
International Workshop on the
Design of Dependable Critical Systems

 ECOMODIS

Proceedings

of the

International Workshop on the
Design of Dependable Critical Systems

“Hardware, Software, and Human Factors
in Dependable System Design”

DDCS 2009

September 15, 2009
Hamburg, Germany

In the framework of
The 28th International Conference on

Computer Safety, Reliability and Security
SAFECOMP 2009

Edited by

Achim Wagner1, Meike Jipp1, Colin Atkinson2 and Essameddin Badreddin1

1 Automation Laboratory, Institute of Computer Engineering,

University of Heidelberg
2 Chair of Software Engineering, University of Mannheim

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32581342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Quantifying Safety in Software Architectural
Designs

Atef Mohamed and Mohammad Zulkernine

School of Computing
Queen’s University, Kingston

Ontario, Canada K7L 3N6
{atef, mzulker}@cs.queensu.ca

Abstract. Incorporating safety in the software architectural design de-
cisions is important for the successful applications in safety-critical sys-
tems. However, most of the existing software design rationales do not
consider the quantitative aspect of the software architectures with re-
spect to safety. As a result, alternative architectures cannot be compared
adequately with respect to safety. In this paper, we present an analytical
approach for quantifying safety in software architectural designs. We use
the concept of architectural service routes to quantify system safety in
terms of software architectural attributes. We show how to make appro-
priate architectural design decisions based on their impacts on safety. We
compare different example architectures with respect to system safety.

Key words: Software architecture, architectural design decisions, and
system safety.

1 Introduction

Appropriate architectural design decisions are important for achieving quality
attributes in software intensive systems. These decisions are to be taken in the
early design stages and their impacts are carried out among the later develop-
ment stages. System safety is the absence of catastrophic consequences on the
system user(s) and the environment [1]. In safety-critical systems, failure types
differ with respect to their criticalities (catastrophic impacts) [5]. For exam-
ple, a traffic light system is highly critical to content failure (incorrect service),
where the traffic lights are green in all directions. On the other hand, it is less
critical to silent failures (service stopping), where all lights are turned off. An
aircraft control system is more critical to silent failures than a production line
control system’s criticality to the same failures. Unfortunately, safety has not
been sufficiently addressed at the software design level, and the quantitative im-
pacts of software architectures on safety have not been explicitly considered in
the existing software architectural design methodologies. As a result, existing
architectural strategies fail to sufficiently incorporate the rationale behind the
adoption of alternative architectural mechanisms with respect to their impacts
on system safety [13].

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

68

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

68

2 Atef Mohamed and Mohammad Zulkernine

Few techniques consider software architectural design decisions with respect
to their impacts on safety. These techniques mainly provide a set of requirements
to achieve system safety [13, 10, 3] or provide safety analysis mechanisms [5, 12].
Weihang Wu et al. [13] introduce some software architectural design tactics to
consider safety in software architectures. The approach extends existing software
architecture design tactics to consider system safety through the appropriate elic-
itation, organization, and documentation. Swarup et al. [10] propose a frame-
work for achieving system safety through system hazard analysis, completeness
of requirements, identification of software-related safety critical requirements,
safety-constraints based design, runtime issues management, and safety-critical
testing. Hill et al. [3] identify a number of safety requirements that must be pos-
sessed by a system or system component. These requirements are identifiability,
stability, completeness, clarity, validity, and feasibility. Leveson et al. [5] and
Tribble et al. [12] provide safety analysis based on architectural designs using
Fault Tree Analysis (FTA) mechanism. FTA allows the detection of unsafe com-
putational states and consequently, it prevents safety critical failures. However,
current techniques disregard the quantitative evaluation of safety in software ar-
chitectures that can incorporate system safety through the appropriate selection
of the architectural design decisions.

In this paper, we present an analytical approach for quantifying safety of
software architectural designs. We evaluate system safety in terms of software
architectural attributes using the concept of Architectural service routes (ASRs)
[8]. The concept of Architectural service routes allows quantifying architectural
quality attributes by viewing a software architecture as a set of components and
a set of service routes connecting them. We provide an architectural design deci-
sion approach for selecting the appropriate architecture based on its impact on
safety. Finally, we compare three different example architectures based on their
impacts on safety. We use “Make To Order” manufacturing planning process in
our example architectures.

