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Zusammenfassung

Die elektromagnetischen Eigenschaften von Licht werden in der Quantenoptik meist
auf die elektrische Komponente reduziert. Ein Medium, das sowohl mit der elek-
trischen als auch mit der magnetischen Komponente wechselwirkt, wäre jedoch aus
technologischer Sicht sehr interessant. Ein vor kurzem vorgeschlagener Ansatz, um
die magnetische Antwort zu verstärken, basiert auf hoher Dichte sowie induzierter
Chiralität. Eine Kombination von beidem ist jedoch experimentell zur Zeit nicht
umsetzbar.
Diese Arbeit untersucht Lichtpropagation in dichten und in chiralen Medien, wobei
beide Konzepte getrennt und in experimentell zugänglichen Parameterbereichen be-
handelt werden. Im Einzelnen analysieren wir ein sog. Closed-Loop System, demon-
strieren ein Schema zur Kontrolle der Gruppengeschwindigkeit im UV-Bereich, zei-
gen, wie parametrische Prozesse in der Lichtpropagation verwendet werden können
und erläutern den Einfluss hoher Gasdichte auf einen verlangsamten Lichtpuls. Wir
leiten die Wellengleichung für Medien mit induzierter Chiralität her und lösen sie auf
Basis der allgemeinen Mediumsantwort. In einem konkretes Beispiel verwenden wir
die erarbeiteten Konzepte, um Lichtpropagation mit chiraler Wechselwirkung zu un-
tersuchen. Dabei stellen wir fest, dass ein chirales Medium die optimale Umsetzung
eines Closed-Loop Phasenkontrollschemas ermöglicht und so die Dynamik eines ver-
langsamten Lichtpulses während der Propagation kontrolliert werden kann. Außer-
dem zeigen unsere Ergebnisse, dass bereits mit heutigen experimentellen Methoden
Parameter erreichbar sind, bei denen die magnetische Komponente des Probefelds
relevant wird.

Abstract

In quantum optics, the electromagnetic character of light is mostly reduced to its
electric component. Technologically interesting, a medium interacting with both the
electric and magnetic component has recently been proposed. But the suggested
combination of high density and induced chirality to enhance the magnetic response
is beyond the limits of current experiments.
This thesis studies light propagation in dense and chiral media, assessing both con-
cepts separately and in more accessible parameter ranges. In this context, we analyze
a so-called closed-loop system, demonstrate a scheme for group velocity control in
the UV range, show how to utilize parametric processes for light propagation, and
explain effects due to high density on a slow light pulse. We derive the wave equation
for media with induced chirality and solve it on the level of general medium response
coefficients. This is then followed by a specific example, in which the developed con-
cepts are applied to study light propagation with chiral interactions. We find that
a chiral medium is an ideal implementation of a closed-loop-phase control scheme
and show that the dynamics of a slow light pulse can be controlled throughout prop-
agation time. Furthermore, our results demonstrate that the magnetic probe field
component can become relevant for parameters achievable in current experiments.
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Introduction

Since the work of J. C. Maxwell [1] and H. R. Hertz [2] we know that light is a form
of electromagnetic radiation. As such it can be described as an electromagnetic
wave composed of oscillating electric and magnetic field components. According
to Maxwell’s equations [3], these two components continually generate each other
while the electromagnetic wave propagates. A change of the electric field induces a
magnetic field, and in the same way a change of the magnetic field induces an electric
field. Hence, both field components are an integral part of the electromagnetic wave.
Also the relativistic perspective shows that electric and magnetic fields are intimately
connected. Lorentz invariance of Maxwell’s equations guarantees the freedom to
choose any inertial frame of reference to describe a physical system. Changing the
frame of reference however, can transform a purely electric or magnetic field into a
mixture of both fields [3].

From the above considerations, we recognize that in the electromagnetic descrip-
tion of light, the electric and magnetic component play an equal role. Thus, at first
sight, it is supprising that this is not the case in the description of light-matter
interaction in quantum optics. Studying the corresponding literature shows that in
the vast majority of quantum optical systems only the electric component is taken
into account [4, 5]. A closer look reveals that in almost all cases such a simplified
treatment is sufficient, because usually the magnetic field component couples much
weaker to matter than the electric field component. This does not exclude the influ-
ence of static magnetic fields which leads to energy shifts due to the Zeeman effect
and which is also used to magnetically trap atoms. However, it raises the question,
whether quantum optical systems exist, in which both components of a probing elec-
tromagnetic wave couple to a medium simultaneously. And if such systems existed,
what would be the differences or advantages compared to usual quantum optical sys-
tems? It turns out that such systems can indeed be realized and open up a new and
exciting research area with an enormous potential both for fundamental questions
and applications.

An early theoretical investigation was performed by V. G. Veselago [6]. He stud-
ied the electrodynamic properties of a medium characterized by a simultaneously
negative electric and magnetic response. In such a medium both components of
an electromagnetic wave interact with matter and Veselago concluded that there
are no fundamental contradictions to this concept. Instead, he showed that such a
medium would have remarkable properties unlike those of any known materials in
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INTRODUCTION

nature. Based on his analysis, it was realized later that some properties would have
immediate applications. For example, J. Pendy and others recently presented the
idea to build a so-called superlens [7–10]. The image resolution of a standard lens is
limited to distances of the order of half the wavelength. This is due to the fact that
the sub-wavelength information is encoded in the evanescent wave modes which are
damped away in conventional media and cannot contribute to the image. But in
a medium as described by Veselago, evanescent waves are exponentially amplified
instead [6]. As a consequence, the image resolution for a corresponding lens is in
principle not limited by the wavelength. In general, the ability to influence both the
electric and magnetic component, considerably extends the possibilities to control
electromagnetic wave propagation. One can show that a change of both the electric
permittivity ε and the magnetic permeability µ is equivalent to a coordinate trans-
formation of the electromagnetic field configuration [11]. This equivalence can be
used to design a medium which continuously guides the electromagnetic field in its
propagation. For example, a configuration is possible in which the electromagnetic
field is made to avoid a certain region of space, flowing around it, and returning to
its original direction of propagation as if there had been no disturbance of the propa-
gation at all. Fascinating applications such as a cloaking device making macroscopic
objects invisible, have been suggested [11,12].

That these concepts are not only of theoretical interest was first demonstrated in
experiments with metamaterials [13–20]. These are artificially manufactured com-
posites with a periodic lattice structure. The lattice constant is much smaller than
the wavelength of the incident radiation and the structural features are designed
to exhibit a capacitive and an inductive resonance which are close to each other.
With this design, effectively homogeneous media with a simultaneous electric and
magnetic response over a certain frequency range have been accomplished. A prime
example is given by the realization of a negative refractive index. In benchmark
experiments Veselago’s prediction is tested that for a medium with ε < 0 and µ < 0,
Snell’s law still holds, but for an index of refraction which is negative, n = −√

εµ < 0.
Compared to a medium with a positive refractive index, a ray of light is bend in the
opposite direction when refracted at an interface with vacuum which was impres-
sively confirmed in planar setups with metamaterials [15,20].

Over the past years metamaterials of different design have proved the idea to
realize a medium with a simultaneous electric and magnetic response over a wide
range of frequencies. The success of this concept lead to the suggestion to imple-
ment similar schemes with atomic systems [21, 22]. Compared to metamaterials,
these have some intrinsic advantages. For example, they are an effectively homo-
geneous medium for wavelength in the optical and below and coherent preparation
techniques developed in quantum optics could be applied to minimize losses which
are inevitable in metamaterials. However, a problem in atomic systems is the usu-
ally weak magnetic response. This can already be seen in a classical estimate of the
Lorentz electromagnetic force exerted on a charged particle. For a bound electron
exposed to an electromagnetic wave in vacuum, the part of the Lorentz force due to
the magnetic component is weaker by about a factor of the fine structure constant
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α than the part due to the electric component [3]. In the same way, a typical mag-
netic dipole coupling is weaker by a factor of about α than a typical electric dipole
coupling. Consequently, the magnetic permeability is suppressed by a factor of α2

compared to the electric susceptibility, such that the magnetic response becomes
negligibly small. Therefore, a key challenge in realizing atomic media with a cou-
pling to both components of light, lies in enhancing the magnetic response. Mainly,
two suggestions regarding this issue have been made.

One possibility is to use an unusually high atomic density as electric and magnetic
response are directly proportional to the number of atoms per unit volume. Current
proposals to implement such a scheme rely on a rather simple model for dense atomic
gases [21, 22]. In contrast, dense gas physics is an interesting but highly nontrivial
research area of its own. From simple Doppler and pressure broadening [25,26] in hot
atomic vapors to more involved dense gas effects such as dipole-dipole interaction,
quantum statistical effects [27], sub- and superradiance [28], multiple scattering
of photons and radiation trapping [29], a variety of different phenomena can be
important. Therefore, it is not clear whether these proposals are realizable.

A qualitatively different approach to enhance the magnetic response is based on
the idea of using a chiral medium [30–33]. Effects due to chirality are most familiar
from the optical activity of chiral molecules [34] which have the ability to rotate the
polarization direction of linearly polarized light. Indeed, one possible mechanism un-
derlying optical activity is quite indicative for the concept of enhancing the magnetic
response with chirality [35]. In a chiral molecule the asymmetric electron distribu-
tion can permit a single optical transition to be both electric and magnetic dipole
allowed. On the one hand, due to the fixed spatial orientation of the corresponding
electric and magnetic dipole moments, this results in a different interaction energy
with left- and right-circularly polarized light. On the other hand, this enhances the
magnetic response by a factor of α. Due to the coupling of both field components to
the same transition, the electric component can induce a magnetic dipole moment
and vice versa, leading to a cross coupling. Because the magnetic response due to a
cross coupling induced dipole moment is suppressed only by a factor of α, compared
to α2 for the direct magnetic response, this results in an effective enhancement.

In contrast to chiral molecules, in atoms the symmetry properties usually pre-
vent optical transitions to be both electric and magnetic dipole allowed. Here, a
cross-coupling has to be induced which can be achieved by a closed-loop system.
In these systems the laser-driven transitions form a closed interaction loop such
that photon emission and absorption can take place in a cycle [36, 37]. Further-
more, quantum mechanical interference of different possible transition pathways can
render the system phase dependent which can provide an additional control param-
eter. To take advantage of this scheme, the idea is to form a closed interaction
loop out of a magnetic and a separate, (nearly) degenerate electric dipole transition
and additional transitions driven by auxiliary laser fields. The probe field should
be resonant with both the electric and the magnetic dipole transition. In such a
configuration, one probe field component can induce a dipole moment in the other
probe field transition via the closed interaction loop. As a result, the desired cross
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coupling between the two probe field components arises [32,38]. A magnetic dipole
transition nearly degenerate to an optical electric dipole transition is a demand-
ing requirement. Quantum mechanical selection rules imply that magnetic dipole
transitions can only occur between states of the same angular momentum whereas
electric dipole transitions connect states of different angular momentum [39]. As
a consequence, magnetic dipole transitions are mostly found in a much lower fre-
quency range [40]. Nevertheless, atomic species with magnetic dipole transitions in
the optical domain do exist. For example, noble gases or rare earth elements with a
large angular momentum ground state can exhibit a strong spin-orbit splitting such
that the transition frequency between states of the same angular momentum is lifted
into the optical domain.

Present proposals which aim to realize negative refractive index media, rely on
a closed-loop configuration to induce chirality [32, 33]. Based on the requirements
for negative refraction, they assume parameters which are currently not realistic.
Thus, it is not supprising that no experiments have been performed so far which
implement such a scheme. Here, we follow a different approach and study the
aspects of chirality and high density starting from a currently accessible parameter
range. On the one hand, this may lead to the goal of negative refraction and from
a broader perspective, addresses the question whether effects due to the magnetic
field component are important in quantum optics. But on the other hand, we will
show that chirality and high density are interesting in their own right.

In this thesis, we put forward a number of ideas and concepts related to light
propagation in dense and chiral media. With respect to both dense media and chiral
media, we aim to improve the understanding of physical processes at the level of
current or near future experiments. We organize the analysis into different parts
and address the relevant aspects step by step. Furthermore, all partial results are
illustrated independently by potential applications.

In Part I, we deal with aspects accessible in a single atom picture. This implies
that the spatial dependence of the fields is neglected or assumed homogeneous. More
specifically, in Chapter 1, we study the response of a closed-loop system to a pulsed
probe field. This is a necessary prerequisite for the analysis of chiral media because a
closed interaction loop is at the heart of the mechanism that induces chirality. In the
analysis, the closed interaction loop in combination with the finite frequency width of
the probe pulse, gives rise to an explicit time dependence in the equations of motion.
We use Floquet theory to calculate the different response coefficients. A physical
interpretation of these coefficients in terms of scattering processes into the probe field
mode makes it possible to identify the parts of the solution leading to a linear and
nonlinear response. Analyzing the nonlinear response, we find that the system can
exhibit a strong intensity-dependent refractive index with small absorption. This is
the basis for applications such as beam focussing, pulse compression, and self-phase
or cross-phase modulation.

In Chapter 2, we investigate a setup suitable for controlling the group veloc-
ity. We chose mercury as our model system, where the probe field transition is in
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the ultraviolet domain. This is motivated by the ultimate goal to replace standard
optical elements that become harder to produce with increasing frequency. Indeed,
a level scheme suitable for UV-lasing has been proposed in mercury, but due to its
ladder structure it is not ideal for light propagation and concepts such as electro-
magnetically induced transparency are not directly applicable. Instead, we use an
additional control field to induce so-called interacting dark state resonances that
provide a high-contrast resonance structure in the dispersion. We find that this
resonance structure alone leads to superluminal light propagation, albeit with ab-
sorption. When an additional incoherent field is applied to the probe field transition,
the resonance structure can be altered such that sub- and superluminal light prop-
agation as well as a negative group velocity can be achieved without absorption.
We show that this result can be preserved under realistic conditions with Doppler
averaging which makes the system suitable for applications like a controllable pulse
delay line in the ultraviolet domain.

Based on the methods developed in the first part, it is possible to predict light
propagation dynamics in atomic media. However, as soon as the spatial dependence
of the applied fields starts to play a role, the single atom picture is not sufficient any-
more and we have to take into account the propagation dynamics explicitly. This
is the case in the setups we address in Part II. Here, we extend our theoretical
description by using the Maxwell-Bloch equations. In this framework, it becomes
considerably harder to obtain analytical solutions. Consequently, we employ a suit-
able algorithm (see Appendix) to integrate the equations of motion numerically.
The combination of the numerical solution together with analytical considerations
make it possible to gain physical insight also in these setups.

First, in Chapter 3, we analyze light propagation in a system where strong
propagation dynamics can be expected. Naively one might think that using a non-
standard level scheme beyond EIT only leads to strong absorption of the control
fields. However, it turns out that an additional field is generated via a four-wave-
mixing process as soon as the probe field is applied. We find that the newly generated
field gives rise to scattering processes into the probe field mode via a closed inter-
action loop and thus changes the probe field response. We calculate an effective
medium response including this dynamics by numerically propagating a continuous
wave probe field for different detunings. Surprisingly, we find a relatively smooth
and controllable result with a negative dispersion and slight gain for the probe
field. As an application we propose to use such a medium to implement a so-called
white-light cavity. Here, the negative dispersion is used in a phase-compensation
mechanism that leads to a broader cavity resonance profile without decreasing the
intensity buildup. We show that our medium fulfills the corresponding dispersion
requirements and counterintuitively, the in-medium dynamics causes an additional
enhancement of the cavity bandwidth.

Then, in Chapter 4, we study light propagation in a dense medium. In par-
ticular, we focus on an EIT setup and densities at the onset of cooperative effects.
We derive an analytic solution for the propagation dynamics of a weak pulse and
we find that the dipole-dipole interaction of neighboring atoms strongly modulates
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the phase of the pulse. We show that this phase modulation is distinctively different
from the nonlinear self-phase modulation a strong field experiences in a medium
with an intensity dependent index of refraction. It leads to a linear frequency chirp
over the total extent of the pulse. In addition, we give an intuitive explanation of
the underlying physical mechanism which causes the phase modulation. Analyzing
the effects of using higher densities in EIT is important because it directly improves
key quantities such as the group velocity reduction, the related spatial compression
of a pulse, and the time-delay bandwidth product characterizing slow light systems.
Furthermore, understanding the influence of dipole-dipole interaction on light prop-
agation dynamics is a first step towards experiments in the regime of even higher
density as needed, for example, in negative refractive index media.

In Part III, we address light propagation in chiral media. In Chapter 5, we
first define a chiral medium by the electrodynamic response coefficients. Then, on
the basis of the macroscopic Maxwell equations, we derive the wave equation for a
probe field propagating in a chiral medium. We solve this equation in Fourier space
using the slowly-varying envelope approximation. The solution is expressed in terms
of the general medium response coefficients and elucidates the different influences
of the direct and chiral response on the propagation dynamics. At the end of the
chapter, we discuss the conditions necessary to implement a chiral atomic medium.

In Chapter 6, we turn to a specific level scheme suitable for implementing light
propagation in a chiral system. On the one hand, this serves as an example to
apply the wave equation derived in the fifth chapter. On the other hand, it allows
us to demonstrate how the different concepts we discussed separately in the other
chapters work together in a single system. The key ingredient of the system is
to employ a closed interaction loop containing both the magnetic and the electric
probe field transition. As expected, the medium response becomes phase dependent
and a chiral cross coupling arises. To investigate the actual propagation dynamics,
we derive analytic solutions for the different medium response coefficients. We find
that the magnetic response already becomes relevant at low densities. We show that
already in the dilute gas regime, the propagation dynamics of a slow light pulse can
be controlled throughout propagation time by the closed-loop phase. Furthermore,
the closed-loop phase depends only on the relative phase of the control fields. It
is independent of the probe field phase which one might not be able to control in
applications. Thus, the system constitutes an ideal implementation of a closed-loop-
phase control scheme and demonstrates that the magnetic probe field component can
be of significant influence in a parameter regime accessible to current experiments.
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Chapter 1

Nonlinear effects in pulse

propagation through closed-loop

atomic media

Nonlinear effects in pulse propagation through a medium consisting of

four-level double-Λ-type systems are studied theoretically. We apply three

continuous-wave driving fields and a pulsed probe field such that they

form a closed interaction loop. Due to the closed loop and the finite

frequency width of the probe pulses the multiphoton resonance condition

cannot be fulfilled, such that a time-dependent analysis is required. By

identifying the different underlying physical processes we determine the

parts of the solution relevant to calculate the linear and nonlinear re-

sponse of the system. We find that the system can exhibit a strong in-

tensity dependent refractive index with small absorption over a range of

several natural linewidths. For a realistic example we include Doppler

and pressure broadening and calculate the nonlinear selfphase modula-

tion in a gas cell with Sodium vapor and Argon buffer gas. We find

that a selfphase modulation of π is achieved after a propagation of few

centimeters through the medium while the absorption and pulse shape

distortion in the corresponding spectral range is small.

1.1 Introduction

A main interest in laser driven atomic media is the study of their coherence proper-
ties. Coherence effects like electromagnetically induced transparency (EIT) [23,24],
coherent population trapping [41,42], lasing without inversion [43], and others [4,44]
are examples where the optical properties of an atomic medium are influenced with
coherent fields. The interference of different excitation channels is the main under-
lying principle here. A particular class of systems in which quantum mechanical
interference plays a major role are the so-called closed-loop systems [36, 37, 45–55].
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In these systems the laser-driven transitions form a closed interaction loop such that
photon emission and absorption can take place in a cycle. This leads to interference
of indistinguishable transition pathways between different states. One consequence
of this is that it can render the system dependent on the relative phase of the driv-
ing fields. At the same time, however, the investigation of closed-loop systems is
made difficult by the fact that the interfering pathways typically prevent the system
from reaching a time-independent steady state. Such a stationary state in general
is only reached when the so-called multiphoton resonance condition on the detun-
ings of the different driving field is fulfilled, which was therefore assumed in most
previous studies. For general laser field detunings, a time-dependent analysis is
mandatory [46,52].

Laser driven atomic media are also known to exhibit significant nonlinear optical
properties [26,46–50,53–67]. A particular example is the occurrence of an intensity
dependent refractive index, with applications such as beam focussing, pulse com-
pression, selfphase- or cross-phase modulation or optical switching [60–67]. Here,
the connection to coherence properties is the following. While an atomic resonance
can greatly enhance nonlinear effects in atomic media, the accompanying linear ab-
sorption of the same resonance typically renders the medium opaque to the probe
field. This can be overcome by tailoring the response via coherence and interference
effects. An advantageous situation arises, e.g., if the linear absorption vanishes due
to destructive interference while the nonlinear effect is enhanced by constructive
interference.

Motivated by this, we investigate nonlinear effects in pulse propagation through a
closed-loop atomic medium. In particular, we study a four-level atomic system where
the four dipole-allowed transitions form a double-Λ type scheme (see Fig. 1.1). Three
of the fields are assumed to be continuous-wave coupling laser fields, while the fourth
field is a pulsed probe field. We use a time-dependent analysis, as the multiphoton
resonance condition cannot be applied due to the finite frequency spectrum of the
probe pulses. The medium is modelled as a dilute gas vapor including Doppler and
pressure broadening and an additional buffer gas using realistic parameters. Our
main observable is the nonlinear index of refraction of the medium. We find that
our system exhibits a high nonlinear index of refraction with small linear and non-
linear absorption over a spectral range of several natural linewidths. In this spectral
region of interest, group velocity dispersion is low, such that pulse shape distortions
are minimized. For Sodium atoms with Argon buffer gas, we obtain a nonlinear
selfphase modulation of π after 6.4 cm of passage through the medium.

