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Abstract

During the past decades, large-scale microarray technologies have been applied to the
�eld of genomics, transcriptomics and proteomics. DNA microarrays and mass spectrom-
etry have been used as tools for identifying changes in gene- and protein expression and
genomic alterations that can be linked to various stages of tumor development. Although
these technologies have generated a deluge of data, bioinformatic algorithms still need
to be improved to advance the understanding of many biological fundamental questions.
In particular, most bioinformatic strategies are optimized for one of these technologies
and only allow for an one dimensional view on the biological question. Within this the-
sis a bioinformatic tool was developed that combines the multidimensional information
that can be obtained when analysing genomic, transcriptomic and proteomic data in an
integrative manner.

Neuroblastoma is a malignant pediatric tumor of the nervous system. The tumor is
characterized by aberration patterns that correlate with patient outcome. aCGH (array
comparative genomic hybridization) and DNA-microrarray gene expression analysis were
choosen as appropriate methods to analyse the impact of DNA copy number variations
on gene expression in 81 neuroblastoma samples. Within this thesis a novel bioinformatic
strategy was used which identi�es chromosomal aberrations that in�uence the expression
of genes located at the same (cis-e�ects) and also at di�erent (trans-e�ects) chromosomal
positions in neuroblastoma. Sample speci�c cis-e�ects were identi�ed for the paired data
by a probe-matching procedure, gene expression discretization and a correlation score in
combination with one-dimensional hierarchical clustering. The graphical representation
revealed that tumors with an ampli�cation of the oncogene MYCN had a gain of chro-
mosome 17 whereas genes in cis-position were downregulated. Simultaneously, a loss of
chromosome 1 and a downregulation of the corresponding genes hint towards a cross-
relationship between chromosome 17 and 1. A Bayesian network (BN) as representation
of joint probability distributions was adopted to detect neuroblastoma speci�c cis- and
trans-e�ects. The strength of association between aCGH and gene expression data was
represented by markov blankets, which where build up by mutual information. This gave
rise to a graphical network that linked DNA copy number changes with genes and also
gene-gene interactions. This method found chromosomal aberrations on 11q and 17q to
have a major impact on neuroblastoma. A prominent trans-e�ect was identi�ed by a
gain of 17q.23.2 and an upregulation of CPT1B which is located at 22.q13.33.

Further, to identify the e�ects of gene expression changes on the protein expression
the bioinformatic tool was expanded to enable an integration of mass spectrometry and
DNA-microrarray data of a set of 53 patients after lung transplantation. The tool was
applied for early diagnosis of the Bronchiolitis Obliterans Syndrome (BOS) which occurs
often in the second year after lung transplantation and leads to a repulsion of the lung
transplant. Gene expression pro�les were translated into virtual spectra and linked to
their potential mass spectrometry peak. The correlation score between the virtual and
real spectra did not exhibit signi�cant patterns in relation to BOS. However, the meta-
analysis approach resulted in 15 genes that could not be found in the seperate analysis of
the two data types such as INSL4, CCL26 and FXYD3. These genes constitute potential
biomarkers for the detection of BOS.
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Zusammenfassung

In den letzten Jahrzenten wurden unterschiedliche Mikroarray-Systeme entwickelt und
in den Bereichen Genomik, Transkriptomik und Proteomik eingesetzt. Dabei �nden sie
ihren Einsatz, um Veränderungen der Gen- sowie Proteinexpression und des genomischen
Materials insbesondere mit unterschiedlichen Phasen der Tumorentstehung zu verknüpfen.
Die groÿe Menge an Daten die dabei anfällt, müssen mittels bioinformatischer Algorith-
men ausgewertet werden. Allerdings liegt bei derzeitigen Verfahren die Optimierung
und Fokussierung auf eine Mikroarray-System im Vordergrund, was zu einer eindimen-
sionale Betrachtung der biologischen Fragestellung führt. Deshalb war Ziel dieser Arbeit,
einen bioinformatischen Algorithmus zu entwickeln, der mehrdimensionale Informationen
kombiniert, die sich aus einer integrativen Betrachtungsweise von genomischen, transkrip-
tomischen und proteomischen Daten ergibt.

Das Neuroblastom ist ein maligner frühkindlicher Tumor des Nervensystems. Charak-
teristisch sind die Muster der chromosomalen Veränderungen, die mit der Entstehung
und/oder Progression des Tumors korrelieren. aCGH (array Comparative Genomic Hy-
bridization) und DNA-Mikroarray Genexpressionsanalysen wurden ausgewählt, um den
Ein�uss chromosomaler Veränderungen auf die Genexpression von 81 Neuroblastom-
Patienten zu untersuchen. Im Rahmen dieser Arbeit wurde eine neue bioinformatische
Strategie entwickelt, die chromosomale Veränderungen identi�ziert, die die Expression
von Genen sowohl an der gleichen (cis-E�ekt) aber auch an anderen chromosomalen Posi-
tionen beein�usst. Tumorspezi�sche cis-E�ekte wurden unter anderem durch eine Korre-
lationsanalyse in Kombination mit einem eindimensionalen, hierarchischen Verfahren zur
Gruppen�ndung ermittelt. Die graphische Darstellung zeigte, dass Tumore mit einer Am-
pli�kation des Onkogens MYCN durch einen chromosomalen Zugewinn auf Chromosom
17 charakterisiert sind, während Gene in cis-Position eine geringe Expression aufwiesen.
Gleichzeitig ging der Verlust des Chromosom 1 mit einer niedrigen Expression der cis-
lokalisierten Gene einher. Um Neuroblastom-spezi�sche cis- und trans-E�ekte über das
gesamte Datenset zu identi�zieren, wurden Bayessche Netzwerke eingesetzt. Das Maÿ
des Zusammenhangs zwischen der DNA-Kopienanzahl und der Genexpression wurde mit
Hilfe von �Markov Blankets� und �Mutual Information� berechnet. Das graphische Net-
zwerk zeigte die Verbindungen zwischen chromosomalen Veränderungen und der Genex-
pression wie auch mit Gen-Gen-Interaktionen. Hieraus resultierte, dass Veränderungen
auf Chromosom 11q und 17q als ursächliche Faktoren für das Neuroblastom verstanden
werden können. Au�ällig war der trans-E�ekt zwischen dem Zugewinn auf Chromosom
17q23.2 und der hohen Genexpression von CPT1B (22q13.33).

Weiterhin wurde der bioinformatische Algorithmus um die Eigenschaft erweitert, eine in-
tegrative Analyse von Genexpressions- und massenspektrometrischen Daten durchzuführen.
Dies wurde auf einen Datensatz angewendet, der die Entstehung des Bronchiolitis Oblit-
erans Syndroms (BOS) untersuchte. BOS wird häu�g im zweiten Jahr nach einer Lungen-
transplantation diagnostiziert und führt in den meisten Fällen zu einer Abstoÿungsreak-
tion. Die zugrundeliegenden Genexpressionsdaten wurden in virtuelle Spektren überführt
und den entsprechenden massenspektrometrischen Kurvenverläufen zugeordnet. Eine
Korrelationsanalyse zwischen den virtuellen und realen Massenspektren konnte keine
Korrelation erfasssen. Hingegen konnte ein integrativer Meta-Analyseansatz 15 Gene
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identi�zieren, die bei einer separaten Betrachtung der Daten nicht gefunden wurden.
Auf diese Weise stellen die Gene potentielle Biomarker für die Früherkennung des BOS
dar.
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Chapter 1

Introduction

1.1 Neuroblastoma

Neuroblastoma is a malignant tumor of the sympathetic nervous system in young chil-
dren . It arises in immature nerve cells and a�ects mostly infants and children. Often
neuroblastoma begins in the nerve tissue of the adrenal glands. The adrenal glands pro-
duce hormones that help control heart rate, blood pressure, blood sugar, and the way the
body reacts to stress. Neuroblastoma may also begin in the chest, in nerve tissue near
the spine in the neck, or in the spinal cord. It sometimes forms before birth but is usually
found later, when the tumor begins to grow and cause symptoms. When neuroblastoma
is diagnosed, the cancer has usually metastasized, most often to the lymph nodes, bones,
bone marrow, liver, and skin.

Neuroblastoma is characterized by diverse clinical courses. This ranges from complete
regression of the disease to rapid tumour progression and death [30]. Important factors
in determining outcome are the patient age and stage of the disease. The majority of
children over 1.5 years of age have metastatic disease at the time of diagnosis, which
comes along with a poor prognosis despite intensive therapy. The mechanisms leading
to this diverse clinical behavior of neuroblastomas remain largely unclear.

Although the overall survival of current high-risk patients has improved in the last
decades [ 20], there is a need to detect novel markers to identify those high-risk patients
with a more favorable biology. For these purposes, additional prognostic indicators have
been proposed in recent years. analyzes of DNA copy number alterations resulted in the
delineation of three major genetic subgroups with predictive tumour behaviour (subtype
1, 2A and 2B). Subtype 2A Neuroblastoma represents an aggressive subgroup charac-
terised by loss of loss of 1p, 3p [151] and 11q [10], gain of 17q, which independently
predicts poor prognosis [26], and MYCN ampli�cation [30]. In contrast to MYCN gene
ampli�cation, the degree of expression of the MYCN gene in the tumor does not predict
prognosis. Additionally extensive microsatellite heterozygosity mapping studies point at
various critical regions of loss, located at 11q23.3 [71] and within the chromosomal re-
gion 11q14-11q23 [110]. Spontaneous regression of neuroblastoma is a phenomenon that
has been well described in infants, especially in those with the 4S pattern of metastatic
spread [119]. Regression generally occurs only in tumors with a near triploid number of
chromosomes, no MYCN ampli�cation, and no loss of chromosome 1p.

Apart from copy number alterations, expression levels of an growing number of single
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candidate genes, e.g. NTRK1 [117], FYN [21], PRAME [121] and PHOX2B [116, 112]
were reported to be indicative of neuroblastoma tumor behavior.

1.2 Bronchiolitis Obliterans Syndrom

The Bronchiolitis Obliterans Syndrom is the most frequent clinical manifestation of
chronic repulsion reaction and destruction of lung transplants which occurs frequently in
the second year after lung transplantation. The diagnosis of bronchiolitis obliterans is im-
portant, as appropriate immunosuppressive treatment may be helpful in the preservation
of lung function [36]. The term "obliterans" refers to in�ammation of the bronchioles,
which partially destroys (obliterates) the small airways.

The auto-immune reaction behaves in such a way that the small respiratory system -
the bronchioles - thickens due to a chronic in�ammatory process. This leads to �brosis
and cellular deposition in airways, complicating long-term survival [172]. A malfunction
of the lung, which can be mild or severe depending on the degree of BOS, often follows
[157].

One severe consequence of this repulsion reaction is a remarkably short survival time
which is often shorter than after other transplantations [23]. After the �rst postoper-
ative year, BOS is the main cause of death with a prevalence of 39%. Previous clinical
experiences identi�ed that 5 years after lung transplantation half of the patients, and
after 8 years even 2/3 of them are a�ected [57].

Until now, no e�ective therapy is available for BOS, however, certain immunosuppressive
regimens may slow down the progression of the disease [7]. Besides that, no diagnostic
markers exists for the detection of this chronical disease.

Despite continuous improvements in surgical methods and other therapy options, the
causes of BOS are still complex and so far unsolved. It is experimentally proven that
within a few hours after transplantation nearly one third of the lung tissue cells dies via
apoptosis [61]. Early detection of BOS is essential because prompt initiation of treat-
ment may halt the progression of the disease and the development of chronic transplant
failure [5].
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1.3 High-dimensional omics-approaches

During the last 60 years expert knowledge about molecular elements of life has grown like
never before in human history. In 1953, James Watson and Francis Crick published their
model of the three-dimensional structure and the chemical components of deoxyribose
nucleic acid (DNA) [173]. They were pioneers in describing the DNA as a double helix
with base pairs as their backbone. Crick postulated in 1970 the �Central Dogma of
Molecular Biology� which reads [53].

DNA makes RNA, RNA makes protein, and proteins do almost all of the
work of biology [66].

With the structure of DNA and this dogma in hand, researchers started to answer the
question of the impact and mechanisms of genes. It became clear that genes do not work
in isolation but rather interact with each other. With this demand on a more concise
picture of genes and the cell in general the Human Genome Project (HGP) was founded
[46, 169]. Initiated in 1990, it took 13 years till in April 2003 the gene-containing part
of the human sequence was completely deciphered. So far, about 750 genomes from
di�erent organisms have been sequenced, and the sequencing of about 2750 genomes is
in progress [80, 81]. Among other facts we learned from the HGP that a great part of
the genome does not correspond to any expressed gene.

We are probably at the end of the beginning rather than at the beginning of
the end because genomics will probably change biology to a greater extent than
previously forecasted [79].

Since the sequencing of many genomes is �nished, an increasing number of high-throughput
methods have been developed. In this subsection three of this well established molecular
biological methods which provide the basis for the data in this thesis will be explained.
In addition for each biological approach, a method related bioinformatic background will
be given.

1.3.1 Omics-Bioinformatics

There exist several de�nitions of bioinformatics [19, 127, 69]. One obvious way to look
at it, is to take it as a merge of two sciences, namely biology and informatics, into one
discipline [11, 64, 68, 96, 97, 113]. The increasing demands on bioinformatics started
in parallel with the HGP in the early 1980s, when methods for DNA sequencing became
widely available. Data were concentrated in large databases such as GenBank, EMBL
or SWISS-Prot and opened up the way for new methods adopted in data retrieval and
analysis, structural and functional prediction [18, 22, 131, 154].

"Every institution that expects to be competitive in this new era will need
to have strengths in high-throughput genomic analyzes and computational
approaches to biology," (Francis Collins, director of the National Human
Genome Research Institute, Bethesda, Maryland U.S. [32])
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The availability of di�erent data types of high-throughput experimental data in the late
1990s, like DNA-microarrays, aCGH and matrix-based mass spectrometry, has expanded
the role of bioinformatics. Having solved the challenges of data storing, establishing of
preprocessing steps, like signal detection or normalization, bioinformatics was then ex-
panded in depth. New tools including statistical tests, principal component analysis or
cluster analysis to reduce data to a lower dimensionality emerged from this research.

An area called �extragenomics� throws new light on pathways, networks and interac-
tions which a�ect genes and proteins. The Gene Ontology Consortium has become an
important part in understanding of those cellular processes by de�ning a common vo-
cabulary for protein function. Also pathway databases, for example KEGG, try to de�ne
cellular processes and inspire bioinformatics to build up a complete representation of the
cell and the organism.

Integrative Bioinformatics today of a single high-throughput method can not fully
unravel the complexities of fundamental biology. It takes more than the traditional one
dimensional, vertical consideration on the biological dogma, that DNA makes RNA and
RNA makes proteins. We need to integrate the knowledge on genomics, transcriptomics,
proteomics and even extragenomics at the same time to get a deeper insight into complex
human diseases, like cancer.

To do so, researchers started integrative studies where they included the di�erent levels
of cellular information �ow. Combined analysis of two popular platforms, DNA microar-
rays and gel-free proteomics, aims to answer the question to which extent the pattern
of gene expression correlates with the corresponding protein levels. The general consen-
sus is currently that the correlation between transcriptomes and proteomes across large
datasets is typically modest [40, 51, 72]. Measurement errors and poorly conceived
instruments have been considered to contribute, at least in part to this poor correlation
between mRNA concentration and protein abundance [51].

Integrative analysis of genomic and transcriptomic data provides additional information
on wether changes in the DNA content have functional consequences on the activation
or inactivation of genes that play key roles in multiple biological networks. Most studies
considered a one dimensional examination of cis-e�ects and try to answer the question of
what happens to the gene expression, when the chromosome it is located on, is mutated.
More promising are studies where people analyze distant interactions of chromosomal
aberrations which impact genes located elsewhere. This is called a trans-e�ect.

1.3.2 Array-based comparative genomic hybridisation

Each gene is localized to a speci�c site along the length of a speci�c chromosome. This
is often termed a genetic locus. Normal chromosomes of a cell should have two copies
of each genomic region, except for the sex chromosomes. The normal con�guration of a
chromosome is called euploid, whereas aneuploidy describes a change in the number of
chromosomes. A missing chromosome from a diploid organism is called monosomy, and
an addtional chromosome is called trisomy (e.g. trisomy 21).
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DNA copy number aberrations (CNA) frequently occur during tumor progression and are
demeed as the driving force of tumorigenesis and of the progression of cancer [104, 103].
Specifc DNA regions of the tumor DNA are lost or gained. For example, when a genomic
region of a diploid tumor cell is a�ected by a loss of DNA we would expect to get 0 or
1 copy, in the simplest case. However, in the case of a gain this will result in 3 or more
copies. All genomic aberrations of a sample can be characterised as a genomic pro�le
(Fig. 1.1). Methods like comparative genomic hybridization (CGH), and also the array-
based version, aCGH, reveal which regions, and to what extend DNA regions have been
gained or lost.

Figure 1.1: Example plot of a genomic pro�le. The y-axis depicts the copy number
ratio of all measured chromosomal regions. The chromosomal positions are
displayed at the x-axis. Gray vertical lines de�ne the di�erent chromosomes
numbered in the same color.

Comparative genomic hybridization (CGH) to metaphase spreads was the �rst
e�cient method for the detection of relatively large chromosomal regions (∼ 10 Mb)
that are lost or gained in a tumor [95, 101]. DNA preparations from two samples,
e.g. a tumor sample and a control sample or di�erent tissue from a single individual,
are labeled with di�erent �uorophores, either a red-�uorescent dye (Cy5) or a green-
�uorescent dye (Cy3) (Fig. 1.2). Based on changes in signal ratios, gains and losses can
be detected. However, CGH has some main limitations, especially with regard to the
resolution. Changes in regions smaller than 5-10 Mb are not realiably detectable [62].

Array-based CGH greatly improves the resolution of classical CGH. Solinas-Toldo et
al. (1997) utilized a microarray-based technology to detect chromomosomal imbalances
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Figure 1.2: Comparative genomic hybridisation. Fragments of normal (red) and tumor
(green) DNA are di�erentially labeled with two di�erent �uorophores. These
fragments hybridise to metaphase chromosomes. A red signal indicates that
only normal DNA is annealed, but no tumor DNA was present. This is when
a loss of DNA in the tumor DNA has occured. In the case of a yellow signal,
both normal and tumor DNA are bound in the same amount, i.e. the tumor
DNA shows no chromosomal aberration. A gain of tumor DNA is indicated
by a a green signal, which denotes that more tumor DNA is annealed than
normal DNA. Figure taken from [174].

and improved the detection of altered chromosomal segments to 75-130 kb in size [147].
In a pioneer study, Pollack et al. (1999) presented the �rst genome-wide array [129].
They used 3195 unique cDNA target clones which where distributed consistently across
the genome. The big advantage of cDNA approaches is the potential to analyze changes
in DNA copy number and gene expression levels in parallel [130]. Limitations involve
the exclusive detection of aberrations in known genes which results in an irregular dis-
tribution of measured loci across the genome.

