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Zusammenfassung

Die Wechselwirkung von ultra-starken Laserfeldern mit mehrfach geladenen wasserstof-
fartigen Ionen lässt sich zum einen in die Ionisationsdynamik und zum anderen in die
gebundene Dynamik unterteilen. Beide Bereiche werden numerisch mittels der Dirac-
gleichung in zwei Dimensionen und der klassisch relativistischen Monte-Carlo Simula-
tion untersucht. Zum Besseren Verständnis der zugrunde liegenden höchst nichtlinearen
physikalischen Prozesse wird die Entwicklung von wohldefinierten ultra-starken Laser-
feldern weiter vorangetrieben, die bestens geeignet sind um z.B. Magnetfeldeffekte des
Laserfeldes zu studieren, welche eine zusätzliche Bewegung des Elektrons in die Laser-
propagationsrichtung bewirken. Eine neue Methode zur sensitiven Bestimmung dieser
ultra-starker Laserintensitäten vom optischen Frequenzbereich über den UV zum XUV
Bereich wird in dieser Arbeit vorgestellt und angewendet. Im Bereich der gebundenen
Dynamik ist die Bestimmung der Mehrphotonenübergangsmatrixelemente zwischen ver-
schieden Zuständen mittels Rabi Oszillationen untersucht worden.

Abstract

The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can
be distinguished in an ionization and a bound dynamics regime. Both are investigated
by means of numerically solving the Dirac equation in two dimensions and by a classi-
cal relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear
physical processes the development of a well characterized ultra-intense relativistic laser
field strength has been driven forward, capable of studying e.g. the magnetic field effects
of the laser resulting in an additional electron motion in the laser propagation direction.
A novel method to sensitively measure these ultra-strong laser intensities is developed
and employed from the optical via the UV towards the XUV frequency regime. In the
bound dynamics field, the determination of multiphoton transition matrixelements has
been investigated between different bound states via Rabi oscillations.
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Chapter 1

Introduction

The relativistically correct quantum mechanical description of particles in the presence

of time and space dependent classical fields is obtained by the Lorentz co-variant Dirac

equation [1]. Analytical solutions of it are only possible in a few cases, e.g. for free particles

[2] or for the hydrogen atom in case of plane waves [3]. Especially the latter, as an example

of an interaction of matter with an external field, has been of great interest throughout

the development of modern physics. An experimental breakthrough was the invention

of the laser in the 1970s. It became possible to experimentally study the interaction of

monochromatic coherent light with matter.

The generation of laser fields with shorter pulses, higher frequencies ω and intensities I led

to new physical phenomena [4]. The existence of very short pulses is of great importance

and has been used to image chemical reactions on a femtosecond scale [5] (nobel prize

winner 1999, A. H. Zewail) or even electron motions on an attosecond scale [6]. New laser

sources that have recently been built and those scheduled for the near future will obtain

even higher frequencies. The typical wavelengths of these linear accelerator sources are

λ = 32 nm (Free-Electron Laser (FEL) [7], ω = 1.4 a.u.), λ = 6.5 nm (Free-Electron

Laser in Hamburg (FLASH) [8], ω = 7 a.u.) and λ = 0.4 nm (X-Ray Free-Electron Laser

(XFEL) [9], ω = 114 a.u.). Unlike the conventional lasers, in which electrons are excited in

bound atomic or molecular states, these FEL’s use a relativistic electron beam as lasing

medium. The advantage is a widely tunable wavelength from infrared via the visible

spectrum towards the UV and soft XUV range. The coherent light source is based on a
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Chapter 1: Introduction

relativistic beam of electrons that passes through an undulator in the form of periodic

arranged magnets which results in a sinusoidal trajectory of the electron beam. The

acceleration along this path leads then to a release of photon radiation, which is emitted

coherently if the electron motion is in phase with the emission of the radiation.

A further intention, beyond the aim of smaller wavelengths, is the availability of enhanced

laser intensities, providing a deeper insight into the fascinating field of strong laser-matter

interaction. Therefore large-scale facilities with typical parameters of kJ energy in a single

pulse of nanosecond duration and terawatt powers have been built over many places

around the world, e.g. at CEA-Limeil in France, in the Rutherford Appleton Laboratory

in the UK and at the Institute of Laser Engineering at the Osaka University in Japan.

In addition to these large facilities table-top devices are used of comparable parameters

e.g. at the University of Texas Austin USA (LLNL Jan USP laser, with a peak intensity

of 2 × 1020W/cm2 [10]); the 100 terawatt facility of the LULI laboratory in France (with

a peak intensity of 2 × 1019W/cm2 [11]) or at the Max-Born Institute in Berlin (with a

peak intensity of 0.8 × 1019W/cm2 [12]). The aim for achieving intensities in the ultra-

relativistic regime of the order of 1025W/cm2 e.g. by the european project of Extreme

Light Infrastructure (ELI) [13] offers the opportunity to challenge the vacuum critical field

strength to test the validity of QED effects through vacuum polarization [14], to study

nuclear reaction and generating GeV electron beams [15] or for medical application as

accomplished in cancer therapy [16]. The most striking contribution to higher intensities

has been obtained by the chirped pulse amplification technique [17], where a short pulse

is stretched in time in order not to destroy the related optics, then amplified and at the

end compressed to the original pulse length. Using this technique short ultra-intense

laser pulses with an intensity of up to 1021W/cm2 [18] have been achieved so far. Highly

non-linear effects covering quantum interferences like tunneling or spin effects have been

investigated with these kinds of relativistic intensities. Review articles on this topic can

be found in [19].

Before characterizing the laser intensity in different regimes the most interesting phenom-

ena in the area of atom laser interaction will be briefly reviewed. We especially focus on

the ionization dynamics. A bound electron can be ionized by absorbing many photons,
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whose single energy is lower than the required ionization potential energy. This process is

named multiphoton ionization. In case of above-threshold ionization the electron absorbs

more photons than required to reach the continuum and return to its origin. In case of

small laser frequencies and together with strong laser fields the electron can simply leave

the atom via tunneling. After the electron leaves the atom by any of the aforementioned

possibilities it can return to its origin. For the recollision scenario three different situa-

tions are possible. Firstly, the electron recombines with the ion emitting its energy plus

the ionization energy as a photon, which leads to high harmonic spectra. Secondly, the

electron can inelastically scatter off the ion and release a second electron known as non-

sequential double ionization. Thirdly, it may scatter elastically acquiring drift energies

much higher than otherwise.

The interaction of atoms with laser frequencies in the optical domain can be distinguished

in the following three main parts. For a laser intensity below 1016 W/cm2 the interaction is

non-relativistic. In this regime the laser electric field component dominates the interaction

in comparison to the magnetic field component and therefore the electron motion takes

place mainly in the polarization direction. In the intermediate intensity regime of 1016-

1018W/cm2, relativistic corrections of the order of (v/c) start to be of importance, with

the electron velocity v and the speed of light c. These first-order effects and higher-

orders can be calculated by a Foldy-Wouthuysen transformation of the Dirac-Hamilton

operator, which summarized, is a transformation to decouple the Dirac equation into

two two-component equations. In this intensity domain, the magnetic field component

of the laser field needs to be considered and the dipole approximation (ωt -kr ≈ ωt)

starts to break down, where kr characterizes the laser wavefront, ω the frequency and t

the interaction time of the laser field. The full relativistic dynamics comes into play for

intensities above 1018W/cm2.

The atomic field strength in multiply charged hydrogen-like ions can compensate de-

pending on their ionic core charge these ultra-intense laser fields. The strongest laser

intensity of 1022W/cm2 [20] achieved today can be e.g. compensated by a hydrogen-like

ion of charge Z = 10. The applicable intensity regime for perturbation theory is below

1014W/cm2. Above this domain high-order effects are essential and non-perturbative ap-
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Chapter 1: Introduction

proaches are needed to describe them, which belong to the subject of strongly pertubated

quantum systems.

In general, analytic solutions of single-atom responses in these intensity regimes are dif-

ficult to obtain, as temporal and spatial effects have to be considered, forcing the devel-

opment of numerical methods. However, even the simplest investigation of an electron

in hydrogen, applied to an intense laser field presents a great numerical challenge for the

numerical work. Therefore, a variety of compromises concerning the modeling of real sys-

tems have been made. A numerically calculated wavefunction provides information about

the details of time-dependent phenomena like ionization or the population dynamic of the

atomic ground state and any other excited state considered in the calculation. To include

relativistic effects of ultra-strong laser matter interaction as well as not to be restricted by

several approximations, the numerical solution of the Dirac equation offers a promising

prospect as the wave packet dynamics of the interaction can be adequately investigated,

as done in this thesis.

The aim of this thesis is to generally contribute to a better understanding of highly

nonlinear processes in relativistic laser-ion interaction. In particular we developed a novel

method to sensitively measure and better characterize ultra-strong laser intensities from

the optical to the UV and beyond towards the XUV frequency range. Our method is

especially important as its realm of viability extends into a laser intensity regime in which

conventional methods are simply not feasible. The selective use of multiply charged ions,

taken such that their atomic field strength is on average comparable to that of the laser

field, renders them applicable to a wide range of laser intensities both presently available

and in the future. This specific characterization of ultra-strong laser fields is particularly

important for the forthcoming aim to investigate laser-matter interaction in the ultra-

relativistic regime. For the bound dynamics regime the determination of multiphoton

transition matrix elements via Rabi oscillations in multiply charged hydrogen-like ions

has been examined. This is of broad interest as the radiation from these transitions

have an application as a tunable table-top source in the XUV and soft X-ray regime and

because in this way ionic transition matrix elements may be probed.
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In chapter 2, the fundamental processes of the ionization and bound dynamics regime

will be introduced. A special focus lies on the non-relativistic and relativistic ionization

interaction giving a diagram of the importance of magnetic and relativistic effects as a

function of the field frequency and intensity for various ionic core charges Z. Moreover,

the bound dynamics section concerns multiphoton transition processes within the dipole

approximation and beyond. This chapter finishes with a general overview of some of the

characteristic properties of multiply charged ions. Proceeding with chapter 3, we specify

the used numerical models for the simulation of the interaction of the laser field with

multiply charged hydrogen-like ions. These comprise a classical relativistic Monte-Carlo

simulation and the solution of the Dirac equation in two dimensions. For the latter we

have generated the energy eigenstates together with their associated wavefunction for sev-

eral multiply charged ions by using the spectral method. Moreover, the two-dimensional

eigenstates are characterized by determining their angular momentum and parity. The dy-

namics of the generated wavefunction via the interaction with the laser pulse is calculated

by the split-operator method as explained within this chapter.

The focus of chapter 4 is on the ionization dynamics of multiply charged hydrogen-like

ions in ultra-intense laser fields. In the first part we investigate the regime of validity of the

analytically calculated tunnel rate formula for the non-relativistic laser-atom interaction

and in the relativistic laser-ion interaction via the solution of the classical relativistic

equation of motion. In the second part a most sensitive measurement of ultra-strong laser

intensities is proposed by studying the ionization fraction of the considered interaction

with multiply charged ions. The method is based on the compensation of the laser field by

the atomic field strength of the chosen atomic species. This includes the investigation of

the dependence on the typical laser parameters: frequency, pulse length, shape and phase.

In addition to the ionization fraction, the ionization angle has been studied by both the

classical relativistic and the quantum Dirac calculation. Our study of the measurement

of ultra-strong laser fields permits in the optical frequency regime the characterization of

laser intensities of up to 1026W/cm2 and is even applicable in the XUV frequency regime

e.g. for the in the near future scheduled XFEL laser source.

Beyond the ionization dynamics of multiply charged ions the bound dynamics in chap-
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ter 5 has been examined. In this case, the external laser field strength has to be below the

atomic field strength to diminish the ionization probability. Thereby multiphoton transi-

tions with the aim to determine the associated dipole transition matrix elements beyond

the usual dipole approximation of the laser field have been studied, by investigating the

Rabi frequency of the population dynamics. In the associated radiation spectra these

transitions have been identified.

Throughout this thesis, if not stated otherwise, atomic units (a.u.) are used (~=me=e=1)

with electron charge e and mass me.

14



Chapter 2

Fundamental aspects of the
dynamics of laser-matter interaction

In this thesis we deal with the interaction of atomic/ionic systems in the presence of

an external laser field. In particular, we investigate two main branches of interaction

types, namely the ionization dynamics, where the laser field strength is of the order of the

atomic field strength or beyond and the bound dynamics with a laser field strength well

below the atomic field strength. The regime of interest of ultra-intense laser intensities

I = 1018 − 1026W/cm2 allows the study of the quantum dynamics of the electron in the

relativistic regime. The current maximum peak laser intensity achieved of the order of

1022W/cm2 [20], lies well within this regime and shows the increasing interest in the field

of relativistic dynamics.

The relativistic character of the electron originates from two sources. Firstly, if the

velocity of the electron approaches the speed of light c, originate by the acceleration of

the laser field, relativistic effects become essential including the relativistic mass shift and

the spin-orbit coupling. These effects depend on the intensity of the applied external laser

field which increases the velocity of the electron due to acceleration. Secondly, in multiply

charged states, the deeply bound electrons move in the binding potential with velocities

close to c, causing relativistic effects in the bound state wavefunction. The acceleration

of the electron to velocities close to the speed of light after leaving the atomic core is of

main importance for the ionization dynamics, whereas the relativistic modification of the

wavefunction of the ionic core charge state is essential for the bound dynamics.
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Chapter 2: Fundamental aspects of the dynamics of laser-matter interaction

One of the main topics to be addressed in this thesis, is the relativistic laser-matter

interaction, related to ionization (chapter 4). The relativistic context in this system

arises from ultra-strong laser fields in the optical frequency domain, which are applied

to hydrogen-like multiply charged ions. Although the Coulomb force of the ion potential

is quite strong, when the electron leaves the vicinity of the ionic core of charge Z, it

has a non-negligible velocity compared to the speed of light. Furthermore, we examine

the bound-bound dynamics in multiply charged ions (see chapter 5) which involves a

relativistic treatment. Here, the high velocity v of the bound electrons in the multiply

charged ion (v ∼ Z) requires us to cast the problem relativistically.

2.1 Ionization dynamics

In the early stages of the generation of laser light in the optical regime, the intensity was

very limited. Hence, the analysis of the laser-atom interaction by laser intensities below

1015W/cm2 in the optical regime could be treated by perturbation theory, where the laser

field is treated as a small perturbation to the atom. The validity of the application of

perturbation theory is provided if the perturbation term E · r is small compared to the

photon energy ω. Here, E is the laser field strength and r is of the size of the typical Bohr

radius a0 of the system. In the case of a strong electric field, which deforms the atomic

potential, the perturbation treatment of the problem is not valid anymore. In this case,

we enter the regime of strong fields, which needs to be treated differently as described in

the following.

Analytical models describing the strong laser-atom interaction were given in the early

1960s and late 1970s by the famous work of Keldysh (1965), Faisal (1973) and Reiss

(1980) [21–23], who successfully developed a framework of the strong-field phenomena

by introducing the strong field approximation (SFA). The fundamental idea behind this

approximation for laser-induced ionization processes is to neglect the Coulomb potential

of the ionic core once the electron is detached by the laser field and vice versa to disregard

the influence of the laser field on the deeply bound electrons. However, an electron can

be directly ejected in the applied laser field through the absorption of multiple photons,
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2.1. Ionization dynamics

known as multiphoton absorption. The behavior of the electron after it leaves the ionic

core (ionization) can be described classically by the so-called recollision model, first pro-

posed by Corkum [24]. The assumption made for the classical description of the electron

in this model, is the zero velocity of the electron during ionization. Once the electron is

liberated from the ionic core it propagates in the laser field accumulating energy from it.

When the electric field changes sign the electron can be accelerated back (depending on

the ionization time) and recollide with the ionic core. This recollision process can either

lead to a rescattering of the electron, in which the associated rescattering energy and

further structures are manifested in the above-threshold ionization (ATI) spectrum [25],

or else it can recombine and radiate multiples of the laser frequency, which is generally

known as the process of high harmonic generation (HHG) [26]. If there is more than one

electron involved in the process of recollision, the electron’s energy is employed to set free

further electrons. This process is known as non-sequential ionization [27]. The simple

recollision model allows us to describe qualitative features in the regime, where the laser

field dominates the interaction. For example, the calculation of the exact cutoff energy of

the HHG and ATI spectrum, the plateau structure in the HHG spectrum and the peak

separation by the photon frequency in the ATI spectra were carried out.

The physical process of ionization can be distinguished between three main processes

see Fig. 2.1, over-the-barrier ionization (OTBI), tunnel ionization (TI) and multiphoton

ionization (MPI). The classification between these different ionization processes is usually

done by the generalized Keldysh parameter γ =
√

2Ipω/E for a hydrogen atom, where Ip

is the ionization potential of the atomic species, ω the laser field frequency and E the laser

field amplitude. This can be extended for arbitrary ionic charges Z under consideration

of the ionization potential as Ip = Z2/2, to γ = Zω
E

. The Keldysh parameter behind this

definition can be understood as the ratio of the tunnel time to the time the laser field

needs to change its direction (see also the extension for the relativistic case in section

2.1.2). For a Keldysh parameter of γ > 1 (multiphoton ionization regime) bound-free

transitions can be described perturbatively. The ionization in this regime takes place via

simultaneous absorption of N , N + 1, N + 2, ... number of photons, i.e. Nω > Ip has to

be fulfilled, whereas N is the smallest photon number to overcome the ionization potential

17
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Figure 2.1: Schematic diagram of the different ionization mechanisms, namely the mul-
tiphoton ionization (a), tunnel ionization (b) and over-the-barrier ionization (c). Shown
is an effective potential (solid line) in one dimension, which is a superposition of the
Coulomb potential and a static electric field (dashed line). Additionally, the ionization
potential Ip and a bound state wavefunction, marked by the shaded Gaussian-like profile
has been added.

Ip. For γ < 1 the effective field consisting of a superposition of the laser field and the

atomic Coulomb potential is modified in such a way that the electron can tunnel through

the potential barrier, leading to quantum mechanical tunnel ionization. For even stronger

laser fields, the Coulomb barrier is so strongly suppressed that the electron can classically

leave the ionic core, which is known as the regime of over-the-barrier ionization. In this

case, the escape rate adiabatically follows the variation of the optical laser field.

