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Untersuchungen zum Ladungsbriiten in EBIS/T und Kollisionsex-
perimente mit kalten Atomen fiir HITRAP Langsame oder sich in
Ruhe befindliche hochgeladene Ionen sind interessante Systeme fiir atom-
physikalische Experimente. Fiir Untersuchungen an schweren hochgeladenen
Ionen wurde die Ionenfallenanlage HITRAP (Highly charged ion trap) an der
GSI/Darmstadt aufgebaut, die gekiihlte Strahlen hochgeladener Ionen bei
einer Energie von 5 kel//q liefern wird. Die hochgeladenen Ionen werden in
einer Stripper-Folie bei relativistischen Energien erzeugt und im Experimen-
tierspeicherring ESR und in der HITRAP-Anlage abgebremst, bevor sie zu
den Experimenten geliefert werden. Ein Experiment ist der Mehrelektronen-
Ladungsaustausch in Stéfen hochgeladener Ionen mit kalten Atomen, die
mit der MOTRIMS-Methode erforscht werden. Ein Stoflexperiment mit le-
ichten Ionen aus einer EZR-Ionenquelle und kalten Atomen in einer magne-
tooptischen Falle als Target wurde durchgefiihrt und die Resultate werden
dargestellt. Eine Elektronenstrahl-Ionenfalle (EBIT) fiir die Inbetriebnahme
der HITRAP-Experimente wurde getestet und optimiert. Der Prozess des
Ladungsbriitens wurde in der EBIT erfolgreich mit Edelgasen und einem
Alkali-Element, das aus einer externen Ionenquelle eingeschossen wurde, er-
folgreich untersucht.

Charge breeding investigation in EBIS/T and collision study of ions
with cold atoms for HITRAP Highly charged ions (HCI) at low velocities
or at rest are interesting systems for various atomic physics experiments. For
investigations on HCI of heavy stable or radioactive nuclides the HITRAP
(Highly charged Ion TRAP) decelerator facility has been set up at GSI to
deliver cooled beams of HCI at an energy of 5 keV//q. The HCI are produced
in a stripper foil at relativistic energies and are decelerated in several steps
at ESR storage ring and HITRAP before they are delivered to experimental
setups. One of the experiments is the investigation of multi-electron charge
exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS
technique. Collision experiments on light ions from an ECR ion source col-
liding with cold atoms in a MOT have been performed and the results are
described. An electron beam ion trap (EBIT) has been tested and opti-
mized for commissioning of the HITRAP physics experiments. The process
of charge breeding in the EBIT has been successfully studied with gaseous
elements and with an alkaline element injected from an external ion source.







The machine does not isolate man from the great problems of nature but
plunges him more deeply into them.

Antoine de Saint-Exupery
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Chapter 1

General Introduction

Ions are of great interest for different branches of science, and of course are
one of the main topic for atomic physics. They are used in a huge variety of
experiments which are carried out for fundamental investigations and practical
applications.

Experiments to study cross sections of electron capture and ionization in
ion - atom collisions, or radiative and dielectronic recombination cross sections
in ion - electron collisions have been intensely conducted for different elements
and charge states, but still a huge amount of information is missing especially
for heavy, highly charged ions.

Atomic properties are rather well described by relativistic quantum me-
chanics, however, for heavy elements the electrons in the vicinity of the nucleus
are influenced by an extreme electric field and thus the quantum electrody-
namical (QED) treatment has to be included to calculate accurately atomic
properties, like energy levels or magnetic moments. Experiments with few-
electron systems, e.g. hydrogen-, helium- or lithium- like heavy ions are of
special interest because they provide a clear evidence of QED contributions
increasing with higher nuclear charge Z. Such systems provide direct access
to the deeply bound states and allow very sensitive comparison of experiment
and QED theory. In bound electron g - factor calculations an important term
is Za, where oo &~ 1/137 is the fine-structure constant. The term comes closer
to unity with increasing nuclear charge and thus non - perturbative theoreti-
cal techniques should be employed in the calculations. So, high-precision g -
factor measurements provide an unique test for the theory and calculational
techniques, and can even give higher accuracy of several fundamental constants
(like m.), nuclear magnetic moment and radius.

The creation of ions for the above experiments is a separate field of research.
As one goes further up in ion production along the periodic table from the
lightest element, hydrogen, removing more and more electrons from the atom
needs higher energy and more complicated setups.

A possibility for the production of intense beams of highly charged ions
(HCI) is offered by large accelerator facilities, like GSI, where singly or mul-



2 Chapter 1. General Introduction

tiply charged ions can be accelerated up to few GeV/u and passed through a
stripper foil which removes electrons. A typical kinetic energy of ions for HCI
production at GSI is 400 MeV /u. The energy can be decreased in the Exper-
imental Storage Ring (ESR), after the stripping, down to a few MeV /u. For
some kinds of high-precision atomic physics experiments, like g - factor mea-
surements, the ions should have at most several keV /u kinetic energie. To
achieve such low velocities one should further decelerate the ions. That is done
in a unique facility called HITRAP [KIu05] which will be able in the future
to decelerate heavy highly charged ions like bare uranium down to 6 keV/u in
the amount of several 10° ions every 10 seconds. A description of the status
and the design of the HITRAP facility and an overview of the experimental
programme are given in the 2nd chapter. The HITRAP facility will be used
for ion-atom collision experiments at low velocities, which are the topic of the
3rd and 4th chapter and for precise measurements of the bound electron g -
factor in hydrogen-like ions (e.g.U'*, Pb81* Bi®*t ) of hyperfine transitions
and there lifetimes [Vog05|, [KIu07, |Qui0O8] and for mass measurements [Her(06].

The electron beam ion trap/source (EBIT/S) devices offer a possibility for
low- and medium-Z highly charged ion production. During this work intense
study of two different ion sources was done. The first source, MAXEBIS, was
a powerful device with superconducting magnet and 3 A - electron gun, the
second was a SPARCE EBIT with permanent magnets and 50 mA - electron
gun. Charge breeding in these sources was investigated and showed individual
peculiarities for each charge breeding apparatus. An overview on the EBIT/S
devices in total can be found in chapter 5. The design and parameters of two
studied ion sources and possibilities to increase the amount of ions in a certain
charge state for further applications are described in the 6th chapter,

Electron cyclotron resonance ion sources (ECRIS) offer another possibility
for ion production, one of such a devices was used in the ion - atom collision
experiment. A short overview on the basic principles of ECR ion sources is
given in the Hth chapter. Additionally two singly charged ion sources: a sputter
ion gun and a surface ion source used for this thesis are briefly mentioned in
the same chapter.

The easiest way of HCI production in the EBIS/T devices is to inject a
gas into the ionization chamber where the atoms are stripped via electron im-
pact ionization, this makes the number of elements to be produced in highly
charged states limited. To increase the number of available elements from these
devices one can inject externally singly charged ions, which can be captured
in the ionization region and further charge bred up to certain charge states.
Increasing the charge state is in principle also possible for rare isotopes which
can be further extracted and delivered to experimental setups or to a post ac-

'During the high-precision measurements themselves the ion energy is only a few meV,
which is achieved by electrostatic deceleration, electron or (and) resistive cooling.

2The EBIT is a part of the SPARC project (Stored Particles Atomic Physics Research
Collaboration).



celerator facility. Our successful charge breeding experiment with the SPARC
EBIT will provide the HITRAP project with numerous low Z HCI for mea-
surements. The possibilities and techniques of charge breeding are discussed
in the 7th chapter with experimental results and conclusions.

The main contributions of this work were done in the commissioning of the
HITRAP decelerator facility, preparation to the low energy HCI - atom colli-
sion experiments and installation of the electron beam ion trap for future off
- line measurements and testing of the low-energy section at HITRAP. Addi-
tionally in this thesis ion optical simulations for different optical elements and
setups dedicated to the HITRAP project are included. Results of simulations
are presented in several chapters.
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Chapter 2

HITRAP

2.1 Overview
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Figure 2.1: Overview of the GSI accelerator complex, which includes Ion sources,
UNILAC and SIS-18, where ions are produced, accelerated and stripped. FRag-
ment Separator (FRS) is used to select the radioactive isotopes produced in nuclear
reactions. In the Experimental Storage Ring (ESR) the first deceleration and cool-
ing takes place. Afterwards the beam is transported to the HITRAP facility.(GSI-
webpage)
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HITRAP is a facility for deceleration of HCI with M /q < 3. In the fol-
lowing one can find a description of the HITRAP project. In fig. 2.1] the GSI
accelerator complex is sketched. The ion production starts in the (CHORDIS,
MUCIS, MEVVA) setups which are huge arc discharge ion sources producing
different elements in singly or lowly charged states (up to U%T). The accelera-
tion starts (see Injector Group webpage) in the UNIversal Linear ACcelerator
(UNILAC). A high current injector (HSI) section consisting of a Radio Fre-
quency Quadropole (RFQ) and a couple of Interdigital H-type (IH) - structures
(see TH-structures section) are used for primary acceleration of ions to pass the
gas prestripper where they lose there electrons in collisions with a gas. After
the prestripping section, multiply charged ions (like U?**) are injected into a
4 - fold linear accelerator (Alvarez) on the exit of which they obtain a kinetic
energy of 11.4 MeV /u. Additionally to the HSI there is a highly charged ions
injector (HLI) which consists of an ECR ion source and RFQ - IH combination
to preaccelerate ions before injection into the Alvarez. After the 4-fold linear
accelerator ions at 11.4 MeV /u energy pass through a foil stripper where they
obtain higher charge states, the most abundant charge state for uranium ions
is 73+. After the UNILAC the HCI are sent to the heavy ion synchrotron
(SIS-18) which is a circular accelerator capable of increasing the ion’s kinetic
energies up to 1 GeV/u. After the SIS-18 the ions can impinge either on a tar-
get to be stripped further or on another target for production of rare isotopes.
For example in case of U™T at 400 MeV /u the 40ug/cm? copper target can
give a 30 % stripping efficiency in production of bare uranium [Dah04]. The
necessary charge species are selected and in case of rare isotope production the
FRagments Separator (FRS) is used.

Then the beam is transported to the first deceleration stage, i.e. the Exper-
imental Storage Ring (ESR). The ESR (see fig. 2.2]) is designed mostly for high
energies, thus the bending magnets and the RF-systems are not adjustable to
the required parameters and allow deceleration only down to 3 MeV /u, which
is already 2 orders of magnitude less in energy. Of course, the ion beam suffers
higher and higher losses when decreasing energy. The 4 MeV /u energy was
chosen to satisfy the low energy requirements and sufficient intensity of the
beam for injection into the HITRAP facility. The deceleration in the ESR
happens in two steps separated by a 5 s electron cooling at 30 MeV /u en-
ergy. The beam is also cooled right after the injection into the ESR for 10
s and before the extraction (time is dependent on the energy and emittance
optimization). To speed up the cooling process the electron cooling can be
exchanged (or applied in parallel) with stochastic cooling [Mar04]. The time
necessary to decelerate and cool the ion beam is presently around 40 s; after
that time a 1 us bunch of approximately 5-10° (for U?**) ions can be injected
into the HITRAP decelerator.

The full HITRAP facility is represented in fig. 2.3l The ion beam from
the ESR is transported first through a Double-Drift Buncher (DDB) where
the RF - cavities form short bunches of the beam before injection into the
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Figure 2.2: Experimental Storage Ring (ESR).

IH - structure. The IH - structure decelerates the ion beam from 4 MeV/u
down to 0.5 MeV/u. The next deceleration stage is performed in the Radio -
Frequency Quadrupole (RFQ) which slows the ions down to 6 keV/u. Table
2.1l summarizes the main parameters of the mentioned sections.

Table 2.1: Ion beam energies, transmissions and normalized emittances® e before
and after different sections of the HITRAP decelerator.

DDB | IH | RFQ
Entrance energy [MeV/u] | 4 4 0.5
Exit energy [MeV /u] 4 0.5 | 0.006
Normalized €,/ (yy
entrance [mm mrad] 0.2 |0.21] 0.34
Normalized €,/ (yy
exit [mm mrad] 021 | 0.3 | 0.36
Transmission [%] 98 | 70 | 85

As the HCI have big electron capture cross section at small velocities in
collisions with the residual gas molecules, the vacuum conditions should be
drastically improved after the RFQ to be less than 1071° mbar. This is done
in the Low Energy Beam Transport (LEBT) section, where electrostatic lenses

!The normalized emittance is the emittance multiplied by 87 [Gru03], where 3 and + are
the Lorentz factors.
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Figure 2.3: The HITRAP beam line include the ground floor with decelerator facility
itself and the first floor with experimental setups. The decelerator consists of several
sections, i.e. Double-Drift Buncher (DDB), Interdigital H-type linac (IH-structure),
Radio Frequency Quadropole (RFQ), Low Energy Beam Transport section (LEBT)
and Cooler Trap (see description in the text). After the Cooler Trap the ion beam
will be transported to the first floor via the vertical beam line and delivered towards
different experimental setups.

focus the beam through small diaphragms used for differential pumping. The
other task of the LEBT is to focus the beam into the magnetic field of the
Cooler Trap - a cryogenic Penning trap, where electron cooling down to 10
eV and resistive cooling down to 4 K are applied to improve the beam quality
after deceleration. From the Cooler Trap the ions are sent to the upper floor
towards the experimental setups.

The HITRAP facility will be also used to slow and cool down not only
highly charged ions, but also antiproton beams at the FAIR project (see the
insertion in fig. 2.1]). Thus the experiments with low - energy antiprotons will
be available, like antiproton g - factor measurements or antimatter (e.g. anti
- hydrogen) - matter collision research.

2.1.1 Double-Drift Buncher

The 1pus pulse from the ESR of HCI is too long for efficient deceleration in the
[H-structure (see next subsection) operating at high frequency with a period of
9.2 ns. To increase the efficiency, the ion pulse should be bunched correspond-
ingly to match the deceleration period. This is done with four- and two-gap
RF cavities in the DDB section (see fig. [Z4]) operating at 108.408 MHz and
216.816 MHz respectively [Bei03]. The four-gap buncher was chosen because
of it’s moderate need of RF power, only up to 2 kW. The second buncher
"helps” the first one to form rectangular ion beam pulses before injection into
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the TH-structure, with similar RF power below 2 kW.

2-gap RF

4-gap RF ;
cavity

cavity

Figure 2.4: Four- and two-gap RF cavities of the Double-Drift Buncher (DDB),
operating at 108.408 MHz and 216.816 MHz, respectively.

The DDB was installed in 2007. In the same year two beamtimes with
64Ni28+ and 2°Ne'%* ion beams were conducted to commission the bunchers. In
those experiments the beam transmission, the bunch length and the emittance
after the RF cavities have been measured. The transmission was obtained from
comparison of the ion beam currents on Faraday Cup (FCs) before and after
the DDF section. The current-to-voltage converter (CVC) was used to convert
and amplify the signal from the FC, the signal was afterwards monitored on
an oscilloscope fig. The transmission was measured to be 80% and thus
slightly less than expected. This was due to the lack of cooling in the ESR
and thus increased emittance in comparison with the designed value.

before DDB after DDB

Figure 2.5: Comparison of the ion current on FCs before and after the DDB section.
Signals on the oscilloscope.

!Along the beam line up to the RFQ several FCs and scintillator (Yttrium aluminium
garnet - YAG) screens were installed to allow current and beam profile measurements.
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Before the run the pepper-pot emittance meter [Zha96] was installed after
the DDB. The emittance was mostly the same with and without RF power, as
expected [Pfi09].

The bunch monitoring was performed with a couple of phase probes -
short electrodes on which the image current from the passing by ion beam
is induced, and additionally with a poly-crystalline diamond detector] [Koz08]
which showed nicely resolved time structure of the beam with expected 9.2
ns period (fig. [Z6]). Thus the DDB section was completely commissioned and
aproved to have the designed parameters, i.e. high transmission, independence
of emittance (for On and Off cases) and bunched beam. Later on, during next
runs, the emittance after the DDB was measured for the cooled beam from
the ESR using a multi-gradient-method (described in [Kes92], see Appendix C)
and was around 0.2 7 mm-mrad (normalized value) and even less, dependent
on the cooling in the ESR [Pfi09].

Phase probes

I
i
t
4
|

wert Horzfacq Irlg Display Cursor Meas Mask  Math “inyscope  Utitties Help
) 18 Acs

Poly-crystalline
diamond detector

Figure 2.6: Signals on the oscilloscope after the DDB from the phase probes and
poly-crystalline diamond detector.

'During this work two diamond detectors were used. The first was a poly-crystalline
diamond detector composed of aggregates of individual crystals and sensitive to intense ion
beams. The second was a single-crystal diamond detector which was sensitive to single ions.
Both detectors had 3 mm diameter of active area. The impinging ion creates electron-hole
pairs in the detector, which are separated under applied voltage and create a signal on the
end cap electrodes. Due to the high electron and hole mobilities in the bulk of the crystal
the response of the detectors is very fast.
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2.1.2 IH-structure

After the double-drift buncher the ions are decelerated from 4 MeV /u down to
0.5 MeV /u with the TH - structure. The decelerator (fig. 2.7) is essentially a
quarter-wave coaxial line. The 25 gaps between which the RF-field of 108.408
MHz frequency is applied are progressively decreasing along the beam-flight
direction. This is done to fit the neccessary RF phase to the decelerated beam
bunch appearence between the gaps. Between the first 15 gaps of the high
energy section and the 10 gaps of the low energy section a quadrupole triplet
is integrated to focus the transversely expanding beam. The IH - structure
can be operated up to 200 kW RF-power to apply 10.5 MV overall effective
voltage neccessary to decelerate the ions.

Figure 2.7: Interdigital H-type (IH) structure.

Several beamtimes were conducted to test the IH-structure. In order to
analyze the ion beam after the deceleration a single crystal diamond detector
(SCDD) was used, which produces from a single ion a signal that is propor-
tional to the ion’s energy. Additionally for the energy separation a magnetic
steerer (dipole) was installed after the ITH - structure in front of the SCDD.
To map the energy spread of the beam the detector was moved with a step
motor perpendicularly to the beam axis and to the magnetic field lines. Sig-
nals from ions close to the geometrical axis (4 MeV/u) and several mm off-axis
(0.5 MeV/u) have been monitored on the scope and can be seen in fig. 2.8
Signal widths were more or less the same and the main parameter to estimate
the ion energy was the amplitude. On the pictures from the scope one can
see a clear difference in amplitude for 4 MeV/u and 0.5 MeV /u ions. For the
settings used during the run in February 2009 the decelerated fraction of the
beam, obtained after the scan perpendicular to the axis, was only 12% from
the total 70% of the beam transported through the TH (measured with FCs).
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Figure 2.8: Signals from the single crystal diamond detector measured after the
magnetic steerer on-axis (high energy beam, 4 MeV/u) and off-axis (decelerated
beam, 0.5 MeV /u). Amplitude of the signal is proportional to the kinetic energy of
the impinging ion.

During the run in April 2009 the beam line settings were tested again. This
time the ion signal in the SCDD was still proportional to the energy, but due
to the defects in the crystal not to the signal’s amplitude anymore, thus one
had to integrate the areas under the peaks. Histogram of the areas is depicted
in fig. 2.9 though obtained with slightly damaged detector and less resolution,
the figure is close to the simulations performed for the IH-structure [Cle0g].
Estimated from the measurements deceleration efficiency thus is around 25%.

The emittance measurement for 0.5 MeV /u ion beam was difficult to per-
form, but the estimated from 3-gradient method normalized value was around
0.3 # mm-mrad [Pfi09]. A difficulty to measure the emittance comes from
the mixture of different energies after the IH and thus not clearly defined 0.5
MeV /u beam. The energy selection will be done in the future by a dipole
magnet, after the TH-structure.

The test of the IH showed expected transmission and emittance, the decel-
eration efficiency (25%) was less than expected, but still the settings are not
the best in the moment and efficiency of 70% is expected.

