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Throat-Kosmologie — Zusammenfassung: In dieser Arbeit untersuchen wir
,,Throats” im frühen, heißen Universum. Throats sind ein häufiges Merkmal in der
,,Landscape” der Typ-IIB-Stringtheorie. Wenn ein Throat während der kosmologischen
Entwicklung aufgeheizt ist, wird nach und nach Energie zu anderen Throats oder dem
Standardmodell transferiert. Wir berechnen die Transferrate von Wärmeenergie und
die Zerfallsrate von im Throat lokalisierten Kaluza-Klein-Moden in einem zehndimen-
sionalen Model. Dazu benutzen wir die duale Beschreibung der Throats durch Eichtheo-
rien. Wir diskutieren Modifikationen der Zerfallsrate, die in Flusskompaktifizierungen
und für Klebanov-Strassler-Throats auftreten, und betonen die Rolle von tachyoni-
schen Skalaren in solchen Throats für die Vermittlung von Zerfällen von Kaluza-Klein-
Moden. Unsere Resultate sind auch anwendbar auf den Energietransfer vom aufge-
heizten Standardmodell zu Throats. Wir bestimmen die daraus resultierende derzeitige
Energiedichte in Throats in Abhängigkeit von den Infrarotskalen der Throats und der
,,Reheating-Temperatur”. Die Kaluza-Klein-Moden in den Throats zerfallen in andere
Sektoren mit einer stark unterdrückten Rate. Falls ihre Lebensdauer länger als das
Alter des Universums ist, sind sie ein interessanter Kandidat für die Dunkle Materie.
Wir zeigen, daß Throats mit Infrarotskalen im Bereich von 105 GeV bis 1010 GeV die
Dunkle Materie erklären können, wenn die Reheating-Temperatur 1010−1011 GeV war.
Wir finden zahlreiche Szenarien, in denen diese Form der Dunklen Materie ausreichend
langlebig ist, aber in denen Zerfälle zum Standardmodell trotzdem durch Beobachtung
von Gammastrahlung entdeckt werden können.

Throat Cosmology — Abstract: In this thesis, we study throats in the early, hot
universe. Throats are a common feature of the landscape of type IIB string theory. If
a throat is heated during cosmological evolution, energy is subsequently transferred to
other throats and to the standard model. We calculate the heat transfer rate and the
decay rate of throat-localized Kaluza-Klein states in a ten-dimensional model. For the
calculation, we employ the dual description of the throats in terms of gauge theories.
We discuss modifications of the decay rate which arise in flux compactifications and for
Klebanov-Strassler throats and emphasize the role of tachyonic scalars in such throats in
mediating decays of Kaluza-Klein modes. Our results are also applicable to the energy
transfer from the heated standard model to throats. We determine the resulting energy
density in throats at our epoch in dependence of their infrared scales and of the reheating
temperature. The Kaluza-Klein modes in the throats decay to other sectors with a
highly suppressed rate. If their lifetime is longer than the age of the universe, they are
an interesting dark matter candidate. We show that, if the reheating temperature was
1010 − 1011 GeV, throats with infrared scales in the range of 105 GeV to 1010 GeV can
account for the observed dark matter. We identify several scenarios where this type
of dark matter is sufficiently stable but where decays to the standard model can be
discovered via gamma-ray observations.
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Chapter 1

Introduction

1.1 String theory, flux and throats

The standard model of particle physics is remarkably successful in that it correctly
predicts the outcome of a large number of experiments. It is a certain type of quantum
field theory, a theoretical framework which results from the unification of quantum
mechanics and special relativity. Yet there are several reasons to believe that this theory
is only an approximation which is valid at comparatively low energies and that it has to
be replaced by a more fundamental theory at energies larger than that. In particular,
there is a combination of the velocity of light, Newton’s constant and Planck’s constant
which has the dimension of energy. For processes with this Planck energy, gravity can
no longer be neglected in standard model interactions and a theory of quantum gravity
is required. Such a unification of general relativity with quantum field theory is still a
major open issue in fundamental physics.

A candidate for this unification is string theory in which the pointlike particles of
quantum field theory are replaced by tiny one-dimensional objects. When viewed from
large distances or, equivalently, at small energies, these strings behave like pointlike
particles. String theory reduces to quantum field theory at such low energies. For pro-
cesses at energies close to the Planck scale, on the other hand, the fact that strings
have a finite extent becomes important and quantum field theory is no longer a good
approximation.

The quantization of a classical string theory leads to a spectrum of particles with
various properties which correspond to different excitations of the string. In particular,
the spectrum contains a particle which behaves like the graviton, the quantum of the
gravitational field. String theory therefore provides a quantum theory of gravity. In
addition, gauge fields and particles which are charged under the corresponding gauge
groups appear naturally in the spectra of quantized strings. For the appropriate gauge
group and particle spectrum, the standard model could thus follow as the low-energy
limit of a particular string theory. Since the graviton is contained in the same spectrum,
such a string realization of the standard model would mean a unification of gravity with
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the other known interactions. However, a completely satisfactory realization has not
been constructed so far.

The consistent quantization of string theory requires additional space dimensions.
To explain why these extra dimensions have escaped detection so far, one assumes that
they are curled up into a tiny space. The extra dimensions are said to be compactified.
At large distances or, equivalently, low energies, our world then still seems to have only
three space dimensions. Although such extra dimensions are in principle an interesting
model building tool, the different ways in which they can be curled up lead to a large
variety of low-energy theories which follow from a given string theory.

This variety is even larger since additional choices can be made which influence the
low-energy theory. In certain string theories, open strings are confined to hyperplanes in
the higher-dimensional space. These hyperplanes are called Dp-branes, where p refers
to the number of space dimensions in which the plane is extended. After quantization
of the open strings, one finds a supersymmetric gauge theory which lives on the world-
volume of the D-brane. There are various possibilities to embed these objects into a
given compactification. The particular embedding of the D-branes determines the gauge
theory which lives on their world-volume. In particular, it may be possible to realize
the standard model on D-branes. On the other hand, there is a large number of other
gauge theories which can be obtained in that way.

The spectrum of string theories contains differential form fields which are general-
izations of the Maxwell field of electrodynamics. The D-branes act as sources for these
form fields and can therefore be viewed as higher-dimensional generalizations of the
pointlike sources of electrodynamics. The latter sources lead to electric flux through
a sphere which surrounds them. Similarly, in the aforementioned embeddings into a
compactification, the D-branes source form field flux which threads certain compact
submanifolds or cycles in the compact space. This flux can, however, be switched on
even in absence of any D-brane sources. Due to the nontrivial topology of the compact
space, such a configuration remains stable. This is similar to the Dirac monopole that
can be viewed as a configuration of magnetic flux that is topologically stable because a
point has been removed from space. Furthermore, as is the case for the Dirac monopole,
the form field flux is quantized.

Typical compact spaces that one considers have a large number of cycles. Through
each of theses cycles, one can have a certain number of flux. Combined with the different
possibilities for the compact space and the number and embeddings of D-branes, this
leads to a huge number of compactified solutions of string theory. There are probably
by far more vacua in this so-called landscape than there are particles in the visible
universe. In principle, there are only five consistent versions of string theory without any
tunable parameters but the landscape unfortunately introduces a large indeterminacy.
In particular, there may be many solutions which look like the standard model at low
energies but which are very different from each other at high energies.

Flux is, on the other hand, interesting for model-building purposes. The size of
cycles in a given compact space is initially unfixed. From a four-dimensional viewpoint,
these unfixed cycles lead to massless scalar fields which are called moduli. The existence
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of such fields, however, would violate the equivalence principle in a measurable way and
is therefore excluded. The flux through a given cycle, on the other hand, has a certain
energy density. From a four-dimensional viewpoint, the potential energy will therefore
depend on the sizes of the cycles. Thus, flux can lead to their stabilization. The moduli
then become massive and are no longer a phenomenological problem.

Since it has an energy density, the flux backreacts on the geometry. This backreac-
tion can lead to so-called warped regions in the compact space. In these regions, there is
a strong gravitational potential along certain directions. As is well known from general
relativity, the deeper in such a gravitational potential a given physical process takes
place, the more does it appear redshifted for a fixed observer. Due to this fact, large
hierarchies can be generated in string compactifications with flux.

More precisely, as Randall and Sundrum have shown [1, 2], the four-dimensional
graviton can be localized in a warped geometry. This graviton is a Kaluza-Klein mode of
the higher-dimensional graviton and it therefore has a certain profile along the compact-
ified dimensions. Randall and Sundrum considered the five-dimensional anti-de-Sitter
space. At fixed positions along the fifth dimension of this spacetime, the geometry is
four-dimensional Minkowski space. The prefactor of the Minkowski metric, however,
depends exponentially on the position along the fifth dimension. Accordingly, energy
scales are exponentially redshifted or blueshifted if one moves along this extra dimen-
sion. Randall and Sundrum chopped this space off on two sides in such a way that they
obtained a finite slice of anti-de-Sitter space along the fifth dimension. The boundaries
of this slice are two copies of Minkowski space which are called the ultraviolet brane
and the infrared brane1, respectively. Remarkably, the profile of the four-dimensional
graviton in this geometry turns out to be localized near the ultraviolet brane. Gravity
is therefore blueshifted compared to processes which are localized towards the infrared
brane. This fact allows for the generation of large hierarchies relative to the Planck
scale. In particular, if the standard model is realized on the infrared brane and the red-
shift between the two branes corresponds to the hierarchy between the Planck scale and
the electroweak scale, this setup is a solution to the hierarchy problem of the standard
model.2

It was shown by Giddings, Kachru and Polchinski [3] that the Randall-Sundrum
model can be realized in flux compactifications of type IIB string theory. The backre-
action of the flux on the geometry can lead to the formation of a so-called Klebanov-
Strassler throat [4] which plays the role of the slice of anti-de-Sitter space in the Randall-
Sundrum model. The geometry of this warped region is smoothly terminated in the in-
frared and thereby provides a realization of the infrared brane in the Randall-Sundrum
model. Furthermore, in the compactification proposed by Giddings et al., the ultraviolet
part of the Klebanov-Strassler throat is smoothly embedded into the compact space.
The unwarped part of the compact space thus plays the role of the ultraviolet brane in
the Randall-Sundrum model.

1These branes should not be confused with D-branes from string theory. Both types of branes have
in common that they are hyperplanes in a higher-dimensional space.

2In the setup that we have described, this is actually not yet the case. A mechanism is needed which
stabilizes this geometry without too much fine-tuning. Such mechanisms are known.
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1.2 String theory and cosmology

It is expected that, in most vacua in the string theory landscape, the strings are only
slightly larger than the four-dimensional Planck length.3 The energies, which are neces-
sary to resolve this length scale and thus to test string theory directly are many orders
of magnitude larger than the energies achieved in accelerators so far. It is therefore
impossible to test string theory directly in the near future and it may in fact never be
possible.

It is thus important to conceive other, indirect tests of string theory. Since rather
high energies have been reached in the early universe, it is natural to consider cosmology
for this purpose. String physics may have led to observable signatures in several ways. As
is well known, many observations in cosmology imply a phase of inflation shortly after
the big bang. A possible string realization of such a phase is by means of two D-branes
which move slowly towards each other. Another realization employs moduli with a
sufficiently shallow potential. These inflationary mechanisms lead to certain predictions
for the anisotropies in the cosmic microwave background and can thus be tested by
experiments. However, tests of this kind have to be interpreted carefully since in most
cases other and in particular field-theoretic realizations lead to similar signatures.

The energy density of the universe becomes extremely diluted during inflation and
the universe has to be reheated when inflation ends. Relics like topological defects may
be produced at this stage. For instance, during reheating after brane-antibrane inflation
in a Klebanov-Strassler throat, a network of cosmic strings is formed. These cosmic
strings influence the cosmic microwave background and may in addition be detected
by gravitational wave experiments. Note, however, that the detection of cosmic strings
would again be no clear signal of string theory since they can also arise in field theories.

Other relics like heavy particles may be produced by the reheating mechanism and
by thermal reactions in the hot standard model plasma. For instance, Kaluza-Klein
modes which are localized in a throat can be sufficiently light to be produced during
reheating. As we have discussed, energy scales of processes which are localized in warped
regions are redshifted. Similarly, Kaluza-Klein modes whose wave functions are localized
in a throat have redshifted and thus rather light masses. The decay of relics which
are produced in that way to standard model fields at later stages of the cosmological
evolution may have led to observable signatures. On the other hand, if the relics are
sufficiently stable, they can provide a new explanation of the observed dark matter.

1.3 Throats in the early universe

A Klebanov-Strassler throat can be formed if flux threads the cycles of a so-called
conifold region (more precisely, of a deformed conifold) in a compact Calabi-Yau space.

3Exceptions are compactifications with a large volume and setups in which the standard model is
localized in a strongly warped region. String effects become important at much lower energies in these
setups.
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It is expected that typical Calabi-Yaus can have a large number of these conifold regions.
In the landscape of type IIB string theory vacua, flux is distributed over the cycles of the
Calabi-Yau in various ways. It is then not surprising that in many cases the backreaction
of the flux leads to a Klebanov-Strassler throat. These throats are indeed expected to
be a common feature of the type IIB landscape. It is therefore interesting to consider
possible observable consequences of throats in cosmology.

In the early, hot universe, these throats may have been heated to a certain temper-
ature. If the temperature of a Klebanov-Strassler throat is larger than a certain critical
energy scale, the backreaction of the thermal plasma on the geometry can no longer
be neglected and leads to the formation of a black hole horizon which replaces the in-
frared end of the throat. Such a black hole horizon emits Hawking radiation. Due to
the warping of the Klebanov-Strassler throat, this radiation has to tunnel through an
effective energy barrier before it can reach the unwarped part of the compact space or
other throats. Nevertheless, energy will be transferred to other throats with a certain
rate. This heat transfer rate is an important quantity for the cosmology of throats.

In the first part of this thesis, based on our publication [5] (with Arthur Hebecker and
Tatsuya Noguchi), we calculate this rate in a simple setup: Two throats with geometry
AdS5×S5 which are embedded into a six-dimensional torus. As opposed to a Klebanov-
Strassler throat, these throats are infinite in the infrared direction. If a throat of this
type is heated, the backreaction of the thermal plasma leads to an AdS-Schwarzschild
geometry. The heat transfer rate from such a heated throat to another throat is deter-
mined by the tunneling probability of the Hawking radiation. However, to determine
this probability, we have to solve a multi-dimensional tunneling problem. Since this is
quite difficult, we choose a different approach.

Consider a stack with a large number of D3-branes which is embedded into flat
ten-dimensional space. The D3-branes have a certain energy density and can therefore
backreact on the geometry. Taking this backreaction into account leads to a background
solution of type IIB supergravity which is known as a black three-brane. Close to this
object, the geometry is deformed to AdS5×S5, whereas far away it smoothly goes over
to flat space. The crucial point is that, in this description, the D3-brane stack has
disappeared and is replaced by a curved geometry. The black three-brane is therefore
an alternative description of the D3-brane stack in flat space. This correspondence is the
very basis of the AdS/CFT duality: By taking the low-energy limit in both descriptions,
one is led to a duality between string theory in the AdS5×S5 region of the black three-
brane and the world-volume theory, a U(N) gauge theory with N = 4 supersymmetry,
on the D3-brane stack.

In order to test the correspondence between a black three-brane and a D3-brane
stack, one can probe both objects with particles and compare the corresponding ab-
sorption cross sections. Due to the warping, there is again an effective energy barrier
which separates the throat region from the asymptotically flat region of a black three-
brane. The absorption cross section of a particle, which is incident on the brane from
the asymptotically flat region, is determined by the corresponding tunneling probabil-
ity. The world-volume theory on the D3-brane stack, on the other hand, couples to
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⇐⇒

Figure 1.1: Warped regions or throats in a compact space can equivalently be described by D-
brane stacks. The four-dimensional world-volume of these D-branes is aligned along the four
uncompactified dimensions. The D-branes are therefore pointlike in the extra-dimensional
compact space.

supergravity in the embedding flat space. The absorption of a particle by a D3-brane
stack is due to these couplings. The corresponding calculations are particularly simple
for the absorption of a dilaton. Remarkably, the resulting absorption cross sections by
a D3-brane stack and by a black three-brane agree exactly.4

Heat transfer between two throats is due to tunneling and absorption of Hawking
radiation. Since the absorption cross sections agree, we can replace the two AdS5×S5

throats in our setup by two equivalent D3-brane stacks. In particular, the heated throat
is replaced by a stack with a heated world-volume gauge theory. Both stacks are coupled
to each other by supergravity fields in the embedding torus. If we perform a Kaluza-Klein
expansion of these supergravity fields, we obtain a purely four-dimensional description of
our setup: A heated gauge theory which is coupled to another gauge theory by a tower of
Kaluza-Klein modes. This four-dimensional description is much easier to analyse than
the initial ten-dimensional setup with two throats in a torus. The heat transfer rate
between the two throats is the same as the corresponding rate between the two gauge
theories. The calculation of the latter is a straightforward exercise in quantum field
theory.

A Klebanov-Strassler throat can be understood as the result of the backreaction
of D3-branes and fractional D3-branes which are placed on a conifold singularity. Such
a throat can therefore equivalently be described by a D-brane stack (cf. Fig. 1.1). In
this description, the supergravity dynamics in the throat region is replaced by the
dynamics of the world-volume gauge theory. We will correspondingly refer to these two
descriptions as the gravity picture and the gauge theory picture, respectively.

4It turns out that, if the geometry due to the backreaction is weakly curved and the description in
terms of an AdS5×S5 throat is applicable, the world-volume theory on the D3-brane stack is strongly
coupled. For the aforementioned comparison, however, the absorption process of a dilaton by a D3-brane
stack is calculated only at tree-level. The fact that the resulting absorption cross section nevertheless
agrees with the absorption cross section by a black three-brane is explained by a nonrenormalization
theorem in the N = 4 supersymmetric U(N) gauge theory.
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The Klebanov-Strassler throat is finite in the infrared direction. In the dual gauge
theory, this is reflected by the existence of a confinement scale. The gauge theory there-
fore has massive glueball states which correspond to the Kaluza-Klein modes in the
throat. During cosmological evolution, the energy density in a throat or, equivalently,
in the dual gauge theory is diluted by the expansion of the universe. If this energy den-
sity reaches the confinement scale, a phase transition takes place and a gas of glueballs
is formed. Similarly, the black hole horizon in the throat is replaced by the infrared end
of that throat during the phase transition. The glueballs or Kaluza-Klein modes which
are formed during the phase transition can decay to other throats or gauge sectors. The
corresponding decay rate is again important for the cosmology of throats.

As before, we calculate this rate in the gauge theory picture instead of the gravity
picture. In this description, the glueball decays to a Kaluza-Klein mode of supergravity
in the embedding space which in turn decays to gauge fields on another brane stack.
However, since the glueball is a nonperturbative object, the vertex between a glueball
on a brane stack and supergravity fields in the embedding space can not be read off
from any Lagrangian. To determine this vertex, we calculate the decay rate in a simple
example: The decay of a dilaton from the throat region of a black three-brane to the
asymptotically flat region. We can then determine the decay vertex of a glueball on the
equivalent brane stack by the requirement that the decay rate be reproduced from the
gauge theory picture. Once we have this vertex, it is again a straightforward exercise in
quantum field theory to calculate the decay rate of a glueball or a Kaluza-Klein mode
to another sector. We compare certain limiting cases of this decay rate with results from
calculations in the gravity picture.

The heat transfer rate that we derive is applicable to more general geometries than
our simplified setup with two AdS5×S5 throats in a torus. In particular, we can consider
a different geometry for the embedding compact space. That the parametric dependence
of the heat transfer rate does not change is particularly easy to see if the distance
between the throats is of the order of the size of the embedding space. We find that the
heat transfer rate is then dominated by the mediation by zero-modes of supergravity
fields in the embedding space. The wave function of these lowest Kaluza-Klein modes,
however, does not depend on the geometry of the embedding space. Similarly, our result
stays correct for more general throat geometries such as Klebanov-Strassler throats.
Moreover, our results can also be applied to small stacks of D-branes. If the standard
model is realized on a small number of D-branes, we can determine the rate of heat
transfer to a throat.

For the decay rate in flux compactifications, on the other hand, modifications of
our result can arise. Certain moduli, which are massless in our simplified setup and
which mediate decays, become very massive due to the flux. This fact can lead to a
suppression of the decay rate. In addition, the decay rate of Kaluza-Klein modes in a
Klebanov-Strassler throat is in general difficult to determine. The equations of motion
of these modes are involved because the flux in such a throat mixes field fluctuations in a
complicated way. In order to determine the glueball vertex as discussed above, we would
have to solve these equations of motion. On the other hand, we find that the glueballs
in a given gauge sector (dual to a throat) can decay to a certain lightest glueball with

11



the emission of a graviton. This process is similar to the decay of a hadron into a lighter
hadron with the emission of a photon. These decays typically happen on cosmologically
short timescales. From the point of view of cosmology, it is then sufficient to analyse
decays to other sectors only for these lightest glueballs or the corresponding lightest
Kaluza-Klein modes. We show that there is a flat direction for the supergravity fields
in the Klebanov-Strassler throat. The field which parameterizes this flat direction has
the same equation of motion as the dilaton in an AdS5×S5 throat and therefore couples
to supergravity in the embedding space with the previously derived vertex. We then
argue that the lightest Kaluza-Klein mode mixes with this flat direction and thus also
couples with the previously derived vertex. Taking this fact and the suppression due to
the flux-stabilization of moduli into account, we can determine the decay rate of this
Kaluza-Klein mode.

A stronger decay vertex arises if the Kaluza-Klein mode mixes with a tachyon in
the Klebanov-Strassler throat. The reason is that the wave function of a tachyon, i.e. a
scalar with a negative mass squared, is less suppressed than the wave function of a
dilaton if one moves in the ultraviolet direction in the throat. A tachyon therefore
couples with a stronger vertex to supergravity fields in the embedding space. On the
other hand, there is a compensating effect. In anti-de-Sitter space, scalars with negative
mass squared down to the so-called Breitenlohner-Freedman bound [6] do not lead to
instabilities. In a Randall-Sundrum model, or a string realization thereof, however, a
tachyon must have a large mass on the ultraviolet brane in order to avoid tachyonic
Kaluza-Klein modes. This mass is similar to the aforementioned mass of mediating fields
in flux compactifications and again leads to a suppression of the decay rate. In order
to determine the relative importance of the enhancing effect and the suppressing effect,
we calculate the decay rate of Kaluza-Klein modes of a tachyon between two throats
in a five-dimensional model. To this end, we approximate one throat by a Randall-
Sundrum model. The other throat is then dual to a gauge theory which lives on the
ultraviolet brane of the Randall-Sundrum model. The decay rate of Kaluza-Klein modes
between the two throats can be calculated as the decay rate of Kaluza-Klein modes in
the Randall-Sundrum model to gauge fields on the ultraviolet brane. The corresponding
part of the thesis is based on [7] (with Sebastian Halter and Arthur Hebecker).

1.4 Dark matter in throats

The glueball decay rates that we find are highly suppressed. If the mean lifetime of
the glueballs is larger than the age of the universe, these particles are an interesting
dark matter candidate. Furthermore, a small fraction of these glueballs decays to the
standard model already at our epoch and can lead to interesting observable signals. In
the second part of this thesis, based on our publication [8] (with Arthur Hebecker), we
study this new dark matter candidate.

For definiteness, we assume that the standard model is realized on some D-branes in
the unwarped part of a compact space which also has throat regions. The standard model
and possibly the throats are heated by the reheating mechanism after inflations ends.
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If the throats were heated to the same temperature as the standard model, however,
they would lead to too much dark radiation during big bang nucleosynthesis and/or
would overclose the universe. Accordingly, the reheating mechanism has to interact
more weakly with the throats than with the standard model. The resulting abundance
of Kaluza-Klein dark matter depends on the model at hand. In order to provide a
model-independent lower bound on this abundance, we assume that the throats receive
no energy from the reheating process. Even under this minimal assumption, energy is
deposited in a given throat due to heat transfer from the standard model.

The resulting energy density in the throat is diluted by the expansion of the universe.
In order to calculate the abundance of glueballs at our epoch, we have to determine
the scaling behaviour of this energy density with the expansion of the universe. This
analysis is easiest in the gauge theory picture. As we will show, if the energy density in
a given gauge sector was above the confinement scale after reheating, the gauge theory
thermalizes. The energy density then scales like radiation until a confinement phase
transition takes place. Afterwards, it scales like matter.

The situation is different if the energy density was never above the critical energy
density for a confinement phase transition. The energy density is produced by the an-
nihilation of standard model particles into some gauge theory states. This is similar
to the annihilation of an electron with a positron into a quark and an antiquark. In
QCD, this process leads to two jets which subsequently hadronize. The particles, which
are produced in that way, are ultrarelativistic and would scale like radiation with the
expansion of the universe. As we will discuss in more detail, there are no jets in the
strongly coupled gauge theories which are dual to throats. Instead, after hadronization,
the energy is completely in the form of slow glueballs. These particles then immediately
scale like matter. This fact partially balances a large suppression of the heat transfer
rate by four powers of the four-dimensional Planck scale that we find. In particular, the
energy density in the corresponding throats can have the right magnitude to account
for the observed dark matter already for moderately high reheating temperatures.

More precisely, we find that throats with infrared scales between 105 GeV and
1011 GeV can account for the observed dark matter if the reheating temperature was
approximately 1010 − 1011 GeV. The lifetime of Kaluza-Klein modes in these throats
or, equivalently, of glueballs can be made considerably longer than the age of the uni-
verse. Nevertheless, for certain choices of parameters, glueball decays to the standard
model can lead to interesting observable signatures. In particular, these decays produce
hadrons which in turn decay to relatively soft photons. These photons contribute to
the diffuse γ-ray background at low energies and may be detected by experiments like
GLAST. In addition, certain glueballs species can decay directly into a pair of photons.
Decays of this type in the halo of our galaxy lead to a sharp line in the γ-ray spectrum
at high energies. This line may be observed by experiments like HESS.

Since throats are expected to be a common feature in the landscape of type IIB
vacua, it is interesting to analyse scenarios with a large number of throats. To this
end, we use the estimate of the expected number of throats in dependence of their
infrared scales from Ref. [9]. The decay rates that we find depend strongly on the mass
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of the glueballs. In scenarios with a large number of throats, it is therefore possible
that glueballs from certain sectors decay already at early epochs while other glueballs
are sufficiently stable to account for the observed dark matter. Decays to the standard
model at early epochs can influence primordial nucleosynthesis and are therefore severely
constrained. We check in a specific example that the corresponding bounds can be
fulfilled.

1.5 Organization of the thesis

This thesis is organized as follows. In Chapters 2 and 3, we review several aspects of
throats and their dual gauge theories that are relevant for this thesis. We begin in
Chapter 2 by recapitulating the Randall-Sundrum models. We then introduce black-
three branes and D3-branes and review a calculation showing that these branes are just
two descriptions of the same object. We discuss the AdS/CFT conjecture and how it
can be motivated by taking the low-energy limit of the black 3-brane and the equivalent
D3-brane stack. We also introduce the Klebanov-Strassler throat and review the high-
temperature phase of throats and their dual gauge theories. In Chapter 3, we first
recapitulate how the Randall-Sundrum II model can be obtain from string theory. We
then revisit the string realizations of the Randall-Sundrum I model which can arise in
flux compactifications. Finally, we conclude Chapter 3 with a discussion of the statistical
probability of throats in the landscape of flux vacua.

In Chapter 4, we first present a motivation for the central topic of Chapters 4 to 7:
The transfer of energy in different forms between throats in the early universe. We
then review a calculation of the decay rate of Kaluza-Klein modes between throats in a
simple five-dimensional geometry. We also present two other ways to derive this decay
rate, one way being based on our paper [5]. In Chapter 5, following again [5], we derive
the energy loss rate of a heated throat to another throat in a simple ten-dimensional
model. This calculation is performed by modelling both throats by equivalent stacks of
D-branes. It is then straightforward to derive the heat transfer rate by summing over
the contributions of bulk Kaluza-Klein modes coupling to both D-brane stacks. We also
present a cross-check in which we compare the heat loss of a throat and an equivalent
D-brane stack to flat space.

In Chapter 6, which is still based on [5], we describe an analogous calculation for the
decay rate of Kaluza-Klein modes localized in one throat to fields in a distant throat. In
the gauge theory picture, the decaying Kaluza-Klein modes are represented by glueballs.
Thus, we first derive the effective vertex for the coupling of these glueballs to bulk fields.
After that, the calculation proceeds analogously to that in the previous chapter. Finally,
we compare certain limiting cases of our result with calculations in the gravity picture
and with formulae from the literature.

Modifications to our results from Chapters 5 and 6, that arise in setups which
are more realistic than our simple ten-dimensional model, are discussed in Chapter 7.
This chapter contains results from our papers [5], [7] and [8]. We first argue that our
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heat transfer rate is applicable to other geometries of the throats and the embedding
compact space. The decay rate of Kaluza-Klein modes from a Klebanov-Strassler throat,
on the other hand, is in general difficult to determine. We discuss several aspects of the
Kaluza-Klein spectrum of such a throat and then show that all Kaluza-Klein modes
decay quickly to a lightest scalar state and its superpartner. As we argue, these Kaluza-
Klein modes decay again with the vertex from Chapter 6. Taking a suppression due to
flux-induced masses into account, we derive the decay rate of the lightest scalar Kaluza-
Klein mode and its superpartner. On the other hand, we find that Kaluza-Klein modes
mixing with tachyons in a Klebanov-Strassler throat decay with a stronger vertex than
that from Chapter 6. Finally, we discuss the energy transfer between throats and the
standard model.

Glueballs as a dark matter candidate are studied in Chapters 8 and 9. We describe
the thermal production of this form of dark matter in Chapter 8. Using the heat transfer
rate from Chapter 5, we determine the energy density deposited in a throat by the heated
standard model. We discuss how the initially created gauge theory states hadronize
and in which situations the gauge theory thermalizes. Taking the resulting scaling of
the energy density with the expansion of the universe into account, we calculate the
late-time abundance of glueballs as a function of the reheating temperature and the
confinement scale of the gauge theory.

