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Analysis of the molecular mechanisms underlying the 
activity of the Ets-1/USF-1 transcription factor complex 

on the HIV-1 LTR 
 

Ulrich Mayer 

 

Summary 
To assure cell type specific gene transcription cells have developed strategies 

to control the transcription of a large number of genes with a limited number of 

transcription factors. This is achieved by combinatorial control in which a complex 

array of transcription factors regulates promoters and enhancers. Recognition of 

regulatory elements is governed by both protein-DNA and protein-protein 

interactions. Many transcription factors can engage in multiple protein-protein 

interactions that form larger complexes required for adequate gene expression. In 

this PhD thesis I will present results that illuminate the multifaceted interplay between 

the transcription factors Ets-1 and USF-1. The ETS proteins act synergistically with a 

variety of other transcription factors to regulate many cellular and viral promoters and 

enhancers. Transcription of human immunodeficiency virus 1 (HIV-1), integrated into 

the host cell genome, also depends on the concerted action of cellular and viral 

transcription factors recruited to the HIV-1 long terminal repeat (LTR). The cellular 

transcription factors Ets-1 and USF-1 have been shown to form a complex on 

adjacent DNA binding sites present in the distal enhancer of the HIV-1 provirus and 

to cooperate in DNA binding and transactivation. DNA binding of Ets-1 is governed 

by autoinhibition that is exerted by two distinct inhibitory modules situated N- and C-

terminally to the ETS DNA binding domain. 

The objective of my thesis project was to unravel the molecular mechanisms 

that govern the cooperation between Ets-1 and USF-1. I could show that USF-1 

interacts with the C-terminal autoinhibitory module of Ets-1 and that this interaction is 

required to relieve autoinhibition of Ets-1 DNA binding. Reciprocally DNA binding by 

USF-1 is also facilitated by interaction with Ets-1. Furthermore, I provide evidence 

that synergistic transactivation by Ets-1 and USF-1 is not only the consequence of 

increased DNA binding potential but of additional cooperative mechanisms that affect 

transactivation function itself. I could reveal a novel mechanism of transcription factor 
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cooperativity by showing that the C-terminal autoinhibitory module of Ets-1 can 

directly activate transactivation capacity of USF-1. In addition, I show that the 

transcriptional cofactor CBP is implicated in the mediation of Ets-1/USF-1 

cooperativity. CBP interacts physically with both transcription factors and is required 

for synergistic transactivation. I could map the domain in USF-1 necessary for 

interaction with CBP to a stretch of 22 amino acids. Deletion of this domain abolishes 

both transactivation capacity of USF-1 on the HIV-1 LTR reporter and cooperativity 

with Ets-1. 

Together, these data provide new insights into the molecular mechanisms 

underlying Ets-1/USF-1 cooperativity. They indicate that transcription factor 

interaction results in significant conformational changes that affect both DNA binding 

and transactivation function of the complex. The example of Ets-1 and USF-1 could 

serve as a model for the hypothesis that transcription factors do not act as individual 

entities but that their functionality is only revealed in the complex with other partner 

molecules, similar to other multiprotein machineries in the cell. 
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Analyse der molekularen Mechanismen die der 
Aktivität des Ets-1/USF-1 

Transkriptionsfaktorkomplexes am HIV-1 LTR 
zugrunde liegen 

 

Ulrich Mayer 

 

Zusammenfassung 
Im Laufe der Evolution haben multizelluläre Organismen Strategien entwickelt, 

um mit einer limitierten Anzahl von Transkriptionsfaktoren die Expression 

zellspezifischer Gene zu gewährleisten. Diese basieren auf dem Prinzip der 

kombinatorischen Kontrolle, bei der ein komplexes Zusammenspiel von 

verschiedenen Transkriptionsfaktoren an Promotor- und Enhancerregionen die 

Genexpression reguliert. Dabei spielen neben der sequenzspezifischen Bindung von 

Transkriptionsfaktoren an die DNA auch Bindungen, die die Transkriptionsfaktoren 

untereinander oder mit weiteren regulatorischen Proteinen eingehen, eine 

entscheidende Rolle. Auch die Transkription des in das Wirtszellgenom integrierten 

humanen Immundefizienz Virus (HIV) hängt von der konzertierten Aktion viraler und 

zellulärer Faktoren ab. Diese binden an spezifische Erkennungssequenzen, die sich 

in den „long terminal repeats“ (LTR) des HIV-Provirus befinden. Es ist bekannt, dass 

die zellulären Transkriptionsfaktoren Ets-1 und USF-1 an zwei benachbarte 

Bindestellen in der Enhancerregion des LTR binden und bei der DNA-Bindung und 

Transaktivierung miteinander kooperieren.  

Das Ziel meiner Promotionsarbeit war es die molekularen Mechanismen 

aufzudecken, die der Kooperation zwischen Ets-1 und USF-1 zugrunde liegen. DNA-

Bindung von Ets-1 wird durch einen autoinhibitorischen Mechanismus reguliert. 

Hierfür sind zwei inhibitorische Module verantwortlich die sich N- und C-terminal von 

der DNA-Bindungsdomäne befinden. Ich konnte zeigen, dass USF-1 mit dem C-

terminalen, inhibitorischen Modul von Ets-1 interagiert. Durch diese Interaktion hebt 

USF-1 die Autoinhibition von Ets-1 auf. Darüber hinaus wird auch die DNA-Bindung 

von USF-1 durch das Wechselspiel mit Ets-1 stimuliert. Desweiteren konnte ich 

zeigen, dass die synergistische Transaktivierung durch diese beiden Faktoren nicht 

nur auf einer verbesserten DNA Bindung und somit einer erhöhten Präsenz am 
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Enhancer beruht. Ich konnte einen neuen Mechanismus aufdecken der zur 

kooperativen Transaktivierung durch die beiden Transkriptionsfaktoren beiträgt, 

wobei das C-terminale, autoinhibitorische Modul von Ets-1 direkt das 

Aktivierungspotential von USF-1 erhöht. Weitergehend konnte ich nachweisen, dass 

der aktivierende Kofaktor CBP/p300 eine erhebliche Rolle bei der kooperativen 

Transaktivierung durch den Ets-1/USF-1 Komplex spielt. Hierbei ist die Interaktion 

von CBP mit USF-1 von besonderer Wichtigkeit. Im Rahmen meiner Studien 

identifizierte ich die Bindungsoberflächen von CBP und USF-1 füreinander und 

konnte diese im Falle von USF-1 auf einen Bereich von 22 Aminosäuren eingrenzen. 

Die Deletion dieser Domäne zieht nicht nur den Verlust der Transaktivierungs-

fähigkeit eines HIV-1 LTR Reportergens durch USF-1 nach sich sondern unterbindet 

auch den Synergismus mit Ets-1. 

Zusammenfassend bieten diese Ergebnisse einen detaillierten Einblick in die 

molekularen Mechanismen, die der Kooperativität des Ets-1/USF-1 Komplexes 

zugrunde liegen. Sie deuten darauf hin, dass die Interaktion zwischen den 

Transkriptionsfaktoren zu erheblichen Konformationsänderungen führt die sowohl die 

DNA-Bindung des Komplexes als auch dessen Eigenschaften bei der 

Transaktivierung beeinflussen. Diese Erkenntnisse über das vielseitige Wechselspiel 

zwischen Ets-1 und USF-1 legen ein Model nahe, bei dem Transkriptionsfaktoren 

nicht als individuelle Einheiten zu sehen sind sondern als Bestandteile größerer 

Proteinkomplexe, die ihre vollständige Funktionalität erst in Verbindung mit anderen 

Partnermolekülen entwickeln. 
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What lies ahead in the future? 
 
“I don’t have a mystical crystal ball, but I do have 
an old cobalt blue aspirin bottle (dated “1899”) 
that was pulled out of an old garage dump in 
Colorado. This blue bottle is not exactly Aladdin’s 
lamp, but it does reveal visions of the future…. 
What should we do? 
First, there is every reason to conclude that we 
should continue doing what we have been doing. 
That is, we should continue to develop in vitro 
systems to decipher the molecular mechanisms by 
which sequence-specific factors and cofactors 
regulate transcription. We should devise novel 
assays for the discovery and isolation of new 
activities…” 
 
James T. Kadonaga (Cell 2004) 
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1. Introduction 
 

Until the early sixties cells were believed to loose continuously genes during 

differentiation to give rise to the various cell types of a multicellular organism. This 

hypothesis was disproved when J. Gurdon (Gurdon, 1962) has discovered that nuclei 

from intestinal epithelium tadpole cells implanted into enucleated frog egg cells can 

develop into normal tadpoles. This finding was the first indication for the nowadays 

well accepted principle that in general all cells contain the same genetic information. 

More recently, a spectacular publication reported the cloning of a sheep by the same 

principle (Wilmut et al., 1997) proving that the findings in amphibians are valid in 

mammals, too. A few weeks ago South Korean scientists even generated cloned 

human blastocysts (Hwang et al., 2004) with nuclei from differentiated ovarian cells. 

 

What is it than that makes one cell type different from another? 

 

The identity and function of each cell is determined by the proteins it is made 

up of. Proteins are generated by the tightly controlled process of gene expression. 

This term commonly refers to the entire process of gene transcription into RNA, its 

processing and transport, the translation of the RNA into the protein and 

posttranslational mechanisms regulating protein stability. It remains an important 

question how a cell determines which complement of protein needs to be expressed 

to make up its particular cellular identity. 

Each cell type uses a different subset of the genomic information to acquire 

their specific properties or to respond to a changing environment. To be able to adapt 

to changes in the environment cells must be able to sense differences. 

The initial findings about the control of gene expression have been made in 

bacteria since in prokaryotes gene control serves mainly to allow a single cell to 

adjust to changes in its nutritional environment so that its growth and division can be 

optimized. Jakob and Monod found in the early 60’s that a group of genes coding for 

enzymes essential for the use of Galactose as a nutritional source become induced 

by the presence of Lactose. The transcriptional control is exerted by a protein 

tetramer consisting of four LacI molecules that assemble to the Lac repressor. The 

Lac repressor binds to a DNA stretch, the Lac operon, that is situated 5’ of the 

transcriptional start site and which overlaps with the promoter thus avoiding the 
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assembly of the general transcription machinery. Binding of Lactose to the repressor 

induces a conformational change leading to the liberation of the promoter and 

subsequent production of the enzymes required for Lactose metabolism. This very 

simple mechanism of gene regulation set the basis for decades of research in which 

many variations of transcriptional regulation became elucidated. 

 

The evolutionary step from single to multicellular organisms has put new 

demands on gene regulation, which now has to assure the control of cellular identity, 

the cellular position in the body plan and intercellular communication reflected in 

gene regulation programs that underlie embryologic development, cellular 

differentiation and coordination of multicellular efforts such as the immune response. 

To respond to these exigencies transcriptional control has reached a much 

higher level of complexity in metazoans. Since the number of genes is in the same 

order of magnitude in invertebrates and humans increased organismal complexity 

must also be reached on the level of regulation. With this in mind we had to 

recognize that a single transcription factor can not be seen as a switch that decides if 

a gene becomes shut on or off. Instead it became more and more clear that a huge 

number of different transcription factors and coregulatory proteins control any given 

gene and that expression of a gene depends on the interplay of positive or negative 

activities of these factors. 

Also viruses depend on the cell's general transcription factors to assemble 

initiation complexes within their basal promoters and rely on cellular transcription 

factors and coactivators that stimulate and regulate transcription (see below). 

Whereas simple viruses like some retroviruses totally depend on control by cellular 

transcription factors. More complex viruses such as DNA viruses or the human 

immunodeficiency virus also encode their own regulatory proteins that interact with 

and modulate the activities of cellular factors. These viral proteins serve to activate or 

further stimulate the transcription of viral as well as cellular genes, and they act at 

multiple steps in the transcription process. 

The human immunodeficiency virus has been extensively studied with respect 

to its transcriptional regulation and findings have been very instructive for general 

concepts of gene regulation. 
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1.1. Transcriptional regulation 

According to recent estimates, a human cell has between 30,000 and 40,000 

coding genes, but only a fraction of these are expressed in any cell lineage. Gene 

expression profiles of a given cell type undergo dramatic changes throughout 

development, differentiation, and the cell cycle, presenting the gene regulatory 

apparatus of a cell with a phenomenal degree of complexity. Cells deal efficiently with 

this enormous task by using transcriptional regulators in a combinatorial way. Thus, 

unique combinations of transcription factors convey specificity of gene expression 

and allow the use of each transcription factor at multiple gene loci. One advantage of 

this strategy is that even widely expressed transcription factors or cofactors can 

contribute to tissue-specific gene expression. 

The cell disposes of several mechanisms to control the expression and the 

amount of active proteins (Figure 1): Accessibility of genes in the context of 

chromatin, transcriptional control, control of RNA processing as well as its transport 

and stability, translational control and finally the control of the activity of the resulting 

proteins. For many genes control of transcription is the most important since it 

represents the first step of expression. By this strategy cells avoid at the beginning 

the wasteful investment in energy consuming processes for protein production. 
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1.1.1. Basic elements for transcriptional control 

Two basic elements are required for transcriptional regulation: 

(1) Recognition elements on the DNA for the basic transcription machinery 

and transcription factors which are situated in the promoter, in upstream promoter 

elements and enhancer/silencer regions and  

(2) the protein family of transcription factors. 

 

The promoter contains basic recognition sites as the TATA box or the initiator 

element (Inr) which are recognized by proteins of the basic transcription machinery. 

The TATA box is first bound by the TATA-binding protein (TBP) which then 

subsequently recruits several TBP-associated factors (TAFs) to form TFIID. This 

complex is completed by further binding of the general transcription factors (TFIIA, 

TFIIB, TFIIF, TFIIE, TFIIH and TFIIJ) and RNA Polymerase II to form the functional 

Polymerase II Transcription-Initiation Complex (pol II machinery). Inr binding proteins 

also allow the assembly of the basic transcription complex including TBP that in 

TATA less promoters is not directly binding DNA but is recruited by protein-protein 

interactions. 

The upstream promoter element was initially believed to contain binding sites 

for transcription factors that are required for the constitutive expression of genes. In 

contrast enhancer and silencer regions were defined by their capacity to act over 

wide distance up- and downstream of the transcription start site and to be bound by 

tissue specific transcription factors. Through the analysis of transcription control 

regions of hundreds of genes, however, this distinction has softened since enhancer 

regions can lie in close proximity to the promoter of some genes and the upstream 

promoter element can equally contain binding sites for tissue- or signal specific 

transcription factors.  

Typical transcription factors are modular. This has been shown the first time by 

the generation of fusion proteins between the DNA binding domain of LexA and Gal4 

that activate transcription in a LexA binding-site-dependent manner showing that 

Gal4 transactivation and DNA binding function can be separated and act 

independently of each other (Brent and Ptashne, 1985). Later, modules with different 

functions have been identified that confer for example dimerization, 

activation/repression, responsiveness to ligands, autoinhibition and interaction with 

other proteins. 
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Transcription factors contain a variety of structural motifs that are able to 

recognize specific DNA sequences. They have been subdivided into transcription 

factor families that share structurally similar DNA binding domains (Mitchell and Tjian, 

1989). Among those are winged helix-turn-helix proteins like for example ETS 

proteins and basic helix-loop-helix leucine zipper proteins as the USF proteins. 

 

1.1.2. General concept of transcriptional control 

In the last decades many modes of transcriptional control had been identified 

and the concepts of transcriptional regulation evolved. 

(1) A classical transcription factor is defined as a protein that can bind to DNA 

and exert a positive or negative effect on the transcription of a given gene via its 

transactivation or repression domain, respectively. Nowadays, the definition of a 

transcription factor becomes broader with the discovery of transcription factor 

complexes that are composed of DNA binding proteins interacting with cofactors that 

can exert or modulate transcriptional activity without binding DNA themselves.  

(2) Gene expression is also determined by the chromatin context. Genes lying 

in tightly packed regions can not be transcribed because most transcription factors 

have no access to their binding sites. Several mechanisms have been shown to be 

required for “epigenetic” changes that allow the reversible alteration of 

transcriptionally active to permissive, repressive or permanently silent chromatin 

states (Fisher, 2002). Among those are DNA methylation (Bird and Wolffe, 1999), 

covalent modification of histone tails (Khorasanizadeh, 2004) and the spatial 

restriction of loci to nuclear domains. For the specific targeting of genes for these 

types of alteration it is assumed that transcription factors can recruit protein partners 

that are able to further modify chromatin or to localize a region in specific domains 

(Gasser, 2001). 
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(3) Transcription factors themselves also underlie control. Some transcription 

factors, as nuclear receptors for example, contain a regulatory module that confers 

activity upon ligand binding. Others are retained in the cytoplasm until a specific 

trigger allows them to enter into the nucleus to function in gene regulation. 

Posttranslational modification is another mechanism to control the activity of 

transcription factors. Among those are phosphorylation, acetylation, ubiquitylation 

and sumoylation. These modifications affect transactivation and DNA binding activity, 

protein stability and localization or can promote specific protein-protein interactions. 



(4) As mentioned above, some regulatory regions (enhancer/silencer) 

recognized by transcription factors act over a wide distance. To bring these 

enhancer/silencer bound factors in close proximity to the pol II machinery some 

transcription factors are able to bend DNA thus creating loops that enable these 

distant regions to come together. Examples for this class of architectural factors are 

the HMG (Kim and Maniatis, 1997) and LEF families (Eastman and Grosschedl, 

1999).  

 

1.1.3. Specificity in transcriptional regulation 

A difficult problem in biology is the issue of specificity of action by molecules 

that in sequence and structure are almost identical. This problem is well illustrated by 

families of evolutionarily conserved DNA binding proteins -particularly transcription 

factors- that need to activate and repress unique sets of target genes. 

