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Zusammenfassung:

Im ersten Teil der vorliegenden Arbeit werden Diffusionsuntersuchungen mit Flu-
oreszenzkorrelationsspektroskopie an fluoreszenzmarkierten Nanogold-Partikeln in
Zytoplasma und Nukleus lebender Zellen vorgestellt. Die Messungen zeigten, dass
sich die Nanopartikel per Subdiffusion bewegten, d.h. ihre mittlere quadratische
Verschiebung ein Zeitskalierungsverhalten ~ t*, o < 1 aufwies. Ein solches Bewe-
gungsverhalten ldsst sich auf die in grofen Mengen in intrazelluldren Fliissigkeiten
gelosten Makromolekiile (beispielsweise Proteine) zuriickfithren, welche die Bewe-
gung einzelner Nanopartikel behindern. Aus dem Diffusionsverhalten der Partikel
wurde das komplexe Schermodul G(w) ~ w® der intrazelluliren Fliissigkeiten
berechnet; dies zeigte, dass sich das Zellinnere auf der Nanoskala viskoelastisch
verhdlt. Im Weiteren wurde anhand von Computersimulationen quantifiziert,
mit welcher Effizienz ein subdiffundierendes Molekiil ein fixiertes Ziel erreicht
(beispielsweise eine Bindungsstelle). Es ergab sich, dass die Wahrscheinlichkeit,
ein Ziel zu erreichen, fiir einen subdiffundierenden Partikel hoher ist als fiir einen
normal diffundierenden Partikel, was den Schluss zuldsst, dass eine Zelle von der
Subdiffusion von Makromolekulen in ihrem Inneren profitiert. Im zweiten Teil der
Arbeit wird in ’grobkérnigen’ Molekulardynamiksimulationen (’dissipative particle
dynamics’) das zweidimensionale Diffusionsverhalten von in Lipidmembranen
eingebetteten zylindrischen Objekten mit unterschiedlichen Radien untersucht. Es
erwies sich hierbei, dass eine zutreffende Vorhersage der Grofenabhangigkeit der
Diffusionskoeffizienten durch die Saffman-Delbriick-Theorie gegeben wird.

Summary:

In the first part of this thesis diffusion measurements with fluorescence correlation
spectroscopy on fluorescence-labeled nanogold particles in the cytoplasm and
the nucleus of living cells are presented. The nanoparticles were detected to
move by subdiffusion, i.e. their mean square displacement displayed a power-law
scaling ~ t“, « < 1. This observation can be explained with the high amounts of
macromolecules (such as proteins) dissolved in intracellular fluids which obstruct
the motion of indiviual nanoparticles. From the diffusion behaviour of the particles
the complex shear modulus G(w) ~ w® of the intracellular fluids was calculated,
which showed the cellular interior to be viscoelastic on the nanoscale. Furthermore,
the efficiency of a subdiffusive molecule to approach a fixed target was quantified.
Computer simulations highlighted here that the probability to reach a target is
increased for a subdiffusive particle as compared to a normal diffusive particle,
which suggests that a cell may benefit from the subdiffusion of macromolecules
in its interior. In the second part of the thesis the two-dimensional diffusion of
cylindrical objects embedded in lipid membranes is investigated. Coarse-grained
molecular dynamic simulations (’dissipative particle dynamics’) demonstrated
that the size-dependence of the diffusion coefficients is properly described by the
Saffman-Delbriick theory.
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Chapter 1

Introduction

A living system can be described as a self-preserving and self-reproducing entity.
To allow in this context a clear differentiation between living organisms and
other organised matter systems, a number of ’criteria of life’ has been specified
in biology, the most important of which are motion, reproduction, metabolism,
growth and stimulus response. Living organisms obtain their specific features and
abilities which classify them as ’living’ due to a variety of concerted processes
which permanently run in their interior. These processes consist in activities of
both chemical and mechanical nature. The length and time scales on which they
occur include all orders of magnitude between the macroscopical appearance of
the organism and the molecular level. Since processes on a certain length and
time scale naturally depend on the events on subordinated levels, processes on the
molecular level are fundamental and of particular importance.

On the micron scale and below, all living organisms are organised similarly: they
consist of cells as fundamental units. Cells themselves have to be regarded as living
organisms: they represent the most elementary (and smallest) entities that meet
the biological criteria of life. A cell is kept alive by the variety of biochemical
processes taking place in its interior, which serve for example for material uptake,
energy transduction or the synthesis of functional macromolecules.

Functional biological macromolecules are the cornerstones of cells, and therefore
of all biological matter. They are involved in the construction of biological matter
as well as in the storage of biological information and in the implementation of
biological functions. The main species of biological macromolecules are proteins,
deoxyribonucleic acid (DNA) molecules, ribonucleic acid (RNA) molecules, lipids
and sugars.

An elementary property of biological macromolecules is their mobility. The natural
environment of biological molecules — which may be the cellular interior or the
space between cells in an organism — is typically a fluid. To carry out its particular
function, a biological macromolecule usually has to overcome the distance between
the location where it was generated and its specific target, which could be for



example a reaction partner or a binding site. While there exist energy-consuming
transport systems like the blood circulation, the lymphatic system or active
transport along filaments to carry large amounts of molecules over long distances
in an organism, a molecule covers ’short’ distances of the magnitude of a cell’s
diameter and below typically by thermally driven motion, i.e. diffusion. How
effective a macromolecule species spreads in space obviously is of fundamental
importance for all processes in which the molecule participates, e.g. chemical and
enzymatic reactions or the assembly of large structures or patterns.

In the work presented here, some basic questions concerning diffusion of macro-
molecules in biological systems will be addressed. Diffusion generally is a random
process being induced by kicks of thermally moving solvent molecules on a
dissolved particle. A diffusing macromolecule therefore has no preferred direction,
but explores its environment isotropically. The longer a diffusion process continues,
the larger is the explored space, and the larger becomes the distance to its starting
point a tracer has covered on average. The diffusive spreading depends on the size
and the shape of the diffusing molecule just as on the rheological properties of the
embedding fluid and can be measured by the particle’s mean square displacement.
For the simple case of a spherical particle in a three-dimensional viscous fluid, the
mean square displacement grows linearly with time; the proportionality factor is
the diffusion coefficient D that depends on the particle radius, the fluid viscosity
and the system temperature, according to the well-known Einstein-Stokes relation.
The spreading of a diffusive particle here is the faster the smaller the particle and
the less viscous the embedding fluid is.

For biological macromolecules in their natural environment diffusion is typically
more complicated. At first, a general differentiation can be made: diffusion in three
dimensions, i.e. macromolecules which are dissolved the in intra- or extracellular
fluids (soluble proteins and RNA molecules), and diffusion in two dimensions, i.e.
macromolecules which are embedded in biological membranes (lipids and membrane
proteins). Biomembranes are lipid bilayer structures that surround and protect
entire cells and intracellular compartments. Since membranes maintain their struc-
tural integrity due to non-covalent forces, their constituents can diffuse freely within
the membrane which means that a membrane behaves as a two-dimensional fluid.
Apart from the dimensionality macromolecule diffusion in a biological environment
has the pecularity that it takes place in a non-homogeneous environment. Intra-
/extracellular fluids as well as membranes are structured on several length scales;
in particular on a scale of some ten nanometers they are densley occupied with
interacting macromolecules of different sizes and shapes ('macromolecular crowing’).

Both, the diffusion of macromolecules in the cellular interior and in mem-
branes has been investigated for the present dissertation. The thesis is structured
as follows: In Part I the three-dimensional mobility of macromolecules located
in the cytoplasm and the nucleus of cells is examined; in association with this
the rheological state of the intracellular fluids is studied. Chapters 2 — 4 give an



overview on the current knowledge on these topics: Chapter 2 provides a general
introduction to the mathematical description of diffusion and introduces anomalous
subdiffusion, a specific mode of motion which was determined to play a particular
role for macromolecules in cells. In Chapter 3 previous studies on intracellular
diffusion and on cell rheology are discussed. In Chapter 4 the measurement methods
used for this thesis are described.

Chapter 5 is the first results part. Here, diffusion measurements on fluorescently
labeled nanogold particles (which were introduced as probe particle into living
cells) are presented. The diffusion was measured using fluorescence correlation
spectroscopy (FCS), a method that relies on the detection and analysis of the
diffusion-driven concentration fluctuations in a small observation volume of the
sample. As a result, the nanogold particles were determined to move by subdiffu-
sion, i.e. their mean square displacement was growing nonlinear with a power-law
scaling ~ t“ «a < 1. This is in strong contrast to the diffusion of these particles
in water where o = 1. In further measurements, subdiffusion was also detected
for BSA proteins in cells. These findings suggest that subdiffusion is the mode of
motion for many macromolecule species with diameters about 5 - 10 nm in cells.
From the diffusive behaviour of the nanogold particles the mechanical properties of
the intracellular fluids were calculated in terms of the complex shear modulus G (w).
To do so, an approach given by Mason & Weitz was used, which relates G(w) of a
medium to the mean square displacement of embedded spherical probe particles
[1]. As a result, cytoplasm and nucleoplasm of living cells were determined to be
viscoelastic on the nanoscale with the complex shear modulus following a power-law
scaling G(w) ~ w®. Comparative test measurements in unstressed and osmotically
stressed cells suggested that, from a rheological point of view, intracellular fluids can
be described phenomenologically as diluted polymer solutions obeying the Zimm
theory. From the described measurements the conclusion can be drawn that the
fluids in the interior of the cell are uniformly crowded with macromolecules having
a high degree of entanglement, which explains tracer subdiffusion as well as the
property of intracellular fluids to be viscoelastic. In accompanying measurements,
subdiffusion of nanogold and viscoelastic rheological properties were detected to be
conserved in various cell lines of different origins and health states.

Chapter 6 is the second results part, highlighting implications of subdiffusion. In
computer simulations the ability to approach a fixed binding target was determined
for particles moving by normal diffusion or subdiffusion. As a result, the simulations
showed that the target finding probability P is increased for subdiffusive particles
as compared to normally diffusing particles. Transferring these simulation results
to concrete examples from biology indicated that cells indeed may benefit from
their crowded internal state and the associated subdiffusion.

Part II of the thesis deals with the two-dimensional diffusion of macromolecules
embedded in membranes. Chapter 7 gives a general introduction to the structure
and functionality of membranes; furthermore, dissipative particle dynamics is
introduced as a class of particle-based computer simulations suitable to examine



membranes. Chapter 8 is the results part; here, a study on the two-dimensional
mobility of membrane inclusions is presented. A theoretical expression which relates
the diffusion coefficient D of a cylindrical membrane inclusion (e.g. a membrane
protein) to its radius R was already derived in 1975 by Saffman & Delbriick,
predicting D ~ log(1/R) [2]. However, a robust test of the Saffman-Delbriick
theory has never been performed due to various experimental challenges. Here,
dissipative particle dynamics simulations were used to determine the diffusion
coefficients of differently sized membrane inclusions. The simulation data con-
firmed the Saffman-Delbriick theory to properly describe the above mentioned
size-dependence.



Part 1

On the diffusion of macromolecules
in cytoplasm and nucleus
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Chapter 2

Fundamentals of diffusion

In this chapter an introduction to the mathematical description of diffusion is given
(Section 2.1). Anomalous subdiffusion is introduced and the general reasons for its
occurrence are highlighted (Section 2.2). Furthermore, it is described how the search-
g efficiency of a diffusing particle for a specific target can be quantified and how
it changes when different modes of diffusion are used (Section 2.3).

2.1 Brownian motion

Particles suspended in a fluid show directionless and irregular movements which ap-
pear due to thermal random kicks by solvent molecules. This phenomenon is denoted
as Brownian motion or (self-)diffusion; the particle’s movement is denominated a
random walk.
The self-diffusion of a tracer is characterised by the probability distribution function
P(z,t) of the distances = from its starting point zy = 0 after a time period ¢.
P(z,t) can be derived from stochastic theory. When we regard the simplest case
of one-dimensional diffusion, a tracer jumps on a straight line small distances of
random length 0 either in positive or negative direction in short time intervals dt,
with positive and negative jumps having the same probability p=1/2. The proba-
bility for exactly £ jumps along the positive direction in n trials is then given by a
Binomial distribution. For a large number n and a finite probability p of the process
(i.e. n-p — 00 as n — 00), the Binomial distribution approximates a Gaussian
or normal distribution due to the central limit theorem [3]. Therefore, P(z,t) for a
d-dimensional problem and continuous space and time assumes the familiar form:
1 [

P(Z’,t) = W - e 4Dt (21)

Here, d is the embedding spatial dimension and D denotes the diffusion coefficient,
while P(x,t) gives the probability of a diffusing particle to be at a distance = from
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2.1. BROWNIAN MOTION

its starting point 0 at a time ¢. A plot showing the evolution of P(z,t) in time is
displayed in Figure 2.1.

By definition, the first moment of P(x,t), i.e. the mean value of x, is:

(z) = 0. (2.2)

The second moment of P(x,t) is the variance of P(z,t) or the particle’s mean square
displacement:
(z*) = 2dDt. (2.3)

Higher moments of the Gaussian distribution are functions of the first and the
second moment and thus contain no independent information.

The diffusion coefficient D depends specifically on the properties of a diffusing
particle and of its embedding medium. For the case of a spherical particle in a three-
dimensional homogeneous viscous medium, D is related to the absolute temperature
T of the system, the medium viscosity 1 and the particle radius R by the Einstein-

Stokes-relation [4]:
kT

= . 2.4
6™ R (24)
0.08 + .
0.06 .
53
T 004 f .
0.02 + .
0
-10 10

Figure 2.1: Evolution of the distribution P(z,t) as described by Eq. 2.1, assuming
a diffusion coefficient D = 4 m?/s. Initial condition was P(0,0) = §(x, ). Full line:
t = 1 s, dashed line: ¢t = 2 s, dotted line: ¢t = 6 s.
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2.2. ANOMALOUS DIFFUSION

Concentration diffusion

From the macroscopic view, self-diffusion of particles leads to the balancing of par-
ticle concentration gradients. The particle flow 7 that arises due to a concentration
gradient VC is given by Fick’s first law [5]:

7= -DVC. (2.5)

Equation 2.5 together with the continuity equation (mass conservation) yields the
diffusion equation (Fick’s second law):

oC

— = DAC. 2.6

5 (2.6)
Equation 2.6 reflects the spatial and temporal change of concentration in a system
after a perturbation from the steady state where all particles are uniformly dis-
tributed in the system. The general solution of equation 2.6 for a symmetric system
is, with the initial condition C(0,0) = d(x,t), a Gaussian (c.f. Figure 2.1):

1 _a?
C’(x,t) = W - € 4Dt (27)

This solution is the Green’s function (or the propagator) of the diffusion equation
which determines the time evolution of the d-function. It is identical to Equation
2.1, i.e. the spreading of particle concentration and the probability distribution of
a single diffusing particle follow the same function.

2.2 Anomalous diffusion

The spreading of particles in a diffusion process is characterised by the second
moment (or the mean square displacement MSD) of its probability distribution
function P(z,t). In normal (classical, regular) Fickian diffusion, P(z,t) is a Gaussian
and the MSD grows linearly with time as described by Equation 2.3. The diffusion
coefficient D has units m?/s.
Diffusion processes which deviate from normal Gaussian behaviour are generally
denoted as anomalous diffusion [6]. These processes typically show a non-linear
scaling of the MSD:

MSD(t) = 2dD 4t*, with o # 1. (2.8)

Here, D, is the generalized diffusion constant in units m?/s* while o denotes
the degree of anomaly. In case of a < 1, one speaks about subdiffusion, the case
a > 1 denotes superdiffusion. In classical normal diffusion « is unity, while ballistic
transport is described by a = 2. Figure 2.2 illustrates the different time scaling
behaviour of normal diffusion, subdiffusion and superdiffusion.

14



2.2. ANOMALOUS DIFFUSION

106 ! T T

MSD(t) [m?]

t[s]

Figure 2.2: Mean square displacement MSD(t) ~ t* of particles which move by
normal diffusion (full line), subdiffusion with o = 0.7 (dashed line), superdiffusion
with a = 1.2 (dotted line)

Anomalous diffusion has been experimentally observed for various transport
processes. Superdiffusion, for instance, was shown to describe the relative diffusion
of two objects in a turbulent flow [7| or the travelling behaviour of humans [8|.
Examples for subdiffusion include charge transport in amorphous semiconductors
[9], the dynamics of polymers [10] or the diffusion of objects in a viscoelastic
environment |11].

2.2.1 Reasons for anomalous diffusion

The Gaussian nature of normal diffusion results from the central limit theorem
(CLT) of probability theory. The CLT states the following: Given an arbitrary
distribution G(x) of independently and identically distributed random variables x
with finite mean (x) and finite variance (x?), the mean values of random samples
of size N taken from G(x) will follow a normal distribution with mean (x) and
variance (z%)/N.

A diffusive process described by the probability distribution P(z,t) will appear
anomalous when the validity of the CLT breaks down for P(x,¢) and hence P(x,t)
does not approach a Gaussian. This is the case when either

a) the variance of P(z,t) diverges due to large/critical fluctuations or

15



2.2. ANOMALOUS DIFFUSION

b) long-range correlations arise in the system [12].

Large fluctuations in a diffusion system typically occur when the jump lengths
and/or the waiting times of the random walk follow broad distributions, e.g. a
power-law scaling [6]. Broad distributions of the jump length can be caused, for
example, by an intermittent energy-driven directed transport of the diffusing
entity; broad distributions of waiting times may arise due to an intermittent
immobilisation of the diffusing entity.

Long-range correlations appear, for instance, if the path of a diffusing particle
is obstructed [13], if a particle moves in a static stochastic potential or if a
memory-controlled feedback coupling of the particle with its local environment
exists [14].

2.2.2 Subdiffusion

For the experiments performed in the framework of the present thesis, only sub-
diffusion is of importance; we therefore will now concentrate on this case in the
remainder. Three fundamental reasons for the appearance of subdiffusion are:

1) A random walk deviates from normal behaviour because it takes place in an
environment with specific geometrical character.

2) A random walk deviates from normal behaviour in time because the time incre-
ments between two jumps are drawn from a power-law distribution and can therefore
be extraordinarily long.

3) A random walk is not completely random, but is influenced by a memory, e.g.
by the local viscoelastic relaxation behaviour of the embedding fluid.

In the following, these three cases will be discussed in more detail.

1) Subdiffusion due to spatial disorder — Random walks on fractals

In a ’free’, unobstructed system, diffusion is normal. In a system where random
obstacles are present (e.g. in disordered media), subdiffusion may appear. Simple
model systems which possess all characteristics that are necessary to understand
the pecularity of obstructed diffusion are so-called percolation clusters which
exist as lattice and continuum models |15, 16] and have been studied extensively
in computer simulations [17, 18, 13|. A convenient realisation of a percolation
cluster can be obtained, for example, by simulating diffusion on a square lattice
where random sites are inaccessible to diffusers and represent thus obstacles. With
increasing obstacle concentration C', a cluster adopts more and more a maze-like
geometry in which tracers become subdiffusive because they have to explore
complex/fractal hindrances like holes, bottlenecks and dangling ends.

Due to their statistical geometric organisation, percolation cluster geometries can
be described as fractals [16]. A fractal generally is a geometric object which is

16



2.2. ANOMALOUS DIFFUSION

self-similar on all length scales; an illustrative example would be the path of a
Brownian particle: its increment lengths are statistically similar in the sense that
they are described by a Gaussian distribution in all parts and on all length scales
[19]. In fractal theory, very complex geometries are characterised by the single
number dp, the fractal dimension, which for a percolation cluster defines the
dependency of the cluster mass M(r) in a sphere on the sphere radius r via the
relation M (r) ~ rér [16].

A percolation cluster typically is self-similar and fractal on length scales below a
characteristic correlation length ¢ that depends on the obstacle concentration C'.
On length scales larger &, the cluster becomes homogeneous (non-fractal), because
here large holes exist in the obstacle distribution and finite clusters (accumulations
of obstacles) can be distinguished. £ represents the mean size of both the holes and
the finite clusters. When C' reaches a critical value Cp (the so-called percolation
threshold), the characteristic length & diverges and the cluster becomes self-similar
and fractal on all length scales.

Tracer diffusion characteristics in a percolation cluster are related to the fractality
of the cluster. In case of C' < Cp, tracer motion is subdiffusive at short times
since the cluster is fractal over the associated short distances. A tracer here
encounters the mentioned hindrances like dead ends, bottlenecks and obstructed
areas. For long times, tracer motion changes to normal diffusion, since the cluster
is homogeneous on large length scales. Over long distances, a continous path for
lateral diffusion exists, with a long-range diffusion coefficient D for tracers that
decreases with increasing C.

For C' = Cp, the percolation cluster is fractal and self-similar on all length scales.
Thus, the typical hindrances are present on all length scales, and the tracer is
impeded on all length scales. Consequently, tracer motion is subdiffusive at all time
scales, except for the first few steps where the tracer meets no obstacles [13]. For
C > Cp, the tracer is trapped in a local environment and the long-range diffusion
coefficient D becomes 0, i.e. the case of normal diffusion never sets in.

The strength of subdiffusion is quantified by the diffusion anomaly « and the
crossover time tc, from subdiffusion to normal diffusion. Generally, o and t¢,
depend on the obstacle concentration as well as on shape and size of diffusers and
obstacles (a small tracer for example may escape easily from an environment which
confines a larger tracer). Typically, with an increasing obstacle concentration C|,
the anomaly « decreases and t¢, increases smoothly [13]. For C' = Cp, a becomes
constant at a finite minimum value ap while t., becomes infinite. The conditions
in nature may be best approximated by a 'Swiss-cheese’ continuum percolation
model, which yields ap = 0.697 for a two-dimensional system and ap = 0.526 for
a three-dimensional system [20, 12].

Interrelating the quantities of a percolation cluster

The fractal and subdiffusive properties of a percolation cluster can be quantified
as follows: The fractal dimension dr of a percolation cluster measures the average

17



2.2. ANOMALOUS DIFFUSION

mass M (r) of the cluster within a sphere of radius 7:

2
M(r) = { ;dF Off)rrr><£§ (2.9)

where ¢ is the characteristic length or correlation length above which the percola-
tion cluster becomes non-fractal.

The MSD of a tracer scales as:

t for r > Re,

t* forr < Re, (2.10)

MSD(t) ~ {
where R¢, is the crossover length to normal diffusion; « is the degree of anomaly.
The parameters £ and R, depend on the obstacle concentration C and follow for
C — Cp scaling laws:

{~1|C—Cp[™ (2.11)
Rey ~ |C — Cp| 1P/ (2.12)

Here, the exponent y is defined by Equation 2.11. The parameter 5 gives the prob-
ability P, that a lattice site is part of the infinite cluster:

Py ~ |C — Cpl°. (2.13)

Re, is related to the crossover time ¢, as Ro.—=+/D(0) - tcy, with D(oo) being the
limiting diffusion coefficient for t — oc.

2) Subdiffusion due to temporal disorder

Tracers can show the characteristics of subdiffusion if they move in a system where
traps or binding sites are present which immobilise them transiently [21]. The
presence of just a single trap species with a specific binding energy Ep will lead
to subdiffusion only for a short time period; after a crossover time t¢,, normal
diffusion is recovered. To cause subdiffusion for longer times, a hierarchy of multiple
trap species with increasing binding energies E'p is necessary. The crossover time
tc, then grows with increasing hierarchy; the crossover to normal diffusion will
take place after all traps in the system were explored and occupied with tracers
(the tracers are then said to have equilibrated with the traps). A suitable infinite
hierarchy of traps would lead to subdiffusion at all times.

Generally, the immobilisation time ¢; of a trap depends on its binding energy Eg;
the two parameters are related by a Boltzmann factor: ¢; ~ exp(—Ep/kpT). An
appropriate trap hierarchy to cause subdiffusion would be given for instance by a
system where the binding energy of the trap species increases by dE at each level

of the hierarchy; the immobilisation time accordingly would increase by a factor
exp(—dE/kgT) [22].

18



2.2. ANOMALOUS DIFFUSION

The diffusion coefficient D of tracers for long times, at which normal diffusion was
recovered, depends on the concentration of traps in the system and is typically
strongly reduced compared to systems without traps. As a consequence, an increase
of the trap concentration leads to an increase of the crossover time tc,.

A mathematical description of subdiffusion due to transient immobilisation
of tracers is given by the continuous time random walk (CTRW) [18]. A CTRW
can be regarded as a random walk with a modified time scale, which means that
the time increment dt between two steps is a random waiting time drawn from
a suitable probability density function w(¢). While the resulting random walk is
normal if the first moment (7°) (the characteristic waiting time) of w(t) is finite,
the system becomes subdiffusive as (T") diverges |6, 23]. A suitable probability
density yielding subdiffusion in terms of a CTRW is

wit)=1-MP 2 0<p<1. (2.14)

Here, the degree of anomaly of the resulting subdiffusion is a=1-3 [22].

A CTRW can be regarded as the mean-field description of a system where an infinite
hierarchy of binding sites is present |24, 22]. The long waiting times then appear due
to the existence of very deep traps in the system. A transition to normal diffusion
never happens because the trap hierarchy is infinite and tracer particles never have
explored a deepest trap.

3) Subdiffusion in viscoelastic systems

Subdiffusion has also been observed in viscoelastic media such as entangled polymers
[1, 25, 26, 11, 27|. These media are characterised by their response to shear stress in
that they dissipate part of the deformation energy like a viscous fluid, but also store
part of the deformation energy like an elastic solid [1|. This behaviour appears due
to extended multi-atomar structures in the viscoelastic medium [25]: The molecules
in the medium are partially irreversibly shifted upon deformation (like the molecules
in a fluid); partially, they are interconnected by bonds similar to the molecules in
a elastic solid and can thus relax towards their original state when the deforming
forces are removed. The fluid therefore has a memory that is reflected in a non-
trivial creep function [28].

The thermal motion of tracer particles embedded in a viscoelastic fluid can become
subdiffusive since the energy stored in the medium affects the temporal correlations
of the stochastic forces acting on the particles (see Chapter 4.4 for more details).
Generally, subdiffusion with MSD ~ t* 0 < a < 1 can be expected to occur
when the rates of diffusion and viscoelastic relaxation are comparable [26]. If the
viscoelastic relaxation happens much slower than diffusion, a diffuser will rather
behave like in an viscous fluid and show normal diffusion with MSD ~ ¢t; if the
relaxation happens faster than diffusion, an embedded particle will be immobilised
like in an elastic environment, i.e. MSD = 0.
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2.3 Searching a specific target via diffusion

2.3.1 The probability to approach a target via normal diffu-
sion

A parameter of central importance for all processes in which at least one participant
can freely move in solution is the ability of this participant to approach its specific
target. For a normally diffusing particle, the probability to reach a defined target
can be calculated analytically by considering a so-called diffuse-to-capture scenario
[3]. Assuming isotropy, this scenario has spherical symmetry and can therefore be
treated in spherical coordinates. In the scenario, a single target exists, being rep-
resented by a spherical absorber of radius a at position r = 0. Diffusing particles
start from a shell source surrounding the target in a distance r = R. The particles
are absorbed when they approach the target or when they reach a position r > ¢,
with ¢ > R.

Generally, in a diffusion system where sources and absorbers are present, the final

distribution C(r) of particles approaches a non-uniform steady-state, i.e. %—? = 0.
The diffusion equation Eq. 2.6 therefore becomes:
ANC' =0 (2.15)
In spherical coordinates, this equation reads:
1d,,dC
(2 = 2.16
r2dr (r dr ) (2.16)

In the described scenario, the particle concentration C'(r) has a maximum C; at
r =R and is 0 at » = 0 and r = ¢. With these boundary conditions, the solution of
equation 2.16 becomes [3]:

_ 1-a/R - =
C(r) d(c-1) R<r<c (2.17)

{ Co_(1-2) a<r<R

With the radial flux y = —D%—f, the diffusion current I = —4myr? in the system
can be calculated to be I;, = 47TD001_C(;0/R (from the source to the target) and
Iout = 47TDCO

p /%‘11 (from the source to the outer absorber). The probability P(R)
of a particle starting at r = R to be absorbed at r = a then can be calculated to
be:

I; _a(c—R)

P(R) = = .
( ) [zn + [out R(C - G)

(2.18)

This becomes in the limit ¢ — oo, i.e. for particles moving in a infinite medium:

P(R) = —. (2.19)
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Equation 2.19 gives the probability that a diffusing particle reaches a target of radius
a when it starts at a initial distance R from the target.

2.3.2 Searching via specific modes of diffusion

The efficiency with that a tracer approaches a target can increase when it moves by

specific modes of diffusion, in particular when its motion is restricted to one or two
dimensions or when tracers use superdiffusion instead of normal diffusion.

