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Zusammenfassung

Manipulation von Multi-Photonen-Verschränkung

Die Quanteninformationsverarbeitung (QIV) hat in den letzten zwanzig Jahren das

Interesse zahlreicher Wissenschaftler geweckt, da sie beeindruckende Verbesserun-

gen unter anderem auf den Gebieten der Rechengeschwindigkeit, Kommunikations-

sicherheit und die Fähigkeit zur Simulation von quantenmechanischen Prozessen

verspricht. Diese Dissertation beschreibt eine experimentelle Arbeit zur Physik der

Verschränkung mehrerer Photonen und ihre Anwendung auf dem Gebiet der QIV.

Es wurden neuartige Techniken entwickelt, die zur Erzeugung der Verschränkung

von bis zu sechs Photonen benötigt werden. In dieser Dissertation werden grundle-

genden Experimente beschrieben, die mit Hilfe des entwickelten Sechs-Photonen In-

terferometers durchgeführt wurden. Im einzelnen sind dies die erste experimentelle

Quanten Teleportation eines zusammengesetzten Zwei-Teilchen Zustandes, die Re-

alisierung von Verschränkungsübertragung über mehrere Abschnitte, die Implemen-

tierung eines teleportationsbasierten “bedingten-NICHT-Gatters” für eine fehlerto-

lerante Quantenrechnung, die erste Erzeugung eines Graph-Zustandes mit sechs Pho-

tonen und die Realisierung eines Einwegquantencomputers mit Hilfe eines Zwei-

Photonen-Vier-Qubit Cluster Zustandes. Die entwickelten Methoden sollen einen

Beitrag leisten sowohl für die weitere Erforschung von QIV als auch für zukünftige

grundlegende Experimente der Quantenmechanik.

Abstract
Manipulation of Multi-Photon-Entanglement

Over the last twenty years the field of quantum information processing (QIP) has

attracted the attention of many scientists, due to the promise of impressive improve-

ments in the areas of computational speed, communication security and the ability

to simulate nature on the micro scale. This thesis describes an experimental work

on the physics of multi-photon entanglement and its application in the field of QIP.

We have thoroughly developed the necessary techniques to generate multipartite

entanglement between up to six photons. By exploiting the developed six-photon

interferometer, in this thesis we report for the first time the experimental quantum

teleportation of a two-qubit composite system, the realization of multi-stage entan-

glement swapping, the implementation of a teleportation-based controlled-NOT gate

for fault-tolerant quantum computation, the first generation of entanglement in six-

partite photonic graph states and the realization of ‘one-way’ quantum computation

with two-photon four-qubit cluster states. The methods developed in these exper-

iments are of great significance both for exploring the field of QIP and for future

experiments on the fundamental tests of quantum mechanics.
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Chapter 1

Introduction

The fundamental concept of quantum mechanics (QM) is superposition. Following

classical physics and general human conception, a system can only be in one state

at a time. However, in QM a system can be in a superposition of arbitrary many

states at the same time. This has been shown in various analogs of Young’s famous

double-slit interference experiment, such as in an electron interferometer [1], neutron

interferometer [2] and atom interferometer [3, 4].

This already puzzling feature leads to even more counterintuitive consequences

for the combined system of two or more subsystems, as pointed out by Einstein,

Podolsky and Rosen in their famous paper in 1935 [5]. They consider two distant

particles that have interacted in the past and are in a superposition of states of

the combined system. Depending on the choice of measurement (e.g. momentum or

position) on particle A, particle B will collapse into a different state. This “spooky

action at a distance” (Einstein) acts instantaneous and is completely independent

of the distance between the two particles. Einstein, Podolsky and Rosen regarded

this action as non-physical and therefore concluded, that QM must be considered

incomplete.

For many years this effect, known as the EPR paradox, left the physics world

puzzled. In 1964, Bell proposed an experimental test of a local hidden variable

model (LHV), that was considered to complement QM and to thus circumvent its

counterintuitive characteristics [6]. He noticed, that the expectation values for any

LHV and QM differ for specific sets of measurements. More precisely, he formulated

an inequality, which holds for any LHV, but is allowed to be violated by QM. This

“Bell inequality” was first violated experimentally by Aspect et al. in 1982 [7, 8, 9]

and has been tested further under various conditions [10, 11]. Today, QM is widely

excepted by physicists. There still exist some loopholes of the Bell tests that up to

now have not been closed simultaneously, however it is believed that this is only a

question of a few years.

Quantum entanglement, the name for superposition in a multi-particle system

was first noticed by Schrödinger [12]. In the beginning of the twentieth century,

QM and in particular entanglement was viewed not without sceptism. However,
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CHAPTER 1. Introduction

after the violation of Bell’s inequality and at the latest after Feynman suggested

the possibility of a quantum computer, entanglement has attracted the attention of

many scientists.

Quantum entanglement lays at the heart of quantum information processing

(QIP), which over the past twenty years has become an emerging field of modern

physics. QIP can mainly be divided into the two areas of quantum communication

and quantum computation [13, 14]. Quantum communication describes the transfer

of quantum states over large distances, which can lead to drastic improvements in

security – quantum cryptography [15, 16] – and channel capacity – quantum dense

coding [17]. It further covers the distribution of bi- or multi-partite entanglement

between different parties, separated by large distances [18, 19].

Quantum computation is dedicated to the implementation of algorithms that

exploit the superposition character of quantum entanglement to dramatically speed

up computational tasks such as a reduction of time needed to search an unsorted

database of N elements. Any classical algorithm necessitates ∼ N operations to

accomplish this task, whereas a quantum algorithm only needs ∼
√
N operations

[20]. Probably the most famous quantum algorithm is Shor’s algorithm to factorize

large numbers [21]. Its introduction in 1994 has jump started and fueled tremendous

effort in the new field of QIP, both on the theoretical and experimental side. The

algorithm is based on the quantum Fourier transform and yields an exponential

improvement of required resources – i.e. as a function of the number of digits of

the used number to factorize – compared to the best known classical algorithms.

Several other quantum algorithms exist [22], many of which are also based on the

quantum Fourier transform. Furthermore, a quantum computer can efficiently and

accurately simulate the evolution of quantum many body systems and quantum field

theories that cannot be simulated on classical computers without making unjustified

approximations.

Remarkable experimental and theoretical effort has been employed to the imple-

mentation of different areas of QIP. Quantum cryptography, in particular quantum

key distribution [15, 16] is an example for quantum communication, which is already

at the verge to commercial use, whereas research on quantum repeaters [23, 24], es-

sential building blocks for the realization of entanglement distribution over large

distances, is still rather fundamental. Also, realizations of quantum computers to

implement quantum algorithms are still at the very first stages and a great deal of

fundamental research still lays ahead.

One of the exciting aspects of quantum information science is that there are

several candidates of quite different physical systems that can in principle be used

to implement QIP and it doesn’t look like the race between them will be decided

anytime soon. Promising candidates are, but not limited to, ion traps [25], nuclear

magnetic resonance [26], quantum dots [27], super-conducting devices (Josephson

junction) [28] and photons [29].
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We try to implement QIP with photons and linear optics for various reasons

such as very strong robustness against de-coherence, extremely fast and accurate

implementations of universal single qubit operations and the vast availability of

already existing electro-optic devices. We exploit spontaneous parametric down-

conversion [30], which is still the best source for entangled photon pairs, together

with basic linear optics elements to generate multi-photon entanglement. With

these building blocks at hand, we on the one hand conduct experimental tests of the

fundamental nature of quantum mechanics and on the other hand try to design and

develop new techniques and methods necessary for future applications in QIP.

The work described within this thesis has been a step along this line, it is the

aim to report the first quantum teleportation of a two-qubit composite system, to

report the first realization of multi-stage entanglement swapping, to report the first

implementation of a teleportation-based quantum gate for fault-tolerant quantum

computation, to report the first generation of six-photon Schrödinger cat and cluster

states and to report an implementation of the one-way quantum computer model

with two-photon four-qubit cluster states. The main contents of the dissertation are

organized as follow:

Chapter (1) is a brief introduction to the field of quantum entanglement and QIP

and gives a short overview over the contents of this thesis.

In chapter (2) we present the theoretical background of some fundamental con-

cepts of QIP that lay at the heart of all the work for this dissertation. We discuss

in detail some features of bipartite entanglement and how it can be used to teleport

an arbitrary quantum state from one place to another. We then proceed to multi-

partite entanglement by introducing ways to classify and verify it. We discuss the

model of one-way quantum computation, which uses special multipartite entangled

states. In the third section, we introduce the process of spontaneous parametric

down-conversion as a source for polarization entangled photon pairs. We conclude

the chapter with a detailed description of the implementation of a Bell state analyzer

with linear optics.

Quantum teleportation of a single particle has first been demonstrated in 1997

with photons and with several other physical systems thereafter. However, telepor-

tation of a composite system is a crucial task needed for many QIP protocols. In

chapter (3) we demonstrate the first quantum teleportation of a two-qubit composite

system. We depict the design and development of a six-photon interferometer that

has been used in most of the experiments described within this dissertation.

Entanglement swapping is of fundamental interest since it can be used to entan-

gle particles that have never physically interacted in the past. Its realization over

multiple stages, however, is an essential exigency for the implementation of quantum

repeaters. In chapter (4) we report the first experimental realization of multistage

entanglement swapping. The experimental results clearly show the entanglement of

the final outgoing photon pair.

3



CHAPTER 1. Introduction

The coupling of quantum states to their environment imposes a major challenge

to the implementation of realistic quantum computers. Quantum error correcting

codes and fault-tolerant quantum gates are thus of significant importance to QIP.

In chapter (5) we present the first experimental realization of a teleportation-based

controlled-NOT gate that can in principle be used for fault-tolerant quantum com-

putation.

Multipartite entangled states are on the one hand of high interest for test of

quantum mechanics, since certain classes of states show much stronger violations of

locality and realism than any bipartite system. On the other hand they are a funda-

mental resource to several quantum computation models. However, the generation

of highly entangled multipartite states remains a great experimental challenge. In

chapter (6) we discuss the first generation of six-photon graph states such as a GHZ

and a cluster state.

A recently developed scheme for ‘one-way’ quantum computation with highly

entangled multipartite cluster states is a promising candidate for future implemen-

tations of quantum algorithms. In chapter (7) we demonstrate the realization of this

model with a two-photon four-qubit cluster state. With our setup, we are able to

increase the generation rate of a four-qubit cluster state by more than four orders

of magnitude compared to recent experiments. This improvement constitutes an

essential step towards the feasibility of realistic quantum computers.

We conclude this thesis by summarizing its main results and provide an outlook

to future work and some further remarks in chapter (8).
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Chapter 2

Multi-Photon-Entanglement

Quantum entanglement is, according to Schrödinger, the essential feature of quan-

tum mechanics [12]. It describes correlations between quantum systems that are

much stronger than any classical correlation could be and is a fundamental element

of quantum information processing (QIP). From an early stage on, entanglement

proved to be an essential tool of quantum physics, both in theory and experiment:

early experimental realizations of entangled photon pairs were used to demonstrate

the quantum nature of polarization correlations that can occur in decay processes

[31, 32], to confirm quantum predictions of radiation theory and falsify semi-classical

models [33, 34], or to test Bell’s theorem and exclude local realistic descriptions of

the observed quantum phenomena [6, 7, 8, 9]. It followed the discovery of QIP,

partly triggered by the introduction of quantum cryptography[15, 16]. Quantum

entanglement is a fundamental resource for QIP as a quantum channel in quantum

communication (e.g. for quantum state teleportation [35, 36] or quantum dense cod-

ing [17, 37]) or as computational source. Quantum computing with photons has

recently experienced a new boom by discovering the possibility of universal comput-

ing with linear optics and measurements alone [29].

In this chapter some basic concepts and procedures of quantum entanglement

and QIP are introduced, which are essential to the work within the framework of

this thesis. We start with the theoretical discussion of entanglement in bipartite

systems, covering the Bell-state basis and quantum teleportation. We then pro-

ceed to multipartite entanglement and outline different classes of states, such as

Greenberger-Horne-Zeilinger (GHZ) states and graph states. We show how they can

be detected by quantum witnesses and why they can be used to perform scalable

quantum computing. In the third section we briefly discuss the experimental real-

ization of key elements that were used in all setups for this thesis. We describe the

creation of entangled photons and the operation of a Bell-state analyzer.
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CHAPTER 2. Multi-Photon-Entanglement

2.1 Bipartite Entanglement

We start with the most simple case, the entanglement of two single particles. Many

of the fascinating features of quantum entanglement can already be observed in

such a bipartite system. Furthermore, many procedures in QIP can essentially be

decomposed into two-particle systems.

2.1.1 Quantum Bits

Up to now we have been concerned with general systems and have not specified any

requirements or restrictions to our systems. In theoretical QIP however, only two-

level systems are of interest. This reduces complexity and simplifies the involved

theory significantly.

In classical information processing the smallest unit carrying information is a bit,

a binary digit taking the value 0 or 1. In analogy, a quantum bit is the state vector

of a two-level system with the basis states |0〉 and |1〉. In contrast to a classical bit a

quantum bit, commonly know as qubit, can take values that are in a superposition

of the two basis states:

|Ψ〉 = α |0〉+ β |1〉 (2.1)

The pre-factors α and β can be any complex numbers satisfying |α|2 + |β|2 = 1.

A graphic interpretation of a qubit is the Bloch sphere, which is shown in

Fig. (2.1). The state of the qubit is represented by an arrow from the origin to

the surface of the unit sphere. The complex nature of the relative phase between α

and β accounts for the three axes given by |0〉/|1〉, |+〉/|−〉 and |R〉/|L〉. Here,

|+〉 =
1√
2

(|0〉+ |1〉) , |−〉 =
1√
2

(|0〉 − |1〉) and

|R〉 =
1√
2

(|0〉+ i |1〉) , |L〉 =
1√
2

(|0〉 − i |1〉) (2.2)

are two in QIP commonly used orthonormal bases in addition to the computational

basis of |0〉/|1〉. In analogy to the polarization state of light they are often called

diagonal (|+〉/|−〉) and circular (|R〉/|L〉) basis, respectively. Note that, for a qubit

in a pure state, the state vector always has unit length. However, for a qubit in a

mixed state, the length is smaller than unity. For example, the state vector for a

completely random qubit is represented by a point at the origin.

2.1.2 Bell-States and Quantum Entanglement

The combined state of two qubits forms a four-dimensional Hilbert space. The most

obvious choice for a basis is a generalization of the single qubit computational basis:

6



2.1. Bipartite Entanglement

Figure 2.1: Bloch sphere. An arrow from the origin to the surface of the sphere

represents the state of a qubit. |0〉/|1〉 are the eigenstates in the computational

basis, |±〉 = 1√
2
(|0〉 ± |1〉) in the diagonal basis, and |R〉/|L〉 = 1√

2
(|0〉 ± i|1〉) in the

circular basis

7



CHAPTER 2. Multi-Photon-Entanglement

|0〉|0〉, |0〉|1〉, |1〉|0〉 and |1〉|1〉. However, in many cases in QIP a different choice will

be more suitable:

|Φ±〉 =
1√
2
(|0〉|0〉 ± |1〉|1〉)

|Ψ±〉 =
1√
2
(|0〉|1〉 ± |1〉|0〉) (2.3)

This is known as the Bell basis or the Bell states. In contrast to the states of

the computational basis, the Bell states can not be expressed as a product of two

single-particle wave functions. Particles in a Bell state are thus non-separable or

entangled !

Quantum Entanglement

To emphasize the importance of this characteristic we will conduct a little gedanken-

experiment. Let us assume that two friends, in QIP commonly known as Alice and

Bob, choose to share a pair of qubits that are in the entangled Bell state |Φ+〉
(e.g. polarization-entangled photons or spin-entangled electrons). Now Alice chooses

to measure her qubit in the computational basis yielding either a |0〉 or |1〉 with equal

probability. However, since her qubit was originally entangled with Bob’s qubit, the

combined state collapses to one of the two separable terms of |Φ+〉 (|0〉|0〉 or |1〉|1〉).
Therefore, Bob’s measurement will now with certainty yield the same result that

Alice has obtained. In other words, Alice’s measurement has changed the combined

state and thereby the state of Bob’s qubit.

So far, the same results could have been obtained by simply using a machine that

randomly distributes a pair of equal classical bits to Alice and Bob. Then Alice’s

result is again completely random and is always in a perfect correlation to Bob’s

result. However, if Alice and Bob are also allowed to measure their qubit in the

diagonal basis, things become different. Some measurement results can no longer be

explained by classical physics. To understand this, consider the following scenario:

Alice and Bob again share a pair of qubits in the state |Φ+〉. They now choose to

measure their qubit in the computational or diagonal basis independently of each

other. There are thus four possible combinations:

Alice’s choice Bob’s choice measurement

of basis of basis results are

1 |0〉/|1〉 |0〉/|1〉 correlated

2 |0〉/|1〉 |+〉/|−〉 not correlated

3 |+〉/|−〉 |0〉/|1〉 not correlated

4 |+〉/|−〉 |+〉/|−〉 correlated

(2.4)

The first row describes the case already discussed above. In the second case Alice’s

measurement again projects the combined state onto |0〉|0〉 or |1〉|1〉. However, since

8
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Bob now decides to measure in the diagonal basis, he obtains |+〉 or |−〉 with equal

probability. Alice’s and his results are thus not correlated. The argument for the

third case works analogous. The measurement results in the last case on the other

hand are perfectly correlated. This can easily be understood by rewriting |Φ+〉 in

the diagonal basis:

∣∣Φ+
〉

=
1√
2
(|+〉|+〉+ |−〉|−〉) (2.5)

Since Alice and Bob both measure in the diagonal basis, this case is identical to the

first case up to a simple transformation of basis. However, under no circumstances

are we able to construct a classical machine that yields the combined measurement

results for the four cases of Table (2.4).

The projection of the combined state by Alice’s measurement acts instantaneous

and is completely independent of the distance between Alice and Bob. As already

mentioned in the introduction chapter, this“spooky action at a distance”has puzzled

many physicists. Einstein, Podolsky and Rosen (EPR)[5] argued, that quantum

entanglement would contradict realism and locality. To them a physical property

of a system can not be considered real if its value is undefined until measured.

Einstein once expressed this conception with the words: “Gott würfelt nicht!” (God

does not throw the dice). However, in our above example the value of Alice’s qubit

is undefined until she decides to measure it. Furthermore, they consider the fact un-

physical, that an action at point A could have an immediate effect on a system at

point B, regardless of the distance between the two locations. Again, in our example

Alice’s measurement forces the combined state to collapse and thereby changes the

state of Bob’s qubit independently of Bob’s location. Due to this controversy EPR

reasoned that quantum mechanics (QM) must be incomplete.

For many years this effect, known as the EPR paradox, left the physics world

puzzled. To solve this problem, local hidden variable theories (LHV) were suggested.

The idea is that all properties of a physical system are well defined at all times by

a set of variables that is not or not yet accessible to us. Hence, no outcome of a

measurement is random, but already predetermined by these variables. In 1964,

Bell proposed an experimental test [6] for LHV theories that were considered to

complement QM and thus to circumvent its counterintuitive characteristics. He

noticed that the expectation values for any LHV and QM differ for specific sets of

measurements. More precisely, he formulated an inequality, which holds for any

LHV, but is allowed to be violated by QM. This “Bell inequality” was first violated

experimentally by Aspect et al. in 1982 [7, 8, 9] and has been tested further under

various conditions [10, 11]. Today QM is widely excepted by physicists.

We would like to point out that some loopholes of the experimental Bell tests

still exist, which so far have not been closed simultaneously. However, it is believed

that this is due to technological problems and that it is only a question of a few

years to close them.

9
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Figure 2.2: Hadamard gate. The unitary single-qubit gate transforms states from

the computational basis to the diagonal basis.

Figure 2.3: Controlled-NOT (C-NOT) gate. The unitary two-qubit gate flips the

second qubit (target) under the condition that the first qubit (control) is a |1〉.

Note that despite the violation of realism and locality, quantum entanglement

can not be used to contradict special relativity. Since Bob does not know anything

about Alice’s measurement, super-luminal information transfer is not possible.

Preparation of Bell-States

In many QIP protocols particle pairs in one of the four Bell states are used as an

entanglement resource or projective measurements onto the Bell basis are performed

to entangle other particles.

