with one or two links.

Importantly, such a separation of density clouds is mediated by the looping. This can
be seen most clearly comparing two bonded rings with the corresponding ring-linear and
linear-linear systems (Fig. 8.11C). We find that the overlap area of the monomer density
distributions is significantly smaller in case of two bonded ring polymers compared to
systems with linear polymers.

8.3.4 Alignment of ring polymers

Of interest concerning the segregation of monomers is not only the center-of-mass distance,
but also the alignment of the two rings with respect to each other. Again, we turn to the
gyration ellipsoid, which yields direct information about the distribution of masses in
space. Kspecially, we study the orientation of the longest principal axes of the gyration
tensors with respect to each other. For this purpose we analyze the average angle (cos 6)
between these axes. As they are bi-directional, they force the angle 6 to be in the interval
[0,7/2]. We find that the gyration tensors are not independently oriented with respect
to each other, which would correspond to an average angle between the main axes of
(cos@) = 0.5. In fact, the gyration ellipsoids tend to collocate in a more perpendicular
orientation (Figure 8.12) for all two-ring topologies studied. Linear extrapolation to N —
oo yields (cosf) = 0.466(1) (0 ~ 62.2°) for catenated rings, (cosf) = 0.477(1) (0 =~
61.5°) for double catenated rings and (cos#) = 0.491(2) (6 ~ 60.6°) for bonded rings.
Intuitively, one could expect that if there is a repulsion between the two rings due to
excluded volume or topological constraints, the gyration ellipsoids would try to align in
the same orientation and separate their centers of mass such that the gyration ellipsoids
do not overlap. However, it seems that this is entropically very unfavorable due to the
catenation or bonding constraint, which prohibits a large separation of the centers of mass.
Therefore, if there is an entropic barrier preventing segregation and forcing the gyration
tensors to overlap, the perpendicular orientation minimizes the overlap area. This is
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Figure 8.11: Topology and chain length dependent overlap of rings.A. Distributions of
monomers projected onto the line connecting the centers of mass of two catenated rings (linking
number 1). The data shows the relative abundance of projected monomer positions of both rings
with respect to the axis between the centers of mass. The scale on the x-axis is given in units of
the center-of-mass distance. The origin corresponds to the point in between the centers of mass,
the grey vertical lines represent the positions of the centers of mass. Data shows that monomer
clouds of both rings are rather separated. B. This figure shows the overlap area in the graphs of
the projected monomer distributions as displayed in A for catenated (linking number 1) and double
catenated rings (linking number 2). This overlap area decreases approximately linear with inverse
chain length reaching asymptotically a constant value. C. Overlap area of projected monomer
distributions for a system of two non-catenated polymers which at their centers are bonded. The
existence of rings markedly decreases the overlap.

exactly what we observe. Furthermore, the more perpendicular orientation makes the
complete system more sphere-shaped and thus more symmetric. In agreement with this
is our finding that the angle 6oy between the vector connecting the centers of mass and
the largest principal axis of the gyration tensor of a ring is slightly smaller than expected
from a random orientation of both vectors. Extrapolation of (cosfcy) yields values of
0.580(1),0.586(1) and 0.566(1) for simple catenated, double catenated and bonded rings,
respectively. Figure 8.12B shows a typical conformation out of the ensemble of simple
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Figure 8.12: Alignment of the gyration ellipsoids with respect to each other. A. Data
at the bottom displays the average angle (cosf) between the two largest principal axes of the
gyration ellipsoid. Data at the top represents the average angle (cosfcy) between the largest
principal axis of one ring and the vector connecting the centers of mass. The grey line corresponds
to the average orientation in the case of both vectors having a random orientation. The gyration
ellipsoids of all topologies studied align on average more perpendicularly than expected by random
orientation, while their alignment w.r.t the center of mass connecting vector tends to be parallel
B. One conformation consisting of two catenated rings and its gyration ellipsoids drawn out of the
ensemble. The example conformation visualizes (i) the segregation of the two rings (the ellipsoids
are well separated), (ii) the aspherical shape of the gyration ellipsoids and (iii) their perpendicular
alignment.

catenated two-ring conformations. Both the alignment of the gyration ellipsoids as well
as the aspherical shape are visible.

To analyze the orientations of the gyration tensor in more detail, we investigated its
orientation in dependence of the center of mass separation. The average angle (cos#) be-
tween the two largest principal axes of the gyration ellipsoids is shown in Figure 8.13 for
simple and double catenated rings. The closer the centers of mass are the more perpendic-
ular the ellipsoids. For large separations, the orientation approaches a parallel alignment:
The centers of mass are separated to such an extend that the gyration tensors have to
align in a row in the same direction due to the catenation constraint. For double catenated
rings, the tendency is not so clear due to insufficient statistics: a linking number of two
becomes very unlikely for large separations. Simple catenated rings display a point at in-
termediate distances r ~ 2R, where the two driving forces — minimization of overlap and
catenation constraint — are in balance such that the average angle is close to the random
orientation value.

8.4 Conclusions

In this chapter we have studied the influence of topological catenation and bonding con-
straints on the conformational properties of ring polymers using three different topolo-
gies: simple catenated (linking number 1), double catenated (linking number 2) and non-
catenated bonded rings. In particular, we were interested in the question of whether the
dimensions and the shape change compared to isolated rings. More importantly, we inves-
tigated the positioning and alignment of the two rings with respect to each other to detect
whether there is an entropic repulsion which can lead to a segregation of the polymers.
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Figure 8.13: Orientation of the gyration ellipsoids in dependence of CM separation.
A. Shown is the average angle (cos 8) between the largest principal axes of the gyration ellipsoid of
both simple catenated rings (linking number 1) and double catenated rings (linking number 2) in
dependence of their center-of-mass distance. The chain length is N = 1024. At small separations,
the alignment is preferably perpendicular, while for large separations, alignment becomes more
and more parallel. B. Two conformations with different center-of-mass separation and simple
catenation. The left catenated rings have a CM separation of r = 3.11R,, the right ones of
r=0.13R,.

We find that the size of a ring topologically constrained to another ring is more swollen
compared to isolated rings, the swelling factor in the infinite chain limit N — oo being
about 1.10 for catenanes and 1.03 for bonded rings (Figure 8.6). However no indication was
found in the regime of chain lengths studied here that the scaling exponents are different
from the case isolated rings, where the scaling exponent is close to the self-avoiding walk
value of v =~ 0.588.

While dimensions of the ring polymers only change by a constant factor, the effective
bond length b, the shape of catenated or bonded rings differs substantially, a finding which
is in contrast to the conjecture put forward by Sikorski [154]. This is shown for the ratios of
the gyration tensors eigenvalues (Figure 8.8). These ratios are generally smaller for rings
compared to their linear counterparts, the shape being still markedly prolate. However, the
prolongation is stronger for a catenated or bonded ring than for isolated rings (table 8.2).
This difference also shows up in the measures of asphericity A and prolateness P, which
are commonly used shape parameters [158].

The change in shape of one ring in the system of two topologically constrained rings
already indicates an entropic effect of the fixed topology. We have analyzed whether
rings tend to segregate, arranging themselves into distinct spatial territories, or if they
can intermingle freely. We found that for catenanes with small linking numbers, there is
a strong tendency towards segregation, which shows up in the separation of the centers
of mass compared to the radius of gyration of a single chain (Figure 8.10A) and in the
density distribution of monomers along the center of mass (Figure 8.11A). The segrega-
tion is even more pronounced for longer chains driven by the tendency to create more
complicated links at short separations. Interestingly, non-catenated bonded rings show
a markedly stronger segregation than bonded linear chains, revealing the importance of
the ring closure on segregation. These effects also become visible in the alignment of
the gyration ellipsoids. We found a tendency to align more perpendicular than expected
from a random orientation (8.12). Presumably, such an orientation minimizes the overlap
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between the monomers of different chains and bypasses the prohibited formation of more
complicated links. As a large center-of-mass separation is entropically unfavorable and
therefore the chains have to stay quite close, the perpendicular alignment has a smaller
overlap volume than a parallel alignment.

Our findings have several biological implications for catenated DNA [151], proteins [152]
and chromatin folding [12]. Generally speaking, simple and double catenated polymers
adopt a more aligned and segregated structure. Ring polymers in proximity — which is
achieved here by creating a bond between them — have a strong tendency to segregate,
inducing a kind of order in the system which cannot be accomplished by linear polymers.
It is well-known that compartmentalization is important for maintaining life. Both the
plasma membrane as well as the nuclear membrane provide such compartments. The
tendency of two ring polymers to minimize the overlap volume gives a simple explana-
tion for experimental findings showing that whole chromosomes as well as regions within
chromosomes of eukaryotic cells segregate into distinct compartments of the nucleus [6].
While it has been shown experimentally that chromatin loops are an ubiquitous feature
of chromatin organization, this study gives evidence that loops not only play a dominant
role in transcriptional regulation but are also key factors in keeping chromatin domains
and whole chromosomes segregated by means of entropic and topological interactions.

The findings of this study have several biological implications for catenated DNA [151]
and proteins [152]. Similar effects might be expected for chromatin folding, although the
chromatin fiber has a much more complex topology [117, 12]. Generally speaking, simple
and double catenated polymers adopt a more aligned and segregated structure. Ring
polymers in proximity — which is achieved here by creating a bond between them — have
a strong tendency to segregate, inducing a kind of order in the system which cannot be
accomplished by linear polymers. It is well-known that compartmentalization is important
for maintaining life in higher eukaryotes, both the plasma membrane as well as the nuclear
membrane providing such compartments. Although the detailed topology of chromatin is
not known, chromatin loops have been shown to play a dominant role in transcriptional
regulation [20]. Several studies have indicated a strong effect of looping on the observed
segregation of chromosomes, partly studied by a model of ring polymers [35, 161, 162].
While we would expect the influence of looping to become stronger in presence of multiple
loops as found in transcription factories [70], it remains to be shown to what extend the
segregation and alignment of ring polymers observed in the present study also apply to
a more complex model of chromatin. Expecting that the effects are even stronger in the
presence of several loops, the results would imply that loops not only play a dominant role
in transcriptional regulation but are also key factors in keeping chromatin domains and
whole chromosomes segregated by means of entropic and topological interactions.
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Chapter Summary

Chromatin looping is a major epigenetic regulatory mechanism in higher eukaryotes. Be-
sides its role in transcriptional regulation, chromatin loops have been proposed to play
a pivotal role in the segregation of entire chromosomes. The detailed topological and
entropic forces between loops still remain elusive. Here, we quantitatively determine the
potential of mean force between the centers of mass of two ring polymers, i.e. loops.
We find that the transition from a linear to a ring polymer induces a strong increase in
the entropic repulsion between these two polymers. On top, topological interactions such
as the non-catenation constraint further reduce the number of accessible conformations
of close-by ring polymers by about 50%, resulting in an additional effective repulsion.
Furthermore, the transition from linear to ring polymers displays changes in the confor-
mational and structural properties of the system. In fact, ring polymers adopt a markedly
more ordered and aligned state than linear ones. The forces and accompanying changes
in shape and alignment between ring polymers suggest an important regulatory function
of such a topology in biopolymers. We conjecture that dynamic loop formation in chro-
matin might act as a versatile control mechanism regulating and maintaining different
local states of compaction and order.

9.1 Introduction

In chapter 8 we have investigated the conformational properties of a ring polymer which is
either catenated or bonded to another one. This system served us as a toy model to study
the effects of two rings being held close together by means of a topological constraint.
Among others, we found that such a system displays a pronounced segregation due to the
ring structure. Here, we want to conduct a quantitative analysis of the repulsive forces
acting between two ring polymers brought in close proximity.

The experimental observation of chromosome segregation has been attributed to dif-
ferent mechanisms. In principle, active ATP-consuming mechanisms might be responsible
for maintaining segregation. Rosa and Everaers [30] proposed that chromosomes are ag-
gregating into distinct compartments because of their large relaxation time, making it
impossible for them to intermingle during the time of one cell cycle. However, this study
does not explain segregation of smaller regions within chromosomes as found by Goetze
and co-workers [6]. Vettorel et al. [163] suggested that the collapsed state might be re-
sponsible for segregation: Polymer gels, where single polymers are in a collapsed state,
show no reptation, therefore intermingling between different polymers becomes practically
impossible. Recently, evidence from polymer models has indicated that chromatin loops
force such a compartmentalization already by virtue of purely entropic forces [35, 93].

While the mean squared radius of gyration <R§> of isolated ring polymers and a system
of two catenated rings [164] displays a scaling similar to that of a self-avoiding walk, where
<R§> ~ N with v ~ 0.588 [89], non-catenated rings in a melt become compact with

a scaling exponent of v = 1/3 [147, 149, 163]. In fact, chromatin organization is not
consistent with a simple melt of ring polymers. Scaling exponents found in experiments
differ a lot, ranging from v ~ 0.1 — 0.2 [109] to v = 0.5 [92], the level of compaction
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depending on gene activity [12]. Such a behaviour, howere, could well be explained by
different looping probabilities in the framework of the Random Loop model (~ chapter 7).

The purpose of this study is to deepen the understanding of the topological interactions
ring polymers exert on each other as well as the changes in their conformational properties
induced by such forces. While topological effects of rings have been considered in several
studies [165, 154, 147], the forces generated have not been quantitatively assessed. A sys-
tem of two ring polymers can be viewed as a toy system for the influence of loop formation
on chromatin folding. While the biological system is beyond doubt much more complicated
— multiple loops and the dense system of polymers playing a dominant role — the effect of
topological forces and the advantage of the ring shape for biopolymers can be highlighted
best by studying it apart from other influences. We evaluate the potential of mean force
between two ring polymers dependent on their mutual topological state to derive a quanti-
tative measure for the entropic repulsion two rings or loops exert on each other. Therefore,
Monte Carlo simulations of ring polymers with lengths of up to N = 2048 monomers are
conducted. We separate the entropic effects due to excluded volume interactions from the
topological interactions arising from the non-catenation constraint. The ring polymers’
conformational properties and their mutual alignment subjected to the topological and
entropic forces are investigated. In fact, we find that ring polymers display a markedly
stronger repulsion and adopt a more ordered state compared to linear polymers. The
findings indicate a natural benefit of rings over linear ones, leading to the conjecture that
chromatin loops not only facilitate entropy-driven segregation of chromosomes or intra-
chromosomal regions, but act as a versatile control mechanism regulating and maintaining
different states of compaction and order.

9.2 Simulations and methods

9.2.1 Effective potentials

The principle aim of this study is to investigate the potential of mean force exerted be-
tween the centers of mass of ring polymers, partly under the constraint of non-catenation.
Therefore we introduce the concept of the effective potential [166], which will be outlined
in the following paragraphs.

Consider two polymer chains. We want to measure the force which is needed to keep
the centers of mass of the two polymer chains at a certain distance rg. This force could
in principle be measured by installing a virtual spring with equilibrium elongation rg
connecting the centers of mass R; and Ry of both polymers. The force acting between
the centers of mass can then be obtained from the average elongation of the spring.

A much more efficient way to calculate the forces between polymers is accomplished via
the notion of effective interactions. The method has been used for a variety of polymer
systems, and for some even analytical approximations have been found [167, 168]. A
recommendable review is given in Ref. [166]. Here, we only present a short overview of
the underlying statistical mechanics as well as the actual algorithm applied in this study.

Let the monomer positions and momenta of the two polymers be denoted by r{* and
pY (i=1,...,N,a=1,2), respectively. a denotes the polymer chain index and i indexes
subsequently the monomers of the polymer. The properties of the system are given by the
complete Hamiltonian

N a2
H{p?} {xfh) = > Zg;n +V({ri}). (9.1)

a=1,2i=1
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For the problem of ring polymers investigated here, the interaction potential V ({r{'}) is
given by an excluded volume term and eventually by a term describing the topological
constraints.

The partition sum of the complete system is then given by

N
Z = Tt [exp(—BH)| = // T[T T drodpe exp—AH] . 9.2)

a=1,2i=1

How do we obtain the potential of mean force between the centers of mass? We have
to find an expression independent of the single monomer coordinates r; of the system.
The way of eliminating degrees of freedom mathematically is to trace out those degrees
of freedom one is not interested in — here the monomer coordinates r{ —, resulting in the
constrained partition sum with a fixed center of mass (CM) separation R,

Z.(R)=Tr [exp(—ﬁH) J (1 ir(l) _1 i\f:r(z) — R)] (9.3)
’ N N TT ‘ '

i=1

The trace denotes the integral over all momenta and monomer coordinates. Z.(R) repre-
sents the partition sum of the monomers in an external field generated by the constraint
of keeping the center-of-mass distance fixed to R.

The effective potential is now defined by the relation

exp (—OUes(R)) = Z.(R) (9-4)

The definition of the effective potential Ueg(R) is such that the non-constrained partition
sum is regained by a trace over the remaining degrees of freedom.

For purposes of calculation, however, the following representation [166, 168] of the
effective potential is more useful

Uet(R) = —kpT'In ZCZ(? (9.5)

where Z; is the partition sum of a single polymer. Equivalently, Z? may be imagined as
the partiton sum of a two-chain system whose centers of mass are infinitely far apart.

9.2.2 Monte-Carlo algorithm

The results presented in this chapter use simulations of isolated ring polymers from chap-
ter 8 with chain lengths ranging from N = 32 to N = 2048. For details on the Monte
Carlo algorithm we refer to section 8.2.

9.2.3 Calculation of the effective potential

Single ring conformations are used to calculate the average interaction energy between
two polymers by means of equation (9.5). This procedure is well-established and has been
applied in several studies [167, 168]. At first, the set of sampled conformations C is split into
two parts of equal size. Then, we randomly pick two conformations, one from each subset.
These two ring conformations are then positioned such that their centers of mass have a
certain distance r, the angular positioning in doing so is chosen randomly. In order to
ensure all monomers residing on lattice sites after shifting, a maximum distance inaccuracy
of 6r ~ 0.87 lattice units is accepted. In the next step, the interaction energy F;(r) of the
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two-ring conformation and the corresponding statistical weight W;(r) = exp(—E;/kpgT)
are calculated.
Repeating this operation for a number K of randomly selected pairs of conformations,
the effective potential at a center-of-mass distance r is then given by
K
> W
Usit(r) = —kpT In 2= Vilr)
K
The standard error of the effective potential is determined by randomly subdividing the
K two-chain conformations into M = 50 smaller subsets and calculating the effective
potential Uy, (r) for these subsets [167]. The standard error is then calculated by

(9.6)

1 M
AUcg(r) = J i > (Um(r) — Uegp(r))? (9.7)

m=1

In a first step, only taking into account excluded volume interactions, the statistical
weight W;(r) of a two-chain conformation is set to W; = 0 in case the excluded volume
condition is violated, i.e. two monomers occupy the same lattice site, and W; =1 in case
it is not.

However, care has to be taken using the bond fluctuation model. During the simulation
run it is ensured that no bond crossings can occur; this, however, is not guaranteed if we
just shift two conformations inside each other. There are two possible combinations of
bond vectors, where the excluded volume condition is not violated, but where the bonds
come into contact. Consider the two bonds spanned by the following four monomers
{(0,0,0) — (3,1,0),(1,2,0) — (2,—1,0)}. Both bond vectors (3,1,0) € B and (1,-3,0) €
B are valid and the excluded volume condition is satisfied. The second problematic case is
{(0,0,1) — (2,2,0),(0,2,0) — (2,0,1)}. As can be easily seen, the participating beads are
stuck in these positions, there is no valid move for any of the beads using the restrictions
of bond vectors the algorithm is subjected to. Therefore, during a simulation run such
a situation can never happen, assuming the start configuration is chosen properly. Here,
we test each two-chain conformation, after positioning them with their centers of mass a
given distance r apart, on such a situation. If a bond crossing occurs, a weight of W; =0
is assigned to this conformation.

In this study, we are furthermore interested in the topological state of a two-ring
conformation. We calculate the weight factor differently whether we consider a preserved
topological state or not. In the case that we force a certain topological state, we have to add
another criterion for accepting a two-chain conformation (i.e. assigning a weight W; # 0).
Two rings that are positioned at a center-of-mass distance r might be non-catenated or
catenated. Furthermore, the degree of catenation might vary (see illustrations in Fig. 8.1B
and C). We determine the topological state by a topological invariant: the “Gauss linking
number” [153]. This invariant has been used in analytical studies on interlinked rings to
keep track of a certain topology [153, 169]. It is defined by

B 1 <d1‘1 X dI‘Q,I‘l — I‘2>
o0 0) = o f f T (9.5)

The closed line integrals are evaluated along the contours of the two rings, denoted by
Cr (k = 1,2). The vector function ry = ry(s) denotes the three-dimensional coordinates
of the ring polymers, parameterized e.g. by the contour length s. Roughly speaking, this
integral counts the number of times ring 1 passes through the surface created by the closed
path of ring 2.
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Figure 9.1: Effective potential acting between the centers of mass of two self-avoiding walks.
A. This panel displays the effective potential Usaw/(r) for different chain lengths. The z-axis is
scaled by the root mean squared radius of gyration R, of isolated chains. Errors are smaller than
the point size and therefore not shown. The potential approximately has a Gaussian shape, as
expected by mean-field theory. The fit for N = 1024 is done with one adjustable parameter, the
amplitude. Residuals of the fit are shown in B and display small systematic deviations. C. Scaling
plot of the effective potential at full overlap. The effective potential Usaw (0) reaches a finite value
for large chain length as expected from scaling theory (cf. equation (9.10)).

The Gauss link invariant has the advantage that it is easy to evaluate, although it has
the disadvantage that it is not one-to-one. The “Whitehead link” [153] is one example
for a two-ring conformation having the same linking number as non-catenated rings. The
result of the integral for the Gauss link invariant is an integer for non-overlapping chains,
especially ® = 0 for non-catenated (unlinked) chains and ® = 1 for simple catenated
chains (Fig. 8.1B). We numerically evaluate this integral to classify the topological state
of a two-ring conformation and assign a weight W; = 0 for all two-ring conformation not
in the topological state we are interested in. Thereby we are able to calculate the effective
potential separately for any given topological state.

9.2.4 The effective potential of self-avoiding walks

We first recapitulate theoretical results for the effective potential between the centers
of mass of two self-avoiding walks. The study of self-avoiding walks allows an easy-to-
understand introduction to the mean field arguments used to approximate effective po-
tentials of polymer coils. Moreover, the algorithm used in this study can be validated by
comparison to results from other publications. Furthermore, we will apply the results to
relate the strength and form of the potential for linear polymers to their ring counterparts.

A simple mean field argument can be devised for the entropic repulsion of two polymer
coils with excluded volume at full overlap, i.e. with zero center-of-mass separation. It
has been first proposed by Flory and Krickbaum [170] and later been corrected in other
studies [171, 172]. Consider two polymer coils which are completely overlapping, such
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that the overlap volume is V' ~ Rg where R, is the radius of gyration of one polymer coil.
Following the arguments above, the effective potential is given by the logarithm of the
fraction of accepted two-chain conformations. The probability that both coils touch each
other can be estimated in the mean field picture as follows: Assume that the monomers of
both polymer coils are randomly smeared out over the volume V. Consider an arbitrary
monomer, say with index k, of chain A. The probability that it is in contact with any
monomer from chain B is given by p; = N?“g = na®, where a® is the volume occupied by
one monomer. The probability that chain A does not interfere with chain B is then given
by p= (1 —p1)¥ = (1 —nae®)" in this mean field picture. Thus, the effective potential
(setting kpT = 1) at full overlap is estimated to

Upk(r = 0) = =NIn(1 — na®) = =N In(1 — bN'™%) (9.9)

In fact, this simple argument is wrong [172] for the reason that monomers are not dis-
tributed randomly throughout the volume. Rather the connectivity of the chains induces
a depletion of monomers from chain B around one monomer from chain A. Scaling argu-
ments [171] show that the probability p; of one monomer of chain A being in contact with

1 /
any monomer of B is given by p; = (na®)%-1, thus p = (1 — p)V = (1 — %)V and

Ulr=0) = —Nn (1 - ]b\f) (9.10)

In the limit of infinite chain N — oo, the effective potential at full overlap approaches
a constant value in the order of kgT. Consequently, linear polymer coils with excluded
volume have a rather soft potential, allowing for a high level of mutual penetration.

As early as 1949, Flory and Krickbaum [170] devised a mean field argument for the
effective potential at any separation r. We briefly review this argument here adjusted to
our simulations. One major assumption is that the density distribution of monomers from
chain ¢ around its center of mass q; is given by some Gaussian distribution

pi(r) =N (f) ’ exp [—dg (r— qi)ﬂ (9.11)

The effective potential for a fixed center of mass distance r in an athermal solvent is
then given by

d2 % d2
U(r) = kgT N? <2> vexp <—2r2> (9.12)
™

In the following we set kg1 = 1 as our simulations are athermal. For a Gaussian chain
without excluded volume, d? = %, a value used both in Refs. [170, 173]. For chains
g9

with excluded volume, this might not be the best estimate, thus we use the value of d
obtained by a fit to the density distribution. Of course, this approximation suffers from
the same short-comings as the approximation for the effective potential at full overlap:
The polymeric coil is thought of as a cloud of independent monomers without connectivity
and thus the additional repulsion by the connectivity is not taken into account.

Results for the self-avoiding walk are displayed in Fig. 9.1. The effective potential
Usaw (r) in Fig. 9.1A reveals a decrease with growing chain length, inconsistent with the
Flory approximation in eq. (9.9) but consistent with eq. (9.10). For a chain length of
N = 1024, the data is fitted to a Gaussian distribution. The parameter d in eq. (9.12) is
obtained by a one-parameter fit to the monomer distribution around the center of mass
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Figure 9.2: Effective potential Uying(r) of ring polymers disregarding their mutual topological
state. A. This panel displays the effective potential in units of kg7 for several chain lengths.
Errorbars are not shown as they are smaller than the point size. A one-parameter Gaussian fit
for N = 1536 is performed, showing that predictions of Flory-Krickbaum theory are wrong for
ring polymers. Residuals indicate (B) that the fit is much worse than the one for linear chains
(Fig. 9.1). C. The scaling law for the effective potential at full overlap follows the theory from
eq. (9.10) allowing for a linear extrapolation to the infinite chain limit when plotting e UO)/N g
1/N. For the extrapolation, only chain lengths larger than N = 256 are used.

(see Fig. 9.3) and the only fit parameter left is the amplitude. The Gaussian distribution is
a good approximation, however, the residuals (Fig. 9.1B) of the fit display small systematic
deviations. The effective potential at full overlap is shown in a scaling plot (cf. Ref. [173])
in Fig. 9.1C. Data points are on a straight line as expected, deviations are most likely
due to lattice effects: When the two polymer coils are brought to a certain distance, the
nearest lattice site is chosen, such that the distance can deviate from the target distance
r = 0. These deviations are more pronounced the smaller N.

9.2.5 Rings have a stronger repulsion than linear polymers

Having studied the effective potential of linear self-avoiding walk polymers, we now turn
to the main subject of our investigation: ring polymers. First, we neglect topological
constraints between the two chains when bringing them in proximity. However, each
single ring obeys the topological constraint of unknottedness by virtue of the simulational
method. Thus the effective potential is given by the logarithm of the probability that
the ring conformations do not occupy at least one lattice site in common. In this case,
mean field theory predictions for ring polymers are the same as for linear polymers, as the
connectivity of the chains is neglected.

Figure 9.2A shows the effective potential Uying(r) for ring polymers without topological
constraints. Fitting the data to a Gaussian (solid black line, fit to N = 1536) yields more
pronounced deviations from the model curve than observed for a self-avoiding walk. Again
a one-parameter fit has been performed where the width of the distribution is obtained
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from the monomer density distribution around the center of mass p(r) (eq. (9.11)). Resid-
uals of the fit are displayed in Fig. 9.2B and are larger by a factor of about 5 compared
to the self-avoiding walk. Thus we find that the mean field argument of Flory fails at
some point in the description of ring polymers. One reason is that the assumption of a
Gaussian density distribution p(r) is wrong both for linear polymers with excluded vol-
ume as well as ring polymers. The density distribution for N = 1024 is shown in Fig. 9.3.
While the Gaussian approximation is reasonable for linear polymers, it fails strongly for
ring polymers. In agreement with the assumption that the underlying density distribution
is the reason for deviations from mean field theory, the effective potential at full overlap
(Fig. 9.2C) still follows the scaling law in eq. (9.10) from scaling theory. In its derivation
the contact probability was estimated by scaling theory without using the assumption of
a Gaussian monomer distribution.