Reduction of dimensionality and coupled diffusion

The mean time 7 for a diffuser to reach a small target of radius a in the middle of
a sphere of radius L depends on the dimensionality of the diffusive search [29]:

_ L (2.20)
T = 3D1 .
L? L
= — - In(— 2.21
™ =55, n(—) (2.21)
_ L (2.22)
E 3D3 a ’

Here, the index ¢ = 1,2,3 of parameters 7; and D; denotes the dimensionality. The
parameter D; is the diffusion coefficient in 7 dimensions. As the equations show, the
search time 7; is shorter for diffusers moving in one and two dimensions as compared
to three dimensions, when the diffusion coefficients D, Dy, D3 are of comparable
magnitude. Reference [29] proposed that biological processes could benefit from this
reduction of search times due to dimensionality when both targets and searchers are
attached either to one-dimensional structures (e.g. a DNA strand or a microfilament)
or two-dimensional structures (e.g. a membrane). The total search time then would
be the sum of the mean time 73 (which the diffuser needs to approach the structure
via three-dimensional diffusion) and the mean time 71 /75 (to approach the target
via one/two-dimensional diffusion on the structure). This principle is denominated
‘coupled diffusion’. Given that the diffuser binds only transiently to the structure
that guarantees one/two-dimensional diffusion, the total search time also depends on
the affinity of the diffuser to the structure. The total search time further is affected
by the individual diffusion coefficients of the tracer in one/two/three dimensions,
by the target size and also by the geometry of the low dimensional structure, since
the way that the diffuser has to cover on folded or interlaced structures may be very
long.

A well studied example for a biological process making use of the principle of coupled
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diffusion is the binding of the Lac repressor protein to DNA. Experiments show that
the Lac repressor finds its specific DNA binding site faster by several orders of mag-
nitudes than explicable with pure three-dimensional diffusion, but also faster than
allegeable by pure one-dimensional diffusion along the long DNA strang. Instead,
it is here a combination of transient one-dimensional diffusion due to temporary
non-specific binding to the DNA (so-called sliding) and transient three-dimensional
diffusion (between a release of the non-specific DNA binding and a new non-specific
binding) that allows the Lac repressor to efficiently search its specific DNA binding
site [30].

Searching via Lévy Flights (superdiffusion)

In several studies, searching via superdiffusive Lévy flights has been shown to be
more effective than searching via normal diffusion under suitable conditions.

Lévy flights are random walks with jump lengths [ drawn from a Lévy distribution
p(l). A Lévy distribution is a broad distribution with a diverging variance and has
the shape |[6]:

p(l) ~ 17170, (2.23)

Here, the scaling exponent must be 1 < p < 2. The resulting random walk is
denoted a Lévy flight and has the characteristics of superdiffusion with a mean
square displacement MSD described by:

MSD(t) ~ t*/". (2.24)

In the studies [31, 32, 33|, normal Brownian motion and Lévy Flights were com-
pared in their effectivity as searching strategies. It was shown that in a searching
process where targets are few and fixed, the mean encounter rate is higher for dif-
fusers searching via Lévy fligts than for tracers using normal diffusion [31]. This
observation was seen to be, in principle, independent from the dimensionality of the
problem [32]. For moving targets in the one-dimensional case, it was shown that the
target’s mechanisam of motion (Lévy/ Brown), the target density, and the relation-
ships of both size and velocity between targets and tracers play a role. Lévy flight
searching was shown to be more effective in particular for targets which are smaller
and slower than the searchers and for low target densities. For the two-dimensional
and three-dimensional case, one may expect a quantitative, but not a qualitative
change of these observations [33].
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Chapter 3

An introduction to intracellular
diffusion and cell mechanics

In this chapter the current knowledge on the state of intracellular fluids and on the
diffusion of macromolecules in cells is presented (Section 3.1); furthermore, available
studies on cell mechanics are discussed (Section 3.2).

3.1 The mobility of macromolecules in cells

3.1.1 Functional biological macromolecules

The dominant fraction of water-soluble macromolecules with biological functions
are proteins and RNA molecules. Proteins are polypeptides, i.e. polymers of amino
acids joint together by peptide bonds. After its synthesis, a polypeptide chain
undergoes a folding process to assume a well-defined three-dimensional structure.
Once achieved, the protein structure is stable due to hydrogen bonds, hydrophobic
interactions and electrostatic forces between the protein’s residues. Only in the
folded state a protein possesses its specific chemically active sites and therefore can
perform its function [34].

Most of the soluble proteins belong to the class of globular proteins, which possess
an approximately spherical shape with typical diameters in the range of 1 to 10
nm. Soluble proteins have a plethora of functions, e.g. they catalyse biochemical
reactions as enzymes or act as messengers in signal transduction [34].

RNA molecules are polymers of nucleic acids. In the form of mRNA they serve as
templates for proteins that are to be synthesized, but they also can have catalytic
functions. In the first case, the mRNA molecules are more or less unfolded chains,
in the latter case, the RNA molecules are folded to well-defined three-dimensional
structures comparable to globular proteins.
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Figure 3.1: Schematic picture of an eucaryotic cell.

3.1.2 The cellular interior on the nanoscale - Macromolecular
crowding

The characteristics of macromolecule diffusion in cells are determined by the con-
stitution of the cellular interior which is a non-homogeneous, highly complex envi-
ronment. Within cells, compartments and organelles, membranes, filaments, macro-
molecular complexes and single macromolecules occur as structuring elements on
lengthscales between 1 nm and 1 um.

A schematic drawing of an eucaryotic cell is displayed in Figure 3.1. On the micron
scale, organelles like nucleus, mitochondria, chloroplasts (in plants) and the Golgi
apparatus define the gross structure of the eucaryotic cell. On the 100 nm scale, the
endoplasmic reticulum forms a random network across the cellular interior [35], and
the constituents of the cytoskeleton (microtubuli, intermediate filaments, actin fila-
ments) build up a dense inter-linked scaffold. All these elements influence not only
the stability of cells but also the mobility of embedded objects on the respective
lengthscales.

Below the 100 nm scale, i.e. in the cytoplasmic space between compartments and
in the pores of the cytoskeleton, structures are defined less clearly. The intracellular
space is filled up with an aqueous fluid of compartment-specific composition. The
rheological properties of these intracellular fluids are determined by their large con-
tents of dissolved biological macromolecules, i.e. of proteins, RNA molecules and
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sugars.
Macromolecules contribute between 5 and 40% to the total mass of the cytoplasm
[36, 37, 38]. While the concentration of an individual macromolecular species can
be very low, the total concentration of macromolecules ranges at very high values
between 50 to 400 mg/ml. This phenomenon has been termed (macro)molecular
crowding. Strong molecular crowding has several important effects both on the hy-
drodynamics and the thermodynamics of a system as will be described below.
Crowding occurs in all living cells, in eucaryotes as well as in procaryotes, the lat-
ter lacking most of the organelles of eucaryotic cells [39, 40]. In the nucleus, the
crowding conditions may differ from the crowding conditions in the cytoplasm due
to the presence of DNA molecules in different folding states and due to the existence
of large macromolecular complexes like nucleoli, PML bodies and Cajal bodies. In
multicellular organisms, crowding appears not only in the interior of cells, but also
in the extracellular matrix of tissues. Moreover, blood plasma has a total concentra-
tion of macromolecules reaching up to 80 g/, this concentration being an adequate
cause of significant crowding effects [41].

If crowding occurs in high degrees, we can expect significant interactions of the
crowder macromolecules, for example sterical repulsion. The most fundamental ef-
fect of crowding is the reduction of accessible space in a medium; this is denoted
as the excluded-volume effect. Since dissolved molecules are impenetrable, the free
space in an enclosed compartment decreases with an increasing number of dissolved
molecules. For the degree of volume occupation in a solution, however, next to the
number of dissolved molecules also their size distribution and shapes are important.
This can be illustrated with the picture of a beaker filled with small balls of the
same size: The balls will close-packed fill up only ~ 70% of the beaker’s volume;
but although ~ 30% of the total volume are empty it will be impossible to add an
additional ball due to geometrical contraints. If now the blank space between the
balls is filled with sand grains, still 10% of the beaker volume will rest empty. The
blank space between the sand grains, however, again will be accessible to smaller
molecules like water [42].

A rough estimate of the volume occupancy in intracellular fluids can be obtained
by referring to the theoretical ’overlap’ concentration of a protein solution, which
is for a protein with a molecular weight of 50 kDa about 130 mg/ml [43]. This con-
centration is comparable to the macromolecule concentration in cells. The critical
overlap concentrations for proteins and other macromolecules in the intracellular en-
vironment, however, may deviate from this value, since the different macomolecule
species in cells vary in their diameters. The distribution of masses in the cytoplasm
is roughly exponential 44|, with proteins having weights between ~ 10 - 200 kDa;
and the respective diameters of proteins and RNA molecules in the folded state lie
in the range of 1 to 10 nm. For an estimate of the volume occupancy in cells it
has also to be taken into account that macromolecules often exist as multimers and
larger complexes, e.g. as ribosomes or transcriptional complexes. Macromolecular
complexes in cells were shown to have dimensions of 20 to 50 nm [45] and have to
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be considered as individual contributors to the intracellular crowding.

3.1.3 The diffusive mobility of macromolecules in cells
3.1.3.1 Measuring diffusion in cells

Today, mostly fluorescence methods are used to determine the intracellular mobility
of macromolecules. In order to do so, the particles of interest have to be labeled in-
dividually with fluorophores to visualize their positions. Fluorophores are molecules
that emit light upon excitation with light of a specific wavelength. The term ’ex-
citation’ means that the fluorophore absorbs the energy of an incoming photon by
transferring an electron from the ground state Sy to the singlet state S;. After a
lifetime of few nanoseconds, the electron relaxes from the S; state to the S; state,
which is accompanied by emission of energy in form of a fluorescence photon. The
wavelengths of the excitatory photon and the emitted photon typically are different
due to the subdivision of both the S, state and the S; state into various niveaus
of vibration. An electron typically is excited from a low Sy niveau to a high 5
niveau. Here, it falls under generation of phonons to the energetically lowest S;
niveau within a time of about 1 ps. The relaxation of the electron to the S state
then happens from the lowest S} niveau to a high Sy niveau, with the consequence
that the wavelength of the emitted photon is red-shifted to a lower energy (Stokes-
shift). The Jablonski diagramm in Figure 3.2 illustrates of the described electron
transitions.

The S state is a singlet state, which means that the net spin of the involved elec-
trons is zero. Due to excitation by other means than photon absorption, electrons
in the excited S; state can, with a certain probability, convert to a excited triplet
state T} where the net spin is 1 (intersystem crossing). An excited electron that has
undergone a transfer to 7} then relaxes from 77 to Sy which typically happens on a
time scale of 0.1 - 10 us. The emission of strongly red-shifted fluorescence photons
may be observed here but can be neglected because the photon yield of the transi-
tion from 77 to Sy is very small. For imaging, the existence of triplet states means
that fluorophores may become transiently invisible since they can not be excited
while they are in the 77 state.

Fluorphores only have a limited physical life. After repeated excitation (or excitation
with light of a high intensity), so-called photobleaching takes place, which denotes
the irreversible photochemical destruction of the fluorophore. In other words, the
dye changes its molecular structure to a non-fluorescent state. A fluorophore typ-
ically can emit a maximum number of 10° - 10° photons on average upon light
excitation before it is destructed [46].
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Figure 3.2: Jablonski diagramm, illustrating the electron transitions in a fluorophore.
Upon excitation with a photon of energy hv,,., an electron is transferred from the
ground state Sy to the excited state S;. From here, the electron either directly
relaxes to Sy under emission of a photon of energy hv,,,, or transiently is converted
to the triplet state 7. The yield of photons with an energy hvrr emitted due to the
transition 77 — Sy is typically very small.

The labeling of biological macromolecules with fluorophores in order to visualize
their positions can be done by several methods:

a) Chemical binding of fluorophores. To do this, the macromolecule of interest
must be available in a purified form; the labeling is done in vitro and the labeled
macromolecules has to be introduced into cells (e.g. injected) before the measure-
ments.

b) Using antibodies which carry a fluorophore and bind specificly to the macro-
molecule of interest. This can be done, at least in principle, in vivo.

¢) Genetic modification. The genetic sequence of a biological fluorophore such
as the green fluorescence protein (GFP) is added to the beginning or end of the
sequence of the macromolecule which is to be examined. When the modified gene is
expressed, the newly synthetised macromolecule will carry an attached GFP. This
is also an in vivo labeling method.
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Methods of diffusion measurement

To determine the mobility of fluorescent particles, several standard techniques
are available. Each method is appropriate for a certain concentration range of
fluorescent particles, and each method determines the mobility on a specific length
scale and time scale.

- Single Particle tracking microscopy SPTM

In SPTM, the positions of individual fluorescent particles, e.g. single fluorophores,
are recorded with a laser scanning microscope or camera [47, 48|. This means
that SPTM directly monitors the time-dependent path of a moving particle in
three dimensions, from which the particle’s characteristics of motion clearly can be
recognised, including normal diffusion and anomalous diffusion, directed transport
or transient particle immobilisation. SPTM therefore is largely independent of
fit models, in contrast to other methods of diffusion measurement like FRAP or
FCS. A disadvantage of SPTM is that visible particle traces often are short due to
photobleaching. Therefore, averages over multiple traces have to be taken to yield
evaluable data [49]|, which may be related to a loss in local information. SPTM
works best at very low concentrations where the recognition of single particles is
possible. The technique can be used to determine molecular motion on lengthscales
down to tens of nanometers and on timescales down to tens of microseconds.

- Fluorescence recovery after photobleaching FRAP

In FRAP the fluorescence in a selected region of the sample is deleted by bleaching
the fluorophores irreversibly with laser light of high intensity. Diffusion then leads
to a replacement of the bleached particles in the region of interest with unbleached
particles and thus to a recovery of the fluorescence intensity in the bleached region.
By recording the fluorescence recovery curve and fitting it with an analytical
function, diffusion coefficients and binding kinetics can be quantified [50].

FRAP works best with millimolar concentrations of fluorescent particles and mea-
sures diffusion on a lengthscale of micrometers and on timescales larger than 100
microseconds. The method has some limitations: First, it typically determines only
the two-dimensional diffusion coeffient in the plane of the sample perpendicular
to the optical axis. The laser beam bleaches the sample over its entire thickness,
and thus the recovery curve of the bleached area contains no information in
three dimensions. Next, FRAP suffers from the intrinsic technical limitation that
bleaching and scanning take a finite time [51|. Furthermore, the interpretation of
FRAP curves depends critically on the model that is used for data evaluation [51].
Although FRAP is in principle able to detect anomalous diffusion it is not very
sensitive to do so because the deviations in the shape of the recovery curve induced
by anomalous diffusion are often not easy to identify [52].
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- Fluorescence correlation spectroscopy FCS

In FCS, the fluorescence intensity from a very small observation volume in the
sample is recorded. Due to the motion of fluorescent particles into and out of the
observation volume the fluorescence shows fluctuations in time. An autocorrelation
analysis of the fluorescence curve reveals the characteristics of the fluctuations and
thus the characteristics of the particles’ motion. FCS allows to quantify directed
motion as well as diffusion, including the recognition of anomalous diffusion; also
binding kinetics can be determined. For a detailed introduction into FCS, see
Chapter 4.

FCS works best at nanomolar fluorophore concentrations and measures diffusion
on a lengthscale below micrometers and on timescales between one microsecond
and one second. The need of low fluorophore concentrations can be problematic
— especially for measurements in cells where concentrations often are rather high
when fluoroscent proteins are expressed from modified genes. Another disadvantage
of FCS is the possible distortion of the measurement curves due to processes that
give rise to additional fluorescence fluctuations; here in particular the transitions
of fluorophore electrons into the triplet states contribute. Also the dependence of
FCS on fit models can be problematic since fitting sometimes does not allow a clear
assignment of FCS data to a specific mode of motion. Compared to other measure-
ments methods of diffusion, FCS allows local measurements in specific regions of
a specimen, whereas FRAP rather detects long-range diffusion coefficients; with
SPTM in an optimal case the detection of both short- and long-range coefficients
is possible.

- An alternative approach for measuring diffusion of a fluorescent species is
to monitor by video recording the spreading of an ensemble of fluorescent molecules
into a compartment that initially was free from fluorescence [53|. This method is
limited to very specific applications because typically the fluorescent species is
already present in the compartment of interest and does not enter it in a spreading
process.

- Non-fluorescent techniques to quantify diffusion are magnetic resonance
methods, e.g. nuclear magnetic resonance (NMR) [54| and electon spin resonance
(ESR) [55, 56]. With these techniques, translational and rotational diffusion of
spin-labeled probes such as small molecules can be measured. However, NMR and
ESR are much less sensitive than fluorescence methods and do not permit cell-level
spatial resolution.
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3.1.3.2 Experimental studies on the mobility of macromolecules in cells

Intracellular Viscosities

For the interpretation of particle diffusion measurements, it is important to know
the viscosity of the embedding fluid. Measuring the viscosity of the intracellular
fluid by monitoring the viscosity-dependent fluorescence intensity ratio of the
fluorophores Cy3/Cy5 [57] showed the viscosity of the solute in cells not to differ
significantly from free water. Time-resolved anisotropy measurements detected
the picosecond rotational correlation times of the fluorophore BCECF and other
nano-sized solutes to be not much smaller in the cytoplasm than in diluted
solutions. This indicates that the fluid-phase viscosity of the cellular interior is not
much larger than that of water [58]. However, one should bear in mind that in the
mentioned studies the viscosity of a thin solvent shell around the fluorophores is
probed; on larger length scales, the viscosity might change.

FRAP studies on diffusion

The diffusion of fluorescent labeled particles in cells was examined in FRAP studies
since the 1980s. Various investigations on proteins with radii between 1.6 and
6.1 nm showed generally a reduction of the diffusion coefficients by factors 2 to
10 compared to a dilute solution [59, 60]. A correlation of the mobility with the
protein radius could not be detected in these experiments [61].

FRAP studies on differently sized dextran and ficoll molecules (inert tracer
particles) with effective hydrodynamic radii between 1 and 45 nm highlighted a
reduction of the diffusion coefficients in cells compared to water by factors from 1.1
to 70, dependend on the tracer species and the cell type [62, 63, 53, 64, 65]. Several
studies determined a clear size-dependence of the diffusion coefficients (i.e. the
diffusion coefficients decreased with increasing particle radii) [63, 53, 64] whereas
the study [65] reported no size dependence for particles with radii < 20 - 30 nm
and a strong impairance for the diffusion of larger particles.

Since previous measurements indicate that the intracellular viscosity is similar to
that of water, the reviews of Luby-Phelps [61] and Verkman [58] suggest the possible
reasons for the reduction of nanoparticle diffusion in cells to be either collisions
with intracellular macromolecules (crowding), sieving by intracellular networks (in
which for example the cytoskeletal actin could be involved) or transient binding to
intracellular structures.

FCS studies on diffusion

Since the 1990s, FCS became available for diffusion measurements in living cells.
Compared to FRAP, FCS has an improved temporal and spatial resolution and
allows explicitly the detection of anomalous diffusion dynamics.

An early FCS study [66] measured the diffusion of latex test beads (diameter 7
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and 15 nm) in cells to be slowed down about 2-fold compared to water, which is
similar to the results of FRAP experiments. More recent FCS studies measured
not only a reduction of diffusing coefficients for nano-sized tracers, but detected
also the appearance of subdiffusion in weak degrees for GFP [67] and in strong
degrees for dextran tracers with effective hydrodynamic radii between 1.8 to 14.4
nm [44]. The authors of these studies suggested subdiffusion to be caused by
tracer obstruction due to macromolecular crowding. This is in agreement with
the percolation theory, which shows tracers to be subdiffusive in environments
containing random obstacles in large concentrations (c.f. Section 2.2.2). In this
interpretation, the cellular interior on the nanoscale would have to be regarded as
a disordered medium of fractal geometry, due to macromolecular crowding. FRAP
measurements in comparison may detect rather the long-time and long-range
influence of crowding on diffusion, which consists — again in agreement with
percolation theory — in a reduction of the diffusion coefficient D.

The authors of [44] further proposed the anomaly degree « of subdiffusion to be
a measure for the ’crowdedness’ of a fluid. In agreement with Reference [44], an
in vitro study showed by means of FCS that the diffusion of streptavidin proteins
was subdiffusive in artificially crowded solutions that resemble the intracellular
environments [68].

SPTM studies on diffusion

In a SPTM study, RNA-protein complexes (diameter about 100nm) were deter-
mined to show subdiffusion in the cytoplasm of E.coli bacteria [69]. In mutants
lacking some cytoskeletal proteins, no significant change of the subdiffusive
behaviour was observed, indicating that it was independent from the cytoskeleton.
Thus, the authors suggest in agreement with Reference [44] macromolecular
crowding as reason for the observed subdiffusion.

3.1.3.3 Implications of subdiffusion

It was described above that several studies detected macromolecules to show
subdiffusion in cells and consistently explained this observation in terms of a
fractal nanoscale geometry of the cytoplasm due to macromolecular crowding
[67, 44, 68, 69]. Both, subdiffusion of molecules and the appearance of a fluid
as a fractal disordered medium would have consequences on several processes
relevant for biology, in partiular on binary and enzymatic reactions, and on pattern
formation.

Chemical reactions in disordered media

The kinetic rate coefficients k; of a chemical reaction are generally described in
terms of classical mass-action laws. In this context it is typically assumed that a
reaction takes place in a well-stirred solution; the rate coefficients therefore depend
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only on the effective concentrations of the reactants. If a reaction takes place in
a badly stirred solution, however, where mixing of the reactants is limited by
diffusion, the kinetic rate coefficients k; depend also on the diffusion coefficient D;
of the reactants. For elementary chemical reactions of the type A+ B — C'in a
three-dimensional system, the kinetic rate coefficient k (which relates the reaction
rate 7 to the educt concentrations ¢; by the expression r = kcacg), is ~ D for
t — o0, i.e. k does not depend on ¢ [70].

In disordered media the rate coefficients k; of diffusion-limited reactions are
altered and the description via mass-action laws fails. For reactions of the types
A+ A — C and A+ B — C, k decays with time: & ~ t™", 0 < h < 1. In
contrast, for a homogenous environment, i.e. a well-stirred, diffusion-independent
three-dimensional systems, h = 0 |71]. Kinetics of this type are referred to as
fractal-like kinetics [72]. They appear due to the subdiffusive spreading of particles
in disordered media: Reactants stay on average for a prolonged time period close
to their initial positions, hence being able to react quickly with near reaction
partners. The period needed to encounter reaction partners in distant regions,
however, increases with enhancing distances; therefore, k£ becomes time-dependent.
Under appropriate conditions, even a segregation of reactants in only-A and only-B
regions can take place for a reaction of the type A+ B — C [72].

Fractal kinetics in disordered media are also reflected in an increase of the reaction
order z compared to homogeneous media. The reaction order z specifies the
dependence of the rate r on concentrations. E.g. for A+ A — C:r ~ ¢ with z =2
for a homogeneous environment, z = 2.5 for a percolation cluster [72].

The influence of subdiffusion on chemical reactions dependent on
the activation energy

Subdiffusion does not necessarily lead to a slowdown of chemical reaction rates. The
studies [73] and [74] examined by computer simulations the rates of diffusion-limited
chemical reactions (A+B — C) with different activation energies on percolation
clusters. ’Fast’ reactions with low activation energies (i.e. reactions in which
typically a high percentage of reactant collisions yields products) were detected
to be decelerated due to reactant subdiffusion. This deceleration of reactions was
observed to be weaker in reactions with higher activation energies, that is, a lower
reaction probability at the first encounter of reactants.

In contrast, reactions with very high activations energies were seen to be ac-
celerated slightly as a consequence of reactant subdiffusion, with the rate of
product formation being almost independent of the obstacle concentration in the
percolation cluster. The explanation for these observations can be found in the fact
that reactant subdiffusion manifests in two basic effects:

a) An increase of the time needed for the first collision of two reactants; this causes
the deceleration of 'fast’ reactions.

b) An increase of the time for reactant separation after a unsuccessful collision;
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this yields a higher rate of recollision and accelerates therefore ’slow’ reactions.

Enzymatic reactions on two-dimensional percolation clusters

A typical function of proteins is to act as enzymes. An enzyme FE catalyzes the
specific chemical reaction of one or more substrate molecule S to a product P.
Generally, the kinetics of an enzymatic reaction is modeled by the Michaelis-Menten
scheme F + S — C — P [75]. This formalism is based on classical mass action
laws that assume constant kinetic rate coefficients. The study [76] showed by
Monte Carlo simulations that on 2-dimensional percolation clusters the Michaelis-
Menton description of enzymatic activity fails. The kinetic rate coefficients become
time-dependent due to subdiffusion of the reactants, in agreement with [72].
Furthermore, a segregation of substrates and products in the cluster was detected
at high obstacle densities. The author suggests this segregation to be a possible
mechanism for self-organisation in biological membranes.

The influence of subdiffusion on pattern formation

The development of regular patterns is an ubiquitous phenomenon in biology [77].
Patterns determine for instance the optical appearance of animal skins (e.g. for
tigers, zebras, butterflies) |78] and the structure of plant or shell surfaces [79].
Furthermore, basic functions of organisms depend on the pattern-like organisation
of molecules: an example is the formation of a cellular mid plane by specific proteins
during the cell division of E.coli bacteria [80, 81].

Alan Turing proposed in 1952 a mechanism for the spontanous formation of stable
patterns which might for example play a role in embryogenesis [82]; mechanisms
related to that of Turing were suggested to play a role in several biological
processes based on pattern formation. A Turing model is given, for instance, by a
reaction-diffusion system consisting of two substances: an activator that generates
more of itself by autocatalysis and an inhibitor which is activated by the activator
and inhibits the autocatalytic generation of the activator. If in such a system
the inhibitor diffuses faster than the activator structures may appear which are
stationary in space and in time ("Turing patterns’); in other words, regions occur
in the system where only activator or only inhibitor exists [77].

In a recent study, the dependence of Turing pattern formation on particle numbers
was investigated for an activator-inhibitor system [83]. It was shown here that
for normal diffusion of the reactants relatively high particle numbers might be
necessary for the formation of stable patterns. However, the Turing pattern
formation was seen to become more stable even for very low particle numbers when
the activator particles moved by subdiffusion. From the biological aspect, this effect
could be important for pattern formation in cells where particle numbers naturally
are limited.
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3.1.4 Thermodynamic effects of crowding on biological
mechanisms in cells

In addition to the hydrodynamic effects described above, crowding also influences
the thermodynamics of a system, thus affecting biological, chemical and physical
processes. From the perspective of thermodynamics the restriction of a particle’s
free mobility due to volume exclusion has the consequence of an entropy reduction
in the system. When the total concentration of macromolecules rises, the configura-
tional entropy of each macromolecular species decreases, and its contribution to the
total free energy of the system grows. Consequently, processes will be driven that
lead to an increase of the available volume and hence cause an entropy increase of
the system.

The effects of crowding on reaction processes can be studied experimentally by
working in artificially crowded environments, e.g. in fluids where crowding agents
like BSA proteins or dextrans are present or in silica matrices [84]. For a specific
(bio)chemical reaction, the thermodynamic effects of crowding become clear when
the equilibrium constant K is calculated under consideration of the crowded
environment. Let us consider a generalised reversible reaction in solution:

€1E1—|—62E2—|—... —>p1P1 —|—ng2 (31)

Here, ¢; is the stoichometric coefficient of the educt species F; and p; is the stoicho-
metric coefficient of the product species P;. The equilibrium constant of the reaction
is calculated as:

p1 p2
K=n o (3.2)
ag -aP

In this equation, the coefficients ag, p, = Vg, /p, - cE,/p,/V* denote the effective con-
centrations (or thermodynamic activities) of the educts/products, depending on the
available volume Vg, /p, per educt/product molecule, the actual concentrations cg, /p,
and the total volume V**. Via ag,,p,, the equilibrium constant directly depends on
the crowding conditions which define Vg, /p,. As a general effect, such calculations
show that crowding supports a) the association of macromolecules and b) the con-
formational compaction of indiviual macromolecules, since both processes cause an
increase of the available volume in the system and are thus entropically favored.

In more detail, specific effects of crowding were highlighted already for a large num-
ber of explicit examples from biology [85]. Studies on protein folding and stability,
for instance, demonstrated that conformational changes that increase the volume
of a molecule (such as protein unfolding) are prevented in a crowded environment,
while conformational isomerisation reactions from expanded or aspherical confor-
mations to more compact and spherical conformations are supported [42]. A protein
will therefore be stabilised against denaturation by heat, cold or denaturant, if high
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concentrations of stable crowder macromolecules are present |86, 87, 88|. In sev-
eral studies, the formation of aggregates and protein multimers was found to be
supported by crowding; examples for this include the self-assocation of an n-mer
from monomers [42], Haemoglobin assembly [89, 90] or the association of the 50s
and 70s ribosomal subunits [91]. As another effect crowding was shown to enhance
the activity of some chaporenes (specific proteins that support the folding process
of other proteins). This may happen either to compensate a possible interference
of crowding with folding (since crowding favours the aggregation of unfolded pro-
teins) or be caused by a stronger cohesion of chaperones in a crowded environment
[92, 93]. In the context of the organisation of the cytoskeleton, it was suggested
that crowding could induce spontaneous alignment and bundling of self-assembled
filaments, which may happen because orientational ordering can change the avail-
able volume for large and elongated macromolecules [94]. As a further effect of
crowding, the enhancement of the rate and the extent of the formation of fibrous or
rod-like protein assemblies was highlighted [86]. Crowding also has implications for
genome structure and function because it influences both the structural organiza-
tion of DNA and the interactions between DNA and proteins [37, 95]. Furthermore,
crowding is an important factor in the compensation mechanisms which protect es-
sential macromolecular interactions in E. coli bacteria against strong changes in the
tonicity of their surrounding [40]. And as a last implication, it shall be mentioned
that crowding also can cause the reversal of biochemical reactions. In this context,
studies indicate that in a crowded environment enzymes preferably may synthesise
polypeptides instead of catalysing peptide hydrolysis like they would do in a dilute
solution [96].
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3.2 Mechanical properties of cells and cell con-
stituents

The stability and the rheological behaviour of a material is typically determined
either a) by measuring its response to deformation with weak forces or b) by
observing the passive thermal fluctuations of embedded probe particles which
directly are influenced by the rheological properties of their environment. To
measure the mechanical behaviour of cells, various techniques have been developed.
Experiments that measure the response of entire cells to deformation are, for
example, micropipette aspiration [97, 98, 99|; atomic force microscopy (AFM)
[100, 101, 102]; microplate manipulation [103]; microneedles [104, 105]; magnetic
bead microrheometry [106]; magnetic tweezers [107], and magnetic twisting cytom-
etry [108].