Cosmological scenarios are discussed in Chapter 9. First, we analyse scenarios with
a single throat. We find that a moderately long throat gives a promising dark matter
candidate which may allow for a discovery by new γ-ray experiments. Then, we consider
scenarios with a large number of throats, using results on the distribution of multi-throat
configurations reviewed in Chapter 3. We find that a throat in the required range of
lengths is in many cases present. We also discuss some issues in scenarios with low-scale
supersymmetry breaking and the relation of our dark matter scenario to earlier work in
the literature.

Our conclusions are given in Chapter 10. Some calculations are relegated to ap-
pendices: The Kaluza-Klein decomposition of the graviton and a tachyon in a Randall-
Sundrum model is determined in Appendices A and B, respectively. In Appendix C, an
integral is evaluated which is needed in Chapters 5 and 6. Finally, Appendix D discusses
a process which takes place after the confinement phase transition of gauge theories dual
to finite throats.

Finally, let us fix some notations and conventions. Throughout this thesis, we use
the ‘mostly-plus’ signature for the metrics. Our notation for the form fields of type IIB
supergravity is e.g. as in [3]. We denote the (reduced) Planck scale in d dimensions by
Md, the string scale by Ms and the string coupling by gs. The symbol ∼ that we will
use frequently signifies equality up to O(1) prefactors, whereas the symbols ≈ and '
are reserved for results which hold to a higher precision.
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Chapter 2

Warped geometries and dual gauge
theories

In this chapter, we will review several aspects of warped geometries. This will fix our
notation and will also provide results that will be needed in later chapters. There are
in particular two reasons for the enormous interest in these geometries in recent years:
As Randall and Sundrum have shown, AdS-spaces allow for the generation of large
hierarchies of scales. Moreover, Maldacena has argued that string theory on AdS5 times
some compact manifold is dual to a gauge theory. More exhaustive reviews of these
subjects can be found e.g. in [10–12].

2.1 The Randall-Sundrum models

We will now review the Randall-Sundrum (RS) models [1,2] which will play an important
role in this thesis. In particular, the RSI model [1] offers a possible solution to the
hierarchy problem. However, we should clarify at this point that we will not be concerned
with the hierarchy problem later in this thesis. Instead, we will more generally be
interested in the generation of large hierarchies in geometries of the RS type.

We consider a 5-dimensional theory and take the 5th dimension to be compactified
on an S1/Z2 orbifold of length `. Thus, the following equivalence relations hold for the
5th coordinate y:

y ∼ y + 2 ` y ∼ −y . (2.1)

We denote the coordinates of the 4 uncompactified dimensions by x. Points in spacetime
which remain fixed under the orbifold Z2-action y → −y form (3 + 1)-dimensional
hypersurfaces which are located at y = 0 and y = `. These hypersurfaces, which form the
boundaries of the 5th dimension, are called the ultraviolet (UV) brane and the infrared
(IR) brane, respectively. The branes can support (3+1)-dimensional field theories. We
denote the corresponding Lagrangian on the UV brane by LUV and the Langrangian on
the IR brane by LIR, respectively. Furthermore, the branes can have certain tensions VUV

and VIR. Taking also a 5-dimensional cosmological constant Λ into account, the action
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of the theory is given by

S =

∫
d4x

∫ `

−`

dy
√
g

(
2M3

5 R− Λ + δ(y) (LUV − VUV) + δ(y − `) (LIR − VIR)
)
. (2.2)

Here, M5 is the 5-dimensional Planck mass. We look for solutions of the Einstein equa-
tions that satisfy an ansatz of the form

ds2 = e−2A(y) ηµνdx
µdxν + dy2 . (2.3)

Using this ansatz, the Einstein equations which follow from the action Eq. (2.2) reduce
to

A′2 =
−Λ

24M3
5

(2.4)

A′′ =
1

12M3
5

(
VUVδ(y) + VIRδ(y − `)

)
. (2.5)

A solution to Eq. (2.4) which respects the orbifold symmetry y → −y is

A(y) = k |y| , where k ≡
√

−Λ

24M3
5

. (2.6)

This solution is meaningful only if the 5d cosmological constant is negative, Λ < 0. The
geometry in between the two branes accordingly is a slice of 5-dimensional anti-de-Sitter
space (AdS5). The curvature scale of this geometry is given by k. We can therefore trust
our solution only if k ¿ M5. Keeping in mind that y ∼ y + 2`, Eq. (2.6) also solves
Eq. (2.5) if

VUV = −VIR =
√
−Λ 24M3

5 . (2.7)

This is a tuning of two parameters and is required in order to get a static solution with
4d Poincaré symmetry. A fine-tuning of parameters in a proposed solution to the hierar-
chy problem may seem strange. A detailed analysis shows (see e.g. [11] for a pedagogical
discussion) that one tuning is necessary to get a flat potential for the scalar field which
parameterizes the length of the 5th dimension (the radion). Otherwise, in absence of a
stabilization mechanism for the radion, the 5th dimension would either collapse or de-
compactify. By stabilizing the radion (which is anyway required in a phenomenologically
viable theory), this tuning is no longer necessary. The remaining tuning corresponds to
a vanishing 4d cosmological constant and is common to other solutions to the hierarchy
problem.

To discuss the effective 4d gravity theory from the point of view of brane observers,
we promote the background metric ηµν in Eq. (2.3) to a dynamical field g

(4)
µν . The 4d

Ricci scalar R(4) constructed from g
(4)
µν is contained in the 5d Ricci scalar R:

2M3
5

∫
d5x

√
gR ⊂ 2M2

4

∫
d4x

√
g(4)R(4) , (2.8)

where M2
4 = M3

5

∫ `

−`

dy e−2k|y| =
M3

5

k

(
1− e−2k`

)
. (2.9)
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From the last equation, we see that the 4d Planck mass M4 hardly depends on the size
` of the extra dimension. In particular, it stays finite in the limit `→∞. This suggests
that we can recover 4d gravity (with small corrections) on the UV brane even with an
infinite 5th dimension. This was analysed in great detail in [2,13,14]. The corresponding
setup, in which the IR brane is sent to infinity, is known as the RSII model. The setup
in which the IR brane is kept, on the other hand, is called the RSI model.

The Kaluza-Klein (KK) expansion of gravity in a RS model is discussed in Appendix
A. In particular, one finds that the wavefunction of the 4d graviton is localized near
the UV brane. The massive KK modes, on the other hand, are localized in the IR and
their couplings to the UV brane are strongly suppressed. These KK modes therefore
give only small corrections to 4d gravity on the UV brane even if the IR brane is sent
to infinity. If the IR brane is kept, on the other hand, the masses mn of the KK modes
are quantized in units of the warped AdS scale:

mn ∼ nmIR , where mIR ≡ e−k`k and n ∈ N . (2.10)

Next, we consider the field theory which is confined to the IR brane in a RSI model
in more detail. From Eq. (2.2), the relevant part of the action is

∫
d4x

√
gIR LIR

(
gIR

µν , φ,m
)
. (2.11)

Here, φ and m collectively denote any fields and mass scales which may appear in the
action and gIR is the induced metric on the IR brane. Using Eqs. (2.3) and (2.6), we
have

gIR

µν = gµν(x, y = `) = e−2k`g(4)
µν . (2.12)

The crucial point is that the action on the IR brane, Eq. (2.11), is given in terms of the
metric gIR which is rescaled by a factor e−2k`. The gravity part of the action, Eq. (2.8),
on the other hand, depends on the unrescaled metric g(4). To compare the scales M4

and m in Eqs. (2.8) and (2.11), we have to agree on one metric to be used in both
actions. For the moment, we choose g(4) to be this metric. Rewriting Eq. (2.11) in terms
of g(4) by using Eq. (2.12) brings factors of e−2k` into the action. These factors can be
absorbed into field redefinitions and the mass parameters. Thus, the action is invariant
except for the mass parameters which transform as

m −→ e−k`m. (2.13)

The mass scales which appear in the Lagrangian using g(4) as reference metric are
rescaled by a factor of e−k`! In particular, for k` ' 35, a mass of the order of the Planck
scale is scaled down to the TeV scale. Note however that, to solve the hierarchy problem,
a mechanism is required which stabilizes the branes at the right distance (i.e. k` ' 35)
without too much fine-tuning. An example of such a mechanism is due to Goldberger
and Wise [15].

Alternatively, we can use gIR as the reference metric in Eqs. (2.8) and (2.11). In this
case, we get a factor of e2k` into the action in Eq. (2.8). Absorbing this factor into the
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4d Planck scale, we have

M2
4 =

M3
5

k

(
e2k` − 1

)
. (2.14)

The mass scales m in the action Eq. (2.11), on the other hand, are not rescaled. From
this viewpoint, we can have the 5d Planck scale and the AdS scale in the TeV range
and still get a sufficiently large 4d Planck scale. According to Eq. (2.14), the resulting
hierarchy is again given by ek`. In the following, however, we use the definition of scales
corresponding to Eqs. (2.9) and (2.13).

2.2 D3-branes and black 3-branes

String realizations of the RS models exist which we will discuss in Chapter 3. In these
constructions, D-branes and supergravity branes play an important role. Furthermore,
these objects are also the starting point from which one can motivate the AdS/CFT
conjecture.

We consider type IIB string theory. A D3-brane is a (3+1)-dimensional hyperplane
in 10-dimensional space on which open strings end. At low energies, the open strings
give rise to a field theory which is confined to the world-volume of the brane. For a
D3-brane which is embedded into 10d Minkowski space, it is straightforward to guess
this field theory: A D-brane preserves 1/2 of the N = 2 supersymmetry of type IIB
string theory in the bulk [16]. The field theory on the 4d world-volume of the brane thus
has N = 4 supersymmetry. Furthermore, oscillations of a D3-brane in the 6 directions
transverse to its world-volume lead to 6 scalar fields.1 Now, 6 scalars are contained in
an N = 4 vector multiplet. Accordingly, the world-volume theory on a D3-brane is the
N = 4 supersymmetric U(1) gauge theory.

More precisely, a D3-brane and its interactions with supergravity fields in the em-
bedding space is governed by the so-called DBI action. It reads

SDBI = −T3

∫
d4x

√
− det (Gαβ + e−φ/2 (Bαβ + Fαβ)) ,

where Gαβ =
∂XM

∂xα

∂XN

xβ
gMN (2.15)

is the pullback of the 10d metric gMN to the 4d brane world-volume parametrized by
xα (α = 0 . . . 3) and the XM(xα) (M = 0 . . . 9) describe the embedding of the brane
into 10d space. Similarly, Bαβ is the pullback of the NS 2-form B2, whereas φ is the
dilaton. The field strength of the U(1) gauge boson is denoted by Fαβ. We have not
written out fermionic contributions to the action as well as interactions with RR-form
fields. Furthermore, T3 =

√
πM4

10 is the tension of a D3-brane, where M10 is the 10d
Planck scale. Note that, here and below, we work in the 10d Einstein frame. Using the

1These scalar fields are the Goldstone bosons due to broken Lorentz invariance in the transverse
directions [17,18].
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static gauge Xα = xα (α = 0 . . . 3), an expansion of Eq. (2.15) in a 10d Minkowski
background gives

SDBI = T3

∫
d4x

(
1− 1

4
e−φF 2

αβ −
1

2
∂αXm∂αXm + interactions

)
, (2.16)

where the Xm (m = 4 . . . 9) describe oscillations of the brane. We have written out the
interaction of the dilaton with the gauge field strength because it will be needed later
on.

A D3-brane is charged under the RR 4-form C4 and thus sources a unit of the cor-
responding flux. The resulting repulsion of two D3-branes due to this charge is precisely
cancelled by the mutual attraction due to gravity. Thus, one can place N D3-branes on
top of each other. The world-volume theory on this D3-brane stack is a N = 4 U(N)
gauge theory.

As can be seen from the first term in Eq. (2.16), the tension T3 of a D3-brane acts
as a localized cosmological constant. Therefore, D3-branes backreact on the geometry.
Assuming for the moment that the resulting curvature is weak, the backreaction can be
described by the low energy limit of type IIB string theory, type IIB supergravity. The
corresponding solution is called a black 3-brane. It has the metric [19]

ds2 = H−1/2(r) ηµνdx
µdxν + H1/2(r)

[
dr2 + r2dΩ2

5

]
,

where H(r) = 1 +
R4

r4
, (2.17)

R is a curvature scale and dΩ2
5 is the line element of a 5-sphere. Furthermore, the 5-form

field strength F5 of the RR 4-form C4 has an r-dependent vacuum expectation value
whereas the axion C and the dilaton φ are constant.

The geometry in Eq. (2.17) can be understood as the result from the backreaction
of a D3-brane stack at r = 0. A natural question then is: What has happened to the
D3-brane stack? In the limit r ¿ R, Eq. (2.17) takes the form

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dr2 + R2dΩ2

5 . (2.18)

After a coordinate transformation to y ≡ −k−1 ln[kr], where k ≡ R−1, the metric reads

ds2 = e−2ky ηµνdx
µdxν + dy2 + R2dΩ2

5 . (2.19)

As we have discussed in Section 2.1, the first two terms in this metric determine the
AdS5 geometry (cf. Eqs. (2.3) and (2.6)) with curvature scale k = R−1. The third term
describes an S5 of radius R. The geometry of the brane in the region r ¿ R thus is
AdS5×S5. Using the above relation between the coordinates r and y, we see that r → 0
corresponds to y → ∞. Thus, instead of the initial D3-brane stack, one encounters
an infinitely deep throat region if one moves towards smaller r. The black 3-brane is
therefore believed to give an alternative description of D3-branes: The dynamics of
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V/ω2

−1
∼ ωR ∼ (ωR)−1

ωR/ρ = z/R

Figure 2.1: Potential in the effective Schrödinger equation for the dilaton in a throat

open strings on a D3-brane is replaced by closed string dynamics in the black 3-brane
background.

The curvature scale R due to the backreaction of N D3-branes (or, equivalently,
due to N units of 5-form flux through S5) is

R4 ∼ NM−4
10 ∼ N gsM

−4
s , (2.20)

whereMs is the string scale and gs = e〈φ〉 is the string coupling. A description in terms of
classical supergravity is valid if RÀM−1

10 and RÀM−1
s . These conditions are fulfilled

if N À 1 and N gs À 1. The Yang-Mills coupling gYM is related to the string coupling gs

by g2
YM = gs. Therefore, when the description in terms of a black 3-brane is applicable,

the gauge theory on the corresponding stack of D3-branes is at large ’t Hooft coupling
λ ≡ g2

YMN and perturbation theory breaks down. When the gauge theory is in the
perturbative regime λ < 1, on the other hand, the supergravity description is no longer
valid.

In the limit r À R, the function H in the metric Eq. (2.17) is approximately 1 and
the geometry is 10d Minkowski space. This corresponds to the fact that the geometry
is due to the backreaction of a D3-brane stack in 10d Minkowski space. In particular,
similar to the D3-brane, we can think of the black 3-brane as a localized object embedded
into flat space.

2.3 Absorption of a dilaton by a brane

To check whether D3-branes and black 3-branes are really just two descriptions of the
same object is in general difficult, as we have seen in the last section: If one description
is weakly coupled, the other one is strongly coupled and vice versa. We will now describe
a calculation [20] which nevertheless allows such a check.
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Consider a dilaton φ which is incident on a black 3-brane. Its equation of motion is
the Laplace equation in the background geometry given by Eq. (2.17):

∂M

(√
ggMN∂Nφ

)
= 0 . (2.21)

Performing an expansion into eigenwaves of the angular Laplacian on S5, the equation
of motion of an incident dilaton with energy ω reads

(
ρ−5 d

dρ
ρ5 d

dρ
+ 1 +

(ωR)4

ρ4
− l(l + 4)

ρ2

)
φ(l) = 0 . (2.22)

Here, ρ ≡ ωr and l determines the eigenvalues of the angular Laplacian. Introducing a
new coordinate z ≡ R2/r and substituting ψ ≡ z−3/2φ, this can be written as

− d2

dz2
ψ(l) +

(
15/4 + l(l + 4)

z2
− ω2R4

z4
− ω2

)
ψ(l) = 0 . (2.23)

This has the form of a Schrödinger equation with a potential which is given by the term
in brackets. A schematic plot of this potential is shown in Fig. 2.1. As one can see, a
wave coming from the asymptotically flat region (z → 0 corresponding to ρ→∞) has
to tunnel through an effective barrier to reach the inner region (z →∞ corresponding
to ρ→ 0).2

We will now solve Eq. (2.23) by applying the so-called matching technique: For
z À ωR2 corresponding to ρ ¿ 1, the term ω2R4/z4 in Eq. (2.23) can be ignored. An
approximate solution in this region is given by

φ(l) = ρ−2

[
J2+l

((ωR)2

ρ

)
+ iY2+l

((ωR)2

ρ

)]
. (2.24)

Here, J and Y are Bessel functions and the linear combination corresponds to an incom-
ing wave in the direction of small ρ. This can be seen from the asymptotic forms of the
Bessel functions for large arguments: Eq. (2.24) approximately is ψ(l) ∝ ρ−3/2ei(ωR)2/ρ

for ρ¿ (ωR)2. Another way of writing Eq. (2.22) is by substituting ψ̃ ≡ ρ5/2φ:

(
d2

dρ2
− 15/4 + l(l + 4)

ρ2
+ 1 +

(ωR)4

ρ4

)
ψ̃(l) = 0 . (2.25)

For ρÀ (ωR)2, the term (ωR)4/ρ4 can be ignored and an approximate solution in this
region is

φ(l) = ρ−2 [AJ2+l(ρ) + B Y2+l(ρ)] . (2.26)

The regions of validity of Eqs. (2.24) and (2.26) overlap for

ωR¿ 1 . (2.27)

2As we will see in Section 6.3, by using cartesian coordinates for the directions transverse to the
brane, one again gets a Schrödinger-like equation. However, in this case there is no barrier an incoming
wave would have to tunnel through. Instead, the reflection of a large part of the incoming wave is due
to the steepness of the potential well.

22



We restrict ourselves to this case from now on. Using the asymptotic forms of the Bessel
functions for small arguments, we can then match both solutions in the overlapping
region (ωR)2 ¿ ρ¿ 1. This fixes the constants A and B in Eq. (2.26) and we find, to
lowest order in ωR and up to numerical prefactors:

A ∼ (ωR)−4−2l (2.28)

B = 0 . (2.29)

The absorption probability P of a dilaton by a black 3-brane follows from the ratio of
the flux at ρ = 0 and ρ = ∞. Using Eqs. (2.24) and (2.26), we have

P ' A−2 ∼ (ωR)8+4l . (2.30)

In (6+1) dimensions (where we mean the 6 dimensions transverse to the world-volume
of the 3-brane), the relation between the absorption probability P and the absorption
cross section σ is σ ∼ P/ω5, again neglecting numerical prefactors. The absorption cross
section per 4d world-volume of the 3-brane thus is

σ ∼ ω3+4l R8+4l . (2.31)

Alternatively, we can consider the decay of a dilaton onto an equivalent stack of
D3-branes. The kinetic term of the dilaton from the type IIB supergravity action is

SIIB ⊃ −M
8
10

4

∫
d10x

√
g(∂φ)2 . (2.32)

The dilaton couples to the operator F 2
αβ on a single D3-brane according to Eq. (2.16).

Canonically normalizing the kinetic terms of the dilaton and the fields X i and allowing
for brane fluctuations, we get [20]

S ⊃ M−4
10

23/2

[∫
d4xφ(x, 〈 ~X〉)F 2

αβ +
∞∑

l=1

∫
d4x

M−2l
10

l!πl/4
(∂i1 · · · ∂ilφ)X i1 · · ·X il F 2

αβ

]
, (2.33)

where 〈 ~X〉 is the position of the brane. The coupling of a dilaton s-wave to the world-
volume theory is due to the first term in Eq. (2.33), whereas higher partial waves couple
via the other terms. In additon, there are couplings of the dilaton to fermionic terms
which we can neglect for an order of magnitude estimate. The absorption cross section
of the l-th partial wave by a single D3-brane follows from the vertices in Eq. (2.33) as

σ ∼ M−8−4l
10 ω3+4l , (2.34)

up to numerical prefactors. For a stack of N D3-branes, the absorption cross section
has an extra factor of ∼ N2+l since the gauge fields and the fields X i are in the adjoint
representation of the U(N) world-volume gauge theory.3 Using Eq. (2.20), we then have

σ ∼ ω3+4l R8+4l . (2.35)

3For N D3-branes, one has traces over U(N) indices in the DBI action and accordingly in Eq. (2.33).
For example, the (l = 1)-vertex has the structure XI

JF
J
KF

K
I , where I, J,K are U(N) indices. The three

summations lead to a factor ∼ N3.
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This is the same result as in Eq. (2.31)! Thus, we have found the same parametric
dependence of the dilaton absorption cross section for a black 3-brane and a D3-brane
stack. We have ignored numerical prefactors in our calculation. Remarkably, even these
prefactors turn out to agree exactly [20–22]. This is evidence that black 3-branes and
D3-branes are just two descriptions of the same object.

Taking a closer look, the exact agreement of the absorption cross sections from both
calculations comes as a surprise. The absorption cross section for the black 3-brane
actually is a perturbative expansion in ωR (cf. Eq. (2.27)). Corrections to Eq. (2.31) in
higher orders of ωR are the only possible corrections in the limit of classical supergravity
(i.e. for large N and large λ, cf. Section 2.2).4 The gauge theory on the corresponding
D3-brane stack, on the other hand, has a large ’t Hooft coupling λ. The absorption cross
section therefore has the general form

σ ∼ ω3R8
(
1 + b1 λ+ b2λ

2 + . . .
)

+ higher orders in ωR , (2.36)

where we have taken l = 0 for simplicity. If the coefficients bi in Eq. (2.36) were nonva-
nishing, the results from the calculations for the black 3-brane and the D3-brane stack
would disagree. It was shown [25], though, that all the coefficients bi are zero due to a
nonrenormalization theorem in 4d N = 4 super-Yang-Mills theory.5

2.4 The Maldacena or AdS/CFT conjecture

As before, let us consider a black 3-brane and an equivalent stack of D3-branes. We
want to analyse the low-energy limit while keeping the parameters Ms, gs and N fixed.6

In the black 3-brane background, two kinds of excitations can have arbitrarily low
energies (when measured by a fixed observer): There are massless closed string states
in the asymptotically flat region. These states give rise to type IIB supergravity in 10d
Minkowski space. In addition, there are closed string states (not necessarily massless)
in the throat region at smaller and smaller r (cf. Section 2.1). These states form type
IIB string theory on AdS5×S5. Interactions between the two types of excitations vanish
in the low-energy limit. For example, the absorption cross section of a dilaton which is
incident on the brane from the asymptotically flat region, Eq. (2.31), goes to zero for
ω → 0. In turn, states which are localized at smaller and smaller r find it more and
more difficult to climb the gravitational potential to escape to the asymptotically flat
region. Thus, we end up with two decoupled theories in the low-energy limit: Type IIB
supergravity in flat space plus type IIB string theory on AdS5×S5.

For the D3-brane stack, it is more convenient to keep the energy fixed and to
take the limit Ms → ∞ instead. Since we keep gs fixed, this means that also

4For an s-wave process, these corrections were calculated to higher orders in ωR in [23,24].
5Actually, this was shown for the absorption cross section of a graviton polarized parallel to the D3-

brane stack. A similar nonrenormalization theorem is expected to hold also for the dilaton absorption
process.

6In this section, we follow closely the analysis in [10].
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M10 ∼ g
−1/4
s Ms →∞. Interactions between the gauge theory on the stack and the the-

ory in the surrounding flat space vanish in this limit. This can be seen, for example, from
Eq. (2.33) which gives the leading interactions between the dilaton and the gauge field
strength. Since string corrections vanish for Ms →∞, the theory in the surrounding 10d
Minkowski space is type IIB supergravity. Moreover, higher derivative terms from the
DBI action also vanish in this limit as can be seen from an expansion of Eq. (2.15) (see
e.g. [23]). The remaining theory on the D3-brane stack is the pure N = 4 U(N) gauge
theory which is a conformal field theory (CFT). Thus, we again have two decoupled
theories in the low-energy limit (or, equivalently, for Ms →∞): Type IIB supergravity
in flat space and N = 4 U(N) super-Yang-Mills.

In summary, we find two decoupled theories in the low-energy limit of the black
3-brane as well as the D3-brane stack. The fact that one theory is the same for both
types of branes (namely type IIB supergravity in flat space) led Maldacena to the con-
jecture [26] that also the other two theories are identical. The (Maldacena or AdS/CFT)
conjecture thus is that type IIB string theory on AdS5×S5 is the same as (or dual to)
N = 4 SU(N) super-Yang-Mills in 4d Minkowski space.7

As an immediate test of the correspondence, one can compare the symmetries on
both sides. The isometry group of AdS5 and the conformal group in 4d Minkowski space
are both SO(4, 2). In particular, a translation along the radial coordinate of AdS5 maps
to a conformal transformation on the gauge theory side. The radial coordinate of AdS5

can therefore be viewed as the dual of the renormalization scale of the gauge theory.8

The gauge theory has an SU(4) R-symmetry which can be identified with the isometry
group SO(6) of S5. Furthermore, one can show that even the supergroups which contain
the aforementioned bosonic symmetries agree.

More generally, it is believed that other theories on AdS5 which include gravity
are as well dual to a CFT in 4d Minkowski space. In particular, one can consider the
RS models in the light of the AdS/CFT duality. In the RSII model, AdS5 is cut off
in the UV by a brane (cf. Section 2.1). Since the radial coordinate of AdS5 is dual to
the renormalization scale, the RSII model is dual to a CFT which has a cutoff at a
certain UV scale. Furthermore, due to the cutoff, the RSII model has a normalizable 4d
graviton. One therefore expects that the dual CFT is coupled to 4d gravity as well. Let
us describe a test of this correspondence. To this end, one calculates corrections to the
4d Newton potential on both sides of the duality. On the RSII side, these corrections
are due to the exchange of KK modes between two test particles and result in a leading
correction which goes like distance−3. On the CFT side, on the other hand, one considers
the coupling of the energy-momentum tensor T of the CFT to the 4d graviton. The
graviton propagator is corrected by insertions of the 2-point function 〈TT 〉. Even though
the CFT is strongly coupled, this 2-point function is fully determined by conformal

7Up to some ZN identifications, U(N) is SU(N)×U(1). The U(1) factor is related to the center
of mass motion of the branes. On the black 3-brane side, it corresponds to certain low-energy modes
which live in the transition region between the throat and flat space. These modes and the U(1) can
be omitted from the correspondence (see e.g. [10]).

8Of course, since the gauge theory is conformal and AdS5 is homogenous in the radial direction,
both sides of the duality are invariant under such a transformation.
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invariance. The leading insertion again results in a distance−3-correction to the Newton
potential [27].

In the RSI model, the AdS5 space is additionally cut off in the IR by another
brane. The dual theory correspondingly has a certain IR scale at which the conformal
symmetry is broken (see e.g. [28]). Below this scale, we expect a discrete spectrum of
particle-like states to which we refer as glueballs. This spectrum simply corresponds to
the tower of KK modes in the RSI model. The latter fact can be used to determine the
masses of glueballs from a KK expansion.

2.5 The Klebanov-Strassler throat

Up to now, we have considered D3-branes (and their backreaction) in 10d Minkowski
space. Another interesting option for the embedding space is a product of 4d Minkowski
space and the conifold. The latter is a 6-dimensional submanifold of C4 defined by the
equation

z2
1 + z2

2 + z2
3 + z2

4 = 0 . (2.37)

One can show that this space is a cone9 over the 5-dimensional manifold T 1,1 ≡
(SU(2)×SU(2))/U(1). It has a singularity at (z1, z2, z3, z4) = 0 [29]. The metric can
be written as

ds2 = dr2 + r2dΩ2
T 1,1 , (2.38)

where dΩ2
T 1,1 is the line element on T 1,1. The space is Ricci-flat and an explicit Calabi-

Yau metric is known [29] but will not be needed in the following. We place a large
number N of parallel D3-branes, which are aligned along 4d Minkowski space, on the
singularity of the conifold. The metric due to their backreaction is

ds2 = H−1/2(r) ηµνdx
µdxν + H1/2(r)

[
dr2 + r2dΩ2

T 1,1

]
,

where H(r) = 1 +
R4

r4
(2.39)

and R is given in Eq. (2.20). The gauge theory on the world-volume of the D3-brane
stack was determined in [30]: It is a conformal N = 1 SU(N)×SU(N) super-Yang-Mills
with some chiral superfields and a certain superpotential. Studying the low-energy limit,
we are led to a duality between this gauge theory and string theory on the small-r part
of Eq. (2.39), which is AdS5×T1,1.

It is interesting to look for nonconformal theories. To this end, one can place a
certain number of fractional D3-branes on the conifold singularity in addition to D3-
branes [31]. Topologically, T 1,1 is S3×S2. Fractional D3-branes are D5-branes which are
wrapped over the 2-cycle of T 1,1. Each fractional D3-brane sources a unit of F3-flux
through the 3-cycle of T 1,1, where F3 is the field strength of the RR 2-form C2.

10 This

9This can be seen from the fact that Eq. (2.37) is invariant under zi → tzi for real t.
10Our notation for the form-fields of type IIB supergravity is e.g. as in [3].
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flux causes the 5-form flux through T 1,1 to depend on the radial coordinate r [31, 32]:

Neff(r) ∼ N + gsM
2 ln(r/r0) . (2.40)

Here, N and M are the numbers of D3-branes and fractional D3-branes, respectively,
r0 determines a UV scale and we have suppressed an O(1) factor in the second term.

The fluxes backreact on the geometry and this backreaction produces a so-called
Klebanov-Strassler (KS) throat [4]: Sufficiently far away from the conifold singularity,
the metric again has the form given in Eq. (2.39). Furthermore, the curvature scale R
is fully specified by the number of 5-form flux Neff as in Eq. (2.20) and the warp factor
thus is

H(r) = 1 +
R4

UV +R4
IR ln(r/r0)

r4
= 1 +

R4
IR ln(r/rs)

r4
. (2.41)

Here, RUV and RIR are, respectively, the AdS radius at the UV scale defined above
and at an IR scale whose meaning will become clear in a moment. The AdS radii are
determined by the corresponding numbers of 5-form flux NUV = Neff(r0) = N and
NIR ∼ gsM

2 (cf. Eq. (2.20)).