This chapter is organized as follows. In the following Sec. 1.2.1 we present our
model. In Sec. 1.2.3, we solve for the time-dependent long-time limit arising from
the closed interaction loop in the form of a series. The interpretation of the series
coefficients with respect to their physical meaning (Sec. 1.2.4) will enable us to
identify the quantities necessary to calculate the linear and nonlinear susceptibility
for the probe field of our system (Sec. 1.2.5). Doppler and pressure broadening are
discussed in Secs. 1.2.6 and 1.2.7. Our results are presented in Sec. 1.3, both with
and without broadening. Finally, Sec. 1.4 discusses and summarizes our results.
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|1〉 |2〉

|3〉

|4〉

Ω41 Ω42

Ω31 Ω32

γ41 γ42

γ31 γ32

Figure 1.1: The four-level atomic system with the four dipole-allowed transitions
forming a closed-loop double-Λ type scheme. Three transitions are driven by
continuous-wave control fields indicated by the solid blue double arrows. The fourth
transition couples to the pulsed probe field indicated by the dashed red double ar-
row. The coupling strengths are given by the Rabi frequencies Ωjk. The spontaneous
decays with rates γjk are denoted by the wiggly green lines (j ∈ {3, 4}, k ∈ {1, 2}).

1.2 Theoretical analysis

1.2.1 Hamiltonian

In this section we present the Hamiltonian for the four-level system and the inter-
action with the coupling fields in a suitable interaction picture. We write the field
coupling to transition |j〉 ↔ |k〉 (j ∈ {3, 4}, k ∈ {1, 2}) as

Ejk =
Ejk

2

(

êjke
−iωjkt + c.c.

)

, (1.1)

with amplitude Ejk, unit polarization vector êjk, and frequency ωjk. For better
readability we suppress the space-dependence of the fields. The Hamiltonian in
dipole and rotating-wave approximation reads [4, 44]

H =

4
∑

j=1

~ωjAjj −
4

∑

j=3

2
∑

k=1

~Ωjk

2

{

e−i(ωjkt−φjk)Ajk + H.c.
}

. (1.2)

The energy of level |j〉 is denoted by ~ωj and we have introduced Rabi frequen-
cies Ωjk = Ejk|êjk djk|/~ with djk being the dipole matrix element of transition
|j〉 ↔ |k〉 (j ∈ {3, 4}, k ∈ {1, 2}). The complex phase of the Rabi frequencies
was included into the exponential function where φjk = arg(êjk djk). The atomic
transition operator is defined as Ajk = |j〉〈k|.

The canonical approach with a Hamiltonian of the sort we have just introduced
would be to transform it into an interaction picture where the time dependence
fully vanishes. Unfortunately, this is not possible in our case. Due to the closed
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interaction loop, in general a residual time dependence in the Hamiltonian remains.
Physically, this means that we cannot expect the system to reach a true stationary
state in the long time limit. The best we can do is to use a unitary transformation
that gathers all the time dependence in a single exponential factor in front of the
probe field Rabi frequency. In this interaction picture we obtain

HI =~(∆32 − ∆31)A22 − ~∆31A33 + ~(∆32 − ∆31 − ∆42)A44

− ~

2

(

Ω31A31 + Ω32A32 + Ω42A42 + Ω41A41e
−i(∆t−φ) + H.c.

)

, (1.3)

where the detunings are defined as ∆jk = ωjk − (ωj −ωk). We have also defined the
so-called multiphoton detuning and an equivalent combination of the dipole phases

∆ =∆41 + ∆32 − ∆31 − ∆42 , (1.4a)

φ =φ41 + φ32 − φ31 − φ42 . (1.4b)

The multiphoton detuning is a typical quantity characterizing a system with a closed
interaction loop. Its significance will become more apparent in Sec. 1.2.4.

1.2.2 Master equation

We now set up the master equation for the atomic density matrix ̺. We include the
unitary evolution due to the Hamiltonian in the interaction picture and relaxation
dynamics due to spontaneous decay in Born-Markov approximation. The collision
induced dynamics will be considered in Sec. 1.2.7. The unitary evolution is given by
the Von-Neumann equation and the spontaneous decay can be written in Lindblad
form [44]. The master equation in the interaction picture then reads

∂t̺
I =

1

i~

[

HI , ̺
I
]

−
4

∑

j=3

2
∑

k=1

γjk

2

{[

̺IAjk, Akj

]

+ H.c.
}

, (1.5)

where ̺I is the density matrix in the interaction picture and γjk is the radiative decay
rate of transition |j〉 ↔ |k〉. For the further analysis we rewrite the master equation
in a matrix-vector form. Because the trace of the density matrix is conserved we
use the corresponding condition

Tr ̺I =

4
∑

j=1

̺I
jj = 1 (1.6)

to eliminate the diagonal element ̺44. Here, ̺I
jk = 〈j|̺I |k〉. Introducing the vector

R = (̺I
11, ̺

I
12, ̺

I
13, . . . , ̺

I
43)

T containing the remaining fifteen elements of the density
matrix we find

∂tR + Σ = MR , (1.7)

with an inhomogeneous part Σ that stems from the elimination of ̺44 and a coeffi-
cient matrix M . Both Σ and M can be directly derived from the master Eq. (1.5) and
contain the explicit time dependence arising from the time dependent Hamiltonian
Eq. (1.3). The explicit form of M and Σ is given in the appendix.
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1.2.3 Time-dependent solution

To treat the explicit time dependence of the equation of motion we first separate Σ
and M into the time independent part and the explicitly time dependent part. For
this, we define

Σ =Σ0 + Σ−1Ω41e
i(∆t−φ) + Σ1Ω41e

−i(∆t−φ) , (1.8a)

M =M0 + M−1Ω41e
i(∆t−φ) + M1Ω41e

−i(∆t−φ) , (1.8b)

with time-independent Σj and Mj (j ∈ {0,±1}). We see that under the condition
∆ = 0 the explicit time dependence vanishes. This is the so-called multiphoton
resonance condition. For fixed coupling field frequencies this condition can only be
fulfilled for a single probe field detuning ∆41. But we want to investigate probe fields
consisting of pulses with finite temporal length, which due to the Fourier relations
implies that a whole spectrum of probe field frequencies interacts with the medium
at the same time. Thus, we cannot assume the multiphoton resonance condition
to be fulfilled [52]. Instead, we have to solve Eq. (1.7) including the explicit time
dependence. To do so, we expand R as a power series in Ω41,

R =

∞
∑

n=0

RnΩn
41 . (1.9)

If we assume that the probe field strength is small compared to the control fields
this series will converge. Inserting Eqs. (1.8) and (1.9) in Eq. (1.7), we can derive
equations of motion for the individual coefficients Rn. In order O[Ωn

41] we find

∂tRn = M0Rn

+ δn,1

(

Σ−1e
i(∆t−φ) + Σ1e

−i(∆t−φ)
)

+
(

M−1e
i(∆t−φ) + M1e

−i(∆t−φ)
)

Rn−1 . (1.10)

This is an equation for Rn where the coefficient matrix M0 is time independent and
only the inhomogeneous part is time dependent. This time dependence is twofold,
first again explicitly because of the exponential functions and second because of the
dependence on Rn−1. Thus, we make an ansatz for the solution and write Rn in a
Fourier series,

Rn =
∞
∑

m=−∞

R(m)
n e−im(∆t−φ) . (1.11)
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Projecting on the Fourier basis functions we derive a hierarchy of time independent

equations for the coefficients R
(m)
n . Up to order O[Ω3

41] we find

R
(0)
0 = M−1

0 Σ0 , (1.12a)

R
(±1)
1 = (M0 ± i∆1)−1

(

Σ±1 − M±1R
(0)
0

)

, (1.12b)

R
(0)
2 = −M−1

0

(

M−1R
(1)
1 + M1R

(−1)
1

)

, (1.12c)

R
(±2)
2 = − (M0 ± 2i∆1)−1 M±1R

(±1)
1 , (1.12d)

R
(±1)
3 = − (M0 ± i∆1)−1

(

M±1R
(0)
2 + M∓1R

(±2)
2

)

, (1.12e)

R
(±3)
3 = − (M0 ± 3i∆1)−1 M±1R

(±2)
2 , (1.12f)

where 1 is the unit matrix and all other R
(m)
n up to this order vanish. In general we

find that

R =
∞
∑

n=0

n
∑

m=−n,

−n+2,...

R(m)
n Ωn

41 e−im(∆t−φ) . (1.13)

Since Fourier coefficients R
(m)
n in Eq. (1.12) only depend on Fourier coefficients R

(m)
n−1

of the next lower order, the full solution can be calculated recursively.

1.2.4 Physical interpretation

To physically interpret the meaning of the different coefficients we study the influence
of the different parts of the solution on the probe field. First, we write down the
expansion series for the relevant probe field coherence in the Schrödinger picture ̺41

using the explicit transformation relation connecting the Schrödinger picture with
our interaction picture. We find

̺41 =̺I
41 e−i(ω41t−φ41) ei(∆t−φ). (1.14)

With ̺I
41 given as component of the solution for R we find

̺41 =

∞
∑

n=0

n
∑

m=−n,
−n+2,...

[

R(m)
n

]

13
Ωn

41e
−i[ω41+(m−1)∆]t ei[φ41+(m−1)φ] , (1.15)

where [R
(m)
n ]13 refers to the thirteenth component of vector R

(m)
n . Thus, coefficient

[R
(m)
n ]13 gives a contribution at the probe field frequency ω41 plus a frequency shift

of (m − 1)∆. The corresponding physical process can be identified as follows. A
combination of dipole phases φ = φ41 − φ42 + φ32 − φ31 indicates a full evolution
through a loop which extends from state |1〉 to |4〉 and via |2〉 and |3〉 back to
state |1〉. The transition direction is given by the sign of the corresponding dipole
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phase. The evolution around the interaction loop is also the physical reason for the

frequency shift ∆ of such a process. Altogether, [R
(m)
n ]13 represents a process with

m−1 loop cycles where the sign of m−1 defines the direction, clockwise for positive
or counter-clockwise for negative sign. The remaining of the n probe transitions can
be interpreted as direct transitions.

1.2.5 Linear and nonlinear susceptibility

With the above interpretation we can easily identify the parts of the solution leading
to the linear and nonlinear susceptibility in the probe field. Because both contribu-
tions should oscillate at the probe field frequency we see that m = 1 must be fulfilled
in Eq. (1.15). The order of Ω41 enables one to identify

χ(1)(ω41) ∝
[

R
(1)
1

]

13
at O

[

Ω1
41

]

, (1.16a)

χ(3)(ω41) ∝
[

R
(1)
3

]

13
at O

[

Ω3
41

]

. (1.16b)

There is no second order contribution to the susceptibility as it should be for an
isotropic medium [26]. By comparing the microscopically calculated value for the
polarization [4, 44]

P41 =N (d14̺41 + c.c.) , (1.17)

with the definition of the susceptibility [26]

P41 =ε0
E41

2

(

χ(1) +
3

4
E2

41χ
(3)

)

ê41e
−iω41t + c.c. , (1.18)

we find

χ(1)(ω41) =
3

8π2
λ3

41Nγ41

[

R
(1)
1

]

13
, (1.19)

3

4
E2

41χ
(3)(ω41) =

3

8π2
λ3

41Nγ41Ω
2
41

[

R
(1)
3

]

13
, (1.20)

with ε0 being the permittivity of free space, λ41 the wave length of the probe field
transition, and N the density of atoms in the gas.

We remark that χ(3)(ω41) = χ(3)(ω = ω41 − ω41 + ω41) is the lowest order non-
linear contribution at the probe field frequency. It leads to an intensity dependent
refractive index that also depends on ω41 and can be different for each respective
frequency of the probe pulse spectrum. This is not the case for other contribu-

tions to χ(3). For example, [R
(0)
0 ]13 oscillates at the frequency ω = ω41 − ∆ and

leads to a contribution χ(3)(ω = ω31 − ω32 + ω42) (four-wave mixing). Here, the
resulting frequency is independent of ω41. Nevertheless, in principle those processes
can influence the result for the linear and third-order susceptibility at certain probe
field frequencies. For example, light can be scattered into the probe field mode via
different processes. Whether this or similar contributions change the probe pulse
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depends on the pulse’s frequency width compared to the multiphoton detuning ∆
and more generally also on the propagation direction of the probe field relative to
the control fields. A definite answer to these questions requires an analysis of the
full pulse propagation dynamics through a medium which we will not turn to until
part II.

1.2.6 Doppler broadening

A typical experimental setup to investigate the coherence properties of a laser driven
atomic gas would be a gas cell with a dilute alkali-atom vapor. For a dilute atomic
gas theoretical predictions for the linear and nonlinear susceptibility can be made on
the basis of a single atom analysis. This greatly facilitates the theoretical analysis.
However, in a dilute gas at room temperature or above the atoms move at velocities
where the frequency shift due to Doppler effect cannot be neglected compared to
the natural line width given by the radiative decay rate γ. To calculate the Doppler
effect for a single field, we assume a Maxwell-Boltzmann velocity distribution in
laser propagation direction with a most probable velocity given by [25]

vm =

√

2kBT

m
(1.21)

with kB the Boltzmann constant, T the temperature, and m the mass of the atom.
The non-relativistic Doppler frequency shift is given by

ωeff =ω
(

1 − v

c

)

, (1.22)

where ωeff is the shifted frequency seen by the moving atom, ω is the lab frame laser
frequency, v is the velocity of the atom in laser propagation direction, and c is the
speed of light. The Doppler shift effectively leads to an additional detuning ∆Dop

with a Gaussian distribution [25]

f(∆Dop) d∆Dop =
1√

πkvm
e
−

“

∆Dop

kvm

”2

d∆Dop , (1.23)

where k is the wave number. The corresponding line width (FWHM) is then given
by

δω =k

√

ln(2)
8kBT

m
. (1.24)

To actually calculate the linear and nonlinear susceptibility for a Doppler broadened
medium, for each propagation direction, we have to add ∆Dop to the detuning of
the fields propagating in this direction and then average the resulting susceptibility
over the velocity distribution Eq. (1.23).
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Figure 1.2: Real part (solid blue line) and imaginary part (dashed red line) of the
linear susceptibility of the probe field. Due to strong control fields Ω42 = 100γ and
Ω31 = 50γ the probe field resonance is split into four different resonances. Further,
Ω32 = ∆31 = ∆32 = ∆42 = 0, and all spontaneous decay rates γjk have been set to
γ. The susceptibility is plotted in units of 3/8π2λ3

41Ns.

1.2.7 Buffer gas and pressure broadening

Introducing a buffer gas to the gas cell leads to more frequent collisions between the
atoms. This has two main consequences. First of all it causes pressure broadening.
For moderate densities, a collision between two atoms disturbs the level energies for
a short time which results in the loss of phase coherence. In a simple approach this
can be modeled by an additional decay rate γc for the coherences. This collisional
decay rate consists of a contribution due to the studied gas itself and a contribution
due to the buffer gas. Both depend linearly on the respective densities Ns and
Nb [26],

γc =CsNs + CbNb , (1.25)

with gas specific constants Cs for the studied gas and Cb for the buffer gas.
A second major effect of a buffer gas is closely connected to Doppler broadening.

Due to the higher density the mean free path of a single atom moving in the gas is
reduced. If it is reduced below the transition wavelength an averaging over different
velocities during a single emission or absorption process can effectively re-narrow a
Doppler broadened line. This phenomenon is known as Dicke narrowing [68].

1.3 Results

In principle, Eqs. (1.12) can be used to calculate analytical results for the desired
χ(1) and χ(3). But in our situation of interest where all four electromagnetic fields,
possibly all with different detuning, interact with the atom, these are usually to
lengthy to give any physical insight. Therefore, we proceed with a numerical study
of the linear and nonlinear susceptibility.
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Figure 1.3: Real part (dash-dotted blue line) and imaginary part (solid red line) of
the nonlinear susceptibility together with the imaginary part of the linear suscepti-
bility (dashed red line). All figures show the resonance around ∆41 = −25γ. The
susceptibility is plotted in units of 3/8π2λ3

41N and for comparability χ(3) has been
scaled with 3/4E2

41. The parameters are ∆32 = ∆42 = 0, Ω31 = 50γ, Ω32 = 34γ, and
Ω42 = 100γ. The probe field strength is assumed to be one tenth of the weakest con-
trol field in all cases. The detuning ∆31 is chosen as (a) ∆31 = 0, (b) ∆31 = 0.7γ, (c)
∆31 = 1.5γ, and (d) ∆31 = 1.7γ. Note the different axis scales in the four subpanels.

1.3.1 Without Doppler broadening

Here, our primary goal is to find a set of parameters where the intensity dependent
refractive index is large enough to cause an appreciable amount of nonlinear selfphase
modulation while the attenuation of a light pulse due to absorption is small. To
achieve a high non-linear index of refraction with low linear and non-linear loss
all in the same spectral region is challenging because resonances that enhance the
nonlinear response typically come with strong absorption. Still, we find such a
suitable parameter set by manipulating the linear and nonlinear susceptibility of
the probe field as described next.

We first split the unperturbed resonance of the probe field transition by a strong
coupling field Ω42 and again about half as much by the second coupling field Ω31.
This gives rise to four resonance structures in the linear response, see Fig. 1.2.

In this figure, the linear absorption of the resonance at ∆41 ≈ −25γ can be
lowered by a small detuning ∆31, which modifies the dressed state populations.
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Finally, optimizing the result with the third coupling Ω32, we can tune one half of
the resonance to a small linear and nonlinear absorption while still maintaining a
substantial nonlinear real part. In Fig. 1.3 it is shown how gradually introducing a
detuning ∆31 influences the linear absorption, the nonlinear gain, and the real part
of the nonlinear susceptibility. It decreases the linear absorption and the nonlinear
gain faster than the real part and thereby improves their ratio. Interestingly, the
imaginary parts of the linear and the nonlinear parts of the susceptibility can have
opposite signs in this spectral region . The linear response induces absorption,
while the nonlinear response leads to gain. Absorption could in this spectral region
therefore be reduced even further by a partial cancelling of linear absorption and
nonlinear gain. However, these results are preliminary in the sense, that no effects
due to Doppler and pressure broadening have been included yet.

1.3.2 Including Doppler broadening

Using our considerations from Secs. 1.2.6 and 1.2.7 we now want to calculate the
linear and nonlinear susceptibility in a Doppler broadened atomic gas. As a realistic
example we want to assume a Sodium vapor with a density of Ns = 1.0× 1020 m−3.
To reach a vapor pressure that corresponds to this density the gas cell must be
heated to a temperature of T = 547.6 K [69]. At this temperature the Doppler
linewidth is δω = 2π × 1.78 GHz which is very broad compared to the natural
linewidth of the Sodium D1 transition of γ = 2π × 9.76 MHz. In a pure Sodium
vapor the spectral features we found in Sec. 1.3.1 would be averaged out by the
Doppler effect. But if we introduce a buffer gas strong pressure broadening can
preserve them. For Sodium and Argon, the gas parameters in Eq. (1.25) are given
by Cs = 1.50× 10−13 m3 s−1 and Cb = 2.53× 10−15 m3 s−1 [26]. We want to assume
a collision-induced coherence loss rate of γc = 1.0 GHz which corresponds to a buffer
gas density of Nb = 3.95×1023m−3. At such a density the mean free path is of order
Λ = 10−5 m. This is much larger than the transition wavelength λ = 589.2×10−9 m
such that the limit of Dicke narrowing is not reached.

We now try to recover results similar to the unbroadened case shown in Fig. 1.3.
Because of the strong broadening we have to apply correspondingly stronger control
fields. For Ω42 = 60.0 GHz and Ω31 = 30.0 GHz, we find the resonance studied
in the unbroadened case at around ∆41 = −15.0 GHz. The third control field is
set to Ω32 = 25.0 GHz and the detuning to ∆31 = 1.6 GHz. For the Doppler
averaging we have assumed all fields to be co-propagating. The different subpanels
in Fig. 1.4 correspond to different Doppler linewidths, and thus via Eq. (1.24) to
different temperatures. In Fig. 1.4(a), the Doppler linewidth is chosen below the
natural linewidth of the probe transition, and as expected we finds results that
are similar in shape to the unbroadened case (see Fig. 1.3(d)). Differences are
mainly due to pressure broadening. In Fig. 1.4 (b) - (d) we gradually increase the
Doppler linewidth up to the full Doppler width expected for the gas parameters
discussed above. We find that while the shapes of the different curves change, our
main result of high nonlinear index of refraction with small linear and nonlinear
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Figure 1.4: Real part (dash-dotted blue line) and imaginary part (solid red line) of
the nonlinear susceptibility together with the real part (blue dotted line) and the
imaginary part of the linear susceptibility (dashed red line) at the resonance around
∆41 = −15.0 GHz. The control fields have Rabi frequencies Ω42 = 60 GHz, Ω31 =
30 GHz, Ω32 = 25 GHz, and the detunings are ∆31 = 1.6 GHz, ∆32 = ∆42 = 0. The
medium parameters described in the main text correspond to Sodium as the active
medium with Argon as a buffer gas. The four different plots show Doppler averaged
results with a Doppler linewidth of (a) below the natural linewidth, (b) 50%, (c) 90%,
and (d) 100% of the full Doppler linewidth of δω = 2π × 1.78 GHz. In plot (d) we
also included the second derivative of the real part of the linear susceptibility (long-
dashed black line).

absorption persists with Doppler broadening. Also in the broadened case, a partial
cancelling of linear absorption and nonlinear gain could be possible. Note that since
the averaging process affects not only the probe field detuning but all four detunings
at the same time the results cannot be explained in terms of a simple smoothing of
the curves without Doppler effect.