2.1.3 RFQ and LEBT section

The radio frequency quadrupole (RFQ) is the next deceleration stage from
0.5 MeV/u to 6 keV/u (fig. 210, left). The design and simulations for the
RFQ were the topics of the PhD thesis [Hof07]. Right before the RFQ a
Re-Buncher is installed, a 2-gap RF-cavity, to restore the bunched structure
of the beam. The RFQ itself is essentially a 4-rod structure with a specially
modulated profile along the beam direction. Two rods are schematically drawn
on fig. 210 right. The ion beam moving along the axis is radially confined
in the harmonic potential well created by high RF voltage (up to 77.5 kV)
with a frequency of 108.408 MHz. Longitudinally the beam is effected by the
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Figure 2.9: Analysis of the ion signal areas on the SCDD after the [H-structure.
The single peak (black histogram) corresponds to 4 MeV /u ion beam after the IH
with RF power switched off. The double peak structure (red histogram) is obtained
with RF power on. Two peaks are assumed to be from 2.5 MeV /u and 0.5 MeV /u
energy beams as it was predicted in simulations [Cle08].

non-perpendicular component of the electric field which decelerates the beam
the same way as in the [H-structure. The modulation along the axis changes
to fit the phase of the slowing down, bunched beam to the appropriate phase of
the RF voltage. After the quadrupole another 2-gap RF cavity (De-Buncher)
is mounted to decrease the energy spread of HCI, for better injection into the
Cooler Trap.

The ions after the RFQ are guided through the Low Energy Beam Trans-
port line equipped with 6 electrostatic Einzel lenses for focusing. Two lenses
in the very beginning and at the end of the LEBT are called LEBT adapters
and both have 4-sigmented electrodes for steering. Other four lenses are spe-
cially designed for high voltage (around -40 kV) to focus the ion beam through
the two diaphragms. As it was mentioned the diaphragms are neccessary for
differential pumping down to 107! mbar before the Cooler Trap.

The LEBT section is equipped with a couple of KVI diagnostics each con-
taining a FC and a special Multi-Channel Plate (MCP) - phosphor screen
combinatio, because the phosphor screen alone is not sensitive to the low
energy ions. The FC current measurements showed a good transmission of the
beam through the RFQ during the run in April 2009. The beam profile was
also seen on the MCP-phosphor screen combination as well as on a recently de-
signed [Pfi09] MCP-based pepper-pot emittance meter, temporally integrated

IMCP is essentially an ion beam amplifier producing and accelerating numerous electrons
along a small (diameter ~ pm) tube as soon as the ion hit the surface. The electrons pass
through the channel and hit the phosphor screen producing the light detected with a camera.
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Figure 2.10: Photo of the radio frequency quadrupole (left) and two rods of the
RFQ (right) to explain the main principle of the deceleration.

into the line. The beam time was the first RFQ test and thus it is too early
to speak about the emittance, energy distribution and overall decelerated to 6
keV /u ion beam transmission at the exit.

2.1.4 Cooler Trap and beam line to experiments

The ions after deceleration from 4 MeV /u down to 6 keV /u have a huge energy
distribution and thus cooling of the beam is required to decrease the ions phase
space distribution. For that purpose the beam is injected into the Cooler Trap
where the ions are trapped with magnetic and electric fields. Immediately after
confinement electron cooling [Zwi06] and afterwards resistive cooling [Mae08,
are applied. The Cooler Trap was a topic of two PhD thesises [Mae08|
Kos09]. Below a short overview of the device operation is given.

Figure 2.11: Technical drawing and photo of 25 stacked electrodes for the Cooler
Trap.

The apparatus essentially is a stack of 25 electrodes (fig. 2.11]) inserted
into a 6T superconducting magnet. The cooling cycle starts with the creation
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of 10% + 10'Y electrons by illumination of a photo-cathode with a laser. The
electrons at around 100 eV energy are guided from the cathode towards the trap
where they are confined radially in the magnetic field and longitudinally in the
electric field. Via synchrotron radiation the electrons are cooled down to the
environment temperature of 4K (<1meV energy) within 5 1. After the cooling
appropriate potential (few volts) is applied to the middle electrodes to create
nests (two or more) where the electrons are located during the ions injection.
When the ion bunch from the ESR arrives, potential on the first electrode
is lowered to allow for injection. As the ions are inside the Cooler Trap the
entrance potential is ramped up and the ions are confined in the trap. Via
Coulomb interaction with cold electrons the ions are cooled to 10 eV energy. At
this energy electrons and ions are separated to prevent recombination. Charge
exchange of the HCI with the residual gas in the Cooler trap is very low due to
the pressure < 10~ *mbar provided by the cryogenic surrounding. During the
second stage of the cooling a harmonic potential is created in the center of the
trap, in which the ions oscillate and dissipate their energy via image currents
induced in resistive circuit [Kos09]. Resistive cooling is limited by thermal
(Johnson — Nyquist) noise, thus the electronics is also kept in the cryogenic
environment. After the last cooling stage (1+-10 s) the ions are swept from the
Cooler Trap towards the vertical beam line.

The vertical beam line is dedicated to transport the HCI to different ex-
perimental setups and is under construction in the moment. At first the ions
are separated by charge state with a 90° dipole bending magnet. After a cou-
ple of diagnostics (FCs and MCP-phosphor screen combinations) and several
electrostatic optical elements (quadrupoles and Einzel lenses) the ion beam is
sent back (on the first floor) to the horizontal plane with an electrostatic kicker
bender.

The variety of the setups on the first floor starts with an EBIT which
is the topic of the 6th and 7th chapter. The ions from the EBIT will be
delivered via the vertical beam line to the Cooler Trap for commissioning of
the trap. Additionally the EBIT will be used as off-line ion source for different
experiments.

2.2 HITRAP experiments

2.2.1 g - factor measurements

The HITRAP facility will open an opportunity for the g - factor (g;) measure-
ments [KIu05] of the bound electron in ”simple”, single electron systems, like

IThe exponential decay of the temperature via synchrotron radiation is determined with
3.3
a time constant 7 = 37‘(’60% ~ 0.1s, where ¢q is the dielectric constant, m,. and e are the
electron mass and charge, respectively, ¢ - the speed of light and B is the magnetic field
strength.
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hydrogen-like uranium. As the theoretical quantum electrodynamics (QED)
contribution to the g - factor is increasing with higher Z, nucleus charge, the
experiments can provide a test for the QED itself, because the precision of the
measured g - factor is very high. The modern setups are able to reach an uncer-
tainty of 107 for hydrogen-like carbon [Hae00], hydrogen-like oxygen [Ver(4]
and hydrogen-like calcium |Qui03].

For future measurements a single ion will be captured in a g - factor trap
developed by a Mainz-GSI collaboration. The trap consists of stacked elec-
trodes and, as proper static potentials are applied, two harmonic potential
minima can be formed dividing the trap into two parts: the precision and
analysis sections. In the first section (precision trap) with a very homogeneous
magnetic field the cyclotron frequency w,. is determined from the induced im-
age current. In the second section (analysis trap) the electron’s Larmor (spin
precession) frequency wy, is obtained. In this section a quadratic inhomogene-
ity with a minimum of the magnetic field corresponding to the minimum of
the harmonic electrostatic potential is introduced. The Larmor frequency is
measured from the rate of spin flip transitions which are induced in the pre-
cision trap via microwave excitation. The rate is higher when the microwave
frequency is closer to the Larmor frequency. After the precision trap the ion is
transported to the analysis trap. The projection of the ion magnetic moment
on the z axis (u,) is different for electron spin up and spin down. This intro-
duces a difference in force proportional to the product p,(0B/0z) acting on
the ion in the analysis trap. The axial oscillation frequency in the combina-
tion of electric and magnetic fields is thus shifted for different spin directions,
indicating a spin flip transition. The frequencies are obtained from the Fourier
analysis of the induced image current. As soon as the frequencies wy and w,
are known, from equations:

q

=1p 2.1

We =y (2.1)
e

— B 2.2

wr, ngme ( )

where M and m, are the ion and the electron masses, respectively, q is the
ion charge and B the magnetic field strength, the g - factor (g,) of the bound
electron can be calculated:

. qMme Wy,

2.2.2 Mass measurements

Another kind of experiment will be ion mass measurements. The nuclear mass
is of high interest, since it provides information on the nuclear structure and
Q—Value of different processes. High precision mass measurements can also

IDifference in mass between the mother and daughter nuclei.
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provide knowledge on the total electron binding energies from the difference
between the different ion charge states.

Precise mass measurement can be obtained in Penning traps [Bla06] and
reach relative uncertainties as low as 6 M /M = 10~! [Her(O6], which means for
a heavy ion only few eVs. One of such devices is being built in Heidelbeg and
will be later used at the HITRAP facility.

The main idea of the mass measurement is to obtain the frequency of the
ion cyclotron motion (eq. 2.1]) in the Penning trap, where the ion is confined
longitudinally with an electrostatic harmonic potential and radially with a
magnetic field. The frequency can be measured directly in the trap, detecting
the image current induced by the ion in a special circuit [Bla06] and perform-
ing Fourier analysis, or using a time-of-flight technique [Gra80], applied for
example at SHIPTRAP at GSI [Blo06]. The TOF method implies the reso-
nant RF excitation of the ion motion in the trap and further extraction into
a region with a magnetic field gradient. When the RF excitation matches the
cyclotron frequency, the ion obtains a high orbital momentum and thus higher
accelerating force in the magnetic field gradient.

From eq. 2.1l one can see that the frequency and thus the precision of the
mass measurement are proportional to the charge of the ion, this fact makes
HCI the best candidates for precision mass measurements.

2.2.3 Laser spectroscopy

The hyperfine splitting (HFS) of a hydrogen-like ion in the 1s ground state
is in the first approximation proportional to Z3¢g;, i.e. nucleus charge and
g-factor. The splitting rapidly increases for heavier elements and enters the
visible region for Z>60 [Bei00]. As the magnetic dipole transition probabil-
ity also drastically increases for higher Z (as Z?), laser spectroscopy becomes
possible. For measurements the ions will be sent to the SPECTRAP setup,
which is essentially a cryogenic Penning trap with optical access for laser spec-
troscopy and fluorescence detection. There the ions will be cooled via resistive
cooling down to 4K temperature to reduce the Doppler shift and broadening.
To obtain the HF'S the laser parallel to the magnetic field will excite the tran-
sitions in the ion ensemble and the fluorescence signal will be measured in the
perpendicular direction. The precise measurement will provide information on
the nuclear magnetic moment and can be used to test QED.

Another setup is a g-factor trap, which is also a cryogenic Penning trap,
but will imply a laser-microwave double-resonance technique [Qui08]. The
technique is mainly a pump-probe method. By optical pumping one of a
Zeeman split HE'S level will be continuously excited and the fluorescence from
the decay will be measured. The ions will be irradiated additionally with a
microwave (probe) and, as soon as its frequency will fit the Zeeman splitting,
the fluorescence signal from the pumping laser will have a dip in the frequency
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dependence. The resonance will give the gp-factor of the ion. From equation:

OFR(F+ D)+ T+ D) I +1) m, F(F+1)+I(I+1)—J(J +1)
gr =97 9F(F + 1) ", 2F(F + 1)

(2.4)
with additional knowledge of the nuclear g-factor g; one can easily obtain
the electron g-factor g;. Thus the double-resonance technique is an alterna-
tive method for measuring the electron g-factor with high precision (around
1079 [Qui0g]).

In addition to the mentioned experiments, studies of the interaction of slow
HCI with solid surfaces will be performed. On insulating surfaces a ”Trampo-
line” effect is expected to be observed, when the upcoming ion charges up the
insulator via electron capture and is reflected back from the positively charged
surface by the Coulomb force. This will show that the neutralization process
on the insulator surface cannot be completed due to a lack of electrons pro-
vided within a sufficiently short response time. Also time-of-flight secondary
ion mass spectrometry will be used for studying irradiation effects in various
materials including fragmentation and modification of biological systems and
HClI-induced surface reactions.

An experiment of special interest is the study of the interaction of highly
charged ions with neutral atoms via multi-electron charge exchange. This
type of experiments will be covered in the next two chapters, dedicated to the
preparation to the ion - atom collision study.

Additionally we performed experiments on charge breeding in an EBIT.
This will be the topic of the 7th chapter.



Chapter 3

Theory of Ion - Atom collisions

3.1 Introduction

The HITRAP project will have the interaction of HCI as projectiles with atoms
targets as a field of research with special emphasis on multi-electron processes.
The project will provide a unique possibility for the investigation of charge
exchange between heavy highly charged ions, like U%*", and atoms at low
velocities. This possibility has not been available to experimentalists up to
Now.

The knowledge of reaction cross sections at low velocity is very important,
for example, for the physics of ion sources. The charge exchange of HCI with
the surrounding neutral atoms influences drastically the charge state distribu-
tion of ions produced by the source (see chapter 5).

In the variety of processes in ion - atom collisions one should have a clear
conception of the possible reaction channels, see fig. B.Il The capture from
the neutral atom can be from an outer or inner shell of the target. With
electron capture onto the projectile into a more deeply bound state energy
is released and can be transferred to the target. This may excite remaining
electrons to upper levels. The excitation can even finish in the continuum
of the target atom, which is the transfer ionization (TI) process. The TI
is essentially different from direct ionization which is also a possible process
due to the Coulomb force. Autoionization is a post-collisional process, when
relaxation of excited projectile or target states results in electron emission
(Auger electrons).

In this chapter basic ideas behind the processes and simple models which
allow qualitative as well as quantitative predictions, are treated. Often the
full quantum mechanical approach of electron charge exchange is extremely
complex due to the multi-particle character of the collision process and far
beyond the presented models, thus for highly charged ions and multi-electron
exchange the models offer a good tool for estimations and explanations of
experiments.

In the formulas of this chapter atomic units (a.u.) are used (see Appendix

19
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7
1>i@ 2)@

Transfer ionization (released energy in electron Autoionization (relaxation of an excited state of the
capture is transferred to an electron on the projectile after electron capture via Auger electron)
target)

Figure 3.1: Possible processes in ion - atom collisions. The projectile ion is depicted
in red, the target atom in blue, black dots represent electrons and empty circles
vacancies. Direct ionization (1) is an escape of the electron from the target due to
the Coulomb force between the influenced electron and the projectile ion. Electron
capture (2) is a charge transfer between the target and the projectile. With electron
capture onto the projectile into a more deeply bound state, released energy can be
transferred to the target and excite remaining electrons to the continuum, this is the
transfer ionization (TI) process (3). Autoionization (4) is a post-collisional process,
for example, when one of the two electrons captured onto the projectile relaxes into
a more deeply bound state via emission of another electron to the continuum.

A).

3.2 Perturbation theory

For calculations of different cross sections quite often a semiclassical approxi-
mation is used assuming a classical trajectory of the projectile ion. To validate
this assumption the de Broglie wavelength of the projectile A ~ ﬁ should be
less than the typical interaction radius which is around 1 aull and thus the
assumption is appropriate for energies above 10 eV /u. Another essential con-

1
'To be more precise the interaction radius is close to Z3 corresponding to the maximal
electron density of the target (from the Thomas - Fermi model of the atom [Lan89]) where
Zp is the charge of the target nucleus.
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dition for treating the ion motion classically is that in quantum the description
of the relative projectile-target motion the quantum number of the angular mo-
mentum [ is very large, i.e. [ >> 1. The angular momentum pbv = /I(l + 1),
where p is the reduced mass of the target atom and projectile ion and b the
impact parameter. The condition for [ is already valid at 10 eV /u as well, if
one takes into account that the interaction takes place at impact parameters
close to the Bohr radius, b ~ 1.

Perturbation theory, i.e. application of the first-order time dependent
non-relativistic perturbation, for the semi-classical approximation was devel-
oped [Ban85] and successfully used for small q/ng ! ratios, where ¢ and Z;f !
are the projectile’s ionic charge and the effective target nuclear charge felt by
the electron influenced in the collision, respectively. In case of a bare projectile
and K-shell capture, Z4 and Zp should be used, projectile and target nuclear
charges. Assuming a classical projectile motion, the probability amplitude for
an electron to be captured into the n'-shell (n - the main quantum number)
of the projectile ion from, e.g. the K-shell of the target, is given by [Ban85]:

+oo
an(+00) = —i/ <n|V(t)|K > exp(iw,kt)dt, (3.1)

o0

here the Coulomb perturbation is
Z, Za [ RO
Vt)=———+—=——= | ———d 3.2
N e A (52)

R(t) is the vector from the target nucleus to the projectile, r is the vector from
the target to the influenced electron, w,k is the energy difference between the
final and the initial states, and ¢ is the momentum. The transition amplitude
is expressible as

7 ‘
an(400) = 2'2—A2 / < n|e' ™| K > I(w,K,q)d’q, (3.3)
7T
where [(wyk, q) is the orbital Fourier integral

“+oo
Hwnre,q) = / ellonrt=aRiD] gy, (3.4)

[e.9]

In the case of a straight line trajectory of the ion which is a valid assumption
for estimations at high energies, this integral is

Isl<wnK7 CI) = Qﬂefiqb(s(wnK - QOU>7 (3-5)

where v is the projectile velocity. The longitudinal momentum transfer g
is thus fixed at

qo = Wnk /. (3.6)
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Substituting into [B.3] gives for the amplitude

2Z :
au(+00) =i < | Ko(€qo)e ™| K >, (3.7)

where K is the modified Bessel function and € is the distance between the
influenced electron and the projectile trajectory along the z axis.

The total capture probability for fixed impact parameter b is the sum over
all states:

= 3" Jau(+o0)? (3.8)

Taking into account ionization (capture into continuum) one should also
integrate in eq. 3.8 Finally, the total cross section is given as:

oK = QW/PK(b)bdb. (3.9)

The capture cross section [B.9] when calculated with hydrogen-like initial
and final states using equationsB.8 and B.7 [Ban85|, shows qualitatively similar
features with respect to the target ionization, e.g. a rise of the total K-shell
capture cross section with increasing projectile velocity v until the velocity is
comparable to the electron orbital velocity vg. Further increase of the kinetic
energy of the projectile leads to a decrease of the cross section.

To understand a collision one should always compare the projectile and
target electron orbital velocities. When the projectile velocity is larger, then it
is a high-velocity collision regime, when v is comparable or less than the target
electron velocity, then these are intermediate or low-velocity collision regimes,
respectively.

For target ionization, a similar behavior of the cross section was obtained
using another perturbative method, the plane-wave Born approximation (PWBA)
[Mon82) Lan&9, [Col68]. This approximation also shows that the cross section
of electron capture into the n'* - shell of the projectile should follow a n~=3
dependence at intermediate and high energies [New84].

3.3 lIon - atom interactions at different veloc-
ities

The electron capture cross section from the K - shell of the target atom (eq. [3.7)
strongly depends on the factor Z4 = ZUA ;K Thus the important parameters in
collision are the projectile ion Z 4 and the target atom Zp nuclear charge! as

well as projectile v and target electron vy orbital velocities. One can choose

IFor not bare projectile ion, instead of Z4, ion charge ¢ and in case of different electron
shell ionization (not the target’s K-shell) the effective charge seen by the influenced target
electron ng 7 should be used, respectively.
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Figure 3.2: The Madison-Merzbacher map for electron capture from the K shell of
the target (from ref. [Mad75]). The two axis are ratios of projectile to target charges
Z4/Zp and projectile to target electron orbital velocities v/vk. Above the thick
solid line electron motion about the projectile can be treated classically, and below
perturbative treatments are appropriate. In the central region neither perturbative
nor classical models work particularly well and the process is best described in terms
of eigenfunction expansion (molecular (MO) or atomic (AO) orbitals).

these values to mark regions of different theoretical approaches. The most com-
mon picture is the Madison-Merzbacher map (for the K shell capture) [Mad75],
see figure B2l The two axis are ratios of projectile to target charge and pro-
jectile to target electron orbital velocities. Above the thick, black, solid line
electron motion about the projectile can be treated classically, and below per-
turbative treatments is appropriate. To treat the electron motion classically
it is necessary that the Bohr parameter Z4 /v for the electron - ion interaction
should be larger than unity [Lan89, [Ban85|, or in terms of the parameters used
for the Madison-Merzbacher map Z4/Zp > v/vk. On the other hand, in the
classical treatment capture can only happen into a more deeply bound state
on the projectile and as we describe the K-electron, this means Z, > Zg.
So the conditions Z4/Zp > v/vk and Z4/Zp > 1 define the region of classi-
cal treatment. In the central region neither perturbative nor classical models
work particularly well and the process is best described by the close-coupling
methods, in terms of eigenfunction expansion (molecular (MO) or atomic (AO)
orbitals).
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3.3.1 High velocity

Projectile

Figure 3.3: Electron capture at high velocities (Thomas mechanism) happens via
double scattering of the electron first from the projectile and then from the target
nucleus to obtain enough momentum.