Comparing Eqs. (2.17) and (2.41) for small r, we see that the warping of the KS
throat deviates logarithmically from AdS warping. Due to the relation between the ra-
dial coordinate r and the renormalization scale of the dual gauge theory, we conclude
that the latter is no longer conformal. Indeed, the dual gauge theory, which has again
N = 1 supersymmetry, has running gauge couplings and performs a so-called duality
cascade: The rank of the gauge group, which is SU(N+M)×SU(N) in the UV, is repeat-
edly reduced by a series of Seiberg duality transformations along the renormalization
group flow towards the IR.

Close to r = rs, the warp factor Eq. (2.41) vanishes and the metric becomes singular.
This singularity is unphysical and can be removed if one replaces the conifold by the so-
called deformed conifold [4]. The latter is a submanifold in C4 defined by the modified
equation

z2
1 + z2

2 + z2
3 + z2

4 = ε . (2.42)

Due to the small constant ε, the singularity is replaced by a finite S3 at the bottom
of the deformed conifold. The KS throat is thus finite. This fact corresponds to the
existence of a confinement scale in the dual gauge theory. Indeed, the duality cascade
is stopped at a certain IR scale and the remaining gauge group confines.

2.6 Heated branes, throats and gauge theories

The black 3-branes that we have considered in Section 2.2 are also known as extremal
3-branes because they fulfill a BPS condition. A generalization are the non-extremal
3-branes with background metric

ds2 = H−1/2(r)
[−f(r) dt2 + dxidxi

]
+ H1/2(r)

[
f−1(r) dr2 + r2dΩ2

5

]
,

where f(r) = 1 +
r4
0

r4
(2.43)

27



and the warp factor H(r) is as before. This brane has a black hole horizon at r = r0
which in turn has a certain Hawking temperature. This brane is therefore dual to a stack
of D3-branes on which the world-volume gauge theory is heated to the same temperature
(see [33]). Absorption calculations in order to test this correspondence where performed
in [34]. The results for the D-brane stack (at zeroth order in the ’t Hooft coupling λ
but taking finite-temperature effects into account) and the non-extremal 3-brane have
the form

σT ∼ σ0 f
(ω
T

)
. (2.44)

Here, ω is the energy of the incident dilaton and T is the Hawking temperature. Fur-
thermore, σ0 ∼ ω3R8 is the absorption cross section by an extremal 3-brane which was
determined in Section 2.3. It was found in [34] that the function f differs for the 3-
brane and the D-brane stack. This is not surprising: The fact that the zeroth order (in
λ) calculation gave the correct result in Section 2.3 was due to a nonrenormalization
theorem in 4d N = 4 super-Yang-Mills theory. Such a nonrenormalization theorem is
usually related to supersymmetry. At nonzero temperature, however, supersymmetry is
broken and we cannot expect the nonrenormalization theorem to hold any more.

As in Section 2.4, we can study the low-energy limits of the non-extremal 3-brane
and the heated D3-brane stack. In that way, we are led to a duality between string
theory in the small r part of Eq. (2.43), the so-called AdS-Schwarzschild space, and the
N = 4 SU(N) gauge theory at nonzero temperature [35].

It is also interesting to analyze theories with IR cutoff or confinement scale at
nonzero temperature. A simple example is provided by the RSI model and its dual gauge
theory. The low-temperature phase can be described by a gas of KK modes or glueballs.
From the gauge theory point of view it is clear that, if we raise the temperature above
the confinement scale, the gauge theory undergoes a deconfinement phase transition.
As we have discussed above, this deconfined phase is dual to an AdS-Schwarzschild
geometry. In this phase, the IR brane is thus replaced by a Schwarzschild horizon. In
turn, if the theory is cooled below the confinement scale, a confinement phase transition
takes place. The corresponding transition between AdS-Schwarzschild and AdS5 with
IR cutoff was analyzed in [36]: It is first order and involves the nucleation of bubbles of
the IR brane phase from the Schwarzschild horizon. Similarly, if the KS throat is heated
above its critical temperature, it develops a horizon. The corresponding supergravity
solution was found in [37]. The phase transition between this phase and the KS throat
was studied in [38] using the full 10d geometry and in [39] using a 5d model of the KS
throat developed in [40].
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Chapter 3

String realizations of the
Randall-Sundrum model

In this chapter, we will continue our review of material that will be relevant for this
thesis. We will modify the geometries from the last chapter in order to obtain approxi-
mate RS models. The resulting solutions are examples of flux compactifications of type
IIB string theory. In particular, we will see that approximate RS models are quite com-
mon in the landscape of type IIB flux vacua. More exhaustive reviews can be found
e.g. in [41–43].

3.1 The Verlinde compactification

In the small-r region, the geometry of black 3-branes is AdS5×S5. These objects are
therefore an interesting building block for a string realization of the RS model. Black
3-branes are not terminated at large r, however, but go over to 10d Minkowski space.
In order to obtain an (approximate) RS model, we have to add an UV cutoff to this
geometry. To this end, we consider an orientifold of type IIB string theory on a 6-torus
T 6 [44]. This compactification has 64 O3-planes which are located at all the half-way
points of the T 6. The charge of an O3-plane is −1/4 times that of a D3-brane. To fulfill
the tadpole cancellation (or vanishing charge) condition, we place 16 D3-branes into
the orientifold.1 If these D3-branes are on top of each other, their backreaction on the
geometry creates an AdS5×S5 throat which is glued into the torus [44]. To see this,
recall that a black 3-brane, which is dual to a D3-brane stack, can approximately be
viewed as a localized object which is embedded into flat space. The diameter of this
object is given by the AdS scale. As long as the size L of the torus is larger than this
diameter R, it should be possible to glue the black 3-brane into the torus. Moreover,
even though the number of D3-branes is not very large, there is still a parameter range
in which we can trust the supergravity approximation. Using Eq. (2.20) with N = 16

1More precisely, there are 32 D3-branes in the T 6. These are pairwise identified under the orientifold
Z2-action.
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and inserting the omitted numerical prefactor, we have to require that

gs À 1

64π
. (3.1)

In principle, we also have to take the backreaction of the O3-planes into account (see
[44]). For simplicity, we will neglect it in the following. The metric is then given by2

ds2 = H(~x⊥)−1/2 ηµν dx
µ
q dx

ν
q +H(~x⊥)1/2 dx.i

⊥dx
0
⊥.i ,

where H(~x⊥) = 1 +
∑

~n∈Z6

R4

|~x⊥ − ~A+ ~nL|4
. (3.2)

The coordinates along the 4 uncompactified dimensions are denoted by xq, the x⊥ refer
to coordinates in the torus and ~A is the position of the D3-brane stack. The sum in the
warp factor H is due to mirror effects in the torus. In particular, we see that close to
the D3-brane stack, i.e. for small r = |~x⊥ − ~A|, the space is indeed AdS5×S5. At large
r, on the other hand, the space is cut off by the compactness of the torus.

We thus have obtained an approximate RSII model from string theory. The torus
plays the role of the UV brane, whereas the AdS5×S5 throat replaces the slice of AdS5.
As in the RSII model, we expect a normalizable 4d graviton. The 4d Einstein-Hilbert
action is contained in the 10d action:

M8
10

∫
d10x

√
g10R10 ⊃ M2

4

∫
d4xq

√
g4R4 ,

where M2
4 = M8

10

∫

T 6

d6x⊥H(~x⊥) ∼ M8
10 L

6 . (3.3)

We have used Eq. (3.2) and the fact that L > R as discussed above. The integral thus
yields a finite result and the 4d graviton is indeed normalizable.

3.2 Flux compactifications à la GKP

In the UV, the geometry of a KS throat (i.e. the small-r part of the geometry in
Eqs. (2.39) and (2.41)) is approximately AdS5×T1,1, whereas it is smoothly terminated
in the IR. The KS throat is therefore an interesting building block for a string realization
of the RSI model. A way to add a smooth UV cutoff to this geometry was found in a
seminal paper by Giddings, Kachru and Polchinski (GKP) [3]:

Many Calabi-Yau manifolds develop conifold singularities at certain points in their
moduli space. Close to this singularity, the manifold is then described by Eq. (2.37).
More precisely, we consider an orientifold of such a Calabi-Yau and place N D3-branes
and M fractional D3-branes on the conifold singularity. The tadpole cancellation (or
vanishing charge) condition requires negative-charge objects somewhere in the rest of

2The backreaction of O3-planes leads to additional terms in the function H(~x⊥).
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the compact space. These can be provided e.g. by some O3-planes. The backreaction of
the D-branes on the geometry creates a KS throat and this yields a string realization of
the RSI model: The IR end of the throat plays the role of the IR brane in the RSI model.
Since the throat is embedded into the Calabi-Yau orientifold, it is also terminated in
the UV. The (rest of the) Calabi-Yau orientifold thus corresponds to the UV brane of
the RSI model.

The KS throat in this setup can equivalently be understood as a result of the
backreaction of 3-form fluxes on a deformed conifold. This can be seen as follows: Each
fractional D3-brane sources a units of F3-flux through the 3-cycle of the T 1,1. This flux
together with the F5-flux from the D3-branes acts as a source for B2. Moreover, the
F5-flux can be absorbed into B2 (see [32]). Altogether, this leads to a certain number
of H3-flux (recall that H3 = dB2) through another 3-cycle which consists of the 2-cycle
of the T 1,1 and the radial direction.3 Since we consider a deformed conifold which is
embedded into a compact space, this submanifold is indeed compact. Denoting the two
3-cycles by A and B, we have

(
Ms

2π

)2 ∫

A

F3 = M

(
Ms

2π

)2 ∫

B

H3 = −K .

(3.4)

In order to determine the resulting hierarchy, we analyse the setup from a 4d view-
point. A compactification of type IIB supergravity on a Calabi-Yau orientifold leads to
an N = 1 supersymmetric low-energy theory. Certain flux choices may also break this
amount of supersymmetry but we restrict ourselves to a supersymmetric setup for sim-
plicity. From the 4d perspective, the blow-up parameter ε in the defining equation of the
deformed conifold, Eq. (2.42), is promoted to a 4d scalar field z(x). Without fluxes, this
scalar is massless and as such is an example of a modulus in string compactifications.
The fluxes enter into a superpotential of the Gukov-Vafa-Witten type [3, 45]:

W =

∫
G3 ∧ Ω =

(
2π

Ms

)2 (
M

∫

B

Ω−K τ

∫

A

Ω

)
. (3.5)

Here, τ = C + ie−φ is the axio-dilaton, G3 = F3−τH3 and Ω is the holomorphic 3-form.
It is a well-known result [46] that4

∫

A

Ω = z and

∫

B

Ω = G(z) ≡ z

2πi
ln z + holomorphic . (3.6)

As we will see in a moment, the holomorphic terms are not important for a leading-
order analysis. For a supersymmetric vacuum, we have to require that DzW = 0, where
Dz = ∂z + (∂zK) is the Kähler covariant derivative and K is the Kähler potential:

0 = DzW ∝M∂zG −Kτ + ∂zK (MG −Kτz) ∼ M

2πi
ln z − i

K

gs

. (3.7)

3This cycle is the Poincaré dual of the 3-cycle of the T 1,1.
4The first equation is usually taken as a definition for the modulus z. We have already defined z in

a different way, namely via Eq. (2.42) (recall that ε→ z).

31



For the last result, we have assumed that K À gs and that z is exponentially small.
Solving for z, we see that the latter assumption can be justified if M is not too large:

z ∼ e−2πK/Mgs . (3.8)

In order to estimate the generated hierarchy between the UV end, where the throat
goes over to the embedding Calabi-Yau orientifold, and the IR end, we can neglect the
logarithmic running of the AdS scale R in a KS throat. Deep in the throat, the warp
factor Eq. (2.41) is H(r) ' (R/r)4. As we have seen in Section 2.1, 4d energy scales of
processes which are located at a certain distance r in the throat are rescaled by a factor
of h−1 ≡ H(r)−1/4 ' r/R (cf. Eq. (2.13)). Due to the deformation of the conifold, the
S3 inside the T1,1 does not shrink to zero size at the tip (as for the singular conifold)
but it only shrinks to a certain radius rc. The throat is then terminated in the IR at this
value of the radial coordinate r. From the explicit supergravity solution from [4], we
know that the size of the S3 at the bottom of the KS throat is rc ∼ z1/3R. The hierarchy
between the unwarped part of the compact space and the bottom of the KS throat thus
is

h ∼ e2πK/3Mgs . (3.9)

To give an example: For K = 9, M = 5 and gs = 0.1, we find h ∼ 1016, the hierarchy
between the Planck scale and the electroweak scale.

We see from the result in Eq. (3.8) that the (complex-structure) modulus z(x) is
stabilized by the 3-form flux. More generally, it was shown in [3] that the other complex-
structure moduli of the Calabi-Yau orientifold can be stabilized as well by using 3-form
flux. In addition, it is possible to fix the dilaton at a small value (as we have assumed
in deriving Eq. (3.8)).

For completeness, let us mention that it is not possible to stabilize the Kähler moduli
along the lines of [3]: They remain flat directions of the scalar potential. This flatness
is due to a cancellation in the scalar potential which in turn results from the form of
the tree-level Kähler potential (which is of the so-called no-scale type). Perturbative
corrections to the Kähler potential may lead to the stabilization of the Kähler moduli
(see e.g. [47] and references therein).5 Alternatively, non-perturbative corrections to
the superpotential may depend on the Kähler moduli. This fact was employed in the
seminal work by Kachru, Kallosh, Linde and Trivedi (KKLT) to construct stabilized
de Sitter vacua [48]: Using D3-instantons or gaugino condensation on D7-branes, the
universal Kähler modulus can indeed be stabilized but the resulting vacuum has a
negative cosmological constant. This vacuum can be uplifted by adding an anti-D3-
brane in a warped region. By varying the length of this throat, the contribution of the
brane to the vacuum energy can be fine-tuned in order to yield a vacuum with a small,
positive cosmological constant. Although this vacuum is only metastable, its lifetime
can be shown to be considerably larger than the age of the universe.

5Recall that the Kähler potential, as opposed to the superpotential, is not protected from pertur-
bative corrections.
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3.3 Statistics

Calabi-Yau manifolds can have a large number of 3-cycles. Through each of these 3-
cycles, one can have some 3-form flux as in Eq. (3.4). The resulting variety of different
flux configurations on different Calabi-Yau orientifolds is known as the landscape of
type IIB flux vacua. The large number of vacua (∼10500 in some estimates) in this type
of constructions makes them amenable to statistical analysis [49]. In particular, given
a Calabi-Yau orientifold, one can ask for the number of vacua in which the complex-
structure moduli (and the dilaton) are stabilized at a particular value. In [50, 51], it
was shown how to calculate this number from the metric on the corresponding moduli
space.

We will particularly be interested in the number of vacua which have strongly
warped regions. Such throats are formed if the modulus z, which controls the size of
the 3-cycle at the tip of a conifold, is stabilized by flux at an exponentially small value.
Here, z = 0 corresponds to a situation with a vanishing 3-cycle and a singularity at the
tip of the conifold. For a Calabi-Yau orientifold with a single conifold singularity, the
number of vacua with |z| < |z∗| was found to be [51]

N ∝ 1

log(1/|z∗|) . (3.10)

Let us consider a more general Calabi-Yau orientifold. We denote the number of 3-
cycles by K. The moduli space will contain regions in which certain 3-cycles shrink to
zero size. In these regions, a singularity develops in the Calabi-Yau orientifold. In [9],
it was argued that often, presumably even for an O(1) fraction, these singularities
are conifold singularities. Let us choose coordinates on moduli space such that these
conifold singularities arise for zi = 0 with i = 1 . . . K. It was furthermore argued in [9]
that the probability that a randomly chosen vacuum is near zj = 0 for some j will have
the same parametric dependence as Eq. (3.10). If we assume that the probabilities are
uncorrelated, we can calculate the expected number of 3-cycles which are smaller than
some value |z∗|. Using also the relation between moduli coordinates z and generated
hierarchy h (h ∼ z−1/3 as we have found at the end of Section 3.2), the expected number
of throats with a hierarchy larger than some h∗ follows as [9]

n̄(h > h∗) =
K

3c log h∗
. (3.11)

Here, c is an unknown constant of order 1 which is related to the normalization of the
aforementioned probabilities.
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Chapter 4

Energy transfer between throats

4.1 A motivation: Reheating after brane-antibrane

inflation

We will now discuss a motivation for the topics which will be analysed in subsequent
chapters. A different application of the results from these chapters will be presented in
Chapters 8 and 9.

Branes allow for an interesting realization of the inflationary scenario [52]. Two
branes, which are initially separated in the extra dimensions and which exert an at-
tractive force on each other, will move towards each other. From a 4d viewpoint, the
relative distance between these branes is a scalar field which rolls down a potential. If
this potential is sufficiently flat, the brane motion can lead to slow-roll inflation.

A string theory realization of this idea is provided by a D3-brane and an anti-D3-
brane which are aligned along the noncompact dimensions [53, 54].1 Unfortunately, for
branes in flat extra dimensions, the potential is usually too steep to achieve slow-roll
inflation with enough e-foldings. The potential is much flatter if the branes instead move
in a warped region [55]. More precisely, we consider a KS throat in a flux compactifi-
cation as in Section 3.2. We place the anti-D3-brane at the tip of the KS throat. It will
approximately remain fixed at this position due to the background fluxes. As a result
of the warping, the potential between the brane and the antibrane is very flat. If the
D3-brane starts far away from the tip, slow-roll inflation with a sufficient number of
e-foldings is thus possible.

Inflation ends when the brane comes close to the antibrane. The subsequent anni-
hilation of the branes produces a large amount of KK modes which are localized in the
throat.2 If the standard model is realized on some D-branes in that same throat, the

1Recall that two D3-branes exert no force on each other, hence the anti-D3-brane.
2More precisely, an open string tachyon develops at substringy distances [56] whose condensation

produces a large amount of massive, closed string states [57]. The final phase of brane-antibrane inflation
is thus similar to the waterfall regime of hybrid inflation. The massive string states in turn decay quickly
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KK modes decay to standard model fields and thereby lead to the reheating of the vis-
ible sector. There are reasons, though, to prefer that the standard model and inflation
are realized in different throats. Most importantly, in order to reproduce the observed
amplitude of density fluctuations, the throat in which inflation takes place should have
an IR scale of the order of 1014 GeV [55]. If the standard model lives in such a throat,
a solution of the hierarchy problem à la RS is not possible.

The KK modes in the inflation throat, however, have only very weak couplings to
the rest of the compact manifold. Namely, due to the warping, they have to climb a
potential well before they can reach the unwarped part or other throats. It is therefore
not immediately clear whether reheating will be successful if the standard model is not
realized in the inflation throat. A detailed analysis in a series of papers [58–62] has
shown that, at least for a certain range of parameters, viable reheating is possible.

Obviously, a crucial quantity in this respect is the decay rate of KK modes from one
throat to another throat. The energy density of KK modes is diluted by the expansion
of the universe. The reheating temperature of the standard model therefore depends on
this decay rate. It was calculated in a 5d model in [63] and we will review this calculation
in the next section. In Chapter 5, we will present a calculation of the decay rate in a
10d model.

4.2 The tunneling calculation using a 5d model

We consider a Calabi-Yau orientifold with two strongly warped regions. We do not need
to specify the precise form of these throats, but we assume that they are finite and
reasonably well approximated by a slice of AdS5 times some compact 5d manifold M.
The prime example certainly is a KS throat. For simplicity, we also assume that both
throats have the same AdS scale R. The size L of the embedding manifold is larger than
this AdS scale, L & R, since otherwise the throats could not be glued into the manifold.
If the embedding manifold is of minimal size, L ∼ R, KK modes with masses mn ¿ R−1

cannot resolve its precise geometry. We can then describe the embedding manifold by
the UV brane in a RS model. A setup with two such throats can correspondingly be
approximated by two RSI models which are glued together at a common UV brane
(cf. Fig. 4.1) times the compact manifold M. The metric for this setup (ignoring M)
is given by Eqs. (2.3) and (2.6) but the 5th coordinate y now runs from y1 < 0 to
y2 > 0 and negative and positive coordinate values are no longer identified. We want
to determine the transition rate of KK modes from one throat to the other throat.
For simplicity, we consider only KK modes of the 4d graviton and restrict ourselves to
s-waves with respect to the compact manifold M. A convenient parameterization for
these spin-2 fluctuations is

ds2 = e−2k|y| (ηµν + hµν(x, y)) dx
µdxν + dy2 , (4.1)

where k = R−1 is the inverse AdS radius.

to massless string states, respectively to KK modes of the corresponding supergravity fields.
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z̃ z

Figure 4.1: Two throats in a compact space approximated by two RSI models which are
glued together at a common UV brane. A KK mode in one throat has to tunnel through an
effective energy barrier before it can decay to the other throat.

The linearized equation of motion for the fluctuation hµν is a Laplace equation
[64,65]

∂M

(√
ggMN∂Nhµν

)
= 0 , (4.2)

where gMN is the background metric. We consider eigenstates of the 4d d’Alembertian,

hµν(x, y) = εµν e
ipx ψ(y) , (4.3)

where εµν is a polarization tensor, p2 = −m2 and m is the 4d mass of the mode. We
focus on the first throat (i.e. y < 0) for the moment and introduce a new (dimensionless)
coordinate z ≡ k−1ek|y| and a rescaled field χ ≡ z−3/2ψ in this throat. Using Eq. (4.3)
in Eq. (4.2), the equation of motion can be written as

− d2

dz2
χ(z) +

15

4z2
χ(z) = m2 χ(z) . (4.4)

This is a Schrödinger equation with a potential which is given by the second term on
the l.h.-side and which we have plotted, together with the corresponding potential for
the second throat, in Fig. 4.1.3 As one can see, a light mode has to tunnel through an
effective energy barrier before it can reach the other throat. The mode has to fulfill
certain boundary conditions at the IR branes and the UV brane. Note, however, that
we do not take the boundary conditions on the IR branes into account. It was shown
in [59] that, at least for orbifold boundary conditions, the results from the following
calculation are not changed up to O(1) prefactors by the IR boundary conditions.

The equation of motion can be solved in terms of Bessel functions. Going back to
the unrescaled field, we have

ψ(z) = A (mz)2H+
2 (mz) +B (mz)2H−

2 (mz) . (4.5)

For later convenience, we have written the solution in terms of Hankel functions
H±

2 = J2 ± iY2, where J2 and Y2 are Bessel functions. The constants A and B will be
determined in a moment.

Next, we introduce a new coordinate z̃ for the second throat (i.e. for y > 0) and
denote the unrescaled field and the rescaled field in that throat by ψ̃ and χ̃, respectively.

3As expected, Eq. (4.4) is the same as Eq. (2.23) for l = 0, up to the term proportional to z−4.
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We have
ψ̃(z̃) = Ã (mz̃)2H+

2 (mz̃) + B̃ (mz̃)2H−
2 (mz̃) . (4.6)

We want to determine the transition (or tunneling) probability of a mode from the first
throat to the second throat. Accordingly, we consider a wave which is incoming in the
second throat. This corresponds to Ã = 1 and B̃ = 0. To see this, note first that the mass
of the tunneling KK mode is quantized in units of mIR = e−k`1k according to Eq. (2.10),
where `1 is the length of the first throat. We assume that the second throat is longer
than that, i.e. `2 > `1. Near the IR brane of the second throat we then have mz̃ À 1
and can use the asymptotic forms of the Bessel functions for large arguments. We find
ψ̃ ∝ z̃3/2eimz̃ which is an incoming wave as one can see from the time-dependence in
Eq. (4.3).

We determine the constants A and B from the requirement that both solutions,
Eqs. (4.5) and (4.6), as well as their first derivatives match smoothly at z = z̃ = R, corre-
sponding to y = 0.4 That is, we have to require that ψ(R) = ψ̃(R) and ψ′(R) = −ψ̃′(R).5

Since mR¿ 1 (cf. Eq. (2.10)), we can use the asymptotic forms of the Bessel functions
for small arguments:

ψ(z) ∼ (A+B) (mz)4 + i (B − A)
(
1 + (mz)2

)
+ . . . (4.7)

ψ̃(z̃) ∼ (mz̃)4 − i
(
1 + (mz̃)2

)
+ . . . (4.8)

The ellipsis represent higher order corrections and we have neglected numerical prefac-
tors. The tunneling probability P is given by the ratio of amplitudes of the outgoing
wave in the first throat and the incoming wave in the second throat. Thus, we have to
calculate P ∼ |Ã/B|2 = |1/B|2. Matching and solving for B, we find [63]

P ∼ (mR)4 . (4.9)

A mode that is initially localized in the first throat is described by a wave packet in
that throat. This wave packet can be decomposed into two sets of modes which move in
the IR direction and in the UV direction, respectively. If the barrier on the UV side were
impenetrable, the modes would be reflected entirely. However, since a small fraction of
the incoming flux is able to penetrate the barrier, the wave leaks out of the throat. A
wave packet initially localized in the throat will thus decohere. The incoming flux at
the barrier jin and the tunneling probability P determine the decay rate Γ:

Γ = jinP . (4.10)

To determine Γ, we need solutions to Eq. (4.4) describing waves which are reflected
back and forth between the UV barrier and the IR end of the throat. From these we
can calculate the incoming flux jin. For z À m−1, we can neglect the last term in the

4Note that there is no jump in the first derivative at y = 0 if the fluctuation is parametrized as in
Eq. (4.1). This follows from Eq. (4.2).

5The minus sign is due to the fact that both coordinates, z as well as z̃, grow in the directions away
from the UV brane.
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potential in Eq. (4.4), keeping only the constant term. In this limit, the solution is
simply given by plane waves:

χ(z) ' A cosmz +B sinmz . (4.11)

The approximation is valid for zIR ≥ z À m−1 ∼ zIR/n, where zIR = k−1ek`1 = m−1
IR is

the position of the IR brane and we have used Eq. (2.10). If n is not too small, the
mode is well approximated by a plane wave in a large portion of the throat. Deviations
from this form for z . m−1 are due to reflection at and tunneling through the effective
barrier.

To calculate jin from Eq. (4.11), we have to determine the normalization of the
solution in physical terms. As a simplification, we consider a complex scalar and a
plane wave moving around an S1 parametrized by z ∈ [0, zIR). Going to the rest frame
with respect to momenta parallel to the brane and reinstating time dependence, we
have

χ(z) = N eim(z+t) (4.12)

for the plane wave moving towards the UV barrier. To determine the normaliza-
tion constant N , we use the standard charge density for a Klein-Gordon particle,
j0 = Im(χ∗∂t χ). It has to be normalized according to

1 =

∫ zIR

0

dz j0 ⇒ N =
1√
mzIR

. (4.13)

The flux is then given by jin = jz = Im(χ∗∂z χ). Using the solution of Eq. (4.12) with
the normalization of Eq. (4.13), we find

jin =
1

zIR

= mIR . (4.14)

Using this result and Eq. (4.9), the decay rate of a graviton KK mode follows from
Eq. (4.10) as [63]

Γ ∼ mIR(mR)4 . (4.15)

4.3 Two other ways to derive the decay rate

We will now derive the decay rate Eq. (4.15) of KK modes between two throats in
a different way. Similar to the last section, we assume that the AdS scale of the first
throat is of the same order as the size of the embedding manifold, R1 ∼ L, and that
this throat can well be approximated by a RSI model times a compact manifold M.
We restrict ourselves to KK modes of the graviton and to an s-wave with respect to
the compact manifold M. Let us furthermore assume that the second throat has the
geometry AdS5×S5. In this case, it can equally well be described by a stack of D3-
branes. Its AdS scale R2 cannot be larger than the size L of the embedding manifold,
and since we have assumed that L ∼ R1, we have R1 & R2. The corresponding number
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N2 of D3-branes follows from Eq. (2.20) as N2 ∼ M4
10R

4
2. Now, when viewed from the

first throat, the U(N2) gauge theory on the stack of N2 D3-branes resides on the UV
brane. Therefore, the graviton KK modes in this throat couple directly to the energy-
momentum tensor of the gauge theory.

The KK expansion of the graviton in a RS model is reviewed in Appendix A. In
particular, the coupling of the KK modes h

(n)
µν to the energy-momentum tensor T µν on

the UV brane is given in Eq. (A.12):6

S ⊃ gn

M4
10R

3
1

∫
d4xh(n)

µν T
µν . (4.16)

We have used Eq. (3.3) and the fact that L ∼ R1. The coupling constants gn are given
in Eq. (A.13),

gn ∼ √
mnmIRR1 , (4.17)

where we have used k = R−1
1 as well as Eq. (2.10) for the masses mn of the KK modes

and the IR scale mIR.

Using Eqs. (4.16) and (4.17), the decay of graviton KK modes into the second throat
can be calculated as a decay into gauge fields.7 By the standard formula, the decay rate
of a graviton KK mode into one species of gauge fields is

Γ ∼ m4
nmIR

M8
10R

4
1

. (4.18)

There are N2
2 gauge fields in the adjoint representation of U(N2). Summing and using

Eq. (2.20), the total decay rate follows:

Γ ∼ R8
2

R4
1

m4
nmIR . (4.19)

For R1 ∼ R2, Eq. (4.19) gives the same result as Eq. (4.15), including the factor of mIR!
Note that this decay process is just the reverse of the energy loss by the heated UV
brane considered e.g. in [68,69].

There is yet another way to derive Eq. (4.15), which is due to Ref. [70]. To this end,
one considers a KK expansion in the geometry with two throats. As in the last section,
one models this geometry by two RS models with AdS scale R which are glued together

6The usual orbifold boundary conditions were taken for the derivation of coupling strengths and
masses of graviton KK modes. It is not immediately clear whether the same boundary conditions
follow from a reduction to 5d of a 10d geometry since the effective theory is defined on an interval
instead of an S1/Z2 orbifold. However, one can rederive the RS model on an interval if one takes
Gibbons-Hawking terms [66] at the IR and the UV brane into account. Varying with respect to the
metric yields a condition similar to the Israel junction condition, to be evaluated only at one side of
the brane. Inserting the background metric, one finds the relation between the cosmological constants
on the brane and in the bulk as well as the usual boundary conditions for the fluctuations (see e.g. [67]
for a derivation of the Israel junction condition using Gibbons-Hawking terms).