We also considered different laser geometries, such as control fields propagating
perpendicular to the probe field, or one or two control field propagating in opposite
directions, and found the co-propagating case to be the most advantageous one.
This is similar to the case of Doppler broadening in standard electromagnetically
induced transparency setups where co-propagating lasers typically are preferable.

We finally use our results to calculate the required optical length for a nonlinear
selfphase modulation of π at a probe field frequency with vanishing group velocity
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dispersion. The group velocity dispersion is given by [44]

β2 =
k

4

∂2Re[χ(1)]

∂ω2
, (1.26)

where the wave vector k gives the characteristic length scale. The frequency of
vanishing group velocity dispersion is thus given by the condition

∂2Re[χ(1)]

∂ω2
= 0 , (1.27)

which for the considered gas parameters yields

∆min
41 = 17.63 GHz. (1.28)

This probe field frequency is indicated by the vertical solid blue line in Fig. 1.4(d).
The nonlinear selfphase modulation is given by [26]

∆ΦNl =n2 I k L , (1.29)

with n2 the intensity dependent refractive index, I the probe field intensity, k the
wavevector, and L the propagation length. We assume a probe field strength one
tenth of the smallest control field and find at frequency ∆min

41

Lπ =6.4 cm . (1.30)

From Fig. 1.4(d) we see that at ∆min
41 the magnitude of the imaginary parts of the

linear and nonlinear susceptibility are more than one order of magnitude smaller than
the real part of the nonlinear susceptibility. Therefore, the equivalent characteristic
length scale is more than one order of magnitude larger. Furthermore, both linear
and nonlinear part, give rise to small gain rather than absorption.

To asses the frequency range in which the calculated nonlinear selfphase modula-
tion length can be archived without significant pulse shape distortion we in addition
studied the group velocity dispersion. It is related via Eq. (1.26) to the second
derivative of the real part of the linear susceptibility which is shown as the long-
dashed black curve in Fig. 1.4(d). Figure 1.5 shows a magnification of Fig. 1.4(d)
around ∆min

41 . We see that in a spectral range of several natural linewidth the second
derivative of the real part of the linear susceptibility is about one order of magnitude
smaller than the real part of the nonlinear susceptibility that is responsible for the
nonlinear selfphase modulation. This suggests that a pulse with a bandwidth of up
to several natural linewidth would suffer only little from group velocity dispersion
on the calculated nonlinear selfphase modulation length.

For a more quantitative measure, we calculate the ratio of time spread to tem-
poral width of a pulse with a bandwidth of x times the natural line width γ. The
corresponding temporal width of the pulse is

τ =
2π

xγ
. (1.31)
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Figure 1.5: A magnification of Fig. 1.4 (d) around the probe field frequency ∆min
41

with vanishing group velocity dispersion [see Eq. (1.28)] is shown. The frequency
axis is shown in units of the natural decay rate γ, which for the considered Sodium
D1 transition is 2π × 9.76 MHz. The parameters are the same as for Fig. 1.4 (d).

The time spread of such a pulse is related to the parameter β2 given by Eq. (1.26)
in the following way [44],

∆τ =Lβ2 xγ . (1.32)

From Fig. 1.5, we estimate an average value of the second derivative of the real part
of the linear susceptibility around ∆min

41 of 0.2 (scaled quantity). For the ratio of ∆τ
and τ after a propagation length of Lπ we find

∆τ

τ
=

1

2π
Lπ β2 γ2 x2 (1.33)

= 0.042x2 . (1.34)

Thus, the pulse doubles its temporal width for x = 4.9. For longer pulses, x becomes
smaller, and this ratio improves with x2.

Our results show that in a spectral range of several natural line width a nonlinear
selfphase modulation of π can be achieved on a realistic laboratory lengthscale. We
showed that in the same spectral range group velocity dispersion is low such that
pulse shape distortions can be expected to be small. Interestingly, the real part
of the linear susceptibility has a negative slope in the considered frequency region,
in contrast to a positive slope typically found in an electromagnetically induced
transparency window.

1.4 Conclusion

We have studied nonlinear effects in pulse propagation through a laser-driven me-
dium where the applied fields form a closed interaction loop. Such loop systems in
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general only allow for a time-independent treatment at a single probe field frequency,
where the so-called multiphoton resonance condition is fulfilled. As a probe field
pulse has a finite frequency width, this condition which allows for a straightforward
theoretical treatment could not be applied. Instead, we treated the time-dependent
problem by turning it into a hierarchy of equations that describe the various phys-
ical processes occurring in the medium. We have included Doppler and pressure
broadening as well as a buffer gas in our analysis and have used realistic parameters
for a medium consisting of Sodium vapor. We could show that the studied system
can exhibit a high non-linear refractive index with small absorption or gain over
a spectral range of several natural line widths. For the chosen parameters, group
velocity dispersion is low, such that pulse shape distortions are minimized, and the
slope of the linear dispersion is negative. A non-linear selfphase modulation of π is
obtained after 6.4 cm propagation through the medium.
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1.A Appendix

The explicit form of the coefficient matrix M and the inhomogeneous part Σ can be
derived from Eq. (1.7). Here, we list all nonzero elements Mj,k and Σj, which are
given by

M1,1 = M1,6 = M6,6 =
1

2
M11,11 = Σ1 = Σ6 = −γr ,

M∗
1,3 = M1,9 = M2,10 = M3,4 = M4,12 = M∗

5,7 = M9,11 = M∗
13,15 =

i

2
Ω31 ,

M∗
2,3 = M5,9 = M∗

6,7 = M6,10 = M7,11 = M8,12 = M∗
10,11 = M∗

14,15 =
i

2
Ω32 ,

M∗
1,4 = M1,13 = M2,14 = M3,15 =

1

2
M∗

4,1 = M∗
4,6 = M∗

4,11 = M∗
5,8

= M∗
9,12 =

1

2
M13,1 = M13,6 = M13,11 = Σ∗

4 = Σ13 =
i

2
Ω41e

−i(∆t−φ) ,

M∗
2,4 = M5,13 = M∗

6,8 = M6,14 = M7,15 = M∗
8,1 =

1

2
M∗

8,6 = M∗
8,11

= M∗
10,12 = M14,1 =

1

2
M14,6 = M14,11 = Σ∗

8 = Σ14 =
i

2
Ω42 ,

M3,3 = M∗
9,9 = −γr − i∆31 ,

M4,4 = M∗
13,13 = −γr − i(∆31 + ∆42 − ∆32) ,

M7,7 = M∗
10,10 = −γr − i∆32 ,

M7,8 = M10,10 = −γr − i∆32 ,

M12,12 = M∗
15,15 = −2γr − i(∆42 − ∆32) ,

M2,2 = M∗
5,5 = −i(∆31 − ∆32) ,

M6,4 = M11,4 = M6,13 = M11,13 = M1,8 = M11,8 = M1,14 = M11,14 = 0 ,

where Mj,k = Mk,j holds if not noted otherwise and by M∗
j,k we indicate the complex

conjugate of Mj,k.
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Chapter 2

Group velocity control via

interacting dark-state

resonances

The propagation of a weak probe field in a laser-driven four-level atomic

system is investigated. We choose mercury as our model system, where

the probe transition is in the ultraviolet region. A high-resolution peak

appears in the optical spectra due to the presence of interacting dark

resonances. We show that this narrow peak leads to superluminal light

propagation with strong absorption, and thus by itself is only of limited

interest. But if in addition a weak incoherent pump field is applied to

the probe transition, then the peak structure can be changed such that

both sub- and superluminal light propagation or a negative group velocity

can be achieved without absorption, controlled by the incoherent pump-

ing strength. A suitable choice of laser propagation directions allows to

preserve these results under Doppler averaging.

2.1 Introduction

Optical properties of an atomic medium can be substantially modified by the ap-
plication of external fields. In particular, atomic coherence induced by laser fields
plays an important role in light-matter interaction and has found numerous imple-
mentations in optical physics [44]. One prominent application is the modification of
the propagation of a light pulse through an atomic medium, which depends on the
dispersive properties of the medium. The study of such pulse propagation phenom-
ena has been triggered by a series of papers by Sommerfeld and Brillouin [70,71] and
continues to be of much interest [23,56,72–80]. It is well known that the group veloc-
ity of a light pulse can be slowed down [81–83], can become faster than its value c in
vacuum, or can even become negative [50,52,84–100]. Note that superluminal light
propagation with group velocity larger than c cannot transmit information faster
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CHAPTER 2: Group velocity control via interacting dark-state resonances

than the vacuum speed of light, such that it is not at odds with causality [101,102].
Superluminal light propagation has been investigated for many potential uses, not
only as a tool for studying a very peculiar state of matter, but also for developing
quantum computers, high speed optical switches and communication systems [103].

Both experimental and theoretical studies have been performed to realize super-
and subluminal light propagation in a single system. For example, speed control in
atomic systems has been achieved by changing the frequencies, amplitudes or phase
differences of the applied fields. It has been shown that switching from subluminal
to superluminal pulse propagation can be achieved by the intensity of the coupling
fields [89–92], and the relative phase between two weak probe fields [93]. Morigi et
al. [50] have compared the phase-dependent properties of the ⋄ (diamond) four level
system with those of the double Λ system. In Ref. [94], gain-assisted superluminal
light propagation was observed in a cesium vapor cell while in most other studies,
superluminal light propagation is accompanied by considerable absorption. Sub- and
superluminal light propagation together with nonlinear optical gain or losses were
observed in [96]. In [97], subnatural absorption resonances with positive and negative
dispersion were demonstrated in a standing wave field. Steep negative dispersion is
also possible in atomic media exhibiting electromagnetically induced absorption [98].
Two of the present authors suggested to use an incoherent pump field to control light
propagation from subluminal to superluminal [99, 100]. Recently, we have studied
the light propagation of a probe pulse in a four-level double lambda system, where
the applied laser fields form a closed interaction loop [52]. In such systems, the finite
frequency width of a probe pulse requires a time dependent treatment of the light
propagation. We have found both sub- and superluminal light propagation without
absorption or with gain, controlled by the Rabi frequency of one of the coupling
fields.

All these effects depend on the modification of the dispersive and absorptive
properties of the atomic medium. A particular class of systems that allows to modify
the optical response to a great extend are those with so-called interacting dark
resonances [104]. A characteristic feature of such systems is the appearance of
very sharp, high-contrast structures in the optical spectra. Resonances associated
with double dark states can be made absorptive or transparent and their optical
properties such as width and position can be manipulated by applying suitable
coherent interactions. It was also shown that very weak incoherent excitation of the
atoms can be sufficient to turn absorptive features into optical gain structures. This
has been proposed as a model system to obtain strong laser gain in the ultraviolet
and vacuum ultraviolet regime by Fry et al. [105].

In this chapter we consider probe pulse propagation through a system which
exhibits interacting dark resonances. The level configuration of our four-level scheme
is based on the lasing system proposed in [105], and consists of three atomic states in
ladder configuration, with an additional fourth perturbing state coupled by a laser
field to the upper state of the ladder system. The lower transition of the ladder
system acts as the probe transition. This system can be realized, e.g., in mercury,
where the probe transition has a low wavelength of 253.7 nm, i.e., in the ultraviolet
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Figure 2.1: (a) Energy scheme of the four level atomic system considered. Transition
|2〉 ↔ |4〉 is driven by a strong laser field, transition |1〉 ↔ |4〉 by a weak coupling
field, and the probe field interacts with transition |2〉 ↔ |3〉. In addition, a weak
incoherent field is applied to the probe field transition. (b) A possible realization
of the scheme in mercury. Population transfer to state 63P0 has to be compensated
via a repump field.

region. We find that the medium susceptibility in dependence on the probe field
detuning exhibits high-contrast structures characteristic of interacting dark states.
These structures typically lead to superluminal probe field propagation with high
absorption, and thus as such are of limited interest. If, however, a weak incoherent
pumping is applied in addition to the probe field transition, then we find that in
the region around a narrow structure both sub- and superluminal propagation as
well as negative group velocities are possible without absorption, controlled by the
incoherent pumping strength.

The chapter is organized as follows. In the next section (Sec. 2.2) we present our
model scheme, the corresponding equations of motion, and derive analytic expres-
sions for the response of the atomic medium. In Sec. 2.3 we then present numerical
results for the different cases without interacting dark state resonance, with interact-
ing dark state resonance, and with incoherent pumping. We interpret these results
in the dressed state picture and also study the influence of Doppler averaging.

2.2 Analytical considerations

2.2.1 The model system

We consider an atomic four level system as shown in figure 2.1(a). Transition |2〉 ↔
|4〉 is driven by a strong coherent field with frequency ω42 and Rabi frequency g42. A
weak coupling field with frequency ω41 and Rabi frequency g41 is applied to transition
|1〉 ↔ |4〉. The weak probe field with frequency ω23 and Rabi frequency g23 = gp

couples to transition |2〉 ↔ |3〉. Finally, an incoherent driving field with pump
strength Λ is applied to the probe transition. We further include spontaneous decay
with rates γ41, γ42, γ23, and γ13, respectively, on the dipole-allowed transitions. The
atomic transition frequencies are denoted by ω̄ij, and the laser field detunings with
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respect to the atomic transition frequencies are ∆ij = ωij − ω̄ij (i, j ∈ 1, . . . , 4). A
realization of our level scheme can be found, e.g., in mercury, see figure 2.1(b).

The density matrix equations of motion, in the rotating wave approximation, are

ρ̇11 = − 2γ13ρ11 + 2γ41ρ44 − ig∗41ρ14 + ig41ρ41 , (2.1a)

ρ̇22 = − 2γ23ρ22 + 2γ42ρ44 − 2Λρ22 + 2Λρ33

+ ig∗pρ32 − igpρ23 − ig∗42ρ24 + ig42ρ42 , (2.1b)

ρ̇33 =2γ13ρ11 + 2γ23ρ22 + 2Λρ22 − 2Λρ33 − ig∗pρ32 + igpρ23 , (2.1c)

ρ̇12 = − (Γ12 + i∆41 − i∆42 + Λ)ρ12 − ig∗42ρ14 − igpρ13 + ig41ρ42 , (2.1d)

ρ̇13 = − (Γ13 + i∆41 − i∆42 − i∆p + Λ)ρ13 − ig∗pρ12 + ig41ρ43 , (2.1e)

ρ̇14 = − (Γ14 + i∆41)ρ14 − ig41ρ11 + ig41ρ44 − ig42ρ12 , (2.1f)

ρ̇23 = − (Γ23 − i∆p + 2Λ)ρ23 − ig∗pρ22 + ig∗pρ33 + ig42ρ43 , (2.1g)

ρ̇24 = − (Γ24 + i∆42 + Λ)ρ24 − ig42ρ22 + ig42ρ44 + ig∗pρ34 − ig41ρ21 , (2.1h)

ρ̇34 = − (Γ34 + i∆p + i∆42 + Λ)ρ34 + igpρ24 − ig41ρ31 − ig42ρ32 , (2.1i)

ρ44 =1 − ρ11 − ρ22 − ρ33 . (2.1j)

In the above equations, Γij = (2γi + 2γj)/2 are the damping rates of the coherences
with γi being the total decay rate out of state |i〉, and ∆p = ∆23 is the probe field
detuning.

Our main observable is the response of the atomic medium to the probe field.
As will be discussed in Sec. 2.2.2, the linear susceptibility of the weak probe field is
determined by the probe transition coherence ρ23. We therefore proceed by solving
the above equations (2.1a)-(2.1i) in the steady state under the assumption of specific
parameter relations.

First, in the absence of the incoherent pump field (Λ = 0), an expansion of the
steady state coherence ρ23 to the leading order in the probe field Rabi frequency gp

yields

ρ23 =
−gp(|g41|2 − C13 · C34)

|g41|2C23 + C13(|g42|2 − C23 · C34)
, (2.2a)

C13 =∆p − ∆41 + ∆42 + iΓ13 , (2.2b)

C34 =∆p + ∆42 + iΓ34 , (2.2c)

C23 =∆p + iΓ23 . (2.2d)

It will turn out that an interesting parameter range for the present study is given
by

∆41 =∆42 = 0 , (2.3a)

∆p ≪γ31, γ41, γ42 , (2.3b)

g41 ≪g42 , (2.3c)

γ13 =0 . (2.3d)
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In this limit, equation (2.2a) becomes

ρ23 =
−gp(|g41|2 − i∆pΓ34)

|g42|2∆p + i[|g41|2Γ23 − ∆2
p(Γ34 + Γ23)]

. (2.4)

An inspection of equation (2.4) reveals that the imaginary part is strictly positive,
and the half width of the absorption peak around ∆p = 0 is determined by

w ≃
(

g41

g42

)2

Γ23 =

(

g41

g42

)2

γ23 . (2.5)

Next, we seek the corresponding steady state solution for ρ23 with incoherent
pump field with pump intensity Λ. The parameters are chosen to satisfy equa-
tions (2.3a)-(2.3d) as well as the new condition on the pump field

Λ0 ≪ Λ ≪ γ41, γ42 . (2.6)

Further, we assume the Rabi frequencies gij to be real in the following. We obtain
in leading order of the probe field coupling gp

ρ23 =
g2
41 gp γ23

(g2
42 γ23 + 2ΛΓ24 γ42)

∆p − iΛ

∆2
p + Λ2

. (2.7)

Here the parameter Λ0 is defined by

Λ0 =
g41 γ23 (γ41 + γ23)

g2
42 γ41 + γ23 Γ34 (γ41 + γ23)

≃
(

g41

g42

)2

γ23 . (2.8)

Since |g41/g42|2γ23 can be made small, for a suitable combination of the Rabi fre-
quencies g41 and g42 the condition Λ ≫ Λ0 can be fulfilled even for incoherent pump
strengths which are orders of magnitude smaller than those required, e.g., to saturate
the optical transition.

We find that the imaginary part of equation (2.7) is negative if the condition
Λ ≫ Λ0 is fulfilled. Thus Λ0 indicates the incoherent pumping rate at which the
absorption peak turns into a gain structure, if the conditions in equations (2.3a)-
(2.3d) and (2.6) are fulfilled.

2.2.2 Observables

Our main observable is the response of the atomic medium to the probe field. The
linear susceptibility of the weak probe field can be written as [4]

χ(ωp) =
Nηp

ǫ0Ep
ρ23(ωp) , (2.9)

where N is the atom number density in the medium, ηp is the probe transition
dipole moment and χ = χ′ + iχ′′. The susceptibility χ(ωp) is related to the index of
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refraction n = n′ + in′′ via n2(ωp) = 1 + χ(ωp), and the real and imaginary parts of
χ(ωp) correspond to the dispersion and the absorption, respectively.

The slope of the dispersion with respect to the probe detuning has a major role
in the calculation of the group velocity. We introduce the group index, ng = c/vg,
where the group velocity vg of the probe field for vanishing absorption is given
by [81,94]

vg =
c

n′(ωp) + ωp/[2n′(ωp)]
∂χ′(ωp)

∂ωp

. (2.10)

Equation (2.10) implies that, for a negligible real part χ′(ωp), the group velocity can
be significantly reduced via a steep positive dispersion. Strong negative dispersion,
on the other hand, can lead to an increase in the group velocity and even to a
negative group velocity.

Substituting equations (2.7) and (2.9) in equation (2.10), the group index of the
probe field evaluates to

ng − 1 =
g2
41 gp γ23

(g2
42 γ23 + 2ΛΓ24 γ42)

∆2
p − Λ2

(∆2
p + Λ2)2

. (2.11)

It can be expected from equation (2.11) that for suitable parameters, the group
index around ∆p = 0 is negative and accompanied by gain, and this is indeed what
we find below.

The relation between coherence and susceptibility equation (2.9) can be rewritten
as

χ(ωp) =
Nηp

ǫ0Ep
ρ23(ωp) =

3Nλ3
p

8π2

γ23

γ

ρ23(ωp)

gp/γ
, (2.12)

where we have used γ23 = (η2
pω̄

3
23)/(3πǫ0~c3) and gp = η23Ep/~ as well as ω23 =

2πc/λ23 with the probe transition wavelength λ23. For mercury probe wavelength
253.7 nm, particle density N = 1012cm−3 and γ23/γ = 0.14 as found in mercury one
finally obtains

χ(ωp) = 8.7 × 10−5 ρ23(ωp)

gp/γ
. (2.13)

Throughout our discussion of numerical results, we will assume these parameters in
order to evaluate the susceptibility.

2.3 Results

2.3.1 Without interacting dark state resonance

In figure 2.2 we show the real (blue dashed) and imaginary (red solid) part of the
probe field susceptibility χ versus the probe detuning ∆p, which correspond to the
dispersive and absorptive properties of the medium, respectively. In this figure, the
perturbing laser field is switched off, g41 = 0. The other parameters are γ41 =

40



2.3. Results

-6 -4 -2 0 2 4 6

-0.4

-0.2

0

0.2

0.4

∆p/γ

1
0
4
·χ

Figure 2.2: Real (blue dashed) and imaginary (red solid) parts of the susceptibility
χ as a function of the probe detuning ∆p for the parameters γ41 = γ, γ23 = 0.14 γ,
γ42 = 0.79 γ, γ13 = 0.01 γ, gp = 10−4 γ, g41 = 0, g42 = 4 γ, Λ = 0, ∆42 = ∆41 = 0.

