
I N A U G U R A L – D I S S E R T A T I O N

zur

Erlangung der Doktorwürde

der

Naturwissenschaflich-Mathematischen

Gesamtfakultät

der

Ruprecht-Karls-Universität

Heidelberg

vorgelegt von

Cara Cocking, M.Sc.

aus New York
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Abstract
This doctoral thesis presents new solution strategies for facility location–network

design (FLND) problems. FLND is a combination of facility location and network
design: the overall goal is to improve clients’ access to facilities and the means of
reaching this goal include both building facilities (as in facility location) and building
travelable links (as in network design). We measure clients’ access to facilities by the
sum of the travel costs, and our objective is to minimize this sum. FLND problems have
facility location problems and network design problems, both of which are NP-hard,
as subproblems and are therefore themselves theoretically difficult problems.

We approach the search for optimal solutions from both above and below, con-
tributing techniques for finding good upper bounds as well as good lower bounds on
an optimal solution.

On the upper bound side, we present the first heuristics in the literature for this
problem. We have developed a variety of heuristics: simple greedy heuristics, a local
search heuristic, metaheuristics including simulated annealing and variable neighbor-
hood search, as well as a custom heuristic based on the problem-specific structure of
FLND. Our computational results compare the performance of these heuristics and
show that the basic variable neighborhood search performs the best, achieving a solu-
tion within 0.6% of optimality on average for our test cases.

On the lower bound side, we work with an existing IP formulation whose LP re-
laxation provides good lower bounds. We present a separation routine for a new class
of inequalities that further improve the lower bound, in some cases even obtaining the
optimal solution.

Putting all this together, we develop a branch-and-cut approach that uses heuris-
tic solutions as upper bounds, and cutting planes for increasing the lower bound at
each node of the problem tree, thus reducing the number of nodes needed to solve to
optimality.

We also present an alternate IP formulation that uses fewer variables than the one
accepted in the literature. This formulation allows some problems to be solved more
quickly, although its LP relaxation is not as tight.

To aid in the visualization of FLND problem instances and their solutions, we have
developed a piece of software, FLND Visualizer. Using this application one can create
and modify problem instances, solve using a variety of heuristic methods, and view the
solutions.

Finally, we consider a case study: improving access to health facilities in the Nouna
health district of Burkina Faso. We demonstrate the solution techniques developed
here on this real-world problem and show the remarkable improvements in accessibility
that are possible.



Zusammenfassung
In der vorliegenden Arbeit leisten wir neue Lösungsmethoden für das Facility Loca-

tion–Network Design (FLND) Problem. Dieses Problem ist eine Kombination aus
Facility Location und Network Design: das Ziel ist es, den Zugang von Kunden zu
gewissen Einrichtungen zu verbessern, sowohl durch das Bauen von Einrichtungen (wie
im Facility Location Problem) als auch von Kanten (wie im Network Design Problem).
Die Güte des Zugangs zu Einrichtungen entspricht der Summe der Reisekosten. Diese
Summe gilt es zu minimieren. FLND Probleme enthalten Facility Location Probleme
und Network Design Probleme, beide NP-hard, als Subprobleme und sind daher selbst
theoretisch schwere Probleme.

Wir leisten Beiträge zum Berechnen von guten oberen und unteren Schranken für
optimale Lösungen.

Was obere Schranken betrifft, präsentieren wir die ersten Heuristiken überhaupt
für dieses Problem. Wir haben verschiedene Heuristiken entwickelt: einfache Greedy
Heuristiken, eine Local Search Heuristik, Metaheuristiken inklusive Simulated Anneal-
ing und Variable Neighborhood Search und auch eine Heuristik, die auf der problem-
spezifischen Struktur von FLND basiert. Rechenexperimente zeigen, dass die Basic
Variable Neighborhood Search Heuristik die Beste ist, mit einer durchschnittlichen
Lösungsqualität, die innerhalb von 0.6% von der optimalen Lösung liegt.

Was untere Schranken betrifft, gibt es schon eine IP Formulierung, deren LP Relaxie-
rung gute Resultate liefert. Wir präsentieren aber Methoden für die Separierung von
einer neue Klasse von Ungleichungen, die die unteren Schranken verbessern, manchmal
sogar die optimale Lösung im Wurzelknoten finden.

Zudem erweitern wir eine branch-and-cut Methode, die Heuristiken für obere Schran-
ken und Schnittebene für bessere untere Schranken an jedem Knoten des Problembaums
verwendet. Die Anzahl der branch-and-cut Knoten wird dadurch stark reduziert.

Wir präsentieren auch eine neue IP Formulierung, die weniger Variablen hat. Diese
Formulierung ermöglicht es, dass einige Probleme schneller gelöst werden können, ob-
wohl die LP Relaxierung nicht so stark ist.

Um FLND Probleme und Lösungen visualisieren zu können, haben wir die Software
FLND Visualizer entwickelt. Mit dieser Software kann man Probleme entwerfen und
abändern, Heuristiken aufrufen, und Lösungen ansehen.

Schließlich machen wir eine Fallstudie: Das Ziel ist die Verbesserung des Zugangs
zu Gesundheitseinrichtungen in Nouna, Burkina Faso. Wir verwenden die neuentwi-
ckelten Lösungsmethoden anhand dieses anwendungsnahen Problems und zeigen, dass
bemerkenswerte Verbesserungen des Zugangs möglich sind.
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Chapter 1

Introduction

The impetus for this work came from the Nouna health district in Burkina Faso, Africa,
population 275,000. In this district, there are no paved roads and people get around by
foot, bicycle, or donkey. Medical facilities are limited, but there are 25 health centers
scattered throughout the district that provide basic services. Some people prefer to
see their village healer, whether out of superstition or convenience, rather than make
the journey to a health center where they can be treated by trained medical personnel.
During the rainy season, many roads become unusable and bicycle transport impossible.
For those who decide to visit a health center in times of sickness, the route may be as
long as 45 kilometers and involve walking in the mud and pouring rain for hours before
the destination is reached. To be sure, the time and effort involved in simply getting
to a health center is a deterrent for many in Nouna health district to seeking proper
medical care.

The question that arises from this real scenario is, how can we make the health
facilities more easily accessible to the people of Nouna health district? This doctoral
thesis provides an answer to the question, in that it presents a variety of ways for
solving the underlying mathematical problem. However, the thesis is more than that:
the underlying problem is a general one with many and varied applications, besides
being theoretically interesting as well, and the results presented here are not tied to
any specific application context. The problem we are discussing is that of facility
location–network design.

1.1 Problems and Methods

Facility location–network design problems will be discussed in detail in Chapter 3, but
we explain the key concepts here briefly, along with typical solution approaches, in
order to outline the context in which the contributions of this thesis are made.

1.1.1 Combinatorial Optimization

All the work contained herein falls under the more general label of combinatorial op-
timization. This field concerns itself with solving optimization problems over discrete
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2 CHAPTER 1. INTRODUCTION

structures, most often graphs. The solution techniques used come from both mathe-
matics and computer science and in the grander scheme, combinatorial optimization
as a discipline can be seen as lying at the fuzzy border between these two subjects.

For any given problem in combinatorial optimization, one of the first steps is usually
to try to come up with an integer programming (IP) formulation. This provides a
precise mathematical model of the problem, making it clear and well defined. The
solving of the integer program by an IP solver, commercial or otherwise, can then
provide a baseline for how difficult the problem is practically, what kinds of instances
may be difficult, what sizes of instances can be solved, etc. For many problems, an
IP solver cannot solve even moderately-sized instances in reasonable time or memory.
Thus, more efficient solution techniques must be utilized.

One approach is to create heuristics, which may find a “good” solution to the
problem, but often with no guarantee as to how close to optimal the produced solution
is. In practice, many heuristics may get fairly close to optimal, as seen by comparing
results on problem instances for which the optimal solution is known. If a guarantee
is important, one can attempt to develop a heuristic for which something about the
quality of the solutions produced can be proved, e. g., that any solution is no worse
than a given constant factor of the optimal.

In terms of a minimization problem, heuristics provide an upper bound on any
optimal solution. One can also approach the problem from the other side and try
to find a lower bound on an optimal solution. This may be done by working with a
relaxation of an IP formulation and adding cutting planes (inequalities that “cut” off
nonoptimal, fractional solutions), or using other methods to get closer to the optimal
solution.

Branch-and-bound is an exact solution technique that proceeds by creating a tree of
nodes. The original problem is at the root node and subproblems are created such that
if all the subproblems are solved, the original problem will be solved. Branch-and-cut
is a method that combines branch-and-bound and cutting planes, using cutting planes
at each node in the tree to try to reach an optimal solution with fewer subproblems.
All of these methods will be discussed in more detail in the next two chapters.

1.1.2 Facility Location–Network Design

As is suggested by the name, facility location–network design (FLND) combines facility
location and network design. Facility location deals with optimally locating facilities.
There are two main parties involved in any facility location problem: the facilities
themselves and the clients of the facilities. Typically we want the facilities to be
close to the clients, which can be defined in several ways. We may or may not have
other constraints, such as a limitation on the number of facilities to build or maximum
capacities on each facility.

Because we deal only with discrete facility location here, the problems are rep-
resented using graphs. The nodes of the graph are the union of the clients and the
possible facility locations, and edges represent the ability to travel from one node to
another and are the means by which clients reach facilities. A node may represent both
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a client and a potential facility location.

In network design, the basic problem is to optimally construct a network that
enables some kind of flow, and possibly that satisfies some additional constraints. The
nodes are given and the network is constructed from a set of potential edges, or links.
In our case, the flow involved is that between clients and facilities.

The objective in any of these problems, or how we measure optimality, can vary.
A common objective in facility location is to minimize the total travel costs, and this
is the objective that we primarily consider in this thesis. In facility location–network
design, the objective may be met using the means of both facility location and network
design, i. e., by building both facilities and links.

1.2 Outline and Contributions

The remainder of this thesis is structured as follows: In Chapter 2 we review some facts
and methods from graph theory, complexity theory, linear and integer programming, as
well as the branch-and-cut approach. These concepts will be helpful in understanding
the rest of the thesis.

In Chapter 3 we introduce and precisely define the facility location–network design
problems that we consider, including more detailed presentations of the two underlying
subfields of facility location and network design. We describe an IP formulation for
FLND that can be found in the literature, and present an alternate formulation of our
own that uses fewer variables.

Chapter 4 contains all of the heuristic methods we have designed, which produce
upper bounds on the solutions of FLND problems. To our knowledge, there are no
heuristics in the literature specifically for FLND problems; these are all new contribu-
tions. The heuristics we have developed include simple greedy heuristics, a local search
heuristic, adaptation of the metaheuristics simulated annealing and variable neighbor-
hood search, as well as a custom heuristic based on the problem-specific structure of
FLND. For the heuristics that operate based on neighborhoods, we have developed
two different neighbor operators, which we also present. We give computational results
comparing the performance of the heuristics to each other as well as to known optimal
solution values.

To address the lower bounds, in Chapter 5 the focus is on improving the LP (linear
programming) relaxations of the two IP formulations given in Chapter 3. We con-
sider each formulation separately and develop additional valid inequalities and related
separation routines that improve the lower bounds as compared with solving the LP
relaxation without strengthening. Computational results showing the effectiveness of
the cuts are given, and the final lower bounds obtained from both formulations are
compared.

Chapter 6 considers exact approaches to solving FLND problems. We develop a
comprehensive branch-and-cut solver that uses heuristics from Chapter 4 to get good
upper bounds and separation routines from Chapter 5 that produce cutting planes,
allowing us to raise the local lower bound at each node of the problem tree. Computa-



4 CHAPTER 1. INTRODUCTION

tional results show how the number of nodes reduces when using our branch-and-cut
solver, as compared with the generic branch-and-cut that takes place when solving the
integer program with a commercial solver.

A special treat awaits in Chapter 7 where we examine a case study. One of the initial
stimuli for this line of research was the desire to improve access to health facilities in the
Nouna health district of Burkina Faso. Here we demonstrate our solution techniques
on this real-world problem and show the remarkable improvements in accessibility that
are possible.

Finally in Chapter 8 we present a sophisticated software application, FLND Visu-
alizer, that can be used to work visually with FLND problems. It allows the creation,
modification, and saving of problem instances; solving using various heuristics; and
viewing and saving of solutions.

The last chapter, Chapter 9, comprises a summary, conclusions, and discussion of
future research directions.

Appendix A details the characteristics of the test instances used throughout this
thesis.

Here we summarize the contributions of this doctoral thesis:

• A new IP formulation for FLND that uses fewer variables than the existing formu-
lation in the literature, plus a class of valid inequalities that greatly strengthens
its initially weak LP relaxation.

• An assortment of heuristics for FLND problems (the first in the literature), in-
cluding greedy, local search, simulated annealing, variable neighborhood search,
and custom heuristics.

• A valid class of inequalities and separation routine, to be used with the standard
LP relaxation, that produces better lower bounds for FLND problems than any
other methods in the literature.

• A branch-and-cut solver for FLND (the first in the literature), incorporating the
new upper and lower bound methods developed, that can solve problems using
fewer nodes than commercial IP solvers.

• A sophisticated software application for working visually with FLND problems.
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Chapter 2

Preliminaries and Terminology

In this chapter we review some concepts from graph theory, complexity theory, and
linear and integer programming, as well as the branch-and-cut approach. These con-
cepts constitute a body of knowledge that helps in understanding the rest of the thesis
and are used throughout. Concepts with a more limited scope will be defined later, as
needed.

2.1 Sets and Graphs

A set is a collection of distinct elements. The standard operations set union, set
intersection, and set difference ({a, b} \ {a, c} = {b}) apply.

If set A is a subset of set B, we write A ⊆ B. The empty set, denoted ∅, is a
subset of every set. The power set of a set, denoted P(A), is the set of all subsets.
The number of elements in a set A is indicated by |A|, and we have |P(A)| = 2|A|.

An undirected graph G = (V, E) consists of a nonempty set V of nodes and a
set E of edges. The nodes of G may be denoted V (G) and the edges of G may be
denoted E(G). An edge of an undirected graph is an unordered pair of distinct nodes,
each of which is called an endnode. We denote an edge with endnodes u and v by uv,
and have uv = vu. If there is an edge between two nodes u and v, those nodes are said
to be adjacent and are called neighbors. Note that we disallow parallel edges, i. e.,
there can be at most one edge with endnodes u and v. When discussing graphs in the
scope of this thesis, we are always referring to undirected graphs (no parallel edges, no
loops), unless otherwise stated.

A path in a graph is a set of edges {v0v1, v1v2, ...vn−1vn} where all of the nodes, vi,
along the path are pairwise distinct. In a graph with edge weights duv associated with
every edge uv ∈ E, the length of a path is the sum of the edge weights on the edges
of the path,

n−1
∑

i=0

dvivi+1
.

7
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A graph is said to be connected if for every pair of nodes u and v, there is a path
from u to v. A complete graph is one such that every pair of nodes is an edge of the
graph.

2.2 Complexity Theory

In this section we introduce concepts that enable us to discuss the relative efficiency of
algorithms as well as to get an idea of how difficult a problem might be in practice.

2.2.1 Algorithms

Though space complexity may also come into play, we are primarily interested in time
complexity. The time complexity of an algorithm is a function on the size of the input
to an algorithm giving the time requirements of the algorithm. The time requirements
are expressed by the number of basic steps to be performed, such as on a modern
computer. Time complexity is not concerned with how long an algorithm takes to run,
but rather it captures the notion of how the running time grows as the size of the input
grows. For example, if the function n2 describes the time complexity of a particular
algorithm, then doubling the size of the input increases the run time by a factor of 4.

We generally use big-oh notation to describe time complexity and this is a worst-
case measure. A function f(n) is O(g(n)) whenever there exists a constant c such that
f(n) ≤ c∗g(n) for all values of n ≥ 0. Given this definition, an algorithm that is O(n2)
is also O(n3), but we use the smallest time complexity function g(n) that we can in
describing time complexity.

A polynomial time algorithm is one whose time complexity function can be
bounded by a polynomial, e. g., O(n), O(nlogn), or O(n5). Algorithms of this sort
are generally considered efficient. Any algorithm whose time complexity cannot be
bounded by a polynomial, e. g., O(2n), O(3n), or O(n!), is said to be an exponential
time algorithm and is considered inefficient. For small values of n, the difference
in actual running time between a polynomial time algorithm and an exponential time
algorithm may be negligible; but as n increases, the difference becomes huge, as in a
few minutes versus centuries, or even billions of years.

2.2.2 Problems

In complexity theory, classes of problems are based on decision problems. A decision
problem is one that has a yes or no answer. In this work we are interested in opti-
mization problems, but any optimization problem has an associated decision problem.
In general, for a cost minimization problem, we have the associated decision problem,
“Does there exist a solution with cost no more than B?”

The complexity class P contains those decision problems that can be solved in
polynomial time. For a problem Π, if there exists a polynomial time algorithm that
solves Π, then Π ∈ P. Problems in P are the “easier” problems.
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The complexity class NP requires more explanation. A decision problem is said to
be in NP if a yes instance can be verified in polynomial time. For example, consider
the decision problem version of the famous traveling salesman problem: given a set of
cities, distances between all the cities, and a bound B, is there a tour of length not
more than B? To prove that the answer is yes for a given problem instance, one could
produce a tour with length not more than B. Then to verify that this is a yes instance,
we need only examine the given tour and confirm that its length is not more than B,
which can easily be done in polynomial time.

Clearly, P ⊆ NP. It is not known, but is strongly suspected, that P 6= NP. If
this is the case, then some problems in NP are not in P, and these problems are the
“harder” problems. Stephen Cook, one of the pioneers of complexity theory, proved
in 1971 that the satisfiability problem is the “hardest” problem in NP [C71]. More
precisely, his result means that if the satisfiability problem can be solved in polynomial
time, so can every other problem in NP, and likewise, if some other problem in NP
cannot be solved in polynomial time, then neither can the satisfiability problem. In the
meantime, other problems have been shown to share this property with the satisfiability
problem, and these “hardest” problems in NP belong to the class of NP-complete
problems.

The term NP-hard is used to refer to the class of optimization problems whose
corresponding decision problem is NP-complete. These are problems for which there
is no known polynomial time algorithm and attempts at finding one would likely be
misplaced. These are difficult problems. The FLND problems studied in this thesis are
all NP-hard.

2.3 Linear and Integer Programming

Linear programming (LP) and integer programming (IP) are ways of formulating
optimization problems. A linear program can be written in the following form:

Minimize
∑

j

cjxj (2.1)

Subject to
∑

j

aijxj ≥ bi ∀i (2.2)

xj ≥ 0 ∀j (2.3)

The aij, bi, and cj are constants and the xj are variables over the real numbers.
The first line (2.1) is the objective function and specifies the linear function to be
minimized. The minimization (or more generally, optimization) takes place subject to a
set of constraints, expressed in the succeeding lines (2.2) and (2.3). When discussing
a constraint, or any inequality, we can refer to its parts as the left-hand side (LHS),
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which contains all the variables involved, and the right-hand side (RHS), which is
a constant.

In other notation, the constraints may be expressed Ax ≤ b where A is a matrix
and x and b are vectors, all with appropriate dimensions. Any vector x satisfying this
system of inequalities is a feasible solution. The goal is to find an optimal solution
according to the objective.

In a linear program, as well as in an integer program (sometimes called an integer
linear program), the objective function and all the constraints must be linear. The
variables in a linear program take on real-number values, possibly with upper and
lower bounds. If some or all of the variables should be restricted to integer values, then
we have an integer program, also known as a mixed integer program.

While the problem of integer programming is NP-hard and generally difficult to
solve, linear programming is solvable in polynomial time. Linear programs can be
solved efficiently in practice as well, using methods such as the simplex algorithm
[D51], which, ironically, despite its excellent performance in practice, has exponential
worst-case time complexity.

If we drop some constraints from a problem, we are relaxing it. Given an integer
program, if we relax the integrality constraints, we get an LP which is called the LP
relaxation of the IP. In a minimization problem, solving the LP relaxation gives us a
lower bound on the optimal solution value of the IP.

Commercial as well as free solvers for mathematical programming problems, in-
cluding LPs and IPs, exist. In this work, we employ the use of the commercial solver
CPLEX version 8.1, by ILOG [CPLEX].

2.4 Shortest Path Problems and Solutions

A subproblem that comes up frequently in this work is the shortest path problem.
Given a graph G = (V, E) with positive edge weights dij for each ij ∈ E and two nodes
s and t, the shortest path problem is to find the shortest path in G from s to t.
The single source shortest path problem takes a single node s ∈ V as input and
the goal is to find the shortest path from every node in G to s, or equivalently, from
s to every node in G. In an all pairs shortest path problem, the shortest paths
between all pairs of nodes in G are to be found. Shortest path problems belong to the
complexity class P and thus can be solved in polynomial time.