Interestingly, the repulsive interactions between two ring polymers are much stronger
than for their linear counterparts of equal chain length N. The ratio Uying(r)/Usaw (r) is
displayed in Fig. 9.4 and has a value of about 3 for center of mass (CM) separations below
2R,.

9.2.6 Topological constraints induce additional repulsion

In the last section we have shown that the repulsive forces acting between two ring poly-
mers whose centers of mass are brought in close proximity are much stronger than for linear

Figure 9.4: Comparison
of the effective potentials
for ring polymers and self-
avoiding walks. The ratio
Using(r)/Usaw(r) is  plotted
against the center-of-mass
distance r. The z-axis is scaled
by the root mean squared
. radius of gyration R, of
0 0.5 1 1.5 2 2.5 3 isolated chains for reasons of
distance r/R,q comparison.

Uring(r)/Usaw(r)
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Figure 9.5: A. The effective potential U, ,(r) for non-catenated rings. B. The topological

ring

potential Uyop (r) for non-catenated rings is obtained as the difference between U§,. (r) and Uying (7).

It displays the potential arising purely from the topological non-catenation constraint. The inset
shows the maximum of the topological potential depending on the chain length N. The maxima
are obtained by a fit of Uing(r) to a third-order polynomial in the interval [0.3 : 0.7].

self-avoiding walks, the potential being about 3 times larger. This rise in strength results
from the increased density of monomers induced by the ring structure. Here we focus on
the additional effect topological constraints induce on the potential of mean force between
the polymers. Much attention has been paid to the influence of topological constraints on
ring polymers. In a recent study [164] we have analyzed the behavior of two catenated
rings. It turned out that while the dimensions of catenated rings show the same scaling
behavior than their linear counterparts, the shape changes significantly. Studies on non-
catenated and unknotted ring polymers in the melt revealed that their dimensions change
dramatically [147, 149, 163]: They behave like compact polymers with a radius of gyration
scaling with N'/3. The dominant entropic force driving this compaction stems from the
topological constraint of non-catenation. To our knowledge, a quantitative study of this
topological potential has not been considered yet. In the framework of effective interac-
tions, the topological non-catenation constraint can be included easily. As explained in
the section 9.2.3, we determine the topological state of a two-ring conformation by means
of its Gauss linking number ® (eq. (9.8)). A Gauss linking number of zero indicates the
non-catenation of the two ring polymers. To obtain the potential of mean force under the
non-catenation constraint, we calculate the fraction p of two-ring conformations with both
zero linking number and fulfilled excluded volume constraint. The effective potential is
then given by Ugng(r) = —Inp (the index 0 indicates the Gauss linking number ® = 0).
The resulting potential Uroing(r) is shown in Fig. 9.5A. We find pronounced deviations from
a Gaussian shape for small CM separations r < 1R,.

From the effective potential Ugng(r) of non-catenated rings and Uying(r) of rings with-
out topological constraints, the topological potential Uiy (r), i.e. the part of Uroing(r)
stemming purely from the non-catenation constraint, can be obtained,

Utop(r) = Ulgng(’r) - Uring(r)

The topological potential is shown in Fig. 9.5B. It has a maximum at about r/Rg ~ 0.55,
a value which basically does not change with chain length N. For larger CM separations
Utop(r) drops to zero, as less and less two-ring conformations will be catenated when
increasing r. There is also a decrease in the topological potential when going to small
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CM separations 7 < 0.5R,. This decrease becomes smaller for larger chain length N.
The reason for this behavior is that for small r (and small N), two-ring conformations
not satisfying the non-catenation constraint, often do not satisfy the excluded volume
constraint either, such that the conformations are not counted for the purely topological
interaction Uip. However, more interesting is the maximum repulsion exerted by the
non-catenation constraint. We find that the topological potential is asymptotically

Utop™ — 0.655(2)gT" (N — o0)
at /Ry ~ 0.55 (see inset of Fig. 9.5B). In numbers, this means that only about 48%
(exp(—0.65) ~ 0.52) of all two-ring conformations with fixed center-of-mass distance which
would be allowed with respect to excluded volume are actually allowed with respect to
topological constraints. In other words, only half of the two-ring conformations satisfying
the excluded volume constraint are actually accessible when the non-catenation constraint
is considered. Thus, the non-catenation constraint decreases the number of accessible
conformations at small CM separations considerably.

Interestingly, the topological interaction is of the order of magnitude of 1kgT. This
value was used for a crude estimate of the free energy of rings in a melt by Cates and
Deutsch [148], where they assumed that the free energy cost for a contact between two
rings is about 1 kT, hence in a three-dimensional melt the topological contribution to the
free energy is F' ~ kgT R3/N. Although highly simplistic, this scaling exponent v = 2/5
was later reproduced by simulational results [147]; more recent results, however, suggest
that this behavior is only a cross-over to the behavior of compact lattice animals [149].

9.2.7 Dimensions of two-ring conformations

When two polymers are brought closer and closer together, lowering the distance between
the centers of mass, not only the repulsive interaction increases dramatically. Also the
conformational properties of the polymers are affected [167] in an effort of minimizing the
free energy. Here we investigate how the dimensions of a two-ring conformation change
compared to a self-avoiding walk when approaching isolated polymers.

There are two measures of the dimensions of the chain, which, however, exhibit the
same scaling: the mean squared radius of gyration <R§> and the mean squared ring di-
ameter (d?) (see Ref. [164]). Figure 9.6A shows the root mean squared radius of gyration
Ry(r) = 1/ (Rgy(r)?) for self-avoiding walks (SAW), ring polymers without mutual topolog-
ical interactions (arbitrary linking number ®) and non-catenated rings (linking number
¢ = 0) in dependence of the scaled center-of-mass separation s = r/R,. The data are
scaled with the radius of gyration for isolated polymers R, = Ry(r = 0o) (i.e. the radius
of gyration of a polymer at infinite distance away from the second one) for reasons of
comparison. For small CM separations (r < Ry) the radius of gyration strongly increases
and its dimensions are more than 10% larger than in the isolated case. This is consistent
with the results for self-avoiding walks by Dautenhahn and Hall [167]. The increase in
dimension at separations r < R, originates from the need of the chains to create space for
the monomers of the second chain. At intermediate separations of about /R, ~ 1.5 — 2,
the radius of gyration attains a smaller value, thus the polymer effectively undergoes com-
paction. Both the compaction at intermediate separations as well as the swelling at high
overlap remain in the limit of infinite chain length. An extrapolation of the radius of
gyration at full overlap (s = 0) to N — oo shows that R,(r = 0)/R, — 1.109(1) for rings
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without topological interactions and R,(r = 0)/R, — 1.111(1) for non-catenated rings

(see Supplementary Figure 1 on page 148).

One might ask, whether this change in dimensionality is accompanied by a change in
the scaling law. We know from several studies that isolated ring polymers follow a similar

scaling law as linear polymers <R§> ~ N% where v ~ 0.59 [154, 146, 164]. However,
non-catenated rings in a melt behave like compact polymers with a scaling exponent
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v = 1/3 [149, 163]. Figure 9.6B shows the scaling of the radius of gyration with chain
length in a log-log plot for two center-of-mass separations: r = 0 (full overlap, region
where the chain is swollen) and r = 1.7R, (region where the chain is compacted). The
leading order term N2¥ of the self-avoiding walk behavior (v = 0.588 [89]) is divided out.
The data adopt a constant value in the limit of large chain length N independent of CM
separation, indicating that the scaling behavior is independent of separation. As this also
applies to rings with the non-catenation constraint, the compaction found in a polymer
melt of non-catenated rings seems to require several chains, exerting forces from all sides
on the polymer coil.

Our results show that differences between the radius of gyration <R§> . of rings with-
n

out topological constraints and <R§> of rings obeying non-catenation are rather subtle.
nc

The ratio of the radii of gyration <R§> . / <R§> with respect to the CM separation is
shown in Fig. 9.7A for a chain length of N = 1024. For small separations r < 0.5,
non-catenated rings are smaller, while for intermediate separations (r ~ 1R,) they are
larger. The dependence of these results on the chain length N is given in Fig. 9.7B for two
different CM separations. The differences are asymptotically stable both in the regime of
small as well as intermediate separations. At full overlap (s = 0), non-catenated rings are
larger in size by about 0.8% in the asymptotic limit N — oo, for intermediate separations
(s = 1), rings without topological constraints are larger by about 1.5%. Similar results
are found for the mean square ring diameter (data not shown).

As isolated ring polymers as well as self-avoiding walks only have one length scale,
different measures of dimension should yield a constant ratio. For a random walk, the
ratio between the mean squared radius of gyration and the end-to-end distances is 1/6. For
isolated ring polymers, the ratio <R§> / (d?) extrapolates to 0.3053(2) in the asymptotic
limit, while catenated rings display a ratio of 0.2995(3) [154, 164]. For the case studied
here, the ratio between the radius of gyration and ring diameter <R§>/ (d*) changes
significantly for different CM separations (see Fig. 9.8). From its isolated chain value
the ratio decreases when bringing the centers of mass closer together. Extrapolation
to infinite chain length N — oo shows that the differences remain even in this limit
(Supplementary Figure 2 on page 149). At full overlap (s = 0) the ratio extrapolates
to <R§> /(d?) = 0.2874(3) for non-catenated rings and <R§> /(d?) = 0.2891(3) for rings
without topological interactions.

9.2.8 Shape of two-ring conformations

A typical measure of the shape of a polymer coil is its gyration tensor [83, 158]. It is
defined by

1 N
Smn = ;rﬁ,?r,(f) (9.13)

Here r(? is the coordinate vector of the i monomer and the subindex denotes its cartesian
components. The matrix S is symmetric and positive semi-definite, thus it can be trans-
formed to a diagonal matrix where the three eigenvalues Ay < Ao < A3 give the squared
lengths of the principal axes of gyration of the associated gyration ellipsoid. In fact, the
sum of the eigenvalues gives the squared radius of gyration RZ = A+ A2+ As.

In a recent study [164] on catenated rings we have found that the shape of catenated
rings differs significantly from the shape of isolated ring polymers. This shows up in the
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Figure 9.9: A. Ratios between the gyration tensor’s eigenvalues A\; < Ay < A3 in relation to the
center of mass distance s = r/R,. Data is shown for a system with chain length N = 1024 for two-
ring conformations without mutual topological interactions (open circles) and non-catenated ring
conformations (solid red circles). B. Finite-size behavior of the ratios (Az) / (A1) and (A2) /(A1)
for a center-of-mass separation of s = 0.

ratios of the averaged eigenvalues (A\3) : (A2) : (A1), which are obtained from extrapolation
to the asymptotic limit as 8.23(2) : 3.22(2) : 1 for isolated rings and 8.87(3) : 3.56(2) : 1
for catenated rings.

We investigate how the shape of rings changes when approaching the centers of mass,
both for rings without topological interactions as well as for conformations, which obey
the non-catenation constraint. Figure 9.9A displays the results for a chain of length
N = 1024. The polymers get strongly elongated for small center-of-mass separations
s =r/R4. This elongation at full overlap s = 0 remains in the limit of large chain length
N — o0 as is displayed in Fig. 9.9B. For non-catenated rings, the effect of elongation is
slightly more pronounced than for rings, where topological effects are neglected. At full
overlap we find for non-catenated rings that the ratios (A3) : (A2) : (A1) are asymptotically
11.05(8) : 4.32(3) : 1, while for rings without mutual topological interactions we have
10.84(6) : 4.17(2) : 1.

While the analysis of the radius of gyration indicated that the spatial extent of rings
becomes larger, we have found here that this opening up does not lead to a complete
mixing of the two rings, which would result in a more spherical structure; rather rings
elongate strongly in one direction.

9.2.9 Orientation and Alignment of rings

To investigate the interactions between the two rings at full overlap in more detail, we
look at the mutual alignment and orientation. The alignment of the gyration ellipsoids of
both rings with respect to each other can be investigated via two measures: Firstly, the
average angle (cos 1) between the largest main axes of the ellipsoids, secondly the average
angle (cosfy) between the vector connecting the centers of mass of both rings and the
largest main axis of one ellipsoid. Its behavior has been observed for catenated rings [164].
It was found that the main axes of the ellipsoids tend to align perpendicular for short
CM separations, while for large CM separations, the alignment becomes more and more
parallel.

The results for two-ring conformations without mutual topological constraints and
non-catenated ring conformations as well as SAWs are shown in Fig. 9.10. The black
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B. Average angle (cosfs) between the vector connecting the centers of mass and the largest
principal axis of one polymer coil in relation of the CM separation.

line at (cos#;) = 0.5 corresponds to the average angle for a random orientation of the
vectors (Note that the angle 6; can adopt only values between zero and 90 degrees). The
average angle (cosf;) between the gyration tensors main axes (cf. Fig. 9.10A) displays
a pronounced perpendicular orientation for small CM separations r < R,. This effect is
markedly stronger for ring polymers than for linear ones. At intermediate separations of
r ~ 1 — 2Ry, however, a regime is found where a slightly parallel alignment of the rings
is preferred compared to a random orientation. For large center of mass separations, a
random orientation is approached; in this regime, the rings are nearly independent and
therefore do not influence each other. An extrapolation to the infinite chain length regime
at full overlap (s = 0) yields an average angle (cos@;) of 0.3543(7) for rings without
topological interactions, 0.3492(6) for non-catenated rings and 0.3897(2) for self-avoiding
walks. Details of the extrapolation are shown in the Supplementary Figure 3 on page 150.

The angle (cosfs) (see Fig. 9.10B) shows a nearly random alignment for CM sepa-
rations of r ~ 0. For intermediate r ~ 1 — 2R, the alignment becomes pronouncedly
more perpendicular compared to a random alignment. This effect is much stronger for
non-catenated rings than for rings without mutual topological constraints. Clearly, ring
polymers display a much stronger tendency to align non-randomly than self-avoiding walks.
In the regime of perpendicular alignment at s = 1.2 the asymptotic values of 0.3836(5)
(rings without topological interactions), 0.3661(4) (non-catenated rings) and 0.4327(3)
(SAWs) are found for the average angle (cosf2) (Supplementary Figure 3)

A recurrant motif in the analysis of shape, dimensions and orientation is a change
in structure from polymers at full overlap to polymers at intermediate separations (r ~
1-2R,). While they are strongly elongated and aligned perpendicular at short separations,
at intermediate separations compaction and parallel alignment is observed. Clearly, this
results from a tendency to minimize the overlap area between both rings. At full overlap,
this is accomplished best by a strong elongation and perpendicular alignment (Fig. 9.11A).
When rings are separated further apart, the gyration ellipsoids can avoid intermingling by
aligning in parallel (Fig. 9.11B). The restricted conformational space due to the presence
of the other ring results in the observed compaction of the radius of gyration compared to
isolated chains.



146 9. Topological interactions between ring polymers

center—of-mass distance s=0.3

center—of-mass
distance s=1.5

Figure 9.11: Sample conformations of non-catenated rings forced to a certain center-of-mass
distance. The left-hand figure displays a conformation of two non-catenated rings at nearly full
overlap (s = r/Ry = 0.3). The two rings markedly align perpendicularly. The right-hand figure
shows a two-ring conformation of non-catenated rings at separation s = r/R, = 1.5 displaying a
tendency for parallel alignment.

Both the topological constraints and the ring connectivity of the chain have a strong
influence on how the polymers are aligning when brought close together. In general, the
view emerges that rings have a more aligned and ordered state than linear chains, an effect
which is even amplified by the non-catenation constraint.

9.3 Conclusions

In this study we investigated the effect of the non-catenation constraint on a system with
two ring polymers. Our main focus was on the quantitative analysis of the strength
of the interactions between ring polymers, including their topological interactions. For
this purpose, we sampled conformations of isolated rings using a well-established Monte
Carlo method. We evaluated the potential of mean force using the idea of effective in-
teractions [166] following the method introduced by Dautenhahn and Hall [167]. The
topological state of a two-ring conformation is analyzed by means of the Gauss linking
number.

We found that the effective potential at full overlap adopts a constant value both for
linear chains and ring polymers (Figs. 9.1 and 9.2). However, the repulsive interaction
between the centers of mass is about 3 times larger for ring polymers than the effective
potential for corresponding linear chains (Fig. 9.4) at small center-of-mass separations r.

If the ring polymers have to stay in the fixed mutual topological state of non-catenation,
the space of accessible conformations is further reduced, thus the effective potential in-
creases. We have evaluated the strength of these interactions — the topological potential
Utop (1) — resulting purely from topological constraints. We find that the non-catenation
constraint further increases the total repulsive interaction by about 10%. The strength of
the potential is of the order of 1 kgT at small separations r. The number of rejected con-
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formations increases by over 50% compared to only taking into account excluded volume
interactions.

The analysis of conformational properties of polymers brought close together reveals
effects of the ring structure both on size and shape. Ring polymers in proximity become
swollen (Fig. 9.6) and strongly elongated (Fig. 9.9) compared to the situation of isolated
or far apart ones. While both effects are found for linear polymers, too, the effects are
more pronounced for their ring counterparts. Additional effects from the non-catenation
constraint concerning size and shape are visible, but small, indicating that the changes
are mainly induced by the presence of additional material due to the rings being more
compact than linear polymers.

Remarkable effects of the ring structure are found concerning the alignment of ring
polymers in proximity. There is a strong tendency to align perpendicular for short center-
of-mass separations, an effect which is much more pronounced than for linear chains. At
intermediate separations (r ~ 1 — 2R,) a slightly parallel alignment is encountered.

The transition from a linear to a ring polymer thus induces strong changes in the
conformational and structural properties of a system. In fact, ring polymers adopt a much
more ordered and regular state, showing less intermingling due to the increased repulsive
interactions. The mutual alignment of ring polymers becomes much more different from
a random state than found for linear polymers.

Our findings suggest, that the ring topology of certain biopolymers like DNA and
proteins, displays a benefit compared to the linear organization form. The formation of
chromatin loops in higher eukaryotes therefore might play a dominant role concerning
overall nuclear organizational principles. We have shown that loop structures lead to a
strong effective repulsion and for a first time quantitatively analyzed the strength of the
resulting interactions. Surely, the formation of multiple loops in the system of chromatin
which has been proposed in several models [98, 117, 12, 39] induces even stronger effects
and therefore might be responsible for maintaining the segregated state of chromosomes
found in several experiments [7]. Indeed, studies of looping polymers have revealed an
effect on the abundance of inter-chromosomal contacts [35, 93]. Whereas it has already
been proposed that the ring structure prevents chromosomes from entangling [163, 30],
such a topology also induces a much more ordered and aligned state than linear polymers.
It remains to be shown, to which extend similar results are found for chromatin models
with loops [98, 12], an approach which will be pursued in chapter 11. We expect that both
the local behaviour (e.g. inside of transcription factories or heterochromatic regions) and
the global behaviour (segregation of chromosomes) might well be dominated by entropic
and topological forces of chromatin loops. Contrary to a melt of ring polymers, which
adopts a compact state, the dynamic formation of loops [93] might provide a versatile
mechanism for the cell to switch between and maintain different local levels of compaction
by facilitating or repressing loop formation.
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9.4 Supplementary Information

9.4.1 Supplementary Figure 1

The dimensions of two-ring conformations in relation to chain length N. Show is the
radius of gyration Rg4(s) of a polymer in a system of two identical polymers with a center-of-mass
separation s = r/Ry. The upper figure shows results for s = 1.7, the regime where the polymer
is compacted compared to the isolated case. The bottom figure displays results for chains at full
overlap (s = 0). The data are scaled with the radius of gyration of an isolated chain R,. Results
are shown for self-avoiding walks (grey triangles), non-catenated rings (solid red circles) and rings
without mutual topological interactions (open black circles). A linear extrapolation is conducted
to obtain the dimensions in the limit of infinite chains N — oo.

In the region where the chain is compacted (s = 1.7), we find the following extrapolated values:

Ry(s)/Ry — 0.9757(2) self-avoiding walk
R,(s)/R, — 0.9836(1) non-catenated rings
R,(s)/R, — 0.9848(1) rings w/o topological interactions

At full overlap (s = 0), linear extrapolation yields

R,(s)/R; — 1.080(1) self-avoiding walk
Ry(s)/Ry — 1.111(1 non-catenated rings
Ry(s)/Ry — 1.109(5) rings w/o topological interactions
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9.4.2 Supplementary Figure 2

The ratio between the radius of gyration and the mean square ring diameter <R§> / <d2>.
This figure displays the finite-size behavior of the ratio <R§> / <d2> of a single polymer in a system
of two polymers with center-of-mass distance s = r/R,. The ratio is plotted against the inverse
chain length to obtain an extrapolated value for N — oco. Results for three different center-of-mass
separations s are shown. The upper-most figure shows the results at full overlap (s = 0), the
middle figure shows the results for s = 1.7, i.e. polymers separated by 1.7 times the radius of
gyration R, of the corresponding isolated chains. The bottom-most figure shows the results for
s = 3. Black open circles represent rings without mutual topological interactions, red solid circles
non-catenated rings.

Linear extrapolation to N — oo yields

o s=0 (full overlap)

<R§> /{d®) — 0.2874(3) non-catenated rings
<R§> /{d®) — 0.2891(3) rings w/o mutual topological interactions
o« s=1.7
<R§> /{d®) — 0.3063(3) non-catenated rings
(R2) /(d*) — 0.3062(3) rings w/o mutual topological interactions
e s=3
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9.4.3 Supplementary Figure 3

Alignment of the gyration tensors of two-chain conformations..

A. This figure shows an extrapolation of the angle (cos ;) between the largest principal axis of the
gyration tensors of a two-chain conformation in relation to chain length N for several center-of-
mass separations s = r/R,. At full overlap (s = 0), there is a tendency to perpendicular alignment,
which remains in the limit of infinite chain length. At intermediate separations (s = 1.4), chains
tend to align parallel, again this behaviour remains in the limit N — oco. At large CM separations
(s = 3), the orientation becomes nearly independent of each other, resulting in the average value
(cosf1) = 0.5. Results are shown for self-avoiding walks (grey triangles), non-catenated rings (solid
red circles) and rings without mutual topological interactions (open black circles).

Extrapolation yields:
o s =0 (full overlap)
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B. This figure shows an extrapolation of the angle (cosfs) between the largest principal axes of
one polymer and the vector connecting the centers of mass of a two-chain conformation. Data is
shown for a center-of-mass separation of s = 1.2, i.e. the regime where a pronounced perpendicular
orientation is observed. This effects remain in the limit of infinite chain length N — oo. Linear
extrapolation yields for s = 1.2:
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Chapter 10

Diffusion-driven looping as a consistent
framework for chromatin organization

The Dynamic Loop model
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Chapter Summary

Experimental results suggest that higher-order chromatin folding is tightly connected to
genome function. The building blocks for a consistent overall description of chromatin
folding have to be gathered from several experimental techniques. FISH measurements
reveal a confined folding of chromosomes into a sub-space of the nucleus, the mean square
distance between two markers becoming independent of genomic separation but at the
same time revealing a huge cell-to-cell variation. 4C data provides evidence that loops
exist on all scales and it has been shown that these take part in transcriptional regulation.
Sub-diffusive motion of an active gene has been detected in yeast and aspherical chro-
mosome territories are observed. Chromatin looping seems to play a dominant role both
in transcriptional regulation as well as in chromatin organization and has been assumed
to be mediated by long-range interactions in many polymer models. The Random Loop
model correctly predicts a folding into a confined space and the cell-to-cell variation based
on probabilistic looping. However, it remains a crucial question which mechanisms are
necessary to make two chromatin regions become co-located, i.e. have them in spatial
proximity. We demonstrate that the formation of loops can be accomplished solely on the
basis of diffusional motion. The probabilistic nature of temporary contacts mimics the
effects of proteins, e.g. transcription factors, in the solvent. Our Dynamic Loop model
presented here provides a unified description of chromatin folding on the basis of dynamic
loop formation without invoking active transport mechanisms. Testable predictions are
derived for a variety of observables. In fact, for the first time, a huge amount of experi-
mental evidence from FISH distance measurements, 4C/5C data, diffusion measurements
up to the formation of chromosome territories and its shape can be explained consistently
in the framework of one model.

10.1 Introduction

The cell nucleus is a main constituent of eukaryotic organisms and yet its complexity
prevents detailed knowledge of its function. The genome content is carried by the chromo-
somes: compactly folded polymers consisting of DNA and histone proteins. While during
mitosis chromosomes are found in an extremely condensed state, the chromatin fiber inside
the interphase nucleus has a much more decondensed organization. However, at this stage
of the cell cycle, highly coordinated processes such as transcription, replication and DNA
repair take place, making a random folding of the chromatin fiber very unlikely. A pivotal
question is the connection between genome organization and function, which could not be
answered in a satisfying way up to now (~ 2.3).

Experimental results are available from a variety of approaches, highlighting a tight
connection between genome folding and function. The Human Transcriptome map reveals
that the one-dimensional distribution of genes along the chromosome is far from being
random: Active and inactive genes tend to cluster into certain domains [13]. Various ex-
periments have shown that the 3D organization of chromatin depends on transcriptional
activity: Active genes tend to be located in the nuclear interior while inactive genes are
found more often at the nuclear periphery [6, 14, 15], the converse behavior is observed
in some experiments [16]. Transcriptional active regions (ridges) were observed to have
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a more open structure than inactive regions (anti-ridges) [6]. Fluorescence in situ hy-
bridization (FISH) distance experiments displayed a leveling-off in the MSD for genomic
separations above 10 Mb (mega basepairs), the plateau level being in the size range of
2 pm (Figure 2.3). Importantly, the fluctuations of these FISH measurements are larger
than expected from a random walk polymer model. On the scale of the nucleus, chromo-
somes are separated into distinct chromosome territories [7], whose relative positions and
ellipsoidal shape varies from cell to cell [19].

It has been emphasized in this thesis at several points that intra-chromosomal as well
as inter-chromosomal contacts or loops have been intensively analyzed in the past few
years both experimentally and theoretically as a possible mechanism for transcriptional
regulation and genome folding. Yet, chromatin loops seem to be an ubiquitous feature of
genome organization and genome function. One idea put forward to explain chromatin
loops is the existence of transcription factories or active chromatin hubs, where active
polymerases cluster and thereby co-locate genes and regulatory elements [23, 24]. 3C and
4C techniques have since then provided evidence that indeed loops up to several Mb exist
in interphase cells [20, 25]. However, the detailed mechanisms and driving forces of looping
are still under debate.

Given such a variety of experimental data, polymer models can help in understanding
the functional folding motifs of chromatin in the interphase nucleus and its connection
to gene regulation. The Random Loop model proposed in chapters 5 and 7 correctly
predicts the folding into a confined sub-space of the nucleus as well as the large cell-to-
cell variation observed in FISH measurements. This model connects genome folding and
function using experimental results on intra-chromosomal loops. Results yielded evidence
that probabilistic loop formation might be a major driving force of chromatin organization.

However, it remains a crucial question which mechanisms are necessary to make two
chromatin regions become co-located, i.e. have them in spatial proximity. The RL model
assumed a harmonic potential between the loop attachment points (~ 5.3). Thus long-
range forces were postulated to form and maintain the loops, which is highly questionable.
Here, we ask what mechanisms of loop formation are necessary to obtain correspondence
with experimental data. While the cell in principal could use ATP to produce energy
for actively co-locating chromatin segments, we are going to shed light on the question,
whether this is really necessary. We present a polymer model, the Dynamic Loop model,
where functional loops are formed solely on the basis of diffusional motion. Importantly,
loops are assumed to be dynamic and the sets of loop attachment points change during
time. Thus, our loop model is minimal, meaning that we do not assume a priori long-
range forces and active transport mechanisms. Besides the new motif of dynamic loop
formation, this is a major advance with respect to other chromatin models with loops [11,
28, 117, 109, 12, 35]. Various other polymer models have been proposed [26, 31] which
do not take into account chromatin looping. The assumptions of our model arise from
biological evidence: 4C experiments clearly show that loops exist on length scales from
several thousand basepairs to tens of Mb [25]. Surely, if looping is related to functional
processes like transcriptional regulation and the formation of transcription factories, the
cell must be able to control this looping dynamically. Large cell-to-cell variations in FISH
distance measurements [12, 159] render such a dynamics a necessary feature of any polymer
model.