γ, γ23 = 0.14 γ, γ42 = 0.79 γ, γ13 = 0.01 γ, gp = 10−4 γ, g42 = 4 γ, Λ = 0, ∆42 =
∆41 = 0. Note that the ratios of the decay rates correspond to the case found in
mercury, see figure 2.1(b). We have added a weak decay rate γ13, since otherwise
in the steady state all population is trapped in |1〉. The driving field with Rabi
frequency g42 leads to an Autler-Townes doublet with a dip in the absorption at zero
detuning, i.e., partial electromagnetically induced transparency (EIT). The slope of
the real part of the susceptibility in the region of reduced absorption is positive.
We thus find that subluminal light propagation occurs around zero detuning with
reduced absorption as it is common for EIT. If the state |4〉 was long-lived, then the
EIT leading to the partial transparency would be more pronounced such that the
absorption would vanish at zero detuning.

2.3.2 With interacting dark state resonance

In figure 2.3, in addition we apply the weak perturbing field with Rabi frequency
g41 = 0.04 γ, and assume negligible decay on transition |3〉 ↔ |1〉, since a trapping
in this state is now avoided by the additional laser field. The results are identical
to figure 2.2 except for a narrow absorption spike at around zero detuning. The
shape and width of the absorption spike are determined by equation (2.2a) and
equation (2.5), respectively. In particular, the width is much less than the natural
linewidth. Again, for a long-lived state |4〉, the transparency regions on each side of
the absorption spike would become two points of EIT, i.e., a double dark state [104].
In terms of the light propagation, the slope of the real part of the susceptibility
around zero detuning is negative such that superluminal light propagation could be
observed, albeit with high absorption.

41



CHAPTER 2: Group velocity control via interacting dark-state resonances

-6 -4 -2 0 2 4 6

-0.4

-0.2

0

0.2

0.4 (a)

∆p/γ

1
0
4
·χ

-0.4 -0.2 0 0.2 0.4

-5

0

5

10

15

(b)

103 · ∆p/γ

1
0
4
·χ

Figure 2.3: Real (blue dashed) and imaginary (red solid) parts of the susceptibility
χ as a function of the probe detuning for γ13 = 0 and g41 = 0.04 γ. The other
parameters are the same as in figure 2.2. (b) is a closeup on the central part of (a).

2.3.3 With interacting dark state resonance and

incoherent pumping

We now in addition apply a weak incoherent pumping field on the probe transition
|2〉−|3〉. Figure 2.4 shows the corresponding results. The incoherent pump field rate
is chosen as Λ = 4 × 10−5γ. In this case, the superluminal light propagation found
in figure 2.3 at ∆p = 0 switches to subluminal propagation, and the absorption spike
at zero detuning becomes a gain spike. The shape of the gain spike is determined by
the imaginary part of equation (2.7) which is Lorentzian with halfwidth equal to Λ.
A dressed-state analysis of the transition to an amplifying medium will be given in
section 2.3.4. It can be seen from figure 2.4 that at ∆p ≈ ±3.1×10−4γ (indicated by
the purple vertical lines), the imaginary part of the susceptibility vanishes together
with a negative slope of the real part. At these probe field detunings, the real part of
the susceptibility itself is non-zero, and is negative (positive) for ∆p ≈ −3.1×10−4γ
(∆p ≈ −3.1 × 10−4γ). In the following, we discuss the two cases of interest with
resonant or non-resonant probe field separately.

We start with the resonant case ∆p = 0. In figure 2.5(a), we study the effect
of the incoherent pumping strength Λ on the magnitude of the imaginary part of
the susceptibility χ at resonance ∆p = 0. It can be seen that depending on the
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Figure 2.4: Real (blue dashed) and imaginary (red solid) parts of the susceptibility
χ as a function of the probe detuning for Λ = 4× 10−5 γ. The other parameters are
the same as in figure 2.3. (b) is a closeup on the central part of (a). The purple
vertical lines indicate the roots of the imaginary part.

coupling field Rabi frequency g42, the transition from absorption to gain occurs at
different values of the incoherent pumping. For the parameters of figure 2.3, which
correspond to the long-dashed green curve in figure 2.5(a), the transition is at about
Λ ≈ 2 × 10−5 γ. This explains why gain could be observed for the parameters
in figure 2.4. On increasing the incoherent pumping further, the imaginary part
approaches zero again.

After the discussion of the absorption, we now turn to a discussion of our main
observable, the group velocity. Since the real part of χ itself vanishes at ∆p = 0,
the group velocity is determined by the slope of the real part of the susceptibility at
∆p = 0, see equation (2.10). This quantity is shown in figure 2.5(b). It can be seen
that, for no or small incoherent pumping, the system exhibits a negative slope, which
leads to a superluminal or even negative group velocity. On increasing Λ, the slope
can be adjusted to large positive values, where subluminal light can be expected.
Thus in principle the system allows for a wide range of group velocities, controlled
via the incoherent pump rate Λ. But from a comparison of figures 2.5 (a) and (b)
it can be seen that typically negative slopes are accompanied by absorption, while
positive slopes occur together with gain. Thus at ∆p ≈ 0, only a reduction of the
group velocity is accessible in experiments without absorption. The different curves
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Figure 2.5: (a) Imaginary part χ′′ of the susceptibility as a function of the pumping
field strength Λ. The parameters are as in figure 2.3 with ∆p = 0, and g42 = 15γ
(solid red), 10γ (short-dashed blue), 4γ (long-dashed green). (b) Slope of the real
part χ′ of the susceptibility at zero probe field detuning ∆p = 0 for parameters as
in (a).

in figure 2.5 further show that the precise response of the system to the incoherent
pumping can be controlled by varying the coupling field Rabi frequency g42. In
particular, stronger coupling fields g42 may be favorable, since then the range of
possible slopes is increased, as can be seen from figure 2.5(b).

We now turn to a discussion of the non-resonant case, ∆p 6= 0, and focus on
the regions with vanishing absorption, such as ∆p ≈ ±3.1 × 10−4γ in figure 2.4.
It can be seen that around these probe field detunings, the imaginary part of the
susceptibility vanishes, such that the probe field passes unattenuated through the
medium. At the same time, the real part of the susceptibility is non-zero, and has
a negative slope. Therefore, at these frequencies, superluminal or negative group
velocities are accessible without absorption. In order to study this result in more
detail, in figure 2.6(a) we show the probe field detuning ∆0 at which the imaginary
part of the susceptibility vanishes as a function of the incoherent pumping rate Λ.
It can be seen that for no or small incoherent pumping Λ, there is always absorption
such that no ∆0 can be found. Once Λ is large enough for a root in the imaginary
part of the susceptibility to occur, the position of the root first increases rapidly
with Λ, and then saturates. The required value of Λ also depends on the strength
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Figure 2.6: (a) Position ∆0 of the root of the imaginary part of the susceptibility
χ as a function of the pumping field strength Λ. At this frequency, light passes
unattenuated through the medium. (b) Slope of the real part χ′ of the susceptibility
at the detuning ∆0 with vanishing absorption. The parameters are as in figure 2.3
but with g42 = 10γ (short-dashed blue), g42 = 7γ (solid purple), and g42 = 4γ
(long-dashed green).

of the coupling field g42 as can be seen from figure 2.6(a).

The corresponding figure 2.6(b) depicts the slope of the real part of the suscep-
tibility as a function of Λ. It can be seen that by varying the pump field strength Λ,
both positive and negative slopes can be achieved at frequencies where the medium
absorption is zero. After passing through a maximum positive slope, the slope
drops to a minimum negative slope and then slowly increases again towards vanish-
ing slope. For every value of the coupling field Rabi frequency g42, optimum values
of Λ can be identified where the slope is steepest and either positive or negative.
The maximum absolute values of the slope are of order 10−9 s−1, such that the term
proportional to ∂χ′/∂ω in the denominator of equation (2.10) for our probe tran-
sition varies between approximately −107 and +107. Therefore, strongly sub- and
superluminal propagation as well as a large range of negative group velocities occur
without absorption in our sample, controlled by the magnitude of the incoherent
pumping. It should be noted that only very weak incoherent pumping is required,
as can be seen from the scaling of the x-axes in figures 2.6.
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Figure 2.7: Populations of dressed state ρ00 = 〈 |0〉〈0| 〉 defined in equation 2.14a
(solid red), bare state ρ33 = 〈 |3〉〈3| 〉 (short-dashed blue), and imaginary part of
the susceptibility (long-dashed green) as a function of the pumping field strength Λ.
The parameters are as in figure 2.3 with ∆p = 0. The vertical purple line indicates
the transition from absorption to gain.

2.3.4 Dressed-state analysis

We now introduce the dressed states generated by the strong driving field acting on
transition |2〉 ↔ |4〉 and the coupling field acting on transition |1〉 ↔ |4〉, in order
to demonstrate the presence of interacting dark resonances due to the perturbing
field with Rabi frequency g41 [105]. In the absence of the incoherent pump field, the
dressed states are

|0〉 = − g42
√

g2
41 + g2

42

|1〉 +
g41

√

g2
41 + g2

42

|2〉 , (2.14a)

|±〉 =
g41

√

2(g2
41 + g2

42)
|1〉 +

g42
√

2(g2
41 + g2

42)
|2〉 ∓ 1√

2
|4〉 , (2.14b)

with energies

λ0 = 0 , λ± = ±~

√

g2
41 + g2

42. (2.15)

The two dressed states |±〉 correspond, in the limit of vanishing driving field g41, to
the usual Autler-Townes dressed components split by 2~g42. The third dressed state
|0〉 coincides in this limit with the bare state |1〉 and hence is decoupled from the
fields. This is no longer so in the presence of a second weak driving field g41. In this
case the dressed state |0〉 contains an admixture of |2〉 and thus has a nonzero dipole
matrix element with the state |3〉. As a result of this coupling, there are transitions
between |0〉 and |3〉. In the bare state picture, these transitions correspond to three
photon resonances |1〉→|4〉→|2〉→|3〉 [105].

The transition from absorption to gain under the influence of the incoherent
pump field Λ can be interpreted in terms of transitions between the different bare
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and dressed states. As explained above, the narrow double dark state resonance
arises due to transitions from dressed state |0〉 to bare state |3〉. In figure 2.7, we
show the populations of these two states together with the imaginary part of the
susceptibility for parameters as in figure 2.3. The probe field detuning is chosen
as ∆p = 0, i.e., we look at the center of the narrow structure. It can be seen
that, as expected, virtually all population is in bare state |3〉 for vanishing pumping
field. The reason for this is that the weak probe field can only transfer a very
small amount of population into the other states. With increasing pumping field
Λ, however, the population transfers out of state |3〉 into dressed state |0〉. The
population in |0〉 dominates among the different dressed states because it contains
a large contribution of bare state |1〉, which is populated by spontaneous emission,
but emptied only by the weak perturbing field g41. Together with this population
transfer, the absorption decreases, until the imaginary part of the susceptibility
vanishes where the populations of |3〉 and |0〉 are equal. A further increase of the
incoherent pumping generates a population inversion on transition |0〉 → |3〉, such
that the medium amplifies. Thus, the absorption or amplification properties of the
narrow double dark resonance can be directly explained by the population difference
between the initial and the final state. A modification of this difference via the
incoherent pump field allows to control the medium absorption.

2.3.5 Doppler averaging

Finally, we discuss the influence of Doppler broadening on the results obtained so
far. One might be tempted to judge that the narrow structure arising from the
interacting dark resonances will be washed out if broadening is taken into account.
In order to clarify this question, we averaged our results for the susceptibility over
a Maxwellian velocity distribution (Eq. 1.23 of the atoms in order to simulate a
Doppler broadened gas. The distribution is characterized by the mean absolute
velocity of the atoms (Eq. 1.21). In the following numerical analysis, we assume
a particle density of 1012 cm−3. For mercury, this corresponds to a temperature
of about 256 K [106], a mean velocity vm = 145.68 m/s, and a Doppler width of
3.6 GHz. All laser fields are co-propagating in the same direction.

In figure 2.8(a), we compare the susceptibility with and without Doppler averag-
ing for parameters as in figure 2.4(b). Without averaging, for this set of parameters
the medium exhibits gain, and the real part of the susceptibility has positive slope
around ∆p = 0. Moving away from the resonance, the real part approaches zero.
A comparison with the averaged results shows that, interestingly, the width of the
narrow double dark state resonance is largely unaffected by the broadening. But
the averaged medium absorbs, and the slope of the real part of the susceptibility is
negative. Away from the resonance, the real part tends to a positive value. It turns
out that due to the Doppler broadening, the two wide resonances at ∆p ≈ ±4γ
shown in figure 2.4(a) move together. This causes an increase of the baseline of
the imaginary part of the susceptibility around ∆p = 0. It is possible to counter
this effect by increasing the Rabi frequency g42, which is responsible for most of the
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Figure 2.8: Doppler averaged susceptibilities. The particle density is 1012 cm−3,
which corresponds to a temperature of about 256 K. The short-dashed blue and the
solid red curves are the real and imaginary part of unbroadened reference data. The
dotted black and the dash-dotted green curve are corresponding Doppler averaged
results. (a) Parameters are as in figure 2.4(b). (b) As in (a), but with g42 =
12 γ for the Doppler averaged susceptibility. (c) Reference: Parameters as in (a)
except for Λ = 21.0 · 10−6 γ, which corresponds to the largest negative slope of the
corresponding long-dashed green curve in figure 2.6(b). The averaged curves are
drawn for the same parameters except for g42 = 8 γ. (d) Reference: Parameters as
in (a) except for Λ = 16.45 · 10−6 γ, which corresponds to the largest positive slope
of the corresponding long-dashed green curve in figure 2.6(b). The averaged curves
are drawn for the same parameters except for g42 = 7.32 γ.

splitting of these two resonances. In figure 2.8(b), we show unbroadened curves as
in subfigure (a) together with curves for the Doppler averaged case with g42 = 12 γ.
It can be seen that qualitatively similar results can be obtained in the averaged
case simply by increasing g42, even though in this particular case the magnitude
of the response of the averaged medium is smaller than in the reference case. In
subfigures (c,d), we turn to parameters where in the unaveraged case the slope of
the real part of the susceptibility has maximum positive or negative values, as these
are the most interesting points in terms of group velocity control. In (c), the param-
eters of the reference curves are as in (a), except for the incoherent pumping rate
Λ = 21.0 ·10−6 γ, which is the rate at which the largest negative slope is obtained for
the corresponding long-dashed green curve in figure 2.6(b). The Doppler averaged
curves are drawn for the same parameters except for an increase of g42 to g42 = 8 γ,
as explained above. It can be seen that, both for the averaged and the unaveraged
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case, the medium absorption vanishes at a certain probe field frequency together
with negative dispersion of comparable slope. In (d), the parameters are as in (a)
except for Λ = 16.45 · 10−6 γ. At this pumping rate, the largest positive slope of the
corresponding long-dashed green curve in figure 2.6(b) occurs. The averaged curves
are drawn for the same parameters except for g42 = 7.32 γ. For these parameters,
comparable negative dispersion is achieved at the point of transparency.

In figure 2.8(d), the slope of the dispersion around the point of vanishing ab-
sorption is almost constant over a frequency range roughly given by the width of the
narrow resonance. This is an important requirement in order to achieve undistorted
pulse propagation through the medium [24]. The case of maximum negative dis-
persion in figure 2.8(c) has a small curvature of the dispersion in the transparency
region. This curvature can be minimized by moving the transparency region to a
suitable position via a change of the incoherent pump rate Λ.

It should be noted that we only modified the coupling field Rabi frequency g42 in
order to recover large positive or negative dispersion without absorption depending
on the applied incoherent pump rate Λ. This change was motivated by the need
to compensate the shifting of the broad resonances due to the Doppler averaging.
An additional optimization of the other system parameters may further improve the
result. A different setup of the laser propagation directions was discussed in [105].
Experimental observations of narrow double dark resonances in Doppler broadened
media were reported, e.g., in [107–109].

2.3.6 Numerical verification of the analytical results

Throughout this section, the figures 2.2-2.8 have been obtained from a numerical
solution of the full density matrix equations (2.1a)-(2.1i). In the following, we ver-
ify our approximate analytical expressions, equations (2.2a)-(2.7), by a comparison
to the exact numerical calculations. The result is shown in figure 2.9, where the
solid red curves correspond to the approximate analytical solutions, whereas the
blue dashed curves represent our numerical results. The approximate result equa-
tion (2.4) for the case without incoherent pump field is shown in comparison to the
numerical data in figure 2.9(a,b). It turns out that in this case, the results from
equation (2.4) are virtually identical to the corresponding numerical results. Equa-
tion (2.7) for the case with incoherent pumping is compared to the numerical results
in figure 2.9(c,d). Here, the analytic results only describe the qualitative behavior
of the curves. The reason for this is that in this figure, we chose parameters for
which the condition Λ ≫ Λ0 in equation (2.6) is not well satisfied. If the incoherent
pumping Λ is increased, the agreement of the approximate results with the numeri-
cal calculation improves. Thus we conclude that our analytical results describe the
system well enough to allow for an optimization of the parameters towards a desired
peak structure, as long as the conditions on the parameters are satisfied.
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Figure 2.9: Real (a,c) and imaginary (b,d) parts of the susceptibility χ as a function
of the probe detuning. The analytical results are shown as solid red lines, whereas
our numerical results are shown as dashed blue lines. The parameters in (a,b) are as
in figure 2.3, and equation (2.4) is shown as the analytical result. The parameters
in (c,d) are as in figure 2.4, with equation (2.7) as analytical result.

2.4 Conclusion

We have discussed the dispersive and absorptive properties of a four-level atomic
medium that exhibits interacting dark-state resonances. In our numerical analysis,
we have focused on mercury atoms with an ultraviolet probe field wavelength of
243.7 nm. Due to the interacting resonances, a high-resolution structure appears in
both the absorption and the dispersion spectra. A weak probe field tuned to this
resonance usually experiences superluminal propagation with absorption. But if in
addition a weak incoherent pump field is applied to the probe transition, then the
superluminal light propagation changes to subluminal light propagation accompa-
nied by no absorption or gain. Slightly off resonance, the probe field experiences
a vanishing imaginary part of the susceptibility. At these off-resonant frequencies,
the real part of the susceptibility itself is non-zero and has a slope depending on the
incoherent pumping strength. Thus both sub- and superluminal light propagation
as well as negative group velocities can be achieved without absorption. The con-
trol via the incoherent pump fields suggests potential applications, e.g., in optical
switching devices or in controllable pulse delay lines for the ultraviolet frequency
region.
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Chapter 3

Four-wave mixing enhanced

white-light cavity

We discuss bandwidth enhancement of a cavity without reducing its max-

imum intensity buildup in a regime where the light propagation dynam-

ics is crucial. The enhancement relies on a frequency-dependent phase

compensation via negative dispersion provided by a coherently prepared

atomic medium in the cavity. We analyze the spatiotemporal dynamics

in such a white light cavity with a full simulation of the field propaga-

tion. We find that the probe field dispersion is in addition changed by a

coherent field which is generated within the medium via four-wave mix-

ing. Counter intuitively, this in-medium dynamics leads to a further

enhancement of the cavity bandwidth.

3.1 Introduction

In an optical cavity, the bandwidth of supported frequencies and the intensity
buildup are inversely proportional [110]. Increasing the cavity’s finesse, e.g., via the
reflectivity of the mirrors, leads to a higher buildup for a smaller range of frequen-
cies and vice versa. The reason is that frequencies away from the cavity resonance
correspond to different wavelengths which do not exactly fulfill the resonance condi-
tion. Thus, they acquire a phase shift with respect to the resonance frequency and
experience loss at the mirrors. In terms of applications, this inverse dependence is
a limiting factor for a number of schemes. Perhaps most prominently, gravitational
wave detectors (GWD) aim at detecting tiny oscillations that ideally could be am-
plified by the power buildup in a high-quality cavity with large bandwidth [111]. To
overcome this problem, the concept of a so-called white-light cavity (WLC) was de-
veloped [112]. Its basic idea is to employ a mechanism inside the cavity that cancels
the phase shift for off-resonant frequencies, thereby improving the bandwidth of a
cavity without the drawback of reducing its maximum buildup. In the case of GWD
one could increase sensitivity without restricting detection bandwidth.
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It may seem that the simplest implementation of a WLC would be to insert
a pair of plain parallel gratings into the cavity such that their diffraction leads
to a frequency dependent path length [113]. However, this scheme is not feasible
because of the additional position dependent phase shift caused by diffraction at a
grating [114].

A different implementation of WLC uses a medium with negative dispersion in-
side the cavity. In such a medium, phase shifts due to wavelength mismatch can be
compensated by suitable phase shifts generated via a frequency-dependent index of
refraction. Proposed systems include a strongly driven double-Λ system with inco-
herent pumping [112], a strongly driven two-level atomic resonance, and a Λ-system
off-resonantly driven by two strong fields [115]. In the latter case, the negative dis-
persion occurs between two gain lines. This has also been used in an experiment
to demonstrate negative group velocity [116], a closely connected phenomenon, and
recently the first experimental demonstration of a WLC was accomplished in such
a system [117]. In a different experiment the nonlinear negative dispersion occur-
ring in a standard Λ-system at higher probe field intensities was used [118]. In this
case, however, the cavity bandwidth becomes dependent on the probe field intensity.
Complementary to the original WLC approach, recently a high-quality white-light
cavity was demonstrated with a whispering gallery mode resonator [119], which re-
lies on an effectively continuous mode spectrum, however, with rather low input and
output coupling.

