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Abstract

Speleothems and stalagmites in particular are frequently used as archives of paleocli-
mate. Their growth, isotopic carbon and oxygen profiles and the possibility of an exact
dating provide time series in a high temporal resolution. However, the interpretation
of these profiles is difficult since the isotopic signal in stalagmites underlies several in-
fluences outside and inside the cave.

In this study the basic principles of stalagmite growth and isotopic enrichment under
equilibrium and disequilibrium conditions in dependence on climate related parame-
ters are described quantitatively using numerical models. In a final step these basics
are used to develop a combined model, which enables the reconstruction of tempera-
ture and drip interval records from isotopic profiles of kinetically grown stalagmites.
In contrast to former models, which have been limited in their application to samp-
les developed under equilibrium conditions, this model is able to cope with kinetically
grown samples and hence extends the number of stalagmites, which might be inves-
tigated. Furthermore the model exceeds the results of former models by yielding drip
intervals in addition to temperature records. The model is applied to two stalagmites
from Southern Chile and reveals first temperature and drip interval records obtained
by stalagmites from extremely low latitudes.

The study was carried out in the framework of the daphne Forschergruppe in Heidel-
berg.

Speldotheme, und speziell Stalagmiten, werden aufgrund ihrer genauen Datierbarkeit
sowie der hochaufgelosten Kohlen- und Sauerstoff Isotopenprofile hdufig als Archive
des Paldoklimas genutzt. Die Interpretation dieser Profile ist jedoch schwierig, da das
Signal diversen Einfliissen sowohl aufSerhalb als auch innerhalb der Hohle unterliegt.
In dieser Arbeit werden die Grundlagen des Stalagmitenwachstums sowie der isotopi-
schen Anreicherung unter Gleichgewichts- und Ungleichgewichtsbedingungen in Ab-
héangigkeit von klimarelevanten Parametern mit Hilfe numerischer Modelle beschrie-
ben. Basierend darauf wird ein kombiniertes Modell entwickelt, welches die Rekon-
struktion von Temperatur und Tropfabstanden anhand kinetisch gebildeten Stalagmi-
ten ermoglicht. Im Gegensatz zu fritheren Modellen, welche auf die Verwendung von
unter Gleichgewichtsbedingungen entstandenen Proben beschrankt waren, ermoglicht
dieses Modell auch die Interpretation kinetisch gebildeter Stalagmiten. Neben einer
Temperaturbestimmmung ist so zusatzlich die Bestimmung des Tropfabstands mog-
lich. Das Modell wurde auf zwei Stalagmiten aus Siid-Chile angewendet und liefert
die ersten Temperatur- und Tropfabstands-Zeitreihen aus Stalagmiten extrem stidlicher
Breiten.

Diese Arbeit wurde im Rahmen der daphne Forschergruppe in Heidelberg durchge-
fiihrt.
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CHAPTER 1. INTRODUCTION

1.1 Motivation and intention

Climate. An issue which nowadays is more present than ever. But do we understand
climate, its mechanisms and the driving forces behind? An idea of the answer of this
question might be found in the past, which reveals information on climate in order
to understand what is happening now and in the future. Two important climate pa-
rameters are temperature and precipitation, which are essential for life and culture. To
investigate these two parameters archives are needed, which are able to preserve cli-
mate information of the past over a long period and last long enough to be used by
scientists today. The Earth offers many possibilities like ice cores, tree rings, pollen
records, sediments or speleothems. All these archives have their advantages and dis-
advantages regarding the global distribution, climate information storage, easy access
and transport of samples, precise dating techniques or the understanding of the mech-
anisms occurring in these archives and according to their interaction with climate.

In this work the focus lies on speleothems and stalagmites in particular. These archives
are found in many caves all over the world providing a good coverage of the Earth’s
land masses. Stalagmites grow very slowly with growth rates ranging around 80 um
per year and are able to outlast periods of several thousand years due to their protected
location, which is not exposed to environmental stresses like erosion for instance. A
stalagmite is fed by drip water, from which calcite is precipitated in annual layers com-
parable to tree rings. This calcite saves information in form of carbon and oxygen iso-
tope proxies and trace elements like uranium, magnesium and others. The long lasting
growth and storage of climate related proxies predestine stalagmites as an archive for
climate.

The most important data sets, which can be obtained from stalagmites are information
on the growth rate and the isotopic profiles of rare carbon and oxygen isotopes con-
tained in the precipitated calcite. Profiles of the isotopes can be found both along the
vertical growth axis of the stalagmite and along individual growth layers.

In general stalagmites can develop under two kind of conditions: (i) the development
under equilibrium conditions and (ii) the development under disequilibrium condi-
tions. Thereby the terms "equilibrium" and "disequilibrium" refer to the condition pre-
vailing during the fractionation and precipitation of calcite. In the early years of sta-
lagmite research mainly samples which developed under equilibrium conditions were
used for analysis and interpretation, since the extraction of temperature records from
the oxygen isotope profile is based on the well known temperature dependence of frac-
tionation under equilibrium. However, these samples do not provide any information
about rainfall. By contrast stalagmites, which show fractionation under disequilibrium
contain both, the information about temperature and about precipitation. Thus, these
samples came into focus of research during the last years. However, the extraction of
temperature and precipitation from these stalagmites is complicated and can not be
performed in the same manner as for stalagmites growing under equilibrium condi-
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1.1. MOTIVATION AND INTENTION

tions.

The intention of this work is to describe the mechanisms of stalagmite growth and
isotopic fractionation occurring under disequilibrium conditions in a theoretical way
in order to understand the underlying processes. In addition analytical and numerical
models are developed to mimic these natural processes in stalagmites and in reverse to
extract information about the past climate in form of a temperature and rainfall record
from the provided data sets of a stalagmite.

All calculations and models of this work are written and compiled using the program
MATLAB®.

11



CHAPTER 1. INTRODUCTION

1.2 Stalagmite development

The development of speleothems can be described best by tracking a water droplet on
its way from the atmosphere down through the soil and the underlying bedrock. This
development is bound to specific conditions of the surrounding environment, which
will be explained in the following section and Fig 1.2.1.

A drop of a bulk of rainwater is equilibrated with the surrounding atmosphere with re-
spect to CO; and has therefore a typical CO, partial pressure of approximately p”ggz =
380ppm (McDermott, 2004). When the drop hits the ground it percolates down through
a soil layer, which can vary in thickness and CO, partial pressure depending on erosion
and vegetation processes. The drop enters this soil zone and starts to equilibrate with
the surrounding CO,, which is in general much higher than the CO, partial pressure
of the atmosphere. Depending on the type of vegetation and its activity this pressure
has annual and long-term variations, however, a typical pressure is in the range of
pscogz = 5000 - 35000ppm (McDermott, 2004). The CO; enriched drop enters the calcite
bedrock through fissures and small cracks. Due to its high amount of CO; the drop
starts to dissolve calcite from the surrounding limestone until the solution is saturated.
Here two extreme cases can be distinguished: (i) the solution is still in contact with the
atmosphere of the soil zone in form of air bubbles, for instance. In this case the addi-
tional CO, reservoir causes an increased calcite dissolution and thus a higher calcium
content of the solution. (ii) In the second case the solution is completely isolated from
the soil atmosphere and dissolve only as much calcite until it is saturated. Thus, the
dissolved amount of calcite is much smaller than in case (i). In natural systems a com-
bination of these two cases occurs and mixing processes make it difficult to determine
the exact amount of calcite dissolved from the limestone in the solution.

However, even solutions, which are already saturated with respect to calcite can dis-
solve more calcite if they are mixed. This is due to the non-linear correlation between
CO; concentration in the solution and the calcite solubility. Thus, two saturated solu-
tions with different CO, partial pressures can dissolve additional calcite, if they were
mixed. This process is called mixing corrosion and is illustrated in Fig. 1.2.2.

After percolating through the bedrock the drop enters the cave, drips from the ceiling
and hits the cave’s floor. Depending on ventilation and exchange processes the atmo-
sphere in caves is approximately on the same pco, level as the external atmosphere
or slightly enriched, if the cave is closed and lacks ventilation. However, this value is
in general much lower than the partial pressure of the soil and thus the drop, even if
seasonal variations are taken into account. The gradient of pcp, between the drop and
the cave air causes an conversion of bicarbonate (HCO;') into CO; within the solution.
Depending on diffusion processes and thus on form and thickness of the solution layer
CO; starts to degas from the solution and calcite (CaCOs) precipitates. A stalagmite is
formed.

12



1.2. STALAGMITE DEVELOPMENT
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Figure 1.2.1: From Kempe (1997). Development of caves and speleothems in natural karst sys-
tems. See text for details.

The precipitation of calcite is driven by three mechanisms (Plummer et al., 1978; Us-
dowski, 1982): (i) surface reactions , (ii) laminar diffusion of involved species and (iii)
conversion of bicarbonate into carbon dioxide. Due to the thin solution layer diffusion
processes occur fast as well as surface reactions on top of the stalagmite. In compari-
son the temperature dependent conversion of bicarbonate into carbon dioxide is slow
and is therefore the limiting factor for the carbonate precipitation rate (Dreybrodt et al.,
1996, 1997).

The chemical processes, which occur in the soil, bedrock and cave zone are summarised
in the following boxes. First processes occurring in the soil zone are described, in par-
ticular reactions between the percolating water the carbon dioxide content of the sur-
rounding soil.
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CHAPTER 1. INTRODUCTION

Chemical processes in the H,O — CO; - system
Dissolution of gaseous carbon dioxide:
COs™"s — cobm. 1.2.1)

Reaction of the dissolved carbon dioxide with water (In the following CO, =
liquid., .
CO,"™):
COQ + Hzo = H2CO3. (1.2.2)

Fast dissociation of carbon acid into hydrogen and bicarbonate:
H,CO; = H" + HCO; . (1.2.3)

Since the typical pH value of karst systems is around 7.5 a further dissociation
of bicarbonate can be neglected, which would need a pH value of greater than
8.3.

Furthermore water dissociates partially according to:

HO=H"+0H". (1.2.4)

When the solution enters the bedrock zone, calcite is dissolved. This process is de-
scribed in the following box.

Chemical processes in the H,O — CO, - CaCOs3 - system

Dissolution of calcium carbonate:
Ca*" +CO3 + H' = Ca*" + HCO;. (1.2.5)
Reaction of calcium carbonate with carbon acid:
CaCOj; + H,CO3 = Ca*" + 2HCO; . (1.2.6)
Dissolution of calcium carbonate in water (double dissociation):
CaCOj; + H,O = Ca** + HCO; + OH . (1.2.7)

These reactions can be summarised to the following net-reaction:

CaCOs + HyO + COp — 2 (Hco;) 4 Ca?t. (1.2.8)

From the net-reaction 1.2.8 follows that the ability of the solution to dissolve calcite is
limited to the existing amount of carbon dioxide. In the reverse process of precipitation

14



1.2. STALAGMITE DEVELOPMENT
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Figure 1.2.2: Two with respect to calcite saturated solutions A and B are undersatured if they
were mixed. This process is called mixing corrosion. Figure modified from Dreybrodt (1988).

the number of calcite molecules precipitated from the solution must be equal to the
number of carbon dioxide molecules released from the solution.

In general the water supply of a stalagmite is seasonal driven. During summer most
of the rain penetrating the soil above the cave is removed due to evapo-transpiration
processes. However, some water is stored in the deep soil or the carbonate host rock
containing a high amount of organic material. With the winter rainfall this stored sum-
mer water is washed throughout the soil to the cave and calcite is precipitated on top
of the stalagmite. The organic material manifests in small dark brown layers and in-
dicates in general limited water supply. If on the other hand water supply is high the
stalagmite grows faster and the precipitated calcite exhibits a whitish colour. However,
local cave features or calcite crystallization processes can influence the appearance of
these layers as well.

From the thickness of the precipitated calcite layers the corresponding growth rates of
a stalagmite can be determined. This has been the subject of both experimental studies
by analysing annual lamination patterns (Baker and Smart, 1995; Dreybrodt et al., 1996,
1997; Baker et al., 1998) and theoretical ones (Buhmann and Dreybrodt, 1985b,a). These
studies show that growth rate as well as the outer shape of stalagmites depends on ex-
ternal parameters like cave temperature, drip interval and the CO, partial pressure of
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CHAPTER 1. INTRODUCTION

the cave air and the soil zone, which in turn are related to the current climate condi-
tions. Hence, a change of growth rates or the radius of stalagmites reflects variations of
climate.

Besides growth also the isotopic composition of speleothems has been studied on sta-
lagmites from all parts of the world (Bar-Matthews et al., 2000; Burns et al., 2001; Neff
et al., 2001; Harmon et al., 1978; Spotl and Mangini, 2002). Thereby precisely dated
oxygen and carbon isotope records are analysed to derive paleoclimate information.
However, their interpretation is difficult, since & 13C and 6180 can be influenced by a va-
riety of parameters. In general, one has to distinguish between effects occurring apart
the stalagmite (e.g. outside the cave) and effects occurring on top of the stalagmite.
Effects outside the cave influence the isotopic composition of the drip water and were
investigated in several publications (60 : ice volume changes, amount effect, evapo-
ration in the vadose zone; 6'3C : proportions of C3 versus C4 plants, atmospheric 1*C
variations (Goede, 1994; Desmarchelier et al., 2000; Harmon et al., 2004)), but are not
the focus of this study.
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1.3. PRELIMINARY MODEL REMARKS

1.3 Preliminary model remarks

In every model presented in this study several parameters are used. Some of them are
directly related to climate, some describe the surrounding environment of the cave and
others are idealized model parameters. In this section all parameters appearing in this
work are described shortly in an hierarchical order regarding their dependencies.

0th stage parameters
Parameters of the 0 stage depend on external conditions only (e.g. climate, cave envi-
ronment). This stage includes the following set of parameters:

Drip interval d The water supply of stalagmites is one of the most important factors
for stalagmite growth. In general, a stalagmite is fed by drops falling from the
cave’s ceiling, whereas the drip interval is defined as the time between two im-
pinging drops. Instead of the drip interval the water supply is sometimes given in
drip rates, which is defined as the reciprocal value of the drip interval. Obviously
the drip interval depends on the size of the drop volume V, which is assumed to
be constant. Although the water feeding the stalagmite originates in general from
rainfall, in most cases drip intervals might not directly be related to the amount
of rainfall above the cave. Evapotranspiration, soil or aquifer processes in the
bedrock cause the drip interval to reflect the amount of precipitation qualitatively
but generally not quantitatively.

Temperature T Another important factor is the temperature prevailing in the cave.
Therefore all temperature values used in this thesis describe the temperature of
the cave air unless otherwise stated. This temperature is relatively constant dur-
ing the seasons and reflects the mean annual temperature outside the cave (Mc-
Dermott, 2004). In general temperature is given in centigrade degree [T,, °C], but
sometimes in Kelvin [T}, K] as well. The conversion between these two scales is:
Ti = T, + 273,15. Unless otherwise stated, temperature in centigrade is used.

CO; partial pressures pco, The partial pressure of carbon dioxide both of the air in the
soil zone and the cave has a significant influence on stalagmite processes. In the
soil zone the abundance, type and productivity of plants a well as the soil type
determines the amount of CO, which, in turn, determines the amount of solved
calcite in the solution. In the cave the CO, partial pressure of the air affects the
degassing of CO, from the solution layer. In general there is a large gradient
between the CO, partial pressures of the soil zone and the cave air resulting in a
fast degassing of CO, from the solution layer on top of the stalagmite. However,
the value of pco, both of the soil zone and the cave air can vary during a seasonal
cycle. This is due to the missing activity of the vegetation during winter month
(soil zone) or ventilation processes in the cave air.

17



CHAPTER 1. INTRODUCTION

Isotopic composition of the drip water §13C, 5180 The isotopic composition of the pre-
cipitated calcite on top of the stalagmite depends strongly on the isotopes con-
tained in the feeding drip water, which are determined by external, climatic pa-
rameters. The 613C value is influenced by the atmospheric amount of CO,, the
abundance, type and productivity of plants, such as a change from C3 to C4 plants
and the type and thickness of the overlying soil. The oxygen isotopes 6'80 of the
drip water depend on meteoric effects like the amount effect or the continental ef-
fect as well as changes of temperature and precipitation above the cave. All these
effects occur apart the stalagmite (outside the cave or in the soil zone) and are
not investigated in this study. Unless otherwise stated the isotopic composition
of the drip water is set as 613C = —10%c (VDPD) and 680 = —10% (VSMOW)
respectively.

Mixing coefficient ¢ The water supply of a stalagmite has a huge impact on its growth
and development. Drops falling from the cave’s ceiling hit the stalagmite and es-
tablish a thin film on its top. If a new drop hits this existing solution layer mixing
processes between the two solutions occur, which are described by the mixing
coefficient ¢. This coefficient depends on the height of fall of the drop and the
surface texture of the stalagmite’s top. A drop falling a long distance has a high
potential and so finally kinetic energy, which might results in a rather splashing
mixing process in comparison to drops falling only short distances. However, the
influence of the height of fall and the surface texture on top of the stalagmite on
the mixing process are not investigated in this work. In general the mixing coeffi-
cient must be seen as a pure model parameter, however, the explanation described
above is a good physical approach.

Buffer parameter b The isotopic composition of 680 in the precipitated calcite de-
pends on the buffering effect of the huge water reservoir of the solution layer.
Due to hydration and hydroxylation reactions the oxygen isotopes in bicarbon-
ate might change significantly. The influence of these reactions is described by
the buffer parameter b. A system which is completely buffered by the exchange
reactions is equivalent to calcite precipitation under equilibrium conditions. If
by contrast buffer processes are neglected the enrichment of 5'®O becomes maxi-
mal. This is the case of purely kinetic fractionation. In natural systems the buffer
parameter lies somewhere in-between these values. However, b can hardly be
calculated from chemical reactions. Therefore is it approximated by a linear in-
terpolation between the two border cases of equilibrium and disequilibrium frac-
tionation.

15t stage parameters

The next set of parameters in the hierarchical order are variables which depend on
parameters of the 0 stage only. Dependencies are listed in the brackets after the corre-
sponding symbol.

18



1.3. PRELIMINARY MODEL REMARKS

Equilibrated calcium concentration [Cuﬁ“]'”] (pco,, T) The calcium concentration of a

solution in equilibrium with the surrounding atmosphere is determined by the
partial pressure of CO, and the temperature. There are two important regions,
where the solution can equilibrate with the surrounding air: (i) the soil zone and
(i) the cave zone. Due to the higher pco, of the soil zone the calcium concentra-
tion of the drip water [Ca?*],0; is in general much higher than the concentration
of the solution in equilibrium with the cave air [Ca*"] .. Due to an inhibiting
effect during the precipitation of calcite from the solution in the cave the calcium
concentration in equilibrium with the cave air needs to be multiplied by a factor
\/% (Dreybrodt, 1999; Kaufmann, 2003). This concentration is called the apparent

concentration [Ca*"|,,p. The difference between [Ca?* ], and [Ca®T],p, deter-
mines the calcium excess concentration [Ca”]ex.

Kinetic constant & (T, ) The kinetic constant describes the relationship between the

deposition rate of calcite and the calcium excess concentration in the solution in
a specific range. In this range the correlation between the deposition rate and
the calcium excess can be approximated linearly, whereas « is the slope of this
fit. However, « is not a constant, but depends on temperature and the thickness
of the solution layer J on top of the stalagmite (Baker et al., 1998; Buhmann and
Dreybrodt, 1985b).

Fractionation factors «;(T) There are several fractionation factors used during the cal-

culation of 6'3C and 680 . For carbon the most important species are bicarbonate,
carbon dioxide and calcium carbonate, whereas for oxygen water plays a major
role. The temperature dependent fractionation factors between these species are:

Carbon

13 —
€10 —caco, (HCO; — CaCOy)

13 —
€10 .co, (HCO; — COy)

Oxygen

18 -
€Hco; —co, (HCO; — COy)

18 —
€180 _.caco, (HCO; — CaCOy)

18 —
e o o (HCO3 — H20)

Constant parameters

Some parameters used in the models are kept constant due to their small variability or
to simplify and accelerate calculations.
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CHAPTER 1. INTRODUCTION

Drop volume V The volume of a drop hitting a stalagmite depends on the type and

texture of the cave’s ceiling. A drop detaching from a stalactite might have a
smaller drop volume than drops released from a rather plain ceiling due to adhe-
sion forces. To simplify this problem a fixed drop volume of V = 10~7m3 = 0, 1ml
is assumed as suggested by Dreybrodt (1988).

Solution layer thickness § Impinging drops establish a thin solution film on top of the

stalagmite. The thickness of this film decreases with increasing distance from the
stalagmite’s centre due to gravitational effects. It also determines the influence of
CO; mass transport processes occurring in the solution and thus the degassing
rate of CO,. Dreybrodt (1988) measured the thickness of this layer and suggested
a fixed layer thickness of § = 0, 1mm to simplify further calculations.

Humidity of the cave air The humidity of the cave air is the driving force for the evap-

20

oration of water from the solution layer on top of the stalagmite. Thus, a low hu-
midity would cause a high evaporation of preferably light H,O' molecules from
the water film resulting in an isotopic enrichment of the heavier oxygen isotopes
180 in the solution layer. However, most of the caves show a very high humidity
of up to 99 % (McDermott, 2004). This allows to neglect evaporation effects in the
cave environment of many caves.



1.3. PRELIMINARY MODEL REMARKS

oth stage parameters

Parameter Symbol Unit Range
Drip interval d [s] 0-3600
Cave temperature T [°C] 0-20
Soil partial CO, pressure pco, [ppm] 0 - 40000
Isotopic value of the drip water (513Cdr0,, [%o0] -20--10
Isotopic value of the drip water 5180dmp [%o0] -15--5
Mixing coefficient ¢ - 0-1
Buffer parameter b - 0-1

1%t stage parameters

Parameter Symbol Unit Range
Calcium concentration [Ca2+]eq [mmol/1] 0-3,5
Kinetic constant % [m/s] (4-30)x108
Fractionation factors o; - around 1

Constant parameters

Parameter Symbol Unit Range
Drop volume A% [m3] 107
Layer thickness ) [m] 1074
Cave humidity - [%] ~ 100

Table 1.3.1: Ranges of the parameters used in the models.
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CHAPTER 1. INTRODUCTION

1.4 Model types

To investigate the dependencies of growth and isotopic fractionation processes in sta-
lagmites analytical and numerical models have been developed. Generally two types of
models can be distinguished: (i) Forward models, which calculate climate proxies (such
as growth, shape or isotopic compositions) from given climatic boundary conditions (such
as drip interval, temperature, pco,). And (ii) models, which reverse the forward mod-
els to calculate climatic boundary conditions from climate proxies (reverse models).

This section gives a short overview of the models introduced in this work and their
purpose in form of a short description including the input and output parameters.

Note, that all models dealing with isotopes are developed on the assumption of disequi-
librium fractionation processes during the precipitation of calcite. However, processes
occurring under equilibrium conditions can be obtained as a border case of disequilib-
rium processes. This will be shown later on.

1.4.1 Forward models

The forward models calculate climate proxies from given climatic boundary conditions.
The notation is: Model name Input parameters — Output parameters.

Growth models

Exponential ansatz d, T, ¢, ps(’j"gz/ % — Growth and shape

This model was developed by Dreybrodt (1988) and extended by Miihling-
haus et al. (2007). For given boundary conditions the growth along the
growth axis of a stalagmite and the resulting shape can be calculated. How-
ever, the temporal development of the solution on top of the stalagmite is
not included. Growth is assumed to decrease exponentially with increasing
distance from the growth axis.

Gaussian ansatz d, T, ¢, ps(':"g 2/ ¢ — Growth and shape

This growth model was recently published by Romanov et al. (2008) and
describes the temporal movement of the solution on top of the stalagmite.
The iteratively calculated growth is approximated by a Gaussian function.

Multi-box-model In comparison to the growth model by Dreybrodt (1988) this multi-
box-model is able to calculate the so far missing time-place link of the solution
and is therefore suitable for both growth and isotopic composition calculations.

Growth 4, T, ¢, pscogz/ ¢ — Growth and shape
Growth is calculated in each box and thus the resulting shape can be deter-
mined.

Isotopes along growth axis d, T, ¢, p?g 2/ cave _, 513C , 5180
The isotopic composition of carbon and oxygen in the precipitated calcite is
calculated along the growth axis of a stalagmite.
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Isotopes along growth layer d, T, ¢, pi. 2/ cave _, §13C, 6180
The isotopic composition of carbon and oxygen in the precipitated calcite is
calculated along an individual growth layers of a stalagmite.

1.4.2 Reverse models

The reverse models are based on the inversion of the forward models and calculate cli-
matic boundary conditions from given climate proxies and can be seen as the inversion
of the forward models. Note, that all reverse models (except CSM) yield no clear result,
if they are used individually.
AGE model Growth along growth axis — d, T, ¢, pé"g 2/ cave
The reverse model of the growth model calculates one climatic parameter in de-
pendence on all others using the growth rate calculated from the age-depth rela-
tion.

AXIS model

S13C §13C along the growth axis — d, T, ¢, ps‘c"g 2/ cave
Based on the calculation of the innermost box of the isotope multi-box-model
this model extracts one climatic parameter in dependence on all others.

5180 6180 along the growth axis — d, T, ¢, b, pé”gz/cm
Based on the calculation of the innermost box of the isotope multi-box-model

this model extracts one climatic parameter in dependence on all others.

LAYER model

soil / cave

S13C 13C along an individual growth layer — d, T, ¢, Pco,
The reverse model of the isotope multi-box-model uses the isotopic enrich-
ment to determine one parameter in dependence on all others.

soil / cave

§80 4'80 along an individual growth layer — d, T, ¢, b, pco,
The reverse model of the isotope multi-box-model uses the isotopic enrich-
ment to determine one parameter in dependence on all others.

BUFFER model 6'°C and 6'80 along an individual growth layer — b
This model uses Hendy-Test data sets to calculate the buffering effect of the water
reservoir on bicarbonate in the solution on top of the stalagmite in a simplified
way.

Combined stalagmite model/CSM Growth and isotopic profiles, 613Cdmp, T — T,d,
pCOZI (Slgodmp/ (P
This model combines all reverse models in order to reconstruct temperature and
drip interval records from kinetically grown stalagmites. It uses the age-depth re-
lation, isotopic profiles and needs an estimation of the mean value of the isotopic
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carbon composition of the drip water. To connect the floating temperature record,
a temperature T* at any time during the growth period has to be estimated. In
addition to the obtained temporal records of temperature and drip interval, aver-
aged values of the partial pressure of the soil, of the oxygen composition of the
drip water and of the mixing coefficient are obtained.



Chapter 2

Basics
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2.1 Species in the system

In the system of dissolved inorganic carbon (DIC) the concentration of bicarbonate
dominates at a pH value of pH = 8, which is typical for karst systems (Mook and
de Vriess, 2000). Within a temperature range of 1 to 20 °C bicarbonate amounts approx-
imately 95 % of the DIC (see Fig. 2.1.1). In this case the concentration of the dissolved
inorganic carbon is well approximated by the concentration of bicarbonate.

[H,COs], [HCO57], [CO5™]/ Cr (%)

1\
REEAN
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B =

4 5 6
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S \ \
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Figure 2.1.1: The composition of dissolved inorganic carbon. Captured from Mook and
de Vriess (2000)

Based on the reactions occurring in the H;O — CO; — CaCOj3 — system (see section 1.2)
the concentrations of the involved species and their dependence on temperature and
pco, of the solution can be calculated. According to Dreybrodt (1988); Buhmann and
Dreybrodt (1985b,a) and Kaufmann (2003) the concentration of the species in a solution,
which is in equilibrium with the surrounding temperature and CO, partial pressure can
be determined to:
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[Ca? ey = » Ki Ke Kyt pco (2.1.1)
4 Kz YCa2+ ’)/2 5 2
a*t THcot

_ Ky Ky
HCO; | = 2.1.2
[ 3] YH THCO; [H+] Pco, ( )

K2 Kz K2 YC
H] = | —H1— 2 213
H] \/ZKC YH'YHCO; (pco.) ( )

_ Kwy

H| = 214
[OH] You- Yu [HT] @14

Concentrations are marked by squared brackets. The mass action constants K; used for
the reactions occurring in this system and the calculation of these concentrations are
given according to Dreybrodt (1988); Buhmann and Dreybrodt (1985b,a):

Ks
Ky=— 2.1.5
0= X, (2.1.5)
K 10—356.3094—0.06091964 Tﬁ%ﬂ%.%w log Ty, — 168515 2.16)
1= k A,
—107.8871-0.03252849 Ty+ >13.7 +38.92561 log Ty — 247332
K, =10 k k (2.1.7)
Ks =1.707 x 10~* (2.1.8)
K 10—356.3094+%k4-37—0.060919964 TK+126.8339 log Tk—% (2.19)
6= k .
—171.9065—0.077993 Tj+ 2832319 1 71 595 log T|
Kc =10 L o8k (2.1.10)

108.3865+0.01985076 Ty, — 1% —40.45154 log Ty+ 253
Ky =10 g k (2.1.11)

22.801— 47873 _0.010365 TK—7.1321 log Ty
k .