Our model makes testable predictions on a variety of observable quantities. We pre-
dict that chromosomes fold into a confined space and display a different fluctuation regime
than non-dynamic looping polymers or linear chains. Importantly, the formation of large
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loops can be accomplished hierarchically mediated by many loops on the short scale with-
out the assumption of long-range interactions. We demonstrate that the beads of the
polymer display sub-diffusive behavior in agreement with experimental data [17] and that
chromosome territories are constituted driven by looping; the overlap between different
chromosome territories (CTs) depends on the local looping probabilities.

10.2 The chromatin model

10.2.1 General overview

Our model starts by initially assuming chromatin to consist of a coarse-grained linear
polymer chain. Loop formation is achieved on the basis of diffusional motion of the
monomers in the following way: Whenever two segments co-localize by diffusional motion,
a chromatin loop is formed with a certain probability p between these two sites. A certain
lifetime is assigned to each loop, thus loop attachment points dissolve again during the
course of time. Lacking experimental knowledge on the time scales over which chromatin
segments remain co-localized, e.g. in transcription factories, different looping lifetimes are
considered. Details are described in the Methods section (~ 10.2.2).

The stochastic nature of loop formation provides a method to effectively incorporate
protein-chromatin and chromatin-chromatin interactions. Looping is often thought to be
mediated by DNA-binding factors such as CTCF [76], Sat1B [174] or PcG [10] or by regions
of increased polymerase concentration, i.e. transcription factories [24]. The probabilistic
creation of functional chromatin contacts mimics the effect of protein concentration (there
being either proteins binding DNA sites or not) and binding affinity. In the following we
denote by “loop” a functional interaction between two parts of a chromatin fiber existing
for a certain time as created by the algorithm. In contrast, a “contact” denotes two parts
of the chromatin fiber close together by thermal fluctuations without necessarily being an
interaction.

A typical human chromosome has a length of about 100 mega basepairs (Mb), rendering
a detailed description on the molecular level computationally impossible. Typically, coarse-
grained approaches are used, where a long stretch of chromatin is modeled as an effective
monomer (~ 3.1.6). Polymer scaling theory [78] tells us that for linear polymers such an
approach is well justified above the scale where bending rigidity plays a role. This length
scale is established by the persistence length [, defining the transition from a rod-like to
a flexbile polymer. Estimates for the persistence length of chromatin are in the range of
l, = 40 — 250 nm [91] but are often based on crude approximations by fitting data to
linear chain models [26, 8]. Thus, it is reasonable to conduct computer simulations on a
coarse-grained scale where it can be securely assumed that the fiber is flexible.

To study the impact of diffusion-based loop formation on the conformational properties
isolated from effects of the presence of other chromosomes, we simulate single chromosomes
in a dilute solution. In fact, it has been argued that the disentanglement time for the
transition from interphase to metaphase chromosomes of size 100 Mb is in the order
of 500 years [97, 30], thus requiring the activity of DNA topoisomerase II. Rosa et al.
reversed the argument proposing that interphase chromosomes never equilibrate [30]. We
ask whether the observed confined folding already arises from the experimentally confirmed
loop formation without invoking rather unprecise knowledge of time and length scales. If
loop formation turns out to cause confined folding, then the presence of other chromosomes
should not alter the conformational properties drastically. That is why we focus first
on isolated chains. In a coarse-grained approach we study chain lengths of size N =
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64,128,256 and 512. We use Monte-Carlo simulations on a cubic lattice employing the
well-established bond fluctuation algorithm [155]. The lattice size is chosen to be L = 256.
By using periodic boundary conditions and keeping track of unfolded coordinates we avoid
forcing the polymers into a confined space.

While simulations of diluted chromosomes can be used to study the effect of looping
isolated from the presence of other chains, simulations of polymers in a dense system are
necessary to study the formation of chromosome territories and to answer the question
whether density-related effects are observable. Thus, it is a natural next step to perform
simulations in a system with many chromosomes. For our simulations we choose a linear
simulation box of width L = 64 and a density of p = 12.5%, which is similar to the
conditions in interphase nuclei. A total of 4096 monomers was thus studied.

Most often, simulational studies map coarse-grained monomers to physical length
scales, e.g. by assuming a certain persistence length [30, 31]. Thus, a parameter-dependent
comparison between the physical distance of two markers with experimental data from
FISH measurements can be conducted. To obtain testable quantitative predictions we
follow another, more universal, approach. We derive quantities which are independent on
the detailed mapping of the model fiber to the biological chromosome, but can be easily
evaluated both from simulational data as well as from experimental data. Such quantities
comprise dimensionless higher-order moment ratios of the distance distributions as well
as scaling exponents. We show that these quantities do not depend on the chosen level of
coarse-graining, i.e. the chain length. Thus, without assuming unknown time and length
scales, a sensitive comparison between theory and experiment is possible.

10.2.2 Simulational Method

The biological model is implemented using Monte Carlo simulations [111]. These Monte
Carlo simulations are performed on a lattice in order to simplify the handling of ex-
cluded volume. Calculation of excluded volume interactions thereby is reduced to check-
ing whether one lattice site is already occupied or not. Instead of using a simple local-
move algorithm on a cubic lattice we employ the bond-fluctuation method introduced
by Carmesin [155], which has already been used for the simulation of ring polymers in
chapters 8 and 9. The bond-fluctuation model is especially suited for dense and compact
systems where a lattice algorithm would no longer be feasible due to high rejection rates
during the Monte Carlo process. The algorithm conducts only local moves in order to
resemble the dynamics of real polymers [155]. Using a coarse-grained lattice approach
is reasonable as we are only interested in features of looping chromatin independent of
local structure. Coarse-graining allows us to abstract from the complex environment and
highlight the main driving forces and effects of chromatin folding.

Simulations for single polymers are performed on a lattice of size 256 x 256 x 256.
Periodic boundary conditions are used, but the algorithm always keeps track of unfolded
coordinates, such that the polymer does not feel any confined volume. The lattice size
L = 256 is chosen larger than the radius of gyration <RZ> of the chains studied such that
effects of the backfolding are negligible.

A dense system of model chromosomes is simulated in a system of size L. = 64 and
chain length N = 128. The total number of monomers is 4096, the density p = 12.5%.

In order to obtain thermodynamical equilibrated conformations we perform the Metro-
polis Monte Carlo method. Chromosomes are initially equilibrated as self-avoiding walks
using local moves of a monomer to one of the nearest neighbors on the lattice. After the
initial equilibration steps, the Monte Carlo algorithm allows for the formation of loops.
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After each Monte Carlo trial move, one monomer is selected at random. It is then checked
whether another monomer on the same chain is in the neighborhood, i.e. co-localized.
The co-localization condition is fulfilled whenever the distance between the monomers is
less than 3 lattice units. If the two monomers are co-localized, then a loop is formed with
a certain probability p. If the loop ¢ < j is created, it is assigned a certain lifetime #;,,,
which is drawn from a Poissonian distribution

Ttloop

P(tioop; T) = e 7, (10.1)

tloop!
where the parameter 7 determines the average lifetime of the loops. In the simulations we
use three different values of 7:

T = 0-017—ir1ty T2 = 17—inta T3 — 10007_inta (102)

where 7;,,; is the integrated autocorrelation time (see below) of the squared radius of gyra-
tion for the corresponding self-avoiding walk system. Loop lifetimes are chosen relative to
the relaxation time to make results for different values of the other parameters compara-
ble. In the algorithm, looping is implemented by creating a bond between monomer ¢ and
j. The bond is subjected to the same restrictions as any other, i.e. it has to be element
of the allowed set of bond vectors B [see eq. (8.3)]. Any move of a monomer resulting
in a change of the bond vector b — b’ from b € B to b ¢ B is rejected. The bond and
therefore the restriction is removed after the lifetime of the loop is exceeded.

The integrated autocorrelation time 7;,,; is calculated for each set of parameters (chain
length N, looping probability p and lifetime of loops 7) according to the method explained
in section 8.2.2. Another criterion to ensure the uncorrelatedness of subsequent conforma-
tions is given by the motion of the center of mass. This method has been used for example
by Mueller et al. in his study on ring polymers[147]. Here we determine the function

g5(t) = (Rem (1) = Row (0))%) -

The time of interest, 7,¢,, after which the center of mass has moved at about one radius
of gyration, is defined by

93(Trep)/ <R§> =1. (10.3)

We consider two subsequent conformations as uncorrelated after 57,,; Monte Carlo steps.
Actually, for each set of parameters considered here, we found that after this time the
center of mass has moved on average at least by one radius of gyration, i.e. 571 > Trep.

Simulations of even small polymers are very time-consuming due to the looping inter-
action and the resulting compactness of the polymers. Furthermore, simulation runs have
to be quite long to capture the dynamics of loop formation. For each set of parameters
(N,p,7;) we created 10000-100000 independent conformations. We study polymers of
lengths N = 64,128,256 and N = 512. The looping probabilities are chosen such that the
average number of loops in the resulting conformational ensemble is between zero and N.
The lifetimes of the loops are chosen from the set given in eq. (10.2).

10.3 Results

Modeling chromosomes with complex interaction patterns results in the need to dramatic
simplifications in order to allow sufficient relaxation of the fiber within a feasible com-
putational effort. Therefore, we study the looping dynamics for isolated coarse-grained
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chromatin fibers first. Although such conditions are not found in in-vivo experiments,
the formation of loops and its influence on the chromosome properties can be studied iso-
lated from density-related effects. In the next step, we present the results of simulations
of a system of several chromosomes at biological densities. Since the looping results in
confined structures, as will be shown below, density-related effects are only minor and,
consequently, the formation of chromosome territories is observed.

10.3.1 Mean square distance between chromatin segments
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Figure 10.1: Mean square distance <R2> in relation to contour length for an isolated
fiber. A. The mean square distance <R%> between two beads separated by contour length n.
Isolated polymers of length N = 256 have been fully equilibrated for various looping probabilities
p. These probabilities are plotted with different colors depending on the resulting average number
of loops per conformation. Simulations have been performed using various lifetimes of loops, the
results are displayed by different symbols (triangles [A] for 7 = 71, open diamonds [Q] for 7 = 7
and filled circles [o] for 7 = 73). The mean square distance displays a leveling off for average loop
numbers beginning at a number of 80. B. Comparison of the mean square distance to experimental
data taken from Mateos-Langerak et al. [12]. Measurements have been performed on the g-arm of
human interphase chromosome 1 and 11. Each bead of the model fiber represents a 400 kb stretch
of chromatin with an average extension of 480 nm.

We first show that the Dynamic Loop model is in agreement with experimental data
from FISH measurements [27, 12], which provide information about the relative physical
distance between two target sites. The mean squared distance value <R2> between those
target sites in relation to genomic distance g between them can be compared to polymer
models. The random walk (RW) and self-avoiding walk (SAW) polymer models predict
this mean squared distance to increase monotonically with the distance between two FISH
markers,

(R?) ~ g*, (10.4)

where v is a model-dependent parameter [79]. In principle, such a scaling is only valid
for the end-to-end distances, however, we want to stress that in the absence of other
interactions, equation (10.4) is approximately valid for genomic separations g of interest
much larger than the persistence length [, of the chromatin fiber.

The confined space of the nucleus renders the random walk and self-avoiding walk
polymer model inadequate. A 100 Mb chromosome with assumed Kuhn length of approx-
imately 300 nm [8] in a 30 nm fiber packing (300 nm ~ 30 kb) would extend on average
to 17.3 pm in the random walk case, whereas the average diameter of a nucleus is of the
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order of 10 um. The globular state model fails for other reasons [159] (cf. also Fig. 10.4).
Recent experiments [12], however, clearly revealed that while the mean square distance
increases monotonically with genomic separation on short distances up to a few Mb, a
leveling-off is observed for larger genomic separations. This confined folding is observed
on a scale of about 2 um, far below the diameter of the nucleus but consistent with the
estimated size of chromosome territories [7]. The random loop model [117, 12] explains
the behavior by the formation of random loops, without invoking a confined geometry a
priori.

We first considered the mean square distance between two beads in the DL model for
isolated chains. Given a chain of length N with monomer positions denoted by r; (i =
1,...,N), the average is calculated over a set C of independent conformations as well as
over different reference points inside the chain

Ry =L ! 315G, - 2 10.5
< n>—|C|N_nCXE:C;||Pi+n—Pi [ (10.5)

Figure 10.1 shows the results of the model for a chain of length N = 256. The looping
probability p is varied such that different values for the average number of loops are
obtained. Lacking knowledge of the biological lifetime of the loops, results are shown
for three different values of 7 depending on the relaxation time of the chromosomes 7,
(triangles [A] for 7 = 0.017;,s = 71, open diamonds [Q] for 7 = i,y = 72 and filled circles [e]
for 7 = 1007, = 73, see section 10.2.2). The model displays a cross-over from self-avoiding
walk behavior (small number of loops) to a leveling-off in the mean square distance. Such a
plateau level is recovered if the average number of loops on a coarse-grained chromosome
is larger than about 80. This result is independent of the lifetime of the loops as long
as the average number of loops remains the same, indicating that the lifetime has no
direct influence on the statistical equilibrium properties. These findings clearly show that
no long-range interactions are necessary for forcing the polymer to collapse but a purely
diffusional motion together with chromatin-chromatin binding affinity suffices to achieve
this.

To quantitatively compare the model to experimental data, we assume each bead
to represent a 400 kb segment of chromatin with an average extension of 480 nm (in
agreement with experimental data [12]). To ensure that the qualitative results are not
dependent on chain length, we studied the mean square distance for N = 128 and N = 512
(Supplementary Information in section 10.5.1 on page 173). In all three cases a leveling-off
is observed, indicating that the observed results are independent on scale and the applied
coarse-graining is justified.

10.3.2 Self-organized formation of large loops

Loop formation is a central process for the transcriptional regulation in higher eukaryotes.
Several studies indicated that co-localization of chromatin segments results in activation
or repression of genes [20]. Hypotheses of loop formation range from the attachment to
a structure called nuclear matrix [50] to the formation of transcription factories [24], in
which transcriptionally active genes come together, forcing the intervening DNA to loop
out. Recently it has been shown [35] that loops can promote territory formation with a
simple model using fixed loops. However, such a kind of looping does not yield a correct
description for the relative positioning of two markers [12]. Rather, it has been shown
by 4C experiments [25], that loops exist on scales up to several Mb. 3C/4C/5C and
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Figure 10.2: Size distribution of loops and random contacts. A. A sketch displaying the
facilitated formation of large-loops under the existence of small loops. For a linear polymer, the
probability that two chromatin segments marked by red dots co-located by random diffusion is
small (right image). Once a small loop has formed in the model (blue dot, left image), the co-
localization of the red markers becomes much more frequent. The reason is that the formation of
a loop decreases the average distance d; between the red markers compared to the linear case ds.
B. This figure displays the average loop size of a conformation during the run. Starting from an
equilibrated self-avoiding walk conformation (¢ = 0), small loops form by random collisions. This
enhances the probability of segments further apart to come into contact, thus the average loop-size
increases, allowing even loop-sizes of the length of the chain. C. Shown is the size distribution of
functional chromatin loops of model polymers with N = 256 beads. Model polymers were fully
equilibrated and the loop size distribution was determined for various looping probabilities p (for
reasons of comparison the average number of loops per conformation is displayed by a color code)
and lifetimes 7 of the functional loops (7 = 71 solid line, 7 = 7» dotted line, 7 = 735 dashed
line). Looping lifetimes are chosen relative to the relaxation time, see eq. 10.2. In an intermediate
region, away from the chain ends, the curve can be roughly fitted to a power-law P(£) ~ £=5.
Increasing the loop number results in a markedly smaller exponent, leading to a high probability
for large loops. D. The contact probability p.(I) for two specific sites with genomic separation
(contour length) [ to become co-localized. Shown are the results for equilibrated model polymers
with NV = 256 beads and various looping probabilities p. The contact probability decreases as a
power-law [~# with genomic separation for separations n > 30, the exponent strongly depending
on looping probability. The grey line represents the self-avoiding walk. Again, the co-localization
probability is strongly increasing due to diffusion-based looping.
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Figure 10.3: Intra-chromosomal contacts of isolated model polymers. Shown are the
results for equilibrated fibers of length N = 256 with different looping probabilities. For each
parameters set (A. linear chains (no loops), B. on average 19 loops per conformation and C. on
average 130 loops per conformation) co-localized beads were determined and marked by a black
square. For each image, the contacts of 4 independent polymer conformations are plotted. Linear
chains (A) have not so many contacts between beads which are widely separated along the contour
of the polymer. Increasing the probability of functional loops (B and C) results in a boost of
contacts both between close-by segments as well as between segments having a large genomic
separation.

the newly developed Hi-C [39] techniques provide an experimental method to measure
loop probabilities and distributions. Therefore, we next investigated how the model alters
the distribution and frequency of genes to become co-located. Again, we favor measures
that do not depend on the level of coarse-graining and parameters like persistence length.
One such measure is the decay of the contact probability and abundance with genomic
separation g. Consider a random walk polymer chain. Clearly, the probability that two
beads n; and ng come into contact decreases with the separation |ny —ni|. More precisely,
we obtain a power-law behavior [78]

pellng — nal) = |ng — my |73/, (10.6)

Consider two genes separated by 10 Mb. Assuming a Kuhn segment length of 300
nm [30] consisting of 30 kb chromatin, the probability of co-localization is in the or-
der of p.(10Mb) ~ 333715 ~ 10~%. How, then, does the cell nucleus manage to co-locate
different chromatin segments in a reasonable time? To answer this question, we look at
the formation of functional loops in our model and its size distribution P(¢). Interestingly,
the diffusional pathway to loop formation results in a size distribution of functional loops
P(¢) which is quite different from the small random contact probabilities of a RW or SAW
model (Figure 10.2C). Strikingly the probability of having a loop in the size-range of the
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chain length is enhanced by over two orders of magnitude. The increase in probability for
large-scale loops in contrast to small-scale loops can be explained on an intuitive basis:
Starting from a linear chain, the diffusional process will bring monomers close together
which are not so far away along the contour of the chain. Loop formation will be dom-
inated by small-sized loops as equation (10.6) still holds. However, as more and more
small loops form, even parts of the polymer located further apart come closer together
(Fig. 10.2A), thus enhancing the probability of contact. Figure 10.2B visualizes for one
simulation run the average loop size along the simulation time. We find that this aver-
age loop size increases fast and then fluctuates around an equilibrium value. Therefore
diffusional looping seems to be a quite fast and effective method of large loop formation.

To allow a comparison to experimental data from 4C and 5C experiments we determine
two measures. Firstly, the size-distribution h(l) of random contacts (as nC experiments
do not only measure functional contacts) between two chromatin segments. Secondly,
the specific contact probability p.(|n; — ne|) that two segments at position ny and ng
are in contact. From eq. (10.6) we know that for a random walk the specific contact
probability has a power-law behavior depending on the length [ = |n; — na| given by
pe(l) ~ 178, B = 1.5. A power-law behavior is also found for the self-avoiding walk,
where the exponent is determined in Fig. 10.2D to § = 2.10. In fact, scaling theory
predicts [78] for self-avoiding or random walk polymers that the contact probability of the
end-points of a polymer scales as p.(N) ~ N3 ~ N~176 Qur analysis suggests that
the contact probability for intra-chain segments decreases more strongly. This is somehow
expected, as intra-chain segments have less entropic degrees of freedom and are surrounded
by a higher density of adjacent beads than the end points, making contacts with beads
further away less likely. Our polymer model as well displays a power-law behavior of
the co-localization probability p.(I) (Fig. 10.2D). However, two different regimes have to
be distinguished. For genomic separations [ in the size range of the whole chromosome
a different exponent is found as in the size range below about 15% of the fiber length.
In the regime of probability-values p where leveling-off in the mean square distance is
observed, we find exponents of about 1 ~ 0.8 — 1.1 for smaller genomic separations in the
order of 10 Mb and 2 = 0.35 — 0.70 for large genomic separations in the order of 100 Mb
(table 10.1). Intriguingly, the probability of specific contacts between far-apart chromatin
segments is increased by over two orders of magnitude compared to the self-avoiding walk.
Increasing the looping probability and thus the average number of loops per chain results
in smaller exponents . Interestingly, this result is in close agreement with recent results
from Hi-C data [39] where an exponent of 3; & 1.08 has been observed in a region between
500 kb and 7 Mb. The overall exponent found is even smaller on the size scale of the whole
genome, consistent with our model. Similar results are found for other chain lengths (see
Supplementary Information in sections 10.5.2 and 10.5.3 on pages 174 and 175).

5C data provides a detailed map of interactions between chromatin segments without
a fixed reference point. Thus, it is more natural to look at the relative abundance of
contacts h(l) of size I, encompassing all fragments of a certain length [ found in the data
independent on their position on the genome. A crude power-law fit h(l) ~ 7 can be
conducted here, too (see Supplementary Information in section 10.5.4 on page 176). We
find power-law exponents of a ~ 0.7 — 1.2 in the range where leveling-off in the mean
square distance is observed (cf. Fig. 10.1). The exponents both for the specific contact
probability p.(I) as well as the size-distribution h(l) are listed in table 10.1.

Fig. 10.3 shows contact maps similar to those obtained by 5C for a N = 256 polymer
with different looping probabilities. Contacts between any two beads are marked by a
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Table 10.1: Decay exponents of the random contact probabilities with genomic separation for
direct comparison to 4C and 5C experiments. Shown are the resulting exponents « of a power-law
fit to the size distribution of random contacts h(l) ~ {~%. A fit to the specific contact probability
pc(1) ~ 177 has been performed both in the region of small genomic separations (I < 10Mb) and in
the region of genomic separations up to the complete chromosome (I 2 10 Mb), yielding different
exponents 31 and (2 respectively. These exponents can be compared to results from 5C and 4C
experiments. Data is displayed for equilibrated chains of length N = 256 for various looping
probabilities p, corresponding to different average numbers of loops, and different lifetimes 7 of
functional loops. For comparison with Fig. 10.1, the corresponding symbols are listed.

number of loops loop lifetime 7 symbol exponent @ exponent 31 exponent [y

19.0 ) <& 2.01 1.78 1.66
19.0 Ty A 2.00 1.76 1.68
19.1 T3 ° 2.05 1.79 1.64
59.2 T <& 1.19 1.24 0.70
87.0 T1 A 0.95 1.09 0.43
87.2 T3 ° 0.92 1.11 0.38
112 P & 0.84 1.00 0.30
131 Ty A 0.81 0.94 0.35
247 T 0.70 0.79 0.35

black square. For better visibility, in each map contacts of 4 equilibrated conformations
are plotted. Clearly, the self-avoiding walk polymer model (Fig. 10.3A) only has a few
contacts between beads located far apart. Increasing the looping probability (Figs 10.3B
and C) results in a strong increase of both the number of loops as well as the abundance
of large loops.

10.3.3 Cell-to-cell variation and dynamic fluctuations of the distance distri-
bution

While FISH measurements have been used to establish a connection between the mean
square distance of two markers and genomic separation [27, 8, 12], a direct comparison
to polymer models requires parameters to map one model bead to physical units like
nanometers and base pairs. As these parameters are unknown or based on crude esti-
mates [26, 8], it is desirable to introduce dimensionless quantities not dependent on length
scale parameters.

For the the random walk (RW), self-avoiding walk (SAW) and the globular state (GS)
model, the following higher-order moments of the distance distribution between two mark-
ers turned out to be basically independent of genomic separation [159].

(72 w7 o)

®? C TR YT myY

An intrinsic advantage of these measures is that they are dimensionless, i.e. both ex-
periments and models yield a numeric value. Even more important, the ratios carry
information about the fluctuations, i.e. the cell-to-cell variation of the measurements.
One prominent feature of FISH measurements in interphase chromatin is that the
fluctuations of the distance distributions are larger than expected from a random walk or
self-avoiding walk polymer model [117]. Recently it has been shown that this holds true for

Cy =
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Figure 10.4: Higher-order moments of the distance distributions for experimental

data (A) and for the chromatin model (B) according to eq. (10.7). A. The following
experimental data is shown: Human fibroblasts Chrl [12]: B anti-ridge region, M ridge region, o
long distance measurements; Human fibroblast Chr 11 [12]: e long distance measurements; Murine
Igh locus [109]: 4 pre-pro-B cells, ¢ pro-B cells. The data displays strong deviations towards larger
fluctuations in comparison to the random walk (RW), self-avoiding walk (SAW) and globular state
(GS) polymer model. B. Results are shown for simulated polymers of various length (N =
64,128,256 and 512) in relation to the average number of loops per monomer, which is related to
the looping probability but allows for a better comparison. Although incorporating full excluded
volume interactions, fluctuations exceed the random walk value due to probabilistic looping.

the case of compact polymers as well [159], where the fluctuations are even smaller. The
ratios given in eq. (10.7) for experimental data sets from Mateos-Langerak et al. [12] as
well as Jhunjhunwala et al [109] are presented in Fig. 10.4A. The figure contains FISH data
from human chromosomes 1 and 11 [12], separately measured for ridges (green squares)
and anti-ridges (red squares) as well as data from the murine Igh locus [109], which was
kindly provided by K. Murre.

The results for the model treated in this paper are shown in Fig. 10.4B. Model polymers
of different length (N = 64,128,256 and 512) have been equilibrated and averaged over a
huge ensemble of conformations encompassing various configurations of loop attachment
points. The data is plotted against the average number of loops per monomer to allow for
a comparison between different chain lengths. For small looping probabilities, i.e. small
average number of loops, the self-avoiding walk behavior is recovered, whereas increasing
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Figure 10.5: Elongated shape of the chromatin model polymers. A. Illustration of
the gyration tensor. The gyration ellipsoid is shown for an elongated and a compact polymer
conformations in two dimensions. The ratio Aa/\; is large for the elongated polymer, indicating
strong devations from a sphere-like shape. B. Example conformations for a chain of length N = 128
and loop lifetime 71 (see eq. 10.2) for different looping probabilities. The shown conformations are
one sample of the ensemble of conformations belonging to the data point marked in figure C. C.
The ratios between the gyration tensor’s main axes. The upper graph shows the ratio between the
largest and smallest main axis, the lower graph the ratio between the second largest and smallest
main axis. The data is shown for chain length up to N = 512, different lifetimes of the loops
(7 = 7 solid line, 7 = 75 dotted line, 7 = 73 dashed line) and different looping probabilities p.

the looping probability leads to a strong increase in the fluctuations of the system. The
higher-order moment ratios markedly exceed the random walk value in the range of loop
numbers between 0.15N and 0.65N. One would expect for a random-walk polymer to
have larger fluctuations than a polymer constraint to excluded volume interactions and
topological constraints. In our model, the large fluctuations are induced by the dynamic
formation of loops, which thus seems to be an important characteristics of chromatin
organization. However, it has to be noted that the fluctuations of the model are still too
small to explain the moment ratios of most of the experimental data. We will discuss this
in more detail in the discussion section.

10.3.4 The shape of chromosomes

Flourescent labeling of whole chromosomes [7, 19, 34, 58] or extended regions of chromo-
somes [6] can be used to determine the shape of chromosomes. Goetze et al. [6] quan-



10.3. Results 165

titatively found that chromosomal regions show pronounced deviations from a spherical
shape and are correlated to transcriptional activity. Using a wavelet method, Khalil et
al. [36] found that the shape of a chromosome territory in mouse is highly nonspher-
ical and can be best approximated by an ellipsoid with average axis length ratios of
4.5 : 2.9 : 1. However, strong differences in shape and positioning were found depending
on cell type [175, 176, 177] and chromosome state [37].

A way to characterize the shape of a polymer is the gyration tensor. It is defined by

LS o))
Smn = N;Tm (B (10.8)

Here, r(® is the coordinate vector of the 4th monomer and the subindex denotes its carte-
sian components. The eigenvalues A\ < Ao < A3 give the squared lengths of the principal
axes of gyration. The ratios of the eigenvalues indicate the deviation from a sphere-like
shape of the polymer. The gyration tensor is illustrated in a 2D sketch in Fig. 10.5A for
an elongated as well as a compact polymer, yielding a pronounced difference in the ratio
of the tensor’s principal axes. While in an averaged sense, polymers display an isotropic
behavior, single conformations are markedly aspherical [84, 83]. The self-avoiding walk,
for example, has averaged eigenvalue ratios of (A3) : (A2) : (A1) =14:2.98: 1.

