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Summary 
 

Molecular farming aims at producing high-value proteins in plants for 

pharmaceutical or other industrial use. Tobacco is one of the most used systems in this 

field of research, offering developed technology for gene transfer and protein 

expression. Foreign protein stability is a major issue in molecular farming and is 

strongly dependent on the subcellular compartment of accumulation. We are screening 

various compartments of the plant endomembrane system for the high accumulation of 

the HIV-1 p24 nucleocapsid protein, a potential vaccine against the human 

immunodeficiency virus.  

Previous work has shown that the localisation of fusions of GFP (Green Fluorescent 

Protein) to the full length or truncated versions of the transmembrane domain (TMD) of 

human LAMP1 (Luminal Associated Membrane Protein 1) in tobacco, was detected in 

the lumen of different compartments of the plant secretory pathway (endoplasmic 

reticulum -ER-, Golgi Apparatus or plasma membrane), depending on the length of the 

TMD.  

In this work, different p24 fusion proteins were designed to accumulate in different 

compartments of the secretory pathway in tobacco cells. Therefore, the HIV-1 p24 was 

fused at the N- or C-terminus of the Red Fluorescent Protein (RFP) followed by the 

different TMDs. Moreover, p24 was also N- or C-terminally fused to the N-terminal 

domain of maize prolamin γ-zein (zein-p24 and p24-zein). Zein proteins are originally 

accumulated in ER-derived protein bodies in seeds and previous studies showed the 

potential of accumulating heterologous proteins in this compartment protecting them 

from proteases and enhancing their stability. Finally, p24 was fused to the C-terminal 

tail-anchor of cytochrome b5 (p24-TA), which is expected to be anchored in the ER 

membrane facing the cytosol. 

Localisation studies in tobacco protoplasts showed that the constructs containing 

RFP at the C-terminus of the p24 (p24RFP-TMD) are targeted to the expected 

compartments (ER, Golgi Apparatus or plasma membrane). However, when the RFP is 

placed at the N-terminus of p24 (RFPp24-TMD) the fluorescence appears in the 

tonoplast and the vacuolar lumen, indicating vacuolar delivery and cleavage from the 

membrane anchor.  

Transgenic tobacco plants expressing the p24RFP-TMD fusion proteins with the 

correct targeting to the ER, Golgi and plasma membrane, and also expressing zein-p24, 



 

 

p24-zein and p24-TA were produced. The highest accumulation levels (1% of total 

soluble protein, TSP) were achieved for p24 containing zein in either N-terminal or C-

terminal position. Fusion proteins targeted to the ER showed different accumulation 

levels if the protein was exposed on the luminal side (p24RFP-TMD, 0.3% TSP) or in 

the cytosolic side (p24-TA, 0.15% TSP). p24RFP-TMD fusion proteins accumulating in 

the Golgi apparatus and the plasma membrane showed accumulation levels around 

0.15% TSP. The zein fusions formed polymers that were in part difficult to denature 

even in the presence of SDS, a feature that suggests protein body formation. Pulse-chase 

experiments indicated that the difference in accumulation of the constructs was mainly 

due to difference in protein stability. However, RNA blot analysis showed that the zein 

fusions also lead to increased RNA accumulation. In all cases, the p24 could be released 

from the fusion tags by digestion with thrombin as the p24 fusion proteins were 

designed to have a thrombin cleavage site for purification purposes.  

On the whole, these results highlight the promising approach of targeting HIV-1 p24 

to the ER by fusing to the zein domain and provide new information on the relationship 

between subcellular localisation and stability of integral membrane proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Zusammenfassung 
 

Das Ziel des “Molecular Farmings” ist es hoch qualitative Proteine für den 

pharmazeutischen oder weiteren industriellen Gebrauch in Pflanzen zu produzieren. Die 

meist verwendete Modellpflanze für das “Molecular Farming” stellt Tabak dar, da für 

diesen Organismus die molekularen Techniken zum Gentransfer bzw. für 

Proteinexpression optimiert wurden. Ein Problem des “Molecular Farmings” stellt die 

Stabilität exprimierter Fremdproteine je nach subzellulärer Lokalisation dar. Diese 

Arbeit untersucht die Auswirkung der Expression des Nukleokapsid-Proteins p24 aus 

HIV-1 (“Human Immunodeficiency Virus”) in den verschiedenen Kompartimenten des 

Endomembransystems der Pflanze. Dabei handelt es sich um einen möglichen Impfstoff 

gegen das HIV.  

Mittels der Fusion des Fluorophores GFP an die Transmembrandomäne (TMD) des 

humanen Proteins LAMP1 (“Luminal Associated Membrane Protein 1”) bzw. an 

Deletionskonstrukte dieser LAMP1-TMDs konnte bereits gezeigt werden, dass deren 

Lokalisation innerhalb der verschiedenen Kompartimente des sekretorischen Systems 

der Tabak-Pflanze (Endoplasmatisches Retikulum, Golgi-Apparat oder 

Plasmamembran) abhängig ist von der Länge der jeweiligen Transmembrandomäne.  

Im Rahmen dieser Arbeit wurden unterschiedliche Fusionsproteine hergestellt um die 

Expression des p24 in verschiedenen Kompartimenten der Pflanzenzelle in Tabak zu 

untersuchen. Zunächst wurde an das Protein p24 aus HIV-1 C- oder N-terminal ein RFP 

(“Red Fluorescent Protein”) fusioniert. Anschließend wurden an den C-Terminus dieses 

Fusionsproteins die verschiedenen TMDs fusioniert. Des Weiteren wurde p24 N- oder 

C-terminal mit der N-terminalen Domäne von Prolamin γ-Zein aus Mais fusioniert 

(Zein-p24 oder p24-Zein). Das Prolamin γ-Zein reichert sich Ursprünglicherweise in 

ER-gereiften Proteinkörpern (“protein bodies”) im Samen an. Vorhergehende Studien 

zeigten, dass in diesen Proteinkörpern akkumulierte heterologe Proteine vor Proteasen 

geschützt sind und dadurch deren Stabilität gefördert wird. Für ein weiteres 

Fusionsprotein wurde p24 an die endständige Transmembrandomäne von Cytochrom b5 

fusioniert (p24-TA). Dadurch wird gewährleistet, dass das rekombinante Protein in der 

Membran des ERs verankert wird, wobei das p24 sich im Cytosol befindet. 

Anhand von Lokalisierungsstudien in Tabak-Protoplasten konnte festgestellt werden, 

dass die p24-Fusionsproteine, welche das RFP am C-Terminus tragen (p24RFP-TMD), 



 

 

im jeweils erwarteten Zielkompartiment lokalisiert waren (ER, Golgi-Apparat oder 

Plasmamembran). Jedoch wurden die p24-Fusionsproteine, die das RFP am N-Terminus 

tragen (RFPp24-TMD) am Tonoplasten und in der Vakuole detektiert. Diese 

Mislokalisierung in die Vakuole ist wahrscheinlich auf eine Abspaltung der 

Transmembrandomäne zurückzuführen. 

Es wurden transgene Tabakpflanzen erstellt, die die Fusionsproteine p24RFP-TMD 

mit Lokalisationssignalen für entweder ER, Golgi-Apparat oder Plasmamembran 

enthielten. Darüber hinaus wurden auch Pflanzen hergestellt, welche die Proteine Zein-

p24, p24-Zein und p24-TA enthielten. Die höchste Ansammlung (1% total soluble 

protein, TSP) wurde bei den N- bzw. C-terminal Zein-fusionierten p24 Pflanzen 

erreicht. Fusionsproteine mit einem ER-Signal zeigten ein unterschiedliches 

Akkumulationsniveau, je nachdem, ob p24 luminal (p24RFP-TMD, 0.3% vom TSP), 

oder cytosolisch (p24-TA, 0.15% vom TSP) exponiert wurde. Das 

Akkumulationsniveau von p24RFP-TMD im Golgi-Apparat und in der Plasmamembran 

betrug 0.15% der TSP. Die Zein-Fusionsproteine formten Polymere, die teilweise 

schwer zu denaturieren waren, selbst unter Verwendung von SDS. Dieses Verhalten 

lässt den Schluss zu, dass die Zein-Fusionsproteine zu Proteinkörpern fusionieren und 

damit sehr stabil sind. Das unterschiedliche Akkumulationsniveau dieser Konstrukte 

konnte durch Pulse-chase Experimente auf eine unterschiedliche Proteinstabilität 

zurückgeführt werden. RNA-blot-Analysen zeigten jedoch, dass diese Zein-Fusionen 

ebenfalls zu einer erhöhten RNA-Anreicherung führten. Bei allen Experimenten konnte 

aufgrund eingefügter Thrombin-Schnittstellen zwischen p24 und der daran fusionierten 

Sequenzen das virale Protein p24 aus dem jeweiligen Fusionsprotein mittels eines 

Thrombinverdaus gelöst werden.   

Zusammenfassend ergaben die Ergebnisse dieser Arbeit einen viel versprechenden 

Ansatz, wie das Protein p24 zielgerichtet durch Fusionen an die Zein-Domäne zum ER 

transportiert werden kann. Darüber hinaus wurden neue Informationen über das 

Verhältnis zwischen subzellulärer Lokalisation und Stabilität von Membranproteinen 

präsentiert. 
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I Molecular farming - plants as expression system 
 

For thousands of years, plants have provided humans with food, ornamentals, wood, 

and more recently, with industrial products. They have been used as natural medicines 

for human health since long time and plants are still used to treat diseases all over the 

world (Chea et al. 2007; Muthaura et al. 2007). Plants are a source of secondary 

metabolites which confer many therapeutic effects. They are produced by plants to 

defend themselves from insects, herbivores, fungi, microbes and plant competitors and 

to attract pollinators (Wink 1988) but also show anti-inflammatory, antimicrobial and 

psychoactive properties.  

Biotechnology methods using plants as expression system offer the possibility to 

produce not only high amounts of natural therapeutic secondary metabolites but also 

foreign recombinant proteins for medical or veterinary applications. There are many 

advantages in producing these proteins in plants rather than in mammalian cell cultures, 

bacteria, yeast or transgenic animals (table I). In comparison with other expression 

systems, plants require low initial investment, medium time scale (months) and very 

low production costs (< 5€/gram biomass); they have very high scale-up potential, they 

are faster to grow than transgenic animals and safer, as there is no risk of pathogen 

contamination, they can produce active complex proteins, and edible crops can even be 

directly used. The main disadvantages are the early stage development of the expression 

system and the incomplete biological containment (Fischer 2005).  

In 1986, the first pharmaceutical relevant protein was produced in plants: the human 

growth hormone (Barta et al. 1986). The first recombinant antibody was produced in 

tobacco in 1989 (Hiatt et al. 1989). From then on, many other recombinant proteins of 

medical and industrial interest have been produced in different plant species. 

The production system of a recombinant protein in plants is a long process when 

compared with other expression systems. The preparation of the expression vectors, the 

transformation and regeneration of transgenic plants and the analysis of the different 

lines and generations can take from months to years. However, there are some transient 

expression systems that allow obtaining small amounts of product in a short time 

(Sparkes et al. 2006). With a viral vector, transient expression can also lead to rapid and 

abundant production of a protein (McCormick et al. 2008). 
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 Transgenic 

plants 

Plant cell 

cultures 

Bacteria Yeast Mammalian 

cell culture 

Transgenic 

animals 

Costs 

Production costs 

Time effort 

Scale-up costs 

Propagation 

Productivity 

 

Low 

High 

Low 

Easy 

High 

 

Medium 

Medium 

High1 

Easy 

Medium 

 

Low 

Low 

High1 

Easy 

Medium 

 

Medium 

Medium 

High1 

Easy 

Medium 

 

High 

High 

High1 

Limited 

Medium 

 

High 

High 

High1 

Possible 

High 

Quality 

Product quality 

Glycosylation 

Contamination risk 

 

High 

Similar2 

No 

 

High 

Similar2 

No 

 

Low 

None 

Yes3 

 

Medium 

Incorrect 

No 

 

High 

Correct 

Yes4 

 

High 

Correct 

Yes4 

Practical application 

Data monitoring 

Ethical concerns 

GMP5 conformity 

Storage cost 

 

Difficult 

Medium 

Difficult 

Inexpensive 

RT6 

 

Easy 

Low 

Possible 

Inexpensive  

-20ºC 

 

Easy 

Low 

Possible 

Inexpensive  

-20ºC 

 

Easy 

Low 

Possible 

Inexpensive  

-20ºC 

 

Easy 

Medium 

Possible 

Expensive  

N2 

 

Difficult 

High 

Possible 

Expensive  

N2 

 

Table I. Comparison of different expression systems for the production of recombinant proteins 
(Ma et al. 2003; Schillberg et al. 2003). 
1 Expensive media, expensive facilities for cultivation and livestock husbandry 
2 Glycan chains produced in animal systems are authentic but may differ from those produced in humans. Plant 
glycans are similar to those of animals but have plant-specific groups such as α-fucose and β-xylose 
3 Endotoxins 
4 Virus, prions and oncogenic DNA 
5 Good Manufacturing Practice 
6 Room temperature 

 

II Factors affecting recombinant protein expression 
 

One of the main aims in molecular farming is the production of recombinant proteins 

at high yields. To achieve high yields, it is important to optimise the expression vector 

design for the different stages of gene expression, from transcription to protein stability 

(Ma et al. 2003). 

 

II.1 Selection of the promoter 
 

The choice of the promoter will determine the tissue, the levels and the time point at 

which recombinant proteins are expressed. The 35S Cauliflower Mosaic Virus (CaMV) 

promoter is the most popular choice for dicotyledonous plants. It is a strong and 

constitutive promoter (Odell et al. 1985) and its activity can be enhanced by duplication 

of the enhancer region (Kay et al. 1987; Dowson Day et al. 1993). However, in 
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monocotyledonous plants this promoter has low activity and other promoters like 

ubiquitin-1 for maize and gos-2 for rice are preferred (de Pater et al. 1992; Christensen 

and Quail 1996). An alternative to enhance dicotyledonous constitutive promoters in 

monocotyledonous plants is the inclusion of an intron, usually within the 5’-UTR 

(untranslated region). This allows intron-mediated enhancement, enhancing up to 100 

times the activity of the CaMV 35S promoter in Zea mays and Poa pratensis (Vain et al. 

1996). 

Although constitutive expression allows high levels of recombinant protein 

accumulation in many plant tissues, it can adversely affect the normal growth and 

development of vegetative parts of the plant as well as other organisms in contact with 

the tissue (herbivores, microorganisms and insects). Moreover, gene silencing can occur 

leading to the decrease or absence of recombinant protein accumulation (Taylor 1997). 

Restriction of protein accumulation to seeds using tissue-specific promoters can solve 

these disadvantages and enhance the stability of the recombinant proteins allowing 

long-term storage without degradation (Stoger et al. 2000; Ma et al. 2003). Inducible 

promoters can be also used to limit recombinant protein expression to just before or 

after harvest (Zuo and Chua 2000).  

An important issue is an efficient initiation of the translation for the transgene 

expression. The 5’-UTR and other sequences around the AUG translation initiation 

codon play an important role on the translation efficiency in plants (Kozak 1986). There 

is an enhancement of recombinant protein expression when an appropriate 5’-UTR 

sequence is cloned before the transgene. The most commonly used sequences are the 5’-

UTR sequences from the capsid protein from plant viruses like Tobacco Mosaic virus 

(TMV) and Tobacco Etch virus (TEV) (Gallie et al. 1991; Niepel and Gallie 1999; 

Hongmin et al. 2000) but other sequences have shown the same advantages (Zou et al. 

2003). 

 

II.2 Codon usage 
 

Transgenes expressed in plants are often originally from heterologous species like 

viruses, bacteria or mammals. These organisms often have a different codon bias than 

the host plant, which might result in pausing at disfavoured codons and truncation, 

misincorporation or frameshifting. These problems can be solved by introducing point 

mutations in the transgene coding sequence to have the codon usage in line with that of 
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the host. This will result in maximizing the rate of protein synthesis and eliminating 

cryptic introns and instable sequences (Ma et al. 2003; Twyman et al. 2003). 

 

II.3 Glycosylation 
 

An advantage plants offer with respect to other expression systems for recombinant 

protein production is that the protein-synthesis pathway is highly conserved with 

animals, so human transgenes expressed in plants yield proteins structurally identical to 

their native counterparts. However, there are some differences in post-translational 

modification, particularly in the Asn-linked, Golgi-modified glycan structures of 

secretory glycoproteins (Fig.1). Human N-glycosylated proteins expressed in plants lack 

the terminal galactose and sialic acid residues that are normally found in mammals, but 

have α(1,3)-fucose and β(1,2)-xylose which are absent in mammals (Ma et al. 2003; 

Twyman et al. 2003; Gomord et al. 2005). In figure 1 the glycosylation differences 

between plants and mammals are presented (Gomord et al. 2005). The glycan 

composition can vary between plant species and between different tissues of the same 

plant.  

 
Figure 1. Structure of complex long-chain 
glycan in plants and mammals. In plants 
and mammals, two main classes of N-glycans 
are synthesized from the same 
oligosaccharide precursor. The first class is 
high-mannose glycans and is present in 
plants and mammals. Their structure consists 
in two molecules of N-acetylglucosamine 
(GlcNAc) and between 5 and 9 mannose 
residues (Man). The second class comprises 

complex glycans: they derive from the other class and are produced  by removal of several mannoses and 
addition of other sugar residues by Golgi glycosidases and glycosyltransferases, some of the latter being 
different in plants and mammals. As a result, complex type N-glycans are structurally different in plants 
and mammals. In plants, the proximal N-acetylglucosamine of the core is substituted by an α(1,3)-fucose 
whereas in mammals it is an α(1,6)-fucose. Moreover, the plant core β-mannose is substituted by a 
β(1,2)-xylose. In addition, there are some differences in the terminal sugars. In plants, β(1,3)-galactose 
(β1,3 Gal) and α(1,4)-fucose (α1,4Fuc) are linked to the terminal N-acetylglucosamine, whereas in 
mammals the residues linked are β(1,4)-galactose (β1,4Gal) combined with sialic acid (NeuAc). 
Abbreviation: P, protein. 
 

There is a general concern that the differences in complex glycans could affect the 

activity, biodistribution and stability of the recombinant proteins compared with the 
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native forms (Ma et al. 2003). Moreover, some studies have shown the immunogenicity 

of plant glycans administered to different mammals although their effect has not been 

proven in humans (Bardor et al. 2003; Jin et al. 2008). To solve these problems, several 

strategies have been developed to humanize the glycosylation patterns of recombinant 

proteins produced in plants (Bakker et al. 2001; Schahs et al. 2007; Strasser et al. 2008). 

 

II.4 Subcellular protein targeting 
 

Eukaryotic cells are characterized by having complex endomembrane structures 

through which a large subset of newly synthesized proteins and nutrients travel until 

they reach their final destination. There are different membrane-bound compartments 

and organelles with specific functions in the cell. These are the endoplasmic reticulum 

(ER), Golgi apparatus, peroxisomes, endosomes, lysosomes/vacuoles, mitochondria, 

and, in plants, plastids (Alberts et al. 2002). 

The accumulation of recombinant proteins in a specific cell compartment may greatly 

facilitate its isolation and purification. The subcellular localisation of recombinant 

proteins plays a critical role for their correct folding, assembly and accumulation, and 

the compartment in which they accumulate also determines the possibility of post-

translational modifications. Recombinant proteins can be directed to a specific cellular 

compartment by adding targeting signals. The compartment might protect the 

recombinant proteins from proteolytic degradation, preserve their integrity and increase 

the accumulation levels (Kamenarova et al. 2005).  

The ER is the port of entry of the secretory pathway. Most secretory proteins are 

directed to the ER by a specific transient sequence at the amino terminus, termed signal 

peptide. The signal peptide performs its function as soon as it emerges from the 

ribosome, and subsequent translocation of the nascent protein into the ER occurs co-

translationally (Alberts et al. 2002). Removal of the signal peptide is also co-

translational. In all eukaryotes, soluble proteins that enter the ER and lack additional 

signals traffic to the Golgi complex and are then secreted from the cell by default 

(Vitale and Pedrazzini 2005). 

The ER has been used as a compartment for foreign protein accumulation due to its low 

hydrolytic activity in comparison to other compartments. In genetic engineering, the 

most used ER localisation signal is the H/KDEL tetrapeptide, which is present in most 

soluble ER resident proteins (Vitale and Pedrazzini 2005). Although with this system 
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levels of one to two orders of magnitude increase of recombinant protein accumulation 

have been reported, the mechanism can be saturated as the H/KDEL must bind to a 

receptor located in the Golgi apparatus, being therefore a Golgi-to-ER retrieval 

mechanism rather than a true retention system (Crofts et al. 1999). In plants, several 

studies have shown the ER as an optimal compartment for the expression of 

recombinant proteins. Anti-HBsAg [anti-(hepatitis B virus surface antigen)] mouse 

IgG1 monoclonal antibody has been expressed in the ER of transgenic tobacco plants 

using the KDEL retention signal with accumulation levels of 0.5% of total soluble 

protein (TSP) (Ramirez et al. 2003). In another study bispecific single-chain variable 

fragment (scFv)-KDEL antibody was expressed in tobacco plants achieving 

accumulation levels of 1.65% TSP (Fischer et al. 1999). The expression and proper 

accumulation of two protein components of KDEL-tagged spider dragline silk in 

tobacco plants has also been described (Menassa et al. 2004).  

Despite the high capacity of the ER for recombinant proteins accumulation, inefficient 

retention has been described. For example, this is the case of the expression of a 

monoclonal antibody (IgG1) harbouring a KDEL. The heterologous protein was 

correctly retained in the ER in tobacco leaves, however in seeds the protein was 

secreted or accumulated in protein storage vacuoles (Petruccelli et al. 2006). In another 

study, scFv-Fc antibodies fused to KDEL were produced in Arabidopsis. In seeds, the 

recombinant protein was detected in the periplasmic space instead of the ER, suggesting 

that overproduction of recombinant scFv-Fc disturbs normal ER retention and protein-

sorting mechanisms in the secretory pathway at least in seeds (Van Droogenbroeck et al. 

2007). Mistargeting of KDEL-tagged recombinant human serum albumin was observed 

in wheat endosperm cells in which the recombinant protein was deposited in prolamin 

aggregates within the vacuole (Arcalis et al. 2004). All these results demonstrate that 

recombinant proteins containing the KDEL ER retention signal are sometimes deposited 

in an unexpected compartment, especially in seeds, probably because of the unique 

storage properties of this organ.  

A further organelle offering many advantages for accumulation of recombinant 

proteins is the chloroplast. As described in the transformation methods (IV.1.2), they 

can produce high amounts of protein and offer biosafety advantages of transgene 

containment due to maternal inheritance (Twyman et al. 2003). The highest chloroplast 

expression has been achieved in maize expressing bacterial genes reaching levels up to 

46.1% TSP (De Cosa et al. 2001). However, chloroplasts do not glycosylate proteins, 



                                                                                                                         Introduction 

 8

limiting their use to the production of non-glycosylated proteins. For glycoproteins, 

there is no alternative to the secretory pathway. 

Protein storage vacuoles (Robinson et al. 2005; Vitale and Hinz 2005; Frigerio et al. 

2008) and protein bodies (Oparka and Harris 1982; Coleman et al. 1996; Müntz 1998) 

are protein storage compartments of the secretory pathway. Most storage proteins of 

seeds and virtually all vegetative storage proteins accumulate in storage vacuoles after 

synthesis in the ER and traffic through the Golgi complex. Seed storage proteins of the 

prolamin class, typical of cereals, instead form large polymers within the ER, termed 

protein bodies. Storage vacuoles and protein bodies have been also used to accumulate 

recombinant proteins. To produce recombinant proteins in vacuoles, it is important to 

consider its high hydrolytic activity in vegetative tissues and to understand the 

mechanisms of deposition of vacuolar storage proteins (Vitale and Pedrazzini 2005). 

Using this approach, cereals like maize, rice and wheat have been used to accumulate 

pharmaceutical proteins. For example, a partially humanized secretory immunoglobulin 

was expressed in rice endosperm cells (Stoger et al. 2000; Nicholson et al. 2005). The 

non-assembled light chain, heavy chain and secretory component accumulated 

predominantly within ER-derived protein bodies, while the assembled antibody, with 

antigen-binding function, accumulated specifically in protein storage vacuoles 

(Nicholson et al. 2005). 

Recombinant proteins can be also targeted to the apoplast. For example, the plant 

secretory pathway has been described as a proper place for protein folding and 

glycosylation of secreted recombinant antibodies in tobacco (Schillberg et al. 1999; 

Nuttall et al. 2005). Another strategy is the secretion of a target protein in the 

hydroponic medium in roots, termed rhizosecretion, which provides an alternative 

manufacturing platform that simplifies the downstream purification procedure and 

increases protein yield. Using this system, Agrobacterium rhizogenes induces the 

formation of large amounts of root tissue called hairy roots and the cells are able to 

produce recombinant proteins and deliver them to the extracellular medium (root 

exudates) (Gaume et al. 2003). An example using this technique is the full-length 

monoclonal antibody complex expressed in transgenic Nicotiana tabacum roots which 

showed a yield of 11.7 µg per gram root dry weight per day per plant (Drake et al. 

2003). 
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III Choice of the host plant  
 

Several plants species have been used for molecular farming and each of them 

present specific advantages and disadvantages for the produced proteins (table II). Many 

factors must be considered before choosing the expression host system (Ma et al. 2003; 

Schillberg et al. 2003). The most used plant production systems have been arranged in 

four groups: leafy crops, cereals and legumes, fruits and vegetables; and fibre and oil 

crops. 

 
III.1 Leafy crops 
 

Tobacco has a long history as a successful crop system for molecular farming and is 

the main tool for testing production in laboratories. The main advantages of tobacco 

include the well-established technology for gene transfer and expression, the high 

biomass yield (more than 100,000 kg per hectare for close-cropped tobacco), the 

potential for rapid scale-up owing to prolific seed production, and the availability for 

large-scale infrastructure processing. Moreover, tobacco is neither a food nor a feed 

plant and there is low risk for contamination of the food chain (Ma et al. 2003; Twyman 

et al. 2003). Due to the advantages offered by tobacco, many recombinant proteins and 

vaccine candidates have been produced with this expression system (table III).  

Other leafy species including alfalfa, soybean, spinach and lettuce are being 

investigated. Alfalfa is particularly useful because it has a large dry biomass yield per 

hectare and can be harvested up to nine times a year (Twyman et al. 2003). It has been 

used to express recombinant antibodies giving the advantage that they are produced as a 

single glycoform rather than different glycoforms found in other expression systems. In 

vitro galactosidation was successfully achieved to proof that alfalfa plants have the 

ability to produce recombinant IgG1 having a N-glycosylation that is suitable for in 

vitro or in vivo glycan remodelling into a human-compatible plantibody (Khoudi et al. 

1999; Bardor et al. 2003). Recombinant phytase from Aspergillus ficuum has also been 

produced (Ullah et al. 2002). Many vaccine candidates produced in transgenic alfalfa 

have shown potential to protect humans and animals from some diseases (table III). The 

Canadian Medicago Inc. uses this crop for molecular farming. 

A rabies subunit vaccine produced in transgenic spinach plants was demonstrated to 

be efficient in human volunteers, especially in those who had previously been 
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immunized with a conventional rabies vaccine (Yusibov et al. 2002). However, a HIV 

vaccine candidate against Tat has been produced in spinach but did not induce antibody 

production in mice (Karasev et al. 2005).  

Lettuce is another broadly used crop which can be grown year-round in greenhouses, 

and technology is already in place for harvesting, washing and chopping (Joh et al. 

2005). Several recombinant edible vaccines have been produced in lettuce against 

different diseases (table III). Although nuclear or chloroplast transformation are 

normally used in molecular farming, transient expression in lettuce has been suggested 

as a good alternative for high yield production of recombinant proteins. Joh et al. (2005) 

described that agroinfiltrated lettuce produced 1.1% TSP recombinant β-glucuronidase 

(GUS) which is higher than the commercially-manufactured GUS in transgenic corn 

seeds (0.7% water-soluble protein). Furthermore, proteins of industrial interest like 

Miraculin, a taste-modifying protein considered a natural alternative to artificial 

sweeteners and flavour enhancers, have been produced in this plant (Sun et al. 2006). 

The main disadvantage of leafy crops is that recombinant proteins are expressed in 

an aqueous water environment in which they are often unstable, resulting in low yields. 

After harvesting, the leaves must be dried or frozen for transport, or processed soon to 

extract useful amounts of the product. Moreover, in the case of tobacco many cultivars 

produce high levels of toxic alkaloids: these phenolic compounds are released during 

the extraction process and can interfere with the downstream processing. Fortunately, 

varieties exist with low-alkaloid content and can be used for molecular farming 

(Twyman et al. 2003).  

 

III.2 Cereals and legumes 
 

Cereals and legumes can solve some problems found during the production of 

recombinant proteins in leafy crops. Seeds offer an appropriate environment for the 

stable accumulation of recombinant proteins due to the presence of specialised storage 

compartments derived from the secretory pathway such as protein bodies or protein 

storage vacuoles. They enable long-term storage, even at room temperature, and as they 

are desiccated the exposure of stored proteins to non-enzymatic hydrolysis and protease 

degradation is reduced (Ma et al. 2003; Twyman et al. 2003). Moreover, seeds do not 

present phenolic compounds like tobacco leaves and the downstream processing is 

improved (Ma et al. 2003). In terms of biosafety, special precautions may be taken to 
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avoid pollen spread and seed contamination with non transgenic crops. A main 

disadvantage is that the overall yield of recombinant proteins in seed crops are much 

lower than in tobacco, and the most appropriate expression system must be determined 

on a case-by-case basis. For example, a single-chain Fv antibody expressed in rice, 

wheat, pea and tobacco showed that tobacco presented the greater amount of biomass 

produced per hectare (Stoger et al. 2002). Therefore, many factors like biomass yield 

per hectare, yield of recombinant protein per unit biomass, the ease transformation and 

the speed of scale-up must be considered before choosing the expression system 

(Twyman et al. 2003). 

Several crops are being used for seed-based production, including cereals (maize, 

rice and wheat) and legumes (soybean and pea). Maize has been used for the 

commercial production of avidin and β-glucuronidase (Hood et al. 1997; Witcher et al. 

1998), also some recombinant antibodies (Woodard et al. 2003; Karnoup et al. 2005; 

Rademacher et al. 2008) and antigens against different diseases (table III). The main 

concern of using maize to produce recombinant proteins is the potential contamination 

of other corn crops (Sparrow et al. 2007). 

Rice has a well-developed gene transfer system, it is self-pollinating (Sparrow et al. 

2007) and it has been used to express some subunit vaccines (table III). Moreover, a 

genetic variation of rice termed Golden rice has been developed but it is not considered 

a biofarming project in terms that no recombinant protein is purified at the end of the 

process. However, it is the culmination of many molecular biology techniques used for 

recombinant protein production but in this case for human nutrition improvement. This 

rice expresses β-carotene in the grain to treat vitamin A deficiency that often has lethal 

effects, especially in infants of developing countries (see Golden rice reference). It has 

been donated for humanitarian use in developing countries and is expected to save many 

lives.  

Wheat has been used for the expression of malaria parasite proteins (Tsuboi et al. 

2008) and barley for the expression of β-glucanase (Jensen et al. 1996). At present, 

ORF Genetics uses a natural built-in containment system for transgenic barley, which is 

grown in Iceland where the pollen could not survive outside cultivated fields or cross-

pollinate (Sparrow et al. 2007).  

Soybean presents many advantages including the potential yield, the familiarity with 

cultivation and the general crop infrastructure. Moreover, it fixes atmospheric nitrogen 
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which reduces the need for chemical fertilizers (Sparrow et al. 2007). Soybean has been 

mainly used to produce subunit vaccines (table III). Moreover, transgenic soybean 

plants can be directly used as a diet complement. Denbow et al. (1998) described a 

study in which broilers were fed with transgenic soybean expressing recombinant 

phytase leading to an improvement of the animals in growth and bone strength.  

 
III.3 Fruits and vegetables 
 

The major advantage of protein expression in fruit and vegetable crops is that the 

edible organs can, in theory, be consumed as uncooked, unprocessed or partially-

processed material, making them ideal for the production of recombinant subunit 

vaccines, nutriceuticals and antibodies designed for topical application (Twyman et al. 

2003). However, a disadvantage of edible vaccines is the uncontrollable amount of 

recombinant protein in each organ from the same plant. Therefore, this approach is 

unlikely to be allowed because control over the pharmaceutical dosage can be very 

difficult in this case.  

Potatoes have been widely used for the production of many plant-derived vaccines 

and some of them have been administered to humans in clinical trials (Ma et al. 2003; 

Twyman et al. 2003). Potato-derived vaccine proteins have been produced as single 

subunit vaccines and as chimeras containing antigens from two different disease agents 

(table III). Although some clinical trials have been successful, the widespread 

development of potato for oral vaccines is hindered by the necessity to cook the tubers 

to destroy toxins leading to the degradation of thermolabile products (Sparrow et al. 

2007). Potatoes have been used for the production of proteins from human milk (Chong 

et al. 1997), human lactoferrin (Salmon et al. 1998; Chong and Langridge 2000), 

glucanases (Dai et al. 2000) and diagnostic antibody-fusion protein (Schunmann et al. 

2002). Tomatoes are more palatable than potatoes and offer many advantages like 

greenhouse growth for containment and high biomass yield (∼68,000 kg per hectare) 

(Ma et al. 2003; Twyman et al. 2003). The ripe fruit does not contain toxins and can be 

dried as a powder and administered in capsule form (Sparrow et al. 2007). It is the first 

plant in which a plant-derived rabies vaccine was produced (McGarvey et al. 1995). In 

other studies, recombinant vaccine subunits have been expressed as well as biologically 

active and glycosylated human alpha-1-antitrypsin showing accumulation levels up to 

1.55% TSP (Agarwal et al. 2008). Carrots may be a useful crop because the taproot is a 
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storage organ that can be consumed raw (Sparrow et al. 2007). They have been used for 

the production of some plant-derived vaccines (table III). Bananas, and more recently 

papayas, are attractive fruits to produce recombinant proteins as they are widely grown 

and are consumed by both children and adults (Twyman et al. 2003). Recombinant 

HBsAg and an anti-cysticercosis vaccine have been produced in transgenic bananas and 

papayas, respectively (Kumar et al. 2005; Hernandez et al. 2007).  

 

 
Table II. Characteristics of different plant expression systems. 
 

 

 

 

 

 

 

Species Advantages Disadvantages 

Model plants 
Arabidopsis thaliana 

 

Range of available mutants, accessible 

genetics, ease of transformation 

 

Not useful for commercial production 

(low biomass) 

Simple plants 
Physcomitrella patens, 

 Chlamydomonas reinhasdtii, 

 Lemna 

 

Containment, clonal propagation, secretion 

into medium, regulation compliance, 

homologous recombination in Physcomitrella 

 

Scalability 

Leafy crops 
Tobacco 

 

High yield, established transformation and 

expression technology, rapid scale-up, non-

food/feed 

 

Low protein stability in harvested 

material, presence of alkaloids 

Alfalfa, clover High yield, useful for animal vaccines, clonal 

propagation, homogenous N-glycans (alfalfa) 

Low protein stability in harvested 

material, presence of oxalic acid 

Lettuce Edible, useful for human vaccines Low protein stability in harvested material 

Cereals 
Maize, rice 

 

Protein stability during storage, high yield, 

ease to transform and manipulate 

 

Wheat, barley Protein stability during storage Low yields, difficult to transform and 

manipulate 

Legumes 

Soybean 

 

Economical, high biomass, expression in seed 

coat 

 

Low yields, difficult to transform and 

manipulate 

Pea, pigeon pea High protein content Low expression levels 

Fruits and vegetables 
Potato, carrot 

 

Edible, protein stable in storage tissues 

 

Potato needs to be cooked 

Tomato Edible, containment in  greenhouse More expensive to grow, must be chilled 

after harvest 
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Single subunit vaccine 
candidate 

Plant 
species 

Reference 

Hepatitis B Tobacco 
Potato 
Lettuce 
Soybean 
Tomato 
Banana 

Rice 

(Huang et al. 2005) 
(Richter et al. 2000; Joung et al. 2004; Shulga et al. 2004) 
(Kapusta et al. 1999) 
(Huang et al. 2005) 
(Gao et al. 2003; Lou et al. 2007) 
(Kumar et al. 2005) 
(Qian et al. 2008) 

Cholera Potato 
Tobacco 

Rice 

(Arakawa et al. 1997) 
(Jani et al. 2004; Mishra et al. 2006) 
(Oszvald et al. 2008) 

Rotavirus Tobacco 
Potato 
Alfalfa 

(Birch-Machin et al. 2004; Perez Filgueira et al. 2004) 
(Wu et al. 2003; Li et al. 2006) 
(Wigdorovitz et al. 2004; Dong et al. 2005) 

E.coli Potato 
Soybean 
Carrot 
Maize 

 
Tobacco 

(Haq et al. 1995; Mason et al. 1998; Lauterslager et al. 2001) 
(Garg et al. 2007) 
(Rosales-Mendoza et al. 2007; Rosales-Mendoza et al. 2008) 
(Chikwamba et al. 2002; Chikwamba et al. 2003; Streatfield et al. 
2003; Tacket et al. 2004) 
(Wen et al. 2006) 

Human papillomavirus Potato 
Tobacco 

(Biemelt et al. 2003; Warzecha et al. 2003) 
(Massa et al. 2007; Fernandez-San Millan et al. 2008; Lenzi et al. 
2008) 

Norwalk virus Potato, 
tobacco 
Tomato 
Tobacco 

(Mason et al. 1996; Tacket et al. 2000) 
(Zhang et al. 2006) 
(Santi et al. 2008) 

Infectious bronchitis virus (IBV) Potato (Zhou et al. 2004) 
Foot and mouth disease (FMDV) Potato 

Alfalfa 
Tobacco 

(Carrillo et al. 2001) 
(Wigdorovitz et al. 1999; Dus Santos et al. 2005) 
(Wigdorovitz et al. 1999; Wu et al. 2003; Li et al. 2006) 

Transmissible gastroenteritis 
coronavirus (TGEV) 

Potato 
Maize 

(Gomez et al. 2000) 
(Lamphear et al. 2004) 

Respiratory syncytial virus (RSV) Tobacco (Belanger et al. 2000) 
Human immunodeficiency virus (HIV) Tobacco 

 
 

Tomato 
Spinach 
Maize 

(Zhang et al. 2000; Zhang et al. 2002; Perez-Filgueira et al. 2004; 
Obregon et al. 2006; Marusic et al. 2007; Sack et al. 2007; Barbante 
et al. 2008; de Virgilio et al. 2008; Strasser et al. 2008) 
(Ramirez et al. 2007) 
(Karasev et al. 2005) 
(Rademacher et al. 2008; Ramessar et al. 2008) 

Diabetes Lettuce 
Carrot 

Tobacco 
Rice 

(Ruhlman et al. 2007) 
(Porceddu et al. 1999) 
(Avesani et al. 2003) 
(Yasuda et al. 2005) 

Rabies Spinach 
Tomato 
Maize 

Tobacco 

(Yusibov et al. 2002) 
(McGarvey et al. 1995) 
(Loza-Rubio et al. 2008) 
(Modelska et al. 1998; Yusibov et al. 2002; Girard et al. 2006) 

Avian reovirus (ARV) Alfalfa (Huang et al. 2006) 
SARS Lettuce 

Tobacco 
(Li et al. 2006) 
(Li et al. 2006) 

Measles Lettuce 
Carrot 

Tobacco 

(Webster et al. 2006) 
(Marquet-Blouin et al. 2003) 
(Huang et al. 2001) 

Genital herpes Soybean (Zeitlin et al. 1999) 
Cysticercosis Papaya (Hernandez et al. 2007) 
Tuberculosis Carrot 

Tobacco 
(Wang et al. 2001) 
(Zelada et al. 2006; Dorokhov et al. 2007) 

Newcastle disease virus Maize 
Tobacco 

Rice 

(Guerrero-Andrade et al. 2006) 
(Zhao and Hammond 2005) 
(Yang et al. 2005; Yang et al. 2007) 

Smallpox Tobacco (Golovkin et al. 2007) 
Poliovirus Tobacco (Fujiyama et al. 2006) 
Lyme disease Tobacco (Navarre et al. 2006) 
Simian Immunodeficiency virus (SIV) Potato (Kim et al. 2004) 
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Table III. Vaccine subunits and chimera vaccines produced in different crops. 
 
 
III.4 Fibre and oil crops 
 

Oil bodies are small droplets containing a triacylglycerol matrix surrounded by a 

monolayer of phospholipids embedded with alkaline proteins termed oleosins. 

SemBioSys have developed a technology based on the fusion of recombinant proteins to 

oleosin which allows the accumulation of the recombinant proteins in oil bodies 

simplifying the extraction and purification process. The main crop used is safflower 

which is generally considered to be self-pollinating (Sparrow et al. 2007). Oilseed 

rape/canola, flax and cotton have also been considered to produce recombinant proteins, 

however they present some disadvantages like open pollination, existence of compatible 

wild relatives and the fibre and oil can interfere with the downstream processing 

(Twyman et al. 2003; Sparrow et al. 2007). 
 
 

IV Plant transformation 
IV.1 Stable transformation 

IV.1.1 Nuclear transformation  

 
There are two methods by which the foreign gene is transferred and incorporated into 

the host plant nuclear genome in a stable manner: Agrobacterium tumefaciens –

mediated transformation or particle bombardment. The first method is mainly used for 

dicotyledonous plants and particle bombardment is mainly used for monocotyledonous 

plants in which Agrobacterium-mediated transformation is less efficient (Ma et al. 

2003). Other symbiotic bacteria like Rhizobium, Sinorhizobium and Mesorhizobium are 

Chimera vaccine candidate Plant species Reference 

Cholera and periodontal disease Potato (Shin et al. 2006) 

Cholera and rotavirus Potato (Choi et al. 2005) 

Cholera and SIV Potato (Kim et al. 2004) 

HIV and rotavirus Potato (Kim and Langridge 2004) 

Measles and tetanus Carrot (Bouche et al. 2005) 

HIV and hepatitis B Tobacco, Arabidopsis (Greco et al. 2007; Guetard et al. 2008) 

FMDV and hepatitis B Tobacco (Huang et al. 2005) 

Cholera and diabetes Tobacco, lettuce (Ruhlman et al. 2007) 

HIV and rabies Tobacco (Yusibov et al. 1997) 

E.coli and porcine diarrhoea  Rice (Oszvald et al. 2007) 
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being tested for the transfer of recombinant DNA in plants cells (Broothaerts et al. 

2005).  

The main advantage of nuclear transformation is that once the DNA is inserted into the 

host genome, an almost unlimited and sustainable production capacity can be reached 

using the established agricultural infrastructure (Boehm 2007). However, the production 

of transgenic plants is time consuming, from a few to many months depending on the 

plant species. Moreover, the introduction of foreign DNA into the plant nuclear genome 

sometimes results in the introduction of superfluous DNA. In Agrobacterium-mediated 

transformation, it is usually due to an inefficient processing of the T-DNA border 

sequences resulting in the co-transfer of flanking vector sequences or the whole plasmid 

(Martineau et al. 1994). In the case of particle bombardment, the superfluous DNA is 

transferred because the whole plasmid is usually used to coat the projectiles (Christou 

1996). Some strategies have been developed to solve this problem, like the 

incorporation of the barnase gene outside the T-DNA border in Agrobacterium-

mediated transformation (Hanson et al. 1999). The expression of this gene is lethal for 

plant cells, therefore it blocks the proliferation of cells which have integrated part of the 

vector. To avoid the superfluous DNA using bombardment, instead of the whole 

plasmid only the essential expression cassettes are attached to the microprojectiles 

(Breitler et al. 2002). 

 
IV.1.2 Chloroplast transformation 
 

Chloroplasts can be also transformed by incorporation of the gene of interest in their 

genome. In this case, transplastomic plants are obtained rather than transgenic plants 

(Boehm 2007). The most commonly method used for chloroplast transformation is the 

bombardment of the plant tissue with the expression vector, but tobacco appears to be 

the only species in which this methodology has been established as routine (Svab and 

Maliga 1993; Daniell 2006). However, the range of transformable plants species is 

increasing, including cotton, soybean, oilseed rape, tomato and potato (Boehm 2007). 