The theories of intense laser-matter interactions have been further developed over the

years to include the description of different ionization processes e.g. by many-body S-

matrix theory [28], full classical theory [29] and density functional theory [30]. Even

semi-analytic non-perturbative approaches work principally, but the solutions of these are

extremely difficult to obtain and unreliable for ultra-intense laser intensities. In addition

to the analytical models, including relativistic laser-matter interaction, numerical codes

have been developed in order to investigate the interaction dynamics in a more accurate

way. A further advantage of them is that no assumptions about the frequency range or

intensity range of the laser have to be made. Likewise, the pulse type and shape can be

chosen freely. Despite the advantage of accurate calculation using numerical integration

techniques, the computationally intensive codes require some approximation, to reduce

the amount of computation time. The bottleneck in numerical algorithms, especially in

the Dirac equation solver, is the large number of time steps needed for the calculation.
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2.1. Ionization dynamics

The reason is the intrinsic energy time uncertainty relation, where the energy contains the

large rest mass of the electron in case of the Dirac equation, which has to be temporally

resolved. A decrease of the associated computation time of these kind of calculations is

accomplished by a reduction of the number of physical dimensions. In the early stages,

simulations have been performed for linear polarized laser fields in one dimension using

the Schrödinger equation. The general basis of the numerics, is to discretize the time-

dependent wavefunction on a grid by using the finite difference method (see appendix A).

The one-dimensional calculations are generally sufficient to look at, e.g. the fundamental

structure of a high-harmonic spectrum. However, they do not provide any information

for circular polarized light or take magnetic field effects into account. This can already

be seen from a classical analysis of the equation of motions of the Lorentz force given in

atomic units.
d

dt
p = −[E(η) +

v

c
× B(η)] , (2.1)

with p = γ̃v, where v defines the velocity of the electron, γ̃ = (1−β2)−1/2 and β = v/c.

We consider a laser pulse linearly polarized in x-direction, propagating in the z-direction

with k = kez, with k = ω/c. Thereby, the parameter η is defined as η = ωt − kr =

ω(t− z/c). If we neglect all the terms of the order of v/c, the resulting electron motion

is one-dimensional in polarization direction x:

d

dt
vx = −E(ωt) . (2.2)

If one keeps the first order in v/c, the electron motion becomes two-dimensional in the

(xz)-plane, with
d

dt
vx = −E(ωt) ;

d

dt
vz = −vx

c
B(ωt) . (2.3)

These simple considerations lead to a division of the electron motion in a non-relativistic

and a relativistic regime, which will be explained below.

2.1.1 Non-relativistic laser-atom interaction

In the non-relativistic laser-atom interaction regime the electron velocity is much smaller

than the speed of light c. In this case the spatial dependence of the phase η = ωt− kr in
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Chapter 2: Fundamental aspects of the dynamics of laser-matter interaction

the electric field E can be written as η ≈ ωt. This approximation of the electric field is

the so called dipole approximation a0/λ≪ 1, where a0 is the Bohr radius and λ the laser

wavelength. A second condition for the use of the dipole approximation is E/ω ≪ c. In

both cases the magnetic component of the laser field can be ignored in the evolution of

the wave packet dynamics. In the case of free electron motion in such a laser field, the

electron oscillates only in the laser polarization direction. The latter will be compared

with the case where the magnetic field of the laser is not negligible.

The simplest system of study is the investigation of the dynamics of a free electron,

showing a typical zigzag motion [31] as depicted in Fig. 2.2 for various field strengths.

The drift of the electron in propagation direction is due to the coupling of the laser field

to the magnetic field of the moving electron, increasing with laser intensity for a fixed

frequency.

0 1 2 3 4 5 6
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Figure 2.2: Typical zigzag motion of a free electron starting at rest for various field
strengths in an external laser field with a frequency of ω = 114 a.u. (λ = 0.4 nm) in
the plane of the laser polarization x and propagation z direction. The pulse consists of
20 cycles including 2 cycles of turn-on and turn-off phases. Apart from the oscillation in
laser polarization direction a clear drift in laser propagation direction is visible, increasing
with field strength.
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2.1. Ionization dynamics

Due to the above mentioned assumptions the laser-driven matter interaction in the non-

relativistic regime can be calculated either analytically or numerically by solving the

Schrödinger equation. Especially for laser intensities below 1016W/cm2, a variety of in-

vestigations of the laser interaction with atoms [32], molecules [33], clusters [34] and

solids [35] have been performed in the past. However, when the electron is accelerated to

velocities close to the speed of light, relativistic effects become important and the mag-

netic field component of the Lorentz force can no longer be neglected. Since optical laser

fields of intensities of the order of 1021W/cm2 become nowadays available, investigations

of the relativistic dynamics become popular. An overview will be given in the next section.

2.1.2 Relativistic laser-ion interaction

For laser intensities of the order of 1018W/cm2 the interaction of the atom with an external

laser field is in the relativistic regime in which the electron velocity approaches the speed

of light. To account for the full relativistic effects of the dynamics in this regime the

calculation of the Dirac equation is the unique choice.

Relativity can be expressed by the parameter ξ = E/ωc for neutral atoms, where E and

ω are the laser field strength and frequency, respectively. The interaction is relativistic

when ξ approaches 1, i.e. the laser field provides the electron with energy that equals its

rest energy. The distinction of the different ionization regimes via the Keldysh parameter

γ modifies in the relativistic case to

γrel =
ω

E

√
1 − ǫ2 (2.4)

with ǫ =
√

1 − (Zα) for the ground state of an arbitrary ionic core of charge Z and

α = 1/c. As will be discussed in the ionization dynamics section relativistic effects

become important at ionic core charges above Z = 10.

After having defined our relativistic regime we will now look at the typical trajectories that

occur. As mentioned in the previous section, magnetic field effects become important in

the relativistic regime as the classical magnetic field component of the Lorentz force cannot

be neglected. Rather, the magnetic field component of the linearly polarized laser field

induces a drift of the electron in laser propagation direction, in addition to the oscillatory
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Chapter 2: Fundamental aspects of the dynamics of laser-matter interaction

motion in the laser polarization direction, which renders the motion two-dimensional.

In the following, an overview is given regarding the range of importance of magnetic field

effects and relativistic effects [36]. When an atom/ion is subjected to an intense laser

field photoelectrons with relativistic energies can be produced. In this case the dipole

approximation is no longer valid and the magnetic field of the laser needs to be taken into

account. With the solution of the classical relativistic equation (2.1) of the free electron

the extension of the maximum excursion amplitude in laser propagation direction x of

the zigzag motion (Fig. 2.2) can be approximated by

|x|
λ

=
1

2π
ζ/8 =

ζ/8

c/ωλ

ζ ≡ 2zf

1 + zf

The intensity parameter zf is defined as zf ≡ 2Up/c
2. The above calculated excursion

amplitude of the figure of eight motion (which an in laser propagation direction moving

observer sees) of a free electron is modified in case of a binding potential with the Bohr

radius a0 by
|x|
a0

≈ (zf/4)(c/a0ω) . (2.5)

Therefore, the width of the figure-of-eight becomes equal to the diameter of the Bohr

atom when zf = 4a0ω/c. In terms of the intensity parameter z′ = Up/ω with the help of

zf ≡ 2Up

c2
, z′ can be expressed as z′ = 2a0c ≈ 275, which is proportional to the ratio of

twice the Bohr radius to the Compton wavelength λc = 2π/c. The magnetic field strength

can be regarded as important when z′ is bigger than 1% of its value, i.e. z′ ≥ 2.75. For

several atomic core charges Z the importance of the magnetic field is depicted in Fig. 2.3.

Apart from magnetic field effects, relativistic effects can be estimated by the intensity

parameter zf . They become important for zf ≈ 0.1, which is depicted in Fig. 2.3 by

the upper line. Both estimations can be generalized for any atomic core charge Z and

give the regime of the associated important effects as a function of the laser intensity and

frequency. To conclude, in the intensity domain indicated by the lower line of Fig. 2.3,

v/c effects of the magnetic field in the laser interaction with atoms have to be considered.

True relativistic effects of the order of (v/c)2 are important above the upper line in Fig. 2.3.
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2.1. Ionization dynamics
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Figure 2.3: Plotted are the regime of importance of magnetic field effects and relativistic
effects in case of an atom (Z = 1) and for the ionic core charges of Z = 10, 20, 40.
Magnetic effects are important above the lower line, whereas relativistic effects have to
be taken care of above the upper line.
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Chapter 2: Fundamental aspects of the dynamics of laser-matter interaction

Novel features, beyond the dipole approximation of the intense laser-atom interaction,

appear in two-dimensional calculations as the influence of the spatial dependency of the

vector potential is taken into account, forcing the electron trajectory on a two-dimensional

plane. This is essential for the numerical study of the relativistic laser-matter interaction

with the help of the Dirac equation as carried out in this thesis. If one keeps the dimen-

sionality, the computer load is dramatically increasing. To achieve a proper computation

time the pulse length has to be decreased in order to minimize the interaction time, which

is only feasible within the limit of high frequencies. Another option is to use absorbing

boundary conditions, so that the ionized wavepacket is removed and cannot be reflected

at the border of the grid. The advantage is that one can reduce the spatial size of the

grid and thus, limit the computation time. This leads to a decrease in the normalization

of the wavepacket, which in turn can be used as a quantitative measure of the ionization

rate. The relativistic laser-matter interaction concerning the bound dynamics will be

introduced in the next section.

2.2 Bound dynamics

A problem that quickly arises in the bound dynamics regime for relativistic laser parame-

ters is the large ionization probability of multiphoton ionization of the bound electron. To

be still able to investigate relativistic bound dynamics we make use of multiply charged

ions. The attractive Coulomb force (Eat ∼ Z3) in multiply charged ions can be chosen

such that, the electron can withstand e.g. relativistically strong near-optical pulses. In

these ions the first Bohr orbit of the electron is inversely proportional to the atomic charge

Z resulting in a much stronger bound electron compared to the case of the hydrogen atom.

These aforementioned characteristics of multiply charged hydrogen-like ions in the field of

ultra-strong lasers, renders this regime of interaction a very interesting and promising one

to study, as the occurring dynamics will be governed by relativity. The leading relativistic

corrections to a non-relativistic treatment of the laser-matter interaction dynamics are the

magnetic field component of the laser, the spin-orbit coupling and the relativistic mass

shift.
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2.2. Bound dynamics

|1>

|0>
Figure 2.4: Schematic diagram of a resonant multiphoton transition in multiply charged
hydrogen-like ions, where each two-ended arrow indicates one photon.

One typical feature of highly charged ions are their widely separated eigenstates. They

can be coupled via multiphoton transitions as depicted in Fig. 2.4. The radiative emission

from these transition are e.g. in the favorable high-frequency XUV range. An important

application of these XUV frequency transitions is e.g. a higher resolution in the frequency

domain interferometry, which is used for probing, manipulating and controlling ultrafast

phenomena.

2.2.1 Dipole/Non-dipole interaction

In the following, we focus on the time evolution of the electronic wave packet within

and beyond the dipole approximation. The dynamics of the center-of-mass motion is in

both cases displayed in Fig. 2.5 for an ionic charge of Z = 30. The electron wave packet

dynamics of the solution of the time-dependent Dirac equation in two dimensions is given

by the spatial expectation value of the laser polarization and propagation direction of
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Chapter 2: Fundamental aspects of the dynamics of laser-matter interaction

the related wave packet. In the case of a free electron we have already seen the zigzag

motion in laser propagation direction. For a laser field strengths well below the atomic

field strength of Eat = 27000 a.u. (I = 2.5 × 1025W/cm2) in case of an ionic core charge

of Z = 30, the atomic field of the ionic core seriously competes with the drift imposed by

the laser field. This drift motion in laser propagation direction can be seen together with

an oscillation of the electronic wave packet around the ionic core in Fig. 2.5, showing the

importance of the laser magnetic field component.
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Figure 2.5: Center-of-mass motion of a bound electron in an external laser field in the
plane of laser polarization direction x and propagation direction z for a laser field strength
of E = 18000 a.u. (I = 1.14 × 1025W/cm2) and a frequency of ω = 114 a.u. (λ = 0.4
nm). These parameters have been used in case of a 20 cycle pulse with 2 cycle turn-
on and turn-off ramp, respectively and an ionic core charge of Z = 30. The diamonds
display the center-of-mass motion within the dipole approximation, where the magnetic
field component of the laser field is neglected. The solid line shows the entire center-
of-mass motion in the case the magnetic component of the laser field is included in the
calculation.
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2.2. Bound dynamics

In Fig. 2.6 the center-of-mass motion of the wave packet of a bound electron for different

ratios of the laser field strength E to the atomic field strength Eat of an ionic charge

Z = 30 is shown. For all the ratios of E to Eat the electron motion has a component in

laser propagation direction as well as in the laser polarization direction. In case of a laser

field strength below the atomic field strength, the drift in propagation direction per laser

cycle is small in comparison to a field strength above the atomic field strength. In the

case of E/Eat = 0.8, the electron motion goes mainly in the negative laser polarization

direction due to the Coulomb attraction of the nucleus compared to the motion in positive

laser polarization direction for the field strengths above Eat.
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Figure 2.6: Center-of-mass motion in the plane of the laser polarization and propagation
direction of a bound electron (in the ionic core charge of Z = 30) for different ratios of
the laser field strengths E to the atomic field strength Eat.
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Chapter 2: Fundamental aspects of the dynamics of laser-matter interaction

2.3 Properties of multiply charged ions

Since the whole universe exists of multiply charged ionized matter, it is very interesting

to look at the fundamental properties of multiply charged ions and their use in atomic

physics. Today, powerful devices are available to produce any ionization stage of naturally

occurring atoms [37].

A broad range of research with highly charged ions incorporates the radiation from highly

ionized matter relevant in X-ray astrophysics [38]; for the investigation of the critical field

strength for vacuum to become instable through a phase transition from a neutral state to

a charge state by spontaneous generation of positron-electron pairs [39]; ion lithography,

where the focused ion beam can produce structures of 8 nm size [40]; quantum computing

by trapped ions [41]; as a diagnostic tool for conditions in fusion plasma and to efficiently

treat tumors in the human body. The latter is possible by precisely directing the ion

beam at the tumor target and to adjust the beam so that the beam energy is completely

deposited inside the tumor target with relatively little damage to the healthy surrounding

tissue.

In the following some of the important properties of multiply charged hydrogen-like ions

will be specified. The Bohr radius of the groundstate wavefunction of an multiply charged

ion is inversely proportional to the ionic core charge Z (R ∼ 1/Z). In case of ionic

core charges above Z ∼ 50 the electron wavefunction has an overlap with the nucleus

wavefunction and therefore the spatial density distribution is proportional to Z. One

essential outcome is parity violation. The short-range interaction between the electron

and the nucleus is then determined by the exchange of massive Z vector bosons. These

kind of processes are not regarded here.

The potential energy of multiply charged ions can be distinguished in ionization energy

and neutralization energy. To clarify the difference between them, the ionization energy

is the energy which is necessary to remove one electron from the atom to produce the

charge of Q+1 out of the charge Q. The potential energy is given by U(Z) ∼ Z/R = Z2.

The ionization energy is an important quantity for the production of highly charged ions,

where one electron after the other is removed. Under the term neutralization energy we
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2.3. Properties of multiply charged ions

understand the energy which is set free when all electrons are removed from the atom.

This quantity is usually relevant for the influence of ions on surfaces.

Another important form of energy is the photon energy. It is defined as the energy between

two different eigenenergies and can be used to determine the wavelength of the emitted

light of such a transition. However, the main contribution for the transition between

different neighboring states derives from the Coulomb potential and leads to a scaling of

the energy by Z2. Transitions considering the fine structure of the energy levels scales like

Z4. This can be understood semiclassically, arising from the magnetic dipole interaction

of the electron spin with the magnetic field caused by the electron motion through the

electric field of the nucleus. The associated magnetic field is proportional to the vector

product of the nuclear Coulomb field and the electron’s velocity. One step further in the

interaction contribution is the hyperfine structure, where the energy levels scales like Z3.

Here, the origin of the shift arises from the interaction of the electron magnetic moment

with the magnetic moment of the nucleus. These scaling laws shows the range of energy

splitting of the associated electronic structure of the related ionic charges, measurable

with high-resolved laser spectroscopy.
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Chapter 3

Model system and numerical
approach

3.1 General framework

The interaction of the laser field with matter covers the study of individual atoms up to

complex systems like plasma. To gain a deeper insight in the relativistic laser-plasma

field, investigations of collective multi-particle dynamics [42], fission, fusion and nuclear

processes [43] have been carried out.

In this thesis two main fields of light-matter interaction are dealt with, namely the ioniza-

tion dynamics (chapter 4) and the bound dynamics (chapter 5) of the “active” electron

in multiply charged hydrogen-like ions. The atomic field strength of multiply charged

hydrogen-like ions scales with the ionic core charge of Z3. In case of a hydrogen atom

(Z = 1) the atomic field strength for an electron on the first Bohr orbit is 1 a.u. =

5.14 × 109 V/cm. The bound dynamics regime is then defined by a laser field strength

well below the atomic field strength of the given ion, whereas in the ionization dynamics

regime the laser field strength is in the order of the atomic field strength or well above.

In principle, multi-electron charged ions can be calculated as well, if the single-active

electron approximation is applied. Hence, it is assumed that the response of the atom

is entirely dominated by the dynamics of a single electron in the multiply charged ion

system.

Nowadays, the preparation of multiply charged ions of any specific charge Z can be
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Chapter 3: Model system and numerical approach

accomplished with both high density and purity. One possibility of generating them is

by sending the related atom through thin foils as discussed in [44]. Another method is

due to the help of lasers considered in e.g. [45] through which most of the outer electrons

are stripped away by the rising edge of the pulse. This kind of interaction produces

multiply charged ions along with very energetic electrons [46]. The absolute charge state

achievable is limited to a charge of about Z = 40 because of the broad distribution of the

different multiply charged ions in the time of flight spectrum. Another problem are the

not yet available ultra-strong laser intensities for the actual production of hydrogen-like

ions above Z = 40. In the following, we are going to investigate the numerical generation

of the eigenenergies and associated wavefunctions of multiply charged hydrogen-like ions.

3.2 The Dirac atom in 2D

Before looking at the dynamics of the electron wavefunction in different situations, the

generation of the wavefunction with the associated energy eigenstates will be described in

the following chapter, in the case of two dimensions. To reduce the number of dimensions

from three to effectively two (the third dimension being a constant) is necessary in order

to numerically handle the atomic system with the help of the Dirac equation. Reasons

for this will be given in the proceeding sections.

3.2.1 The soft-core potential

In three dimensions the interaction of the electron with the nucleus is modeled by a pure

Coulomb potential, whose energy eigenstates are calculated via

En = c2



1 +

(

Zα

n− (j + 1/2) +
√

(j + 1/2)2 − (Zα)2

)2




−1/2

. (3.1)

Here Z denotes the charge of the atom, c is the speed of light, α = 1/c (in atomic units)

is the fine structure constant, n refers to the main quantum and j is the quantum number

of the total angular momentum in three dimensions. In general, there are only a few

potentials that have an analytical solution.
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3.2. The Dirac atom in 2D

For the numerical solution of the Dirac equation in two dimensions a potential is needed,

which can adequately produce the proper bound energy eigenstates comparable to the

three-dimensional case. This condition is satisfied by a soft-core potential, which is applied

for the generation of wavefunctions and their associated bound states [47]. Although this

potential has no analytical solution, it is a rather good approximation of the Coulomb

potential in terms of the energy eigenstates and the associated wavefunctions, especially

for small soft-core parameters a. The soft-core potential U(x, z) in two dimensions is

described by:

U(x, z) = − Z√
x2 + z2 + a

. (3.2)

The soft-core parameter a models the missing third dimension of the atomic potential

and at the same time avoids the singularity of the Coulomb potential at its origin. In the

definition of the soft-core potential, one has two degrees of freedom, viz. the charge Z

of the atomic core and the soft-core parameter a. The charge Z has been fixed and the

soft-core parameter a varied to match the ground state energy of the equivalent three-

dimensional problem with the ground state energy of the soft-core potential Eq. (3.2).