In Fig. 10.5C the ratios (A3) /(A1) and (A2) /(A1) between the principal axes of the
chromatin model are shown. Clearly, in the range of loop numbers where leveling-off
occurs, the shape of the polymer is such that it is more elongated in one direction by
a factor of v/2 to v/5. As for the distance fluctuations, this is in contrast to compact
globular polymers that have a spherical shape, but in agreement with experimental [36] and
simulational studies [30, 35]. Typical chromosome conformations are shown in Fig. 10.5B
for different looping probabilities.

10.3.5 The dynamics of looping chromosomes

Finally we study the dynamics of the looping chromatin fibers. The center-of-mass motion
of a polymer is measured by g¢3(t) = <(RCM(t) - RCM(O))2>. For a self-avoiding walk
polymer it shows normal diffusion behavior, i.e. g3(t) ~ ¢t. As can be seen in Fig. 10.6 the
chromatin model shows subdiffusive motion g3(t) ~ t* (0 < o < 1) on time scales smaller
than the relaxation time of the polymer. The actual diffusion exponent o depends on
the looping probability p. For times larger than the relaxation time one recovers diffusive
motion, i.e. g3(t) ~ t, however, this motion is slower than for a normal self-avoiding walk
(see Supplementary Information in section 10.5.5 on page 176). This is consistent with
experimental results showing that chromosome territories do not move significantly [32].
It has to be noted that the regime of large times is not very sensitive for a comparison
to experimental data as here the confinement by other polymers comes into play which
is not incorporated into the simulations of a single polymer. It is more instructive to
look at the motion of the central monomers of a chain on short time scales. The mean

2
square displacement ¢ (t) = <(r ny2(t) —r N/Q(O)) > displays a distinct behavior for three

different time regimes, which are related to the relaxation time 7;,; of a chromosome. For
t < Tint there is a pronounced subdiffusive behavior. The anomalous diffusion exponents
range from a ~ 0.22 — 0.4 in the regime where leveling-off is observed for the mean square
displacement (cf. Fig. 10.1). For t ~ 7, the predictions of classical polymer dynamics
become valid again and we find g (t) ~ t%% similar to the self-avoiding walk. On large
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Figure 10.6: Dynamics of the center of mass and the central monomers. The upper
figure shows the motion of the center of mass gs(t) for different parameters for a chain of length
N = 128. The movement of the polymers’ central monomer ¢ (¢) is displayed in the lower figure.
The color indicates the average number of loops per chain (see color bar), the point type indicates
the loop lifetime (triangles [A] for 7 = 71, open diamonds [Q] for 7 = 72 and filled circles [e] for
7 = 73). We find subdiffusive behavior with different exponents dependent on looping probability
for time scales below the relaxation time of the polymer. For reasons of readability curves are
shifted along the y-axis relative to each other.

time scales (t > Tint), the monomer motion follows the motion of the center of mass,
displaying normal Brownian motion with g;(t) ~ t.

While at intermediate and large time scales the motion can be described by classical
polymer theory, i.e. Rouse dynamics [79], the scaling exponents on the short time scale
t < Tint are unexpected. Following the argument in Refs. [97, 30], this time scale is the
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Figure 10.7: Contact maps and illustrations of chromosomes with different looping
probabilities. Simulations were performed in a system with density p = 12.5% and chains with a
coarse-grained length N = 128. Any contact between two beads is represented by a square in the
contact map. Statistics is taken over 5 independent conformations. Not the complete contact map
is shown, but only contacts between 10 chains. Linear chains (A) display a lot of intermingling
and have abundant contacts with other polymers. The fraction of inter-chromosomal contacts is
15.4%. Increasing the loop-size (B and C) results in more and more confined structures, which
are depleted of inter-chromosomal interactions. In (B) chains have on average 45 functional loops
(symbol A in Fig. 10.8A), the fraction of inter-chromosomal contacts is reduced to 1.8%. This
value decreases even more for chains with an average of 92 loops per conformation (< 1%, symbol
in Fig. 10.8A).

prevailing one concerning interphase chromosomes. Clearly, such exponents arise due to
the constraints induced by looping, which temporarily slows down the motion of chromatin
segments at the loop attachment points. Although experimental data is rare, this is
consistent with findings of Cabal et al. [17] in yeast. This study showed that the motion
of a labelled spot scales like g1(t) ~ t%4! up to g1(t) ~ t>47. Interestingly they found the
exponent to depend on the transcriptional state of the GAL genes. This is in support of
our conjecture put forward in another publication [12] that the local looping probability
may be related to transcriptional activity.

10.3.6 The formation of aspherical chromosome territories

Polymer theory predicts that equilibrated polymers with a large molecular weight in a
semi-dilute solution are strongly intermingling [78]. Various studies, however, indicate that
chromosomes occupy discrete functional domains [7, 178, 179]. It was shown above that
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Figure 10.8: Properties of looping polymers in a dense system. Coarse-grained polymers
of length N = 128 are equilibrated in a system of density p = 12.5%. Results are shown for
various looping probabilities, which are indicated by the color-coded average number of loops.
A. Relationship between mean square distance <R2> and genomic separation (contour length n).
Polymers with small looping probabilities (dark red curve) show a continuous increase of mean
distance between two markers with their separation n. Thus, these polymers do not form discrete
territories but intermingle strongly. If the average number of functional loops exceeds 40-50 loops
per monomer, a leveling-off is observed and the chromosomes fold into a confined space. B. The
ratio between higher-order moments ¢, = <R4> / <R2>2 indicates a regime of larger fluctuations
than in the random walk case for polymers with p-values in the range where leveling-off occurs.
The values found are in the size range of ¢4 ~ 1.75 — 1.85. Such large fluctuations, i.e. cell-to-cell
variation, are an intrinsic feature of chromatin organization (Fig. 10.4A), represented in our model
by the dynamic formation of probabilistic loops. C. The size distribution of random contacts
h(l) demonstrates that diffusion-based looping facilitates the formation of large loops. Instead
of decreasing with {72 as in the case of linear chains, looping polymers in the parameter range
where leveling-off is observed (cf. A) show a power-law behavior of approx. h(l) ~ (~1. D. The
probability p.(I) that specific loci on one chromosome co-localize as measured in 4C experiments
displays approximately a biphasic power-law behavior. On the scale of the whole chromosome, the
contact probability decreases with p.(I) ~ 17935 the exact exponent depending on the looping
probability. On intermediate length scales a power-law of p.(I) ~ [~ is found in agreement with
experimental data [39]. Again, the co-localization probability is greatly enhanced by the formation
of functional loops.

our model polymers adopt a confined structure by virtue of dynamic looping. Amazingly,
this result was obtained without subjecting the system to a confined space (in contrast to
Refs. [26, 31]) and without introducing long-range interactions (in contrast the polymer
models in Refs. [11, 29, 117]).

Surely, simulating isolated chromatin fibers does not yield complete information about
the folding in a dense system as in the nucleus, e.g. the formation of chromosome territories
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(CTs). To investigate whether probabilistic loops are the reason for the formation of
chromosome territories, we set up simulations of chromosomes in a box of width L =
64 lattice units and a length of N = 128. The density of the system p = 0.125 was
chosen close to the estimates of chromatin in cell nuclei. Similar values were used in other
publications [35].

An established measure of territory formation is the number of contacts displayed in the
contact map [35]. Figure 10.7 shows such contact maps for different looping probabilities
p. Each map displays contacts between the beads of a subset of 10 model chromosomes out
of the system. The beads are numbered consecutively, i.e. bead 0 to 127 belong to chain
1, bead 128 to 256 belong to chain 2 etc. Subsequent chains are alternatingly marked by
black and white bars. We find that linear self-avoiding walks (Fig. 10.7A) without loops
display a relatively large number of inter-chromosomal in comparison to intra-chromosomal
contacts: 15.4 % of the contacts are found to be with other chromosomes. With increasing
looping probability p, the percentage of contacts between different chromosomes decreases.
Fig. 10.7B displays chains with an average number of 45 loops (symbol A in Fig. 10.8A).
Here we find that only 1.8 % of the contacts are inter-chromosomal and in Fig. 10.7C
(92 loops per chain on average, symbol 4 in Fig. 10.8A) this value reduces further to
< 1%. Thus, the level of intermingling between CT’s strongly depends on the local
looping probabilities. As different local looping probabilities seem to play a dominant
role in chromatin organization, this finding could explain different levels of intermingling
found in several studies [60, 34]. Thus a disentangling of the fibers, which has been
estimated to require a huge amount of time or the action of topoisomerase II [97] is not
necessary. In mitosis, chromatin adopts a compact state, where different chromosomes are
unentangled and well-separated. At the onset of interphase, the loop formation forces the
chromosomes to a more open, but confined structure, which results in the formation of
CTs without requiring the assumption of unequilibrated polymers [30].

We find that the predictions from the study of isolated model chromosomes are still
valid for a dense system of chromatin. Amongst others, this is a direct consequence of
loop-based segregation observed in Fig. 10.7. Fig. 10.8A shows the mean square distance
between two model beads in relation to contour length n (in biological terms: genomic
distance g). Similar to the results of Fig. 10.1, the mean square distance displays a leveling-
off for average loop numbers larger than about 45 loops per coarse-grained monomer.
Obviously, for small looping probabilities p (red curve) or self-avoiding walks (p = 0, not
shown), polymers do not level off, thus they do not form separate territories. The behavior
of territory formation and segregation is a distinct result of loop formation.

While the mean square distance <be> displays a leveling-off for several polymer models
(e.g. globular state [159, 31|, random walk in a confined space [26], etc.), a more sensitive
measure are again the dimensionless ratios of higher order moments given by eq. (10.7). As
the fluctuation regime could possibly change under the transition from isolated polymers
to a dense system, we investigate the ratio ¢4 = <R4>/<R2>2. Fig. 10.8B shows that
fluctuations are larger than predicted by the random walk, self-avoiding walk or globular
state model. In the regime where a leveling-off is obtained in Fig. 10.8A, i.e. the average
loop number is larger than about 45, the moment ratios are approximately in the range
ca ~ 1.75 — 1.85.

The relative abundance of contacts h(l) is displayed in Fig. 10.8C for polymers in a
dense system. Again, the co-localization frequency is greatly enhanced by the formation
of functional loops. A crude power-law fit h(l) ~ [~ results in exponents of o =~ 1 and
smaller in the region where a leveling-off is observed in the mean square distance. Similar
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Table 10.2: Shape parameters of simulated chromosomes. Shown are the results for
equilibrated coarse-grained polymers of length N = 128 in a melt of density p = 12.5%. Results
have been calculated using various looping probabilities and lifetimes of the loops. Correspondence
to Fig. 10.8A is established via the symbol, which is shown in the third column. The shape
is parameterized by the ratios of the eigenvalues of the gyration ellipsoid, corresponding to the
squares of its axis lengths. The axis ratios a : b : ¢ are listed for comparison with other studies
(e.g. Cook et al. [35])

number of loops loop lifetime symbol eigenvalue ratios  axis ratios

10.5 T1 A 10.2: 26 : 1 32:16:1
45.9 o A 49:20:1 22:14:1
45.9 T3 ° 5.0:20:1 22:14:1
92.1 m 3.3:1.7:1 1.8:13:1
93.0 T3 3.2:1.7:1 1.8:13:1

results are found for the specific contact probability p.(I) (Fig. 10.8C), which display a
biphasic behaviour already observed in the case of isolated chromosomes (Fig. 10.2). In the
size range of large genomic separations in the order of the entire chromosome, the contact
probability decreases with a power-law p(I) ~ =% with exponents starting from g = 1.5
in the self-avoiding walk model to 6 = 0.35 in the parameter range where leveling-off is
observed. On intermediate scales (< 10 Mb), for biologically relevant looping probabilities,
an exponent of § = 1.1 is found. Amazingly, a similar value of g = 1.08 has been recently
found by Hi-C experiments [39] on a scale between 500 kb to 7 Mb.

We found that isolated model chromosomes displayed a pronounced conformational
asphericity (Fig. 10.5). A similar behavior is observed for chromosomes in a dense system.
In fact, deviations from a sphere-like shape are expected for the self-avoiding walk as well
as the random walk model [83], however, not for a compact globular state polymer [159].
Whereas looping polymers can adopt a highly compacted state, their properties differ
clearly from a globular state. Indeed, the shape of simulated chromosomes territories is
not spherical as one would expect for compact polymers, rather we find that the gyration
ellipsoid has a prolate shape. The ratios of the gyration tensor’s eigenvalues are listed in
table 10.2. In the parameter range where the mean square distance displays a leveling off,
we find ratios of the eigenvalues (A3) : (A2) : (A1) in the regime between 5 : 2.0 : 1 and
3.2: 1.7 : 1. These values are smaller than those of Rosa et al. [30] for ring polymers and
consistent with those of looping polymers [35]. A non-spherical shape of CTs has also been
found in experimental studies [36, 37]. Mouse chromosomes exhibit an aspherical shape
approximated by ellipsoids with axis ratios 4.5 : 2.9 : 1. A one-to-one correspondence of
these numbers with results from the shape of the gyration ellipsoid, however, can not be
established.

10.4 Discussion

In this study, a polymer model was presented where loops form dynamically on the basis
of diffusional collisions. We use Monte Carlo simulations to demonstrate the effect of
such a kind of loop formation. While loops have been recognized as an ubiquitous feature
in transcriptional regulation, the pathways of its formation remained unclear and most
polymer models proposing loops so far did not explain the transport mechanisms by which
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two parts of chromatin become co-located. Our results suggest that even large loops
can arise without active transport mechanisms. Our model neither assumes a confined
geometry nor any long-range interactions. Loop formation is based on the diffusional
motion of the fiber. Collisions lead to a probabilistic chromatin-chromatin interaction
which forces the participating regions to be co-located for a certain time. The probabilistic
nature of the interactions is meant to mimic the effect of chromatin binding factors on
chromatin-chromatin interactions. Although this Dynamic Loop model is kept minimal,
it reproduces many experimental results quantitatively, highlighting the possibility that
chromatin folding is tightly related to function through the loop formation process.

One of our major results is that dynamic loop formation drives chromosomes into an
entropically segregated state. Indeed, linear polymers intermingle freely (Fig. 10.7A) in
agreement with polymer theory [78]. Looping polymers, in contrast, fold into a confined
space (Fig. 10.1). Such a confinement is also observed for the globular state polymer model,
which, however, displays a markedly different fluctuation regime than the experimental
data [159]. The importance of looping on the formation of chromosome territories has been
investigated recently by Cook et al. [35]. In their qualitative study, rosette-structures with
fixed loop attachment points are used. While this model can be used as a simple model for
studying entropic effects of looping, it does not explain fluctuations in FISH data [117, 12].

The second important result of this study concerns the pathway of the formation of
large loops. Results from 3C/4C/5C experiments reveal that loops are abundant on the
short scale [66]. Nevertheless, functional loops on the scale of several mega basepairs have
been detected in 4C experiments [25]. While the probability of specific random contacts
pe(l) decreases strongly with site separation [ for linear polymers (given by a power-law
behavior [~210), the contact probability is increased by over two orders of magnitude
when introducing loops (Fig. 10.2). Obviously, small functional loops which can easily
co-localize by diffusional motion strongly support the formation of long-distance contacts.
The contact distribution h(l) ~ (7 displays power-law exponents of « = 0.7 — 1.2, the
contact probability p.(I) ~ 7% exponents in the size range between 8 ~ 0.3 — 0.7 on
the scale of the whole chromosome and 3 = 0.7 — 1.3 on intermediate scales. This is in
agreement with recent experimental data by Lieberman-Aiden et al. [39], however, their
interpretation in terms of a fractional globule differs from ours. Clearly, a fractional
globule, where the physical distance between two loci scales with s'/3 [98], is in contrast
to experimental findings from FISH data [12].

The impossibility to perform Monte-Carlo simulations on a very detailed scale requires
a coarse-graining procedure. Looking at large-scale features above the persistence length
lp, such an approach is well-justified [78]. For linear polymers, scaling laws provide a
simple way of rescaling a polymer. For a model with loops, the connection between chain
length, bond length and looping probability p is non-trivial. In fact, even for chromatin
models using linear chains (see Refs. [26, 30, 31]), the establishment of a correspondence
between simulational units and biological units requires the knowledge of the persistence
length of chromatin. The latter has been estimated by fitting a random walk model [26] or
a worm-like chain model [8] to FISH data. Estimates on the persistence length range from
40-220 nm [91]. For a quantitative comparison to experimental data we derived measures
independent on both the level of coarsening and unknown biological parameters. These can
be easily evaluated both for experimental data as well as polymer models. Amongst others,
these measures comprise the power-law exponent of the contact distribution (Fig. 10.2
and table 10.1), the dimensionless higher-order moment ratios of the distance distribution
between two FISH markers (Fig. 10.4), the asphericity of chromosomes (Fig. 10.5) and
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finally the diffusion exponents (Fig. 10.6).

The DL model studied here displays a pronounced aspherical elongated shape (Fig-
ure 10.5) which is also found in experiments [6]. Consistent with experimental data in
yeast, the motion of single monomers is subdiffusive (Fig. 10.6); the actual subdiffusion
exponent depends on the looping probability, which was suggested to be closely related
to transcriptional activity [12]. A good agreement with experimental data is obtained for
the higher-order moments of the distance distribution. Surprisingly, the moment ratios
(given in eq. (10.7)), which display fluctuations of the distance distributions, exceed the
random walk value for looping probabilities p in the range where a leveling off in the mean
square distance is observed. This is not necessarily expected for a model with excluded
volume which restricts the degrees of freedom and therefore shows less fluctuations. The
increase of the fluctuations with respect to the self-avoiding walk is due to the dynamic
formation of loops. However, several independent experiments [109, 12] consistently show
even larger fluctuations. We suspect two major reasons for this: First, the chromatin
fiber is not a homogeneous polymer and there is evidence that looping probabilities vary
depending on the transcriptional state [12]. Secondly, inside the nucleus, topoisomerase-II
might effectively counteract excluded volume interactions, resulting in an underestimate
of the fluctuations in our model.

While our model suggests that chromosome segregation might be driven by the diffu-
sional formation of loops, Rosa and Everaers suggested [30] that segregation is a conse-
quence of large entanglement times. The entanglement times, however, might be strongly
reduced by the effect of topoisomerase-11 [154]. Notwithstanding that time-scales play an
important role, this study reveals that loop formation provides a complementary and fully
sufficient mechanism for CT formation.

Clearly, the chromatin model proposed here does not capture all details of the complex
nuclear organization. First of all, we neglect the heterogeneity of the chromatin fiber and
assume the same looping probability and chromatin affinity along the complete chromo-
some. Thus, regional differences in compaction are not explained by this model. Such
differences are clearly found in experiments, showing that gene rich regions have a more
open structure than gene poor regions [6, 12]. In principle, such information could be in-
corporated into the model by assuming different looping probabilities for different regions.
Such an analysis has been performed for the Random Loop model (~ chapter 7) without
excluded volume interactions. A similar approach could be pursued with the Dynamic
Loop model, requiring, however, a huge amount of computer time.

The direct interaction of DNA-binding factors with DNA and the effect of such proteins
on maintaining genomic loops is not included in detail into the model. A natural extension
of the model would be to put proteins inside the simulation box that bind to DNA and
mediate the loop formation. Then a loop between two chromatin segments can only form if
a DNA-binding protein is in proximity. In a next step, the specificity of binding sites (e.g.
CTCF binding sites) could be modelled. However, a detailed account on protein-DNA
interaction is not possible at the current state of scientific knowledge as by far not all
possible interactions and binding sites are known. Therefore, in our model, we have taken
the effects of the solvent into account on an effective basis: The probabilistic formation of
loops mimics the effect of DNA-binding proteins being there or not.
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10.5 Supplementary Information

10.5.1 Supplementary Figure 1

Mean square distance <R72L> in relation to contour length for an isolated fiber. Both
figures show the mean square distance between two beads separated by contour length n. In the
upper-most figure, results for a chain length of N = 128 are shown. The bottom-most figure shows
results for N = 512. Isolated polymers have been fully equilibrated for various looping probabilities
p. The p-values are plotted with different colors depending on the resulting average number of
loops per conformation. Simulations have been performed using various lifetimes of loops, which
are chosen relative to the relaxation time 7;,; of the polymer. The results are displayed by different
symbols (triangles [A] for 7 = 71 = 0.017;,¢, open diamonds [Q] for T = 75 = Ty, and filled circles
[e] for 7 = 73 = 1007;,¢). The mean square distance displays a leveling-off for all chain lengths
studied, inducing a confined folding of chromosomes based on dynamic looping.
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10.5.2 Supplementary Figure 2

Loop size distribution and specific contact probabilities for N = 128. Upper-most
figure: Shown is the size distribution P(¢) of functional chromatin loops of model polymers
with N = 128 beads. Model polymers were fully equilibrated and the loop size distribution was
determined for various looping probabilities p (for reasons of comparison the average number of
loops per conformation is displayed by a color code) and lifetimes 7 of the functional loops. Looping
lifetimes are chosen relative to the relaxation time (cf. Materials & Methods in the manuscript).
Increasing the loop number results in a markedly smaller exponent, leading to a high probability
for large loops. Bottom-most figure: The contact probability p.(l) for two specific sites with
genomic separation (contour length) I to be co-localized. Shown are the results for equilibrated
model polymers with N = 128 beads and various looping probabilities p. The contact probability
decreases as a power-law [ ~? with a biphasic behaviour, the exponent changing at about I ~ 15% of
the chromosome length. The grey line represents the self-avoiding walk. Again, the co-localization
probability is strongly increasing due to diffusion-based looping.
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10.5.3 Supplementary Figure 3

Loop size distribution and specific contact probabilities for N = 512. Upper-most
figure: Shown is the size distribution P(¢) of functional chromatin loops of model polymers
with N = 512 beads. Model polymers were fully equilibrated and the loop size distribution was
determined for various looping probabilities p (for reasons of comparison the average number of
loops per conformation is displayed by a color code) and lifetimes 7 of the functional loops. Looping
lifetimes are chosen relative to the relaxation time (cf. Materials & Methods in the manuscript).
Increasing the loop number results in a markedly smaller exponent, leading to a high probability
for large loops. Bottom-most figure: The contact probability p.(l) for two specific sites with
genomic separation (contour length) I to be co-localized. Shown are the results for equilibrated
model polymers with N = 512 beads and various looping probabilities p.The contact probability
decreases as a power-law [ ~? with a biphasic behaviour, the exponent changing at about I ~ 15% of
the chromosome length. The grey line represents the self-avoiding walk. Again, the co-localization
probability is strongly increasing due to diffusion-based looping.
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10.5.4 Supplementary Figure 4

Relative abundance of contacts h(l) in relation to genomic separation [. The size distri-
bution of random contacts h(l) is shown for chains of length N = 256. Simulations for different
looping probabilities are indicated by a color code. A crude power-law fit h(l) ~ [~* has been
performed to the data, showing that the exponent decreases with increasing looping probability.
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10.5.5 Supplementary Figure 5

Dynamics of the center of mass and motion of the central monomers (unshifted plots).
The left-hand shows the motion of the center of mass gs(t) using a chain length of N = 128. The
data is shown for different values of the looping probability p, indicated by a color-code for the
average number of loops. The lifetime of loops is indicated by the symbol (triangles [A] for 7 = 1,
open diamonds [¢] for 7 = 75 and filled circles [o] for 7 = 73). The movement of the polymers’
central monomer ¢ (¢) is displayed in the right-hand figure. The unshifted data shows that intro-
ducing loops in the system slows down the motion of the polymer as well as of single monomers.
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Repulsive forces between chromosomes
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Chapter Summary

One striking feature of chromatin organization is the distinct separation of chromosomes
into territories during interphase, showing only little intermingling. This behaviour has
been explained by a non-equilibrium state of linear chains. Here, we show that entropic
forces of loop formation alone without assuming other long-range interactions lead to a
strong repulsion between chromosomes. We determine the effective potential between
two chromosomes modelled by the Dynamic Loop model (~ chapter 10). We find that
introducing loops into the structure of chromatin results in a many-fold higher repulsion
between chromosomes. Strong effects are observed for the tendency of a non-random
alignment, the overlap volume between chromosomes decaying fast with increasing loop
number.

11.1 Introduction

Chromosomes, in comparison to other polymeric systems, display a vast amount of unex-
pected types of behaviour. Most importantly, chromosomes are highly compartmentalized
objects being well separated during interphase [7]. Such a separation is not only observed
regarding complete chromosomes, rather Mb-sized stretches of chromatin, when labelled
fluorescently with different colors, also display little intermingling [6]. A lot of specula-
tion has been going on about the mechanisms driving such kind of segregation. While
active ATP-consuming mechanisms might be possible, it has been proposed that com-
partmentalization results from non-equilibrium effects: During metaphase chromosomes
are condensed and well separated. The entanglement time disregarding topoisomerase-II
activity is supposed to be much larger than the lifetime of the cell [30]. Segregation of
intrachromosomal region, however, is not explained in such a model. Recently, there is an
ever growing body of evidence that the entropic effect of looping alone might be responsi-
ble for maintaining the compartmentalized state of the chromosomes [35]. A lot of work
on entropic effects of loops has already been conducted in this thesis. We have shown
that a polymer model allowing for dynamic loop formation induces a segregation of chro-
mosomes (v chapter 10). Ring polymers were found to display a much stronger entropic
repulsion than linear polymers (~ chapter 9), the overlap volume between bonded rings
being significantly smaller than for linear polymers (~ chapter 8). However, a crucial
question remains: How does the existence of multiple loops in the Dynamic Loop model
affect the inter-chromosomal forces?

The scope of this chapter is to extend the study of effective interactions between ring
polymers to the more complex system of looping chromosomes. Amongst others, we want
to investigate how the strength of the repulsive interaction changes when introducing more
and more loops into the system. While a coarse-grained model of the chromosome is em-
ployed here, a mapping to physical units can be conducted using results from fluorescence
in situ hybridization (FISH) experiments [12]. Experimentally, the forces between two
chromosomes have not been determined, but in principle such experiments are possible.
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11.2 Methods

11.2.1 Computer simulations of chromosomes

Model chromosomes are simulated using the Dynamic Loop model introduced in chap-
ter 10. Simulations are conducted on a lattice using the bond fluctuation method [155]
to speed up the computation of excluded volume interactions. We perform simulations
of isolated chromosomes with lengths ranging from N = 128 to N = 1024. After initial
equilibration steps, loop formation is accomplished by diffusional motion: Whenever two
polymer segments come into contact, a bond is created with probability p for a certain
lifetime 7. Details are explained in section 10.2. Looping lifetimes are chosen relative to
the relaxation time of the corresponding isolated polymers without loops. As it has been
shown in chapter 10 that the chosen lifetime 7 does not strongly influence equilibrium prop-
erties, parts of the analysis presented here are restricted to the choice 7 = 7 = 0.017,,;
[see eq. (10.2)].

11.2.2 Calculation of the effective potential

To analyze the strength of the repulsive interactions, the potential acting between the
chromosomes’ centers of mass is determined using the method introduced by Dautenhahn
and Hall [167] and described in detail in section 9.2.3. In short, two equilibrated isolated
chromosome conformations are selected and shifted such that the distance between their
centers of mass equals r. If the excluded volume condition is satisfied, i.e. no lattice
site is occupied by more than one bond, the conformation is accepted, otherwise it is
rejected. The fraction of accepted conformations Nyccepted to the total number K of trial
conformations defines the effective potential at distance r,

N, accepted

Uett(r) = —kpT'In 7

From the set of accepted two-chain conformations, the conformational properties can be
calculated.