A common pathway to specificity is the formation of protein partnerships in 

which two or more proteins that bind DNA together, display added affinity and 

expanded sequence requirements. Achievement of specificity, however, is not only 

determined by more selective and enhanced DNA-binding properties of transcription 

factor complexes but also by further assembly of higher ordered structures between 

complexes bound to promoter and enhancer regions, coregulatory proteins and the 

basic transcription machinery. Detailed studies about T cell receptor alpha (TCRα) 

and Interferon beta (IFNβ) gene activation lead to the concept of “enhanceosome” 

formation (Carey, 1998; Giese et al., 1995; Kim and Maniatis, 1997). 

Enhanceosome assembly is dependent on the arrangement of activator 

recognition sites and the precise complement of bound activators, which together 

generate a network of protein-protein and protein-DNA interactions unique to a given 

enhancer. Formation of enhanceosomes integrates two levels of specificity. 

Cooperative DNA binding by different transcription factor complexes and the 

formation of a concerted activation surface that is complementary to “target” surfaces 

on coactivators and the basal transcription machinery. This process is facilitated by 

architectural proteins that allow protein-protein interactions over distance by bending 

the DNA (Grosschedl, 1995). The enhanceosome then facilitates the formation of the 

basal machinery and reciprocally the basal machinery stabilizes enhanceosome 

assembly (Figure 2). 
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Figure 2 

 

Fig. 2 Concept of enhanceosome and preinitiation complex assembly. The complex assembles in 
a multistage process. In the beginning, several activators bind to chromatin to open up the gene 
locus. Thereafter, multiple sequence-specific activators (ovals) and DNA-bending proteins 
(triangles) engage in cooperative protein-protein interactions to form a stable enhanceosome. By 
the assembly the transcription factors form a composite interaction surface that serves to recruit 
transcriptional coactivators that results in cooperative recruitment of the pol II machinery and 
synergistic transcription. The reverse and forward arrows indicate reciprocity in the interactions. 
Although the process is delineated into separate steps, the reciprocity may drive concerted 
assembly of a transcriptosome. Figure taken from Carey (Carey, Cell 98). 

 

 

The network of ETS- domain transcription factors represents a well studied 

model for how combinatorial gene expression is achieved. These transcription factors 

have been described to interact with a multitude of coregulatory partners to elicit 

gene-specific responses and drive distinct biological processes.  

 

1.2. Ets proteins 

The first and name giving member of the family, Ets-1, was discovered in the 

early 1980´s as part of an oncogenic fusion with the product of the c-myb proto-

oncogene in the E26 avian leukemia virus. Up to now more than 45 members of this 

family have been characterized as transcriptional activators and inhibitors in 

eukaryotes. The ets genes encode regulatory transcription factors that share a highly 
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conserved DNA-binding domain consisting of ~85 residues - the ETS domain. The 



proteins show significant diversity outside of the ETS domain and the similarities 

between families members in these domains have been used to classify them into 9 

subfamilies (Figure 3). The ETS transcription factors play roles in important biological 

processes, including cellular proliferation, differentiation, development, 

transformation, immune response and apoptosis (Ghysdael and Boureux, 97; 

(Graves and Petersen, 1998). ETS proteins became a model system to study the 

molecular mechanisms of transcriptional control, including how transcription factors 

bind DNA, modulate promoter activity, and respond to signaling input (reviewed in (Li 

et al., 2000; Oikawa and Yamada, 2003; Sharrocks, 2001; Yordy and Muise-

Helmericks, 2000)). 

 

 

 

Fig. 3. Schematic presentation of the structure of different ETS family members ETS, Ets DNA-
binding domain; HLH, helix–loop–helix domain; Pointed domain; AD, activation domain; ID, auto-
inhibitory domain; RD, repression domain. 

AD ID                    IDPointed ETSETS (Ets-1, Ets-2)

AD ADPointed ETSERG (Erg, Fli-1/ErgB, FEV)

AD Pointed ETSELG (GABPα)

Pointed RD ETSTEL (TEL/ETV6, Tel2)

ETSADELF (Elf-1, Elf-2, MEF etc.)

ETSADSPI (PU.1/Spi-1, Spi-B etc.)

ETSAD  ID     IDPEA (PEA3/E1AF, ER71, 
ER81 etc.)

RDETSERF (PE1/METS, PE2/ERF)

ID   IDAD (RD)ETS SRFTCF (Elk-1, Sap-1, Net,
Netb)

AD ID                    IDPointed ETSAD ID                    IDPointed ETSETS (Ets-1, Ets-2)

AD ADPointed ETSAD ADPointed ETSERG (Erg, Fli-1/ErgB, FEV)

AD Pointed ETSAD Pointed ETSELG (GABPα)

Pointed RD ETSPointed RD ETSTEL (TEL/ETV6, Tel2)

ETSAD ETSADELF (Elf-1, Elf-2, MEF etc.)

ETSAD ETSADSPI (PU.1/Spi-1, Spi-B etc.)

ETSAD  ID     IDETSAD  ID     IDPEA (PEA3/E1AF, ER71, 
ER81 etc.)

RDETS RDETSERF (PE1/METS, PE2/ERF)

ID   IDAD (RD)ETS SRFTCF (Elk-1, Sap-1, Net,
Netb)

Figure 3 

ETS subfamilies (family members)  
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1.2.1. The ETS domain 

Studies on the ETS domains of Ets-1 (Donaldson et al., 1996; Garvie et al., 

2002), PU.1 (Kodandapani et al., 1996) and Elk-1 (Mo et al., 2000) showed a high 

ith each containing three α-helices and four β-

sheets. The tertiary structure of Ets-1 shows that the three helices within the ETS 

domain fold into a helix-turn-helix (HTH) element that packs against a four-stranded, 

anti-parallel beta-sheet (Werner et al., 1995). The beta-sheet with its accompanying 

loops provides a winged appearance which lead to the grouping of ETS transcription 

factors into a large structural class of DNA binding proteins, termed winged helix-

turn-helix (wHTH) proteins (Brennan, 1993). 

The ETS domain is not only establishing protein-DNA contacts but is also a 

target for either intramolecular protein-protein interactions or for co-regulatory

transcription factors. These interactions play an important role in the regulation of the 

function of ETS transcription factors by controlling DNA binding and providing 

specificity. 

1.2.2. Structural features for ETS protein DNA binding 

All ETS-domain proteins bind to sequences that contain a central GGAA/T 

motif – the Ets protein binding sites (EBS). However, individual family members can 

select specific nucleotides over an 11-base-pair sequence, which is centered on this

m s

m publication reports the formation of Ets-1 

degree of structural conservation, w

 

 

 

homodimers on the stromelysin-1 promoter (Baillat et al., 2002). The main protein-

sidues that are located in the third α-helix, in the ‘wing’ 

betwee

ght ETS-domain protein to a specific 

promoter and to avoid promiscuous binding to ETS binding motifs. A crucial 

otif (Graves and Petersen, 1998). In general ETS proteins bind to DNA a

onomers even though a recent 

DNA contacts are from re

n β-strands 3 and 4 and also a loop between α-helices 2 and 3 (Figure 4) 

(Donaldson et al., 1996; Werner et al., 1997). Additionally, helix 1 is proposed to play 

a role in DNA binding by contacting a DNA backbone phosphate. For optimal DNA 

binding the alignment and positioning of this helix 1 is crucial. Regulation of 

conformation of this module in the ETS context is an important step in controlling Ets-

1 activity (Wang et al., 2002). 

Despite some binding preferences of some ETS-domain proteins to a given 

recognition site, there is a large overlap in binding specificities. Therefore, other 

mechanisms are required to recruit the ri
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mechanism for ETS-domain proteins to achieve specificity is the interaction with co-

regulatory proteins as discussed later. 

 

 

Figure 4 

 

1.2.3. Biological roles of Ets proteins 

The activity of ETS proteins is determined by the respective cellular context 

and is influenced mainly by two ways: (1) Posttranslational modification, affecting 

DNA-binding, protein interaction and transactivation. (2) Interaction with coregulatory 

proteins, i.e. other transcription factors and coactivators that influence promoter 

specificity, DNA-binding and transactivation potential.  

The expression of ETS family proteins is often restricted to specific cell 

lineages and it has been shown that they are involved in development and 

differentiation by controlling the enhancer or promoter activities of cell line specific 

Fig. 4 ETS Domain-DNA Interaction. Amino acids 331–415 of Ets-1 and numbered duplex; 
positions 3–11 show sequence preference. Highlighted positions 6–9 define the core recognition 
sequence. Lower sequence is “selected” consensus sequence for Ets-1. (Figure from Pufall, 
Graves Structure 02) 
 

 - 14 - 



genes. Moreover, deregulated expression of some ETS family members due to 

proviral insertion, chromosome translocation and mutation is associated with 

leukemia and specific types of solid tumors, possibly due to their role in cell

proliferation and differentiation. Several ETS family proteins also participate in 

malignancy of tumor cells including invasion and metastasis by activating the 

transcription of several protease genes and angiogenesis-related genes. 

 

1.2.4. Selected biological roles of Ets-1 

The founding member Ets-1 has been extensively studied and shown to play a 

role in all processes mentioned above. Some selected functions will be described 

more in detail.  

1.2.4.1. Ets-1 in Growth control 

Ets-1 as nuclear target of signaling pathways contributes to adjustments in 

proliferative or cell cycle behavior of cells. It has been shown, that Ca2+-signalling 

dependent phosphorylation of the N-terminal autoinhibitory module dramatically

re

fu

signal pathways are used to transmit signals from growth factors and stress.  

Activation of Ets-1 via Ras-MAP kinase signaling has been reported to 

 

 

 

 

enhance the junB promoter (Coffer et al., 1994). JunB is part of a family of bZip 

ations to form activating protein 1 (AP-1). 

AP-1 f

ro-apoptotic as well as anti-

apopto

duces DNA-binding (Cowley and Graves, 2000). By contrast, the transactivational

nction of Ets-1 is activated by Ras-MAP kinase signaling (Yang et al., 1996a). Both

proteins that can dimerize in various combin

actors constituted of Jun and Fos family members are implicated in the control 

of proliferation (Shaulian and Karin, 2002). Ets-1 also contributes to the expression of 

the cell cycle relevant c-Myc, a transcription factor that plays important roles in the 

induction of cell proliferation and apoptosis (Roussel et al., 1994). 

Furthermore, Ets-1 has been reported to be p

tic in some cases. Ets-1 appears to be required for survival and activation of T 

cells, since ets-1-/-Rag-2-/- chimeric mice display a marked decrease in the number of 

mature T cells and a severe deficiency in proliferation in response to activating 

signals with increased rates of spontaneous apoptosis in T cells (Muthusamy et al., 

1995). In contrast, a recent report has revealed that Ets-1 is required for the 

formation of a stable DNA-p53-CBP complex to induce pro-apoptotic genes in the 

process of UV-induced apoptosis in embryonic stem (ES) cells (Xu et al., 2002).  
 - 15 - 



 

1.2.4.2. Ets-1 in hematopoietic differentiation 

tors 

gulators of transcription factors for specific cell lineages (Graf, 1998; 

family proteins are preferentially expressed in 

certain lineages of hematopoietic cells and also play important roles in their 

develo

Eryth

on (Sieweke et al., 

1996).

Functional interaction of Ets-1 with Stat5 has been shown to contribute to the 

proliferative response to interleukin-2 (IL-2) in T cells (Rameil et al., 2000). It is 

notable that the IL-2 induced Ets-1/Stat5 complex forms in vivo prior to binding to 

DNA and that DNA binding depends on Stat5 binding sites. Thus, direct Ets-1 DNA 

Differentiation of hematopoietic progeni

Determination of hematopoietic cell differentiation seems to be controlled by 

coordinate action of extracellular signals and a cascade of appearance of several 

critical master re

Tenen et al., 1997). Several ETS 

pment, commitment and differentiation. Ets-1 is initially expressed in the blood 

island of the yolk sac where hemangioblasts, the common precursors of vascular and 

hematopoietic lineages, are present (Maroulakou and Bowe, 2000). This may 

account for the expression of Ets-1 in both endothelial cells and certain lineages of 

hematopoietic cells. 

rocytes: 

Overexpression of Ets-1 promotes erythroid differentiation of K562 cells 

(Clausen et al., 1997). Furthermore, it is known that Ets-1 transactivates the 

transferrin receptor gene essential for erythroid differentiation. Overexpression of 

MafB, an AP-1-like myelomonocyte-specific transcription factor, in an erythroblast cell 

line down-regulates expression of the endogenous transferrin receptor gene by a 

direct interaction with Ets-1 and thus inhibits erythroid differentiati

 

Lymphocytes: 

Ets-1 is expressed throughout lymphocyte differentiation and present at high 

levels in mature B-cells, T-cells and natural killer cells. However, gene inactivation in 

mice showed that it is not required for the development of B- and T-cells but appears 

to be essential for their survival and maturation (Bories et al., 1995; Muthusamy et 

al., 1995). 
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binding is not required. Ets-1 controls several T cell-specific genes including the T 

cell receptor α (TCRα) and TCRβ genes in cooperation with CREB, TCF-1, AML1 

et al., 1999). 

1.2.4.3

Up-regulation of expression of the ets-1 gene has been documented in many 

types of human tumors. Generally, expression levels of Ets-1 correlate well with the 

grade of invasiveness and metastasis (Behrens et al., 2001) and therefore can be 

useful for predicting poor prognosis of the cancer patients. Expression of genes 

encoding for enzymes involved in degradation of the extracellular matrix (ECM), such 

as MMP-1 (collagenase-1), MMP-3 (stromelysin-1), MMP-7 (matrilysin), and MMP-9 

(type IV collagenase/gelatinase B) is regulated by Ets family proteins including Ets-1. 

Hence, it is strongly suggested that Ets-1 contributes to tumor invasion and 

progression through activation of these enzymes. Indeed, expression of these ECM 

mes is detected along with expressing ets-1 mRNA in tumor cells 

and/or stroma cells (Davidson et al., 2001). 

Several ETS factors are implicated in the differentiation of endothelial cells 

that later will form blood vessels. This is interesting in the context of tumor 

development since beyond a certain size growing tumors depend on vascularisation 

for nutrient supply. The microenvironment of a growing tumor mass is significantly 

oxygen-deprived and hypoxia induces expression of ets-1 via the activity of hypoxia-

inducible factor-1 (HIF-1) (Oikawa et al., 2001). Thus, chronic hypoxia in rapidly 

growing tumors results in induction of Ets-1 in tumor cells and/or stroma cells to 

ce angiogenesis-related genes. 

 

Autoinhibition is a widespread phenomenon that plays a key role in the 

regulation of proteins. In general an intramolecular interaction interferes directly or 

allosterically with a function of a “targeted” domain. An advantage of this way of 

regulating a proteins activity is the high effective local concentration that is generated 

by tethering of the interacting counterparts. Thus, relatively small surface areas and 

weak interactions are sufficient for inhibition. Furthermore, the protein can not 

“escape” the regulation since it is physically linked to the on-site repressor. 

and GATA-3 (Halle et al., 1997; Ho et al., 1990; Kim 

. Ets-1 and tumor development 

remodeling enzy

subsequently indu

1.2.5. Ets-1 is autoinhibited for DNA binding  
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The autoinhibitory mechanism that controls the transcription factor Ets-1 has 

been studied intensively. Autoinhibitory elements in Ets-1 were discovered by the 

observation that deletions of regions flanking the ETS domain N- or C-terminally, 

8; Hagman and Grosschedl, 1992; Lim et 

al., 19

e transition of autoinhibited Ets-1 to the 

DNA b

S domain favors a conformation of 

ts-1 that cannot form optimal contacts with the DNA. Wang et al. have shown that 

Helix-1 can directly contact DNA and is interacting with the inhibitory modules thus 

inding. They have shown that 

Helix-1

enhanced DNA binding (Graves et al., 199

92). Structural studies using NMR spectroscopy identified 4 inhibitory helices 

within these regions, two in the N-terminal region (inhibitory helix HI-1 and HI-2) and 

two at the C-terminus (Helix4 and Helix5) (Garvie et al., 2002; Skalicky et al., 1996). 

The N-terminal inhibitory helix, HI-2, makes extensive contacts with the C-terminal 

inhibitory helices and with helix H1 of the ETS domain on a surface of the protein 

opposite of the DNA-binding surface. In addition, helix HI-1 packs against inhibitory 

helices HI-2 and H4 to form a hydrophobic core. In this way, helix HI-1 serves as a 

critical cross brace connecting the N-terminal and C-terminal inhibitory regions and 

stabilizing the inhibitory modules (Garvie et al., 2002). 

Upon binding to DNA the inhibitory modules undergo a conformational 

change. The most dramatic event during th

ound form is an unfolding of the inhibitory Helix HI1 (Petersen et al., 1995). 

Autoinhibition of Ets-1 is believed to be due to the energetic cost of altering the 

conformation of the inhibitory modules. This energetic cost of DNA binding could be 

compensated by interaction with other transcription factors (Figure 5). 

