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Dynamische Dunkle Energie und Variation funda-
mentaler “Konstanten”

Diese Arbeit beschäftigt sich mit den Auswirkungen möglicher Variationen funda-
mentaler “Konstanten” auf den Prozess der primordialen Nukleosynthese (BBN). Die
gewonnenen Ergebnisse zur Nukleosynthese werden mit Untersuchungen zu variieren-
den Konstanten in anderen physikalischen Prozessen kombiniert, um Modelle der
großen Vereinheitlichung (GUT) und Quintessence zu überprüfen. Unsere Unter-
suchungen ergeben, dass das 7Li-Problem der Nukleosynthese stark gemildert werden
kann, sofern man Variationen von Konstanten zulässt, wobei insbesondere eine Vari-
ation der leichten Quarkmassen einen starken Einfluss hat. Weiterhin finden wir,
dass aktuelle Messungen zu variablen Konstanten im Rahmen von sechs exemplar-
ischen GUT Modellen nicht miteinander und mit BBN in Einklang gebracht werden
können, sofern eine monotone zeitliche Variation angenommen wird. Wir folgern,
dass aktuelle Messungen nichtverschwindender Variationen in starkem Widerspruch
zueinander stehen und entweder selbst revidiert werden müssen, oder in der Natur
erheblich komplexere GUT-Zusammenhänge (und/oder nicht-monotone Variationen)
vorliegen. Die im Rahmen dieser Dissertation vorgestellten Methoden erweisen sich
hierbei als mächtige Werkzeuge, um per Experiment unzugängliche Bereiche weit
jenseits des Standardmodells der Teilchenphysik bzw. des concordance Modells der
Kosmologie auf ihre intrinsische Konsistenz sowie auch Vereinbarkeit miteinander zu
überprüfen, sofern einmal erste unumstößliche Beweise für Variationen von Naturkon-
stanten vorliegen sollten.

Dynamical dark energy and variation of fundamental
“constants”

In this thesis we study the influence of a possible variation of fundamental “constants”
on the process of Big Bang Nucleosynthesis (BBN). Our findings are combined with
further studies on variations of constants in other physical processes to constrain mod-
els of grand unification (GUT) and quintessence. We will find that the 7Li problem of
BBN can be ameliorated if one allows for varying constants, where especially varying
light quark masses show a strong influence. Furthermore, we show that recent studies
of varying constants are in contradiction with each other and BBN in the frame-
work of six exemplary GUT scenarios, if one assumes monotonic variation with time.
We conclude that there is strong tension between recent claims of varying constants,
hence either some claims have to be revised, or there are much more sophisticated
GUT relations (and/or non-monotonic variations) realized in nature. The methods
introduced in this thesis prove to be powerful tools to probe regimes well beyond the
Standard Model of particle physics or the concordance model of cosmology, which
are currently inaccessible by experiments. Once the first irrefutable proofs of varying
constants are available, our method will allow for probing the consistency of models
beyond the standard theories like GUT or quintessence and also the compatibility
between these models.
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Chapter 1

Introduction

The constants of nature

Since the time of Newton, the constancy of the fundamental laws of nature has been
undoubted. Comparing and reproducing experiments have been at the root of the
scientific approach: A physical experiment which we perform today will have the same
outcome as the same experiment performed tomorrow1. Neglecting local gravitational
effects, it should also not matter where we perform the experiment. Hence, it has been
unquestionable for a long time that the laws of nature are constant over space and
time. Moreover, Einstein formulated this space- and time independence of physics in
his strong equivalence principle, making it an essential part of his theory of general
relativity.

Today’s view of this question is somewhat different, at least from theoretical as-
pects. Even though compelling evidence for changes in the laws of physics has up
to now not been found, we have to admit that we are still lacking a profound test
of this constancy. In the past, the laws of physics have only been thoroughly tested
on time and length scales accessible by mankind, i.e. on timescales of years and on
length scales that do not go beyond the size of our solar system2. Only recently as-
trophysics and cosmology have opened a door to test physics on immensely broader
scales, reaching out to unimaginable length scales of several gigaparsecs and going
back in time to the very beginning of our Universe.

This thesis will deal with probes of possible variations of constants throughout
the whole accessible history of the Universe. In a first part, we will study one of
the most distant (in time and space) events where physics can be applied and tested,
primordial nucleosynthesis. It is the process during which the light elements of our
Universe were formed and which happened when our Universe was only one minute
old, extremely hot and dense. If physics was really subject to variations, primordial
nucleosynthesis is a prime candidate for any studies of this kind. In a second step
the obtained results will be combined together with further tests of varying constants
at later times to derive a “history of variations”. Finally, we will show how these
results can be used to test models beyond standard physics which currently cannot
be accessed directly by experiments.

1Neglecting experiments which incorporate probabilities, for instance quantum mechanical effects.
2Note that general relativity has furthermore not been tested on length scales smaller than about

1mm.
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3

Outline

In this thesis I will work out the influence of varying “constants” on the process
of primordial nucleosynthesis and implied constraints to theories beyond standard
physics. In the next chapter, I will give a short introduction to variations of physical
constants, some historical remarks and theoretical motivations. Chapter 3 will lay the
theoretical framework for our understanding of the Universe as a whole, explaining
general relativity and the main laws of cosmology. In Chapter 4 I will introduce
the concepts of supersymmetry and grand unified theories (GUTs) which are widely
accepted as extensions of the Standard Model of particle physics. Chapter 5 will
introduce quintessence models which can yield variations of constants.

Part II will focus on the details of one particular process in the history of our Uni-
verse, Big Bang Nucleosynthesis (BBN). Chapter 6 will explain the standard process
of BBN and the physics behind. Chapter 7 will introduce the possibility of varying
constants in the process of BBN, and Chapter 8 will demonstrate how one can relate
the results to variations of the Standard Model parameters. Finally, in Chapter 9,
the observed element abundances will be used to derive constraints on variations of
fundamental parameters.

In Part III I will study relevant tests of varying constants from the Big Bang until
today. Chapter 10 gives an overview over tests of varying constants, and in Chapter
11 I will combine these tests within six different GUT models, showing how variations
of constants can in principle be used to probe models of grand unification. Using the
six GUT models, Chapter 12 shows how models of quintessence can be probed under
the assumption of grand unification.

Finally, in Chapter 13, I will sum up the findings of this thesis and give some final
conclusions and outlook.

The work on this thesis has led to four main publications:

• Michael Doran, Steffen Stern, Eduard Thommes,
Baryon Acoustic Oscillations and Dynamical Dark Energy,
JCAP 0704:015 (2007) [DST06] (not in focus of this thesis)

• Thomas Dent, Steffen Stern, Christof Wetterich,
Primordial nucleosynthesis as a probe of fundamental physics parameters,
Phys. Rev. D 76, 063513 (2007) [DSW07]

• Thomas Dent, Steffen Stern, Christof Wetterich,
Unifying cosmological and recent time variations of fundamental couplings,
Preprint arXiv:0808.0702, accepted by Phys. Rev. D [DSW08.1]

• Thomas Dent, Steffen Stern, Christof Wetterich,
Time variation of fundamental couplings and dynamical dark energy,
Preprint arXiv:0809.4628 [DSW08.2]



Chapter 2

Variation of “constants”

2.1 The laws of physics and the constants of nature

The fundamental laws of physics, represented by the Standard Model of particle
physics and Einstein’s theory of general relativity, consist of two parts. One part
is the mathematical form of the laws (e.g. the 1/r behavior of Newton’s theory of
gravity), the other part is the actual strength of the interactions relative to each other.
Whilst the first part, the mathematical form of the laws of nature, can be derived
from considerations of fundamental symmetries of nature1, the second part has to be
put into the theories “by hand” in form of about 27 - from a theory standpoint a
priori absolutely arbitrary - numerical values, the constants of nature. Tab. 2.1 gives
a list of these fundamental constants2 for the Standard Model of particle physics and
general relativity3. Note that the list of fundamental parameters gets much larger
when going to theories beyond the Standard Model, e.g. supersymmetry (see Sec.
4.4). Up to now it is unclear where these constants come from and if they are “real”
constants in the sense that their numerical values are fixed once and for all.

2.2 The question of constancy

The question if the constants of nature are actually constant was probably first raised
by Dirac [Dirac37, Dirac38, Dirac79]. In his “large numbers hypothesis”, he argues
that very large (or small) dimensionless constants must not enter in basic laws of
physics. Based on his numerological principle, he suggests that very large numbers
rather characterize the state of the Universe, specifically the time which has passed
since the Big Bang. For instance, he finds that the age of the Universe in atomic
time, H0e

2/mec
2 ≈ 2 × 10−41, is of the same order of magnitude as the ratio of

electrostatic to gravitational force between proton and electron, GNmpme/
e2

4πǫ0
≈

1For example, the Standard Model of particle physics is obtained when demanding a local SU(3)×
SU(2) × U(1) symmetry. See Sec. 4.1.

2As will be explained in Sec. 2.5, only ratios of masses are measurable fundamental parameters.
Hence, in fact one can get rid of one the mass terms in Tab. 2.1, for instance by defining all masses
with respect to the Planck mass. This would reduce the number of fundamental parameters by one.

3In cosmology some more free parameters turn up which have to be determined by observations,
for instance those describing the composition of our Universe. However, it is assumed that these
parameters can in principle be obtained from some fundamental laws of physics once the processes
in the very early stage of the Universe are better understood.

4



2.3. THEORETICAL ARGUMENTS FOR VARIATION OF CONSTANTS 5

Number of
Type of constant parameters

3 coupling constants 3
masses of 6 quarks 6

CKM matrix (3 angles + 1 complex phase) 4
masses of 3 leptons 3
Higgs mechanism 2
strong CP phase 1

masses of 3 neutrinos 3
PMNS mixing matrix for neutrinos 4

gravitational constant 1

in summa 27

Table 2.1: The fundamental constants of nature.

4 × 10−40. Consequently, he suggests that also the latter quantity should vary with
cosmic time. Attributing the variation to the gravitational sector, the intensity of
all gravitational effects would then decrease with a rate of about 10−10 y−1. It
was quickly found that this would lead to astrophysical effects [Chandrasekhar37]
which could not be detected in the following time. Hence, Dirac’s theory was finally
abandoned, but the discussion on varying constants had started4.

In 1961, Brans and Dicke [BransDicke61] used Mach’s principle5 to derive what
we now call a “scalar-tensor theory”. In their model, the gravitational constant is
replaced by a scalar field which can vary in space and time. Besides others, models of
this kind are still being considered as theoretical arguments for variation of constants.

2.3 Theoretical arguments for variation of constants

In high-energy theories such as string theory, which unifies gravity with the Standard
Model of particle physics, our low-energy laws of physics appear as an effective theory
whose parameters are set dynamically by vacuum expectation values which break the
“higher” symmetry. In particular string theory offers a plethora of possibilities to
introduce variations of constants, for instance due to the fact that it is formulated
with 10 (or 11) spacetime dimensions which need to be compactified in order to
arrive at the 4 spacetime dimensions of the Standard Model (we will give some more
details in Sec. 5.5). Similar considerations also apply to other theories with extra
dimensions, for instance the possibility of varying constants in Kaluza-Klein theories
has been studied in [Marciano83]. Hence, both temporal and spatial variations of
constants are from a theoretical standpoint well founded, even though those high-
energy theories mostly do not give any hint on the actual size of the variations.

Also, “low-energy” theories, for instance theories which extend the concordance
model of cosmology by introducing a cosmological scalar field, allow variations of
constants. In this thesis we will concentrate on theories of coupled quintessence in
which constants can depend on cosmic time and the environment.

This thesis will examine the possibility of variations of constants from today back

4See for instance [Uzan02] for a more complete review of the history of varying constant theories.
5There are different formulations of Mach’s principle. In Brans’ and Dicke’s argument it states

[Brans05] that the gravitational constant should be a function of the mass distribution in the universe.



6 CHAPTER 2. VARIATION OF “CONSTANTS”

to the time of Big Bang Nucleosynthesis (BBN). During BBN, the composition of the
Universe was quite different from today’s composition (concerning temperature and
pressure). Hence, composition dependent effects which might cause spatial variations
today might have caused variations at BBN time. However, since the Universe was
almost homogeneous at BBN, these variations can effectively be treated as a time-
dependent effect. This thesis will not evoke the question of space-dependence of
constants but treat possible variations at BBN as purely temporal effects.

2.4 Equivalence principles and possible violations

Particle theory is based on Poincaré covariance. In quantum field theory (QFT), we
demand that each of the fundamental fields is a representation of the Poincaré group.
Hence, amongst others, invariance under spacetime translations is automatically built
in. However, we can still implement spacetime variations by introducing additional
dynamical fields, whose values are determined by the fields’ own actions and their
couplings to the rest of the theory. While the theory as a whole remains Poincaré
invariant, variations in measurable quantities can still arise if the solution for the
additional fields has a nontrivial spacetime dependence.

This discussion can be extended to general relativity (GR), which is also based
on symmetry principles that are apparently violated by variations of constants. In
particular, GR is based on the strong equivalence principle, which can be decomposed
into the following symmetries

• Weak equivalence principle: The trajectory of a freely falling test body only
depends on its initial position and velocity and is independent of its composition.

• Local Lorentz invariance: The outcomes of any experiments (whether gravita-
tionally or not) in a laboratory moving in an inertial frame of reference are
independent of the velocity of the laboratory.

• Local position invariance: Outcomes of experiments (whether gravitationally or
not) do not depend on their position in space and time.

A space or time variation of fundamental constants obviously violates local position
invariance. Also, as the gradient of any varying fundamental parameter defines a
direction in spacetime, local Lorentz invariance is violated. Finally, it has been shown
(see e.g. [Nordtvedt02]) that any space-time variation of fundamental constants will
necessarily lead to an additional gravitational force, hence also the weak equivalence
principle will be violated6. As probes of general relativity so far do not find any
violation of the theory, we can immediately conclude that variations of constants
must be extremely tiny. Note, however, that GR has only been tested on relatively
small time scales and also only on length scales from 1mm to the size of our solar
system.

6We will work out the relation between violation of the weak equivalence principle and variation
of constants in Sec. 12.3.
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2.5 Variation of dimensionful parameters

When measuring or estimating possible variations of constants, one always has to
keep in mind that the variation of any dimensionful quantity is not physically well-
defined, as one always has to specify how the dimension (e.g. the unit [Energy]) is
defined. In general, a dimensionful quantity can only be measured by comparison with
another dimensionful quantity, so in fact only dimensionless ratios are measurable. For
example, measurements of variations of the electron mass me are only well-defined
if one states how the mass unit is defined, for instance by choosing a system of
units where the mass scale is kept fixed. Popular system of units are the “Einstein
frame” where the Planck mass MP is kept constant, or the “Jordan frame” where
some particular particle physics scale is kept fixed. Considering the electron mass in
the Einstein frame, the actually measured varying quantity (without system of units
ambiguities) is then rather me/MP.

In the part of this thesis which deals with Big Bang Nucleosynthesis, we use
a system of units where the QCD invariant scale ΛQCD is kept constant. This is
convenient for dealing with nuclear reactions, where the energy scales are mainly
determined by the strong interaction. Thus the variations of dimensionful parameters
include implicitly some power of ΛQCD. For example, if we take the electron mass
me as a varying parameter we are implicitly considering a variation of me/ΛQCD. In
the last part of this thesis we will work with theories of grand unification. There,
the grand unified scale MGUT enters as natural scale which we choose to be constant.
The appropriate conversion from a constant ΛQCD to a constant MGUT system of
units is explained in Sec. 4.6.3.

2.5.1 The chiral limit

Many studies on varying constants work with the chiral limit, i.e. they assume that all
quarks are massless [Epelbaum02, BeaneSavage02, Donoghue06]. Then all dimension-
ful QCD parameters are simply proportional to a power of ΛQCD, which ameliorates
their treatment considerably. For instance, QCD masses like the proton mass simply
scale like

∆ ln mp = ∆ ln ΛQCD (2.1)

and any other dimensionful QCD parameter according to its mass scale (for instance,
cross sections with [σ] = [Energy]−2 scale like ∆ ln σ = −2∆ ln ΛQCD). Switching on
the quark masses, one obtains a finite range for pion-mediated interactions, which
may greatly affect static and dynamical properties of nuclei. Also, the masses of
all hadrons are affected at some order in chiral perturbation theory [Gasser82]. In
this thesis we will work with the full quark contributions, which are for most QCD
parameters known at least in first order chiral perturbation theory, i.e. to terms linear
in the quark masses.

2.6 Probes of varying constants

A possible variation of constants can be tested in various ways. Common tests are
laboratory based measurements, for instance of atomic transitions. Also, a multi-
tude of astrophysical and cosmological effects can be studied under the question of
constancy, which allow to probe physics over a timescale unreachable with labora-
tory measurements. In recent years probes of variations in the constants of nature
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have been performed with increasingly high accuracy. Whilst direct laboratory mea-
surements do not point towards any variation, some astrophysical tests yield slight
variations. In part III (Sec. 10) we will list all recent relevant probes of varying con-
stants, followed by detailed studies on how one can combine the different outcomes
in unified scenarios. BBN as a probe of varying constants will be examined in detail
in part II of this thesis.

2.7 Fine-tuning of constants and the anthropic

principle

Connected to the question of constancy of fundamental constants is the question of
fine-tuning of these constants. Even though this question can be seen as a rather
philosophical one, we will shortly comment on it.

As far as we know today, the value of most of the 27 fundamental constants is
extremely fine-tuned in order to allow life to appear. It has been argued [Tegmark97]
that even small deviations (less than or order of 1%) will make the appearance of
any life impossible. For example, if the strong force was slightly weaker, multi-proton
nuclei would not be stable, and if it was slightly stronger, hydrogen could fuse into
helium-2. Similar arguments can be found for the electromagnetic and weak force
and for many other natural constants.

This fine-tuning problem can be ameliorated, like all problems of this kind, by
evoking the anthropic principle7. In short, this principle states that the Universe
which we observe has to be capable to develop intelligent life like us. Otherwise we
would not be here and could not ask the question why the Universe has exactly the
laws of nature which it has. The final outcome is that the question why we are living in
such a highly fine-tuned, i.e. extremely improbable, universe has simply disappeared,
because the actual probability we have to discuss is rather the probability under the
condition of our existence, which is no longer vanishingly small.

In recent years scientists have come up with the idea of “multiverses”, stating
that universes with many different kinds of physical properties are constantly formed
[Linde86]. This is supported by candidate theories of everything (like string theory)
which ab initio do not seem to have hard constraints which would exclusively se-
lect our physics. Rather, they allow an extremely high number of different physical
configurations. In the framework of those theories, universes with many different
physical configurations bubble out constantly, and the anthropic principle states that
our universe is the one of these many universes which allowed us to appear.

These considerations are not directly connected to the investigations which are
subject of this thesis, except the fact that varying constants would lead to an even
more fine-tuned universe: Not only the values of the constants today, but also their
whole time evolution would need to be tuned such that we could appear. We will not
comment on the point of fine-tuning in the following, but it has become clear that the
problems we are tackling have some deeper connection to philosophy and the question
of why we are actually here.

7The concept of the anthropic principle was systematically introduced by Brandon Carter in a
contribution to a symposium honoring Copernicus’ 500th birthday in 1973 [Carter74], even though
the idea of the anthropic principle has already been used long before.



Chapter 3

Cosmology

In this thesis we will consider probes for varying constants from today back to the
first minute after the Big Bang. Hence it is essential to understand the evolution of
our Universe from the Big Bang until today. This chapter gives a short review of
our current picture of the Universe, its history and present status, and the important
equations that govern its evolution.

3.1 General relativity and the basics of cosmology

3.1.1 General relativity

General relativity is an extension of the theory of special relativity, which states that
gravity is a purely geometric effect, generated by the curvature of spacetime. The
relation between curvature and stress-energy is given by the Einstein field equations

Rµν −
R

2
gµν =

8πGN

c4
Tµν , (3.1)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric tensor and Tµν the
stress-energy tensor. Equation (3.1) is a complicated differential equation which can
in general only be solved if one makes simplifying assumptions and/or uses numeric
techniques.

3.1.2 The basics of cosmology

In cosmology one is interested in the evolution of the Universe as a whole. Thus,
one usually confines oneself to physics on large scales which allows to make some
simplifying assumptions that dramatically reduce the complexity of equation (3.1).

Assumption 1. The main assumption of cosmology is that the Universe is homoge-
neous and isotropic on large scales.

Of course, the existence of objects like the earth, sun etc. contradicts this as-
sumption locally. However, if one averages over distances (> 1000 Mpc), it turns out
that Assumption 1 is observationally well-justified1. Demanding all quantities to be

1The biggest known structure is the Sloan great wall which is 1.37 billion lightyears long.

9
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Composition w
non-relativistic matter 0

ultra-relativistic matter (radiation) 1/3
curvature -1/3

cosmological constant -1

Table 3.1: Equation-of-state parameters for different types of cosmological compo-
nents

homogeneous and isotropic, one can show [WeinbergGRT] that the metric takes the
simple form2

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dΘ2 + r2 sin2 Θdφ2

)

, (3.2)

where k describes the curvature and a(t) is the scale parameter, related to the redshift
z via

a =
1

1 + z
. (3.3)

The metric (3.2) is called Friedmann-Robertson-Walker metric (FRW metric). The
scale parameter fulfills the Friedmann equations

H2 :=

(

ȧ

a

)2

=
8πGN

3
ρ (3.4)

3
ä

a
= −4πGN

(

ρ +
3p

c2

)

, (3.5)

where H is the Hubble constant and ρ and p denote the total energy and pressure
density. These two densities are usually split up into the different components which
are assumed to be present in today’s Universe, baryonic and dark matter, dark energy
(denoted with the symbol Λ), photons, neutrinos and curvature3,

ρ = ρB + ρDM + ρΛ + ργ + ρν + ρK . (3.6)

The pressure is related to the energy via an equation of state,

pi = wiρi , (3.7)

where the equation-of-state parameter wi depends on the composition of the compo-
nents as shown in Table 3.1.

With the critical density defined as

ρC :=
3H2

8πGN
, (3.8)

2There are theories claiming that the averaged Einstein tensor Gµν = Rµν − R
2

gµν which enters
in Eq. (3.1) is not equivalent to the Einstein tensor derived from an averaged metric as given in Eq.
(3.2). Since the actual outcome of these considerations is still unclear, we will not consider those
theories in this thesis. See [Buchert07] for a recent review.

3In the very early Universe, also electrons will make a substantial contribution to the expansion
rate. This applies to the epoch of BBN and will be explained in more detail in chapter 6.
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all densities are usually given as fractional densities

Ωi :=
ρi

ρC
. (3.9)

Note that equation (3.4) yields

ΩB + ΩDM + ΩΛ + Ωγ + Ων + ΩK ≡ 1 (3.10)

at all times.

In the course of the evolution of the Universe, the energy densities scale like

ρ ∝ a−3(1+w) , (3.11)

which means that the values of Ωi do not stay constant over time since we have
different w for different kinds of energy densities (Tab. 3.1). As baryons and dark
matter follow the same equation of state, one can combine these to the matter energy
density

ΩM := ΩDM + ΩB . (3.12)

Given today’s values Ω0
i , one can combine Eqs. (3.4), (3.8), (3.9) and (3.11) and use

Tab. 3.1 to derive the time evolution of the Hubble constant,

H2(a) = H2
0

[

Ω0
γa−4 + Ω0

Ma−3 + Ω0
Ka−2 + Ω0

Λ

]

, (3.13)

where we have neglected the neutrinos which have no substantial contribution to to-
day’s content of the Universe4 (see Tab. 3.2). Eq. (3.13) shows that at early times
(a≪ 1) non-relativistic and relativistic matter become dominant and any cosmolog-
ical constant component irrelevant, whilst at late times (a ≫ 1) ΩΛ dominates. The
flow of cosmological components in the ΛCDM concordance model (see Sec. 3.2) is
depicted in Fig. 3.1, where the time evolution of the fractional components is given
by

Ωi =
Ω0

i a
−3(1+w)

Ω0
γa−4 + Ω0

Ma−3 + Ω0
Ka−2 + Ω0

Λ

. (3.14)

As can be seen in Fig. 3.1, today’s Universe (z = 0) is dominated by dark energy
(ΩΛ) but did undergo 2 transitions, from radiation dominated to matter dominated
and from matter to dark energy dominated:

• In the early Universe, the expansion was almost completely due to relativistic
particles ⇒ radiation-dominated era.

• At z ≈ 5000, about 70,000 years after the Big Bang, we have matter-radiation-
equality and the Universe becomes matter dominated.

• At z ≈ 0.4, about 4.3 Gyrs ago, the Universe becomes dominated by dark energy
(in a ΛCDM model).

4Further note that due to the tiny but non-vanishing mass of the neutrinos, the neutrino equation
of state might change during the evolution of the universe.
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Figure 3.1: Evolution of the components in a ΛCDM Universe

3.2 The concordance model: Our current picture of

the Universe

3.2.1 Historical development

Presumably, the question of where we come from and where we will go is as old as
mankind. As a first modern physical approach to questions of origin, evolution and
fate of the Universe, one usually considers Einstein’s paper “Cosmological Consider-
ations in the General Theory of Relativity” from 1917 [Einstein17]. One might say
that high-precision observational cosmology started with the Hubble space mission in
1990. It was followed by further astrophysical and cosmological investigations, and
basically all of these (mainly observational) tests point towards a coherent picture of
our Universe, which is called the “concordance model”.

3.2.2 Our current picture of the Universe

According to the concordance model, the Universe started in a Big Bang5 and has been
expanding since then. All observational evidence points towards a so-called ΛCDM
cosmology, stating that the Universe is geometrically flat (ΩK ≡ 0) and consists
besides known baryonic matter, leptons and photons of an unknown “dark matter”
component which has the property of non-relativistic, only gravitationally interacting
heavy particles, and a “dark energy” component, in the simplest version described by

5Even though it is hoped that physics will once be able to explain the actual origin of this singular
event, one is lacking an accepted theory of quantum gravitation which would allow to go beyond the
time of the Planck epoch.
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Figure 3.2: History of our Universe from Particle Data Group 2000

a cosmological constant Λ. See for instance [Bartelmann06] for a compilation of the
major observational evidences for the Big Bang and [WMAP5] for recent parameter
determinations including all major probes of the concordance model.

As can be seen in Fig. 3.1, we live in a dark-energy dominated universe just now
but have undergone both radiation- and matter-dominated phases. The question why
dark energy is taking over “just now” is unclear; this problem is called the “coincidence
problem” or “why now problem” (see Sec. 5.1).

Looking back to the very beginning of our Universe, the concordance model sug-
gests the following history of our Universe which is depicted in Fig. 3.2. Here, t is the
age of the Universe, i.e. the time after the Big Bang, and T is the temperature of the
Universe, defined by the photon temperature6.