7There are also decays into the fermions and scalars in the gauge theory. However, the corresponding
decay rates have the same order of magnitude as the decay rate into gauge fields.
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at a common UV brane. As before, it is assumed that the second throat is much longer
than the first throat. It turns out [70] that the amplitudes of KK modes are sizeable in
the first throat only around certain resonance peaks. These peaks occur for the discrete
set of masses mn which would follow from a KK expansion in the first throat if that
throat would be taken as an isolated system. The width of the peaks is

δmn ∼ m5
nR

4 . (4.20)

Now, consider a mode which is created in the first throat. This mode can be viewed
as a wave packet which is fully localized in that throat, i.e. whose amplitude vanishes
in the second throat. The spread in frequencies of this wave packet is roughly given
by the width δmn of the amplitude peaks. Due to the different time evolution of the
constituent modes, the wave packet decoheres after a time tdec and the amplitude no
longer vanishes in the second throat. This is the analogue of the KK mode decay that
we have discussed before. The decoherence time can be estimated as tdec ∼ δm−1

n . Thus,
in this approach the decay rate follows as

Γ ∼ δmn ∼ m5
nR

4 . (4.21)

For the light modes, mn ∼ mIR, this once again is the same result as Eq. (4.15).
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Chapter 5

Heat transfer between throats from
a 10d perspective

5.1 Preliminaries

For the calculations in the last chapter, we have assumed that the size L of the embed-
ding manifold is of the same order of magnitude as the AdS scales R of the throats. Of
course, this is not always the case. In the following, we will determine the rates of heat
transfer for larger embedding manifolds. In this case, a 5d model is no longer sufficient
and we have to take the full 10d geometry into account. To this end, we consider two
throats which are separated at distance A and which are embedded into a compact
manifold of size L (cf. Fig. 5.1).

We will perform the calculation for a simple example – two semi-infinite AdS5×S5

throats embedded in a 6-dimensional torus. This is similar to the Verlinde compacti-
fication discussed in Section 3.1. As it stands, though, our model is not a consistent
compactification since negative-charge objects are needed to fulfill the tadpole cancel-
lation condition. However, in the course of our calculation we will argue that including
these and other objects (e.g. further D-branes) as well as using a different embedding
manifold and a different throat geometry only leads to O(1) corrections.

The calculation of the heat transfer rate between these two throats turns out to
be a multi-dimensional tunneling problem. Since such a problem is difficult to solve,
we choose a different approach: As we have discussed in Section 2.2, AdS5×S5 throats
are the near-horizon geometries of black 3-branes which in turn correspond to stacks of
D3-branes.1 Due to this fact, instead of the aforementioned geometry with throats, we
can equally well consider a torus with two D3-brane stacks.

In this picture, the heat transfer from throat to throat is rephrased as heat transfer
between the two world-volume gauge theories. This reduces the problem to the calcula-

1Recall that the number N of branes in each stack is related to the S5 radius R of the corresponding
throat by Eq. (2.20).
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Figure 5.1: Two throats with AdS radii R1 and R2 separated at distance A inside a Calabi-
Yau orientifold of total size L.

tion of simple processes in quantum field theory. To see this, consider a throat which is
heated to a certain temperature T . As we have discussed in Section 2.6, such a throat is
the near-horizon geometry of a non-extremal black 3-brane which is dual to a D3-brane
stack with a heated world-volume gauge theory. The latter is coupled to the world-
volume theory on the second brane stack (corresponding to the second throat) by the
supergravity fields in the embedding space. Heat transfer between the two throats then
is, in this picture, due to processes of the type shown in Fig. 5.2, where fields in the
thermal plasma on one brane stack scatter into fields on the other brane stack.

Figure 5.2: Feynman diagram for the scattering of fields on one brane stack into fields on
another brane stack.

We will now calculate this heat transfer rate from a heated throat to another throat.
An application of the result will be presented in Section 8.2. The decay rate of KK
modes between two throats, which generalizes the results from the last chapter, will
be determined in Chapter 6, using similar methods. We will restrict our calculation to
the mediation by the dilaton, the RR scalar and the graviton polarized parallel to the
branes. In the gravity picture these three fields satisfy the same wave equation [21].
Correspondingly, in the gauge theory picture their effect in mediating heat transfer is
parametrically the same.2 Hence, we can further restrict our calculation to one of the

2This can also be inferred from the relevant part of the DBI action, which couples them to the
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three fields, which we take to be the dilaton. In particular, we will not consider the
effect of fermions living in the embedding manifold. In fact, in [71] the absorption cross
section of dilatinos by 3-branes was calculated and found to agree with the result for the
dilaton. Therefore, we expect the fermions to give parametrically the same contribution
as the fields that we consider.

Recall from Section 2.2 that the (low-energy) world-volume theory on N parallel D3-
branes is N = 4 U(N) super Yang-Mills. Its field content is given by the field strength
Fαβ in the adjoint representation, six adjoint scalars X i corresponding to the positions
of the branes, and fermionic superpartners. The relevant couplings between the dilaton
φ and the world-volume theory are given in Eq. (2.33):

S ⊃ M−4
10

23/2

[∫
d4xφ(x, 〈 ~X〉)F 2

αβ +
∞∑

l=1

∫
d4x

M−2l
10

l!πl/4
(∂i1 · · · ∂ilφ)X i1 · · ·X il F 2

αβ

]
. (5.1)

Here, 〈 ~X〉 is the position of the brane stack. The dilaton φ and the X i are defined such
that their kinetic terms are canonically normalized. We ignore couplings to fermions,
since they are proportional to the fermionic equations of motion and thus give no con-
tributions to S-matrix elements [21]. Direct couplings between the dilaton φ and the
scalars X i are absent. Moreover, as can be seen from Eq. (5.1), couplings involving the
X i as well as Fαβ are suppressed by extra factors of M−2l

10 and can therefore be ignored.

5.2 Energy loss rate to flat 10d space

Before we proceed, we should check whether a calculation in terms of weakly cou-
pled gauge fields is a good approximation in the strongly coupled regime of the gauge
theory. At zero temperature, this is adequate due to the nonrenormalization theorem
discussed at the end of Section 2.3. However, the gauge theory is at finite temperature,
which breaks supersymmetry. With supersymmetry being broken, this nonrenormaliza-
tion theorem cannot be expected to hold and it is not immediately clear why to trust
our calculation. Therefore, we analyse a simple example in both the gauge theory and
the gravity picture and compare the results. Namely, we consider a heated stack of
D3-branes in flat 10d space which is dual to a non-extremal black 3-brane and calculate
the energy loss rate in both pictures.

We model the heated, strongly-coupled gauge theory on the D3-brane stack by a
thermal plasma of free fields. In principle, one would have to use finite temperature field
theory for the calculation of the energy loss rate. However, as we are only interested in
the correct order of magnitude, we can perform a zero-temperature calculation using
a thermal particle distribution in the initial state. Following from Eq. (5.1), the cross
section for scattering of two gauge bosons into one dilaton is

σ ∼ s3

M8
10

(5.2)

world-volume theories on the D3-branes.
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up to O(1) prefactors, where
√
s is the energy of the gauge bosons in the center of

mass frame. From Eq. (5.2), we can calculate the rate of energy loss per world-volume
of the branes induced by this scattering process. This is done by thermally averaging
the product of cross section and lost energy, in analogy to the standard calculations of
reaction rates in a hot plasma [68,72]:

ρ̇ =
1

2

∫
d3k1 d

3k2 f(ω1) f(ω2) σv (ω1 + ω2) . (5.3)

Here

f(ω) =
1

4π3(eω/T − 1)
(5.4)

is the distribution function for the gauge bosons, v is the relative velocity of the colliding
particles, and T is the temperature of the heated gauge theory. Inserting Eq. (5.2) into
Eq. (5.3), we get the energy loss rate due to scattering of one gauge boson species. To
get the total energy loss rate, we have to sum over all species and polarizations. In a
U(N) gauge theory there are N2 gauge bosons. Thus, there is an extra factor of 2N2

coming from the summation. Using Eq. (2.20) and neglecting prefactors of order one
coming from the integration in Eq. (5.3), we get

ρ̇ ∼ R8 T 13 , (5.5)

where R is the AdS scale of the corresponding black 3-brane.

Energy loss from the non-extremal black 3-brane is due to Hawking radiation emit-
ted by its black hole horizon. The corresponding rate per brane world-volume ρ̇ is given
by a generalization of the Hawking formula (see e.g. [10]). If we restrict ourselves to the
dilaton, we get

ρ̇ =

∫
d9k

(2π)9

v ω σT (ω)

eω/T − 1
, (5.6)

where v is the velocity of the emitted particles and T is the Hawking temperature of the
horizon. The absorption cross section of a dilaton by a non-extremal black 3-brane is
given in Eq. (2.44): σT ∼ σ0 f(ω/T ), where σ0 ∼ ω3R8 is the absorption cross section at
zero temperature and f is some function. Using this result and performing the integral,
we have

ρ̇ ∼ R8 T 13 . (5.7)

Here we have neglected prefactors of order one which come in particular from the
integration over f(ω/T ).

Both results for the energy loss rate, Eqs. (5.5) and (5.7), agree up to O(1) factors.
Accordingly, a weak-coupling calculation in the gauge theory picture gives the right
order of magnitude. The crucial ingredient is the fact that the absorption cross section
σT of a dilaton by a non-extremal black 3-brane differs from the zero-temperature
absorption cross section σ0 only by a function of λ ≡ ω/T . By gauge/gravity duality,
this means that the gauge boson-dilaton vertex is corrected by a function of λ at non-
zero temperature.3 Accordingly, the cross section for the process in Fig. 5.2 that we will

3This is also the case if one takes finite-temperature effects properly into account on the gauge
theory side.
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calculate assuming weak coupling and zero temperature has to be corrected by a function
of λ. However, inserting the corrected cross section into Eq. (5.3) and performing the
integral will just give a different O(1) prefactor, which we ignore anyway.

5.3 Heat transfer rate to a different throat

Let us now calculate the cross section for the process in Fig. 5.2. To this end, we need
the KK expansion of the dilaton in a 6d torus,

φ(x, 〈 ~X〉) =
∑

~n∈Z6

1

L3
e2πi~n〈 ~X〉/L Φ~n(x) , (5.8)

where L is the size of the torus and the expression is already evaluated at the position
〈 ~X〉 of one brane stack. The mass of the ~nth KK mode is m~n = 2π|~n|/L. Inserting
Eq. (5.8) into Eq. (5.1), one sees that the vertex for the ~nth KK mode in Fig. 5.2 is

∼ s

M4
10 L

3
e2πi~n〈 ~X〉/L . (5.9)

Here the energy in the center of mass frame of the gauge bosons is denoted by
√
s.

Let 〈 ~X1〉 and 〈 ~X2〉 be the positions of the two brane stacks inside the T 6. If we denote
the relative distance of the stacks by ~A ≡ 〈 ~X2〉 − 〈 ~X1〉 and introduce the shorthand
~a ≡ 2π ~A/L, the matrix element corresponding to the process in Fig. 5.2 is given by

M ∼ s2

M8
10 L

6

∑

~n∈Z6

ei~n~a

s−m2
~n + iε

. (5.10)

We have ignored prefactors of order one. For phenomenological purposes, we can safely
assume

√
s < L−1. Namely, since the energy

√
s of the colliding gauge bosons is deter-

mined by the temperature T of the heated gauge theory, this corresponds to T < L−1.
If this were not the case, the gauge theory would heat up the compact manifold and
the geometrical picture would be lost. Following from

√
s < L−1, one has s < m2

n for
n > 0 and the contribution of the energy

√
s in the propagator can be neglected for all

but the zero mode. Thus, Eq. (5.10) simplifies to

M ∼ s2

M8
10 L

4

∑′

~n∈Z6

ei~n~a

~n2
+

s

M8
10 L

6
, (5.11)

where the prime denotes exclusion of ~n = ~0 in the sum. Since the 4d Planck scale is
determined by M2

4 'M8
10L

6, the last term in Eq. (5.11) simply reflects the fact that the
zero mode interacts with gravitational strength. The sum, which would be UV divergent
in absence of the exponential factor, is dominated by terms with large ~n. It can therefore
be approximated by an integral:

∫
d6n

ei~n~a

~n2
∼ 1

a4
. (5.12)

45



The r.h. side of Eq. (5.12) results from the fact that the exponential function oscillates
quickly for |~n| & a−1 (a ≡ |~a|), effectively cutting off the integral.4 More precisely, we
evaluate a similar but more general integral, which we will need in Section 6.2, in
Appendix C. Equation (5.12) follows from this integral in a particular limit, which is
displayed in Eq. (6.16).

Inserting Eq. (5.12) into Eq. (5.11), we find

M ∼ s2

M8
10A

4
+

s

M8
10 L

6
, (5.13)

where A ≡ | ~A|. For an order-of-magnitude calculation, we can neglect the interference
term in |M|2. The cross section for the process in Fig. 5.2 then reads

σ ∼ s3

M16
10A

8
+

s

M16
10L

12
for

√
s < L−1 . (5.14)

Inserting this cross section into Eq. (5.3), we get the energy loss rate due to scattering
of one particle species into another particle species. To get the total energy loss rate,
we have to sum over all initial and final state species and polarizations. Let us denote
with N1 and N2 the number of colors of the heated gauge theory and the gauge theory
that is being heated, respectively. The summation then gives extra factors of 2N2

1 and
2N2

2 and we get, again neglecting prefactors of order one coming from the integration
in Eq. (5.3),

ρ̇ ∼ N2
1N

2
2

M16
10A

8
T 13 +

N2
1N

2
2

M16
10L

12
T 9 . (5.15)

Using Eq. (2.20), this can be written in a slightly more compact form. Denoting by R1

and R2 the AdS scales of the corresponding throats, we arrive at the main result of this
chapter:

ρ̇ ∼ R8
1R

8
2

A8
T 13 +

R8
1R

8
2

L12
T 9 . (5.16)

The applicability of this heat transfer rate to more general throat geometries and em-
bedding manifolds will be discussed in Section 7.1.

4One can see in particular that the sum in Eq. (5.11) is effectively cut off before the geometry of
the throats becomes relevant, justifying our flat-space approximation.
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Chapter 6

Decay of KK modes between
throats from a 10d perspective

6.1 The glueball decay vertex

We will now calculate the decay rate of KK modes which localized in one throat to a
different throat. We will thus determine the same quantity as in Chapter 4. This time,
though, we will perform the calculation for the 10d setup from the last chapter, two
AdS5×S5 throats in a 6-dimensional torus. Again, we will use the dual gauge theory
picture and consider D3-brane stacks instead of the AdS5×S5 throats.

In this picture, we have to calculate the decay rate of glueballs on one brane stack
into two gauge fields on another brane stack. The Feynman diagram for this process is
shown in Fig. 6.1. Due to the nonrenormalization theorem described in the introduction,
we do not have to care whether the decay products will arrange into one or more
glueballs. The vertex for this part of the diagram is simply the one already derived in
Eq. (5.9). However, the other vertex between a dilaton and a glueball can not so easily
be read off from the Lagrangian. Therefore, we first calculate the decay rate for a simpler
situation in the gravity picture. From this we determine the vertex by demanding that
this decay rate agree with the gauge theory picture.

Namely, we consider a single AdS5×S5 throat which is embedded into flat 10d space.
As we have discussed in Section 2.2, this is the geometry of an extremal black 3-brane.
Excitations in the throat region of this 3-brane correspond to excitations in the dual
gauge theory. The state dual to a glueball on a D-brane stack is therefore a wave packet
which is localized in the throat. Due to the different time evolution of its constituent
modes, this wave packet will decohere after a certain time (cf. Section 4.3). Hence,
excitations will show up in the asymptotically flat region as well. This is the analogue
of the decay of a glueball on a D-brane stack to supergravity fields in the embedding
flat space.1

1As opposed to the ‘derivation’ of the AdS/CFT conjecture in Section 2.4, we keep Ms and M10

finite. In this case, the asymptotically flat region does not decouple from the throat region of a black 3-
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Figure 6.1: Feynman diagram for the decay of a glueball in one throat into fields in another
throat.

Thus, we want to determine the decay rate of a dilaton which is localized in the
throat into flat space. To this end, we assume the throat to be sharply cut off somewhere
in the IR. Such an AdS5×S5 throat with an IR cutoff might not exist as a solution to
supergravity, but it can serve as a simple toy model capturing the relevant information.
In Chapter 7, we will show how to extend our results to realistic finite throats such as
the KS throat. On the gauge theory side, the cutoff corresponds to a deformation by a
relevant operator, in which case the gauge theory has a discrete set of glueball states.

The tunneling probability P of a wave from the throat to the asymptotically flat
space is given in Eq. (2.30) (see also [62]). Although this result has been derived for a
throat which is infinite in the IR direction, we can still use it for a finite throat, as long
as the mass m of the wave is not too small. To see this, consider the dilaton equation
of motion in Schrödinger form, Eq. (2.23) with ω = m. In the region z À m−1, the
constant term in the potential is dominant and the equation is approximately solved by
plane waves:

ψ(z) ' A cosmz +B sinmz . (6.1)

We denote the position of the IR cutoff of the throat by zIR. The boundary condition for
ψ or its first derivative at zIR lead to a quantization of the mass in units of mIR ≡ z−1

IR

such that m ∼ nmIR with n an integer.

The approximation by a plane wave is valid in the region zIR ≥ z À m−1 ∼ zIR/n,
where we have used the mass quantization condition. As long as n is sufficiently larger
than 1, the wave is a plain wave (in the parametrization of Eq. (2.23)) in a large
portion of the throat. This plain wave tunnels to the asymptotically flat space with the
probability given in Eq. (2.30). Moreover, the analysis at the end of Section 4.2 applies
to this situation as well. The relation of the tunneling probability to the decay rate is

brane. Excitations in the two regions will thus mix with each other. This reflects the fact that, since we
do not send M10 to infinity, the gauge theory will interact with the supergravity fields in the embedding
space (cf. Eq. (2.33)).
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thus given by Eqs. (4.10) and (4.14) and the decay rate follows as

Γ ∼ mIR(mR)8+4l . (6.2)

Now that we have the decay rate in the gravity picture, we need to define a vertex
V in the gauge theory picture which reproduces this result. We model the coupling by
a term

L10d ⊃ V δ(6)( ~X − 〈 ~X〉)φ(x, 〈 ~X〉)G(x) (6.3)

in the 10d Lagrangian, where G denotes the glueball state with canonically normalized
4d kinetic term. Compactifying the 6 dimensions perpendicular to the brane on a torus
of size L for the moment and using the KK mode decomposition of Eq. (5.8), we get
the effective 4d Lagrangian

L4d ⊃
∑

~n∈Z6

(
−1

2
∂µΦ~n ∂

µΦ~n − 1

2
m2

~n Φ2
~n + e2πi~n〈 ~X〉/L V

L3
Φ~n(x)G(x)

)
. (6.4)

From this, the total decay rate of a glueball into KK modes of the dilaton follows:

Γ =
1

2ωi

1

L6

∑

~n∈Z6

∫
d3pf

(2π)3

1

2ωf

(2π)4 δ(4)(pf − pi) |V |2 . (6.5)

In this formula, pf = pf‖ is a 4-vector characterizing the momentum of the final-state
dilaton parallel to the brane, while ωi and ωf are the energies of the initial and final
state. The 4-momentum of the decaying glueball is denoted by pi. Introducing the
dilaton momentum in the compact dimensions as ~pf⊥ = 2π ~n/L, we can replace the sum
by an integral when we go back to L→∞:

1

L6

∑

~n∈Z6

−→
∫
d6pf⊥

(2π)6
. (6.6)

The decay rate of a glueball into a dilaton is then given by

Γ =
1

2ωi

∫
d6pf⊥

(2π)6

d3pf‖

(2π)3

1

2ωf

(2π)4 δ(4)(pf‖ − pi) |V |2 . (6.7)

Since the dilaton is massless, ωf =
√
|~pf⊥|2 + |~pf‖ |2. Going to the rest frame of the

glueball, ~pi = 0, and performing the momentum integrations, we arrive at

Γ =
1

2ωi

∫
d6pf⊥

(2π)6

1

2ωf

(2π) δ(ωf − ωi) |V |2 ∼ ω3
i |V |2 , (6.8)

where we have used ωf = |~pf⊥| and neglected prefactors of order one. In its rest frame,
ωi is simply the mass m of the glueball. Comparing with Eq. (6.2), we get

V ∼ √
mIRm m2+2lR4+2l . (6.9)
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6.2 Decay rate calculation in the gauge theory pic-

ture

With the effective vertex V at hand, calculating the decay rate of one glueball into gauge
fields living on a different brane stack is straightforward. Following from Eqs. (6.4) and
(6.9), the vertex between a glueball and a KK mode of the dilaton is

V

L3
e2πi~n〈 ~X〉/L . (6.10)

The other vertex in the diagram is still given by Eq. (5.9). Summing over all intermediate
KK modes, we arrive at an expression very similar to Eq. (5.10):

M ∼
√
mIRm (mR)4+2l

M4
10 L

6

∑

~n∈Z6

ei~n~a

m2 −m2
~n + iε

. (6.11)

Compared to Eq. (5.10), the only difference is the prefactor and the substitution of the
energy

√
s of the colliding gauge bosons by the mass m of the glueball.

We will analyse Eq. (6.11) in two different regimes, namely for m−1 > L and for
m−1 ¿ L. The former case is the most interesting one from a phenomenological view-
point. As we have argued in Chapter 5, we can assume that the reheating temperature
TRH in early cosmology is smaller than L−1. Accordingly, the mass m of any relic KK
modes is also restricted by m < L−1. The latter case, on the other hand, can be easily
analysed in the gravity picture as well. We will perform this cross-check in Section 6.3.

For m−1 > L, we can make the same simplifications as in Eq. (5.11) and use
Eq. (5.12) for the sum. The decay rate of a glueball into a pair of gauge bosons follows
from the standard 4d formula:

Γ ∼ m−1|M|2 . (6.12)

To get the total decay rate, we have to sum over the N2 final state gauge bosons. If we
denote by R1 and R2 the AdS scale of the throat containing the initial and the final
state, respectively, and use Eq. (2.20), we find

Γ ∼ N2+l
1 N2

2

M16+4l
10 A8

mIRm
8+4l +

N2+l
1 N2

2

M16+4l
10 L12

mIRm
4+4l

∼ R8+4l
1 R8

2

A8
mIRm

8+4l +
R8+4l

1 R8
2

L12
mIRm

4+4l . (6.13)

The applicability of this decay rate to more general throat geometries and embedding
manifolds will be discussed in Chapter 7.

Let us now consider the case m−1 ¿ L. We will also assume A¿ L for simplicity.
Recalling that m~n = 2π|~n|/L and ~a = 2π ~A/L, we can approximate the sum in Eq. (6.11)
by an integral,

1

L6

∑

~n∈Z6

e2πi ~A~n/L

m2 − (2π)2~n2/L2 + iε
−→

∫
d6ρ

(2π)6

ei ~A ~ρ

m2 − ~ρ2 + iε
, (6.14)
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where ~ρ ≡ 2π ~n/L. The resulting expression is just the propagator of a massless particle
in a mixed, energy-configuration-space representation, with the ‘energy’ m characteriz-
ing the invariant 4-momentum. This is of course expected in the large L limit, where
the torus goes over to flat space and the infinite KK tower is replaced by the underlying
higher-dimensional dilaton field. The integral is evaluated in Appendix C, the outcome
being ∫

d6ρ

(2π)6

ei ~A ~ρ

m2 − ~ρ2 + iε
∼ m2

A2
H+

2 (mA) , (6.15)

where H+
2 (x) = J2(x) + i Y2(x) is a Hankel function and we have neglected prefactors

of order one. Using the asymptotic forms of the Bessel functions for large and small
arguments, Eq. (6.15) can be simplified as follows:

m2

A2
H+

2 (mA) ∼
{

m3/2

A5/2 e
i mA for m−1 ¿ A

1
A4 for m−1 À A .

(6.16)

Inserting these results in Eq. (6.11), we get the matrix elements M for these two cases.
The corresponding partial decay rates follow from Eq. (6.12). Summing over all final
state species, we find

Γ ∼
{

R8+4l
1 R8

2

A5 mIRm
11+4l for m−1 ¿ A

R8+4l
1 R8

2

A8 mIRm
8+4l for m−1 À A

. (6.17)

As a consistency check, we should examine, whether the appropriate limiting cases of
Eqs. (6.13) and (6.17) coincide. The regions of validity of the two calculations have a
common border for A¿ m−1 ∼ L. Indeed, for this choice of parameters the first term
in Eq. (6.13) dominates and the result agrees with the second line of Eq. (6.17).

6.3 Some calculations in the gravity picture and re-

lation to earlier work

As in the sections before, we consider two AdS5×S5 throats embedded in a 6-dimensional
torus of uniform size L. The geometry is that of a multi-centered black 3-brane, the
metric being (cf. Section 3.1)

ds2 = H−1/2 ηµνdx
µ
q dx

ν
q +H1/2 dx.i

⊥dx
0
⊥.i (6.18)

with

H(~x⊥) = 1 +
∑

~n∈Z6

(
R4

1

|~x⊥ − ~A1 + ~nL|4
+

R4
2

|~x⊥ − ~A2 + ~nL|4

)
. (6.19)

The positions of the two throats are denoted by ~A1 and ~A2, their AdS scales by R1 and
R2. The xq are coordinates along the 4 uncompactified dimensions and the x⊥ refer to
coordinates in the torus. The sum in the warp factorH(~x⊥) is due to mirror effects in the
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torus. Again, this is not a consistent compactification. Including O-planes, for example,
would give extra contributions to the warp factor (see [44]). We try to calculate the
transition of a dilaton between different throat regions, which is the gravity counterpart
to the gauge theory calculation in Sections 6.1 and 6.2. The equation of motion for the
dilaton is given in Eq. (2.21). Inserting Eq. (6.18) in Eq. (2.21) and using

√
g = H1/2,

one gets
∂n ∂

n φ+H(~x⊥) ∂µ ∂
µ φ = 0 . (6.20)

The indices µ and n run from 0 to 3 and from 4 to 9, respectively. Using the 4d Klein-
Gordon equation, one arrives at

∂n ∂
n φ+H(~x⊥) m2 φ = 0 , (6.21)

where m is the kinetic energy perpendicular to the branes. Like Eq. (2.23), this has the
form of a Schrödinger equation. Contrary to Eq. (2.23), however, there is no potential
barrier separating the throat region and asymptotically flat space, since the potential
V = −m2H(~x⊥) is strictly negative. The difference comes from using cartesian coor-
dinates perpendicular to the branes in Eq. (6.18) rather than spherical coordinates in
Eq. (2.17). Still, a wave in the throat region, moving away from the horizon, is reflected
to a large part before entering asymptotically flat space. In cartesian coordinates, how-
ever, this is due to the steepness of the potential well.

To determine the transition probability P of a dilaton between two throat regions,
one has to solve Eq. (6.21) with appropriate boundary conditions. Then P is the ratio
of incoming flux in one throat and outgoing flux in the other throat. In general, the
corresponding calculation is difficult. However, if the torus is very large (L → ∞) and
the throats are sufficiently far apart (AÀ m−1), the problem effectively splits into two
simpler calculations. Namely, the latter condition means that the de Broglie wavelength
of the particle is small compared to the distance of the throats. A transition between
two throats can then be described as a two-step process. For simplicity, we take the
initial state in the first throat to be an s-wave. Only a small fraction of the outgoing
flux reaches the asymptotically flat region, the probability being given in Eq. (2.30)
(with l = 0 and ω = m)

P1 ∼ (mR1)
8 . (6.22)

In between the two throats, one has a free spherical wave, approximating a plane wave
near the second throat. The absorption cross section (per brane world-volume) for such
a plane wave is given in Eq. (2.31):

σ2 ∼ m3R8
2 . (6.23)

Near the second throat, the incoming flux will be diluted by a factor of A−5, since the
free spherical wave is expanding in 6-dimensional flat space. The absorption probability
by the second throat thus is

P2 ∼ σ2

A5
∼ m3R8

2

A5
. (6.24)

The transition probability between the two throats is just the product P1P2. If we
denote by mIR the mass gap in the first throat, using Eqs. (4.10) and (4.14) the decay
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rate from the gravity calculation follows as

Γ ∼ R8
1R

8
2

A5
m11mIR . (6.25)

This is precisely what we found in Eq. (6.17) for A À m−1 and l = 0. The crucial
ingredient is the A−5 dependence. That it agrees in both calculations is, however, not
too surprising. In the gauge theory calculation, it came from the propagator in a mixed
energy-configuration-space representation (cf. Eq. (6.14)). The same is of course true in
the above gravity calculation, although we have not stated it explicitly.

As we have discussed in Section 4.3, there is yet another situation in which the
decay rate of KK modes between two throats is comparatively easy to obtain. To this
end, we assume that the AdS scale R1 of the first throat is of the same order as the size
L of the embedding space, i.e. L ∼ R1. We then have R1 & R2, where R2 is the AdS
scale of the second throat. In this situation, we can approximate the first throat by a
RS model, whereas the second throat corresponds to some degrees of freedom which live
on the UV brane of this RS model. Furthermore, we restrict ourselves to s-waves in the
throats, i.e. l = 0. The resulting decay rate Eq. (4.19) can be compared with Eq. (6.13)
from the gauge theory calculation. The distance A between the two throats cannot be
smaller than their AdS scales R1 and R2. Since we also have L ∼ R1 and m¿ R−1

1 , the
second term in Eq. (6.13) is dominant. For L ∼ R1 and l = 0, this term gives the same
result as Eq. (4.19)!

Tunneling in a compact 10d setup with throats was also considered in [62, 65]. For
the case m−1 > L, a decay rate of Γ ∼ (mR)16mIR was derived, assuming that the
particle has to tunnel through two barriers described by the potential in Eq. (2.23). We
see a conceptual problem with this approach since we do not know how to justify a 1-
dimensional quantum-mechanical picture (this 1 dimension being the radial coordinate)
in the two-throat case. But even if we accept this description for the moment, there are
further issues related to the two-barriers assumption: The barriers extend to values of
r ∼ m−1 as can be seen from Fig. 2.1. Since m−1 À R and r measures the physical
distance for r À R (cf. Eq. (2.17)), the width of each barrier is given by m−1. This
just reflects the fact that a particle with mass m has a de Broglie wavelength of m−1.
Accordingly, the particle has to tunnel through two entire barriers only if the distance
A between the two throats is ∼ 2m−1. Indeed, from Eq. (6.13) for l = 0 and since
L > A, we get a decay rate of Γ ∼ (mR)16mIR in this case, in agreement with [62, 65].
However, if A is smaller than ∼ 2m−1, the particle has to tunnel through a smaller
barrier. Correspondingly, the decay rate becomes larger, as can be seen from Eq. (6.13).