However, a key question regarding the mechanism of autoinhibition centers on 

how inhibitory helices that pack on the non-DNA binding face of the protein can 

influence the affinity of Ets-1 for DNA. One model that has been proposed is that the 

packing of all four inhibitory helices against the ET

E

providing a link between autoinhibition and DNA b

 establishes additional contacts to DNA through the exact orientation in the 

overall ETS structure. However, this position depends on relieve of interaction with 

the autoinhibitory modules  which is achieved by the unfolding of Inhibitory Helix HI-1 

(Wang et al., 2002). These data provide an elegant model for the molecular basis of 

autoinhibition of Ets-1. 
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Figure 5 

ETS domain

280 440 
H4 H5HI-1 HI-2

Autoinhibitory domains

DNA binding
440Pointed Serine rich

A 

Ets-1 

 

1.2.6. Protein interac

Fig. 5  Autoinhibition of Ets-1 DNA binding. (A) Domain structure of eukaryotic transcription factor 
Ets-1. The pointed domain functions in protein interactions. The ETS domain is flanked by 

structure of ETS domain and inhibitory elements. (B) Ets-1 autoinhibition and regulation of DNA 

disrupts intramolecular contacts between the ETS domain and the autoinhibitory module, 
characterized by the unfolding of HI-1 (left). Phosphorylation of the serine-rich region in response 
to calcium release further inhibits DNA binding by stabilizing the autoinhibitory module (upper 
right) (Cowley & Graves 2000). A protein partnership with other transcription factors (here: AML-1) 
counteracts the inhibitory mechanism by interacting with the autoinhibitory module (Kim EMBO 99) 
(lower right). The DNA-binding domain of AML-1 is adapted from Bravo et al. (2001). Hatched oval 

structural information. Modified figure from (Pufall, Ann. Rev. Cell Dev. Biol. 02). 

tion of Ets-1 with other factors 

rotein-protein interaction has turned out to be an elementary property of 

probably all transcription factors and has been especially well established for Ets-1. 

Indeed, transcription factor complex formation by Ets-1 with other factors serves 

several functions. 

autoinhibitory elements. The serine-rich region is the site of inhibitory phosphorylation. Secondary 

binding. Model of the autoinhibitory module structure (Garvie JBC 02) (center). DNA binding 

represents the N-terminal region necessary for cooperative DNA binding for which there is no 

P

 - 19 - 



(1) As discussed above, the DNA binding capacity of Ets-1 is autoinhibited

until an appropriate trigger is in place. DNA binding is influenced either by 

phosphorylation (Cowley and Graves, 2000) or by interaction with coregulatory

transcription factors (Figure 5). Sequences flankin S not only partially define

individual ETS family member binding specificity but contain also adjacent binding 

sites for many transcription factors of d rse families. These composite binding sites

are bound by specific Ets-1/partner transcription factor complexes, depending on the 

cellular co xt and lead to higher affinity and stability in DNA binding. 

The interaction of Ets-1 with AML-1 leads to transcriptional regulation on the T

cell receptor β (TCRβ) chain enhancer (Kim et al., 1999) and on the Moloney murine 

leukemia virus enhancer (Goetz et al., 2000). Both proteins are autoregulated for

DNA binding and it has been shown that the physical interaction between the 

autoinhibitory domains of Ets-1 and AML1 allows cooperative DNA binding (Kim et

al., 1999). A complex of Ets-1 with the paired box transcription factor Pax-5 acts on 

the Ig-alpha encoding mb-1 gene in B-cells (Fitzsimmons et al., 1996). Structural

studies show that interactions between the paired domain in Pax-5 and the DNA 

binding helix in Ets-1 result in changes in protein-DNA interactions by Ets-1 and 

h

b

c

In r

re

tr

p eptor gene and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inhibits erythroid differentiation (Sieweke et al., 1996). 

logous p300 have been 

shown

in itself combines all the requirements to take part in all levels of 

higher

g the EB

ive

nte

ence promote its ability to recognize a suboptimal site (Garvie et al., 2001). The

HLH Zip protein USF-1 has been shown to cooperate with Ets-1 in binding of

omposite recognition elements on the HIV-1 LTR (Sieweke et al., 1998).  

(2) Modulation of Ets-1 transcriptional activity through complex formation.

teraction between Ets-1 and other transcription factors results in either activation o

pression of specific target genes. In the complexes discussed above, Ets-1 acts as

anscriptional activator. By contrast, Ets-1 interaction with MafB, an AP-1 like

rotein, inhibits Ets-1 mediated transactivation of the transferrin rec  

(3) CREB binding protein (CBP) and the highly homo

 to interact with Ets-1 and to induce higher transactivation capacity when 

overexpressed (Jayaraman et al., 1999; Yang et al., 1998).  

 

Thus, Ets-1 

 ordered enhanceosome assembly as shown in the context of the 

enhanceosome controlling TCRβ expression (Giese et al., 1995). 
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1.3. USF 

Basic helix-loop-helix (bHLH) proteins are a family of DNA-binding proteins 

characterized by their ability to recognize specific DNA sequences, termed E-boxes 

(CANNTG) through their basic region. They are able to form homo- or heterodimers 

via their HLH domain. E-box elements were first identified in the immunoglobulin 

heavy-

 mammals 

and sh

F-1 and USF-2, have been 

charac

on of USF homo- and 

eterodimers that interact with DNA with similar specificities (Sirito et al., 1992). The 

major 

the E-box, contains 

the core nucleotide sequence CANNTG. Another very well conserved domain 

between USF1 and USF2 is a small domain termed USF-specific region (USR) that is 

located immediately upstream of the basic region. In contrast, the N-terminal regions 

chain (IgH) intronic enhancer and have since been found in a large number of 

promoter and enhancer elements. These proteins have originally been grouped into 

three classes based upon structural characteristics and pattern of expression. The 

class A proteins are ubiquitously expressed and readily bind DNA either as homo- or 

heterodimers, with some of them implicated in cellular differentiation. Class B 

proteins are expressed in a tissue-specific manner and form heterodimers with class 

A bHLH proteins. Some of these factors such as MyoF, myogenin and myf-5 are 

implicated in muscle development (Lassar et al., 1994). The last group, class C, 

forms homo-and heterodimers with class C but not with class A or B bHLH proteins. 

Among class C are factors such as Myc, Max and Mad that are implicated in cellular 

proliferation, differentiation and apoptosis (Murre et al., 1989). Upstream stimulatory 

factor (USF) is another member of this class that is broadly expressed in

all be described more in detail (Figure 6). 

USF was initially characterized as a transcription factor implicated in the 

regulation of the adenovirus major late promoter (MLP) (Sawadogo and Roeder, 

1985). USF proteins belong to the class C of bHLH proteins and contain in addition a 

leucine zipper (Zip) motif that confers further dimerization capacity (Gregor et al., 

1990). Two distinct USF genes, referred to as US

terized and shown to encode full-length USF-1 and USF-2 proteins of 43 and 

44 kDa, respectively (Sirito et al., 1994). The C-terminal bHLH Zip domains of USF-1 

and USF-2 are highly conserved, and direct the formati

h

form of USF present in most cell lines is the USF-1/USF-2 heterodimer. USF-1 

homodimers are less abundant and USF-2 homodimers are usually very rare (Sirito 

et al., 1992). The cognate DNA binding element for USF proteins, 
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of USF1 and USF2 are much more divergent, but were shown to contain additional 

trans-activation domains (Kirschbaum et al., 1992; Luo and Sawadogo, 1996). 

Figure 6 

USF-1 b Zip H L HAD1 AD2 USR 

0 50 100 150 200 250 300 311 

USF-2 b H L H Zip Exon5 USR 

0 100 346 50 150 200 250 300 

c-Myc b H L H Zip 
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U
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p
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Fig.6  Schematic presentation of the domain structure of human upstream stimulatory factor (USF-1 
and USF-2). USF shares highly homologous DNA binding and dimerization domains (bHLH Zip) 
with other members of the same transcription factor family, as shown here in comparison to c-
Myc.The N-terminal region in contrast is very divergent. In USF-1 two independent transactivation 
domains (AD) have been identified in vitro (Bernhard MCB 92). USF-2 also contains two AD which 
are encompassed by a domain 
encoded by Exon5 and a region called USF specific region (USR) that is highly conserved in USF-1 
(Luo MCB 96).  
 

.3.1. DNA binding by USF 

Cocrystallization of the C-terminal DNA-binding domain of human USF with its 

pecific DNA-binding site revealed that USF dimers bind DNA as a four-helix bundle, 

ith the basic domain from each monomer contacting half of the DNA-binding site. 

SF contacts the DNA through a basic region which free in solution has a random 

tructure, but becomes alpha-helically folded upon binding to DNA (Ferre-D'Amare et 

l., 1994). Furthermore, Ferre-D’amare et al. could provide evidence that USF can 

orm bivalent tetramers with the capacity to bind simultaneously two independent 

ieces of DNA. This feature is very interesting in the light of a study of Du et al. in 

hich they show that USF can bind to initiator elements as well as to a more 

pstream E-box in a number of different gene promoters and that deletion of Inr 

ecreases transactivation (Du et al., 1993). It has been proposed that USF could 
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bend DNA by tetramerization thus bringing other DNA bound transcription factors in 

close proximity to the basal transcription machinery. 

 

1.3.2. Transactivation domains in USF 

In USF-1 as well as in USF-2 two distinct transactivation domains (TA) have 

been erized (Kirschbaum et al., 1992; Luo and Sa ogo, 1996)

respectively). Most of the N-terminal parts  bo tran iptio act hare little

homology. In USF-1 TAs are composed of residues 1-40 and 100-130 (Kirschbaum

et al., 1992). TAs in USF-2 are defined as Exon 5 (aa158-199) and a region called 

USF specific region (USR, aa208-230). As mentioned above, the USR domain is

highly conserved in USF proteins and is involved in transcriptional activation. This

proposes also an activating role of USR in USF-1. It appears that the USR region 

plays an important role in transactivation of promoters containing an initiator element 

(Luo and Sawadogo, 1996). 

 

1

a

act on a variety of cellular and viral promoters. 

charact wad  

 

 

 

 

To determine biological functions of the two USF family members, gene 

rated (Sirito et al., 1998). Whereas the knock-out of 

either 

problem arises how the presence of E-boxes in gene promoters/enhancers can result 

 of th scr n f ors s

.3.3. Biological role of USF 

Both forms of the upstream stimulatory factor 1 (USF-1) and USF-2 proteins 

re broadly expressed and therefore it is not surprising that they have been shown to 

defective mice have been gene

of the two USF genes in mice resulted in minor phenotypes as some 

behavioral abnormalities in Usf-1-/- mice and a growth defect in Usf-2-/- a double 

knock-out is embryonic lethal. These data indicate not only that USF plays a major 

role in embryonic development or general function required throughout development 

such as proliferation and cell cycle control but also that there is a redundancy 

between USF-1 and USF-2. However, USF-1 and USF-2 seem to play also unique 

roles in the regulation of some genes since the phenotypes of the single mutants are 

different. 

Other members of the bHLH Zip family as Myc, Mad, Max, Mitf and TFE (1-3) 

also recognize E-boxes with a similar affinity which makes it difficult to determine 

which family members are implicated in the regulation of particular genes. The 
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in binding of specific bHLH Zip factors. Therefore, I will present some examples in the 

next paragraphs to show how USF-1 achieves specificity through interaction with 

anscription factors of the same structural class or others like ETS factors. In the 

following chapters the term USF will be used when both forms are implicated in 

 will be specified if this function can be 

attribu

1.3.4.1. Immunology 

t1, a downstream target of the IFNγ pathway and USF-1 

hich stabilizes DNA binding of the complex (Muhlethaler-Mottet et al., 1998). 

Also tissue-specific expression of class MHC Class I genes seems to be 

l., 1999). USF mediated MHC Class I expression 

can be

sed for the regulation of the CD2 

promo

ematopoiesis 

tr

transcriptional control as heterodimers and it

ted to one specific USF only. 

 

1.3.4. Selected biological roles of USF 

Transactivation of major histocompatibility complex (MHC) Class II either 

constitutively or by induction with IFNγ depends mainly on the transcription factor 

CIITA. Expression of CIITA has been shown to be controlled in several cell lines by 

the cooperative action of Sta

w

controlled by USF (Howcroft et a

 abolished of a splicing variant of USF-2 (U2DeltaE4) that forms heterodimers 

with USF and prevent transactivation by acting as a dominant negative USF. 

A similar mechanism has been propo

ter. This promoter is typical for a group of T cell-specific promoters that lack a 

TATA box and use multiple sites for initiation of transcription. An "E box" motif 

located just upstream from the most 5' initiation start site contributes a major effect to 

the level of basal transcription through binding of USF (Outram and Owen, 1994). In 

a recent work Rodriguez et al. (Rodriguez et al., 2003) identified Cha as a new 

member of the bHLHZip family that binds to USF-1 and inhibits USF mediated CD2 

expression in resting T cells. After mitogenic activation by PMA/ionophore Cha is 

rapidly degraded and USF-1 can activate CD2 expression. 

1.3.4.2. H

USF-1 plays a major role in the hematopoietic expression of HOXB4 that 

subsequently regulates the balance between hematopoietic stem cell renewal and 

differentiation (Giannola et al., 2000). This effect is dependent on the presence of 

several growth factors like trombopoietin (TPO), Flt-3 ligand and stem cell factor 
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(SCF). Signaling by TPO also requires p38 kinase and it has been proposed that the 

effect of USF-1 for the maintenance of renewal capacity of hematopoietic stem cells 

is influenced by this pathway (Kirito et al., 2003).  

 

1.3.4.3. HIV-1 activation 

USF-1 forms also transcription factor complexes with members of the ETS 

protein family. In a yeast one hybrid screen USF-1 was identified as interaction 

t both factors cooperate in DNA binding 

f a HIV-1 LTR reporter construct (Sieweke et al., 1998). 

Similar results were obtained for PEA3, another ETS family member (Greenall et al., 

2001).

  

ells are 

subjec

t in the control of highly 

regulated genes implicated in development and proliferation. It appears that the 

represents an inactive pool of transcription factor that 

particip

partner of Ets-1. Further analysis revealed tha

and in transactivation o

 This aspect of the biological function of USF-1 will be discussed below in more 

detail. 

 

1.3.5. USF-1 mediated tissue specific or stress induced gene activity

In a recent work Galibert et al. identified USF-1 as an in vivo target for the p38 

stress activated kinase. They could show that the bHLH Zip factor microphthalmia-

associated transcription factor (Mitf) is responsible for the basal expression of 

Tyrosinase a gene involved in the skin tanning process. However, when c

ted to stress by UV-irradiation USF-1 becomes phosphorylated by p38 and 

subsequently Tyrosinase expression is highly upregulated (Galibert et al., 2001). The 

p38 kinase family plays a crucial role during development, differentiation (Nebreda 

and Porras, 2000) and in the cellular response to stress or pro-inflammatory 

cytokines. Thus, activation of ubiquitously expressed USF-1 by p38 could provide an 

explanation how USF acts as a key link between stress signaling and the 

transcriptional response of a variety of cellular and viral promoters. Moreover, this 

could explain also how USF that was initially believed to regulate house-keeping 

genes because of its broad expression pattern takes par

broadly expressed USF 

ates in the early regulation steps of specific target genes when activated by 

signaling events. For example, USF has been implicated in activated, but not basal 

transcription of the mouse metallothionein promoter in response to cadmium (Li et al., 

1998). Moreover, activation by cytokines of the HIV LTR that contains a USF-binding 
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site (Sieweke et al., 1998; Zeichner et al., 1991) requires a p38 kinase (Kumar et al., 

1996). 

 

1.4. CBP/p300 

The related transcription coactivators, CBP [cyclic adenosine monophosphate 

(cAMP) response element-binding protein (CREB)-binding protein] and p300, are 

expressed widely and interact with a surprisingly large number of transcription factors 

via dedicated domains. Thus they could be viewed as general transcriptional 

regulators. Despite their similarity, loss of function and aberrant regulation or 

expression of CBP and p300 are associated with distinct phenotypes and diseases in 

humans and experimental organisms, indicating that certain genes/tissues are more 

sensitive to changes in CBP and p300 activity than others. 

 

Figure 7 

Fig.7 Domain structure of CBP. Hematopoietic transcription factors that bind CBP are indicated. 
Numbers represent approximate domain boundaries. CH1, CH2, and CH3, CH-rich domains; KIX, 
CREB-binding domain; Bromo, bromodomain; AT, acetyltransferase domain; Q-rich, glutamine-
rich domain.  
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CBP and p300 share several conserved regions: (1) the bromodomain, which CBP and p300 share several conserved regions: (1) the bromodomain, which 

is frequ

 - 27 - 

ently found in mammalian Histone Acetyl Transferases (HATs); (2) three 

ysteine-histidine rich (CH)-rich domains (CH1, CH2 and CH3) and the (3) KIX 

domain. The latter are likely to be important interaction surfaces for other proteins 

 cellular and viral proteins bind to these regions (Figure 7). 

CBP/p

 

 

all of the four histone subunits (Bannister and Kouzarides, 1996; Ogryzko et al., 

c

and a number of

300 function as transcriptional coactivators and are involved in multiple, signal-

dependent transcription events that can influence different physiological processes, 

including cell growth, proliferation, differentiation and apoptosis (reviewed by 

(Janknecht and Hunter, 1996). Therefore, it is not surprising that they constitute a 

target for viral transforming proteins such as adenoviral E1A or the SV40 large T 

antigen. Formation of viral oncoprotein complexes with CBP/p300 inhibit CBP/p300 

and causes loss of cell growth control, enhances DNA synthesis and blocks cellular 

differentiation (reviewed in (Goodman and Smolik, 2000). 

 

1.4.1. CBP/p300 as an transcriptional integrator 

Since the discovery of CBP/p300 as coregulatory proteins many transcription 

factors have been described to interact with CBP/p300 and multiple mechanisms

have been proposed to explain CBP and p300 functions. Although the repertoire of

CBP/p300 activities is broad, and their roles must be evaluated in the context of a 

given gene, certain general and recurring functions can be discussed.  