The shortest path problem can be formulated as an LP. Here, dij are the edge
weights and the variables xij take on the value 1 if edge ij is in the shortest path
and 0 otherwise. They can also be thought of as flow variables. Given that node s
is the initial node and t is the node to which we want to find the shortest path, we
can imagine one unit of flow leaving s and needing to find the shortest way to t. As
such, the shortest path problem may be structured as a minimum cost network flow
problem. The LP formulation follows:
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Minimize
∑

i

∑

j

dijxij (2.4)

Subject to
∑

j

xji −
∑

k

xik =











−1 i = s

1 i = t

0 otherwise

∀i (2.5)

xij ≥ 0 ∀i, j (2.6)

The objective (2.4) is to minimize the length of the path. Constraints (2.5) are the
“flow” constraints. For each node i, the difference between flow in and flow out should
be 0, unless i = s in which case there is one unit of outgoing flow, or i = t in which
case there is one unit of incoming flow. The xij variables were conceived of as binary
variables, but because the constraint matrix is totally unimodular, we are guaranteed
to have integer solutions even if we solve this as an LP instead of an IP, thus in (2.6)
we require only that the xij be greater than or equal to zero instead of integral.

Although not the most efficient way to solve the shortest path problem, this LP is
the basis for the integer programming formulations of FLND that we will present in
the next chapter.

Shortest path problems can be solved more efficiently with specialized algorithms
such as Dijkstra’s algorithm. Shown in Algorithm 2.1, Dijkstra solves the single
source shortest path problem from source node s on a graph G with the weight of each
edge ij ∈ E(G) given by the weight function d(i, j). As a notational aside, we may
leave off d as a parameter in calling Dijkstra when the weights are simply fixed travel
costs dij on each edge, and considered part of the graph.

The algorithm begins with the node s and branches out, ultimately forming a
shortest path tree rooted at s, i. e., a tree in which the unique path from any node
to s is the shortest path in G. The set S contains nodes already scanned and Q contains
nodes still to be scanned. Traditionally, Q is initialized with all the nodes in the graph,
but we add nodes only as we encounter them. This allows us to easily detect cases
where G is not connected, and we return this information as a boolean value. If G is
not connected, not every node will have a shortest path to s.

After the algorithm completes, the arrays track and len contain the shortest path
tree information. For a given node v, track [v] contains the next node in the path from
v to s and len[v] contains the length of the path from v to s.

Many of the FLND heuristics that we present in Chapter 4 use Dijkstra’s algorithm
as a subroutine.

2.5 Branch-and-Cut

Branch-and-cut is a method for solving combinatorial optimization problems that
combines branch-and-bound and cutting planes. In our discussion of these methods,
we assume a minimization problem.
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Algorithm 2.1 Dijkstra’s single source shortest path algorithm.

Dijkstra(G, d, s)

1 Initialize-Dijkstra(G, s)
2 S ← ∅
3 Q← {s}
4 while Q 6= ∅
5 do u← node in Q with smallest len[u]
6 Q← Q \ {u}
7 S ← S ∪ {u}
8 for each node nei /∈ S adjacent to u
9 do if len[nei ] > len[u] + d(u, nei)

10 then len[nei ]← len[u] + d(u, nei)
11 track [nei ]← u
12 Q← Q ∪ {nei}
13 return |S| == |V (G)|

Initialize-Dijkstra(G, s)

1 for each node v ∈ V (G)
2 do track [v]← v
3 len[v]←∞
4 len[s]← 0
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2.5.1 Branch-and-Bound

Branch-and-bound is an exact solution technique that proceeds by creating a tree of
nodes, called the branch-and-bound tree. The original problem is at the root node
and subproblems are created such that if all the subproblems are solved, the original
problem will be solved. During branching, subproblems are typically formed by fixing
variables. For example, if a binary variable x is the selected branching variable, then
two subproblems are created: one in which x is fixed to the value 0, and one in which
x is fixed to the value 1.

During the process, the best feasible solution found thus far is maintained, and this
provides a global upper bound on the problem. At each node, an attempt is made
to solve the subproblem, and if successful, may give a new global upper bound. In
case of success there is no need to continue branching on that node and we say the
subproblem is fathomed.

Another way to fathom a node is via lower bounds. At each node, lower bounds on
the subproblem are calculated by solving the LP relaxation, and these are local lower
bounds because they are only valid for the given node. If at some node, the local
lower bound is higher than the global upper bound, then we know that this branch
of the tree will not produce an optimal solution; the node is fathomed and we do not
need to pursue it any farther.

Finally, if we determine that there is no feasible solution at a given node, then the
node can be fathomed. If it is not possible to fathom a node, then we branch and
create subproblems.

When all open subproblems have been fathomed, the best feasible solution found
is optimal.

2.5.2 The Cutting Plane Method

To more precisely describe the cutting plane method, we first introduce some polyhedral
theory.

We denote the set of real numbers R, and R
n a vector space of dimension n with

components from R. The set of feasible solutions to a linear program {x ∈ R
n | Ax ≤ b}

forms a polyhedron. An inequality is valid with respect to polyhedron P if every
point in P satisfies the inequality. In general, for a point x /∈ P , a cutting plane is
an inequality that separates x from P . That is, the cutting plane, or cut for short, is
valid for P but violated by x.

Recall that a relaxation of a problem relaxes (or removes) some constraints, thus
creating a bigger solution space. The cutting plane method works as follows: Sup-
pose P is the polyhedron representing the convex hull of the feasible solution points of
a given combinatorial optimization problem Π that has been formulated as an integer
program. Relaxing the integer constraints produces the polyhedron Q. Now suppose
x∗ ∈ Q is the solution to the LP relaxation. If x∗ /∈ P then there exists a cut that
separates x∗ from P . A separation procedure searches for such a cut. When found,
this cut is added to the LP and it is solved again, producing a new x∗ whose objective
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function value (local lower bound if a branch-and-cut subproblem is being solved) has
hopefully increased, and the process is repeated.

The separation procedure is a very important piece of the cutting plane method
and finding good cuts (or any cuts at all) can be difficult and time-consuming. A
separation procedure that searches within a particular class of valid inequalities is a
separation procedure for that class. If the procedure always finds a violated inequality
if one exists, then it is called exact, otherwise it is called heuristic.

In Chapter 5 we discuss separation procedures used to improve the lower bound on
FLND problems.

2.5.3 Branch-and-Cut

Branch-and-cut is based on branch-and-bound, with the addition of the cutting plane
method at each node of the problem tree to increase the local lower bound of the
node, perhaps leading to the subproblem being fathomed. With the branch-and-cut
approach, fewer nodes need be explored than with branch-and-bound.

The commercial solver CPLEX uses branch-and-cut to solve IPs. The process
begins with a branch-and-bound tree, and includes various classes of cuts, which may
be turned on or off by the user, that are introduced at the nodes if CPLEX thinks
they might be helpful. CPLEX also provides facilities for programmers to write their
own problem-specific separation routines for generating cuts, and we make use of these
facilities in this work, as described in Chapter 5.

For further details on the topics covered in this chapter, see the references below.

Graph theory Diestel [D06]

Complexity theory Garey and Johnson [GJ79]

Linear programming Chvátal [C83]

Integer programming Wolsey [W98]

Algorithms Cormen, et al. [CLRS01]

Branch-and-cut Jünger, Reinelt, and Thienel [JRT95]



Chapter 3

Facility Location and Network
Design

We now describe facility location and network design individually, and then we define
facility location–network design (FLND) and give two IP formulations for FLND.

3.1 Facility Location

“Location, location, location.” This popular phrase in real estate emphasizes the most
important factor in the market value of a home. Everyone can appreciate the im-
portance of location, whether it’s the location of a home, office, store, warehouse, or
garbage dump. Location decisions arise frequently in both private and public sectors,
and the results of these decisions can have a large impact on whether the enterprise
succeeds or fails. As an aid to decision making, the field of facility location provides
tools and methods for finding locations that are optimal in the mathematical sense
with respect to quantifiable factors.

Modern discrete facility location began as a field in the 1960s [H64, H65, M64,
TB68]. The goal in a facility location problem is to find the optimal locations for
facilities, but little more can be said that is common to all facility location problems.
In the course of time, many variations in the problems have developed and the details
vary widely. We will discuss only those varieties that are most relevant to the work
presented here. For a more general overview of discrete facility location, see Daskin
[D95].

In addition to the facilities, the clients of the facilities make up an important part
of any problem. Usually we want the facilities to be close to the clients and we use
some quantification of “closeness” to weigh feasible solutions against one another. For
example, we might be interested in locating a hospital in a region. The hospital is the
facility and the people living in the towns in the region are the (prospective) clients of
the hospital. We could judge a potential hospital location by the sum of the distances
from the hospital to each town in the region. Clearly an optimal location is one with
minimum sum.

15
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When we represent these problems as a graph, the nodes make up the clients as well
as the potential facility locations, and the edges represent a connection between two
nodes and are often weighted with travel or delivery costs. The nodes may be weighted
with the demand that each represents, such as the population of a town.

In the ensuing subsections we discuss some facility location problems as character-
ized by their objectives.

3.1.1 Median and Fixed Charge Problems

Some of the earliest problems studied in facility location were median problems, also
known as minisum problems, in which the objective is the minimization of the sum
of the travel costs [H64, H65, M64]. In the classic p-median problem, the number of
facilities to locate, p, is given. The problem may be defined mathematically as follows:
We are given a set of clients I and a set of potential facility sites J , the demands at
each client ai, and distances dij between every client and facility. The sets I and J
may be disjoint, overlapping, or the same. The problem is to locate p facilities such
that the total demand-weighted travel cost is minimized. That is, find a set K ⊆ J ,
|K| = p, that minimizes the sum

∑

i∈I ai minj∈K dij.
Two notable points here are that (1) the distances between every pair of nodes

must be determined beforehand, and (2) each client is assigned to its nearest facility.
If a noncomplete graph is given, the distances can be calculated by finding the shortest
path between every pair of nodes. Assigning each client to its nearest facility is clearly
necessary in an optimal solution, and this is always possible because we are dealing
with uncapacitated facilities, i. e., there is no limit on how much demand a facility
can handle.

A standard IP formulation for the p-median problem is given below.

Minimize
∑

i∈I

∑

j∈J

aidijxij

Subject to
∑

j∈J

xij = 1 ∀i ∈ I (3.1)

xij ≤ zj ∀i ∈ I ∀j ∈ J (3.2)
∑

j∈J

zj = p (3.3)

xij , zj ∈ {0, 1} ∀i ∈ I ∀j ∈ J

The binary variables zj represent whether or not a facility is located at j and xij

whether client i is assigned to facility j. Constraints (3.1) assign each client to exactly
one facility, (3.2) ensure that a client is assigned only to an open facility, and (3.3)
opens exactly p facilities.
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The structure of the p-median problem implicitly assumes that the cost of building
a facility is the same at all sites. Fixed charge problems have the same goal, i.e.,
minimizing the total travel cost, but potential facilities j have fixed charges fj associ-
ated with them, and these costs can vary by location. The fixed facility construction
costs are added into the objective so that the goal is to minimize total costs. The
number of facilities built is determined endogenously by the problem.

A classic problem of this type is the uncapacitated facility location problem, also
known as the simple plant location problem. The objective is to minimize the sum
of the fixed costs and (demand-weighted) travel costs. To formulate this problem we
start with the p-median formulation, remove the constraint (3.3) limiting the number
of facilities to p, and replace the objective with

Minimize
∑

j∈J

fjzj +
∑

i∈I

∑

j∈J

aidijxij

3.1.2 Covering and Center Problems

An alternative to median problems that is used frequently in public facility location
is covering problems. In these problems, we introduce the notion of coverage and
say that a client is covered if it has a facility located within a given distance or travel
cost. We mention these problems because they are an important alternative to median
problems, but they are not the focus of this thesis.

In the set covering problem, the entire demand must be covered and the goal is
to minimize the number of facilities used in doing so. To formulate the problem, we
let Ni refer to the set of facility sites that would cover client i, so if D is the coverage
distance we are given, then Ni = {j | dij ≤ D}. Then using the same notation as in
the previous subsection, the IP can be written as follows:

Minimize
∑

j∈J

zj (3.4)

Subject to
∑

j∈Ni

zj ≥ 1 ∀i ∈ I (3.5)

zj ∈ {0, 1} ∀j ∈ J

The objective (3.4) is to minimize the number of facilities placed and constraints
(3.5) ensure that every client is covered.

The maximum covering problem includes a limit on the number of facilities to
locate and attempts to maximize demand coverage using the given number of facilities.
It can be formulated as follows:



18 CHAPTER 3. FACILITY LOCATION AND NETWORK DESIGN

Maximize
∑

i∈I

aiyi (3.6)

Subject to yi ≤
∑

j∈Ni

zj ∀i ∈ I (3.7)

∑

j∈J

zj = p (3.8)

yi, zj ∈ {0, 1} ∀i ∈ I ∀j ∈ J

We have introduced a new variable: yi takes on the value 1 if client i is covered
and 0 otherwise. The objective (3.6) is to maximize demand-weighted coverage, and
constraints (3.7) set the yi variables appropriately so that a client i is marked as covered
only if one of the facilities in its set Ni is opened.

The p-center problem is closely related to the set covering problem as well as to
the p-median problem. In a center problem, also known as a minimax problem, the
goal is to minimize the maximum distance between a client and its nearest facility.
The inputs to a p-center problem are the same as to a p-median problem, except that
the demands of each client are irrelevant. To create an IP formulation, we replace the
objective of the p-median formulation with

Minimize y

and add an additional set of constraints:
∑

j∈J

dijxij ≤ y ∀i ∈ I

The relation between p-center and set covering should be clear: In the former we
fix the number of facilities and determine the maximum distance between a client and
its nearest facility. In the latter we fix the maximum distance between a client and its
nearest facility and determine the number of facilities needed.

Any of the facility location problems discussed in this section could also have capac-
ities involved, which makes the problem a bit different. In capacitated problems, we
allow capacity restrictions on the facilities and have additional inputs Cj, the maximum
demand that may be served by facility j. In some situations a minimum capacity may
be required as well, e. g., to guarantee that any opened facility has a minimum level
of utilization. When dealing with capacities, the question of demand splitting must
also be answered: should all the demand from a given client be satisfied by the same
facility, or can the demand be split to different facilities?

For further variations and additional reading on facility location, we direct the
reader to some recent reviews and other helpful material:
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Location analysis survey ReVelle and Eiselt [RE05]

Discrete location bibliography ReVelle, Eiselt, Daskin [RED08]

Review of covering problems Schilling, Jayaraman, Barkhi [SJB93]

Discrete location textbook Daskin [D95]

Public sector location problems Marianov and Serra [MS02]

Discrete location models Current, Daskin, Schilling [CDS02]

Finally, we note that each of the problems discussed here is NP-hard, though there
may be special cases that are solvable in polynomial time.

3.2 Network Design

In network design, the basic problem is to optimally construct a network that enables
some kind of flow, and possibly satisfies additional constraints. The nodes are given
and the network is constructed from a set of potential edges, or links, each with an
associated construction cost.

In [MW84] Magnanti and Wong provide a general problem description of network
design that encompasses many variations. Their IP formulation, modified slightly, is
given below. The formulation assumes we have a set K of commodities and for each
commodity k ∈ K, one unit must be shipped from an origin node O(k) to a destination
node D(k). The network should be constructed to minimize the sum of construction
and travel costs. The set of nodes is V and the set of links that can be built is L. Each
link ij ∈ L has an associated construction cost cij and travel cost dij . The variables
yij are binary variables representing whether or not we build link ij, and the xk

ij are
flow variables indicating the flow of commodity k from i to j.

Minimize
∑

ij∈L

cijyij +
∑

k∈K

∑

ij∈L

dij(x
k
ij + xk

ji) (3.9)

Subject to
∑

j

xk
ji −

∑

l

xk
il =











−1 i = O(k)

1 i = D(k)

0 otherwise

∀k ∈ K, i ∈ V (3.10)

xk
ij ≤ yij ∀k ∈ K, ij ∈ L (3.11)

xk
ji ≤ yij ∀k ∈ K, ij ∈ L (3.12)

xk
ij , x

k
ji ≥ 0 ∀k ∈ K, ij ∈ L (3.13)

yij ∈ {0, 1} ∀ij ∈ L
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Notice that while the links are undirected, the flow has direction. The objective
function (3.9) minimizes the sum of construction and travel costs. As in the shortest
path IP formulation, we have flow constraints (3.10) and the flow variables need only
be greater than zero (3.13). Constraints (3.11) and (3.12) ensure that only built links
are used.

The network design work most closely related to the topic of this thesis is the fixed
charge network design problem investigated by Balakrishnan, Magnanti, and Wong
[BMW89]. This NP-hard problem can be described by the IP formulation above, but
in their paper the authors reveal some tricks for tightening the formulation when the
origin or destination is the same for one or more commodities. This will be the case in
the next section when we look at IP formulations for FLND.

3.2.1 Inverse and Reverse Facility Location

If we consider network design in the context of improving the accessibility of facilities,
then the flow we are interested in is that between clients and facilities. Since the struc-
ture of the underlying network affects travel from one node to another, manipulating
that network can affect facility accessibility. In a problem of this sort, the facilities are
already located at fixed sites and we can construct or modify the network to increase
accessibility to these facilities.

Using network design to optimize an objective related to clients and facilities is
also known as inverse facility location or reverse facility location, depending on
the specifics. In general, in an inverse combinatorial optimization problem, a solution
is given and the goal is to modify some problem parameters as little as possible in
order to make that solution optimal. In reverse problems, the goal is to improve the
given solution as much as possible while not exceeding a given limit (or budget) on the
allowed parameter modifications.

In inverse and reverse facility location, the locations of facilities are given and a
parameter such as the node or edge weights may be modified. Problems related to
network design obviously involve the edge weights. For a survey on inverse location
problems, see Heuberger [H04], and for some recent results, Burkard, Pleschiutschnig,
and Zhang [BPZ04, BPZ08].

The reverse p-median problem, an NP-hard problem, will be of particular
interest to us in Chapter 4. First analyzed in 1992 by Berman, Ingco, and Odoni
[BIO92], it has the goal of minimizing the total travel cost, and a budget is given for
link construction. They considered two different kinds of “construction”: In the first,
the weights on existing edges in the graph could be decreased, but no new edges added.
In this case, which they called network reduction, a linear function for each edge gave
the construction cost of reducing the edge’s weight by one travel cost unit. Each edge
also had a minimum travel cost. The second type of link building involved adding new
edges to the graph; existing edges could not be modified. Called network addition, in
this case each possible new edge had an associated travel cost and a fixed construction
cost.

Other papers have examined reverse p-median problems using network reduction on
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special classes of graphs [BGH06] or reverse problems with different objectives, such as
minimax [BIO94, ZLM00]. Bhadury, Chandrasekharan, and Gewali looked at building
a spanning tree network based around a single fixed facility such that the facility is the
demand-weighted median of the resulting network [BCG00, BCG03].

3.3 Facility Location–Network Design

Facility location–network design (FLND) involves optimizing objectives related to fa-
cilities, and any of the objectives found in facility location may also be an objective
in FLND. The means for achieving an objective come from both facility location and
network design. That is, in order to optimize access to facilities, we can build both
facilities and links. FLND is clearly a generalization of related facility location and
network design problems.

In this thesis we consider problems with a median objective, i. e., the primary goal
is to minimize the total travel costs. We consider two variations: (1) In the budget
version, we have a fixed budget for construction expressed as a constraint and we
minimize the total travel costs. (2) In the fixed charge version, we minimize the sum
of the construction costs and travel costs. The more we spend on construction, the
lower our travel costs will be, and vice versa, so the objective finds an optimal balance
between the two. The construction and travel costs are different types of costs, however,
so this case assumes we have some kind of equivalency between the two. When studying
the problem theoretically we do not need to worry about the cost equivalency, but it
becomes an important issue in any application context.

