
 1

Dissertation 

submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics 

of the Ruperto-Carola University of Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Presented by: Attila Rácz, MD 

Born in: Debrecen, Hungary 

Oral-examination: 



 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecular determinants of hippocampal oscillatory activity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referees:  Prof. Dr. Peter Seeburg 

     Prof. Dr. Hannah Monyer 

 

 



 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        In memory of Dr. Ervin Szegedi (1956-2006), 

            my physics teacher at secondary school 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4

TABLE OF CONTENTS 

TABLE OF CONTENTS 4 

SUMMARY 6 

ZUSAMMENFASSUNG 7 

LIST OF ABBREVIATIONS 8 

INTRODUCTION 10 

GENERAL ANATOMY OF THE HIPPOCAMPUS 10 
HISTOLOGY OF HIPPOCAMPAL INTERNEURONS 12 
PRINCIPLES OF EXCITATORY NEUROTRANSMISSION 14 
PRINCIPLES OF INHIBITORY NEUROTRANSMISSION 17 
PHYSIOLOGY OF INTERNEURONS 18 
PUTATIVE ROLES OF INTERNEURONS 19 
PLASTICITY AT SYNAPTIC AND NETWORK LEVEL 20 
BRAIN OSCILLATIONS IN GENERAL 22 
OSCILLATIONS OF THE HIPPOCAMPUS 23 
NETWORK SYNCHRONY IN VITRO 29 
BRAIN SYNCHRONY IN VIVO 30 
INTERNEURONS IN OSCILLATIONS AND PLASTICITY 32 
PROPOSED FUNCTIONS OF THE HIPPOCAMPUS 34 
CELLS SPECIALIZED FOR NAVIGATION 38 
THE IMPORTANCE OF PV-POSITIVE INTERNEURONS AND THEIR INVOLVEMENT IN LEARNING 42 

THE MAIN SCIENTIFIC QUESTIONS OF THIS STUDY 45 

MATERIALS AND METHODS 46 

ANIMALS 46 
ELECTRODES 46 
SURGERY 48 
EEG-RECORDINGS 49 
ANALYSIS OF THE DATA 49 
ANALYSIS OF OSCILLATIONS 49 
UNITARY ANALYSIS 52 
STATISTICAL ANALYSIS 54 

RESULTS 55 

HIPPOCAMPAL OSCILLATIONS IN PV-GLUR-A KO MICE 55 
HIPPOCAMPAL OSCILLATIONS MEASURED IN DEFINED LAYERS 63 
UNITARY ANALYSIS IN THE PV-GLUR-A KO ANIMALS 67 
UNITARY FIRING RATES IN DISTINCT BEHAVIOURAL STATES 71 



 5

RHYTHMIC MODULATION OF UNITARY ACTIVITY DURING DISTINCT OSCILLATIONS 77 

DISCUSSION 81 

OUTLOOK 86 

ACKNOWLEDGEMENTS 88 

LITERATURE 89 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6

SUMMARY 

 
In vitro electrophysiological studies in genetically modified mice with a deletion of the 

GluR-A subunit in parvalbumin-positive GABAergic interneurons (PV-GluR-A KO mice) provided 

evidence for the involvement of this cell-population in the generation of hippocampal network 

synchrony. Besides, these mice displayed several alterations in hippocampus-dependent cognitive 

tasks (Fuchs et al., 2007). To study the characteristics of hippocampal network synchrony 

thoroughly, we applied in vivo electrophysiological measurements in freely moving animals. 

We used tetrode and silicon probe hippocampal recordings from mutant and wildtype (WT) 

animals and compared cellular activity obtained from pyramidal cells and interneurons as well as 

network activity. The results can be summarized as follows: 

1. PV-GluR-A KO mice exhibited increased ripple-power compared to WT mice. The 

underlying mechanism cannot be accounted for by an augmented cellular activity during ripples but 

by an increased phase-modulation of both pyramidal cells and interneurons as indicated by the 

unitary analysis. 

2. The decreased gamma-power in the PV-GluR-A KO mice revealed by in vitro 

measurements could not be corroborated by the in vivo study. However, a reduction in gamma-

frequency could be identified during REM-sleep of the PV-GluR-A KO mice. The phase-preference 

of pyramidal cells during gamma-oscillations was not different between genotypes. However, there 

was a delay of the phase-preference of interneurons in PV-GluR-A KO compared with WT mice. 