1.4.1.1. CBP/p300 as bridging factors 

It has been suggested that CBP/p300 link transcription factors with 

components of the basal transcription machinery, thereby establishing and/or 

maintaining transcription-preinitiation complex formation. Thus CBP/p300 can be 

seen as bridges between DNA-binding transcription factors and the basal 

transcriptional machinery. This model is supported by the fact that CBP/p300 have 

been shown to interact with a variety of transcription factors and with components of 

the basal transcriptional machinery, including TFIIB, TBP, and RNA polymerase II 

(G

1.4.1.2. CBP/p300 as Acetyl transferases 

The discovery that CBP and p300 are enzymes that catalyze the acetylation o

oodman and Smolik, 2000).  

f 
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1996) suggests that CBP and p300 might act in part through regulating chromatin 

structure. In addition, they associate with other acetyltransferases, including PCAF 

(Yang et al., 1996b) and GCN5 (Xu et al., 1998) thus leading to the formation of large 

acetyltransferase complexes with broad substrate specificity. Recruitment of 

acetyltransferases by transcription factors leads to a local increase in histone 

acetylation and promotes the opening up of chromatin.  

Transcription factors itself also have been shown to be acetylated by 

CBP/p300. In general, acetylation of transcription factors can alter their activities at 

various levels, including DNA binding, transcriptional activity, interactions with other 

proteins, nuclear transport, and protein turnover. Two examples (Tat and NFκB) will 

be described below. 

1.4.1.3. Regulation of CBP/p300  

Several recent studies suggest that the enzymatic activities of CBP/p300 can 

be modulated by protein contacts. For example the viral oncoprotein E1A can inhibit 

 1999). Also cellular proteins 

have b

mote cellular 

differentiation. Consistent with this possibility, NF-E2 has been shown to augment 

CBP acetyltransferase activity in vitro when assayed on nucleosomal histones (Chen 

et al., 

 a common interface made up by multiple activation 

nal property of CBP/p300 thus could 

explain the transcriptional synergy often observed between transcription factors. 

CBP/p300 acetyltransferase activities (Hamamori et al.,

een identified that influence CBP/p300 activity by similar mechanisms. For 

example, PU.1 is a potent inhibitor of CBP/p300 acetyltransferase activity in vitro and 

in vivo that can transform erythroid precursor cells and inhibit their differentiation 

(Hong et al., 2002). Conversely, it can be speculated that CBP/p300 activities might 

be stimulated by interactions with transcription factors that pro

 

2001). 

Further regulation of CBP/p300 activities occurs via post-translational 

modifications, as phosphorylation by cyclin-dependent kinases and mitogen-activated 

protein kinases that stimulate acetyl transferase activity (Ait-Si-Ali et al., 1998). 

1.4.1.4. CBP/p300 as mediator of transcriptional synergy 

The model of enhanceosome formation describes that a cooperative assembly 

of transcription factors leads to

domains that recruit CBP/p300. The activatio
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Conversely, inhibition between nuclear factors has been suggested to result 

from direct competition for the same binding site in CBP/p300. This mechanism has 

been invoked to explain the antagonistic effects between GATA-1 and c-Myb during 

erythroid gene expression (Takahashi et al., 2000). 

 

In summary, CBP/p300 coordinate transcriptional regulation by mediating 

comm

1.4.2. Biological function of CBP/p300 

Several loss of function studies have provided insight into the biological 

ions in CBP/p300 genes have been observed in 

variou

s in the KIX domain of p300 but not CBP cause multilineage defects in 

hemat

1.4.3. Selected examples of CBP/p300 action 

d factors led to the 

hypoth  

 

 

 with 

CBP in nuclear extracts. In vitro, the N-terminus of Ets-1 can interact physically with 

CBP involving the CH1 and CH3 domains of CBP. In support of the functional 

unication between transcription factors, by regulating transcription-factor 

activity and by translating cellular signals into a transcriptional response. 

 

functions of CBP/p300 in vivo. Alterat

s human tumors (Gayther et al., 2000; Giles et al., 1998) and mice defective for 

both CBP and p300 have been generated. The CBP-/-, p300-/- and double 

heterozygous mice show similar, embryonic lethal phenotypes. Furthermore, some 

CBP and p300 heterozygous mice show early lethality indicating that CBP/p300 gene 

dosage is probably important during development (Yao et al., 1998).  

Although p300 and CBP share extensive homology, genetic and molecular 

analyses suggest that they perform not only overlapping but also unique functions. 

CBP+/- mice show highly penetrant multilineage defects in hematopoietic 

differentiation whereas p300 does not (Kung et al., 2000). By contrast a more recent 

study by Kasper and Brindle (Kasper et al., 2002) revealed that mice homozygous for 

point mutation

opoiesis, including anemia, B-cell deficiency, thymic hypoplasia, 

megakaryocytosis and thrombocytosis.  

The synergy of Ets proteins with CBP and p300-regulate

esis that they too are regulated by CBP. Indeed, Yang et al. (Yang et al., 1998) 

showed that the Myb- and Ets-dependent promoter of the myeloid gene CD13/APN is 

sensitive to the expression of E1A but not mutant E1A defective for CBP and p300 

binding. Ets-1 activity is stimulated by coexpressed CBP, and Ets-1 associates
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importance of the physical interaction between Ets-1 and CBP, the authors 

demonstrated a good correlation between binding of Ets-1 to the CH1 region and its 

ability to transactivate.  

Another Ets family transcription factor, PU.1, was found to interact with CBP 

rough the activation domain of PU.1 in a yeast 2-hybrid assay (Yamamoto et al., 

1999).

ells inhibits 

acetylation of transcription factors driving erythroid differentiation like GATA-1 by 

interfering with CBP acetyl transferase activity (Hong et al., 2002).  

rget a range of transcription factors 

expres

r entry of the 

preinte

dulatory elements that contain binding sites 

for several cellular and viral transcription factors (for review, see (Pereira et al., 

The T

th

 In this work CBP stimulates PU.1 transcriptional activity of a reporter with 

multimerized binding sites for PU.1 in transient transfection assays. By contrast, 

aberrant expression of PU.1 in murine erythroleukemia (MEL) c

Thus, CBP and very likely p300 ta

sed during hematopoiesis.  

1.5. HIV-1 replication 

The “aquired immune deficiency syndrome” (AIDS) is caused by infection of 

CD4 positive cells such as macrophages, TH-cells and dendritic cells by the “human 

immunodeficiency virus-1” (HIV-1). After fusion-mediated entry within host cells, 

uncoating, reverse transcription of the RNA genome and nuclea

gration complex, the viral DNA is integrated into the host cell genome, where it 

is defined as a provirus. The viral RNA genome as well as mRNA for viral proteins is 

transcribed of the DNA-provirus. The provirus is flanked at the 5’ and 3’ end by “long 

terminal repeats” (LTRs), sequences crucial for reverse transcription and integration 

into the host genome.  

Viral replication requires transcriptional activation. It has been shown that the 

5’ LTR is divided into functional regions designated by transactivation response 

element (TAR), core, enhancer, and mo

2000).  

AR region binds the viral transactivator Tat and the core region contains the 

initiator (Inr), the TATA box, and three Sp1-binding sites. While the proximal enhancer 

element binds nuclear factor (NF)-κB and NF of activated T cells (NF-AT) 

transcription factors, the more distal region harbors numerous target sequences for a 

variety of cellular transcription factors such as C/EBP, cyclic AMP (cAMP) response 
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element-binding protein (CREB), Ets-1, USF-1, and nuclear hormone receptors 

(Figure 8). 

 

Figure 8 
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When the HIV-1 provirus is integrated into the host genome, early-phase 

transcription is regulated by cellular transcription factors and results in the production 

of early viral gene products. The late phase of transcription is under the control of 

Tat, which potently enhances gene expression by a direct binding to TAR–RNA and 

association with cyclin T1 (CycT1), which recruits the cyclin-dependent kinase 9 

(cdk9). Formation of this positive transcription-elongation factor b (P-TEFb) complex 

leads to phosphorylation of the C-terminal domain of RNA polymerase II and efficient 

elongation. 

 

1.5.1. HIV-1 activation by cellular and viral transcription factors 

In the following paragraphs I will describe in which way several cellular and 

viral transcription factors are involved during the early phase of HIV-1 gene 

transcription. 

Fig.8  Interactions of endogenous cellular transcription factors with the HIV-1 LTR. The major 
binding sites within the –356 to 27 region of the LTR are located.  

LEF
USF USF p53

-340 -260 -170 -126-140 -110 -105 -80 -46 -27 +1 
R 
A 

LEF
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1.5.1.1. Sp1 

Transcription factors of the Sp1 multigene family modulate HIV-1 gene 

anscription by direct binding to the three GC boxes adjacent to the TATAA 

growth, and apoptosis. A large number of stimuli activate the NF-κB pathway. Upon

induction, NF-κB is liberated from its cytoplasmic inhibitor IκB and translocated into
 

t al., 1992).  

1.5.1.3. NF-AT 

l activation 

it is no

tr

sequence. The Sp1 factor is one of the essential cellular proteins implicated in HIV-1 

gene transcription (Sune and Garcia-Blanco, 1995). A number of studies report that 

the Sp1 protein can serve as an anchor for indirect binding of transcription factors. 

For example, a cooperative interaction between Sp1 and NF-κB, bound to the 

adjacent sites, is required for optimal HIV-enhancer activation (Perkins et al., 1993) 

and also interaction between Sp1 and Tat is required for optimal Tat transactivation. 

A part from the three binding sites in the LTR core prom

adjacent Sp1-binding sites located in the +724/+74  

transcription start site that also play a pos ulatory r  on HIV transcription 

(Van Lint et a 997  l e capacity of 

Sp1 to stimulate transcription by acting at distinct sites within the LTR, to recruit 

cellular factors to the LTR, and to promote Tat-mediated transactivation. 

1.5.1.2. NF-κB 

ontrol of a variety of cellular 

processes, such as immune and inflammatory responses, development, cellular 
 

oter region there are two 

R region downstream of the 3 LT

itive reg ole

l., 1 ). Taken together, these observations high igh  tht

Proteins of the NF-κB family are involved in the c

 

 

the nucleus where it binds to the two NF-κB target sites within the LTR. A variety of 

NF-κB homo- and heterodimers have been shown to bind to the NF-κB sites in vitro 

exerting differential effects on HIV gene expression. While a NF-κB-1(p50)/RelA 

heterodimer is the major inducible NF-κB dimer in T cells that activates strongly HIV 

transcription in in vitro transcription assays (Fujita et al., 1992; Kretzschmar et al., 

1992) a homodimer of NF-κB-1(p50) may inhibit the effects of more potent activators 

(Franzoso e

Given the tight correlation of HIV-1 transcriptional induction to T cel

t surprising that the nuclear factor of activated T cells (NF-AT) also influences 

HIV-1 replication. 
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Similar to NF-κB, NF-AT localizes to the nucleus following cellular activation. 

NF-AT  

 

 

 

in LEF-1 in 

conjunction with Ets-1 and Sp1 is able to relieve nucleosomal repression of the HIV-1 

 al., 1995). 

1.5.1.5

Two C/EBP binding sites are centered on positions -170 and -110 of the LTR 

and are required for full responsiveness to C/EBP (Henderson and Calame, 1997). It 

ase of transcription further provirus activation is strongly 

dependent on the viral transactivator Tat. Tat associates with distinct transcription 

activating function of Tat protein requires the presence of the Sp1 

and N

phase, Tat transactivation is TAR-dependent and requires a 

2 binds to the NF-κB sites of the LTR and synergizes with NF-κB and Tat in 

transcriptional activation and HIV-1 replication (Kinoshita et al., 1998). NF-AT 

proteins also interact with Ets transcription factors, which results in a cooperative 

activation of LTR-driven transcription (Bassuk et al., 1997). Moreover, activation of 

NF-AT-dependent HIV gene expression appears to be stimulated by the viral Nef 

protein (Manninen et al., 2000). 

1.5.1.4. LEF-1 

LEF-1 is described as an activator of LTR-driven transcription in T 

lymphocytes. Mutations in the LEF-binding site in the enhancer region of the LTR (-

122/-142) inhibit the transcriptional activity of the HIV-1 enhancer in Jurkat T cells 

(Sheridan et al., 1995). In vitro, LEF-1 binds to this LTR-binding site in a nucleosomal 

context (Steger and Workman, 1997). In in vitro transcription assays with 

reconstituted chromatin it has been shown that the DNA-bending prote

LTR (Sheridan et

. C/EBP 

is interesting that transactivation by C/EBP can bypass direct interaction to its DNA 

binding sites through protein-protein interactions with Sp-1, NFκB and CREB proteins 

(Ross et al., 2001; Ruocco et al., 1996; Schwartz et al., 2000). C/EBP has also been 

shown to recruit histone acetyltransferases like CBP/p300 and PCAF to the LTR (Lee 

et al., 2002). 

1.5.1.6. Viral transactivator Tat 

After the early ph

factors. The trans

F-κB sites and a direct interaction with the Sp1 protein (Gatignol and Jeang, 

2000). Tat-dependent transcription is regulated in a cell-cycle-dependent manner. 

While in the G1 
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functional Sp1-binding site; in G2, a second TAR-independent phase of Tat 

transactivation is observed (Kashanchi et al., 2000). 

Moreover, Tat has the ability to modulate the expression of various cellular 

factors involved in the regulation of the HIV-1 gene transcription. Tat sets up positive 

upregulatory loops, which greatly superactivate HIV transcription by activating NF-κB 

(Demarchi et al., 1996) and upregulating several cytokine genes such as TNF-α, 

TNF-β, IL-2, and IL-6 (Roulston et al., 1995). Tat activates NF-κB through 

degradation of the inhibitor I-κBα which requires the function of the cellular interferon 

(IFN)-inducible protein kinase PKR (Demarchi et al., 1999).   

p -130 and -166 (Verdin et al., 1993). The transcription 

factors binding to this region are USF-1, Ets-1 and LEF-1, which are highly 

expressed in T cells. Several studies have demonstrated a positive  effect of USF on 

HIV-1 

were mapped to their DNA-binding domains by analysis of deletion 

, several related transcription factors of the Ets 

and the bHLH Zip family, with highly homologous DNA-binding domains, are also 

expres

 

1.5.1.7. Ets-1/USF-1 

By linkerscanning and deletion mutations in the distal enhancer (-130 to -166) 

further binding sites have been identified that are crucial for transcriptional activation 

and provirus-replication (Kim et al., 1993). This enhancer region bears binding sites 

for several transcription factors as shown by footprint analyses with T cell extracts 

(Demarchi et al., 1992; Sheridan et al., 1995) and the revelation of a DNAse 

hypersensitive site between b

LTR-directed transcription (Sieweke et al., 1998; Zeichner et al., 1991). Ets-1 

has also been shown to transactivate HIV-1 via this enhancer (Seth et al., 1993; 

Sieweke et al., 1998; Sweet et al., 1998).  

In a yeast one-hybrid screen, performed to find new proteins interacting with 

Ets-1, the E-box binding protein USF-1 has been identified. They form a complex, 

consisting of an USF-1 dimer and an Ets-1 monomer. The interaction surfaces of 

both proteins 

mutants in in vitro assays. Although

sed in T cells, the interaction between Ets-1 and USF-1 was shown to be very 

specific. Results of transient transfection assays with a reporter under the control of 

the distal enhancer of the 5’ HIV-1 LTR, using mutant and wild-type Ets-1 and USF-1 

constructs as transcriptional activators revealed that the transcription factors act in a 

cooperative manner (Sieweke et al., 1998). 
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As mentioned above, synergistic interaction of Ets-1 with LEF-1 was reported 

(Sheridan et al., 1995) whereby the architectural transcription factor LEF-1 is 

suppo

nsional structure of the 

initiation complex determines their enhancer activity. 

ted that this transcription factor complex plays a pivotal role in 

HIV-1 

1.5.1.8. CBP/p300 

NA and derepress the HIV-1 chromatin 

structu

998). Deng et al. have shown that the 

Tat-p300 interaction increases the HAT activity of p300 on histone H4 that is 

sed to bend DNA and bring the Ets-1/USF-1 complex in close proximity to the 

promoter. Also, USF-1 could stabilize this enhancer/promoter complex by forming 

tetramers with Inr bound USF-1 near the transcriptional start. This folding could bring 

together the Ets-1/USF-1 complex on the distal enhancer with the basal transcription 

machinery or TAT. Thus, the Ets-1/USF-1 complex could be part of a higher order 

structure on the HIV-1 LTR. All this indicates, that a precise positioning of the 

activation domains of Ets-1 and USF-1 within the three dime

It can be sugges

replication. Especially with regards to the fact that a dominant negative Ets-1 

mutant (Ets-1∆TA) completely represses USF-1 mediated transactivation (Sieweke et 

al., 1998) and also represses HIV-1 replication in infected target cells up to 30 fold 

(Posada et al., 2000). 

Since the provirus gets integrated into host cell chromosomes retroviruses 

must conserve an ability to activate transcription from a chromatin context. Recent 

work has revealed that the co-activators CBP/p300 (Ott et al., 1999) together with 

other HATs like pCAF (Kiernan et al., 1999) and hGCN5 (Col et al., 2001) help Tat to 

activate transcription of integrated viral D

re in response to histone acetylation. These co-activators have to be recruited 

to the promoter by interacting with DNA-binding transcription factors. Several 

transcription factors binding to the distal enhancer and the proximal promoter region 

have been shown to interact directly with CBP/p300. The most prominent is the viral 

transactivating protein Tat. The primary function attributed to Tat is its role in HIV-1 

promoter activation. Tat binds to a nascent viral leader RNA, TAR (trans-activation-

responsive region) and forms a ternary complex with p300 and PCAF. This complex 

formation is supposed to influence proviral transcription by several means.  