However, the majority of aCGH data today has been generated by the use of Bacterial
Arti�cial Chromosome (BAC) CGH arrays. In 2001, Snijders et al. used a microarray
with 2400 BACs across the genome. The BACs varied in length from 150 to 200 kb,
and the array size varies from 2.400 to ≈ 30.000 unique array elements which makes this
method outstandingly sensitive and precise [146].

Oligonucleotides are also used in genome-wide screening for genomic imbalances. Dif-
ferent commercial platforms, e.g. from A�ymetrix, Agilent Technologies or NimbleGen,
contain short oligonucleotides ranging from 25-70mers [15, 28, 35, 189]. These methods
claim that the processing is rapid, cost-e�ective, and easy to handle.
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The terms mCGH and aCGH (array-based comparative genomic hybridisation) will be
used as synonyms in this thesis.

Several bioinformatic algorithms have been proposed to �nd aberrations in a genomic
pro�le (Fig. 1.1 on page 17). These methods assign the copy number ratio to all positions
in a region of a pro�le. A common method, implemented in a R1 package called GLAD
(Gain and Loss Analysis of DNA), is based on adaptive weight smoothing [86]. It
estimates the breakpoints of a piecewise constant function and also assigns losses and
gains to each region by a clustering algorithm. Another approach, implemented in the
R package DNAcopy, recursively split is whole segments of a pro�le into smaller regions
at the breakpoints, and assigns aberrations to each individual segment [123]. The R
package aCGH is based on a hidden Markov model, where each state in a genomic pro�le
represents a region with similar copy number ratios [92].

1.3.3 Array-based monitoring of gene expression

Genes and DNA-Microarray Driven by the awareness that sequence information alone
is not su�cient for a full understanding of gene function, expression and regulation,
Schena et al. (1995) presented a spottet cDNA based gene expression array. One year
later in 1996 David Lockhart introduced the expession monitoring by hybridization to
high-density oligonucleotided arrays [102]. Thus DNA microarrays come into play for
the monitoring of large numbers of mRNAs in parallel.

Like aCGH measurements, DNA-microarrays are a powerful tool for the simultaneous
analysis of expression of thousands genes on a genome-wide scale. The set of transcripts
that are expressed or transcribed from genomic DNA in the cell at the same time, is
called the ´expression pro�le` or the transcriptome. It is also called expression signature
and can be understood as a �barcode� for a speci�c phenotype. Di�erences in the ex-
pression pro�le of a cell are responsible for phenotypic di�erences as well as indicative
for cellular response to an environmental stimulus.

Two methods of microarray-based gene expression monitoring are mainly in use. These
are two-color cDNA microarrays and one-color oligonucleotide arrays [139] [102].

cDNA-microarrays are typically custom-printed by spotted, PCR- ampli�ed cDNA
clones. These clones are of size of approximately 0.6-2.4 kb and are mostly bound to
glass microscope slides, or on porous membranes like nylon [138]. In most experiments,
expressed sequence tags (EST) represent the most reliable source of sequences for gene
identi�cation [191]. Another characteristic of cDNA microarrays is the use of two dif-
ferent �uorophores. DNA from two samples, e.g. tumor and control, or di�erent tissues
from a single individual, are labeled with di�erent �uorophores, either a red-�uorescent
dye (Cy5) or a green-�uorescent dye (Cy3) and hybridized together on a single microar-
ray [55]. These two samples on a single microarray allow the direct comparison by
determining the relative abundance by a ratio of �uorescence intensities [77, 183]. This
minimizes the variability from processing multiple microarrays per assay. A disadvantage

1www.r-project.org
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lies in the dye-speci�c biases which can lead to misinterpretation of the results, but can
be controlled by performing dye-swap replicates.

Oligonucleotide-microarrays are performed similarly to cDNA- microarrays, except
the spotted probes and the used amount of �uorophores. Short probes, 25 nucleotides
or longer in length, selected on the basis of their sequence speci�city, are synthesized
in situ by photolithography or inkjet technology on a solid surface [102]. The signal
for each gene-speci�c mRNA is determined by hybridization to a group of up to 20
pairs of oligonucleotides. Unlike cDNA-arrays, single samples are hybridized to each
microarray after they have been labeld with a single �uorophore. Rather than a ratio,
an absolute value of �uorescence intensity is determined. This value is compared with
other experiments to detect transcriptomic changes. A key issue, and a problem of
oligonucleotide-based arrays, is how to select probe sequences with high sensitivity and
speci�city. On the other hand, these arrays are commercially available, have a high
density and are well standardized [144].

Bioinformatic strategies for both cDNA- and oligonucleotide- microarrays require
several pre-processing steps including image analysis, background adjustment and nor-
malization [179]. Controlling the e�ects of systematic error while taking care of the
biological variation are platform-speci�c and di�cult to automate [166, 180]. Image
analysis is the basis for data analysis, by converting the pixel intensities in the scanned
image into intensity values per probe [135, 90]. Parts of the measured probe-level in-
tensities do not come from gene expression, but rather from non-speci�c bindings and
noise in the optical detection system and need to be assesed by background adjustment.
The most critical step of a pre-processing analysis is a platform-adapted normalization
method in order to remove any non-biological variation [166, 180, 25, 145]. Starting from
here, biological questions can be adressed by bioinformatic strategies like SAM (signi�-
cance analysis of microarrays) [167], PAM (predictive analysis of microarrays) [164] or
GSEA (gene set enrichment analysis [156]) .

1.3.4 Mass spectrometry pro�ling

�Is Proteomics the New Genomics?� Jürgen Cox and Matthias Mann raised this question
in 2007 [52]. They looked back to a period, starting in the mid of 1970s, where two-
dimensional gel electrophoresis proteomics coupled with high-throughput tandem mass
spectrometry (MS) revolutionized proteomics [122]. These have become the most pop-
ular and versatile methods to seperate and identify complex mixtures of peptides and
proteins [3, 182, 34, 162].

�Proteins are central to our understanding of cellular function and disease
processes, and without a concerted e�ort in proteomics, the fruit is of ge-
nomics will go unrealized.� (Ian Humphery- Smith, University of Utrecht,
one of HUPO's founder members)

Especially the advances of mass spectrometry made biological molecules readable and
John B. Fenn, Koichi Tanaka and Kurt Wüthrich have been awarded the nobel prize
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in 2002 for their contribution in this area of research [178, 160, 59]. The Human Pro-
teome Organisation (HUPO) was founded in 2001, an international proteomic initiatives
to better understand human diseases. Now that the human genome sequence has been
published, the HUPO turned their attention to identify the functions and expression pat-
terns of proteins encoded by the genes. It could be argued that measuring the proteome
already addresses the desired end point, which is the protein level of a gene of interest.

When we speak of the proteome, we mean the set of all proteins in a tissue of a liv-
ing organism in a cell or cell compartment at a speci�c time point under exactly de�ned
conditions [168]. It re�ects the biochemical activity of a cell. Conceptually, this is sim-
ilar to the transcriptomics technologies discussed in Chapter 1.3.3 on page 19.

Due to the more diverse chemical properties of proteins as compared to RNA, the �eld
has a di�erent and diverse set of methods. The analysis of the proteome delivers ad-
ditional information which would not have been gained by studying the transcriptome
alone, because a single gene can have one or more splice variants. Genes are of great
complexity, and one gene can produce one or more di�erent proteins with di�erent func-
tions, e.g. by addition of chemical groups (e.g methylation, phosphorylation) [141, 29].
More than 200 di�erent types of post-transcriptional modi�cations are known, and it is
predicted that on average three di�erent modi�ed proteins with di�erent functions are
produced from each human gene [74, 14, 54].
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Figure 1.3: Desorption/ionization time-of-�ight mass spectrometry. a) General setup of
a mass spectrometer for MALDI and SELDI. I) Ionization and Acceleration.
In both MALDI and SELDI, a biological sample of interest is applied to a sur-
face. It is incubated and subsequently co-crystallized with matrix material.
A laser is then �red at the co-crystallised mixture and initiates ionization and
evaporation of proteins,which are then accelerated by an electric �eld. The
energy of the laser beam is transferred via the matrix to the analyte sample
and causes ionization. II) Drifting. An electrical �eld causes the ionized ma-
terial to �y through the TOF tube (going from to to t1). Lower mass peptides
(red ball) �y faster through the tube than higher mass peptides (green ball).
III) Detector. The peptides with a lower mass arrive earlier than the high
mass peptides at the detector which is placed at the end of the �ight tube.
b) Schematic image of a mass spectrum. Using a quadratic equation, the
mass-to-charge ratio (m/z) of a peptide can be calculated and plotted as a
so called mass spectrum, with the intensity on the y- and the m/z-ratio on
the x-axis. The peak height correlates to the protein concentration.
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Proteomic Pro�ling is a new aspect of mass spectrometry which is used to analyze
complex protein mixtures from tissue or body �uids, like blood. Typically, biological
samples from di�erent patients or di�erent conditions are compared. A major goal, is to
�nd a set of di�erentially expressed proteins. Proteomic pro�ling is often employed to
identify biomarkers that can be used for diagnosis, prognosis or treatment. MALDI and
SELDI coupled to Time-Of-Flight (TOF) discriminators are popular techniques widely
used for proteome screening.

Also, matrix-based laser desorption/ionization (MALDI) and surface enhanced laser des-
orption/ionization (SELDI) have extended the application of mass spectrometry for the
quanti�cation of complex protein mixtures from e.g. body �uids like blood, sera or even
from whole cells [60, 148, 67].

MALDI-TOF-MS stands for matrix-based laser desorption/ionization time-of-�ight
mass spectrometry. It is one of the best established ionization methods for mass spec-
trometric analysis, especially for the investigation of large molecules like proteins [107].
Thus, MALDI-MS has gained a crucial importance for protein analysis [160]. A chemical
matrix, consisting of small organic molecules, plays a key role in the mass spectrometry
technique by absorbing the laser light energy and causing a small part of the target sub-
strate to vaporize in ionized form (Fig. ?? on page ??) [49]. The analysis by MALDI-MS
can be divided into serveral steps. The �rst step involves the enrichment of proteins by
magnetic beads with functionalized surface. A washing step removes unbound proteins
followed by a elution of bound proteins from the beads. Afterwards the protein solution
is de-salted and the proteins are co-crystallized with a matrix on a metal surface, the so
called �target�. The last step of the MALDI process involves desorption of bulk portions
of the solid sample by a short pulse of laser light. Matrix molecules as well as probe
molecules are unleashed in this process and accelerated through an electrostatic �eld
towards the mass analysator [9].

The mass analysator used in MALDI is a time-of-�ight (TOF) analysator which en-
ables to exactly determine the masses in high vacuum (Fig. 1.3 on the preceding page).
The ions formed within the short laser impulse are accelerated in the source by the elec-
trostatic �eld and traverse after leaving the source a �eld-free drift distance in which they
are isolated depending on their m/z-ratio (mass over charge) [105]. The abbreviation
m/z-ratio is used to denote the quantity formed by dividing the mass m of an ion by it
is charge number z. Smaller molecules with lower weight �y faster than large and heavy
ones. With known acceleration, voltage, and �ight route of the ions in the �eld-free drift
distance, the m/z-ratio can be determined by measuring the �ying time. The calibration
is made by reference substances with well-known masses [177].
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Figure 1.4: Work�ow of proteomic pro�ling. a) First steps of a MALDI-TOF procedure
include sample preperation of e.g. body �uids like serum. The sample is
mixed with magnetic beads which catch only speci�c peptides. This target
mixture is then spotted to a chip and is processed with an appropriate mass
spectrometer.The resulting protein pattern displays the separated peptides in
terms of their m/z-ratio. b) The SELDI-TOF work�ow also includes sample
preparation, target spotting and results in a protein pattern, but di�ers in
utilizing a chip with a chromatographic surface instead of using magnetic
beads.

SELDI-TOF-MS is surface-enhanced laser desorption/ionization time-of-�ight mass
spectrometry. The underlying principles of mass spectrometry are closly related to the
MALDI technique [12, 148, 174]. This technology essentially reverses the conventional
MALDI sample preparation with magnetic beads as matrix by using a ProteinChip® ar-
ray of addressable protein binding sites on a solid substrate which are generally chemical
or biochemical a�nity ligands (Fig. 1.4). Popular ProteinChip® ligands, also called sur-
faces, are reversed-phase, cation exchange, anion exchange and IMAC (immobilised metal
a�nity chromatography). Finally, a substance that absorbs laser energy, the SELDI
equivalent of the MALDI matrix, is added to the chip array, and the chip array is sub-
jected to �on-chip� laser desorption mass analysis to provide a molecular weight-based
protein pro�le [93, 133, 177].

The main di�erence between MALDI and SELDI is, that SELDI normally uses a
chip with a chromatographic surface, making the puri�cation of the sample implicit. For
MALDI, the puri�cation needs to be done before application to the chip, by means of
magnetic beads (Fig. 1.4).
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Bioinformatic analysis of mass spectrometry data mostly strives for the goal of identi-
fying a small number of features as meaningful diagnostic biomarkers for early diagnosis,
prognosis, monitoring disease progression or response to treatment [124, 1, 175, 137].
A typical spectrum arising from SELDI or MALDI contains thousands of intensity mea-
surements at a speci�c m/z-ratio which represent an unknown number of proteins. Algo-
rithms for biomarker prediction start with the raw data, in most cases a list containing
the measured intensities at a speci�c mass-value, the m/z-ratio [13]. Baseline correction
avoides the displacement of the baseline function, which is a systematic error, often seen
in mass spectrometry [82]. It is believed to be a part of the matrix molecules hitting
the detector in the early part of the experiment, or to detector overload [108]. Not only
the data resulting from such measurements are noisy but the variance between replicates
of the same samples is also high. Adequate normalization methods, like the total ion
count (TIC), addresses this measurement errors by reducing the e�ects of technical vari-
ance [33, 111]. Similar to microarray approaches, mass spectrometry data are very high
dimensional and hence require feature selection methods to �nd promising biomarkers
[56]. Di�erent methods are used to reduce dimensionality by peak detection algorithms
[47]. Popular methods compute the signal-to-noise (S/N) ratio and all local maxima in
a spectrum that exceed a S/N-threshold are considered a peak [115]. After this prepro-
cessing steps one gets for n spectra and p peaks a n x p matrix similar to gene expression
microarrays. Once this matrix is obtained often machine learning methods like SVM
(Support Vector Machines) coupled with recursive feature elimination procedures can be
applied to discriminate disease states by di�erential protein patterns [100, 186].
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1.4 Integrative bioinformatic analysis of

omics-approaches

1.4.1 Correlation of chromosomal aberrations and gene

expression

High-throughput technologies like aCGH enable the identi�cation of DNA copy number
aberrations (CNA) (Sec. 1.3.2). In the same way, gene expression microarrays allow for
monitoring of thousands of genes and give new insights into underlying mechanisms of
gene interaction (Sec. 1.3.3). However, numerous chromosomal alterations have been
described, but molecular consequences remain unclear in most cases. To pinpoint genes
that are directly a�ected by CNAs is a critical task. analyzing DNA copy number alter-
ations and their e�ect on gene expression in parallel will enhance the knowledge about
which genes are regulated, and are thus potential regulators in genetic processes and
not just bystanders in alterd regions. These regulators may encode transcription factors
or even signaling proteins which in turn activate hundreds of downstream genes. Un-
fortunately the regulator it iself may not be included in the genetic signatures. Several
studies performed systematic analysis to discover wether CNAs are directly associated
with changes in gene expression [87, 130, 38, 43, 94, 159, 155]. An adequate correlation
between CNA and gene expression has been detected by J.Pollack et al. 2002. They
showed that the overall patterns for ampli�ed chromosomal regions and elevated gene
expression in a subset of primary breast tumors and breast cancer cell lines is quite
concordant [130]. Applying a linear regression model, they found 62% of high-level
ampli�cation to be associated with at least moderately increased gene expression. On
average a 2-fold change in DNA copy number comes along with a about 1.5 fold-change
in gene expression. Interestingly they noticed a signi�cant shift of a histogram, gener-
ated from the correlation (going from -1 to 1) between CNA and expression values, in
the positive direction from zero. From this they conclude a pervasive global in�uence of
CNA on gene expression.

Hymen et al. 2002 analyzed the in�uence of genome wide CNAs on the expression
of around 13.000 genes of 14 breast cancer cell lines in parallel [87]. For each gene they
calculated the mean di�erence in gene expression between cell lines with and without
ampli�cation divided by standard deviations

wg =
mg1 −mg0

σg1 + σg0
, (1.1)

where mg denotes the means and σg the standard deviation, 1 describes ampli�cation
and 0 no ampli�cation. In doing so, their results illustrate that 44% of ampli�ed genes
(copy number ratio > 2.5) were up-regulated. This percentage decreased with lower level
ampli�cation.

Järvinnen et al. 2006 analyzed the correlation between CNA and gene expression of
20 samples of squamous cell carcinoma cell lines [94]. By using the same statistical
method like J.Pollack et al. 2002, they found 39% of ampli�ed regions to be upregulated
and 14% of deleted regions to be downregulated. In total 739 genes were signi�cantly
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in�uenced by copy number increase. For these genes they calculated on average a Pear-
son correlation coe�cient of 0.45 between DNA and RNA levels. In addition, they found
40 genes whose expression was systematically in�uenced by high DNA ampli�cations.
Accordingly 502 down regulated genes were associated with deletions of corresponding
chromosomal regions.

Serveral other studies also refer to the existence of correlation between changes in DNA
copy number and their in�uence on gene expression [85, 114, 176, 188, 181, 165, 184]
[114] [165] [176] [181] [184] [188].

However, no correlation between CNA and gene expression was reported by Björn Fritz et
al. 2002. They analyzed alterations in DNA copy number and found no correlation with
RQ-PCR expression of candidate genes for liposarcomas. Yao et al. 2006 con�rmed these
results. Their study of di�erent subtypes of breast tumors by aCGH and Serial analysis
of Gene Expression (SAGE) reveals no overall association between gene expression and
ampli�cation. They conclude that the correlation between CNA and gene expression is
highly variable among tumors and conclude that di�erent mechanisms of gene activation
depend on the tumor subtype.