Plant cells can contain 100 plastids with 100 identical copies of their genome which 

means 10,000 copies of the transgenes can be expressed in transplantomic plants 

leading to large amounts of proteins (up to 47% TSP) never achieved by nuclear 

transformation (Daniell 2006). Due to the prokaryotic nature of the chloroplasts, gene 

silencing has not been observed and many genes can be expressed at the same time in 
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operons. Moreover, chloroplasts as other organelles or compartments limit the possible 

toxicity of the recombinant protein to the host plant by having it compartmentalized 

(Daniell 2006; Boehm 2007). Because genes in chloroplast genomes are not transmitted 

through pollen, recombinant genes are easier to contain avoiding escape to the 

environment (Horn et al. 2004). 

A disadvantage of chloroplasts resulting from their prokaryotic origin is the lack of 

post-translational modifications like glycosylation, therefore they are similarly limited 

as the bacterial expression systems (Boehm 2007).  

This production strategy has been commercialized by Chlorogen Inc. (St. Louis, MO, 

USA) to produce a protein of the TGF-ß superfamily which is expected to have the 

market approval by 2013; and by Icon Genetics (Halle, Germany) which expect to have 

products on the market by 2012. 

 
IV.2 Transient transformation 

IV.2.1 Agrobacterium-mediated transient expression (agroinfiltration) 

 
Agroinfiltration is also used to transiently transform leaves in order to test the 

efficiency of the expression vectors before performing stable transformation. In this 

case, the recombinant bacteria carrying the expression vector is transferred into the leaf 

by vacuum infiltration or by direct injection. The bacterial proteins catalyze the transfer 

of the T-DNA into the host cell nucleus where the transgene will be transcribed without 

integration into the host genome. After 2-4 days there is the maximum accumulation of 

the recombinant protein and later there is a decrease in transcription due to post-

transduction gene silencing (Kapila et al. 1997; Johansen and Carrington 2001).  

In contrast to viral vectors, agroinfiltration does not lead to a systemic expression of the 

transgene which is only expressed in the agroinfiltrated leaves. Moreover, this system 

allows the transfer of large genes (>2 kb) which are genetically unstable in viral vectors 

(Porta and Lomonossoff 1996). Another advantage of agroinfiltration is that different 

transgenes can be simultaneously expressed by delivering a mixture of recombinant 

Agrobacteria (Johansen and Carrington 2001). 

 
IV.2.2 Protoplasts 
 

In this system protoplasts (“naked cells”) are obtained from a tissue by degradation 

of the cell wall, and the plasma membrane is the only barrier between the cytoplasm and 
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its immediate external environment (Davey et al. 2005). They are exclusively used for 

preliminary tests on protein synthesis in basic scientific research. Reliable procedures 

are available to isolate and culture protoplasts from a range of plants, including both 

monocotyledonous and dicotyledonous crops. Protoplasts can be transformed by 

electroporation or by polyethylenglycol (PEG)-mediated transformation. The 

transformation efficiency can reach 90% for Arabidopsis and tobacco mesophyll 

protoplasts and 75% for maize, and co-transfection of multiple plasmids expressing 

different constructs is very efficient (Sheen 2001; Fisk and Dandekar 2005).  

Some experimental conditions need to be optimized for each plant species when 

transforming protoplasts such as plasmid DNA purity, DNA to protoplast ratio, and 

protoplast culture density. Moreover, the activities of single cells can also be easily 

monitored and visualized by vital markers, such as green fluorescent protein (GFP) and 

luciferase (LUC). Although responses in transient expression assays can be monitored 

as early as 1 to 2 h after DNA transfection, optimal assay conditions need to be 

established experimentally (Sheen 2001). 

 
IV.2.3 Virus-mediated 

 
Another method is the use of modified plant viruses like TMV or Potato X virus 

(PXV) to infect plants and transiently express the recombinant protein. High levels of 

protein expression are achieved in a short time as the virus is systemically spread 

however some limitations are that green plant matter must be processed immediately, 

this system cannot be scaled-up for high amounts (kg) of protein needed, and viruses 

cannot hold large size transgenes (Porta and Lomonossoff 1996; Fischer et al. 2004; 

Horn et al. 2004). Despite this, Icon Genetics (www.icongenetics.com) has developed a 

technology called magnifection which combines the advantages of recombinant virus 

expression and the transgene transfer capacity of Agrobacterium achieving in some 

cases accumulation levels of 80% TSP (Gleba et al. 2005). 

 
V Strategies for recombinant protein accumulation 
 

In this thesis, different strategies to accumulate recombinant proteins in different 

membranes of the plant secretory pathway have been investigated. Two of these 

strategies consist in the fusion of the protein of interest to different transmembrane 
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domains (TMD) and another strategy consists in the fusion to a γ-zein domain to induce 

the formation of protein bodies. The different TMDs and the γ-zein domain are 

explained in more detail in the next sections. 

 

V.1 Membrane proteins 

V.1.1 Types of membrane proteins 

 
Cell membranes are crucial to the life of a cell. Although the basic structure of 

biological membranes is provided by the lipid bilayer, most of the specific functions are 

performed by membrane proteins (Chou 2001). The way that a membrane bound protein 

is associated with the lipid bilayer usually reflects the function of the protein (Chou 

2001).  

 

 

 

 

 

 

 

 

 

 
Figure 2. Schematic drawing showing the five types of membrane proteins. (a) type I transmembrane, 
(b) type II transmembrane, (c) type III multipass transmembrane, (d) type IV transmembrane and (e) GPI-
anchored membrane. Type I transmembrane proteins and GPI-anchored proteins contain their N-terminus 
in the lumen whereas in the type II and type IV transmembrane proteins it remains in the cytosol.  
 

There are five types of membrane proteins: (a) type I transmembrane proteins (Fig. 

2a); (b) type II transmembrane proteins (Fig. 2b); (c) multipass transmembrane proteins 

(Fig. 2c); (d) type IV transmembrane proteins (Fig. 2d); and (e) GPI-anchored 

membrane proteins (Fig. 2e). The first three types of membrane proteins contain one or 

more transmembrane domains which pass once or several times through the membrane 

and interact with the hydrophobic tails of the lipids in the interior of the bilayer 

(illustrated in Fig. 2 a-c). Type I membrane proteins have a luminal or extracellular N-

terminus and a cytosolic C-terminus; type II membrane proteins have a cytosolic N-
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terminus and a luminal or extracellular C-terminus; type III proteins have more than one 

transmembrane domain and therefore cross the membrane at least twice. The  

membranes of the different compartments of the endomembrane system have different 

lipid-protein compositions which determine distinct thickness, becoming thicker and 

more rigid from the ER towards the cell surface (Bretscher and Munro 1993; Sprong et 

al. 2001). The retention of proteins in the ER, Golgi or plasma membrane depends in 

many cases on the TMD length, as first inferred by statistical analyses in which features 

of the TMD are correlated to specific subcellular localisation, and then demonstrated 

experimentally by expressing recombinant proteins with shortened or extended TMD 

(Munro 1995; Pedrazzini et al. 1996; Fu and Kreibich 2000; Pedrazzini et al. 2000; 

Brandizzi et al. 2002). However, the retention mechanisms are still not fully 

characterised and there are no general rules to accumulate proteins in a specific 

compartment based on TMD length (Twyman et al. 2003; Fischer et al. 2004; 

Kamenarova et al. 2005). 

The last two types concerning proteins anchored to membrane include type IV 

transmembrane proteins and GPI-anchored membrane proteins. The type IV membrane 

proteins are a well-known class of ER resident proteins constituted by enzymes with 

cytosolically exposed N-terminal catalytic domains and C-terminal membrane anchors 

(Fig. 2d). Proteins with this kind of topology, referred to as "tail-anchored" are inserted 

posttranslationally into the ER membrane by a signal recognition particle-independent 

mechanism (Pedrazzini et al. 1996). For GPI-anchored proteins, the 

glycophosphatidylinositol (GPI) anchor is attached to the C-terminus of some 

membrane proteins destined for the plasma membrane. This linkage forms in the ER 

lumen, where, at the same time, the transmembrane segment of the protein is cleaved 

off (Fig. 2e). As the protein travels through the secretory pathway, it is transferred via 

vesicles to the Golgi Apparatus and finally reaches the plasma membrane being attached 

only by its GPI-anchor to the external face of the cell membrane. The cleavage of the 

group by phospholipases will result in controlled release of the protein from the 

membrane to the extracellular space (Vidugiriene and Menon 1994). 
 
V.1.1.1 Human LAMP1 

 
The fusion of a target protein to the TMD of human lysosomal associated protein 1 

(LAMP1) and shortened versions has been suggested as a potential tool to accumulate 
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recombinant proteins in different compartments of the plant secretory pathway by 

sorting the proteins by the TMD. The resulting recombinant proteins are expected to be 

type I transmembrane proteins with their N-terminal domain facing the lumen of the 

compartment in which they accumulate. 

LAMP1 is a type I membrane glycoprotein localised in lysosomes and late endosomes. 

It contains a highly glycosylated luminal domain, a transmembrane domain and a short 

cytoplasmic tail (Cook et al. 2004). At steady state, LAMP1 is highly enriched in these 

compartments but a previous work of Brandizzi et al. (2002) demonstrated that different 

versions of LAMP1 TMD, with different length sequences, fused to GFP and expressed 

in tobacco plants, were localised in different membranes of the plant secretory pathway, 

from the ER and Golgi stacks to the plasma membrane. In animal cells, this sorting 

depends on the length of the TMD and the different composition of intracellular 

membranes as proposed by Munro et al. (1995). Therefore, we wanted to investigate if 

the different TMD facilitate this differential accumulation for a target protein. 

 
V.1.1.2 Rabbit cytochrome b5 tail anchor 
 

Another TMD that offers potential for recombinant protein accumulation is the TMD 

of rabbit cytochrome b5 (cyt b5) tail anchor (TA). TA proteins are a class of integral 

membrane proteins that are inserted into membranes by a hydrophobic sequence close 

to the C-terminus and they have the entire functional N-terminal domain facing the 

cytosol. These proteins do not contain an N-terminal signal sequence and they are 

sorted to their target membrane by posttranslational mechanisms only upon termination 

of translation. They are type IV membrane proteins (illustrated Fig. 2d) and in 

eukaryotes they carry out many fundamental cell functions (Borgese et al. 2003). One 

example is the mammalian membrane-bound flavoprotein NADH-cytochrome b(5) 

reductase which exists in two homologous isoforms specifically localised to the 

mitochondria outer membrane (MOM) and the ER membrane (for review see Borgese et 

al. 1993). The lack of cyt b5 is responsible for a rare but incapacitating genetic disease, 

type II hereditary methemoglobinemia  (Jaffé and Hultquist 1995; Shirabe et al. 1995). 

The cyt b5 family includes 15–23 kDa polypeptides which consist of an N-terminal, 

globular, cytosolic haem-binding domain, a short connecting region, and a hydrophobic 

transmembrane domain followed by a few polar luminal residues at the extreme C-

terminus. In mammals, the net charge of the C-terminal polar region determines the 
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sorting to the correct target membrane, a positive charge leading to mitochondria and a 

negative or null charge to the ER (Mitoma and Ito 1992; Kuroda et al. 1998; Korsmeyer 

et al. 2000; Borgese et al. 2001; Hwang et al. 2004). However, it was observed that the 

expression of two rabbit cyt b5 isoforms in plants resulted in the expected localisation 

of the ER form into the ER membrane but the MOM form was sorted to the chloroplast 

outer envelope (COE). It also seems that the plant ER is less selective than mammalian 

ER with regard to TA protein targeting, because it is able to accommodate cyt b5 forms 

with opposite net charges. These findings highlighted that plant cells have a specific and 

yet uncharacterized mechanism to sort TA proteins with the same positive C-terminal 

charge to different membranes (Maggio et al. 2007). 

It has been demonstrated that the translocation of the C-terminus of a tagged form of 

mammalian cyt b5 carrying an N-glycosylation site in its C-terminal domain to the ER 

might occur by a mechanism distinct from that of signal peptide-dependent 

translocation (Yabal et al. 2003). This site was added as a criterion for the correct 

translocation of the protein across the ER membrane. Moreover, it has been shown that 

this TA C-terminal domain can be used as a tool to increase the stability of recombinant 

proteins that are naturally expressed in the cytosol by accumulating them on the 

cytosolic face of the ER (Barbante et al. 2008).  

 

V.1.2 Protein polymerization and formation of ER protein bodies 

V.1.2.1 Zea mays γ-zein  

 
As described in II.4, another strategy to produce recombinant proteins consists in 

their accumulation in protein bodies. To explore it, in this thesis we used the N-terminal 

domain of maize γ-zein to fuse the protein of interest and induce the formation of 

protein bodies. The 27 kDa γ-zein protein is a seed storage protein (maize prolamin) 

soluble in water only under reducing conditions (Vitale et al. 1982). It contains an N-

terminal domain mainly composed of 8 repeats of the hexapeptide PPPVHL, followed 

by a short Proline-rich but not repeated domain, and finally a C-terminal Cysteine-rich 

domain that contains 8 out of the total 15 Cys residues of the polypeptide (Prat et al. 

1985). A special feature of prolamins is the accumulation in ER as very large polymers 

called protein bodies (Vitale and Ceriotti 2004). In this case the proteins are not 

accumulated by direct anchoring to the ER membrane. Each maize protein body 

contains zeins of different classes. By expression in transgenic plants, it has been shown 
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that those of the γ and β class are able to efficiently form protein bodies also when 

expressed individually, whereas those of the α and δ class are much more unstable 

unless co-expressed with γ− or β-zeins (Coleman et al. 1996; Bagga et al. 1997). 

Expression of mutated forms of γ-zein indicated that the accumulation in the ER and the 

formation of protein bodies are independent events. While the retention in the ER is 

directed by the N-terminal domain with or without the Pro-rich domain, the information 

for protein body formation remains in the C-terminal domain (Geli et al. 1994). 

Mainieri et al. (2004) described the accumulation of bean phaseolin in ER-derived 

protein bodies by the fusion to the N-terminal γ-zein domain and the recombinant 

protein was named zeolin. Although the required information for protein body 

formation is in the C-terminal domain of γ-zein, the recombinant protein was able to 

form protein bodies, most likely due to an unexpected effect of the added phaseolin 

sequence. The fusion of phaseolin with the zein sequence makes the protein very stable 

and the accumulation (3.5 % TSP) is much higher than if KDEL is added (0.5 %TSP). 

As described previously in II.4, the ER constitutes a convenient compartment for 

accumulation of recombinant proteins and the most common strategy is the fusion to the 

H/KDEL tetrapeptide (Vitale and Pedrazzini 2005). The fusion to the N-terminal 

domain of γ-zein constitutes an alternative strategy and a potential biotechnological tool 

to accumulate recombinant proteins in the ER (Vitale and Pedrazzini 2005). De Virgilio 

et al. (2008) described the fusion of HIV-1 Nef (Negative factor) to the N-terminal 

domain of γ-zein and to zeolin. The zein fusions (N-terminal or C-terminal-tagged) were 

not successful but the zeolin fusion achieved accumulation levels of 1.5% TSP and 

formation of ER-derived protein bodies in transgenic tobacco plants. 

 

VI Recombinant protein purification  
 

The purification process of recombinant proteins from a plant tissue is the most 

expensive step in an expression system based on transgenic plants. The main steps can 

be divided in: (1) fractionation of the plant tissue and protein extraction (2) solid-liquid 

separation and (3) recombinant protein purification (Kusnadi et al. 1997). The first step 

includes seed grinding and/or green tissue homogenization followed by cold buffer 

extraction and centrifugation. The objective of this step is to reduce the biomass volume 

and prepare the material for protein extraction. The composition of the extraction buffer 
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(pH, detergents, salts, protease inhibitors, reducing agents) determines the capacity of 

protein solubilization which also depends on the transgenic plants and the nature of the 

recombinant protein (Kusnadi et al. 1997). The main problems of this step are the 

proteolytic degradation and reactions with phenolic compounds and oils. An alternative 

to avoid these problems is to produce proteins that are secreted as disruption of cells is 

not necessary and these compounds will not be released (Kusnadi et al. 1997; Fischer et 

al. 2004). Moreover, for species with a high oil content, hexanes can be included in the 

extraction step without affecting the activity of the recombinant protein (Kusnadi et al. 

1998). 

In the second step, the separation of solid (insoluble) and liquid (soluble) phases is 

achieved by centrifugation or filtration. Another option is the use of EBA (expanded 

bed adsorption) resins however the size of the material is very important as it can 

collapse the expanded bed (Menkhaus et al. 2004).  

The protein purification (step 3) is usually carried out by chromatographic techniques 

by using ion exchange, hydrophobic interaction, and size exclusion chromatography 

(Kusnadi et al. 1998). Another useful technique is the addition of affinity tags to 

facilitate the recovery of the recombinant protein in which the tags are removed after 

purification to restore the native structure of the protein (Fischer et al. 2004). Usually 

these tags are released by protease cleavage, which increases the final purification costs. 

To avoid cleavage with enzymes, it is useful to fuse the protein of interest to intein, a 

self-cleaving protein domain (Perler 2005). Recombinant proteins can be also 

accumulated in different cell compartments: for example, by fusion to TMD, in ER-

derived oil bodies by fusion to oleosin, and in ER-derived protein bodies by fusion to γ-

zein  (Brandizzi et al. 2002; Mainieri et al. 2004; Capuano et al. 2007). The different 

compartments can be isolated and the recombinant proteins recovered. 

It is important to have a purification system which is commercially competitive and 

allows not highly expensive purification of functional recombinant protein in large-

scale. In summary, the final utilization of the recombinant protein, the plant species in 

which is produced and the tissue in which is expressed play key roles in determining the 

best purification method.  
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VII Human Immunodeficiency Virus (HIV) 
VII.1 HIV infection 
 

In 2007, 33.2 million people worldwide were living with HIV, about 2.5 million 

people became newly infected with HIV and an estimated 2.1 million lost their lives to 

AIDS. Despite the international community's best efforts, the HIV pandemic continues 

unabated. On average, people require life-saving antiretroviral treatment (ARVs) 7-10 

years after becoming infected. While there has been recent progress in increasing access 

to treatment and prevention programs, HIV continues to outpace the global response 

with at least 70% of those in clinical need of ARVs worldwide not receiving them 

(UNAIDS). 

Every day, nearly 7,000 people become newly infected with HIV and about 6,000 

people die from AIDS which accelerates the pressure to develop a vaccine that must be 

a global health and development priority (IAVI). It is generally accepted that a first 

generation of successful HIV vaccines will offer much less than 100% of protection (as 

any new vaccine offers). Further development on these vaccines will lead to a 

preventive HIV vaccine which will be improved with time. It has been suggested that 

even partially effective vaccines would (i) protect some vaccinated individuals against 

HIV infection, (ii) reduce the probability that a vaccinated individual who later becomes 

infected will transmit the infection to others, and (iii) slow the rate of progression to 

AIDS for those who later become infected with HIV. 

Fig.3. HIV infection development 
after a massive worldwide 
vaccination. New adult HIV 
infections in low-, middle- and high-
income countries by year and vaccine 
scenario. The introduction of a 
vaccine at 2015 was chosen for 
illustrative purposes as a vaccine is 
not guaranteed by 2015.  

 

IAVI organisation estimates that – even assuming that other programs for treatment 

and prevention have been scaled up – an HIV vaccine could substantially alter the 

course of the AIDS pandemic and reduce the number of newly infected people, even if 

vaccine efficacy and population coverage levels are relatively low (Fig. 3).  
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VII.2 HIV life cycle and structure 
 

The HIV is a member of the Retroviridae family which comprises an important 

number of species that mostly infect vertebrates. This family is divided into three 

subfamilies: Oncovirinae, Lentivirinae and Spumavirinae. The HIV-1 is a Lentivirus 

and the name means they infect slowly and latently. In this subfamily there are other 

immunodeficiency virus that infect apes or monkeys (SIV) and cats (FIV), as well as 

another HIV-2 that remains localised in East Africa, (Turner and Summers 1999).  

The HIV is a spherical particle of 80-100 nm, enveloped, with two copies of RNA. It 

contains three layers: the internal layer which contains the RNA, the nucleoproteins and 

the viral enzymes, the icosahedral capsid, and the envelope derived from the host cell 

membrane. The genome consists of 

two identical 9.6 kb long RNA chains, 

with positive polarity, which encode 

nine open reading frames (ORF). 

Three of these encode the Gag, Pol, 

and Env polyproteins common to all 

retroviruses, which are subsequently 

proteolysed into individual proteins. 

The four Gag proteins, p17 MA 

(matrix), p24 CA (capsid), p7 NC 

(nucleocapsid), and p6, and spacer 

peptides (SP) are structural components that make up the core of the virion. The two 

Env proteins, SU (surface or gp120) and TM (transmembrane or gp41) are structural 

components of the outer membrane envelope (Frankel and Young 1998; Ganser-

Pornillos et al. 2008). The three Pol proteins, PR (protease), RT (reverse transcriptase), 

and IN (integrase), provide essential enzymatic functions and are also encapsulated 

within the particle. HIV-1 encodes six additional proteins, often called accessory 

proteins, three of which (Vif, Vpr, and Nef) are found in the viral particle. Two other 

accessory proteins, Tat and Rev, provide essential gene regulatory functions, and the 

last protein, Vpu, indirectly assists in assembly of the virion (Frankel and Young 1998). 

The HIV-1 virion structure is shown in figure 4 and the life cycle in Figure 5.  

 

 
Figure 4. Structure of the HIV-1 virion. Envelope 
proteins: gp41 and gp120. Core proteins: capsid 
(p24), matrix (p17). Polymerase proteins: RT  
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VII.3 HIV vaccine candidates 
 

The Gag protein is a single multi-domain viral protein which is sufficient for 

assembly of retrovirus-like particles in mammalian cells (Datta et al. 2007). Gag was 

shown to be a conserved gene in contrast to envelope protein genes and various T-cell 

epitopes have been mapped. Cytotoxic T lymphocyte (CTL) responses are responsible 

for bringing down the initial burst of viremia. In many studies with long term survivors 

CTL epitopes have been mapped to the gag region showing the maintenance of memory 

to gag epitopes (Chugh 2003). 

After the failure of many vaccines including HIV envelope proteins, several Gag 

vaccines have been produced as single protein subunits or together with an attenuated 

viral or bacterial vector (Hanke et al. 2002; Xu et al. 2003; Song et al. 2006; Xin et al. 

2007).  
  

Figure 5. HIV life cycle and 

structure of Gag. (a) Summary 

of the HIV-1 replication cycle. 

(b) HIV-1 Gag polyprotein 

domain structure, showing the 

locations of MA, CANTD, CACTD, 

SP1, NC, SP2, and p6. (c) 

Structural model of the extended 

Gag polypeptide, derived from 

high-resolution structures and 

models of isolated domains. PR 

cleavage sites are indicated by 

the arrowheads in (b) and (c). 

Schematic models of the 

immature (d) and mature (e) 

HIV-1 virions. Tomographs of 

immature (f) and mature (g) HIV-

1 particles taken by electron 

cryotomography. The spherical 

virions are approximately 130 nm 

in diameter. From (Ganser-

Pornillos et al. 2008). 
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For example, a polyvalent vaccine in which Gag was expressed in an auxotrophic 

Bacillus Calmette-Guérin strain showed potential immunity against HIV (due to Gag) 

and against tuberculosis (due to the bacterial vector) (Im et al. 2007). An important 

domain of Gag is the p24 capsid protein. This protein forms the conical core of viral 

particles and cyclophilin A, a human cellular proline isomerase, has been demonstrated 

to interact with the p24 region Gag leading to its incorporation into HIV particles. The 

interaction between Gag and cyclophilin A is essential because the disruption of this 

interaction inhibits viral replication (Franke et al. 1994; Franke and Luban 1996). 

Moreover, formylation of the N-terminal proline of HIV-1 p24 was found by 

proteomics. The role of formylation of HIV-1 p24 is still unclear, but it is thought to 

play a critical role in the formation of the HIV-1 core and for infectivity (Misumi et al. 

2007). 

p24 was proved to trigger both cellular and humoral host responses highlighting its 

suitability as a subunit vaccine candidate. Moreover, p24, like Gag, is much more 

conserved among HIV clades and other immunodeficiency viruses than envelope 

proteins (Matsuo et al. 1992; Hilpert et al. 1999). 

The HIV-1 p24 capsid protein has been produced in different expression systems 

including bacteria (Gupta et al. 1997; Qoronfleh 1999; Castilho et al. 2005; Bhardwaj et 

al. 2006; Mahboudi et al. 2006; Im et al. 2007), yeast (Vlasuk et al. 1989; Jiang et al. 

2005), insect cells (Joshua et al. 2000), mammalian cells (Chen et al. 2007), and also 

plants (table III). In plants, it has been produced in tomato, however, in transgenic 

tomatoes using tomato bushy stunt virus, the p24 ORF was not maintained in the viral 

vector (Zhang et al. 2000). In contrast, transgenic tobacco plants showed accumulation 

levels of 0.35% TSP in the cytosol (Zhang et al. 2002). In another study, p24 from HIV-

1 clade C was inoculated into N.benthamiana plants using TMV as a vector, obtaining 

yields of 100 mg per kg fresh leaf weight (Perez-Filgueira et al. 2004). On the basis of 

the observation that immunoglobulin proteins are usually expressed at high levels in 

plants, a fusion molecule containing the p24 from HIV-1 clade B fused to the Cα2 and 

Cα3 constant region domains of a human IgA α-chain was prepared. The fusion protein 

was targeted to the secretory pathway and presented levels of accumulation of 1.4% 

TSP in transgenic tobacco plants (Obregon et al. 2006).  

Furthermore, in a recent study, two HIV-1 clade C proteins, p24 and p17/p24 chimera, 

were targeted to the ER and to the chloroplasts in tobacco plants (Meyers et al. 2008). 
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Transient expression of tobacco chloroplasts achieved maximum levels of 

accumulation, about 0.3% TSP, for both p24 and p17/p24. 

In the present work different strategies have been tested exploring the possibility to 

accumulate the HIV-1 p24 protein in different membranes of the plant secretory 

pathway. This protein was fused to different domains and/or proteins to target the 

recombinant protein to different compartments, trying to increase its stability and 

therefore its accumulation.   
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The objective of the present work was to produce the recombinant HIV-1 p24 protein 

in different subcellular compartments of the plant secretory pathway, in an effort to 

achieve high accumulation in tobacco plants. The p24 coding sequence was fused to red 

fluorescent protein (RFP) or GFP and to different transmembrane domains (TMD) 

derived from human lysosomal associated protein 1 (LAMP1), to the N-terminal 

domain of γ-zein from Zea mays, or to the C-terminal transmembrane domain (tail-

anchor, TA) of rabbit cytochrome b5 (cyt b5). The first attempt was to transform 

tobacco protoplasts to analyze the expression of the different recombinant p24 proteins. 

The constructs containing RFP or GFP with or without a TMD were also analysed using 

confocal microscopy to determine the intracellular localisation of the fusion proteins. 

The expression cassettes of some constructs were cloned into binary vectors to perform 

Agrobacterium-mediated transient expression. The selected constructs, six in total, were 

cloned into another binary vector and Agrobacterium tumefaciens was transformed to 

allow plant transformation and generate stable transgenic tobacco plants. Transgenic 

tobacco lines that accumulate the recombinant protein in different amounts were then 

selected to determine mRNA levels. Stability of the different recombinant p24 fusion 

proteins was analysed by pulse-chase labelling of leaf protoplasts isolated from 

transgenic plants and purification was achieved in vitro by digesting the fusion proteins 

with thrombin protease. Furthermore, the intracellular localisation of the constructs 

containing γ-zein and TA domains was determined by electron microscopy. 

 

In this Results chapter, the structure of the different fusion proteins expressed in 

tobacco plants is illustrated followed by the analysis of the subcellular localisation of 

some of the constructs in transiently transformed tobacco protoplasts and their level of 

expression. Next the production of transgenic lines expressing six of the fusion proteins 

is detailed. The stability of the fusion proteins and a first purification of recombinant 

p24 from the transgenic lines are assessed, as well as a preliminary electron microscopy 

study. 

 

 

 

 

 



                                                                                                                                               Results 

 33

I Design of the fusion proteins 
 

In this thesis, different proteins and TMD were fused to the HIV-1 p24 to accumulate 

it in different membranes of the plant secretory pathway. In the first strategy, 

fluorescent proteins were fused to p24 in the constructs containing TMD derived from 

LAMP1 TMD and cytosolic and secreted versions were also prepared. These 

fluorescent proteins were introduced to allow the detection of the recombinant proteins 

expected in different cell compartments by confocal microscope analysis. In another 

strategy, the p24 protein was fused to the N-terminal domain of maize γ-zein to induce 

the accumulation of the recombinant proteins in ER-derived protein bodies. Finally, the 

p24 was fused to the cyt b5 TA to accumulate the recombinant protein in the cytosolic 

face of the ER. The fusions to γ-zein and TA did not contain any fluorescent marker.  

To conduct all the experiments, a total of fifty-two constructs were prepared as 

described in more detail in Materials and methods section V. The final cloning vectors 

to transform tobacco protoplasts were pGY1 and pDHA. These plasmids contain the 

35S CaMV promoter and terminator, an origin of replication in E.coli and an ampicillin 

resistance gene. Next are detailed the preparation of the different constructs. 

 
I.1 Constructs containing XFP 

I.1.1 Mutagenesis of RFP for RFP-TMD constructions (positive controls) 
 

We first wanted to test if the different TMD fused to RFP followed the same pattern 

as previously described when fused to GFP in tobacco plants. Human LAMP1 is a type 

I membrane glycoprotein composed of a highly glycosylated luminal domain, a 

transmembrane domain and a short cytoplasmic tail. At steady state, LAMP1 is highly 

enriched in late endosomes and lysosomes. Previous work of Brandizzi et al. (2002), in 

which the original TMD and shortened versions of it were fused to GFP and expressed 

in tobacco plants, showed that the localisation of the fluorescent protein changed from 

ER to Golgi stacks and to the plasma membrane depending on the length of the TMD. 

Based on these results, we investigated whether these different versions of LAMP1 

TMD could be used as tools to accumulate large quantities of recombinant proteins in 

different compartments of the plant secretory pathway.  

DsRed, a protein from Discosoma sp., is used as natural red chromophore. DsRed, as 

other fluorescent proteins, mature quite slowly and incomplete maturation gives rise to 
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residual green fluorescence. Moreover, it tends to aggregate in tetramers leading to 

cellular toxicity. Therefore we wanted to use another form of the protein which is stable 

and tolerated by the host cell when overexpressed. Monomeric RFP1 (mRFP1) derives 

from DsRed, in which a total of 33 mutations were introduced to increase ten times the 

maturation rate of the protein and obtain a monomeric fluorescent protein by breaking 

the subunit interactions while preserving fluorescence (Miyawaki et al. 2003). The 0.7 

kb long mRFP coding sequence (CDS) was mutated using four primers in three 

separated PCR reactions as described in Materials and methods V.1.1.  The purpose 

was to eliminate a HindIII site and introduce a NheI and NcoI sites at the 5’ end, to 

eliminate an internal PstI site and to introduce a PstI and a SalI sites at the 3’ end 

(Figure 1A). The new mutated RFP sequence was verified by sequencing to ensure the 

new sequence did not contain any mutation. Different constructs were then prepared by 

fusing the new RFP to different TMD.  

 

 
 

 

 
 

 

 
                                                     

 

 

 

 

 

Figure 1. Site-directed mutagenesis of the mRFP CDS by overlap extension. A) Diagram of the 
original mRFP CDS with restriction sites mentioned in the text and the 4 primers used for the different. 
B) Diagram of the modified mRFP CDS with the new restriction sites mentioned in the text. C) Analysis 
of the different PCR fragments by agarose gel electrophoresis. Lane 1, 340 bp fragment of PCR1 product 
(primers #1 and 3); lane 2, 363 bp fragment of PCR 2 product (primers #2 and 4); lane 3, 700 bp full 
length mutated RFP (primers #1 and 4); M: Gene ruler 1 kb DNA ladder. 
 
 

The original LAMP1 TMD, called TMD23, is 23 amino acids long and accumulated 

in the plasma membrane. In the TMD20 and TMD17 DNA sequences, 9 and 18 bases 

were deleted and the encoded amino acid sequences are accordingly shorter, 20 and 17 

amino acids, and they accumulated in Golgi stacks and ER, respectively. Nine bases 
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were also added to the TMD23 DNA sequence resulting in a 26 amino acid long 

(TMD26) and is expected to accumulate in plasma membrane (Nadine Paris, 

unpublished).  

In Figure 2 (upper panel) the different DNA constructs containing RFP and a TMD 

are represented. They were named pRFP-TMD17, pRFP-TMD20, pRFP-TMD23 and 

pRFP-TMD26 depending on their TMD. The DNA alignment shown in Figure 2 (lower 

panel) corresponds to the sequences encoding the TMD and emphasizes the position of 

the insertion or deletions. Silent point mutations that we identified in the TMD are 

highlighted in red. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
TMD17          TATCGAAGGTAGAGAAGCTGAAGCTCTGATCCCCATCGCTGTGGGTGGCGCGCTAGCGGGG 
TMD20          TATCGAAGGTAGAGAAGCTGAAGCTCTGATCCCCATCGCTGTGGGTGGCGCGCTAGCGGGG 
TMD23          TATCGAAGGTAGAGAAGCTGAAGCTCTGATCCCCATCGCTGTGGGTGGCGCGCTTGCGGGG 
TMD26          TATCGAAGGTAGAGAAGCTGAAGCTCTGATCCCCATCGCTGTGGGTGGCGCGCTAGCTGGC 
                I  E  G  R  E  A  E  A  L  I  P  I  A  V  G  G  A  L  A  G 
 
TMD17          CTG---------------------------GCCTACCTCGTCGGCAGGAAGAGATCTTAA 
TMD20          CTG------------------GTCCTCATCGCCTACCTCGTCGGCAGGAAGAGATCTTAA 
TMD23          CTG---------GTCCTCATCGTCCTCATCGCCTACCTCGTCGGCAGGAAGAGATCTTAA 
TMD26          CTTGTACTGATCGTCCTCATCGTCCTCATCGCCTACCTCGTCGGCAGGAAGAGATCTTAA 
amino acids    L  V  L  I  V  L  I  V  L  I  A  Y  L  V  G  R  K  R  S  * 

 

 

Figure 2. Schematic representation of the different RFP-TMD DNA constructs. The new mutated 
RFP was cloned into the pGY1 vector containing the signal peptide (sp) of tobacco chitinase. Between the 
RFP and the TMD there is a Factor Xa cleavage site (IEGR are the amino acids recognized by Factor Xa 
protease) for purification purposes. In the lower panel the DNA sequences of the different transmembrane 
domains are aligned. The TMD23 DNA sequence is originally from the LAMP1 TMD and the TMD17 
and TMD20 contain deletions of the original sequence whereas TMD26 contains additional bases (grey). 
The red letters represent silent point mutations identified in the different sequences. 
 
 
I.1.2 Mutagenesis of HIV p24 for insertion N-terminally to RFP and TMD 
 

The p24 protein is derived from a precursor polyprotein of HIV, p55, that is cleaved 

into shorter polypeptides, namely p24 (core), p17 (matrix) and p7/p9 (nucleocapsid) 
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proteins. The p24 protein is synthesized in the cytosol as part of the GAG polyprotein 

and has an approximate size of 24 kDa. It forms the core of the virus and encapsulates 

the viral genomic RNA. 

 

 
                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Mutagenesis of the original p24 gene to obtain p24N1. A) Diagram of site-directed 
mutagenesis by overlap extension of p24 CDS. The original p24 CDS is illustrated with the unwanted 
restriction sites and the 8 primers used for the different PCR. Below, the diagram shows the p24N1 CDS 
with the new restriction sites and the added sequence encoding the thrombin cleavage site (Th). B) 
Analysis of the different PCR fragments by agarose gel electrophoresis. Lane 1, PCR 1, 271 bp fragment; 
lane 2, PCR 2, 307 bp; lane 3, PCR 3, 192 bp; lane 4, PCR 4, 547 bp fragment; lane 5, first full length 
mutated p24, 720 bp; lane 6, correction PCR 6, 459 bp; lane 7, correction PCR 7, 283 bp; lane 8, final 
mutated p24N1, 724 bp. M: Gene ruler DNA ladder mix. C) Representation of the different mutagenic 
and assembly PCR reactions. Asterisk in A: point mutation. 
 
 

Several changes were introduced into the original HIV-1 p24 gene in preparation for 

the different constructs. For a first mutated p24 CDS, eight primers were designed to (i) 

remove an XhoI site and introduce NheI and SalI sites at the 5’end; (ii) remove internal 

SphI, PstI and HindIII sites; (iii) remove an EcoRI site, and (iv) introduce the sequence 

encoding the thrombin cleavage site followed by an NcoI site at the 3’ end (Figure 3 A 

shows the restriction map before and after the mutagenesis). Mutagenesis by overlap 
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extension (Fig. 3C) was performed using a restriction fragment obtained from the 

original plasmid as template for the first reactions. The expected fragment sizes were 

obtained in each reaction (Fig 3B). Sequencing the end product revealed an unwanted 

mutation which had to be corrected by an additional mutagenesis step (Figure 3 A and 

C). The first full length mutated p24 CDS (produced by PCR 5) was cloned into 

pGEM®. Sequencing revealed 4 unwanted point mutations when comparing with the 

original p24 sequence. The original p24 clone used as template DNA may have already 

contained these mutations. Three of these four mutations were silent. Therefore, only 

the fourth point mutation was corrected by site-specific mutagenesis (reactions PCR 6, 7 

and 8, Fig 3 C). 

The new sequence was called p24N1 and was used for the constructs in which the RFP 

and the different TMDs were fused to the C-terminus of p24 (details in Materials and 

methods V.2; Figure 4). Between the p24 and the RFP proteins a thrombin cleavage site 

was introduced. Moreover, between the RFP and the TMD there is a Factor Xa cleavage 

site that was already in the TMD constructs. Both sites were introduced to cleave p24 

from the fusion proteins in the final purification steps. 
 

 

 

 

 

Figure 4. Schematic representation of the fusion proteins (p24RFP-TMD) expressed in tobacco 
protoplasts. SP: signal peptide; LVPRG represents the thrombin protease cleavage site; IEGR represents 
the Factor Xa protease cleavage site. 
 
 
I.1.3 p24 fused to C-terminus of RFP and TMD 
 

To clone the p24 gene at the C-terminus of RFP additional mutations were necessary, 

as restriction sites and an additional thrombin cleavage site had to be introduced into the 

p24N1 CDS: an XhoI and a thrombin cleavage sites were introduced at the 5’ end and a 
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SalI site was introduced at the 3’ end. This new p24 was called p24N2. The XhoI and 

SalI sites are both compatible with the SalI site of the vector. As the insert could be 

inserted in both orientations, bacterial colonies were screened by colony PCR to identify 

the correct orientation of the gene. p24N2 was inserted between the RFP and the TMDs 

(Figure 5). The details of the cloning steps are described in Materials and methods V.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Schematic representation of the fusion proteins (RFPp24-TMD) expressed in tobacco 
protoplasts. Two thrombin cleavage sites were introduced flanking the p24 gene for purification 
purposes. 
 
 
I.1.4 Other constructs 
 

Additional TMD constructs were prepared after the first results with the RFP-

containing constructs were obtained and evaluated (section II). RFP was replaced by 

GFP, and secreted and cytosolic p24RFP and RFPp24 were also produced. A schematic 

representation of the constructs is shown in Figure 6.  

 

I.1.4.1 Zein and cytochrome b5 tail anchor constructions 
 

In the constructs described above, p24 is part of a transmembrane protein and is 

exposed into the lumen of the compartments of destination. Two additional strategies 

were tested for the accumulation of p24 in the secretory pathway. The first one involves 

fusion with a domain of maize γ-zein. This seed storage protein is synthesized in maize 

endosperm during seed development and accumulates as part of large polymers termed 

protein bodies (PB) in the lumen of the ER. γ-zein is fully luminal and forms PB also 

when expressed in transgenic plant vegetative tissues in the absence of other maize 

storage proteins. The N-terminal domain of γ-zein that we used here has been 
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previously shown to promote the formation of PB when fused to the vacuolar storage 

protein phaseolin (Mainieri et al. 2004). Our hypothesis was that fusion of the same zein 

domain to p24 could also promote stable PB formation, leading to high accumulation of 

recombinant p24 (Fig. 7). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 6. Representation of additional fluorescent protein p24 constructs. The p24 gene was also 
fused to different fluorescent proteins containing or not a TMD. The signal peptide (SP) is the tobacco 
chitinase SP. 
 

 

 

 

 

 
Figure 7. Representation of zein and TA constructs. The p24 was fused to the C-terminus or N-
terminus of the N-terminal domain of γ-zein called pzein-p24 and pP24-zein, respectively. The signal 
peptide (SP) of pzein-p24 is from γ-zein. The p24 was also fused to the C-terminal domain of rabbit cyt 
b5 called pP24-TA.  
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The second strategy was devised to promote stable attachment of p24 to the cytosolic 

face of the ER membrane by the addition, at the C-terminus, of the TA of rabbit cyt b5. 

Like the other TA proteins (also called type IV integral membrane proteins), cyt b5 is 

post-translationally targeted to the membrane (in this case the ER) due to a 

transmembrane domain that is very close to its C-terminus. This domain is followed by 

a few C-terminal amino acids that in the final topology are luminal, whereas most of the 

protein remains exposed to the cytosol. The addition of a TA strategy could extend the 

half-life of p24 with respect to its synthesis as a soluble cytosolic protein but, contrarily 

to other strategies used here, would maintain its folding process in the cytosol, which is 

the natural folding environment of p24  (Figure 7). The different constructs are also 

listed in table I with the expected localisation according the fused sequences. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table I. Hybrid protein constructs, their fluorescent proteins and their expected localisation 
 

Construct name Fluorescent protein Expected localisation 
Pzein-p24 None ER protein bodies 
pP24-zein None ER protein bodies 
pP24-TA None ER (cytosolic) 
pRFP-TMD17 RFP ER (lumen) 
pRFP-TMD20 RFP Golgi (lumen) 
pRFP-TMD23 RFP PM (apoplast) 
pRFP-TMD26 RFP PM (apoplast) 
pP24RFP-TMD17 RFP ER (lumen) 
pP24RFP-TMD20 RFP Golgi (lumen) 
pP24RFP-TMD23 RFP PM (apoplast) 
pP24RFP-TMD26 RFP PM (apoplast) 
pRFPp24-TMD17 RFP ER (lumen) 
pRFPp24-TMD20 RFP Golgi (lumen) 
pRFPp24-TMD23 RFP PM (apoplast) 
pRFPp24-TMD26 RFP PM (apoplast) 
GFP-TMD17 GFP ER (lumen) 
GFP-TMD20 GFP Golgi (lumen) 
GFP-TMD23 GFP PM (apoplast) 
P24GFP-TMD17 GFP ER (lumen) 
P24GFP-TMD20 GFP Golgi (lumen) 
P24GFP-TMD23 GFP PM (apoplast) 
GFPp24-TMD17 GFP ER (lumen) 
GFPp24-TMD20 GFP Golgi (lumen) 
GFPp24-TMD23 GFP PM (apoplast) 
RFPp24TMD20-GFP RFP and GFP Golgi (lumen) 
RFPp24TMD23-GFP RFP and GFP PM (apoplast) 
RFPp24TMD26-GFP RFP and GFP PM (apoplast) 
P24RFPsec RFP Secreted 
RFPp24sec RFP Secreted 
P24RFPcyt RFP Cytosol 
RFPp24cyt RFP Cytosol 
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I.2  Prediction of the signal peptide cleavage 
 

Signal peptides are short transient sequences located at the N-terminus of a nascent 

secretory or membrane protein. They contain the necessary information to direct 

proteins to the ER and are usually cleaved off co-translationally by signal peptidase. 

When a nascent protein contains an ER signal peptide, it is translocated across the ER 

membrane during translation and folded and modified there. Unless there is a specific 

signal for ER retention or retrieval, the protein will then travel along the secretory 

pathway. A soluble protein will be eventually secreted, unless it has another sorting 

signal to direct it to another compartment of the endomembrane system, such as a 

vacuole, or has a retrieval system for ER localisation. A membrane anchored protein 

will travel along the pathway towards the plasmalemma or the tonoplast but its final 

residence membrane also depends on the length of its TMD (Brandizzi et al. 2002).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. SignalP-HMM output analysis of tobacco chitinase and γ-zein signal peptides in the 
pP24RFP-TMD, pRFPp24-TMD, pzein-p24 and pP24-zein constructs. The output shows the n-region 
of the signal peptide in green, the h-region in purple and the c-region in blue. The most probable cleavage 
sites are shown in red: Alanine (A) and Proline (P) residues in pP24RFP-TMD constructs (panel A); 
Serine (S) and Glutamic acid (E) in pRFPp24TMD constructs (panel B); Threonine (T) or Serine (S) 
residues in the pzein-p24 construct (panel C) and Alanine (A) and Proline (P) residues in the pP24-zein 
construct (panel D). 
 