Since the properties of the individual qubits are completely undefined, the Bell

states are maximally entangled. It is therefore not straight forward to prepare or

to identify them. A simple quantum circuit consisting of Hadamard and controlled-

NOT gates is needed for this task. The action of a Hadamard gate (Fig. 2.2) is

equivalent to the following unitary transformation:

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉) (2.6)

The controlled-NOT (C-NOT) gate (Fig. 2.3) flips the second of two qubits if and

10



2.1. Bipartite Entanglement

Figure 2.4: Quantum circuit for generation and detection of Bell states. The inputs

and outputs are two qubits in the computational basis, respectively.

only if the first is |1〉, namely

|0〉|0〉 → |0〉|0〉
|0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉|1〉
|1〉|1〉 → |1〉|0〉. (2.7)

Now consider the network shown in Fig. (2.4). Under the action of the gates on

the left-hand side of the network, the input two-qubit states will undergo a series

of unitary transformations. For example, after passing through the two gates the

input state |0〉|0〉, will be transformed into:

|0〉|0〉
Hadmard

−−− −→ 1√
2
(|0〉|0〉+ |1〉|0〉)

C−NOT
−−− −→ 1√

2
(|0〉|0〉|+ |1〉|1〉) = |Φ+〉

(2.8)

We have thus been able to create one of the four Bell states. Correspondingly, the

network can prepare the two qubits in one of the remaining three Bell states:

|1〉|0〉 −→ 1√
2

(|0〉|0〉| − |1〉|1〉) =
∣∣Φ−〉

|0〉|1〉 −→ 1√
2

(|0〉|1〉|+ |1〉|0〉) =
∣∣Ψ+

〉
|1〉|1〉 −→ 1√

2
(|0〉|1〉| − |1〉|0〉) =

∣∣Ψ−〉
(2.9)

The right-hand side of the network reverses the action of Eq. (2.8) and Eq. (2.9)

and can be used to implement the so-called Bell State Measurement (BSM) on the

two qubits by disentangling the Bell states. In this way, the BSM is reduced to two

single-qubit measurements.

11
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Finally, we would like to emphasize that, in general, any measurement on any

number of qubits can be implemented using only single-qubit operations and the

quantum C-NOT gates.

This follows from the fact that the quantum C-NOT gate, together with simple

single-qubit operations, forms an adequate set of quantum gates, i.e. the set from

which any unitary operation may be built [38, 39]. Thus, if we want to measure

observable A pertaining to n qubits, we could construct a compensating unitary

transformation U that maps 2n states of the form |a1〉|a2〉...|an〉 (where ai = 0, 1)

into the eigenstates of A. This allows both to prepare the eigenstates of A, which in

general can be highly entangled, and to reduce the measurement described by A to

n simple, single-qubit measurements.

2.1.3 Quantum Teleportation

There are several fundamental concepts, procedures and algorithms that constitute

the frame of QIP. Quantum teleportation - the transfer of a quantum state between

two distant locations - is certainly one of those cornerstones of QIP. It is central to a

number of QIP protocols [23, 40, 29, 41]. Since it lays at the heart of the work per-

formed within the framework of this thesis, we will give a detailed introduction and

description of this concept. Furthermore, it serves as an example for the application

of a bipartite entangled state and demonstrates a fascinating feature of quantum

entanglement.

Humanity has always dreamed to be able to travel by simply disappearing and

then reappearing at some distant location. An object to be transferred or teleported

can be fully characterized by its properties, which in classical physics can be deter-

mined by measurement. To create a copy of that object at a distant location one

does not need the original parts and pieces; all that is needed is to send the scanned

information so that it can be used for reconstructing the object. But how precisely

can this be a indistinguishable copy of the original? What if the parts and pieces are

electrons, atoms and molecules? What happens to their individual quantum proper-

ties, which according to Heisenberg’s uncertainty principle cannot be measured with

arbitrary precision?

Bennett et al. [35] have suggested that it is possible to transfer the quantum

state of a particle onto another particle - the process of quantum teleportation -

provided one does not get any information about the state in the course of this

transformation. This requirement can be fulfilled by using quantum entanglement.

The possibility of transferring quantum information is one of the keystones of

the emerging field of QIP [13]. As we will see below and in the following chapters,

quantum teleportation is indeed not only a critical component of quantum compu-

tation and communication, its experimental realization also allows new studies of

the fundamentals of quantum theory.

To make the problem of transferring quantum information clearer, suppose that

12



2.1. Bipartite Entanglement

Alice has some particle in a certain quantum state |Ψ〉 and she wants Bob, at a dis-

tant location, to have a particle in that same state. There is certainly the possibility

to send Bob the particle directly. But suppose that the communication channel be-

tween Alice and Bob is not good enough at the time of the procedure to preserve

the necessary quantum coherence or suppose that this would take too much time,

which could easily be the case if |Ψ〉 is the state of a more complicated or massive

object. Then, what strategy can Alice and Bob pursue?

As mentioned above, no measurement that Alice can perform on |Ψ〉 will be

sufficient for Bob to reconstruct the state because the state of a quantum system

cannot be fully determined by measurements. Quantum systems are so evasive since

they can be in a superposition of several states at the same time. A measurement

on the quantum system will force it into only one of these states. Similar to the

scenario of Alice and Bob in the above section, we can illustrate this important

quantum feature by taking a single photon, which can be horizontally or vertically

polarized, indicated by the states |H〉 and |V 〉. It can even be polarized in the

general superposition of these two states

|Ψ〉 = α|H〉+ β|V 〉 (2.10)

were again α and β are two complex numbers satisfying |α|2+|β|2 = 1 as in Eq. (2.1).

If a photon in the state |Ψ〉 passes through a polarizing beam splitter (PBS), a

device that transmits (reflects) horizontally (vertically) polarized photons (Fig. 2.9),

it will be found in the transmitted (reflected) beam with probability |α|2 (|β|2). Then

the general state |Ψ〉 has been projected either onto |H〉 or onto |V 〉 by the action of

the measurement. We conclude that the rules of quantum mechanics, in particular

the projection postulate, make it impossible for Alice to perform a measurement on

|Ψ〉 by which she would obtain all the information necessary to reconstruct the state.

Theory of Quantum Teleportation

Although the projection postulate in quantum mechanics seems to bring Alice’s

attempts to provide Bob with the state |Ψ〉 to a halt, it was realized by Bennett

et al. [35] that precisely this projection postulate enables teleportation of |Ψ〉 from

Alice to Bob. During the teleportation Alice will destroy the quantum state at

hand while Bob receives the quantum state, with neither Alice nor Bob obtaining

information about the state |Ψ〉. A key role in the teleportation scheme is played by

an entangled ancillary pair of particles, which is initially shared by Alice and Bob.

Suppose particle 1, which Alice wants to teleport, is in the initial state (|Ψ〉1 =

α |0〉1 +β |1〉1) (Fig. 2.5). The ancillary pair of particles 2 and 3 shared by Alice and

Bob is in a maximally entangled Bell state:

∣∣Φ+
〉

23
=

1√
2
(|0〉2 |0〉3 + |1〉2 |1〉3). (2.11)
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Figure 2.5: Scheme showing the principle of quantum teleportation. Alice has a

quantum system, particle 1, in an initial state, which she wants to teleport to Bob.

Alice and Bob also share an ancillary entangled pair of particles 2 and 3 emitted by

an Einstein-Podolsky-Rosen (EPR) source. Alice then performs a joint Bell-state

measurement (BSM) on the initial particle and one of the ancillaries, projecting

them also onto an entangled state. After she has sent the result of her measurement

as classical information to Bob, he can perform a unitary transformation (U) on the

other ancillary particle resulting in it being in the state of the original particle.
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This entangled pair, emitted by an EPR source, is a single quantum system in an

equal superposition of the states |0〉2|0〉3 and |1〉2|1〉3. As described in the above

section, the entangled state contains no information on the individual particles; it

only indicates that the two particles will be in opposite states. As a tribute to

Einstein, Podolsky and Rosen, these pairs are often called EPR pairs.

The scheme of quantum teleportation works as follows. Alice starts with ’her’

particle 1, initially in the state |Ψ〉1, and the ancillary particle 2, which is entangled

with the other ancillary particle 3 in the hands of Bob. Although this establishes

the possibility of nonclassical correlations between Alice and Bob, the entangled

pair at this stage contains no information about |Ψ〉1. Indeed the entire system,

comprising Alice’s unknown particle 1 and the entangled pair is in a pure product

state, |Ψ〉1 |Φ+〉23, involving neither classical correlation nor quantum entanglement

between the unknown particle and the entangled pair. Therefore no measurement

on either member of the entangled pair, or both together, can yield any information

about |Ψ〉1.
The essential point to achieve teleportation is to perform a joint BSM on particles

1 and 2 which projects them onto one of the four Bell states of Eq’s. (2.3). The

complete state of the three particles before Alice’s measurement is

|Ψ〉123 = |Ψ〉1|Φ+〉23 = α√
2
(|0〉1|0〉2|0〉3 + |0〉1|1〉2|1〉3)

+ β√
2
(|1〉1|0〉2|0〉3 + |1〉1|1〉2|1〉3) .

(2.12)

In the above equation particles 1 and 2 are represented in the computational basis.

However, we can express the combined state in the Bell basis and can thus rewrite

Eq. (2.12) as:

|Ψ〉123 = 1
2
|Φ+〉12 (α |0〉3 + β |1〉3)

+1
2
|Φ−〉12 (α |0〉3 − β |1〉3)

+1
2
|Ψ+〉12 (α |1〉3 + β |0〉3)

+1
2
|Ψ−〉12 (α |1〉3 − β |0〉3)

(2.13)

Note that particle 1 is still completely separable from particles 2 and 3, since the

state in Eq. (2.13) is still the same as in Eq. (2.12), just in a different notation.

However, Eq. (2.13) implies that, regardless of the unknown state |Ψ〉1, the four

BSM outcomes are equally likely, each occurring with probability 1/4. Quantum

physics predicts that once particles 1 and 2 are projected into one of the four entan-

gled states, particle 3 is instantaneously projected into one of the four pure states

superposed in Eq. (2.13). Denoting |0〉3 by the vector

(
1

0

)
and |1〉3 by

(
0

1

)
,
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they are thus, respectively,(
1 0

0 1

) (
α

(
1

0

)
+ β

(
0

1

))
,

(
1 0

0 −1

) (
α

(
1

0

)
+ β

(
0

1

))
,(

0 1

1 0

) (
α

(
1

0

)
+ β

(
0

1

))
,

(
0 −1

1 0

) (
α

(
1

0

)
+ β

(
0

1

))
.

(2.14)

with the identity operator and the well known Pauli matrices (Î , σ̂x, σ̂y, σ̂z), this can

be expressed as:

Î |Ψ〉3 , σ̂z |Ψ〉3 ,
σ̂x |Ψ〉3 , iσ̂y |Ψ〉3

(2.15)

where |Ψ〉3 = α |0〉3 + β |1〉3. Each of these possible resultant states for Bob’s EPR

particle 3 is related in a simple way to the original state |Ψ〉1 which Alice sought to

teleport. In the case of the first outcome (|Φ+〉) the state of particle 3 is the same as

the initial state of particle 1, so Bob needs do nothing further to produce a replica

of Alice’s unknown state. In the other three cases, Bob could accordingly apply one

of the unitary Pauli transformations in Eq. (2.15) to convert the state of particle

3 into the original state of particle 1, after receiving via a classical communication

channel the information which one of the four BSM results was obtained by Alice.

After Bob’s unitary operation, the final state of particle 3 is therefore

|Ψ〉3 = α |0〉3 + β |1〉3 . (2.16)

Note that during the BSM particle 1 loses its identity because it becomes entan-

gled with particle 2. Therefore the state |Ψ〉1 is destroyed on Alice’s side during

teleportation.

The result in Eq. (2.16) deserves some further comments. The transfer of quan-

tum information from particle 1 to particle 3 can happen over arbitrary distances,

hence the name teleportation. Experimentally, quantum entanglement has been

shown to survive over a distance of 144 km [19]. We note that in the teleportation

scheme it is not necessary for Alice to know where Bob is. Furthermore, the initial

state of particle 1 can be completely unknown not only to Alice but to anyone. It

could even be quantum mechanically completely undefined at the time the Bell-state

measurement takes place. This is the case when, as already remarked by Bennett

et al. [35], particle 1 itself is a member of an entangled pair and therefore has no

well-defined properties on its own. This ultimately leads to entanglement swapping

[42, 43] and the teleportation of composite systems, which will be discussed in more

detail in chapters 3 to 5.

It is also important to notice that the BSM does not reveal any information on the

properties of any of the particles. This is the very reason why quantum teleportation

using coherent two-particle superpositions works, while any measurement on one-

particle superpositions would fail. The fact that no information whatsoever on
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either particle is gained is also the reason why quantum teleportation escapes the

verdict of the no-cloning theorem [44]. After successful teleportation particle 1 is

not available in its original state anymore, and therefore particle 3 is not a clone but

really the result of teleportation.

2.2 Multipartite Entanglement

Multipartite entanglement is genuinely different from entanglement in quantum sys-

tems consisting of two parts. The prefix multi may in general refer to quantum

systems composed of a macroscopic number of subsystems, such as the parts of an

interacting many-body system, or it may merely mean three. In contrast to bipartite

systems, multipartite systems may contain different types of entanglement. To illus-

trate this difference, let us consider a quantum system that is composed of several

qubits. Each of the qubits is thought to be held by a separated party, respectively.

It may come as quite a surprise that depending on the type of entanglement be-

tween the qubits, a single party may or may not be able to destroy the entanglement

of the entire system with a single measurement. The different kinds of entangle-

ment may differ for various characteristics such as robustness against de-coherence,

connectivity or violation of classical physics.

Tests of quantum mechanics that are conceptually different from standard bi-

partite Bell tests become possible with multipartite entanglement. For example all-

versus-nothing tests with tripartite systems do not violate any inequalities but yield

expectation values that are genuinely different for quantum and classical physics

[45, 46]. In the experiment several different settings are measured, where each out-

come is either a 1 or -1. The expectation value for the product of these measurements

by classical physics is 1, whereas quantum mechanics predicts a -1, the exact oppo-

site.

Besides the interest in fundamental physics, multipartite entanglement attracts

a lot of research as it is the most important resource for many quantum computation

algorithms and protocols such as the Deutsch-Jozsa algorithm [22], Grover’s search

algorithm for unsorted databases [20], the quantum fourier transform and closely

connected Shor’s algorithm for factoring large numbers [21].

2.2.1 Classes of Multipartite Entangled States

The complexity of a physical system grows exponentially with the number of its di-

mensions or degrees of freedom. A multipartite system can be any in between highly

entangled and fully separable. However, many multipartite entangled states feature

almost exactly the same characteristics and as a matter of fact can be categorized

to posses the same class of entanglement.

To see this, let us consider a pair of qubits, shared by Alice and Bob, which is in
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one of the four Bell states of Eq. (2.3):∣∣Φ±〉
=

1√
2
(|0〉|0〉 ± |1〉|1〉)∣∣Ψ±〉

=
1√
2
(|0〉|1〉 ± |1〉|0〉)

Either one of Alice and Bob can change the combined state from one Bell state to

another. If, for example, Alice wants to change the state from |Φ+〉 to |Φ−〉, all

she needs to do, is to apply a unitary σ̂z Pauli operation to her qubit. Likewise,

she can transform the state into the other two Bell states by applying a σ̂x or σ̂y

operation, respectively. Alice can transform the combined system to another Bell

state without any help or even knowledge of Bob, just by local (only at her side)

unitary operations (LU). The Bell states are thus equivalent under LU.

Consider now a more general case:

|Ψ〉 = sinϑ|0〉1|0〉2 + cosϑ|1〉1|1〉2 (2.17)

Here ϑ is a free variable that parameterizes the degree of entanglement in the two-

qubit system. For the general case we are not able to transform |Ψ〉 into a maximally

entangled Bell state with the help of LU. However, if we have many copies of |Ψ〉,
we are able to distill a smaller number of copies of maximally entangled states by

entanglement purification [47, 48, 49]. This means that two distant parties can

generate any bipartite entangled state form another one only by local operations

assisted with classical communication (LOCC). All bipartite entangled states are

thus equivalent - are in the same class of entanglement - under LOCC.

The smallest number of dimensions for a physical system to feature more than

one class of entanglement is three [50]. Any genuinely tripartite entangled state can

be converted, by means of LOCC, into one of two standard forms, namely either a

so called Greenberger-Horn-Zeilinger (GHZ) state [45]

|GHZ〉 =
1√
2
(|0〉1|0〉2|0〉3 + |1〉1|1〉2|1〉3) (2.18)

or else a second (W) state

|W 〉 =
1√
3
(|0〉1|0〉2|1〉3 + |0〉1|1〉2|0〉3) + |1〉1|0〉2|0〉3). (2.19)

If a state |Ψ〉 can be converted into the state |GHZ〉 of Eq. (2.18) under LOCC and

another state |Φ〉 can be converted into the state |W 〉 of Eq. (2.19), then it is not

possible to transform, even with only a very small probability of success, |Ψ〉 into |Φ〉
nor the other way round. There are thus two classes of entanglement for genuinely

tripartite entangled states. Note, that there are more classes of entanglement for

tripartite systems, namely states that contain only bipartite entanglement and are

otherwise separable such as

|ϕ〉 =
1√
2
|0〉1(|0〉2|0〉3 + |1〉2|1〉3) (2.20)
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Figure 2.6: Graphs representing multipartite states - graph states. Each vertex cor-

responds to a qubit prepared in the state |+〉 and each edge represents a C-phase gate

having been applied between the two connected qubits. The list shows all connected

graphs with up to five vertices that are not equivalent under LU transformations.

where particles 2 and 3 are entangled, but completely separable from particle 1. A

n-partite pure state |Ψ〉 is called biseparable, whenever a grouping of the n particles

into two groups GA and GB can be found, such that the resulting state is a product

state, as in Eq. (2.20), otherwise it is a genuine multipartite entangled state.

The GHZ-class and W-class states feature fundamentally different behaviors.

On the one hand, states of the GHZ-class can demonstrate much stronger violations

of locality and realism than states of the W-class [51]. On the other hand, the

W-class is much more robust against de-coherence and the loss of a qubit. If in a

three-qubit system prepared in a W (GHZ) state one of the qubits is traced out then

the remaining two qubits are entangled (completely unentangled). Indeed, from a

single copy of the reduced density matrix for any two qubits belonging to a state

form the W-class, one can always obtain a state which is arbitrarily close to a Bell

state by means of a filtering measurement [52]. This means that, if one of the parties

sharing the system prepared in a W (GHZ) state decides not to cooperate with the

other two, or if for some reason the information about one of the qubits is lost, then

the remaining two parties still can (cannot) use entanglement resources to perform

communication tasks.

Graph-States

The number of entanglement classes that are equivalent under LOCC increases for

higher dimensions. It is quite difficult to characterize them or to even find the exact
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number of classes for a given dimension. However, groups of entanglement classes

exist that reoccur in all systems regardless of the dimensions. In recent years, a

special group of states has become the center of attention. They are commonly

known as graph-states, since many entanglement properties of graph states are closely

related to their graphic representations [53, 54, 55].

Graph-states can be associated with graphs of vertices and edges. Each vertex

represents a qubit prepared in the state

|+〉 =
1√
2
(|0〉+ |1〉) (2.21)

and each edge represents a controlled-phase (C-phase) gate having been applied

between the two connected qubits. A C-phase gate flips the sign of the state if and

only if both qubits are |1〉, namely:

|0〉|0〉 → |0〉|0〉
|0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉|0〉
|1〉|1〉 → −|1〉|1〉

(2.22)

and thus entangles two qubits initially prepared in the state |+〉 of Eq. (2.21).

For a given number of dimensions there exists a finite (large) number of possi-

bilities for different graph states. However, two different graphs may correspond to

states that are equivalent under LOCC. We will demonstrate such a case in the next

section. Fig. (2.6) shows all connected graphs with up to five vertices that are not

equivalent under LU transformations.

Fig. (2.6b) is the graphic representation of the GHZ state of Eq. (2.18). Let us

now define a generalization of the GHZ state for n dimensions [56] as

|GHZn〉 =
1√
2
(|a1〉1|a2〉2...|an〉n + |ā1〉1|ā2〉2...|ān〉n) (2.23)

with ai = [0, 1] and āi = NOT (ai). Such a GHZ state can always be associated

with a star graph. For example, four and five qubit GHZ states are represented by

Fig. (2.6c) and Fig. (2.6h), respectively.

Besides the thought-provoking theoretical structure of graph states, they have

also provided new insights into studies of non-locality [57, 58, 10, 59] and de-

coherence [60]. Most of all, a subclass of graph states known as cluster states can

serve as an essential resource for various quantum information tasks [55], most promi-

nently as the exceptionally universal resource for one-way quantum computation [61],

which we will discuss in the following section.

2.2.2 One-Way Quantum Computation

The promise that quantum computers can dramatically outperform their classical

counterparts for some computational tasks has initiated a lot of effort to implement
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Figure 2.7: Four-qubit cluster states. Cluster states are graph states represented by

a one or two-dimensional quadratic lattice, where the entangling connection, repre-

sented by an edge between two vertices, can only be applied between two neighboring

qubits. Although all four cluster states are equivalent under LU transformations,

they correspond each to a different quantum circuit and thus a different quantum

algorithm. a) linear cluster b) horseshoe cluster c) box cluster d) horseshoe cluster

(rotated by 180◦)

quantum computers. The first theoretical schemes based on the idea to process

physical qubits by performing quantum logic gates on them and to subsequently

measure the output. However, the realization of two-qubit gates (or higher number

of qubits) has proven to be quite difficult in the experiment. They can be achieved for

example with optical elements and/or ancilla particles via projective measurements.

But the intrinsic randomness of these measurements only allows for probabilistic

gate operations, i.e. the gate operations are successful only in a small fraction of

the time. The other times the outcomes need to be discarded. Although the gate

success probability increases with additional resources, such schemes achieve nearly

deterministic gate operations only in the asymptotic regime of infinite resources,

which is experimentally infeasible.