It seems that the “recruited” HAT activity is necessary for the activation of 

integrated virus but not for unintegrated supporting a role of the complex in 

nucleosome remodeling (Benkirane et al., 1
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associated with nucleosomal DNA (Deng et al., 2001) and induces a conformational 

change in CBP/p300 facilitating the recruitment of proteins of the basal transcription 

machinery like TBP, and TFIIB.  

In the context of the HIV-1 LTR several of the implicated transcription factors 

have been shown to be acetylated by HATs. At least three acetylation sites have 

been described in Tat. Among them Lysine 50 acetylated by CBP/p300 and hGCN5 

influencing TAR binding and Lysine 28 acetylated by pCAF facilitating interaction with 

Cycline T1 and subsequent recruitment of positive transcription elongation factor 

(pTEFb) (Bres et al., 2002). Also cellular transcription factors such as the p50 subunit 

of NF-κB have been shown to be acetylated for which CBP/p300 as well as Tat is 

equally

d so far that potentially could serve also as pillars other viral 

and cellular proteins present at the HIV-1 LTR have been shown to interact with 

ple the accessory protein Vpr that needs to recruit CBP/p300 to 

activat

 required. Acetylated NF-κB has an increased DNA binding capacity resulting 

in higher HIV-1 LTR activation. A similar effect has been observed for the TATA box 

binding protein (TBP) (Furia et al., 2002). 

There is also evidence for a function of CBP/p300 as bridging factor. A part of 

all the factors describe

CBP/p300. For exam

e the HIV-1 LTR (Kino et al., 2002). Also, the cellular proteins Ets-1 and USF-1 

have been shown to transactivate via CBP/p300 in other promoter contexts (Breen 

and Jordan, 2000; Yang et al., 1998), respectively).  
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2. Objectives  
As I tried to illustrate in the introduction transcriptional control is exerted by a 

multitu

er Ets-1 and the bHLH Zip protein USF-1. 

It has 

he perspective that a deeper 

knowledge about the molecular mechanisms underlying Ets-1/USF-1 activity could 

contribute to the evaluation of this complex as a drug target to inhibit HIV-1 

replication. This strategy is based on the idea that interference with cellular 

transcription factors should be less susceptible to the development of viral resistance 

than inhibitors of viral proteins. Viral mutations could only indirectly undermine the 

efficacy of inhibitors that disrupt the interaction of cellular transcription factors.  

 

 

 

 

 

 

 

 

de of transcription factors binding specifically to DNA, factors recruited by DNA 

bound proteins and coregulatory proteins. The combination of these different factors 

acting on a given promoter or enhancer at a given time point and in a given 

environment results in the regulation of transcriptional activity. Consequently, it is 

important to understand how these factors “communicate” with each other and to 

reveal the underlying mechanisms for their activity. 

2.1 General objectives 

The aim of my thesis was the analysis of a transcription factor complex 

composed of the ETS protein family memb

been shown before that this complex is able to influence positively HIV-1 LTR 

activity and that they are cooperating in DNA binding and transactivation. However, 

the mechanisms leading to these functions are largely unknown. The main goal was 

to elucidate the molecular mechanisms for Ets-1/USF-1 cooperativity which could 

serve as a general model for complexes composed of other members of these same 

transcription factor families.  

A further motivation for this project was t
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2.2 Specific aims 

2.2.1 

ding 

2.2.3 Ets-1/USF-1 transactivation 

Another important question is how the complex bound to a distal enhancer can 

influence the transcriptional machinery. Since Ets-1 has been shown to act via 

CBP/p300 in another context and because there is some evidence for a similar role 

of CBP/p300 in USF-1 transactivation I studied the role of this coactivator in Ets-

1/USF-1 mediated transactivation. This allowed me to bring the Ets-1/USF-1 complex 

into a more global context of transcriptional control of HIV-1 transactivation. 

Ets-1/USF-1 interaction 

First, I wanted to analyze Ets-1/USF-1 interaction and to narrow down the 

interaction surface for USF-1 in Ets-1 by biochemical methods. I performed refined 

deletion analysis and in vitro and in vivo interaction assays to minimize the interaction 

surface in Ets-1. The knowledge of the precise interaction domain proved to be valid 

for the further analysis of the cooperativity of Ets-1 and USF-1 in DNA-binding and 

transactivation. 

2.2.2 Ets-1/USF-1 DNA bin

DNA-binding of Ets-1 is regulated by an autoinhibitory mechanism. Although 

the autoinhibitory domains are well characterized, very little is known about the 

regulation of autoinhibition. Previous results indicate that Ets-1/USF-1 interaction 

changes the DNA binding capacity of the complex. Therefore, I investigated if USF-1 

was able to relieve autoinhibition of Ets-1 DNA binding and/or if Ets-1 is required for 

USF-1 DNA binding. 

Ets-1 and USF-1 synergize in transactivation of a reporter gene under the 

control of multimerized Ets-1 and USF-1 binding elements of the HIV-1 enhancer 

region. What are the reasons for this cooperativity? One explanation could be the 

cooperative DNA binding leading to a favored DNA bound state of the complex and 

enhanced transactivation. I wanted to test this hypothesis and to explore if other 

mechanisms are responsible for the observed effect. 

2.2.4 Role of CBP 
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3 Results 

3.1 U

 Ets-1 DNA binding domain and tested them for interaction with full 

length, radiolabeled in vitro translated USF-1 (Figure 9 A). Whereas Ets aa 280-441 

F-1 (lane 1+4), further deletion taking away also 

Helix 1

n constructs of the DNA binding domain of Ets-1 bind to a LacZ 

of multimerized Ets binding sites (EBS). Since 

all the Ets-1 constructs used lack the transactivation domain situated in the N-

termin

 in blue colonies due to LacZ 

reas deletion mutants that lacked helices 4/5 (Ets 333-417) or 

contained the C-terminus of v-Ets (v-Ets 333-444) failed to activate the reporter 

construct, indicating a predominant role of the C-terminal, autoinhibitory module of 

Ets-1 for interaction with USF-1 (Figure 9 B) 

These data indicate that Ets-1/USF-1 interaction is mediated via Helices 4/5, 

which correspond to the C-terminal autoinhibitory module of Ets-1, suggesting that 

autoinhibition and intermolecular protein interaction may be intrinsically linked. 

SF-1 interacts with Helix1 and Helix 4/5 of Ets-1 in vivo and in 
vitro 

It was previously known that the main interaction domains of Ets-1 and USF-1 

must be situated in their respective DNA binding domains (Sieweke 98). With the aim 

to identify a more restricted binding surface in Ets-1 I generated GST fused deletion 

constructs of the

and Ets aa 331-441 interact with US

 (Ets aa 351-441) or Helices 4/5 (Ets aa 333-417) that are situated N- and C-

terminally of the ETS domain, respectively, result in loss of interaction (lane 2+3). 

Also the DBD of v-ets (333-444), a viral form of Ets-1 which differs only in the C-

terminus, fails to interact with USF-1 (lane 5). 

Similar results were obtained in vivo by a one hybrid approach in yeast. In this 

assay different deletio

reporter construct that is under control 

al part of the protein they are not able to transactivate the reporter alone. The 

potential of the different mutants to interact with USF has been tested in co-

transformation experiments with the DNA binding domain of USF-1 (aa 204-310) 

fused to a heterologous transactivation domain derived from the VP16 protein of the 

herpes simplex virus (USF 204-310-VP16). Only EtsDBD (Ets 333-441) was able to 

recruit USF 204-310-VP16 to the promoter resulting

reporter activity, whe
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Figure 9 
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tion of the reporter gene resulting in blue colonies (lower panel). Differences in activation 
easured in a quantitative ß-gal assay (upper panel). 

A. 

domain designates the core DNA binding domain without the inhibitory domains. B. In vivo

e under the control of 5 multimerized ETS
. Interaction with USF204-310-VP16 leads to 

activa
were m

B. 

Fig.9 Mapping of a minimal interaction site in Ets-1 for USF-1. A. Deletion mutants of the 
autoinhibited DNA binding domain of Ets-1(aa238-441) fused to GST were tested for association 
with in vitro translated [35S] methionine-labeled USF. Left, maps of constructs indicating the first 
and the last amino acid from Ets-1 or v-ets with indications of secondary structural elements. ETS 

interaction of different mutants of the Ets-1 DNA binding domain with USF-1 by a yeast one hybrid 
approach: The reporter plasmid with the LacZ gen
binding sites is bound by the different Ets mutants



3.2 USF-1 relieves autoinhibition of Ets-1 DNA binding through 

interaction with autoinhibitory Helices4/5 

As discussed in the introduction, DNA binding by Ets-1 is governed by 

autoinhibition. Since I could show that the C-terminal autoinhibitory domain, Helix 4/5, 

constitutes an important interaction domain for USF-1 binding, I hypothesized that 

USF-1 binding to this domain in Ets-1 could be responsible for relieve of Ets-1 

autoinhibition. To explore this possibility I performed electrophoretic mobility shift 

assays (EMSA) with a 32P labeled oligo corresponding to the -138 to -170bp region of 

the distal enhancer of the HIV-1 LTR that contains adjacent E-box and Ets binding 

sites. I used purified recombinant protein corresponding to the Ets-1 DNA binding 

domain (Ets 333-441), Ets 238-441, encompassing the two autoinhibitory domains 

and to the DNA binding domain of USF-1 (USF 204-310). USF 204-310 binds in this 

context efficiently the probe resulting in a slower migrating complex (Figure 10 A). As 

expected the presence of both autoinhibitory domains present in Ets 238-441 

(Hagman and Grosschedl, 1992; Lim et al., 1992) reduced DNA binding affinity of this 

construct leading to a dramatic difference in Ets 331-441 and 238-441 binding affinity 

by themselves (Figure 10 B+C, lane 1-5, lower complex). By contrast, in the 

presence of increasing amounts of USF 1 the autoinhibited Ets construct (Ets 238-

441) readily forms ternary complexes to a comparable extent as Ets 331-441 (Figure 

10 B+C, lane 2-5, upper complex). This indicates that in the absence of USF 201-310 

only a small proportion of Ets 238-441 is bound to DNA and that this autoinhibition 

can be relieved by USF binding. 

Together with the mapping of the interaction domain in Ets-1 for USF-1 to 

Helices 4/5, these results show that interaction of USF-1 with a restricted domain in 

E  

th

ts-1 interrupts the molecular interplay of the two autoinhibitory modules in Ets-1

us enabling Ets-1 to bind DNA in a ternary complex with USF-1. 
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Figure 10 
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Fig.10 Cooperative DNA binding of Ets-1 and USF-1 on the distal enhancer of the HIV-1 LTR. 
Electrophoretic mobility shift assays (EMSA): Radiolabeled probes containing adjacent Ets-1 and 
USF-1 binding sites of the HIV-1 LTR were incubated with increasing amounts of recombinant 
purified USF-1 (USF 204-310) alone A. or together with either the non-autoinhibited DNA binding 
domain of Ets-1 (Ets 333-441) B. or the autoinhibited Ets 238-441 C. Bands corresponding to the 
Ets 333-441 or Ets 238-441 complex, respectively, or the ternary complex were quantified with the 
ImageQuant program. The graphs at the right represent the percentage of total probe bound by 
Ets or Ets/USF.  

A. 

B. 

C. 



3.3 Cooperative transactivation by Ets-1/USF-1 complex is 

independent of cooperative DNA binding 

We have seen before that Ets-1 and USF-1 can synergistically transactivate 

an HIV-1 LTR driven luciferase reporter (Sieweke et al., 1998). The interaction of 

USF-1 with one of the autoinhibitory domains and the resulting cooperative DNA 

binding described in the previous experiments could also explain the Ets-1/USF-1 

cooperativity in transactivation. By consequence, higher transactivation capacity 

would be the result of a stabilized recruitment of the Ets-1/USF-1 complex on DNA. 

However, I wondered if an additional mechanism, independent of DNA binding, 

contributes to the observed synergistic transactivation. 

To test this I decided to apply a “mammalian” hybrid system that allows to 

effectively uncouple DNA binding and transactivation activity of Ets-1 (see model 

Figure 11). Towards this end I generated fusion constructs between the DNA binding 

domain of the yeast protein Gal4 (Gal4DBD) and full length Ets-1 (Gal-Ets) or USF-1 

(Gal-USF) to tether the transcription factors to the promoter of a Gal4 binding site 

driven reporter construct by a heterologous DNA binding domain. By cotransfection 

assays in a quail fibroblast cell line (Qt6) I tested the ability of Gal-Ets and USF-1 to 

synergize in reporter activation. 

Both fusion constructs, Gal-Ets and Gal-USF, are able to activate expression 

of the luciferase reporter gene showing that they conserve their transactivation 

capacity when fused to the Gal4DBD. However, Gal-Ets induces much higher 

reporter activity (~10 fold) than Gal-USF (~1-2 fold) in comparison to the control 

condition. Surprisingly, addition of USF-1 to Gal-Ets increases luciferase activity by 

another 3 fold (Figure 11) pointing to a cooperative mechanism in transactivation 

independent of DNA binding by the complex. Thereby, the effect of USF-1 in 

cotransfections with Gal-Ets is dramatically stronger than direct recruitment of USF to 

D

 

c  

a f 

c 1/USF-1 DNA binding.  

NA via the Gal moiety (compare Figure 11, conditions 2+5). 

This result indicates that cooperativity in transactivation of the Ets-1/USF-1

omplex is not only the result of facilitated DNA binding. It rather appears that an

dditional mechanism contributes to the synergism in transactivation independent o

ooperative Ets-
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Figure 11 

 

. Ets-/USF-1 cooperativity is independent of DNA binding. Mammalian Hybrid system: Ets-1 
and USF-1 are directly tethered to a luciferase gene under control of multimerized Gal4 DNA 
binding sites via fusion to a Gal4 DNA binding domain (Gal). The effect of interaction of free USF-
1 with Gal–Ets can be measured by the reporter activity as represented by the scheme on the 
right. QT6 cells were co-transfected with 0.5 mg of the Gal-luciferase reporter together with the 
indicated expression constructs Gal-Ets (0,25 µg) and USF-1 1µg. The luciferase activities have 

vector. Values are expressed as relative light units and bars indicate standard errors of the mean. 

Fig.11

been normalized to β-galactosidase activity from a co-transfected constitutively expressed β-gal 

3.4 Transactivation by the Ets-1/USF-1 complex depends on 

chrom

eriments. 

Again, I observed the cooperativity in transactivation independently of DNA 

binding by the Ets-1/USF-1 complex (Figure 12 A+B, conditions 1-3). Cotransfection 

of either of the two Gal4 fusion constructs, Gal-Ets and Gal-USF, respectively, with 

CBP/p300 

The events described so far take place at a distant region from the promoter 

where the basic transcription machinery assembles. Therefore, it is important to 

understand by which means the Ets-1/USF-1 complex can influence the activity of 

gene transcription. Ets-1 has been reported to bind to the transcriptional coactivators 

CBP/p300 in a different context (Yang et al., 1998). Since CBP/p300 have been 

shown to contact transcription factors on the one hand and to modulate 

transcriptional activity by directly contacting the pol II machinery and/or remodeling 

atin, I wanted to investigate if reporter activation by the Ets-1/USF-1 complex 

also depends upon CBP/p300 thus providing the missing link between Ets-1/USF-1 

and the processes at the promoter. Therefore, I applied the mammalian hybrid 

approach established in the previous exp
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an expression construct for CBP increased remarkably reporter activity. In the case 

of Gal-Ets the same level was reached as observed together with USF-1 confirming 

the implication of CBP in Ets-1 transactivation. Moreover, cooperative reporter 

activation by Gal-Ets with USF-1 could be raised by another 2 fold when 

cotransfected with CBP (Figure 12 A, condition 5). In the inversed setup, using Gal-

USF as bait, the effect of CBP overexpression was even more striking (Figure 12 B). 

Cotransfection of Gal-USF with CBP alone had already a stronger effect than Ets-1 

on Gal-USF and is increased by another 2-3 folds when all three elements are 

present. 

To test whether endogenous CBP/p300 is involved in cooperative Ets-1/USF-1 

transactivation I used the adenoviral protein E1A which is known to block many of the 

ro , 

2  

b -

U t 

endogeneous CBP is involved in Ets-1/USF-1 transactivation (Figure 12 C). 

Together, these results show that Ets-1/USF-1 transactivation depends on 

CBP making the link between the distal binding of the transcription factor complex 

crease of Ets-1/USF-1 activity these experiments could also explain the 

observed synergism of the transcription factor complex due to enhanced recruitment 

of the transcriptional integrator CBP. 

les of CBP/p300, including their function as transcriptional coactivator (Sang et al.

002). In cotransfection with an expression vector for E1A I tested whether activation

y Gal-Ets and USF-1 is sensitive to this CBP/p300 inhibitor. Indeed activity by Gal

SF, Gal-Ets and Gal-Ets/USF could be efficiently decreased by E1A indicating tha

and the basic transcription machinery. In addition, since overexpression of CBP leads 

to a further in
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3.5 CBP mediated synergism depends on USF-1  

Since I was able to show that CBP/p300 is responsible for the synergism in 

transactivation by Ets-1/USF-1 I wondered how Ets-1/USF-1 complex formation can 

lead to enhanced CBP recruitment. Based on the knowledge that Ets-1 directly 

interacts with CBP I initially followed two different strategies. 

Fig.12 Influence of CBP on Ets-1/USF-1 cooperativity. Experiments were performed using the 
same approach described in figure 11. A. The Gal4 reporter (0,5µg) was cotransfected with 
0,25µg of Gal-Ets and 1µg of expression constructs for USF-1 and CBP, as indicated. B. Same 
principle as in A with the inversed setup using Gal-USF as a bait. C. Sequestration of endogenous 
CBP by the adenoviral protein E1A. Cotransfection of the Gal4 luciferase reporter with 0,25 µg of 
expression constructs for Gal-USF, Gal-Ets ,1 µg of free Ets-1 or USF-1 and 12,5ng of E1A, as 
indicated. 

