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Abstract 

 

Cancer is a result of aberrant cellular signalling. Understanding the properties of these 

complex networks will enable us to design effective therapeutic strategies against cancer. 

Often, singular pathways are analyzed to study cancer signalling. This kind of analysis eludes 

the idea of orchestrated roles of signalling proteins in a network. In the analysis presented in 

this thesis, a network approach is used to obtain an understanding of the intricate cellular 

signalling. 

In this thesis a sophisticated embedding of human cancer gene expression data onto the 

human protein-protein interaction network has been performed and pathways were predicted 

using a graph theoretic approach. Several network properties of normal and cancer signalling 

were derived from these predicted pathways using 10 cancer datasets. It is shown that the 

predicted cancer pathways used shorter cascades and more differentiated signalling routes 

when compared to predicted normal pathways. The cancer signalling network is more 

differentiated and much more interconnected when compared to the normal cells. Also, the 

cancer signalling network is less dependent on hubs compared to the normal network. 

A network based analysis has been done to compare the different network properties between 

the normal and cancer cells using several cancer gene expression datasets. All the findings 

well approve a model of less ordered signalling in cancer leading to more robustness. Finally, 

from the insights obtained by this study novel signalling motifs have been proposed which 

were found with high abundance in the analysed data. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 
 

Krebs ist ein Ergebnis abweichender zellulärer Signalübertragungen. Das Verständnis der 
Eigenschaften dieser komplexen Netzwerke wird es ermöglichen, effiziente therapeutische 
Strategien zu entwickeln. Oft werden bei der Analyse von Tumoren nur einzelne Signalpfade 
berücksichtigt. Diese Art Analyse vernachlässigt das Prinzip zusammenhängender 
Signalproteine in einem Netzwerk. Die Analyse, die in dieser Dissertation beschrieben wird, 
verwendet einen auf Netzwerken basierenden Ansatz, um ein Verständnis der komplexen 
zellulären Signaltransduktionspfade (sog. Signalwege) zu ermöglichen. 

 

In dieser Dissertation wurden menschliche Tumor-Genexpressionsdaten in das menschliche 
Protein-Protein-Interaktionsnetzwerk eingebettet und Signalwege mittels eines auf der 
Graphentheorie basierenden Ansatzes vorausberechnet. Mehrere Eigenschaften von normalen 
und Tumorsignalnetzwerken wurden aus diesen berechneten Signalwege unter Verwendung 
von 10 Tumordatensätzen abgeleitet. Es wird gezeigt, dass die Signalwege der betrachteten 
Tumore verglichen mit denen in normalen Gewebe kürzere Kaskaden und stärker 
differenzierte Signalwege verwenden. Das Signalnetzwerk im Tumor ist allgemein 
differenzierter und stärker vernetzt als in normalen Zellen. 

 

Eine netzwerkbasierende Analyse wurde ausgeführt, um die verschiedenen 
Netzwerkeigenschaften zwischen normalen und Tumorzellen mittels mehrerer 
Tumorgenexpressions-Datensätzen zu vergleichen. Die Ergebnisse bestätigen ein Model 
weniger geordneter Signalwege in Tumoren, was in einer größeren Robustheit der Signalwege 
des Tumors resultiert. Mit den Erkenntnissen dieser Studie wird ein neues 
Signalübertragungsmotiv vorgeschlagen, das sich in hoher Anzahl in den analysierten 
Datensätzen findet. 
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Chapter 1 

Introduction 
1.1 Scope 

In the cell, the transfer of a signal from the receptor to a transcription factor involves many 

intermediary players. The entire system of signalling involving signalling proteins can be 

modelled as a network providing a systems approach to model cells (Xia, et al., 2004). The 

different patterns of signalling in cells lead to the different hall marks of cancer 

progression which include self-sufficiency in growth signals, insensitivity to growth-

inhibitory (anti-growth) signals, evasion of programmed cell death (apoptosis), limitless 

replicative potential, sustained angiogenesis, and tissue invasion and metastasis (Hanahan 

and Weinberg, 2000). Understanding the signalling networks in cancer can provide means 

to novel therapeutic strategies. Microarray gene expression data provide a wealth of 

information about gene expression profiles in cells. Comparative analysis of gene 

expression profiles of normal and cancer conditions could provide differences in the 

expression patterns between them. 

 

Several methods have been developed to combine the information from gene expression 

data and the underlying network topology for the analysis of gene expression data 

(Chuang, et al., 2007; Ergun, et al., 2007; Konig, et al., 2006; Schramm, et al., 2007). We 

mapped the gene expression data of human normal and cancer cells to a human protein-

protein interaction network. The mapping was done using the Pearson correlation values 

calculated from the gene expression data of neighbouring proteins. This network with edge 

weights was later used to calculate highly correlated paths from receptor to transcription 

factor proteins in the network using a graph theoretic method. 

 

The analysis was performed on 10 datasets comprising of 9 different cancer types. Several 

graph attributes were compared and results showed significant differences in the signalling 

pattern between normal and cancer cells. These findings were embedded into signalling 

motifs which are one of the major findings of the study. One signalling motif showed less 

ordered signalling in cancer due to usage of dense interconnectivity of the signalling 

network. 
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The first section gives an introduction in to basic topics covered in the thesis. The second 

section describes the method in detail. The results are presented in the third section and 

discussed in the fourth section. 

 

1.1 Network Properties 
 

1.1.1 Network descriptors 
 

In mathematical terms a network is called a graph. There are two kinds of graphs directed 

and undirected. A directed graph  G is a pair G = (V,E) where V is a finite set and E is a 

binary relation on V. The graph G comprises of a set V of vertices or nodes and a set E of 

edges. In a directed graph G=(V,E), the edge set E consists of ordered pairs of vertices. In 

the Figure 1 the directed graph has a vertex set {a,b,c,d,e,f} where vertices are represented 

by circles and edges by arrows. 

In an undirected graph G = (V,E), the edge set E consists of unordered pairs of vertices. 

That is, the edge is a set (u,v) where u,v Є V and u ≠ v. Figure 2 represents an undirected 

graph with vertex set {a,b,c,d,e,f}. The degree ki of a vertex is the number of edges that 

connect to it or the number of vertices in its neighbourhood Ni . In a directed graph, the 

out-degree of a vertex is the number of edges leaving it and the in-degree is the number of 

edges coming into it (Cormen, et al., 1990). The distance between two nodes in a graph is 

the number of nodes connecting them in a shortest path. 

 

Figure 1. Directed network 
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Figure 2. Undirected network 

 

 

 The clustering coefficient of a graph is a measure which evaluates the degree to which nodes 

cluster in a graph . The clustering coefficient for node i was given by   

 

          (1) 

 

in which nlink is the number of links connecting the neighbours of node i. k is the number of 

neighbours. This feature describes how good the neighbours are connected within each other. 

If they are fully connected, the clustering coefficient is one, if they were not connected at all, 

the clustering coefficient is zero.  

One of the problems in graph theory is finding the shortest paths between two vertices in a 

graph. In shortest-path problem we are given a weighted, directed graph G = (V,E) with 

weight function w : E -> R mapping edges to real valued weights. Dijkstra’s algorithm solves 

the single source shortest path problem for a graph with non-negative edge weights. The 

algorithm finds the shortest path from a source vertex to every other vertex in the graph. A 

simple description of the steps involved in the algorithm are given below: 

1. Every node is assigned a distance value. The source node is set to zero and all other nodes 

set to infinity. 

2. All nodes are marked as unvisited and the source node as current node. 

3. The unvisited neighbours of the current node are considered and the distance from the 

current node calculated. For instance, if current node X has a distance of 0 (starting node) 
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and the edge connecting to Y has a weight of 2 then the distance of Y will be 0+2=2. If this 

distance were less than the previously recorded distance (infinity in the beginning, zero for 

the initial node), it is overwritten. 

4. If all the neighbouring nodes of the current node are considered then it is marked as visited 

and never considered again. It has the minimal distance from the source node. 

5. The unvisited node with the smallest distance from the source node is set as the next 

“current node” and the continued from step3. 

 

1.1.2 Cellular  networks 
 

Recent advances in the theory of complex networks has lead to the uncovering the 

organizing principles that govern the formation and evolution of various complex 

technological and social networks (Barabasi and Oltvai, 2004; Strogatz, 2001). The impact 

of these studies on cell biology have contributed to a better understanding of cellular 

networks. The same architectural features of molecular interaction networks within a cell 

can be observed in other complex networks like the internet and social networks. Since the 

same governing principles are observed across complex networks, available knowledge of 

other well studied complex networks can be used to study cellular function by applying it 

to cellular networks. 

Cellular networks can be studied under three main network categories – the transcriptional 

regulatory network, cell signalling network and the metabolic network. 

Transcriptional regulatory network: Transcription factors regulate other genes through 

transcription. These relationships can be modelled as a network. The principles governing 

the topological organization of the regulatory network of yeast was elucidated (Guelzim, et 

al., 2002). A map of regulator-gene of yeast interactions was used to describe potential 

pathways used by yeast cells to regulate global gene expression programs and network 

motifs were identified from this information (Lee, et al., 2002). 

Cell signalling network: The cell signalling network comprises the network of 

interactions between signalling proteins in a cell to carry out various cellular functions. 

The reconstruction of signalling networks can have different approaches like 

reconstruction of highly connected nodes in networks, reconstruction of linear pathways 
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with signalling input and outputs and reconstruction of functional signalling 

modules(Papin, et al., 2005). 

Metabolic network: Metabolic network comprises the connections between different 

metabolic reactions in a cell. Metabolic network constituents though are different for 

different organisms, show the same topological scaling properties. Also they are robust and 

error-tolerant scale-free networks (Jeong, et al., 2000). 

 

1.1.3  Networks are scale-free 
 

Many networks have node connectivities that follow a power-law distribution and such 

networks are called scale-free networks (Barabasi and Albert, 1999). The degree of a 

vertex quantifies individual nodes, the diversity of the entire network can be quantified 

using a degree distribution. The degree distribution P(k) of a network gives the fraction of 

nodes that have degree k and is obtained by counting the number of nodes N(k) that have k 

= 1, 2, 3... edges and dividing it by the total  number of nodes N. The degree distributions 

of numerous networks, such as the Internet, human collaboration networks and metabolic 

networks, follow a well-defined functional form P(k) = Ak-γ called a power law. Here, A is 

a constant that ensures that the P(k) values add up to 1, and the degree exponent γ is 

usually in the range 2 < γ < 3. The cellular networks also share organizational features with 

many non-biological networks and have a scale-free topology (Albert, 2005). 

The highly heterogeneous scale-free topology of complex networks makes it tolerant to 

random errors. If random nodes were removed in a scale-free network it did not affect the 

diameter of the network much. Even when up to 5% of the nodes fail, the communication 

between the remaining nodes are unaffected. However, when the highly connected nodes 

are targeted the diameter increases in size and they form isolated clusters. This nature of 

robustness of complex networks is due to the in-homogenous connectivity distribution, 

where the probability of choosing a highly connected node is less because they are less in 

number following a power law distribution (Albert, et al., 2000). Similar properties have 

been observed in protein networks make certain nodes central when compared to the other 

(Jeong, et al., 2001). 
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1.2 DNA Microarrays 
DNA microarray technology is used for simultaneous measurement of expression levels of 

thousands of genes. DNA microarrays are chips with arrayed short DNA sequences called 

“probes” onto which the sample containing cDNA called “target” are allowed to hybridize. 

Probe-target hybridization is detected by labelling with a fluorophore, silver or 

chemiluminiscence and is quantified by measuring the flouroscence intensities by a 

scanner. The fluorescence intensities correspond to abundances of gene expression. 

 

High density arrays containing tens of thousands of synthetic oligonucleotides. They are 

synthesized in situ using a combination of photolithography and oligonucleotide chemistry. 

Such high density oligonucleotide arrays are called “GeneChip” provided by the company 

Affymetrix (http://www.affymetrix.com). Using this technology, mRNAs present at a 

frequency of 1:300,000 can be unambiguously detected. In a typical experiment where two 

conditions are compared, for instance normal and cancer condition, the samples along with 

the dye are hybridized to two different GeneChip arrays. Since a single dye is used for 

quantification the results collected represent absolute gene expression values. This 

provides the advantage of comparing the absolute gene expression values between 

different experiments done months or years apart. 
 

1.2.1 Experimental design 
 

One of the major considerations in the experimental design is the use of replicates. A 

single measurement could give rise to many false positives that pass the filter. However, 

the use of duplicates further reduce false positives by using the same filter for two 

measurements. The second consideration is the use of “spiked” control mRNAs in the 

samples to be analyzed. For Affymetrix GeneChips, kits of premade sets of control RNAs 

are available. Using such controls could improve the quality of the data (Ness, 2006).  