The case m−1 . L (without assuming m−1 ¿ L) was also considered in [62, 65].
It was found that the decay rate can be much larger than Γ ∼ (mR)16mIR if a certain
resonance condition is fulfilled. We have not determined the decay rate for this case and
therefore have no result to compare with.2 It would be interesting, though, to evaluate
Eq. (6.11) for m−1 . L and to see whether one can reproduce the results from [62, 65]
as well as their resonance condition.

2Note that we have assumed that L À A,m−1 in deriving Eq. (6.17). This result is therefore not
suitable to compare with the results from [62,65] where the limit of extremely large L was not taken.
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Chapter 7

Modifications in more realistic
setups

In the last chapters, we have calculated the heat transfer rate and the decay rate of
KK modes for a simple geometry – two AdS5×S5 throats embedded in a 6d torus. In
this chapter, we will argue, that these rates are also applicable to more general throat
geometries and embedding manifolds. A complication arises, though, for the decay rate
of KK modes in a KS throat. The 3-form flux, which is present in these throats, mixes
field fluctuations in a complicated way. The determination of the glueball vertex along
the lines of Section 6.1 is therefore in general difficult. We will show, however, that the
glueballs decay to a certain lightest glueball on very short timescales. It is therefore
sufficient to determine the decay rate to other throats only for this lightest glueball
which, as we will argue, decays again with the vertex derived in Section 6.1. We will also
see that an extra suppression can arise for decay rates in flux compactifications because
certain fields which mediate the decay get high masses. This suppression is roughly
compensated, on the other hand, if the corresponding KK mode mixes with tachyonic
fields in the throat. Finally, we will generalize our results to processes involving the
standard model.

7.1 Applicability to other geometries

An apparent limitation of our analysis in Chapters 5 and 6 is the assumption of a simple
toroidal geometry for the embedding space. This assumption was used to determine the
spectrum and the couplings of higher KK modes (which determine the first term in
Eqs. (5.11), (5.16) and (6.13)). By contrast, the coupling of the zero mode (which
determines the second term in Eqs. (5.11), (5.16) and (6.13)), depends only on the size
of the embedding manifold and not on its geometry. To see the relative importance of
the terms more clearly, we focus on the heat transfer rate and rewrite Eq. (5.16) as

ρ̇ ∼ R8
1R

8
2

A8
T 13

(
1 +

(
A

L

)8

(LT )−4

)
. (7.1)
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If the throat-to-throat distance is large, A ∼ L, the second term dominates (recall
that LT < 1) and the precise geometry is irrelevant. By contrast, for small throat
separation, A¿ L(LT )1/2, the contribution of the KK modes is dominant. In this case,
the precise geometry of the embedding manifold may in principle be relevant. However,
it is then natural to assume that the curvature scale in the region between the throats is
smaller than 1/A. Furthermore, as we have already pointed out in Section 5.3, the sum
in Eq. (5.11) is dominated by contributions with |~n| ∼ L/A, corresponding to masses
m~n ∼ A−1. Such modes are only sensitive to the geometry at distance scales A in the
vicinity of the two throats, which we just argued to be approximately flat. Thus, the
order of magnitude of our heat transfer rate will remain correct in most relevant cases,
even if the overall geometry is very different from that of a torus.

Similar conclusions follow for the applicability of the decay rate in Eq. (6.13) to
other embedding geometries. In particular, we see that O-planes and further D-brane
stacks will not change our results as long as they are not too close to the two throats.
In Section 7.4, we will see, however, that a suppression of the decay rate can arise due
to the stabilization of certain moduli in flux compactifications.

We can also apply our heat transfer rate to situations with one KS throat and one
AdS5×S5 throat or with two KS throats as long as the curvature scale of the space in
between the two throats is not much larger than 1/A. In particular, one can easily see
from the gravity picture that the finite length of the KS throats will not change the
heat transfer rate qualitatively. This is obvious for the heated throat since the black
hole horizon hides the IR region.1 Energy transfer from the heated throat is due to
Hawking radiation which is absorbed by the other throat. But only the geometry in the
UV region of the latter throat is important for the absorption of the Hawking radiation.
In particular, due to the latter fact, the relevant AdS scales in Eq. (5.16) are those at
the UV ends of the throats.

For the derivation of the decay rate, we have assumed that the decaying field fulfills
the equation of motion of a minimally coupled, massless scalar field in the throat.
This is no longer obvious for the dilaton in a KS throat because 3-form flux mixes
field fluctuations in a complicated way. We will discuss the corresponding decay rate
in Section 7.4. There is a different field which fulfills the aforementioned equation of
motion in the throat: the graviton [64, 65]. Let us outline how to determine the decay
rate of graviton KK modes in a KS throat:

Away from the bottom of the throat at r = rs, the metric of a KS throat is well
approximated by Eq. (2.39) with the warp factor which is given in Eq. (2.41):

H(r) = 1 +
R4

IR ln(r/rs)

r4
. (7.2)

For RIR À r À rs, which defines the throat region, the warp factor is approximately
H ' R4

IR ln(r/rs)/r
4. For r À RIR, where the geometry is asymptotically a cone over

T 1,1, we have H ' 1. Near r = rs, the geometry differs considerably from Eqs. (2.39)

1Otherwise, if the temperature of the throat is lower than the IR scale, it contains a non-relativistic
gas of KK modes whose decay rate to the other throat will be discussed in Section 7.4.
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and (2.41) and the throat is cut off by the KS region. For an order of magnitude estimate,
we can neglect the logarithmic r dependence of the warp factor away from r = rs and
approximate the KS region by a sharp cut off [40]. Thus, the tunneling probability from
the throat into the conical region can be (approximately) calculated from the effective
Schrödinger equation, Eq. (2.23). Note, however, that we have to replace the eigenvalues
l(l + 4) of the angular Laplacian on S5 by the corresponding eigenvalues on T 1,1 for a
KS throat. Furthermore, since tunneling is mainly determined by the geometry in the
UV, we should use the AdS scale RUV at the UV end of the throat in Eq. (2.23). For an
AdS warp factor and a sharp cut off, the incoming flux is as before given by Eq. (4.14).
From Eq. (4.10), we can then determine the decay rate to the conical region and match
the glueball vertex such that this decay rate is reproduced.

Once we have the glueball vertex, we can redo the steps which led to Eq. (6.13).
The decay rate of graviton KK modes which are s-waves with respect to the T 1,1 in a
KS throat is thus again given by Eq. (6.13). For higher partial waves, the dependence
on the angular quantum number is different from that displayed in Eq. (6.13).

7.2 Some remarks on the spectrum of the Klebanov-

Strassler theory

A number of papers [65, 73–80] have calculated parts of the bosonic glueball spectrum
of the KS gauge theory. In [78], masses of KK towers of 7 coupled scalar fields and
the graviton polarized parallel to the uncompactified dimensions were determined. In
particular, several scalar states lighter than the lowest spin-2 state were found. In [74],
the mass of the lowest KK mode of the dilaton was calculated using some approximations
in the geometry. Again, it was found to be lighter than a spin-1 and a spin-2 state [74,75].
In the light of these findings, we expect the lightest state in the bosonic sector to be a
scalar glueball.

The KS gauge theory has N = 1 supersymmetry and the lightest scalar glueball has
a spin-1

2
superpartner. In a phenomenologically viable setup, supersymmetry is broken

and the masses of the scalar and the spin-1
2

glueball are no longer degenerate. Let us
estimate the resulting mass splitting:

To this end, note that we expect the throat to be sequestered from the rest of the
compact space in the sense of [81]. To explain this in more detail, let us consider a chiral
multiplet X from the throat sector and another chiral multiplet Y from somewhere in
the rest of the compact space. The Lagrangian can be written in standard N = 1
supergravity form

L =

∫
d4θ ϕϕ̄ Ω +

(∫
d2θ ϕ3 W + h.c.

)
, (7.3)

where ϕ = 1 + θ2Fϕ is the chiral compensator, Ω is the kinetic function and W is the
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superpotential. The sectors X and Y are said to be sequestered if [81]

Ω(X, X̄, Y, Ȳ ) = Ω(X, X̄) + Ω(Y, Ȳ )

W (X, Y ) = W (X) + W (Y ) .
(7.4)

In this case, supersymmetry breaking is communicated to the X-sector only by the
F -term of the chiral compensator ϕ and not by the Y -sector.

The sequestering assumption in our setup follows from the interpretation of a Calabi-
Yau orientifold with a long throat as supersymmetric RS model [40]. In this 5d frame-
work [81], this assumption has been widely accepted and has also been used in the
context of type IIB models with strongly warped regions (see e.g. [82,83] as well as the
detailed discussion of [84] and references therein).

We thus assume that supersymmetry breaking is communicated to the lightest glue-
ball multiplet X only by the F -term vev 〈Fϕ〉 of the chiral compensator.2 The relevant
part of the effective Lagrangian Eq. (7.3) is

L ⊃
∫
d4θ ϕϕ̄XX̄ +

(∫
d2θ mIRX

2ϕ3 + h.c.

)
. (7.5)

We have to discuss two cases separately. For 〈Fϕ〉 ¿ mIR, one can expand X in com-
ponents and split the lowest component of X into real and imaginary parts. Inserting
this expression in Eq. (7.5) and diagonalizing the resulting mass matrix for the real and
imaginary part, one finds two scalar eigenstates with masses

m2
1,2 = 4m2

IR ± 2mIR |〈Fϕ〉| . (7.6)

Moreover, the mass of the fermion is 2mIR and receives no contribution from 〈Fϕ〉.
Therefore, one scalar glueball is lighter than its former spin-1

2
superpartner and the

mass splitting is |〈Fϕ〉|/2.

For 〈Fϕ〉 À mIR, Eq. (7.6) is obviously not applicable. In this case, one can analyse
the situation from the perspective of a chiral superfield with vanishing mass, i.e. one
considers the limit m→ 0. The theory then possesses a chiral symmetry which ensures
the masslessness of the fermion even in the presence of supersymmetry breaking. Thus,
in analogy to the matter superfields of the minimal supersymmetric standard model,
we expect that the scalar glueballs will be heavier than the fermions if supersymmetry
breaking in the throat is a large effect relative to the supersymmetric mass term.

Finally, we note that we can expect the F-term vev 〈Fϕ〉 of the chiral compensator
to be of the same order of magnitude as the gravitino mass m3/2. In the following, we
will therefore refer to the two aforementioned cases as m3/2 ¿ mIR and m3/2 À mIR,
respectively.

2Actually, the situation might be more complicated since the lightest glueball multiplet couples
strongly to heavier glueballs, which are themselves affected by supersymmetry breaking and which
might therefore influence the mass splitting of the lightest multiplet in a non-negligible way. We there-
fore view the present calculation only as a reasonable first guess.
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7.3 Processes in the throat sector

In Section 7.4, we will discuss modifications in the decay rates of glueballs (respectively
KK modes) to other sectors which are due to flux-induced masses. We can restrict the
analysis in that section to the decay rates of the lightest glueball and its superpartner (a
scalar and a fermion according to the last section):3 As we will now discuss, all heavier
glueballs decay to these states on timescales which are short compared to the timescales
for decays to other sectors.

Below the confinement scale, the glueballs are described by an effective field theory.
Generically, tree-level couplings and loop effects induce various cubic interactions. For
example, for a scalar glueball G, a spin-1 glueball Aµ and a spin-2 glueball Hµν , we
expect interactions of the type

∂µG Aν Hµν +mIRAµAµ G +m−1
IR ∂µG ∂νG Hµν + . . . (7.7)

The coupling strengths follow on dimensional grounds up to possible factors of NIR

(which do not follow from dimensional analysis). Also, there may be more partial deriva-
tives involved or they may act differently. Interactions of this type allow for the decay of
heavy glueballs to a few light states which cannot decay further for kinematic reasons.

Note, however, that the KS gauge theory has a global SU(2)×SU(2) symmetry which
forbids certain couplings of the type of Eq. (7.7). From the dual gravity point of view,
this symmetry is due to isometries of the T 1,1 inside a KS throat. In a compactified
setup, the KS throat is attached to a Calabi-Yau manifold which breaks this isometry
in the UV. This symmetry breaking is mediated to the IR as discussed in [60, 85–87].
We therefore expect that couplings of the type of Eq. (7.7) which violate the global
symmetry are nevertheless present, albeit with a possibly smaller coupling strength.
In the following, we ignore the effects of glueballs charged under the SU(2)×SU(2)
symmetry. In particular, from the gauge theory point of view, we expect that the lightest
glueball and its superpartner are singlets with respect to this symmetry.

There are more induced interactions: Recall that Eq. (6.10) is the vertex between a
dilaton KK mode in the embedding manifold and a scalar glueball. As we have discussed
in Section 7.1, the steps leading to this result are also valid for the mixing of graviton
KK modes with spin-2 glueballs. In particular, the mixing between the 4d graviton
(i.e. the zero mode in the graviton KK tower, ~n = 0 and l = 0) and a spin-2 glueball is

NUV

m
1/2
IR m5/2

M4

. (7.8)

We have used Eqs. (2.20) and (3.3). This mixing is similar to the mixing between the
photon and the ρ meson known from QCD and was also observed in [88] for the gauge
theory dual of a 5d RS model.

3It may happen that the lightest fermionic glueball is not the superpartner of the lightest bosonic
glueball. Moreover, it may happen that the mass of the lightest bosonic glueball is larger than twice
the mass of the lightest fermionic glueball. The former could then decay to the latter via couplings
discussed below. We will not consider these possibilities in the following.
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Figure 7.1: Decay of a bosonic
glueball B into a bosonic glue-
ball G and a graviton hµν via
a spin-2 glueball Hµν .

hµν

hµν

Hµν

Hµν

G

Figure 7.2: Decay of a scalar
glueball G into two gravitons
hµν via spin-2 glueballs Hµν .

The mixing in Eq. (7.8) combined with interactions of the type of Eq. (7.7) allow
for processes such as that shown in Fig. 7.1: A bosonic glueball B decays to the lightest
bosonic glueball G and, via a virtual spin-2 glueball Hµν , to a 4d graviton hµν . Using
Eq. (7.8), the decay rate is (for m ∼ mIR and up to an unknown factor of NIR which
may result from the three-glueball vertex)

Γ ∼ N2
UV

m3
IR

M2
4

. (7.9)

Similarly, fermionic glueballs decay to the lightest fermionic glueball and a 4d graviton
with the same rate.

The couplings in Eqs. (7.7) and (7.8) allow for another process, shown in Fig. 7.2:
The decay of the lightest scalar glueball into two 4d gravitons. The decay rate is (again
up to an unknown factor of NIR)

Γ ∼ N4
UV

m5
IR

M4
4

. (7.10)

By supersymmetry, there are processes in which one graviton in Figs. 7.1 and 7.2 is
replaced by a gravitino and one bosonic glueball is replaced by a fermion. For m3/2 À
mIR, the corresponding decays are kinematically not allowed. The case m3/2 ¿ mIR is
more involved: As we have discussed in Section 7.2, we expect the lightest scalar glueball
to be lighter than its fermionic superpartner in this case. A process of the type shown
in Fig. 7.1 may thus lead to the decay of the lightest fermionic glueball to the lighter
scalar superpartner. The mass splitting between the superpartners, though, is just of
the order of magnitude of the gravitino mass (cf. Eq. (7.6)). It thus depends on the
precise relation between the gravitino mass and the mass splitting whether this decay
is kinematically allowed or not. The process of the type in Fig. 7.2, on the other hand,
allows for the decay of fermionic glueballs to a graviton and a gravitino if m3/2 ¿ mIR.

Finally, let us summarize the decay channels discussed in this section. Due to the
interactions in Eq. (7.7) and processes of the type in Fig. 7.1, all glueballs (neglecting
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the glueballs charged under the R-symmetry) decay to the lightest glueball and its
superpartner. This typically happens on cosmologically short timescales. For example,
for a sector with mIR ∼ 107 GeV and NUV ∼10, this process takes 10−10 s. For the case
m3/2 À mIR, the only other possible decay (of the channels discussed in this section) is
the decay of scalar glueballs to 4d gravitons. Due to the suppression by four powers of the
4d Planck scale in the corresponding rate, this decay happens on timescales much longer
than those of the decays discussed before (e.g. 1010 s for mIR ∼ 107 GeV, NUV∼ 10). In
particular, the lightest spin-1

2
glueballs are stable if m3/2 À mIR.

7.4 Decay of scalar and fermionic KK modes to

other throats

Of the processes described in the last section, only the decay to two gravitons (or to
graviton and gravitino, if the gravitino is light enough) can be sufficiently slow to be
relevant for late cosmology. The other processes have a time scale much shorter than the
age of the universe for all relevant choices of parameters. Thus, in late cosmology, the
energy density in the throat sector is completely in the form of the lightest glueball and
its superpartner. It is therefore sufficient to discuss the decay to other throats only for
these lightest states which we expect to be a scalar and a spin-1

2
fermion (cf. Section 7.2).

The vertex in Eq. (6.9) was derived for a field which fulfills the equation of motion
of a minimally coupled scalar in the effective 5d description of the throat. An example
of such a field is the dilaton in an AdS5×S5 throat. In a KS throat, the situation is
more complicated because 3-form flux mixes the field fluctuations in a complicated
way. Nevertheless, Eq. (6.9) for an s-wave (i.e. l = 0) applies to the coupling of scalar
glueballs from a KS sector to fields in the embedding manifold. To see this, we again
consider the dilaton φ, whose equation of motion is

∇2φ =
1

12
eφ F̃MNP F̃

MNP − 1

12
e−φHMNPH

MNP . (7.11)

Here, F̃3 = F3 − CH3 and F3 = dC2 and H3 = dB2 are the field strengths of the RR
2-form C2 and the NS 2-form B2, respectively. We have taken the RR scalar C to be
constant in Eq. (7.11). In a background with imaginary self-dual 3-form flux [3], the
flux fulfills

HMNPH
MNP = e2φ F̃MNP F̃

MNP (7.12)

for the background value of φ and the right-hand side of Eq. (7.11) vanishes. This is no
longer the case if one shifts the background value of φ while keeping B2 and C2 fixed. If
one simultaneously shifts B2 in such a way that Eq. (7.12) remains fulfilled, however, the
right-hand side of Eq. (7.11) still vanishes. In other words, there exists a flat direction
in the 5d effective theory which one can parameterize, e.g., by the value of the dilaton.
The corresponding field fulfills the equation of motion of a minimally coupled, massless
scalar in 5d. Such a field couples with the s-wave vertex from Eq. (6.9).4 A light scalar

4The angular momentum with respect to the S5 in an AdS5×S5 throat acts as a mass term in the
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KK mode localized at the bottom of the throat, i.e. a scalar glueball, will generically
mix with this flat direction in the upper part of the throat [89,90]. Thus, scalar glueballs
couple to fields in the embedding manifold with the previously derived s-wave vertex
given in Eq. (6.9). Note, though, that stronger couplings arise for KK modes mixing
with fields of the 5d effective theory which have tachyonic mass. We will analyse this
effect in the next section.

In a phenomenologically viable setup, the scalar fields in the embedding manifold,
which mediate the decay of scalar glueballs to other throats, all have to be massive. This
fact can lead to a suppression of decay rates. Note that the heat transfer between differ-
ent sectors can proceed via the massless graviton. The heat transfer rate in Eq. (5.16)
is therefore not suppressed by flux-induced mass terms. We now discuss three classes of
mediating fields separately:

Dilaton and complex structure moduli In flux compactifications à la GKP, the
lowest KK mode of the dilaton and the complex structure moduli get a mass

mτ ∼ M2
10

M4

, (7.13)

where we have assumed that gs ∼ 1. Redoing the calculation leading to Eq. (6.13) with
a massive instead of a massless propagator for the mediating field, we get an extra factor
of (

m2

m2 −m2
τ

)2

∼
(
m

mτ

)4

(7.14)

in the second term. In the last step, we have assumed that the dilaton, respectively the
complex structure modulus, is much heavier than the decaying glueball. In this case,
Eq. (7.14) suppresses the decay rate of scalar glueballs. Note that the second term in
Eq. (6.13) always dominates if m < mτ (since A−1 < M10). We then have

Γ ∼ N2
1N

2
2

M8
10

mIRm
8 . (7.15)

This is the decay rate of scalar glueballs (which are s-waves, i.e. singlets, with respect
to the R-symmetry of the theory) to other sectors. By supersymmetry, it also applies
to their spin-1

2
superpartners.5

Kähler moduli The Kähler moduli do not become massive by 3-form flux, and per-
turbative or non-perturbative corrections have to be taken into account in order to
achieve their stabilization (cf. Section 3.2). In particular, the Kähler moduli can be
much lighter than the flux-stabilized complex structure moduli and the dilaton. This is
the case e.g. in the KKLT scenario. One may therefore expect that decays mediated by
the Kähler moduli have a higher rate than Eq. (7.15).

5d effective theory. A massless 5d scalar is the s-wave part of a 10d scalar in such a geometry.
5This is certainly true for unbroken supersymmetry in which case the total decay rates of two

superpartners are related by a supersymmetry transformation. For broken supersymmetry, one has
to check that the relevant vertices agree (up to O(1) prefactors) and that the suppression by the
mediating-field propagator is the same for both superpartners. We expect this to be the case.
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We believe that this is not the case. To explain this in more detail, we restrict
ourselves to the universal Kähler modulus. The crucial point is that in the 5d effective
theory of a KS throat, the universal Kähler modulus is localized on the UV brane and is
thus sequestered from the bottom of the throat [40,82,83]. This is the situation discussed
in Section 7.2: If we denote the universal Kähler modulus by X and the glueball by Y
(more precisely, the corresponding superfields), the kinetic function Ω(X, X̄, Y, Ȳ ) and
the superpotential W (X, Y ) fulfill Eq. (7.4). Terms mixing the two superfields appear
neither in the kinetic part nor in the superpotential. Thus, since the universal Kähler
modulus does not mix with the glueballs, it cannot mediate their decays to other sectors.
Even if the sequestered form of Eq. (7.4) turns out to be violated, we expect that the
cross-couplings are much more suppressed than the mixing vertex of Eqs. (6.9) and
(6.10) between glueball and dilaton or complex structure modulus. The effect of the
Kähler moduli in mediating glueball decays is then still negligible.

Gravitino Also the gravitino can be considerably lighter than the dilaton and the
complex-structure moduli and may therefore play an important role in mediating de-
cays. Unfortunately, we have not completely settled this issue. There are two relevant
processes: The gravitino may mix with the fermionic glueballs and may thus mediate
their decays to other sectors. In addition, the heavier superpartner may decay to the
lightest glueball by the emission of a gravitino. This process follows from the process
shown in Fig. 7.1 by replacing the virtual spin-2 glueball by a virtual spin-3

2
glueball, the

outgoing graviton by a gravitino and one of the bosonic glueballs by a fermionic glueball.
If the gravitino mass is large, m3/2 > mIR, the gravitino is off-shell and must in turn de-
cay to another sector. It is not immediately clear how strongly the gravitino propagator
suppresses the decay rate for these two processes, i.e. with which power the gravitino
mass enters. In the following, we will assume that there is a limit of large gravitino mass
m3/2 À mIR for which decays mediated by the gravitino are subdominant.

7.5 Decay of KK modes via tachyonic fields in the

throat

As we have mentioned in the last section, scalar KK modes which mix with tachyons
in the effective 5d description of the throat couple to supergravity in the embedding
space with a stronger vertex than that in Eq. (6.9). The reason is that the profile of a
tachyon, i.e. a scalar with a negative mass squared, is less suppressed than the profile of
the dilaton if one moves from the IR to the UV end of the approximate AdS5 geometry.

To see this in more detail, we determine the decay rate of KK modes of such a
tachyon between two throats. For simplicity, we assume that both throats have the
same AdS scale R and that one throat can well be approximated by the RSI model,
whereas the other throat can be accounted for by fields which live on the UV brane of
this RSI model. As we have discussed in Section 4.3, this approximation is valid if the
size of the embedding space is of the same order as the AdS scales of the throats. A

62



tachyonic scalar φ in the RSI model is described by the action

S5d =

∫
d4x

∫ `

−`

dy
√
g

1

2

(
gMN∂MΦ∂NΦ +m2

5dΦ
2
)
, (7.16)

where m2
5d < 0 is the negative mass squared of the scalar. As in Section 2.1, we view

the RSI model as an S1/Z2 orbifold and use the same parametrization of AdS5 as in
Eqs. (2.3) and (2.6).

In the full AdS5-space (i.e. without branes), tachyonic scalars do not lead to insta-
bilities if the masses fulfill the Breitenlohner-Freedman bound m2

5d ≥ −4k2 [6], where
k is the AdS scale. Let us consider a scalar Φ in the RSI model which just satisfies this
bound, i.e. m2

5d = −4k2. The KK expansion of the scalar is

Φ(x, y) =
∑

n

χn(x)φn(y) , (7.17)

where the χn(x) are eigenmodes of the 4d d’Alembertian with eigenvalues m2
n.

We define a new coordinate ẑ ≡ sgn(y) k−1(ek|y| − 1).6 In the orbifold, positive and
negative ẑ corresponding to positive and negative y are identified. For a rescaled field
ψn ≡ (1+|ẑ|k)−3/2φn, the equation of motion that follows from Eq. (7.16) can be written
as

− d2

dẑ2
ψn +

(
3k e−k`δ(|ẑ| − ẑIR)− 3k δ(ẑ)− 1

4 (k−1 + |ẑ|)2

)
ψn = m2

nψn , (7.18)

where ẑIR = k−1(ek` − 1) denotes the position of the IR brane. The position of the UV
brane is ẑUV = 0. This equation has the form of a Schrödinger equation with ‘energy’
E = m2

n and a potential V which is given by the term in brackets. We have plotted this
potential for positive ẑ in Fig. 7.3. From the equivalent quantum-mechanical problem
with that potential, we expect a mode with negative ‘energy’ E = m2

n and accordingly
a mode with tachyonic mass in the 4d KK spectrum. Such a mode is indeed contained
in the KK spectrum and the Breitenlohner-Freedman bound is no longer sufficient to
ensure stability in a RS model [91].

The absence of tachyonic directions in the 4d theory can be achieved by switching
on a localized mass term on the UV brane for the scalar Φ. To see this in more detail,
we consider the corresponding term in the action,

SUV ⊃
∫
d4x

∫ `

−`

dy
√
g λk δ(y) ,Φ2 (7.19)

where the dimensionless parameter λ measures the mass in units of the AdS scale k.
If we redo the steps leading to Eq. (7.18) taking Eq. (7.19) into account, we find an
additional term in the potential:

V = 3k e−k`δ(|ẑ| − ẑIR) +
(
2λ− 3

)
k δ(ẑ)− 1

4 (k−1 + |ẑ|)2
. (7.20)

6This coordinate is related to the coordinate z, which appeared in earlier sections, by a shift:
|ẑ| = |z| − k−1.
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Figure 7.3: Schematic plot of the potential in the effective Schrödinger equation for a tachyon
in a RSI model. The dotted δ-peak appears when a large mass term on the UV brane is
switched on.

We have plotted the resulting δ-peak at the UV brane for λ much larger than 3/2
schematically as a dotted curve in Fig. 7.3. As one can see, this δ-peak has changed the
sign as compared to the setup without a mass term at the UV brane and now leads to
a repulsive instead of an attractive contribution to the potential. Due to this fact, as
we will discuss in more detail in Appendix B, there are no longer modes with negative
‘energy’ E = m2

n in the KK spectrum for sufficiently large λ. Instead, all the modes
have a positive mass squared.

Thus, a scalar with a tachyonic bulk mass in a RS model must have an appro-
priate mass on the UV brane in order to avoid tachyonic KK modes. Furthermore,
the Breitenlohner-Freedman bound has no particular meaning in a RS model. Even
tachyonic scalars with bulk masses m2

5d < −4k2 do not lead to instabilities if they
are stabilized by sufficiently masses on the UV brane. Nevertheless, we still consider a
tachyon which just satisfies the Breitenlohner-Freedman bound, i.e. with m2

5d = −4k2,
in the following. The reason is that such scalars appear in the 5d effective theory of
the KS throat: The geometry of the KS throat in the UV is approximately AdS5×T1,1

and scalars with negative mass squared down to the Breitenlohner-Freedman bound are
contained in the spectrum of type IIB supergravity on AdS5×T1,1 [92].

For each tachyonic bulk mass, there exists a value of the mass on the UV brane which
lifts the tachyonic mode in 4d to a massless mode. As we will derive in Appendix B,
for a scalar with m2

5d = −4k2, this happens for λ ' 2. The resulting massless scalar
KK mode, however, would be in conflict with observations, as we have discussed in
Section 1.1. In the following, we therefore assume that λ is somewhat larger than 2, say
λ ≈ 3. This lifts the tachyonic mode in 4d to a very massive mode.

We now want to determine the decay rate of KK modes of such a tachyon between
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two throats. We replace first throat by the RSI model and the second throat by a gauge
theory with ∼ N2 degrees of freedom which lives on the UV brane of the RSI model.
Here, N is related to the AdS scale R of the throat by Eq. (2.20). We assume that the
10d scalar leading to the tachyon in 5d effective theory couples to the operator F 2

µν of
the gauge theory in the same way as the dilaton couples to that operator in the DBI
action. This gives the effective 5d coupling

SUV ⊃ 1

M4
10R

5/2

∫
d4x

∫ `

−`

dy
√
g FµνF

µν Φ δ(y) . (7.21)

The prefactor can be understood as follows: We consider a setup in which the AdS
scales R of the throats are of the same order as the size L of the embedding space. A
reduction from 10d to 5d then gives a factor of L5 ∼ R5 in the kinetic term of the scalar.
This factor can be absorbed into a field redefinition and leads to the factor R−5/2 in
Eq. (7.21) in addition to the factor M−4

10 from the DBI action.