Ky =10 (2.1.12)

Note that temperature is given in Kelvin. The concentration of the i-th species is related
to its activity (marked by rounded brackets) by the ion activity coefficient ; (Garrels
and Christ, 1965; Dreybrodt, 1988):

(i) = 7ili]. (2.1.13)
The activity coefficient is calculated using the extended Debye-Hiickel equation:
Vi
logyi = —Az;———— 2.1.14
g’)/l 1 1 + Bai\ﬁ ( )

with the constants A and B, the ionic strength I, the ionic radius 4; and the charge z; of
the corresponding species. Values for the activity coefficients are given by Dreybrodt
(1988):
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,A\ﬁ

yr = 1017897 (2.1.15)
—A4VI
Yca = 101851 (2.1.16)
,A\ﬁ
YHco = 101+854V1 (2.1.17)
,A\ﬁ
Yor = 101+835VI (2.1.18)
(2.1.19)
using the temperature dependent constants A and B:
A = 0.48809 + 8.074 x 1074T (2.1.20)
B = 0.3241 4 1.600 x 107*T. (2.1.21)
The ionic strength I can sufficiently be approximated by:
I = 3[Ca*"]e. (2.1.22)

For uncharged species such as CO, the activity coefficients can be approximated by
(Plummer and Mackenzie, 1974):

Yco, = 1. (2.1.23)

The two most important concentrations, used in the models, are the concentration of
calcium and bicarbonate. Due to electro neutrality the amount of bicarbonate must
be twice the amount of calcium in the solution. This can be seen in Fig. 2.1.2, which
illustrates the calcium and bicarbonate concentration in dependence on temperature
and CO; partial pressure.

The figure shows, that the concentration of both calcium and bicarbonate increase with
increasing CO; partial pressure. This can be explained by Eq. 1.2.8, since a higher par-
tial pressure of CO; drives the reaction from left to right and thus causes an increased
amount of calcium and bicarbonate in the solution. With increasing temperature the
concentrations decrease slightly. As expected the concentration of bicarbonate shows
the same characteristics as calcium but with an increased concentration by a factor of
two.
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[Ca%*]., [mol/m?|

Pco, [ppm] temperature [°C|

(a) Calcium concentration of the solution
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(b) Bicarbonate concentration of the solution

Figure 2.1.2: Concentrations of calcium (a) and bicarbonate (b) in dependence of temperature
and CO, partial pressure.
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2.2 The kinetics of the CO, - H,O — CaCO; reaction

The precipitation of calcite is driven by the conversion of bicarbonate into carbon diox-
ide in the solution on top of the stalagmite. In addition also diffusion processes and
surface reactions influence the process of precipitation, but proceed in comparison to
the chemical conversion on much shorter time scales and can therefore be neglected in
further considerations.

To calculate growth and the isotopic enrichment during calcite precipitation under dis-
equilibrium conditions the temporal development of bicarbonate needs to be known.
Due to electro neutrality the decrease of bicarbonate in the solution with time must be
equal to the loss of calcium. The decrease of calcium has been determined by Buhmann
and Dreybrodt (1985b,a) and follows an exponential decrease:

[Ca®t](t) = [Ca¥Tle % .2.1)

with the temperature dependent kinetic constant « and the film thickness 6. The kinetic
constant is approximated according to Baker et al. (1998) by!:

w(T) =1,188 x 1071173 — 1,29 x 1071172 + 7,875 x 1079T + 4,844 x 1078, (2.2.2)

In the following the decrease of bicarbonate is derived and compared to the results for
calcium.

To calculate the time dependent decrease of bicarbonate theoretically the following
chemical reaction occurring in the CO, — H,O — CaCO3 system must be used to start
with:

k+
H,O + CO, = HCO; +H™. (2.2.3)

The conversion process of this reaction depends on the pH value of the solution and
is slowest in the region of pH =~ 7.5, which is typical for karst water. The kinetics of
reaction 2.2.1 leads to a time dependent rate equation for bicarbonate:

d[HCO; |
dt

Integrating this differential equation from ty to t yields for the temporal development
of bicarbonate:

= k" [CO,] — k™ [HCO; ). (2.2.4)

Heoy () = 1% ([Hco;](to) _KICO,] ,[{(502]) ek (1=t (2.25)

with the rate constants:

IThe kinetic constant « was approximated by digitizing an « versus T figure (Baker et al., 1998) and a
3rd order polynomial fit.
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kKt =k +k5 [OH ], (2.2.6)
k™ =ko[H] +k; (2.2.7)
and
o — kl_ YH ’)’HCO; (2.2.8)
T K1+ Ky) ! -

_ 36171

k=107, (2.2.9)
_ _ 172654
k{L _ 10329.850 110.54 log T T, ) (2210)
__ 5308

ky, =107, (2.2.11)
ki =106 (2.2.12)

The exponential time constant 1/k~ of Eq. 2.2.5 depends strongly on the surround-
ing CO, pressure and temperature. The range of 1/k™ as a function of temperature is
confined by two curves resulting from the extreme partial pressures of CO, in the soil
(35000 ppm) and in the cave (400 ppm), respectively (see figure 2.2.1). For a solution
that is highly supersaturated, we expect the time constant close to 1/k_ ; ranging be-
tween 150 — 700 seconds, for temperatures between 0 to 20 °C, since most of the calcite
precipitates during this early stage. This is shown by the lower curve. For a solution
with less supersaturation the decay is slower, which is represented by the uppermost
line in Fig. 2.2.1.

A comparison of 1/k~ with the exponential time constant of calcium, shows that the
time constant of calcium is close to the time constant of bicarbonate for a highly super-
saturated solution (dotted line in Fig. 2.2.1). This drives a fast degassing of CO,, which
favours the precipitation under disequilibrium conditions. For a temperature range be-
tween 0 and 20 °C the time constant of calcite ranges between 300 and 2000 seconds
comparable to natural drip intervals?. In the following the exponential time constant
0/w is used to describe the decrease of bicarbonate in the solution:

[HCO”;] (t) - [HCO?T]C”W + <[HCO§]501’I - [Hcog]cave) 67%

ot

g 3 deoil (22.13)
— [HCO3 ]Cave + [HCOS ]gxe 5,

The indices soil / cave represent the surroundings under which the solution was equili-
brated. The index ex indicates the excess amount of bicarbonate in the solution.

2Note, that the temperature dependence of the calculated time constant in Fig. 2.2.1 depends not lin-
early on the CO; partial pressure.
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time constant x1000 [s]
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temperature [°C]

Figure 2.2.1: Temperature dependence of the time constant describing the exponential decrease
of bicarbonate. The lower curve was calculated for a typical pco, of the soil zone of 35000 ppm.
The uppermost line shows the time constant under cave conditions with a partial CO, pressure
of 400 ppm. The approximated time constant of calcium (dotted line) is close to the lower curve
due to fast degassing of CO,
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2.3 Mixing processes

Mixing processes occur, if a drop dripping from the cave’s ceiling impinges at the exist-
ing solution layer on top of the stalagmite. To describe this process in a mathematical
way a mixing coefficient ¢ (¢ € [0;1]) is introduced. Assuming an equal volume of two
solutions A and B as well as of the mixed solution C, the mixing coefficient ¢ gives the
percentage of solution B mixing with (1 — ¢) percent of solution A:

C=(1—¢)A+¢B. 2.3.1)

By postulating a volume of the mixed solution C equal to the volume of the initial
solutions A and B the overflow D of the mixing process is defined by

D=¢pA+(1—¢)B=A+B—C. (2.3.2)

This process is illustrated in figure 2.3.1.

B Mix Overflow

A ¢
1-¢|17

C D

Figure 2.3.1: Mixing process of two solutions A and B. To illustrate this process the mixed parts
of the two solutions are graphically separated ((1 — ¢)A, ¢B). Since the volume of the mixed
solution C must be equal to the volume of one of the source solutions an overflow solution D
must emerge.

To apply the mixing process to the concentrations of the impinging drop and the exist-
ing solution layer, the temporal development of the involved concentrations need to be
known. In the following the mixing of two bicarbonate concentrations are exemplified.
According to equation 2.2.13 the temporal development of bicarbonate is:

[HCO; |(t) = [HCOZ leave + ([HCO3 soit — [HCO3 leave) €% (2.3.3)

A solution layer on top the stalagmite with an initial bicarbonate concentration of
[HCO; ](0) decreases during one drip interval to [HCO; |(d) (Eq. 2.2.13). After one
drip interval a new drop with the bicarbonate concentration of [HCOj ] hits the so-
lution layer and mixes according to Eq. 2.3.1:

[HCO3](1,0) = (1 = ¢)[HCO5](d) + ¢[HCO; Jsoir (2.34)
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4,0 soil equilibrium
3
S
£
—
o]
O
L
2,0
1.5+ cave equilibrium
1'0 T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10
number of drops

Figure 2.3.2: Temporal development of the concentration of bicarbonate in the solution for
d = 250s, T = 10°C ,pco, = 10000ppm and ¢ = 0,3. The horizontal dotted lines represent
the concentrations in equilibrium with the soil and the cave air. The mixed solution already
approaches an equilibrium like state after a few drops.

The first variable of [HCO;](1,0) indicates the number of impinged drops (1) and the
second parameter (0) the elapsed time after the mixing process. From this initial con-
centration of the mixed solution the concentration decreases again (see Fig. 2.3.2):

[HCO;](1,t) = [HCO5](1,0)f(¢) (2.3.5)
with

f(t)y=e%. (2.3.6)

Iterating this mixing process yields for the bicarbonate concentration after n drops®
(Miihlinghaus et al., 2007):

[HCO;|(n,0) = [HCO;3 Jcave + A(n, f(d))[HCO; |ex (2.3.7)
with

n—1
Mm, f(d)) = (1—¢) f(d))" +¢k§((1 —¢) f(d)*, n>0, (2.3.8)

By using the function f(t) Eq. 2.3.8 is kept in a general way. If mixing of concentrations
with different kinds of decrease are investigated the corresponding decrease functions
f(#) must be used. In the case of calcium and bicarbonate f(t) is given by Eq. 2.3.6 and
the factor A depends on the mixing coefficient, temperature, the drip interval and the

3See Appendix B.1 for derivation.
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Figure 2.3.3: Number of drops needed to establish an equilibrium of the concentration in the
solution.

number of drops n impinged at the solution layer. The factor A reaches an equilibrium
like state within the range of natural parameters after at most 100 drops. Figure 2.3.3
shows that the number of drops 1, which are needed to establish a quasi equilibrium,
exceeds about 40 only for low mixing coefficients paired with short drip intervals. A
itself can reach down to 0.2 for low mixing coefficients and large drip intervals.

Besides mixing of bicarbonate concentrations also the mixing of their isotope ratios
need to be considered, which are needed for the calculation of isotopic profiles. Two
solutions with the initial isotope ratios R4 and Rp and the corresponding & values 4
and 6 mix according to:

Omix = (1 — (P)(SA + ¢op. (2.3.9)
This yields for the mixed isotope ratios (see Miihlinghaus (2006)):

Ryix = (1= ¢)R4 + ¢Rp. (2.3.10)
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Figure 2.3.4: A factor describing the mixing process in dependence on drip interval and mixing
coefficient. If no mixing occurs (¢p=1), A becomes equal to 1. If only small parts of the impinging
drop mix with the existing solution layer, A can decrease down to 0,2.
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2.4 Fractionation processes

During the degassing of CO, and precipitation of CaCOj3 from the solution isotopic
fractionation processes occur. To understand the dependencies of these processes on
temperature, the dependence of the used fractionation factors on temperature needs
to be known. In this section the basics of fractionation processes are discussed and
fractionation factors from literature are listed and compared.

2.4.1 Fractionation and standards

The natural abundance of stable isotopes is given in isotope ratios R. These ratios are
defined as:

_ abundance of rare isotope
- abundance of abundant isotope’

(2.4.1)

In this work stable carbon and oxygen isotopes and their isotope ratios are studied:

R13 _ 13C
12C

I (2.4.2)
@)
R18 -
16O

For reasons of clarity this ratio is in general expressed as the deviation in permil from a
standard value Rg;:

R
5= < sample. 1> % 1000 (2.4.3)
std

with the standards Vienna Peedee belemnite and Vienna Standard Mean Ocean Water
(Mook and de Vriess, 2000)

RYEPB(13C) = 0,0112372
RYEPB(180) = 0,0020672 (2.4.4)
RYSMOW (180 = 0,0020052.

During chemical reactions or phase transitions the isotope ratios of the involved species
change due to the different molecular weight of the isotopes. If transitions occur in a
closed system, this process is reversible and the change of the isotope ratio from state i
to j is described by the temperature dependent fractionation factor ai_,j4:

R;

i = ﬁf (2.4.5)

1

4In literature fractionation factors from state i to state j are often denoted as &;_;, a /i OF & (j)- However,
for reasons of clarity an arrow-notation is used here.
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To describe the transition from state 7 to j in a more illustrative way the change of
the isotope ratio is expressed in permil (see J-notation). If the § values of the states i
and j are given as ¢; and ¢; and € is introduced as the deviation of a from 1 in permil
(€ = (v —1)1000), the change can be described as follows:

dij = 0j — 0;
R ‘
— <R] —1> 1000 — <RRZ —1> 1000
std std
1) 10— (L 1)
= —1 1000 — — 1) 1000
< Rstd Rstd (2~4‘--6)
R;

= —(a;—; — 1)1000
Rstd( o )

~ (Dcl'_,j - 1)1000.
= GiH]'.

In the last step the ratio R;/ Ry, is neglected since the factor 1000 dominates this term.
Using the Taylor series for In(x):

+ . (2.4.7)

Eq. 2.4.6 can be expressed as:

(51'_>]' ~ (061'_>]' - 1)1000
= €j—j (2.4.8)

The last expression is frequently used in literature for the fractionation factor.

2.4.2 Fractionation factors of carbon and oxygen

In the following subsection fractionation factors for carbon and oxygen between species
contained in the HyO — CO, — CaCOj system are listed. These factors span different
temperature ranges and are either determined experimentally (exp), theoretically (theo)
or result from combinations of several experimental data (sum) (see Tables 2.4.1 and
2.4.2). The characteristics of the different fractionation factors is shown in Figs. 2.4.1
and 2.4.2.

However, the measurement or calculation of individual fractionation factors is com-
plicated and can not be performed directly in some cases. Thus, a theoretical detour
needs to be taken. To obtain the unknown factors individual fractionation factors are
connected in such a way, that the initial species and final species of this factor-chain
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Formula T-Range [°C] Method Reference

@co§ — coy’

e = H%ma + Eﬁ 76 _1.9585 0-60 sum Thorstenson and Parkhurst (2004)
) H,0 — COy!

e = 16200 2-85 exp  O'Neil and Adami (1969)

(27)¢ = ﬁ.oﬁw - C x 1000 25 sum  Friedman and O'Neil (1977) mean out of 10 values
(2b)e = (1.0396 — 1) x 1000 25 theo  Usdowski and Hoefs (1993)

Gle = 17004 —17.93 10-60 exp  Brenninkmeijer et al. (1983)

e = :ﬁ:m + E&m % _ 21.9285 0-100 sum Thorstenson and Parkhurst (2004)
®e = % + (12.12 + 0.33) 15-40 exp  Beck et al. (2005)

()HCO; — HO

De =~ % + (2.66 +0.18) 25-45 exp Halas and Wolacewicz (1982)

(2)e = AQ - v % 1000 25 theo  Usdowski and Hoefs (1993)

Be = Ng%o%% — (1.18 £ 0.52) 15— 40 exp  Beck (2004)

We = N%o%% (1.89 4 0.04) 15 - 40 exp  Beck et al. (2005)

@ H,0 — CaCOs

e = Nuﬁé —3.39 0 - 500 exp  O'Neil et al. (1969)

2e = Num%%oo 2.89 sum Friedman and O’Neil (1977)

Be = ;%wo —32.42 10 - 40 exp  Kim and O'Neil (1997)

e = Gﬂ@wm —37.32 0-40 sum Mook and de Vriess (2000)
()CaCO3; — CO§

Me = 1803300 4 16511 0-550 theo  Bottinga (1968)

Table 2.4.2: Oxygen fractionation factors in [%o] from literature.
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Figure 2.4.1: Fractionation factors for carbon between different species. The data are taken
from literature (see Table 2.4.1). The dotted lines represent extrapolated values according to
the given equation for temperatures between 0 and 100° C, whereas the solid lines represent the
temperature range, wherein fractionation factors have been determined.
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Figure 2.4.2: Fractionation factors for oxygen between different species. The data are taken
from literature (see Table 2.4.2). The dotted lines represent extrapolated values according to
the given equation for temperatures between 0 and 100° C, whereas the solid lines represent the
temperature range, wherein fractionation factors have been determined.
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match to the needed transition. According to Eq. 2.4.8 the isotopic change from state i
to state k via state j can be written as:

1000Ina;_p = 6, = (Si_,]' + (5ij = 10001n (ai_,ja]-ﬁk) (2.4.9)
or between states [ and 7 via state m
1000108y = 8oy = 61y — S = 100010 <i‘l*’” ) : (2.4.10)
n—m

From this it follows for the connected fractionation factors:

K, — zxi_>jzx]-_,k (2.4.11)
or
w o, = o (2.4.12)
Xp—m

Thus, the transition between two states can be described either by an additive J-notation
or a multiplicative a-notation. Knowing this, the individual fractionation factors be-
tween species which can not be measured directly can be determined.

2.4.3 Fractionation factors used in the models

There is a large number of fractionation factors for transitions between some species
contained in the system, however, only few are relevant for the usage in the models.
This is due to the fact that most of the factors are only determined for a specific temper-
ature range, which needs to be appropriate for natural cave systems.

For carbon the fractionation factors between bicarbonate and carbon dioxide and cal-
cium carbonate respectively are needed. According to Miihlinghaus et al. (2007) the
following fractionation factors are used (Mook et al., 1974; Mook and de Vriess, 2000):

9483 + 220
13 _
heo; coy =~ g+ (2389%075) .
13 4232 15.10 o
€HCco; ~cacos T T, + 15.10.

For the fractionation of oxygen an additional fractionation factor is needed, that is the
fractionation between bicarbonate and water. However, since there are no direct mea-
surements of some of these factors, they need to be constructed as described in the pre-
vious section. The fractionation between bicarbonate and water is according to Beck
et al. (2005):

2590000 =+ 0
€rco; 10 =~z — (189 £0.04). (2.4.14)
k
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Figure 2.4.3: Constructed fractionation factors for oxygen between different species used in the
models.

The fractionation between bicarbonate and gaseous carbon dioxide is given as:

18 _ (18 +el8 _ 18
HCO; —CO§ HCO; —H,0 " "H,0-—COy!  ~C0Oy'—COoj

259 +
= —%200 — (1.89 £ 0.04)
T;
252 + 2.4.15
+ > 0002,2 30000 + (12.12+0.33) ( )
k
160515 . 1441.76
T,f Ty
Values are taken from Beck et al. (2005); Thorstenson and Parkhurst (2004). The frac-
tionation between bicarbonate and calcium carbonate is constructed as follows:

€

— 1.9585.

€HCO; —CaCOs = €HCO; —H,O T €H0~—CaCOy

2 + 27 2.4.16
= 2P0 (189 40.04) + 200 559 (2416
Tk Tk

Values are taken from Beck et al. (2005); O'Neil et al. (1969). The temperature depen-
dence of these two factors are shown in Figs. 2.4.3.

Note, that the selection of fractionation factors for the models is a crucial point, since
their influence on the isotopic enrichment of the precipitated calcite is significant. For
oxygen the temperature dependence of the factors of the relevant transitions show only
a small variability regarding their trend and absolute values. However, carbon frac-
tionation factors differ for some transitions. In the following the carbon factors of the
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relevant transitions are chosen regarding their temperature range or in accordance to
earlier publications (Miihlinghaus et al., 2007).
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CHAPTER 3. FORWARD MODELS

3.1 Growth model

Growth and morphology of stalagmites are the properties, which catch a researcher’s
eye first. Thus, it is not surprising that the first mathematical models were developed
to reconstruct growth and shape of stalagmites to investigate their change under vary-
ing external conditions. This was carried out in the late 80’s by Dreybrodt (1988) and
improved 15 years later by Kaufmann (2003). However, the basic idea still remains.
The underlying concept is the iterative calculation of individual growth layers until a
stalagmite shape establishes, which does not change in form but only in height (equi-
librium shape). Due to crystal growth mechanisms the growth is perpendicular to the
underlying surface and is maximal at the apex of the stalagmite. With increasing dis-
tance from the centre growth decreases. Applying this decreasing growth to different
points along the growth layer a new layer is formed, which acts as the starting point
of the next layer. In the first models growth was assumed to decrease exponentially
from the apex to the flanks. However, this assumption is a guess and has no physical
background.

A recent publication of Romanov et al. (2008), who used the flow velocity of the solution
layer on top of the stalagmite to calculate the calcite deposition iteratively from the
apex to the flanks. This results in a Gaussian decrease of the growth with increasing
distance from the centre in comparison to the exponential decrease of the first models.
In this section a general description of the growth model is given first followed by
results achieved with the exponential and the Gaussian ansatz. In addition the mixing
coefficient is built in the existing growth models. By taking mixing effects between the
impinging drops and the existing solution layer into account, the existing models are
improved in order to describe growth and shape of stalagmites in a more realistic way.

The shape of a stalagmite is determined by the iterative calculation of individual growth
layers until an equilibrium shape is established. To determine the development of
growth layers two information are needed: (i) the growth at the apex of the stalagmite,
where growth is maximal, since the amount of calcium in the solution and so calcite
deposition is maximal. (ii) the decrease of growth from the apex along the growth layer
to the flanks of the stalagmite. This is a crucial point of the growth model. To keep
the following theory in a general way a function f(/) is used to describe the decreas-
ing growth, which depends on the distance / from the apex and is characterized by a
monotonically decrease.

The growth at the apex is determined by the deposition rate F. The correlation between
calcium excess and deposition rate follows in a first approach a linear trend for calcium
concentrations of [Ca?*] < [Ca”]gq (Buhmann and Dreybrodt, 1985b,a; Baker et al.,
1998). In this region F can be approximated by:

F = a ([Ca* s — [Ca*Fapp) - (3.1.1)

Thereby the deposition rate F is given in ["2!], the calcium concentrations in [%%] and
mes m
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. . . 1 . . 2+
the constant of proportionality a in [%]". The apparent calcium concentration [Ca* "],y

2+
is related to the equilibrium calcium concentration by [Ca*"],,, = [C\j%” due to an

inhibiting effect during the precipitation of calcite (Dreybrodt, 1999; Kaufmann, 2003).
To convert the deposition rate F [%2!] into a growth G [m] it has to be multiplied by the

m2s
quotient of molar mass and molar density of calcite:

G = mcalciteF _ mcalcitea ([Ca2+]soil _ [Cﬂ2+]app) . (312)
Pcalcite Pcalcite

During one drip interval the excess concentration of the solution changes due to calcite
precipitation according to section 2.2:

at

[Ca2+]EX(t) = ([Ca2+]soil - [C”2+]app) e 7

= [Ca* 06 % .

(3.1.3)

Due to mixing processes between the impinging drop and the existing solution layer
(see section 2.3) this concentration reaches an equilibrium like state after a sufficient
number of drops n and can be calculated according to Eq. 2.3.7:

[Ca™ ]t () = [Ca** oA (n,d)e™ 7. (3.1.4)

[Ca®t]9, represents the initial calcium excess concentration of the drop. To obtain the
mean growth during one drip interval the equilibrated calcium concentration is in-
serted in Eq. 3.1.2 and the resulting equation is averaged over one drip interval. This

yields for the growth in [m] using m g cite = 0, 100098 and Pealcite = 2689%:

mol

d [14
Go = 37.222 x 10-6[Ca?* ] A(n, d)ax / % dt
o (3.1.5)
= 37.222 x 10°°[Ca®" )% A(n, d)$ (1 - e*%)

and the growth rate in [m/s]:

[Ca?*]9A(n,d)s (1 B e_%> .

d
The dependence of growth rate Wy on drip interval, temperature and mixing coefficient
is shown in Fig. 3.1.1. The number of drops is sufficient (n ~ 100) to fulfil the condition
of equilibrated calcium excess concentration. An in- or decreased CO, partial pressure
difference between the soil and the cave zone does not influence the characteristic of
the dependencies on the other parameters, though, a quantitative change is observed.
If the difference in CO, decreases, growth is reduced, especially for short drip intervals
and vice versa.

Wy = 37.222 x 107° (3.1.6)

INote, that « is also known as the kinetic constant.
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Figure 3.1.1: Dependencies of growth rate on drip interval, temperature, mixing coefficient
and CO, partial pressure of the soil. The figures on the left hand side ((a), (c) and (d)) show
the growth rate in um/yr for a change in the mixing coefficient for a pco, value of the soil of
10000ppm. The figures on the right hand side ((b), (c) and (e)) are calculated for a fixed mixing
coefficient of ¢ = 0,5 and varying pco, values. Lines are drawn every 100s and every degree
centigrade. Note, that the scale of the z-axis is changed in Fig. (e).
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For short drip intervals (d — 0) the growth rate becomes independent on the mix-
ing coefficient ¢ and depends on temperature and the amount of supersaturation only.
For high temperatures the degassing of CO, accelerates and more calcium carbonate
precipitates. Thus, growth rate increases with increasing temperatures. With increas-
ing drip interval this temperature dependence is attenuated and the influence of ¢ in-
creases. For low mixing coefficients the growth rate decreases fast with increasing drip
interval to a minimum value, whereas for high ¢ this decrease is much slower. This
is due to an extended residence time of the solution at low mixing coefficients, which
causes that the CO, partial pressure of the solution is almost in equilibrium with the
surrounding cave air. For high mixing coefficients most parts of the solution are re-
placed by the drop and thus, growth rate increases.

To model the shape of a stalagmite not only growth at the apex must be known, but also
apart the apex, along a growth layer. This growth layer is mathematically described by
a polygon and consists of individual connected segments. The segment between two
points of the polygon P;,_; and P; has the length Al;. By adding up the segments the
length I; of the polygon at the point P; can be calculated:

li=)_Al. (3.17)

This is illustrated in Fig. 3.1.2. The growth is maximal at the apex of the stalagmite and
decreases along the growth layer to the flanks. To keep the decrease of Gy in a general
way it is described by the function f(I;), which depends on the length I; between the
apex and the point P; and is characterised by a monotonic decrease. This yields for the
growth at point P;:

G(l;)) = Gof (ly)e. (3.1.8)

Due to the crystal structure of the existing growth layer, the deposited calcite and thus
the direction of growth is always perpendicular to the underlying surface. This is math-

ematically described by the normal unit vector ¢, which is orthogonal to the surface
_

i—1pi
Pold Pold'

The growth layer is technically implemented by a polygon, whereas growth at each
point P; is defined by Eq. 3.1.8. The resulting calculation of the coordinates of each
point of the new polygon can be deduced geometrically from Fig. 3.1.2 and yields for
point PZM:

ﬁztezu = ﬁcl;ld + é(ll) (319)

with the boundary condition:
¢ (P - Pit) =o. (3.1.10)
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y\

Figure 3.1.2: An individual growth layer can mathematically be described by a polygon. Due
to the crystal structure the growth direction is perpendicular to the underlying surface. By
applying the individual growth to each point of the polygon a new layer or polygon respectively
is established.

This yields for the vector €

1 Yl yi >
g=— [ Jod ~Joid ) (3.1.11)
Al ( Xog — xézdl

Combining Eq. 3.1.8, 3.1.9 and 3.1.11 yields for the new polygon point P,,,:

N x) L Gof) (vl — vy (3.1.12)
Y new Yy old All xz)ld - x:ﬂ_dl

Performing this calculation on each point of the old polygon yields a new polygon,
which represents the growth layer established under the given boundary conditions.
For constant boundary conditions an equilibrium shape is reached after a sufficient time
of growth and the shape of the stalagmite is only shifted vertically without changing its
form. According to Dreybrodt (1988) the height needed to obtain the equilibrium shape
is at most four times the radius, however, boundary conditions must not change.

The radius R of a stalagmite, which has achieved an equilibrium shape, can be deduced
using the following assumption: by mass conservation the amount of calcite deposited
during one drip interval d must be equal to the loss of calcium from the solution on top
of the stalagmite during this time. The input flux F;, of the drop in [mol/s] is given by
the amount of calcium per drip interval:

. V[Ca2+]drop

Fip = . (3.1.13)
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The output flux F,,; lost by the solution is given as the mean deposition rate during one
drip interval times the area, where calcite has been precipitated. Assuming a planar
stalagmite at the top this area is given by A = tR%:

Fout = F(d)A (3.1.14)

with the mean deposition rate F(d):

at

- 1 d
F(d) = - /0 w[Ca®H] e dt

_ [Caz;r]sol5 (1 _e_%_d> .

In equilibrium F;;, must be equal to F,,; and the equilibrium radius R can be derived as
follows:

(3.1.15)

ad

R = VICa* harop (3.1.16)
7'[[C112+]S01(5 (1 - 6_7)

with the calcium excess concentration of the drop [Ca®*]4,, = [Ca®*]9, and the solution
[Ca®*],0;. If mixing effects are neglected, the calcium excess of the solution is equal to

the one of the drop and is given as: [Ca®t]s,; = [Ca®T]%,. Thus the radius becomes
independent of calcium concentration:
%
Ro = —. (3.1.17)
o <1 - e‘?)

If mixing effects were taken into account the calcium concentration of the solution is
according to Eq. 3.1.4: [Ca®T],, = A[Ca®T]Y, and the radius changes to:

Rmix =

(3.1.18)
_ Ro

VA

Note, Ry, is larger than Ry (see Fig. 3.1.3), but still independent of the calcium excess
concentration. If mixing processes are neglected the mixing coefficient is ¢ = 1 and
the radius R,,;y becomes equal to Rg. Thus Ry can be described as border case of Ry,
which is therefore used in the following as a more general description of the equilib-
rium radius.

In natural systems also radii occur, which are smaller than the minimal radius calcu-
lated by the ansatz of Dreybrodt (1988). For instance, caves in Romania show radii of
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Figure 3.1.3: Dependence of the equilibrium radius on mixing coefficient and drip interval
for n = 100 and fixed temperature T = 10°C. The radius increases for low mixing coefficients
compared to the case of no mixing (¢ = 1).

down to 1 cm (Constantin, 2008). However, the minimal radius calculated by Eq. 3.1.16
for very long drip intervals is given as:

%
76 (3.1.19)

~ 1,8cm.