Having found the correct soft-core parameter of the energy ground state (see table in

section 3.2.2), the higher excited states are then modified accordingly, as there exists

no universal soft-core parameter that matches for all the energy eigenstates of the spec-

trum. The soft-core parameter has to be changed until the ground state energy of the

three-dimensional analytically given solution Eq. (3.1) matches with the two-dimensional

Coulomb potential calculation. For a fixed charge Z the energy eigenstates change to

higher values with increasing values of a, as can be seen in Fig. 3.1. In table 3.1 some of

the soft-core parameters for different charges Z are listed. The generation of the energy

eigenstates of the soft-core potential is done via the spectral method as will be explained

in the following sections.

3.2.2 The generation of energy eigenstates

The analytical calculation of the wavefunction of the Dirac equation given by a two-

dimensional Coulomb potential goes back to the work of G. Mocken [48], who calculated
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Figure 3.1: Depicted is a typical energy spectrum for the charge Z = 10 generated via
the spectral method. For a fixed charge Z the energies are shifted towards lower values
for smaller soft-core parameters a.

it for the general case of a Dirac spinor Ψ in three dimensions. Thereby, one dimension

was treated as a constant, because of the chosen scalar potential which is invariant un-

der translation in a particular direction. It remains an effective two-dimensional Dirac

equation:

i
∂

∂t
Ψ(x, z, t) =

{
cααα · p̃ + c2β̃ + U(x, z)

}
Ψ(x, z, t) . (3.3)

The four component Dirac spinor wavefunction is represented by Ψ(x, z, t) with ααα, β̃

denoting the usual Dirac matrices, whereas the electron kinetic momentum is given by

p̃ = p + 1
c
A(z, t) with the canonical momentum p and the vector potential A(z, t). The

Table 3.1: Listed are the soft-core parameters a and the numerical properties, that are
essential for the calculation of the wavefunction for a given ionic core of charge Z. The
size of the numerical grid decreases because the electron orbit decreases as it is inversely
proportional to Z.

charge Z a grid size in a.u. spatial resolution
10 0.00625 8×8 256×256
30 0.00060 2×2 256×256
47 0.00016 0.5×0.5 256×256
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3.2. The Dirac atom in 2D

numerical solution of this equation will be given in section 3.3.2. Other works [49, 50]

calculated the Dirac wavefunction in two dimensions with complex spinors 1 Ψ .

The numerical calculation of the energy eigenstates and their corresponding wavefunctions

is done via the spectral method, which is described in detail in the next section.

3.2.3 Spectral method

There are many methods known to numerically calculate the Dirac energy eigenstates in

a known potential. Examples of these are inverse iteration [51], variation [52] or Monte-

Carlo [53] techniques. For our calculations we have chosen the spectral method [54], based

on the split-operator technique (section 3.3.2). From the numerical point of view, the

generation of the energy spectrum in the Dirac case takes considerably longer compared

to the Schrödinger case. The main reason for this is the energy-time uncertainty. In

the case of the Dirac equation it means that the necessary time steps are considerably

small, because the large rest mass of the electron has to be taken into account (∆t <

1/E). Additionally, for the Schrödinger equation, a faster converging algorithm for the

generation of the energy spectrum exists, namely the method of imaginary time. Here the

propagation time t is substituted by τ=it and the new propagation time τ is used for the

repeated application of the stationary Hamiltonian. The new wavefunction converges then

quickly to the state of lowest energy. Unfortunately, this method cannot be applied in

the case of the Dirac equation as the lowest-energy state would converge into the negative

continuum instead of into the lowest-energetic bound state in the positive continuum.

Therefore, the proper soft-core parameter can only be determined by applying the spectral

method brute force.

The procedure of generating the energy eigenstates of our two-dimensional model system

with the time-independent Dirac Hamiltonian H

HΨ = [cααα · p + β̃c2 + U(x, z)]Ψ = EΨ (3.4)

consist of the following steps. Firstly, an initial Dirac spinor test wavefunction is chosen to

be numerically propagated in time and space, accomplished via the split operator method

1Calculation for the three-dimensional Coulomb problem is given in [55, 56]
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(section 3.3.2). The energy spectrum is obtained by the Fourier transformation of the

autocorrelation function P (t) of the arbitrary test wavefunction for fixed Z and a. The

autocorrelation function is generally defined by the scalar product of the wavefunction at

different points in time

P (t) = 〈Ψ(tM)|Ψ(t)〉 . (3.5)

Here |Ψ(tM)〉 defines the wavefunction at the initial time tM , which has to be implemented

into the auto-correlation calculation, under consideration of eventually special symmetry

of the to be generated wavefunction. To verify that the peaks of the energy spectrum are

the eigenvalues of the stationary Dirac equation we expand the wavefunction Ψ(t) into the

bound eigenstates Ψ(t) =
∑

n,j ϕn,jcn,je
−i ~σ3tEn , quantized along the σ3 axis, where ϕn,j

are the functions of the bound energy states, cn,j are the expansion coefficients and En

the degenerate energies. Insertion of this expansion into the scalar product of Eq. (3.5)

results in

P (t) =
∑

n,j

c⋆n,jcn,je
−i ~σ3(t−tM )En (3.6)

and applying upon it a Fourier transformation gives the unknown energy eigenstates of the

implemented arbitrary test wavefunction. The heights of the energy peaks are defined by

the absolute value of the energy eigenfunctions of the implemented wavefunction, for more

details see [54]. The so generated energy spectrum contains the energies of the related soft-

core potential U(x, z) for a fixed ionic charge Z and a soft-core parameter a. Adjusting

the energy of the two-dimensional soft-core potential to the three-dimensional Coulomb

potential (Eq. (3.1)) by modifying the parameters Z, a the associated wavefunction or a

nonlinear combination of the degenerated states with the desired energy can be generated.

The wavefunctions associated to the separated energy peaks are then generated in a

second loop by again propagating the wavefunction temporally and spatially with the

before defined energy value. Notice that the parameters Z, a can only be adjusted to one

energy peak, all other peaks are shifted accordingly. For our purpose the energy of the

ground state wavefunction was chosen to be equal with the three-dimensional Coulomb

energy.

For practical purposes of the calculation of the autocorrelation function P (t) the time
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3.2. The Dirac atom in 2D

interval [t0, t1] is multiplied by a smoothing function before applying the Fourier trans-

formation. In our case a Hann function

H(t) =

{

1 − cos
(

2π(t−tl)
tr−tl

)

, t ∈ [tl, tr]

0 , else

is used, whereas tr = t1−t0 and tl = −(t1−t0). The advantage is that most of the possible

oscillations, resulting from a Fourier transformation of a otherwise rectangle function, in

the spectrum is filtered out.

Other possible oscillations can arise from a too small chosen grid size used for the gener-

ation of the spectrum, which can be easily suppressed by taking a larger grid. Another

crucial factor for the generation of the energy spectrum is the propagation time t. In prin-

ciple, the propagation time should be infinite in order to get the most accurate position of

the energy eigenstates. During our calculation a propagation time of 50 a.u. turned out

to be a proper agreement between computation time and accurate position of the energy

peaks. In Fig. 3.2 such a typical energy spectrum for the spin-up component of the Dirac

spinor is depicted.

The energies of the bound states calculated by the two-dimensional Dirac equation for a

pure Coulomb potential depend on the radial quantum number nr and the absolute value

of the σ3-component of the total angular momentum denoted by the quantum number

|λ| . That means the states with the same nr, |λ| are energetically degenerated. This

condition changes in the case of the soft-core potential. The reason is that the symmetry

of the Runge-Lenz vector R is broken

R = p× L− Z
r

r
. (3.7)

The Runge-Lenz vector is a constant of motion in the case of a pure Coulomb potential

V (r) = −Z/r. The break of symmetry of this vector due to the soft-core potential leads to

a non-degeneracy of the energy eigenstates with the same radial quantum number nr and

absolute value of the σ3-component of the total angular momentum quantum number |λ|.
The comparison of the energy spectrum of the spin-up and spin-down component of the

wavefunction shows that the change of the sign of λ and the spin component lead to the

same energy values. Before coming to the selection rules in our two-dimensional system
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Figure 3.2: Fourier-transformed spectrum of the autocorrelation function P (t) =
〈Ψ(t)|Ψ(0)〉 for the spin-up component for the different angul ar momentum quantum
numbers λ = ±1/2,±3/2. The peaks in this spectrum represent the eigenenergy values
in the soft-core potential. The chosen parameters are Z = 30 and a = 0.006.

the σ3-component of the total angular momentum and another good quantum number,

namely, the parity, will be discussed below.

3.2.4 σ3 component of the total angular momentum

The eigenvectors of the total angular momentum operator around the σ3-axis (conven-

tional Pauli spin matrix), for the spin-up and spin-down comprise (in Clifford algebra

notation 2):

Ψ↑
λ = e−i3ϕ/2 (u0(r) + u2(r) ~σ2) e

i3λϕ (3.8)

Ψ↓
λ = e−i3ϕ/2 (v0(r) + v2(r) ~σ2) i2e

i3λϕ , (3.9)

2see also appendix (B)
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Figure 3.3: Same as figure 3.2, but for the spin-down component of the wavefunction.
The position of the energy states are interchanged equivalently to the change of the sign
of λ.

or in the standard notation :

Ψ↑
λ =







u0(r)e
i(λ− 1

2
)ϕ

0
0

u2(r)ie
i(λ+ 1

2
)ϕ







Ψ↓
λ =







0

−v0(r)e
−i(λ+ 1

2
)ϕ

v2(r)ie
i(λ− 1

2
)ϕ

0







.

Here, u0(r) and u2(r) are the solutions of the radial part of the Dirac equation similar to

the known textbook example of the hydrogen atom. In our case the system of equations

reads:

c
∂u0

∂r
− cλ

r
u0 + (E +

Z

r
+ c2)u2 = 0 (3.10)

c
∂u2

∂r
+
cλ

r
u2 − (E +

Z

r
− c2)u0 = 0 . (3.11)

The same is true for the spin-down solutions v0(r), v2(r). The azimuthal angle ϕ together

with the radius r defines the coordinate system of our two-dimensional problem. After the

generation of the wavefunctions, we characterize those by determining their angular mo-

mentum and the parity. For the Coulomb potential in three dimensions the σ3-component
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is a good quantum number. In two dimensions the σ3-component (out of the plane of the

coordinate system) is still a good quantum number. To verify, whether we get the same

eigenvalue λ of the analytical solvable two-dimensional Coulomb potential [48] in case of

the soft-core parameter, the σ3 component of the total angular momentum is calculated

using the known two-dimensional eigenvectors with the two spin orientations up and down

Ψ↑
λ =







u0(r)e
i(λ− 1

2
)ϕ

0
0

u2(r)ie
i(λ+ 1

2
)ϕ







Ψ↓
λ =







0

−v0(r)e
−i(λ+ 1

2
)ϕ

v2(r)ie
i(λ− 1

2
)ϕ

0







.

The application of the angular momentum operator Ĵ3 in σ3-direction can be written in

the standard notation as

(

−i ∂
∂ϕ

+
1

2

(
σ3 0
0 σ3

))

Ψ↑↓
λ = λΨ↑↓

λ . (3.12)

In analogy to the expectation value of the angular momentum operator Ĵ3, we can reapply

Ĵ3 to calculate the expectation value of Ĵ2
3

−
(
∂2

∂ϕ2
+ i3

∂

∂ϕ
− 1

4

)

Ψ↑↓
λ = λ2Ψ↑↓

λ (3.13)

The quantum number λ can be calculated from the norm of

‖(Ĵ3 − λ)Ψ↑↓
λ ‖ = 0 λ ∈ Z 1

2
(3.14)

for both the spin-up and spin-down component of the wavefunction. Moreover, Eq. (3.14)

also provides a test of the expectation value of the angular momentum operator Ĵ3 by

setting λ = 0. We show that the eigenvalues of Ĵ3 and the expectation of Eq. (3.14) of

our numerically applied soft-core potential agree with the known values of the Coulomb

case. This result will be later used to define the selection rules in the case of the soft-core

potential in two dimensions.

3.2.5 Parity

The parity operator P̂ is a further quantity, which can be used for the identification of

the bound states. The calculation of the parity of the wavefunction will be done using
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3.2. The Dirac atom in 2D

the Clifford algebra. In this algebra the parity operator P̂ is given by:

P̂Ψ↑↓
λ (r, t) = γ0Ψ

↑↓
λ (−r, t)γ0 , (3.15)

whereas the substitution from r → −x in polar coordinates is written as ϕ→ ϕ+π. The

application of the parity operator on the particular wavefunction (Ψ↑,Ψ↓) results in the

following parities of the wavefunctions:

P̂Ψ↑
λ = γ0e

−i3
ϕ+π

2 (u0(r) + u2(r) ~σ2)e
i3λ(ϕ+π)γ0

= γ2
0e

−i3
ϕ
2 (−i3)(u0(r) − u2(r) ~σ2)e

i3λϕei3λπ

= e−i3
ϕ
2 (u0(r) + u2(r) ~σ2)e

i3λϕei3(λ− 1
2
)π

= (−1)λ− 1
2 Ψ↑

λ (3.16)

P̂Ψ↓
λ = γ0e

−i3
ϕ+π

2 (v0(r) + v2(r) ~σ2)i2e
i3λ(ϕ+π)γ0

= γ2
0e

−i3
ϕ
2 (−i3)(v0(r) − v2(r) ~σ2)i2e

i3λϕei3λπ

= e−i3
ϕ
2 (v0(r) + v2(r) ~σ2)i2e

i3λϕei3(λ+ 1
2
)π

= (−1)λ+ 1
2 Ψ↓

λ . (3.17)

The following relations of the Clifford algebra were used, applying the parity operator on

the spinor wavefunction 3:

ik = i ~σk

[ ~σk, ~σl]+ = 0

~σk
2 = 1 .

The states Ψ↑
λ, Ψ↑

−λ are non-degenerate in terms of energy and have different parities,

which can be seen by the following rules:

P̂Ψ↑
−λ = (−1)−λ− 1

2 Ψ↑
−λ (3.18)

and for the spin-down component of the wavefunction

P̂Ψ↓
−λ = (−1)−λ+ 1

2 Ψ↓
−λ . (3.19)

3A brief excursion into the Clifford algebra is given in the appendix B.
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A linear combination of Ψ↑
λ and Ψ↑

−λ does not have a well defined parity, as it is the case

for the Coulomb potential in three dimensions, and moreover is not energetically viable

anymore. The only degenerated states are the pairs with (λ = −1/2 ↔ λ = 3/2) and

(λ = −3/2 ↔ λ = 5/2) for the spin-up component of the wavefunction as seen from

Fig. (3.2). The same is true for the spin-down component of the wavefunction by simply

multiplying λ by -1. One more difference to the three-dimensional density distribution

is the absence of any bulb-like structure for the p-like states in two dimensions. In the

Schrödinger case a nonlinear combination of Ψml
+Ψm

−l
is conserved. The reason for that,

is the dependence of the change of the parity on the angular momentum l rather then on

the magnetic quantum number ml. Therefore, any nonlinear combination of the ml does

not change the parity in the Schrödinger case. In order to guarantee a conservation of

the parity in the two-dimensional Dirac case only the following combinations of states Ψ↑
λ

with Ψ↓
−λ or Ψ↑

−λ with Ψ↓
λ are possible. This results in a trivial ϕ-independent constant

for the density distribution. All possible combinations show no specific bulb-like structure

for the density of p-like states or states with a higher angular momentum as known from

the Schrödinger case.

3.2.6 Selection rules

As shown in the previous section, our two-dimensional soft-core potential has two good

quantum numbers, namely the σ3-component of the total angular momentum and the

parity. Together with the radial quantum number nr, we can now characterize the two-

dimensional states and define their selection rules. As can be seen in table 3.2, there are

two main differences compared to the known notation in the Dirac case for the Coulomb

potential. One is the degeneracy of the “p-states” (for all P1/2, P3/2, ...) with different

quantum number λ. And the other is the difference in energy of the generated states,

which originates from the reduced dimension of the system. The reason for the first one

is the used soft-core potential, discussed in detail in section 3.2.3. The radial quantum

number can be read off from the probability density distribution of the wavefunction.

Pictures of these distributions are given in Fig. 3.4 and an exemplary notation of the

two-dimensional states is presented in table 3.2. The energy states of the selected ionic

42



3.3. The 2D Dirac atom in a laser field

nr n=nr+1 λ parity notation energy in [a.u.]
0 1 1/2 1 |1S1/2〉 18323
1 2 -1/2 -1 |2P1/2〉 18607
1 2 3/2 1 |2P3/2〉 18607
1 2 1/2 1 |2S1/2〉 18662
2 3 5/2 1 |3S5/2〉 18705
2 3 -1/2 -1 |3P1/2〉 18713
2 3 3/2 1 |3P3/2〉 18713
2 3 1/2 1 |3S1/2〉 18727

Table 3.2: Notation of the relativistic quantum numbers in hydrogen-like Zn29+ in two
dimensions for the spin-up component. The radial quantum number is denoted by nr and
the total angular momentum by λ.

core charge Z can be identified from the possible ring structures of the probability density

distribution of Fig. 3.4. In (a) there is no additional ring structure (ground state), resulting

in a radial quantum number of nr = 0. Looking at the probability density distribution

in (b), (c) and (d) additional rings appear and the distribution is expanding with an

increasing number of rings, representing higher excited states.

3.3 The 2D Dirac atom in a laser field

After having generated the wavefunctions of the bound states of our system of interest

we can now look at the dynamics of them by applying an external laser field. In the

following section the used laser field will be defined and the split-operator method for the

numerical solution of the Dirac equation will be presented.

