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Zusammenfassung

Es werden Kerneffekte in wasserstoff-ähnlichen myonischen Atomen, die intensiver Laser-
strahlung hoher Frequenz ausgesetzt sind, untersucht. Dabei werden Systeme mit niedriger
Kernladungszahl betrachtet, die eine nichtrelativistische Beschreibung erlauben. Durch
Vergleich der von verschiedenen Isotopen ausgesandten hochharmonischen Strahlung wer-
den charakteristische Signaturen durch die Kernmasse, -größe und -form demonstriert.
Maximale Photonenenergien im MeV-Bereich sind erreichbar und weisen einen Weg zur
Erzeugung ultra-kurzer, kohärenter γ-Pulse. Darüber hinaus kann der Atomkern durch
die laser-getriebene periodische Bewegung des Myons angeregt werden. Der Übergang
in ein höheres Kernniveau wird durch das zeitabhängige Coulomb-Feld der oszillierenden
Ladungsdichte des gebundenen Myons hervorgerufen. Im Rahmen eines vollständig quan-
tenmechanischen Ansatzes wird ein geschlossener analytischer Ausdruck für elektrische
Multipolübergänge hergeleitet und auf verschiedene Isotope angewandt. Die Anregungs-
wahrscheinlichkeiten sind im Allgemeinen sehr klein. Wir vergleichen den Prozess mit
anderen Kernanregungsmechanismen, die auf einer Kopplung mit der atomaren Hülle
beruhen, und diskutieren die Aussichten für seine experimentelle Beobachtung.

Abstract

Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser
fields have been studied. Systems of low nuclear charge number are considered where
a nonrelativistic description applies. By comparing the radiative response for different
isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and
shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved,
offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus
can be excited while the laser-driven muon moves periodically across it. The nuclear
transition is caused by the time-dependent Coulomb field of the oscillating charge density
of the bound muon. A closed-form analytical expression for electric multipole transitions
is derived within a fully quantum mechanical approach and applied to various isotopes.
The excitation probabilities are in general very small. We compare the process with
other nuclear excitation mechanisms through coupling with atomic shells and discuss the
prospects to observe it in experiment.
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Chapter 1

Introduction

It has always been a part of human curiosity to aspire more knowledge about nature. To
explore the fundamental laws of nature, one has to go to the microworld and that is only
possible via technology. With the advent of Quantum Mechanics, we are already into the
world of the objects which we are unable to see on our own. With the discoveries of atom
and atomic nucleus, we are in a totally different world which could have never been realized
using Classical Physics. To probe the characteristics of atoms, nuclei and particles we
need comparatively high energies as used for the ordinary life objects. Extensive research
is going on in this area but still much is left to be investigated.

While Atomic, Nuclear and Particle Physics are generally separated by different length
and energy scales, strong laser fields offer a way to form a bridge among these different
areas [1, 2]. From its birth about 50 years ago, Laser Physics has been growing by leaps
and bounds. Due to the large progress in high-power laser technology during the last two
decades, it is possible today to produce keV photons, MeV ions and GeV electrons by
intense short laser pulses (I ∼ 1018−1020 W/cm2) which lies far beyond the typical energy
scale of Atomic Physics and is more characteristic for Nuclear and Particle Physics. As a
consequence, the field of laser-nuclear physics is emerging in recent years [3]. While lasers
have always represented important tools for nuclear spectroscopy [4], at present their role
is qualitatively changing and growing. Direct or indirect interaction of the nucleus with
the laser is quite an interesting field these days both at theoretical as well as experimental
level although it is quite challenging. In pioneering experiments, the interaction of intense
laser pulses with solid targets has already led to the observation of laser-induced nuclear
fission [5], nuclear fusion [6], and neutron production in nuclear reactions [7, 8]. At the
moment the most intense laser has an intensity of the order of 2 × 1022 W/cm2 with
a power of 300 TW [9]. The next laser generation aims at phenomena like vacuum
polarization and relativistic ion generation [10, 11]. Advanced laser sources might also
pave the way to nuclear quantum optics [12, 13] and coherent γ-spectroscopy [14]. The
main subject of the present thesis is to concentrate on nuclear probing and excitation
using the interaction of strong laser fields with atomic targets rather than solid-state
matter. Apart from the achievable high energies, lasers can be utilized in this case to
generate well-controlled collisions between atomic constituent particles. The interest thus
lies in indirect interactions of the nucleus with an applied laser field, mediated by the
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Chapter 1: Introduction

surrounding atomic shells.

Atoms submitted to strong laser fields e.g. emit radiation through the ionization-recombination
process. Even radiation of a frequency larger than the fundamental frequency of the in-
coming laser beam can emerge depending upon the energy of the electrons; this process
is called high harmonic generation (HHG). This process is being used in this thesis as a
tool at the atomic level to find some nuclear signatures.

To obtain the particle recollision energies in the MeV range, there might be different ways
to explore the nucleus using atomic techniques under the laser field:

1. to optimize the laser pulse: Klaiber et al., employs specially tailored pulses to
counteract the effect of drift and to get the higher harmonics [15] and also Milosevic
et al., introduce counter propagating lasers to diminish the drift in order to get high
harmonics [16].

2. to change the atomic species: there are some attempts to generate high ponderomo-
tive electrons by using ultra-intense laser light sources, but achieving a high collision
yield remains a difficult task due to the drift of electron while recombining. One
can think of using high-Z ions [17, 18], but this would in turn reduce the inherent
tunneling rate. If we use low-Z ions it would yield enough tunnel ionization, but
would not be strong enough to compensate the drift.

Henrich et al., investigated positronium (an exotic atom which consists of an elec-
tron and a positron) in strong laser fields. Under these circumstances, phenomena
such as recollisions of electrons and positrons with substantial coherent x-ray gener-
ation and gamma ray emission can occur [19]. For this two-body system the tunnel
ionization of electron and positron may occur almost oppositely in the laser polar-
ization direction, both experience the identical drift in the laser propagation due to
their equal magnitudes of mass and charge. Periodic recollisions occur in spite of
the influence of the Lorentz force. Positronium therefore offers interesting prospects
for Laser-Particle Physics [20]. Being a purely leptonic system, however, it is not
suitable for Nuclear Physics studies, of course.

In accordance with the change of atomic species, this work is based upon the replacement
of the electron by a revolving particle outside the nucleus in an atomic bond state. These
atoms are called Exotic Atoms: atoms can be formed with other charged particles serving
as the negatively charged electrons or the positively charged nucleus. Muons (having 207
times the mass of the electron), pi mesons (having 273 times the mass of the electron), or
antiprotons (having 1836 times the mass of the electron) can be substituted for electrons.
These exotic atoms exhibit energy levels and transitions similar to ordinary atoms.

Muonic atoms have proven to be particularly useful tools to study the structure of atomic
nuclei. In fact, they represent one of the most successful and accurate methods to probe
nuclear properties for more than 50 years [21–23]. If we replace the electron by a muon in
an ordinary atom then the atom is called a muonic atom. Muons have the same properties
as electrons except for:

1. the 207 times larger mass due to which the size of the muonic atom shrinks
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2. it is unstable having a life time of 2.2 µsec.

Due to the small Bohr radius of these exotic atoms, the muonic wave function has a
large overlap with the binding nucleus. Precision measurements of muonic transitions
to deeply bound states can therefore reveal nuclear structure information such as finite
size, deformation, surface thickness, nuclear compressibility [21] and polarization. The
first X-ray spectroscopy of muonic atoms was performed in 1953 using a 4-m cyclotron
[24]. Today, large-scale facilities like TRIUMF (Vancouver, Canada) [25] exist which are
specialized in the efficient generation of muons and muonic atoms. New developments aim
at the production of radioactive muonic atoms for conducting spectroscopic studies on
unstable nuclear species [26]. Muonic atoms, moreover, play a prominent role as catalysts
for nuclear fusion [27].

In light of this, the combination of muonic atoms with intense laser fields opens promising
perspectives which are investigated in this thesis. Contrary to the traditional spectroscopy
of muon transitions between stationary bound states, the exposure of a muonic atom to
a strong laser field makes the problem explicitly time-dependent and the muon, thus, a
dynamic nuclear probe. In this setup, the muon is coherently driven across the nucleus
which, for example, gives rise to the emission of radiation and, in general, allows for
time-resolved studies on a femtosecond scale. The information on the nucleus gained by
laser-assistance can in principle complement the knowledge obtained from the usual field-
free spectroscopy of muonic atoms. Against this background, we consider in this thesis the
process of HHG from strongly laser-driven muonic hydrogen and deuterium atoms. The
process of HHG represents a frequency up-conversion of the applied laser frequency due to
a nonlinear coupling of the atom with the external driving field (see [28] for recent reviews).
It can be understood within a three-step model, where the bound lepton is liberated from
the atom by tunneling ionization, propagates in the laser field, and finally recombines
with the core, returning its kinetic energy upon photoemission. Through a comparative
study it is demonstrated that the harmonic response from muonic hydrogen isotopes is
sensitive to the nuclear mass and size [29]. This shows that muonic atoms subjected to
strong laser fields can reveal information on nuclear degrees of freedom. Muonic deuterium
molecules in superintense laser fields represent another interesting example towards this
combined effort, where field-induced modifications of muon-catalyzed fusion have been
investigated [30]. Moreover, muonic hydrogen atoms have been studied as systems which
could allow for observation of the Unruh effect [31]. Considering their lifetime, we point
out that muonic atoms and molecules may be regarded as quasistable systems on the
ultrashort time-scales of strong laser pulses (τ ∼ fs–ps), since the muon life time amounts
to 2.2µs. In a deeply bound state of heavy atoms, the muon lifetime can be reduced to
∼ 10−8 s due to absorption by the nucleus, which still exceeds typical laser pulse durations
by orders of magnitude.

Excitation of atomic nuclei has been one of the major subjects to be investigated by
physicists for almost a century. Various mechanisms are capable to change the nuclear
quantum state [21]. In particular, transitions between atomic shells can couple to nuclear
degrees of freedom. For example, when the energy difference between two atomic states
matches a low-lying nuclear transition energy (~ωN . 100 keV), the energy released dur-
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Chapter 1: Introduction

ing the atomic deexcitation can be transferred resonantly to the nucleus leading to its
excitation (nuclear excitation by electron transition, NEET) [32,33]. Similar mechanisms
proceed via electron capture or scattering [34–36]. Despite their rather small probabili-
ties, these kind of processes are of both fundamental and practical interest since potential
applications comprise the efficient triggering of isomeric nuclear states [37] and especially
the development of a nuclear γ-ray laser [38].

In the laser field the muonic wave function is oscillating. The resulting time-dependent
charge density can lead, for example, to the excitation of the nucleus. Nuclear excitation
by the laser-driven surrounding electron cloud has been considered before theoretically
[39, 40]. The experimental verification of this process, however, is very difficult [41, 42].
For a muonic atom in a strong laser field the chances should be better due to the small
atomic size leading to a large charge density.

To have an idea whether one can observe HHG and the nuclear excitation via laser-muon-
nuclear interaction we look at the existing and near-future laser facilities. Several petawatt
laser systems all around the world such as HERCULES at the University of Michigan (Ann
Arbor, USA) [43], VULCAN at Rutherford Appleton Laboratory (Didcot, UK) [44] or
PHELIX at GSI (Darmstadt, Germany) [45]. The next generation of high-power lasers
will reach the intensity level of 1023 W/cm2 in the optical and near-infrared frequency
range (ℏω ∼ 1 eV) such as the Extreme-Light-Infrastructure, ELI [10]. At the FLASH
facility (DESY, Germany) [46] with a free-electron laser a record intensity of almost 1016

W/cm2 has already been achieved for the VUV frequencies (ℏω ∼ 10 − 100 eV) and
indeed soon they would be able to generate X-ray beams (ℏω ∼ 1 − 10 keV) at the
same place with peak intensities of the order of 1020 W/cm2. Higher intensities could be
reachable using plasma surface harmonics to produce ultrashort, high-frequency radiation
(ℏω ∼ 10 − 1000 eV) [47].

Table 1.1: Experimental laser facilities in near future
Range Laser Photon Energy Intensity

[eV ] [W/cm2]
Optical ∼ 1 1023

VUV ∼ 10 − 100 1016

ultrashort ∼ 10 − 1000
X-ray ∼ 1000 − 10000 1020

Thus, our goal is to study nuclear excitation and nuclear properties by virtue of bound
muonic motion in an intense laser field. This will extend the well-established studies on
muonic atoms (without an additional laser field) and the investigations of laser-nucleus
interactions in ordinary atoms. The examinations can also be applied to further exotic
systems, like pionic atoms and positronium.

As main results of this thesis, we found that muonic atoms exposed to super-intense laser
fields allow for dynamical probing of nuclear properties by the laser-driven muon. Isotope
effects are visible in the HHG spectra of light muonic atoms, which can be attributed
to the nuclear mass, size and shape. In particular, the harmonic cutoff position depends
on the nuclear mass, while the harmonic plateau height is sensitive to the nuclear size

12



and shape [29]. This opens the perspective to extend the well-established spectroscopy
of muonic atoms for Nuclear Physics purposes into the explicitly time-dependent domain
via coupling to an ultrastrong laser field. In the cutoff region, coherent hard X-ray
photons with energies approaching the MeV range are produced, enabling in principle
the generation of sub-attosecond laser pulses for time-resolved nuclear photoexcitation
studies. The nucleus can also be excited directly by the laser-driven muonic charge cloud
which oscillates periodically across it. For this process of nuclear excitation by coherent
muon motion we find very small probabilities, though, because the periodicity of the
muon dynamics is far off resonance with the nuclear transition frequency, in general. The
frequency mismatch can be overcome in certain cases by utilizing a relativistic atomic
beam which effectively enhances the laser frequency through the Doppler shift. Then
direct or indirect laser-nuclear excitation becomes feasible.

The thesis is divided to include some phenomena in Laser-matter interaction so to describe
tunneling and HHG in chapter 2. In chapter 3, muonic atoms have been discussed and
their importance is highlighted towards nuclear spectroscopy with or without laser field.
The relative and center-of-mass motions can be separated in the case of muonic atom since
the nucleus is no more an infinitely heavy and pointlike object for the muon. Considering
this separation scaling laws are formulated for muonic atoms against the ordinary atoms
having electron revolving outside the nucleus. Chapter 4 targets the role of muonic atoms
in probing nuclear signatures when subjected to laser beam. The results for nuclear mass
effect and size effects have been discussed first for hydrogen and then hydrogen-like muonic
atoms. In chapter 5 we discuss that Monte Carlo simulations revealing the evolution of
the ground state of muonic atom under the influence of a strong laser pulse which leads
to the conclusion that muonic atoms oscillate with laser field and can excite the nucleus.
The main emphasis is on nuclear excitation via the laser-driven muon revolving around.
At the end chapter 6 provides the concluding remarks with some outlook.
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Chapter 2

Laser-Atom Interaction and High
Harmonic Generation

2.1 Introduction

Laser Physics came into being in 1960 and after that it progressed very rapidly. Laser
beams, containing extremely coherent photons can impart much energy on a certain sys-
tem to explore it at molecular as well as atomic and even smaller level. Now-a-days
physicists are mostly interested in laser-matter interactions apart from the applications of
laser in industry. We would concentrate here on laser-atom interactions. With the goal of
probing the atomic and nuclear structures, we may also generate short pulses even up to
attosecond regime which is somehow one of the reasons to work in one of the applications
of laser-atom interaction i.e., High-harmonic generation.