Rmin =

However, this calculation is based on the assumption of a rather flat top of the stalag-
mite, which is not observed for natural stalagmites. Assuming not a flat, but a rounded
top of the stalagmite, the equilibrium radius decreases. This is illustrated in Fig. 3.1.4.
The area, where calcite is deposited is given as A. Assuming natural stalagmites with
very small radii this area might be better approximated by a part of a spherical area
rather than a planar circular area. Thus, the new radius of the stalagmite is calculated
as follows: By putting the area A with radius R; upon a sphere in such an order, that it
covers half of the sphere, the radius R; of the sphere is given as?:

47TR?
nR? = 77; :
= (3.1.20)
Ry = 4/ =E.
2

2The indices indicate the assumption of a circular area (c) and a spherical area (s).
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Area A

Rs

Figure 3.1.4: Approximation of the top of the stalagmite at a two dimensional point of view. The
vertical dotted line represents the growth axis of the stalagmite. Calcite is precipitated upon
area A. If a circular area is assumed, the resulting radius is R, if a spherical are is assumed, the
radius shrinks to R;.

This yields a smaller equilibrium radius of approximately Ry = 1,26cm, which is still
too large compared to the smallest stalagmites observed, but it approaches their range
in a much better way, than the former approximation does.

3.1.1 Exponential approximation

In the first models the monotonic decrease of the growth G from the apex to the flanks
of a stalagmite is described by a decreasing exponential function f(I;). This function is
used in the models developed by Dreybrodt (1988) and Kaufmann (2003), whereas the
exponential ansatz depends on the length of the polygon describing the growth layer
and the equilibrium radius of the stalagmite:

fl) =et. (3.1.21)

However, this is an arbitrary assumption with no physical basis.

3.1.2 Gaussian approximation

In a recent publication Romanov et al. (2008) calculated the growth of stalagmites in an
improved way. In this new model the movement of the solution along the stalagmite
was determined by taking gravitational and frictional effects into account. The iterative
calculation performed in this model allows to determine the time space correlation of
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the solution on a physical basis. The calcium concentration of the solution decreases
during the movement of the solution from the apex to the flanks and thus growth at
any point of the polygon can be calculated. This computationally intensive procedure
is approximated by a Gaussian function:

fll) =e ", (3.1.22)
with the radius Rg:
\%
R —_ 1.2
g tod (3.1.23)

Note, that Ry corresponds to the equilibrium radius of the exponential model in the
high flow regime (d < 6/a).

However, there is a slight deviation between the shape obtained by using this fitted
function and the real shape obtained by using the actual solution movement process
(see Romanov et al. (2008)). Since this model is based on the iterative calculation of
calcite precipitation from small solution parcels along the growth layer, the mixing co-
efficient can not be included in the same manner as for the exponential ansatz. This
would be an improvement to a more realistic description of natural stalagmites. In this
study the mixing coefficient is not included in the radius of the Gaussian model, but
in its maximal growth, which is calculated in analogy to the growth of the exponential
model.

3.1.3 Results and discussion

Using the exponential and Gaussian approximations for the decrease of growth from
the apex to the flanks of a stalagmite, the morphology of a stalagmite can be modelled
in dependence of 0" stage parameters. To accelerate calculations growth is multiplied
by a factor of 1000. This is reasonable, which shows a comparison of two model runs,
whereas in the first run real growth and in the second one increased growth is used. As
it can be seen in Fig. 3.1.5 the shape of these two runs shows no significant difference.

In the following the change in shape during the variation of 0 stage parameters is
investigated, whereas the range of these parameters is chosen in order to reflect the
wide range of natural conditions in caves (see Table 3.1.1).

Generally Fig. 3.1.6 shows, that the shape calculated by the Gaussian model reaches
equilibrium in a much shorter time-scale than the exponential model and reveals a
rather flattened top at the apex of the stalagmite. This has already been shown by
Romanov et al. (2008) and was emphasized as the major improvement of the model.
Thus, the Gaussian model reveals a much more differentiated shape and the individual
growth stages can be more easily detected due to an improved sensitivity to external
changes. The exponential model on the other hand needs more time to reach equilib-
rium and is characterized by a declined surface at the apex. Due to overlapping growth
stages the shape becomes smoother.
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Figure 3.1.5: Comparison of two model runs for fixed boundary conditions, but different
growth rates. The black lined shape is calculated for d = 200s, T, = 5°C and ¢ = 1. In this
case approximately 150 x 10° calculations are needed to obtain the final shape of the stalagmite.
The red line indicates the morphology of a stalagmite, which was calculated using the same
boundary conditions as in the first case, but with an accelerated growth by a factor of 1000.
Thus much less calculations are needed to obtain an equilibrium shape. Both results are almost
equal, however the accelerated growth (red line) shows a slight, but insignificant deviation of
the shape at the top. Thus the accelerated growth is used for all upcoming model runs to save
computing time.

stage dripinterval [s] temperature [°C] ¢ pco, [ppm] duration [years]

1 100 10 0,5 10000

2 500 10 0,5 10000

3 250 10 0,5 10000

4 250 1 0,5 10000

5 250 20 0,5 10000 1000
6 250 10 01 10000

7 250 10 1,0 10000

8 250 10 0,5 5000

9 250 10 0,5 20000

Table 3.1.1: Values of the parameters used in the different growth stages of the models.
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Figure 3.1.6: Growth calculated by the model using the exponential ansatz (a) and the Gaussian
ansatz (b) for varying boundary conditions. Lines are drawn every 1000 years. The different
stages of growth are enumerated from stage 1 starting at the bottom of the stalagmite up to

stage 9 at the top. For boundary conditions see Table 3.1.1.
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Another difference of the models is the influence of the mixing coefficient on the radius.
The exponential model includes this dependence, whereas the Gaussian model does
not. Thus, only the equilibrium radius and so the shape of the models during stage 7
with a mixing coefficient of ¢ = 1 can be compared. In the following the influence of
the parameters on the shape are discussed.

Variation of drip interval - stage 1 -3 A variation of the drip interval influences the
growth at the apex as well as the radius of the stalagmite. With increasing drip
intervals the solution on top of the stalagmite is fed with less drops resulting in
a reduced growth and smaller radius (stage 2). If the drip interval decreases the
solution gains a higher calcium concentration and growth increases. In this high
flow regime the radius increases as well. This change of the shape is well shown
by the Gaussian model due to its short response time.

Variation of temperature - stage 4 — 5 If temperature varies the amount of calcite in the
solution does not change. However, a variation influences growth and radius of
the stalagmite. If growth increases at the apex for higher temperatures (stage 5)
due to a faster chemical reaction between bicarbonate and carbon dioxide, the
radius must decrease to obey mass conservation. If on the other hand tempera-
tures are lowered, growth decreases, but the radius increases for the same reason.
Again, this change can be well observed at the Gaussian model whereas the shape
of the exponential model becomes blurred.

Variation of the mixing coefficient - stage 6 -7 A variation of the mixing coefficient
influences the two models in different ways due to different dependencies. The
equilibrium radius of the exponential model depends on the mixing coefficient,
whereas the radius of the Gaussian model is independent of the mixing coeffi-
cient. Thus, the Gaussian model shows only a variation of growth with chang-
ing mixing coefficient. This change - seen in both models - can be explained as
follows: For a small mixing coefficient, the solution on top of the stalagmite is
fed with only small parts of the impinging drop. If in addition drip intervals are
long enough, the calcium concentration even approaches the value in equilibrium
with the cave air. This results in small growth rates, since only sparse calcite can
be deposited. If the mixing coefficient is large the solution on top of the stalag-
mite is replaced by the impinging drop and the maximal amount of calcite can be
deposited resulting in an increased growth. For the exponential model the mix-
ing coefficient influences the radius as well. For small ¢ the radius is enlarged,
whereas a large mixing coefficient diminishes the radius.

Variation of the CO, partial pressure of the soil - stage 8 -9 A variation of the partial
pressure of the soil influences the amount of calcite excess in the solution, which
can be precipitated, but has no influence on the radius. If more calcite is dissolved
due to a higher pco, of the soil, the more calcite can be deposited and growth
increases. The smaller the CO; pressure of the soils, the less calcite is dissolved
resulting in less growth or even no deposition or dissolution of prior precipitated
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calcite on top of the stalagmite. This, however, can only happen, if the cave air
has an higher CO, partial pressure than the soil, which is unlikely for most of the
cave systems. Apparently the radius seems to increase for the exponential model
with increasing pco,. This increase is not attributed to the changing pco,, but to
the change of the mixing coefficient from stage 7 to 8 due to the slow achievement
of the equilibrium shape.

Although the Gaussian model is based on the calculation of the solution flow on a
physical basis, the results appear compared to the exponential model rather unrealistic.
This is, for instance, manifested in the time the shape needs to establish an equilibrium
shape. In case of the Gaussian model this time is short compared to the exponential
model, which leads to a much more sensitive reaction on changes of external parame-
ters, which is rarely observed for natural stalagmites.

Note

Theoretically the calculation of the stalagmite’s shape is performed as explained above, how-
ever this causes technical problems. Using Eq. 3.1.12 the points of the polygon depart from each
other with ongoing calculations. This is due to the inclined stalagmite surface and the fact that
growth is perpendicular to the underlying surface. This would result in a shape with a very low
resolution at the apex and a high resolution at the flanks. To overcome this problem two critical
lengths Al,iy, Alyay are introduced, which define the possible range of Al;. If Al; becomes larger
than this range an extra point is interpolated between the current and the previous point and is
added to the polygon. On the other hand, if Al; falls below the defined range the current point
is removed from the polygon. This is illustrated in Figs. 3.1.7(c) and (d).

Another possibility to overcome the problem is to fix the distance Al; between two points. This
yields in comparison to the previous method equidistant points resulting in a smoother shape.
This is illustrated in Fig. 3.1.7(b). Using vector addition the new point P, is given as:

pi _ pi-1

tmp new

B _ pi-l
Pnew — Tnew + Ali . .
‘Pz _ Pl—l
tmp new

(3.1.24)

< xlémp - x;:a;z}i )

i i—1 yl 7y1—1

( ; ) _ ( ; ) AL ilidd . i . (3.1.25)
- 0 (i) (vimg 3

whereas P!

tmp 1S given as:

< x >’ _ ( x )Z L Gofh) ( %le—%zg > (3.1.26)
Y Jtmp Y Joa Al; Xo1q — Yol

This procedure simplifies the calculation of a smooth shape and avoids the uncertainties occur-
ring by adding or removing points from the polygon as it was done before.
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(c) Removal of a polygon point (d) Addition of a polygon point

Figure 3.1.7: Fig. (a) illustrates the theoretical calculation of a polygon. Due to crystal growth
mechanism the polygon points depart from each other. In a first program version this problem
was solved by removing a polygon point, if Al; falls below the minimal value Al,,;;, (c) or adding
a polygon point, if Al; exceeds the maximum value Aly,,x (d). The removed and added points

are marked red. In a second program version the distance between two polygon points is kept
constant at a value Al;. This is illustrated in Fig. (b).
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3.2 Carbon isotope model

The fractionation of stable carbon isotopes occurs during the degassing of CO, and
precipitation of CaCOj3 from the solution on top of the stalagmite. To determine the
isotopic composition of the precipitated calcite the fractionation between bicarbonate,
which amounts approximately 95 % of the dissolved inorganic calcite, and calcium
cabonate is investigated. During this process the stable carbon isotopes >C and *C
are fractionated, which is expressed by a change in 61*Cc,co, in [%o]>.

13
XHco; —caco; Rycos

§8C =
Rsta

— 1 x 1000. (3.2.1)

Hereby the isotope ratio of the DIC was approximated by the isotope ratio of bicarbon-
ate as described in section 2.1.

3.2.1 Fractionation under equilibrium conditions

Under equilibrium conditions the isotope ratio of bicarbonate in the solution does not
change due to fractionation processes with time and thus the §!3C value of the pre-
cipitated calcite can be calculated according to Eq. 3.2.1. Since the fractionation factor
depends on temperature only, the §>C of the precipitated calcite shows a temperature
dependence as well. Fractionation in equilibrium occurs favourably in caves with low
temperatures and high water supply or small drip intervals respectively.

However, several studies on stalagmites and synthetic carbonates have shown that
kinetic fractionation effects occurring during the precipitation of calcite can not be
neglected and may even play a major role in affecting the isotopic composition of
speleothems (Fantidis and Ehhalt, 1970; Harmon et al., 1979; Usdowski et al., 1979;
Wiedner et al., 2007). In addition, a recent publication (Mickler et al., 2006) provided a
data set including over 120 samples, whereas 71 % indicate calcite precipitation under

disequilibrium conditions®.

3.2.2 Fractionation under disequilibrium conditions

Fractionation of §'3C under disequilibrium conditions occurs at higher temperatures
and when water supply is limited causing long drip intervals. In this case the iso-
tope ratio of bicarbonate in the solution changes with time since 2C molecules are
favourably removed from the solution. Thus, the bicarbonate of the solution and so the
precipitated calcite enrich in heavy carbon isotopes. Assuming an irreversible Rayleigh
fractionation process during the degassing of carbon dioxide and the precipitation of

3In the following 513CC,ZCO3 is written as 613C unless otherwise stated.

“Note, that Mickler determined the correlation between 580 and §'3C along the growth axis and fol-
lowed kinetic fractionation from highly correlated samples. This, however, is no obligatory criterion for
fractionation under disequilibrium conditions.
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. GO,

HCO; HCO;

CaCOs;

Figure 3.2.1: The carbon fractionation is described by a Rayleigh process between the species
bicarbonate, carbon dioxide and calcium carbonate. The corresponding fractionation factors «
can be found in Table 2.4.1.

calcite, respectively, (see Fig. 3.2.1, Salomons and Mook (1986)) the change of the iso-
tope ratio of bicarbonate can be calculated:

B aB_1
Ryco; (f) = Ryco; (0) <[[II;I§8§]]((S>))

a13 _ +“13 N
HCO5 —CaCOg3 HCO4

(3.2.2)

— Lcof
with the combined fractionation factor a3 = <% (see Table 2.4.1 for

2
fractionation factors). R}{C’C o; (0) and [HCO;|(0) represent the isotope ratio and con-

centration of bicarbonate at the time t = 0. The isotope ratio of bicarbonate depends
strongly on the temporal development of the concentration of bicarbonate, which in
turn also depends on mixing processes between the impinging drop and the existing
solution layer (Miihlinghaus et al., 2007). The bicarbonate concentration of the solution
and thus its isotope ratio changes with time until an equilibrium like state is established.
The temporal progression of the mixing process is described in Fig. 3.2.2. At point A
the initial solution contains the bicarbonate concentration [HCOJ | 4 with an isotope
ratio of R4. During one drip interval d the concentration changes after Eq. 2.2.13 and

the isotope ratio after Eq. 3.2.2. A new drop with the concentration [HCOj | drop and
the isotope ratio Ry, hits the stalagmite and mixes according to section 2.3:
Xmix = (1 - (P) X1+ ¢X2, (3.2.3)

whereas X; denotes the concentration or the isotope ratio of bicarbonate in the solution
and X» the one of the drop. This process is repeated until an equilibrium is established,
whereas [HCO; | , and Rp act as the new initial values. The iterative process can math-
ematically be derived by the calculation of several subsequent mixing steps in order to
simplify the resulting equation (a proof is given in the Appendix B.1).
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Figure 3.2.2: Mixing process of the concentration (black) and the isotope ratio (red) of bicarbon-
ate for d=250s, T=10°C, pco,=10000ppm and ¢ = 0, 3. See text for details.

Using Egs. 2.2.13, 3.2.2 and 3.2.3 yields for the isotope ratio after n drops:

RHCO; (1’1) = g(d/ T, ¢/n) Rdrop (3.2.4)

with

=1 F[HCO: | (k,d)\ <
=0-¢)"TT teasima
Py ([HCO3 ](k10)> N 525
= 5 ([HCO](m,d)\*
o2 -0 T1 (frectione) -

using €13 = al3 — 1. After establishing an equilibrium like state the isotope ratio of
bicarbonate is averaged over one drip interval d to obtain the mean isotope ratio during
one drip interval (Salomons and Mook, 1986; Miihlinghaus et al., 2007). Together with
Egs. 3.2.1 and 3.2.4 the mean isotope ratio of the precipitated calcite and thus §'3C can
be calculated:

63C = fc(6"Cgypp + 1000) — 1000. (3.2.6)
with the factor f, given as:
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([HCO 2 (n d)) 1

f _“13L [HCO5](n,0)

€772 3 [HCOs](n, )_1
[HCO;](n,0)

SE

[HCO; |(k, d) (3.2.7)
X( g(Hco ](k0)>

toy (=9r 11 ([Hcognm,m) )

m=n—k

Hereby the factor f. includes mixing processes between the impinging drop and the
solution layer, the averaging of the isotope ratio of bicarbonate over one drip inter-
val as well as the fractionation between bicarbonate and precipitated calcite. f. de-
pends on the drip interval, temperature, the mixing coefficient and the number of drops

(fe(d, T, ¢,n)).

3.2.3 Results and discussion

For a sufficient number of drops (1 > 100) the dependence of 6*C on 0™ stage pa-
rameters is shown in Fig. 3.2.3. For a constant mixing coefficient ¢ = 0,5 and pco, =
10000ppm 6'3C increases with increasing drip interval approaching asymptotically an
upper limit. This characteristic can be explained by the extended residence time on top
of the stalagmite for long drip intervals resulting in increased CO, degassing until the
partial CO; pressure of the solution layer approaches the value of the surrounding cave
air. This in turn enriches the precipitated calcite.

With increasing temperature the drip interval, which is needed to achieve the upper
limit of 6'3C , becomes shorter and the value of this limit slightly decreases. The faster
change of 513C at high temperatures is due to an increased inner energy of the molecules
in the solution, resulting in a reduced time for the conversion of bicarbonate in carbon
dioxide and thus an accelerated CO, degassing compared to the degassing at low tem-
peratures. For the same reason §'°C increases slightly with increasing temperatures at
short drip intervals.

This characteristic of 61>C is also maintained while varying the mixing coefficient ¢. For
a low mixing coefficient only a small amount of the new drop mixes with the existing
solution (Fig. 3.2.3d). This results in an longer effective residence time of the water film
on top of the stalagmite and thus a higher enrichment of the precipitated 5§'3C. For high
mixing coefficients the residence time of the solution is shortest, which yields a lower
enrichment of 613C.

If soil pco, is lowered (pco, = 1000ppm, Fig. 3.2.3b) the time needed to approach
a constant value of §'3C at fixed boundary conditions is reduced, since the gradient
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between soil and cave pco, is lowered and pco, of the solution approaches the value of
the surrounding cave air. However, the characteristics of S1C remains.

It is remarkable that the temperature gradient of 6>C changes from % >0

d—0
at small drip intervals to % < 0 at long drip intervals, whereas the drip in-

d—oo

13 : s . o . o
terval where a‘f}—TC L= 0 increases with increasing mixing coefficients. This origi-

nates from the fc>£owing5 : The factor f. consists roughly spoken of two factors fc(l) =

[HCO3 J(nd) \ "~

13L<[HCO§](H,O)> (2) . . (1)

0 =5~ o Jond) and f.~/, which contains the rounded brackets of Eq. 3.2.7. f,
[HCOZ ](n,0)

shows a low dependence on the drip interval and increases monotonously with in-

creasing temperature. The characteristics of factor fC(Z) show a strong dependence on
the drip interval in such a way that it increases for short drip intervals, but decreases
for long drip intervals (after a short increase at low temperatures). This change of the
characteristic of fc(z) is amplified for low mixing coefficients. For small ¢ values the
effective residence time of the solution increases, which is similar to a longer drip in-
terval. Thus, in the range of short drip intervals, the factor fc(l) dominates, whereas for
)

long drip intervals the characteristic of fc(2 is maintained.

For short drip intervals the isotopic composition of §'3C precipitated under disequilib-
rium approaches the composition of 6!3C under equilibrium conditions®:

613Cey = }lii% 013C,,. (3.2.8)

Thus, fractionation under equilibrium conditions can be described as a border case of
the more general fractionation under disequilibrium conditions.

5Since the 613C values of the precipitated calcite are correlated linearly to the fractionation factor f. the
following explanation is valid for S13C too, however it is more obvious by looking at f. instead of s8¢,
6 A proof is given in the Appendix B.1.
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The figure shows the enrichment of §'3C under varying boundary conditions. The

figures on the left hand side ((a), (c) and (d)) show the enrichment for a change in the mixing

Figure 3.2.3

coefficient for a pco, value of the soil of 10000ppm. The figures on the right hand side ((b), (c)

and (e)) are calculated for a fixed mixing coefficient of ¢ = 0,5 and varying pco, values. Lines

are drawn every 100s and every degree centigrade.
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3.3 Oxygen isotope model

During CO, degassing and CaCOj precipitation stable oxygen isotopes are —in analogy
to carbon isotopes — fractionated. In contrast to carbon, oxygen can be found in almost
any species contained in the solution layer. In particular the large reservoir of water
has a significant influence on the isotopic composition of the precipitated calcite.

3.3.1 Fractionation under equilibrium conditions

Under equilibrium conditions the isotope ratios of bicarbonate and the water reservoir
are in equilibrium and thus, the fractionation of oxygen during calcite precipitation can
be written as:

18 18
%oy —cacosRHco;

§1%0 =
Rsa

—1 ] x 1000

18

HCO§HCaCO3 ng

218 B H,O
_ HCOz —Hy0 _1 < 1000
Rstd

a8 R18
— [ SH0=CaCOTTH0 ) o 1000. 3.3.1)
Rstd

18
i

time, 680 depends on the temperature dependence of [XngzO—CaCOg only. Again, this
case occurs favourably in caves with low temperatures and small drip intervals. In con-
trast to 13C the temperature dependence is reversed, i.e. 0180 decreases with increasing

temperatures.

The fractionation factors «;° are given in Table 2.4.2. Since Rl}?zo does not change with

3.3.2 Fractionation under disequilibrium conditions

The fractionation of oxygen isotopes under disequilibrium conditions is more compli-
cated than that of carbon isotopes. Due to the large reservoir of water buffer reactions
(see Egs. 3.3.2 and 3.3.3) between bicarbonate and water occur, which might have a
significant influence on the isotopic composition of 680 (Mickler et al., 2004):

Hydration
CO, + H,O = HCO; + H' (3.3.2)

Hydroxylation
CO, +OH™ = HCO; (3.3.3)
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Figure 3.3.1: The oxygen fractionation is described by a Rayleigh process between the species
bicarbonate, carbon dioxide, calcium carbonate and water. The corresponding fractionation
factors can be found in Table 2.4.2.

The resulting fractionation of 6'80 in such a natural system lies in between two extreme
cases: (i) the system is completely buffered and (ii) no buffer reactions occur in the
system. In case (i) the H>O reservoir buffers the isotopic composition of the bicarbonate
in order that the isotope ratios of all species are in equilibrium. This is equivalent to
fractionation under equilibrium conditions and can be calculated using Eq. 3.3.1. This
results in the minimal possible enrichment of 6180 .

In the second case (ii) the buffer reactions are neglected completely and the isotopic
composition of the precipitated calcite can be determined in analogy to the fractionation
of carbon by a Rayleigh fractionation process. However, compared to the fractionation
of carbon the calculations must be extended by the fractionation between bicarbonate
and water according to Eq. 1.2.8 (see Fig. 3.3.1). According to Mickler et al. (2004,
2006) the combined fractionation factor a!® (compare «!3 in Eq. 3.2.7) is approximated
according to the proportion of the oxygen amount of each product (see Eq. 1.2.8 and

Fig 2.4.2): a8 = 2418 318 + 1y18 This results in a tem-

HCO; —COj T HCO; —CaCOs ' 6" HCO; —H0
perature dependent combined fractionation factor a!8.

To describe the influence of the buffer reactions in a mathematical way a buffer param-
eter b is adopted. Hereby a system, which is completely buffered, is described by a
buffer parameter of b = 1, a system, where no buffer reactions occur, is described by a
buffer parameter of b = 0. Thus, b determines the strength of the influence of the buffer
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reactions. As a first approach b is included with a linear dependence”:

fo(b) =b-(fo(b=1)— fo(b=0)) + fo(b=0), (3.3.4)

Analogues to the calculation of f, a factor f, for the oxygen system is determined. f,
is obtained by replacing the carbon fractionation factors by the oxygen fractionation

factors in Eq. 3.2.7. For a system, which shows no buffering effects, the maximal value
of f,(b = 0) is obtained:

. <[HCO3](n,d))’X18_1

o [HCO; |(n,0)
fo(b - 0) =03 W [HC;;](n,d) 1
[HCO, |(10)
« (- <P)”ﬁ <[HC03](k,d)>els (3.3.5)
i=o \[HCO5|(k,0)

As shown for 613C (Eq. 3.2.8), fractionation under equilibrium conditions can be ap-
proximated by fractionation under disequilibrium conditions for short drip intervals.
Thus, the value of f,(b = 1) for a system, which is completely buffered, can also be
approximated by f,(b = 0) of a no buffer system for very short drip intervals:

fob=1) :yg(‘)fo(bzo)° (3.3.6)
The resulting values of f, for the two extreme cases confine the possible range of f,
in natural systems. The influence of the buffer reactions on f, according to Eq. 3.3.4 is
illustrated for an exemplary temperature of T = 5°C and a mixing coefficient of ¢ = 0,5
in Fig. 3.3.2. For b = 1, which represents a completely buffered system, f, is described
by the lowest curve with a constant value. With decreasing b f, increases to the upper
limit (b = 0), which represents a system, where no buffer reactions occur.

In analogy to the fractionation process of carbon this fractionation factor f, includes
mixing processes between the impinging drop and the existing solution layer, the av-
eraged mean isotope ratio of the quasi equilibrium state as well as the fractionation
between the solution and calcite. The relationship between the isotope ratio of the pre-
cipitated calcite and the isotope ratio of the drip water can be written as:

6180 = %((518om,, +1000) — 1000, (3.3.7)

7For reasons of clarity the dependence of f, on d, T, ¢ and  is not mentioned here.
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Figure 3.3.2: The influence of the buffer parameter on f, for T = 5°C and ¢ = 0.5. As a first
approach the influence of b on f, is assumed linearly (see Eq. 3.3.4). The uppermost curve
represents a buffer parameter of b = 0 (straight line). The subsequent curves to lower values
of f, result from an increasing buffer parameter in steps of 0,1 (dotted lines). The lowest curve
represents a system which is completely buffered (b = 1, straight line). Since the buffer reactions
do not have any influence on f, for very short drip intervals, f, of a buffered system can be
approximated by limat_,g f, of a no buffer system.

whereas a is the conversion factor between the isotope standards Ryppp (6180 values
of carbonates) and Ry spyow (680 values of water):

Rypps
= —, 3.3.8
Rysmow ( )

3.3.3 Results and discussion

The dependence of the upper limit of 50O (no buffering) on drip interval, temperature,
mixing coefficient and soil pco, is shown in Fig. 3.3.3. For very low mixing coefficients
5180 shows a strong temperature dependence (see Fig. 3.3.3a). However, the temper-
ature dependence changes with increasing drip intervals slightly. For lim; o 6'80 the
temperature characteristics becomes equal to the characteristics under equilibrium con-
ditions. The influence of the drip interval on 6'80 varies and is minimal for low temper-
atures and increases with increasing temperatures. With increasing mixing coefficients
these dependencies are attenuated, since low mixing coefficients extend the residence
time of the solution on top of the stalagmite, whereas high mixing coefficients reduce
this effect. If the soil pco, is lowered from pco, = 10000ppm (Figs. 3.3.3a and 3.3.3d) to
pco, = 1000ppm (Fig. 3.3.3e) the characteristics of 5180 is similar to the characteristics
at high mixing coefficients. However, the time needed to obtain a constant 50O value
is reduced, since the pco, pressure of solution is already close to equilibrium with the
surrounding pco, pressure of the cave.
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T [°C] km,g(10_3 min~1) t1/2 (min)  tgg (hr)

15 3,2 216 24
25 8,6 81 8,9
40 45 15 1,7

Table 3.3.1: Exchange kinetics between bicarbonate and water according to Beck et al. (2005).
t1 /2 gives the time needed to exchange 50% between the involved species, t g9 the time needed
to exchange 99%.

A comparison of the dependencies of 6'3C and §'80 on these parameters reveals that
oxygen shows a more pronounced dependence on temperature than carbon. This is
reasonable, since both isotopic values are calculated on the same basis (Eq. 3.2.7, 3.3.5).
The only differences between the two isotopes are the fractionation factors and their de-
pendence on temperatures. According to Table 2.4.2 the fractionation factors of oxygen
show a stronger dependence on temperature than the fractionation factors of carbon.
This results in the different temperature dependence of the 6'3C and 680 values of the
precipitated calcite, whereas the influence of the other parameters on 013C and 6180 is
comparable.

Note

The influence of the buffering water reservoir on the isotopic composition of bicarbonate and
especially the time constant of this process is unknown. However, some measurements can
be found in recent literature (Beck et al., 2005). They measured the exchange kinetics between
bicarbonate and water for different temperatures and determined the fraction of isotopic ex-
change F in §'80 between these two compounds, which describes the degree of exchange with
time:

L 9%0() — %0(0)

~ 0180(c0) — 6180(0)” (3:39)

where 6'80(t) is the isotopic composition of bicarbonate at the time ¢, 6'80(0) the initial value
of 8180 and (5180(00) = 51806q the value, which is obtained after reaching isotopic equilibrium.
The dependence of F on time and temperature is according to Beck et al. (2005):

In(1—F) = —kapgt, (3.3.10)

with the rate constant kg (Criss, 1999), which comprises many forward and backward reac-
tions (Arrhenius law):

E,

Kaog = Age Nk, (3.3.11)

with Ag = 1,85 x 10'?min~1, the apparent activation energy E, = 81,6k]/mol, the ideal gas
constant R and temperature in Kelvin. This yields that for typical cave temperatures of smaller
than 20°C the isotopic exchange of oxygen between bicarbonate and water would have only a
small influence on the isotopic composition of bicarbonate and the precipitated calcite respec-
tively (see Table 3.3.1). This assumption will be confirmed in section 4.5 for natural data sets.
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Figure 3.3.3: The figure shows the enrichment of 6'¥O under varying boundary conditions. The
figures on the left hand side ((a), (c) and (d)) show the enrichment for a change in the mixing
coefficient for a pco, value of the soil of 10000ppm. The figures on the right hand side ((b), (c)
and (e)) are calculated for a fixed mixing coefficient of ¢ = 0,5 and varying pco, values. Lines

are drawn every 100s and every degree centigrade.
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3.4 Multi-box-model

Until 2006 there was no appropriate model describing the temporal movement of the
solution layer on top of the stalagmite. However, this is essential to determine the
enrichment of stable isotopes along individual growth layers. To overcome the problem
of the missing time-place link of the existing models a multi-box-model was developed
(Miihlinghaus, 2006; Miihlinghaus et al., 2007). The multi-box-model is based on the
decoupling of the movement of the solution from the chemical and physical processes
occurring in the solution. This keeps the model in a general and all-purpose way. First
the movement of the solution on top of the stalagmite is derived, whereas in the second
part growth is described as a first application of the multi-box-model (see section 3.4.1).