3.3.1 The laser pulse

We describe the laser field as a plane wave modulated by an envelope function f(η). The

electric field component reads

E(η) = E0f(η)cos(η)ex , (3.20)

where η = ωt− kr with the laser frequency ω and the magnetic field is given by:

B(η) = E0f(η)cos(η)ey . (3.21)
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(a) (b)

(c) (d)

Figure 3.4: Plotted is the probability density distribution for an ionic core charge of
Z = 30 on a logarithmic color scale of the states (a) |1S1/2〉, (nr = 0), (b) |2S1/2〉 (nr = 1),
(c) |3S1/2〉 (nr = 2), (d) |4S1/2〉 (nr = 3). Note that the grid size is increasing with higher
values of nr.
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3.3. The 2D Dirac atom in a laser field

The spatial dependency of the vector potential A(η) is responsible for the laser magnetic

field effects on the electron wavepacket. The elimination of this spatial dependency allows

us to carry out calculations in the dipole approximation and to compare them to the

case when the full spatial dependency of the vector potential is taken into account (see

chapter 5). The corresponding relation between the vector potential A(η), the electric field

E(η) and the magnetic field B(η) is given by: B(η) = ∇×A(η), E(η) = −1
c

∂A(η)
∂t

−∇U ,

with U to be the stationary potential. The envelope function of the nonlinear polarized

light is chosen to be sin2- shaped. In detail, the ascent and decline are sin2-shaped with

a constant part in between:

f(η) =







0 , −∞ ≤ η ≤ 0
sin2( η

4Non
) , 0 ≤ η ≤ 2πNon

1 , 2πNon ≤ η ≤ 2π(Non +Nconst)

cos2
(

η−2π(Non+Nconst)
4Noff

)

, 2π(Non +Nconst) ≤ η ≤ 2π(Non +Nconst +Noff)

0 , 2π(Non +Nconst +Noff ) ≤ η ≤ ∞

The chosen notation of Non, Nconst, Noff stands for the turn-on phase, the constant phase

and the turn-off phase, respectively. This additional envelope function renders the pulse

more realistic and compensates the unphysical effects resulting from a sharp turn-on/-off

of the pulse.

Experimentally, the spectrum of a mode-coupled laser pulse consists of many lines; resem-

bling a comb. The distance between two neighboring lines is constant and equivalent to

the pulse repetition frequency of the laser. This so-called frequency comb has two degrees

of freedom, the offset frequency of the comb and the pulse repetition rate. A change of the

position of the offset frequency leads in the time domain to a variation of the phase ∆ϕ of

the oscillating electric field from pulse to pulse. If one can control both the repetition rate

and the phase of the laser pulse then the exact position of the comb lines are known and

one has a guide in the frequency domain to precisely measure the optical frequencies [57].

3.3.2 The Split-Operator technique

The split-operator method was firstly introduced by [54] to solve the time-independent

Schrödinger equation for the eigenenergies and eigenstates of a general potential. This
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Chapter 3: Model system and numerical approach

method is used both, for the generation of eigenenergies and eigenstates of the time-

independent Dirac Hamiltonian and for the calculation of the time-dependent dynamics

of the Dirac wavefunction. Having the bound states of our system, we can start with

the calculation of the dynamics of our initially prepared wave packet of the bound state.

The dynamics of the system is given by the time evolution of our initial wave packet.

The time propagation of the wavefunction is numerically realized by the relativistic split-

operator method. Therefore we split the Dirac equation in a derivative-dependent part

and a position-dependent part

i
∂

∂t
Ψ(r, t) =

[

cαi ∂

∂xi
+ βc2 +

(
A0(r) + αiAi(r, t)

)
]

Ψ(r, t) (3.22)

= H~∂ + Hr , (3.23)

whereas A0(r) is the stationary potential ϕ(r) and Ai(r) are the components of the vector

potential A(r). For a short time interval, where the potential can be taken as a constant,

the time evolution of the wave packet can be written as:

Ψt0+∆t = e−i∆tHΨt0 , (3.24)

where, H~∂ is the derivative part of the entire Hamiltonian H=H~∂ +Hr and Hr the position-

dependent part, respectively. That means the time integration of H in the exponent is

substituted by ∆tH. The time propagation with the Split-Operator method reads then

as

ψ(t0+∆t)(r) ≈ exp

(

−i∆t
2
H~∂

)

exp
(

−i∆tH(t0+∆t
2

,r)

)

exp

(

−i∆t
2
H~∂

)

ψt0(r) +O(∆t3) . (3.25)

Now the Eq. (3.25) can be iterated as follows Ψt = Ψt0+N∆t, where N counts the number

of time steps, rendering the wavefunction computable at any time. The error made

by this time propagation algorithm is of the order of ∆t3. The derivative part of the

time propagator will be handled via a Fast Fourier transformation (FFT) between the

momentum and position space. In the case of the Schrödinger equation, upon which one

uses the same technique, the exponentials contain in momentum space a scalar operator
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3.3. The 2D Dirac atom in a laser field

in contrast to the Dirac equation, where they contain matrices. This problem can be

solved by finding a unitary matrix S that diagonalizes them.

There are several numerical difficulties, which have to be considered and will be briefly

mentioned in the following. First of all, the spatial resolution of the wavefunction. It has

to be chosen in such a way that the related momentum is not going to be large enough

to hit the boundary in momentum space. A simple estimation can be obtained by the

analytical results for a free electron [58].

In momentum space:

ppol =
E0

ω
pprop =

p2
pol

2c
. (3.26)

In position space:

∆xpol =
2E0

ω2
=

2ppol

ω
∆xprop =

πE2
0

2cω3
=
πp2

pol

2cω
, (3.27)

whereby ∆ denotes the change per laser cycle. These relations can be used to mark an

upper limit for the case of bound states. There exist some numerical tricks, which avoid the

reflection of the electron distribution on the grid boundary. These methods [48] are based

on dynamically adjusting the boundary position by a in both, position and momentum

space growing and moving numerical grid, to avoid that the boundary is approached by

the wave packet at all [48]. In addition to the spatial resolution one needs to take care

of the temporal resolution. In the Dirac case, this is mainly restricted by the large rest

mass of the electron, which has to be taken into account. Hence, the temporal resolution

is defined by ∆t ≤ 1/E where E denotes the total energy including the rest mass c2 of the

electron, which makes it more demanding in terms of computing time compared to the

calculation with the Schrödinger equation. A further point for the numerical calculation

is to avoid the destructive reflection of the wave packet at the border of the grid. This is

done by applying a function at the edge of the grid, which absorbs the part of the wave

function that hits the border of the grid. Another ansatz is to propagate the analytically

given free Volkov solution [59] at a certain distance from the ion potential, instead of

using the wavefunction at the edges of the grid. With this, the approximation neglects
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the atomic potential, but the laser field potential is fully included. This is an appropriate

ansatz, for ionization problems with huge intensities, where the electron is driven far away

from the nucleus.

3.4 Observables

The quantum mechanical wavefunction contains all the information of the system. The

manipulation of it can be used to extract necessary information. During the propagation

of the wavefunction by the split-operator method, the observable quantities, which de-

scribe the electron dynamics of the applied potential, can be calculated. To illustrate the

dynamics of the wave packet, the probability density ρ(x, z, t) = |Ψ(x, z, t)|2 is computed

for every time step of the wavefunction Ψ(x, z, t). This allows us to visualize particularly

the ionization dynamics of the electron. Moreover, the absorbing boundary conditions

of the grid can be used to define a measure of the ionization. Those parts of the wave-

function that hit the border of the grid are absorbed due to the boundary condition. In

this sense, the absorption of the wave packet can be used to qualitatively measure the

ionization fraction Γ(t) by Γ(t) = 1 − e−γt, where γ is the ionization rate.

Furthermore the center-of-mass motion of the electronic wavefunction is an important

observable and comparable with the motion of a classical particle. The expection values

of the polarization (x-direction):

〈x〉 =

∫ zmax

zmin

dz

∫ xmax

xmin

dx|Ψ(x, z, t)|2x (3.28)

and the propagation (z-direction):

〈z〉 =

∫ xmax

xmin

dx

∫ zmax

zmin

dz|Ψ(x, z, t)|2z (3.29)

direction are additionally calculated during the propagation of the wavefunction to visu-

alize the center-of-mass motion of the electron. A matter of interest is also the radiation

spectrum of a moving particle (electron) characterized by the radiated energy d2W at

a frequency interval dω in the solid angle dΩ. In general, it can be calculated by the

classical non-relativistic formula [60]

d2W

dωdΩ
=

1

2πc3
|a⊥(ω)|2 , (3.30)
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where a⊥ is the acceleration component perpendicular to the observation direction. In

the quantum mechanical calculation of the radiation spectrum the above formula (3.30)

is modified by replacing the classical acceleration component by the expectation value

of the acceleration. In the relativistic case this simple modification can not be applied

as there exist principle difficulties to define an appropriate velocity in the Dirac theory,

see discussion in [61]. Another ansatz is the calculation of the emission spectrum from

the charge current, which is done here. For more details on this calculation the reader is

referred to the extensive discussion in the work of G. Mocken [48].

The main interest lies in the next two observables. The first one is probability of the

electron to be in a certain stationary state |〈φi|Φ(t)〉|2 , where Φ(t) denotes the actual

wavefunction. This observable is used to characterize the population dynamics of the

bound states. In use of that definition the amount of population in the continuum state

can be additionally evaluated. The ionization probability is given by:

P (t) = 1 −
N∑

i=1

|〈φi|Φ(t)〉|2 , (3.31)

where N stands for the number of bound states. From this the ionization fraction can

be determined as the ionization probability at the end of the pulse, which is qualitatively

used to compare with experimental results. It is rather more efficient to calculate the

total occupancy of the bound state population and substract it from one, as to calculate

the overlap of the actual wavefunction with the continuum states, which are much larger

in number.

Another observable of interest is the calculation of the transition dipole moments of

particular interest for the bound dynamics. The one-photon transition dipole matrix

element can be calculated in x-direction by the following expression:

d = 〈Ψ1|x|Ψ2〉 , (3.32)

where x denotes the dipole moment direction and Ψ1 and Ψ2 are the bound state wavefunc-

tions of the associated transitions given for some specific transitions in table 3.3. Higher

multipole moments can not be directly calculated like carried out in Eq. (3.32). The
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Chapter 3: Model system and numerical approach

Table 3.3: Table of some specific transition dipole moment matrix elements for a
one-photon transition in Zn29+. Here ∆ω gives the transition frequency to the ground
state |1S1/2〉.

transition dipole moment ∆ ω in [a.u.]
E1 (|1S1/2〉 ↔ |2P1/2〉) 2.47 × 10−2 285
M1 (|1S1/2〉 ↔ |2S1/2〉) 1.33 × 10−10 339
E1 (|2S1/2〉 ↔ |2P1/2〉) 5.99 × 10−2 54
M1 (|2S1/2〉 ↔ |3S1/2〉) 9.22 × 10−10 65

non-trivial calculation of multiphoton transition matrix elements is shown in chapter 5

using Rabi oscillations.

3.5 Classical relativistic model

An alternative approach to describe the interaction of atoms with strong laser fields is

the solution of the classical relativistic motion of an electron in the combined field of

an ultra-strong laser and the Coulomb potential of a hydrogen-like multiply charged ion.

This nonlinear interaction is represented by the system of eqs. (3.33), where only the

energy of the initial state is quantum mechanically given. As no single classical state of

the atom is spherical symmetric. Our classical calculation is mostly applied in the regime

of low laser frequencies and strong fields, where it is well-known that quantum mechanical

and classical simulations are in good agreement. This has been additionally verified by

our Dirac calculation on the observable of interest, the ionization fraction. Moreover, we

verified that in the limit of large number of trajectories both calculations of the ionization

fraction agree considerably, apart from pure quantum effects like the spin which are not

included in the classical calculation.

3.5.1 Monte-Carlo simulation

In a real atom the electron is quantum mechanically described by a wavefunction, while

in phase space an ensemble of classical particles is used by averaging over various initial

electronic positions r in space and momentum p. In the pioneering work of Percival
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3.5. Classical relativistic model

and Leopold [62] the stationary ground state of the hydrogen atom was modeled by a

microcanonical ensemble in phase space. The full three-dimensional extension of this

problem for the relativistic equations of motion with focus on the investigation of the

ionization time in the case of the hydrogen atom can be found in [63]. Here, the calculation

of the ionization fraction with the relativistic ground state energy Eg is carried out by

following this procedure in the case of arbitrary ionic charges Z. In the phase space model

the equation of motion is solved separately for each member of the ensemble with randomly

chosen initial conditions under the constraint of a fixed atomic ground state energy. The

stationary ground state is modeled by a microcanonical distribution in order to simulate

the statistical property of the electron wavefunction. This distribution function is given

in phase space by

ρ(r,p) ∝ δ(E − E(r,p))

with the relativistic energy E(r,p) = c2
√

1 + |p|2/c2−V (r) with an electrostatic potential

V(r). A member of the microcanonical ensemble is generated by a set of uniformly

distributed parameters {|l|2, t} via [63], where l is the angular momentum and t the

time from which the position r and momentum p as initial conditions can be generated

and are implemented in Eq. (3.33). The classical relativistic equations of motions in the

6-dimensional phase space are given by:

ṙ =
1

γ
p, ṗ = −

(

E(r, t) +
1

cγ
p× B(r, t)

)

, (3.33)

where E(r, t) = −1
c

∂A(r,t)
∂t

− ∇ϕ(r), ϕ(r) = Z/r, B(r, t) = ∇ × A(r, t) and A(r, t) =

A0 cos(ωt − ω
c
z)ex with time t, laser frequency ω and spatial components x, z in polar-

ization and propagation direction, respectively, with γ =
√

1 + |p|2/c2. They can be

numerically solved by implicit iterative methods of ordinary differential equations. We

use here the well-known Runge-Kutta method of 4th rank with adaptive step size regu-

lation [64]. The initial state is given by the fixed energy Eg = c2
√

1 − (Zα)2 and five

additional parameters, which define the location of the electron orbit in space and the

position of the electron on it. The polar coordinates R, ϕ via [63] determine the position

of the electron on the orbit (solution of the relativistic equation of motion of an elec-

tron in the Coulomb field) and the three Euler angles ψ, ϕ, θ give the orientation of the
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electron orbit in space . From these five classical quantities and the fixed energy Eg the

initial conditions of the electron’s position and momentum can be determined by a series

of vector transformations together with an iterative solution of the Kepler equation. A

summary of the general steps of the phase space method solving the relativistic classical

equation of motion is given in the following:

• Step 1: Determine the energy Eg of the desired state for which the trajectories will

be calculated Eg = c2
√

1 − (Zα)2.

• Step 2: Prepare the microcanonical ensemble where the angular momentum l and

the time t are uniformly distributed in a certain range of parameters.

1. 0 < Eg < c2

2. 1 < c2l2 < 1/W

3. 0 < t < 2π
c3W 3/2

with W = 1− Eg

c4
. The angular momentum and the time are randomly chosen within

the above mentioned interval.

• Step 3: Numerically solve the relativistic Kepler problem to get the eccentricity u.

The radius R and angle ϕ of the electron orbit can be expressed as a function of u.

• Step 4: Calculate the initial conditions of the position r and the momentum p from

u, l, t and the energy Eg of the position of the electron on its orbit.

• Step 5: Employ a rotation in space by applying the rotation matrix A consisting of

randomly chosen Euler angles:

r′ = Ar p′ = Ap

with

A =





− cosϕ sin η − sinϕ cos θ cos η − cosϕ cos η + sinϕ cos θ sin η − sinϕ sin θ
− sinϕ sin η + cosϕ cos θ cos η − sinϕ cos η − cosϕ cos θ sin η cosϕ sin θ

− sin θ cos η sin θ sin η cos θ



 ,
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3.5. Classical relativistic model

where

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ η ≤ 2π, to define the orientation of the electron’s

orbit in space.

In the non-relativistic case the orbits of the stationary electron motion are closed (ellipses)

and the motion is periodic. However, in the relativistic case the orbits are no longer closed,

as a perihelion shift is present and the distance from the center r is not the same. The

reason is that in this case the energy of the electron E = c
√

p2 +m2c2 is always larger than

the Coulomb potential −Z/r. Instead of ellipses the orbits are like rosettes. That means

the property of a finite motion in the non-relativistic mechanics is lost in the relativistic

mechanics. The relativistic Coulomb problem of an electron moving in the Coulomb field

can be solved analytically [63] parameterized by radius R(u), angle ϕ(u) similar to the

standard solution of the classical Kepler problem [65].

For sufficient strong laser fields the potential barrier is suppressed well below the energy

of the bound electron, which can then escape on classical orbits. This regime is known as

the over-the-barrier ionization (OTBI) regime. Our classical approach for the calculation

of the ionization fraction is particularly justified by the fact that the atomic potential

becomes less important with increasing laser intensities. From the known electron position

r and the momentum p we can classically calculate all other observables by taking the

ensemble average. The number of necessary classical particles employed for the average

is defined by the condition that any further increase of trajectories does not lead to a

visible change of the considered property. However, classical approaches do not apply

when intrinsic quantum mechanical effects such as quantum coherence or interference

become significant. Moreover, the classical calculations were proven to be useful for

understanding the underlying physics, especially in situations where the relativistic laser-

matter interaction cannot be treated fully three-dimensional in quantum mechanics. We

are especially interested in calculating the ionization fraction in order to determine most

sensitively ultra-strong laser intensities using multiply charged hydrogen-like ions (chapter

4).
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Chapter 4

Ionization dynamics of multiply
charged ions

4.1 Motivation

A profound insight into fundamental ultra-high field laser-matter interactions [66] requires

an increase in the maximum intensity [20] and a decrease of the minimum pulse duration

[67] of currently available lasers. The next generation of such laser pulses are regarded to

reach peak intensities of up to 1023 − 1026 W/cm2 [13,68]. These ultra-intense laser fields

provide an understanding into the fascinating field of strong laser-matter interactions, e.g.

to test the validity of QED through vacuum polarization [14], to study nuclear interaction

and generating GeV electron beams [15] or for medical applications as accomplished in

cancer therapy [16]. A better characterization of the ultra-intense laser fields leads to

a better understanding of ultra-intense laser fields and assist to generate even higher

intensities in the future. Therefore, relativistic laser-ion interaction has been investigated

in this thesis in order to determine ultra-strong laser intensities and to characterize them

with respect to the pulse length, shape and phase.

The generation of ultra-intense laser fields can be controlled by two main parameters. It is

either possible to reduce the spot size of the laser focus or to increase the laser power. For

the reduction of the spot size including the temporally and spatially sensitive distortion

of the wavefront and the correction of the aberration of the focusing optics [69], rendering

the task very challenging. However, the tight focusing of the laser pulse is more effective
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than to increase the laser power, if the aberration can be handled. For laser intensities

below I = 1016W/cm2 (SI units), the peak intensity can be measured simply from the

spot size and the given laser power. For higher laser intensities the energy flux is so

strong that hardly any detector will sustain these intensities and report the necessary

intensity profile with enough resolution spatially as well as temporally. Instead of these

direct measurements, which are feasible for relatively low laser intensities, we consider

indirect techniques using multiply charged ions to characterize ultra-intense laser fields.

This technique provides a measure of the laser field amplitude, as the multiply charged

hydrogen-like ion can be chosen such that the mean atomic field strength is comparable

to the laser field. The ionization of the hydrogen-like ions [70] depend both on the atomic

field strength and the maximal laser intensity. The ease of selectively generating multiply

charged hydrogen-like ions of any charge [70] renders them applicable to probe a wide

range of laser intensities, both current and future ones, without being limited by a specific

preparation of the laser pulse.