Our problem has the following inputs:

G = (V, E) graph

K ⊆ V set of clients

Je ⊆ V set of existing facility sites

Jp ⊆ V set of potential facility sites

E set of existing edges (or links)

Lp set of potential edges

ak, k ∈ K demands at each client

fj , j ∈ Jp construction costs for each potential facility

cij , ij ∈ Lp construction costs for each potential edge

dij, ij ∈ E ∪ Lp travel costs on each edge and potential edge

By definition, the set Lp of potential edges may not have duplicates, however, it
may contain edges that are also in E. An edge in both E and Lp is an existing edge that
has the possibility to be improved. This allows building new links as well as building
better versions of existing links. However, to make the problem “cleaner” we prefer not
to have any edges in both E and Lp, so we perform a small trick: For any such edge
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ij ∈ E ∩Lp, let dE
ij be the travel cost associated with ij in E and d

Lp

ij be the travel cost

associated with ij in Lp (of course d
Lp

ij < dE
ij). Add a new node u that splits up ij ∈ E

so we have two new edges iu, uj ∈ E each with half the travel cost: diu = duj = dE
ij/2.

The edge ij ∈ Lp remains with its travel cost dij = d
Lp

ij . Now we can assume that
E ∩ Lp = ∅.

The output of the problem is a subset of the potential facilities Jp and a subset of
the potential edges Lp.

Figure 3.1 shows in picture form a sample FLND problem instance (input) and
solution (output). This is one of the instances described in detail in Appendix A; the
appendix also contains a visual key to the elements of the graph.

According to the objective, we call this problem the fixed charge facility location–
network design problem (fixed charge FLND) or the budget facility location–
network design problem (budget FLND).

Facility location–network design problems of this type were first considered in a
published work by Melkote in his doctoral thesis from which came the papers [MD01a,
MD01b, MD01c, MD98].

In [MD01a] Melkote and Daskin developed an IP formulation for the problem that
is based on that of the fixed charge network design problem studied by Balakrishnan,
Magnanti, and Wong [BMW89]. Key points that tighten the formulation include scaling
the demands to 1 and disaggregating the clients. We present this formulation in detail
in the next subsection. For the fixed charge FLND problem, Melkote and Daskin were
able to solve problems of size up to 40 nodes and 160 edges efficiently using a standard
IP solver. They do a sensitivity analysis for the budget FLND problem on two specific
example instances, noting that the amount of budget spent on facilities versus links is
affected by the size of the budget and the relative costs of building links and facilities.
While the latter is self-evident, in the former case, a larger budget led to more facilities
and fewer links being constructed. It should be noted that in all the problems they
studied, the initial graph had no links.

The fixed charge FLND problem is NP-hard in the general case, and in [MD01c],
Melkote and Daskin developed polynomial time algorithms for two special cases. In
both cases, there are no existing links and the set of candidate links forms a tree. The
first case involves locating exactly two facilities with no fixed costs. Here the problem
amounts to selecting the two facility locations and selecting one link to be excluded
from the solution. The second case considers fixed charge FLND, so facilities do have
fixed costs and an unknown number are to be located. In this case the authors cleverly
translated the problem into a tree-partitioning problem and used an existing algorithm
to solve it in O(n2) time.

In similar studies, the two authors develop IP formulations and present compu-
tational results for the capacitated fixed charge FLND problem [MD01b] and for the
maximum covering FLND problem (maximum covering objective with demand-specific
coverage distances and penalties for uncovered demand) [MD98]. These problems are
also NP-hard, but in the latter case they identify two polynomially solvable cases:
when the set of possible links forms a tree, and (1) all demand nodes have equal cov-
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Figure 3.1: The FLND problem instance 222a, and one possible solution.
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erage distances, or (2) coverage distances are defined per facility.
There has been very little other research on FLND problems, and none that exam-

ines exactly the problem variations that we (and Melkote and Daskin) have studied.
Ravi and Sinha [RS06] and Chen and Chen [CC07] have developed approximation al-
gorithms for similar FLND problems with capacitated links, no travel costs, and in
the latter case, soft-capacitated facilities (multiple copies of a facility may be built
at one location). They call these problems capacitated cable facility location, and
soft-capacitated facility location and cable installation, respectively.

Drezner and Wesolowsky consider some variations on network design problems, one
of which is essentially an FLND problem where exactly one facility is to be located and
the goal is to minimize link construction costs and round-trip travel costs to the facility
[DW03]. They implement some metaheuristics for this problem and present results on
three 40 node problem instances.

Other researchers have studied FLND-like problems where the network must have a
special structure. Current [C88] and Current and Pirkul [CP91] explored the problem of
hierarchical network design with transshipment facilities. In this problem, the network
must include a primary path between a predetermined source-destination pair as well
as a secondary network connecting the remaining nodes to the primary path at sites
where transshipment facilities are to be built. The goal is to minimize the costs of
building the facilities and network.

Some hub location problems, especially with application in communication net-
works, go beyond locating hubs and additionally involve the design of a backbone
network (among hubs) and/or tributary network (nodes to hubs). Klincewicz provides
a review of these sorts of problems [K98].

3.3.1 Disaggregate IP Formulation

In this section we present the IP formulation for FLND developed by Melkote and
Daskin in [MD01a], slightly modified. We call this formulation the disaggregate
formulation, or D.

Given the problem inputs as described previously, the demands are first scaled to 1
by introducing client-specific travel costs dk

ij representing the cost of client k traveling
link ij: dk

ij = ak ∗ dij. Now all clients can be treated as if they have demand 1 because
the actual demand is incorporated into the travel costs.

As mentioned, the formulation is based on a fixed charge network design formulation
as presented in Section 3.2. Instead of commodities, in FLND we have clients. In order
to be able to model the problem as pure network design, an additional node s, which
we call the sink is added. Then to E we add edges js from every existing facility
j ∈ Je to the sink, and to the potential links Lp we add edges js from every potential
facility j ∈ Jp to the sink, with associated construction cost cjs = fj . The travel costs
of all the facility-to-sink edges are 0. Now we have a network design problem where
the commodities all have different origins, but the same destination: the sink node s.
After solving, the flow of the clients/commodities will form a directed spanning tree
with s as the root.
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We use the following variables:

zj 1 if a facility is built at j ∀j ∈ Jp

0 otherwise

yij, yji 1 if link ij / ji is built ∀ij ∈ Lp

0 otherwise

xk
ij , x

k
ji fraction of client k traveling ∀k ∈ K, ∀ij ∈ E ∪ Lp

i to j / j to i

wk
j fraction of client k served by facility j ∀k ∈ K, ∀j ∈ Je ∪ Jp

The w variables represent flow on the facility-to-sink edges and are used, for the
sake of clarity, instead of xk

js, j ∈ Je ∪ Jp. Note that in an optimal solution, the x and
w variables will be either 0 or 1, meaning a client’s demand stays together. For a given
link ij ∈ Lp we have both yij and yji. This does not represent one-way links; rather, it
is a convenience to mirror the directional flow variables x. In an optimal solution there
will be flow in at most one direction on a given link.

Because the solution flow will form a directed, rooted spanning tree, all nodes except
the root will have exactly one outbound edge with flow on it. Thus we can make the
variable substitutions shown below [MD01a].

Variable Substitute with

xi
ij yij

wi
i zi

Building an outbound link ij from a client i is equivalent to i traveling that link.
Building a facility at client node i is equivalent to i using that facility. To put it
another way, if we build link ij, client i must travel it, and vice versa. If we build
facility i, client i must use it, and vice versa.

Figure 3.2 is a visual aid for understanding the IP formulation variables. Using a
very small example, on the left it shows a problem instance, and on the right, the IP
formulation’s network design graph with variables next to the edges they represent.
For example, the edge from node 2 to the sink node s represents a potential facility at
2. The variable z2, expressing whether or not the facility is built, is associated with
this edge. The variables wk

2 , i. e., w1
2, (w2

2 = z2), and w3
2, are also associated with this

edge and measure the “flow” on the edge, or the proportion of each client’s demand
that visits facility 2.

The following IP formulation is for budget FLND. To avoid complicating the formu-
lation more than necessary, we assume below, without loss of generality, that there are
no existing edges or facilities (E = ∅, Je = ∅). This is an easy assumption since we can
represent existing elements as “potential” elements whose construction cost happens to
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Figure 3.2: IP formulation variables shown on a graph (right) for a simple problem
instance (left) involving 3 clients, 1 existing facility (node 3), two potential facilities
(nodes 1 and 2), one existing link (2-3), and one potential link (1-2).

be 0. Furthermore we assume that every node is both a client and a potential facility
(V = K = Jp). If this is not the case, it makes things more complicated to describe
but does not change the problem. As a result of these assumptions we can make the
variable substitutions discussed above for every node and edge. Additionally, to avoid
clutter below we note here that all node indices used, i, j, k, come from the set of nodes
V (= K = Jp). Finally, we use L to represent the set of all directed edges for which x
and y variables exist. So L is formed by taking every ij ∈ Lp and adding both ij and
ji to L.

Minimize
∑

ij∈L

∑

k 6=i

dk
ijx

k
ij +

∑

ij∈L

di
ijyij (3.14)

Subject to zi +
∑

j

yij = 1 ∀i (3.15)

yki +
∑

j 6=k

xk
ji =

∑

j

xk
ij + wk

i ∀i, k : i 6= k, ki ∈ L (3.16)

∑

j 6=k

xk
ji =

∑

j

xk
ij + wk

i ∀i, k : i 6= k, ki /∈ L (3.17)

zk +
∑

i6=k

wk
i = 1 ∀k (3.18)

xk
ij ≤ yij ∀ij ∈ L, k : i 6= k (3.19)

wk
i ≤ zi ∀i, k : i 6= k (3.20)

yij + yji ≤ 1 ∀ij ∈ Lp (3.21)
∑

ij∈L

cijyij +
∑

i

fizi ≤ B (3.22)

xk
ij ≥ 0, yij ∈ {0, 1} ∀ij ∈ L, k : k 6= i

wk
i ≥ 0, zi ∈ {0, 1} ∀i, k : k 6= i
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The objective (3.14) is to minimize the total travel cost, and it is broken into two
pieces because when k = i we use yij instead of xi

ij . Constraints (3.15) through (3.18)
can be thought of as the flow constraints. For a given node i, (3.15) states that the
demand originating at i (which is 1) will leave i either by being served by a facility at
i (zi = wi

i) or by traveling some link out of i (yij = xi
ij). (3.16) and (3.17) represent

the flow passing through node i, stating that the flow in to i must equal the flow out
of i. (3.16) is the same as (3.17) except that on the LHS yki is pulled out for xk

ki when
ki ∈ L. The last of the flow constraints, (3.18) states that for all clients k, the demand
must find a destination, whether it be at node k itself (zk) or at some other node i
(wk

i ).

Constraints (3.19) and (3.20) ensure that potential links and facilities are not used
if they are not built. On any given link, an optimal solution flow will be in only one
direction, so we have constraints (3.21). Given a budget of B, the budget constraint
(3.22) ensures that the total construction cost of links and facilities does not exceed the
budget. The flow variables xk

ij and wk
i , representing the fraction of client k traveling

link ij or being served by facility i respectively, need only be greater than 0.

The fixed charge FLND IP formulation is very closely related. We need only remove
the budget constraint (3.22) and add its left hand side to the objective, so that the
objective becomes

Minimize
∑

ij∈L

∑

k 6=i

dk
ijx

k
ij +

∑

ij∈L

di
ijyij +

∑

ij∈L

cijyij +
∑

i

fizi. (3.23)

This objective minimizes the sum of the travel costs and construction costs, finding the
optimal balance between the two.

3.3.2 Aggregate IP Formulation

In this section we introduce a new IP formulation for FLND problems. We can reduce
the number of variables in the formulation if we aggregate the clients, so that xij

represents the total flow of all demand on ij and wi represents the total demand served
by a facility at i. Then we have the smaller and simpler formulation shown below
(using the same notation and assumptions as in the previous formulation), which we
call A. The constant P represents the entire demand (or population) in the system,
i. e.,

P =
∑

k∈K

ak.
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Minimize
∑

ij∈L

dijxij

Subject to
∑

j

xji −
∑

k

xik = −ai ∀i (3.24)

∑

j

wj = P (3.25)

xij ≤ Pyij ∀ij ∈ L (3.26)

wj ≤ Pzj ∀j (3.27)

yij + yji ≤ 1 ∀ij ∈ Lp (3.28)
∑

ij∈L

cijyij +
∑

j

fjzj ≤ B (3.29)

xij , wj ≥ 0 ∀ij ∈ L, j

yij, zj ∈ {0, 1} ∀ij ∈ L, j

In this formulation, constraints (3.24) and (3.25) are the flow constraints, with
(3.24) stating that every node i should have an outflow of ai, and (3.25) that all
demand must end up at some facility. Constraints (3.26) and (3.27) have the same
function as (3.19) and (3.20), ensuring that potential links and facilities are not used
if they are not built. In this case we need to add the constant P because it is possible
that the entire demand in the system could travel a given link or visit a given facility.
The rest of the constraints are as in the previous formulation.

This formulation can be easily changed to a fixed charge formulation in the manner
already discussed. Note the ease with which we can accommodate capacitated problems
as well: Remove (3.27) and add

wj ≥ Cmin
j zj ∀j (3.30)

wj ≤ Cmax
j zj ∀j (3.31)

where Cmin
j is the minimum capacity on a facility at j and Cmax

j is the maximum
capacity on a facility at j.

3.3.3 Comparing IP Formulations

Melkote and Daskin [MD01a] and Balakrishnan, Magnanti, and Wong [BMW89] both
note that it would be possible to aggregate the clients (or commodities), but disaggre-
gated clients make the formulation tighter, i. e., the solution of the LP relaxation is
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Figure 3.3: Gaps between the LP relaxation solution and optimal solution for the
aggregate (A) and disaggregate (D) IP formulations for budget FLND.

closer to optimal. This is certainly true, as can be seen in Figures 3.3 and 3.4, which
show the gaps between the LP relaxation solution and optimal solution for the aggre-
gate (A) and disaggregate (D) formulations for budget FLND and fixed charge FLND,
respectively. The problem instances along the x axis in each case are the standard
test suite used in this thesis and are described in detail in Appendix A, along with
the characteristics of the computers on which all tests were run. The problems have
40 nodes and varying other characteristics, including the number and placement of
existing and potential links and facilities. The results given for each instance, such as
2.6% for formulation D on instance 028 in Figure 3.3, are actually the average over 3
instances (028a, 028b, 028c) with the same characteristics.

From these graphs we see clearly that the disaggregate IP formulation is to be
preferred with respect to the tightness of the LP relaxation. Table 3.1 at the end of
the chapter gives these results in tabular format.

We also compared solution times of the two formulations, solving problem instances
to optimality using CPLEX 8.1 with all the default settings. Figure 3.5 shows the
results, on a logarithmic scale. The problem was solved faster using the aggregated
IP formulation A in exactly half the instances, and faster using the disaggregated IP
formulation D in half the instances. D was faster on average, never requiring more
than an hour, whereas A needed nearly 26 hours in the worst case.

In general, D tended to be faster on the “harder” instances and slower on the
“easier” instances, compared with A. This is likely due to the higher overhead when
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Figure 3.4: Gaps between the LP relaxation solution and optimal solution for the
aggregate (A) and disaggregate (D) IP formulations for fixed charge FLND.
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Figure 3.5: Comparison of times for solving to optimality with CPLEX, aggregate (A)
and disaggregate (D) IP formulations for budget FLND.
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using D because it has so many more variables and constraints than A. For a graph
with n nodes and m edges, D has O(mn + n2) variables and O(mn + n2) constraints,
while A has O(m + n) variables and O(m + n) constraints. The size of a CPLEX .lp

file for the 40-node instances in formulation A ranges from 29 to 76 kilobytes, and in
formulation D from 500 kilobytes to 1.7 megabytes. On similar 100 node problems, the
file size for A increases to approximately 150 kilobytes and for D to 11 megabytes.

If formulation A could be strengthened so that it has a tight LP relaxation without
adding significantly more variables or constraints, it could be a competitive alternative
to formulation D. This is the effort we undertake in Chapter 5, Section 5.2. We explore
additional classes of inequalities which can be added to the aggregate formulation as
cutting planes, with the result that a much better lower bound on the optimal solution
is obtained. Though still not tightening the gap as much as the disaggregate model,
these cuts do a good job on A and may mitigate its disadvantage in this area.

In the end we conclude that the IP formulation with disaggregated clients is better
overall for obtaining good lower bounds on the problem as well as for solving it efficiently
by means of an IP solver. However, there may be special cases where formulation A is
preferred.
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Table 3.1: LP relaxation solution results as percent gap for budget and fixed charge
FLND, IP formulations A and D.

Budget FLND Fixed Charge FLND

Problem A D A D

028 100% 2.6% 92.5% 0%

0A8 100% 2.3% 91.8% 0%

228 100% 7.3% 93.8% 0%

2A8 100% 8.1% 92.7% 0%

C28 100% 6.3% 93.8% 0%

CA8 100% 7.5% 94.4% 0%

S28 99.8% 9.1% 92.1% 0%

SA8 100% 8.0% 93.9% 0%

022 100% 2.5% 92.1% 0%

0A2 100% 0.5% 92.7% 0%

222 100% 9.9% 95.8% 0%

2A2 100% 10.8% 94.7% 0%

C22 100% 9.5% 95.6% 0%

CA2 100% 8.9% 95.3% 0%

S22 100% 6.5% 94.5% 0%

SA2 100% 10.4% 94.9% 0%

020 100% 1.2% 91.8% 0%

0A0 100% 3.8% 93.6% 0%

220 100% 4.6% 95.8% 0%

2A0 100% 6.2% 95.0% 0%

C20 100% 2.9% 95.2% 0%

CA0 100% 5.0% 95.4% 0%

S20 100% 3.0% 95.2% 0%

SA0 100% 2.2% 95.4% 0%



Chapter 4

Upper Bound Approaches:
Heuristics

In this chapter we detail each of the heuristics we have developed for FLND. In this
endeavor we have concentrated on budget FLND and we present a number of differ-
ent heuristics for the problem that fall into five families: greedy, custom, basic local
search, simulated annealing, and variable neighborhood search. The perspective is a
situation where there is an existing network, perhaps with some facilities, and a budget
is provided to improve facility access. The heuristics presented assume that the graph
is connected by existing edges; no assumption is made regarding existing facilities.

The input to each heuristic is an instance of budget FLND, the data type FLND-
inst, which includes the following components:

FLND-inst

G = (V, E) graph

K ⊆ V set of clients

Je ⊆ V set of existing facility sites

Jp ⊆ V set of potential facility sites

E set of existing edges (or links)

Lp set of potential edges

ak, k ∈ K demands at each client

fj , j ∈ Jp construction costs for each potential facility

cij , ij ∈ Lp construction costs for each potential edge

dij, ij ∈ E ∪ Lp travel costs on each edge and potential edge

B budget

M = Jp ∪ Lp set of potential elements (both facilities and links)

cx, x ∈M construction cost of an element (facility or link)

We have introduced the last two items, M and cx, to avoid having duplicate pseu-
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docode in some of the heuristics when facilities and links are treated in the same
manner. This is a convenience for presentation, and helps make the essential algorithm
clear.

It is also helpful to consider a particular feasible solution, data type FLND-sol, with
the components shown below. The solution type maintains a graph Gs = (V s, Es)
which includes an additional node s (which can be thought of as the “sink”) with con-
nections to every facility in the solution, including both existing facilities and selected
potential facilities, via edges with travel cost 0.

FLND-sol

inst the FLND-inst for which this is a solution

Js ⊆ inst .Jp selected facilities

Ls ⊆ inst .Lp selected links

s added “sink” node

Gs = (V s, Es) graph with s as described above

In the pseudocode of our heuristics, we may use the following operations on an
FLND-sol, sol :

FLND-sol Operations (sol is of type FLND-sol)

sol .init(finst) initialize sol with the given FLND-inst (and no selected
facilities or links)

sol .add(ele) add ele, a potential facility or edge, or a set of such, to sol

sol .remove(ele) remove ele from sol

sol .eles() return the set of selected elements (both facilities and links)
in sol

sol .totCC() return total construction cost of the elements in sol

sol .facCC() return total construction cost of the facilities in sol

Additionally, all of the heuristics require an operation that calculates the total
travel cost of a solution. We present this as a separate routine and give its pseudocode
since it is more complex than the other operations. Algorithm 4.1 shows the function
TotTC, which calculates the total travel cost of a given feasible solution. TotTC

uses Dijkstra (Algorithm 2.1) to find the shortest path from every client to s. The
len array, received as an output parameter from Dijkstra, contains the travel cost of
each client to its nearest facility in the solution. In essence, Dijkstra builds a shortest
path tree rooted at s. Notice that TotTC returns ∞ if the graph is not connected,
i. e., the solution is infeasible. This includes the case where the problem graph, G,
is connected, but there is no way to reach the sink, s, because there are no facilities
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Algorithm 4.1 Calculating total travel cost.