 

Microarrays detect systematic problems in the analysis or preparation of samples called the 

“day effect”. This means samples analyzed on the same day correlate with each other more 

than those analyzed on different days. This can be solved by dividing the sample into 

groups, with each group having control and experimental samples. Then each group can be 

analyzed on different days (Ness, 2006).  
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1.2.2 Data Standardization 
 

The Microarray data is generated from different platforms, assay protocols and analysis 

methods. This warrants the need for standardization of Microarray data to solve the 

problem of data interoperability. Several community efforts have offered standardization 

solutions to this problem. 

One of them is MIAME (Minimum Information About a Microarray Experiment) that 

defines a check list of minimum information required to ensure that microarray data can be 

easily interpreted and that results derived from its analysis can be independently verified 

(Brazma, et al., 2001). This is being adopted by many journals as a requirement for the 

submission of papers incorporating microarray results. But MIAME does not describe the 

format for the information. The minimum information about a published microarray-based 

gene expression experiment includes a description of the following six sections (Brazma, 

et al., 2001): 

 

1. Experimental design: the set of hybridization experiments as a whole needs tp be given. 

2. Array design: each array used and each element (spot, feature) on the array needs to be 

described. 

3. Samples: samples used, extract preparation and labelling 

4. Hybridizations: procedures and parameters 

5. Measurements: images, quantification and specifications 

6.  Normalization controls: types, values and specifications  

 

Further, the MGED Society has developed standards for the representation of gene 

expression experiment results and relevant annotations. 

 

1.2.3  Normalization and statistical analysis 
 

The complexity of the Microarray data poses major statistical challenges including the data 

normalization. There are a number of reasons why data must be normalized, including 

unequal quantities of starting RNA, differences in labelling or detection efficiencies 

between the fluorescent dyes used, and systematic biases in the measured expression levels 
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(Quackenbush, 2002). Several normalization methods have been developed for analysis of 

microarray data (Huber, et al., 2003; Huber, et al., 2002; Park, et al., 2003). 

In the testing for significance with gene expression data from DNA microarray 

experiments the multiple comparison problem needs to be addressed. This stems from 

comparison of hundreds or thousands of genes in a typical Microarray experiment. Even 

though the P-value indicates statistical significance of the differentially expressed genes, 

the very high number of genes in the array could represent as differentially expressed 

genes that are false positives. Statistical methods to assess statistical power based on the 

variation present in the data and the number of experimental replicates, and can help 

minimize type I and type II errors in the analyses are available (Wei, et al., 2004).  

The major statistical hurdle in analyzing the microarray data is the dimensionality of data. 

A typical microarray study will obtain thousands of numbers per sample for many samples, 

perhaps a hundred samples. 

 

1.2.4 Data sources 
 

The comparative studies of several Microarray datasets could provide useful information 

on the underlying biology of disease conditions. This requires storage of Microarray data 

in specified formats such as MIAME in specialized datasets enabling intuitive querying 

features. Some of the databases which house such data are Gene Expression Omnibus 

(GEO) (Barrett, et al., 2007; Edgar, et al., 2002), Array Express (Parkinson, et al., 2009) 

and Oncomine (Rhodes, et al., 2004). 

 

1.3 Network based analyses 
Endogenous signal transduction in cancer cells is systematically disturbed to redirect the 

cellular decisions from differentiation and apoptosis to proliferation and, later, invasion 

(Vogelstein and Kinzler, 2004). Cancer cells acquire their malignancy through 

accumulation of advantageous gene mutations by which the necessary steps to malignancy 

are obtained (Hanahan and Weinberg, 2000). These selfish adaptations to independence 

can be described as a result from an evolutionary process of diversity and selection 

(Goymer, 2008). I was interested to observe these processes on a global view of cellular 
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signal transduction. Experimental high throughput methods such as gene expression 

profiling with microarrays enable investigating the pathogenic function of tumours on a 

mesoscopic level. Large-scale gene expression profiles were successfully used to predict 

clinical outcome (Fan, et al., 2006; van 't Veer, et al., 2002) and improved risk estimation 

(Oberthuer, et al., 2006). However these studies didn’t relate genes and their expression to 

a functional context. To gain an understanding on a systems view, gene expression can be 

mapped onto cellular networks. Several studies have been reported that used gene 

expression data from microarrays to describe specific characteristics of signalling networks 

in cancer. 

Discriminative components of a protein-protein interaction network were identified by 

comparing gene expression patterns of metastatic and non-metastatic tumours in breast 

cancer and suited as risk markers for breast cancer metastasis (Chuang, et al., 2007). The 

study used a protein-network based approach that used sub-networks as markers rather 

than individual genes obtained from protein-protein interaction databases. Chuang et al, 

analyzed the expression profiles of the two cohorts of breast cancer patients from a 

different study (van de Vijver, et al., 2002; Wang, et al., 2005). They restricted the analysis 

to the 8141 genes present in both data sets. For 78 patients in van de Vijver et al., 2002 and 

106 in Wang et al., 2005, metastasis had been detected during follow-up visits within 5 

years of surgery. Profiles for these patients were assigned to the class 'metastatic,' whereas 

profiles for the remaining 217 and 180 patients were labelled 'non-metastatic.' To obtain a 

corresponding human protein–protein interaction network, they assembled a pooled data 

set comprising 57,235 interactions from various sources like data integrated from yeast 

two-hybrid experiments, predicted interactions via orthology and co-citation, and scanning 

of the literature. 

The expression and network data sets were integrated, by overlaying the expression values 

of each gene on its corresponding protein in the network and then were searched for sub-

networks whose activities across the patients were highly discriminative of metastasis. 

Briefly, a candidate sub-network was first scored to assess its activity in each patient, 

defined by averaging its normalized gene expression values. This step yielded 295 and 286 

activity scores per sub-network, corresponding to the number of breast cancer patients in 

the two data sets, respectively. Second, the discriminative potential of a candidate sub-

network was computed based on the mutual information between its activity score and the 

metastatic/non-metastatic disease status over all patients. Significantly discriminative sub-
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networks were identified by comparing their discriminative potentials to those of random 

networks. 

The use of sub-networks as markers by Chuang et al., 2007 had the following advantages: 

First, the resulting sub-networks provided models of the molecular mechanisms underlying 

metastasis. Second, although genes with known breast cancer mutations were typically not 

detected through analysis of differential expression, they played a central role in the 

protein network by interconnecting many expression-responsive genes. Third, the 

identified sub-networks were significantly more reproducible between different breast 

cancer cohorts than individual marker genes selected without network information. Finally, 

a higher accuracy in prediction was obtained by network-based classification, as confirmed 

by selecting markers from one data set and applying them to a second independent 

validation data set. 

 

Reverse-engineered gene networks were combined with expression profiles to identify the 

genetic mediators and mediating pathways associated with prostate cancer (Ergun, et al., 

2007). They used an approach called mode-of-action by network identification (MNI), 

which has previously been validated as a means to identify the targets and associated 

pathways of compounds (di Bernardo, et al., 2005). The MNI algorithm operates in two 

phases, in phase one, a network model of regulatory interactions is reverse engineered with 

a diverse training set of whole-genome expression profiles. In phase two, the network is 

used as a filter to determine the genes affected by a condition of interest. The highest 

ranked mediator genes, ranked by a Z-statistic, are those whose expression was most 

inconsistent with the model, and this inconsistency is attributed to the external influence of 

the condition on those genes. Genes implicated in the advancement as well as suppression 

of a disease are equally likely to be identified as significant genetic mediators by the MNI 

algorithm. The MNI algorithm identified the AR gene among the top genetic mediators in 

the metastatic prostate cancer group but not in the non-recurrent primary prostate group. 

The 100 highest ranked genes in non-recurrent primary and metastatic prostate cancer 

groups were subjected to enrichment analysis for the AR signalling pathway. The list of 

the top 100 genes for the metastatic prostate cancer were significantly enriched with genes 

of the AR signalling pathway, in contrast to the non-recurrent primary prostate cancer, 

which was not enriched. These results, supported their hypotheses, that the AR gene and 

the AR pathway are mediators of prostate cancer progression and metastasis. 
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Ergun et al., 2007 further applied the MNI algorithm to nine recurrent primary prostate 

cancer samples. Consistent with their hypothesis, MNI ranked the AR gene 970, 155 and 9 

for the non-recurrent primary, recurrent primary and metastatic prostate cancer groups, 

respectively. Thus, these findings suggests that the AR gene, in the context of the reverse-

engineered network, can be used as a marker for detecting the aggressiveness of primary 

prostate cancers. Interestingly, expression change alone ranked the AR gene 641, 668 and 

207 in the respective groups, indicating that expression change alone is incapable of 

capturing the differential involvement of the AR gene in recurrent and non-recurrent 

primary prostate cancers. 

 

A novel method, to analyze gene expression data on the basis of interaction data, using a 

metabolic network of enzymes was developed (Konig, et al., 2006). The method was 

applied to E. coli under oxygen deprived conditions and physiologically relevant patterns 

that represent an adaptation of the cells to changing environmental conditions were 

extracted. 

 

König et al., extracted the metabolic reactions from the EcoCyc database (Version 9, 

(Keseler, et al., 2005)). A graph was established by defining neighbours of metabolites in 

which, two metabolites were neighbours if and only if an enzymatic reaction existed that 

needed one of the metabolites as input (needed substrate) and produced the other as output 

(product). In this representation, enzymes were edges and metabolites the nodes. This 

network was clustered to group enzymes into parts of the network  which were highly 

connected. The clustering algorithm produced a symmetrical sub-matrix of the cluster 

matrix for each cluster, whose rows and columns were the metabolites and its entries the 

connecting reactions. The normalized gene expression data of each data-set was mapped 

onto the corresponding reactions of the transcribed proteins. Mean values were taken if a 

reaction was catalysed by a complex of proteins. As a case study they analyzed gene 

expression data for 22 and 21 samples of E. coli under normal and oxygen depleted 

conditions respectively. The expression data of all samples was mapped onto each cluster-

matrix, yielding 43 different patterns for each cluster. They calculated a value for every 

possible expression pattern of neighbouring genes and groups of genes within a cluster that 

may show substantial differences between samples of different conditions. Hence, they 

performed a Haar-wavelet transform for each cluster-matrix. The wavelet transformed 
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expression values served as features for a classifier. Using a step-wise feature extraction , 

the features were ranked according to their discriminative behaviour. This allowed the 

identification of regions with a varying pattern between aerobic and anaerobic conditions. 

 

König et al., found a strong differential expression pattern of the transcripts coding for 

formic acid processing enzymes at the interface of the aerobic and anaerobic glucose 

catabolism. The aerobic catabolism processes pyruvate further on the respiratory 

glyoxylate cycle, whereas an anaerobic processing uses pyruvate formate lyase to produce 

formic acid as a fermentative product to be further degraded or excreted. It was shown that 

Pyruvate formate lyase may serve as a single switch. Their study also highlighted a 

concerted regulation reaction on oxygen deprivation. The bacteria adapted to this 

environmental change not only by degrading pyruvate into formate, but also by formate 

removal which was enhanced by up-regulated genes for formate exocytosis and formate 

degradation. They revealed an adapted regulation for aspartate processing enzymes. 

Interestingly, coming from aspartate, the starting point for purine biosynthesis was up-

regulated, whereas that of pyrimidine biosynthesis was not. 

In another study, an image processing technique was used for network analysis where the 

response of the hetero-fermentative bacterium to oxygen deprivation was investigated 

(Schramm, et al., 2007). This time, feature modules were then generated using the Haar 

wavelet transformations and significant modules extracted by statistical testing methods. 

Then the significant reaction pairs were clustered and found clusters were analyzed. 

Finally, the results were merged to obtain an overall map of metabolic changes under 

oxygen deprivation in E. coli. Schramm et al., detected, as expected, an up-regulation in 

the pathways of hexose nutrients up-take and metabolism and formate fermentation. 

Furthermore, their approach revealed a down-regulation in iron processing as well as the 

up-regulation of the histidine biosynthesis pathway. The latter reflects an adaptive response 

of E. coli against an increasingly acidic environment due to the excretion of acidic 

products during anaerobic growth in a batch culture. 

A systematic graph theory-based analysis of a yeast protein-protein interaction network 

was performed  to construct computational models for describing and predicting the 

properties of lethal mutations and proteins participating in genetic interactions, functional 

groups, protein complexes and signalling pathways (Przulj, et al., 2004). Przulj and co-

workers showed that, proteins participating in genetic interactions in the graph appeared to 
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have a degree closer to that of viable proteins. Interestingly, lethal mutations are not only 

often at highly connected nodes within the network (called hubs), but are at nodes whose 

removal causes a disruption of the network structure (called articulation points). They also 

suggested the existence of alternate paths that bypass viable nodes in protein-protein 

interaction networks, offering an explanation why null mutations of these proteins are not 

lethal. They hypothesized that highly connected sub-graphs or ‘clusters’ within a protein-

protein interaction network could indicate protein complexes. They defined a highly 

connected sub-graph as a graph, in which the minimum number of edges whose removal 

disconnects the graph is greater than  2. They analyzed protein-protein interaction graphs 

of different sizes to determine the relationship between the size of a graph and the number 

and complexity of identified clusters, which are feasible candidates for protein complexes. 