 

It is useful to check the reliability of the signal peptide used in cloning strategies to 

avoid problems due to possible lack of cleavage. Several algorithms have been 

developed to predict the cleavage probability of signal peptides. Using SignalP 

C D 

A B 



                                                                                                                                               Results 

 42

software, the protein sequence of pP24RFP-TMD17, pRFPp24-TMD17, pzein-p24 and 

pP24-zein constructs were used to predict the cleavage site of the tobacco chitinase and 

γ-zein signal peptides (Figure 8). The SignalP-HMM output shows a coloured graph for 

the n-region (positively charged region at N-terminus of the signal peptide), the h-

region (hydrophobic region in the middle) and the c-region (more polar region at the C-

terminus) and also marks in red the region were the cleavage is most probable 

occurring. 

The program predicted that the cleavage of the tobacco chitinase signal peptide in the 

pP24RFP-TMD constructs and the pP24-zein construct would most probably occur after 

the amino acids Ala or Pro (Fig. 8 panels A and D). However, in the constructs in which 

the RFP follows immediately the signal peptide, the pRFPp24-TMD constructs, the 

cleavage of the tobacco chitinase signal peptide would occur after the Ser or Glu (Fig. 8 

panel B). The pzein-p24 construct contains the natural γ-zein signal peptide and for this 

construct the cleavage is predicted to occur either after the Thr or the Ser (Fig.8 panel 

C). In all cases the signal peptides are predicted to be cleaved off from the fusion 

protein.  

 

I.3 Construction of recombinant binary vectors 
 

To transiently or stably transform tobacco plants with Agrobacterium, it is necessary 

to clone the sequences of interest into expression cassettes in a binary vector. For our 

studies, the RFP-TMD cassettes with or without the p24 CDS (twelve constructs), the 

two cassettes containing the γ-zein -p24 hybrids (zein-p24 and p24-zein) and the 

cassette containing the p24-TA hybrid (p24-TA), were cloned into the pGREEN0229 

and/or pGREEN0179 binary vectors. These vectors contain two origins of replication, 

one for E.coli (ColEI), one for Agrobacterium tumefaciens (pSa), and a bacterial 

kanamycin resistance gene. The T-DNA region of pGREEN0229 contains the bar gene 

for plant resistance to ammonium glufosinate (BASTA®) under the control of the 

nopaline synthetase (nos) promoter. The pGREEN0179 contains a hygromycin 

resistance gene under the control of the 35S CaMV promoter.   

When the blue/white (Xgal/IPTG) selection is used to identify clones containing an 

insert in the vector, false positives can be found.  Therefore, a quick method to detect 

real positive recombinant E.coli colonies containing the new recombinant 

pGREEN0179 vectors was used (Figure 9), the cracking gel (Materials and methods 
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III.7). Putative positive recombinant E.coli colonies (white colonies) were picked 

together with a control colony (blue colony), lysed and loaded to an agarose gel. A 

difference in plasmid size could be appreciated in the photograph of the gel as the 

control blue colony contains the empty plasmid (the ligation did not work out). The 

positive colonies were re-confirmed by regular miniprep isolation of the binary vector 

and restriction digestion analysis. 

 
 
Figure 9. Cracking gel analysis of white E.coli colonies transformed with the ligation mixture of 
pGREEN0179 plasmid and the six different cassettes for plant transformation. Putative recombinant 
white colonies of pP24RFPTMD17-0179, pP24RFPTMD20-0179, pP24RFPTMD23-0179, pzeinp24-
0179, pP24zein-0179 and pP24TA-0179 run on an agarose gel. C-: negative control corresponding to a 
blue colony. Upper bands compared to the negative control are putative positives (arrows). 
 
 
After confirmation of the correct cloning in the different binary plasmids, all the new 

recombinant binary vectors were transformed into Agrobacterium tumefaciens GV3101 

strain. This strain has chromosomal resistance to rifampicin (Rif) and already contained 

the T-helper plasmid, which confers resistance to gentamycin (Gen), and had been 

transformed with the disarmed Ti plasmid pSOUP which confers tetracyclin (Tet) 

resistance. The pGREEN vectors conferred Kan resistance to the bacteria, therefore 

when A.tumefaciens GV3101 was transformed, the recombinant colonies were selected 

on a quadruple selection medium (Rif, Gen, Tet and Kan). Recombinant cultures of 

each construct were prepared from single colonies and used for transient expression in 

N.benthamiana plants and stable transformation of N.tabacum plants. To trigger the 

expression of the vir genes, acetosyringone which is a monocyclic phenolic inducer, 

was added to the agroinfiltration medium for transient expression. 
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The different recombinant Agrobacteria used for transient agroinfiltration are listed in 

table II and the recombinant Agrobacteria used for stable transformation of tobacco 

plants are listed in table III.   

 
Recombinant  binary 

construct name 

Binary vector 

backbone 

Cassette from Selection in 

bacteria 

Selection in plants 

pGRFP-TMD17 pGREEN0229 pRFP-TMD17 Kan glufosinate 

pGRFP-TMD20 pGREEN0229 pRFP-TMD20 Kan glufosinate 

pGRFP-TMD23 pGREEN0229 pRFP-TMD23 Kan glufosinate 

pGRFP-TMD26 pGREEN0229 pRFP-TMD26 Kan glufosinate 

pGP24RFP-TMD17 pGREEN0229 pP24RFP-TMD17 Kan glufosinate 

pGP24RFP-TMD20 pGREEN0229 pP24RFP-TMD20 Kan glufosinate 

pGP24RFP-TMD23 pGREEN0229 pP24RFP-TMD23 Kan glufosinate 

pGP24RFP-TMD26 pGREEN0229 pP24RFP-TMD26 Kan glufosinate 

pGRFPp24-TMD17 pGREEN0229 pRFPp24-TMD17 Kan glufosinate 

pGRFPp24-TMD20 pGREEN0229 pRFPp24-TMD20 Kan glufosinate 

pGRFPp24-TMD23 pGREEN0229 pRFPp24-TMD23 Kan glufosinate 

pGRFPp24-TMD26 pGREEN0229 pRFPp24-TMD26 Kan glufosinate 

pGzein-P24 pGREEN0229 pzein-P24 Kan glufosinate 

pGP24-zein pGREEN0229 pP24-zein Kan glufosinate 

pGP24-TA pGREEN0229 pP24-TA Kan glufosinate 

 
Table II. Description of the different recombinant binary constructs used for Agrobacterium-
mediated transient expression. 
 
 

Recombinant  binary 

construct name 

Binary vector 

backbone 

Cassette from Selection in 

bacteria 

Selection in 

plants 

pGP24RFP-TMD17 pGREEN0229 pP24RFP-TMD17 Kan glufosinate 

pGP24RFP-TMD20 pGREEN0229 pP24RFP-TMD20 Kan glufosinate 

pGP24RFP-TMD23 pGREEN0229 pP24RFP-TMD23 Kan glufosinate 

pGzein-P24 pGREEN0229 pzein-P24 Kan glufosinate 

pGP24-zein pGREEN0229 pP24-zein Kan glufosinate 

pGP24-TA pGREEN0229 pP24-TA Kan glufosinate 

pP24RFPTMD17-0179 pGREEN0179 pP24RFP-TMD17 Kan Hyg 

pP24RFPTMD20-0179 pGREEN0179 pP24RFP-TMD20 Kan Hyg 

pP24RFPTMD23-0179 pGREEN0179 pP24RFP-TMD23 Kan Hyg 

Pzeinp24-0179 pGREEN0179 pzein-P24 Kan Hyg 

pP24zein-0179 pGREEN0179 pP24-zein Kan Hyg 

pP24TA-0179 pGREEN0179 pP24-TA Kan Hyg 

 
Table III. Description of the different recombinant binary constructs containing the six cassettes of 
interest used for stable plant transformation. 
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II Characterization of the XFP fusion proteins by 
transient expression 

 
 
II.1 Analysis of the subcellular distribution of XFP fusion proteins 

in transformed tobacco protoplasts and in agroinfiltrated leaves   
 

Transient expression of recombinant proteins allows a first test of their subcellular 

localisation and accumulation in vivo before producing stable transformed plants. To 

study the subcellular localisation of the fusion proteins containing RFP and TMD, wild-

type N.tabacum cv Petit Havana mesophyll protoplasts were transformed with the 

different constructs by DNA electroporation, and N.benthamiana plants were 

transformed using recombinant Agrobacteria. Tobacco protoplasts were transfected 

either with the single constructs alone or co-transfected with the soluble marker for the 

ER lumen GFP-HDEL, the membrane-bound trans-Golgi marker ST-YFP (Sialyl 

transferase-YFP) or with the membrane-bound pre-vacuolar compartment (PVC) 

marker GFP-BP80 (GFP-Binding Protein 80). The transformed cells were imaged using 

a confocal scanning microscope. 

 

II.1.1 The RFP fluorescence is localised in the expected compartments in 
the RFP-TMD constructs 

 
Brandizzi et al. (2002) reported that, in GFP fusions, the shorter TMD of 17 amino 

acids, TMD17, led to ER retention in tobacco epidermal cells whereas the TMD20 

accumulated in Golgi stacks and the TMD23 accumulated in the plasma membrane. We 

investigated whether this differential retention also occurs when the same TMD were 

fused to RFP and the constructs were transiently expressed in tobacco protoplasts by 

electroporation and in tobacco plants by agroinfiltration. 

Tobacco mesophyll protoplasts were electroporated with pRFP-TMD17, pRFP-TMD20, 

pRFP-TMD23 or pRFP-TMD26 DNA constructs and 24 hours after transformation the 

cells were observed with a confocal microscope. The RFP fluorescence was 

predominantly found in the expected compartment (Figure 10). Confocal images from 

protoplasts expressing RFP fused to TMD17 (pRFP-TMD17 construct) presented a 

reticular pattern corresponding to ER labelling, where intense labelling of the nuclear 

envelope, which is part of the ER, is clearly detected (Fig. 10 A arrow). Also some 

punctate structures were visible suggesting either Golgi labelling by a proportion of 
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protein that might have escaped the retention or concentration of the recombinant 

protein at particular locations in the ER cisternae. In the protoplasts transformed with 

pRFP-TMD20, in which Golgi accumulation is expected, the RFP fluorescence was 

present in punctate structures scattered in the cytoplasm. These structures were mobile 

as expected for Golgi (data not shown). The RFP fluorescence in both pRFP-TMD23 

and pRFP-TMD26 was predominantly found in the plasma membrane (Fig. 10 C-D). 

Some punctate structures were also observed in the vicinity of the plasma membrane 

suggesting partial localisation in the Golgi or in endosomes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Intracellular localisation of RFP-TMD proteins in tobacco protoplasts (A-D) and in 
agroinfiltrated leaves (E-H). N.tabacum protoplasts transformed with the different pRFP-TMD DNA 
constructs were scanned through a Zeiss confocal microscope LSM510META equipped with laser for 
543-nm excitation. RFP-TMD17 accumulated in ER and in the nuclear envelope (arrow) (A), RFP-
TMD20 in Golgi stacks (B) and RFP-TMD23 and RFP-TMD26 in the plasma membrane (C-D). Lower 
panels show CLSM images of N.benthamiana leaves infiltrated with the corresponding cultures of 
agrobacteria (E-H). The epidermal infiltrated leaves harvested at 2-3 days post inoculation (d.p.i.) showed 
the same intracellular localisation of the fluorescent proteins. Scale bars correspond to 10 µm for A-D and 
to 20 µm for E-H. 
 
 

Recombinant Agrobacteria containing the same cassettes in the pGREEN0229 vector 

were inoculated into N.benthamiana leaves and fluorescence was examined between 48 

to 72 hours post inoculation to determine whether the pattern of fluorescence observed 

in tobacco leaves resembled the pattern reported in protoplasts.  

Fluorescence was observed in the same expected compartments (Fig. 10 E-H) but 

sometimes it was difficult to observe as clear a pattern i.e. in the pGRFP-TMD17 in 

which the ER labelling is shown in a 3D image stack (Fig. 10 E). Moreover, sometimes 
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the time needed to be able to observe fluorescence differed in one or two days, as the 

fusion proteins required more time to be expressed and become visible. 

 

With the aim to better study the association of the different recombinant fluorescent 

proteins with the previously visualized compartments, tobacco protoplasts were co-

transfected with the different RFP-TMD constructs and with endomembrane 

compartment markers. As an ER marker, the chimeric soluble construct carrying the 

GFP fused to the ER retrieval signal HDEL (GFP-HDEL) was used. The pattern of 

RFP-TMD17 fluorescence and the pattern of GFP-HDEL fluorescence were closely 

comparable and superposition of the images demonstrated major overlap between the 

two fluorescent proteins (Fig. 11 A). The conclusion was that RFP-TMD17 is targeted 

to the ER as expected. The ST-YFP is a chimeric construct containing the spectral 

variant YFP and the transmembrane domain of the Golgi enzyme rat sialyl transferase. 

The fusion protein labels the trans-Golgi stacks. The protoplasts presented a punctated 

pattern (Fig. 11 B) and the labelled compartments were mobile (data not shown). In this 

case there was no colocalization with the RFP-TMD17. In a few cases colocalization 

could be observed when the protoplasts were co-transfected with the PVC marker GFP-

BP80 (Fig. 11C). This construct is a chimera between GFP and the transmembrane 

domain of BP80 which is a plant vacuolar sorting receptor and is mainly located in the 

Golgi complex and endosomes that constitute the prevacuolar compartment (PVC).  

As shown in Figure 11 D-F, when the RFP-TMD20 was co-transfected with the 

different markers, the red fluorescence was localised in punctate structures distributed 

all over the cytoplasm. There was an almost perfect colocalization with the yellow 

fluorescence of ST-YPF corresponding to Golgi labelling (Fig. 11E). In contrast, there 

was no colocalization with the ER marker, as expected (Fig. 11D) but there was some 

co-localisation with the PVC marker (Fig. 11F). These results suggest that some of the 

recombinant protein is correctly targeted to the Golgi apparatus whereas a part of the 

recombinant proteins en route to the vacuole was detected in the PVC. Moreover, there 

was some plasma membrane labelling suggesting some recombinant protein continue 

travelling the secretory pathway exiting Golgi (Fig. 11 D). 
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Figure 11. Intracellular localisation of RFP-TMD17 and RFP-TMD20 compared to different co-
transformed markers in tobacco protoplasts. Single optical sections were observed by confocal 
microscopy. The first two images show the single-channel fluorescence, the third the merged images and 
the right image includes the image taken by differential interference contrast (DIC). Transient expression 
experiment showing the subcellular localisation of co-transfected pRFP-TMD17 or pRFP-TMD20 
constructs and GFP-HDEL (A, D), ST-YFP (B, E) and GFP-BP80 (C, F), respectively. The localisation 
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of the reporter proteins was observed 24 h after transformation. Notice the almost complete co-
localisation of the RFP-TMD17 and GFP-HDEL showing an ER network, and the p24RFP-TMD20 and 
ST-YFP in a punctate pattern. Scale bars correspond to 10 µm. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 12. RFP fusion proteins containing TMD23 and TMD26 labelled plasma membrane in 
tobacco protoplasts. RFP fusion proteins were transiently expressed in tobacco protoplasts, and their 
localisation was visualized by confocal microscopy 24 h post-transformation. The different images 
represent the fluorescent signal associated with expression of RFP fusions containing TMD23 (A-C) or 
TMD26 (D-E). Images A and D represent the fluorescence signals associated with the co-expression of 
RFP-TMD23 and RFP-TMD26 with GFP-HDEL, an ER marker. Images B and E represent the 
fluorescence signals associated with the co-expression of RFP-TMD23 and RFP-TMD26 with ST-YFP, a 
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Golgi marker. Image C represents the fluorescence signals associated with the co-expression of RFP-
TMD23 with GFP-BP80, a PVC marker. Bars represent 10 µm. 
 
 
Tobacco protoplasts transiently expressing RFP-TMD23 and RFP-TMD26 showed 

clear fluorescence at the plasma membrane (Fig. 12). No co-localisation was observed 

with either constructs and the ER marker protein GFP-HDEL or the trans-Golgi marker 

ST-YFP (Fig. 12 A, B, D, E). Moreover, the RFP-TMD23 did not colocalise with the 

PVC marker GFP-BP80 (Fig. 12 C). Some red fluorescence was occasionally detected 

in punctate structures in the vicinity of the plasma membrane probably corresponding to 

proteins transiting the Golgi en route to the plasma membrane. 

 
II.1.2 The C-terminally RFP-tagged HIV-1 p24 constructs are targeted to 

the expected compartments 
 

Tobacco protoplasts and N.benthamiana leaves were transformed with the different 

pP24RFP-TMD constructs. In all cases, the recombinant fluorescent proteins showed 

the expected intracellular localisation, similarly to the RFP-TMD proteins (Fig. 13).  

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Intracellular localisation of p24RFP-TMD fusion proteins in tobacco protoplasts and in 
agroinfiltrated leaves. Upper panels show CLSM images of RFP fluorescence in tobacco mesophyll 
protoplasts transformed with the different pP24RFP-TMD DNA constructs. p24RFP-TMD17 
accumulated in ER (A), p24RFP-TMD20 in Golgi stacks (B) and p24RFP-TMD23 and p24RFP-TMD26 
in the plasma membrane (C-D). The lower panels show epidermal cell images from N.benthamiana 
leaves infiltrated with the indicated cultures of Agrobacteria (E-H). The infiltrated leaves were harvested 
3 d.p.i. and visualized with a Zeiss Axiovert LSM510 Meta microscope with excitation at 543 nm and 
emission at 596–636 nm (RFP). P24RFP-TMD20 also showed some plasma membrane labelling (F). The 
scale bars correspond to 10 µm (A-D) and to 20 µm (E-H). 
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As shown in Fig.13 A-D, the p24RFP-TMD17 accumulated in ER showing a reticular 

pattern with intense labelling of the nuclear envelope in protoplasts, the p24RFP-

TMD20 accumulated in punctate structures corresponding to Golgi stacks and some in 

the plasma membrane, and p24RFP-TMD23 and p24RFP-TMD26 accumulated in the 

plasma membrane. 

The sub-axial epidermis of N.benthamiana leaves were infiltrated with Agrobacterium 

suspensions carrying the pGp24RFP-TMD vectors and the same results were obtained 3 

d.p.i. as for the protoplasts (Fig.13 E-H) but there was some plasma membrane labelling 

for agroinfiltrated p24RFP-TMD20 (Fig. 13 F).  

 

Tobacco protoplasts were co-transformed with the different pP24RFP-TMD DNA 

constructs and the endomembrane compartment markers described before. In 

representative images  the different p24RFP-TMD proteins are shown in red, the 

organelle-specific markers in green, yellow or blue, and the overlapped images in 

yellow, orange or purple (Fig. 14). 

All the fusion proteins presented an intracellular fluorescence distribution in 

compartments with some obvious fluorescence of GFP in the nucleus in protoplasts 

transformed with p24RFP-TMD17 (Fig. 14 A). This labelling is possibly due to GFP 

that failed to undergo translocation into the ER because of saturation of translocons, and 

entered the nucleus by diffusion through the nuclear pore complex as it has been 

described for cytosolic GFP (Berg and Beachy 2008). The p24RFP-TMD17 fusion 

protein co-localised with the ER marker GFP-HDEL, apart from the above mentioned 

nuclear localisation of the latter. The reticular pattern was clearer with GFP than with 

RFP but the merged image showed an almost complete co-localisation. By contrast, the 

p24RFP-TMD17 protein did not colocalise with the Golgi marker ST-YFP but there 

was some localisation with the PVC marker GFP-BP80 (Fig. 14 B-C).  
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Figure 14. Fluorescent distribution of p24RFP-TMD17 and p24RFP-TMD20 fusion proteins co-
transformed with different markers in tobacco protoplasts. RFP was detected in the red channel, GFP 
in the green channel and YFP in the yellow channel. p24 fused to the N-terminus of RFP containing the 
TMD17 which confers ER retention was expressed in tobacco protoplasts together with other markers (A-
C). The p24RFP-TMD17 is targeted in vivo to the ER (red). Protoplasts transformed with p24RFP-
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TMD17 and the ER marker GFP-HDEL (green) showed a perfect co-localisation of the two fusion 
proteins and some GFP fluorescence in the nucleus (A). The trans-Golgi marker (yellow) did not co-
localised with p24RFP-TMD17 (B) but there was a partial labelling with the PVC marker (green) (C). By 
contrast, p24RFP-TMD20 (red) co-localised with the ST-YFP Golgi marker (purple) (E) but not with the 
ER (green) (D). As with p24RFP-TMD17, there was some localisation with the PVC marker (purple) (F). 
Scale bars represent 10 µm.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Intracellular localisation of p24RFP-TMD23 and p24RFP-TMD26 fusion proteins in 
protoplasts co-transformed with different organelle markers. p24RFP-TMD23 and p24-RFP-TMD26 
were co-transformed with the different markers except the PVC marker in the p24RFP-TMD26. The 
recombinant p24RFP-TMD23 did not colocalise with the ER marker GFP-HDEL (A), neither with the 
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trans-Golgi marker ST-YFP (B) but there was some localisation with the PVC marker GFP-BP80 (C). 
The p24RFP-TMD26 did not show co-localisation with GFP-HDEL (D) neither with ST-YFP (E). Scale 
bars represent 10 µm. 
 
 
The p24RFP-TMD20 accumulated within the Golgi complex as indicated by co-

localisation with the trans-Golgi marker ST-YFP (Fig. 14 E). The merged punctate 

pattern showed the superposition of the two fluorescence signals in purple (arrows) 

which also moved synchronously (data not shown). However, some of the dots did not 

colocalise with the Golgi marker suggesting they correspond to another compartment. 

This fusion protein did not colocalise with the ER marker showing complete separate 

labelling of the recombinant proteins. However, it partially co-localised with the PVC 

marker (Fig. 14 F) suggesting some of the cytoplasmic dots corresponded to PVC. 

Using these two constructs, all the pictures of the co-transfection with GFP-BP80 

showed the same results suggesting that the co-expression with this marker affected the 

production and/or folding of the recombinant proteins and higher quantities were 

directed to the vacuolar route. 

The p24RFP-TMD23 and p24RFP-TMD26 fusion proteins showed a typical plasma 

membrane labelling and did not colocalise with any of the markers used (Fig. 15) except 

for the p24RFP-TMD23 which showed some co-localisation with the PVC marker (Fig. 

15 C). In this case, the p24RFP-TMD23 showed some cytosolic punctate structures 

some of which corresponded to PVC as shown by the merged image while the other 

dots probably corresponded to Golgi stacks as some of them were mobile.  

These results are consistent with the expected localisation of the recombinant proteins 

determined by the length of their transmembrane domain. 

 

II.1.3 The N-terminally RFP-tagged p24 constructs are mistargeted to the 
vacuole 

 
When tobacco protoplasts and leaves were transformed with pRFPp24-TMD 

constructs, surprisingly, no RFP labelling was detected in the expected membranes to 

which each recombinant protein was expected to localise.  

Twenty-four hours post-transformation, tobacco protoplasts revealed strong labelling in 

the vacuole, which was not observed in the case of protoplasts overexpressing RFP-

TMD or p24RFP-TMD from the same 35S promoter (Fig.16). Therefore, the vacuolar 

labelling must be related to the properties of the N-terminally RFP-tagged fusion 
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proteins. Despite numerous attempts, no specific single labelling of ER (pRFPp24-

TMD17 construct), Golgi (pRFPp24-TMD20 construct) or plasma membrane 

(pRFPp24-TMD23 and pRFPp24-TMD26 constructs) was observed but for all 

constructs, a few protoplasts presented ER as well as vacuolar labelling (Fig. 16 C).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Subcellular localisation of transiently transformed protoplasts with RFPp24-TMD 
constructs and agroinfiltrated leaves. Protoplasts transformed with pRFPp24-TMD17 (A), pRFPp24-
TMD20 (B), pRFPp24-TMD23 (C) and pRFPp24-TMD26 (D) showed vacuolar labelling and some 
punctate structures probably corresponding to PVC (A-B) and some ER labelling (C). N.benthamiana 
leaves transformed with recombinant Agrobacteria showed vacuolar labelling for RFPp24-TMD17 (E), 
RFPp24-TMD20 (F), RFPp24-TMD23 (G) and RFPp24-TMD26 (H). Plasma membrane labelling was 
observed for RFPp24-TMD23 (G) and some punctate structures in RFPp24-TMD26 (H). The leaves were 
observed 3 to 6 d.p.i. Scale bar for protoplasts is 10 µm and for agroinfiltrated leaves 20 µm. 
 
 
This duality suggests that two populations of proteins were present within the cells 

possibly misfolded but with different degree of structural defects that lead either to ER 

retention of to vacuolar delivery for degradation. Alternatively, the recombinant protein 

constituted a single population directed to the vacuole for degradation by a slow process 

that allows detecting the protein that has not yet left the ER. Three to six d.p.i., 

agroinfiltrated leaves showed a clear vacuolar labelling in all the constructs but 

RFPp24-TMD23 also presented some plasma membrane labelling (Fig. 16 G). 

 

The localisation of the different RFPp24-TMD fusion proteins was also investigated 

in tobacco protoplasts by co-expression with the GFP-HDEL, ST-YFP and GFP-BP80 

markers (Fig. 17 and 18).  
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Figure 17. Confocal images of RFPp24-TMD17 and RFPp24-TMD20 localisation when co-
transformed with different markers in tobacco protoplasts. pRFPp24-TMD17 and pRFPp24-TMD20 
DNA constructs were transformed into tobacco protoplasts together with different organelle markers. 
Cells were incubated for 24 hours and then observed with a confocal microscope. RFPp24TMD17 did not 
show co-localisation with the ER marker GFP-HDEL (A), nor with the trans-Golgi marker ST-YFP (B) 
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or with the PVC marker GFP-BP80 (C). The RFPp24-TMD20 recombinant protein did not show co-
localisation with GFP-HDEL (D), nor with ST-YFP (E) nor with the GFP-BP80 (F). Scale bars represent 
10 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. In vivo localisation in tobacco protoplasts of RFPp24-TMD23 and RFPp24-TMD26 
fusion proteins when co-transformed with different markers. Panels A-C show the phenotypes 
obtained for RFPp24-TMD23. This fusion protein was localised in the vacuole and in some punctate 
structures when co-transformed with GFP-HDEL (panel A) and with GFP-BP80 (panel C). When co-
transformed with ST-YFP, the fluorescence was observed in the vacuole and in the ER. Panels D-E show 
the phenotypes obtained for RFPp24-TMD26. The localisation of this recombinant protein was also in the 
vacuole and in some punctate structures when co-transformed with GFP-HDEL (panel D) and in the 
vacuole and ER when co-transformed with ST-YFP (panel E). Scale bars correspond to 10 µm. 
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As shown in Fig. 17 A-F, no co-localisation was observed for any of the co-

transformed markers. These results are consistent with the vacuolar patterns obtained 

for each fusion protein expressed alone. Tobacco protoplasts transformed with 

pRFPp24-TMD17 and GFP-HDEL (Fig. 17 A), ST-YFP (B) and GFP-BP80 (C) 

showed vacuolar labelling and some ER labelling (panel A). The same results were 

observed for protoplasts transformed with pRFPp24-TMD20 and GFP-HDEL (Fig. 17 

D), ST-YFP (E) and GFP-BP80 (F). In any case there was co-localisation with any of 

the markers tested.  

In Figure 18, protoplasts transformed with pRFPp24-TMD23 (panels A-C) and 

pRFPp24-TMD26 (panels D-E) constructs and the different markers showed a clear 

separate fluorescence with respect to that shown by the different markers. In this case, 

there was some ER labelling of both fusion proteins when co-transformed with ST-YFP 

besides vacuolar labelling (Fig. 18 B, E). Some punctate structures were observed when 

the protoplasts were co-transformed with GFP-HDEL (Fig. 18 A, D). 

These results suggested that the order of the sequences of interest in the different hybrid 

constructs tested had a significant effect on the final destination of the recombinant 

proteins. 

 
II.1.4 Expression of RPF fusion proteins in transient expression of tobacco 

protoplasts  
 

To confirm the expression of all the tested recombinant proteins, Western blot 

analysis was performed. Protoplasts transformed with the different pRFP-TMD, 

pP24RFP-TMD and pRFPp24-TMD constructs were extracted with extraction buffer 

without detergent, sonicated and a “membrane fraction” and a “soluble fraction” were 

separated by centrifugation (Materials and methods VIII.1.1). Proteins in the two 

fractions were then analyzed by SDS-PAGE. As these constructs contain a TMD which 

anchors the fusion proteins to a specific membrane, we expected to detect the fusion 

proteins in the “membrane fraction”. Western blot analysis was performed using sheep 

anti-p24 antibodies (Aalto Reagents) and the majority of recombinant p24 was detected 

in the membrane fraction for every construct including p24 (p24RFP-TMD and 

RFPp24-TMD proteins) (Fig. 19, cell fraction). The recombinant proteins migrated to 

the expected molecular mass of 55 kDa and only a minor portion was detected in the 

soluble fraction (Fig. 19), suggesting that the fusion proteins were membrane-

associated.  
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In the RFPp24-TMD fusion proteins, some putative degradation products could be 

detected by Western blot (Fig. 19 arrows). Moreover, recombinant RFPp24-TMD17 and 

RFPp24-TMD20 were also detected in the “soluble fraction” due either to the protein 

not being properly anchored in the expected membrane and being secreted, which it is 

not expected, or most probably to some pellet contamination in the supernatant during 

the protein extraction. No bands were detected in the RFP-TMD fusion proteins as they 

do not contain the p24 protein neither in the negative control in which the protein 

extract is from untransformed protoplasts. 

 

 

 

 

 
           
 
 
 
 
 
Figure 19. Western blot of the different RFP-TMD, p24RFP-TMD and RFPp24-TMD recombinant 
proteins from transiently transformed tobacco protoplasts. Transformed tobacco protoplasts were 
homogenized with extraction buffer and sonicated. Membrane and soluble fractions were separated and 
proteins were loaded on an SDS-gel. Western blot was performed using 1:500 sheep anti-p24 and most of 
the recombinant proteins were detected in the cell fraction but some in the soluble fraction. C- : wild type 
Nicotiana tabacum protoplasts extracts. 
 
 
The same samples were also incubated with three different rabbit anti-RFP antibodies 

but the detection of the proteins was not successful with any of them. Therefore anti-

RFP antibodies were not used any further. 

 
II.1.5 The N-terminally GFP-tagged HIV-1 p24 constructs also present 

mistargeting 
 

To investigate if the mistargeting of the recombinant proteins in protoplasts 

transformed with the pRFPp24-TMD DNA constructs was due to the specific 

fluorescent marker, the RFP was replaced by enhanced GFP (eGFP). We used this 

fluorescent protein because it contains a fluorescence-enhancing mutation.  
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Figure 20. Localisation of GFP-containing p24 fusions in transformed tobacco protoplasts. Tobacco 
protoplasts were transformed with the different GFP-tagged constructs and after 24 hours the localisation 
of the fusion proteins was studied using a confocal microscope. GFP-TMD17 (panel A) and p24GFP-
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TMD17 (panel D) showed ER labelling as expected but GFPp24-TMD17 presented ER-like aggregates 
(panel G). The GFP-TMD20 (panel B), p24GFP-TMD20 (panel E) and GFPp24-TMD20 (panel H) fusion 
proteins were observed in punctate structures. The first two correspond to Golgi stacks but the dots 
present for GFPp24-TMD20 were more numerous, smaller and very mobile. These structures might 
correspond to another organelle than Golgi stacks. The GFP-TMD23 (panel C) and p24GFP-TMD23 
(panel F) fusion proteins were observed at the plasma membrane and in some punctate structures in its 
vicinity, probably Golgi stacks. The GFPp24-TMD23 fusion protein was observed in ER (panel I). 
Western blot analysis of extracts from transformed protoplasts in cell and medium fractions using anti-
p24 (panel J) and anti-GFP antibodies (panel K) were performed. The arrows show the expected bands 
and the asterisks correspond to unspecific binding of the antibodies. C-: unstransformed tobacco 
protoplasts. Scale bars represent 10 µm. 
 

When tobacco protoplasts were transformed with the different constructs, the 

different GFP-TMD (Fig. 20 A-C) and p24GFP-TMD (Fig. 20 D-F) proteins were 

targeted to the expected compartments but the GFPp24-TMD proteins were again 

mistargeted (Fig. 20 G-I). However, in this case they were not delivered to the vacuole. 

The GFP-TMD17 and p24GFP-TMD17 contain the ER-retaining TMD. 24 hours after 

protoplast transformation the fluorescence was clearly in ER (Fig. 20 A, D). However, 

in confocal images of GFPp24-TMD17 transformed protoplasts the fluorescence was 

very intense in spike-like structures, most likely ER aggregates (Fig. 20 G).  

In the protoplasts transformed with the constructs containing TMD20, a punctate pattern 

was observed in all of them (panels B, E, H). Despite the punctate pattern in protoplasts 

transformed with GFPp24-TMD20 (panel H), the dots were smaller, and in larger 

number and moved very fast when observed with the confocal microscope (data not 

shown) suggesting they were no real Golgi stacks. Cells transiently expressing GFP-

TMD23 and p24GFP-TMD23 showed sharp fluorescent signals at the plasma 

membrane (Fig. 20 C, F). In both cases, fluorescence was occasionally detected in 

punctate structures in the vicinity of the plasma membrane probably corresponding to 

proteins transiting from Golgi to the plasma membrane. In contrast, GFPp24-TMD23 

was not found in the plasma membrane, but in the ER (Fig. 20 I). 

Protein extracts from protoplasts expressing the different GFP-tagged constructs 

were analyzed by SDS-PAGE and Western blot using anti-p24 or anti-GFP antibodies. 

In this case the samples were not fractionated between membrane and soluble fractions. 

Instead, total protoplasts homogenates were prepared (cell fraction) and the incubation 

medium was also tested to examine whether some of the proteins were secreted instead 

of being anchored to a membrane. Using anti-p24 antibodies (Fig. 20 J), the fusion 

proteins were mainly found in the protoplasts as expected. GFP-TMD fusion proteins 

were not detected when using this antibody as they do not contain the p24 gene. 
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P24GFP-TMD proteins migrated with the expected molecular mass of 56 kDa and the 

bands were intense. However, the GFPp24-TMD proteins presented a lower molecular 

mass, not corresponding to the expected 57 kDa. This correlates with the mistargeting 

observed for these fusion proteins by confocal microscopy, and is most probably due to 

some degradation of the p24 and/or TMD fusion partners. The negative control 

corresponding to untransformed protoplasts did not show any band. In the medium 

fraction a faint band in the p24GFP-TMD17 sample was detected corresponding to 

some contamination by protoplasts (Fig. 20 J asterisk). The same samples were also 

stained with an anti-GFP antibody (Fig. 20 K). In both fractions, some unspecific 

binding of the antibody can be observed (asterisk). The p24GFP-TMD fusion proteins 

were detected as previously using anti-p24 and the GFPp24-TMD proteins presented the 

same lower molecular weight bands. In this case, the GFP-TMD fusion proteins were 

detected with the expected molecular mass of 30 kDa. Moreover, some degradation 

products around 30 kDa were detected for p24GFP-TMD20 and p24GFP-TMD23 by 

the anti-GFP antibodies but not by the anti-p24 antibodies suggesting that part of the 

p24 protein was degraded. In the medium fraction, some free GFP was secreted (arrow) 

and other unspecific bands were detected (asterisks). 

In summary, N-terminally GFP-tagged fusion proteins also presented mislocalisation. 

These results suggest that the position of the fluorescent marker markedly influence the 

destination of the p24 fusion proteins. Therefore, to avoid protein mislocalisation, the 

N-terminally XFP-tagged constructs were left aside for further experiments concerning 

the production of transgenic tobacco plants. 

 
II.1.6 Cytosolic and secreted p24RFP and RFPp24 
 

The HIV-1 p24 is originally a cytosolic protein, but we intended to produce it in the 

secretory lumen. While the pP24RFP-TMD constructions presented the expected 

localisation in preliminary experiments, the pRFPp24-TMD constructs appeared 

mislocalised. We wondered whether the RFP could have a position-dependent dominant 

effect, causing the production of misfolded recombinant proteins which would be 

recognized by the ER quality control system and directed to the vacuole. 
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Figure 21. Localisation and Western blot analysis of cytosolic and secreted p24RFP and RFPp24 
fusion proteins. Subcellular distribution of p24RFPcyt (A-B), RFPp24cyt (C-D), p24RFPsec (E-F) and 
RFPp24sec (G-H) in transformed tobacco protoplasts. Western blot analysis of p24RFPcyt and 
RFPp24cyt expressed in protoplasts (panel I) and p24RFPsec and RFPp24sec in the cells (c) and in the 
incubation medium (m) 24 h post-electroporation (panel J). C+: p24 protein. Scale bars correspond to 10 
µm.  
 
 

P24RFPcyt DIC P24RFPcyt DIC 

DIC DIC 

DIC DIC 

DIC DIC 

RFPp24cyt RFPp24cyt 

RFPp24sec RFPp24sec 

P24RFPsec P24RFPsec 

A 

C 

B 

D 

E F 

G H 

P
24

R
FP

cy
t 

   R
FP

p2
4c

yt
 

c      m       c     m      C+ 

P24RFPsec   RFPp24sec 

kDa   55 

43 

34 

26  

I J

 

kDa   55 

43 
 

34 
 

26   



                                                                                                                                               Results 

 64

To investigate this, four constructs were prepared in which the fusion proteins are 

expected to be in the cytosol or to be secreted. The cytosolic constructs, p24RFPcyt and 

RFPp24cyt, do not contain a signal peptide nor a membrane-anchoring signal and after 

translation they are expected to remain in the cytosol. The secreted constructs, 

p24RFPsec and RFPp24sec, contain a signal peptide but no membrane-anchoring signal 

is present. These recombinant proteins are not targeted to a specific organelle and after 

entering the secretory pathway they are expected to travel until they are secreted to the 

apoplast. 

Tobacco protoplasts were transformed with these different constructs and after 24 

hours of incubation they were observed with a confocal microscope (Fig.21). RFP 

fluorescence images of protoplasts expressing p24RFPcyt and RFPp24cyt revealed a 

clear cytosolic labelling (Fig. 21 A-D). Images A and C show the 3D projection from z-

stack images and a uniform fluorescence distribution can be seen all over the cytoplasm. 

Surprisingly, some nuclear fluorescence was observed in both constructs suggesting 

some free RFP might diffuse through the nuclear pore as it has been described for other 

fluorescent proteins (Berg and Beachy 2008).  

As can be seen in Fig. 21 E-F, p24RFPsec showed a reticular and punctate pattern 

corresponding to ER and Golgi stacks. As the recombinant protein is expected to be 

secreted, the fluorescence can be seen in different organelles through which the fusion 

protein is travelling until reaching the apoplast. Some prevacuolar and vacuolar 

labelling was also observed in some transformed protoplasts indicating that some of the 

protein might be directed to this organelle. Protoplasts transformed with RFPp24sec 

(Fig. 21 G, H) mainly presented vacuolar labelling but ER was also visible indicating 

that some recombinant protein traffics through the secretory pathway as expected but is 

in part directed to the vacuole. Western blot analysis of the four fusion proteins using an 

anti-p24 antibody (Fig. 21 I) revealed that cytosolic p24RFP and RFPp24 are expressed 

and migrated with an expected mass of 53 kDa. No degradation products were neither 

detected nor free p24. In protoplasts expressing RFPp24sec, the 53 kDa fusion protein 

was found in higher amounts in the medium than inside the cells (Fig. 21 J). However, 

only a low amount p24RFPsec intact fusion protein was present inside the cells and no 

intact protein could be detected in the medium. These results suggest that the 53 kDa 

p24RFPsec fusion protein is mainly degraded. In both constructs free p24 was detected 

in the medium fraction and the intensity of the signal was comparable in both cases. The 
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experiment was repeated several times for these recombinant proteins with the same 

results.  

 

II.1.7 RFPp24TMD-GFP fusion proteins are localised in the vacuole and 
the ER  

 
In an effort to have more insight into the mislocalisation of the N-terminally RFP-

tagged p24 constructs, GFP was fused to the C-terminus of the TMD. Protoplasts 

transformed with RFPp24TMD-GFP fusions showed mistargeting to the vacuole and 

some ER labelling with a similar pattern in the three constructs (Fig. 22). The red 

fluorescence was found distributed in the ER and the vacuole whereas the green 

fluorescence could only be seen in the ER. The merge image in which the ER labelling 

co-localised is shown in yellow. These results were not conclusive to understand the 

reason for which there was mistargeting of the recombinant proteins.  

However, it was observed that some fusion proteins were not able to leave the ER as it 

can be seen for the red and green fluorescence but in some proportion they were 

degraded and only a portion was directed to the vacuole corresponding to RFPp24 or 

RFP alone. It appears that the full hybrid proteins do not leave the ER, but after 

cleavage somewhere between the RFP and the GFP, the RFP-containing part is 

transported to the vacuole. The 83 kDa recombinant proteins were detected in all the 

constructs by immunoblot using anti-p24 and anti-GFP antibodies (Fig. 22 D). The 

recombinant proteins migrated as a single band when immunodetected with anti-p24 but 

several bands were detected below the 83 kDa band when using anti-GFP. Moreover, a 

band around 44 kDa was detected in the three constructs indicating degradation of the 

fusion protein (this band most probably corresponds to the 396 amino acids fragment 

comprising part of the p24 together with the TMD and the full length GFP). The empty 

vector pGY1 did not show any band with either antibody. These results are similar to 

the Western blot analysis of pRFPp24-TMD in which all the constructs showed some 

degradation bands of the recombinant proteins. This result suggests the cleavage occurs 

within p24 and the membrane-anchored GFP remains in the ER while the RFP-

containing part is targeted to the vacuole. 
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Figure 22. Subcellular localisation and Western blot analysis of RFPp24TMD-GFP fusion proteins. 
Subcellular distribution of RFPp24TMD20-GFP (A), RFPp24TMD23-GFP (B) and RFPp24TMD26-GFP 
(C) in transiently transformed tobacco protoplasts. Western blot analysis of the expressed fusion proteins 
and the empty vector pGY1 (EV) using anti-p24 and anti-GFP antibodies. Scale bars correspond to 10 
µm. 
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II.1.8 Analysis of the subcellular distribution of RFP fusion proteins in 
other agroinfiltrated tobacco leaves  

 
These results were obtained after the first binary vector was tested for stable plant 

transformation and did not work (IV.1). Then, the cassettes were cloned into 

pGREEN0179 and parallel to the plant stable transformation the recombinant vectors 

were tested by Agrobacterium-mediated transient expression (this experiment).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Efficiency of Agrobacteria delivery and gene expression of p24RFPTMD-0179 
constructs.  Tobacco leaves infiltrated with Agrobacteria cultures containing p24RFPTMD17-0179 
(panel A), p24RFPTMD20-0179 (panel B) and p24RFPTMD23-0179 (panel C) were observed with a 
confocal microscope three, six and ten days post-infiltration. Western blot analysis of total soluble 
proteins obtained from the agroinfiltrated leaves using sheep anti-p24 antibody revealed the fusion 
proteins and some degradation products (panel D). Scale bars correspond to 20 µm. 
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Some of the cassettes cloned into the binary vector pGREEN0229 were also cloned 

into another binary vector, pGREEN0179. The results of N.benthamiana leaves 

agroinfiltrated with pGREEN0229-based vector have been described in II.1.1, II.1.2 and 

II.1.3. Recombinant Agrobacteria carrying the pGREEN0179-based constructs (table 

III) were agroinfiltrated in N.benthamiana leaves and a time-course experiment was 

performed to measure the time required to obtain maximal protein accumulation. Leaves 

from the same agroinfiltrated plant were analyzed 3, 6 and 10 days post-infiltration 

(d.p.i.) by confocal microscopy (Fig. 22 A-C).  

Three days post-infiltration the red fluorescence corresponding to p24RFP-TMD17 was 

distributed in the ER showing a definite network as it can be seen in the 3D picture (Fig. 