The one-way quantum computation model [61, 62] is an exciting alternative ap-

proach to the original proposals and allows the resource for the quantum computation

to be prepared off-line prior to any logical operations. The computational resource

is a highly entangled cluster state mentioned in the above section. Once the cluster

state is prepared, the computation proceeds deterministically, i.e. every measure-

ment produces a meaningful result, requiring only single qubit measurements and

feed-forward of the measurement result. Feed-forward is the essential feature that

makes one-way quantum computation deterministic and can be seen as an active

correction of errors introduced by the randomness of measurement outcomes.
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A cluster state, the computational resource, is a graph state represented by a one

or two-dimensional quadratic lattice, where the entangling connection, represented

by an edge between two vertices, can only be applied between two neighboring

qubits (Fig. 2.7). It constitutes a universal state for quantum computing, meaning

that any quantum logic operation can be carried out on a sufficiently large and

appropriately structured cluster state. Moreover the entanglement of cluster state

has been shown to be robust against de-coherence [63] and persistent against loss

of qubits [54]. Recent experiments succeeded in creating cluster states with various

methods [64, 59, 65, 66].

Single qubit measurements are essential in cluster state quantum computing. The

shape of the cluster state and the nature of these measurements, i.e. the order of

measurements and the individual measurement bases are determined by the desired

algorithm. The four-qubit cluster states corresponding to the graphs of Fig. (2.7)

are all equivalent under LU transformations, e.g. the box cluster (c) can be obtained

from the line cluster (a) by Hadamard rotations and by swapping (relabeling) qubits

2 and 3. However, with the convention that measurements are performed in the

order form left to right right all four cases correspond to different quantum circuits,

respectively.

The input state |ψin〉 is always initialized as |+〉. It is important to note that the

entire information of the input state is initially stored in the multi-particle correla-

tions of the cluster, with the individual physical qubits being completely undefined

and therefore not carrying any information about the input state. The cluster state

is thus a maximally entangled state, simple examples are the 2-qubit Bell states

(Eq. 2.3) and 3-qubit GHZ states (Eq. 2.18). Single qubit measurements on the

cluster processes the encoded input from one qubit to another analogous to remote

state preparation. In principle, two basic types of single-particle measurements suf-

fice to operate the one-way quantum computer. Measurements in the computational

basis (|0〉j/|1〉j) have the effect of disentangling, i.e. removing the physical qubit j

from the cluster. This leaves a smaller cluster state and thus gives the ability to

shape the cluster to the specific algorithm. The measurements which perform the

actual QIP are made in the basis B(α) = {|α+〉, |α−〉}, where

|α±〉 =
1√
2
(|0〉 ± e−iα|1〉) (2.24)

and α can be any real number between 0 and 2π. We will give a detailed discussion

on single-qubit gate operations, i.e. measurements on linear cluster states such as in

Fig. (2.7a) and then proceed to a simple two-qubit gate (Fig. 2.7b). The argument

can be generalized to an entire quantum algorithm in a straight-forward manner

[64].

The choice of measurement basis determines the single-qubit rotation, R̂z(α) =

exp(−iασ̂z/2) , followed by a Hadamard operation Ĥ, on the input state.

ĤR̂z(α)|ψin〉 ⇒ |ψin〉 R̂
(α)
z H |ψout〉 (2.25)
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The order and choices of these measurements determine the unitary gates that are

implemented and therefore the algorithm that is computed. Remember that input

states are by construction always |ψin〉 = |+〉 unless the cluster is part of a larger

cluster state. Rotations around the z-axis can be implemented through the iden-

tity ĤR̂z(α)Ĥ = R̂x(α) so that two consecutive measurements on a linear 3-qubit

cluster can rotate the input state to any arbitrary output state on the Bloch sphere

(Fig. 2.1):

ĤR̂z(β)ĤR̂z(α)|ψin〉 = R̂x(β)R̂z(α)|ψin〉

⇒ |ψin〉 R̂
(α)
z R̂

(β)
x |ψout〉 (2.26)

Up until now, we have not incorporated the actual measurement result in our anal-

ysis. Eq. (2.25) only holds if the outcome of the measurement s yields |α+〉. We

denote this case as s = 0 and the other case of |α−〉 as s = 1 . Due to the intrinsic

randomness of the quantum measurement, it happens with equal probability that

the measurement yields the result s = 1. In that case, a Pauli-error (σ̂x = X )

is introduced in the computation, so that the single measurement in basis Bj(α)

rotates the qubit to:

σ̂xĤR̂z(α)|ψin〉 ⇒ |ψin〉 R̂
(α)
z H X |ψout〉 (2.27)

Obviously, by adapting the measurement bases of subsequent measurements, these

errors can be eliminated. In the following, let us consider the general case of

Eq. (2.26) by taking into account the feed-forward rules. If we thus choose con-

secutive measurements in bases B1(α) and B2(β) on the physical qubits 1 and 2 of

our 3-qubit cluster, then we rotate the encoded input qubit |ψin〉 to the output state

|ψout〉 = σ̂s2
x ĤR̂z((−1)s1β)σ̂s1

x ĤR̂z(α)|ψin〉 = σ̂s2
x σ̂

s1
z R̂x((−1)s1β)R̂z(α)|ψin〉 (2.28)

which is stored on qubit 3. The measurement outcome, si = {0, 1}, on the physical

qubit i determines the measurement basis for the succeeding qubit and indicates any

introduced Pauli errors that have to be compensated for. This idea can schematically

be depicted as a circuit diagram:

|ψin〉1 • ?> =<89 :;B1(α) NM



 •

|+〉2 • ?> =<89 :;B2(±β) NM



 •

|+〉3 • X Z |ψout〉3
Cluster Error Correction

_ _ _ _ _ _�

�

�

�
_ _ _ _ _ _

(2.29)

Single wires represent quantum channels, while double lines denote classical commu-

nication. The circles in front of the measurement meters show the measurement ba-

sis. No error correction is required for the specific case where the outcomes of the first
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and second qubit are s1 = s2 = 0 and hence, as expected, |ψout〉 = R̂x(β)R̂z(α)|ψin〉.
However, if the outcome of the first qubit is s1 = 1 (s2 = 0) the measurement basis

for the second qubit has to be changed from B2(β) to B2(−β) and finalized by a

Pauli error correction, i.e. σ̂z on the third (output) qubit, to get the desired output

of the computation. This yields |ψout〉 = σ̂zR̂x(−β)R̂z(α)|ψin〉 Similar corrections

are required in the cases when the third qubit’s outcome is s2 = 1 (s1 = 0) and

hence |ψout〉 = σ̂zR̂x(β)R̂z(α)|ψin〉. Finally, if a projection onto |α−〉 occurs to both

qubits, (s1 = s2 = 1), two Pauli errors, σ̂z and σ̂x, have to be compensated for on

qubit 3 yielding |ψout〉 = σ̂xσ̂zRx(−β)R̂z(α)|ψin〉.
Let us now proceed to a two-qubit gate. For simplicity, we will assume that the

outcome of all measurements corresponds to s = 0, thus making no compensation

necessary. However, the correction rules applied in Eq. (2.28) generalize in a straight

forward manner. If we choose to perform measurements on the physical qubits 2

and 3 of a four-qubit linear cluster (Fig. 2.7b) in the basis B2(α) and B3(β), we

effectively implement the following circuit

|ψin〉a,b

× R̂
(α)
z Ĥ

× R̂
(β)
z Ĥ

|ψout〉a,b (2.30)

where the connection between logic qubits a and b corresponds to a C-phase gate

between them. As mentioned earlier, it is important to understand that the quantum

circuit processes the logic qubits a and b, whereas the actual measurements and read

out to implement the circuit are performed on the physical qubits 1,2,3 and 4.

The circuit of Eq. (2.30) performs a C-phase gate followed by the usual single

qubit rotation and Hadamard gate for both qubits, respectively:

|ψout〉a,b = ĤaR̂a
z(α)ĤbR̂b

z(β)Ûa,b
C−phase|ψin〉a,b (2.31)

For an input state of |ψin〉a,b = |+〉a|+〉b the circuit generates entanglement between

logic qubits a and b.

This concludes our brief introduction to one-way quantum computation. The

introduced single qubit rotation and the two-qubit C-phase gate are a sufficient ba-

sis for universal quantum computation. It is important to understand that we are

able to process our quantum circuit and thereby our quantum algorithm determinis-

tically, even though only local measurements and classical feed-forward procedures

are employed, which are well within technological reach. The major difficulty is left

to produce the highly entangled cluster state. However, since it is prepared before

the actual computation, we can generate it off-line, i.e. we can use as many trials as

we need to make sure we have succeeded with our task.

Considerable efforts have been stepped towards generating and characterizing

cluster states in linear optics [67, 59, 10, 64, 68, 69, 66]. Recently the principal fea-

sibility of the one-way quantum computing model has been experimentally demon-

strated through a four-photon cluster state [64, 69, 70].
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For the far future one might think of relatively simple quantum computers at

many different locations, which can perform the local measurement algorithms. The

necessary cluster state resources can then be downloaded from a sophisticated source

via a quantum internet.

2.2.3 Verification of Multipartite Entanglement

In the above sections, we have discussed several aspects of quantum entanglement

and QIP. We have silently assumed that we are able to generate perfectly pure states

with certainty. In the experiment, however, this is not the case. We are only able to

generate mixed states that resemble the desired pure states up to a certain degree.

Quantum fidelity is a measure for this purity and is defined as

F = Tr[ρ̂|Ψ〉〈Ψ|] (2.32)

where ρ̂ is the density matrix of the generated mixed state and |Ψ〉 is the state vector

of the desired pure state. The fidelity can take values between 1, the generated state

is perfectly equal to the desired state, and 0, the generated state contains no parts

of the desired state.

For all procedures in QIP there exists a certain threshold that marks the min-

imum fidelity for which a task can still be accomplished. It is thus necessary to

obtain knowledge of the quality of the generated states. Complete knowledge of the

density matrix gives in principle all information about the state of a system. Even

though it might still be a extremely difficult theoretical task to determine certain

properties from it such as the entanglement of formation [71, 72], the density matrix

yields most of the information needed, directly.

If we are able to subsequently produce many identical copies of our state, we

can reconstruct every entry of the density matrix ρi,j = 〈i|ρ̂|j〉 from the measured

expectation values of all pauli matrix combinations 〈σ̂1
i σ̂

2
i σ̂

3
i ...σ̂

n
i 〉. Here, i identifies

one of the Pauli matrices or the identity [x, y, z, I] and n is the number of qubits in

the system. This procedure is known as quantum state tomography. By increasing

statistics it can be as accurate as desired. However, the number of measurements

needed for quantum state tomography grows exponentially with n, which can result

in a very long measurement time and is thus unpractical for various experimental

applications.

For many experiments, though, it is sufficient to proof the presence of genuine

multipartite entanglement. Quantum witness is a recently developed approach to

proof this presence in a system with only a minimum number of measurements

involved [73]. We will try to introduce the basic idea:

A quantum witness of genuine n-partite entanglement is an observable which

has a positive expectation value on states with (n− 1)-partite entanglement and

a negative expectation value on some n-partite entangled states. The latter states

and their entanglement, respectively, are said to be detected by Ŵ . Witnesses
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provide sufficient criteria for entanglement and for distinguishing the various classes

of genuine entangled states.

A witness operator Ŵ that detects genuine multipartite entanglement of a pure

state |Ψ〉 (and of states that are close to |Ψ〉) is given by

Ŵ = α Î− |Ψ〉〈Ψ| (2.33)

where Î is the identity operator and

α = max
|Φ〉εB

|〈Φ|Ψ〉|2 (2.34)

with B denoting the set of bi-separable states. This construction guarantees that

Tr
[
Ŵ ρ̂B

]
≥ 0 (2.35)

for all bi-separable states ρ̂B, and that

Tr
[
Ŵ|Ψ〉〈Ψ|

]
< 0. (2.36)

Thus a negative expectation value of the observable Ŵ clearly proofs the presence

of multipartite entanglement in the state |Ψ〉. The determination of α and thus

the construction of Ŵ can be a difficult task and depends largely on the respective

problem. A construction of witnesses to detect six-partite entanglement will be

discussed with the experiment introduced in chapter 6.

2.3 Manipulation of Multi-Photon-Entanglement

with linear optics

One of the exciting aspects of quantum information science is that there are several

candidates of quite different physical systems that can in principle be used to im-

plement QIP and it doesn’t look like the race between them will be decided anytime

soon. Promising candidates are, but not limited to, ion traps [25], nuclear magnetic

resonance [26], quantum dots [27], super-conducting devices (Josephson junction)

[28] and photons [29].

We try to implement QIP with photons and linear optics for various reasons

such as very strong robustness against de-coherence, extremely fast and accurate

implementations of universal single qubit operations and the vast availability of

already existing electro-optic devices.

In this section, we will describe the process of spontaneous parametric down-

conversion, the source of entangled photons used throughout all experiments of this

thesis and will discuss in detail the implementation of a Bell-state analyzer as an

example for the application of linear optics.
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2.3.1 Spontaneous Parametric Down-Conversion

Remarkable effort has been dedicated to the implementation of single photon sources

and subsequent entanglement procedures [74]. However, at the moment the process

of spontaneous parametric down-conversion (SPDC) is still the best source for entan-

gled photon pairs. It provides mechanisms where such pairs can be produced with

sufficient intensity and in good purity. In SPDC, one uses a non-centrosymmetric

crystal with nonlinear electric susceptibility. In such a medium, an incoming photon

can decay with relatively small probability into two photons in a way that energy

and momentum inside the crystal are conserved.

In the following we will describe a simple technique to produce polarization-

entangled photon pairs using the process of non-collinear type-II parametric down-

conversion [30]. In the experiment, the desired polarization-entangled state is pro-

duced directly out of a single nonlinear crystal [BBO (β-barium-borate)]. In that

process, the two photons are emitted with different polarizations (Fig. 2.8). Cal-

culating the emission direction of the photons [75, 30], one notices that photons of

each polarization are emitted into one cone in such a way that momenta of two

photons always add up to the momentum of the pump photon. Thus, the emission

direction of each individual photon is completely uncertain within the cone, but once

one photon is registered, and thus its emission direction is defined, the other photon

is found just exactly opposite from the pump beam on the other cone. The total

quantum mechanical state is therefore extremely rich and is a superposition of all

such pairs of emission modes.

The interesting point is now that the crystal can be cut and arranged such that

the two cones intersect, as shown in Fig. (2.8). Then, along the lines of intersection,

the polarization of neither photon is defined, but what is defined is the fact that the

two photons have to have different polarizations. This contains all the necessary fea-

tures of entanglement in a nutshell. Measurement on each of the photons separately

is totally random and gives with equal probability vertical or horizontal polarization.

But once one photon, for example photon A, is measured, the polarization of the

other photon B is orthogonal! Choosing an appropriate basis, e.g. |H〉 and |V 〉 (see

Eq. 2.10), the state emerging through the two arms A and B is thus a superposition

of |H〉|V 〉 and |V 〉|H〉, say

1√
2
(|H〉A|V 〉B + eiα|V 〉A|H〉B) (2.37)

where the relative phase α arises from the crystal birefringence, and an overall phase

shift is omitted.

Using an additional birefringent phase shifter (or even slightly rotating the down-

conversion crystal itself), the value of α can be set as desired, e.g. to the values 0 or

π. Somewhat surprisingly, a net phase shift of π may be obtained by a 90◦ rotation

of a quarter wave plate in one of the paths. Similarly, a half wave plate in one path

can be used to change horizontal polarization to vertical and vice versa. One can
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Figure 2.8: Principle of type-II parametric down-conversion. Inside a nonlinear

crystal (here, BBO), an incoming pump photon can decay spontaneously into two

photons. Two down-converted photons arise polarized orthogonally to each other.

Each photon is emitted into a cone. The photon of the top cone is vertically polarized

while its exactly opposite partner in the bottom cone is horizontally polarized. Along

the directions where the two cones intersect, their polarizations are undefined; all that

is known is that they have to be different, which results in polarization entanglement

between the two photons in arms A and B.
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thus very easily produce any of the four Bell states of Eq’s. (2.3).

The birefringent nature of the down-conversion crystal complicates the actual en-

tangled state produced, since the ordinary and extraordinary photons have different

velocities inside the crystal, and propagate along different directions even though

they become collinear outside the crystal (an effect well known from calcite prisms,

for example). The resulting longitudinal and transverse walk-offs between the two

terms in the state of Eq. (2.37) are maximal for pairs created near the entrance face,

which consequently acquire a relative time delay δT = L(1/uo − 1/ue) (L is the

crystal length, and uo and ue are the ordinary and extraordinary group velocities,

respectively) and a relative lateral displacement d = L tan ρ (ρ is the angle between

the ordinary and extraordinary beams inside the crystal). If δT ≥ τc, the coherence

time of the down-conversion light, then the terms in Eq. (2.37) become, in principle,

distinguishable by the order in which the detectors would fire, and no interference

will be observable. Similarly, if d is larger than the coherence width, the terms can

become partially labeled by their spatial location.

Because the photons are produced coherently along the entire length of the crys-

tal, one can completely compensate for the longitudinal walk-off [76]—after com-

pensation, interference occurs pairwise between processes where the photon pair is

created at distances ±x from the middle of the crystal. The ideal compensation

is therefore to use two crystals, one in each path, which are identical to the down-

conversion crystal, but only half as long. If the polarization of the light is first rotated

by 90◦ (e.g. with a half wave plate), the retardation between the o and e compo-

nents is exchanged and complete temporal indistinguishability is restored (δT = 0).

The same method provides optimal compensation for the transverse walk-off effect

as well. Here, the compensation crystals were oriented along the same direction as

that of the down-conversion crystal. In the following experiments we always slightly

rotate the orientation of one of the compensation crystals to tune the relative phase

α = π.

The BBO crystal used in our experiments is 2.0mm long and was cut at θpm =

43.5◦ (the angle between the crystal optic axis and the pump). To optimize the

coupling efficiency, the cones have to intersect with orthogonal tangents, which was

the case if the cone-overlap directions, selected by irises before the detectors, were

separated by 6◦. The transverse walk-off d (0.2mm) was small compared to the

coherent pump beam width (2mm), so the associated labeling effect was minimal.

However, it was necessary to compensate for longitudinal walk-off, since our 2.0mm

BBO crystal produced δT = 260fs, while τc [determined by the collection irises and

interference filters (centered at 780nm, 3.2nm FWHM)] was at about of the same

order. As discussed above, we used an additional BBO crystal (1.0mm thickness,

θpm = 43.5◦) in each of the paths, preceded by a half wave plate to exchange the

roles of the horizontal and vertical polarizations.
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Figure 2.9: Polarizing beam splitter (PBS). A PBS has two input modes a and b and

two output modes c and d. It perfectly transmits (reflects) horizontally (vertically)

polarized light. If a photon in the state |Ψ〉 = α|H〉+ β|V 〉 passes through a PBS, it

will be found in the transmitted (reflected) beam with probability |α|2 (|β|2).

2.3.2 Bell-State Analyzer

The Bell state measurement (BSM) is a fundamental procedure in QIP, as it is

an essential component in many protocols such as quantum teleportation. In the

following we will describe the implementation of a Bell state analyzer with linear

optics as we have used it in the experiments described in the following chapters.

The Bell state analyzer is based on the two-photon interference effect at a stan-

dard cube polarizing beam splitter (PBS). A PBS has two spatial input modes a

and b and two output modes c and d (Fig. 2.9). If a photonic-qubit in the general

state |Ψ〉 = α|H〉+ β|V 〉 (compare Eq. 2.10) is directed onto a PBS in mode a or b,

the |H〉 and |V 〉 terms are split into the two output modes c and d:

(α|H〉+ β|V 〉) |a〉 → α|H〉|c〉+ iβ|V 〉|d〉
(α|H〉+ β|V 〉) |b〉 → iβ|V 〉|c〉+ α|H〉|d〉 (2.38)

where, e.g. |a〉 describes the spatial quantum state of the photon in input beam a.

The PBS perfectly transmits (reflects) horizontally (vertically) polarized light. Here

the factor i in front of the reflected term is a consequence of unity. It corresponds

physically to a phase jump upon reflection at the semi-transparent mirror [77].

Let us now consider the PBS with two incident photons, 1 and 2, photon 1 in

input mode a, and photon 2 in input mode b. Suppose that photon 1 is in the state

α|H〉+β|V 〉, and photon 2 is in the state γ|H〉+δ|V 〉 (|α|2+|β|2 = 1, |γ|2+|δ|2 = 1).

For this general case, four different possibilities arise: (1) both particles are reflected,
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(2) both particles are transmitted, (3) the first particle is reflected and the second

one is transmitted, and (4) the first one is transmitted and the second one is reflected.

If the two photons have the same frequency and arrive at the PBS simultaneously,

we have to consider coherent superpositions of the amplitudes for these different

possibilities.