These studies demonstrate that the underlying e�ects of chromosomal aberrations on
changes of gene expression are still not well understood. These studies only analyzed
so called cis-e�ects, where CNAs are correlated with genes that are directly located at
the same chromosomal position. Of much more interest are the interrelated alterations
in DNA copy number, acting as trans-e�ect, on genes located on another chromosomal
position. Soroceanu et al. 2007 observed in glioblastoma that a DNA loss of PTEN,
which is located on chromosome 10, comes along with over-expression of IGF or EGFR.
Both are not located on chromsome 10 but are potiential regulators in the formation
of glioblastoma [149]. Other examples for trans-e�ects taking place in the interplay of
structural changes of chromosomes on the expression of genes are given by Sweet-Cordero
et al. and Huang et al. [158, 83].

Thus it has become clear that trans-e�ects can have a major e�ect on regulators of
a gene signature. A promising method to analyze the existance of cis- and trans-e�ects
is called SLAM (stepwise linkage analysis of microarray signatures) [2]. In order to
identify candidate oncogene regulators in wound signatures, they link gene expression
data to DNA copy number changes by a four-step method. First, they group the data
into two classes based on absence or presence of a known gene expression pattern. Then
they detect signi�cant associations between chromosomal aberrations and gene expres-
sion signature by SAM [167]. In the next step, candidate regulators are identi�ed by
linkage analysis. Hereby, the existence of three neighboring ampli�ed genes in only one
class of the phenotyope is de�ned as a genetic linkage. Than the gene expression level
of the potential regulator is compared with those of the genetic signature of interest. In
the end they test whether the potential regulator mRNA level predicts the signatures in
additional tumor samples. By applying this method, they �nd MYC and CSN5, both
located on chromsome arm 8q, to be highly correlated with the wound-gene-signature
they have identi�ed previously [37]. Thus, the SLAM-method considers CNA and gene
expression levels in an integrative manner, and the authors claim to o�er new informa-
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tion which could not be detected by just one method alone. However, SLAM fails to
identify mechanisms through which wound-signature may be controlled by other regula-
tors. Additionally this method does not answer how this regulators are associated with
each other, e.g. in a conditional or combined manner.

Till now the most sophisticated approach to identify cis- and trans-e�ects in an in-
tegrated approach is presented by Lee et al. in 2008 [99]. They explore the underlying
mechanism of CNA a�ecting gene expression by calculating the Pearson correlation which
they store in a correlation matrix. Starting from here they searched for a set of CNAs
and set of gene expression pro�les that are highly correlated using a biclustering method
called SAMBA [161]. The resulting modules of high correlation were analyzed for func-
tional relevance by gene set enrichment analysis, coupled with hypergeometric statistics.
The tested gene sets inlcude genes with speci�c biological functions, signaling pathways
or cytoband locations. For the �rst time, their results based on the correlation matrix
show that a large number of signi�cant associations were derived from di�erent cyto-
bands. Among the top signi�cant associations, 10 out of 515 combinations were found
as potential cis-e�ects, and a number of 4386 out of 439151 were characterized as poten-
tial trans-e�ects. These results point out the strong association between chromosomal
instability and gene expression related to di�erent loci. Furthermore, by testing the en-
richment of speci�c modules, they identi�ed overrepresented gene sets which could not be
veri�ed when analyzing CNA and gene expression data on their own. Nevertheless this
method does not face the fact of regulators acting in a combinatorial way and in�uencing
other cytogenetic locations and genes in the big picture of an interacting network.

Our approach includes Bayesian networks (BN) and extends previous methods by identi-
fying underlying cis- and trans-e�ects. BN are based on conditional probability relations
and are therefore very useful to disclose the relationship between DNA copy number
changes and gene expression. To our knowledge this thesis for the �rst time incorporates
CNA and gene expression signatures in an integrative procedure via BN. A framework for
a combined analysis is implemented, which took care of the joint probability distribution
and results in a directed graph with nodes representing stochastic variables (chromoso-
mal locations, genes), and edges account for directed dependencies among this variables.
Principles of a BN will be introduced in section 1.4.2, and an example of an application
will be given in section 2.1.2

1.4.2 Bayesian networks and computational biology

Bayesian networks are a representation of joint probability distributions (JPD). During
the last 10 years they became increasingly important in the biological science. They
were used to infer cellular networks [63], model protein signalling pathways ? ], data
integration ? ], classi�cation [27] and genetic datat analysis [16].

I used BN to gain new insights on how DNA copy number changes in�uence gene ex-
pression. It has been widely accepted that genes do not act as single players. They
are rather merged as players in a network of interacting genes and can depend on copy
number aberrations. These genes can be organised in pathways or biological functions.
I tried to gave a contribution in understanding the mechanisms of genetic processes trig-
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gered by alterations in DNA copy number and identi�es potential regulators utilizing BN.

Again the overall question of this study is �do we see key players by analyzing CNAs
and gene expression data in an integrative approach using BN.� This idea, which also
allows for additional information like clinical criteria including e.g. survival data or the
prognostic index, is illustrated in Fig. 1.5. In this graphical representation, the vari-

Figure 1.5: Basic idea for the identi�cation of key players in molecular biological processes
via Bayesian networks. Data are not real. a) Preselected nodes of interest
origin from CNAs (orange), genes expression (blue) and clinical data (green)
have to be chosen from every data type alone. It should be addressed, how
these nodes interact and regulate each other depending on their chromosomal
position. b) After infering BN this results in a directed acyclic graph with
nodes and edges. c) Resulting dependencies allow to deduce key-players from
that graph. In this example, a chromosomal aberration on 6p27.3 seems to
have an important role on the clinical outcomes by in�uencing the expression
of four genes.

ables (genes, clinical data or chromosomal aberrations) are represented by nodes that
are connnected by edges. This edges represent relationships among the variables. The
expression of each node is represented by one variable of the JPD which describes how
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the variables are regulated by each other. A more detailed introduction to BN is given
in Sect. 2.1.2.

Roughly speaking a BN is a tool that cna help to come to a decision in a speci�c situa-
tion. The situation can be seen as a model which is based on experiences someone made
in his live. The experienced-based model a�ects the decision how to proceed in a given
situation.

Such a model could give answers to almost any question, e.g., what is the chance to
come into heavy rain when I leave the door in the morning. Another question could be,
what is the lifetime risk to develop cancer. Considering the latter, a BN can be build
up with nodes and edges. The nodes repesent variables, like being a smoker, age or
other cofactors of interest, that might in�uence each other. The edges of a BN represent
dependencies among these variables, e.g. being a smoker has an in�uence to su�er from
cancer in the future. Once a model is made it is not irrevocable, instead we can change
the estimation of a situation or even add new experience we made. For example if addi-
tional information is available like the level of alcohol intake, would certainly in�uence
the estimate of getting cancer or not.
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1.4.3 Separated and integrative analysis of BOS speci�c gene

and protein expression

In order to expand the idea of this thesis to analyze and refresh the view on the biolog-
ical dogma, we combined the expression of genes and proteins, related to Bronchiolitis
Obliterans Syndrome (BOS), in an integrative step. This is done in accordance with
the previous section ??, where the work on analyzing the speci�c part of the biological
dogma, where �DNA makes RNA� is �gured out. In this section one step is made forward
to �RNA makes proteins.�

Understanding the molecular mechanisms of a disease like BOS is fundamental to the
development of new therapies. The e�orts of the last years in high-throughput methods
like gene expression micorarrays and mass sepctrometry for protein pro�ling utilize a sys-
tems approach for biological procesess. Indeed, no single approach as a �stand alone� can
fully unravel the complexity of fundamental biology. However, most integrative studies
of mRNA and proteins searched for a correlation between this two levels of biology. Most
popular are correlation analyzes of gene expression microarrays and 2-D gelelectrophore-
sis. The results are quite diverse likewise the studies related to the analysis of changes
in DNA copy number and their e�ects on gene expression (Sec. 1.4.1 on page 26). For
example, a study in yeast Saccharomyces cerevisiae found a correlation of 0.6 between
the expression of 289 genes and their related proteins [89]. Others reported a correlation
coe�cients of -0.025 when analyzing the expression of 98 genes and proteins in lung ade-
nocarcinomas in parallel [39]. Many reasons exists that might decouple the correlation
between gene and protein expression measures. Many biological �sources of irritation�
escort a mRNA on it is way through the biological dogma till it might eventually end in a
protein. Example are mRNA degradation or alternative splicing (Sec. 1.3.4 on page 20).
Also di�erent post-transcriptional modi�cations in�uence the composition of a protein.
These processes in a cell can not be measured with a gene expression microarray and
thus lead to a worse correlation between mRNA and protein abundance.
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1.5 Aims

The aim of this thesis was to develop a bioinformatic technique to gain new insights
into how chromosomal aberrations a�ect gene expression and how genes act on protein
expression. For this purpose a dataset of 81 patients su�ering from neuroblastoma and
a collective of 53 patients after lung transplantation was available. In particular, it had
to be adressed whether cis- and trans-e�ects are underlying mechanism for the origin
and progression of neuroblastoma. Furthermore, the e�ect of changes in gene expression
on protein levels related to the Bronchiolitis Obliterans Syndrom had to be analysed. A
meta-analysis approach of both mass spectrometry and aCGH data had to devised in
order to discover new features that might not be found in a seperate analysis.
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Material and Methods

2.1 Integration of Neuroblastoma speci�c copy

number changes and gene expression by BN

To analyze DNA copy number changes and their impact on gene expression current
methods do not consider the underlying network like characteristics. This comes true es-
pecially for neuroblastoma. Widely applied methods analyze, so-called cis-e�ects, where
the expression of those genes are monitored which lie within the same chromosomal re-
gion with lost or gained DNA. Our method consideres cis-e�ects as well but di�ers to
other methods by tracking all possible state-combination between CNA (loss, balanced,
gained) and gene expression (low, middle, high). Each state-combination got an assigned
consistency-score and was used for cluster analysis

Furthermore, a new method to analyze trans-e�ects was developed. It was aimed to
identify the underlying relationship in neuroblastoma between CNA and genes that are
located on di�erent chromosomal regions. This is done by computing a so called equal-
state-correlation-coe�cient, where we sum up equal states for each combination of CNA
and gene expression.

With this equal-state-correlation-coe�cient in hand a Bayesian network was applied to
point out the network characteristics of genomic aberrations a�ecting gene expression.
This method computed the probabilistic dependencies between CNA and gene expression
and visualized the connections as a acyclic directed graph.

2.1.1 Data

In this study, paired aCGH pro�les and gene expression data were used, comming from
81 patients su�ering from neuroblastoma. For the application of aCGH data a previ-
ously published data set [152] was used. In this study whole genome aberrations were
measured in neuroblastoma using a speci�cally designed high-resolution oligonucleotide
44 k aCGH microarrays (Agilent Technologies, Palo Alto, CA).The R package GLAD
for detecting the breakpoints delimiting altered regions and assigning a status (normal,
gained or lost) to each chromosomal region was utilized [86].

Gene expression data consisted of an already published data set in which gene expression
pro�les were generated as dye-�ipped dual-color replicates using a customized 11k olignu-
cleotide microarray [120]. The raw data were normalised by VSN (variance stabilization
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normalization) [84].

2.1.2 BNtegrative. A comprehensive toolbox to screen genomic

cis- and trans- e�ects

2.1.2.1 k-means discretization of gene expression values

In a typical DNA-micrarrray gene expression experiment, genes are labeled with a �uo-
rophore (sec. 1.3.3). Such labeled transcripts are then hybridized to a microarray. The
resulting �uorescence signal is detected by a scanner and is believed to be proportional
to the relative abduance of the corresponding gene. The expression of all genes is then
quanti�ed by measuring the intensity via the scanner. Here, the gene expression values
di�er in the distribution compared to preprocessed aCGH data. As mentioned in section
1.3.2, the last preprocessing step during a aCGH experiment includes the assignment
of states to each chromosomal position. These states are loss of DNA, balanced DNA
content, and gain of DNA (-1,0,1). In order to analyze both data types in an integrative
step, it is necessary to categorize gene expression data as well into comparable groups
(down-regulation, no change, up-regulation of genes) (-1,0,1).

For each gene a k -means clustering approach was used to obtain up the three cate-
gories, mentioned above. Considering one gene, for each expression value X, over all
amounts m of samples L the procedure started with randomly choosen k = 3 points
as cluster centroids. The remaining gene expression values were assigned to the cluster
centroid with the lowest Euclidian distance

disteucl (x1, x2) =

√√√√( m∑
i=1

(x1i − x2i)
2

)
. (2.1)

Then for each of the three clusters the centroid of n gene expression values is calculated,
which is the arithmetic mean µ

µ =
1

n

n∑
i=1

xi. (2.2)

Again, each gene expression value is assigned to the latest cluster centroids. These steps
are repeated until the centroids are no longer moved. The method is illustrated in alg.
1.

Algorithm 1 k -means

for each gene
randomly choose 3 centroids
repeat

for each expression value x
1) assign xi to centroid with the lowest

Euclidian distance

disteuc (x1, x2) =
√(∑m

i=1 (x1i − x2i)
2)

2) recalculate new centroids µ = 1
n

∑n
i=1 xi

until the centroids no longer move
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2.1.2.2 Matching gene probes with aCGH probes

Here we matched the probes represented at a gene expression microarray with the probes
on an aCGH microarray. This was required when analyzing cis-e�ects of DNA copy num-
ber changes on the expression of genes, located on the same chromosomal position. In
most cases, both data types are measured on di�erent plattforms and therefore di�er in
the type of spotted probes on the microarray, like cDNA clones or short oligonucleotide
sequences, see sect. 1.3.2 for further information.

The algorithm required the chromosomal start and end points of the spotted probes,
which enables to build up a link to a speci�c chromosomal region. For each gene, the al-
gorithm searched for the aCGH probe on the same chromosome whose position matched
most closely that on gene expressio microarray. If no perfect match was obtained, the
method located the straight right or left neighboring aCGH probes. The matched gene to
aCGH probes were saved as cis-e�ect connections, only if the neighboring aCGH probes
had the same state {-1,0,1}. The method is shown in alg. 2.

Algorithm 2 Matching gene probes to aCGH probes

for each gene probe
do

search for the perfect match with aCGH probe

if no perfect match
search for the direct aCGH probe neighbor
if neighboring aCGH probes have the same state (-1,0,1)

save match as a cis-e�ect

else go to next gene probe

2.1.2.3 Calculation of patient-related cis-e�ects via consistency correlation

After the matching of gene probes to aCGH probes (sect. 2.1.2.2), here the algorithm
calculated the correlation between DNA copy number changes and gene expression. The
correlation was computed patient wise and results in a correlation value for each matched
chromosomal cis-position.

Considering the matched cis-positions between aCGH probes and gene probes, the al-
gorithm assigned for each possible state combination a correlation value. By state com-
bination, the comparison of the actual individual state of each data type, at a speci�c
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cis-position, for a single patient is ment. Again the states for the aCGH data were loss,
balanced and gain. For the gene expression data the data were categorized into dow
regulation (�loss�), no change (�balanced�) and up regulation (�gain�).

This resulted in a consistency matrix with columns for each single patient and rows
as matched cis-positions. The data points of the matrix represented the consistency-
score between CNA and the gene expression for that speci�c chromosomal position. The
algorithm is schematically described in alg. 3 .

Algorithm 3 Build consistency-matrix of consistency score

for each patient
for each chromosomal cis-position

do
assign a score value between gene state and aCGH state

aCGH Gene 
Expression

assigned
correlation
value

loss "loss" 3

loss "balanced" 2

loss "gain" 4

balanced "loss" 1

balanced "balanced" 0

balanced "gain" 1

gain "loss" 4

gain "balanced" 2

gain "gain" 3

save score in consistency-matrix

2.1.2.4 Hierachical clustering of patient-related cis-e�ects

At the end the patient-related cis-e�ects represented as a consistency-matrix were grouped
together. This was done by hierachical clustering of the consistency-matrix in combina-
tion with the euclidean distance and the complete linkage algorithm.

2.1.2.5 Reduce dimensionality of aCGH data

I only considered frequently lost or gained chromosomal regions in order to reduce the
dimensionality of the aCGH data. Therefore we left out chromosomal positions, where
less than 20 % of all patients had an DNA aberration.

I build up chromosomal location sets (CLS) to further reduce the dimensionality
of the aCGH data. CLS corresponds to each human chromosome and each cytogenetic
band. In total we de�ned 426 CLS. I computed a mean-CLS-value for all aCGH probes
that belong to the same CLS, by assigning the most frequent state (-1,0,1).
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2.1.2.6 Identi�cation of signi�cant cis- and trans-e�ects over a whole set of
patients

This part of the algorithm aimed to reduce the dimensionality of data by the identi�ca-
tion of signi�cant cis- and trans-e�ects over a hole set of patients. To avoid confusion, it
should be kept in mind that from here on the algorithm did not consider patient-related
cis-e�ects like provided in sec. 2.1.2.3.

Here the algorithm reached it is crucial part because the output served directly as an
input to the BN analysis. The smaller the number of input variables for a BN, the shorter
is the computation time and the more stable are the results.

A similar-state-sum was computed during the �rst step of this method. In detail, this
step returns a measure of similarity for each gene probe γ with any other aCGH probe α.
Consider that the two data types are repesented in two di�erent matrices with patients
in columns of the same order, and data type speci�c probes in rows. Starting with the
�rst gene probe γ1 as a vector, the sum of equal states over all patients compared with
the vector of the �rst aCGH probe α1, was computed. The individual vectors were of
the length of the number n of patients. Only states which were unequal to balanced (0)
for the aCGH data and no-change (0) for the gene expression data were considered. This
sum of states, called similar-state-sum sss={1, ..., n} were computed for all combinations
of gene probes with aCGH probes. At the end a similar-state-sum-matrix sssm was build
up with aCGH probes in rows and gene probes in columns. For a better understanding
of how the sssm was computed, it is schematically described in �gure 2.1.
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Figure 2.1: Schematic computation of similar-state-sum-matrix . The aCGH matrix and
gene expression matrix have the same structure. Rows refer to the data
type-speci�c probes and columns for the patients in the same order. The
discretized values for both matrices are -1,0 and 1. Green values identify
equal states between aCGH and gene expression data. The similar-state-
sum-matrix (sss) holds the sum of similar states between aCGH and gene
expression data

Signi�cance of cis- and trans-e�ects was tested by an empirical p-value. Therefore
the labels of rows and columns of both data types were randomly relocated and again a
similar-state-sum-matrix was computed. Then for each possible values of this permuted
sss={1, ..., n} , the p-value was computed by

p =
#sss > sssi

nrowsssm ∗ ncolsssm
(2.3)
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where nrow was the number of rows and ncol the number of columns. This results in n
p-values, that denote the signi�cance threshold for the strength of a cis- or trans-e�ect.