Most of the clusters overlapped with the MIPS database complexes. 

 

Przulj et al., also sought to determine if known signalling pathways had a characteristic 

structure within the network. The MAPK signalling pathway is a prototypical pathway that 

exhibits linearity in structure and was used for a linear pathway model. There were 31 

MAPK pathway proteins in the full protein-protein graph comprising of 78,390 

interactions: four of them were starting points (sources), eight were ending points (sinks) 

and the rest were internal proteins. They constructed a conservative predictive model that 

considers sources and sinks with a degree of at most 4 and intermediate nodes of degree of 

at least 8. From the predicted pathways, they showed that articulation points on linear 

pathways are much more likely to be lethal mutations or to participate in genetic 

interactions. 

 

A comprehensive analysis of a manually curated human signalling network was performed 

by Cui and co-workers (Cui, et al., 2007). The signalling network analyzed was composed 

of 1634 nodes and 5089 edges. To integrate mutated and methylated genes onto the 

network, they first collected the cancer mutated genes from the database Catalogue Of 

Somatic Mutations In Cancer (COSMIC) database, which collects the cancer mutated 

genes through literature curation and large-scale sequencing of tumour samples in the 

CGP. This data was then combined with the cancer mutated genes derived from other 

genome-wide and high-throughput sequencing of tumour samples. The cancer-associated 

methylated genes were taken from the genome-wide identification of the DNA methylated 

genes in cancer stem cells. Finally, 227 cancer mutated genes and 93 DNA methylated 
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genes were mapped onto the network. Among the 227 cancer mutated genes, 218 (96%) 

and 55 (24%) genes were derived from large-scale gene sequencing of tumours and 

literature curation, respectively. After mapping of cancer mutated genes onto the network, 

they found that cancer mutations occured most likely in signalling proteins that were acting 

as signalling hubs (i.e., RAS) actively sending or receiving signals rather than in nodes that 

were simply involved in passive physical interactions with other proteins. Alterations of 

these nodes, or signalling hubs, were predicted to affect more signalling events, resulting in 

cancer or other diseases. They also showed that cancer mutated genes and methylation-

silenced genes have different regulatory mechanisms in oncogene signalling. 

 

Cui et al., also showed that the oncogene-signalling event triggered by mutations is 

preferentially associated with activating downstream signalling paths or conduits and were 

less likely to be associated with downstream inhibitory signalling paths. They found that 

the cancer mutated genes were enriched in positive signalling regulatory loops, whereas 

the cancer-associated methylated genes were enriched in negative signalling regulatory 

loops. They further characterized an overall picture of the cancer-signalling architectural 

and functional organization by constructing an oncogene-signalling map, containing 326 

nodes, 892 links and the interconnections of mutated and methylated genes. From this map, 

they suggested that the crucial players of oncogene signalling tend to be closely clustered 

and regionalized. This map also uncovered the architectural structure of the basic oncogene 

signalling and highlights the signalling events that are highly conserved in generating 

tumour phenotypes. The map could be decomposed into 12 topological regions or 

oncogene-signalling blocks, including a few 'oncogene-signalling-dependent blocks' in 

which frequently used oncogene-signalling events were enriched. One such block, in 

which the genes were highly mutated and methylated, appeared in most tumours and thus 

played a central role in cancer signalling. Functional collaborations between two 

oncogene-signalling-dependent blocks occur in most tumours, although breast and lung 

tumours exhibited more complex collaborative patterns between multiple blocks than other 

cancer types. Benchmarking two data sets derived from systematic screening of mutations 

in tumours further reinforced their findings that, although the mutations were tremendously 

diverse and complex at the gene level, clear patterns of oncogene-signalling collaborations 

emerge recurrently at the network level. Finally, the mutated genes in the network could be 

used to discover novel cancer-associated genes and biomarkers. 
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  The global and local regulation of gene expression in the metabolic network of 

Saccharomyces cerevisiae was investigated (Kharchenko, et al., 2005). Kharchenko et al., 

represented metabolism as a graphical model, with nodes of the graph corresponding to 

genes encoding metabolic enzymes, and edges to metabolic connections between 

corresponding enzymes. They investigated how positive and negative correlation of 

mRNA expression profiles depends on the metabolic network distance, and determined the 

maximum distance at which genes display statistically significant co-expression. They 

showed that regulation of metabolic genes was local and extends, generally, to distances 

smaller than the mean network distance. Such regulation implies that genes close in the 

metabolic network were usually co-expressed together, possibly to optimize local 

metabolic fluxes. Positive co-expression was strongest among adjacent genes and 

decreases monotonically with network distance. In contrast, negative co-expression was 

most prominent at intermediate distances. 

 

Kharchenko et al., also suggest that regulation of the metabolic network established a 

number of local, positively co-expressed regions that may exhibit some degree of negative 

co-expression between each other. Furthermore, they found that positive co-expression and 

functional associations were strongest in the linear parts of metabolism, while negative co-

expression was more pronounced in highly branched regions. Their analysis of the 

elementary topological motifs showed that co-expression in divergent branches was 

significantly stronger than that observed in convergent branches. This pattern showed an 

emphasis on co-regulation of biomass synthesis or degradation from common metabolic 

precursors. They observed an agreement between the mRNA co-expression and genome 

context associations suggesting that the observed patterns of metabolic regulation was 

reflected in genome evolution and affected the location of genes on the chromosomes. 

 

Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae 

were studied (Ihmels, et al., 2004). By integrating large-scale expression data with the 

structural description of the metabolic network, they systematically characterized the 

transcriptional regulation of metabolic pathways. Their analysis revealed recurrent 

patterns, which may represent design principles of metabolic gene regulation. The three 

major findings of the study were: First, they showed that transcription regulation biased 

metabolic flow towards linearity by co-expressing only distinct branches at metabolic 

branch points. The co-expression pattern of enzymes participating at such branch points, 
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suggested that many possible branches were in fact suppressed in the actual context-

dependent map. This suppression reduced metabolite dissipation and ensured a more 

efficient metabolic flow. Secondly, they showed that individual isozymes were often 

separately co-regulated with distinct processes, providing a means of reducing crosstalk 

between pathways using a common reaction. Finally, they suggested that transcriptional 

regulation defined a hierarchical organization of metabolic pathways into groups of 

varying expression coherence. In conclusion, they propose that transcription regulation is 

prominently involved in shaping the metabolic network of S. cerevisiae in response to 

changing conditions. 

 

The dynamics of a biological network on a genomic scale was studied, by integrating 

transcriptional regulatory information and gene-expression data for multiple conditions in 

Saccharomyces cerevisiae (Luscombe, et al., 2004). Initially they assembled a static 

representation of known regulatory interactions from the results of genetic, biochemical 

and ChIP (chromatin immunoprecipitation)–chip experiments. They obtained a complex 

network consisting of 7,074 regulatory interactions between 142 transcription factors and 

3,420 target genes. To get a dynamic perspective, they then integrated gene-expression 

data for the following five conditions: cell cycle, sporulation, diauxic shift, DNA damage 

and stress response. From these data, they traced paths in the regulatory network that were 

active in each condition using a trace-back algorithm. 

 

They showed that the topological measures changed considerably between the endogenous 

and exogenous sub-networks. In biological terms, the small in-degrees for target genes in 

exogenous conditions indicated that transcription factors were regulating in simpler 

combinations, and the large out-degrees showed that each transcription factor had greater 

regulatory influence by targeting more genes simultaneously. Short paths implied faster 

propagation of the regulatory signals which was needed for exogenic perturbations. 

Conversely, long paths in multi-stage, endogenous conditions suggested slower action 

arising from the formation of regulatory chains to control intermediate phases. Finally, 

high clustering coefficients in endogenous conditions signified larger inter-regulation 

between transcription factors. In summary, sub-networks have evolved to produce rapid, 

large-scale responses in exogenous states, and carefully coordinated processes in 

endogenous conditions. They showed that, in response to diverse stimuli, transcription 

factors alter their interactions to varying degrees, thereby rewiring the network. A few 
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transcription factors serve as permanent hubs, but most act transiently only during certain 

conditions. 

 

Yeger-Lotem and co-workers identified characteristic network patterns consisting of both 

transcription–regulation and protein–protein interactions that recur significantly more often 

than in random networks were identified (Yeger-Lotem, et al., 2004). They developed 

algorithms for detecting motifs in networks with two or more types of interactions and 

applied them to an integrated data set of protein–protein interactions and transcription 

regulation in Saccharomyces cerevisiae. They found a two-protein mixed-feedback loop 

motif, five types of three-protein motifs exhibiting co-regulation and complex formation, 

and many motifs involving four proteins. Virtually all four-protein motifs consisted of 

combinations of smaller motifs. Their study presents a basic framework for detecting the 

building blocks of networks with multiple types of interactions. 

 

The figure 3 depicts the four-protein motifs discovered by Yeger-Lotem, et al., 2004. In the 

figure (a) represents motifs that can be represented as combinations of three-protein 

network motifs. When there is more than one possible way to generate a four-protein 

motif, the combination involving the more abundant three-protein motifs is presented. In 

the figure  (b) represented motifs that cannot be constructed from three-protein motifs. i, 

the bi-fan motif; ii, a motif containing a feed-forward loop; iii–vi, motifs that appear as 

extensions of smaller network motifs, for which one of the protein-protein interactions in 

each smaller motif (Left) was extended to a series of protein-protein interactions by means 

of an intermediate protein (Right). A node represents a gene and its protein product; a red, 

directed edge represents a transcription-regulation interaction; and a black, bi-directed 

edge represents a protein-protein interaction. 

 

An important family of motifs in cellular signalling is the feed-forward loop (FFL) (Alon, 

2007). This motif consists of three genes: a regulator, X, which regulates Y, and gene Z, 

which is regulated by both X and Y. Because each of the three regulatory interactions in 

the FFL can be either activation or repression, there are eight possible structural types of 

FFL (figure 4a). In FFLs, X and Y are integrated to regulate the Z promoter. Two common 

'input functions' are an 'AND gate', in which both X and Y are needed to activate Z, and an 

'OR gate', in which binding of either regulator is sufficient. These feed forward loops can 

be coherent, that is inputs to Z are not contradictory or in-coherent. In-coherent motifs are 
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needed for short activations. Other input functions are possible, such as the additive input 

function and the hybrid of AND and OR logic. However, much of the essential behaviour 

of FFLs can be understood by focusing on the stereotypical AND and OR gates. Each of 

the eight FFL types can thus appear with at least two input functions. In the best studied 

transcriptional networks (E. coli and yeast), two of the eight FFL types occur much more 

frequently than the other six types. These common types are the coherent type-1 FFL (C1-

FFL) and the incoherent type-1 FFL (I1-FFL) (figure 4b and 4c respectively).  
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Figure 3. Four-protein network motifs discovered in the stringent network identified by 
Yeger-Lotem, et al., 2004. 
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Figure 4.  Feed forward loops. The figure shows different types of feed forward loops in 

literature (Alon, 2007). 

 

 

 

1.4 Biological background 
Cancer is a disease of uncontrolled cell proliferation. This aberrant behaviour of the cell is 

a result of the cumulative effects of the signalling circuitry. The cells express around 

20,000 or more distinct proteins which are involved in many regulatory circuits. These 

proteins talk to each other and hence participate in signalling cascades where the signal 

from the receptor is transmitted down to the transcription factor. These signalling circuits 

determine the transformation from a normal cell to a malignant form. Hence, cancer can be 
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regarded as a disease of aberrant signal processing. In this section some of the major 

cancer signalling pathways are explained. 

 

A variety of biochemical signals radiate from ligand-activated growth factor receptors and 

some of them are directed directly to the nucleus where they alter gene expression 

programs, and other have cytoplasmic targets. Many of the traits of cancer can be traced 

back to the effects evoked growth factors. Ras is a family of genes encoding small 

GTPases that are involved in cellular signal transduction. The activation of Ras signalling 

leads to cell growth, differentiation and survival. Since Ras communicates signals from 

outside the cell to the nucleus, mutations in ras genes can lead to permanent activation 

resulting in aberrant signalling. Since these signals result in cell growth and division, 

inappropriate Ras signalling can ultimately lead to oncogenesis and cancer. A common 

signalling channel can be observed across phyla leading from receptor to Ras. This 

involves, 

 

Tyrosine kinase receptor  Shc  Grb  Sos  Ras 

The Ras protein stands in the middle of a complex signalling cascade and many signalling 

cascades emerge downstream of Ras evoking a number of distinct changes in the cell. 