The experimental results show that the concept of a cavity bandwidth enhance-
ment with a negative dispersion medium is promising. But whether a real benefit in
applications beyond proof of principle will be possible with this concept will depend
on the flexibility of the level scheme, scalability of its parameters, and the influence
of competing or disturbing processes on the performance. Advancing to more com-
plex level schemes than standard electromagnetically induced transparency (EIT)
based setups motivated by the desire for better control over the WLC, however,
typically leads to absorption in the probe or control field amplitudes throughout the
propagation, severely degrading the performance in the required extended media.

In this chapter, we discuss such propagation effects in WLC media with strong
control field absorption, and show that instead, the WLC bandwidth enhancement
can be improved due to an electromagnetic field that is generated and sustained
by the atomic medium itself via four-wave mixing (4WM). In particular, we study
light propagation through an atomic four-level medium in double-Λ configuration
as depicted in Fig. 3.1. The medium is prepared by two control fields coupling
to the transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉, while the probe field is applied to the
|1〉 ↔ |4〉 transition. This configuration is well known to exhibit 4WM [58,120–122],
resonantly enhanced to a high conversion efficiency by the double-Λ scheme. If the
probe field is present, an additional field is generated within the medium on the
transition |2〉 ↔ |3〉 which in turn changes the probe field dispersion. This backaction
of the probe field onto itself is a processes occurring during the propagation of the
light through the medium and cannot be captured in a standard treatment in terms
of a single atom susceptibility analysis. Also, the two coupling fields are absorbed
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|1〉 |2〉

|3〉

|4〉

Ω41 Ω42

Ω31

γ41 γ42

γ31 γ32

Figure 3.1: The considered double-Λ level scheme. Thick solid blue lines indicate
strong continuous-wave driving fields. The probe field is shown as dashed red arrow.
The dotted blue arrow represents a field generated within the medium via four-
wave mixing. Ωjk are Rabi frequencies. The spontaneous decays with rates γjk are
denoted by the wiggly green lines (j ∈ {3, 4}, k ∈ {1, 2}).

such that their intensity changes substantially throughout the medium, at the same
time preparing the medium in a position-dependent initial state. Therefore, apart
from theoretical modelling, we numerically study the full propagation dynamics of all
fields through the medium in order to determine their influence on the performance
of a WLC.

The chapter is organized as follows. In the following section (Sec. 3.2), we review
the resonance profile of an empty cavity. We explain the enhancement scheme for
the cavity bandwidth and derive the condition for phase compensation in a white-
light cavity. In Sec. 3.3, we then turn to the analysis of light propagation effects in
our system. We discuss the relation of the phase-compensation condition to negative
group velocity and study the influence of parametric processes on the propagation
dynamics. Then, we define an effective medium susceptibility that includes all light
propagation effects and can be calculated numerically. In the next section (Sec. 3.4),
we present results for the effective susceptibility and the enhanced cavity bandwidth.
Here, the influence of the 4WM process and its backaction on the probe field become
apparent. We also discuss issues such as under- or overcompensation, influence of
the transverse beam profile of the control fields, and the dependence of the enhance-
ment factor on different initial cavity linewidth. Finally, we draw some conclusions
regarding the implementation of our scheme (Sec. 3.5) and summarize our results.
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3.2 Bandwidth of an optical cavity

3.2.1 Empty cavity

The resonance profile of an optical cavity is given by [110]

I =
Imax

1 + (2F/π)2sin2(ϕ/2)
, (3.1)

where Imax = I0/(1−r)2 is the maximum intensity buildup, F = πr1/2/(1−r) is the
cavity finesse, and reiϕ is the round trip loss and phase shift. Without a medium
the phase shift with respect to the resonance frequency is given by

ϕ0 =
2L∆

c
, (3.2)

with L the cavity length, ∆ = ω − ω0 the detuning from the resonance frequency
ω0, and c the speed of light in vacuum. This phase shift leads to a cavity bandwidth
(FWHM) of

γ0 =
πc

LF . (3.3)

3.2.2 White-light cavity condition

A medium of length l < L and refractive index n inside the cavity leads to an
additional phase shift

ϕ1 =
2lω0

c
(n − 1) . (3.4)

We assume that close to the resonance frequency n can be approximated as

n = 1 +
ng

ω0
∆ + n3∆

3 + O(∆5) , (3.5)

where ng = ω0
∂n
∂ω

∣

∣

ω0
is the group index and n3 = 1

6
∂3n
∂ω3

∣

∣

ω0
is the third order correction

term to a linear slope. The second and fourth order term vanish since the resonance
frequency is an inflection point of the dispersion if probe field frequency and cavity
resonance coincide. The condition for phase compensation ϕ0 + ϕ1 = 0 evaluates to
(WLC condition)

ng = −L

l
. (3.6)

Now the terms linear in frequency cancel and the enhanced cavity bandwidth is
given by (FWHM)

γ1 =

(

4πc

lω0n3F

)
1
3

. (3.7)

It is proportional to n
−1/3
3 which incorporates the width of the approximately linear

part of the dispersion.
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Figure 3.2: Peak of a probe field pulse for successive times (i)-(vi), scaled to the
respective maximum in time. The peak leaves the medium before it enters and runs
through the medium in reversed direction.

3.3 Light propagation effects

3.3.1 Relation to negative group velocity

From the WLC condition (Eq. 3.6) we see that a WLC requires a medium with
negative group velocity. Therefore, in a first calculation, we propagate probe pulses
of different bandwidths through the double-Λ medium and optimize parameters for
a negative group index. For this, we derive the Maxwell-Schrödinger equations
describing the light propagation through the medium using standard techniques [4],
and solve the equations numerically on a grid using a Lax-Wendroff integration
method [123]. We assume an l = 0.3 m long medium with a density of N = 6.6 ×
1015 m−3 of Sodium atoms (optical depth ≈ 1) and initial control field strengths
of Ω42 = 15.5 γ and Ω31 = 16 γ. The weak probe field (Ω41 = 0.1 γ) is applied to
transition |1〉 ↔ |4〉.

For a Gaussian probe field envelope the peak of the pulse leaves the medium
before it enters and runs through the medium in reversed direction (see Fig. 3.2).
This behavior is typical for a medium with negative group velocity [116,124]. From
the advancement in time Ta of the pulse peak after passing the medium we calculate
the group index, ng = −c Ta/l.

3.3.2 Parametric processes

As we are most interested in propagation effects, we calculate the modification of
the different field amplitudes throughout the medium. A typical evolution is shown
in Fig. 3.3. The control fields are attenuated to about 60% of their initial value. At
the same time, the control fields together with the probe field generate an additional
field on the transition |2〉 ↔ |3〉 via 4WM. This internally generated field and the
externally applied fields form a closed interaction loop [36, 52], that in turn leads
to light scattering into the probe field mode. By means of this backaction, the
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Figure 3.3: Attenuation or amplification of the control fields (solid blue line), probe
field (dashed red line), and generated field (dotted blue line) over the medium. The
generated field is scaled to the initial value of the probe field.

probe field dispersion is changed as we will see later. Furthermore, the probe field
is amplified by about 10%, which allows to compensate for losses inevitable in an
experimental realization.

3.3.3 Effective susceptibility

To evaluate the medium performance, in a second calculation, we extract the effective
medium susceptibility by comparing amplitude and phase of a continuous wave probe
field at the medium entry and exit after full numerical propagation, simulating an
experimental measurement. For this, we relate the probe field at the medium exit
Ω41(l) to the initial field Ω41(0) by

Ω41(l) = Ω41(0)e
−kl χ′′

2 eikl χ′

2 , (3.8)

where k is the respective wave number whereas χ′ and χ′′ are the real and imaginary
part of the effective susceptibility. The obtained susceptibility describes a single pass
of the probe field through the medium.

3.4 Results

3.4.1 Group index and effective susceptibility

Next, we discuss the results from the numerical analysis of the propagation dynamics.
The group index and the effective susceptibility is shown in Fig. 3.4 against the
probe field detuning. In addition to the case with full medium dynamics, we also
show as dashed lines the corresponding susceptibility that is obtained if the medium
backaction via 4WM and the closed-loop scattering is suppressed. This is achieved
by artificially setting the generated field on transition |2〉 ↔ |3〉 to zero throughout
the numerical analysis. In the latter case, the effective susceptibility can perfectly
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Figure 3.4: (a) Group index of a Gaussian probe pulse with bandwidth of 2γ (dotted
line) and γ/2 (solid line). The dashed line shows bandwidth γ/2, but with field
generation via 4WM suppressed. Bandwidth narrowing below γ/2 does not change
the group index significantly. (b) Real part χ′ (upper blue lines) and imaginary part
χ′′ (lower red lines) of the effective probe field susceptibility with (solid lines) and
without (dashed lines) 4WM.

be explained by averaging the result of a single-atom analysis over the non-uniform
control field intensities in the medium. In contrast, in the general case with 4WM
and medium backaction present, a single-atom analysis combined with an averaging
fails to give the correct results.

It can be seen from Fig. 3.4 that the probe field dispersion with 4WM has
both smaller slope and group index than without backaction (Fig. 3.4 (a) and (b),
solid lines). It may seem that a smaller group index deteriorates the bandwidth
enhancement. But as long as the group index for a resonant pulse reaches values
below ng = −1, the WLC condition Eq. (3.6) can be fulfilled, if the ratio of medium
length to cavity length is suitably adjusted. In our numerical calculation, we find
ng ≃ −2 which corresponds to a medium filling about half of the cavity.

3.4.2 Bandwidth enhancement

The results for the effective susceptibility show that the considered four-level medium
is suitable to provide a negative dispersion for phase compensation in a WLC. In a
quantitative example, we now calculate the cavity resonance profile including phase
compensation by the medium. We assume a cavity finesse of F = 1000 which corre-
sponds to a mirror reflectivity of r = 99.68%, and a cavity length of L = 59.5 cm for
which the WLC condition is fulfilled in the case with 4WM. With 4WM suppressed,
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Figure 3.5: Intensity buildup for an F = 1000 cavity without medium (i) and
with the proposed WLC medium (iv). Curve (iii) shows the corresponding medium
result with four-wave mixing artificially suppressed. The other three profiles show
the general case with 4WM and a 2% (ii), a −2% (v), and a −4% (vi) mismatch
of the cavity length with respect to the WLC condition. For better visibility the
different profiles have been shifted by multiples of 0.25 with respect to each other.
Profiles (iii) and (iv) have the same shift.

the negative group index is larger such that the WLC condition is violated for the
same parameters. We compensate this by adjusting the medium length l suitably,
but keep the cavity length L fixed such that the empty cavity bandwidth γ0 remains
equal. The corresponding cavity resonance profiles are shown in Fig. 3.5. Without
4WM, the cavity bandwidth is enhanced by about a factor of 20 (Fig. 3.5 (iii)).
With 4WM, the enhancement is by a factor of about 30 (Fig. 3.5 (iv)). Thus, the
in-medium dynamics enhances the desired bandwidth increase.

At the WLC condition, the enhanced bandwidth profiles become quadratically
flat around the resonance frequency. Under- or overcompensating the frequency
dependent phase shift leads to a less flat response, see Fig. 3.5. Similarly, the
bandwidth enhancement depends on the control field intensity, and thus on the
transverse distance x to the control field center axis. We assumed a Gaussian control
field intensity profile with width σc and show the spatial enhancement variation in
Fig. 3.6 (a). For comparison, intensity profiles of probe beams with widths σc/3 and
σc/10 are shown as shaded areas. Full bandwidth enhancement is achieved up to
about x = 0.25σc.

We also calculated the cavity bandwidth enhancement for different values of
empty cavity bandwidth and for both cases, with and without 4WM. The result is
shown in Fig. 3.6 (b) in a double-logarithmic plot. Both curves are indistinguishable

from the theoretical power law γ1/γ0 ∝ (γ0/γ)−
2
3 that is evident from Eqs. (3.3) and
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Figure 3.6: (a) Cavity bandwidth throughout a Gaussian transverse control field
intensity profile with width σc (solid line). Shaded areas indicate probe beam inten-
sity profiles with widths σc/3 and σc/10. (b) Enhancement factor with (solid line)
and without (dashed line) the in-medium generated 4WM-field against empty cavity
bandwidth γ0.

(3.7). Again, in Fig. 3.6 (b), the bandwidth with full medium dynamics (solid line)
is enhanced compared to the case without 4WM (dashed line).

From Fig. 3.6 (b), bandwidth enhancement factors above 103 are theoretically
predicted for high quality cavities. This result, however, neglects practical issues
common to light propagation setups with gases as follows. In an atomic gas medium
suitable for the required phase compensation, typically Doppler effects need to be
considered. In existing experiments (see, e.g., [116–118]), this issue could be over-
come. As far as the propagation effects in our level scheme are concerned, the
relevant processes are two-photon Raman transitions and four-photon closed-loop
transitions. For these transitions the Doppler effect typically cancels to first order
at the resonance frequency if the fields co-propagate. However, since the mechanism
for a WLC relies on a frequency range around the resonance frequency, quantitative
changes to our results can be expected. Second, an exact fulfilling of the WLC con-
dition requires a stabilization of the different parameters such as the control field
strengths and the cavity length. An accurate control of the cavity length e.g. via
piezo elements could also be used to compensate fluctuations in the control field
strengths. From Fig. 3.5(ii), (v), (vi) and Fig. 3.6 (a) it can be seen that a WLC
condition mismatch on the few percent level typically is not critical.
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3.5 Conclusion

As far as the application of a WLC in a GWD is concerned in principle the bandwidth
enhancement factor should be directly convertible into a sensitivity enhancement of
the same order. A question that has to be addressed, however, is how to actually
implement a WLC into a GWD. Especially the larger scales of the cavity in the
case of existing GWDs [111] consisting of the interferometer and a so-called signal
recycling mirror pose a demanding task.

In summary, we have investigated a white-light cavity enhanced by in-medium
propagation dynamics. The probe field generates an additional light field via four-
wave mixing during the light propagation. The presence of the additional field in
turn changes the probe field dispersion which leads to a further bandwidth enhance-
ment.
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Chapter 4

Phase modulation induced by

cooperative effects in electro-

magnetically induced

transparency

We analyze the influence of dipole-dipole interactions in an electromag-

netically induced transparency setup for a density at the onset of co-

operative effects. We show both analytically and numerically that the

polarization contribution to the local field strongly modulates the phase

of a weak pulse. We give an intuitive explanation for this local field
induced phase modulation and demonstrate that it distinctively differs

from the nonlinear self-phase modulation a strong pulse experiences in a

Kerr medium.

4.1 Introduction

Electromagnetically induced transparency (EIT) stands out as one of the most use-
ful coherence and interference phenomena (see [23,24] and references therein). Cur-
rent research focuses on dilute samples with Nλ3 ≪ 1 (N density, λ transition
wavelength), in which the atoms essentially act independently. Experimentally, an
important reason for the restriction to low densities is detrimental decoherence in-
duced, e.g., by atom collisions. This density restriction applies in particular to hot
atomic vapors. More promising in this respect are ultracold gases [58,109,125–139],
in which atomic collisions are much less frequent, leading to greatly improved coher-
ence properties. However, most experiments still operate in the regime of a dilute
gas, where cooperative effects do not play a role. But with recent advances in prepa-
ration techniques, now trapped ultracold gases at densities up to 1015 atoms/cm3

with a linear extend of the gas in the µm range [137–139] have been reported. With
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such setups, dense gas light propagation experiments at the onset of cooperative
effects seem within reach.

From the theoretical side, it is well-known that in the high density regime
(Nλ3 ≫ 1), a rigorous treatment of cooperative effects in general gives rise to
an infinite hierarchy of polarization correlations [27, 140, 141]. Calculations of this
type are demanding, such that concrete results for more complex model systems
such as EIT have not been found yet. However, at the onset of cooperative effects,
the infinite hierarchy can be truncated. A study of optical properties of a dense
cold two-level gas found that in leading order of the density, three corrections with
respect to a dilute gas occur [142]. First, the microscopic field Emic driving the
individual atom is no longer the externally applied field Eext alone, but rather is
corrected by the mean polarization P of the neighboring atoms. This local field
correction (LFC) is described by the well-known Lorentz-Lorenz formula [143],

Emic = Eext +
1

3ǫ0
P . (4.1)

The second correction in leading order of the density is due to the quantum statistics
of atoms, and becomes relevant close to the phase transition to a Bose-Einstein
condensate (BEC). The third correction arises due to the leading order of multiple
scattering, which can be interpreted as a reabsorption of spontaneously emitted
photons before they leave the sample. This radiation trapping [144–146] can be
modeled as an additional incoherent pump rate, which for the case of EIT most
dominantly affect the ground state coherence.

These results suggests that at the onset of cooperative effects, and at parameters
away from the phase transition to BEC, the dominant cooperative correction arises
from LFC, such that a macroscopic treatment is meaningful. Similar results were
obtained in a recent calculation which for a two-level system explicitly compares a
microscopic treatment based on a multiple-scattering approach including n-particle
correlations with a macroscopic treatment based on LFC [147]. It was found that
with densities of few particles per wavelength cubed (Nλ3 ≈ 5), the two methods
agree well, while at higher density (Nλ3 ≈ 124) deviations occur, which however
due to the numerical complexity could only be studied for rather small sample sizes.
So far, LFC alone has been studied in a number of systems [148], including self-
induced transparency [149], coherent population trapping [150] and lasing without
inversion [151]. More recently, LFC was studied in the context of atomic gases with
a negative refractive index (NRI) [21, 22, 32, 33, 152]. LFC effects have also been
exploited to spectroscopically resolve the hyperfine structure of the Rb D2 line in a
dense gas [153].

But surprisingly, cooperative effects in EIT have received only little attention.
In [144], effects of radiation trapping on EIT were studied. The propagation of
two non-adiabatic propagating pulses is considered in [154]. Some effects such as a
modification of the group velocity and a phase modulation are reported, but only
numerical results are given without clear interpretation 1.

1Our results, however, do not show the dependence of the group velocity.
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4.2. Susceptibility

The recent theoretical proposals for NRI requiring high density already motivate
a better study of the regime of higher densities in atomic gases. But also several
aspects of EIT itself could benefit strongly from such an analysis. For example, the
group velocity reduction in EIT and the related spatial compression of the pulse are
directly proportional to the density [24]. Also, the time delay bandwidth product,
a figure of merit for the overall performance of a slow light system, depends on
density [155]. Finally, a higher density could facilitate a more efficient coupling of
light and matter, e.g., for applications in quantum information science [156].

Therefore, we study light propagation in an EIT medium at the onset of coop-
erative effects, and reveal and interpret the underlying physical mechanisms. We
show that LFC leads to a phase modulation of a probe pulse at densities achieved
in current experiments. This phase modulation is distinctively different from non-
linear self phase modulation, as it leads to a linear frequency chirp across the whole
probe pulse, and does not require high probe intensity. Our main aim is a physi-
cal understanding of the cooperative effects. For this, we include LFC, but assume
parameters away from the crossover point to a Bose-Einstein condensate, such that
corrections due to quantum statistics can be neglected. We further model the on-
set of multiple scattering via a modification of the EIT ground state decoherence
rate. Under these approximations, we derive analytic solutions for the propagation
dynamics of a slow light pulse and the medium polarization. All analytical results
are verified with numerical solutions of the pulse propagation problem.

The chapter is organized as follows. In the following section (Sec. 4.2), we derive
an analytical expression for the probe field susceptibility including LFC. From the
probe field susceptibility, we find that LFC leads to a reshaping of the EIT trans-
parency window. In the next section (Sec. 4.3), we then turn to the case of a slow
light pulse. We derive an analytic solution for the propagation dynamics including
the phase modulation the pulse experiences due to the influence of dipole-dipole
interactions. In Sec. 4.4, we compare our analytic solution to results from a full
numerical solution. We determine the scaling of the obtained phase modulation
with density and decoherence. Based on our solution, we give an intuitive explana-
tion of the phase modulation in terms of the energy exchange due to dipole-dipole
interaction of neighboring atoms. In the end we compare our result to the non-
linear selfphase modulation a strong pulse obtains in a medium with an intensity
dependent index of refraction. In Sec. 4.5 we summarize our results.