Assuming a fixed size of the drop volume and the film thickness, one drop covers a
specific area on the stalagmite. This area is defined as one box. Ideally, the surface of a
stalagmite can be described by concentrical circles, whereas each annulus matches with
the area covered by one drop. In a one-dimensional profile the difference of the radii of
adjacent circles determines the box sizes (see Fig. 3.4.1). The radius of the circle with
an area equivalent to the area covered by i drops is given by:

[iV
7’1' — ﬂ (3.4.1)

“Growth axis

Figure 3.4.1: Distribution of the boxes representing the solution layer on top of the stalagmite.
Due to the rotational symmetry only one half of the stalagmite is shown. The annuli are equiv-
alent to the area one drop would cover. Thus, the box sizes are defined by the volume of the
drop and the film thickness of the solution layer. Their number is limited to the equilibrium
radius of the stalagmite.

Using this radius boxes are constructed to divide the solution layer into individual at-
tached parts. The number of boxes is limited to the equilibrium radius of the stalagmite
and does not exceed ten in our calculations. In analogy to section 2.3, mixing between
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the falling drop and the innermost box is described by the mixing coefficient ¢. In
addition mixing between the individual boxes is allowed and described by individual
mixing parameters ¢; (for box;, i € [2,10]). These ¢; describe, analogically to ¢, the
percentage of the solution in the inner adjacent box;_; mixing with (1 — ¢;) percent of
the solution in box;. Thus, high values of ¢; describe rather a substitution of the outer
boxes by the inner ones. On the other hand, low values indicate splashing of the so-
lution of the inner boxes to outer boxes or even apart the stalagmite. An exemplary
mixing process between the drop and the two innermost boxes is illustrated in Fig.
3.4.2 with mixing coefficients ¢ = 0.8 and ¢, = 0.3. The impinging drop contributes
80% (¢) of its solution to box;, whereas its remaining 20% (i.e. (1 — ¢)) splash or move
further out without interacting with box;. 20% of the solution in box; are kept and
mix with 80% of the drop’s solution. The remaining 80% of the solution in box; are
pushed outwards. Now a simplification of the mixing process is made. The remain-
ing 20% of the solution of the drop mix with the removed 80% of the solution of box;.
This might occur due to splashing effects. Thus, the mixed solution of box; is given as:
box"* = (1 — ¢)boxy + ¢drop. To fulfill the mass balance, the overflow of the mixing

process between the drop and box; is defined as: boxomf fow: = ¢pbox1 + (1 — ¢)drop.
In the example in Fig. 3.4.2, this mixed overflow solutlon contributes 30% (¢») to boxy,
which keeps 70% (i.e. (1 — ¢)) of its existing solution. The resulting overflow of this
mixing process moves outwards to the next box and the process is continued. Under
this assumption the mass balance of the mixing process is fulfilled and even splashing
of solution parts of the drop or inner boxes to outer boxes can be explained by low
mixing coefficients. Hereby, the mixing process is assumed to proceed in a short time,
which can be neglected in comparison to natural drip intervals.

0.2
0.7
drop |\ 10 w10

0s o8 \ /

0.2 box, \07 box,,

Figure 3.4.2: Schematic illustration of the mixing process between the drop and the two in-
nermost boxes. The numbers represent the mixing coefficients between the corresponding so-
lutions, the arrows their flow directions. For a detailed description of the mixing process see
text.

Assuming a stagnant film, the solution moves only, if a new drop hits the innermost
box. Therefore, the movement of the solution becomes dependent on drip interval and
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thus on time. Due to the decoupling of the solution movement from inner (chemical
or physical) processes of the solution, this box model is widely applicable. The mixing
parameters ¢; depend on the equilibrium radius and therefore on temperature, drip
interval and the mixing parameter ¢. Since the additional mixing parameters ¢; raise
the degrees of freedom of the model, they have to be calibrated.
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3.4.1 Calibration of the multi box model

A crucial point of the multi-box-model are the values of the individual mixing coeffi-
cients ¢;. As described in section 3.4 these coefficients determine the mixing process
between the individual boxes and are therefore essential for the calculation of growth
or isotopic enrichment along a growth layer. However, their values are not known and
thus a reference model is needed to calibrate the multi-box-model in order to obtain
the values of ¢;. These values are not fixed and can vary depending on the shape of
the stalagmite and thus on drip interval, temperature and mixing coefficient ¢. The
following calibration procedure is performed for both growth models, the one using an
exponential and the one using a Gaussian ansatz.

The calibration of the different ¢; is realized by setting calcite precipitation as the inner
process of the solution layer. In analogy to section 2.2, the temporal development of
calcium excess is assumed to decrease according to:

[Ca%tex = [Ca?t]0e™ % (3.4.2)
Using this equation for the solution in the boxes and applying the mixing process of
the multi box model, the calcium excess concentration in each box can be determined.
The direction of growth in each box must be orthogonal to the underlying surface and
can be calculated according to section 3.1, whereas [Ca?"]%, must be replaced by the
concentration in the corresponding box. Since the position of the boxes is fixed (see
equation 3.4.1), only the vertical component of the growth contributes to the growth in
each box. Iterating these mixing and growth processes, the shape of the stalagmite is
calculated until an equilibrium shape is established.

In order to optimize the mixing coefficients ¢;, the height in each box, calculated by the
multi box model, is compared to the height at the corresponding radius computed by
the stalagmite growth model (see Fig. 3.4.4). However, the mixing coefficients influ-
ence the calcium concentration in each box and so the shape of the stalagmite. Hence,
the mixing coefficients need to be calculated iteratively starting with the inner coeffi-
cient ¢, followed by ¢3 and so on. By this iterative adjustment of the box model to the
growth model, the mixing parameters ¢; are optimized (see Fig. 3.4.5). This yields a
database (see Appendix C.1) for the values of ¢;, which depends only on the equilib-
rium radius R, of the stalagmite and the mixing coefficient ¢ of the innermost box.
Comparing the multi box model to the exponential and Gaussian growth model yields
values of ¢;, which decrease with increasing distance from centre and thus the outer
boxes receive less overflow solution from the inner boxes (see Fig. 3.4.5). This is re-
quired to mimic the exponential or Gaussian decrease of the maximum growth used in
the stalagmite growth model. For small radii growth can only be calculated in the inner
boxes of the box model resulting in ¢; = 0 for the outer boxes in these cases. To avoid
conflicts during the calculation of ¢ at boxes near the radius, the number of calibrated
boxes are restricted to 80% of the equilibrium radius. Values of ¢; are determined with
a precision of 0,01.
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radius [cm| box number

Figure 3.4.3: Excerpt of the data base of ¢; for a mixing coefficient of ¢ = 0,5 in dependence on
the equilibrium radius for all boxes of the multi-box-model.

The dependence of ¢; on the radius is exemplarily shown for a mixing coefficient of
¢ = 0,5 calibrated to the exponential growth model (see Fig. 3.4.3). With increasing
box numbers the ¢; decrease to mimic the exponential growth model. With decreas-
ing radius due to a change in temperature or drip interval the number of boxes is re-
duced. The coefficients ¢; slightly increase for box 2, whereas for the outer boxes the
coefficients are approximately at a constant value except for the outermost box, which
approaches zero. The mixing coefficients of the outer boxes depend strongly on the
mixing coefficient of the innermost box ¢.

To determine values of ¢; at radii between two calibrated radii a linear interpolation of
the adjacent ¢; values is used for the calibration with the exponential growth model (see
Miihlinghaus et al. (2007). This interpolation procedure is used for two reasons: (i) the
possibility of outlying ¢; due to computation accuracy is small and (ii) the approach of
an exponential fit of the calculated ¢; in dependence on R represents the ¢; very well,
but only in a specific range. If, however, ¢; approaches zero, the error made by the
fitting process exceeds 100%, which is not useful for further model applications.

The calibration of the multi box model with the Gaussian growth model is restricted
to values of ¢ smaller than 0,8. This can be explained by the shape of the stalagmite
calculated with this model (see Figs 3.1.6). In comparison to the exponential growth
model the shape of this model reveals a rather plane shape at the apex, which proceeds
outwards. This requires that the multi box model yields an almost equal growth at the
inner boxes. However, if the mixing coefficient of the innermost box approaches one,
the overflow (1 — ¢) to box 2 and the outer boxes approaches zero. This means that
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(a) Box 1 (b) Box 2 (c) Box 8

height [cm]

o-r——T——T——T T T T T 1
0 1 2 3 4 5 6 7 8

distance from centre [cm]

(d) All Boxes

Figure 3.4.4: The growth model is run either with the exponential or the Gaussian ansatz until
an equilibrium shape is obtained. The equilibrium shape of the growth model is obtained earlier
at the location of the inner boxes and at the latest at the location of the outermost box. The
criterion for an equilibrium shape is the comparison of the difference between two subsequent
layers at box i with the difference at the apex (box 1). If the differences are equal, equilibrium
is reached and the shape only gains on height without changing its form. The figure shows the
shape of the stalagmite at the time, when it has reached the equilibrium shape at box 2 (Fig.
(b)), whereas an outer box (box 8) is still not in equilibrium (Fig. (c)). (Le. the differences of
the layers shown in Figs. (a) and (b) are indentical, whereas the difference shown in Fig. (c) is
still smaller than in Fig. (a)). Fig. (a), (b) and (c) have the same dimensions and can therefore
be compared. The old layer is indicated by the black line, the new layer by the red one. The
position of the boxes are circled. The layers represent the development of the shape after one
drop. Thus, they can not be distinguished in Fig. (d).
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Figure 3.4.5: This figure exemplarily shows the calibration of the mixing coefficients ¢;
for a given drip interval d = 100s, temperature T = 1°C, mixing coefficient ¢ = 0,2 and
pco, = 10000ppm. In this case, growth is calculated for ten boxes and, accordingly, ¢; can be
adjusted for all boxes. The black lines represent the growth calculated by the stalagmite growth
model with an exponential (Fig. (a)) and a Gaussian ansatz (Fig. (b)). To adjust the ¢; at box;,
an equilibrium shape at the corresponding box must have been established. Since the state of
equilibrium is established earlier for the inner boxes, box; is calibrated first (represented by the
lowest line), then, boxj is calibrated (represented by the following line) and so on. The growth
of the multi box model at the box centers calculated with the calibrated ¢; is illustrated by the
black circles. The red line shows the values of the adjusted ¢; with increasing distance from
centre for this particular calibration.
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box 1 receives most of the impinging drop and therefore most of the calcium, whereas
the outer boxes lack of calcium. This results in a high growth at the inner box, but a
diminished growth at all other boxes. Thus, the multi box model can not mimic the
shape calculated by the Gaussian growth model for all values of the mixing coefficient

¢.

Note

The growth of the stalagmite growth model by Dreybrodt (1999) and Kaufmann (2003) is slightly
different to the growth of the multi-box model at box;. This is due to the influence of A on the
calcium concentration in the solution layer. The growth model uses the equilibrated calcium
excess concentration for growth calculation, whereas the multi box model uses the "real" cal-
cium excess concentration. Thus, the equilibrium concentration of the box model must first be
established, which takes up to 100 drops. This different starting condition results in a slightly
increased growth calculated by the multi box model in comparison to the stalagmite growth
model. However, after establishing an equilibrated calcium concentration in the box model the
difference of the two models in growth is constant and does not change with time.

To reduce computation time the growth model is only calculated up to the equilibrium radius.
Since the boundary conditions do not change during one calibration procedure the x-values of
the polygon of the growth model can be fixed at equidistant points. This simplifies the calcula-
tions and accelerates the calibration. To check, if the shape has already reached an equilibrium
state the differences between two adjacent layers or the growth at all boxes during one drip
interval respectively is determined. The differences of the outer boxes is compared to the dif-
ference of the layers at the apex. At equilibrium the differences at all boxes are equal to the one
at the apex (see Fig 3.4.4). This calculation is performed with an accuracy of 0, 01um.
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3.5 Isotopic profiles along individual growth layers

To calculate the isotopic composition of the calcite, which is precipitated along an in-
dividual growth layer, the principles of isotope fractionation of section 3.2 and 3.3 are
applied to the multi-box-model. With increasing distance from centre the rare isotopes
enrich due to the increased residence time and the ongoing degassing of light CO, from
the solution on top of the stalagmite. To calculate the isotope ratios in the outer boxes
and along the layer respectively, the database of ¢; is used. For a given drip interval,
temperature and mixing coefficient of the inner box, the corresponding ¢; are extracted
from this database. Note, that if the radius of the stalagmite changes due to a change
in drip interval, temperature or mixing coefficient, the number of the calculated boxes
changes as well.

3.5.1 Carbon profile

The influence of drip interval, temperature, CO, pressure of the soil and the mixing
coefficient on the 6°C value of the calcite is shown in Fig. 3.5.1. Thereby all parameters
are fixed except the one which is varied. The fix values of these parameters are: d =
100s, T = 10°C, ¢ = 0,1, pco, = 10000ppm and 63C = —10%c. The short drip interval
is chosen in order to calculate 6'3C for as many boxes as possible. If an increased drip
interval is used, the radius decreases, which leads to less boxes (see Fig. 3.5.1a).

The range of the parameters is chosen in order to obtain as many boxes as possible.
This makes it easier to investigate the influence of these parameters on the enrichment
of 63C . Most of the figures show an enrichment of 61°C with a rather linear increase.
This is due to the low mixing coefficient of ¢ = 0,1, which can be seen in Fig. 3.5.1d.
If the mixing coefficient is raised, the profile of 5'>C approaches the characteristics of
a second order polynomial, whereas for low mixing coefficients the linear profile is
maintained. Thus, the mixing coefficient seems to be the driving force for the profile
of the enriched calcite. Since many measured profiles show a linear behaviour rather
than a second order polynomial, the low mixing coefficient is chosen to investigate the
influence of the other parameters on the enrichment of 6'3C .

To compare the slopes of the different results the innermost point (box 1) is neglected.
This is due to the behaviour for high mixing coefficients. This is due to the fact that even
for high values of ¢ the isotopic profile can be approximated linearly, if the innermost
box is neglected.

Fig. 3.5.1a shows the influence of the drip interval on 6'3C . The slope changes slightly
from short drip intervals (= 0,10 %o/ mm) to long drip intervals (=~ 0,04 %o/mm). How-
ever, the overall change is small. Temperature has almost no influence on the enrich-
ment of §13C as it can be seen in Fig. 3.5.1b. The slope changes from a 0,07 %o/mm at
low temperatures to ~ 0,10 %c/mm at high temperatures. In contrast to these parame-
ters the influence of the CO, content of the soil is notable. For low values of pco, the
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Figure 3.5.1: Enrichment of §'>C along an individual growth layer. Values are calculated for
d =100s, T=10°C, ¢ = 0,1, pco, = 10000ppm and 6'3C = —10%.
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slope is ~ 0,01 %o/ mm and increases for high values up to ~ 0,09 %0/mm (Fig. 3.5.1c).
Fig. 3.5.1d finally shows the influence of the mixing coefficient on the slope, which is
compared to the other parameters the most significant. For low mixing coefficients the
slope is = 0,09 %o/ mm and increases to ~ 0,22 %o./mm for high coefficients.

Please note, that the absolute values of these slopes change, if any boundary conditions
are changed. These exemplified results shall give an understanding, which parameter
might influence the slope and which might not. The jagged characteristic of some of
the profiles is caused by the calibrated mixing coefficients ¢;. Since these coefficients
are determined with an accuracy of 0,01, there might occur steps in their profile, which
manifests in the modeled §13C values. This can be seen in Fig. 3.5.1b, where the radius
changes due to a temperature variation. This leads to different ¢; data sets, which in
turn explain the jagged §13C profile along the growth layer. However, this calibration
uncertainty is averaged out, if the slope of the §'>C enrichment is investigated.

3.5.2 Oxygen profile

The influence of drip interval, temperature, CO, pressure of the soil, buffer parameter
and the mixing coefficient on the 6'0 value of the calcite is shown in Fig. 3.5.2. In
analogy to carbon all parameters are fixed except the one which is varied. The fixed
values of these parameters are: d = 100s, T = 10°C, ¢ = 0,1, pco, = 10000ppm, b = 0,5
and 680 = —10%.. Again, the short drip interval is chosen in order to calculate 6'3C
for as many boxes as possible.

In analogy to the enrichment of 6!3C the enrichment of 680 shows the same behaviour
for the investigated parameters, however, the absolute values of the slopes change. In
case of the drip interval the slope ranges between 0,045 — 0,020 %o/ mm, for temperature
between 0,030 — 0,045 %0/ mm, for the pco, of the soil between 0,005 — 0,040 %o/ mm and
for the mixing coefficient between 0,040 — 0,100 %o/ mm. The unique parameter of oxy-
gen, the buffer parameter, shows also a change in the slope, which is not astonishing,
since this parameter is based on a linear interpolation between two end members. This
slope ranges between 0,085 — 0 %o/mm. Again, the absolute values of these slopes are
exemplarily and depend on the boundary conditions.
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Figure 3.5.2: Enrichment of 'O along an individual growth layer. Values are calculated for
d =100s, T=10°C, ¢ = 0,1, pco, = 10000ppm, b = 0,5 and 680 = —10%.
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3.5.3 Hendy-Tests

To check, if isotope fractionation occurred under disequilibrium conditions, Hendy
(1971) proposed the so called "Hendy-Test’ as an obligatory criterion. Thereby §'3C
and 6'80 of an individual growth layer must show (i) a simultaneous enrichment with
increasing distance from the stalagmite’s growth axis and (ii) should be correlated lin-
early in a 6'80 versus §3C plot. Using the multi-box-model the isotopic composition
along individual growth layers are modelled. This allows to investigate the dependence
of the slope of 5180 versus 6°C on the different parameters.

Fig. 3.5.4a shows the dependence of the slope on a varying drip interval (d = 100s
(circles) to d = 1000s (crosses)). Long drip intervals increase the residence time of the
solution on top of the stalagmite and result in more enriched 6*C and 680 values,
whereas short drip intervals reduce the residence time and the enrichment of 6'3C and
5180 decreases. However, the slope between 5180 and 613C does not change, because
the enrichment of carbon and oxygen is affected to the same extent. The same holds for
a varying mixing coefficient ¢ (¢ = 0,1 (circles) to ¢ = 1,0 (crosses), Fig. 3.5.4b) and
soil pco, (P&, = 1000ppm (circles) to pE5 = 11000ppm (crosses), 3.5.4¢). Although
the enrichment of §'3C and 6'80 along an individual growth layer strongly depends
on these parameters, the slope between §'3C and 6'80 is constant. This constant slope
is based on the underlying theory of fractionation and thus enrichment of 6!3C and
6180 . The calculation of both isotopes is based upon the same theory. Hence, it is not
astonishing that the influence of these parameters on the enrichment is the same.

The dependencies of the slope on a change of the isotopic composition of the drop is
illustrated in Fig. 3.5.4d (6"*Crop = —10%0, 6"®O4yop = —10%s (solid line), 63Cyyop =
—12%0, 6"®04y0p = —10%0 (dotted line), "Cyop = —10%0, 6'304y0p = —12%0 (dashed
line)). A change of the drip water causes a shift of the resulting §C and 680 values.
However, the slope does not change.

Finally, Fig. 3.5.4e shows the influence of temperature on the slope (T = 5°C (solid
line), T = 10°C (dotted line), T = 15°C (dashed line)). Due to the different tempera-
ture dependence of the fractionation factors of 513C and 680 (see Table 2.4.1 and 2.4.2)
a temperature change results in a change of the slope. Higher temperatures increase
the slope, while lower temperatures result in a decrease. The dependence of the slope
on the buffer parameter is shown in Fig. 3.5.4f (b = 0 (solid line), b = 0,5 (dotted
line), b = 1 (dashed line)). If no buffer reactions occur (b = 0), 6’0 shows a maxi-
mum enrichment and thus the slope is maximized. If on the other hand bicarbonate is
completely buffered (b = 1), 5'®O shows no enrichment caused by kinetic fractionation
effects and the slope is zero. Under natural conditions the influence of the buffer reac-
tions is expected to be somewhere between these two boundary curves,i.e. 0 < b < 1.

To summarise the effect of buffering as outlined in section 3.3, the slope of the SO
/813C relationship depends only on temperature and the degree of buffering, which is
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Figure 3.5.3: The figure shows the dependence of the slope on temperature and the buffer pa-
rameter. If the system is completely buffered, the slope approaches zero. If no buffer reactions
occur the slope strongly depends on temperature, with a maximum slope for high tempera-
tures. According to section 3.3 the slopes for intermediate buffer values are obtained by linear
interpolation.

illustrated in Fig. 3.5.3. Whereas the boundary curves (i.e., b = 0 and b = 1, respec-
tively) can be calculated, the slope for the intermediate buffer values are calculated by
linear interpolation (compare Eq. 3.3.4 and Fig. 3.3.2). Dependencies of the buffering on
temperature and the parameters are not included in this approach. However, if temper-
ature is known, this simplified approach allows to estimate the degree of the buffering
effect from Hendy-Tests of stalagmites, which grew under conditions of disequilibrium.

Thereby the degree of buffering does not include only the effect of buffering, but also
other influences on the oxygen isotopes like evaporation, for instance. By investigating
Hendy-Tests only the resulting enrichment of oxygen is examined and not the way
this enrichment evolved. Hence, for natural data sets, the buffer parameter might not
only describe the influence of the buffering water reservoir, but also other effects on the
oxygen isotopes.
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Figure 3.5.4: The figure shows the dependencies of the slope of 5'3C vs. 68O on mixing coeffi-
cient, soil pco,, isotopic composition of the drip water, temperature and buffer parameter. See

text for details.
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The forward models introduced in chapter 3 calculate stalagmite proxies like growth
rate and the isotopic composition of precipitated calcite both along the growth axis and
along individual growth layers in dependence on drip interval, temperature, CO, con-
tent of the soil, mixing coefficient, buffer parameter and the isotopic composition of
the drip water. In order to obtain these parameters from data sets provided by natural
stalagmites the models need to be reversed. However, since all forward models con-
tain not only analytical but numerical operations this is a rather difficult issue. Thus,
the inversion needs to be performed by a comparison of the measured data with the
calculated values.

Except the growth model all other models are based on the assumption of a kinetic
Rayleigh fractionation process during the degassing of CO, and the precipitation of
calcite. Thus, the application of these models on data sets from natural stalagmites re-
quires samples which show some kind of kinetic fractionation. In general, also samples
developed under equilibrium conditions can be used, since equilibrium fractionation
is a border case of disequilibrium fractionation. However, we focus on kinetically frac-
tionated samples, which contain, beside the temperature signal, also information about
varying drip intervals.

4.1 Stalagmites

A cave, which provides stalagmites grown under such disequilibrium conditions, is
the small Marcelo Arevalo cave in Southern Chile. This cave is located 15km east of the
climate divide of the Andes (52°41.7’S, 73°23.3'W, see Fig. 4.1.1) and is surrounded by
dense rain forest and overlain by peaty soils. The cave is in contact with the atmosphere
and thus its pco, value is close to the atmospheric value of pco, = 380ppm. For details
see Kilian et al. (2006); Schimpf (2005) and an upcoming publication of Kilian et al.
(in prep). The isotopic profiles of 6'3C and 6'®0O were measured by C. Spétl at the
Innsbruck University. Methods are similar as described in Vollweiler et al. (2006). Three
stalagmites have been taken from this cave so far, all within a radius of only a few
metres. This suggests that the stalagmites have been fed by the same or at least similar
drip water. However, growth and isotopic profiles of these stalagmites differ, which
is attributed to different drip rates and thus a different degree of kinetic fractionation
during their formation.

For all three stalagmites there are growth rates and isotopic profiles of carbon and oxy-
gen along the growth axis available. However, Hendy-Test have only be performed on
stalagmite MA-1 (seven tests) and stalagmite MA-2 (five tests). Thus, only these two
stalagmites will be used in the following (Fig. 4.1.2).
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Figure 4.1.1: Location of the Marcelo Arevalo (MA) cave in Southern Chile.

411 Age-depth relation

To obtain the age-depth relation of a stalagmite several samples along the growth axis
are taken. The ages of stalagmites MA-1 and MA-2 were determined by Schimpf (2005)
using TIMS (Thermal Ionisation Mass Spectrometry) at the Heidelberg Academy of
Sciences. This yields an age-depth relation along the growth axis, which is used to
determine the growth rate of the stalagmite. Fig. 4.1.3 shows the ages versus depth
and the growth rates of stalagmites MA-1 and MA-2. Both stalagmites span the time of
approximately the last 5000 years, but show slightly different growth rates during this
time, however, the order of magnitude is comparable.

The ages of stalagmite MA-1 are tuned to the ages of stalagmite MA-2, since MA-2
has the lowest detritus correction regarding the uranium thorium ages (Schimpf, pers.
comment). The tuning is based upon the uranium profile of the stalagmites. These
profiles show the same characteristics, but with a slight delay in age. The errors made
by this tuning process are listed in the Appendix A.1.

To calculate the growth rate from the age depth relation, the distance between two
sample points is divided by the difference of their ages. This yields a mean growth rate
between these two samples. The temporal resolution of these growth rates is limited
to the number of measured sample points. Mathematical fits of the age profile may
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Figure 4.1.2: Stalagmites MA-1 and MA-2 from Southern Chile.

improve and increase the resolution of the growth rates (e.g. Akima (1970)), but also
may raise errors and uncertainties. In the following I will focus on the measured data
points to avoid errors made by the fitting procedure.

The growth rate Wy, and its error between two data points! (dft;, agey; dfty, ages) are
calculated as follows:

dft, —dft
stal = f 2 7f 1- (4.1.1)
age, — age;
Using error propagation yields for the error of the growth rate:
AWy — | (VAP BFR? " ( _ (dft = dfty)(Bagen)” ¥ (Bager)” | Wi
age, — ageq (ager — ﬂgel)z

This is shown in Fig. 4.1.3. The grey shaded area indicates the error of the growth rates,
which are significant due to measurement and tuning uncertainties.
4.1.2 Isotopic profiles

Carbon and oxygen profiles have been taken along the growth axis for all three stalag-
mites and were measured by Christoph Sp6tl in Innsbruck. Although all three stalag-

1A data point contains information about its distance from top (dft) and its determined age (age).
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Figure 4.1.3: Age-depth relations and growth rates of stalagmites MA-1 (cyan) and MA-2 (red)
from Southern Chile. Stalagmites were analysed by Daniel Schimpf in Heidelberg. The errors
of the growth rate (grey) are calculated using error propagation law (see text for details).
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mites were probably fed by the same drip water due to the close location to each other,
the isotopic profiles differ. This might be due to kinetic fractionation processes dur-
ing the degassing of CO, and the precipitation of calcite. Fig. 4.1.4 shows the isotopic
profiles including the tuned ages.

There are also isotopic profiles along individual growth layers available, but only for
stalagmite MA-1 and MA-2. Fig. 4.1.5 shows the enrichment of both carbon and oxy-
gen with increasing distance from centre and the correlation between the enriched car-
bon and oxygen samples. According to Hendy and Wilson (1968); Hendy (1971) this
indicates fractionation under disequilibrium. Here only two Hendy-Tests are shown
exemplarily, the whole data set is shown in the Appendix A.1.
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Figure 4.1.4: Isotopic profiles of stalagmites MA-1 (cyan) and MA-2 (red). Although both stalag-
mites were probably fed by the same drip water, the isotopic profiles differ. This might be due
to kinetic fractionation processes during the degassing of CO, and the precipitation of calcite.
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4.2 AGE model

The AGE model is based on the inversion of the growth model. Thus, it depends on the
same parameters as the growth model, which are drip interval, temperature, mixing
coefficient and pcp, of the soil air. The intention of the model is to use the age-depth re-
lation of a stalagmite in order to calculate the temporal development of one parameter
in dependence on the others. Since the growth model contains not only analytical, but
also numerical calculations, the inversion is performed by a comparison of the theoret-
ical growth rates with the measured growth rates. Note, that this model is ambiguous.

4.2.1 Results and discussion

The AGE model is exemplarily applied to the data set of stalagmite MA-1. To determine
one parameter from the age-depth relation all other parameters need to be fixed, i.e. the
fixed parameters represent only mean values during the growth period of the stalag-
mite. In the following the results for all parameters will be shown in order to under-
stand, to which amount one parameter must change to explain the temporal variation
of the growth rates, while the other parameters are fixed.

The parameters are fixed at the following values: the drip interval is given as d = 250s,
temperature is given as the recent mean value of approximately T = 7°C, the partial
CO, pressure of the soil as pco, = 10000ppm and the mixing coefficient as ¢ = 0, 1.
The values of pcp, and ¢ are chosen to obtain more sensitive results according to Fig.
3.1.1. A higher mixing coefficient and lower pco, would attenuate the sensitivity of the
dependence of the growth rate on drip interval.