3.  The firing rate of pyramidal cells during theta-oscillations was decreased in PV-GluR-A 

KO mice whereas that of interneurons did not change significantly. We propose that the pyramidal 

cells’ underperformance is due to the altered function of interneurons.  

4.  Pyramidal cells were more “bursty” in PV-GluR-A mutants. The increased “burstiness” 

occurred during theta-, gamma- and ripple-oscillations. We think that the suboptimal work of 

interneurons makes pyramidal cell firing less “predictable” and maybe temporary fluctuations in the 

excitatory and inhibitory network state can disturb the optimal modes of pyramidal cell-discharge. 

In summary, this in vivo study provides direct evidence that PV-positive GABAergic 

interneurons play a crucial role in the generation of synchronous network activity in the 

hippocampus. 
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ZUSAMMENFASSUNG 

 
Elektrophysiologische Untersuchungen in vitro an genetisch modifizierten Mäusen, in denen 

die GluR-A Untereinheit in Parvalbumin-positiven GABAergen Interneuronen ausgeschaltet wurde 

(PV-GluR-A KO Mäuse), ergaben, dass diese Zellpopulation an der Entstehung synchroner 

Netzwerkaktivität massgeblich beteiligt ist. Des weiteren wiesen Verhaltenstests darauf hin, dass die 

genetische Modifikation zu Defiziten von Hippocampus-abhängigen Leistungen führte (Fuchs et al., 

2007). Um synchrone Netzwerkaktivität im Hippocampus besser charakterisieren zu können, führten 

wir elektrophysiologische Ableitungen in vivo an sich frei bewegenden Mäusen durch. 

Wir benutzten Tetroden und Silicon-Proben und verglichen bei modifizierten und Wildtyp-

Mäusen (WT) Einzelzellaktivität von Pyramidenzellen und GABAergen Interneuronen sowie 

oszillatorische Netzwerkaktivität. Die Ergebnisse können wie folgt zusammengefasst werden:  

1. PV-GluR-A KO Mäuse zeigten erhöhte “Ripple”-Aktivität im Vergleich zu WT-Mäusen. 

Wie die zelluläre Analyse zeigt, scheint der zugrunde liegende Mechanismus nicht die erhöhte 

zelluläre Aktivität in “Ripple”-Oszillationen zu sein, sondern eine erhöhte Phasenmodulation sowohl 

von Pyramidenzellen als auch von Interneuronen. 

2. Die verminderte Gamma-Leistung in PV-GluR-A KO Mäusen, die sich aus in vitro 

Messungen ergab, konnte in vivo nicht verifiziert werden. Wir fanden jedoch eine Verminderung der 

Frequenz von Gamma-Oszillationen während REM-Schlaf in den PV-GluR-A KO Mäusen. Es gab 

keinen Unterschied in der Phasen-Preferenz von Pyramidenzellen während Gamma-Oszillationen. 

Interneurone von PV-GluR-A KO Mäusen jedoch waren verzögert im Vergleich mit WT-Mäusen.  

3.  Die Feuerfrequenz von Pyramidenzellen während Theta-Oszillationen war verringert in 

PV-GluR-A KO Mäusen, während die von Interneuronen sich nicht signifikant änderte. Die 

reduzierte Aktivität von Pyramidenzellen ist vermutlich eine Konsequenz der veränderten 

Interneuronfunktion.  

4.  Im Vergleich zu WT Mäusen, waren Pyramidenzellen in PV-GluR-A KO Mäusen mehr  

“bursty” sowohl während Theta- als auch Gamma- und Ripple-Oszillationen. Die suboptimale 

Funktion der Interneurone ist wahrscheinlich der Grund dafür, warum das Feuern von 

Pyramidenzellen weniger “vorhersehbar” ist. Eventuell können Fluktuationen von Erregung und 

Hemmung im Netzwerk das optimale Muster des Feuerns von Pyramidenzellen stören. 