2.2 Multiphoton Ionization

When some energy on an atom is imparted by any means then there are two possibilities
for it to absorb the energy:

1. either the energy is taken by the nucleus

2. or the electron goes to some next orbit or leave the bound state

otherwise the energy will not be absorbed. This energy causes to change the atomic
potential. It may result into shifting of the electron to some higher orbit and make it
loosely bound to the nucleus (excitation) or electron may leave the atom (ionization). In
fact, during excitation or ionization, the wave behavior of electron changes due to which
its energy eigenvalue changes.

Multiphoton Ionization (MPI) is a transition from a bound atomic state to a free state
with the help of multiphotons. The n-photon ionization rate is given by (in perturbative
approach)
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Chapter 2: Laser-Atom Interaction and High Harmonic Generation

Γn = σnI
n (2.1)

where n is the minimum number of photons needed for ionization, σn is the generalized
cross section and I is the intensity of the incident light.

Above-threshold Ionization (ATI) is a multiphoton ionization with the help of more pho-
tons than the minimum number of photons required. It is generated by the distortion of
atomic potential (the field-induced distortion). After applying the perturbation theory to
ATI, above equation can be generalized as:

Γn+s ∝ In+s (2.2)

where s is the number of excess photons absorbed. This process was verified experimen-
tally in 1982 [48]. The equation describing the photoelectron energy is simply an extension
of the Einstein photoelectric effect formula

Ef = (n+ s)ℏω −Eip (2.3)

where n is the number of photons needed for ionization, s is excess photons absorbed and
Eip is the ionization potential.

Experiments observed the disappearance of many photoelectron peaks. This peak sup-
pression is obviously non-perturbative as higher-order processes (responsible for the ATI
spectrum) have become as important as the lower orders, if not more important. This is
a sign of a fundamental breakdown of the perturbative approach.

When a free electron is placed in a laser field, in addition to any translational kinetic
energy, a quiver energy due to the oscillatory motion imparted on it by the field. This
quiver energy is the so-called ponderomotive energy, Up, and is given by

Up =
e2E2

4meω2
(2.4)

where e denotes the charge of the electron, E is the local instantaneous electric field, me

is the mass of the electron and ω is the angular frequency of the electric field.

When the laser field is very intense then it also has a noticeable influence on bound
electrons. As Rydberg levels are weakly bound, their induced shifts are very close to
the ponderomotive energy, while states comparatively nearer the nucleus have a much
smaller polarisability due to which they will be harder to be influenced so they will have
a correspondingly smaller shift due to which the shifts of the very low states can be
neglected. This means that the ionization potential increases by approximately Up. At
low intensity, N photons are required for ionization, but when the intensity increases,
higher states shift by the ponderomotive shift, Up, so an additional s photons are required
for ionization.

We can note an apparent discrepancy in the energies of the emitted electrons as the elec-
tron leaves the laser focus it experiences a force, −∇Up, due to laser inhomogeneity which
is then converted into energy. The electrons gain energy equal to Up while emerging out
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2.3. Keldysh Theory

this potential, thus canceling the decrease in energy caused by the increase in the ioniza-
tion potential. Hence, the photoelectron peaks appear at the same energy as described in
Eq. (2.3) regardless of the incident-laser intensity.

In the quasi-classical limit i.e.,

ℏω < Eip < Up,

an electron acquires its energy in a two-step process:

1. the electron is removed (tunnels) from the primary influence of the atom and then
it interacts with the laser field

2. it can be treated classically having two components of the interaction i.e., pondero-
motive (quiver) and the drift

For ultrashort pulses, the ponderomotive energy is returned to the wave and it does not
contribute to ATI; however, the drift motion remains.

2.3 Keldysh Theory

Let an atom be subjected to a beam and the beam disturbs the atomic potential due to
which electron ejects out. Now, if we increase the intensity of the incoming beam, then
more electrons will eject even those electrons may also eject out for which the energy will
not be enough to leave the atom (potential barrier) that is called tunneling. On further
intensity the electrons can easily overcome the attraction of the nucleus to leave the atom.

What would happen if we consider a heavy negative particle instead of the electron in an
atom?

The relation that Bohr radius is inversely proportional to the (reduced) mass of the
particle in the orbit reveals that the absolute value of potential energy would increase as
heavy electron comes closer to the nucleus. It must be noted here that hamiltonians for
both the cases would be different. It means that force between nucleus and heavy electron
will increase as it is closer to the nucleus and the ionization potential of the new atom
will increase means more energy would be needed to eject the heavy particle out. In the
presence of the beam we need more number of photons for ionization, so for the same
beam which is used for electronic atom we will get multiphoton ionization with the same
power law (but with the changed n).

An intense low-energetic (long-pulsed) beam acts like a static field and atomic ionization
in this beam will be just like an ionization in static field. The ionization will occur at some
threshold value of the field called critical field. Classically, there will be a potential barrier
for an electron to move both in atomic and applied static electric fields. A bound electron
can tunnel out through this barrier even E (the strength of applied static electric field) is
large enough to provide it the energy to overcome the barrier though the tunneling rate
is exponentially small if E is small. Ionization, during only a small fraction of the optical
cycle, is a characteristic of tunneling, since the probability of overcoming the saddle-point
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Chapter 2: Laser-Atom Interaction and High Harmonic Generation

potential barrier depends very steeply on the field strength. If we increase the value of E,
the height of the saddle point decreases. If the value of E becomes equal to critical field
E0, the potential energy becomes equal to the atomic binding energy (Eip) of electron
and if E crosses E0, then ionization over the barrier occurs rapidly. As the field strength
is increased the interaction term becomes stronger and gradient becomes more negative.
This makes the barrier smaller (suppressed) and in the consequence the ground state does
not remain bound any more and the initial wavepacket is free to escape from the atomic
potential. This is known as over-barrier ionization (OBI).

The simplest model of tunneling ionization consists of a one-dimensional (1D) Coulomb
potential. In an external, static electric field, an electron in this 1D atom sees a finite
potential barrier to ionization whose width and height depends on the strength of the
field. The threshold intensity for over-barrier ionization is defined as the intensity at
which the potential barrier is reduced to the ionization potential of the atom. It can be
written as:

IOBI =
cE4

ip

128πe6Z2
. (2.5)

Equivalently, over-barrier laser electric field strength is

E0 = EOBI =
(αZ)3m2

ec
3

16eℏ
. (2.6)

Now, if E is below E0, obviously no over-barrier-ionization is possible rather there will
be a tunneling through the barrier (it is only possible when the tunneling time is short
compared to the cycle time so that the oscillating field remains a static field for this
process. Ionization may proceed over many cycles and also ionization time is longer
than the tunneling time.). That is why Keldysh considers the tunneling time and the
cycle time and takes their ratio as an important parameter known after him as Keldysh
Parameter [49]:

Keldysh Parameter (γ) =
Tunneling time (t)

Cycle time (t0)

If E increases, γ is decreased which leads towards tunneling. For high frequency (short
pulsed) beam we need comparatively higher intensities for tunneling. At very low fre-
quencies (long pulsed) tunneling may commence at very low field strengths. A particle
needs more time to tunnel through the barrier when the energy of wave packet increases.

If the pulse duration of the ionizing radiation is short compared to the time for the pho-
toionized electron to escape the interaction volume, there is no time for the photoelectron
to accelerate before the pulse leaves. The electron drifts in a direction perpendicular to
the field in which it was released.

Once free of the potential the electron acts as a classical point charge in a laser field with
a certain initial velocity and direction determined by the phase of the field. This means
that ionization takes place very rapidly and over a small part of each optical cycle near the
peak of the pulse, where the barrier suppression is the greatest. Tunneling ionization has
been treated quantum mechanically with the final state being a Volkov state [50] rather
than a free, plane wave state for the outgoing ionization.
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Figure 2.1: The comparison of (a) MPI, (b) ATI, (c) tunneling and (d) OBI is shown.
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Chapter 2: Laser-Atom Interaction and High Harmonic Generation

If the electron comes out of the barrier, it will almost be at rest and its whole potential
energy (in the form of ponderomotive potential) will be converted into kinetic energy

Eip =
1

2
mev

2, (2.7)

the tunneling time will be

t =
mev

F
(2.8)

where F = eE is the force on the electron and the cycle time is

t0 =
1

ω
(2.9)

using Keldysh Parameter yields

γ =

(

Eip

2Up

)
1

2

. (2.10)

This relation tells that for tunneling Keldysh parameter will come out to be less than one
γ ≪ 1 and for MPI γ ≫ 1 corresponding to low laser intensity.

This model has two defects which partially cancel each other, resulting in a fairly accurate
prediction of IOBI. When the barrier is lowered to the ionization potential, the barrier is
completely removed, producing ionization rates of the order of 1016 sec−1. These rates are
much higher than the threshold rates, and thus overestimate the values for the threshold
ionization intensities. (In three dimension it gives the underestimation as barrier is lowered
in one dimension only and in every other direction the potential will be higher).

In the long pulse regime, experiments show that the number and the peaks of electron
spectra, their angular distributions, and the peak widths all depend upon the intensity
of the ionizing radiation; however, the kinetic energies of the electrons are almost inde-
pendent of the intensity. This independence arises from the nearly complete cancellation
of the increased ionization energy of the atom at the time of ionization and the kinetic
energy gained by the electron from ponderomotive acceleration as it leaves the interaction
volume.

An atom in an intense low-frequency (long pulse) radiation field experiences an ionization
potential increase equal to ponderomotive potential (Up). A photoelectron that would
have kinetic energy E = E0 in a weak field is instead produced in an intense field at
kinetic energy E = E0 −Up. The kinetic energy of the newly created photoelectron in the
optical field at the same location is also Up. Thus for long pulses, the electron converts
the ponderomotive energy into kinetic energy as it exits from the interaction volume, just
compensating for the decrease in its initial kinetic energy due to the raised ionization
potential. Because of this conservative nature of the ponderomotive potential, it has been
virtually impossible to observe the effects of the ionization potential shift on the energy
spectra in long-pulse ATI experiments. The ponderomotive potential, itself, can be clearly
discerned by its effect on the electron momenta.

Now, what happens with our heavy electron? Obviously as mass and ionization potential
increase in this case so γ will also increase which will not favor the tunneling. Now if we
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increase the intensity (E will increase), γ will decrease that favors the tunneling. But it
is not the case as we have some scaling rules (discussed in chapter 4) and by applying
these rules we are left with unchanged γ.

It must be noted here, that these gammas will be equal and give the same physical results
but with the corresponding quantities of applied electric field, intensity of laser beam, the
frequency of laser beam etc. So, to get the same amount of ionization the intensity will
be shifted to about 1022 W/cm2 for the heavy electron of about 200 times massive that
of electron (like muon which is 207 times massive as compared to electron).

Also, as the ionization potential is greater so to get the same γ (for the respective intensity
for muonic atom to get the ionization or tunneling), the ponderomotive potential will also
be increased. When this massive and energetic particle will strike the nucleus back on its
oscillating path it may start nuclear reaction and the energy calculated by Corkum et al.,
lies in the range to start even nuclear fusion [16].

2.4 High harmonic generation (HHG)

In an intense laser pulse electron wave packet goes away from the atom with the laser
field and when the pulse changes its direction, the wave packet returns and may cause
certain phenomena:

1. the returning wave-packet may collide with the bound electron to eject it out of the
atom. This phenomenon is called non-sequential double ionization.

2. the returning electron may elastically scatter from the nucleus. This phenomenon
is called high-order above threshold ionization.

3. the recollision due to the ionization-recombination process of electrons [51,52] may
also generate radiation. Even radiation of a frequency larger than the fundamental
frequency of the incoming laser beam may emerge depending upon the energy of
the electrons. If the frequency of the emitted radiation is an integral multiple of the
fundamental frequency of the laser beam, these higher frequency modes are called
harmonics. This phenomenon is called high harmonic generation (HHG).

2.4.1 HHG spectrum

The radiation emitted as a result of recollision process is described by the dipole accelera-
tion a(t) of the electronic wave function. It can be calculated with the help of Ehrenfest’s
theorem in the form of a time-dependent expectation value

a(t) =
e

me
〈ψ(t) | ▽V + E(t) | ψ(t)〉 (2.11)

having ψ as the electronic wavefunction with V as a core potential and E is the laser elec-
tric field. To obtain the harmonic spectrum, the dipole acceleration is Fourier transformed
and can be written as
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Figure 2.2: Diagram of a typical harmonic spectrum

S(ω) =|
∫

〈ψ(t) | ▽V + E(t) | ψ(t)〉eiωtdt |2 (2.12)

The above formula shows that the shape of the spectrum would strictly depend upon

• the laser parameters

• the core-potential used.

Fig. 2.2 describes the typical features of HHG spectrum which is drawn in spectral inten-
sity versus the harmonic order, where the ratio of the generated radiation frequency to
the laser frequency is termed as the harmonic order. The spectrum has maximum value
as its first peak, which is the first harmonic of laser frequency which follows a number of
peaks (harmonic orders) as a plateau of constant spectral intensity. Then comes a sharp
cut-off at certain harmonic-order.

2.4.2 Three-step model

The scheme of generation of high harmonics can be well understood by a so-called three-
step model [51–53]. The three steps are:

1. a part of wave function of electron tunnels through the potential barrier when the
atom is subjected to a laser field.

2. this part of wave function is accelerated by the laser beam in the continuum with
the laser pulse.

3. once the laser field changes its sign it brings the wave-packet back to the parent
ion and recombination occurs to an atomic ground state which yields a photon of
high-energy called high harmonic generation.

22



2.4. High harmonic generation (HHG)

Figure 2.3: Schematic diagram of three-step model

These three steps are depicted in a schematic diagram in Fig. 2.3. According to this
model, the maximum photon energy which can be obtained from HHG process is

ℏωmax = Eip + 3.17Up, (2.13)

having Eip as ionization potential of the target atom and Up the ponderomotive energy
of the electron in the driving laser field (see Appendix A).