B. 

A. 

Figure 12 

C. 
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First, I wanted to figure out if USF-1 could cause higher activity of Ets-1 by an 

induced fit mechanism which could result in increased affinity of Ets-1 for CBP. 

 erefore, I tested different domains of USF-1 for their capacity to induce 

enhanced transactivation by Gal-Ets. I performed cotransfection studies of Gal-Ets 

with either the DNA binding domain of USF-1 (USF 204-310) which has no 

transcriptional activity by itself or its transactivation domain (USF 1-203). However, 

neither USF 204-310 nor USF 1-203 affect Gal-Ets activity (Figure 13 A) indicating 

that both parts, independently from each other, are not able to induce higher 

transactivation by Gal-Ets. USF 204-310 is sufficient for cooperative DNA binding 

(Figure 2 B+C) but not for synergistic transactivation as observed for full length USF-

1. This demonstrates that regions in the more N-terminal part of USF-1 are involved 

in the mediation of synergism. 

Secondly, to further confirm the dependence of Ets-1/USF-1 on CBP/p300 

recruitment I wanted to know what would be the consequence for Ets-1/USF-1 

transactivation by impairing the CBP/Ets-1 interaction. I expected that a deletion of 

the known interaction surface in Ets-1 for CBP/p300 (Yang et al., 1998) will abolish 

the observed synergism mediated by CBP. 

Therefore, I generated a mutant Gal-Ets construct (Gal-Ets, ∆ aa 154-211) 

lacking the interaction surface for CBP/p300 and performed reporter assays with Gal-

Ets and Gal-Ets∆CBP in the presence or absence of full length USF-1. The deletion 

resulted in a loss of transactivation potential of about 50% for Gal-Ets∆CBP in 

comparison to Gal-Ets confirming the role of this domain for CBP mediated 

tr , 

c , 

w

 

underlying Ets-1/USF-1 synergism. Even though I did not observe higher activation 

y Gal-Ets in cotransfections with the USF domains this experiment clearly shows 

quired for synergistic 

transactivation. Furthermore, the second experiment (Figure 13 B) demonstrates that 

synerg

F-1 synergism. 

Th

ansactivation. However, although the overall reporter activity was a bit lower

otransfections with USF-1 revealed an even higher synergistic effect (4,1 fold)

hen compared to the effect of USF-1 on Gal-Ets (2,6 fold) (Figure 13 B). 

Together, these data indicate an important role of USF-1 for the mechanism

b

that regions lying in the N-terminal part of USF-1 are re

istic activation by Ets-1/USF-1 is not exclusively dependent on Ets-1/CBP 

interaction. Together with the result in the previous chapter (Figure 12 B) showing 

increased Gal-USF transactivation potential when cotransfected CBP it is reasonable 

to assume that USF-1 plays a role in CBP mediated Ets-1/US
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Figure 13 

A. 

B. 

 

1 complex 

is med

gure 14 

3.6 USF-1 interacts with CBP/p300 in vitro 

Since I could show that synergistic transactivation by the Ets-1/USF-

with full length USF-1 (USF 1-310), the N-terminal domain bearing transactivation capacity (USF 

described previously (see legend Fig.11). Maps of the USF-1deletion mutants are shown on the 
right. B. A Gal-Ets deletion construct was generated, lacking the CBP interaction domain (0,25µg), 
and cotransfected with USF-1 (1µg) and the Gal4 reporter (0,5µg).  

Fig.13 CBP mediated synergism depends on USF-1. A. Cotransfection of Gal-Ets (0,25µg) either 

1-203) or its DNA binding domain (USF 204-310) (1µg). Gal4 reporter activity was determined as 

iated by CBP and USF-1 appears to play a role in CBP recruitment I wanted to 

investigate if USF-1 physically interacts with CBP in vitro. Therefore, I performed 

GST-Pulldown assays. 

First, I tested if radiolabeled USF-1 can interact with several GST-fusion 

proteins containing fragments of the ~270kD protein CBP covering almost the entire 

protein (Figure 14 A). As a control, also the interaction potential of Ets-1 for CBP was 

analyzed. As shown before, Ets-1 has been predominantly retained by GST-CBP 1-

452 (fragment 2) bearing the CH1 domain and GST-CBP 1460-1891 (6) containing 

CH2 and to a lower extent by CBP-GST 452-721 (3) (Yang et al., 1998), (Fi
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B). Under the same conditions USF-1 was also pulled down by the GST fused CBP 

fragments (2) and (6) (Figure 14 C). This result proves that USF-1 and CBP interact 

directly with each other and supports the role of CBP in Ets-1/USF-1 synergism. 

Interestingly, Ets-1 and USF-1 were predominantly recruited by the same fragments. 

 

 
 

Then, I wanted to map interaction surfaces in USF-1 for CBP. Therefore, I 

generated truncated forms of USF-1 including internal deletions of potential 

transactivation domains in USF-1 which might function by recruiting a coactivator, 

 of radiolabeled protein used for the binding assay. C. Same as in B. using in vitro 
ted, radiolabeled full length USF-1. 

Figure 14 

A. 

Fig.14 USF-1 interacts physially with CBP. A. Schematic presentation of the different GST fused 

 and immobilized on Sepharose beads coated with Glutathion. Equal 
1 were added in each binding reaction. The first lane corresponds to 

100%
transla

B. C.

CBP fragments tested for interaction with USF-1 and Ets-1. B. The GST fused fractions of CBP 
were produced in bacteria
amounts of full length Ets-
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such as CBP/p300 (Figure 15 A). In USF∆2-42, the activation domain 1 has been 

excised reported to bear transcriptional activity in in vitro transactivation assays 

(Kirschbaum et al., 1992). USF∆USR (∆172-194) lacks most of the USF specific 

region corresponding to the reported homologues regions in USF-2 which has been 

hown to be a powerful transactivation domain (Luo and Sawadogo, 1996).  s

Figure 15 

 

eled protein used in each condition. 

B. 

A. 

Fig.15 Mapping of an interaction surface for CBP in USF-1. A. Scheme of the USF-1 deletions
assayed for interaction with the GST-CBP fragments shown before to bind USF-1. B. Presentation of

e results obtained for each of the USF-1 truncations. Input corresponds to 100% of the amount of 
radiolab

 
 

th
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These deletion mutants were tested for interaction with the GST-CBP 

fragments (CBP 1-452 and CBP 1460-1891) shown to interact with full length USF-1 

(Figure 15 B). Truncation of the Leucine Zipper (Zip) and Helix-Loop-Helix (HLH) 

domains do not influence the capacity of CBP to retain USF-1. By contrast, further 

deletion of the basic (b) region abolishes interaction. This is consistent with the loss 

of interaction of USF 1-157 and USF∆DBD lacking the entire DNA binding domain. 

Deletion of activation domain 1 (USF ∆ 2-42) is not affected in its ability to be pulled 

down by both fragments. However deletion of the USR (USF ∆ 172-194) does not 

interact with the CBP fragment 1461-1891 and only weakly with GST-CBP 1-452. 

Also the DNA binding domain alone lost most of USF-1 interaction potential. It seems 

that the USF specific region (USR) as well as the basic region (b) are both required 

to mediate full USF-1/CBP interaction. 

 

3.7 USF-1 depends on CBP/p300 for transactivation in vivo 

After the identification of the interaction surface in USF-1 for CBP in vitro I 

wanted to know how this deletion would affect USF-1 activity in vivo. Since the basic 

region which I have shown to be essential for full CBP recruitment is absolutely 

required for USF-1 DNA binding I chose to use USF∆USR in the reporter assay 

rather than to delete the entire interaction surface for CBP (USR + basic region). 

I performed reporter assays in Qt6 fibroblasts to compare the capacity of full 

length USF-1 and the USF derivates lacking the transactivation domains (USF∆2-42 

and USF∆USR) to activate an HIV-1 LTR driven luciferase reporter. Whereas USF-1 

and USF∆2-42 strongly induced luciferase activity, USF∆USR has almost no activity 

(Figure 16 A). 

To confirm the dependence of USF-1 transactivation on CBP in the context of 

the HIV-1 LTR reporter, I tested the effect of the CBP inhibitor E1A. In cotransfection 

experiments USF-1 activity can be repressed by E1A but not by a mutant form 

(E1Amut). Consistently, the low activity that USF∆USR retains on the HIV-1 LTR 

reporter is not influenced by E1A confirming that the recruitment of CBP is severely 

impaired and results in loss of CBP mediated transactivation by USF-1 (Figure 16 B). 
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A. 

B. 

re 16 Figu

 
 

 

er activation.  

3.8 Interaction of USF-1 with CBP/p300 is required for Ets-1/USF-1 

syner

for USF-1 transactivation in reporter assays it became possible to evaluate the role of 

CBP recruitment by USF-1 for transactivation by the Ets-1/USF-1 complex. 

 in 
B. R 

report

Fig.16 The USF specific region (USR, aa 172-194) is required for CBP mediated transactivation 
A. The ability of wild type USF-1 and internal deletion mutants of USF-1 (1µg), lacking either of 
two potential transactivation domains to transactivate a HIV-1 LTR reporter (0,5µg) was tested
Qt6 cells.  Effect of E1A and E1Amut (12,5ng) on USF-1 and USF∆172-194 mediated LT

gism 

In one of the earlier experiments (Figure 13 B) I wanted to test the initial 

hypothesis that CBP mediated synergism depends on CBP recruitment by Ets-1. 

Even though the result disproved the initial hypothesis this experiment indicated a 

role for USF-1 in CBP mediated transactivation by Ets-1/USF-1. Since I could identify 

the USR in USF-1 as interaction surface for CBP which also proved to be important 
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With this aim I performed reporter assays in Qt6 cells using expression 

plasmids for Gal-Ets, full length USF and the USF-1 derivates lacking transactivation 

domains (USF∆2-42 and USF∆USR). As shown in figure 17, USF-1 and USF∆2-42 

synergize with Gal-Ets to activate the Gal4 driven luciferase reporter. By contrast, 

USF∆USR failed to increase transcriptional activity.  

This result shows that transactivation cooperativity of USF-1 and Ets 1 

depends on CBP recruited by USF-1. 

 

 

3.9 Increased DNA binding affinity of USF∆USR  

Figure 17 

Fig.17 The USF specific region (USR, aa 172-194) is required for Ets-1/USF-1 cooperativity in 
transactivation. The USF-1 mutants each lacking one of USF-1 transactivation domains (USF∆2-
42 and USF∆172-194) were analyzed for their capacity to cooperate with Gal-Ets on a Gal4 
reporter in comparison to full-length USF-1.  

 

The USF specific region is situated in close proximity to the N-terminus of the 

USF-1 DNA binding domain. Even though DNA binding of USF∆USR should not be 

disturbed since the USF DNA binding domain (USF 204-310) retains full DNA binding 

capacity (see Figure 18 A), I wanted to test if the deletion of USR shows altered DNA 

binding properties in comparison to USF-1 (USFfl) in the context of full length 

proteins. 
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Therefore, I applied EMSA assays using in vitro translated, full-length USF-1 

and USF∆USR. The radioactively labeled probe used corresponds to the E-box/EBS 

motif used in figure 10. USF-1 recognized specifically the E-box element and the 

radioactive signal could be efficiently competed out by a 500 times molar excess of 

specific unlabeled probe but not by a nonspecific, unlabeled probe (Figure 18 A, lane 

2-4). A

main leads to higher DNA binding affinity in 

comparison to wild type USF-1. This strong difference in DNA binding (compare lane 

2 and 5) capacity can not only be explained by the about 3-5 fold higher quantity of 

protein used as indicated by a Western Blot analysis of the in vitro translation lysates 

(Figure 18 B). Indeed, it appears that the affinity of full length USF-1 to the E-box is 

influenced by an intramolecular mechanism that involves the USF specific region 

(USR). 

 

 
 

unlabeled non-specific probe (lane 4). USF∆USR also binds specifically the probe (lanes 5-7). B.
 verify expression and quantity of the in vitro translated USF-1derivates. 

lso USF∆USR bound specifically to the E-box element (Figure 18 A, lane 5-7). 

However, the deletion of the USR do

Figure 18 

A. B.

Fig.18 USF∆USR has increased affinity for the E-box. A. EMSA with full length USF-1 or 
USF∆USR on a radiolabeled oligonucleotide containing composite E-box/EBS binding sites. 
Proteins were translated in vitro. USF-1 (1µl) forms a specific DNA bound complex (lane 2) that 
can be efficiently competed out by a 500 molar excess of unlabeled probe (lane 3) but not by an 

Western to
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3.10 E

R, in contrast, is not affected by Ets-1 (lane 5).  

hese results confirm the influence of the USR for DNA binding by USF-1 

 

 

 

 

 

 

 

ts-1 induces enforced DNA binding by USF-1 

With the indication that USF-1 DNA binding can be controlled by 

intramolecular interaction the question arises if Ets-1 interferes with this 

intramolecular mechanism and enhances the capacity of USF-1 to bind DNA. To 

address this question I repeated the EMSA assays to test DNA binding by in vitro 

translated USF-1 and USF∆USR in the presence of full length Ets-1. 

As expected, Ets-1 alone is not recognizing the E-box/EBS motif of the 

radiolabeled probe since it is regulated by the autoinhibitory modules (Figure 19, lane 

1). By contrast both USF derivates bind readily the E-box and again show a strong 

difference in DNA binding capacity (Figure 19, lane 2+3). However, when incubated 

together with Ets-1, the amount of probe bound USF-1 reaches approximately the 

same level as USF∆USR alone (lane 4 in comparison to lane 3). DNA binding by 

USF∆US

T

supporting an additional role of this domain as autoinhibitory module. In addition, Ets-

1 seems to enhance USF-1 DNA binding and that this effect depends on the 

pre ce of the USR. Thereby, induced SF-1 binding is apparently not dependent

on ternary complex formation since I did not observe a more retarded complex in the 

presence of Ets-1. It rather appears that Ets-1 helps USF-1 to bind to its recognition

site without participating in a DNA bound complex. This is controversial to the initial 

observation that Ets-1 and USF-1 form a ternary complex. However, these different 

observations are probably due to the different setups of the experiments. Whereas I

used bacterially expressed, purified protein corresponding to the respective DNA 

binding domains in the first setup (Figure 10) in the second full length, in vitro

translated Ets-1 and USF-1 were used. Either in this context the complexes formed 

are not stable enough or the reticulocyte lysate contains another factor of the same 

size as Ets-1 that interacts with USF-1 and retards complex migration but is not as

efficient in complex formation as Ets-1. However, a similar effect has been

documented for the ability of PEA3, another ETS factor, to induce higher DNA affinity 

in

e

sen  U

 USF-1 (Greenall et al., 2001). They observed that the ETS domain of PEA3

nhances DNA binding of USF-1 without ternary complex formation.  
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Figure 19 

 

3.11 Ets-1 autoinhibitory domain potentates Gal-USF transactivation 

The previous experiments underline the importance of USF-1 for the 

synergistic transactivation by Ets-1/USF-1 for the mediation of CBP recruitment to the 

complex. This contribution of USF-1 for Ets-1/USF-1 activity could be the simple 

result of facilitated DNA binding by the complex. However, the role of the USR in 

CBP recruitment and regulated DNA binding on the one hand and the ability of Ets-1 

to facilitate DNA binding on the other hand propose that the interaction between Ets-

1 and USF-1 could change the capacity of USF-1 to recruit CBP as well. 

To analyze the effect of Ets-1 on USF-1 transactivation potential, I first 

inversed the setup of the mammalian hybrid experiment and generated a fusion 

construct between GalDBD and USF-1 (Gal-USF). In cotransfection studies with Gal-

USF, the Gal responsive reporter construct and different Ets-1 derivates I observed 

that Ets-1 can increase transactivation by Gal-USF showing that the cooperative 

transactivation independent of DNA binding can be observed also in the inversed 

setup. Surprisingly, N-terminal truncated Ets 238-441 having no int

potential 

rinsic activation 

potential increased Gal-USF transactivation to a similar extent. As expected, 

truncated Ets-1 lacking the helices 4/5 (Ets 238-417) which are important for 

interaction with USF-1 did not alter activation by Gal-USF (Figure 20).  

SA with USF-
 the absence 

binding sites. In vitro translated 

Fig.19. Ets-1 facilitates USF-1 
DNA binding. A. EM
1 and USF∆USR in
or presence of full length Ets-1 on 
a radiolabeled oligonucleotide 
containing composite E-box/EBS 

USF-1 and USF∆USR (1µl) form 
DNA bound complexes (lanes 
2+3). DNA binding capacity of 
USF-1 is enhanced in the 
presence of Ets-1 (6 µl, lane 4). 
The capacity of USF∆USR to bind 
DNA is not changed by Ets-1 
(lane5).
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This result indicates that Ets-1 induces a conformational change in USF-1 that alters 

the transactivation potential of Gal-USF. 

 

 

Figure 20 

 

Fig.20 The C-terminal autoinhibitory domain in Ets-1 is able to induce Gal-USF transactivation. 
Gal-USF (0,25µg) was transfected into Qt6 cells along with Gal4 reporter plasmid and either full-
length Ets-1, the autoinhibited DNA binding module of Ets-1 (Ets 238-441) or a further deletion of 
the C-terminal helices 4/5 (Ets 238-417). Maps of the Ets-1 deletion mutants are indicated..  
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4. Discussion 

4.1 Summary of the results: 

 

I could show the following: 

 

1. USF-1 interacts with the C-terminal autoinhibitory module of Ets-1. 

2. This interaction relieves autoinhibition of Ets-1 DNA binding and results in Ets-

1/USF-1 complex formation at a composite binding element present in the 

HIV-1 LTR. 