The grey shaded areas in Fig. 4.2.1 indicate the error due to tuning uncertainties of the
age-depth relation. The error is calculated by Monte-Carlo method using 2000 runs.
The significant error of the results can be explained by the error caused by tuning the
ages of MA-1 to MA-2. This tuning error in combination with the uncertainty of the
depth measurement can change the values of the growth rates significantly (see Fig.
4.1.3), resulting in varying results.

Under these assumptions the drip interval is determined (see Fig. 4.2.1a). The results
show a contrary behaviour to the measured growth rates as expected. For fixed bound-
ary conditions the drip interval must decrease, if the growth rate increases and vice
versa. The significant error of the growth rates manifests in a high variability of the
calculated drip interval ranging between 100 and 500s.

The behaviour of temperature is in contrast to the behaviour of the drip interval (see
Fig. 4.2.1b). Fast growing stalagmites can either be explained by short drip interval or
high temperatures and vice versa. If the drip interval is fixed, the temperature profile is
consistent with the profile of the growth rate. To explain the growth rates of stalagmite
MA-1 a temperature change of approximately 10°C is needed. If errors are included
this range enlarges to about 13°C.
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The change of pco,, which is needed to explain the variations of the growth rate, ranges
between 5000 and 20000ppm (see Fig. 4.2.1c). The pco, profile follows in general the
temperature profile, but reveals differences in its relative changes. If the pco, content
of the soil increases, more calcite is dissolved from the host rock, which leads to an
increased calcite precipitation on top of the stalagmite and thus an increased growth.
Including the error of the measured ages the values of the determined pcp, vary be-
tween 3000 and 21000ppm.

The mixing coefficient shows only a slight variation between 0,1 and 0,3 for the entire
growth period (see Fig. 4.2.1d). This indicates the high sensitivity of the growth rate on
a change of this parameter. However, if errors are included, the possible range of the
mixing coefficient increases up to 0,7.

The variation of some parameters are in the range of their natural variability, even if
the other parameters are kept fixed at the same time. This holds for the drip interval,
for instance, which is in a reasonable range. Other parameters on the other hand would
have to vary much more than under natural conditions. This holds for the variation of
temperature and CO, content of the soil, which vary of more than 10°C and 15000ppm,
respectively.

The variation of the mixing coefficient is hard to interpret, since it describes no natural
condition, but may only reflect splashing processes of the impinging drop. However,
if the surrounding physical environment of a stalagmite does not change (for example
due to earthquakes or changes of the drip source location), this parameter is expected
to be relatively constant during the growth period of a stalagmite.

In general the errors caused by the uncertainties of the age determination and tuning
processes are significant. This and the rough temporal resolution of the age-depth re-
lation make it difficult to use the AGE model for a quantitative determination of any
parameter, assumed that the model is used individually.
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Figure 4.2.1: Temporal variation of a parameter, which is needed to obtain the isotopic carbon
profile along the growth axis, if all other parameters are fixed. Results are ford = 250s, T =
7°C, pco, = 10000ppm, and ¢ = 0,1. The grey shaded area indicates the error due to tuning
uncertainties of the age-depth relation.
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4.3 AXIS model

The AXIS model is based on the inversion of the carbon and oxygen fractionation
model. Thus, it depends on the same parameters, which are drip interval, tempera-
ture, mixing coefficient, pco, of the soil and the isotopic composition of the drip water.
The intention of the model is to use the isotopic profiles carbon and oxygen of a stalag-
mite in order to calculate the temporal development of one parameter in dependence
on the others. Since the model describing the fractionation processes contains not only
analytical, but also numerical calculations, the inversion is performed by a comparison
of the theoretical enrichment of the precipitated calcite with the measured values of the
samples. Note, that this model is ambiguous.

4.3.1 Carbon profile along the growth axis

The AXIS(C) model is exemplarily applied to the isotopic carbon profile of stalagmite
MA-1. To determine one parameter all other parameters need to be fixed, i.e. the fixed
parameters represent only mean values during the entire growth period of the stalag-
mite. In the following the results for all parameters are shown in order to understand,
to which amount a parameter must change to explain the temporal variation of the car-
bon profile, while the other parameters are fixed. The following parameters are used:
d = 100s, T = 7°C, pco, = 10000ppm, (513Cdmp = —16%0 and ¢ = 0,1. All results are
smoothed by a 20 point running mean.

The results (Fig. 4.3.1) show that in general it is possible to describe variations of the
carbon profile by a variation of any parameter. Like the drip interval for instance, some
of these variations lie within a range, which can be observed in natural caves, other
parameters exceed the range of natural variability. However, in a natural environment
a combination of the variations of different parameters will explain the §'3C profile. The
results are shown exemplarily for the chosen parameters. The variations will change, if
any of these parameters is changed.

4.3.2 Oxygen profile along the growth axis

The AXIS(O) model is exemplarily applied to the isotopic oxygen profile of stalagmite
MA-1. To determine one parameter all other parameters need to be fixed, i.e. the fixed
parameters represent only mean values during the growth period of the stalagmite. In
the following the results for all parameters are shown in order to understand, to which
extent one parameter must change to explain the temporal variation of the oxygen pro-
file, while the other parameters are fixed. The following parameters are used: d = 100s,
T = 7°C, pco, = 10000ppm, b = 0,5, 5180d70p = —10%o and ¢ = 0,1. All results are
smoothed by a 20 point running mean.

The results show that in general variations of the oxygen profile can be described by a
variation of any parameter. As already described for the carbon profile, some of these
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Figure 4.3.1: Temporal variation of a parameter, which is needed to obtain the isotopic carbon
profile along the growth axis, if all other parameters are fixed. Results are ford = 100s, T = 7°C,
pco, = 10000ppm, (513Cdmp = —16%0 and ¢ = 0,1. The grey shaded area indicates the error
due to the uncertainty of the measurement of A§'*C = 0,08%. The results are smoothed by a
20 point running mean.
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variations lie within a range, which can be observed in natural caves, like the drip in-
terval, temperature or the 5180 value of the drip water, others not. Again, if any of the
chosen parameters is changed, the variations will change. In comparison to the varia-
tions needed to obtain the carbon profile, there are more parameters, whose variations
can explain variations of the oxygen profile and lie within a natural range.

At first sight the main difference between the AGE and the AXIS model is the uncer-
tainty of the resulting values. Whereas the error of the measured growth rates is sig-
nificant due to measurement and tuning uncertainties, the accuracy of the measured
isotopes is 0,08 %o. This exact determination of the isotopic profile results in small er-
rors of the determined values.

Examining the variation of the results of the AXIS(C) model only the drip interval seems
to reflect natural variability. Temperature values range from 0 up to 20°C, which is
not observed in nature. However, this range is reasonable, since the modelled S1C
values only show a weak dependence on temperature and thus temperature must vary
strongly to explain variations of the §'C value of the precipitated calcite. The results
of pco, and the S13C value of the drip water show a high variability, which could be
attributed to significant changes in the soil system like changes of the vegetation type
for instance. For rather constant conditions of the cave surroundings, the variations
obtained for these parameters are too pronounced. The mixing coefficient shows only
slight variations ranging around 0,2. In comparison to the AGE model all parameters
except the mixing coefficient follow approximately the same trend. For an increased
value of 6'3C of the isotopic profile, the corresponding parameter is also increased and
vice versa. However, their relative change is different again.

For oxygen and the AXIS(O) model there are more parameters, whose temporal vari-
ations lie within a natural range. This is again the drip interval, which is reasonable,
since it is included in the oxygen calculation in the same way as for the carbon calcu-
lation. Due to the higher sensitivity of 6180 on temperature, the resulting temperature
range is much smaller than for the carbon isotopes. However, almost 8°C variation is
still too big for natural systems within this time frame, but might be explained by in-
dividual local features. Another parameter representing natural variability is the 680
value of the drip water. The obtained variations might be found in natural cave sys-
tems due to varying meteoric conditions or temperature changes outside the cave. In
contrast the CO, content of the soil spans a range of almost 40000 ppm, which exceeds
natural variability easily. This range would even be extended, if the upper limit of
40000 ppm would not have been fixed by the model.

The mixing coefficient shows small variations, which is expected for this parameter, and
is in agreement with the results of the AGE model. This does not hold for the buffer
parameter, which varies between 0 and 0,6. According to Hendy-Tests of natural stalag-
mites, which show rather constant values of the slope during the whole growth period,
this parameter should not show a high temporal variability, if temperature changes are
moderate. The general trends are not as clear as for the AXIS(C) model. The drip in-
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terval, the partial soil pressure and the 5180 value of the drip water show similar char-
acteristics. The remaining parameters show also similar trends, but with an inverted
profile in comparison to the other parameters.
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4.4 LAYER model

The LAYER model is based on the isotopic enrichment along an individual growth layer
described by the multi-box-model. The dependencies of the model introduced in sec-
tion 3.5 are now investigated examplarily at Hendy-Test MA1.b from stalagmite MA-1
(see Appendix A.1). To obtain information from the measured isotope values along an
individual growth layer the theoretical enrichment is compared to the measured. Since
the enrichment shows most of the time a linear characteristic, the slopes of the enriched
isotopes are compared. As shown in section 3.5 it can already be seen by eye, that if
the measured values increase linearly, the mixing coefficient might be rather small than
high. Otherwise the increase would be similar to a second order polynomial. However,
to compare the theoretical to the measured slopes all mixing coefficients are consid-
ered. In analogy to section 3.5 only the slopes between the second and the outer boxes
are investigated.

4.4.1 Carbon profile along individual growth layers

The carbon profile of MA1l.b of stalagmite MA-1 shows a slope of 0,148 %./mm. In
analogy to the previous models the slope of the modelled values is calculated for a
given set of parameters, whereas one parameter is varied and the others are fixed. The
resulting slope is compared to the measured in dependence on the varying parameter.
To take the number of boxes into account the deviation between the measured and the
theoretical slope is normed to one box. Thus, the deviation can be written as:

dev — }Slopetheo - Slopesample| . (4.4.1)

#boxes

To determine the value of a parameter, which is needed to obtain the measured slope for
fixed boundary conditions the following fixed values are chosen: d = 100s, T = 10°C,
pco, = 10000ppm and ¢ = 0,5 respectively. The two parameters, which show the most
important influence on the slope are the mixing coefficient and the partial pressure of
the soil. The dependence of the slope on the partial pressure of the soil shows a clear
minimum at 6000ppm (see Fig. 4.4.1a). The number of boxes is six, since the radius
does not depend on the pc,, of the soil.

The characteristic of the mixing coefficient is not as smooth as the one of the pcp,, which
is due to the dependence of the radius on ¢ (see Fig. 4.4.1b). Thus, the radius changes
with varying ¢, which yields a variation of the calibrated ¢;. This in turn leads to a
jagged characteristics of the resulting profile. The number of boxes vary from ten to
five in this case. However, a minimum can be found for ¢ = 0, 2.

Fig. 4.4.1c shows the result of the drip interval determination. For the given set of
parameters the best fitting drip interval is obtained for d = 70s. Again, the changing
radius allows no smooth characteristic of this profile due to changes of the calibrated
¢:. The number of boxes varies from ten to three.
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Figure 4.4.1: Deviation of the theoretically calculated 6'3C values along a growth layer from

the measured data. Not all resulting profiles show a clear minimum. Values are calculated for
d =100s, T = 10°C, pco, = 10000ppm and ¢ = 0, 5.

The results for temperature is shown in Fig. 4.4.1d. The explanation of the profile is in

analogy to the one of the drip interval. The determined temperature is T = 4°C and
the number of boxes vary from ten to three.

In general it must be noted, that the data set of isotopic values along an individual
growth layer need to be handled with care. Beside the problematic measurement to
probe an individual growth layer, the dependencies of the slope on the different pa-
rameters are not always clear. Depending on the boundary conditions a determined
profile can reveal several local minima, which are almost at the same level (see Fig.
4.4.1d). In such cases, the determination of a parameter is hardly possible.
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4.4.2 Oxygen profile along individual growth layers

The oxygen profile of sample MA1.b shows a slope of 0,038 %o/mm. In analogy to
carbon the same procedure to determine the individual parameters is applied including
the buffer parameter b. The result for the partial pressure of the soil is shown in Fig.
4.42a. For the chosen set of parameters no minimum of pcop, is found, which lies at
higher pco, values. However, since the radius does not change, the characteristic of
this profile is again smooth with an clear minimum, which lies beyond the given range.
The profile of the mixing coefficient (Fig. 4.4.2b) is jagged in analogy to the one of the
carbon profile, which is due to the changing number of boxes. In this case the solution
is not clear, since two local minima can be found, one at 0,2 and one at 0,4. Even harder
is the determination of the drip interval (Fig. 4.4.2c) and temperature (Fig. 4.4.2d).
These results are ambiguous and show no clear minimum, which makes it impossible
to determine a single value for these parameters for the given boundary conditions.
However, in this specific case, the minima would lie at d = 70s and T = 4°C. The result
of the buffer parameter is clear again, with a value of b = 0,2.

As already noted for the carbon profile, the determination of any parameter from the
isotopic enrichment along individual growth layer is hard and needs to be handled
with care, since many results are not unique and depend in addition on the boundary
conditions. However, under certain boundary conditions, the partial pressure of the
soil and the mixing coefficient can be determined. Even if the profile of the mixing
coefficient reveals several local minima, there is an additional information, which can
be used to confine the range of this value: the profile of the enrichment. In many cases,
the isotopic enrichment of carbon and oxygen along an individual growth layer follows
a linear trend. This kind of profile can only be reconstructed by the model, if the mixing
coefficient is small. With this additional information, the mixing coefficient might be
extracted from the enrichment of 6*C and §'80 under given boundary conditions.

The buffer parameter, which shows a clear result is determined in another way, which
is more robust to boundary conditions (see section 4.5).
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4.5 BUFFER model

This model is based on the models of section 3.5.3 and the dependence of the slope of
a 613C versus 6'80 plot on temperature and the buffer parameter. If no buffer reac-
tions occur, the 680 in the precipitated calcite becomes maximal enriched resulting in
a maximal value for the slope of 1,15. If the system is completely buffered the slope
approaches zero, since the enrichment of 5180 will not change with increasing distance
from growth axis. Under natural conditions the influence of the buffer reactions is ex-
pected to be somewhere between the boundary limits, i.e. 0 < b < 1.

The degree of buffering is calculated for seven Hendy-Tests of stalagmite MA-1 and
five Hendy-Tests of stalagmite MA-2. The slopes of these Hendy-Test are listed in Ta-
ble 4.5.1 and range between 0,18 and 0,35. To determine the buffer parameter at the
time the investigated calcite was precipitated a temperature must be estimated. There-
fore the recent cave temperature of T,,, = 6,5°C is used allowing an error of +3°C to
take temperature variations during the last 3000 years into account. Using the tem-
perature uncertainty the minimal and maximal buffer parameter can be read off Fig.
3.5.3. Therefore the buffer dependent slope is determined for the given temperature
range T € [3.5,9.5]°C. Since the slope increases with increasing temperature (b > 0)
and decreases with increasing buffer parameter a maximal and minimal value of b can
be determined. b™" can be obtained at the intersection of the minimal value of the
slope and the maximal temperature, whereas b"** is determined at the intersection of
the maximal slope and the minimal temperature. In this way a range of the buffer pa-
rameter is determined, which is given in Table 4.5.1. The resulting values of b range
between 0,20 and 0,39 and centre around b = 0,29 for stalagmite MA-1 and b = 0,27
for stalagmite MA-2. It is remarkable that the slopes of the Hendy-Tests and thus the
buffer parameter shows only slight variations during the whole growth period of al-
most 3000 years. This implies that the influence of the buffer reactions might have only
small temporal variability.

Using the measurements of Beck (2004) (see section 3.3) the time needed to obtain such
a degree of buffering can be estimated. According to Eq. 3.3.10 and 3.3.11 the time can
be calculated:

In(1—F
= =B (4.5.1)
AQE_TTk

Replacing the fraction F describing the amount of buffering by the mean values of b
yields a time of t ~ 320s for stalagmite MA-1 and t ~ 300s for stalagmite MA-2. These
values are comparable to the drip intervals determined by the CSM model (section
4.6). The mean drip interval around the investigated Hendy-Tests is dpengy = 270s
for stalagmite MA-1, whereas the mean drip interval over the whole growth period is
given as d = 290s. For stalagmite MA-2 the mean drip interval around the Hendy-Tests
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MA-1
Sample “DFT [mm] Age [ka] Slope Buffer
MA-1.a 194,55 3,062 0,214+0,01 0,23+0,03
MA-1b 169,95 2,730 0,26+0,01 0,29+0,03
MA-1.c 127,80 2,154  0,254+0,01 0,28+0,03
MA-1.d 91,35 1,496 0,29+0,01 0,32+0,03
MA-1.e 77,55 1,280 0,35+0,02 0,39+0,05
MA-1.f 47,25 0,765 0,224+0,01 0,24+0,03
MA-1.g 20,70 0,396 0,26+0,01 0,29+0,03
Mean value 0,26 +0,05 0,294+0,05
MA-2
Sample “DFT [mm] Age [ka] Slope Buffer
MA-2.a 26,40 0,616 0,184+0,01 0,20+0,02
MA-2b 56,70 1,082 0,30+0,01 0,33+0,03
MA-2.c 69,15 1,460 0,24+0,01 0,27+0,03
MA-2.d 107,10 2,208 0,30+0,01 0,33+0,03
MA-2.e 132,15 2,595 0,214+0,01 0,23+0,03
Mean value 0,25+0,04 0,27 £0,06

Table 4.5.1: Slopes of Hendy-1ests of MA-1 and MA-2 and the corresponding buffer parame-
ters. Calculations are performed for a temperature of T = 6,5 & 3,0°C. The errors of the mean
values are determined by standard deviation.

* Distance from top.

is given by dpensy = 160s and over the whole growth period by d = 350s%. Even if
the absolute values do not fit exactly, they are in the same order of magnitude and in
addition the trend of the drip intervals agree. For MA-1 the drip intervals calculated
around the Hendy-Tests are larger in comparison to the drip intervals of MA-2, which
is obtained for both calculations, the Beck (2004) approach and the CSM (section 4.6).
However, the mean values of the drip interval over the whole growth period do not
reflect this trend as it can be seen in the results of the CSM.

An explanation for the deviation of the calculated drip intervals of the Beck (2004)
approach and the CSM might be the following. According to section 3.5.3 the buffer
parameter obtained from natural data sets may contain additional influences like evap-
oration effects. Since the MA cave is rather open to the atmosphere, evaporation must
be taken into account in this case. If the resulting values of b include both, the effect of

2Note, that for the CSM only Hendy-Tests MA-2.a, MA-2.b, MA-2.d and MA-2.e have been used for
stalagmite MA-2.
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buffering and evaporation, the actual degree of buffering is smaller than the obtained
value of b depending on the degree of evaporation. This suggests that the times cal-
culated by the Beck (2004) approach (¢ = 320s/MA-1 and t = 300s/MA-2, see above)
are longer than the actual times needed to explain the corresponding degree of buffer-
ing. This is in agreement with the results obtained by the CSM (t = 270s/MA-1 and
t = 160s/MA-2, see above).
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4.6 Combined Stalagmite Model - CSM

All reverse models, which have been introduced in the previous sections are more or
less ambiguous and thus, no exact information about climatic boundary conditions can
be obtained from these theoretical constructs. However, a combination of the models
enables the determination of absolute values of two very important climate parameters:
the drip interval and temperature.

The idea of the combined model is based on the different dependencies of §'*C and 6180
on temperature and drip interval. Whereas both proxies show a similar dependence on
the drip interval, the carbon isotopes show a rather weak dependence on temperature,
whereas the dependence of oxygen on temperature is strong. This is used to extract a
drip interval record from the carbon profile along the growth axis, which is then used
to correct the oxygen profile in order to obtain a pure temperature signal.

If a new model is set up, the general intention is to use as less input parameters as
possible in order to obtain as many output parameters as possible. In this CSM the
following data sets and input parameters are used:

Data sets The stalagmite data, which include age, distance from top, S1C and 6180
values along the growth axis and as many Hendy-Tests as available.

0B Carop An estimation of the mean §°C value of the drop.

Estimated temperature The cave temperature at any point of time during the growth
period of the stalagmite needs to be known or estimated.

In addition an internal starting temperature between 0 and 20°C must be provided.
This value can be chosen arbitrarily, since it influences only the number of runs, but not
the results.

Running the CSM with these input data and parameters yields a temperature and drip
interval record in a high temporal resolution. For the other parameters like CO, partial
pressure of the soil, mixing coefficient, buffer parameter and the isotopic oxygen com-
position of the drop mean values are obtained, which represent the most likely values
of the corresponding parameters during the growth period of the stalagmite. For these
parameters no temporal variations can be obtained with the current model version.
This is a simplification for parameters like the isotopic composition of the drip water,
which indeed shows temporal variations due to its correlation to temperature and other
climatic changes. For other parameters like the buffer or mixing coefficient this approx-
imation may only disguise small temporal variations, which can be neglected in this
first approach.
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Figure 4.6.1: Setup of CSM. The input data and parameters are marked blue, the output param-
eters red. The running parameters, which are determined in the corresponding sequences, are
marked by a star.
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Figure 4.6.2: Dependence of 6'>C and growth rate on temperature, mixing coefficient and
pco, of the soil. Values are calculated for fixed boundary conditions (b = 0, 513Cdmp =
—10%0). Parameters, which are changed range from T € [1;20]°C, ¢ € [0,1;1,0] and pco, €
[1000;20000]ppm. All parameters, which are not varied are kept at the mean values of their
ranges. The blue lines indicate the lower value of the varying parameter, the red line the higher
value. Arrows indicate the change of the drip interval caused by a variation of the relevant pa-
rameter. These dependencies are summarised in table 4.6.1. Note the ambiguous dependence

of the growth rate on temperature.
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Parameter 013C  Growth rate
Temperature T | dTl dl
Mixing coefficient ¢ T a7l a1l
Partial pressure pco, T d | dl

Table 4.6.1: Dependencies of the models on temperature, mixing coefficient and CO, partial
pressure of the soil.

4.6.1 Detailed description

The combined model consists of five sequences, whereas in each sequence one param-
eter is determined (see Fig. 4.6.1). The most important and difficult step is the start of
the combined model, since all individual models itself are ambiguous. This is overcome
by looking at the dependencies of the individual models on temperature, drip interval,
mixing coefficient and CO, partial pressure. As shown in Fig. 4.6.2 the AGE and the
AXIS(C) models react differently and even contrarily on a change of external parame-
ters. To compare the influence of these parameters on the models the drip interval is
calculated for each model using a specific set of parameters. By varying one parameter
of this set the reaction of the drip interval on this change is investigated. This gives the
direction, in which the drip interval needs to change, if the same output value (63C
and growth rate) wants to be obtained (see arrows in Fig. 4.6.2).

By comparing the reaction of the drip interval on different parameters for different
models, a starting point of the combined model can be found. According to Fig. 4.6.2
the AGE and the AXIS(C) model react contrarily only for a change of the partial CO,
pressure of the soil. If the pcp, raises the drip interval calculated by the AGE model
increases, whereas the drip interval calculated by the AXIS(C) model decreases. This
enables the determination of pcp, via a comparison of the mean drip intervals calcu-
lated by theses models. All other parameters show either the same influence on the
models (¢) or no clear result (T)3.

In the following the individual sequences are listed and results are exemplarily shown
for stalagmite MA-1.

Sequence 1: determination of pco, To determine the pcp, the drip intervals of both,
the AGE model and the AXIS(C) model are calculated for the provided tempera-
ture and 6'3C value of the drop and any mixing coefficient?. The results are com-
pared in the following way: since the AGE model is based on only a few measured
ages the temporal resolution of the result is rough. Thus, the result of the AXIS(C)

3The AXIS(O) is not investigated for this starting procedure due to its additional dependence on the
buffer parameter. This complicates and even disables calculations, since the parameter is not known at
this point of time.

4This determination is performed for every mixing coefficient, since sequence 1 is embedded in se-
quence 2 of the model (see Fig. 4.6.1.)
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Figure 4.6.3: Sequence 1: Determination of pco, for T = 6,5°C, (513Cdmp = —16%0 and

¢ = 0, 1. The cyan line represents the drip interval calculated by the AGE model. The red
line represents the mean drip interval at every section of the AGE model calculated by
the AXIS(C) model (grey line). For reasons of clarity the result of the drip interval (grey
line) is smoothed by a 20 point running mean. In the model the original data set is used.

model, which has a rather high temporal resolution, is divided according to the
sections of the AGE model and the mean value of the drip interval calculated by
the AXIS(C) model is determined for each section (see Fig. 4.6.3). These mean
values are compared to the drip intervals calculated by the AGE model at every
section. Due to the contrary response of the drip interval calculated by the two
models on a change of the partial CO; soil pressure, a value of pco, must exist,
where the deviation of the drip intervals of both models is smallest. This is deter-
mined using a mean square error fit. In this way the pco, of the soil for a given
temperature, mixing coefficient and 6'3C value of the drop can be determined.

The partial pressure of the soil is determined with an accuracy of 1000 ppm.

Obviously the choice of the input parameters such as temperature and §'>C of the
drop seems to influence the resulting pco,. This is true for the 6C value of the
drip water, since an increase in 513Cdmp causes a decrease of the drip interval and
thus of pco,. However, for temperature, this influence is less critical, since the
algorithm of the whole model is repeated, whereas the resulting mean tempera-
ture of sequence 5 acts as the new input temperature, until the mean temperature

converges. Thus, the input value of temperature can be chosen arbitrarily.

Sequence 2: determination of ¢ To determine the mixing coefficient the Hendy-Test
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data sets are used. This is reasonable since the LAYER model shows an increased
sensitivity to a change of the mixing coefficient compared to the AXIS(C) model.
Therefore the values of the drip intervals are determined by the AGE and the
AXIS(C) models at the ages, where Hendy-Tests were taken. To include uncer-
tainties of the age measurements of the Hendy-Test data and to average out sin-
gle events in the drip interval profile, mean drip intervals were calculated for the
range of +250 years around the actual Hendy-Test age (Fig. 4.6.4a). These drip
intervals plus the determined pcp, of sequence 1 are put into the LAYER(C, O)
models and the theoretical enrichment along the growth layer for both carbon and
oxygen is determined for varying mixing coefficients. In the next step these the-
oretical enrichments are fitted linearly, which gives values of the resulting slopes
in dependence on the varying mixing coefficient. These slopes are compared to
the slope of the measured Hendy-Test values in order to obtain the mixing coeffi-
cient for which the theoretical slope shows the smallest deviation to the measured
slope.

This determination of ¢ is performed for both input values, the drip interval cal-
culated by the AGE model and the drip interval calculated by the AXIS(C) model
and is additionally applied to two LAYER(C, O) models using the carbon and
oxygen enrichment along individual growth layers. This yields four results of ¢
for each Hendy-Test, which is shown in Fig. 4.6.4b. The mixing coefficients de-
termined by the LAYER(C, O) models using the drip interval calculated by the
AGE model are equal. The coefficients obtained for the drip interval calculated
by the AXIS(C) model differ at only one Hendy-Test. Thus, all results show the
same characteristics. However, to simplify calculations only the mean value of ¢
is used for the next sequence of the model. The mixing coefficient is determined
with an accuracy of 0,1.

Sequence 3: determination of d In the third sequence the drip interval is determined
using the AXIS(C) model and the calculated input values of ¢ and pco,. This
straightforward calculation has already been performed in sequence 1 and is re-
peated here. Since the calculation of the drip interval is fast, it is not necessary to
store the results of the drip interval of sequence 1.

Sequence 4: determination §'80g,, In the fourth sequence the oxygen composition of
the drip water is calculated. Therefore temperature must be known at any point
of time during the growth period of the stalagmite. Using this temperature and
the slope of the Hendy-Test, which is, regarding to the age, closest to this point
of time, the buffer parameter b is determined. With the results from the earlier
sequences the theoretical enrichment of 6'80 for varying values of the drip water
is determined for the time frame, where temperature is known or estimated (Fig.
4.6.6). By comparing the theoretical values (grey lines) with the measured data
(red line) the §'80 value of the drip water can be obtained at every sample point
of the oxygen record within this time frame. The resulting values are averaged
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Figure 4.6.4: Sequence 2: Determination of ¢. Fig. (a) shows the drip interval used for
the LAYER(C,0) model and the location of the Hendy-Tests within the stalagmite. The
red dots represent the drip interval obtained from the AXIS(C) model results, whereas the
cyan dots are obtained from the AGE model results. The bars indicate the range, in which
the drip interval of these results are averaged (£250 years). Fig. (b) shows the results of
the ¢ determination for both drip intervals and both LAYER models. The characteristics
of all four lines show a good agreement.
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Figure 4.6.5: Sequence 3: Determination of the drip interval. Using the mixing coefficient
and pco, from the previous sequences and the starting temperature the drip interval can
be determined using the AXIS(C) model. For reasons of clarity the result of the drip
interval is smoothed by a 20 point running mean. In the model the original data set is
used.

and yield an approximation of the 50 value of the drip water for the investi-
gated time. In the following it is assumed that this 680 value of the drop was
constant during the growth period of the stalagmite. This is not realistic for natu-
ral stalagmites, but reasonable for this first model approximation. In the example
(see Fig. 4.6.6) the recent temperature is known and thus approximately the last
100 years are investigated. The §'80 value of the drip water is determined with
an accuracy of 0,01 %o.

Sequence 5: determination of T In the last sequence temperature variations during
the growth period of the stalagmite are determined. First, the starting tempera-
ture is used to calculate a mean buffer parameter from the available Hendy-Tests
using the BUFFER model. With this value of the buffer parameter, the determined
mixing coefficient, the 5180 value of the drip water and the drip interval record,
the theoretical enrichment of 6'80 for varying temperatures is calculated for the
whole §'80 record using the AXIS(O) model. This isillustrated in Fig. 4.6.7, where
the grey lines represent the theoretical 680 values for varying temperatures and
the red line the measured 5180 values. These two values are compared at every
sample point of the §'80 record in order to determine temperature at every point.
Temperature is determined with an accuracy of 0,1°C.