Zusammengefasst weisen diese in vivo Untersuchungen darauf hin, dass PV-positive 

GABAerge Interneurone bei der Entstehung synchroner Netzwerkaktivität des Hippocampus eine 

wichtige Rolle spielen. 
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LIST OF ABBREVIATIONS 

 
ADAR     Adenosine DeAminase acting on RNAs 
AMPA     α-Amino-3-hydroxyl-5-Methyl-4-isoxazole Propionic Acid 
BOLD     Blood Oxygen Level Dependent 
CA1, 2, 3    Cornu Ammonis 1, 2, 3 
CaMKII    Calcium/CalModulin-dependent protein Kinase II  
CB     CalBindin 
CB1     CannaBinoid (receptor) 1 
CCK     CholeCystoKinin 
CR     CalRetinin 
CSD     Current-Source Density (analysis) 
DG     Dentate Gyrus 
DSI     Depolarization-induced Suppression of Inhibition 
EAAT     Excitatory Amino Acid Transporter 
EEG     ElectroEncephaloGraphy 
EPSP     Excitatory PostSynaptic Potential 
FFT     Fast Fourier Transform 
FMRI     Functional Magnetic Resonance Imaging 
GABA     Gamma-Amino-Butyric Acid 
GAD     GlutAmate Decarboxylase 
GDP     Giant Depolarizing Potential 
GluR-A, GluR-B, GluR-D  Glutamate Receptor A, B, D 
HFS     High-Frequency Stimulation 
5HT     5-HydroxyTryptamine, serotonin 
IPI     InterPeak-Interval 
IPSP     Inhibitory PostSynaptic Potential 
I-V     Current-Voltage (curve) 
KCC2     Kalium-Chloride Cotransporter 2 
KO     KnockOut 
LFP     Local Field Potential 
LIA     Large-Amplitude Irregular Activity 
LTP     Long-Term Potentiation 
MEA     Multi-Electrode Array 
MEG     MagnetoEncephaloGraphy 
NKCC1    Natrium-Kalium-Chloride Cotransporter 1 
NMDA    N-Methyl-D-Aspartic acid 
NO, NOS    Nitric Oxide, Nitric Oxide Synthase 
NPY     NeuroPeptid Y 
NR1, NR2    NMDA-Receptor 1, 2 
NSF     N-ethylmaleimide-Sensitive Fusion protein 
O-LM     Oriens-Lacunosum-Moleculare (cell) 
PICK1     Protein Interacting with C Kinase 1 
PSD     PostSynaptic Density 
PV     ParValbumin 
REM     Rapid Eye Movement (sleep) 
SAP     Synapse-Associated Protein 
SD     Standard Deviation 
SOM     SOMatostatin 
SPW     SharP Wave 
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SWS     Slow-Wave Sleep 
TARP     Transmembrane AMPA-receptor Regulating Protein 
TBS     Theta-Burst Stimulation 
TPD     Theta-modulated Place-by-Direction (cells) 
WT     WildType 
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INTRODUCTION 

 

General anatomy of the hippocampus 

 

The hippocampal formation consists of several subregions, including the dentate gyrus (DG) 

and hippocampus proper (Figure 1.). The hippocampus itself can be divided into subregions named 

after “Cornu Ammonis” (CA3, CA2 and CA1). Axons from the CA1 form the major output of the 

hippocampus, the subiculum on one hand and the fornix on the other. The former one feeds 

information back into the entorhinal cortex (mainly layer 5), which in turn also innervates CA1, 

CA2 and CA3 via the perforant pathway. The fornix arches towards the mamillary nucleus, from 

where two main tracts are formed, the fasciculus mamillothalamicus (Vicq d’Azyr) and the 

fasciculus mamillotegmentalis (named after Gudden). The first one gives input to an anterior 

portion of thalamic nuclei, which project to the cingulum. The cingulum also volutes back to the 

parahippocampal structures, thereby closing one of the limbic circles. The hippocampus is a real 

centre of anatomical connections, not only does it receive inputs from the dentate gyrus and 

entorhinal cortex, but it is also reciprocally connected to the septal nuclei, which also provide 

cholinergic and GABAergic (gamma-amino-butyric acid) input to the hippocampus. The dentate 

gyrus receives noradrenergic input from the locus coeruleus, serotonergic innervation from the 

raphe nuclei whereas the CA1 receives dopaminergic input from the mesolimbic system, especially 

the ventral tegmental area. As we shall later see, these modulatory systems may exert a strong 

influence on learning functions, both in terms of stress-related (Reymann & Frey, 2007) and 

reward-related learning (Foster & Wilson, 2006). The amygdala comprises a complex of nuclei 

reciprocally connected with the CA areas and is functionally related to fear-conditioning. 