22 A). However, after 6 days, some fluorescence was observed in the vacuole and in the 

apoplast. At this time point, no ER labelling could be observed and the same results 

were found at day 10 p.i. These results indicate the fusion protein has its highest 

accumulation at day 3 p.i. (or before) and afterwards the protein is not able to be 

retained in the ER and is secreted or directed to the vacuole. Moreover, they support the 

hypothesis in which the normal turnover of the ER membrane occurs in the vacuole, 

possibly by autophagy (Tamura et al. 2004). 

A punctate RFP signal was observed for p24RFP-TMD20 at day 3 p.i. (Fig. 22 B). The 

arrowheads indicate Golgi stacks that are mobile. Six days p.i., a punctate pattern could 

be still observed but also vacuolar labelling indicating some recombinant protein is 

directed to this organelle. At day 10 p.i., the fluorescence could be observed in the 

vacuole and the apoplast as for p24RFP-TMD17. The p24RFP-TMD23 was localised at 

the plasma membrane at days 3 and 6 p.i. (Fig. 22 C). At day 6, there were some 

punctae in the vicinity of the plasma membrane suggesting Golgi labelling. Ten days 

p.i., the fluorescence was present in the vacuole as well as at the plasma membrane. 

Comparing these results with the agroinfiltrated N.benthamiana leaves using 

pGREEN0229 vector (II.1.1, II.1.2 and II.1.3), in that case the leaves were only 

observed at one time point and no vacuolar labelling was observed for the time selected. 

Protein extracts were collected at each time point to analyse by immunoblot the 

identity and integrity of the recombinant fusion proteins in tobacco leaves. The 

expressed proteins were detected using a specific anti-p24 antibody. Plants 

agroinfiltrated with empty vector showed a faint unspecific band (Fig. 22 D). 

Immunoblot analysis revealed a distinct band of approximately 55 kDa, corresponding 

to the molecular mass of p24RFP-TMD proteins. This band was very intense at 3 d.p.i. 
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in all constructs and also at 6 d.p.i. for the p24RFP-TMD17. At day 10 p.i., a massive 

decrease could be observed, which was similar for the three constructs. All constructs 

presented some degradation products of 35 and 24 kDa at 3 d.p.i. and also at 6 d.p.i. For 

the p24RFP-TMD17, the full length hybrid protein was detected with the same intensity 

at 3 and 6 d.p.i., where for the other two constructs there was marked decrease already 

at 6 d.p.i. This suggests that retention in the ER membrane results in a slower turnover 

compared to the Golgi or plasma membrane.  

 
II.2 Analysis of RFPp24TMD in isolated vacuoles 
 

To investigate if the fluorescence detected in the vacuoles in the RFPp24-TMD 

fusions corresponds to the RFP alone or to the whole recombinant protein, vacuoles 

were isolated from protoplasts transformed with pRFPp24-TMD17, pRFPp24-TMD20 

and pRFPp24-TMD23. As negative control, protoplasts were transformed with the 

empty vector pGY1. Observation of the isolated vacuole fraction, which was stained 

with neutral red, under confocal microscope revealed that many of the neutral red-

stained vacuoles observed by differential interference contrast were in fact vacuoles 

expressing the red fluorescent recombinant proteins when excited with the HeNe laser 

(Fig. 24).  

 

 

 

 

 

 

 
Figure 24. Isolated vacuoles from transiently transformed protoplasts. Vacuoles were isolated from 
protoplasts transformed with pRFPp24-TMD17, pRFPp24-TMD20 and pRFPp24-TMD23. Vacuoles 
presented red fluorescence in the tonoplast and in the lumen. Vacuoles isolated from protoplasts 
transformed with the empty vector did not show any fluorescence (not shown). Scale bars correspond to 
10 µm. 
 
Total protein extracts were concentrated with ammonium sulphate and loaded on a 
SDS-PAGE gel. Incubation with anti-p24 antibody revealed any band was detected 
(data not shown). These results demonstrate that the fluorescence seen in the vacuole for 
the RFPp24TMD constructs corresponds, indeed, to the part of the recombinant proteins 
in which p24 is not present. 

RFPp24TMD17 RFPp24TMD20 RFPp24TMD23 
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III Transient expression of p24 in zein and tail-anchor 
fusion proteins in tobacco protoplasts 

 
Tobacco protoplasts were transformed with pzein-p24, pP24-zein and pP24-TA 

constructs in order to test the expression of the recombinant proteins. These constructs 

did not contain any fluorescent protein as reporter and could not be studied with 

confocal microscopy as the other samples. 

 

 

 

 

 

 

 

 
Figure 25. Expression of zein and TA fusions monitored by SDS-PAGE and Western blot analysis. 
Western blot analysis of p24 signals using anti-p24 on proteins extracted from tobacco protoplasts 
transformed with pzein-p24 (lanes 1 and 4), pP24-zein (lanes 2 and 5) and pP24-TA (lanes 3 and 6). 
 
 

Protein extracts from transformed protoplasts were sonicated to obtain microsomal 

and soluble fractions. Protein gel blot analysis using anti-p24 antibody (Fig. 25) 

revealed the p24 fusions were located in the microsomal fraction, as expected. A very 

low amount of zein-p24 was also detected in the soluble fraction: this could either 

represent minor contamination by microsome (this construct accumulates to very high 

amounts) or minor release from the microsomal lumen, since this is the only one among 

the three constructs that is not membrane-anchored. (Fig. 25 right panel). The three 

fusion proteins migrated with the theoretically expected molecular mass. For both zein-

containing proteins, the apparent molecular mass was around 41 kDa (lanes 1 and 2). 

Some high molecular weight proteins could be detected in the zein-p24 extracts (lane 1) 

suggesting protein multimers as usually formed by γ-zein (Vitale et al. 1982). This 

suggests that this construct is able to form protein bodies. 

The p24-TA protein migrated as a doublet with apparent molecular masses of 35 and 37 

kDa as theoretically expected. Because the tail anchor contains a luminal bovine opsin 

domain with an added N-glycosylation site, the doublet may be the result of incomplete 
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glycosylation, with the upper band corresponding to the glycosylated form, being 

therefore confirmed. In all three cases free p24 was also detected suggesting partial 

cleavage of the hybrid protein (arrow) and some unspecific bands were detected 

(asterisk). 

In this preliminary experiment it seems that there is a strong position effect of the zein 

domains on the accumulation of the p24 fusion, but this will need to be confirmed 

analyzing transgenic plants and comparing mRNA levels, as it is described below.  

 
IV Stable expression of rp24 in tobacco plants 
 

It is generally accepted that the generation of stable nuclear transgenic plants is an 

essential step to develop an expression system for the production of the protein of 

interest. Plant transformation can be achieved by Agrobacterium-mediated 

transformation. After regeneration and screening of the T0 generation, the higher 

expressors of the recombinant proteins are selected and self- fertilized in order to obtain 

homozygous transgenic plants.  

For the production of p24 hybrid proteins, tobacco leaf discs were infected with 

recombinant A. tumefaciens containing selected plasmids with the different cassettes 

tested in the previous paragraphs. 

 

IV.1 The pGREEN0229 binary vector was not a good plasmid to stably 
transform tobacco plants 

 
pGREEN plasmids were developed as optimal vectors for plant transformation using 

Agrobacterium (JIT catalogue, John Innes Centre, Norwich, UK; 

http://www.pgreen.ac.uk). The first binary vector used in this work to stably transform 

tobacco plants was pGREEN0229. This plasmid carries the bar gene, which confers 

resistance to the herbicide ammonium glufosinate (BASTA®). The different cassettes 

of interest under the control of the 35S CaMV promoter were inserted into the EcoRI 

site of the pGREEN0229 vector. We wanted to use this vector as the selective agent can 

be easily sprayed on plants grown in soil. The different constructs prepared with this 

plasmid are listed in table III.  

After five attempts of leaf disk transformation, no viable calli could be obtained for 

plant regeneration. The transformation was carried under normal conditions as 
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described in Materials and methods VI.3, however when the transformed leaf disks 

were incubated in selective medium containing different concentrations of glufosinate, 

the calli did not look healthy (Fig. 26 B-C). Regeneration of calli was possible when no 

glufosinate was added to the medium (Fig. 26 A). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Callus regeneration four weeks after leaf disk transformation with recombinant 
pGREEN0229. A) Regenerated plantlets of tobacco leaf disks transformed with pGP24RFP-TMD17 
without selection in the medium. B) Calli from pGP24-zein transformed leaf disks with 0.1 µg/ml 
glufosinate selection. C) Plates containing leaf disks transformed with pGP24-TA containing no selection 
(left), 0.1 µg/ml glufosinate (middle) and 0.5 µg/ml glufosinate (right). 
 

However when the plantlets regenerated in non-selective medium were transferred to 

fresh medium containing glufosinate, they could not grow properly. Calli generated 

from leaf disks transformed with e.g. pGP24-zein were brown and the leaf disks were 

floppy and soft (Fig. 26 B). In all cases, plantlets could regenerate from the calli grown 

on non-selective medium, but in the plates containing glufosinate the regeneration was 

not possible and the leaf disks eventually died while Agrobacteria grew on the plates 

(Fig. 26 C). 

After these unsuccessful attempts, we decided to change the vector. The different 

cassettes under the control of the 35S CaMV promoter were cloned into the EcoRI site 

of pGREEN0179. This binary vector confers hygromycin resistance in plants and the 

new constructs are also listed in table III.  

The Agrobacterium-mediated plant transformation was successful using this binary 

vector.  
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IV.2 Growth and selection of transgenic tobacco plants 
 

None of the different groups of transgenic plantlets showed any systematic alteration 

in growth or in morphology visible by eye. Twenty-five or thirty plantlets derived from 

calli from each transformation using the recombinant pGREEN0179 constructs were 

regenerated and transferred to rooting medium supplemented with 0.1 µg/ml indole 

acetic acid (IAA), 50 µg/ml hygromycin and 100 µg/ml carbenicillin. The different 

plants were named according to the recombinant protein to be expressed.  After 4 weeks 

growing, not all the plants developed well from the 25 or 30 plantlets regenerated for 

each transgenic line (table IV). Some grew slowly and finally did not survive and 

Agrobacteria grew around them. Therefore only the healthy growing plants were 

analysed.   

 

 Box 1 Box 2 Box3  Box 4 Box 5 Box 6 # of plants 

regenerated 

p24RFP-TMD17 3/5 1/5 2/5 1/5 4/5 4/5 15/30 

p24RFP-TMD20 4/5 2/5 3/5 3/5 1/5 - 13/25 

p24RFP-TMD23 5/5 1/5 2/5 2/5 3/5 - 13/25 

Zein-p24 3/5 3/5 4/5 4/5 3/5 - 17/25 

p24-zein 3/5 2/5 4/5 4/5 3/5 - 16/25 

p24-TA 5/5 4/5 3/5 2/5 3/5 - 17/25 

 
Table IV. Number of p24-expressing transgenic tobacco plants regenerated from transformed calli. 
In each box the total number of plants regenerated is represented by the right number and the number of 
viable plants is represented by the left number. The right box shows the total number of viable plants 
(right number) and the total number of regenerated plants (left number). 
 

IV.3  Verification of the insertion of the p24 hybrid genes 
 

To verify the transgenic plants have integrated the gene of interest, genomic DNA 

from healthy plants derived from hygromycin-resistant calli was tested by PCR. The 

DNA was extracted from leaves and part of the p24 gene was amplified using primers 

#7 and #14. We used these primers because the sequence was common in all the 

constructs. Wild type plants were used as negative control and pP24RFP-TMD23 DNA 

construct as positive control. Twenty plants were tested corresponding to 4 plants 

expressing p24RFP-TMD17, 3 plants expressing p24RFP-TMD20, 2 plants expressing 

p24RFP-TMD23, 4 plants expressing zein-p24, 3 plants expressing p24-zein and 4 
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plants expressing p24-TA. The results are presented in Fig. 27 and, as expected, in the 

wild type plants no amplification was detected (Fig. 27 lane wt). All the 20 putative 

transgenic T0 plants analysed showed a band about 460 bp in an agarose gel 

corresponding to the expected p24 gene portion.  

 

 

 

 

 

 

 

 

 
 

Figure 27. Agarose gel analysis of PCR products obtained after direct amplification of a fragment 
of the p24 gene. Genomic DNA was extracted from 20 transgenic tobacco leaf samples. Amplification of 
the 459 bp fragment of the p24 gene is indicated by the arrow. M: marker, wt: wild type, C+: pP24RFP-
TMD23 used as positive control.  
 

IV.4 Transgenic tobacco plants producing recombinant p24 
anchored with a TMD 

 
After 4 weeks growing in rooting medium, the different putative transgenic plants 

were screened for recombinant protein expression. Leaf protein extracts from all the 

regenerated transgenic p24RFPTMD plants were analysed by Western blot. The 

expressed protein was detected using sheep anti-p24 antibody. All different plant-

produced p24RFP-TMD proteins had apparent molecular mass of 55 kDa as 

theoretically expected (Fig. 28). In the control, two polypeptides around 55 kDa were 

visible but the signal was weak (Fig. 28 WT asterisk). The levels of recombinant 

p24RFP-TMD17, p24RFP-TMD20 and p24RFP-TMD23 varied widely (arrow). 

One each of the producing lines was selected for further analysis. Line A1 was chosen 

for p24RFP-TMD17 and B15 for p24RFP-TMD20 which are high-producing lines. F56 

was chosen for p24RFP-TMD23. This is not a high-producing line but the other lines 

grown (F53, F62 and F63) did not developed well and died over time. 
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Figure 28. Screening of the transgenic p24RFP-TMD tobacco lines. Young leaves from regenerated 
transgenic tobacco plants were used for extraction of total soluble proteins and for analysis of the 
accumulation of recombinant proteins by immunoblot. 20 µg of TSP were loaded in all samples. WT 
(wild type) samples show two bands (asterisk) similar to the molecular mass expected for the p24RFP-
TMD constructs (arrow) but weaker (around 55 kDa).   
 
 
IV.5 Transgenic tobacco plants producing recombinant p24 fused to 

zein or tail anchor 
 

Leaf extracts from putative transgenic in vitro grown T0 plants were analysed by 

Western blots using sheep anti-p24 antibody. The recombinant proteins were detected in 

all extracts. The zein-p24 and p24-zein fusion proteins migrated with apparent 

molecular mass of 41 kDa. A special feature of the zein-containing recombinant 

proteins is the presence of high molecular weight bands (Fig. 29 arrows). These 

probably correspond to a proportion of oligomers of the fusion proteins that were not 

denatured, as already observed in transient expression (Figure 25).  

The p24-TA proteins were detected as a doublet in most cases. These bands most 

probably correspond to the glycosylated (37 kDa) and unglycosylated (35 kDa) 

isoforms of the fusion protein, and were also observed in transient expression (Figure 

25). A band around 24 kDa was detected in all cases but in the WT sample this band 

was also detected and very intense suggesting unspecific binding of the antibody. 
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Figure 29. Western blot analysis of transgenic zein-p24, p24-zein and p24-TA tobacco plants. 
Protein extracts from young leaves from putative transgenic tobacco lines were analysed by Western blot 
using anti-p24 antibody. Zein-p24 and p24-zein migrated as a 41 kDa band and p24-TA to 37 kDa 
(glycosylated) and to 35 kDa (unglycosylated). High molecular weight bands were detected for zein-
containing hybrid proteins (arrows). The WT sample showed some unspecific binding of the andtibody 
(asterisks) and although a band around 24 kDa is detected in all cases, is not clear it corresponds to free 
p24 as it was detected in the WT (asterisk). 
 
 
A high-producing line for each transgene was chosen for further analysis: the C25 plant 

expressing zein-p24, the D45 plant expressing p24-zein and the E53 plant expressing 

p24-TA. 

 

IV.6 Expression of the recombinant proteins in roots  
 

As mentioned above, the cassettes coding for the different heterologous proteins 

were inserted under the control of the 35S CaMV promoter. This is a constitutive 
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promoter and the expression of the fusion proteins is expected to take place in most 

cells and tissues of the plant. We thus tested roots from the different selected transgenic 

lines for the expression of the fusion proteins (A1, B15, F56, C25, D45 and E53). About 

1 gram of root material from each of the previously selected stable lines was used to 

extract total soluble proteins and 20 µg were loaded on a SDS-PAGE and Western blot 

was performed using sheep anti-p24 antibody.  

 

 

 

 

 

 

 

 
Figure 30. Expression of the fusion proteins in roots from stable transformed plants. 20 µg of the 
total soluble proteins from root extracts were separated by 12% SDS-PAGE, transferred to a PVDF 
membrane and incubated with the anti-p24 specific antibody. A1: p24RFP-TMD17, B15: p24RFP-
TMD20, F56: p24RFP-TMD23, C25: zein-p24, D45: p24-zein and E53: p24-TA. 
 
As shown in Fig. 30, Western blot analysis of total soluble proteins isolated from root 

tissue revealed that the p24RFP-TMD17 (A1), the p24RFP-TMD20 (B15) and the 

p24RFP-TMD23 (F56) proteins migrated with the expected molecular mass of 55 kDa. 

In A1 some degradation products were detected around 35 kDa. Zein-p24 (C25) and 

p24-zein (D45) presented the expected molecular mass of 41 kDa. Some high molecular 

weight oligomers were detected in both cases as in leaves suggesting formation of 

protein bodies. The p24-TA (E53) protein migrated as a doublet of 35 and 37 kDa and a 

little free p24 was detected. The wild type (WT) extracts showed some unspecific 

labelling around 60 kDa. 

 

IV.7 Semi-quantitative analysis of p24 hybrid expression  
 

The recombinant p24 fusion proteins were quantified in the T0 plants previously 

selected (A1, B15, F56, C25, D45 and E53) using semi-quantitative Western blot 

analysis. Representative cases from leaves expressing various levels of the recombinant 

proteins are shown in Figure 31. N.tabacum wild type leaf extracts were used as 
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negative control and the amounts were compared with different amounts of purified 

recombinant p24 produced in Pichia pastoris (NIBSC, EVA678).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. Semi quantitative detection of recombinant p24 by Western blot. Different amounts 
(expressed in micrograms) of total soluble protein from wild-type (WT) or transgenic plants were 
analyzed by Western blot. Increasing amounts (0.25 ng, 1 ng, 5 ng and 10 ng) of purified p24 protein 
expressed in Pichia pastoris were also analyzed as a reference for quantitation. The corresponding 
Coomassie blue-stained membranes are shown in each panel as protein loading controls for the plants 
extracts. 
 

The highest accumulation levels were observed for plants expressing zein-p24 (C25 

plant) and p24-zein (D45 plant) fusion proteins (Fig. 31 C, notice that about 1/10 the 

amount of TSP was loaded on the SDS gel compared with the amount of TSP loaded 

from the plants in panels A and B). Plants expressing p24RFP-TMD (A1, B15 and F56 

plants expressing p24RFP-TMD17, p24RFP-TMD20 and p24RFP-TMD23, 

respectively) showed moderate accumulation levels (Fig. 31 A and B).  The p24-TA 

expressing plant (E53 plant) gave a signal comparable to that of the p24RFP-TMD17 
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plant when twice as much TSP was analyzed (Fig. 31 A). The WT sample revealed 

some unspecific binding, especially around 60 and 20 kDa as found in other Western 

blots performed before (Figures 28-30). The unspecific bands are a little shifted from 

the expected recombinant proteins and the intensity of the recombinant proteins around 

55 kDa (p24RFP-TMDs, panels A and B) suggests their specific binding. Moreover, 

these TMD proteins were observed by confocal microscope and fluorescence was 

observed so it is expected the recombinant proteins are expressed. 

Semi-quantification of the different fusion proteins was done by visual comparison of 

the intensity of the bands obtained in the Western blot with known amounts of the 

standard. It was concluded that the accumulation of p24RFP-TMD17 represented about 

0.3% TSP, and p24RFP-TMD20, p24RFP-TMD23 and p24-TA represented 0.15% 

TSP. Zein-p24 and p24-zein had the highest accumulation: about 1% TSP. 

 
IV.8 Analysis of recombinant p24 mRNA transcription in the T0 

generation 
 

Protein accumulation depends on the combination of different parameters: the rate of 

transcription, mRNA stability, mRNA translation and protein stability. Northern blot 

analysis allows determining the steady state accumulation of mRNA, which results from 

the combination of transcription and stability.  We first wanted to determine if the 

different levels of protein accumulation observed by Western blot could be related to 

recombinant mRNA levels.  Northern blot analysis was performed on leaf extracts (Fig. 

32). About 1 gram of leaf material from 6 week-old transgenic plants was divided into 

two halves: one was analysed by northern blot and the other half was tested by Western 

blot. Total RNA was extracted following the protocol as described in Materials and 

methods VII. A 700-bp DNA probe corresponding to the p24 CDS was generated by 

PCR and labelled with 32P. Twenty independent transgenic plants plus a wild type plant 

as negative control were analysed. As obviously expected from the results of Western 

blot analysis, recombinant mRNA was present in the leaves of all of the transgenic 

plants but not in wild type N.tabacum (Fig 32, wild-type not shown). Total RNA was 

visualised by Ethidium bromide to confirm equal loading of the samples on the 

formamide gels (Fig. 32 A lower panel).  

Different plants transformed with the same construct had different accumulation of 

recombinant mRNA. However, overall, plants expressing zein-p24 and p24-zein had 

higher mRNA accumulation whereas the p24-TA had lowest mRNA accumulation. 
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Analysis of two additional p24-TA plants (not shown) confirmed this result and also 

showed that when this construct was used there was very little variability in mRNA 

accumulation, contrarily to the other constructs. It should be noticed that the zein 

constructs produced two different bands: in both classes of transgenic plants, the lower 

bands correspond to the recombinant p24 transcript fused to the N-terminal domain of γ-

zein. The upper bands (arrow in panel A) suggest secondary structures of the transcripts 

due to the GC-rich region of the N-terminal γ-zein domain.  

 

 

 

 

 

 

 

 

 

 

 

  
 

 

Figure 32. Northern and Western blot analysis of leaves from different transgenic plants. A) 
Northern blot analysis of different transgenic lines expressing p24 mRNA. P24RFP-TMDs plants 
expressed different levels of p24 transcript depending on the plant. Zein-p24 and p24-zein lines showed 
higher levels of transcription compared with the other transgenic lines. An upper band (arrow) was 
detected most probably corresponding to secondary structures of zein-containing transcripts. The two 
P24-TA lines showed lower transcription levels compared with the other lines. B) Western blot of total 
soluble proteins extracted from the same leaves. 10 µg of total soluble protein were separated by SDS-
PAGE and immunodetected using sheep anti-p24 antibody. P24RFP-TMDs migrated at 55 kDa, zein-p24 
and p24-zein at 41 kDa and p24-TA at 37 kDa. The arrow indicated oligomers of zein-p24 and p24-zein. 
After developing, the membrane was stained with Coomassie blue to confirm the equal loading of the 
samples. 
 
 

Western blot analysis of the other half of material using sheep anti-p24 antibody 

confirmed the results of Figures 28 and 29, both qualitatively and quantitatively (Fig. 32 

B). There was a correlation between mRNA and protein accumulation both within each 

class of transgenic plants and between classes. However it should be noticed that the 
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higher amount of protein with TMD17 compared to those with TMD20 and 23 is not 

justified by higher mRNA levels and, similarly, the very high protein accumulation of 

zein fusion constructs in some plants were also not entirely justified by the higher 

mRNA levels.  

We conclude that, in general, there is a good correlation between transcription level and 

protein accumulation in the transgenic plants expressing the different p24 fusions, with 

the exception of the high protein accumulation of the zein fusions, which therefore 

could be due to higher translation or stability. 
 
IV.9 Intracellular localisation of recombinant p24 in transgenic 

plants 
 

In order to investigate the intracellular localisation of the recombinant proteins in the 

different transgenic plants, several techniques were used depending on the protein to be 

tested. For p24RFP-TMD plants, leaves and roots from the transgenic plants were 

observed with the confocal microscope taking advantage of the fluorescent protein they 

have fused. The plant-derived p24-TA was studied by isopycnic sucrose gradient as a 

preliminary result of intracellular compartment accumulation. Moreover, transgenic 

plants expressing p24-TA together with the zein-p24 and p24-zein were subjected to 

electron microscopy analysis in order to detect the putative ER localisation for p24-TA 

and the ER-derived PB accumulation for the zein fusions. 

 

IV.9.1 Intracellular localisation by confocal analysis of recombinant 
p24RFP-TMD  

 
Leaves and roots from two months old transgenic plants expressing recombinant 

p24RFP-TMD17, p24RFP-TMD20 and p24RFP-TMD23 were observed with a confocal 

microscope to confirm the localisation of the fusion proteins (Fig. 33). In all transgenic 

lines, the recombinant proteins were localised in the expected membranes in both plant 

tissues. In leaves, the p24RFP-TMD17 was localised in a reticular pattern 

corresponding to ER (arrowhead points the nuclear envelope labelling) but in this case 

the intensity of the fluorescence was low when compared to the fluorescence found in 

the apoplast indicating that an important proportion of the recombinant protein was 

secreted (arrow). In roots, the ER network was more visible and clear and the 

recombinant proteins were not detected in the apoplast.  
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The p24RFP-TMD20 accumulated in punctate structures in both leaves and roots 

(arrowheads). The labelling intensity of these structures was higher in roots than in 

leaves and in both cases they were mobile suggesting Golgi stacks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 33. Intracellular localisation of fluorescent recombinant proteins in transgenic tobacco lines. 
Tobacco leaves and roots from p24RFP-TMD17-, p24RFP-TMD20- and p24RFP-TMD23-expressing 
lines (A1, B15 and F56, respectively) were observed with a confocal microscope. Scale bars correspond 
to 10 µm. 
 
 
The p24RFP-TMD23 fusion proteins revealed a clear plasma membrane labelling in 

leaves and roots. In roots, some punctate structures were observed close to the plasma 

membrane (arrowheads), which correspond to the Golgi complex as they were mobile. 

 

IV.9.2 Intracellular localisation of recombinant p24-TA by isopycnic 
sucrose gradient analysis  

 
In order to verify the reticular localisation of p24-TA, leaves from the E53 transgenic 

plant were homogenized in the absence of detergent and fractionated in an isopycnic 

sucrose gradient by ultracentrifugation. In this case the buffer contained Mg2+ to 

maintain the ribosomes attached to the ER membrane. Leaf material was homogenized 

with homogenization buffer containing 0.4 M sucrose and after low speed 

centrifugation to remove nuclei, unbroken cells and cell wall material, the extract was 

Leaf 

Root 

p24RFP-TMD17 p24RFP-TMD20 p24RFP-TMD23 
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loaded on a linear sucrose gradient (20-50%, w/w) prepared in the same buffer. 500 µl 

fractions were collected and the proteins were concentrated by precipitation with TCA. 

The different fractions were loaded on a 12% SDS-PAGE and after electrophoresis and 

blotting proteins were detected with sheep anti-p24 antibody or rabbit anti-calreticulin 

antiserum (Figure 34). 

 

 

 

 

 

 

  

         
Figure 34. Isopycnic sucrose density gradient of p24-TA transgenic plant extract. Homogenates were 
prepared under high Mg2+ conditions (MgCl2). The percentage refers to sucrose content. P is total pellet 
sample. The molecular masses are expressed in kDa. 
 
 

Calreticulin is a multifunctional protein that binds Ca2+ and it is also a chaperone 

involved in protein folding in the ER. In this experiment this protein was used as an ER 

marker and was detected in the interval of 34% to 42% of sucrose, corresponding to the 

ER (Figure 34). The distribution of positive p24 signals showed that the fusion protein 

was detected in the narrow interval of 38.3% to 42% sucrose also corresponding to the 

ER. These preliminary results may hint to a localisation of the recombinant p24-TA in 

the ER membrane, but further experiments might be conducted to verify the ER 

localisation like immunofluorescence or electron microscopy. 

 

IV.9.3 Intracellular localisation of recombinant p24-TA, zein-p24 and p24-
zein by electron microscopy 

 
An ultrastructural study was undertaken by electron microscopy in order to 

investigate the subcellular localisation of p24-TA, zein-p24 and p24-zein produced in 

transgenic plants. Fixed leaf tissue was examined by immunogold labelling incubating 

with anti-op3 antibody for the p24-TA sample and with anti-zein antiserum for the zein 

samples. The p24-TA sample resulted in a very low quality of the tissue chemical 
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fixation and the ER and the cytosol were not well preserved (data not shown). This 

experiment must be repeated in order to optimise the fixation of the sample. 

The same preservation problem was observed for the zein-p24 and p24-zein samples. 

However, in a first gold immunolabelling experiment, putative ER-derived protein 

bodies were observed (Fig. 35 arrows) although no specific labelling was achieved as 

many gold particles were found in the vacuole (data not shown). These structures were 

observed in both zein-p24 and p24-zein but not in the negative control sample 

corresponding to wild type N.tabacum. These preliminary data strengthen the 

hypothesis that the zein-tagged p24 proteins form protein bodies however further 

experiments must be conducted to optimise the fixation of the samples and the specific 

labelling using anti-zein and/or anti-p24 antibodies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 35. Electron micrographs of fixed transgenic zein-p24 (A) and p24-zein (B, C) tobacco leaves 
incubated with anti-zein antibody. Putative ER-derived protein bodies were observed (arrows). V: 
vacuole, CW: cell wall. The scale bars correspond to 180 nm. 
 
 
IV.10 Stability of the recombinant p24 in transgenic tobacco plants 
 

Pulse-chase experiments have proved to be a powerful tool to study protein folding, 

maturation, and degradation in different cell types (Jansens and Braakman 2003). When 

short pulses are applied and followed by chase, a fraction of the total protein pool can 
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be followed from synthesis to degradation in its natural environment. We wanted to 

explore by this method the stability of the different p24 recombinant proteins expressed 

in transgenic plants.  

 

IV.10.1 Sheep anti-p24 antibody is not appropriate for immunoprecipitation 
but rabbit anti-p24 is 

 
Immunoprecipitation allows to precipitate an antigen from a solution using a specific 

antibody with the help, as in our case, of Sepharose beads conjugated with Protein A or 

Protein G. Protein A is a protein from Staphylococcus aureus and Protein G a protein 

from Streptococcus sp. Both are proteins that bind to the Fc region of most classes and 

subclasses of immunoglobulins from several mammalian species leaving the Fab region 

available for antigen binding. 

In order to evaluate our immunoprecipitation protocol, sheep anti-p24 antibody used to 

immunodetect the recombinant p24 by Western blot was tested for immunoprecipitation 

of the p24 fusion proteins. Tobacco protoplasts were transiently transformed with the 

empty vector pGY1 as control and with pP24RFP-TMD17 DNA construct.  

Recombinant proteins were radiolabelled with 35S-Methionine/Cysteine for 1 h and 

chased for different times, from 0 to 8 h. The samples, corresponding to 300,000 

protoplasts, were immunoprecipitated with 1:500 polyclonal sheep anti-p24 and then 

incubated with Protein G-Sepharose beads. As can be seen in Fig. 36 A, many bands 

could be detected in the precipitate from protoplast transformed with the pP24RFP-

TMD17 construct or empty vector, and no specific polypeptides were precipitated from 

the former. This result revealed that this antibody is not suitable for 

immunoprecipitation. 

To overcome this problem, we tested another anti p24 antibody, from rabbit. Protoplasts 

were again transformed with empty vector (pGY1) or pP24RFP-TMD17 and 

immunoprecipitated using 1:500 rabbit anti-p24 (NIBSC) (Fig. 36 B). In this case two 

sequential immunoprecipitation reactions were performed, the second one using the 

supernatant from the first one. The samples were incubated with the antibody and then 

with protein A-Sepharose beads. A single specific polypeptide of 55 kDa apparent 

molecular mass was detected in the pP24RFP-TMD17-transformed sample (lanes 3 and 

4) but not in that transformed with the empty vector (lanes 5 and 6). As control, rabbit 

anti-BiP (BiP is an abundant chaperone of the ER) antibody was used for both samples 
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and a band around 75 kDa was detected in pP24RFP-TMD17 (lane 1) and in empty 

vector (lane 2) transformed protoplasts. The additional polypeptides co-precipitated 

with BiP represent newly synthesized polypeptides specifically associated to the 

chaperone (see for example Pedrazzini et al., 1997). 

 

 

 

                                      

                      

 

 

 

 

 

 

 

 

 
Figure 36. Evaluation of the ability of the two different antibodies to immunoprecipitate the 
recombinant fusion proteins in transiently transformed tobacco protoplasts. Radiolabelling and 
immunoprecipitation of transiently transformed tobacco protoplasts with empty vector pGY1 (EV) and 
pP24RFP-TMD17. A) Test of sheep anti p24 antibodies. Different amounts of sheep anti-p24 antibody 
were tested but the antibody could detect many bands one presumably around 55 kDa corresponding to 
the fusion protein. B) Test of rabbit anti p24 antibody. pP24RFP-TMD17 (lanes 1, 3 and 4) and EV (lanes 
2, 5 and 6) transformed protoplasts were homogenized and immunoprecipitated with anti-BiP (lanes 1-2) 
or rabbit anti-p24 antibody (lanes 3-6). Lanes 4 and 6 correspond to a second round of 
immunoprecipitation from the supernatants of lane 3 and 5 immunoprecipitations, respectively.  
 
 

The fact that the second round of immunoprecipitation still selected similar amount 

of the p24 recombinant polypeptide (compare lanes 3 and 4) indicated that at the 

concentration used the antibody is saturated by the recombinant protein when the 

homogenate from 100,000 protoplasts is immunoselected. The rabbit anti-p24 antibody 

was used for further immunoprecipitation experiments. 
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IV.10.2 P24RFP-TMD17 is more stable than p24RFP-TMD20 and p24RFP-
TMD23  

 
Pulse-chase radiolabelling experiments were carried out by labelling tobacco 

protoplasts from plants stably expressing p24RFP-TMD with 35S-Methionine/Cysteine 

for 1 h and chasing for different times, from 0 to 8 h. Clarified cell lysates and 

supernatant media from equal number of cells were immunoprecipitated with rabbit 

anti-p24 antibody. 

As shown in Fig. 37 A, p24RFP-TMD17 was readily detected within the pulse interval 

and migrated at the expected molecular mass of 55 kDa. The signal decreased in 

intensity during the chase. Comparison of the different time-points indicated a half life 

between 4 and 8 h. A lower band around 24 kDa (arrowhead) was also detected in the 

cell lysates suggesting free p24 could be already found inside the cells at time 0 h of 

chase. The free p24 was secreted into the medium and could be detected from 2 h to 8 h 

of chase in the medium fraction (Fig. 37 A arrowhead).   

In our preliminary Western blot experiments using sheep anti-p24 antibody, two closely 

migrating bands around 35 kDa were constantly detected in stable p24RFP-TMD17 

tobacco lines (Figures 30-32). These bands probably correspond to degradation products 

of the recombinant protein and they might contain the p24 protein as the epitopes are 

detected by the antibody. The two 35 kDa proteins were unstable after 8 h of chase in 

the cell lysates and they were also secreted after 2 h of chase (Fig. 37 A asterisks). 

These results suggest that there are 3 forms of the recombinant p24RFP-TMD17. One is 

the expected 55 kDa full length recombinant protein (arrows). Another form is the free 

p24 which is found inside the cells but also detected in the medium after 2 h chase 

(arrowheads). The intermediate form around 35 kDa and also starts to be detected in the 

medium at 2h chase and then disappears from the medium, possibly because converted 

to the 24 kDa polypeptide (asterisks). 

These results partially confirm the mislocalisation of p24RFP-TMD17 observed in 

leaves of transgenic tobacco plants in which an important part of the fluorescence was 

detected in the apoplast (Fig. 33). Notice that the presence of intact p24RFP-TMD17 in 

the medium (circle) is probably an artefact due to contamination from protoplasts: the 

protein is found in the medium even at 0 h chase, a time too short to allow for secretion 

of newly synthesized proteins.   
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Figure 37. Plant-derived recombinant p24RFP-TMD fusions are retained inside the cells and are 
unstable. Tobacco protoplasts from leaves from transgenic plants were pulse labelled with 35S-
Methionine/Cysteine for 1 h and chased at 0, 2, 4 and 8 h as indicated above the lanes. Cell lysates (cells) 
and supernatants (medium) were immunoprecipitated with rabbit anti-p24 antibodies. A) p24RFP-
TMD17 plant; one week exposure (left) and two weeks exposure (right). B) p24RFP-TMD20 plant; one 
week exposure (left) and two weeks exposure (right). C) p24RFP-TMD23 plant; one week exposure (left) 
and two weeks exposure (right). Each lane corresponds to 250,000 protoplasts. 
 

 

The results shown in Fig. 37 B and C demonstrate that the full length p24RFP-

TMD20 and p24RFP-TMD23 proteins contained in the cell fraction were detected at the 

end of the pulse but rapidly decayed with an apparent half-life of less than 2 hours. The 
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appearance of additional, smaller polypeptides at time 0 indicates that the recombinant 

protein starts to be degraded very soon after synthesis. Again, the presence of a minor 

proportion of intact recombinant polypeptides in the medium at 0 h chase is most 

probably due to protoplast contamination (Fig. 37 B, C circle), whereas, as was seen for 

p24RFP-TMD17, free p24 was detected in the medium fraction in both cases gradually 

increasing from 0 to 8 hours of chase, indicating secretion of the soluble polypeptide 

(Fig. 37 B, C arrowheads).  

In conclusion, the recombinant protein with the 17 amino acid TMD is more stable than 

the other two membrane-bound fusions. This is consistent with the data regarding 

mRNA and protein levels.  

 

IV.10.3 p24-zein fusions are stable 
 
Wild type γ-zein is insoluble unless its disulfide bonds are reduced (Vitale et al. 1982). 

In this study, the fusion proteins containing the zein domain showed similar properties 

as an important fraction remained insoluble when no reducing agent was added to the 

protein extraction buffer and the immunoprecipitation was accordingly impossible (not 

shown).  

 

 

 

 

 

 

 

 
Figure 38. Pulse-chase analysis of plant-derived zein-p24 and p24-zein.  Protoplasts from stably 
transformed plants were pulse-labelled with 35S-labelled amino acids and harvested at the indicated 
times. Cells were lysed in the presence of β-mercaptoethanol and the p24 proteins were 
immunoprecipitated using rabbit anti-p24 antibody. Radioactive proteins in the immunoprecipitates were 
analysed by SDS-PAGE and autoradiography. The autoradiograms were exposed for 2 weeks. 
 
 

Therefore, β-mercaptoethanol was added to the immunoprecipitation involving zein 

fusions. Pulse-chase showed that the zein-p24 and p24-zein fusions proteins remained 

in the cells and the amount was not significantly reduced up to 8 h chase (Fig. 38). The 
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minor amounts of recombinant protein in the medium is again probably due to 

protoplast contamination, as it is already present at 0 h chase and does not change 

during subsequent time points.  A small proportion free p24 can be detected in the cell 

lysates at 0 h chase and this is in part slowly secreted during the chase (arrowheads).  

The high stability of the two polypeptides, together with the high mRNA levels, is 

therefore the basis for the high accumulation detected by Western blot. 
 

IV.10.4 p24-TA is stable 
 

Protoplasts from a p24-TA expressing plant (E53) were pulse-labelled for 1 hour and 

chased for different times. The p24-TA protein was immunoprecipitated using two 

different antibodies, rabbit anti-p24 and mouse anti-op3. The first antibody recognizes 

the p24 protein while the second recognizes the bovine opsin domain added to the C-

terminal tail of cyt b5. Intact p24-TA was detected as a doublet of 35 and 37 kDa by 

either antibodies (Fig. 39 arrows).  

 
 

 

 

 

 

 

 

 

 

Figure 39. Analysis of the p24-TA stability from a transgenic plant. Protoplasts were pulse labelled 
and chased up to 8 hours. Two antibodies were used to immunoprecipitate p24-TA, rabbit anti-p24 (left 
panel) and mouse anti-op3 (right panel). Immunocomplexes were precipitated using protein-A Sepharose 
(left panel) and protein-G Sepharose (right panel). SDS-PAGE and fluorography revealed that p24-TA is 
stable up to 8 hours of chase. 
 
 
The upper band, probably corresponding to the glycosylated isoform, was predominant 

in the cell fraction during the 8 hours of chase in contrast to the unglycosylated isoform, 

which was mainly detected at time 0. The stability of intact, probably glycosylated, p24-

TA was intermediate between those of the zein construct and the TMD17 construct.  A 

relatively high amount of free p24 was also detected at all time points inside the cells 

(notice that, as expected, this is not recognized by the anti-op3 antibody) and was in 
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small proportion secreted (Fig. 39 arrowhead). The high ration of free 24 with respect to 

p24-TA is in agreement with the Western blot results (see Figure 30-32). 

 
IV.11 Purification of the rp24 from transgenic plants 
 

The major reason for the high production cost of pharmaceutical proteins is the 

purification of the recombinant proteins (Twyman et al. 2003; Kirk and Webb 2005; 

Vitale and Pedrazzini 2005). To be commercially competitive, a recombinant protein 

produced in plants must have a cost-effective, efficient and potentially up-scalable- 

purification system.  

If the protein of interest is expressed as a fusion (such as with added tags or stabilizing 

sequences) it could be necessary to remove it from the added sequence. This can be 

achieved in vitro by site-specific proteolysis with adequate proteases if, as in our case, 

specific proteolytic sites were inserted into the recombinant constructs. Thrombin is a 

serine protease that plays an important role in the blood coagulation cascade. This 

protein specifically recognizes the amino acid sequence LVPR/G and cleaves between 

the Arg and the Gly. Thrombin was chosen for our recombinant p24 proteins in all the 

constructs because the p24 sequence does not contain any specific thrombin target, the 

protease is not present in plant cells, and thrombin cleavage leaves only one Gly residue 

at the N-terminus.  

To test if recombinant p24 could be released by in vitro thrombin cleavage, total soluble 

proteins were extracted from leaves of the different transgenic plants. The extraction 

was carried under non-reducing conditions except for the zein-p24 and p24-zein 

samples. As seen for immunoprecipitation (Materials and methods IV.10.3), the 

recombinant proteins containing zein were detected in the insoluble fraction when 

extracted with non-denaturing buffer. For this reason, β-mercaptoethanol was added to 

the extraction buffer used for these two recombinant proteins. 

Immunoprecipitation was performed using three antibodies. The first antibody (anti 

p24) immunoprecipitated all the recombinant proteins produced in the different 

transgenic plants. The other antibodies bound to the zein domain (anti-zein) and to the 

op3 domain of the p24-TA recombinant protein (anti-op3). The immunocomplexes were 

incubated with protein A- or protein G-Sepharose and were subjected to thrombin 

digestion. The images shown in the next section correspond to Western blot analysis 

using rabbit anti-p24 antibody after thrombin cleavage.   
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IV.11.1 Purification using rabbit anti-p24 
 
Leaf homogenates of plants expressing the zein or TMD fusions were incubated with 

rabbit anti-p24 antibodies and the antigen-antibody complexes were 

immunoprecipitated using protein A-Sepharose.  

 

 
 

 

 

 

 

 

 

 

 

 
Figure 40. Immunoprecipitation using rabbit anti-p24 antibodies. Lysates from plants expressing p24 
fusion proteins and wild type plants were incubated with rabbit anti-p24 antibodies. The 
immunocomplexes were isolated using protein A-Sepharose beads and a part of them were digested with 
thrombin. The samples were subjected to SDS–PAGE and after blotting the p24 was detected using a 
sheep anti-p24 and a donkey anti-sheep horseradish peroxidase antibodies. The arrows indicate the 
position of the pure p24 protein. Left panels show 1 minute exposure and right panels 5 minutes. 
Molecular masses are expressed in kDa. WT: wild type; R: resin; S: supernatant. 
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The pellets of these samples contained the antigen-antibody complexes attached to 

the beads and they were incubated for 16 hours with thrombin in solution or with buffer 

without enzyme (negative control). The suspensions were then centrifuged and the 

soluble fraction and the precipitate were analyzed by SDS-PAGE and Western blot 

using sheep anti-p24, which usually revealed a single band with the expected molecular 

mass of this protein.  

Extracts from a wild type plant were used as negative control: the rabbit anti-p24 

antibody only detected an unspecific band around 55 kDa which remained associated to 

the resin also after thrombin cleavage (Fig. 40).  