2.4.3 Applications of HHG

HHG in noble gases [54, 55] is a promising source to generate coherent XUV (extreme
ultraviolet) radiation. It has opened the doors to research fields like XUV nonlinear op-
tics [56] and atto-second pump-probe spectroscopy [57]. Coherent high-harmonic radiation
obtained to the X-ray regime has numerous applications in high-resolution spectroscopy
and diagnostics [58]. Since the kinetic energy of the emitted radiation of a particle in-
creases with rising incident laser intensity, ultraintense laser pulses have become very
important to work with [59–62]. Much has been studied on harmonic generation [2] as far
as electronic atoms are concerned. In short, HHG process is considered one of the best
ways to produce

• short-wavelength radiation (coherent soft or even hard X-rays) 1

• attosecond pulses

1record of 1 keV [63]
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The cut-off formula (2.13) reveals that to obtain the maximum energy of emitting radia-
tion the source must be having

• greater potential energy

• greater ponderomotive energy (means greater laser intensity)

To meet the above two conditions simultaneously highly charged ions are considered to
be the best source since they can withstand ultra-high intensities.

The main limitation for HHG is that the free electron generates the out of phase harmonic
field [56]. If this dephasing problem can be overcome, we can in principle generate even
shorter wavelengths, i.e., more energetic radiation. Also, there is still a clear lack for an
efficient system where radiation pressure does not induce substantial ionization in the laser
propagation direction and thus reduces coherent high-frequency generation. One can think
of the well-known three-step model for single-atom ionization-recollision dynamics [51,53].
But at large laser intensities magnetic field effects come into play and these effects tend
to stop the recollision of the electron with its parent ionic core by inducing a considerable
drift in laser propagation direction.

2.5 Strong-field phenomena at very high intensities

At even higher laser intensities, the driven motion of free electrons becomes relativistic.
This occurs in optical or near-infrared laser fields (ℏω ∼ 1eV) at intensities above 1018

W/cm2 where the value of the laser vector potential approaches or exceeds the electron
rest mass. Typical strong-field phenomena at relativistic laser intensities are non-linear
Compton scattering and electron-positron pair creation from vacuum.

Compton Scattering

When the laser intensity is large enough, the Compton scattering acquires essentially a
multiphoton character. N photons at frequency ω are absorbed simultaneously by an
electron in a single scattering act with emission of one photon at frequency Nω [64].

Electron-positron pair production

The possibility of using ultra-strong laser fields to create pairs of charge particles (electrons
and positrons) has been discussed in the literature [2]. Electron-positron pair production
might be possible either in vacuum or indirectly from relativistic electrons accelerated by
the ultra-strong laser field. The pair energy 2m0c

2 should be of the order of the laser
potential energy difference across one Compton wavelength of an electron. Numerically,
this is a laser intensity of 1030 W/cm2. That makes the vacuum pair production by
pure laser light unobservable with present-day ultra-high-intensity lasers. However, a
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2.5. Strong-field phenomena at very high intensities

particular mechanism of laser-induced pair production (the so-called non-linear Breit-
Wheeler process) has been verified in a pioneering experiment at SLAC (Stanford, USA)
[65], where a 46 GeV electron beam was brought into collision with an intense optical
laser pulse of 1018 W/cm2. After Lorentz transformation to the projectile rest frame,
the laser intensity is efficiently enhanced by 10 orders of magnitude and pair creation via
few-photon absorption takes place.

On the other hand, pair production from the relativistic electrons generated from the
laser focus could have an observable probability at laser intensities of the order of 1019

W/cm2. When the electron energy exceeds the pair production threshold 2mc2, the fast
electron can produce an electron-positron pair by scattering in the Coulomb potential of
a nucleus [66, 67]. Because the pair production threshold is twice the rest energy, the
electron motion must be treated relativistically.
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Chapter 3

Muonic Atoms

3.1 Introduction

If we replace the electron by a muon in an ordinary atom, then the atom is called a
muonic atom. Due to the heavy mass the size of the muonic atom shrinks and the
smaller Bohr radius of a muonic atom gives rise the possibility to feel the nucleus via the
nuclear properties like finite size, deformation, surface thickness, nuclear compressibility
and nuclear polarization [21]. We note that the muon life time is longer as compared
to the time period of the laser pulses. Muonic atoms have ever since been useful tools
for nuclear spectroscopy (without additional laser fields) due to their compactness. By
exposing muonic atoms to strong laser fields we can dynamically probe the nucleus at the
atomic scale. To have an idea for the laser parameters required to influence the muonic
atoms we take muonic hydrogen as an example. The nuclear Coulomb field experienced
by the muon in muonic hydrogen amounts to 2×1014 V/cm corresponding to the intensity
value of 4×1025 W/cm2. The Bohr radius amounts to aµ = 285 fm and the binding energy
is 2.5 keV.

3.2 Formation of a muonic atom

Naturally occurring atoms have electrons revolving around the nucleus. To form muonic
atom, first of all we will have to create the muon. To produce muons, first of all fast pions
are produced in an inelastic scattering of high-energy protons:

p+ p→
{

p+ p+ π− + π+ +Q1

p+ n + π+ +Q2

(3.1)

where Q1 and Q2 are the amounts of energies released during the scattering. With the
help of an electromagnetic field the pions are separated from the beam that decay into
muons via weak interaction. During their flight the negative pions decay in almost 10−8

sec into negative muons:
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π− → µ− + νµ (3.2)

These muons are separated from the beam via magnetic fields to some target. To guide
and focus the fast beam of muons many deflecting magnets of high magnetic strengths
are required.

To form a muonic atom the muon should be captured by an atom to any of its Bohr orbits
near the nucleus. Since the muons are formed with the energy of several hundreds of MeV,
therefore first of all these muons are slowed down such that the muon velocity becomes less
than the velocity of valence electrons of the atom. This slow muon is attracted towards
the nucleus and enters the atom in almost 10−13 sec (for graphite). Since all muonic
states are unoccupied so the muon cascades down to the states of lowest energy (14th
orbit for muonic atom is already below the K-electron shell). During this transition, from
continuum to some of the lower orbits, there might be

1. an emission of Auger electron

2. an emission of electromagnetic radiation

3. an excitation of the nucleus.

In any case the process takes almost 10−13 sec which is much less than the muonic life time
that is of the order of microseconds. The theoretical prediction of this kind of formation
was first introduced in 1947 [68].

As far as the experimental status of muonic atoms is concerned, they have been formed
decades ago in a number of experiments in different compounds using the above men-
tioned method. For example, muon capture was investigated in several compounds by
the detection of electron [69, 70].

3.3 Traditional applications of muonic atoms for nu-

clear spectroscopy

At the borderline between atomic and nuclear physics, muonic systems play a prominent
role [23]. Muonic atoms have been representing powerful tools for nuclear spectroscopy
for more than 50 years. In fact, while NEET has been measured for the first time in 189Os
in the mid/late 1970s [71], with conclusive evidence even only recently in 197Au [72],
in muonic atoms the equivalent process was already observed in 1960 [73–76]. Apart
from nuclear excitation, bound muons are also able to catalyze nuclear fission [77] and
fusion [27] reactions. The muonic atoms have been considered one of the best candidates
for nuclear spectroscopy. There are certain features where these atoms have been quite
handful since ever [78]:
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Reduced mass

The nucleus has no more infinitely high mass as compared to the muon due to which the
nucleus also revolves around a common center. This is the center for both the nucleus
and the muon which is not the center of the nucleus as is the case in ordinary (electronic)
atom. The reduced mass can be written as

mred =
mµmn

mµ +mn
(3.3)

where mred is the reduced mass of the muonic atom, mµ is mass of the muon and mn is the
mass of the nucleus. This reduced mass is often used in muonic atoms. In the example of
muonic hydrogen, we have mred ≈ 186me while the free muon mass is mµ ≈ 207me, me

being the mass of electron.

Nuclear size effect (volume effect)

The size of the nucleus plays an important role when dealing with muonic atoms. In
general the ground and excited states of a nucleus do not have equal charge radii. In an
excited nucleus the average nuclear radius changes by △r2. This isomeric shift changes
the muonic atom level as well. This kind of excited state may be formed while a muon
cascades down within the atom. All the effects which are connected with the extension of
the nucleus become important in the case of muonic atoms in contrast with the electronic
atoms, for example nuclear deformation, nuclear polarization and vacuum polarization.

Nuclear deformation

Usually the nuclei are considered to have spherically symmetric charge distribution. This
distribution is described typically with the help of two parameters: half-density radius
and surface thickness (Fermi model) which can be determined phenomenologically via
cross-sections of electrons. Whereas the accuracy in determining these parameters could
be enhanced while measuring the transition energies in various γ transitions. Since many
nuclei are not spherical, hence, muonic atoms are useful to measure the deviation from
spherical shape dealing with muonic atoms with a better accuracy.

Nuclear polarization

In the presence of the muon which is very close to the nucleus the charge distribution
of the nucleus can be so shifted that the nucleus is polarized. To have an idea of the
amount of nuclear polarization we take an example of muonic lead. The transition energy
from 2p1/2 to 1s1/2 in muonic-Pb is of the order of 10 MeV and the nuclear polarization
contributes roughly 10 keV.
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Vacuum polarization

The effect in the strong electromagnetic field such that a pair of virtual particle-antiparticle
is created is known as Vacuum polarization. For example, the Coulomb field of the nu-
cleus may induce a slight separation of virtual electrons and positrons. The electrostatic
potential of the nucleus is changed by this process since the particle around the nucleus
would be displaced due to the interaction of electromagnetic field. The change would
occur at a distance of roughly one Compton wavelength of the particle. In case of muonic
atom the muon would spend more time in the region where the electrostatic potential
of the nucleus is changed as compared to the time span of electron due to the compact-
ness of muonic atom. Hence the vacuum polarization effect can be examined in muonic
atoms with higher probability. This kind of effects have been investigated in number of
experiments [69].

3.4 Muonic atoms in laser beams

Though highly energetic lasers are required to influence the muonic atoms even then
muonic atoms have been used to study the atomic transitions with the help of laser for
years [79]. Also, the muonic atoms can be formed using laser optically pumped vapors [80].

By applying in addition a super-intense laser field, bound muons can serve as dynamical
and controlled probes of the nucleus. We note that the muon life time is long as com-
pared to the time period of the laser pulses. In the laser field the muonic wave function
will be oscillating. The resulting time-dependent charge density can lead, for example,
to the excitation of the nucleus (see Chapter 5). Nuclear excitation by the laser-driven
surrounding electron cloud has been considered before theoretically [39, 40]. The experi-
mental verification of this process, however, is very difficult [41, 42]. For a muonic atom
in a strong laser field the chances should be better due to the small atomic size leading to
a large charge density. Further observables, like the radiation emitted by the laser-driven
system, can give information on nuclear properties (e.g., radius and deformation) like
gained from the field-free spectroscopy of muonic atoms.

In muonic atoms, the large muon mass can be accounted for by separating the center-of-
mass and relative coordinates of motion. By applying scaling laws (length, time, electric
field, ionization potential, laser angular frequency) both to the classical equation of motion
and Schrödinger equation, these strong-field processes can be considered for the case of
muonic atoms.

3.4.1 Separation of Relative and Center of Mass Motion and

Scaling of Muonic Atoms

We consider muonic quantum dynamics in the non-relativistic regime described by the
time-dependent Schrödinger equation (TDSE). Due to the large muon mass, the nucleus
cannot be treated as an infinitely heavy particle and its motion must be taken into account.
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Within the dipole approximation for the laser field, the two-particle TDSE separates into
center-of-mass and relative motion. By employing a one-dimensional (1D) hydrogen-like
model atom (to be justified in Section 4.4 below), the center of mass evolves in time
according to

iℏ
∂

∂t
Ψ (X, t) =

[

P 2

2M
+ (Z − 1)eXE (t)

]

Ψ (X, t) (3.4)

and the relative motion is governed by

iℏ
∂

∂t
ψ (x, t) =

[

p2

2mred
−mred

(

Z

mn
+

1

mµ

)

exE(t) + V (x)

]

ψ (x, t) (3.5)

with M = mµ +mn and center-of-mass and relative coordinates X and x, corresponding
momentum operators P = −iℏ∂/∂X and p = −iℏ∂/∂x, nuclear charge number Z, nuclear
potential V (x) and laser electric field E(t). Regarding, the effective charge as

qe = mred

(

Z

mn
+

1

mµ

)

e (3.6)

the relative motion can be written as,

iℏ
∂

∂t
ψ (x, t) =

[

p2

2mred
− qexE(t) + V (x)

]

ψ (x, t) . (3.7)

Equation (3.4) is the non-relativistic Volkov equation for a particle of charge (Z−1)e and
mass M . If we restrict ourselves to the case Z = 1 as the required laser intensities are
the smallest then, while the effects of interest are expected to be appreciable. Note that
throughout the nuclear chart the largest relative difference among isotopes, both in mass
and charge radius, exists between hydrogen nuclei. Also, for Z = 1 the effective charge
would be equal to ordinary electronic charge qe = e.

In this situation, Eq. (1) describes free motion of the center-of-mass coordinate which does
not generate radiation and can be ignored. The laser field solely couples to the relative
coordinate. For Z = 1, Eq. (3.7) is reduced to the usual Schrödinger equation for a single
particle of charge −e and mass mred in the combined fields of a laser and a nucleus. Now,
consider hydrogen atoms (Z=1) where the center-of-mass equation (2) simply describes
free motion.

iℏ
∂Ψ (X, t)

∂t
=

[

− ℏ
2

2M

∂2

∂X2

]

Ψ (X, t) . (3.8)

Thus, we are only taking into account the equation for the relative motion which in this
case reduces to the ordinary Schrödinger equation for a particle of mass mred in a laser
field.

iℏ
∂ψ (x, t)

∂t
=

[

− ℏ
2

2mred

∂2

∂x2
− exE(t) + V (x)

]

ψ (x, t) . (3.9)
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3.4.2 Scaling laws

Some first information on the behavior of muonic atoms in laser fields can be gathered by
scaling considerations [81]. Suppose, that we have a hydrogenlike muonic system on one
side and an ordinary hydrogen atom on the other side. We do this scaling by considering
TDSE in one dimension for point-like and infinitively massive nucleus.

Let us define position and time for electron in terms of the corresponding quantities for
muon

xe = Z
mred

me
xµ

and
te = Z2mred

me

tµ

respectively. For a bound electron in electric field E we have Schrödinger equation in
operator form

iℏ
∂

∂te
= − ℏ

2

2me

∂2

∂x2
e

− e2

xe

− exe.Ee

substituting the relation for xe and te. Now, the following scaling relations apply:
the scaling of ionization potential

E
(µ)
ip =

mred

me
Z2E

(e)
ip

the scaling of electric field

Eµ =
qe
e

(

mred

me

)2

Z3Ee

the scaling of frequency of laser beam

ωµ =
mred

me

Z2ωe

where the subscripts µ and e refer to the muonic system and the hydrogen atom, respec-
tively. This means that a hydrogenlike muonic ion in a laser field with the parameters Eµ,
ωµ behaves like a hydrogen atom in a laser field with Ee, ωe, provided that the Coulomb
potential V (x) arises from a pointlike nucleus. The scaling procedure, however, does not
account for nuclear parameters, e.g., the finite nuclear size. Evidently, when the transition
from a muonic to an ordinary hydrogen atom is performed, the nuclear radius is not to
be scaled but remains fixed. Hence, for atomic systems where nuclear properties play a
role, not all physical information can be obtained via scaling.