Since these various methods apply different types of deformations to cells and the
deformation happens at different strengths, rates and lengthscales, the various
techniques elicit different responses from cells. To interprete the measurements
appropriate models have to be used [109]. Leucocyte cells which are aspired by a
micropipette with a large diameter, for example, can be described by a liquid drop
model [110] whereas cells that are aspired by a micropipette with a small diameter
could be approximated as an incompressible elastic half-space [111]. As the various
measurement methods and models differ strongly, a comparison between their
observations is often complicated. A fundamental finding of all techniques, however,
is that cells show viscous and elastic properties, and can thus be described as
viscoelastic materials.

Of particular interest are studies that determine the viscoelastic behaviour of cells
in terms of a frequency-dependend complex shear modulus G(w) = G'(w) +iG" (w)
(c.f. Section 4.4 for a more detailed introduction). In several studies, entire cells
were investigated over large frequency ranges by magnetic twisting cytometry
[112, 108] or AFM [102]. Here, G(w) was detected to follow a weak power-law
G(w) ~ w® with z lying between 0.1 and 0.4. The elastic contribution G’ of G(w)
was slightly stronger than the viscous contribution G”, but both were of a similar
magnitude.

While References [108] and [102] tested the mechanical behaviour of cells by
applying forces to the cellular surface, a recent study measured non-invasively the
mechanical stability of the cellular interior over 5 decades in w by observing the
thermal fluctuations of Brownian particles (diameter 100 nm) in the cells [11] (c.f.
Section 4.4 for a detailed description of the method). Here, a power-law scaling
of G(w) was detected with  ~ 0.75; elastic and viscous moduli were of similar
strength. These power-laws of G(w) as measured outside the cell [108, 102| and
inside [11] are comparable. The viscoelastic behaviour of entire cells as measured
in the described studies seems to be determined mainly by the cytoskeleton since
a disruption of cytoskeletal elements was seen to cause a decrease only of the
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elasticity and an increase of the viscosity, i.e. to soften the cell 11, 108].

Most measurement methods only allow one to determine the global cell sta-
bility. Examining the stability in different intracellular regions is a challenging
task but can, for example, be done by the method of detecting the local thermal
fluctuations of Brownian particles which was mentioned already. Reference [11]
demonstrated using this technique that subcellular regions of the cytoplasm, in
particular the lamella and the perinuclear region, exhibit large differences in
stiffness. In a similar study the interior of the nucleus was explored by tracking
artificially introduced nanospheres (diameter 100 nm), with the result that the
nucleus interior is also viscoelastic yet stiffer than the cytoplasm [113].

Another method to probe the mechanical characteristics of intracellular elements is
to isolate them and probe them in vitro. Reference [114] measured the viscoelastic
behaviour of solutions of purified actin, mimicking physological conditions, and
detected a power-law scaling G(w) ~ w® with z = 0.15 and the elasticity G’
dominating over the viscosity G”. These dynamics are qualitatively similar to the
measurements on entire cells of Reference [108|, yet the absolute values of G(w)
differ strongly (by four orders of magnitude). In another study, actin solutions
were shown to exhibit a dynamical behaviour G(w) ~ w*, x &~ 0.75 [115] which is
consistent with the findings in the interior of cells of Reference [11]. In agreement
with this, similar measurements reported by Reference [116] in actin solutions
can be interpreted as G(w) ~ w®, x ~ 0.75. In a distinct study, isolated nuclei of
artificial chondrocyte cells were shown by micropipet aspiration to be viscoelastic,
with the specific characteristics of being stiffer and more viscous than intact
chondrocyte cells [117]. The peculiar stability of the entire nucleus might be
assigned to its shell, the lamina-supported nuclear envelope [118| and to a putative
nucleoskeleton [119].

In several studies, the viscoelasticity of various cell lines was measured and
compared. These examinations highlighted that different cell types qualitatively
show the same viscoelastic behaviour, but differ in their individual values for G(w)
[108|. Reference [120] measured the deformabilty of single suspended cells in an
optical stretcher and detected a cell’s G(w) to be related to the cell type and the
cell’s state of development and disease. This finding can be explained with the
close relation of structure/composition of the cytoskeleton to the cell metabolism.
Measurements which compared the viscoelasticity of healthy cells and their can-
cerous counterparts showed that elasticity and viscosity were reduced in malignant
cells [121, 103, 122|. The greatest reduction of the rigidity was found in metastatic
cancer cells [121, 123] which might facilitate their entry into the lymphatic system
or the blood circulation to reach target organs [124]. Also, red blood cells that were
infected with the malaria parasite were in micropipette aspiration experiments
shown to be stiffer than healthy red blood cells [109].
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Chapter 4

Measuring molecule diffusion with
Fluorescence Correlation
Spectroscopy (FCS)

In this chapter the measurement methods used for the present thesis are introduced.
In the Sections 4.1, 4.2 and 4.3 Fluorescence correlation spectroscopy is presented
in detail as a technique to determine the diffusion of dissolved fluorescence-labeled
molecules; an introduction to the theoretical background is given as well as a de-
scription of the experimental setup. In Section 4.4 the technique of Mason & Weitz
to determine the rheological properties of a fluid from diffusion measurements on
embedded probe particles is presented.

4.1 A general introduction to Fluorescence Corre-
lation Spectroscopy

Fluorescence Correlation Spectroscopy has been developed in the early 1970s
[125, 126, 127, 128, 129, 130|. It is a method to analyse the properties of dissolved
fluorescent molecules with high temporal and spatial resolution. The parameter of
interest in FCS is not the fluorescence intensity itself (like in other fluorescence
techniques like FRAP), but rather temporal fluctuations of the fluorescence. By
determining the typical behaviour of the fluctuations in time (i.e. their strength and
duration) via the fluorescence autocorrelation, the characteristics of the underlying
processes which cause the fluctuations can be determined.

In principle, all physical parameters which give rise to fluorescence fluctuations are
accessible to FCS [131]. Typically, the technique is used to investigate the mobility
of fluorescent molecules. In a system of mobile fluorescent molecules, fluorescent
fluctuations occur due to the continuous entry and exit of molecules into and
out of the FCS detection volume. A quantitative autocorrelation analysis of the
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fluctuations thus reveals a) the molecule concentration and b) the mode and the
dynamics of the molecular motion.

Indeed, FCS allows one to discriminate between directed transport and diffusive
motion, to characterise different types of diffusion (normal diffusion, anomalous
sub- /superdiffusion, rotational diffusion) and to recognise multiple species with
different mobilities. In the case of transient binding of diffusing molecules to
immobile structures, the rates of the on/off kinetics can also be detected. The field
of application for FCS is very broad because the technique allows one to examine
a plethora of processes that are related to the mobility of molecules. For instance
FCS can detect conformational changes of diffusing molecules [132] or their binding
to other mobile objects [133] because both are related to a change of the molecule’s
hydrodynamic radius and thus to its mobility. Also a molecule’s binding to a mem-
brane is reflected in a change of its diffusional behaviour and thus detectable in
FCS [134]. In the present work, conclusions on the rheological properties of its em-
bedding medium will be made from a test particle’s mobility as measured with FCS.

A central aspect of FCS is to work close to the single molecule level. This is
important because the relative fluctuations of the particle number in the detection
volume, which are used for the autocorrelation analysis, decrease as the particle
number rises. In large ensembles, the relative fluctuations are thus masked by
unavoidable background noise. An adequate reduction of the molecule number to
yield large fluctuations is achieved by using small detection volumes in FCS and by
peforming measurements in highly diluted solutions, i.e. nanomolar concentrations.

Perturbations of FCS mobility measurements come from all processes which
change the light emission of a fluorophore during the measurement and thus
destroy the assumption that fluorescence fluctuations appear only due to the
change of the number of fluorescent molecules in the observation volume. Such
disturbing processes can be, for example, electron transitions in the fluorophore or
conformational transitions of the fluorophore due to a certain chemical environment.
These interferences must be either excluded in the system under investigation, or
the FCS measurements must be corrected for them, which is possible for example
in the case of electron transitions into non-fluorescent triplet states.

4.2 Molecule statistics in diluted solutions

To demonstrate why FCS - as a technique to analyse molecule number fluctuations
- depends on working at low molecule concentrations, the particle statistics in a
diluted solution is considered.

When we regard a closed system of the volume Vj, the total number N of dissolved
molecules is constant. The molecule number inside a small open volume V < Vj
in the system - which can be for example the optically defined observation volume
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used in fluorescence techniques like FCS - is constant on average but fluctuates
with time, due to the self-diffusion of molecules through the observation volume.
The probability p(N) that at a particular time ¢ exactly N molecules can be found
inside V' is given by a binomial distribution, which approximates for small V and
large Ny a Poisson distribution:

p(N) = e~ (N) . M (4.1)

The Poisson distribution is characterised by the fact that its mean value and its
variance are equal:

(N) = (AN?) (4.2)
NS

(N)
sirable to reduce the mean particle number (N) in FCS, since:

VIANY 1 (4.3)

In order to maximise the detected relative fluctuations , it is therefore de-

(N) VY
Relation 4.2 can also be expressed in terms of concentrations, with (C') = @ being
the average molecule concentration in the observation volume V and (6C?) = <AV]\£2>
being the variance of the concentration:
C
(6C?) = <—V> (4.4)

For an infinitesimal volume element d3r at position 7, Equation 4.4 can be expressed
with the Dirac J-function as [126]:

(6C(F,1)6C (17, 1)) = (CY6(F — r7). (4.5)

The d-function has the dimension of a reciprocal volume and replaces 1/V.
According to Equation 4.5, the concentration fluctuations at two different loci 7 and
' at a fixed time point ¢ are statistically independent from each other. This will
become particularly important for the calculation of the autocorrelation function of
the concentration fluctuations in Section 4.3.2.
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4.3 Measurement procedure and technical back-
ground of FCS

The fundamental approach in FCS is as follows: A small laser spot is placed on
the locus of interest, e.g. in a solution or in a living cell containing fluorescent
molecules. Then, the fluorescence intensity from the spot is recorded as a time series.
The fluorescence will be constant on average but will show stationary fluctuations
(provided that disturbances of the measurement are excluded). From the temporal
fluctuations the autocorrelation function is calculated, which has typically the shape
of a decay curve (see derivation in Section 4.3.2). To get the parameters of interest,
e.g. the diffusion coeffiecient of the examined molecule species, the autocorrelation
curve is fitted with an appropriate theoretical expression.

In the following chapters, the basic physics and the experimental realisation of each
of the measurement steps will be described.

4.3.1 Recording of fluorescence

To yield a fluorescence signal from an ensemble of fluorescent molecules, the
fluorophores have to be excited by illumination light of an appropriate wavelength.
The emitted fluororescent light from the fluorophores then is guided to a detector
which records its intensity.

Confocal alignment

For FCS measurements typically a confocal microscope is used. In contrast to
conventional widefield fluorescence microscopy where the entire specimen is illumi-
nated, confocal microscopy works with a point illumination. This can be achieved
by using a laser as a light source. The laser beam is focussed to the specimen (the
object) by an objective lense. Due to diffraction, the laser focus appears not as a
mathematical point but represents a focus volume V-, which has — according to
Abbe’s resolution limit — an estimative diameter wy = ﬁ. In this formula, A is the
illumination light wavelength. The parameter NA = n - sin § denotes the numerical
aperture, with n being the refractive index of the specimen and (3 being half of the
opening angle of the objective. The focus volume V> decreases with an increasing
NA, and since NA has a maximum value due to the diffraction limit, Vi always is
finite. With water immersion (i.e. water is used as medium between objective and
specimen, since water has a similar n as biological specimen), a high NA > 1 can
be obtained.

Upon illumination, the specimen emits fluorescent light which is mapped by the
objective lens onto a pinhole to reduce out-of-focus information and finally reaches
the detector. Because the focal volumes of illumination and detection coincide, the
system is denominated ’confocal’. The advantage of a confocal microscope is that
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optical information from outside the midplane of the illumination focus is supressed
by a) the confocal alignment of the foci and b) the supressing of light from outside
the focal plane by the pinhole. Thus, the axial resolution of the system is improved
compared to conventional microscopy and scattered light is avoided. The path of
rays in a confocal microscope is illustrated in Figure 4.1.

For a FCS measurement the confocal volumes of illumination and detection
are placed on the locus of interest, for example in a solution of fluorophores.
Fluorophores inside the illumination volume are then excited proportional to the
local light intensity and emit fluorescence light.

Dichroic

i Obijective Focus in
Pinh0|e error j Sample
Avalanche A 7 =N
Photo Diode I
B ><C
I
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Lens Lens ' ‘

— Correlator

Laser

Figure 4.1: Path of rays in a confocal microscope, as used for the excitation and
detection of fluorescence in a FCS measurement.

Ilumination

The characteristics of the illumination volume depend on the laser beam, on the
objective lens which focusses it on the specimen and on the specimen’s refractive
properties. The excitation laser beam works at a constant (adjustable) light intensity
and has an intensity profile of Gaussian shape with a 1/¢? - radius w;. The objective
lense, a complex entity containing a large number of intermediate and correction
lenses, is specified by its focal distance f.

The light intensity distribution I.,.(x,y,z) of the illumination volume in the object
space is described in radial direction (x-y-plane) by a Gaussian distribution and in
axial direction (z-coordinate) by a Lorentz distribution:

w2 . Iy —2(z244%)
0 e w()? (4.6)

Iexc(xa y? Z) = w(Z
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The width of the beam in the focal plane is wy = %Cw{, where ... is the vacuum

wavelength of the illuminating laser beam and n is the diffraction index of the
specimen. The beam cross subsection outside the focal plane (shifted in z-direction)
is defined by w(z)? = w3 + 2°w?/ f2. I is the maximum intensity of the illuminating
laser beam in the beam center.

Detection

The emitted fluorescence light is collected by the objective lense and focussed on
the pinhole. Only photons that come directly from the object plane can pass the
pinhole. The pinhole radius L is chosen in such a manner that the image of L
in the object plane and the width wy of the illumination volume are equal. The
combination of a high NA objective and the pinhole allows one, in accordance with
Abbe’s resolution limit, to obtain very small detection volumes of less than 1 fl.
The pinhole is mapped 1:1 on the photon detector, which is typically a single
photon counting avalanche photodiode. The fluorescence intensity I.,, is measured
as the number of photons ("counts per seconds’ cps) that reach the detector per
time unit.

The intensity distribution I.,,(x,y,2) of the emitted fluorescence light in the
detection volume as recorded by the detector depends on the illumination intensity
distribution I...(z,y,2), on the characteristics of the detection optics which is
described by the collection efficiency function CEF(z,y,z), on the photon yield of
a single fluorophore per excitation intensity ) and on the total efficiency of the
filters and photon counters E':

]em(xayvz) =E- Q : CEF(ZL’,y, Z) ' IexC(xayaz) (47)

The product of the normalized excitation intensity I...(z,y,2)/ly and the
CEF(z,y,z) is often denoted as molecule detection efficiency MDE(z,y,z).

The photon yield @) of a fluorophore is defined as the ratio of the number of adsorbed
photons to the number of emitted photons. The optical components that define the
CEF are the objective lens and the pinhole. Thus, the CEF can be calculated from
the objective’s point spread function PSF and the pinhole or transmission function
T(x,y). The PSF describes the light intensity distribution in the image plane (on
the detector) resulting from a point shaped light source in the object space that was
mapped by the objective. T'(z,y) describes the restriction of light detection due to
the pinhole. PSF and T'(z,y) can be expressed by disc functions in the object space
[135, 136].

-
/

N
r—r

)

cire(

P pe— LGk .
PSF(F,r', z) TR (4.8)
T(7) = cire(r/so) (4.9)
cire(/rg) =1 if |F] <rp, else 0 (4.10)
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7 is the two-dimensional vector in the x-y-plane perpendicular to the optical axis.
A point light source at the position 7, z in the object plane is mapped into the focal
plane (z = 0) as a disc with a radius that is determined by the resolution Ry of the
objective lense. Ry is the radius of the first Airy disc. In planes with z = 0 parallel
to the focal plane, the disc is magnified as defined by a Lorentz function:

R(2)* = Rg + 2% - tan® 5. (4.11)

so = L/M is the image of the pinhole radius L in the object space as generated by
the objective lens with magnification M.

The CEF is in each plane z calculated by an integral over the area:

1 ,
CEF(7,2) = - / T(7) - PSF(F,7, z)di (4.12)

where IV is a normalization factor.

A multiplication of the CEF of the objective-pinhole system and the illumination
intensity distribution /... shows that the pinhole modifies the resolution in direction
of the optical axis. The emission characteristic I.,, = k- Q- CEF(x,y, 2) - Leye(2,y, 2)
becomes a complicated expression that can be solved only numerically. However,
I.,, can be approximated by a Gaussian in axial and radial direction, if the pinhole
radius L is chosen according to the condition wy < L < % (0 is denoting the
focus angle) [136]. This condition guarantees that after the passage through the
optical system

a) the lateral Gaussian shape of I,. is conserved and

b) the axial Lorentz shape of I.,. is modified in a manner that it can be approxi-
mated by a Gaussian.

I.,, then becomes:

—2(22+44%+(2/9)?)

Im(z,y,2)=E-Q-Iy-e “ (4.13)
Here, S =~ 3 - 10 is the constant dimensionless shape factor that specifies the dis-
tortion of 1., in axial direction compared to the lateral directions.
4.3.2 Analysis of fluorescence intensity fluctuations

Measured fluorescence intensity signal

The fluorescence intensity signal F'(¢) that is detected from the observation volume
V depends on the intensity I.,,(x,y, z) of the light which is emitted from the position
(z,y, ) and on the fluorophore concentration C(z,y, z,t) in V:

F(t) = /erm(x,y,z) Oy, 2, t)d*r (4.14)
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The fluorescence intensity and the concentration can be separated in the constant
average values (F) and (C') and the fluctuations 6 F(t) and 0C(x,y, 2, t):

F(t) = (F)+0F(t) (4.15)
C(z,y,z,t) = (C) 4+ 6C(z, z,y,1). (4.16)

Autocorrelation analysis

To examine the characteristics of the fluorescence fluctuations § F'(t) an autocorre-
lation analysis of F'(t) is performed. Generally, an autocorrelation serves to clean
a fluctuating variable f(¢) from noise and to detect a possible self-similarity in the
behaviour of the variable.

The autocorrelation function of a time-dependent function f(t) without constant
component (i.e. (f(¢)) = 0) is defined as:

AC(T) = (f() - f(t+7)) = Tim = / F@O - ft+)dt (417)

T—oo T

The meaning of this mathematical operation is that each time point ¢y of f(t) is
compared with each later time point to+7, for to=t,in — tmaz, T = 0 — timaz — to-
Autocorrelation therefore highlights the self-similarity of f(¢) for a certain incre-
ment 7, which only exists if f(¢) contains a meaningful information and not just
random numbers. The autocorrelation function AC(7) then describes the temporal
decay of the information transported in f(¢). For a periodic signal, AC(7) is also
periodic, while for an event limited in time, AC(7) decays from a maximum to zero.

The normalised autocorrelation function of the fluorescence intensity F'(t)
is:

(F(t)- F(t+7))
VIE@(F(t +7)%)
With the Equations 4.14, 4.15, 4.16, the numerator of 4.18 becomes:

AC(T) = (4.18)

(F()F(t+7)) = (C- /V LomdV)? + /V / /Iem(ﬁ]em(ﬁ)wC(F,t)éC’(ﬁ,t+7)>dVdV’
(4.19)

Here, the first term is a constant and the second term is the autocorrelation
function of the fluorescence fluctuations, (0F(t) - F(t + 7)). It depends on the
intensity profile of the illuminating laser /... and on the autocorrelation function
of the concentration fluctuations (5C(7,t) - 6C(r t + 7)).
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Autocorrelation function for one diffusing particle species

If concentration fluctuations 6C(7, t) arise due to diffusion, the autocorrelation func-
tion of dC' can be calculated with the Gaussian solution Eq. 2.7 of the diffusion
equation and the condition specified in Eq. 4.5 in a three-dimensional system [126]:

(C) — =]

(6C(F,t) - 5C (17t + 7)) = e A (4.20)

The autocorrelation function of the fluorescence fluctuations

(0F(t)-0F(t+ 1)) _ Jo Jor Lem (F) Legn (7)) (OC (7, £)6C (r' t + 7))dV dV'

AC(T) =
(7) (F2) (C) [ Tewe(P)AV )2
(4.21)
then becomes with Equation 4.13 and Equation 4.20:
1 1 1
AC(T) = . (4.22)

_773/2w(2)z0<0> 1+:—d /1+S2L~rd

This autocorrelation function gives the decay curve which is expected in a FCS
measurement on a single species of fluorescence-labeled molecules dissolved in
water; a representative plot is displayed in Figure 4.2. In the autocorrelation
function, V = 732 . w2 . 2 is the observation volume, with zy = S - wy giving
the volume’s dimension along the octical axis. Thus, (N) = 7%/2 . w2 . 2z - (C) is
the average number of fluorophores in the observation volume, and the amplitude
AC(t = 0) is the inverse molecule number ~~ in the observation volume. The
intensity distribution I.,, in principle is defined over the entire space and has no
physical border, but it decreases exponentially in all three spatial directions due to
its Gaussian shape. Therefore, AC describes the behaviour of (V) particles in an
effective volume V. The size of V is typically about 1 fl, due to Abbe’s resolution
limit wy ~ % Its exact determination is typically done experimentally, either by
remeasuring the already known concentrations of test solutions or by mobility
measurements on a molecule species with a known diffusion coefficient.

The mean decay time of the autocorrelation function 7, = % is also denoted as
the diffusion time since it depends on the diffusion coefficient D. It represents the
average residence time of a molecule in the observation volume and hence tells how
long a fluororescent molecule is visible on average in the detection volume. The
autocorrelation function AC(7) can also be regarded after proper normalisation as

the probability that a molecule detected at the time ¢ = 0 is still detectable at ¢t = 7.
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AC(T)

T [s]

Figure 4.2: Autocorrelation functions of concentration fluctutations in a small ob-
servation volume of Gaussian shape due to normal diffusion with 7, = 500 us (Eq.
4.22; full line) and subdiffusion with 7, = 500 ps, @ = 0.7 (Eq. 4.26, dashed line).

Autocorrelation function for multiple diffusing particle species

If various fluorescent molecule species with different diffusion coefficients are present
in a solution, the autocorrelation function of the system must be modified. We as-
sume that k£ non-interacting species are present which have the diffusion coefficients
D; and possess all the same fluorescence characteristics £ - (). Then, the autocor-
relation function AC,,; of the entire system is the sum of the single ACs multiplied
with a weigthing factor taking in account the relative amount f; of each species i
in the system:

1

k
AC, =S f - A . 4.2
Cur =3 fi 4G = ZN 1+7/Td — (4.23)
i= T4,

2
Here, the parameters 75, = % are the diffusion times of the k£ molecule species.

Autocorrelation function for anomalous diffusion

The FCS technique also allows to detect anomalous diffusion of particles. To derive
an appropriate fit formula for the autocorrelation function in this context, the
specific scaling behaviour of the mean square displacement MSD for anomalous
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diffusion MSD ~ 2dI't* (c.f. Section 2.2) typically is modelled using the heuristic
approach of a time dependend diffusion coefficient:

D(t) =T -t (4.24)
which leads to MSD ~ 2dD(t)t. The corresponding diffusion equation is a(ggf) =
D(t) - AC(7) with the solution:

1 2
. e4arte (425)

) = Gty

where d is the spatial dimension of the system. With the same calculation as in the
normal diffusive case, the autocorrelation function for anomalous diffusion becomes:
1 1 1
3/2. 2. 5 - ’ EAT
7T/ Wy * 20 <O> 1+(T)a 1_'_%(7')04

Ts

AC(T) = (4.26)

Here, « is the degree of anomaly and 7, is the average residence time in the confocal
volume [44]. Comparative plots of the autocorrelation functions of normal diffusion
Eq. 4.22 and subdiffusion Eq. 4.26 are shown in Figure 4.2.

The approach of deriving the autocorrelation function from Equation 4.24 is
problematically for small times as D(t) — oo for ¢ — 0 if a < 1, i.e. in the
subdiffusive case. For a mathematically correct treatment of the subdiffusive case,
the transition probability (6C(7,¢)6C(r',t + 7)) would have to be derived for
example in terms of a continuous time random walk (CTRW) [6]. However, in the
study [44] it was shown by numerical calculations that fitting FCS data with the
handy formula Eq. 4.26 yields effectively the same results as a fit with the rather
complex expression calculated in terms of the CTRW.

4.3.3 Disturbing factors and their correction

Triplet states of fluorophores

An FCS measurement is affected by the transition of electrons from the singlet
state S; to a triplet state 77 if the transition rates between the states Sy, S; and
T, are smaller than the diffusion times of the observed process, what typically is
the case. The effects of the existence of 77 on a FCS measurement are that

a) the detected fluorophore number in the observation volume is reduced because
fluorophores in the triplet state are invisible to the detector and

b) the 'vanishing’ of fluorophores due to transition from S; to 7; contributes to the
measured fluorescence fluctuations.

Both effects distort the shape of the fluorescence autocorrelation curves mea-
sured in FCS. A correction term can be derived by consulting the population
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kinetics of the Sy, Sy and 77 states, which is described by the following system of
coupled differential equations [137]:

d So(t) —k12 ka1 k31 So(t)
% S (t) = kia  —kor — kog 0 S (t) (427)
T:(t) 0 ka3 —ka1 Ti(t)

Here, k15 is the transition rate from Sy to Si, ko from S; to Sy, ko3 from S to 17,
k’31 from T1 to S().

In the autocorrelation function only molecules contribute which were at ¢ = 0 in
Sp and emitted a photon. Solving the Equations 4.27 with the appropriate initial
conditions Sy(0) = 1, S1(0) = 0, 7T3(0) = 0 yields that the probability to have a
state X (¢) populated at the time ¢ is given by an expression of the shape:

X(t) = i Azett. (4.28)

Here, A; and ); are the components of the eigenvectors and eigenvalues of the
equation system above. Some illustrative considerations on electron transition (see
Reference [137]) yield the eigenvalue A3 to be related to the population increase of
the triplet state. It can be approximated as

k12k23

Ay = —kg — ———,
’ o k1o + ko1

(4.29)

The fraction of fluorophores populating the triplet state can be approximated by
the expression

k12 k23

— . 4.30
k1a(kas + ks1) + k31 (ka1 +Fkas) ( )

fr

We assume now that fluorescence intensity fluctuations contributing to the fluores-
cence autocorrelation function A C(7) are caused either by concentration fluctuations
or by molecules that enter or leave the triplet state. This yields that the autocor-
relation function AC(7) derived in Section 4.3.2 by considering just concentration
fluctuations has to be multiplied by the following term to take in account also triplet
transitions [137]:

FtTiplet(T) =1- fT + fTeié- (431)

Here, 7 = 1/)\3 denotes the triplet relaxation time.
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Signal and background

In the detected fluorescence intensity signal F'(¢), also background light is included.
It is generated by reflexions of the laser beam at optical components and by light
scattering on impure glass surfaces or the specimen. This background noise is uncor-
related and has therefore no influence on the signal correlations. However, relatively
strong noise leads to a apparent increase of the measured fluorophore concentration,
since the total recorded fluorescence has increased relatively to the signals that are
assigned by autocorrelation to single fluorophores. Therefore, in the case of strong
noise a correction of AC(7) is necessary by the factor:

[ ac Toun
Upackground) d>)2 (4.32)

FBackground = (1 —
aergronn ( <]TotalSignal>

Nevertheless, a powerful and stable laser and interference filters which are optimized
to the emission spectrum of the used fluorophores guarantee a fluorescence yield in
the detection volume which lies about 3 orders of magnitude over the background.
Thus, typically no correction for background light has to be done.