To show how the Bell state analyzer works, consider the general input state of

photons 1 and 2 in input modes a and b, respectively:

|Ψin〉 =
(
α|Φ+〉12 + β|Φ−〉12 + γ|Ψ+〉12 + δ|Ψ−〉12

)
|a〉1|b〉2 (2.39)

Here, we have used the Bell basis (see chapter 2.3) for illustrative reasons, which will

become apparent later on (|α|2 + |β|2 + |γ|2 + |δ|2 = 1). We can rewrite Eq. (2.39)

in the computational basis:

|Ψin〉 = 1√
2
[(α+ β)|H〉1|H〉2 + (γ + δ)|H〉1|V 〉2

+(γ − δ)|V 〉1|H〉2 + (α− β)|V 〉1|V 〉2] |a〉1|b〉2
(2.40)

As shown in Eq. (2.38), for photons 1 and 2 passing through the PBS their spatial

modes will undergo a corresponding unitary transformation. The two-photon state

thus evolves into:

|Ψf〉12 = 1√
2

[(α+ β)|H〉1|c〉1|H〉2|d〉2 + i(γ + δ)|H〉1|c〉1|V 〉2|c〉2
+i(γ − δ)|V 〉1|d〉1|H〉2|d〉2 + (α− β)|V 〉1|d〉1|V 〉2|c〉2]

(2.41)

We now proceed by placing a half-wave plate (HWP) into spatial modes c and d,

respectively. The fast axis of the HWP is set to an angle of 22.5◦ to the horizontal

axis. By this, the HWPs essentially implement Hadamard gates and the state of

Eq. (2.41) evolves to:

|Ψf〉12 = 1
2
√

2
{ (α+ β)[|H〉1|H〉2 + |H〉1|V 〉2 + |V 〉1|H〉2 + |V 〉1|V 〉2]|c〉1|d〉2

+i(γ + δ)[|H〉1|H〉2 − |H〉1|V 〉2 + |V 〉1|H〉2 − |V 〉1|V 〉2]|c〉1|c〉2
+i(γ − δ)[|H〉1|H〉2 + |H〉1|V 〉2 − |V 〉1|H〉2 − |V 〉1|V 〉2]|d〉1|d〉2
−(α− β)[|H〉1|H〉2 − |H〉1|V 〉2 − |V 〉1|H〉2 + |V 〉1|V 〉2]|d〉1|c〉2}

(2.42)

To complete the Bell state analyzer, we have to direct the output modes c and d onto

two additional PBSs. The entire setup is shown in Fig. (2.10). Just like in Eq. (2.41)

the photons in modes c and d will undergo corresponding unitary transformations:

|Ψf〉12 = 1
2
√

2
{ (α+ β) [|H〉1|e〉1|H〉2|h〉2 + i|H〉1|e〉1|V 〉2|g〉2

+i|V 〉1|f〉1|H〉2|h〉2 − |V 〉1|f〉1|V 〉2|g〉2]
+i(γ + δ) [|H〉1|e〉1|H〉2|e〉2 − i|H〉1|e〉1|V 〉2|f〉2

+i|V 〉1|f〉1|H〉2|e〉2 + |V 〉1|f〉1|V 〉2|f〉2]
+i(γ − δ) [|H〉1|h〉1|H〉2|h〉2 + i|H〉1|h〉1|V 〉2|g〉2

−i|V 〉1|g〉1|H〉2|h〉2 + |V 〉1|g〉1|V 〉2|g〉2]
−(α− β) [|H〉1|h〉1|H〉2|e〉2 − i|H〉1|h〉1|V 〉2|f〉2

−i|V 〉1|g〉1|H〉2|e〉2 − |V 〉1|g〉1|V 〉2|f〉2]}

(2.43)
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Figure 2.10: Bell state analyzer. Two photons in input modes a and b are interfered

on the first PBS. The two output modes c and d are analyzed with a half-wave

plate (HWP) and a second PBS, respectively. A coincidence detection of photons in

modes e+h or f+g corresponds to a |Φ−〉 detection, whereas a e+g or f+h coincidence

corresponds to a |Φ+〉 detection.
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After photons 1 and 2 have passed through the setup of Fig. (2.10) it is not possible

to distinguish them any more. The total two-photon state including both the spatial

and the polarization part, therefore, has to obey bosonic quantum statistics. This

implies that the outgoing physical state must be symmetric under the exchange of

labels 1 and 2. To do so, one should symmetrize the state |Ψf〉12, i.e. also include

its exchange wave function |Ψf〉21. The final outgoing state therefore reads

|Ψf〉 =
1√
2

(|Ψf〉12 + |Ψf〉21) , (2.44)

and consequently we have

|Ψf〉 = 1
2
{ β [|H〉1|H〉2(|e〉1|h〉2 + |h〉1|e〉2)

−|V 〉1|V 〉2(|f〉1|g〉2 + |g〉1|f〉2)]
+iα [|H〉1|V 〉2(|e〉1|g〉2 + |h〉1|f〉2)

+|V 〉1|H〉2(|g〉1|e〉2 + |f〉1|h〉2)]
+i(γ + δ) [|H〉1|H〉2|e〉1|e〉2 + |V 〉1|V 〉2|f〉1|f〉2]
+i(γ − δ) [|H〉1|H〉2|h〉1|h〉2 + |V 〉1|V 〉2|g〉1|g〉2]}

(2.45)

Close inspection of Eq. (2.45) shows that we can identify two out of the four Bell

states. The probability to find a photon each in output modes e and h is exactly

|β|2/2. The same probability arises for a coincidence detection of photons in modes

f and g. The overall probability for these two cases is thus |β|2. Comparison with

our original input state in Eq. (2.39) shows that this is exactly the probability for

photons 1 and 2 to be in the Bell state |Φ−〉12, i.e. for β = 1 (β = 0) we know with

certainty that the photons will (never) jointly emerge either from modes e and h

or modes f and g. Since our system only consists of two particles, we are forced

to conclude that a coincidence detection of photons in modes e+h or f+g projects

photons 1 and 2 onto the state |Φ−〉12. Correspondingly, we are able to identify the

state |Φ+〉12 by registering a coincidence in modes e+g or f+h (probability = |α|2).
Note, that we are not able to distinguish between the states |Ψ+〉12 and |Ψ−〉12 since

no coincidence configuration can be genuinely associated with either one of them.

With the help of our Bell state analyzer we are thus able to identify two out of the

four Bell states via two-fold coincidence analysis and post selection. We want to

mention that a similar setup with a non-polarizing 50:50 beam splitter instead of

the interference PBS can be used to identify the states |Ψ+〉12 and |Ψ−〉12.
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Chapter 3

Quantum Teleportation of a

Two-Qubit Composite System

3.1 Introduction

The concept of quantum teleportation of a single-qubit and its importance in QIP

was described in chapter (2.1.3). Experimental demonstrations thereof have been

implemented with photons [36, 78, 79] and ions [80, 81]. Very recently long-distance

teleportation [82, 83] and open-destination teleportation [84] have also been realized.

However, the teleportation of single qubits is insufficient for a large-scale realization

of quantum communication and computation [23, 40, 29, 41]. The teleportation of

a composite system containing two or more qubits has thus been seen as a long-

standing goal in quantum information science.

In this chapter we will discuss the first experimental demonstration of a two-

photon quantum teleportation. In the experiment, we develop and exploit a six-

photon interferometer to teleport an arbitrary polarization state of two photons.

Not only does our six-photon interferometer provide an important step towards

teleportation of a complex system, it will also enable future experimental inves-

tigations on a number of fundamental quantum communication and computation

protocols [40, 85, 86, 61]. The concept of two-qubit teleportation and the experi-

mental six-photon setup described in this chapter furthermore constitute the basis

for the experiments of the following chapters (4,5,6).

3.2 Teleportation of a Two-Qubit System

Although there exist other ways to achieve teleportation of a composite system

[87, 88], our experimental scheme [29, 89] closely follows the original proposal for

teleportation of single qubits (chapter 2.1.3). In the two-qubit teleportation, the

sender, Alice, wants to send an unknown state of a system composed of qubits 1 and
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Figure 3.1: Schematic diagram showing the principle of two-qubit teleportation.

Alice wants to teleport an unknown state of a system composed of photon 1 and 2 to

Bob. To do so, Alice and Bob first share two entangled photon pairs (EPR source),

photon pairs 3-5 and 4-6. Alice then carries out a joint Bell-state measurement

(BSM) both on photons 1 and 3 and on photons 2 and 4, respectively. On receiving

Alice’s BSM results via classical communication, Bob can then carry out a corre-

sponding unitary transformation (U) on both photons 5 and 6 to convert them into

the original state of photons 1 and 2.

2,

|χ〉12 = α |H〉1 |H〉2 + β |H〉1 |V 〉2 + γ |V 〉1 |H〉2 + δ |V 〉1 |V 〉2 , (3.1)

where α, β, γ and δ are four arbitrary complex numbers satisfying |α|2 + |β|2 + |γ|2 +

|δ|2 = 1, to a distant receiver, Bob (Fig. 3.1). In order to achieve teleportation, Alice

and Bob first have to share two ancillary entangled photon pairs (photon pairs 3-5

and 4-6) which are prepared in the Bell state |Φ+〉 (see Eq. 2.3). The two-qubit

teleportation scheme then works as follows.

Alice first teleports the state of photon 1 to photon 5 following the standard

teleportation protocol. In terms of the four Bell-states of photons 1 and 3,

|Φ±〉13 =
1√
2
(|H〉1|H〉3 ± |V 〉1|V 〉3)

|Ψ±〉13 =
1√
2
(|H〉1|V 〉3 ± |V 〉1|H〉3), (3.2)

the combined state of photons 1, 2, 3 and 5 can be rewritten as

|χ〉12|Φ+〉35 =
1

2
(|Φ+〉13|χ〉52 + |Φ−〉13σ̂5z|χ〉52

+ |Ψ+〉13σ̂5x|χ〉52 + |Ψ−〉13(−iσ̂5y)|χ〉52), (3.3)
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where σ̂x, σ̂y and σ̂z are the well-known Pauli operators. Eq. (3.3) implies, that by

performing a joint Bell state measurement (BSM) on qubits 1 and 3, Alice projects

the state of qubits 5 and 2 onto one of the four corresponding states. After she has

told Bob her BSM result via a classical communication channel, Bob can convert

the state of qubits 5 and 2 into the original state |χ〉52 by applying to photon 5

a corresponding local unitary transformation (Î , σ̂x, σ̂y, σ̂z), independent of the

original state.

Similarly, the combined state of photons 2, 4, 5 and 6 can be rewritten in terms

of the four Bell-states of photons 2 and 4 as

|χ〉52|Φ+〉46 =
1

2
(|Φ+〉24|χ〉56 + |Φ−〉24σ̂6Z |χ〉56

+
∣∣Ψ+

〉
24
σ̂6X |χ〉56 +

∣∣Ψ−〉
24

(−iσ̂6Y ) |χ〉56). (3.4)

Following the above procedure, Alice can also teleport the state of photon 2 to photon

6. First, Alice performs a joint BSM on photons 2 and 4 and sends the BSM result

to Bob. Upon the BSM result received, by applying to photon 6 a corresponding

local unitary transformation (Î , σ̂x, σ̂y, σ̂z ), Bob can convert the state of qubits 5

and 6 into the original state

|χ〉56 = α|H〉5|H〉6 + β|H〉5|V 〉6 + γ|V 〉5|H〉6 + δ|V 〉5|V 〉6 (3.5)

to accomplish the task of the most general two-qubit teleportation.

The above scheme has a remarkable feature: it teleports the two photonic qubits,

1 and individually. This way, neither the two original qubits nor the teleported qubits

have to be in the same place. Such a flexibility is desired in distributed quantum

information processing, such as quantum telecomputation [41] and quantum secret

sharing [90, 91]. Moreover, the above method of teleporting each qubit of a composite

system individually can be easily generalized to teleport a N -qubit complex system.

3.3 A Stable High-Intensity Entangled Photon Source

Although significant experimental advances have been achieved in teleportation of

single qubits (photons and ions), the realization of teleportation of a composite sys-

tem containing two or more qubits has remained a real experimental challenge. This

is because, on the one hand recent photonic experiments [82, 83, 84] would have a too

low six-photon coincidence rate. On the other hand, the experiments with trapped

ions [81, 80] are limited by the finite life time of ion qubits due to de-coherence and

the non-ideal fidelity of quantum logic operations between ion qubits. As photons

are robust against de-coherence and high precision unitary transformations for pho-

tons can be carried out with linear optical devices, in the present experiment we still

chose to use polarization-entangled photon pairs via parametric down-conversion

[30] as the main resource while various efforts have been made to greatly improve

the brightness and stability of the entangled photon sources.
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Figure 3.2: Method to increase the power of the ultraviolet light. A modified mode-

locked Ti:sapphire laser (MIRA), pumped with an all-solid-state CW laser Verdi-V18

(operating at 14W), is used to produce high-intensity ultra-fast infrared light pulses.

The infrared light pulse passes through the LBO crystal to generate via up-conversion

the ultraviolet pulse necessary for parametric down-conversion. Behind the LBO, two

cylindrical lenses with orthogonal axes, (one horizontal and one vertical) are used

to shape and focus the ultraviolet beam and five dichroic mirrors (DM) are used to

separate the ultraviolet from the infrared light.
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3.3. A Stable High-Intensity Entangled Photon Source

Figure 3.3: Performance of the LBO crystal. Measured two-fold coincidences with

and without moving the translation stage of the LBO up-conversion crystal over

time.

A natural way to obtain a brighter entangled photon source is to increase the

power of the ultraviolet light necessary for parametric down-conversion. To signif-

icantly increase the ultraviolet power, we would need a more powerful ultra-fast

infrared laser system for the up-conversion process. To achieve this, we have used

an all-solid-state CW laser Verdi-V18 instead of Verdi-V10 to pump a modified

mode-locked Ti:sapphire laser system Mira900-F (Mira) as is shown in Fig. (3.2).

Unfortunately, the conversion efficiency of the Ti:sapphire crystal will drop greatly

when the pump power is beyond a certain threshold, typically 10 in the commer-

cial Mira. This is because the pump laser Verdi-V18 will bring more heat to the

Ti:sapphire crystal. To solve this problem, a better cooling cycle system around

the Ti:sapphire crystal is used. Moreover, a brighter pump laser in the Mira cavity

will make the output infrared pulse unstable. A new output coupler with higher

transmission efficiency is used in the cavity to stabilize the output laser. After these

innovations, we achieved an ultra fast infrared pulse with an output power of about

2.9W with the Verdi-V18 operated at 14W,which is almost twice as high as before.

The high power infrared pulse was properly focused on a LiB3O5 (LBO) crystal

to achieve the best up-conversion efficiency. To avoid damage to the LBO, caused

by the focused laser beam, the LBO is mounted on a motorized translation stage

and will be moved by a distance of 10 µm to another point once the reference -

single count rate of detector D5H (see Fig. 3.4) - is below a certain threshold. To
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demonstrate the advantage of this technique, we measure the two-fold coincidence

count rates over time, first without and then with moving the translation stage of the

LBO. As can be observed in Fig. (3.3), our feedback control system greatly improves

the stability of the down-conversion rates. Since back-reflection of the LBO into the

Mira system can destroy the mode-lock condition, perfect control of the LBO motion

is crucial. Due to the brighter infrared pulse, much more noise (i.e. infrared light) is

introduced to the ultraviolet light during the up-conversion process. To compensate

for this, two additional dichroic mirrors (to have a total of seven) are added in

comparison to former experiments to further separate the ultraviolet light with the

infrared noise.

To have a better collection efficiency of entangled photon pairs, we significantly

shortened the distance between the BBOs and the fiber couplers to make our setup

more compact. Besides the improvement in collection efficiency, a compact setup also

helps to significantly improve the stability of the whole six-photon interferometer.

To optimize the collection efficiency for all three entangled photon pairs, we chose a

10 cm focus lens between the two BBOs and a 20 cm radius concave mirror behind

the second BBO to refocus the ultraviolet pulse such that it has the same beam size

in all three BBO pumping processes. With these modifications, we achieved a stable

high-intensity entangled photon source.

3.4 Experimental Setup

A schematic diagram of our experimental setup is shown in Fig. (3.4). The devel-

oped high-intensity ultraviolet laser successively passes through two BBO crystals to

generate three polarization-entangled photon pairs [30]. The ultraviolet laser beam

is circularized and has a central wavelength of 390 nm, a pulse duration of 180 fs,

a repetition rate of 76 MHz and an average power of 1.0 W. All three photon pairs

are originally prepared in the Bell state |Φ+〉 = (|HH〉 + |V V 〉)/
√

2. Following the

efforts described in the above section, we managed to observe on average 105 photon

pairs per second from each source. This is almost five times brighter than the source

achieved in a recent teleportation experiment [84]. With this high-intensity entan-

gled photon source we could obtain in total 10 six-photon events per minute. This is

two orders of magnitude higher than any former photonic teleportation experiment

could have achieved.

With the help of wave plates and polarizers, we prepared photon pair 1-2 in the

desired two-qubit state |χ〉12 that is to be teleported. Photon pairs 3-5 and 4-6,

which are in the state |Φ+〉, are used as the two ancillary pairs.

To implement two-qubit teleportation, it is necessary to perform a joint BSM

on photons 1 and 3 and photons 2 and 4, respectively. To demonstrate the working

principle of two-qubit teleportation it is sufficient to identify one of the four Bell-

states in both BSMs, although this will result in a reduced efficiency - the fraction

of success - of 1/16. In the experiment, we decide to analyze the Bell-state |Φ+〉 (see
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Figure 3.4: A schematic diagram of the experimental setup. The ultraviolet pulse

passes through a BBO crystal to generate a polarization-entangled photon pair in

modes 3 and 5 (i.e. the first ancillary entangled photon pair). After the first BBO, a

10-cm-focus lens is introduced to refocus the ultraviolet pulse onto the second BBO to

produce another entangled photon pair in modes 1 and 2 (to prepare the two qubits

to be teleported). Reflected by a concave mirror, the ultraviolet pulse pumps once

more into the second BBO and generates the third entangled photon pair in modes 4

and 6 (that is, the second ancillary photon pair). Prisms 1 and 2, both mounted on

step motors, are used to compensate the time delay for the interference on polarizing

beam splitters PBS13 and PBS24, respectively. PBS5 and PBS6 are used to verify

the teleported state with the help of wave plates in front of them. The photons are

all detected by silicon avalanched single-photon detectors. Coincidences are recorded

with a coincidence unit clocked by the infrared laser pulses. Pol. are linear polarizers

and Filter labels the narrow band filter with ∆λFWHM = 2.8nm.
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chapter 2.3.2). This is achieved by interfering photons 1 and 3 and photons 2 and 4 on

the polarizing beam-splitters, PBS13 and PBS24, respectively. To interfere photons

1 and 3 (photons 2 and 4) on the PBS13 (PBS24), it has to be guaranteed that the

two photons have good spatial and temporal overlap at the PBS such that they are

indistinguishable. To achieve this, the two outputs of the PBSs are spectrally filtered

(∆λFWHM = 2.8nm) and monitored by fiber-coupled single-photon detectors [92].

Moreover, perfect temporal overlap is accomplished by adjusting the path length

of photon 3 (photon 2) by a delay prism 1 (prism 2) to observe “Shih-Alley-Hong-

Ou-Mandel”-type interference fringes (HOM) [93, 94] behind the PBS13 (PBS24) in

the diagonal (|+〉/|−〉) basis [95]. A typical interference of the HOM-dip kind is

shown in Fig. (3.5), where we use photons 2 and 5 (1 and 6) as a trigger to reduce

noise contributions. These interferometers are sensitive only to length changes on

the order of the coherence length of the detected photons (∼110 µm) and stay stable

for weeks. With the help of polarizers at 45◦, the required projection of photons 1

and 3 (2 and 4) onto |Φ+〉 can then be achieved by detecting behind PBS13 (PBS24)

a |+〉|+〉 or |−〉|−〉 coincidence between detectors D1 and D3 (D2 and D 4) [95],

as we have described in detail in chapter (2.3.2). Note that, in the experiment,

only the |+〉|+〉 coincidence is registered, which further reduces the teleportation

efficiency to 1/64. However, by inserting one PBS and two detectors behind each

output of PBS13 and PBS24, respectively, both |Φ+〉 (by detecting a |+〉|+〉 or

|−〉|−〉 coincidence) and |φ−〉 (by detecting a |+〉|−〉 or |−〉|+〉 coincidence) can be

identified and thus the efficiency can be increased up to 1/4 [96].

As shown in Eq. (3.3) and Eq. (3.4), the projection measurements onto |Φ+〉13
and |Φ+〉24 leave photons 5 and 6 in the state |χ〉56, i.e. the original state of photons 1

and 2. To demonstrate that our two-qubit teleportation protocol works for a general

unknown polarization state of photons 1 and 2, we decide to teleport three different

initial states:

|χ〉A = |H〉1|V 〉2
|χ〉B = 1

2
(|H〉1 + |V 〉1) (|H〉2 − i|V 〉2)

|χ〉C = 1√
2
(|H〉1|V 〉2 − |V 〉1|H〉2)

(3.6)

|χ〉A is simply one of the four computational basis vectors in the two-qubit Bloch

sphere (Fig. 2.1); |χ〉B is composed of a linear polarization state and a circular

polarization state, which is also a superposition of all the four computational basis

vectors; and |χ〉C is a maximally entangled Bell state.