2.1.2.7 Bayesian modeling of genome-wide cis- and trans -e�ects

BN are structures that represent probability distributions. For a set of variables X =
{X1, ..., Xn}, a BN consists of a network structure S. It is a directed acyclic graph with
nodes as stochastic variables and edges as directed dependencies among these variables.
If there is an edge from variable X1 to X2, then X2 depends probabilistically on X1.
In this case X1 is a parent of X2, which is in turn the child of X1. Nodes that do not
have a parent are called unconditional variables [8]. Local probabilty distributions P are
attached to each node in the network. They represent the strength of causal relationship
between a variable and it is parents,

p(Xi|Pai) (2.4)

where Pai are the parents of a variable Xi, and describe the behavior of that variable
under every possible value assignment of it is parents.

The joint probability distribution of all conditional variables in a BN is the product
of the local distribution,

p(X1, X2, ..., Xn) =
n∏
i=1

p(Xi|Pai) (2.5)

and can be seen as the probability of two or more events happening together.

Independence assumption is a key factor of BN and describes the task of breaking
down the overall distribution of a BN into connected modules. The underlying rules to
infer independence relations from the structure of a BN are given by d-seperation. These
rules are similar to graph conectivity concepts and address the question whether a path
is active in turns of creates dependency between end nodes. In the inactive situation a
path is blocked by a node and dependency can not be created between the end nodes.
For example, three random variables A, B and C (Fig. 2.2 ) are given. The variable A
is d-separated from C given B if the path from A to C is blocked, given B

p(A,C|B) = p(A|B)p(C|B). (2.6)

Blocked means that we have evidence e for B or in other words the value for B is known
in the network and that implies that no information can �ow between A and C.

Figure 2.2: d-seperation of 3 nodes in a BN. A and C are d-separated given B because
evidence e is given for B.
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2.1.2.8 Structure learning of a BN

Structure learning in principle implies a set of conditional independence assumptions
via d-seperation among the variables involved. There are two common algorithms for
learning the structure of a BN. One approach aims to optimize a network score for a
speci�c network by randomly changing the topology [48, 76, 42]. The second approach,
a constrained-based method, deals with several independence tests between the variables
of a network given other variables [126, 150].

Although the second method was used, also the �rst score-based method will be explained
�rst because it is a straight forward way to generate a BN and helps to understand the
constrained-based method.

Learning the structure of a BN from given data requires estimating the conditional
probability distributions (parameters) and independence relations.

The score-based method assigns a score to each possible BN re�ecting how well the BN
describes the data set D. Assuming the structure S of the network, the score is

Score(S,D) = p(S|D) (2.7)

in terms of posterior probabilities of S given the dataD. Following the Bayesian theorem,
this can be written as

Score(S,D) =
p(D|S)p(S)

p(D)
(2.8)

where a score-base method attempts to maximize this score. Only the numerator needs
to be maximized, since the denominator does not depend on S. On popular method to
calculate the score of a network is the Bayesian Information Criterion (BIC score) [136]

BICscore(S,D) = ln p(D|Θ̂, S)− d

2
logN, (2.9)

where Θ̂ is an estimate of the model parameters for the structure, d is the number of
model parameters, and N is the size of the dataset. The BIC score is a measure of how
well the model �t is the data. The problem of �nding a structure of an optimal score of a
BN is NP hard since the number of structures grows (super) exponential. Typical search
methods implement greedy search strategies [41]. Starting with an initial network, edges
are iteratively added, deleted or reversed until a local maximum of the score is found.

In this thesis a so called constrained-based method was used to learn the structure of
a BN [150]. This kind of algorithm try to detect the dependencies and conditional in-
dependencies from data by statistical tests. The resulting dependencies and conditional
independencies are then used to infer the structure of a BN. In order to use the results
to reconstruct the structure, several assumptions have to be made: causal su�ciency
assumption, causal Markov assumption, and faithfulness assumption.

Causal su�ciency assumption: there exist no common unobserved vari-
able in the domain that is a parent of one or more observed variables of the
domain.
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Causal Markov assumption: in a BN any variable is independent of all it
is non-descendants given it is parents.

Faithfulness assumption: a BN structure S and a probability distribution
P generated by S are faithful to one another if every conditional independence
relationship is entailed by the causal Markov assumption in S.

En route the existence of an edge between two variables and the direction of an arc is
discovered. Two straightforward constrained-based methods are the SGS (Spirtes, Gly-
mour and Scheines [150]) algorithm and the PC algorithm [126].

To investigate the association of DNA copy number changes on gene expression, a con-
strained based method which is called Growth-Shrink (GS) Markov Blanket (MB) Algo-
rithm1 was used. The idea of a Markov Blanket of a variable is based on J. Pearl, 1997
(2nd Ed.) [125] and was improved by D. Margaritis, 2003 [109].

Markov Blanket (MB) is a minimal set of nodes which d-separates a node from all
other nodes. The MB of a node X containes all parents, children and parents of children
of that node. An example of a MB is given in �gure 2.3.

Figure 2.3: Markov blanket of a variable X. The members of the blanket are within the
gray ellipse.

The MB of a variable X is computed by pairwise independent tests based on the mutual
information (MI) criterion

MI(X, Y ) =
∑
y∈Y

∑
x∈X

log2

(
P (x, y)

P (x)P (y)

)
. (2.10)

It is a measure of strength of the association between the distributions of two variables X
and Y . Signi�cance is tested by means of a χ2-distribution. The only parameter of this
distribution is the degrees of freedom ν and is set to the number of state levels (-1,0,1)
df = 3 of the input variables.

1http://www.r-project.org, �bnlearn� [109]
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GS-Algorithm The algorithm consists of a growing and a shrinking phase of a MB.
The growing phase starts with an empty set S and adds variables to S as long as they are
dependent (∼ ∃) with X given the current contents of S. However, during this process
variables are added to S that are infact outside of the Markov blanket. The shrinking
phase accounts for this and removs all members of S as long as they are independent of X
given the current S. The method is presented in algorithm 4. The symbols are explained
in table 2.1. The algorithm is taken from Margaritas in 2003 [109] and is shown

Algorithm 4 Grow-Shrink Markov blanket algorithm

1) Start with empty S
S← θ

2) Growing phase
While ∃Y ∈ U − {X} such that Y ±X | S

Do S← S ∪ {Y }
3) Shrinking phase
While ∃Y ∈ S such that Y ⊥ X | S− {Y }

Do S← S− {Y }
4) MB(X)← S

Table 2.1: Table of symbols

Symbol Meaning

S Set
U Universe, set of variables variables in the domain:

{X1, ..., Xn, }
X, Y, Z One-dimensional variables

Y ±X | S variables X and Y dependent upon conditioning on the
variables in the set S

Y⊥X | S variables X and Y are independent upon conditioning
on the variables in the set S

MB (X) Markov blanket of variable X
MI (X, Y ) mutual information of two variables X and Y

N (X) neighbors of variable X

in algorithm 5. It starts with the identi�cation of the Markov blankets for each node,
according to algorithm 4. Step 2 determines which members of the blanket of each node
are actually direct neighbors N. This is done by computing pairwise independent tests,
see above, between X and Y conditioned on all subsets of the smaller of MB(X) − Y
and MB(Y )−X. Step 3 represents the case where two variables (X, Y ) have a common
descendant (Z) and hence become dependend on each other, when conditioning on a set
that includes any such descendant. It is possible that step 3 leads to directed cycles in
the resulting graph which is not allowed in a BN. Therefore step 4 and 5 identify the
minimum set of edges that need to be reversed for all cycles to disappear. Since not
all directions can be determined during the last steps, this is resolved in step 6. Edges
are orientated in a way such that they do not introduce a cycle, if the reverse direction
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Algorithm 5 Learning the structure of a BN via GS-algorithm.

1. Compute Markov Blankets
For all X ∈ U , compute the Markov blanket MB(X).

2. Compute Graph Structure
For all X ∈ U and Y ∈MB(X), determine Y to be a direct neighbor of X if
X and Y are dependent given S for all S ⊆ T, where T is the smaller
of MB(X)− Y and MB(Y )−X.

3. Orient Edges
For all X ∈ U and Y ∈ N(X), orient Y→X if there exists a variable
Z ∈ N(X)−N(Y )− {Y } such that Y and Z are dependent given
S ∪ {X} for all S ⊆ T, where T is the smaller of
MB(Y )− {X,Z} and MB(Z)− {X, Y } .

4. Remove Cycles
Do the following while there exist cycles in the graph:

- Compute the set of edges
C = {X → Y such that X → Y is part of a cycle}.

- Remove from the current graph the edge in C that is part of the greatest
number of cycles, and put it in R.

5. Reverse Edges
Insert each edge from R in the graph in reverse order of removal
in Step 4, reversed.

6. Propagate Directions
For all X ∈ U and Y ∈ N (X) such that neither Y → X nor X → Y,
execute the following rule until it no longer applies: If there exists a
directed path from X to Y , orient X → Y.

necessarily did. If a direction of an edge could not be determined during the algorithm,
each possible direction of each undirected edge is tested, and the one with the lowest
p-value is accepted as the true direction for that edge.

Prior knowledge was integrated into the BN. It was required that arcs from gene
nodes do not point to an aCGH node. Furthermore it was excluded that aCGH nodes
could have a connection to other aCGH nodes. Although it is known that the expression
of a speci�c gene can cause a chromosomal aberrations this was neglected with regard
to the complexity of the model.
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2.2 Integration of BOS speci�c gene and protein

expression

Here the information derived from gene expression microarray experiments is combined
with protein pro�les of BOS in an integrative manner. This approach is based on trans-
lating the gene expression measures into �virtual protein spectra�. This made both data
types comparable. But �rst the gene expression and protein data were analyzed sepa-
rately. The results from this isolated point of view were important for the understanding
of the underlying mechanisms of BOS. Nevertheless the integrative approach gave the
opportunity to obtain information that could not be interpreted by analyzing each data
set on its own. Therefore the Wilcoxon rank test was applied to identify correleation of
proteins expressed by their corresponding genes. It was considered that peaks in a pro-
tein spectrum could not directly be linked to a speci�c protein name, but rather coded
by their m/z-value (Sect. 1.3.4 on page 20). The basic concept of this statistical test was
based on comparing measured m/z-values of the protein pro�les with the approximated
m/z-values of the virtual gene-mass-spectra. Furthermore a meta-analysis approach in-
tegrated both data types and was adopted to gain new information which could not be
achieved by analyzing both data sets on their own.

Under my supervision Mirjam Maier added during her diploma thesis functionality to
carry out feature reduction during a classi�cation step and performs data mining part
presented in this section.

2.2.1 Data

Microarray data were obtained from Hannover Medical School (MHH). In total, 52 sam-
ples of patients and 10 control samples were used. The courses after lung transplantation
was continuously monitored in periods of 9 to 24, 24 to 30, 30 to 36, 36 to 44 months (tab.
2.2). For gene expression analysis bronchial brush specimens were collected . For 23 out
of 53 patient samples after lung transplantation (LT) and 6 out of 10 control samples,
the gene expression pro�ling was performed (tab. 2.2). While some of the 23 patients
were already a�ected by BOS, for the rest it was unclear whether they will develop this
syndrome.

To obtain cells from the airway mucosa, a sheathed bronchial specimen brush2 was pushed
through the operating channel of the bronchoscope, positioned in a segment bronchus,
and moved back and forth gently. After retracting the tip into the protective sheath the
brush was removed (Fig. 2.4 on page 45). In order to harvest a su�cient number of cells,
this procedure was repeated up to �ve times. The epithelial cells were gently removed
from the brush by lightly shaking in saline solution, and were subsequently stored at
-80°C. The extraction of RNA from the cells was performed according to the Trizol-
method3, followed by RNeasy Mini Kit4. The quality and integrity of the total-RNA was

2Boston REFNRI 1601
3Invitrogen, Karlsruhe, Germany
4Qiagen, Hilden, Germany
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Table 2.2: Examinations at several time points after lung transplantation (LT), and the
number of available patient samples and controls, respectively. The table is
splitted into mass spectrometry analysis (MS), DNA-microarray gene expres-
sion analysis (microarray) and into overlapping patient and control cohorts
for the integrative analysis of both data types .
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1 9 to 24 52 10 23 6 23 6
2 24 to 30 27 10 - - - -
3 30 to 36 12 10 - - - -
4 36 to 44 1 10 - - - -

determined using a Bioanalyzer5. Because of the low amounts of RNA it was necessary
to amplify isolated mRNA from the sample done by a RNA ampli�cation kit6.

Microarray analysis was performed according to standard protocols using the human
cDNA chips of the Stanford Functional Genomics Faculty7 [143]. The chip architecture
was built by the Resgen clone set with more than 43,000 spots and is intended to cover
the entire human transcriptome. An amount of 1.5 µg each of ampli�ed RNA was la-
beled during reverse transcription with �uorochromes Cy3 (control RNA = a pool from
six samples from healthy persons) or Cy5 (probe = one of 23 samples obtained after
lung transplantation). Hybridization was performed for 14 to 18 hours in a hybridiza-
tion chamber at 65 °C. After washing the slides, the �uorescence intensities of Cy5 and
Cy3 were measured on a GenePix 4000 scanner8 and analyzed using GenePix Pro 4.1
software9. This software package allowed the extraction of sample intensities or ratios at
each printed cDNA location in the given microarray scan [170]. Areas of the microar-
ray or spots that exhibited obvious damages were excluded from subsequent analyzes
(Sect. 2.2.3 on page 48).

5Agilent Technologies 2100, Waldbronn
6MessageAmp aRNA kit, Ambion, Huntington, UK
7Stanford Functional Genomics Facility, Stanford, CA, USA
8Axon Instruments, Foster City, CA, USA
9Axon Instruments
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Figure 2.4: Bronchial brush specimen.

The Bronchoalveolar Lavage Fluid (BALF) from 52 patients after LT, and from
10 healthy controls, were analyzed by mass spectrometry (tab. 2.2). Bronchoscopy de-
scribes the process of �lling saline solution in the lung for lavage. By means of a �berop-
tic bronchoscope, the BALF was extracted out of the airways (Fig. 2.5) [106]. For this

Figure 2.5: Bronchoscopy. A �exible bronchoscope is inserted through either the nose
or mouth to the trachea and further down into the bronchus. Each area the
bronchoscope passes can be examined. Specimen of lung tissues or lavages
can be taken.

project, BALF was obtained by the Department of Pneumology at MHH. The BALF
samples were collected during a routine clinical investigation after transplantation and
directly delivered on ice after bronchoscopy and immediately processed in the laboratory.

Mass spectrometry was performed by means of an Ultra�ex MALDI-TOF/ TOF-mass
spectrometer. The analyzed samples were extracted from cells of the alveolar and
bronchial airways. Superparamagnetic microparticles functionalized with C1 and C8
hydrophobic coating (MB-HIC 1 and MB-HIC 8 Beads) were used to enrich di�erent
subsets of proteins. The measurement was done in di�erent mass (m/z) windows with a
range from 1,000 to 10,000 Dalton and a second time with a range from 8,000 to 20,000
Da. In subsequent sections of this thesis, these di�erent measurements will be denoted
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as �1-10kDa� and �8-20kDa�.

2.2.2 Transcriptome analysis

2.2.2.1 Preprocessing of gene expression data

Loess quantile normalization followed by a between-slide normalization was applied to the
gene expression data [180]. The loess normalization used a robust scatterplot smoother
(loess) to �nd a non-linear regression line through the center of the cloud of points in a
two-dimensional scatterplot. By removing the calculated e�ects, a linear cloud of points
was obtained that was centered on the diagonal of the scatterplot. The between-slide nor-
malization step addressed the comparability of the distributions of log intensities between
arrays. This was achieved by setting quantiles to identical values. Loess normalization
�rst divided the whole chip into di�erent sectors and then normalized each sector.

2.2.2.2 Individual signi�cance analysis of gene expression data

Gene expression data were tested for di�erential expression by �Signi�cance Analysis of
Microarrays� (SAM) [167]. Furthermore Support Vector Machines (SVM) combined
with Recursive Feature Elimination (RFE) was applied . Signi�cance analyzes by SAMis
based on a modi�ed t-test statistic. it is an alternative way to detect di�erentially
expressed genes. The approach performed in this thesis was established as Signi�cance
Analysis of Microarrays (SAM) which has been adapted speci�cally for microarrays [167].

SAM identi�es genes with statistically signi�cant changes in expression by conducting
a set of gene-speci�c t-tests. A gene expression data matrix and the labels of that
matrix (phenotype a�liation) serves as input for SAM. For each gene i a score di is
assigned on the basis of it is gene expression change relative to the standard deviation.
For comparison, the same statistic is calculated for every gene according to several ran-
dom permutations. These results are denoted by dEi

. Then a ranking of the di values
is calculated by d(1) ≤ d(2) ≤ d(n) noted as d(i). Analogous rankings for the dEi

are
computed.

di =
ri

si + s0

, i = 1, 2, ..., p (2.11)

with p number of genes, ri di�erences of means and si the standard deviation. The
variable s0 is a small constant, which corrected the d-statistic of genes with small standard
deviations to minimize the number of false positives. For calculating ri and si for two
groups C1 and C2 the following method is applied.

x̄i1 =
∑
jεC1

xij
n1

(2.12)

x̄i2 =
∑
jεC2

xij
n2

(2.13)

ri = x̄i2 − x̄i1 (2.14)

si =

[
( 1
n1

+ 1
n2

){
∑

jεC1
(xij − x̄i1)2 +

∑
jεC2

(xij − x̄i2)2}
n1 + n2 − 2

]1/2

(2.15)



Chapter 2 Material and Methods 47

with nk number of samples in Ck.

Genes with scores (di�erence between di and dEi
) greater than a threshold ∆ are con-

sidered potentially signi�cant. The threshold ∆ is adjusted to identify smaller or larger
sets of genes, and FDRs are computed for each gene.

To �nd signi�cant genes, a one-class SAM was applied on the loess quantile transformed
data. A one-class SAM tests whether the mean gene expression di�ers from a user-
speci�ed mean [132].

Hierachical Clustering of signi�cant genes is a powerful method to identify clusters
of genes with similar gene expression patterns. A collection of objects is grouped into
subsets or clusters, such that those within each cluster are more closely related to one
another than objects assigned to di�erent clusters. A central goal of cluster analysis is
the notion of degree of similarity or dissimilarity between the individual objects being
clustered [24]. Di�erent clusters represent di�erent classes of objects and often have
variable size, shape and density.