Even though we refer to the hippocampal formation as archicortex, the basic circuitry of the 

hippocampus shows remarkable differences to other cortical formations. A striking hippocampal 

feature is its three-layered structure, with cell bodies arranged in the middle, dendritic trees on one 

side and axons on the other. This is in sharp contrast with the six-layered neocortical 

microarchitecture. The lamination offers an excellent opportunity for understanding the anatomy of 

the basic circuitry and for studying its principal physiological functions. The five-layered 

parahippocampal structures (e.g. the subiculum or entorhinal cortex) are also referred to as 

periarchicortex because they show a transition between the archi- and neocortical organizing 

principles (for a more comprehensive treatise see Amaral & Witter, 1995). 

Similar to other brain structures, the two major neuronal cell types in the hippocampal 

formation are the principal cells and interneurons. The archicortex is populated by distinct neuronal 



 11

subgroups. The principal cells of the dentate gyrus are called granule cells, those of the 

hippocampus proper are called pyramidal cells. An interesting glutamatergic cell type in the DG is  

                

Figure 1.: The basic anatomy of the hippocampus, as depicted by Santiago Ramon y Cajal at the 

beginning of the 20th century. One can clearly identify distinct subregions of the hippocampal 

formation and basic in- and output routes and internal connections of it: the perforant path coming 

from the entorhinal cortex, the Schaffer-collaterals and fornix originating from CA3 and CA1. 

 

the mossy cell. It is innervated by granule cells and projects back innervating the dendritic tree of 

granule cells in the neighbourhood of the cell they receive excitation from. The interneurons of DG 

are located mainly in the molecular and polymorphic layers, but some, mainly of the basket cell 

type, can also be found in the granule cell layer. The axons of the granule cells are called mossy 

fibers, they lack myelin-sheath and form unique synaptic structures onto CA3-cells. CA3-pyramidal 

neurons receive their input mainly from dentate gyrus mossy fibers, from the perforant path 

(entorhinal input), from the contralateral CA3 (commissural connections) and via recurrent 

collaterals from CA3-cells themselves. The latter pathway is called Schaffer-collateral-system, and 

due to its anatomical organization remarkable auto-associative features are attributed to it that also 

has behavioural consequences (Nakazawa et al., 2002). CA3-pyramidal cells are quite big (30-35 

µm), in comparison to CA1-pyramids (10-15 µm). CA3-cells project both to CA1 pyramidal cells 

and to CA1 interneurons, thereby ensuring proper feed-forward excitation and feed-forward 

inhibition. The transition zone between the CA3 and CA1 is called CA2. Here cells are still big, but 

they do not receive mossy fibers from the DG. The CA1 receives input from the CA3-Schaffer-

collateral system mainly via the basal dendrites and apical dendrites located in the stratum radiatum. 

In addition, the apical dendrites of CA1 pyramidal cells are also innervated by the perforant path, 

which runs in the stratum lacunosum-moleculare. Apparently the recurrent loop, connecting CA3-

pyramids is absent in CA1. CA1-pyramids also drive interneurons that provide feed-back inhibition 
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onto the pyramidal cells. It is important to note that whereas connections between DG granule cells 

and CA3-pyramids are rather convergent (a given granule cell innervates 20-30 CA3-pyramids, but 

a given CA3 cell receives input from roughly 50 granule cells), connections between CA3 and CA1 

are more divergent, also due to the Schaffer-collateral system (Amaral & Witter, 1995). 

The hippocampus is a special brain-area where the genesis of granule cells continues after 

birth*. *Other structures possessing this potential are the olfactory bulb (for interneurons) and in distinct species some 

neocortical areas, such as auditory cortex in some birds, in migrating birds hippocampus as well. After birth the lateral 

and medial ganglionic eminence and the subventricular zone serve as a place for interneuron precursors generator which 

then follow certain routes (like the rostral, ventral and dorsal migratory streams) to reach their targets: the basal ganglia 

or the olfactory bulb. These neuroblasts form the granular and periglomerular cells of the olfactory bulb (for a more 

complete overview see the reviews of Marin & Rubinstein, 2004 and Wonders & Anderson, 2006).  