In Chapter 4, we perform the calculations on muonic atoms in the presence of laser field
to probe some of the nuclear signatures like nuclear mass and size after separating the
center-of-mass and relative motions.
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Chapter 4

Muonic Atoms and Nuclear
Spectroscopy via HHG

4.1 Introduction

The field-free nuclear spectroscopy of muonic atoms has been an interesting area of re-
search for decades. It is clear from the previous chapter that it needs very high intensities
to influence the muonic atom. In near future we will be able to have lasers of such
intensities which can be used to study muonic atoms. For this purpose, a theoretical
study of certain properties has been made here. The main object in this chapter is to
probe the nuclear properties using muonic atoms in laser fields. These signatures, include,
for example, the nuclear mass and the size effects that can be studied dealing with the
muonic atoms in ultraintense VUV laser fields. High-order harmonic generation spectra
of different isotopes have been considered for this very purpose. As far as Schrödinger
wave equation is concerned, in ordinary atoms, the nucleus is considered as point-like and
infinitely massive as compared to the electron, revolving around it. In case of muonic
atoms these assumptions do not work any more for the nuclei of low atomic numbers.
The nuclear effects like nuclear mass and size might become prominent in muonic atoms
via irradiation spectrum since the tunneled particle recombines with the nucleus to gen-
erate high harmonics in laser field and the recombination probability would depend upon
the mass and the size of the nucleus. This consideration does not allow us to study the
nuclear mass and size effects within a bound state of electron and nucleus.

4.2 Model Potentials

We solve the TDSE in Eq. (3.7) numerically by making use of the Crank-Nicholson time-
propagation scheme (see Appendix C). The laser field is always chosen as a 5-cycle pulse
of trapezoidal envelope comprising one cycle for linear turn-on and turn-off each. The
harmonic spectrum is obtained by taking the Fourier transform of the dipole acceleration
according to Eq. (2.11). In TDSE, various model potentials will be employed:
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Soft-core potential

The different mass of the nucleus would affect the tunneling and recombination of the
muon due to the different momentum and hence a variation is expected in harmonic
spectra for different isotopes which gives us an insight to the mass effect. To calculate
the possible nuclear mass effect the usual soft-core potential [82]

Vs(x) = − Ze2
√

x2 +
(a0ρ

Z

)2
, (4.1)

is used to generate HHG spectra, appropriately scaled for the different isotopes of muonic
atoms. Here ρ = me/mred and a0 is the Bohr radius of hydrogen atom.

Hard-core potential

Nuclear size effect could also be promising for muonic atoms in laser beam since the tun-
neled muon has to come back to the nucleus for the generation of high-order harmonics
and with the variation of the size of the nucleus the probabilities of the recombinations
would be different which could be seen by comparing the spectra of different isotopes hav-
ing different nuclear sizes. The softcore potential (4.1) cannot accommodate the nuclear
radius R explicitly and suggests us to have some other potential. Taking the nucleus as
a sphere of uniform charge density within the nuclear radius, the nuclear drop model is
used to employ the potential:

Vh(x) =















−Ze
2

R

(

3

2
− x2

2R2

)

if |x| ≤ R,

−Ze
2

|x| if |x| > R.
(4.2)

which explicitly takes the nuclear radius into account. For R → 0 the binding energy
of the lowest lying state of this potential becomes unphysical [83] that is why, we start
our calculation, from a well known process i.e., from the first excited state which has
the correct binding energy [83–85]. To study only the nuclear size effect the disturbance
from the variation of nuclear mass has been avoided with the help of accordingly scaled
frequencies and intensities with ω ∝ mred and I ∝ m4

red so that we obtain the cutoff of
both the spectra under consideration at the same position.

Gaussian potential

Another possibility to model a nucleus of finite size applies a Gaussian charge density.
In fact, light nuclei are often Gaussian shaped to a good approximation [86]. The corre-
sponding electrostatic potential is

Vg(x) =















−Ze
2

|x| Erf

( |x|
Rg

)

if |x| > 0,

− 2Ze2

Rg

√
π

if |x| = 0.
(4.3)
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Figure 4.1: The comparison of soft-core (red) and hard-core (blue) potential.

with the error function Erf(z). Both potentials in Eq. (4.2) and (4.3) have only one free
parameter, which is connected to the nuclear radius. The relation between the experi-
mentally determined nuclear charge rms radius and the radial parameters in the hard-core

and gaussian potentials is given by Rrms =
√

3
5
R and Rrms =

√

3
2
Rg, respectively [86].

With the potentials (4.2) and (4.3) we can therefore describe nuclei of the same radius
but different in shape. A comparison of the resulting HHG spectra allows for an investiga-
tion of the nuclear shape, for this purpose the three potentials are plotted in Fig. 4.1 and
Fig. 4.2 where the rms radii are considered for both the hard-core and gaussian potentials

given by
√

3
5
R and

√

3
2
Rg, respectively.

With regard to the 1D approximation, in general, 1D models are known to retain the
essential physical features of nonrelativistic laser-atom interaction for linearly polarized
fields [82]; therefore, these models are widely used [87]. Furthermore, in our case the 1D
numerics still are a non-trivial task because of the fine grid spacing required to resolve the
nuclear extension and the non-standard laser parameters employed. As regards ordinary
atoms, the latter would correspond to intense fields in the far-infrared. Eventually, we
stress that the goal here is to reveal relative differences between physical observables
which typically are less sensitive to model assumptions than absolute numbers. The main
shortcoming of the 1D approach is the neglect of the ionized muon wave-packet spreading
which reduces the total harmonic yield. The spreading of the muon wave packet during
a laser period T can be estimated as ∆r ∼ ∆vT where

∆v ≈
(

~eE
√

2m3
redEip

)
1

2

is the velocity width at the exit of the tunnel. In an ultrastrong VUV field (I = 1023

W/cm2, ~ω = 60 eV) we obtain ∆r ∼ 10 pm, which is by a factor ρ smaller than the
spreading of an electron wave packet in an appropriately scaled infrared laser field.
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Figure 4.2: Gaussian (red) and hard-core (blue) potentials are shown for hydrogen atom
in increasing depth, respectively.

4.3 HHG of muonic hydrogen isotopes

By applying scaling laws (length, time, electric field, ionization potential, laser angular
frequency, ionization potential) both to the classical equation of motion and Schrödinger
equation, we considered these strong-field processes for the case of muonic atoms. In this
way one can easily see that (light) muonic atoms can be ionized by the most powerful
present lasers of near-optical frequency or the upcoming X-ray free-electron lasers. Re-
garding high-harmonic generation, we checked that the known cut-off law for the highest
harmonic at a given laser intensity remains true for muonic systems (see Appendix A).

E . EOBI =
m2

redc
3

eℏ
· α

3

16
, (4.4)

corresponding to the intensity IOBI ≈ 1.6 × 1023 W/cm2. Here, α ≈ 1/137 denotes the
fine-structure constant. Efficient recombination is ensured if the magnetic drift along
the laser propagation direction is negligibly small, which limits the relativistic parameter
to [88]

ξ ≡ eE

mredcω
<

(

16ℏω
√

2mredc2Eip

)
1

3

, (4.5)

with the atomic ionization potential Eip. We note that condition (4.5) also implies appli-
cability of the dipole approximation. The lowest frequency which simultaneously satisfies
Eqs. (4.4) and (4.5) lies in the VUV range and corresponds to ℏω ≈ 27 eV. At this value,
the harmonic radiation has a remarkable maximum energy ℏω ≈ 0.55 MeV according to
Eq. (2.13). Hence, muonic atoms are also promising candidates for the generation of hard
X-rays which might be employed to trigger photo-nuclear reactions.
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Figure 4.3: HHG spectra calculated with the soft-core potential (4.1). The black and grey
(red) lines represent the spectrum for muonic hydrogen and deuterium, respectively. The
laser parameters are I = 1.05 × 1023 W/cm2 and ℏω = 59 eV.

4.3.1 Nuclear mass effect

To express the possible effects due to the finite nuclear mass appearing in HHG spectra
of muonic hydrogen isotopes, the soft-core potential (4.1) is employed, which is appro-
priately scaled to the muonic system. Here, we consider only the variation of nuclear
mass assuming the nucleus as being point-like. Figure. 4.3 shows the HHG spectra for
muonic hydrogen and deuterium in an ultra-strong VUV field of the frequency ℏω = 59
eV and the intensity I = 1.05 × 1023 W/cm2 (similar laser parameters are expected at
the attosecond source of ELI [10]). The spectrum of hydrogen is enhanced and further
extends by about 60 harmonics. The reason for the spectral enhancement is that the
effective particle of the proton-muon system experiences stronger acceleration since it has
a smaller reduced mass. The difference in the cutoff position ℏω = Ip +3.17Up [28] is also
caused by the reduced mass which enters the ponderomotive energy

Up =
e2E2

4ω2mred
=
e2E2

4ω2

(

1

mµ
+

1

mn

)

. (4.6)

For the chosen laser parameters we obtain Up ≫ Eip so that the smaller reduced mass
leads to a higher cutoff energy. Note that in a situation where Up ≪ Eip, the relative
order of the cutoff positions would be reversed. Furthermore, we point out that the
ponderomotive energy in Eq. (4.6) can be understood as the sum of the ponderomotive
energies of the muon and the nucleus. As schematically depicted in Fig. 4.4, both particles
are driven into opposite directions by the laser field and when they recollide their kinetic
energies add up. In this picture the higher cutoff energy of the hydrogen atom arises from
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the larger ponderomotive energy of the proton as compared to the deuteron. Note that
the phenomenon that both atomic constituents are driven into opposite directions is most
pronounced for positronium, the bound state of an electron and positron [19]. We also
observe a few kinks in the spectra of Fig. 4.3. This multiplateau structure is typical of
the interaction regime where ξ ∼ 0.1 (in our case ξ ≈ 0.04) [28].

At the chosen frequency, the laser intensity assumed in Fig. 4.3 cannot be attained by
present-day technology in the laboratory. One might, however, employ a relativistic
beam of muonic atoms counter-propagating the laser beam [89]. Then, via the relativistic
Doppler shift, the parameters of Fig. 4.3 can be reached by the aid of an intense optical
laser pulse of ℏω ≈ 1.5 eV and I ≈ 6.5 × 1019 W/cm2 at an atomic Lorentz factor
of γ ≈ 20. In their rest frame, the atoms would then experience the laser parameters
of Fig. 4.3. For muonic hydrogen atoms carrying zero charge, the acceleration cannot
directly be accomplished, though. But one could accelerate muons and protons/deuterons
separately and let them combine in a merged beams setup. A similar way of producing
positronium atoms at γ ≈ 20 via acceleration of negative positronium ions has been
proposed recently [90].

Muonic Hydrogen

Muonic Deuterium

Figure 4.4: Schematic diagram of the motion of the nucleus (on the left) and the muon
(on the right) in muonic hydrogen and deuterium in the presence of a laser field polarized
in horizontal direction. The oscillation amplitudes are not scaled.

4.3.2 Nuclear size effect

To express the possible effects due to the finite nuclear size appearing in HHG spectra
of laser-driven muonic hydrogen isotopes, we need a potential which explicitly takes the
nuclear radius into account. We make use of the nuclear drop model, considering the
nucleus as a sphere of uniform charge density within the nuclear radius R, and employ
the potential (4.2).

Figure 4.5 shows the HHG spectra obtained from the potential (4.2) for muonic hydrogen
and deuterium. The proton and deuteron charge radii are Rp ≈ 0.875 fm and Rd ≈ 2.139
fm respectively [91]. We note that the overall shape of the harmonic response differs from
that shown in Fig. 4.3 due to the different potentials employed. In particular, a dip can
be seen at low harmonics (nℏω ∼ Eip) followed by a rising plateau region. A similar
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Figure 4.5: HHG spectra calculated with the hard-core potential (4.2). The black line rep-
resents the spectrum for muonic hydrogen at the laser parameters IH = 1.05×1023 W/cm2

and ℏωH = 59 eV. The grey (red) line represents the spectrum for muonic deuterium at
the correspondingly scaled laser parameters ID = 1.30 × 1023 W/cm2 and ℏωD = 62 eV.
The inset shows a blow-up of the cutoff region on a linear scale, with the black line dashed
for better visibility.

feature was found in [92] and attributed to the behavior of non-tunneling harmonics in
very steep potentials. More important with regard to the present study is, however, that
the harmonic signal from muonic hydrogen is larger (by about 50 % in the cutoff region)
than that from deuterium. The reason is that a smaller nuclear radius increases the
steepness of the potential near the origin, leading to more violent acceleration and thus to
enhanced harmonic emission. With regard to ordinary atoms it has been noticed before
that the analytic behavior of the binding potential near the origin is of great importance
for the HHG process [85]; according to Ehrenfest’s theorem (2.11), the atomic dipole
is accelerated by the potential gradient which is largest in this region. In the present
situation we therefore find that the plateau height of HHG spectra from muonic atoms is
sensitive to the finite nuclear size.

4.3.3 Justification of Dipole approximation

The dipole approximation is justified when the following two conditions are met. First
of all, the atomic size must be well below the laser wavelength in order to neglect the
spatial dependence of the electromagnetic wave. This is safely guaranteed in our situation:
for example in the case of muonic hydrogen, the Bohr radius is aµ ∼ 300 fm while the
wavelength of the applied VUV laser field is about 20 nm. The second requirement is
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that the muon dynamics is nonrelativistic throughout, so that the laser magnetic-field
component may be ignored. This condition is also satisfied here: the muon velocity
after ionization is of the order v ∼ cξ with the relativistic parameter (4.5). Despite the
ultra-high laser intensities assumed, we always have ξ ≪ 1 because of the large muon
mass and the high laser frequencies (typically ξ . 0.1). This implies moreover, that the
excursion amplitude △Xexc ∼ λξ of the muon propagating in the field is well below a
laser wavelength, i.e., the spatial field variation may again be neglected.

4.4 HHG for muonic atoms with Z>1

So far we have seen the nuclear mass and size effects with the help of muonic hydrogen
atoms when they were exposed to VUV laser field. In this section we extend the same
business for the low atomic number muonic atoms in ultraintense VUV laser fields. For
comparison we also present some more results for Z = 1. The main effects in muonic
hydrogen versus deuterium have already been demonstrated in the previous section.

4.4.1 Nuclear mass effect

As before, using softcore potential (4.1) we solve the Eq. (3.7) to obtain the dipole accel-
eration whose fourier transform gives the harmonic spectrum. Since the higher relative
mass differences exist for the low atomic number isotopes (as shown in the Table 4.1) in
the nuclear chart, the corresponding effect would also be expected to be higher for the
light atoms.

Table 4.1: Nuclear masses and sizes of different nuclei
Isotopes Mass (GeV) Ref. Size (fm) Ref.