11.3 Results

11.3.1 The effective repulsion between chromosomes increases strongly with
loop number

What happens when two polymeric coils are brought closely together? Clearly, in the
absence of other interactions than excluded volume forces, polymers repell each other
due to the constrained conformational space. Such a behaviour has been found both for
linear self-avoiding walks [167] and ring polymers (Ref. [180] and chapter 9). Here, we
investigate the potential of mean force between the centers of mass of two chromosomes
modelled by the Dynamic Loop model (~ chapter 10). Results are shown for chain lengths
N = 128,256 and N = 512 in Figure 11.1. In principle, depending on the coarse-graining
used, such chains could represent small chromosomal regions up to whole chromosomes.
To allow comparison for different sets of parameters (chain length N, looping probability p,
lifetime of loops 7), the center-of-mass distance is scaled with the mean radius of gyration
R, of the corresponding isolated chains. The radius of gyration is a measure of the typical
size of a chromosome, i.e. the chromosome territory.
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Figure 11.1: The effective potential Ueg(r) between the centers of mass of looping polymers.
Simulations have been conducted using the DL model (~ chapter 10) for different chain lengths
N and looping probabilities p. The average number of loops per monomer resulting from the
parameter p is indicated by the color bar, different chain lengths by their point symbol. Data is
scaled with the radius of gyration of isolated polymer chains to allow comparison between different
parameters sets. The effective potential increases strongly with looping probability p, the order of
magnitude being independent of chain length V.

Evidently, the effective potential increases when approaching the two chromosomes,
i.e. lowering the center-of-mass distance r. This result is expected, as the accessible
conformational space becomes smaller the more the monomer clouds are in proximity.
More importantly, we find that the effective potential Ueg(r) is pronouncedly stronger for
chromosomes with a large average number of loops compared to linear chains. Contrarily,
the dependence of the effective potential on chain length IV is rather subtle, indicating that
the level of coarse-graining does not effect the results. This is well-known to be true for
self-avoiding walks and ring polymers, where the effective potential at full overlap adopts a
constant value on the order of 1 kg7 in the limit of infinite chain length. For the Dynamic
Loop model, a comparison is more difficult, since the effective potential is also a non-trivial
function of the looping probability p. Importantly, the repulsive potential increases most
strongly in the range where r =~ 1 — 2R, i.e. around the size of the chromosome territory,
indicating a huge energy cost for a high degree of CT intermingling.

To demonstrate how the data can be mapped onto physical units, we use model poly-
mers of chain length N = 256. We set one coarse-grained bead to 400 kb in order to
model a sufficiently long stretch in the size range of a typical chromosome. To determine
the spatial extend of this bunch of chromatin, we employ long distance experimental data
from chromosome 11 (Fig. 2.3C). In principal, such a mapping is always connected with
lots of uncertainy: The detailed Kuhn length is not known, not allowing for a precise
mapping on the short scale; As chromatin is organized in a much more complex manner
than a linear chain, other parameters (looping, binding, heterogeneity) enter the calcula-
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Figure 11.2: Mapping of coarse-grained polymers to physical parameters. Shown are results
for a chain length of N = 256 using different looping probabilities. The chain is mapped to
chromosome 11 by assuming one bead to comprise a 400kb-stretch of chromatin. Consistent with
experimental data [12], this is set equal to 480 nm. Different symbols indicate different looping
lifetimes (A: 7 = 0.017;,4; O: T = Tyng; o2 T = 1007;,¢). A. This panel shows the mean square
distance in relation to genomic separation of model and experimental data to assess the quality
of the mapping. B. The potential of mean force between two model chromosomes in relation to
physical distance r between the centers of mass. The effective potential strongly increases with
increasing looping number at a separation of about 2-3 pm, i.e. the size range of the assumed
chromosome territories.

tions. To obtain a simple mapping, we adjust the plateau level of the model polymers to
that of experimental data. Figure 11.2A shows the results of the mapping using 177 nm
for one lattice unit, the model displaying well the leveling-off observed in experiments for
intermediate looping probabilities (the symbol A corresponds to 131 loops on average).
The effective potential Ueg(r) in units of kpT is displayed in Figure 11.2B. While the
effective potential profile is rather flat for self-avoiding walks, the existence of loops leads
to a strong increase in the potential at distances of about 2-3 um, the region where the
experimental data displays a leveling-off.

The quantitative increase in the effective potential of looping polymers over linear
chains (self-avoiding walks) is shown in Figure 11.3. The factor Ueg(r/Rgy)/Usaw(r/Rg)
by which the effective potential of the model chromosomes is larger than that of the linear
chain is plotted on the y-axis. Standard errors are in the size range of the symbols and
therefore not displayed. Likewise, the abscissa shows the center-of-mass distance scaled
by the radius of gyration R,. We find that the repulsive potential is stronger by more

30 T T T y T
o5 L i Figure 11.3: Ratio between the ef-
anan fective potential of looping polymers
20 | AAAA““A“ “““““.“ T and linear chains. The data shows
o 15 L __.‘:Q&QW"W%Q’yy’%@%&m%o;;g& the ratio Ueg(r/ Rg) /Usaw (1r/ Rg) for
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10 | aafelf2es280 607 e ] ent looping probabilities p. The data
W’M(m%f:..u...-' 0000 is plotted against the center-of-mass
5 e aoco000 . separation scaled by the radius of gy-
0 . . . . . ration Ry of isolated polymers. The
0 0.5 1 1.5 2 2.5 3 figure symbols and color codes are the

r/Rgq same as in Figure 11.2.
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than one order of magnitude for chains in the parameter range where leveling off occurs.

11.3.2 The force between chromosomes can be calculated

From the effective potential Ueg(r) the force acting between chromosomes can be derived
using the relation F' = —VUeg(r). We determined the derivative of the effective potential
Ues(r) at position r by locally approximating the potential with a cubic polynomial ps(r) =
ag + a1z + asx® + azx?® using the four data points lying closest to r and calculating its
derivative F(r) = —ph(r) at position r. We have calculated the force curves for a chain
length of N = 256 using the mapping indicated in Fig. 11.2, i.e. one coarse-grained
monomer consists of a 400-kb-stretch of chromatin and has a diameter of 480 nm.

The force curve is shown in Figure 11.4. Clerly, the observed forces are markedly
stronger for chromosomes with loops than for linear chains, having a maximum at approx-
imatley 2-3 pm.

11.3.3 Looping polymers become aspherically elongated

Chromosomes, when brought into close proximity, not only reveal a strong repulsion be-
tween their centers of mass; besides this, their structural properties also undergo significant
changes. Here, we investigate how size and shape of a model chromosome changes in the
presence of a second one. Such effects play an important role inside the cell nucleus, as
chromosomes are located in a complex environment being typically separated by only a few
Mb; comparison to linear chains allows us to learn something about the effect of looping.
The change in dimensionality is measured by the swelling factor s, given by

s = Ry(r)/Ry(r = 00) (11.1)

Here, R4(r) denotes the root mean squared radius of gyration [(3.8)] for a chromosome
being in a distance r to a second one. R, = Ry(r = oo) denotes the corresponding
quantity for isolated chromosomes. In our study on topological effects between ring poly-
mers (v chapter 9) we found that both linear chains as well as ring polymers swell when
being brought together, the swelling factor being about 10% for rings and slightly smaller
for linear chains.

While linear chains and ring polymers only show a mild swelling in presence of a second
chain, we find that model chromosomes swell enourmously. Figure 11.5A displays s for
different looping probabilities p, i.e. different values of the average number of loops, in
relation to the scaled center-of-mass distance r/R,. To demonstrate a similar behaviour
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Figure 11.5: Structure of chromosomes being in proximity of a second one. A. The swelling
factor s = Ry(r)/R4 of the chromosome when being at a center-of-mass separation r compared to
the isolated case. Data is shown for different chain lengths N and looping probabilities p. The
symbols and colors used are the same as in Fig. 11.1. B. The scaled asphericity A/As for model
chromosomes in proximity. The same data is used as in panel A. C. Illustrations of the average
gyration ellipsoids of the chromosomes. Shown is the change in shape and size of the gyration
ellipsoids for linear chains (no loops), chromosomes with an average number of 86 loops (symbol
A in Fig. 11.2B) and chromosomes with an average number of 131 loops (symbol A in Fig. 11.2B).

independent of the level of coarse-graining, results are shown for different chain length V.
Swelling factors s are strongly dependent on the average number of loops, increasing by
a factor in the order of 2-10 for the range of looping probabilities where a leveling-off is
observed (cf. also Fig. 11.2A). In fact, s diverges for large loop numbers, indicating that
the chains can not be approached closer than approx. 1 — 2R,.

The swelling of the chromosomes might suggest that they open up to create space for
the monomers of the other chromosome, i.e. allow for intermingling. In the following, we
will show that this is not the case, rather the contrary is observed. To achieve this, we
investigate how the shape of the chromosomes changes when being close together. The
asphericity A of the gyration ellipsoid has been established (~ 8.3.2) as a measure of
shape, being zero for a spherically shaped polymer and unity for a rod-like polymer,

()\1 — )\2)2 + ()\1 — )\3)2 + (/\2 — )\3)2
2(A1 + A2 + Ag)? '

A(A1, A2, A3) = (11.2)
To highlight the changes in asphericity when approaching two chromosomes, we show the
ratio A(r)/As in Figure 11.5B, A being the asphericity of an isolated model chromosome
with the same parameters. While the change in asphericity for linear chains (self-avoiding
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Figure 11.6: Mutual alignment of the gyration ellipsoids. A. The average angle (cos ©) is shown
in dependency of the center-of-mass separation r for chains of length N = 256. Black symbols
correspond to a linear chain (SAW), colored symbols to chromosomes with loops, the color coding
being the same as in Fig. 11.2. Error bars are smaller than the symbol size and therefore not
shown. The grey line corresponds to a random orientation of the gyration ellipsoids, showing that
chromosomes with loops induce a non-random mutual alignment. B. Two chromosomes with a
fixed center-of-mass separation r. The right-hand images shows chromosomes in the regime where
perpendicular alignment is observed (r = 0.5R,), the left-hand image displays chromosomes with
a center-of-mass separation of r = 1.7R,.

walks, no loops) is rather small even at full overlap (about 20%), we find a pronounced
aspherical deformation on our model chromosomes in the regime of looping probabilities
that force a leveling-off in the mean square distance. Asphericity values increase by about
200-400% at genomic separations of 1Ry, i.e. the typical size of the chromosome.

The changes in shape and dimension are visualized in Figure 11.5C. Shown are the av-
erage gyration ellispoids of three different model polymers: (i) linear chains (self-avoiding
walks, 0 loops), (ii) chromosomes with 86 loops on average (symbol A in Fig. 11.2B) and
chromosomes with 131 loops on average (symbol A in Fig. 11.2B). For each set of model
parameters, the ellipsoids are displayed for three different center-of-mass distances: iso-
lated chains (infinite CM distance), r = 1.5R, and r = 0.5R,. We find that isolated linear
chains require a huge amount of space, while looping polymers are pronouncedly smaller
and more spherical. When being in contact with a second chromosome, the shape of
self-avoiding walks changes only slightly, while chromosomes with loops become markedly
aspherical compared to their isolated shape.

11.3.4 Looping polymers avoid intermingling

To answer the question whether chromosomes swell to create space for each other or
rather try to avoid each other, the mutual alignment of the polymers is studied. An
established measure for the mutual alignment is given by the average angle (cos ©) between
the gyration tensors largest principal axes (chapters 8 and 9). In case of the chromosomes
being adjusted independently of each other, the average angle would adopt the value of
(cos®) = 0.5. Deviations from this value indicate a tendency of the polymers to align
in a certain non-random way with respect to each other. Figure 11.6 displays results for
linear chains (black symbols) and chromosomes with loops in relation to the center-of-mass
distance for chains of length N = 256. The symbol and color codes used are the same as in
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Figure 11.7: Segregation of chromosomes with loops. A. This panel shows the monomer density
distribution projected onto the line connecting the centers of mass of both chromosomes. A distance
of 0 indicates the point halfway between the centers of mass, which are in this example separated
by 1 pum. Results are shown for chain lengths of N = 256 using the mapping of Figure 11.2.
B. The degree of intermingling is measured by the overlap area of the monomer distributions
from both chromosomes in panel A. The overlap fraction is given for two different center-of-mass
separations: (i) 1 pum and (ii) 2 pm. Results show that the overlap fraction, i.e. the degree of
intermingling decreases strongly with the average number of loops in the system.

Figure 11.2. We find that chromosomes display a pronouncedly stronger tendency to align
perpendicularly at short center-of-mass separations than linear chains or ring polymers
(cf. 9.10A). Similarly, a slightly parallel alignment can be found at intermediate distances.

These findings might be explained by a tendency of the chromosomes to minimize the
overlap area. When the distance between chromosomes is lowered to values in the order
of the size of the chromosome, they start to feel the presence of the second chromosome.
Thus, the space of accessible conformations is reduced and the chromosome stretches in
a direction perpendicular to the center-of-mass axis. However, when the chromosomes
are forced even closer together, nearly overlapping completely, the observed perpendicular
alignment together with the strong elongation minimizes the volume shared by both chains
(Fig. 11.6B).

To quantitatively assess the amount of intermingling between the model chromosomes
in dependency of the average number of loops, we project the monomer positions to the
line connecting the centers of mass of both chromosomes. Thus, a density distribution
can be obtained as shown in Figure 11.7A. Here, chromosomes with a coarse-grained
length of N = 256 have been simulated. Mapping is done according to the procedure
described above. Results are shown for different looping probabilities and a fixed center-
of-mass distance r = 1 pm. The average number of loops being 0 (linear case, black
symbol), 86 (symbol A) and 131 (symbol A). Clearly, introducing loops in the chromatin
structure results in more compact polymers, the monomers being distributed closer around
the centers of mass. We determine the overlap fraction by integrating the overlap area
between the distributions of both chromosomes. The results are shown in Fig. 11.7B using
two different center-of-mass separations r = 1 um and r = 2 um. For a center-of-mass
distance of 2 pm, being comparable to the size of chromosomal regions [12], we find that
the overlap fraction decreases strongly from about 0.7 down to less than 0.1 for large loop
numbers. Interestingly, in the range where leveling-off occurs, overlap fractions are in the
range of 20-30%. These values are, however, an overestimate, as the projection procedure
does not capture segregation in the direction perpendicular to the line connecting the
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centers of mass. Although not directly comparable to experimental results, these values
are in the size range of experimental data from FISH cryo sections, where an overlap
volume of 20% has been observed [60].

11.4 Conclusions

In this chapter, we have analyzed the effect of loops on the repulsive interactions between
polymers. As a measure for these interactions we applied the theory of effective potentials,
where monomeric degrees of freedom in the partition sum are traced out. The resulting
effective potential Ueg(r) gives the interaction between both polymers in dependence of
their center-of-mass distance r. Ueg(r) has been determined for self-avoiding walks in
recent decades [167] and for ring polymers (~ chapter 9) in this thesis. Both linear
polymers and rings display a repulsive interaction at full overlap (r = 0), asymptotically
converging to a finite value in the order of 1 kT in the limit of large chain lengths. Here,
we applied the concept of effective interactions to the Dynamic Loop model, which has
been proposed as a model for chromatin organization in chapter 10.

The major finding of this study is that introducing dynamic loops in the structure
of chromatin results in a strong increase of the repulsive interactions by about one order
of magnitude (Fig. 11.1). Using a mapping to physical units based on recent FISH ex-
periments, we found that the repulsive forces are strongest at center-of-mass separations
of 2 — 3 pum, i.e. the size of the chromosome territory (Fig. 11.2). These observations
indicate that chromatin looping plays a dominant role in the entropy-driven segregation
of chromosomes.

Moreover, we found that the existence of loops introduces strong changes in the size and
shape properties of the chromosomes. Indeed, when being brought close together, looping
polymers swell and become pronouncedly aspherical, the observed effect being multi-fold
larger than for linear chains or ring polymers. Chromosomes in proximity display a highly
non-random orientation of their gyration ellipsoids. Increasing the number of loops leads
to a significant decrease in the overlap fraction.

These findings indicate that chromatin loops not only play an important role in tran-
scriptional regulation. Rather, they help to impose a certain state of order and segregation.
Thus, loops seem to constitute a highly efficient regulatory mechanism concerning gene
regulation as well as chromatin compartmentalization. The Dynamic Loop model used in
this study refrains from assuming active driving mechanisms for loop formation, rather
loops form by diffusional motion, minimizing the energy cost.
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Chapter Summary

A combined approach of 2D high-resolution localization light microscopy and statistical
methods is presented to infer structural features and density fluctuations at the nuclear
nanoscale. Hallmarks of nuclear nanostructure are found on the scale below 100 nm
for both fibroblast and HeLa cells. Mechanical properties were extracted from the histone
density fluctuations inside the cell. Results show that different mechanisms of expression of
the same protein lead to significantly different patterns on the nanoscale and to pronounced
differences in the detected compressibility of chromatin. While a linear self-avoiding walk
polymer model is in disagreement with the experimental findings, the formation of dynamic
loops explains well the observed large values of the compressibility.

12.1 Introduction

Chromatin nanostructure of eukaryotic cells has been hard to analyze by light optical
techniques. Conventional light microscopy is limited physically to a resolution of about
200 nm, the Abbe limit. Structures below this length scale cannot be resolved by these
microscopes.

Chromatin structures above the level of single nucleosomes, however, are typically in
the size range between 10 nm and some pm [7]. The diameter of the presumed chromatin
fiber between 10 nm and 45 nm renders it impossible to follow the path of the chro-
matin fiber by conventional light optical techniques. Thus, chromatin structure can only
be inferred by using indirect approaches. Fluorescence in situ hybridization (FISH) has
been applied to mark specific sites along the chromosome, measuring the physical distance
between the FISH probes [27, 8, 9, 12]. These labels can then be localized with a conven-
tional light microscope (~ 2.3.4). Thus, a relationship between mean square displacement
vs. genomic separation of two markers can be established. Large-scale organization on
the level of the entire cell nucleus can be visualized by distributing FISH labels along the
fiber [6] or by using fluorescent stains with a non-sequence specific DNA binding affinity,
such as DAPI [182] which can be used to stain both fixed and live cells. However, struc-
tural information from conventional confocal light microscopy is limited by about 200 nm
in the focal plane and about 600 nm in the optical plane. To overcome the resolution
limits of conventional confocal light microscopy, confocal laser scanning fluorescence 4Pi
microscopy [183] may be used where laser light is focussed from different sides, allowing
for an axial resolution down to the 100 nm range [184].

The investigation of chromatin nanostructure, i.e. structures with dimensions below
100 nm, still faces severe experimental problems. Electron microscopy (EM) has been
applied to study the both isolated chromatin segments in vitro or thin sections of chromatin
in situ [185, 45]. Generally, transmission EM requires a high vacuum and thin samples
to allow the beam penetrate the probe. One way of achieving this is to dehydrate the
specimen, embed them in a plastic medium, finally cut thin sections out of it. Before
staining the probe with heavy metals, they have to be chemically fixated due to the
invasiveness of the staining procedure. A less invasive approach is cryo-EM, where whole
unfixed nuclei are used to create frozen hydrated cryosections [186, 187]. Although actual
optical resolution of nuclear structures in the 10 nm regime have been achieved using
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advanced EM methods [188], some general restrictions of EM still remain which make it
highly desirable to develop methods for light optical analyses of nuclear structure at an
enhanced resolution beyond the Abbe Limit.

In the last years, there have been advances in light optical techniques allowing for
a resolution of single fluorescence labelled molecules with a localization accuracy in the
range down to 20 nm [189, 190, 191]. Basis of these techniques is to use different spectral
signatures of light from a point-like source to localize positions of the fluorescent molecules,
even if they are close together (< 200 nm). Generally speaking, when passing the optical
microscopy setup, each point-like fluorophore will be blurred on the screen, the intensity
distribution given by a Bessel function. Only if the distance between two fluorophores
is larger than the half-width of the first maximum of this airy disk, the points can be
separated. This, however, is not true, if the fluorescent spots have different colors. Then,
two points can be optically isolated by inspecting the color-dependent maxima, allowing
the separation of points much closer than given by the Abbe limit. Optical isolation can
also be achieved by utilizing any kind of distinct optical signature, for example different
blinking frequencies or consecutive emission times [192]. Using different emission times
requires fluorescent molecules which can be switched on and off by an external source.
First proof-of-principle experiments were done using spectral precision distance / spectral
position determination microscopy (SPDM) [193, 194]. Since then an advanced method
has been developed using reversibly bleached states of conventional fluorophores like GFP
for localization microscopy [195]. The stochastic recovery of fluorophores from the dark
state yields to an optical isolation, which allows an accurate position determination far
below the Abbe limit. Acquiring a huge amount of images over time results in a good
reconstruction of the original distribution of fluorescent markers.

Although these technical microscopy methods have been well-studied, a quantitative
analysis of nuclear nanostructure is still lacking. In this study, we present a method
combining high precision light microscopy with statistical methods to obtain information
on both structure and mechanical properties. We apply and verify the method by studying
the distribution of histones H2B inside the cell nucleus. The questions we ask are

1. Is there a recurrent nuclear (chromatin) nanostructure for different cell types?
2. Does this nanostructure show differences from cell type to cell type?

3. Does the nanostructure dependent critically on the type of expression of the fluores-
cent dye?

4. On which length scale do fluctuations vanish inside the nucleus? What is the corre-
sponding compressiblity of localized fluorophores?

5. How do the results relate to polymer models?

To answer these questions, we apply localization microscopy to both fibroblast and
HeLa cells. To examine the expression-dependency of the structure, we use different
expression methods for HeLa cells. For the present experiments, a setup for SPDM with
physically modifiable fluorophores (SPDMpry prop) was used [195].

12.2 Experimental Methods and Image Segmenation

The sections “12.2.1 Specimen preparation”, “12.2.2 SPDM Setup” and “12.2.3 Data ac-
quisition and evaluation” as well as the figures therein were kindly provided by Rainer
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Kaufmann. The work described in these sections was done by the group of Prof. Christoph
Cremer and Prof. Michael Hausmann, the persons involved are Rainer Kaufmann, Yanina
Weiland, Patrick Miiller, Manuel Gunkel, Alexa v. Ketteler and Paul Lemmer.

12.2.1 Specimen preparation

a) Fibroblast Cells

The VHT diploid human fibroblast cells (kindly provided by Prof. Dr. Beauchamp from
DKF7Z, Heidelberg), used for the measurements, were cultivated in Dulbecco’s Modified
Eagle medium supplemented with 10% FCS, 1% L-glutamine, 1% penicillin/streptomycin
in a standard COq incubator. After seeding the cells onto cover slips, they were allowed to
attach and grow over night. Using Organelle Lights (Invitrogen, Carlsbad, USA) according
to the manufacturer’s protocol, EmGFP conjugated histone proteins H2B were expressed.
The cells were fixed with 4% formaldehyde in PBS and embedded with ProLong Gold
antifade reagent (Invitrogen) 24 hours after the transfection.

b) HeLa Cells (strains I, IT)

HeLa cells were cultivated in RPMI medium supplemented with 10% FCS, 1% L-glutamine,
1% penicillin/streptomycin in a standard COs incubator.

1. HeLa cells of strain I were first seeded onto coverslips and allowed to attach and grow
over night. After using Organelle Lights (Invitrogen, Carlsbad, USA) according to
the manufactures protocol, emGFP conjugated histone proteins H2B were expressed.
The cells were then fixed with 4% formaldehyde in PBS and embedded with ProLong
Gold antifade reagent (Invitrogen) 20 hours after transfection.

2. HeLa cells (strain II, kindly provided by Dr. Tobias Knoch from Univerity Rotterdam
and Bioquant Center, University of Heidelberg) stably expressing histone H2B-GFP
proteins, were seeded onto coverslips, and were allowed to attach and grow over
night. Afterwards the cells were fixed using 4% formaldehyde in PBS and embedded
with ProLong Gold antifade reagent (Invitrogen).

12.2.2 SPDM setup

The microscopy was based on the principle of spectral precision distance/position deter-
mination microscopy (SPDM; [196, 193]; for review see [197]). For the present experi-
ments, a setup for SPDM with physically modifiable fluorophores (SPDMpgy prop) was
used [198]. In this case 2D localization of single fluorescent molecules was achieved by
stochastic switching. This method is based on a light induced reversibly bleached state
of conventional fluorophores [199, 200, 201]. By starting illumination of the sample with
an excitation intensity in the 10 kW /cm? to several 100 kW /cm? range, some molecules
are bleached irreversibly (My — M), another amount is transferred into a reversibly
bleached state (My — M,y). The statistical recovery of fluorophores from this state
(My; < M,y) can be used for optical isolation of the single fluorescent molecules. This
allows the SPDM setup single molecule detection and localization of conventional fluo-
rophores specified as SPDMpgy ymop-

For the experiments only one laser source was needed at an excitation wavelength of
A = 488 nm [Ar488] (Lexel 95-4, Lexel Laser, USA). It is used for fluorescence excitation
as well as for the reversible bleaching of fluorophores. After deflection at mirror [M1] the
laser beam is expanded by a factor of 10 using a collimator built up of two achromates
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with focal length of 10 mm and 100 mm (Linos Photonics, Géttingen, Germany). Then an
additional lens [LL] leads to a more focused spot in the object region so one can achieve
the high laser intensity, which is necessary for the localization mode. Via a mirror [M2], a
dichroic mirror [DM] (AHF Analysetechnik AG, Tibingen, Germany) and a lens [L1] the
beam is focused into the back focal plane of an oil immersion objective lens (x100, NA =
1.4, Leica, Bensheim, Germany).

Figure 12.2: a): Localization image of histones H2B in the nucleus of a human fibroblast cell
labeled with EmGFP. The localized fluorophores are blurred with a Gaussian corresponding to
their individual localization accuracy. The inserts show the marked areas four times magnified.
b): A conventional wide-field image of the same nucleus as in a). The image was acquired with a
conventional epi-fluorescence microscope setup.

The detection pathway is a conventional epi-fluorescence setup. Emitted fluorescence
light passes the dichroic mirror [DM] and is focused by a tube lens [TL] (x1.0, Leica, Ben-
sheim, Germany) onto the CCD chip of a highly sensitive 12 bit black and white camera
[CCD] (SensiCam QE, PCO Imaging, Kehlheim, Germany). A blocking filter [BF], which
is mounted in front of the CCD chip, reduces the background signal of the excitation light.
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Figure 12.3: Sections of localization images of histones H2B in the nucleus of (a) human fibrob-
lasts, (b) HeLa cells of strain I and (¢) HeLa cells of strain II.

12.2.3 Data Acquisition and Evaluation

For data acquisition a time stack consisting of 2000 frames was recorded with a frame rate
of about 18 fps for each image. The evaluation was done by algorithms implemented in
MATLAB (7.4.0, The MathWorks, Natick, USA).

In a first step, the number of photons for each pixel of the CCD chip is estimated. The
count number is translated into the number of incident photons by the multiplication of
a factor dependent on the conversion rate of the CCD sensor:

NPphotons (xa Y, t) = Ceonwv * NCounts (iC, Y, t),

where Nphotons(, Y, t) is the number of incident photons as a function of the pixel po-
sition (z,y) and the time ¢ denoting the individual frames of the image stack obtained by
the CCD camera at times ¢t = t1, tg, ..., tg, ...tn. Ceonv 1S the conversion factor between the
number of counts and the number of photoelectrons. Neoynts(z,y,t) gives the number of
counts (raw data) as a function of pixel position (x,y) and the time ¢. For example, using
Ceonv = 2/ count (low light mode) a photon number of Nppotons(Z, Y, t) = 2Ncounts(x, y, t)
is estimated.

In a second step, for signals with a low signal-to-noise ratio (i.e. high background and
photo bleaching effects active during several succeeding frames) an additional computing
step is required to segment signals originating from single molecules only. A differential
photon stack Dppotons(2,y,t') between the succeeding (¢ = t;11) and the preceding frame
(tx) is calculated to eliminate the background noise:

DPhotons (.%’, Y, t/) = NPhotons (.%’, Y, 7fk—t—l) - NPhotons(x7 Y, tk)‘

The error ¢ in the photon number produced by the Poisson statistics of the incident
photons and the noise occp of the detection at the CCD chip (approx. 4 counts per pixel)
was estimated by the Gaussian law of error propagation:

U[DPhotons(xa Y, t/)} = [NPhotons(xv Y, tk+1)2 + NPhOtOHS(xa Y, tk)2 + QU%CD]I/Q.

