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Abstract

This paper introduces an extended version of the tra-

ditional Partitioned Global Address Space (PGAS) model,

for the implementation of scalable cluster systems, that the

HyperTransport Consortium Advanced Technology Group

(ATG) is working on. Using the Simics and GEMS simula-

tors, we developed a software module that approximates the

behavior of a PGAS cluster. This approach mainly provides

the simplest mechanism to evaluate how much the PGAS in-

frastructure will affect overall the application performance.

The aim of this work is to study the feasibility of the ATG’s

PGAS model for running applications with high memory

requirements. Such a model, will let manufacturers build

clusters that enable the execution of these applications, in

such a way that it will be impossible to run them in a single

processor, or in a multi–processor.

1. Introduction

Traditionally, shared memory systems have been used

to run applications requiring a high memory space. How-

ever, such as systems do not scale more than tens of pro-

cessors. As memory requirements of applications and the

number of applications that run concurrently on comput-

ers have been increasing, designers have made proposals to

partially solve the lack of memory on computer systems. In

this way, modern operating systems provide advanced vir-

tual memory managers that solve the lack of memory. These

managers utilize secondary devices for freeing contents of

memory whenever it is necessary. This approach provides a

simple way of running applications that have a running im-

age size bigger than available physical memory size. When
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an application is running and the system is low of memory,

the virtual memory manager can evict it to a special de-

vice called a “swap device”, or swap, to free memory. This

technique is called swapping [17], and there are several ap-

proaches in the literature about it. Just to mention a few,

Unix–based systems use a separate swap partition type that

is hosted in the user file system. In contrast, Windows uses

a user–space file that is hosted inside the file system, while

the MacOS X operating system can use partitions and files.

Nevertheless, swapping has several drawbacks. The first

one comes from the access time of the swapping device,

which is usually a hard disk, therefore, one or more orders

of magnitude higher than the memory access time. The sec-

ond drawback is thrashing, which occurs when the mem-

ory manager evicts parts of the running image of a process

and, after a time, it reallocates those parts in memory again.

Thus, solving the lack of memory always involves a high

run time.

The AMD’s Opteron processor can be used as a com-

modity to build clusters. This processor includes the mem-

ory controller on–die, in such a way that all memory is ac-

cessible from one memory controller. The Opteron proces-

sors use the AMD’s HyperTransport protocol [8] for com-

municating with each other. Moreover, the HyperTransport

protocol enables CPUs to directly connect the Opteron Hy-

perTransport link to add–in card subsystems via the HTX

connector [5], which is placed in the motherboard.

The HyperTransport Consortium Advanced Technology

Group (ATG) is working on an extended version of the

traditional Partitioned Global Address Space (PGAS) pro-

gramming model [3]. Such a model will let manufactur-

ers build clusters with PGAS native support. In this pa-

per we carry out an assessment of “rough” PGAS model

through Simics [10] and GEMS [11] simulators. However,

this work has not attempted to conduct a study using a hard-

ware implementation, because the ATG has not completed

the specification of its PGAS model yet, and therefore it is

impossible to achieve that kind of evaluation. The behavior

of the final system will be similar (bridging the gap) to the

behavior in a cluster with PGAS native support.
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In addition, the increasing use of interconnection net-

works to intercommunicate the processor and memory, such

as AMD HyperTransport, might allow the construction of

scalable systems, from hundreds to thousands of nodes

composed of multicore processors. Therefore, the Opteron

processors will provide the basis to build the clusters with

PGAS native support.

The remainder of this paper is structured as follows: In

the next section we present a summary of the related work.

The details of the proposed model are explained in Sec-

tion 3, while Section 4 details the simulation scenarios and

the results obtained. In the last Section, we conclude and

provide a brief overview of the future work.