Before explaining the method and results in more detail we like to give an idea about

the strengths of the atomic electric field in multiply charged hydrogen-like ions and in

comparison the field strengths of the applied laser intensities. The unit mean atomic

electric field strength is, due to the electrostatic interaction between the proton and an

electron on the first Bohr orbit in hydrogen, defined by Ea = 1 a.u. (Ea = 5.14 ×
109V/cm). The corresponding field intensity is Ia = 1 a.u. (Ia = 3.51 × 1016W/cm2).

This sets an intensity scale for a hydrogen atom in its ground state. The field strength

changes dramatically (proportional to Z3) for higher multiply charged hydrogen-like ions.

However, as seen from the Fig. 4.1 the highest field strength, which can be achieved today

with intense lasers is already reached for the hydrogen-like ion with an ionic core charge

of Z = 10. For these high laser intensities we are still in the lower part of the mean

atomic field strength (< 1013V/cm) curve plotted in Fig. 4.1. The maximal atomic field

strength of this curve is given for hydrogen-like uranium U92+ with a field strength of

1.8 × 1016V/cm (SI units), which corresponds to an intensity of 4.2 × 1029W/cm2 (SI

units). These estimations show that the compensation of the laser field strength by the

atomic field strength of multiply charged ions is by far not reached yet. Although a natural
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Intense Laser

Figure 4.1: Plotted is the mean atomic field strength of hydrogen-like ions as the function
of the ionic core charge Z. With the nowadays possible laser intensities we are just on the
lower part of this curve as marked by the arrow. There are still 4 orders of magnitude of
the atomic field strength remaining for the determination of much higher laser intensities
with the use of multiply charged ions, than available today.
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limit of the atomic field strength will be the critical charge Zcrit = 137 of the nucleus,

where the bound state wavefunction becomes delocalized, resulting in an instable nuclei.

In the following the photoelectron spectra and the ionization rates are studied both with

classical relativistic and quantum Dirac calculations.

4.2 Ionization rate

The ionization process manifests itself for electric field strengths which become compa-

rable to or are higher than the corresponding binding atomic field strength experienced

by the electrons. Throughout the thesis we only consider systems with one electron,

namely multiply charged hydrogen-like ions. In these systems the electron can escape

with substantial probability from its bound state via tunneling or in case that the laser

field suppresses the Coulomb barrier strong enough by classically leaving the ionic core.

By gaining energy from the laser field the electron accomplishes a wiggling motion in the

laser field perturbed by possible Coulomb attraction. The amplitude of this motion in

case of strong laser fields exceeds the Bohr radius by several orders of magnitude and the

corresponding cycle averaged kinetic energy (ponderomotive potential Up = F 2

4ω2 ) is much

greater than the binding energy.

For bound-free transitions the analysis of the Keldysh parameter γ classifies the possible

ionization processes. In the non-relativistic case, γ is given by γ = Zω/F , with the ionic

core charge Z, the laser frequency ω and the laser field strength F . For multiphoton

ionization realized by a high laser frequency and a low laser field strength, γ2 ≫ 1,

the bound-free transition can be fully perturbatively described. Here, ionization occurs

by simultaneous absorption of N, N+1, ... photons, where N is the smallest number of

photons needed to reach the continuum. Related to this ionization process is the finding

of the above-threshold ionization by P. Agostini et al. [71], where they showed that the

atom may absorbs many more photons than the minimum number N of photons necessary

for the ionization. In the strong field limit γ2 ≪ 1, realized by low frequency and high

field strength, the laser field suppresses the Coulomb barrier so strong that the electron

can classically leave the ionic core. The related ionization process can be in the limit
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of adiabatic variation of the field described by the quasistatic ionization rate w, whose

analytical calculation will be discussed below.

4.2.1 Semiclassical calculation in the non-relativistic regime

In this section and the following, the calculation of the analytical ionization rate formula

valid in the tunnel regime will be briefly discussed, which is later used to compare with

our numerical relativistic classical trajectory Monte-Carlo (CTMC) simulation. In the

strong field ionization regime only the initial and the final state has to be known for

the calculation of the ionization rate, i.e. no intermediate state has to be considered,

which complicates the whole calculation tremendously. This can be fulfilled by the con-

ditions ω ≪ Ip and F ≪ Fat ∼ Z3 permitting the use of a quasiclassical approximation,

where Ip denotes the ionization potential and Fat the atomic field strength. Implying, a

constant electric and magnetic field during the tunneling process. In the case of strong

low-frequency fields, the transition amplitude Aif from the initial state i to the final state

f is calculated in the adiabatic limit (ω ≪ Ip) by the well known general Landau-Dykhne

formula:

Aif = exp
{

i

∫ t0

0

dt(Ef (t) − Ei(t))
}

. (4.1)

Here Ei denotes the initial and Ef the final energy, respectively and the complex time t0 is

calculated from the constraint Ei(t0) = Ef (t0). In the adiabatic approximation the ioniza-

tion rate strongly depends on the chromaticity of the radiation field, the ponderomotive

acceleration of the ejected electrons and the saturation of the ionization probability. The

ionization rate is given in the non-relativistic case in its most general form, valid also

for excited states in complex atoms, well known as the ADK (Ammosov-Delone-Krainov)

formula [72] in the case of linear polarized light by:

wl
m = (2l + 1)

(
3Fn⋆3

πZ3

)1/2

(Z2/4πn⋆3)(2e/n⋆)2n⋆

(l + |m|)!
(

2Z3

Fn⋆3

)2n⋆−|m|−1

2−|m|[(|m|)!(l − |m|)!]−1 exp(−2Z3/3n⋆3F ) , (4.2)

where n⋆ = Z/
√

2En is the effective principal quantum number, l the orbital quantum

number, m the magnetic quantum number, F the electric field strength and Z the charge
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of the ionic core. The effective principal quantum number n⋆ = n − δl takes quantum

defects δl of the ionic core charge into account, caused by the innershell electron screening

of the ionic core on the outershell electrons. Its value is determined by experimental data

of the binding energy, considering the large distance of the electron from the ionic core.

In case of the orbital quantum number l = 0 and the magnetic quantum numberm = 0 the

general form of the tunnel rate Eq. (4.2) reduces for hydrogen-like ions in electromagnetic

fields to

wnr =

(
3F 3n⋆3

64π3Z5

)(
4eZ3

Fn⋆4

)2n⋆

exp

{

− 2Z3

3n⋆F

}

. (4.3)

For m 6= 0 and for the same orbital quantum number l, the tunnel rate is substantially

lower. Moreover, the ionization rate depends on the initial momentum of the electron. For

non-zero initial momentum, Nikishov & Ritus [73] and Delone & Krainiov [74] calculated

the ionization rate to be

w(p‖) = w(0) exp{−p2
‖ω

2(2Ei)
3/2/3F 3} , (4.4)

where p‖ denotes the electron momentum in the laser field direction. In the case of zero

initial momentum the ionization rate for linear polarized light F = F0 cos(ωt) is given by

wnr =
4κ5

F
exp

(

−2

3

κ3

F

)

, (4.5)

with κ =
√

2Ip and Ip the ionization potential of the atom. This expression is true as

long as F ≪ Fat, whereas Fat is the atomic field strength. These formulae (4.4), (4.5)

can only give a limited idea of the ionization process. For more detailed information of

the tunneling ionization process, it is necessary to look at the energy-resolved and angle-

resolved energy spectra of the ejected electrons.

4.2.2 Semiclassical calculation in the relativistic regime

The main difference between the non-relativistic and relativistic calculation of the tun-

nel rate originates from the difference in their binding energies, which has a significant

influence for charges of Z ≥ 10. The relativistic generalization of the Keldysh parameter
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is γrel = ω
F

√
1 − ǫ2, with ǫ =

√

1 − (Zα)2 and α = 1/c, where c is the speed of light. A

complete derivation of the Keldysh parameter is given e.g. in [75]. In the relativistic case

a semiclassical expression for the ionization rate for the Coulomb potential was derived

recently by [76]. In SI units they found:

wr =
mc2

~

(F/Fs)
1−2ǫ

2
√

3ξΓ(2ǫ+ 1)

√

3 − ξ2

3 + ξ2

(
4ξ2(3 − ξ2)2

√
3(1 + ξ2)

)2ǫ

(4.6)

× exp

(

6µ arcsin
ξ√
3
− 2

√
3ξ3

F/Fs(1 + ξ2)

)

with

µ =
e2Z

~c
(4.7)

ǫ =
√

1 − µ2 (4.8)

ξ =

√

1 − ǫ

2
(
√
ǫ2 + 8 − ǫ) (4.9)

Fs = m2c3

~e
= 1.32 × 1016 V

cm
(4.10)

This formula agrees for the ground state in the limit of Z = 1 with the non-relativistic

formula of Eq. (4.2). Both, for the non-relativistic and the relativistic case, the calculation

of the ionization rates are based on the WKB (Wentzel, Kramers, Brillouin) method. Its

principal concept is described in the following.

The ground state wave function remains valid in the vicinity of the nucleus. In this

region the influence of the laser field is negligible. In far distance from the nucleus the

effect of the Coulomb potential is weak and the wavefunction can be determined by a

quasiclassical solution. The complete wavefunction is then constructed by matching these

two solutions over the whole region of interaction. The WKB approximation (potential

is constant within the laser wavelength) is sufficiently good for low-lying states including

the ground state. Within the approximation (ω ≪ Ip), it is assumed that the electric laser

field is temporally constant over the period of tunneling (a0 ≪ λ). Another aspect of the

tunnel ionization process has to be considered, namely the critical field strength F non−rel.
crit

for the exert of over-the-barrier ionization in the non-relativistic case, as generally given

for atoms by F non−rel.
crit = I2

p/4Z = Z3/16 [77]. This is known to be the level at which
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Figure 4.2: Comparison of the relativistic tunnel ionization fraction see Eq. (4.6) of a
linear polarized one-cycle pulse of frequency ω = 0.043 a.u. (λ = 1054 nm) for different
charges Z as a function of the field strength normalized by the barrier suppression field
strength Fbs as defined in the text.

the laser field strength becomes equal to the Coulomb barrier, beyond over-the-barrier

ionization takes place. However, for hydrogen-like ions the general non-relativistic field

strength changes to F non−rel.
crit,new = (

√
2 − 1)Z3/23/2 [78]. That means, the general critical

field strength F non−rel.
crit underestimates the tunnel rate by roughly a factor of two in the

case of hydrogen-like ions. The reason for the discrepancy of the critical field strength

is based on the fact that the electron motion in propagation direction and polarization

direction can not be considered as independent for hydrogen-like ions.

Subsequently, the relativistic tunnel ionization fraction is investigated for various ionic

core charges Z. Instead of the ionization rate, we evaluated the ionization fraction, which

is comparable with experimental results. It is defined as the ionization rate measured
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at the end of the laser pulse. In Fig. 4.2 the relativistic tunnel rate ionization fraction

measured at the end of a one-cycle sinusoidal pulse is displayed. In order to compare

the tunnel rate for the different charges Z properly, the applied laser field strength is

normalized by the barrier suppression field strength for over-the-barrier ionization Fbs.

Hereby, Fbs is defined as Fbs = c4/4Z(1 −
√

1 − Z2/c2)2, with c to be the speed of light.

The relativistic ionization fraction starts for high ionic core charges at smaller values of the

normalized field strength compared to low ionic core charges. However, the experimental

relevant ionization takes place in the region of 0.3 < F/Fbs < 0.7. A comparison of the

relativistic tunnel rate formula of Eq. (4.6) with a relativistic classical trajectory Monte-

Carlo simulation will be given in section 4.4.5.

4.3 Determination of ultra-strong laser intensities

In the regime of moderate laser field strength 1014−1017W/cm2 the laser intensities can be

simply determined by the focus spot size of the laser beam and the beam energy. Another

possibility is to use the change of the intensity dependent refraction index. However, these

direct measurement techniques are of no use if ultra-intense laser intensities are involved.

Firstly, only a few detectors would actually sustain the ultra-strong laser [20] intensities

and secondly, the acquired speed and resolution to report the intensity profile is above

the possibilities of the nowadays available detectors. Therefore, it is necessary to look for

indirect intensity-dependent effects, which characterizes these high laser intensities and

are described after a short review of the laser intensities reached today and scheduled for

the future together with possible applications.

The availability of lasers reaching intensities considerably higher than the characteristic

atomic field strength of Fa = 5.1 × 109 V/cm [79] allows to access a new regime for the

study of laser-matter interaction [80]. The next generation of high-power laser sources is

going to reach peak intensities of up to 1023-1025 W/cm2 [13]. They offer a wide range

of application like in high field physics [81] concerning photon-photon splitting due to

virtual electron-positron pair production in vacuum; in attoscience to freeze dynamical

processes [82]; and hadron therapy [83].
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Nevertheless, in this regime there is no accurate way of experimentally measuring high

laser intensities just by the laser power and the spot size of the laser beam. Moreover,

the tighter focus of the laser pulse and the associated temporally and spatially sensitive

distortion of the wavefront [20] has to be taken into account, rendering the task very

challenging. Instead of direct measurements, which are feasible for relatively low laser

intensities, we consider indirect techniques using multiply charged ions to characterize

ultra-intense laser fields. This technique provides a measure of the laser field amplitude

as multiply charged hydrogen-like ion can be chosen such that the atomic field strength

is on average comparable to that of the laser field. The ionization of the selected ions [70]

depend both on the atomic field strength and the maximal laser intensity, the relation

of which will be governed by the chosen atomic species [84]. The ease of selectively

generating multiply charged hydrogen-like ions of any charge [70] renders them applicable

to probe a wide range of laser intensities, both current and future ones, without being

limited by the preparation of the laser pulse.

The central interest will be to develop a procedure with optimal precision which de-

termines the maximal laser field strength of ultra-strong short pulses especially in the

intensity range of 1018 − 1026W/cm2. We show, based on classical relativistic trajec-

tory Monte-Carlo simulations, how a particular hydrogen-like ion is identified to most

sensitively determine the applied laser field strength via measuring the fraction of over-

the-barrier ionization (OTBI). Additionally, the ionization angle of the ejected electron is

investigated by the full quantum mechanical solution of the Dirac equation of the laser-

matter interaction in two dimensions [87]. In this case the laser field strength has been

linked to the ionization direction of the ejected electron as an alternative measurement

technique. Both methods will be discussed separately in the following sections.

4.3.1 Quantum Dirac calculation - ionization angle

One possibility to determine ultra-strong laser intensities is by means of the angle of

the ejected photoelectrons. The numerical analysis of the photoelectron angle in the

relativistic regime is done via solving the Dirac equation (3.3) in two dimensions. The
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initially prepared Dirac ground state of the atomic wavefunction of the ionic core charge

Z is then propagated in time on a two-dimensional grid.

The initial angular distribution of the ejected electron has a maximum in laser polarization

direction in case of linear polarized field for low field strengths. The drift component of

the electron momentum in propagation direction increases for higher field strength as does

the magnetic force. For the laser field strength considered here, the electron acquires a

non-negligible drift velocity in the propagation direction, due to the Lorentz force, which

is taken into account in our two-dimensional analysis. We make use of the Doppler effect

in combination with conventional laser intensities accessible nowadays to show that our

method works in the regime of future ultra-strong laser intensities, which can be realized

experimentally by counterpropagating an ion beam with a laser beam. This technique

enables us to reach higher field strengths and frequencies in the ion’s rest frame, which

will be used for our numerical calculation. With a gamma boost up to 30, which is

possible, e.g. at the GSI [88], the standard laser wavelength of λ = 1054 nm (ω = 0.043

a.u.) in the laboratory frame can be transformed to λ = 17.6 nm (ω = 2.58 a.u.) in

the ion’s rest frame. The transformation of the laser frequency to higher values in the

ion’s rest frame additionally ensures that the numerical calculation is feasible in terms of

computation time. The necessary transformation of the laser parameters between the ion

frame (underlined) and the laboratory frame is expressed by the following formulae:

E0 = γ(1 + β)E0 ω = γ(1 + β)ω β > 0 , (4.11)

where the scaled velocity β of the ion is given by γ = 1/
√

1 − β2. The considered values

of both the laser frequency and field strength still require a considerable numerical effort,

caused by the high momentum of the electron after the ionization. The total energy of

the electron E including its large rest mass c2 thereby needs to be temporally resolved by

∆t ≤ 1/E, which renders the numerical calculation very lengthy in terms of computation

time. Before discussing the results, we address some numerical issues of the calculations.

The Dirac wavefunction, prepared to be initially in the ground state, is propagated in time

on the two-dimensional grid. The electron momentum therefore increases substantially,

due to the dominant interaction with the laser field, when the electron leaves the vicinity of
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the ionic core. In the recollision scenario, the grid size needs to be increased dramatically

in order to deal with the high electron momenta when it returns to the core. As we are

only interested in the initial ionization distribution, we restrict ourselves to the vicinity of

the ionic core. Numerically, this is accomplished by using absorbing boundary conditions

on the grid. Consequently, the norm of the wavefunction decreases continuously when the

wavefunction encounters the boundary.

In our two-dimensional calculation, which incorporates all the necessary physics of the

ionization dynamics [4], the characterization of the bound states in terms of the total

angular momentum quantum number is different from the well-known three-dimensional

case. Here, the ground state wavefunction is defined by λ = 1/2, where λ is the quantum

number of the total angular momentum in two dimensions, which corresponds to the total

angular momentum quantum number j in three dimensions. The initial wavefunction (in

our case the ground state with λ=1/2 and spin-up) of the ion is generated numerically via

the spectral method [54] also see section 3.2.3, starting from the total angular momentum

eigenfunction Ψ↑
λ with (λ± 1

2
) ∈ Z analytically given by

Ψ↑
λ =







u0(r)e
i(λ− 1

2
)φ

0
0

u2(r)ie
i(λ+ 1

2
)φ







Ψ↓
λ =







0

−v0(r)e
−i(λ+ 1

2
)φ

v2(r)ie
i(λ− 1

2
)φ

0







.

The functions u0(r) and u2(r) can be chosen arbitrarily and are taken here as Gaussian.

Upon having discussed some numerical difficulties of the calculation, we focus now on the

relevant observable and parameters of our system of interest.

The ionization angle θ in the ion’s rest frame with respect to the propagation direction

is calculated from the expectation value of the kinetic momentum of the electron in

polarization px and propagation direction pz to be tan θ = px/pz. The transformation of

the ionization angle from the ion’s rest frame to the laboratory frame is then ascertained

by :

tan θ =
px

γ
(

pz − β
√

px
2 + pz

2 + c2
) . (4.12)

The ionization angle in both frames of reference always refers to the laser propagation

direction. Additionally, the pulse shape of the laser field is modified to investigate its
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Table 4.1: The ionization angles in both the ion’s rest frame θ and the laboratory frame
θ are given for different field amplitudes in the case of the hydrogen-like ion Ne9+ (Z =
10). The values of the kinetic momentum for the calculation of the ionization angles were
taken at the field maximum of the applied single-cycle laser pulse (t = T/4) in the ion’s
rest frame, where T denotes the laser period. The size of the numerical grid was fixed to
26×26 a.u.