For high projectile velocity the electron on the target does not have enough
kinetic energy to follow the projectile, thus projectile and electron cannot
become bound in a single two-body interaction. Therefore the capture process
is essentially three-body in nature. In classical calculations of Thomas [Tho27]
the electron gains enough energy due to a double scattering. The electron
is scattered at first from the projectile and then from the target as shown
in fig. B3 In Thomas treatment the target - ion interaction is neglected
so only electron - target and electron - projectile interactions are taken into
account. This model predicted a so-called "Thomas peak’, when the projectile
is scattered only off the electron at an angle \/TEE—A = TSMLA [Ban85]. After
the first classical treatment, which showed qualitatively the physics of ion
- atom collisions, further quantum mechanical calculations were performed
using perturbative methods, which were successfully applied in this collision
regime [Sha79, [Bri&0, [Spr78] and show a v~ dependence of the capture cross

section on the projectile velocity.

3.3.2 Intermediate velocity

For lower projectile velocities the ion - atom interaction cannot be treated
by perturbative methods anymore and molecular treatment is preferable. At
intermediate velocities the collision is still not slow enough to employ an ex-
pansion in a few molecular orbits, and here the best way is to use a linear
combination of atomic orbits centered on each of the nuclei [Ban85].

The kinematics of the intermediate velocity collision is not of primary in-
fluence anymore on the distortion of the electron orbit which is necessary for
the transfer from one nucleus to the other. Most important is the tempo-
ral change of the Coulomb field created by both nuclei and the time pro-
vided by the collision velocity for this change to take place. Based on that,
Bohr and Lindhard (BL) developed a simple model which is represented here
from [Ban85, [Knu81]. For the electron to be captured from the n'* target shell,
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the attractive Coulomb force from the projectile ion at the closest approach
should be larger than the binding force from the target. The force equilibrium
condition gives a distance at which the capture happens, using the Bohr model:
2
v q
L= (3.10)
an R%el
here R,.; is the internuclear distance itself at which the electron is released,
v, = Zg/n and a, = n*/Zp are Bohr velocity and orbit, respectivel. Equa-
tion BI0 gives R,y = \/qa,/v? from which the geometric cross section can
be found:
an
o=Trq—. 3.11
T (3.11)
This capture cross section is independent of the collision velocity. On the
other hand, it is considered in the model that capture can happen only, if
in the projectile frame the electron potential energy is larger than its kinetic
energy

q L,
> —v°. 3.12
R 2" (3.12)
So the electron will be captured at distances less than R.q,, derived as:
q
Reap = 2; (3.13)

At small velocities, R,. determines the cross section. As the velocity of
the collision increases, R, becomes smaller than 2, and now determines the

geometric cross section weighted by the probability that the collision duration
Rcap Un

is long enough to take place. This probability in the model is the ratio = 2=
i.e. collision time to electron orbital time. Finally the cross section is:

Reap v Un G¢°
oc=mR? P T _gr =t

“Pr v a, a, v’

(3.14)

Change from R, to R, shows a sudden decrease of the cross section as
a function of projectile energy which was independent of the energy. The
model proved to be good for a description in the low and intermediate velocity
regions. On fig.[3.4lone can see cross sections calculated using the BL model for
collisions of different ions on hydrogen in depedence on the projectile kinetic
energy from [Knu81]. A good correspondence between different experiments
and the described model was found.

For ionization cross sections in the intermediate velocity collision regime
one can use Rutherford’s formula:
¢ de

do = 21— —
pv? €2’

(3.15)

1One can use n = 1 and instead of the target nuclear charge Zp - effective charge ng f
felt by the influenced electron.
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Figure 3.4: The capture cross sections for various ions colliding with atomic hydrogen
in comparison with the BL model calculations (solid line), from ref. [Knu81]. Here
amu = u.

which describes the cross section as a function of energy loss € of the projectile
scattered on the target, p is the reduced mass of the colliding particles and
€ can take values from zero up to €4, = 2u21}/mt, with the m; mass of the
target. Choosing a bound electron as a target (m; = 1) with the assumption
that neither the electron nor the projectile interact with the target nucleus,
i.e. in a free electron approximation, one can get ionization cross sections by
integrating equation from the ionization energy I necessary to release the

influenced electron up to the maximum energy loss. The result is as follows:
2
g, 1 1
=(=-—). 3.16
(57~ 12 (3.16)

This cross section has a maximum at v = v/I. On fig. B one can see
ionization cross sections for different projectile charge states colliding on Mg-
target for the proposed experiment at HITRAP.

3.3.3 Low velocity

In case of low projectile velocity one can already apply the Bohr - Lindhard
model to get the capture cross section or use similar but not identical classical
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Figure 3.5: Cross sections for outer shell single-electron ionization in collisions of
projectiles of charges 2+ to 14+ with Mg atoms in dependence on the projectile
energy. The cross sections were calculated using Rutherford’s formula [3.16]

over barrier model which is the topic of the next subsection. For the low
velocity regime an expansion in a few molecular orbits can be employed. In
the simplest case a two level system can be used, i.e. electron on the target
and electron on the projectile. In the collision the ion - atom interaction force
at a large distance between the target and the projectile is slightly attractive
due to the polarization of the target. As the projectile approaches closer, the
repulsion between the nuclei starts when the overlap of electron clouds occurs.
For ion - ion interaction the repulsive force acts at all distances between the
interacting heavy particles. One can see the potential curves of the ion - ion
and ion - atom interactions in fig. 3.0l

They have a cross-over point at Rc which is the distance where the electron
capture takes place. As the wave function of the system in the vicinity of
the cross-over point can be taken as a superposition of two molecular states
(electron on the target and on the projectile) [Lan89], the energetic terms are
expressed as: Ujo = (Hyy + Hy)/2 £ 1/2\/(H11 — Hy)? + A% where A =
2Hy = 2V, Hi1 90 =< V1|Hy + V|Uy >. Here H;; are Hamiltonian matrix
elements, V' and H are the perturbation, which causes the transition and the
"non-perturbed” part of the Hamiltonian, respectively.

In the Landau - Zener (LZ) model of electron capture, which deals with a
potential curve crossing in ion - atom interaction, two parameters are used: 1.
Hi1—Hsy, = A(R—R¢), where R is the internuclear distance, and 2. A = const.
According to the model [Lan89, [Kno(O6] an electron transition from one state
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Figure 3.6: Schematic diagram of the potential curves for the electron capture reac-
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to another, which happens at the distance of cross—ove, is defined as:

(4)* |
2UR(b)(F2 — Fl) ’

P(b) = exp[—m (3.17)

where F,— F} is the difference in slopes of two potential curves, i.e. %(U 1—
Us)|r=pe, VR (b) is the relative (radial) ion - atom velocity which depends on
the impact parameter b. At the distance Reo: vgr. = vo((1 — U1 (Re)/E)(1 —
b?/R%))Y2, where vy and E are projectile initial velocity and kinetic energy,
respectively. Assuming a pure Coulomb curve for the outgoing channel and a
constant curve for the incoming channel (fig. B:6l) one can approximate F, —
F = %, with ¢ the projectile charge. The coupling element H,5 calculated
for ion - hydrogen collision experiments [Ols76] was found to be:

Hyy =9.13/\/qexp|—1.324aRc / /4], (3.18)

where o = /21, is an introduced parameter to extend the H;, value to any
target different from hydrogen, with [; the first ionization potential of the
target. Since the projectile ion passes the cross-over point twice in the collision,
the total probability of electron capture (p) is a sum of 1 — 2 — 2 and
1 — 1 — 2 scenarios (1, 2 depict the electron levels and arrows transitions
between them), thus: p = 2P(P —1). The cross section can be calculated using
formulas and B.17 For highly charged projectiles of course the capture is
essentially a multi-channel process, so the number of curve crossings is higher
and more scenarios should be included [Sal76]. In equation [B.IT probability

ITo be correct cross-over is a pseudo-cross-over due to the splitting of the levels.
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should be then denoted by indices n and [ and the Taulbjerg factor [Tau86]

(—1)™H=1(20 + 1)'/2I(n)

It = T+ 1+ D — D)172

(3.19)

is included in the coupling matrix element [B.I8, where n and [ are quantum
numbers of the state into which the electron is captured.

For some special potential curves beside the LZ model two other models
were developed [Kar06|, the Demkov and Nikitin models. The first one in
comparison to LZ is essentially a three - parameter model with Hy; — Hyy =
const and A = Be ! The Demkov model was developed [OIs72] primarily
for collisions of singly charged ions with atoms and found good agreement
with experimental data on alkali-ion - alkali-atom collision systems [Per71].
In the Demkov model the electron is captured not at the cross-over point
(which does not happen at all), but at the distance where the coupling matrix
element, responsible for the transition, is comparable with the spacing between
the energy. The Nikitin model is a combination of Landa-Zener and Demkov
models with parameters for the potential curves Hy; — Hoy = € — BcosQe
and A = BsinOe M an example of application of this model is described
in [Nik89].

3.4 Classical over-barrier model

The classical over-barrier-model (CBM) is not a real classical treatment of the
collision, which deals with classical Hamiltonian of the system, but is a de-
scription of the ion - atom interaction using simple ideas. It is a model which
can predict cross sections for single as well as for multiple electron capture.
Since multi-electron treatment of the collision is a real challenge for theoret-
ical calculations, especially for highly charged ions, this self-consistent model
(without parameters to enter from experiment) is a valuable tool to under-
stand the qualitative as well as quantitative physical picture of the collision.
As the capture cross sections appeared to be independent of the projectile
energy in the low-velocity collision regime (see fig. B.4), this can approve ap-
plication of static models like CBM. Here it is presented shortly in the form
given in [Nie86]. For a detailed description I refer to [Kno06, [Bla07].

While even the capture of a single electron by the projectile can happen
from different electron levels of the target, an array j of 0 and 1 is introduced
distinguishing a scenario of electron capture with ”0” showing that the electron
is remained on the target and 1”7 that it is captured by the projectile. For
example, j={0,1,1,0,0,0} means that the first (the most loosely bound) electron
is left on the target and the next two electrons are captured in the collision
with the projectile of charge 6+.

With projectile ion approaching, which is assumed in the model to have a
straight line trajectory, electrons of the target start one by one to move into
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the potential well created by both nuclei. The motion around both nuclei for
the it electron of the target happens at distance R;, when the initial electron
level I;, Stark-shifted in the Coulomb potential of the ion, is above the top of
the potential barrier separating the target electron from the projectile. As the
distance between the nuclei decreases, the next distance R;,; is reached and
so on. On the "way out” the projectile passes the same points in reverse order.
The geometrical capture cross section of the i - th electron is then determined
through the ring shaped area: m(R? — R? ;) weighted with a probability factor
W taken as a ratio of degeneracy of quantum state on the projectile, into which
the capture happens, to the total number of available states (degeneracies of
the states on the projectile and on the target). Degeneracy is assumed to be
proportional to the square of the main quantum number, in hydrogenic ap-
proximation. To get the final cross section for the j - th scenario one combines
all the geometrical cross sections with weighting factors of capture W and re-
capture 1 — W back to the target. The final Stark-shifted electron energy on
the "way out” is different from the Stark-shifted levels on the "way in” due
to the charge redistribution in the ion - atom system. The difference between
the initial electron binding energies on the target and the final energies on the
projectile and target gives the Q - value of the process (see next chapter).

Also the model introduces possible Q) - values in the collision, dependent on
the velocity regime, a so-called reaction window. It is based on the uncertainty
principle and shows the energy range of projectile states into which the capture
is possible (see for example fig. B.7). Of course the reaction window has a
physical meaning only if there are real available electron levels.

string j ‘ Q-value [eV] ‘ 6 [cm?] 00354 ' ' I I -
single capture £ 0.030. 1
{1.0,0,0..0} |6.32 1261013 S o025 1
{0,1,0,0...0} |35.97 7.86:1017 % 0.020] .
(0.0.10..0) | 4417 69210t | T 0] ]
double capture % T ]
{1,1,0,0...0} 40.34 9.54-10°10 = 0.005 ]
{1,0,1,0...0} | 48.54 8.40-1017 0.000] .
{0,1,1,0...0} 69.36 9251017 T T T j ) X
0 -20 -40 -60 -80 -100

Q - value, eV

Figure 3.7: Calculated cross sections for AT + Na — A0=9+ 4 Ngit reactions
using the CBM model and a reaction window for j={0,1,1,0..0} scenario.

For the case of single-electron capture one can use a simple formula from
the model to determine the one-electron capture cross section:

2\/‘_]—H)?, (3.20)

Oq,q-1 = ( I,
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where [ is the initial binding energy of the uppermost electron on the target.
This simple formula can be applied, for example, to estimate the vacuum
pressure necessary to have small losses of the highly charged ion beam in the
low energy part of the HITRAP facility [Hei06]. Applying the full power of
the method one can calculate cross sections for different scenarios. On fig. B.7]
the capture cross sections are given for interaction of highly charged ions with
the alkali atom .

Table 3.1: Calculated cross sections for A+ 4+ Mg — A02=D+ L Mgt (left part
of the table) and A'>* + Rb — AU2=0+ 4 Rbi+ (right part of the table) reactions
using CBM model for different scenarios j.

string j Q-value | o[cm?] string j Q-value | olcm?]

[eV] [eV]

single electron capture

{1,0,0,0,0...0} | 10.60 |3.1-10~* [ {1,0,0,0,0..0} | 579 [22-10°5

{0,1,0,0,0..0} | 14.86 |20-10 % | {0,1,0,0,0..0} | 2429 |15-10 1

{0,0,1,0,0..0} | 5240 |3.3-10 % | {0,0,1,0,0..0} | 2856 |1.2-10

{0,0,0,1,0.0F | 6159 |33-107 | {0,0,0,1,0..0} | 3243 |15-10

double electron capture

{1,1,0,0,0...0} | 2258 |3.4-107" | {1,1,0,0,0...0} | 28.51 |2.5-1071°

{1,0,1,0,0..0f | 60.14 |55-10°7 | {1,0,1,0,0..0} | 3277 |2.0-10" 1

{1,00,1,0.0F | 6931 |57-10- | {1,0,0,1,0..0} | 36.64 |2.6-10"1"

{0,1,1,0,0.0F | 6335 |6.1-10 7 | {0,1,1,0,0..0} | 46.61 |22-10 1

triple electron capture

{1,1,1,0,0..0} | 6896 |45-10 ' [ {1,1,1,0,0..0} | 49.67 | 16105

{1,1,0,1,0..0F | 7813 [4.7-1077 | {1,1,0,1,0..0} | 53.54 | 2.1-10"10

{1,0,1,1,0.0F | 106.05 | 4.9-10 7 | {1,0,1,1,0..0} | 56.75 | 2.3-10 10

{0,1,1,1,0..0 | 10836 | 5.3-10 7 | {0,1,1,1,0..0} | 66.68 | 2.4-10 0

One can see a common behavior of the capture cross section in this case, i.e.
a steep decrease going from the first to the second electron capture scenarios,
also a big difference between single and multiple electron capture cross sections.
All these dependences are easily explained with a big difference in ionization
energies of the first and the second electron and thus much smaller distance
of the projectile - target approach necessary for the second electron to be
captured. For the future experiments there are also some results included for
Rb and Mg targets, tab. B.Jl The modern techniques are able to distinguish
different scenarios of the interaction and thus get not only total single, double
etc. capture cross sections through the charge analyses, but the differential
contributions as well. One should mention that in comparison to an alkali
atom, which has a single valance electron, the Mg target, which belongs to the
2" group of the periodic table, has two valence electrons and according to the
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model the double-electron capture has even higher probability than the single
one. Going further from the 2"¢ group of the periodic table will show that the
double, triple... (according to the group of the target) outer - shell electron
capture cross sections are at least of the same order as single-electron capture.
Thus the model approves that the HCI - atom interaction has multiple electron
charge exchange as dominant processes.

3.5 Statistical interpretation of transfer ion-
ization

As it was mentioned for the interaction of Mg with highly charged ions, the
double-electron capture cross section is nearly the same as the single one. But
as the valence electrons capture will be into high-n Rydberg states of the
projectile ion (according to the CBM model), it is most probable that one of
the electrons will be emitted leading to the relaxation of another, a so-called
autoionization which is a post-collisional process.

If the collision is slow enough a capture into the ground projectile ion state
can happen leading to the release of energy sufficient for additional ionization
of the target, a so-called transfer ionization. In this section a statistical in-
terpretation of the TI named ”statistical model” is shortly described. It was
developed in the 1950ties to calculate multiple-ionization probabilities for tar-
get ions produced in slow single- or multi-electron capture [Rusb8| [Rus63]. The
short description will mostly follow the model representation given in [Mue83].
This model in principle is also suitable for future HITRAP collision experi-
ments and can give a qualitative picture of charge exchange.

In the collision process A" + B — AR+ 4 BH 4 (7 — k)e, (i — k) free
electrons escape from the target due to the energy release, which happens with
capture of k electrons. This energy release can have a maximum value of

—1
AE = qz A A (3.21)

k—1
j=q—k J=0

where Iﬁf and I? are ionization energies of the projectile and target ions
respectively. The energy release is assumed in the model to be distributed in
infinitely small units among the remaining N — k outer shell electrons of the
target (where N is the number of the outer shell electrons). The n =i — k
electrons are "evaporated” from the target if each of them obtains more energy
than the average ionization value < I >.

n—1
1 (+h)+
<Ip>=— E I 3.22
B n g B ( )

This step function is approximated by a smooth curve to ”obtain a physically
more meaningful shape and allow further computation” [Mue83]. The proba-
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bility that n electrons gain enough energy to overcome the < Iz > and leave
the target, is given by:

! .
PA(N.AB) = () 3 (1Y) (1 - %)N-l (3.23)

J

with [ = Int[AE/ < Ig > —n|, where Int indicates the integer part
of the value inside the square brackets, (3) is the binomial coefficient. Via
equation [3.23] one can get different fractions of target ion charge states. On
fig. B8 there are calculated target charge state distributions (from eq. B.23)
for Arit + Rb — Arl=D+ 4 Ry(I+M+ 4 pe collisions as an example, for the
proposed experiment at HITRAP. The vertical lines indicate the positions of
the maximal released energies for different projectile (Ar) charge states from
formula B.21l Crossings of the calculated curves with vertical lines predict the
fractions of (14n)+ target ions in the experiment. As it is seen all dependences
have thresholds. While the energy release is below the ionization energy of the
second target electron, only capture without TI exists. As the released energy
reaches the ionization energy it becomes more and more probable that the
second electron will be ”evaporated” as well, then with reaching the ionization
energy of the third electron another channel for energy release is opened and
so on. The recent experiments on multiple electron charge exchange [Ma99,
Cai03] were qualitatively well described by the statistical model, but with a
deviation in absolute values, probably because the capture into the ground
state of the projectile is not the best assumption. To include capture with
"real” energy release one can use a combination of the classical-over-barrier
and the statistical models with the Q-value (AFE) taken from the CBM.

In conclusion to this chapter I would like to remind that though the CBM
and statistical models are definitely not the best for various cross section cal-
culations, they are still useful tools for different estimations in slow HCI - atom
collisions. For very high charge states of the projectile and high nuclear charge
of the target these models are quite reasonable and representative.

Of course, one should mention classical trajectory Monte Carlo [OIs77,
Sal77, [Hor94] and basis generator [Kno06l Lue96, [Kro99] methods, nicely de-
scribed in the referenced papers. These methodes are also extensively used for
single and multiple electron charge exchange.
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Figure 3.8: Calculated, using the statistical model, fractions of Rb ions in Ard™ +
Rb — Ar(a=D+ L Rp(+m)+ L e collisions in dependence on the energy transferred via
electron capture. Crossings with a vertical line predict the fractions for experiment,
when the Rb valence electron capture happens into the ground state of the projectile
ion of charge state q.



Chapter 4

Ion - Atom collision experiment

4.1 Ion - atom collision kinematics

In this chapter a description of ion - atom interaction experiments is given with
special emphasis on a magneto-optical trap (MOT) setup with its possibilities
and advantages. To investigate ion - atom collisions one should start with
the energy and momentum conservation principles to describe the kinematics
of the reaction products (in this chapter atomic units are used). The charge
exchange reaction is A9+ B — AW=9+ 4 BU+)+ 1 e where s is the number of
electrons captured by the projectile and r is the number of electrons emitted
from the target into the continuum. In the MOT experiments the target
atoms are cooled to extremely low temperatures in the pK range and for
some setups even in the nK range. In comparison with the room temperature
atoms (not talking about the projectile ions) the target atoms are assumed to
be initially at res, thus the projectile momentum is the initial momentum of
the total system and its change is distributed between the collision products.
The conservation principle for the longitudinal momentum is written as:

il _ pfl } : I
Pproj - Pproj + P?"Hec + Pe,l (41)
=0

with Py, Prec, Pey projectile, recoil ion (target) and electron momenta, re-
spectively, indices ¢ and f denote initial and final value (before and after the
collision). Energy conservation in the non-relativistic regime of collision leads
to the equation:

Moo V2 - Myl e smvl2 !
projZproj _ [Tproi Tproj _ 2T¢proj _ pres _ps L NT B (4.2)
— “target proj el .
2 2 > -

where m,,,; is the mass of the projectile ion A", vy, is the projectile velocity,

E. ; are electron kinetic energies, Bt’;;zet and By, . are the total binding energy

'For other experiments (like with a gas jet) at least two velocity components of the target
atom are assumed to be negligibly small.