4.2 Susceptibility

4.2.1 Equations of motion including local field correction

We start from the well-known equations of motion (EOM) for an EIT system (see
Fig. 4.1) [24]. In these equations, we replace the microscopic probe and control
fields by their macroscopic counterparts using Eq. (4.1). Since the mean medium
polarization P can be expressed in terms of a density matrix element, this leads to
nonlinear EOM. Expanding the nonlinear EOM up to linear order in the external
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Figure 4.1: Probe (red dashed double arrow) and control field transition (blue solid
double arrow)of the EIT system with Rabi frequencies Ωp, Ωc, decay rates γp, γc,
and ground state decoherence γcol.

probe field leaves us with just two EOM, one for the probe field coherence ρp and
one for the Raman coherence ρr,

∂tρp = −Γpρp +
i

2
Ωp +

i

2
Lγpρp +

i

2
Ωcρr , (4.2a)

∂tρr = −Γrρr +
i

2
Ω∗

cρp . (4.2b)

Here, Γp = γ/2− i∆p, Γr = γdec − i∆, ∆ = ∆p −∆c, and γ = γp + γc is the overall
decay rate of the exited state. γdec is the ground state decoherence, and Ωp, ∆p, γp,
Ωc, ∆c, γc are the Rabi frequency, the detuning, and the decay rate of the probe and
control field transition. Due to LFC, a new term arises in Eq. (4.2a) as compared
to the low-density case which is proportional to the dimensionless parameter

L =
Nλ3

4π2
. (4.3)

It is a measure for the strength of LFC, where a factor ensures that L = 1 corresponds
to a density where the LFC induced frequency shift in a two-level atom is equal
to half the natural linewidth. Formally, the new term can be interpreted as a
frequency shift in an EIT system as well and can be included into the probe field
detuning ∆̃p = ∆p+Lγp/2. However, this frequency shift does not influence the two-
photon detuning ∆. Solving for the steady state of Eqs. (4.2) leads to the following
expression for the susceptibility χ,

χ =
3L

γp

2 (∆ + iγdec)
γ
2γdec − ∆̃p∆ + |Ωc|2

4 − i(∆̃pγdec + ∆γ
2 )

. (4.4)

4.2.2 Transparency window

With an analytic expression at hand we can easily pinpoint the effect of LFC in
the susceptibility. We find that a reshaping of the EIT transparency window takes
place [150]. To illustrate this we show in Fig. 4.2 the real and imaginary part of χ
for two different sets of parameters. In Fig. 4.2 (a) we set L = 10−5 which results in
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Figure 4.2: Real part (blue dashed line) and imaginary part (red solid line) of the
EIT susceptibility given by Eq. 1.2.5 for (a) negligible LFC (L = 10−5) and (b)
strong LFC (L = 4). The small circles are numerically probed data (see text).

negligible LFC and the standart form of the EIT susceptibility is recovered. With
L = 4 in Fig. 4.2 (b) a strong reshaping of the transparency window due to LFC
is found. In both cases we set a control field Rabi frequency of Ωc = 2γ. To verify
these results we also do a numerical integration of the full set of nonlinear EOM for
EIT including LFC together with the wave equation and read off the attenuation
and phase shift from a weak continuous wave probe field at the medium exit. This
numerically probed susceptibility is shown as small filled circles in Fig. 4.2 and is in
full agreement with the analytical form.

4.3 Pulse propagation dynamics

To analyze the influence on the propagation dynamics of a light pulse, we expand
Eq. (4.4) around the center of the transparency window. From k(ω) = ω[1 +

χ(ω)]
1
2 /c, we find the frequency dependent wave number k(ω) up to second order in

the probe field detuning. The solution for the positively rotating component of the
probe field in Fourier space then follows from E(+)(z, ω) = E(+)(0, ω) exp[ik(ω)z],
where E(+)(0, ω) is given by the initial condition and

k(ω) = k0 + i
ngγdec

c
+

∆p

vg
+ k0(iβ1 + β2)∆

2
p + O[∆3

p] . (4.5)

We neglected terms suppressed by a factor of γγdec/Ω
2
c , since γγdec ≪ Ω2

c is required
for low absorption, and of higher order in ∆p. Each term in Eq. (4.5) can be clearly
interpreted. k0 is the wave number of the undisturbed carrier wave. The second term
describes the decay due to the ground state decoherence γdec where ng = 3Lγpω0/Ω

2
c

is the group index and ω0 is the probe field transition frequency. The third term leads
to the reduced group velocity vg = c/(1+ng). The fourth term is quadratic in ∆p and
thus associated with a change of width in the Fourier transformation of a Gaussian.
The imaginary part proportional to β1 = 6Lγγp/Ω

4
c leads to a broadening of the
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temporal width due to the finite spectral width of the transparency window. Finally,
the real part proportional to β2 = 6L2γ2

p/Ω4
c results from LFC. Formally, it leads to

an imaginary part in the temporal width which corresponds to a phase modulation
of the pulse. When we assume a Gaussian pulse shape as the initial condition, the
solution in the time domain can be obtained by Fourier transformation. Considering
only the envelope defined by E(z, t) = 1

2E(z, t) exp[i(k0z − ω0t)] + c.c., we find

E(z, t) = E0
σ

σ̃
exp

[

−γdecz/vg − (t − z/vg)
2 /(2σ̃2)

]

.

E0 and σ are the initial amplitude and temporal width. The LFC modified width
after propagating a distance z is σ̃2 = σ2 + 2k0z(β1 − iβ2). The phase modulation
can be well approximated by the parabola

φLFC(t) =
β2k0z

σ2

[

1 − (t − z/vg)
2

σ2

]

. (4.6)

4.4 Results

4.4.1 Numerical example

To compare our analytic solution to results obtained numerically, we chose param-
eters consistent with recent ultra cold gas setups [137–139]. We assume a medium
with density N ≈ 1014cm−3 and a length of z ≈ 40µm. This corresponds to
Nλ3 ≈ 50 (λ = 795nm), and with a control field Ωc = 2γ, a probe pulse with initial
width of σ = 20/γ propagates a distance of z = 150vg/γ. Besides some broadening,
the probe pulse is attenuated only by the ground state decoherence γdec. From re-
sults of a recent experiment with Rubidium atoms of density N ≈ 2×1014cm−3 in an
anisotropic trap we estimate it to about 105 Hz [138]. This would attenuate the ini-
tial amplitude to about 67% over the chosen propagation distance. In Fig. 4.3(a) we
show the propagated pulse together with the LFC induced phase modulation φLFC(t)
and the corresponding instantaneous frequency defined by ω(t) = ω0 − ∂tφLFC(t).
The numerical solution is virtually indistinguishable from the analytical one, and
we only show the analytical solution. We see that the phase modulation has a neg-
ative parabola-like shape such that the instantaneous frequency is approximately
linear over the total extend of the pulse.

4.4.2 Scaling of phase modulation

From our analytical results, we can determine the scaling of the LFC-induced phase
modulation with the density and the ground state decoherence. As expected, the
ground state decoherence attenuates the pulse as a whole. It thus restricts the max-
imum propagation distance, but otherwise does not influence the phase modulation.
To determine the influence of the density, we calculated the phase shift at the center
of the pulse assuming a density-dependent propagation length determined by a fixed
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Figure 4.3: (a) Real part (blue dashed line) and imaginary part (red solid line) of
a Gaussian pulse with LFC induced phase modulation. Both parts are scaled to
arbitrary but equal units. The parabola (black dash-dotted line) shows the time
dependent phase shift in radian measure (right axis) and the dashed straight line is
the corresponding instantaneous frequency. It exhibits a linear frequency chirp with
slope αLFC over the total extend of the pulse. (b) Envelope and carrier wave of the
pulse (black upper line), the polarization induced directly by the pulse (blue middle
line), and the additional polarization induced by dipole-dipole interactions (red lower
line). The amplitudes are not drawn to scale and the carrier wave length has been
strongly exaggerated to make phase relations clearly visible. (c) The nonlinear self-
phase modulation (black dash-dotted line) of a Gaussian pulse. The frequency chirp
is approximately linear only in the pulse center (black dashed straight line) with
slope αNSM.
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attenuation of the amplitude to 1/e of its initial value, and found a linear scaling
with N :

φmax
LFC =

N

γdec

λ3γp

2π2σ2Ω2
c

. (4.7)

Thus at the onset of cooperative effects, the density and the ground state decoherence
only affect the magnitude of the phase modulation. Since interferometric methods
are very sensitive to phase changes, an experimental detection could already be
possible at lower density and higher ground state decoherence.

4.4.3 Underlying mechanism of energy transfer

To explain the physical origin of the phase modulation, we explicitly calculate the
relevant parts of the polarization using the relation P (+)(z, ω) = ǫ0χ(ω)E(+)(z, ω).
Considering only the real part of χ up to quadratic order in ∆p and Fourier trans-
forming it into the time domain, we can distinguish two contributions,

P
(+)
0 (z, t) =

ǫ0ng

ω0
[i∂tE(z, t)] exp[i(k0z − ω0t)] , (4.8a)

P
(+)
LFC(z, t) = ǫ0β2

[

i2∂2
t E(z, t)

]

exp[i(k0z − ω0t)] . (4.8b)

The first contribution stems from the part linear in ∆p and leads to the change of
group velocity. The second contribution is due to the part quadratic in ∆p which
is related to the LFC induced phase modulation. In Fig. 4.3(b) we show the pulse
together with these two contributions. In the first half of the pulse, E(t) is ahead
in phase by π/2 compared to P0(t), which indicates that energy is transferred from
the pulse to the polarization P0(t). In the second half, the pulse is delayed by
π/2, and energy is transferred back from the polarization P0(t) to the pulse. This
energy exchange effectively reduces the group velocity of the pulse. Similarly, we
can understand how the interaction of atoms with the collective dipole field of their
neighbors proportional to P0(t) induces an additional polarization PLFC(t). Before
t = −σ, the polarization component P0(t) is π/2 ahead in phase compared to PLFC(t),
whereas at −σ < t < 0, it is delayed by π/2, again leading to an energy exchange.
The same exchange takes place again for 0 < t < σ and t > σ. While the additional
polarization PLFC(t) is induced exactly by the same mechanism as P0(t), its back
action on the probe pulse is different. At t < −σ and t > σ, PLFC(t) and E(t) have
opposite phase. This opposite phase has a dragging effect on E(t), and reduces its
phase. In the central part of the pulse (−σ < t < σ), PLFC(t) is in phase with
E(t). This has a pushing effect on E(t), and increases the phase of the pulse. This
interpretation agrees with the phase modulation obtained from the calculation as
shown in Fig. 4.3(a). We thus conclude that energy is exchanged between the atomic
dipoles and the field of neighboring dipoles in exactly the same way as between the
atomic dipoles and the external field E(t). But the two polarization components act
differently on the probe pulse, leading to the group velocity change and the phase
modulation, respectively.
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4.4.4 Comparison to nonlinear self-phase modulation

Finally, we compare the LFC induced phase modulation with nonlinear self-phase
modulation (NSM) in a medium with an intensity dependent refraction. The NSM
modulation is

φNSM(t) = n2 I(t) k0 z , (4.9)

where n2 is the intensity dependent index of refraction and I(t) the intensity pro-
file of the pulse. In Fig. 4.3(c) we show φNSM(t) together with the corresponding
instantaneous frequency for a Gaussian pulse. We see that the front of the pulse ex-
periences a red shift whereas the back experiences a blue shift with an approximately
linear frequency chirp in the center. Comparing the two chirps,

αNSM = 2n2I0k0z/σ2 , αLFC = 2β2k0z/σ4 , (4.10)

we find that in the LFC case, n2I0 is replaced by β2/σ
2. Thus, the LFC modulation

does not require a large intensity, and is approximately linear over the total extend
of the pulse since it depends on the strength of the dipole-dipole interaction. This
strength is given by β2 in an EIT system and can be influenced by the density and
the control field strength Ωc.

4.5 Conclusion

In summary, we studied light propagation in an EIT system for densities at the
onset of cooperative effects. We found a local field induced phase modulation that
is distinctively different from non-linear self phase modulation, as it is linear across
the whole pulse, and does not depend on the pulse intensity. The combination
of analytical and numerical results enabled us to interpret the underlying physical
mechanisms of the propagation dynamics.
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Chapter 5

Light propagation in chiral

media

Light propagation in chiral media is discussed. We define chiral media

in terms of a macroscopic electrodynamic description. Then, we derive

the wave equations for a probe field propagating through a chiral medium,

and solve them analytically in Fourier space using the slowly-varying en-

velope approximation. Our analysis reveals the influence of the different

medium response coefficients on the propagation dynamics. Based on

these results, we discuss conditions for a possible implementation.

5.1 Introduction

Quantum optics describes the interaction of matter and light at the quantum level [4,
5]. In many cases, the underlying principles can already be understood from a
fairly simple analysis, focusing on single atoms interacting with the electric field
component of the driving laser fields. But recently, motivated by the aim of achieving
a negative index of refraction in atomic media [21, 22, 32, 33, 152], a qualitatively
different class of setups received a considerable amount of interest. The key feature
of these setups is that a probe beam interacts with the medium both with its electric
and its magnetic field component at the same time. Only if both the magnetic and
the electric response are suitable, a negative refractive index (NRI) can be achieved.
Related to the need for a high magnetic response, these systems have two more
distinct features in common. First, they operate at a high density, such that the
different atoms in the medium are no longer independent [27, 140, 142]. Second, in
order to enable a certain enhancement mechanism for the magnetic response, the
laser fields couple to the medium in such a way that the system becomes chiral [30,
32,157]. Unfortunately, an experimental implementation of these schemes to achieve
atomic NRI media is very challenging. For example, suitable atomic species are rare,
the required high density implies a number of problems such as Doppler broadening,
radiation trapping [144,145], dephasing or unwanted non-linear processes.
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It is important to note, however, that these challenges to a large degree arise
from the specific requirements for NRI media. But the two key ingredients, high
density and chirality, are of interest in their own rights. This raises the question
whether it is possible to study the effects of density or chirality individually at
much more accessible parameter ranges. It turns out that the answer is affirma-
tive. Regarding experiments at high density, we have see an example in chapter 4,
where we studied dipole-dipole interactions in an electromagnetically induced trans-
parency setup. Here, we turn to the second key ingredient of NRI schemes, and
analyze light propagation in a sample of chiral atoms. Quantum optical setups rou-
tinely neglect the magnetic field components of the applied electromagnetic fields
altogether. Generally, this is justified due to the weak interaction strength, and
since magnetic transitions are typically off-resonant from the applied fields. Inter-
estingly, a complete switch from electric to magnetic dipole transitions would not
change the obtained results qualitatively, as the structure of the system Hamiltonian
is essentially unchanged. It is only the combination of magnetic and electric field
interactions in a chiral setup that gives rise to different results.

The chapter is structured as follows. First, in Sec. 5.2, we define and analyze
chiral media in terms of parity transformations, and discuss their linear response.
The following Sec. 5.3 analyzes light propagation in chiral media. In particular, we
setup wave equations for the electric and magnetic field component, and we analyt-
ically solve these equations in slowly varying envelope approximation (SVEA). The
last Sec. 5.4 discusses possible implementations of chiral media in atomic systems.

5.2 Chiral cross coupling

An object is defined to be chiral if it cannot be brought into coincidence with its
mirror image. This implies the absence of any rotation-reflection symmetry axis
and the object cannot be invariant under parity transformation. Since classical
electrodynamics is is known to be a parity invariant theory, the question arises how
chirality manifests itself in the electrodynamic description of a medium.

As a basis for our following analysis, we start from the two inhomogeneous
macroscopic Maxwell’s equations [3],

∇× E = −∂tB , (5.1a)

∇× H = ∂tD , (5.1b)

with the electric field E, the magnetic field B, the electric displacement field D, and
the magnetizing field H. The medium is described by its polarization P and mag-
netization M, which are related to the quantities entering the Maxwell’s equations
via the constitutive relations

D = ε0E + P , (5.2a)

H =
1

µ0
B− M . (5.2b)
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Due to the used SI unit system, the permittivity ε0 and the permeability µ0 of free
space occur. We do not consider the two homogeneous Maxwell’s equations since
with no external sources or currents and assuming transverse fields they are always
fulfilled.

Since E, P, and D are polar vectors they change sign under a parity transfor-
mation. In contrast, B, M and H are unchanged, because they are axial vectors.
Together with the sign change of the curl operator, this shows the invariance of
Maxwell’s equations Eqs. (5.1) as well as the constitutive relations Eqs. (5.2) under
parity transformation. Assuming a homogeneous isotropic medium, we can define
linear electric and magnetic susceptibilities χE and χH ,

P(t) =

∫

ε0χE(τ)E(t − τ)dτ , (5.3a)

M(t) =

∫

χH(τ)H(t − τ)dτ . (5.3b)

These equations only relate quantities of the same, odd or even parity and we see
that the coefficients χE and χH are scalars and thus unaffected by a parity transfor-
mation. From the perspective of an electrodynamic description, the corresponding
medium cannot be chiral. A different situation arises, if a medium also exhibits cross
couplings in a way that an electric field induces magnetization and a magnetizing
field induces polarization. In that case Eqs. (5.3) have to be extended by two extra
terms,

P(t) =

∫

ε0χE(τ)E(t − τ) +
1

c
ξEH(τ)H(t − τ)dτ, (5.4a)

M(t) =

∫

χH(τ)H(t − τ) +
1

cµ0
ξHE(τ)E(t − τ)dτ, (5.4b)

with the cross coupling coefficients ξEH , ξHE, and c = 1/
√

ε0µ0 the speed of light
in vacuum. Under a parity transformation, the cross coupling coefficients ξEH and
ξHE must change sign, because of the different transformation properties of P and
H in Eq. 5.4a and M and E in Eq. 5.4b. In contrast to χE and χH , they have
pseudo-scalar character. With non-vanishing cross couplings the medium properties
change under parity transformation such that this extended description can account
for a chiral medium.

In Eqs. (5.4), we have assumed that the medium and light field configuration are
such that the response coefficients are (pseudo-) scalar rather than tensorial as it is
the case in general. It turns out that this is possible, e.g., if the probing light field is
circularly polarized in the x − y plane and propagates in ±z direction [32,33]. This
configuration allows for a different perspective on chirality. A circularly polarized
light wave is a chiral object itself, and a left circularly polarized light wave under
parity transformation is mapped onto a right circularly polarized light wave and vice
versa. Because of global parity invariance of electrodynamics, considering a medium
interacting with a right circularly polarized light wave is equivalent to considering
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the inverted medium interacting with a left circularly polarized light wave. It follows
that a chiral medium must have a different response to a left and right circularly
polarized light wave. This difference manifests itself in the refractive index, which
in a medium with response as in Eq. (5.4) was shown to evaluate to [32]

n± =

√

εµ − 1

4
(ξEH + ξHE)2 ∓ i

2
(ξEH − ξHE) . (5.5)

Here, ε = 1+χE and µ = 1+χH . The upper sign applies for left circularly polarized
light and the lower sign for right circularly polarized light. We see that in Eq. (5.5) it
is equivalent to change the sign due to selecting a different polarization or to change
the sign of ξEH and ξHE due to inverting the medium. Nonzero cross coupling
coefficients ξEH and ξHE in both cases can account for the chirality of the medium.

5.3 Light propagation in chiral media

In this section, we derive the wave equations for the electric and magnetic field
components of a probe field propagating through a chiral medium. This is in contrast
to the usual treatment in which a coupling to only the electric component is assumed.
We apply SVEA in order to transform the second order wave equations to equations
involving first order derivatives only. Using Fourier transformation techniques, we
find the general solution to the first order wave equations, and compare the result
to the index of refraction obtained from a single particle susceptibility analysis.

5.3.1 Wave equation for the electric and magnetic field component

From Eqs. (5.1) and (5.2), we can derive wave equations for E and B with sources
described by P and M as,

[

∆ − 1

c2
∂2

t

]

E = µ0∂
2
t P + µ0∂t∇× M, (5.6a)

[

∆ − 1

c2
∂2

t

]

B = µ0∆M− µ0∂t∇× P. (5.6b)

In the following, we specialize to the case of a one-dimensional propagation.
We choose the positive z axis as the propagation direction and separate a complex
envelope function X0(z, t) from the carrier wave,

X =
1

2
X0(z, t)e±ei(k0z−ω0t) + c.c., (5.7)

where X stands for E, B, P, or M. The complex unit vector for left or right circular
polarized light is e±, and the wave number of the carrier wave in vacuum is k0 with
ω0 = ck0 as the corresponding frequency. Assuming that variations in space and time
of the envelope function are on a much larger scale than the wavelength λ0 = 2π/k0
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and the oscillation period T0 = 2π/ω0 of the carrier wave, we can apply the slowly
varying envelope approximation (SVEA) [4]. In this approximation derivatives of
the envelope function in space and time are neglected compared to derivatives of
the carrier wave. As a consequence, SVEA reduces the wave equations Eqs. (5.6) to
first order equations for the envelope functions,

[

∂z +
1

c
∂t

]

E0(z, t) =
ik0

2ε0
P0(z, t) ∓ k0

2ε0c
M0(z, t) , (5.8a)

[

∂z +
1

c
∂t

]

B0(z, t) =
ik0µ0

2
M0(z, t) ± k0

2ε0c
P0(z, t) . (5.8b)

As before and in the following, the upper sign applies for left circular polarization
whereas the lower sign applies for right circular polarization. Eqs. (5.8) are con-
siderably simpler to solve analytically as well as numerically than the second order
Eqs. (5.6) we derived initially . Yet, they still incorporate the essential physics of
light propagation in one dimension for a chiral medium with a coupling to both the
electric and the magnetic component of a weak probe field.