E0 [a.u.] E0[a.u.] px[a.u.] pz[a.u.] θ[◦] θ [◦]

60 1.00 -0.30 0.0047 89.1 179.99
100 1.67 -8.72 0.55 86.4 179.88
200 3.33 -51.61 9.56 79.5 179.29
300 5.00 -90.47 28.27 72.6 178.76
400 6.67 -122.45 51.35 67.2 178.33
600 10.00 -174.07 101.40 59.7 177.67
800 13.33 -216.18 150.50 55.1 177.18

dependency on the ionization angle. For our calculations the laser frequency ω = 2.58

a.u. and the parameter β are fixed, where β arises from a gamma boost of γ = 30. The

ionization angles of the emitted electron and the associated laser field strength in the

ion’s rest as well as in the laboratory frame are listed in table 4.1 for Ne9+ (Z = 10).

These calculations are made with a static grid size in contrast to the calculations for

Zn29+ (Z = 30), where a “moving-grid” approach is used because of the high momenta

that arise. In the “moving-grid” approach only the area in position and momentum space

centered around the moving wave packet is considered [87]. Due to the laser magnetic

field component, a drift of the electron in the propagation direction is caused, which

leads to a decrease of the magnitude of the ionization angle θ towards the propagation

direction, as the ratio of the magnitude of the momentum between the polarization and

propagation direction decreases comparatively. In both frames, the ion’s rest and the

laboratory frame, the ionization angles decrease with increasing field strength. Moreover,

in the laboratory frame the kinetic momentum of the electron is roughly along the ion

beam direction, as a consequence of the strong gamma boost in the laser propagation

direction. At low laser field strengths the electron leaves the ionic core predominantly in

the laser polarization direction. In contrast, for high laser fields the magnetic component

of the laser becomes more important, which consequently guides the ionization angle more

in propagation direction. The influence of the scalar potential of the multiply charged
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ion on the ionization dynamics can be seen by comparison with a free electron. The

ionization angle of the free electron in its rest frame is smaller compared to the initially

bound electron for multiply charged ions, as θ = arctan(2cω/E0).

The competition between the atomic field strength and the laser field is illustrated by

the electron dynamics of the electron in the combined field of the parent ion and the

laser. The external laser field mainly influences the electron after it has left the vicinity

of the nucleus. This results in a large amplitude of the laser field in polarization and

propagation direction, as seen from the plots in Fig. 4.3. These calculated snapshots have

been taken at the first field maximum of the one-cycle sin-square laser pulse in the ion’s

rest frame. For a low laser intensity Fig. 4.3 (a) the main part of the electron density

remains with the nucleus. With increasing laser field strength (Fig. 4.3 (b), (c), (d)) the

electron density diminishes by moving away both in laser polarization and propagation

direction.

68



4.3. Determination of ultra-strong laser intensities

Figure 4.3: Snapshots of the electron probability density in the ion’s rest frame are given
for Ne9+ (Z = 10) on a logarithmic scale for different field strengths (a) E0 = 60 a.u.
(E0 = 1 a.u.), (b) E0 = 100 a.u. (E0 = 1.67 a.u.), (c) E0 = 200 a.u. (E0 = 3.3 a.u.)
and (d) E0 = 300 a.u. (E0 = 5 a.u.) as a function of the two spatial coordinates x,
z. The values in parenthesis are given in the laboratory frame. The hydrogen-like ion
was initially prepared to be in the ground state. Depicted is the ionization resulting
from a single-cycle sinusoidal pulse without any additional turn-on or turn-off ramp. The
snapshots were taken at 1/4 of the laser pulse cycle.
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The extension of the electron density distribution in both laser directions is governed

by mainly two factors, the high electron velocity in laser polarization direction and the

Lorentz force, arising from the magnetic field component of the laser field. The latter

induces a substantial acceleration of the electron in laser propagation direction away from

the nucleus.

Furthermore, we added an additional turn-on and turn-off phase to the sinusoidal single-

cycle pulse which smoothed out the otherwise sharp raising/falling of the field strength.

Therewith, the experimentally not well-defined absolute phase of the laser pulse is inves-

tigated. We compare three cases, in fact without any additional turn-on phase, with half

a cycle turn-on phase and with one cycle turn-on phase. As can be seen from Fig. 4.4, the

direction of the electron emission changes according to the chosen fraction of the pulse

period. For the additional turn-on pulses, interference structures in the density distribu-

tion, which results from the reverse motion of the electron, are visible. For an additional

one-cycle turn-on pulse compared, to the case without any additional pulse, the absolute

value of the ionization angle changes by two degrees in the ion’s rest frame at a fixed

field strength of E0 = 100 a.u. (E0 = 1.67 a.u.). The change of the absolute value of the

ionization angle by one degree corresponds to a change of the associated field strength

without any additional turn-on pulse of 0.01%.
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4.3. Determination of ultra-strong laser intensities

Figure 4.4: Depicted are snapshots at time t of the electron density distribution on a
logarithmic scale in the ion rest frame for a charge Z = 10 (Ne9+) of a fixed field strength
of E0 = 100 a.u. (E0 = 1.67 a.u.) and a static grid size of 26×26 a.u. The comparison is
made between different turn-on phases, which are additionally added to the constant one
cycle laser pulse. The pulses are in (a) without any additional turn-on cycle (t = T/4),
(b) with an additional 1/2 turn-on cycle (t = 3/4T ), and (c) with an additional turn-on
phase of one cycle (t = 5/4T ) where T denotes the laser period.
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E0 [a.u.] E0[a.u.] px[a.u.] pz[a.u.] |θ|[◦] θ [◦]

1000 16.67 -1.20 0.000094 89.99 179.98
2700 45.0 -6.14 1.67 74.78 179.91
10800 180.0 -297.44 327.77 42.22 175.51
16200 270.0 -444.29 728.82 31.36 173.76
24000 400.0 -513.14 968.83 27.92 172.81
32040 534.0 -560.46 1158.30 25.96 172.20

Table 4.2: The ionization angles in both the ion’s rest frame θ and the laboratory frame
θ are given for different field amplitudes in the case of the hydrogen-like ion Zn29+ (Z =
30). The values of the kinetic momentum for the calculation of the ionization angles were
taken at 1/8 of the laser period of a single-cycle squared pulse in the ion’s rest frame.
The underlined values are given in the ion’s rest frame, whereas the values that are not
underlined indicate the values of the laboratory frame.

To summarize, since the calculation for the ionization angles required considerably less

computing time compared to the total ionization yields we decided to employ the some-

what more accurate quantum relativistic calculation. For the calculation of the ionization

fraction, in the next section, we have chosen to solve the classical relativistic equation.

Furthermore, we verified that there are indeed no other quantum effects of relevance in

this regime and have tested with our two-dimensional Dirac code that our relativistic

classical Monte-Carlo (CTMC) simulation has delivered correct values in the parameter

regime of interest.

4.3.2 Classical relativistic calculation - ionization fraction

A second independent criterion to precisely determine ultra-strong laser intensities is via

the calculation of the ionization fraction.

The ionization of a bound electron in the laser field is treated classically when the Coulomb

barrier of the bound potential is lowered such that the electron can simply leave the

influence of the ionic potential (OTBI regime). The solution of the classical relativistic

equation of motion for an electron in a Coulomb potential and a laser field can be generally

calculated by using the Monte-Carlo simulation of the classical trajectories, see chapter 3.

The numerical details of that are discussed below.

Our observable of interest, the ionization fraction, determined in case of multiply charged
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4.3. Determination of ultra-strong laser intensities

hydrogen-like ions is investigated in the framework of the relativistic phase-space averaging

method. The relativistic equations of motion eqs. (3.33) have been solved numerically by

the Runge-Kutta method with variable step size. The initial ensemble is in phase space

prepared with the relativistic energy for the ground state given by Eg = c2
√

1 − (Zα)2,

with α = 1/c, as illustrated in section 3.5.1. The calculations have been performed by an

average over thousands of particles until a further increase of the number of trajectories

did not lead to a visible change of the properties under consideration. The average

correspond to different initial conditions randomly chosen from a microcanonical ensemble,

prepared to be in the ground state of the selected hydrogen-like ion with the ground

state energy Eg. The small radius for high charge Z (the Bohr radius for hydrogen-

like ions is inversely proportional to the ionic core charge Z) is compensated by the

substitution of r′ = rZ. Consequently, the numerical difficulty of smaller radii, which is

related to a smaller step size chosen by the algorithm, can be avoided. The ionization

fraction is defined as the fraction of ionized electron trajectories to the total number of

trajectories taken into consideration. An electron is considered to be ionized when its

energy E(t) = (γ − 1)c2 − Z/r measured at the end of the pulse is positive and bound of

it is negative.

In the following, we describe the procedure of determining ultra-strong laser fields via the

calculation of the ionization fraction, which is experimentally a well-established technique.

The ionization fraction for several different ions of charge Z is given in Fig. 4.5. For a fixed

ionic core charge the ionization fraction grows with a flat profile followed by a rather steep

rise ending up with a plateau of complete ionization. The sharp ascent of the ionization

curve is the region, where the ionization fraction can be most accurately measured. If an

approximate laser intensity range may be expected, an ionic core charge should be selected

with maximal slope at this intensity. In case of a mistaken choice, e.g. if an ionization

fraction of nearly 1 is measured, no precise statement about the corresponding intensity

can be made as the curve is effectively uniform. In this region several laser intensities can

be associated to the same ionization fraction. Then our procedure requires that the ionic

charge needs to be increased and vice versa for the range around a very small ionization

fraction. This procedure needs to be continued until the ionization fraction is in the
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Chapter 4: Ionization dynamics of multiply charged ions

Figure 4.5: Plotted is the ionization fraction for several different hydrogen-like ions Z as a
function of the maximal laser intensity in the laboratory frame. The ionization fraction is
calculated at the end of a single-cycle square-shaped laser pulse of wavelength λ = 1054nm
(frequency ω = 0.043 a.u.).

narrow range of the sharp ascent of the ionization curve (narrow intensity range), where

the corresponding laser intensity can be most precisely determined.

At the steepest points of the sharp ascents for all investigated ionic charges Z we can

read off the ionization fraction and laser intensity for each curve in Fig. 4.5 and obtain

Fig. 4.6. The unknown laser intensity can now be more effectively determined. In a

first step a particular ion needs to be selected, whose ionization fraction should then be

measured. As a possible first guess, we refer to the dashed line of Fig. 4.6, which indicates

the corresponding ionic charge of the expected intensity range. Here, for example, an

intensity of I = 1023W/cm2 corresponds to an ionic charge of Z = 30, which would be
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4.3. Determination of ultra-strong laser intensities

a proper candidate to begin with if an intensity around 1023W/cm2 is assumed. In a

second step, the ionization fraction of the selected fixed ionic charge should be measured.

If the ionization fraction is higher than the corresponding one depicted in Fig. 4.6 (solid

line) then the measurement has to be repeated for a higher ionic charge and vice versa

for a smaller ionization fraction. This procedure has to be continued until the ionization

fraction matches with the corresponding value given by Fig. 4.6 for the respective ion.

From the final charge Z, the corresponding laser intensity can then be read off via the

dashed curve of Fig. 4.6.
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Figure 4.6: The solid line defines the most sensitively measured ionization fraction (left
axis), whereas the dashed line shows the corresponding laser intensity (right axis) as a
function of the respective optimal ionic core charge Z. The laser field parameters are the
same as given in Fig. 4.5. The squares indicate the deduced points from Fig. 4.5.
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Chapter 4: Ionization dynamics of multiply charged ions

4.4 Influence of quantum effects, laser frequency, pulse

shape, length and carrier phase

After having introduced the method to sensitively determine the laser field strength we

examine now the dependence of the ionization fraction via the relativistic classical tra-

jectory Monte-Carlo (CTMC) simulation on the characteristic laser parameters, i.e. the

frequency and on the pulse shape, length and carrier phase exemplarily for an ionic core

charge of Z = 10. Additionally, the influence of quantum effects are studied by means of

comparing the relativistic CTMC simulation with the quantum Dirac calculation.

4.4.1 Investigation of the pulse length

We start with the investigation of the pulse length, which is varied between 1 and 10 laser

cycles for two different pulse shapes, a sin-square and a sin-sin2 pulse. Hence, the electric

field of the sin-square pulse is defined as E(η) = E0 sin(η)ex and the sin-sin2 pulse as

E(η) = E0f(η) sin(η)ex with η = ωt−kr and f(η) correspondingly given in section 3.3.1.

Taking the ionization fraction at the most sensitive point of the one-cycle sinusoidal pulse

as a reference the corresponding peak laser intensities of the different pulse lengths can

be determined. In case of a sin-square pulse the laser intensity differs at most by 10% in

the case of the 10 cycle pulse. The reason is an increase in the appropriate pulse energy

given to the electron by the increased pulse length. Therefore, the electron has a higher

momentum at the end of the pulse to escape from the nucleus, which leads to a shift to

smaller laser intensities for the most sensitive measured ionization fraction. The ionization

fraction is measured under the condition of an adiabatic field (atomic frequency on the

first Bohr orbit is much higher than the laser field frequency) render it only depending

on the applied field amplitude which is the same for all three pulse lengths in the case

of a sin-square pulse. The measured deviation of the ionization fraction resulting from

the different pulse energies of the various pulse lengths which play a minor role in the

considered frequency regime compared to the condition of maximal field strength within

the pulse as can be seen from the investigation on the sin− sin2 pulse.

For more realistic sin2-shaped pulses, the additionally added turn-on and -off phases to the
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4.4. Influence of quantum effects, laser frequency, pulse shape, length and carrier phase

constant pulse part smooth out the sharp rise and fall of the maximal field strength com-

pared to the sin-square pulse studied before. Here, attaining the maximal field strength

by the pulse, renders a great difference in the ionization fraction. In Fig. 4.7 (a) those

different pulse lengths are depicted for the sin− sin2 pulse. It shows that the maximal

field strength compared to a corresponding sin-square pulse is not reached in case of few

cycle pulses but for many cycle pulses, e.g. 10 cycles or more. The measurements of the

ionization fraction performed for the different pulse lengths are displayed in Fig. 4.7 (b)

as a function of the applied laser intensities. In case of few cycle laser pulses, the corre-

sponding ionization curve is shifted towards higher peak laser intensities, at most in the

case of the one-cycle pulse by up to 47% for the most sensitive measured intensity point.

This difference gains smaller with increasing number of laser cycles. The reason is that

the maximal field strength amplitude of a corresponding sin-square pulse is approached

in the limes of large numbers of laser cycles, which leads to a higher ionization fraction

for the same field strength. Hence, the number of laser cycles together with the attained

maximal field intensity during the laser pulse has a large influence on the measurement

of the ionization fraction.

The situation changes in the case of fast oscillating fields. In comparison to the optical

frequency regime in the XUV regime and above, the higher laser field amplitude is not

sufficient to ionize the electron, instead also the ionization time needs to be large enough

for the electron to have enough time to tunnel through the Coulomb barrier before the

oscillating electric field changes its direction again. A more detailed analysis is provided

in the paragraph of frequency dependence below.
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Figure 4.7: In (a) the various pulse cycles of a sin− sin2-shaped pulse are depicted. The
corresponding ionization fraction for the different pulse cycles and the original one-cycle
sin-square pulse for comparison are shown in (b) for an ionic core charge of Z = 10.

4.4.2 Investigation of the carrier phase

For further investigations of the characteristic laser parameters we changed the pulse

phase by a fraction of π from zero to π as seen from Fig. 4.8 (a). Two of the selected

pulse phases φ0 = 0 and φ0 = π have the same amplitude but different sign. Therefore,

it is interesting to see whether the maximal amplitude of the pulse has a greater impact

on the ionization fraction or the phase of the pulse. For a sin-square one-cycle pulse the

intensity changes at most by 33% towards smaller intensities in case of a maximum phase

shift of φ0 = π/2 as the maximum field strength is reached later in time. With a further

increase in the pulse length towards a 10 cycle sin-square pulse no better agreement is

achieved. More interesting is the effect of the phase change on more realistic sin− sin2

pulses. Here, the influence of the phase leads as well to an increase of the laser intensity

compared with the sin-square laser pulse. This increase of the laser intensity originates

from the instant maximum laser field strength reached during the pulse as already seen

from the study of the pulse length. A good example are the phases φ0 = 0 and φ0 = π.
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They both have the same amplitude but are totally different in shape see Fig. 4.8 (a),

(b). Their corresponding ionization fraction are nevertheless equal for both phases as

depicted in Fig. 4.8 (c), (d). The importance of the maximum field amplitude can also

been seen by comparing the ionization fraction of the original sin-square pulse with the

sin− sin2-shaped pulse with a phase shift of φ0 = π/2. In both cases the maximum field

strength is obtained during the pulse but at very different points in case of the one-cycle

sin− sin2-shaped pulse with a phase shift of φ0 = π/2 once and twice in case of the

sin-square pulse, nevertheless their most sensitive field intensity is the same.

To summarize the phase difference has not such an important influence on the ionization

fraction as the reaching of the maximum field strength has. Altogether, the phase differ-

ence effect for sin2-shaped pulses has a maximum for the one-cycle pulse as it is already

the case for the pulse length and is calculated to be at most for a phase shift of π to be

50% decreasing to 15% in case of three-cycle pulse, which results from the smaller field

strength. A phase shift of π/4 leads to a shift in intensity of 20% in case of the one-cycle

sin− sin2-shaped pulse compared to the original sin-square pulse. In general the phase of

the pulse has a minor influence on the ionization fraction than the pulse length has.
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Figure 4.8: Depicted are the different laser pulse phases for one-cycle (a) and three-cycle
(b) pulses of sin− sin2 shape. The behavior of the corresponding ionization fraction is
depicted for the one-cycle pulse in (c) and the three-cycle pulse in (d). The yellow long
dotted line corresponds to the original sin-square one-cycle pulse as defined in the text,
in case of an ionic core charge of Z = 10.
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4.4.3 Investigation of the pulse shape

The influence of the shape of the laser pulse is studied below. Therefore, the variation

of three different types of laser pulse shapes, namely a sin-square, a sin− sin2 and a

cos− sin2 -shaped pulse, which are shown in Fig 4.9 (a), (b) for a one-cycle and three-

cycle pulse, respectively, are investigated. In case of a one-cycle pulse the maximal field

strength is reached for the sin-square cycle pulse twice and for the cos− sin2 shaped

pulse once. Thereby, the number of maxima obtained by the laser field has no influence

on the ionization fraction which both of them equally led to the same corresponding

laser intensity. The agreement can be clearly seen in Fig 4.9 (c). In comparison, the

sin− sin2 pulse has a much smaller corresponding ionization fraction, due to the smaller

corresponding laser field strength of the pulse, resulting in a 50% higher laser intensity for

the most sensitive measured ionization fraction. The situation changes with increasing

laser cycles leading to a difference of only 10%.