There are three signalling cascades that operate downstream of Ras. One of them is 

MAPK (Mitogen-activated protein kinase) pathway. The MAPK pathway is illustrated 

in blue color in Figure 5.The GTP bound Ras binds to several downstream signalling 

partners known as Ras effectors. Raf kinase is a Ras effector which interacts with GTP 

bound Ras. Raf is now activated and phosphorylates a second kinase known as MEK 

(MAPKK) thereby activating it. The MEK inturn phosphorylates two other kinases , the 

extracellular signal-regulated kinases 1 and 2, also called Erk1 and Erk2. The Erks 

phosphorylate transcription factors (Ets, Elk-1, SAP-1) and in addition phosphorylate other 

kinases which activate yet other transcription factors. The MAPK pathway contributes to 

several Ras induced phenotypes in the cancer cell. This pathway activates several growth-

promoting genes, confers anchorage independence and loss of contact inhibition and also 

contributes to change in cell shape which has been associated with the transformation of 

the oncogene ras  (Weinberg, 2007). 

 



28 
 

 

 

 

Figure 5. Pathways downstream of Ras 

 

 

The second pathway downstream of Ras is the PI3 kinase (Phosphatidylinositol 3-kinase 

or PI3K) pathway. It is illustrated in black color in Figure 5. The PI3K attaches a 

phosphate group to 3’ hydroxyl of the inositol moiety of PI(4,5)P2 (also called PIP2) 

converting it to Phosphatidylinositol (3’,4’,5’)-triphosphate (PIP3). Once PIP3 is formed by 

PI3K, a serine-threonine kinase known as Akt, also called protein kinase B (PKB) can 

become tethered via its PH domain to the inositol head group of PIP3. This association 

activates Akt/PKB, which in turn phosphorylates several protein substrates that have 

multiple effects on the cell. The three major effects of Akt/PKB on the cell are: 

1. It reduces the possibility of activation of the apoptotic program and aids cell survival. 

2. It stimulates cell proliferation. 

3. It stimulates cell growth. 

Independent of theses proliferative functions Akt/PKB also control the rate protein 

synthesis in the cell. Akt/PKB phosphorylates and inactivates a protein called TSC2, which 

otherwise triggers the inactivation of mTOR kinase which regulates the rate of translation. 
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A family of guanine nucleotide exchange factors (GEFs) called Rho-GEFs use theier PH 

domains to associate with PIP3. These include Rho proper and its two cousins, Rac and 

Cdc42. Once activated the Rho proteins participate in reconfiguring the structure of the 

cytoskeleton and the cell’s attachments to its physical surroundings. Thereby they control 

cell shape, cell motility and in case of cancer cells invasiveness. For example, Cdc42 is 

involved in skeletal reorganization and controlling filopodia, small finger-like extensions 

used by the cell to explore its surroundings; while Rac is involved in the formation of 

lamellopodia, broad ruffles extending from the plasma membrane which are found at the 

leading edges of motile cells (Weinberg, 2007). 

The PI3K pathway is deregulated in a number of human cancer types. The low levels of 

PIP3 is maintained by phosphatases that inactivate PIP3. One of the phosphatases is PTEN 

which removes the 3’phosphate group from PIP3. Hence hyperactivity of PI3K or 

inactivity of PTEN can deregulate the pathway. One form of PI3K is over expressed and 

active in certain ovarian carcinomas. In lymphomas, head and neck tumours and colon 

carcinomas the Akt/PKB is over expressed and hyperactivated. In tumour types such as 

breast, prostate and glioblastoma the PTEN activity is lost due to mutation or methylation 

events that suppress PTEN gene expression. Such loss of PTEN activity is found in 30-

40% of all human cancers (Weinberg, 2007). 

The third major pathway downstream of Ras involves Ras-like proteins termed Ral-A and 

Ral-B. It is illustrated in pink color in Figure 5. The communication between Ras and Ral 

is carried out by Ral guanine nucleotide exchange factors (Ral-GEFs). The Ral-GEFs 

causes a Ral protein to shed GDP and bind GTP. The activated Ral-A and Ral-B can 

further inactivate Rac and Cdc42. Ral proteins are considered to play roles in cell motility 

enabling invasion and metastasis of cancer cells. In conclusion, by activating multiple 

pathways simultaneously Ras brings about several phenotypic changes observed during 

neoplastic transformation (Weinberg, 2007). 

The Jak-STAT pathway is also responsible for transformation in different cancer types. 

The Jak enzyme (Janus kinase enzyme) on binding to the receptor causes receptor 

dimerization and phosphorylation of tyrosine residues in the cytoplasmic tail of the 

receptor. These phosphotyrosine are bound by STATs (signal transducers and activators of 

transcription) and are phosphorylated. This activates STAT forms STAT-STAT dimers 

which are translocated to nucleus to function as transcription factors. STATs activates 

target genes which are involved in cell proliferation and cell survival like myc, cyclins D2 
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and D3 and genes encoding anti-apoptotic protein Bcl-XL. There is growing evidence that 

connects STATs to cancer pathogenesis. For example, Stat3 is constitutively activated in a 

number of human cancers like melanoma and breast cancers showing that they act as 

important mediators of transformation (Weinberg, 2007).  

The Wnt-β-catenin pathway enables cells to remain in a undifferentiated state which is 

typical of many cancer cells. The Wnt factors act through Frizzled receptors and suppress 

the activity of glycogen synthase kinase-3β (GSK-3β). The GSK-3β are active in the 

absence of Wnts and phosphorylate many protein substrates thereby marking them for 

degradation. One of the most important substrates is β-catenin, they are either bound to the 

cytoplasmic domain of cell-cell adhesion receptors (eg. E-cadherin) or operate in the 

nucleus as a vital component of a transcription factor. When Wnt pathway is activated, the 

activity of GSK-3β is suppressed leading increased concentrations of β-catenin. Many of 

the β-catenin molecules move into the nucleus and activate transcription by binding to 

Tcf/Lef proteins. This transcription factor complex activate expression of target genes 

involved in cell growth and proliferation like myc and cyclin D1. GSK-3β can also 

phosphorylate cyclin D1 marking it for degradation. Hence Wnt pathway also modulates 

cyclin D1 expression both at transcriptional and post-translational levels. In many human 

breast cancers Wnt expression is increased 4-10 fold and there is evidence of nuclear 

translocation of β-catenin in approximately 20% of advanced prostate carcinomas. β-

catenin mutation which eludes from GSK-3β phosphorylation have been observed in have 

been observed in carcinomas of prostate liver, colon, endometrium, ovary and melanomas 

(Weinberg, 2007). 

The Nuclear factor-κB (NF- κB) pathway is a important pathway implicated in cancer. 

NF- κB is commonly found as heterodimer composed of p65 and p50 subunit. In the 

cytoplasm, it is sequestered by a third polypeptide IκB (inhibitor of NF- κB) showing 

suppressed activity in this state. Signals from diverse sources phsophorylate IκB, marking 

it for degradation. This liberates NF- κB which migrates to the nucleus and activates the 

expression of over 150 target genes. NF- κBs have effects on cell survival and proliferation 

in cancer. In the nucleus, they can induce the expression of key anti-apoptotic proteins Bcl-

2 and IAP-1 and -2. They also induce expression of myc and cyclin D1 genes involved in 

cell growth and proliferation. Thus NF- κB can protect the cell from apoptosis and 

simultaneously drive their proliferation. In human cancers, NF- κB was found to be 
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constitutively activated. It is highly activated in breast cancers and also plays a role in 

malignancies of lymphocyte lineages (Weinberg, 2007). 

The Notch pathway is controlled by the Notch protein which is a transmembrane protein 

and four different forms of Notch are expressed in mammalian cells. Notch binds its ligand 

(NotchL) and undergoes proteolytic cleavage, liberating a cytoplasmic fragment which 

migrates into the nucleus and along with other proteins acts as a transcription factor. It was 

seen that altered forms of Notch contribute to cancer pathogenesis. Overexpression of one 

of the forms of Notch was seen in a majority of cervical carcinomas, a subset of colon 

carcinomas and in lung squamous carcinomas. Increased expression of Notch ligands, 

Jagged and Delta was found in cervical and prostate carcinomas (Weinberg, 2007). 

The Hedgehog-patched pathway involves the binding of patched receptor by its ligand 

Hedgehog causing it to release the Smoothened protein from inhibition, which later emits 

downstream signals. The Smoothened protein prevents the cleavage of cytoplasmic Gli 

protein. If cleaved in the absence of Smoothened protein, one of the fragments moves into 

the nucleus to act as a transcriptional repressor. In the presence of Smoothened the intact 

Gli proteins migrate into the nucleus and act as transcriptional activators. About 40% of 

sporadic basal cell carcinomas of skin carry mutant PTCH (human patched) or SMO 

(Smoothened) alleles. Somatically mutated alleles of PTCH were also found in 

medulloblastomas, meningiomas, breast and esophageal carcinomas (Weinberg, 2007). 

The TGF-β pathway plays a role in pathogenesis of many of the carcinomas, acting in the 

early stage by arresting the growth of many cell types and later stages leading to cancer 

progression by contributing to the phenotype of tumour invasiveness. On binding its ligand 

the TGF-β receptor phosphorylate Smad2 (or Smad3) protein molecules which then binds 

to Smad4 proteins and the resulting heterodimeric protein complex migrates to the nucleus 

functioning as a transcription factor expressing a large constituency of genes. In the 

absence of Smads the epithelial cancer cells can escape from the growth inhibitory signals 

of TGF-β and thrive. This state was observed in precursors of invasive pancreatic 

carcinomas (Weinberg, 2007). 

Some of the major signalling pathways that are deregulated in cancers have been briefly 

explained above. As it is evident from the central role of Ras, the signalling cascades are 

not linear pathways but a network of signalling interactions that consist of a complex 

signalling circuitry. In this thesis, a method has been developed to understand this complex 
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circuitry using information from gene expression. The technical background for the study 

are elaborated in the subsequent sections. 
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Chapter 2 

Methods 
 

2.1 Different cancer types analyzed 
The method developed in this thesis is used to analyze a broad range of cancer types. 

These included: 

• Lung adenocarcinoma: Lung cancer are tumours arising from the cells lining the 

airways of the respiratory system. Lung adenocarcinoma is one of major types of lung 

cancer, it arises from the secretory (glandular) cells located in the epithelium lining the 

bronchi. 

• Breast cancer: This cancer that starts in the breast, usually in the inner lining of the 

milk ducts or lobules. There are different types of breast cancer, with different stages 

(spread), aggressiveness, and genetic makeup. 

• Prostate cancer: This form of cancer develops in the prostate, a gland in the male 

reproductive system. The cancer cells may metastasize (spread) from the prostate to other 

parts of the body, particularly the bones and lymph nodes. 

• Head and neck squamous carcinoma: Head and neck cancer includes the squamous 

cell carcinomas of the oral cavity, pharynx and larynx. 

• Oral tongue cancer: There are two parts of the tongue, the oral tongue and the base of 

the tongue. The cancer can develop in either part. The Oral tongue cancer involves cancer 

in the front two-thirds region of the tongue. 

• Acute myeloid leukemia: It is a cancer of the myeloid line of blood cells, characterized 

by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and 

interfere with the production of normal blood cells. 

• Renal cancer: This is the cancer of the kidneys where it arises in the lining of very 

small tubes in kidneys that filter blood and remove waste products. 

• Vulvar interstitial neoplasia: This form of cancer arises in the Vulva which is the 

external female genital organ including the clitoris, vaginal lips and the opening to the 

vagina 
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• Cervical cancer:  It is a cancer that forms in the tissues of the cervix (the organ 

connecting the uterus and vagina). 
 

2.2 Datasets 
 

2.2.1 Gene expression datasets 
 

     The gene expression datasets were used either from collaborators or were downloaded 

from the NCBI GEO (gene expression omnibus) database (Barrett, et al., 2007; Edgar, et 

al., 2002). We used the neuroblastoma gene expression dataset which was measured by the 

Agilent array platform (Oberthuer, et al., 2006). The study analyzed tumour samples from 

251 neuroblastoma patients across different disease stages. The stage 1 and stage 4 MYCN 

amplified classes of neuroblastoma were used to the comparative analysis. Two lung 

cancer datasets, one containing 17 normal patients and 12 patients with highly aggressive 

adenocarcinoma belonging to the cluster C2 for analysis. C2 is a cluster of patients with 

highly aggressive adenocarcinoma derived from the clustering of patients in the original 

study based on gene expression data (Bhattacharjee, et al., 2001). A second lung cancer 

dataset containing gene expression data of 27 normal and adenocarcinoma patients (Su, et 

al., 2007). Breast cancer datasets of 43 normal and cancer patients each were used (NCBI 

GEO: GSE15852). Prostate cancer datasets with 50 and 52 normal and cancer patients 

respectively were used (Singh, et al., 2002). Data from a study of head and neck squamous 

carcinoma consisting of 22 normal and cancer patients each were used in the analysis 

(Kuriakose, et al., 2004). Oral tongue cancer gene expression profiles of 26 and 31 normal 

and cancer patients respectively (Estilo, et al., 2009) were also used. AML (acute myeloid 

leukemia) datasets containing 18 and 25 (Stirewalt, et al., 2008), renal cancer datasets with 

23 and 69 (Jones, et al., 2005), vulvar interstitial neoplasia with 10 and 9 (Santegoets, et 

al., 2007) and  Cervical cancers dataset with 8 and 19 cervical cancer (Pyeon, et al., 2007) 

normal and cancer samples were used respectively. Except for the neuroblastoma dataset 

the rest of the analyzed datasets were from the Affymetrix platform. 
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2.2.2 Protein interaction dataset 
 

In order to perform a network-based analysis of various cancer gene expression datasets a 

protein interaction network was assembled from the Human Protein Reference Database 

(HPRD)(Mishra, et al., 2006; Peri, et al., 2003). The protein-protein interaction dataset 

contained around 36000 protein-protein interactions. Depending on the gene to probe 

mapping, the largest connected component of the network was used for the analysis. The 

dataset broadly describes interaction relationships between proteins and captures signalling 

events like phosphorylation and binding reactions which form a major part of the 

signalling network. 