2 Preliminaries

Software architecture of a system is the structure, which comprises software com-
ponents, the externally visible properties of those components, and the relation-
ships among them [2]. A component is a unit of composition with contractually
specified interfaces, explicit context dependencies only, and no persistent state.
A component interface is a mean by which a component connects to another
component [11]. A component has one or more provided and/or required inter-
faces [9]. A component service is a facility that a component provides to, or
requires from other components as specified in the formal contracts with these
components. Software failures are classified from failure domain viewpoint as
content, silent, early service delivery, performance, halt, and erratic failures. [1,
6]. We denote the set of all failure types by T . Failure criticality is the estimated
degree of catastrophic impact by the failure occurrence.

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

69

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

69

awagner
Rectangle

Safety in Software Architectural Designs 3

Fig. 1. Architectural service routes of an example architecture
An ASR is a sequence of components that are connected using “provided”

or “required” interfaces [8]. Fig. 1 shows some ASRs of an example architec-
ture in UML 2.0. Component 2 provides service to component 3. Component 3,
on the other hand, provides services to both components 4 and 5. Therefore,
component 2 provides its service to components 4 and 5 indirectly through com-
ponent 3. In the bottom part of Fig. 1, we show two example ASRs between
components 1 and 7 of the provided component diagram. The sequences of com-
ponents are (1, 2, 3, 5, 7) and (1, 2, 3, 4, 6, 7) for the left and the right ASR, re-
spectively.

Any two components x and y can have 0 or more ASRs. In Fig. 1, com-
ponents 4 and 5 have 0 ASR, components 2 and 6 have 1 ASR: (2,3,4,6), and
components 3 and 7 have 2 ASRs: (3,4,6,7) and (3,5,7). We refer to the set of
ASRs from x to y as Ψxy, and we denote an ASR in this set as ψxyk , where k is
the index of the k-th ASR in Ψxy. The length of an ASR ψxyk (referred as Lxyk) is
the number of components in it. In Fig. 1, L2,6

1 = 4, L3,5
1 = 2, and L4,5

1 = 0. |Ψxy|
denotes the number of ASRs from component x to component y e.g., |Ψ3,6| = 1
and |Ψ3,7| = 2.

3 Evaluating system safety

To derive system safety in terms of architectural attributes, we exploit the results
of the failure propagation analysis using ASRs [8]. Failure propagation indicates
the probability that a failure propagates through system components. The quan-
titative evaluation, parameters, and assumptions are described in the rest of this
section.

From the combinatorial viewpoint, system safety is the non-occurrence prob-
ability of failures that can lead to a mishap or hazard, whether or not the in-
tended function is performed [4]. Therefore, system safety S is expressed as∏
f∈T (1 − λfpf), where pf is the probability of occurrence of system failure f ,

and λf is the criticality of failure f [7]. Failure criticality can be estimated based
on expert opinion or design documents.

By considering failure propagation in software architectures, a system failure
occurs when a component failure is propagated along an ASR to one of the output

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

70

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

70

awagner
Rectangle

4 Atef Mohamed and Mohammad Zulkernine

interface components. Given that, we can rewrite the safety equation as follows,
S =

∏I
i=1

∏
f∈T (1 − λfpfi), where I is the number of system output interface

components, and pfi is the probability of occurrence of failure f ∈ T at the
system output interface component i. We can also replace pfi by

∑J
j=1 p

f
jP

f
ji,

where J is the number of system components, pfj is the failure probability of
component j, and P fji is the probability of failure propagation from component
j to interface component i. I.e.,

S =
I∏
i=1

∏
f∈T

(1− λf
J∑
j=1

pfjP
f
ji) (1)

Eq. 1 evaluates system safety based on failure propagation and failure crit-
icality. Failure propagation from any component j to interface component i is
calculated in [8] as follows.

P fji =
|Ψji|∑
k=1

β2Lji
k |T | (2)

where β is a any value from 0 to 1, which expresses component failure proba-
bilities of system components. |T | is the number of failure types considered in the
evaluation. (e.g., |T | = 3 to consider content, silent, and performance failures).
By substituting from Eq. 2 into Eq. 1, we get the system safety as follows.

S =
I∏
i=1

∏
f∈T

1− λf
J∑
j=1

pfj |Ψ
ji|∑

k=1

β2Lji
k |T |

 (3)

Eq. 3 shows system safety in terms of the software architectural attributes
and failure criticalities.