• t ≈ 10−43 seconds (T ≈ 1019 GeV):
Planck epoch, needs to be described by a quantum theory of gravity.

• t ≈ 10−35 seconds (T ≈ 1015 GeV):
Inflation (exponentially fast expansion of the Universe),
Baryogenesis (production of matter-antimatter asymmetry)

6See Sec. 6.4.1 for details on the photon temperature.
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• 10−6 seconds ≤ t ≤ 10−2 seconds (T ≈ 0.1 GeV):
Quark-hadron transition: protons and neutrons form

• 1 second ≤ t ≤ 3minutes, (T ≈ 1 MeV, z ≈ 1010):
Nucleosynthesis: light elements (D, He, Li) form

• t ≈ 70, 000 years (T ≈ 1 eV, z ≈ 5000):
Beginning of matter dominated era

• t ≈ 300, 000 years (T ≈ 0.25 eV, z ≈ 1100):
Recombination, the cosmic microwave background (CMB) forms

• After that:
Galaxy/star formation.

Experimental tests of high-energy physics currently do not go beyond the TeV
region. The processes which happened during the Planck epoch, inflation and also
baryogenesis go beyond the physics of the Standard Model and are hence subject to
a lot of speculation. Also the quark-hadron transition is hard to describe since it
involves QCD at low energies, in the regime where QCD effects cannot be evaluated
perturbatively. Hence, the oldest cosmological events which can be reasonably de-
scribed quantitatively with known physics are primordial nucleosynthesis and CMB
formation.

3.3 Cosmological parameter values

In recent years, important and quite extensive missions have been undertaken to
deepen our understanding of cosmological relations. In particular, WMAP, SDSS and
Supernovae Ia [WMAP5, HinshawWMAP5](see also references therein) have yielded
a coherent set of cosmological parameters of a precision which had been inconceivable
10 years ago. However, compared to the Standard Model of particle physics, the
concordance model of cosmology is rather new and by far less tested. The set of
cosmological parameters for a ΛCDM cosmology is given in Tab. 3.2. It turns out
that only 4.6% of our Universe is made of “known” ordinary baryonic matter, the
rest of the Universe is dark matter and dark energy. The energy composition of our
Universe today is shown in Fig. 3.3.

Using the evolution equations of Sec. 3.1, the present-day values of cosmological
parameters allow to deduce the content of our Universe in the past and also in the
future7. As observations also allow us to look back in time, the picture for the past
is nowadays quite clear and observationally probed. The composition history of our
Universe in a ΛCDM model is shown in Fig. 3.1.

7Cosmological models allow to extrapolate cosmology into the future, however models are not
tested sufficiently to allow a definite prediction of what the ultimate fate of the Universe will be.



3.3. COSMOLOGICAL PARAMETER VALUES 15

Quantity Symbol Value

Hubble expansion rate H0 100h km/s Mpc
−1

normalized Hubble expansion rate h 0.701± 0.013

baryon density Ωb ≡ ρb/ρc 0.0462± 0.0015

dark matter density Ωdm ≡ ρdm/ρc 0.233± 0.013

matter density Ωm ≡ Ωb + Ωdm 0.279± 0.013

dark energy density ΩΛ ≡ ρΛ/ρc 0.721± 0.015

radiation density Ωγ ≡ ργ/ρc (5.0± 0.2) · 10−5

neutrino density Ων ≡ ρν/ρc < 0.013 (95%CL)

baryon to photon ratio η ≡ nb/nγ (6.21± 0.16) · 10−10

CMB temperature T 2.725 K

Table 3.2: Parameters describing our Universe. WMAP “recommended parameter

values” [WMAP5, HinshawWMAP5] from WMAP5, BAO and SN for a ΛCDM cos-

mology

Figure 3.3: Today’s energy content of our Universe. From NASA / WMAP Science
Team



Chapter 4

The Standard Model and

beyond

4.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics describes the elementary particles and
three of the four fundamental interactions, the strong, weak and electromagnetic in-
teraction. This section will only give a rough overview over some particular aspects
of the Standard Model which will be of relevance later. For a more comprehensive
introduction, see for instance [HalzenMartin] or any other textbook on modern par-
ticle physics.

The list of the fundamental particles of the Standard Model comprises

• six leptons (e, µ, τ, νe, νµ, ντ ),

• six quarks (u, d, s, c, b, t),

• the gauge bosons as mediators of the fundamental interactions,

• a Higgs boson.

The matter particles enter as pointlike massless fermions, and the interactions are
introduced by demanding a local SU(3)× SU(2)× U(1) gauge symmetry. Here, the
group SU(3) is responsible for quantum chromodynamics (QCD), with 8 massless
gauge bosons called gluons as mediators of the strong force. At small momenta,
the strong coupling constant becomes large (see Sec. 4.2), which is thought to be the
explanation for confinement, i.e. the fact that only color-neutral particles are observed
in nature.

The theory of electroweak interaction goes back to the seminal work of Glashow,
Salam and Weinberg [Weinberg67, Salam69, Glashow70] (Nobel Prize 1979). It de-
scribes the electroweak interaction by a SU(2)×U(1) gauge symmetry which is broken
by the Higgs mechanism into the weak interaction (with massive gauge bosons W±

and Z0) and the electromagnetic sector with the photon as massless mediator of the
electromagnetic force. In particular, the SU(2)× U(1) gauge symmetry implies four
massless gauge bosons, written as W±

µ , W 3
µ and Bµ. Additionally, one introduces

a scalar Higgs field φ (as a weak doublet under SU(2) which has altogether 4 real

16
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components) and gives it a potential V (φ) which results in a vacuum that is not
symmetric under the SU(2) × U(1) gauge symmetry. This leads to a spontaneous
symmetry breakdown of the electroweak symmetry, and the Higgs field obtains a
nonzero vacuum expectation value 〈φ〉 ≈ 246 GeV. One of the four Higgs compo-
nents becomes a massive scalar particle, which is the only particle of the SM which
has not yet been observed. The W±

µ and a combination of W 3
µ and Bµ obtain masses

proportional to 〈φ〉 and become the massive mediators of the weak force, W± and
Z0, where the three remaining components of the Higgs form the longitudinal modes
of the W± and Z0. The coupling constant αem of the remaining electromagnetic
symmetry group U(1)em can be obtained from the coupling constants of the original
SU(2)× U(1) coupling constants α1, α2 (see e.g. [HalzenMartin]),

α−1
em = α−1

1 + α−1
2 . (4.1)

Also, the SM fermions obtain masses via the Higgs mechanism, their mass is a product
of Higgs v.e.v. and a Yukawa coupling hi, for instance for the electron

me = he〈φ〉 . (4.2)

4.2 Running of couplings

The influence of fluctuations with different momenta leads to scale dependent coupling
constants. See for instance [Wilson71, Wegner72, Wilson73] or any good textbook
on quantum field theory for details of this process. Generally, physical systems at
slightly different scales are described by the similar laws of physics, with slightly
changed parameters. In quantum field theory, this behavior is described by the famous
beta function, which describes the behavior of the coupling parameter g under slight
changes of the energy scale µ,

µ
∂g

∂µ
= β(g) . (4.3)

Using the coupling constant α := g2

4π instead, one can also define a β function for α,

µ
∂α

∂µ
= β(α) . (4.4)

The mathematical apparatus to investigate these changes of physical systems un-
der scale transformations is called the renormalization group (RG). In quantum field
theory, the renormalization group equation (4.3) can only be computed perturba-
tively as the exact RG equation would in principle include an infinite order of loop
corrections. For our purpose the first-order (one-loop) RG equations are sufficient,
and these are known for all three interactions of the Standard Model. In particular,
the beta function for QED (with only photons and electrons present) at first order is
given by

βem(αem) =
2α2

em

3π
, (4.5)

which is solved by

αem(µ) =
αem(µ0)

1− 2αem(µ0)
3π ln

(

µ
µ0

) . (4.6)
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Figure 4.1: Running of coupling constants of the three gauge groups SU(3)×SU(2)×
U(1) in the Standard Model (left) and in SUSY (right). α1 is scaled by a factor 5

3 ,
see Eq. (4.14). From [Peskin97].

The fine structure constant α is defined in the limit of zero momentum transfer, i.e.
for µ ≤ me. For QCD, the beta function is

βstrong(αS) = −
(

11− 2nf

3

)

α2
S

2π
, (4.7)

solved by

αS(µ) =
αS(µ0)

1 + αS(µ0)
6π (33− 2nf ) ln

(

µ
µ0

) . (4.8)

Here nf is the number of quark flavors present, i.e. the number of quarks with mass
mq ≤ µ. As nf ≤ 6 in the Standard Model, the beta function βstrong is negative.

The running of coupling constants is shown in Fig. 4.1. As the beta function for
QCD is negative, the QCD coupling diverges when going to low energies. This effect,
which was found by Wilczek, Politzer and Gross (Nobel price 2004), is thought to
be the reason for confinement. As opposed to the electroweak theory, QCD thus has
an intrinsic energy scale induced by the RG equation, the scale where αS becomes
formally infinite. Choosing ms < µ0 < mc such that nf remains constant (nf ≡ 3),
this happens when the denominator in equation (4.8) becomes zero, i.e.

αS(µ0)

6π
(33− 2nf ) ln

(

µ

µ0

)

= −1 , (4.9)

which happens at the QCD invariant scale µ ≡ ΛQCD, defined by

ΛQCD := µ0 exp

( −6π

(33− 2nf )αS(µ0)

)

. (4.10)

Hence Eq. (4.8) can be rewritten as (µ < mc)

αS(µ) =
6π

(33− 2nf ) ln(µ/ΛQCD)
. (4.11)

Note that when the energy µ becomes of the order of ΛQCD, perturbation theory
breaks down, and a world of quarks and gluons becomes a world of pions, protons
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Figure 4.2: Unification of the four forces in the string theory picture

and so on. This is revealed in the fact that ΛQCD is of the order of light meson masses
[Berger06],

ΛQCD ≈ 200 MeV . (4.12)

The beta functions given in Eqs. (4.5) and (4.7) are simplified versions. In the first
case, Eq. (4.5) only holds for one particle present, and in the second case one has to
note that nf is not constant at all energies µ. In the full functions, particles only con-
tribute when energies are above the particle’s threshold energies, which are typically
the corresponding particle masses. Hence every particle contributes one threshold
term to the renormalization group equation. We will give the full renormalization
group equations, including extra terms coming from additional supersymmetric par-
ticles (see Sec. 4.4) in Sec. 4.5.

4.3 The necessity of a “theory beyond”

From the point of a theorist, the established Standard Model of particle physics cannot
be the end of the story. One can definitely say that at latest at the Planck energy
scale MP ≈ 1019 GeV quantum gravity effects will become important, demanding a
quantized description of gravity. A further hint that the Standard Model of particle
physics might not be the end of the story is the running of the coupling constants.
They seem to meet at a energy scale of MGUT ≈ 1016 GeV as depicted in Fig. 4.1.
Hence, it appears likely that electroweak and strong interaction can be unified in a
grand unified theory (GUT). Within such grand unified theories, it is most likely that
if any coupling constant of the Standard Model varies, all coupling constants will vary.
In the later chapters, we will assume that some kind of GUT is realized, and hence the
electroweak and strong coupling constants are related to each other. Further details
on grand unified theories are given in Sec. 4.5.
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Actually, one can even go further with the idea of unification. String theory, for
instance, implements an unification of the interactions of the Standard Model and
also gravity. The unification of the four forces including gravity in a string theory
picture is shown in Fig. 4.2. In such theories, parameters related to the mass of the
SM particles (e.g. the Yukawa couplings) should also derive from some sort of unified
greater theory, whereas at the level of the Standard Model and also at the level of
simple GUTs, there is no direct relation to the gauge coupling sector1. In this thesis,
we will assume constant Yukawa couplings.

4.4 Supersymmetry and the MSSM

Many high-energy theories (e.g. string theory) contain supersymmetry as an essen-
tial part of the theory. Supersymmetry establishes a symmetry between bosons and
fermions. Every boson gets a fermionic partner and vice versa with the same quantum
numbers. For this thesis the motivation and theoretical framework of supersymmetry
are not needed, so I will refrain from going into too much detail. Introductions to
supersymmetry can be found in many textbooks and reviews, e.g. [NillesSUSY].

Within the Standard Model of particle physics, no supersymmetric partner can be
found, hence in a supersymmetric extension of the Standard Model one has to intro-
duce additional supersymmetric partners for every single particle of the SM. These
supersymmetric partners are assumed to be heavier than the current experimentally
tested mass region (≈ 100 GeV).

The minimal supersymmetric extension of the Standard Model is called the MSSM
(minimal supersymmetric standard model). It contains an additional supersymmetric
partner for every SM particle. Furthermore, with supersymmetry, a single Higgs
doublet would result in a gauge anomaly, so a second Higgs doublet is introduced.
Hence the MSSM contains 2 additional (heavy) neutral Higgs scalars and two charged
Higgs scalars, supplemented by the appropriate superpartners.

The complete particle spectrum of the MSSM is given in Tab. 4.1. When working
with supersymmetric theories in this thesis, we will always assume that the MSSM
particle spectrum is realized.

4.5 Grand unification

In grand unified theories, the gauge group of the Standard Model SU(3)×SU(2)×U(1)
with coupling constants gS , g2, g1 is unified into a bigger Lie group (e.g. SU(5) or
SO(10)) with a single coupling constant gX at a certain energy scale,

MGUT ≈ 1016 GeV , (4.13)

which is assumed an independent parameter and can also vary with time. Its actual
value depends on the specific form of the grand unified theory (e.g. SUSY/non-SUSY).

1Due to renormalization group effects, also the Yukawa couplings get contributions from coupling
parameters. However, we will show in Sec. 11.1 that these effects are small and can be neglected
when studying variations of parameters.
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SM particle El. charge Spin SUSY partner Spin

quarks u,c,t 2/3 1/2 squarks ũ, c̃, t̃ 0

quarks d,s,b -1/3 1/2 squarks d̃, s̃, b̃ 0
charged leptons e, µ, τ -1 1/2 sleptons 0

neutrinos νe, νµ, ντ 0 1/2 sneutrinos (ν̃) 0
photon γ 0 1 photino γ̃ 1/2

Z0 0 1 Zino (Z̃) 1/2
Z0 neutral Higgs scalar 0 0 Zino Higgs 1/2

W± ±1 1 Wino (W̃ ) 1/2
W± charged Higgs scalar ±1 0 Wino Higgs 1/2

8 gluons 0 1 8 gluinos (g̃) 1/2

neutral Higgs H0 0 0 higgsino (H̃0) 1/2
2 MSSM neutral Higgs 0 0 2 neutral higgsinos 1/2

2 MSSM charged Higgs H± ±1 0 2 charged higgsinos H̃± 1/2

Table 4.1: The MSSM particle spectrum

It can be shown (see e.g. [WeinbergQFT2]) that for any unification of SU(3) ×
SU(2)×U(1) with couplings g3 ≡ gS , g2 and g1 into a simple Lie group with coupling
gX , one obtains the relation

g2
X = g2

S = g2
2 =

5

3
g2
1 (4.14)

which holds at E = MGUT . For the electromagnetic interaction, Eqs. (4.1) and (4.14)
yield

α−1
em = α−1

2 + α−1
1 = α−1

X +
5

3
α−1

X =
8

3
α−1

X , (4.15)

which actually only holds at E = MGUT but will be of relevance when studying the
running of αem in a GUT framework.

The value of the unified coupling αX can roughly be estimated from the RG
running as displayed in Fig. 4.1, showing that α−1

X is of the order 38 − 45 in the
non-SUSY case and 23− 29 in the SUSY case [Amaldi91]. We take as representative
values [Dent03]

αX = 1/40 (non-SUSY) (4.16)

αX = 1/24 (SUSY). (4.17)

At lower energies, the GUT symmetry is broken and the relation (4.14) does
not hold any longer. The coupling constants of the SM evolve separately according
to the renormalization group equations (see section 4.2). Generalizing the running
of couplings as given in equations (4.6) and (4.8) to the full SM/MSSM particle
spectrum, we obtain for QCD

α−1
S (µ) = α−1

X −
1

2π

∑

i

bi ln
µ

MGUT
− 1

2π

∑

th

bth ln

(

mth

MGUT

)

(4.18)

where the first sum goes over all particles i with threshold mass mth < µ and the
second sum goes over all particles with mth > µ. For the bi and bth the values from
Tab. 4.2 have to be applied.
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Type of particle b(th)

quarks 2/3
gluons -11/8
squarks 1/3
gluinos 1/4

Table 4.2: Renormalization group coefficients for the strong interaction

Type of particle f th

chiral (or Majorana) fermion 2/3
complex scalar 1/3
vector boson -11/3

Table 4.3: Renormalization group coefficients for the electromagnetic interaction

The corresponding expression for the fine-structure constant α := αem(me) is

α−1 =
8

3
α−1

X −
1

2π

∑

th

Qth2

emf th ln

(

mth

MGUT

)

, (4.19)

where the factor 8
3 derives from Eq. (4.15), Qem denotes the electric charge and for

f th the values given in Tab. 4.3 are applied. An analogous equation also holds for
the weak coupling, where the electric charge is replaced by the weak isospin2. When
dealing with weak interactions in this thesis, we will only be working with terms that
contain the weak coupling in terms of the Fermi constant3,

GF =

√
2

8

g2
w

M2
W

. (4.20)

As MW = gw〈φ〉
2 with 〈φ〉 the Higgs v.e.v., the weak coupling gw drops out and the

Fermi constant can be expressed only in terms of the Higgs v.e.v.,

GF =
1√

2〈φ〉2
. (4.21)

4.6 Variations in a GUT framework

The GUT relations which were introduced in the preceding section show that within
a GUT framework, the coupling constants are usually related to further fundamental
parameters, in particular the GUT coupling αX and threshold masses. In this section
we will derive the equations which relate variations in the GUT coupling constant αX

and particle masses to variations in the SM coupling constants.

2For the SU(2) weak interaction, the weak isospin effectively acts like a multiplicative charge
factor, hence it can be treated analogously to the electric charge.

3See for instance the weak decay of the neutron, Sec. 8.1.3.
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4.6.1 Variation of the electromagnetic coupling

For the MSSM particle spectrum, we obtain for the fine-structure constant from Eq.
(4.19)

α−1 =
8

3
α−1

X −
1

2π

[

4

3
· 3 ·

(

(

2

3

)2

+ 2

(

1

3

)2
)

ln
ΛQCD

MGUT
+

4

3
· 3
(

2

3

)2

ln
mcmt

M2
GUT

+
4

3
· 3
(

1

3

)2

ln
mb

MGUT
+

4

3
(1)

2
ln

memµmτ

M3
GUT

+

(

−11

3
· 2 +

1

3

)

ln
MW

MGUT

+
2

3
· 3 · (1)2 ln

ml̃

MGUT
+

2

3

(

3 · 3 ·
(

2

3

)2

+ 3 · 3 ·
(

1

3

)2
)

ln
mq̃

MGUT

+
2

3
· 2 · (1)2 ln

mW̃

MGUT
+

2

3
· 2 · (1)2 ln

mH̃

MGUT
+

1

3
ln

mH±

MGUT

]

(4.22)

where it has been used that

• The light quarks u, d, s decouple at mth = ΛQCD.

• The quarks enter in 3 different colors

• The charged leptons enter as both left- and righthanded particles (2 chiral
fermions)

• The massive gauge bosons W± have to be supplemented by a charged complex
Higgs scalar (longitudinal DOFs)

• mH± is the mass of the additional charged Higgs scalars which have to be
introduced in MSSM.

Taking the linear variation of Eq. (4.22), we obtain for the variation of the fine
structure constant, including the MSSM particles,

∆ ln α

α
= +

8

3

∆ ln αX

αX
+

1

2π

(

8

3
∆ ln

ΛQCD

MGUT
+

16

9
∆ ln

mcmt

M2
GUT

+
4

9
∆ ln

mb

MGUT

+
4

3
∆ ln

memµmτ

M3
GUT

− 21

3
∆ ln

MW

MGUT
+ 8∆ ln

m̃

MGUT
+

1

3
∆ ln

mH±

MGUT

)

. (4.23)

Not knowing the actual mass or mass generating mechanism for the superpartners, we
assume that the mechanism is the same for all superpartners and define m̃ as the av-
erage superpartner mass. To obtain the corresponding relation in nonsupersymmetric
models, one simply has to leave out the terms with m̃ and mH± .4 When later dealing
with variations in supersymmetric models, we will further assume ∆ ln m̃ = ∆ ln mH± ,
so the last two terms can be combined into one.

4Note that the RG equations (4.22), (4.23) and also (4.24) and (4.26) only hold under the condition
that all threshold masses are smaller than MGUT . Hence, the nonsupersymmetric case is not obtained
in the limit msusy → ∞.
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4.6.2 Variation of the QCD scale

As αS diverges at µ = ΛQCD ≈ 200 MeV, we are interested in the value of αS(µ)
in the regime ΛQCD < µ < mc (in this regime, nf = 3). For the MSSM particle
spectrum, we obtain

α−1
S (µ) = α−1

X +
9

2π
ln

(

µ

MGUT

)

− 1

2π

(

2

3
ln

mcmbmt

M3
GUT

+
6

3
ln

mq̃

MGUT
+

8

4
ln

mg̃

MGUT

)

.

(4.24)
Inserting Eq. (4.24) into Eq. (4.10) (ΛQCD < µ0 = µ < mc, nf = 3) yields

ΛQCD

MGUT
= e−2π/9αX

(

mcmbmt

M3
GUT

)2/27(
mq̃mg̃

MGUT

)2/9

(4.25)

and the linear variation gives

∆ ln
ΛQCD

MGUT
=

2π

9αX
∆ln αX +

2

27
∆ ln

mcmbmt

M3
GUT

+
2

9

(

∆ln
mq̃

MGUT
+ ∆ ln

mg̃

MGUT

)

.

(4.26)
When later dealing with variations in supersymmetric models, we will further assume
∆ ln mq̃ = ∆ ln mg̃, so the last two terms can be combined into one.

4.6.3 Conversion of units

As has been explained in Sec. 2.5, we will work with two different systems of units.
During the discussion of BBN processes, we choose units with ΛQCD = const. as the
BBN energy scale is of roughly the same order of magnitude. When applying grand
unified theories, MGUT is the more appropriate energy scale to keep constant. How-
ever, we usually neglect the reference scale and write ∆ ln me instead for ∆ ln me

ΛQCD
,

for instance. The conversion to a different system is then performed by keeping track
of all reference scales,

∆ ln
me

MGUT
= ∆ ln

me

ΛQCD
+ ∆ ln

ΛQCD

MGUT
. (4.27)

Obviously, the term ∆ ln
ΛQCD

MGUT
naturally enters when converting from the ΛQCD =

const. to the MGUT = const. system of units, its explicit dependence on the unified
coupling and particle masses is given in Eq. (4.26). Keep in mind, however, that
the reference scale has to enter in the correct power, for instance the gravitational
constant has units [GN] = [Energy]

−2
, hence it enters as ∆ ln GNΛ2

QCD.



Chapter 5

Models of quintessence

5.1 Problems of the cosmological constant

Recent observations show that roughly 75% of the energy content of our Universe is
made from dark energy (see Sec. 3.2). However, the nature of dark energy is still
far from being clear. The assumption that the cosmological constant derives from a
vacuum energy density sufferes from a severe fine-tuning problem. In particular, the
oberseved dark energy density evaluates to [Copeland06]

ρΛ =
ΛM2

P

8π
≈ 10−47 GeV4 , (5.1)

while the vacuum energy density of particle physics which is evaluated by summing
up the zero-point energies of the present quantum fields gives [Copeland06]

ρvac ≈
M4

P

16π2
≈ 1074 GeV4 . (5.2)

Here we have chosen MP as a natural cut-off scale where we assume that the known
quantum field theory is no longer applicable. Obviously, there is a discrepancy of the
order of 10121. Assuming that the dark energy comes from a particle physics origin,
one would have to introduce counter terms which have to be extremely fine-tuned.
Hence this problem is called the “finetuning” problem.

A further problem which is related with dark energy can be seen in Fig. 3.1. In
a ΛCDM model, the dark energy is only recently becoming important, and the time
when the universe switched from a matter-dominated to a dark energy dominated
epoch is only 4.3 billion years ago. There is no natural reason why these two pre-
sumably completely independent constituents of our Universe are of about the same
order of magnitude and / or why we live in a period of time where this is the case.
This problem is called the “coincidence problem” or “why now problem”, and typi-
cally cosmological models with a cosmological constant (like the ΛCDM model) fail
to address this issue.

5.2 Basics of quintessence

Models of quintessence [Wetterich88.1, RatraPeebles88] can offer an explanation to
the issues mentioned in the previous section. A good review on dark energy models
can be found in [Copeland06].

25
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In quintessence theories, one introduces a scalar field ϕ (called the cosmon) which
is coupled to gravity and, most times, also to matter and gauge fields. A typical
Lagrangian for a quintessence theory including couplings to matter and the electro-
magnetic gauge field looks like [Wetterich02.1, Copeland06]

L = M̄2
PR +

1

2
(∂ϕ)2 + V (ϕ)− Vϕm + Lem (5.3)

with gauge field coupling

Lem = −1

4
(1 + λemϕ)−1FµνFµν (5.4)

and matter term

Vϕm = me(ϕ)ēe + mu(ϕ)ūu + ... + mdark(ϕ)ΨdarkΨdark + ... (5.5)

Here M̄P denotes the reduced Planck mass,

M̄P =
1√
8π

MP =
1√

8πGN

. (5.6)

If there are only slight changes in the cosmon field, the dependence of the mass, m(ϕ),
can be linearized, i.e.

m(ϕ) = (1 + λϕ)m0 (5.7)

with some coupling λ. However, there are also models with significant changes in the
masses, for instance in the models of growing neutrinos in Sec. 5.4, where we apply a
more advanced nonlinear expression.