2. Related Work

HyperTransport is an interconnection technology which

enables connecting the processors among each other and

with the I/O devices. It provides an extremely low latency,

high bandwidth and excellent scalability. Moreover, the

definition of the HTX connector allows co–processing and

acceleration based on ASIC or FPGA technologies. In par-

ticular, it is receiving a highlighted interest of the commu-

nity because it makes easy to reduce execution time by the

use of accelerators.

Partitioned Global Address Space languages combine

a Single Program Multiple Data (SPMD) programming

model with a global address space, which is logically par-

titioned to give each thread a portion of shared memory

to which it has affinity [19]. In the SPMD model, a fixed

number of threads are created at program startup, and every

thread runs the same program. Each thread has both a space

for private local memory and some partition of the shared

space to which it has affinity. A private object may only be

accessed by its corresponding thread, whereas all threads

can read or write any object in the shared address space.

The partitioning of the shared space into regions with logi-

cal affinity to threads allows programmers to explicitly con-

trol data layout, which is then used by the runtime system

to map threads and their associated data to processors: on a

distributed memory machine, the local memory of a proces-

sor holds both the thread’s private data and the shared data

with affinity to that thread.

The HTC Advanced Technology Group (ATG) [1] is

working on developing proposals for HyperTransport to de-

fine an address space globally and dynamic partitioning

(PGAS) for using in scalable clusters. The idea is not new,

but it comes from the existing PGAS models [3]. In the bib-

liography several PGAS applications can be found, for ex-

ample, Unified Parallel C [4] to define models of program-

ming languages. In addition, developers of these languages

have tools like GASnet [2] which is a communication inter-

face for programming languages such as Unified Parallel C.

GASnet is a language independent of the network that al-

lows the definition of libraries providing global addressing.

GASnet is inspiring the work of HTC Advanced Technol-

ogy Group for the implementation of PGAS [18] in a native

way.

The ATG is proposing the mechanisms and abstractions

that will allow the construction of clusters using Opteron

processors. The motherboard containing Opteron proces-

sors will support the HTX connector. By plugging exten-

sion cards on the HTX connector will allow the formation

of a cluster of motherboards. The memory controller of

each Opteron will divide the whole range of physical ad-

dresses in regions and distribute them among the memory

of other Opterons. Subsequently, the memory controllers

will be able to access remote regions of memory transpar-

ently. Following this approach, the Opteron processors can

avoid the use of a device for the lack of memory, since ac-

cess to remote memory controller will be lower than access

to a local secondary storage device, and hence system per-

formance will be enhanced.

In such systems, the physically addressable memory in

all nodes is part of a global address space with non–uniform

access time from any specific node. From the perspective

of a node, the global address space is composed of local

partitions and remote partitions where the former can be ac-

cessed with the lowest latency and the latter can be accessed

with larger and possibly non–uniform latencies (across dis-

tinct partitions). In this model, a local partition refers to

DRAM accessed through a tightly integrated memory con-

troller. The latency of remote memory accesses will be non–

uniform because it will depend on interconnection perfor-

mance and the load and contention of the network.

Specific details of the implementation of the PGAS

model cannot be provided in this paper because they are

still confidential, and some aspects of it are still under de-

liberation of the ATG group.

The Computer Architecture Group at the University of

Heidelberg in Germany has the expertise to design com-

plex hardware/software systems. The HTX–Board [7], a

contribution of this group, provides a convenient and ef-

ficient way to evaluate user specific devices connected to

the Hypertransport connector standardised under the name

of HTX–Connector. In [16] they published the architec-

ture and mechanisms of the HTX–board. Subsequently,

in [9] they have introduced a novel communication engine

in combination with the HyperTransport interface. They

provide an excellent prototype to get real–world measure-

ments connecting two Opteron through two HTX–boards.

Moreover, they also show the initial latencies of sending

a HyperTransport packet on a HyperTransport link and pro-

pose some optimisations that can minimise that latency (e.g.

doubling the HyperTransport clock frequency or migrating

FPGA to ASIC technology).
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Figure 1. Diagram of the simulated cluster.