 

2.3 Network reconstruction and analysis 
The protein-protein interaction network was reconstructed from the HPRD database. 

Initially the probe ids of the gene expression datasets were mapped to corresponding NCBI 

Entrez Gene IDs using either a BLAST analysis (Altschul, et al., 1990) or the BioMart 

package in R. The BLAST analysis was used to map Agilent probe IDs to Entrez Gene 

IDs, where all the probe ids were aligned to human  nucleotide sequences and alignments 

with up to 2 mismatches were taken. For probe ids from Affymetrix existing R functions 

were used to map to Entrez Gene IDs to the probes. 

From the available Entrez Gene ID mappings a network was reconstructed. This number of 

mapped Entrez Gene IDs changed depending on the different platforms and platform 

formats of the gene expression data. Finally the gene expression data was mapped onto the 

protein-protein interaction network. This was done by calculating the Pearson correlation 

coefficients of the gene expression data of two interacting proteins and assigning them as 

edge weights. The Pearson’s correlation coefficient r is given by, 

 

                                         (2) 
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Where X and Y are variables and N is the number of samples in X and Y. 

To equally handle induction and inhibition events, absolute values of all correlation 

coefficients were used. For each cancer dataset two networks were compared. A network 

was constructed for normal samples and for cancer samples respectively. For 

Neuroblastoma “Stage1” samples and “Stage 4 MYCN amplified” samples were 

compared.  

Pathways were then predicted from different pairs of receptors and transcription factors in 

the network. Genes with the molecular function term "receptor activity" from the 

definitions of Gene Ontology (www.geneontology.org) were used as receptors in the 

network. Genes listed as a transcription factor in the TRANSFAC database were used as 

transcription factors (Matys, et al., 2003). Dijkstra algorithm which is already explained in 

the introductory section was used for calculating the shortest paths for every pair of 

receptors and transcription factors in all the networks. The correlation values were 

subtracted from one before using the Dijkstra's algorithm to obtain paths with high 

correlation. The receptor-transcription factor pairs ranged from 21,353 to 72,124 (these are 

also the number of predicted pathways for each dataset) depending on the dataset platform 

formats used. Several properties of these predicted pathways were later compared between 

normal and cancer samples. Table 1 gives the network statistics showing the number of 

edges, nodes and receptor- transcription factor pairs. 

 

Table 1. Network Statistics 

 Edges Nodes 

Percentage  
used 
nodes in 
normal 

Percentage  
used edges 
in normal 

Percentage 
used nodes 
in tumour 

Percentage  
used 
edges in 
tumour 

Number 
of 
receptors 

Number of 
transcription 
factors 

         
Lung1 17529 4692 30.64 28.00 30.64 30.00 210 203 
Lung2 27511 7092 26.38 24.00 27.72 27.00 292 247 
Breast 27511 7092 28.52 28.00 31.11 31.00 292 247 
Prostate 17529 4692 23.74 19.00 25.40 22.00 210 203 
HN1 17529 4692 26.30 22.00 26.38 23.00 210 203 
OT 17529 4692 27.11 23.87 30.29 30.67 210 203 
AML 27511 7092 24.22 20.95 31.07 33.55 292 247 
Renal 27511 7092 26.64 26.54 28.85 28.72 292 247 
Vulva 12490 4671 23.12 21.55 25.78 25.49 175 148 
Cervical 12490 4671 20.57 16.53 24.64 22.21 175 148 

 

 

http://www.geneontology.org/�
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2.4 Defining the network features 
Path length, link and node frequency, and the signalling motif are explained in the results. 

The (average) network diameter has been used as a measure for error tolerance of a 

network against removals of nodes in scale free networks (Albert, et al., 2000). The 

network diameters for the networks were obtained by the average of the shortest paths of 

each pair of nodes in the network. The network diameter was calculated for undisturbed 

(whole) networks and networks in which the top 20% of the hubs were removed. The ratio 

of these values were calculated to yield the increase of the average network diameter after 

hub removal. The calculation of the information content based on the assumption that 

signals enter the network at any receptor with equal probability within a certain time 

interval. These signals are passed by the links of the network to the transcription factors via 

the defined pathways from the receptors, again with equal probability. It was assumed that 

the signals vanish from the signalling network after having entered the corresponding 

transcription factor at the end of the path. Signals enter the receptors with a certain 

frequency, resulting in an equal distribution and therefore uniform density of the signals in 

each pathway. The probability of a signal to pass through the link of node i and j is then 

proportional to the number of pathways passing through this link. With this, we calculated 

the information content by Shannon’s definition (Shannon, 1948) 

  

         (3) 

 

in which n denotes the number of links and pi the probability of a signal to be passed 

through link i. The clustering coefficient for node i was given by   

 

                       (4) 

 

in which nlink is the number of links connecting the neighbours of node i. k is the number of 

neighbours. This feature described how good the neighbours were connected within each 
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other. If they were fully connected, the clustering coefficient was one, if they were not 

connected at all, the clustering coefficient was zero.  

 

2.5 Combined linear model for link frequency distributions 
For each tumour and normal sample, the link frequency distributions were plotted on a log-

log scale (basis = 10) using hist() (breaks = 10) of the package R (www.r-project.org). The 

combined linear models for these logarithmic distributions were calculated assuming same 

slopes with different intercepts for normal tissue and tumour. First, a linear regression was 

performed for each dataset yielding regression coefficients β0,normal,i and β1,normal,i of normal 

sample i for the intercept and the slope, respectively, and β0,tumor,i and β1,tumor,i for tumour 

sample i, i ∈ {AML, breast, cervical, head-and-neck, lung-1, lung-2, oral-tongue, prostate, 

renal, vulva}. Then combined linear models were obtained by calculating combined 

regression coefficients γ0,normal,i, γ1,normal,i, γ0,tumor,i, γ1,tumor,i for intercept-normal, slope-

normal, intercept-tumour and slope-tumour, respectively, i.e. 

 

       (5) 

 

     (6) 

 

       (7) 

 

           (8) 

 

            (9) 
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in which  are the mean values of the logarithms of the 

breaks and corresponding frequencies of the distributions of normal and tumour sample i, 

respectively. With this mean slopes of the distributions for normal and cancer sample i was 

obtained, but distinct intercepts for them which well fitted the data (Figure 8 and Figure 12 

(Supplement)). 

 

2.6 Defining and counting the integration and the maintenance 
motif 

Hubs of cancer mutated genes were defined by intersecting the top 20 most frequently 

involved nodes and the list of cancer genes from Cui and co-workers (Cui, et al., 2007). 

This was done for normal and tumour of every sample i, i ∈ {AML, breast, cervical, head-

and-neck, lung-1, lung-2, oral-tongue, prostate, renal, vulva}. For each datasets, all 

triangles were collected in which at least one node was such a cancer mutated hub. Out of 

these triangles, triangles having the motifs for integration (motif A in Figure 9) and 

maintenance (motif B in Figure 9) were selected. For motif A, triangles were selected 

where distances between all pairs of nodes (hub-n1, hub-n2, n1-n2, n1 and n2 are the two 

other nodes in the triangle) were equal or below the medians mnormal,i, mtumor,i of all 

distances of the datasets normal and tumour for sample i, respectively. For motif B, the 

triangles were selected in which hub-n1 and hub-n2 were larger or equal and n1-n2 were 

lower or equal than mnormal,i and mtumor,i for normal and tumour sample i, respectively. 

 

2.7 Identification of high node frequency genes 
While tracking the shortest paths from the receptor nodes to the transcription factor nodes 

in the network, certain nodes may be used more frequently when compared to other nodes. 

The node frequency is simply the number of times a node was used for every pair of and 

transcription factor. The non-aggressive “stage 1” condition was compared to the 

aggressive “Stage 4 MYCN amplified”(stage4A) tumour condition for the neuroblastomas. 

Identifying those nodes which are used with a high frequency in aggressive tumour when 

compared to the non-aggressive tumour may be useful for potential drug targets. When 

such genes are knocked-down or silenced the signalling of the aggressive tumour can be 
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targeted leading to breakdown of signalling machinery of the cancer cell. Therefore the 

frequencies for tumour cell and normal cell were compared. 

The nodes with differential node frequency, that is, those with high node frequency in 

aggressive and less node frequency in non-aggressive were calculated. The stage1 

condition contains 65 patients and stage4A condition contains 17 patients. Due to unequal 

number of patient samples the datasets were stratified into 3 sets of stage1 patients with 17 

samples each. The shortest paths were calculated for 4 sets – three sets of stage1 and one 

set of stage4A. The node frequencies of 3 sets of stage1 were subtracted from stage4A 

node frequencies ending up in three lists of difference of node frequencies. Finally, a rank-

product(RP) test was used to calculate the top ranking nodes from the three lists. The Rank 

product tests have previously been used to calculate differentially expressed genes in 

replicated microarray experiments (Breitling, et al., 2004). One of the advantage of this test 

is that it can be used for experiments even with a very less number of replicates. The 

significance of genes in a rank product test can be calculated as follows: 

1. Calculate the ranks of the x genes in m replicates. Here m=3 for three lists of node 

frequency difference. 

2.  Calculate the product of ranks(RP) divided by xm. That is, if ranks for the three lists are 

r1,r2 and r3 then  RP value is (r1*r2*r3)/ xm. 

3. Sort all the data by increasing RP value, the most significantly used genes will be at the top 

of the list. 
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Chapter 3 

Results 
 

3.1 Properties of the cancer signalling network 
Gene expression data of 10 cancer datasets comprising of one dataset each of breast 

cancer, prostate cancer, oral tongue carcinoma, acute myeloid leukemia, renal cell 

carcinoma, vulvar interstitial neoplasia, cervical cancer and two datasets each of lung 

adenocarcinoma and were used for detecting properties of the signalling networks of 

cancer. A paired wilcoxon test was used to calculate the statistical significance of the 

obtained results. 

 

 3.1.1 Cancer showed shorter signalling pathways  
 

For each dataset shortest paths or the predicted pathways were calculated for normal and 

cancer samples. The path length for each of these pathways is the number of proteins in the 

pathway starting from the receptor to the transcription factor. The average path length for 

all the paths from different receptor-transcription factor pairs for the normal and cancer 

was calculated. Path lengths for the normal samples were significantly longer (mean for 

cancer 5.73:, mean for normal: 6.04, P= 0.009) longer. The results are given in Table 2.  

 

3.1.2 Tumours use more edges and less hubs 
 

There was an interest to know how often the same edges (interactions) were used for 

different signalling pathways. For this, the mean frequency of every edge to be involved in 

a receptor-transcription-factor pathway was calculated. This frequency was obtained by the 

number of edges used in each single pathway divided by the number of all used edges. The 

edge frequency was higher in normal cells (mean for cancer: 40.58, mean for normal: 

51.59, P = 0.001). Similarly, the node frequency was calculated and showed the same 

tendency (mean for cancer: 154.96, mean for normal: 178.79, P = 0.001). Hence normal 
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cells used more often the same central nodes and interactions for different signalling tasks. 

The results are given in Table 2. 