In the last step, the data stack Nppotons(Z, ¥, t) (in case of low background) or in case of
high background Dppotons(Z, y,t') is used for a lateral high precision localization of single
molecules. To reduce computing efforts, Regions of Interest (ROIs) of typically 8x8 pixels
were used. A model function is fitted to the acquired signals in the object plane using the
Levenberg-Marquardt algorithm with a Gaussian distribution plus background:
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Figure 12.4: A. Localized histones of a different fibroblast cell after data processing. Each
localized fluorophore is represented by a blue point. The average number of detected points is
124 per um?. B. Result of the segmentation procedure. Regions marked grey are not included
in the data analysis. The image is segmented based on an density threshold procedure in order
to exclude regions outside the nuclear membrane as well as chromatin-depleted regions inside the
nucleus, e.g. nucleoli.

(@ —20)* + (y — o)
f(z,y) = Ae 202 + By + Bi(zo — x) + Ba2(yo — y).

xo and yo are start parameters for the position corresponding to the determined center
of the segmented signals. A is the amplitude and ¢ the standard deviation of the Gaussian
distribution. By, B; and B represent a linear background.

In this manner the lateral positions of the single molecules can be determined with a
localization accuracy (o) in the 20 nm regime [195].

Fig. 12.2a) shows a localization image for histones H2B labeled with EmGFP in human
fibroblast cells. The localized fluorophores give the positions of the single histone proteins
with their individual localization accuracy displayed by a corresponding Gaussian blur.
The wide-field image in Fig. 12.2b) was recorded with a conventional epi-fluorescence
microscope setup. A comparison between localization images of fibroblasts and HeLa
strain I and II is displayed in Fig. 12.3.

12.2.4 Image segmentation

After data acquisition and evaluation, the data is provided for each cell as a number of
two-dimensional coordinates (z,y) together with a localization accuracy (Ax,Ay), each
point representing a localized fluorophore. An example of a Fibroblast cell is depicted in
Fig. 12.4A.

To obtain information about the structure, a threshold-based density segmentation
procedure was applied, which defines the region of pixels in which chromatin is found. The
segmentation algorithm was parameterized such that regions outside the nuclear envelope
as well as regions within the nucleus containing no or little chromatin (e.g. nucleoli) as
defined by a low detected histone molecule density were excluded from the analysis.
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Table 12.1: Number of cells and

cell type number of cells av. oints m?
average number of detected flu- P # P [

orophores per square micrometer fibroblasts 28 124
for human fibroblasts and HeLa  HeLa, strain I 9 206
strain I and IL HeLa, strain II 37 98

In order to achieve this, a quadratic box of linear dimension b was positioned at each
possible position (with a resolution of 30 nm) and the density p, of points inside this
box was determined. If the density was below a certain percentage pinre of the maximum
density, the region of the box was marked as outside of the analysis region. The box
dimension was always set to b = 500 nm. The threshold percentage was set to p = 15%
for the HeLa cells of strain IT and p = 10% for strain I and the fibroblasts. These values
were choosen by visual inspection to ensure that no region with little fluorophore content
is used for analysis. The segmentation algorithm is defined such that in tendency more
area was removed from the analysis region than necessary. By using a rather large box
dimension b we autmatically excluded heterochromatin regions near the nuclear envelope.
Figure 12.4B shows the result of the segmentation procedure using the same cell as in
Fiure 12.4A.

Table 12.1 lists the number of images of cell nuclei for each cell type and strain as well as
the average number of detected fluorophores per square micrometer after the segmentation
procedure.

12.3 Radial distribution function reveals nanoscale structure

In order to examine nanostructure we used the concept of the radial pair distribution
function (RDF) g(r) from solid state and soft matter physics [202], where it is used to
analyze structural properties of systems and transferred it to the context of analyzing cell
contents.

12.3.1 Definition

Structure information is coded in the radial distribution function (RDF) g(r) as well as its
Fourier transform, the structure factor S(g). This radial distribution function describes
the variation of the surrounding matter’s density as a function of distance. Suppose, for
example, a histone detected at the origin 0 of the coordinate system. What then is the
density of histones in a certain spherical shell with distances [r,r + dr] apart? Indeed, the
RDF g(r) is the factor by which this density differs from the average particle density p of
the system. Consider a system of N particles in a volume V. For a given distance r let the
number of particles being in the spherical shell [r,r 4 dr| around the histone at the origin
be N(r). Then the RDF is defined as the ratio between the density p(r) = N(r)/(3mr®)
and the average density p = N/V of the system averaged over the ensemble. Therefore
g(r) is a measure for the local order of a system and deviations from a structureless random
particle distribution of the histones inside the cell nucleus show off clearly.

In more statistical terms, the radial distribution function is defined by the normalized
integral over the configurational part of the Hamiltonian of the system [202]

V2

g(r) = JVQN(N_1)]"’fexp[_UN(r17-",I'N)]drg...drN.

ZN
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Here, Uy is the system’s potential energy function and Zy is the configurational part of
the partition sum.
The relation between the particle pair potential U(r) and the RDF is given by [202]

9(r) = exp (=U(r)/kT) .

The radial distribution function is normalized such that
oo
/ pg(r)amridr = N .
0

12.3.2 The influence of projections

The images from SPDM microscopy are two-dimensional projections of three-dimensional
cells. Projections comprise about 600 nm perpendicular to the focal plane, leading to a
loss of structure information.

We studied a simple fluid as a model system to verify that projections do not conceal
structural information. Simple fluids are often modelled as a Lennard-Jones fluid [202],
i.e. the pairwise interaction potential is given by

o= () (5) ) =

As the cell also is in a fluid state, such a system allows comparison to the experimental data.
The Lennard-Jones system studied was composed of N = 2048 particles and a density
of p = 0.6072 in the NVT-ensemble. Molecular Dynamics simulations are performed
using the software package Espresso [121]. A time-step of At = 0.0057 was chosen. The
Langevin thermostat was initialized with a temperature parameter of T' = le and a friction
of I' = 0.5771, consistent with the values used in Ref. [121].

From a sample of 2000 independent conformations, we calculated the three-dimensional
radial distribution function gsp(r) as well as projected two-dimensional RDFs. For the
latter, all particles within a slice of thickness fraction f relative to the simulated system
size were projected onto a plane, yielding the two-dimensional radial distribution function
g(r). As the cellular diameter is about 10 pm, the slice thickness of interest is f ~
600 nm/10 gm = 0.06. While the three dimensional RDF displays the well-known shells,
in which particles arrange, the information is blurred out slightly for projected particles
(Figure 12.5), the effect becoming less the smaller the slice thickness. Although structures
are blurred in the radial distribution function g(r) for a value of f = 0.06, they are still
markedly visible.

Labeling efficiency varies dependent on cell type and labeling method (table 12.1).
How does this effect the radial distribution function? In fact, the RDF is independent
of labeling efficiency as long as the localized fluorophores are drawn randomly from the
ensemble of available histones. The reason for this is that g(r) is a density-normalized
average, thus density effects are entirely divided out. However, less labeling efficiency
results in less statistics and therefore in larger errorbars.

12.3.3 Calculations of ¢(r) for the data

For the calculation of g(r) the valid analysis region has to be taken into account. It is to
be emphasized that g(r) is not determined using points, where the connecting line between
them or parts of it lie in a region, which was marked invalid by the segmentation procedure.
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Figure 12.5: Calculation of the projected radial distribution function g(r) for a Lennard-Jones
fluid. To analyze the effect of 2D projections on the radial distribution function ¢(r), a three-
dimensional Lennard-Jones system is simulated. Panel A displays an example conformation. As
microscopy data provides a 2D projection of points comprising about 600 nm along the optical
axis, a section is cut out of the simulation box (marked by the red plane). Panel B displays this
section which is in this example 20% (f = 0.2) of the linear system size L. This data is then
projected onto a 2D plane (panel C) and the radial distribution function is calculated. Panel D
shows the results for the radial distribution function ¢g(r). The red curve displays the results for the
3D radial distribution function. It displays the typical behaviour: Below the hard-sphere radius of
the fluid particles o, no other particles can be found. The first peak corresponds to the first shell of
molecules arranging close to each other due to the attractive interactions. Calculations are shown
for a slice thickness of the slice of 6% and 20% of the linear system size. Assuming typical diameter
of a human cell of about 10 um, the optical section used in microscopy of 600 nm corresponds
to the 6%-curve (fraction f = 0.06). Obviously, the projected radial distribution function still
displays the structure-defining maxima and minima, although they are less pronounced. This
analysis indicates that the projected rdf does not conceal structural information.

Therefore, it leads to inconsistent results to just create a histogram of distances between
localized points inside the analysis region and obtain g(r) from it. Rather, we proceed as
follows

e For each localized point r; inside the valid region of the nucleus we

o determine the maximum sphere around the localized fluorophore at r; with
radius R, for which the area is still completely inside the analysis region

o and calculate the density p;(r) of points lying in a spherical shell with inner and
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outer radii  and r + dr with a resolution of dr = 10 nm up to the maximum
value of R.

o We average over the radial densities p;(r) and calculate g(r) using the averaged
densities.

12.3.4 Results

The radial distribution function g(r) is determined for the fibroblast cells and both HeLa
strains. Results are shown in Figure 12.6. The RDF displays significant differences from an
equidistribution of histones (corresponding to the black line) inside the cell nucleus for both
fibroblasts and HeLa cells on the scale below 100 nm, indicating the existence of distinct
structures. More interestingly, the RDF shows pronounced differences for HeLa cells stably
expressing histone H2B-GFP proteins (strain IT) and emGFP-labelled cells (strain I). The
emGFP-labelled fibroblasts show the same structural features as strain I of HeLa. Thus,
different mechanisms of expression of the same protein lead to a significantly different
distribution of localized histones on the nanoscale. Errorbars in Fig. 12.6A represent the
standard deviation in the ensemble of cells, showing that there is considerable structural
variation from cell to cell (cf. also Figure 12.6B).

12.4 Density distribution analysis reveals large-scale fluctuations

12.4.1 Background and Method

Statistical Mechanics provides a useful tool to study both structural and mechanical prop-
erties of a system of particles [202]. The localized fluorophores at positions r; can be
considered as particles in a volume V interacting via a certain potential U({r;}). The po-
tential summarizes all interactions between localized particles as well as interactions with
other constituents of the cell in the sense of an effective interaction. Thus, U might com-
prise pairwise or three-body or even higher-order interactions. What, then, does statistical
mechanics tell us about the system?

A many-body system of volume V' can be divided into blocks ¢; of linear dimension b.
As long as the block-size is larger than the correlation length & of the order parameters
of the system, but smaller than the total size of the system V1/3_ all blocks represent one
realization of the ensemble. Following the procedure described by Rovere et al. [203] we
determine from the block densities p; the density distribution P,(p) of the system. The
distribution still carries an index b, as finite-size effects render the distribution dependent
on the block size. In contrast to Ref. [203] we determine the distribution and its kth
moments <,0’§> for each cell separately and average the final measures. The rationale
behind this procedure is that labeling and detection efficiency may vary from cell to cell,
not displaying “real” biological and physical fluctuations.

In the canonical or NVT ensemble, where particle number, temperature and volume
are fixed — as is the case inside the cell nucleus — the density fluctuations are linked to
the radial distribution function g(r) [202],

<P2><;><P> _ % /4M2 (g(r) —1)dr+1. (12.2)

In case of a random distribution of points (corresponding to an ideal gas), the density
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Figure 12.6: A. Nanostructure of nuclear histone distribution observed by high-resolution light
microscopy. The radial distribution function g(r) reveals distinct differences from a random dis-
tribution (i.e. g(r) = 1), highlighting the existence of distinct structures on the scale below 100
nm. Results are shown for human fibroblasts and two HeLa strains prepared by different labeling
methods. Error bars represent the cell-to-cell variation (standard deviation). Structural hallmarks
are found for HeLa as well as fibroblasts independent of labeling methods, however quantitative
differences exist. The grey horizontal line corresponds to the (normalized) average density, i.e.
a random spatial distribution of histones. B. The radial distribution function for single human
fibroblast cells. Differences between different cells highlight the cell-to-cell variations.
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Figure 12.7: Block density analysis of a Lennard-Jones fluid. A. An image of the local densities
of a projected Lennard-Jones fluid with a block size b = 0. Projected molecules are indicated by a
point. Although o is the hard sphere radius of the particles, more than one particle can be found
per block as we deal with projections. B. Density distributions for three different values of the block
size b. Below the correlation length & = o of the system, the distribution is not Gaussian. However,
for b > &, the density is Gaussian distributed. C. The reduced fourth order cumulant Uy, eq. 12.3,
approaches the value zero for large block sizes b, indicating a Gaussian density distribution above
the typical interaction length scale £ = o of the system. D. The compressibility of the system.
The inset shows that for length scales larger than o, the block-size dependent compressibility xy
can be extrapolated to the limit b — oo, yielding the isothermal compressibility xr/ko = 0.46
of the system. Compressibilities are scaled with the isothermal compressibility of an ideal gas
ko = 1/p = (pkpT)~! to obtain independency of the systems average density.

distribution is binomial. The probability that box ¢; contains IV; points is given by

NI

Apart from finite-size effects, this leads to a Gaussian distribution. The reduced fourth-
order cumulant [203, 204]
Ha
Up=1—-——= 12.3
is zero in this case. pup = <(pb — <pb))k> denote the centered k' moments. In case of
pairwise or higher-order interactions, deviations from the Gaussian behaviour become
visible here. However, above the length scale where interactions take place, i.e. b > &, the
fluctuations are again Gaussian as every box can be viewed as an independent realization
picked from the ensemble.
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Besides structural information, the density fluctuations contain information about me-
chanical properties of the system. The isothermal compressibility k7 is related to the
density fluctuations by [203]

B ((77), = (0)3) = () kTt (12.4)

Again, the actual isothermal compressibility xp is obtained only in the limit of V — oo
and b — co. From the block density distributions, it has to be calculated by extrapolation

k® K for b — o0,V — o0 (12.5)

Thus, the block distribution is in a sense complementary to the radial distribution
function g(r). While the latter gives information on the short scale, the compressibility
is related to large scale behaviour of the system. Indeed, we have k ~ lim, .o S(g), thus
representing the large scale r — oo.

12.4.2 Results
The test system: A Lennard-Jones fluid

In section 12.3.2 the Lennard-Jones fluid was introduced as a well-known model system.
Here, we use simulations of the Lennard-Jones fluid as a reference for comparison to
the experimental histone distributions. Simulations are performed in three dimensions,
however, for the analysis, the particle positions are projected on the zy-plane to allow
comparison to the experimental data. In Fig. 12.7A the block densities are visualized
for a block size of b = o, corresponding to the typical length scale ¢ of the system. The
density distributions P(p,) shown in Fig. 12.7B display the expected behaviour. Below the
length scale £ = o where interactions take place, the density distribution has pronounced
deviations from a Gaussian shape. Above this length scale, P(0;,) becomes more and
more Gaussian. The reduced fourth order cumulant U, asymptotically adopts the value
0 (Fig. 12.7C). As expected and in agreement with simulations by Rovere et al., the
isothermal compressibility converges to a constant value in the limit of b — oo (Fig. 12.7D).
Strong deviations are visible on the scale below & = ¢. Note that the compressibility is
always plotted relative to the compressibility ko = 1/p of an ideal gas to get rid of the
dependency on the average density.

Compressibility analysis reveals large-scale fluctuations

Fig. 12.8 shows the compressibility x; for the three cell types studied. Data is scaled with
the compressibility of a random distribution of points (ideal gas) kg = 1/p = (pkpT)~! to
remove effects of different labeling efficiencies, i.e. densities. Interestingly, the data does
not converge for stably transfected HeLas (strain II), indicating that fluctuations exist on a
length scale far above 1 um. Fibroblast cells display less fluctuations, resulting in a smaller
compressibility, however, pronounced differences are found to HeLa cells of strain I. The
latter show a compressibility converging at about 1 pym, indicating that typical chromatin
fluctuations are of this size range. Thus, differences in the expression of the protein leads
to different structural patterns, not only on the short scale as indicated by the RDF g(r),
but also on the scale of the nucleus. The compressibility strongly differs both for different
cell types, suggesting that large-scale properties depend on the cell’s differentiation state,
as well as different labeling methods. To exclude the possibility that insufficient statistics
inside the cell is responsible for the observed behavior, we have simulated cells of the same
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Figure 12.8: The compressibility ratio x/ko versus block-size. The compressibility &y is scaled
with the compressibility of an ideal gas kg = 1/p obtain density-independent values. The non-
convergence of the compressibility indicates large scale fluctuations of the histone distribution in
the cell nucleus.

shape and density using a random distribution of points. For all block sizes studied, the
simulation shows no deviation from the expected value /Ko = 1, rendering statistics
issues unlikely.

The observed fluctuations on the large scale might reflect regions with locally different
chromatin density. Experimental studies indicate that regions of increased gene density
(ridges) as well as transcriptionally inactive regions (anti-ridges) mapped according to the
human transcriptome map, spread over an average distance of up to 1-2 pum [12]. This
value corresponds to estimates of the average size of chromosome territories [19]. Ridges
and anti-ridges show pronounced differences in the compaction of chromatin, leading to
histone density fluctuations. Furthermore, fluctuations might arise due to heterochromatic
and euchromatic regions.

Interestingly, the compressibility is markedly larger for all cell types than for an ideal
gas, i.e. a random distribution of points. This is somewhat unexpected as interactions
typically lower the strength of the fluctuations. The Lennard-Jones system, for example,
shows a compressibility k7 which is lower by a factor of about 2 (Fig. 12.7D) compared
to the ideal gas system.

Block density distribution reveals non-Gaussian distribution patterns

Further information on the fluctuations can be gained directly from the block density dis-
tributions P(p), which should adopt a Gaussian distribution above the correlation length
&. An illustration of the density distribution for a block size of b = 500 nm is illustrated in
Fig. 12.9A and B for a fibroblast cell and a HeLa cell of strain I respectively. From visual
inspection we find already that non-random distribution patterns prevail in the cell over
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Figure 12.9: Visualized local densities for a fibroblast cell (A) and a HeLa cell of strain I (B).
Shown are the densities of blocks of linear dimension b = 500 nm. They display strong deviation
from a random distribution, indicating that structure in the histone distribution exists on that
scale.Panel C displays the block density distributions P(p/ (p)) for different values of block size:
b =200 nm (m), b =500 nm (e), b = 1000 nm (A). Data is scaled with the average density (p) to
make the distribution independent of labeling efficiency. D. The cumulants U, [eq. (12.3)] of the
density distribution. For a thermodynamically equilibrated system they should display a value of
zero (grey line) above a block size b larger than the scale of density fluctuations.

large length scales. For example, the upper part of the fibroblast cell in Fig. 12.9A seems
to be depleted of fluorophores. This might be due to a heterochromatic region or to non-
accessibility of the fluorescent markers in that region, which in turn might be related to
chromatin density. Distinct connected regions with only a small density of localized points
can be found throughout the cell spanning length scales of several um. These regions again
might be connected to differences in local chromatin compaction. Fig. 12.9C displays the
density distributions P(p) for both fibroblast cells as well as HeLa cells (strain I) for block
sizes of b = 200 nm, b = 500 nm and b = 1000 nm. The distributions are scaled with
the average density to obtain independency from labeling efficiency. Expectedly, clear
deviations from a Gaussian shape are visible on the scale below 500 nm. For b = 1000
nm deviations from a Gaussian cannot be distinguished by visual inspection, therefore
we apply a measure, the reduced fourth order cumulant Uj, [eq. (12.3)], which should be-
come zero for a Gaussian distribution. Interestingly, the fourth order cumulant does not
vanish even for large block sizes up to b ~ 1.5 ym (Fig. 12.9D), indicating non-Gaussian
fluctuations on this scale.

12.5 Relating to polymer models

In this thesis, the Random Loop model (~ chapter 5) and the Dynamic Loop model (~ chap-
ter 10) were introduced. Both models, basing on the same idea, make testable predictions
on a huge variety of observable quantities. In fact, the Dynamic Loop model offered a
unified framework of chromatin organization bridging the gap between genome folding
and function. While measures of shape and organization can be easily evaluated in such a
coarse-grained polymer model, simulations are not feasible on the scale of single histones.
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Nevertheless, in the following sections, an approach is developed that allows comparison
of the model with experimental data from localization microscopy.
We ask the question whether

B the observed pair distribution function (Fig. 12.6) can be explained in terms of the
Dynamic Loop model.

B the observed high compressibility values compared to a random distribution of points
(Fig. 12.8) are due to the disorder induced by looping.

12.5.1 Simulations of the Dynamic Loop model in a melt

Localization microscopy reveals the distribution of histone H2B molecules in a projected
slice of the cell. Clearly, the structure of chromosomes can not be evaluated by this method,
as it is not known at which chromosome one localized histone is attached. Mapping his-
tone distribution onto simulated polymers requires taking into account realistic time scales
and densities. While large-scale measures like size and shape have been shown to be in-
dependent on the level-of coarse-graining (~ chapter 10), mimicking histone distributions
requires a coarse-graining on the size scale of the persistence length (~ 3.2). To obtain a
mapping from lattice units to physical scales, we assume a persistence length of [, = 150
nm. Although this value has been obtained by a fit to a linear worm-like chain model [8],
which does not describe chromatin folding, it is the best estimate currently available. One
lattice unit is set to 45 nm based on the following rationale: The minimum distance in
lattice units (l.u.) between two bonds which can occur during the simulation run in the
bond fluctuation method is dpin, = 2/3 Lu.. Assuming an average diameter and minimum
contact distance of the chromatin fiber of 30 nm we have to set dpyi, = 30 nm = 2/3 L.u.
As the average bond length of a simulated polymer is (b) ~ 2.71 Lu. = 122 nm < [,
bending rigidity has to be introduced into the model. This is accomplished by adding a
weight factor for the bond angles given by

Ubond = ko(1 — cos0)

Similar potentials have been used in Refs. [30, 205]. To establish a relationship between
persistence length [, and the potential parameter kg, we conduct simulations of self-
avoiding walks in a semi-dilute solution of occupancy fraction 10%. Chromatin occupies
approximately 10% of the nuclear volume, a value has also been used in other studies [35].
Simulations are run with different values of kg and the angular correlations (cos ) of neigh-
bouring bonds are calculated. The relationship bewteen the potential parameter kg and
the angular correlation is shown in Fig. 12.10. A realistic chromatin model requires that
(cosf) = exp(—1/l,) = exp(—2.71 - 45nm/150nm) ~ 0.44, yielding a interaction strength
of kg = 1.34.

As simulations are conducted on a very low level of coarse-graining, it becomes in-
tractable to simulate whole chromosomes. This, however, probably does not have a major
impact on the small scale structure at the level of single histones. Simulations are per-
formed in a system of size L3 = 64 x 64 x 64 and a density of p = 10%. 27 chains of length
N = 256 are put inside the simulation box. The relaxation time 7;,; of the system was
determined using the integrated autocorrelation time of the radius of gyration according
to the method described in section 10.2.2. We obtain a value of 7;,; = 4500000 for a
system of linear chains (looping probability p = 0). Simulations of chains with loops are
performed using an average lifetime of 7 = 100000, however, it has been shown in chap-
ter 10 that the results are not critically dependent on the lifetime. Looping probabilities
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chosen are p = 0.03,p = 0.06 and p = 0.1, corresponding to an average number of loops
of 33, 82 and 144 per chain, respectively.

To test whether this modified Dynamic Loop model with bending rigidity still displays
a confined folding, i.e. the formation of chromosome territories, the mean square distance
(R2) between two beads is calculated for the values of p above. Figure 12.11 displays the
mean square distance for linear chains as well as looping polymers. A leveling-off in the
spatial extent of the chain is recovered. The plateau level is below the experimental values
of 1-2 pm due to the small chain lengths simulated.

12.5.2 Results

To compare simulational results with localization microscopy data, we simulated the dis-
tribution of GFP-labelled histones along the chromosomal fibers. Lacking knowledge on
the detailed binding properties of GFP-labelled histone H2B and its distribution along
the linear genome, a random (uniform) distribution of fluorophores along the fibers is
assumed. The linear dimension of L = 64 lL.u. corresponds to 2.88 pum according to the
coarse-graining procedure described above (n 12.5.1). Experimental data evaluation is
done in a 2D projection of a slice of thickness d = 600 nm. The average density of local-
ized histones has been determined to about 150/um? (table 12.1). In order to obtain a
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of length N = 256 at a density p =
10%. Results are calculated for linear 0 . . . L L
chains (black) and chains with differ- 0 50 100 150 200 250
ent strengths of loop formation. contour length n

mean square distance (R?) [um?]
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Figure 12.12: Histone distribution and projection for simulated chromosomes (Dynamic Loop
Model). A. Example conformation with several chromosomes in the simulation box. Simulations
are set up with an average number of loops per monomer of 0.32. B. Distribution of localized
histones along the fibers (green points). The red threads mark the path of the chromosomes, the
two planes have a distance of 600 nm. C. A slice of thickness 600 nm is cut out of the simulation
box. D. The localized histones inside this slice are then projected onto the plane for conducting
the block analysis.

similar density for simulated fibers, K = 5971 virtual histones are randomly distributed
along the contour of the simulated chromosomes. To mimic the effect of the thickness of
the chromatin fiber, each point is shifted randomly within a radius of 15 nm in the plane
perpendicular to the chromatin fiber. Furthermore, excluded volume effects are taken into
account by not allowing two virtual fluorophores be closer than 5 nm, the estimated ra-
dius of a nucleosome [1]. An example conformation of the system is shown in Fig. 12.12A.
The distribution of histones is visualized in Fig. 12.12B. The chromosomes are shown as
small red threads, the simulated localized fluorophores are marked by green points. After
distributing histones along the simulated chromosomes, a z-slice of thickness 600 nm is
cut out of the simulation box (Fig. 12.12C) and all histones inside this slice are projected
onto the zy-plane (Fig. 12.12D). This projected data is then analyzed the same way as
the experimental data, i.e. the block distribution analysis is conducted.
Obviously, the analysis is based on the assumptions that

1. the model does correctly describe chromatin folding
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Figure 12.13: The radial dis-
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2. the fluorophores are randomly distributed along the histones of the chromatin fiber
3. all fluorophores are attached to histones bound to chromatin

Surely, neither of the assumptions is fully correct: The model does not take into account
the heterogeneity of the chromatin fiber; the positioning of fluorophores will be determined
by accessibility to certain chromatin regions; finally, there are histones H2B which are not
bound to chromatin. In view of these restrictions it is clear that a model is not able
to quantitatively describe all the features observed, rather qualitative predictions can be
derived.

The radial distribution function g(r) is shown in Fig. 12.13 for the simulated chromo-
somes. Interestingly, similar to experimental data, the model chromosomes display strong
deviations from a random distribution of points at short scales below 100 nm. As such a
behaviour is observed both for linear as well as looping chains, the reason for this is the
constrained positioning along the contour of the fibers. As the RDF g¢(r) displays short
scale behaviour, differences in the curve for different looping probabilities p are subtle.
The values of g(r) are much larger for the model polymers than for the experimental data
(Fig. 12.6). One possible reason is that not all fluorophores are attached to histones bound
to chromatin, so that the position constraint is relaxed to some extend in the biological
system, resulting in a more “ideal gas”-like structure. Another important point is that the
model is a coarse-grained model not taking into account the detailed small-scale structure
of the chromatin fiber. Thus, as the length scale is below the scale of coarse-graining, one
cannot expected the model to reproduce the data.

The block compressibility /Ko for the chromatin model is shown in Fig. 12.14. Com-
pared to the case of linear chains (self-avoiding walks), polymers with looping interactions
display stronger fluctuations increasing with the looping probability p. The block-size
dependent compressibilities x; adopt a constant value in the limit of large b. However, the
compressibility displays a saturation at block sizes of about b &~ 700 — 800 nm. This length
scale corresponds to the typical size of the chromosome territories in our model 12.11,
where the chain lengths used are much smaller than typical chromosomes. In agreement
with the typical size of chromosome territories of 1-2 ym observed in experiments [12, 7],
the results from our data analysis do not show a saturation below 1-1.5 pym.

Importantly, the obtained compressibility values for looping polymers are in the size
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range of the experimental observations, which show pronounced differences from the linear
polymer behaviour. Extrapolated compressibilities for our model range from k;/kg ~ 2
(linear chains) up to kp/ko ~ 6.9 (0.56 loops per segment on average). Thus, dynamic
loop formation induces strong fluctuations in the overall density distribution of the system
comparable to experimental findings.