A number of theories and experiments imply that adult neurogenesis in the dentate gyrus 

might be associated with hippocampal plasticity, possibly by guaranteeing a continuous rewiring of 

the system. It is indeed suggested that explorative behaviour promotes neurogenesis in the dentate 

gyrus (animals living under environmentally enriched conditions show this phenomenon, Segovia et 

al., 2006). It is also known that cabdrivers have a bigger hippocampus, due to the regular navigation 

tasks they perform during their everyday routine (Maguire et al., 2000). Interestingly, the right 

hippocampus is the one which shows this correlation, and the size of the right hippocampus 

correlates well with the time spent as a taxi-driver as well as with the navigation skills of the given 

cabdriver (actually this observation also corroborates the old view that the human right hemisphere 

would be responsible for the integration of spatial information and the left one for the temporal 

information, Szirmai et al., 2000). On the other hand, early-childhood brain-irradiation (e.g. 

performed as oncological therapy) can substantially reduce the number of available neurogenic 

precursors and can lead to learning deficits in later stages of life. In any case, it seems to be 

important to have ongoing neurogenesis in a brain structure involved in learning and plasticity. 

 

Histology of hippocampal interneurons 

 

There is a wide spectrum of interneurons taking part in the histological architecture of CA3 

and CA1. Interneurons can be grouped in distinct classes according to a number of arbitrary 

features, which in some cases hint to their specific roles in certain neurophysiological processes. 

Interneurons can be classified based on their morphological properties, their location, the cellular 

domains that they innervate, their electrophysiological properties, the expression of specific 

histological markers and proteins, or their participation in distinct oscillatory states (such as theta-

off and theta-on cells, Mizumori et al., 1990). Since there are certain correlations between the 
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above-named criteria, current attempts to classify interneurons aim at taking into consideration as 

many characteristics as possible (molecular, anatomical, functional). 

A large amount of data in this research field was generated in the laboratory of Peter 

Somogyi and co-workers. These researchers implant sharp electrodes in the hippocampus of 

anaesthetized rats, adjust the location of the electrode according to the local field potentials and 

record the activity of individual cells by moving the electrode very close to them. In this way they 

can follow the behaviour of individual cells during different network-states. The juxtacellular 

labeling method can be used to fill the recorded cell with a dye (byocitin or neurobiotin) for further 

anatomical reconstruction. The principle of this method is that during the membrane potential-

fluctuations of theta-oscillations the neurons can take up the charged dye-molecules (Pinault, 1996). 

This way the Somogyi group could establish many correlates between morphology, biochemical 

markers and electrophysiological properties of certain interneuron subtypes. However, since they 

examine oscillation-related activity in animals under anaesthesia, it is difficult to extrapolate the 

results of these findings to a likely scenario as it might occur in vivo.  

To illustrate interneuron diversity, just a few examples will be discussed. O-LM cells 

(oriens-lacunosum-moleculare cells) for instance innervate dendrites in the stratum lacunosum-

moleculare whereas they sit and expand their dendritic tree in the stratum oriens, to receive input 

from axons of pyramidal cells. Bistratified cells already innervate stratum radiatum dendrites 

(Klausberger et al., 2004) whereas basket cells inhibit the perykarion of neurons with basket-like 

structures. It is estimated that a basket cell can form inhibitory connections on as many as 1800-

2000 pyramidal cell somata (Amaral & Witter, 1995; Freund, 2003). Axo-axonic or chandelier cells 

form synapses on the axon initial segment and since according to the classical view this is the 

action-potential generation site*, their function can be very important in the output control of 

pyramidal cells (Klausberger et al., 2003; Szabadics et al., 2005). The neurogliaform cells (Price et 

al., 2005) are mainly found in the stratum lacunosum-moleculare controlling the perforant path 

input from the entorhinal cortex. These cells are quite heterogeneous in their electrophysiological 

properties (Zsiros & Maccaferri, 2005). 

*Some studies point out that action potentials may be generated in the dendrites as well (Kamondi et al., 1998), 

based on the observation that the frequency of dendritic Ca2+-spikes can also exceed that of the somatic action 

potentials.  

A recently identified novel interneuron-type in the hippocampus is the Ivy-cell. These cells 

are quite numerous, they are located mainly in the pyramidal layer, show very dense axonal fields 

innervating preferentially the basal dendritic domains and they co-express neuropeptide Y (NPY) 

and nitric oxide synthase (NOS). It is speculated that they control the input coming via the Schaffer-
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collaterals in a rather domain-specific way via the release of NO (Fuentealba et al., 2008). In 

addition, NO may also regulate blood circulation in the brain, in this manner Ivy-cells might adjust 

blood and nutrient supply to local needs. 