 

Table 2. Features of signalling network 

 

Lung-1 Lung-2 Breast Prostate HN OT AML Renal Vulva Cervical 
P-
value 

Tendency 
for cancer 

Signalling motifs 

Normal 351764 647730 371984 83356 136676 256492 140030 67706 115240 167852 0.001 Down 

Cancer 295884 397290 278772 63722 134056 147170 26294 60346 82326 89800 
  

Path length 

Normal 5.4 5.66 5.24 6.2 5.76 5.66 6.65 5.93 6.36 7.55 0.009 Down 

Cancer 5.36 5.4 5.17 5.84 5.68 5.13 5.56 5.92 6.37 6.89 
  

Link frequency 

Normal 37.43 49.87 39.21 63.52 51.11 47.50 55.41 38.15 51.55 82.21 0.001 Down 

Cancer 34.65 42.26 34.26 51.86 48.31 32.72 27.91 35.19 43.70 55.00 
  

Node frequency 

Normal 160.2 218.0 186.8 237.3 199.1 189.8 151.0 89.9 152.4 203.5 0.001 Down 

Cancer 158.8 197.9 168.8 208.8 195.7 153.8 98.4 75.3 137.1 155.1 
  

Size of the network 

Normal 5014 6734 7799 3490 3974 4185 2176 2758 2691 2064 0.001 Up 

Cancer 5362 7501 8770 3977 4132 5376 3485 2984 3184 2774 
  

Clustering coefficient 

Normal 0.049 0.048 0.053 0.054 0.052 0.049 0.030 0.038 0.032 0.024 0.09 Up 

Cancer 0.052 0.053 0.055 0.058 0.052 0.064 0.041 0.033 0.034 0.024 
  

Clustering coefficient >0 

Normal 521 729 829 412 445 459 217 279 261 182 0.005 Up 

Cancer 599 807 935 457 473 617 382 308 338 235 
  

Integration motifs 

Normal 
230 442 188 565 229 840 397 223 80 116 

0.01 Down 

Cancer 
91 471 152 482 179 634 312 220 74 83 

  

Maintenance motifs 

Normal 
14 177 8 59 227 65 131 2 64 56 

0.02 Up 

Tumour 
51 211 13 95 291 119 123 2 104 57 
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Increase of average path length after hub removal 

Normal 1.65 1.64 1.65 1.71 1.79 1.64 1.03 1.70 1.79 1.64 0.01 Down 

Cancer 1.56 1.63 1.56 1.66 1.63 1.52 1.03 1.68 1.64 1.67 
  

 

Information entropy 

Normal 10.74 10.88 11.26 10.26 10.33 10.59 9.05 10.04 9.67 9.48 0.001 Up 

Cancer 10.87 11.18 11.53 10.43 10.35 10.92 10.48 10.07 9.93 9.98 
  

 

 

3.1.3 The used signalling network is less centralized 
 

Barabasi and co-workers used the clustering coefficient for a measure of inter-connectivity 

of networks (Barabasi and Oltvai, 2004). We calculated the clustering coefficient and 

obtained higher values in cancer supporting our findings that cancer showed a more 

connected, less centralized structure (mean of cancer: 0.046, mean of normal: 0.042, P = 

0.09). Also the number of nodes with a clustering coefficient greater zero was higher in 

cancer cells (mean for cancer: 515.10, mean for normal: 433.40, P = 0.005). The results are 

given in Table 2. 

 

3.1.4 Tumour networks are more robust against directed attacks 
 

The robustness of the used network was checked by removal of the top 50% of the hubs. 

When a certain number of hubs were removed, the network becomes disconnected forming 

one large component and several small clusters. After removal of the top 50% of the highly 

connected nodes were removed and the number of clusters in the normal and cancer used 

network were counted. Except for two cancers the rest showed either equal or higher 

number of clusters in normal when compared to cancer. The results are shown in Table 3 . 

This shows a slightly more robust cancer signalling network. 
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Table 3. Number of clusters after hub removal 

Cancer type Normal Cancer 

Lung1 4 1 

Lung2 5 3 

Breast 2 1 

Prostate 2 2 

Head and Neck 4 2 

Oral tongue 5 2 

AML 7 3 

Renal 4 3 

Vulva 4 3 

Cervical 7 5 

 

Albert and co-workers showed that the average path length of a network increases as nodes 

are removed randomly (Albert, et al., 2000). In order to understand the effect of hub 

removal on robustness of the network, up to top 20% of the hubs were removed 

systematically. The ratio of average path length on hub removal to the average path length 

without hub removal were obtained for 1-20% of hub removal (Figure 6). The plots show 

that as a larger percentage of hubs are removed, the average path length increases more for 

normal samples when compared to cancer. This again confirms a higher dependency on 

hubs in networks of normal tissue. Also, the cancer network is comparatively more robust 

to removal of hubs. The area under the curve (AUC) for hub removal is significantly 

higher in normal (mean for cancer: 32.32, mean for normal: 34.98, P = 0.001) as shown in 

Table 2. A plot for the area under the curve for normal and cancer for different datasets is 

given in Figure 7. 
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3.1.5 Frequently involved genes are enriched with cancer mutated genes 
 

Cui and co-workers compiled a list of 284 cancer mutated genes which were derived from 

large scale sequencing studies and other literature (Supplementary table S10 in (Cui, et al., 

2007)). This list was compared with the 20 most frequently involved nodes (hubs) of each 

network and significant enrichment was found for 9 out of 10 normal and tumour samples 

(Table 4). Then gene-lists of cancer mutated hubs for every cancer were defined by 

intersecting the hubs of the network with the list of cancer mutated genes of Cui et al. 

(Table 5). Interestingly, most of the genes which showed up in the tumour networks were 

also present in the normal networks. This may indicate that normal cells intrinsically pave 

the way for their specific evolvement into malignancy. 
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Figure 6. This figure shows the effect of hub removal on average path length of the 

network in different cancer datasets. (Black represents normal and red represents cancer). 
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Figure 7. This figure shows the area under the curve for the previous graph for different 
cancer types 

 

 

3.1.6 Signalling-regulation in cancer is detached at cancer mutated hubs but maintained in their 
vicinity 
 

Uri Alon and his co-workers have studied occurrences of direction-motifs in triangles and 

revealed a large variety of substantial characteristics in signalling networks characterized 

by consistent and non-consistent feed-forward and feedback loops (Alon, 2007). Local 

regulation patterns of the networks at cancer mutated hubs were studied. For this, 

regulation motifs of every triangle consisting of at least one hub and two of its neighbours 
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which on their part also interact were analyzed. Two regulation motifs were defined. The 

first motif reflected the degree of regulatory integration of a hub and its network-vicinity 

and was defined by a high correlation of all pairs of nodes in the triangle motif (integrated 

motif, motif A in Figure 9). This motif was found significantly more often in normal cells 

(P = 0.01, Table 2). The second motif (maintenance motif, motif B in Figure 9) described a 

hub which regulation is independent from its vicinity (low correlation between the hub and 

its two neighbours in the motif), but which vicinity is co-regulated (high correlation of the 

two neighbours). Such a scenario is reasonable for a mutated cancer protein with loss of 

function but which neighbours maintain signalling propagation. Indeed, this motif occurred 

more often in the cancer networks (P = 0.02, Table 2). 

 

 Figure 8. Frequency distribution for breast cancer (red, circles) and the corresponding 

normal sample (blue, crosses). Both networks showed the typical scale-free distribution for 

the frequency of proteins being involved in our defined signalling pathways. Proteins in the 

cancer network exhibited a distinct shift to the left indicating less frequency not only for 

the hubs but for all proteins in the network. Both distributions were fitted by a combined 

linear model of same slopes but different intercepts for normal and cancer cells. 
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Figure 9. Triangle motifs. The motifs were derived for each triple of nodes consisting of a 

hub and two of its network-neighbours (n1, n2) which on their part were also connected. In the 

integration motif (motif A) all nodes are pair-wise co-regulated. Accordingly, the motif is 

defined by low distances for links hub-n1, hub-n2 and n1-n2. In the maintenance motif (motif 

B) only n1 and n2 are co-regulated. It is defined by a low link-distance for n1-n2 and high link-

distances for hub-n1 and hub-n2. Motif C is a consistent feed-forward loop, taken from the 

literature (Alon, 2007).  

 

 

 

3.1.7 A novel  motif for degenerate signalling  
 

From the obtained results a new signalling motif was designed which is illustrated in 

Figure 10. Within this model, cancers use differentiated pathways whereas normal cells 

utilize the same signalling interactions for different tasks. Cancer utilizes pathways with 

different interactions by different operator-receiver pairs (R1 - TF and R2 – TF in Figure 

10) whereas normal cells utilize common interactions for this task. We compared the 

abundance of this motif with the abundance of its counterpart in which cancer pathways 

were different and common pathways were used in the normal samples. The significantly 

higher number of the motif in normal (mean for cancer: 157566, mean for normal: 233883, 

P = 0.001) supported the idea of "decentralized signalling" in the cancer samples under 

study (Table 2). 
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Figure 10. Comparative cancer motif. Two different signals are transmitted from two 

receptors (R1 and R2) to a transcription factor (TF). Green and grey arrows indicate the 

pathways for normal and cancer cells, respectively. The motif was defined for each pair of 

pathways (R1,TF) and (R2,TF) such that the pathways of normal cells share at least one 

common link whereas the pathways for cancer cells didn’t share any link. 
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Table 4. Cancer mutated genes are significantly enriched in the most frequently involved 
nodes (hubs) 

 

Dataset Network 
size 

Cancer genes 
in our hubs 

Cancer genes 
in the whole 

network 
P-value 

AML normal 920 8 80 1.57e-03 

AML  tumour 1186 11 96 1.34e-05 

Breast normal 2003 9 165 2.49e-04 

Breast  tumour 2187 7 177 3.37e-03 

Cervical normal 941 6 88 2.26e-02 

Cervical  tumour 1131 7 94 4.17e-03 

Head and neck normal 1214 6 113 2.17e-02 

Head and neck  tumour 1218 6 115 2.29e-02 

Lung1 normal 1418 10 136 1.95e-04 

Lung1  tumour 1418 8 134 2.30e-03 

Lung2 normal 1851 9 154 2.70e-04 

Lung2  tumour 1946 12 149 1.41e-06 

Oral tongue normal 1252 7 114 6.40e-03 

Oral tongue  tumour 1401 8 131 2.17e-03 

Prostate normal 1094 2 100 5.63e-01 

Prostate  tumour 1172 3 111 3.25e-01 

Renal normal 707 9 59 3.63e-04 
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Renal  tumour 792 11 59 8.54e-06 

Vulva normal 1060 9 91 3.77e-04 

Vulva  tumour 1184 11 99 1.76e-05 

 
 
 
 
 
Table 5.Intersection of the hubs and cancer mutated genes 

 

Dataset 
Gene symbols (EntrezGene ids in brackets) of the intersection of  the 
top 20 most frequently involved genes (hubs) and cancer mutated genes 
from table S10 of Cui and co-workers (Cui, et al., 2007) 

AML normal CBP (1387) bARK (156) EGFR (1956) p300 (2033) Hsp90 (3320) JAK1 (3716) c-
Myc (4609) nPKC (5579) 

AML  tumour  CBP (1387) bARK (156) EGFR (1956) p300 (2033) ABL1 (25) INSR (3643) JAK1 
(3716) SMAD2 (4087) PKCA (5578) PKCz (5590) SHP2 (5781) 

Breast normal  CBP (1387) bARK (156) Hsp90 (3320) JAK1 (3716) SMAD2 (4087) SMAD3 (4088) 
PKCA (5578) RB (5925) SRC (6714) 

Breast  tumour  CBP (1387) bARK (156) p300 (2033) SMAD2 (4087) SMAD3 (4088) PKCA (5578) 
SRC (6714) 

Cervical normal  CBP (1387) EGFR (1956) p300 (2033) PKCz (5590) RB (5925) TYK2 (7297) 

Cervical  tumour  CBP (1387) p38 (1432) p300 (2033) ABL1 (25) Hsp90 (3320) SMAD2 (4087) PKCA 
(5578) 

Head and neck normal  CBP (1387) p300 (2033) FYN (2534) JAK1 (3716) SMAD2 (4087) SMAD4 (4089) 
Head and neck tumour  CBP (1387) p300 (2033) FYN (2534) LCK (3932) SMAD2 (4087) SMAD4 (4089) 

Lung 1 normal  CBP (1387) p300 (2033) SMAD4 (4089) PKCA (5578) nPKC (5579) SHP2 (5781) 
RAF1 (5894) RB (5925) SRC (6714) p53 (7157) 

Lung 1  tumour  CBP (1387) p300 (2033) FYN (2534) SMAD2 (4087) SMAD3 (4088) SMAD4 
(4089) PKCA (5578) SRC (6714) 

Lung 2 normal  CBP (1387) p300 (2033) FYN (2534) Hsp90 (3320) JAK1 (3716) VEGFR (3791) 
SMAD2 (4087) RAF1 (5894) RB (5925) 

Lung 2 tumour  CBP (1387) CTNNB1 (1499) p300 (2033) GAQ (2776) Hsp90 (3320) INSR (3643) 
JAK1 (3716) VEGFR (3791) SMAD2 (4087) PKCA (5578) RAF1 (5894) RB (5925) 

Oral tongue normal  CBP (1387) SMAD2 (4087) SMAD4 (4089) PKCA (5578) RAF1 (5894) SRC (6714) 
p53 (7157) 

Oral tongue  tumour  CBP (1387) p300 (2033) Hsp90 (3320) LCK (3932) SMAD2 (4087) SMAD4 (4089) 
PKCA (5578) SRC (6714) 

Prostate normal  SMAD2 (4087) SMAD4 (4089) 
Prostate  tumour  p300 (2033) SMAD2 (4087) SMAD4 (4089) 

Renal normal  CBP (1387) EGFR (1956) ABL1 (25) Hsp90 (3320) JAK1 (3716) SMAD2 (4087) 
PKCA (5578) RAF1 (5894) RB (5925) 

Renal  tumour  CBP (1387) p38 (1432) EGFR (1956) ABL1 (25) Hsp90 (3320) INSR (3643) JAK1 
(3716) SMAD2 (4087) PKCA (5578) RAF1 (5894) RB (5925) 

Vulva normal  CBP (1387) bARK (156) EGFR (1956) p300 (2033) ABL1 (25) JAK1 (3716) SMAD2 
(4087) PKCA (5578) RB (5925) 

Vulva tumour  IKKA (1147) CBP (1387) bARK (156) p300 (2033) INSR (3643) JAK1 (3716) LYN 
(4067) nPKC (5579) RAF1 (5894) RB (5925) ZAP70 (7535) 
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3.1.8 Neuroblastoma – properties of its cancer signalling network 
 

Neuroblastoma is a malignant tumour consisting of undifferentiated neuroectodermal cells 

derived from the neural crest. As is characteristic case of embryonic tumours, neuroblasts 

are histologically indistinguishable from developing neuroblastic cells in the embryo. 