35
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of s + r electrons removed from the target and the binding energy of s elec-
trons captured in the collision onto the projectile, respectively. Here these are
absolute values, so for more deeply bound electrons the corresponding binding
energies B are bigger. It is necessary to mention that the only assumption
which was made to get eq. is the smallness of projectile velocity change
(in other words small scattering angle of the projectile). Also it should be
mentioned that the binding energy Bj.,,; is in general not the ground state
energy but the one right after the collision, thus it can relax into the ground
state of the projectile through photon or electron emission. The change of the
projectile kinetic energy and momentum is:

Aoyt

2

AEproj -

+ mpmjvémjAvpmj (4.3)

(4.4)

A-Pproj = mp’/‘ojAvproj + A"in’OjU;i)'roj
here the electron mass is assumed to be much smaller than the atom mass
(me << Myrej) and the change of the projectile velocity is small, i.e. Avy,.,; <<
Uproj- The change of the projectile mass is due to the s captured electrons and
thus Am = me.s. From equations and one gets the Q-value of the

reactio

- AEPTOJ = BZ(;;";et o B;T‘Oj + Z E€7l = Q7 (45)
1=0

which is directly linked to the deceleration or acceleration of the projectile

ion. For the recoil target ion one can get the recoil momentum from equations

(AT A2 A3 A4]), which is:

BT;;"Se _Bsro' SMeVproj d Ee
pl, = ot —pro  Zle ol N (el pll, (4.6)

rec
Uproj 2 =7 Uproj

As mentioned, only longitudinal projections of the momenta are described
in the above equations. For the transverse momentum one should use a
conservation principle in the form P;tj + P+, Pe%l = 0. The trans-
verse momentum for fixed impact parameter can be estimated for example
from the classical-over-barrier model (CBM) by integrating the Coulomb re-
pulsion force in the form (q - 7)/R? over time, here ¢ and i are the charge
states of the projectile and the target, respectively. The integration is per-
formed over the projectile path under the assumption of constant projectile
velocity and linear trajectory. The path is divided into several intervals each
[Ri\/1— (b/R;)?> — Riy1y/1 — (b/R;11)?] units long and correspondent to the
R; (see chapter 3), which is the position of the projectile during the " elec-
tron capture. Along each of these intervals, the target’s charge is equal to
the index ¢ from the model (i electrons are shared between the target and the

r+s Bs

n literature the Q-value is usually given as Q = Bigrget — Bproj-



4.2. Experimental methods 37

projectile). For details I refer to ref. [Bla07] where calculations of transverse

momentum distribution were done for collisions of Ar'?* and U ions with

rubidium atoms proposed for future HITRAP experiments. Coming back to

the equations above one should mention that for pure electron capture with

no electrons emitted into the continuum, the Q-value is simply the sum of the

total binding energies and equation transforms into:
[ — Q N SMeVproj _ —APH

rec proj*
Uproj 2

(4.7)

Thus the longitudinal momentum of the recoil ion as well as the change of
the projectile momentum depend only on the Q-value, the projectile velocity
and the number of transferred electrons. This is the case in the small velocity
collision regime, when the capture dominates the direct ionization .

4.2 Experimental methods

One can find out different methods suitable for electron capture investigation
considering equation A7 For a full picture of the collision one can study the
momentum and charge state of the recoil ion, the energy gain and charge state
of the projectile or X-rays and photons emission to gain information on the
energy states of the electrons captured on the projectile.

The charge transfer during the HCI - atom interaction in general takes
place into an excited state of the projectile. Thus during or after the collisionfl]
photons and X-rays are emitted indicating that the electrons were captured
into particular projectile state. Relaxation of the excited state via radiation
can be a step-like proccess with the total difference between the excited and
ground state equal to the sum of the emitted photon energies. Obtaining all
the spectral lines in the collision is an issue for photon emission spectroscopy
(PES). Unfortunately, the total emission spectrum is not usually enough to get
the Q-value of the collision, because of the often Auger electrons emitted in TT
or autoionization processes. A big advantage of the PES is that it can be used
in coincidence technique parallel to other methods. This will give differential
cross sections for some special cases of electron capture and for example can
distinguish different j scenarios for classical-over-barrier model.

Another method of investigation is translation energy spectroscopy (TES)
which investigates the kinetic energy distribution of the projectile in a selected
charge state after the collision. As shown above the projectile kinetic energy
changes with electron capture. Kinetic energy can be gained if the capture

'Normally the collision time (of the ions, for example, from an ion source) is of the order
of a fs, this means that it can be less or more than the excited state relaxation time which
can be from several ns to a few as dependent on the charge state of the HCI colliding on the
target. For the recombination one can get the relaxation time from uncertainty principle
7 =1/T, where 7 is a lifetime and T is an electron level width, which increases with increase
of the projectile charge state [Kos71].
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happens into an electronic state of the projectile more deeply bound than the
initial state on the target or when the capture is into a slightly less bound state

with the condition @) < %, other cases lead to kinetic energy loss. Experi-
mentally projectile gain spectra can be obtained with electrostatic deflectors,
like spherical spectrometer [Lak92] built by the author. As the electrostatic
rigidity is proportional to the kinetic energy of the ion, a potential on the
deflector will cause energy dependent angles of deflection. The same influence
on the ion trajectories is from the dipole magnet because magnetic regidity
is proportional to the momentum of the ion. Thus using position sensitive
detector or changing the magnetic field of the dipole or the potential on the
deflector can provide energy gain spectra. Additional possibility is to use TOF
technique.
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Figure 4.1: Geometries for recoil ion momentum investigation using (a) gas jet and
(b) MOT cloud.

The recoil ion momentum study is an issue for the recoil - ion momentum
spectroscopy (RIMS)(see for example [UII97]). It is a novel technique which
allows to get target ion momentum distribution with high resolution. For this
purpose the position of the target should be initially known and small kinetic
energy (temperature before the collision) should be achieved. As an example a
gas jet (see e.g. [Sch97]) can be used (fig. dIla). From a reservoir a relatively
pressurized gas flows through a small nozzle into high vacuum chamber, the
gas jet which is formed has a small diameter and small transversal temperature
(around 0.1 mK). The flow moves towards a position sensitive ion detector.
Crossing the projectile ion beam the electron charge exchange happens and
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recoil ions produce a 2D pattern on the detector. Another possibility is to
use magneto - optical trap (MOT) (see next section) to get small cold atomic
cloud. The basic idea in this case (fig. EIlb) is to apply an external force
that extracts the recoil ions perpendicular to the projectile beam direction
towards the 2D position sensitive detector. Knowing precisely the initial (zero)
position of the target atom in the detector’s plane one can get the momentum
transferred to the target ion. The recoil ion will hit the detector at a distance
Z (along the beam axis)= %, where t is the time of flight towards the
detector dependent on the extraction force. As an extraction force usually a
homogeneous electric field is applied to exclude non-linearities.

One of such RIMS with resistive electrodes from Heidelberg is shown on
fig. A2 left for which a simulation using SIMION 7.0 was done in order to
estimate the resolution. The studied RIMS will be suitable for future collision
experiments of HCI with neutral Rb atoms in the MOT proposed for the HI-
TRAP project. On fig. 2], right one can see the trajectories of Rb** ions with
the maximum transverse momentum transferred to the recoils by 10 keV/u
projectiles in the collision Ar'** + Rb — Ar'®* 4+ Rb?>*. All ions with up to
the maximum 60 a.u. of momentum, calculated in [Bla07], will hit the 2D
detector when 300 V bias voltage is applied to the electrodes. The extraction
voltage can be increased up to 1 kV to increase the acceptance of the RIMS
for heavier highly charged projectiles which transfer higher momentum.
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Figure 4.2: Heidelberg RIMS and it’s simulation using SIMION 7.0, left. The tra-
jectories of Rb*t ions on the potential surface with 60 a.u. maximum transferred
transverse momentum (blue lines) in the collision Ar'2* 4+ Rb — Ar'9* + Rb?>* when
the projectile ion has 10 keV /u kinetic energy, right.

Of course more information on the reaction products after the collision
will cover better different charge exchange processes. Modern devices can in-
clude projectile analyzer in combination with a special recoil ion momentum
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spectrometer (called "reaction microscope”) [UII97]. In this spectrometer ex-
tracting electric field acts not only on the recoils but also on the electrons
emitted in the collision which are extracted in the opposite (to the ions) di-
rection towards another position sensitive detector. Reaction microscope can
be also equipped with a photon or an X-ray detector(s) expanding further
investigation possibilities |[GSI-webpage, [deJ04].

4.3 MOTRIMS setup at KVI

As it was mentioned the HITRAP ion - atom collision experiments will deal
with heavy highly charged projectiles and Rb - MOT target or a gas jet target,
thus meaning mostly a multiple electron charge exchange investigations. The
experiment with Ar'?* from the off-line ion source as a projectile colliding
on a Mg jet target will be concentrated mainly on a double electron charge
exchange. Single electron capture and ionization were performed already by
us at KVI with light 3 He?" projectile ions (alpha-particles) from an ECR ion
source interacting with a sodium atomic cloud in the MOT'. The recoil ions were
analyzed with a RIM spectrometer. This combination of the MOT - target
and RIMS is known as the MOTRIMS - technique. The main purpose of the
study was to obtain ionization cross sections in dependence on the projectile ion
velocity and to get acquainted with MOTRIMS setup possibilities for upcoming
experiments at HITRAP. In this section a short description of the KVI setup
is made, for detailed overview see [Kno06, [Has06].

The ions produced in the ECR ion source (see chapter 5) were separated
after extraction via a 110° bending magnet and delivered towards the MOT
through a beam line consisting of several quadrupole triplets. Right before the
reaction chamber the ions passed through four diaphragms to form parallel and
well-defined continuous beam. After the reaction chamber the projectile ions
were collected on a FC to check the stability of the beam from the source (= 10
nA ion beam). As it was mentioned the ions used for experiment were isotopes
of helium (*He) initially injected into the ionization chamber of the ion source
as a gas from a bottle. The potential of the ionization chamber could be set up
to 26 kV (though we went only up to 21 kV because of the sparks in the source).
As a target neutral sodium atoms were used, produced via evaporation from
the oven. To get more atoms into the MOT a laser beam, red-detuned from
the resonance transition frequency (see below) was directed towards the oven.
Due to the Doppler shift hotter atoms had transition frequencies closer to
the laser frequency and thus absorbed the light more rapidly and thus bigger

momentum . Decelerated in such a way atoms were easier to catch in the

!The light absorbed by the atom kicks it backwards. Afterwards the excitation is relaxed
via re-emission of the photon in a random direction thus after many cycles of absorption -
de-excitation the average momentum transferred to the atom is only in the light propagation
direction.
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MOT.

4.3.1 MOT

The first principles of magneto - optical trapping appeared in the early 70th
and offered a unique possibility to produce very cold neutral atomic cloud [Phi98|
Dal75]. The resulting progress of further development was a creation of the
Bose - Einstein condensate (in 1995, by Eric Cornell and Carl Wieman at the
University of Colorado at Boulder NIST-JILA lab).

Figure 4.3: Magneto-optical trap (MOT) is created with three perpendicular pairs
of counter propagating circularly polarized laser beams, intersecting in the zero
magnetic field point provided by anti-Helmholtz coils.

The MOT at KVI is created (fig. £3) in the middle between two anti-
Helmholz coils. Currents in these coils are counter propagating thus providing
a zero magnetic field in the center and increasing in all directions. Atoms which
are away from the zero B - field point are influence by the gradient of magnetic
field (=30 Ga/cm). Three perpendicular pairs of counter propogating circu-
larly polarized laser beams are intersecting in the zero field point. The laser
beams are red-detuned from the "main transition frequency” thus the sodium
atoms moving with higher velocity against the laser beam have the Doppler
shifted transition energy closer to the laser photon energy. That means that
the atoms moving in any of the directions from the zero point region are effec-
tively cooled. As they cool down their less Doppler shifted transition frequency
is above the laser frequency and in the absence of a magnetic field they can
simply drift out of the intersection region. Here the magnetic field gradient
comes into a play to confine the atoms. The Zeeman shifted transition energy
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start to be again closer to the resonance outside of the zero point thus cold
ions again are pushed back towards the centre of the trap. The nucleus of
the sodium atom has a spin of I = % thus the ground 3529, /2 and excited
332P3/2 states are hyperfine split into 2J+1, i.e 2 and 4 components respec-
tively. ”The main transition frequency” was chosen to be of the difference
between F,q = 2 and F,,. = 3 states (F is a full orbital momentum of the
atom) and was correspondent to 589 nm in wavelength. Additionally another
("repumping”) frequency resonant to the Fj,q =1 — F,,. = 2 transition was
used to bring the atom in the Fi,; = 1 into the cooling cycle. This state can
be occupied initially or due to the relaxation from the F,,. = 2 into which the
atoms can be excited accidentally from the F},; = 2 state by the cooling laser,
due to the non-zero line width of the transition, Doppler and Zeeman shifts.
The light beam was provided by a dye laser pumped by a solid state 532nm
CW laser. The additional "repumping” frequency was obtained from the +1
sideband of the electro - optical modulator (EOM) through which the laser
beam passed before entering the optical fibre. After the fibre the beam passed
through two acousto - optical modulators (AOM). The +1 order (deflected
and frequency shifted light) of the first AOM was used to cool the atoms and
the Oth order (not deflected light) passed through the second AOM, Oth order
of which was used for the oven atoms deceleration. For the measurement, to
have all atoms in the cloud in the ground state, the first AOM was switched
off and the second was on to get rid of the laser light (the MOT cloud in
the absence of the cooling beams expanded only slightly (few ps) [Kno06]).
The first order of the first AOM was splitted into three laser beams of equal
intensities during the cooling cycle by a couple of beam splitters. Afterwards
the three beams passed through quarter waveplates to obtain the necessary
circular polarization. Finally already orthogonal beams by "retro - reflecting”
provided six MOT laser beams. The resulting MOT cloud usually is around a
few 108 cold (200-300 xK) Na atoms in a volume of 1-5 mm? [Kno06]. Also
not to disturbe during the experiment the recoil ions trajectories the magnetic
field is also switched off.

4.3.2 RIMS

The recoil ion spectrometer used in the experiment one can see on fig. 4.4l
The voltages applied to the spectrometer’s 4 extraction electrodes were sim-
ulated (in SIMION 7.0) and set to obtain better spatial and temporal res-
olution [Has06]. The free field drift length of 41 c¢cm follows the extraction
part and ends up with a 2D position sensitive detector. The detector itself is a
combination of two MCPs and a delay line. MCPs are used as an amplifier pro-
ducing numerous electrons when a recoil ion hits the detector. The electrons
from MCP hit a wrapped wire on each end of which there is a time-to-digital
(TDC) converter. The time difference between the signals on both ends gives
a position on the detector in one direction, for another direction another wire
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Figure 4.4: The Recoil Ion Momentum Spectrometer (RIMS) at KVI used in the
ion - atom collision experiments.

(with another couple of time-to-digital converters) is wrapped perpendicularly
to the first one. Such a system gives resolution of 0.1 mm which with a cho-
sen voltage on the extraction electrodes provided a resolution of around 0.1
atomic units for the recoil ion momentum. In addition one of the four signals
from a time-to-digital converter can be used as a time-of-flight information. If
the ion beam is not continuous but short-pulsed, then different recoil charge
species hit the detector at different time after the collision. This information
can be used to get ratios of different charge states created during the collision
or to study momentum distribution for a certain charge state of recoil ions in
coincidence with the projectile pulse, thus the RIMS technique is in principle
well suitable for the multiple charge exchange investigation. In our experiment
the continuous ion beam was used and more than a single electron ionization
of the Na atom was simply neglected (due to the very low intensities of other
charge species).

4.3.3 Experimental results and discussion

The interaction of the He?" ion with matter is of high interest for atomic and
astrophysics, additionally one can apply knowledge of different cross sections to
bio- or material research as the a-particle radiation is one of the general forms
of radioactivity. Sodium atom being an alkaline atom in its turn is a quasi-
single electron system for study. Previous research [Kno05] was performed to
investigate the dependence of the single-electron capture and ionization cross
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sections on the projectile velocity. To go to higher velocity regime in this
work the 3He isotope was used. As the valence electron binding energy in
the sodium atom is equal to 5.14 eV, this means that the projectile kinetic
energy should be 9.5 keV /u to have the same projectile ion and target electron
orbital velocities. As mentioned in the previous section, these velocities should
be compared to understand the ionization cross section behaviour. So the
investigated velocity region was 9 - 14 keV /u, thus equal and a bit above the
valence electron orbital velocity. With an intensity of the ion beam of ~ 10

X direction, channel

: ‘He* beam direction [

7. direction, channel

Figure 4.5: 2D picture on the RIMS detector of Na'* recoil ions created in collisions
of He?* ions on the MOT target. The scale of the figure is 10 ch/mm.

nA and a number of atoms in the MOT cloud of ~ 108, the count rate of recoil
ions on the 2D detector was around 200 events per second. Thus one hour of
acquisition time was enough to have a good statistics. Events were written in
a list-file read by a COBOLD software which created a 2D picture from the
detector (see fig. [0 as an example, for the 9 keV/u projectile ion beam).
The same software was used to handle and analyze the data. For instance, for
our purposes this program was used to get the longitudinal (parallel to the ion
beam) recoil ion spatial distribution on the 2D detector projecting the signal
onto the Z - axis. Thus knowing the projectile kinetic energy and taking into
account the proportionality between the recoil ion momentum and the position
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on the detector one can get the Q - value distribution from eq. 7] (with s=1,
corresponding to single-electron ionization). To get the Q - value in absolute
[eV] not reference energy units one need to know exactly a reference point
in the recoil ion spectrum. As a reference point a peak corresponding to the
capture into the n=3 electron shell of the sodium atom was used. This channel
is well-known to be the most probable one at low energies as can be obtained,
for example, from the CBM model, which shows that the maximum of the
reaction window (see fig. [.6]) of the investigated collision regime is very close
to the Q - value (-0.91 eV) of the n=3 capture process. This peak is separated
enough to be well resolved and thus serves nicely for the calibration.

To obtain absolute cross sections for the different capture channels and
ionization one can use a simple formula:

R

p— —7 4-8
JNyor (4:8)

g

where R is the count rate, J the ion beam density, and Ny;or the number
of the atoms in the MOT overlapping with the ion beam. As the stability
of all the parameters is difficult to control over time and to determine the
number Ny,or is a real challenge itself, the known total single-electron capture
cross section was used to obtain partial capture and total ionization (capture
into continuum) cross sections. The total electron capture cross section was
extensively studied experimentally and theoretically [DuB86, [Sch92, [Sch95,
Jai96] and thus is known with high precision. A list of the used cross sections
(taken from |[Kno06€]) is given in the table A1l

After a Q - value plot is built, assuming a Gaussian shape of each pea cor-
responding to a capture into a certain electron shell, one can fit the data with
Gaussians, the central positions of which are well known from literatureg(see
also table. [L1]). The sum of all capture channels (Gaussians) will give us a
value proportional to the total capture cross section (op, ). To obtain partial

capture cross sections (05%) one can use the relation

Seap

cap __ _cap~'n
Un = Oot Scap7 (49)

tot

where S and S;.f are the signals under the n'* channel curve and the sum
under all capture channels, respectively. For the ionization cross section one
subtracts the signal of the total capture cross section from the total measured

Tf one assumes a straight line trajectory of the projectile ion, the longitudinal momentum
transfer should be fixed (eq.B.0]) and related to the Q-value of the process. The Coulomb re-
pulsion acts mostly in perpendicular direction thus the longitudinal momentum components
of the recoil ions should be statistically distributed around the fixed Q-values, motivating
the usage of the Gaussian fit.