4 Architectural design decision for incorporating safety

Software designers of safety critical systems often need to select an architecture
from a set of alternative architectures based on their impacts on safety. The
propagation of safety-critical failures among these architectures directly impacts
system safety based on the ASR attributes as shown in the previous sections.
In this section, we show how to consider the quantitative evaluation of system
safety in the architectural design decisions.

We provide an algorithm for evaluating system safety and selecting the ap-
propriate architecture based on the ASR attributes among system components.
Algorithm 1 provides one of the following decisions to choose between the two ar-
chitectures A and A′. SELECT-A indicates that architecture A is selected, while
SELECT-A′ represents the selection of architecture of A′. SELECT-EITHER
means that both architectures have equal impact on system safety.

The algorithm allows considering specific failure types in the architectural
design decision (Line 1). For example, by considering only content failures, the

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

71

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

71

awagner
Rectangle

Safety in Software Architectural Designs 5

Algorithm 1 Architectural design decision based on safety
Input: Architectural attribute values.
Output: Selected architecture.

01. Identify the set of failure types T for comparing A and A′

02. Identify the failure criticality λf for each f ∈ T
03. FOR each component j of architecture A DO

04. FOR each output interface component i of A DO

05. Identify the set of ASRs between j and i;

06. END FOR

07. END FOR

08. FOR each component j′ of architecture A′ DO

09. FOR each output interface component i′ of A′ DO

10. Identify the set of ASRs between j′ and i′;

11. END FOR

12. END FOR

13. Calculate safety for architecture A and A′ using Eq. 3;

14. IF (safety of A > safety of A′) THEN RETURN SELECT-A;

15. IF (safety of A < safety of A′) THEN RETURN SELECT-A′;

16. IF (safety of A = safety of A′) THEN RETURN SELECT-EITHER;

approach will compare software architectures based on data corruption among
their component interactions. By considering early service delivery and late ser-
vice delivery failures, the architectures will be compared based on their perfor-
mances. Algorithm 1 selects the architecture that has the higher safety value
quantitatively. In Line 2, the failure criticalities are identified for the failure
types in the set T . These failure criticalities can be identified based on expert
opinion or design documents. Lines 03-07 calculate the failure propagation prob-
abilities between each pair of components for architectures A. Similarly, Lines
08-12 calculate the failure propagation probabilities for architectures A′. Line 13
calculates the safety of architecture A and A′. Based on the quantified safety of
A and A′, Lines 14-16 select the architecture with the higher safety.

5 Case study: comparing safety of example architectures

We use the example of the “Make To Order” (MTO) production planning pro-
cess of manufacturing systems to explain the proposed technique for comparing
different architectures. In MTO, products are manufactured after a confirmed
sales order is received for them. We present three different example architectures
for this process in Fig. 2. We evaluate the safety of these architectures based on
their ASR attributes. Each of the architectures in Fig. 2 uses 7 components,
numbered from 1 to 7. Component 1 is an input interface component, in which
the user inputs the production planning intervals. It passes the planning intervals
to three other components (sales, inventory, and purchase orders) after check-
ing the manufacturing schedule according to the calendar. Component 2 and
component 3 deliver the corresponding sales orders and item inventory to the
production and inventory planning component 5. Component 4 delivers the pur-
chase orders to the purchase planning component 6. Component 5 also delivers
the planned inventory requirements to component 6. Finally, both component 5

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

72

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

72

awagner
Rectangle

6 Atef Mohamed and Mohammad Zulkernine

and component 6 deliver their outputs to component 7 to create inventory out-
bound, purchase orders, and planned production orders.

The three architectures differ slightly in the interface with respect to the
shaded components. Unlike Fig. 2(a), Fig. 2(b) does not have a connector be-
tween components 5 and 6. Fig. 2(c) differs from Fig. 2(a) in that the connector
between components 4 and 6 is removed, and another connector between compo-
nents 4 and 5 is added. Regardless of the functional advantages or disadvantages
of these changes, we study these three architectures to see their impacts on the
overall system safety. We consider three failures (content, silent, and perfor-
mance failures), i.e., |T | = 3. In the computation of safety, we assume β = 0.7,
since smaller values may result in more approximations and less preciseness. For
simplicity, we choose pfj = 0.001 for all components and λf = 0.5 for all types
of failures. We use Eq. 3 to obtain the system safety.