In order to derive one of the main properties of quintessence, its capability of
producing accelerated expansion, we can neglect couplings to matter and gauge fields
and work instead with the action

S =

∫

d4x
√−g

[

−1

2
(∂ϕ)2 − V (ϕ)

]

. (5.8)

In the background of a flat FRW cosmology (Sec. 3.1.2), and assuming that ϕ is
homogeneous, i.e. it only depends on time, a variation of the action (5.8) with respect
to ϕ yields the equation of motion

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0 . (5.9)

The corresponding energy momentum tensor

Tµν =
−2√−g

δS
δgµν

(5.10)

yields the energy and pressure densities

ρ = −T 0
0 =

1

2
ϕ̇2 + V (ϕ) (5.11)

p = T i
i =

1

2
ϕ̇2 − V (ϕ) . (5.12)
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Then Eqs. (3.4) and (3.5) yield the relations

H2 =
8πGN

3

[

1

2
ϕ̇2 + V (ϕ)

]

(5.13)

ä

a
= −8πGN

3

[

ϕ̇2 − V (ϕ)
]

, (5.14)

showing that we get an accelerating universe when ϕ̇2 < V (ϕ). Introducing the kinetic
energy T := ϕ̇2/2, we define the equation of state parameter of quintessence,

wh :=
p

ρ
=

T − V

T + V
. (5.15)

In the next section we introduce two specific models of quintessence, crossover quint-
essence which has been introduced 20 years ago [Wetterich88.1] and a very recent
model, where quintessence is strongly coupled to neutrinos.

As the cosmon also couples to other fields and matter, one question one might
ask is whether the cosmon evolution decouples in a local cluster with high “cosmon
charge density” from the cosmological evolution. It has been shown [Wetterich02.1,
Mota03, Shaw05] that for a very light field weakly coupled to matter the local per-
turbations are generally small relative to the cosmological evolution. In other words,
the evolution of the scalar field in a cluster of galaxies or on Earth does not decouple
from the cosmological evolution (in distinction to the gravitational field), such that
its cosmological time evolution is reflected in a universal variation of couplings, both
on Earth and in the distant Universe.

5.3 Crossover quintessence models

Our first class of models is “crossover quintessence” [Hebecker00, Doran07, Wetterich02.2].
Here the scalar field follows tracking solutions [Wetterich88.1, RatraPeebles88] at large
redshift. In this early epoch the equation of state wh is equal to that of the dominant
energy component (matter or radiation). One particular difference to cosmological
constant models is that this type of quintessence models yields a non vanishing amount
of early dark energy, Ωh,e

1. Typically, such models have an exponential potential,
for instance

V (ϕ) = M̄4
Pe

−α ϕ
M̄P . (5.16)

In this specific case, α is related to the early dark energy fraction [Wetterich88.1,
Amendola08],

Ωh,e =
n

α2
(5.17)

with n = 3(4) for the matter (radiation) epoch. Late-time acceleration can be
achieved, for instance, by slight modifications in the cosmon potential or, equiva-
lently, in the kinetic term [Hebecker00].

At some intermediate redshift before the onset of acceleration, the time evolution
of the cosmon slows down. In consequence, there is a crossover to a negative equation
of state and the fraction of energy density due to the scalar begins to grow. In recent
epochs the field has an effective equation of state wh & −1. The aim of this thesis is

1The effects of early dark energy on the measurements of baryon acoustic peaks have been studied
by the author in [DST06]. However, these considerations are not subject of this thesis.
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Figure 5.1: Equation of state of quintessence in the crossover quintessence model
(wh0 = −0.99, z+ = 7)

not building and solving models of this type in detail, but rather estimating general
properties of the scalar evolution. Hence we will not start with appropriate potentials
for crossover quintessence and evolve the cosmon over time, but rather simulate the
behavior of the field by defining the quintessence equation of state by hand. We set the
dark energy equation of state to constant at late times with value wh0. Above some
given redshift z+ the equation of state crosses over to the scaling condition wh = 0
in the matter dominated era; then for z > zeq, before matter-radiation equality, we
again have scaling through wh = 1/3, where zeq can be obtained via

zeq =
ΩM

Ωγ
− 1 . (5.18)

Then the general relation (a = (1 + z)−1)

d ln ρ

d ln a
= −3(1 + w(a)) (5.19)

may be used to find the matter, radiation and dark energy densities over cosmological
time. Combining Eq. (5.15) with Eq. (5.11), we can estimate the scalar kinetic energy
via

ϕ̇2/2 = ρh(1 + wh)/2 (5.20)

and thus integrate dϕ/da = ϕ̇/aH from the present back to any previous redshift.
The initial conditions are set by specifying the present densities of matter, radiation
and dark energy and the model parameters wh0 and z+. For illustration, we set
wh0 = −0.99 and z+ = 7. The resulting equation of state is displayed in Fig. 5.1,
the corresponding evolution of energy components in Fig. 5.2 and the dimensionless
cosmon field ϕ/M̄P in Fig. 5.3. As can be seen from Fig. 5.3, in this type of models
the scalar field has a monotonic evolution. Assuming a constant coupling δ to the
fundamental varying parameter, usually αX , the variation is given by

∆ ln αX(z) = δ(ϕ(z)− ϕ(0)) . (5.21)

Hence this ansatz implies a monotonic evolution of variations.
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Figure 5.2: Energy components of our Universe in the crossover quintessence model
(wh0 = −0.99, z+ = 7)
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Figure 5.3: Dimensionless cosmon field ϕ in the crossover quintessence model
(wh0 = −0.99, z+ = 7)
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5.4 Growing neutrino mass models

Growing neutrino models [Amendola08, Wetterich08] explain the value of today’s dark
energy density by the “principle of cosmological selection”. The present fraction of
dark energy, Ω0

h, is set by a dynamical mechanism. The essential ingredient of this
class of models is a neutrino mass that depends on the cosmon field ϕ and grows in the
course of the cosmological evolution. As soon as the neutrinos become non-relativistic,
their coupling to the cosmon triggers an effective stop (or substantial slowing) of the
evolution of the cosmon. Before this event, the quintessence field follows the tracking
behavior described in the preceding section. In the models which we will study, the
cosmon is assumed to have the potential from Eq. (5.16),

V (ϕ) = M̄4
Pe

−α ϕ
M̄P .

The present dark energy density, ρh0, can be expressed in terms of the average present
neutrino mass, mν(t0), and a dimensionless parameter ζ of order unity [Amendola08],

(ρh0)
1/4 = 1.07

(

ζmν(t0)

eV

)1/4

10−3eV . (5.22)

We follow again our simple proportionality assumption, namely that the cosmon
coupling to a typical fundamental parameter is given by Eq. (5.21),

∆ ln αX(z) = δ(ϕ(z)− ϕ(0)) ,

with a proportional variation for other couplings according to the unification scenario
that we will study. This is the only contribution to the variation of the unified
coupling αX and MGUT /MP. However, a new ingredient is an additional variation
of the Higgs v.e.v. 〈φ〉 with respect to MGUT , which only becomes relevant at late
time [Wetterich08]. It is due to the effect of a changing weak triplet operator on the
v.e.v. of the Higgs doublet. If the dominant contribution to the neutrino mass arises
from the “cascade mechanism” (or “induced triplet mechanism”) via the expectation
value of this triplet, this changing triplet value is directly related to the growing
neutrino mass [Wetterich08]. To understand this mechanism, we start with the most
general mass matrix for the light neutrinos,

mν = MDM−1
R MT

D + ML . (5.23)

The first term is responsible for the seesaw mechanism [Minkowski77] with the mass
matrix for heavy “right handed” neutrinos MR and a Dirac mass term MD. The
second term accounts for the “induced triplet mechanism” [Magg80]

ML ∝
〈φ〉2
M2

t

, (5.24)

where a heavy SU(2)L-triplet field t with mass Mt enters the equation (see [Wetterich08]
for details). It is assumed that the mass of the triplet depends on the cosmon field,
Mt = Mt(ϕ).

The ϕ-dependence of the Higgs v.e.v. 〈φ〉 is introduced by assuming a general
effective potential U(ϕ, φ, t). Solving the field equations for the Higgs doublet field φ
and the triplet field t, ∂U/∂φ = 0, ∂U/∂t = 0, the cosmon potential is then obtained
as

V (ϕ) = U(ϕ, φ(ϕ), t(ϕ)) . (5.25)
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In [Wetterich08] the simple potential

U = U0(ϕ) +
λ

2
(φ2 − φ2

0)
2 +

1

2
M2

t (ϕ)t2 − γφ2t (5.26)

is assumed, with γ and λ some coupling parameters. Solving the field equations for
the Higgs doublet, it is found [Wetterich08]

〈φ〉2
M2

GUT

(ϕ) =
〈φ〉20

M2
GUT

(

1− γ2

λM2
t (ϕ)

)−1

, (5.27)

where 〈φ〉20 has to be chosen such that the measured Higgs v.e.v. is obtained today.
In the following we consider two models, with slightly different functional depen-

dence of the Higgs v.e.v. and neutrino mass on the scalar field.

5.4.1 Stopping growing neutrino model

In the first model, the cosmon asymptotically approaches a constant value (“stopping
growing neutrino model”) [Wetterich08] and the neutrino mass is given by

mν(ϕ) = m̄ν

{

1− exp

[

− ǫ

M̄P
(ϕ− ϕt)

]}−1

. (5.28)

With a triplet mass dependence

M2
t (ϕ) = M̄2

t

[

1− exp

(

− ǫ

M̄P
(ϕ− ϕt)

)]

, (5.29)

the additional Higgs variation is given according to

〈φ〉
MGUT

(z) = H̄ (1−R(z))
−0.5

, (5.30)

where

R(z) =
R0

1− exp(− ǫ
M̄P

(ϕ(z)− ϕt))
. (5.31)

Here, ϕt ≈ 27.6 is the asymptotic value (choosing the parameter α = 10 in the
exponential potential [Wetterich08]). For illustration we take the set of parameters
given in [Wetterich08], ǫ = −0.05, and H̄ is set by demanding the Higgs v.e.v. being
consistent with measurements today, 〈φ〉(z = 0) = 175GeV. We set R0 = 10−7,
however in general we only require R(z = 0)≪ 1. The resulting variations are shown
in Fig. 5.4 and Fig. 5.5.

The stopping growing neutrino model has an oscillation in 〈φ〉 that grows both
in frequency and amplitude at late times as ϕ approaches its asymptotic value. Such
oscillations must not be too strong as measurements between z = 2 and today would
measure a high rate of change. The oscillation may be made arbitrarily small by
choosing small R0. However, the linear variation (5.21) is independent of R0.
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Figure 5.4: Evolution of the dimensionless cosmon field in the stopping growing neu-
trino model of [Wetterich08].
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Figure 5.5: Additional variation of the Higgs v.e.v. according to Eq. (5.30) in the
stopping growing neutrino model of [Wetterich08].
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Figure 5.6: Evolution of the dimensionless cosmon field in the scaling growing neutrino
model of [Amendola08].
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Figure 5.7: Additional variation of the Higgs v.e.v. according to Eq. (5.30) in the
scaling growing neutrino model of [Amendola08].

5.4.2 Scaling growing neutrino model

The second growing neutrino model [Amendola08] does not lead to an asymptotically
constant ϕ. Now the coupling of the neutrino to the cosmon ϕ is given by a constant
β, according to

mν = m̃νe−βϕ. (5.32)

This “scaling growing neutrino model” leads in the future to a scaling solution with a
constant ratio between the neutrino and cosmon contributions to the energy density.

With the choice of parameters β = −52, α = 10 and mν,0 = 2.3 eV [Amendola08],
and given the triplet mechanism of [Wetterich08], the Higgs v.e.v. varies as Eq. (5.30),
where now R is given by

R(z) = R0e
−βϕ(z). (5.33)

Here the Higgs oscillations remain comparatively small in amplitude, while the abso-
lute value of 〈φ〉 grows overall with time: see Figs. 5.6 and 5.7 with the parameter
choice R0 = 10−6. Compared to the “stopping growing neutrino model”, this model
has milder oscillations at late time.
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5.5 A short note on string theory

String theory is a candidate for a “theory of everything”. The underlying concept
is that fundamental particles are one dimensional objects (strings) which live in a
10 dimensional spacetime. As the world as we know it has only four spacetime di-
mensions, the remaining 6 dimensions are usually compactified in a way that only 4
“large” spacetime dimensions remain. During compactification, several scalar fields
appear which can in principle have all sorts of couplings to the Standard Model fields.
A further scalar field, the dilaton, is present in string theory from the very beginning.
Its v.e.v. sets the string theory coupling constant.

With a multitude of possible fields and couplings, one should in principle be able
to model any quintessence scenario within the framework of string theory. However,
there are strong arguments against it, in particular based on the small mass and
potential of the quintessence field (see e.g. [Banks01]). A deeper study of variations
implied by string theory or possible tests of string theory is out of scope of this thesis,
but in principle our methods will also apply to any string theory induced variations
of constants, as long as they can be described with effective field theories. Then our
methods also allow to constrain the allowed regions in the landscape of string theory.
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Chapter 6

Big Bang Nucleosynthesis

6.1 Why BBN?

As we have mentioned in Sec. 2.3, changes in fundamental constants are most likely
to appear over large time scales and / or different environments. Big Bang Nuc-
leosynthesis is the earliest process in the history of the Universe which can be both
reasonably described with standard physics and astrophysically probed. Also, the
Universe was much denser at this time1, even though locally the environment one
finds for instance in heavy stars, supernovae or black holes is much more extreme
than at BBN. Hence, it is very reasonable to carefully study the influence of varying
parameters on the process of primordial element production.

6.2 How will we study BBN?

BBN is a complex process involving a lot of nuclear reactions and particles. There are
two main approaches to a theoretical prediction of primordial element abundances.
The first one is purely analytical and only gives rough estimates, whereas the sec-
ond one numerically simulates the whole process of BBN and gives high-precision
abundance predictions.

For our purpose, analytical estimates will turn out to have insufficient accuracy,
hence we will utilize a numerical procedure to obtain our findings on the influence of
varying constants on BBN. Numerical codes for the simulation of primordial nucleo-
synthesis go back to the late 60s and 70s [Peebles66, Wagoner69, Wagoner72]. Our
BBN code is based on the Kawano 1992 code [Kawano88, Kawano92], with updated
nuclear reaction cross sections as given in [NACRE99] and [NETGEN]. We have im-
proved the code in terms of numerical accuracy in order to be able to derive high
precision parameter dependences (see Sec. 6.7.1 for details). In the following sections
we explain the process of BBN and the underlying physics in greater detail. As has
been explained in Sec. 2.5, we will work in a system of units where ΛQCD is kept
constant.

1The energy density at BBN was roughly the same as the the density of normal water.
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Figure 6.1: Network of main reactions responsible for primordial nucleosynthesis.
From [Bartelmann06].

6.3 The process of BBN

In the standard BBN process (SBBN), the element synthesis does not depend on any
pre-BBN phase. At a temperature of, for instance, T = 1011K, baryogenesis and
quark condensation have ended and the Universe only contains protons and neutrons
in the baryonic sector. These are held in equilibrium via the weak reactions

p + e− ←→ n + νe

n + e+ ←→ p + ν̄e . (6.1)

As the Universe expands and cools down, these reactions freeze out at T ≈ 800
keV, and the neutrons decay freely. The next step in nucleosynthesis is the fusion of
deuterium, which happens when reaction

n + p←→ D + γ

drops out of equilibrium. Due to the large photodissociation cross section, any pro-
duced deuterium is immediately destroyed by photons from the background radiation
until their temperature has dropped considerably below the binding energy of deu-
terium, T ≈ BD = 2.2 MeV. In fact, since photons are much more abundant than
baryons, the high-energy photons in the Maxwell tail keep the reaction in equilibrium
until the temperature reaches T ≈ 80 keV. Once deuterium fusion sets in, elements
up to mass number A=7 are synthesized via a network of 11 main nuclear reactions
displayed in Fig. 6.1. As the Universe continues expanding and cooling down, the
temperature and density will fall below the level required for the nuclear reactions at
some point. This happens a few minutes after the Big Bang, when the reaction rates
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Figure 6.2: Element abundances Y as a function of the decreasing temperature of the
universe T9 = T × 10−9K−1

become slower than the expansion rate of the Universe,

n〈σv〉 < H , (6.2)

with n the particle number density and 〈σv〉 the Maxwell-Boltzmann averaged cross
section (see Sec. 6.4.3). At the end of the BBN process, the element composition of
the Universe is roughly 75% hydrogen, 25% helium (numbers w.r.t. mass) and small
amounts of deuterium and 7Li. Two elements produced during BBN, 7Be and tritium,
decay via a slow β-decay to 7Li and 3He respectively after BBN has ended. In fact,
the primordial 7Li abundance primarily derives from 7Be produced during BBN.

The evolution of element abundances during the process of BBN is shown in
Fig. 6.2, where we define the mass abundance Yi for a nucleus i as

Yi := Ai
ni

nB
(6.3)

with nB the baryon number density, ni the number density of nucleus i and Ai its
mass number.

Beyond A = 8 elements

During primordial nucleosynthesis, essentially no elements are produced beyond the
A = 7 mass limit. Heavier elements, including carbon and oxygen which are ubiqui-
tous on earth, have been produced later in stars and were thrown back into space
during supernova explosions. The process leading to those elements proceeds over the
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unstable nucleus 8Be via the “triple-alpha process”

4He + 4He → 8Be + γ
8Be + 4He → 12C + γ .

Due to the low density and low temperature at BBN (compared to stars), the prob-
ability that a 8Be nucleus meets a 4He nucleus during its lifetime of 67 × 10−18s is
extremely low. Hence, the absence of stable A = 8 nuclei prohibits any element fusion
beyond 7Li during BBN.

6.4 The physics of BBN

In this section we will describe the underlying processes of BBN in greater detail and
introduce the relevant equations.

6.4.1 Cosmological background equations

BBN is described in the framework of the FRW metric. The basic equations describing
the expansion of the Universe are the two Friedmann equations (3.4) and (3.5). The
process of BBN happened at the a redshift of z ∼ 1010, a time when the Universe
was radiation dominated (see Fig. 3.1), i.e. the expansion rate of the Universe is
completely controlled by relativistic particles. The temperature T of the Universe is
defined by the photon temperature Tγ , and the Stefan-Boltzmann law can be used to
express energy and number density of the photons in terms of Tγ ,

ργ =
π

15

k4
B

(c~)3
T 4

γ (6.4)

nγ =
2ζ(3)

π2

(

kBTγ

~c

)3

. (6.5)

BBN is taking place in the temperature regime 3 × 109K < T < 0.1 × 109K.
Combining Eq. (6.4) with the Friedmann equation (3.4) yields a relation between
temperature and time after the Big Bang,

t =

(

16π3GN

5~3c5

)−1/2

(kBT )−2 . (6.6)

This relation can be applied in the early Universe until the number of photons in the
Universe is increased by e+e− annihilation.

Before BBN, neutrinos, photons and electrons were in equilibrium, for instance
via

ν + ν̄ ←→ e+ + e− ←→ 2γ . (6.7)

This reaction freezes out at T ≈ 1.5 MeV [Fornengo97], but as also the neutrinos are
ultra relativistic, both Tγ and Tν depend on the scale factor2

T ∼ 1

a
(6.8)

2Equation (6.8) also gives a relation between temperature and redshift, T ∼ (1+z). Note however
that this relation does not hold during reheating.
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and consequently should evolve equally over time. Due to e+e− annihilation, the
photon temperature increases whilst the neutrino temperature strictly follows the
T ∼ 1

a law. With Tγ and Tν evolving differently, the two temperatures have to be
tracked separately during BBN. For the neutrino temperature we get an expression
equivalent to the Stefan-Boltzmann law,

ρν = Nν
7

8

π

15

k4
B

(c~)3
T 4

ν , (6.9)

where Nν is the number of neutrino generations (in SBBN Nν = 3).
Note that temperatures can be given both in units of Kelvin (K) and energy (MeV)

via E = kBT , with the conversion factor

1 MeV ≃ 11.6 · 109K (6.10)

e+e− annihilation

At T ≈ 1010K (E ≈ 1 MeV) the reaction e+ + e− ↔ 2γ drops out of thermodynamic
equilibrium. Electrons and positrons annihilate to photons, the number of photons
and hence also the temperature of the photon gas rises (this is called “reheating”).
Entropy conservation yields that the number of photons, and hence the photon energy-
and number density, rise by a factor 11/4. This is also the reason for today’s difference
in photon and neutrino temperature, T 0

γ = 2.73 K, T 0
ν = 1.95 K (T 0

γ /T 0
ν = (11/4)1/3).

6.4.2 Initial conditions

We start our simulation of the BBN process at a temperature of T = 1011 K. As has
been explained in Sec. 6.3, protons and neutrons are in thermodynamic equilibrium via
the reaction (6.1), hence the neutron-to-proton ratio is given by the thermodynamic
relation

n

p
= e−(mn−mp)c2/kBT . (6.11)

Knowing the starting temperature (which has to be well above the freezeout temper-
ature of the reaction (6.1)), the initial ratio of neutrons to protons is well defined.
Via Eq. (6.6) the initial temperature can be translated into the initial time tinit.

The only additional cosmological parameter necessary for BBN is the initial baryon
number density3,

ninitial
B = ninitial

n + ninitial
p . (6.12)

In principle, this parameter should drop out of a theory of baryogenesis. However,
lacking this theory, we have to take nB as a cosmological parameter which has to be
plugged into the BBN simulation by hand. Since nB scales like the photon number
density nγ during cosmological expansion,

nB ∝ nγ ∝ a−3 , (6.13)

the parameter
η := nB/nγ = 2.74 · 10−8Ωbh

2 (6.14)

3A further cosmological parameter often considered in BBN studies is the ‘number of neutrino
species’ at BBN, i.e. the number of relativistic particles present at BBN. Since the presence of those
additional particles is equivalent to a change in expansion rate, we treat this parameter effectively
as a change in the gravitational constant GN. In SBBN, η is the only parameter which enters, and
Nν is set to 3.
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stays constant throughout the later evolution of the Universe, unless the number
density of the photons is not significantly increased by later events, e.g. by the decay
of particles. This is exactly what happens during e+e− annhililation as described in
section 6.4.1. The effect on the photon temperature could be computed, giving that
η at T > 1010 K was higher than the current η0 by a factor 11

4 , ηT>1010K = 11
4 η0.

Including this correction factor, we can directly deduce the baryon density at BBN
(for a given temperature T ≈ 109 K) from today’s value of η by applying Eq. (6.5),

nBBN
B =

11

4
η0 ·

2ζ(3)

π2

(

kBT

~c

)3

. (6.15)

As this quantity determines the frequency of nuclear collisions, it is clear that a
modified nB will change the “speed” of the BBN process.

6.4.3 The element synthesis process

During BBN, element production is dominantly driven by three types of processes4,

• 2→ 1 fusion processes A + B → C,

• 2→ 2 scatterings A + B → C + D, and

• particle decays, A→ B + C.

The parameters describing these processes are the reaction cross sections σA+B→C ,
σA+B→C+D and the decay width λA→B+C ≡ τ−1 (inverse mean lifetime). Given these
quantities, one derives simple differential equations that describe the time evolution
of the number densities of the nuclei A,B,C,D, nA, nB , nC , nD.

• For a decay A→ B + C,

dnA

dt
= −λnA (6.16)

dnB

dt
= +λnA (6.17)

dnC

dt
= +λnA (6.18)

• For a 2→ 1 process A + B → C

dnA

dt
= −nAnB〈σv〉 (6.19)

dnB

dt
= −nAnB〈σv〉 (6.20)

dnC

dt
= +nAnB〈σv〉 (6.21)

4Due to the comparably low temperature and density at BBN, three-particle interactions which
are important in the stellar nucleosynthesis process do not play a role at BBN [Aprahamian05] and
are hence not considered in BBN simulations.
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• For a 2→ 2 process A + B → C + D

dnA

dt
= −nAnB〈σv〉 (6.22)

dnB

dt
= −nAnB〈σv〉 (6.23)

dnC

dt
= +nAnB〈σv〉 (6.24)

dnD

dt
= +nAnB〈σv〉 . (6.25)

Here 〈σv〉 is the Maxwell-Boltzmann averaged cross section,

〈σv〉 = (8/π)1/2

µ1/2(kBT )3/2

∫ ∞

0

σ(E)E exp(−E/kBT )dE , (6.26)

where µ is the reduced mass of the reactants, and E is the reaction energy in the
center of mass system.

6.5 Nuclear reaction rates and the Q value

For nuclear reactions, one of the most important quantities is the reaction Q value,
which gives the amount of energy released (or absorbed) in a reaction. Working with
positive binding energies5 Bi, the Q value for a reaction is defined as

Q :=
∑

outgoing

Bout −
∑

incoming

Bin . (6.27)

Hence each reaction Q-value is determined by the masses of reactants and products.
The Q-value of each reaction mainly affects the abundances via the reverse thermal
reaction rate relative to the forward rate, and via phase space and radiative emission
factors in the reaction cross-sections.

The reverse reaction rate is simply related to the forward rate via statistical factors,
due to time reversal invariance (see for example [NACRE99]): the relevant dependence
for a 12→ 34 reaction is

〈σv〉34→12

〈σv〉12→34
∝ e−Q/T . (6.28)

The Q-dependence of radiative capture reactions A+B → C+γ, assuming a dominant
electric dipole, is

σ(E) ∝ E3
γ ∼ (Q + E)3 , (6.29)

whereas for 2→ 2 inelastic scattering or transfer reactions the dependence is

σ(E) ∝ β ∼ (Q + E)1/2 , (6.30)

where β is the outgoing channel velocity. In the current treatment we assume E ≪ Q
at relevant temperatures, and simply scale rates by the appropriate power of Q.6

5The positive binding energy is defined via B(A, Z) := Zmp + (A − Z)mn − m(A, Z).
6Clearly this breaks down when Q approaches zero, and we have not considered varying any

binding energy to the point where this happens. A more accurate treatment would involve applying
the phase space dependences directly to the cross-sections, for example in the S-factor description
(see Sec. 6.6.3) of charged particle reactions, which involves an expansion in E; the dependence on
(Q + E) can then be applied order by order.
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Reaction Q value [MeV] D 3He 4He 6Li 7Li

n↔ p 1.29 -0.80 -0.30 -1.48 -2.76 -0.92
p(n, γ)d 2.22 -0.2 0.1 0 -0.2 1.3
d(p, γ)3He 5.49 -0.3 0.4 0 -0.3 0.6
d(d, n)3He 3.27 -0.5 0.2 0 -0.5 0.7
d(d, p)t 4.03 -0.5 -0.3 0 -0.5 0.1
d(α, γ)6Li 1.47 0 0 0 1.0 0
3He(n, p)t 0.76 0 -0.2 0 0 -0.3
3He(d, p)4He 18.35 0 -0.8 0 0 -0.7
3He(α, γ)7Be 1.59 0 0 0 0 1.0
6Li(p, α)3He 4.02 0 0 0 -1.0 0
7Be(n, p)7Li 1.64 0 0 0 0 -0.7
7Be(n,a)4He 18.99 0 0 0 0 -0.01
T(p,g)4He 19.81 0 0 0 0 0.02
7Li(p,a)4He 17.35 0 0 0 0 -0.06
T(a,g)7Li 2.47 0 0 0 0 0.03
T(d,n)4He 17.59 0 -0.01 0 0 -0.02
7Be(d,pa)4He 16.77 0 0 0 0 -0.01

Table 6.1: Leading dependence of abundances on thermal averaged cross-sections
∂ lnYa/∂ ln〈σv〉i for important reactions (1st part) and less important reactions (2nd
part)

A variation in binding energies can have two kinds of effect. The Q value can
change the time when a reaction drops out of equilibrium, for instance at the n+p→
d+γ reaction. Or it can change the absolute rate of a reaction, and thus the production
rate of a given species, for example at the 7Be-producing reaction whose cross-section
varies with Q3.