2The position is equal to: 5.14 — 4'72;'2 [eV], difference between sodium valence electron
binding energy and the hydrogen-like helium atom levels.
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signal (S;) using the formula:

cap

ion __ __cap StOt B Stot
o - Ytot cap
tot

(4.10)

Table 4.1: The Q - values for capture into different projectile states and reference
total capture cross sections for different projectile ion energies used for calculations

(eqs. A9 and [A10).

capture | Q - value | projectile ion ot
channel (eV) energy (keV/u) | x10716¢cm?
n=3 -0.91 9 107
n=4 1.74 10.6 88
n=>9s 2.96 12 75
n=>6 3.63 13.3 63
n="7 4.03 14 57
Ionization >5.14

As the fitting process with independent Gaussians becomes difficult for
higher and higher n - states, due to the big number of fitting parameters, the
number of free fitting parameters was substantially reduced by taking into
account the n~3 dependence of the capture cross sections (as mentioned in
chapter 3) to fit further the data. Considering the fixed central positions of
the peaks and the slightly different widthd] the fitting process is reduced to
a fitting of almost only five amplitudes of the first capture levels, then other
n > 8 capture channels were added with amplitudes (72/n3)S5% . A result of
such a fitting is shown in fig. L6l Then using formulas and [4.1I0 one can
obtain the correspondent capture cross sections, see fig. [4.7] which are listed
in table {21

Error bars for the cross sections extracted from the statistical analysis are
below 10~1¢em?, which is true for the capture into the n = 3 - shell due to the
nicely resolved peak. For other capture channels and ionization the statistical
analysis tends to underestimate the error bars and the real uncertainties should
be higher due to several reasons: unresolved mixture of signals for capture into
n > 3 shells, fitting of the measured signal relied on the n=? dependence, only
partial fitting of the experimental curve with a "free” tail of ionization, still
rather big number of parameters.

As the collision regime was around and above the electron orbital velocity
the close coupling methods are the best to apply for theoretical calculations in

!The width of a Gaussian is determined by the natural width of the level on the projec-
tile into which the capture occurs and by the setup resolution. The natural line width is
slightly increasing for higher projectile levels, but is negligibly small in comparison with the
instrumental resolution (around 1.5 eV).
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—— Experimental recoil ion data
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Figure 4.6: Q - value spectrum of the Na'* recoil ions created in 13.5 keV /u 3 He?*
collisions on MOT target (Na) with a fit to obtain the differential cross sections
for electron capture into a certain electronic state with quantum number n. The
Q-value plot was obtained projecting the 2D signal from the RIMS detector (fig. [4.5])
onto the Z - axis and then using eq. [£.7 for conversion. Reaction window from the
CBM model is also included for the single-electron capture process.

this region for the determination of the capture cross sections B.2l The main
idea of the close coupling methods is to expand the electronic wavefunction on
a finite basis set of states. Then the time-dependent Schrodinger equation is
solved for the wave function, resulting in a set of coupled equations for the co-
efficients in the expansion, which determine the probability of electron capture
during the collision into different states. As a basis usually molecular (MO) or
atomic (AO) orbitals are chosen, but also other types can be applied, like Stur-
mian pseudo-states [Win82|. In fig. .7 one can see a result of two-center 74-
state Sturmian-pseudostate expansion (SAO74) approach from [Jai96] which
shows an adequate dependence for capture into n=3, 4 shells.

The dependence of the ionization cross section on the fig. 1.8 is far from
the simple free-electron approximation (chapter 3). According to the SAO74
calculations [Jai90], the ionization cross section has a maximum around 21
keV/u of the projectile ion kinetic energy, correspondent to the v, ~ 2.1V1
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Figure 4.7: The resulting capture cross sections of the Na valence electron into
the n = 3,4,5,6,7 bound states of the He?T projectile ion. Also calculated values
(from [Jai96]) for capture into n=3,4 projectile electron shells are included.

in atomic units, where I is the ionization potential of sodium atom, and thus
twice higher than the value predicted by the free electron model. The measured
cross sections nicely reproduce the previously obtained result with *He and
show further increase of the ionization cross section, following the calculated
curve. Only at 14 keV /u the cross section slightly decreases. That can be an
artificial result after the fitting and thus additional measurements with higher
resolution are required.
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Figure 4.8: The resulting cross sections for ionization in the reaction He?* + Na —
He™ + Na™ with the previously measured experimental values and theoretical pre-
dictions from the CTMC and SAO74 calculations.

Table 4.2: Obtained cross sections for different projectile ion energies and different

capture channels in the reaction He?T + Na — He™ + Na™.

energy On=3 On=4 On=5 On=6 On=7 Tionization

(keV/u) | 107%em? | 1071%cm? | 107%em? | 107 %em? | 1071%cm? | 10~ 0em?
9 46.9 32.1 12.7 4.3 2.7 8.4
10.6 29.9 26.1 15.2 6.0 2.7 11.9
12 23.0 22.6 12.4 6.1 2.7 17.6
13.3 17.7 18.4 9.8 4.7 3.1 19.4
14 15.3 17.3 9.3 4.1 2.7 18.6
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Chapter 5

Ion sources

Collision studies of light and medium mass HCI and atoms at low and inter-
mediate velocity regimes don’t require huge accelerator facilities. For these
experiments an appropriate ion source is enough (as the ECR ion source in
KVT experiment). Single and multiple electron charge exchange between HCI
and neutral atoms find a practical application in investigation of the plasma
in the ion sources themselves. For example the knowledge on electron capture
can offer an opportunity to manipulate the charge states of ions produced by
the source. In this chapter the principles and basic processes in two types of
ion sources, i.e. EBIT/S and ECRIS, are described.

In this and following chapters, if not specified, SI units are used as default
units .

5.1 EBIS/T

5.1.1 Introduction

The electron beam ion sources were first proposed in 1967 [Don67] and have
being used extensively since that time over 40 years. The sources found a lot of
fundamental and applied areas of research, though the field of EBIS investiga-
tion itself is far from closed. Modern devices vary greatly from really powerful
and expensive, like the EBIS in Brookhaven National Laboratory [Bee99] capa-
ble to produce several 109 Au®* or U%™ per pulse, to very compact and rather
cheap like Dresden EBIS-A [Ovs07]. A scheme of an EBIS is represented on a
fig. 5.1l So it consists of an electron gun, a drift tube structure and a collector.
The middle electrode of the drift tube section, called ionization chamber, is
surrounded with a solenoid creating a strong magnetic field inside. Electrons
starting from the cathode to which a negativ potential (U.unoae) is applied are
accelerated in the region between the gun and the drift tube structure which is
under positive potential (U, ), thus the electrons kinetic energy in the middle
drift tube is equal to: (|Ucathode| + |Uion|)e. As the electrons enter the strong
magnetic field region they are focused radially via the Lorentz force and create

51
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Figure 5.1: A sketch of the EBIS design with electric and magnetic field profiles.

a high density electron string in the ionization chamber. After passing the
drift tubes, electrons enter the collector region where they are repelled on the
walls with a negative voltage to prevent their influx further into a beam line.
The overall potential and magnetic field profiles are schematically shown on
fig. 5.1l The electron string in the ionization chamber strips atoms of a gas in
the middle drift tube via electron impact ionization and additionally creates
a radial potential well for the positively charged ions. Thus in the drift tubes
section the ions are confined radially with electric and magnetic fields. Lon-
gitudinal confinement is provided with slightly higher potentials on the side
electrodes in comparison to the middle one. Trapped ions in the source obtain
sucessively higher charge states in collisions with electrons. After a certain
confinement time 7.,y the potential on the barrier drift tube is dropped and
ions are extracted into a beam line with energies U, - ¢, where q is a charge
state.

The HCI in the source capture electrons from the surrounding gas atoms,
as well as from the electron string, thus the EBIS is also a source of X-rays. As
the appearance of the X-rays is always a good indication of a high charge state
ion production, it is always very helpful to have an access with an appropriate
detector to the ionization region. With a solenoid, mainly used for EBISes one
can measure X-rays only looking on the exit of the source. That fact makes
observation somtimes impossible for realization and additionally creates a huge
background coming from the electrons Bremsstrahlung. Modernization of the
EBISes brought designers to the EBIT devices, where instead of a solenoid,
magnetic field in the ionization chamber is created by split coils or a pair of
permanent magnets. This modification allows an easy access to the trap region
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perpendicularly to the axis through a Be-window and direct observation of the
X-rays from the production chamber. Except of the mentioned feature EBITs
and EBISes are absolutely identical in terms of construction.

5.1.2 Ion creation

The ion production in the source occurs due to electron impact ionization
which has the biggest cross section for removing a single electron from the
atom(ion). Due to this fact the ionization is usually assumed to be a step like
process with transition probability of the ion from charge state ¢ to charge
state ¢ + 1:

Pq,tH-l = Oqj7cnfa (51)

where o0, is a cross section of the process, j - electron number flux density
and 7.,s - confinement time. If j is constant and the number of atoms is
fixed in the trap then all of them will be ionized to 1+ charge state during
Tenf = 1/(00j) time. To get all the ions in higher than (¢ — 1)+ state the
neccessary confinement time should be:

i=q—1

1
Tenf = 3 Z ot (5.2)
=0

To get the charge state distribution at any moment of confinement, a system
of differential equations needs to be solved:

% = (1 — 50i)j0i_1ni_1 — (]_ — (Sqi)jO'iTLi, 1 = O, 1q (53)
where 0;; is the Kronecker delta symbol, n; is the number of ions in i+ charge
state and ng is a number of neutral atoms in the beginning. The equation is
based on the balance approach [Kos83] which assumes that the change of the
number of ions in i+ state is increasing because of the further ionization of
(1 — 1)+ ions and decreasing due to the ionization of the i+ charge state to
(i + 1)+. The system of equations has an analytical solution:

i

ni(t) = 70(0) Zake*j"’“t H/ oc (5.4)

bl
o; O, — 0
i k=0 =0 ¢ k

where the prime on the product sign excludes the term ¢ = k. For the cross
section o; one can use already the Rutherford formula from the 3rd chap-
ter, where instead of the ion g+ one should use the electron charge 1—. Usually
for the charge evaluation a semiempirical Lotz formula is used [Lot68]:

lnek
2
Ein,k

0 =45-107") "¢ (5.5)
k
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here I}, is the ionization energy of the k' electron subshell of the ion in eV
units, €, = E. /I, with E, an electron kinetic energy (eV units) and & is the
number of equivalent electrons in the &' subshell. Resulting cross sections are

in em?.

5.1.3 Ion charge exchange

The formula [5.4] is not true for the normal EBIS operation with gas injection,
because of the continuous influx of the neutral atoms into the electron string.
To describe the ion charge states evolution even more precisely, one should
also include into the system of equations [.3] different charge exchange mech-
anisms with the environment, which slow down the production of HCI. Except
of the single electron capture from neutral atoms, for which the cross section
can be calculated for example via formula coming from the classical-
over-barrier model, ions lose there charge states because of the radiative re-
combination(RR). RR is the process by which an ion binds an electron from
the electron beam. The radiative recombination is quite unlikely for lowly
and multiply charged iondl. For HCI, especially when the electron bombard-
ing energy is close to the energy of the electron shell closure lowering HCI
production rate, RR can influence dramatically. Modern programs like CB-
SIM [Bec(7] take into account all mentioned processes. On fig. one can
compare results for the charge breeding of oxigen with and without gaseous
surrounding calculated with CBSIM.

It can be seen that for the gaseous environment the charge states evolution
stops at some moment and further increasing of the confinement time won’t
influence the charge distribution. Charge abundances are constant when the
trap is full and plasma in the chamber is in the equilibrium. The number of
ions in a certain charge state produced by the EBIT per pulse, when the trap
is full, one can get from abundances and knowing the capacity of the trap.
The total number of positive charges is assumed to be equal to the number of
bombarding electrons in the trap region, so called charge compensation limit,
equal to:

5.33 - 107 197[A]l[cm]
E.[keV]

Q[C] , (5.6)
here I is the electron current, [ - trap length and FE. - electron energy, cor-
responding units are in square brackets. As the barrier voltage is raised, the
trap is closed and filled with ions, which change continuously there charges
climbing to the highest charge state at the equilibrium.

'For radiative recombination with bare ions, Bethe and Salpeter (1957) gave the follow-
ing analytical formula to calculate capture cross section into the hydrogenic final state n:

oplem?] = 2.1 - 10_22%7 where F, is the electron energy, Ry is the Rydberg

energy and Z is the ion charge state, which in the case of not bare species can be replaced
with an effective value [And91].
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Figure 5.2: CBSIM simulation of oxygen charge state abundances vs jer., s parame-
ter, where j is an electron number density, e - electron charge and 7,y - confinement
time. Top, simulation with a fixed number of atoms in the trap and bottom, simu-
lation with a continuous influx of the neutral gas.

Programs calculating numerically the charge evolution take into account
the electron impact ionization and electron capture which is treated usually
as a single electron proces, though for heavy HCI a multiple electron charge
exchange dominates at low energy. Still the lack of experimental data in this
collision regime and the difficult theoretical treatment can not provide enough
information on the cross sections. To suppress the electron capture, high
vacuum in the source should be achieved which unfortunately also slows down
the filling of the trap.

5.1.4 Electron beam

Looking on the formula [5.1lone immediately see that the probability of getting
higher charge states increases with higher electron number current density:

1 T4
J = 0] B3] (57)

For CBSIM the single electron capture cross sections are taken from [Mue77].
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with I - electron current and Ry - radius of the electron beam. Thus intense
electron beams are favorable for HCI production, increasing the ionization
probability and the trap capacity eq. 5.6l To increase the density the electron
beam is usually focused into the magnetic field where a further compression
takes place. A certain electron volume charge density n. can be confined with
a minimum magnetic field:

2 [+ [+
By = ) Lele. (5.8)
€€p
where ) 7
Me
e = ) 59
" eeq m™R2v, (5.9)

me, €, V. are the electron mass, charge and velocity, respectively, R - radius of
the electron beam and ¢, - the vacuum permittivity. The formula 5.8 is derived
from the laminar flow model [Bri45] under an assumption that the current is
formed in a magnetically shielded electron gun. One can also treat the problem
from the optical model point of view [Her57] when electron starting point on
the cathode emits in all directions according to the Maxwellian distribution.
The model gives the minimum magnetic field to compress the electron beam

to the radius R:
RkpriTm, 2B,
B:\/ pp 4 el ime | (1D, (5.10)

2 pd 2
e’R; R§

where 7. the cathode radius, kg the Boltzmann constant, T the cathode tem-
perature and B, magnetic field at the cathode. In equation the required
magnetic field is represented as a square root of three terms, accounting for
space charge forces, thermal velocities and magnetic flux at the cathode. So
one can see that the best density is achieved when there is no magnetic field
at the starting point (cathode).

The electron string creates the potential well inside the ionization chamber
which can be calculated from Gauss’s law and equals to:

V(R) = Vg — 28[?1%, forR > Ry (5.11)
R R?

V(R) = Vi — s*(2an—f;t + (1= 2)). forR < Ry (5.12)
0

where Vy; and Ry are the middle drift tube potential and radius, respectively,
and s~ = I/(4megve). The equation (.12 shows that the ions in the electron
beam are confined in the harmonic trap potentia, ie. V(R) o R%

!The radial electrostatic potential V(R) = s~ %2 counted from the bottom of the potential
0

well, in a presence of a magnetic field B, can be exchanged with an effective potential
eq; B’R?
8mi

Vers(R) = V(R) +

(5.13)

, where ¢; and m; are the confined ion’s charge and mass, respectively [Pen91].
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5.1.5 Ion temperature

As the neutral atoms are ionized in the potential given by equation the
singly charged ions initial average energy (U;) can be calculated under an
assumption of homogenious destribution of atoms in the trap with zero initial
kinetic energies via the general formula:

_ [ eV(R)ng(R)2nRAR

U, = e
Jo " no(R)2mRdR

(5.14)

here ng(R) is the atom density. Substituting V(R) = s~ R*/R% and ng(R)-
const, one can obtain average energy for +1 charge state: U, = s~¢/2. For
each of the two ortoganal directions perpendicular to the optical axis there
are two degrees of freedom (due to the motion in the harmonic potential),
for the optical axis direction there is only one degree, thus 5 degrees of free-
dom in total. Sharing the average energy value in ion - ion collisions among all
available degrees of freedom will give the ion cloud temperature from the equa-
tion: kgT1/2 = s~e/10, T; will indicate the temperature of a certain charge
¢; [Cur03]. Cloud of singly charged ions is now appeared to be Boltzmann
distributed in the potential well. For different charge states of ions ¢; in the
trap the Boltzmann relation is:

4;V(R)

n;(R)dR = N;2rRe *s57i dR, (5.15)

here N; is a total number of ions. ”Freezing” singly charged ions at there
positions distributed via Boltzmann relation and ionizing them further will
give an increase of energy, substituting n; instead of ng into the equation [5.14],
for doubly charged ions. Increase of the energy and thus of the temperature,
when calculated, is less than the kpT; while the charge in the equation
is increased twice, thus shifting the ion density distribution to the axis. Using
the same approach for higher and higher charge states one can see that the
temperature is also increasing and the spacial distribution is closer and closer
to the bottom of the potential well (see fig. 5.3).

The described picture would be complete, if there was only a single charge
state involved. In reality different ion charge species exchange there energy
via Coulomb collisions. Interaction of ion ¢; with ion ¢; has a characteristic
time 7; ; o< qu,;qu’Q [Cur03, [Spi56], were m; is a mass of the j™ ion. From
the dependence one can see that the higher charge states are coupled stronger
and obtain nearly similar temperature.

Except of the ion - ion collisions there is a Coulomb interaction of ions
with electrons which heat up the plasma in the trap. The heating called after
Landau and Spitzer has a rate dT;/dt oc g?j/m;, where j is as usually the
number electron current density.

Hot HCI are well confined in the trap and exchange there energy with
other less charged ions transferring them there momenta. Singly and lowly
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Ion cloud diameter

Figure 5.3: Different ion species in the trap. Higher charge states are better confined,
but also have a higher temperature.

charged species with higher momenta can not be confined further in the trap
and escape from it cooling the remaining ions. This evaporative cooling can
be stimulated introducing a light gas into the trap [Kin0OIl [Pen91al.

Escape of different ion species from the trap should be also included into the
equations 5.3l So one can see that the plasma behaviour in the trap appeared
to be quite complicated and difficult to describe.

5.2 ECRIS

Another ion source that produces high charge states is the Electron Cyclotron
Resonance lon Source (ECRIS). The ECRIS is used in GSI accelerator facility
to produce multiply charged ions to be injected into the UNILAC (see chapter
2). As described in chapter 4, the ion - atom collision experiment at KVI
was also performed with ions produced in an ECRIS. In this section a short
overview of the main ECRIS operation principles is given.

Design of an ECR ion source should provide following features: appropri-
ate magnetic field strength and structure, adequate microwave frequency and
power, good vacuum and suitable extraction system. The ion source construc-
tion and plasma in the ionization chamber are depicted on fig. 5.4l

The magnetic field in the chamber is formed by two solenoids longitudinally
and by a hexapole magnet radially so that the surfaces of the constant field
strength are nearly ellipsoidal with a field increasing from the centre. On
fig. 5.4l left, one can see a profile of such a B-field minimum structure along
the axis.

The ion creation starts with injection of a gas and radiation of a microwave
into the ionization chamber. There are always some free electrons in the cham-
ber moving with a cyclotron frequency w. around magnetic field lines. When
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Figure 5.4: ECRIS design, left. Plasma in the source, right. Magnetic field confine
electrons in the plasma chamber and the ions are trapped by the electron space
charge potential.

the fed microwave is in resonancd! with w, the electrons are accelerated to high
energy absorbing RF power. Hot electrons in the ionization chamber with high
orbital momenta feel the gradient of the magnetic field and are reflected back
towards the center. The magnetic mirror is not ideal and there is a narrow
escape channel along the axis for relatively hot electrons with small orbital
momentum.

Hot electron impact ionization of the atoms feed additional electrons into
the plasma. Removed electrons absorb the RF power and participate further in
the ionization process. The ions are not so strongly influenced by the magnetic
field and are confined by the electron space charge potential. The behavior of
the ion cloud in the ECRIS has the same features as in the EBIT/S devices, i.e.
step like ionization, electron heating, charge exchange with the environment
and ion-ion Coulomb collisions. Produced ions leave the ionization chamber
which is kept under a high positive voltage through the electron escape channel
and are extracted continuously towards the grounded or put onto a negative
voltage puller electrode. In case of the KVI ion source, as it was mentioned, the
maximum ion energy was 42 keV for alpha particles, correspondent to the 21
kV potential of the ionization chamber. Higher energies were not achieved due
to the frequent discharges causing instabilities of the plasma in the chamber.