Neuroblastoma is the most common malignant disease in children with 7.5 cases for every 

100,000 infants. There are 1.3 new cases per 100,000 children under the age of 15 years 

every year, which accounts for 9% of all childhood cancers. Almost, 90% of children with 

the disease are diagnosed in their first 5 years (Schwab, et al., 2003). Neuroblastoma is 

often unpredictable, because it is associated with contrasting patterns of clinical behaviour, 

ranging from life-threatening progression, maturation to ganglio-neuroblastoma or 

ganglioneuroma, and spontaneous regression. The “age” and “stage” of the patients enable 

physicians to predict, to some extent, the clinical course of the disease which is supported 

with histologic information. 

A significant proportion of tumours (>10%) undergo complete spontaneous regression in 

the absence of or with minimal therapeutic intervention. The spontaneous regression is 

evident as primary neuroblastoma and metastatic disease disappear without any treatment. 

This situation is generally associated with a clinically recognisable syndrome called 4s, 

defined as a small primary tumour in the abdomen or thoracic cavity accompanied with 

metastasis in the liver or bone marrow and skin (or both) but not in the cortical bone. 

Although spontaneous regression is most commonly observed in patients with stage 4s, it 

is also well described in stage 1–3 neuroblastoma in children and older patients. 

Spontaneous maturation to benign ganglioneuroma is much less frequent than spontaneous 

regression. Additionally, several biological markers have been found to describe 

therapeutic risk groups (Schwab, et al., 2003).  

From the clinical perspective a better prediction of tumour behaviour at diagnosis will help 

to avoid overtreatment of spontaneously regressing tumours and treatment failure in high-

risk patients. The current prognostic evaluation is based primarily on the extent of tumour 

spread at diagnosis and age of the patient. The problem is that this classification 

overestimates the number of patients who need chemotherapy, because it cannot define 

patients with stage 1–3 tumours that are regressing. Recently, several biological markers 

have been incorporated to describe therapeutic risk groups. Such an approach involving 
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molecular classification by detection of amplified MYCN and deletion of 1p chromosomal 

material underestimates the proportion of high-risk patients because only about 30% of the 

children with high-risk stage 4 disease have amplified MYCN and 47% have 1p alteration 

(Schwab, et al., 2003). 

Oncogene MYCN is a member of the MYC family of oncogenes that encode nuclear 

proteins serving as transcription factors. In neuroblastoma, amplified MYCN is a strong 

prognostic indicator of poor prognosis, particularly in localized tumours where patients 

with normal MYCN gene dosage fare quite well. The active MYC family of genes usually 

due to genetic damage result in enhanced expression of wild-type proteins has important 

indications in human and animal cancers. Mostly, the activation mechanism involves the 

increase of the MYCN gene dosage, either by amplification resulting in up to several 

hundred gene copies or by more subtle mechanisms, like duplication or polyploidization. 

Nowadays, the status of MYCN is used widely as a standard marker for neuroblastoma 

stratification (Schwab, 2004). Apart from MYCN amplification, cytogenetic and molecular 

level analysis of tumours identified non-random genetic changes, including ploidy 

changes, deletions of chromosome 1p, gains of chromosome arm 17q, and deletions of 11q 

as well as deletions of other genomic regions that allow tumours to be classified into 

subsets with distinct biological features and clinical behaviour (Westermann and Schwab, 

2002). 

 

In this study gene expression datasets of 65 non-aggressive Stage1 and 17 aggressive 

Stage4A (Stage4 MYCN amplified) classes were used for a comparative analysis. Stage 1 

tumours will be denoted as “Normal” in the following, in contrast to the denotation of 

“Cancer” for stage 4A tumours. Due to an unequal number of samples in the two classes, 

the gene expression data was stratified to obtain correlation values and three groups of 

stage 1 samples were assembled by random selection, yielding the groups “Normal 1”, 

“Normal 2” and “Normal 3”. Normal 1 group gives consistent results consistent with the 

previous analysis for 10 cancer datasets. However, the other two groups – Normal 2 and 

Normal 3 showed opposite trends. This could be because of the heterogeneity  within the 

normal samples that lead to fluctuations in the resulting correlation values. The results are 

shown in Table 6. 
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Table 6. Features of signalling network -  Neuroblastoma 

  Normal1 Normal2 Normal3 Cancer1 Cancer2 Cancer3 

Signalling motifs 944072 1023018 1013944 847492 994278 1036862 

Path length 5.51 5.35 5.45 5.38   

Edge re-usage per 
edge 86.50 80.66 86.47 84.89   

Average node 
frequency 432.54 423.75 440.53 428.31   

Size of used 
network 6996 7232 6907 6922   

Average clustering 
coefficient of used 
network 0.069 0.079 0.072 0.071   

Clustering 
coefficient >0 810 876 815 828   
AUC for hub 
removal 121.72 119.58 119.13 122.09   

Information 
entropy - edge 10.96 11.03 11.06 11.01     

 

To obtrain proteins which were highly involved in tumour signalling and comparatively 

few involved in normal signalling, proteins with differential node frequency between stage 

1 and stage 4A in neuroblastoma were identified using the method described in the 

“Methods” section. Table 7 below shows a list of the top few genes obtained from the 

analysis. The table contains the genes identified in the analysis, the significance value from 

the rank-product test, the gene regulation (up or down regulated), the P-value obtained by 

wilcoxon test and the ranking based on differential gene expression. The ranking based on 

differential gene expression shows that some proteins which have a lower ranking in the 

conventional analysis are in the top of the list in the analysis used in this thesis showing 

that it is a new approach to detect highly used signalling nodes in a network. The up-

regulated genes in the list could be candidates where a knock-down assay could better 

elucidate the involvement of these proteins in aggressive neuroblastoma cells. 
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Table 7. Significant genes with differential node frequency 

 

Gene symbol Rank product test 

Gene 

regulation Significance testing by Wilcoxon test 

Ranking based on 

differential 

expression 

MAPK1 2.46e-09 Down 0.024 490 

PRKCA 1.47e-08 Up 0.16 593 

PRKACA 2.36e-07 Up 0.16 593 

PRKCD 9.45e-07 Down 0.0001 278 

CDC25B 9.97e-07 Up 0.045 522 

LYN 1.03e-06 Down 0.038 513 

HTT 2.17e-06 Up 0.037 512 

CAV1 2.64e-06 Down 0.009 451 

CALR 3.49e-06 Up 0.45 652 

MAPK3 4.91e-06 Down 0.0002 300 

PAK1 6.30e-06 Up 0.17 594 

AKT1 6.80e-06 Up 0.24 611 

CSNK2A1 7.29e-06 Up 5.13e-05 256 

LCK 7.75e-06 Down 0.0001 285 

GNAQ 8.74e-06 Down 0.25 613 

GNA15 8.80e-06 Down 0.96 713 

SYK 8.84e-06 Down 1.70e-05 221 

PIK3R1 1.08e-05 Down 9.15e-05 273 

LCP2 1.25e-05 Down 1.61e-05 220 

VIM 1.38e-05 Down 0.36 635 

EGFR 1.39e-05 Down 0.43 648 

RGS14 2.36e-05 Down 0.84 700 

TUBB 2.88e-05 Down 0.004 408 

PSMC5 3.61e-05 Up 0.50 659 

GNAO1 3.66e-05 Down 0.48 656 

PLCB1 3.76e-05 Down 0.008 443 

ARRB2 4.94e-05 Down 0.001 367 

SRC 4.95e-05 Down 0.88 704 

PTPN6 5.24e-05 Down 0.005 419 

BTK 5.50e-05 Down 0.014 467 

YWHAG 6.30e-05 Down 1.64e-06 162 

CASP7 6.89e-05 Down 0.005 415 
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The oncogenic relevance of some of these genes in neuroblastoma or cancer in general 

have been assembled by intensive literature search. A short summary of the results are 

given below: 

1. MAPK1 (mitogen-activated protein kinase 1):  MAP kinases, also known as extracellular 

signal-regulated kinases (ERKs), act as an integration point for multiple biochemical 

signals, and are involved in a wide variety of cellular processes such as proliferation, 

differentiation, transcription regulation and development. In SK-N-MC neuroblastoma 

cells, the basic fibroblast growth factor (FGF2) induces apoptosis by directing the 

formation of the ERK (or MAPK1)-GSK3beta (Glycogen synthase kinase-3beta) complex. 

This complex  formation results in retaining ERK in the cytoplasm, otherwise it leads to 

ERK nuclear translocation (Ma, et al., 2008). MAPK1 was down-regulated in stage 4A 

thereby contributing to survival rather than apoptosis. 

2. PRKCA (Protein kinase C, alpha): Protein kinase C (PKC) is a family of serine- and 

threonine-specific protein kinases that can be activated by calcium and the second 

messenger diacylglycerol. This kinase has been reported to be involved in many different 

cellular processes, such as cell adhesion, cell transformation, cell cycle checkpoint, and 

cell volume control. GSK 3-beta is implicated in regulation of apoptosis. In human SH-

SY5Y neuroblastoma cells, PKC-alpha and PKB proteins were activated by apoE4 leading 

to GSK-3beta inhibition (Cedazo-Minguez, et al., 2003). Inhibition of GSK-3beta thus 

leads to escape from apoptosis. This relates well with the gene expression data where 

PRKCA is up-regulated in stage 4A. 

3. PRKACA (protein kinase, cAMP-dependent, catalytic, alpha): The second messenger 

cAMP exerts its effects by activating the cAMP-dependent protein kinase, which 

transduces the signal through phosphorylation of different target proteins. In the SH-SY5Y 

human neuroblastoma cell line the regulatory mechanism of Bcl-2 proteins was 

investigated. Bcl-2 proteins are involved in serum depletion-induced apoptosis. In SH-

SY5Y cell lines, it was shown that Bcl-2 was negatively regulated by PKA (Itano, et al., 

1996). They are also up-regulated in stage4A thereby leading to cell survival. Also in SH-

SY5Y cells,  in presence of cAMP PKA was activated leading to neurite outgrowth 

(Sanchez, et al., 2004). In stage 4A cells the PRKACA or PKA was up-regulated. 

4. PRKCD: Protein kinase C (PKC) is a family of serine- and threonine-specific protein 

kinases that can be activated by calcium and the second messenger diacylglycerol. The 



58 
 

protein encoded by this gene is one of the PKC family members. Studies in human and 

mice demonstrated that this kinase is involved in B cell signalling and in the regulation of 

growth, apoptosis, and differentiation of a variety of cell types. In PC12 rat 

pheochromocytoma cells, selective activation of PKC delta may play a role in neuritogenic 

signals in PC12 cells (O'Driscoll, et al., 1995). 

5. CDC25B: It is a member of the CDC25 family of phosphatases. CDC25B activates the 

cyclin dependent kinase CDC2 by removing two phosphate groups and it is required for 

entry into mitosis. CDC25B shuttles between the nucleus and the cytoplasm due to nuclear 

localization and nuclear export signals. The protein is nuclear in the M and G1 phases of 

the cell cycle and moves to the cytoplasm during S and G2. In neuroblastoma, 

overexpression of the proto-oncogene N-MYC is correlated with malignancy. It was found 

that CDC25B expression levels were significantly correlated with N-MYC m-RNA levels 

suggesting that CDC25B may play an active role as a target of N-MYC (Sato, et al., 2001). 