Therefore, we conclude that for the measurement of the ionization fraction at the end of

the laser pulse only the maximal field strength during the laser pulse is of main importance.

An especially huge difference is made in the case of single or few cycle pulses. With

increasing laser pulse cycles the differences are decreasing as the maximal laser field

strength is reached as well. This is true as long as the laser field frequency is much

smaller than the underlying atomic frequency.
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Figure 4.9: Depicted are the laser fields in case of the ionic core charge Z = 10 for different
kind of pulses, namely a sin-square, sin− sin2 and cos− sin2 pulse in the case of one-cycle
(a) and three laser cycles (b). The behavior of the corresponding ionization fraction is
depicted for the one-cycle pulse in (c) and the three-cycle pulse in (d).
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4.4.4 Investigation of the laser frequency

The proposed method of determining the ionization fraction of multiply-charged hydrogen-

like ions and therewith the measurement of the maximal laser intensity can be extended

to currently available and future sources of high frequencies (UV, XUV frequency range).

The typical wavelengths of these new sources are λ = 32 nm ( FEL source [7], ω = 1.4

a.u.), λ = 6.5 nm (FLASH source [8], ω = 7 a.u.) and λ = 0.4 nm ( XFEL source [9],

ω = 114 a.u.). The corresponding ionization fraction for these different frequencies as

a function of the applied laser intensities are given in Fig. 4.10. For comparison of the

influence of the frequency on the ionization fraction we selected three different hydrogen-

like ions with the ionic charges of Z = 10, 30, 50 in case of a one-cycle sin-square pulse.

The ionization fraction curves for low ionic charge e.g. Z = 10 are shifted towards higher

intensities with increasing frequency. However, the typical slope remains the same. The

dominating ionization process in this case is multiphoton ionization which is strongly

suppressed and therefore gives a low ionization fraction. The highest deviation can be

seen for the frequency of the XFEL source (ω = 114 a.u.). In this case the ratio η of

the laser frequency towards the atomic frequency is not anymore smaller than 1, i.e. the

adiabaticity of the field is no longer guaranteed. Therefore, the electron on the first

Bohr orbit sees the temporal variation of the amplitude of the oscillation laser field.

For the ionization process this means that in addition to the maximum field strength,

the temporal variation of the laser field influences the most sensitive measured point of

laser intensity. With increasing ionic charges Z the atomic field strength increases and

therewith η becomes again smaller than 1. For high enough ionic charges Z, the adiabatic

condition can be again satisfied, inducing a decrease of the differences of the ionization

fraction between the different frequencies.

We conclude that for low ionic charges Z and high enough laser field strength, the adi-

abatic regime is not valid anymore, resulting in a two orders of magnitude higher laser

intensity for an ionic core charge of Z = 10 and a XFEL frequency of ω = 114 a.u., which

can be changed by selecting higher charges, where the atomic frequency is again higher

compared to the laser frequency.
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Figure 4.10: Plotted is the ionization fraction for several different wavelengths as a func-
tion of the laser intensity in the laboratory frame. For comparison three different ionic
charges Z = 10, 30, 50 are taken here. The with the two arrows marked curves belong to
the same ionic charge Z = 10.

4.4.5 Quantum versus classical calculation

In the following the ionization fraction obtained by the classical relativistic Monte-Carlo

simulation is investigated by comparison with additional calculations.

To show that for our method of most sensitively measuring ultra-strong laser intensities,

tunneling ionization is of no relevance, we compare our results with the analytical given

tunnel ionization formula 4.6. The results of the corresponding ionization fraction of

both calculations is displayed in Fig. 4.11 in the case of the ionic core charge of Z = 10

(Fig. 4.11 (a)) and Z = 30 (Fig. 4.11 (b)).

In the regime around γ = 0.1, where tunneling dominates, i.e. for small ionization fraction,

both calculations show similar ionization yields. However, with rising ionization and

increasing intensity we note clearly deviating results. In order to discuss the applicability
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of the tunneling yields we have indicated two dashed lines in above Fig. 4.11. For the

left dash line, i.e. indicating γ = 0.1 the tunneling formula applies, however, for the

right one and beyond it certainly does not. This line marks the border to the over-the-

barrier regime, where the tunneling barrier is exactly zero. Thus for higher intensities and

even somewhat below one cannot apply the tunneling formula because tunneling does not

occur or does not describe the dominating mechanism. In the parameter regime of laser

intensities of interest here (the over-the-barrier regime) with maximal slope (indicated

with a cross in the Fig. 4.11), where the sensitivity in the ionization with regard to

derivations in the intensity is maximal, tunnel ionization does certainly play no role.

Moreover, this comparison defines the range of validity of the analytical given relativistic

Figure 4.11: Plotted is the ionization fraction of the charge Z = 10 (left plot) and Z = 30
(right plot) for our CTMC calculation (solid line) and the semiclassical relativistic tunnel
ionization (TI) fraction (dotted line) of Eq. (4.6). The dashed lines mark the corre-
sponding tunneling regime with the lower boundary indicating the Keldysh parameter
γ = 0.1 and the upper boundary the critical relativistic barrier suppression field intensity
according to [76]. The most sensitively measured intensity value calculated by the CTMC
method, according to Fig. 4.5 is denoted by X, described in the next section.
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tunnelrate formula.

Additionally, in order to show that our CTMC calculation models the ionization behavior

correctly and quantum mechanical effects are of minor importance in the regime of over-

the-barrier ionization here, we render a comparison in two dimensions with the quantum

mechanically correct Dirac equation. To get a quantum mechanically appropriate compu-

tation time for the Dirac equation the frequency has been increased for both calculations

to ω = 7 a.u. for the present investigation. The primary results displayed in Fig. 4.12 show

that for low ionic core charges Z, the calculated ionization fraction obtained via the Dirac

equation, gives smaller values for the CTMC simulation compared to the quantum Dirac

calculation. The reason is the ionization via tunneling, which is intrinsically included in

the quantum mechanic calculation starts to happen before the electron classically leave

the ion. However, this difference in the ionization fraction seems to be decreasing with

increasing ionic core charge, resulting in a lower probability of tunnel ionization. For

Z = 10 the classical CTMC calculation leads to uncertainties for the most sensitively

measured laser intensity of the order of 40% in comparison to the Dirac simulation and

thus smaller than the uncertainty via lacking information of the laser pulse shape, length

and carrier phase.

Quantitative non-negligible deviations of the ionization fraction due to QED effects are

also likely to result especially starting at about Z = 50, rendering our evaluations, how-

ever, still useful for order of magnitude estimations.
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Figure 4.12: Displayed are the calculations of the ionization fraction for some intensities
in the case of the ionic core charges Z = 10 and Z = 30 for a one-cycle sinusoidal laser
pulse of frequency ω=7 a.u.

4.5 Conclusion

To summarize, by carrying out our classical relativistic Monte-Carlo simulation via the

calculation of the ionization fraction, we have investigated the validity of the analytically

given relativistic tunnel rate formula.

It has been shown that the analytical result and the CTMC simulation are quite similar in

the experimental relevant range for tunnel ionization. However, close to the critical field

strength for over-the-barrier ionization the analytically given ionization fraction sharply

increases leading the corresponding ionization fraction questionable. Moreover, the im-

portance of relativistic effects for multiply charges hydrogen-like ions gain of importance

above an ionic core charge of Z = 10.

Furthermore the ionization fraction and the ionization angle has been investigated both

with a classical relativistic Monte-Carlo simulation and a quantum Dirac calculation in two
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dimensions. Based on the study of the ionization fraction we have presented a new method

to determine most sensitively the laser intensity by measuring the ionization fraction in

multiply charged hydrogen-like ions. We have shown that the proposed method is in

principle not limited by any ultra-strong laser field apart from the limit of the ionic field

strength via the critical charge of Z = 137, which provides instable ions. The dependence

of this method on the typical laser parameters like the phase, shape and pulse length

have been studied and the extension of the method from the optical frequency to the

XUV frequency range are shown. Especially, it could be shown that for high XFEL laser

frequencies ω = 114 a.u. the measurable laser intensity range is increased by two orders of

magnitude when leaving the adiabatic frequency regime in case of low ionic core charges

Z. Additionally, we verified the validity of the classical trajectory Monte-Carlo simulation

in the regime of interest (over-the-barrier ionization) by comparing the ionization fraction

via a two dimensional calculation for both the Dirac equation and the classical relativistic

equations of motion.
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Chapter 5

Bound dynamics of multiply charged
ions

5.1 Motivation

The bound dynamics in conventional quantum optics with weak laser fields deals with a

quantized radiation field [91]. In this chapter however, we treat the interaction of matter

with the radiation field semiclassically, where the field is assumed to be classical and the

atom is considered quantum mechanically. Possible differences arising from this treatment

in comparison with a quantized field can be seen from the interaction of a simple two-

level system with a single-mode radiation. Semiclassical theory predicts Rabi oscillations

ocurring from the population inversion between the two levels by neglecting all decay

processes. On the contrary, in quantum theory the atomic inversion shows collapse and

revival phenomena [92] due to the quantized field. However, the study of these quantum

phenomena is not the aim of this chapter. Instead, we examine only systems interacting

with strong and short laser pulses, where the dynamics is fully relativistical and therefore

all kinds of spontaneous emission processes are negligible.

One of the main properties in the investigation of bound dynamics is the shift of energy

eigenstates in strong oscillating laser fields. This ac-Stark effect can be described as the

interaction energy of the electric dipole moment of the atom with the field. It is nowa-

days possible to calculate the ac-Stark splitting in second-order perturbation theory for

resonant multiphoton transition of highly charged ions [93] beyond the dipole approxima-
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Chapter 5: Bound dynamics of multiply charged ions

tion. Unfortunately, no analytical expressions are known for a two-dimensional soft-core

potential in ultra-strong laser fields, which is studied here.

5.2 Transitions beyond the dipole approximation

Before treating our system by taking all relativistic orders into account, a brief overview of

the analytic solution of the simplest two-level system is given in the following. Therefore,

the coupling of a two-level system to a single mode of an external laser field [94] of

frequency ω is considered. However, in realistic atomic systems consisting of many levels

a two-level description of the atomic systems is only valid, if the two levels are resonantly

or near-resonantly coupled to the driving field, while all other levels are detuned. We

define the lower state by n with the energy En and the upper state by m with the energy

Em. Resonance occurs when the following conditions are satisfied:

∆ = ωmn − ω ≪ ω (5.1)

|dmnE| ≪ ωmn , (5.2)

with ωmn to be the transition frequency between the states n, m and dmn the dipole matrix

element of the field free states. Additionally, to the resonance condition the intensity of

the applied laser field strength E needs to satisfy the condition E ≪ Eat, where Eat is

the atomic field strength. This condition ensures that the bound dynamics of the system

and not any ionization into the continuum is studied.

In the following, the analytic semiclassical solution of the interaction of an ideal two-level

system with a single-mode field E(t) = E0 cos(ωt) in dipole approximation is examined.

The state vector of the two-level system is expressed by:

|Ψ(t)〉 =
∑

k

Ck(t)e
−iEkt|k〉 (5.3)

= Cn(t)e−iEnt|n〉 + Cm(t)e−iEmt|m〉 (5.4)

with the propability amplitudes Cn(t) and Cm(t) of the lower and upper state, respectively.

The time evolution of the wavefunction by the Schrödinger equation can be written as:

i
∂Ψ(r, t)

∂t
= HΨ(r, t) = (Hat +Hint(t))Ψ(r, t) , (5.5)
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5.2. Transitions beyond the dipole approximation

where Hat = ωnm|m〉〈m| (energy of the lower state n is chosen to be zero) is the unper-

turbed atomic part of the Hamiltonian and Hint(t) = d · E(t) describes the interaction

Hamiltonian. Substituting the expansion given in Eq. (5.4) into the time-dependent

Schrödinger equation (5.5) we obtain a set of coupled first order differential equations of

the amplitudes:

dCn

dt
= −iE0cos(ωt)dnme

iωnmtCm (5.6)

dCm

dt
= −iE0cos(ωt)d

⋆
nme

−iωnmtCn (5.7)

or by expanding the term cos(ωt) we obtain

dCn

dt
=

i

2
E0dnm{ei(ωnm−ω)t + ei(ωnm+ω)t}Cm (5.8)

dCm

dt
=

i

2
E0d

⋆
nm{e−i(ωnm−ω)t + e−i(ωnm+ω)t}Cn . (5.9)

Applying the rotating wave approximation, i.e. neglecting the fast oscillating terms ωnm+

ω. The set of equation becomes

dCn

dt
=

i

2
E0dnm{e−i(ωnm−ω)t}Cm (5.10)

dCm

dt
=

i

2
E0d

⋆
nm{e−i(ωnm−ω)t}Cn . (5.11)

Integrating Eq. (5.10,5.11) and introducing the detuning ∆ = ωnm − ω with the initial

condition at time t = 0 to be Cn(0) = 1, Cm(0) = 0 gives the solution of the population

in the upper state

Cm(t) = −id
⋆
nmE0

ΩR

e
i∆t
2 sin

(
ΩRt

2

)

, (5.12)

where

ΩR =
√

∆2 + (d⋆
nmE0)2 (5.13)

is the effective Rabi frequency. The probability of the atom to be in the upper state m

(excited state) is

P (t) = |Cm(t)|2 =

(
d⋆

nmE0

ΩR

)2

sin2

(
ΩRt

2

)

(5.14)

In Fig. 5.1 the probability amplitude P(t) is plotted for various values of the detuning

∆. For an increase in the detuning the probability of finding the atom in the upper
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state is decreasing. The process described above is called Rabi oscillation resulting from

the process of stimulated emission and absorption of photons. During the oscillation of

the population between the two states the atom is in a superposition of the lower and

upper state. The Rabi frequency is proportional to the strength of the radiation field.

The proportionality factor thereby is the transition dipole matrix element d = er. The

quantum mechanical analogon to the Rabi model with a quantized atom is the Jaynes-

Cumming model [95]. For the analytic solution the laser pulse is assumed to be infinite.

In the next sections we investigate the interaction of bound wavefunctions with a finite

laser pulse.

0 5 10 15 20
Ω

R
t

0

0.2

0.4

0.6

0.8

1

P(
t)

∆=0
∆=0.5
∆=1.0

Figure 5.1: Schematic diagram of Rabi oscillations for different values of the detuning ∆
of a resonantly driven two-level system.
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5.2. Transitions beyond the dipole approximation

5.2.1 One photon transition

So far we have discussed the simple two-level model, now we turn to more elaborated

analyses investigating the interaction of resonantly coupled two-level systems in multiply

charged hydrogen-like ions with a single-mode laser field by means of semiclassical theory,

i.e. the bound states are treated quantum mechanically by means of the Dirac equation

and the laser field classically. Thereby, the bound states are represented by the generated

wavefunction of the unperturbed two-dimensional soft-core potential of Eq. (3.2). The

laser field is taken to be finite and has a sin2-shaped pulse, for details see section 3.3.1.

The whole bound dynamics is then given by the full relativistic wavefunction propagating

on a two-dimensional numerical grid. Therefore, the following assumptions made in the

analytic approach can be neglected.

Firstly, the analytic treatment was done in the scope of non-relativistic theory for atoms

with a charge of Z = 1 by solving the Schrödinger equation. The systems we are studying

here involve higher nuclear charges (Z > 1), where relativistic effects have to be consid-

ered. These are taken into account by the solution of the Dirac equation. Secondly, we

have extended the for the analytic solution necessary dipole approximation of resonantly

driven systems, by keeping the spatial dependence of the laser field. The phase η of the

laser field E(t) = E cos(η) becomes then η = ωt−kr instead of η = ωt as before. Thirdly,

the rotating wave approximation has not been applied, i.e. we keep all the terms including

these with high oscillations.

However, for our analysis we restrict ourselves to the near resonant photon regime, where

only a few levels are involved in order to keep the whole bound dynamics feasible. The

population probability amplitude is then numerically determined by a projection of the

actual wavefunction on the bound state eigenwavefunction. The therefore necessary bound

eigenstates and their associated wavefunctions of the selected multiply charged hydrogen-

like atomic core of charge Z are generated via the spectral method see section 3.2.3

before applying the laser field. Even though we can chose many states as initial state

in our present analysis we have taken the ground state to be the initial state. In the

following, we investigate the bound dynamics of a bound transition resonantly driven by
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Chapter 5: Bound dynamics of multiply charged ions

a laser field. Hereby, any spontaneous decay processes of excited states are not considered.

Once the external laser field is switched off the population numerically remains in their

eigenstates. The population dynamics at any time t is then obtained by projecting the

actual wavefunction, which is distorted through a superposition of the populated many

levels system, on the field-free bound state of interest. The square of this projection

defines then the probability to find the electron in the considered state. Such a population

dynamics of some states is illustrated in Fig. 5.3. Here the transition from the initially

populated ground state |1S1/2〉 to the higher lying state |3P3/2〉 is resonantly driven with a

laser frequency corresponding to a one-photon transition between those states. A change

of the population from the ground state |1S1/2〉 to the |3P3/2〉 excited state is clearly

visible, as the whole population moves from the ground state into the excited state and

back again. Additionally, the population dynamics of the |3S1/2〉 state has been plotted

to show that only a small percentage of the population is excited from the |1S1/2〉 state

into the above |3S1/2〉 state. This |1S1/2〉 ↔ |3S1/2〉 transition is in fact dipole forbidden.

The non-zero probability amplitude results from the transition of the |3P3/2〉 to the |3S1/2〉
state. As this transition is not resonantly coupled to the laser field its population is rather

low. The oscillation in the probability amplitude arises from the non-resonantly coupling

of the laser field to the |3S1/2〉 ↔ |3P3/2〉 transition. From the Rabi frequency of the

resonantly driven |1S1/2〉 ↔ |3P3/2〉 transition the one-photon transition dipole matrix

element is calculated according to Eq. (5.13) to be dR = 0.027 a.u.

ωl

|b〉

|a〉

Figure 5.2: Schematic diagram of the interaction of a two-level system with the laser field
of the one-mode frequency ωl .
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Figure 5.3: Depicted is a resonantly driven one-photon transition |1S1/2〉 ↔ |3P3/2〉 in a
hydrogen-like Ne9+ (Z = 10). The laser frequency ω = 43 a.u. (λ = 1.06 nm) is chosen to
be in resonance with the unperturbed transition of |1S1/2〉 ↔ |3P3/2〉 for a field strength
of E = 10 a.u. and a sin2-shaped pulse of 157 cycles including 3.5 cycles turn-on and
turn-off ramp, respectively.
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Figure 5.4: Plotted is the radiation spectrum of the resonantly driven transition of
|1S1/2〉 ↔ |3P3/2〉 with the same parameters as given in the caption of 5.3.