TotTC(sol)

1 tottc = 0
2 connected = Dijkstra(Gs, s, len)
3 if connected
4 then for each client k ∈ K
5 do tottc + = ak ∗ len[k]
6 else tottc =∞
7 return tottc

existing in the problem instance or selected in the solution. TotTC runs in O(n2)
time where n is the number of nodes in G.

In order to avoid clutter when the context is clear, variables in the pseudocode are
not qualified. E. g., instead of writing sol .Gs for the graph Gs that is part of an FLND-
sol, sol , we just write Gs. In a few heuristics we need to calculate the construction cost
of a set (not an FLND-sol) of elements, and for this we use the procedure (pseudocode
not shown) cc(S), which returns the total construction cost of the elements in S.

Before presenting the heuristics, we would like to emphasize that the pseudocode
given is for the purpose of making clear the essential idea of each algorithm and does
not represent an implementation. Therefore we do not handle error cases or include
unnecessary code when it would only clutter the pseudocode, although it may be nec-
essary for a robust implementation. The worst case time complexity of each algorithm
should be perceivable from the pseudocode. In some cases the reader may notice “ineffi-
ciencies” in the code that do not however, affect the time complexity. Rest assured that
in our implementations we have attempted to make the code as efficient as possible,
while in our presentations of the algorithms, we strive for clarity.

4.1 Greedy Heuristics

As previously stated, we know of no heuristics in the literature for the facility location–
network design problems we study. When developing heuristics for a new problem,
starting with something simple is often a good idea, so we turn first to greedy heuristics.

A feasible solution to a budget FLND problem consists of a subset of the potential
facilities and links, the sum of whose construction costs does not exceed the budget.
Our goal is to try to select the subsets that minimize the travel costs of clients to
facilities in the resulting graph.

In the greedy additive heuristic, elements (links or facilities) are selected one at a
time to add to the solution, until the budget is reached. Each time, the element that
produces the greatest improvement in the objective (reducing total travel cost) per unit
construction cost is selected. The pseudocode is given in Algorithm 4.2. The input to
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Algorithm 4.2 Greedy additive FLND heuristic.

GreedyAdd(finst)

1 cc ← 0
2 sol .init(finst)
3 basetc← TotTC(sol)
4 S ←M
5 while cc < B & S 6= ∅
6 do Purge(S, B − cc)
7 bestRatio ← 0
8 for each element x ∈ S
9 do sol .add(x)

10 tc ← TotTC(sol)
11 if (basetc− tc)/cx > bestRatio
12 then bestRatio ← (basetc− tc)/cx

13 bestEle ← x
14 besttc ← tc
15 sol .remove(x)
16 if bestRatio > 0
17 then sol .add(bestEle)
18 cc + = cbestEle

19 basetc ← besttc
20 S ← S \ {bestEle}
21 else S ← ∅
22 return sol

Purge(S,max )

1 for each element x ∈ S
2 do if cx > max
3 then S ← S \ {x}
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the algorithm is an FLND-inst, finst , and the solution created is sol , an FLND-sol.
In GreedyAdd, the main loop continues until the budget is depleted or there

are no elements remaining that can be added. The set S keeps track of the elements
(facilities and links) that may be added to the solution. At the beginning of the loop,
S is purged of those elements that are too expensive to add (those that would cause
the solution to go over budget). The variable cc keeps track of the total construction
cost of the elements added to the solution thus far. Then for each element x in S, the
new total travel cost is calculated on a solution with x added. Using this value, line 11
calculates the improvement per unit construction cost and compares it to the best so
far. In this way, the best element to add to the solution is found. The algorithm has
time complexity O(n2m2) where n is the number of nodes in the graph and m = |M | is
the number of potential elements that could be added to the solution. (The while loop
runs at most m times, the for loop within it also runs at most m times, and TotTC

within the for loop has time complexity O(n2).)

Another greedy approach is to start with a solution that contains all the potential
elements (which is most likely infeasible because of its construction cost) and remove
one-by-one those elements whose removal causes the least harm to the objective, until
the total construction cost of those elements in the solution falls at or below the budget.

This greedy subtractive approach needs a little twist before it will work properly.
Here is why: If we assume that all potential facilities are in the solution, and every
client has a facility at its node, then the objective value is 0 and removing any or all
of the links will not hurt the objective. Thus in order to make it work properly, we
have a first stage where we consider the construction cost of facilities only, and remove
facilities from the solution one-by-one until the cost of the solution falls at or below
the budget. In the second stage we consider the construction cost of all the elements,
and remove elements one-by-one, be they links or facilities, until we are within budget.
The pseudocode is given in Algorithm 4.3.

The procedure Reduce takes a given solution sol , a starting construction cost cc,
and a set of potential elements S. As long as cc is greater than the budget B, it selects
the best element from S to remove from sol (the one which least increases the total
travel cost, per unit construction cost), and reduces cc by that element’s construction
cost.

GreedySub starts with a solution containing all the potential links and facilities,
and calls Reduce first with an S containing only the potential facilities and with
the total facility construction cost. Thus facilities are removed until the facility con-
struction cost falls below the budget. Then the potential links are added to S, the
construction cost is recalculated to be the total construction cost of all elements in the
solution, and Reduce is called again.

4.2 A Custom Heuristic

The greedy heuristics greedily choose the best element, whether facility or link, at each
step. However, building links and building facilities have different implications, and in
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Algorithm 4.3 Greedy subtractive FLND heuristic.

GreedySub(finst)

1 sol .init(finst)
2 sol .add(M)
3 faccc ← sol .facCC()
4 S ← Jp

5 Reduce(sol , faccc, S)
6 cc ← sol .totCC()
7 S ← S ∪ Lp

8 Reduce(sol , cc, S)
9 return sol

Reduce(sol , cc, S)

1 basetc← TotTC(sol)
2 while cc > B
3 do bestRatio ←∞
4 for each element x ∈ S
5 do sol .remove(x)
6 tc ← TotTC(sol)
7 if (tc− basetc)/cx < bestRatio
8 then bestRatio ← (tc− basetc)/cx

9 bestEle ← x
10 besttc ← tc
11 sol .add(x)
12 sol .remove(bestEle)
13 cc− = cbestEle

14 basetc ← besttc
15 S ← S \ {bestEle}
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this custom heuristic, Custom, they are treated separately.
Imagine a spectrum of feasible solutions, laid out such that at one end are solutions

where the entire budget is spent on links and no facilities are built, and at the other
end are solutions where the entire budget is spent on facilities and no links are built. In
between are solutions that build some facilities and some links. The idea in Custom is
to start at the first end, with no facilities, and methodically proceed to the other end,
selecting the best solution found along the way. (If there are no existing facilities in
the problem, then we start with one facility.) The steps along the way are determined
by the number of facilities in the solution: start with 0, then one facility, then two, up
to the number of facilities that may be built if we spent the entire budget on facilities
alone.

In this heuristic the subproblems of facility location and network design are solved
independently. At each step, a p-median facility location problem is solved first, locat-
ing the specified number of facilities, and then with these selected facilities, a network
design problem is solved to choose the links with the remaining money. The pseudocode
is shown in Algorithm 4.4.

Algorithm 4.4 Custom FLND heuristic.

Custom(finst)

1 k ← 0
2 besttc ←∞
3 facCC ← 0
4 while facCC < B
5 do sol ← pMed(finst , k)
6 facCC ← sol .facCC()
7 if facCC > B
8 then break
9 sol ← RevpMed(finst , sol , B − facCC )

10 if TotTC(sol) < besttc
11 then besttc ← TotTC(sol)
12 bestsol ← sol
13 k = k + 1
14 return bestsol

The procedure pMed(finst ,k) locates k facilities for the given problem. We wrote
this procedure using an efficient implementation of Teitz and Bart’s swap-based local
search heuristic for the p-median problem [TB68]. Published in 1968, their algorithm
is still in use today. Since then, there have been various refinements to the algorithm
and improvements to the implementation [W83, RW03], but the basics remain the
same. Lately, other more sophisticated p-median heuristics have also been developed,
as well as applying metaheuristics to the problem, but clever implementations of Teitz
and Bart remain competitive. We use the implementation presented by Resende and
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Figure 4.1: Results from greedy additive, greedy subtractive, and custom heuristics,
showing percent over optimal of the solution produced.

Werneck [RW03] with worst case running time O(nm) where n is the number of clients
and m is the number of potential facilities.

RevpMed(finst,sol ,cc) is a heuristic for the reverse p-median problem that assumes
the facility set includes any existing facilities in finst as well as any selected facilities
in sol . Links are selected and added to the solution according to a budget of cc. This
heuristic is based on work by Berman, Ingco, and Odoni [BIO92]. They present a
heuristic that allows new edges only, but we extend it to allow for improving existing
edges as well. Additionally, their heuristic is faulty in that it overlooks a certain
scenario, resulting in miscalculations when this scenario occurs. We have corrected
this defect by modifying the heuristic slightly. The time complexity of RevpMed is
O(n2m2) where n is the number of nodes in the graph and m is the number of potential
links.

Figure 4.1 shows the results of the greedy additive, greedy subtractive, and custom
heuristics on the test suite described in Appendix A. The graph shows how far over
optimal the results produced by each heuristic were, as a percentage of the optimal
solution value. I. e., we define percent over optimal of a heuristic solution by the
formula

heuristic solution value − optimal solution value

optimal solution value
.

When presenting heuristic results in this chapter, for any heuristic that involves
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Figure 4.2: Comparison of solving times using the greedy additive, greedy subtractive,
and custom heuristics.

some random selections, the best result from 10 runs is used. In this case, the custom
heuristic falls into that category because the p-median local search heuristic it uses
starts with a random feasible solution.

In terms of solution quality, the custom heuristic performs the best, finding a so-
lution within 4.7% of optimal on average over all the instances. There is no clear
winner between the two greedy heuristics, with each performing differently on different
instances. The greedy additive heuristic produced a solution within 9.2% of optimal
on average and the greedy subtractive within 8.4% on average. All three heuristics had
more than one case where the solution they produced was more than 10% over optimal.
Table 4.3 at the end of the chapter presents these results in tabular format.

Figure 4.2 compares the running times of the three heuristics, none of which took
more than a few seconds to produce a result. All tests were run on a 2.8 GHz machine
with 2 GB of RAM, see Appendix A for further details of the test platform. The
run time of the greedy additive heuristic clearly depends on the number of potential
elements as it runs more quickly for those instances with a ‘2’ as the middle symbol
than for those with an ‘A’: the ‘2’ instances each have 80 potential links, and the ‘A’
instances have up to 180. See Appendix A for more details on the characteristics of
the problem instances.
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4.3 Neighborhoods and Neighbor Operators

The remaining heuristics in this chapter use neighborhoods in some way to find a
solution. This is a standard notion: a given solution has a neighborhood of similar so-
lutions surrounding it. One way to explore the solution space is to move from neighbor
to neighbor via a neighbor operator that is applied to a solution and produces one of
its neighbors. We use neighbor operators that produce a random neighbor as well as
neighbor operators that produce the best neighbor in a neighborhood.

For budget FLND problems we have developed two different types of neighborhoods:
Hamming neighborhoods and step neighborhoods.

4.3.1 Hamming Neighborhoods

When using Hamming neighborhoods, we in effect associate a bit with each po-
tential element (link or facility), and a solution is simply a bit string indicating which
elements are in the solution. If there are m elements (|M | = m), then the bit strings
have length m.

Then we define our neighborhoods using Hamming distances. The Hamming
distance between two bit strings is the number of bits in which they differ. For
example, the strings 01101011 and 01111010 are Hamming distance 2 apart: they
differ in the 4th and 8th bits. A Hamming distance of 2 means two bit flips, which
could be adding 2 elements to a solution (change two 0’s to 1’s), removing two elements
from a solution (change two 1’s to 0’s), or trading one element for another (change one
0 to 1 and one 1 to 0). If we consider the two given example strings as representing
solutions, then the second can be obtained from the first by trading the 8th element
for the 4th, i. e., swapping the 8th out and the 4th in.

Using Hamming distances we have a series of expanding neighborhoods to choose
from. Given a solution f , we can say that f ’s neighbors are those solutions of exactly
Hamming distance 1 away, or exactly Hamming distance 2 away, etc. In different
terminology, f ’s neighbors are those solutions in Hamming neighborhood 1, Hamming
neighborhood 2, etc., of f . Larger Hamming distances produce neighbors that are
farther away, or more different, from f . The size of Hamming neighborhood k is
(

m

k

)

= m!
k!(m−k)!

. So for small values of k relative to m, as k increases, the neighborhoods
get bigger as well.

In applying Hamming neighborhoods to budget FLND problems we also need to
be aware that a given feasible solution may (and many will) have neighbors that are
not feasible because their total construction cost exceeds the budget. In the neighbor
operators we develop, we ensure that only feasible solutions are returned.

Algorithm 4.5 shows the pseudocode for a routine that produces a random neigh-
bor in Hamming neighborhood k of a given solution sol . The helper function Rand-

Combo(m, k), whose pseudocode is not shown, returns a random combination of k
elements selected from among m. There are

(

m

k

)

possibilities to choose from, so a ran-
dom number r between 1 and

(

m

k

)

is generated, and the rth combination of k elements,
according to a lexicographical ordering, is returned. The procedure for generating the
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rth combination of k elements from m is described in [M04] and has time complexity
O(m). Thus, RandCombo has time complexity O(m).

Algorithm 4.5 Random Hamming neighbor.

RandHamming(sol , k)

1 cc ←∞
2 while cc > B
3 do comb ← RandCombo(|M |, k)
4 nei ← Flip(sol , comb)
5 cc ← nei .totCC()
6 return nei

The helper function Flip(sol ,comb) flips the bits of the elements in sol selected by
the elements in the given combination comb. For example, suppose we have 8 potential
elements, k = 2, and comb = {2, 6}. If sol contains 3 of the 8 potential elements, as
indicated by the bit string 10010100 with three 1’s out of 8 bits, then Flip(sol ,comb)
produces a solution with elements indicated by the bit string 11010000, i. e., the 2nd
and 6th bits are flipped. Assuming k is constant, Flip runs in constant time.

The while loop in RandHamming ensures that the solution returned is within
budget. Ignoring the loop, RandHamming runs with time complexity O(m) (from
RandCombo) where m = |M |. The closer sol is to the “edge” of the feasible solution
space, the more likely random neighbors may not be feasible; however, it is always
possible to move “inward” to feasible neighbors, and in reality it shouldn’t take that
many iterations to do so. In our implementation of the procedure, we put an arbitrary
constant limit on the number of iterations on the loop, with an exception thrown if no
feasible solution was found. In all our tests, the exception was never thrown.

Algorithm 4.6 shows the pseudocode for a routine that finds and returns the best
neighbor (the one with lowest total travel cost) in Hamming neighborhood k of a given
solution sol .

Algorithm 4.6 Best Hamming neighbor.

BestHamming(sol , k)

1 besttc ←∞
2 for comb ← each combination of k elements from |M |
3 do nei ← Flip(sol , comb)
4 if nei .totCC() ≤ B & TotTC(nei) < besttc
5 then besttc ← TotTC(nei)
6 bestnei ← nei
7 return bestnei
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BestHamming iterates through all possible combinations of k elements from m =
|M | to examine every neighbor and find the best feasible neighbor. The iterator used,
shown as a for loop in the pseudocode, produces the next combination in constant time
assuming constant k. However, there are

(

m

k

)

combinations to check, which is O(mk)
for small k, and calculating the total travel cost for each one takes O(n2) time, where
n is the number of nodes. Thus BestHamming has time complexity O(mkn2), or
simply O(mk) if we assume k > 1 and m larger than n. Although this is polynomial for
constant k, in practical terms, using neighborhoods of larger k can take much longer
than using neighborhoods of small k. In our heuristics we do not use a k larger than 3
when finding the best Hamming neighbor.

4.3.2 Step Neighborhoods

In step neighborhoods, the neighborhood of a given feasible solution f includes all
those solutions that differ from f in at most step money’s worth of elements (assuming
construction costs are measured in monetary units). For example, suppose the total
construction cost of the elements in solution f is 600 monetary units. Then if step =
100, the neighbors of f include those solutions that differ from f in up to 100 monetary
units worth of elements.

In contrast to Hamming neighborhoods, which were based on a certain number of
elements moving in or out of a solution, step neighborhoods concern a certain value
of elements being swapped in and out of a solution. With varying construction costs
for each element, Hamming neighbors can have widely varying total construction costs
from each other. Step neighbors, on the other hand, will have approximately the same
construction costs (subject to the range of individual element costs), but possibly widely
varying numbers of elements from each other. For example, imagine an “expensive”
facility being swapped for multiple “inexpensive” links.

Step neighborhoods are not as nice to work with because the construction costs
may not be round numbers and it may not be easy or possible to find a grouping of
elements whose construction costs add up to a given step. Additionally, it is not clear
how to enumerate all the neighbors in a step neighborhood. For these reasons we do
not use step neighborhoods in heuristics that require finding the best neighbor in a
given neighborhood.

We do, however, have a routine that generates a random neighbor in a given step
neighborhood, shown in Algorithm 4.7. While it may not draw equally from all parts
of the step neighbor space, it still proved a useful neighbor operator. Using step
neighborhoods we can, in practice, have a much greater “reach” than we have with
Hamming neighborhoods. When limited to small k, the Hamming neighbor operators
give solutions that are fairly close neighbors. With step neighborhoods we can handle
a large step, allowing us to create neighborhoods with solutions that are more different
than the given solution.

Much of the work in the RandStep procedure is done by the helper function
RandEles(S,maxcc), which randomly selects a subset of elements from S, whose total
construction cost is not more than maxcc. The function Rand(S) simply returns a
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Algorithm 4.7 Random step neighbor.

RandStep(sol , step)

1 nei .init(sol .inst)
2 elesOut ← RandEles(sol .eles(), step)
3 ccIn ← B − (sol .totCC() − cc(elesOut))
4 elesIn ← RandEles(M \ sol .eles(), ccIn)
5 nei .add(elesIn ∪ sol .eles() \ elesOut)
6 return nei

RandEles(S,maxcc)

1 cc ← 0
2 R← ∅
3 while cc ≤ maxcc
4 do e← Rand(S)
5 R← R ∪ {e}
6 cc ← cc +ce

7 S ← S \ {e}
8 R← R \ {e}
9 return R

single random element selected from S. RandEles works by selecting random elements
from S one by one until the construction cost of the selected elements exceeds maxcc,
and the last selected element is not included in the returned set. In order not to select
the same element twice, once an element is selected, it is removed from the local copy
of S. If we assume that removing an element takes O(|S|) time, then RandEles has
time complexity O(|S|2), and RandStep has time complexity O(m2) where m = |M |
is the number of potential elements.

4.4 Local Search

The FLND local search heuristic is a standard local search that starts from a given
solution and searches for its best neighbor, moving to the neighbor found and repeating
the process until no more improvement is possible. Because we must find the best
neighbor, this heuristic is implemented with only Hamming neighborhoods.

The initial solution to the given problem instance is generated randomly according
to the procedure shown in Algorithm 4.8. RandInitSol has a little bit of logic to
it: First it randomly adds facilities to the solution, until the budget is reached. Then
it randomly adds links with any remaining money, the assumption being that links
typically cost less than facilities. In tests, this approach worked better than adding
elements completely randomly. In most of our test instances there are a greater number
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Algorithm 4.8 Random initial solution.

RandInitSol(finst)

1 sol .init(finst)
2 facs ← RandEles(Jp, B)
3 cc ← cc(facs)
4 links ← RandEles(Lp, B − cc)
5 sol .add(facs ∪ links)
6 return sol

of possible links that can be added than facilities (as in a graph there can be more edges
than nodes) and if no preference is given to facilities, the initial solutions too often end
up with all or mostly links. An additional intuitive reason for the preference given to
facilities is that facilities have potentially more “power” than links: a facility at a given
node reduces the travel cost to 0 for demand at that node, but a link always has a
positive travel cost. In Chapter 7 we explore this relationship in more detail in a case
study.

RandInitSol is used to generate initial solutions for heuristics in upcoming sec-
tions as well. It uses the RandEles procedure introduced in the previous section and
has time complexity O(m2), m = |M |.

The local search algorithm, shown in Algorithm 4.9, performs a local search starting
from the given initial solution. As can be seen in the pseudocode, neighborhoods of
Hamming distance 2 are used, allowing two additions, two subtractions, or one swap
between neighbors. Each iteration of the local search loop has time complexity O(m2);
it is difficult to know how many iterations may be required. In the next section we
present results, including run times, of the basic local search heuristic along with the
simulated annealing heuristics.

Algorithm 4.9 Local search heuristic.