6. LYN: It is an src-related intracellular protein tyrosine kinase. It acts as a signal transducing 

molecule for surface immunoglobulin M and is expressed predominantly in hemopoietic 

cells. Expression of LYN has been reported in neuroblastoma. It was reported that in 

surgical tumour samples LYN transcripts were found preferentially at early stages whereas 

they were barely detectable in highly malignant tumours. I was also proposed that LYN 

may be involved in a signalling pathway of neuroblasts committed to neuronal 

differentiation (Bielke, et al., 1992). 

7. HTT: Huntingtin is a disease gene linked to Huntington's disease, a neurodegenerative 

disorder characterized by loss of striatal neurons. This is thought to be caused by an 

expanded, unstable trinucleotide repeat in the huntingtin gene, which translates as a 

polyglutamine repeat in the protein product. It is predicted that mutated htt acquires toxic 

properties in specific brain regions. It was reported that transfection of mutant HTT in SK-

N-MC neuroblastoma cells that endogenously express D1 receptors was associated with a 

minor increase in cell death (Robinson, et al., 2008). This correlates well with the gene 

expression data where HTT is down-regulated in stage 4A. 

8. CAV1: The scaffolding protein Caveolin-1 encoded by this gene is the main component of 

the caveolae plasma membranes found in most cell types. In studies on CAV1 was 

suggested that Caveolin-1 inhibits neurite growth by blocking Rac1/Cdc42 and p21-
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activated kinase 1 interactions in the basic fibroblast growth factor receptor (bFGF) 

pathway (Kang, et al., 2006).  

9. CALR: Calreticulin is a multifunctional protein that acts as a major Ca(2+)-binding 

(storage) protein in the lumen of the endoplasmic reticulum. It is also found in the nucleus, 

suggesting that it may be involved in transcription regulation. It was reported that 

Calreticulin can inhibit the binding of the androgen receptor to its hormone-responsive 

DNA element and inhibit androgen receptor and retinoic acid receptor transcriptional 

activities in vivo, as well as retinoic acid-induced neuronal differentiation. This shows that 

Calreticulin can act as an important modulator of the regulation of gene transcription by 

nuclear hormone receptors.  

10. PAK1: As already discussed above, it is suggested that the up-regulated caveolin-1 in 

neuronal cells can inhibit neurite outgrowth by  interfering with the bFGF signalling 

pathway from small GTPases to PAK1 by directly binding to PAK1 (Kang, et al., 2006). In 

our data it is known that PAK1 was up-regulated in stage 4A. It was also shown that PAK1 

was involved in neuronal migration where adhesion molecule L1 stimulates neuronal 

migration through Vav2-Pak1 signalling (Schmid, et al., 2004). 
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Chapter 4 

Discussion 
 

In the above analysis, cancers exhibited very distinct mechanisms in signal transduction 

when compared to the normal samples. The cancers showed shorter signalling paths and 

more differentiated pathways. Luscombe and co-workers analyzed the dynamics of 

regulatory networks in yeast (Luscombe, et al., 2004). In comparison to endogenously 

caused changes, they discovered large differences in topological changes when yeast 

responded to environmental changes. For having quick responses, yeast reacted to 

environmental changes (nutrition depletion, stress response) by short regulatory cascades. 

Interestingly, these findings can be compared to the regulation of the signalling network 

for the human cancers studied here. The cancer cell is similar to the yeast cell under stress 

forcing it to organize short regulatory cascades.  

A higher average clustering coefficient was observed in the used signalling network in 

cancer. The used network in cancer was larger with less edge and node frequency in cancer 

all pointing to high inter-connectedness of the cancer signalling using different routes for 

signal transfer. There was also a lower entropy in the cancer signalling network signifying 

less order also showed by other network parameters. The cancers showed a tendency for 

disparate signalling in contrast to the normal cells. Cancers utilized different signalling 

pathways for same tasks, modelled by pathways between pairs of receptors and 

transcription factors, this result correlates well with the result that the cancer signalling 

network is a more inter-connected network. The used network for cancer is much more 

diverse with more connections and links. These results hint that there is a less dependency 

on hubs in the cancer signalling network. 

In order to determine if the cancer signalling network was less dependent on hubs, 

systematic removal of hubs was performed. Previous studies have shown that even after 

random removal of up to 5% of the nodes from a scale-free network still doesn’t harm it. 

This is because nodes with less connectivity would be selected with greater probability 

when compared to the hubs which are less in number. On the other hand, removal of hubs 

cause the network to break down into smaller clusters indicating vulnerability to these 

attacks (Albert, et al., 2000).  We detected that the different network toplogy in the 
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network of cancers made the networks more robust against these attacks. When the top 

50% of highly connected nodes were removed, the number of clusters in the network were 

counted. The networks of normal samples had more clusters (only one cancer showed same 

number of clusters). These results show a clear tendency towards a higher robustness in 

cancer signalling due to a different wiring when compared to the normal signalling 

network. Furthermore, the increase in average path length of all possible pairs of paths in 

the network to hub removal was seen. The increase in path length was less for the cancers 

when compared to the normal samples. From these results, it can be concluded that the 

cancer signalling networks were more robust to hub removal when compared normal 

networks. Hence, the higher inter-connectedness (or more links) contributed by disparate 

signalling in cancer could provide additional robustness or tolerance to attacks making 

targeted drug design very challenging. 

An analysis was done confirming the findings of Cui and co-workers (Cui, et al., 2007), 

that cancer specific mutations occur distinctively more often at hubs for signal 

transduction. Such a mutation can cause a loss of function. This is beneficial for the cancer 

if the protein gets insensitive to regulation-upstream-signals and fires constitutively an 

oncogenic signal as e.g. the ABL-BCR fusion protein in chronic myelogenous leukemia 

(Druker, 2008). If the protein acts as a tumor suppressor, a complete loss of function is 

beneficial for oncogenesis. In both scenarios, the regulation for signaling homeostasis of 

the local network environment is detached from this mal-functional protein and a 

coordinated regulation between the environment and this protein is not necessary any 

more. This was observed by counting distinctively less integration-motifs in tumors (motif 

A in Figure 9). Interestingly, tumors still sustain the original signals between the 

environment. This was observed by higher counts of the maintenance motif in tumors 

which reflects low co-regulation between hubs and their neighbors, but high co-regulation 

between the neighbors of the hubs (motif B in Figure 2). Even though tumors may exhibit 

de-regulation of mal-functional hubs with their neighbors, such a maintained co-regulation 

of their neighbors gives evidence that bypass regulations are still necessary. Ma’ayan and 

co-workers observed an accumulation of feedback and feed-forward loops at such hubs 

(Ma'ayan, et al., 2005) which supports this idea. Tumors need to maintain the direct signal 

of e.g. a feed-forward loop which is necessary for the effect of the constitutive signal of an 

oncogenic hub. Such oncogenic signaling motifs may have implications to drug therapy. If 

an oncogenic hub is treated (as e.g. ABL-BCR with imatinib (Druker, 2008)) resistance 

can occur by mutations of the target protein which reduce the affinity of the drug to the 
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target. A combined therapy may avoid this evolvement by additionally blocking the 

neighboring signaling-maintenance. In addition, the observed cancer networks showed 

higher error tolerance against directed attacks of hub removals. Hence, some maintenance 

signals may not only support cancer mutated hubs but also pave the way for the signaling 

network to get independent of them, specifically for proteins of cancer mutated genes with 

a complete loss of function. It is challenging but highly relevant to shed light into these 

effects experimentally with cell lines exhibiting drug resistances at such hubs. A novel 

comparative signaling-motif for malignant signaling-regulation is also proposed, which 

sums up these findings. There have been elaborated studies on network motifs (Alon, 

2007). The comparative cancer motif is different from these motifs in that it shows 

signaling-regulation in cancer reflecting less centralized formation. It is to note that the 

comparative cancer motif agrees with the findings of non-integration (motif A, Figure 9) 

but signal-maintenance (motif B, Figure 9) of proteins with higher involvement in signal 

propagation. 

In conclusion, a method that based on the correlation between interacting genes was used, 

which is simple and enabled tracking basic principles of signaling by its regulation. The 

malignant signaling networks showed more diverse signaling pathways which were shorter 

and used less hubs. They indicated signaling maintenance and increased error tolerance to 

punctual attacks even at hubs which makes cancer treatment at specific targets challenging. 

To detect common signalling patterns 10 cancer datasets were chosen from the same 

Affymetrix platform to avoid cross platform differences which could affect the analysis. In 

all the datasets chosen there were sufficient number of normal and cancer patients enabling 

performance of a comparative study. In Table 2, a common pattern can be seen across 

datasets for the different measures. Some of the datasets comprise of normal and cancer 

tissue samples derived from different groups of patients. The method is unaffected by this, 

however in some cases these distant expression patterns between the groups may give 

inconsistent results. Hence homogenous sets of samples were selected in these cases by a 

cluster analysis. 

In the second part, the Neuroblastoma gene expression dataset was analyzed in detail. The 

analysis determined nodes which are used in high frequency in the predicted signalling 

pathways, predicted by combining the gene expression data and protein-protein interaction 

network information. Many of the genes listed in top of the list have been reported to be 

involved in neuroblastoma progression and in cancer in general. Proteins with high 
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frequency in stage 4A and low frequency with stage 1 were indentified. Those up-regulated 

genes can be knocked down in MYCN amplified cell lines to determine their effect upon 

cell survival. 

 Most of the top genes obtained in the analysis include kinases which are active players in 

the signalling machinery in cancer. It is clear from the list that some of the top genes 

MAPK1, PRKCA and PRKACA have a role in regulating apoptosis whereas CAV1 and 

PAK1 are involved in neurite outgrowth. The respective up-regulation or down-regulation 

of the genes mostly correlated well with the reported findings of their role in 

neuroblastoma cell lines. For instance, MAPK1 was down-regulated in stage4A, but it’s 

role is to form a complex with GSK3-Beta and induce apoptosis. On the other hand, 

PRKCA which was up-regulated in stage 4A inhibits GSK3-Beta thereby inhibiting 

apoptosis. PRKACA inhibits Bcl-2 thereby preventing apoptosis and it was up-regulated in 

stage 4A. These genes in the top of the list seem to play an important role in apoptosis. 

They are all interlinked to form a small network. This could be small sub-network of the 

larger network of signalling interactions involved in apoptosis. These were obtained by 

linking the most likely oncogenic candidates found by our method.  

Apart from genes implicated in apoptosis, the method is able to identify genes associated 

with symptoms of aggressive neuroblastomas. PRKACA is invoved in neuronal 

differentiation and CAV1 and PAK1 are involved in neurite outgrowth. CAV1 is down-

regulated in stage4A and inhibits PAK1 which is up-regulated in stage4A and PAK1 

induces in neurite outgrowth. It is also reported in literature that both CAV1 and PAK1 

form components of the same pathway. In conclusion, the method used in this study 

enables detection of highly involved signalling proteins and functionally related signalling 

proteins involved in specific oncogenetic programs. 
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Outlook 
 

A network based approach was used to dissecting properties of signalling networks and to 

identifying central signalling genes in cancer. The method used is based on the correlation 

between interacting genes which is simple and enabled tracking basic principles of 

signaling by its regulation. The malignant signaling networks showed more diverse 

signaling pathways which were shorter and used less hubs. They indicated signaling 

maintenance and increased error tolerance to punctual attacks even at hubs which makes 

cancer treatment at specific targets challenging. 

This study shows the difference in the regulatory dynamics of signalling regulation 

between the normal and the cancer network. The results across 10 datasets are consistent 

with the proposed model. This knowledge can be used for designing effective strategies for 

targeted drug discovery for cancer. However, precautions should be taken to select 

homogenous gene expression data (grouped by age, sex, cancer stage etc.) in particular 

cancer types to avoid unnecessary fluctuations that could be causative to these differences. 

This method can be further extended to identify important signalling in cancer. In this 

thesis, this was done by identifying genes with highly differential node frequency. Several 

active signalling proteins in neuroblastoma were identified. These proteins could be 

considered as potential drug targets. Further, knock-down studies can be done in the 

laboratory with cell lines to confirm their importance as drug targets. Further, this method 

can be used to analyze gene expression datasets pertaining to specific cancer subtypes, to 

identify subtype specific, as well as common players enabling us to move a step further to 

understanding the complex cancer signalling network.  

In future, the analysis of many large scale gene expression datasets of different cancer 

types can be used to look for key molecules of signal regulation. Such analysis will provide 

key signaling molecules which could fill the missing links in the currently available sparse 

cancer signaling network. 
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Supplement 

Figure 11. Distribution of the correlation coefficients of the different cancers (black 
bars: normal, red bars: cancer) 
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Figure 12. Link frequency distribution for all datasets 
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Figure 12. In the above figure, Link frequency distribution for all datasets are shown 

(normal: blue, crosses, cancer: red, circles). All networks show the typical scale-free 

distribution for the frequency of the genes to be involved in the defined signalling 

pathways. Genes in the cancer network exhibit a distinct shift to the left indicating less 

frequency not only for the hubs but for all genes in the network. All distributions were 

fitted by a combined linear model (see methods). 
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