Until now a starting temperature was used to determine all these parameters. To over-

119



CHAPTER 4. REVERSE MODELS

. best fit
' —— measured data
=
g -60 3
2 7 8
= 0,
O S
« «
o o
e
6,5 S
<
Q
c
@
w
-7,0 -
T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140

age BP [years]

Figure 4.6.6: Sequence 4: Determination of 6'80 of the drip water for stalagmite MA-1.
Since the recent temperature of the cave is known approximately the last 100 years are
used to determine the value of the drip water. The grey lines indicate the theoretical val-
ues, the red lines the measured data and the cyan line the 8180 values, which are obtained
using the determined 5'®O value of the drop. Therefore the BUFFER and AXIS(O) models
are used. For reasons of clarity the results of §'80 (grey and red lines) are smoothed by a
20 point running mean. In the model the original data set is used.
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Figure 4.6.7: Sequence 5: Determination of temperature. The grey lines represent the
theoretical values, the red line the measured 6'8O data. At every sample point of the
5180 record these values are compared in order to determine temperature at this point.
For reasons of clarity only the time frame between 1 and 2,5 ka is shown. By eye it can be
seen that between 1 and 1,3 ka the temperature is around 7° C, whereas it ranges between
5 and 6°C during the time between 1,3 and 1,7 ka and so on. For this determination the
BUFFER and AXIS(O) models are used.

come this starting problem of the algorithm, the obtained temperature record of se-
quence 5 is averaged over the growth period. The mean value of the resulting temper-
ature record is then used as the new starting temperature and the process is repeated
until the resulting mean temperature converges®. Depending on the starting tempera-
ture the model converges in general after at most five runs. If the input temperature is
estimated close to the resulting value (& 1°C) the model needs only two runs to con-
verge®.

4.6.2 Results and discussion

The CSM model is applied to stalagmites MA-1 and MA-2 from Southern Chile, which
provide an accurate age-depth relation, isotopic profiles along the growth axis in a high
temporal resolution and enough Hendy-Tests to indicate kinetic fractionation during
the whole growth period. In addition the stalagmites were growing recently at the time
of cutting, so a temperature, which needs to be estimated for the model, was measured
directly in the cave. A crucial point of the model is the estimation of the §'>C value of
the drip water. How this and other uncertainties influence the resulting temperature

5The model breaks, if the first decimal place of the resulting temperature stops changing.
6Using a personal computer with an AMD 4000+ CPU and 2GB RAM this calculation takes between 1
and 5 minutes.
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and drip interval record will be shown in the following.

The recent cave temperature was measured to T,c = 6,5 £ 0,5°C and the S13C value of
the drip water was estimated as & 13 Carop = —15,541,0%0. To determine the error of the
resulting temperature and drip interval record a Monte-Carlo method was used. This
is needed, since the model contains not only analytical, but also numerical calculations.

The set up of the Monte-Carlo run varies the input parameter within its error using a
Gaussian distribution. This yields distributions of the resulting values of temperature,
drip interval, 6'80 of the drip water, pco, of the soil and ¢. For the temporal records
of temperature and drip interval, the mean values and the standard deviation are de-
termined at every sample point, whereas for the other parameters only one mean value
and standard deviation need to be determined.

Beside the simplifications made for the model, the uncertainty of the results depends
on the uncertainty of the data sets (age-depth relation, isotopic profiles) and the input
parameters (Trec, (513Cdmp). To investigate the influence of these uncertainties and in
order to determine, which parameter causes the main error, the model is run four times
allowing in each run only the uncertainty of one parameter. This is used to investigate
the influence of one varying parameter exemplarily on the results of stalagmite MA-1.
For all calculations the Monte-Carlo method was run at least 1000 times.

Uncertainty of the recent temperature The recent temperature is varied within an es-
timated error of T,,c = 6,5 £ 0,5°C. The results are shown in Table 4.6.2. As
expected the recent temperature does not have a significant influence on the drip
interval, which can be seen at the resulting standard deviation of the drip interval
of only 9s. This is due to the weak dependence of §'C on temperature. The same
holds for the mixing coefficient and the partial pressure of the soil, whose errors
approach zero. By contrast the error of the resulting temperature is 0,45°C. This is
close to the error estimated for the recent temperature. Due to the relatively small
number of Monte-Carlo runs (1000), the actual resulting error of the recent tem-
perature is 0,46°C instead of the presumed value of 0,50°C”. Thus, the error of the
input data seems to be completely copied to the resulting temperature. This also
explains the error of the 6'80 value of the drip water, which is approximately 0,11
J00. If temperature changes by half a degree centigrade, the isotopic composition
of the drip water must balance this change in order to obtain the measured 680
profile. Following in a first approach the temperature dependence of oxygen frac-
tionation under equilibrium of -0,23 %/ °C the error of the resulting 5180 value of
the drip water can be attributed to the error of the resulting temperature.

Uncertainty of the 63C drip water value The estimation of the §'3C value of the drip
water is a crucial point of the model, since there are no direct measurements.

7If the number of Monte-Carlo runs is increased, the actual error approaches the presumed error. Due
to limited computational resources this result is acceptable.
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Thus, this is an arbitrary guess in order to obtain results in a reasonable range.
The value is estimated as §'3 Carop = —15,5 £ 1,0%0 resulting in an actual value of
(513Cdmp = —15,54 4+ 0,95%¢ due to the small number of Monte-Carlo runs. Since
the §13C value of the drop is directly used to determine the drip interval from the
carbon record along the growth axis, the resulting error of the drip interval is not
astonishing. This uncertainty of the drip interval also influences the uncertain-
ties of the other parameters like the partial CO, pressure, the mixing coefficient
and the 6'80 value of the drop. The calculations of these parameters are directly
related to the drip interval, which explains their significant errors. Temperature,
however, is not affected in the same manner as the other parameters. Thereby the
effect of a changing drip interval on the temperature reconstruction from the §'80
record is balanced out by variations of the other parameters. Thus, temperature
shows only slight variations.

Uncertainty of the isotopic profiles Isotopic profiles were measured by C. Spétl at the
Innsbruck University with an accuracy of £0,08%¢. These exact measurements
allow an exact determination of most of the parameters and so the results show
only a small variability. This holds for the mean value of the drip interval, the
5180 value of the drop, the partial pressure of the soil and the mixing coefficient,
which all show a small variation, which even approaches zero in some cases.
However, the temperature record shows an increased variability. This variability
is not caused by uncertainties of the other parameters, but by the uncertainty of
the measured 5'80 profile of 0,08 %o. In analogy to the argument used to explain
the influence of the uncertainty of the recent temperature, this error of temper-
ature can be deduced from the error of 680 assuming the conversion factor of
equilibrium fractionation of -0,23 %¢/°C. Thus, an error of 0,08 % would result
in an error of approximately 1/3rd centigrade degree. This is in the range of the
temperature error obtained from the Monte-Carlo run.

Uncertainty of the age-depth relation The ages of stalagmite MA-1 were determined
by D. Schimpf at the Heidelberg Academy of Sciences / Heidelberg University.
However, stalagmite MA-1 shows a high amount of detritus and so the ages of
MA-1 were tuned to the ages of stalagmite MA-2 using the uranium profile of
these stalagmites. This increases the uncertainties of the measured ages slightly,
resulting in an increased variability of the drip interval. This in turn increases the
error of the partial pressure of the soil and the mixing coefficient. Although the
drip interval shows an error, which is in the same range as the error caused by
(513Cdmp variations, the resulting uncertainties of the other parameters are small.
This is due to the increased mean value of the drip interval. At larger drip inter-
vals the sensitivity of this parameter is attenuated resulting in a weaker influence
on the other parameters. Thus, the partial pressure of the soil as well as the mixing
coefficients show smaller variations than in the case of a varying 513Cdmp value.
This also results in a small variation of the 680 value of the drop and the resulting
temperature.
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“Error of T[°C] d|[s] 6'804y0p [T0]  pco, [ppm] ¢

Trec 5,47+0,45 22449 —9,13+0,11 5984+125 0,20+0,00
6BCaop  5,504£0,16 20681 —9,15+0,26 6277 +£2378 0,22+0,12
bds-i 5,48+0,35 229+17 —9,14+0,01  6000+0 0,204 0,00

‘ds-a 550+0,09 282+80 —9,124+0,04 4788+1025 0,22+0,04

Table 4.6.2: Results of the Monte-Carlo runs using the uncertainty of only one parameter (index
(a)). The error of the recent temperature is estimated as Ty.c = 6,49 £0,46°C, the S1C value of
the drip water as 513Cdmp = —15,54 +0,95%. The indices (b) and (c) indicate the different data
sets ((b): isotopic profiles, (c): age-depth relation) The errors of the age-depth data are given in
the Appendix A.1, the error of the isotopic profile as -0, 08%o.

The results show, that some parameters respond to changes of the input data with a
change of their mean values, some only with a change of their errors and other with
changes in both values.

The resulting mean temperature values of all Monte-Carlo runs are at a almost con-
stant level no matter which input parameter is changed. This is a big advantage of the
CSM. However, the influence on the uncertainty of temperature is different. The recent
temperature as well as the error of the isotopic profiles show a significant influence on
temperature, whereas the errors of the § 13C value of the drop and the age-depth relation
show only a small influence.

The mean values of the drip interval also agree within their errors, however, their devi-
ation is significant. The errors of the recent temperature, 6'3C value of the drop and the
isotopic profiles cause rather short drip intervals, whereas the drip intervals resulting
from the age-depth uncertainty are enlarged. The errors of these values are contrarily
to the errors of temperature. The recent temperature as well as the isotope error result
in small variations of the drip interval, whereas the error of the 6*C value of the drop
and the age-depth relation yield larger errors of the drip interval.

Another parameter, which shows almost no variation of its mean value is the 5180 value
of the drop. This parameter is robust against all different uncertainties and reveals only
in- or decreased errors, if the input uncertainties are changed. Thereby the error of the
S13C value of the drop has the largest influence on the error, followed by the recent
temperature. The uncertainties of the data sets have almost no influence on the error of
this parameter.

The partial pressure of the soil is the only parameter, which does not agree within its
errors for changing input parameters. However, only the result of the age-depth error
is slightly smaller than the others and thus not in their 1¢ error range. This is due to the
enlarged drip intervals of this Monte-Carlo run. The errors of this parameter are largest
for uncertainties of the 6'3C value of the drop and the age-depth relation. For the other
input data the error of pco, even approaches zero.

The influence of the input uncertainties on the mixing coefficient is rather weak. All
results agree within their errors and only the error of the resulting mixing coefficient
due to 513Cdmp uncertainties is increased in comparison to the other results. This is
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Stalagmite T [°C] d [s] (5180d,0p (%]  pco, [ppml] ¢

MA-1 5563+0,62 277+133 —-9,13+0,29 5114+£2254 0,24+0,10
MA-2 5,47+0,69 360+111 —-9,08+£0,24 11517+2832 0,10+0,01

Table 4.6.3: Results of CSM model for stalagmites MA-1 and MA-2 using 7797 (MA-1) and
6396 (MA-2) Monte-Carlo runs. The input parameters of MA-1 are Ty, = 6,52 +0,49°C and
513Cd,op = —15,51 £1,01%0 and the input parameters of MA-2 are T;,c = 6,51 £ 0,51°C and

6B Cyop = —15,52 +0,99%e.

caused by the increased errors of pco, and the drip interval of this run.

The results show, that the uncertainties of all input parameters and data sets need to be
taken into account, if a temperature and drip interval record wants to be extracted from
stalagmites.

To calculate temperatures and drip intervals from stalagmites MA-1 and MA-2 the re-
cent temperature is estimated as Ty, = 6,5 £0,5°C and the & 13C value of the drip water
as 513Cdmp = —15,5+1,0%. Using 7797 (MA-1) and 6396 (MA-2) Monte-Carlo runs
the distribution of the input parameters is shown in Fig. 4.6.8a, 4.6.8b and Fig. 4.6.9a,
4.6.9b. The results of the constant parameters for stalagmite MA-1 are shown in Figs.
Figs. 4.6.8c to 4.6.8e, for MA-2 in Figs. Figs. 4.6.9c to 4.6.9e and the resulting drip
interval and temperature records in Figs. 4.6.10 and 4.6.11.

Note, that both model runs for stalagmites MA-1 and MA-2 are completely indepen-
dent from each other and use only the same input parameters of the recent temperature
and the estimated §'3C drip water value. This is reasonable since both stalagmites grew
in a distance of approximately a metre.

The resulting mean values of the 6'80 value of the drip water of both runs agree well
within the errors (MA-1: -9,13 %0, MA-2: -9,08 %0). However, temporal variations of this
parameter are neglected, which is not realistic, but reasonable in a first order approach,
which is made here.

The mixing coefficient determined for MA-1 is slightly higher than the value obtained
for MA-2 (MA-1: 0,24, MA-2: 0,10). Since this parameter describes the mixing between
the impinging drop and the existing solution layer, this difference might be explained
by a different splashing behaviour of the drip water. This might be due to different
heights of fall of the drop or surface properties of the top of the stalagmite. However,
the order of magnitude agree.

The calculated partial pressure of the soil shows the greatest deviation for the two sta-
lagmites (MA-1: 5114 ppm, MA-2: 11517 ppm). However, this still can be explained,
if the two stalagmites were fed by drip water coming from sources, which have taken
different water tracks throughout the soil. This might result in an uptake of CO, under
different boundary conditions (open/closed systems), which easily can describe a devi-
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Figure 4.6.8: Input and output parameters of CSM for stalagmite MA-1 using 7797 Monte-Carlo

runs. Mean values and their standard deviation are listed in Table 4.6.3.
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ation in this order of magnitude. However, this would be in contrast to the assumption
that the drip water of both stalagmites has the same 6'3C value. Another explanation
might be prior calcite precipitation of one of the solutions, since the determined value
of pco, reflects the amount of dissolved calcite of the solution. If one of the solutions
precipitates calcite before hitting the stalagmite, the calcium concentration and the CO,
content of the solution is decreased. This might occur, if stalagmite MA-1 developed
beneath a stalactite, where calcite has already been precipitated from the solution.

The drip interval record of the stalagmites show no correlation, which is not remark-
able, since both stalagmites show a different degree of kinetic fractionation, which is
attributed to different drip intervals (see Fig. 4.6.10). This difference in drip interval
might also support the explanation for the partial pressure of the soil, that the stalag-
mite were fed by drip water from different sources. In this case, stalagmite MA-1 is
characterized by short drip intervals, whereas the drip water feeding stalagmite MA-
2 seemed to be limited due to a smaller water reservoir for instance. However, the
general trend of both records show, that water supply was higher during the last 2500
years BP in comparison to the water supply between 2500 and 6000 years BP, which is
characterized by low drip intervals.

In contrast to the differences of the drip intervals of the two stalagmites the calculated
temperature records show a rather high correlation of R> = 0,76. This is remarkable,
since the correlation of the used 6'80 profile, from which the temperature is extracted
show only a correlation of R? = 0,51. This suggests, that the CSM model is really able
to extract temperatures from the given data sets and does not only copy the existing
correlations. The calculated temperature agree well within the last 1600 years. Between
1600 and 4000 years the two profiles reveal an offset of approximately one centigrade
degree, which shifts MA-2 to lower values than MA-1. However, the trend and even
the main peaks of the two records still show a good agreement.

The absolute values of the results need to be handled with care, though. Stalagmite
MA-1 shows a temperature variability of approximately 3-4°C and stalagmite MA-2 a
variability of almost 5-6°C. This is huge compared to a global scale, but might occur
locally. However, the reason for this variability lies probably in the assumption of a
fixed 6'80 value of the drip water. This value will change with temperature, changing
wind/rain trajectories like a shift of the Westerlies or due to the amount effect. If, for
instance, the 5180 value of the drip water would increase between 2000 and 4000 years,
the decreasing temperature records would be attenuated and the variability damped.
Thus, this temperature record might still include information about the 5180 value of
the drip water.

Note

The calculation of the theoretical §'80 values for varying temperatures, mixing coefficients,
partial pressures of the soil and §'80 values of the drip water of sequence 5 is computationally
very intensive. It slows down the algorithm especially in sequence five, where temperature is
determined using the 6'80 record. However, the influence of the drip water value on the 580
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in calcite can almost be described in a linear way for a large range of (5180dmp. The deviation
of the precipitated calcite in dependence on drip interval for two extreme values of the drip
water is shown in Fig. 4.6.12. It shows the dependence of the deviation of §'80 on drip interval
for 5180dmp = —20%0 and 5180dmp = —10%o. For the extreme case of very long drip intervals,
low temperatures, low mixing coefficients and a system, which is not buffered, the deviation
of the calculated from the approximated §'>C and 6'80 values does not exceed 0,1 and 0,13
%o respectively. Both values are close to the measurement uncertainty of 0,08 %c.. However, in
general these extreme cases are not used in the model.
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Figure 4.6.12: Dependence of 6'3C and 68O on the isotopic composition of the drip water.
The figure shows the deviation of two isotope calculations for varying values of the drip water
((513Cdmp, 5180dmp -20 %o to -10 %o (carbon with respect to VPDB, oxygen to VSMOW)). The
difference are expected to be greatest for low temperatures, small mixing coefficients and no
buffer effects. Thus the parameters are chosen as pCO2 = 10000ppm, ¢;1 = 0.1, b = 0 and
T = 1°C. This gives the maximal deviation, which lies in the range of the accuracy of the
isotope measurements (0,08 %o).

Due to the approximately linear response of 6'80 on the value of the drip water external data
bases are created. These contain values of 50 in dependence on drip interval and temperature
for different values of ¢ and pco, for a given value of the drip water of 5180dmp = —10%. Since
the calculated drip water values range around -9 %o the expected deviation between the real
and approximated values is small.
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51 Summary

In this study the underlying mechanisms of stalagmite growth and fractionation pro-
cesses, in particular the fractionation under disequilibrium conditions, occurring dur-
ing calcite precipitation are investigated. The theoretical framework of these processes
is implemented in analytical and numerical models to understand the dependencies
of growth and enrichment of §'*C and §'®0 on climate related parameters like tem-
perature, drip interval, partial CO, pressure of the soil zone and isotopic composition
of the drip water. In addition two model parameters are adopted: the mixing coeffi-
cient and the buffer parameter. The mixing coefficient takes mixing effects into account
between the impinging drop and the existing solution layer on top of the stalagmite.
The buffer parameter describes buffering processes in the solution layer occurring be-
tween the huge water reservoir and the dissolved bicarbonate. These two parameters
are idealized model parameters, which approximate natural processes in a simple way.

The intention of this work is to extract a temporal record of climate related parame-
ters from data sets of natural stalagmites. In particular information about variations
of temperature and drip interval want to be obtained. To overcome this challenge for-
ward models are developed in a first step. These models calculate climate proxies like
growth and isotopic profiles both along the growth axis and individual growth layers
in dependence on the mentioned parameters in order to understand and quantify the
influences of these parameters on stalagmite proxies.

In a second step the forward models are reversed to determine climate related parame-
ters from the provided stalagmite data sets. However, the reversed individual models
are ambiguous and do not reveal clear results for these parameters.

To overcome this ambiguity the reversed models are combined in a final step. This
CSM (combined stalagmite model) utilises the different strength of influence of the dif-
ferent parameters on the reversed individual models and enables the extraction of a
temperature and drip interval record from stalagmites. In addition mean values of the
partial CO, pressure of the soil, the 5180 value of the drip water and the mixing coef-
ficient during the growth period of the stalagmite are obtained. Therefore commonly
provided stalagmite data sets like the age-depth relation, isotopic profiles both along
the growth axis and individual growth layers need be to provided as well as an estima-
tion of the average 6'°C value of the drip water and a temperature at any time during
the growth period of the stalagmite.

The advantages of the CSM are: (i) the model can be applied to kinetically grown sta-
lagmites, (ii) only commonly measured data sets are needed, (iii) only two input param-
eters must be provided yielding a temporal record of temperature and drip interval as
well as mean values of the 5180 value of the drip water and the partial CO; pressure of
the soil.

The disadvantages of the current version are: (i) the CSM is based on the simplifica-
tion that all parameters except temperature and drip interval are at a fixed averaged
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value during the entire growth period, (ii) a temperature at any time during the growth
period as well as a mean 6'C value of the drip water need to be estimated.

The CSM is a first approach to extract information about climate related parameters
from stalagmites, even if they show fractionation under disequilibrium conditions. In
particular the reconstruction of the amount of drip water can not be performed on sta-
lagmites grown under equilibrium conditions. This is an improvement in comparison
to existing growth and fractionation models and a further step toward understanding
and extraction of climate signals from these kind of stalagmites.

The model was applied to two stalagmites from Southern Chile, which exhibit isotopic
fractionation under kinetic conditions. The resulting temperature records of both sta-
lagmites show a good correlation during the whole growth period, although the mea-
sured isotopic profiles differ due to different kinetic influences. Additionally the results
of this first stalagmite are robust against variations of the input parameters, which gives
confidence in the algorithm of the model.

A crucial point of all models dealing with fractionation processes of carbon and oxy-
gen isotopes is the choice of the right fractionation factors. Depending on the kind
of transition some of these factors are measured and some are calculated theoretically.
Especially for carbon some factors describing the same temperature dependence of a
transition between two species vary significantly. This results in a different enrichment
of 613C and can even lead to different interpretation of the measured signals. For this
study the fractionation factors are chosen regarding their temperature range, their date
of determination or regarding earlier publications of the daphne Forschergruppe.

5.2 Future prospects

The existing model delivers promising first results of a temperature and drip interval
record from two kinetically grown stalagmites. As a future prospect, the model might
be enhanced to include also temporal variations of all parameters and in particular
variations of the isotopic composition of the drip water, which are surely related to
temperature. However, this calculation is computationally intensive. This might be
a step to extract a pure temperature record from stalagmites, which have developed
under disequilibrium conditions.

Another aspect is the implementation of buffer effects on the oxygen isotopes based
on the measurements of Beck (2004). The current approach of the enrichment of oxy-
gen interpolates the intermediate states between the two border cases of fractionation
under equilibrium and disequilibrium in a linear way and can not distinguish, if the
enrichment is caused by buffering or evaporation effects. Applying the results of Beck
(2004) to the multi-box-model and thus on the fractionation of oxygen might enable the
separation of buffering effects of the water reservoir from other effects like evaporation
processes. Thus, the actual degree of buffering and evaporation could be determined
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by this method. However, this implementation does not have an effect on the temper-
ature and drip interval records obtained by CSM, where only the resulting enrichment
of oxygen is investigated irrespective of its origin.

Until now the CSM only takes only processes into account, which occur within the cave
system. By coupling this stalagmite model to an atmospheric and soil model the com-
plete isotopic circle might be tracked, starting with evaporation at the ocean, followed
by rainfall on the continent, penetration of the rain water into the soil and finally precip-
itation of calcite on the stalagmite. This might improve the understanding of regional
or even global effects on stalagmites and will take place during the second phase of the
daphne Forschergruppe based in Heidelberg.
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APPENDIX A. STALAGMITE DATA SETS

MA-1 MA-2
DFT [mm)] age BP [ka] DFT [mm] age BP [ka]
7,00 +3,50 0,0481 40,0840 7,00 £2,00 0,0964 +0,0150

21,00 £ 4,00
39,75 £ 2,75
54,75 £ 2,50
74,90 £ 2,60
90,00 £ 4,00
103,00 £ 3,00
113,25 + 2,25
139,50 & 4,00
180,00 £ 2,00
205,40 £ 2,00
214,40 £ 2,10
222,60 = 2,10
232,30 £ 2,30
245,10 £ 3,10
274,00 £ 2,00

0,4010 £ 0,0873
0,6665 £ 0,0415
0,8695 £ 0,0411
1,2360 £ 0,0458
1,4712 = 0,0851
1,7631 £ 0,0599
1,9100 =+ 0,0372
2,2910 £ 0,0480
2,8896 + 0,0290
3,1821 £ 0,0251
3,3047 £ 0,0369
3,4609 £ 0,0394
3,6111 £ 0,0335
3,8083 £+ 0,1012
4,6972 £+ 0,0754

11,90 £+ 2,40
17,25 £ 1,80
31,50 £ 1,50
51,60 £ 2,10
81,50 £ 4,00
92,80 £ 2,20
101,50 + 2,00
118,60 + 2,10
131,50 + 2,00
149,80 + 1,80
158,90 + 2,10
170,50 + 3,00
181,10 £ 1,90
192,00 + 3,00
204,40 £ 1,60
208,50 £ 2,00
242,50 £+ 2,00
251,50 £ 3,00

0,4105 £ 0,0228
0,4981 £ 0,0291
0,6985 £ 0,0125
0,9783 £ 0,0202
1,7849 + 0,0471
1,8963 + 0,0329
2,1792 £ 0,0450
2,3342 £ 0,0392
2,5887 £ 0,0880
3,0503 £ 0,0321
3,4958 £ 0,0446
3,9159 £ 0,0819
4,2684 + 0,0827
4,5223 £+ 0,0824
4,7201 £ 0,0920
4,8003 £ 0,1004
5,1757 £ 0,1918
5,6912 +0,1118

Table A.1.1: Age-depth relations of stalagmites MA-1 and MA-2. Note, that MA-1 is tuned to
MA-2 via their uranium profiles. Note, that the errors of MA-1 are slightly increased due to the
tuning process.

A.1 Stalagmites MA-1 and MA-2

Stalagmite MA-1 and MA-2 provide an accurate age-depth relation (Schimpf, 2005) as
well as isotopic profiles in a high temporal resolution both along the growth axis as
well as along individual growth layers (measured by C. Spétl at Innsbruck University).

The ages of stalagmite MA-1 are tuned to stalagmite MA-2, which has the lowest de-
tritus correction of the uranium thorium ages (Schimpf, pers. comment). The tuning
was performed on the uranium profile of the stalagmites. These profiles show the same
characteristics, but with a slightly delay in age (see Table A.1.1). This yields in increased
errors of the ages of stalagmite MA-1.

The isotopic carbon and oxygen profiles contain 1665 (MA-1) and 1669 (MA-2) data
points respectively and are therefore not listed here explicitly.

Hendy-Tests of stalagmites MA-1 and MA-2 are used to make sure that both stalagmites
developed under disequilibrium conditions. All data sets show an enrichment of both
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A.1. STALAGMITES MA-1 AND MA-2

carbon and oxygen along the corresponding growth layer and a linear correlation. This
is according to Hendy (1971) an indication for fractionation and precipitation under
disequilibrium conditions. The slopes of the §'3C vs. 680 plots range between 0,18
and 0,35.
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Figure A.1.1: Hendy-Tests MA-1.a—c of stalagmite MA-1. All tests show a linear correlation
between carbon and oxygen, which indicates fractionation under disequilibrium conditions.
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Figure A.1.2: Hendy-Tests MA-1.d—f of stalagmite MA-1. All tests show a linear correlation
between carbon and oxygen, which indicates fractionation under disequilibrium conditions.
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between carbon and oxygen, which indicates fractionation under disequilibrium conditions.
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Figure A.1.5: Hendy-Test MA-2.c—e of stalagmite MA-2. All tests show a linear correlation
between carbon and oxygen, which indicates fractionation under disequilibrium conditions.
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APPENDIX B. MATHEMATICAL PROOFS

B.1 Proofs

B.1.1 Proof of the mixing process of bicarbonate concentrations

This proof is performed by complete induction.
The temporal development of a solution with a initial bicarbonate concentration of

[HCOg_]soil is:
[HCO;|(t) = A+ (B— A)e™ 7, (B.1.1)

with A = [HCOj; |cave, B = [HCO; |spi1. For n = 1 (one new drop) and x = % the
mixed concentration is:

[HCO3](1,t) = A+ [(1—¢) (A+ (B—A)e ™) +¢B— Al e ¥
—A+[(1—9)A+(1—@)(B—A)e *+p(B—A+A)— Ale
—A+(B—=A) (1—g)e ™ +¢)e ¥
(B.12)
From Eq. 2.3.7 follows:
[HCO3](1,t) = A+ (B—A) (1—¢)e ™ +¢)e ¥ (B.1.3)

Thus, Eq. 2.3.7 is true for n = 1. This can be shown for all drop numbers n. In the
following it is proven that the equation is true for n + 1:

[HCOz](n+1,t) = A+ [(1—¢)[HCO; |(n,AT) + ¢B — Al e~

(1—9¢) <A+(BA)E"<((1 +¢Z >>+¢B A}e 4

=A+(B-A)

x((lzp) (((1 +4>"Zl >+¢> %

=A+(B-4) <((1 — e ) +<pk2 (1—g)e ™) +¢> e %
-1

= A+

=A+(B-A) [ (1-¢)e™)" "+ 4;; (1— ¢)e")k> %
=0
(B.1.4)

ged.

B.1.2 Proof of the mixing process of bicarbonate ratios

This proof is performed by complete induction.