Generally, the fluorescence fluctuations caused by concentration fluctuations
must be large enough that they do not vanish in the background noise. The
fluorescence fluctuations due to concentration fluctuations are largest when caused
by few molecules; therefore the concentration of the molecule species under inves-
tigation has to be small in the system (c.f. Section 4.2). The largest fluctuations
are measured when the observation volume is smaller than the ’territorial volume’
V; of a single molecule. V; is defined as V; = %, where (C') is the average molecule

c
concentration in the observation volume.

Other disturbing processes

For large objects that are labeled with many fluorophores, rotational motions of
the object and inhomogeneous excitation due to size do influence the fluorescence
fluctuations detected in the observation volume and thus the FCS measurement.
However, this effect can be neglected if only molecules with radii smaller than some
ten nanometers are investigated.

Another reason for intensity fluctuations at the detector is the photobleaching of
fluorophores. To avoid a fast bleaching, the intensity of the laser illumination is set
to a low value during FCS measurements. With an appropriate low laser power,
the photochemical average life time of the molecule is much higher than the typical
diffusion time of a molecule. Thus, no correction for photobleaching is necessary.
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4.4 Determination of a fluid’s complex shear mod-
ulus

A fundamental mechanical property of any material is its response to shear
stress [1]. By examining a material’s behaviour under shear deformation we can
distinguish the two basically different classes of solid and fluid materials. Solids
are elastic and store the deformation energy which is induced by applying a
shear strain, whereas fluids are viscous and dissipate the deformation energy.
Many materials, however, show both viscous and elastic behaviour: they store
a proportion of the deformation energy and dissipate the rest; these materials
are called wviscoelastic. A material class which shows viscoelastic behaviour is, for
example, the class of complex fluids, which includes colloidal dispersions, polymer
solutions or solutions of self-assembled surfactants.

The viscoelastic behaviour of a material can be quantified by determining its
complex shear modulus G(w) which measures the stress induced in the material
when an oscillatory shear strain of frequency w is applied. G(w) is a complex
parameter of the form G(w) = G'(w) + iG"(w). The real part G'(w) is the elastic
storage modulus which measures the phase response of the medium to an oscillatory
strain and thus shows the ratio of the elastic component of the induced stress
to the applied strain. The imaginary part G”(w) is the viscous loss modulus
which measures the out of phase response and thus gives the ratio of the viscous
component of the induced stress to the applied strain. Purely viscous media like
water with a viscosity n are characterised by G'(w) = 0 and G”(w) = inw, whereas
purely elastic materials like rubber exhibit G”(w) = 0. In viscoelastic media, both
G'(w) and G”(w) have values significantly larger than zero, with their relative
contribution being dependent on the frequency of shearing. In fact, G(w) is the
fourier transform of the stress relaxation modulus G, (t) which parametrises the
temporal stress relaxation behaviour of a material. Since the single real function
G, (t) determines both real and imaginary part of G(w), G’ and G” are not
independent but are related by the Kramers-Kronig relations.

The complex shear modulus G(w) can be measured either in the bulk of a
medium or locally. The local modulus is typically identical to the bulk modulus
of small samples and yields information about the small-scale structure of the
medium. The bulk modulus of a medium is ususally determined by measuring
directly the strengths of a deforming strain applied to the medium and of the
induced stress, which can be done, for example, with a strain rheometer or a torsion
pendulum. Local moduli can be measured by embedding test particles in a medium
and detect either their active behaviour upon manipulation with a field gradient or
their passive thermal fluctuations [115].

In the present thesis, measurements of the nanoscale viscoelasticity of cells are
presented which were done by determining the mean square displacement MSD of

51



4.4. DETERMINATION OF A FLUID’S COMPLEX SHEAR MODULUS

probe particles diffusing within the cells and converting the MSD via a mathemati-
cal relation to G(w). This method was proposed in 1995 by Mason and Weitz [1] as
a technique that is, in principle, generally applicable to measure the local complex
shear modulus of viscoelastic media.

Following Mason & Weitz [1], the relation of the MSD to the complex shear
modulus G(w) is done under the assumption that the response of a small particle
to the thermal stochastic forces leading to Brownian motion is determined by the
bulk mechanical susceptibility of the embedding medium (see derivation below).
The relation is:

~ S 6kBT

Here, G and the MSD are both in the Laplace domain, which is denoted by the tilde.
The parameter s is the Laplace frequency, kp is Boltzmann constant, 7" denotes
the absolute temperature. The first term in brackets describes the dissipation of
thermal fluctuations in the medium. The second term is due to inertia and becomes
important only at very high frequencies. Neglecting the inertial term, equation 4.33
can be regarded as a generalised, frequency-dependent Einstein-Stokes relation.
For a particle diffusing in a purely viscous fluid and having the diffusion coef-

ficient D, MSD(s) = 65—127 and the frequency-independent case is recovered: g = 6’fr”fD.

To determine G(s) of a complex fluid in practice, the MSD(t) of probe par-
ticles embedded in the fluid is measured. This can, in principle, be done with any
method, provided that the measurement does not disturb the rheological properties
of the material. The probe particles, however, are required to be spherical and rigid.
After having recorded the MSD(t), its Laplace transform to MSD(s) is performed
and G(s) is calculated with equation 4.33. To get G(w), one would in principle have
to calculate the stress relaxation modulus G,(t) by taking the inverse unilateral
Laplace transform of G(s). A Fourier transform of G,(t) then would yield G(w).
Alternatively, G(s) can be fitted with a functional form in the real variable s.
G(w) is then obtained by using analytic continuation, substituting iw for s in the
fitted form. The proposed procedure allows to determine a mediums rheological
behaviour on different length scales (depending on the probe particles’ radii) and
over a broad range of excitation frequencies (depending on the time resolution of
the MSD measurement).

The applicability of this technique was demonstrated in several studies [1, 25, 26].
In Reference [1| the complex shear moduli G(w) of various viscoelastic media
were determined with two different methods: a) recording the MSD of embedded
test particles by a scattering light technique and b) by an oscillatory mechanical
bulk measurement with a strain rheometer. For the three test cases of a colloidal
suspension, a polymer suspension and an emulsion, the results of both measuring
techniques agreed very well. Other studies [25, 26] showed that recording the
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MSD of test particles in polymer solutions with two different techniques (laser
deflection, light scattering) led to the same G(w) which again was in agreement
with rheometrical bulk measurements.

The described method already was used for various measurements related to
biology. Examples include studies on the viscoelasticity of DNA [25], actin solutions
[138, 114] and the cytoplasm [11, 27| and the nucleoplasm [113] of living cells.

Derivation of Equation 4.33

To show the relation between a diffusing particle’s MSD and the embedding
medium’s G(w), we will follow the derivation of Mason & Weitz [1].

The motion of a particle in a viscoelastic medium can be described with a gen-
eralized Langevin equation, incorporating a memory function to account for the
viscoelasticity [139, 140]:

m-i = falt) — /0 C(t — Fyo(r)dr (4.34)

where m is the particle mass and v(t) the particle velocity. fr(t) represents the
random forces acting on the particle, including both the contribution from direct
forces between the particles and the stochastic Brownian forces. The integral term
represents the viscous damping of the fluid and incorporates a generalized time-
dependent memory function ((¢).

Since the energy which is stored in the medium leads to changes in the temporal
correlations of the stochastic forces acting on the particle at thermal equilibrium,
the appropriate fluctuation-dissipation differs from the case of a purely viscous fluid
and has the form [139]:

< fr(0) - fr(t) >= kpT((?). (4.35)

Here, kp is Boltzmann’s constant and 7" is the temperature.

The viscoelastic memory function ((t) can be related to the particle’s MSD by
taking the unilateral transform [141] of the generalized Langevin equation Eq. 4.34
and using the fluctuation-dissipation theorem Eq. 4.35.

The assumption is made that ((t) is proportional to the bulk frequency-dependent
viscosity 7 of the fluid:

is) = 22

= 4.36
6ma ( )

where s is the Laplace frequency and a the particle radius. For Equation 4.36 to

be valid, the used probe particles are required to to have a firm radius a (i.e. they
must be spherical and rigid).
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Equation 4.36 can be regarded as a generalised, frequency-dependent Stokes law
for viscoelastic media, which is a complex function for the particle’s resistance to
motion. It is based on the assumption that Stokes drag for viscous fluids (no-slip
boundaries) can be generalised to viscoelastic fluids at all frequencies s. Since this as-
sumption is not necessarily true, Equation 4.36 is phenomenological. The calculation
of the complex shear modulus in the Laplace domain by the formula G(s) = s - 7j(s)
yields finally Equation 4.33.
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Chapter 5

Results I — Diffusion of
nano-particles in living cells and
nanorheology of intracellular fluids

In this chapter the results from FCS diffusion measurements are presented in which
the intracellular diffusion of fluorescent nanogold particles and, in association, the
complex shear moduli of the intracellular fluids were determined; the measuring pro-
cedure, the obtained results and their interpretation are described and discussed in
detasl.

5.1 Problem definition

Although diffusion of proteins and protein-sized test particles in cells has been the
subject of several studies, the picture of intracellular diffusion has remained frag-
mentary in many points. Early measurements with the FRAP method showed a
reduction of a macromolecule’s diffusion coefficient in living cells compared to wa-
ter |[61]. Recent measurements with the more sophisticated FCS method, however,
brought new insights, in that selected proteins (GFP, IgG antibody) and protein-
sized dextran molecules were detected to move by subdiffusion [67, 44|. This was
ascribed to the dense occupancy of intracellular fluids with macromolecules ("macro-
molecular crowding’) which obstruct the motion of indiviual tracers. Since subdif-
fusion of molecules can have significant implications on many processes related to
biology [73, 74, 76, 83|, its detection and quantification for macromolecule in cells is
of particular interest. While the occurrence of subdiffusion in itself was convincingly
demonstrated [44, 68], the strength of the subdiffusion as specified by the anomaly
parameter « is not really clear. The available studies are in this respect problematic
either in their choice of the tracers (branched dextran chains and the non-spherical
IgG antibody in ref. [44], the GFP fluorophore in ref. [67]) or in their choice of the
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experimental environment (crowded model solutions instead of cells in ref. [68]).
The present thesis aims at extending the current understanding of nanoparticle dif-
fusion in living cells. In the experiments which are described in the following section,
fluorescent labeled nanogold beads were introduced into living cells as spherical, in-
ert, protein-sized tracers. With FCS their diffusion characteristics both in the cyto-
plasm and the nucleoplasm were determined. Comparative measurements were done
on diffusing BSA proteins. To investigate the cell-specificity of diffusion, various cell
lines of different origins and health states were examined.

In further work, the diffusion measurements on nanogold were used to conclude on
the rheological state of the cellular interior. Generally, the (sub)diffusive characteris-
tics of particle motion is related to the rheological properties of the embedding envi-
ronment. Available studies on cell rheology showed entire cells and the intracellular
environment to be viscoelastic on the scale of micrometers, mainly due to the sta-
bilising cytoskeleton [11, 102, 108]. In the work presented in the following, however,
the rheological properties of intracellular fluids were determined on a lengthscale
of some ten nanometers, by transforming the MSD of nanogold via a generalised
Einstein-Stokes relation into the complex shear modulus G(w) that quantifies the
viscoelastic behaviour of an embedding medium. Since the mechanical behaviour
of cells on the nanoscale can expected to be determined mainly by macromolecu-
lar crowding, the determination of G(w) gives a description of the crowding state
in terms of rheology. In particular, the measurements highlight if macromolecular
crowding contributes to the over-all cell stability. To gain further insights into the
crowing state of intracellular fluids, a change of crowding was induced by stressing
cells osmotically and determining again the complex shear modulus.

5.2 Materials and Methods

Nanogold particles

Colloidal nanogold particles (Molecular Probes, Eugene, OR) are spherical, have a
diameter of 5 nm and are labeled with the fluorophore dye Alexa 488. The dyes are
linked covalently to the gold via conjugation and streptavidin-biotin binding. The
nanogold was kept in a specific buffer based on Tris, with physiological pH = 7.4
and a 0.1 mass% extra content of BSA. Potentially unoccupied streptadin binding
sites were saturated by incubating the nanogold with biotin.

For our purpose, the nanogold particles were appropriate because the particles are
supposed to be spherical and to not to bind or stick nonspecificly to components
of the cellular interior. The latter is avoided by saturating the goldbeads in BSA,
which covers potential sites of nonspecific interactions of the gold surface with
proteins.

BSA
In comparative diffusion measurements, the protein bovine serum albumin (BSA)
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(Molecular Probes) labeled with the fluorophore Alexa 488 was used as a probe
particle with well-defined molecular weight of about 66000 daltons.

Fluorophores

The fluorophore Alexa 488 which labeled in the diffusion measurements presented
here nanogold and BSA has an absorption maximum at a wavelength of 488 nm
and an emission maximum at 530 nm (see Figure 5.1).

For marking microinjected cells, TexasRed labeled dextran (10,000 mol wt; Molec-
ular Probes) was used. The TexasRed fluorophore has an absorption maximum at
a wavelength of 596 nm and an emission maximum at 615 nm (see Figure 5.2).

In comparative experiments the diffusion of the eGFP (enhanced green fluorescent
protein) fluorophore in HeLa cells was measured with FCS. For this purpose, eGFP
was expressed from a pEGFP plasmid vector (Clontech) which was transfected
using the reagent Fugene 6 (Roche). The eGFP fluorophore has an absorption
maximum at a wavelength of 489 nm and an emission maximum at 507 nm (spectra
not shown).
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Figure 5.1: Spectra of absorption (full line) and emission (dashed line) of Alexa 488.

Cells

Wild-type Hela, HepG2, U20S, PLC and NIH-3T3 cells were grown at 37°C in
DMEM medium (+10% fetal calf serum, +1% penicillin-streptomycin). BXPC and
CHO cells were grown at 37°C in RPMI medium (+10% fetal calf serum, +1%
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Figure 5.2: Spectra of absorption (full line) and emission (dashed line) of the fluo-
rophore TexasRed.

penicillin-streptomycin). TP366 and TP98G cells were grown at 37°C in MEM
medium (+10% fetal calf serum, +1% penicillin-streptomycin). THLE cells were

grown at 37°C in bronchial epithelial cell basal medium (Clonetics, San Diego,
CA).

Xenopus egg cell extract

Extract from egg cells of Xenopus laevis was kindly provided by T. Surrey (EMBL
Heidelberg, Heidelberg, Germany). The protein concentration of the extract was
determined using the Bradford method [142] to be ¢ = 12.8 mg/ml, which is in
agreement with previous reports [143].

Microinjection

Microinjection of Nanogold in cells was done with an AIS2 microinjection system
(Cellbiology Trading, Hamburg, Germany) based on an Eppendorf Femtojet injec-
tion system. Injection tips were pulled with a P97 tip puller (Sutter Instruments,
Novato, CA) from borosilicate thin-wall capillaries with filament (length, 100 mm;
OD, 1.2 mm; ID, 0.94 mm).
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Microscopy

FCS measurements were performed with a Leica SP2-TCS confocal-laser scanning
microscope equipped with a water immersion objective (HCX PL APO 63 x
1.2W CORR) and an FCS unit (both, Leica Microsystems, Mannheim, Germany).
Samples were illuminated with a 488-nm Ar laser, the fluorescence was detected
using a bandpass 500 — 530 nm and a pinhole size of 1 Airy unit. The sample and
the microscope were held at 37°C by a climate chamber (Life Imaging Services,
Reinach, Switzerland).

5.3 Experimental procedure

Introduction of nanogold into cells

Cells were splitted onto non-coated glass cover slips one to five days before the
FCS measurement, depending on the growth rate of the individual cell line. At
the day of the experiment cells covered about 10 - 50 % of the glass cover slips’ area.

Nanogold beads were introduced into the cells via microinjection 2 - 3 hours
before the FCS measurement. Microinjection is a technique that is used to insert
fluid substances into living cells. The fluid substance is filled into a glas needle
with a fine diameter of 500 nm at the top. Having the cells adherent to glass
cover slips, the needle penetrates the plasma membrane and the fluid is injected
by applying a pressure of about 30 to 200 hPa at the back of the needle. The
process of microinjection is performed under a special microscope setup equiped
with a micromanipulator. The needle is moved with a step motor, allowing precise
positioning within accuracy of about 500 nm. The exact injection pressure is chosen
individually for every cell line, to ensure the injection process to be as gentle as
possible for the cells.

The dissolved fluorescent labeled nanogold was injected into the cells in amounts
that resulted in a nanomolar concentration of gold in the cell (detected with FCS),
which is appropriate for FCS measurements. The microinjected fluid dispersed over
the whole cellular interior within seconds.

Fluorophore concentrations of some nanomoles are optimal for FCS measure-
ments, but can not be visualised in microscope pictures. Thus, a fluorescent marker
had to be co-injected to be able to recognize the cells in which nanogold was
present. As marker the fluorophore Texas Red was used, which is not excited at
the wavelength of 488 nm used for the FCS measurements (c.f. the spectrum of
TexasRed in Figure 5.2). Light at the emission wavelengths of TexasRed also was
prevented by a bandpass filter 500 — 530 nm from arriving at the detector. Thus,
the Texas Red marker did not disturb the FCS measurements.
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FCS measurements

The FCS measurements in cells were performed at a temperature of 37°C. During
a FCS measurement, the cells were kept in transparent imaging medium, which
lacked the pH indicator dye Phenol Red that is commonly present in growing media.

Before each FCS measurement a differential interference contrast (DIC) im-
age of the cell under investigation was recorded. Representative images of 3 cell
types are shown in the Figures 5.4, 5.5, 5.6. In the cell images, cytoplasm and
nucleus could be clearly distinguished. For a FCS measurement the laser spot
was placed at the locus of interest in the cytoplasm or in the nucleus. As locus
of interest an arbitrary position was chosen which allowed the observation of
free nanogold diffusion in three dimensions. To this end, some distance was kept
between the laser spot and the plasma membrane, the nuclear envelope and other
membrane structures (as far as identifiable in the cell image) which could have
restricted the nanogold diffusion.

The spot was illuminated with laser light of the wavelength 488 nm. The laser
power was set to values between 10 to 100 mW. This yielded a fluorescence inten-
sity signal of typically 8000 to 20000 cps (photon counts per seconds) at the detector.

For each individual cell that was inspected with FCS, two measurements in
the cytoplasm and two measurements in the nucleus were performed. For the
measurement in one point, the fluorescence intensity was recorded for 50 s.
Typically, FCS experiments were performed in 12 to 15 individuals from each cell
line. In the case of Hela cells, 35 untreated individuals and 34 indiviuals incubated
in hyperosmotic medium were tested, in order to monitor the distribution of the 7,
and « values.

The calculation of the autocorrelation curve from the recorded fluorescence
signal was done by the microscope’s software (Leica Microsystems, Mannheim,
Germany). The autocorrelation analysis resulted in the characteristic decay curve
that describes the diffusion of fluorescent molecules in solution (see Figures 5.4,
5.5, 5.6 for representative curves).

The fluorescence intensity signals recorded from different points in an indi-
vidual cell were of similar strength, both for the cytoplasm and for the nucleus.
Autocorrelating the recorded fluorescence series yielded good correlation curves
both for the cytoplasm and the nucleus. The fitting of the curves showed similar
nanogold concentrations in both compartments. The conclusion from these obser-
vations is that nanogold particles were distributed equally in the cells. This is in
agreement with the expectation that molecules with diameters smaller ~ 9 nm
(like the nanogold particles) can diffuse freely into and out of the nucleus [34].
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FCS measurements on ’empty’ cells in which no nanogold had been injected,
yielded only low fluorescence signals of 500 to 2000 cps and autocorrelation curves
that were fluctuating about the zero line without showing a characteristic decay.
This observation made sure that the high fluorescence signal and the characteristic
autocorrelation curve measured in cells containing labeled nanogold was indeed
due to the diffusing nanogold and was not caused by autofluorescence of the cells.

Analysis of FCS curves

The recorded FCS curves were fitted using XMGRACE, a free software program for
processing and plotting data (see http://plasma-gate.weizmann.ac.il/Grace/). As fit
function for a potentially subdiffusive process, typically the product of Equations
4.26 and 4.31 is used [144, 44, 68]. Equation 4.26 is the theoretical expression for
an autocorrelation function of fluorescence fluctuations arising due to fluorophore
(sub-)diffusion in a small observation volume of Gaussian shape, while Equation
4.31 represents a correction term to account for the fluorophore photophysics (i.e.
electron transitions into nonfluorescent triplet states).

Since subdiffusion is generically a transient phenomenon that turns to normal dif-
fusion beyond a certain time scale (c.f. Section 2.2.2), both subdiffusion and normal
diffusion might contribute to the autocorrelation curve. Thus, in the present work

T

the formula Eq. 4.26 was modified by replacing the term (Z)* with the empirical

expression = + (Z)*. The resulting fit formula is:

L= frt freT 1 _ 1
< N > 1+:—d+(:—s)a \/1+ T +%(Tls)a

SQTd

AC(T)

(5.1)

Here, wy is the lateral diameter of the observation volume. The shape factor S gives
the distortion of the observation volume in axial direction, fr is the fraction of
fluorophores in the triplet state, 7 is the triplet relaxation time (c.f. Section 4.3.2).

The fit of a FCS curve with Equation 5.1 reveals three parameters that characterise
the diffusion of the fluorescing particles:

a) the characteristic time 7, of the transition to normal diffusion (typically 7, >
10 ms).

b) the characteristic particle spreading time 7, below the transition to normal dif-
fusion, i.e. in the subdiffusive regime. 75 is the mean residence time of a fluorophore
in the confocal volume, determining the decay time of the autocorrelation curve,
and has typically values 7, < 10 ms.

c¢) the anomaly «. The deviation of o from unity (normal diffusion) specifies the
degree of anomaly of the measured diffusion process which can be subdiffusion (0
< a < 1) or superdiffusion (o > 1). o determines the shape of the decay of the
autocorrelation curve.
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With these three parameters, the mean square displacement MSD(7) of the
measured diffusion can be calculated as
MSD(r) = w2~ + w(—)” (5.2)
Td Ts

MSD(7) is a measure for the spatial spreading of particles during a certain time
period 7.

In the measurements, the average 7, and « values of a cell line for 1) the
cytoplasm and 2) the nucleus were calculated as the arithmetic means of the
cytoplasmic/nucleoplasmic 75 and « values of all measured individual cells.

Calculation of complex shear modulus

From the MSD of the nanogold particles as determined from the FCS measurements
with equation 5.1, the complex shear modulus G(w) of cytoplasm and nucleoplasm
was calculated, following the strategy of Mason & Weitz [1] (c.f. Section 4.4). The
5 nm nanogold beads were rigid and spherical, and thus satisfied the requirement
of Mason & Weitz [1].

To calculate G(w), first a Laplace transform of the MSD was done:
MSD(s / MSD(T)e*"dr (5.3)
which led for the MSD as specified in Equation 5.2 to

2

MSD(s) = —0

Tys?  TosH

201
Wooé.

(5.4)

Setting this in equation 4.33 and neglecting the inertia term —m - s, resulted in
G(s), the complex shear modulus in the Laplace space:

~ k’BY7 S

G(s) = 5.9
)= rpa T (55)
Td Ts
Substituting s with w yielded:
al  2—a o3 W ol 2—a
kpT  ew' “sin(¢) +i(2 + Sw' % cos(9))
Gw) = —— - R (5.6)
mRwg L+ Tdiawl acos(¢) + %w2—2a
d s
Where ¢ = 5 — Sa. For the conversion, i* = — e3% was used. a! was calculated via
I+ 1), Wlth the gamma function ['(z) being defined as
e~ T
— . 1 -1 :L'/k 5.7
- kHl< +)e (57)
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In the limit 7, — oo, the complex shear modulus Eq. 5.6 shows an asymptotic
scaling
|G(w)] ~ (Tsw)* (5.8)

Using FCS, diffusion on a timescale from 107% s to 1 s was investigated. With
w = %, the complex shear modulus G(w) as calculated from FCS data hence
covered frequencies w from 1 Hz to 10% Hz.

The question may arise whether the Laplace transformation as described by
Equation 5.3 (defined from 7 = 0 to oo) is allowed for a parameter like MSD(r)
that is only known within a limited range of 7. To examine if the unknown course
of the MSD(7) outside the experimentally determined 7-domain might influence
G(w) as calculated via the Laplace transformation, exponential deviations were
artificially introduced at the beginning and the end of MSD(7). In the resulting
G(w), changes were observed hardly more than half an order of magnitude away
from the boundaries of the corresponding frequency range. This result shows
that the extraction of the G(w) via the Laplace transformation is a rather robust
approach.

Stressing cells osmotically by incubation in hypertonic
medium

For some of the FCS measurements, cells were stressed osmotically by incubating
them in hypertonic medium. The term osmosis denotes the net flux of solvent
across a semi-permeable membrane (permeable to solvent, impermeable to solute
molecules) from a solution with lower solute concentration to a solution with higher
solute concentration. The movement of solvent here happens without any input of
energy, but is entropy-driven. This physical effect can be used to extract water from
cells, which is the solvent of the molecules in cytoplasm and nucleoplasm. If cells
are put into growing media which have a higher solute concentration (hypertonic)
than the cellular interior, water is forced to leave the cells to reduce the difference
in concentration due to osmotic pressure.

In the experiments presented here, the medium was made hypertonic by adding
one of the osmotic stress agents sucrose, raffinose, NaCl and urea.

The osmotic stress agent sucrose (or saccharose) is a di-saccharid, i.e. a molceule
that consists from two sugars. Due to its size, it can not enter living cells [145].
Therefore, effects observed upon addition of high sucrose concentrations to the
growing medium must be ascribed to the cell’s osmotic loss of water, whereas
chemical or biological reactions due to an over-saturation of the cell with sucrose
can be excluded. Raffinose on the other hand is a tri-saccharid and is also too large
to enter cells. NaCl is twice as osmolar as the other agents, because it dissociates
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into a positive and a negative ion. Stressing cells osmotically with addition of NaCl
to the medium may cause both effects of a) water detraction from the cell and
b) the entering of Na™ and Cl~ into the cell, because these ions are rather small.
The cell’s loss of water may therefore be weaker than under osmotic stressing with
sucrose or raffinose. Urea molecules are comparable in size to water molecules and
may thus enter cells.

Cells may react to osmotic stress by enabling a volume regulation. This po-
tentially happens by changing their ion flux across membrane channels and
in producing osmolytes (i.e. molecules which affect osmosis) [146]. However,
these volume control regulations do not start during the first 2.5 hours after
hypertonic incubation [147]. In the present experiments, the FCS measurements
were performed about 30 min after having put the cells in hypertonic media,
and a FCS measurement session lasted about 1h. Thus, the FCS measurements
should not have detected effects due to cell internal volume compensation reactions.

To examine if cells survive the treatment with osmotic stress agents, we re-
placed in a test experiment the hypertonic growing medium (500mM sucrose) after
1.5 hours with normal growing medium. Cells were afterwards normally cultured
in the incubator and observed for one week. They showed normal growing and
division behaviour.

Determining the ratio of the cell size to the nucleus size

To estimate the tumor aggressivity of the different cell lines, the area ratio of entire
cells with respect to their nucleus area was determined. For this purpose transmis-
sion light pictures of cross sections of about 25 individuals of each cell line were
recorded. On the cell images nucleus and cytoplasm could be clearly distinguished.
The area sizes of the entire cell and of the cell nucleus on the images were quantified
with the ’area measurement’ tool of the Leica Confocal Software. All included cells
were selected under the restriction to have one clearly recognizable nucleus, i.e. to
not be within a division process.

FCS calibration measurement

As a calibration measurement the diffusion of labeled gold beads in water was
determined with FCS (see Figure 5.3 for a representative measurement curve). The
gold beads were detected to show the characteristics of normal diffusion, with a
diffusion time 75 = 125 ps. The result of normal diffusion is in agreement with the
expectations for the motion of spherical particles in diluted solution, which assures
that the confocal microscope is properly aligned, i.e. that the confocal volume has
the correct shape and does not suffer from distortions. Perturbations of the confocal
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volume falsifying the measurements could lead e.g. to the detection of a wrong
anomaly o with FCS [148, 149].

The width of the confocal volume was determined to be about wy = 210 nm by
comparing the measured diffusion coefficient D = g with the theoretically expected
D of nanogold in water which was calculated from the Einstein-Stokes-relation as
D = 90 um?/s. The detected wy is also in fair agreement with the microscope’s
resolution limit at A = 488 nm which can be estimated to be ~ 244 nm according

to Abbe’s formula wy ~ 3.

AC(T)

Figure 5.3: FCS measurement of 5 nm gold beads in water (symbols). Fitting with
Equation 5.1 yields normal diffusion with 7, = 125 ps (full line).
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5.4 Results

5.4.1 Diffusion of nanogold in cells

To examine the diffusive behaviour of nanosized particles in living cells, fluores-
cently tagged nanogold beads (diameter 5nm) were introduced via microinjection
into individuals of different mammalian cell types. As a representative collection of
cells the 10 well-established cell lines NIH-3T3, CHO, Thle-3, HepG2, PLC, HeLa,
BXPC, TP98G, TP366 and U20S were examined. These cell lines cover a broad
range of origins: they are derived from different mammalian species (hamster, mouse
and human), from different tissues (liver, brain, cervix, ovaries, muscles, bone) and
are of different health state (originally healthy but immortalized cells and different
cancer cell species) (see Table 5.1).