Of interest are also interneurons that innervate (and thus inhibit) other interneurons. The 

activity of these interneurons can lead to desinhibition of given pyramidal cells (Fonyó, 1995).  

Certain immunochemical markers are also used to distinguish between interneuron-

subtypes. In many cases they are calcium-binding proteins, such as parvalbumin (PV), calbindin 

(CB) and calretinin (CR), in other cases neuropeptides, such as cholecystokinin (CCK), 

somatostatin (SOM) or NPY. According to the current view, the expression of these markers is 

correlated with the anatomical and physiological subclass to which a given interneuron belongs. 

Bistratified cells, axo-axonic cells and a great percentage of basket cells are PV-positive, O-LM 

cells are mainly SOM-positive (Klausberger et al., 2003). 

 

Principles of excitatory neurotransmission 

 

Pyramidal cells constitute the output neurons of the hippocampus. However, pyramidal cells 

also innervate other pyramidal cells and interneurons in the hippocampus, so excitation is a primary 

action there. The excitatory drive onto principal cells and interneurons is transmitted mainly via 

glutamatergic synapses. The receptors, residing on the postsynaptic membranes are ligand-gated 

ionotropic receptors. According to their pharmacological properties, glutamate receptors can be 

classified in three major classes: AMPA-, kainate- and NMDA-receptors (AMPA stands for α-

amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid, NMDA for N-methyl-D-aspartic acid, 

reviewed by Mayer, 2005). Each class comprises several subunits. Thus, for instance there are four 

main subtypes of AMPA-receptor forming subunits (referred to as GluR-1-4 or GluR-A-D) that are 

differentially expressed with respect to the brain region and cell type. Pyramidal cells preferentially 

express GluR-A and GluR-B (Geiger et al., 1995). The latter subunits renders heteromeric AMPA-

receptors with any of the other three subunits Ca2+-impermeable. The required Ca2+ influx via 

glutamate receptors involved in potentiation of synapses on pyramidal cells has been attributed 

exclusively to NMDA-receptors. However, the situation is different in interneurons since they 

express GluR-A and GluR-D but relatively low levels of GluR-B (Geiger et al., 1995) and are thus 

equipped mainly with Ca2+-permeable AMPA-receptors. Whether AMPA-receptors are involved in 

synaptic plasticity in interneurons is not clear so far. Overall, synaptic plasticity in pyramidal cells 

has been much studied over the last two decades and numerous in vitro and in vivo paradigms have 

been employed. Synaptic plasticity in interneurons has hardly been studied and in fact was 
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considered to be absent in interneurons. However, recent studies provide evidence that synaptic 

strength in interneurons is modifiable (Lamsa et al., 2007).  

The functional interplay between AMPA- and NMDA-receptors resides in their different 

kinetics and functional regulation. Both receptors comprise four transmembrane domains, an 

extracellular N-terminal and an intracellular C-terminal domain. NMDA-receptors have a higher 

affinity for glutamate than AMPA-receptors. This means that without any other regulation NMDA-

receptors would be activated first upon the presence of environmental glutamate and this would 

result in a massive Ca2+-influx into the cell even under low external glutamate-concentrations. 

However, NMDA-receptors at resting membrane potential are “blocked” by Mg2+-ions. The Mg2+-

block can only be relieved by strong membrane-depolarization. This mechanism reverses the order 

so that AMPA-receptors, despite their lower glutamate-affinity gate first and their mediated Na+-

current can depolarize the cell to the “threshold” of NMDA-receptor activation (Kandel et al., 

2000). Thereby it is ensured that NMDA-receptors can only conduct their massive and relatively 

long-lasting Ca2+-current, if it is really needed. On one hand this offers specificity for long-term 

potentiation (LTP) on principal cells, on the other hand it also circumvents possible harmful effects 

of excessive intracellular Ca2+-concentrations*. 