3.5 Experimental Results

We quantify the quality of our teleportation experiment by looking at the fidelity of

the teleported state as defined in Eq. (2.32). To measure the fidelity of two-qubit

teleportation, two PBSs (PBS5 and PBS6) and corresponding wave plates (HWP
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Figure 3.5: Two-photon interference of “Hong-Ou-Mandel-dip ” kind. Two pho-

tons, each from a pair in the Bell state |Φ+〉 are interfered on a PBS and detected in

the diagonal basis. The remaining two photons are used as triggers to reduce noise

contributions. The data points are fitted with Gaussian curves to guide the eye.

Outside the coherence length there is no interference because of the temporal distin-

guishability. Maximum interference occurs at zero delay between the two photons at

the interference PBS.
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Figure 3.6: Experimental results for the teleportation of the |χ〉A state and the |χ〉B
state. Each measurement took 60 h. (A) The |χ〉A state. We measured photon 5

and 6 in the computational basis. (B) The |χ〉B state. We measured photon 5 in

the diagonal and photon 6 in the circular basis. The fraction of |H〉|V 〉 (|+〉|R〉) to

the sum of all counts shows the fidelity for the teleportation of the |χ〉A (|χ〉B) state

in A (B).

and QWP), as shown in Fig. (3.4), are combined properly to analyze the teleported

state of photons 5 and 6.

The fidelity measurements for the |χ〉A and |χ〉B teleportation are straight for-

ward. Conditioned on detecting a |+〉|+〉 coincidence between D1 and D3, D2 and

D4, respectively, we analyze the teleported state of photons 5 and 6 in the computa-

tional basis for the |χ〉A teleportation; whereas we analyze photon 5 in the diagonal

basis and photon 6 in the circular basis for the |χ〉B teleportation. As the above

state analysis only involves orthogonal measurements on individual qubits, the fi-

delity of the teleported state is directly given by the fraction of observing a |χ〉A or

|χ〉B state at detectors D5 and D6. The measurement results are shown in Fig. (3.6).

The experimental integration time for each fidelity measurement was about 60 hours
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Figure 3.7: Experimental results for the |χ〉C teleportation. Three complementary

bases were used: (A) computational, (B) diagonal and (C) circular basis, corre-

sponding to the three different local measurements 〈σ̂xσ̂x〉, 〈σ̂yσ̂y〉 and 〈σ̂zσ̂z〉. Each

measurements took 60 hours. In A whenever there is a |H〉|H〉 or |V 〉|V 〉 coinci-

dence, the result of σ̂xσ̂x is +1, whereas |H〉|V 〉 or |V 〉|H〉 represents −1. In B,

|+〉|+〉 or |−〉|−〉 represents +1, whereas |+〉|−〉 or |−〉|+〉 represents −1. In C,

|R〉|R〉 or |L〉|L〉 displaces +1, whereas |R〉|L〉 or |L〉|R〉 displaces −1.
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Fidelities after

Original States Fidelities subtraction of noise

|H〉|V 〉 0.86± 0.03 0.97± 0.03

(|H + V 〉|H − iV 〉)/2 0.75± 0.02 0.83± 0.02

(|H〉|V 〉 − |V 〉|H〉)/
√

2 0.65± 0.03 0.77± 0.03

Average 0.75± 0.03 0.86± 0.03

Table 3.1: Fidelities of quantum teleportation of a two-qubit composite system.

and we recorded about 100 desired two-qubit teleportation events. The integration

time is slightly longer than would be expected from the original source rate, due to

the additional losses at the interference PBSs. On the basis of our original data, we

conclude that the fidelity for |χ〉A and |χ〉B is 0.86±0.03 and 0.75±0.02, respectively.

The measurement on the fidelity of the |χ〉C teleportation is a bit more complex,

since a complete Bell state analysis on photons 5 and 6 usually requires nonlinear

interaction between them. Fortunately, the fidelity can still be determined by local

measurements on individual qubits. To see this, we write the density matrix of |χ〉C
in terms of the Pauli matrices:

|χ〉CC〈χ| = |Ψ−〉〈Ψ−| = 1

4

(
Î − σ̂xσ̂x − σ̂yσ̂y − σ̂zσ̂z

)
(3.7)

By Eq. (2.32), we have:

F = Tr
(
ρ̂|Ψ−〉〈Ψ−|

)
=

1

4
Tr

[
ρ̂

(
Î − σ̂xσ̂x − σ̂yσ̂y − σ̂zσ̂z

)]
(3.8)

This implies that we can obtain the fidelity of the |χ〉C teleportation by consecu-

tively carrying out three local measurements 〈σ̂xσ̂x〉, 〈σ̂yσ̂y〉 and 〈σ̂zσ̂z〈 on the two

teleported qubits. The measurement results for the three operators are shown in

Fig. (3.7), each of which took about 60 hours. Using Eq. (3.8) we determine an

experimental fidelity of 0.65± 0.03.

3.6 Discussion

As can be seen from the above experimental results, all the teleportation fidelities are

well beyond the state estimation limit of 0.40 for a two-qubit composite system [97],

hence successfully demonstrating quantum teleportation of a two-qubit composite

system. The imperfection of the fidelities is mainly due to the noise caused by

emission of two pairs of down-converted photons by a single source [36]. In our

experiment, this noise contributes around 10 spurious six-fold coincidences in 60

hours and was not subtracted in the fidelity estimation. Table (3.1) clearly shows

that by subtracting this noise, as it was done in a previous experiment [36], the

fidelities improve strongly. Besides the double pair emission, the limited interference
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visibility and imperfect entangled state also reduce our teleportation fidelities. We

notice that the fidelities of |χ〉B and |χ〉C teleportation are worse than those of

|χ〉A. This is because the fidelities of |χ〉B and |χ〉C teleportation depend on the

interference visibility on PBS13 and PBS24, while the |χ〉A teleportation fidelity

does not. Moreover, as the quality of the initial entangled state |χ〉C is not as good

as for the disentangled states |χ〉A and |χ〉B, the fidelity of |χ〉C teleportation is

worse than that of the other two.

In this chapter, we have discussed the development and exploration of a six-

photon interferometer to report the first experimental demonstration of a two-qubit

composite system. Not only does our experiment present an important step towards

teleportation of a complex system, the techniques developed also enable immedi-

ate experimental investigations on novel quantum communication and computation

protocols, which will become more apparent in the following chapters.
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Chapter 4

Multistage Entanglement

Swapping

4.1 Introduction

Entanglement swapping is arguably one of the most important ingredients for quan-

tum repeaters and quantum relays, which lay at the heart of quantum communi-

cation [42, 23, 24, 85, 98, 99]. For photonic quantum communication, the distance

is largely limited due to de-coherence from coupling to the environment and an in-

creasing loss of photons in a quantum channel. This leads to an exponential fidelity

decay of quantum information. This drawback can eventually be overcome by sub-

dividing larger distances into smaller sections over which entanglement or quantum

states can be distributed. The sections are then bridged by entanglement swapping

processes [23, 24, 85, 98]. The swapping procedure therefore constitutes one of the

key elements for a quantum relay, and a full quantum repeater if combined with

quantum purification [100, 101, 48, 49] and quantum memory [102, 103, 104]. As a

result, quantum communication becomes feasible despite of realistic noise and imper-

fections. At the same time, the overhead for the used resources and communication

time only increase polynomially with the distance [23, 24, 85, 98, 99].

When dividing a quantum channel into many segments, with the length of each

segment comparable to the channel loss length, one can achieve reliable and robust

long-distance quantum communication by connecting two adjacent segments through

entanglement swapping. Experimentally, photonic entanglement swapping has so far

successfully been achieved for the case of discrete variables [79, 105, 106], and for

continuous variables [107, 108, 109], both via a single stage process. However, only

after successful multiple swapping, we are able to have a fully functional quantum

repeater. In fact, there are additional advantages utilizing a multiple swapping

process. For a quantum relay with many segments, it is equivalent to significantly

lower the dark-count rate, which is a substantial factor limiting the transmission

distance of successful quantum communication [85, 98]. For quantum information
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carriers possessing mass, multiple swapping processes can speed up the distribution

of entanglement by a factor that is proportional to the number of segments used

[43]. Moreover, multistage entanglement swapping can improve the protection of

quantum states against noise suffered from amplitude errors [43].

In this chapter we discuss an experimental demonstration of a multiple entangle-

ment swapping over two stages. This is achieved by utilizing three highly bright and

spatially independent pairs of polarization entangled photons, and performing BSMs

among the three segments between the two communication parties. Two successful

BSMs yield a final maximally entanglement pair distributed between the two parties.

To quantitatively evaluate the performance, we have observed the quality of the out-

put state by the characterization of an entanglement witness, which confirms genuine

entanglement generation. Our experiment implements an entanglement distribution

over two distant stations which are initially independent of each other and have never

physically interacted in the past. This proof-of-principle demonstration constitutes

an important step towards robust long-distance quantum relays, quantum repeaters

and related quantum protocols based on multiple entanglement swapping.

4.2 Multistage Entanglement Swapping

The principle for multistage entanglement swapping is sketched in Fig. (4.1). Con-

sider three independent stations, simultaneously emitting each a pair of maximally

entangled photons (EPR pair). In anticipation of our experiments we assume that

these are polarization entangled photons in the state

|Ψ〉123456 = |Ψ−〉12 × |Ψ−〉34 × |Ψ−〉56, (4.1)

where |Ψ−〉ij is one of the four maximally entangled Bell states of Eq. (2.3). Note

that photon pairs 1-2, 3-4 and 5-6 are entangled in the antisymmetric polarization

state, respectively. However, the states of the three pairs are factorizable from each

other, namely there is no entanglement among any photons from different pairs.

As a first step we perform a joint BSM on photons 2 and 3, i.e. photons 2 and

3 are projected onto one of the four Bell states. Moreover, this measurement also

projects photons 1 and 4 onto a Bell state, in a form depending on the result of the

BSM of photons 2 and 3. Close inspection shows that for the initial state given in

Eq. (4.1), the emerging state of photons 1 and 4 is identical to the one that photons

2 and 3 collapse into. This is a consequence of the fact that the state of Eq. (4.1)

can be rewritten as

|Ψ〉123456 = 1
2
[|Ψ+〉14|Ψ+〉23 − |Ψ−〉14|Ψ−〉23
−|Φ+〉14|Φ+〉23 + |Φ−〉14|Φ−〉23]
×|Ψ−〉56

(4.2)

In all cases photons 1 and 4 emerge entangled despite the fact that they never

interacted with one another in the past. After the joint measurement of photons 2
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Figure 4.1: Principle of multistage entanglement swapping. Three Einstein Podol-

sky Rosen (EPR) sources produce pairs of entangled photons 1-2, 3-4 and 5-6. Pho-

ton 2 from the inial state and photon 3 from the first ancillary pair are subjected

to a joint BSM, and so are photon 4 from the first ancillary and photon 5 from

the second ancillary pair. The two BSMs project outgoing photons 1 and 6 onto an

entangled state. Thus the entanglement of the initial pair is swapped to an entan-

glement between photons 1 and 6.

and 3 one knows immediately about the entanglement type between photons 1 and

4.

Without loss of generality, we assume in the first step that photons 2 and 3

have collapsed into the state |Φ+〉23 as a result of the first BSM. The remaining

four-photon state is then of the form

|Ψ〉1456 = 1
2

[|Ψ+〉16|Φ−〉45 + |Ψ−〉16|Φ+〉45
−|Φ+〉16|Ψ−〉45 − |Φ−〉16|Ψ+〉45]

(4.3)

In a similar manner we perform a second BSM on photons 4 and 5. Again a

detection of the state |Φ+〉45 results in projecting the remaining photons 1 and 6

onto the Bell state

|Ψ−〉16 =
1√
2
(|H〉1|V 〉6 − |V 〉1|H〉6) (4.4)

4.3 Experimental Setup

A schematic diagram of our setup for multistage entanglement swapping is illus-

trated in Fig. (4.2). The used setup is very similar to the one used in the previous

chapter (3). The pulsed high-intensity ultraviolet (UV) beam successively passes

through three β-Barium-Borate (BBO) crystals to generate three polarization en-

tangled photon pairs via type-II parametric down conversion [30]. For the joint BSM
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Figure 4.2: A schematic diagram of the experimental setup. The focused ultraviolet

laser beam passes through the first BBO generating photon pair 1-2. Refocussed, it

passes through the second BBO generating the ancillary pair 3-4. After reflection

it again passes through the second BBO generating pair 5-6. In order to perform

a BSM of photons 2 and 3 (4 and 5), they are interfered at PBS23 (PBS45) and

analyzed with polarizers at 45◦. PBS1 and PBS6 are polarization analyzers for the

swapped entangled state.
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Figure 4.3: Experimental expectation values for every correlation function of the

entanglement witness for the swapped state. The results are derived by twofold co-

incidence measurements along three complementary common bases (a) |H〉|V 〉, (b)

|+〉|−〉 and (c) |R〉|L〉, conditioned on a fourfold coincidence event in | + + + +〉
for detectors D2-D3-D4-D5 which ensures two successful Bell state measurements.

of photons 2 and 3 (photons 4 and 5), we choose to analyze the case of detecting

the projection onto a |Φ+〉 state. Using once again the method of chapter (2.3.2)

the Bell state analyzer allows the projection of photons 2 and 3 (4 and 5) onto the

state |Φ+〉 upon the detection of a |+〉|+〉 or |−〉|−〉 coincidence at detectors D2

and D3 (D4 and D5). Again, only the |+〉|+〉 coincidences are registered, which

yields an overall success efficiency of 1/64. The resulting state of photons 1 and 6 is

polarization analyzed behind PBS1 and PBS6, respectively.

4.4 Experimental Results

As shown in equations Eq. (4.2, 4.3, 4.4) the projection measurements onto |Φ+
23〉 and

|Φ+
45〉 leave photons 1 and 6 in the maximally entangled state |Ψ−

16〉. In contrast to

quantum state tomography, the measurement of witness operators does not provide

a complete reconstruction of the original quantum state, it however allows to check

with a minimal number of local measurements for an entanglement character of a

quantum state (see section 2.2.3). To verify that the two photons really result in

an entangled state, and thus the swapping operation is successful, the expectation

value of the corresponding witness operator [110, 111] is expected to take a value

between -1 and 0. In our case, the applied witness operator W is the most efficient

one since it involves only the minimal number of local measurements [110]. It can
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be measured locally by choosing correlated measurement settings, that involve only

the simultaneous detection of linear, diagonal and circular polarizations for both

photons. We have performed local measurements on the outgoing state of photons 1

and 6 in the three complementary bases; linear (computational) (|H〉/|V 〉), diagonal

(|+〉/|−〉) and circular (|R〉/|L〉).
The entanglement witness is given by

Ŵ = 1
2

(|HH〉〈HH|+ |V V 〉〈V V |+ |+ +〉〈+ + |
+| − −〉〈− − | − |RL〉〈RL| − |LR〉〈LR|).

(4.5)

In the experiment, we perform measurements for each correlation function of the

entanglement witness. The expectation values are shown in Fig. (4.3). Experimental

integration time for each local measurement took about 60 hours and we recorded

about 180 events of desired two-qubit coincidences. Every expectation value for a

correlation function is obtained by making a von Neumann measurement along a

specific basis and compute the probability over all the possible events. For example,

for a HH correlation Tr(ρ̂|HH〉〈HH|), we perform measurements along the linear

(computational) basis. Then its value is given by the number of coincidence counts

of HH over the sum of all coincidence counts of HH, HV, VH and VV. We proceed

likewise for the other correlation settings. The witness can then directly be evaluated

to

Tr(ρ̂Ŵ) = −0.16± 0.03. (4.6)

The negativity of the measured witness implies clearly that the original entanglement

has indeed been swapped. The imperfection of our data is due to the non-ideal

quality of entangled states generated from the high power UV beam, as well as the

partial distinguishability of independent photons at PBS23 and PBS45, which leads

to non-perfect interferences and a degrading of the entanglement output quality

[112, 113]. Moreover, double pair emission by a single source causes noise of an

order of 10 spurious six-fold coincidences in 60 hours and was not subtracted in

calculating the expectation value of the witness operator.

To ensure that there is no entanglement between photons 1 and 6 before nei-

ther of the entanglement swapping process, we have performed a complete quantum

state tomography of the combined state. The experimental expectation values for

various bases are illustrated in Fig. (4.4). Concurrence [72] is a monotone func-

tion of entanglement, ranging from 0 for a separable state to 1 for a maximally

entangled state. In terms of concurrence, we can thus quantify the degree of en-

tanglement through a reconstructed density matrix ρinit for the initial combined

state from the data shown in Fig. (4.4). The concurrence Cinit derived from ρinit is

Cinit = max(0,−0.39±0.01) = 0. As expected, the concurrence C is exactly 0, which

shows that photons 1 and 6 were independent and did not reveal any entanglement

whatsoever before the swapping. Ideally, for a completely mixed state the expec-

tation value for all local measurements should be 0, except for the unity operator,
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Figure 4.4: Complete quantum state tomography on photons 1 and 6 before entan-

glement swapping. Label X corresponds to measurement setting σ̂x, while Y and Z

are for σ̂y and σ̂z, respectively. The result shows that the photons didn’t reveal any

entanglement whatsoever before the swapping operation.
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which should be 1. The contributions of the measurement settings other than the

unity operator are mainly due to noise caused by scattered light of the UV beam at

the BBO crystal. After the two-stage entanglement swapping, entanglement arises

as unambiguously confirmed by the witness measurement of Eq. (4.6).

4.5 Discussion

In this chapter, we have discussed the first demonstration of a proof-of-principle

implementation of a two-stage entanglement swapping using photonic qubits. The

feasibility and effectiveness of this process has been verified by a successful dis-

tribution of genuine entanglement after two simultaneously independent swapping

processes. This result yields the possibility of immediate near-future applications of

various practical QIP tasks. If combined with narrow-band entanglement sources,

the implementation of quantum relays (without quantum memory) and quantum

repeaters (with quantum memory) for either free space or fiber-based entanglement

distribution could become within current reach, as well as quantum state transfer

and quantum cryptography networks in a more efficient way and over much larger

distances of around hundreds of kilometers. Our demonstration also allows for the

possibility of utilizing multi-party, multiple stages entanglement swapping to achieve

global quantum communication networks, though with significant challenges ahead

[43].
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Chapter 5

Teleportation-Based

Controlled-NOT Gate for

Fault-Tolerant Quantum

Computation

5.1 Introduction

Quantum computers promise dramatic speed ups for many computational tasks

[21, 20] and the ability to simulate nature at the micro scale, which is not possible

with conventional computers. For large scale quantum computation however, the

coupling of physical qubits to the environment imposes a major challenge for a real-

life implementation [114, 115, 116]. The teleportation-based scheme offers a way for

scalable quantum computing. Most attractively, this architecture allows for realiza-

tions of universal quantum gates in a fault-tolerant manner as shown by Gottesman

and Chuang [40], and in fact serves as an important basis for measurement-based

quantum computing. In this chapter we discuss the first implementation of a proof-

of-principle experiment of this architecture by demonstrating a teleportation-based

two-qubit controlled-NOT (C-NOT) gate through linear optics with our six-photon

interferometer. We prepare a two-photon input, which can be in a completely ran-

dom state together with a four-photon cluster state used as the working base. The

information of the input-qubits is then transferred onto the cluster state via two

separate Bell-state measurements (BSM). The two-photon output is ready to use

and is verified by measurements in three orthogonal basis. The obtained results

clearly proof the involved working principles and the entangling capability of the

gate. Our experiment could represent an important mile stone towards the feasibil-

ity of realistic quantum computers and could trigger many further applications in

linear quantum optics.
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5.2 Fault-Tolerant Quantum Gates

Any system in nature couples to its environment. In quantum computation this

can lead to errors among the processed qubits making quantum error correction

schemes necessary. Several algorithms to encode a logic qubit onto a number of

physical qubits have been developed [117, 118, 86, 119]. These codes are able to

correct for any single qubit error, as long as maximally one of the physical qubits

has been altered. After decryption one is able to recover the unaltered, original logic

qubit. The minimal number of physical qubits that can be used to correct for one

error is five [100, 120]. A next problem arises once we want to perform quantum

gates, i.e. to perform logic operations on the protected data. Since the logic qubit

has been encoded, we need to perform corresponding operations on the physical

qubits. Depending on the characteristics of the chosen code and gate (in particular

conditional gates), errors may then not only propagate between blocks of encoded

qubits but also within them. This can compromise the code’s ability to correct for

these errors. The solution are so called “fault-tolerant quantum gates”. A procedure

is fault-tolerant if its failing components (this includes the input) do not spread more

errors in the block of encoded output qubits than the code can correct.

In 1999, Gottesman and Chuang introduced a protocol to implement any quan-

tum gate needed for quantum computation in a fault-tolerant manner [40]. Their

work has opened doors to new ideas and has triggered several important protocols

in theoretical quantum information processing, such as the “One-way quantum com-

puter” [121] (see chapter 2.2.2) or the KLM scheme [29]. However, not even an

in-principle implementation of a teleportation-based quantum gate, as suggested by

Gottesman and Chuang, has been realized up to now, which could demonstrate the

experimental possibility of fault-tolerant quantum computation.