5.3.2 Solution of the wave equations

We will now solve the wave equations (5.8) in SVEA to a level that enables us to
determine how the actual propagation dynamics depends on the four quantities χE,
χH , ξEH , and ξHE characterizing the medium. First, we transform Eqs. (5.8) into
Fourier space. To substitute P0 and M0 we also Fourier transform Eqs. (5.4) and
to replace H0 by B0 we use the Fourier transform of Eq. (5.2b). Finally, we can
combine both wave equations into a single matrix equation for the vector F(z, t) =
(E0(z, t), cB0(z, t))T ,

∂z F(z,∆p) = ik0 MF(0,∆p) , (5.9)

and the elements of the matrix M are given by

M1,1 =
∆p

ωo
+

1

2µ
(χE − ξEHξHE ± iξHE) , (5.10a)

M1,2 =
1

2µ
(ξEH ± iχH) , (5.10b)

M2,1 =
1

2µ
(ξHE ∓ iµχE ± iξEHξHE) , (5.10c)

M2,2 =
∆p

ω0
+

1

2µ
(χH ± iξEH) . (5.10d)

In these equations, the detuning ∆p = ω−ω0 accounts for the frequency distribution
of the envelope functions around the carrier frequency. Applying the vacuum phase
relation for circular polarized light, cB0 = ∓iE0, we find that the initial condition
for the evolution Eq. (5.9),

F(0,∆p) =

(

E0(0,∆p)
∓iE0(0,∆p)

)

, (5.11)
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is an eigenvector to matrix M in Eq. (5.9). Therefore, the solution can be calculated
with the help of the corresponding eigenvalue η. The solution reads

F(z,∆p) = eik0ηz

(

E0(0,∆p)
∓iE0(0,∆p)

)

, (5.12)

and the frequency dependence is contained in the eigenvalue

η =
∆p

ω0
+

1

2µ
[χE µ + χH − ξEHξHE ∓ i(ξEH − ξHE)] . (5.13)

This result can be compared to the refractive index Eq. (5.5) in a chiral medium
obtained from a single-particle susceptibility analysis. The application of SVEA is
equivalent to the condition |n± − 1| ≪ 1, such that we can perform a first order
Taylor expansion of the square root contribution in Eq. (5.5). Keeping terms linear
in the response coefficients we find

n± = 1 +
1

2
(χE + χH) ∓ i

2
(ξEH − ξHE) . (5.14)

Linearizing Eq. (5.13) and taking into account the contribution of the carrier wave,
we find the same result as in Eq. (5.14). This demonstrates the consistency of our
solution with the previously calculated chiral index of refraction. Our result based
on the solution of the wave equations, however, has the advantage that it offers the
possibility to study propagation dynamics. Because of the simple formulas we have
derived, analytical solutions become accessible. If for a specific system the frequency
dependencies of χE, χH , ξEH , and ξHE are known, it can be used together with the
solution in frequency domain Eq. (5.12) to calculate the actual dynamics in time
domain.

5.4 Prerequisites for a chiral atomic medium

In this section we discuss the general conditions for realizing a chiral atomic medium
in the form as introduced in Sec. 5.2. As a first condition, a medium in addition
to an electric probe field transition should exhibit a near-degenerate transition cou-
pling to the magnetic component of the probe field. A second condition is that, to
enable chiral cross couplings, there must be a mechanism to allow for polarization
[magnetization] to be induced by the magnetic [electric] probe field component.

The first condition can be difficult to fulfill in atomic media. A small frequency
difference between electric and magnetic probe field transition could be removed by
an external magnetic field leading to a Zeeman shift, but magnetic dipole transitions
are usually found in a much smaller frequency range compared to electric dipole
transitions. The reason is that due to selection rules imposed by the corresponding
transition matrix element, magnetic dipole transitions can only occur between states
of the same parity. This implies that magnetic dipole transitions only take place
between states with the same angular momentum quantum number whereas electric
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dipole transitions connect states of different angular momentum. A possible solution
are atomic species with a large spin-orbit coupling [39]. Then, states with the
same angular momentum quantum number can display a large splitting and their
transition frequency can become comparable to the transition frequency of an electric
dipole transition. This could also help to realize a probe field transition frequency
in the optical domain which is especially attractive for applications. Motivated by
ideas like NRI, several atomic species have been investigated with respect to this
condition. Dysprosium [32, 158], Hydrogen [22], metastable Neon and other noble
gases [22,159] have been identified as promising candidates. An alternative approach
could be to make use of non-resonant two-photon transitions in order to relax the
requirement of having both electric and magnetic transitions at similar transition
frequencies [33,159].

The second condition can be implemented in closed-loop systems. In these sys-
tems the laser-driven transitions form a closed interaction contour such that photon
emission and absorption can take place in a cycle [36, 37]. Because the closed in-
teraction contour enables quantum mechanical pathway interference, it can render
the system phase dependent. Closed-loop systems have mainly been investigated
in non-chiral contexts [46, 48, 50, 51, 53–55]. Here, the closed interaction contour
only includes the coupling to one (electric) probe field component. This is known
to induce extra contributions to the medium response, but these cannot be utilized
for light propagation of a pulsed probe field in a straightforward way. As we have
seen in the first chapter, already without the probe field, such a configuration would
give rise to parametric processes which scatter the control fields into the probe field
mode [45,47,49,52]. We will see in the next chapter that this conclusion changes in
the case of chiral closed-loop systems. There, we will find that the closed-loop phase
can provide a convenient control parameter for light propagation in chiral media.

5.5 Conclusion

We defined and analyzed chiral media in terms of parity transformations, and dis-
cussed their linear response. Next, we derived wave equations for both the electric
and the magnetic field component in a chiral medium, and using the slowly varying
envelope approximation solved these equations in Fourier space. The solution elu-
cidates the actual dependence of the propagation dynamics on the direct and chiral
response functions in a macroscopic electrodynamic description. Based on these
results, we discussed the general conditions necessary for realizing a chiral atomic
medium.
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Chapter 6

Chiral control of propagation

dynamics

We study an explicit example for light propagation in chiral media. Ap-

plying the results from the previous chapters, we show that chiral inter-

actions already become important at experimentally accessible parameter

ranges in dilute vapors. The chirality renders the propagation dynam-

ics sensitive to the phase of the applied fields, and we show that this

phase-dependence enables one to control the pulse evolution during its

propagation through the medium. Our results demonstrate that the mag-

netic field component of a probe beam can crucially influence the system

dynamics even if it couples to the medium only weakly.

6.1 Introduction

In this chapter we turn to a specific example for light propagation in chiral media and
apply the results obtained in the previous chapter. The atomic medium is modeled
as the five level system shown in Fig. 6.1. It was first introduced in the context of
generating atomic media exhibiting a negative index of refraction [32]. We study
the light propagation through this medium, and find that chiral interactions become
relevant already at low medium density. The closed interaction loop gives rise to a
sensitivity of the system dynamics to the relative phase of the applied fields. We show
that this dependence can be used to control the propagation dynamics of a probe
pulse, even throughout the pulse propagation. The results are interpreted based
on our analytical solution, and all conclusions are verified using a full numerical
solution of the propagation equations.

In a broader context, our results demonstrate that the magnetic field component
of the probe field can crucially influence the propagation dynamics of the light pulse,
even though it couples to the medium only very weakly. This may pave the way to
further applications of magnetic quantum optics, utilizing both electric and magnetic
components of the applied laser fields. Also, it will turn out that the analysis of
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|1〉

|2〉

|3〉

|4〉

|5〉

Ω1

Ω2

ΩE

ΩB

ΩC

Figure 6.1: Atomic level scheme used to describe the chiral medium. Two strong
control fields with Rabi frequencies Ω1 and Ω2 prepare a coherent superposition of
states |1〉 and |4〉. The magnetic and electric probe beam components couple to
two transitions with Rabi frequencies ΩB and ΩE, respectively. ΩC describes an
additional control field. The relative state parities are denoted by ±.

chiral media sheds light on the related so-called closed-loop systems [36,46]. We will
find that chiral media are an ideal implementation of a closed-loop-phase control
scheme of light propagation.

The chapter is organized as follows. First, in Sec. 6.2, we discuss our model
system and derive analytic expressions for the medium response coefficients. Based
on these results, we discuss pulse propagation of a slow light pulse, with the emphasis
on phase control of the propagation dynamics (Sec. 6.3). Section 6.4 discusses and
summarizes the results.

6.2 Model system

In zeroth order of the probe field, the atomic medium forms an effective three-level
system in Λ-configuration consisting of states |1〉, |4〉 and |5〉. Two strong resonant
control fields with Rabi frequencies Ω1 and Ω2 prepare the atoms in a dark state, i.e.,
a stable coherent superposition of states |1〉 and |4〉. The magnetic and electric probe
field components couple to degenerate magnetic and electric dipole transitions with
Rabi frequencies ΩB and ΩE, and the upper levels of these two dipole transitions are
coupled by an additional resonant control field with Rabi frequency ΩC . We assume
that state |1〉 and |4〉 have the same parity. Because the electric probe field transition
couples states of different parity whereas the magnetic probe field transition couples
states of the same parity, the additional control field couples to an electric dipole
transition. Note that the Rabi frequencies Ωi = |Ωi| exp[i(~ki~r + ϕi)] are complex,
and contain the wave vector ~ki and the absolute phase ϕi (i ∈ {1, 2, C,E,B}).
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6.2.1 Chiral enhancement of magnetic response

As discussed in Sec. 5.1, the linear response of the chiral atomic medium is charac-
terized by two contributions. First, direct contributions arise from the polarization
[magnetization] induced by the electric [magnetic] probe field component. It turns
out that the direct contribution to the magnetic response is typically small. The
reason is that magnetic dipole couplings usually are much weaker than electric dipole
couplings,

m/d ∼ αc ⇒ |ΩB | ∼ α|ΩE | , (6.1)

with magnetic dipole moment m, electric dipole moment d, and fine structure con-
stant α. Therefore, in comparison to the direct electric response, the direct mag-
netic response is parametrically suppressed by two powers of the fine structure con-
stant [38],

χH ∼ α2χE . (6.2)

The other contributions to the medium response are cross couplings, which arise
due to polarization [magnetization] induced by the magnetic [electric] probe field
component. They lead to nonzero values for ξEH and ξHE and thus render the
medium chiral. A magnetic response arising from such a cross coupling is only
suppressed by one power of α [32,38],

ξEH ∼ αχE and ξHE ∼ αχE . (6.3)

Furthermore, it is proportional to the strength of the ground state coherence of state
|1〉 and |4〉 and the control field ΩC which allows for an additional enhancement
proportional to the control field strength.

6.2.2 Phase dependence

The Hamiltonian of the system in Fig. 6.1 in a suitable interaction picture is given
by [4]

HI = − ~∆p(A22 + A33)

− ~

2
(ΩB A21 + ΩE A34 + ΩC A32 + Ω1 A51 + Ω2 A54 + H.c.) , (6.4)

where ∆p is the probe field detuning and atomic transition operator is defined as
Ajk = |j〉〈k|. An interesting insight into the involved physics can be gained by
applying a further unitary transformation to the Hamiltonian

H̄I = − ~∆p(A22 + A33)

− ~

2

(

|ΩB |A21 + |ΩE |A34 + |ΩC | eiΦA32 + |Ω1|A51 + |Ω2|A54 + H.c.
)

. (6.5)
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It can be seen that HI contains a phase contribution

Φ = (ϕ2 − ϕ1 + ϕc) + (~k2 − ~k1 + ~kC)~r , (6.6)

which cannot be removed entirely via unitary transformations. The origin of this
phase dependence is the closed-loop structure of the considered level scheme. Start-
ing from |1〉, the system can evolve in a non-trivial loop sequence |1〉 → |5〉 → |4〉 →
|3〉 → |2〉 → |1〉 back to the initial state. This enables pathway interference, e.g.,
from |1〉 to |3〉 either via |5〉 and |4〉, or via |2〉. The phase difference between these
two interfering pathways is equivalent to the phase difference given by Eqs. (6.5)
and (6.6). It is interesting to note that the closed-loop phase Φ does not contain
properties of the probe field, which is due to the fact that a closed transition loop
involves both an absorption and an emission of a probe field photon. Furthermore, Φ
does not depend on time, because of the cancellation of the probe field and because
the three control fields Ω1,Ω2,ΩC are applied on resonance.

We are now also in the position to understand why a phase-control of light
propagation is possible in chiral closed-loop media, in contrast to closed-loop media
coupling only to one (electric) component of the probe field. From Fig. 6.1, it can
be seen that in the presence of the probe field, a closed loop is established, such that
the medium becomes sensitive to the closed-loop phase Φ. But in the absence of
the probe field two transitions in the closed loop structure are undriven. It follows
that parametric processes scattering the control fields into the probe field mode
cannot occur, independent of the phase matching condition assumed for the wave
vectors of the probe and driving fields. This crucial difference to closed-loop media
coupling to one (electric) probe field component only enables the phase control of
light propagation that we will find in Sec. 6.3.

In the following, we continue our analysis based on the Hamiltonian HI in
Eq. (6.4) and assume that the laser configuration satisfies the usual phase matching
condition ~k2 −~k1 +~kC , such that the system dynamics only depends on the relative
phase

Φ0 = ϕ2 − ϕ1 + ϕc . (6.7)

6.2.3 Medium response coefficients

In zeroth order of the probe fields, the equations of motion (EOM) governing the
dynamics of the atomic degrees of freedom can easily be solved. The non-vanishing
density matrix elements are

ρ
(0)
11 =

|Ω2|2
|Ω1|2 + |Ω2|2

, (6.8a)

ρ
(0)
44 =

|Ω1|2
|Ω1|2 + |Ω2|2

, (6.8b)

ρ
(0)
41 = − Ω1Ω

∗
2

|Ω1|2 + |Ω2|2
. (6.8c)
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The linear response to a weak probe field does not disturb this dark state prepared by
Ω1 and Ω2, and can thus be calculated on the basis of the lowest order populations.
To take into account local field effects (LFC) in a dense gas a generalized form of the
Clausius-Mossotti equation [3] has been used to numerically extract χE , χH , ξEH ,
and ξHE from the steady state solution to linear order in the local fields Eloc and
Bloc in [32]. We pursue a different strategy here which provides us with an analytic
solution including dipole-dipole interactions as addressed in chapter 4. We directly
replace the local fields in the EOM by the external fields Eext and Bext with the
help of the Lorenz-Lorentz relations

Eloc = Eext +
1

3ε0
P , (6.9a)

Bloc = Bext +
µ0

3
M . (6.9b)

This leads to nonlinear EOM if the polarization P and the magnetization M are
expressed by microscopic expectation values of the electric and magnetic dipole
density containing elements of the atomic density matrix. Since we are interested
in linear response, we expand the EOM up to linear order in the probe field, and
solve for the steady state. From this steady state solution, we find for the response
coefficients

χE =
3Lγ34ρ

(0)
44

i
2Γ24

Γ34Γ24 + |ΩC |2

4

, (6.10a)

χH =
3Lγ34α

2ρ
(0)
11

i
2Γ31

Γ21Γ31 + |ΩC |2

4

(

1 − ξEH |ρ(0)
41 |

|ΩC |
4 e−iΦ0

3α ρ
(0)
11

i
2Γ31

)

, (6.10b)

ξEH =
3Lγ34α |ρ(0)

41 |
|ΩC |

4

Γ34Γ24 + |ΩC |2

4

eiΦ0 , (6.10c)

ξHE =
3Lγ34α |ρ(0)

41 |
|ΩC |

4

Γ21Γ31 + |ΩC |2

4

(

1 +
χE

3

)

e−iΦ0 , (6.10d)

where L = Nλ3/4π2 includes the dependence on the number of particles Nλ3 per
wavelength λ cubed. The decay rate and the detuning including the typical LFC
shift for the electric and magnetic probe field transitions are given by

Γ34 = γ/2 + γdec − i(∆p + ρ
(0)
44 Lγ34/2) , (6.11a)

Γ21 = γ21/2 + γdec − i∆p , (6.11b)

where γ = γ31 + γ32 + γ34 is the overall decay rate of state |3〉 and γdec accounts for
additional decoherence induced by atomic collisions.

Interpreting the dark state of |1〉 and |4〉 as a single quantum state characterized
by the coherence between the two states, both probe field transitions can be viewed
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as being part of a three level electromagnetically induced transparency (EIT) sys-
tem [36, 37]. The electric probe field and the control field ΩC form a Λ-system for
which

Γ24 = γ21/2 − i∆p (6.12)

contains the ground state decoherence and the two-photon detuning. No additional
decoherence γdec besides the decay of the magnetic probe field transition has to be
included if we assume that levels |2〉 and |4〉 are nearly degenerate, as then phase-
perturbing collisions in the medium lead to random, but correlated phase shifts
of the two states [32]. The magnetic probe field and the control field ΩC form a
ladder system in which the decoherence and two-photon detuning relevant for EIT
is described by

Γ31 = γ/2 + 2γdec − i∆p . (6.13)

By inspection of the structure of the solution for χE and χH , we find that the
direct electric and magnetic responses of the EIT system are amended by LFC.
The electric response features the usual EIT transparency window which is only
degraded by a weak ground state decoherence given by γ21, the linewidth of the
magnetic probe field transition. The transparency window of the direct magnetic
response on the other hand is not as prominent due to strong decoherence γ/2+2γdec

in the ladder system. But this does not affect the propagation dynamics much since
χH is suppressed by a factor α2 compared to χE as discussed above. In particular
for propagation dynamics at densities corresponding to L ≤ 1, it can be neglected.
On the contrary, the chiral cross couplings are only suppressed by a factor of α and

do influence the propagation dynamics. As expected, they are proportional to |ρ(0)
41 |,

|ΩC |, and depend on the relative closed-loop phase Φ0. At first glance it might look
like a phase dependence is also induced to χH by LFC because it depends on Φ0.
But a closer look reveals that this phase dependence is exactly canceled by the factor
ξEH . From these solutions we expect a propagation with a reduced group velocity
and with a phase dependent refractive index induced by the chiral cross couplings.

One further observation about the chirality of the medium can be made. In the
sense of a macroscopic electrodynamic description, the control fields ΩC , Ω1, and
Ω2 are part of the medium. Thus, they change sign when the medium is inverted
and lead to the expected chiral behavior of ξEH and ξHE as described in Sec. 5.2.

With the analytic solution for χE, χH , ξEH , and ξHE at hand, we can now
proceed to study propagation effects in a chiral medium, focusing on control of the
propagation dynamics via the closed-loop phase as concrete application.

6.3 Pulse propagation with phase control

6.3.1 Reduced group velocity

In this Section we study the propagation dynamics of a pulsed probe field in the
chiral medium discussed in Sec. 6.2. Due to the direct electric response, the probe
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Figure 6.2: Propagation dynamics in a chiral medium. The closed-loop phase Φ0 =
π/2 is kept constant, see inset. The absolute value (solid black lines), the real part
(dashed blue lines), and the imaginary part (dotted red lines) of the probe pulse
envelope are plotted for successive propagation times. Arbitrary, but consistent
units are used and successive plots are vertically offset by the overall phase at the
center of the pulse. The spatial phase dependence of each pulse (dashed green
straight lines) is compared to the value expected from the analytical solution (thick
gray straight line).

pulse propagates with a reduced group velocity, as it is the case in a usual EIT
system. If we write the group velocity

vg =
c

1 + ng
, (6.14)

the group index ng it is given by

ng =
3Lωγ34ρ

(0)
44

|ΩC |2
. (6.15)

This is the standard expression in a EIT system, except for the scaling by the

population fraction ρ
(0)
44 in the ground state of the electric probe field transition.

The direct magnetic response can be neglected and all additional influence of the
medium on a probe pulse is due to the chiral cross coupling of the electric and
magnetic probe field components.

The chiral cross coupling is mediated by the closed interaction loop and depends
on the relative phase Φ0 between the three control fields. Since the probe field
propagates with strongly reduced group velocity whereas the control field ΩC prop-
agates at speed of light, a phase change of Φ0 during the propagation of the probe
pulse changes the frequency dependent refractive index for the probe field nearly
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Figure 6.3: Propagation dynamics in a chiral medium with phase modulation. The
closed-loop phase is switched from π/2 to zero and back to π/2 throughout the
propagation, as shown in the inset. The absolute value (black solid lines) of the
probe pulse envelope is plotted for successive propagation times. The scaling and
offsets are used as in Fig. 6.2. At the beginning and at the end of the propagation
the spatial phase dependence of each pulse (dashed green straight lines) is compared
to the value expected from the analytical solution (thick gray line). During the time
period of zero control phase, probe pulse envelope phase does not change and the
pulse experiences gain instead, as indicated by the thick dashed red line.

instantaneously. In a similar fashion as a light pulse can be slowed down, stored,
and retrieved by changing the amplitude of the control field [125], the phase of the
control field can be used as a tool to control the refractive index for the probe pulse.

To clarify this idea further, in the following, we present two exemplary results
from a numerical solution of the atomic EOM coupled to the wave equations for
the two probe field components and the control field. We assume a medium with
a density corresponding to L = 0.01. For λ = 795nm, this translates to N ∼
8× 1011cm−3. The control field strength is chosen as |ΩC | = 2γ, and the dark state

as symmetric, |Ω1| = |Ω2|, such that ρ
(0)
11 = ρ

(0)
44 = 0.5 and ρ

(0)
41 = −0.5. In both

cases, we propagate a Gaussian probe pulse with a width in time of σ = 50/γ. Its
spectrum is well contained in the EIT transparency window such that it suffers very
little absorption and broadening. We use a collisional decoherence of γdec = 0.5γ
and for the probe field we assume left circular polarization.

6.3.2 Constant phase

In the first example, the phase Φ0 is chosen constant as π/2. In Fig. 6.2, we show
the corresponding propagation dynamics. The envelope of the electric probe field
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component is depicted for four successive propagation times, together with the real
and imaginary part of the envelope and the pulse phase. The group velocity observed
in the numerical calculation is consistent with Eqs. (6.14) and (6.15). We find that
throughout the propagation, the phase of the pulse increases linearly. Thus, the
real and imaginary parts of the envelope interchange while the absolute value of
the envelope remains constant. This dynamics is due to a positive real index of
refraction at resonance. Its theoretical value can be deduced from the solutions
given in Secs. 5.3.2 and 6.2. Neglecting χH , the eigenvalue Eq. (5.13) reduces to

η =
∆p

ω0
+

1

2
[χE ∓ i(ξEH − ξHE)] . (6.16)

The term linear in ∆p arising from χE leads to the reduced group velocity given
in Eq. (6.14). We approximate ξEH and ξHE by the constant term at resonance
leading to a constant refractive index. Fourier transforming Eq. (5.12) back into
time domain, we find

(

ΩE(z, t)
ΩB(z, t)

)

=

(

ΩE (0, t − z/vg)
ΩB (0, t − z/vg)

)

eiβk0z , (6.17)

in which the polarization-dependent β is given by

β = ∓iα
ng|ρ(0)

41 ||ΩC |
2ωρ

(0)
44

(

eiΦ0 − |ΩC |2e−iΦ0

2γdecγ + 8γ2
dec + |ΩC |2

)

, (6.18)

where we neglected the radiative decay of the magnetic probe field transition γ21

which is small compared to γdec.
Inserting the parameters chosen in Fig. 6.2, we obtain a positive real value of β

such that the phase of the envelope increases constantly with propagation distance.
In Fig. 6.2, we compare this phase dependence obtained from our approximate ana-
lytical model with the phase from the numerical propagation of the pulse at different
propagation distances. At the center of the pulse the agreement between numerical
and analytical solution is very good. Away from the center there are small devia-
tions that increase with propagation distance. These deviations can be attributed
to the neglected frequency dependence of ξEH and ξHE.