Whether the reaction matrix elements have a dependence on the binding energies
and on Q is in general not clear because there is no systematic effective theory for
multi-nucleon reactions. The exception is the np → dγ reaction, for which we have
implemented a nuclear effective theory result (see Sec. 6.6.2).

6.6 Nuclear reactions important for BBN

Simulations of the BBN process usually track a large amount of elements and reac-
tions. However, only a few of them turn out to be important for BBN. In the next
section, we will be interested in the behavior of BBN under variations of parameters,
hence we will be concentrating on those reactions where a variation of parameters
will result in a variation in final abundances. In order to estimate which reactions are
more or less important for the variation of the final abundances, we varied each ther-
mal averaged cross-section 〈σv〉 by a temperature-independent factor, preserving the
relation between forward and reverse rates. The resulting values for ∂ lnYa/∂ ln〈σv〉i
are given in Tab. 6.1. As usual in BBN simulations, the slow β-decays of tritium
and 7Be are accounted for by adding on the T and 7Be abundances to 3He and 7Li
respectively at the end of the run, when other nuclear reactions have frozen out.

For all reactions in Tab. 6.1, the comments on Q-value (and hence binding energy)
dependence of the preceding sections do apply. In the following sections we will
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give details on those reactions for which a more detailed dependence on fundamental
parameters is known.

6.6.1 The n↔ p reaction rate

The n ↔ p weak interactions influence every abundance nontrivially. Opposed to
most of the reaction rates which can only be determined experimentally, a closed
formula is known for the n↔ p weak reaction [Scherrer83, Lopez97, WeinbergGRT].

λn→p = λen→νp + λνn→ep + λn→peν (6.31)

λp→n = λep→νn + λνp→en + λpeν→n (6.32)

λn→peν = K

∫ q

1

dǫ
(ǫ− q)2(ǫ2 − 1)1/2ǫ

[1 + exp(−ǫz)][1 + exp((ǫ− q)zν − ξe])
(6.33)

λnν→pe = K

∫ ∞

q

dǫ
(ǫ− q)2(ǫ2 − 1)1/2ǫ

[1 + exp(−ǫz)][1 + exp((ǫ− q)zν − ξe])
(6.34)

λne→pν = K

∫ ∞

1

dǫ
(ǫ + q)2(ǫ2 − 1)1/2ǫ

[1 + exp(ǫz)][1 + exp(−(ǫ + q)zν − ξe])
. (6.35)

Here q := (mn −mp)/me, z = me/Tγ , zν = me/Tν and ξe is the electron neutrino
degeneracy parameter which we always set to zero. The constant K is obtained by
demanding λn→p(T → 0) ≡ τ−1

n . The corresponding p → n rates are obtained via
λp→n = λn→p(−q,−ξe).

The equations given above derive from first-order electroweak theory and contain
some approximations to allow an easy numerical evaluation. However, higher preci-
sion of measurements demands a higher accuracy for theoretical simulations. Hence,
modern simulations of BBN apply corrections to the equations given above. Those
are radiative corrections in the form of zero-temperature and thermal Coulomb cor-
rections [Lopez98], as well as finite nucleon mass corrections given in [Lopez97]. For
example, thermal Coulomb corrections are applied by multiplying the integrand of
the rates for n↔ peν and ep↔ nν with the Fermi factor

2πα/β

1− exp(−2πα/β)
, (6.36)

where β =
√

1− ǫ−2. Similar prescriptions exist for the other corrections [Lopez97,
Lopez98].
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6.6.2 The n + p→ D + γ reaction rate

Chen et al. derived an effective theory for the strong n + p → D + γ cross section
which is now widely used [Chen99]. They use an effective theory which contains direct
nucleon-nucleon interactions and photon exchange, but neglects pion exchange7. They
estimate the error in the energy regime of BBN to be . 4%. Using nucleon-nucleon
phase-shift data and the cross section for cold neutron capture as input data, they
obtain the folloing equations

σnp→dγ =
4πα(γ2 + P 2)3

γ3m4
NP

(

X̃2
M1 + X̃2

E1

)

, (6.37)

where P =
√

mNE, γ =
√

BDmN , BD is the deuteron binding energy and E is the
cross section energy in the center of mass system. X̃2

M1 and X̃2
E1 are given by

X̃2
E1 =

P 2m2
Nγ4

(γ2 + P 2)4

[

1 + γρd + (γρd)
2 + (γρd)

3 +
mNγ

6π

(

γ2

3
+ P 2

)

C1

]

, (6.38)

X̃2
M1 =

κ2
1γ

4
(

1
a1
− γ
)2

(

1
a2
1

+ P 2
)

(γ2 + P 2)
2



1 + γρd − r0

(

γ
a1

+ P 2
)

P 2

(

1
a2
1

+ P 2
)(

1
a1
− γ
) − LnpmN

2πκ1

γ2 + P 2

1
a1
− γ



 ,

(6.39)
with the EFT fitting constants [Chen98, Chen99]

ρd = 1.764 fm (effective range parameter)

C1 = −1.49 fm4 (P-wave interaction constant)
κ1 = 2.352945 (isovector nucleon magnetic moment)
a1 = −23.714 fm (scattering length in the 1S0 channel)
r0 = 2.73 fm (effective range in the 1S0 channel)

Lnp = −4.513 fm2 (M1 capture constant) .

6.6.3 Charged particle reaction rates

Theoretical models describing the rough shape of charged particle reaction cross sec-
tions have long been available [Fowler67]. In absence of resonances, the cross sections
are a product of the Gamow factor and an “S-factor”,

σ(E) = S(E)
e−2πη̃

E
, (6.40)

where

η̃ ≡ αZ1Z2

√

µ/2E , (6.41)

Z1,2 the atomic numbers in the initial state and µ is the reduced mass. The S-factor
may be expanded in a Maclaurin series to quadratic order in energy, which is usually
sufficient to account for any smoothly-varying dependence,

S(E) = S0 + S1E + S2E
2 . (6.42)

7In EFT treatments of processes where the external momenta are much smaller than the pion
mass (as is the case at BBN with nucleon energies EN . 1 MeV, mπ ≈ 135 MeV), a pion-less EFT
turns out to describe the process sufficiently well [Gegelia98, ChenRupak99].
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To obtain the Maxwell-Boltzmann averaged cross section (Eq. (6.26)) one has to
perform an integration over energy, resulting in a sum of terms for 〈σv〉 with specific
dependence on α and the reduced mass µ. A generic cross section has the form
[Bergstrom99]8

〈σv〉 = a1T
− 2

3

9

(

α

α0

)
1
3
(

µ

µ0

)− 1
3

e−3κ1/3

×
[

1 +
5

36
κ− 1

3 + a2T
2
3

9

(

α

α0

)
2
3
(

µ

µ0

)
1
3

·
(

1 +
35

36
κ− 1

3

)

+a3T
4
3

9

(

α

α0

)
4
3
(

µ

µ0

)
2
3

·
(

1 +
89

36
κ− 1

3

)

]

+ [resonance terms], (6.43)

where
κ := π2α2Z2

1Z2
2

µ

2kBT
(6.44)

and the ai are fitting constants which are fit to the measured cross-sections. Some
cross-sections are fit with an additional exponential term S̃(0)e−βE [Fowler75]. In

addition, non-resonant terms may be multiplied by a cutoff factor fcut = e−(T/Tcut)
2

,
where Tcut has been argued to be proportional to α−1 [Bergstrom99, Fowler75].

Resonances

Where the cross-section as a function of energy shows one or more resonances, they
contribute to the thermal averaged rate as

〈σv〉res = g(T )e−Ē/T , (6.45)

where g(T ) and Ē are fitting parameters corresponding to the shape and position of
the resonance. Usually a power-law is taken for g(T ), thus g(T ) = cT p. In principle
one should consider the variation of the resonance parameters if this term is significant.
But since the major contribution to the resonance energy Ē probably arises from
ΛQCD which we take as our (non-varying) unit, it seems a reasonable first guess to
keep the resonance parameters fixed.

For the code, the NACRE formulae [NACRE99] fitted at the level of the thermal
averaged cross-sections 〈σv〉 are not suitable as they do not allow to incorporate
the dependence on physical parameters. We use the functional forms of rates from
[Smith92, Bergstrom99] which have been described above in Eq. (6.43) and fit the
free parameters of these rates to reproduce the NETGEN rates [NETGEN] as closely
as possible. We also checked that the resulting cross-sections are consistent with
experimental data. In the case of d(α, γ)6Li we found a set of parameters which
seems to fit the experimental cross-section at low energies [Kiener6Li] better than the
NACRE fit. But note that this cross-section is not measured directly, rather it is
derived from experimental data under various assumptions.

8[Bergstrom99] only gives the dependence on α, we have recomputed the expansion including the
dependence on the reduced mass µ.
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Replacing the NETGEN rates in the code with our fitted rates, the obtained
abundances change as follows:

• YD differs by −0.3%,

• Y3He by +0.9%,

• Y4He by less than 0.1%, and

• Y7Li by +3%.

Hence we do not consider this refitting as significant, except in the case of the
d(α, γ)6Li reaction. Depending on whether this reaction is fit to NETGEN, or to
the cross-section values of [Kiener6Li], we found a 6Li abundance larger by a factor
of 1.02, or 3.3, respectively. However, given the unclear observational status of 6Li
this discrepancy is not currently worth pursuing (see Sec. 6.8.5).

6.7 The simulation of the BBN process

The BBN process has been described and simulated more than 40 years ago [Wagoner66].
One starts with the initial conditions given in Sec. 6.4.2 and evolves the element syn-
thesis processes for a set of nuclei as described by the differential equations in Sec.
6.4.3 in the background of an expanding universe. As we are working at a time
when the Universe was radiation-dominated, the expansion of the Universe as given
by the Friedmann equation (3.4) is dominated by the photon, neutrino and electron
contributions9. Hence the energy density ρ entering in Eq. (3.4) is

ρ = ργ + ρν + ρe (6.46)

and the corresponding pressure

p =
1

3
ργc2 +

1

3
ρνc2 + pe . (6.47)

Whilst photons and neutrinos are ultra relativistic throughout BBN, the electrons
move from the relativistic to the non relativistic domain in the course of the BBN
simulation (10 MeV & T & 0.001 MeV). Hence the electron density and pressure
have to be described very carefully.

For the electron energy and pressure density one introduces the electron chemical
potential

φe ∼
π2(~c)3nBYp

2(kBTz)3

[

1
∑

n(−)n+1nL(nz)

]

, (6.48)

where z = mec2

kBT . The electron and positron energy and pressure densities are then
[FowlerHoyle64]

ρe ≡ ρe− + ρe+ =
2(mec

2)4

π2(~c)3

∞
∑

n=1

(−)n+1 cosh(nφe)M(nz) (6.49)

pe− + pe+

c2
=

2(mec
2)4

π2(~c)3

∞
∑

n=1

(−)n+1

nz
cosh(nφe)L(nz) . (6.50)

9The computer code also includes the evolution of baryonic and dark matter. However, this does
not make any impact on the obtained abundances.
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The functions L and M are related to the modified Bessel functions Ki via

L(z) := K2(z)/z (6.51)

M(z) :=
1

z

[

3

4
K3(z) +

1

4
K1(z)

]

. (6.52)

In our BBN simulation, we evolve the following set of parameters with time

• temperatures Tγ , Tν

• electron chemical potential φe

• baryon density ρB (or equivalently the scale factor a)

• the abundances Yi

according to the differential equations given in this chapter, and the Friedmann equa-
tion (3.4) is used to evolve the baryon density and temperatures according to the
expansion of the Universe.

6.7.1 Numerical aspects of the BBN simulation

The main task of a BBN code is to numerically integrate the set of coupled differential
equations which have been given in the preceding sections. In our code, the differential
equations are solved using an adaptive second-order Runge-Kutta method, which
is important to correctly account for the nuclear reactions10. Given a differential
equation

y′(t) = f(t, y) (6.53)

and a starting value at time t0, y(t0) = y0, the task is to derive the value of y at time
t0 + ∆t. The second order Runge-Kutta method does this in a two-step approach.
First one derives the value in linear approximation, i.e.

ỹ(to + ∆t) = y(t0) + ∆t · y′(t0) . (6.54)

The “average” derivative between t0 and t0 + ∆t is then defined as

ỹ′ :=
f(t0, y0) + f(t0 + ∆t, ỹ(t0 + ∆t))

2
(6.55)

and the final value
y(t0 + ∆t) = y0 + ỹ′ ·∆t . (6.56)

The step width ∆t is determined adaptively by demanding that the changes in abun-
dances per time step do not exceed a certain value.

We have adapted the code to the capabilities of modern computer technologies,
which means that we have increased the internal numerical precision, implemented
more precise integration routines and added several further numerical improvements.
These corrections were necessary to remove numerical inaccuracies present in the
available BBN codes.

10Some nuclear reactions can have both high forward and backward reaction rates. A naive solution
of the differential equations for the nuclear reactions via y(to + ∆t) = y(t0) + ∆t · y′(t0) would not
take into account that produced nuclei might be immediately destroyed after creation via the back
reaction process.
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In general, the uncertainties of the input parameters for BBN result in much
higher uncertainties of the resulting abundances than do the numerical inaccuracies
of the code. However, in the next chapter we will derive linearized dependences of
the final abundances Y on input parameters X, ∂ lnY/∂ lnX. This will be achieved
by slightly varying the input parameters X and observing the resulting changes in
the abundances Y , where the variations in X are much below their uncertainty in
order to get the correct linear order approximation. Hence, we have to ensure that
the changes in the final results of the BBN simulations under small changes of the
input parameters are not affected by numerical effects but solely by changes in the
physical processes.

6.8 Observational situation and uncertainties

One of the biggest successes of standard BBN is the matching of theoretically pre-
dicted and observed primordial abundances for major elements. For a review of the
theoretical and observational status and obstacles see for instance [Steigman05].

6.8.1 4He

The highest precision observation is that of the 4He abundance (conventionally writ-
ten YP ). The post-BBN evolution of 4He is simple. In stars, hydrogen is burned to
4He which increases the abundance of 4He above its primordial value. Hence one
expects the 4He abundance to decrease once one goes to stars with lower metallic-
ity11, and a 4He “plateau” is expected for sufficiently low metallicity. Olive et al.
[OliveSkillman04] analyze 8 systems with very low oxygen abundance, which are dis-
played in Fig. 6.3. They argue that the observational data indicated a primordial
abundance of

YP = 0.249± 0.009 , (6.57)

which we take to be a 1σ range. However, given the probable dominance of sys-
tematic effects, instead of using 2-σ bounds to later determine the range of al-
lowed variations12, we rather use the “conservative allowable range” of YP given in
[OliveSkillman04] as

0.232 ≤ YP ≤ 0.258. (6.58)

6.8.2 Deuterium

For deuterium, the post-BBN evolution is as clear as it is for 4He. Deuterium which
was formed during primordial nucleosynthesis is burned in stars to 3He and higher
elements. Also, any deuterium which is newly produced in stars is immediately burned
into 3He as deuterium is the most weakly bound light nucleus. Hence, the deuterium
abundance should increase when going back in time (opposed to 4He, which decreases).
However, the almost identical absorption spectra of D and “normal” hydrogen (1H)
complicate spectroscopic determinations of deuterium significantly.

11Elements with higher mass number than Helium (which are in astronomy called “metals”) are
only produced in stars. Hence a low metallicity of a system is a strong indication of element abun-
dances which are assumed to be close to the primordial ones.

12See Sec. 9.1.
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Figure 6.3: 4He abundances versus oxygen abundance from [Steigman05]. The solid
line is the weighted mean of for the 8 systems. Data from [OliveSkillman04]

Due to this complication, the determination of the primordial deuterium abun-
dance follows from a small number of observed systems. One basically observes ab-
sorption spectra of interstellar deuterium from sightlines of Quasars which have to
fulfill certain quality conditions (see [Kirkman03] for details). As D/H is of the or-
der 10−5, the hydrogen column density NHI must be large enough in order to be
able to observe deuterium with modern high-resolution spectrographs13. We use the
determinations of [O’Meara06, Kirkman03] which give a value of

D/H = (2.8± 0.4)× 10−5 . (6.59)

The analysis of [O’Meara06] is displayed in Fig. 6.4, where the large scatter between
values determined from different systems should be noted. After our studies have
been performed, a new analysis appeared [Pettini08] which reduces the error of D/H
by a factor of 2.

6.8.3 3He

The post-BBN development of 3He is quite complex, as it is both produced and de-
stroyed in stars. As quantitative analyses of these competing processes are quite model
dependent, the primordial 3He abundance cannot be extracted easily from spectra of
old stars. This complexity is revealed by determinations of the 3He abundance, which
typically have a large scatter as can be seen in Fig. 6.5. Hence the common under-
standing is that 3He abundance determinations cannot be considered as good tracers
for the primordial abundance [Vangioni-Flam02].

13The column density NHI gives a two-dimensional measure of the density (here number density)
of a cloud of material, measured in cm−2.
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Figure 6.4: Deuterium versus neutral column density NHI for a set of low-metallicity
absorption spectra along QSO sightlines. From [O’Meara06]. (NHI in cm−2, its value
is of no relevance here). The horizontal line represents the weighted mean, the right
axis gives the derived SBBN values for Ωbh

2.

Figure 6.5: 3He abundances versus oxygen from [Steigman05]. Data from [Bania02].
The dashed lines show the 1σ band given by [Bania02], the blue spot indicates the
3He abundance for the pre-solar nebula.
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Figure 6.6: 7Li abundances versus metallicity from [Steigman05]. log ǫ(Li) ≡ 12 +
log(Li/H)

6.8.4 7Li

The post-BBN 7Li abundance increases due to cosmic ray spallation/fusion reactions
and 7Li production in stars. Even though 7Li is also easily destroyed inside stars, some
stars observationally appear to be “super-lithium rich” [Steigman05], supporting the
assumption that (most) stars are in fact net producers of lithium. Hence, one expects
the lithium abundance to decrease when going back in time, which is supported by
observations of the 7Li abundance which show a plateau at old, metal-poor halo stars
(see Fig. 6.6). One assumes that the plateau value is closely related to the primordial
one.

The most recent determinations of the abundance are quite small: 7Li/H = (1.3±
0.3) · 10−10 [Bonifacio06] (see also [Asplund05]). It has been suggested that there
are unresolved systematic errors relating to the effective temperature of the stars
[Charbonnel05] which may imply a value as large as 7Li/H = (1.64± 0.3) · 10−10. To
account for this possible systematic, we adopt a value

7Li/H = (1.5± 0.5)× 10−10. (6.60)

It turns out that the observed 7Li abundance is about a factor of 3 smaller than the
standard theoretical prediction, which is called the “lithium problem”.
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Abundance Observational Theoretical

D/H (2.8± 0.4)× 10−5 (2.61± 0.04)× 10−5

YP 0.249± 0.009 0.2478± 0.0002
7Li/ H (1.5± 0.5)× 10−10 (4.5± 0.4)× 10−10

Table 6.2: Current observational and theoretical primordial abundances

6.8.5 6Li

A possible detection of 6Li was discussed in [Asplund05], who claim to have found
signals of 6Li in nine stars at the ≥ 2σ significance level. Their observation suggests
a 6Li plateau at the level of

6Li/H ≈ 6.2× 10−12 . (6.61)

If this detection is correct, the 6Li abundance is about a factor 100 larger than the
SBBN prediction. However, given the unclear observational status and post-BBN
history of this isotope, we do not include 6Li in the final analysis.

6.8.6 Theoretical predictions

Theoretically predicted primordial abundances also come with an error, mainly due to
cross-section uncertainties. Our numerical procedures do not provide error estimates,
so we adopt the 1σ ranges from [Serpico04], using a baryon density Ωbh

2 = 0.0224
[ManganoTalk07, HinshawWMAP5]:

D/H = (2.61± 0.04)× 10−5

3He/H = (1.03± 0.03)× 10−5

YP = 0.2478± 0.0002
7Li/H = (4.5± 0.4)× 10−10. (6.62)

A compilation of the recent observational and theoretical primordial abundances
which we will use for BBN is given in Tab. 6.2.



Chapter 7

BBN with varying constants

7.1 Nuclear and fundamental parameters

Big Bang Nucleosynthesis happens at energies in the keV regime, much below the
energy scale of the Standard Model of particle physics where the parameters which
are nowadays considered as fundamental (Tab. 2.1) are relevant. In particular, the
theory of QCD cannot be applied at BBN as it happens well below the QCD scale
ΛQCD ≈ 200 MeV. Quarks have combined into nucleons and the strong coupling
constant αS is in the non-perturbative regime. Hence, rather than the parameters of
the SM, a set of effective low-energy parameters (masses of nucleons, binding energies,
cross-sections and lifetimes) enters in the BBN simulations. We call these parameters
“nuclear parameters” which stresses that those are the actual relevant (effective)
parameters which enter in the nuclear physics processes.

7.2 Nuclear parameters relevant for BBN

The following set of effective low-energy (“nuclear”) parameters enters the BBN sim-
ulations:

• Neutron and proton mass mn, mp, combined to

• Average nucleon mass mN := (mn + mp)/2

• Neutron proton mass difference QN := mn −mp

• Neutron lifetime τn

• Binding energies of D, T, 3He, 4He, 6Li, 7Li, 7Be.

Additionally, several fundamental parameters are also used in the BBN simulation:

• Electron mass me

• Gravitational constant GN

• Fine structure constant α.

54
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The baryon to photon ratio η enters as a further important parameter which is of
cosmological origin. If one had a closed picture for the origin of our Universe, this ratio
would derive from “fundamental” parameters, but lacking any theory this value only
enters as an observed cosmological quantity. We combine all parameters which enter
in the BBN simulation into a set Xi which we will call “set of nuclear parameters”.1

7.3 Nuclear parameter dependence and the response

matrix

We consider the set of primordial abundances Ya with a = (D, 3He, 4He, 6Li, 7Li)
and study its dependence on the variation of our set of nuclear physics parameters
Xi. Here the index i denotes the parameters which enter the calculation of nuclear
abundances, listed in the preceding section. Our central quantity is the response
matrix C with matrix elements [MSW04]

cai =
∂ lnYa

∂ lnXi
. (7.1)

It indicates the leading linear dependence for small deviations of the abundances about
the values obtained given the nuclear parameters inferred from present laboratory
experiments. The matrix C is extracted by varying the quantities Xi independently
in the BBN code, a procedure which includes variation of the reaction cross-sections
and rates that have a physical dependence on Xi. If all variations in parameters are
taken to be small, all necessary information can indeed be extracted from the response
matrix.

Our results for the nuclear response matrix are shown in Tab. 7.1. The first
thirteen rows constitute the transposed nuclear response matrix CT . We also quote
the dependence of the abundances on η in the last row. Values are quoted to 2 d. p.
or to 2 sig. fig. when the magnitude exceeds 1.

1Note that for instance variations with respect to the nuclear parameter α are different from
variations with respect to the fundamental parameter α. This is due to the fact that variations
w.r.t. the fundamental parameter incorporate all dependences, whereas variations w.r.t. the nuclear
parameter only include some dependences. For instance the dependence of τn on α will only be
included in the fundamental parameter dependence.
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∂ lnYa/∂ lnXi D 3He 4He 6Li 7Li

τn 0.41 0.15 0.73 1.4 0.43
QN 0.83 0.31 1.55 2.9 1.00
mN 3.5 0.11 -0.07 2.0 -12
BD -2.8 -2.1 0.68 -6.8 8.8
BT -0.22 -1.4 0 -0.20 -2.5

B3He -2.1 3.0 0 -3.1 -9.5
B4He -0.01 -0.57 0 -59 -57
B6Li 0 0 0 69 0
B7Li 0 0 0 0 -6.9
B7Be 0 0 0 0 81

GN 0.94 0.33 0.36 1.4 -0.72
α 2.3 0.79 0.00 4.6 -8.1
me -0.16 -0.02 -0.71 -1.1 -0.82

η -1.6 -0.57 0.04 -1.5 2.1

Table 7.1: Response matrix C, dependence of abundances on nuclear parameters.



Chapter 8

From nuclear to fundamental

parameters

8.1 From nuclear to fundamental parameters

Looking at the Standard Model of particle physics, it is clear that the nuclear pa-
rameters given in the preceding section (Tab. 7.1) are degenerate in a sense that the
set of 10 non-fundamental parameters only depends on about 5 to 6 fundamental
parameters. Hence, in a next step, we will derive relations between a set of Standard
Model parameters Gk and the nuclear physics parameters Xi. This is encoded in a
second response matrix F with entries

fik =
∂ lnXi

∂ lnGk
. (8.1)

The variation of abundances with respect to the fundamental parameters Gk is then
expressed by the “fundamental response matrix” R with elements rak,

∆Ya

Ya
= rak

∆Gk

Gk
. (8.2)

The matrix R is obtained from C and F by simple matrix multiplication,

R = CF . (8.3)

We consider the following six fundamental parameters Gk:

• Gravitational constant GN

• Fine structure constant α

• Electron mass me

• Light quark mass difference δq ≡ md −mu

• Averaged light quark mass m̂ ≡ (md + mu)/2 ∝ m2
π

• Higgs v.e.v. 〈φ〉.

57
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An additional parameter is the strange quark mass ms. We have omitted it from
our treatment of BBN, as it enters the parameters (binding energies, neutron and
proton mass) with high uncertainty. We have computed that the final dependence
of abundances on the strange quark mass due to the known proton and neutron
dependence is less than 3% of that of the light quark mass dependence (given in
Tab. 8.2), hence the dependence on ms is much lower than the model uncertainty1

(e.g. for nuclear binding energies). However, in our study of variations in Chap. 11 we
will include the strange quark mass contributions, as the parameters studied there are
more directly influenced by strange effects. This is why we will also include the strange
contribution in our following derivation of fundamental parameter dependences.

In the next sections, we give details on how the nuclear parameters depend on
our set of fundamental parameters. In effective theories of nuclear forces, the pion
appears as an effective mediator of the strong force. Hence, we will also introduce the
pion mass mπ as an intermediate parameter.