Hierarchical clustering determines the hierarchy of clusters such that the clusters with
minimal distance to each other are merged [73]. A dendrogram serves for visualizing the
cluster analysis. This is a tree which represents the hierarchical distribution of the data
set in major and minor subsets. The root of a dendrogram represents the whole data
set as one big cluster. The leaves are single objects while the inner nodes represent the
aggregation of all of their subtrees. Every branch between two clusters includs the dis-
tance between the represented objects. We used a bottom-up approach in combination
with the Canberra distance.

dij =
n∑
k=1

|xik − xjk|
|xik|+ |xjk|

(2.16)

This distance measure examines the sum of a series of fraction di�erences between coor-
dinates of a pair of objects. Each term of a fraction di�erence has a value between 0 and
1. If one coordinate is zero, the term equals a unity regardless of the other value, thus
the distance is not a�ected. This distance is very sensitive to a small change when both
coordinates are close to zero.

2.2.2.3 Gene Ontology analysis

Gene Ontology (GO) categories, resulting from SAM, were tested for signi�cance [17].
This GO categories were tested against the GO groups of all genes represented at the
microarray. Fisher's exact test was performed to judge whether the observed di�erence
is signi�cant or not. For each GO term, a p-value was calculated representing the prob-
ability that the observed number of counts resulted by chance alone. We used the FDR
to control the expected proportion of false positives.
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2.2.3 Proteome analysis

2.2.3.1 Baseline correction

Baseline correction was performed to �atten the base pro�le of each spectrum by using
an algorithm which attempt to remove the baseline slope and o�set [134]. This was done
by iteratively calculating the best �tting straight line through a set of estimated baseline
points.

2.2.3.2 Interpolation

The peak resolution di�ered for each mass spectrum. Also the the range of the measured
m/z-values varied and complicated the generation of a matrix with patients in columns
and m/z-values in rows.

To address these two characteristics of mass spectra, a novel two-step-interpolation-
method was implemented. The �rst step comprised an interpolation of spectra by ap-
proximating the missing data points such that the m/z intervals on the x-axis were given
at equal resolution and the spectra were set to a common m/z range. For all spectra
the m/z vector was interpolated to a common m/z vector using linear interpolation at
the positions of the spectrum with the lowest resolution. The second step restricted the
interpolation to the smallest common m/z range. This procedure is exemplary illustrated
in Fig. 2.6.

Figure 2.6: Resampling of mass spectra. Five mass spectra are shown exemplary as
dashed lines. The spacing of the dashes represents the resolution of the re-
spective spectra (I)-(IV). All spectra are interpolated to a common spectrum
(V) with common m/z range and highest resolution. Therefore the largest
starting point (here of spectrum (II)) and the smallest end point (here of
spectrum (III)) of all spectra (I)-(IV) are chosen to be the master m/z range
in (V). In addition, the highest resolution (here of spectrum (II)) is chosen
as resolution for (V).



Chapter 2 Material and Methods 49

2.2.3.3 Alignment

Due to the error of measurement during a mass spectrometry experiment each sample
hold the peaks at slightly di�erent m/z-positions. These peak shifts caused a misalign-
ment of proteins with similar molecular weight across all samples. The applied alignment
procedure was based on an algorithm developed by Je�ries [91].

2.2.3.4 Normalization

There are di�erent sources during a mass spectometry experiment that lead to a sys-
tematic variation between the spectra. A normalization method based on the total ion
count was implemented and allowed for the comparison of the absolute peak intensities
of di�erent spectra [185].

2.2.3.5 Mean spectra

Multiple measurements of the same patient and control samples were performed to en-
hance the signal-to-noise ratio. The aim was to �nd the peaks which occur in all samples
from one patient or control. If these spectra contained the same analytes with similar
m/z values, redundant information could be compiled. Therefore a method was imple-
mented to compute a mean spectrum for each patient. This procedure was inspired by
the work of Hilario et al. 2006 [78].

2.2.3.6 Support Vector Machines

A SVM is a supervised learning method for classi�cation. SVMs can deal with any data
that can be represented as a vector in n dimensions and so can be classi�ed by a hy-
perplane of n− 1 dimensions. Special properties of SVMs are that they simultaneously
minimize the empirical classi�cation error and show a high accuracy with little bias to-
wards over�tting [31]. Linear separation is used to assign a set of objects to their classes
by inferring a hyperplane which best separates the two classes on the basis of training
samples. The resulting hyperplane is the classi�er. New unlabeled objects will be labeled
depending on which side of the hyperplane are situated.

Formalization Let us consider data points of the form:

(x1, c1), (x2, c2), . . . , (xn, cn) (2.17)

where ci is either 1 or −1 and denotes the class to which the point xi belongs. In the
case of ci = 1, xi belongs to the positive class and if ci = −1, xi belongs to the negative
class. The data can be regarded as training data which denote the correct classi�cation.

The aim of classi�cation is to assign a label to a new unlabeled data point and correctly
classify the new data point. SVMs approach this task by introducting a hyperplane be-
tween the positive and negative points (Fig. 2.7).
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Figure 2.7: Separation of two classes (active and inactive) by a hyperplane computed by
SVM in a n-dimensional feature space. The maximum margin hyperplane
depends on the support vectors (red dotted circles).

There exist many hyperplanes (w, b) with wε<d and bε< which can be de�ned by
< w, x > +b = 0 with < w, b > being the dot product between the vectors w and x.
These hyperplanes satisfy

ci(< w, xi > +b) > 0,∀iε1, 2, ..., n. (2.18)

The vector w points perpendicular to the separating hyperplane. Adding the o�set
parameter b allows to increase the margin. In its absence, the hyperplane is forced to
pass through the origin, restricting the solution.
It is possible to choose an optimal maximum-margin hyperplane which is trained with
samples from both classes. Samples along this hyperplane are called the 'support vectors'.
These vectors all have the same distance to the hyperplane. The maximum-margin
hyperplane is the solution of

max
wε<,bε<

(min ‖x− xi‖), xε< (2.19)

subject to < w,x > +b = 0, i = 1, ..., n.
The problem of maximizing the margin turns out to be a quadratic optimization problem
and can be formulated as

min(1/2)||w||2, (2.20)

subject to ci(w · xi − b) ≥ 1, 1 ≤ i ≤ n. The factor 1/2 is used for mathematical
convenience.
The parameters of the maximum-margin hyperplane are derived by solving this optimiza-
tion problem. There exist several well established algorithms from other �elds for quickly
solving the optimization problem that arises from SVMs, mostly reliant on heuristics for
breaking the problem down into smaller, more-manageable chunks [140].
Writing the classi�cation rule in its dual form reveals that classi�cation is only a func-
tion of the support vectors, i.e. the training data that lie on the margin. The standard
optimization technique for such problems is to formulate the Lagrangian and to solve
the resulting dual problem:

max
n∑
i=1

αi −
∑
i,j

αiαjcicjx
T
i xj (2.21)
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subject to αi ≥ 0, where α constitutes a dual representation of the weight vector in terms
of the training set:

w =
∑
i

αicixi (2.22)

It is important to note that the hyperplane only depends on the support vectors.

Soft-margin In many cases it is not possible to �nd a hyperplane which correctly
separates two classes. Sometimes this problem will be complicated due to outliers, which
are single observations far away from the rest of the data. This frequent phenomenon
in classi�cation might shift the hyperplane into a wrong direction. For this reason, a
modi�ed maximum margin idea has to be developed that allows mislabeled examples.
The soft-margin method is an alternative to the already explained hard-margin method.
The goal is to improve the generalization performance of the SVM, i.e. its performance
on test samples di�erent from the training set [50].

Kernel trick However, even the soft-margin classi�er can not solve real-world problems
because a linear separation is not always possible. The idea now is to theoretically
transform the data into a non linear higher-dimensional space, the feature space [140].
This is the so-called kernel trick because it is not necessary to know what the feature
space looks like and to really transform the data into the feature space. It is only
necessary to know the distances between the data points, thus the kernel function K
acts like a similarity measurement.

Kφ(−→xi ,−→xj ) =< φ(−→xi ), φ(−→xj ) > (2.23)

Examples for kernels to use are linear, polynomial, sigmoid or radial basis functions.
The optimization problem is a non-linear problem and di�cult to solve, but there exist
solutions to manage this as described before.
For an excellence resource about SVMs refer to Learning with Kernels [140].
The applied SVM used a linear kernel and optimized the cost parameter in the inner
3-fold CV step. Here, 2/3 of the data were used as training set and 1/3 as test set.
Nine values for the cost parameter were set which range from 2−6 to 2−10. For every cost
value, the 3-fold CV was done and the accuracies were averaged. The cost value with
best accuracy out of the resulting nine accuracies, was then chosen as optimal value.

Strati�cation is a challenge for all classi�cation and feature selection methods to han-
dle small sample sizes of data. The number of samples does in general not allow to set
aside independent test and training sets of samples as common in machine learning [75].
Strati�cation is often used to �nd a remedy and assess the accuracy of the classi�er. As
shown in [186], feature selection results may vary even with a single-case di�erence in
the training set when sample size is small. The choice of suitable training and test sets
is important and the same sets should be applied for all used classi�ers to guarantee
a common basis for comparing their accuracy. The correct proportion of classes in the
test set and thus guarantees an equal distribution of the instances was maintained by
strati�cation. To balance class distributions, sets were strati�ed prior to classi�cation by
SVM. This means, if class (1) had 9 samples and class (2) 90, 9 samples from (1) and a
random subset of 9 samples from (2) were chosen without replacement. This experiment
was repeated 10 times in each run.
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2.2.3.7 SVM with RFE

Mass spectrometry produced a high amount of high-dimensional data. Due to the dispro-
portion between the number of observations n and the number of variables p, n << p,
SVMs could not directly be applied to the data. Although SVMs can deal with high
dimensionality, dimension reduction could still improve the performance dramatically
[186]. Therefore SVM in combination with recursive feature eliminaton was used to �nd
potential biomarkers associated with BOS.

The RFE approach in combination with the SVM algorithm allowed the direct determi-
nation of signi�cant proteins [88]. The weights used by the SVM classi�cator to choose
the most signi�cant features were also applied in the recursive feature elimination process.
SVM coupled with RFE used this weighting to eliminate the features with the lowest
weight. The SVM was used to compute a hyperplane which was able to separate the in-
put classes. The features were weighted according to their contribution to the separating
hyperplane. Then the features with lower weight were removed and a new hyperplane
was computed. These steps were repeated in a recursive way. The number of features
that lead to the best performing classi�er was then chosen to construct the �nal classi�er.

The implementation of SVM in the e1071 package10 of R and was used in combina-
tion with RFE [6]. The integration of this algorithm in a n-fold cross-validation-step is
shown in Fig. 2.8.

2.2.3.8 Alternative classi�cation and feature elimination methods

In parallel to the RFE method the Hilbert-Schmidt Independence Criterion (BaHSIC)
was used [98]. Similar to the RFE the BaHSIC method was combined with SVMs.

For comparison, SVMs were also applied without any feature selection. Alternative
classi�cation method, Prediction Analysis of Microarrays (PAM) was used [163]. In
contrast to it is name, the PAM method can also be used for the analysis of proteomic
data.

In total, 52 patient spectra (stage 01), 27 patient spectra (stage 02), 12 patient spectra
(stage 02) and 10 control spectra (nt) remained for sample classi�cation (tab. 2.3).

10http://cran.r-project.org/src/contrib/Descriptions/e1071.html
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Figure 2.8: Cross validation setup including SVM coupled to RFE.

Table 2.3: Tested combinations of patients in di�erent stages respectively control patients
and their available sample numbers.

Combination Number
All patients (01, 02, 03) vs nt 91 vs 10
Stage 01 vs nt 52 vs 10
Stage 02 vs nt 27 vs 10
Stage 03 vs nt 12 vs 10
Stage 01 vs 02 52 vs 27
Stage 01 vs 03 52 vs 12
Stage 02 vs 03 27 vs 12
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2.2.4 Integrative analysis of gene and protein expression

2.2.4.1 Virtual proteomic mass spectra of gene expression levels

Every spot of a gene expression microarray contains a speci�c DNA fragment that is
linked to di�erent attributes, like clone id, intensity or gene symbol. The attribute gene
symbol was used for further analyzes. However, it was not unique for every spot, thus
some information is lost.

The integration was performed at the level of molecular masses of proteins which were
available as attributes of the mass spectrometry data. Hence, it was necessary to map
the genes to proteins and to determine their molecular weights. The Compute pI/Mw
tool11 from ExPasy was used. As input UniProt12 identi�ers are required which were
not available as attributes from the microarray experiments were required. Thus, gene
symbols were converted to UniProt identi�ers. For the gene symbol conversion the Gene
ID Conversion Tool from DAVID13 was used. Gene symbols were extracted as a list
from the microarray experiments and uploaded to the conversion tool. The output was
a list of converted UniProt identi�ers which served as input for the next step.

Computation of protein masses was done with Compute pI/Mw tool. The theoretical
isoelectric point (pI) and molecular weight (Mw) of proteins was computed. UniProt se-
quences were processed to their mature forms. The resulting chains or peptides were used
to infer the pI and Mw values. It was crucial for further analyzes that the proteins were
mapped from mRNA to their mature form before calculating the pI value because this
is the form in which proteins �nally occur in the living organism after post-translational
modi�cations. One major drawback was that protein phosphorylation, acetylation or
glycosylation is not covered by UniProt. In some cases only fragments of a protein were
available from the database. In such a case, no result was returned because pI and Mw
cannot be computed accurately [65]. This lead to a shrunken set of proteins with ap-
propriate masses. The output �le was a list with UniProt identi�ers, related theoretical
isoelectric point and molecular weight.

Mapping of gene symbols to uniprot identi�er was done by the mass information
of the proteins. The gene symbol linked directly to the gene expression entry in the GPR
�le. The UniProt identi�ers were linked to the molecular mass of the protein. These
two parameters were mapped onto each other to directly infer the masses and their
belonging gene expression. In the following, the mapped gene symbols were mentioned
as Gene2Prot. For further analysis, only corresponding data from the same patients or
controls were used. Transcriptomic data from 23 patients and 6 controls were available
in addition to mass spectrometry data from 55 patients and 10 controls. The proteomic
dataset covered all samples of the transcriptomic dataset. Hence, for further analyzes,
the subset of these 23 patients and 6 controls has been selected.

11http://expasy.org/tools/pi_tool.html
12Universal Protein Resource, http://www.expasy.uniprot.org/
13http://david.abcc.ncifcrf.gov/home.jsp
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Gene expressin data were composed of data from two channels: one corresponding to
mRNA from patients' samples, the other one to mRNA from a pool of control samples
(sec. 2.2.1). In order to combine them with mass spectrometry data, only data from
one channel related to patients was used. This was done because it was assumed to be
proportional to mRNA and hence protein abundance. If the ratio between two channels
had been taken, this proportionality would have been lost. To be able to compare the
results of integrative analysis with those of the separate analysis, the loess quantile
normalized data were used for further steps.

Discretization of the gene expression values and the intensities of the protein masses
was done to make the values suitable for numerical evaluation and comparison. There
exist di�erent discretization techniques like the division of values in speci�c quantiles or
percentiles. Here, data were discretized by division into ten percentiles.

To convert gene expression data to virtual mass spectra a new matrix was computed.
The matrix hold the samples in columns and the masses which belong to a gene symbol
in rows.

The Wilcoxon rank sum test was applied to test the coherence between potentially
signi�cant patterns of markers related to BOS on the basis of mapped gene expression
and mass spectrometry data. The correlation between the gene and protein expression
of a cell was veri�ed by using a Wilcoxon rank sum test [58].

The Wilcoxon rank sum test is an alternative to the t-test and assesses whether two
samples of observations come from the same distribution. The two samples X and Y
have to be independent and the observations have to be ordinal or continuous measure-
ments. The null hypothesis H0 : xmed = ymed states that X and Y have the same mean
value. Thus, the Wilcoxon rank test assumes that the values of X and Y are nearly
equally distributed if the null hypothesis H0 is valid. The test statistic Tw was built
on the ranks of all observations X1, ..., Xn, Y1, ..., Ym (so called "pooled sample") so that
rg(X1), ..., rg(Ym) are obtained. This test statistic is de�ned as

Tw =
n∑
i=1

rg(Xi) =
n+m∑
i=1

iVi (2.24)

with

Vi =

{
1 i-th observation of the pooled sample is X variable,

0 else.
(2.25)

Di�erent hypotheses were tested to examine the dependencies between the samples.

(a)H0 : xmed = ymed H1 : xmed 6= ymed (two-sided) (2.26)

(b)H0 : xmed ≥ ymed H1 : xmed < ymed (one-sided) (2.27)

(c)H0 : xmed ≤ ymed H1 : xmed > ymed (one-sided) (2.28)
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Meta-analysis integrates gene and protein level by analyzing wether a combined ap-
proach outruns an isolated processing of both data types. One of the �rst approaches
for meta-analysis was developed by Choi et al. in 2003 to compare microarray data
of di�erent platforms in order to �nd di�erentially expressed genes [44]. The R-package
GeneMeta implemented the method described by Choi et al., which considered the combi-
nation of two di�erent sets of microarray data. This method was applied to theGene2Prot
andMS data from 23 patients and 6 healthy controls obtained from microarray and mass
spectrometry data. The aim was to identify signi�cant patterns associated with BOS
which were not identi�ed by analyzing individual studies alone.

The e�ect size model was assigned. To measure the true e�ect, it was important to
eliminate the within-study variability and to calculate the between-study variability. µ
denoted the parameter of interest (the average measure of di�erence) and yi the observed
e�ect size for independent studies i = 1, 2, ...k. The general model is given hierarchically
as

yi = Θi + εi, with εi ∼ N (0, s2
i ) (2.29)

Θi = µ+ δi, with δi ∼ N (0, τ 2), (2.30)

where τ 2 representes the between-study variability and s2
i the within-study variability of

study i [44].