In the following, we discuss the first non-trivial realization of the scheme. We

exploit our six photon interferometer described in chapter (3) to combine the tech-

niques of quantum teleportation of a composite system [122] and the creation of a

four-qubit photon cluster state [59]. We chose to implement a C-NOT gate, since

together with very easy to implement single qubit operations, a C-NOT gate is

sufficient to perform all logic operations needed for quantum computation [29].

The approach of Gottesman and Chuang, a generalization of quantum telepor-

tation [35, 36] (see chapters 2.1.3, 3.2), is straight forward and requires only a min-

imum of resources. A key element of their work is the C-NOT gate, which acts

on two qubits, a control and a target qubit. The logic table of the C-NOT opera-

tion (UC−NOT ) is given by (see chapter 2.1.2) |H〉1|H〉2 → |H〉1|H〉2, |H〉1|V 〉2 →
|V 〉1|V 〉2, |V 〉1|H〉2 → |V 〉1|H〉2 and |V 〉1|V 〉2 → |H〉1|V 〉2, where we have used the

photon polarization degree of freedom to encode our qubits. A schematic diagram of

the procedure can be observed in Fig. (5.1a). In the following, we will first present

a rather conceptual approach to the scheme and then discuss it in more detail.

One starts with the two input qubits |T 〉1 (target) and |C〉2 (control). Instead of
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Figure 5.1: (a) Quantum circuit for teleporting two qubits through a C-NOT gate.

Time flow is from left to right. The input consisting of the target qubit |T 〉1 and con-

trol qubit |C〉2 can be arbitrarily chosen. Bell State Measurements (BSMs) are per-

formed between the input states and the outer qubits of the special entangled state |χ〉.
Depending on the outcome of the BSMs, local unitary operations (X, Z) are conducted

on the remaining qubits of |χ〉, which then form the output |out〉 = UC−NOT |T 〉1|C〉2.
Single lines correspond to qubits and double lines represent classical bits. (b) The

special entangle state |χ〉 can be constructed by performing a C-NOT gate on two

EPR pairs, with |Φ+〉 = 1√
2
(|H〉|H〉+ |V 〉|V 〉).
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directly performing complicated gate operations on the input qubits, one prepares

in forehand a special entangled four-qubit state |χ〉. After verification that the

creation of |χ〉 was successful, one transfers the data of the input qubits onto |χ〉 by

quantum teleportation. This is done by successively performing a joint “Bell-State-

Measurement” (BSM) between the target (control) qubit and an outer qubit of |χ〉,
i.e. one projects the target (control) qubit and one of the outer qubits of |χ〉 onto

a joint two-particle “Bell state”. As a direct consequence of the projective BSMs

and the four-partite entanglement of |χ〉, the remaining two (output) qubits already

posses the information originally carried by the input qubits, i.e. the input state is

teleported onto the four-particle state |χ〉. To finish the procedure – just like in

the original teleportation scheme (see chapter 3.2) – we need to apply single qubit

(Pauli) operations to the output qubits, depending on the outcome of the BSMs.

Due to the special entanglement characteristics of |χ〉, the output state is equiv-

alent to the desired unitary transformation of the input state given by

|out〉 = ÛC−NOT |T 〉1|C〉2. (5.1)

This can be better understood by a closer look at the special entangled state |χ〉. It

is a four-particle cluster state [121] (see chapter 2.2.2) of the form

|χ〉 =
1

2
((|H〉|H〉+ |V 〉|V 〉)|H〉|H〉+ (|H〉|V 〉+ |V 〉|H〉)|V 〉|V 〉) . (5.2)

which can be created simply by performing a C-NOT operation on two EPR pairs

as can be seen in Fig. (5.1b). This C-NOT operation is the essential difference to

the original teleportation scheme and is the reason for the fact that the output state

is not identical to the input state, but rather in the desired form of Eq. (5.1).

Let us now have a look at the scheme in more detail: Photons 1 and 2 constitute

the input to our C-NOT gate. We assume that they are in a most general input

state |Ψin〉12, where:

|Ψin〉ij = α|H〉i|H〉j + β|H〉i|V 〉j + γ|V 〉i|H〉j + δ|V 〉i|V 〉j (5.3)

The pre-factors α, β, γ and δ are four arbitrary complex numbers satisfying |α|2 +

|β|2 + |γ|2 + |δ|2 = 1. In this case, Eq. (5.1) takes the form:

|Ψout〉ij = ÛC−NOT |Ψin〉ij
= α|H〉i|H〉j + β|V 〉i|V 〉j + γ|V 〉i|H〉j + δ|H〉i|V 〉j (5.4)

The target qubit i is flipped on the condition that the control qubit j is in the state

|V 〉.
Together with photons 3, 4, 5 and 6 in the cluster state of Eq. (5.2) we can now

express the combined state of all six photons in terms of Bell states for photons

1-3 and 2-5 and in terms of the desired output state |Ψout〉46 for photons 4-6 with
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corresponding Pauli operations:

|Ψin〉12 ⊗ |χ〉3456 =

|Φ+〉13|Φ+〉25 |Ψout〉46 +|Φ+〉13|Φ−〉25 σ̂6
z |Ψout〉46

+|Φ+〉13|Ψ+〉25 σ̂4
xσ̂

6
x|Ψout〉46 +|Φ+〉13|Ψ−〉25 σ̂4

xσ̂
6
xσ̂

6
z |Ψout〉46

+|Φ−〉13|Φ+〉25 σ̂4
z σ̂

6
z |Ψout〉46 +|Φ−〉13|Φ−〉25 σ̂4

z |Ψout〉46
+|Φ−〉13|Ψ+〉25 σ̂4

xσ̂
4
z σ̂

6
xσ̂

6
z |Ψout〉46 +|Φ−〉13|Ψ−〉25 σ̂4

xσ̂
4
z σ̂

6
x|Ψout〉46

+|Ψ+〉13|Φ+〉25 σ̂4
x|Ψout〉46 +|Ψ+〉13|Φ−〉25 σ̂4

xσ̂
6
z |Ψout〉46

+|Ψ+〉13|Ψ+〉25 σ̂6
x|Ψout〉46 +|Ψ+〉13|Ψ−〉25 σ̂6

xσ̂
6
z |Ψout〉46

+|Ψ−〉13|Φ+〉25 σ̂4
xσ̂

4
z σ̂

6
z |Ψout〉46 +|Ψ−〉13|Φ−〉25 σ̂4

xσ̂
4
z |Ψout〉46

+|Ψ−〉13|Ψ+〉25 σ̂4
z σ̂

6
xσ̂

6
z |Ψout〉46 +|Ψ−〉13|Ψ−〉25 σ̂4

z σ̂
6
x|Ψout〉46

(5.5)

From this we can directly see, that two BSMs on photons 1-3 and 2-5, project the

output photons 4 and 6 onto a state that is directly correlated to the desired final

state given in Eq. (5.4). The only thing left to do is to apply corresponding Pauli

operations, depending on the outcome of the BSMs.

Note, that in the above scheme all qubits are logic qubits. However, the scheme

generalizes in a straight forward manner when we use a larger number of physical

qubits to encode our logic qubits. The procedure is then fault-tolerant since all

operations are transversal, i.e. qubits of one block of encoded qubits interact only

with corresponding qubits in other code blocks. A further advantage is the fact that

only classically controlled single-qubit operations and BSMs are needed to perform

the actual gate. The resource of the special entangled state |χ〉 can be constructed

in forehand. If its generation fails nothing is lost by discarding it and trying again

until successful generation. We would like to emphasize two aspects: First, the setup

can be used to process any unknown input state and second, several other quantum

gates can be implemented by this scheme. The choice of gate only depends on the

form of the ancillary state |χ〉.

5.3 Experimental Setup

A schematic diagram of our experimental setup is shown in Fig. (5.2). We align each

β-barium borate (BBO) crystal carefully to produce a pair of polarization entangled

photons i and j in the state:

|Ψ+〉ij =
1√
2

(|H〉i|H〉j + |V 〉i|V 〉j) (5.6)

With the help of wave plates (HWPs) and polarizers, we prepare photon pair 1-2 in

the desired two-qubit input state |ψ〉12. To construct the cluster state |χ〉, we use

the method described in ref. [59]. Initially, photons 3, 4, 5 and 6 are in the state:

|Ψ+〉34 ⊗ |Ψ+〉56 =
1

2

(
|H〉3|H〉4|H〉5|H〉6 + |H〉3|H〉4|V 〉5|V 〉6

+|V 〉3|V 〉4|H〉5|H〉6 + |V 〉3|V 〉4|V 〉5|V 〉6
)

(5.7)
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Figure 5.2: A schematic diagram of the experimental setup. A high-intensity pulsed

ultraviolet laser beam (UV) passes through three β-barium borate (BBO) crystals to

generate three polarization entangled photon pairs via SPDC (see chapter 2.3.1). At

the first BBO the UV generates a photon pair in modes 1 and 2 (that is, the input

consisting of the target and control qubit). After the crystal, the UV is refocused

onto the second BBO to produce another entangled photon pair in modes 3 and

4 and correspondingly for modes 5 and 6. Photons 4 and 6 are then overlapped

at a PDBS and together with photons 3 and 5 constitute the cluster state. Two

PDBS’ are used for state normalization. The prisms are mounted on step motors

and are used to compensate the time delay for the interference at the PDBS and

the BSMs. A BSM is performed by overlapping two incoming photons on a PBS

and two subsequent polarization analyses (PA). A PA projects the photon onto an

unambiguous polarization depending on the basis determined by the choice of HWP

or QWP. The photons are detected by silicon avalanched single-photon detectors.

Coincidences are recorded with a coincidence unit clocked by the infrared laser pulses.

Pol. are polarizers to prepare the input state and Filter label the narrow band filters

with ∆FWHM = 3.2 nm.
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We direct photons 4 and 6 to the two input modes of a polarization dependent beam

splitter (PDBS), respectively. The transmission TH (TV ) of horizontally (vertically)

polarized light at the PDBS is 1 (1/3), and we thus get

−→ 1

2

(
|H〉3|H〉4′|H〉5|H〉6′ +

1√
3
|H〉3|H〉4′|V 〉5|V 〉6′

+
1√
3
|V 〉3|V 〉4′|H〉5|H〉6′ − 1

3
|V 〉3|V 〉4′|V 〉5|V 〉6′

)
. (5.8)

Here we have neglected terms with more than one photon in a single output mode of

the PDBS, since in the experiment we post select only terms that lead to a six-fold

coincidence.

In order to symmetrize the state we place a PDBS’ (TH = 1/3, TV = 1) in each

output mode of the PDBS and receive

−→ 1

6

(
|H〉3|H〉4′′|H〉5|H〉6′′ + |H〉3|H〉4′′|V 〉5|V 〉6′′

+|V 〉3|V 〉4′′|H〉5|H〉6′′ − |V 〉3|V 〉4′′|V 〉5|V 〉6′′
)
. (5.9)

This is already the desired four-qubit cluster state of Eq. (5.2) up to local unitary

operations. To bring it to the desired form, we place half-wave plates (HWPs) –

with an angle of 22.5◦ between the fast and the horizontal axis – into arms 3 and 4.

This yields

−→ (|H〉3|H〉4′′ + |V 〉3|V 〉4′′) |H〉5|H〉6′′

+ (|H〉3|V 〉4′′ + |V 〉3|H〉4′′) |V 〉5|V 〉6′′ = |χ〉34′′56′′ , (5.10)

where we have neglected the overall pre-factor 1/6 and we arrive at the desired an-

cillary four-photon cluster state |χ〉 described in ref. [40]. Note, that altogether, the

probability of having one photon in each desired output, and thus having successfully

created the cluster state, is 1/9.

Teleporting the input data of |ψ〉12 to |χ〉3456 requires joint BSMs on photons 1-3

and photons 2-5. To demonstrate the working principle of the teleportation-based

C-NOT gate, it is sufficient to identify one of the four Bell states in both BSMs (see

chapter 3.4). However, in the experiment we decide to analyze the two Bell states

|Φ+〉 and |Φ−〉 to increase the efficiency - the fraction of success - by a factor of 4.

This is achieved by again using the method described in chapter (2.3.2). We interfer

photons 1-3 and photons 2-5 on a polarizing beam splitter (PBS) and perform a

polarization analysis (PA) on the two outputs [96]. With the help of a HWP, a PBS

and fibre-coupled single photon detectors, we are able to project the input photons

of the BSM onto |Φ+〉 upon the detection of a |+〉|+〉 or |−〉|−〉 coincidence, and

onto |Φ−〉 upon the detection of a |+〉|−〉 or |−〉|+〉 coincidence.

Thus, our projective BSMs leave the remaining photons of the cluster state 4-6

in a state that is identical to the desired output state up to unitary transformations.

We thus have to consider four different results of the BSMs:
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Result of BSMs Output state

|Φ+〉13|Φ+〉25 |Ψout〉46
|Φ+〉13|Φ−〉25 σ̂6

z |Ψout〉46
|Φ−〉13|Φ+〉25 σ̂4

z σ̂
6
z |Ψout〉46

|Φ−〉13|Φ−〉25 σ̂4
z |Ψout〉46

To receive the desired final state of photons 4 and 6, we have to apply corresponding

Pauli operations, depending on the outcome of the BSMs.

To demonstrate that our teleportation-based C-NOT gate protocol works for a

general unknown polarization state of photons 1-2, we decide to measure the truth

table of our gate. That is, we measure the output for all possible combinations of the

two-qubit input in the computational basis. However, that is not sufficient to show

the quantum characteristic of a C-NOT gate. The remarkable feature of a C-NOT

gate is its capability of entangling two separable qubits. Thus, to fully demonstrate

the successful operation of our protocol, we furthermore choose to perform the en-

tangling operation:

|H〉T ⊗
1√
2
(|H〉C + |V 〉C) → 1√

2
(|H〉T |H〉C + |V 〉C |V 〉C) = |Φ+〉TC (5.11)

In the experiment, we observe on average 7× 104 photon pairs per second from

each source. With this high-intensity entangled photon source we obtain in total 3.5

six-photon events per minute. This is less than half the count rate of our previous

six-photon experiments of chapters 3 and 4. Since the new scheme is more complex

and involves more interferences, the fidelity requirements are more stringent. Thus,

we have to reduce the pump power from 1.0 W to 0.8 W in order to reduce noise

contributions that arise from the emission of two pairs of down-converted photons

by a single source (double-pair-emission).

5.4 Experimental Results

We quantify the quality of our output state by looking at the fidelity as defined in

Eq. (2.32). To analyze the operation and to experimentally measure the fidelity of

the two-qubit output, we again use PAs. Depending on the measurement setting we

use quarter wave plates (QWPs) or HWPs in front of the PBS.

The fidelity measurements for the truth table are straightforward. Conditional

on detecting a fourfold coincidence at the two BSMs, we analyze the output photons

4-6 in the computational (H/V ) basis. Depending on the type of coincidence at

the BSM (+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉), i.e. is depending onto which Bell state

the photons have been projected, we analyze the output by taking into account

the corresponding unitary transformation. Since this state analysis only involves
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Figure 5.3: Experimental results for truth table of the C-NOT gate. The first qubit

is the target and the second is the control qubit. The average fidelity for the truth

table is 0.72± 0.05.
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Figure 5.4: Experimental results for the fidelity measurement of the entangled out-

put state in the computational basis. The measured expectation value for 〈σ̂zσ̂z〉
is 0.403± 0.066.

orthogonal measurements on individual qubits, the fidelity of the output state is

directly given by the fraction of observing the desired state. The measurement

results are shown in Fig. (5.3). The experimental integration time for each possible

combination of the input photons was about 50 hours and we recorded about 120

desired two-qubit events, respectively. The overall count rate is reduced by a factor

of 1/72 due to the success probability of creating the cluster state (1/9), the success

probability of the BSMs (1/4) and due to the loss by initializing the input state

with polarizers (1/2). On the basis of our original data, we conduct that the average

fidelity for the two-photon output states of the truth table is 0.72± 0.05.

Just like in chapter (3.5), the determination of the entangling capability is a bit

more complex. Since the output state is entangled, we are not able to determine

its fidelity by a single measurement setting. However, with three successive local

measurements on individual qubits we are still able to accomplish our task. This

can be seen by a closer look at the fidelity under scrutiny:

F = Tr(ρ̂|Φ+〉〈Φ+|) =
1

4
Tr

(
ρ̂(Î + σ̂xσ̂x − σ̂yσ̂y + σ̂zσ̂z)

)
(5.12)

This implies that by measuring the expectation values 〈σ̂xσ̂x〉, 〈σ̂yσ̂y〉, 〈σ̂xσ̂x〉 we can

directly obtain the fidelity of the entangled output state. The experimental results

for the correlated local measurement settings are illustrated in Fig.’s (5.4, 5.5, 5.6).

The integration time for the first two settings was about 60 hours and for the third

66



5.4. Experimental Results

Figure 5.5: Experimental results for the fidelity measurement of the entangled

output state in the diagonal basis. The measured expectation value for 〈σ̂xσ̂x〉 is

0.462± 0.057.

Figure 5.6: Experimental results for the fidelity measurement of the entangled

output state in the circular basis. The measured expectation value for 〈σ̂yσ̂y〉 is

−0.434± 0.062.
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setting about 80 hours. Using the above equation, we determine from our experi-

mental results an fidelity of 0.575± 0.027. This is well beyond the state estimation

limit of 0.40 [97]. Furthermore and most importantly, the result proofs genuine en-

tanglement between the two output photons, since it is above the entanglement limit

of 0.50.

In addition, we have measured the fidelity of the used four-qubit cluster state

|χ〉3456 and obtain an experimental result of 0.694 ± 0.003. This measurement has

been performed in complete analogy to Kiesel et al. However, at the cost of a

bit lower fidelity, we have achieved a count rate that is more than two orders of

magnitudes larger. This is necessary in order to be able to perform the six-photon

experiment in a reasonable amount of time over which the experimental setup can

be kept stable.

5.5 Discussion

All experimental results are calculated directly from the original data and no noise

contributions have been subtracted. All errors are of statistical nature and corre-

spond to ±1 standard deviations. The imperfection of the fidelities is mainly due to

double-pair-emission. Furthermore, the limited interference visibility and imperfect

input states also reduce the quality of our output states. Note that we achieve a

better fidelity for the truth table than for the entangling case. This is because for

the latter one the fidelity depends on the interference visibility at the PBS of the

BSM.

With our setup we have demonstrated in principle the feasibility of the scheme

by Gottesman and Chuang. Note however, that strictly speaking we did not show

complete fault-tolerance, since in our experiment we did not encode logic qubits

onto a larger number of physical qubits. The principle of the scheme, on the other

hand, stays exactly the same and the developed techniques of our setup can be

readily extended for the case of a larger number of encoded qubits. Our experiment

thus constitutes an important step towards the realization of quantum computation.

Along this line, the generation of a large number of qubits, as well as an improvement

of the fidelity – needed for realistic quantum computation – still requires extensive

efforts in the future.

In this chapter, we have discussed the experimental realization of a C-NOT gate

based on quantum teleportation. With our six-photon architecture we have experi-

mentally demonstrated the ability to entangle two separable qubits and have mea-

sured the truth table of the gate. This is the a non-trivial proof-of-principle imple-

mentation of the protocol introduced by Gottesman and Chuang. The teleportation-

based scheme offers an alternative way for scalable quantum computing. Most attrac-

tively however, this architecture allows for realizations of universal quantum gates in

a fault-tolerant manner, and in fact serves as an important basis for measurement-

based quantum computing. Thus, our experimental demonstration of teleportation-
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based linear optics quantum computing could serve as an essential basis towards

resource-efficient, scalable quantum computation and yielding fault tolerance auto-

matically.
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Chapter 6

Entanglement of Six Photons in

Graph States

6.1 Introduction

Graph states, as introduced in chapter (2.2.1), are important resources for quantum

computation [61], quantum error correction [55], studies of multi-particle entangle-

ment [53] and fundamental tests of non-locality [56, 57, 58] and de-coherence [60].

Many efforts have been undertaken to create multipartite entangled states in differ-

ent physical systems [84, 64, 123, 25], where maximally up to eight ions have been

entangled [25]. Encouraging progress [62, 67, 68, 124, 125, 126, 64] has been achieved

in this direction, especially in the linear optics regime. Yet a major challenge ahead

lies in the experimental generation of multi-qubit graph states.

In this chapter we discuss the experimental entanglement of six photons and

engineering of multi-qubit graph states [62, 67, 68] with our six-photon interferometer

(chapters 3, 4, 5). We have created two important examples of graph states, a six-

photon GHZ state (see Eq. 2.23), the largest photonic Schrödinger-cat so far, and

a six-photon cluster state. With small modifications, our method allows us, in

principle, to create various further graph states, and therefore could open the way

to experimental tests of, for example, quantum algorithms [61, 124] or loss- and

fault-tolerant one-way quantum computation [125, 126].