As the ECR ion sources are not the main topic of this thesis, I refer for
further details to [Tar05l [Cur03]. Interesting information on investigations
dedicated to improve the ECRIS performance can be found elsewhere, e.g.
integration of the electron gun into the source [Run9§|, gas mixing [Tar04] or
using an afterglow mode of operation [Mel94].

!The resonant microwave frequency used in KVI ECRIS is 14 GHz correspondent to the
magnetic field of 0.5 T.
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5.3 Singly charged ion sources

During this work two types of singly charged ion sources were used, briefly
described below.

The first ion source was a sputter ion gun from KVI suitable for use with
most gases. The source operation is based on the electron impact ionization.
The intense electron beam from a filament is accelerated towards an electrode
under a high positive potential and ionize the atoms, ions are accelerated into
the opposite to electrons direction and extracted into the beam line.

The second type was a surface ion source from the HeatWave Labs, Inc.
integrated into the specially designed ”ion gun” fig. [5.5] left. The heating fila-

Figure 5.5: Ton gun with inserted ion source from HeatWave Labs, Inc. 3D design,
left and SIMION 7.0 simulation, right. Green lines in the simulation are equipoten-
tial lines.

ment increase the temperature of the source body above 1000°C" and evaporate
singly charged ions and neutrals from the surface [. Tons are repelled with a
positive potential applied to the body Vy and extracted into the beam line,
anode of the gun is usually under a higher potential 1, 4+ V; providing better
focusing of the beam fig. 5.5l right. Different ion sources can be installed into
the gun producing various singly charged elements, i.e. alkaline metals: C's,
K,S%Li, "Li, Na, Rb and alkaline earths: Ba, Be, Ca, Mg, Sr.

1Ratio of ions in the total production rate can be obtained from the Langmuir-Saha
formula:

ni wo I—9. 4
=14+ — 5.16
g~ e (5.16)

where ny and ng are the numbers of ions and neutrals, respectively, produced per second,
@ and I are the work function for the surface and the first (uppermost) electron ionization
potential, respectively, w; and wg are the weighting factors, w = 25 4 1, where S =}, s;
the total electron spin of the ion or atom.



Chapter 6

EBIS/T setups and experiments

6.1 MAXEBIS setup and experiments

The MAXEBIS setup at GSI fig. comprises a singly charged ion source, a
multi-passage-spectrometer (MPS), a TOF spectrometer, several diagnostics
(FCs and YAG scintillator screen) and the EBIS device itself [Kes06].

The MAXEBIS, built in Frankfurt University [by R. Becker], was installed
at GSI for charge breeding experiments. It was designed for high electron
currents up to 3 A, but was normally operated by us with 100 mA electron
beam. The high current electron gun, based on a 2 mm IrCe cathode, was
driven to an emission current density of about 954/cm?. The longitudinal
position of the cathode with respect to the magnetic field could be varied with
a manipulator. Hence the radial compression of the electron beam by the
magnetic field gradient could be adjusted (see formula [B.I0). The magnetic
field was provided by a superconducting 5T solenoid surrounding the 80 cm
long ionization chamber. The inner design of the MAXEBIS included several
ion optical elements after the ionization chamber for better extraction of the
ion beam.

The TOF spectrometer was designed for beam energies < 2keV//q. Such
a limit was set by a resistor chain of the electrostatic mirror, which reflected
the upcoming ion beam towards a channeltron. The voltage applied to the
detector was 3 kV, thus the channeltron worked in the saturated regime, i.e.
the signal was proportional to the number of ions, but not to the number of
there charges. The spectrometer had a special chopper at the entrance to cut
a short fraction of the ion pulse for the time-of-flight measurements.

The MPS essentially is a water cooled dipole electro-magnet, providing
magnetic field up to 1.2 T. A vacuum chamber between the poles of the magnet
has 4 arms, for beam entrance or exit. Each arm of the MPS is equipped with
an Einzel lens which can be set on up to 10 kV potential. The MPS was used
as a switchyard or an A/q analyser. The resolution of the 90° bending magnet
is estimated to be better than 0.025 in rigidity, that’s enough for example
to separate Kr?*™ and Kr?'* charge states. Switching off the current in the

61
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MAXEBIS

ion source D - Diagnostics

Figure 6.1: MAXEBIS setup at GSI, AutoCad drawing and photo. On the Au-
tocad drawing one can see main parts of the beam line, i.e. MPS - multipassage
spectrometer, TOF spectrometer, several diagnostics with Faraday Cups. In the D4
additionally a YAG scintillator screen and a camera were installed to allow beam
profile measurements.

coils allowed to shoot the beam straight through the MPS towards another
diagnostics.

The diagnostics were mainly the Faraday Cups except of the D4, where a
YAG scintillator screen and a camera were installed for beam profile measure-
ments.

Extensive simulations of the ion beam dynamics were performed using
SIMION 7.0 [Dah00]. On fig. one can see the whole setup with several
zoomed instances: the MAXEBIS extraction system, MPS and singly charged
ion source. Red lines indicate the trajectories of O°" ions started from the ion-
ization chamber under 4.5 kV towards the scintillator in D4. The simulated
transmission of the beam line was around 50%, though in reallity was never
better than 10% because of the TOF part between the MAXEBIS and the
MPS. Simulations were done to improve the transport of the ion beam from
the EBIS towards the MPS and from the singly charged ion source towards the
MAXEBIS for injection, discussed in the 7th chapter. Simulation of the Einzel
lens in the MPS arm also provided information on the focal lengths used for
emittance measurements of the beam (see below).

The ions started there motion inside the ionization chamber in 5T magnetic
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Extraction

- / system

Figure 6.2: Simulation of the MAXEBIS setup, using SIMION 7.0. One can see
the extraction part of MAXEBIS, MPS and singly charged ion source from separate
instances. Red lines are the trajectories of O°T ions starting from the ionization
chamber and hitting the YAG scintillator screen after the MPS.

field. As they were extracted there motion was in the gradient of magnetic
field, which influenced there trajectories. For better magnetic shielding of
the collector another solenoid was initially designed in the collector region,
which was also used as a focusing element. Magnetic field from both the
superconducting magnet and collector coils was included into the simulation
via SIMION’s user programming. External file provided information on the
radial and longitudinal components of the field at different positions. As the
ion was moving, its position was read and corresponding magnetic field was
applied from the file. The field distribution along the axis was calculated
at first using a well-known formula for solenoids and later on with a more
advanced tool - INTMAG [Bec99] simulation code, which is able to include
iron shielding. Knowing the field along the axis one can calculate the radial
magnetic field (see Appendix B). Both calculated and simulated magnetic field
distributions are depicted on fig. [6.3]

Due to high costs of MAXEBIS run, conducted experiments were dedicated
mostly to charge breeding of externally injected singly charged ions, covered
in the 7th chapter. Nevertheless some basic characteristics of the ion beam
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Figure 6.3: Calculated and simulated (using INTMAG) magnetic field distribution
along the axis, left and extracted from the simulation radial components, right.
The zero position corresponds to the beginning of the MAXEBIS superconducting
magnet.

extracted from the source with and without injected inside Ar gas were also
measured.

The emittance of the MAXEBIS O°" ion beam (only residual gas in the
ionization chamber) was measured after the MPS selection. The ions started
at 4.5 kV potential of the ionization chamber and moved towards the YAG
scintillator screen (see the simulation, fig. [6.2). Under different potentials
applied to the MPS Einzel lens in front of the screen, the beam image radius
was changed. Knowing the focal length of the lens under applied voltage and
the radius of the beam one can estimate the emittance, using multi-gradient
method (Appendix C). The focal lengths were obtained from simulations and
the beam radii were measured from the beam spot image on the scintillator
screen, see fig. [6.4] left. The beam image had huge aberrations which were
also approved by simulations fig. [6.4] right.

Figure 6.4: The O%" beam spot on the scintillator screen, left and example of the
final emittance ellipse (see Appendix C) at the same position from simulations, right.
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The emittance was measured to be 250 & 100mm - mrad. Partially the big
value comes from aberrations, but another reason is a large energy distribution
of ions inside the trap. In the EBIS devices with high magnetic field escape
of ions from the trap happens mostly longitudinally over the potential barrier.
During the emittance measurements the extraction drift tube voltage was set
100 V above the middle drift tube potential, meaning that the O5* ions could
escape only if they had more than 500 eV kinetic energy. Thus the hot ions,
heated by the 6 keV electron beam, were still confined in the trap and increased
the beam size and emittance.

During one of the MAXEBIS runs the charge breeding of injected Ar gas
was performed. Unfortunately due to a relatively high background gas pressure
and thus a big fraction of residual gas ion species in the TOF spectra the
analysis was very difficult to perform (see fig. [65). One should only mention
that the number of Ar highly charged ion species was increasing with increasing
of the confinement time while the lower charge states were vanishing. After
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Figure 6.5: The TOF spectra with injected Ar gas, dependence on the confinement
time. Ion kinetic energies: 1.5 keV/q, electron beam energy 3.2 keV.

500 ms of confinement, the spectra did not really change anymore, indicating
the equilibrium of the ion plasma in the chamber. As the chopper of the TOF
spectrometer cut only a small fraction of the beam, the total picture of the
charge breeding process was unclear.

Another measurement on the confinement time was made with the total
extraction pulse from the EBIS (see fig. [6.6) under the same conditions. The
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picture to the left shows a typical pulse shape seen on the oscilloscope. The
pulse had a width of approximately 100 us and a high peak in the beginning.
The peak appeared due to the ions located in the vicinity of the extraction
electrode and thus immediately extracted as a short bunch after lowering the
barrier potential. The remained ions in 80 ¢m long ionization chamber were
rather slowly extracted drifting in the 5 T magnetic field towards the exit, thus
creating an elongated structure. On fig. [6.6] right the dependence of the peak
current on confinement time is also plotted, showing that the trap capacity
was reached after approximately 200 ms.
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Figure 6.6: Extraction pulse from the MAXEBIS, left and its peak current depen-
dence on confinement time, right. Ion kinetic energy 1.5 keV//q, electron beam
energy 3.2 keV.

The experiments with MAXEBIS were performed only few times, but pro-
vided a good knowledge on the basic processes in the source. Due to the rather
intense influx of the residual gas into the ionization chamber from the collector
region, and due to the high running costs of the setup, it was decided to go to
another test ion source. Provided with a good experience we started the next
step.

6.2 SPARC EBIT setup and experiments

6.2.1 SPARC EBIT setup

The SPARC EBIT setup at GSI (fig. [6.7) had already mentioned parts, i.e.
MPS and TOF spectrometer. In addition, several ion optical elements were
included to improve the beam transport. The profile measurements were per-
formed using the KVI diagnostics, equipped with an MCP - phosphor screen
combination, installed after the new EBIT. The KVI diagnostics was the same
as in the HITRAP LEBT section, thus in parallel we were able to test it prior
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Figure 6.7: SPARC EBIT setup at GSI, AutoCad drawing and photo. In comparison
to the MAXEBIS setup additional ion optical elements were included into the beam
line with an advanced tool for profile measurements, i.e. KVI diagnostics with MCP-
phosphor screen combination. On the photo one can see the ion source itself with
a Be window which allowed X-rays measurements of the processes in the ionization
region.

to the installation into the HITRAP beam line. The ion source was a Dresden
type EBIT [DREEBIT] with an electron gun capable to produce currents up
to 50 mA. The electron beam was radially focused in the 1.5 cm long ionization
chamber via a couple of room temperature permanent magnets, providing 0.25
T field in the trap region. The electron beam diameter can be estimated using
3 different methods:

a) from the formula 510 in the 5th chapter, knowing the magnetic field in
the chamber, the cathode temperature and the cathode radius

b) from the formula in the 5th chapter, knowing different charge state
ionization cross sections (e.g. eq. [B.), electron current and analyzing the
charge states abundances for different confinement times

¢) from simulations.

We used the 3¢ method and estimated the radius to be 0.1mm, thus the
electron current density was approximately 100A/cm? for 5 keV electron en-
ergy and 20 mA current, normally used for the operation. The electron beam
under the mentioned conditions provide 25 V deep radial potential well (equa-
tions 010l 512). Due to the low magnetic field in the source the ions are
mainly confined via electrostatic potentials.

More advanced ion optical simulations were performed for the setup. The
electron space charge potential was included into the SIMION’s EBIT instance
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to treat the potential profile more realistic. The potential pattern was intro-
duced using C++ programming. On fig. one can see potential profiles of
the EBIT, note, that there is a ”gate way” or a cavity formed by the electron
string in the barrier electrode potential. The middle electrode potential is also
lowered with the electron space charge.
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Figure 6.8: Simulations of the SPARC EBIT potentials. Top, left is the potential
profile along the EBIT axis with the marked trap region, the negative potential to
the left is the cathode potential and to the right, the collector electrode potential.
Top, right are the radial potential distributions created with the electron space
charge for different drift tube radii. At the bottom is the final 2D potential pattern
in the trap.

6.2.2 Emittance measurements

Emittance measurements were made using a multi-gradient method (see Ap-
pendix C), the same way as it was done for the beam from the MAXEBIS.
The ion beam hit the MCP-phosphor screen combination in KVI diagnostics
box, producing a light spot detected with a digital camera. The camera was
triggered with a TTL level pulse synchronized to the ion extraction pulse. The
light intensity distribution from the image of the spot was projected on x or y
axis (see fig. [6.9, left). The spot size was changed applying different potentials
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to the Einzel lens in front of the diagnostics. Focal length for the set potential
was estimated from simulations (see fig. [6.9] right). Information on the spot
radii and focal lengths is enough for emittance calculations.
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Figure 6.9: Beam profiles of the 2 keV//q Ar beam under different potentials applied
to the Einzel lens in front of the diagnostics, left. Simulation of the lens using
SIMION 7.0 to obtain the focal legths for the used potentials, right.

Different dependences of the emittance were measured: on the ionization
chamber potential, which determines the velocities of the ions, on different
charge bred elements and on electron beam currents. The most reliable mea-
surements were done for different currents with fixed potentials. One can see
the dependence of the Ar beaml] emittance on the electron current in fig. 6100
As the electron beam intensity increases, the emittance increases as well. This

ionization chamber 2kV

emittance, mm*mrad

electron current, mA

Figure 6.10: Ar 2 keV/q ion beam emittance in dependence on the electron current.

can be caused by two possible reasons. The first is the increase of the electron

!Here and further on in this chapter, if not specially mentioned, the ion beam from the
ionization chamber are Ar ions. The Ar is provided by gas injection.
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beam radius, caused by the higher cathode heating power and thus higher
electron temperature. Bigger electron beam diameter means that the ions are
created in a larger volume, thus the diameter of the extracted beam also ex-
pands. Another reason can be due to the electron heating in case the diameter
is kept the same. According to Landau-Spitzer formula the increase of the
ions temperature, and thus velocity distribution, is proportional to the elec-
tron current density. In principle both reasons can contribute at the same time
to the increase of the emittance.

6.2.3 Extraction pulse measurements

To improve the beam quality decreasing the electron current is not applicable,
because the charge capacity of the trap should be linearly dependent on it
(see eq. B.0). To approve the linear dependence of the number of charges
stored in the trap on the electron current, the extraction pulses were also
measured, using FEMTO amplifier, which is also a current to voltage converter.
In fig. [6.171 left one can see a dependence of the extraction pulse on the electron
current for 50 ms of confinement, when the trap is not completele filled and
charge evolution is on-going. For smaller currents one can see that different
charge states are resolved better due to a smaller energy distribution of the
ions in a shallower trap. Increasing the current increase the depth of the
potential well and heating of the ion cloud making energy distribution broader
and charge states less resolved. The production of HCI is also increased after
50 ms of confinement for more intense electron beams, seen as an increase of
the pulse on the shorter time-of-flight side of the spectrum. As the charge
evolution is strongly dependent on the current density, but not on the current
itself one can conclude that the density increases with the current as well.

The comparison of the charges per pulse measured after 500 ms of con-
finement, which is even longer than the time necessary to saturate the trap
capacity, with the calculated values via the formula[5.6 can be seen on fig. [6.11],
right. At low electron beam currents the potential well is quite shallow and can
not efficiently capture the ions, while at higher currents the electron density
increases, probably increasing simultaneously temperature and loss rates. In
between these two critical regimes, it seems that one can obtain number of ion
charges closer to the compensation limit.

Note that every charge state contributing to the total pulse from the trap
has an asymmetrical shape of its own pulse, with a peak and a tail towards
longer time-of-flight. Such a structure was also seen in simulations. The fastest
part, as for the MAXEBIS, is found to come from the trap region close to the
extraction barrier electrode and the tail is due to the ions away from the exit,
slowly drifting towards the extraction electrode. The simulated ion pulse from
the EBIT one can see on the insertion in fig. [6.11] left.

Pulse investigation can provide a nice information on the charge breeding
process. In fig. [6.12] left, a change of the extraction pulse in dependence on the
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Figure 6.11: Ar 4.8 keV/q ion beam extraction pulses for 50 ms of confinement and
different electron currents, left. The dependence of the total extracted ion charge
(red line) per pulse after 500 ms of confinement and the trap capacity from eq.
(black line), right.

confinement time can be seen. Higher charge states have shorter time-of-flight.
There is an increase of the high energy part of the pulse related to the HCI
for longer confinement times and a decrease of the low energy part, related to
the lowly and multiply charged species. The amplitude and the area of the
pulse, proportional to the number of the charges in the trap, are increasing
with increasing of the confinement time, but reach a saturation point after
approximately 0.5 s. This corresponds to the point when reaching the trap
capacity. Note that the trap is very quickly filled within 20 ms (fig. 612
right) with lowly charged residual gas and Ar ions ions and after that slowly
increase the number of Ar charges during 500ms when the full capacity is
finally reached. This slow filling happens due to the higher charge states
of Ar which are better confined in the trap. One can compare the rate of
electron space charge compensation for the room temperature EBIT and for
the cryogenic MAXEBIS, where within 25 ms only a quarter of the capacity
is reached (fig. [6.6]).

6.2.4 Charge state spectra

Increase of the charge state in the EBIT for longer confinement can be more
clearly seen with magnetic scans or TOF spectra. One example of a magnet
scan is shown in fig. 6.13] Here the charge state evolution starts with a mixture
of the residual gas and lowly charged Ar ions, which increase their charge states
and become better confined in the trap. When the trap is already partially
filled with ions, the electron space charge, providing the potential well, is
screened and high temperature ions can escape radially, as the magnetic field
is small (not in case of the MAXEBIS setup). Ar is heavier than the most
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Figure 6.12: Ar 4.8 keV/q ion beam extraction pulses for different confinement
times, left. With decrease of confinement time also decreases the high energy part
of the pulse correspondent to the HCI and increases the slower part, related to the
lowly and multiply charged species. The total charge per pulse in dependence on the
confinement time, right. The trap is quickly filled within 20 ms with low charges,
but the charge capacity is reached after approximately 500 ms

abundant elements in the atmosphere and forces out the light residual gas
ions from the trap via ion - ion collisions. The residual gas ions completely
disappear from the spectra for longer confinement. Further increase of the
charge breeding time strips further the electron shells of the ions remained
in the trap. As the electron charge is nearly completely screened after 0.5
s by highly and multiply charged Ar-ions, the trap does not accept a lot of
singly charged ions anymore, which could be stripped further and multiply
charged states sequentially disappear from the spectra. After the 1000 ms the
equilibrium starts, so the abundance of different charge species does not change
anylonger. Due to the compensation, the processes of the ionization, electron
capture from the surrounding neutral gas as well as from the electron beam and
the ion escape from the trap cancel out. The ion temperature is kept constant
due to the compensation of the electron heating with ion Coulomb cooling.
The Ar and residual gas singly charged ions are still produced in the electron
beam, though not a lot of them are captured, Coulomb collisions of HCI in
the trap with these ions decrease the ion plasma temperature. Those ions
which are captured pass the whole ionization process to higher species with
big losses on there way and contribute to the less highly charged part of the
spectrum.librium starts, so the abundance of different charge species does not
change anylonger. Due to the compensation, the processes of the ionization,
electron capture from the surrounding neutral gas as well as from the electron
beam and the ion escape from the trap cancel out. The ion temperature is kept
constant due to the compensation of the electron heating with ion Coulomb
cooling. The Ar and residual gas singly charged ions are still produced in the
electron beam, though not a lot of them are captured, Coulomb collisions of
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Figure 6.13: Ar 4.8 keV/q ion beam magnetic scans for different confinement times.
The abundance of higher charge states increases with increasing of the confinement
time.