Free p24 was released by thrombin from all recombinant constructs and remained, as 

expected, bound to the resin, with no or very little release in the supernatant (Fig. 40 

arrows). Free p24 migrated with the expected molecular mass of 24 kDa while the 

different fusion proteins were detected with their corresponding molecular masses in the 

samples not treated with thrombin.  

This purification method showed that using the rabbit anti-p24 antibody to 

immunoprecipitate the p24 fusions and digesting with thrombin, the fusion proteins 

were efficiently cleaved and the free p24 remained associated to the beads. 
 

IV.11.2 Purification using rabbit anti-zein and mouse anti-op3 
 

Protein lysates from zein-p24, p24-zein and wild type plants were incubated with 

rabbit anti-zein antibody. Protein lysates from p24-TA and wild type plants were 

incubated with mouse anti-op3 antibody. The antigen-antibody complexes were then 

immunoprecipitated using protein A-Sepharose for the rabbit anti-zein antibody samples 

and protein G-Sepharose for the mouse anti-op3 antibody samples. The 

immunocomplexes bound to the resins were incubated for 16 hours with or without 

thrombin. The suspensions were centrifuged and the two fractions were analyzed by 

SDS-PAGE and Western blot analysis using anti-p24 antibody, as in the previous 

thrombin cleavage experiment.   

The zein-p24 and p24-zein extracts revealed a single band with the expected molecular 

mass of 41 kDa from the resin fraction in non-treated samples (Fig. 41 A). No fusion 

proteins were detected in the supernatant of non-treated samples. When the samples 

were digested with thrombin, free p24 was detected in the medium fraction (arrows) as 

expected, although some fusion proteins and free p24 were detected attached to the 
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resin. These results suggest the thrombin cleavage site was not exposed. Possibly, 

antibody binding to the zein epitopes inhibits in part access to the thrombin cleavage 

site. In wild type extracts only a very a faint band around 25 kDa was visible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 41. Immunoprecipitation analysis using rabbit anti-zein and mouse anti-op3 antibodies. A) 
Plant-derived zein-p24, p24-zein and wild type lysates were incubated with rabbit anti-zein antibodies. 
The immunocomplexes were isolated using protein A-Sepharose beads and a part were treated with 
thrombin (+). B) Plant-derived p24-TA and wild type lysates were incubated with mouse anti-op3 
antibodies. The immunocomplexes were isolated using protein G-Sepharose beads and a part were treated 
with thrombin (+). All the samples were subjected to SDS–PAGE and after blotting the p24 was detected 
using a sheep anti-p24 and donkey anti-sheep immunoglobulin horseradish peroxidase. The arrow 
indicates the position of the pure p24 protein. Molecular masses are expressed in kDa; WT: wild type; R: 
resin; S: supernatant. 
 
 
As shown in Fig 41 B, p24-TA was detected as a doublet in the resin fraction of non-

treated samples corresponding to the glycosylated and unglycosylated isoforms of the 

protein. No fusion proteins were detected in the supernatant of non-treated samples. 

When the samples were digested with thrombin, free recombinant p24 was detected in 

the resin fraction and was only in very minor proportion released to the supernatant 

(arrow). This could be explained by the MHR region of p24 has been suggested to have 

a role in membrane affinity of GAG through hydrophobic interactions (Ogg et al. 1998). 

It is possible that the domain interacts with the released TMD domain of p24-TA after 

thrombin cleavage. Because the TA-opP3 region is associated to the resin via the 

antibody, this can in turn retain the removed p24. The same reasoning can be adopted 

for the zein-p24 and p24-zein proteins. To solve this possibility, in all the digestions of 

the different recombinant proteins, Triton was added to dissociate potential hydrophobic 

interactions. We conclude that for these experiments further investigations must be 

conducted to optimise the purification of the recombinant p24 like adding higher 

amounts of Triton in the digestion reactions. 
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Unspecific binding of a polypeptide around 20 kDa was observed in the wild type 

sample (Fig. 41 B asterisk) and the same unspecific bands were found in the different 

samples from the transgenic plant. In this case, their pattern was different from the 

pattern found when immunoprecipitating with rabbit anti-p24 or rabbit anti-zein 

antibodies (Fig. 40-41).  
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HIV-1 p24 protein as a subunit vaccine 
 

There is a global need for an effective and affordable HIV vaccine. An ideal vaccine 

would induce the formation of broadly neutralizing antibodies and specific T-cell 

mediated immune responses (Caley et al. 1997). The p24 capsid peptide has been 

proposed to be a good subunit vaccine candidate as it has proved to trigger both host 

responses and is rather conserved among HIV clades and other immunodeficiency 

viruses (Matsuo et al. 1992; Hilpert et al. 1999). 

Moreover, when an effective anti-HIV vaccine is developed, large-scale immunisation 

programs will require large amounts of vaccine (IAVI). To address this need, several 

approaches to produce large amounts of potential HIV subunit vaccines are under 

development. In this study transgenic tobacco plants have been engineered to express 

the main protein of the HIV-1 capsid. 

 

Plants chosen as a production system for recombinant p24 production 
 

The characteristics of the host for recombinant proteins expression must be 

considered in terms of production potential, environmental impact, food safety and 

human health (Sparrow et al. 2007). Plants are higher eukaryotes and thus can produce 

recombinant peptides and proteins similar to their counterparts that are naturally 

expressed in mammalian cells but cannot be produced by microbes (Ma et al. 2005). 

They produce a large amount of biomass and protein and their production can be 

increased massively by the propagation of stably transformed plants in the field. 

Tobacco is a well established production system and its open-field cultivation could be 

advantageous in terms of capacity, flexibility, scalability and production costs of 

recombinant pharmaceutical proteins (Boehm 2007). Tobacco is an excellent biomass 

and prolific seed producer and as it is not used for food or feed, and it is relatively easy 

to keep separate from crop products used for human or animal food chain (Sparrow et 

al. 2007). Tobacco is a self-pollinating crop and different techniques have already been 

developed for both male sterility and seed sterility of this species.  

The HIV-1 p24 capsid protein has been produced in bacteria (Gupta et al. 1997; 

Qoronfleh 1999; Castilho et al. 2005; Bhardwaj et al. 2006; Mahboudi et al. 2006), in 

yeast (Vlasuk et al. 1989; Jiang et al. 2005), in insect cells (Joshua et al. 2000), in 
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mammalian cells  (Chen et al. 2007). Although acceptable expression levels have been 

achieved using these expression systems, plants have been also investigated. 

In plants, p24 has been transiently or stably expressed in tomato and in tobacco. Zhang 

et al (2000) stably transformed tomato plants using tomato bushy stunt virus but the p24 

ORF was not stably maintained in the viral vector. Two years later, the same group 

produced p24 in transgenic tobacco plants achieving accumulation levels of 0.35% TSP 

in the cytosol (Zhang et al. 2002). Using Tobacco Mosaic Virus (TMV) as a vector, 

HIV-1 clade C p24 was inoculated into N.benthamiana plants obtaining yields of 100 

mg per kg fresh leaf weight (Perez-Filgueira et al. 2004). Moreover, it was reported that 

the expression of HIV-1 clade B p24 fused to IgA in the secretory pathway of 

N.tabacum raised to accumulation levels of 1.4% TSP in transgenic tobacco plants 

(Obregon et al. 2006). In a recent study, HIV-1 clade C p24 and p17/p24 chimera were 

targeted to the ER and to the chloroplasts in tobacco plants (Meyers et al. 2008). The 

maximum levels of expression for p24 and p17/p24 were achieved by transient 

expression in tobacco chloroplasts and were about 0.3% TSP. 

These studies showed that recombinant protein accumulation in tobacco leaves is 

relatively low when compared to the economic threshold of 1% TSP proposed by 

Kusnady et al. (1997). Many efforts have been put to improve transcription, translation 

and intracellular targeting of recombinant proteins in tobacco and other species to use 

them as plant-based expression systems for production of therapeutic proteins 

(Schillberg et al. 1999; Nuttall et al. 2005; Obregon et al. 2006; Marusic et al. 2007; 

Van Droogenbroeck et al. 2007; Barbante et al. 2008; de Virgilio et al. 2008; Floss et al. 

2008; Irons et al. 2008; Rademacher et al. 2008; Ramessar et al. 2008; Strasser et al. 

2008).  

Some studies have pointed the plant secretory pathway as a suitable place to 

accumulate recombinant proteins (Schillberg et al. 1999; Nuttall et al. 2005; Obregon et 

al. 2006; Floss et al. 2008). Accumulation of the recombinant protein in a specific 

compartment may greatly facilitate its isolation and purification which are critical points 

in large scale production (Kamenarova et al. 2005). 

With the aim of producing high amounts of native HIV-1 p24 (without codon usage 

optimisation) in tobacco plants, we compared different intracellular compartments and 

membrane orientations within the endomembrane system. In this work, we used 3 main 

strategies: p24 was fused to RFP and different TMD, to the N-terminal domain of γ-zein 

or to the C-terminal TA domain of cyt b5. 
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Localisation of recombinant p24 
 

Each intracellular compartment of the secretory pathway has a specific proteome 

defined by complex sorting mechanisms that determine the final destination of proteins 

via anterograde or retrograde traffic. This is mediated by vesicular carriers. Coat protein 

complex (COP) II vesicles transport the exported cargo from ER to the Golgi complex 

while COPI vesicles retrieve proteins from Golgi to the ER (Bonifacino and Glick 

2004). Clathrin-coated vesicles mediate traffic to endosomes, either from the Golgi 

complex or from the plasma membrane. A mechanism involved in the sorting of 

membrane proteins is the length of their TMD. The membranes of the secretory 

pathway have different thickness depending on the lipid-protein composition and they 

become thicker and more rigid from the ER towards the cell surface (Bretscher and 

Munro 1993; Sprong et al. 2001). The amino acid composition of a TMD determines its 

hydrophobicity and a correlation between increased TMD length/hydrophobicity and 

sorting to later compartments of the secretory pathway has been observed (Bretscher 

and Munro 1993; Brandizzi et al. 2002). Statistical analyses in which features of the 

TMD are correlated to specific subcellular localisation have suggested that retention of 

proteins in the ER, Golgi or plasma membrane depends in many cases on the TMD 

length (Munro 1995; Pedrazzini et al. 1996; Fu and Kreibich 2000; Pedrazzini et al. 

2000; Brandizzi et al. 2002). However, the retention mechanism remains poorly defined 

as there are no general rules to accumulate proteins in a specific compartment (Twyman 

et al. 2003; Fischer et al. 2004; Kamenarova et al. 2005) . 

 

Recombinant p24 fused to RFP and TMD accumulated in moderate levels 

in the secretory pathway 
 

We fused recombinant p24 to TMD of different lengths to compare its accumulation 

in various compartments of the plant secretory pathway, as a type I membrane protein in 

which the HIV sequence is exposed in the compartment lumen. Transient protein 

expression has proved a rapid alternative methodology before stable plant 

transformation (Sparkes et al. 2006). Several methods are used to transiently transform 

cells, two widely used examples being protoplasts transformation and Agrobacterium-

mediated leaf infiltration. Both methods achieve high levels of recombinant protein for 

a short time; however they are not commonly used for commercial-scale production 
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(Ma et al. 2003; Twyman et al. 2003; Fischer et al. 2004). These experimental 

procedures are relatively simple and inexpensive and their results can give a preliminary 

estimation of the production of the recombinant protein before preparing transgenic 

plants.  

Tobacco protoplasts and leaf agroinfiltration were used to initially monitor the 

subcellular localisation of p24 fluorescent fusion proteins. The results showed that RFP-

TMDs and p24RFP-TMDs recombinant proteins were targeted to the expected 

compartment depending on their TMD, in agreement with the results obtained by 

Brandizzi et al. (2002). In contrast, transient expression of RFPp24-TMDs fusion 

proteins resulted in major delivery of the recombinant proteins to the vacuole with some 

minor localisation in the ER. We hypothesize that the proteins had folding defects, and 

were recognised by ER protein quality control and mainly directed to the vacuole. 

Newly synthesised proteins that enter the ER are assisted by several chaperones and 

folding helper enzymes (Matlack et al. 1999). When a protein is not correctly folded, 

the ER quality control machinery will often target the malfoded protein to the cytosol to 

be degraded by the ubiquitine-proteasome system, a pathway known as ER-associated 

degradation (Ellgaard et al. 1999; Lord et al. 2000; Hampton 2002). However, by 

studying the behaviour of defective secretory proteins in yeast, it has been shown that 

misfolded proteins can also be directed to the vacuole for degradation as an alternative 

location for disposal (Spear and Ng 2003). Moreover, recent studies suggested that the 

ER chaperone BiP may play an active role in what could be a similar vacuolar quality 

control in plant cells, highlighting the possible existence of multiple quality control 

mechanisms in the secretory pathway (Pimpl et al. 2006; Vitale and Boston 2008). Thus 

our results strengthen this alternative as even recombinant proteins expected to be 

localised in the ER (RFPp24-TMD17) present some mistargeting to the vacuole, 

suggesting that this vacuolar sorting is not strongly influenced by the TMD length and 

most probably due to misfolding.  

When the RFP was replaced by GFP, the N-terminal GFP-tagged constructs 

(GFPp24-TMD) also presented mistargeting in transiently transformed protoplasts. 

Furthermore, the RFPp24TMD-GFP recombinant proteins did not show conclusive 

results but they revealed that a fragment of the fusion proteins containing the lumen-

facing RFP was partially located in the ER and partially in the vacuole whereas another 

fragment of the protein containing the cytosol-facing GFP was only observed in the ER. 

Western blot analysis revealed the fusion proteins were detectable by both anti-p24 and 
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anti-GFP antibodies but some degradation products were observed when using the 

latter. 

The data presented regarding transient expression allow us to conclude that 

transmembrane domain length can modulate sorting between the ER, Golgi and plasma 

membrane. The strongest argument is the observation that different constructs 

containing transmembrane domains were differentially localised on the basis of the 

length of their TMDs. However, there was mislocalisation of the N-terminal XFP-

tagged constructs due either to a position effect of the XFP, by which the TMD was not 

the only determinant to sort the recombinant protein to the expected compartment, or 

due to a position effect of p24. The p24 contains a hydrophobic domain at the C-

terminus called major homology region (MHR) which is highly conserved and allows 

protein dimerization (Ogg et al. 1998). It is possible that when p24 is at the C-terminus 

of the construct and close to the TMD, putative interactions of this region may not allow 

the correct folding of the recombinant protein, independently of the XFP at its N-

terminus, and the malfolded protein is recognised by protein quality control and directed 

to the vacuole. 

For the p24RFP-TMD constructs, we also used stable nuclear transformation of tobacco 

plants. Transgenic tobacco plants were generated using the constructs containing the 

appropriate targeting signals to achieve accumulation of the recombinant p24 in ER, 

Golgi or plasma membrane. Leaves of transgenic tobacco plants expressing p24RFP-

TMD17, p24RFP-TMD20 and p24RFP-TMD23 reached accumulation levels of about 

0.3% TSP for the ER-targeted recombinant proteins (p24RFP-TMD17) and of 0.15% 

TSP for the Golgi-targeted (p24RFP-TMD20) and plasma membrane-targeted proteins 

(p24RFP-TMD23) indicating the TMD17 allows higher accumulation than the TMD20 

and TMD23. For all three constructs, the variation in transgene expression was low, but 

high-accumulating lines could still be identified in a small group of 25 to 30 

independent transformants. These results are comparable to the cytosolic p24 expression 

levels of 0.35% TSP achieved in transgenic tobacco plants and to the 0.3% TSP in 

transiently transformed tobacco chloroplasts (Zhang et al. 2002; Meyers et al. 2008). 

To our knowledge, this is the first study in which a pharmaceutical recombinant 

protein is specifically targeted to Golgi stacks and to plasma membrane for high yield 

production in plants. Although anchoring a fusion protein to a membrane for 

accumulation purposes is not a new technique, the ER is usually the chosen organelle. 

The ER provides an oxidizing environment, a neutral pH and there are few proteases. 



                                                                                                                                         Discussion 

 102

Accumulation of recombinant proteins in the ER via de H/KDEL was demonstrated to 

be safe in terms of stability and accumulation in comparison to other organelles 

(Kamenarova et al. 2005; Vitale and Pedrazzini 2005). However, the KDEL peptide 

must interact with its receptor, which can lead to saturation when expressing high 

quantities of recombinant proteins (Crofts et al. 1999). Moreover, the introduction of the 

H/KDEL in the amino acid sequence of p24 can affect its activity. In this study, we 

wanted to explore other strategies to accumulate recombinant proteins in the plant ER 

without using the KDEL signal and saturating the retrieval system.  

 

Recombinant p24 fused to C-terminus cyt b5 TA 
 

As mentioned above, HIV-1 p24 was expressed in the cytosol of transgenic tobacco 

plants. The first report describes accumulation levels of 0.35% TSP (Zhang et al. 2002) 

whereas in the second report the accumulation was very low (0.04 µg p24/kg fresh leaf 

weight) (Meyers et al. 2008). In a previous study, the cytosolic protein HIV-1 Nef was 

expressed free in the cytosol or anchored to the ER membrane by fusion to the TA of 

cyt b5. In transgenic tobacco plants, cytosolic soluble Nef achieved accumulation levels 

of 0.2% TSP whereas Nef-TA was 0.7% TSP (Marusic et al. 2007; Barbante et al. 

2008). This higher accumulation, consistently observed in many independent transgenic 

plants, was due to increased protein stability (Barbante et al., 2008).  

In an effort to improve p24 accumulation still maintaining it in its natural cytosolic 

folding environment, we expressed the HIV protein as a TA recombinant protein, using 

the same TA that was previously fused to Nef. In plant cells, the hydrophobic TA of 

rabbit cyt b5 leads to the recruitment of recombinant proteins to the cytosolic face of the 

ER, which is the natural location of the isoform of cyt b5 from which the TA was 

derived (Maggio et al. 2007). As in Nef-TA, the C-terminal cyt b5 TA was modified to 

add an N-glycosylation site. This site was previously used as a marker for the proper 

translocation of the TA to the ER membrane and therefore to verify the subcellular 

localisation and membrane topology of the recombinant protein (Pedrazzini et al. 2000). 

Our recombinant p24-TA protein was engineered to have the TA tail cleaved off and the 

p24, as expected to remain in the ER, will not contain any plant glycan that could 

potentially produce some allergic reaction. 

Our p24-TA was expressed to levels of 0.15% TSP in transgenic tobacco plants. This 

was about half of the level of accumulation reported for cytosolic p24 by Zhang et al. 
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(2002), but it should be considered that we do not know whether the mRNA levels are 

comparable for the two constructs. The mRNA levels of p24-TA were consistently 

lower than the average levels of the TMD fusions that we produced. Our results 

however indicate that p24-TA protein accumulation is very similar to those of the 

TMD20 and TMD23 constructs and lower than the ER-localised TMD fusion. Our 

pulse-chase experiments indeed indicated that p24-TA is more stable than any of the 

p24RFP-TMD fusions, thus providing an explanation for similar accumulation in the 

presence of fewer transcripts. Therefore, by a protein stability point of view, the TA 

strategy seems promising also in the case of p24-TA. The negative aspect of low mRNA 

levels asks for more investigation. 

 

High accumulation and stability of recombinant p24 fused to γ-zein 
 

The ER is also naturally the starting point for the biogenesis of the other 

compartments of the endomembrane system, which have multiple functions in plant 

development and in response to the environment (Galili 2004). Some seed storage 

proteins belonging to the prolamin class are able to accumulate in the ER by the 

formation of large polymers termed protein bodies (Vitale and Ceriotti 2004). Although 

the mechanisms that determine the retention of prolamins in the ER are still not fully 

clear (Vitale and Ceriotti 2004), investigations on maize γ-zein are providing important 

insights. Maize γ-zein is a seed storage prolamin that polymerizes due to the formation 

of inter-chain disulfide bonds, and it has been shown to form PB also in vegetative 

tissues when constitutive expressed in Arabidopsis plants (Geli et al. 1994). The N-

terminal PPPVHL repeat domain of γ-zein is sufficient for ER retention, in contrast to 

the cysteine rich C-terminal domain that is necessary to direct PB formation but is 

secreted when expressed alone (Geli et al. 1994). It was observed that the N-terminal 

half of γ-zein (PPPVHL repeat domain and the following short proline-rich non-

repeated domain) has a dominant effect on the intracellular traffic of the bean vacuolar 

storage phaseolin. The fusion protein, termed zeolin, is able to form PB (Mainieri et al. 

2004). This ability was related to the polymerization due to the Cys residues present in 

the zein domains (Pompa and Vitale 2006). As described above this section, the 

K/HDEL ER localisation signal is widely used to increase accumulation of foreign 

proteins in transgenic plants because the ER has low hydrolytic activity. However, a 

proportion of different K/HDEL fusion proteins has been found to be slowly delivered 
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to the vacuole by a pathway that does not seem to be mediated by the Golgi complex 

(Frigerio et al. 2001; Tamura et al. 2004).  

We explored the possibility to accumulate recombinant p24 in ER-derived protein 

bodies by fusion of the protein to the N-terminal γ-zein region. Our transgenic tobacco 

plants expressing zein-p24 and p24-zein showed accumulation levels of about 1% TSP 

in the best expressor lines. This is consistent with the accumulation levels of more than 

1% TSP observed for Nef fused to zeolin in tobacco plants (De Virgilio et al., 2008). In 

that study, Nef was also fused to the C- or N-terminus of the N-terminal domain of γ-

zein but the recombinant protein was not significantly expressed, suggesting that proper 

folding and expression of γ-zein fusions depend on the fused protein. 

 

Stability of recombinant proteins 
 

A high yield production of recombinant proteins is one of the main goals in 

molecular farming. To achieve high levels, the construct design must optimize all stages 

of gene expression, from transcription to protein stability (Ma et al. 2003). 

Generally, plant-derived proteins produced in transgenic tobacco are extracted from 

leaves. Using this expression system, recombinant proteins are produced at low levels, 

usually less than 0.1% of the total soluble protein. This low level of production 

probably reflects a combination of factors, particularly poor protein folding and stability 

(Ma et al. 2003). Proteases play an important role in degradation of abnormal or 

incorrectly processed proteins. Accordingly, the susceptibility of heterologous proteins 

to protease attack in plant cells could reflect their imperfect synthesis or assembly 

(Doran 2006). Moreover, plant and animal glycans are different and this feature could 

affect the final structure of foreign proteins and consequently plant-derived proteins 

could be more vulnerable to protease activity than their animal-derived counterparts. 

One example described by Stevens et al. (2000), shows that an IgG1 antibody produced 

by mouse hybridoma cells was more stable when incubated with tobacco leaf extract 

than the same antibody produced in plants. These results suggest the degradation was 

carried out by acidic proteases present in the plant extract and the glycans of the mouse-

derived antibody conferred protection of the recombinant protein, which was not 

conferred by the glycans of the plant-derived antibody. This may indicate that the plant 

type of N-glycosylation contributes less to the stability of the antibody than the mouse 

type of N-glycosylation.  
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In our study, the half-life of all the plant-derived p24RFP-TMD recombinant proteins 

was determined to be between 2 and less than 8 h after chase when targeted to the plant 

secretory pathway. Similar results were observed for HIV-1 Nef protein directed to the 

tobacco secretory pathway, with levels decreasing sharply during a 5-hour chase period 

(Marusic et al. 2007) however our p24RFP-TMD17 was more stable (between 4 and 8 h 

post-chase). Moreover, recombinant full-size antibodies produced in tobacco showed 

that the secretory pathway is more advantageous for correct protein folding and 

assembly than other compartments like the cytosol (Schillberg et al. 1999).  

Our strategy by which p24 attached to different TMD was accumulated in the lumen of 

various organelles of the plant secretory pathway did not avoid the degradation of the 

recombinant fusions. None of these recombinant fusions contained an N-glycosylation 

site indicating that the degradation process of the proteins could not be due to glycases 

between the ER and the Golgi.  

P24 is a cytosolic protein which contains two cysteines. In the cytosol, cysteines are 

normally reduced but when nascent polypeptides are inserted into the ER, its redox 

balance stimulates disulphide bond formation (oxidation) while catalyzing the 

rearrangement of incorrect disulphides (Wilkinson and Gilbert 2004). It is possible that 

our plant-derived recombinant p24RFP-TMDs undergo oxidation of the two cysteines 

of p24 causing a degree of misfolding of the recombinant protein.  However, this 

incorrect folding seem to be minor and anyway not efficiently recognised by ER quality 

control, as the recombinant fusions are still able to reach their final destination (ER, 

Golgi or plasma membrane) as observed by confocal microscopy. Minor misfolding 

could however make the recombinant proteins more susceptible to protease attack once 

they reach compartments that allow easy access by proteases. The fact that P24RFP-

TMD17 had longer half-life than the other TMD fusions is in agreement with this 

hypothesis, since the ER is less hydrolytic that the other compartments of the 

endomembrane system. 

P24RFP-TMD17 is anchored facing the lumen of the ER (type I membrane protein) 

whereas p24-TA is facing the cytosol (type IV membrane protein). Pulse-chase 

experiments indicate higher stability of the latter than the former. This may be related to 

more accurate p24 folding in its natural cytosolic environment. An almost equal 

proportion of free and membrane-bound p24 was detected in the p24-TA expressing 

plants indicating that some cleavage takes place. This suggests some early proteolytic 
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event, but the free p24 was rather stable over the chase time (8 h) again suggesting 

proper folding.  

Another practical concern for protein expression and purification is the aggregation 

of the recombinant proteins. Aggregation may become a critical bottleneck and is 

typically addressed by protein engineering through a combination of random and 

designed alterations in the expressed protein sequence (Mezzasalma et al. 2007). 

However, promoting the formation of polymers can be a positive approach to stabilize 

recombinant proteins and avoid protease activity (Obregon et al. 2006; Floss et al. 

2008). Mainieri et al (2004) described the fusion of bean phaseolin with the N-terminal 

domain of maize γ-zein resulted in a very stable recombinant protein (zeolin) that 

polymerizes in the ER forming PB. In this case, the mechanism of localisation in the ER 

may be a retention system operating through low solubility and direct interactions with 

lipids or prolonged association with chaperones (Li et al. 1993; Muench et al. 1997; 

Kogan et al. 2004). 

In our strategy in which p24 was fused to the N-terminal γ-zein domain, polymerization 

of the recombinant zein-p24 and p24-zein proteins was suggested by the high molecular 

weight components observed by Western blot, very similar to those observed for zeolin 

(Mainieri et al. 2004), and most probably due to incomplete denaturation when samples 

containing high amount of the recombinant protein are analyzed. In our case, both zein-

p24 and p24-zein were more stable than any of the other p24 constructs we have 

analyzed here, indicating the recombinant proteins were not recognized as defective by 

the ER quality control system and protected from protease activity. 

Although the strategy to fuse a protein of interest to the N-terminal domain of γ-zein 

seems a promising platform to accumulate recombinant proteins, not every protein of 

interest accumulates as expected. De Virgilio et al. (2008) described the fusion of Nef at 

the C-terminus or N-terminus of the N-terminal domain of γ-zein. In both cases, the 

recombinant proteins were very unstable and degraded by ER quality control. Almost 

no protein was detected by Western blot. However, when Nef was fused to zeolin, the 

heterologous protein was stable and accumulated into ER-derived protein bodies. 

Chloroplasts represent a good alternative to accumulate recombinant proteins. They 

are specifically transformed using particle bombardment leading to transplastomic 

rather than transgenic plants (Boehm 2007). Once stably integrated, transgenes express 

large amounts of proteins (up to 47% TSP) due to the high copy number (>10,000 



                                                                                                                                         Discussion 

 107

copies) of the chloroplast genome in each plant cell (Daniell 2006). HIV-1 clade C p24 

and a chimera of p17/p24 have been recently expressed in tobacco chloroplasts 

achieving levels of 636-2994 µg p24/kg fresh weight for p24 (the highest value ∼0.2% 

TSP) and 5-230 µg p24/kg for p17/p24 (the highest value ∼0.017% TSP) in 

transplastomic plants (Meyers et al. 2008). The same constructs were expressed in 

Agrobacterium-mediated transient expression in chloroplasts and they showed levels of 

accumulation of 937-4014 µg p24/kg of fresh weight for p24 (the highest value ∼0.3% 

TSP), and 4800 µg p24/kg for p17/p24 (∼0.36% TSP). Although the highest expression 

in stably transformed plants was achieved for the p24 protein, the p17/p24 chimera was 

chosen for a potential protein subunit vaccine as it contains more epitopes. In that study, 

further experiments were carried out with transient expression of p17/p24 which 

presented the highest accumulation with respect to the p17/p24 transplastomic plants. It 

must be underlined that all these constructs showed accumulation levels lower than our 

zein fusions. 

 

Purification of the different plant-derived recombinant p24 
 

The cost of drug production is most significantly influenced by the aspects of 

downstream processing, product purification and manufacturing under good 

manufacturing practices (GMP) standards. The overall technology costs arise once the 

rigour of current GMP is applied as required for delivering a human biological product 

(Kirk and Webb 2005). 

One example of economic evaluation of the downstream process is the production of β-

glucuronidase in transgenic corn. The annual operating costs have been calculated 

corresponding to 6% for milling, 40% for protein extraction and 48% for protein 

purification yielding a production cost of $43 g–1 for an initial seed protein 

concentration of 0.015% dry weight, a product purity of 83%, and an annual production 

volume of 137 kg (Evangelista et al. 1998). A more recent study in which lactoferrin 

was produced in rice estimated that it would cost about $6 to generate 1 g of 

recombinant lactoferrin from rice flour in a GMP facility operating at a scale of 600 

kg/year (Nandi et al. 2005). 

In this study, we tested the feasibility of removing p24 from the added targeting 

sequences by in vitro proteolysis of the affinity purified fusion proteins. Since our 

fusion proteins did not contain any His- or GST-tags the different heterologous proteins 
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were incubated with anti-p24 or anti-zein and anti-op3 polyclonal antibodies and 

immunoprecipitated using Sepharose-conjugated protein A or G. The 

immunoprecipitated complexes were then digested with the protease thrombin to release 

the fusion tags/anchors and maintain the free p24 soluble in the medium or attached to 

the beads-conjugated antibodies. The recombinant p24 fusions and the free p24 proteins 

obtained with the different strategies retained their ability to be recognized in their 

undenatured forms, as demonstrated by immunoprecipitation. Proteolytic cleavage was 

in most cases efficient and the pure recombinant p24 was nearly completely released 

from the fusion tags, demonstrating potential viability of this procedure for purification 

purposes.   

An alternative strategy to purify our fusion proteins is gradient centrifugation. Our 

plant-derived recombinant proteins contain TMD, TA or domains that lead to the 

formation of insoluble polymers, which anchor or associate the fusion proteins to 

different membranes of the cell. The original idea to purify these recombinant proteins 

was to use purification by gradient centrifugation to separate the different organelles. 

Once we have the target organelle fraction in a small volume, the extraction of 

recombinant p24 is carried out by cleavage with thrombin releasing the p24 in the 

medium and the tag fusions remain associated to the membranes. Although this 

experimental procedure is feasible in a small scale, we did not use this purification 

method as scalability of centrifugation for large volumes of cell extracts is not viable 

(Roe 2001). 

We have to consider that the introduction of a protease cleavage site, in our case 

thrombin, makes the whole purification process expensive. In our purification method, 

we used an antibody to ligate the antigen, a second step using Sepharose-conjugated 

protein A or G and finally digestion with thrombin. Although we have demonstrated the 

efficiency of our method, the high cost of the enzyme contributes to increase the final 

cost of the whole purification system. An alternative method to avoid protease cleavage 

in the purification step is to introduce a self-catalytic sequence like intein in the fusion 

protein (Perler 2005). The advantages offered by the self-cleavage of intein can be 

further optimised by fusion of the chitin binding domain (CBD) as an affinity tag. 

Tobacco plants expressing recombinant SMAP-29, a mammalian antimicrobial peptide 

of innate immunity, was fused to intein-CBD and the recombinant protein could be 

purified by affinity chromatography and the peptide was released by inducing intein 

self-cleaving with nucleophilic agents (Morassutti et al. 2002).  
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A recent effective and inexpensive fusion expression system consists in the fusion of the 

protein of interest to annexin B1-intein tag (Ding et al. 2007). The fusion protein is 

purified in a single-step method based on the Ca2+-binding activity of annexin B1, and 

the annexin B1-intein fusion tag is removed based on the self-cleaving activity of the 

intein. Moreover, another single-process expression and purification method has been 

developed by New England Biolabs in which 3 different recombinant proteins can be 

purified from the same mixture by using a combination of a multihistidine and a 

modified intein as affinity tags and Ni Sepharose and chitin as affinity matrices (Porte 

and Chong 2008). 

Other strategies have been developed to accumulate recombinant proteins taking 

advantage of the intracellular organelles. Oleosin has been used to trap recombinant 

proteins in ER-derived oil bodies (Capuano et al. 2007). Recombinant proteins 

accumulating in oil bodies that are expressed in different organisms can be purified 

using proteases (Parmenter et al. 1995) or using the intein properties described recently 

to avoid enzyme cleavage and high costs (Chiang et al. 2007).  

Moreover, secretion to the extracellular medium has been also described as a promising 

approach to produce recombinant proteins (Gaume et al. 2003). However, we did not 

consider this strategy as our aim was to explore the accumulation of p24 within 

different membranes of the plant secretory pathway. 

 

Conclusions and future perspectives 
 

Plants offer many advantages compared to traditional systems for the production of 

pharmaceutical proteins. These include rapid scalability, low cost of production (plants 

mainteinance), absence of human pathogens and the ability to properly fold, assemble 

and posttranslationally modify complex proteins (Ma et al. 2003).  

The subcellular targeting of the recombinant protein plays a key role in the production 

yield. Understanding how proteins are intracellularly targeted is important when 

attempting to exploit the plant secretory pathway for heterologous protein production. 

In this work we showed that the HIV-1 p24 protein can be specifically expressed and 

accumulated in different organelles in tobacco. Our experiments showed the advantages 

and disadvantages of associating a cytosolic protein like p24 to membranes or 

promoting PB formation, as suggested by the electron microscopy images. In transient 

expression, this membrane association resulted in some cases to be effective for the 
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accumulation of the recombinant fusions (p24RFP-TMD constructs) but sometimes the 

folding and assembly was not correct and the malfoded recombinant proteins were 

targeted to the vacuole (RFPp24-TMD constructs).  

Most of the protein yields reported in this study were below the expected economic 

threshold (1% TSP) in transgenic tobacco plants expressing the different fusion 

proteins. However, the strategies using γ-zein fusions are the most promising for the 

accumulation of p24. These fusion proteins presented the highest productivity and 

stability whose yields were 1% TSP. Furthermore, the targeting of the p24RFP-TMD to 

the secretory pathway resulted in the production of unstable recombinant fusions while 

the zein-p24 and p24-zein fusions were very stable, presumably accumulating in ER-

derived protein bodies and suggesting that polymerization protects p24. This protection 

can in turn be due to very efficient retention in the ER but also to masking of proteolysis 

sensitive sites in polymers and exclusion of PB from the normal physiological turnover 

of the ER. The cytosolic ER-anchored p24 (p24-TA) was also more stable than the 

TMD-containing constructs, but its accumulation was not higher, most probably 

because of the low mRNA levels. The reason for this, as well as the reason for the 

particularly high accumulation of the mRNAs of the zein fusions, are not known and 

will be interesting to investigate.  

We can conclude that the strategies for accumulating recombinant proteins in plants are 

antigen-dependent. In tobacco, using the same fusion tags with different pharmaceutical 

proteins, the levels of expression, accumulation and stability varied (Marusic et al. 

2007; Barbante et al. 2008; de Virgilio et al. 2008). In a previous report (Obregon et al. 

2006), HIV-1 p24 containing the same p24 DNA sequence used in our constructs 

accumulated in the tobacco secretory pathway with levels of 1.4% TSP and the 

recombinant protein was stable however our plant-derived p24RFP-TMDs were 

unstable and expressed in low levels (0.15 - 0.3% TSP). 

In this study, we have tested so far only the T0 generation of transgenic plants which are 

hemizygous. In homozygous plants of the T1 generation protein accumulation is 

expected to be higher. It has been described that tobacco seeds expressing recombinant 

glycoprotein B of human cytomegalovirus showed 30-fold greater specific activity in 

the T1 generation compared to the best T0 plants from the same transformation 

demonstrating enhanced levels of recombinant protein expression in a homozygous 

second generation plant line (Tackaberry et al. 2003). At the moment, we have collected 
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T1 seeds, and they will be tested to assess the 3:1 ratio and the homozygous lines will 

be selected for protein expression and stability. 

Our p24 was not optimised for tobacco codon usage. We used the same p24 DNA 

sequence as Obregon et al. (2005) which was demonstrated to yield expression of 1.4% 

TSP when expressing the protein in the plant secretory pathway and for this reason we 

considered there was no need to change it. A recent study described that optimisation of 

HIV-1 clade C p24 for N.tabacum and for human codon usage did not increase the yield 

when transiently expressed in a non-specific compartment in tobacco plants (Meyers et 

al. 2008). This indicates that optimisation of the sequence does not always lead to 

enhancement of the expression.  

In this study we used the 35S Cauliflower Mosaic Virus (CaMV) promoter in all the 

constructs to transiently or stably transform tobacco plants. The promoter used in the 

constructs to express recombinant proteins obviously plays an important role. Usually, 

constitutive promoters that drive the expression of the recombinant proteins in most of 

the plant tissues are used. The 35S CaMV promoter is the promoter of choice for 

dicotyledonous plant, as it is strong and constitutive (Odell et al. 1985) and newer 

versions have enhanced its activity (Kay et al. 1987; Dowson Day et al. 1993). 

However, this promoter presents a low activity in monocotyledons and other 

constitutive promoters are used for these plants e.g. the ubiquitin promoter for maize 

(Christensen and Quail 1996) and the gos-2 promoter for rice (de Pater et al. 1992).  

Another important factor is translation efficiency. The 5’-UTR (5’ untranslated 

region) and other sequences around the AUG translation initiation codon are important 

for the efficient translation in plants (Kozak 1986). When this sequence is cloned before 

the coding sequence of interest, it can lead to an enhancement of the expression due to 

the increase of translation initiation. Usually 5’-UTR region from viral RNAs are used, 

e.g. from TMV or Tobacco Etch Virus (TEV) (Gallie et al. 1991; Niepel and Gallie 

1999; Hongmin et al. 2000) but other sequences have shown the same advantages (Zou 

et al. 2003). In our constructs, only the zein-p24 construct contained the 5’-UTR region 

of the tobacco chitinase and there were no significant differences in the expression 

levels compared to the p24-zein which did not contain this sequence. The 5’-UTR 

tobacco chitinase region was chosen because it is a native tobacco sequence.  

This thesis is a proof-of-concept regarding feasibility of specific targeting of a 

recombinant protein to different compartments of the secretory pathway for high yield 

production in plants. The most promising strategy is the fusion of p24 to the N-terminal 
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domain of maize γ-zein, either N-terminally- or C-terminally-tagged. Further 

improvements may be done to optimise the downstream processing as at the moment 

purification of the recombinant protein by using antibodies and Sepharose-A is not 

optimal for large scale production. For example, a His-tag could be added to the 

recombinant protein to facilitate its purification.  
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I Water and sterilization 
Double distilled water was used in all solutions. The sterilization of the solutions was 

carried out by autoclaving at 15 p.s.i. (1.05 Kg/cm2) for 20 min at 121ºC or by filtration. 

 

II Bacterial manipulations 
II.1 Bacterial strains  
 

The following Escherichia coli strains were used throughout this work to replicate 

and isolate the recombinant plasmids and for protein expression.  

 
Table I. E.coli strains used in this work. 
 

Agrobacterium GV3101 strain was used for Agrobacterium-mediated gene transfer 

(Koncz 1986). This strain contains a chromosomal resistance to rifampicin (Rif) and the 

T-helper plasmid confers resistance to gentamycin (Gen). It also carries the pSOUP 

plasmid which is a disarmed Ti plasmid that possesses the vir genes needed for T-DNA 

transfer but has no functional T-DNA region by its own. The pSOUP plasmid confers 

resistance to tetracyclin (Tet) in bacteria. 

 

II.2 Bacterial growth maintenance 
 

All the E.coli bacterial cultures were grown at 37ºC in Luria-Bertani (LB) broth 

medium (10 g/L bacto tryptone, 10 g/L NaCl and 5 g/L bacto yeast extract) in agitation. 

To prepare agar plates, the broth medium was supplemented with 15 g/L of bacto-agar. 

The agar mixture solution was autoclaved, cooled down until 55ºC and the different 

antibiotics were added. The plates were poured under sterile conditions and a tip was 

used to remove bubbles.  

Strain Genotype Reference 

XL-1 

Blue 

recA, endA1, gyrA96, thi, hsdR17 (rk-,mk+), supE44, 

relA1, λ-, lac-, F', proAB+, lacIqΔ(lacZ)M15, Tn10(tet)] 

(Bullock 1987) 

MC1061 F– araD139 Δ(ara-leu)7696 galE15 galK16 Δ(lac)X74 rpsL 

(Strr) hsdR2 (rK
–mK

+) mcrA mcrB1 

(Raleigh et al. 1989) 

DH5α F-φ80dlacZΔM15 Δ(lacZYA-argF)U169 deoR recA1 

endA1 hsdR17(rk
-,mk

+) phoA supE44 λ- thi-1 gyrA96 relA1  

(Woodcock et al. 1989) 
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Agrobacterium was grown in both LB or MGL media (MGL: 2.5 g/L bacto yeast 

extract, 5 g/L bacto tryptone, 5 g/L NaCl, 5 g mannitol, 1.16 g/L Na glutamate, 0.25 g/L 

KH2PO4, 0.1 g/L MgSO4, 1 mg/L biotin; pH 7.0). For liquid culture, Agrobacteria were 

incubated at 28ºC for 36-48 h in agitation in liquid medium supplemented with Rif and 

kanamycin (Kan). The agar plates were prepared as for E.coli.  

 
II.3 Preparation of competent E.coli bacterial cells for heat-shock 

transformation 
 
II.3.1 Competent XL-1 blue E.coli cells using CaCl2 

 
One colony was picked from a freshly grown E.coli on a LB-Tet plate and incubated 

in 3 ml of LB broth medium containing 25 μg/ml Tet at 37ºC O/N with agitation. After 

inoculation of 1 ml of the O/N culture in 100 ml of LB broth medium containing Tet, 

the new culture was incubated at 37ºC with agitation until reaching an O.D.600nm (optical 

density) of 0.4-0.6. The cells were incubated on ice for 15 min and pelleted in sterile 

Sorvall bottles (DuPont, Wilmington, DE, USA) at 4,000 x g for 15 min at 4ºC. 16 ml 

of cold RF-1 solution (100 mM KCl, 50 mM MnCl2·4H2O, 30 mM KOAc pH 7.5, 10 

mM CaCl2·6H2O, 15% glycerol, pH 5.8, filter sterilized) were added, slowly 

resuspended and incubated for 15 min on ice. Cells were harvested at 4,000 x g for 15 

min at 4ºC, resuspended in 4 ml of cold RF-2 solution (10 mM MOPS pH 6.8, 10 mM 

KCl, 50 mM CaCl2·6H2O, 15% glycerol, pH 6.8, filter sterilized) and incubated on ice 

for 15 min. The cells were aliquoted with 100 μl per tube, frozen in liquid nitrogen and 

the final stock was kept at -80ºC. 

 

II.3.2 Competent MC1061 and DH5α E.coli strains using RbCl 

 
E.coli MC1061 and DH5α were streaked out on LB plates without any selection. 

One colony was picked and incubated in 3 ml 2X YT medium (16 g/L bacto tryptone, 

10 g/L bacto yeast extract, 5 g/L NaCl; pH 7.0 using NaOH and autoclaved) in a 50 ml 

Falcon tube and incubated at 37ºC in agitation. At O.D. 550 nm 0.3, the 3 ml culture 

were poured into 200 ml of pre-warmed 2X YT medium and incubated at 37ºC. At O.D. 

550 nm of 0.48, the culture was transferred into four 50 ml sterile Falcon tubes and 

placed on ice for 5 min. The tubes were centrifuged at 1560 x g in a swing-out rotor at 

4ºC for 20 min. The supernatant was discarded and the cells were resuspended in 80 ml 
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of ice cold TFBI (30 mM KC2H3O2, 100 mM RbCl, 10 mM CaCl2·2H2O, 50 mM 

MnCl2·4H2O, 15% v/v glycerol; pH 5.8 using 0.2 M CH3COOH; filter sterilization and 

stored at 4ºC) and placed on ice for 5 min. The tubes were centrifuged as before and the 

cells resuspended in 8 ml of TFBII (10 mM MOPS, 10 mM RbCl, 75 mM CaCl2·2H2O, 

15% v/v glycerol; pH 6.6 using 5M KOH, filter sterilization and kept at 4ºC) and left on 

ice for 15 min. Using pre-chilled pipette tips and working in the cold room, the cells 

were aliquoted with 100 μl per tube in pre-chilled microcentrifuge tubes. The tubes 

were frozen in dry ice and stored at -80ºC. 