LocalSearch(finst , sol)

1 nei ← BestHamming(sol , 2)
2 profit ← TotTC(sol)−TotTC(nei)
3 while profit > 0
4 do sol ← nei
5 nei ← BestHamming(sol , 2)
6 profit ← TotTC(sol)−TotTC(nei)
7 return sol
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4.5 Simulated Annealing

One of the disadvantages of the basic local search is that it can get stuck at a local
minimum with no way to get out. Thus a number of heuristics have been developed
that are variations on local search and provide some means of escaping local minima.
Simulated annealing is one of these.

The idea behind simulated annealing comes from the physical process of annealing,
in which a solid (usually a metal or glass) is heated to a given temperature and then
slowly cooled in order to achieve an optimal crystal structure.

As an algorithm, we have a parameter representing the temperature, which has
some initial high value and is decreased according to a temperature reduction function.
Looping continues until the temperature falls below a predetermined point, or some
other stopping condition is met. In each iteration through the loop a random neighbor
of the current solution is selected. If the neighbor is better, it becomes the current
solution. If the neighbor is not better, it becomes the current solution anyway according
to a probability that is calculated based on the temperature. For a temperature t, the

commonly used probability is e−
cost(neighbor)−cost(solution)

t , where cost is the quantity we
want to minimize, the objective value. At higher temperatures, it is more likely that a
neighboring solution will be accepted despite being worse than the current solution. In
this way, the solution jumps around a lot initially, and as the temperature decreases, it
settles down. For a more detailed explanation of simulated annealing, see, for example,
[H03].

In applying simulated annealing to budget FLND, we use both step and Hamming
neighborhoods since only random (and not best) neighbors need be generated. We
tried Hamming 2, 3, and 4 neighborhoods, and the results were nearly the same, so we
settled on Hamming 2. The step we use in step neighborhoods is equal to the maximum
construction cost of a single element, thus ensuring that any element can be swapped
in or out.

The temperature reduction function we use is f(t) = t ∗ 0.99. Initially we want to
allow all neighbor transitions, regardless of whether the neighbor is better or not, thus
we set the initial temperature to the maximum difference in objective value between
two neighboring solutions. We estimate this value by generating a fixed number of
random neighbors of the initial solution and taking the maximum difference found. We
run 100 iterations at each temperature value before applying the temperature reduction
function, and we terminate when the temperature falls below 0.5. These parameters
can be customized; the values given here were determined after a large number of test
runs using different values.

The FLND simulated annealing heuristic is shown in Algorithm 4.10. We use a ran-
domly generated feasible solution as the initial solution passed into the routine. Though
not shown in the pseudocode, we keep track of the best solution found throughout the
process. Since a solution may be abandoned for a neighbor that is not as good, it
would otherwise be possible to end up with a final solution that is not as good as some
previously visited solution.

The pseudocode shown uses Hamming neighborhoods; the step neighborhoods ver-
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sion, SimAnn-Step, differs only in that it makes a call to RandStep instead of
RandHamming. The worst case time complexity of each iteration through the loop
is dominated by the call to O(n2) TotTC in the Hamming version and O(m2) Rand-

Step in the step version, where n is the number of nodes and m = |M | is the number
of potential elements.

Algorithm 4.10 Simulated annealing heuristic.

SimAnn-Ham(finst , sol)

1 t←initial temperature
2 cnt ← 0
3 while t > 0.5
4 do nei ← RandHamming(sol , 2)
5 if TotTC(nei) < TotTC(sol)
6 then sol ← nei
7 else r ← random real number between 0 and 1 inclusive

8 if r < e−
TotTC(nei)−TotTC(sol)

t

9 then sol ← nei
10 cnt++
11 if cnt ≥ 100
12 then t← t ∗ 0.99
13 cnt ← 0
14 return sol

Figure 4.3 shows the quality of solutions produced by the local search heuristic from
the previous section and the two simulated annealing heuristics. Of the three, the local
search heuristic performed best for most instances, averaging 2.5% over optimal across
all the instances. Simulated annealing with step neighborhoods was a close second,
giving solutions that averaged 2.6% over optimal. Simulated annealing with Hamming
neighborhoods didn’t do as well, averaging 7.9% over optimal, and producing solutions
more than 20% over optimal in three cases. Table 4.3 at the end of the chapter presents
these results in tabular format.

Figure 4.4 shows the run times of the three heuristics. These heuristics take much
longer than the few seconds of the greedy and custom heuristics, but still less than 2
minutes for the most part on our test platform (see Appendix A). As we also saw with
the greedy additive heuristic, the local search run times depend heavily on the number
of potential elements that can be added to the solution. This makes sense because
at each iteration a search is done of every combination of 2 elements (for Hamming
distance 2) from the set of potential elements.

We also tried using a temperature reduction factor of 0.9999 in the simulated an-
nealing heuristics, which we would expect to take much longer but also to produce
better results. In this case, each run of the heuristic took two to three hours on our
test platform, much longer than any of the other heuristics in this chapter. The results
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Figure 4.3: Results from local search and simulated annealing heuristics, showing per-
cent over optimal of the solutions produced.
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heuristics.
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Figure 4.5: Comparison of simulated annealing heuristic results using f(t) = t ∗ 0.99
versus f(t) = t ∗ 0.9999 temperature reduction function.

obtained, shown in Figure 4.5, were somewhat better than with temperature reduction
factor 0.99, averaging 6.7% (as opposed to 7.9%) over optimal for the Hamming version
and 1.2% (as opposed to 2.6%) over optimal for the step version.

4.6 Variable Neighborhood Search Heuristics

Like simulated annealing, variable neighborhood search is based on a local search,
with added mechanisms to avoid getting stuck in local minima. The idea is to use
various different neighborhoods rather than a single kind of neighborhood. When a local
minimum is reached, switch to a different neighborhood to try to escape. Any series
of neighborhoods may be used, but the intent is that the neighborhoods be expanding.
Then if the heuristic gets stuck in one neighborhood, the next neighborhood will give
access to neighbors that are farther away, with the hope of jumping out of the local
minimum.

Variable neighborhood search (VNS) is a relatively more recent metaheuristic, in-
troduced by Hansen and Mladenović in 1997 [MH97a]. They have developed a family
of heuristics based on the idea of variable neighborhoods. For more detailed descrip-
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tions see [HM01, HM03, HMP01]; we will only present those variants that we have
applied to budget FLND, namely, basic variable neighborhood search, reduced variable
neighborhood search, and variable neighborhood descent.

Algorithm 4.11 describes the basic outline of all three of the VNS heuristics. The
function Neighbor in line 4 is a placeholder for a specific neighbor function: In
reduced variable neighborhood search and basic VNS, a random neighbor in the kth

neighborhood is obtained, e.g., by calling RandHamming. In variable neighborhood
descent, the best neighbor in the kth neighborhood is found. Line 5, the local search,
is present only in basic VNS.

The main loop continues as long as improved solutions continue to be found, or
alternatively, until a limit on the number of iterations with no improvement is reached.
Neighborhoods are successively explored, starting with the first, or innermost, neigh-
borhood, k = 1, and proceeding until the last, kmax. At each neighborhood, a neigh-
boring solution is generated and if it is better, it is kept and k is optionally reset to 1.
If no better solution is found, k is increased and the algorithm moves on to the next
neighborhood.

Algorithm 4.11 Variable neighborhood search outline.

VNS(finst , sol)

1 while improvement continues
2 do k ← 1
3 while k < kmax

4 do nei ← Neighbor(sol , k)
5 [nei ← LocalSearch(finst , nei)]
6 if TotTC(nei) < TotTC(sol)
7 then sol ← nei
8 [k ← 1]
9 else k ← k + 1

10 return sol

In each of the variable neighborhood search heuristics that we have implemented,
we use a randomly generated solution (RandInitSol, Algorithm 4.8) as the initial
solution. Because these algorithms continue as long as improvement is made, the time
complexity is difficult to determine.

4.6.1 Basic Variable Neighborhood Search

In the basic variable neighborhood search, at each iteration a random neighbor in
the kth neighborhood is generated and a local search is performed starting with this
neighbor. The local search can be any local search heuristic and does not need to use
the same neighborhoods as the variable neighborhood search. In our case, we use the
local search described in section 4.4.
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Algorithm 4.12 shows the pseudocode for BasicVNS-Ham, the basic variable
neighborhood search using Hamming neighborhoods. The series of neighborhoods used
is determined by k: neighborhood k uses Hamming distance k to find neighbors. We
use a kmax of 4 and continue until there have been 10 iterations with no improve-
ment. Given our problem sizes, the kmax of 4 is the largest we can go and be able to
store values up to

(

m

kmax

)

in a standard long integer. The number of iterations with
no improvement, 10, was selected somewhat arbitrarily, but with the intent that good
solutions not be missed while at the same time the heuristic not take unreasonably
long (no more than an hour) to run.

In the version that uses step neighborhoods, BasicVNS-Step (not shown), neigh-
borhood 1 has a step equal to the maximum construction cost of an element, maxcc,
and successive neighborhoods go up in step by half that amount. That is, the step for
neighborhood k is maxcc + (0.5∗maxcc ∗ (k−1)). With step neighborhoods, neighbor-
hood k is farther away from the current solution than with Hamming neighborhoods,
and in this case we use a kmax of 3.

Algorithm 4.12 Basic variable neighborhood search heuristic.

BasicVNS-Ham(finst , sol)

1 noImprove ← 0
2 while noImprove < 10
3 do k ← 1
4 improved ← false

5 while k < 4
6 do nei ← RandHamming(sol , k)
7 nei ← LocalSearch(finst , nei)
8 if TotTC(nei) < TotTC(sol)
9 then sol ← nei

10 k ← 1
11 improved ← true

12 else k ← k + 1
13 if improved
14 then noImprove ← 0
15 else noImprove++
16 return sol

Figure 4.6 graphs the solution quality of the Hamming and step basic VNS heuris-
tics. They both find the optimal solution for many of the “easier” problems, but clearly
the step version does better overall than the Hamming version, averaging only 0.6%
over optimal across the problem instances, to Hamming’s 2.1%.

In Figure 4.7 we see the solve times. In contrast with the previous heuristics pre-
sented, these heuristics have run times in the multiple minutes, even surpassing an
hour in two cases. The problem instance SA0, which goes off the chart, required nearly
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Figure 4.6: Results from basic variable neighborhood search heuristics, showing percent
over optimal of the solutions produced.

8000 seconds, or 133 minutes, on average (across the three a, b, and c instances) for
BasicVNS-Step to produce a solution. This lengthy run time, however, is worthwhile
in the sense that these are more difficult instances, and BasicVNS-Step produced
far better solutions that the other heuristics.

The step version of basic VNS generally has much longer running times than the
Hamming version, despite using fewer neighborhoods. An investigation revealed that
the Hamming and step versions of basic VNS go through approximately the same
number of iterations. Thus they make approximately the same number of calls to
the local search routine, which is where the bulk of the run time is spent. However,
the local search itself goes through about five times as many iterations in step VNS
as in Hamming VNS. (The same local search procedure is used in both step VNS and
Hamming VNS.) What this shows is that the random step neighbors that are generated
as the starting point for the local search are significantly farther from a local minimum
than the random Hamming neighbors.

4.6.2 Reduced Variable Neighborhood Search

Reduced variable neighborhood search (RVNS) is reduced in the sense that it only
selects random neighbors; the local search step is not present. It has a very fast
running time in comparison to basic VNS, but tends to produce solutions that are not
as good. The pseudocode for RVNS is shown in Algorithm 4.13. We use a kmax of
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Figure 4.7: Comparison of solving times using basic variable neighborhood search.

4 for both Hamming and step neighborhoods and continue until there have been 100
iterations without any improvement. The series of Hamming and step neighborhoods
are determined in the same manner as in the basic VNS heuristic.

The results of the two RVNS heuristics are shown in Figure 4.8. Interestingly,
RVNS-Ham, averaging 4.9% over optimal, does much better than RVNS-Step with
11.2% over optimal on average. This contrasts with basic VNS as well as the two
simulated annealing heuristics, in which step neighborhoods were the decided winner.
Clearly the choice of neighbor operator is important, and different operators may work
better with different heuristics.

The run times of the RVNS heuristics are shown in Figure 4.9. Like the greedy and
custom heuristics, RVNS is fast, with run times no more than a few seconds on our
test platform.

4.6.3 Variable Neighborhood Descent

While reduced VNS generates only random neighbors, variable neighborhood descent
(VND) generates only best neighbors. VND is the natural extension of a basic local
search to using multiple neighborhoods. It performs a local search on the innermost
neighborhood, and when a local minimum is reached, it moves on to the next neigh-
borhood, remaining in that neighborhood until no more improvement is possible, then
moving on to the next, and so on.

Since we need to find the best neighbor in this heuristic, we have only one version,
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Algorithm 4.13 Reduced variable neighborhood search heuristic.

RVNS-Ham(finst , sol)

1 noImprove ← 0
2 while noImprove < 100
3 do k ← 1
4 improved ← false

5 while k < 4
6 do nei ← RandHamming(sol , k)
7 if TotTC(nei) < TotTC(sol)
8 then sol ← nei
9 k ← 1

10 improved ← true

11 else k ← k + 1
12 if improved
13 then noImprove ← 0
14 else noImprove++
15 return sol
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Figure 4.8: Results from reduced variable neighborhood search heuristics, showing
percent over optimal of the solutions produced.
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Figure 4.9: Comparison of solving times using reduced variable neighborhood search.

using Hamming neighborhoods. We use a kmax of 3. A larger kmax could give greater
possibilities for finding a better solution, but given the size of our problem instances,
3 was the highest value that would keep running times “reasonable.” The pseudocode
is shown in Algorithm 4.14.

The outer while loop that runs as long as there is improvement may not be necessary,
depending on the neighbor operator. Once a cycle through the neighborhoods 1 to kmax

is complete, there is no better neighbor in the kmax neighborhood. It may be unlikely
that there is a better neighbor in the k = 1 or any k < kmax neighborhood.

Figure 4.10 shows the VND solution quality results along with the basic VNS results.
In terms of both solution quality and run time, VND falls between the basic VNS
Hamming and step heuristics, averaging 2.0% over optimal, just slightly better than
BasicVNS-Ham. Performance on individual problem instances varies greatly among
the three heuristics.

In Figure 4.11, all five VNS heuristics are shown together, and one can clearly
see that the basic VNS heuristic with step neighborhoods produces the best solutions.
Table 4.4 at the end of the chapter presents these results in tabular format.

4.7 Comparison and Discussion

Table 4.1 summarizes the results from each of the heuristics we have presented for
budget FLND problems. The average solution quality over all problem instances, as
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Algorithm 4.14 Variable neighborhood descent heuristic.

VND(finst , sol)

1 improvement ← true

2 while improvement
3 do k ← 1
4 improvement ← false

5 while k < 3
6 do nei ← BestHamming(sol , k)
7 if TotTC(nei) < TotTC(sol)
8 then sol ← nei
9 improvement ← true

10 else k ← k + 1
11 return sol
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Figure 4.10: Results from variable neighborhood descent along with basic VNS, showing
percent over optimal of the solutions produced.
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Figure 4.11: Results from all variable neighborhood search heuristics, showing percent
over optimal of the solutions produced.

percentage over the optimal solution, is given, along with the worst performance for
each heuristic. The heuristics are ranked from best average to worst average. Basic
VNS with step neighborhoods is the winning heuristic with the best average case as well
as worst case performance in terms of solution quality. Figure 4.12, though somewhat
crowded, shows the solution quality of all heuristics on each problem instance on a
single graph.

The neighbor operator used plays an important role in the performance of those
heuristics that are based on neighborhoods. In general, the heuristics using step neigh-
borhoods do better than their counterparts that use Hamming neighborhoods, with
RVNS being the exception. The local search and VND heuristics, however, which have
only Hamming versions, also do relatively quite well. Interesting future work could be
to develop alternate step neighbor generators and alternate neighbor operators alto-
gether.

Run time can be a consequential factor in selecting a heuristic, and the one deliv-
ering the highest quality results may not be the best overall for a given situation if the
time requirements are too high. Table 4.2 shows the average and longest run times
of each heuristic in seconds on our test platform. While the exact run times are less
important as they can vary greatly depending on the platform, we can see how the
heuristics compare to each other. In the table they are ranked from fastest to slowest.

Figure 4.13 shows the run times of all heuristics plotted on one graph with a loga-
rithmic time scale. Here we can see three groupings of the heuristics in terms of time:
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Table 4.1: Comparison of average and worst case solution quality (percent over optimal)
for all heuristics.

Heuristic Average Worst Case

Basic VNS Step 0.6% 3.2%

VND 2.0% 9.7%

Basic VNS Hamming 2.1% 10.2%

Local Search 2.5% 10.0%

Sim Ann Step 2.6% 11.4%

Custom 4.7% 17.5%

RVNS Hamming 4.9% 15.3%

Sim Ann Hamming 7.9% 37.4%

Greedy Sub 8.4% 24.9%

Greedy Add 9.2% 25.9%

RVNS Step 11.2% 22.8%

Table 4.2: Comparison of average and longest solving times for all heuristics, shown in
seconds.

Heuristic Average Longest

Custom 0 0

Greedy Sub 0 1

RVNS Step 1 2

Greedy Add 2 3

RVNS Hamming 2 5

Local Search 60 141

Sim Ann Step 66 76

Sim Ann Hamming 88 105

Basic VNS Hamming 484 1192

VND 765 3593

Basic VNS Step 1859 7992
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Figure 4.12: Results from all heuristics shown on one graph, percent over optimal of
the solutions produced.
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Figure 4.13: Comparison of solving times of all heuristics shown on one graph.

those that take at most a few seconds (greedy, custom, and RVNS), those with run
times from multiple seconds up to a couple of minutes (simulated annealing and local
search), and those requiring multiple minutes up to significant portions of an hour, or
more (basic VNS and VND).

In the fast group, the custom heuristic has the best solution quality; in the middle
group, the local search; and in the slowest group, step basic VNS, which is the slowest
overall and also produces the highest quality results overall.
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Table 4.3: Results from greedy, custom, local search, and simulated annealing heuristics, percent over optimal.

Problem Greedy Add Greedy Sub Custom Local Search Sim Ann Step Sim Ann Hamming

228 1.6% 0.2% 0.1% 0.0% 0.4% 0.0%

2A8 1.6% 2.0% 4.6% 0.4% 0.4% 0.0%

C28 0.4% 2.2% 1.9% 0.4% 0.5% 0.0%

CA8 2.8% 1.5% 3.5% 0.2% 0.4% 6.3%

S28 0.6% 3.5% 1.0% 0.0% 0.1% 0.0%

SA8 4.4% 3.6% 0.1% 0.0% 0.0% 20.2%

222 5.2% 2.6% 2.3% 0.0% 2.2% 0.0%

2A2 7.7% 10.5% 2.5% 2.0% 2.8% 2.8%

C22 7.9% 6.4% 0.3% 0.2% 0.3% 0.1%

CA2 4.6% 5.0% 2.2% 0.0% 1.1% 8.4%

S22 4.8% 6.1% 4.7% 2.4% 2.8% 2.3%

SA2 2.0% 4.6% 1.0% 0.8% 0.3% 24.1%

220 25.9% 18.4% 10.5% 10.0% 6.8% 10.0%

2A0 17.5% 10.7% 3.0% 3.2% 2.4% 2.1%

C20 20.2% 19.6% 10.6% 2.8% 4.0% 14.0%

CA0 25.0% 12.3% 7.9% 8.3% 7.1% 6.6%

S20 14.6% 16.7% 10.5% 8.3% 4.4% 8.2%

SA0 18.5% 24.9% 17.5% 6.9% 11.4% 37.4%
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Table 4.4: Results from variable neighborhood search heuristics, percent over optimal.

Problem Basic VNS Hamming Basic VNS Step VND RVNS Hamming RVNS Step

228 0.0% 0.0% 0.0% 0.1% 6.0%

2A8 0.0% 0.0% 0.5% 1.3% 10.8%

C28 0.0% 0.0% 0.0% 0.7% 6.0%

CA8 0.0% 0.0% 0.0% 2.5% 7.2%

S28 0.0% 0.0% 0.0% 1.1% 4.1%

SA8 0.0% 0.0% 0.0% 4.8% 10.9%

222 0.0% 0.0% 0.0% 2.2% 11.1%

2A2 2.5% 0.1% 0.0% 3.8% 9.7%

C22 0.0% 0.0% 0.1% 0.1% 6.5%

CA2 0.0% 0.0% 0.6% 3.1% 13.5%

S22 0.0% 0.0% 2.3% 2.6% 9.4%

SA2 0.0% 0.0% 0.0% 0.7% 11.2%

220 7.4% 2.1% 7.5% 11.2% 18.0%

2A0 1.9% 2.1% 1.1% 4.4% 9.4%

C20 7.6% 3.2% 9.7% 15.3% 16.6%

CA0 3.4% 0.0% 3.4% 9.0% 16.9%

S20 5.0% 3.1% 9.1% 11.4% 11.4%

SA0 10.2% 0.3% 1.4% 13.2% 22.8%
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Chapter 5

Lower Bound Approaches

The heuristics presented in the last chapter provide methods for finding an upper bound
on the optimal solution to an FLND problem. In this chapter we explore approaches
to finding a good lower bound on the optimal solution to an FLND problem.