The temporal development of the isotope ratio of a solution with an initial isotope ratio
of Ryrop = R(0) is
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_ [HCO51(0,1) )
Ryco; (t) = R(0) <[HCO3] 0,0 (B.1.5)
After one drop (n = 1) the initial isotope ratio Ry, of the solution changes to:
o [HCO3](O,AT)>€
R = (1= ¢)Rary < [HCO;(0,0) ) T P B16)
{1 g (IHCOTI0,8T)\¢ -
i (“ ? (e, w07 ) 4’> i
From Egs. 3.2.4 and 3.2.5 follow for n = 1:
{1 g (HCOTI0,AT)\¢
R(1) = ((1 2 (“reormor) * 4>> Riry 817)

Thus, Eq. 3.2.4 is true for n = 1. This can be shown for all drop numbers 7. It is now
proven that the equation is true for n + 1:

R(n+1) = (1—¢)R(n) <[I[{HCCO(§;§;(11;,AO?> + ¢Rurop- (B.1.8)
With
. ([HCO31(i,AT)\®
20~ (T o ) (319
it follows:

i n—1 n—1
R(n+1) = |(1-9¢) ((1—¢>”gA<k)+¢kZ<1— HkA ) 1)+ ¢ | Rarop

L =0 =0 m=n
i n—1 n—1

— "+1HA +¢ 1—4>)A(n)k2(1—q>)k HkA(m)+¢ Rirop
L =0 m=n—

- <1—¢>"+1gA<k>+¢kZO (1— @) ﬁkA<m> Rirop
) ) ) ) (B.1.10)

ged.
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B.1.3 Proof of the limit of A

If the mixing factor A includes a function in the form of lim,_,o f(x) — 1, it can be
approximated for x — 0 as the following:

n—1
An) = (1—@)f(x)" +¢ kz: (1= 9)f(x))"
=0

n—l (B.1.11)
~(1-) o) (1-9)
k=0
=1
This is shown by complete induction.
Forx - 0Oandn =1Ais:
1 - k
M) =(1-9)+¢) (1-9¢)
k=0 (B.1.12)
=1—¢+1
=1

This can be shown for all n. In the following it is shown that the equation is true for
n+1:

An+1) = (1 —=¢)A(n) +¢
==ﬂ—¢)01—¢ﬁ+¢§;u—¢v>+¢
:(L_@m4+¢§¥1_¢y+¢ (B.1.13)

=ﬂ—¢V“+¢§¥1—@k

ged.

B.1.4 Proof of the limit of disequilibrium fractionation

The proof that the isotopic composition occurring under equilibrium conditions is equal
to the isotopic composition occurring under disequilibrium conditions for short drip
intervals (lima7_.o 813Cy, = 613C,,) is exemplarily shown for §'3C and can be performed
analogously for 5180 .

Under equilibrium conditions 6'3C can be calculated after Eq. 3.2.1:
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63 Ceq = 03> (6" Cyop + 1000) — 1000. (B.1.14)

under disequilibrium conditions Eq. 3.2.6 is needed:

68Cae = fc(6"Cayop -+ 1000) — 1000. (B.1.15)

with

PEE]

[HCO; |(n,aT) \ "
s :a%ﬂ( o )~ L

13 [HCO3](nAT)
[HCO; |(1,0)

A1y (HCO3 1k, AT)\ (B.1.16)
(“ o' T (cor oy )

-1

n—1 Y " [HCO;](M,AT) :
+qf,k;oa 9 T1 ( [HCO4 ] (m, 0) ) )

m=n—k

For short drip intervals AT — 0 Eq. 3.2.6 and f, in particular can be approximated by
a Taylor series as follows. Again x = 22T is used. The concentration of bicarbonate can

be approximated as:

[HCO; (1, AT) ~ [HCO Jease + (IHCO3 Jsoit — [HCO3 Jease) <1 - ”‘§T> (B.1.17)

From this follows:

[HCO; |(n, AT) N [HCO; Jeave + ([HCOS Jsoit — [HCOZ Jeare) (1 — 241)

[HCO5|(n,0) [HCO; Jcave + ([HCOZ Jsoit — [HCO3 Jcave)
_ 1 ([HCOs ]soi = [HCO; Jeave) 5 (B.1.18)
[HCO; Jsoi1
= (1-A).
With
(1-A)" ~1—aBA (B.1.19)
yields for f,:
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1 1-aBBA-1
13 L l=arA—1
L B

T e - c (B.1.20)
<[ A=) TTA-A) +¢ ) 1—-¢)* T 1-4)
k=0 k=0 m=n—k
\_V__/ _
~1 ~1
~ g,
The isotopic composition of the precipitated calcite is after Eq. 3.2.6:
6'3Ce = fo (8" Cupop +1000) — 1000
~ ol (8Cgpp +1000) — 1000 (B.1.21)

= 6BCy.

ged.
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APPENDIX C. DATABASES

C.1 Calibrated mixing parameters

The multi-box-model is calibrated by a comparison to the exponential and the Gaussian
growth model. As described in section 3.4.1 of the thesis the adjustment to the Gaussian
model failures at high mixing coefficients. Thus, the calibration can only be performed
for mixing coefficients up to ¢ = 0,7. (Table C.1.2)

As described in section 3.1 the exponential growth model seems to mimic the natu-
ral shape of stalagmites in a more realistic way than the Gaussian model. Hence, the
exponential calibration is used to determine the ¢ database (Table C.1.1).

The calibrated mixing parameters depend on the radius of the stalagmite and the cho-
sen mixing coefficient ¢, which describes the mixing between the impinging drop and
the innermost box of the solution layer (see section 3.4). The following tables are ar-
ranged in ascending order of the mixing coefficient ¢ and the equilibrium radius. Mix-
ing parameters of boxes, which can not be calculated due to small radii, have a value of
Zero.

C.1.1 Exponential calibration

Radius [mm] ¢ ¢ P3P ¢s5 P6 $7 P P9 P10

60,5 0,10 0,08 007 005 005 004 003 000 0,00 0,00
61,5 0,10 0,08 006 005 005 004 003 002 000 0,00
62,5 0,10 0,08 006 005 005 004 003 002 000 0,00
63,5 0,10 0,08 006 005 005 004 003 002 0,00 0,00
64,5 0,10 0,08 005 006 005 004 003 003 000 0,00
65,5 0,10 0,08 005 006 005 004 003 003 002 0,00
66,5 0,10 0,08 006 005 005 004 003 003 0,02 0,00
67,5 0,10 0,08 006 005 005 004 003 003 002 0,00
68,5 0,10 0,07 007 006 005 004 003 003 002 0,00
69,5 0,10 0,07 007 006 004 005 003 003 0,03 0,02
70,5 0,10 0,07 007 006 004 005 003 003 003 0,02
71,5 0,0 0,07 007 005 005 004 004 003 002 0,02
72,5 0,10 0,07 007 005 005 004 004 003 003 0,02
734 0,10 0,07 007 005 005 004 004 003 003 0,02
74,4 0,0 0,07 007 005 005 004 004 003 003 0,02
75,5 0,10 0,07 006 006 004 005 004 003 003 0,02
76,4 0,10 0,07 007 005 005 004 004 003 003 0,02
77,5 0,0 0,07 007 005 005 004 004 003 003 0,02
78,4 0,10 0,07 006 006 004 005 003 004 003 0,02
79,5 0,10 0,07 006 005 005 004 004 003 003 0,03
80,5 0,0 0,07 007 005 005 004 004 003 003 0,02
81,4 0,10 0,07 006 005 005 004 004 003 003 003
82,4 0,10 0,07 006 005 005 004 004 003 003 0,03
83,4 0,0 0,07 007 005 004 005 003 004 003 0,02
84,4 0,10 0,07 006 005 004 005 004 003 003 003
85,5 0,10 0,07 005 006 004 004 004 003 003 0,03
86,5 0,10 0,07 006 005 004 005 003 004 003 003
87,3 0,10 0,07 005 005 005 004 004 003 003 003
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Radius [mm] ¢ 053 ¢3 ¢4 ¢s P6 ¢7 ¢s $o P10
88,4 0,10 0,07 006 005 004 004 004 003 003 0,03
89,4 010 007 005 005 005 004 004 003 003 003
90,4 010 0,07 006 005 004 004 004 003 003 003
91,4 0,10 0,07 005 0,05 004 004 004 003 004 0,03
92,3 010 007 005 005 005 004 004 003 003 003
93,2 010 007 005 005 004 004 004 003 003 003
119,7 0,10 0,06 005 004 004 004 003 004 003 0,03
45,5 020 0,15 0,09 006 000 000 000 000 000 0,00
46,5 020 0,15 0,10 0,06 000 000 000 0,00 0,00 0,00
47,5 020 0,14 0,10 0,07 003 000 000 000 0,00 0,00
48,5 020 0,15 0,09 0,07 004 000 000 000 000 0,00
49,5 020 014 0,10 0,07 004 000 000 0,00 0,00 0,00
50,5 020 0,15 0,09 0,07 004 000 000 000 000 0,00
51,5 020 014 0410 0,07 005 000 000 000 000 0,00
52,5 020 014 0,09 0,07 005 003 000 000 000 0,00
53,5 020 014 0,0 007 005 003 000 000 000 0,00
54,5 020 013 0,0 0,08 005 004 000 000 000 0,00
55,5 020 013 0,10 0,08 005 004 000 000 0,00 0,00
56,5 020 013 0,0 0,08 005 004 000 000 000 0,00
57,5 020 0,13 0,0 0,07 006 004 003 000 000 0,00
58,5 020 013 0,10 0,07 006 004 003 000 0,00 0,00
59,5 020 0,13 0,09 008 006 004 003 000 000 0,00
60,4 020 0,14 008 008 006 004 003 000 000 0,00
61,5 020 013 0,09 0,08 006 004 004 0,02 000 0,00
62,5 020 0,12 0,0 0,08 006 005 004 002 000 0,00
63,5 020 0,13 0,09 007 006 005 004 003 000 0,00
64,4 020 014 008 008 006 005 003 003 000 0,00
65,5 020 0,12 0,0 0,07 006 005 004 003 002 0,00
66,4 020 0,12 0,0 0,07 006 005 004 003 002 0,00
67,4 020 013 0,08 0,08 006 005 004 003 002 0,00
68,4 020 0,12 0,09 007 006 005 004 004 0,02 0,00
69,4 020 0,12 0,08 0,08 006 005 004 004 003 0,02
70,5 020 012 008 0,08 006 005 004 004 003 0,02
71,5 020 0,12 0,08 0,07 006 006 004 004 003 0,02
72,5 020 0,12 008 0,07 006 005 005 003 003 003
73,4 020 0,11 009 008 006 005 005 003 003 0,03
74,4 020 0,11 0,09 0,07 006 006 004 004 003 003
75,4 020 0,13 0,08 0,07 006 005 004 004 003 003
76,5 020 0,12 0,09 0,07 006 005 004 004 003 0,03
77 4 020 0,11 0,09 008 006 005 004 004 003 0,03
78,4 020 0,11 009 0,07 006 005 005 004 003 003
79,4 0,20 0,11 008 0,07 006 005 005 004 003 0,03
80,2 020 0,11 0,09 0,07 006 005 005 004 003 0,03
81,4 020 0,11 008 0,07 006 005 005 004 003 003
82,3 020 0,11 007 008 006 005 005 004 003 0,03
83,2 020 0,11 0,09 0,07 006 005 004 004 004 0,03
84,2 020 0,11 007 007 006 005 005 004 003 003
112,9 020 010 007 006 005 005 004 004 003 0,04
38,5 030 021 009 000 000 000 000 000 000 0,00
39,5 030 020 0,10 0,00 000 000 000 000 0,00 0,00
40,5 030 021 0410 000 000 000 000 000 000 0,00
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Radius [mm] ¢ $2 ¢3 o ¢s b6 ¢7 ¢8 $o P10
41,5 030 020 0,11 000 000 000 000 0,00 000 0,00
42,5 030 020 0,11 002 000 000 000 000 0,00 0,00
43,5 030 020 0,11 003 000 000 000 000 0,00 0,00
445 030 019 0,12 006 000 000 000 0,00 000 0,00
45,5 030 019 0,12 007 000 000 000 000 0,00 0,00
46,5 030 021 0,11 0,07 000 000 000 000 0,00 0,00
475 030 019 0,11 008 003 000 000 0,00 000 0,00
48,5 030 019 0,12 008 004 000 000 000 0,00 0,00
49,5 030 020 0,11 008 004 000 000 000 0,00 0,00
50,5 030 018 0,11 008 005 0,00 000 0,00 000 0,00
51,5 030 019 0,11 008 005 000 000 000 0,00 0,00
52,5 030 018 0,11 0,08 006 003 000 000 0,00 0,00
53,5 030 019 0,11 008 006 003 000 0,00 000 0,00
54,5 030 017 0,12 008 006 004 000 000 0,00 0,00
55,5 030 017 0,12 008 006 004 000 000 0,00 0,00
56,4 030 017 0,12 0,08 006 005 000 0,00 000 0,00
57,5 030 017 0,11 0,09 006 005 003 000 0,00 0,00
58,5 030 017 0,11 008 007 005 003 000 0,00 0,00
59,5 030 016 0,12 008 007 005 003 0,00 000 0,00
60,4 030 017 0,11 0,09 006 005 003 000 0,00 0,00
61,4 030 016 0,12 008 007 005 004 002 0,00 0,00
62,4 030 016 0,10 0,09 007 005 004 0,03 000 0,00
63,5 030 016 0,11 0,09 006 006 004 003 0,00 0,00
64,4 030 018 0,10 0,08 007 005 004 003 0,00 0,00
65,5 030 016 0,10 008 007 005 005 0,03 002 0,00
66,5 030 016 010 0,09 006 006 004 003 0,03 0,00
67,5 030 016 0,11 008 007 005 005 003 0,03 0,00
68,4 030 016 0,11 008 007 005 005 0,03 003 0,00
69,5 030 015 0,10 008 007 006 004 004 0,03 0,02
70,3 030 014 0,11 0,09 007 005 005 004 0,03 0,02
71,4 030 014 0,11 008 007 006 005 0,04 003 0,02
72,5 030 014 0,11 008 007 006 005 004 003 0,02
73,4 030 014 0,10 0,09 007 005 005 004 0,03 0,03
74,4 030 014 0,10 0,08 007 006 005 0,04 003 0,03
75,5 030 014 009 009 007 005 005 004 003 0,03
76,3 030 015 009 008 007 006 004 004 0,04 0,03
77 4 030 014 0,10 0,08 007 006 005 0,04 003 0,03
78,3 030 014 009 008 007 006 005 004 003 0,03
79,3 030 013 0,10 0,08 007 006 005 004 0,04 0,03
80,3 030 014 0,10 008 007 005 005 0,04 004 0,03
80,3 030 014 010 008 007 005 005 004 0,04 0,03
81,0 030 013 0,10 0,08 007 005 005 005 0,03 0,03
81,0 030 013 0,10 0,08 007 005 005 0,05 003 0,03
35,5 040 027 001 000 000 000 000 000 0,00 0,00
36,5 040 026 001 000 000 000 000 0,00 000 0,00
37,5 040 027 002 000 000 000 000 000 0,00 0,00
38,5 040 026 0,10 0,00 000 000 000 000 0,00 0,00
39,5 040 026 0,11 000 000 0,00 000 0,00 000 0,00
40,5 040 025 0,12 000 000 000 000 000 0,00 0,00
41,5 040 024 0,12 0,00 000 000 000 000 0,00 0,00
42,5 040 024 0,12 002 000 000 000 0,00 000 0,00
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Radius [mm] ¢ () ¢3 ¢4 ¢5 o ¢7 ¢s $o P10
43,5 040 024 0,12 003 000 000 000 000 0,00 0,00
445 040 023 0413 0,07 000 000 000 000 000 0,00
45,5 040 023 0412 0,08 000 000 000 000 000 0,00
46,5 040 025 0,12 0,07 000 000 000 0,00 0,00 0,00
47,5 040 023 0412 008 004 000 000 000 0,00 0,00
48,5 040 023 013 0,08 004 000 000 000 0,00 0,00
49,5 040 024 0,12 008 005 000 000 000 0,00 0,00
50,4 040 023 0412 009 005 000 000 000 0,00 0,00
51,4 040 022 0412 0,09 005 000 000 000 000 0,00
52,4 040 021 0,12 0,09 006 003 000 000 000 0,00
53,5 040 022 0412 0,09 006 004 000 000 0,00 0,00
54,5 040 020 0413 0,09 006 004 000 000 000 0,00
55,5 040 020 0,13 0,09 006 004 000 000 000 0,00
56,5 040 020 0,13 0,09 006 005 000 000 000 0,00
57,5 040 020 0412 0,09 007 005 003 000 000 0,00
58,4 040 019 0,13 0,09 007 005 003 000 0,00 0,00
59,5 040 019 0412 0,09 007 005 003 000 000 0,00
60,4 040 020 0412 0,09 007 005 004 000 0,00 0,00
61,5 040 019 0,12 0,09 007 005 004 0,02 000 0,00
62,4 040 021 0411 0,09 007 005 004 003 000 0,00
63,4 040 019 0411 0,09 007 006 004 003 000 0,00
64,4 040 020 0,12 0,09 007 005 004 0,03 0,00 0,00
65,5 040 0,18 0,11 0,09 007 006 004 003 002 0,00
66,4 040 0,18 0412 0,09 007 006 004 004 0,02 0,00
67,4 040 018 0,12 0,09 007 006 004 004 002 0,00
68,4 040 020 0,11 0,09 007 006 004 004 0,02 0,00
69,5 040 0,17 0411 0,09 007 006 005 004 003 0,02
70,4 040 0,16 0,12 0,09 007 006 005 004 003 0,02
71,3 040 0,16 0412 009 007 006 005 004 003 0,02
72,4 040 0,16 011 0,09 007 006 005 004 003 0,03
73,4 040 016 0,11 0,09 007 006 005 004 003 0,03
74,2 040 0,18 0411 0,09 007 006 005 004 003 0,03
75,4 040 019 0410 0,09 007 006 005 004 003 003
76,3 040 0,17 0,10 0,09 007 006 005 004 003 0,03
77,3 040 0,16 0410 0,09 007 006 005 004 004 0,03
78,3 040 015 0,11 0,09 007 006 005 004 004 0,03
79,3 040 015 0,10 0,09 007 006 005 004 004 0,03
33,5 050 031 000 000 000 000 000 000 000 000
34,5 050 030 000 000 000 000 000 000 000 0,00
35,5 050 031 001 000 000 000 000 000 000 0,00
36,5 050 030 001 000 000 000 000 000 000 0,00
37,5 050 029 009 000 000 000 000 000 000 0,00
38,5 050 030 0,10 0,00 000 000 000 000 000 0,00
39,5 050 031 011 000 000 000 000 000 000 0,00
40,5 050 029 0,12 000 000 000 000 000 0,00 0,00
41,5 050 027 013 0,00 000 000 000 000 000 0,00
42,5 050 027 013 0,02 000 000 000 000 000 0,00
43,5 050 027 0,13 0,03 000 000 000 000 0,00 0,00
445 050 026 0,13 0,07 000 000 000 000 000 0,00
45,5 050 026 0,13 0,08 000 000 000 000 000 0,00
46,5 050 027 0,13 0,08 000 000 000 000 0,00 0,00
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Radius [mm] ¢ $2 ¢3 o ¢s b6 ¢7 ¢8 $o P10
47,5 050 025 0,14 008 004 000 000 0,00 000 0,00
48,5 050 026 013 009 004 000 000 000 0,00 0,00
49 4 050 026 013 0,09 005 000 000 000 0,00 0,00
50,4 050 026 0,13 0,09 005 000 000 0,00 000 0,00
51,5 050 024 014 009 006 000 000 000 0,00 0,00
52,5 050 023 014 009 006 003 000 000 0,00 0,00
53,4 050 024 013 010 006 004 000 0,00 000 0,00
54,4 050 022 014 009 007 004 000 000 0,00 0,00
55,4 050 022 0,14 009 007 004 000 000 0,00 0,00
56,4 050 022 014 009 007 005 000 0,00 000 0,00
57,4 050 022 013 010 007 005 003 000 0,00 0,00
58,4 050 021 0,14 009 007 005 003 000 0,00 0,00
59,5 050 021 013 0410 007 005 004 0,00 000 0,00
60,5 050 023 013 009 007 005 004 000 0,00 0,00
61,4 050 021 0,12 010 007 006 004 002 0,00 0,00
62,5 050 020 0,13 009 008 005 004 003 000 0,00
63,4 050 020 0,13 010 007 006 004 003 0,00 0,00
64,4 050 022 013 009 007 006 004 003 0,00 0,00
65,4 050 019 0,13 010 007 006 004 0,04 002 0,00
66,4 050 020 0,12 0,09 008 006 004 004 0,02 0,00
67,4 050 021 0,12 0,09 007 006 005 003 0,03 0,00
68,3 050 021 012 009 007 006 005 003 003 0,00
69,5 050 018 0,12 010 007 006 005 004 0,03 0,02
70,5 050 018 0,12 0,10 007 006 005 004 0,03 0,02
71,2 050 018 0,11 010 007 006 005 0,04 003 0,02
72,3 050 017 0,13 0,09 008 006 005 004 0,03 0,03
73,5 050 017 0,12 010 007 006 005 004 0,04 0,02
74,3 050 017 0,11 010 007 007 005 0,04 003 0,03
75,3 050 019 0,11 0,09 008 006 005 004 003 0,03
76,2 050 018 0,11 0,09 008 006 005 004 0,04 0,03
77,2 050 017 0,12 0,09 007 006 005 005 003 0,03
78,3 050 017 0,11 0,09 007 006 005 005 004 0,03
38,5 060 033 0,11 0,00 000 000 000 0,00 000 0,00
39,5 060 033 012 000 000 000 000 000 0,00 0,00
40,5 060 032 012 000 000 000 000 000 0,00 0,00
41,5 060 030 0,13 000 000 000 000 0,00 000 0,00
42,5 060 029 014 002 000 000 000 000 0,00 0,00
43,5 060 030 014 003 000 000 000 000 0,00 0,00
445 060 028 0,14 007 000 000 000 0,00 000 0,00
45,5 060 028 014 008 000 000 000 000 0,00 0,00
46,5 060 030 0,14 008 000 000 000 000 0,00 0,00
475 060 028 0,14 009 004 000 000 0,00 000 0,00
48,5 060 029 014 009 004 000 000 000 0,00 0,00
49,5 060 029 0,14 009 005 000 000 000 0,00 0,00
50,5 060 030 0,13 009 005 000 000 0,00 000 0,00
51,4 060 026 015 009 006 000 000 000 0,00 0,00
52,4 060 025 014 010 006 003 000 000 0,00 0,00
53,4 060 026 0,14 010 006 004 000 0,00 000 0,00
54,5 060 024 014 010 007 004 000 000 0,00 0,00
55,5 060 024 014 010 007 004 000 000 0,00 0,00
56,5 060 024 014 010 007 005 000 0,00 000 0,00
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Radius [mm] ¢ () ¢3 ¢4 ¢5 o ¢7 ¢s $o P10
57,5 060 024 0,14 010 007 005 003 000 0,00 0,00
58,4 060 023 014 010 007 005 003 000 0,00 0,00
59,4 060 022 014 010 007 006 003 000 000 0,00
60,5 060 027 0,13 0,10 007 005 004 0,00 0,00 0,00
61,5 060 023 013 010 007 006 004 002 000 0,00
62,3 060 024 013 010 007 006 004 003 000 0,00
63,4 060 022 013 0,10 007 006 004 003 000 0,00
64,4 060 023 013 010 007 006 004 003 000 0,00
65,4 060 021 013 0,10 0,07 006 005 003 002 0,00
66,4 060 021 013 0,10 008 006 004 004 002 0,00
67,3 060 021 013 010 0,08 006 005 003 003 0,00
68,5 060 019 013 0,10 0,08 006 005 004 0,03 0,00
69,5 060 019 0,13 0,10 008 006 005 004 003 0,02
70,5 060 019 0,13 010 0,08 006 005 004 003 0,02
71,3 060 019 0412 010 0,08 006 005 004 003 0,02
72,4 060 019 0,12 0,10 007 007 005 004 003 0,03
73,3 060 018 0,13 0,09 008 006 005 004 004 0,03
74,2 060 022 0411 010 007 006 005 004 004 0,02
75,2 060 020 0,12 0,09 008 006 005 004 004 0,03
76,2 060 019 0,12 0,09 008 006 005 004 004 0,03
77,3 060 018 0,12 0,09 008 006 005 005 003 003
77,6 060 019 0,12 0,09 008 006 005 005 003 0,03
30,5 070 0,04 000 000 000 000 000 000 000 0,00
31,5 070 037 000 000 000 000 000 000 0,00 0,00
32,5 070 038 000 000 000 000 000 000 0,00 0,00
33,5 070 038 000 000 000 000 000 000 000 0,00
34,5 070 037 000 000 000 000 000 000 000 0,00
35,5 070 037 001 000 000 000 000 000 000 0,00
36,5 070 037 001 000 000 000 000 000 000 0,00
37,5 070 037 002 000 000 000 000 000 000 0,00
38,5 070 035 0,11 000 000 000 000 000 000 0,00
39,5 070 036 0,12 0,00 000 000 000 000 0,00 0,00
40,5 070 034 013 000 000 000 000 000 000 0,00
41,5 070 032 014 000 000 000 000 000 000 0,00
42,5 070 032 014 0,02 000 000 000 000 000 0,00
43,5 070 032 014 003 000 000 000 000 0,00 0,00
445 070 030 0,15 0,0/ 000 000 000 000 000 0,00
45,5 070 030 0415 0,08 000 000 000 000 0,00 0,00
46,5 070 032 0,14 008 000 000 000 000 0,00 0,00
47,5 070 030 0,15 0,09 004 000 000 000 000 0,00
48,5 070 030 0415 0,09 004 000 000 000 000 0,00
49,5 070 028 0,15 0,09 005 000 000 000 0,00 0,00
50,4 070 030 0,14 009 005 000 000 000 000 0,00
51,4 070 028 0415 0,10 006 0,00 000 000 000 0,00
52,4 070 027 0,14 010 006 003 000 0,00 0,00 0,00
53,5 070 028 0,14 010 006 004 000 000 0,00 0,00
54,5 070 026 014 010 007 004 000 000 0,00 0,00
55,4 070 026 0,14 010 007 004 000 0,00 0,00 0,00
56,4 070 025 0415 0,10 0,07 005 000 000 0,00 0,00
57,5 070 025 0415 0,10 0,07 005 003 000 000 0,00
58,5 070 025 0,14 010 007 005 003 000 0,00 0,00
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Radius [mm] ¢ $2 ¢3 o ¢s b6 ¢7 ¢8 $o P10
59,4 070 024 014 010 007 006 003 0,00 000 0,00
60,4 070 025 014 010 007 006 004 000 0,00 0,00
61,4 070 023 014 0411 007 006 004 002 0,00 0,00
62,4 070 022 014 010 008 006 004 0,03 000 0,00
63,4 070 023 014 010 008 006 004 003 0,00 0,00
64,4 070 025 013 010 008 006 004 003 0,00 0,00
65,4 070 022 013 010 008 006 005 0,03 002 0,00
66,3 070 022 013 010 008 006 005 003 0,03 0,00
67,4 070 023 013 010 008 006 005 003 0,03 0,00
68,4 070 026 0,13 0,09 008 006 005 003 003 0,00
69,4 070 020 0,13 010 008 006 005 004 0,03 0,02
70,5 070 020 0,13 010 008 006 005 004 0,03 0,02
71,3 070 020 0,12 010 008 006 005 0,04 003 0,03
72,5 070 020 0,12 010 008 006 005 004 004 0,02
73,4 070 019 0,13 010 008 006 005 005 0,03 0,03
74,4 070 019 0,12 010 008 006 006 0,04 003 0,03
75,4 070 022 013 009 008 006 005 004 004 0,03
76,4 070 021 0,12 0,09 008 006 005 005 0,03 0,03
77,1 070 019 0,12 0,09 008 006 006 0,04 004 0,03
29,5 080 003 000 000 000 000 000 000 0,00 0,00
30,5 080 004 000 000 000 000 000 0,00 000 0,00
31,5 080 040 000 000 000 000 000 0,00 000 0,00
32,5 080 040 000 000 000 000 000 000 0,00 0,00
33,5 080 041 000 000 000 000 000 0,00 000 0,00
34,5 080 039 000 000 000 000 000 0,00 000 0,00
35,5 08 040 001 000 000 000 000 000 0,00 0,00
36,5 080 039 001 000 000 000 000 0,00 000 0,00
375 080 039 002 000 000 000 000 0,00 000 0,00
38,5 08 038 0,11 000 000 000 000 000 0,00 0,00
39,5 080 040 0,12 000 000 000 000 0,00 000 0,00
40,5 080 036 013 000 000 000 000 000 0,00 0,00
41,5 08 034 014 000 000 000 000 000 0,00 0,00
42,5 080 034 0,14 002 000 000 000 0,00 000 0,00
43,5 08 035 014 003 000 000 000 000 0,00 0,00
445 08 032 015 008 000 000 000 000 0,00 0,00
45,5 080 032 015 008 000 000 000 0,00 000 0,00
46,5 080 034 015 008 000 000 000 000 0,00 0,00
47,5 08 032 015 009 004 000 000 000 0,00 0,00
48,5 080 033 015 0,09 004 000 000 0,00 000 0,00
494 080 032 015 009 005 000 000 000 0,00 0,00
50,5 08 034 015 009 005 000 000 000 0,00 0,00
51,5 080 030 0,15 010 006 000 000 0,00 000 0,00
52,5 080 028 015 010 006 004 000 000 0,00 0,00
53,5 08 030 015 010 006 004 000 000 0,00 0,00
54,4 080 027 015 010 007 004 000 0,00 000 0,00
55,4 080 027 014 0411 007 004 000 000 0,00 0,00
56,4 08 027 014 0411 007 005 000 000 0,00 0,00
574 08 026 015 010 007 005 003 0,00 000 0,00
58,5 080 026 014 010 008 005 003 000 0,00 0,00
59,4 08 025 014 010 008 005 004 000 0,00 0,00
60,4 080 027 014 010 008 005 004 0,00 000 0,00
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Radius [mm] ¢ 053 ¢3 ¢4 ¢s P6 ¢7 ¢s $o P10
61,4 08 025 0,14 010 008 006 004 0,02 000 0,00
62,4 080 028 0,13 010 0,08 006 004 003 000 0,00
63,3 080 024 014 010 0,08 006 004 003 000 0,00
64,3 08 025 0,14 010 008 006 004 0,03 000 0,00
65,4 08 023 013 0,11 0,08 006 005 003 0,02 0,00
66,3 08 023 013 0,11 0,08 006 005 003 003 0,00
67,5 08 025 013 0,10 008 006 005 003 003 0,00
68,5 080 021 014 010 0,08 006 005 004 003 0,00
69,3 080 026 013 010 0,08 006 005 004 003 0,02
70,4 080 021 0,13 0,10 008 006 005 004 003 0,02
71,2 08 020 0,13 0,11 0,08 006 005 004 003 0,03
72,4 08 020 013 0,10 0,08 0,07 005 004 003 003
73,3 080 020 0,13 0,10 008 006 006 004 003 0,03
74,3 08 019 0413 010 0,08 0,07 005 004 004 0,03
75,3 080 023 012 010 0,08 006 005 004 004 003
76,4 08 021 0,13 0,10 007 007 005 005 003 0,03
76,8 08 019 0412 010 0,08 006 006 004 004 0,03
28,5 09 0,03 000 000 000 000 000 000 000 0,00
29,5 09 003 000 000 000 000 000 000 0,00 0,00
30,5 09 004 000 000 000 000 000 000 000 0,00
31,5 09 042 000 000 000 000 000 000 0,00 0,00
32,5 09 043 000 000 000 000 000 000 0,00 0,00
33,5 09 043 000 000 000 000 000 000 000 0,00
34,5 09 041 000 000 000 000 000 000 000 0,00
35,5 09 042 001 000 000 000 000 000 000 0,00
36,5 09 041 001 000 000 000 000 000 000 0,00
37,5 09 042 002 000 000 000 000 000 000 0,00
38,5 09 040 0,12 000 000 000 000 000 000 0,00
39,5 090 042 0412 0,00 000 000 000 000 000 0,00
40,5 09 039 0,13 000 000 000 000 000 0,00 0,00
41,5 090 042 0,13 000 000 000 000 000 000 0,00
42,5 09 03 015 0,02 000 000 000 000 000 0,00
43,5 090 037 015 0,03 000 000 000 000 0,00 0,00
445 09 039 014 007 000 000 000 000 000 0,00
454 09 038 014 008 000 000 000 000 000 0,00
46,5 090 037 015 0,08 000 000 000 000 0,00 0,00
47,5 09 033 015 0,09 004 000 000 000 000 0,00
48,5 09 034 015 0,09 004 000 000 000 000 0,00
495 090 031 015 0,10 005 0,00 000 0,00 0,00 0,00
50,4 09 033 015 010 005 0,00 000 000 0,00 0,00
51,4 090 031 015 0,10 006 0,00 000 000 0,00 0,00
52,5 09 030 015 0,10 006 004 000 000 0,00 0,00
53,4 09 030 015 010 0,07 004 000 000 0,00 0,00
54,5 09 028 0415 0,11 007 004 000 000 0,00 0,00
55,4 09 028 0,15 0,10 007 005 000 000 0,00 0,00
56,5 09 028 0415 010 007 005 000 000 000 0,00
57,5 09 028 014 011 007 005 003 000 000 0,00
58,4 090 026 0,15 0,11 007 005 003 000 0,00 0,00
594 09 025 015 0,11 0,07 006 003 000 000 0,00
60,4 090 027 015 0,10 0,08 005 004 000 000 0,00
61,4 09 026 0,14 0,11 007 006 004 0,03 0,00 0,00
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Radius [mm] ¢ ¢ ¢3 o ¢s P6 ¢7 ¢s $9 P10
62,4 09 031 013 0411 007 006 004 0,03 000 0,00
63,4 09 025 014 010 008 006 004 003 0,00 0,00
64,4 09 028 0,14 010 008 006 004 003 0,00 0,00
65,3 09 023 014 011 008 006 005 0,03 002 0,00
66,4 09 024 014 010 008 006 005 003 0,03 0,00
67,4 09 025 014 010 008 006 005 004 0,02 0,00
68,4 09 022 013 011 008 006 005 0,04 003 0,00
69,5 09 022 013 011 008 006 005 004 003 0,02
70,3 090 021 0,14 010 008 007 005 004 0,03 0,02
71,5 09 021 014 010 008 007 005 0,04 003 0,03
72,4 09 021 013 010 008 007 005 004 003 0,03
73,4 09 020 0,14 0410 008 007 005 004 0,04 0,03
74,4 090 020 0,13 0410 008 007 005 0,04 004 0,03
75,4 09 025 012 010 008 006 005 005 0,03 0,03
76,5 09 023 0,12 010 008 006 006 004 0,04 0,03
27,5 1,00 000 0,00 000 0,00 000 000 000 0,00 0,00
28,5 1,00 003 000 000 000 000 000 000 000 0,00
29,5 1,00 004 000 000 0,00 000 000 000 0,00 0,00
30,5 1,00 0,04 000 000 000 000 000 000 000 0,00
31,5 1,00 044 0,00 000 000 000 000 000 000 0,00
32,5 1,00 045 0,00 000 0,00 000 0,00 000 0,00 0,00
33,5 1,00 045 0,00 000 0,00 000 000 000 0,00 0,00
34,5 1,00 043 0,00 000 000 000 000 000 000 0,00
35,5 1,00 045 001 000 0,00 000 0,00 000 0,00 0,00
36,5 1,00 044 001 000 000 000 000 000 000 0,00
37,5 1,00 045 0,02 000 000 000 000 000 000 0,00
38,5 1,00 042 012 000 0,00 000 0,00 000 0,00 0,00
39,5 1,00 042 013 000 000 000 000 0,00 000 0,00
40,5 1,00 040 014 000 000 000 000 000 000 0,00
41,5 1,00 038 014 000 0,00 000 0,00 000 0,00 0,00
425 1,00 041 014 002 000 000 000 0,00 000 0,00
43,4 1,00 037 0415 003 000 000 000 000 000 0,00
445 1,00 039 015 007 0,00 000 0,00 000 0,00 0,00
45,5 1,00 034 016 008 000 000 000 000 000 0,00
46,5 1,00 038 015 008 000 000 000 000 000 0,00
47 4 1,00 034 015 009 0,04 000 0,00 000 0,00 0,00
48,4 1,00 034 016 009 004 000 000 000 000 0,00
494 1,00 035 0415 0,10 005 000 0,00 0,00 000 0,00
50,5 1,00 036 015 0,10 0,05 0,00 0,00 000 0,00 0,00
51,4 1,00 032 015 0,10 006 000 000 0,00 000 0,00
52,5 1,00 031 0415 0,10 006 004 000 000 000 0,00
53,4 1,00 032 015 0,10 0,07 0,04 0,00 000 0,00 0,00
54,4 1,00 029 0415 0,11 007 004 000 0,00 000 0,00
55,5 1,00 029 0415 0,11 0,07 005 0,00 0,00 000 0,00
56,4 1,00 029 0,15 0,11 0,07 005 0,00 000 0,00 0,00
57,5 1,00 o028 0415 0,11 007 005 003 0,00 000 0,00
58,4 1,00 027 0415 0,11 0,07 006 003 000 000 0,00
59,4 1,00 026 015 0,11 0,08 005 0,04 000 0,00 0,00
60,4 1,00 029 0415 0,10 008 005 004 000 000 0,00
61,3 1,00 026 015 0,11 008 006 004 0,02 000 0,00
62,5 1,00 02 015 0,10 0,08 006 0,04 003 0,00 0,00