H1 0.9383 [93] 0.875 [91]
H2 1.8756 [93] 2.139 [91]
He3 2.8084 [93] 1.9448 [94]
He4 3.7274 [93] 1.6757 [94]
Be7 6.5342 [93] 2.2210 [94]
Be9 8.3928 [93] 2.5180 [94]
O16 14.8952 [93] 2.7013 [94]
Ne20 18.493 [95] 3.0053 [94]
Ne23 21.277 [95] 2.9126 [94]

No doubt the magnitude of ionization potential of muonic atoms is very high but the
parameters we use are such that the ratio of E to ω enhances the magnitude of pondero-
motive potential such that it supercedes ionization potential and hence the major role is
played by Up instead of Eip to en-shape the spectrum. We look at the Eq. (4.6) describing
a ponderomotive energy that consists of two parts: one for the recolliding muon and one
for the recolliding nucleus that are driven by the laser field in the opposite directions.
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Figure 4.6: HHG spectra calculated with the soft-core potential (4.1). The black and grey
(red) lines represent the spectrum for muonic hydrogen and deuterium, respectively. The
laser parameters are I = 1.05 × 1021 W/cm2 and ℏω = 59 eV.

From last equations one can expect the cutoff energy to reduce for the heavier nuclei that
is confirmed by the spectra shown in Fig. 4.3. Due to the larger reduced mass deuteron-
muon system experiences less acceleration compared to the proton-muon system which
leads towards the deficiency of the harmonics. Along with this mass effect the cut-off
energies are quite appreciable and for this case the photon at the cut-off position has
energy ∼ 78keV. In this case Up >> Eip (Up ≈ 25 keV and Eip = 2.5 keV) but if
Up << Eip, the order of cut-off positions for the spectra would be reversed as shown in
the Fig. 4.6 where we take the laser with the same frequency but 100 times less intense as
compared to that used in Fig. 4.3. Fig. 4.6 describes a spectrum having non-perturbative
decay plateau following a large peak at cut-off position. The peak is due to the resonance
of the energy of first excited state with the laser energy. We note the reverse order of the
cut-off peaks compared to the previous case.

For the parameters assumed in Fig. 4.3, the ratio ω/Eip ≈ 0.024 is relatively low. In
fact, the same ratio is obtained when an ordinary hydrogen atom interacts with a mid-
infrared laser field of frequency ω = 0.33 eV (i.e. λ = 3.7µm). Under such circumstances
the harmonic signal strength is significantly reduced as compared to HHG in optical
or near-infrared fields where typically ω/Eip ≈ 0.1 [96, 97]. For this reason we provide
in Fig. 4.7 the results for higher driving frequencies. We find here that the strength of
harmonic signal improves when we go to higher frequency regime though we do not get
high harmonics.

In Fig. 4.8 the harmonic spectra for the isotopes of muonic helium in ultra-intense laser
fields are shown. We see that for He3 the spectrum extends a bit further including 10 more
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Figure 4.7: HHG spectra calculated with the soft-core potential (4.1). The black and grey
(red) lines represent the spectrum for muonic hydrogen and deuterium, respectively. The
laser parameters for first case are I = 1.05 × 1023 W/cm2 and ℏω = 117.675 eV and for
the second case are I = 1.05× 1023 W/cm2 and ℏω = 176 eV. The inset shows a blow-up
of the cutoff region on a logarithmic scale, with the black line dashed for better visibility.
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Figure 4.8: HHG spectra calculated with the soft-core potential (4.1). The black and
grey (red) lines represent the spectrum for muonic He3 and He4, respectively. The laser
parameters are I = 8 × 1024 W/cm2 and ℏω = 347.2 eV. The inset shows a blow-up of
the cutoff region on a linear scale, with the black line dashed for better visibility.

harmonics in contrast with that of He4. Formula (4.6) gives us 5 harmonics difference for
this case and to justify the extra harmonics the formula (4.6) should be modified since it
is for hydrogen only. We have discussed for (4.6) that it is the sum of the ponderomotive
energies of the muon and the nucleus and to be the sum ponderomotive potential should
then look like

U ′
p =

e2E2

4ω2

(

Z2

mn
+

1

mµ

)

(4.7)

which is not the case. The reason is that in hydrogen case center-of-mass does not move
with laser field due to its neutrality but in case of Z > 1 it moves due to which a pon-
deromotive potential for center-of-mass comes into play. The ponderomotive potentials
for relative coordinates for Z > 1 can be written as:

U (r)
p =

q2
eE

2

4ω2mr

=
e2E2

4ω2

(

Z

mn

+
1

mµ

)2

(4.8)

Moving to the next elements in the periodic table produces minor effects and also the
cutoff energies are very small and therefore we just skip them.

4.4.2 Nuclear size effect

There are two methods which we used to study the nuclear size effect:
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Figure 4.9: The shape of the modified soft-core potential

Modified soft-core potential

Since, the soft-core potential does not accommodate the size of the nucleus explicitly so
as a first test we modify the soft-core potential by adding an additional potential to the
soft-core potential to include the nuclear size:

Vms(x) = Vs(x) + △V , (4.9)

with
△V = β cos2 αx (4.10)

within the interval
− π

2α
≤ x ≤ π

2α
,

where α and β are scaled with nuclear radius for the right binding energy as

α =
π

2R

and
β = 0.01 | Vs(0) | .

△V is an oscillating potential but we have added only a half period. The comparison of
the soft-core (4.1) and the modified soft-core potential (4.9) is shown in the Fig. 4.9.

The results obtained for muonic hydrogen show that this extra factor gives an extra
bump of relative height 1% to the soft-core potential of height β (which maybe regarded
as negligible) and leads towards the strange shape of the spectrum having an extra dip.
The position of the dip shifts towards the cut-off position as the mass of the nucleus
decreases. Note that this shape of spectrum is due to the fact that the HHG spectrum
mainly depends on the potential used. It is to be noted here that it is an unphysical
potential and we applied it just for a test. This test reveals that HHG response is highly
sensitive to the potential shape close to the origin.
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Figure 4.10: HHG spectra calculated with the modified soft-core potential (4.9). The
black line represents the spectrum for muonic hydrogen considering nucleus as point-like
nucleus, the red line represents the spectrum for muonic deuterium and the green is for
muonic tritium.
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Hard-core potential

In the second attempt we move towards a physically reasonable potential i.e., the hardcore
potential (4.2). It is used to calculate the irradiation spectrum to have an insight on the
nuclear size effects. It is a well known nuclear potential considering the nucleus as a
uniform sphere.

Since the higher relative size differences exist for the low atomic number isotopes (as
shown in the Table 4.1) in the nuclear chart therefore the corresponding effect, would also
be expected to be higher for the light atoms.

With the same intensity if the frequency is enhanced three times as used in Fig. 4.10 for
both the muonic hydrogen and muonic deuterium then the harmonic signal from muonic
hydrogen is larger (by about 52% in the cutoff region) than that from deuterium as shown
in Fig. 4.11a.

Keeping the frequency same as for Fig. 4.5, decrease the field strength up to 3.8 × 1022

W/cm2 for the muonic hydrogen and 4.68×1022 W/cm2 for the muonic deuterium then the
cutoff positions further decrease even the harmonic signal from muonic hydrogen remains
larger by about 6.58 % in the cutoff region than that from the deuterium as shown in
Fig. 4.11b.

In the case of muonic helium the harmonic signal from muonic He4 should be larger than
that from muonic He3. The difference is observed in Fig. 4.12 of about 11.17 % in the
cutoff region. If we further go to muonic beryllium case, the harmonic signal from muonic
Be7 is larger (by about 19.7 % in the cutoff region) than that from muonic Be9, due to
the fact that the latter is bigger than the previous one, as could be seen in Fig. 4.12. The
difference in Be is higher than the difference in He since the relative difference in the radii
of the corresponding isotopes of Be is higher than that of the isotopes of He. But overall
these differences are quite small as compared to H because the difference between the
nuclear sizes of the nuclei of isotopes becomes smaller and smaller.

In the case of neon we find the harmonic signal from muonic Ne23 is larger (by about 1.61
% in the cutoff region) than that from muonic Ne20 as shown in Fig. 4.12c. In case of
Helium, Beryllium and so on we need practically no mass effect to compensate since the
parameters are almost the same and hence to measure the size effect there would be no
need to use two different lasers experimentally.

In order to reveal more systematically the dependence of the nuclear-size effect on the
nuclear radius, we have repeated our calculations with the hard-core potential (4.2) within
a whole range of radii between 1 fm and 5 fm. The corresponding results of muonic
hydrogen + Ne are shown in Fig. 4.13, which displays the percentage relative difference
in the HHG plateau height. We emphasize that not all radii considered in this systematic
study are realized in nature, of course. For muonic H we observe throughout that the HHG
signal decreases the large the fictitious proton radius becomes. This can be understood
by the corresponding hard-core potential which becomes less deep, as outlined before.

In the case of muonic Ne, an interesting effect occurs for nuclear radii larger than 3 fm:
here the signal strength starts to increase again. The reason for this surprising phe-
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Figure 4.11: HHG spectra calculated with the hard-core potential (4.2). (a) The black line
represents the spectrum for muonic hydrogen at the laser parameters IH = 1.05 × 1023

W/cm2 and ℏωH = 176 eV. The grey (red) line represents the spectrum for muonic
deuterium at the correspondingly scaled laser parameters ID = 1.30 × 1023 W/cm2 and
ℏωD = 186 eV. (b) The black line represents the spectrum for muonic hydrogen at the
laser parameters IH = 3.8×1022 W/cm2 and ℏωH = 59 eV. The grey (red) line represents
the spectrum for muonic deuterium at the correspondingly scaled laser parameters ID =
4.68 × 1022 W/cm2 and ℏωD = 62 eV. The inset shows a blow-up of the cutoff region on
a linear scale, with the black line dashed for better visibility.

47



Chapter 4: Muonic Atoms and Nuclear Spectroscopy via HHG

(a)

0 200 400 600 800 1000 1200
Harmonic Order

10
-12

10
-9

10
-6

H
ar

m
on

ic
 S

ig
na

l [
ar

b.
 u

.]

1290 1292 1294 1296
0.0

5.0×10
-8

1.0×10
-7

(b)

1292 1294
0

2×10
-8

4×10
-8

0 200 400 600 800 1000 1200
Harmonic Order

10
-12

10
-9

10
-6

H
ar

m
on

ic
 S

ig
na

l [
ar

b.
 u

.]

(c)

0 200 400 600 800 1000 1200
Harmonic Order

10
-12

10
-9

10
-6

H
ar

m
on

ic
 S

ig
na

l [
ar

b.
 u

.]

1291 1292 12931.20×10
-9

1.25×10
-9

1.30×10
-9

Figure 4.12: HHG spectra calculated with the hard-core potential (4.2). (a) The black
line represents the spectrum for muonic He4 at the laser parameters I = 8× 1024 W/cm2

and ℏω = 347.2 eV. The grey (red) line represents the spectrum for muonic He3 at
the correspondingly scaled laser parameters I = 8.3 × 1024 W/cm2 and ℏω = 350.354
eV. (b) The black line represents the spectrum for muonic Be7 at the laser parameters
I = 5.25×1026 W/cm2 and ℏω = 1975.11 eV. The grey (red) line represents the spectrum
for muonic Be9 at the correspondingly scaled laser parameters I = 5.32 × 1026 W/cm2

and ℏω = 1981.9 eV. (c) The black line represents the spectrum for muonic Ne23 at the
laser parameters I = 1.2918 × 1029 W/cm2 and ℏω = 19554.4 eV. The grey (red) line
represents the spectrum for muonic Ne20 at the correspondingly scaled laser parameters
I = 1.3 × 1029 W/cm2 and ℏω = 19585.4 eV. The insets show a blow-up of the cutoff
region on a linear scale, with the black line dashed for better visibility.
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Figure 4.13: Variation of the size for (a) H1 and (b) Ne20 with relative difference of
harmonic signal strength at cutoff position with the radius of 1 fm and 3 fm respectively
as reference points.

nomenon is that the ionization potential of the muon decreases as the nuclear radius
increases. The less tightly bound muon is therefore ionized with higher probability. Ac-
cording to the 3-step model of HHG, this enhances the probability of the whole process.
For muonic Ne this effect is dominant and leads to the increasing harmonic signal strength
for very large Ne nuclei.

From R = 3 fm to 5 fm, there is an enhancement of the ionization probability from
1.95 × 10−8 to 2.57 × 10−6 according to a simple ADK formula.
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4.4.3 Comparison with electronic systems

Finite nuclear size effects also appear in high-precision spectroscopic studies of electron
transitions in ordinary highly charged ions [98] such as hydrogenlike uranium where the
K-shell radius is about 500 fm and the nuclear size R ≈ 7 fm. In the harmonic signal
produced by such systems in the presence of a superintense laser wave, nuclear signatures
could be visible, too. It is interesting to compare the expected effects with those found
for laser-driven muonic atoms via a simple analysis based on nonrelativistic estimates
[99]. Note that our approach to muonic atoms which employs Schrödinger theory is not
applicable to highly-charged ions where the bound electron moves relativistically.

In order to draw a comparison, we assume an electronic and a muonic hydrogenlike system
of nuclear charge numbers Z1 and Z2, respectively, and employ the mass scaling parameter
ρ (see above) with ρ1 = 1 for an electronic ion and ρ2 ≈ 1/200 for a muonic atom. The
K-shell Bohr radius, binding energy, and electric field strength amount to

aK(Z, ρ) = a0
ρ

Z
, (4.11)

ǫK(Z, ρ) = ǫ0
Z2

ρ
, (4.12)

and

FK(Z, ρ) = F0
Z3

ρ2
, (4.13)

respectively, where a0, ǫ0 and F0 denote the corresponding values for ordinary hydrogen.
The nuclear radius is approximately given by

R(Z) ≈ 1.2(2Z)
1

3 fm

and typically varies among different isotopes by a few percent (except for hydrogen vs.
deuterium). Similarly pronounced nuclear size effects in the harmonic spectra can be
expected when

R(Z1)

aK(Z1, ρ1)
≈ R(Z2)

aK(Z2, ρ2)

i.e., when the ratio between the nuclear and the atomic radius which is proportional
to Z4/3/ρ, has a similar value for both atomic systems. This holds, e.g., for electronic
U91+ (where Z1 = 92, ρ1 = 1) and muonic He 2+ (where Z2 = 2, ρ2 = 1/200). Conse-
quently, within this simple qualitative consideration we find that the importance of finite
nuclear size effects in very heavy electronic systems and light muonic atoms should be
comparable. Proposed studies on the harmonic radiation emitted by strongly laser-driven
highly-charged ions could therefore aim for detection of nuclear signatures, as well.

One should observe, however, that the binding energy and electric field strength in a
highly-charged ion are substantially larger than in a muonic atom when both have the
same ratio of Z4/3/ρ. i.e., the laser frequency and intensity that must be applied to
electronic ions in order to reveal nuclear size effects in the harmonic response need to be
larger than for muonic atoms. In this respect, muonic atoms are more favorable systems
to study the influence of the nuclear size on the high-harmonic generation process.