Di�erent models exist depending on whether or not between-study variability is non-
vanishing. The �xed-e�ects model (FEM) assums τ 2 = 0 which implies that the di�er-
ences of observed e�ect sizes are from random sampling error alone and consequently
yi ∼ N (µ, s2

i ). The random-e�ects model (REM) explicitly accounts for di�erences be-
tween the studies with a study speci�c mean Θi and variance s2

i . Furthermore, each δi is
assumed to be drawn from some superpopulation with the overall mean µ and variance
τ 2, thus yi ∼ N (δi, s

2
i ) and δi ∼ N (µ, τ 2). The homogeneity of study e�ects is tested to

�nd out which model is appropriate for the data. This is equivalent to the hypothesis
that τ 2 is actually zero [44]. The test of homogeneity was based on Cochran's Q statistic
[45]:

Q =
∑

wi(yi − µ′) with wi = s−2
i and µ′ =

∑
wiyi∑
wi

. (2.31)

Under the hypothesis of homogeneity, Cochran's Q statistic follows a χ2
k−1 distribution.

A large value of the Q statistic indicats a rejection of the hypothesis of homogeneity and
the use of the REM model. This can be visualized in a quantile-quantile (qq) plot where
a deviation from the diagonal indicats the use of a REM model.

Statistical signi�cance of the meta-analysis was estimated by an algorithm similar to
SAM [167] which was based on the concept of the false discovery rate (FDR). The
comparison of FDRs of each of the two studies alone and the combined data set gave
information about the signi�cance of the combination.
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Results

3.1 Impact of DNA copy number changes on gene

expression in neuroblastoma

In this study two already published neuroblastoma data sets were analyzed. In total 81
matching samples from NB patients from whom both aCGH data and gene expression
data were investigated (sec. 2.1.1).

After several preprocessing steps of the gene expression as well as of the aCGH data,
both data types were analyzed in an integrative step (sec. 2.1). A consistency-matrix
was generated which re�ected a correlation measure between the estimated DNA copy
number of every chromosomal position and the coresponding gene expression value in
cis-position for every patient . The following step resulted in a similar-state-sum-matrix
which was tested for signi�cance and served as an input to a BN approach based on
Markov blankets. From here it was possible to identify cis- and trans-e�ects which took
place in neuroblastoma.

3.1.1 Distribution of gene expression data after discretization

Discretization was used in order to get comparable distributions for the gene expression
data and the aCGH data. The gene expression data were categorised into three cate-
gories by k -means discretization. These categories were: down-regulation (-1), no change
(0) or up-regulation (1) of a gene, see section 2.1.2.1.

The resulting distribution of these discretized gene expression levels into one of the
three categories is shown in table 3.1. About half of the genes (47.7 %) are assigned to
the state �no change� whereas 29.5 % of the genes are in the state �down-regulation� and
22.8 % are assigned �up-regulation�, respectively. .

Table 3.1: Distribution of gene states in percent after k -means discretization.

down-regulated (-1) no change (0) up-regulated (1)

29.5 % 47.7 % 22.8 %
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3.1.2 Chromosome aberrations in neuroblastoma

Aiming to identify recurrent aberrations that are linked to neuroblastoma, the frequency
of aberrations over all 81 patients was analyzed. Overall, several recurrent chromosome
abberations previously described (Spitz et al., 2006) characteristic for neuroblastoma
were detected. Frequent DNA losses were detected at 1p (32.1%), 8.p21 (45.8%), 9.q34
(40.7%), 11q (56.8%), 14.q32.31 (45.7%), 18.q21.33 (45.6). Gains were found 2.p24.3
(49.4%), entire chromosome 7 (39% - 53%), 11.q23.3 (50.7%) and 17.q (86.4%)

The losses and gains concerning the neuroblatoma data set were visualized as a fre-
quency plot (Figure 3.1). Losses are highlighted in green and gains in red. This related

BAC clones in chromosomal order
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Figure 3.1: Frequency Plot of 81 neuroblastoma patients. Losses are displayed in green
and gains in red. Chromosome boundaries are indicated by dashed lines.

to the following integrative step with the gene expression data, where typically a high
gene expression level is coded in red and a low level in green.
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3.1.3 Patient related cis-e�ects

The e�ects of chromosome aberrations on genes in cis-position related to neuroblas-
toma were studied. Matched probes represented on the customized 11k gene-expression-
olignucleotide-microarrays to the probes of the high-resolution 44k oligonucleotide-aCGH-
microarrays (sect. 2.1.2.2) were identi�ed. A number of 1928 matching positions / genes
were presented on both platforms.

The consistency-matrix was computed which contained for each patient and matching
position the consistency-score (section 2.1.2.3). The consistency-score is a measure for
the comparibility of chromosome aberrations with gene expression. It was computed
patient-wise for each of the 1928 matching positions/genes. The results are represented
in a matrix, the so called consistency-matrix, with positions/genes in rows and patients
in columns.

We identi�ed groups of patients with similar consistency-scores by one dimensional hi-
erachical clustering of the consistency-matrix by using the euclidean distance and the
complete linkage method. Positions/genes in rows were in order and only the patients
were clustered (Fig. 3.2). The color coding is explained in Tab. 3.2.

The colored bars at the top of the colored map in Fig. 3.2 denote the values of the
clinical variables: NB Status, MYCN and Stage. NB Status was subdivided into: dark-
blue - deceased, blue - alive without event, lightblue - alive with relapse/primary tumor;
MYCN into white - not available (NA), gray - not ampli�ed, black - ampli�ed and stage
into lightred - Stage 4S, darkred - Stage 4, purple - Stage 3, orange - Stage 2B, yellow -
Stage 2A, blue Stage 2 and black - Stage 1.

5 di�erent colors represent the consistency-scores: -4 in darkblue (aCGH loss, GE up);
-3 in darkgreen (aCGH loss, GE down); 3 in red (aCGH gain, GE up); 4 (aCGH gain,
GE down) in gray and -2 (aCGH down, GE no change), -1 (aCGH balanced, GE down),
0 (aCGH balanced, GE no change), 1 (aCGH balanced, GE up), 2 (aCGH up, GE no
change) in white.

As can ben seen from Fig. 3.2 there was a group of patients that were characterized
by a loss of DNA at chromosome 1 and also a down-regulation of genes in cis-position.
The same is true for chromosome 3, 4, 9 to 11, 14 and 19. In contrast, chromosome 7
and 17 tend to hold regions were a gain of DNA corresponds to an up-regulation of genes
in cis-position.

Patients with fatal outcome (dark blue, NB Status) seemed to su�er from the com-
bined occurence of cis-e�ects on chromosome 1 and 17. The same is true for patients
with an ampli�cation of MYCN (black). Nearly all patients in Stage 4 hold distinct
cis-e�ects at chromosome 7 and 17 (aCGH gain, GE up) and chromosome 11 (aCGH
loss, GE down).
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Stage
MYCN
NB Status
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Figure 3.2: Heatmap of the consistency-scores in neuroblastoma . The colored bars at
the top of the �gure denote the values of the clinical variables: NB Status,
MYCN and the Stage. Colors of the clinical variables as well as the color
coded correlation values are explained in tab. 3.2. Chromosome boundaries
are indicated by alternating light and dark gray bars at the right side.
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Table 3.2: Color coding of the hierarchically clustered consistency-scores. NB Status,
MYCN and Stage represent clinical variables. The assigned correlation values
illustrate the color coded consistency-scores and are schematically explained
with arrows on the right-hand side. An arrow pointing upwards denotes gain of
a chromosomal region or up-regulation of gene expression, respctively. Arrows
pointing downwards have analogous meaning. A horizontal line characterizes
no change.

Stage 1

Stage 2

Stage 2A

Stage 2B

Stage 3

Stage 4

Stage 4SNA

alive with
relapse / 
primary tumor

alive 
without event

deceased

NB Status MYCN Stage

GEaCGH

assigned 
correlation value

- 4

- 3

  3

  4

- 2
- 1

  1
  2

  0
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3.1.4 Identi�cation of genomewide cis- and trans-e�ects via

Bayesian Modeling

In sect. 3.1.3 cis-e�ects were computed patient-wise based on a consistency-score. This
value describes a measure for every patient and estimates how well changes of DNA ma-
terial correspond to gene expression of genes in cis-position.

By using BN, I sought to reveal additional trans-e�ects. This was done on the basis
of all patients, i.e. e�ects got higher weights when they appeared in more patients. Es-
pecially trans-e�ects might have a role as regulators of many genes, see sect 1.4.1. Often
they stay undiscovered in the background because it is hard to conclude which change
of chromosome material a�ects changes of a gene expression level. In order to get more
insight into this aspect, the following steps were applied to the paired neuroblastoma
data set.

The dimensionality of the aCGH data was decreased in a two-step approach, (Sect.
2.1.2.5). First regions that showed no gained or lost chromosomal material in the genome
of less than 20% of 81 patients were excluded. The second step compressed the overall
amount of represented chromosomal locations to 462 chromosomal location sets (CLS).

As a measure of similarity between chromosome aberrations and changes in gene expres-
sion the similar-state-sum ssm was computed. This yielded a similar-state-sum-matrix
sssm with aCGH probes in rows and gene probes in columns (Fig. 2.1). The ssm was
tested for signi�cance by computing an empirical p-value, with a threshold of p < 0.01.

A BN approach was used to analyze DNA copy number changes and their impact on
gene expression. This method was based on Markov blankets which are a mininal set
of nodes d-separating a node from all other (Sec. 2.1.2.8. The GS-algorithm (growth-
shrinkage) iteratively computed the structure of the BN including computation of the
Markov blankets, computation of the graph structure, orientation of edges, removing of
cycles, reversing of edges and propagation of edge direction (Alg. 5).

At the end the structure was illustrated as a network (Fig. 3.3). Triangles denote
chromosome aberrations and circles refer to genes. The colors re�ect the characteristics
of the nodes. Red color means that most patients (> 50%) had a gain and up-regulation
of that speci�c gene, and analogously for green color.

Two prominent changes in chromosome DNA in�uenced the topology of the network.
Loss of genetic material at 11.q (highlighted by a green polygon) and gain at 17.q (high-
lighted by a red polygon) and were the main e�ectors. Biological relevance of the BN is
discussed in section 4.
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Figure 3.3: Bayesian network of cis- and trans-e�ects. Triangles represent chromoso-
mal abberations and circles represent genes. The colors indicate the gene
expression level respectively a gain or loss of chromosomal material (red =
high/gain; green = low/loss).
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3.2 Meta-analysis of genes and proteins identi�es

potential biomarker for BOS

3.2.1 Di�erently expressed genes and functional domains

SAM was used to detect signi�cant changes in gene expression [167]. A one-class was per-
formed on the loess-quantile-transformed data. This resulted in 1,306 signi�cant genes.

A two-dimensional hierarchical cluster analysis with the 1,306 signi�cant genes for the
23 patient samples and the 6 controls was performed (Fig. 3.4). The clustering was
calculated using the Canberra distance (Eq. 2.16).

Figure 3.4: Heatmap representing the two-dimensional clustering of the 1,306 signi�cant
genes. Patients (gray) and controls (black) are shown in the bar. A clear sep-
aration between patients and controls exists. The blue color in the heatmap
refers to downregulated genes and the red color to upregulated genes. The
black dashed boxes a to h indicate that the clusters a and e have a similarity
to clusters c and g, and clusters b and f are similar to d and h.

Identi�cation of signi�cant functional domains was based on gene ontology (GO) an-
notation. The biological functions of the 1,306 signi�cant genes are visualized in Fig.
3.5. Most of the signi�cant genes were involved in the induction of apoptosis and it is
positive regulation.
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Figure 3.5: Pie chart showing the proportion of molecular functions of 1,306 signi�cant
genes.
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3.2.2 Detection of signi�cant proteomic patterns

For the detection of signi�cant peaks, all di�erent possible split is between pairs of classes
were calculated to �nd proteomic patterns (Tab. 2.3). MS data of 52 patients (stage 01,
including time series data of stage 02 and 03) and 10 controls (nt) were used for sample
classi�cation.

After preprocessing of the mass spectra a SVM coupled to RFE in a n-fold cross valida-
tion step was applied (Fig. 2.8). In parallel, analysis by SVM without feature selection,
SVM with RFE, SVM with BaHSIC and PAM was performed and as well as their accu-
racy, sensitivity and speci�city calculated. The most balanced classi�cation results based
on accuracy, sensitivity and speci�city, were detected for SVM coupled to RFE on the
data at 1-10k Da (Tab. 3.3).
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Table 3.3: Accuracy, sensitivity, and speci�city for classi�cation by SVM coupled to RFE on data at

1-10kDa.

Combination (1-10kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.83 0.90 0.85
Stage 01 vs nt 0.73 0.73 0.73
Stage 02 vs nt 0.75 0.76 0.73
Stage 03 vs nt 0.68 0.71 0.66
Stage 01 vs 02 0.52 0.52 0.52
Stage 01 vs 03 0.41 0.42 0.39
Stage 02 vs 03 0.49 0.52 0.48

Table 3.4: Accuracy, sensitivity, and speci�city for classi�cation by SVM coupled to RFE on data at

8-20kDa.

Combination (8-20kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.57 0.60 0.53
Stage 01 vs nt 0.58 0.57 0.61
Stage 02 vs nt 0.61 0.62 0.60
Stage 03 vs nt 0.58 0.59 0.57
Stage 01 vs 02 0.46 0.47 0.45
Stage 01 vs 03 0.57 0.61 0.54
Stage 02 vs 03 0.47 0.47 0.47

SVM without RFE performed considerably worse (Tab. 3.5 and 3.6).
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Table 3.5: Accuracy, sensitivity, and speci�city for classi�cation by SVM without feature selection on

data at 1-10kDa.

Combination (1-10kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.55 0.55 0.55
Stage 01 vs nt 0.68 0.64 0.73
Stage 02 vs nt 0.66 0.60 0.71
Stage 03 vs nt 0.53 0.53 0.53
Stage 01 vs 02 0.53 0.54 0.53
Stage 01 vs 03 0.52 0.52 0.52
Stage 02 vs 03 0.58 0.52 0.64

Table 3.6: Accuracy, sensitivity, and speci�city for classi�cation by SVM without feature selection on

data at 8-20kDa.

Combination (8-20kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.66 0.75 0.60
Stage 01 vs nt 0.68 0.70 0.68
Stage 02 vs nt 0.66 0.70 0.66
Stage 03 vs nt 0.51 0.55 0.49
Stage 01 vs 02 0.40 0.42 0.37
Stage 01 vs 03 0.41 0.00 0.46
Stage 02 vs 03 0.49 0.53 0.51
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The analyzed range from 8-20 kDa did not show any discriminative pattern (Tab. 3.4).

SVM with BaHSIC resulted in similar values for accuracy, sensitivity and speci�city
as compared to SVM with RFE (Tab. 3.7 and Tab. 3.8). However, the estimated signif-
icant peaks by BaHSIC were an m/z range where no peak could be visually con�rmed.

Table 3.7: Accuracy, sensitivity, and speci�city for classi�cation by SVM coupled to BaHSIC on data

at 1-10kDa.

Combination (1-10kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.81 1.00 0.74
Stage 01 vs nt 0.83 0.97 0.77
Stage 02 vs nt 0.85 1.00 0.77
Stage 03 vs nt 0.74 0.77 0.70
Stage 01 vs 02 0.83 0.87 0.80
Stage 01 vs 03 0.50 0.50 0.50
Stage 02 vs 03 0.51 0.52 0.50

Table 3.8: Accuracy, sensitivity, and speci�city for classi�cation by SVM coupled to BaHSIC on data

at 8-20kDa.

Combination (8-20kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.66 0.70 0.61
Stage 01 vs nt 0.67 0.72 0.60
Stage 02 vs nt 0.72 0.79 0.63
Stage 03 vs nt 0.78 0.83 0.72
Stage 01 vs 02 0.76 0.80 0.72
Stage 01 vs 03 0.51 0.51 0.51
Stage 02 vs 03 0.62 0.59 0.65

PAM had accuracy and sensitivity similar to SVM with RFE. But could not achieve
as good results for the sensitivity and speci�city (Tab. ?? and Tab. 3.10).
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Table 3.9: Accuracy, sensitivity, and speci�city for classi�cation by PAM on data at 1-10kDa.

Combination (1-10kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.97 1.00 0.70
Stage 01 vs nt 0.88 0.96 0.50
Stage 02 vs nt 0.83 0.96 0.80
Stage 03 vs nt 0.86 0.92 0.00
Stage 01 vs 02 0.65 0.98 0.00
Stage 01 vs 03 0.81 1.00 0.00
Stage 02 vs 03 0.64 0.93 0.00

Table 3.10: Accuracy, sensitivity, and speci�city for classi�cation by PAM on data at 8-20kDa.

Combination (8-20kDa) Accuracy Sensitivity Speci�city
All patients (01, 02, 03) vs nt 0.79 0.98 0.00
Stage 01 vs nt 0.84 1.00 0.00
Stage 02 vs nt 0.65 0.91 0.00
Stage 03 vs nt 0.55 0.64 0.44
Stage 01 vs 02 0.66 1.00 0.00
Stage 01 vs 03 0.81 1.00 0.00
Stage 02 vs 03 0.68 1.00 0.09
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The intersection of the most signi�cant peaks for each method, SVM with RFE, SVM
with BaHSIC and PAM were formed. This resulted in 7 highly signi�cant peaks which
are listed in Tab. 3.11. Two prominent peaks were detected at 1170 Da (galanin-like
peptide precursor; Fig. 3.6) and 2160 Da (actin-related protein fragment; Fig. 3.7)

Table 3.11: The seven most signi�cant peaks. Two proteins have been identi�ed (1. and
2.), the other six are in the process of identi�cation.

1. Peak at 1170 Da (exactly detected at Mw 1169.75 Da in lab). This peak has been identi�ed as
galanin-like peptide precursor. Identi�ed by SVM-RFE (02 vs nt), PAM (02 vs nt), SVM-RFE
(03 vs nt) and PAM (03 vs nt) (Fig. 3.6).

2. Peak at 2160 Da (exactly detected at Mw 2159.07 Da in lab). This peak has been identi�ed as
actin-related protein fragment in human. Identi�ed by SVM-RFE (01 vs nt) (Fig. 3.7).

3. Peak at 3487 Da. A protein with matching Mw is the Neutrophile alpha-Defensine 3/human
neutrophil peptide (HNP) 3. It has a possible participation in in�ammation processes in chronical
repulsion of transplants and has already been identi�ed in BALF proteomes of patients [118].
Identi�ed by SVM-RFE (patients vs nt), PAM (patients vs nt), SVM-RFE (03 vs nt) and PAM
(03 vs nt).

4. Peak at 4135 Da. The corresponding protein to this peak has not yet been identi�ed, but Zhang
et al. [187] also detected this peak which was correlated with chronic lung transplant rejection.
Identi�ed by SVM-RFE (patients vs nt), PAM (patients vs nt), SVM-RFE (03 vs nt) and PAM
(03 vs nt).