 

II.4 E.coli transformation by heat shock 
 

The bacterial cells were chilled at 4ºC prior to transformation. The plasmid DNA or 

ligation reaction were mixed with the bacteria and incubated on ice for 10 min. The 

mixture was subjected to heat shock by incubating the tube at 42ºC for 45 seconds and 

placed again on ice for 2 min. 900 μl of room temperature (RT) LB broth medium 

without antibiotics were added and the tube was incubated at 37ºC for 15 min with 

agitation. 100-150 μl of the cell suspension were plated on LB agar plates supplemented 

with 50 µg/ml of ampicillin (Amp) and incubated at 37ºC O/N. 

For the transformation with the binary vector, the bacterial cells were incubated with the 

ligation mixture on ice for 10 min. The heat shock was for 90 seconds at 42ºC and then 

placed back on ice for 2 min. The volume added of LB without antibiotic was equal as 

bacteria volume (100 µl) and the cells were incubated at 37ºC for 30 min. 150 µl were 

plated on LB agar plates supplemented with 50 µg/ml of Kan and the plates were 

incubated at 37ºC O/N. 

 

II.5 Preparation of competent Agrobacterium tumefaciens for 
electroporation 

 
To prepare competent GV3101 Agrobacterium cells, 8 ml of overnight 

Agrobacterium culture were inoculated in 192 ml of LB low-salt broth medium with 50 

μg/ml of Rif, 25 μg/ml Gen and 10 μg/ml Tet. The cells were incubated with agitation 

at 28ºC until an O.D.600nm of about 0.5 (generally 3-6 h, very strain-dependent). After 

centrifugation at 2772 x g for 15 min at 4ºC, the pellets were pooled and resuspended in 

a final volume of 10 ml of ice-cold 10 mM Tris-HCl (pH 7.5). The cells were 
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centrifuged again at 2772 x g for 15 min at 4ºC and finally the pellet was resuspended in 

2 ml ice-cold 10% glycerol. 100 µl aliquots were prepared and the tubes were frozen in 

liquid N2 and kept at -80ºC; these cells stay competent for 6 months if kept at this 

temperature. 

 

II.6 Agrobacterium transformation by electroporation 
 

1 µg of recombinant pGREEN0229 and pGREEN0179 binary vectors (Kanr) was 

added to 50 µl of competent GV3101 Agrobacterium cells. The mixture was incubated 

on ice for 1 min, transferred into a sterile cuvette (BioRad, Munich, Germany) and 

electroporated a 400Ω, 25 µF and 2.5 kV. 1 ml of LB broth was added and the cells 

were incubated at 28ºC for 3 h with agitation. Different quantities of the bacterial 

mixture (50 µl, 100 µl and the rest) were plated on LB agar plates containing the 

selective antibiotics (50 µg/ml Kan, 5 µg/ml Tet, 50 µg/ml Gen and 20 µg/ml Rif). The 

plates were incubated at 28ºC for 3 days. 

 

II.7 Bacterial stocks maintenance 
 

The competent bacterial stocks and the recombinant bacterial stocks were stored in 

20% glycerol at –80ºC. To recover a strain, a small amount of the frozen stock was 

scraped with a sterile tip and grown at the convenient temperature in LB broth medium 

containing the specific antibiotic. 

 

III Cloning methods 
III.1 Plasmid vectors 

III.1.1 pBlueScript II SK (+/-) 

 
HIV-1 p24 sequence was inserted into pBluescript II SK (+/-) (Stratagene, GenBank: 

X52327). This plasmid has a size of 3 kb and contains Amp reporter marker, lacZ 

reporter gene which allows blue/white screening of recombinant plasmids, pBR322 

promoter (pUC), SacI and KpnI sites flanking the multiple cloning site, T7 and T3 

promoters and the origin of replication of filamentous phage f1.  
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III.1.2 pGEM®-T Easy 

 
For cloning PCR products, pGEM®-T Easy vector system was used (Promega). The 

pGEM-T Easy vector is a linearized vector with 5’-T overhangs used for annealing the 

3’-A overhangs generated by Taq polymerase during PCR. After a standard PCR 

reaction, the products might be purified to remove the Taq polymerase and then ligated 

with the pGEM®-T vectors. The ligation mix can then be transformed in bacteria and 

blue/white screening can be used to identify positive transformants. This vector has a 

size of 3015 kb and it carries the T7 and SP6 RNA polymerase promoters flanking a 

region of multiple cloning sites within the coding region of beta-galactosidase. It also 

contains the origin of replication of filamentous phage f1 and Amp resistance gene. This 

vector was used as an intermediate vector for cloning different PCR products used in 

the different clonings. 

 

III.1.3 pDRIVE Cloning Vector 

 
This vector (Qiagen GmbH, Hilden, Germany) was used for the same purpose as 

pGEM®-T Easy vector. It has a size of 3.85 kb and contains the origin of replication of 

the filamentous phage f1. It carries T7 and SP6 viral promoters flanking the multiple 

cloning site and Amp and Kan resistance genes as selectable markers. Blue/white 

colony screening is possible due to it contains the coding region of beta-galactosidase. 

 

III.1.4 pGY1 vector 

 
The pGY1 plasmid was used for the final clonings in plasmid DNA for transient 

expression experiments. It contains the 35S Cauliflower mosaic virus (CaMV) promoter 

and terminator and the signal peptide (SP) of tobacco chitinase (Neuhaus et al. 1991) 

and has a size of 3.5 kb. For replication in bacteria, the origin of replication pBR322 is 

present and it contains the gene for Amp resistance. 

 

III.1.5 pDHA vector 

 
The recombinant plasmid pDHA (Tabe et al. 1995) carried some sequences used for 

the p24-tail anchor (TA) construct cloning. It has a size of 3.6 kb and contains a flexible 

linker sequence, the rabbit C-terminal region of cytochrome b5 (cyt b5) which functions 



                                                                                                                     Materials and methods 

 119

as tail anchor and contains an hydrophobic transmembrane domain and the op3 

synthetic sequence corresponding to the N-terminal part of the bovine opsin which is 

recognized by a monoclonal antibody (Maggio et al. 2007).  

 

III.2 Binary vectors 

III.2.1 pGREEN0229 and pGREEN0179 

 
For stable expression of HIV-1 p24 in plants, the binary expression vectors 

pGREEN0229 and pGREEN0179  (Hellens et al. 2000) were utilized. Both plasmids 

have the same pGREEN backbone containing the NptI gene that conveys resistance to 

Kan (E.coli selection), two origins of replication in E.coli (pSa and ColEI) and in 

Agrobacterium (RK4). They differ in the T-DNA region they contain so pGREEN0229 

plasmid has a size of 4454 kb and contain the bar gene for plant resistance to 

ammonium sulfonide under the control of the nopaline synthetase (nos) promoter. The 

pGREEN0179 plasmid has a size of 5144 kb and contains the hygromycin resistance 

gene under the control of the 35S CaMV promoter. In both T-DNAs, the multiple 

cloning site is located within the coding region of the beta-galactosidase gene which 

allows white/blue selection with X-gal and IPTG. These plasmids can only replicate in 

Agrobacterium if the strain contains the disarmed Ti plasmid pSOUP which provides 

replication factors in trans. Modified Agrobacterium strains provide the Vir functions 

necessary for excising the T-DNA fragment from the binary plasmid and promote its 

transfer and integration into the plant genome. The replication in E.coli results at high 

copy number with the ColEI origin of replication and at low copy number with the pSa 

origin of replication. The DNA cassettes were cloned into the EcoRI site of the T-DNA 

region of pGREEN0229 and pGREEN0179 vectors and the E.coli colonies were 

selected on LB agar plates supplemented with Kan and X-gal and IPTG to allow 

white/blue screening. The white colonies were used for miniprep plasmid isolation of 

the recombinant binary plasmid. The recombinant pGREEN plasmids were used for 

Agrobacterium transformation. 

 

III.3 DNA Sequences 
 

A derived version of BH10 strain HIV-1 p24 (Accession number M15654.1) was 

used in this work. The mRFP sequence was given by Dr. Pierre Pfeiffer (Strasbourg, 
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France) (accession number AF506027). The N-terminal domain of γ-zein, γ-zein signal 

sequence (accession number X56118) and (GGGGS)3 were kindly donated by Dr. A. 

Vitale (Milan, Italy).  

Tobacco chitinase signal sequence and the pGY1 plasmid were given by Prof. Dr. Jean-

Marc Neuhaus (Neuchâtel, Switzerland). Tail anchored region (accession number 

RABB5CYTA) and opsin region were kindly donated by Dr. Emanuela Pedrazzini 

(Milan, Italy). Transmembrane domains were given by Dr. Nadine Paris (Rouen, 

France).  

The p24 antigen produced in E.coli (NIBSC) were kindly given by Dr. Patricia Obregón 

and Dr. Julian Ma (London UK) and p24 produced in Pichia pastoris was from NIBSC. 

 
III.4 Standard PCR amplification 
 

Polymerase chain reaction (PCR) is a technique in which the target DNA is 

exponentially amplified to several orders of magnitude. The double-stranded DNA is 

first denatured in order to have the strands separated and in the presence of Taq 

polymerase, deoxyribonucleotide triphosphate (dNTPs) and two oligonucleotide 

primers flanking the DNA template sequence, the Taq DNA polymerase is directed by 

the two primers to synthesize the complementary strands. As the reaction comprises 

multiple cycles, the process allow the amplification of the DNA of interest (Saiki et al. 

1988). Taq polymerase is a thermostable DNA polymerase isolated from the 

termophilic bacterium Thermus aquaticus (Chien et al. 1976). It possesses a 5´→3´ 

polymerase activity and a double-strand specific 5´→3´ exonuclease activity (Tindall 

and Kunkel 1988). The fragments amplified by Taq polymerase possess an A nucleotide 

chain in each 3’ extreme (Clark 1988) which facilitates the direct cloning of the PCR 

products into pGEM®-T Easy (Promega AG, Wallisellen, Switzerland) and pDRIVE 

(Qiagen) vectors as they possess a T nucleotide chain at their prominent 3’ extreme. 

About 100 ng of template DNA were used as template in order to introduce the 

necessary mutations by PCR. The reactions were carried out in 2X PCR master mix 

(PCR Master mix kit, Promega) supplied in a proprietary reaction buffer pH 8.5 

containing 50 units/ml Taq polymerase, 400 µM dATP, 400 µM dGTP, 400 µM dCTP, 

400 µM dTTP and 3 mM MgCl2; and 1-2 µl of the two primers (10 µM). The conditions 

of amplification are described in each construction. In all cases the annealing 
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temperature was adapted to the Tm value of the primers used calculated with the Primer 

Designer v. 2.0 software program (Scientific and Educational software).  

To analyze the integrity of the amplified product, the PCR product was resolved on a 

0.8-1% agarose gel and purified by gel extraction or clean-up. 

In the cases where a restriction site was removed, the corresponding codifying amino 

acid was kept in the sequence and the new codon was optimized for N.tabacum.  

 
III.5 Site-specific mutagenesis by overlap extension 
 

Before starting any cloning, the RFP and HIV-1 p24 sequences were mutated. In the 

RFP sequence, there were 3 restriction sites that were not convenient for our clonings 

and in the HIV-1 p24 there were 4. It was not difficult to change the extreme sequences 

with primers to remove the restriction sites that were not useful and introduce the new 

restriction sites optimal for the different clonings. The difficult point was to introduce 

point mutations in the middle of the sequence to remove an existing restriction site. For 

these point mutations the amino acid sequence was not changed and the codons were 

optimized for N.tabacum. The initial site-specific mutagenesis by overlap extension of 

HIV-1 p24 was done to clone the different constructs of the first strategy (p24 fused to 

the N-terminus of RFP containing transmembrane domains (TMD)). The newly 

synthesized p24 was called p24N1 and it was used as PCR template for the second 

strategy constructs (p24 fused to the C-terminus of RFP), the zein-p24 construct (p24 

fused to the C-terminus of γ-zein) and the p24-TA construct (p24 fused to the N-

terminus of cytochrome b5 tail anchor) cloning.  

To describe this methodology, at least four primers were needed to introduce site-

specific mutations by overlap extension in the original sequences of RFP and p24. The 

number of primers depends on how many mutations are required to introduce. If both 

ends of the sequence may be changed, too, then all the primers will introduce some 

mutations (Higuchi et al. 1988; Ho S.N. 1989; Ho 1989; Brandizzi et al. 2002).  
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Figure 1. Diagram of site-specific mutagenesis by overlap extension. In the figure there are 
represented the different PCR reactions with the corresponding primers.  
 
 
PCR 1 PCR2 

Template DNA  ~100 ng   Template DNA                 ~100 ng  

2X Master PCR Mix  12.5 μl 2X Master PCR Mix         12.5 μl 

Primer (5’ brown) (10 μM)  1 μl  Primer (5’ blue) (10 μM)                1 μl 

Primer (3’ brown) (10 μM)  1 μl  Primer (3’ blue) (10 μM)                1 μl 

H2O  to 25 μl           H2O                                  to 25 μl 

 

PCR3 PCR4 

Template DNA  ~100 ng  Add to PCR3: 

(2 gel extracted bands from PCRs 1 and 2)            Primer (5’ brown) (10 μM) 2 μl

  

2X Master PCR Mix 12.5 μl              Primer (3’ blue) (10 μM)                2 μl 

H2O to 21 μl 

 

Table II. Composition of the PCR reaction mixtures.  
 
 
To give an overview of the protocol and as shown in figure 1, the first pair of primers, 

‘a’ and ‘d’, contained the mutation(s) to be introduced into the wild type template DNA 

in both ends whereas the second pair of primers, ‘b’ and ‘c’, contained the mutation(s) 

PCR1 

PCR3 

PCR4 

Original DNA 

Mutated DNA 

PCR2 

a   b

c  d

a 

c 

b 

d 

a 

d
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to be introduced in the middle of the wild type DNA template. This second pair of 

primers is complementary to each other. In separate amplification reactions, 1 and 2, 

two fragments from the original template DNA were amplified. PCR 1 reaction utilized 

the ‘a’ and ‘c’ primers and PCR 2 reaction utilized the ‘b’ and ‘d’ primers. The nucleic 

acids were amplified using the denaturation, annealing and elongation temperatures and 

times listed in each construct in the figure. The products of the two PCRs were analysed 

on a 1% agarose gel and purified. In PCR 3 reaction, the two purified products from 

PCR 1 and 2 were used as template. They were denatured and annealed at the region of 

overlap and extended as shown by the lines to form full-length double-stranded mutant 

DNA (reaction without primers). In PCR 4 reaction, primers ‘a’ and ‘d’ were introduced 

to the PCR 3 tube and the reaction was continued for 30 cycles more to amplify the full-

length mutant DNA resulting in several copies of the full-length mutant DNA. The final 

PCR product was analysed on a 1% agarose gel and the band was purified. The PCR 

conditions and primers used for site-specific mutagenesis by overlap extension of RFP 

and p24 are described later in this chapter. 

 

III.6 Colony PCR 
 

To perform PCR using a bacterial colony as template, the colonies of interest were 

picked with a sterile yellow tip and incubated in the volume of water necessary to 

perform the PCR reaction in separate tubes. The water in contact with each colony was 

aspirated up and down with the tip for 8 to 10 times. The empty tips were placed into a 

15 ml tubes containing 3 ml of LB broth supplemented with Amp or Kan and were 

incubated at 37ºC O/N in agitation.  

The PCR kit mixture containing PCR buffer and Taq polymerase (Promega) and the 

specific primers were mixed with the water in which the colonies were mixed and the 

reaction was performed with the specific conditions required. The PCR products were 

resolved in an agarose gel and in case one colony was positive, the corresponding 

cultured tube was processed for miniprep plasmid DNA extraction.  

 

III.7 Cracking gel 
 

Some putative recombinant E.coli and Agrobacterium colonies (white) were picked 

with a sterile tip and were first streaked onto a new a fresh LB-Kan plate (or the 
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corresponding selection) to have a back-up plate of those colonies. The tips containing 

the different colonies were then placed into microcentrifuge tubes containing 25 µl of 

sterile water and resuspended. 25 µl of cracking gel solution (100m M NaOH, 10 mM 

EDTA pH 8.0, 1% SDS, 10% glycerol, 0,125% (w/v) bromophenol blue) were added 

and incubated at RT for 5 min. 20 µl of each sample were loaded on a 0.8% agarose gel 

and, as negative control, a blue colony screened by 0.160 mM IPTG and 32 µg/ml X-gal 

(plasmid without the insert) was loaded.  

For each sample 3 main bands can be seen. The upper band corresponds to genomic 

DNA, the middle one is the plasmid and the lower one that is more diffuse correspond 

to RNA. If the colony contains the recombinant plasmid, the presence of the insert 

determines a shift in the electrophoretic mobility towards the plasmid without insert. 

The plate containing the different freshly transferred colonies was then incubated at the 

specific temperature and processed for further experiments. 

 

IV Recombinant DNA techniques 
IV.1 Agarose gel 
 

The edges of a clean, dry plastic tray were sealed with tape or plastic devices to form 

a mould. Depending on the length of the DNA fragments to be separated, the gels 

usually contained 0.8% or 1% of agarose. Therefore, 0.8 g or 1 g of low-melting point 

agarose was dissolved in 100 ml of 1X TAE (40 mM Tris, 20 mM acetic acid, 1 mM 

EDTA) buffer in the microwave. When the agarose was dissolved, the solution was 

poured into a 50 ml Falcon tube to let it cool. 0.5 µg/ml of ethidium bromide were 

added to the solution and mixed. The mixture was poured into the mould making sure 

no air bubbles were formed. The comb was placed and the gel was left to solidify (30-

45 min depending on the thickness). When the gel was ready, the comb and the tape or 

plastic devices were removed and the gel was mounted in the electrophoresis tank 

containing 1XTAE buffer. The DNA samples were mixed with 6X DNA loading dye 

solution (10 mM Tris-HCl pH 7.6, 0.15% orange G, 0.03% xylene cyanol FF, 60% 

glycerol and 60 mM EDTA) and loaded into the wells. The 1kb molecular DNA marker 

(New England Biolabs, Frankfurt am Main, Germany; and Fermentas, St.Leon-Rot, 

Germany) was also loaded. The DNA migrates toward the positive anode (red lead) and 

the gel was run at 100-120 mA. When the DNA samples or dyes migrated a sufficient 
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distance through the gel, the electric current was turned off a picture was taken. The 

DNA bands were cut if needed for gel extraction. 

 
 Range of Separation in Cells Containing Different Amounts of Standard Low-EEO Agarose 
 

Agarose Concentration 
  in Gel (% (w/v)) 

Range of Separation of 
  Linear DNA Molecules (kb) 

0.3 5-60 
0.6 1-20 
0.7 0.8-10 
0.9 0.5-7 
1.2 0.4-6 
1.5 0.2-3 
2.0 0.1-2 

 

 

IV.2 Gel Extraction  
 

The purification of PCR products and products of digestions previously loaded on an 

agarose gel were performed by using the PCR gel extraction/clean-up kit (Promega). 

The DNA was visualized on the gel and photographed using a low-wavelength UV 

lamp. After excising the DNA fragment of interest in a minimal volume of agarose 

using a clean razor blade, the slice was transferred into a microcentrifuge tube and 

weighed. The extraction was performed following the manufacturer’s indications and 

the eluted DNA was stored at 4ºC or at –20ºC. 

 

IV.3 PCR Clean-up  
 

The target DNA was amplified using specific amplification conditions. An equal 

volume of Membrane Binding Solution (provided with the PCR gel extraction/clean up 

kit from Promega) to the PCR reaction was added and the next steps performed 

following the manufacturer’s instructions.  

 

IV.4 DNA Digestion 
 

The different restriction enzymes were purchased from Fermentas, New England 

Biolabs and Promega. The reactions were carried out with the buffer supplied with each 

enzyme in accordance to the supplier’s recommendations for temperature of the 

reaction. 1 µg of DNA was mixed with 1-2 units of the appropriate enzyme and 
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incubated from 40 min to 1 h at the enzyme’s optimal temperature. For double 

digestions, the enzymes were incubated in the most suitable buffer for their 

combination. If combination of the two enzymes was not possible, the DNA was 

digested with one enzyme and purified with the PCR purification kit (Promega) prior to 

the digestion with the second enzyme. At the end of all the reactions, the mixture was 

purified using the PCR clean up kit (Promega). 

 

IV.5 Dephosphorylation of the digested vector 
 

The dephosphorylation was carried out in a final volume of 20 µl containing 1X 

dephosphorylation buffer (0.1 M Tris-HCl pH 7.5 at 37°C, 0.1 M MgCl2) provided with 

the kit (Fermentas), the previously digested vector (about 1 µg) and 10 units of calf 

intestinal alkaline phosphatase (CIAP). The mixture was incubated at 37ºC for 30 

minutes and cleaned up following the PCR clean up protocol. 

 

IV.6 Ligation 
 

To perform the ligations using pGEM-T Easy (Promega) and pDRIVE (Qiagen) 

vectors, the T4 DNA ligase used was the one provided with each kit. For the ligations 

using pGY1, pDHA and pGREEN vectors, T4 DNA ligase (Promega) was used. The 

insert:vector molar ratio was adjusted to 3:1 in 1X T4 ligase buffer (30 mM Tris-HCl 

pH 7.8, 10 mM MgCl2, 10 mM DTT and 1 mM ATP) and 0.1 U of T4 DNA ligase in a 

final volume of 10 - 20 µl. The reaction was incubated at RT for 1 h and the mixture 

was directly used to transform E.coli. 

 

IV.7 Small scale plasmid isolation from bacteria (Miniprep) 
 

With the help of a sterile yellow tip, an isolated colony was transferred into 3 ml of 

LB broth medium containing Amp (100 μg/ml). After incubating the culture at 37ºC 

O/N with agitation, 1.5 ml of the culture was transferred into a microcentrifuge tube and 

the cells were pelleted at 16,813 x g for 2 min. The culture left was kept at 4ºC. The 

supernatant was discarded completely and the pellet was resuspended in 100 μl of ice-

cold Solution I (1 M Tris-HCl pH 8.0, 1 M glucose and 0.5 M EDTA pH 8.0) and 

incubated at RT for 3 min. 200 μl of freshly prepared solution II (10 N NaOH and 20% 
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SDS) were added and the suspension was mixed by inversion until obtaining a 

transparent homogenous suspension. After incubating on ice for 5 min, 150 μl of ice-

cold solution III (5 M KOAc and glacial acetic acid) were added and mixed with the 

vortex at maximum speed. The tube was incubated for 5 min on ice and centrifuged at 

16,813 x g for 5 min at RT to pellet the cell debris and chromosomal DNA. The 

supernatant was transferred into clean microcentrifuge tube and the same volume of 

chloroform was added (400 μl) and mixed vigorously. After centrifugation for 5 min at 

16,813 x g, the aqueous phase (superior) was recovered and subjected to a second 

chloroform treatment if the phase looked not very clean. Finally, the aqueous phase was 

transferred into a new tube and 900 μl of ice-cold 100% ethanol were added in order to 

precipitate the DNA. The mixture was mixed by inversion and incubated at room 

temperature for 10 min. The pellet was washed with 500 μl of 70% ethanol at RT. The 

tube was centrifuged again at 16,813 x g for 5 min at room temperature and the 

supernatant was discarded. After drying the pellet for 5 min at 65ºC, it was resuspended 

in 40 μl of TE buffer (10 mM Tris-HCl pH 8 and 1 M EDTA pH 8.0) containing RNAse 

(20 μg/ml). The DNA yield was tested on an agarose gel. This protocol was modified 

from the alkaline lysis protocol described by Sambrook et al. (Sambrook 1989). 

 

IV.8 Medium scale plasmid isolation from bacteria (Midiprep) 
 

As described in the protocol above, with the help of a sterile yellow tip, an isolated 

colony was transferred, but in this case, into 100 ml of LB broth medium containing 

Amp (100 μg/ml). The culture was incubated at 37ºC O/N with agitation. It is also 

possible to start from a glycerol stock (inoculating with a tip) or from a saturated culture 

(inoculating 50 μl).  

The culture was centrifuged at 2372 x g for 5 min at 4ºC and the pellet was resuspended 

in 1 ml of ice-cold Solution I. The solution was resuspended with a pipette several times 

until a homogenous suspension was visualized. 2 ml of fresh Solution II were added and 

the suspension was mixed by inversion and incubated on ice for 10 min. 1 ml of cold 

Solution III was added and mixed vigorously by inversion. After incubating for 10 min 

on ice, the cells were pelleted (10 min at 2372 x g at 4ºC) and the supernatant was 

transferred into a 50 ml conical tube and filtered through cheesecloth. The DNA was 

precipitated by adding 4 ml of RT isopropanol. The solution was mixed by inversion 

and incubated at RT for 10 min. The pellet was resuspended in 350 μl of TE buffer and 
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350 μl of 5 M LiCl and centrifuged again. The supernatant was transferred into a clean 

1.5 ml microcentrifuge tube and 700 μl of isopropanol were added. The solution was 

mixed and incubated for 10 min at RT. The pellet was washed with 1.5 ml of 70% 

ethanol, dried very well and resuspended in 80 μl of TE buffer containing RNAse (20 

μg/ml). The tube was incubated at 37ºC for 2 h to dry the pellet. 

 

IV.9 Large scale plasmid isolation from bacteria (Maxiprep) 
 

A pre-culture was prepared starting from a single colony and incubated in 2 ml of LB 

supplemented with 50 μg/ml Amp. The ideal is to start from a freshly streak out plate 

prepared the day before. After 3-4 h incubation at 37ºC in agitation, the pre-culture was 

slightly turbid and was poured into 500 ml pre-warmed LB without Amp. This culture 

was grown for 24 h at 37ºC in agitation. The culture was centrifuged in 500 ml bottles 

in a Sorvall SLA-3000 rotor (DuPont) at 2268 x g at 4ºC for 60 min. The supernatant 

was discarded and the pellet was completely resuspended in 8 ml of ice cold TE 50/1 

buffer (50 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0). The cell suspension was 

transferred into clean SS34 tubes pre-chilled on ice. 2.5 ml of freshly prepared 

lysozyme solution (10 mg/ml) was added and the tubes were mixed by up side down 

and back for 10 times. They were incubated 5 min on ice and 2 ml of 0.5 M EDTA pH 

8.0 were added and mixed as before. The suspension was incubated another 5 min on 

ice and it was more viscous at this point. In a separate tube, 100 μl of ribonuclease A 

solution (20 mg/ml) were mixed with 150 μl of 10% Triton X-100 and 800 μl of TE 

50/1 for each sample. 1 ml of this mixture was added to the cell suspension and 

incubated on ice for 30 min. The tubes were then centrifuged in a Sorvall SS34 rotor 

(DuPont) at 39,000 x g for 60 min at 4ºC. The supernatants were transferred into 50 ml 

Falcon tubes and the same amount (∼11 ml) of equilibrated phenol (phenol pH 8.0 with 

0.1% 8-hydroxyquinoline) was added and mixed vigorously. The tubes were 

centrifuged at 2772 x g for 20 min without break. The water phase was recovered and 

transferred into clean 50 ml Falcon tubes. The same amount (∼11 ml) of chloroform was 

added and mixed and the tubes were centrifuged at 2772 x g for 15 min without break. 

The water phase was recovered (∼9 ml) and transferred into clean 30 ml Corex tubes 

and the samples were filled up to 10 ml with TE 50/1 buffer. Then, 1 ml of 5 M NaClO4 

was added and the tubes were sealed with parafilm in order to turn them and mix the 
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solutions. 8 ml of isopropanol were added and again the solutions were mixed as before. 

The tubes were centrifuged in a Sorvall HB6 rotor (DuPont) at 19,000 x g for 15 min at 

4ºC. The supernatant was discarded and the pellet was dried in a vacuum pump and 

resuspended in 500 μl of TE buffer. 

 

IV.10 Genomic DNA extraction from transgenic plants and PCR 
 

200 mg of leaf tissue from transgenic plants were homogenized with a pestle in 200 

µl of extraction buffer (500 mM NaCl, 100 mM Tris pH 7.5, 50 mM EDTA). 20 µl of 

20% SDS were added, vortexed and incubated at 65ºC for 10 min. 235 µl of 

phenol/chloroform/isoamylalcohol (25:24:1) were added and vortexed. The mixture was 

centrifuged at 12,000 x g for 4 min at 4ºC. 200 µl were added to a new eppendorf and 

the DNA was precipitated before performing the PCR. 

The PCR was performed using primers #7 (for) and #14 (rev) and the program was 4 

min of initial denaturation at 94ºC followed by 40 cycles of 1 min at 94ºC, 1 min at 

63ºC and 1 min and 15 sec at 72ºC. A final extension of 2 min at 72ºC was performed. 

  

IV.11 DNA precipitation 
 

About 1 µg of DNA was diluted to a final volume of 50 µl with water. 5 µl of 3 M 

Na acetate (pH 5.7) were added (1/10 volume) and 125 µl 100% ethanol (2.5 volumes). 

The mixture was incubated on ice for 30 min and centrifuged at 12,000 x g for 30 min at 

4°C. The supernatant was discarded and the pellet was washed with 70% ethanol and 

centrifuged as before for 10 min. The supernatant was discarded and the pellet was air 

dried. 

 

IV.12 Determination of the DNA concentration 
 

To determine the concentration of DNA, the absorbance was measured by 

spectrophotometry at 260 nm wavelength and the DNA concentration calculated. An 

absorbance of 1 at 260 nm corresponds to 50 µg/ml of DNA (Sambrook 2001). 
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IV.13 Agrobacterium miniprep preparation 
 

Putative recombinant Agrobacterium colonies were picked and inoculated in 5 ml of 

LB supplemented with Kan (50 µg/ml), Tet (5 µg/ml), Gen (50 µg/ml) and Rif (20 

µg/ml) and incubated at 28°C for 36-48 hours. 1.5 ml of the culture were centrifuged at 

12,000 x g for 10 min. The bacterial pellets were resuspended in 100 µl of suspension 

solution (50 mM glucose, 25 mM Tris-HCl, 10 mM EDTA (pH 8.0)). 20 µl of 20 mg/ml 

lysozyme solution were added and after mixing well the tubes were incubated at 37°C 

for 15 minutes. To lyse the cells, 200 µl of lysis solution (0.2 M NaOH, 1% SDS) were 

added and the tubes were inverted several times to mix well the solution. After adding 

50 µl of equilibrated phenol to the 2 volumes of cell lysis solution, the tubes were mixed 

with the vortex. To neutralize the reaction, 200 µl of neutralization solution (3 M Na 

acetate, pH 5.2) were added and mixed completely by repeated inversion of the tubes. 

The mixtures were centrifuged at 12,000 x g for 5 min and the aqueous phases were 

transferred into microcentrifuge tubes. 2.5 volumes of 95% ethanol were added and the 

tubes were incubated on ice for 10 min. To spin down the DNA, the tubes were 

centrifuged at 12,000 x g for 5 min and the pellet was air dried and resuspended in TE 

buffer. 

 

IV.14 Sequencing 
 

DNA sequencing was carried out using the dideoxy nucleotide chain-termination 

method (Sanger et al. 1977) with Big Dye terminator v3.1 labelling kit (Applied 

Biosystems, Darmstadt, Germany). The DNA samples were purified plasmids or PCR 

products ligated to pGEM®-T Easy or pDRIVE vectors. The primers used were the 

universal M13 forward (for) and reverse (rev) or specific forward and reverse primers. 

The DNA samples pellet was resuspended in sterile water and the ABI PRISM Big Dye 

Terminator v3.1 Cycle Sequencing Kit was used to set up the sequencing reactions. 

Sequences were analysed on ABI 3100 16 capillars automatic sequencer.  
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V Construction of the expression constructs 
V.1 Cloning of RFP-TMD constructions  

V.1.1 Site-specific mutagenesis of RFP by overlap extension 
 
All the primers used in the different PCRs in the different clonings are listed in page 

179. In order to mutate the original RFP gene, four primers were designed with Primer 

Designer software. With primer #1 (for) a NheI site was introduced and a HindIII site 

was removed. With primers #2 (for) and #3 (rev) a PstI site was removed and with 

primer #4 (rev) a PstI site was introduced. Primers #2 and #3 are complementary. 
 

For the mutagenesis, the monomeric RFP (mRFP) gene was used as template DNA and 

the different reactions were carried out with the PCR Master Mix kit (Promega) which 

includes Taq polymerase. The conditions of the different PCRs are described in table 

III.  
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PCR

1 

Original 

RFP 

Fragment 1 No 45’’ at 

94ºC 

45’’ at 

60ºC 

1’ at 72ºC 30 5’ at 72ºC 

1 cycle 

#1 #3 

PCR

2 

Original 

RFP 

Fragment 2 No 45’’ at 

94ºC 

45’’ at 

63ºC 

1’ at 72ºC 30 5’ at 72ºC 

1 cycle 

#2 #4 

PCR

3  

Fragmen

t 1 and 2 

- 1’ at 94ºC 45’’ at 

94ºC 

45’’ at 

62ºC 

1’ at 72ºC 10 No No No 

 - Final RFP No 45’’ at 

94ºC 

45’’ at 

62ºC 

1’ at 72ºC 30 5’ at 72ºC #1 #4 

 

Table III. PCR conditions of the different reactions to mutagenize the mRFP gene. 

 

In the PCR 1 the N-terminal fragment of the original RFP was mutated with primers #1 

and #3 resulting in a fragment of 340 bp. In the PCR 2 the C-terminal part was mutated 

with primers #2 and #4 and the band size was 363 bp. In the PCR 3, the template DNA 

was a mixture of the 2 PCR products (fragment 1 and fragment 2) and the reaction was 

run for 10 cycles. After adding the primers the final product was the new RFP (∼700 

bp). 

The new mutated RFP was directly ligated into the pGEM-T Easy® plasmid (Promega). 

XL-1 E. coli competent cells were transformed with the pGEM-T Easy® plasmid 
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ligation product and ten colonies were chosen for PCR screening using primers #1 and 

#4. The PCR program was 2 min at 94ºC followed by 25 cycles of 45 sec at 94ºC, 45 

sec at 62ºC and 1 min at 72ºC including a final extension of 5 min at 72ºC. One colony 

was positive and small miniprep was prepared. The pGEM®::RFP plasmid was 

analysed by restriction analysis cutting with NheI-SalI and EcoRI-PstI to ascertain the 

plasmid contained the RFP gene and also sequenced to assure there were no mutations 

in the new RFP sequence. 

 

V.1.2 Construction of RFP-TMD23 
 

The new RFP was cut with NheI and SalI restriction enzymes and a triple ligation 

was performed. The backbone pGY1 vector, which contains the 35S CaMV promoter 

and terminator, was cut with NheI and HindIII restriction enzymes and the original 

TMD23 was cut with SalI and HindIII. These cut fragments together with the 

previously cut RFP fragment were ligated and transformed in XL-1 E.coli competent 

cells. Only 3 colonies grew and were screened by colony PCR (table IV, pC+23NheI 

conditions). Only one colony was positive, and midiprep was prepared and the plasmid 

was called pC+23NheI.  

The putative positive pC+23NheI was confirmed by restriction analysis, digesting with 

BamHI/PstI, NheI/PstI and BamHI/SalI, however, after further clonings, the sequence 

contained an NheI site that was not convenient for the final clonings and the construct 

was recloned (see V.1.6). 

 

 

Table IV. Conditions for colony PCR  
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pGEM®::RFP #1 #4 94ºC 2 min 94ºC 45 sec 63ºC 45 sec 72ºC 1 min  25 72ºC 1 min 

pC+23NheI #1 #4 94ºC 4 min 94ºC 45 sec 62ºC 45 sec 72ºC 1 min 40 72ºC 5 min 

pC+20 #5 #6 94ºC 4 min 94ºC 30 sec 56ºC 30 sec 72ºC 40 sec 25 72ºC 1 min 

pG017, pG020 

pG023, pG026 

#6 #27 94ºC 4 min 94ºC 1 min 56ºC 45 sec 72ºC 2 min 25 72ºC 2 min 
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V.1.3 Construction of RFP-TMD17  
 

The RFP-TMD17 construct was obtained by cloning the original TMD17 into the 

SalI and PstI sites of the pC+23NheI construct. The ligation mixture was transformed 

into XL-1 E.coli and 2 colonies were picked for miniprep. The two DNA minipreps 

were digested with NheI/PstI to ascertain the RFP gene was present. Both colonies 

contained the gene and one of them was chosen for midiprep. Sequencing analysis of 

the construct demonstrated the sequence of the TMD corresponded to the TMD17. The 

new construct with the TMD17 was called pC+17NheI (after RFP-TMD17, see V.1.6). 

 

V.1.4 Construction of RFP-TMD26 
 

To clone the TMD26, the original TMD26 was cut with SalI and PstI and cloned into 

the SalI and PstI sites of the pC+23NheI construct. After the ligation and 

transformation, many white colonies grew. Two of them were chosen for miniprep and 

the DNA was digested with NheI/PstI to ascertain the RFP gene was present. One of 

them was chosen for midiprep and the construct was sequenced to assure the TMD 

corresponded to the TMD26 which indeed did. The new construct with the TMD26 was 

called pC+26NheI (after RFP-TMD26, see V.1.6). 

 

V.1.5 Construction of RFP-TMD20 
 

In the pC+20NheI construct, the original TMD20 was cloned into the SalI and 

HindIII sites of pC+23NheI construct. The ligation mixture was transformed into XL-1 

E.coli and positive colonies were confirmed by colony PCR (see conditions in table IV, 

pC+20). All the colonies screened were positive and one was picked for miniprep. The 

DNA was sequenced to verify the TMD20 sequence and it was called pC+20NheI, after, 

RFP-TMD20 (see V.1.6).  

 

V.1.6 Recloning of the RFP-TMDs constructs 
 

The different TMDs contained a NheI site that was not convenient for the p24RFP-

TMDs cloning strategy where the p24 might be cloned into the NheI and NcoI sites of 

the different RFP-TMDs constructs. The different TMD had a part of the sequence that 
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was common in all of them and a part that was different (depending on the TMD, some 

contained extra VLI motifs).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

Figure 2. Schematic representation of the recloning of RFP-TMD constructs. A) PCR was performed 
on the different TMDs in the BssHI and SacI sites using primers #5 and #6. B) Representation of the 
pGEM®::SFC+20 construct in which a short fragment of pC+20NheI was cloned into the NcoI and SacI 
sites of pGEM®-T Easy vector. C) Diagram of the cloning of the new TMDs obtained by PCR cloned 
into the BssHI and SacI sites of pGEM®::SFC+20 construct. D) Diagram of the final cloning pC+23. 
During the cloning a 92 bp fragment between two BssHI sites was removed and with further cloning it 
was replaced in the RFP-TMD23 construct only. 
 

The NheI site was in the fragment that was different and the cloning strategy 

consisted in changing the sequence between the BssHII and the SacI sites (Figure 2, 

panel A). The NheI site was very close to the BssHII site and with the designed primer 

#5 (for), the NheI site was removed and a BssHII site was introduced in the original 

TMDs for the cloning. At 5’ of the SacI site, there was the differential sequence of all 

the TMDs that was kept using primer #6 (rev) in the PCR reaction. The aim was to 

A B 

C 

NcoI    SalI                   BssHI NheI                          PstI  SacI 

TMD 

#5 

#6 
PCR 

New TMD17 

New TMD20 

New TMD23 

New TMD26 

BssHI                                                     SacI 

pGEM®::SFC+20 

  BssHI          SacI 

pC+23* 

  BssHI  BssHI   SacI 

Missing fragment     New TMD23 

D 

pGEM®-T Easy 
plasmid 

SFC+20

NcoI                    SacI 
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change the four TMDs and therefore four different PCR reactions were performed to 

change partially the TMDs. For these reactions, Taq polymerase was used, the primers 

mentioned above and as template the four different constructs prepared with RFP 

containing the original TMDs mentioned above (pC+17NheI, pC+20NheI, pC+23NheI 

and pC+26NheI). The samples were denaturated for 4 min at 94ºC followed by 35 

cycles of amplification which included 15 seconds of denaturation at 94ºC, 15 seconds 

of hybridisation at 56ºC and 15 seconds of elongation at 72ºC. A final extension at 72ºC 

for 1 min was the final step. The four PCR products were digested with BssHII/SacI 

restriction enzymes.  

Previously to ligate the new partial TMDs in the final vectors, an intermediate cloning 

was performed using pGEM® vector (Figure 2, panel B). The pC+20NheI construct 

was cut with NcoI and SacI restriction enzymes and the short fragment of 1012 bp was 

cloned into the NcoI and SacI sites of pGEM® vector. This construct was called 

pGEM®::SFC+20. The ligation mixture was transformed in XL-1 E.coli cells and after 

blue/white screening with X-gal and IPTG, 10 white colonies were picked for miniprep 

plasmid isolation. The new construct was confirmed by restriction analysis by digesting 

with NcoI/SacI and BssHII/SacI.  

The different new partial TMDs PCR products previously cut with BssHII/SacI were 

cloned into these sites of the pGEM®::SFC+20 construct (Figure 2, panel C). The 

ligation mixture was transformed in XL-1 E.coli cells and four colonies of the 

pGEM®::SFnewTMD17, pGEM®::SFnewTMD23 and pGEM®::SFnewTMD26, and 

one colony of the pGEM®::SFnewTMD20 were selected for miniprep. The different 

minipreps were confirmed by restriction analysis digesting with NheI/SacI. The new 

different recombinant vectors were cut with NcoI and SacI in order to replace the new 

complete TMDs into the NcoI and SacI sites of the previously cut pC+20NheI. All the 

TMDs were cloned into the same backbone plasmid (pC+20NheI) as the difference of 

the TMDs remains in the new sequence that was cloned. Miniprep plasmid isolation 

was performed and the constructs were confirmed by restriction analysis digesting with 

NheI. The constructs were called pC+17*, pC+20*, pC+23* and pC+26* and they were 

prepared for midiprep plasmid isolation. 

All the constructs seemed to be properly cloned but some restriction analysis with NcoI 

and SacI revealed that during the intermediate cloning, when the different partial TMDs 

were cloned into the pGEM::SFC+20 in the BssHII and SacI sites, BssHII cut twice and 

not once and a fragment of 92 bp was lost during the cloning (Figure 2, panel D). To 
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reintroduce this fragment, the pC+23NheI was cut with BssHII and the 92 bp fragment 

were cloned into the BssHII site of all of the pC+17*, pC+20*, pC+23* and pC+26*. 

The sequence was confirmed by DNA sequencing and the only successful recombinant 

construct was the RFP-TMD23. The pC+17NheI, the pC+20NheI and the pC+26NheI 

previously cloned constructs did not need to be changed as for the cloning of p24RFP-

TMD strategy the RFP-TMD23 could be used and from the new construct replace the 

other TMDs. Therefore, and due to the difficulty of these clonings, these plasmids were 

called RFP-TMD17, RFP-TMD20 and RFP-TMD26 and maxipreps were prepared. 

 

V.1.7 Cloning of RFP-TMDs into pGREEN0229 
 

The RFP-TMDs constructs were cut with EcoRI and the cassettes were cloned into 

the EcoRI site of pGREEN0229 binary vector previously dephosphorilated. After 

transformation in E.coli with the conditions for binary vector transformation, the 

colonies were screened by blue/white. Different white colonies were screened by colony 

PCR (conditions described in table IV). After miniprep plasmid isolation, the constructs 

were confirmed by restriction analysis with EcoRI and the new clones were called 

pG017 (containing the cassette of the RFP-TMD17), pG020, pG023 and pG026.  

 

V.2 Cloning of p24 fused to the N-terminus of RFP 

V.2.1 Mutagenesis of p24 (p24N1) and construction of pP24RFP-TMD23  
 

Several changes were introduced in the original HIV-1 p24 and eight primers were 

designed to perform these mutations using site-specific mutagenesis by overlap 

extension.  