Recall the two IP formulations presented in Chapter 3: the one introduced by
Melkote and Daskin [MD01a] in which clients are disaggregated, called D; and the one
we introduced in which clients are aggregated, called A. We saw that the lower bounds
obtained by solving the LP relaxation were much better for D as compared with A.
Table 5.1 summarizes the information presented in various figures from Chapter 3. It
shows the average gap between the LP relaxation solution and the optimal solution
over all problem instances in the test suite, for budget FLND and fixed charge FLND.
The 100% gap for formulation A on budget FLND problems means that the objective
value when solving the LP relaxation is 0.

Simply put, the goal in this chapter is to reduce those gaps. We concentrate on
budget FLND since it is the “harder” problem in terms of the gaps, as demonstrated
in Table 5.1. We examine each IP formulation separately and develop additional valid
inequalities and related separation routines that improve the lower bounds. At the end
of the chapter we compare the best bounds of each formulation.

Table 5.1: Summary of LP relaxation gaps of A and D: averages over all instances in
the test suite.

Budget Fixed Charge

D 5.8% 0%

A 100% 94%
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5.1 Improving the LP Relaxation of the Disaggre-

gate IP

The disaggregate IP formulation is already fairly tight, but there is room for improve-
ment. The inequalities we developed for the aggregate IP (which occurred first chrono-
logically, though is presented in the next section) do not help with the disaggregate IP.
However, by examining fractional solutions to small problems we were able to come up
with some valid inequalities that cut off some of these fractional solutions.

5.1.1 Knapsack Cuts

We discovered that the fractional solutions to the LP relaxation of D often violated
knapsack inequalities relative to the budget. For example, in one specific 4-node prob-
lem instance, the fractional solution built two facilities and one link completely (variable
value 1) and 0.829 of a third facility. Given the budget and construction costs, however,
it would only be possible to build three of the four elements. Thus we could add an
inequality such as

z1 + z3 + z4 + (y2,3 + y3,2) ≤ 3

where z1, z3, z4, and (y2,3 + y3,2) represent whether or not each of the four elements are
built. This is the basic idea of the knapsack cuts for budget FLND. At this point, the
reader is encouraged to review formulation D, presented in Section 3.3.1, as we use the
same variables and notation in the current discussion. Recall in particular that binary
variables zi represent whether or not a facility is built at node i and binary variables
yij represent whether or not a link is built between nodes i and j.

To generate all possible knapsack inequalities is not practical or desirable: if M
is the set of potential facilities and links, it would involve examining every set in the
power set of M , of which there are 2|M |. While it may be possible with some tricks to
avoid having to examine every set, we know of no method that is efficient when |M | is
large. A better strategy is to try to find a maximally violated cut.

Our knapsack cut separation routine works based on a fractional solution and selects
a subset of the potential links and facilities to base the cut on. A knapsack cut is
generated involving only those z and y variables that represent selected elements. The
basic structure of the routine is shown in Algorithm 5.1.

We tried four different strategies for selecting the z and y variables, and one was
the clear winner. We also implemented two different ways of finding a knapsack-style
cut on the selected variables, one with good results, and the other with results not
quite as good, but using less time and memory.

The variable selection strategies we tried were the following:

1. Vv: Select the n variables with the highest value (integer or fractional) in the
fractional solution.

2. Cc: Select the n variables with highest associated construction cost.
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Algorithm 5.1 Knapsack separation routine.

KnapsackSeparation(fracsol)

1 zy ← SelectZYs(fracsol)
2 cut ←MakeCut(zy)
3 if cut is violated by fracsol
4 then add cut

x∗

Pq

Figure 5.1: The target cut is the facet of polytope P that is crossed by a line segment
connecting the fractional solution x∗ with a point q inside P .

3. Vvcc: Select the n variables with the highest product of variable value (integer
or fractional) multiplied by associated construction cost.

4. Rand: Randomly select n variables from among those with positive value (integer
or fractional).

Strategy Vvcc produced the best cuts, i. e., most violated and leading to greatest
gap closure. This is also a good strategy intuitively because it measures the amount
that each element currently contributes toward the budget (in the current fractional
solution), and we would expect a cut involving these variables to be most violated.

5.1.1.1 Target Cut Method

Once the variables are selected, we generate a knapsack cut (the call to MakeCut

in Algorithm 5.1) via either the target cut method or the ones plus method.
The target cut method uses target cuts as described by Buchheim, Liers, and Oswald
[BLO08], which are similar to local cuts as given by Cook et al. [ABCC01].

In the target cut method, shown in Algorithm 5.2, we first generate all feasible
solutions (those within budget) on the selected variables. This is done by considering
every set in P(X), the power set of X, where X is the set of selected variables. If the
sum of the construction costs of the selected elements (i. e., the elements associated
with the selected variables) in the subset is within the budget, then the solution is
feasible.

Assuming n variables are selected, i. e., |X| = n, the feasible solutions can be
thought of as points in n-dimensional space. These points are collected in set F in the



68 CHAPTER 5. LOWER BOUND APPROACHES

algorithm pseudocode, and are passed, along with the fractional solution, to the target
cut procedure Tcut by Buchheim, Liers, and Oswald. Figure 5.1 depicts the cut that
is found and returned by their procedure. They consider the polytope, P , formed by
the convex hull of the feasible solution points, and the fractional solution x∗. The cut
returned is the facet hit by a line segment connecting x∗ to some point q inside the
polytope. In our case, we use the center of mass of the polytope for q. They solve
an LP to obtain this facet. For a more detailed description, see their paper [BLO08].
Whenever the fractional solution is outside the polytope, a violated cut is found.

Algorithm 5.2 Target cuts method of making a knapsack cut.

TargetCut(zy , fracsol)

1 F ← ∅
2 for each set S ∈ P(zy)
3 do if cc(S) ≤ B
4 then F ← F ∪ {S}
5 cut ← Tcut(fracsol , F )
6 return cut

Since we need to examine the elements of the power set of the set of selected
variables, there are practical limitations on the number of variables we can select.
In our implementation, we limit the number of selected variables to at most 19, the
largest number that our test platform could handle for the problems in our test suite.
See Appendix A for a description of the test suite and test platform.

While the most intuitive knapsack cuts, such as the four-variable example given
earlier, have coefficients no larger than 1, this is not true of many of the cuts generated
by the target cut routine. The cuts do tend to have a structure, with similar coefficients
for variables whose associated construction costs are similar, and higher construction
costs correlated with larger coefficients. The following is an actual target cut returned
on one of the test suite problems (problem 220a):

10z3 + 9z31 + 9z21 + 9z29 + 9z27 + 9z12 + 12z40 + 10z24 + 14z11 + 9z7

+ 3y18,3 + 10z36 + 9z22 + y28,3 + 10z19 + y13,23 + y32,23 ≤ 52

5.1.1.2 Ones Plus Method

The ones plus method is an attempt to generate knapsack style cuts in a more efficient
manner, in terms of both time and memory. Before introducing the ones plus method,
we introduce its predecessor OnesCut, shown in Algorithm 5.3, which is used as a
starting point for ones plus cuts.

OnesCut builds a valid knapsack cut with coefficients no greater than 1. It loops
through the selected variables in the order given, with the assumption that earlier
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Algorithm 5.3 Ones cut, knapsack cut with all 1 coefficients.

OnesCut(zy)

1 Initialize cut with 0 coefficients
2 ccSum ← 0
3 S ← ∅
4 phase1 ← true

5 for each x ∈ zy
6 do if phase1
7 then � Phase 1
8 ccSum ← ccSum +cc(x)
9 cut . coeff [x]← 1

10 S ← S ∪ x
11 if ccSum > B
12 then cut . rhs ← |S| − 1
13 phase1 ← false

14 else � Phase 2
15 newcut ← cut
16 newcut . coeff [x]← 1
17 if OnesValid(newcut)
18 then cut . coeff [x]← 1
19 return cut

variables should be more likely to go into a cut than later variables. In our implemen-
tation, the variables are ordered based on their selection by strategy Vvcc. There are
two distinct phases during the loop: In phase one, each variable is added to the cut
with coefficient 1 until the total construction cost of the variables in the cut exceeds
the budget. At this point the RHS is set and the algorithm moves on to phase two,
which continues in the same loop. If there are n variables that have been added at the
end of phase 1, then the value of the RHS is set to n−1. At this stage, we clearly have
a valid knapsack cut: Since the n elements with 1 coefficient go over budget, no more
than n− 1 can be in a feasible solution.

In phase two we try to add more variables to the cut without changing the RHS
while maintaining the cut’s validity. Continuing in the loop, the remaining variables
are examined and added to the cut with coefficient 1 if doing so does not make the
cut invalid. The validity test is performed in line 17 with the call to OnesValid,
whose pseudocode is not shown. We can add a variable to the cut and it remains valid
as long as the total construction cost of the rhs +1 variables in the cut with lowest
individual construction costs, is still over budget. In this case, checking validity can
be done in linear time. The entire OnesCut procedure has time complexity O(n2),
where n = | zy | is the number of selected variables.

The ones plus method, shown in Algorithm 5.4, starts with a ones cut and tries to
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Algorithm 5.4 Ones plus method of making a knapsack cut.

OnesPlus(zy)

1 cut ← OnesCut(zy)
2 r ← 0
3 while r ≤ | zy |
4 do newcut ← cut
5 newcut . rhs ++
6 newcut . coeff [zy [r]] + +
7 if IncCoeffs(newcut)
8 then cut ← newcut
9 r ← 0

10 else r + +
11 return cut

IncCoeffs(cut)

1 incd ← false

2 for each x ∈ zy
3 do cut . coeff [x] + +
4 if PossbValid(cut)
5 then incd ← true

6 else cut . coeff [x]−−
7 if incd
8 then if !Valid(cut)
9 then incd ← false

10 return incd
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increase the coefficients and the RHS further, such that the violation of the cut by the
fractional solution is increased.

OnesPlus loops through each selected variable. During one iteration, it increments
the RHS and the coefficient of the current variable, creating a new valid cut. This new
cut itself will not be any more helpful, but the increase of the RHS may allow other
coefficients to be increased as well. This is attempted in the procedure IncCoeffs. If
successful, we keep the cut and go back to the first variable in the list. If unsuccessful,
we revert back to the original cut and move on to the next variable. If necessary,
provisions for avoiding an infinite loop may be added, such as a limit on the RHS.

IncCoeffs increases the coefficient of each selected variable by at most 1. It loops
through the variables, incrementing the coefficient, and keeping the change only if the
cut remains possibly valid, as determined by the call to PossbValid (pseudocode not
shown). The check for possible validity is a heuristic with linear time complexity that
quickly detects some invalid cuts, but may return true for others. If PossbValid

returns false, the cut is definitely invalid, and if it returns true, the cut is only possibly
valid. PossbValid works in a similar fashion to OnesValid, but instead of looking at
the rhs +1 elements with smallest construction cost, it looks at the rhs +1 coefficient-
weighted elements with smallest division of construction cost by coefficient. If the sum
of the construction costs of these elements is within budget, then the cut is invalid. If
not, it might be valid.

After the loop completes, IncCoeffs checks for final validity by calling Valid,
which is an exact check, returning true if and only if the given cut is valid. Valid

works by looping over the power set of the set of variables in the cut with positive
coefficients. There need exist only one subset with the following property to make the
cut invalid: the total construction cost associated with the variables is within (less than
or equal to) the budget and the sum of their coefficients is greater than the RHS. The
former condition indicates the existence of a feasible solution where all the variables in
the subset are 1, and the latter condition indicates that this solution would be cut off
by the given cut, and thus the cut is invalid. Due to its exponential run time, Valid

is not used in the loop.

As a tweak in OnesPlus, though not shown in the pseudocode, we add the following
in our implementation: After the main while loop completes, we force a coefficient
increase of 1 on the first variable and the RHS and repeat the whole while loop again.
This was found to sometimes produce better cuts. As in our target cuts method, we
limit the number of variables to at most 19 in the ones plus implementation. Finally,
it should be noted that we keep track of the most violated cut encountered throughout
the process, and that is the one returned at the end.

5.1.2 Results

In Section 3.3 we examined the gaps between optimal solutions and lower bounds
provided by solving the LP relaxations of IP formulations A and D. The lower curve
in Figure 3.3 showed gaps for formulation D on budget FLND problems, ranging from
0.5% to just under 11%. To improve these lower bounds, we adopt the cutting plane
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Figure 5.2: Comparison of lower bounds obtained from solving the root node using
the disaggregate IP plus various cuts, measured in percentage gap between the lower
bound and optimal solution.

approach: we take the LP relaxation solution and employ our separation routine to
generate cuts, which we then add to the formulation, and solve it again. This is done
repeatedly until no more useful cuts are found. In fact, what we are doing is solving
the root node (only) in a branch-and-cut tree.

In the implementation, we take advantage of the CPLEX branch-and-cut procedure,
allowing it to manage most of the branch-and-cut details. We plug in our separation
routine via a cut callback and solve only the root node.

Figure 5.2 shows the lower bounds obtained by solving the disaggregate LP relax-
ation (D) alone, adding the generic cuts provided in CPLEX, adding knapsack cuts
using the ones plus method, and adding knapsack cuts using the target cut method.
Knapsack cuts using the target cut method performs the best, giving the best lower
bound for all problem instances except two (028 and SA0), and even obtaining the
optimal solution in a small number of cases. Table 5.5 at the end of the chapter gives
these results in tabular form.

In tests not shown, we also tried including both ones plus knapsack cuts and target
knapsack cuts, but this did not improve on the target knapsack cuts alone.

Table 5.2 summarizes the results across all problem instances. The knapsack target
cuts close the gap from the LP relaxation lower bound an additional 48% and clearly
outperform the CPLEX cuts as well as the knapsack ones plus cuts. The knapsack
ones plus cuts perform a little better than the CPLEX cuts.
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Table 5.2: Summary of root node lower bound gap results using formulation D plus
cuts. The last column shows the average gap closure achieved by adding cuts to the
LP relaxation.

Low Average High Gap Closure

D 0.53% 5.79% 10.27%

D + CPLEX cuts 0% 3.89% 9.03% 32.8%

D + knapsack ones plus 0.05% 3.52% 9.01% 39.2%

D + knapsack target 0% 3.02% 8.31% 47.8%

When solving on our test platform (see Appendix A for details) the run times using
CPLEX cuts averaged about 30 seconds; using knapsack ones plus cuts, just under 6
minutes; and using knapsack target cuts, around 70 minutes.

5.2 Improving the LP Relaxation of the Aggregate

IP

We now turn our attention to improving the lower bounds produced by the LP relax-
ation of the aggregate IP formulation, A. As noted previously, Melkote and Daskin
[MD01a] as well as Balakrishnan, Magnanti, and Wong [BMW89] mention that disag-
gregating the clients produces a much tighter IP formulation than aggregated clients,
and they do not explore an aggregate IP. However, formulation A has the advantage of
using fewer variables than formulation D: O(n + m) compared to O(nm + n2), where
n is the number of nodes and m the number of edges. For this reason, we thought
it worthwhile to consider this formulation further, and in particular to attempt to
strengthen it.

In this section we introduce some cuts that can be added to A’s LP relaxation to
greatly improve the poor lower bounds. In the end we will see that the lower bounds
produced in this manner are still not as good as those from the LP relaxation of
formulation D. The cuts, however, are a nice development for formulation A, and could
have greater value revealed by future efforts.

Table 5.1 at the beginning of the chapter showed that solving the LP relaxation of
formulation A on our test problems produced gaps averaging 100% for budget FLND
and 94% for fixed charge FLND. To understand why the gaps are so large, consider the
constraints that ensure potential links and facilities are not used unless they are built:

xij ≤ Pyij ∀ij ∈ L

wj ≤ Pzj ∀j
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Because all the clients are aggregated, we have a large constant, P , which is the total
population or demand in the system. Thus the values of the y and z variables can
typically remain very small to accommodate the amount of demand flowing on a given
link or visiting a given facility. This in turn means only a very small amount of money
must be spent to allow the demand to reach a facility. The typical fractional solution
builds just enough of a facility at every node to accommodate the demand at that node.
Thus the travel costs are 0, and in budget FLND problems, the objective is 0 and the
gap is 100%. In fixed charge FLND problems, the objective value consists only of the
small amount of money spent building the fractional facilities.

5.2.1 Subset Cuts

If the main problem with the formulation is the big P , one way to counteract that is
to look at a smaller subset of nodes in the graph, and the total demand of only the
nodes in that subset. Given a problem instance with graph G = (V, E), and a subset
R ⊆ V with total demand aR =

∑

k∈R ak, we can make the statement

(demand leaving R) + (demand served in R) ≥ aR.

This is not a strict equality because there may be demand from nodes not in R both
leaving R (after entering) and being served by a facility in R.

To create a mathematical inequality from this statement, we could write the fol-
lowing:

∑

i∈R

∑

j∈V \R

xij +
∑

i∈R

aRzi ≥ aR (5.1)

For simplicity of exposition, we are assuming that every node is a client and potential
facility. (Whether the edges are existing or potential is irrelevant to these inequalities–
every edge has associated flow variables.)

The first term on the left hand side of (5.1) captures the flow out of R, i. e., demand
traveling on edges going out of R.

The second term is an upper bound on the demand from R that is served within R.
Since facilities do not have capacities, if any node in R has a facility built at it, up to the
entire demand in R could visit that facility. Of course aRzi may be an overestimation
of the demand from R attending a facility at i. A different, and in some cases tighter,
upper bound is the following:

aizi +

(

∑

k∈R

xki

)

zi (5.2)

This states that the demand from R attending a facility at i will be the demand at
i itself plus any demand flowing into i from other nodes k in R. By itself, this term
does not account for demand from R that may leave R and then return to node i via
an edge that originates outside R. However, using this term in our inequality is valid
because any demand that leaves R will be captured by the first term in (5.1). In order
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to make (5.2) linear, we can set the second zi to 1 since we are dealing with an upper
bound. Then we have an inequality that looks like this:

∑

i∈R

∑

j∈V \R

xij +
∑

i∈R

(

aizi +
∑

k∈R

xki

)

≥ aR (5.3)

It turns out that sometimes aRzi is smaller than aizi +
∑

k∈R xki and sometimes vice
versa. Thus in our separation routine for these subset cuts, we pick the smaller of
the two based on the fractional solution and add inequality (5.1) or (5.3) accordingly.

Algorithm 5.5 shows our subset separation routine. We begin by picking one or
more promising subsets, then we make a subset cut, (5.1) or (5.3), for each selected
subset, adding the violated cuts.

Algorithm 5.5 Subset separation routine.

SubsetSeparation(fracsol)

1 S ← PickSubsets(fracsol)
2 cuts ←MakeCuts(S, fracsol)
3 for each cut in cuts
4 do if cut is violated by fracsol
5 then add cut

For large problems, it is not possible to generate a cut for every possible subset,
so we tried a number of different strategies for selecting subsets, of which we mention
three: One strategy generated all subsets of small size, up to five nodes. A second
strategy used a simulated annealing heuristic to find a subset producing a cut with
violation as large as possible. The final strategy generated random connected subsets
of various sizes up to half the number of nodes. Of all the strategies we tried, the
random connected subsets performed the best, so it is the one we used.

Our PickSubsets routine (pseudocode not shown) generates n subsets each of
sizes 1 to n/2 nodes, where n is the number of nodes in the graph. Each subset is
generated randomly by selecting a random starting node and then adding additional
nodes up to the appropriate number. Additional nodes are added by randomly se-
lecting a neighboring node of one of the nodes already in the subset. In this way the
subset remains connected. Prior tests showed that random connected subsets generally
produce better subset cuts than completely random subsets.

The MakeCuts routine (pseudocode not shown) simply checks whether aRzi or
aizi +

∑

k∈R xki is smaller in the fractional solution and creates cut (5.1) or (5.3),
respectively.