3. Model

Because of the fact that the ATG has not completed the

specification of its model PGAS yet, it is impossible to carry

out an evaluation using a hardware system. However, it is

feasible to carry out an approximate evaluation of the PGAS

model by simulation.

In order to simulate the cluster, Simics 2.1 and

GEMS 2.2.19 simulators were used. In the Simics context,

two fundamentals terms are always used:

• The computer on which we are running Simics is re-

ferred to “host system”.

• The computer simulated by Simics is referred to “tar-

get system”. Specifically, it simulates the cluster with

PGAS support.

Our approach consists in simulating the execution of one

sequential application as if it would be running on a cluster

with PGAS support just using the execution–driven Simics

simulator. In that hypothetical cluster, any processor might

issue requests of the global address space. The global ad-

dress space will consist of the joint of every memory in the

cluster. From the processors point of view, most of the phys-

ical memory in the cluster can be accessed, except some

private areas that will not be allowed to access. The Fig-

ure 1 explains how a cluster can be simulated starting from

a simulated processor in Simics.

Without lossing generality, we run one sequential appli-

cation in the target system and we process every message

going inside the system. The messages are deliverated by

the simulator as they are in a usual execution, but the de-

lay of every message is customised depending on the type,

source and destination of the message.

In the AMD’s whitepaper [14] a suite of benchmarks

is examined to illustrate their performance and scalabil-

ity in single, multi–processor, and cluster configurations.

Its results clearly show the exceptionally responsiveness of

an Opteron–based NUMA support system. Specifically, it

shows the cost for one processor for accessing to the shared

memory in a four AMD Opteron motherboard. The laten-

cies are given depending on the distance between the trans-

mitter and receiver processors.

Regarding the application, it must be a benchmark that

makes an intense use of memory. Also, a sequential appli-

cation is preferred in order to avoid any dependency pro-

duced by a parallel execution. Stream [12] is a well–known

benchmark that measures bandwidth sustainable by ordi-

nary user programs, and not the theoretical peak bandwidth

that vendors advertise [13]. Moreover, it is used by AMD

to measure the performance of the memory of their proces-

sors [15].

- 41 -



The benchmark performs functions with matrices that

are stored in memory. The functions are executed several

times. When the benchmark concludes, it returns the rate of

traffic data of memory in MB/second and execution time

(average, minimum and maximum) in seconds, for each

function. Both performance indexes are the most relevant

in this kind of benchmarking. The execution time gives the

global performance measure and the traffic rate offers the

real load of the memory system.

4. Evaluation

In this section, we start describing the simulation model

we have used to carry out our experiment. Then, we present

the results we have obtained and some comments about

them.

4.1. Simulation Model

In all the simulations, our customized GEMS module is

loaded. It is responsible for managing all the messages sent

by the memory system. We assume that the target proces-

sors utilised in this work are used to build systems with a

coherent shared memory, similar to the Opteron processors.

Therefore, the GEMS module has to manage the messages

caused by the memory coherence protocols. The study of

memory coherence protocols is out of the scope of this pa-

per. Thus the simulations have been carried out with a single

processor in order to reduce the influence of these protocols.

The host system is a SUN W2100Z workstation that has

two Opteron processors at 2.4 GHz and a DDR–400 mem-

ory of 4 GB. SuSe 10.2 is used as operating system. The tar-

get system is the sarek preinstalled system of Simics which

is a UltraSPARC processor at 75 MHz. Solaris is used as

operating system and an amount of 512 MB of memory is

configured.

The assumption that the whole memory of the cluster is

512 MB seems initially nonsense. However, the aim of this

work has never been to propose a detailed PGAS simulation

model because the ATG has not finished its PGAS model

yet. Considering an increase of the target memory size, that

is the memory size of the cluster, requires to increase the

Stream benchmark size and then it causes an exponential

simulation time growth that would be unaffordable. Even

though the results remain representative because the bench-

mark spreads the accesses out the memory address space.