3. USF-1 DNA binding is autoinhibited by the USF specific region and Ets-1 

facilitates USF-1 recruitment to the E-box. 

4. Cooperative transactivation by the Ets-1/USF-1 complex is not only the result 

of stable recruitment of the transcription factor complex to DNA but 

necessitates additional events. 

5. The C-terminal autoinhibitory domain of Ets-1 can induce higher 

transactivation capacity in USF-1. 

6. CBP/p300 mediates synergistic transactivation of Ets-1/USF-1. 

9. The USF specific region represents the major interaction domain of USF-1 for 

CBP. 

7. CBP/p300 mediated synergism depends on USF-1. 

8. Ets-1 and USF-1 bind to the same regions in CBP. 
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4.2 Discussion of the results 

The results of this thesis indicate that the interplay between two transcription 

 of gene expression can influence their activity by 

everal means. In the case of the Ets-1/USF-1 complex I have shown that the 

-terminal, autoinhibitory module of Ets-1 and USF-1 

rovokes conformational changes that result in (1) relieve of autoinhibition of Ets-1 

DN ites that in 

add

involve

induction of transcriptional activity in USF-1 that might is due to higher accessibility of 

the

discus

4.2.1 -1 complex formation 

cooperating transcription factors. The method of choice to test the effect of 

coo erexpress the 

fac sion of a limited subset of 

reg  can be sufficient to evoke 

syn

generate a greater-than-additive transcriptional activity. Given the strong effect 

observed by a limited part of transcription factors that are potentially implicated in the 

regulation of a given gene it is important to understand the molecular mechanism 

underlying the achievement of synergistic potential by each single transcription factor 

complex.  

Synergism in transactivation has been shown to be the result of (1) enhanced 

fixation to regulatory elements in the promoter/enhancer regions and (2) subsequent 

recruitment of coactivators or direct contacts to the pol II machinery. These two 

aspects reflect on the level of transcription factor complexes the two layers of stereo-

specificity underlying the enhanceosome model that tries to integrate the entity of 

transcription factor “signals” regulating the expression of a given gene. The Ets-

1/USF-1 complex fulfills these requirements and has been shown to cooperate in 

DNA binding and transactivation (Sieweke et al., 1998). I now went a step further in 

factors that cooperate in the control

s

interaction between the C

p

A-binding and stabilized complex recruitment to the composite binding s

ition is supported also by enhanced USF-1 DNA binding with the USR being 

d; (2) synergism in transactivation through CBP recruitment and also by 

 USR domain for interaction with CBP. In the following chapters the results will be 

sed more in detail. 

 

Consequences of Ets-1/USF

Synergistic transactivation is a frequently observed phenomenon for 

peratively acting transcription factors on transactivation is to ov

tors of interest in cells. Hereby, the forced ectopic expres

ulatory proteins that act on a given enhancer/promoter

ergism. This indicates that the cooperative activity of only two factors is enough to 

 - 59 - 



the analysis of the Ets-1/USF-1 activity to understand in detail the mechanistical 

basis for the cooperativity.  

4.2.1.1 Cooperative DNA binding by Ets-1/USF-1 

Many ETS-domain transcription factors are subjected to autoregulation, 

whereby their DNA binding activity is masked until an appropriate trigger, consisting 

in phosphorylation or interaction with coregulatory transcription factors is in place. 

Cooperative DNA binding by protein-protein interactions has been described for 

several members of the ETS family. For some of them exist structural evidence as for 

GABPα/β that are able to recognize tandem ETS binding sites after complex 

formation (Batchelor et al., 1998) and SAP-1/serum response factor that bind 

composite binding sites in the c-fos promoter by forming a ternary complex (Hassler 

and Richmond, 2001). In the example of Ets-1/Pax-5, complex formation allows the 

recruitment of the transcription factors to a non-consensus ETS binding site in the 

mb-1 promoter. This has been shown to be achieved by conformational changes in 

 studies have shown 

that e

ulated for DNA binding. Through interaction of the AML-1 autoregulatory 

domai

the ETS domain induced by Pax-5 (Garvie et al., 2001). All these

nhanced DNA binding can be reached by complex assembly resulting in 

additional DNA contacts and induced binding site affinity by conformational changes. 

By contrast, these studies did not take into account the role of the autoinhibitory 

domains in complex formation since they could not include these modules in the 

crystals. 

With my biochemical approaches I could reveal that relieve of autoinhibition is 

triggered by direct interaction of USF-1 with one of the inhibitory modules in the case 

of Ets-1/USF-1. This direct interaction provides a simple and elegant mechanistic 

explanation for the observed cooperativity in DNA binding. A similar mechanism has 

been described for cooperative DNA binding by Ets-1/AML-1. Thereby, both proteins 

are autoreg

n with the N-terminal autoinhibitory module of Ets-1 they mutually relieve the 

block of DNA binding (Kim et al., 1999). It is remarkable that in the case of Ets-

1/USF1 the other autoinhibtory module at the C-terminus is the target for the 

interaction partner. This proposes that apart from the functional relevance of both 

domains to evoke efficient inhibition of DNA binding, the modular composition of the 

inhibitory “intramolecular complex” also generates spatially separated interaction 

surfaces for distinct protein partners of Ets-1. By this strategy not only the potential 
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number of interaction partners is increased but hypothetically displays also the 

possibility to interact with two different factors at a time. 

Interestingly, my finding that the capacity of USF-1 to bind to DNA is regulated 

el to that of Ets-1/AML-1 for 

Ets-1/U

F-1 goes far beyond its initial role as an anchor for Ets-1 recruitment. First 

of all, 

as well by interaction with Ets-1 proposes a similar mod

SF-1 cooperativity in DNA binding. Although interaction of Helix4/5 does not 

require USF-1 USR it can not be excluded that it contributes to the interaction. 

Greenall at al. reported that a region containing the USR in USF-1 is needed to form 

ternary complexes with the ETS factor PEA3 (Greenall et al., 2001). This indicate the 

presence of a second interaction surface in USF-1 for PEA3 that might is used also 

by Ets-1, in addition to the known interaction surface on the USF-1 DNA binding 

domain. 

4.2.1.2 Synergistic transactivation by Ets-1/USF-1 

The initial model describing the Ets-1/USF-1 complex proposed a scenario in 

which USF-1 is mainly required to recruit Ets-1 to the composite binding sites and 

that transactivation is exerted by Ets-1. This model was based on the fact that Ets-1 

is still able to synergize with USF-1 on a reporter construct driven by an E-box 

element and by the use of transactivation mutants of Ets-1 and USF-1 (Sieweke et 

al., 1998). By separating DNA binding and transactivation function I could provide 

evidence that both factors contribute to the synergistic transactivation and that the 

role of US

Ets-1/USF-1 synergism can be observed in the absence of direct DNA binding 

by Ets-1/USF-1 and USF-1 largely enhances activity of Ets-1 tethered to DNA via the 

heterologous Gal4 DNA-binding domain. This effect is dependent on intact full-length 

USF-1 excluding the possibility that USF-1 triggers Ets-1 activity through the 

induction of conformational changes. By contrast, mutant Ets-1 lacking the N-terminal 

transactivation domain (Ets 238-441) is able to trigger higher Gal-USF-1 activity. This 

observation is contradictory to the previous finding that this mutant can strongly 

repress USF-1 activity in the context of an HIV-LTR driven reporter construct 

(Sieweke et al., 1998). However, with the new finding I favor a model in which Ets 

238-441 is titrating out the transcriptionally more active endogeneous, full length Ets-

1. This effect overlaps the potential of Ets 238-441 to induce higher USF-1 activity 

resulting in lower reporter activity in comparison to wild type Ets-1/USF-1 synergism. 

This hypothesis remains to be confirmed in cells that do not express Ets-1. 
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In addition I could provide a link between the Ets-1/USF-1 complex and the 

transcriptional “readout” by showing that the synergism depends on CBP mediated 

transa

R domain 

The USR plays an important role in many of the functions of USF. It has been 

anscriptional activity and to 

contain

ctivation. In these experiments I could also confirm the important role of USF-1 

to promote transcriptional synergism independent of DNA binding, since the loss of 

synergistic activity by internal deletions in Ets-1 and USF-1 depriving their CBP 

interaction domains was much more accentuated for USF∆USR than for Ets∆CBP. 

The fact that both factors bind to the same regions in CBP indicates that they form a 

composite interaction surface to stabilize CBP recruitment.  

 

4.2.2 US

characterized in USF-2 as a region that contributes to tr

 an additional nuclear localization signal. This activity is context-dependent, 

since the USR cannot function as an activation domain when transposed to another 

part of the molecule (Luo and Sawadogo, 1996). This proposes that the USR has a 

structural role. Another report by Qyang et al. has shown that this region plays an 

essential role in modulating cell-specific transcriptional activity. This indicates that the 

function of the broadly expressed USF can be regulated (Qyang et al., 1999). USF-1 

is targeted by kinases in response to stress (p38 kinase) leading to increased 

transcriptional activity (Galibert et al., 2001) and during the cell cycle (p34cdc2) 

enhancing its DNA binding affinity (Cheung et al., 1999). The latter is supposed to 

phosphorylate three consensus cdc2 sites in the USR domain supporting a regulatory 

role for the USR. The role of USR phosphorylation for USF-1 activity confirms my 

observations. I could show that the internal deletion of the USR leads to increased, 

uninhibited binding to the E-box element. This finding also points to a structural role 

of the USR that establishes an autoinhibitory mechanism due to intramolecular 

interactions that can be relieved by phosphorylation. In addition, I show that the 

inhibitory effect of the USR can also be influenced by protein-protein interactions as 

shown here for Ets-1/USF-1. Greenall et al. also observed that the ETS factor PEA3 

can enhance USF-1 binding (Greenall et al., 2001). However, this seems to be 

independent of the USR domain since they made the same observations for full 

length USF-1 and USF 197-310 lacking the USR.  
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Besides the regulatory role of the USR in DNA binding I could show that the 

highly homologues USR is also implicated in USF-1 for the mediation of 

transcriptional activity. Deletion of this region results not only in severely reduced 

transactivation potential but also in the incapacity to synergize with Ets-1. I could 

reveal the reason for this drastic effect by the identification of the USR as a major 

interaction surface for the transcriptional coactivator CBP what explains the observed 

phenomenon of USF∆USR in transactivation. This effect is not due to impaired 

nuclear localization of the truncated derivate since I did not observe a major 

ifference between wild type USF and USF∆USR in in situ localization studies (data 

not shown) similarly to the situation in USF-2 (Luo and Sawadogo, 1996). It is notable 

gion shows affinity for CBP and that both, the USR and the 

basic 

partner molecules. The situation 

seems to be similar to the situation for other multi-protein complexes in the cell that 

d

that also the basic re

domain are required for full CBP binding. It is possible that the USR interacts 

intramolecularly with the basic region thus inhibiting USF DNA binding and 

recruitment of CBP at the same time. With this model one could explain the major 

role of the USR for USF-1 activity. 

Together, besides the finding that the USR plays a pivotal role in USF-1 

functioning in analogy to USF-2, I could reveal novel functions for this region 

consisting in efficient CBP recruitment and regulation of USF-1 DNA binding that is 

influenced by protein-protein interactions with other transcription factors as Ets-1.  

 

 

My results suggest that transcription factors undergo significant conformational 

changes between active and inactive states that are required for both DNA binding 

and transactivation activity. In the case of the Ets-1/USF-1 transcription factor 

complex the protein-protein interaction provokes dramatic conformational alterations. 

These allow the complex to acquire full functionality by increasing their respective 

DNA binding site affinity through reciprocal relieve of autoinhibition and by inducing 

higher transactivation capacity. Since Ets-1 itself binds DNA very poorly it is 

conceivable that complex formation is an event that occurs before the recruitment of 

the complex to DNA. Based on these findings that transcription factors acquire 

expanded functionality by complex formation one could regard transcription factors 

as exchangeable and flexible building blocks for ‘holo’ complexes whose final 

structure and activity is induced by participating 
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are functional only after the assembly of all subunits. However, in the case of 

transcription factors the individual ‘subunits’ can engage into partnerships with a 

number of different other subunits that lead to transcription factor complexes with 

different specificities and functions in gene regulation, as proposed in the ‘cocktail 

party’ model (Sieweke and Graf, 1998). 

 

The 5’ long terminal repeat of HIV-1 has been described to contain binding 

sites for several transcription factors (Pereira et al., 2000). The influence of these 

factors has been extensively analyzed and a number of factors like Ets-1, USF-1, 

NFκB, SP1, NFAT, LEF-1 and C/EBP have been shown to be required for optimal 

transcriptional activity during the early phase of viral transcription (see introduction).  

Overall, the situation correlates well with the model of the enhanceosome (Carey, 

1998). Thereby the architectural tra

4.2.3 The situation at the HIV-1 LTR 

nscription factor LEF-1 bends the DNA (Giese et 

al., 19

be 

able to form tetramers with USF-1 bound to a distant E-box (Ferre-D'Amare et al., 

1994).

95; Sheridan et al., 1995) bringing distantly bound transcription factors like the 

Ets-1/USF-1 complex in close proximity to the promoter. But also USF-1 could 

contribute to stabilize loop formation. USF-1 has been shown to bind to the initiator 

elements of the transcriptional start site in the HIV-1 LTR (Du et al., 1993) and to 

  

Another property of an enhanceosome consists in the formation of a common 

activation surface that is complementary to target surfaces on coactivators or the pol 

II machinery. Several lines of evidence point to an important role of CBP/p300 for 

HIV-1 activation. It has been shown that chromatin remodeling at the HIV LTR 

depends on CBP/p300 (Benkirane et al., 1998). Among the transcription factors 

bound to the HIV-1 LTR NFκB (Furia et al., 2002) and C/EBP (Lee et al., 2002) have 

been shown to depend on CBP/p300. But also the viral transactivating protein Tat 

engages in a complex interplay with p300 being another anchoring point and a target 

for acetylation in the same time (Bres et al., 2002; Deng et al., 2001). I now could 

show that Ets-1/USF-1 activity is mediated by CBP as well. Given the strong 

inhibitory effect of USF∆USR on the HIV-1 LTR and the absence of synergism with 

Ets-1 it can even be assumed that this complex makes a major contribution to the 

CBP recruitment in the HIV LTR “enhanceosome” context. 
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A model emerges in which CBP/p300 is recruited by a number of different 

DNA-binding proteins distributed over the distal enhancer and proximal promoter 

where it integrates the “input” transmitted by all these interactions as well by 

recruitment of other HATs and acetylation of histones and some transcription factors 

as well as by establishing contacts to the basal transcription machinery. 

In general there still remains the question how the assembly of the 

oregulatory proteins occurs. Our current 

unders

 

tion factors during the early phase of provirus replication. A therapy based 

on the

1999). HIV transactivation 

 

transcription factors and the required c

tanding of ‘enhanceosome’ assembly is mainly based on biochemical analysis 

and a model has been proposed in which different factors assemble successively on 

regulatory sequences to build up a functional machinery. However, in the same line 

of reasoning that individual transcription factors form ‘holo’ complexes to acquire their 

specific functions it is conceivable that even higher ordered structures are assembled

at defined places in the nucleus that subsequently are recruited en bloc to a given 

promoter or enhancer to activate it. 

 

4.2.4. The Ets-1/USF-1 complex as anti-HIV-1 drug target 
Viral replication requires transcription of the DNA-Provirus, which produces 

both the viral RNA genome as well as mRNA for viral proteins. Therefore, HIV gene 

transcription is an attractive drug target since it depends solely on cellular 

transcrip

 inhibition of HIV transactivation by targeting cellular transcription factors would 

not encounter the problem of resistance development observed in therapies against 

viral proteins as reverse transcriptase or proteases. 

Despite the complexity of factors and interactions involved in proviral 

transcription, previous experiments have shown that interference with individual 

elements of this multi-factorial complex can have significant inhibitory effects on virus 

transcription and replication. Thus it has been shown that the impairment of the 

action of single transcription factors can inhibit HIV-1 LTR activation. Some strategies 

target the specific DNA binding sites, for example the NFκB sites (Mischiati et al., 

2002) or the TAR RNA loop by peptide nucleic acids (PNA) (Kaushik et al., 2002). 

Another approach consists in the use of decoy DNA containing binding sites for 

specific factors like NFκB or even the entire LTR to prevent binding of these 

transcription factors to the proviral LTR (Cho-Chung et al., 
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could also be altered by the use of an artificial zinc finger transcription factor binding 

specifically to SP1 sites in the HIV-1 LTR that has been fused to the transcriptional 

repressor domain of the Krüppel protein (Reynolds et al., 2003). Together these 

studies prove the validity of the general concept of the transcriptional control 

machinery as a potential drug target. Even though a therapy based on this strategy 

would not eliminate latent provirus in an infected individual it could help to avoid the 

virus r

 strategy to target a very precise domain in one 

f the transcription factor to inhibit the specific interaction with the other represents 

 to only minimally 

influen

 effect of the dominant negative 

effect.

eplication and the infection of further host cells as does also the currently 

administered highly active antiretroviral therapy (HAART). 

However, use of the strategies described above bear a high risk of side 

effects. PNA would interfere also with transcription factor binding in other might 

essential promoters; similar decoy DNA would prevent also the physiological action 

of transcription factors; the artificial Zn-finger could potentially bind to any other 

binding site in the genome. 

Since Ets-1 and USF-1 can act efficiently only when they are cooperating in 

DNA binding and transactivation the

o

an attractive way to impair HIV-1 activation with the perspective

ce their function in physiological cellular processes. The validity of the Ets-

1/USF-1 complex is supported by the findings of Posada et al. which could show that 

a dominant negative derivate of Ets-1 (Ets 238-441) prevents HIV-1 replication when 

overexpressed in relevant target cells (Posada et al., 2000). 