Similarly, large fluctuations in the ensemble of cells exceeding the value of simple poly-
mer models have already been discovered for the distance distribution between two fluores-
cent markers (Figures 2.3 and 10.4). Thus, a huge variety of densities and conformations
seems to constitute a major feature of chromatin organization, which can be consistently
explained by the dynamic formation of loops on the scale above the coarse-graining length.

12.6 Conclusions

We have applied 2D localization light microscopy and statistical techniques to infer struc-
tural features and mechanical properties at the nuclear nanoscale. Localization microscopy
allowed us to take a look at the chromatin nanostructure with a non-invasive method.
Such light optical methods to resolve structures by optical isolation are well-established
and known to be able to resolve objects on the scale of single histones, allowing for the
analysis of structures on the nanoscale.

To study the spatial distribution of histones and its dependency on cellular or expres-
sion parameters, we applied localization microscopy to two different cell types, human
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Figure 12.14: The block compressibility «; for the Dynamic Random Loop model. Shown are
the results for a system of density p = 0.1 and a persistence length of [, = 150 nm, in agreement
with the current knowledge on human chromatin parameters [30]. The values of x; are normalized
with the value expected for an ideal gas kg = 1/p. Interestingly, compressibility and therefore
fluctuations increase strongly with looping probability P.
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fibroblasts and HeLa cells. Two different Hela strains were used. One Hela strain is
labeled with emGFP, the other strain is a stably transfected cell line expressing H2B-GFP
fusionprotein.

Statistical analysis of the histone distribution revealed distinct differences from an
average density distribution (Fig. 12.6). It could be evidenced that below the Abbe res-
olution limit of about 200 nm nucleosomal structures are existent in cell nuclei, a result
which is shown to be robust with respect to cell type, strain and labeling method. Our
results furthermore indicate that different mechanisms of expression (plasmid, stable in-
tegration) of the same protein may lead to significantly different localization patterns on
the nuclear nanoscale.

Structural and mechanical properties of the histone distribution are obtained by eval-
uating local density fluctuations inside the cell nucleus. We find that the histone dis-
tribution shows pronounced differences from an ideal gas or a simple fluid organization.
Interestingly, density fluctuations exist on scales larger than 1-2 pm, a result which is
probably related to differences in large scale chromatin compaction as found in ridges
and anti-ridges. One mechanical measure directly derived from the histone distribution
is the compressibility of chromatin (Fig 12.8). We find that measured compressibilities
deviate with respect to cell type and expression mechanism. A common feature of chro-
matin organization seems a higher compressibility compared to a fluid of equal density.
This increase in compressibility which is even larger than the non-interacting ideal gas is
in agreement with the recently proposed Dynamic Loop model [93], suggesting that loop
formation induces the observed large fluctuations.

Although fluctuations are well explained by the Dynamic Loop model, it does not yet
take into account local differences in compaction, i.e. gene-rich and gene-poor regions.
Fluctuations arising thereof are not covered by the model. Incorporating such regional
differences might even yield a better agreement with experimental observations. Further-
more, the distribution of localized fluorophores along the chromosomes is assumed to be
uniform. This is an important simplification as it is well-known that genes are distributed
non-randomly [13] along the contour of the chromosomes and it is hypothesized that his-
tones itself code information (histone code) [54]. Notwithstanding these local deviations
from the model’s assumptions, interestingly, loop formation leads to fluctuations, a result
which already could explain the finding of large cell-to-cell variation in distance measure-
ments (~ 10.3.3).

A critical experimental issue when comparing to polymer models is the question, how
many fluorophores do actually bind to histones which are attached to chromatin. In
fact, some of the histones, thus some fluorophores, might be floating freely in solution.
Also, there is evidence that certain GFP variants tend to cluster [206], therefore not
directly representing chromatin structure. The qualitative differences found in this study
dependent on cell type and expression method remain unaffected by these issues.

This method at hand can be used for a variety of applications. An expression sensitive
analysis method could be used, for example, to study the nanostructure of gene-rich and
highly transcribed regions in comparison to gene-poor regions with little transcriptional
activity. These show different folding patterns on a scale of about 0.5-2 pm [12, 6], yet it
its not clear whether differences exist on the nanoscale. Other interesting analysis regions
comprise organization of telomers and heterochromatin foci. In general, the method might
be useful to distinguish between cells in different states characterized by a variation in
nanostructural chromatin organization.
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Chapter Summary

Images from conventional confocal light microscopy are limited to a resolution of about
600 nm in axial direction and 200 nm in the focal plane, rendering it impossible to extract
the detailed folding pathways of the chromatin fiber. Nevertheless, various analysis meth-
ods from pattern analysis to the comparison with simple models like the Ising model can
be applied to obtain structural information. Mainly two questions are of interest, which
can be investigated with conventional light microscopy: The distribution of active and
inactive genes within the nucleus as well as its dependency on cell differentiation. In this
chapter, we present measures to quantitatively analyse the nuclear distribution of active
and inactive genes in undifferentiated mouse embryonic stem cells (ESCs) and provide a
comparison to differentiated cell types. We find that the distribution of active genes is
similar in both stem and differentiated cells, while repressed genes show different corre-
lation patterns in stem cells. Furthermore, repressed genes are less clustered throughout
the nucleus than active genes. We demonstrate that the observed patterns cannot be
described by a Potts- or Ising-type of model. Polymer models, on the other hand, require
more elaborate experimental input to provide a reasonable basis for comparison.

13.1 Introduction

The structure of chromosomes inside the nucleus of interphase cells can be assessed using
different methods. Generally, the detailed folding path of the chromatin fiber cannot
be visualized in living cells due to the limited resolution of conventional confocal light
microscopy of about 200 nm in the focal plane. Indirect approaches, some of which have
been mentioned in this thesis, have been applied to obtain information about the structure
and folding of the chromatin fiber inside the nucleus. One prominent technique is to
apply fluorescence in situ hybridization (FISH) to obtain information about the spatial
distribution of certain genomic regions. This can be achieved either by labeling two
chromatin segments and establishing a relationship between the physical distance and
the genomic separation (~ 2.3.4) or by determining the shape and positioning of larger
chromosomal regions [6, 129].

High-resolution localization light microscopy allows for an alternative approach of
studying chromatin structure offering a resolution down to the single histone level. In
chapter 12 we have applied this novel technique to investigate chromatin nanostructure
and its differences between fibroblasts and HeLa cells. Currently, this method is rather
invasive, requiring powerful laser sources and specific fluorescent markers.

Despite its limited resolution, confocal light microscopy up to now allows for a higher
throughput than localization microscopy as well as a larger variety on usable fluorescent
dyes. The scope of this chapter is to develop quantitative and differential methods to
investigate structure based on images from conventional (confocal) light microscopy.

Although it is well-known that the pluripotent state of embryonic stem cells (ESCs) re-
quires specific transcription factors to perform tasks of transcriptional regulation [207, 55],
the detailed structure of chromatin in ESCs and its changes towards more differentiated
cells are not understood. Many studies indicate that the positioning of a gene greatly
influences its activity: In general, gene-rich and transcriptional active regions tend to be
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located towards the nuclear interior, while inactive regions are predominantly found at
the periphery [6, 14, 15]. Tethering experiments, where active genes are moved towards
the nuclear periphery, have revealed that indeed active genes become repressed close to
the periphery [208]. The other way round, the spatial positioning was found to change on
transcriptional activation [18]. However, the converse behavior has been observed in some
experiments [16] indicating that the nuclear periphery is far from being depleted of active
genes.

Embryonic stem cells are distinctly different from differentiated cell types. They are
pluripotent, meaning that they can differentiate into a vast amount of specialized cells.
Chromatin organization in stem cells also differs from that of more differentiated cells.
First, ES cells display a rapid histone exchange, the structural chromatin proteins only
binding loosly to the chromatin fiber. It has been suggested [209] that this hyperdynamic
binding is an important hallmark of pluripotent ESCs being responsible for maintain-
ing the plasticity of undifferentiated cells. Secondly, ES cells display a vast number of
transcriptionally active foci, which are silenced upon differentiation [210].

A recent study by Luo et al. [55] focussing on the nuclear periphery has revealed that
it contains substantial fractions of both active as well as inactive genes. Interestingly, the
amount of transcriptional active genes is the same for ESCs as well as differentiated cells.
However, the peripheral fraction of repressed genes is significantly higher in stem cells.

The aim of this chapter is to quantitatively analyze the structure of chromatin based
on images from conventional confocal light microscopy. We establish measures and inves-
tigate differences between embryonic stem cells and more differentiated cells based on the
distribution of markers for active and inactive genes. We focus on the questions of

o whether there are structural differences of chromatin in stem cells compared to dif-
ferentiated cells,

o whether the distribution of active and inactive genes inside the nucleus differs.

After having quantitatively analyzed the data, we aim at developing models for the orga-
nization. First, we investigate how the results from the Dynamic Loop model (~ chap-
ter 10) can be compared to conventional microscopy images and discuss which information
is needed in order to perform this task. Then, in a more abstract manner, we ask whether
the observed intensity patterns can be explained by a Potts model or Ising model, which
are often used in image segmentation and reconstruction.

13.2 Experimental Data and Image Processing

To investigate the distribution of active and inactive genes in differentiated as well as stem
cells, three different types of mouse cells were used: (i) Embryonic stem (ES) cells, (ii)
adult primary neuronal stem/progenitor cells (NPCs) and (iii) embryo-derived NIH-3T3
fibroblasts. The images used in this chapter have been kindly provided by Prof. Lindsay
Shopland (Institute of Molecular Biology, The Jackson Laboratory, Maine).

Each of the cells was immunolabeled with antibodies raised against covalent histone
modifications typically found on transcriptionally active and repressed genes. The histone
H3 trimethylated on lysine 4 (H3K4-Mej3) is predominantly found on promoters of active
genes, whereas histone H3 trimethylated on lysine 36 (H3K36-Mes) accumulates on the
transcribed regions of genes. Finally the histone modification (H3K27-Mes) accumulates
on the promoters of silenced genes as well as bivalent genes, which are repressed in ESCs
and thus the coding regions do not accumulate H3K36.
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Figure 13.1: Samples of confocal microscopy images. For each cell type [embryonic stem
cells (ESCs), 3T3 cells and neuronal progenitor cells (NPCs)] a z-stack is shown for various labelled
histone types. Histone modification H3K4, indicating promoters of active genes, is artificially
labelled green; histone modification H3K27, accumulating on promoters of silenced genes, is labelled
red. Immunostaining for H3K36 has only been applied to stem cells.

3D images were acquired using a confocal microscope (see Ref. [55] for details). The
“Erosion” program written by Joerg Bewersdorf has been applied to segment the im-
ages [184]. It produces a series of nested 3D shells defining the distance from the nuclear
edge, the thickness of one shell being 200 nm. The volume outside the nuclear edge is given
by a shell number of -7, making it easy for us to determine the region of interest (ROI),
i.e. the cell nucleus, which is used for analysis. Typical two-dimensional slices of the cells
are shown in Figure 13.1 for all three cell types as well as the different histone modifi-
cations. H3K4, representing active genes, is shown in green color, histone modification
H3K27 accumulating on repressed gene promoters is shown in red color. The modification
H3K36 has only been labelled for ESCs. Importantly, subsequent analysis methods are
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Figure 13.2: Intensity distribution of stained histone modifications. Shown is the

distribution of intensity values inside the cell nucleus for embryonic stem cells (ESCs) as well
as differentiated NPCs and 3T3 cells. Panel A. represents the distribution of intensities where
immunostaining of H3K4, i.e. active genes, was applied. Panel B. displays the results for im-
munostaining of H3K27, i.e. repressed gene promoters. Errorbars represent the standard error of
the cell-to-cell variation.

only applied inside the ROI defined by the Erosion mask.

13.3 Quantitative Analysis Methods

13.3.1 Intensity Distribution and Correlations reveal differences between cell

types

To quantitatively assess differences in the observed chromatin distribution patterns, we
first evaluate the intensity distribution p(I). This intensity distribution is obtained by
creating a histogram of all the voxels’ intensity values inside the cell nucleus. The results
are shown in Figure 13.2 for histone modification H3K4 and H3K27. As absolute intensity
values are dependent on the specific microscope settings and the antibodies used, we re-
strict the comparison to the same histone modification evaluating its differences depending
on the cell type.

Figure 13.2A shows the intensity distribution p(I) for the histone H3 trimethylated on
lysine 4, i.e. the intensity distribution of labelled active gene promoters. Interestingly, the
intensity distribution in embryonic stem cells equals that of NPCs, the intensities being
generally larger for 3T3 cells. Similar results are found for repressed gene promoters, i.e.
histone modification H3K27, in Figure 13.2B. These results already indicate differences
between ES cells and differentiated cells, more detailed measures are necessary to distin-
guish between ES and NP cells. Clearly, from visual inspection of Figure 13.1 we find
that the distribution of repressed genes is markedly different between ES and NP cells,
the latter showing concentrated spots.

To distinguish such concentrated spots from a more random intensity distribution, we
study the spatial intensity correlations, given by the correlation function

(I 4+ 1) — (1()*

()~ 1y .

g1(r) =

Here, (I) is the mean intensity of the cell. The average (-) is over all points such that
both r* and r are inside the cell nucleus (i.e. the ROI). The spherical-averaged correlation



214 13. Pattern analysis of confocal images

A lg T T T T T E 1y T T
S ES/H3K4 —m— S Eé/H3K27 -
S 0.8 |8 3T3/H3K4 —e—i S 08 3T3/H3K27 —e—i
c =o NPC/H3K4 +—e— c NPC/H3K27 +—e—
S 06| "5 S 06" i
=) ) .
o © ot
g 04} g 04 -_‘; 4
8 8 | ‘.‘
5> 02t > 0.2 | Tmgtee .
2 ol 2 ol
et it
o c
- -0.2 = .02 I L L | |

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

distance r [um] distance r [um]

Figure 13.3: Intensity correlations for active and repressed genes. Shown is the correlation
function eq. (13.1) for active genes stained for H3K4 in panel A and for inactive genes stained for
H3K27 in panel B. Importantly, the distribution patterns for H3K4 are similar in each cells, while
repressed genes have different distribution patterns in embryonic stem cells.

function gr(r) contains information about the distribution of intensity inside the nucleus
as well as the long-range order. For example, if the intensities were randomly distributed,
g1(r) would be zero unless r = 0. It is to be stressed that the spots marking promoters
of active or repressed genes are blurred by the point spread function of the microscope.
This point spread function can be approximated within an error of maximally 10% by
a Gaussian with a resolution of 220 nm in the focal plane and 600 nm in axial direction
[personal correspondence with Joerg Bewersdorf]. Surely, this induces correlations between
neighboring voxels (the voxel size is 75 nm in each direction), thus quantitative conclusions
on chromatin are prohibitive. However, as the point spread function is the same for every
cell type and histone modification, qualitative comparisons are possible.

We find that the distribution of active genes (H3K4) is not strongly dependent on cell
type (Figure 13.3A). This is in agreement with earlier findings [55], that the distribution of
H3K4 is relatively similar in stem cells as well as differentiated cells. Differences between
ESCs and differentiated cells, however, show up clearly in the correlation function of
repressed gene promoters (Figure 13.3B). While 3T3 cells and NPCs display a quite similar
decay of the correlations, the typical correlation length of ESCs is significantly smaller.
Possibly, this finding is related to the more dynamic chromatin organization and the more
rapid exchange of histones in stem cells [209, 210]. Interestingly, the typical decay length
of the correlation function g;(r) is smaller for repressed genes than for active genes.

13.3.2 Active genes are more clustered than inactive genes

To measure the extend of clustering of active and inactive genes we apply a thresholding
procedure to the microscopy image, where the p = 20% brightest pixels in the ROI are
marked. This is visualized in Figure 13.4 where an embryonic stem (ES) cell is depicted
(panel A) with the intensities coded according to the color bar. The voxels belonging
to the fraction p of brightest voxels are marked red in panel B, the other voxels inside
the ROI are marked black. The grey region indicates voxels lying outside of the ROI as
determined by the erosion mask. The value of 20% has been used as a trade-off between
making sure that background noise is not incorporated in the analysis and maintaining
most of the structural features given by the markers.

We have evaluated both the average size of clusters as well as the cluster size distri-
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Figure 13.4: Determination of cluster statistics. To determine the amount of clustering
of active and inactive genes, the original image (panel A) is segmented based on a thresholding
procedure where p = 20% of the brightest pixels inside the cell nucleus are labelled red (panel B).
The grey region corresponds to the outside of the nucleus. The images show a slice through an ES
cell immunostained for H3K4.

bution. To achieve this, for each cell all the clusters were enumerated with a self-written
algorithm and the average cluster size as well as a histogram of cluster sizes was calculated.
The average cluster size is given in table 13.1 for each cell type and histone modification.
Strikingly, promoters of repressed genes marked by H3K27 are forming smaller clusters
than promoters of active genes marked by H3K4. This is in agreement with the intensity
correlations (Figure 13.3) decaying faster for H3K27, indicating that repressed genes are
more randomly distributed throughout the nucleus. We find that the average cluster size
of repressed genes is significantly smaller in ES cells compared to differentiated cells (by a
factor of 0.42 compared to NPCs and a factor of 0.58 compared to 3T3 cells), emphasizing
the epigenetical role of spatial chromatin organization. In agreement with the results of
the intensity correlations (Figure 13.3A), differences in the distribution of active genes are
less pronounced.

Table 13.1: Average cluster sizes of active and inactive genes. This table shows the
average size of clusters based on a segmentation procedure where the brightest pixels (p = 20%)
are selected. Cluster size averages are calculated for each cell. Uncertainties are standard errors
of the cell-to-cell variation.

H3K4 56.6 £ 1.5 60.0 £ 1.7 71.7+3.8
H3K27 14.5£0.2 342+£21 24.7£0.8
H3K36 61.5 £+ 5.3 — —
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Figure 13.5: Cluster analysis for interior and peripheral chromatin distribution. The
panels show an embryonic stem cell immunostained for H3K4, i.e. active gene promoters. The
original image (A) is processed such that 20% of the brightest pixels are labeled red. The Erosion
shells are used to distinguish between the interior part (B) and the periphery (C).

13.3.3 Repressed genes are more abundant in the nuclear periphery than
active genes

The investigation of the influence of spatial position within the nucleus on gene activity
has a long history. Regions of the genome with little activity have been found to be
located more at the periphery than active genes [6, 129]. To differentiate between interior
and peripheral regions we use the mask shells determined by the Erosion program. To
distinguish between interior and periphery we assign each voxel having a shell number
larger than or equal to zero to the interior region and each voxel with shell number < 0
to the periphery. Results of this segmentation are visualized in Figure 13.5 for an ES cell
stained for H3K4.

To study the differences in the chromatin distribution concerning the interior and
periphery regions we label the 20% brightest voxels inside the complete nucleus as in
section 13.3.2. Then both for the interior region and the periphery region, the fraction
of bright voxels is determined. The results are shown in table 13.2. The percentage of
intense voxels is generally larger in the interior, which might be due to the erosion masks
containing significant parts of the nuclear envelope which are not accessible for chromatin.
However, it also indicates that both active and repressed genes are abundantly found in
the nuclear interior.

One major finding is that the nuclear interior of ESCs contains significantly larger
fractions of active genes than inactive ones, while the converse behavior is found for the
periphery, a result being in agreement with Ref. [55]. In NPCs a similar tendency can be
observed, which is however much less pronounced. In 3T3 cells, finally, both active and
inactive genes are found in the interior as well as the periphery in similar volume fractions.

13.4 Modeling Approaches

While the quantitative analysis methods conducted above show clear differences between
ES cells and differentiated cells concerning the distribution of inactive genes, a model
explaining these differences is still lacking. In this section, we compare the microscopy
data to several modeling approaches.
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Virtual images (Dynamic Loop Model) Microscopy image
linear chain ~45 loops per chain  ~92 loops per chain

Figure 13.6: Virtual microscopy images of the Dynamic Loop Model. The images have
been calculated using simulations of the DL model in a dense system of density p = 0.125 with a
coarse-grained chromosomes of N = 128 segments. Fluorophores have been randomly distributed
along the contour of the chromosomes. The right-handed image is a raw data microscopy image
section provided for comparison.

13.4.1 The Dynamic Loop model

In chapter 10 we have introduced a model which was able to explain various experimental
observations on chromatin folding. As this model has been implemented homogeneously,
assuming each two points to interact with the same probability when being in close prox-
imity, differences between active and inactive genes cannot be described by this model.
Nevertheless we present a method here, how results from simulation can in principle be
compared to confocal microscopy images.

In order to achieve this, we use simulational results of the Dynamic Loop model in
a dense system as performed in section 10.3.6. Chromosomes of coarse-grained length
N = 128 are thus simulated in a system of density p = 0.125 similar to the density inside
the nucleus. The Kuhn segment length is chosen to be g = 300 nm, in agreement with the
values used in Refs. [30, 211]. Then, individual labelled histones are distributed randomly
along the simulated chromatin fibers. Each labelled histone is assumed to produce a
three-dimensional Gaussian-shaped intensity distribution with a peak height of I,cax. The
width of the distribution is chosen to be 220 nm in the focal plane and 600 nm in axial
direction according to the point spread function of the microscope. Unfortunately, the
actual peak intensity Ipeax of a single fluorophore cannot be determined, thus we have
to assume some value here. However, we found that the choice of the value does not
significantly influence the statistics as long as it is chosen to be one order of magnitude
smaller than the average voxel’s intensity. The number of fluorophores positioned along

Table 13.2: Average chromatin content in the nuclear interior and periphery. This
table shows the average fraction of brightest pixels for the interior region as well as the periphery
region. Data is based on a segmentation procedure where the 20% brightest pixels inside the cell
nucleus are selected. Then the voxels are classified being either at the periphery or nuclear interior
according to the Erosion masks defining the distance from the nuclear envelope.

periphery ESC__NPC_ 513
H3K4 0.36 0.37 0.33 H3K4 0.10 0.12 0.14
H3K27 0.24 0.31 0.30 H3K27 0.17 0.14 0.13
H3K36 0.33 — — H3K36 0.12 — —
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Table 13.3: Average cluster sizes in the Dynamic average cluster sizes
Loop Model. This table shows the average cluster = linear chain 2100 + 25
sizes of virtual images obtained from the Dynamic Loop 45 L.p.c. 2978 + 28
Model (Figure 13.6). Clusters are determined by label- 92 Lp.c 9894 + 38
ing 20% of the brightest voxels as described in the text. ==

the simulated fiber is chosen such that the average intensity equals that of the microscopy
images. After the distribution of intensities, the intensity is summarized in voxels of linear
size 75 nm, according to the voxel size of the microscopy data. The same analysis methods
are then applied to these virtual microscopy images.

Samples of the resulting virtual images are shown in Figure 13.6 for different looping
probabilities. For comparison, an equally sized section of microscopy data of ESCs stained
for H3K4 is shown. Evidently, already from visual inspection it becomes clear that the
simulation data does not fit the microscopy images. This is quantitatively confirmed by
looking at the averages cluster sizes, which are enormously larger than for the microscopy
data.

Why can the data not be adequately described by our computational model? The
reasons for this are manifold. First, the Dynamic Loop model in its current implementation
is homogeneous, i.e. it assumes the same local average looping density along the whole
chromatin fiber. This is not the case in reality, as we have worked out in chapter 7. Second,
the experiments used in this chapter do not label the chromatin fiber homogeneously, but
select distinct histone modifications belonging to active or inactive genes. Clearly, this
distinction is neglected in the approach of creating virtual images as there is no method
known how to correctly assume a distribution of active and inactive genes used as a
template for the distribution of fluorophores. This results in the whole fiber being labeled
similarly, resulting in the large clusters observed. As a third reason for the deviations we
have to mention that fluorophores not only bind to histones bound to chromatin but also
to molecules being freely in solution. Thus, the microscopy image is much more noisy, a
behavior which can be observed in Figure 13.6.

13.4.2 The Potts model

We have found that the Dynamic Loop model cannot be used in a simple manner to
explain experimentally observed images. This is not due to the model being inconsistent,
rather additional information on the distribution of certain histone modifications would
have to be included. Here, we want to follow another approach borrowed from the field
of image analysis and segmentation [212]. Consider the images as patterns containing a
certain regularity but also a certain randomness. Which physical model can explain the
given distribution of intensities?

Parameter estimation in the Potts model

The Potts model and especially the Ising model have been used to segment or reconstruct
images in the framework of Markov Random Fields (MRF) in the past [213]. While
the general aim of image reconstruction is to estimate the unknown “real” image from
a disturbed (e.g. noisy) image, here we want to model basic image patterns. The Potts
model has been often applied for noisy images as it smoothes the image by favoring equal
nearest neighbor colors [212]. Given the image x as an array of intensity values, the
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Hamiltonian reads
H(x) = —J Y 0(xi — x;) (13.2)
i~j
Here, J is the interaction parameter and the sum is over all neighboring pairs of pixels or
voxels. The interaction parameter determines the degree of smoothing: Small values of J
produce more random image patterns while high values of J favor uniform images.

We want to answer the question of whether the Potts-model Hamiltonian can be used to
generate image patterns similar to those observed in experiments. Let us in the following
assume that the data x is given in ¢ discrete intensity values. The probability for the
image x using the parameter J is given in the Potts-model framework by

p(x|J) = Z(J) "t exp (—H(x)) = Z(J) ! exp (JZé(mi — :c])> , (13.3)

i~j

Z being the partition function of the system. Let N(x) =3, ; §(z; — x;) be the number
of equal nearest neighbors in the image. Then, the probability for image x can be written
as

p(x|J) = Z 7 exp (JN(x)) (13.4)

Importantly, given the specific experimental data X, a likelihood estimate for the pa-
rameter J can be calculated (cf. Ref. [214]): The likelihood function is given by

L(Jx=%)=ZJ)exp(JN (%)) (13.5)

The maximum likelihood estimate is then calculated as the maximum of the logarithmic
derivative,

dlog L(J|X)
=0 (13.6)
Thus, we find
0log L(J|X) . Oj
0=""%  ~N®- z
1
= N(&) = 55 3 exp (—IN(x))
2075 (13.7)
= N(%) - 2 3. NG exp (~IN(x))
{x}

We conclude, that the maximum likelihood estimate of J is given by the value of J for
which
N(®) = (N(x) (13.9)

This quantity can be easily determined both for simulational results as well as for the
experimental data.

Determination of Potts model quantities for the data

To determine the interaction parameters in the Potts model, we first discretized the image
data. This was done by first determining the maximum intensity Ijyax for each cell image.
Then, g = 25 intensity classes were created covering the interval [0, Ihax] such that class
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Figure 13.7: Distribution of equal nearest neighbors. Shown is the probability distribution
of one voxel in the experimental data having a certain number of nearest neighbors of equal
intensity. The intensity values have been discretized using ¢ = 25 intensity levels of equal spacing.
Panel A shows the results for histone modification H3K4 and H3K36, whereas in panel B the
probability distribution for histone modification H3K27 is plotted.

i is the subinterval [i/25 Imax, (i + 1)/25 I;max] with ¢ = 0,...,24. Then, each voxel was
assigned one of these ¢ = 25 intensity classes. From these discretized images, the average
number of equal nearest neighbors per voxel <N ) were determined. The normalization per
image was used to minimize effects of different cell sizes.

We find that the distribution of the number of equal nearest neighbors is similar for
all cell types studied in case of histone modification H3K4 (Figure 13.7A), confirming
our previous results that active genes are similarly distributed throughout the nucleus
independent of cell type. However, differences are found for the distribution of inactive
genes. While ESCs and 3T3 cells show a similar distribution of nearest neighbors, NPCs
are significantly different and biased towards a higher number of equal nearest neighbors.
This result is in agreement with the observed concentrated spots for NPC/H3K27 in
Fig. 13.1. The average number of equal nearest neighbors are listed in table 13.4.

Estimation of Potts interaction parameter

To calculate the Potts model interaction parameter estimate J, we have to solve the
estimator equation (13.8). This is only possible via computer simulations [214]. Therefore
we have set up simulations of the q=25-state Potts model on a three-dimensional lattice
of size L = 64. The Monte Carlo algorithm used randomly selects one lattice site (with
a state ¢oq) and then randomly selects a new Potts state gpew. The change in Potts
level gola — @uew is accepted dependent on the energy difference AE with probability
min{1, exp(—AE)}.