6.2 Entanglement of Six-Photons in Graph States

Of special interest in the graph-state family are the GHZ states (see Eq. 2.23) and

the cluster states (see chapters 2.2.1 and 2.2.2). Experimentally, six-atom GHZ

states [123] and four-photon cluster states [64] have been realized. Here, we report

the creation of six-photon GHZ states and cluster states with verifiable six-partite

entanglement. To do so, we start from three EPR entangled photon pairs (see 2.3.1)
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Figure 6.1: Scheme to generate the six-photon graph states and their represen-

tations in the graph-state picture. (a) The six-photon GHZ state (1) and cluster

state (2) are created by combining three pairs of entangled photons at PBSs. The

Hadamard gate (H) is inserted for generation of the cluster state. (b)-(d) Under-

lying graphs of the six-photon graph states and how they are created by post-selected

fusion operations. The graph state can be thought of as being constructed by first

preparing the qubits at each vertex in the state |+〉 and then applying controlled

phase gates between pairs of neighbouring qubits. Here, we use the post-selecting

fusion operation, that is, combining photons at a PBS, to generate multi-qubit graph

states efficiently. In the star graph, we refer to the central node as the root and the

others as leaves.
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in the state

|Φ+〉ij =
1√
2

(|H〉i|H〉j + |V 〉i|V 〉j) , (6.1)

As shown in Fig. (6.1a), we superpose photons in modes 2 and 3 (4 and 5) at

polarizing beam splitters (PBSs) (see chapter 2.3.2). As the PBS transmits H and

reflects V polarization, only if both incoming photons have the same polarization

can they go to different outputs [127, 95]. Thus, a coincidence detection of all six

outputs corresponds to the state

|G6〉 =
1√
2

(|H〉1|H〉2|H〉3|H〉4|H〉5|H〉6 + |V 〉1|V 〉2|V 〉3|V 〉4|V 〉5|V 〉6) , (6.2)

which is a six-photon GHZ state, exhibiting an equal superposition of two maximally

different quantum states.

By applying a Hadamard gate on photon 4 before it enters into the PBS (see

Fig. 6.1a), the above scheme can be readily modified to generate a six-photon clus-

ter state. It can be considered in two steps: (1) combine photons 2 and 3, such

that, on the basis of a coincidence detection, we get a four-photon GHZ state

(|H〉1|H〉2|H〉3|+〉4 + |V 〉1|V 〉2|V 〉3|−〉4) /
√

2; (2) combine photons 4 and 5, and by

a similar reasoning we obtain what we call here a six-photon cluster state

|C6〉 = 1
2
(|H〉1|H〉2|H〉3|H〉4|H〉5|H〉6 + |H〉1|H〉2|H〉3|V 〉4|V 〉5|V 〉6

+|V 〉1|V 〉2|V 〉3|H〉4|H〉5|H〉6 + |V 〉1|V 〉2|V 〉3|V 〉4|V 〉5|V 〉6),
(6.3)

For an intuitive understanding, in Fig. (6.1) we show the underlying graph of

the above states and how they grow from smaller (two-qubit) graph states. Up to

local unitary transformations, the GHZ states correspond to star-shaped graphs,

and the cluster states to lattice graphs (see chapters 2.2.1 and 2.2.2). The effect of

combining two photons at a PBS can be described by the operator |HH〉〈HH| +
|V V 〉〈V V |, leading to the fusion of two separate graph states into a single one

[125, 68]. Specifically, Fig. (6.1c) (Fig. (6.1d)) shows that when a two-qubit graph

state is combined with the root (leaf) node of a four-qubit star graph, a six-qubit

GHZ (cluster) state is produced.

A nice feature of the graph-state representation (see Fig. 2.6 and Fig. 2.7) is that

many properties of the graph states and their potential use in QIP can be revealed

by their underlying graph. For example, the star-graph states have multiple leaf

nodes, which are referred to as micro-clusters in refs [62, 125] and can be used in

the so-called parallel fusion for building up large cluster states. The graph of the

six-qubit cluster state (Eq. 6.3) forms a standard quantum circuit under the one-way

computer model of chapter (2.2.2). Moreover, its geometry embodies a tree-shaped

graph, which is the basic building block for loss-tolerant one-way quantum computing

[126]. Another interesting feature of the cluster state next to itself, is that even the

remaining mixed four-qubit state, after two qubits have been traced out, leads to

a GHZ argument for non-locality [57], showing a surprisingly strong entanglement

persistency.
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Figure 6.2: Experimental set-up for the generation of six-photon graph states.

The ultraviolet laser beam is circularized and focused on the three BBO crystals

to produce three pairs of entangled photons. The entangled photons are spectrally fil-

tered by narrow-band filters and then detected by fibre-coupled single-photon detectors

(D1T , ..., D6R). We use a programmable multichannel coincidence unit to register the

multi-fold coincidence events. For polarization analysis, half and quarter-wave plates

(HWP, QWP) together with polarizers or PBSs are used. By changing the angle (θ)

of the HWP at path 4, our set-up is tunable to generate the six-photon GHZ states

(θ = 0◦) and cluster state (θ = 22.5◦).
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6.3 Experimental Setup

Compared to the experiments described in chapters (3, 4, 5) we have slightly changed

our setup described in chapter (3.3). The setup is illustrated in Fig. (6.2). Pumped

by the continuous-wave green laser, the mode-locked Ti:sapphire laser outputs a

pulsed infrared laser with a central wavelength of 788 nm (instead of 780 nm), a

pulse duration of 120 fs (instead of 180 nm) and a repetition rate of 76MHz, which

passes through the LBO crystal (again mounted on a motorized translation stage)

and is up-converted to ultraviolet with a wavelength of λ = 394nm (instead of

λ = 390nm). We again use type-II SPDC to produce entangled photons (chapter

2.3.1). The ultraviolet laser pulse successively passes through three BBO crystals

to generate entangled photon pairs in spatial modes 1-2, 3-4 and 5-6. We then

superpose photons 2 (4) and 3 (5) at a PBS. To ensure that the post-selecting fusion

operations have been successfully implemented, we observe interference fringes of

four-photon entanglement in mode 1-2-3-4 (3-4-5-6) (similar to Fig. 3.5).

6.4 Experimental Results

We will first discuss to what extent the desired six-photon graph and cluster states

were produced and then analyze the presence of genuine multipartite entanglement

in these states. The quality of the states can be judged by the fidelity, that is, the

overlap of the produced state with the desired one (see chapter 2.2.3). The notion of

genuine multipartite entanglement in contrast to biseparability characterizes whether

generation of the state requires interaction of all parties (see chapter 2.2.1).

To prove multipartite entanglement, we use the method of entanglement wit-

nesses as described in chapter (2.2.3). A negative expectation value proves the

presence of genuine multipartite entanglement. In what follows, we derive efficient

entanglement witnesses that are both robust against realistic noise and economical

for experimental efforts.

6.4.1 Witness Construction and Detection

For the six-photon GHZ state (Eq. 6.2), we use the witness [73]

ŴG =
Î

2
− |G6〉〈G6|, (6.4)

where Î denotes the identity operator. We decompose |G6〉〈G6| into locally measur-

able observables

|G6〉〈G6| =
1

2

[
(|H〉〈H|)⊗6 + (|V 〉〈V |)⊗6] +

1

12

3∑
n=−2

(−1)nM̂⊗6
(n), (6.5)
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Figure 6.3: Experimental results for the six-photon GHZ state. (a) Six-fold coin-

cidence counts in the computational basis in 3 hours. (b) The expectation values of

M̂⊗6
(n), each derived from a complete set of 64 six-fold coincidence events in 2 hours

in the measurement basis |H〉±eiπ/6n|V 〉. The error bars represent one standard de-

viation, deduced from propagated poissonian counting statistics of the raw detection

events.
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Figure 6.4: The stabilizer operators. (a) The graph corresponds to the cluster

state |C6〉 under H transformations on qubits 1, 3, 4 and 6 and (b) its stabilizer

operators ĝi where i labels the qubits and X = σ̂x, Y = σ̂y, Z = σ̂z. The graph state

is a common eigenstate of these stabilizer operators, that is, ĝi|C6〉 = |C6〉, which

describe the correlations in the state. The cluster state is the unique state fulfilling

this, which allows for an alternative definition of it.

where

M̂n = cos(nπ/6)σ̂x + sin(nπ/6)σ̂y (6.6)

are measurements in the x-y plane. To implement this witness, seven measurement

settings are required. Fig. (6.3) shows the measurement results, yielding

Tr
(
ŴGρ̂exp

)
= −0.093± 0.025, (6.7)

which is negative by 3.7 standard deviations and thus proves the presence of genuine

sixpartite entanglement.

From the expectation value of the witness, we can directly determine the obtained

fidelity as

FG6 = 〈G6|ρ̂exp|G6〉 = 0.593± 0.025, (6.8)

where σ̂exp denotes the experimentally produced state. This is a considerable im-

provement over the fidelity of the six-atom GHZ states of [123] (F = 0.509± 0.004).

For the cluster state of Eq. (6.3), a possible witness would be

ŴC = Î/2− |C6〉〈C6|. (6.9)

Similar to the constructions of ref. [128], we use a slightly different witness
˜̂WC ,

the implementation of which requires only six measurements. Using the results of

ref. [128], the observable of Eq. (6.9) is a witness detecting genuine multipartite
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entanglement around the cluster state. Then, we consider the observable

˜̂WC =
3

2
Î −

∏
i=1,3,5

1

2

(
ĝi + Î

)
−

∏
i=2,4,6

1

2

(
ĝi + Î

)
−1

2

(
Î ⊗ Â0 + Â0 ⊗ Î

)
−

(
Â1 ⊗ B̂1 + B̂1 ⊗ Â1

)
(6.10)

=
1

2
Î − |C6〉〈C6|+ |C̃6〉〈C̃6|,

where ĝi denotes the stabilizing operators of the cluster state (Fig. 6.4). Furthermore,

we use

Â0 = Î − |HHH〉〈HHH| − |V V V 〉〈V V V |
Â1 = |V V V 〉〈V V V | − |HHH〉〈HHH| (6.11)

B̂1 =
2√
3

(
M̂⊗3

(1) + M̂⊗3
(−1)

)
,

where M̂i is defined as for the GHZ state (see Eq. 6.6). Finally, |C̃g〉 denotes a

cluster state with different signs, namely

|C̃g〉 =
1

2
(−|HHHHHH〉+ |HHHV V V 〉

+|V V V HHH〉+ |V V V V V V 〉). (6.12)

It is clear that
˜̂WC − ŴC ≥ 0, which implies that

˜̂WC is a valid witness [128].

Furthermore, this implies that the fidelity of the cluster state can be estimated as

FC6 = 〈C6|ρ̂exp|C6〉 ≥ (1/2)− 〈 ˜̂WC〉. (6.13)

The witness W̃C (Eq. 6.10) detects genuine entanglement from the states of the form

ρ̂(p) = p|C6〉〈C6|+
(1− p)Î

64
(6.14)

for p > 0.5. The determination of the expectation value of the witness
˜̂WC requires

six measurement settings, namely σ̂⊗3
z σ̂⊗3

x , σ̂⊗3
x σ̂⊗3

z , σ̂⊗3
z M̂⊗3

(±1) and M̂⊗3
(±1)σ̂

⊗3
z . The

results are shown in Fig. (6.5) and yield

Tr
(

˜̂WC ρ̂exp

)
= −0.095± 0.036. (6.15)

Thus, the genuine six-partite entanglement of the cluster state is also proved. Fur-

thermore, from this result, we can obtain a lower bound of the fidelity of our cluster

state as

FC6 ≥ 0.595± 0.036. (6.16)
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Figure 6.5: Experimental results for the six-photon cluster state. Six-fold coinci-

dence counts measured in the (a) σ̂⊗3
z σ̂⊗3

x and (b) σ̂⊗3
x σ̂⊗3

z basis in 3 hours, and in

the (c) σ̂⊗3
z M̂⊗3

(+1), (d) σ̂
⊗3
z M̂⊗3

(−1), (e) M̂
⊗3
(+1)σ̂

⊗3
z and (f) M̂⊗3

(−1)σ̂
⊗3
z basis in 1.5 hours.

Here we use the notations |P 〉 =
(
|H〉+ ei π

6 |V 〉
)
/
√

2, |Q〉 =
(
|H〉 − ei π

6 |V 〉
)
/
√

2,

|M〉 =
(
|H〉+ e−i π

6 |V 〉
)
/
√

2 and |N〉 =
(
|H〉 − e−i π

6 |V 〉
)
/
√

2. Each measurement

signals the observation of an eigenstate of the stabilizer operator (ĝi) with the cor-

responding eigenvalue of vj = +1 or −1. From the probabilities of multi-photon

detections pj, j = 1, 2, ..., 64, we can then compute the expectation values of the

stabilizer operators by Tr (ĝiρ̂) =
64∑

j=1

pjvj.
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6.4.2 Estimation of Entanglement Measures

Characterization of entanglement has been an interesting and basic task both from

the foundational and the practical point of view. Besides for detecting six-particle

genuine entanglement, the experimental data obtained in the experiment can be used

for a stronger, quantitative measurement of the entanglement in the states. This is

very useful information by which one may give an answer to the question of how

useful a given state is, say, to perform a certain quantum information task.

In order to quantify the entanglement in the experiment, we estimated two im-

portant entanglement measures. The first one is the entanglement of formation [100].

This is an entanglement measure for two parties, defined for pure states as

EF (|Ψ〉) = −Tr (ρ̂A log(ρ̂A)) (6.17)

i.e. as the von Neumann entropy of the reduced state. This definition can be extended

to mixed states via the so-called convex roof construction [100, 129]. Physically, the

entanglement of formation quantíres the entanglement (measured in singlet pairs)

that must be invested for the realization of one copy of the state.

For the analysis we considered the bipartitions which arise if the six parties are

divided into two groups. Since only incomplete information on the state is available,

it is impossible to compute the exact value of EF . To obtain a lower bound on EF

we use the method and the algorithm presented in Ref. [129] and apply it to the

expectation value of the witness, which allows to calculate the best possible bound on

entanglement measures from experimentally obtained information about the states.

For the six-photon GHZ state we arrive at a bound of

EF (ρ̂exp) ≥ 0.073± 0.032 (6.18)

for all bipartitions, in comparison with the perfect GHZ state that would result in

a value of

EF (|G6〉) = 1. (6.19)

For the cluster state, different bipartitions have to be taken into account. The

values are given in Table (6.20). Due to the permutation symmetry of the witness,

the values for other bipartitions follow from the values in the table. The fact that

some values in the table coincide, can be understood from the symmetry of the

witness concerning the Legendre transform [129].

Bipartition value for |C6〉 bound for ρ̂exp

1|23456 1 0.074± 0.047

12|3456 1 0.074± 0.047

14|2356 2 0.729± 0.106

123|456 1 0.074± 0.047

124|356 2 0.729± 0.106

(6.20)
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As a second entanglement measure, we estimated the geometric measure of en-

tanglement EG [130]. This is an entanglement measure for multipartite systems. For

pure states, it is defined as

EG (|Ψ〉) = 1− sup
|Φ〉=|a〉|b〉|c〉...

|〈Ψ|Φ〉|2 (6.21)

i.e. it is one minus the maximal overlap with fully separable states. Physically, it can

be used to estimate the distinguishability of states via local operations and classical

communication [131]. It also quantifies the distance of an entangled state to the fully

separable states. However, it takes not only the genuine multipartite entanglement

into account, also for bi-separable states it can be strictly positive. For the GHZ

state, we have

EG (|G6〉) = 1/2 (6.22)

in theory, and

EG (ρ̂exp) ≥ 0.0088± 0.0047 (6.23)

for the experimentally realized six-photon GHZ state. For the cluster state, we have

EG (|C6〉) = 3/4 (6.24)

in theory and find experimentally

EG (ρ̂exp) ≥ 0.181± 0.0.023. (6.25)

The fact that the estimates for the GHZ state and the cluster state differ sig-

nificantly can be understood by that for the GHZ state the mean value 〈ŴG〉 = 0

is compatible with a fully separable state with EG (ρ̂) > 0. Similarly, the different

values in Table I origin from the fact that 〈 ˜̂WG〉 = 0 is for some bipartitions in

agreement with separability, while for other bipartitions it is not.

6.5 Discussion

The imperfections of our graph states are mainly caused by two reasons. First,

high-order emissions of entangled photons give rise to the undesired components

in the computational basis (see Fig. 6.3). Second, the partial distinguishability of

independent photons causes some incoherent mixtures. In spite of the imperfections,

genuine entanglements of the six-photon graph states are strictly confirmed. It is

possible to improve the fidelity in future experiments, for example, by using photon-

number discriminating detectors to filter out the events of double emissions of photon

pairs. Moreover, graph states with high purity can be obtained efficiently using an

existing entanglement purification scheme [132]. Linear optical elements such as a
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Figure 6.6: Scheme to construct various six-photon graph states. (a) Generation

of a graph state by fusion of two photon entangled states. (b) Generation of larger

linear graph states by fusion with a single photon. (c) Generation of Y-shaped and

other graph states.
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PBS may offer a high accuracy tool for this task [49]. It leaves a crucial open question

of how to reach the noise thresholds for optical cluster-state quantum computation

[125].

Some further remarks are warranted here. We have demonstrated the creation of

the six-photon GHZ state and cluster state, which are two special instances of graph

states. We generate the graph states conditioned on there being one and only one

photon in each of the six outputs. This post-selective feature, together with the fu-

sion method, provides a flexible and economical way to create various multi-photon

graph states. Slight modifications of the fusion method and our experimental setup

will readily allow the experimental generation of a number of other graph states,

which are selectively shown in the graph-state representation in Fig. (6.6). This

result implies that photons manipulated by linear optics are excellent candidates for

graph state engineering, which, together with the intrinsic advantages of photons

such as long de-coherence time and precise single-qubit operations and the recent

encouraging theoretical progresses on one-way quantum computation [133, 68] (see

chapter 2.2.2), appear to offer an extremely promising approach to quantum compu-

tation. We envision that such a fascinating capacity will open up prospects for many

exciting experiments and applications such as studies of multi-particle entanglement,

implementations of quantum algorithms and investigations of fault-tolerant one-way

quantum computation.

Furthermore, the post-selective feature does not prohibit subsequent applica-

tions such as tests of quantum non-locality [56, 57, 58] and in-principle verifications

of linear optical QIP tasks where photons need to be eventually detected. Finally,

concerning the scalability issue, we refer to ref. [68], which has shown that if com-

bined with quantum memory, the post-selection method can even be used for scalable

generation of tree-graph states using realistic linear optics. Along this line, however,

technically extensive efforts still need to be undertaken to make a quantum memory

usable for this purpose.

In this chapter, we have discussed the realization of two special graph states, the

six-photon GHZ state, the largest photonic Schrödinger cat so far, and the six-photon

cluster state – a state-of-the-art one-way quantum computer. We have demonstrated

the ability to entangle six photons and to engineer multiqubit graph states, and have

created a versatile test-bed for experimental investigations of one-way quantum com-

putation [68], quantum error correction [55], studies of multi-particle entanglement

[53] and foundational tests of quantum physics [56, 57, 58, 60]. Combined with quan-

tum memory, our experimental method could lead to the generation of large-scale

tree-graph states [68]. The high efficiency and flexibility of the six-photon graph-

state generation we demonstrated here suggest that photons manipulated with linear

optics are promising candidates for engineering of multi-qubit graph states. Various

applications of our six-photon graph-state test-bed can be imagined. For instance,

the six-qubit cluster states allow full implementations of the quantum game of pris-

oners’ dilemma [124] and a proof-of-principle demonstration of the basic elements of
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loss-tolerant one-way quantum computation [126]. Most remarkably, the six-qubit

star-ring graph state corresponds to the codeword and encoding procedure of the

five-qubit quantum error-correction code that is able to correct all one-qubit errors

[55]. In addition, our six-photon cluster state also enables a novel test of non-locality,

namely a GHZ argument of non-locality for mixed states [57]. Lastly, the graph-state

test-bed is well suited for studies of the stabilities of different types of multi-particle

entanglement (for example, GHZ and cluster) under the influence of de-coherence,

which may provide experimental evidence for the surprising conclusion in ref. [60]

that genuine entanglement of a macroscopic number of particles is possible and can

persist for timescales that are independent of the size of the system.
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Chapter 7

One-Way Quantum Computing

with Two-Photon Four-Qubit

Cluster States

7.1 Introduction

As we have seen in the previous chapter (6), preparing photonic cluster states still

suffers from several serious limitations. Due to the probabilistic nature and Poisso-

nian distribution of the parametric down-conversion process (see chapter 2.3.1), the

generation rate of four-photon cluster states is quite low [10, 59, 64, 69], and largely

restricts the speed of computing. Furthermore, the quality and fidelity of prepared

cluster states are relatively low [59, 64, 69] and are difficult to be improved substan-

tially. These disadvantages consequently impose great challenges of advancement

even for few-qubit quantum computing.

Fortunately, motivated by the experimental generation of hyper-entangled states

[134, 135, 136, 137], we have the possibility to produce a new type of cluster state

(two-photon four-qubit cluster state) with nearly perfect fidelity and high generation

rate. The hyper-entangled states have been used to test“All-Versus-Nothing”(AVN)

quantum non-locality (see chapter 2.2) [138, 139, 134, 135], and are shown to lead

to an enhancing violation of local realism [140, 141]. The states also enable us

to perform a complete deterministic Bell state analysis [142] as demonstrated in

[137, 143].