Therefore it is conceivable that the Ets-1/USF-1 complex makes a major 

contribution to the activation of the HIV-1 provirus. My findings, that Ets-1/USF-1 

recruit CBP to the HIV-1 LTR may explain the strong

 The identification of the C-terminal, autoinhibitory module of Ets-1 as a crucial 

interaction domain for USF-1 may serve as a target site for small peptides or 

molecules that could specifically disrupt Ets-1/USF-1 interaction and consequently 

the positive effect of this transcription factor complex on HIV-1 activation. The 

question remains to which extent the early phase of HIV-1 LTR activation depends on 

Ets-1/USF-1 and the capacity of the other factors binding to the LTR to activate in the 

absence of functional Ets-1/USF-1. However, even in the case of a certain 

redundancy of activating transcription factors also the other regulatory proteins 

engage in specific protein-protein interactions thus presenting further potential 

targets for anti-viral therapeutics. By blocking Ets-1/USF-1 and one ore several other 
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components of the HIV-1 LTR it should be possible to remarkably shut down HIV-1 

activity. Alternatively, the Ets-1/USF-1 target could be used as a component of the 

currently administered triple therapies that would inhibit an additional step in the 

retroviral live cycle. 
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 5. Perspectives 
With these studies we could gain detailed insights into the processes leading 

to specific DNA binding and activated transactivation by the transcription factor 

complex between Ets-1 and USF-1. Particularly the finding that Ets-1 is able to 

induce higher transcriptional activity in USF-1 is pointing to a further level of mutual 

interference between transcription factors. My data indicate that the minimal 

interaction domain in Ets-1, situated in the C-terminal autoinhibitory module, can 

induce a conformational change in USF-1. Because of the findings about the 

importance of the USF specific region for transcriptional activity of USF-1 I speculate 

that this conformational change affects this region. Even though this event still 

remains hypothetical we are in a favorable situation to prove this concept. 

The fact that the USR as well as the C-terminal domain interaction domain in 

Ets-1 are situated in close proximity to the DNA binding domains of USF-1 and Ets-1, 

respectively, may allow us to confirm this hypothesis by structural analysis. The 

proximity of the domains of interest to the respective DNA binding sites of USF-1 and 

Ets-1 enables us to delete large parts of the proteins facilitating the generation of 

ternary DNA bound Ets-1/USF-1 complexes. To do this, we are in collaboration with 

the group of Mathias Willmanns at the EMBL Hamburg which is trying to crystallize a 

ternary complex comprised of the DNA binding domain of Ets-1 including the 

autoinhibitory domains, USFDBD including the USR and an oligonucleotide 

containing the composite binding sites. The resolution of the crystal structure would 

be of great value to confirm my hypothesis and could complement my results. 

 

The further analysis of the observed difference in DNA binding capacity of 

USF-1 and USF∆USR will also be a topic of this collaboration. If truncated derivates 

of USF-1 containing the DNA binding domain with or without the USR domain show a 

similar effect in differential DNA binding it is planed to crystallize the DNA binding 

domain of USF-1 containing the USR either alone or bound to DNA. The structural 

analysis should reveal the respective positioning of the USR domain in the free or 

DNA bound state and show if this domain can engage in intramolecular interactions 

with the DNA binding domain. These results should provide structural evidence for 

the regulatory mechanism influencing USF-1 DNA binding and would provide the first 
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structural evidence for regulated DNA binding of a basic helix-loop-helix zipper family 

member by autoinhibition. 

ors. 

 

 

Several studies point to an important role of the Ets-1/USF-1 complex in HIV-1 

LTR activation. My studies deliver a detailed view about the processes that lead to 

the complex’ activity and it could be possible to use the ensemble of information to 

generate inhibitors that specifically block the Ets-1/USF-1 complex. In a first attempt, 

it would be interesting to confirm the important contribution of Ets-1/USF-1 for HIV-1 

transactivation in a Ets-1 -/- or USF1/2 -/- cellular background. This should help to 

determine if the Ets-1/USF-1 complex is an attractive target for anti-HIV-1 

therapeutics. As a next step one could try to identify specific inhibitors of the Ets-

1/USF-1 complex. Also in this case the structural data about the ternary complex 

would be of great interest for the design of protein-protein interaction inhibit
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6. Materials and Methods 

In vivo interaction assay in Yeast 

ssion 

ector pSD.04a (Dalton and Treisman, 1992), conferring Tryptophan auxotrophy 

(Trp). The different derivates of Ets DBD were tested for interaction with USF-1 by 

using a further expression vector based on pSD10 (Dalton and Treisman, 1992) 

coding for the DNA binding domain of USF-1 (204-310) fused to the transactivation 

domain of the herpes simplex virus protein VP16, and bearing a selection marker 

gene restoring Uracil (Ura) synthesis in transformed yeast. Reporter and expression 

vectors were cotransformed into Saccharomyces cerevisiae strain W303-1A (Mata, 

ho, his3-11,15; trp1-1; ade2-1; leu2-3,112; ura3; can1-100) by a modified lithium 

acetate protocol (Sieweke et al., 1996) and plated on glucose plates under selective 

conditions (SD -histidine/tryptophane/uracile). After 2 days of growth single colonies 

were restreaked on selective plates. Isolated colonies from each clone were dotted 

on x-gal containing selective galactose-plates containing 2% Galactose, 40µg/ml and 

100mM sodium phosphate buffer (pH7.0) and tested for blue color development.  

Transactivation assay in yeast  

From the same clones tested for blue color development lysates were 

prepared to analyze quantitatively β-galactosidase activity. Single colonies of each 

clone were inoculated in triplicate cultures in 3ml selective synthetic galactose 

medium (SGal-histidine/tryptophane/uracile) and incubated for 24 hours at 30°C. 

Cells were harvested by centrifugation, washed and permeabilized by repeated 

freeze/thaw cycles on dry ice and in a waterbath at 37°C, essentially as described in 

I used a 2µg LacZ reporter plasmid with five head to tail inserted copies of the 

PEA3 Ets binding site of the polyoma virus enhancer (Martin et al., 1988), 5’-

TCGAGCAGGAAGTTTCG-3’, inserted into the XhoI site of pLG670Z (Guarente and 

Ptashne, 1981), as described (Sieweke et al., 1996). This vector allows selection of 

transformed yeast by the expression of a histidine marker gene. As baits, different 

mutants of the Ets-1 DNA binding domain (DBD) were used, coding either for the wild 

type Ets (aa 333-441), for the DBD of the viral form of Ets-1 (v-Ets 333-443) or an C-

terminal deletion of the Ets DBD (Ets 333-417). The different constructs were 

generated by inserting PCR-generated fragments coding for the respective regions in 

p68ets-1 between the BamHI and EcoRI sites of the galactose inducible expre

v
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(Harshman et al., 1988). The β-galactosidase activity of the lysates was tested using 

ONPG (Sigma) and measured at 420nm in 96-well plates by a Miroplatereader 

lized to cell number as measured by the 

optical

Transactivation assays in a fibroblast cell line 

5 

nd 

Ptashne, 1989) and fusion proteins are expressed by a SV40 promoter. Full-length 

e fused c-terminally to Gal-DBD (1-147) by 

standa

(Wallac). The enzyme activity was norma

 density of the cell suspension at 600nm.  

The QT6 cell line has been derived from quail fibroblasts (Moscovici et al., 

1977) and can be easily transfected by a standard calcium phosphate transfection 

protocol (Graham and van der Eb, 1973). They were used in all transactivation 

experiments. QT6 cells from an exponentially growing culture were plated at a 

density of 2x10 cells/well in six-wells (Falcon) in Dulbecco’s modified Eagle medium 

(DMEM) supplemented with 10% fetal calf serum (FCS), 1% chicken serum and 1% 

Penicilline/Streptamycine. 24 hours later cells were transfected with 1-5µg of DNA. 

The calcium phosphate DNA solutions were left for 10 min to allow precipitate 

formation and then added to cells in 2ml culture medium. After 15 hours medium was 

changed and another 33 hours later cells were dislodged from the plates by 

incubation in 1ml of TEN buffer (40mM Tris-HCl, pH 7.5; 10mM EDTA; 150mM 

NaCl). Cell pellets were resuspended in 50µl of 0.1 M potassium phosphate buffer 

(pH 7.3) and lysed by three freeze/thaw cycles. Aliquots of these lysates were 

assayed for luciferase activity (de Wet et al., 1987) and (Herbomel et al., 1984) using 

a luminometer (Berthold and Berthold). Relative light units from luciferase activity 

were normalized by the assayed β-galactosidase activity from 0.5µg co-transfected, 

constitutively expressed RSV-β-gal plasmid (Bonnerot et al., 1987). Each data point 

of the Figures was obtained by averaging duplicate samples and is representative for 

at least 3 independent experiments.  

All Gal4-DBD-fusion constructs are based on pSG424 (Sadowski a

human USF-1 and chicken p68Ets-1 wer

rd cloning methods. In-frame fusions were verified by sequencing. Expression 

constructs of p68Ets-1, USF-1 and their various deletion mutants are based on 

RC/CMV (Clontech). Internal deletions were generated with the site directed 

mutagenesis kit (Stratagene) and checked by sequencing. Expression plasmids for 

CBP, E1A and E1Amut (Janknecht, 1996; Oelgeschlager et al., 1995) have been 

described as well as the luciferase reporter plasmid containing the wt HIV-1 LTR 
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(Zeichner et al., 1991) and the GAL4 luciferase reporter 17m2TATAluc (Desbarats et 

al., 1996). 

Western Blot 

The expression level of unlabeled in vitro translated USF-1 and USF∆USR 

lot. One and ten microliter 

of eac

. The oligos were labeled with [γ-32P]dCTP  by 

Klenow

used in EMSA assays has been determined by Western B

h lysate were diluted in sample buffer (50mM Tris-HCl pH 6,8 ,2% SDS, 5% β-

mercaptoethanol, 10% glycerol, 0,02% bromophenol blue) and separated by 12,5% 

SDS-PAGE (Harlow and Lane, 1988). Proteins were transferred from the gel to an 

Immobilon P membrane (Millipore) with a BioRad semi dry blotter at 2,5 mA/cm² 

using 25mM Tris-base, 192 mM glycine, 20% (v/v) methanol as transfer buffer. 

Membranes were blocked in Tris-buffered saline (TBS) with 4% w/v dry milk for 1 

hour at room temperature and stained with rabbit polyclonal antibody USF (C20) 

(Santa Cruz, sc-229) and a secondary goat anti-rabbit peroxidase-coupled antibody 

(Santa Cruz, sc-2054). Antibody incubations were for 1 hour in TBS with  4% w/v dry 

milk followed by three washes of 15 minutes in TBS with 0,2% Triton X-100. For 

detection I used the ECL chemiluminiscent peroxidase kit from Amersham. 

Electromobility Shift Assays (EMSA) 

Expression vectors for His6-tagged EtsDBD, dnEts and USFDBD are based on 

pET 15b plasmids (Novagen) and were described in (Lim et al., 1992; Sieweke et al., 

1998). Proteins were expressed in E.coli strain BL21(λDE3)pLysS and purified under 

non-denaturating conditions by affinity chromatography on Ni++ agarose beads 

(Qiagen). As a probe I used double stranded oligonucleotides corresponding to the -

138 to -170bp region of the HIV-1 LTR

 fill-in at a concentration of <10pM (<10000 c.p.m. per reaction). Binding 

reactions were performed at RT for 15 min. in a total volume of 20µl containing 

20mM Tris-HCl, pH 7.5; NaCl 80mM; 1mM EDTA;0.1% Triton X100; 2mM DTT; 5% 

Glycerol and 5µg/µl dIdC. Samples were subjected to electrophoresis on a 5% 

polyacrylamide gel containing 3% glycerol in a 12.5 mM Tris, 95 mM glycine buffer. 

Conditions for the bandshifts testing full-length USF-1 and USF∆USR DNA binding 

were basically the same. However, proteins were produced in in vitro translations 

using a coupled transcription/translation kit for PCR products (TNT T7 Quick for PCR, 

Promega). Even though the USF proteins are encoded by plasmids I chose to use 
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this special kit for PCR products. The reticulocyte lysate provided probably has been 

deprived of exonucleases in order to protect linear PCR products from degradation. 

This is an important detail which made it possible to use the in vitro translated USF 

 without the risk of probe degradation by exonucleases. 

 

SF were 

generated using the site directed mutagenesis kit (Stratagene) and complementary 

 site of the sequence to be deleted. In 

vitro tr

derivates in EMSA

In vitro interaction assays 

Ets protein deletion mutants were cloned into pGEX-2T (Smith, 1993) by 

standard methods. Constructs and GST-Ets 333-441 have been described (Sieweke 

et al., 1998). The amino acid junctions of GST with the Ets sequences (in bold types) 

are: GSPHMGR for Ets 238-441, GSPHMLSGSMGPI for Ets 333-441, Ets 333-417 

and v-Ets 333-444 and GSPHMLSGSMSYD for Ets 351-441. GST-CBP fusion 

constructs were a gift from R. Janknecht and were described in (Janknecht, 1996; 

Oelgeschlager et al., 1995). The bacterial expression of GST fusion proteins were 

performed as described (Sieweke et al., 1996). The expression plasmids for the 

different USF-1 derivates are based on a RC/CMV vectors (Clontech) containing also 

a T7 promoter that allows protein translation in in vitro system. Deletions in U

oligos hybridizing with 25 nucleotides on either

anslated, radiolabeled USF proteins were produced using a rabbit reticulocyte 

in vitro transcription/translation system (TNT/Promega) using T7 polymerase and 

10µCi [35S]methionine (Redivue, Amersham)/25µl reticulocyte lysate. Binding 

reactions were performed using 200µl binding buffer (50mM Tris-HCl, pH 7.5; NaCl 

150mM; 0.05% Triton X100; PMSF/approtinin/leupeptin protease inhibitor mix) and 

incubated with 10µl of GST-protein loaded resin for 1h at 4°C followed by 5 washes 

in 1ml binding buffer. Complexes were dissolved in sample buffer, separated by 

PAGE (Harlow and Lane, 1988) and analyzed by Coomassie blue staining and 

autoradiography.  
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7. Abbreviations 
aa     amino acid 

AD     activation domain 

AIDS    aquired immune deficiency syndrome 

ctivator protein 1 

β-Ga

  Ets binding site 

ECL     enhanced chemiluminiscence 

ECM    extracellular matrix 

EMSA    Electrophoretic mobility shift assay 

ES     Embryonic stem (cells) 

ETS     E twenty six (domain) 

Ets     E twenty six 

AP-1    A

l    beta-Galactosidase 

bp     base pair 

bZip     basic leucine zipper 

C/EBP    CCAAT/enhancer binding protein 

Ca2+    Calcium ion 

cAMP    cyclic adenosine monophosphate 

CBP     CREB binding protein 

cdk     cycline dependent kinase 

CMV    cytomegalo virus (promoter) 

cpm     counts per minute 

CIITA    Class II transactivator 

CREB    cAMP responsive element binding protein 

cyc     Cycline 

∆     deletion 

DBD     DNA binding domain 

dIdC     deoxy Inositol-deoxy Cytosin oligomer 

DMEM    Dulbecco’s modified Eagle’s medium 

dn     dominant negative 

DNA     Deoxyribonucleic acid 

DTT     Dithiotrethiol 

EBS   
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FCS     fetal calf serum 

fl     full length 

 Glutathione-S-transferase 

eficiency virus 

 

urotic fibrosarcoma 

tocompatibility complex 

ranscription factor 

eic acid 

GST    

H     helix 

h     hour 

HAT     Histone acetyl transferase 

HI     inhibitory helix 

HIF      hypoxia inducible factor 

HIV-1    Human immunod

HMG    High mobility group protein

HOX     Homeobox protein 

Ig     Immunoglobulin 

IL-     Interleukin- 

INF     Interferon 

Inr     Initiator element 

kD     kilo Dalton (kDa) 

LacZ    beta-Galactosidase 

LTR     Long terminal repeat 

Luc     Luciferase 

Maf     musculoapone

MHC    Major his

Mitf     microphthalmia-associated t

ml     milliliter 

MLP     (adenovirus) major late promoter 

mM     milliMolar 

MMP    matrix metalloproteinase 

mRNA    messenger ribonucl

MW     molecular weight 

µg     microgram 

µl     microliter 

µM     microMolar 

NF     nuclear factor  

ng     nano gram 

Ni++     Nickel ion 
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nm     nanometer 

PAGE    Polyacrylamide gel electrophoresis 

ctivating factor 

 chain reaction 

l-flouride 

b 

of activated T-cells 

 

ement 

tein 

 

ion 

3-indolyl-β-D-galactoside 

Pax     Paired box protein 

PCAF    p300/CBP a

PCR     Polymerase

pH     -log[+H] 

PMSF    Phenyl-methyl-sulfony

pol II     RNA polymerase II 

p-TEFb    positive transcription-elongation factor 

PU.1    Spi-1, Sfpi-1 

RLU     relative light units 

RNA     ribonucleic acid 

Stat     Signal transducer 

SV40    Simian virus 40 

TA     Transactivation domain

TAF     TBP associated factor 

TAR     transactivation response el

Tat     transactivating HIV protein 

TBP     TATA binding pro

TCF     ternary complex factor 

TCR     T-cell receptor 

TNF     tumor necrosis factor 

TPO     thrombopoietin

USF     upstream stimulatory factor 

USR     USF specific reg

v-ets     viral ets oncogene 

wHTH    winged helix turn helix protein 

wt     wild type 

x-gal     5-bromo-4-chlore-
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