8.1.1 Pion mass

The pion as the lightest of all mesons is the dominant mediator of the strong inter-
action in effective low energy theories of QCD. Its light mass is due to the fact that
the pion is the pseudo Goldstone boson of the only slightly broken chiral symmetry of
QCD. This fact implies that one can make several predictions about pion properties
in chiral perturbation theory. In first order chiral perturbation theory, one obtains
the famous Gell-Mann-Oakes-Renner relation [Gell-Mann68], which relates the pion
mass to fundamental parameters2[Gasser82],

m2
π ≃ −

1

f2
π

(mu + md)〈0|ūu + d̄d|0〉 . (8.4)

The nonvanishing v.e.v. of ūu and d̄d is a measure of the chiral asymmetry of the
vacuum, signaling the spontaneous breakdown of chiral symmetry [Gasser82]. As can
be seen from Eq. (8.4), the values of 〈q̄q〉 are negative. fπ is the decay constant of the
pion, which does not depend on quark masses at first order and which has a value of
[PDG08]

fπ ≈ 130 MeV . (8.5)

The formulas mentioned above are pure chiral perturbation theory equations
neglecting any electromagnetic contributions. In fact, the pion mass difference of
mπ±−mπ0 = 4.6 MeV is dominantly due to electromagnetic effects [Gasser82]: up to
a small uncertainty of 0.1 MeV the virtual photon cloud surrounding the π±accounts
for the π0-π±mass difference,

mγ
π± −mγ

π0 = 4.6± 0.1 MeV

with mγ
π0 ≈ 0. We can safely neglect this contribution and only work with the first

order dependence on the light quark mass, which can be read off from Eq. (8.4),

m2
π ∝ m̂ (8.6)

1However, it might be that binding energies get a substantial contribution from strange effects
which we so far cannot quantify [Flambaum02].

2Note that there are in fact three pions, π+, π− and π0 with roughly the same mass (mπ± =
139.6 MeV, mπ0 = 135.0 MeV). We will only work with the first order dependences on fundamental
parameters which are the same for all three pions. Further details on specific mass contributions can
be found in [Gasser82].



8.1. FROM NUCLEAR TO FUNDAMENTAL PARAMETERS 59

or

∆ ln mπ =
1

2
∆ ln m̂ . (8.7)

8.1.2 Neutron and proton mass

The different contributions to the neutron and proton mass and the origin of the
proton neutron mass difference have been studied by Gasser and Leutwyler more
than 25 years ago [Gasser75, Gasser82]. Using “improved chiral perturbation theory”,
they estimate the contributions coming from electromagnetic and (effective) strong
self energy as well as from different quark masses. Knowing the properties of electron
proton scattering they could estimate the electromagnetic contributions to the masses
at Born level3 from the electromagnetic form factors as

mγ
p = 0.63 MeV

mγ
n = −0.13 MeV

(8.8)

to a very high accuracy. A further electromagnetic correction might come from pos-
sible intermediate states, a contribution which could not be calculated but has been
estimated to

∆mres = ±0.2 MeV . (8.9)

Thus, the total electromagnetic contributions to the nucleon masses are the values
given in (8.8) with an error of ±0.2 MeV. For the neutron-proton electromagnetic
mass difference one obtains

(mn −mp)
γ = −0.76± 0.30 MeV . (8.10)

The bare QCD masses of the nucleons are hence

mQCD
p = 937.64± 0.20 MeV ,

mQCD
n = 939.70± 0.20 MeV .

(8.11)

The difference in neutron and proton mass of

(mn −mp)
QCD = 2.05± 0.30 MeV (8.12)

can be explained in terms of the different quark content, p = (uud), n = (udd), which
turns out to be in lowest order quark mass expansion [Gasser82]

(mn−mp)
QCD = (md−mu)

1

2mN
< p|ūu−d̄d|p >= δq

1

2mN
< p|ūu−d̄d|p > . (8.13)

Equations (8.10), (8.12) and (8.13) can be combined into

∆QN ≃ (−0.76∆ ln α + 2.05∆ ln δq) MeV

⇒ ∆ln QN ≃ (−0.59∆ ln α + 1.59∆ ln δq) . (8.14)

Subtracting the electromagnetic contributions, one is left with the pure QCD
masses as given in Eqn (8.11), which is far from only being the sum of the masses of

3Born level contributions are proportional to α, so a rescaling of α by a certain factor scales the
values given in Eq. (8.8) by the same factor.
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the three valence quarks of the nucleons. A recent study using “heavy baryon chiral
perturbation theory” [Borasoy96] yields that the baryon mass in the chiral limit is

o
m= 767± 110 MeV . (8.15)

This quantity is purely due to QCD effects which only depend on ΛQCD, and since

we are holding this quantity fixed,
o
m remains constant. The contributions to the final

nucleon mass come from the u, d, and s quarks, whose contributions can be estimated
using the two quantities [Borasoy96]

σπN (0) := m̂ < p|ūu + d̄d|p >= 45± 10 MeV (8.16)

y :=
2 < p|s̄s|p >

< p|ūu + d̄d|p >
= 0.21± 0.20 . (8.17)

They are connected to the quark mass dependence of the nucleons via the Feynmann-
Hellmann theorem [Feynman39, Hellmann37],

σπN (0) = m̂
∂mN

∂m̂
(8.18)

and equivalently

< p|s̄s|p >=
∂mN

∂ms
. (8.19)

This can be translated into

∂ lnmN

∂ ln m̂
= m−1

N σπN (0) = 0.048± 0.011 (8.20)

∂ lnmN

∂ lnms
=

ms

m̂

y

2
m−1

N σπN (0) = 0.12± 0.12 (8.21)

using ms

m̂ ≈ 25 [PDG08].

8.1.3 Neutron lifetime

In the electroweak model the neutron lifetime can be evaluated analytically. One
derives [WeinbergGRT] (see also Eq. (6.33) with zero temperature),

τ−1
n = λn−>p+e−+ν̄e

=
1 + 3g2

A

2π3
G2

F

∫ QN

me

x2 (QN − x)
2

√

1− m2
e

x2
dx . (8.22)

Using q := QN

me
, this integral evaluates to

λn−>p+e−+ν̄e
=

1 + 3g2
A

120π3
G2

F m5
e

[

√

q2 − 1
(

2q4 − 9q2 − 8
)

+ 15q ln
(

q +
√

q2 − 1
)]

.

(8.23)
Here, GF is the Fermi coupling constant, which is related to the Higgs v.e.v. via
Eq. (4.21) and gA is the nucleon axial vector coupling constant, gA ≈ 1.27 [PDG08].
Recent developments in lattice QCD, combined with chiral perturbation theory, allow
to compute gA, yielding [Hemmert03]

gA = (1.2±0.1)−6.9
( mπ

1 GeV

)2

ln
mπ

1 GeV
− (10.4±4.8)m2

π GeV−2 +O(m3
π) . (8.24)
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Obviously the chiral value
o

gA= 1.2± 0.1 dominates the physical value of gA, and for
the derivative we obtain

∂ ln τn

∂ lnmπ
= 0.006 =⇒ ∂ ln τn

∂ ln m̂
= 0.003 . (8.25)

Thus gA can be assumed constant in our treatment. Using the known dependences
of QN from the preceding section, we arrive at a fundamental parameter dependence
of the neutron lifetime of

∆ ln τn = 3.86∆ ln α + 4∆ ln〈φ〉+ 1.52∆ ln me − 10.4∆ ln δq . (8.26)

8.1.4 Binding energies

The dependence of nuclear binding energies on the pion mass and α have been esti-
mated in [Pudliner97] and [Pieper01] using quantum Monte Carlo calculations with
realistic models of nuclear forces (similar values for the α dependence appear in
[Nollett02]). We use the Pudliner and Pieper values which give for the dependence of
binding energies on α:

∆ ln(BD, BT, B3He, B4He, B6Li, B7Li, B7Be) =

(−0.0081,−0.0047,−0.093,−0.030,−0.054,−0.046,−0.088)∆ ln α. (8.27)

The pion mass determines the range of attractive nuclear forces, and the quantum
Monte Carlo calculations of [Pudliner97, Pieper01] which include pion exchange ac-
curately reproduce many experimental properties. One-pion exchange and two-pion
exchange are dominant contributions within the expectation values of the two- and
three-nucleon potentials respectively. Currently such studies have not been extended
to determine the functional dependence of binding energies on the pion mass in gen-
eral [Flambaum07, Damour07]. This dependence would in any case have uncertainties
due to subleading effects of pion mass (or equivalently light quark masses) on other
terms in the nucleon-nucleon potential [BeaneSavage02].

However, the dependence of the deuteron binding energy on the pion mass has been
extensively studied within low-energy effective theory [Epelbaum02, BeaneSavage02]:
the result may be expressed as

∆ ln BD = r∆ln mπ =
r

2
∆ ln m̂ (8.28)

for small variations about the current value [YooScherrer02], with −10 ≤ r ≤ −6.4

We will also take this dependence as a guide for the likely pion mass dependence of
other binding energies. Although the size of the deuteron binding appears due to
an accidental cancellation between attractive and repulsive forces, its derivative with
respect to mπ (which is just BD/mπ times r) is not expected to be subject to any
cancellation. We also expect that the pion contribution to the total binding energy
should increase with the number of nucleons; a proportionality to (A − 1) seems
reasonable to obtain correct scaling at both small and large A5. Hence to estimate
the effect of pion mass on the binding energy of a nucleus Bi we set

∂Bi

∂mπ
= fi(Ai − 1)

BD

mπ
r ≃ −0.13fi(Ai − 1) , (8.29)

4Our definition of r differs by a sign from [YooScherrer02].
5Flambaum et al. [Flambaum07] obtain roughly a scaling of type (A−1) for nuclei with 3 ≤ A ≤ 7,

but their results have a large uncertainty.
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taking r ≃ −8. The numerical constants fi are expected to be of order unity, but
will differ between light nuclei due to peculiarities of the shell structure, etc. Our
normalization corresponds to fD = 1. Then the nontrivial dependences of nuclear
parameters on m̂ are

∆ ln(BD, BT, B3He, B4He, B6Li, B7Li, B7Be,mN ) ≃
(0.5r, 0.26fTr, 0.29f3Her, 0.12f4Her, 0.17f6Lir, 0.17f7Lir, 0.18f7Ber, 0.048)∆ ln m̂ ,

(8.30)

where the dependence of mN is taken from Eq. (8.20). For the m̂ dependence of
abundances due to the variation of binding energies we then have

∂ lnYa

∂ ln m̂

∣

∣

∣

∣

B

=
r

2

∑

i

fi
(Ai − 1)BD

Bi

∂ lnYa

∂ lnBi
, (8.31)

where the dependence ∂ ln Ya

∂ ln Bi
is obtained from the BBN code by varying the binding

energies Bi. Taking account also of the small effect of m̂ on the nucleon mass mN ,
the resulting dependence of abundances on m̂ is

∂ lnYD

∂ ln m̂
≃ 11 + 0.5fT + 5f3He

∂ lnY3He

∂ ln m̂
≃ 8 + 3fT − 7f3He

∂ lnY4He

∂ ln m̂
≃ −2.7

∂ lnY6Li

∂ ln m̂
≃ 27 + 0.4fT + 7f3He + 55f4He − 96f6Li

∂ lnY7Li

∂ ln m̂
≃ −36 + 5fT + 22f3He + 54f4He + 9f7Li − 115f7Be , (8.32)

where we have neglected subleading terms. Even if we consider that some contribu-
tions could cancel against one another due to the values of the fi, the magnitude of
these variations is striking, particularly concerning the lithium abundances. To get
an idea of the possible effect of cancellations, we may set all fi to unity and find the
dependences

∆ ln(YD, Y3He, Y4He, Y6Li, Y7Li) ≃ (17, 5,−2.7,−6,−61)∆ ln m̂. (8.33)

One may also consider to what extent varying m̂ or the pion mass may affect reaction
cross-sections beyond the npdγ reaction. It seems very likely that matrix elements
would acquire nontrivial dependence on mπ; however, since the dependence of abun-
dances on reaction cross-sections is relatively mild (see Table 6.1), the dependence
via reaction matrix elements is unlikely to compete with the very large effects arising
through the variation of binding energies.
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∂ lnXi/∂ lnGk GN α 〈φ〉 me δq m̂

GN 1 0 0 0 0 0
α 0 1 0 0 0 0
τn 0 3.86 4 1.52 -10.4 0
me 0 0 0 1 0 0
QN 0 -0.59 0 0 1.59 0
mN 0 0 0 0 0 0.048
BD 0 -0.0081 0 0 0 −4
BT 0 -0.0047 0 0 0 −2.1fT

B3He 0 -0.093 0 0 0 −2.3f3He

B4He 0 -0.030 0 0 0 −0.94f4He

B6Li 0 -0.054 0 0 0 −1.4f6Li

B7Li 0 -0.046 0 0 0 −1.4f7Li

B7Be 0 -0.088 0 0 0 −1.4f7Be

Table 8.1: Response matrix F , dependence of nuclear parameters Xi on fundamental
parameters Gk

∂ lnYa/∂ lnGk D 3He 4He 6Li 7Li

GN 0.94 0.33 0.36 1.4 -0.72
α 3.6 0.95 1.9 6.6 -11
〈φ〉 1.6 0.60 2.9 5.5 1.7
me 0.46 0.21 0.40 0.97 -0.17
δq -2.9 -1.1 -5.1 -9.7 -2.9
m̂ 17 5.0 -2.7 -6 -61

η -1.6 -0.57 0.04 -1.5 2.1

Table 8.2: Response matrix R, dependence of abundances Yi on fundamental param-
eters Gk. All fi are set to unity.

8.2 The response matrices

The results of the previous section can be summarized in the response matrix F
defined in Eq. (8.1) which relates variations in fundamental parameters Gk to vari-
ations in nuclear parameters Xi. Its values are shown in Tab. 8.1. These results
can be combined with the nuclear response matrix, Tab. 7.1, to the “fundamental
response matrix” R defined in Eq. (8.2) according to Eq. (8.3). The matrix R relates
variations in fundamental parameters to variations in final abundances and is shown
in Tab. 8.2. This table is the central result of this part of the thesis. In treating the
m̂-dependences, which arise from the nuclear binding energies with their uncertain
values of fi, we have given the values which arise when setting all fi to unity. In
our further treatment of BBN we will neglect the model uncertainty6 in the binding
energies and always assume fi ≡ 1.

6Given the current status of low-energy QCD, it seems hard to quantify possible ranges of uncer-
tainty for the fi.
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∂ lnYa/∂ lnGk GN α 〈φ〉 me δq m̂
4He 0.41 1.94 3.36 0.389 -5.358 -1.59

Table 8.3: Dependence of abundances Yi on fundamental parameters Gk found by
[MSW04]

∂ lnYa/∂ lnGk D 3He 4He 6Li 7Li

GN 0.4 0.6 0.3 0.3 -1.0
α 2.3 1.0 2.3 7.4 -9.5
〈φ〉 0.07 0.1 3.1 4.1 ≈ 0.5

Table 8.4: Dependence of abundances Yi on fundamental parameters from
[Chamoun05] and [Landau04]

8.3 Comparison to other studies

The 4He dependence was previously calculated in [MSW04] by semi-analytic meth-
ods [Esmailzadeh91]. Their findings are displayed in Tab. 8.3, our results for the
dependence on fundamental parameters are similar. The dependence on GN can
be compared with the results of [Scherrer03] and [Chamoun05, Landau04], once one
translates from units where GN is constant to ours where ΛQCD is constant. The
latter ones also give values for the dependence on 〈φ〉 (variation of GF ∝ 〈φ〉−2)
and on α. Their results are shown in Tab. 8.4. They roughly match with our esti-
mates most times except for a few numbers, e.g. the much smaller variations of D
and 3He under variations of the Higgs v.e.v. We assume that these deviations are
due to the applied semi-analytical method of [Esmailzadeh91] which might not give
appropriate results in the case of abundances other than 4He. Bergström and Nollett
[Bergstrom99, Nollett02] use the full BBN code [Kawano92] to constrain the varia-
tion of α, incorporating α-dependent reaction cross-sections as described in Sec. 6.6.3.
From their graphical results we extract the dependences given in Tab. 8.5 which again
match with our findings.

∂ lnYa/∂ lnGk D 3He 4He 6Li 7Li

α ≈ 3.5 ≈ 0.9 ≈ 2.0 - ≈ −7

Table 8.5: Dependence of abundances Yi on α from [Bergstrom99] and [Nollett02]



Chapter 9

Constraints on variations of

fundamental parameters

9.1 Bounds on separate variations of fundamental

couplings

The first application of our results from the preceding chapter is in setting bounds
on the variation of each fundamental parameter considered separately, under the
assumption that only one parameter varies at once. We may consider three observa-
tional determinations of primordial abundances (see Sec. 6.8): deuterium, 4He and
7Li. However, the observed 7Li abundance deviates by a factor two to three from
the value predicted by standard BBN theory (SBBN), and systematic uncertainties
related to stellar evolution exist [Korn06]. Thus, we use the former two, D and 4He,
to constrain the allowed variations of the fundamental constants individually. For
deuterium we take 2σ limits; for 4He we consider instead the “conservative allowable
range” of [OliveSkillman04]. The resulting constraints are given in Tab. 9.1.

9.2 Variations of abundances in unified models

A major problem of using BBN to constrain variations of fundamental parameters is
degeneracy. There are only three observational abundances (D, 4He and 7Li) but six
fundamental parameters which can vary. Hence, the three observed values cannot be
used to constrain a set of six parameters. In Chapter 4 we have introduced unified

−19% ≤ ∆ln GN ≤ +10%
−3.6% ≤ ∆ln α ≤ +1.9%
−2.3% ≤ ∆ln〈φ〉 ≤ +1.2%
−17% ≤ ∆ln me ≤ +9.0%
−0.7% ≤ ∆ln δq ≤ +1.3%
−1.3% ≤ ∆ln m̂ ≤ +1.7%

Table 9.1: Allowed individual variations (2σ or “conservative allowable range”, see
Sec. 6.8) of fundamental couplings
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models where the variations of fundamental couplings satisfy relations that reduce
the number of free parameters. Here we apply GUT models in order to be able to
visualize our findings for BBN. In the simplest case every variation of a parameter Gk

is determined by a single underlying degree of freedom, for instance a variation of the
unified coupling ∆ lnαX . We may also eliminate ∆ ln αX in favor of some observable
parameter, which we will choose to be the fine structure constant α.

For grand unified theories, it makes sense to change from a system of units with
constant ΛQCD to a system where MGUT , the mass scale of the GUT, is set to
constant. Furthermore, for the scenarios we will use in this section, we will take the
Planck mass fixed relative to the unification scale, thus ∆(MP/MGUT ) = 0. We set
all fi to unity and, for simplicity, we take the Yukawa couplings to be constant1, thus
the electron and quark masses are proportional to 〈φ〉,

∆ ln
me

MGUT
= ∆ ln

δq

MGUT
= ∆ ln

m̂

MGUT
= ∆ ln

〈φ〉
MGUT

. (9.1)

Finally we define an exponent γ which relates the variation of 〈φ〉 with respect to
MGUT to the variation of ΛQCD/MGUT as

〈φ〉
MGUT

= const.

(

ΛQCD

MGUT

)γ

. (9.2)

We study three non-supersymmetric GUT scenarios, γ = 0, γ = 1 and γ = 1.5,
and use the fine structure constant α to parametrize the variations. As has been
shown in Sec. 4.6, the variation of α can be related to variations of particle masses,
the GUT coupling αX and the QCD invariant scale ΛQCD, see equation (4.23).

Scenario γ = 0

In the first scenario, γ = 0, the Higgs v.e.v. and elementary fermion masses are all
proportional to the unification scale, ∆(MGUT /MP, 〈φ〉/MP,me,q/MP) = 0. Then
the variations of fundamental couplings are related as

∆ ln
ΛQCD

MGUT
= ∆ ln

ΛQCD

〈φ〉 =
3π

40α
∆ln α ≃ 32.3∆ ln α . (9.3)

In a system with constant ΛQCD we get

∆ ln(GN, α, 〈φ〉,me, δq, m̂) ≃ (64.5, 1,−32.3,−32.3,−32.3,−32.3)∆ ln α. (9.4)

We then obtain variations of abundances

∆ ln(YD, Y3He, Y4He, Y6Li, Y7Li) ≃ (−450,−130, 170, 380, 1960)∆ ln α . (9.5)

Scenario γ = 1

In the second scenario with γ = 1, all low-energy mass scales of particle physics are
proportional to ΛQCD. Setting ΛQCD constant, we have

∆ ln(GN, α, 〈φ〉,me, δq, m̂) ≃ (78, 1, 0, 0, 0, 0)∆ ln α. (9.6)

In this case the variations of abundances are not subject to the theoretical uncertainty
of varying ms/ΛQCD. We obtain

∆ ln(YD, Y3He, Y4He, Y6Li, Y7Li) ≃ (77, 27, 30, 120,−68)∆ ln α . (9.7)

1See also the comments of variations of the Yukawa couplings in Sec. 11.1.
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Scenario γ = 1.5

In the third unified scenario with γ = 1.5 we consider the case when the Higgs v.e.v.
and fermion masses vary more rapidly (with respect to the unification scale) than the
QCD scale ΛQCD does. Converting back to a system where ΛQCD is constant, we
find that the variations of fundamental couplings are related as

∆ ln(GN, α, 〈φ〉,me, δq, m̂) ≃ (87, 1, 21.5, 21.5, 21.5, 21.5)∆ ln α. (9.8)

The variations of abundances are then

∆ ln(YD, Y3He, Y4He, Y6Li, Y7Li) ≃ (430, 130,−65,−60,−1420)∆ ln α. (9.9)

9.2.1 Linear results

In Fig. 9.1 we show the abundance variations given by the three GUT models, as a
function of the variation of α. First we plot only the linear dependence of abundances
on α as given by the fundamental response matrix R (Tab. 8.2). We also show the
1σ observational bounds as highlighted regions. Also included in the plot is the effect
on the standard BBN predictions of varying the baryon-to-photon ratio η over the 2σ
range allowed by WMAP 3 year data2, 5.7 ≤ 1010η ≤ 6.5.

It can be seen that in the γ = 0 scenario a reduction of α by about 0.025%
(i.e. a fractional variation of −2.5 × 10−4) would bring theory and observation into
agreement within 2σ bounds, while remaining in the linear regime. Conversely, in
the γ = 1.5 model an increase of α by about 0.04%, i.e. ∆ln α = 4 × 10−4, brings
theory and observation into agreement within 1σ bounds. Considering the variations
of fundamental parameters in the three scenarios Eqns. (9.4), (9.6) and (9.8), the
behavior of the weak scale 〈φ〉 and fermion masses is decisive for the variation of
abundances. However, if ∆ lnYa becomes larger than 1 (as in the case of 7Li) the
results are affected by higher order terms and the linear approximation can no longer
be applied.

9.2.2 Nonlinear results

The linear analysis in the previous section suggests that it is possible, and may even
be natural, to obtain a large negative variation in the 7Li abundance, and considerably
smaller variations in other measurable abundances: positive in the case of deuterium
and negative for 4He. Agreement between theory and data in all three abundances
could then be possible for a narrow range of values in the variation of fundamental
parameters. The required fractional variation in 7Li is so large (a factor two or more
in Y7Li) that a linear analysis using matrix multiplication is inaccurate.

We improve the analysis by including the relations between nuclear and funda-
mental parameters and the three GUT relations for the fundamental parameters in
our BBN simulation code. Then we run the code for a set of parameters ∆ lnα and
obtain the full nonlinear parameter dependence of abundances on variations of fun-
damental parameters. Note that this method is impractical to investigating the full
parameter space: fundamental parameters span a six-dimensional and nuclear param-
eters a 13-dimensional parameter space which cannot be analyzed numerically due to

2Updating to WMAP5 values does not lead to any significant change, there the 2σ range is
5.9 ≤ 1010η ≤ 6.5.
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Figure 9.1: Variation of primordial abundances with α in three GUT scenarios. Red
lines show the first γ = 0 scenario; green lines the second γ = 1 and blue lines the third
γ = 1.5 scenario. Highlighted regions give the observational 1σ limits (as explained
in Sec. 6.8.3, no observational limits can be given for 3He). Error bars indicate the
standard BBN abundances with theoretical 1σ error [Serpico04], for three different
values of η about the WMAP central value, as indicated on the upper horizontal axis.
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time reasons. It is only practicable if the dimensionality of the parameter space is
reduced by applying unification relations.

For most nuclear parameters Xi the dependence on fundamental parameters Gk

is only known to linear order or the nonlinear dependence involves a high uncertainty.
However, we tested that for the unified models considered here, the fractional vari-
ations in the nuclear parameters Xi remain small, well below 0.1. A linear approx-
imation for the relation between nuclear and fundamental parameters is therefore
appropriate. The main nonlinear effects enter at the level of nuclear reactions, in
equations where nuclear parameters as binding energies enter in a known power law
dependence.

The nuclear parameters affecting most the large variation in 7Li abundance are
mainly the deuterium and 7Be binding energies, with the 3He and 4He binding energies
playing a smaller role. A decrease of BD causes BBN to happen later, which means
that the nucleon density is lower and reaction rates smaller. The abundances of
A > 4 elements are rate-limited and thus decrease with decreasing BD. This accounts
for about two-thirds of the change in Y7Li. In addition, the cross-section of the
3He(α, γ)7Be reaction depends strongly on the Q-value, hence on the 7Be binding
energy. Both these effects are computationally under control, therefore we believe
that the specific nonlinear dependence in the scenarios we consider is well estimated
within our code. We show in Fig. 9.2 the primordial abundances including nonlinear
effects, i.e. without using a linear approximation for the relation between Ya and Xi.
For our three GUT models we find a slightly different behavior of the 7Li abundance,
which now has an approximately power-law dependence on variation of α. It is only
slightly more difficult to bring the present observational abundances into agreement
with standard BBN and the WMAP determination of η ; still, if we allow a variation
of 0.00045 . ∆ln α . 0.0005 in the γ = 1.5 model, the predicted abundances are all
very close to the 1σ allowed regions.
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Figure 9.2: Variation of primordial abundances with α in three GUT scenarios in-
cluding nonlinear effects. Labels as in Fig. 9.1.
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Chapter 10

Experimental tests of

variations

In recent years possible variations in the constants of nature have been tested in vari-
ous ways. Whilst direct laboratory measurements do not point towards any variation,
some astrophysical tests yield slight variations. Still, those non-zero results neither
constitute compelling evidence for variations since the applied fitting and analysis
methods are still under debate, nor do the different non-zero results seem to be con-
sistent with each other1. Hence the question if there are and have been variations
remains open from the experimental side.

Here we review and discuss the observational data that we will consider in our
effort to obtain a unified picture of time variation of couplings. We summarize the
results that are most relevant for our analysis in Tab. 10.1.