In this chapter, we discuss an experimental realization of one-way quantum com-

puting with such a two-photon four-qubit cluster state. The key idea is to develop

and employ a bright source which produces a two-photon state entangled both in

polarization and spacial modes. We are thus able to implement the Grover’s al-

gorithm and quantum gates with excellent performances. The genuine four-partite

entanglement and high fidelity of better than 88% are characterized by an optimal

entanglement witness. Inheriting the intrinsic two-photon character, our scheme
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promises a brighter source by four orders of magnitude than the usual multi-photon

source, which offers a significantly higher efficiency for optical quantum computing.

It thus provides a simple and fascinating alternative to complement the latter. With

ease of manipulation and control, the nearly perfect quality of this source allows to

perform highly faithful and precise quantum computing.

7.2 Experimental Setup

The desired four-particle cluster state is up to local unitary transformations the same

as in Eq. (5.2) of chapter (5) and is given by

|C4〉 =
1

2
(|0000〉1234 + |0011〉1234 + |1100〉1234 − |1111〉1234) . (7.1)

To generate the cluster state, we use a slightly different method than in the ex-

periments described in the previous chapters. Instead of type-II SPDC (see chap-

ter 2.3.1), we use a technique developed in previous experiments [134], which is based

on type-I SPDC. The experimental setup is shown in Fig. (7.1a). A pump pulse of

ultraviolet light (UV) passes through two contiguous BBOs with their optic axes

aligned in perpendicular planes. With this configuration there is a small probability

for the UV to produce a pair of equally polarized photons in the first BBO via type-I

SPDC. Accordingly, there also exists a small probability to produce a pair of equally,

but perpendicular to the first pair, polarized photons in the second BBO. The paths

of the two pairs overlap almost completely and their coherence length is larger than

the dimension of the BBO’s. We thus, have to add the probability amplitudes of

the two pairs which results in a polarization entangled photon pair in the forward

direction in the state [134]

1√
2

(
|H〉|H〉+ eiϕ1|V 〉|V 〉

)
(7.2)

in spacial (path) modes LA,B. Now if the pump pulse is reflected and passes through

the BBO crystal a second time, there again is a possibility to generate a polarization

entangled photon pair in the backward direction. By inserting a quarter wave plate

(QWP) in mode LA and RB, respectively, we can tune the phases ϕ1,2 as desired.

We thus generate a pair in the state

1√
2

(|H〉A|H〉B + |V 〉A|V 〉B) |LA〉A|LB〉B (7.3)

or in the state

1√
2

(|H〉A|H〉B − |V 〉A|V 〉B) |RA〉A|RB〉B (7.4)

Through perfect temporal overlaps of modes RA and LA and of modes RB and

LB, once again the probability amplitudes have to be added and we obtain a state
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Figure 7.1: Schematic of experimental setup. (a) By pumping a two-crystal struc-

tured BBO in a double pass configuration, one polarization entangled photon pair

is generated either in the forward direction or in the backward direction. The ul-

traviolet laser pulse (5ps) has a central wavelength of 355 nm with a repetition rate

of 80 MHz and an average power of 200 mW. Two quarter wave plates (QWPs)

are tilted along their optic axis to vary relative phases between polarization compo-

nents to attain two desired possibilities for entangled pair creation. Concave mirror

and prism are mounted on translation stages to optimize interference on two beam

splitters(BS1,2) or polarizing beam splitters (PBS1,2) for achieving the target cluster

state. Half wave plates (HWPs) together with PBSs and 8 single-photon detectors

(D1-D8) are used for polarization analysis of the output state. IF are 3 nm filters

with a central wavelength of 710 nm. (b) The position marked with BS1,2 or PBS1,2,

three different apparatuses are used to measure all necessary observables. Setup (i)

corresponds to a Z measurement while setup (ii) is used for a X measurement for

spacial modes. If an α phase shifter is inserted at one of the input modes in (ii),

an arbitrary measurement along basis B(α) can be achieved. Setup (iii) can be used

for a Z measurement in the spacial mode and, simultaneously, for a Z measurement

in the polarization mode.
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with coherent superposition:

1

2

((
|H〉A |H〉B + |V 〉A |V 〉B

)
|L〉A |L〉B +

eiθ
(
|H〉A |H〉B − |V 〉A |V 〉B

)
|R〉A |R〉B

)
(7.5)

By properly adjusting the distance between the concave mirror and the crystal so

that θ = 0, the state of Eq. (7.5) becomes

1

2

((
|H〉A |H〉B + |V 〉A |V 〉B

)
|L〉A |L〉B +(

|H〉A |H〉B − |V 〉A |V 〉B
)
|R〉A |R〉B

)
. (7.6)

In order to tune the phase θ, in the experiment the concave mirror and a prism in

spacial mode LB are scanned by a piezo translation stage and a motor translation

stage, respectively. Interference fringes (Fig. 7.2) can be observed by measuring the

two-fold coincidence counts between the output modes monitored by detectors D1

and D2 behind half wave plates HWPs at an angle of 22.5◦ and corresponding PBSs.

By setting the piezo translation system to a position where we observe maximum

two-fold coincidences between detectors D1 and D2, we tune the phase to θ = 0.

Following this procedure, the generated state will exactly be the desired cluster

state of Eq. (7.1) if we identify photon A to be qubits 2,3 and photon B to be qubits

1,4 and encode logical qubits as

|H(V )〉B ↔ |0(1)〉1
|H(V )〉A ↔ |0(1)〉2
|L(R)〉A ↔ |0(1)〉3
|L(R)〉B ↔ |0(1)〉4.

(7.7)

The state |C4〉 (Eq. 7.1) can be represented by a box cluster graph shown in Fig. (2.7c)

and Fig. (7.3a), up to a local unitary transformation.

We observe a cluster state generation rate of about 1.2× 104 per second for 200

mW UV pump, which is four orders of magnitude brighter than the usual four-

photon cluster state production [64, 69, 59] where only a rate of about 1 per second

is achieved.

7.3 Experimental Results

7.3.1 Quality of the Four-Qubit Cluster State

To evaluate the quality of the state, we apply an optimal entanglement witness [128]

(see chapter 2.2.3). The witness is of the form

Ŵ = 1
2

(
4 · Î⊗4 − (σ̂xσ̂xÎ σ̂z + σ̂xσ̂xσ̂z Î + Î Î σ̂zσ̂z

+Î σ̂zσ̂xσ̂x + σ̂z Î σ̂xσ̂x + σ̂zσ̂z Î Î)
)
, (7.8)
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Figure 7.2: Interference fringes used to adjust the phase of the cluster state. They

are observed when the concave mirror and the prism are moved to achieve perfect

temporal overlap and to adjust the phase to θ = 0. (a) Two-fold coincidence counts

observed between detectors D1 and D2 behind HWPs at 22.5◦ and PBSs by scanning

the position of the prism. The envelope over the curve of the observed two-fold

coincidences indicates the visibility of the two-photon coherence. Inside the coherent

region, the best visibility is obtained at the position where perfect temporal overlap

is achieved. (b) Fine scan around the center of the envelope of (a) with a piezo

translation stage underneath the concave mirror. The optimum position of θ = 0 is

achieved by setting the piezo system to a position of maximum two-fold coincidences

between D1 and D2.
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Observable Value Observable Value

σ̂xσ̂xÎ σ̂z 0.9070± 0.0036 Î σ̂zσ̂xσ̂x 0.9071± 0.0037

σ̂xσ̂xσ̂z Î 0.9076± 0.0035 σ̂z Î σ̂xσ̂x 0.8911± 0.0040

Î Î σ̂zσ̂z 0.9812± 0.0016 σ̂zσ̂z Î Î 0.9372± 0.0030

Table 7.1: Experimental values for the observables of the entanglement witness Ŵ
to detect the cluster state |C4〉. The experimental integration time for each measure-

ment is 1 sec. The errors correspond to Poissonian counting statistics.

where Î and σ̂x, σ̂y, σ̂z are the usual two-dimensional identity matrix and the Pauli

matrices, respectively.

A negative value for the witness implies four-partite entanglement for a state

close to |C4〉 (see chapter 2.2.3) and will be Ŵ = −1 for a perfect cluster state.

The two experimental settings σ̂xσ̂xσ̂zσ̂z and σ̂zσ̂zσ̂xσ̂x are needed. σ̂xσ̂xσ̂zσ̂z can be

attained by measuring in the diagonal basis for the polarization in each output arm

after apparatus (i) in Fig. (7.1b). while σ̂zσ̂zσ̂xσ̂x can be realized by measuring in

the computational basis after apparatus (ii). This is because a BS acts exactly as a

Hadamard transformation for the path modes, i.e. it changes the measurement basis

from the computational (σ̂z) to the diagonal basis (σ̂x), namely,

|L〉A,B →
1√
2
(|R′〉A,B + |L′〉A,B)

|R〉A,B →
1√
2
(|R′〉A,B − |L

′〉A,B). (7.9)

All observables for evaluating the witness and their results are listed in Table 7.1.

Substituting their experimental values into Eq. (7.8) yields 〈Ŵ〉exp = −0.766 ±
0.004, which clearly proves genuine four-partite entanglement by about 200 standard

deviations. As shown in [128], one can obtain a lower bound for the fidelity (see

chapter 2.2.3) of the experimentally prepared state:

F ≥ 1

2
− 1

2
〈Ŵ〉exp = 0.883± 0.002. (7.10)

This proves to be a better cluster state source than the ones in [64, 69, 59] where the

measured fidelities are about 0.63 [64, 69] and 0.74 [59], respectively. We attribute

impurity of our state to imperfect overlapping on the BSs, deviations of the BSs from

50%, as well as imperfections in the polarization and path modes analysis devices.

7.3.2 Grover’s Search Algorithm

For an unsorted database, Grover’s search algorithm gives a quadratic speed-up

compared to any classical search algorithm. For a database with N entries only

∼
√
N consultations are needed in comparison to ∼ N [20]. Striking linear optics
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Figure 7.3: Demonstration of Grover’s search algorithm. (a) One-way quantum

circuit of Grover’s search algorithm using the box cluster state. The ‘oracle’ encodes

the element ‘00’ by measuring along the basis B2(π) and B3(π), while the inverse

and readout sections will find this entry with certainty by a single query. (b) A

successful identification probability of (96.1±0.2)% is achieved deterministically with

feed-forward, while it is (24.9 ± 0.4)% without feed-forward. This is in excellent

agreement with theoretical expectations.

implementations have been achieved in [144, 145], although it is questionable whether

the algorithm is truly ‘quantum’ due to a demonstration [145], based on interference

of classical waves. One-way realizations have been carried out [64, 69] recently. In

the case of four entries |00〉 , |01〉 , |10〉 , |11〉, a single quantum search will already

find the marked element. An execution goes as follows (see also chapter 2.2.2):

The input state of an oracle is in an equal superposition of all possible entries. In

our case this is the state |++〉. The oracle tags the desired entry by changing its

sign (e.g. |00〉 → − |00〉). After an inversion-about-the-mean operation, the labeled

element will be found with certainty by the readout. It is shown in [64] that this can

exactly be finished with the box cluster state in Fig. (7.3a) (see also Fig. (2.7c)) by

read out in the basis B(π) (see chapter 2.2.2). In the experiment, we choose to tag

the element |00〉 on the cluster qubits 2, 3 and make the readout on the cluster qubits

1, 4 along the basis B(π). Taking into account that the state of Eq. (7.1) differs from

the box cluster by a Hadamard transformation on every qubit and a swap between

qubits 2 and 3, this amounts to measure along the computational basis (and multiply

by a factor of −1) after apparatus (iii) in Fig. (7.1b). The output of the algorithm

denotes the tagged entry and thus consists of two bits: {s3 ⊕ s4} and {s1 ⊕ s2}.
Here, si is the measurement result on cluster qubit i and ⊕ denotes ‘modulo two

addition’. Note, that measurement result s2 and s3 are feed-forward outcomes (see

chapter 2.2.2). The experimental results are sketched in Fig. (7.3b).

We want to remark that on the one hand the PBSs of the two apparatuses (iii)

are used to generate the desired box cluster state by two-photon interference. On
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the other hand, they are also used to ensure perfect temporal overlap of two spacial

modes to implement apparatus (i).

7.3.3 Quantum Gates

Non-trivial two-qubit quantum gates such as the C-Phase gate are at the heart of

universal quantum computation. They can be realized by one-way computing conve-

niently via corresponding cluster states (see chapter 2.2.2). Depending on the initial

cluster state and measurement basis, states with different degrees of entanglement

can be generated. The horseshoe (Fig. 7.4a, Fig. 2.7b) or box cluster (Fig. 7.4c,

Fig. 2.7c) can be used to realize such important gates. For the case of the horseshoe

cluster, depending on the outcomes when measuring along basis B2(α) and B3(β),

the output state on qubits 1,4 will be

|Ωout〉 = (σ̂s2
x ⊗ σ̂s3

x )(Ĥ ⊗ Ĥ)
(
R̂z(−α)⊗ R̂z(−β)

)
ÛC-Phase |Ωin〉 (7.11)

where |Ωin〉 = |++〉. The state |Ωout〉 is always a maximally entangled state. We

choose α = β = 0 and consider only the case with outcomes ‘00’ in qubits 2,3. This

implies a final Bell state of

|Ωout〉 =
1√
2
(|+〉 |0〉+ |−〉 |1〉). (7.12)

Note that the horseshoe cluster state is equivalent to the state of Eq. (7.1) up to

a ĤÎÎĤ transformation. To characterize the quality of the quantum gate output,

we put a birefringent crystal in path RB to perform the polarization transformation

|+〉 ↔ |−〉. Thus, behind BS2, all Bell states on qubits 1,4 will undergo the following

transformations:

1√
2
(|+〉1 |0〉4 ± |−〉1 |1〉4) −→ |+〉1 |±〉4

1√
2
(|−〉1 |0〉4 ± |+〉1 |1〉4) −→ |−〉1 |±〉4

(7.13)

These states can be completely and deterministically discriminated by measur-

ing along the diagonal basis. The fidelities of the output states are shown in

Fig. (7.4b). Analogous, for the box cluster state, measurements on qubits 2,3 along

basis {B2(α), B3(β)} will give an output state on qubits 1,4 of

|Ωout〉 = (σ̂z ⊗ σ̂x)
s3(σ̂x ⊗ σ̂z)

s2ÛC-Phase(Ĥ ⊗ Ĥ)
(
R̂z(−α)⊗ R̂z(−β)

)
ÛC-Phase |Ωin〉

(7.14)

which is a product state when α = π and β = 0. Since we can completely distin-

guish the four different products states, output fidelities can be obtained directly,

as shown in Fig. (7.4d). By employing the techniques developed in [69] with active

feed-forward, one can expect to achieve deterministic quantum computation with

excellent output qualities.
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Figure 7.4: Scheme and experimental results for the realization of two-qubit quan-

tum gates. (a) Realization of a C-Phase gate with a horseshoe cluster. (b) Experi-

mentally measured fidelities of the output states to the ideal Bell states. The fidelities

are 0.954± 0.003, 0.940± 0.004, 0.936± 0.005 and 0.910± 0.005 for outcomes 00,

01, 10 and 11 on qubits 2,3, respectively. (c) Implementation of a quantum gate

that does not generate entanglement with the box cluster. (d) Measured fidelities

of the output states to the ideal product states. The fidelities are 0.935 ± 0.005,

0.962 ± 0.004, 0.969 ± 0.003 and 0.975 ± 0.003 for outcomes 00, 01, 10 and 11 on

qubits 2,3, respectively.
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7.4 Discussion

We want to remark that other two-qubit states can be generated by suitable mea-

surements on qubits 2 and 3. However, an arbitrary single-qubit rotation needs three

single-qubit measurements on a cluster for one-way implementation [64, 69], which

is a rather large consumption of resources. Fortunately, this rotation can easily

be attained by linear optical components both for polarization and spacial modes.

Therefore a hybrid framework would be more practical for one-way realizations of

single and two-qubit gates. Like the source presented in [69], our source is not yet

scalable. However, the scheme developed here leads to quantum computing with a

quality and efficiency at present largely unmatched by previous methods.

In this chapter, we have discussed a scheme for the preparation of a two-photon

four-qubit cluster state, thereby we have designed and demonstrated the first proof-

of-principle realization of one-way quantum computing employing such a source. An

excellent quality of the state with a fidelity better than 88% is achieved. The high

count rates enable quantum computing more efficient than previous methods by four

orders of magnitude. We have implemented Grover’s search algorithm with a suc-

cessful probability of about 96% and two-qubit quantum gates with high fidelities

of about 95% on average. Our scheme helps to make a significant advancement of

QIP, and the source constitutes a promising candidate for efficient and high quality

one-way optical quantum computation. By using more photons and more degrees

of freedom, one can expand our scheme to generate many-qubit cluster states for

performing quantum computing and other complex tasks. Our results can also find

rapid applications in quantum error correction codes, multi-partite quantum com-

munication protocols [55, 91], as well as novel types of AVN tests for non-locality

[138, 139].
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Chapter 8

Conclusions, Outlook and

Remarks

In this thesis, we have reported our research on the field of quantum information

processing. We have used pairs of polarization-entangled photons as produced by

pulsed parametric down-conversion to experimentally explore interference phenom-

ena of multi-particle quantum systems. Along this research, we have designed and

developed a new generation of a high power EPR source, which we have exploited

to assemble a six-photon interferometer – the first of its kind.

Our research has been mainly concentrated on the following topics: (i) We have

experimentally demonstrated quantum teleportation of a two-qubit composite sys-

tem. We have been able to teleport a polarization entangled photon pair, which

on the one hand denotes an important step towards the teleportation of complex

systems but on the other hand and even more importantly constitutes the basis

for various QIP schemes and protocols. – (ii) We have further demonstrated en-

tanglement swapping over multiple stages, which is a crucial requirement for the

realization of quantum repeaters. By this we have generated entanglement between

particles that have never interacted in the past with the help of ancillary particles

that also do not share any common history. – (iii) The coupling of qubits to the en-

vironment imposes a major challenge to realistic implementations of QIP. Quantum

error correction codes and fault-tolerant quantum gates are therefore critical compo-

nents within the framework of QIP. We have reported the first successful realization

of the scheme by Gottesman and Chuang for fault-tolerant quantum gates. The

in-principle demonstration shows the feasibility of the scheme and opens doors for

possible future large scale implementations of quantum networks. – (iv) Multipartite

entangled states are on the one hand of fundamental interest, since they can be used

for conceptually new ways to test locality and realism of quantum mechanics and on

the other hand they form the resource for various quantum computation schemes.

We have generated for the first time six-photon graph states, such as a Schrödinger

cat and a cluster state. – (v) The model of one-way quantum computation is a

recent approach that with the resource of highly entangled cluster states, active
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feed-forward and classical measurements enables the implementation of quantum

computers. With a two-photon four-qubit cluster state we have implemented a sim-

ple version of this model to perform Grover’s algorithm and a quantum gate. With

an improvement of the cluster state generation rate by four orders of magnitude we

have provided a significant step towards the realization of quantum computation on

a larger scale.

Although significant theoretical and experimental progress in the field of linear

optic QIP has been demonstrated over the last few years, we are still at the beginning

on the way towards large-scale implementations of QIP in the lab or even in everyday

life.

An obvious drawback of the current realization of linear optic QIP is the pro-

cess of generating entangled photons. Even though the process of SPDC yields high

quality entanglement of photons and via a pulsed laser setup can be used to gen-

erate multi-photon entanglement, its probabilistic nature makes scalable and thus

large-scale implementations impossible. It has been very useful to test fundamen-

tal properties of multipartite entanglement and to develop techniques and methods

for the manipulation of multi-photon entanglement. However, with our six-photon

interferometer we are approaching the maximum number of entangled photons that

can be generated via SPDC. There exist various promising alternatives to generate

photonic entanglement. Quantum dots can be used to generate single photons on

demand [146]. However, poor quality and the lack of ability to develop a large num-

ber of identical sources still makes the use of quantum dots unpractical. Another

promising approach is the application of atomic ensembles as quantum memories

and single photon sources [104]. The emission of a Stokes photon conditioned on the

detection of an Anti-Stokes photon in an atomic system with a λ-level-configuration

has proven to be an alternative process to generate single photons and could be used

to construct a scalable quantum network.

A further problem of the current technology is the poor overall coupling efficiency,

i.e only ∼ 15% of the generated photons are actually detected. This deficiency is

mainly caused by insufficient mode matching and additional loses at the filters. Thus,

even with a deterministic single photon source, large scale quantum operations are

severely limited by this drawback. A miniaturization of the setup could on the

one hand constitute a potential solution to this problem and on the other hand

dramatically enhanced its performance and reduce the resource requirements, as it

has been for conventional computers.

Concluding, the developed techniques and obtained knowledge of linear optics

within this dissertation need to be combined with other physical systems to merge

its different strengths and advantages.

As a final remark, we would like to note that a number of text paragraphs

were taken from joint papers of our group because the formulations found there are

difficult to improve.
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