6.3.3 Phase switching

In a second example, the phase Φ0 is changed during the propagation. Initially, it is
set to π/2 as in the first example. During the course of propagation, it is switched to
zero for an intermediate period of time and finally, it is switched back to π/2. The
numerical results for the corresponding propagation dynamics are shown in Fig. 6.3,
and the time-dependent value of the phase is shown as inset in Fig. 6.3. In the initial
and final part of the propagation with phase π/2, we find the same propagation
dynamics as in Fig. 6.2, with reduced group velocity vg and with a linear increasing
of the phase. But during the period with control phase switched to zero, the phase of
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Figure 6.4: Real (dashed blue line) and imaginary (solid red line) part of β against
the closed-loop phase Φ0.

the pulse envelope remains approximately constant. Instead, its amplitude increases
exponentially. As in the first example, this dynamics can be explained based on the
index of refraction at resonance. Calculating β for Φ0 = 0 in the analytical solution,
we find a negative imaginary value corresponding to gain. Again, we compare the
analytical solution to the numerical data. The phase dependence is given by a linear
increase with a plateau in between, whereas the increase in amplitude follows an
exponential function, see Fig. 6.3. Both analytical solutions agree reasonably well
with the numerical data, given that the finite switch period with the corresponding
transient dynamics is not taken into account in the analytical calculation.

These examples show that by changing the relative control field phase Φ0, the
dynamics of the probe field can be substantially influenced throughout the propa-
gation. In the second example, the refractive index experienced by a pulsed probe
field with left circular polarization was changed from a positive real value n ≥ 1 to
an imaginary value representing gain and back. With different values for the control
phase, also n ≤ 1, absorption, or intermediate cases are possible. This is illustrated
in Fig. 6.4, which depicts the real and the imaginary part of the index of refraction
obtained from our analytical calculation against the control phase.

6.4 Conclusion

In summary, we discussed light propagation dynamics in a chiral atomic medium.
The chirality arises from a cross coupling of the electric and the magnetic component
of a probe field induced by the medium. We analytically determined the response
functions for a specific chiral model system from the microscopic quantum mechan-
ical EOM. As our main result, we demonstrated that chiral effects can crucially
influence the propagation dynamics already at experimentally accessible parame-
ter ranges. As a specific example, we showed that the chiral couplings render the
medium sensitive to the relative phase of the applied fields. By changing the relative
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phase of one of the applied coupling fields, the propagation of a probe pulse can be
controlled dynamically during its passage through the medium. From this, we con-
cluded that chiral media are an ideal implementation of closed-loop phase control
of light propagation. In a broader context, it is remarkable that the magnetic field
component of the probe field can substantially modify the probe pulse propagation
dynamics, despite the weak coupling of the magnetic field to the medium. It re-
mains to be seen if such magnetic field couplings may also find other applications in
quantum optics.
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Conclusion

In this thesis, we have show the feasibility of the idea to realize an atomic medium
with simultaneous coupling to the electric and magnetic component of a probe field.
Based on the proposal of using high density and inducing chirality to obtain the
necessary magnetic response, we have studied light propagation in dense and chiral
media. As a key result, we have demonstrated that in a chiral medium the magnetic
component of a probe field can become relevant already at low densities, accessible
to current experiments.

We divided the analysis into different parts and considered several aspects of
light propagation in dense and chiral media separately. In the first part, we started
with aspects accessible to a single atom analysis. First, in chapter 1, we studied a
closed-loop system. We calculated the medium response to a pulsed probe field and
found a corresponding physical interpretation in term of scattering processes. On
the one hand, this allowed us to identify the contributions linear and nonlinear in the
probe field and we showed that the system can exhibit a strong intensity-dependent
index of refraction with low absorption. On the other hand, the analysis gave us first
insight into the processes relevant for a chiral medium induced by a closed interaction
loop. More specifically, it became clear that there exist scattering processes into the
probe field mode which are important for light propagation dynamics.

In chapter 2, we put forward a scheme to control the group velocity in the ultra-
violet domain. The chosen level structure in mercury required an approach different
from electromagnetically induced transparency (EIT) and we employed interacting
dark state resonances to induce a high contrast resonance structure. Applying an
additional incoherent pump field, we found that sub- and superluminal propagation
as well as a negative group velocity, all without absorption can be achieved in the
system. This is a starting point for applications like a controllable pulse delay line
which are otherwise hard to realize in the ultraviolet domain. Moreover, the pro-
posed scheme might be suitable to coherently store a light pulse [125]. Compared
to standard light storage schemes based on EIT, it offers additional control parame-
ters and it would be interesting to further explore these degrees of freedom in a full
propagation analysis.

In the second part we extended our theoretical description by using the Maxwell-
Bloch equations and considered aspects of light propagation in which a spatial de-
pendence of the fields is important. Due to the more complex equations of motion,
we augmented our analytical considerations with numerical solutions. In chapter 3,
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we analyzed a system in which absorption of the control fields and the generation of
an additional field via four-wave mixing lead to strong propagation dynamics. We
found that during propagation a closed interaction loop is established due to the
newly generated field and that parametric processes typical for a closed-loop sys-
tem modify the probe field. In spite of this dynamics, we were able to show that a
smooth and controllable probe field response arises. To give an example, we showed
that the medium is suitable for the phase-compensation mechanism in a white-light
cavity which enhances the cavity bandwidth without reducing the intensity buildup.
The fact that a system inherently relying on propagation dynamics can be used to
prepare a medium response compatible with a given task, is supprising and calls for
further attention. Based on the single atom picture in chapter 1, it seemed that in
this respect parametric processes due to their rigid frequency constraints are mainly
a disturbing factor. However, when one of the fields is only generated as soon as
the probe field is applied, parametric processes can influence the probe field over
a broader range of frequencies. In such a situation, the propagation dynamics can
be advantageous for the medium response and indeed, we were able to demonstrate
an additional enhancement of the cavity bandwidth in our example. The analysis
also encourages one to consider a broader class of systems for light propagation in
general. Here, our results are a proof of concept and also other schemes with strong
propagation dynamics could benefit. For example, in nonlinear interactions where
a closed-loop transition includes more than one probe field transition, a comparable
mechanism could relax the frequency constraint as well.

In chapter 4, we analyzed the influence of high atomic density on light propa-
gation. Since the densities required for a direct magnetic response different from
µ ≈ 1 are not accessible for present experiments, we focused on a density regime
at the onset of cooperative effects. In this regime, we studied the propagation dy-
namics of a slow light pulse in an EIT setup. We found that the phase of the pulse
is strongly modulated by the dipole-dipole interactions of neighboring atoms. The
phase modulation leads to a linear frequency chirp over the total extend of the pulse
and is independent of the probe field intensity. This distinguishes our results from
the frequency chirp obtained by self-phase modulation in a nonlinear medium. In
addition, we were able to reveal the underlying physical mechanism leading to the
phase modulation. We showed that dipole-dipole interactions lead to an energy
transfer between neighboring atoms which follows the same principles as the inter-
action of the atoms with the light field. This observation gives both an explanation
for the form of the phase modulation as well as an intuitive picture of dipole-dipole
interactions in a dense medium in general. Intuitive insight is a necessary first step
to advance light propagation into the regime of truly dense media. It should be
noted that theoretical models which take into account the atom-atom interactions
to all orders in the particle density do exist [27]. However, they are too complex to
provide any physical insight and also a numerical treatment is not feasible in most
cases. Clearly, more work needs to be done to gain an intuitive understanding of the
involved physics. Besides the dipole-dipole interaction we focused on, this is also
applies to quantum statistical effects or higher-order processes like multiple scat-
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tering. Here, especially radiation trapping, the enclosure of spontaneously emitted
photons inside a medium due to multiple scattering, is one of the main obstacles
in current experiments both with atomic vapors as well as ultracold gases. It leads
to strong decoherence and prevents established optical preparation techniques to
be applicable at higher density. A better understanding would guide the efforts to
overcome these limitations and facilitate the way to light propagation experiments
at higher density. Apart from the limitations due to radiation trapping, there are
possibilities to study the effects of high density in current experiments, for exam-
ple in doped crystal systems or Rydberg gases. Doped crystals can be coherently
prepared by optical methods in spite of high density and in addition offer the pos-
sibility to actively enhance their coherence properties [160–162]. In Rydberg atoms
the valence electron is highly excited, thus very loosely bound, and very sensitive
to external electric fields. As a result, Rydberg atoms can exhibit extremely large
dipole moments such that Rydberg gases are an ideal system to study dipole-dipole
interactions at lower densities [163].

In the third part we addressed light propagation in chiral media. In chapter 5,
we distinguished the different types of electromagnetic response and showed that
a response due to an electric [magnetic] dipole moment induced by the magnetic
[electric] field causes a cross coupling of the field components and renders a medium
chiral. We derived the wave equations for both field components in such a medium
and solved them in the slowly-varying envelope approximation. The solution is
expressed in terms of general response coefficients and apart from the cross coupling
no further specifications regarding the medium were made until this point. Hence,
at the end of the chapter we discussed the prerequisites for an implementation.

In chapter 6, we turned to a specific example and presented a level scheme suit-
able to implement light propagation with chiral interactions. Applying the different
concepts studied in the other chapters, we demonstrated how a closed interaction
loop including both an electric and a magnetic probe field transitions can be used to
implement a chiral medium. We found that the chiral cross coupling arises from a
mechanism quite similar to the propagation dynamics discussed in the third chapter.
Also here, the scattering processes due to the closed interaction loop can only occur
as soon as the probe field is applied, but with the difference that the transition
loop is closed by the other probe field component instead of a newly generated field.
Therefore, the chiral interaction arises instantaneously instead of building up over
the course of propagation. Based on the numerical solution of the Maxwell-Bloch
equations in a chiral medium, we showed that the dynamics of a slow light pulse can
be substantially influenced by the chiral interactions already at low densities. Using
the closed-loop phase as a control parameter, we changed the refractive index for the
light pulse from a positive real value to a negative imaginary value leading to gain
and back, all during the propagation time. We were also able to derive analytic ex-
pressions for the medium response coefficients. These expressions very well describe
the dynamics observed in the numerical solution and in particular made it possible
to determine a parameter quantitatively characterizing the chiral interactions and
its effect on the propagation dynamics in our system.
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In conclusion, we have shown the feasibility of using induced chirality to realize
an atomic medium with a simultaneous coupling to the electric and magnetic com-
ponent of a probing light wave. We have demonstrated that in a chiral medium the
necessary magnetic response can be achieved in a density regime realistic for current
experiments. In contrast to using chirality, the proposal of increasing the density to
a level where the direct magnetic response without chiral cross coupling is enhanced
far enough to become relevant for light propagation, seems impracticable at the mo-
ment. Not only are the densities of current light propagation experiments orders of
magnitude away from this regime, but also a lot of work remains to be done to im-
prove the physical understanding of the processes relevant in a truly dense medium.
Our results on dipole-dipole interactions in an EIT medium provided an intuitive
picture for the density regime at the onset of cooperative effects and investigations
including higher order processes are needed to test and increase the range of validity
of such a picture.

Regarding the simultaneous coupling of both probe field components by induced
chirality, of course an experimental verification would be highly desirable. To fa-
cilitate a practical implementation, it would be helpfull to relax the requirement of
a degenerate electric and magnetic dipole transition in the optical domain. Some
possible setups include replacing one electric transition with a two-photon resonance
or to use a medium combining two different atomic species. In principle one could
also try to use a cross coupling on a single optical transition as present in chiral
molecules. As we have discussed, due to symmetry properties this is not possible
for transition in free atoms. But in setups like doped crystals, the influence of the
solid state host changes the symmetry properties which could make such a scheme
possible. Another idea to promote the magnetic response is based on coupling a
medium to both components of a single cavity mode. The standing wave inside an
optical cavity gives rise to a position dependent coupling strength which is different
for the electric and the magnetic field. A fixed position closed to a maximum in
the intensity of the magnetic field could thus increase the magnetic coupling com-
pared to the electric coupling. In combination with the strong feedback achievable
in a high quality cavity, a simultaneous coupling to both field components could be
possible.

A quantum optical experiment where both the electric and magnetic component
of light are critical for the interaction with matter would certainly open a new and
fascinating research perspective. The field of metamaterials has shown the power of
the idea to treat both the electric and magnetic aspects on an equal footing and in
quantum optics one could certainly hope for a similar boom. Apart from possible
applications, a realization of such a concept would surely also be of interest from a
fundamental point of view. For the first time in quantum optics, one would be able
to control both aspects of light, the electric and the magnetic field, on the level of
fundamental interaction processes, leading one to a vision of a magnetic quantum

optics, i.e. a quantum optics where the interaction of light and matter rests on both
facets of light.
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Numerical algorithm

In this appendix, we describe the algorithm that has been used to obtain the nu-
merical solution of the Maxwell-Bloch equations. It was applied to numerically
calculate the light propagation dynamics that was discussed in chapters 3, 4, and 6.
In particular, it is suitable to solve the Maxwell-Bloch equations in a chiral medium.

A.1 Equations of motion in dimensionless form

The Maxwell-Bloch equations combine the time evolution of the atomic degrees
of freedom with a one-dimensional propagation of the electromagnetic fields. As a
result, we deal with two coordinates, the time t and the position z. For the numerical
treatment, we define a dimensionless time t′ and position z′ by

t′ = tγ and z′ = zγ/v , (A.1)

where γ is a characteristic time scale for the atomic evolution and v is the expected
propagation velocity. More specifically, for γ we used the fastest decay rate appearing
in the respective level scheme and v is estimated from the analytical formula for the
group velocity (see e.g. Eq. 6.14).

With this scaling the equations of motion (EOM) can be brought into a dimen-
sionless form. The atomic degrees of freedom are governed by a master equation
which reads

∂t′̺(z′, t′) =f(̺,Ωi) , (A.2)

where ̺ is the density matrix in the interaction picture and the Ωi denote the Rabi
frequencies of the different applied fields expressed in units of γ. The function f is
defined by the right-hand side (RHS) of the master equation. Its exact form depends
on the respective level scheme and is not important for the algorithm.

The spatial propagation of the applied fields is described by a one-dimensional
wave equation in slowly-varying envelope approximation. For each Ωi we have an
equation,

[∂z′ + u∂t′ ] Ωi =gi(̺mn) , (A.3)
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where u = v/c is the expected velocity divided by the velocity of light c and the
source function gi includes the dependence on the polarization and magnetization
of the medium expressed by the corresponding elements of the density matrix ̺mn.
For a coupling of only the electric field component g is simply

g =iκ̺d , (A.4)

where κ = 3πLv/λγ is the dimensionless coupling constant, L was defined in Eq. 4.3,
λ is the transition wave length, and ̺d is the density matrix element describing the
coherence of the transition. In a chiral medium both the electric and magnetic
field component couple to the polarization and magnetization of the medium. This
results in two equations (see Eqs. 5.8), where the source function takes the form

gE =κ(i̺d ∓ α̺m) and gB = κ(iα2̺m ± α̺d) . (A.5)

Here, ̺d and ̺m denote the coherence of the electric and magnetic probe field tran-
sition and we have assumed that the coupling strength of the magnetic transition is
suppressed by a factor of the fine structure constant α. The different signs apply to
a left- or right-circularly polarized probe field.

A.2 Discretization scheme

The numerical integration of the EOM (Eqs. A.2 and A.3) is performed on a two-
dimensional grid with M grid points in space direction and N grid points in time
direction. The value of the density matrix, and the fields at a grid point is denoted
by

̺k
j :=̺(j ∆z, k ∆t) and Ωk

j := Ω(j ∆z, k ∆t) , (A.6)

where j and k are the indices for space and time direction, ∆z and ∆t are the
respective stepsize, and we have simplified the description to one Rabi frequency Ω
for notational clarity. In the same way, we denote the space and time dependence
of the RHS of the master equation by fk

j and of the source function in the wave

equation by gk
j .

The master equation (Eq. A.2) is evolved in time by a standard Adams-predictor
formula of second order accuracy,

̺k+1
j =̺k

j +
∆t

2

(

3fk
j − fk−1

j

)

+ O[∆t3] . (A.7)

For the first time step (k = 1), the values of ̺k−1
j and Ωk−1

j are outside the numerical
grid boundaries and we use a first order formula instead,

̺2
j =̺1

j + ∆t f1
j + O[∆t2] . (A.8)
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A.2. Discretization scheme

To evolve the wave equation, we use a second order Lax-Wendroff scheme [123],
modified to also include a source term [164]. First, Eq. A.3 is discretized with a leap
frog method centered around the grid point (j + 1/2, k),

Ωk
j+1 − Ωk

j

∆z
= −u

Ω
k+1/2
j+1/2 − Ω

k−1/2
j+1/2

∆t
+ gk

j+1/2 . (A.9)

Then, the unknown grid points Ω
k−1/2
j+1/2 and Ω

k+1/2
j+1/2 are calculated from a Lax scheme

centered at (j, k − 1/2) and (j, k + 1/2),

Ω
k−1/2
j+1/2 − 1

2(Ωk−1
j + Ωk

j )

∆z/2
= −u

Ωk
j − Ωk−1

j

∆t
+ g

k−1/2
j , (A.10a)

Ω
k+1/2
j+1/2 − 1

2(Ωk
j + Ωk+1

j )

∆z/2
= −u

Ωk+1
j − Ωk

j

∆t
+ g

k+1/2
j . (A.10b)

The unknown grid points at half integer steps of the source function g in Eqs. A.9
and A.10 are replaced by the mean value of the nearest neighbors,

gk
j+1/2 =

1

2
(gk

j + gk
j+1) , g

k−1/2
j =

1

2
(gk−1

j + gk
j ) , g

k+1/2
j =

1

2
(gk

j + gk+1
j ) .

(A.11)

Using Eqs. A.9, A.10, and A.11, we finally arrive at the formula for a space step,

Ωk
j+1 = Ωk

j +
u∆z

2∆t

[

Ωk−1
j − Ωk+1

j +
u∆z

∆t
(Ωk+1

j − 2Ωk
j + Ωk−1

j )

]

(A.12)

+
u∆z2

4∆t
(gk−1

j − gk+1
j ) +

∆z

2
(gk

j + gk
j+1) .

At the initial time k = 1, Ωk−1
j is outside the numerical grid boundaries. To still

use Eq. A.12 we replace it by the known vacuum value. At the final time k = N ,
however, ΩN+1

j and ̺N+1
j are not known. Here, Eq. A.12 cannot be applied and we

use a nearly identical scheme centered around (j + 1/2,N − 1/2) to derive

ΩN
j+1 =

1

1 + u∆z
2∆t

[

ΩN
j +

u∆z

2∆t
(ΩN−1

j+1 + ΩN−1
j − ΩN

j ) +
∆z

2
(gN

j − gN
j+1)

]

. (A.13)

The initial state of the density matrix determines the value of ̺1
j for j = 1 . . . M

and the time dependence of the fields at the medium entrance fixes Ωk
1 for k = 1 . . . N .

Based on these initial conditions, the value of ̺ and Ω is iteratively calculated at
all other grid points. First, Eq. A.7 is used to calculate ̺k

1 for k = 2 . . . M . Then,
Eq. A.12 is used to calculate Ω1

2. Before Ω2
2 can be calculated, we have to use Eq. A.7

again to calculate ̺2
2 which is necessary for the source function g2

2 . In this manner,
Eqs A.12 and A.7 are used in alternation until the last space step at k = N is
performed by Eq. A.13. Repeating this procedure iteratively for j = 3 . . . M , finally
yields the solution for ̺ and Ω at all other grid points.
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die mich in dieser Zeit unterstützt haben und zum Gelingen dieser Doktorarbeit
beigetragen haben.

Mein erster Dank gilt Prof. C. H. Keitel für die Aufnahme in seine Arbeitsgruppe
und für die guten Rahmenbedingungen die er für die Forschungsarbeit schafft.

Ganz besonderen Dank verdient meinem Betreuer PD Dr. J. Evers. Zum einen für
die Vergabe des Forschungsthemas, und das Vertrauen, das er in mich gesetzt hat,
als er mich als Doktorand an nahm. Zum anderen für die stete Unterstützung meiner
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nanzierung im Rahmen der Heidelberg Graduate School of Fundamental Physics
sowie der International Max Planck Research School for Quantum Dynamics be-
danken. Dank gilt weiterhin Prof. H. Carmichael und A. Prof. S. Parkins für die
nette Aufnahme in ihre Arbeitgruppe in Auckland, die gute Betreuung vor Ort und
ihre finanzielle Beihilfe.
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