The nanogold diffusion in the cytoplasm and the nucleus of the cells was measured
using fluorescence correlation spectroscopy (FCS). Representative DIC images and
FCS curves of 3 cell lines can be seen in the Figures 5.4, 5.5, 5.6. In all cell lines, the
nanogold particles were detected to show the characteristics of strong subdiffusion,
both in the cytoplasm and the nucleoplasm. The values of the average residence
times 75 in the confocal volume varied between 100 and 900 ws in the different cell
lines. Thus, compared to nanogold diffusion in water (7, = 125 us), 7, was typically
increased in cells by factors from 2 to 7, with exception of PLC cells which showed
residence times similar to water. The average anomaly degrees o were between (.48
and 0.63 (see Table 5.1). For times 7, > 0.85 ms, normal diffusion was recovered.
The latter observation is consistent with previous proposals that subdiffusion due to
obstruction/crowding should be rather a transient than an asymptotic phenomenon
|44, 52, 150|. The triplet times 7 typically were about 70 ~ 1 to 10 us which is
consistent with the current knowledge about the Alexa 488 dye.

For experiments in Hela cytoplasm the distributions of measured 7, and « values
were monitored. The residence times 7, displayed an exponential to uniform dis-
tribution, while @ was Gaussian distributed around a mean value of 0.51 with a
standard deviation of 0.07 (see Figure 5.13).

The parameters 74, 75 and o determine the mean square displacement MSD of the
diffusing particles. Logarithmic plots of the average MSDs of nanogold in the cyto-
plasm and the nucleoplasm of HeLa cells are shown in Figure 5.7. The scaling with
an exponent o < 1, characteristic for subdiffusion, is clearly visible.

66



5.4. RESULTS

0.8 HelLa cells
T 06}
O
b
04
02
O 1 2 s o WOMDr, LTS = O
10°° 10 1073 10° 10t 10
T[s]

Figure 5.4: DIC image of a HeLa cell; representative FCS curves of 5 nm gold beads
diffusing in the cytoplasm (black squares) and the nucleus (red dots). Fitting with
Equation 5.1 yields subdiffusion (full lines) with o« = 0.51 (cytoplasm) and o = 0.56
(nucleus).
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Figure 5.5: DIC image of a TP98G cell; representative FCS curves of 5 nm gold
beads diffusing in the cytoplasm (black squares) and the nucleus (red dots). Fitting
with Equation 5.1 yields subdiffusion (full lines) with o« = 0.56 (cytoplasm) and «
= 0.63 (nucleus).
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Figure 5.6: DIC image of a U20S cell; representative FCS curves of 5 nm gold beads
diffusing in the cytoplasm (black squares) and the nucleus (red dots). Fitting with
Equation 5.1 yields subdiffusion (full lines) with oo = 0.53 (cytoplasm) and o = 0.62
(nucleus).
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Cell line | Cytoplasm | | Nucleus |
7s [ps] a | Tlps| | o
HeLa (human cervix cancer) 270 0.51 160 0.56
BXPC (human adenocarcinoma) 590 0.52 260 0.56
TP366 (human glioblastoma) 250 0.55 165 0.55
TPI98G (human glioblastoma) 309 0.56 275 0.63
U20S (human osteosarcoma) 260 0.53 240 0.62
PLC (human hepatoma) 130 0.52 98 0.62
HepG2 (human hepatoma) 780 0.52 500 0.58
Thle (human liver) 330 0.48 270 0.53
3T3 (mouse fibroblasts) 544 0.59 915 0.60
CHO (chinese hamster ovary) 646 0.52 895 0.54
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Table 5.1: Table: Average mean residence times 7, and diffusion anomaly degrees «
of 5 nm gold beads in the cytoplasm (blue, left columns) and the nucleus (red, right
columns) of 10 different cell lines.
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Figure 5.7: Average mean square displacements of 5 nm gold beads in the cytoplasm
(black squares) and the nucleoplasm (red dots) of HeLa cells, calculated from FCS
data.

Subdiffusion occurs due to obstruction of tracers by macromolecular
crowding

The result that nanogold particles move by subdiffusion in cells is in accordance
with previous intracellular diffusion measurements on proteins and dextrans
[67, 44]. As shown in Reference 44|, the most probable reason for subdiffusion of
nanoparticles in cells is the obstruction of tracers by macromolecular crowding,
i.e. by macromolecules like proteins or RNA molecules which are dissolved in the
intracellular fluids. Due to crowding the cytoplasm and the nucleoplasm appear to
nanosized tracers as a maze-like environment of fractal geometry on small length
scales which leads — as shown in percolation theory — to a slowdown of tracer
diffusion on the associated time scales and therefore to subdiffusion (c.f. Section
2.2.2).

Some other parameters which possibly affect nanoparticle diffusion in cells may
be discussed in the following. The authors of Reference [53| suggest an influence
of the cytoskeletal actin network on diffusion. However, the cytoskeleton should
not play a role for nanoparticle subdiffusion since Reference [44] showed that the
degree a of subdiffusion for dextran tracers did not change upon depolymerization
of cytoskeletal components. In principle, also transient binding of particles can
cause subdiffusion, but is here excluded since nanogold particles are inert due to
their coating with BSA. Generally, subdiffusion due to binding only appears either
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in infinite hierarchies of traps or in systems which are not in equilibrium, the latter
meaning that the binding process would have to be actively turned on and off by
the cell [21, 22]. We can assume that in cells neither an infinite trap hierarchy nor
an active binding mechanism for an unspecific object like nanogold exists.

The anomaly degree a as a measure for a fluid’s crowding state
According to percolation theory the anomaly degree « of a particle diffusing in
an obstructed environment decreases with an increasing obstacle concentration
(i.e. subdiffusion becomes stronger). The lowest a-value that can be caused by
obstruction in a three-dimensional environment is ap = 0.526, which is reached for
high obstacle concentrations C' at the critical percolation threshold Cp (c.f. section
2.2.2).

In the present work, typical values of o ~ 0.55 were measured for nanogold
subdiffusion in cells, which is very close to ap. Thus, the crowded intracellular
fluid seems to appear as an environment of very high obstacle concentration to the
nanogold beads. The authors of the study [44] in a similar context suggested a to
be a measure for the crowding degree of a fluid, in the meaning that the degree of
crowding is high when probe particles show small o values. The degree of crowding
of a fluid, however, is a more qualitative than quantitative measure. It is influenced
by several parameters, e.g. the individual concentrations of different crowder
molecule species present in a fluid, but also by their geometrical shapes, sizes and
modes of interaction. When crowding is probed by measuring the diffusion of a
tracer particle also the properties of this tracer will be reflected in the observed «
since an environment will appear differently to tracers of different sizes and shapes.
To do now a qualitative classification of the crowding degree of the cytoplasm
and the nucleoplasm on base of the performed FCS mesurements, the anomaly
degrees o of nanogold diffusion in cells were compared with « values of nanogold
in crowded test fluids, whose concentrations of crowder molecules could be varied
by dilution.

The first series of test measurements was done in solutions of unlabeled dextran
molecules (molecular weight: 60 - 90 kDa) in PBS buffer (an aqueous solution
with physiological pH = 7.4). Dextrans are inert hydrophilic electroneutral, highly
branched polymers of glucose; concentrated solutions of these molecules represent
crowded environments causing subdiffusion of nanosized tracers [44, 68|.

The test measurements were performed in dextran solutions with dextran con-
centrations between 30 and 360 g/1. At 360 g/l, a dextran solution is close to the
saturation limit. With FCS, nanogold beads were observed to show subdiffusion at
all concentrations, with anomaly degrees o that decreased with increasing dextran
concentrations from 0.89 to 0.72 (see Figure 5.8 for representative FCS curves and
a table with the measured values). The measured residence times 7, increased with
increasing dextran concentration from 7, = 150 us to 7, = 2000 ps. These findings
are in agreement with earlier studies [44, 68|.
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Dextran solution
Concentration Ts [us] | «
30 g/1 150 | 0.89
100 g/1 300 | 0.85
140 g/1 670 | 0.82
360 g/1 2000 | 0.72

100 g/1, solvent: water + EtOH (60:40) | 960 | 0.97

Figure 5.8: Representative FCS curves of 5 nm gold beads diffusing in dextran
solutions with concentrations of 30 g/1, 140 g/1, 360 g/1 (blue diamonds, red dots,
black squares). Fitting with Equation 5.1 yields subdiffusion with an anomaly «
that declines when the concentration increases (full lines).

The second series of test measurements was done for nanogold in a fluid extract
from egg cells of the frog Xenopus Laevis. Xenopus egg extract is typically used to
do in-vitro studies of biochemical and biophysical processes under conditions which
are similar to living cells. The extract is obtained by breaking large egg cells and
preserving their contents, i.e. proteins, lipids and other macromolecules, in similar
concentrations as they occur in cells.

Here, nanogold diffusion was measured with FCS in undiluted and diluted Xeno-
pus egg extract (see Figure 5.9 for representative FCS curves and a table with the
measured values). For the undiluted extract, an anomaly degree o« = 0.52 and a
residence time 75, = 370 us was detected, which is similar to the values in the cyto-
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Egg cell extract

AC(T)

Xenopus egg cell extract

Concentration 7 [us] | o | G'(100Hz) [Pa] | G"(100H 2) [Pa]
100% 370 0.52 1.11 1.22
50% 283 | 0.54 0.87 1.00
25% 244 | 0.57 0.67 0.86
12.5% 172 | 0.60 0.46 0.64
6.25% 120 | 0.59 0.40 0.54
3.125% 124 | 0.68 0.21 0.39
1.5% 141 | 0.74 0.15 0.35
1% 120 | 0.80 0.08 0.24
0.1% 121 0.91 0.02 0.15
0.01% 122 | 1.00 0.00 0.10

Figure 5.9: Representative FCS curves of 5 nm gold beads diffusing in (diluted)
Xenopus egg cell extracts with concentrations of 0.1%, 3.125%, 50% (blue dia-
monds, red dots, black squares). Fitting with Equation 5.1 yields subdiffusion with
an anomaly « that increases under dilution of the extract (full lines).
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plasm and the nucleoplasm of living cells. Upon dilution of the extract, « increased
towards unity, while 7, subsided (see Figure 5.9 and Figure 5.10).

Both measurement series in dextran solutions and egg extract show that the anomaly
degree o of nanogold diffusion depends at least partially on the molecule concen-
tration in an examined fluid and can thus be used to estimate the ’crowdedness’
of the fluid, in agreement with [44]. The measurements underline that cytoplasm
and nucloplasm of cells have to be regarded as very crowded environments. Their
‘crowdedness’ is clearly higher than that of dextran solutions: Macromolecule con-
centrations in cells lie typically between 100 and 400 g/1 [36], and cells show «
~ 0.55, whereas dextran solutions with similar concentrations (30 - 360 g/1) pro-
duce only a ~ 0.89 - 0.7. A reason for this enhanced crowding degree in cells may
be that the differently sized and typically compact macromolecules in cells cause a
higher volume occupancy than the long and branched polymers in dextran solutions.
Further, interactions between the intracellular macromolecules may contribute to
crowding. The latter assumption is supported by the observation that in diluted egg
extracts low « values (and thus high crowding degrees) were detected over a broad
range of dilutions.

The qualitative rating of cytoplasm and nucleoplasm as very crowded environments
is of special interest since strong crowding has consequences for the hydrodynamics
and the thermodynamics of a system (c.f. Sections 3.1.3.3 and 3.1.4). In particu-
lar in cells it may have significant effects e.g. on protein folding, protein stability,
protein aggregation, pattern formation and chemical and enzymatic reactions.
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Figure 5.10: The anomaly degree o measured in Xenopus egg cell extracts (initial
concentration cg) tends to unity upon dilution of the extract. The full line inter-
polates below which extract concentration & = 1 (i.e. normal diffusion) should be
reached.
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Different tracers

The appearance of subdiffusion depends a) on the crowding state of the embedding
fluid and b) on the tracer size and shape. To test the behaviour of other tracers than
nanogold, fluorescently labeled BSA protein (diameter 6 nm) was microinjected in
Hela cells and its diffusion was measured with FCS (see Figure 5.11 for a represen-
tative curve). The average diffusion time of BSA in the cytoplasm was 7, ~ 320 us,
the anomaly degree was o =~ 0.5, which is comparable to the values of nanogold.
Further on, the fluorescent protein eGFP (diameter 3 - 4 nm) was expressed in
Hela cells and its diffusion was measured with FCS. As a result, eGFP showed in
the cytoplasm an average diffusion time of 7, ~ 500 us and an anomaly o ~ 0.95.
This finding of nearly normal diffusion of eGFP in cells agrees with Reference [67]
and is very likely due to the smaller size of eGFP as compared to nanogold and BSA.

0.8

Hela cytoplasm

T 06}
@)
b
04 |
0.2 |
0 1 il o, EoaARe oo
107° 10 1073 1072 102 10°
T[s]

Figure 5.11: FCS measurement of BSA proteins (blue dots) and eGFP fluorophores
(red squares) diffusing in the cytoplasm of Hela cells. Fitting with Equation 5.1
yields strong subdiffusion with @ = 0.5 for BSA, but only weak subdiffusion with «
= 0.95 for eGFP (full lines).

General conclusion for macromolecule diffusion in cells

It was determined here that spherical nanogold particles (diameter 5 nm) show
strong subdiffusion (a &~ 0.55) in the cytoplasm and the nucleoplasm of cells. When
we compare this result to available intracellular FCS measurements on proteins of
similar size, we find that these proteins show a similar behaviour: For the BSA
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protein (diameter ~ 6 nm) subdiffusion with o ~ 0.5 was detected (see above),
while in an earlier study for the IgG antibody protein (diameter ~ 10 nm) subdif-
fusion with o ~ 0.55 was measured [44]. Also the diffusive behaviour of nanogold
in dextran solutions of different concentrations is comparable to measurements on
proteins in dextran solution: while for nanogold here subdiffusion with a ~ 0.72 -
0.89 was observed, the streptavidin protein (diameter ~ 5 nm) showed subdiffusion
with o =~ 0.7 - 0.8 [68]. We can conclude from these agreeing measurements that
many intracellular macromolecules which are comparable in size will show a similar
subdiffusive behaviour as nanogold does. This is an important consideration since
subdiffusion of molecules can have strong effects on many processes in which they
are involved: the kinetics and equilibria of chemical and enzymatic reactions change
significantly |71, 72, 73, 74, 76] and the formation of patterns is stabilised [83].
And, as a another noteworthy effect, it will be shown in Chapter 6 that subdiffusion
facilitates under suitable conditions the target finding of a diffuser.
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5.4.2 Rbheological properties of the cellular interior

From the diffusion parameters of nanogold in cells the rheological properties of
cytoplasm and nucleoplasm on the nanoscale were determined. To do so, the
procedure proposed by Mason & Weitz was used, in which the complex shear
modulus G(w) of a medium is obtained via a generalised Einstein-Stokes relation
from the mean square displacement MSD of diffusing probe particles (c.f. Section
4.4). The nanogold particles used here to probe the interior of cells fulfilled the
requirements to be spherical and rigid made by Mason & Weitz [1]. The MSD of
the nanogold particles was calculated from the diffusion parameters 74, 7, and «
as measured with FCS (c.f. Methods Section 5.3). It is important to realise here
that the validity of G(w) as determined from diffusion data depends on the size
of the probe particles. If the medium under investigation is not homogenous but
has different types of structuring elements on different length scales, it will also
show different rheological behaviour when examined on different length scales, i.e.
with probe particles of different sizes. With the nanogold particles used here, the
rheological behaviour of cells on the nanoscale was probed.

Cytoplasm and nucleoplasm are viscoelastic on the nanoscale

Calculating G(w) from the MSD of nanogold beads yielded for all examined cell
lines that cytoplasm and nucleopasm have the characteristics of viscoelastic fluids.
Their elastic moduli G’'(w) and the viscous moduli G”(w) were clearly larger than
zero for all frequencies between 10! and 10° Hz. Both G’(w) and G”(w) were
described by a power-law scaling: G(w) ~ w?®, with o ~ 0.55 (see Table 5.2),
i.e. cytoplasm and nucleoplasm become stiffer and more viscous with increasing
frequency of shearing. Typically, cytoplasm and nucleoplasm were governed by the
viscous modulus G”(w) for small frequencies w < 1 Hz, while for larger frequencies
the elastic and the viscous moduli were of the same order of magnitude.

The detected viscoelastic behaviour of G(w) was similar for all 10 tested cell lines,
with slight differences in the scaling exponents and the relative strengths of G’
and G” (see table 5.2). Curves of G'(w) and G”(w) for cytoplasm and nucleoplasm
of Hela cells are shown in Figure 5.12. Typical values of the moduli at w =
10 Hz were G’ ~ G” =~ 0.3 Pa, which compares favourably to measurements in
concentrated /crowded actin solutions [151].

Previous measurements on cell rheology determined already that cells are vis-
coelastic on the micron scale, where their rheological behaviour is determined
mainly by the cytoskeleton; also nuclei were shown to be viscoelastic on the micron
scale. Absolute values |G(w)| of the intracellular viscoelasticity on the micron
scale are larger by factors of 20-50 than the absolute values of |G(w)| measured
here on the nanoscale. In some of the micron-scale studies, the complex shear
modulus was observed to follow over several decades in w a power-law G(w) ~ w®,
similar to the behaviour detected here on the nanoscale. Measuring methods
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Figure 5.12: Average real (elastic; black squares) and imaginary (viscous; red dots)
parts of the complex shear modulus G(w) in the cytoplasm and nucleus of HeLa
cells. The dashed lines highlight the power-law increase G(w) ~ w®.
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Cell line | Cytoplasm | |

a G'(100H z) |Pa| | G"(100Hz) |Pa)
HeLa (human cervix cancer) 0.51 1.00 1.06
BXPC (human adenocarcinoma) 0.52 1.40 1.55
TP366 (human glioblastoma) 0.55 0.77 0.92
TP98G (human glioblastoma) 0.56 0.82 1.01
U20S (human osteosarcoma) 0.53 0.88 0.99
PLC (human hepatoma) 0.52 0.65 0.71
HepG2 (human hepatoma) 0.52 1.26 1.82
Thle (human liver) 0.48 1.28 1.24
3T3 (mouse fibroblasts) 0.59 0.96 1.31
CHO (chinese hamster ovary) 0.52 1.47 1.63
Cell line Nucleoplasm

a G'(100H z) [Pa] | G"(100H z2) [Pa|

HeLa (human cervix cancer) 0.56 0.57 0.70
BXPC (human adenocarcinoma) 0.56 0.75 0.92
TP366 (human glioblastoma) 0.55 0.63 0.75
TP98G (human glioblastoma) 0.63 0.52 0.80
U20S (human osteosarcoma) 0.62 0.50 0.75
PLC (human hepatoma) 0.62 0.29 0.43
HepG2 (human hepatoma) 0.58 0.96 1.28
Thle (human liver) 0.53 0.90 1.01
3T3 (mouse fibroblasts) 0.60 1.24 1.76
CHO (chinese hamster ovary) 0.54 1.59 1.88

Table 5.2: Scaling exponent «, real (elastic) part G'(100H z) and imaginary (viscous)
part G”(100H z) of the complex shear modulus G(w) ~ w® for 10 cell lines.

relying on the external deformation of entire cells, like atomic force microscopy
or magnetic twisting cytometry, detected power-law exponents = between 0.1
and 0.4 [102, 108|, whereas intracellular measurements detected exponents x =
0.75 [11]. In these micron scale measurements, the elastic component typically
was stronger than the viscous component, while in the measurements on the
nanoscale presented here both components were about equal. For low w values, the
micron scale structure of cells was determined to respond almost purely elastically
[11], whereas the low-w-response in the nanoscale measurements was mainly viscous.
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The Zimm model for diluted polymer solutions yields a heuristic descrip-
tion of viscoelastic intracellular fluids

Measuring the nanoscale viscoelasticity gives a quantitative description of the rheo-
logical properties of intracellular fluids as caused by dissolved macromolecules. The
previous conclusion that the degree of macromolecular crowding is very high in
intracellular fluids represents a more qualitative statement. The rheological descrip-
tion enhances the crowding picture since the viscoelasticity of a fluid depends not
only on the number of dissolved macromolecules but also on their mobilities and
their mutual interactions.

The power-law increase of G(w) ~ w® with o ~ 0.55 measured in cells indicates
a power-law distribution of relaxation times for the intracellular fluids [152]. Gen-
erally, each macromolecule in a crowded fluid is obstructed and may be connected
with other molecules via weak unspecific bindings, i.e. with energies of the order of
thermal energy. The movement of a macromolecule therefore requires unentangling,
reptation, dissociation and/or the circumvention of obstacles. These actions possess
local relaxation time scales that differ greatly and may lead to a power-law spectrum
of relaxation times. A particular realisation of a complex fluid with a broad spec-
trum of relaxation times is given by the Zimm model for dilute polymer solutions
[153], which predicts for the scaling of the complex shear modulus:

(trw)®®  good solvent
Glw) B{ (Tpw)?3  O-solvent (5.9)
with B =~ 1 and 75 = 277,5: 3T Here, 7 denotes the pure solvent viscosity and R, the

radius of gyration of the polymers. A ’good’ solvent is in the Zimm model defined
as a fluid where the solvent molecules and solute molecules attract each other,
whereas the solute molecules repel each other. A ’bad’ solvent would mean the
opposite: solvent and solute repel each other while the solvent molecules attract
each other (thus leading to an agglomeration of solute molecules). The O-solvent
describes the intermediate case between good and bad solvent: here repulsion and
attraction balance each other exactly.

Comparing the complex shear modulus G(w) ~ w®, a =~ 0.55 which is typically
measured in cells with Equation 5.9 yields a surprisingly good agreement of the
cell’s nanoscale viscoelasticity with the Zimm model under good solvent conditions.
This observation suggests that the Zimm model gives a heuristic description for
the cytoplasm and the nucleoplasm of living cells, i.e. that the intracellular fluids
behave similar to dilute polymer solutions. Taking this idea serious allows one to
make several predictions from the Zimm model for the behaviour of intracellular
fluids.
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Figure 5.13: a) Distribution of the residence times p(7s) measured in the cytoplasm
of unstressed HeLa cells. The dotted line indicates an exponential distribution p(7s).
b) In HeLa cells stressed with 500 mM sucrose, the distribution p(7;) broadens and
approaches a more uniform distribution. Insets: a) The distribution of anomalities

p(«) is roughly Gaussian. b) Upon osmotic stress, a shift of the mean « is clearly
visible.
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At first, the distribution of residence times p(7;) can be estimated using the Zimm
model. Since the mass m of a Zimm polymer is proportional to the number of
monomers N and because the radius of gyration is given by R, ~ N 3/5 it can
be expected 7z ~ R3 ~ m?5. Neglecting the crossover to normal diffusion for
large times, i.e. assuming that anomalous subdiffusion is also the asymptotic
mode of motion, one obtains G(w) ~ (Tsw)® (c.f. Methods Section 5.3) and thus
7. ~ Tr ~ m%?. Since the distribution of masses in the cytoplasm is roughly
exponential [44], the Zimm model predicts p(75) ~ emp()\Ts)/Tf/ ° ie. for large
residence times ultimately an exponential decay of p(7s) should be observed.
This prediction is in fairly good agreement with the experimental data on the
distribution of measured 7, in Hela cells (see Figure 5.13).

The Zimm model further predicts a change in the scaling of the complex shear
modulus G(w) when the solvent conditions become worse, i.e. when the transition
from a good solvent to a ©-solvent takes place. To test the behaviour of intracellular
fluids under a change of solvent conditions, the available solvent in Hela cells
was reduced by stressing the cells osmotically. Then the complex shear moduli
of the cytoplasm and the nucleoplasm were measured. The osmotic stressing was
applied by putting cells into hypertonic growing media, i.e. media which have a
higher solute concentration than the cellular interior and thus cause the osmotic
extraction of water from the cells (see Methods Section 5.3 for details). The media
were made hypertonic by adding osmolytes (sucrose, raffinose, NaCl or urea).
Different osmolyte concentrations were tried, i.e. different ’strengths’ of osmotic
treatment:

a) sucrose: 300 mM, 500 mM and 1000 mM
b) raffinose: 500 mM

¢) NaCl: 250 mM and 500 mM

d) urea: 300 mM and 500 mM

As a result, in osmotically stressed cells a significant change of nanogold dif-
fusion was measured with FCS as compared to unstressed cells. In parallel,
also G(w) ~ w® as calculated from the diffusion parameters 7, and « changed.
Representative FCS curves from HeLa cells stressed with 500 mM sucrose are
shown in Figure 5.14; the associated complex shear moduli G(w) are shown in
Figure 5.15.

Under weak osmotic treatment with 300 mM sucrose, a shift of the anomaly was
observed from a = 0.51 (unstressed) to @ = 0.56 in the cytoplasm of Hela cells.
The diffusion time increased from 7, = 300 us to 7, = 850 us. Stronger osmotic
stress with 500mM sucrose yielded an increase to alpha=0.66 and 75, = 950 s (see
Table 5.3). In the nucleoplasm, a similar effect for o was observed. 7, showed an
even stronger increase from 7, = 200 us to 7, = 1300 us at 300 mM sucrose and to
Ts = 1500 ps at 500 mM sucrose. Inducing a stronger osmotic stress with 1000 mM
sucrose, even a slightly higher increase to a = 0.68 was observed and a considerable
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Figure 5.14: Representative FCS measurement curves of 5 nm nanogold beads dif-
fusing in the cytoplasm and the nucleus of unstressed Hela cells (black squares) and
Hela cells stressed with 500 mM sucrose (red dots). Fitting with Equation 5.1 yields
subdiffusion (full lines) with o« = 0.51 (unstressed cells) and o = 0.66 (osmotically
stressed cells).
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higher increase of 7, = 2000 ps.

Similar effects were seen when using 500 mM raffinose and 500 mM NaCl as stress
agents. Regarding the stress agents sucrose, raffinose, and NaCl, comparable con-
centrations induced the same effect on the measurements. NaCl, however, may rep-
resent a special case here, since it is twice as osmolar as sucrose due to its ionic
composition and also is smaller in size, which means that it may be taken up by the
cells in higher amounts than sucrose. A direct comparison between the two stress
agents thus may not be appropriate. Adding urea hardly affected any of the param-
eters found for the cytoplasm of untreated cells, but did affect the parameters for
the nucleus: the diffusion time 7, was not strongly increased, whereas the anomaly
was relaxed in a strength similar to that found with sucrose, raffinose, or NaCl (see
Table 5.3). To assure that the detected change of diffusion under osmotic stress was
not specific to Hela cells, also Thle and HepG2 cells were measured under osmotic
conditions (500 mM sucrose) and showed similar effects (see Table 5.3).

In summary, in hyperosmotically stressed cells both the residence time 75 and the
anomaly « increased. In terms of the complex shear modulus, this means that
G(w) ~ w® changed its scaling to a larger exponent upon osmotic stress, and the
elastic contribution decreased with respect to the viscous modulus.

The obvious expectation for the experiment of reducing the amount of solvent wa-
ter in cells is that crowding would be increased, and thus the anomaly be enhanced
and the fluid be ’stiffened’. Although the detected increasing of the dwell time 7 is
in agreement with this expectation, the reduction of the anomaly (i.e. an increase
of ) is surprising, since it indicates rather a reduction than an enhancement of
crowding. Comparing the experimental findings for G(w) to the prediction of the
Zimm model Eq. 5.9, however, yields a good agreement: G(w) changed its scaling
to a larger exponent when the solvent became worse, and the elastic contribution
decreased with respect to the viscous modulus (see Table 5.3).

An illustrative picture of the dynamics in a polymer solution wherein a solvent
change takes place is the partial collapse of individual polymers, which reduces
the degree of entanglement and the associated restoring forces. Changing solvent
conditions in the heterogeneous intracellular fluids may also lead to a partial dis-
entanglement and aggregation/collapse of protein complexes, and in consequence
to the emergence of more aqueous voids; thereby the long-range restoring forces
within the crowded fluids are reduced. Since a partial collapse/aggregation changes
the distribution of the radii of gyration Ry, also a change in p(7,) can be expected
for the measurements in osmotically stressed cells. Indeed, the distribution of resi-
dence times 7, showed not only a considerable increase in the mean dwell time, but
also a broadening of the entire distribution toward a more uniform appearance (see
Figure 5.13).