We consider a field which is even under the orbifold Z2-action, i.e. ψn(ẑ) = ψn(−ẑ).
The δ-function peaks in the potential can be rewritten as boundary conditions on the
branes. Furthermore, it is sufficient to consider the field only for positive ẑ. It is then
more convenient to use a shifted and rescaled variable z̄ ≡ mn(ẑ + k−1).7 For an even
field, a Schrödinger-equation with the potential Eq. (7.20) is equivalent to the equation

(
d2

dz̄2
+

1

4 z̄2
+ 1

)
ψn = 0 (7.22)

with the boundary conditions

z̄UV

d

dz̄
ψn(z̄UV) =

(
λ− 3

2

)
ψn(z̄UV) and z̄IR

d

dz̄
ψn(z̄IR) = −3

2
ψn(z̄IR) . (7.23)

Here, z̄UV = mnk
−1 and z̄IR = mnk

−1ek` are the positions of the UV brane and the IR
brane, respectively. The wave functions and the spectrum, which follow from Eqs. (7.22)
and (7.23), are determined in Appendix B. Here, a simplified analysis will be sufficient:

Since Eqs. (7.22) and (7.23) correspond to a quantum-mechanical problem in a box
of size z̄IR − z̄UV, it is clear that the masses are quantized approximately in units of
(z̄IR − z̄UV)−1 ' ke−k`, such that mn ∼ n k e−k` with n ∈ {1, 2, 3, . . . }. In the following,
we consider a KK mode with a mass somewhat larger than the minimal mass and
correspondingly n somewhat larger than 1. For such a KK mode, we can solve Eq. (7.22)
approximately in two regions: For 1

2
¿ z̄ ≤ z̄IR ∼ n, we can neglect the z-dependent term

in the potential in Eq. (7.22). Similarly, for 1
2
À z̄ ≥ z̄UV ∼ n e−k`, we can neglect the

constant term. Approximate solutions to Eq. (7.22) in these regions are

ψn(z̄) '
{

1
Nn

(
z̄

1
2 + An z̄

1
2 ln z̄

)
for z̄UV ≤ z̄ ¿ 1

2
1

Nn

(
cos z̄ + Bn sin z̄

)
for 1

2
¿ z̄ ≤ z̄IR .

(7.24)

7This coordinate is related to the coordinate z, which appeared in earlier sections, by a rescaling:
z̄ = mn z.
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The constant An can be determined from the boundary condition on the UV brane in
Eq. (7.23). We find

An =
λ− 2

1− (λ− 2) ln z̄UV

. (7.25)

We choose the constant Nn such that the kinetic term of the 4d field χn is canonically
normalized. With the relations z̄ = mn

k
ek` and φn = ( z̄k

mn
)3/2ψn as well as with Eqs. (7.16)

and (7.17), one can check that this is fulfilled if

m−1
n

∫ z̄IR

z̄UV

dz̄ ψ2
n ∼ 1 , (7.26)

up to O(1) prefactors. We can split this integral and use the approximate solutions in
Eq. (7.24) in the regions z̄UV ≤ z̄ . 1

2
and 1

2
. z̄ ≤ z̄IR, respectively. Since An < 1 and

we have assumed that z̄IR ∼ n À 1, the integral is dominated by the latter region.
In Appendix B, we find that the constant Bn, which is determined by the boundary
condition at the IR brane in Eq. (7.23) and the precise relation for the masses mn, is
also small, i.e. Bn < 1. We then find

Nn ∼
√
z̄IR

mn

. (7.27)

Inserting the KK expansion Eq. (7.17) into the coupling Eq. (7.21) and using the ap-
proximate solution near the UV brane in Eq. (7.24) together with Eqs. (7.25) and (7.27),
the coupling of the n-th KK mode χn to the operator F 2

µν follows as:

S4d ⊃ gn

M4
10R

3

∫
d4xFµνF

µν χn , where gn ∼ √
mnmIR

R2

`
. (7.28)

We have used λ ≈ 3 and the fact that log z̄UV = log(mn/k) ∼ −k ` = −`/R. This factor
is approximately the logarithm of the generated hierarchy of the throat and therefore
typically at most of the order 10. Up to O(1) prefactors, our simplified analysis repro-
duces the coupling in Eqs. (B.16) and (B.17) from the rather lengthy KK decomposition
in Appendix B.

The resulting decay rate of a KK mode into ∼ N2 degrees of freedom on the UV
brane, and thus into another throat, is

Γ ∼ (mnR)4mIR

(R
`

)2

, (7.29)

where we have used Eq. (2.20). Since typically `/R = O(10), this decay rate is only
slightly smaller than the corresponding decay rate of graviton KK modes Eq. (4.15).

We want to compare this decay rate with the flux-suppressed decay rate Eq. (7.15)
that we have derived in Section 7.4. Using Eq. (2.20) and assuming that both throats
have the same number of degrees of freedom, i.e. N1 = N2, Eq. (7.15) can be written as

Γ ∼ N2(mnR)8mIR . (7.30)
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Since the mass mn is exponentially smaller than the AdS scale R−1, whereas typically
`/R = O(10) and n . 104 (cf. Section 9.1), the relative factor (mnR)4N2(`/R)2 between
Eqs. (7.29) and (7.30) is usually very small. Decays of KK modes which are mediated
by a tachyon in the KS throat therefore have a much higher rate than decays which are
mediated by the flat direction in the KS throat that we have discussed in Section 7.4.

7.6 Processes involving the standard model sector

The results from Chapters 5 and 6 were derived for stacks with a large number of
D-branes because these stacks are dual to throats. These results, however, are also
applicable to small stacks of D-branes. In particular, we can consider a realization of
the standard model on some D3- and/or D7-branes which live in the unwarped part of
the compact space.8 The heat transfer rate between the standard model and a throat
is then given by Eq. (5.15) if we set N2

1 = g to account for the standard model with
g∼100 degrees of freedom. According to the discussion in Section 7.1, N2 is the number
NUV of 5-form flux at the UV end of the throat.

Similarly, Eq. (7.15) with N2
1 = g and N2 = NUV is the decay rate of scalar glueballs

to the standard model. Note, however, that this decay rate is not applicable to the
inverse process (a decay from the standard model to a throat sector) since our derivation
of the vertex in Eq. (6.9) assumed a weakly curved gravity description. This is not
fulfilled for a small stack of D-branes.

There is a subtlety concerning the decay rate of spin-1
2

glueballs to the standard
model which arises for large gravitino masses, m3/2 À mIR. Namely, we expect the
mass splitting between superpartners in the standard model sector to be of the order
of the gravitino mass. This means that the superpartners of standard model particles
are heavier than the decaying spin-1

2
glueballs. If R-parity is conserved, most decay

channels involve such a superpartner as a final state and the corresponding decays are
therefore kinematically forbidden. A coupling that does not involve a superpartner is

λ l̄ ψ H , (7.31)

where l is a lepton doublet, H is the Higgs doublet and ψ is a dilatino or any other
modulino.9 The coupling strength λ may be O(1) or it may be suppressed as λ = m/M4

where m is some low mass scale.

Note, however, that the coupling in Eq. (7.31) probably requires R-parity violation.
Namely, the corresponding coupling containing the modulus instead of the modulino
generates a bilinear R-parity violating term for nonzero modulus vev. For high-scale
supersymmetry breaking, a large coupling λ may nevertheless be allowed. Moreover,

8In the literature, it is often assumed that the standard model is realized in a throat. In this case,
the standard model couples to supergravity modes in that throat which in turn couple to other throats
according to Eqs. (5.16) and (6.13).

9This coupling was already considered in [93] since it also leads to a mixing between the modulino
and the neutrino.
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even for maximally broken R-parity, all other decay channels involve standard model
superpartners which further decay into standard model particles. The corresponding
decay rates are therefore suppressed by the propagators of the heavy superpartners and
are smaller than the decay rate resulting from Eq. (7.31). Therefore, we focus on this
coupling. Redoing the steps leading to Eq. (7.15) with the vertex of Eq. (7.31), we find

Γ ∼ λ2N2
UV

m6mIR

M8
10/M

2
4

(7.32)

for the decay rate of spin-1
2

glueballs to the standard model if m3/2 À mIR.

Finally, we note that, in absence of the coupling in Eq. (7.31) and of R-parity
violation, the spin-1

2
glueballs can not decay at all to the standard model sector. If, in

addition, there is no throat with lower IR scale (otherwise decays to this sector with
the rate in Eq. (7.15) are possible), the spin-1

2
glueballs are absolutely stable.
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Chapter 8

Sequestered Dark Matter: Thermal
production

8.1 Preliminaries

Dark matter is frequently assumed to consist of massive weakly interacting particles
which are stable (or have a very long lifetime) because their decay is forbidden by
some (approximate) symmetry. The observed dark matter abundance is obtained if
these particles were in thermal equilibrium in the early universe and later fell out of
equilibrium with an appropriate freeze-out abundance.

But it is also well-known that dark matter may originate in a hidden sector which
is coupled to the standard model only via higher-dimension operators, ensuring that
dark matter has a sufficiently long lifetime (see e.g. [62, 63, 94]). Since the annihilation
cross section of these particles is suppressed by a high mass scale (proceeding via a
higher-dimension operator), they may overclose the universe today if they had been in
thermal equilibrium in the early universe. Instead, one often assumes that the hidden
sector particles were not in thermal equilibrium after reheating and that they were
produced by thermal reactions in the hot standard model plasma. The resulting abun-
dance is typically much lower than the equilibrium abundance since the relevant rates
are again suppressed by a high mass scale. Depending on the reheating temperature,
the abundance can have the right magnitude to account for the observed dark matter. A
well-known particle which falls into this class of dark matter candidates is (to a certain
extent1) the gravitino.

In the following sections, we present a new dark matter candidate with the afore-
mentioned properties (we discuss earlier related work in Section 9.4): KK modes in a
throat or, equivalently, glueballs of the dual gauge theory. Due to the warping, these
particles have highly suppressed couplings to other sectors and can therefore be very

1The gravitino would decay too quickly were it not (at least partially, see [95, 96]) protected by
R-symmetry. Moreover, another well-known production mechanism of gravitino LSPs is by the decay
of NLSPs which had an appropriate freeze-out abundance.
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stable. By the same token, they have redshifted and thus relatively low masses which
allows them to be produced thermally, even if the reheating temperature is not very
high.

The throats respectively the dual gauge theories would lead to too much dark radi-
ation during big bang nucleosynthesis and/or would overclose the universe if they were
in thermal equilibrium after reheating. We therefore assume that only the standard
model is reheated initially and that the throats receive no energy from the reheating
process.2 Glueballs are then produced by thermal reactions in the hot standard model
plasma. Nevertheless, it is of course possible that the inflaton interacts only very weakly
with the throats respectively the dual gauge theories, thereby producing an abundance
of glueballs during reheating which is not too high. Since this abundance depends on
the coupling of the inflaton and on the model at hand, we can view our result for the
produced amount of dark matter, that we derive, as a model-independent lower bound.

There is an important aspect of the production mechanism of our dark matter
candidate that can best be seen from the gauge theory point of view: Annihilating
particles in the hot standard model plasma inject energy into the gauge theory. The
gauge theory states which are produced in that way hadronize shortly afterwards (if the
energy density in the gauge theory sector is not above the confinement scale). As we
will discuss in the next section, there are no jets in the large-N , large-λ gauge theories
which are dual to throats. Instead, after hadronization, all the energy is in the form
of slow glueballs with masses and kinetic energies of the order of mIR. These glueballs
immediately scale like matter with the expansion of the universe and thereby give an
important contribution to the total energy density at our epoch already for reheating
temperatures which are only moderately high.

For definiteness, we focus on scenarios in which the standard model is realized on
some D3- and/or D7-branes in the unwarped part of the compact space (as discussed
in Section 7.6). The fact that the glueball couplings to the standard model are highly
suppressed ensures a long lifetime of the dark matter particles. Nevertheless, it turns
out that in many cases decays mediated by the gravitino must be negligible because
otherwise the decay rate of glueballs would be too high. We therefore focus on scenarios
with high-scale supersymmetry breaking in which the gravitino is much heavier than the
glueballs, m3/2 À mIR. We comment on models with low-scale supersymmetry breaking
in Section 9.3.

2This is, for example, not fulfilled for reheating after brane-antibrane inflation. In this scenario
(cf. Section 4.1), the throat in which inflation takes place is heated by the annihilation of the brane
with the antibrane. This energy is subsequently transferred to other throats and the standard model
as discussed in earlier sections. Aspects of KK dark matter in such a scenario were discussed in [62]
(cf. Section 9.4).
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8.2 Energy transfer

As outlined in the last section, we assume that the throats have received no energy
from the reheating process, whereas the standard model is heated to a temperature
TRH initially. Subsequently, energy will be transferred from the standard model to the
throats. Note that this process is similar to the energy transfer from the hot brane to
the bulk in RSII models [68] (see also [27]). The AdS5 bulk plays the role of the throat,
which we however assume to be of finite length, with the KS region corresponding to
the IR brane.

We assume that the temperature of the standard model is smaller than the com-
pactification scale, i.e. T < L−1. Furthermore, we consider the generic situation that
the distance between the two throats is of the same order of magnitude as the size of
the embedding manifold, i.e. A ∼ L. The heat transfer rate is then given by Eq. (5.15)
and the second term in that rate dominates. We set N2

1 = g to account for the standard
model sector with g ∼ 100 degrees of freedom and N2 = NUV for the throat at hand.
Using Eq. (3.3), the heat transfer rate can be written as

ρ̇ ∼ g N2
UV

T 9

M4
4

. (8.1)

This rate is easily understood as being due to a gravitational strength coupling between
a sector with g degrees of freedom (the standard model) and a sector with N2

UV degrees
of freedom (the throat). Note that, due to the existence of a confinement scale mIR,
glueballs can only be created if TRH > mIR. We expect these initial gauge theory states
to have masses up to m ∼ TRH.

The glueballs may decay back to the standard model. As we have discussed in
Section 7.1, spin-2 glueballs have the highest decay rate. From Eq. (6.13), we get

Γ(m) ∼ g N2
UV

m4mIR

M4
4

. (8.2)

On the other hand, glueballs can also decay to lighter glueballs within the same throat.
We will have to discuss this process in some detail below. At the moment, it is sufficient
to establish that the decay to lighter glueballs wins over the possible decay back to the
standard model. For this purpose, we recall that we are dealing with a strongly coupled
system with a dense spectrum. Thus, the initially created gauge theory state of mass m
will have a lifetime ∼ 1/m. In the most conservative scenario, it will decay to 2 states of
mass m/2. These states will in turn decay to states of mass m/22 after a time-interval
∼ 2/m, and so on. Summing up the probabilities for the decay back to the standard
model at each step of this cascade, we arrive at a total probability

w ∼
∑
n=0

Γ(m/2n) · 2n

m
. (8.3)

This sum is of the same order of magnitude as the first term and hence very small
in all cases of interest. Clearly, we could equally well have assumed that each glueball
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decays to k1 lighter states with mass m/k2, arriving at the same conclusion for any O(1)
numbers k1 and k2. Thus, the relaxation to lighter states within the same throat always
wins over the decay back to the standard model or to other throats.

The heat transfer rate Eq. (8.1) is strongly temperature dependent, ρ̇ ∝ T 9. There-
fore, heat transfer is effectively finished soon after reheating and the corresponding time
scale is |T/Ṫ | at T = TRH. The total energy density after reheating is dominated by the
relativistic gas in the standard model sector with ρ = g π2

30
T 4. We find

|T/Ṫ | = H−1 ∼ M4

g1/2T 2
, (8.4)

where H is the Hubble rate. Using Eqs. (8.1) and (8.4) at T ∼ TRH, the energy density
deposited in a throat directly after reheating is

ρ ∼ ρ̇ |T/Ṫ | ∼ g1/2N2
UV

T 7
RH

M3
4

. (8.5)

Before closing this section, we note that the heat transfer processes we consider
compete with the unavoidable energy deposition in the throat sectors occurring during
inflation. This can be understood by noting that de Sitter space has a temperature
TdS ∼ 1/RdS ∼ M2

inf/M4. We assume that inflation lasts long enough for the throats
to be thermalized with this temperature. Furthermore, parameterizing the efficiency of
reheating by an efficiency factor ε ≤ 1, we have gT 4

RH ∼ εM4
inf . Thus, all throats have

a temperature TdS ∼
√
g/ε T 2

RH/M4 at the time of reheating. Jumping ahead, we note
that for typical long throats (where this effect is most relevant), we find initial throat
temperatures ∼106 GeV for a reheating temperature ∼1011 GeV. For such throats, ‘de-
Sitter heating’ in fact wins over the heating process analysed in this section if ε < 1,
allowing in principle for even more throat dark matter than we find in our conservative
analysis.

8.3 Time evolution of the energy density

The result in Eq. (8.5) is the energy density in the gauge theory sector directly after
reheating. During cosmological evolution, this energy density is diluted by the expansion
of the universe. To determine the contribution of glueballs to the total energy density
at our epoch, it is important to know how their energy density scales with the scale
factor a of the universe.

Let us first consider the case that the energy density is above the critical value for a
deconfinement phase transition directly after reheating. The gauge theory thermalizes
in this situation. To see this in more detail, we view each initially created gauge theory
state as a localized excitation of a strongly coupled system with energy ∼ TRH. The
localization assumption can be justified by recalling that, from the D-brane perspec-
tive, the mediating bulk supergravity fields couple to local gauge theory operators like
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FµνF
µν . We model the further evolution of this state as a ball of gauge theory plasma

expanding with the velocity of light.3 The number density of these balls is

n ∼ ρ

TRH

∼ g1/2N2
UV

T 6
RH

M3
4

, (8.6)

where we have used Eq. (8.5). It follows that the balls fill out the whole space after a
time

t ∼ n−1/3 ∼ M4

g1/6N
2/3
UV T 2

RH

. (8.7)

Comparing this with the Hubble time Eq. (8.4) at T = TRH, we see that the gauge
theory plasma fills out the whole space before the Hubble expansion becomes relevant
if N2

UV & g, which holds for all relevant throats.

The gauge theory dual to a KS throat has a logarithmically varying number of
degrees of freedom, corresponding to the logarithmic deviation of the KS geometry
from AdS5. In the deconfined phase, the effective number of colours Neff of the gauge
theory depends on the temperature T̃ of the plasma as

Neff ∼ NIR ln

(
T̃

mIR

)
. (8.8)

The deconfined phase of the gauge theory is dual to a throat with a black hole horizon
which replaces the IR end. The highest meaningful value in Eq. (8.8) is Neff ∼ NUV.
This corresponds to a temperature where the black hole horizon reaches the UV end of
the throat. The energy density as a function of the plasma temperature T̃ is

ρ ∼ N2
eff T̃

4 . (8.9)

Since the logarithmic variation of Neff with T̃ is small compared to the variation of the
T̃ 4-term, we will neglect it in the following. The deconfined phase can then be described
by an approximate conformal field theory and the energy density correspondingly scales
like radiation with a−4.

When the energy density drops to ρ ∼ N2
IRm

4
IR, a confinement phase transition be-

gins which lasts until the energy density has reached ρ ∼ λm4
IR, where λ = gsNIR is

the ’t Hooft coupling.4 In the transition region for ρ, space is divided into separate
regions in either the confined phase with ρ < λm4

IR or the still deconfined phase with
ρ > N2

IRm
4
IR. At even lower energy densities ρ < m4

IR (assuming λ > 1), a description in
terms of a nonrelativistic glueball gas is applicable and the energy density correspond-
ingly scales with a−3. We do not know the scaling of ρ with a in the transition region
N2

IRm
4
IR > ρ > m4

IR though, since the equation of state during the phase transition is
unknown. Since we expect the scaling to be in between the two extremes ρ ∝ a−3 and

3Note that this physical picture is equivalent to the picture of a cascade decay used in the derivation
of Eq. (8.3) if we assume that a glueball with mass m/2n fills out a volume (2n/m)3.

4The thermodynamics of large-N gauge theories is reviewed e.g. in Appendix A in [97].
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m · η

m · ηmax

mIR

mIR,cr TRH

Figure 8.1: Schematic plot of m · η as a function of the IR scale mIR of the throat. Here,
mIR,cr is the IR scale for which Tpt ∼ TRH, i.e., for which the throat is heated precisely to its
phase transition temperature. See text for more details.

ρ ∝ a−4 in this region, we will take ρ ∝ a−4 for ρ > NIRm
4
IR and ρ ∝ a−3 for ρ < NIRm

4
IR

for simplicity.5

Thus, the energy density in the gauge theory sector, Eq. (8.5), initially scales like ra-
diation if it is larger than ρ ∼ NIRm

4
IR. As a function of the standard model temperature

T , we have

ρ ∼ g1/2N2
UV

(
TRH

M4

)3

T 4 . (8.10)

We assume the scaling behaviour to change when the energy density has dropped
to ρ ∼ NIRm

4
IR. This happens when the standard model has a temperature

Tpt ∼ mIR

N
1/4
IR

N
1/2
UV

(
M4

TRH

)3/4

, (8.11)

where we have neglected a factor of g1/8 which is close to 1. The energy density scales
like matter afterwards and the ratio of energy density and entropy density, ρ/s = m · η,
stays constant. Here η = n/s is the glueball number density normalized by the entropy
density. Using Eq. (8.10) and s = g 2π2

45
T 3 (dominated by the standard model sector) at

T = Tpt, we find the glueball mass density per entropy density

m · η ∼ N2
UV

g1/2

(
TRH

M4

)3

Tpt . (8.12)

5Using the intermediate value ρ ∼ NIRm
4
IR for the distinction between the two behaviours, the error

in ρ is a factor of (NIRm
4
IR/N

2
IRm

4
IR)1/4 = N

−1/4
IR if ρ ∝ a−3 in the entire transition region or a factor

of (NIRm
4
IR/m

4
IR)1/3 = N

1/3
IR if ρ ∝ a−4 in the entire transition region. In both cases, this factor is

typically O(1).
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The factor of Tpt is smaller than or equal to TRH and reflects the fact that the energy
density undergoes a phase of a−4 dilution. The quantity m · η is useful because it
determines the contribution of the glueballs to the total energy density in the late
universe. We have plotted m · η as a function of mIR schematically in Fig. 8.1. The part
corresponding to Eq. (8.12) is the line which grows linearly6 with the IR scale from
mIR = 0 up to an mIR such that Tpt in Eq. (8.11) is of the same order of magnitude as
TRH. This is the maximal IR scale for which Eq. (8.12) is valid because at this point
the initial energy density in the gauge theory sector, Eq. (8.5), is of the same order of
magnitude as the critical energy density ρ ∼ NIRm

4
IR.

Dividing Eq. (8.12) by ρc/s0 ' 2 · 10−9 GeV, where ρc is the current critical energy
density for a flat universe and s0 is the current entropy density, and using g∼ 100 as
well as M4' 2 · 1018 GeV, we have

Ω =
ρ

ρc

∼
(

TRHN
1/2
UV

6 · 1011 GeV

)4 (
Tpt

TRH

)
. (8.13)

This is the contribution of the gauge theory sector to the density parameter. The second
factor is smaller than or equal to 1 and again reflects the fact that the corresponding
energy density undergoes a phase of a−4 dilution.

Let us now consider the case that the initial energy density in the gauge theory
sector, Eq. (8.5), is smaller than ρ ∼ NIRm

4
IR. Recall that the energy density is due

to standard model particles which annihilate via a KK mode of supergravity fields in
the embedding space into gauge theory states (cf. Fig. 5.2). This is similar to electron-
positron annihilation via a photon into a quark and an antiquark. In QCD, these partons
subsequently radiate other partons in a narrow cone along their trajectories, leading to
two jets. The hadrons which are formed in this process are ultrarelativistic and would
initially scale like radiation with a−4 with the expansion of the universe. In contrast, in
the large-N , large-λ gauge theories which are dual to throats, no jets are formed [98–100]
(see also [8,101]). Instead, if the energy density is below the critical energy density, the
initial gauge theory states hadronize to slow and light glueballs, i.e. with masses and
kinetic energies ∼ mIR. This is not surprising since the gauge theory is strongly coupled
on all scales.7 Highly energetic partons which result from the annihilation of standard
model particles will therefore split into more and more partons until the individual en-
ergy of the partons reaches the confinement scale [99]. This leads to the aforementioned
distribution of light and slow glueballs. These glueballs immediately become nonrela-
tivistic and then scale like matter with a−3 with the expansion of the universe.

Note that Refs. [98–100], in which the hadronization in large-N , large-λ gauge theo-
ries was analysed in great detail, appeared after Ref. [8], on which this chapter is based.
Ref. [8] additionally analyzed the evolution of the energy density for the case that jets
are formed in gauge theories which are dual to throats. This analysis is now obsolete.

6Note that this plot has to be read either at fixed NUV, in which case NIR must be interpreted
as function of NUV and mIR, or at fixed NIR, in which case NUV must be interpreted as function of
NIR and mIR. In both cases an extra logarithmic dependence of m · η on mIR is introduced, which we
however neglect.

7The calculations in [98–100] were mainly performed on the gravity side of the duality.
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Taking this scaling into account, the mass density over entropy density m · η and
the density parameter Ω are given by

m · ηmax ∼ N2
UV

g1/2

T 4
RH

M3
4

, Ωmax =

(
TRHN

1/2
UV

6 · 1011 GeV

)4

. (8.14)

Note that these expressions are just those in Eqs. (8.12) and (8.13) with Tpt replaced
by TRH. This reflects the fact that the energy density now scales like matter from the
beginning on. As a function of mIR, m · η is thus constant in this case. Note, though,
that throats with mIR > TRH are not heated for kinematic reasons. The mass density
over entropy density m · η is therefore zero in this region. Again, we have plotted the
corresponding parts of m · η as a function of mIR in Fig. 8.1.
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Chapter 9

Sequestered Dark Matter:
Cosmological scenarios

9.1 A single throat

Glueballs are an interesting dark matter candidate if they are stable until our epoch. In
this section, we analyse the prospects of this new kind of dark matter for a compactifi-
cation which has only a single throat region. Setups with a large number of throats are
discussed in Section 9.2.

As one can see from Fig. 8.1, the glueball mass density over entropy density m ·η or,
equivalently, the contribution of glueballs to the density parameter Ω is maximized for
throats with IR scales in the range mIR,cr .mIR . TRH. This is therefore an interesting
region to look for glueball dark matter.

Let us first consider throats at the lower end of the ‘optimal’ interval, i.e. with IR
scales of the order of mIR,cr. For this IR scale, the initial energy density in the throat,
Eq. (8.5), is just the critical energy density ρ ∼ NIRm

4
IR of that throat. Solving for mIR,

we find

mIR,cr ∼
(
N2

UV T
7
RH

NIRM3
4

)1/4

, (9.1)

where we have neglected a factor of g1/8 which is O(1).

In order to evaluate Eq. (9.1) as well as other relevant equations, we have to fix NIR

and NUV. These numbers determine the warp factor which in turn is related to the IR
scale of the throat:1

h ∼ e2πNUV/3NIR mIR ∼ h−1N
−1/4
IR M10 . (9.2)

1For the warp factor, we have used Eq. (3.9) and the fact that NUV ∼ KM and NIR ∼ gsM
2, where

K and M are the relevant numbers of H3-flux and F3-flux, respectively. The mass quantization follows
from Eqs. (2.10) and (2.20) and the fact that the masses of light KK modes are determined by the
geometry near the IR end of the throat.

77



To simplify the discussion and to avoid uncertainties associated with unknown factors
of NIR in the various glueball decay rates, we focus on throats where NIR = O(1). In this
case, NUV is a function of mIR and M10. For our purposes it will be sufficient to use the
typical values NUV ≈ 10 for long throats (e.g. for mIR ∼ 106 GeV and M10 ∼ 1015 GeV)
and NUV ≈ 4 for shorter throats (e.g. for mIR∼1011 GeV).

Inserting NUV ≈ 10 and NIR ≈ 1 in Eq. (8.14), we can determine the reheating
temperature which leads to the right amount of dark matter, i.e. Ω ∼ 1. The mass of
the dark matter candidate subsequently follows from Eq. (9.1). We find

TRH ∼ 1011 GeV and mIR ∼ 106 GeV . (9.3)

Thus, for a reheating temperature ∼ 1011 GeV and a throat with IR scale ∼ 106 GeV,
we get the right amount of glueballs to explain the observed dark matter.

In the late universe, this kind of dark matter consists solely of the lightest scalar
glueball and its spin-1

2
superpartner, due to the processes discussed in Section 7.3. Let

us consider the fermionic glueballs for the moment. For reason that we have discussed in
Section 8.1, here and below, we focus on setups in which the gravitino is much heavier
than the glueballs, m3/2 À mIR. The decay of spin-1

2
glueballs to a graviton and a

gravitino is then kinematically forbidden. If the coupling in Eq. (7.31) is present, the
spin-1

2
glueballs decay to the standard model with the rate given in Eq. (7.32). The

resulting lifetime depends on the coupling strength λ:

τ ∼ 1026

(
M10 · λ−1/4

2 · 1016 GeV

)8

s . (9.4)

It is not sufficient to make this lifetime just longer than the present age of the universe
(which is ∼ 1017 s): The glueball decays produce photons (e.g. via hadronic showers)
which contribute with a continuous spectrum to the diffuse γ-radiation. The γ-ray flux
measured e.g. by the EGRET experiment gives constraints on the lifetime of unstable
particles in dependence of their mass density (see e.g. [95,96,102–104]). In particular, an
unstable particle with the mass density of dark matter has to live longer than ∼1026 s
to comply with observations [102].2 Thus, it depends on the two unknown parameters
M10 and λ whether the spin-1

2
glueballs are a good dark matter candidate or not.

An interesting scenario is to have λ = O(1).3 To get a viable dark matter candidate,
the 10d Planck scale has a rather limited range in this case according to Eq. (9.4). This
makes it more probable that the lifetime of the glueballs is in a range that can be
probed by new γ-ray telescopes like GLAST. If this scenario with λ = O(1) is realized
in nature, one may be able to see a signal in the near future.

2Here we have used that the hadronic branching ratio for decays via the coupling in Eq. (7.31) is
O(1). For decays exclusively to photons or leptons, the constraints are less severe.