Additionally, the parameters of the Stream benchmark

have been set to achieve the following behavior:

1. The target host is running a unique process of Stream

benchmark in absence of processes that interfere with

Stream. Meanwhile, the memory accesses are con-

trolled by the customized GEMS module.

2. Stream runs two series of functions (copy, scale, add

and triad). Previous tests had proved that increasing

the number of series does not alter the final outcome in

the absence of processes that interfere with Stream.

3. The size of Stream is 460 Mbytes. This size was cho-

sen because it represents 90% of the available simu-

lated memory (512 MB).

4. The GEMS simulator requires to set the latencies in

the target processor cycles, so a 2.4 GHz processor was

considered for the translation from real nanoseconds to

simulated cycles.

It must be noticed that the latencies in our simulations are

considered as an approximation. However, we have selected

values that reflect real systems:

• When an access is destined for memory allocated in the

same motherboard, a latency of 115 ns for each access

has been considered [14]. In that case, this value is the

mean time for both read and write accesses.

• When an access is destined for memory allocated in

a remote motherboard, the latency has been deduced

from the proposed delays in [9, 16]. We assume all the

improvements suggested by [9, 16] like ASIC technol-

ogy instead of using FPGA technology, doubling the

HyperTransport link frequency, and a 16–bit Hyper-

Transport link width. In this case, the calculation of

the latencies is:

– Due to all the technology improvements, [9]

claims a total latency of 130 ns for the transmis-

sion and it expects a fixed latency (for local CPU

and remote memory controller) of about 300 ns.

The functionality of [9] is exactly the behavior

of a remote write operation (transmision of data

from source node to destination node). Hence we

assume a latency of 430 ns for a write operation

of 64 bytes payload.

– The read is much more costly. The Opteron used

in [16] only issues 32 bit read operations. The

read operation consists of transmiting the read re-

quest to the destination node, and then transmit-

ing the result back to the source node. Because

of the access granularity of 8 bytes (it is a limi-

tation of the Opteron K10 architecture) a simple

8 bytes read operation costs 610 ns. Therefore,

a series of 8 consecutive operations have to be

issued to retrieve the total amount of 64 bytes.

This is the reason for assuming the read opera-

tion takes 4880 ns.

• When an access is destined for memory mapped in

a swap device, we assume a latency of 45,600 ns as
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it is suggested in [6] for enterprise class harddisks.

In that case, this value is the mean seek time for a

variable 512 bytes sector size. We assume this time

as a representative, so we do not consider neither the

sector size effect nor cache implications.

Regarding to simulation scenarios, we have considered

the following scenarios:

• Local scenario (1P): It represents a desktop system

with just one processor and one motherboard.

• Shared scenario (4P): It represents a server system,

commonly known as a shared memory multiprocessor.

There are four processors assembled in one mother-

board.

• Remote scenario (16P): It represents a enterprise sys-

tem or a cluster. A total of sixteen processors are dis-

tributed between four motherboards of four processors

per motherboard that are interconnected using HTX

connectors.

A group of extra three scenarios have been selected to

evaluate the loss of performance due to the utilisation of

swapping. Figure 2 shows the distribution of the target

memory into regions and the access type that is associated

with each region. Each region corresponds to a contiguous

physical memory partition controlled by a single node. In

our test, we assumed all regions are of the same size. These

extra scenarios are based on the previous scenarios and they

consist in distributing the regions of memory between swap-

ping devices, as if they were accesses to secondary devices

and therefore such accesses suffer an extra delay. All the

extra scenarios assume a partitioning of the memory in 16

regions. Specifically, these three extra scenarios are:

• 1P–SW: It is basically the 1P scenario, but the accesses

from the second to the last regions are accesses to a

swap device (see Figure 2(a)).