To verify the excitation of only the resonantly driven one-photon transition |1S1/2〉 ↔
|3P3/2〉 we have additionally calculated the radiation spectrum of the bound dynamics

plotted in Fig. 5.4. It is generated via a Fourier transformation of the dipole acceleration

in laser propagation direction. The driven transition can be clearly identified as the main

fundamental peak in the radiation spectrum, which represents the emission of radiation

of the stimulated transition and can be principally used to detect relativistic signatures

in the spectrum by comparing with non-relativistic calculations. In case of multipho-

ton transitions between resonantly coupled states in highly charged ions the emission

frequency can reach the X-ray regime.
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Figure 5.5: Plotted is the radiation spectrum for a laser frequency ω = 1 a.u. (λ = 4.56
nm) applied to Ne9+ for two different field strengths. The spectrum shows the fundamental
of the applied laser field strength at the first two transition from the ground state |1S1/2〉
to the excited states |2P3/2〉 and |3P3/2〉. The pulse consist of six cycles including one
cycle for the turn-on and turn-off ramp, respectively.

In the following, the dependence of the radiation spectrum on the applied laser field

strength E is investigated. As an example we take an ionic core charge of Z = 10

and a laser field frequency of ω = 1 a.u., which is smaller than the related transition

frequencies in the system. For the field strengths E of 1 a.u. and 10 a.u. applied to this

system the corresponding radiation spectrum is displayed in Fig. 5.5. The population is

initially in the ground state |1S1/2〉. The corresponding radiation spectrum consists of two

other peaks at the harmonic order of 32 and 43 apart from the fundamental frequency,

which belong to the transition frequency of the |1S1/2〉 ↔ |2P3/2〉 and |1S1/2〉 ↔ |3P3/2〉
respectively, as is clearly seen in the case of E= 1 a.u. For the higher field strength of 10

a.u. (1/100 of the atomic field strength) the second peak becomes not distinctly visible

from the background oscillations arising from the Fourier transformation. The higher field

strength causes somewhat greater perturbations to the energy eigenstates, related to the

ac-Stark effect resulting in a smaller coupling to the laser field.
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5.2.2 Three-photon transitions

Of increasing interest in the general process of intense laser-atom interaction is the coher-

ent radiation of short-wavelengths, which e.g. are generated by bound-bound multiphoton

transitions in highly charged ions. For an efficient multiphoton excitation the laser field

should be strong enough to induce such a transition. However, the interactions of non-

resonantly coupled energy states in a multi-level configuration need to be avoided in order

to have a negligible influence on the resonantly coupled transition of interest. Moreover, it

has to be assured that the laser field is not too strong in order to avoid that multiphoton

ionization rates exceed the excitation rate of the considered transition.

In this section, we investigate the above discussed |1S1/2〉 ↔ |3P3/2〉 transition by driving

it resonantly via three photons. The three-photon transition matrix element is much

smaller compared to the one-photon transition. Moreover, with the lower applied laser

frequency other levels might as well be non-resonantly populated. We furthermore satisfy

that only bound-bound transitions take place by choosing the laser field strength to be

1% of the mean ionic field strength, otherwise bound-continuum transitions are involved.

In Fig. 5.6 the time-dependent population is depicted for the |1S1/2〉 ↔ |3P3/2〉 transition.

We again initially populated the ground state |1S1/2〉. The laser field resonantly couples

to the |1S1/2〉 ↔ |3P3/2〉 transition driving the population slowly in time into the state

|3P3/2〉. The decreasing population probability amplitude of the |1S1/2〉 state is modulated

by high oscillations, which results from the coupling to the energy level |2P3/2〉 for the

chosen laser frequency on a much shorter time scale. As the three photon transition dipole

matrix element is so small, the time for a full Rabi oscillation is numerically coming up

to a limit of adequate computation time as the whole wavefunction has to be spatially

and temporally kept within the numerical grid in order to project every hundred time

step on to the eigenstates of the unperturbed system for the calculation of the population

dynamics. However, with an interpolation of the temporal probability amplitude of the

depopulation of the state |1S1/2〉 we roughly estimate the Rabi frequency to be ΩR=0.0006

a.u. and therefore the corresponding transition dipole matrix element to be dR=6 ×10−5.
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Figure 5.6: Depicted is a resonantly driven three-photon transition |1S1/2〉 ↔ |3P1/2〉 in
Ne9+. The laser frequency ω = ω0/3 is chosen to be in resonance via three photons with
the transition frequency w0 of the unperturbed system for a field strength of E0 = 10
a.u. and a sinusoidal laser pulse of 157 cycles with 3.5 cycles turn-on and turn-off ramp,
respectively.

99



Chapter 5: Bound dynamics of multiply charged ions

From the radiation spectrum of the resonantly driven three-photon transition three main

peaks can be distinguished. These three peaks are displayed as a function of the funda-

mental harmonic of the laser frequency given by one third of the unperturbed transition

frequency. The second peak is thereby the corresponding peak to the three photon tran-

sition. As there exists for this three-photon transition between the states |1S1/2〉 and

|3P3/2〉 some detuning, the corresponding radiation peak is not the highest in the radia-

tion spectrum, but it is enhanced compared to the exponential decay of the peak height.

The first peak is so strong as unfortunately the chosen laser frequency couples to the rel-

atively strong low-lying |2P3/2〉 state. The third peak represents a coupling to the excited

high-lying state |4P3/2〉. The oscillations of the spectrum between the three main peaks

are due to the numerical Fourier transformation.
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Figure 5.7: Plotted is the radiation spectrum of the resonantly driven three-photon tran-
sition of the transition |1S1/2〉 ↔ |3P1/2〉. The laser parameters are the same as given in
the caption of Fig. 5.6.
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5.3 Conclusion

The bound dynamics has been investigated with the numerical solution of the Dirac

equation in two dimensions. We focused especially on the population dynamics of the

low-lying bound states of multiply charged hydrogen-like ions, taking non-dipole and rel-

ativistic orders into account. The population dynamics of multiply charged hydrogen-like

ions has been evaluated by projecting the actual spatially and temporally highly resolved

wavefunction on the eigenwavefunction of the associated eigenstates of the unperturbed

system. We have exemplified that the one-photon transition matrix element in a full

relativistic treatment of the bound dynamics can be calculated by an investigation of the

population dynamics via Rabi oscillation, which is in principle also possible for multipho-

ton transitions. Additionally, the harmonic spectra of the related transitions have been

calculated and an enhancement of a particular harmonic via a three photon resonance has

been shown. The high harmonic radiation from these widely separated transition states

in highly charged ions is of broad interest to be a tunable table-top source in the XUV

and soft X-ray regime.
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Summary and Outlook

In this thesis we focus on the relativistic dynamics of ultra-strong laser fields in multiply

charged hydrogen-like ions. The related interactions can be further distinguished into an

ionization and a bound dynamics regime, both of which are studied. This classification

corresponds to the different ratios of the atomic field strength, that an electron on the

first Bohr radius exposes, and the applied laser field strength. A laser field strength of

the order of the atomic field strength or above is associated with the ionization dynamics

regime, whereas laser field strengths below belong to the bound dynamics regime.

The interaction of the electron in the combined field of the Coulomb potential and the

laser for both regimes has been numerically investigated by means of an integration of the

classical relativistic equation of motion and by solving the Dirac equation via the split-

operator method. For the latter, the calculation has been restricted to two dimensions to

gain feasible computation time. For the solution of the classical relativistic equation of

motion we have implemented the Runge-Kutta technique with a 4th-order adaptive step-

size algorithm for the integration, where the initial relativistic ground state energy has

been taken from quantum mechanics. The electron is then modeled by a microcanonical

ensemble in phase space.

In chapter 2 the basic processes for both the ionization and the bound dynamics have

been presented. In the case of ionization dynamics, we especially investigated the non-

relativistic laser-atom interaction and the relativistic laser-ion interaction resulting in a

diagram regarding the importance of magnetic field and relativistic effects as a function

of the field frequency and intensity for different ionic core charges Z. In the case of the

bound dynamics regime the center-of-mass motion within the dipole approximation and

beyond has been studied.
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In chapter 3 the numerical models of the respective calculations are presented. The

numerical calculation of the energy eigenstates and their corresponding wavefunctions

have been obtained via the spectral method in the Dirac case. For this approach, the

Coulomb potential of the ionic core charge is approximated by a two-dimensional soft-

core potential. The resolution of the height and width of the energy spectrum peaks

depends on the propagation time of the associated wavefunction.

The first part of the relativistic interaction regime of chapter 4 is based on the investi-

gation of the validity of the analytically given tunnel rate formula in the non-relativistic

and relativistic case. A comparison of the ionization fraction, which is the ionization

probability at the end of the pulse, has been made with the classical relativistic Monte-

Carlo simulation. It has been shown that the analytical relativistic tunnel rate formula

and the CTMC simulation yield similar ionization fractions in the experimentally relevant

range of tunnel ionization. However, close to the critical field strength for over-the-barrier

ionization the analytically calculated ionization fraction exponentially increases, thereby

limiting its validity. Moreover, relativistic effects of the bound electron become important

for multiply charged hydrogen-like ions above an ionic core charge of Z = 10.

Apart from the ionization fraction, a further observable has been studied, namely the

ionization angle. This observable corresponds to the ratio of the electron kinetic momen-

tum between the laser polarization and the propagation direction in comparison to the

experimental photoelectron spectra.

Based on the study of the ionization fraction we have presented a novel method to deter-

mine most sensitively the laser intensity by measuring the ionization fraction in multiply

charged hydrogen-like ions by means of a classical relativistic Monte-Carlo simulation.

We showed that our proposed method is in principle not limited by any ultra-strong laser

fields apart from the limit of the ionic field strength via the critical charge of Z = 137,

which provides instable ions. The dependence of this method on typical laser parameters

like the pulse length, shape and carrier phase as well as quantum effects have been studied

and the extension of the method from the optical towards the XUV frequency range has

been shown. The greatest impact on the measured ionization fraction arises from the
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chosen pulse length and shape concerning the attained peak intensity as from quantum

effects.

Favorable for a complete characterization in the future of further possible effects on the

ionization fraction is to include in addition QED corrections, which are likely to contribute

significantly at an ionic core charge above Z = 50.

In the second part, examined in chapter 5, the bound dynamics of the electron in mul-

tiply charged hydrogen-like ions has been investigated. Here, the population dynamics

of various available states has been fully relativistically examined by means of the Dirac

equation. The main problem of these calculations is the shift of the bound state energy

due to the dynamical Stark effect, which plays a major role with increasing field strength.

Moreover, the investigation has been used to calculate multiphoton transition matrix el-

ements with the help of studying Rabi oscillations. In the associated radiation spectra

these transitions have been identified.

More advantageous is the generation of even higher harmonics from these multiphoton

transitions in highly charged ions. In particular the study of laser-driven multiphoton

transitions is of special interest in the field of relativistic resonant interactions with highly

charged ions e.g. for high precision two-photon spectroscopy, quantum optical effects

such as the interference of two different initial states resonantly driven by two-color laser

frequencies ending up in the same final state and the generation of harmonics in the XUV

frequency range in case of highly charged ions. As a future task the study of multiphoton

transitions in even higher ionic core charges should be carried out for a comparison of the

transitions within the dipole approximation and beyond, as dipole forbidden states could

be populated.
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Appendix A

Method of finite differences

The finite difference methods are usually applied for numerical approximations of the

solution of differential equations, especially on their derivatives. The simplest form is

thereby the replacing of the derivative expression with approximately an equivalent dif-

ference quotient. The calculation of the derivative of the angular momentum operator has

been done in section 3.2.4 by using the method of finite differences [96], based on the Tay-

lor series of the function fn = f(xn) for different points xn = nh with n = 0,±1,±2, . . ..

From

f±1 ≡ f(x = ±h) = f0 ± hf ′ +
h2

2
f ′′ ± h3

6
f ′′′ +

h4

24
f (4) +O(h5) (A.1)

f±2 ≡ f(x = ±2h) = f0 ± 2hf ′ + 2h2f ′′ ± 4h3

3
f ′′′ +

2h4

3
f (4) +O(h5) (A.2)

the 5-point-formula for the calculation of the 1st and 2nd derivative can be easily obtained.

1.Ableitung :

f ′ =
1

12h
[f−2 − 8f−1 + 8f1 − f2] +O(h4) (A.2)

2.Ableitung :

f ′′ =
1

12h2
[f−2 + 16f−1 − 30f0 + 16f1 − f2] +O(h4) (A.2)

The φ derivative from Eq. 3.12 corresponds then on a 2-dimensional grid to

∂

∂φ
= x1

∂

∂x2
− x2

∂

∂x1
. (A.2)
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In analogy we get for the Ĵ2 operator

∂2

∂φ2
=

(

x1
∂

∂x2

− x2
∂

∂x1

)(

x1
∂

∂x2

− x2
∂

∂x1

)

(A.3)

= x2
1

∂2

∂x2
2

− x1
∂

∂x1

− x2
∂

∂x2

− 2x1x2
∂

∂x2

∂

∂x1

+ x2
2

∂2

∂x2
1

(A.4)

From the mixed derivative ∂
∂x2

( ∂
∂x1
fij) in J2 we obtain the contribution

∂

∂x2

(
∂

∂x1

fij

)

=
1

12h2

[(
fi−2,j−2 − 8fi−2,j−1 + 8fi−2,j+1 − fi−2,j+2

12h1

)

−8

(
fi−1,j−2 − 8fi−1,j−1 + 8fi−1,j+1 − fi−1,j+2

12h1

)

+8

(
fi+1,j−2 − 8fi+1,j−1 + 8fi+1,j+1 − fi+1,j+2

12h1

)

+

(
fi+2,j−2 − 8fi+2,j−1 + 8fi+2,j+1 − fi+2,j+2

12h1

)]

For the finite difference methods exists two sources of errors, round-off error, due to the

loss of precision by computer rounding of decimal quantities, and the discretization error,

known as the difference between the exact solution of the finite difference equation and

the exact quantity assuming perfect arithmetic, which need to be taken care of.
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Appendix B

Clifford algebra

In Dirac notation the Dirac spinor Ψ is written as Ψ =
(
Ψ1,Ψ2,Ψ3,Ψ4

)T
.

The standard γ matrices have the form γ0 =

(
I 0
0 −I

)

, γk =

(
0 −σk

σk 0

)

where k=1,2,3 and σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

.

These matrices fulfill the relation

σ1σ2σ3 = iI , (B.0)

where i =
√
−1 is the imaginary number. In the Dirac notation (Clifford algebra) these

σk for k = 1, 2, 3 are no longer matrices but instead are vectors in the space-time algebra.

They generate an algebra in R, which is isomorph to the known Pauli algebra. In analogy

to standard notation we write in the space-time algebra formalism

~σ1 ~σ2 ~σ3 = i (B.0)

with ~σk = γkγ0.

The Clifford algebra in R1,3 provides a multivector from zero to forth grade, which gen-

erates the Dirac or time-space algebra. In the following table the possible combinations

are listed:
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Appendix B: Clifford algebra

Name Grades basis elements

scalar 0 1
vector 1 γ0, γ1, γ2, γ3

bivector 2 γ1γ0 = ~σ1, γ2γ0 = ~σ2, γ3γ0 = ~σ3

γ3γ2 = i ~σ1, γ1γ3 = i ~σ2, γ2γ1 = i ~σ3

trivector 3 γ1γ2γ3 = γ0i, γ0γ2γ3 = γ1i
γ0γ3γ1 = γ2i, γ0γ1γ2 = γ3i

pseudoscalar 4 γ0γ1γ2γ3 = i

The basis vectors in R1,3 are then defined by

γνγµ + γµγν = 0 ⇔ µ 6= ν (B.0)

For µ, ν ∈ 0, 1, 2, 3 apply the rules

γ2
0 = 1 (B.1)

γ2
k = −1 with k ∈ 1, 2, 3 (B.2)

The most general multivector in this algebra can be converted to the standard spinor

notation by the decomposition of

Ψ = α + Ek ~σk +Bkik + βi (B.3)

= (α +B3i3)
︸ ︷︷ ︸

Ψ1

+ ~σ3(E
3 + βi3)

︸ ︷︷ ︸

Ψ3

+ ~σ1(E
1 + E2i3)

︸ ︷︷ ︸

Ψ4

− i2(−B2 +B1i3)
︸ ︷︷ ︸

Ψ2

(B.4)

Hereby, the i3 has to be replaced by the imaginary unit i to obtain Ψ ∈ C4 and the

superscripts represents the corresponding grades in the Dirac notation.
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Appendix C

Atomic units

In this thesis atomic units (a.u.) are used, if not explicitly stated otherwise In this unit

system the physical constants of length, mass and charge are chosen to be

α0 = me = e0 = ~ = 1. (C.1)

Here, α0 denotes the Bohr radius, me the electron mass, e0 the charge of the positron

and ~ the Planck constant h reduced by a factor of 2π. The following table shows the

conversion of physical quantities from atomic units in SI units.

physical quantity atomic unit [a.u.] SI units

energy ε 1 27.21 eV

electric field E 1 5.14 × 109 V/cm

intensity I 1 3.51 × 1016 W/cm2

speed of light c 137.036 2.99 × 108 m/s

time t 1 24.2 × 10−18 s

angular frequency ω0 1 2.59 × 1017 s−1

length α0 1 52.9 × 10−12 m
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Appendix C: Atomic units

The conversion of the electric field E in atomic units of a sinusoidal laser wave to laser

intensities in SI units, is often used and is given by:

I[W/cm2] = 3.51 × 1016(E0[a.u.])
2 . (C.2)

Other useful formula are e.g. the conversion of the angular frequency ω in atomic units

to the wavelength λ and the photon energy Eph = ~ω expressed by:

λ

1nm
= 45.56

1a.u.

ω
(C.3)

Eph

1eV
= 21.21

ω

1a.u.
. (C.4)
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theory, Vol. 4, Pergamon Press Ltd. Headington Hill Hall, Oxford

[56] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of one- and two-electron atoms,

Springer-Verlag, 1997
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[70] P. H. Mokler and T. Stöhkler, Adv. At. Mol. Opt. Phys. 37, 297 (1996); T. Ditmire

et al., Nature 386, 54 (1997); S. J. McNaught, J. P. Knauer and D. D. Meyerhofer,

Phys. Rev. A 58, 001399 (1998); S. X. Hu and C. H. Keitel, Phys. Rev. A 63,

053402 (2001); S. X. Hu and A. F. Starace Phys. Rev. Lett. 88, 245003 (2002); K.

Yamakawa et al., Phys. Rev. A 68, 065403 (2003); V. P. Krainov, J. Phys. B: At.

Mol. Opt. Phys 36, 3187 (2003); V. S. Popov, Usp. Fiz. Usp. 47, 855 (2004); J. R.
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