10.1 BBN

The earliest processes for which Standard Model physics can be tested is BBN (z ∼
1010). The influence of varying constants on BBN has been laid out in chapters 7 to
9. In an extension of our previous treatment, we include in Sec. 10.2.1 the possible
effect of varying constants at last scattering (formation of the CMB) on the input
parameter η of our BBN procedure.

The uncertainty in the η determination, η = (6.20± 0.16)× 10−10 (WMAP5 plus
BAO and SN, [WMAP5] ) yields a further correlated error for the abundances, which
can be treated using the method of [Fiorentini98]. For any given set of fundamental
variations we can define

χ2 ≡
∑

i,j

(Yi − Y obs
i )wij(Yj − Y obs

j ), (10.1)

with the inverse weight matrix

wij =
[

σ2,η
ij + δij(σ

2
obs,i + σ2

th,i)
]−1

, (10.2)

1For a thorough comparison of measurements of variations, a more profound theoretical back-
ground is needed, as we will lay out in the rest of this thesis.
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where

σ2,η
ij ≡ YiYj

∂ lnYi

∂ ln η

∂ lnYj

∂ ln η

(

∆η

η

)2

. (10.3)

We take, as in Tab. 7.1,

∂ ln(D/H, Yp, 7Li/H)

∂ ln η
= (−1.6, 0.04, 2.1). (10.4)

The 1(2)σ error contour is given by χ2/ν ≤ 1(4) where ν is the number of degrees of
freedom. As the final abundances depend on variations of all fundamental constants,
we have to evaluate the variations allowed by BBN for every model separately.

In the light of complex astrophysics which may affect the extraction of the pri-
mordial 7Li fraction, we also consider bounding the variations using deuterium and
4He alone (see also Sec. 9.1). This yields a value consistent with zero for variations
at BBN, since these abundances are consistent with standard BBN.

10.2 CMB

A further far-reaching test of varying constants is the cosmic microwave background
(CMB) (z ∼ 103). In principle, α and GN are bounded by CMB observations. A
variation of α affects the formation of the CMB through Thomson scattering and
the recombination history. However, bounds on variations from CMB are typically
very weak as there are significant degeneracies with other cosmological parameters
[Martins03, Rocha03], see also the discussion in Sec. 10.2.1. Current bounds on α are
[Rocha03]

0.95 <
αCMB

α0
< 1.02 (2σ). (10.5)

The CMB anisotropies may also be used to constrain the variation of Newton’s con-
stant GN. The resulting bound depends on the form of the variation of GN from the
time of CMB to now. Using a step function one finds [Chan07, Zahn02]

0.95 ≤ GN

GN,0

≤ 1.05 (2σ), (10.6)

where the instantaneous change in GN may happen at any time between now and
CMB decoupling. Using instead a linear function of the scale factor a, the bound is

0.89 ≤ GN

GN,0

≤ 1.13 (2σ). (10.7)

Note that here, as in most studies of time-dependent GN, units are implicitly defined
such that the elementary particle masses (and thus the mass of gravitating bodies,
if gravitational self-energy is neglected) are constant. The relevant bound on dimen-
sionless parameters concerns GNm2

N ≡ (mN/MP)2(8π)−1.
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10.2.1 Effect of “varying constants” at CMB and η

In our study on BBN we used the WMAP determination of the baryon number density
parameter η ≡ nB/nγ directly to reduce by one the number of unknown parameters.
However, we should also consider the effect of possible variations of fundamental
parameters at the epoch of CMB decoupling, as CMB measurements are used to
derive the value of η. Hence, it seems important to study how possible variations
at the epoch of CMB decoupling affect the determination of η and hence also the
outcomes of BBN simulations.

Fundamental parameters affecting the CMB are the proton and electron masses,
the gravitational constant and the fine structure constant, as well as the mass of any
dark matter particle present. In Planck units, these reduce to the particle masses
and α. The relevant cosmological parameters are the amplitude, spectral index (and
possible running, etc.) of primordial perturbations; the baryon, dark matter, dark
energy (cosmological constant, etc.) and curvature densities normalized to the critical
density; the Hubble constant; and the reionization optical depth. Of these, the baryon
density Ωbh

2 will vary linearly with the proton mass in Planck units, for a fixed
baryon-to-photon ratio η. Conversely, given a measurement of Ωbh

2, the correct
value of η varies inversely with the proton mass. The conversion factor between Ωbh

2

and η10 ≡ 1010η is then (see Eq. (6.14))

273.9(mp

√

GN)|0(mp

√

GN)−1 ≃ 273.9(1−∆ln(mN/MP)|CMB) , (10.8)

where we approximate the proton and neutron masses by their average mN .
If, therefore, we allow the proton mass (or the gravitational constant, in QCD

units) to vary arbitrarily at the CMB epoch, η is undetermined by WMAP and we
must consider it as an extra free parameter or try to impose independent cosmological
bounds. However, we impose that the size of variations away from the present value
of mp/MP is a monotonically decreasing function of time: thus ∆ ln(mN/MP)|CMB ≤
∆ln(mN/MP)|BBN. Hence we would have a self-consistent treatment of this pa-
rameter if the secondary discrepancies in primordial abundances due to an incor-
rectly estimated η were smaller than the primary effect of varying mN/MP at BBN.
The maximum effect due to rescaling of η would occur when ∆ ln(mN/MP)|CMB =
∆ ln(mN/MP)|BBN, adding the nucleon mass induced variation in η,

∆ ln η = ∆ ln(mN/MP)|BBN . (10.9)

In our treatment of BBN in the next chapter, we will consider this effect by studying
two limiting cases. First, when ∆(mN/MP)|CMB ≪ ∆(mN/MP)|BBN, then our pre-
vious results hold. In the second case, with ∆(mN/MP)|CMB ≃ ∆(mN/MP)|BBN, the
value of η may be significantly rescaled.

10.3 Quasar absorption spectra

The observation of absorption spectra of distant interstellar clouds allows to probe
atomic physics over large time scales. Comparing observed spectra with the spectra
observed in the laboratory, together with the in general well known dependence of
the spectra on fundamental constants, gives bounds on the possible variation of cou-
plings. Different kinds of spectra (atomic, molecular, . . . ) are sensitive to different
parameters, which we will list in the following paragraphs.
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Tests of α
Atomic spectra are primarily sensitive to α. Several groups using various methods of
modeling and numerical analysis have published results; we quote here only the latest
bounds. Murphy and collaborators [Murphy03.2] studied the spectra of 143 quasar
absorption systems over the redshift range 0.2 < zabs < 4.2. Their most robust
estimate is a weighted mean

∆α

α
= (−0.57± 0.11)× 10−5. (10.10)

Dividing the data into low (z < 1.8) and high (z > 1.8) redshift subsamples, they
obtain

z < 1.8, Nsys = 77, 〈zabs〉 = 1.07,
∆α

α
= (−0.54± 0.12)× 10−5

z > 1.8, Nsys = 66, 〈zabs〉 = 2.55,
∆α

α
= (−0.74± 0.17)× 10−5, (10.11)

where Nsys is the number of absorption systems in the sample and 〈zabs〉 is the
averaged sample redshift.

In discussing unified models in Sec. 11.3, we will define various “epochs” for the
purpose of collating data and comparing them with models over certain ranges of
redshift. The 143 data points are then assigned to different epochs: we choose to put
boundaries at z = 0.81 and z = 2.4, thus we obtain three sub-samples

z < 0.81, Nsys = 18, 〈z〉 = 0.65,
∆α

α
= (−0.29± 0.31)× 10−5

0.81 < z < 2.4 Nsys = 85, 〈z〉 = 1.47,
∆α

α
= (−0.58± 0.13)× 10−5

z > 2.4, Nsys = 40, 〈z〉 = 2.84,
∆α

α
= (−0.87± 0.37)× 10−5. (10.12)

Here we have used the “fiducial sample” of [Murphy03.1], the weighted average has
been taken, and we have included [Murphyprivate] the 15 additional samples used in
[Murphy03.2]. For convenience we will refer to these results as “Mα”.

Further results have been obtained by Levshakov et al. [Levshakov07.1], and re-
ported in [Fujii07]:

∆α

α
= (−0.01± 0.18)× 10−5, zabs = 1.15

∆α

α
= (0.57± 0.27)× 10−5, zabs = 1.84. (10.13)

We note that the value for z = 1.84 has an opposite sign of variation to the Mα result,
though the variation does not have high statistical significance. The observational
situation is clearly unsatisfactory.

Tests of µ
Vibro-rotational transitions of molecular hydrogen H2 are sensitive to µ ≡ mp/me.
From H2 lines of two quasar absorption systems (at z = 2.59 and z = 3.02) a variation
is found [Reinhold06] of

∆µ

µ
= (2.4± 0.6)× 10−5, (10.14)
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taking a weighted average. We will refer to this result as “Rµ” after Reinhold et al.
The individual systems yield [Reinhold06]

∆µ

µ
= (2.78± 0.88)× 10−5, zabs = 2.59

∆µ

µ
= (2.06± 0.79)× 10−5, zabs = 3.02. (10.15)

Recently the z = 3.02 system has been reanalyzed [Wendt08], with the result that the
claimed significance of Eq. (10.15) was not reproduced, and the absolute magnitude
of the variation is bounded by |∆µ/µ| ≤ 4.9× 10−5 at 2σ, or

|∆µ/µ| ≤ 2.5× 10−5, zabs = 3.02 (1σ). (10.16)

Very recently, a new determination of the variation of µ appeared [King08] report-
ing a reanalysis of spectra from the same two H2 absorption systems as [Reinhold06],
and adding one additional system at z ≃ 2.8. The results of the new analysis are not
consistent with the previous claim indicating a nonzero variation, either considering
all three systems or the two previously considered. Instead, [King08] obtain a null
bound, ∆µ/µ = (2.6 ± 3.0) × 10−6. As these results were published after this study
has been finished, they are not considered any further.

The inversion spectrum of ammonia has been used to bound µ precisely at lower
redshift [FlambaumNH3]. Recently the single known NH3 absorber system at cosmo-
logical redshift has been analyzed [MurphyNH3], yielding

∆µ

µ
= (0.74± 0.89)× 10−6, z = 0.68. (10.17)

Tests of y
The 21cm HI line and molecular rotation spectra are sensitive to y ≡ α2gp, where gp

is the proton g-factor. Bounds on this quantity from [Murphy01] are

∆y

y
= (−0.20± 0.44)× 10−5, z = 0.247

∆y

y
= (−0.16± 0.54)× 10−5, z = 0.685. (10.18)

Tests of x
Further, the comparison of UV heavy element transitions with HI line probes for vari-
ations of x ≡ α2gpµ

−1 [Tzanavaris06]: the weighted mean of nine analyzed systems
yields

∆x

x
= (0.63± 0.99)× 10−5, 0.23 < zabs < 2.35. (10.19)

However, we note that i) the systems lie in two widely-separated low-redshift (0.23 <
z < 0.53) and high-redshift (1.7 < z < 2.35) ranges; and ii) these two sub-samples
have completely different scatter, χ2/ν about the mean for the low- and high-redshift
systems being 0.33, and 2.1, respectively. Hence we consider two samples, with average
redshift z = 0.40 (5 systems) and z = 2.03 (4 systems). With expanded error bars in
the high-redshift sample (after “method 3” of [Tzanavaris06]) we find

∆x

x
= (1.02± 1.68)× 10−5, 〈z〉 = 0.40

∆x

x
= (0.58± 1.94)× 10−5, 〈z〉 = 2.03. (10.20)
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Tests of F
The comparison of HI and OH lines is sensitive to changes in F ≡ gp

[

α2µ
]1.57

[Kanekar05] and yields

∆F

F
= (0.44± 0.36stat ± 1.0sys)× 10−5, z = 0.765. (10.21)

Tests of F ′

A similar method comparing CII and CO lines has very recently been proposed at
high redshift [Levshakov07.2] yielding the best bound at redshifts > 4.5. The following
bounds on F ′ ≡ α2/µ are obtained for two systems:

∆F ′

F ′
= (0.1± 1.0)× 10−4, z = 6.42

∆F ′

F ′
= (1.4± 1.5)× 10−4, z = 4.69. (10.22)

10.4 The Oklo natural reactor

In Oklo/Gabon, a natural fission reactor formed by naturally enriched uranium in
a rock formation with a water moderator was operating about 2 billion years ago
(∆t ≃ 1.8× 109 y, z ∼ 0.14 with WMAP5 best fit cosmology). The resulting isotopic
ratios in this rock nowadays differ radically from any other terrestrial material. By
modeling the nuclear fission process, one can in principle bound the variation of α
over this period. The determination of ∆ lnα at the time of the reactions results
from considering the possible shift, due to variation of electromagnetic self-energy, in
the position of a very low-lying neutron capture resonance of 149Sm. The analysis of
[Petrov05] gives the bound (taken as 1σ)

−5.6× 10−8 < ∆α/α < 6.6× 10−8. (10.23)

For a linear time dependence this results in the bound

|α̇/α| ≤ 3× 10−17y−1. (10.24)

Note that these results concern varying α only. If other parameters affecting nu-
clear forces, in particular light quark masses, are allowed to vary, the interpretation
of this bound becomes unclear [Olive02, Flambaum02] since it depends on a nuclear
resonance of 150Sm whose properties are very difficult to investigate from first princi-
ples. In the absence of a resolution to this problem we consider Oklo as applying only
to the α variation in each model. In scenarios where several couplings vary simulta-
neously we do not consider strong cancellations. Nevertheless, we allow for a certain
degree of accidental cancellation and therefore multiply the error on the bound Eq.
(10.23) by a factor three.
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10.5 Meteorite dating

Meteorites which have formed at about the same time as the solar system, tMet ≃
4.6× 109 y ago (z ≃ 0.44) contain long-lived α- or β-decay isotopes. The decay rates
of those isotopes may be sensitive probes of cosmological variation [Olive02, Olive03,
Sisterna90]. Their (generally) small Q-values result from accidental cancellations
between different contributions to nuclear binding energy, depending on fundamental
couplings in different ways, thus the sensitivity of the decay rate may be enhanced by
orders of magnitude.

The best bound concerns the 187Re β-decay to osmium with Qβ = 2.66 keV. The
decay rate λ187 is measured at present in the laboratory, and also deduced by isotopic
analysis of meteorites formed about the same time as the solar system, 4.6×109 years
ago. More precisely, the ratio λ187/λU, averaged over the time between formation and
the present, is measurable [Olive03, Fujii03], where λU is the rate of some other decay
(for example uranium) used to calibrate meteorite ages.

The experimental values of λ187 imply (setting λU to a constant value)

t−1
Met

∫ 0

−tMet

∆λ187(t)

λ187
dt = 0.016± 0.016. (10.25)

Since the redshift back to tMet is relatively small, we obtain bounds on recent time
variation by assuming a linear evolution up to the present, for which the left hand
side is −(tMet/2)λ̇187/λ187 and the fractional rate of change is bounded by

λ̇187

λ187
≃ (−7.2± 6.9)× 10−12 y−1. (10.26)

Projected back to tMet this gives the bound

∆ ln λ187 ≃ 0.033± 0.032 (z ≃ 0.44). (10.27)

This is a conservative bound unless the time variation has recently accelerated, or
there are significant oscillatory variations over time.

Since the possible dependence of “control” decay rates λU/mN on nuclear or fun-
damental parameters is much weaker than that of λ187/mN , we use this result for the
variation of λ187 in units where λU is constant, i.e. ∆ln(λ187/λU) ≃ ∆ln(λ187/mN ).
We find the decay rate dependence to be [DSW08.1]

∆ ln
λ187

mN
≃ −2.2×104∆ln α−1.9×104∆ln

m̂

ΛQCD
+2300∆ ln

δq

ΛQCD
−580∆ ln

me

ΛQCD
.

(10.28)

10.6 Bounds on the variation of GN

Variations of Newton’s constant have been studied in the solar system and in astro-
physical effects. Whilst all references give bounds exclusively on a potential variation
of GN, one should note that besides GN also nuclear parameters (neutron / proton
masses and parameters of nuclear forces) can vary, which would in general add de-
generacies and make the results less stringent. It has generally been assumed that
particle masses are constant, thus the resulting bounds actually constrain variation
of GNm2

N ∝ (mN/MP)2.
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In the solar system, changes of GN induce changes in the orbits of planets. Range
measurements to Mars from 1976 to 1982 can be used to obtain [Hellings83]

ĠN/GN = 2± 4× 10−12y−1. (10.29)

Lunar laser ranging from 1970 to 2004 yields [Williams04]

ĠN/GN = (4± 9)× 10−13y−1. (10.30)

The stability of the orbital period of the binary pulsar PSR 1913+16 [Damour88] may
be used to deduce

ĠN/GN = (1.0± 2.3)× 10−11y−1. (10.31)

All these results apply at the present epoch z = 0.

A bound on the behavior of GN over the lifetime of the Sun (approximately 4.5×
109y, z = 0.43) was found by Guenther et al. [Guenther98] by considering the effect
of the resulting discrepancy in the helium/hydrogen fraction on p-mode oscillation
spectra. The claimed constraint is

|ĠN/GN| ≤ 1.6× 10−12 y−1

|∆ln GN| ≤ 7.2× 10−3 z = 0.43, (10.32)

where the assumed form of variation is a power law in time since the Big Bang, which
may be approximated over the last few billion years as a linear dependence. For
models with significantly nonlinear time dependence the bound may be reevaluated:
since the bound arises from the accumulated effect of hydrogen burning since the
birth of the Sun, it may be expressed as an integral of the variation over the Sun’s
lifetime analogous to Eq. (10.25).

The mass of neutron stars is determined by the Chandrasekhar mass

MCh ≃
1

G
3/2
N m2

n

(10.33)

where mn is the neutron mass. This may be reexpressed in terms of the baryon
number of the star nB ∝MCh/mn ∝ (GNm2

n)−3/2, which is expected to be constant
up to small corrections from matter accreting onto it. Thus the relative masses of
neutron stars measured at the same epoch probes the fractional variation of GNm2

n

between their epochs of formation. From the comparison of masses of young and old
neutron stars in binary systems (where the oldest neutron stars are up to 12 Gy old,
z ∼ 3.3), it is found [Thorsett96] that the variation of the average neutron star mass
µn is µ̇n = −1.2 ± 4.0(8.5) × 10−12M⊙ y−1 at 60% (95%) confidence level. In units
where particle masses are constant, we have

ĠN/GN = −0.6± 2.0 (4.2)× 10−12y−1, (10.34)

where the averaging is performed over the last 12 × 109y, and the bound should be
reinterpreted for variations which are not linear in time. The absolute variation over
this period is then bounded at 1σ as

∆ ln GN = (−0.7± 2.4)× 10−2, z = 3.3. (10.35)
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10.7 Atomic clocks

Atomic transitions can be measured in the laboratory to very high precision over peri-
ods of years. As each atomic transition depends differently on fundamental constants
(e.g. α, µ), comparisons of different atomic transitions over long periods of time give
very sensitive results.

Recently, stringent bounds on the present time variation of the fine structure
constant and the electron-proton mass ratio have been obtained by [Blatt08],

d ln α/dt = (−0.31± 0.3)× 10−15 y−1

d ln µ/dt = (1.5± 1.7)× 10−15 y−1. (10.36)

Fortier et al. [Fortier07] obtain stronger bounds, |α̇/α| < 1.3× 10−16 y−1, if other
relevant parameters are assumed not to vary. If other atomic physics parameters are
allowed to vary, this bound becomes considerably weaker, depending on a possible
relative variation of the Cs magnetic moment and the Bohr magneton. Direct com-
parison of optical frequencies may yield bounds at the level of 10−17 per year; limits
on variation of α from this method are reported with uncertainty 2.3 × 10−17y−1

[Rosenband08] but designated as preliminary. If these bounds are used then our
limits from atomic clocks via α variation should be tightened by about an order of
magnitude.

Extrapolating the results of [Blatt08] to the time of Oklo (z = 0.14, t = 1.8×109 y)
gives

∆ ln α = (−0.56± 0.54)× 10−6,

∆ln µ = (−0.27± 0.31)× 10−5. (10.37)
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Method redshift ∆ ln α ∆ln µ ∆ln GNm2
N ∆ln x ∆ln y ∆ln F ∆ln F ′ ∆ln λ187

[10−6] [10−5] [10−2] [10−5] [10−5] [10−5] [10−4] [10−2]

Oklo α [Petrov05] 0.14 0.00± 0.06
21cm [Murphy01] 0.247 −0.20± 0.44
Sun [Guenther98] 0.43 0± 0.72

Heavy/HI, low-z [Tzanavaris06] 0.40 1.0± 1.7
Meteorite [Olive03] 0.44 3.3± 3.2

Mα epoch 2 [Murphy03.2] 0.65 −2.9± 3.1
Ammonia [FlambaumNH3] 0.68 0.06± 0.19

21cm [Murphy01] 0.685 −0.16± 0.54
HI / OH [Kanekar05] 0.765 0.4± 1.1
Absorption [Fujii07] 1.15 −0.1± 1.8

Mα epoch 3 [Murphy03.2] 1.47 −5.8± 1.3
Absorption [Levshakov07.1] 1.84 5.7± 2.7

Heavy/HI, high-z [Tzanavaris06] 2.03 0.6± 1.9
H2 [Reinhold06] 2.59 2.78± 0.88

Mα epoch 4 [Murphy03.2] 2.84 −8.7± 3.7
H2 [Reinhold06] 3.02 2.06± 0.79

Neutron stars [Thorsett96] 3.3 −0.7± 2.4
CII / CO [Levshakov07.2] 4.69 1.4± 1.5
CII / CO [Levshakov07.2] 6.42 0.1± 1.0

CMB [Martins03], [Chan07] 103 0+1×104

−3×104 0+7
−6

Table 10.1: Observational 1σ bounds on variations. Observables are defined as µ ≡ mp/me, x ≡ α2gpµ
−1, y ≡ α2gp, F ≡ gp[α

2µ]1.57,
F ′ ≡ α2/µ. The given redshift may denote a single measurement, or an averaged value over a certain range: see main text. The two
CMB bounds are independent of each other. Our BBN bounds cannot be displayed in this form.



Chapter 11

Variations from BBN to

today in unified scenarios

As has been laid out in Sec. 4.5, we will use the concept of grand unification to
reduce the number of potentially varying parameters. The main idea is that the GUT
relations interrelate variations of the “fundamental” parameters Gk which we defined
in Sec. 8.1.

In this chapter, we consider the hypothesis that, for all redshifts, all fractional
variations in the “fundamental” parameters Gk are proportional to one nontrivial
variation with fixed constants of proportionality. If the variation of the unified gauge
coupling ∆ lnαX is nonvanishing, we may write

∆ ln Gk = dk∆ln αX (11.1)

for some constants dk, assuming small variations. Different unification scenarios cor-
respond to different sets of values for the “unification coefficients” dk. Considering
the values of ∆ ln Gk as coordinates in an Nk-dimensional space, this assumption re-
stricts variations to a single line passing through zero. The variation then constitutes
exactly one degree of freedom. We will go beyond this hypothesis in the next chapter
where we also consider models with growing neutrinos and oscillating variations (see
Sec. 5.4) for which a fixed linear relation (11.1) is not realized for all z.

11.1 GUT relations

GUT relations have the property that variations of the Standard Model gauge cou-
plings and mass ratios can be determined in terms of a smaller set of parameters
describing the unified theory and its symmetry breaking. Hence, if nonzero varia-
tions in different observables are measured at similar redshifts, models of unification
may be tested without referring to any specific hypothesis for the overall cosmological
history of the variation. We need only assume that for a given range of z the time
variation is slow and approximately homogeneous in space, hence ∆ lnαX depends
only on redshift z to a good approximation. The relevant unified parameters are the
unification mass MGUT (relative to the Planck mass), the GUT coupling αX defined
at the scale MGUT , the Higgs v.e.v. 〈φ〉 and, for supersymmetric theories, the soft
supersymmetry breaking masses m̃, which enter in the renormalization group (RG)

82
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equations for the running couplings. Then, for the variations at any given z we can
write

∆ ln
MGUT

MP
= dM l, ∆ln αX = dX l, ∆ln

〈φ〉
MGUT

= dH l, ∆ln
m̃

MGUT
= dSl,

(11.2)
where l(z) is the “evolution factor” introduced for later convenience. If αX varies
nontrivially we may normalize l via dX = 1. In supersymmetric theories we set
αX = 1/24, in nonsupersymmetric theories we set dS ≡ 0 and αX = 1/40 (see Sec.
4.5).

We make the simplifying assumption that the masses of Standard Model fermions
all vary as the Higgs v.e.v., i.e. Yukawa couplings are constant at the unification scale:

∆ ln
me

MGUT
= ∆ ln

δq

MGUT
= ∆ ln

m̂

MGUT
= ∆ ln

ms

MGUT
= ∆ ln

〈φ〉
MGUT

. (11.3)

Like the gauge couplings, also the fermion masses vary under variations of the unified
coupling αX due to the renormalization group running of fermion masses. However,
we have explicitly calculated the effect of varying couplings and found that it is at the
order of a 1% correction1, which is already smaller than our uncertainties in hadronic
and nuclear physics2. Hence we can apply the assumption (11.3). Using the relations
(4.23) and (4.26), one finds for the QCD scale

∆ ln(ΛQCD/MGUT )

l
=

2π

9αX
dX +

2

9
dH +

4

9
dS (11.4)

and for the fine structure constant,

∆ ln α

l
=

80α

27αX
dX +

43

27

α

2π
dH +

257

27

α

2π
dS . (11.5)

For the nucleon mass we include possible strange quark contributions. In our
treatment of BBN, we neglected strange quark contributions, as the final dependence
on ms was much below the model uncertainty. Here we include the roughly known
strange contribution to the nucleon mass. The uncertainty in the strangeness content
is an indicator of the overall uncertainty that may arise due to ms variation. We
found (Eqs. (8.20), (8.21) and (8.14))

∆ ln
mN

ΛQCD
= 0.048∆ ln

m̂

ΛQCD
+ (0.12± 0.12)∆ ln

ms

ΛQCD
, (11.6)

∆ ln
QN

ΛQCD
= −0.59∆ ln α + 1.59∆ ln

δq

ΛQCD
, (11.7)

and thus

∆ ln µ

l
= (0.58∓ 0.08)

dX

αX
+ (0.37∓ 0.05)dS + (−0.65± 0.09)dH , (11.8)

∆ ln(GNm2
N )

l
= 2dM + (1.16∓ 0.17)

dX

αX
+ (0.74∓ 0.11)dS + (0.71± 0.19)dH ,

(11.9)

1For low-energy observables such as mq(Q2)/ΛQCD we consider an RG scale Q2 that is fixed
relative to ΛQCD, Q2 = const·Λ2

QCD. Thus the variation of mq(Q2)/mq(M2
GUT ) is entirely due to

the dependence on α3(MGUT ), which is suppressed by a loop factor αX/π compared to the nonper-
turbative dependence of ΛQCD/MGUT on αX . We find ∆ ln(m̄q(Q2)/m̄q(M2

GUT )) = 2/7∆ ln αX ≃

(9αX/7π)∆ ln(ΛQCD/MGUT ) under variation of αX , where m̄q is the running quark mass.
2Langacker et al. [Langacker01] arrive at the same conclusion.
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where the upper or lower signs correspond to the positive or negative signs in Eq.
(11.6) respectively.