In the measurements in osmotically stressed cells, the residence times 7, had already
increased at comparatively low concentrations of stress agents, whereas the anomaly
a had gone up only slightly. In terms of the Zimm model, this behavior may reflect
that the intracellular conditions did not change abruptly from a good to a ©-solvent
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Figure 5.15: Average real (elastic; black squares) and imaginary (viscous; red dots)
parts of the complex shear modulus in the cytoplasm and nucleus of HeLa cells
stressed with 500 mM sucrose.
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Cell line | Treatm. [mM] | Cytoplasm | | |

Ts 1] a | G'(100Hz) [Pa] | G"(100H z) |Pa]
HeLa none 270 0.51 1.00 1.06
HeLa sucrose, 300 853 0.56 1.41 1.78
HeLa sucrose, 500 954 0.66 0.94 1.64
HeLa sucrose, 1000 1933 0.68 1.32 2.52
Hela raffinose, 500 1520 0.65 0.31 0.51
HeLa NaCl, 250 742 0.52 1.57 1.74
HeLa NaCl, 500 629 0.67 0.73 1.30
HeLa urea, 300 361 0.5 1.26 1.82
HeLa urea, 500 399 0.49 1.26 1.82
HepG2 none 767 0.52 1.60 1.78
HepG2 sucrose, 500 962 0.60 1.26 1.81
Thle none 329 0.48 1.28 1.24
Thle sucrose, 500 1164 0.60 1.41 2.02
Cell line | Treatm. [mM] | Nucleoplasm | | |

Ts [1s] a | G'(100Hz) [Pa] | G"(100Hz) |Pa]

HeLa none 162 0.56 0.57 0.70
HeLa sucrose, 300 1830 0.55 2.18 2.71
HeLa sucrose, 500 1799 0.63 1.60 2.55
HeLa sucrose, 1000 2020 0.69 1.30 2.58
HeLa raffinose, 500 2387 0.65 0.41 0.68
HeLa NaCl, 250 932 0.51 1.83 1.98
HeLa NaCl, 500 655 0.60 0.59 1.18
Hela urea, 300 396 0.6 0.76 1.07
HeLa urea, 500 212 0.65 0.38 0.63
HepG2 none 502 0.58 0.96 1.28
HepG2 sucrose, 500 1840 0.53 2.33 2.74
Thle none 270 0.53 0.90 1.01
Thle sucrose, 500 940 0.68 1.84 1.57

Table 5.3: Mean residence time 7, and anomaly degree a of 5 nm gold beads diffusing
in osmotically stressed cells, real (elastic) part G'(w) and imaginary (viscous) part
G"(w) of the complex shear moduli G(w) ~ w® of osmotically stressed cells.
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(which changes o), but rather there was a smooth transition with an initial increase
in crowding (thus, a more hindered diffusion).

As described above, FCS measurements of nanogold diffusion in egg extract yielded
similar results as in cells, i.e. & = 0.52. Calculating the associated complex shear
modulus G(w) shows that the egg extract is also viscoelastic on the nanoscale, with
G(w) ~ w* G'(100Hz) = 1.00 Pa, G"(100Hz) = 1.09 Pa. The similarity of cell
extract to living cells is evident, since the extract has the same macromolecule com-
position and a similar state of dilution as the intracellular fluids of the egg cells from
which it is taken. Upon dilution of the extract with water, o increased only slowly,
i.e. the subdiffusive and viscoelastic features were only slowly replaced by diffusive
and purely viscous water-like behavior (see Figures 5.10 and 5.16). This observation
highlights that the complexity of intracellular fluids is not a mere excluded-volume
effect. Since subdiffusion and viscoelasticity still appear upon strong dilution, they
seem also to take into account the lateral (attractive) interactions of proteins.

To further examine the effect of a solvent change as predicted in the Zimm model
Eq. 5.9, it was tried to induce a solvent detoriation in the egg extract and in dex-
tran solution by addition of ethanol. In the egg extract, the addition of even minute
amounts of ethanol led to massive flocculation, making FCS measurements mean-
ingless. This observation supports indirectly the reasoning that a change in solvent
in cells due to osmotic stress may lead to a (partial) protein collapse and/or aggre-
gation, thus leading to a change in a that agrees with Eq. 5.9. As a substitute, a
dextran solution (dextran concentration 100 mg/ml) with pure water as solvent was
compared to dextran solution with a water/ethanol mixture (60:40) as solvent. FCS
measurements on nanogold diffusion revealed a strong change in the subdiffusion
and thus in the scaling of G(w) when the water/ethanol solvent was used (see table
associated to Figure 5.8). On average, water as solvent yielded o = 0.85, 75 = 300
us, whereas water/ethanol as solvent resulted in o = 0.97, 7,= 960 us. Although
the Zimm model Eq. 5.9 is not a good quantitative description here at least a good
qualitative agreement with the findings on intracellular fluids can be stated. Most
likely, the utilized (almost monodisperse and low-weight) dextran did not equip the
crowded fluid with enough degrees of freedom to actually reach the fully developed
broad range of relaxation times that underlies Eq. 5.9.

In conclusion, the experiments and observations described here support strongly
the hypothesis that the cytoplasm and the nucleoplasm are phenomenologically de-
scribed by the Zimm theory; the intracellular fluids behave thus — from a rheological
point of view — similar to viscoelastic dilute polymer solutions. This can be under-
stood in the sense that dissolved macromolecules in cytoplasm and nucleoplasm
are connected via weak nonspecific interactions to network-like variable nanostruc-
tures which possess in their entirety the viscoelastic properties being described by
G(w) ~ w* «a = 0.55. Especially two of the observations mentioned above are
in agreement with this picture. Firstly, the scaling exponent o was increased in
hyperosmotically stressed cells compared to unstressed cells; an obvious explana-
tion for this behaviour is a change of the average nonspecific interactions between
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macromolecules due to a reduction of the water solvent, leading to a change of the
network’s G(w). Secondly, it was observed that intracellular fluids keep their strong
viscoelastic behaviour even under a dilution up to a factors larger than 10; this find-
ing indicates again that the nanoscale viscoelasicity appears not only due to steric
repulsion of macromolecules, but also due to attractive interactions. A similar case
for a network-like structure with viscoelastic properties can be found for example
in the cytoskeleton.
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Figure 5.16: Ratio of the elastic modulus G'(w) to the viscous modulus G”(w) of
cell extract. The ratio tends to zero upon dilution of the extract, i.e. the extract
becomes purely viscous. ¢/co = 100% (black squares), 12.5% (blue diamonds), 1%
(red dots) (with ¢y being the initial concentration).
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5.4.3 Comparison of different cell types

The measurements presented in this work were done in 10 different cell lines: 7 of
them were cancer cell lines, 3 were derived from healthy tissue. The cell lines in-
cluded samples from different organs and tissues (cervix, brain, bone, liver, muscels,
ovaries) and from different mammalian species (human, mouse, chinese hamster). In
all cell lines, microinjected nanogold showed strong subdiffusion in the cytoplasm
and the nucleoplasm. As a consequence, the intracellular fluids in all cells were
determined to be viscoelastic on the nanoscale, with a power-law scaling of the vis-
coelasticity G(w) ~ w®. The viscous and elastic contributions were typically similar
at high frequencies (w > 100 Hz), whereas viscous behaviour was dominating for
low frequencies, with a viscous modulus that was in maximum about fivefold larger
than the elastic modulus.

Comparing the 10 investigated cell lines in detail, only minor differences became
visible for the parameters 7, and a. The anomaly degree « varied between (.48 and
0.63 in the different cell lines; the residence time 7, was measured to lie between
98 s to 780 s (see Table 5.1 and associated diagramms). A correlation of the
cell-to-cell variations of o and 7, with the health state of cells or with the tissue
from which they were derived could not be discovered. In the three liver cell lines
Thle, PLC and HepG2 (of which PLC and HepG2 are cancer cells), for example, the
values of a and 7, did not show a specific similarity, but rather covered almost the
entire range between the maximum and minimum values detected in all cell lines.
Accordingly, the viscoelastic behaviour as measured by the complex shear modulus
G(w) was very similar; to illustrate this, the absolute value |G(w)| and the ratio of
the elastic to the viscous modulus G’/G" are plotted for two different cell lines in
the Figures 5.17 and 5.18.

Previous studies on cell mechanics demonstrated that the macroscale viscoelasticity
of entire cells was reduced in malignant cells compared to healthy specimen, which
was ascribed to a more disordered structure of the cytoskeleton in cancer cells
[121, 103, 122]. In particular, the study of Guck et al. [120] detected the metastatic
potential of cancer cells to be reflected in a specific macroscale viscoelasticity. Bear-
ing this in mind, a comparison of the nanoscale viscoelasticity of cancer cells and
healthy ones was tried here. In cancer cells the nucleus is typically enlarged as com-
pared to healthy cells. Thus, the ratio R of the cross section of the entire cell to the
cross section of the nucleus is a simple measure for the aggresivity of a tumor cell.
Here, this ratio was determined for all cell lines from microscopy images. A clear
difference was visible for cells which were originally derived from healthy tissue (R
~ 6.5 — 7) and cells from cancer tissue (R ~ 3.3 — 4.5) (see Table 5.4). However,
plotting 7, and « of the different cell lines in dependence on R did not show any
correlations (see Figure 5.19); a relation between the nanoscale viscoelasticity and
cancer state of a cell therefore does not seem to exist.

The conclusion from the described observations is that the nanoscale viscoelasticity
and thus the crowding state of cytoplasm and nucleoplasm are highly conserved in
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Cell type ‘ Area ratio entire cell/nucleus
HeLa (human cervix cancer) 3.38
BXPC (human adenocarcinoma) 3.58
TP366 (human glioblastoma) 4.51
TP98G (human glioblastoma) 4.00
U208 (human osteosarcoma) 4.48
PLC (human hepatoma) 3.86
HepG2 (human hepatoma) 3.81
Thle (human liver) 6.70
3T3 (mouse fibroblasts) 6.52
CHO (chinese hamster ovary) 7.09

Table 5.4: Ratio of the cross section area of the entire cell to the cross section area
of the nucleus for 10 different cell lines.

mammalian cells and do not depend on the cells’ particular development or disease
state.
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Figure 5.17: Absolute value |G(w)| of the complex shear modulus and ratio be-
tween elastic (G') and viscous (G”) modulus for the cytoplasm of HeLa cells (black
squares) and TP98G cells (red diamonds); the curves illustrate the similarity of the
viscoelastic behaviour of both cell lines
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Figure 5.18: Absolute value |G(w)| of the complex shear modulus; ratio between
elastic (G”) and viscous (G”) modulus; both for the nucleus of HeLa cells (black
squares) and TP98G cells (red diamonds); the curves illustrate the similarity of the
viscoelastic behaviour of both cell lines.
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Figure 5.19: Residence times 7, and diffusion anomalies a of 5nm gold beads diffusing
in cytoplasm (blue, left columns) and nucleus (red, middle columns) for 10 cell lines,
in order of the parameter R (green, right columns) that indicates the metastatic
potential of a cell. No correlation between 7, or a and R is seen.
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Figure 5.20: Absolute values of the complex shear modulus |G| at w = 100 Hz for
cytoplasm (blue, left columns) and nucleus (red, right columns) of 10 different cell
lines.

5.4.4 Comparison of cytoplasm and nucleoplasm

The values of 7, and o were compared for cytoplasm and nucleoplasm. In 9 of 10
investigated cell lines, o was consistently larger in the nucleus than in the cytoplasm.
The differences of a cell’s aytopiasm and Qpuceus Were between 0.01 (3T3 cells) and
0.1 (PLC cells), which corresponds to a-differences by factors between 0.02 and 0.2.
Only in TP366 cells, apycens and Qeyroprasm Were equal. 75 was in 8 of 10 cell lines
higher in the cytoplasm than in the nucleus by factors between 2.3 and 1.1, with
the exceptions of 3T3 cells and CHO cells which showed the inverse behaviour of 7
values that were higher in the nucleoplasm (see Table 5.1).

Elastic and viscous moduli were typically slightly higher in the cytoplasm than in
the nucleoplasm (see Table 5.2 and Figure 5.20); the average ratio of the absolute

values of the complex shear modulus was ‘Clléyt"pl’“é"?%gg{z;ﬁl ~ 1.4. This indicates that
the cytoplasm was typically slightly stiffer and more viscous.

Since lower « values are a criterion for an increased crowding [44], the difference of «
between cytoplasm and nucleus indicates that the interior of the nucleus is slightly
less crowded than the cytoplasm. The particular organisation of the nucleus may
be reflected here: the cytoplasm and the nucleus differ in their specific content of
macromolecules, and especially the exclusive presence of condensed DNA chains in
the nucleus may contribute to the particular crowding state of the nucleoplasm [34].
Nevertheless, although the crowding degree of the nucleus may be slightly lower
than that of the cytoplasm, the nucleus is still in a regime that has to be regarded

as highly crowded.
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Chapter 6

Results II — Searching targets via
subdiffusion

In this chapter the results of computer simulations are presented in which the prob-
abilities of diffusive and subdiffusive particles to approach a target were determined;
the simulation procedure, the obtained results and their interpretation are described
and discussed in detail.

6.1 Problem definition

The experiments presented in Chapter 5 strongly indicate - in agreement with previ-
ous studies [67, 44, 68, 69] - that many macromolecules in cells move by subdiffusion
due to obstruction via macromolecular crowding, or, in another picture, due to the
nanoscale viscoelasticity of the intracellular fluids. In particular, for the diffusion of
various proteins and nano-sized testparticles in cells, anomaly values were measured
that lie in a range of a ~ 0.5 - 0.8. This is an important observation, since sub-
diffusion of molecules was demonstrated to influence various processes relevant in
biology, for example chemical and enzymatic reactions and pattern formation (see
Section 3.1.3.3).

In the present section, a more fundamental effect of subdiffusion will be studied.
Considering biological reactions, typically at least one of the involved molecules is
free in the intra- or extracellular environment and must approach its specific target
(e.g. a reaction partner or a binding site) by (sub)diffusion. At this, the question
arises if the target finding efficiency of a tracer is different for normal and subdiffu-
sive motion. Generally, it was shown already in various contexts that the efficiency
of diffusive searching depends on the characteristics of the underlying random walk.
It has been demonstrated, for instance, that — under particular conditions — target
encounter rates increase when searchers use superdiffusive Lévy walks instead of
normal Brownian motion [31, 32, 33]. As another example, it was highlighted that
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average search times are reduced when diffusion is transiently restricted to a one or
two-dimensional structure instead of taking place in three dimensions [30].

In the following, the efficiency of subdiffusion as a search mechanism will be quan-
tified in terms of the target encountering probability P. To this end, computer
simulations of a diffuse-to-capture scenario were performed, in which P was deter-
mined for particles moving by normal diffusion and subdiffusion of different anomaly
degrees . The results of the simulations was set into a biological context.

6.2 Simulation procedure

Simulation procedure

To determine the probability of getting captured at a target with radius a, a number
of N individual, non-interacting particles were started on a sphere with radius R
around the target’s center. The (sub)diffusive random walk of each particle was
followed up to a maximum time t%,,,,, and the fraction of particles which contacted
the target was recorded. The target’s radius was used as an intrinsic length scale and
set to unity for simplicity. The (sub)diffusive motion of the particles was simulated
using the forward integration of the Langevin equation, i.e. the positions at times
t=1,2,..., tmew were obtained via z;(t + 1) = z;(¢t) + & with i = 1, 2, 3. As a
model for subdiffusion, the spatial increments ; in each spatial direction ¢ = 1, 2,
3 were calculated via the Weierstrass-Mandelbrot function [154, 52]:

=, cos(¢p) — cos(y"t* n
W)= > () ij ) (6.1)
Here, ¢, are random phases in the interval |0, 27|, v > 1 is an irrational number,
tmaz 18 the length of the desired time series. The parameter o denotes the degree
of anomaly that appears in the particle means square displacement MSD ~ t“. In
accordance with Reference [52|, v = /7 was chosen and the sum was restricted to
the terms n = -8, . . ., 48. The increments §; = W (t + 1) — W(t) were chosen in
such a way that the MSD for all a-values coincided at ¢ = 1. By this approach, it
was taken into account that in the realm of anomalous diffusion random motion in
a viscoelastic fluid (o < 1) will be hampered by elastic restoring forces with respect
to a purely viscous fluid with normal diffusion (o = 1). Thus, anomalous diffusion
should be subordinated with respect to the normal diffusion.

To ensure that the particle number N was choosen high enough in the simulations
to guarantee good statistics, P(R) was determined in several test simulations with
fixed a and t,,,,, for particle numbers of N = 100, 1000, 10000, 100000. The resulting
P(R) was always observed to be the same smooth curve for N = 1000, 10000, 100000,
while it showed strong fluctuations for N = 100. Therefore, a number of N = 1000
particles is suitable to yield good statistics in the simulations.
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Conversion to SI units

The conversion of the simulation data to SI units was done as follows. The target
radius a was used as unit of length in the performed simulations, i.e. defining the
respective targets a) DNA operon (¢ = 2 nm) and b) Golgi membrane patch (a
= 100 nm) automatically fixed the length scale. To gauge the time scale, it was
assumed that subdiffusion may not occur for very small time periods at which
a moving particle does not approach any obstacles [22] or, in the viscoelasticity
picture, essentially experiences a thin layer of a homogenous, viscous fluid. A tracer
may thus be regarded as being normal diffusive during time periods in which it
moves less than its own radius. It was therefore assumed in the simulations that
normal diffusion governed the tracer motion on time scales smaller than a single
(sub)diffusion step in the simulations (¢ < 1), whereas anomalous diffusion appeared
for ¢t > 1. The crossover time t — 1, i.e. a single diffusive time step in the simulations,
was translated to real time via the time 7 a tracer needs to move about its own
radius 7. This time can be calculated with the Einstein-Stokes equation as:

2 rimy

TT6D " kgl

(6.2)

Here, kp is the Boltzmann constant, 7" denotes the absolute temperature, r gives
the radius of the diffuser (e.g. a protein) and 7 is the viscosity of the fluid. With 7
~ 3 - 10® Pa s for the cytoplasm [155], a single simulation time step corresponded
to a) 7 = 0.02 pus for Lacl (r = 2 nm) and b) 7 = 0.3 pus for the coatomer complex
(r = 10 nm).
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Figure 6.1: Schematic illustration of the diffuse-to-capture scenario. Particles (red)
start from different initital distances R (rings) to the target in the center (blue). The
fraction of particles approaching the target via normal diffusion and subdiffusion in
the three dimensional space is recorded as P(R).

6.3 Results

To determine the probability of a particle to reach a fixed binding target when
moving either by normal diffusion or by subdiffusion, computer simulations of a
diffuse-to-capture scenario were performed (see Figure 6.1 for illustration). A num-
ber of N non-interacting point particles were set on a sphere of the radius R. In
the sphere center, a binding target of radius a was placed. Then the particles were
allowed to move in three-dimensional space either by normal diffusion or by subd-
iffusion. When a particle hit the target, it was absorbed. After ¢,,,, timesteps, the
fraction of absorbed particles was recorded as P(R), which denotes the probability
for a particle to reach the target in dependence on its starting distance R. This
procedure was repeated for various R and for particles which moved by subdiffusion
with different a.

In the simulations, the subdiffusive path of individual particles was calculated via
the Weierstrass-Mandelbrot function (WMF) which yields a path of indiviual steps
that are not statistically independent but correlated. The choice of a non-Markovian
process seemed appropriate since the experimentally observed subdiffusion is a con-
sequence of the viscoelasticity of the intracellular fluids (c.f. Section 5.4.2), i.e., the
WMEF here models the fluid’s memory that is reflected in a nontrivial creep function
[28]. In principle, one would have the alternative to model subdiffusion with a con-
tinuous time random walk (CTRW) that describes subdiffusion due to intermittent
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Figure 6.2: Mean square displacement of normal diffusion and subdiffusion as used
in the simulations; subdiffusion is modeled as fractional Brownian motion using
the Weierstrass-Mandelbrot function Eq. 6.1. The dashed lines highlight the scaling
MSD ~ t*. The MSD of a single timestep MSD(t=1) was chosen equal for all
simulations. The parameter a denotes the target radius, 7 is the time a tracer needs
to move about its own radius.

binding. In the CTRW, subdiffusion appears due to a power-law distribution of the
waiting times of tracers between diffusive steps (c.f. Section 2.2.2). Bearing in mind,
however, that subdiffusion of macromolecules in cells occurs due to obstruction by
macromolecular crowding or the viscoelasticity of the intracellular environment, the
Weierstrass-Mandelbrot function seems to be the more suitable model here.

The simulations of subdiffusion using the WMF' yielded the expected scaling of
the MSD ~ t* (see Figure 6.2). To ensure a fair competition between the differ-
ent random walks, the mean square displacement MSD for a single time step, i.e.
MSD(t=1), was chosen equal for all simulations (see also Figure 6.2). The target
radius a was taken as the unit of length, and the time was measured in number
of diffusion steps. The particle number N for each starting radius and each o was
set to 1000, which is sufficient to yield a good statistics. For the sake of simplicity,
it was neglected that subdiffusive processes typically are transient and change to a
normal diffusive behaviour at asymptotically large times [150, 22]. A conversion to
SI units will be done below in the context of biological examples.

For particles moving by normal diffusion the relation P(R) ~ a/R was determined
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Figure 6.3: Probability P(R) that particles reach a target when they start from
an initial distance R and have a maximum search time t,,,, = 2-10° 7. Normal
diffusion yields P(R) ~ 1/R (black squares). For subdiffusion of different degrees «,
the probability is strongly increased (o = 0.7: red circles; a = 0.5: blue triangles).
The parameter a denotes the target radius; dashed lines are a guide to the eyes.

as a result of the simulations, i.e. the probability to find the target decreased quite
rapidly and became less than 1% when starting in a distance that exceeded the
target’s 10 fold radius (see Figure 6.3). This result is in agreement with the analyt-
ical solution of the diffuse-to-capture problem (see Equation 2.19), which confirms
that the used simulation procedure is a suitable approach to examine the diffuse-
to-capture scenario.

For particles moving by subdiffusion of different anomaly degrees o < 1, the cap-
turing probability P(R) differed significantly from the normal diffusive case. For
small starting radii R, the probability P(R) was considerably larger than for nor-
mal diffusion by factors up to 10, whereas for large radii a sudden drop of P(R)
below the efficiency of normal diffusion could be observed (see Figure 6.3). Both,
the increased P(R) at small radii and the crossover radius R; of the intersection of
P(R) for normal diffusion and subdiffusion were observed to depend on the anomaly
degree o and on the maximum searching time ¢,,,,. For a fixed ¢,,,.,, the probability
P(R) at small radii was seen to increase for smaller o, whereas the crossover radius
R; decreased (see Figure 6.3). For a fixed anomaly «, both P(R) for small radii and
R; were seen to increase with a growing maximum search time ¢,,,, (see Figures 6.4

and 6.6).
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Figure 6.4: Probability P(R) that subdiffusive particles (« = 0.5) reach a target
when they start from an initial distance R and have maximum search times t,,,,
= 2-10% (black squares), 2-10* (red circles), 2-10° (blue triangles), 2-10° (purple
inverted triangles). The full line shows P(R) ~ 1/R of normal diffusion; a denotes
the target radius; dashed lines are a guide to the eyes. The range in R where P(R) of
subdiffusion is increased compared to normal diffusion enlarges with growing ¢,,4.-

The described dependency of P(R) on « and t,,,, can be understood when the
geometric properties of the underlying (subdiffusive) random walk are considered,
i.e. the fractal dimension dp. The fractal dimension of a random walk essentially
determines how complete a diffuser explores the embedding space for infinitely large
times. Normal Brownian motion and continuous time random walks have a fractal
dimension dr = 2. In these cases, a random walker explores a surface complete, but
only visits a negligible subspace when it moves in a three-dimensional solution. In
the case of subdiffusion due to viscoelasticity modeled via the WMF, however, a
diffuser explores more than just a surface because the fractal dimension of its trace
is given by dr = 2/a. Thus, for a < 1, the sampled subspace is considerably larger
than a surface (dr = 2) and may even exceed the dimension of the three-dimensional
bulk (dr = 3).

In this context, the increased target finding probability P(R) detected for subdif-
fusive particles starting close to the target becomes comprehensible. Subdiffusive
tracers sample the three-dimensional space more dense than normal diffusive parti-
cles; therefore it can be expected that P(R) increases with growing dp (i.e. reduced
«). Indeed, in the presented simulations, P(R) for subdiffusion was increased com-
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Figure 6.5: The crossover radius R; increases with a growing maximum search time
tmaz according to R; ~ t*/2_ which is in accordance with the expectation R; =~
/ MSD(tmaz), MSD ~ t*. Here, values for « = 0.5 are shown; the parameter a
denotes the target radius, 7 is the time a tracer needs to move about its own radius.

pared to normal diffusion (v = 1) maximally by a factor ~ 6 for « = 0.7 and by
factor ~ 10 for a = 0.5. However, why is P(R) increased only for a certain realm
of R? It has to be considered that a decreasing « also has the effect of a weaker
spatial spreading of tracers, as can be seen from the mean square displacement
MSD(t) ~ t®. In particular, tracers travel in average a maximum excursion length
Limaz = /MSD(t14z), with the consequence that regions beyond L., are rarely
or never encountered; therefore it can be expected P(R) — 0 for R > Ly4.. In
agreement with this consideration, the presented simulations show the subdiffusive
P(R) to fall under the diffusive P(R) at the crossover radius R; and to drop then
steeply towards 0. It can be expected R; ~ L4, in other words R; ~ a - t%/fx
due to MSD(t) ~ a2 - t*. The numerical data indeed yields R; = ¢ - a - tnss (With
some constant ¢ ~ 3) for all « values, i.e. R; increases exponentially with a and
algebraically with ¢,,,, (see Figures 6.5 and 6.6). This means that particles starting
beyond R;, have typically no chance to reach the target by (sub)diffusion (except
a few fast particles). For particles starting below R;, however, subdiffusion is the
most effective search strategy.
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Figure 6.6: The crossover radius R; increases linearly with a growing maximum
excursion length L., = /MSD(tmas), i-e. exponentially with « since MSD ~ t“.
Here, values for « = 0.5 are shown; the parameter a denotes the target radius.

Consequences for biological processes

Diffusion measurements in cells detected several proteins and protein-sized tracers
to show subdiffusion with anomaly values o ~ 0.5 - 0.8. It is therefore of high inter-
est to relate the described effects of subdiffusion on target searching to a biological
context.

At first, signal propagation and the formation of functional complexes (such as ribo-
somes) are considered. Both processes consist of a sequence of events, which are in
signal propagation the cascade-like activation of consecutive subunits and in com-
plex formation the assembly of multiple individual macromolecules. In both cases,
the sequence of events can be described as a chain of states: Ay, — Ay — Az — . . .,
where the indices of the states A; set the number of already activated sub-modules
in the signaling cascade or the number of macromolecules which already joined the
complex. The transition from one state to another happens with a probability p;
which basically depends on the (diffusion-mediated) encountering probability of two
involved reaction partners. When a typical distance R = 10 a between the reaction
partners is assumed and the number of states is restricted to ¢ < 3, normal diffusion
yields a very low probability p = 0.043% ~ 6 - 107° to approach the final state As. In
contrast, subdiffusion with o = 0.5 and a search time t,,,,, = 2 - 10° yields a roughly
100-fold higher probability p = 0.133% ~ 2 - 1073 to reach As, i.e. signal propaga-
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tion and complex formation become much more reliable. The effect of subdiffusion
becomes even more significant when the number of intermediate states before the
final state increases. With i — 8 for example, subdiffusion yields a 10*-fold higher
probability to reach the final state As.

Next, two examples from cell biology will be considered which may benefit from
subdiffusion as a search strategy: a) the search of the transcription factor Lacl for
its DNA operon [156] and b) the binding of the coatomer complex by Golgi cisternae
[157]. In both cases, tracers will be assumed to move subdiffusive with an anomaly
a = 0.5. The conversion from simulation units to SI units was done as described in
the Methods Section 6.2.

For the Lacl protein (radius ~ 2 nm), the average time for approaching its DNA
operon (a = 2 nm) can be estimated to be about 1 s via the tumbling frequency of
the bacterium [158], which corresponds to 5 - 107 simulation steps. When this time
is set as the relevant t,,,, of the problem, the crossover radius within which subdiffu-
sion is more efficient than normal diffusion becomes R; = 500 nm via R; = c-a- 2.
Given that only about 10 copies of the Lacl protein are present in a bacterium with
a volume 1 um?, the typical distance between a Lacl protein and the operon of
interest is 450 nm. This value is smaller than R;, i.e. subdiffusion is the most ad-
vantageous strategy for Lacl to search for the operon. If the nucleoplasm would
be more diluted, with the consequence that proteins move by normal diffusion in-
stead of subdiffusion, Lacl may not bind the operon with a sufficient probability,
thus compromising the cells gene expression pattern. Here, subdiffusion alone al-
ready provides an improved efficiency of finding the respective binding target, but
of course also other mechanisms, e.g. the reduction of dimensionality and coupled
diffusion [30] may contribute to an advanced search in the considered examples.
For coatomer (radius 5 nm), the typical search time for a membrane patch on Golgi
cisternae (¢ = 100 nm) is given by the turnover time ¢ = 10 s of its adaptor pro-
tein ARF-1 [155], which corresponds to 3.4 - 107 simulation time steps. Setting the
turnover time as t,,,,, the crossover radius becomes R; ~ 13 pm which corresponds
approximately to the radius of the entire cell. The conclusion is that also here sub-
diffusion yields the most favorable searching strategy.