50



4.5. Effects of the nuclear shape

4.5 Effects of the nuclear shape

To see clearly the effect of the nuclear shape on the HHG spectrum we consider hard-core
potential and the Gaussian potential. We know from the Fig. 4.2 that Gaussian potential
is deeper as compared to the hard-core potential within the range of the nucleus. The
Fig. 4.14a shows a comparison of the hard-core and the Gaussian potential for muonic
hydrogen. The height of the spectrum is depending upon the form of the potential used,
the deeper Gaussian potential, leads to an increased height of the spectrum. This behavior
is confirmed by Fig. 4.14b where the comparison is taken for muonic oxygen atom. Also,
looking at both of the figures one can extract the result that these effects are more
pronounced when the size of the nucleus is comparatively smaller.

4.6 Conclusion

As a conclusion, the HHG spectra obtained from the strongly laser-driven muonic atoms
reveal some signs of nuclear properties like nuclear mass and size effects. We selected
different muonic atoms to study these effects and the results suggest that for the heavy
isotopes both the harmonic cutoff and the height of plateau are significantly reduced be-
cause they have larger nuclear mass and size due to which they do not get that much
kinetic energy to contribute to the harmonic signal as their lighter partners do. With low
atomic number atoms, high-energy photons are generated which lie in MeV regime which
can ignite the nuclear excitation. For low Z atoms these results can be verified experimen-
tally with the help of near future technology, i.e., by employing intense high-frequency
radiation from free-electron lasers or plasma surface harmonics or, alternatively, by com-
bining radiation from existing high-power near-optical laser systems with a relativistic
atomic beam. The present study demonstrates that muonic atoms in strong laser fields
can be utilized to dynamically gain structure information on nuclear ground states. It
also offers the prospect of performing pump-probe experiments on excited nuclear levels
since the periodically driven muon can excite the nucleus during one of the encounters and
afterwards probe the excited state and its deexcitation mechanism. This laser-induced
nuclear excitation process is studied in the following chapter.
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Figure 4.14: (color online). HHG spectra calculated for (a) muonic hydrogen and (b)
O16 with the hard-core potential (4.2) and the Gaussian potential (4.3) in grey (red) and
black lines respectively.
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Chapter 5

Nuclear Excitation in Muonic Atoms
with Ultraintense Laser Fields

5.1 Introduction

Nuclear excitation has been one of the major subjects of interest for physicists to be
investigated for years. At theoretical level certain suggestions and phenomena were intro-
duced, for example, nuclear excitation by electron transition (NEET), nuclear excitation
by electron capture (NEEC), photo-excitation, the electron-nucleus scattering and the
Coulomb excitation [21]. NEET has been successfully observed in a number of experi-
ments [100, 101] but with very low probability. In NEEC, the predicted excitation rates
are small and could not yet be verified in experiments [41] but it has been regarded
as the most efficient as far as isomer triggering is concerned [37]. Another example of
atom-nucleus coupling is nuclear β-decay into a bound atomic state [102].

Through the field of laser-matter interaction we are now able to examine the laser-nuclear
physics at theoretical as well as at experimental level which is otherwise not possible due
to the larger wavelength of the laser sources, compared to the nuclear size, available in the
laboratories now-a-days, for example, nuclear fission, nuclear fusion, neutron production
and nuclear quantum optics [3–8, 12, 13, 27]. Laser-driven collective electron oscillations
in a bound state can also trigger the nuclear excitation though not supported by any of
the experiments yet [103]. It has been theoretically analyzed [104, 105] a couple of years
back but with very less probability. Laser-assisted NEET has also been considered [106]
but without any experimental support yet. In the laser induced NEET, Typel et al. [107]
noticed that the nuclear excitation would be affected by the ionization that is why, we
need systems of high binding energies so to afford the high intensities as well and for this
purpose the most promising candidates for the nuclear excitation are highly charged ions
(HCI). The laser technology has grown quite rapidly soon after its birth even though it
would take quite a long to influence the nucleus directly to induce the nuclear excitation
due to larger wavelength of photon as compared to the size of the nucleus.

Muonic atoms, being considered one of the favorite systems for nuclear spectroscopy,
could also be very useful to investigate the nuclear excitation and also they can survive
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higher field strengths (similar as HCI). Muonic atoms have been considered to study
a number of nuclear phenomena such as muon-induced fission [77] both at theoretical
and experimental level for decades. Also, to investigate the nuclear excitation in muonic
atoms is not a new idea rather it has been discussed years back in muon-capture and
the transition [108] considering the muon cascading down to the inner orbits. Some
theoretical predictions of nuclear excitation were made in the muonic atoms, for example,
the dynamic quadrupole interaction between the nucleus and the muon [76] and the
resonance mechanism of different mixed states of muonic atoms [109]. The resonance
mechanism was supported by experiments though does not hold a complete agreement
[110]. Muonic molecules have been considered theoretically in laser beam for nuclear
fusion [30] and the atoms for observation of the Unruh effect [31].

5.2 Oscillation of the muon via Monte Carlo simula-

tion

We used classical Monte Carlo simulation techniques to study muon dynamics under the
influence of the nuclear Coulomb force and the laser field. Of particular importance are
the center-of-mass and relative motion of the muon-nucleus system. Due to the large
muon mass, the nucleus should not be considered at rest, as it can be considered in the
case of electronic atoms. This fact makes the dynamics of muonic atoms in laser fields
especially interesting.

Fig. 5.1 depicts the evolution of the muonic bound state when it is subjected to an intense
laser pulse. First of all the ground state is considered without any laser field. When laser
is switched on, the cloud shifts with the laser field. Up to half a cycle it continues its
motion in the forward direction and after that when the laser field changes its direction,
the cloud also moves with it in the backward direction. To make the picture clearer, we
take the difference of the position of the cloud with its ground state at different intervals
which clearly shows that the muonic charge cloud is driven back and forth along the laser
polarization axis. The amplitude of the laser-driven motion is of order of 0.2 times of the
Bohr radius of the muonic atom for hydrogen atom. A rough estimate yields that the
number is independent of the laser frequency.

The laser-induced oscillations of the muonic charge cloud give rise to the emission of
(harmonic) radiation as studied in Chapter 4. Moreover, in our case, the nuclear excitation
is caused by laser-driven muon-nucleus collisions.

5.3 Nuclear Excitation by coherent muon motion

Coherent nuclear excitation is calculated in hydrogen-like muonic atoms which are exposed
to superintense laser fields. We restrict the consideration to nuclear charges Z . 10 since
otherwise the required laser intensities become unrealistically large. Driven by the field,
the bound muonic charge cloud periodically oscillates across the nucleus (which we have
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Figure 5.1: Time evolution of the muonic bound state of hydrogen when submit-
ted to an intense laser pulse. The laser is polarized in x-direction and propagating
in z-direction. Here, ℏω = 1.5 keV and I = 6 × 1023 W/cm2. The first row is
representing the ground state without laser beam. The second row is after shin-
ing it with laser and the third row represents the difference between initial and
final states.
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seen in the last section) which leads to the excitation of the nucleus electromagnetically.
In contrast to NEET, this effect does not rely on a resonance condition. It has been
studied before in electronic atoms [40,103,105,111], with a focus on the transition to the
very low-lying isomeric level in 235U at 76 eV, but the predicted excitation probabilities
are small and could not yet be verified in experiment [41, 42]. From the experimental
data an upper bound for the excitation probability of ∼ 10−5 was extracted. We point
out that contrary to laser-generated plasma experiments [3], the nucleus is excited solely
by its own electron or muon. The process might be called nuclear excitation by coherent
electron (muon) motion, NECEM (NECµM). We show that muonic atoms are in principle
favorable candidates to observe the effect as the muon produces a much higher charge
density within the nuclear volume. The excitation probabilities are always very small,
though. We present calculations for nuclear electric multipole transitions as a function of
the applied laser frequency and intensity, and discuss the possibility to detect the effect
by suitable experimental arrangements.

Hydrogenlike muonic atom in the ground state is assumed which is exposed to an external
laser field. The combined influence of the nuclear Coulomb field and the laser field on the
muon produces a time-dependent charge density

ρ(r, t) = e2|ψ(r, t)|2, (5.1)

with the muon wave function ψ, which can lead to excitation of the nucleus. The Hamil-
tonian for the interaction between the muonic and nuclear charge densities is given by [21]

Hint(t) =

∫

d3r

∫

d3rN
ρ(r, t)ρN(rN)

|r − rN |
. (5.2)

The nuclear long-wavelength limit has been applied here because the nuclear γ-ray wave-
length d = c/ωN ≈ 103 fm of low-lying transitions is much larger than the nuclear and
atomic extensions (r, rN . 10 fm), where ωN is the frequency of the nuclear excitation
defined as

ℏωN = E1 −E◦ (5.3)

where E◦ and E1 are the ground state and excited state energies of the nucleus, respec-
tively. The nuclear levels are characterized by their total angular momenta I0 and I1
and the corresponding projections M0 and M1 onto the z-axis. Furthermore, as an initial
condition, the nucleus is assumed to be distributed uniformly on the 2I0 + 1 degenerate
states | I0M0 >. Then the probability of finding the nucleus in any of the excited states
| I1M1 > at time t is defined as

P0→1(t) =
1

2I0 + 1

I0
∑

M0=−I0

I1
∑

M1=−I1

| b1(t) |2, (5.4)

where

b1(t) =
1

iℏ

∫ t

0

dτ〈I1M1 | V (τ) | I0M0〉eiωNτ . (5.5)
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Moreover, since we are interested in electric multipole transitions we neglect the current-
current part which would give rise to magnetic transitions. After a multipole expansion
of the Coulomb interaction in Eq. (5.2),

b1(t) = −e
2

iℏ

∫ t

0

dτeiωN τ

∫

d3r

∫

d3rN
ρ(r − u(τ))

|r− rN |
ρ01(rN )

where
ρ01(rN) =

∑

σ

< I1M1 | ψ†(rN , σ)ψ(rN , σ) | I1M1 > .

The probability for an electric transition between the nuclear states |0〉 and |1〉 becomes
(within the first order of perturbation theory)

P0→1(Eℓ) =

(

4πe

ℏ

)2
B(Eℓ)

(2ℓ+ 1)3

∣

∣

∣

∣

∫ T

0

dt Fℓ(t)e
iωN t

∣

∣

∣

∣

2

(5.6)

with the laser pulse duration T = 2πN/ω, the nuclear transition energy ~ωN , the multi-
polarity ℓ, and [105]

Fℓ(t) =

∫

d3r
ρ(r, t)

rℓ+1
Yℓ0(Ω) . (5.7)

Here, Yℓ0(Ω) is a spherical harmonic and cylindrical symmetry along the z axis is employed.
The reduced transition probability B(Eℓ) in Eq. (5.6) results from the integral of the
nuclear transition density ρN over nuclear coordinates in the usual way. Our goal is to
obtain a closed-from analytical expression of P0→1(Eℓ). To this end we follow the model
developed in Ref. [105]. We apply the dipole approximation to the laser field

E(t) = E0 sin(ωt)ez (5.8)

which couples to the muon via eE.r. This approximation is well justified since the muonic
Bohr radius a0 is much smaller than the laser wavelength, and the laser field strength
will be restricted to values where the muon dynamics stays nonrelativistic. Moreover,
the binding Coulomb field of the nucleus is modeled by a spherical harmonic oscillator
potential

V (r) =
1

2
mω2

0r
2, (5.9)

with the muon mass m and the oscillator frequency ω0 [105, 112]. This procedure has
proved useful for a nonperturbative, though approximate description of the laser-driven
dynamics of bound states which otherwise is impossible by analytical means.

When a particle is bound in a harmonic potential the influence of an external laser field
can be taken into account to all orders [see Eq. (5.11) below]. It is interesting to note
that in the case of muonic atoms the approximation becomes the better the heavier
the binding nucleus is because the potential inside an extended nucleus (considered as
a homogeneously charged sphere) is indeed harmonic. In very heavy muonic atoms the
orbital radius is so small that the muon spends most/half of its time in the nuclear interior.
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Figure 5.2: Comparison of the ground state wave functions in a Coulomb (blue dashed
line) and a harmonic oscillator potential (red solid line). Plotted is a0r

2|ψ|2 versus r/a0.
Both wave functions coincide in their characteristic properties having the same energy
eigenvalues and radial peak positions.

However, as motivated before, we will consider light muonic systems where the use of the
harmonic oscillator potential clearly represents an approximation only. We stress that this
approach is exploited solely to treat the field-induced time evolution of the atomic state;
the muonic interaction with the nucleus is correctly described by a Coulomb potential
[see Eq. (5.2)]. The oscillator length

a0 =

√

ℏ

mω0
(5.10)

is chosen to coincide with the atomic Bohr radius of the muon. With this choice, also the
actual binding energy agrees with the oscillator ground-state energy. In Fig. 5.2 the har-
monic oscillator ground state is compared with the Coulombic 1s state. Due to the similar
shapes of the densities this method allows an order-of-magnitude estimate of P0→1(Eℓ).

The main physical implication of the approximation is that the muon cannot be ionized
since a harmonic oscillator has bound states only. Being interested in nuclear excitation by
the laser-driven bound muon dynamics, we therefore restrict the laser intensity to values
where ionization may safely be ignored. Nuclear excitation by rescattering of ionized
electrons in laser fields has been discussed elsewhere [16, 18, 113]. However, we consider
only the nonresonant case where ω0 is considerably different from ωN . In this situation
the correct atomic level structure is of minor importance. (Note that for ω0 ≈ ωN the
NEET process is possible anyway.)

The Schrödinger equation for the muon motion in the combined fields can be solved
analytically. Up to an irrelevant phase factor, the muon wave function reads [105]

ψ(r, t) = φ(r− u(t)) (5.11)
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where

φ(r) =

(

1

πa2
0

)
3

2

e
− r

2

a2
0

is the ground-state wave function in the harmonic oscillator potential and

u(t) = u0

[

sin(ωt) −
(

ω

ω0

)

sin(ω0t)

]

ez (5.12)

is the periodic displacement caused by the laser field, with

u0 =
eE0

m(ω2
0 − ω2)

.