C.1. CALIBRATED MIXING PARAMETERS

Radius [mm] ¢ ¢ P3 P4 ¢s5 b6 P7 @5 ¢ P10

63,3 1,00 025 015 0,10 0,08 006 004 003 0,00 0,00
64,4 1,00 027 015 0,10 008 006 004 0,03 000 0,00
65,5 1,00 024 015 010 008 006 005 003 002 0,00
66,4 1,00 025 014 010 008 006 005 003 003 0,00
67,4 1,00 026 013 0411 008 006 005 0,04 002 0,00
68,4 1,00 022 0314 011 008 006 005 0,04 003 0,00
69,2 1,00 027 013 010 008 006 005 004 003 0,02
70,4 1,00 022 013 0411 008 007 005 0,04 003 0,02
71,3 1,00 021 0314 010 009 006 005 004 003 0,03
72,5 1,00 021 014 010 008 007 005 004 004 0,02
73,5 1,00 021 013 0,10 008 0,07 005 005 003 0,03
74,5 1,00 020 0314 010 008 0,07 005 005 003 0,03
75,2 1,00 023 012 0,10 008 007 005 004 004 0,03
76,2 1,00 022 013 010 008 006 006 0,04 004 0,03

Table C.1.1: Database of the mixing parameters ¢; obtained by calibration with the exponential
growth model. This database is used in the models.

C.1.2 Gaussian calibration

Radius [mm] ¢ ¢ P3 P4 ¢s5 b6  P7 @8 ¢ P10

84,1 010 0,09 010 009 0,08 009 008 0,08 007 006
82,5 0,10 0,10 0,09 009 008 009 007 008 006 0,06
81,5 010 0,10 008 010 0,08 008 008 007 007 0,06
80,1 010 010 010 009 0,08 008 008 0,07 006 006
79,2 010 0,10 008 010 0,08 008 0,08 007 006 0,05
78,0 010 0,09 0410 008 0,09 008 008 007 006 0,06
76,7 0,10 0,10 009 008 0,09 008 007 006 0,06 0,05
75,6 0,10 0,10 008 009 008 008 007 007 006 0,05
74,8 010 0,09 0410 008 0,09 008 007 006 006 0,05
74,1 0,10 0,10 009 008 0,08 008 007 006 006 004
73,0 0,10 0,10 008 009 008 007 007 006 006 0,04
71,7 010 0,10 0,09 008 0,08 008 006 006 005 0,04
70,4 010 0,10 008 008 0,08 008 006 006 005 004
69,2 010 0,10 0,09 008 0,08 007 006 006 004 0,04
67,8 010 0,09 0410 008 008 007 007 005 005 0,00
66,7 0,10 0,10 008 009 0,07 007 006 005 0,04 0,00
65,4 010 0,09 0410 008 0,07 007 006 005 004 0,00
64,0 010 0,10 0,08 008 007 006 006 004 0,00 0,00
62,7 0,10 0,10 009 007 0,08 006 005 004 0,00 0,00
61,4 010 0,09 0410 008 0,07 006 005 004 000 0,00
60,0 010 0,10 0,07 008 007 006 005 000 000 0,00
58,7 0,10 0,10 008 008 0,07 005 004 000 0,00 0,00
57,3 010 0,09 009 009 006 006 004 000 000 0,00
55,9 010 0,09 0410 007 007 005 000 000 0,00 0,00
54,5 0,10 0,10 007 007 0,06 005 000 000 0,00 0,00
53,0 010 0,10 007 007 006 004 000 000 0,00 0,00
51,6 010 0,09 009 007 005 000 000 000 0,00 0,00
50,1 0,10 0,09 009 007 005 000 000 000 0,00 0,00
48,6 0,10 0,09 009 006 005 000 000 000 0,00 0,00
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Radius [mm] ¢ ¢ ¢3 o ¢s P6 ¢7 ¢s $9 P10
472 0,10 009 008 007 000 000 000 0,00 000 0,00
45,6 0,10 0,09 008 006 000 000 000 0,00 000 0,00
440 0,10 0,09 008 005 000 000 000 000 0,00 0,00
424 0,10 009 007 005 000 000 000 0,00 000 0,00
40,8 0,10 0,09 007 000 000 000 000 000 0,00 0,00
39,0 0,10 0,09 007 000 000 000 000 000 0,00 0,00
373 0,10 0,09 006 000 000 000 000 0,00 000 0,00
35,5 0,10 0,09 004 000 000 000 000 000 0,00 0,00
33,6 0,10 0,08 000 000 000 000 000 000 0,00 0,00
31,6 0,0 008 000 000 000 000 000 0,00 000 0,00
29,5 0,10 0,08 000 000 000 000 000 000 0,00 0,00
27,3 0,10 0,02 000 000 000 000 000 000 0,00 0,00
75,2 020 020 o018 018 0,17 0417 0,14 0,13 0,11 0,09
74,1 020 020 o021 018 0,17 0415 0,14 0,12 0,11 0,08
73,0 020 019 020 018 0,17 016 0,14 0412 0,10 0,09
72,0 020 020 019 017 0,17 0415 0,14 0,11 0,10 0,08
70,7 020 020 020 018 0,17 0415 0,13 0,11 0,09 0,07
69,8 020 019 o020 017 0,17 0415 0,13 0,11 0,09 0,07
68,6 020 020 o018 0417 0,16 0415 0,12 0,0 0,09 0,00
67,5 020 020 019 017 0,16 014 0,12 0,0 0,08 0,00
66,5 020 021 018 017 0,15 0,14 0,11 0,09 0,07 0,00
65,7 020 020 017 018 0,15 0,14 0,11 0,09 0,07 0,00
65,2 020 022 016 017 015 0,13 0,11 0,08 0,06 0,00
64,0 020 019 019 017 0,16 013 0,11 0,08 0,00 0,00
62,9 020 019 019 018 0,15 0,13 0,10 0,08 0,00 0,00
61,8 020 020 017 0416 015 0412 0,10 0,07 0,00 0,00
61,5 020 020 019 016 0,14 013 0,09 0,07 0,00 0,00
60,6 020 020 0,17 0416 0,14 0,12 0,09 0,00 0,00 0,00
59,4 020 020 017 0416 0,13 0412 0,08 0,00 0,00 0,00
58,2 020 019 019 016 0,13 0,11 0,08 0,00 0,00 0,00
57,0 020 019 019 015 0,13 0,11 0,07 0,00 0,00 0,00
55,7 020 020 019 0415 0,12 0,10 0,00 0,00 0,00 0,00
545 020 020 0,17 0415 0,12 0,09 0,00 0,00 000 0,00
53,4 020 020 0,16 0415 0,11 0,08 0,00 0,00 0,00 0,00
52,1 020 021 018 014 0,10 000 0,00 000 0,00 0,00
50,9 020 020 0,16 014 0,10 0,00 000 0,00 000 0,00
497 020 019 017 014 009 000 000 000 0,00 0,00
48,4 020 020 0,16 0412 008 000 000 000 0,00 0,00
47,1 020 021 0,14 0412 000 0,00 000 0,00 000 0,00
45,8 020 019 016 012 000 000 000 000 0,00 0,00
445 020 020 0,14 010 000 000 000 000 0,00 0,00
43,2 020 020 0,13 0410 000 0,00 000 0,00 000 0,00
41,8 020 019 015 0,09 000 000 000 000 0,00 0,00
40,5 020 019 0,14 000 000 000 000 000 0,00 0,00
39,1 020 019 0,12 000 000 0,00 000 0,00 000 0,00
37,7 020 020 0,11 000 000 000 000 000 0,00 0,00
36,3 020 019 0,10 000 000 000 000 000 0,00 0,00
34,8 020 019 000 000 000 000 000 0,00 000 0,00
33,3 020 019 000 000 000 000 000 000 0,00 0,00
31,8 020 018 000 000 000 000 000 000 0,00 0,00
30,2 020 018 000 000 000 000 000 0,00 000 0,00
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Radius [mm] ¢ 053 ¢3 ¢4 ¢s P6 ¢7 ¢s $o P10
28,5 0,20 003 000 000 000 000 000 000 000 0,00
75,2 030 030 028 029 027 025 022 019 0,16 0,13
74,4 030 032 029 028 027 024 021 018 015 0,12
73,4 030 029 030 028 027 025 021 018 0,15 0,12
72,3 030 030 029 029 026 024 020 0417 0,14 0,11
71,4 030 031 030 027 026 023 020 0,16 013 0,10
70,1 030 031 031 028 025 022 019 0,16 012 0,09
69,2 030 029 030 027 026 023 019 0416 0,12 0,09
68,1 030 029 030 028 025 022 019 0,15 0,11 0,00
67,0 030 030 028 027 025 021 0418 0,14 0,10 0,00
65,9 030 030 029 027 024 021 0,17 013 0,09 0,00
64,7 030 030 028 027 023 020 016 0,12 0,00 0,00
63,5 030 030 028 026 023 019 016 0,11 0,00 0,00
62,7 030 030 028 027 022 019 0,15 010 0,00 0,00
61,4 030 034 026 025 020 0,18 013 0,09 0,00 0,00
60,4 030 033 027 025 020 017 0,12 0,00 0,00 0,00
59,3 030 031 029 025 020 017 0,11 0,00 0,00 0,00
58,2 030 031 026 025 020 0,16 011 0,00 0,00 0,00
57,0 030 035 025 023 018 014 0,09 0,00 0,00 0,00
55,9 030 031 028 023 019 014 000 0,00 0,00 0,00
54,7 030 030 027 023 0418 0,13 000 0,00 0,00 0,00
53,6 030 031 027 022 017 0,12 000 0,00 0,00 0,00
52,4 030 033 024 021 0,15 0,11 0,00 0,00 0,00 0,00
51,3 030 030 027 021 0415 000 000 0,00 0,00 0,00
50,1 030 031 025 020 0,14 0,00 000 000 0,00 0,00
48,9 030 031 025 019 0,13 0,00 000 0,00 0,00 0,00
47,7 030 031 024 019 0,11 000 000 0,00 0,00 0,00
46,6 030 031 024 017 000 0,00 000 000 0,00 0,00
454 030 030 024 017 000 0,00 000 000 0,00 0,00
442 030 033 021 0,15 000 000 000 0,00 0,00 0,00
43,0 030 031 021 014 000 000 000 000 000 0,00
41,8 030 032 020 012 000 000 000 000 0,00 0,00
40,5 030 030 020 000 000 000 000 000 000 0,00
39,2 030 033 017 000 000 000 000 000 000 0,00
38,0 030 031 0418 0,00 000 000 000 000 000 0,00
36,7 030 030 016 000 000 000 000 000 0,00 0,00
35,4 030 032 001 000 000 000 000 000 000 0,00
34,1 030 029 000 000 000 000 000 000 000 0,00
32,7 030 028 000 000 000 000 000 000 000 0,00
31,3 030 029 0,00 000 000 000 000 000 000 0,00
299 030 027 000 000 000 000 000 000 000 0,00
28,5 030 003 000 000 000 000 000 000 000 0,00
27,0 030 0,03 0,00 000 000 000 000 000 000 0,00
75,2 040 039 041 040 038 035 031 025 021 0,16
74,1 040 040 041 040 037 035 029 024 019 0,15
73,0 040 042 039 040 036 033 027 023 0,18 0,14
72,0 040 044 039 039 035 031 027 021 017 0,13
71,0 040 049 041 038 033 031 024 020 0,15 0,12
69,8 040 048 039 037 033 030 024 019 0,14 0,11
68,9 040 040 041 038 035 031 025 019 0415 0,10
67,8 040 040 041 038 034 030 024 018 0,14 0,00
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Radius [mm] ¢ $2 ¢3 o ¢s b6 ¢7 ¢8 $o P10
66,7 040 041 038 038 033 029 023 0,17 0,12 0,00
65,7 040 041 039 037 032 028 022 0,16 0,11 0,00
64,7 040 041 039 037 031 028 021 0,15 0,00 0,00
63,5 040 049 037 034 029 025 0,18 0,13 0,00 0,00
63,5 040 045 037 035 029 024 018 0,2 0,00 0,00
61,4 040 043 038 035 029 024 0,17 0,11 0,00 0,00
60,4 040 042 039 034 029 023 0,16 0,00 0,00 0,00
59,3 040 048 037 033 027 020 014 0,00 0,00 0,00
58,2 040 043 039 033 026 021 013 0,00 0,00 0,00
57,0 040 048 036 032 024 019 0,11 0,00 0,00 0,00
56,0 040 044 036 031 025 0,18 000 0,00 0,00 0,00
54,8 040 045 038 030 023 0416 000 000 0,00 0,00
53,8 040 042 037 031 022 016 000 0,00 000 0,00
52,6 040 043 034 030 021 0,14 000 000 0,00 0,00
51,6 040 044 035 028 020 000 000 000 0,00 0,00
50,5 040 043 036 028 0,18 0,00 0,00 0,00 000 0,00
494 040 043 035 026 0,17 000 0,00 0,00 0,00 0,00
48,2 040 042 035 025 0,16 000 000 000 0,00 0,00
47,1 040 046 031 023 000 000 000 0,00 000 0,00
45,9 040 043 031 023 000 000 000 000 0,00 0,00
448 040 044 031 021 000 000 000 000 0,00 0,00
43,6 040 046 029 019 000 0,00 000 0,00 000 0,00
42,5 040 047 029 016 000 000 000 000 0,00 0,00
41,3 040 045 028 000 000 000 000 000 0,00 0,00
40,1 040 043 0,27 000 000 000 000 0,00 000 0,00
39,0 040 047 024 000 000 000 000 000 0,00 0,00
37,8 040 042 023 000 000 000 000 000 0,00 0,00
36,6 040 042 021 000 000 000 000 0,00 000 0,00
75,2 050 051 053 053 048 045 038 031 024 0,19
74,1 050 053 052 052 048 043 036 029 023 0,17
73,0 050 055 054 051 045 042 034 027 022 0,16
72,0 050 059 053 050 044 040 033 025 020 0,14
71,0 050 050 052 051 047 042 033 027 020 0,14
70,1 050 051 053 051 045 041 032 025 0,18 0,14
68,9 050 051 052 050 045 039 031 023 017 0,12
67,8 050 051 051 050 044 038 029 022 0,16 0,00
67,0 050 052 053 048 043 037 028 021 0,15 0,00
65,9 050 052 052 048 042 036 027 019 0,14 0,00
64,7 050 061 050 046 038 033 024 017 0,00 0,00
63,8 050 060 049 046 037 032 023 016 0,00 0,00
62,7 050 056 048 046 038 031 022 0,15 0,00 0,00
61,6 050 053 051 046 037 031 021 0,14 0,00 0,00
60,6 050 065 047 042 034 027 018 0,00 0,00 0,00
59,4 050 055 050 043 035 027 018 0,00 0,00 0,00
58,5 050 054 048 043 034 026 0,17 0,00 0,00 0,00
57,3 050 056 047 041 032 024 0,15 0,00 0,00 0,00
56,4 050 064 045 040 029 022 000 000 0,00 0,00
55,3 050 055 046 040 030 021 000 0,00 000 0,00
54,1 050 055 047 039 028 0,19 0,00 0,00 0,00 0,00
53,0 050 056 046 038 026 0,17 0,00 000 0,00 0,00
52,0 050 057 045 036 025 000 000 0,00 000 0,00



C.1. CALIBRATED MIXING PARAMETERS

Radius [mm] ¢ () ¢3 ¢4 ¢5 o ¢7 ¢s $o P10

50,9 050 056 045 036 023 000 000 000 0,00 0,00
49,8 050 055 043 035 022 0,00 000 000 0,00 0,00
48,7 050 060 043 032 019 0,00 000 000 0,00 0,00
47,6 050 056 043 031 017 000 000 0,00 0,00 0,00
46,5 050 059 041 029 000 000 000 000 000 0,00
454 050 062 038 027 000 000 000 000 000 0,00
443 050 062 038 024 000 000 000 000 0,00 0,00
43,2 050 060 037 023 000 000 000 000 000 0,00
42,1 050 058 036 020 000 000 000 000 000 0,00
41,0 050 062 034 000 000 000 000 000 0,00 0,00
39,8 050 055 034 000 000 000 000 000 000 0,00
38,7 050 055 032 000 000 000 000 000 000 0,00
37,5 050 058 028 000 000 000 000 000 000 0,00
36,3 050 055 026 000 000 000 000 000 000 0,00
35,2 050 055 001 000 000 000 000 000 000 0,00
34,0 050 057 000 000 000 000 000 000 000 0,00
32,8 050 060 000 000 000 000 000 000 000 0,00
31,5 050 055 000 000 000 000 000 000 000 0,00
30,3 050 051 000 000 000 000 000 000 000 0,00
29,0 050 003 000 000 000 000 000 000 000 0,00
27,8 050 003 000 000 000 000 000 000 000 0,00
75,2 060 072 064 065 058 053 043 035 027 0,20
74,8 060 065 066 065 059 055 044 035 028 0,20
73,7 060 068 065 065 057 053 042 033 025 0,19
72,7 060 072 066 063 056 050 040 031 023 0,17
71,7 060 082 062 062 053 048 037 028 022 0,15
70,7 060 062 063 065 056 051 040 030 022 0,16
69,8 060 063 066 063 055 049 038 028 021 0,14
68,6 060 063 063 062 055 048 036 027 0,19 0,00
67,8 060 065 062 062 053 046 034 025 018 0,00
66,7 060 064 063 061 052 044 033 024 0,16 0,00
65,7 060 063 064 060 052 043 031 022 0,15 0,00
64,5 060 071 064 058 047 040 028 0,19 0,00 0,00
63,5 060 070 062 057 047 038 027 0,18 0,00 0,00
62,4 060 066 061 058 046 038 025 017 0,00 0,00
61,4 060 078 059 054 043 034 022 0,14 0,00 0,00
60,4 060 070 060 055 043 033 022 0,00 0,00 0,00
59,3 060 08 060 052 039 030 019 0,00 0,00 0,00
58,4 060 071 061 052 040 030 018 0,00 0,00 0,00
57,3 060 09 056 049 036 026 0,15 0,00 0,00 0,00
56,2 060 067 060 051 038 026 000 000 000 0,00
55,1 060 069 059 050 035 024 000 000 0,00 0,00
54,1 060 072 057 048 033 022 000 000 000 0,00
53,0 060 072 056 046 031 020 000 0,00 0,00 0,00
52,0 060 072 055 045 029 000 000 000 0,00 0,00
50,9 060 070 054 043 028 0,00 000 000 0,00 0,00
49,8 060 076 054 040 024 0,00 000 000 0,00 0,00
48,7 060 071 053 039 023 000 000 000 0,00 0,00
47,6 060 075 051 037 019 000 000 000 0,00 0,00
46,6 060 08 049 033 000 000 000 000 0,00 0,00
455 060 082 048 031 000 000 000 000 0,00 0,00
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Radius [mm] ¢ ¢ ¢3 o ¢s P6 ¢7 ¢s $9 P10
445 060 081 047 029 000 000 000 0,00 000 0,00
43,3 060 074 046 027 000 000 000 000 0,00 0,00
42,2 060 08 044 023 000 000 000 000 0,00 0,00
41,1 060 071 044 000 000 000 000 0,00 000 0,00
40,0 060 071 041 000 000 000 000 000 0,00 0,00
38,9 060 075 038 000 000 000 000 000 0,00 0,00
37,8 060 071 036 000 000 000 000 0,00 000 0,00
36,6 060 070 033 000 000 000 000 000 0,00 0,00
35,5 060 076 000 000 000 000 000 000 0,00 0,00
75,2 070 076 078 08 073 068 053 042 032 0,23
74,4 070 08 078 078 069 063 049 038 029 0,21
73,4 070 101 078 075 066 060 045 035 026 0,19
72,3 070 072 078 079 072 064 050 038 027 0,20
71,4 070 074 078 078 070 062 047 035 026 0,18
70,4 070 076 0,79 077 067 060 045 033 024 0,16
69,2 070 075 076 077 067 058 042 031 022 0,15
68,3 070 077 077 075 065 055 041 029 0,20 0,00
67,2 070 075 078 075 064 054 039 027 0,19 0,00
66,2 070 1,14 075 068 056 046 032 023 0,15 0,00
65,2 070 094 074 069 056 047 032 022 0,14 0,00
64,0 070 081 0,77 070 057 046 032 021 0,00 0,00
63,1 070 08 074 070 056 045 030 0,19 0,00 0,00
62,0 070 097 073 066 051 040 026 0,17 0,00 0,00
61,0 070 084 073 067 052 039 026 0,00 000 0,00
60,0 070 0,79 073 066 051 039 024 000 0,00 0,00
58,9 070 084 072 064 048 035 022 0,00 0,00 0,00
57,8 070 093 069 062 044 032 0,19 0,00 0,00 0,00
56,8 070 081 071 062 045 031 0,18 0,00 0,00 0,00
55,9 070 08 071 060 042 029 000 000 0,00 0,00
54,8 070 08 069 057 039 026 000 0,00 000 0,00
53,7 070 087 067 056 037 024 000 000 0,00 0,00
52,6 070 08 068 055 035 021 000 000 0,00 0,00
51,6 070 084 068 053 033 000 000 0,00 000 0,00
50,6 070 097 064 048 029 000 000 000 0,00 0,00
49,5 070 08 064 048 028 000 0,00 000 0,00 0,00
48,4 070 092 063 045 024 000 000 0,00 000 0,00
47 4 070 098 060 042 020 000 000 000 0,00 0,00
46,4 070 08 062 041 000 000 000 000 0,00 0,00
45,3 070 097 058 036 000 000 000 0,00 000 0,00
442 070 093 056 034 000 000 000 000 0,00 0,00
43,1 070 1,02 054 029 000 000 000 000 0,00 0,00
42,0 070 087 054 028 000 000 000 0,00 000 0,00
41,0 070 088 051 000 000 000 000 000 0,00 0,00
39,8 070 095 047 000 000 000 000 000 0,00 0,00
38,8 070 088 046 0,00 000 0,00 000 0,00 000 0,00
37,7 070 08 042 000 000 000 000 000 0,00 0,00
36,6 070 094 036 000 000 000 000 000 0,00 0,00
35,4 070 098 001 000 000 000 000 0,00 000 0,00
34,3 070 093 000 000 000 000 000 000 0,00 0,00
33,2 070 097 000 000 000 000 000 000 0,00 0,00
32,1 070 0% 000 000 000 000 000 0,00 000 0,00



C.1. CALIBRATED MIXING PARAMETERS

Radius [mm] ¢ () ¢3 ¢4 ¢5 o ¢7 ¢s $o P10
30,9 070 088 000 000 000 000 000 000 000 0,00
29,7 070 082 000 000 000 000 000 000 0,00 0,00
28,6 070 003 000 000 000 000 000 000 000 000
274 070 003 000 000 000 000 000 000 000 0,00
75,2 08 082 094 097 091 083 064 049 037 0,26

Table C.1.2: Database of the mixing parameters ¢; obtained by calibration with the Gaussian
growth model. For mixing coefficients higher than 0,8 the multi-box-model can not be adjusted

to the Gaussian growth model.
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