Note that in SubsetSeparation, the subsets picked are not dependent on the
fractional solution, and each time separation is performed we create multiple random
subset cuts as described, adding only the violated ones. After a number of iterations of
subset separation and re-solving the LP, further generated subset cuts are not useful.
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5.2.2 Similar Inequalities in the Literature

There have been similar inequalities to our subset inequalities mentioned in the lit-
erature and used for the purpose of strengthening an LP relaxation. Ravi and Sinha
[RS06] study a problem somewhat similar to ours (as mentioned in Chapter 3), the
capacitated cable facility location problem. Their IP formulation for the problem in-
cludes constraints on every subset S of the nodes of the graph. The constraint states
that S must contain at least one open facility or have at least one cable leaving the
set. The authors call these “connectivity constraints” and note that they strengthen
the LP relaxation.

Barahona [B96] studies the capacitated network loading problem, a multicommod-
ity network design problem, and solves a relaxation based on “cut inequalities” in his
solution approach. These inequalities come from the so-called cut condition, a neces-
sary condition for the existence of a multicommodity network flow. Multiple units of
capacitated links may be built in this problem, and the cut condition states that for
any node subset S, there must exist enough link capacity leaving S to accommodate
the demand with sources in S and destinations outside of S. The inequality derived
from this condition is clear: at least as much link capacity leaving S must be built as
the total demand with sources in S and destinations outside S. Barahona states that
an advantage of using these inequalities is that the flow variables are eliminated. On
the other hand, testing the cut condition entails solving a max cut problem, which is
NP-hard.

Gabrel, Knippel, and Minoux [GKM99] study a multicommodity network design
problem similar to, but more general than, Barahona’s, in which links of varying ca-
pacities are available for construction at varying costs. They discuss an exact solution
procedure that uses what they call “bipartition inequalities,” which are the cut in-
equalities of Barahona.

In all of these examples, the inequalities involve the capacity of links leaving the
subset, whereas our subset inequalities involve the flow on links leaving the subset.

5.2.3 Results

The structure of our implementation of the subset cuts approach to finding lower
bounds is the same as with knapsack cuts: our subset separation routine is added
as a CPLEX cut callback and a branch-and-cut process is started, but only the root
node is solved.

Back in Section 3.3 we saw the lower bound gaps for the LP relaxation of formulation
A on budget FLND and fixed charge FLND in Figures 3.3 and 3.4, respectively. Here we
present these curves again, alongside the lower bounds obtained when subset separation
is performed, and when CPLEX cuts are added. Figure 5.3 shows lower bounds for
budget FLND on our standard test suite. These gaps are 100% when the LP relaxation
alone is solved, but are greatly improved when subset cuts are added. Figure 5.4
shows lower bounds for fixed charge FLND; again subset cuts improve the lower bound
dramatically. In both problem types, the subset cuts are significantly better than the
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Figure 5.3: Budget FLND: Comparison of lower bounds obtained from solving the root
node using the aggregate IP plus various cuts.

CPLEX cuts as well. Tables 5.6 and 5.7 at the end of the chapter give these results in
tabular form.

Tables 5.3 and 5.4 summarize the data from the figures for budget and fixed charge
FLND, respectively. On average across all the problem instances, solving budget FLND
with subset cuts produced lower bound gaps of 10.9%, representing a gap closure of
89% over the LP relaxation alone. If subset cuts and CPLEX cuts are combined, the
results are a little better than subset cuts alone, with average lower bound gaps of
9.2%. For fixed charge FLND, the gap closure achieved by the subset cuts was 99.5%,
with the remaining gaps less than 1% even in the worst case.

5.3 Comparison and Discussion

Adding knapsack cuts improved the lower bounds calculated using the disaggregate
formulation D, and adding subset cuts improved the lower bounds calculated using
the aggregate formulation A, but how do they compare to each other? Figure 5.5
illustrates the comparison on budget FLND problems. Formulation D got the better
lower bounds, and in fact, the lower bounds of formulation A plus subset cuts were not
even as good as the lower bounds from the LP relaxation of D without any cuts added.
D is the stronger formulation when it comes to finding lower bounds.
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Figure 5.4: Fixed charge FLND: Comparison of lower bounds obtained from solving
the root node using the aggregate IP plus various cuts.

Table 5.3: Budget FLND: Summary of root node lower bound gap results using formu-
lation A plus cuts. The last column shows the average gap closure achieved by adding
cuts to the LP relaxation.

Low Average High Gap Closure

A 99.8% 100% 100%

A + CPLEX cuts 24.1% 48.5% 65.2% 51.5%

A + subset cuts 3.7% 10.9% 22.0% 89.1%

A + CPLEX + subset cuts 0.1% 9.2% 20.5% 90.8%
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Table 5.4: Fixed charge FLND: Summary of root node lower bound gap results using
formulation A plus cuts. The last column shows the average gap closure achieved by
adding cuts to the LP relaxation.

Low Average High Gap Closure

A 91.8% 94.1% 95.8%

A + CPLEX cuts 0.43% 13.0% 24.3% 86.2%

A + subset cuts 0.01% 0.43% 0.78% 99.5%
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Figure 5.5: Comparison of best lower bound gaps, obtained from LP relaxation of
formulation A plus subset cuts and LP relaxation of formulation D plus knapsack cuts,
on budget FLND.
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Table 5.5: Budget FLND: gaps between optimal solution and lower bound obtained
from solving formulation D plus various cuts.

Problem D D + CPLEX cuts D + knapsack ones plus D + knapsack target

028 2.60% 0.58% 2.55% 1.64%

0A8 2.26% 0.00% 0.12% 0.00%

228 7.28% 3.93% 3.13% 2.56%

2A8 8.10% 3.95% 3.02% 1.21%

C28 6.31% 2.08% 1.46% 0.97%

CA8 7.51% 3.40% 0.65% 0.00%

S28 9.09% 2.67% 2.18% 1.50%

SA8 8.03% 4.00% 3.39% 2.56%

022 2.45% 2.08% 1.92% 1.92%

0A2 0.53% 0.04% 0.05% 0.03%

222 9.89% 6.26% 4.36% 4.28%

2A2 10.75% 9.03% 9.01% 8.31%

C22 9.46% 8.20% 6.91% 6.67%

CA2 8.87% 7.95% 7.82% 6.79%

S22 6.45% 4.95% 3.99% 2.92%

SA2 10.42% 7.84% 7.40% 6.69%

020 1.18% 1.33% 1.30% 1.25%

0A0 3.81% 3.80% 3.81% 3.80%

220 4.55% 4.09% 4.19% 3.77%

2A0 6.24% 6.03% 5.74% 5.38%

C20 2.87% 2.57% 2.63% 2.11%

CA0 4.97% 4.15% 4.10% 3.96%

S20 2.99% 2.52% 2.70% 2.29%

SA0 2.23% 1.80% 2.13% 1.93%
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Table 5.6: Budget FLND: gaps between optimal solution and lower bound obtained
from solving formulation A plus various cuts.

Problem A A + CPLEX cuts A + subset cuts A + CPLEX and subset cuts

028 100% 26.81% 3.97% 1.78%

0A8 100% 24.07% 3.71% 0.11%

228 100% 37.07% 8.73% 6.25%

2A8 100% 37.16% 10.45% 10.77%

C28 100% 31.86% 8.45% 6.36%

CA8 100% 42.42% 11.12% 8.91%

S28 99.75% 42.31% 11.19% 6.57%

SA8 100% 38.06% 13.22% 7.12%

022 100% 44.83% 6.83% 6.14%

0A2 100% 35.56% 6.78% 2.34%

222 100% 55.40% 14.77% 9.97%

2A2 100% 61.63% 15.44% 13.42%

C22 100% 60.54% 14.77% 12.23%

CA2 100% 58.00% 15.57% 14.80%

S22 100% 56.38% 12.03% 12.14%

SA2 100% 65.16% 22.03% 20.49%

020 100% 39.97% 4.82% 4.70%

0A0 100% 39.68% 7.60% 7.68%

220 100% 57.63% 9.09% 9.10%

2A0 100% 59.61% 10.64% 10.91%

C20 100% 61.73% 9.91% 10.23%

CA0 100% 61.04% 11.55% 11.85%

S20 100% 64.29% 11.65% 11.67%

SA0 100% 61.70% 16.76% 15.89%
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Table 5.7: Fixed charge FLND: gaps between optimal solution and lower bound ob-
tained from solving formulation A plus various cuts.

Problem A A + CPLEX cuts A + subset cuts

028 92.49% 2.22% 0.03%

0A8 91.84% 0.43% 0.27%

228 93.79% 13.96% 0.78%

2A8 92.74% 13.01% 0.67%

C28 93.78% 7.78% 0.44%

CA8 94.42% 14.71% 0.35%

S28 92.05% 15.61% 0.43%

SA8 93.92% 13.14% 0.73%

022 92.14% 1.46% 0.08%

0A2 92.68% 4.08% 0.17%

222 95.76% 17.65% 0.50%

2A2 94.70% 22.17% 0.55%

C22 95.61% 15.48% 0.30%

CA2 95.29% 16.67% 0.49%

S22 94.46% 13.80% 0.29%

SA2 94.91% 24.34% 0.76%

020 91.76% 0.72% 0.01%

0A0 93.56% 3.35% 0.09%

220 95.78% 15.46% 0.26%

2A0 94.96% 19.37% 0.48%

C20 95.16% 16.48% 0.21%

CA0 95.44% 22.78% 0.40%

S20 95.17% 16.31% 0.18%

SA0 95.35% 20.91% 0.48%



Chapter 6

Exact Approaches

Putting together the upper and lower bound approaches discussed in Chapters 4 and
5, respectively, this chapter presents an exact branch-and-cut solver for budget FLND.
The commercial solver CPLEX works using a branch-and-cut process to solve IPs, and
we compare the results of our branch-and-cut approach with those of CPLEX using
the default CPLEX settings and cuts.

6.1 A Branch-and-Cut Solver

Our branch-and-cut solver is built on top of CPLEX, taking advantage of the infras-
tructure already in place in CPLEX. Function calls and cut callbacks are used to
customize the branch-and-cut process for FLND problems using our upper and lower
bound solution methods.

We formulate the problem using Melkote and Daskin’s disaggregate IP formulation.
Solving begins by finding a feasible solution using basic variable neighborhood search
with step neighborhoods, our best heuristic solver. The objective value of this solution
is given as the initial global upper bound for the branch-and-cut process, allowing any
tree node with a larger local lower bound to be fathomed immediately. The heuristic is
used on the entire problem at the beginning of the process only (not on subproblems).

For use at each node in the branch-and-cut tree, we register with CPLEX a cut
callback for knapsack cuts as described in Chapter 5. This callback produces at most
one violated knapsack cut based on the current fractional solution each time it is called.
The knapsack cuts generated were limited to a maximum of 16 variables. These cuts
raise the local lower bound, possibly allowing the node to be fathomed. No other cuts
were used.

The variable selection strategy for branching was left up to CPLEX. Initially we
tried using various built-in branching strategies by setting parameters in CPLEX, but
picking a specific strategy was never better than the “automatic” setting in the cases
we tested. With the automatic setting, CPLEX uses an internal algorithm to select the
branching strategy based on the problem and its progress. For our problems, CPLEX
most often selected variables based on pseudo-shadow prices.

83
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Figure 6.1: Number of nodes in the branch-and-cut tree for exact approaches.

6.2 Results

We solved each problem in the test suite to optimality using each of the following
three exact approaches: (1) “Our B&C,” the branch-and-cut solver just described,
incorporating our upper and lower bound techniques, (2) “CPLEX B&C,” the CPLEX
IP solver with all the default settings, including CPLEX cuts, and (3) “B&B,” the
CPLEX IP solver with default settings, but with no cuts, effectively a branch-and-
bound approach.

Figure 6.1 shows the number of nodes in the problem tree for each of these ap-
proaches. We see clearly that our branch-and-cut approach requires fewer nodes than
the branch-and-bound and CPLEX branch-and-cut approaches. On average across all
the problem instances, our branch-and-cut requires only 41% of the number of nodes
required by the CPLEX branch-and-cut. Table 6.2 at the end of the chapter gives these
results in tabular form.

However, the time required for separating the knapsack cuts is significant. Figure
6.2 shows the solve times of the three exact approaches on a logarithmic scale. Our
branch-and-cut requires significantly more time, averaging 85 minutes compared to the
CPLEX branch-and-cut’s average of just under 4 minutes. Table 6.1 summarizes the
results from the two figures, giving average number of nodes and solve time in seconds
for the three exact approaches across all problem instances.

Partial tests with 19-variable knapsack cuts showed that using more variables in the
knapsack separation routine leads to better cuts and fewer nodes in the branch-and-cut



6.2. RESULTS 85

B&B
CPLEX B&C

Our B&C
S
ec

on
d
s

S
A

0
S
20

C
A

0
C

20
2A

0
22

0
0A

0
02

0
S
A

2
S
22

C
A

2
C

22
2A

2
22

2
0A

2
02

2
S
A

8
S
28

C
A

8
C

28
2A

8
22

8
0A

8
02

8

100000

10000

1000

100

10

1

Figure 6.2: Solve times for exact approaches.

tree. However, this also increases the run times significantly.
The power of our branch-and-cut approach to reduce the number of nodes required

comes primarily from the knapsack cuts. Using a global upper bound from a heuristic
solution helps only a small amount: when the problems were solved with our branch-
and-cut using knapsack cuts but no initial global upper bound, the average number of
nodes required was 292, compared with 275 when the upper bounds were used. Future
work of interest may be developing a heuristic based on a fractional solution that could
be used at some of the subproblem nodes to find a feasible solution.

Table 6.1: Average number of nodes in the problem tree and seconds required for
solving exact approaches across all problem instances.

Nodes Seconds

B&B 1528 431

CPLEX B&C 663 229

Our B&C 275 5089
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Table 6.2: Number of nodes in the branch-and-cut tree for exact approaches.

Problem B&B CPLEX B&C Our B&C

028 40 24 10

0A8 17 0 0

228 992 385 177

2A8 1299 224 9

C28 815 36 4

CA8 1049 36 8

S28 1433 18 6

SA8 758 47 9

022 127 304 284

0A2 28 11 10

222 1999 364 82

2A2 5201 947 815

C22 4472 2689 94

CA2 4008 1912 508

S22 878 280 53

SA2 3025 1016 245

020 160 145 137

0A0 1956 1905 1858

220 680 636 352

2A0 3020 3262 1208

C20 140 88 120

CA0 3599 1040 235

S20 824 382 294

SA0 141 163 79



Chapter 7

A Case Study: Nouna

Up to this point we have studied facility location–network design from a mostly theo-
retical perspective. Now we examine a case study: the application of facility location–
network design to a specific real-world setting in order to improve access to facilities.
The setting is the Nouna health district of Burkina Faso and the goal is to improve
access to health facilities for the people in the district.

Special Acknowledgment

The application of FLND to the Nouna health district was conducted as part of the col-
laboration between the University of Heidelberg medical school and the CRSN (Nouna
Health Research Center) in Nouna. This work could not have been accomplished with-
out the support of these two institutions.

7.1 The Setting: Nouna Health District

The CIA World Factbook describes Burkina Faso, shown in Figure 7.1, as “one of
the poorest countries in the world” [CIA08]. The life expectancy is 55 years, the
literacy rate is 22%, the unemployment rate is 77%, and 46% of the population lives
below the poverty line. The country is landlocked, with limited natural resources, and
mostly flat terrain. There are essentially two seasons: the dry season from October to
April, with warm temperatures, and the rainy season from May to September, with hot
temperatures. Ninety percent of the labor force is involved in agriculture, with cotton
being the largest crop [CIA08].

The country is divided into health districts for administering health care, and the
Nouna health district, which has the same boundaries as the Kossi political province,
lies in the western part of the country, bordering Mali. The terrain is a dry orchard
savanna: mostly plains with scattered clumps of trees, and some hills in the northwest.
Most of the people are subsistence farmers, and various ethnic groups coexist in the
region. Tribal dialects vary and the unifying language is Dioula, a West African trade
language. The more educated people also speak French, the official language of Burkina
Faso [YSGK02].
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Figure 7.1: Burkina Faso. The Nouna health district borders Mali in the western part
of the country, just on the other side of the river from Dédougou.

The Nouna health district has 281 population centers, with the town of Nouna,
population 21,000, as the capital. The total population in the district is about 275,000,
while village populations other than Nouna range from less than 100 to about 6000.
There are 25 health facilities scattered throughout the district, including a full hospital
at Nouna, and a large health center at Djibasso. Other than these two, the remaining
23 facilities are small, providing basic care. Nouna itself has electrical power 19 hours
of the day, but none of the other villages have electricity. A few of the health facilities
have solar powered refrigerators for storing medications. Figure 7.2 shows the villages
and the road network of Nouna health district, with those villages having a health
facility indicated by a lighter color.

Each village is assigned to a particular health facility, although this mapping is not
enforced. In some cases, villagers use a facility that is not the one assigned to them.
A few villages are located as far away as 45 kilometers by road from their assigned
facility. None of the roads in the district are paved, and the dirt roads vary in quality.
At the high end are relatively smooth dirt roads with a solid foundation, which do a
good job of withstanding rains. At the low end are stretches that are only a “road”
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Figure 7.2: Nouna health district, with its 25 health facilities shown.

in that trees have been cleared away. These roads are uneven and poorly marked, and
when it rains heavily, as during the rainy season, the dirt turns to a thick mud and
they become impassable.

The primary means of transportation in the district are foot, bicycle, and donkey.
The donkey is typically not ridden directly, but pulls a cart on which one or more people
may ride. Motorbikes are not uncommon, but personal cars are virtually nonexistent.

Health care utilization in Nouna health district is low. Many people prefer the
convenience of a village healer, visiting a health facility only in the most serious cases
of illness. The time and effort involved in simply traveling to a health facility is a
deterrent to seeking proper medical care for many, especially those farthest from a
health facility, and especially during the rainy season when travel is most difficult.
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7.2 Modeling as FLND

In order to improve the physical access of the people of Nouna health district to the
health facilities within district, we can treat the situation as a facility location–network
design problem. Our options for improvement include building new facilities and new
roads, where building new roads includes upgrading existing roads.

In an application situation, the elements involved may not be easily quantifiable,
and in some cases qualitative factors may play an important role. In order to model the
situation mathematically, we have to make some simplifying assumptions, and ignore
less-pertinent or more-difficult-to-model factors. Thus any results supplied should be
interpreted in the wider context and seen as an aid to decision-making rather than a
final answer, though they may be provably optimal in the mathematical sense. That
being said, such objective results can be a very valuable aid to decision makers, espe-
cially in developing countries, where there is much room for improvement and limited
resources. Previous studies that have looked specifically at improving access to health
facilities in developing countries through strategic location of (additional) health facil-
ities include [CFR06, RS00, O96].

In our study, we do not attempt to model qualitative factors, such as tribal rivalries
that sometimes influence which villages a person is willing to visit. We do not account
for the differing methods of transportation. Rather, we make the implicit assumption
that regardless of the method of transportation, better roads make travel easier.

As is common when working in developing nations, obtaining reliable data on Nouna
was not easy. The most recent detailed road map of the area was from 1971, and the
records kept by the officials in the district regarding village locations and populations
are often hand-written. Additionally, there is seasonal migration of some parts of the
population that is not accounted for in the data.

With the caveats given, we have the set of villages in the district, along with their
populations, and we know the locations of the 25 existing health facilities. We also
have a road map of the district, with three different qualities of road. From this we
created the graph shown in Figure 7.2. There are 281 nodes representing the villages,
and 475 edges representing the roads. The thicker edges in the graph are higher quality
roads. The 25 lighter colored nodes are the locations of existing health facilities.

To translate this into an FLND problem instance, every village is a client node with
demand equal to its population. There are 25 existing facilities and 475 existing edges.
The travel cost on each edge will be a multiple of its Euclidean length, with three
different multiples possible, representing the three different qualities of road. Higher
quality roads have smaller multiples, leading to lower travel costs. The travel costs
do not have real units, but are a relative measure of the time and effort involved in
traveling a road segment.

We may build a new facility at any node that does not already have one. We may
build any of a number of different edges, including “upgrades” to existing edges. In real
terms, any road that is not already of the highest quality may be upgraded one quality
level. In addition to the potential edges representing upgrades to existing roads, we
generate the following completely new potential edges: For every pair of nodes without
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Figure 7.3: The Nouna FLND problem instance. There are 281 nodes, 25 existing
facilities, 256 potential facilities, 475 existing edges, and 882 potential edges.

an edge, generate a potential edge if the distance is not more than 1.2 times the longest
existing edge, no existing edge is crossed by the potential edge, and no third node lies
on, or very near, the potential edge. Using these criteria, there are a total of 882
potential edges. In reality, building a road provides an even greater benefit than we
attribute to it in our restricted problem context: roads are traveled for many more
reasons than to reach a health facility. Figure 7.3 shows the Nouna FLND problem
instance.