In the limit ω ≪ ω0 of interest here,

u(t) ≈ eE0

mω2
0

sin(ωt)ez

looks similar to the classical trajectory of a free muon in the laser field, but the excursion
amplitude is reduced by a factor (ω/ω0)

2 due to the harmonic binding force. Eq. (5.11)
has an intuitive interpretation of the muon time evolution: the wave packet keeps its
shape but is periodically shifted across the nucleus by the driving laser field. With the
corresponding charge density ρ(r − u(t)) the spatial integral in Eq. (5.7) can be solved
exactly. For electric dipole, quadrupole and octupole transitions we obtain

F1(t) =

√
3

2πu2

[√
πErf(x) − 2xe−x2

]

F2(t) =

√
5

2πu3

[√
πErf(x) −

(

2x+
4

3
x3

)

e−x2

]

(5.13)

F3(t) =

√
7

2πu4

[√
πErf(x) −

(

2x+
4

3
x3 +

8

15
x5

)

e−x2

]

with the Gaussian error function Erf(x) and x = u(t)/a0 (as seen in Appendix C). In order
to prevent field-induced ionization the laser electric field strength should be far below the
barrier-suppression value

EOBI =
(αZ)3m2c3

16eℏ
, (5.14)

where the binding Coulomb potential is suppressed by the laser field all the way to the
bound energy level. This implies u0 ≪ a0 (in fact, u0 = a0/16 at E0 = EOBI) and
the muon velocity v ∼ ωu0 ≪ c remains nonrelativistic. We may therefore perform in
Eq. (5.13) a Taylor series expansion in the small parameter x yielding Fℓ(t) ∼ u(t)ℓ. The
time integral in Eq. (5.6) then gives

P0→1(Eℓ) ≈ Cℓ α
2B(Eℓ)

e2a2ℓ
0

d2

a2
0

(

u0ω

a0ωN

)2ℓ

, (5.15)

with the QED fine-structure constant α, the numerical constants

C1 =
128

81
= 1.58, (5.16)
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C2 =
2048

5625
= 0.364, (5.17)

and

C3 =
8192

60025
= 0.136 (5.18)

for electric dipole, quadrupole and octupole transitions, respectively, and assuming ω0 &

ωN . We note that a fast oscillating term

sin2

(

1

2
ωNT

)

= sin2
(

πN
ωN

ω

)

occurring in Eq. (5.6) when evaluating the time integral has been averaged over frequency
in Eq. (5.15) to produce a factor 1

2
. The reason is that an intense short laser pulse com-

prises a large frequency bandwidth so that the sin2 factor will adopt a different value for
each spectral component. A sin2 time dependence is typical for the population dynamics
of a two-level system in an external periodic field [103, 114].

The nuclear excitation probability in Eq. (5.15) essentially scales like

P0→1(Eℓ) ∝ a
−2(ℓ+1)
0 , (5.19)

with the Bohr radius, which clearly demonstrates the expected result that compact atomic
states are advantageous. For example, the probability for a nuclear E1 transition in a
hydrogenlike muonic atom is larger by 9 orders of magnitude than in the corresponding
electronic system, when the laser field strength is accordingly scaled so that the ratio
u0/a0 is identical. Note that

B(Eℓ) ∝ e2R2ℓ
N (5.20)

with the nuclear radius RN so that a factor (RN/a0)
2ℓ is contained in Eq. (5.15). Apart

from this scaling, the atomic size enters through the factor (u0/a0)
2ℓ which depends on the

applied laser intensity. The appearance of the ratio u0/a0 is intuitive since the larger its
value the closer the muon comes to the nucleus, this way increasing the mutual Coulomb
interaction. By choosing appropriately large laser fields with

E0 . EOBI (5.21)

the ratio u0/a0 can be optimized to values of several percent. Via the displacement u0

the excitation probability depends like

P0→1(Eℓ) ∝ E2ℓ
0 (5.22)

on the laser field strength. This behavior is reminiscent of multiphoton processes in atoms
or molecules which scale as E2n

0 when n laser photons are involved. The photon order n
formally corresponds to the multipolarity ℓ of the transition here. Within this analogy,
the excitation mechanism might be interpreted as ’multiphonon’ absorption from the
periodically oscillating muon charge density. The main factor, however, determining the
absolute value of the probability is the frequency ratio (ω/ωN)2ℓ. In optical or infrared
laser fields the large frequency mismatch suppresses the nonresonant process by many
orders of magnitude.
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5.4. Results

Table 5.1: Parameters of the atomic nuclei under consideration. Given are the electric
multipolarity, nuclear transition energy, and reduced transition probability (in Weisskopf
units). The last two columns contain the binding energy and Bohr radius of hydrogen-
like muonic 19F, 16N, and electronic 235U (treated nonrelativistically). The data are taken
from [33,115].

nucleus type of ℏωN B(Eℓ) 1
2
ℏω0 a0

transition [keV] [w.u.] [keV] [fm]
19F E1 110 0.0012 228 28.4
16N E2 120 1.7 138 36.5
235U E3 0.076 0.0007 115 575

5.4 Results

Based on Eq. (5.15) we have calculated the NECµM probability in hydrogenlike muonic
19F and 16N. These nuclei possess the lowest-energy electric transitions (ℏωN ≈ 100 keV)
among isotopes with Z . 10. We compare our results with the corresponding ones for
hydrogenlike electronic 235U where the isomeric level at 76 eV is reached by an E3 tran-
sition. This nucleus has been studied most intensively in the literature [40,103,105]. For
consistency, the 235U system is treated nonrelativistically, although relativistic effects are
prominent in deeply bound electron states of highly charged ions. The main parameters
of the systems under consideration are summarized in Table 5.1. The atomic binding en-
ergy is of the order ∼ 100 keV in all cases. The atomic extension of the 235U ion is larger
by an order of magnitude than the muonic Bohr radii because of the smaller electron mass.

The respective nuclear transition probabilities for laser-driven muonic-19F, muonic-16N
and electronic-235U are considered varying with laser intensity as shown in Fig. 5.3. Since,
for NECEM/NECµM, the particle should be bound in order to influence the nucleus while
oscillating across it, that is why the process before the ionization occurs is important
hence, we restrict the curves to terminate at their respective OBI intensities. For this
purpose the experimentally obtained parameters have been used for the atoms and the
respective nuclei as shown in Table 5.1. Increase of the intensity makes the excitation
probability rise in all the three cases. The comparison of these different systems highlights
the advantage using the muonic atoms over the electronic-HCI systems since the nucleus
excitation probability is order of magnitude higher in contrast with e.g., 19F in case of
E1.

It is instructive to comment on various differences with the results presented in [105]. We
use the same theoretical approach developed there, however, we apply it to hydrogen-
like atoms in the 1s state which are moderately affected by an external field such that
u0 ≪ a0. In this asymptotic limit we find simple power-law dependences of the excita-
tion probability on the laser intensity (and frequency) [see Eq. (5.15)]. Contrary to that
in [105] the collective oscillation of all electrons in higher atomic shells (starting from
the 2s orbital) has been considered. The driving laser field was assumed so strong that
u0 & a0. In this regime, neglecting field ionization, the excitation probability as a function
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Figure 5.3: Nuclear transition probabilities for laser-driven muonic 19F (blue curve),
muonic 16N (red curve), and electronic 235U (green curve), as a function of laser intensity.
The laser frequency is ℏω = 1eV. The curves stop at the respective OBI intensities.

of intensity first exhibits a power-law increase (with a different exponent, though) and
eventually goes through a maximum. The absolute values of the excitation probability
are much larger than in our case, but never exceed P ≈ 10−11 in 235U at 1021 W/cm2 laser
intensity and 5eV photon energy.

In Fig. 5.4 we only consider the muonic systems 19F and 16N where ω ≪ ωN throughout
the plot range. In electronic 235U we would go through a resonance. We take muonic-
19F for dipole case and -16N for quadrupole case at laser intensity 1026 W/cm2, because
Eip = 76 eV only. By increasing the laser frequency the excitation probability enhances
but dipole always exceeds the quadrupole result by order of magnitudes as expected.

An alternative way of obtaining higher laser frequencies is to employ (instead of fixed
target nuclei) an ion beam which counterpropagates the laser pulse at relativistic speed.
In the nuclear rest frame the laser frequency appears Doppler blueshift. In this geometry
even a resonant laser-nucleus coupling [114] could be achieved when a bare 235U beam
collides at a Lorentz factor γ ≈ 30 with a near-infrared laser beam (ℏω ≈ 1.2 eV). The
laser Doppler shifted laser frequency ω′ ≈ 2γω can be tuned into resonance with the
nuclear transition frequency. Such an experiment would be taylormade for the future GSI
facility where a beam of fully stripped U ions of the required energy will be available,
along with the intense PHELIX laser [116].

The nuclear excitation probabilities shown in Figs. 5.3 and 5.4 are very small, but they
refer to a single atom. When more than one atom interact with the laser field, the total
yield could be increased proportionally. However, intense laser pulses possess a small
focal volume only (Vf ∼ 10−10 cm3, to give a typical number), while on the other side it
is difficult to produce exotic atoms at very high density. An achievable number density of
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Figure 5.4: Nuclear transition probabilities for laser-driven muonic 19F (blue curve) and
16N (red curve), as a function of laser frequency. The laser intensity is 1026 W/cm2.

trapped muonic atoms is n ∼ 1010 cm−3 which is comparable with the densities available
for other exotic species such as positronium (where n ∼ 1015 cm−3 [117]) or antihydrogen
(where n ∼ 106 cm−3 [118]). According to these numbers, only a few muonic atoms
are contained in the interaction volume, which prevents a substantial yield enhancement,
unfortunately.

Instead of using a fixed target of muonic atoms in a trap, it might therefore be more
promising to employ a nonrelativistic beam of muonic atoms. Such beam experiments are
in principle feasible and have recently led to the observation of the Ramsauer-Townsend
effect in scattering of muonic hydrogen isotopes, for example [119]. Beams of 105 muons
per second can be produced today [120] which could be converted into the same number
of muonic atoms assuming 100% conversion efficiency. The atomic beam could be syn-
chronized with a bunch of laser pulses: at the upcoming XFEL facilities, pulse repetition
rates of 40 kHz∼ 105 s−1 are envisaged. In this setup, one muonic atom would interact
with one laser pulse at a time. By assuming the highest nuclear excitation probability of
about 10−14 shown in Fig. 5.4, we obtain a total yield estimate of roughly one excitation
event per week. This clearly indicates that an experimental observation of the NECµM
process perhaps is not completely impossible, but certainly an extremely challenging task.

Moreover, the NECµM probability is very low, background processes may become compet-
itive or even dominant. First, the maximum intensities considered here are so strong that
direct excitation of the nucleus by the laser field cannot be ignored. According to a simple
estimate, an upper bound for the probability of this process is P . (eE0rN/ℏωN)2 . 10−8

[1,12]. Besides it is known that the presence of charged particles in ultrastrong laser fields
can give rise to nonlinear QED effects like e+e− pair creation [65]. They become appre-
ciable when the laser field strength approaches the Schwinger limit ES = 1.3× 1016V/cm
[121]. Since EOBI . ES for muonic 19F and 16N, the probability for pair creation
Pe+e− ∼ exp(−πES/E0) is non-negligible at the borderline of the applicability condition
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Chapter 5: Nuclear Excitation in Muonic Atoms with Ultraintense Laser Fields

E0 ≪ EOBI of our approach.

5.5 Comparison with related processes

Finally, we compare the NECEM/NECµM process with other excitation mechanisms of
the nucleus via coupling with atomic states. Most closely related is nuclear excitation
in laser-driven recollisions which has been considered recently [16, 18, 113]. Recollisions
occur when the applied laser field is strong enough to tunnel-ionize the atom. The lib-
erated electron gains energy during propagation in the field and is driven back to the
nucleus when the oscillating field has reversed its direction. Upon recollision, various
atomic processes can occur but also nuclear excitation. The recollision-induced excitation
probability in electronic 239Pu (ℏωN ≈ 7.9 keV) was found to be P ∼ 10−16 at an optical
laser intensity of ∼ 1017W/cm2 [113]. It is larger than the NECEM probabilities found
here (see Fig. 5.3). The reason is that the laser field can couple more effectively to a free
electron, transferring large amounts of energy to it. In the above example, the electron is
accelerated to weakly relativistic energies of about 10 keV. Upon the energetic recollision,
the nucleus is excited by electron scattering. The circumstance that free electrons are
more efficient for nuclear excitation was also observed in [105] in a hypothetical scenario
(see Fig. 7 therein). Similarly, the early papers on NECEM where the electrons were
treated as free particles in a first approach [103], obtained large nuclear excitation prob-
abilities (up to P ∼ 0.1). Such high NECEM probabilities, however, were not confirmed
by experiments [41]. More efficient nuclear excitation mechanisms are resonant processes
such as (field-free) NEET. They require, however, an atomic inner-shell vacancy which
is usually produced by X-ray irradiation first. Contrary to that the NECEM/NECµM
process employs atoms in the ground state. In ordinary atoms the NEET probability
typically amounts to P ∼ 10−7 per K-shell vacancy [71, 72, 100]. In muonic atoms the
corresponding probability is largely enhanced to P ∼ 0.1 [73]. It is interesting to note
that coherent nuclear (or atomic) excitation in periodic fields can also occur when a fast
ion beam is channeling through a crystal. For certain ion velocities a resonance behavior
arises here (’Okorokov effect’) [122].
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Chapter 6

Conclusion and outlook

In this thesis, nuclear effects in muonic atoms in super-intense laser field have been studied.
Due to large binding potential it is hard to influence a muonic atom and one needs high
frequencies and high intensities. This work is motivated by the upcoming laser facilities
where corresponding parameters are envisaged. Keeping these facilities into consideration
we restrict ourselves to light isotopes. Essentially, the laser driven muon does not cross
the boundary of relativistic regime that is why Schrödinger equation applies. In particular
the interest lied in investigating the nuclear properties with the help of radiation spectra.
Also, the probability of nuclear excitation by the periodic oscillation of muonic cloud
across the nucleus has been taken into account.

In the first project, harmonic response has been investigated by numerically solving the
time-dependent Schrödinger equation. The main objective for these calculation is to probe
the nuclear signatures for example nuclear mass and size effects, by comparing the HHG
spectra for different isotopes of the same atom, e.g., hydrogen versus deuterium. Since
lighter nuclei are accelerated more strongly by the laser therefore the maximum photon
energy ℏωmax obtained is enhanced. This impact of the nuclear mass on the harmonic
cutoff position can be understood via the reduced mass which enters the ponderomotive
energy of the relative motion. Whereas, the nuclear size and shape influence the plateau
height of the spectra. It is due to the fact that the smaller nuclei have steeper potentials
that lead to enhanced emission of radiation. For isotopes with Z > 1, the laser field
couples to muonic atom via an effective charge instead of ordinary muonic charge. This
effective charge takes the masses of the nucleus and the muon into account along with
the value of Z. The role played by effective charge is clearly visible in the HHG spectra
of muonic helium. Apart from the nuclear signatures, the spectra calculated for muonic
atoms yield large cutoff energies wich reach up to MeV range that might be used to
generate ultra-short X-ray or γ-ray pulses. Our results take us to the realm of the sources
to generate attosecond or even zeptosecond pulses.

In the second project, the main emphasis is on nuclear excitation of muonic atoms when
placed in super-intense laser fields. The theme is that periodic oscillations of the muonic
cloud across the nucleus can excite the nucleus. The closed-form expression for the prob-
ability from the ground state to the excited state i.e., P0→1 has been derived by analytical
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means, for electric multipoles. This excitation can make a pump-probe scheme conceiv-
able. However, the excitation probabilities found with the muonic atoms are very small,
mainly because of the large frequency mismatch between the laser frequency and the
excitation frequency (far off resonance).