• 4P–SW–U: It is similar to the 4P scenario. The swap

regions are assigned uniformly (see Figure 2(b)).

• 4P–SW–D: Similar to the 4P–SW–U scenario, but the

swap regions are interleaved on the memory (see Fig-

ure 2(c)).

The previous partitioning of the memory is quite extreme

because it assigns up to 90% of the target memory to swap.

However, that partitioning represents a suitable configura-

tion for checking the influence of the target operating sys-

tem and how its target virtual memory manager allocates

the target memory (e.g. how the target memory is allocated

to the applications).

Target

Processor

RAM

Memory

CPU swap

1 1514131211109872 3 4 5 6 16

(a) 1P–SWAP

1 1514131211109872 3 4 5 6 16

motherboard swap
CPU

(b) 4P–SWAP–U

1 1514131211109872 3 4 5 6 16

swap

motherboard
CPU

motherboard motherboard

swap swap swap

(c) 4P–SWAP–D

Figure 2. Distribution of target memory into

regions and their access type.

4.2. Simulation Results

The aim of this work has never been focused on the per-

formance of the application, but the behavior of a cluster

with native PGAS support (scenario 16P) to run applica-

tions. Note that it will be impossible to run these applica-

tions in a single processor (scenario 1P) or multi–processor

(scenario 4P) due to the memory requirements of these ap-

plications. Note also that the only alternative in these cases

is the use of swapping devices, which is considered in the

1P–SW and 4P–SW scenarios.

Mainly, it is interesting to know how the execution

time evolves. Figure 3 depicts that the execution time in-

creases for 4P and 16P on average 0.54 seconds (2.68%)

and 40.76 seconds (202.68%) with regard to the 1P sce-

nario. Because of it is a memory benchmark, it is also inter-

esting to know how the traffic memory evolves, so Figure 3

depicts that the performance of the memory for 4P and 16P

decreases 0.53 MB/s (2.63%) and 13.46 MB/s (66.93%),

regarding the performance achieved by scenario 1P. When

extra scenarios are studied, the results are even worse, as

it is expected. Both, the execution time and the memory

traffic, fall dramatically for all scenarios.

In Figure 4 we show the same results, but only for the

1P, 4P and 16P scenarios in order to improve the readability

of the Figure 3.
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Figure 3. Performance results of the Stream application in each scenario.
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The results have shown that scenario 16P using the

PGAS model is always a better choice than extra scenarios

that implement swapping. Of course, the performance of

the unfeasible scenarios 1P and 4P is much better than the

performance of the 16P scenario, but this one is the best op-

tion for those applications with high memory requirements.

5. Conclusions and Future Work

This paper presents the results of the preliminary assess-

ment of the work in progress that is made by the ATG. Be-

cause the ATG has not completed the specification of its

PGAS model yet, it is not possible to carry out a hardware

evaluation. However, we have performance a simulation–

driven study.

Firstly, we have developed a module of the GEMS sim-

ulator for tracking the memory requests and customizing

their latency. By this module, we could simulate approxi-

mately the behavior of an application running in a cluster

with PGAS support. This cluster would run any applica-

tion with high memory requirements if they do not exceed

the whole physical memory of the cluster, because the ap-

plication will be spread out into the DRAM memory of the

processors in the cluster.

As it was explained, swapping can solve the lack of

memory, but the application performace falls dramatically

as the lack of memory increases. This paper has introduced

the PGAS model as one alternative to swapping. Results

have showed that the PGAS model would never be a bet-

ter option than having enough memory in the processor that

runs the applications, because a lot of time would be spent

in accesses to remote memories. However, it will be al-

ways better than using swapping, because the latencies of

the inter–memory communications will be lower than ac-

cesses to swapping.

As future work it is interesting to keep updated of all the

work that is done by the ATG, for example, the real imple-

mentation of the PGAS support, the future improvements of

the HTX–board, and the specification of the HTX connec-

tor.
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