5. Peak at 4965 Da. The corresponding protein has not yet been identi�ed. Zhang et al. [187]
also detected this peak which appears in control samples and disappears over time in samples of
patients who had a lung transplantation. Identi�ed by SVM-RFE (patients vs nt), PAM (patients
vs nt), SVM-RFE (03 vs nt) and PAM (03 vs nt).

6. Peak at 10803 Da. A protein with matching Mw is Calgranulin A/MRP-8, a macrophage-
cytokines which is upregulated in chronical in�ammation processes [4]. Calgranulin have been
observed in conjuction with HNP in other body �uids with associated infections. Both are part
of the immune response system [70]. Identi�ed by SVM-RFE (02 vs nt) and PAM (02 vs nt).

7. Peak at 13792 Da. A protein with matching Mw is Transhyretine which is an anti-acute-phase

protein [187]. Identi�ed by SVM-BaHSIC (03 vs nt) and PAM (03 vs nt).
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Figure 3.6: Peak at 1169 Dalton. Identi�ed by SVM-RFE (02 vs nt), PAM (02 vs nt),
SVM (03 vs nt), and PAM (03 vs nt). The upper plot represents the mean
spectrum of the respective patient stage / control. The lower plot presents
all spectra of patients in that speci�c stage. Black stage 1; red stage 2; green
stage 3; blue stage nt (all controls). The plot on top (a) shows the four mean
spectra of every stage. Mean spectra are composed of the spectra at the
bottom: (b) indicates all the spectra of patients at stage 01 which result as
mean spectrum (black) in the top image (a); (c) consists of the spectra of
patients at stage 02 which contribute to the red mean spectrum in (a); (d)
contains the spectra of patients at stage 03, the mean spectrum is shown in
green in (a), (e) covers the spectra of controls (nt), which are presented as
the blue mean spectrum in (a).
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Figure 3.7: Peak at 2160 Dalton. Identi�ed in in SVM-RFE (01 vs nt). See legend of
Fig. 3.6.
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3.2.3 Integrative analysis results in novel peaks

All genes of the microarray experiment, with gene symbol as identi�er, were translated
into their corresponding proteins by using the Gene ID Conversion Tool. These proteins
all had UniProt identi�ers, so the corresponding theoretical isoelectric point (pI) and
molecular weight (Mw) values could be computed by the Compute pI/Mw tool. The
molecular weights which were derived ranged from 443 to 869,000 Da whereas most of
these weights ranged from 50,000 to 150,000 Da.

For the existent mass spectrometry pro�les of 1-10 kDa and 8-20 kDa, 112 Gene2Prot
Mw values mapped to the 1-10kDa scale, and 324 values to the 8-20 kDa scale. For these
matchings, the charge in the mass-to-charge ratio (m/z) was assumed to be 1, which is
usually the case with laser-assisted ionisation applied here. The subsets of Mw values
served as input for further analyzes where only the red channel of the gene expression
experiments was used in both cases. The loess-quantile-normalized data were discretized
in ten equal-sized quantiles and averaged across either the patient or control group.

3.2.3.1 Virtual spectrum

The matrix had 23 patient and 6 control samples in columns and 112 mass values in
rows for the data at 1-10kDa. For data at 8-20 kDa, the matrix had 324 mass values in
rows. Depending on whether the matrix referred to gene expression or mass spectromet-
ric values, it was denoted as 'Gene2Prot1-10', 'Gene2Prot8-20', 'MS1-10' or 'MS8-20' in
subsequent sections.

The di�erent matrices of patients or controls were mapped onto each other and plot-
ted as virtual spectra and corresponding mass spectrometric data (Fig. 3.8to 3.11).
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Figure 3.8: Virtual average spectrum of Gene2Prot (black) and average spectrum of MS
(red) of patients for data at 1-10kDa.

Figure 3.9: Virtual average spectrum of Gene2Prot (black) and average spectrum of MS
(red) of patients for data at 8-20kDa.
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Figure 3.10: Virtual average spectrum of Gene2Prot (black) and average spectrum of MS
(red) of controls for data at 1-10kDa.

Figure 3.11: Virtual average spectrum of Gene2Prot (black) and average spectrum of MS
(red) of controls for data at 8-20kDa.
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3.2.3.2 Wilcoxon rank sum test

TheWilcoxon rank sum test was applied to Gene2Prot1-10 versus MS1-10 and to Gene2Prot8-
20 versus MS8-20 in order to reveal dependencies between the data and formulate hy-
potheses on these data, like Gene2Prot (eq.3.1, eq. 3.2 and eq. 3.3). The outcome
showed that is was not possible to determine similarities between the data.

(a)Ho : Gene2Protmed = MSmed H1 : Gene2Protmed 6= MSmed (3.1)

(b)Ho : Gene2Protmed ≥MSmed H1 : Gene2Protmed < MSmed (3.2)

(c)Ho : Gene2Protmed ≤MSmed H1 : Gene2Protmed > MSmed (3.3)

3.2.3.3 Cross platform integration

Meta-analysis was applied to Gene2Prot and MS data. In order to decide whether a
FEM or REM model is more appropriate for combining the data, Cochran's Q statistic
was calculated for each mass value. Under the assumption that the di�erences in the
e�ect sizes between studies was due to sampling error alone, the values for Q distributed
according to a χ2 distribution. The qq-plot for data at 1-10kDa for quantiles of the
observed values of Q and the quantile of a χ2 distribution are shown in Fig. 3.12. The
deviation of the observed Q values from χ2 distribution (diagonal) indicated to choose a
REM model. The qq-plot for data at 8-20kDa looked similar (not shown). .

Figure 3.12: QQ Plot of data at 1-10kDa
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Statistical signi�cances of the meta-analysis were calculated for each of the two studies
Gene2Prot and MS alone and for the combined data set (Fig. 3.13). The plot of data at
8-20kDa were not shown because the meta-analysis did not yield su�cient improvement
compared to data at 1-10kDa. Throughout this analysis, 15 signi�cant masses with a

Figure 3.13: FDR Plot of data at 1-10kDa

FDR ≤0.2 were identi�ed. These masses were found exclusively in the meta-analysis of
the combined set. Tab. 3.12 lists these masses. The corresponding geneSymbol, FDR of
Gene2Prot,v FDR ofMS, and the FDR of combined set are listed, too. The meta-analysis
on 8-20kDa data yielded no signi�cant results (data not shown).
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Table 3.12: Masses with gene symbol identi�ed by meta-analysis of Gene2Prot and MS
data at 1-10kDa with corresponding false discovery rate.

Mass Gene Symbol FDR(Gene2Prot) FDR(MS) FDR(Combined set)
2789 Da INSL4 0.60 0.11 0.02
4572 Da CPSF4 0.39 0.49 0.13
5123 Da KIF14 0.43 0.60 0.10
5458 Da CHD4 0.53 0.52 0.17
6010 Da MGC18216 0.51 0.24 0.07
6013 Da EVL 0.51 0.10 0.07
6707 Da MPHOSPH6 0.51 0.56 0.15
6996 Da LHX4 0.74 0.31 0.15
7446 Da CCL15 0.42 0.53 0.09
7448 Da FXYD3 0.44 0.50 0.14
7519 Da FXYD2 0.54 0.66 0.16
7900 Da LY6E 0.43 0.45 0.07
8343 Da ACPP 0.42 0.57 0.14
8395 Da CCL26 0.48 0.50 0.10
9598 Da KLRC4 0.48 0.49 0.19
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Discussion

The main intention for writing this thesis was to contribute to the regulation on the �ow of
genetic information from DNA through mRNA to proteins [66]. Here two bioinformatic
methods were presented which allow for an integrative analysis of genomic, transcriptomic
and proteomic data. This task was split into two subparts. The �rst one included the
analysis of gene expression patterns as a function of DNA copy number aberrations in
neuroblastoma. A Bayesian approach gave insights into mechanisms of genetic processes
triggered by alterations in DNA copy number. The second part focusses on improving the
validity of gene and protein expression patterns related to the bronchiolitis-obliterans-
syndrome by a meta-analysis approach. It was shown that an integrative analysis of both
data types is superior to the results obtained by analyzing either data set individually.

4.1 Integrative analysis of genomic and

transcriptomic data related to neuroblastoma

Two previously published neuroblastoma data sets including 81 patients sets were ana-
lyzed. The data were collected within aCGH and gene expression studies and analyzed
in an integrative step. The gene expression data were discretized gene-wise into three
categories (down-regulation, no change, up-regulation) by k -means clustering. This algo-
rithm had weaknesses when all continuous values of a speci�c gene belong in principle to
one category. In that case, the k -means algorithm returns still three categories for that
gene. The k -means method is a data-driven method, which outperforms other methods
like quantile or range discretization, where for each category an equal number of data
values are mapped to equal-size bias. Other studies used self-organizing-maps in order
to �nd the optimal number of categories, but that was no option in this study because a
�xed number of 3 categories was choosen. Here k -means discretization was the option of
choice because it was assumed that the gene expression data were normally distributed
and hence all of the three categories were represented in the measured data for one gene.
Limitations of this approach are the hard thresholding in discretization.

By analyzing the aCGH data, a number of 10 distinct aberrations of DNA copy num-
bers that took place in neuroblastoma were detected. Of those, the most frequently lost
chromosomal region was deteted at 11q (56.8%). The most prominent gained region was
17q (86.4%). These results con�rm the results that were obtained with a bigger set of
neuroblastoma samples of which the samples used here were a subset [152]. Gain of
chromosome 17 and loss of chromosome arm 11q are, besides loss of chromosome arm
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1p, the most frequent abnormality detected in neuroblastoma [128, 151].

The impact of chromosome aberrations in neuroblastoma on genes located in cis-position
was analyzed patient-wise. A consistency-score was computed for every sample. This
value was a measure for the correlation between DNA copy number changes and the
expression of genes in cis-position. The results of the one-dimensional hierachical cluster-
ing of the consistency-matrix revealed so far unknown interactions between chromosome
aberrations and genes. For the �rst time it was demonstrated in a very high granularity
how DNA copy number changes a�ect genes in cis-position. This method outperformes
other methods, e.g. binning methods, were often a mean is taken over a large range
of chromosomal regions. The results of clustering the consistency-matrix con�rmed the
results made by other groups. Known combinations of genetic changes, including 17q
gain, and deletion of 1p and 11q are illustrated by the colored map resulting from cluster-
ing. Chromosome 1 was identi�ed as a domain of lost chromosome material that came
along with a down-regulation of genes at the same locus. That became in particular
true for MYCN ampli�ed patients. This group of patients was also characterized by
gained chromosome material on chromosome 17 and a down-regulation of genes located
in cis-position. These results hint towards a cross-relationship between chromosome
aberrations at chromosome 17 and genes located at other genomic locations, especially
chromosome 1. Other studies of neuroblastoma have revealed a high frequency of un-
balanced translocations of chromosome 17. In consequence, genetic information on the
partner chromosome can be lost. Prominent partner chromosomes are chromosome 1
and 11q. Especially patients in stage 4 seemed to su�er from a gain of chromosome
17 that came along with a loss of chromosome 11. Despite the aberrations the results
demonstrated that some genes located at 11 are upregulated. This hints towards poten-
tial trans-e�ects that may arise from interactions between chromosome 11 and 17. See
discussion below.

Trans-e�ects were identi�ed by a similar-state-sum which was a measure of similar-
ity for each gene expression probe to any other aCGH probe. That was achieved by
summing up all equal states over all patients for the respective pair of analysis. An
empirical p-value served as a selection criterion. By doing so, the amount of genes and
chromosome aberrations was dramatically minimized and served as input variables for
the BN approach. Here the GS-Algorithm was used to learn the structure of the BN. The
main advantage of the algorithm comes through the use of Markov blankets to restrict
the size of the conditioning sets. In order to determine the existence of an edge between
two nodes, Markov blankets gave a measure for the association of the two distributions
coming either from gene expression or aCGH data. The �direct neighbors� step, which
does a number of dependence tests between X and Y and declare them direct neighbors
only if all these tests have high con�dence, helps to identify potential errors in the pre-
ceding Markov blanket phase. Integration of prior knowledge e.g. that an arc from gene
nodes were not allowed to point to an aCGH node, helped to reduce the complexity of
the model. Limitations are given by unobserved variables, e.g. miRNAs or other ncRNA
that have an impact on the correlation results presented here.

The results of the BN are illustrated in Fig. 3.3. Focusing on highlighted in green,
there are 13, in most cases down-regulated, genes which directly in�uenced by chromo-
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somal losses at 11.q. These genes were either in cis-position or in direct chromosomal
neighborhood (GPR83, SFRS2B, CHORDC1, ZNF259, APOA4, DCUN1D5, KBTBD3,
ZNF202, SLN, FDX1, HBG2, KIAA1826, DLAT) . Interestingly the transcription factor
TFAP2B (transcription factor AP-2 beta) which is located on 6.p.12.3 has an arc to
another transcription factor ZNF202 (zinc �nger protein 202) on 11.q.24.1. It is notable
that TFAP2B is the only up-regulated gene connected to only down-regulated genes
that characterized by loss of chromosomal material. Another interesting characteristic is
that by a loss of 11.q.23.3 is connected the transcription factor ZNF259 and to APOA4
(apolipoprotein A-IV). APOA4 is known to bind to ZNF202, also located at 11.q, and
is also known to be directly regulated by STAT3 (not in network), which is located at
chromosome 17.q.21.2 [171, 142].

The chromosome aberrations at 17.q, highlighted in red, in�uenced a large part ot the
network topology. It is also the carrier of the only real trans-e�ect that took place in the
interaction of chromosome aberrations and the resulting gene expression. The Bayesian
model predicted that a loss of 17.q.23.2 has a direct in�uence on the gene CPT1B (car-
nitine palmitoyltransferase 1B, 22.q13.33). CPT1B it iself points to the gene FXYD6
(11.q.23.3). It is reported to bind to TP53 (17.p13.1, not in network). FXYD6 was linked
to OXSR1 bridged by ACVR2B. OXSR1 is known to directly regulate TP53 [153]. In
the network topology OXSR1 is also connected to SPINT2 (serine peptidase inhibitor,
Kunitz type 2, 19.q13.2). The SPINT2 protein is known to decrease the activation of
human Erk protein which is known to increase phosphorylation of the p53 protein. TP53
protein mediates the activation of the human Erk protein [190].

A gain of 17.q.23.2 is connected to up-regulation of TBX2 (T-box 2) in cis-position.
This genes encodes a transcription factor involved in the regulation of developmental
processes. Expression studies indicated that this gene may have a potential role in tu-
morigenesis as an immortalizing agent. There is also an undirected trans-e�ect reaching
from the gain 17.q.23.2, over TBX2 to MDK (midkine) on 11.p.11.2 (this chromosome
region is lost). MDK is known to be involved in signal transduction and the development
of the nervous system.

The gain of 17.q23.3 correlates with up-regulation of DDX42 in cis-position. This gene
encodes a member of the Asp-Glu-Ala-Asp (DEAD) box protein family. Members of this
protein family are putative RNA helicases, and are implicated in a number of cellular
processes involving alteration of RNA secondary structure such as translation initiation,
nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Members
of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular
growth and division (provided by RefSeq).

Other cis-regulated genes are MAP3K3 (mitogen-activated protein kinase 3) and TOP2A
(DNA topoisomerase II alpha). MAP3K3 is located inside the gained location 17.q.23.3,
and the up-regulated gene TOP2A is located at 17.q21.2. TOP2A encodes a DNA
topoisomerase, an enzyme that controls and alters the topologic states of DNA during
transcription. This nuclear enzyme is involved in processes such as chromosome con-
densation, chromatid separation, and the relief of torsional stress that occurs during
DNA transcription and replication. It catalyzes the transient breaking and rejoining of
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two strands of duplex DNA which allows the strands to pass through one another, thus
altering the topology of DNA (provided by RefSeq).

4.2 Integrative analysis of transcriptomic and

proteomic data related to BOS

Proteomic and transcriptomic data were analyzed in an integrative analysis. First gene
expression and the mass spectrometry data were analyzed by their own. After prepro-
cessing steps, 1,306 genes were detected as di�erently expressed by one-class SAM. Two-
dimensional clustering resulted in two distinct subgroups and separated controls from
patients. Di�erent gene clusters hint towards BOS-related gene expression patterns. To
get more insights into the functional role of these genes they was searched for signi�cant
functional gene ontology terms. The results suggested that especially apoptosis-inducing
genes are involved in the development of LTX.

In addition the proteome of the controls and patients was analyzed. Di�erent machine
learning algorithms were used with and without feature selection methods. Support
vector machines in combination with recursive feature elimination performed best and
attained a classi�cation accuracy of 83 % with 90 % sensitivity and 85 % speci�city.
When merging protein peaks with discriminative power over all used classi�cation meth-
ods, 7 highly BOS-related peaks were identi�ed. Galanin-like-peptide precursor and
actin-related protein fragment were particulary noticeable.

To improve the analysis, an integrative step was carried out. The genes were converted
to protein information comprising their isoelectric point and their molecular weights.
This was deemed as virtual spectrum and compared with the corresponding mass spec-
trometry protein weights. A Wilcoxon rank test proved no di�erences in means between
the virtual spectra and real spectra. It can be concluded that no dependencies are given
between genes and their expressed proteins. However it must be considered that mass
spectrometry also detects protein fragments which was not taken into consideration when
building up the virtual spectra. Alternative splicing and post-transcriptional modi�ca-
tion of proteins interfere with this integrative analysis. These events lead to complication
with this method and seemd to have more explanatory power than the conclusion that
the gene expression has no in�uence on protein expression.

The meta analysis approach integrated the virtual and real spectra. FDR was used
to estimate the statistical signi�cance. This was done for each spectrum type alone and
also for the combined data set. The latter resulted in 15 masses which were found exclu-
sively in the meta analysis of the combined set. Apparently meta-analysis increases the
statistical power and thus generates more signi�cant results in comparison to each data
set alone.