HCI in the trap with these ions decrease the ion plasma temperature. Those
ions which are captured pass the whole ionization process to higher species
with big losses on there way and contribute to the less highly charged part of
the spectrum.

The equilibrium and stop of the charge evolution can be seen from time-
of-flight spectra on fig. [6.14] for long confinement times.

As it was shown the electron beam compensation is followed by the equi-
librium of the plasma. The faster filling of the trap can be provided with a
higher gas pressure in the ionization chamber, though at the same moment
the equilibrium also starts earlier, meaning a shift in abundances towards the
multiply charged ions, due to the more intense rates of the electron capture
and influx of low charge species. To increase the production of higher ion
charge states one should play with the mentioned processes of ionization, elec-
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Figure 6.14: Ar 2 keV/q ion beam TOF spectra for long confinement times. The
equilibrium of the plasma is already reached and the charge evolution does not
happen anymore.

tron capture and ion escape. To obtain the maximum ionization the electron
beam energy should be adjusted to the maximal cross section. Another way
to increase the ionization probability is to use higher electron density, which
unfortunately also increase the heating rate, biggest for the HCI, leading to
the ion losses from the trap. Also higher density increases the rate of radiative
recombination. Very necessary in production of highly charged ions is to de-
crease the pressure in the chamber as low as possibldl, though it increases the
time required to fill in the trap and thus lower repetition rate of the extracted
pulse.

In fig. one can see the charge evolution for different confinemet times
and pressures. Even within a short confinement time the production of higher
ion charge states is already more efficient for lower gas pressure, though the
number of charges in the trap is higher for the higher pressure due to the more
rapid filling. After a long charge breeding of the ions in the trap, distribution
of the charge species is still broad for high pressure, while for the low pressure
the total charge is concentrated mainly in two highly charged states. The light
fraction of Ar'™ also appeared in the spectra but was not enhanced due to
the low production rate. The achieved charge evolution at low pressure was
close to the ideal case of pulsed injection, when the amount of ions in a higher
charge state is pumped via the electron impact ionization of the lower charge
states.

On fig. one can see a comparison of the experimentally obtained rela-

IHere one should be careful, because too low pressure will lead to the decrease of the ion
Coulomb cooling in the trap.
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Figure 6.15: Ar 4.8 keV/q ion beam magnetic scans for confinement times: 50 ms,
left and 1000 ms, right, in dependence on the Ar gas pressure in the EBIT. Electron
beam energy is 7.4 keV.

tive numbers of different ion species and simulated abundances, using CBSIM
code. In the program the influx of neutral Ar atoms was disregarded meaning
a pulsed injection of atoms into the trap. Though quantitatively the depen-
dences are a bit different, qualitative picture is pretty close. So the ion charge
state distribution manipulation is possible and one can obtain the maximum
amount of charges in a certain charge state, here Aro*!

Everything described above except of the dependence on the electron cur-
rent was mostly dedicated to the efficient production of highly charged ions.
Improvement of the beam quality can be also possible. The emittance of the
beam, as it was already mentioned, is determined by the ion temperature in
the trap and the beam size.

The ion beam size can be made smaller, decreasing the electron string
radius which is possible by increasing the magnetic field. Magnetic field also
increase the effective potential felt by the ions, thus increasing the maximal
energy at which the ion is still confined, leading to the increase of the ion
cloud temperature. Smaller electron string radius also means higher density
and heating of the ions in the trap.

Decrease of the ion temperature in the source can be done limiting the
highest energy in the source. The high energy can be cut off by lowering the
potential well depth. The radial potential can be decreased only decreasing
the electron linear density according to the formula[5.12 As the number of ion
charges in the trap is dependent on the electron linear density, this parameter
should not be touched to have an intense beam. Still there is one degree of
freedom left for potential manipulation, i.e. in longitudinal direction, varying
the barrier trapping potential. In fig. one can see the time-of-flight spectra
of the charge bred Ar ions for different volages applied to the extraction barrier
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Figure 6.16: Dependence of the Ar ion charge states abundance on the confinement
time at low pressure, left and simulation using CBSIM code, right. The parameters
included into the simulation were the same as in the experiment, the only difference
was that the influx of the neutral gas in the CBSIM was switched off, meaning a
pulsed injection.

electrode.

The lines of different charge states become more narrow with decreasing of
the barrier potential due to the lower energy cut off, and thus lower tempera-
ture of ions in the trap. Unfortunately lower voltage also limits the effective
trapping volume, hence decreasing the number of ions. Still the highly charged
species which have better confinement are in relatively big amount kept inside
the trap. So the ion beam emittance can be also manipulated by varying few
parameters!

6.2.5 X-ray spectra

In addition to this chapter I would like to mention that the X-rays spectroscopy
also provides a good information on the charge breeding process in the trap,
though in our case of rather low resolution X-ray spectrometer the data was
not that extensively used and we were mostly interested in the extracted ions
investigated with the TOF spectrometer and magnetic separator. Still the
information obtained from the X-ray spectra is also reliable and representative.
As an example one can see a dependence of X-ray spectra on Ar pressure in
the chamber in fig. B.I8] left for long confinement time. In this case the
production of HCI is rather high. Increase of the Ar gas pressure decreases
highly charged ions production, seen as a decrease of K, and Kz line intensities.
The production rate for higher pressures is lower mostly because of the higher
electron capture rate already at multiply charged states. On the insertion of
the same plot one can see the part of the spectra (with different scale) above
the Bremsstrahlung background. In this part, radiative recombination (RR)
lines can be seen for the capture into the K and L shells. To have this lines
in the spectra the ions should be stripped down to the correspondent electron
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Figure 6.17: Ar 2 keV/q ion beam TOF spectra with different potentials applied to
the barrier electrode. One can see thinning of the spectral lines which comes from
a narrower velocity distribution.

shell, otherwise in case of a vacancy appearence it is immediately filled with
an electron from an upper shell, but not from the electron beam. The RR lines
shift to higher energies with decrease of the number of electrons in a chosen
shell, into which the capture occurs. For the small pressure (red line) one can
see this shift both for n = 1 and n = 2 lines. Also for smaller pressure an
increase of the radiative recombination into the K shell can be seen, meaninig
higher production rate of Ar'™* and Ar'®* ions.

In fig. [6.18] right, the X-ray spectra are plotted for two different, relatively
short confinement times. On the insertion one can see that the RR lines related
to the HCI are almost absent for the short confinement. The Kj line for 100
ms of charge breeding also dissappears from the X-ray spectrum. This happens
because of the following reason. In case of a vacancy creation in the K-shell it
can be filled with an electron from the 3p subshell with higher probability if
the 2p subshell is empty. The lack of the 2p electrons means that there should
be a production of the Ar'** in the trap, which is nearly absent for 100ms of
confinement even at lower pressure (see fig. ), that leads to the absence
of the Kj line in the spectrum. The Ar!'** created in a significant amount
during 500 ms fill in the 3p subshell via the electron capture from surrounding
neutral atoms. Relaxation of the 1s3p excited states leads to the Kjg line in
the spectrum for 500 ms of confinement. So X-ray spectroscopy is a nice tool
to investigate the charge breeding in the trap. For very long confinement times
it can be a fast indication of a certain process.

In this chapter different aspects of the charge states abundance evolution
were discussed. This knowledge can improve the HCI production efficiency as
well as the beam quality. Our experimental results show that the emittance
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Figure 6.18: Ar ions X-ray spectra for 2 s of confinement time, 8 keV electron beam
in dependence on Ar gas pressure in the ionization chamber, left. X-rays for 100 ms

and 500 ms of confinement at fixed pressure, right.

of the beam and charge state manipulations are really possible in the EBIT
varying different parameters. Still in this chapter only the charge breeding
of the Ar gas was covered, knowledge about which can be applied to other
gaseous materials. The next chapter is dedicated to the charge breeding of
externally injected singly charged ions.



Chapter 7

Charge Breeding of externally
injected singly charged ions

7.1 Motivation
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Figure 7.1: REX-ISOLDE facility, top, and EURISOL project, bottom. The
schematic view of the future EURISOL facility is more general and comprises main
elements of the beam line for post-acceleration and precision experiments with highly
charged ions of rare isotopes. The ions are at first mass selected, then prepared and
injected into a charge breeder, extracted and charge selected afterwards.
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The EBIS/T and ECRIS devices, as it was mentioned, are typically used
to produce highly charged ions of all gaseous materials injected into the trap
region, where atoms are stripped of electrons via the electron impact ionization.
The construction also allows to install evaporative sources of different materials
in the vicinity of the ionization chamber to inject various (mostly metallic)
elements into the trap region. Still the number of materials produced in highly
charged states by the sources is rather limited.

The demand of HCI of stable and especially exotic isotopes has driven the
development of charge breeding methods. Existing facilities such as REX-
ISOLDE/CERN (fig. [TT], top) or ISAC/TRIUMF are already using a charge
state booster. Planned facilities such as SPIRAL II, MATS, EURISOL (fig.[7.1]
bottom) and CARIBU will include charge breeding devices in future. There-
fore, exploration and optimization of existing charge breeders is necessary and
was supported by the I3-EURONS project.

The radioactive isotopes at ISOLDE are produced in thick high-temperature
targets via spallation, fission or fragmentation reactions, when a high energy
(1.4 GeV) proton beam from the Proton-Synchrotron Booster (PSB) impinge
on a target. The big variety of isotopes are extracted from the bulk of the
target towards different experiments. In the facility the extracted ions of iso-
topes are singly charged. To increase the charge state of a chosen isotope after
A/q separator the ions are prepared at first in a cooler and injected into the
charge breeder, in case of the REX-ISOLDE - REX-EBIS. Different charge
states from the charge breeder are extracted, separated and sent further into
the beam line.

For example for future CARIBU project [Sav08] a gas catcher will be used
to stop fission recoils from a Californium source and to extract them as a low-
energy beam. In this case the isotopes from the gas catcher will be also of
singly charged ions. ECR-1 ion source will be used for the CARIBU project
as a charge breeder.

Highly charged ions of different rare isotopes are of special interest for
atomic physics precision experiments at low energy, like laser spectroscopy or
mass measurements. Low A/q of HCI also allows efficient post-acceleration
of the radioactive ion beams in an IH-structure and RFQ for nuclear physics
experiments at the Coulomb barrier.

As the EBIS/T devices seem to be very efficient for capture of externally
injected singly charged ions to produce HCI, there application for the charge
breeding is the most promising. The singly charged ions can be injected into
a source continuously or in a pulsed regime (see below). In case the ions
are bunched before the injection, both injection schemes should not lead to
big losses. Investigation of the EBIS/T devices possibilities is covered in this
chapter.

The production of rare isotopes is not very intense in comparison to sta-
ble beam generation. Thus to keep the number of HCI more or less close to
the number of injected ions, the singly charged species should be efficiently
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captured in the charge breeder and ionized to a narrow charge-state distribu-
tion with the most abundant the required charge state. The extracted highly
charged ion beam should have small emittance to prevent losses in the beam
line. Ion charge state distribution manipulation in the source and improve-
ment of the extracted beam quality were discussed in the previous chapter.
Here we will concentrate mainly on the capture of singly charged species and
overlap between the ion beam and the electron beam.

In our experiments the charge breeders used are the MAXEBIS and the
SPARC EBIT. Singly charged ions were produced with the also mentioned in
the 5th chapter sputter ion gun and surface ion source.

7.2 Basics of charge breeding

There are two main possibilities for external injection of singly charged species
into the EBIS/T device, schematically shown on fig. [[.2l Singly charged ions
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Figure 7.2: Scheme of the potentials for external singly charged ions injection into
the EBIS/T for charge breeding.

are usually extracted from a source biased to a potential Vp,, which deter-
mines there kinetic energy on the way to the EBIT/S device. To be captured
in the charge breeder the energy should be above the ionization chamber po-
tential allowing two possibilities: below the extraction barrier potential, dis-
tinguishing a pulsed injection into the device, or above, corresponding to the
over-barrier injection. The barrier electrode close to the cathode (the first
drift tube) should have the potential always above the singly charged ion en-
ergy to reflect the beam backwards. This prevents the ions from leaving the
trap towards the cathode. In case of the pulsed injection the extraction bar-
rier voltage is dropped during the time necessary for the ions to drift from the
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extraction electrode to the first drift tube and backwards, then the potential
is increased and the ions are confined longitudinally within the electrostatic
potential well created by the barrier electrode potentials, and radially in the
magnetic field and electron space charge potential [KesO8b].

The ions created via the electron impact ionization of gas atoms are born
and confined inside the electron string initially and thus increase further there
charge state. In the case of external injection the ions can be confined but
not charge bred, moving around the electron beam, thus the key role of charge
breeding is to provide the overlap between the ion and electron beams. In case
of the over-barrier injection the better overlap is even more critical, because the
extraction barrier potential is kept high and constant during the injection. The
ions for this charge breeding scheme can be trapped only if they change there
charge at least to 2+ state, then the extraction barrier Vg becomes twice higher
(see fig. [[2]) and the ions are trapped. If the charge state is not changed during
the drift time inside the ionization chamber, then the ions just leave the trap
region the same way as they entered. Increase of the charge state increases the
potential barrier also in radial direction and the ions become better confined
and there motion becomes closer to the bottom of the potential well and thus
better overlap with the electron beam is provided.

One can conclude that for the efficient charge breeding the emittance of the
injected ion beam should be less or comparable to the emittance of the ions
from the source itself (see [Wen02] for estimations), also a strong magnetic
field is favorabl, which can provide radial focusing and longer drift time. To
increase the time the ions are contained in the ionization region for the over-
barrier injection the length of the trap should be also sufficiently long, which
depends on the ion velocity in the trap, electron current density and as men-
tioned the overlap between the two beams. The over-barrier injection despite
of the more strict requirements set on the beam quality has a big advantage
that the trapped ions can be continuously accumulated in the ionization region
during much longer time in comparison to the pulsed injection. In this chap-
ter only over-barrier (called accu-mode) injection is considered, which is the
anticipated injection scheme of the MSU ReA3 charge state breeder [Sch0§].

7.3 Advanced charge breeding in MAXEBIS

The MAXEBIS was an essential tool of the charge breeding collaboration [Kes08a].
This device had several advantages. As it was mentioned in the setup descrip-
tion, there was a possibility to change the electron beam radius changing the
position of the cathode in the magnetic field gradient using manipulators. So
a bigger radius of the electron beam could be achieved in a strong magnetic
field providing automatically a good overlap between the injected ion beam

IThough, one should not forget, that strong magnetic field focuses better the electron
beam as well.
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and electron string. The residual gas ions produced relatively plentifully in
the source could serve as a Coulomb target, collisions with which in case of
the heavier incident species, could decelerate and cool the injected beam.

With the MAXEBIS the injection over the barrier of singly charged Ar -
ions from the sputter gun, has been tried. To perform these experiments, the
setup shown on fig. was used and the TOF mirror high voltage was ramped
up and down with a Behlke high voltage switch driven by a TTL level pulse
synchronized with an extraction pulse from the EBIS. So during extraction
from the source the mirror of the spectrometer reflected the highly charged
ions from the EBIS towards the channeltron and singly charged species from
the sputter gun backwards not allowing there injection into the MAXEBIS.
During our successful experiment the potential of the ionization region was
adjusted to 1.5 kV, the extraction barrier potential to 1.8 kV, the first drift
tube potential to 2 kV and the potential of the sputter ion gun was 1.8 kV.
A beam current of 100 pA of singly charged Ar-ions, which delivered 100 nA
primary beam intensity, could be measured on the repeller in the collector
while the electron beam was switched off. Taking into account the aperture
of the repeller and the area of the electrode itself seen by the ion beam and
assuming focusing of the beam and homogenious distribution of the particles
one can estimate that nearly the same amount of ions entered the MAXEBIS
device.

The corresponding TOF spectra with and without Ar™ injection are shown
in fig. 3. With Ar™ injection several peaks showed up with maximum abun-
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Figure 7.3: TOF spectra of the ions extracted from the MAXEBIS with and without
external Art injection (confinement time 25 ms).

dance of the Ar®* species. The electron beam current was 30 mA, the beam
energy 3 keV and the trap length 0.8 m, thus the charge capacity of the electron
beam was ~ 4.6 - 10° charges and the measured electron beam neutralization
after 25 ms was 25% (see fig. £.6)). 1.6-107 Ar™T ions entered the electron beam
in 25 ms. Injection and breeding efficiency can be estimated from the relative
abundance of Ar peaks in the TOF spectra on which residual gas ion peaks are
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not cut by the scope resolution. The amount of Ar-ion charges as compared
to the amount of residual gas ions, derived from the spectra, is around 12%.
Assuming an average charge state of 10+, 1.4 - 107 Ar* ions were captured
and charge bred, meaning 86% of the injected singly charged species, 20% of
them were bred to the 94 charge state. So capture and charge breeding were
very effecient. Omne can conclude, that the ideas, to use a small amount of
the residual gas ions as a Coulomb target for externally injected Ar™ beam
and to use relatively big diameter of the electron beam to improve the charge
breeding efficiency, were approved. Typically for such big ion sources with a
superconducting magnet the efficiency of the charge breeding is around few
percents.

Main uncertainties of our experiment come from the estimation of the Ar™
current entering the electron beam at the repeller electrode and hence a larger
amount of Ar ions could be injected into the ionization chamber. Unfortu-
nately the uncertainties and bad resolution of the time-of-flight spectra can
spoil the obtained value for the efficiency. Also a bad transmission of the
beam line decreased drastically the overal setup capability for the delivery of
highly charged ions.

7.4 Charge breeding in the room temperature
EBITs

In the electron beam ion sources with a strong magnetic field the capture
of externally injected ions in accu-mode is not a big deal and one should
mostly take care of the overlap between the electron and ion beams for further
ionization. In the ion sources with relatively weak permanent magnets like the
SPARC EBIT the capture and overlap are going hand in hand, because the
weak magnetic field can not capture the singly charged ion species. The ions
become confined in such a source with electrostatic fields. This can happen
only if they change their charge state.

The small size of the EBIT means a short drift length of the ions inside the
trap. For the discussed over-barrier injection, the time necessary to make a
round trip in the ionization region is around a ps, dependent on the difference
between the potentials of the ionization chamber and singly charged ion source,
which determines ion velocity in the trap.

The ionization time necessary to obtain the 2+ charge state in the electron
beam is dependent on the ionization potential of the second electron, on the
electron beam energy and density, but still normally is below 1us. Nevertheless
on the scale of the total drift time inside the trap the ion beam must be within
the electron beam for a considerable period.

First attempts for the charge breeding with the SPARC EBIT was per-
formed with a setup in a separate experimental hall and depicted on fig. [6.7]
Unfortunately the experiment did not give us a satisfactory result. The ab-
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Figure 7.4: A new setup installed on the HITRAP platform. The singly charged
ion source produced KT ions which were injected into the EBIT and after charge
breeding extracted towards the MPS. On the insertion one can see a SIMION 7.0
simulation of the beam line with the trajectories of Ar'%* ions (red lines) extracted

from the SPARC EBIT.

sence of a proper alignment did require a lot of steerers used to transport the
beam to the source. This most probably led to the off-axis injection of the ion
beam.

As the SPARC EBIT is a test ion source for the HITRAP project, the
new setup was built on the first floor above the decelerator facility after the
vertical beam line, see fig. [[.4l The setup except of the task to deliver HCI from
the EBIT for off-line tests, was also designed to perform the charge breeding
experiments. The singly charged ion source (this time a surface ion source) is
mounted opposite to the EBIT, between the two sources a quadrupole bender
is installed to bend the beam from the EBIT towards the MPS for charge
state analysis. This is done as usually applying high voltage to the quadrupole
electrodes during the extraction from the EBIT with a Behlke high voltage
pulsers. Except of the short extraction time the high voltage is not applied,
allowing singly charged ions from the surface ion source to enter the EBIT.
In front of the EBIT a FCI1 for diagnostics and a couple of additional Einzel
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lenses were forseen for the better transport.