With primer #7 (for) an XhoI restriction site was removed and a NheI and a SalI sites 

were introduced. With primers #8 (for) and #9 (rev) a SphI and a PstI sites were 

removed. A HindIII site was removed with primers #8 (for) and #11 (rev). With primer 

#12 (rev) a thrombin cleavage site (Th) and an NcoI site were introduced whereas an 

EcoRI site was removed. After performing all these PCRs, a mutation was introduced 

by the Taq polymerase and it was removed with primers #13 (for) and #14 (rev). 
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PCR1 #7 #9 No 45’’ at 94ºC 45’’ at 60ºC 1’ at 72ºC 30 5’ at 72ºC 

1 cycle 

PCR2 #8 #11 No 45’’ at 94ºC 45’’ at 55ºC 1’ at 72ºC 30 5’ at 72ºC 

1 cycle 

PCR3 #10 #12 No 45’’ at 94ºC 45’’ at 58ºC 45’’ at 72ºC 30 5’ at 72ºC 

1 cycle 

No No 1’ at 94ºC 45’’ at 94ºC 45’’ at 57ºC 1’ at 72ºC 10 No PCR fragments 

2-3 #8 #12 No 45’’ at 94ºC 45’’ at 57ºC 1’ at 72ºC 30 5’ at 72ºC 

No No 1’ at 94ºC 45’’ at 94ºC 45’’ at 61ºC 1’ at 72ºC 10 No Final PCR fragments 

2-3 + 1 = p24N1 #7 #12 No 45’’ at 94ºC 45’’ at 61ºC 1’ at 72ºC 25 2’ at 72ºC 

 

Table V. Site-specific mutagenesis by overlap extension of p24N1. Conditions of the different PCR 
reactions to mutagenize the p24 gene. 
 

The HIV-1 p24 was mutated using the PCR Master Mix kit (Promega) and the new p24 

was called p24N1. The conditions of the different PCRs are described below. 

The new mutated p24, p24N1, was cloned directly into the NheI/NcoI sites of the pRFP-

TMD23 and XL-1 E.coli were transformed. Ten colonies were screened by colony PCR 

using primers #7 and #12. The PCR program was 4 min at 94ºC followed by 35 cycles 

of 45 sec at 94ºC, 45 sec at 61ºC and 1 min at 72ºC including a final extension of 2 min 

at 72ºC. The PCR products showed that four colonies were positive. One was chosen for 

miniprep and the construct was digested with NheI/NcoI and SalI/HindIII to confirm the 

cloning. The new construct was called pN123*.  
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PCR1 2’ at 94ºC 30’’ at 94ºC 30’’ at 63ºC 45’’ at 72ºC 35 1’ at 72ºC  1 cycle #7 #14 

PCR2 2’ at 94ºC 30’’ at 94ºC 30’’ at 60ºC 45’’ at 72ºC 35 1’ at 72ºC 1 cycle #13 #12 

PCR3=newp24N1  2’ at 94ºC 45’’ at 94ºC 45’’ at 61ºC 1’ at 72ºC 10 No No No 

 No 45’’ at 94ºC 45’’ at 61ºC 1’ at 72ºC 25 2’ at 72ºC 1 cycle #7 #12 

 

Table VI. Second site-specific mutagenesis by overlap extension of p24N1 

 
The p24N1 sequence was confirmed by sequencing and the sequence had 4 point 

mutations, not related with any restriction site, that were kept after several PCR. Three 
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out of the four mutations did not change the encoded amino acid and it was assumed 

they were substitutions done for proper previous cloning. However, there was one point 

mutation that changed the amino acid and had to be removed using site-specific 

mutagenesis by overlap extension. Two new primers were designed, #13 and #14, and 

also the primers #7 and #12 were used. The conditions of the different PCRs are listed 

in table VI. 

The new p24N1 was digested with NheI and NcoI, cloned into the previously cut 

pN123* construct and XL-1 E.coli were transformed. Three colonies were screened by 

colony PCR using primers #7 and #12. The PCR conditions were the same used for 

PCR screening of N123*. Three colonies were positive and one was chosen for 

miniprep which was digested with SalI/HindIII and the construct was sequenced. The 

new sequence determined the point mutation was successfully removed and the 

construct was called pP24RFP-TMD23. 

 

V.2.2 Construction of pP24RFP-TMD17, pP24RFP-TMD20 and 
pP24RFP-TMD26 

 
The p24RFP-TMD23 construct was used to obtain the other transmembrane 

constructs by replacing the transmembrane domains in the SalI and HindIII sites. The 

pN123 construct was digested with SalI/HindIII and the RFP-TMD17, RFP-TMD20 

and RFP-TMD26 as well. After ligation and transformation into XL-1 E.coli, five 

colonies from each construct were screened by colony PCR using primers #7 (for) and 

#6 (rev). The PCR program was 4 min at 94ºC followed by 25 cycles of 45 sec at 94ºC, 

45 sec at 60ºC and 1 min at 72ºC including a final extension of 2 min at 72ºC. The PCR 

products demonstrated all the colonies were positive. One positive colony of each 

construct was chosen for miniprep and the DNA was digested with EcoRI/BspHI to 

confirm the clonings. The new constructs were called pP24RFP-TMD17, pP24RFP-

TMD20 and pP24RFP-TMD26 depending on the TMD they contain which were also 

confirmed by sequencing. 

 

V.2.3 Cloning of the p24RFP-TMDs cassettes into pGREEN0229  
 

The different p24RFP-TMDs constructs were digested with EcoRI and BspHI and 

the EcoRI-EcoRI bands corresponding to the cassettes were cut for gel extraction. They 

were ligated into the EcoRI site of pGREEN0229 vector, previously dephosphorilated 
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and transformed into XL-1 E.coli. Four colonies of each construct were screened by 

colony PCR using primers #27 (for) and #6 (rev). The PCR program was 4 min at 94ºC 

followed by 25 cycles of 1 min at 94ºC, 45 sec at 56ºC and 2 min at 72ºC including a 

final extension of 2 min at 72ºC. One positive colony of each construct was chosen for 

miniprep and the constructs were digested with EcoRI to confirm the clonings. The new 

constructs were called pG117, pG120, pG123 and pG126. 

 

V.2.4 Cloning of the p24RFP-TMDs cassettes into pGREEN0179 
 

The same cassettes from p24RFP-TMD17, p24RFPTMD20 and p24RFP-TMD23 

were cloned into the dephosphorilated EcoRI site of pGREEN0179. The ligation was 

transformed into MC1061 E.coli cells for the new p24RFP17G0179 and into DH5α 

E.coli cells for p24RFP20G0179 and p24RFP23G0179. The colonies p24RFP17G0179 

were screened by colony PCR using primers #7 (for) and #12 (rev). The program was 4 

min of initial denaturation at 94ºC followed by 30 cycles of 45 sec at 94ºC, 45 sec at 

61ºC and 1 min at 72ºC. A final extension of 2 min at 72ºC was also performed. Only 2 

colonies of were positive and one was chosen for miniprep and re-confirmed by 

restriction analysis. The new construct was called p24RFP17G0179. 

The transformations of p24RFP20G0179 and p24RFP23G0179 were screened by 

blue/white selection using X-gal and IPTG. White colonies were confirmed by cracking 

gel analysis. One positive colony of each construct was picked for miniprep and re-

confirmed by restriction analysis. The new constructs were called p24RFP20G10279 

and p24RFP23G0179. 

 
V.3 Cloning of pRFPp24-TMD constructions 

V.3.1 Mutagenesis of p24 (p24N2) 
 

Two primers were necessary to mutate the p24 gene to prepare these constructs. With 

primer #15 (for) an XhoI and a thrombin cleavage sites were introduced whereas with 

the primer #16 (rev) a SalI site was introduced. The template DNA for the standard 

PCR was the p24N1 fragment and the new p24 for this strategy was called p24N2. The 

PCR program was 2 min at 94ºC followed by 30 cycles of 45 sec at 94ºC, 45 sec at 66ºC 

and 1 min at 72ºC. A final extension of 2 min was performed. The new p24N2 was 

cloned into pDRIVE and the ligation mixture was incubated at 4ºC for 30 min. XL-1 
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E.coli cells were transformed and eight white colonies were screened by colony PCR 

using primers #15 and #6. The PCR program was 4 min at 94ºC followed by 35 cycles 

of 30 sec at 94ºC, 30 sec at 62ºC and 1 min at 72ºC including a final extension of 2 min 

at 72ºC. Two colonies were positive and one of them was chosen for miniprep. The 

DNA was digested with XhoI/SalI and also sequenced. The positive sequence was then 

processed to prepare the different constructs. 

 

V.3.2 Construction of pRFPp24-TMD26 
 

The pDRIVE:p24N2 construct was digested with XhoI and SalI and the lower band 

around 700 bp corresponding to p24N2 was kept for ligation. The RFP-TMD26 

construct was digested with SalI and dephosphorilated. The fragments were ligated and 

the mixture was transformed in E.coli XL-1. The p24N2 contains an XhoI and a SalI 

sites and both are compatible with the SalI site of the vector. Therefore, the insert could 

have been inserted in both orientations and the correct orientation was identified by 

colony PCR using primers #2 and #16. Ten colonies were screened and the PCR 

program was 4 min at 94ºC followed by 25 cycles of 45 sec at 94ºC, 45 sec at 60ºC and 

1 min 10 sec at 72ºC with a final extension of 2 min at 72ºC. Only one colony was 

positive and it was chosen for miniprep and digested with HindIII/SalI and with BamHI 

and SalI. The construct was called pRFPp24-TMD26. 
 

V.3.3 Construction of pRFPp24-TMD17, pRFPp24-TMD20 and 
pRFPp24-TMD23 

 
The TMD of the RFPp24-TMD26 was substituted by the different TMD to prepare 

the RFPp24-TMD17, RFPp24-TMD20 and RFPp24-TMD23 constructs. The RFP-

TMD17, RFP-TMD20 and RFP-TMD23 constructs were digested with SalI and HindIII 

and the TMD17, 20 and 23, respectively, were released from the vectors showing a 

shorter fragment in a 1% agarose gel. These fragments were cut and purified from the 

gel. The RFPp24-TMD26 was also digested with SalI and HindIII and the fragments 

were ligated and transformed into E.coli XL-1. Six colonies of each construct were 

screened by colony PCR using primers #15 and #6. The PCR program was 4 min at 

94ºC followed by 25 cycles of 45 sec at 94ºC, 45 sec at 62ºC and 1 min 10 sec at 72ºC 

with a final extension of 2 min at 72ºC. All the colonies were positive and one of each 
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construct was chosen for miniprep and the DNA was sequenced. The constructs were 

called pRFPp24-TMD17, pRFPp24-TMD20 and pRFPp24-TMD23. 

 

V.3.4 Cloning of the RFPp24-TMDs constructs into pGREEN0229 
 
The RFPp24-TMDs constructs were cut with EcoRI and BspHI and the bands 

corresponding to the EcoRI-EcoRI cassettes containing the genes of interest were 

cloned into the EcoRI site of pGREEN0229 previously dephosphorilated. The ligation 

mixture was transformed into XL-1 E.coli following the protocol for binary vectors. 

One white colony of pG217, pG220 and pG223 constructs was picked for miniprep and 

the DNA was digested with EcoRI to assure the correct cloning of the cassettes. For the 

pG226, colony PCR was performed using primers #27 (for) and #6 (rev). The PCR 

program was 4 min at 94ºC followed by 25 cycles of 1 min at 94ºC, 45 sec at 56ºC and 

2.5 min at 72ºC with a final extension of 2 min at 72ºC. One colony was positive and 

chosen for miniprep. The DNA was digested with EcoRI. The new clones were called 

pG217, pG220, pG223 and pG226. All these steps are represented in the figure below. 

 

V.4 Cloning of p24 fused to the C-terminus of γ-zein domain 
 

For this strategy six primers were designed, two to mutate the γ-zein sequence, two 

to mutate p24 and another two to mutate the (GGGGS)3 linker sequence. In order to 

introduce γ-zein, the pDHA-zeolin plasmid (Mainieri et al. 2004) was kindly provided 

by Dr. A.Vitale. 

 

V.4.1 Mutagenesis of zeinM1 
 

The new mutated γ-zein sequence, called zeinM1, contains a BamHI site and the 5’-

UTR sequence of tobacco chitinase signal sequence introduced by the forward primer 

#17 at the 5’ of zein signal sequence; at the same time a BamHI site was removed. With 

the reverse primer #18 an NcoI site was introduced and a PstI site was removed in the γ-

zein region. The original pDHA::zeolin sequence was digested with BamHI and HindIII 

to release the zein coding sequence. This DNA was used as template for PCR using 

primers #17 and #18. The mixture was denatured for 1 min at 94ºC, then the PCR 

reaction continued for 45 seconds at 94ºC, 45 seconds at 66ºC and 1 min at 72ºC for 30 
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cycles. A final elongation step at 72ºC was performed for 5 min. The PCR product was 

ligated into pGEM® vector and transformed into XL-1 E.coli. Five white colonies were 

screened by colony PCR using primers #17 and #18. The PCR program was 4 min at 

94ºC, and 30 cycles of 45 seconds at 94ºC, 45 seconds at 66ºC and 1 min at 72ºC with a 

final elongation of 5 min at 72ºC. One colony was picked for miniprep and the DNA 

sequence was confirmed by sequencing. 

 

V.4.2 Mutagenesis of (GGGGS)3 linker 
 

The linker (GGGGS)3 was introduced to allow independent protein folding of p24 

and γ-zein. The encoding sequence was amplified from the original pDHA::zeolin 

plasmid previously digested with BamHI and PstI. With the forward primer #19 an NcoI 

site was introduced and a BamHI site was removed and with the reverse primer #20 a 

SalI site was introduced. The (GGGGS)3 sequence was amplified with an initial 

denaturation step at 94ºC for 1 min followed by 35 cycles of 5 seconds at 94ºC, 5 

seconds at 59ºC and 5 seconds at 72ºC. A final extension at 72ºC for 20 seconds was the 

final step. Prior to the reaction, the primers were boiled for 5 min at 95ºC to avoid 

secondary structures. The PCR product was digested with NcoI and SalI and was 

directly cloned into p24-zein construct in which the correct sequence was confirmed by 

DNA sequencing. 

 

V.4.3 Mutagenesis of p24M1 and cloning of pzein-p24 
 
To mutate the p24 gene, the forward primer was the #21, almost the same as primer #15 

used in the RFPp24-TMD strategy but with a base less to keep the correct open reading 

frame. The reverse primer #22 introduced a stop codon and a PstI. The DNA template 

was p24N1 and the new p24 sequence was called p24M1. The PCR program was 1 min 

of initial denaturation at 94ºC and 30 cycles of 45 seconds at 94ºC, 45 seconds at 58ºC 

and 1 min at 72ºC. The final elongation at 72ºC was for 2 min.  

To perform the final cloning of this construct, the zeinM1 sequence was first cloned into 

the BamHI and NcoI sites of pGY1 vector. The ligation mixture was transformed into 

XL-1 E.coli cells. The different pGY1::zeinM1 colonies were screened by colony PCR 

(II.3.6) and the PCR conditions are described in table VII. One positive colony was 

chosen for miniprep and the DNA was digested with BamHI/NcoI.  



                                                                                                                     Materials and methods 

 143

 

 
C

ol
on

ie
s 

5’
 p

ri
m

er
 

3’
pr

im
er

 

In
iti

al
 

de
na

tu
ri

ng
 

st
ep

  

(1
 c

yc
le

) 

D
en

at
ur

in
g 

st
ep

 

A
nn

ea
lin

g 

st
ep

 

E
lo

ng
at

io
n 

st
ep

 

C
yc

le
s (

#)
 

Fi
na

l 

el
on

ga
tio

n 

pGY1::zeinM1 #17 #18 94ºC 4 min 94ºC  

45 sec 

66ºC  

45 sec 

72ºC 1 

min 

35 72ºC 

 1 min 

pGY1::zeinM1:: 

(GGGGS)3 

#17 #20 94ºC 4 min 94ºC  

45 sec 

62ºC  

45 sec 

72ºC 1 

min 

30 72ºC  

2 min 

pzein-p24 #19 #22 94ºC 4 min 94ºC  

45 sec 

57ºC  

45 sec 

72ºC 1 

min 

25 72ºC 

 2 min 

 

Table VII. Colony PCR conditions used in zein-p24 cloning. 

 

The (GGGGS)3 sequence, which was cloned into the NcoI and SalI sites of the pP24-

zein construct described below, was excised from this construct cutting with NcoI and 

PstI enzymes and the fragment was ligated into the same sites of the pGY1::zeinM1 

construct. The ligation mixture was transformed into XL-1 E.coli cells and six colonies 

pGY1::zeinM1::(GGGGS)3 were screened by colony PCR (II.3.6). The conditions are 

described in table VII. One positive colony was chosen for miniprep and it was called 

pGY1::zeinM1::(GGGGS)3. 

The p24M1 sequence was cut with XhoI and PstI restriction enzymes and cloned into 

the XhoI and PstI sites of the previously cut pGY1::zeinM1::(GGGGS)3 miniprep. The 

ligation was transformed into XL-1 E.coli cells and five colonies were screened by 

colony PCR. The PCR program is described in table VII. One colony was chosen for 

miniprep and the DNA was digested with BamHI/SalI, BamHI/PstI and EcoRI/BspHI. 

The resulting final construct was called pzein-p24 and was re-confirmed by sequencing 

which showed that the different sequences were correct and any unwanted mutation was 

introduced by PCR. 

 

V.4.4 Cloning of zein-p24 cassette into pGREEN0229  
 

The pzein-p24 was digested with EcoRI and BspHI and the band corresponding to 

the EcoRI-EcoRI cassette of interest was cloned into the EcoRI site of the digested and 

dephosphorilated pGREEN0229 vector. One white colony was chosen for miniprep and 
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the DNA was digested with EcoRI to confirm the correct cloning. The new construct 

was called pGzeinp24.  

 

V.4.5 Cloning of zein-p24 cassette into pGREEN0179 
 

The same cassette was cloned into the dephosphorilated EcoRI site of pGREEN0179. 

The ligation was transformed into DH5α E.coli cells and after blue/white selection with 

X-gal and IPTG, some white colonies were confirmed by cracking gel analysis. One 

positive colony was picked for miniprep and re-confirmed by restriction analysis. The 

new construct was called pzeinp24G0179. 

 
V.5 Cloning of p24-zein: p24 fused to the N-terminal region of γ-zein 
 

The γ-zein region had to be mutated and two primers were designed. The zein signal 

sequence was removed from the original γ-zein region and a SalI site was introduced 

with the forward primer #23. With the reverse primer #24 a stop codon and a PstI site 

were introduced. The PCR program was 1 min of initial denaturation at 94ºC and 45 

seconds at 94ºC, 45 seconds at 63ºC and 1 min at 72ºC for 40 cycles. 5 min of final 

extension were performed at 72ºC. The new γ-zein was called zeinM2 and was cloned 

into pGEM® vector and the ligation mixture was transformed into XL-1 E.coli cells. 

Five white colonies were screened by colony PCR using primers #23 and #24 and the 

same PCR program described above for 30 cycles. One positive colony was chosen for 

miniprep and midiprep and the DNA was sequenced to verify the zeinM2 sequence.  

The backbone plasmid was the p24RFP-TMD26 construct as the signal sequence and 

the p24 gene were the same. As described in the pzein-p24 construct, the linker 

(GGGGS)3 was first cloned in this construct before cloning into the zein-p24 construct. 

A first (GGGGS)3 PCR not sequenced, that after resulted to not have the correct DNA 

sequence, was ligated into the NcoI and SalI sites of p24RFP-TMD26. Also, the p24 of 

the p24RFP-TMD26 construct contained a single mutation and at the end it was 

changed. The ligation mixture was transformed into XL-1 E.coli and ten colonies were 

screened by colony PCR. The conditions are described in table VIII (see 

pP24M2Δ::G3Δ). Eight colonies were positive and one was chosen for miniprep. This 

clone was called pP24M2Δ::G3Δ and it was digested with BamHI/SalI and SalI/PstI. 

The bands corresponded and the zeinM2 sequence was cloned into the SalI and PstI 
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sites of pP24M2Δ::G3Δ construct and transformed into XL-1 E.coli cells. Five colonies 

were confirmed by colony PCR and the PCR program is described in table VIII 

(pP24M2Δ::G3Δ::zeinM2 conditions). The positive clone was chosen for miniprep 

plasmid isolation. At this point the p24M2 (in fact is p24N1 from p24RFP-TMD26) 

contained a single mutation and needed to be changed. The new p24N1 gene was cloned 

into the NheI and NcoI sites of the pP24M2Δ::G3Δ::zeinM2 construct by removing the 

old p24N1 gene and replacing it for the new one. Five colonies were screened by colony 

PCR using the conditions for pP24M2::G3Δ:zeinM2 described in table VIII. All the 

colonies were positive and one was chosen for miniprep plasmid isolation. To confirm 

the cloning, the miniprep was digested with NheI/NcoI and NcoI/SalI. The positive 

cloned was called pP24M2::G3Δ:zeinM2 as the (GGGGS)3 linker was still not properly 

cloned. 

The linker (GGGGS)3 PCR was repeated as described before. The new linker was 

cloned into the NcoI and SalI sites of the pP24M2::G3Δ:zeinM2 construct. The ligation 

mixture was transformed into XL-1 E.coli cells and four colonies were screened by 

colony PCR. The conditions are described in table VIII (pM2 conditions). Two colonies 

were positive and one was chosen for miniprep. The DNA was digested with NcoI/PstI 

and SalI/PstI to assure the correct cloning and the final construct was called pP24-zein. 

It was sequenced to confirm the (GGGGS)3 had no mutations.  

 

C
ol

on
ie

s 

5’
 p

ri
m

er
 

3’
pr

im
er

 

In
iti

al
 

de
na

tu
ri

ng
 

st
ep

  

(1
 c

yc
le

) 

D
en

at
ur

in
g 

st
ep

 

A
nn

ea
lin

g 

st
ep

 

E
lo

ng
at

io
n 

st
ep

 

C
yc

le
s (

#)
 

Fi
na

l 

el
on

ga
tio

n 

pP24M2Δ::G3Δ #7 #20 94°C 

4 min 

94°C 

45 sec 

61°C 

45 sec 

72°C 

45 sec 

30 72°C 

1 min 

pP24M2Δ::G3Δ::zeinM2 #7 #24 94ºC 

4 min 

94ºC  

1 min 

61ºC 

 1 min 

72ºC  

1 min 10 sec 

30 72ºC  

2 min 

pP24M2::G3Δ:zeinM2 #7 #12 94ºC  

4 min 

94ºC  

45 sec 

61ºC 

 45 sec 

72ºC 

 1 min 

25 72ºC 

 2 min 

pM2 = pP24-zein #19 #20 94ºC  

4 min 

94ºC  

45 sec 

59ºC 

 45 sec 

72ºC  

45 sec 

30 72ºC 

 1 min 

 

Table VIII. Colony PCR for pP24-zein construction. 
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V.5.1 Cloning of p24-zein cassette into pGREEN0229  
 

The p24-zein construct was digested with EcoRI and BspHI to release the EcoRI-

EcoRI cassette. This fragment was cloned into the EcoRI site of pGREEN0229 

previously dephosphorilated. XL-1 E.coli cells were transformed and one white colony 

was chosen for miniprep. The DNA was digested with EcoRI to confirm the correct 

cloning and the new construct was called pGp24zein. 

 

V.5.2 Cloning of p24-zein cassette into pGREEN0179 
 

The same cassette was cloned into the EcoRI site of pGREEN0179 previously 

dephosphorilated. The ligation was transformed into DH5α E.coli cells and after 

blue/white selection with X-gal and IPTG, the white colonies were confirmed by 

cracking gel analysis. One positive colony was picked for miniprep and re-confirmed by 

restriction analysis. The new construct was called p24zeinG0179. 

 

V.6 Cloning of p24-TA: p24 fused to the C-terminus of cyt b5 tail 
anchor 

 
To mutate the p24 for this construct, the new p24N1 was mutated with primers #25 

(for) and #26 (rev). With the forward primer a BamHI site was introduced and with the 

reverse primer a SalI site was introduced. The conditions of the PCR reaction were 2 

min of initial denaturation at 94ºC followed by 30 cycles of 45 seconds of denaturation 

at 94ºC, 45 seconds of hybridisation at 57ºC and 1 min of elongation at 72ºC. A final 

extension at 72ºC for 2 min was the last step. The new p24 was called p24linker and 

was cloned into the BamHI and SalI sites of pDHA::zeolin and transformed in XL-1 

E.coli cells.  

Thirteen colonies were screened by colony PCR using primers #25 and #26. The PCR 

program was one cycle at 94°C for 4 min, 35 cycles of 45 sec at 94°C, 45 sec at 57°C 

and 1 min at 72°C. A final extension of 2 min at 72°C was also performed. One colony 

was chosen for miniprep and it was digested with BamHI/NdeI, BamHI/SalI and 

NcoI/SalI. The p24linker was sequenced to assure the correct mutagenesis. The 

pDHA::cytb5 plasmid contained the linker GAGSGG, the C-terminal end of cyt b5 and 

the N-terminal sequence of bovine opsin containing an N-glycosylation consensus site 

(op-3). The final clone in pDHA vector was called p24-TA. 
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V.6.1 Cloning of p24-TA into pGREEN0229 
 

The p24-TA construct was digested with EcoRI and BspHI and the cassette of 

interest flanked by EcoRI sites was cloned into the EcoRI site of pGREEN0229 vector, 

previously dephosphorilated. The ligation mixture was transformed into XL-1 E.coli 

cells and one white colony was chosen for miniprep. The construct was digested with 

EcoRI to confirm the correct cloning and it was called pGp24-TA. 

 

V.6.2 Cloning of p24-TA into pGREEN0229 
 

The same cassette was cloned into the dephosphorilated EcoRI site of pGREEN0179. 

The ligation was transformed into DH5α E.coli cells and after blue/white selection with 

X-gal and IPTG, some white colonies were screened by cracking gel analysis. One 

positive colony was picked for miniprep and re-confirmed by restriction analysis. The 

new construct was called p24TAG0179. 

 

V.7 Construction of GFP-TMD constructs 
 

The enhanced GFP (eGFP) gene was excised from pCK(X/S)LTEV-EGFP vector 

(Ritzenthaler et al. 2002) by digesting with NcoI and XbaI. Two primers were designed 

in order to mutate both extremes and introduce a NheI site at 5’ (primer #28, forward) 

and a SalI site at 3’ (primer #29, reverse). The PCR was performed at 94ºC for 2 min, 

followed by 30 cycles at 94ºC for 30 seconds, at 60ºC for 45 seconds and at 72ºC for 1 

min. A final extension at 72ºC for 2 min was also performed. Three tubes were marked 

T0, T20 and T40 and the PCR product was digested with NheI and SalI. Starting from 

the time before incubation, every 20 min 1µl of the mixture was transferred to one of 

these tubes (T20 sample), each containing 5µl DNA loading dye. After the last sample 

at 40 min (T40) was collected the three samples were ran on a 1% agarose gel. This was 

done to estimate the time needed for complete digestion with the enzymes. The pRFP-

TMD23 construct was also digested and dephosphorilated to prevent re-ligation and 

after the digestion of the PCR product (new GFP) the two fragments were ligated. The 

final construct was called pS023 and the GFP sequence was confirmed by sequencing.  

The construct containing GFP and the TMD20 was called pS020. The pC+20 construct 

(with RFP) was cut and dephosphorilated. The large fragment was ligated with GFP 

previously cut with NcoI and SalI and E.coli were transformed as described previously. 
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Twenty colonies were picked for miniprep and screened by restriction analysis. The first 

digestion was with HindIII and Cfr10I to control if the exchange of RFP for GFP had 

worked. If the constructs contained GFP, the digested plasmid would give rise to three 

bands whereas if the constructs contain RFP (re-ligation) the gel should show only two 

bands. The minipreps that showed a positive pattern were then cut with NcoI and SalI to 

see if the restriction sites were restored.  

To prepare the pS017 construct, the GFP was cloned into the pC+17 construct in which 

the RFP was removed previously by cutting with NcoI and SalI. Ten colonies were 

screened by colony PCR using primers #28 and #29. The PCR was performed at 94ºC 

for 4 min, followed by 30 cycles at 94ºC for 45 seconds, at 60ºC for 45 seconds and at 

72ºC for 1 min. A final extension at 72ºC for 2 min was also performed. Midiprep was 

prepared and it was digested NcoI and SalI to confirm the proper cloning. The new 

construct was called pS017. 

 

V.8 Construction of p24 fused at N-terminus of GFP and TMD 
 

The pS023 construct was digested with NcoI and SalI restriction enzymes and 

dephosporilated. The pP24RFP-TMD23 construct was also digested with SalI and NcoI 

and dephosphorilated. A time digestion study was performed as described as above. The 

GFP was ligated into NcoI and SalI sites. The ligation mixture was transformed into E. 

coli MC1061 and twenty colonies were picked and incubated for culture miniprep. The 

minipreps were digested with HindIII and Cfr10I to control if the exchange of RFP for 

GFP had worked. If the constructs contain GFP the digested plasmid will give rise to 

four bands whereas if the constructs contain RFP (re-ligation) the gel should show only 

three bands. 

To prepare the pS120 construct, the pP24RFP-TMD20 construct was digested with 

NcoI and SalI and a time digestion study was performed as described as above. After 60 

min digestion another 1µl of SalI and 1µl of NcoI were added and the reaction was 

continued for another 30 min. After dephosphorylation of the pN120 digestion, the large 

fragment was ligated to GFP cut with NcoI and SalI and transformed in competent E. 

coli MC1061 as described previously. Twenty colonies were picked and incubated for 

culture miniprep. The minipreps were digested as before.  

The pS117 construct was prepared as the pS017 but in the ligation reaction, the GFP 

was cloned into the previously cut pN117.  
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V.9 Construction of p24 fused at C-terminus of GFP and TMD 
 

To prepare the pS223 construct, the pS023 construct was digested with SalI and 

dephosphorilated. pDRIVE:p24N2 was also digested with SalI and XhoI. In both cases, 

a time digestion study was performed as described as before. The lower band of the 

digested pDRIVE:p24N2 corresponding to p24 (~700bp) was ligated to the digested 

pS023. The ligation mixture was transformed in competent E. coli MC1061. Fifteen 

colonies were screened by colony PCR using primers #28 and #16. The PCR was 

performed at 94ºC for 4 min, followed by 35 cycles at 94ºC for 45 seconds, at 59ºC for 

45 seconds and at 72ºC for 1 min 45 sec. A final extension at 72ºC for 2 min was also 

performed. Three positive colonies were chosen for culture miniprep and the minipreps 

were digested with SalI/HindIII and NheI/SalI. To clone pS217 and pS220, the pS223 

construct was cut with SalI and HindIII. The pC+17 and pC+20 were digested with SalI 

and HindIII and the short fragments were ligated to the large fragment of pS223 

digested with SalI and HindIII. The ligation mixture was transformed into competent 

E.coli MC1061 and one colony of each new construct was picked for midiprep. The 

DNA was sequenced and it was confirmed that the pS217 construct contained the 

TMD17 and the pS220 the TMD20. 

 

V.10 Construction of p24RFPcyt 
 

In order to control that the original p24 was correctly localised in the cytosol, two 

constructs without transmembrane domain were prepared. 

The first construct was the p24RFP in which the p24 is fused to the N-terminus of RFP. 

The pP24RFP-TMD23 plasmid was digested with NheI and SalI restriction enzymes 

and the short fragment, corresponding to p24 gene, was used as DNA template for PCR. 

The reaction was carried with primers #30 (for) and #31 (rev) and the program was 4 

min at 94ºC, followed by 35 cycles at 94ºC for 45 seconds, at 64ºC for 45 seconds and 

at 72ºC for 1 min 45 sec. Two minutes at 72ºC was the final extension step. The 

fragment obtained purified and digested with BamHI and PstI. The cut fragment was 

ligated with the large fragment of the previously digested (with BamHI and PstI) and 

dephosphorilated pP24RFP-TMD26 vector in a final volume of 10 µl. 5 µl of the 

ligation were transformed into competent E.coli MC1061. Ten colonies were screened 

by colony PCR using primers #30 and #31. The PCR was performed at 94ºC for 4 min, 
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followed by 35 cycles at 94ºC for 45 seconds, at 64ºC for 45 seconds and at 72ºC for 1 

min 45 sec. A final extension at 72ºC for 2 min was also performed. One positive 

colony was chosen for culture midiprep and it was digested with BamHI/PstI to ensure 

the p24 gene was excised. The new construct was also confirmed by sequencing. 

 
V.11 Construction of RFPp24cyt 
 

The second cytosolic construct was the RFPp24 in which the p24 was fused to the C-

terminus of RFP. The PCR template was the short fragment, corresponding to p24 gene, 

obtained by digesting pRFPp24-TMD23 plasmid with NheI and SalI. The PCR program 

was 2 min at 94ºC, followed by 30 cycles at 94ºC for 45 seconds, at 60ºC for 45 seconds 

and at 72ºC for 1 min 50 sec. Two minutes at 72ºC was the final extension step. The 

reaction was carried with primers #32 (for) and #33 (rev). The fragment obtained was 

purified and digested with BamHI and PstI. The cut fragment was ligated with the large 

fragment of the previously digested (with BamHI and PstI) and dephosphorilated 

pP24RFP-TMD26 vector in a final volume of 10 µl. 5 µl of the ligation were 

transformed into competent E.coli MC1061. Ten colonies were screened by colony PCR 

using primers #30 and #31. The PCR was performed at 94ºC for 4 min, followed by 35 

cycles at 94ºC for 45 seconds, at 64ºC for 45 seconds and at 72ºC for 1 min 45 sec. A 

final extension at 72ºC for 2 min was also performed. One positive colony was chosen 

for culture midiprep and it was digested with BamHI/PstI to ensure the p24 gene was 

excised. The new construct was also confirmed by sequencing. 

 
V.12 Construction of p24RFPsec 
 

A construct containing the p24 and the RFP genes and any TMD was prepared. The 

new cassette was amplified from the short fragment released from the digestion of 

pP24RFP-TMD23 with NheI and SalI. In the PCR reaction primers #7 and #34 were 

used and the program was 2 min at 94ºC, followed by 30 cycles at 94ºC for 45 seconds, 

at 63ºC for 45 seconds and at 72ºC for 1 min 50 sec. A final extension at 72ºC for 5 min 

was also performed. The amplified fragment was digested with NheI and SphI enzymes 

and the pC+23 as well. The digested PCR product was ligated into the large fragment of 

the digested pC+23 and transformed into E.coli DH5α. Twenty-five colonies were 

screened by colony PCR using primers #7 and #12 and the program was 4 min at 94ºC 

followed by 30 cycles of 45 sec at 94ºC, 45 sec at 61ºC and 1 min at 72ºC with a final 
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extension of 2 min at 72ºC. Only one colony was positive and miniprep was prepared 

and digested with NheI/NcoI and NheI/SalI. The construct sequence was confirmed by 

DNA sequencing. 

 

V.13 Construction of RFPp24sec 
 

A construct containing the RFP and the p24 genes and any TMD was also prepared. 

The PCR reaction was prepared using the short fragment released from the digestion of 

pRFPp24-TMD23 with NheI and SalI as DNA template. The primers #1 and #35 were 

used and the program was 2 min at 94ºC, followed by 30 cycles at 94ºC for 45 seconds, 

at 63ºC for 45 seconds and at 72ºC for 1 min 50 sec with a final extension at 72ºC of 5 

min. The new amplified fragment was digested with NheI and SphI enzymes and it was 

ligated into the large fragment of the digested pC+23. The ligation product was 

transformed into E.coli DH5α and ten colonies were screened by colony PCR. For this 

reaction, primers #7 and #12 were used  and the program was 4 min at 94ºC followed by 

30 cycles of 45 sec at 94ºC, 45 sec at 61ºC and 1 min at 72ºC with a final extension of 2 

min at 72ºC. Only one colony was positive and miniprep was prepared and digested 

with EcoRI/NcoI and NheI/SalI. The construct sequence was confirmed by DNA 

sequencing. 

 

V.14 Construction of N220-GFP, N223-GFP and N226-GFP 
 

A new GFP sequence was prepared using primers #36 and #37 in which a BglII and a 

SphI restriction sites were added. The PCR program was 2 min at 94ºC followed by 35 

cycles of 30 sec at 94ºC, 30 sec at 61ºC and 45 sec at 72ºC with a final extension of 2 

min at 72ºC. The new GFP sequence, called GFPTM, was inserted into the BglII and 

SphI sites of previously digested pRFPp24-TMD20, pRFPp24-TMD23 and pRFPp24-

TMD26. Ten colonies of pN220GFPTM and 5 colonies of pN223GFPTM and 

pN226GFPTM were screened by colony PCR using primers #36 and #37. The PCR was 

performed with the same conditions as for GFPTM amplification except that the initial 

denaturation was for 4 min instead of 2 min. One colony of each positive construct was 

picked and incubated for culture midiprep.  

All the constructs are listed in the next table. 
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Construct name p24 gene  Other genes LAMP1 TMD Bac res Plant res 
pRFP-TMD17 No mRFP 17 Amp None 
pGRFP-TMD17 No mRFP 17 Kan BASTA 
pRFP-TMD20 No mRFP 20 Amp None 
pGRFP-TMD20 No mRFP 20 Kan BASTA 
pRFP-TMD23 No mRFP 23 Amp None 
pGRFP-TMD23 No mRFP 23 Kan BASTA 
pRFP-TMD26 No mRFP 26 Amp None 
pGRFP-TMD26 No mRFP 26 Kan BASTA 
P24RFP-TMD17 Yes mRFP 17 Amp None 
pG117 Yes mRFP 17 Kan BASTA 
P24RFP17G0179 Yes mRFP 17 Kan Hyg 
P24RFP-TMD20 Yes mRFP 20 Amp None 
pG120 Yes mRFP 20 Kan BASTA 
P24RFP20G0179 Yes mRFP 20 Kan Hyg 
P24RFP-TMD23 Yes mRFP 23 Amp None 
pG123 Yes mRFP 23 Kan BASTA 
P24RFP23G0179 Yes mRFP 23 Kan Hyg 
P24RFP-TMD26 Yes mRFP 26 Amp None 
pG126 Yes mRFP 26 Kan BASTA 
RFPp24-TMD17 Yes mRFP 17 Amp None 
pG217 Yes mRFP 17 Kan BASTA 
RFPp24-TMD20 Yes mRFP 20 Amp None 
pG220 Yes mRFP 20 Kan BASTA 
RFPp24-TMD23 Yes mRFP 23 Amp None 
pG223 Yes mRFP 23 Kan BASTA 
RFPp24-TMD26 Yes mRFP 26 Amp None 
pG226 Yes mRFP 26 Kan BASTA 
Zein-p24 Yes N-term γ-zein None Amp None 
pGM1 Yes N-term γ-zein None Kan BASTA 
zeinp24G0179 Yes N-term γ-zein None Kan Hyg 
P24-zein Yes N-term γ-zein None Amp None 
pGM2 Yes N-term γ-zein None Kan BASTA 
P24zeinG0179 Yes N-term γ-zein None Kan Hyg 
P24-TA Yes C-term cyt b5 None Amp None 
pGM3 Yes C-term cyt b5 None Kan BASTA 
p24TAG0179 Yes C-term cyt b5 None Kan Hyg 
GFP-TMD17 No eGFP 17 Amp None 
GFP-TMD20 No eGFP 20 Amp None 
GFP-TMD23 No eGFP 23 Amp None 
P24GFP-TMD17 Yes eGFP 17 Amp None 
P24GFP-TMD20 Yes eGFP 20 Amp None 
P24GFP-TMD23 Yes eGFP 23 Amp None 
GFPp24-TMD17 Yes eGFP 17 Amp None 
GFPp24-TMD20 Yes eGFP 20 Amp None 
GFPp24-TMD23 Yes eGFP 23 Amp None 
P24cyt Yes mRFP None Amp None 
p24RFPΔTMD Yes mRFP None Amp None 
RFPp24ΔTMD Yes mRFP None Amp None 
pN220GFP Yes mRFP and eGFP 20 Amp None 
pN223GFP Yes mRFP and eGFP 23 Amp None 
pN226GFP Yes mRFP and eGFP 26 Amp None 
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VI Transformation of plants 
VI.1 Growth and maintenance of Nicotiana tabacum and Nicotiana 

benthamiana 
 
VI.1.1 Under sterile conditions 
 

Nicotiana tabacum cv Petit Havana SR1 and derived stable transformed plants were 

cultivated in MS medium (4,30 g/l MS medium basal salt mixture (Duchefa Biochemie, 

Harlem, The Netherlands); 20 g/l saccharose; 0,2 g/l MES; pH 5,7 with KOH; 0,8 g/l 

Agar) in sterile Magenta boxes or jars in the growth chamber. The conditions were 24°C 

constant temperature, 70% relative humidity and 16 hours light / 8 hours dark regime. 

 
VI.1.2 In soil 
 

Wild type Nicotiana benthamiana and transgenic Nicotiana tabacum plants were 

grown in the green house in soil with 60-65% humidity and 16 h photoperiod at 24°C 

constant temperature. When the plants reached a height of 40-60 cm they were used for 

Agrobacterium infiltration. 

 
VI.2 Transient expression 

VI.2.1 In tobacco leaves by agroinfiltration 
 

Nicotiana benthamiana plants were grown in the green house as described. The 

recombinant Agrobacterium containing the pGREEN plasmids with the different DNA 

cassettes were streaked out on LB agar plates supplemented with Rif (25 μg/ml) and 

Kan (25 μg/ml) and incubated at 28ºC for 2 days. One colony was picked and incubated 

in 5 ml of LB broth medium supplemented with the same antibiotics as above and 

incubated O/N at 28ºC in agitation. The day after the culture was saturated and another 

culture was started from the saturated one. The final volume of the new culture was 3 

ml of LB broth medium supplemented with Rif and Kan, and the amount of 

Agrobacterium culture added was the amount necessary to have a final O.D.600nm of the 

new culture of 0.3, so the dilution factor was calculated. This new culture was incubated 

at 28ºC for about 4 h or until the O.D.600nm was of 0.5. Then, the Agrobacterium culture 

was centrifuged at 2772 x g for 5 min at RT. The supernatant was discarded and the 

pellet was washed with 1 ml of agroinfiltration solution (9.76 g/L MES, 0.552 g/L 
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Na2HPO4, 0.48 g/L NaH2PO4, 5 g/L glucose, 100 μM acetosyringone). The cells were 

centrifuged as before and washed again. The pellets were resuspended in the appropriate 

volume of agroinfiltration medium in order to have an O.D.600nm of 0.5. The cells were 

incubated at RT for 30 min and were infiltrated with a syringe without needle. The tip 

of the syringe was pressed against the underside of a leaf while a counterpressure to the 

other side of the leaf was simultaneously done with a finger. The recombinant 

Agrobacterium solution was then injected into the airspaces inside the leaf through 

stomata and could be visually appreciated. The agroinfiltrated area was delimited with a 

marker pen in order to remember it as some days later the agroinfiltrated area cannot be 

distinguished from a non agroinfiltrated one. After 48-72 h the agroinfiltrated parts of 

the leaves were visualized with the CLSM using the filter for RFP.  