For an outlook, the coherent ultra-short γ-rays obtained from HHG process can be used
for the nuclear photo-excitation. This way, time-resolved nuclear spectroscopy could be
feasible. Moreover, other species of exotic atoms could be considered such as pionic
atoms. The pion has similar mass as that of the muon. The energy levels in both pionic
and muonic atoms are in principal similar. But pionic spectral lines are broadened by
the influence of the strong force since the pion can be absorbed by the nucleons of the
binding nucleus. This limits the lifetime of light pionic and, in general, hadronic atoms to
typical values of ∼ 10−15 sec. In comparison with muonic atoms or positronium, hadronic
atoms cannot be considered as stable in the laser field as their lifetime is on the order
of an optical cycle. Pions, being hadrons, are governed by strong forces in contrast with
electromagnetic forces as far as muonic atoms are concerned, so by investigating these
pionic atoms hadronic interactions can be studied. At first glance, this seems to exclude
the possibility of studying their interaction with strong laser fields. To find a remedy
to it could be the application of a relativistic atomic beam with Lorentz factor γ ∼ 10
instead of a fixed target [90]. Due to relativistic time dilation, the atomic lifetime is
correspondingly enhanced in the lab-frame. By these or similar kind of methods hadronic
atoms coupling to intense laser fields could be studied at high laser frequencies ∼ 1 keV
and/or intensities ∼ 1022 − 1026 W/cm2.

Our study of nuclear excitation in muonic atoms could be extended by the magnetic
multipole transitions. For this purpose suitable isotopes would be used with low nuclear
transition energies ℏωN , which in case of heavy isotopes exist. For instance, for M2
transition, 229Th has a transition energy ℏωN ≈ 7.6 eV [123]. Heavy muonic atoms,
however, ar too tightly bound to be affected by radition from present or near-future laser
devices. Highly charged electronic ions appear more promising here. Another example is
the E3 transition in 235U, which could be excited directly with the PHELIX laser at GSI
when a relativistic ionic beam (γ ∼ 30) is used.
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Appendix A

Cut-off law of HHG

We have equation of motion for a free electron in laser field,

d2x

dt2
=

e

me
E0 sin(ωt) (A.1)

The three-step model assumes that the electron is released from the atom at time t0 and
at that time it is at rest with respect to the left ion. Then the electron velocity, given by
the first integral of Eq. (A.1), will be

dx

dt
= −eE0

mω
(cosωt− cosωt0)

The average K.E. of the electron can be written as

< K.E. >=
1

2

e2E2
0

mω2
< (cosωt− cosωt0)

2 >

=
1

2

e2E2
0

mω2

1

T

∫ t0+T

t−0

(cosωt− cosωt0)
2dt

=
1

4

e2E2
0

mω2
(1 + 2 cos2 ωt0)

=Up(1 + 2 cos2 ωt0) (A.2)

where T is one laser period.

Determining the system at some particular time t1 by virtue of [124]

0 =

∫ t1

t0

v(t)dt =

∫ t1

t0

−eE0

mω
(cosωt− cosωt0)dt

0 = −eE0

mω
(sinωt1 − sinωt0) +

eE0

m
(t1 − t0) cosωt0
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Appendix A: Cut-off law of HHG

Differentiating with respect to t0 gives,

(cosωt− cosωt0)
∂t1
∂t0

= −ω(t1 − t0) sinωt0.

The K.E. at t1 is
Ekin(t1) = 2Up(cosωt1 − cosωt0)

2

Differentiating with respect to ωt0 leads to

∂

∂ωt0
Ekin(t1) = 0

Simultaneously solving the above three equations, we obtain these two equations

(sin
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2
− τ

2
cos
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2
) cos
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2
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τ

2
sin

τ

2
sin

σ

2

and
(sin

τ

2
− τ

2
cos

τ

2
) sin

σ

2
=
τ

2
sin

τ

2
cos

σ

2

where τ = ω(t1 − t0) and σ = ω(t1 + t0). Dividing both the equations provides

σk = 2kπ ± π

2

having k is some integer. Hence the K.E. becomes

Ekin(t1) = 4Up sin2 τk
2

From recurrence times τk the maximum energy is obtained at k = 1 which makes the
relation

Ekin(t1) = 3.173Up.

which implies the cutoff formula (2.13).
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Appendix B

Separation without dipole
approximation

In this appendix we show that the two-particle Schrödinger equation (B.1) does not sep-
arate without application of the dipole approximation to the laser field. To this end
we include the next-order term beyond the dipole approximation. Then the two-particle
Schrödinger equation becomes [125]

iℏ
∂

∂t
ψ (r1, r2, t) =

[

p2
1

2m1
+

p2
2

2m2
+

{

r1 + r2 −
i

c
(k̂.r1) ▽1 +

iZ

c
(k̂.r2)▽2

}

.E(t)

]

ψ (r1, r2, t)

(B.1)
where k̂ denotes a unit vector in laser propagation direction and p1 = −iℏ▽

1
and p2 =

−iℏ▽
2
. If r1 and r2 are the corresponding vectors for the two bodies of mass m1 and m2,

respectively, then the resultant vector for the center of mass and relative coordinates can
be written as

R =
m1r1 +m2r2

m1 +m2
(B.2)

r = r1 − r2 (B.3)

where

r1 = R +

(

m2

m1 +m2

)

r (B.4)

and

r2 = R −
(

m1

m1 +m2

)

r. (B.5)

Also,

▽1 = ▽r +

(

m1

m1 +m2

)

▽R (B.6)

▽2 = −▽r +

(

m2

m1 +m2

)

▽R (B.7)
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Simultaneous dealing of the above equation lead us to

▽2
1 = ▽2

r +

(
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m1 +m2

)2

▽2
R +2

m1

m1 +m2
▽r .▽R (B.8)
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m2

m1 +m2
▽r .▽R (B.9)

and Eq. (B.1) becomes
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.E(t)

]

ψ (r,R, t) (B.10)

which simplifies to

iℏ
∂

∂t
ψ (r,R, t) =

[

− ℏ
2

2mred
▽2

r −
ℏ

2

2(m1 +m2)
▽2

R

+(2R +

(

m2 −m1

m1 +m2

)

r).E + Crossed Terms

]

ψ (r,R, t) (B.11)

The appearance of cross terms containing both relative and center-of-mass coordinates
prevents the equation from being separable.
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Appendix C

Crank Nicholson Scheme

The Crank Nicholson scheme is a finite difference method used numerically. It is second-
order in time and is numerically stable [126].

A finite difference is like a differential quotient, except that it uses finite quantities instead
of infinitesimal ones. The derivative of a function f at a point x is defined by the limit

df

dx
= lim

h→0

f(x+ h) − f(x)

h

If h has a fixed (non-zero) value, instead of approaching zero, this quotient is called a
finite difference.

△f
△x =

f(x+ h) − f(x)

h

This method involves taking the derivative half way between the beginning and the end
of the space. It is hence an average between a fully implicit and fully explicit model of
partial differential equations.

Parabolic partial differential equation

The time-dependent one-dimensional diffusion equation can be written as

∂u

∂t
= d

∂2u

∂x2
(C.1)

where u is the temperature distribution on a long thin rod of constant cross-section and
uniform heat conducting material and d is the ratio between the thermal conductivity
and heat capacity. The forward difference approximation for the time derivative in the
one dimensional heat equation Eq. (C.1) can be written as

un+1
i − un

i

△t = d
un

i−1 − 2un
i + un

i+1

△x2
(C.2)

where i = 0, 1, 2, · · · , N labels positions and n = 0, 1, 2, · · · labels instants of time. It
gives a formula to compute the unknown temperature distribution on the rod at various
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positions at various times. Namely, from Eq. (C.2)

un+1
i = un

i + r(un
i−1 − 2un

i + un
i+1) (C.3)

with r = d
△t
△x2

. This method is called Forward time and central space (FTCS).

Since this formula has only one unknown for any i and n it is called an explicit scheme.

If the things are replaced with the backward difference then

un+1
i − un

i

△t = d
un+1

i−1 − 2un+1
i + un+1

i+1

△x2
(C.4)

where i = 1, 2, · · · , N − 1 and n = 0, 1, 2, · · · .
From Eq. (C.4)

un+1
i − un

i = r(un+1
i−1 − 2un+1

i + un+1
i+1 ). (C.5)

Since there are three unknown terms, the scheme so obtained is an implicit scheme.

The main drawback of having more than one unknown coefficient in any equation, unlike
FTCS method, is value of the dependent variable at any typical node say (i, n) cannot
be obtained from the single finite difference equation of the node (i, n) but one has to
generate a system of equations for each time level separately by varying i. Then for each
time level there will be system of equations equivalent to the number of unknowns in that
time level (say N − 1 in the present case). This linear system of algebraic equations in
N − 1 unknowns has to be solved to obtain the solution for each time level. This process
has to be repeated until the desired time level is reached.

Explicit and implicit schemes are two different methods to solve the one dimensional heat
equation Eq.(C.1). Crank Nicholson scheme is then obtained by taking average of these
two schemes i.e.,

un+1
i − un

i

△t =
d

2

[

un+1
i−1 − 2un+1

i + un+1
i+1

△x2
+
un

i−1 − 2un
i + un

i+1

△x2

]

(C.6)

for i = 1, 2, · · · , N −1 and n = 0, 1, 2, · · · . It can be proved that Crank Nicholson scheme
is second order in space and time.

Crank Nicholson scheme for TDSE

The time-dependent Schrödinger equation in one dimension

∂ψ(x, t)

∂t
=

iℏ

2m

∂2ψ(x, t)

∂x2
− i

V (x)

ℏ
ψ(x, t) (C.7)

is a parabolic partial differential equation. The solution is considered on an interval from
a ≤ x ≤ b and t > 0. The solution is determined from boundary conditions:

ψ(a, t) = ψ(b, t) = 0
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and

ψ(x, 0) = f(x)

One method for numerical solution solves for the values of the wavefunction on a regular
grid of dimension

h =
b− a

Nx

in x and τ in t:

ψl
j = ψ(a + jh, lτ). (C.8)

The derivatives are replaced by simple finite differences. The right side of the equation
at the grid point (l, j) is then

iℏ

2mh2
(ψl+1

j + ψl
j−1 − 2ψl

j) − i
V (a+ jh)

ℏ
ψl

j =

N
∑

m=0

iHj,mψ
l
m (C.9)

where H is a real symmetric tridiagonal matrix (provided V (x) is real). The left side of
the equation can be replaced either by a forward difference

ψl+1
j − ψl

j

τ
,

which, when combined with the right hand side, gives the explicit algorithm

ψl+1 = (1 + iHτ)ψl, (C.10)

or by a backward difference

ψl
j − ψl−1

j

τ
,

leading to

ψl = ψl−1 + iHτψl, (C.11)

or (with the replacement l → l + 1), the implicit algorithm

(1 − iHτ)ψl+1 = ψl. (C.12)

Averaging the Eqs. (C.10) and (C.12):

(

1 − iH
τ

2

)

ψl+1 =
(

1 + iH
τ

2

)

ψl. (C.13)

This method is a second order algorithm in t, i.e. the discretization error decreases as τ 2.
The finite difference representation of the second derivative d2/dx2 is also good to second
order in h2. The Crank-Nicholson Algorithm gives a unitary evolution in time. That is
especially useful for quantum mechanics where unitarity assures that the normalization
of the wavefunction is unchanged over time.
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Imaginary time propagation

The Crank-Nicholson method is a stable routine for numerically solving time-dependent
Schrödinger-like equations. Integrating the Schrödinger equation

i
∂ψ

∂t
= Hψ

leads to the time evolution of the wavefunction after a time interval △t

ψ(r, t+ △t) = exp(−i△tH)ψ(r, t) +O(△t2). (C.14)

It assumes that the hamiltonian H does not vary over this time interval.

A reliable method to obtain the ground state of the system employs propagation in imag-
inary time. Consider the wavefunction as a superposition of eigenstates θm(r) with time-
dependent amplitudes am(t) and eigen energies Em. Substituting △t→ −i△t, the wave-
function in the above equation (C.14) decays exponentially

ψ(r, t+ △t) =
∑

m

am(t)θm(r) exp(−Em△t) (C.15)

The ground state of the system decays with the slowest rate. By suitable renormalisa-
tion of the wavefunction during the imaginary time propagation, the wavefunction moves
towards the ground state of the system.

Time convergence for our calculations

The HHG spectra are calculated in this thesis by solving TDSE with the help of Crank
Nicholson scheme. To emphasize that our calculations are convergent as far as time steps
are concerned we draw it graphically in Fig.C.1. The plot represents the cutoff position
against the number of time steps. Our calculations employ 2.5 × 106 time steps which
guarantees clear that it converges at this number.
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Figure C.1: The time convergence plot for muonic hydrogen atom in nuclear size effect.
The plot shows the harmonic order at the cutoff position as a function of time steps
considered for the numerical evaluation for the dipole acceleration.
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Appendix D

Dipole, quadrupole and octupole
transitions

Dipole

For dipole transitions the difference on angular momentum is λ = 1. In our case µ = 0
due to cylinderical symmetry, so that the relevant spherical harmonic is

Y 0
1 (Ω) =

1

2

√

3

π
cos θ (D.1)

and the Eq. (5.7) for transition for dipole is

F 0
1 (t) =
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∫ 2π
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∫ 1

−1

r2

r2
drdφd cos θe−(r2−2r cos θu(t)+u(t)2) 1

2

√

3

π
cos θ (D.2)

regarding ξ = cos θ

F 0
1 (t) =

1

2

√

3

π

∫ ∞

0

∫ 2π

0

∫ 1

−1

r2

r2
ξdrdφdξe−(r2−2rξu(t)+u(t)2) (D.3)

After the elementary integration the relation obtained is:

F1(t) =

√
3

2πu2

[√
πErf(x) − 2xe−x2

]

(D.4)

Quadrupole

For quadrupole λ = 2

Y 0
2 (Ω) =

1

4

√

5

π
(3 cos2 θ − 1) (D.5)

and final relation for quadrupole transition obtained is:

F2(t) =

√
5

2πu3

[√
πErf(x) −

(

2x+
4

3
x3

)

e−x2

]

(D.6)
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Octupole

Similarly for octupole λ = 3

Y 0
3 (Ω) =

1

4

√

7

π
(5 cos3 θ − 3 cos θ) (D.7)

and final relation for octupole transition obtained is:

F3(t) =

√
7

2πu4

[√
πErf(x) −

(

2x+
4

3
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8

15
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)
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]

. (D.8)
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Ehlotzky, ibid. 49, 373 (2003).

[29] A. Shahbaz, C. Müller, A. Staudt, T. J. Bürvenich, and C. H. Keitel, Phys. Rev.
Lett. 98, 263901 (2007).

[30] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. Rev. Lett. 93, 083602
(2004).

[31] M. Kalinski, Las. Phys. 15, 1367 (2005); R. Schützhold, G. Schaller, and D. Habs,
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