3The coupling in Eq. (7.31) leads to a mixing between the modulino ψ and a left-handed neutrino ν
after electroweak symmetry breaking. Since the modulino has a large mass mτ , the seesaw mechanism
results in a light mass eigenstate. For M10 ∼ 1016 GeV (the minimal value allowed for λ ∼ 1 according
to Eq. (9.4)), Eq. (7.13) gives mτ ∼ 1014 GeV. Using this value and the mixing mass term for λ ∼ 1
in the seesaw formula, the resulting neutrino mass is ∼ 0.1 eV. Interestingly, this is precisely the mass
range indicated by various experiments.
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The scalar glueballs from a throat with IR scale 106 GeV decay to gravitons after
approximately 1015 s according to Eq. (7.10). Note, however, that this lifetime is propor-
tional to m−5

IR . The lifetime will thus be somewhat larger or smaller for IR scales slightly
different from 106 GeV. If the lifetime is in the range of 1017 s (the present age of the
universe) to 1012 s (the time of matter-radiation equality), the resulting decrease in the
dark matter density may have interesting observable consequences. Note that, if the
initial energy density was slightly above the critical energy density, a gauge theory with
confinement scale of the order of mIR,cr was thermalized in the early universe. In this
case, part of the scalar glueballs (which we expect to be heavier than their superpart-
ners for m3/2 À mIR, cf. Section 7.2) annihilate into their superpartners after the phase
transition. The remaining abundance of scalar glueballs is the freeze-out abundance for
this process which we determine in Appendix D. Inserting the above values for NUV,
mIR and TRH into the relation for the depletion factor, Eq. (D.5), we see that the scalar
glueballs make up for only 10−2 of the total dark matter abundance in this case. The
loss of mass density due to their decay is correspondingly small. If the gauge theory
was never thermalized, on the other hand, the initial abundance of scalar glueballs and
fermionic glueballs is equal and the dark matter mass density is halved due to the decay
of the scalar glueballs. It would be interesting to see whether such a large decrease of
the dark matter abundance may still be allowed by observations and which observable
consequences (e.g. on structure formation) it might have.

If the lifetime of scalar glueballs is large enough, a non-negligible amount still exists
at our epoch. Decays of the glueballs to the standard model again produce γ-rays. The
corresponding decay rate is given by Eq. (7.15) for N2

1 = g and N2 = NUV (cf. Sec-
tion 7.6). For mIR ∼ 106 GeV, the partial lifetime of scalar glueballs with respect to
decays to the standard model is

τ ∼ 1026

(
M10

3 · 1013 GeV

)8

s . (9.5)

If the scalar glueballs still make up an O(1) fraction of the dark matter at our epoch,
this partial lifetime has to be larger than ∼1026 s to comply with the EGRET measure-
ments. If the current abundance of scalar glueballs is reduced (by decays to gravitons
or by annihilation in a thermalized situation), the lower bound on the lifetime becomes
correspondingly weaker.

In contrast to fermionic glueballs, scalar glueballs can decay directly to two photons.
Decays via this channel in the halo of our galaxy lead to a sharp line in the γ-ray
spectrum. The γ-rays at energies around 106 GeV cannot be measured by satellite-based
experiments like EGRET or GLAST. Ground-based γ-ray telescopes like HESS have
the necessary energy range, but a limited sensitivity due to the cosmic ray background.
At 106 GeV, the measured flux in the cosmic ray spectrum is (see e.g. [105])

F ∼ 10−12 (m2 sr s GeV)−1 . (9.6)

To be detectable against this background, the flux from the decaying glueballs in the
halo has to have the same order of magnitude. This flux is emitted as a sharp line at
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energy mIR but smeared out by the detector due to a finite energy resolution ∆E. We
model this effect by replacing the δ-function peak of the flux by a box of width ∆E. The
flux is also inversely proportional to the mass mIR and the lifetime τ of the glueballs.
Assuming that the scalar glueballs make up an O(1) fraction of the dark matter at our
epoch, we find (see e.g. [95])

F ∼ 10−12

(
105 GeV

∆E

) (
106 GeV

mIR

) (
1026 s

τ

)
(m2 sr s GeV)−1 . (9.7)

For mIR∼ 106 GeV and ∆E ∼ 10−1 ·E ∼ 105 GeV as quoted by the HESS collaboration,
the partial lifetime of scalar glueballs (for decays to the standard model) has to be less
than ∼1026 s to be detectable against the cosmic ray background. If the partial lifetime
is somewhat larger, the γ-line may nevertheless become detectable in the near future
with an improved rejection of cosmic ray events and a better sensitivity and energy
resolution.

In summary, if an O(1) fraction of the dark matter at our epoch are scalar glueballs
and if their partial lifetime is not much larger than 1026 s, two experiments may see a
signal: The contribution of glueball decays to the γ-ray spectrum below 102 GeV may
be detected by GLAST. Moreover, the γ-line near 106 GeV may be seen by HESS. A
lifetime of the order of 1026 s follows if M10 ∼ 1013 GeV according to Eq. (9.5). Such
a low 10d Planck scale may be realized in a large-volume compactification along the
lines of [106]. Note that this scenario is incompatible with the aforementioned scenario
in which λ = O(1): According to Eq. (9.4), λ has to be very small (or zero) for such a
low 10d Planck scale.

Throats with IR scales smaller than 106 GeV also lead to an interesting dark matter
candidate. According to Eqs. (8.11) and (8.13), Ω is proportional to T

9/4
RH mIR. In order

still to have the abundance of dark matter with Ω ∼ 1, we have to increase the reheating
temperature as TRH ∝ m

−4/9
IR if we lower the IR scale. For example, for a throat with

IR scale 104 GeV, a reheating temperature of 1012 GeV would give the right abundance
(again assuming that NUV ≈ 10). Since the various glueball decay rates are proportional
to mIR to some positive power, the glueballs become more stable for lower IR scales.

Let us now analyse throats with IR scales still in the ‘optimal’ interval betweenmIR,cr

and TRH but much larger than the critical value mIR,cr. For definiteness, we consider a
throat with IR scale ∼ TRH and take NUV ≈ 4 in order to have NIR = O(1). According
to Eq. (8.14), such a throat again gives the right amount of dark matter for a reheating
temperature ∼1011 GeV. The mass of this dark matter candidate correspondingly is
∼ 1011 GeV.4 The scalar glueballs decay to gravitons already after 10−8 s, according to
Eq. (7.10). If the coupling in Eq. (7.31) is present, the spin-1

2
glueballs decay to the

standard model after

τ ∼ 1027

(
M10 · λ−1/4

5 · 1020 GeV

)8

s . (9.8)

4Note that the glueballs are never in thermal equilibrium for such short throats. Therefore, the
heavier superpartners do not annihilate into the lightest glueball states and the initial abundance of
scalar and spin- 1

2 glueballs is equal.
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Hadronic decays of particles in this mass range have been considered in [107] to explain
events in the cosmic ray spectrum beyond the GZK cutoff. Taking the measured flux
in this energy range, claimed by several collaborations, as an upper limit, a lifetime of
at least 1027 s is required for a particle with mass 1011 GeV. If λ = O(1), the spin-1

2

glueballs decay too quickly since M10 cannot be larger than M4 ' 2 · 1018 GeV. The
coupling λ can be much smaller, though, and the spin-1

2
glueballs may be sufficiently

stable for large enough M10.

Finally, let us comment on throats with higher 5-form flux numbers NIR and NUV.
Since NIR is no longer of the order 1, we have only rough estimates of the glueball
decay rates in these cases. In the following, we ignore this issue and assume that the
glueballs are sufficiently stable. The number NUV is constrained by the requirement
that the Calabi-Yau orientifold has enough negative charge to compensate for the flux.
If one considers the orientifold limit of an F-theory compactification, then this amount
of negative charge is given by χ4/24, where χ4 is the Euler number of the underlying
Calabi-Yau fourfold. Examples with χ4/24 up to 104 are known (see e.g. [108]) and we
therefore assume that NUV . 104.

It follows from Eq. (8.14) that throats with maximal NUV∼104 and with IR scales in
the range mIR,cr . mIR . TRH can account for the observed dark matter if the reheating
temperature was ∼ 1010 GeV. The mass of these dark matter candidates is between
∼ 105 GeV (using Eq. (9.1)) and ∼ 1010 GeV. Together with the results from the first
part of this section (where we have chosen the other extreme with NIR = O(1)) this gives
the possible range of parameters in our scenario if the 5-form flux number is varied from
its minimal to its maximal value: For a throat in the ‘optimal’ range mIR,cr . mIR . TRH

to account for the observed dark matter, the required reheating temperature is between
1010 GeV and 1011 GeV. The IR scale and thus the mass of the corresponding dark
matter particles can vary between 105 GeV and 1011 GeV.

9.2 Many throats

As we have discussed in Section 3.3, typical vacua in the type IIB string theory landscape
can have a large number of throats. An estimate of the expected number of throats
with a hierarchy h larger than some h∗ for a Calabi-Yau orientifold with K 3-cycles was
given in Eq. (3.11). Using this estimate and Eq. (9.2) and neglecting a factor N

−1/4
IR for

simplicity, the expected number of throats with IR scale in the range mmin < mIR < mmax

follows as

n̄(mmin < mIR < mmax) =
K/3

log(M10/mmax)
− K/3

log(M10/mmin)
. (9.9)

Here, we have assumed that c = 1.

The function m · η (and correspondingly Ω) is maximal for throats with IR scales
between mIR,cr and TRH (cf. Fig. 8.1). If many throats are present, we can expect that the
observed dark matter (or at least the dominant throat contribution to dark matter) will
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come from throats with an IR scale in this region. As before, we simplify the analysis
by using NUV ≈ 10 for long throats (mIR ∼ 106 GeV) and NUV ≈ 4 for short throats
(mIR∼1011 GeV). As we have discussed in the last section, a reheating temperature of
the order of 1011 GeV then leads to the observed amount of dark matter for all throats
with IR scales between mIR,cr ∼ 106 GeV and TRH ∼ 1011 GeV. Note that, in general, the
situation might be more complicated: For example, a throat with an IR scale smaller
than the critical value mIR,cr but with very large NUV (recall that NUV is fairly arbitrary
if we do not insist on NIR = O(1)) may provide the dominant contribution to dark
matter (cf. Eqs. (8.13) and (8.14)).

It is clear from Eq. (9.9) that the expected number of throats with IR scales in the
aforementioned region grows with the number of 3-cycles K. Moreover, one can easily
check that this number of throats also becomes larger for smaller 10d Planck scales M10.
We begin the evaluation of Eq. (9.9) with an optimistic scenario in which K = 200 and
M10∼ 1014 GeV. The number of 3-cycles is a moderately high but not untypical value
within the set of known Calabi-Yau spaces [109]. The value of the 10d Planck scale, on
the other hand, is roughly the minimal value for which our analysis is valid: In deriving
the heat transfer rates in Eqs. (5.16) and (8.1), we have assumed that the reheating
temperature is smaller than the compactification scale, i.e. TRH < L−1. Using Eq. (3.3),
we find that the compactification scale L−1 ∼ 1012 GeV corresponds to the 10d Planck
scale M10 ∼ 1014 GeV. Thus, since we consider a reheating temperature of the order
of 1011 GeV, the assumption would no longer be fulfilled for a much lower 10d Planck
scale.

For the aforementioned values of K and M10, the expected number of throats with
IR scales in the range 106 GeV .mIR . 1011 GeV follows as5

n̄
(
106 GeV . mIR . 1011 GeV

) ' 9.1 . (9.10)

For definiteness, we restrict ourselves to setups which have a throat with IR scale of the
order of 106 GeV. This is the case in a large fraction of models, since the mean number
of throats with this IR scale is6

n̄
(
mIR∼106 GeV

) ' 0.5 . (9.11)

Certain partial lifetimes of glueballs with mass ∼ 106 GeV have been determined in the
last section. In particular, we see from Eq. (9.5) (with M10 ∼ 1014 GeV) that the scalar
glueballs may lead to interesting observable signatures if they do not decay too quickly
to two gravitons. The fermionic glueballs cannot decay to a graviton and a gravitino for
kinematic reasons since we still assume that m3/2 À mIR. They can therefore account
for the observed dark matter even if the scalar glueballs decay to gravitons already at
an early epoch. According to Eq. (9.4) (with M10 ∼ 1014 GeV), the fermionic glueballs
must not couple too strongly to the standard model sector, i.e. λ must not be too large.

5More precisely, we have evaluated Eq. (9.9) for the range 5 · 105 GeV < mIR < 5 · 1011 GeV. The
mean number of throats in other ranges of IR scales have been calculated in a similar way.

6We have used the interval 5 · 105 GeV < mIR < 5 · 106 GeV to estimate the number of throats with
IR scale ∼106 GeV from Eq. (9.9).
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In addition, we now expect

n̄
(
mIR . 105 GeV

) ' 3.5 (9.12)

throats with IR scales smaller than 106 GeV which provide another decay channel for
the glueballs. These throats can have a large number g̃ of degrees of freedom. We want
the glueballs from the throat at ∼106 GeV to account for the observed dark matter and
we therefore have to check whether their lifetime is still larger than the current age of
the universe. If we denote the 5-form flux number at the UV end of the ith throat by
Ni, we have

g̃ =
∑

i

N2
i , (9.13)

where the sum runs over all throats with IR scales smaller than 106 GeV. Using
Eq. (7.15) with N2 = g̃, the partial lifetime of the dark matter glueballs for decays
to these throats is

τ ∼ g̃−1 1032 s . (9.14)

According to the discussion at the end of the last section, we expect g̃ to be somewhere
in the range of 102 to 108. Even for maximal g̃ this partial lifetime is thus much larger
than the current age of the universe and the glueballs are still a good dark matter
candidate.

There are also throats with IR scales larger than the IR scale of the dark matter
throat (cf. Eq. (9.10)). Glueballs from these throats have shorter lifetimes than the dark
matter glueballs. The abundance of particles which decay to the standard model with a
lifetime in the range of 10−2 s and 1012 s is severely constrained by nucleosynthesis [103,
110,111]. For lifetimes larger than 1012 s, bounds from the diffuse γ-radiation are again
important [102]. Therefore, we have to check whether the decaying glueballs fulfill these
observational constraints.

We analyse only decays of scalar glueballs. The discussion can be easily extended to
include the fermionic glueballs. Since fermionic glueballs decay to the standard model via
the operator in Eq. (7.31), nucleosynthesis or the diffuse γ-radiation may give a bound
on the coupling strength λ. Furthermore, we assume that the aforementioned throats
have IR scales of at least 107 GeV. One can check that the corresponding glueballs decay
already after 1010 s or earlier. These lifetimes are too short (i.e. shorter than 1012 s) to
give relevant constraints from the diffuse γ-radiation. We will therefore restrict our
analysis to bounds from nucleosynthesis. Scalar glueballs have three important decay
channels: They decay to gravitons, to throats with lower IR scales and to the standard
model. The total decay rate is the sum of the three corresponding decay rates:7

Γtotal ∼ g̃ N2
UV

m9
IR

M8
10

+ g N2
UV

m9
IR

M8
10

+N4
UV

m5
IR

M4
4

. (9.15)

7In deriving the decay rate in Eq. (7.15), we have assumed that the mass mτ of the modulus which
mediates the decay is larger than the mass mIR of the decaying glueball. According to Eq. (7.13), we
have mτ ∼ 1010 GeV for M10 ∼ 1014 GeV. For a throat with IR scale larger than 1010 GeV we would
therefore have to use the unsuppressed decay rate in Eq. (6.13) instead of Eq. (7.15). We will not have
to consider such heavy glueballs in the following.
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Figure 9.1: Nucleosynthesis constraints on the mass density m·ηdec of the fraction of particles
that have decayed to the standard model in dependence of their lifetime τ (the shaded region
is excluded, schematic plot based on results from [111]). The corresponding function for the
glueballs is also shown (the dotted curve). See text for more details.

Here, g̃ is the combined number of degrees of freedom of all the throats with IR scales
smaller than the IR scale mIR of a given throat.

Since g̃ & g, we can neglect the decay rate to the standard model (the g-dependent
term) in Eq. (9.15). Furthermore, we can see from Eq. (9.15) that for sufficiently large
glueball lifetimes (i.e. small mIR), the total decay rate is dominated by decays to gravi-
tons (the last term in Eq. (9.15)). To be conservative, we take g̃∼102 in the following.
Higher values of g̃ would give a smaller branching ratio for decays to the standard
model and would thus make the constraints from nucleosynthesis easier to fulfill. One
can then check that, for M10∼1014 GeV and NUV ≈ 4 to 10, the decay rate to gravitons
dominates for glueballs which live longer than 10−2 s. Since nucleosynthesis gives no
constraints for particles which decay earlier than 10−2 s, we can restrict our analysis to
these glueballs. We thus have

Γtotal ∼ N4
UV

m5
IR

M4
4

. (9.16)

We denote the mass density over entropy density of the fraction of glueballs that
have decayed to the standard model by m · ηdec and the branching ratio for decays to
the standard model by br:

m · ηdec = br ·m · η . (9.17)

Dividing the decay rate to the standard model by the total decay rate in Eq. (9.16), we
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find

br =
ΓSM

Γtotal

∼ gM4
4 m

4
IR

N2
UVM

8
10

. (9.18)

Using again Eq. (9.16), this branching ratio and correspondingly m · ηdec can be ex-
pressed as a function of the lifetime τ = Γ−1

total. Furthermore, we know from Fig. 8.1
that the decaying glueballs initially have the same mass density as dark matter,
i.e. m · η ≈ 10−9 GeV.

In Fig. 9.1, we have plotted m · ηdec as a function of τ as a dotted curve. The
shaded region in this plot is the parameter space that is excluded by the requirement of
successful nucleosynthesis. Note, however, that these constraints were calculated in [111]
for a decaying particle of mass 104 GeV (and with an O(1) hadronic branching ratio).
Using Eq. (9.16), the glueball masses which correspond to the range of lifetimes in
Fig. 9.1 are between 107 GeV and 109 GeV. This is much heavier than the particle
mass 104 GeV for which the constraints were actually determined. On the other hand,
in [111], constraints were also calculated for lighter particles with masses 102 GeV and
103 GeV. The results differ only slightly from the constraints for particle mass 104 GeV.
We therefore believe that it is a reasonable approximation to extrapolate the bounds
to particles with masses in the range of 107 GeV to 109 GeV. Assuming that this is the
case, we see from Fig. 9.1 that glueball decays from throats with IR scales larger than
106 GeV do not destroy nucleosynthesis.

Up to now, we have considered a scenario in which K = 200 and M10 ∼ 1014 GeV.
This choice of parameters led to a relatively large number of throats in the interest-
ing region of IR scales between 106 GeV and 1011 GeV. Let us finally analyse a more
conservative scenario in which we choose K = 60 and M10 ∼ 1018 GeV. The number
of 3-cycles is, for example, roughly the minimal value consistent with fine-tuning of
the cosmological constant in the KKLT construction [9]. According to Eq. (9.9), the
expected number of throats with IR scales between 106 GeV and 1011 GeV then is

n̄
(
106 GeV . mIR . 1011 GeV

) ' 0.7 . (9.19)

Thus, a significant fraction of vacua has a throat in this range of IR scales and a
reheating temperature of the order of 1011 GeV would give the right amount of dark
matter for such a throat.

For definiteness, we assume that there is a single throat with IR scale ∼ 1011 GeV
in the aforementioned range. This choice of IR scale reflects our knowledge of the dis-
tribution of throats: As we have discussed above, the expected number of throats in a
given interval, Eq. (9.9), becomes smaller if the 10d Planck scale becomes larger. By
the same token, the mean number of throats in the interval also becomes smaller if the
interval is shifted to smaller IR scales. This means that it is more probable to find a
throat at large IR scales.

Certain partial lifetimes of the glueballs from a throat with IR scale ∼ 1011 GeV
have been discussed in the last section. In addition, there may be throats with lower IR
scales which provide new decay channels for the glueballs. Their mean number is

n̄
(
mIR < 106 GeV

) ' 0.7 . (9.20)
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We denote the number of degrees of freedom of this sector by g̃. As before, we have
to check that the dark matter glueballs do not decay too quickly to this sector. Using
Eq. (7.15), the partial lifetime for this decay channel is

τ ∼ g̃−1 1020 s . (9.21)

Thus, g̃ must not be larger than ∼103 for the dark matter glueballs still to live longer
than the current age of the universe. If g̃ is larger than that, on the other hand, a throat
with a lower IR scale would be required (cf. Eq. (7.15)).

Obviously, many other cases, including more extreme choices of parameters, are
conceivable. However, an exhaustive study of the parameter space is beyond the scope
of this thesis.

9.3 Scenarios with low-scale supersymmetry break-

ing

In this section, we consider the limit of light gravitinos or, equivalently, low-scale su-
persymmetry breaking. As we have discussed in Section 7.3, the fermionic glueballs
can decay to a graviton and a gravitino if the gravitino is lighter than the glueballs.
The scalar glueballs decay to two gravitons with the same rate. As we have seen in
Section 9.1, scalar glueballs with mass 106 GeV have a lifetime of

τ ∼ 1015 s . (9.22)

This is shorter than the current age of the universe. This lifetime now also applies to
the fermionic glueballs which accordingly decay too quickly to be a good dark matter
candidate. On the other hand, the partial lifetime for this decay channel is proportional
to m−5

IR according to Eq. (7.10). Thus, we obtain a longer lifetime if the IR scale is
somewhat lower than 106 GeV. In this case, throat dark matter is still possible even if
the supersymmetry breaking scale is low.

There are additional decay channels which are relevant in the limit of light graviti-
nos: Recall that, in Section 7.2, we have found that a scalar glueball is lighter than its
fermionic superpartner in the limit of low-scale supersymmetry breaking. Depending on
the precise relation between the F-term vev of the chiral compensator and the gravitino
mass, the fermionic glueball can or can not decay to this lighter scalar glueball with
the emission of a gravitino (cf. Fig. 7.1). If this decay is kinematically not allowed, the
fermionic glueball can still decay via a gravitino to standard model particles and the
lighter scalar glueball. The gravitino propagator gives no suppression of the decay rate
in this case and the decay rate is given by Eq. (6.13). For a throat with mIR∼106 GeV
and NIR ∼ O(1), the partial lifetime of the fermionic glueballs for this decay channel is
again

τ ∼ 1015 s . (9.23)
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Since decays of this kind are constrained by diffuse γ-ray measurements, a partial life-
time larger than ∼1026 s is actually required. Since the partial lifetime is again propor-
tional to m−5

IR (cf. Eq. (6.13)), the glueballs can as before be made sufficiently stable if
the IR scale is somewhat smaller than 106 GeV. As we have explained in Section 9.1, in
order to obtain the observed amount of dark matter, a higher reheating temperature is
then required.

9.4 Relation to earlier work

The fact that dark matter can come from a hidden (or more precisely conformally
sequestered) sector realized by a KS throat has already been emphasized in [62]. This
paper focuses on scenarios where a KS throat is heated by the annihilation of a brane
with an antibrane at the end of inflation. Subsequently, energy is transferred from this
throat to other throats which may be present in the compact space. Throat-localized
KK modes, which are produced in this way, can be the observed dark matter if they are
sufficiently long-lived and if certain parameters which determine their relic density are
tuned. More precisely, three types of dark matter candidates are discussed in [62]: KK
modes which are localized in the throat where inflation took place and those localized in
the throat where the standard model lives have to carry an (approximately) conserved
angular momentum in the throat in order to be sufficiently stable. KK modes which are
localized in other throats can, by contrast, be long-lived also without such an angular
momentum.8

We have approached the possibility of throat dark matter from a different and, to
a certain extent, more general perspective: We have not assumed that reheating is due
to brane-antibrane annihilation in a warped region. Instead, we have only relied on
the fact that the standard model has a certain reheating temperature after inflation
ends. In our approach, throats are not a ‘model building feature’ introduced to realize
inflation, uplifting, etc. Instead, we view the presence of (a potentially large number of)
throats as a prediction of the type IIB string theory landscape. Accordingly, we have
considered scenarios in which various throats are present. The amount of dark matter
in these throats that we have derived can be viewed as a generic prediction of the type
IIB landscape.

We have focused in particular on the phenomenological importance of fermionic KK
modes in the throat. To the best of our knowledge, this point has so far not received
sufficient attention in the literature. As we have seen, fermionic KK modes play a central
role in the phenomenology of sequestered dark matter. Furthermore, we have used our
values for the heat transfer rate and the decay rates between throats from Chapters 5
to 7. For temperatures and Kaluza-Klein masses smaller than the compactification scale,
our rates differ from the values used in [62]. We have restricted our analysis to this case,
for the following reasons: On the one hand, a large compactification scale is required to
make the KK modes sufficiently stable against decay to the standard model or other

8In addition, [62] also discusses particles on D-branes in these throats as a dark matter candidate.
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throats.9 On the other hand, temperatures above the compactification scale would imply
that also the unwarped part of the manifold is heated up. The resulting gas of KK modes
in the compact space may then destabilize the volume modulus, making the analysis
of the early cosmological evolution much more difficult. Furthermore, the suppression
of the decay rates due to the flux-stabilization of certain moduli was not taken into
account in [62] and our decay rates differ also in this respect.

9An exception is the decay rate of fermionic KK modes to the standard model sector which can be
made small even for small compactification scales (cf. Section 7.6).
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Chapter 10

Conclusions

10.1 General review

In this thesis, we have studied throats in the early, hot universe. We have reviewed
various aspects of throats and of their dual gauge theories in Chapters 2 and 3. A
throat is a region in higher-dimensional space with a strong gravitational potential along
a certain direction. Energy scales of physical processes, that are localized at different
positions along this direction, are exponentially redshifted or blueshifted relative to a
fixed observer. In that way, large hierarchies of scales can be generated.

The Randall-Sundrum (RS) I model [1] realizes this generation of hierarchies in
a simple geometry: A slice of 5-dimensional anti-de-Sitter space (AdS5) which is cut
off by two branes. As Randall and Sundrum have shown, the 4-dimensional graviton
is localized towards one of the branes, called the UV brane, in this geometry. Energy
scales of physical process that are localized near the other brane, called the IR brane,
are exponentially redshifted relative to the 4-dimensional Planck scale. In particular,
the RSI model allows for a solution to the hierarchy problem of the standard model.

In string theory, a throat is, for instance, realized near a black 3-brane. This back-
ground solution of type IIB supergravity can be viewed as an AdS5×S5 throat which
is embedded into flat 10d space. As Verlinde has shown [44], a string realization of the
RSII model [2] (without IR brane) can be obtained from such a black 3-brane if one
compactifies the 6 dimensions perpendicular to the brane on a torus.

Black 3-branes are equivalent to stacks of D3-branes of type IIB string theory. This
equivalence can e.g. be tested by comparing the absorption cross sections of particles
for both objects. We have reviewed the corresponding calculation for incident dilatons
in Section 2.3. The fact that the absorption cross sections agree exactly is evidence that
black 3-branes and D3-brane stacks are just two descriptions of the same object.

A string realization of the RSI model can be obtained if one places D3-branes and
fractional D3-branes on a conifold singularity of a Calabi-Yau orientifold [3]. The back-
reaction of these branes on the geometry creates a Klebanov-Strassler (KS) throat [4]
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which is embedded into the compact space. Alternatively, the KS throat in this setup
can be viewed as the result of the backreaction of 3-form flux on the geometry. In the
landscape of type IIB flux compactifications, 3-form flux is distributed in various ways
over the 3-cycles of the compact space and it turns out that throats are commonly
created from the backreaction of this 3-form flux. In Section 3.3, we have reviewed how
the expected number of throats in a given Calabi-Yau orientifold can be determined.

10.2 Throats in the early universe

Since throats are a common feature of type IIB string compactifications, it is interesting
to think about observable signals which can result from their presence in the early
universe. In particular, as high temperatures have been involved at this stage of the
cosmological evolution, the throats can have been heated to a certain temperature. If
the energy density in a throat is above its IR scale (which is related to the length of the
throat), the backreaction of the thermal plasma on the geometry creates a black hole
horizon which replaces the IR end of the throat. This black hole horizon emits Hawking
radiation which in turn can heat up other throats and the standard model. The rate of
this process is an important quantity for the further cosmological evolution.

In Chapter 5, we have calculated this heat transfer rate a simple setup – a heated
AdS5×S5 throat and another AdS5×S5 throat embedded into a 6d torus. Due to the
warping, the Hawking radiation from the black hole horizon in the heated throat has
to tunnel through an effective energy barrier before it can reach the other throat. The
corresponding tunneling probability determines the rate of heat transfer. The calculation
of this probability, however, is a multi-dimensional tunneling problem which is difficult
to solve. Therefore, we have chosen a different approach and replaced the AdS5×S5

throats by equivalent stacks of D3-branes. These D3-brane stacks carry gauge theories
on their world-volume. Correspondingly, we have referred to the description in terms
of D-branes as the gauge theory picture as opposed to the gravity picture in terms of
throats.

In particular, the heated throat is equivalent to a D3-brane stack with a heated
world-volume gauge theory. After a KK expansion of supergravity fields in the embed-
ding torus, our 10d setup can be described by a 4d theory: A heated gauge theory which
is coupled by a tower of KK modes to another gauge theory. Heat transfer is in this
description due to the annihilation of fields in the thermal plasma of the heated gauge
theory into KK modes which in turn decay to the other gauge theory. The calculation
of the heat transfer rate is then a straightforward exercise in quantum field theory. In
particular, it is much simpler than the calculation involving the tunneling problem.

If the temperature drops below the IR scale of a throat, a phase transition takes
place. During this phase transition, the black hole horizon is replaced by the IR end
of the throat and a nonrelativistic gas of throat-localized KK modes is formed. These
KK modes decay to other throats and the standard model with a certain rate. Again,
we have calculated this rate, which is another important quantity for the cosmology of
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throats, in the gauge theory picture.

A KK mode which is localized in a throat corresponds to a glueball of the dual
gauge theory. The coupling of such a glueball to supergravity fields in the embedding
space, however, can not be read off from any Lagrangian. Therefore, in Chapter 6, we
have first calculated the decay rate in a simpler setup using the gravity picture: The
decay rate of a dilaton KK mode from the AdS5×S5 part of a black 3-brane to the
asymptotically flat part. Using this result, we have determined the coupling between
the glueball and supergravity fields in the embedding space from the requirement that
the decay rates from the gravity picture and the gauge theory picture agree. Redoing
the calculation from Chapter 5 using this coupling, we have found the decay rate of
glueballs between the two gauge sectors or, equivalently, of KK modes between the two
throats.

The heat transfer rate and the decay rate that we have found depend on the distance
between the throats and on the size of the embedding compact space. The rates become
smaller for larger distances and larger embedding spaces. In addition, the decay rate
depends on the angular quantum number of the decaying mode with respect to the S5 in
the AdS5×S5 throat containing the initial state. Modes with angular momentum have
a much lower decay rate than modes which are s-waves with respect to the S5.