The dependence of <N ) on the interaction parameters in the 25-state Potts model is

Table 13.4: Potts model statistics
for the experimental data. The table H3K4  2.01 + 0.10 2.00 = 0.18 2.04 + 0.14

shows the average number of equal near- H3K27 1 71 :l: 0 10 2 70 :l: 0 21 1 61 :,: 0 12
est neighbors. For that purpose, the ex- H3K36 3.49 + 0'17 : ; : ;

perimental data has been discretized to
q = 25 discrete intensity levels of equal
spacing. Uncertainties are given as stan-
dard error of the mean.
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Figure 13.8: Simulation of the q=25-state Potts model. A. This panel displays the
dependency of the average number of equal nearest neighbors per voxel <N > on the interaction
energy parameter J. A first-order phase transition can be observed. B. Two-dimensional sections
of simulated Potts model configurations for different interaction parameters. For low J-values, a
random distribution of levels is observed; approaching the phase transition point, clusters of voxels
with the same intensity emerge.

shown in Figure 13.8A. It has the typical behavior of a phase transition, changing from
a disordered state with small (N) to a highly ordered state with large values of (N).
Although the simulational results close to the phase transition region are not very reliable
due to the divergence of the autocorrelation time using the algorithm described above,
it becomes clear that the maximum likelihood estimator for the interaction parameter is
close to J-values at the phase transition. Due to the steepness of the change in the order
parameter, the resulting J-value is basically the same for all cell types. This however,
cannot give a correct description of experimental data, which show clear differences in the
distribution of Potts energies (Fig. 13.7) as well as the correlations (Fig. 13.3). Notably, it
has already been pointed out in Ref. [214], that the Potts model cannot be satisfactorily
used for image segmentation.

13.4.3 The Ising model

In the last section we have seen that it is not possible to create images similar to the exper-
imental data using a Potts model. The reasons for this is the steep first-order transition
when having a large number of Potts levels ¢. What happens if we reduce the number of
levels dramatically, say to ¢ = 2, i.e. the Ising model? In section 13.3.2 we have evaluated
the cluster properties of the experimental images by selecting the 20% brightest pixels.
Here, we investigate whether it is possible to simulate the resulting black-white images
(Figure 13.4B) based on an Ising Hamiltonian.
The Hamiltonian with which we want to generate patterns similar to the data is given
by
H(x)=—J Y xx; (13.9)
Ti~T
Importantly, the image data here is restricted to z; € {—1,1} and, given a lattice of size
L x L x L, the number of spins with a value of 1 is restricted to Nyp = 0.2L3. To obtain
samples of the system, we perform Monte-Carlo simulations. The restriction to a fixed
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Figure 13.9: Ising model simulations compared to experimental data. A. The average
number of equal nearest neighbors <]\7 > per lattice site in the Ising model on a lattice of size
64 x 64 x 64 dependent on the interaction energy. Results are obtained by Monte Carlo simulations
using a spin-flip algorithm. The number of spins, i.e. the total magnetization is kept constant such
that 20% of the spins is +1. The experimental data average (N) is indicated by the solid lines.
B. The average cluster size of the Ising model is compared to experimental data, showing that
the cluster sizes is the Ising model do not agree with the data based on the maximum likelihood
estimate. C. Samples from the Ising model simulations at different interaction energies J.

number of up and down spins can be easily implemented using a spin-flip algorithm: We
have chosen the start configuration such that 0.2L% randomly chosen lattice sites have
x; = 1, the others x; = —1. Then, in each Monte Carlo move, we randomly choose two
lattice sites and propose the new configuration arising from the old one with the spins
of these two lattice sites flipped. Again, the change in energy is calculated and the new
configuration is accepted with probability min{1,exp(—AFE)}.

Simulations have been performed on a lattice of linear dimension L = 64 with periodic
boundary conditions. Sample conformations are visualized in Figure 13.9C for different
interaction energies J. Similar to the case of the Potts model (~ 13.4.2) we first determine
the maximum likelihood estimator for the parameter J. For that purpose, the average
number of equal nearest neighbors <N ) is plotted in Figure 13.9A in dependence of J.
Again, we find some kind of phase transition from a disordered system to an ordered
system. We have not carefully analyzed this transition, nor can we ensure that the system
is fully equilibrated at the transition point due to the diverging relaxation time. However,
the exact transition point is not our so much of interest for us. More important is that
the values of N determined from experimental data are lying in the region of the phase
transition; they are shown as a solid straight line in Fig. 13.9A.
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If one was able to derive different estimates J for different cell types or active/inactive
genes, what would be the quality of this estimate, meaning that the obtained simulated
patterns resemble the experimental ones? To investigate this issue, we compare the average
cluster size given in table 13.1 to the average size of clusters with spin up in the Ising
model. We find that the average cluster size is much smaller than predicted by the
experimental data up to J = 1.7 (Figure 13.9B). Thus, in the range of J-values given by
the likelihood estimator, the Ising model has a completely different cluster characteristics
than the microscopy images.

These findings clearly show that neither the Ising nor the Potts model with ¢ > 2 can
be used to adequately describe experimental data on chromatin distribution inside the
nucleus.

13.5 Conclusions and future work

In this chapter we have analyzed three-dimensional images from conventional confocal
light microscopy to obtain information about differences between stem cells and differenti-
ated cells in chromatin structure of active and inactive regions. One of our major findings
is that repressed gene promoters, marked by histone modification H3K27, show different
structural patterns in stem cells than in more differentiated NPCs and 3T3 cells. The spa-
tial intensity correlations decay faster for stem cells (Figure 13.3B) than for differentiated
cells. Furthermore, the average size of clusters of repressed gene promoters is significantly
smaller in stem cells (table 13.1). Contrarily, histone H3K4 marking promoters of tran-
scribed genes, shows similar correlations and less varying cluster sizes in all cell types
observed. Importantly, repressed genes are less clustered than active genes (table 13.1).
Also, the distribution of active and inactive genes is found to be dependend on cellular
position, the degree of position dependency varying from stem cells to more differentiated
cells. These findings indicate that the distribution of chromatin plays a dominant role in
epigenetic regulation.

In general, our results offer an ambiguous picture. Concerning the intensity distri-
bution (Figure 13.2), 3T3 cells display the largest deviations from the other cell types.
However, this measure is highly dependent both on the microscope settings (which might
have changed) as well as on the size of the cell and the brightness of the fluorophores. The
distribution of equal nearest neighbors for repressed genes (Figure 13.7B) is different for
NPCs, while stem cells and 3T3 cells show a similar behavior. These findings show that it
is absolutely necessary to look at different measures for chromatin structure before draw-
ing conclusions. It seems that each cell type indeed has its own characteristic behavior
concerning chromatin organization, the detailed investigation of this requires more exper-
imental input. Currently, experiments are conducted at the Jackson Laboratory relating
the structure of active and inactive genes to each other using microscopes with a higher
resolution.

From the modeling point of view, we could not present a satisfactory model which
reconstructs the observed image patterns. The Ising and the Potts model cannot describe
differences between cell types due to the maximum likelihood estimate of the interaction
constant J being in the region of the phase transition (Figure 13.8). Future work will
show whether more complicated models might explain the observed patterns.

Even more ambitious is to model the data using a polymer model. Although the
Dynamic Loop model offers a versatile basis for explaining chromatin folding, various
experimental information will have to be integrated. First of all, the Dynamic Loop
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model has to be implemented heterogeneously, assuming different looping probabilities for
ridges and anti-ridges. This can be easily done and has already been successful applied to
the Random Loop model (~ chapter 7). Secondly, The distribution of virtual fluorophores
along the fibers has to follow the gene activity patterns found in the Human Transcriptome
Map [13]. A recently published database could allow for a more direct approach: The
Methylome data [215], mapping the occurrence of certain histone modifications along the
whole genome, could be used to distribute the fluorophores. Most importantly, the polymer
models presented in this thesis are flexible enough to incorporate such information.



Chapter 14

Summary & Outlook

14.1 A short summary of the results

The genomic content, coding the building plans of life, is stored in a highly complex
hierarchical manner inside the cell nucleus of higher eukaryotes. The packing of about
2 meters of double-stranded DNA into a nucleus with a diameter of about 10 um is
accomplished on several scales. At the first stage of compaction, the DNA double helix
is wound around histone octamers with whom it forms the chromatin fiber, a beads-on-a-
string type of filament having a diameter of about 10 nm. A lot of discussion has been going
on about the question whether this fiber in turn condenses to a filament with a diameter
of 30 nm, the nucleosomes being arranged either in a zig-zag or a solenoidal manner. Even
less is known about the higher-order folding of chromatin inside the interphase nucleus,
i.e. the folding of complete chromosomes as well as the mutual arrangement of different
chromosomes.

Limitations of experimental techniques render it hard to study the detailed folding
pathways of chromatin inside living cells. Conventional light microscopy is limited to a
resolution of about 200 nm, thus it is not possible to track the path of the fiber inside
the nucleus. Localization light microscopy offers a promising approach to study nuclear
nanostructure with a resolution on the scale of a single histone; However, up to now, the
folding path of the fiber cannot be reconstructed from the data. Indirect approaches,
on the other hand, from fluorescence in situ hybridization (FISH) to chromosome confor-
mation capture (3C) techniques have allowed biologists to gather important information
about folding mechanisms. There is now an ever growing body of evidence that chromatin
folding is tightly related to genome function: Amongst others, the three-dimensional fold-
ing of chromosomal regions has been shown to depend on local transcriptional activity. In
contrast to expectations from the physics of linear polymers, chromosomes do not inter-
mingle, rather they are separated into distinct territories; the same behaviour is found for
Mb-sized regions of single chromosomes. Importantly, intra- and interchromosomal con-
tacts or chromatin loops on a broad range of scales have been shown to play an important
role in transcriptional regulation.

The aim of this thesis has been to shed light onto the detailed folding principles and
to develop a predictive framework for the connection between genome folding and func-
tion. Polymer models are useful to uncover the folding mechansims of chromatin, making

225
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testable predictions on structural properties. We started by comparing experimental data
from FISH measurements to classical polymer models: the random walk (RW) model,
the self-avoiding walk (SAW) model and the globular state (GS) model (~ chapter 4).
All of them have been proposed to explain the folding of chromatin in a certain range of
genomic separations (v 2.2) in earlier times. Using both 3D and 2D FISH measurements
we have shown using information about the cell-to-cell variation of distance measurements
that none of these models is able to explain the folding of chromatin on the short (100
kb — 10 Mb) and on the large scale (10 Mb — 80 Mb). Although chromatin models with
loops have already been proposed, amongst others the Random-Walk/Giant-Loop model
assuming fixed-sized loops of about 3 Mb and the Multi-Loop-Subcompartment model
assuming rosette-like structures of 120kb-sized loops, these models are inconsistent with
experimental data from FISH experiments clearly showing that chromosomes fold into a
confined sub-space of the nucleus with a huge cell-to-cell variation.

Based on a variety of experimental results we have proposed a new polymer model,
the Random Loop (RL) model. At the heart of this model is the assumption that chro-
matin looping is the major connection between genome folding and function. A lot of
experimental evidence exists that this conjecture is indeed valid (~ 2.3), the results and
predictions of this thesis being in support of our claim. This RL model is founded on
two important assumptions which have been neglected in other polymer models: (i) loops
exist on all scales ranging from a few kb to several Mb (based on evidence from 4C and
5C experiments) and (ii) loops are formed dynamically and change during the lifetime of
the cell.

In a first approach, these assumptions were implemented considering the absence of
excluded volume interactions (~ chapter 5). The loops were incorporated into the model
by establishing harmonic interactions between the loop attachment points. Importantly,
the pairs of monomers forming loop attachment points were selected randomly with a
certain looping probability PP. The fiber was considered to be homogeneous, each pair of
monomers forming a loop with the same probability. In fact, this model allowed for an
analytic calculation of the thermal average, while the disorder average could be approxi-
mated by numerical methods. This simple model displays the observed leveling-off in the
mean square distance between two genomic segments at separations larger than 10 Mb as
well as the huge cell-to-cell variation. The cell-to-cell variation is assessed by evaluating
the higher-order moment ratios of the distance distribution [eq. (4.3)], being a constant for
the RW, SAW and GS model. Importantly, fluctuations exceeding the ones of the random
walk model are observed due to the average over the disorder of loop-attachment points.

As the negligence of excluded volume might have a major impact on the observed
confined folding, we have lifted this limitation in chapter 6. As analytical solutions of the
Random Loop model become intractable when taking excluded volume into account, the
model was implemented using Molecular Dynamics simulations with a combined FENE
+ WCA potential for the bonded interactions. Our results suggest that these excluded
volume interactions do not qualitatively change the observed folding into a confined space.

Clearly, the chromatin fiber is not homogeneous as assumed so far. The Human Tran-
scriptome Map reveals gene-rich regions spanning several Mb being transcriptional active
(ridges) as well as gene-poor and transcriptional inactive regions (anti-ridges). While
anti-ridges are rather compact and spherical, ridges have a more open structure. This het-
erogeneity has been incorporated into the RL model by assuming different local looping
probabilities for ridge and anti-ridge regions (~ chapter 7). Although still highly simpli-
fying, a direct connection between genome folding (formation of loops) and gene function
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(transcriptional activity) is established. The results of this heterogeneous RL model are
in good agreement with experimental data on human chromosome 11 both on the short
scale below 10 Mb as well as on the scale of the entire chromosome, thus offering a unified
description of chromatin folding comprising several length scales.

The tight connection between chromatin loops and transcriptional regulation raised
the question of which benefits exist for nature to force the formation of loops between
genes and regulatory elements separated by several Mb. To investigate the effect of loop
formation on the conformational properties of polymers we studied a system of two ring
polymers in chapter 8. The non-catenated topology where two rings are bonded to each
other resembles the behaviour of chromatin loops assembling in transcription factories.
Indeed, we found that two rings in proximity display a much stronger tendency to segregate
than corresponding linear-linear systems.

While a lot of studies indicated a strong effect of the non-catenation topology in a melt,
resulting for example in a compact state, the forces acting between two ring polymer or
loops have not been evaluated. To further deepen the understanding of the topological
and entropic interactions exerted by rings on each other, we have quantitatively assessed
the strength of these potentials (~ chapter 9). We have evaluated the potential of mean
force between the centers of mass of two ring polymers and found that the repulsion
between them is threefold stronger than between linear chains. Forcing the rings to be non-
catenated results in a further decrease of the accessible conformations at short separations
of about 50%. These findings indicate that loop formation in chromatin not only acts as
a tool for transcriptional regulation, but also represents a key mechanism to maintain a
segregated and compartmentalized state of chomatin organization.

What mechanisms are necessary to make two chromatin segments become co-located?
In fact, it has long been an open question how the cell nucleus manages to bring distant
elements together. Using Monte Carlo simulations we have extended the Random Loop
model to incorporate the dynamics of loop formation. In the framework of this Dynamic
Loop model, loops are formed solely on the basis of diffusional motion without requiring
active processes. Whenever two chromatin segments are in proximity, there is a certain
probability for them to form a loop, mimicking e.g. the presence of binding proteins and
the solvent. We have derived testable quantitative predictions for a variety of observable
parameters. Amongst others, the Dynamic Loop model correctly predicts the folding of
chromosomes into a confined sub-space of the nucleus as well as a huge cell-to-cell variation
in the distance distribution. The analysis of the loop-size distribution reveals that loops in
the size range of several Mb easily form on the basis of diffusional motion, the probability
for their formation being more than two orders of magnitude higher than the corresponding
contact probabilities for linear polymers. Consistent with experimental measurements in
yeast, such a model predicts sub-diffusional motion of genes, the detailed exponent being
dependent on the looping probability. Most importantly, Monte Carlo simulations of
several chromosomes under biological conditions reveal that the chromosomes segregate,
the overlap between chromosome territories decreasing strongly with increasing looping
probability. Thus, this Dynamic Loop model provides a consistent explanatory framework
for the relationship bewteen genome folding and function being in agreement with a vast
amount of experimental data.

We have shown that two ring polymers exert strong repulsive forces when being brought
close together. In the framework of the Dynamic Loop model, we have evaluated the forces
acting between chromosomes (~ chapter 11). This forces turned out to be much stronger
than between an isolated system of two rings, confirming the strong influence of looping
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and the induced compaction on the segregated state of chromosomes.

A model needs experimental data to compare with. Therefore we have analyzed im-
ages from high-resolution localization light microscopy labeling histone H2B with green
fluorescent proteins (~ chapter 12). The images at a resolution of single histones have
allowed us to apply analysis methods borrowed from soft condensed matter theory. We
find hallmarks of distinct structures in the images, the density fluctuations indicating
more disorder to be present than expected in a thermodynamic equilibrium system. The
large fluctuations have shown to be in good agreement with results of the Dynamic Loop
model. Using more specialized markers labeling active and inactive genes in combination
with conventional light microscopy, we found distinct structures in the distribution of re-
pressed genes in comparison to differentiated cells (~ chapter 13). For comparison to
polymer models, however, more experimental input is needed.

14.2 Synthesis

Eukaryotic organisms are highly compartmentalized. Each cell acts as a functional unit
on its own, carrying both the information and ability for reproduction by converting
nutrients from the environment to energy. Such a hierarchical compartmentalization is
continued by the cell nucleus, separating the chromosomes and the chemical equilibrium
inside from the cellular environment by a lipid bilayer. In fact, compartmentalization is
vital to maintain certain chemical processes by providing a high concentration of certain
molecules. Chromosomes itself are highly compacted objects carrying the script of life. In
order to be able to transcribe, replicate and store a vast amount of information, a concerted
three-dimensional folding seems necessary, the folding of the chromatin fiber being strongly
connected to genome function. Our results suggest that the connection between folding
and function is imposed by the formation of chromatin loops between genes and regulatory
sequences. These loops, possibly but not necessary assembled in transcription factories,
are dynamic, meaning that loops form and unravel dependent on the needs of the current
stage of development. Such loops are able to form by diffusional motion together with
a DNA-DNA or DNA-protein binding affinity, requiring no additional energy from the
nucleus.

However, besides its role in transcriptional regulation, chromation loops serve another
important purpose. They allow for a purely entropic compartmentalization of chromo-
somes, lowering the intermingling between them. This compartmentalization might be
important to allow intrachromosomal contacts to find each other, not being hindered by
entanglement effects between chromosomes. Furthermore, segregation of chromosomes is
vital for achieving a fast separation into the daughter cells during cell division. Thus, chro-
matin looping provides an energetically highly effective way of managing transcripitonal
regulation as well as maintaining a certain order and segregation inside the cell nucleus.

14.3 Outlook

In this thesis, a versatile model for the relationship between genome folding and function
has been established, being able to quantitatively explain important experimental results
such as the folding into a confined sub-space of the nucleus as well as observed decay
exponents in the intrachromatin contact probabilities. Due to important experimental
knowledge being lacking, the model so far does not take into account any locus-specific in-
teractions, assuming that loops can form between any two parts of the chromosome. Surely,
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this approach is highly simplifying as chromatin-chromatin contacts are often established
between specific genes and their regulatory elements. Among others, the influence of the
solvent on the chromatin properties in terms of an effective interaction will have to be
incorporated and the question of whether an equilibrium approach is sufficient to describe
chromatin folding has to be answered.

Future experiments are necessary in order to be able to further specify the looping
interactions of the Random Loop or Dynamic Loop model. Importantly, such information
can be easily incorporated into the model. Several promising experimental techniques exist
which can shed light on the detailed relationship between genome folding and function,
amongst others: (i) The Human Transcriptome Map specifying transcriptional activity
and gene density for each region of the genome, (ii) 4C/5C experiments revealing the
abundance of contacts between two specific loci and (iii) the distribution of binding sites
for loop-related proteins like CTCEF.

(i) The Human Transcriptome Map displays gene expression profiles for any chromoso-
mal region. It has been pointed out in this thesis that genes are not distributed randomly
along the one-dimensional genome, rather gene-dense clusters with a high transcriptional
activity are found as well as pronounced gene-poor regions. In chapter 7 we have related
transcriptional activity to looping by assuming different looping probabilities for gene-rich
and gene-poor regions using a very rough classification of the genome into ridges and
anti-ridges. The detailed connection between local transcriptional activity and looping,
however, remains an open issue of research, requiring elaborate experimental input.

(ii) Although 4C experiments have established an interaction map between one specific
bait region and any other chromosomal locus (~ 2.4.2), these data can hardly be used to
model chromatin. First of all, these data only provide information between one specific
locus and the rest of the genome, while modeling a chromosome requires information on
interactions between any two loci. This short-coming is overcome in the 5C technique,
measuring a two-dimensional map of interactions between any two loci on the genome. If it
were possible to distinguish between functional and random contacts in these experiments,
the data could be incorporated into our model. The functional contact probabilities from
5C could be incorporated as local looping probabilities P(i,7) into the heterogeneous
RL model (~ chapter 7). However, nC techniques do not provide information about
topological constraints in chromatin folding. The observed interaction frequencies are an
average over an ensemble of approximately one million cells, thus, correlations between
different loops, i.e. the question which two loops can exist at the same time, cannot be
answered with this method.

(iii) Several proteins have been shown to be involved in the formation of loops. For
modeling purposes, the most promising is CTCF: About 15000 binding sites for the evo-
lutionary highly conserved protein CTCF along the genome indicate its vital importance.
It has been shown that CTCF is required for looping in the -globin locus. However, the
detailed connection bewteen CTCF binding sites and looping remains to be established.

How can these experimental findings be incorporated into a more detailed locus-specific
model of chromatin folding? To me, the most promision approach seems to be to establish
a connection between 5C and the Dynamic Loop model. While in chapter 10 it has been
shown that probabilistic unspecific looping leads to the correct contact probabilities aver-
aged over all loci, a more specific implementation of loops might be possible. In principle,
the interaction probabilities given by 5C experiments can be incorporated into the model
by weighting the binding affinity between two loci according to the experimental data,
always taking into account that 5C data contains random contacts as well as functional
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contacts. Such a model could make very locus-specific predictions. Importantly, as 5C ex-
periments do not yield correlations between loops related to topological constraints, these
could be predicted by the model, establishing a map of which interaction sites might come
together at the same time to initiate or repress transcription of a specific gene.

The abundant existence of CTCF binding sites reveals another promising approach
for modeling specific loops. Looping could be restricted in the model by only allowing
loops between these binding sites according to the distribution found in the cell nucleus.
However, lots of experimental data is lacking for such an approach: Which binding sites
are occupied by CTCF in which cell type? Which binding sites are actually involved
in loop formation? Is CTCF the only mediator for loops? These questions need to be
answered before building a model based on binding sites.

A general question emerging from the problem of large loop formation is how the cell
can rely on the existence of a specific loop spanning several Mb? Clearly, the diffusional
formation of loops greatly enhances the probability of such an event (~ 10.3.2), however,
one might argue that the probability is still to small for this loop to be required for
a vital regulatory task. Although a definite answer to this question is far from reach,
two speculative solutions have come to our mind while discussion this topic: First, loop
formation might be less specific than previously thought. Perhaps, regulatory tasks can
be accomplished in case of the regulatory element being in proximity rather than directly
bound to the transcription complex. The interaction between regulatory element and gene
might be mediated by certain proteins being able to diffuse the short remaining distance
between the target sites. Second, cells in higher eukaryotes are assembled in a huge bunch
of equally differentiated cells. Why should every single cell execute the same program?
Possibly, it suffices if a vital loop is formed in a small number of cells for the whole network
of cells to function. This picture would provide an easy explanation for the robustness of
organisms being quite insensible to errors in single cells.

A lot of questions will have to be answered to further deepen our understanding on
the folding of interphase chromosomes in higher eukaryotes. The dynamic formation of
probabilistic loops as presented in this thesis offers a general framework, which can be
subsequently filled with information from several experimental techniques by adjusting
the local looping probabilities. Such a detailed model might offer deeper insights into
the functioning of specific genes and regulatory complexes, especially with respect to
differences between healthy and malignant cells. From such a model, specific predictions
could be derived about topological constraints and steric hindrances for the formation of
loops required for gene regulation, e.g. by allowing or disallowing certain loops to build
up. However, it will be a long way to make such detailed predictions due to the amazing
complexity of living organisms.
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Abstract

Experimental results suggest that higher-order
folding is tightly connected to genome function. The bulld-
ing blocks for a consistent overall description of chromatin
folding have to be gathered from several experimental tech- 10

The Dynamic Loop model

Experil ide The model
@ Chromatin folds into a confined sub-space of the nucleus @ Chromosomes are modelled as coarse-grained polymers

Chromosome 11 @ Loop formation is achieved on a purely diffusional basis

niques. FISH measurements reveal a confined folding of
chromosomes into a sub-space of the nucleus, the mean
square distance between two markers becoming indepen-

E WW

— Whenever two segments co-localize by diffusional motion,
they form a loop with a certain probability p
Loops only persist over a certain lifetime 7, afterwards

dent of genomic separation but at the same time reveal- of
ing a huge cell-to-cell variation. 4C data provides evidence
that loops exist on all scales and it has been shown that
these take part in transcriptional regulation. On a large 4
scale, chromosome form distinct territories. Our Dynamic basepairs (Mb) (simonis, 2006]

Loop model presented here provides a unified description @ Loops play a role in gene regula-
of chromatin folding on the basis of dynamic loop forma- tion

tion without invoking active transport mechanisms. In fact, a @ A huge cell-to-cell variation is ob-
huge amount of experimental evidence from FISH distance served

measurements, 4C/5C data, diffusion measurements up to @ Chromosomes do not intermingle
the formation of chromosome territories and its shape can (formation of territories) (eoizer, 2005]
be explained consistently in the framework of one model.

e % Q
[Mateos-Langerak, 2005] genomic distance (Mb] |hey dissolve again

@ Chromatin forms loops on all scales up to several mega @ Important: No long-range interactions

e

@ Chromosomal regions fold into a confined sub-space of the nucleus [Mateos-Langerak, 2009]

@ This shows up in the mean square distance (R’) between two markers in relation to genomic
separation g: () ~ O(1) above approx. 10 Mb.
@ The Dynamic Loop model predicts such a confined folding dependent on the average number of

Hierarchical formation of large loops Folding into a confined space

@ How do regulatory elements find their target?

@ Co-localization probability for linear polymers p.(1) ~ [=% = p.(10 Mb) ~ 10~"

@ Our model predicts: p.(l) ~ I~ on intermediate scales and p.(l) ~ I~"* on large scales

@ Experimental finding: p.(l) ~ I-'"* on intermediate scales (500 kb - 7 Mb) [Lieberman-Aiden, 2009]
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Cell-to-cell variation Aspherical shape of chromosomes

@ FISH distance measurements between two markers display a large cell-to-cell variation

@ These fluctuations are much larger than expected for a random walk polymer model

@ In our model, such large fluctuations arise from averaging over different loop configurations
@ Fluctuations are evaluated by the dimensionless ratio (') / (R?)"

@ Chromosome territories reveal an aspherical shape [khaiil et al., Chrom. Res. 2007]

@ We use the ratio (\s) /
shape

@ The model polymers reveal an aspherical shape, being stronger elongated by a factor of v/2 to
/5 in one direction in the parameter range where a confined folding is observed.

(A1) of the gyration tensors eigenvalues (\; > X\, > \;) as a measure of
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man fibroblast Chr 11: » long distance measurements; Murine lgh lo-  the average numiber of loops per monomer. Fluctuations are ®2F sonerical shape e
cus: # pre-pro-B cells, ¢ pro-B cells. [Mateos-Langerak 2009, Jhun-  larger than the AW value due to looping disorder. o

jhunwala 2008]

he formation of chromosome territories

@ Chromosomes have been shown to segregate into distinct territories Cremer & Cremer, 2001]
@ Linear polymers in a dense system, however, strongly intermingle
@ Dynamic Loop formation induces an entropy-driven formation of chromosome territories, the
number of inter-chromosomal contacts strongly decreasing
A Linear chains

0 01 02 03 04 05 06 07 08 09 1
average number of loops per monomer

Conclusions

@ The Dynamic Random Loop provides a consistent description of chromatin folding on the basis
of dynamic loop formation

@ No active transport mechanisms are necessary, large loops are formed on the basis of diffusional
motion

@ The model correctly predicts a variety of experimental observations (distance measurements,
cell-to-cell variation, formation of large loops, shape of territories, sub-diffusive motion of genes)

@ Loop formation entropically drives chr into a state (ct territo-
ries)

B. 45 loops per chain

€. 92 loops per chain
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