In summary two integrative methods were presented that combined data derived from
di�erent levels of genetic information processing. These levels were: chromosome aber-
rations of DNA, gene expression and protein expression. The Bayesian approach called
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BNtegrative o�ered new insights into the understanding of how chromsomal changes in-
�uence gene expression in neuroblastoma either in cis- or in trans-position. The second
approach, based on meta-analysis of real and virtual spectra of BOS, resulted in out-
comes that would not have been achieved when analyzing both data sets on their own.
These results need to be validated experimentelly. Both methods, BNtegrative as well as
meta analysis of virtual spectra are generic and can be used for any kind of tumor type
or disease. Even similar array-based molecular-biological methods can be integrated, like
methylation studies or two-dimensional gel electrophoresis.
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1.2 Comparative genomic hybridisation. Fragments of normal (red) and tu-
mor (green) DNA are di�erentially labeled with two di�erent �uorophores.
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cates that only normal DNA is annealed, but no tumor DNA was present.
This is when a loss of DNA in the tumor DNA has occured. In the case
of a yellow signal, both normal and tumor DNA are bound in the same
amount, i.e. the tumor DNA shows no chromosomal aberration. A gain
of tumor DNA is indicated by a a green signal, which denotes that more
tumor DNA is annealed than normal DNA. Figure taken from [174]. . . 18

1.3 Desorption/ionization time-of-�ight mass spectrometry. a) General setup
of a mass spectrometer for MALDI and SELDI. I) Ionization and Accelera-
tion. In both MALDI and SELDI, a biological sample of interest is applied
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electric �eld. The energy of the laser beam is transferred via the matrix to
the analyte sample and causes ionization. II) Drifting. An electrical �eld
causes the ionized material to �y through the TOF tube (going from to to
t1). Lower mass peptides (red ball) �y faster through the tube than higher
mass peptides (green ball). III) Detector. The peptides with a lower mass
arrive earlier than the high mass peptides at the detector which is placed
at the end of the �ight tube. b) Schematic image of a mass spectrum. Us-
ing a quadratic equation, the mass-to-charge ratio (m/z) of a peptide can
be calculated and plotted as a so called mass spectrum, with the intensity
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the protein concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Work�ow of proteomic pro�ling. a) First steps of a MALDI-TOF proce-
dure include sample preperation of e.g. body �uids like serum. The sample
is mixed with magnetic beads which catch only speci�c peptides. This tar-
get mixture is then spotted to a chip and is processed with an appropriate
mass spectrometer.The resulting protein pattern displays the separated
peptides in terms of their m/z-ratio. b) The SELDI-TOF work�ow also
includes sample preparation, target spotting and results in a protein pat-
tern, but di�ers in utilizing a chip with a chromatographic surface instead
of using magnetic beads. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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interest origin from CNAs (orange), genes expression (blue) and clinical
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Experiment patient SEX stage
4 US22502540_251271410111 10447 male 3
5 US22502540_251271410007 10504 male 4S
8 US22502540_251271410147 11805 male 4
11 US22502540_251271410332 12246 female 4
13 US22502540_251271410068 13164 male 4S
14 US22502540_251271410025 13169 female 4
16 US22502540_251271410109 13264 female 4
25 US22502540_251271410500 13746 female 2B
26 US22502540_251271410150 13747 female 4
30 US22502540_251271410222 13947 male 4
34 US22502540_251271410329 14312 female 2A
35 US22502540_251271410136 14359 male 4
36 US22502540_251271410220 14360 female 4
39 US22502540_251271410085 14529 male 4
51 US22502540_251271410043 15239 female 3
52 US22502540_251271410050 15240 male 4
53 US22502540_251271410030 15259 female 4
54 US22502540_251271410324 15282 male 4
57 US22502540_251271410042 15303 male 4S
58 US22502540_251271410334 15316 female 4
59 US22502540_251271410184 15347 male 4
60 US22502540_251271410335 15377 male 4
61 US22502540_251271410631 15403 male 1
64 US22502540_251271410552 15675 male 1
65 US22502540_251271410126 15732 male 3
69 US22502540_251271410124 15800 female 3
72 US22502540_251271410002 15821 female 4
75 US22502540_251271410060 15865 male 2A
78 US22502540_251271410168 15983 male 4
79 US22502540_251271410294 15991 male 4
82 US22502540_251271410157 16261 male 4
83 US22502540_251271410570 16270 female 2A
85 US22502540_251271410442 16437 male 2A
86 US22502540_251271410525 16500 male 3
87 US22502540_251271410166 16543 female 3
89 US22502540_251271410046 16561 male 4
92 US22502540_251271410639 16656 female 4
94 US22502540_251271410539 16663 male 2B
95 US22502540_251271410532 16677 male 3
97 US22502540_251271410507 16797 female 2B
98 US22502540_251271410545 16885 female 2
102 US22502540_251271410546 16980 male 2A
Table A.1: Clinical information neuroblastoma patients
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Experiment patient SEX stage
104 US22502540_251271410098 17001 female 4
109 US22502540_251271410540 17189 male 2B
110 US22502540_251271410092 17209 male 4
119 US22502540_251271410328 17315 male 2A
127 US22502540_251271410107 17663 male 4S
128 US22502540_251271410031 17665 male 4
133 US22502540_251271410602 17721 female 3
148 US22502540_251271410596 18004 female 4S
157 US22502540_251271410497 18154 female 4S
159 US22502540_251271410501 18173 male 3
166 US22502540_251271410115 1870 female 1
169 US22502540_251271410252 2000 male 4
171 US22502540_251271410502 2110 male 1
172 US22502540_251271410106 2117 female 4
173 US22502540_251271410331 226 female 4
176 US22502540_251271410054 2864 male 4
178 US22502540_251271410279 3103 male 4
179 US22502540_251271410277 312 male 4
183 US22502540_251271410047 325 male 1
184 US22502540_251271410167 327 male 1
185 US22502540_251271410090 3383 male 4
198 US22502540_251271410070 417 female 4
200 US22502540_251271410276 4188 male 3
203 US22502540_251271410104 4443 female 1
204 US22502540_251271410102 459 male 4
211 US22502540_251271410088 5043 male 4S
215 US22502540_251271410006 527 male 1
216 US22502540_251271410148 5643 male 4
217 US22502540_251271410503 5703 male 3
219 US22502540_251271410057 575 female 3
221 US22502540_251271410121 587 female 4
223 US22502540_251271410327 595 female 4S
232 US22502540_251271410295 629 male 4
239 US22502540_251271410026 6763 male 3
241 US22502540_251271410567 7363 male 1
247 US22502540_251271410065 9123 female 2B
248 US22502540_251271410178 9243 female 4
249 US22502540_251271410003 9323 male 4S
251 US22502540_251271410154 9923 male 1
Table A.1: Clinical information neuroblastoma patients



Code Documentation 

 

BNtegrative 
Functions for the integration of aCGH and DNA-microarray data. 

These functions are written by the author and are part of the framework BNtegrative. 
All functions and a complete workflow with example data are provide at the enclosed 
CD. 

 

 

averageReplicates 
DESCRIPTION 

Computes the median of replicates for each gene probe. 

USAGE 

averageReplicates(x, gene.list)  
 

ARGUMENTS 

x Matrix of gene expression data. Matrix contains replicates for gene probe. 
gene.list Vector of unique gene identifiers. 
 

VALUES 

matrix Matrix of gene expression data. Matrix contains the median value for the 
replicates of each gene probe. 

 

 

 

 

 

 

 

 



checkGenomicEffects 
DESCRIPTION 

Computes the correlation between DNA copy number changes and gene expression. This 
can be done either for patient-related cis-effects in terms of a consistency-score or for the 
complete set of patients by computing the trans-effects which results in a similar-state-sum-
matrix. 

USAGE 

checkGenomicEffects(genematrix, cghmatrix, mapping, effect, debug, B)  
 

ARGUMENTS 

genematrix Matrix of gene expression data. 
cghmatrix Matrix of aCGH data. 
mapping Object returned by  mapGeneIdToBacClone().  
effect String representing the algorithm. Either “cis” or  “trans.” 
B Integer of permutation steps. Use for simulation runs. 
 

VALUES 

matrix 
(if effect == 
“cis”) 

A matrix of the classified gene expression data. The a consistency-score 
represents the correlation between DNA copy number changes and gene 
expression for each patient. Possible values are -1, 0, 1. 

matrix 
(if effect == 
“trans”) 

A matrix representing the similar-state-sums as a similar-state-sum-matrix. 
Possible values are  between 0 and n amount of patients. 

  
 

 

combineGeneSets 
DESCRIPTION 

Computes one expression value for genes that belongs to the same gene set. 

USAGE 

combineGeneSets(x, gene.sets )  
 

ARGUMENTS 

x Matrix of gene expression data. 
gene.sets Vector of gene set identifiers. 
 

VALUES 

matrix Matrix of gene expression data which are grouped into gene set.  
 



 

computeBN 
DESCRIPTION 

Estimates a Bayesian network based on Markov Blankets. It is a wrapper function for the gs 
function of the R-package bnlearn. 
 

USAGE 

computeBN(matr,debug, strict, direction, blacklist,whitelist)  
 

ARGUMENTS 

matr Matrix of similar-state-sum. 

strict Boolean. If TRUE conflicting results in the learning process generate an 
error; otherwise they res1ult in a warning. 

direction Boolean. If TRUE no attempt will be made to determine the orientation of 
the arcs; the returned (undirected) graph will represent the underlying 
structure of the Bayesian network. 

whitelist Data frame containing a set of arcs to be included in the graph. 
blacklist Data frame containing a set of arcs not to be included in the graph. 
 

VALUES 

object Object of class bn. 
 

 

excludeBalancedRegions 
DESCRIPTION 

Excludes aCGH probes that are balanced over a set of patients. Specified by a user defined 
threshold. 

USAGE 

excludeBalancedRegions(x, fraction)  
 

ARGUMENTS 

x Matrix of aCGH data. 
fraction Float value to specify the percentage of frequency as a threshold. 
 

VALUES 

vector Boolean vector that specifies which aCGH probe did not reach the threshold 
 



 

excludeNodesWithoutArcs 
DESCRIPTION 

Excludes nodes without an arc from the graph. 
 

USAGE 

excludeNodesWithoutArcs(x)  
 

ARGUMENTS 

x Object of class bn. 

 

VALUES 

object Object of class bn. 
 

 

findCisEffectsFromCloneNeighbors 
DESCRIPTION 

Identifies present cis-effects included in the similar-state-sum. Serves as input for 
generateWhiteList(). 

USAGE 

findCisEffectsFromCloneNeighbors(x, rand.effects)  
 

ARGUMENTS 

x Integer that specifies the similar-state-sum. 
rand.effects Matrix returned by checkGenomicEffects(effect == “trans”) when used with a 

permuted data set. 
 

VALUES 

list List which contains for each aCGH probe a vector of gene probes in cis-
position.  

 

 

 



frequencyPlot 
DESCRIPTION 

Plots a frequency plot for a aCGH dataset. 
 

USAGE 

frequencyPlot(data)  
 

ARGUMENTS 

data Matrix representing a aCGH data matrix 

 

VALUES 

data.frame Dataframe with percentage of loses and gains. 
 

generateBlackList 
DESCRIPTION 

Prepares a set of arcs to be definitely not included in the Bayesian network. Serves as input 
parameter for computeBN(). 

USAGE 

generateBlackList(x)  
 

ARGUMENTS 

x List which contains for each aCGH probe a vector of gene probes in cis-
position 

 

VALUES 

data.frame Data frame with two columns, containing a set of arcs to be definitely not 
included in the Bayesian network. 

 

 

 

 

 



generateWhiteList 
DESCRIPTION 

Prepares a set of arcs to be definitely included in the Bayesian network. Serves as input 
parameter for computeBN(). 

USAGE 

generateWhiteList(x)  
 

ARGUMENTS 

x List which contains for each aCGH probe a vector of gene probes in cis-
position 

 

VALUES 

data.frame Data frame with two columns, containing a set of arcs to be definitely 
included in the Bayesian network. 

 

 

getRelatedEffects 
DESCRIPTION 

Filters out all cis and trans-effects that do not reach the user specified threshold. The effects 
are represented as a similar-state-sum. 

USAGE 

getRelatedEffects(x, threshold)  
 

ARGUMENTS 

x Matrix returned by checkGenomicEffects(). 
threshold Integer that specifies a user defined threshold for the similar-state-sum. 
 

VALUES 

list Filtered list which contains for each aCGH probe a vector of matched gene 
probes.  

 

 

 

 



kMeans 
DESCRIPTION 

Performes k-means clustering on a data matrix. The function classifies each row of the gene 
expression data matrix into three classes. 

USAGE 

kMeans(matr)  
 

ARGUMENTS 

matr Matrix of gene expression data. 
 

VALUES 

matrix Matrix of classified gene expression data. Values are -1, 0, 1. 
 

 

mapGeneIdToBacClone 
DESCRIPTION 

Matches the gene expression probes with probes/BAC clones from an aCGH microarray. 
This function requires the chromosomal start and end points of the spotted probes. Matching 
gene to aCGH probes are saved as cis-effects. 

USAGE 

mapGeneIdToBacClone(id.gene,chr.gene, start.gene, end.gene, 
id.bac,chr.bac, start.bac, end.bac,debug) 

 

 

ARGUMENTS 

id.gene Vector of gene ids 
chr.gene Vector of chromosome information for each gene probe. Length of id.gene. 
start.gene Vector of start positions for each gene probe. Length of id.gene 
end.gene Vector of end positions for each gene probe. Length of id.gene 
id.bac Vector of aCHG probe ids 
chr.bac Vector of chromosome information for each aCGH probe. Length of id.bac. 
start.bac Vector of start positions for each aCGH probe. Length of id.bac 
end.bac Vector of end positions for each aCGH probe. Length of id.bac 
debug Boolean. If TRUE progress information will be printed out 
 

 

 

 



VALUES 

An object of type list. 

bacsASlist A list which contains for each aCGH probe a vector of matched gene 
probes. 

midpoint Vector of midpoints for each matched aCGH probe. 
chromosome Vector of chromosome information for each matched aCGH probe. 
 

 

pFromRandomEffects 
DESCRIPTION 

Computes for each similar-state-sum a p-value. 

USAGE 

pFromRandomEffects(x, rand.effects)  
 

ARGUMENTS 

x Integer that specifies the similar-state-sum. 
rand.effects Matrix returned by checkGenomicEffects() when used with a permuted data 

set. 
 

VALUES 

list Filtered list which contains for each aCGH probe a vector of matched gene 
probes.  

 

 

singleProfilePlot 
DESCRIPTION 

Plots a aCGH profile of a single patient. 
 

USAGE 

singleProfilePlot(profile)  
 

 

 

 

 



ARGUMENTS 

profle Vector representing the aCGH data of a single patient. 

 

VALUES 

no return 
value 

 

 

 

 



TBImass 
Functions for the integration of mass spectrometry and DNA-microarray data. 

These functions are written by the author and are part of the TBImass package. 
Functions that are written by Mirjam Maier are labeled by a *. All functions and a 
complete workflow with example data are provide at the enclosed CD. 

 

 

alignSpecs 
DESCRIPTION 

Does a two-step-interpolation of mass spectrometry dataset. The first step 
approximates the missing data points such that the m/z intervals on the x-axis were 
given at equal resolution and the spectra were set to a common m/z range. The 
second step restricted the interpolation to the smallest common m/z range. 
 
USAGE 

alignSpecs(specs, specs.obj)  
 

ARGUMENTS 

specs Object of class specs 

specs.obj Boolean. If TRUE the return type is of type specs otherwise a matrix will be 
returned. 

 

VALUES 

specs 
(if specs.obj 
== TRUE) 

Object of class specs. 

matrix 
(if specs.obj 
== FALSE) 

Matrix of mass spectrometry data. 

 

 



aveSpecs 
DESCRIPTION 

Estimates a mean spectrum for each class. 
 
USAGE 

aveSpecs(specs, align.specs,ave.all, ave.each,bsl.cor)  
 

ARGUMENTS 

specs Object of class specs. 

align.specs Boolean. If TRUE alignSpecs will be called. 

ave.all Boolean. If TRUE a mean spectrum of all spectra will be computed. 

ave.each Boolean. If TRUE a mean spectrum for each class will be computed. 

bsl.cor Boolean. If TRUE bslnOff will be called. 

 

VALUES 

specs Object of class specs 

 

 

bslnOff 
DESCRIPTION 

Performs a base line correction of mass spectrometry profiles. 
 
USAGE 

bslnOff(raw)  
 

ARGUMENTS 

raw Object of class specs. 

 

VALUES 

specs Object of class specs 

 

 



dataInput 
DESCRIPTION 

Reads mass spectrometry raw data from the file system. 
 
USAGE 

dataInput(dir.data, sep, skipnr, pattern, header)  
 

ARGUMENTS 

dir.data String with directory that contains the raw data. 

sep String with delimeter. 

skipnr Integer that specifies the number of columns to skip.. 

pattern String with the file extension. 

header Boolean. If TRUE files contain a header. 

 

VALUES 

specs Object of class specs 

 

 

normalize 
DESCRIPTION 

Normalizes mass spectrometry raw data. 
 
USAGE 

normalize(specs, norm.type, cutoff)  
 

ARGUMENTS 

specs Object of class specs 

norm.type String that defines the normalization method.  

“Sum” = m/z values will be divided by the sum of all m/z values. 

“Median” = m/z values will be divided by the median of all m/z values. 

“Mean” = m/z values will be divided by the mean of all m/z values. 

cutoff Integer that defines the minimum m/z-value. 

 



VALUES 

specs Object of class specs 

 

 

pearson 
DESCRIPTION 

Computes the pearson correlation value for a mean spectrum and the mass 
spectrometry profiles. 
 
USAGE 

pearson(specs, method = "overall")  
 

ARGUMENTS 

specs Object of class specs 

method String that defines which mean spectra to take.  

“overall” = mean spectrum of all spectra will be used. 

“Median” = mean spectrum of each class will be used. 

“Mean” = m/z values will be divided by the mean of all m/z values. 

 

VALUES 

specs Object of class specs 

 

 

plotMeanSpecs 
DESCRIPTION 

Plots the mean spectra for each class. The top part shows the mean spectra and the 
lower part displays all spectra split by their class 
 
USAGE 

plotMeanSpecs(specs, p.type=, see.raw, peak.oi , p.r=200)  
 

 

 



ARGUMENTS 

specs Object of class specs 

p.type String that defines the design of the plot.  

“mean” = mean spectra of all spectra will be displayed at the upper part and 
the class specific spectra at the bottom. 

“zoom.mean” = zooms only the mean spectrum. 

“zoom.mean.raw” = zooms only the class specific spectra 

 

VALUES 

no return 
value 

 

 

 

plotIntersectFeatures* 
DESCRIPTION 

Plots the intersection peaks that arise from different classification algorithms and 
feature selection methods. 
 
USAGE 

intersectFeatures(intersectFeatures, c1, c2, specs)  
 

ARGUMENTS 

intersectFeatures List that holds for each classification algorithm a vector with peaks 

c1 String that names the class 

c2 String that names the class 

specs Object of class specs 

 

VALUES 

no return 
value 
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