*High intracellular Ca2+-concentrations can lead to the activation of Ca2+-activated proteases, such as calpains, 

which degrade important molecules, even though calpains are also involved in LTP-induction (see the review of Bliss & 

Collingridge, 1993). The co-expression of AMPA- and NMDA-receptors on the postsynaptic density further ensures 

that ectopic or extrasynaptically located receptors alone cannot interfere much with synaptic function. It is speculated 

that extrasynaptic glutamate-receptors constitute a pool for newly synthesized proteins, which are incorporated later into 

the synaptic membrane by lateral membrane-diffusion (Ashby et al., 2006).  

Glutamate-receptors are formed of tetrameric assemblies. For instance NMDA-receptors of 

the hippocampus are composed of two NR1 and two NR2 (NMDA-receptor 1 and 2) subunits 

(Furukawa et al., 2005), the latter being either NR2A or NR2B. NR2 subunits differ with respect to 

their developmental regulation and kinetic properties. NR2B-containing receptors, which are 

preferentially expressed at earlier developmental stages, have slower gating kinetics, thereby 

allowing for longer-lasting Ca2+-currents. The glutamate-binding site is located on the NR2 

subunits. For NMDA-receptor activation, binding of the co-modulator glycine is also required and 

its binding site is on the NR1 subunit.  

The C-terminal domain of the NMDA-receptor subunit contains binding sites for 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) and for proteins possessing PDZ-domains, 

such as the PSD-93, PSD-95 (postsynaptic density proteins 93 and 95), SAP-97 and SAP-102 

(synapse-associated proteins 97 and 102)(reviewed by Kim & Sheng, 2004). In case of the AMPA-

receptors the so-called TARPs (transmembrane AMPA-receptor regulating proteins) control the 
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channel conductivity by bridging the AMPA-receptors and PDZ-domain proteins. The stargazin 

(TARP γ2) is a classical example of these molecules (Chen et al., 2000). The stargazin receives its 

name after a mouse mutant with cerebellar deficits (a “stargazer” phenotype), due to the markedly 

reduced expression of stargazin on cerebellar granule cells of the mutant mouse (Hashimoto et al., 

1999).  

An immense diversity of glutamate receptor subunits is provided by alternative splicing and 

RNA-editing (Higuchi et al., 1993). The editing sites in the RNA are located in the region of the 2nd 

intramembrane helix, corresponding to the so-called pore-loop (translated to protein-structure) of 

the AMPA-receptors. They have very important functional implications. The Q/R-editing site on the 

GluR-B is processed by one of the ADARs (adenosine deaminases acting on RNAs). If the editing 

is compromised with GluR-B-mutations, glutamin will be incorporated into the protein instead of 

arginin, which renders it Ca2+-permeable. The increased Ca2+-conductance on pyramidal cells leads 

to epileptic seizures and early animal death in a mouse model (Feldmeyer et al., 1999). 

 

                                                                                             

I have not commented on the role of metabotropic glutamate-receptors, they are 7TM-

proteins and activate G-proteins upon ligand binding. They are often found on the perisynaptic 

regions as well, and are consequently activated by higher concentration glutamate-spillover 

(Somogyi et al., 1998). 

Figure 2.: Schematic view on the domain-

structure of AMPA-receptor subunits. The 

N-terminal domain lies in the extracellular 

space while the C-terminal domain is 

intracellular. The second intra-membrane 

α-helix bends back towards the cytoplasm. 

The RNA-editing site also lies in that 

region. 

The C-terminal domain comprises binding 

sites for the PDZ-domain protein PICK1 

(Protein Interacting with C Kinase 1,

involved in receptor-clustering of the 

AMPA-receptors, Xia et al., 1999) and NSF 

(N-ethylmaleimide-sensitive fusion protein, 

involved in membrane fusion events and 

also in disassembling the AMPA-receptors 

from PICK1, Hanley et al., 2002). The 

structure of    NMDA-receptor subunits is 

basically similar to this principle. The 

picture is from www.bris.ac.uk, the official 

website of Bristol University. 
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Principles of inhibitory neurotransmission 

 

In addition to excitatory synapses there are also inhibitory ones in the nervous system. The 

former are also referred to as asymmetric, the latter symmetric. These differences rely on 

electronmicroscopical studies of Gray and the classification of Colonniel, who described a more 

electrondense material on the postsynaptic side of excitatory synapses whereas on inhibitory 

synapses this density is more or less symmetrical (Kandel et al., 2000). In addition, granules of 

excitatory transmitters are mainly big and of round shape while those of inhibitory synapses are 

smaller and rather ovoid (Uchizono, 1965). Whereas excitatory synapses are formed mainly on 

dendrites and dendritic spines, inhibitory synapses are usually found on dendritic shafts and on 

perisomatic regions, such as the soma itself or the axon-hillock. The strategical importance of this 

arrangement lies in the electrotonic attenuation of postsynaptic potentials and their spatiotemporal 

summation on distinct parts of the cell (Fonyó, 1997; Kandel et al., 2000). 