The largest contribution to variations of the proton g-factor gp has been argued
to arise from the pion loop [Murphy03.2], yielding at first order a dependence on the
light quark mass of

∆ ln gp ≃ −0.087∆ ln m̂/ΛQCD,

∆ln gp

l
≃ 0.06

dX

αX
− 0.07dH + 0.04dS . (11.10)

Hence the variations of observables including gp are

∆ ln x

l
= (−0.48± 0.08)

dX

αX
+ (0.59∓ 0.09)dH + (−0.31± 0.05)dS

∆ln y

l
= 0.10

dX

αX
− 0.06dH + 0.06dS

∆ln F

l
= (1.04∓ 0.13)

dX

αX
+ (−1.08± 0.14)dH + (0.65∓ 0.08)dS

∆ln F ′

l
= (−0.54± 0.08)

dX

αX
+ (0.65∓ 0.09)dH + (−0.35± 0.05)dS . (11.11)

We have now expressed the variations accessible to observation in terms of three
(four) variables: l, dX , dH (and dS), where one parameter may be eliminated by
normalization. Different unified scenarios will be characterized by different relations
among these parameters.

11.2 Variations in six different unified scenarios

We will now investigate six different scenarios for the variation of the grand unified
parameters αX , MGUT /MP, 〈φ〉/MGUT and m̃/MGUT . These will fix the unification
coefficients dk. For each unified scenario we display the z-dependence of the fractional
variation. Each figure shows the available information from observations of different
couplings, interpreted as constraints on the variation of a single parameter. Since we
have only one free variable we can plot all observations simultaneously as a function
of redshift. Inspection “by eye” permits to judge if a smooth and monotonic evolution
of the varying parameter is consistent or not. Most data points are upper bounds
on a possible variation, and for the non-zero variations we can study two immediate
questions in each scenario:

First, whether claimed nonzero variations of α [Murphy03.2] and µ [Reinhold06]
at redshift 2–3 are compatible with one another, since the ratio of their fractional
variations is predicted in each scenario.

Second, we consider whether there is an indication of nonzero variation at BBN.
For no variation at BBN we obtain χ2 = 17.9 for 3 measured abundances (4He,
D, 7Li). This discrepancy between theory and observation is exclusively due to 7Li.
(Considering only 4He and D, the value of χ2 is 0.24.) If we wish to solve or ameliorate
the “lithium problem” by a nonzero variation, we will require χ2/ν to be not much
larger than unity, taking ν = 2 as appropriate for one adjustable parameter. If there
is no significant range where the three abundances have a 2σ fit (χ2/ν ≤ 4) then
we give up the hypothesis that the 7Li problem is solved by coupling variations and
instead assume that the observed depletion is due to some astrophysical effect. In
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this case we consider only D and 4He abundances as observational bounds on the size
of variations at BBN.

11.2.1 Varying α alone

Before describing the six different grand unified scenarios, we consider a variation of
the fine structure constant α alone. Clearly here we are unable to account for any
nonzero variation in µ or other quantities independent of α. The cosmological history
is dominated by the nonzero variation of the Mα values at redshifts z ≃ 1 to 4. We
find that there is almost no 2σ match of the BBN values (χ2/ν ≥ 3.9): the 2-sigma
range is

3.25% ≥ ∆ln αBBN ≥ 4.06%. (11.12)

Hence it seems unlikely that the “lithium problem” can be solved by a variation of α
alone. If we regard the 7Li discrepancy as due to systematic or astrophysical effects
we can set a conservative bound on α variation from 4He and D abundances

−3.6% ≥ ∆ln αBBN ≥ 1.9%, (11.13)

where we imposed that neither the D nor 4He abundance should deviate by more than
2σ from observational values. See Fig. 11.1 for a summary of the bounds in this case.

11.2.2 Scenario 1: Varying gravitational coupling

In this scenario we have only dM nonvanishing,

dH = dS = dX = 0, (11.14)

therefore

∆ ln
MGUT

MP
=

1

2
∆ ln GNΛ2

QCD. (11.15)

We find that there is no value of ∆ lnGNΛ2
QCD for which BBN is consistent with

the three observed abundances within 2σ. The best fit values are χ2/ν ≥ 7.7 for no
variation of mN/MP at CMB and χ2/ν ≥ 5.9 if the variation of mN/MP has the
same size at BBN and CMB. Assuming that the discrepancy in the 7Li abundance is
due to some other effect, we find the allowed region of variation of GN at BBN under
which primordial D and 4He abundance lie within the observed range at 1σ (2σ),

−5% (−13%) ≤ ∆ln GNΛ2
QCD ≤ 12% (22%) (11.16)

If the variation of mN/MP has the same size at BBN and CMB one finds

−4% (−11%) ≤ ∆ln GNΛ2
QCD ≤ 10% (16%). (11.17)

The bounds on time variation of GNΛ2
QCD are much weaker than for many other

varying couplings. This scenario also predicts a vanishing value of η in Eötvös exper-
iments (see Sec. 12.3 for details). Thus, to any one of the following scenarios we may
add an additional nonzero dM of similar size to dX , dH or dS without changing the
results significantly.
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CMB BBN

Figure 11.1: Variations for varying α alone. Only observations constraining α vari-
ation are shown; the BBN fit including 7Li is poor (χ2/ν ≥ 7.8/2) hence we also
display a conservative bound from 4He and D abundances neglecting 7Li.

CMB BBN

Figure 11.2: Variations for scenario 2; BBN bounds are 2σ bounds.
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11.2.3 Scenario 2: Varying unified coupling

In the first GUT scenario without SUSY we consider the case when only dX is non-
vanishing,

dH = dS = dM = 0, αX = 1/40. (11.18)

Within a supersymmetric theory the same relations will apply except that αX = 1/24
and the variations of observables are scaled by a factor 24/40 relative to ∆ ln αX : we
designate this as Scenario 2S. In both cases we find here

∆ ln µ

∆ln α
= 27. (11.19)

It is then highly unlikely for the nonzero Mα result for variation of α to coexist
with the determination of µ at redshift around 3 [Reinhold06], even if the latter is
interpreted as an upper bound on the absolute size of variation [Wendt08].

For the BBN fit, we find without SUSY (excluding modifications of the baryon
fraction η due to varying mN ) no range of values fitting at 1σ level (χ2/ν ≥ 2.3). At
2σ the abundances, including 7Li, become consistent for the range

−5.7× 10−4 ≤ ∆ln αX ≤ −1.7× 10−4 (2σ). (11.20)

If one includes a variation of mN at the time of CMB with the same magnitude as at
BBN the result remains unchanged (χ2/ν ≥ 2.45), with the same 2σ range. For this
scenario we may consider a nonzero variation at BBN, but more recent probes must
all be viewed as increasingly tight null bounds.

11.2.4 Scenario 3: Varying Fermi scale

In this scenario we consider the case when the variation arises solely from a change
in the Higgs expectation value relative to the unified scale, thus only dH is nonzero:

dS = dM = dX = 0, αX = 1/40. (11.21)

This scenario implies
∆ ln µ

∆ln α
= −325. (11.22)

Whether we interpret the determination of µ [Reinhold06] as a detection or an upper
bound, any variation in α at large redshift should be orders of magnitude smaller
than current observational sensitivity.

We find for BBN including 7Li (ν = 2) no 1σ range (χ2/ν ≥ 1.95) but

6× 10−3 ≤ ∆ln〈φ〉/MGUT ≤ 22× 10−3 (2σ). (11.23)

A variation of mN at the time of CMB with the same magnitude as at BBN does not
change this result.

11.2.5 Scenario 4: Varying Fermi scale and SUSY-breaking

scale

This scenario corresponds to scenario 3, but includes supersymmetry and assumes
that the mass-generating mechanism for SM particles and their superpartners gives
rise to the same variation:

dM = dX = 0, dS = dH , αX = 1/24. (11.24)
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We find here
∆ ln µ

∆ln α
= −21.5, (11.25)

such that again the claimed nonzero variations in α and µ cannot be compatible and
the variation in α at redshift 3 must be below current sensitivities. We demonstrate
this in Fig. 11.4, where we show for this scenario the bounds on the variable dH l =
∆ ln(〈φ〉/MGUT ) that arise from various observations.

We find for BBN including 7Li(ν = 2) no 1σ fit (χ2/ν ≥ 1.60), while at 2σ

1.25× 10−2 ≤ ∆ln〈φ〉/MGUT ≤ 5.4× 10−2 (2σ). (11.26)

If one includes a variation of mN at the time of CMB with the same magnitude as at
BBN the allowed range becomes slightly restricted (χ2/ν ≥ 1.72),

1.20× 10−2 ≤ ∆ln〈φ〉/MGUT ≤ 4.9× 10−2 (2σ). (11.27)

11.2.6 Scenario 5: Varying unified coupling and Fermi scale

In this scenario we study a combined variation of the unified coupling and the Higgs
expectation value:

dM = dS = 0, dH = γ̃dX , αX = 1/40. (11.28)

The parameter γ̃ can be related to the parameter γ ≡ ∆ ln〈φ〉/MGUT

∆ ln ΛQCD/MGUT
which was

introduced in Sec. 9.2 via

γ = γ̃

(

2π

9αX
+

2

9
γ̃

)−1

. (11.29)

There we examined the cases γ = (0, 1, 1.5) which correspond to γ̃ = (0, 36, 63). Here
we find that the best BBN fit is reached for γ̃ ≈ 50 with χ2/ν = 1.45. Note that we
have the freedom to adjust γ̃ such that nonzero variations of α and µ at redshift ≃ 3
are consistent with each other. We have

∆ ln µ

∆ln α
=

23.2− 0.65γ̃

0.865 + 0.002γ̃
. (11.30)

We choose for illustration γ̃ = 42, for which

∆ ln µ = −5.6∆ ln α (11.31)

and the 2σ contour for BBN is

7.5× 10−4 ≤ ∆ln αX ≤ 28× 10−4. (11.32)

For a variation of mN at the time of CMB with the same magnitude as at BBN the
fit becomes worse (χ2/ν ≥ 1.68). However, a 2σ fit to BBN is obtained over a wide
range of 0 ≤ γ̃ ≤ 26 (negative ∆ ln αX) and 40 ≤ γ̃ <∞ (positive ∆ ln αX).

Assuming that the apparent 7Li mismatch at BBN is due to systematic astrophys-
ical effects, we may bound αX with only D and 4He abundances. Here we find at
1σ

−5.5× 10−4 ≤ ∆ln αX ≤ 1.44× 10−3. (11.33)

In Fig. 11.5 we again plot simultaneously all observations for this scenario. This shows
that the bound from BBN including 7Li is not consistent with the claimed nonzero
variations of α and µ for a monotonic evolution over z.
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BBNCMB

Figure 11.3: Variations for scenario 3; BBN bounds are 2σ. Note that due to the very
large ratio ∆ ln µ/∆ln α in this scenario, points indicating any nonzero variation of
α fall well outside the range of the graph.

CMB BBN

Figure 11.4: Variations for scenario 4; BBN bounds are 2σ
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CMB BBN

Figure 11.5: Variations for scenario 5, γ̃ = 42; BBN bounds are 2σ

CMB BBN

Figure 11.6: Variations for scenario 6, γ̃ = 70; BBN bounds are 2σ
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BBNCMB

Figure 11.7: Variations for scenario 6, γ̃ = 25; BBN bounds are 2σ

11.2.7 Scenario 6: Varying unified coupling and Fermi scale

with SUSY

In this scenario we study a combined variation of the unified coupling and the Higgs
v.e.v. including SUSY, where as in Scenario 4 we tie the variations of the superpartner
masses and Fermi scale together:

dM = 0, dS ≃ dH = γ̃dX , αX = 1/24. (11.34)

Now the relation to γ is modified as

γ = γ̃

(

2π

9αX
+

2

3
γ̃

)−1

. (11.35)

One may again adjust γ̃ to make nonzero variations in α and µ self-consistent, where
now

∆ ln µ

∆ln α
=

14− 0.28γ̃

0.52 + 0.013γ̃
. (11.36)

We find that a good fit to BBN is obtained over a large range of γ̃, ranging from
γ̃ = 100 to infinity with minimal χ2/ν = 1.45. This shows that the main effect in
the SUSY model comes from the variation of the Higgs v.e.v. Including a variation
of mN at the time of CMB with the same magnitude as at BBN the fits gets worse
(χ2/ν ≥ 1.8). A 2σ fit can be obtained for 0 ≤ γ̃ ≤ 28 (for negative ∆ ln αX at BBN)
and for 58 ≤ γ̃ <∞ (positive ∆ ln αX).

First, we study the case γ̃ = 70 for which

∆ ln µ = −3.9∆ ln α (γ̃ = 70) (11.37)



92 CHAPTER 11. VARIATIONS FROM BBN TO TODAY IN GUTS

and BBN is fit with a 2σ range

5.5× 10−4 ≤ ∆ln αX ≤ 18× 10−4. (11.38)

Neglecting 7Li, we obtain a 1σ bound from BBN

−3.5× 10−4 ≤ ∆ln αX ≤ 9.3× 10−4. (11.39)

Secondly, we study the case γ̃ = 25 where

∆ ln µ = 8.3∆ ln α (γ̃ = 25), (11.40)

and where the 2σ contour for BBN is

−13× 10−4 ≤ ∆ln αX ≤ −7× 10−4. (11.41)

In this second case the Murphy α measurement and BBN point into the same direc-
tion. The difference between the two values of γ̃ can be seen from a comparison of
Figs. 11.6 and 11.7.

11.3 Epochs and evolution factors

11.3.1 Epochs

As a next step, we group the information on experimental bounds on variations of
couplings in the different unified scenarios (displayed in Figs. 11.1 to 11.7) into differ-
ent cosmological epochs. This produces a first quantitative estimate of the possible
time evolution for the various unified scenarios. The choice of epochs is somewhat
arbitrary. Two epochs are singled out by events in early cosmology, namely the last
scattering surface of CMB, and BBN. The very recent epoch comprises present day
laboratory experiments and the Oklo natural reactor, for which a linear interpola-
tion to the present rate of varying couplings seems reasonable. We further divide the
observations at intermediate redshift into three epochs.

• Epoch 1: Today until Oklo
Contains Oklo and laboratory measurements. For the laboratory measurements,
we extrapolate the rate of change of the couplings to finite changes at the redshift
z = 0.14 (t = 1.8× 109 y) of the Oklo event.

• Epoch 2: 0.2 ≤ z ≤ 0.8
Contains absorption spectra and isotopic abundance measurements in mete-
orites. We chose a boundary z = 0.8 since the Murphy dataset [Murphy03.2]
has relatively few systems around this redshift, making a natural division.

• Epoch 3: 0.8 ≤ z ≤ 2.4
Contains several absorption spectra measurements. The end of the Tzanavaris
dataset [Tzanavaris06] sets the cut at z = 2.4.

• Epoch 4: 2.4 ≤ z ≤ 10
Contains absorption spectra measurements and bounds on GN from neutron
stars.

• Epoch 5: CMB, z ≈ 1100

• Epoch 6: BBN, z ≈ 1010
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11.3.2 Evolution factors

We define “evolution factors” ln for epochs n = 1, . . . , 6 by

∆ ln Gk,n = dkln. (11.42)

For each unification scenario we proceed to a quantitative estimate of ln, shown in Tab.
11.1. The usefulness of considering the evolution factors ln is that the unknown (and
possibly not monotonic) behavior of the mechanism driving the coupling variations is
rolled into a finite number of parameters. For a monotonic behavior they satisfy ln <
lp whenever zn < zp. The basic assumption remains the proportionality ∆ lnGk(zn) =
dkl(zn) = dkln, with constant unification coefficients dk independent of the epoch.
The normalization of ln is arbitrary, and we take for scenarios 2, 5 and 6

ln = ∆ ln αX,n, (11.43)

while for scenarios 3 and 4 we take

ln = ∆ ln(〈φ〉/MGUT ),n. (11.44)

For each epoch and scenario, we compute the evolution coefficients ln as a weighted
average over the measurements in the epoch. The representative redshift zn is the
average over the redshifts of observations inside the corresponding epoch. It is shown
together with the resulting values for ln in Tab. 11.1. This table summarizes our
results under the assumption of proportionality.

Rates of time variation in the present epoch

For epoch 1 we incorporate the laboratory measurements for rates of varying couplings
by linear extrapolation in time to the Oklo redshift z1 = 0.14. The logarithmic time
derivatives may be approximated by linear interpolation

Ġk

Gk
= ∂t lnGk ≃ −

dkl1
t0 − t1

, (11.45)

where t1 = 1.8× 109y is the time corresponding to the redshift z1 = 0.14.

Method of averaging

We evaluate the weighted average using all values listed in Tab. 10.1. This procedure
may be quite problematic, since sometimes different observations are in manifest
contradiction. We take the attitude that, given the possible presence of systematic
effects both in spectroscopic determinations of nonzero coupling variations and in the
primordial 7Li abundance, a viable model need not fit all data points. However, even if
any given nonzero claimed variation is actually due to systematic error, we still expect
the size of the error to be comparable to the size of the claimed variation. Thus, such
claims are most conservatively interpreted as bounds on the absolute magnitude of
variation. The surviving nonzero variation(s), in addition to the null bounds at other
epochs, define a set of evolution factors which must be satisfied by any explicit model
of evolution.

For some scenarios we therefore also evaluate the evolution factors that are ob-
tained by considering that some of the claimed observations of nonzero variation may
instead be due to an underestimated systematic error. These alternative evolution
factors are given in square brackets, corresponding to the following replacements:
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Epoch 1 2 3 4 5 6
zn 0.14 0.53 1.6 3.8 103 1010

Scenario l1 × 106 l2 × 106 l3 × 105 l4 × 105 l5 × 104 l6 × 103

α only −0.01± 0.06 −1.1± 1.0 −0.26± 0.10 −0.85± 0.37 −150± 350 5± 34
2 −0.1± 0.1 0.04± 0.03 −0.15± 0.08 0.10± 0.03 0.9± 14 −0.37± 0.20
3 4.1± 4.8 −1.5± 1.2 0.42± 3.3 −3.6± 0.9 69± 920 14± 8
4 3.9± 8.5 −3.4± 2.7 −8.4± 5.1 −8.7± 2.1 31± 450 33± 21
5, −0.02± 0.18 −0.24± 0.18 −0.25± 0.10 −0.61± 0.13 0.6± 8.6 1.7± 1.1
(γ̃ = 42) [0.4± 1.0]
6, −0.02± 0.12 −0.10± 0.07 −0.17± 0.07 −0.44± 0.10 0.3± 5.0 1.2± 0.6
(γ̃ = 70) [0.3± 0.6]
6, −0.12± 0.18 0.04± 0.12 −0.30± 0.11 0.29± 0.08 0.7± 10 −1± 0.3
(γ̃ = 25) [−0.43± 0.28]

Table 11.1: Redshifts and evolution factors for each epoch, for the scenarios defined
in Sec. 11.2. In the first row the values of ln give the fractional variation of α; in
Scenarios 2, 5 and 6 that of αX ; and in 3 and 4 that of 〈φ〉/MGUT . Values in brackets
give, for BBN (l6) the evolution factors neglecting 7Li; or for l4, the evolution factor
with the ∆µ/µ value of [Reinhold06] substituted by that of [Wendt08].

Scenario 5, γ̃ = 42: Neglecting 7Li-abundance at BBN
Scenario 6, γ̃ = 70: Neglecting 7Li-abundance at BBN
Scenario 6, γ̃ = 25: Replacing the µ measurements of [Reinhold06] by the conserva-
tive upper bound of [Wendt08].
In the case where α alone varies, since the fit including 7Li is poor we calculate a
2σ range using observational central values and errors of D and 4He abundances as
explained in Sec. 11.2.1.

11.3.3 Monotonic evolution with unification

It seems natural to expect that variations of constants, if they occurred, evolve mono-
tonically3. Looking on Figs. 11.1 to 11.7 and Tab. 11.1, we can ask the question
whether the claimed variations are consistent with monotonic variation within the
specific GUT scenarios. Here we briefly summarize whether the unified scenarios we
consider can be consistent with a monotonic evolution of the single underlying varying
parameter.

Varying α only

Although variation of α alone does not help to account for deviation of BBN abun-
dances from standard theory, or for any nonzero variation of µ, the cosmic history
is interesting due to the significant nonzero value in Epochs 3 and 4. The Oklo
bound in Epoch 1 restricts the present time variation to 3.7 × 10−17 y−1 (assuming
no acceleration of ∂tα).

3In Sec. 12.2 we will also consider scenarios of quintessence where the implied variation is non-
monotonic.
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Scenario 2

Scenario 2 favors a negative variation of αX at BBN, and a negative variation may
also fit the Mα results. However, the Reinhold µ measurement indicates a positive,
but much smaller, variation. The Rµ results dominate the weighted average for l4
due to their small error on ∆ lnαX . The ratio ∆ ln µ/∆ln α = 27 makes this scenario
unlikely to fit the reported signal of nonzero ∆α.

Scenario 3

In scenario 3 a positive variation of 〈φ〉/MGUT is favored by BBN. The high ratio
∆ ln µ/∆ln α ≃ −325 makes the bounds obtained on a variation of µ strongly in-
consistent with the claimed size of variation of α. The Reinhold et al. values again
dominate the results for l4.

Scenario 4

In this scenario, the ratio ∆ lnµ/∆ln α = −22 is again large and makes any observa-
tion of significant nonzero ∆ lnα unlikely. Both the Mα and the Rµ measurements
point in opposite direction to BBN; however the two spectroscopic observations are
also inconsistent with each other, within the scenario. Again, the Rµ results dominate
the determination of l4 due to the small error.

Scenario 5, γ̃ = 42
In this scenario the variation of αX favored by BBN is positive (l6 = (1.7 ± 1) ×
103), however both nonzero variations from spectroscopic data Mα and Rµ require
negative variations. With ∆ lnµ/∆ln α = −6 the spectroscopic measurements appear
consistent with each other. Hence one would require some non-monotonic evolution
to fit nonzero variations both at BBN and at moderate z. In Table 11.1 we have also
evaluated l6 using only the constraints given by D and 4He (in brackets).

Scenario 6, γ̃ = 70
As in the preceding scenario, BBN favors a positive variation in αX , but Mα and Rµ
favor negative. Again, Fig. 11.6 may suggest a non-monotonic evolution. Fitting to
BBN including 7Li we would obtain l6 = (1.2 ± 0.6) × 10−3; Tab. 11.1 also displays
in brackets the value of l6 obtained from D and 4He bounds only.

Scenario 6, γ̃ = 25
In this scenario, both BBN and the Mα signal favor a negative variation of αX ,
whereas the Rµ observations point towards a positive variation. Following the argu-
ment of Wendt et al. [Wendt08], we substitute the Rµ value by the null constraint
|∆µ/µ| ≤ 2.5× 10−5 [Wendt08] to obtain the bracketed value of l4 in Table 11.1. In
this scenario the evolution factors show a crossover from negligible variation at low
redshift, to strong and monotonically increasing negative variation at z ≈ 2.
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11.3.4 Tension between the 7Li problem and variation of µ

Measurements of the primordial 7Li abundance show that the BBN abundance needs
to decrease below the standard value to fit the observations, whereas the Reinhold µ
measurement indicates µ to increase at z ≃ 3. We find that for all our unification
scenarios the sign of the dependence on the fundamental parameter is the same for
µ and 7Li. Moreover, the coefficients of this dependence are nearly identical up to a
common factor; hence the induced variations for µ and 7Li point in the same direction,
in contradiction to the tendency inferred from the observations. For example, for
scenario 5 we find

∆ ln µ = (23.2− 0.65γ̃)∆ ln αX ,

∆ln 7Li = (1692− 49γ̃)∆ ln αX . (11.46)

These expressions change sign at γ̃ = 35.7 and 34.5, respectively. For a monotonic
evolution, there is no possibility to have both a significant variation of µ and a vari-
ation of opposite sign in the 7Li abundance. (In the regime γ̃ ≈ 35 there is no 2σ fit
to BBN.) A similar result can be found for scenario 6 (including the SUSY partner
mass dependence, which shows the same sort of degeneracy). Note that scenario 2
and 3 are just limiting cases of scenarios 5 and 6.

The main reason for this behavior is that variations of 7Li and µ are dominated
by the variations of m̂/ΛQCD and me/ΛQCD, respectively, with the same sign of
prefactor. This degeneracy can be broken if me varies differently from the quark
masses, a possibility that we do not consider in this thesis. For our scenarios with
constant m̂/me, the conflict between a monotonic time evolution and the µ- and
7Li-observations is reflected in the opposite signs of l4 and l6.

This observational tension for monotonic behavior is clearly depicted in Fig. 11.8,
where we plot simultaneously the averaged observational values of evolution factors
li/ ln(1 + zi), normalized to l4/ ln(1 + z4). For Scenario 6, γ̃ = 25, we also display
the result obtained by substituting the Wendt et al. value of µ variation for that
of [Reinhold06]. The factor ln(1 + zi) is introduced as a convenient normalization
to avoid compressing the scale of variations excessively in recent epochs.4 For the
purpose of a quick inspection we have omitted the error bars, which are of course
necessary for a quantitative interpretation.

4In quintessence-like theories, if the scalar field contributes a constant fraction of the total energy
density of the Universe, as in so-called “tracker” models, the evolution of the field is typically also
proportional to ln(1 + z). This is an additional motivation for our normalization.
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Figure 11.8: Normalized evolution factors l̄i/l̄4 for each scenario, where l̄i ≡ li/ ln(1+
zi).



Chapter 12

Probing quintessence models

In this chapter we will describe how measurements of varying constants can be used
to constrain models of quintessence under the assumption of grand unification. For
that purpose we will use the measurements which we listed in Chap. 10 in the six
unified scenarios studied in the preceding chapter to constrain the free parameters of
the quintessence models described in Chap. 5. Our aim is to see to what extent such
models can be consistent with the behavior of time variations that we have outlined.