A strong anomaly (low «) not only is associated with an increasing probability of
target finding but also with a long search time. An optimal searching efficiency
with fractional Brownian motion might therefore be given at a = 2/3 (i.e. dp = 3).
At this value, the three-dimensional space is fully explored while the subdiffusive
spreading is not too slow. The « values measured for protein diffusion in cells are
about this optimal «, i.e. intracellular fluids interestingly seem to have just the right
amount of crowding to guarantee an optimal searching efficiency of tracers.
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Part 11

Diffusion of membrane inclusions
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Chapter 7

Studying membranes via Dissipative
Particle Dynamics (DPD)
simulations

In this chapter first a general introduction to the structure and functionality of bio-
logical membranes is given (Section 7.1). The problem of the size-dependent diffusion
of membrane constituents is discussed, based on available theoretical and experimen-
tal studies (Section 7.2). Dissipative particle dynamics is introduced as a class of
computer simulations adequate to study soft-matter systems like membranes (Section

7.3).

7.1 An introduction to membranes

Biological membranes are entities of central importance for all living organisms.
They enclose entire cells and surround compartments within cells, like organelles or
vesicles. All biological membranes have a common gross structure. Each membrane
is a film of lipid molecules which are arranged as a continuous bilayer with a
typical thickness of ~ 5 nm [159|. Lipids are molecules consisting of a polar
headgroup and two hydrocarbon tails. They have an approximately cylindrical
shape and are amphiphilic, i.e. their headgroup is hydrophilic and their fatty acid
tails are hydrophobic. Due to their amphiphilic nature, lipids form spontaneously
membranes or micelles when they are dissolved in water.

In membranes, lipids are ordered in such a way that the hydrophilic headgroups are
exposed at both bilayer surfaces to the surrounding water whereas the hydrophilic
tails are buried in the core of the bilayer and thus are protected from contact
with water (see Figure 7.1 for a schematic illustration). The forces which make
lipids form membranes are mainly of entropical origin. The hydrophobic groups
of lipids have disruptive effects on the hydrogen-bond network of the water
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Figure 7.1: Schematic illustration of a lipid bilayer membrane (cross section). Lipids
expose their polar headgroups (red) to the surrounding water, while the hydrocarbon
tails (black) are buried in the membrane core.
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surrounding, and it is entropically favourable for the system to minimise the
disruption by seperating the lipid tails from water [34]. To a certain extent,
also non-covalent attractive interactions between the lipid tails may contribute to
preserve the membrane integrity, e.g. Van-der-Waals forces or hydrogen bonds [160].

Biological membranes are in principle impermeable to molecules soluble in water,
due to their structure as lipid bilayers with a hydrophobic core. Membranes repre-
sent thus an ideal material to enclose compartments like cells, cellular organelles or
vesicles which exist in an aqueous environment and contain aqueous fluids of a well
defined composition. The lipid species which are present in biological membranes
are manifold. A membrane’s specific lipid composition determines its properties like
thickness and stability. Generally, the different lipid species in biological membranes
can be subdivided into the main classes of phospholipids, sphingolipids and sterol
lipids (e.g. cholesterol).

Membranes are not just passive shells to the compartments which they surround,
but they have also many active functions, for example molecule translocation into/
out of enclosed compartments, enzymatic catalysis, signaling or local formation of
vesicles. The carriers of these active functions are proteins which are embedded in
the membrane. Similarly to lipids, membrane proteins consist of hydrophilic and hy-
drophobic parts which specify how they are associated with a membrane. So-called
transmembrane proteins have a hydrophobic top and bottom and a hydrophilic core;
they are inserted into the lipid bilayer and span its entire thickness. Other protein
species are inserted only in one half of the bilayer or are attached to the membrane
surface by being anchored with a hydrophobic finger.

The number of membrane protein species in cells is very large due to their multitude
of functions. The importance of membrane proteins for the proper functioning of
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membranes and of entire cells is emphasised by the fact that 30% of a cell’s genome
codes for transmembrane proteins [161].

Membrane bilayers are dynamic structures which are fluid in two dimensions due
to their non-convalent design that is based on entropic interactions and on weak
non-covalent forces. This means that lipids and membrane proteins can in princi-
ple diffuse freely in the membrane plane. A lipid in a membrane for example has
typically a two-dimensional diffusion coefficient about D ~ 4 um/s [162] and a ro-
tational diffusion coefficient D, ~ 10 - 2 w/us [163].

Early membrane models proposed membranes to be unstructered two-dimensional
fluids where lipids could be regarded as a randomly distributed solvent and proteins
were low in concentration compared to lipids [164]. In the current view, however, a
more structured picture of cellular membranes is assumed. Several lines of evidence
have been given that proteins and lipids form domains (’rafts’), for example func-
tional protein complexes, separated areas of different lipid composition and regions
of functional specialization [165, 166]. Such segregated regions in membranes were
shown to differ for example in thickness and fluidity [167, 168]. The size of domain-
like entities in biomembranes has been reported to cover a wide range, from a few
nanometers to some 100 nm [169]. Also in contrast to earlier points of view, protein
occupancy in membranes was detected to be very high, in that membrane proteins
make out about 50 % of the membrane mass in a cell [34].

7.2 The mobility of membrane inclusions

7.2.1 Theoretical studies on the diffusion of membrane inclu-
sions

The two-dimensional diffusive mobility of membrane constituents is often crucial
for their functionality, since most biological processes rely on the mutual finding of
reaction or binding partners via diffusion. Functional membrane inclusions which
move by diffusion include single lipids and proteins (e.g. receptors or enzymes) as
well as large raft-like domains (e.g. assemblies of coat proteins which induce vesicle
formation in the ER [170]).

While in three dimensions the lateral diffusion coefficient of a spherical particle in a
viscous fluid is described by the Einstein-Stokes relation, a comparable expression
of general validity is lacking for two-dimensional fluids. Notwithstanding, it is
highly desirable to have such a equation, since it allows not only to conclude
from a diffuser’s radius R (which may be known from cristallography studies) on
its mobility, but permits also to determine parameters like membrane viscosity
or the diffuser size from measured diffusion coefficients. Furthermore, events like
clustering can be detected from mobility measurements which are related to a
change in diffuser size.
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Due to pure geometrical considerations it seems to be appropriate to sepa-
rate two regimes of diffusion in membranes: the first for inclusions which are
comparable in size to the solvent lipid molecules and the second for inclusions
which are large compared to the lipid solvent [171, 172].

Free area model

In the first regime, when solvent and inclusion have similar sizes, the inclusion’s
diffusion is influenced by the appearence of solvent molecules as discrete elements.
Tracers show a lattice movement, i.e. they diffuse by jumping between discrete
adjacent ’holes’ in the solvent. A diffusive jump takes place when a hole with a free
area ay larger than a critical area a* opens up next to the tracer. Free-area models
[173, 174] predict in this context lateral diffusion coeffiecients D ~ e~/ which
are in a fair agreement with measurements for single lipids [162] and for lipid-sized
proteins [175].

The Saffman—Delbriick relation

In the second regime, where diffusing entities are large compared to lipids, the sol-
vent bilayer can be regarded as a continuum. For this case, a membrane inclusion’s
diffusion coefficient can be derived from hydrodynamic theory, analogously to the
Einstein-Stokes equation.

Starting point for the calculation of a diffusion coefficient is typically the Einstein
relation, which connects the lateral/ rotational diffusion coefficients Djg/ror Of a
particle to the system temperature 7" and to the particle’s translational /rotational
mobility fuqt/rot:

kgT
,Ulat/rot.

Dlat/rot = (71)
Here, kg is the Boltzmann constant, while 7" denotes the absolute temperature.
The lateral /rotational mobilities 14 and p,..; are defined as the velocity/angular
velocity produced by a steady unit force/torque.

For the three-dimensional case of a hard spherical particle with radius R
embedded in a fluid of viscosity 7, the mobilities can be calculated from standard
hydrodynamics for laminar flows. This yields the Einstein-Stokes relation for trans-
lational diffusion and the Einstein-Stokes-Debye relation for rotational diffusion
(using no-slip boundary conditions):

kgT kgT

at = o5 rot — S _ a2 7.2
fat 6mnR " 8TR3 (72)
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An analogous expression for the two-dimensional diffusion coefficient of an inclu-
sion in a membrane was derived by Saffman and Delbriick in 1975 [2]. Here, the
membrane was assumed to be an infinite plane sheet of an incompressible viscous
liquid with thickness h and viscosity 7,,. The membrane inclusion was considered
as a hard cylinder of radius R with the axis perpendicular to the membrane.

The rotational diffusion coefficient D,,; of the cylinder about the axis perpendic-
ular to the membrane was calculated with standard hydrodynamics using no-slip
boundary conditions to be [2]:

kgT

Dyt = ———— 7.3
" 4, R2h (7.3)

To derive Dy, also the external fluid above and below the membrane had to be
taken into account, because a calculation of a cylinder’s translational movement in
just two dimensions via the low-Reynolds number Navier-Stokes equations is not
possible (’Stokes-Paradox’). The external fluid was in the model of [2] allowed to be
dragged into motion by the flow of the membrane sheet and by the motion of the
cylinder. It further was assumed that the external fluid added a surface traction on
the sheet. A calculation with perturbation techniques yielded:

k)BT nmh
Dy = - (1 — A4
o= o log (M) <) (7.4

where 7). is the viscosity of the external fluid and v = 0.5772 is Euler’s constant.
Formula 7.4 is commonly denominated the Saffman-Delbriick relation. It is charac-
terised by its logarithmic scaling ~ log(%), i.e. it predicts only a weak dependence
of D;,; on the inclusion radius R.

Extension of the Saffman-Delbriick relation

Due to its logarithmic scaling, the Saffman-Delbriick relation predicts negative
diffusion coefficients when 7,,h/(n.R) < 1, i.e. for membrane inclusion radii beyond
a critical radius

R, =" (7.5)

R. depends on the ratio of the viscosities, i.e. relation Eq. 7.4 breaks down when the
influence of the external fluid viscosity 7). prevails the influence of the membrane
viscosity on the cylinder diffusion.

To account for this, Hughes, Pailthorpe and White [176] performed an extended
numerical calculation of the model of Saffman and Delbriick and derived a complex
expression with an effective scaling:
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1
Dlat ~ E for R > Rc (76)

According to relation 7.6, D decreases for large inclusions rather strongly with grow-
ing R, which deviates from the weak decrease of D for small inclusion as predicted
in the Saffman-Delbriick relation.

7.2.2 Experimental studies on the diffusion of membrane in-
clusions

The size-dependence of the diffusion of membrane inclusions has been examined in
several studies. Transmembrane protein radii as determined from diffusion coeffi-
cients via the Saffman-Delbriick relation were shown to agree with crystallography
structural data [177, 178]. Further, diffusion coefficients of various membrane pro-
teins and of small membrane protein oligomers were observed to depend only weakly
on their radii, in accordance with the Saffman-Delbriick relation [179, 175]. While
the mentioned studies support the Saffman-Delbriick relation for inclusions with
radii between 0.5 and 5 nm, a more recent examination challenges the predictions
[180]. Here, the diffusion coeffiecients of synthetic model peptides with known radii
(0.55 - 1.8 nm) were measured and found to deviate from the D(R)-dependence
stated in the Saffman-Delbriick relation. The authors of [180] proposed as an alter-

native an empirical expression D ~ ——.
nmhR
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7.3 Dissipative Particle Dynamics

7.3.1 Investigating membranes with particle based computer
simulations

Computer simulations represent a versatile approach to investigate the behaviour
of membranes. The simulation technique which allows the most detailed insight is
molecular dynamics (MD). MD represents an atomistic model based on realistic
microscopic interactions. Here, every atom of a system is considered and all inter-
actions between the atoms are taken into account, i.e. bonds, angles and dihedral
angles within indiviual molecules and van-der-Waals forces, hydrogen bonds and
electrostatic forces between molecules. Due to their exactness in detail, MD simu-
lations are very demanding in computational power and calculation time. They are
therefore restricted in their applicability to problems which happen on lengthscales
of nanometers and timescales of nanoseconds. Nevertheless, MD simulations were
already succesfully applied to study simple model membranes [181, 182, 183| as well
as more complex systems which included for example membrane proteins [184| or
DNA-lipid-complexes [185].

To examine more global quantities on mesoscopic lengthscales up to micrometer
and timescales up to microseconds, so-called coarse-grained simulation models were
developed in which atomic details are neglected. Coarse-graining means that func-
tional atom groups in a molecule are summarised to clusters which interact by
effective forces. Such models have, for example, been designed to study membrane
systems [186] or DNA molecules [187]. On a certain low level, coarse-graining exists
already in MD because the quantumchemical nature of the atomic interaction is
neglected, assuming it is not important for the observed quantities.

7.3.2 Dissipative Particle Dynamics

A class of coarse-grained MD simulations that has found a broad utilisation in the
investigation of soft matter and complex fluids is Dissipative Particle Dynamics
(DPD). The DPD method was initially introduced in 1992 by Hoogerbrugge and
Koelman for the simulation of hydrodynamic phenomena [188|. In DPD, a system of
interacting soft beads is considered, each representing a volume of fluid that contains
a functional group of atoms. A bead is large on the molecular scale, but still small
from a macroscopic point of view. Beads move according to Newtons equations.
They interact via effective forces that are chosen in a way that they reproduce the
hydrodynamic behaviour of the fluid without Reference of the molecular structure.
DPD fluids satisfy the Navier-Stokes equations [188].

Today, commonly a formulation of the DPD algorithm is used which was established
by Espanol and Warren [189|. They modified the original DPD algorithm by intro-
ducing a fluctuation-dissipation theorem to ensure that the statistical mechanics of
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the bead system corresponds to the Gibbs canonical ensemble. In the formulation of
Espanol and Warren, DPD beads interact via three forces: a repulsive conservative
force ﬁc, a dissipative force F'P and a random force FR._ The forces are pairwise
additive, conserve momentum, have no hard core and are short-ranged, with the
range of the forces defining the size of the beads. Extended objects in DPD, e.g.
polymers, are formed by connecting particles via Hookean springs, and the stiffness
of chain-like molecules is regulated via a bending potential. In available studies,
DPD was applied for example to study colloids [190], vesicles [191] or membranes
[192, 193, 194].

Compared to MD simulations, DPD allows access to larger lengthscales and
timescales due to two major reasons. Firstly, the reduction of atomic detail in DPD
saves computational time; for example 1 lipid in MD typically consists from about
100 atoms, whereas in DPD it is composed from less than ten beads. Secondly, the
soft core potentials used in DPD permit a stable integration of the equations of mo-
tion with much larger time steps dt than the hard core potentials in MD (typically
Lennart-Jones) do.

7.3.2.1 The DPD formalism

Equations of motion
In DPD, a set of interacting particles is considered, the temporal evolution of which
is determined by Newton’s equation of motion:

dr;

& _ g 7.7
ikl (7.7)
di;

e 7.8
7 (7.8)

Here, 7; denotes the center of mass position of a particle, v; its velocity, F. the total
force which acts on it. The mass m of each bead is set to unity.

Forces
The particles interact via three forces, all being pairwise additive:

Fy =Y (F§+F}+El (7.9)
i#j

Here, the sum includes all particles j which are within a certain cutoff radius rg
around the particle i. The radius 7, specifies the range of interaction between
two beads; r( as the only length scale in the system is used as unit length, i.e. 7o = 1.

]32-? denotes the dissipative or drag force. F'P is proportional to the relative
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velocity of a interacting bead pair. It arises due to unobserved internal degrees
of freedom of the coarse-grained particles and destroys the relative momentum
between two beads.

Fg = —nuw®(7;)(€; - Ty) - & (7.10)

ulations, typically periodic boundary conditions are chosen, which must be
accounted for in the calculation of 7j;. The parameter n denotes the amplitude
of the drag force; w” is a weight function dependent on the distance r;; of two beads.

ﬁg is the random force. It occurs due to the coupling of the beads to the local
temperature of their fluid environment and creates a relative momentum between
two beads.

Flf = ow(7)&(1)€; (7.11)
Here, the parameter o is the amplitude F R wf is a weight functions.
&j(t) is a randomly fluctuating variable with Gaussian statistics. The mean
value of ¢ is zero: (§;(0)) = 0, and the ¢ variables are uncorrelated:

(&ij(t) - Eu(t')) = (Oirdj + dudjr)d(t —t').

The forces FP and FE are related by the fluctuation-dissipation theorem.
This connection relates ¢ and ~ via kg7 and connects the two weight functions
[189]. One of these functions can be choosen arbitrarily and defines thus the other
one.

o? = 2vkpT (7.12)

w? (r) = wh(r)? (7.13)

We choose according to Reference [195]: 0 = 3, v = 4.5,

b,y [ (1=r)* forr<rg
wi(r) = { 0 forr > 7. (7.14)

The interrelation of P and FF ensures that the DPD system has an equilibrium
distribution corresponding to the Gibbs-Boltzmann distribution. This is highly
desirable, because then all standard thermodynamic relations (e.g. for the pressure)
can be transferred to DPD [196].

The combined effect of FP and FC is that of a thermostat which conserves the
linear and angular momentum of the total system and hence gives the correct
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thermodynamics at sufficient time-and lengthscales.

FC is the conservative repulsive force:

F§ = ayw®(ry)é, (7.15)

Here, the constant a;; > 0 specifies the strength of mutual repulsion between the
two beads ¢ and j. The weighting function w®(r;;) is the same as in the random
force. Like FP and FE, FC conserves linear and angular momentum. The three
DPD forces all are pa1rw1se therefore EJ = FJz

When a;; is the same for all beads, the system represents just one fluid
phase. With different bead species of various a;;, there are multiple fluid phases in
the system. When a;; = 25kgT is chosen, the DPD liquid has for a bead density
p = 3/r§ the same fluctuations as water. The fluctuations are measured in terms of
the dimensionless compressibility «~! of the system, which is calculated via:

1 1 Op

kB—T(%)T (7.16)

K
where p is the pressure and n is the number density of molecules. For water at
room temperature, x~! = 15.9835 [196]. With this calibration, a water bead in
DPD corresponds to three water molecules 'in nature’.

Membranes

The ability of DPD to simulate self-assembled lipid bilayers was demonstrated in a
paper by Shillcock [192]. In the membrane model proposed there, 3 types of beads
are used to simulate membrane systems: water beads, hydrophilic and hydrophobic
beads. The repulsion between water and hydrophilic beads is rather weak, whereas
hydrophobic beads and water repel each other strongly. Lipids are constructed
by connecting 1 hydrophilic and 6 hydrophobic particles via Hookean springs to
a chain. The harmonic pair potential between two adjacent beads in the chain is
given by:

. 1 .
Uharm(la 1+ 1) = Ekharm(|ri,i+1| - l())z' (717)

The indices 7, i+ 1 represent here adjacent beads. The spring constant kj,.,, and the
unstretched bond length [, are chosen such that the average bond length is fixed to
the desired value. The stiffness of a lipid chain is modelled by a three-body potential
acting between adjacent bead triples:

Ustiff(i — 1,’i, 7+ 1) = kstiff<1 — COS(¢ — ¢0)) (718)
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The indices 7 — 1, 4, i + 1 again represent adjacent beads in the lipid. The angle ¢
is defined as ¢ = % ¢o specifies the preferred angle between two bonds.
Due to their amphiphilic nature, DPD lipids self-assemble when they are ini-
tially distributed randomly in water. The structures which are formed depend on
the lipid density in the system and can be micelles, single bilayers or vesicles [192].
The self-assembly ensures that DPD membranes are stable structures. Membrane
properties like the lateral stress profile, area stretch modulus or bending rigidity as
determined for DPD bilayers are comparable to experimental values measured in
typical lipid bilayers [192].

In the DPD literature, various membrane models have been introduced which are
based on the Shillcock model, but modify for example the chain length [193], the
number of head groups/ tail groups or the number of hydrophobic tails (one/ two)
[197, 194]. The choice of the model determines the values of the parameters kg,
lo, kstiff and Qjj.

In the study presented here, the lipid model of Laradji [193, 198] was used,
which is a coarse-grained version of the Shillcock model (i.e. a lipid here consists
from one hydrophilic headgroup (H) and only three hydrophobic tailgroups
(T)), allowing thus the investigation of comparatively large systems. The bead
density in the system here is chosen as p = 3/rj, the lipid density in the mem-
brane has to be pipiq = 2.5. The interaction constants between the beads are:
aww = apg = arr = awg = agw = 25kgT, awr = arw = agr = arg = 200kpT,
Eharm = 100kgT, koir = 20kpT,ly = 0.45ry. The letter W in the index of the
repulsion constants denotes the ’water’ bead species. In the original version of
the Laradji model, the bending potential of the Shillcock model is lacking. It was
introduced here using the parameter setting of Shillcock.

Integration

To advance the set of particle positions and velocities, Newtons equation of motion
need to be integrated. There exist several integration schemes suitable for DPD
[195], but typically the DPD velocity-Verlet (DPD-VV) algorithm is used [199, 195]:

1. Calculate forces: F.¢ = D it FS, FP = D it ER Flf = D i Fl
2. Calculate new velocities v;:
1 - . .
T — T+ Q—(Ffdt + FPdt + FEVdt) (7.19)
m
3. Calculate new positions 77;:

Ry 7+ Bidt (7.20)
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4. Calculate FP

5. Calculate new velocities v;:

]_ —
Uy ¥ + —FPdt 7.21
— G+ F (7.21)
6. Calculate new positions 7;:

ri 7 + vyt (7.22)

The DPD-VV algorithm is derived from the standard velocity Verlet (VV) scheme
which is typically used in molecular dynamics. The VV scheme allows a more
stable integration of the equations of motion than the common Euler scheme does.
In particular the integration time step dt¢ in the DPD-VV can be choosen by a
factor of ~ 50 larger than in an Euler integrator [196|. In DPD-VV, standard VV
was extended by the steps 4.) - 6.) which includes an additional update of ]i-D to
account for the mutual dependence of v; and ZiD which can be problematical in the
integration.

In the choice of the integration time step dt one has to balance between a fast
simulation and the requirement to keep the system faithfully reproduce the real
dynamics. In Reference [196], it is recommended to choose dt < 0.05 to avoid errors
of T which are larger than 2 %.

In the integration of the random force ]31-?, the factor v/dt occurs instead of dt, as
can be derived from the underlying stochastic differential equations [189].

To save processing time, the random numbers ;; can be taken from a uniform
distribution instead of a Gaussian distribution. This is allowed since the number of
&i; used in a simulation is very large and their distribution approximates a Gaussian
distribution according to the central limit theorem. Reference [196] demonstrated
in this context that there is no statistical difference in DPD simulations when using
Gaussian and uniform random numbers.

Barostat

To perform DPD simulations at a constant pressure and a constant surface tension
- for example to ensure that a membrane is tensionless - a barostat is used to
equilibrate the system. A barostat generally regulates the pressure in a system
by relaxing or contracting the simulation box according to the difference of the
instantaneous pressure from the selected target pressure.

A Galilean-invariant and momentum-conserving DPD barostat was introduced
by Jakobsen [200]|. It works analogously to the Langevin piston barostat which
was developed for MD simulations [201]. The DPD barostat is impelemented
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by introducing three new degrees of freedom to the system, which correspond
to the volume of the simulation box and effectively serve as a piston. They are
parametrised by a coordinate €, the components of which are the logarithms of the
box lengths L, L,, L, in X, y, z - direction. The piston has further a mass W and
a velocity .

The motion of the piston degree of freedom is described by a Langevin equation.
This allows a partial damping and avoids unphysical oscillations of the box volume
which are observed in alternative barostat methods without damping [200].

The piston motion is governed by a force F. which includes contributions from the
difference of the instanteous pressure to the target pressure, from the momenta of
the beads in the box, from a dissipation force and from a random force.

The positions of the beads in the box are adjusted to the new volume after every
barostat step such that they keep their relative position to the box corners. Also
the influence of the piston velocity on the bead velocities is considered.

For integration, the DPD-velocity Verlet integrator is extended to include the
piston motion. The resulting equations are complicated because the new particle
velocities depend on the new pistion coordinates v, and vice versa. To account for
this, an iterative procedure for the calculation of v, and the v; has to be used.

The combination of the DPD-VV integrator and the iterative procedure for the
barostat lead to the following integration scheme for equilibration with the barostat:

—

1. 117’6 — 17’6, v — U, ¢ ¢

L d 7 T 23
3. U U + g7 (dV (P — Py) + N i :1_1- — Ypi)dt + QP—W?\/%
4. € — €+ v.dt
5. rf — G (rf + vfdt)
Update the simulation box size: L; = L;e% =9, j: X, y, z - coordinate
Update the simulation box volume: V' = L, - L, - L,
Calculate the DPD forces FC, FP, Flt
Calculate the pressure P
6. U — T, V. — 7.

- 2 5 o

T. 0 = Ve + @ (dV(P = Po) + 3 32, f = i )dt + e/t
8.a) v} « {e“ =¥ + S (FCidt + FPIdt + FIdt)} /{1 + vldt}

8.b) T — U+ 54 (AV(P = Ro) + 5L Yo, 2 — o fedt) + G2/t
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Here, indices j denote the x-, y-, z-coordinates. The steps 8.a) and 8.b) are
iterated to convergence, which happens within 5 to 10 iterations. The barostat
mass is chosen as W = (Ny + d)kBTTg. The parameter Ny = dN — d denotes the
number of degrees of freedom of the system. d is the dimension, N the number
of beads in the box. 7, is the characteristic time of the barostat and has to be
chosen similar to the smallest time scales of particle motion. o, is the strength
of dissipation of the piston coordinate, &, is the strength of fluctuation; both are
related by a fluctuation-dissipation theorem as 012, = 29,WkpgT.

The pressure P in the box is a tensor and defined as:

ik 1 Uzjvzk Cj. k
Pl =+ ) Fr) (7.23)

with j, k£ being the x- |y- ,z-coordinates. F is the target pressure in the box. For
equilibration with the barostat, the parameters were chosen here in agreement with
[200] set to: d = 3, Py = 23.649k5T /13, 7, = 2, v, = 10/7, = 5.

DPD with implicit solvent

Recently, a solvent-free DPD model for membrane simulations was presented
[202, 203, 204]. This model leaves out the water solvent of conventional DPD and
uses instead attractive forces between lipid tails to mimic the influence of the
solvent. Due to the reduction of the total number of beads in the system, this
implicit-solvent model saves computational power and represents a very effective
way to access much larger systems than conventional DPD.

In most of its parts, the implicit-solvent DPD works equivalently to conventional
DPD. All beads within a certain interaction range interact via a repulsive force
FC, a dissipative force F2 and a random force FR (the latter two forming the
thermostat); beads which form lipids or other large objects are linked via harmonic
forces; chains are stiffened by an angle potential. The forces have the same form as
in normal DPD, with the coefficients of repulsion a;;, harmonic force kj4m, angle
force kgirr and the equilibrium distance [y differing slightly from their values in
normal DPD because they were adapted to the demands of the implicit model.
Lipids in implicit-solvent DPD consist from one hydrophilic headgroup and only
two hydrophobic tailgroups.

To mimic the effect of the solvent which is left out, a newly introduced attractive
force F4 acts between any two hydrophobic beads which are within a certain
interaction distance ry < r;; < 1o + w:

FA_ { —Ei;Te sin(@)/(?w) for ro<rij<rot+w (7.24)

forr;; <rgand r; > rog +w
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Here, € is the attraction energy in units of kg7 and w is the typical length scale
of the attraction. The interaction constants in implicit solvent DPD are chosen as
gy — agTr — arg = 48/{ZBT, arr = 96/{ZBT, kharm = 120[€BT, kstiff == QOI{JBT, l(] =
0.6rg, w = 1o, € = 1.4kgT.

Similarly to normal DPD, the equations of motion for implicit-solvent DPD are
integrated using the DPD velocity Verlet algorithm which is extended by F4. The
size of the timestep can be chosen similarly to normal DPD. Also the DPD barostat
can be used for equilibrating systems to yield tensionless membranes.
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Chapter 8

Results — Size-dependent diffusion of
membrane inclusions

In this chapter the results of DPD computer simulations are presented in which the
diffusion coefficients of differently sized membrane inclusions were determined; the
stmulation procedure, the obtained results and their interpretation are described and
discussed in detasl.

8.1 Problem definition

While several available studies support the validity of the Saffman-Delbriick theory
for small inclusion radii, its validity for larger radii has not been probed yet, just as
little as the predictions of Hughes et al. [176] for very large radii. The observations
of Reference [180] which contradict the Saffman-Delbriick theory underline even
more that it is still an open question how two-dimensional diffusion coefficients of
membrane inclusions are related to radii, membrane thickness and viscosities.

For a robust experimental test of the size-dependence of diffusion, it would be de-
sirable to measure the diffusion coeflicients of various membrane inclusions covering
a broad range of radii. However, this is a challanging task, first of all because a
suitable experimental system with adjustable inclusions typically is lacking. When,
for example, proteins or protein oligomers are used as inclusions, their radii must
be determined independently, for example via NMR or scattering experiments. Fur-
thermore, in the measurment of diffusion coefficients all imperfections of the ex-
perimental system, for example a hydrophobic mismatch of proteins causing local
membrane perturbations [205], can lead to a shift in the effectively detected D.
An exact determination of D also may be affected by membrane curvature [206]
and membrane fluctuations [207] as well as by limitations of the used measurement
technique, in particular FRAP [51].