(a) Architecture 1 (Arch. 1) (b) Architecture 2 (Arch. 2)

(c) Architecture 3 (Arch. 3)

Fig. 2. Different example architectures of “Make To Order” production planning.

Here, we show how to obtain the ASR attributes using Arch. 1 as an exam-
ple. We also show how to use these attributes to calculate system safety. Since
component 1 is an input interface component and component 7 is an output
interface component, there is no interface connection from any component to
component 1 or from component 7 to any other component.

Table 1.a, 1.b, and 1.c correspond to Arch 1, 2, and 3 respectively. In each

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

73

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

73

awagner
Rectangle

Safety in Software Architectural Designs 7

table, rows represent component numbers from 1 to 6 and columns represent
component numbers from 2 to 7. The table cells represent the ASR attributes
among components in the form (N1xM1, N2xM2,...), where NixMi means: there
exist Ni ASRs of length Mi. For example, a cell (row= 1, column= 5) of Arch. 1
has the value 2x3 since Ψ1,5 = 2 and both L1,5

1 , L1,5
2 = 3. Similarly, cell (row= 1,

column= 7) of Arch. 1 represents Ψ1,7 and has the value of 3x4, 2x5. Ψ1,7 in-
cludes 5 ASRs as follows, Ψ1,7 = {(1, 2, 5, 7), (1, 3, 5, 7), (1, 4, 6, 7), (1, 2, 5, 6, 7),
and (1, 3, 5, 6, 7)} for {ψ1,7

1 , ψ1,7
2 , ψ1,7

3 , ψ1,7
4 , and ψ1,7

5 }, respectively. The lengths
of the ASRs are 4, 4, 4, 5, and 5, respectively. By considering the ASR attributes
in Table 1 and the previously mentioned values of pfj , β, λf , and |T | in Eq. 3,
we get, S = 0.998887872 for Arch. 1 where S ∈ [0, 1].

2 3 4 5 6 7

1 1x2 1x2 1x2 2x3 1x3,2x4 3x4,2x5
2 0 0 0 1x2 1x3 1x3,1x4
3 0 0 0 1x2 1x3 1x3,1x4
4 0 0 0 0 1x2 1x3
5 0 0 0 0 1x2 1x2,1x3
6 0 0 0 0 0 1x2

(a) Arch. 1

2 3 4 5 6 7

1 1x2 1x2 1x2 2x3 1x3 3x4
2 0 0 0 1x2 0 1x3
3 0 0 0 1x2 0 1x3
4 0 0 0 0 1x2 1x3
5 0 0 0 0 0 1x2
6 0 0 0 0 0 1x2

(b) Arch. 2

2 3 4 5 6 7

1 1x2 1x2 1x2 3x3 3x4 3x4,3x5
2 0 0 0 1x2 1x3 1x3,1x4
3 0 0 0 1x2 1x3 1x3,1x4
4 0 0 0 1x2 1x3 1x3,1x4
5 0 0 0 0 1x2 1x2,1x3
6 0 0 0 0 0 1x2

(c) Arch. 3

Table 1: ASR attributes of architecture 1, 2, and 3.

Similarly, based on the ASR attributes of Arch. 2 provided in Table 1, the
system safety for Arch. 2 is 0.998908816. Comparing the safety values of Arch. 2
and Arch. 1, we can conclude that the Arch. 2 is safer than Arch. 1. This safety
gain in Arch. 2 is due to the decrease in the number of ASRs from the sys-
tem components in general to the output interface component. For example,
|Ψ1,7| = 3 in Arch. 2, while |Ψ1,7| = 5 in Arch. 1. The decrease in the number of
ASRs between two components decreases the propagation probabilities and con-
sequently increases the system safety. In Arch. 3, we have increased the number
of ASRs (e.g., |Ψ1,7| = 6 instead of 5 for Arch. 1) and the lengths of the shortest
ASRs (e.g., L4,6

S = 2 instead of 1 for Arch. 1). According to our analysis, these
changes should decrease the system safety.

Based on the ASR attributes of Arch. 3 shown in Table 1, the safety is cal-
culated as S = 0.998887773. Comparing Arch. 3 and Arch. 1, the safety is lower
for Arch. 3. The lower safety in Arch. 3 is due to the increase in the number of
ASRs among system components. Comparing Arch. 3 and Arch. 2, the safety is
lower for Arch. 3. This loss of safety is also due to the increase in the number of
ASRs among system components.