12.1 Crossover quintessence

As we have seen in Sec. 5.3, crossover quintessence models yield a monotonic evolution
of the cosmon and hence also a monotonic variation of constants, assuming a constant
coupling δ to the fundamental varying parameter,

∆ ln αX(z) = δ(ϕ(z)− ϕ(0)). (12.1)

We discussed the viability of monotonic evolution in Sec. 11.3.3 where a first judgment
can be made by inspection of Fig. 11.1 to 11.7 for the various unification scenarios,
or by inspection of Table 11.1.

To allow us to easily compare with the observational results, we observe that in
Table 11.1 the constraints for l5 are considerably weaker than those for the remaining
evolution factors. Furthermore, the one sigma range for l4 is nonzero for all scenarios.
Hence we shall compare observational and theoretical values for the ratios l1/l4, l2/l4,
l3/l4 and l6/l4. We note the opposite sign of l3 and l4 for scenario 2, 3 and scenario
6 with γ̃ = 25, which disfavors any monotonic evolution for these scenarios. The
averaged observational values in each epoch are given in Table 12.1. Note that the
coupling δ drops out of the ratios li/lj . Considering these ratios allows us to probe
quintessence directly without knowing the absolute size of the coupling, only assum-
ing its (approximate) constancy over the relevant range of evolution. In view of its
monotonic evolution, crossover quintessence cannot give negative ratios li/lj . Hence
it cannot be a good fit to the lithium abundance within the unification scenarios 2 to
6 that we consider. This reflects the tension between the 7Li problem and a positive
variation of µ discussed in Sec. 11.3.4.

For a simulation of the crossover quintessence model, we follow the procedure
described in Sec. 5.3. By specifying the present densities of matter, radiation and
dark energy and the model parameters wh0 and z+, we can trace back the evolution

98
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Scenario l1/l4 l2/l4 l3/l4 l6/l4
0 0.00± 0.01 0.13± 0.13 0.31± 0.18 −592± 4031
2 −0.10± 0.12 0.04± 0.04 −1.59± 0.88 −380± 228
3 −0.11± 0.13 0.04± 0.03 −0.12± 0.91 −387± 241
4 −0.04± 0.10 0.04± 0.03 0.97± 0.64 −381± 259

5, γ̃ = 42 0.00± 0.03 0.04± 0.03 0.41± 0.19 −280± 191
without BBN ” ” ” −66± 165

6, γ̃ = 70 0.00± 0.03 0.02± 0.02 0.39± 0.17 −275± 150
without BBN ” ” ” −69± 139

6, γ̃ = 25 −0.04± 0.06 0.02± 0.04 −1.04± 0.49 −343± 142
with Wendt 0.03± 0.05 −0.01± 0.03 0.70± 0.52 231± 163

Table 12.1: Ratios of the evolution factors from observations.

wh0 z+ l1/l4 l2/l4 l3/l4 l6/l4
-0.95 3 0.12 0.38 0.67 26
-0.99 3 0.09 0.28 0.55 38

-0.9999 3 0.02 0.10 0.37 54
-0.95 7 0.15 0.47 0.80 13
-0.99 7 0.15 0.47 0.80 24

-0.9999 7 0.08 0.27 0.52 125
-0.999999 7 0.02 0.09 0.34 177

Table 12.2: Ratios of evolution factors from crossover quintessence. The li are eval-
uated by averaging over the variations evaluated at the same redshift as the data in
each epochs (weighting by the number of absorption systems if appropriate).

of quintessence and the other components of our Universe. In Tab. 12.2 we display the
ratios li/l4 expected from crossover quintessence for various parameters wh0 and z+,
which can be compared with the observed ratios displayed in Tab. 12.1. Considering
the lithium abundance to be affected by astrophysical systematics in scenarios 5 and
6 (γ̃ = 70), or using the null result for ∆ lnµ at intermediate redshift for scenario
6 (γ̃ = 25 “with Wendt”), we find that some crossover quintessence models indeed
yield the observed order of magnitude for the ratios li/l4. We conclude that crossover
quintessence could, in principle, reconcile a coupling variation of the claimed size in
epochs 3 and 4 with the bounds from late cosmology, i.e. epochs 1 and 2. This is due
to the “slowing down” of the cosmon evolution, as noted in [Wetterich03]. Values of
the present equation of state wh0 quite close to −1 would be required, however. In
other words, an observation of coupling variations would put strong bounds on the
dynamics of the cosmon field1 and provide for an independent source of information
about the properties of dark energy.

Note that observational probes of dark energy would not give results for wh0 that
coincide with the values that we take in our model. Such probes do not actually
measure the present-day equation of state, rather they extrapolate w0 from past
epochs under some parameterization.

1The current WMAP5 bound on the equation of state parameter of quintessence is w = −0.972±
0.06 [WMAP5], but the derivation assumes a constant w over a certain range of redshift, while our
wh0 gives the equation of state at the present time.
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12.2 Models with growing neutrinos and oscillating

variation

In this section we investigate the two models of growing neutrinos which were laid out
in Sec. 5.4. These models do not obey the proportionality of all coupling variations
for all redshifts and do not show a monotonic evolution of the cosmon field. A
systematic analysis of all such models seems difficult, hence we concentrate on the
specific examples given in [Amendola08] and [Wetterich08].

The combined variation is different for each of the unified scenarios. For all unified
parameters except 〈φ〉/MGUT we still have a proportionality for the variations at all z,
since the variations are proportional to ϕ. The variations due to the direct coupling
(5.21) can be described by our method of evolution factors ln, even though the ln
need not be strictly monotonic due to the oscillations in ϕ. However, for 〈φ〉/MGUT

we now have one variation linearly proportional to the variation of ϕ, Eq. (5.21) and
an additional one with a nonlinear dependence, Eq. (5.30-5.31). A simple treatment
with common evolution factors for all variations will no longer be applicable. Due to
the additional ϕ-dependence of 〈φ〉/MGUT we may have separate evolution factors for
〈φ〉/MGUT , different from the (common) evolution factors for the other couplings.

For example, the “linear contribution” (5.21) may dominate at BBN and induce a
positive l6 common for all couplings. In the range z < 10 the “non-linear contribution”
(5.30) could be more important, leading to effectively negative l3,4 for 〈φ〉/MGUT .
(Such an effect could, in principle, relieve the tension between 7Li and a positive
µ-variation at high z which was explained in Sec. 11.3.4.) In practice, we calculate

∆ ln αX and ∆ ln 〈φ〉
MGUT

at each epoch directly from the model, and extract the varying
couplings and observables as explained in Chap. 11. Then we may search for a set of
parameters δ, R0 which minimizes the χ2 for all measured variations.

12.2.1 The stopping growing neutrino model

The stopping growing neutrino model which was introduced in Sec. 5.4.1 has an oscil-
lation in 〈φ〉 that grows both in frequency and amplitude at late times as ϕ approaches
its asymptotic value. Such oscillations must not be too strong as measurements be-
tween z = 2 and today would measure a high rate of change. The oscillation may be
made arbitrarily small by choosing small R0. The restrictions from the low-z epochs
are actually so strong that to a good approximation the non-linear contribution ∼ R0

can be neglected. However, the linear variation (5.21) is independent of R0. It can
be described by our method of evolution factors and yields for the set of parameters
given in [Wetterich08] (ϕt ≈ 27.6, α = 10, ǫ = −0.05) the ratios

l1/l4 = 0.008,

l2/l4 = 0.09,

l3/l4 = 0.44,

l6/l4 = 175. (12.2)

Comparing this with the numbers given in Table 12.1 shows that this model naturally
yields evolution factors which are of the correct order of magnitude. We emphasize
that no new parameter has been introduced for this purpose.
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12.2.2 Global fit to the scaling growing neutrino model

Each growing neutrino model contains a few parameters that determine the cosmolog-
ical evolution of the cosmon ϕ, and the Higgs v.e.v. 〈φ〉. Two coupling parameters give
respectively the relative strength of variation of αX with ϕ, and the relative strength
of the additional variation of the Higgs v.e.v. due to the varying triplet. For each
example of cosmological evolution we may calculate the observables directly in terms
of the two coupling parameters and make a global fit for their values. In performing
the fit we take the 125 systems of the Murphy et al. α determination [Murphy03.2]
within Epochs 3 and 4 (Eq. (10.12)) and further split them into 5 subsamples each
with 25 absorption systems, since the data set extends over a wide range of redshift
where there may be significant oscillations.

For the global fits, we take the scaling growing neutrino model (Sec. 5.4.2) with
β = −52, α = 10, mν,0 = 2.3eV. With zero variation at all times (no degrees of
freedom), we find χ2 = 3.25 including 7Li at BBN, and χ2 = 2.40 neglecting 7Li. The
results of the best fits with varying couplings are given in Table 12.3.

Scenario δ × 104 R0 χ2 ∆χ2

2 -0.019 0.045 3.09 0.16
2 without Li7 -0.040 0 2.09 0.31
3 1.64 0 2.85 0.40
3 without Li7 1.55 0 2.03 0.37
4 3.79 0 2.85 0.40
4 without Li7 3.80 0 1.98 0.42
5.42 0.30 0 1.96 1.29
5.42 without Li7 0.24 0 1.87 0.53
6.70 0.20 0 1.93 1.32
6.70 without Li7 0.16 0 1.87 0.53
6.25 0.18 0.090 2.73 0.52
6.25 without Li7 -0.055 0.061 2.20 0.20

Table 12.3: Fitting parameters and minimal χ2 values for the different unification
scenarios for best fit to the scaling growing neutrino model [Amendola08]. The last
column gives the increase in χ2 produced when δ and R0 are forced to vanish, i.e. for
zero variation.

It turns out that χ2 cannot be reduced by more than 1.3 in the fit including 7Li
and 0.53 in the fit neglecting 7Li, which we do not consider as convincing evidence
for coupling variations within this model. We have investigated some other choices
of parameters for the cosmological evolution and also the stopping growing neutrino
model, without a substantial change in the overall situation. In view of the unsettled
status of the observational data it seems premature to make a systematic scan in
parameter space. Our investigation demonstrates, however, how a clear positive signal
for a coupling variation could restrict the parameter space for quintessence models.

Most of the additional variation of the Higgs v.e.v. occurs at later epochs, z < 2,
thus recent observational bounds rule out any significant additional growth in 〈φ〉.
We considered fitting the observational values excluding BBN, as a function of the
model parameters δ and R0, and we find always that the value of R0 at the minimum
of χ2 is unobservably small.
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12.3 Tests of the weak equivalence principle

In Sec. 2.4 we have explained that variations of constants will influence the outcome
of tests of the weak equivalence principle (WEP). Besides variations of couplings, the
cosmon coupling to atoms also influences the outcome of tests of the weak equiva-
lence principle, as it may also produce local gravitational effects which violate the
WEP due to their interactions with matter. In Sec. 12.4 we use both aspects to
set further constraints on a possible time variation of couplings. Test bodies with
different composition have in general different couplings to the cosmon, and will
hence experience different accelerations towards a common source. Usually, devia-
tions from the universality of free fall are measured in terms of the Eötvös parameter
η [Wetterich02.1, Dent06]

ηb−c ≡ 2|ab − ac|
|ab + ac|

, (12.3)

where ab,c are the accelerations towards the source of the two test masses. The
experiment setting the currently tightest limits on η [Schlamminger07] has the result

η = (0.3± 1.8)× 10−13 (12.4)

for test bodies of Be (A = 9, Z = 4) and Ti (A = 48, Z = 22) composition, where the
gravitational source is taken to be the Earth.

In contrast to the direct observations of time varying couplings, tests of the uni-
versality of free fall do not determine directly the values of fundamental ‘constants’ or
their possible variations. However, given our basic assumption of a slow time variation,
driven by a light scalar degree of freedom, the current limits on composition-dependent
long range forces put bounds on the scalar couplings to different constituents of mat-
ter. In our language, they measure or constrain the coefficients βk at z = 0, which
relate the evolution factors and the changes in the cosmon field (see Eq. (11.42)),

∆ ln Gk = dkl = βk∆ϕ(zn) . (12.5)

These constraints then imply bounds on the time variation of constants: Differenti-
ating with respect to time, Eq. (12.5) becomes

Ġk

Gk
= βkϕ̇ . (12.6)

Applying the conservative bound [Dent06] ϕ̇/H0 ≤ 0.7, we derive

ϕ̇ ≤ ϕ̇max ≃ 5× 10−11y−1 . (12.7)

βk can be derived as a function of η, utilizing a model of nuclear masses and bind-
ing energies and using GUT relations to reduce the number of free parameters (see
[DSW08.2] for details on this treatment). It turns out that WEP violation places
significant bounds on the present-day values of scalar couplings, as will be shown in
the next section.

The differential acceleration η for two bodies with equal mass but different compo-
sition and therefore different “cosmon charge” is related to the present time variation
of couplings and cosmological parameters via [DSW08.2]

η ≃ 3.8× 10−12

(

α̇/α

10−15y−1

)2
F

Ωh(1 + wh)
. (12.8)
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Scenario 2 3 4 5, γ̃=42 6, γ̃ =70 6, γ̃ =25
F (Be-Ti) 95 -9000 -165 -25 -26 41

Table 12.4: Values of F for a WEP experiment using Be-Ti masses for the unified
scenarios studied in this thesis.

Here α̇/α is the present relative variation of the fine structure constant in units of
year−1, wh is the present dark energy equation of state and Ωh ≈ 0.73 the present
dark energy fraction. The “unification factor” F encodes the information on the
specific relations between variations in fundamental parameters as implied by the
different GUT scenarios, and the composition of the test bodies. The factor F is
displayed in Tab. 12.4 for our different unified scenarios and for the Be-Ti test masses
of [Schlamminger07]. For typical test mass compositions we find 1 ≤ F ≤ few × 102.
The very large value of F for Scenario 3 reflects an accidental cancellation of terms
which we do not consider to be typical.

Once F is fixed, the relation (12.8) allows for a direct comparison between the
sensitivity of measurements of η versus the measurements of α̇/α from laboratory ex-
periments, or bounds from recent cosmological history, such as from the Oklo natural
reactor or the isotopic composition of meteorites.

12.4 Bounds on present-day variation

Within our theoretical framework there exist three distinct ways to bound or measure
the present-day rate of variation of fundamental parameters. The first is a direct
measurement, of the type probed by atomic clock experiments (see Sec. 10.7). If
one or more nonzero variations are found in this way, bounds on unified models may
immediately be set. The second method is by combining information on the size
of scalar field couplings from WEP tests (Section 12.3) with a cosmological upper
bound on the kinetic energy of scalar fields [Wetterich02.1, Dent06]. Such bounds
on scalar couplings will depend on the choice of unified model and in general will be
independent of those derived from atomic clocks. Thirdly, under the assumption of
a monotonic variation (that also does not significantly accelerate with time), we may
convert any “historic” bound on the net variation of a fundamental parameter since
a given epoch into a bound on the present rate of variation:

|Ġk| ≤ (t0 − tn)−1 |Gk(t0)−Gk(tn)| ≡ |∆Gk|
∆t

, tn < t0. (12.9)

Here t0 denotes the present, and any nonzero rate of variation should have the ap-
propriate sign, i.e. Ġk has the opposite sign to ∆Gk referring to some past epoch.

For any given unified model of time variations, the three bounds on present-day
evolution will have different sensitivity. Therefore if one method gives a nonzero
variation we would (in some cases) be able to distinguish between models due to the
fact that the other bounds are still consistent with zero. To give a simple example, the
direct detection of a nonzero time variation in atomic clocks near the present upper
bound would immediately rule out a large class of models that cannot account for
such a variation without leading to WEP violation above current bounds; and would
also rule out models in which such nonzero variations extrapolated to past epochs
tn < t0 would exceed observational bounds.
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However, this chain of inference does not function equally well in all directions. A
nonzero finding of differential acceleration violating the WEP would indicate nontriv-
ial scalar couplings, but need not imply nonzero time variation since the rate of change
of the scalar is not bounded from below. Also, a nonzero variation at some past epoch
tn would not necessarily imply a lower bound to the present-day rate of variation or
size of scalar couplings, since the variation could have slowed substantially since then
(either due to nonlinear scalar evolution or a nonlinear coupling function). Only with
the assumption of a reasonably smooth and monotonic variation of the scalar field
and its coupling functions, one can find, for any given unified model, where the first
signals of present-day or recent variation are expected to appear.

At present these methods give null results up to redshifts of about 0.8, but if
a nonzero time variation exists, we can determine for each unified scenario which
observational method is most sensitive. Thus if a nonzero signal of late time variation
arises it may be used to distinguish between models. We assume for this purpose an
approximately linear variation over recent cosmological times, thus measurements of
absolute variation at nonzero redshift z imply time derivatives

d ln X

dt
≃ ∆ln X(z)

t0 − t(z)
. (12.10)

Here X is the fundamental varying parameter: we consider first X ≡ α, if only the
fine structure varies; in scenario 1 X ≡ GNm2

N , in scenarios 2, 5 and 6 X ≡ αX and in
scenarios 3 and 4 X ≡ 〈φ〉/MGUT . Then Table 12.5 gives the precision of bounds on
time derivatives for the unified scenarios we consider, except scenario 1 (varying GN)
which is probed by a quite different set of measurements. As explained in Sec. 10.4,
we take the Oklo bound as applying directly to the variation of α, and increase its
uncertainty by a factor 3 to account for possible cancellations when other parameters
also vary. We present the recent Rosenband et al. [Rosenband08] Al/Hg ion clock
bound separately to illustrate to what extent it improves over previous atomic clock
results.

Extending this method beyond z ≈ 0.5 becomes questionable. One could use
linearity in ln(1 + z) instead of t, but even this improvement may lead to unreliable
extrapolations for models with a particular dynamics of the scalar field, as crossover
quintessence.
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Scenario X Clocks Al/Hg WEP Oklo α Meteorite Astro
α only α 0.13 (α) 0.023 6.2 0.033 0.32 0.44 (y)
2 αX 0.074 (µ) 0.027 0.007 0.12 0.015 0.006 (NH3)
2S αX 0.12 (µ) 0.044 0.012 0.19 0.026 0.010 (NH3)
3 〈φ〉/MX 2.6 (µ) 12.4 0.33 54 0.53 0.22 (NH3)
4 〈φ〉/MX 6.2 (µ) 1.78 0.35 7.7 1.2 0.51 (NH3)
5, γ̃ = 42 αX 0.32 (α) 0.024 0.013 0.11 0.069 0.035 (NH3)
6, γ̃ = 70 αX 0.21 (α) 0.016 0.008 0.070 0.049 0.025 (NH3)
6, γ̃ = 25 αX 0.25 (µ) 0.027 0.011 0.12 0.056 0.021 (NH3)

Table 12.5: Competing bounds on recent (z ≤ 0.8) time variations in unified scenarios.
For each scenario we give 1σ uncertainties of bounds on d(ln X)/dt in units 10−15y−1,
where X is the appropriate fundamental parameter. For the Oklo bound we multiply
the uncertainty by a factor 3 except when only α varies. The column “Clocks” indi-
cates whether α or µ gives the stronger bound; the recent Al/Hg limit [Rosenband08]
is given a separate column. The column “Astro” indicates which measurements of
astrophysical spectra are currently most sensitive in each scenario.



Chapter 13

Conclusion and outlook

We have developed a systematic method to relate variations of fundamental parame-
ters of particle physics to the primordial isotope abundances produced by BBN. The
main advantage of the method, which is laid out in part two of this thesis, is that
we are able to vary every parameter independently, both at the level of fundamental
Standard Model parameters and of nuclear physics parameters, thus we are not depen-
dent on any particular theoretical model which enforces particular relations between
the variations.

We follow a two step approach, first extracting the nuclear parameter dependence
(without major theoretical uncertainties) and in a second step relating this to vari-
ations of fundamental Standard Model parameters. We define two linear response
matrices, where the first, C, encodes the change in predicted abundances produced
by small variations away from the current values of nuclear physics parameters which
enter the BBN integration code. These parameters comprise the gravitational con-
stant, fine structure constant, neutron lifetime, electron, proton and neutron masses,
and binding energies of A ≤ 7 nuclei. The dependences of nuclear reaction rates on
these parameters are also implemented insofar as they are calculated within some
effective theory. One notable result is that the 7Li abundance depends heavily on the
binding energies of 3He, 4He and 7Be.

We also investigated possible further effects of variations in nuclear reaction rates
on predicted abundances by varying each rate (i. e. thermal integrated cross-section
〈σv〉) separately by a temperature-independent factor. We find that the 4He abun-
dance is insensitive to nuclear rates, and only eight reactions could lead to significant
variation of the D, 3He or 7Li abundances.

The second response matrix, F , relates variations in nuclear parameters to the
fundamental parameters of particle physics, comprising the gravitational constant,
fine structure constant, Higgs vacuum expectation value, electron mass, and the light
(up and down) quark masses. At this point theoretical uncertainty enters into the
relation between quark masses and nuclear binding energies. We parameterize the
dependence of binding energies on the pion mass (and hence on light quark masses)
by the deuteron binding, which has been treated by a systematic expansion in effective
field theory.

The resulting fundamental response matrix R = CF allows us, first, to bound
the variations of the six fundamental couplings individually, some bounds being at
the percent level. Secondly, studying three exemplary unified scenarios, we can also
bound correlated variations affecting many couplings at once. We find that one sce-
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nario allows us to fit observed D, 4He and 7Li abundances within 2σ bounds, given a
variation ∆α/α = −2 × 10−4 away from the present value; another fits these obser-
vational abundances within almost 1σ bounds, given a variation ∆α/α = 4 × 10−4.
For this analysis we have left the linear matrix approach and make use of our BBN
code which allows us to derive the full nonlinear dependence.

In a next step (part three of the thesis), we combine our findings for BBN with
further measurements of the variation of fundamental constants from BBN to today.
Within grand unified theories, this set of different varying parameters can be consis-
tently reduced to a variation of a few “unification parameters”, namely the unification
scale MGUT /MP, gauge coupling αX , the Fermi scale 〈φ〉/MGUT and SUSY-breaking
masses m̃/MGUT . We define various GUT-scenarios for varying couplings by the
assumption of proportionality of fractional variations of the unification parameters.

Assuming that couplings really vary, this is a way of excluding such GUT scenarios
by demanding consistency of the implied variations. The assumption of proportion-
ality permits us to project all observations into constraints on a common evolution
factor l(z) for each scenario. We show that different GUT scenarios yield different
time evolutions of l(z) assuming that certain claimed measurements of varying con-
stants are correct. We confirm that “simple” models which have only one fundamental
parameter varying (αX or 〈φ〉/MGUT ) result in inconsistent variations. However, com-
bined variations of these two parameters, as described in scenarios 5 and 6, lead to
results more consistent with the possible quintessence-induced time variations of fun-
damental couplings. For instance, some models of crossover quintessence and models
of growing neutrinos naturally yield ratios of evolution factors which are of the same
size as those derived from measurements of varying couplings.

Still, we have not found a scenario with a monotonic time evolution l(z) that
makes the two main signals or hints of variation ([Murphy03.2], [Reinhold06]) and
BBN mutually consistent. A monotonic evolution requires either to discount one of
the “signals” by substantially increasing its uncertainty, or to alter our assumptions
by including additional time variation of some Yukawa couplings.

In a last step we demonstrate how a clear observation of time variation of funda-
mental couplings would not only strongly disfavor a constant dark energy, but also
put important constraints on the time evolution of a dynamical dark energy or quint-
essence. We have shown that for a given unified scenario, the bounds on the time
variation of various couplings in different cosmological epochs can strongly restrict
the possible time evolution of the cosmon field and put very strong bounds on late-
time dynamics of the cosmon field. Hence, once at least one irrefutable observation
of some coupling variation at some redshift becomes available, our method provides
a powerful tool for testing extensions of the Standard Model or, vice versa, allows us
to control consistency of claimed variations under the demand of unification.

We have demonstrated this by an analysis that implicitly assumes a nonzero varia-
tion, considering both general features and specific quintessence models. However, we
are aware that the actual values for the evolution factors l(z) from this analysis may
be premature, since the observational situation is unclear and on moving grounds. For
example, taking the recent reanalysis of the variation of the proton to electron mass
ratio µ in Ref. [King08] instead of the results in Ref. [Reinhold06] used in this thesis,
would strongly influence the values of the evolution factors. We have demonstrated
this in a somewhat different way by investigating the change in the evolution factors
if some claimed observations of varying couplings are omitted.
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Outlook

Progress in the field of BBN requires both observational and theoretical improve-
ments. Both statistical and systematic errors in abundance measurements could be
improved, for example observations to better determine the nature of systems where
4He is measured [Steigman05], or stellar modeling to test possible solutions of the
7Li problem. On the theoretical side the relation between quark masses and nuclear
physics remains unclear beyond the level of the two-nucleon system: the largest un-
certainty in our BBN bounds arises from the poorly known dependence of the binding
energies on the fundamental couplings. BBN is already the most powerful probe of
fundamental “constants” in the early Universe, and precision bounds may well be
obtained, given continued efforts in observation and theory, to rule out or confirm the
presence of a cosmological variation.

Our investigation has further shown how the variations of different couplings in
the Standard Model may be compared. If the observational situation becomes clearer
and at least one nonzero time variation is established, such methods may be used for
new tests of the idea of grand unification and, even further, models of quintessence.
The presented method could then easily be applied to constrain both theories beyond
the Standard Model like grand unification and theories beyond the concordance model
of cosmology like quintessence. Hence, it can establish relations between two a priori
distinct theories, namely high-energy physics and general relativity, a capability which
is so far dominated by theories with radically new concepts of physics like string
theory.
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Appendix A

Conventions

A.1 Symbols and abbreviations

Symbol Explanation
α, αelm fine structure constant
αS strong coupling constant
αX grand unified coupling constant
Bi binding energy of nucleus i
δq light quark mass difference
η baryon-to-photon ratio; Eötvös parameter
GN Newton’s constant
ΛQCD QCD scale
m̂ average light quark mass
md d-quark mass
me electron mass
mn neutron mass
mπ average pion mass
mp proton mass
ms strange quark mass
mu u-quark mass
mN average nucleon mass, mN = 1

2 (mn + mp)
MGUT GUT scale
MP Planck mass
M̄P reduced Planck mass
MX GUT scale (≡MGUT )
µ proton to electron mass ratio, µ := mp/me

Ωb baryon fraction
QN neutron proton mass difference, QN := mn −mp

Table A.1: List of symbols
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Abbreviation Explanation
BAO baryon acoustic oscillations
BBN Big Bang Nucleosynthesis
EFT effective field theory
CMB cosmic microwave background
DOF degree of freedom
MSSM minimal supersymmetric standard model
QCD quantum chromodynamics
QED quantum electrodynamics
SBBN standard big bang nucleosynthesis
SM Standard Model (of particle physics)
SN supernovae
v.e.v. vacuum expectation value
WEP weak equivalence principle

Table A.2: List of abbreviations
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