If the size of the embedding space is of the same order as the AdS scales of the
throats, a compact space with two throats can be approximated by two RS models
which are glued together at a common UV brane. As we have reviewed in Chapter 4,
the decay rate of graviton KK modes in this situation follows from a straightforward
calculation of the tunneling probability between the two RS models. The decay rate
that we have found in our setup with two AdS5×S5 throats in a torus should reproduce
this result in the aforementioned limit of small embedding space. In Section 6.3, we have
shown that this is indeed the case. Furthermore, in Chapter 4, we have also presented
an alternative derivation of the decay rate of KK modes between two RS models. To
this end, we have replaced one RS model by its dual gauge theory. From the point of
view of the remaining RS model, this gauge theory lives on the UV brane. The decay
rate of graviton KK modes in the remaining RS model into gauge fields on the UV
brane reproduces the decay rate of graviton KK modes between two RS models.

As we have discussed in Chapter 7, our results for the heat transfer rate and the
decay rate of KK modes can be applied to other geometries of the throats and the
embedding space. In particular, the heat transfer rate is applicable to two KS throats
if the curvature of the space connecting them is not larger than the inverse distance.
Furthermore, the decay rate can be applied to the decay of graviton KK modes between
such throats. For KK modes of other supergravity fields, on the other hand, the decay
rate is in general difficult to determine since the 3-form flux in a KS throat mixes field
fluctuations in a complicated way. In order to determine the vertex between glueballs and
supergravity fields in the embedding space as discussed above, we would have to solve
the resulting complicated equations of motion of the field fluctuations. We have shown,
however, that the glueballs in a given sector decay to a lightest scalar glueball and its
fermionic superpartner on cosmologically short timescales. For the purpose of cosmology,
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it is then sufficient to determine only the decay rate of these glueballs. Furthermore, we
have found a flat direction for the supergravity fields in a KS throat. The scalar which
parameterizes this flat direction fulfills the same equation of motion as the dilaton in
an AdS5×S5 throat. Accordingly, it couples to supergravity in the embedding space
with the previously derived vertex. A scalar KK mode in general mixes with this flat
direction in a KS throat and therefore also decays via the previously derived vertex.

A suppression of the decay rate can arise, on the other hand, since certain fields
which mediate decays get high masses in flux compactifications. As we have discussed
in Section 7.5, this suppression is roughly compensated by a stronger decay vertex if the
decaying KK mode mixes with tachyons in the 5d effective description of the throat. The
reason is that tachyons, i.e. scalars with a negative mass squared, are less suppressed
in the UV direction than scalars with a vanishing or positive mass. To analyse this
effect in more detail, we have calculated the decay rate of KK modes of a tachyon
between two RS models. For the calculation, we have replaced one RS model by its
dual gauge theory which then lives on the UV brane of the remaining RS model. In
the full AdS5-space (without branes), scalars with negative mass squared down to the
Breitenlohner-Freedman bound [6] do not lead to instabilities. In a RS model, however,
the tachyon must have a large mass term on the UV brane in order to avoid tachyonic
KK modes. Similar to the mass of mediating fields in flux compactifications, this UV-
localized mass leads to a suppression of the decay rate. The stronger decay vertex of KK
modes of a tachyon, however, compensates this suppression. These KK modes and KK
modes which mix with a tachyon therefore decay roughly with the previously derived
rate of graviton KK modes.

10.3 Dark matter in throats

We have presented an application of the heat transfer rate and the decay rate in Chap-
ters 8 and 9: KK modes whose wavefunctions are localized in a throat are an interesting
dark matter candidate. These KK modes have redshifted masses, allowing for their pro-
duction after reheating in the standard model, even if the reheating temperature is not
very high. In addition, their decay rates are highly suppressed, potentially resulting in
a very long lifetime.

We have considered scenarios in which the standard model lives in the unwarped
part of a compact space, which in addition has a certain number of throats. To be
conservative, we have assumed that the throats receive no energy from the reheating
mechanism and that the reheating mechanism only heats up the standard model. Even
under this minimal assumption, the throats are heated up by energy transfer from the
hot standard model plasma.

From the dual gauge theory point of view, the resulting energy density in a throat
is initially in the form of gauge theory states with energy of the order of the reheating
temperature. As we have shown, if the total energy density is above the critical energy
density for a deconfinement phase transition, the gauge theory thermalizes. Accordingly,
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the energy density initially scales like radiation with the expansion of the universe until
a confinement phase transition takes place. Afterwards, the energy density is in the form
of nonrelativistic glueballs whose energy density correspondingly scales like matter. In
Section 8.3, we have determined the resulting contribution of glueballs to the total
energy density at our epoch.

If the energy density is always below the critical energy density, on the other hand,
the initial gauge theory states hadronize to a large number of nonrelativistic glueballs.
As we have explained in Section 8.3, this is due to the fact that the gauge theory
(which is dual to a throat) is strongly coupled on all scales. In an asymptotically free
theory such as QCD, jets with ultrarelativistic particles would instead be formed during
hadronization. The energy density in the throat sector thus scales like matter immedi-
ately after reheating and the resulting contribution to the total energy density at our
epoch is relatively large already for reheating temperatures which are only moderately
high.

We have plotted the contribution of a throat to the total energy density for fixed
reheating temperature TRH and as a function of the IR scale mIR in Fig. 8.1. As one can
see, this function has a maximum between IR scales mIR,cr and TRH. Here, mIR,cr is the
IR scale for which the dual gauge theory thermalizes precisely to the phase transition
temperature. Since throats are a common feature in the landscape of type IIB string
theory and a given compact space typically has several throats, it is probable to have
throats with IR scales in the ‘optimal’ range between mIR,cr and TRH. We can therefore
expect that dark matter is due to these throats.

As we have discussed in Section 7.3, scalar glueballs decay to two gravitons with
a certain rate. Similarly, fermionic glueballs can in principle decay to a graviton and
a gravitino. In order to obtain a stable dark matter candidate, we have focused on
scenarios in which such decays are kinematically forbidden due to a heavy gravitino. This
requires that the supersymmetry breaking scale is larger than the mass of the glueball.
It may also mean that the superpartners of standard model particles are heavier than
the glueballs. If R-parity is conserved, most decay channels of fermionic glueballs to the
standard model involve such a superpartner and are therefore kinematically forbidden.
In Section 7.6, we have identified an operator which does not involve a superpartner and
which would allow the decay of fermionic glueballs to a Higgs and a lepton. If present,
this operator would give the dominant decay channel even for maximally broken R-
parity.

In Section 9.1, we have first discussed scenarios with a single throat in the ‘optimal’
range of IR scales between mIR,cr and TRH. We have found that, in many cases, KK
modes in throats with IR scale TRH have a decay rate which is too high for them to
be a good dark matter candidate. However, if the gravitino is very heavy (high-scale
supersymmetry breaking) and the aforementioned operator is suppressed, the lightest
fermionic glueballs may nevertheless survive and play the role of dark matter. The more
promising case is that of throats with lower IR scales. For definiteness, we have analysed
a throat with IR scale mIR,cr, which is the lower end of the ‘optimal’ range of IR scales.
We have found that a reheating temperature of 1010 GeV to 1011 GeV leads to the right
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amount of glueballs to account for the observed dark matter. The critical IR scale mIR,cr

is a function of TRH. After having fixed TRH, we find a mass for the dark matter candidate
in this scenario which is between 105 GeV and 106 GeV.

Our dark matter scenario may lead to some interesting observable signatures. The
dark matter glueballs decay to the standard model with a very low, but non-negligible
rate. The decays produce photons to which experiments like GLAST or HESS may be
sensitive. It turns out that the decay rates depend on two parameters: The 10d Planck
mass enters via the flux stabilized mass of fields which mediate the decay. Moreover,
the decay rate of fermionic glueballs depends on the dimensionless coupling strength
λ of the aforementioned operator which allows their decay to a lepton and a Higgs. In
Section 9.1, we have identified two interesting scenarios:

If λ is of the order 1, the 10d Planck scale has to be very large in order to get
a sufficiently stable dark matter candidate. Namely, for a lower 10d Planck scale, the
fermionic glueballs decay to the standard model with a rate which is in conflict with
measurements of the diffuse γ-radiation. On the other hand, the 10d Planck scale cannot
be larger than the 4d Planck scale. This makes it more probable that the lifetime of
fermionic glueballs is in a range that can be probed with new experiments like GLAST.
If the scenario with λ = O(1) is realized in nature, one can hope to detect a signal from
the decaying glueballs in the near future.

If λ is much smaller than 1, a lower 10d Planck scale still leads to sufficiently
stable fermionic glueballs. For a low 10d Planck scale, also the decay of scalar glueballs
can become relevant for detection. In contrast to fermionic glueballs, scalar glueballs
can decay directly to two photons. This decay channel leads to a sharp γ-line at an
energy of 105 GeV to 106 GeV which could be detected with experiments like HESS. In
addition, the scalar glueball decays also produce a continuous γ-ray spectrum to which
e.g. GLAST may again be sensitive. If the scalar glueballs make up an O(1) fraction of
the dark matter at our epoch, a 10d Planck scale of the order of 1013 GeV would allow
for a detection of both signals in the near future. Such a 10d Planck scale corresponds
to a compactification radius of the order of just 50 times the string length, which is not
extremely large.

Finally, in Section 9.2, we have considered scenarios with a large number of throats,
using the result for the expected number of throats in a given Calabi-Yau orientifold
that we have reviewed in Section 3.3. We have found that there are setups in which
the probability of having a throat with IR scale in the aforementioned ‘optimal’ range
is large. The only free parameter which has then to be fixed in order to obtain the
observed amount of dark matter is the reheating temperature. The lifetime of the glue-
balls strongly depends on their mass and therefore on the IR scale of the corresponding
throat. In a scenario with several throats with various IR scales, it is therefore possible
to have glueballs which decay already at early epochs while other glueballs are suffi-
ciently stable to account for the observed dark matter. Decays to the standard model at
early epochs are severely constrainted by nucleosynthesis. We have checked in a specific
example that these constraints can be fulfilled.
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10.4 Outlook

Our results for the heat transfer rate and the decay rate depend on the distance between
the throats and the size of the embedding compact space. They generalize the afore-
mentioned decay rate of graviton KK modes between two RS models. This dependence
on distance and size is, for instance, relevant for the analysis of reheating after brane-
antibrane inflation. At the end of inflation in this scenario, the brane annihilates with
the antibrane and the energy which is released in this process subsequently thermalizes.
If the standard model is realized in another throat, at least part of this energy has to
be channeled to this throat in order to allow for the reheating of the standard model.

We find that, as long as the embedding manifold is not of minimal size, our decay
rate is considerably lower than the decay rate of graviton KK modes between two RS
models which was used in previous analyses [58–61] of this reheating mechanism. Given
our results, it will be interesting to reconsider reheating after brane-antibrane inflation.

Apart from reheating after brane-antibrane inflation and our dark matter scenario,
one can apply our results to several cosmological scenarios where reheating takes place
either in the standard model or in a throat and the standard model resides either at
the bottom of a throat or somewhere in the rest of the Calabi-Yau orientifold. The heat
transfer rate and the decay rates that we have calculated can then be used in a set
of Boltzmann equations to determine the evolution of energy densities of the standard
model and the throats.

For our dark matter scenario in Chapters 8 and 9, we have assumed that the dark
matter glueballs decay via the vertex from Chapter 6 for a dilaton in an AdS5×S5

throat. The decay rate of these glueballs is suppressed relative to the decay rate from
Chapter 6, however, since certain fields which mediate the decay get high masses in flux
compactifications.

On the other hand, we have found in Section 7.5 that KK modes mixing with
tachyons in the throat decay with a considerably stronger vertex than that from Chap-
ter 6. Such tachyons also appear in the 5d effective description of the KS throat. We
expect that the KK modes dual to the dark matter glueballs mix with these tachyons in
the KS throat. The resulting stronger decay vertex of these particles would then roughly
compensate the suppression of the decay rate due to flux-induced masses of mediating
fields. In particular, the dark matter glueballs would decay with a higher rate than that
used in Chapters 8 and 9. It will be interesting to work out the consequences of such
a higher decay rate for our dark matter scenario. The resulting shorter lifetimes of the
dark matter may eliminate a large portion of the phenomenologically viable region in
parameter space. On the other hand, the remaining region in parameter space may be so
small that our dark matter scenario could either be excluded or verified by experiments
in the near future.

In Chapter 8, we have mentioned an alternative production mechanism of the dark
matter. This mechanism is operative during inflation and is due to the fact that de
Sitter space has a temperature. It would be interesting to investigate this mechanism
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and its influence on our dark matter scenario in more detail. Furthermore, we have
mainly neglected KK modes which are charged under global (approximate) symmetries
in the throat. As we have seen in Chapter 6, in an AdS5×S5 throat these charged KK
modes decay with a considerably lower rate than KK modes which are s-waves. It would
be interesting to determine whether such a suppression also arises in a KS throat or
whether the KK modes again mix with a tachyon in such a throat. Part of the global
symmetries in some throats are only present in the high-temperature phase and are
broken at the phase transition during which the black hole horizon is replaced by the
IR end of the throat. As we have seen in Chapter 6, long throats are heated to the
black-hole phase for a sufficiently large reheating temperature. They subsequently cool
with the cosmological expansion until the aforementioned phase transition takes place.
The breaking of global symmetries during the phase transition can then lead to the
formation of topological defects. It would be interesting to investigate this possibility
in more detail.
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Appendix A

Kaluza-Klein expansion of the
graviton in a Randall-Sundrum
model

In the following, we perform the KK expansion of the 5d graviton hMN in the RS
background discussed in Section 2.1 and determine the couplings of the KK modes to
field theories on the UV brane and the IR brane. The results in this section are taken
from [2,112,113].

Due to the orbifold symmetry y → −y, there is no zero mode of the graviphoton
hµN . The massless spectrum thus consists of the 4d graviton h

(0)
µν and the radion. In ad-

dition, there is a tower of massive spin-2 fields h
(n)
µν . By counting the number of degrees

of freedom, it becomes clear that there are no massive vectors or scalars in the spec-
trum. In a phenomenologically viable theory, the radion has to be stabilized, e.g. with
the Goldberger-Wise mechanism [15]. In the following, we assume that this has been
achieved and we do not consider the radion any more. A convenient parametrization for
the spin-2 fluctuations is

ds2 = e−2k|y| (ηµν + hµν(x, y)) dx
µdxν + dy2 , (A.1)

where hµν is chosen to be transverse and traceless. With this parametrization, the
equation of motion for hµν is just a Laplace equation in the background geometry [64,65]:

∂M

(√
ggMN∂Nhµν

)
= 0 . (A.2)

Next, we perform the KK expansion of the 5d field hµν :

hµν(x, y) =
∞∑

n=0

h(n)
µν (x)χ(n)(y) . (A.3)

Using this expansion and denoting the mass of the n-th KK mode by mn, the equation
of motion for the profile χ(n) of the n-th KK mode along the 5th dimension reads

d

dy

(
e−4k|y|dχ

(n)

dy

)
+ m2

n e
−2k|y| χ(n) = 0 . (A.4)
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For a field which is even under the orbifold Z2-action y → −y, the boundary conditions
at the two branes follow from Eq. (A.4) as

d

dy
χ(n)(0) = 0 and

d

dy
χ(n)(`) = 0 . (A.5)

For mn = 0, the solution to Eqs. (A.4) and (A.5) is χ0 = const. The corresponding KK
mode is the 4d graviton. The wave functions χ(n) have to be normalized according to

∫ `

−`

dy e−2k|y| (χ(n)(y)
)2 !

= 1 (A.6)

in order to obtain a canonically normalized kinetic term for the corresponding KK
mode. The norm of the wavefunction χ0 is dominated by the region near the UV brane.
This means that 4d gravity is localized near the UV brane and is the reason for the
appearance of the unrescaled metric g(4) in Eq. (2.8).

Solutions to Eqs. (A.4) and (A.5) for mn 6= 0 are

χ(n) =
1

Nn

e2k|y|
[
J2

(mn

k
ek|y|

)
+BnY2

(mn

k
ek|y|

)]
, (A.7)

where J2 and Y2 are Bessel functions. The constant Bn is determined by the boundary
conditions. Using the boundary condition at the UV brane in Eq. (A.5), we find

Bn = −J1

(
mn

k

)

Y1

(
mn

k

) . (A.8)

Alternatively, we can determine Bn from the boundary condition at the IR brane in
Eq. (A.5). Since both results for Bn have to agree, we get a condition on the masses
mn:

J1

(
mn

k

)

Y1

(
mn

k

) =
J1

(
mn

k
ek`

)

Y1

(
mn

k
ek`

) . (A.9)

We consider only light modes with masses mn ¿ k. Furthermore, we assume that
mn À k e−k`. This assumption will be justified in a moment. Using the asymptotic
forms of the Bessel functions for large and small arguments, we find that the mass
spectrum is determined by

J1

(mn

k
ek`

)
' 0 ⇒ mn '

(
n+

1

4

)
π e−k` k for n ∈ N . (A.10)

We see that the aforementioned assumption can be justified. The last approximation
becomes better for larger n but works already well for the lowest mass eigenvalue (which
to a higher precision is m1 ' 1.22π e−k` k).

The normalization constants Nn follow from Eq. (A.6) and are given by

Nn =
1√
k

[
e2k`Z2

2

(mn

k
ek`

)
− Z2

2

(mn

k

)]1/2

, (A.11)
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where Z2(x) ≡ J2(x) − Bn Y2(x). The norm of the wavefunctions Eq. (A.7) is domi-
nated by the region near the IR brane. Intuitively, this is the reason why the masses,
Eq. (A.10), are quantized in units of the warped curvature scale, i.e. e−k`k.

Using the results for the wavefunctions χ(n), we can determine the couplings of the
KK modes to theories on the UV brane and the IR brane. The 4d action for the tower
of KK modes reads [2, 112,113]:

S =

∫
d4x

1

2

∞∑
n=0

(
∂αh

(n)
µν ∂

αhµν(n) + m2
n h

(n)
µν h

µν(n)
)

+
1√
2

(
1

M4

T µν
UV +

1

M4

T µν
IR

)
h(0)

µν +
1√
2

∞∑
n=1

(
gn

M4

T µν
UV +

1

e−k`M4

T µν
IR

)
h(n)

µν . (A.12)

Here, T µν
UV and T µν

IR are the energy-momentum tensors on the UV and IR brane, respec-
tively. In particular, note that the coupling of the massive KK modes to the IR brane
is only suppressed by the warped Planck scale. The other coupling constants are

gn =




(
Y1

(
mn

k

)

Y1

(
mn

k
ek`

)
)2

− 1



−1/2

'
√
n

2
π e−k` . (A.13)

In the last step we have used the asymptotic forms of the Bessel function Y1. The
approximation is valid for n¿ ek`. As one can see, the coupling of massive KK modes
to the UV brane has an extra exponential suppression factor.
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Appendix B

Kaluza-Klein expansion of a tachyon
in a Randall-Sundrum model

In Section 7.5, we have considered a scalar with a tachyonic mass in the RSI model. We
have seen that, in order to avoid a tachyonic KK mode, a sufficiently large mass term
on the UV brane has to be switched on. The action of such a scalar then reads

S =

∫
d4x

∫ `

−`

dy
√
g

(
1

2
gMN∂MΦ∂NΦ +

1

2
m2

5dΦ
2 + λk δ(y) Φ2

)
, (B.1)

where m2
5d < 0 is the tachyonic mass squared in the bulk and λ measures the mass on

the UV brane in units of the AdS scale k. We use the same parametrization of AdS5 as
in Eqs. (2.3) and (2.6). In the following, we perform the KK decomposition of such a
scalar and determine the couplings of the corresponding KK modes to a theory on the
UV brane. For more details, see [7].

The equation of motion, which follows from the action Eq. (B.1), is

1√
g
∂M

(√
ggMN∂NΦ

) − m2
5d Φ − 2λk δ(y) Φ = 0 . (B.2)

The δ-function can be absorbed into the boundary condition at the UV brane. The KK
expansion of the scalar is

Φ(x, y) =
∑

n

χn(x)φn(y) , (B.3)

where the χn(x) are eigenmodes of the 4d d’Alembertian with eigenvalues m2
n. The

equation of motion for the φn then reads

d

dy

(
e−4k|y|dφn

dy

)
− e−4k|y|m2

5d φn + m2
n e

−2k|y| φn = 0 . (B.4)

We consider a field which is even under the orbifold Z2-action, i.e. φn(y) = φn(−y). The
boundary conditions for the φn then read

d

dy
φn(0) = λ k φn(0) and

d

dy
φn(`) = 0 . (B.5)
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Let us consider a scalar which just satisfies the Breitenlohner-Freedman bound,
i.e. m2

5d = −4k2. As we have discussed in Section 7.5, for a vanishing mass on the UV
brane, i.e. for λ = 0, the 4d spectrum contains a tachyonic KK mode. If the mass on
the UV brane is switched on, this KK mode becomes ‘less tachyonic’ for growing λ and
for a certain value of λ, the mass of the KK mode vanishes. Let us determine this value
of λ. The solution to Eq. (B.4) for mn = 0 is

φ0 = A0 e
2k|y| +B0 e

2k|y| k |y| . (B.6)

The overall prefactor of this solution is fixed by the normalization of the wave function.
The remaining constant is determined by the boundary conditions on the UV brane and
the IR brane in Eq. (B.5). This fixes λ. We then find that a massless KK mode exists
only if

λ =
4 `k

1 + 2 `k
' 2 . (B.7)

The last step is valid since k`À 1. For this value of λ, the tachyonic mode is lifted to
a massless mode. However, in a phenomenologically viable setup, no massless scalars
should appear. We therefore choose λ somewhat larger than this value, say λ ≈ 3, which
lifts the tachyonic mode to a very massive mode.

Solutions to Eqs. (A.4) and (A.5) for mn 6= 0 are

φn =
e2k|y|

Nn

[
J0

(mn

k
ek|y|

)
+BnY0

(mn

k
ek|y|

)]
, (B.8)

where J0 and Y0 are Bessel functions. Using the boundary condition at the UV brane
in Eq. (B.5), we can determine the constant Bn:

Bn = − (2− λ) J0

(
mn

k

)− mn

k
J1

(
mn

k

)

(2− λ)Y0

(
mn

k

)− mn

k
Y1

(
mn

k

) . (B.9)

We consider only light modes with masses mn ¿ k. Using the asymptotic forms of the
Bessel functions for small arguments, we find that Bn ∼ log(mn/k)

−1 ¿ 1 for mn ¿ k
and λ ≈ 3. We have used this fact in Section 7.5. Alternatively, we can determine the
constant Bn from the boundary condition at the IR brane in Eq. (B.5). Both results for
Bn have to agree and we therefore get a condition on the masses mn:

(2− λ) J0

(
mn

k

)− mn

k
J1

(
mn

k

)

(2− λ)Y0

(
mn

k

)− mn

k
Y1

(
mn

k

) =
2 J0

(
mn

k
ek`

)− mn

k
ek`J1

(
mn

k
ek`

)

2Y0

(
mn

k
ek`

)− mn

k
ek` Y1

(
mn

k
ek`

) . (B.10)

For mn ¿ k and λ ≈ 3, this condition simplifies to

O(1)
[
2Y0

(mn

k
ek`

)
− mn

k
ek` Y1

(mn

k
ek`

)]

∼ log
(mn

k

) [
2 J0

(mn

k
ek`

)
− mn

k
ek`J1

(mn

k
ek`

)]
. (B.11)
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If we assume that the masses fulfill mnk
−1ek` À 1, we can use the asymptotic forms of

the Bessel functions for large arguments in Eq. (B.11). Since log(mn/k) À 1, Eq. (B.11)
is then approximately solved for

J1

(mn

k
ek`

)
¿ 1 ⇒ mn ≈

(
n+

1

4

)
π e−k` k for n ∈ N . (B.12)

For n somewhat larger than 1, the assumption that mnk
−1ek` À 1 is indeed fulfilled.

For smaller n, the masses differ from the result in Eq. (B.12) but are still quantized in
units of the warped AdS scale, i.e. ke−k`, as we have discussed in Section 7.5.

In order to obtain a canonically normalized kinetic term for the KK modes, the
wave functions φn have to be normalized according to

∫ `

−`

dy e−2k|y| (φn(y))2 !
= 1 . (B.13)

This fixes the constant Nn in Eq. (B.8) and we find

Nn =
1√
k

[
Z2

0

(mn

k
ek`

) (
e2k` +

4 k2

m2
n

)
− Z2

0

(mn

k

) (
1 +

k2

m2
n

(λ− 2)2

)]1/2

, (B.14)

where Z0 ≡ J0 +BnY0.

The coupling of the tachyonic scalar to a gauge theory on the UV brane is given in
Eq. (7.21) and reads

SUV ⊃∼ 1

M4
10R

5/2

∫
d4x

∫ `

−`

dy
√
g FµνF

µν Φ δ(y) , (B.15)

where Fµν is the gauge field strength. As we have discussed in Section 7.5, the prefactor
is motivated by the DBI action and a dimensional reduction from 10d to 5d. Inserting
the KK expansion Eq. (B.3) in Eq. (B.15), the coupling of the n-th KK mode to the
gauge theory follows as

S4d ⊃∼ gn

M4
10R

3

∫
d4xFµνF

µν χn . (B.16)

The coupling strengths gn are determined by the value φn(0) of the wave functions at
the UV brane and read

gn =




(
(2− λ)J0

(
mn

k

)− mn

k
J1

(
mn

k

)

2J0

(
mn

k
ek`

)− mn

k
ek`J1

(
mn

k
ek`

)
)2 [

e2k` +
4k2

m2
n

]
−

[
1 +

k2

m2
n

(λ− 2)2

]

−1/2

.

(B.17)
This rather complicated expression can be evaluated by using the asymptotic forms of
the Bessel functions and the mass quantization in Eq. (B.12). For λ ≈ 3, we find

gn ∼ 1

k `

√
mne−k`

k
. (B.18)
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Appendix C

Evaluation of a propagator

In Eq. (6.14), we had to evaluate the following propagator in a mixed, energy-
configuration-space representation:

∫
d6ρ

(2π)6

ei ~A ~ρ

m2 − ~ρ2 + iε
. (C.1)

We perform the integral for imaginary values m→ eiπ/2m and use analytic continuation.
The integral changes into

−
∫

d6ρ

(2π)6

ei ~A ~ρ

m2 + ~ρ2
. (C.2)

We can then employ the identity c−1 =
∫∞

0
dτe−cτ for Re c > 0 and get

−1

(2π)6

∫ ∞

0

dτ

∫
d6ρ ei ~A ~ρ e−(m2+~ρ2)τ

=
−1

(2π)6

∫ ∞

0

dτ

([∫
dρ1 e

iA1 ρ1 e−ρ2
1τ

]
· · ·

[∫
dρ6 e

iA6 ρ6 e−ρ2
6τ

]
e−m2τ

)

=
−1

(4π)3

∫ ∞

0

dτ
1

τ 3
e−A2/4τ e−m2τ .

(C.3)

We have used that A2 = A2
1 + · · ·+ A2

6. According to Eq. 3.471.9 in [114], this integral
can be evaluated in terms of the modified Bessel function K−2 ≡ K2, which yields

−1

(2π)3

m2

A2
K2(mA) . (C.4)

Following from Eq. 9.6.4 in [115], K2 is related to the Hankel function H+
2 = J2 + iY2.

The above expression can be written as

i

(4π)2

m2

A2
H+

2 (eiπ/2mA) . (C.5)

The Hankel function has a branch cut along the negative real axis. Therefore, one can
analytically continue back to real values m→ e−iπ/2m, which gives

−i
(4π)2

m2

A2
H+

2 (mA) . (C.6)
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Appendix D

Additional processes in a
thermalized situation

In Section 7.3, we have discussed several decay processes of glueballs to lighter glueballs
in the gauge theory sectors which are dual to throats. There is another process in
these sectors which can take place if the gauge theory was initially in the deconfined
phase. The glueballs which are formed at the confinement phase transition then interact
with each other for a certain period of time. This leads to a significant reduction of the
abundances of all the states heavier than the lightest glueball, including its superpartner
if the mass splitting from supersymmetry breaking is not too small. In this Appendix,
we analyse this process in some detail:

For simplicity, we focus on only two glueball species. Generically, the glueball effec-
tive action includes couplings of the type

HHGG , (D.1)

where H and G are the heavy and light glueball respectively, and all Lorentz- and/or
spinor-indices are appropriately contracted. By assumption, the masses of the two glue-
ball species satisfy mG < mH. As long as the two glueball species are in equilibrium, the
density nH of the heavy glueballs is suppressed relative to the light glueball density nG
by an exponential factor

e−(mH−mG)/T̃ (D.2)

after the temperature T̃ of the glueball gas falls below mIR. This exponential decrease of
the number density of H glueballs continues until they are so dilute that they decouple.
This happens, when

nH · 〈σv〉 ∼ H . (D.3)

Here 〈σv〉 is the thermally averaged product of cross section and relative velocity for
the 2 · H ↔ 2 · G process, which evaluates to [72]1

〈σv〉 ∼ m−2
IR . (D.4)

1If the mass difference mH −mG is very small, this cross section is kinematically suppressed. This
may happen, for example, for the superpartner of the lightest glueball. These glueballs are then diluted
to a lesser extent.
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Since nH drops exponentially after the temperature T̃ falls below mIR, the heavy
glueballs decouple when the temperature of the glueball gas is still of the order of mIR.
We can therefore derive the freezeout density of the heavy glueballs from Eq. (D.3) by
using the phase-transition Hubble rate H(Tpt). Furthermore, we can approximate the
light glueball density by m3

IR. The ratio of heavy and light glueball densities directly
after freezeout, i.e. the dilution factor, is then given by

nH
nG

∼ H(Tpt)

mIR

∼ g1/2mIRM
1/2
4

NUVT
3/2
RH

. (D.5)

Here we have calculated the Hubble rate according to Eqs. (8.4) and (8.11) and dis-
regarded a small power of NIR. Our formula is valid if the right-hand side is smaller
than 1. If, however, the right-hand side is formally larger than 1, the H glueballs are
decoupled from the beginning and not diluted at all.
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