In the district, construction costs for health facilities are estimated based on the
size of the facility regardless of location. Thus we use uniform construction costs for
the potential facilities based on a fixed size facility that can be built at any location.
The construction costs of the potential edges are proportional to the length of the edge,
with higher quality roads being more expensive. The values used for the construction
costs are not in real monetary units, but rather reflect the relative cost of building one
element compared to another. Perhaps the least informed estimate we had to make
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regarded the cost of facilities relative to roads. This choice can influence the number of
facilities that will be built in a solution relative to the number of roads. We selected a
facility cost that was less than the cost of building the longest roads, but significantly
more than the median road construction cost.

With the inputs as described, we have a facility location–network design problem.
The objective is to minimize the total travel cost and we have a budget that may be
spent constructing facilities and roads. The budget is measured in the same units as
the construction costs, and expresses the limited resources that are available. We can
plug in different budget values and see what is possible with more or less money.

7.3 Results

Our first step is to evaluate the current setup: according to our model, how “accessible”
are the existing 25 facilities for the approximately 275,000 people in the district? The
total travel cost is 3.15 million, or 11.49 on average per person. Sixty percent of the
population has to travel to another village to visit a health facility and the maximum
travel cost is 50. Optimizing these last two measures is not a goal of the model, but we
report them as another indicator of the quality of a solution. Because the units of all
of these measurements do not correspond directly to a real-world measure, they do not
tell us much in and of themselves, but they serve as indicators as we evaluate different
solutions.

Before examining solutions involving the construction of additional facilities and
roads, we entertained what might have been had FLND been used from the very be-
ginning. Consider the Nouna health district with its current road network but no
health facilities, and suppose we have a budget equivalent to the cost of building 25
facilities. Solving this as a budget FLND problem, we can compare the optimal solu-
tion produced to the current configuration. Figure 7.4 shows the results. On the left
we see the current 25 facilities. On the right we see the optimal solution according to
our FLND model: 23 facilities and 25 road segments were selected for construction.
The total travel cost of the existing setup is 3.15 million; in the optimal solution on
the right, it is 2.43 million, 23% better.

Now we look at improving the current situation by building new facilities and roads.
The Nouna instance of FLND, as shown in Figure 7.3, formulated as an integer program
using formulation D, could be solved by CPLEX to optimality in time ranging from 90
minutes to 11 hours, depending on the budget. Thus the results we present here are
mathematically optimal results.

Figure 7.5 shows the elements selected for construction when the budget is 200. Five
facilities and 25 edges are selected. The total travel cost of this solution is 2.22 million,
for an average of 8.1, representing a 30% improvement over the current situation. Fifty-
five percent of the population, down from 60, must travel to another village to visit
a health center, and 33.3, down from 50, is the maximum travel cost anyone has to
expend.

Solving the problem for various different budgets gives a number of different possible
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Figure 7.4: The current setup (left) with total travel cost 3.15 million compared with an optimal setup (right) with total
travel cost 2.43 million. In the optimal solution, 23 facilities and 25 road segments were selected for construction.
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Figure 7.5: The optimal solution with budget 200. Five facilities and 25 edges are
selected to be built.

scenarios. Planners need to realize that each solution has a different set of facilities and
edges, e. g., the facilities selected in a budget 200 solution do not necessarily include the
facilities selected in a budget 100 solution. There may be common elements though,
which can provide useful information. For example, the village of Bâ (population 3983)
appeared in the solution for every budget we tested, so building a facility there would
be effective regardless of the total budget.

The plot in Figure 7.6 (bottom curve) shows how the total travel cost goes down
as the budget increases. In the budget 50 solution, one facility and ten edges are built,
while in the budget 700 solution, 18 facilities and 83 edges are built. A budget of 540,
constructing 13 facilities and 75 edges, cuts the average travel costs for the people in
half. This solution, depicted in Figure 7.7, has total travel cost 1.57 million, or average
travel cost 5.73, and 52% of the population must travel to another village to visit a
health facility. The maximum travel cost is 28.5 units.
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Figure 7.6: Plot of total travel cost as budget increases for the Nouna problem instance,
solved as network design, facility location, and facility location–network design.

In order to achieve a total travel cost of 2.43 million, the travel cost of the optimal
solution had FLND been used from the beginning, a budget of at least 130 would need
to be expended. The budget 130 optimal solution builds 4 additional facilities plus 6
edges and has total travel cost 2.44 million.

Figure 7.6 also includes plots solving the problem as pure facility location and as
pure network design. All the same data was used in these cases, but when solving as
a facility location problem, we removed all the potential edges so that only facilities
could be built. As a network design problem, we removed all the potential facilities so
that only edges could be built. The curves show that when considering facility location
and network design together, we can make better improvements for the same amount
of money as compared with considering either individually.

Table 7.1 shows how many facilities and edges are built in the solutions using
various budgets. With a budget of 400, an optimal facility location solution builds
13 facilities, and an optimal network design solution builds 166 roads. The facility
location–network design solution makes more efficient use of the budget, building 10
facilities and 49 roads, and achieving a lower total travel cost.

We have seen that applying FLND to health facilities in Nouna health district can
make a big difference in the accessibility of the facilities. For the same budget it took
to build 25 facilities, one could have built 23 facilities and made some improvements to
the road network, and achieved travel costs 23% lower on average. Given the current
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Figure 7.7: The optimal solution with budget 540. Building 13 facilities and 75 edges,
this solution cuts the average travel cost in half.

Table 7.1: Comparison of FLND, facility location, and network design with various
budgets on the Nouna data. Each entry in the table shows (number of facilities) /
(number of edges) in the solution.

Budget FLND FL ND

100 3/6 3/- -/39

200 5/25 6/- -/85

300 8/31 10/- -/122

400 10/49 13/- -/166

500 12/69 16/- -/216

600 15/77 20/- -/246
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situation, a minimum of 4 additional facilities would need to be built, along with a few
additional improvements to the road network, in order to achieve a 23% reduction in
average travel cost. Building 13 new facilities and 75 new road segments would cut
the travel costs in half. Whatever the budget available, our FLND model provides
the solution expressing the optimal use of the budget in lowering travel costs, and this
information could be a useful aid for the decision makers of Nouna health district.
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Chapter 8

Software: FLND Visualizer

As a part of this thesis, we have developed a software application called FLND Visu-
alizer that allows the user to work with FLND problems. The application can read
a problem instance from a file or generate one randomly according to user-supplied
parameters. Problem instances may be solved using a variety of heuristics, and the
solutions can be viewed graphically as well as saved to a file.

The application was written in Java and therefore runs on any platform for which
there is a Java virtual machine. It has been tested under Windows XP and SUSE
Linux.

Figure 8.1 shows a screenshot of FLND Visualizer. The File menu has choices for
starting a new problem instance; opening a problem instance from a file; saving the
current instance to a file; exporting the current instance to various formats including
pdf, e. g., for printing; and exiting the program. On the right are the controls for
working with the problem instance, and the instance itself is displayed as a graph on
the large white canvas. A status bar at the bottom displays the name of the problem
instance as well as node information for the node that the mouse pointer is currently
hovering over, if any.

The top set of controls on the right-hand side allows the user to set the display
characteristics of the graph: whether node labels are shown, whether potential edges
are shown (if there are many, they can clutter the graph making other elements difficult
to see), the diameter of the nodes, and the zoom level.

At the very bottom of the right-hand control panel, information about the graph
is displayed, including the number of nodes, edges, and potential edges. The controls
displayed in the middle of the panel depend on the user’s current task.

8.1 Creating Problem Instances

The user can select the current “view” of the problem instance: “problem” or “solu-
tion.” The view affects how the problem instance is displayed as well as the available
controls for manipulating the problem instance. In problem view, the user can edit the
problem instance. In solution view, the user can solve using heuristic methods and view
the solutions. When in problem view, as shown in Figure 8.1, the creation controls are
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Figure 8.1: FLND Visualizer screenshot: creating a problem instance (under Windows).
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shown, with separate tabs for adding nodes, edges, and potentials edges. The nodes
tab allows the user to select whether a node is a client or not, and if so, its demand,
as well as a node’s facility status: no facility, existing facility, or potential facility. The
client demands, as well as the construction costs associated with potential facilities,
may be set by the user or determined randomly from a specified range. Nodes may
be generated manually one at a time by clicking on the canvas, or automatically by
randomly placing a user-specified number of nodes at the click of a button.

Likewise edges may be generated one-by-one by selecting two nodes, or automat-
ically. Figure 8.2 shows a screenshot where the user is in the middle of adding edges
manually. Automatic generation of edges includes an option for allowing edges to cross
each other or not. There is also a “Connect Graph” button that adds the minimal nec-
essary additional edges to connect the graph. The travel cost of an edge is proportional
to the length of the edge: the Euclidean length of the edge is multiplied by a “travel
cost factor,” which the user may specify.

When generating potential edges, the user may generate a specific number, or may
click the “Generate All” button to generate all that satisfy certain criteria. The criteria
include a user-specified maximum length, not crossing any existing edges, and not
passing through a third node. The maximum length is given either as a multiple (e. g.,
1.2) of the longest existing edge, or as a percentage of the diagonal of the drawing area.
The construction cost of a potential edge is proportional to the length of the edge,
being the product of the length of the edge and a “construction cost factor” specified
by the user, which may vary by edge.

8.2 Solving and Viewing Solutions

Figure 8.3 shows a screenshot from FLND Visualizer in solution view. On the right-
hand control panel the user may select from a variety of heuristic solvers and enter
the budget for the problem. Upon clicking the “Solve” button, the problem is solved
and the solution displayed on the graph. Elements selected to be in the solution
are highlighted. Additionally, solution information is displayed just above the graph
information at the bottom on the right: the total travel cost of the solution, total
construction cost, and the number of facilities and edges to be built.

The ability to visualize an FLND problem instance can be a great help in under-
standing and drawing conclusions about the instance. Heuristically solving the instance
is a quick way to get a feasible solution and immediately see what it looks like. FLND
Visualizer is also an easy way to quickly generate problem instances with desired char-
acteristics. It has been a very handy tool in our own work on FLND problems and
could be useful to others working in this area as well.
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Figure 8.2: FLND Visualizer screenshot: creating a problem instance, adding edges
(under Linux).
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Figure 8.3: FLND Visualizer screenshot: solving a problem instance.



104 CHAPTER 8. SOFTWARE: FLND VISUALIZER



Chapter 9

Discussion and Conclusions

We have presented new solution strategies for solving fixed charge and budget facility
location–network design problems. On the upper bound side, we contributed a suite of
heuristics for budget FLND, the first in the literature for this problem, for finding good
feasible solutions. The basic variable neighborhood search heuristic performed the best,
achieving solutions within 0.6% of optimal on average for the problems in our test suite.
There were interesting differences among the neighborhood based heuristics: some did
better with Hamming neighborhoods and some with step neighborhoods. Future work
might explore other types of neighborhoods, or non-neighborhood-based heuristics.

The IP formulation of Melkote and Daskin for fixed charge FLND has an LP relax-
ation that obtained the optimal solution for the problems in the test suite. However,
their IP formulation for budget FLND leaves room for improvement and we contributed
a separation routine for knapsack cuts based on the budget. On average, these cuts
closed the gap an additional 48%, and in some cases produced the optimal solution.
Noting that the knapsack separation routine requires significant time and memory re-
sources, we introduced a more efficient alternative. However, the trade-off produced
cuts that were not as good. Investigating efficient methods of generating stronger
knapsack cuts may be worthwhile.

Chapter 6 combined our upper and lower bound techniques in an exact branch-
and-cut solver using Melkote and Daskin’s IP formulation. The number of nodes in the
branch-and-cut tree using this solver was much lower than when solving with CPLEX’s
default branch-and-cut process. One aspect we did not explore that could improve these
results further is a clever, problem-specific branching strategy. A heuristic based on a
fractional solution for use at subproblem nodes might also deliver improvements.

As an alternative to Melkote and Daskin’s IP formulation, we introduced a new IP
formulation that aggregates the clients and thus is much smaller, with a linear number
of variables and constraints instead of a quadratic number. Using this formulation,
some of the problem instances could be solved more quickly (using CPLEX to solve to
optimality) than using Melkote and Daskin’s formulation. However, the lower bounds
produced by the LP relaxation of our aggregate formulation were not nearly as good.
We introduced cuts that greatly improve these lower bounds, but not enough to bet-
ter those obtained from Melkote and Daskin’s disaggregate formulation. Future work
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strengthening the aggregate formulation may result in a more competitive alternative
to the disaggregate formulation.

In Chapters 7 and 8 we considered more practical aspects. Chapter 7 examined a
case study in which the accessibility of health facilities in Nouna health district was to
be improved. We demonstrated the usefulness of FLND results as a decision-making
aid in this real-world context. Chapter 8 introduced FLND Visualizer, a software tool
for visualizing facility location–network design problem instances and solutions, as well
as solving using heuristic methods. This practical tool proved handy countless times
in our own work, and could be a help for others studying these problems as well. All
the pictures of problem instances in the thesis came from FLND Visualizer.

Individually, facility location and network design have received attention in the
combinatorial optimization research community over the years. The combined prob-
lem of facility location–network design has received much less attention. FLND is an
interesting problem with practical applications. Furthermore, the fact that FLND has
facility location and network design as subproblems means it could provide insights
into the problems in these separate fields as well. Our work presented in this thesis,
coupled with the earlier work of Melkote and Daskin [MD01a, MD01b, MD01c, MD98],
provides a solid base and a springboard into deeper pursuits in FLND, a field ripe for
further research.



Appendix A

Test Instances

The FLND problem instances described in this appendix are used throughout the thesis
when testing our solution methods. As there are no published benchmark instances for
facility location–network design, we generated this test suite ourselves. The goal was
to create instances with varying characteristics and of a nontrivial size that could be
solved by our methods in a reasonable amount of time. Likewise it was important that
the instances be solvable to optimality so that results from our solution methods could
be effectively evaluated.

The test suite consists of 72 randomly generated instances, using 24 different sets of
characteristics. We created three instances, a, b, and c, using each set of characteristics.
The computational results presented in the thesis for a given problem instance are an
average of the three instances sharing those characteristics.

The following characteristics apply to all problem instances:

• 40 nodes with randomly generated coordinates in a 100 x 100 space

• Every node is a client

• Client demands ranging from 10 to 100

• Potential facility construction costs ranging from 1200 to 1500

• Edge travel costs proportional to length of edge

• Potential edge construction costs proportional to length of edge

• Potential edges satisfy the following criteria: not longer than a certain length,
not crossing existing edges, and not passing through a third node

The following characteristics vary:

• Number of existing edges

– 0: 0

– S: 39, minimum spanning tree
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– 2: 80, noncrossing (‘2’ = twice the number of nodes)

– C: 80, crossing allowed

• Number of potential edges

– 2: 80 (‘2’ = twice the number of nodes)

– A: All potential edges satisfying the criteria

• Number of existing facilities / potential facilities

– 0: 0 / 40

– 2: 2 / 38

– 8: 8 / 32

The varying characteristics were combined in all possibilities to create the 24 sets
of characteristics, and the problem instances are named using the numbers and let-
ters indicated for each characteristic. Thus, S20a, S20b, and S20c refer to instances
with existing edges that form a spanning tree, 80 random potential edges, no existing
facilities, and 40 potential facilities (one at every node).

When used as budget FLND instances, the following budgets were given for each
problem instance:

• Instances 0[2A]0: 8000

• Instances [S2C][2A]0: 6500

• Instances [0S2C][2A][28]: 5000

Tables A.1 and A.2 list all the problem instances, giving for each instance the
budget, the number of clients (which is the same as the number of nodes), and the
numbers of existing facilities, potential facilities, existing edges, and potential edges.
In the case of the instances with no existing edges and 80 randomly generated potential
edges, an additional edge sometimes had to be added to ensure that the graph could
be connected by the potential edges; otherwise the problem would be infeasible.

The pictures of problem instances displayed in the thesis consistently have the
following visual key:

• Potential facility

• Existing facility

• Existing edge

• Potential edge

Figures A.1 through A.14 show a sampling of the problem instances in graphical
form (construction costs, travel costs, and demands not shown).

All the results presented in this thesis come from tests run on machines of the
following configuration: 2.8 GHz Intel Xeon processor, 2 GB RAM, running SUSE
Linux.
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Table A.1: Problem instances, showing for each, the budget, number of clients, num-
ber of existing facilities, number of potential facilities, number of existing edges, and
number of potential edges.

Instance Budget Clients Ex Facs Pot Facs Ex Eds Pot Eds
020a 8000 40 0 40 0 81
020b 8000 40 0 40 0 80
020c 8000 40 0 40 0 81
022a 5000 40 2 38 0 80
022b 5000 40 2 38 0 80
022c 5000 40 2 38 0 80
028a 5000 40 8 32 0 80
028b 5000 40 8 32 0 80
028c 5000 40 8 32 0 81
0A0a 8000 40 0 40 0 222
0A0b 8000 40 0 40 0 233
0A0c 8000 40 0 40 0 180
0A2a 5000 40 2 38 0 207
0A2b 5000 40 2 38 0 192
0A2c 5000 40 2 38 0 172
0A8a 5000 40 8 32 0 225
0A8b 5000 40 8 32 0 213
0A8c 5000 40 8 32 0 197
220a 6500 40 0 40 80 80
220b 6500 40 0 40 80 80
220c 6500 40 0 40 80 80
222a 5000 40 2 38 80 80
222b 5000 40 2 38 80 80
222c 5000 40 2 38 80 80
228a 5000 40 8 32 80 80
228b 5000 40 8 32 80 80
228c 5000 40 8 32 80 80
2A0a 6500 40 0 40 80 117
2A0b 6500 40 0 40 80 119
2A0c 6500 40 0 40 80 111
2A2a 5000 40 2 38 80 112
2A2b 5000 40 2 38 80 120
2A2c 5000 40 2 38 80 116
2A8a 5000 40 8 32 80 113
2A8b 5000 40 8 32 80 115
2A8c 5000 40 8 32 80 116
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Table A.2: Problem instances, showing for each, the budget, number of clients, num-
ber of existing facilities, number of potential facilities, number of existing edges, and
number of potential edges.

Instance Budget Clients Ex Facs Pot Facs Ex Eds Pot Eds
C20a 6500 40 0 40 80 80
C20b 6500 40 0 40 80 80
C20c 6500 40 0 40 80 80
C22a 5000 40 2 38 80 80
C22b 5000 40 2 38 80 80
C22c 5000 40 2 38 80 80
C28a 5000 40 8 32 80 80
C28b 5000 40 8 32 80 80
C28c 5000 40 8 32 80 80
CA0a 6500 40 0 40 80 120
CA0b 6500 40 0 40 80 130
CA0c 6500 40 0 40 80 125
CA2a 5000 40 2 38 80 117
CA2b 5000 40 2 38 80 145
CA2c 5000 40 2 38 80 132
CA8a 5000 40 8 32 80 124
CA8b 5000 40 8 32 80 128
CA8c 5000 40 8 32 80 139
S20a 6500 40 0 40 39 80
S20b 6500 40 0 40 39 80
S20c 6500 40 0 40 39 80
S22a 5000 40 2 38 39 80
S22b 5000 40 2 38 39 80
S22c 5000 40 2 38 39 80
S28a 5000 40 8 32 39 80
S28b 5000 40 8 32 39 80
S28c 5000 40 8 32 39 80
SA0a 6500 40 0 40 39 173
SA0b 6500 40 0 40 39 176
SA0c 6500 40 0 40 39 147
SA2a 5000 40 2 38 39 161
SA2b 5000 40 2 38 39 182
SA2c 5000 40 2 38 39 157
SA8a 5000 40 8 32 39 177
SA8b 5000 40 8 32 39 171
SA8c 5000 40 8 32 39 160
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Figure A.1: Problem instance 0A0a.

Figure A.2: Problem instance 0A2a.
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Figure A.3: Problem instance 028a.

Figure A.4: Problem instance 220c.
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Figure A.5: Problem instance 2A8c.

Figure A.6: Problem instance C20a.
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Figure A.7: Problem instance S22b.

Figure A.8: Problem instance S22c.
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Figure A.9: Problem instance 2A0b.

Figure A.10: Problem instance 2A0b without potential edges shown.
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Figure A.11: Problem instance CA2b.

Figure A.12: Problem instance CA2b without potential edges shown.
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Figure A.13: Problem instance SA8c.

Figure A.14: Problem instance SA8c without potential edges shown.
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