In the following, an alternative option to experimental investigations on the diffu-

123



8.2. SIMULATION PROCEDURE

sion of membrane inclusions will be presented. It will be demonstrated that particle-
based mesoscopic computer simulation of the DPD class are a suitable approach to
clarify the validity of the Saffman-Delbriick relation and its extension.

8.2 Simulation procedure

Implementation of DPD
The DPD algorithm as described in Section 7.3 was implemented in a software
program written in Fortran 90. The general functionality of the DPD program was

tested by monitoring a number of physical observables:

- The average kinetic temperature

Mz

(kpT) (8.1)

3N3

must be constant for a canonical ensemble and have the same value as set in the
simulation.

- The center of gravity

N

N
ﬁcenter = Z ﬁml/(z mz) (82)
i=1 i=1

of the entire system must be conserved in the center of the box.
- The average velocity

1 N
<6>:NZ : (8.3)

i=1

of all beads must be conserved to 0.

- The distribution p(v) of the absolute velocities v = /v2+v2+vZ of the
beads must correspond to the Maxwell-Boltzmann distribution:

p(v) = \/g( k::T)?’/ 22 TtoT (8.4)
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Figure 8.1: Average kinetic temperature (kgT') Eq. 8.1 of a pure water DPD system
(symbols). After an equilibration time of about 500 steps, the constant value (kgT)

~ 1 is reached.

For a pure water system of a volume 15 - 15 - 15 that was simulated for 10° time
steps, the DPD program used here yielded an average kinetic temperature that
became constant after an equilibration time of at a value of kT = 1.012 (see
Figure 8.1 for a plot). The center of gravity was conserved in the box center, i.e. at
Reentor = (7.5,7.5,7.5), the average velocity was < v > = (0,0,0). The distribution
of absolute velocities followed the Maxwell-Boltzmann distribution (see Figure
8.2. All test variables therefore were in an excellent agreement with the expected
values, which shows that the DPD algorithm works properly.

The barostat was tested by calculating the dimensionless compressibility #*
of water from the volume fluctuations dV of the simulation box in case of a pure
water system via [200]:

gl (8.5)

(dV2)p
Here, V' is the average box volume and p denotes the number density.
With the DPD program used here, simulations of a 15 - 15 - 15 box with pure water
yielded k= = 15.92, which is a good reproduction of values x~! = 16.1 given by
Reference [200] and x~! = 15.98 given by Reference [196].
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Figure 8.2: The distribution p(v) of absolute velocities v in a DPD water system
(symbols) follows the Maxwell-Boltzmann distribution Eq. 8.4 (line).
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Figure 8.3: (Left) A single lipid as used in DPD simulations, consisting from a
hydrophilic headgroup (red) and three hydrophobic tailgroups (yellow). (Center
and right) A self-assembled DPD membrane consisting of single lipids in a cross
section (surrounded from water) and a topview (water not shown).

DPD membrane and inclusions

In the DPD simulations presented here, the diffusion of differently sized membrane
inclusions was investigated. For this purpose, independent simulations were
performed with the Laradji lipid model (lipid length 4) [193]. A single lipid and a
self-assembled membrane in the Laradji model are shown in Figure 8.3.

The membrane inclusions in the simulations were modeled as cylinders of hexagonal
cross section, consisting of single chains of double lipid length, i.e. the chain length
was N = 8 beads. The first and the last bead in every chain (top and bottom of the
cylinder) were hydrophilic, the (N — 2) beads between were hydrophobic. In total,
an inclusion consisted of 2- N - (3- K - (K + 1) + 1) beads, where (K + 1) is the
edge length of the hexagon. The beads in an inclusion were interconnected along
the chains and within each layer with Hookean springs of the potential Uy, as in
the lipids. Each chain was given a bending rigidity with the potential Ug;s¢. Each
inclusion was assigned a radius. The radius was determined from the simulations
by measuring the distance of opposite corner beads in a bead layer of the hexagon.
The examined inclusions had edge lengths of (K + 1) = 2, 3, 4, 6, 8, 10, 15, 20
beads. Example pictures of differently sized inclusions are displayed in Figure 8.4.
All membrane simulations with inclusion of an edge length (K + 1) = 2 - 15 were
performed in a simulation box with the initial dimensions L, = 40ry, L, = 40ry,
L, = 16ry. Membrane simulations with inclusion of a edge length (K + 1) = 20
were done in a simulation box with the initial dimensions L, = 45ry, L, = 4570,
L, = 16ry. The systems had always periodic boundary conditions. The membrane
was stretched out in the x-y-plane; the box height in z-direction was chosen such
that the box was fourfold bigger than the membrane thickness.

Simulations were started with the lipids being already in the configuration of a
membrane with initial positions on a lattice. The hexagonal inclusion was initially
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Figure 8.4: Hexagonal membrane inclusions with edge lengths (K + 1) = 2, 4, 6,
consisting of hydrophilic (red) and hydrophobic (yellow) groups. The black arrows
display the orientation vectors of the inclusions that were used to determine the
rotational diffusion coefficients.

placed in the membrane middle. The lipid density was that of the used membrane
model reduced by the number of chains which formed the membrane inclusion.
The box was equilibrated for 3 - 10* timesteps with the barostat to ensure that
the membrane with the inclusion was tensionless. Then L,, L,, L. were fixed and
simulation was performed for 10° timesteps. As timestep, dt —0.01 was chosen for
simulations with and without the barostat. Every 100 timesteps the position of the
inclusion’s center of mass and the ’spin vector’ of the inclusion were recorded. The
‘spin vector’ denotes the vector which points from the the central bead in the top
bead layer of the inclusion to the bead which is at the beginning of the simulation
at the left corner of the top bead layer (see Figure 8.4).

Determination of inclusion radii

The radius R of an inclusion was determined from the simulations by measuring
the distance 6 of opposite corner beads in the upper layer of the hexagon; then
R = 6/2. For each radius, the average over 80 time steps in the equilibrated system
was taken. The resulting radii in simulation units are shown in the Table 8.1.

Determination of diffusion coefficients

The lateral diffusion coefficient D of an inclusion was extracted from its recorded
trace Z(t), while the rotational diffusion coefficient D, was obtained from the
rotating spin vector S(t).
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Laradji model
(K+1) R [ro] | D |r2/(100dt)] | Dyot [2 -7/(100dt)]
2 0.52 0.0113 0.00796
3 1.04 0.0105 0.00433
4 1.56 0.0090 0.00159
6 2.62 0.0075 0.00080
8 3.67 0.005 0.00016
10 4.72 0.0043 0.00032
15 7.34 0.0028 0.00012
20 9.96 0.0025 0.00005

Table 8.1: Coefficients of lateral diffusion D and rotational diffusion D,.,; of a hexag-
onal cylinder with edge length (K + 1) and radius R in a lipid bilayer in the DPD
model of Laradji (DPD units).

The values of the mean square displacement (Az?(7)) at particular time
steps 7; can be calculated via:

A
(AP(m))y =) — (8.6)

' m — 1
Jj=1

Here, the 7, = 7 - dt denote the time increments between ¢ simulation steps. The
values AZ; = Z(t; + 7;) — Z(t;) denote the j = (m — i) distances which can be
extracted from the inclusion’s trace for each 7;.

The lateral diffusion coefficient D was determined by comparing the curve yielded
from Equation 8.6 with the theoretically expected mean square displacement for
diffusion in two dimensions:

(A2*(1)) = 4Dr. (8.7)

Figure 8.5 shows the mean square displacement of an inclusion with edge length
(K + 1) = 2 and its fit with Equation 8.7. In the plot, it can be seen that the
motion of the inclusion is ballistic for short times and becomes diffusive for larger
times, i.e. (Ax?(7)) ~ 7. At high 7, statistics become bad, which can be seen in
a flattening or fluctuations of the curve. The diffusion coefficients (in DPD units)
of all inclusions as determined by fitting their mean square displacements with
Equation 8.7 are shown in the Table 8.1.

The rotational diffusion coefficient D,,; of an inclusion was determined from the
angular mean square displacement of the inclusion’s ’spin vector’. The spin vector

129



8.2. SIMULATION PROCEDURE
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Figure 8.5: Mean square displacement (Az?(7)) of a membrane inclusion (data
points); fit with equation 8.7 (black curve).

pointed from the bead in the inclusion center to a specific bead at the inclusion’s edge
and rotated during the simulations about an axis perpendicular to the membrane
plane. The angular mean square displacement of the spin vector is:

B ) =3 2

1

(8.8)

m—1

Here, the 7, = 7 - dt denote the time increments between ¢ simulation steps. The
values A¢; = ¢(t; + 7;) — ¢(t;) denote the j = (m — i) relative angles between the
spin vectors for each ;.

The rotational diffusion coefficient D,,; was determined by comparing the curve
obtained via Equation 8.8 with the theoretically expected angular mean square
displacement for rotational diffusion in two dimensions:

(AQ*(T)) = 2D, oy7 (8.9)

When plotting (A¢?(7;)) against 7; for i=1,m, one can fit with equation 8.9. The
rotational diffusion coefficients obtained from the fit are shown in Table 8.1.
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Conversion of DPD simulation units to SI units

DPD data are converted to SI units by comparing values from the simulation with
experimentally measured values [197]. For determining the observed length scale
in the simulation, the membrane thickness detected in DPD was compared with
synthetic bilayers having a thickness of 3.5 nm [159]. The thickness of the DPD
membranes was obtained by averaging the distance of all hydrophilic lipid head
beads in the opposing leaflets of the bilayer ('phosphate-to-phosphate distance’).
The internal timescale was determined by comparing the numerically obtained
diffusion coefficient of a single lipid with the experimentally measured value of a
lipid diffusion coefficient Dg,, = 4 um?/s [162].

In the simulations, the average membrane thickness was ~ 3.2 ry. This set the
internal length scale to 7o = 1.1 nm. The diffusion coefficient of a single lipid

Dppp =0.03 1g§dt yielded that a single time step dt = 0.01 corresponded to 91 ps.

Viscosity of DPD water

For measuring the viscosity of the DPD solvent (water), the traces of a single water
bead and of differently sized hexagonal cylinders diffusing freely in a simulation box
filled with water beads (bead density p = %) were monitored. From the traces, the
diffusion coefficients of the cylinders were extracted.

The cylinders had the same shape as the membrane inclusions described above,
but were composed only from hydrophilic beads. The beads were connected via
Hookean springs, using the spring potential of the Laradji model (kpqpm = 100k5T,
lo = 0.45r(). The edge lengths of the cylinders were (K + 1) beads which yielded a
diameter of (2K + 1) beads, the cylinder heights were chosen (2K + 1) beads. For a
single bead, a radius Rye.q = (%)1/ 3 /2 was assumed, which yielded in SI units Rpeqq
= 0.38 nm. The cylinders were regarded as spheres of different sizes, since their
lengths were chosen similarly to their diameters, and since they could rotate freely.
Each cylinder was assigned a radius R = \/ 2 - (Klp + Rpeaa/2), which corresponds
to the distance from the central bead of the cylinder to a bead in a corner of the
hexagon.

The dependence of their diffusion coefficients on size was fitted with the Einstein-
Stokes relation D = cfrgcTR, with ¢ = 6 for stick boundary conditions and ¢ = 4 for
slip boundary conditions. Setting ¢ = 6 yielded a good description of the data and
determined the viscosity of DPD water to be 7. ~ 0.04 Pas (see Figure 8.6). Bearing
in mind the somewhat vaguely defined radii R (due to the use of soft-core potentials)
and the uncertainty if stick or slip boundary conditions are more appropriate in the
Einstein-Stokes formula for fitting the DPD data, the value for 1. may be slightly
higher or lower.
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Figure 8.6: Lateral diffusion coefficients D of hexagonal cylinders in a water box in
dependence of the cylinder radii (data points); fit with the Einstein-Stokes relation
(black curve).

8.3 Results

Size-dependent diffusion of membrane inclusions

To investigate the diffusion of large inclusions in a membrane bilayer, in particular
to examine the predictions of the Saffman-Delbriick theory, computer simulations
of the DPD scheme were performed. The model system used here consisted of three
types of beads: water beads, hydrophilic groups and hydrophobic groups. Lipids
were constructed from one hydrophilic bead representing the polar head group and
three hydrophobic beads representing the hydrocarbon chains. Membranes were
ensured to be self-assembling and stable.

Membrane inclusions were modeled as membrane spanning cylinders with a
hexagonal cross-section, consisting from single chains of double lipid length. Edge
length of the hexagonal cylinder was (K + 1) beads. The top and bottom plane of
the cylinders consisted from hydrophilic beads, and the six core planes consisted
from hydrophobic beads (see Figure 8.4 for illustration).

To determine the lateral and rotational diffusion coefficients of membrane in-
clusions with different radii, independent simulations were performed with just one
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Figure 8.7: Cylindrical inclusion (displayed in grey) with an edge length (K + 1) =
4 diffusing in a membrane.

inclusion embedded in a large membrane patch. The membrane with the inclusion
was made tensionless by equilibration with a barostat [200]. In the equilibrated
system, the lateral motion and the rotation of the inclusion was recorded for a large
time period. To be able to relate the results to biological systems, the simulation
units were transferred to SI units. Here, simulations lasted ~ 90 us; membrane
patches had a size of ~ 40 - 40 nm? and the examined inclusions had radii R =
0.57 - 10.96 nm.

In Figure 8.7, a snapshot of an inclusion embedded in a membrane is shown. From
an inclusion’s recorded trace and rotation, the coefficients of lateral diffusion D
and rotational diffusion D,.,; were obtained by fitting the translational and angular
mean square displacements. The resulting diffusion coefficients are shown together
with the inclusion radii in Table 8.2 (in SI units).

To examine the predictions of hydrodynamic theory [2| on the radius dependence
of diffusion coefficients, the determined D and D,, were plotted against the
inclusion radii R. The resulting curves were compared to the predictions of the
Saffman-Delbriick theory [2]| for lateral diffusion (Equation 7.4) and rotational
diffusion (Equation 7.3). The comparison was done by optimising three parameters
in the Saffman-Delbriick equations: the membrane thickness h, the membrane
viscosity 7,, and the water viscosity 7.

As a result, both lateral and rotational diffusion coefficients were observed to
be described excellently by the Saffman-Delbriick relations. The data for lateral
diffusion is displayed in Figure 8.8. The best fit of the lateral diffusion could be
done with the parameters h = 3.5, n,, = 0.19 Pas, n. = 0.039 Pas. The solvent
viscosity 7. matched well with the value determined independently for the pure
solvent. The membrane viscosity 7,, could not be determined independently, but is
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Laradji model
(K+1) R [nm] | D [um?/s] | Dot [27/ 5]
2 0.57 1.50 0.87
3 1.14 1.40 0.476
4 1.72 1.20 0.175
6 2.88 1.00 0.088
8 4.04 0.67 0.018
10 5.19 0.57 0.035
15 8.07 0.37 0.013
20 10.96 0.33 0.006

Table 8.2: Coefficients of lateral diffusion D and rotational diffusion D,.,; of a hexag-
onal cylinder with edge length (K + 1) and radius R in a lipid bilayer in the DPD
model of Laradji (SI units).

in good agreement with typical data from the literature for artificial membranes
[159].

The best fit of the rotational diffusion (see Figure 8.9) could be done with the
prefactor 47’?5:,1 = 0.5 wm?/s, which is in a good agreement with the value 1.1
pum?/s obtained from h and 7, as determined by fitting the lateral diffusion

coefficient.

The Saffman-Delbriick theory is valid only for inclusion radii R < R., with
R. being dependent on the membrane thickness and the viscosities in the system
(c.f. Equation 7.5). Beyond R., the extended theory of Hughes et al. becomes
valid (Equation 7.6). With the values for h, n,,, 7. as determined for the present
simulation systems, the critical radius is R. ~ 17.05 nm. The largest inclusion
whose diffusion was examined in the simulations had a radius R ~ 10.96 nm
and was thus below R.. To investigate the dependence of D on R for large radii
beyond R., simulations with inclusion radii would be necessary that exceed the
present maximum radius by factors of two, three and more. In the framework of
the present thesis, the examination of such large inclusions was not possible, since
available computers do not allow to perform DPD simulations of appropriatly large
systems within a reasonable time period. In particular, in a suitable simulation
box the lengths in x- and y- directions must be larger than 2 times the diameter of
the inclusion, in order to avoid an interference of the inclusion with itself via the
solvent. Since always two box lengths have to be increased, the number of beads
inside the box grows quadratically, and the same is true for the simulation time.

In summary, the performed DPD simulations on membrane inclusions demon-

strated the Saffman-Delbriick theory to describe the radius dependence of diffusion
coefficients excellently. Both the predictions of a scaling D ~ log(1/R) for lateral
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Figure 8.8: Lateral diffusion coefficients D of membrane inclusions in dependence
of the inclusion radii R (data points); fit with the Saffman-Delbriick relation for
lateral diffusion (black curve).

diffusion and D,,; ~ 1/R? were reproduced clearly in the simulations for all
accessible inclusion sizes, which covered small and intermediate radii of ~ R./2 in
maximum. These observations represent a confirmation and an extension of earlier
experimental studies which already detected the validity of the Saffman-Delbriick
theory for very small radii.

8.4 Beyond the validity regime of the Saffman-
Delbriick theory

Parallelly to the DPD study presented in Section 8.3, a similar study was performed
with implicit-solvent DPD by Matthias Weiss. Implicit-solvent DPD works without
the water solvent of normal DPD, mimicking its influence by an attractive force
between hydrophobic groups in the system, e.g. lipid tails. Due to the strong reduc-
tion of beads (e.g. for a 30 - 30 - 15 nm? box, 3/4 of the beads are water beads),
implicit-solvent DPD permits to access much larger membrane patches than normal
DPD.

In the work of M. Weiss the implicit-solvent model of Reference [204] was used.
Here, lipids differ from the standard DPD models used in the simulations above in
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Figure 8.9: Rotational diffusion coefficients D,.,; of membrane inclusions in depen-
dence of the inclusion radii R (data points); fit with the Saffman-Delbriick relation
for rotational diffusion (black curve).

that they consist from one headgroup and only two tailgroups.

In the study of M. Weiss, lateral and rotational diffusion coefficients of differently
sized membrane inclusions were determined by recording their trace and rotation,
similarly to the study presented above. As inclusions, the hexagonal cylinders de-
scribed in Section 8.2 were used. Since lipids in the implicit-solvent DPD model
have only two hydrophobic tailgroups, the bead chains composing the inclusions
consisted accordingly from only six beads in length, with four hydrophilic beads in
the middle and one hydrophobic bead at each end of the chain.

The simulation procedure in the work of M. Weiss was the same as described in
Section 8.2. Initially, the simulation box was equilibrated with a barostat for 3- 10*
timesteps to get a tensionless bilayer. Then the box size was fixed and the position
of the diffusing inclusion and its spin vector were recorded during a simulation of 10°
timesteps. The lateral and rotational diffusion coefficients were determined analo-
gously to the description in Section 8.2. Convertion from the simulation units to SI
units was done as described in Section 8.2 by comparing the bilayer thickness and
the diffusion coefficient of a lipid in the simulation with experimentally determined
values. This resulted in dt ~ 80 ps, 7o & 1 nm. A simulation lasted therefore ~ 80
(LS.

The inclusion radii accessible to implicit-solvent DPD were considerably larger than
the radii accessible to normal DPD and lied at R ~ 0.76 - 50 nm. Thus, the validity
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regimes of both the Saffman-Delbriick theory and its extension by Hughes et al.
were covered.

The coefficients of lateral diffusion D as extracted from the implicit-solvent DPD
simulations are shown in Figure 8.10. The coefficients were plotted in dependence
of the cylinder radii R, and the plots were compared to the predictions of Saffman-
Delbriick and of Hughes et al.. As in the study with normal DPD, the comparison
was done by fitting the membrane thickness h, the membrane viscosity 7,, and the
solvent viscosity 7.

For the lateral diffusion coefficients, the Saffman-Delbriick relation yielded a good
fit for inclusions with small radii from ~ 0.76 - 6 nm. The best fit could be done
with h = 3.3, n,, = 0.25 Pas, . = 0.056 Pas. These values are very similar to
the values determined with normal DPD. Slight deviations may appear because the
models of implicit-solvent DPD and normal DPD are not perfectly congruent, due
to different lipid models and varying potential parameters. Furthermore, 7, is not a
well-defined quantity in the implicit-solvent approach, as will be explained below.

D [m?/s]

R [m]

Figure 8.10: Lateral diffusion coefficients D of membrane inclusions in dependence of
the inclusion radii R (data points), as determined in the study with implicit solvent
DPD of M. Weiss; fits with the Saffman-Delbriick relation for lateral diffusion (full
line) and with the expression of Hughes et al. corrected with a term taking in account
internal modes of the inclusions (dotted line).

Fitting the entire numerical data with Saffman-Delbriick resulted in a very bad
description, with values of 7, and 7. deviating strongly from the results of the sim-
ulations with standard DPD.

The rotational diffusion coefficient was for all inclusion sizes well described by the
Saffman-Delbriick theory for rotational diffusion (which is by definition valid for all
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radii). The prefactor of the best fit to the data yielded ;ﬁ:h = 0.45um? /s, which
is in excellent agreement with the value 0.41 pum?/s obtained from h and 7,, as
determined by fitting the lateral diffusion coefficient for small radii.

With the determined values for h, 7,,, 1., the critical radius for the transition from
the Saffman-Delbriick validity regime to the formula of Hughes et al. becomes R, ~
14.73 nm. In the D(R) - plots indeed strong deviations from Saffman-Delbriick were
observed for inclusion radii larger than R./2. However, while the formula of Hughes
et. al. predicts Dpygnes ~ 1/R [176], the lateral diffusion coefficient seemed to de-
crease faster than linearly with the radius of the inclusion.

This observation was rationalized by the consideration that the hydrodynamic cal-
culations of Saffman-Delbriick and Hughes et al. have used incompressible cylinders
as a model for the membrane inclusion. In the DPD simulations, however, the inclu-
sions have internal degrees of freedom, due to their construction as being composed
from single beads connected with springs. Due to an inclusion’s internal degrees of
freedom, the erratic impact of surrounding lipids driving the inclusion’s Brownian
motion is dissipated in part via the imposed thermostat. As a consequence, only
a fraction f of the impact can be used to move the center of mass. This fraction
can be estimated to be for large radii f ~ %, as will be described in Section 8.5.
Thus, for R >> R, the effective lateral diffusion coefficient is D(R) ~ f - Dgyughes,

in particular:
1

neR?
This relation describes very well the numerical data of M. Weiss when using the
previously found viscosity 7. = 0.056 Pas.
The internal modes of the inclusion and the dissipative forces imposed by the ther-
mostat can also be used to explain the ability of the implicit-solvent approach
(where 7. = 0 by definition) to reproduce hydrodynamic relations like the Saffman-
Delbriick formula in which a finite value for 7. is needed. The erratic impact of
the surrounding lipids excites shear modes within the inclusion with a polarization
perpendicular to the bilayer normal, and these modes are dissipated by the action
of the thermostat. A 'neutral layer’ of the inclusion located roughly in the mid-
plane of the bilayer therefore feels a friction with respect to the layers that lie above
and below in-plane with the hydrophilic headgroups of the lipids. Hence, these shear
modes mimic an apparent solvent viscosity that should change, when the dissipation
strength gamma in the thermostat is altered for the beads within the inclusion.

D(R) (8.10)

8.5 The influence of internal modes on the diffusion
of large objects in DPD

In DPD, large objects such as membrane inclusions are constructed from single
beads being interconnected via harmonic springs. A bead being part of a large
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object is therefore not perfectly fixed in its relative position within the object but
can oscillate, i.e. show Brownian motion in the harmonic potential of stiffness k..
Since the beads are coupled to the DPD thermostat, their oscillations are related to
an enhanced dissipation of energy. This has consequences for the diffusive motion of
an object, which is driven by the erratic impact of surrounding solvent molecules.
Since the impact also excites internal modes, its energy can be used only partially
to move the object’s center of mass, while a part is dissipated. Dissipation in this
context can be expected to have a significant influence especially on the motion
of large objects consisting from many beads and many springs, i.e. in cases where
many channels of dissipation exist.

In the following, the fraction f of the original solvent impact that can be used to
move the center of mass will be estimated for a cylindrical membrane inclusion
as used in the simulations presented above, i.e. a cylinder with a hexagonal cross-
section and a diameter of (2K + 1) beads.

For a bead performing Brownian motion in a harmonic potential of stiffness kpum,
the spectral density describing the energy distribution with frequency is given by
[208]:

plw) = — (8.11)

Twd + w?

Here, wy = kh‘g'm is the corner frequency of the oscillator. The parameter § denotes
the (local) friction coefficient of the moving bead, which depends on the dissipation
strength of the thermostat.

The coupling of many individual beads via springs in an inclusion leads to a spec-
trum of relaxation times. The longest relaxation time 7 here appears due to os-
cillatory modes along the inclusion diameter, where the largest number of springs
is included. This maximum relaxation time 7 can be estimated by considering an
effective Maxwell element, i.e. a series of purely elastic springs and purely viscous
dampers. Along the diameter of the inclusion, the effective Maxwell element con-
sists of (2K + 1) springs of stiffness kpq-n and a damping dashpot of viscosity 7,,
in series. This element represents effectively a spring with stiffness kg /(2K + 1),
yielding the relaxation time 7 = (2K + 1)1/ knarm-

The lowest frequency, that internal oscillatory modes of the inclusion can have, is
Winin = 27” When solvent kicks transmit energies to the inclusion which correspond
to frequencies w < wpin, they do not induce internal oscillations, but move the
center of mass. The fraction f of the solvent impact which is not dissipated but
induces the motion of the inclusion’s mass center can thus be calculated as:

const.
2k+1

f= /mem p(w)dw = 2 arctan( )/m (8.12)

Using R ~ (2K + 1), this equation becomes
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const. 1

f = 2arctan( 7 )T~ B for large R (8.13)

When the dissipation of energy due to internal modes is considered, the effective
lateral diffusion coefficient of an inclusion will be

Deffective = f : Da (814)

with D being the lateral diffusion coefficient as expected from hydrodynamic theory
for the incompressible equivalent to the considered inclusion.

The expressions Eq. 8.13 and Eq. 8.14 should hold when the diffusive motion on
short and intermediate timescales is quantified. The contribution of the internal
modes can be expected to subside when the diffusive mobility is monitored over
asymptotically large times (similar to a random-coil polymer that behaves asymp-
totically like a diffusing sphere). In this asymptotic regime, one can expect to obtain
the hydrodynamic result.

In the diffusion coefficients determined from DPD simulations in Section 8.3, no
deviations from hydrodynamic theory were seen; thus the inclusion radii considered
there can be regarded as being too small to be affected significantly by internal
modes. In the study of M. Weiss described in Section 8.4, however, significant devi-
ations from theoretical predictions appeared for large radii. These were in agreement
with the formulas Eq. 8.13 and Eq. 8.14 when the constant was set to const. = 6
nm and could thus be ascribed to internal modes of the inclusion.

8.6 Comparing simulation results with experimen-
tal data from literature

In the DPD simulations presented here, the radius dependence of lateral and
rotational diffusion coefficients of cylindrical membrane inclusions was examined.
The largest inclusion sizes accessible to the simulations were lying at about half
R.. As a result, all diffusion coefficients determined from the simulations were
in agreement with the predictions of the hydrodynamic theory of Saffman and
Delbriick |2]. This result extends the observations of available experimental studies
which detected the Saffman-Delbriick theory already to be valid for very small
inculsion radii [178, 177, 179, 175].

The simulations of M. Weiss with implicit-solvent DPD confirmed the described
results for small radii and determined as a new result the lateral diffusion of large
inclusions with radii beyond R. to be properly described by the theory of Hughes
et al. [176]. The study of M. Weiss further detected lateral diffusion coefficients
of huge inclusions to be affected from internal modes when the inclusion is not
incompressible.
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In the recent study of Cicuta et al. [209], observations were made which
agree with the results presented here. In [209], the size-dependend diffusion of
micron-sized circular lipid domains in vesicles was probed. The membrane viscosity
Nm and thus the critical radius R, of the experimental system could be shifted by
altering the lipid composition of the membrane and by changing the temperature.
Dependent on the setting of R., the diffusion coefficients were in agreement with
the Saffman-Delbriick relation or showed the scaling ~ 1/R predicted by Hughes
et. al..

The results presented here are in conflict with the recent experimental study
of Gambin et al. [180], where strong deviations from the Saffman-Delbriick relation
were measured for small model peptides in membranes. In particular, Gambin
et al. detected instead a scaling D ~ 1/R. However, a possible explanation for
this observation was given by a recent theoretical paper [205], where the authors
suggest that a putative hydrophobic mismatch of membrane inclusions will lead to
local membrane perturbances and, as a consequence, to an enhanced dissipation of
energy in the membrane. Lateral diffusion coefficients therefore have been predicted
to obey the formula D, fective ~ ﬁ (with D and p being the diffusion coefficient
and the mobility of the inclusion in an unperturbated membrane). Assuming that
the assumptions of [205] are true, the radius scaling predicted in their formula
would be in agreement with the experimental findings of Reference [180].
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