The whole setup was simulated as usually using SIMION 7.0 to check the
beam transport (see the insertion on fig. [[4]). Additional simulations were
carried out for the external injection of the singly charged ion beam into the
source. In the simulation a user programming was used and the ions obtained
a 24 charge state as soon as they crossed the virtual electron beam. On
fig. one can see the trajectories of singly charged potassium ions (red lines)
and K*" species (blue lines) for different ”over”’-barrier injection potentials.
The most efficient injection happens in the simulation when the ion kinetic

===
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Figure 7.5: Simulation of the injected K* ion beam (red lines) into the EBIT for
different starting potentials of the singly charged ions, 10 V above the extraction
barrier, equal (0 V) and -10 V and -20 V below the barrier potential. Blue lines
correspond to the K2t ion trajectories continuing the motion of singly charged
species as soon as they pass through a virtual electron beam. Doubly charged ions
are immediately trapped in the ionization chamber.

energies are slightly above the extraction electrode potential. That was one of
the main mistakes done by us during the experiments with a previous setup.
One should keep in mind that the ionization in the simulation is done during a
single time step when the singly charged ion crosses the small volume occupied
by the electron beam. That’s why the injection slightly above the barrier and
capture were the best, still the simulation shows that the overlap with the
electron beam is not very good. On the other hand injecting the ions right
into the barrier, into a potential cavity (gate way) created by an electron string
(see fig.[6.8) the overlapping conditions between the ion and the electron beams
are automatically fulfilled.

Also in reality the potential dip at the exit is not screened by the ions like
in the trap region due to a continuous escape of the positively charged species
and thus at the exit or entrance for the upcoming ions it effectively confines
radially the externally injected ion beam. Of course a special preparation of
the upcoming ion beam is necessary to have a small emittanceﬂ which will not
allow a reflection of a big fraction of ions from the barrier.

1Better emittance one can get via electron or resistive cooling of ions or in case of an
intense beam just cutting it passing through diaphragm(s) before injection into the EBIT.
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Figure 7.6: X-rays spectra with injected K ions for different extraction barrier
potentials. K™ ion source potential is fixed 5 V above the ionization chamber
potential.

Our first successful experiment with injection of K ions from the external
source was performed below the extraction barrier potential. The electron
beam energy and current were 7.4 keV and 23 mA, respectively, the ionization
chamber potential was set to 4.83 kV, the first drift tube to 4.9 kV and the
K™ ion source to 4.835 kV. The extraction (barrier) electrode potential was
varied from 5 V to 40 V above the potassium source potential. On fig. one
can see different X-ray spectra for different potentials. It is clearly seen that
the mixture of not resolved K, and Kj lines appears in the spectra for rather
high barrier potentials with maximum intensity at 30 V above the potential
of the singly charged ion source. Further increase of the potential decreases
the amount of ions entering the trap and completely reflect the upcoming ion
beam at 40 V above the potassium ion source potential. Approximately 30
V is a depth of the potential well created by the electron space charge for
the set conditions (see formula B.12). Fixing further the barrier hight the
potential of the ionization chamber was varied. The result showed that the
best setting is when the ionization chamber potential is equal to the potential of
the potassium ion source. That in principle means that the ions in the middle
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electrode moving along the axis, are rather fast with 30 eV kinetic energies
(above the bottom of the potential well). Still this is not really true for the
closed trap region where the electron potential is at list partially screened by
residual gas ions which can not escape easily as in the case of the barrier
electrode and thus the injected ion velocities should be rather low. Charged
spieces screening the electron space charge also can serve as a Coulomb target
for the incident K ions decelerating them efficiently.
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Figure 7.7: Magnetic scans of K ions extracted from the SPARC EBIT for differ-
ent confinement times. The K™ was continuously injected from the surface singly
charged ion source.

As the main settings for the injection were established the further opti-
mization and charge state manipulations were performed. On fig. [[.7] one can
see charge state distributions for different confinement times of the charge bred
potassium ions, measured on a FC2 after the MPS scanning the magnetic field.
During the measurements the ions were injected continuously over (or better
to say into) the barrier. As in the case of the gaseous Ar injection (see fig.
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for comparison) the common behaviour can be seen. At first within 20 ms the
residual gas ions dominate the charge state distribution. After a longer con-
finement higher and higher charge states of K ions show up in the spectra.
Finally only potassium ions fill the storage capacity of the trap, with the same
amount of HCI as for the gaseous Ar injection. At approximately 1000 ms
the equilibrium is reached and there are no further changes in charge state
distribution. The continuous influx of K plays the same role as the contin-
uous injection of neutral Ar, replenishing the trap. That led to a bit broader
distribution compared to the pulsed injection, due to the constant production
of low and medium potassium charge states which replace some HCI. Also the
collisions between singly charged upcoming K ions and there captured highly
charged species influence the charge balance due to a Landau-Spitzer heating,
caused not (only) by the high energetic electrons in this case, but by a flux
of heavy low energetic ions. Additional disadvantage of continuous injection
is that the effeciency of captured and charge bred species is rather low, when
the trap is full within a short time. In continuous injection case the efficiency
was estimated to be around 4 - 107°.

If one will take into account the rate of charge compensation in the trap
(see fig. [6.12]), which is filled approximately up to 85% within 20 ms, it is clear
that the continuous injection is not very necessary. So we tried to perform
a pulsed injection into the trap. For that purpose the voltage applied to the
Einzel lens in front of the EBIT was also pulsed, stopping the injection of the
beam from the K-source for a chosen time. On fig. one can see a charge
state distribution in case of 50 ms injection, right after the moment when the
trap was closed again, for different confinement times.

The injection of K ions within a short time period happens in parallel
with creation of the residual gas ions in the trap. Still due to the charge limit
and increase of the average charge state in the trap the number of initially
captured ions is decreasing (see fig. [[9]). As the K is the heaviest element in
comparison to the residual gas species and has higher possible charge state,
and thus better confinement, it repells the residual gas ions from the trap.
Longer charge breeding time increases the K ions charge states and allows to
contain effeciently the species in the source without losses. On fig. [[.9 one can
see that the number of captured K ions is pretty stable for long confinement
times.

As there is no additional influx of singly charged species and there is no
increasing of multiply charged ions in the trap, which can repel higher charge
states, the only thing which slows down and stop the charge evolution is the
charge exchange with the residual gas ions. As one can see on fig. [[.§ the
charge state distribution after 1000 ms of confinement is narrower than in the
case of continuous injection and even more, afterwards the equilibrium does
not happen. Charge states evolution continues up to 2000 ms. After that
confinement time the production of hydrogen-like and even a small amount of
bare K ions were observed. The maximum of the ion charges (around 80%)
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Figure 7.8: Magnetic scans of extracted K ion species from the SPARC EBIT for
different confinement times. The K was injected as a 20 ms pulse from the surface
singly charged ion source.

was concentrated in the K'™* state. Unfortunately longer charge breeding
was not possible to detect with magnetic scans due to the small signal on the
currentmeter.l higher charge states, the only thing which slows down and stop
the charge evolution is the charge exchange with the residual gas ions. As one
can see on fig. [[L8 the charge state distribution after 1000 ms of confinement
is narrower than in the case of continuous injection and even more, afterwards
the equilibrium does not happen. Charge states evolution continues up to
2000 ms. After that confinement time the production of hydrogen-like and
even a small amount of bare K ions were observed. The maximum of the
ion charges (around 80%) was concentrated in the K7t state. Unfortunately
longer charge breeding was not possible to detect with magnetic scans due to
the small signal on the currentmeter.

Thus to increase the number of charge states in the trap one should get
rid of the continuous injection into the ionization chamber. Using the pulsed
scheme of injection increased the mentioned efficiency of charge breeding by a
factor of 50 (for 20 ms of injection) and thus is 2- 10~ in the moment.

To summarize the results obtained on charge breeding in a compact room
temperature EBIT it should be stated that the reached overall injection-
capture-extraction efficiency is lower than in existing charge state breeders,
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Figure 7.9: The charge and number of different ions contained in the trap in depen-
dence on confinement time.

but quite high for this compact type of source. It can be increased even fur-
ther with a better quality of the injected beam and using pulsed injection. To
our knowledge up to the moment no charge breeding experiments were per-
formed with such new type of room temperature EBITs, which show rather
good possibility for that purpose. Different ion sources can be installed in-
stead of the potassium ion source and so in future due to the successful charge
breeding with the EBIT different highly charged species will be provided for
HITRAP.

Due to the efficiency of the charge breeder, which is still less in comparison
to the big set-ups, like REXEBIS, where the efficiency is in the range of 6%
to 33% and also due to the small capacity of the trap, the SPARC EBIT is
definitely not suitable for post-acceleration facililties. Still a production of low
and medium Z highly charged species is possible for mass and g-factor mea-
surements, and even for laser spectroscop. Due to a rather fast production
rate, even small number of ions can be accumulated in the traps, where a suffi-
cient amount of ions can be reached. So the HITRAP experimental setups will
be provided in future with different HCI for interesting offline experiments.

IThe number of ions necessary for the measurements is > 10°
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Chapter 8

Summary and outlook

During this PhD work design, simulation, installation and operation of the
electron beam ion source and ion trap setups were performed, dedicated to
the charge breeding experiments and off-line delivery of highly charged ions to
the HITRAP facility, for which commissioning and preparation to the multi-
electron ion-atom collision investigations using MOTRIMS technique were also
done.

In the thesis an overview on the HITRAP project is given and the main
parts of the decelerator facility as well as the proposed future experiments are
described. During construction of the HITRAP facility, six beamtimes with
highly charged ions at an energy of 4 MeV /u from the ESR storage ring have
been held since 2007 for the commissioning tests. The double-drift buncher was
fully commissioned and showed the design values in transmission, emittance
and expected time structure of the beam. To have efficient deceleration in the
[H-structure the injected ion beam should have a well-formed nanoseconds-
bunches matched to the rf-phase of the IH-structure. The performance of the
IH decelerator was tested and showed also good transmission, emittance and
efficient deceleration from 4 MeV /u to 500 keV /u. Still there is room left for
improvements by optimization of the amplitude and the relative phases of the
double-drift buncher and the IH-structure. After the deceleration the energy
distribution is measured by polycrystalline and single crystall diamond detec-
tors, which have a high energy- and time- resolution. The Radio Frequency
Quadrupole decelerator has been partially commissioned. The beam was trans-
ported through it and no significant losses were detected on the MCP-phosphor
screen detector. The amount of ions decelerated down to 6 keV /u in the RFQ
is an issue for future measurements. The Low Energy Beam Transport section
has been set up and the Cooler Trap with the vertical beam line are nearly
completely finished. On the HITRAP experimental platform the EBIT is in-
stalled and is fully operational. It will be used to deliver highly charged ions
to establish the settings for the vertical beamline and to test the Cooler Trap.
The ions from the source will be helpful to speed up the commissioning of the
HITRAP facility. As soon as the RFQ parameters will be optimized, the rest
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of the beamline will have also been tested from the other end and there should
be no problem to deliver finally heavy highly charged ions from the ESR to
the experimental setups.

One of the future experiments at HITRAP will be ion - atom collision
studies. This topic is thus covered from the theoretical point of view and
with experimental investigation on ions from ion source. An overview on the
classical-over-barrier and statistical phenomenological models is presented with
quantitative calculations. At HITRAP the experiments will be conducted
with heavy highly charged projectiles for which the theoretical models predict
multi-electron charge exchange and allow to make estimations of the collision
cross sections. Still the predictive power of the models is limited and further
theoretical development should be done. Already existing Basis Generator
and Classical Trajectory Monte Carlo methods are suitable tools to tackle the
problem of multi-electron charge exchange. Still the number of experimental
results does not allow to approve the application of one or another model in the
field of future investigations. For collision experiments gas jet and MOT targets
will be involved in the future. The study of the collision products will allow to
determine cross sections and Q-values of different processes. An experiment
at KVI/Groningen with a MOTRIMS setup provided experimental results on
this topic. Ion optical simulations were done for the Recoil lon Momentum
spectrometer from Heidelberg attached to the Rb - MOT, which will be used
at HITRAP later on. The spectrometer is suitable for collision studies with
ions in low and medium charge states. Additional modifications will allow to
use the setup for heavy highly charged projectiles as well.

Low- and medium - Z ions in high charge states as well as high - Z ions in
low and medium charge states can be delivered off-line from the existing EBIT
ion source at HITRAP not only for collision studies, but also for other experi-
ments as well. In the moment HCI are very interesting for high-precision mass
measurements. Few-electron systems, as hydrogen- or Li- like ions are required
for precise bound electron g-factor measurements. Some of the experimental
setups are already being installed (g-factor trap) or already exist (SPECTRAP
for laser spectroscopy) on the HITRAP platform. The beamlines to connect
the setups with the ion source and the vertical beamline will be built in the
beginning of 2010.

During this work two ion sources were put into operation and intensely
studied. Experiments on charge breeding of singly charged species injected into
an EBIT/S from an external ion source were performed. This investigation was
covered by the EU networks EURISOL-DS and by the I3-EURONS projects.
The main goal of the investigation was to obtain a high efficiency for the
charge breeding process, which was successfully achieved with the cryogenic
MAXEBIS setup. Our results can be used in principle in planned facilities
like MATS, EURISOL or existing facilities, like REX-ISOLDE, which will
or already deal with the charge breeding of rare isotopes for nuclear physics
studies. Charge breeding was also investigated by us in the room temperature
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SPARC EBIT and revealed interesting features, like the necessity to inject
the ions below the barrier potential into the gate way created by the electron
beam or efficient pulsed ”into”-barrier injection. Such kind of experiments
was never performed to our knowledge for this type of ion source. Besides the
direct interest in the physical process itself, the successful charge breeding in
SPARC EBIT will provide the HITRAP experiments with a variety of elements
in high charge states.
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Appendix A

Atomic units

In the atomic unit (a.u.) system the following main constants are equal to
unity:
h
o
here h is the Planck’s constant, m. and e are the electron mass and charge,
respectively, €y is the vacuum permittivity. The speed of light ¢ in atomic
units is equal to a = 1/137 - the fine structure constant. The Bohr radius
ag = €oh?/(mmee®) = 1 is used as a unit of length. As a unit of energy
2-Ry = 27.6 eV is used, where Ry is the Rydberg constant. In the table below
some SI (International System of units) values related to 1 atomic unit of the
corresponding quantity are listed.

=m,=e=4mey =1, (A1)

Table A.1: Several SI values related to 1 atomic unit of the corresponding quantity

Atomic unit of: SI value

length 0.529 - 10~19m

time 2.419-1071s
velocity 2.188 - 105m/s

mass 9.110 - 10~ 3kg
energy 4.359-10718J
charge 1.602-107¥C

momentum 1.993 - 10~2*kgm/s

angular momentum

1.055 - 10734 Js

To convert keV/u kinetic energy value into velocity in atomic units one
should use the formula:

v[a.u.] = 0.2/ E[keV/u). (A.2)
From the eq. [A.2] using tab. [A. ] one can obtain another useful formula for the
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velocity in SI units:

vim/s] = 1.39 - 10*\/E[eV]/m]u]. (A.3)



Appendix B

Magnetic field in case of
cylindrical symmetry

Magnetic field in a free space is described by Maxwell equations:
V x B=0, (B.1)

V-B=0. (B.2)

The first one allows the magnetic field to be derived from a scalar potential
defined by B = V¢ substituting which into the [B.2] will lead to the Laplace
equation Ap = 0. Actually the electrostatic field is described by the same
couple of equations, thus the final result for the magnetic field is valid for the
electrostatic field as well. In cylindrical coordinates (z,r, ) the Laplace equa-
tion can be solved separating veriables. As the magnetic field is independent
on the angle, only two components remain, i.e. radial (B,) and longitudinal
(B.) for which the final result is:

B2 =Y CU (Dynpen o ), (B.3)

— nl* 2
B.(r,z) = L i i(f)Z"B@”“)(O 2) (B.4)
’ 2 4= nl(n+1)!"2 : ’

here B, (0, z) is the magnetic field along the axis of symmetry. In the vicin-
ity of the axis when the variable r is small, one can use the first terms of
expansions [B.3l and [B.4] to get the components in the form:

Bz(r7 Z) - Bz<07 Z), (B5)
Bi(r,z) = 5 220 (B.6)
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On the axis of a solenoid at the distance a from the solenoid center one can
use the Bio-Savart’s law to obtain the magnetic field:

NJ ((l—a)l Rz—l—\/RZ 2 R2+\/R2
4(Ry — Ry) R+ /R2+( 2 R1+\/R2 )

where R; and R, are the inner and outer radii of the solenoid, respectlvely,
N - number of coils, J - electron current, py the vacuum permeability and [ is
a length of the solenoid. Using the formulas above [B.3] and [B:4] one can get
magnetic field around the axis.

BZ<O’ a) = Ho



Appendix C

Emittance measurements using
3- (multi-) gradient method

Ions in the beam, moving along the optical axis, has velocity components
in the plane perpendicular to the flight direction. Taking into account two
orthogonal coordinates of the plane and velocity components along them, ions
occupy a volume in the 4D phase space (z,y, v,, v,) which due to the Liouville
theorem is kept constant over timd. Usually to obtain analytical solution
for the volume deformation along the axis the volume is assumed to be a 4D
ellipsoidE. Projection on the (x,v,) and (y, v,) planes will give the ellipses for
which the equations are in the form:

vr? + 2axx’ + Ba”? =, (C.1)

where instead of v, the normalized value ' = v, /v, is used. The «, 3, are
called Twiss parameters for which the relation:

By —a®=1 (C.2)

is true. The € value is the emittance of the beam, i.e. the constant phase
space area divided by 7. The correspondence between the ellipse coordinate
(x0, xp) at the position zy and the ellipse coordinate (z,z’) at the position z is
determined by a transport matrix A:

(2)=a(m)=(2 o) () o

!In principle invariant is the total 6D phase space, but here the time structure of the
beam is kept constant and thus only transverse planes are considered

2The shape of the beam is nearly ellipsoidal for example for the ions extracted from the
EBIT with small magnetic field. The ions inside such a source are moving in the electrostatic
harmonic potential well created by the electron space charge (see chapter 5), thus their radial
velocity components are maximal on the axis, and nearly equal to zero at some distances
from the axis. Assuming the energy conservation (no interaction with the environment) for
a single ion in a harmonic trap one can write a formula av(R)? + bR? = ¢, where R is a
distance from the axis.
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The transport matrix for the drift without any optical element is:

1 1

where [ is a drift length. For the thin lens the transport matrix is:

1 0
Alens = < ~1 7 ) ’ (05)

f
where f is a focal length of the lens. Expressing x, 2’ coordinates at the
position z through the transport matrix components and xq, x; coordinates
at the position 2y one can substitute them then into the eq. [CIl Comparing
the coefficients of the z3, oz, z§, in the obtained equation, with 7o, ag, o,
respectively, one can find out the relation between vy, ag, 5y and v, a, # in the

3 c? —2sc 52 Bo

o / / / /
a | =| —dc se+ds —5's ap |, (C.6)
v C/2 —24'¢ 8/2 Yo

If the beam passes through a thin lens with focal length f and hit the screen
after a drift distance [ for profile measurements the correspondent transport
matrix from behind the lens to the screen is:

1—-L
A= Adm‘ftAlens = ( _lf 1 ) . (C7>
f
Substituting the components of the final transport matrix into the system of
linear equations one can express the parameter § at the screen position
through the Twiss parameters in front of the lens in the form:

B= (1= 2028 — 21— Lyag + (€8)
S S
On fig. one can see the phase space ellipse described by the formula [C.Il
Different parameters of the ellipse like maximal x or x’ can be expressed
through the Twiss parameters and emittance. So measuring the radius of
the beam will give a v/¢3. Multiplying both parts of equation by € one ob-
tain in the left part radius (r) of the beam squared and in the right part three
unknown parameters €3y, eay and evyy. Changing the focal length of the lens
applying different voltage and measuring the beam radius on the screen will
provide enough information to calculate the unknown parameters and thus,
using eq. the emittance.
In principle three measurements are enough to obtain € from:

2 (142 —21-1) 1 5o
= 0-%)?2 =20-4) P cag |, (C.9)
3 (1— L) —21(1 — L) 12 Yo

3 3
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Figure C.1: Phase space ellipse. The maximal radius and angle are related to the
Twiss parameters 3, and emittance €

that’s why the described method is called originally a 3-gradient method. Still
to obtain a more precise value for emittance more than three measurements
are usually done. In that case a system of equations is represented as:

b1 b bis T%
Doy Doy b o 2

21 022 023 cap | = T3 7 (C.10)
bnl bn2 bn3 1o T%

where in the B - matrix the coefficients are of the form as in the [C.9. Intro-

ducing vectors 7 = (r?,r3,...,r2), b; = (b1, ba,...,b,) and variables z; = €f3,

29 = €03y, 23 = €3 one can obtaine "the best solution” for the solving a
system of only three equations:

(7. b)) — Z 2(bi,b;) =0, (C.11)

where (Z, ) is a scalar product. For details to the 3-gradient method I would
refer to [Kes92l, Wol87].
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