6 Summary and future work

Safety has not been sufficiently addressed and the quantitative impacts of soft-
ware architectures on this quality attribute have not been explicitly considered
in the existing software architectural design methodologies. As a result, exist-
ing architectural strategies fail to sufficiently identify the rationale behind the

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

74

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

74

awagner
Rectangle

8 Atef Mohamed and Mohammad Zulkernine

adoption of alternative architectural mechanisms with respect to safety. In this
paper, we present an analytical approach for quantifying safety in software ar-
chitectural designs. We evaluate system safety in terms of software architectural
attributes using the concept of ASRs. Finally, we provide an architectural de-
sign decision approach for selecting the appropriate architecture based on their
impacts on safety-critical failure propagation among system components. The
main contribution of this work is to provide a quantitative evaluation of system
safety based on software architecture in an early design stage of software system
development. In our future work, we plan to estimate the criticality of a compo-
nent based on its location and connectivity in an architecture. This will help to
identify the components that are critical to system safety.

References

1. A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-
onomy of dependable and secure computing”, IEEE Transactions on Dependable
and Secure Computing, Mar 2004, Vol: 1, pp. 11- 33.

2. L. Bass, P. Clements, and R. Kazman, “Software Architecture in Practice”. 2-nd
eddition. 2003: Addison-Wesley.

3. J. Hill and D. Victor, “The Product Engineering Class in the Software Safety
Risk Taxonomy for Building Safety-Critical Systems”, Proc. of the 19th Australian
Conference on Software Engineering, 2008, pp. 617-626.

4. N.G. Leveson, “Software safety: why, what, and how”, ACM Computing Surveys
(CSUR) archive, Jun 1986, Vol 18, pp. 125-163.

5. N.G. Leveson and P.R. Harvey, “Analyzing Software Safety”, IEEE Trans. on
Software Engineering, Sep 1983, Vol SE-9, NO. 5, pp. 569-579.

6. B. Littlewood and L. Strigini, “Software reliability and dependability: a roadmap”,
Proc. of the 22nd IEEE International Conference on Software Engineering on the
Future of Software Engineering (ICSE’00), Limerick, Ireland, 2000, pp. 175-188.

7. A. Mohamed and M. Zulkernine, “Improving Reliability and Safety by Trading off
Software Failure Criticalities”, Proc. of the 10th IEEE International Symposium
on High Assurance System Engineering. Nov 2007, Dallas, Texas, pp. 267-274.

8. A. Mohamed and M. Zulkernine, “On Failure Propagation in Component-Based
Software Systems”, Proceedings of the 8th IEEE International Conference on Qual-
ity Software, IEEE CS Press, Oxford, UK, 2008, Pg: 402-411.

9. Object Management Group, “OMG Unified Modeling Language (OMG UML)”,
Superstructure, Version 2.1.2, OMG Available Specification without Change Bars,
formal/2007-02-05, Nov 2007.

10. M.B. Swarup and P.S. Ramaiah, “An Approach To Modeling Software Safety”,
Proc. of the 9th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2008, pp. 800-806.

11. C. Szyperski, “Component software: beyond object-oriented programming”,
Addison-Wesley, 1998, ISBN 0-201-17888-5.

12. A.C. Tribble and S.P. Miller, “Software Intensive Systems Safety Analysis”, IEEE
A&E Systems Magazine, Oct 2004, pp. 21-26.

13. W. Weihang and T. Kelly, “Safety tactics for software architecture design”, Pro-
ceedings of the 28th Annual International Conference on Computer Software and
Applications., York Univ., UK, Sep 2004, pp. 368-375.

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

75

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

75

awagner
Rectangle

	Kanstren: Oberserver-Based Modeling ..
	Armoush: Safety Recommendations ..

	Wagner: Towards a Practical ..
	Atkinson: Measuring the Dependability ..
	Farjado-Silva: Fault Propagation ..
	Jipp: The Impact of Individual Differences ..
	Abkai: Real-Time Physiological Simulation ..
	Luo: An Integrated Monitor-Diagnosis-Reconfiguration Scheme..
	Atef: Quantifying Safety in Software ..
	Jipp: The Role of Task and Situational ..
	Zouaghi: Hierarchical Hybrid Monitoring ..
	Bartolein: Dependable System Design ..
	Zouaghi: Dependable Component-based Design ..