 

VI.2.2 In tobacco protoplasts by DNA electroporation 
 

Nicotiana tabacum cv Petit Havana plants were grown under sterile conditions as 

described previously. Leaves were cut removing the middle nerve and with a special 

device some little holes were made all over the abaxial surface. The leaf pieces were 

transferred into a Petri dish containing 7 ml of digestion mix (0.2% macerocyme R10, 

0.4% cellulose R10 in TEX buffer: 0.4 M sucrose, 750 mg/l CaCl2 · 2H2O, 500 mg/l 

MES, 250 mg/l NH4NO3; pH 5.7 with KOH) with the abaxial side in contact with the 

medium. Usually, one Petri dish (about 5 x 106 protoplasts) is enough for 2 

electroporations. The plates were incubated O/N at 25ºC in the dark. Still under sterile 

conditions, the plates were gently shacked to release protoplasts from the cuticula. The 

mixture was filtered through a 100 μm sieve previously rinsed with electroporation 

buffer (0.4 M sucrose, 2.4 g/L HEPES, 6 g/L KCl, 600 mg/ml CaCl2; pH 7.2 with 

KOH). This rinse is important in order to release further protoplasts from the tissue 

remnants and provide a first step in the adaptation to the new medium. The filtrated 

protoplasts were transferred into a 50 ml tube and centrifuged at 85 x g for 15 min at RT 

without break. The living protoplasts remain floating on the top of the solution whereas 

death protoplasts and cell debris form a pellet or stay in solution. The pellet was 

removed with a fine Pasteur pipette connected to a peristaltic pump. In order to avoid 

that many protoplasts stick to the pipette, a window is created to place the pipette to the 

bottom of the tube. Electroporation buffer was added up to 30 ml and the mixture was 

centrifuged at 85 x g for 10 min. The underlying solution was removed as described 
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above. Electroporation buffer was added up to 15 ml and the mixture was centrifuged as 

before. The protoplasts were resuspended in the appropriate volume in order to have 

about 2 - 2.5 x 106 protoplasts per millilitre. 500 μl of protoplasts (∼1x106 protoplasts) 

were placed into disposable 1 ml plastic cuvettes with a wide opening blue tip. About 

40 μg of DNA were mixed in a final volume of 100 μl of electroporation buffer and 

mixed with the protoplasts. The cells were incubated for 5 min and then electroporated 

with a home made electroporation device. The electroporation was performed at 1000 

μF and 160 V with a Gene Pulser II (BioRad) and the cuvettes were incubated for 30 

min at RT under sterile conditions. The transformed protoplasts were placed into small 

Petri dishes containing 2 ml of TEX buffer. The dishes were incubated O/N at 25ºC in 

the dark. The day after, the samples were placed into a 15-ml tube and centrifuged at 85 

x g for 5 min without break. The pellet was removed and the suspension was ready to 

look with a Confocal Laser Scanning Microscope (CLSM) (Carl Zeiss Inc., 

Oberkochen, Germany) or the samples were prepared for protein extraction. 

 

VI.2.3 In tobacco protoplasts by PEG- mediated transformation  
 

The wild type Nicotiana tabacum cv Petit Havana plants used were grown under the 

same sterile conditions as described above. The protocol used was described in 

(Pedrazzini et al. 1994) and some changes were introduced. The leaf pieces were 

transferred into a Petri dish containing 7 ml of digestion mix (0.2% macerocyme R10, 

0.4% cellulose R10 in K3 buffer: 3.78 g/L Gamborg’s B5 basal medium with vitamins 

(Sigma-Aldrich-Aldrich Co., St. Louis, MO, USA), 136.2 g/L sucrose, 250 mg/L 

xylose, 250 mg/L NH4NO3, 750 mg/l CaCl2, 1 mg/L 6-bencylaminopurine (BAP), 1 

mg/L naphtalenacetic acid (NAA); pH 5.5 with KOH) with the abaxial side in contact 

with the medium. The plates were incubated O/N at 25ºC in the dark. Still under sterile 

conditions, the plates were gently shacked to release protoplasts from the cuticula. The 

mixture was filtered through a 100 μm sieve previously rinsed with W5 buffer (0.9 g/L 

glucose, 9 g/L NaCl, 0.37 g/L KCl, 18.37 g/L CaCl2). The filtrated protoplasts were 

transferred into a 50 ml tube and centrifuged at 85 x g for 15 min at RT without break. 

The pellet was removed and the floating living protoplasts were washed by adding 4 

volumes of W5 buffer and centrifuged at 85 x g for 10 min. This step was performed 

twice. The protoplasts were resuspended in 10 ml of W5 buffer and incubated 30 min in 

the dark. The cells were counted by diluting 50 µl of the cells in 450 µl of K3-FDA 
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buffer (10µl of 5 mg/ml fluorescein diacetate in 5 ml of K3 buffer). 10 µl were loaded 

into a grid slide and fluorescent protoplasts were counted using a microscope. The 

protoplasts were then centrifuged at 85 x g and the cells were resuspended in MaCa 

buffer (0.5 M mannitol, 20 mM CaCl2, and 0.1% MES pH 5.7) to a final concentration 

of 1 x 106 cells/ml. The cells were subjected to heat shock for 5 min at 45°C and cooled 

down at RT for 5 min. 40 µg of the DNA to be transformed were placed into 15-ml 

sterile tubes and 1 ml of the cells were incorporated and mixed. 1 ml of 40% 

polyethylene glycol (PEG) was added drop wise and mixed very slowly. The mixture 

was incubated at RT for 30 min. To wash the samples, the tubes were filled with W5 

buffer and centrifuged at 85 x g for 10 min. The cells were resuspended in 1 ml of K3 

buffer (keeping the concentration 1 x 106 cells/ml) and incubated at 25°C O/N in the 

dark. 

 

VI.3 Stable transformation of tobacco plants  
 

Transgenic N.tabacum cv. Petite Havana SR1 plants were generated by leaf disc 

transformation using recombinant A. tumefaciens and transgenic T0 plants were 

regenerated from transformed calli (protocol derived from Fraley et al. (1983) and 

Horsch (1985). Briefly, wild type plants were grown on Murashige and Skoog (MS) 

medium supplemented with vitamins (Duchefa, Cesano Boscone, Italy) in sterile 

Magenta boxes and the young leaves were used for Agrobacterium-mediated 

transformation. The recombinant Agrobacteria suspension was prepared as described 

before and the OD600nm was adjusted to 0.6 - 0.7 after dilution in LB broth medium 

supplemented with Kan, Rif, Gen and Tet and incubated at 28°C until the OD600nm was 

0.8 – 0.9. The leaves were cut into 8-10 pieces of 1 cm2 (without the central vein) and 

transferred into Petri dishes containing 10 ml of recombinant Agrobacteria suspension 

and incubated for 5 min at RT. The leaf pieces were then dried with sterile Whatman 

filters to eliminate the excess of bacterial suspension. They were transferred into Petri 

dishes containing MS saccharose agar medium (4.4 g/L MS supplemented with 

vitamins, 30 g/L saccharose, 8 g/L plant agar (Duchefa), pH 5.6 - 5.8 and autoclaved) 

supplemented with 0.5 µ/ml BAP and 0.1 µg/ml NAA lacking antibiotic. The plates 

were incubated at 26°C in the light for two days. The leaf pieces were transferred onto 

MS saccharose plates containing 0.5 µ/ml BAP, 0.1 µg/ml NAA, 100 µg/ml 

carbanicillin and 50 µg/ml hygromycin and incubated at 26°C in the growth chamber 
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with 16 h photoperiod for two weeks until the calli were visible and optimal to cut. 

Twenty-five calli were transferred into Magenta boxes (5 calli per box) containing the 

regeneration medium (MS saccharose medium supplemented with 100 µg/ml 

carbanicillin, 50 µg/ml hygromycin and 0.1 µg/ml indole-3-acetic acid (IAA). The 

boxes were incubated at 26ºC with a 16 h photoperiod for 4 weeks until roots 

developed. The small plants were transferred into Magenta boxes containing 

regeneration medium and incubated at 26°C in 16 h light period until used for 

experiments. Young leaves from regenerated transgenic plants were used for extraction 

of total soluble proteins, for analysis of recombinant protein expression by Western 

blot, extraction of total RNA and expression of mRNA by Northern blot and stability of 

the recombinant proteins by immunoprecipitation. 

 

VII RNA manipulations 
VII.1 Total RNA extraction 
 

The protocol to extract total RNA was following the Trizol® protocol from 

Invitrogen. About 125 mg of transgenic tobacco leaves were split into two samples, 

keeping one half for protein analysis and the other half for RNA extraction. Both 

samples were frozen in liquid N2 and kept at -80ºC until used. For RNA extraction, the 

frozen samples were placed into a clean RNAse-free microcentrifuge tube and the tissue 

was mashed with a pestle. 400 µl of Trizol® (Invitrogen, San Giuliano Milanese, Italy) 

were added to each samples and after some mashing 600 µl of Trizol® were added 

(total of 1 ml). The samples were incubated at RT for 2-3 min. The tubes were 

centrifuged at 16,000 x g at 4°C for 10 min. The supernatant (~900 µl) was transferred 

into a new tube and 200 µl of RNAse-free chloroform were added. The tube was 

vortexed and incubated at RT for 2-3 min. After centrifuging at 16,000 x g at 4°C for 15 

min, the supernatant (~500 µl) was transferred into a new tube and 500 µl of 

isopropanol were added. The tubes were briefly mixed and centrifuged at 16,000 x g at 

4°C for 10 min. The supernatant was discarded and 1.2 ml of 75% RNAse-free ethanol 

was added to the pellet. The tubes were centrifuged at 16,000 x g at 4°C for 5 min and 

the pellet was air dried under the hood. The pellet was resuspended in 30 µl of DEPC 

water and incubated at 55°C for 10 min. The total RNA was frozen in liquid N2 and 

kept at -80°C.  
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VII.2 DNAse I treatment 
 

One of the aliquots of total RNA was thawed for DNAse I treatment. 15 µl of total 

RNA were incubated with 4 µl 10X reaction buffer (200 mM Tris-HCl pH 8.3, 500 mM 

KCl, 10 mM MnCl2), 1 µl DNAse I (Roche, Monza, Italy) and 20 µl H2O at 25°C for 30 

min. To increase the volume, 160 µl of DEPC water were added (total volume of 200 

µl). 200 µl of Buffer-saturated phenol (GibcoBRL, San Giuliano Milanese, Italy) were 

added and after vortexing, the tubes were centrifuged at 16,000 x g at RT for 4 min. The 

supernatant (~180 µl) was transferred into a new microcentrifuge tube and kept on ice. 

To the phenol samples, 180 µl of 600 mM Na acetate were added. The tubes were 

centrifuged at 16,000 x g at RT for 2 min and the supernatant was placed into the 

corresponding tubes kept on ice. To precipitate the RNA, 860 µl of 100% RNAse-free 

ethanol were added and the tubes were incubated on ice for 1 h. The tubes were 

centrifuged at 16,000 x g at 4°C for 30 min and the pellet was washed with 200 µl of 

75% RNAse-free ethanol. The tubes were centrifuged at 16,000 x g at 4°C for 25 min 

and the pellet was air dried and resuspended in 15 µl of DEPC water. 

 

VII.3 Determination of the RNA concentration 
 

To prepare RNAse-free quartz cuvettes, the 100 µl cuvette (Hellma, Müllheim, 

Germany) was washed with 0.1 M NaOH and 1 mM EDTA. The final washings were 

performed with DEPC water. To determine the concentration of the RNA, the DNAseI-

treated RNA samples were diluted 1:100 in distilled water and loaded into the quartz 

cuvettes. The samples were read at 260 nm in a RNA/DNA calculator GeneQuantII 

spectrophotometer (Pharmacia Biotech, Milan, Italy). The concentration was calculated 

by knowing that 40 µg/ml of single stranded RNA gives an absorbance of 1 at 260 nm 

in water (Sambrook 2001). 

To determine the purity of the RNA, the ratio of the readings (A260/A280) provides an 

estimate value with respect to contaminants such as proteins. This ratio is influenced by 

pH and therefore the readings may be performed in 10 mM Tris-HCl pH 7.5 buffer. If 

the readings are performed in water, the pH can vary greatly as water is not buffered 

and the sensitivity to protein contaminants can be reduced.  
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VII.4 Determination of the RNA quality 
 

A 1% agarose gel was prepared without ethidium bromide. To prepare the RNA 

samples, 1 µg of DNAse I-treated RNA was incubated with 1 µl of 200 µg/ml ethidium 

bromide, 1 µl of 37% formaldehyde (Merck, Rome, Italy) and 5 µl of formamide 

(Sigma-Aldrich) in a total volume of 12 µl. The mixture was incubated at 55°C for 20 

min. As control, 1 µg, 0.5 µg and 0.25 µg of λ DNA/HindIII plus marker (Fermentas) 

were loaded together with 1 µl 200 µg/ml ethidium bromide. The samples were mixed 

with 6X loading dye (Fermentas), loaded and the gel was run until the dye has first 

entered the gel by about 1 cm. A picture was taken to determine the quality of the RNA. 

The gel was run for longer time and another picture was taken. 

 
VII.5 Northern blot 
 

The Northern blot was carried out as described in Viotti et al. (1982) but some 

changes were introduced. Briefly, the RNA samples were denatured in 50% formamide, 

2.2 M formaldehyde, 20 mM MOPS (3-(N-morpholino)propanesulfonic acid) pH 7.0; 5 

mM Na acetate and 1 mM EDTA and resolved in a 1% agarose gel containing 2.2 M 

formaldehyde for 3 h at 50 V. After electrophoresis, the RNA in the gel was transferred 

into a nylon Hybond-N+ membrane (Amersham Bioscience Biosciences, Milan, Italy) 

by capillarity. In a cuvette, in this order, at the bottom a glass was placed which holds a 

piece of 3 MM Whatman paper that is in contact with the bottom of the cuvette, 

followed by the agarose gel up side down, the Hybond-N+ membrane previously wetted 

in 2X SSC (300 mM NaCl and 30 mM sodium citrate pH 7.0), 4 pieces of 3 MM 

Whatman paper previously wetted in 2X SSC, 3 packs of tissue paper, another glass and 

a weight of 1.1 kg. This structure was wrapped in Saran wrap in order to avoid 

evaporation during the incubation at RT O/N. In the cuvette there is 10 X SSC buffer 

(1.5 M NaCl and 15 mM sodium citrate, pH 7.0) which is in contact with the Whatman 

paper below the agarose gel and this buffer will rise by capillarity, getting the RNA into 

the membrane where it will remain.  

The DNA probe was labelled with the DecaLabel™ DNA labelling kit (Fermentas) 

using α-32P-dCTP (Perkin-Elmer, Monza, Italy) following the manufacturer 

instructions. 100 ng of p24 gene DNA probe was mixed with free-nuclease H2O to a 

final volume of 10 µl. 10 µl of 5X reaction buffer (0.25 M Tris-HCl buffer, pH 8.0 at 
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20°C) containing 25 mM MgCl2, 5 mM dithiotreitol and random decamer primer (12.5 

o.u./ml) were mixed, vortexed and centrifuged for 5 sec. The tube was incubated in a 

boiling water bath for 7 minutes and kept on ice for 4 min. 3 µl of Mix C (0.33 mM 

dGTP, 0.33 mM dATP and 0.33 mM dTTP) were added followed by the addition of 5 

µl of α-32P-dCTP (50 µCi) and 1 µl of Klenow fragment. The mixture was mixed and 

centrifuged for 5 sec. The tube was incubated at 37°C for 5 min. 4 µl of dNTP mix 

(0.25 mM dGTP, 0.25 mM dATP, 0.25 mM dTTP and 0.25 mM dCTP) were added and 

the tube was incubated at 37°C for 5 min. To stop the reaction, 1 µl of 0.5 M EDTA pH 

8.0 was added to the mixture. The mixture was cleaned using QIAquick PCR 

purification kit (Qiagen). Five volumes of PB buffer (provided with the kit) were added 

and the mixture was placed into a column and centrifuged for 1 min at maximum speed. 

The flow through was discarded and column was washed with 600 µl of PE buffer. 

After centrifuging for 1 min at maximum speed, the column was centrifuged again as 

before. The DNA was eluted in 50 µl of elution buffer EB. The quality of the 

radiolabelled probe was determined with a β-Liquid Scintillation Analyser 1600 TR 

(Packard, Canberra Company, Cassina De' Pecchi, Italy). 

The different membranes were pre-hybridised in 1X hybridisation mix (10% (w/v) 

dextran sulphate, 6X SCP buffer (20X is 0.265 M Na2HPO4, 334.6 M NaH2PO4, 2 M 

NaCl, 20 mM EDTA, pH 6.5), 10% sodium lauryl sarcosine, 0.5 mg/ml heparin) at 

65ºC for 2.5 h. Before starting the hybridisation, 100 µg/ml of sonified single stranded 

salmon sperm DNA were incubated at 100ºC for 10 min, and the radiolabelled probe 

was boiled for 5 min. Both solutions were added to the pre-hybridisation mix and 

incubated for 16 h at 65ºC. The membranes were washed 3 times as followed. A quick 

wash with 2X SSC buffer containing 0.1% SDS shacking by hand at RT. The second 

wash was performed with 2X SSC buffer containing 0.1% SDS at 65ºC for 40 min. The 

third wash was with 0.2X SSC buffer with 0.1% SDS at 65ºC for 30 min raising the 

astringency with the diluted SSC. The membrane was wrapped in Whatman paper and 

Saran wrap and exposed to a Xar film (Kodak, Cinisello Balsamo, Italy) at -80°C for 4 

h.  
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VIII Protein analysis 
VIII.1 Total protein purification  

VIII.1.1 From transiently transformed protoplasts 
 

Protoplasts were transformed and on the third day the tubes were filled with 250 mM 

NaCl and centrifuged at 180 x g with break. The supernatant was removed and the pellet 

was resuspended in α-amylase extraction buffer (6.705 g/L malic acid, 3.5 g/L NaOH, 

2.92 g/L NaCl, 0.295 g/L CaCl2, 0.05 g/L Na azide, pH 5.2 supplemented with protein 

inhibitors: 5 mM DTT, 10 μg/ml leupeptin, 1 μg/ml aprotinin, 1 μg/ml pepstatin, 1 

μg/ml E64 and 0.2 μg/ml phenanthrolin). The pellets were placed in microcentrifuge 

tubes to a final weight of 200 mg. Extra drops of α-amylase extraction buffer were 

added to reach the weight. The samples were sonicated for 3 seconds at 50% burst with 

a sonicator (Bandelin Sonoplus GM70, Bandelin, Berlin, Germany) and kept on ice. 

They were centrifuged at 16,813 x g for 10 min at 4ºC. 150 µl of the supernatant were 

placed in new microcentrifuge tubes which were labelled as ‘Soluble Fraction’. The rest 

of the supernatant was removed and the same quantity of the total supernatant removed 

was added of α-amylase extraction buffer. The samples were sonicated as before and 

150 µl were placed in new microcentrifuge tubes. These samples were labelled as 

‘Membrane Fraction’.  

For protoplasts in which Phaseolin extraction buffer was used (12.11 g/L Tris pH 7.8, 

11.68 g/L NaCl, 0.372 g/L EDTA, 2% β-mercaptoethanol, 0.2% Triton) no sonication 

was performed. 

 

VIII.1.2 From stable transformed plants 
 

The stable transformed plants were used for total protein extraction. 200 mg of leaf 

previously frozen at -80ºC were homogenized in an ice-cold mortar with ice-cold 

homogenation buffer (0.1 M Tris-HCl pH 7.8, 0.2 M NaCl, 1 mM EDTA, 2% β-

mercaptoethanol and 0.2% Triton X-100) supplemented with Complete Protease 

Inhibitor Cocktail (Boehringer, Milan, Italy). The ratio of buffer/weight was 5:1. The 

mixture was transferred into microcentrifuge tubes and centrifuged at 5000 x g for 10 

min at 4ºC. The supernatant was transferred into a pre-chilled microcentrifuge tube and 

frozen at -20ºC. 
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VIII.2 Quantification of total soluble proteins 

VIII.2.1 From transiently transformed protoplasts 
 

To quantify the protein concentration, the Bradford assay was used (Bradford 1976). 

From transiently transformed protoplasts, 10 µl of protein samples were diluted in 10 µl 

of α-amylase extraction buffer (1:2 dilution) and added to the plastic disposable 

cuvettes (Sarstedt, Numbrecht, Germany). The blank was 20 µl of α-amylase extraction 

buffer and 1 ml of Bradford reagent (Sigma-Aldrich) was added to all the cuvettes and 

incubated at RT for at least 5 min. The standard curve was done with known 

concentrations of bovine serum albumin (BSA) and the O.D. measured at 595 nm and 

the concentrations were calculated with the O.D. values and the standard equation.  

 

VIII.2.2 From stable transformed plants 
 

In this case, ovoalbumin was used to perform the standard curve as the 

homogenation buffer in which the proteins were purified contains β-mercaptoethanol 

and interferes with BSA. The different protein samples to be tested were diluted 1:6, 

1:10 or 1:15 in homogenation buffer to a final volume of 30 µl. As blank 30 µl of 

homogenation buffer were used. The diluted samples and the blank were placed into 

disposable plastic cuvettes and 1 ml of Bradford reagent (Sigma-Aldrich) was added to 

all samples and incubated at least for 5 min at RT. The samples were read at 595 nm 

and the protein concentration was determined by the formula given by the standard 

curve and the dilution used. 

 

VIII.3 Western blot 

VIII.3.1 From transiently transformed protoplasts and agroinfiltrated 
tobacco leaves 

 
In all cases 12% separating acrylamide gels were prepared. For a big gel (30 wells): 

10.05 ml dH2O, 3.15 ml 3 M Tris-HCl pH 8.8, 9 ml Protogel (30% w/v acrylamide, 

0.8% w/v bis-acrylamide), 225 µl 10% SDS, 12.5 µl TEMED, 75 µl 10% ammonium 

persulfate (APS). The stacking gel was prepared with 11.3 ml 20% sucrose, 1 ml 1 M 

Tris-HCl pH 6.8, 2.5 ml Protogel, 150 µl 10% SDS, 25 µl TEMED, 40 µl 10% APS. 

The amount of the samples was adjusted to load 2.5 µg of total protein per well with 

sample buffer mix (0.1% bromophenol blue, 5 mM EDTA, 200 mM Tris pH 8.8, 1 M 
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sucrose, 25% of 10% SDS, 0.015% 1 M DTT). The gel was run in running buffer (6 g/L 

Tris, 28.8 g/L glycine, 10 ml 10% SDS) at 50 mA for about 2.5 h. The nitrocellulose 

membrane was blotted in Trans-Blot® SD semi-dry electrophoretic transfer cell 

(BioRad) and run at 200 mA for 2 h with electroblotting buffer (25 mM Tris, 150 mM 

glycine, 10% (v/v) methanol). After blotting, the membrane was stained with Ponceau 

solution (0.1% Ponceau S in 5% acetic acid). After one minute, the Ponceau solution 

was poured off and the membrane rinsed with tap water. The protein bands were visible 

after some washings it was determined the quantity and the quality of the protein 

samples loading. The membrane was further washed with PBS-T (Phosphate Buffered 

Saline with Tween: 8.7 g/L NaCl, 2.25 g/L Na2HPO4·2H2O, 0.2 g/L KH2PO4; pH 7.4 

supplemented with 1 ml Tween-20). The blocking solution (1% BSA and 5% milk in 

PBS) was incubated for 1 h at RT on a rocker. The membrane was washed several times 

with PBS-T and incubated with the primary antibody. To detect p24, 1:500 polyclonal 

sheep anti-p24 (Aalto BioReagents, Dublin, Ireland) was used and, to detect RFP, 1:500 

monoclonal mouse anti-DsRed (Becton Dickinson, Franklin Lakes, NJ, USA) and 1:500 

polyclonal rabbit anti-RFP (Biozol Diagnostica Vertrieb GmbH, Eching, Germany). 

The antibodies were diluted in 1% BSA, 0.02% NaN3 in PBS and incubated with the 

membrane O/N at 4ºC. The membrane was washed and the diluted antibodies were kept 

at 4ºC. As secondary antibody, 1:20,000 donkey anti-sheep-HPO (Horseradish 

Peroxidase) (Sigma-Aldrich-Aldrich Co.) was used to detect anti-p24, and 1:20,000 

goat anti-mouse-HPO (Sigma-Aldrich) and 1:20,000 goat anti-rabbit-HPO (Sigma-

Aldrich) to detect anti-RFP. The incubation was for 1 h at RT on a rocker. The 

membrane was washed several times with PBS-T and developed. To develop, two ECL 

solutions were prepared. Solution A contains 5 ml 100 mM Tris-HCl pH 8.5, 50 µl of 

250 mM Luminol and 25 µl p-Coumaric acid. Solution B is 5 ml 100 mM Tris-HCl pH 

8.5 and 3 µl 30% H2O2. The two solutions were mixed and placed on the membrane for 

1 min. The solution was discarded and the excess of solution was absorbed with 

absorbing paper. The membrane was then placed on transparent film, wrapped and 

placed on a film cassette. An Amersham Bioscience ECL film was inserted and the 

cassette was closed to expose for the appropriate time, usually for 1, 5 and 30 min. The 

film was developed with developer solution, fixed, rinsed with tap water and air dried. 
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VIII.3.2 From stable transformed plants 
 

In this case 15% separating acrylamide gels were prepared. For a big gel (30 wells): 

7.5 ml dH2O, 7.5 ml of separating buffer (1.5 M Tris-HCl pH 8.8 and 0.4% SDS), 15 ml 

separating acrylamide (30% w/v acrylamide, 0.15% w/v bis-acrylamide), 15 µl 

TEMED, 150 µl 10% APS. The 4.5% stacking gel was prepared with 9 ml water, 3.75 

ml stacking buffer (0.5 M Tris-HCl pH 6.8 and 0.4% SDS), 2.25 ml stacking acrylamide 

(30% w/v acrylamide, 0.8% w/v bis-acrylamide), 15 µl TEMED, 45 µl 10% APS. The 

gel was run in running buffer (3 g/L Tris, 14.4 g/L glycine, 1 g SDS) at 35 mA for about 

5 h or at 10 mA at 4ºC O/N. The polyvinylidene difluoride (PVDF) membrane was 

blotted in Trans-Blot® cell electrophoretic transfer system (BioRad) and run at 180 mA 

60 V max at 4ºC O/N or at 400 mA 100 V max at 4ºC for 4 hours with electroblotting 

buffer (25 mM Tris, 150 mM glycine, 10% (v/v) methanol). After blotting, the 

membrane was stained with Ponceau solution (5 mg/ml Ponceau S in 5% trichloroacetic 

acid (TCA)). After twenty minutes, the Ponceau solution was poured off and the 

membrane rinsed with tap water. The incubation with the antibodies was carried out as 

described before. To develop, West-pico supersignal kit (Pierce, Pero, Italy) was used 

following the manufacturer instructions. The same amount of the two solutions were 

mixed and incubated with the membrane for 5 minutes. The solution was discarded as 

before and the membrane was then placed on transparent film, wrapped and placed on a 

film cassette. A Xar film was inserted (Kodak) and the cassette was closed to expose for 

the appropriate time, usually for 1, 5 or 30 min. The film was developed with the 

developer solution, fixed, rinsed with tap water and air dried.  

 

VIII.4 Staining of protein gels and membranes 

VIII.4.1 Coomassie brilliant blue staining 
 

Proteins separated on SDS-PAGE gels were visualized by Coomassie brilliant blue 

staining. Proteins were detected after incubating the gel or the PVDF membrane for 30 

min in Coomassie staining solution (Coomassie brillant blue G-250 0.25% (w/v), 

methanol 50% (v/v), glacial acetic acid 9% (v/v)) at RT with agitation. The staining was 

removed with destaining solution (30% (v/v) isopropanol and 7% acetic acid) until the 

protein bands were clearly visible. The gel or the membrane was air dried. 
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VIII.4.2 Ponceau S staining 
 

To ascertain the transfer of the proteins was correct, after the blotting the membrane 

was incubated in Ponceau S solution (0.1% Ponceau S in 5% acetic acid or 5 mg/ml 

Ponceau S in 5% TCA). The membrane was incubated for one minute when the solution 

was in acetic acid and for 20 minutes when was in TCA. The Ponceau solution was 

poured back and the membrane was rinsed with tap water. After the bands could be 

visualized, the quality of the transfer was evaluated. 

 

VIII.5 Vacuole isolation 
 

Tobacco protoplasts were transformed and about 20 h after electroporation, the 

protoplasts were centrifuged at RT at 85 x g without break. The pelleted death cells 

were removed with a fine Pasteur pipette and the floating living protoplasts were 

washed and pelleted in 50 ml of 250 mM NaCl. The supernatant was discarded and the 

pellet kept on ice. 5 ml of preheated at 42ºC lysis medium (0.2 M mannitol, 10% Ficoll-

400, 20 mM EDTA, 2 mM DTT, 5 mM HEPES, 10 μg/ml neutral red, 150 μg/ml BSA, 

pH 8.0) was added and mixed gently with the pipette. The solution was incubated at 

42ºC for 1 min. The vacuole buffer (0.6 M betaine, 10 mM HEPES, 150 μg/ml BSA, 

0.1 μg/ml pepstatin; pH 7.5) was mixed with lysis medium at a ratio of 1:1. 3 ml of the 

1:1 lysis medium /vacuole buffer was slowly layered on the sample and 1 ml of vacuole 

buffer was added on top. The mixture was centrifuged at 3000 x g for 15 min at 4ºC 

without break and the vacuole layer could be seen in red due to the neutral red dye. The 

vacuoles were removed by “hoovering” and placed on ice. At this moment a sample was 

be taken and observed with the CLSM. The rest of the sample was sonicated for 5 

seconds and centrifuged at 1500 x g for 3 min to pellet the vacuoles. 100 μl of protein 

sample buffer was added to 100 μl of sample and the tubes were frozen at -80ºC. 

 

VIII.6 Radioactive labelling and immunoprecipitation 
 

Labelling was performed at 25°C in the dark using 100 µCi/ml of Pro-Mix (a mixture 

of 35S-Met and 35S-Cys; Amersham Bioscience Biosciences) in the presence or absence 

of 150 µg/ml BSA. The chase was performed by adding unlabelled Methionine and 

Cysteine to a final concentration of 10 mM and 5 mM respectively. The samples were 



                                                                                                                     Materials and methods 

 166

washed with 3 volumes of W5 buffer and centrifuged for 10 min at 60 x g. The 

supernatant was labelled as “medium sample” and the pellet as “cell sample”.  

The “cell samples” were homogenized by adding 2 volumes of ice-cold homogenation 

buffer (150 mM Tris-HCl pH 7.5, 150 mM NaCl, 1.5 mM EDTA, 1.5% (w/v) Triton X-

100) supplemented just before use with Complete Protease Inhibitor Cocktail 

(Boehringer). After vortexing, the samples were centrifuged at 11,700 x g for 5 min at 

4°C. The supernatant was washed with 1 ml of NET-gel buffer (50 mM Tris-HCl pH 

7.5, 150 mM NaCl, 1 mM EDTA, 0.1% Nonidet P-40, 0.25% gelatin, 0.02% sodium 

azide) and centrifuged at 11,700 x g for 5 min at 4°C. The supernatant was transferred 

into a new tube. 

The “medium samples” were centrifuged at 11,700 x g for 5 min at 4°C. 850 µl were 

transferred into a new tube and 150 µl of supplement buffer (2% gelatin, 120 µl of 1 M 

Tris-HCl pH 7.6, 24 µl 5 M NaCl, 2.4 µl 0.5 M EDTA, 12 µl Triton X-100 and 48 µl of 

25X Complete Protease Inhibitor Cocktail) were added to a final volume of 1200 µl. 

After vortex, the samples were centrifuged at 11,700 x g for 5 min at 4°C and the 

supernatant was transferred into a clean tube.  

The last supernatants from both, cell and medium samples, were subjected to 

immunoprecipitation using 1:500 rabbit polyclonal anti-p24 (ARP432, Medical 

Research Council AIDS Directed Programme). The samples were incubated at 4°C for 

1.5 h in rotation. 100 µl of Protein A-Sepharose (GE healthcare, Milan, Italy) were 

added and incubated for 2 h at 4°C rotating. The beads were pelleted by centrifugation 

at 11,700 x g for 1 min at 4°C and washed 3 times with NET-gel buffer. An equal 

volume of 2X SDS-PAGE loading buffer (40 mM Tris-HCl pH 8.6, 2% SDS, 0.66% β-

mercaptoethanol, 20% glycerol, 0.03% Bromophenol blue) was added and the samples 

were boiled at 95°C for 5 min. The samples were loaded on a 15% SDS-PAGE using 

Rainbow 14C-methylated proteins (Sigma-Aldrich-Aldrich Co.) as molecular mass 

markers. After electrophoresis, the gel was fixed with 30% isopropanol and 7% of 

acetic acid and washed 3 times with dimethyl sulfoxide (DMSO) (Mallinckrodt Baker, 

Milan, Italy). Then, the gel was treated with 2,5-diphenyloxazole (PPO) (Merck) 

dissolved in DMSO for 2 h with agitation and washed 3 times with water. The gel was 

dried on a filter paper and Saran wrap paper for 2 h at 70°C. After removing the Saran 

wrap paper, the dried gel was exposed with a radiography Xar film (Kodak) in an 

appropriate cassette and stored at -80°C until developed.  
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VIII.7 Purification of the recombinant p24 protein 
 

Five hundred mg from leaves of transgenic plants were homogenized as described 

before but in this case the ratio of buffer/weight was 6:1. The protein concentration was 

determined and 900 µg were used for the experiment. The different samples were 

adjusted to have 900 µg of total soluble protein (TSP) in 300 µl of final volume. To 

immunoprecipitate the different fusion proteins, 700 µl of Net-gel buffer were added 

and in the samples with the zein fusions, the Net-gel buffer contained 8% β-ME. Then 

the antibody to immunoprecipitate one of the proteins from the fusion was added. When 

the p24 was the protein to be immunoprecipitated, 1:500 of rabbit anti-p24 (ARP432) 

was used. To immunoprecipitate zein and tail-anchor, 1:200 polyclonal rabbit anti-zein 

(Bellucci et al. 2000) and 1:300 monoclonal mouse anti-op3 (Adamus et al. 1991) were 

used. The mixtures were incubated at 4ºC for 2 h in agitation. 100 µl of protein A 

sepharose for rabbit antibodies or 30 µl of protein G sepharose (Pierce) for mouse 

antibodies were added and incubated for 1.5 h as before. The samples were washed 

three times with Net-gel buffer and one time with PBS. The beads were resuspended in 

294 µl of PBS and 6 µl 10% Triton and separated into treated and non-treated samples. 

4 µl (4 units) of thrombin (Amersham Bioscience) were added to the samples labelled 

as “treated” and 4 µl of PBS to the “non-treated” and incubated at 22ºC O/N in agitation 

(this corresponds to 8.8 units of thrombin per mg of protein). The day after 110 µl were 

taken to separate the resin and the supernatant by centrifuging at 11,700 x g for 2 min. 

110 µl of the supernatant were labelled as “medium sample” and mixed wit 55 µl of 3X 

denaturation buffer. The “resin sample” was resuspended in 20 µl of PBS and mixed 

with 25 µl of 3X denaturation buffer. The samples were boiled for 5 min and loaded in a 

15% SDS-PAGE. The Western blot was performed as described before.  

 

VIII.8 Confocal microscopy 
 

Cells were observed under a Zeiss Axiovert LSM510 Meta microscope using the 

Plan-Neofluar 25X/0.8 corr DIC and the C-Apochromat 63x/1.2 W corr water 

immersion objectives. Special settings were designed for observing single-, double- and 

triple- expression with different XFP-tagged constructs. Fluorescence was detected by 

the Metadetector using the main beam splitters HFT 405/514, HFT 458/514 and HFT 

488/543. Fluorophores were excited by line switching in the multi-tracking mode of the 
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microscope. The GFP was excited at 488 nm and emission at 496-518 nm and YFP by 

excitation at 514 nm and emission at 550-571 nm, both with the Argon laser. The RFP 

was excited with the HeNe (helium-neon) laser at 543 nm and emission at 603-646 nm. 

The double detection of GFP/RFP was performed at excitation 488/543 nm and 

emission at 496-529 nm and 593-646 nm whereas the double detection of YFP/RFP was 

performed at excitation 514/543 and emission at 530-600 nm and 560-615 nm. Pinholes 

were adjusted to 1 Airy Unit for each wavelength. Images were post-processed using the 

Zeiss LSM Image Browser (Version 3.5.0.376). 

 

VIII.9 Electron microscopy 
 

Small pieces of young leaves were fixed in 1.6% (w/v) paraformaldehyde mixed with 

1.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer pH 6.9 for 1 h at RT. After 

washing with 0.1 M phosphate buffer and double-distilled water, the samples were 

incubated with 2% uranyl acetate for 30 min at RT followed by 4 washings with double-

distilled water. The samples were dehydrated in ethanol and embedded overnight in LR 

White resin at 60ºC. Ultrathin sections were cut using a Leica Microsystems Ultracut 

UCT (Leica Microsystems Nussloch GmbH, Nussloch, Germany), mounted on 300-

mesh nickel grids and immunogold labeled. Grids were floated on drops 3% bovine 

serum albumin (BSA) in PBS for 15 min. They were then incubated with anti-zein 

antiserum (1:200 dilution) or anti-op3 antiserum (1:10 dilution) in 1% BSA in PBS for 

1 h at RT. Controls were incubated following the same protocol. After washing with 1% 

BSA in PBS, the sections were incubated in the same buffer with goat anti-rabbit 

secondary antibody for anti-zein and with goat anti-mouse secondary antibody for anti-

op3 (1:50 dilution) conjugated with 15 nm gold particles (BBInternational, Cardiff, 

UK). The grids were washed in drops of 1% BSA in PBS, and double-distilled water, 

poststained in 3% uranyl acetate in water, and examined under an electron microscope 

(EM CM10; Philips, Eindhoven, The Netherlands). 

 
IX Bioinformatic tools 
IX.1 Primer design 
 

The different primers were designed using Primer Designer (version 2.0, Scientific 

and Educational software, 1990-91). This software permits to design oligonucleotides to 

amplify specific DNA fragments by PCR. 
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IX.2 GentLe and VectorNti 
 

Before starting any DNA cloning, the data sequences of interest were first introduced 

into the Gentle Cloning Program (Magnus Manske, V 1.8.4, 2003) and Vector NTI 

(Invitrogen) in order to create, virtually, all the DNA constructs. These programs 

allowed to double check if the expected bands of the subclonings were correct when 

performing the different experiments on the bench (PCR, digestions, ligations, etc.). 

Both programs are used for DNA and amino acid editing, database management, 

plasmid maps, restriction analysis and ligation reactions, DNA alignments, sequencer 

data import, calculators, gel image display, PCR and other features.  

 

IX.3 SignalP 
 

This program predicts the presence and location of signal peptide cleavage sites in 

amino acid sequences from different organisms. The method incorporates a prediction 

of cleavage sites and a signal peptide/non-signal peptide prediction based on a 

combination of several artificial neural networks and hidden Markov models.  

The hidden Markov model (HMM) calculates the probability of whether the submitted 

sequence contains a signal peptide or not. The eukaryotic HMM model also reports the 

probability of a signal anchor, previously named uncleaved signal peptides. It contains 

submodels for the N-terminal part (n-region) of the signal peptide, the hydrophobic 

region (h-region) and the region around the cleavage site (c-region). Furthermore, when 

a signal peptide is found, the cleavage site is assigned by a probability score together 

with scores for the three regions (Bendtsen et al. 2004).  
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List of primers used for the different PCR  
 

 

# 

 

Primer 

 

Primer sequence in 5’ – 3’ orientation 

Site 

removed 

Site introduced 

1 RFP1 TTGCTAGCGCCATGGCCTCCTCC HindIII NheI/NcoI 

2 RFP2 CCCTGCAAGACGGCGAGTTCATCT PstI - 

3 RevRFP2 TCGCCGTCTTGCAGGG PstI - 

4 RevRFP AACTGCAGTTAGTCGACCCGGGT  - PstI/SalI 

5 NewTM CAAGCGCGCTTGCGGGGCTGGTCCTCAT NheI - 

6 M13 GTAAAACGACGGCCAGTG - - 

7 NewP1P24 GTCGACgctagcGCCCCTATAGTGCAGAACAT XhoI SalI, NheI 

8 P2P24 GCTGAATGGGATAGAGTGCATCCAGTTCATG PstI, SphI - 

9 RevP2P24 CATGAACTGGATG-CACTCTATCCCATTCAGC PstI, SphI - 

10 P3P24 AGCAGGCTTCACAGG HindIII - 

11 RevP3P24 CCTGTGAAGCCTGCT HindIII - 

12 P4P24 CCATGGCTCCTCTTGGAACAAGCAAAACTCTTGCCTTATG EcoRI NcoI, thrombin 

13 P7P24 CAATATAGCCCTACCAGCATTCTGGAC Point 

mutation 

 

14 Rev2P7P24 CTTAATGCTGGTAGGGCTATACATTCTTACT Point 

mutation 

 

15 P5P24 CAACTCGAGtcttgttccaagaggACCTA NheI XhoI, thrombin 

16 RevP5P24 CAAGTCGACCCCATGGCTCCTCTTG - SalI 

17 Z1 CAAGGATCCgtttgcatttcaccagtttactactacattaaaATGAGGGTGTT

GCTCGT 

BamHI 

internal 

BamHI, 5’UTR 

tob. chit. 

18 RevZ1 CAACCATGGGCTGGCACGGGCTT PstI NcoI 

19 G3F CAACCATGGCTGGAGGTGGGGGAT BamHI NcoI 

20 RevG3 CAAGTCGACTGAGCCACCTCCG - SalI 

21 NewP5P24 CAACTCGAGcttgttccaagaggACCTA NheI XhoI, thrombin 

22 RevP6P24 CAACTGCAGttaCAAAACTCTTGCCTTATG Thrombin Stop, PstI 

23 Z3 CAAGTCGACGGCGGCTGCGG Signal seq 

zein 

SalI 

24 RevZ3 CAACTGCAGttaCTGGCACGGGCTT - Stop, PstI 

25 Lp24F CAAGGATCCCATGCCTATAGTGCAGAACATC NheI, SalI BamHI 

26 Lp24Rev CAAGTCGACTCCTCTTGGAACAAGC NcoI SalI 

27 M13Rev CAGGAAACAGCTATGACC - - 

28 NeweGFPF CAAGCTAGCCCATGGTGAGCAAGG  NheI 

29 eGFPRev CAAGTCGACCCCTTGTACAGCTCGTCCA XbaI SalI 

30 Forp24RFPcyt CAAGGATCCATGCCTATAGTGCAGAACATCCA NheI BamHI, ATG 

31 NewRevp24cyt CAACTGCAGTTAAGCATAATCAGGAACATCATATGGATAGC

CG 

SalI PstI, stop 

32 ForRFPp24cyt CAAGGATCCACCATGGCCTCCTCC NheI BamHI, ATG 

33 RevRFPp24cyt CAACTGCAGTTATCCTCTTGGAACAAGC SalI PstI, stop 

34 Revp24SP    

35 RevRFPSP    

36 GFPTMF CAAAGATCTATGGTGAGCAAGGGC NcoI BglII 

37 GFPTMRev CAAGCATGCTTACTTGTACAGCTCGTCC XbaI SphI 
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HIV-1 p24 sequence: 
 
 

VCISPVYYYIKMRLCKFTALSSLLFSLLLLSASAPIVQNIQGQMVHQAISPRTLNAWVKVVEEK
AFSPEVIPMFSALSEGATPQDLNTMLNTVGGHQAAMQMLKETINEEAAEWDRVHPVHAGPIAPG
QMREPRGSDIAGTTSTLQEQIGWMTNNPPIPVGEIYKRWIILGLNKIVRMYSPTSILDIRQGPK
EPFRDYVDRFYKTLRAEQASQEVKNWMTETLLVQNANPDCKTILKALGPAATLEEMMTACQGVG
GPGHKARVLLVPR 
 
 
 
mRFP sequence: 
 
MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQ
FQYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTN
FPSDGPVMQKKTMGWEASTERMYPEDGALKGEIKMRLKLKDGGHYDAEVKTTYMAKKPVQLPGA
YKTDIKLDITSHNEDYTIVEQYERAEGRHSTGAPG 
 
 
eGFP sequence: 
 
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTT
LTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKG
IDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDG
PVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGST 
 
 
N-terminal γ-zein domain sequence in zein-p24 construct: 
 
 
GSVCISPVYYYIKMRVLLVALALLALAASATSTHTSGGCGCQPPPPVHLPPPVHLPPPVHLPPP
VHLPPPVHLPPPVHLPPPVHVPPPVHLPPPPCHYPTQPPRPQPHPQPHPCPCQQPHPSPCQPMA
GGGGSGGGGSGGGGSVELVPRG 
 
 
 
 
N-terminal γ-zein domain in p24-zein construct: 
 
 
 
LVPRGAMAGGGGSGGGGSGGGGSVDGGCGCQPPPPVHLPPPVHLPPPVHLPPPVHLPPPVHLPP
PVHLPPPVHVPPPVHLPPPPCHYPTQPPRPQPHPQPHPCPCQQPHPSPCQ- 
 
 
Cyt b5 tail anhor in p24-TA construct: 
 
 
 
GAGSGGPMETLITTVDSNSSWWTNWVIPAISALIVALMYRLYMADDSRMNGTEGPNFYVPFSNK
TVD--- 

Tobacco chitinase signal sequence p24

Thrombin cleavage site

γ-zein signal sequence γ-zeinUTR tobacco chitinase 

Flexible linker  
Thrombin cleavage site

Thrombin cleavage site Flexible linker  
γ-zein

C-terminal region cyt b5 
Flexible linker  
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