The two main inhibitory neurotransmitters of the central nervous system are GABA 

(gamma-amino-butyric acid) and glycine. However, the latter is confined mostly to the brainstem 

and the spinal chord. Both the ionotropic glycine- and GABA-receptors belong to the acetylcholine-

receptor family, a major hallmark of which is the pentameric structure composed of different 

subunits. The ionotropic GABA-receptors (or GABAA-receptors) are anion-channels, they transport 

Cl- and HCO3
- anions. From the well-known anxiolytics the benzodiazepines and the zolpidem act 

on GABAA-receptors* (Fürst, 1998). However, different brain regions and different cell types 

express different receptor-subunits and different cellular domains can also show a different 

expression-pattern (Mody & Pearce, 2004). This can explain why many of these compounds 

influence the involved target-mechanisms to a different extent, such as anxiolytic, sedatohypnotic or 

muscle-relaxant effects and side effects can be of different strength. Nevertheless, these drugs also 

affect learning. 

*Barbiturates also act on GABAA-receptors, but they have a different binding site. Whereas benzodiazepins 

increase the frequency of channel-opening upon their binding, the barbiturates keep the channels open for a longer time. 

The most commonly used GABAA-receptor antagonists in electrophysiology are the gabazine, bicuculline and 

picrotoxin.  

GABA as well as glutamate also acts on metabotropic receptors, which are coupled to the 

function of G-proteins. These receptors are 7TM-receptors. The GABAB–receptors are found 

mainly presynaptically (Somogyi et al., 1998), very often on the periphery of the synapses. Their 

effect evolves slower, because of the delay of the intracellular cascades that are activated by the 

7TM-receptors. In many cases, the GABAB–receptors can decrease the transmitter-release from the 

presynaptic active zones (reviewed by Freund & Katona, 2007). 
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GABA is produced from glutamate via the action of GAD (glutamate decarboxylase) 

enzymes. Cells take up glutamate with excitatory amino acid transporter (EAAT) molecules, which 

are also expressed by glial cells. The secreted GABA is bound to the GABA-receptors and after 

dissociating from the receptor GABA is removed from the synaptic cleft by transporter mechanisms 

(Kandel et al., 2000). The kinetics of GABAA-receptors is also faster than that of most glutamate 

receptors. The fast GABA-removal via its re-uptake mechanism and the channel-kinetics in the 

synaptic cleft are responsible for the phasic component of GABAergic inhibition whereas the tonic 

inhibition is accounted for extrasynaptic GABAA-receptors, which also have a different subunit-

composition (Mody & Pearce, 2004).  

 

Physiology of interneurons 

 

From a general point of view interneurons fulfill a role in the activity-control of local neural 

circuits. This view is reflected by the name “local circuit neuron”. The effect they exert on the 

innervated cells is mainly inhibitory. This stands in contrast with the principal cells, which are 

mainly excitatory and are often called projection neurons, for projecting to different or distant brain 

structures or circuits. However, there are exceptions on both sides. In certain cases GABAergic 

interneurons can also provide distant projections, such as in case of the interneurons of the septal 

nuclei (Amaral & Witter, 1995) or Purkinje-cells, the former projecting to the hippocampus, the 

latter to the cerebellar nuclei. Long-range inhibitory connections constitute an important organizing 

principle between distinct parts of the basal ganglia as well. Another example is given by the 

reticular thalamic nuclei, which provide GABAergic innervation for other thalamic nuclei. 

Excitatory cells can also be local-circuit neurons. The so-called “mossy cells” of dentate gyrus are 

glutamatergic, but they innervate neighbouring granule cells that they receive input from (Amaral & 

Witter, 1995). 

Inhibition in the cortex is mainly provided by GABA. However, the effect of GABA can 

also be excitatory. The excitatory action of GABA is very prominent in development when it can 

also contribute to the plastic formation of microcircuits and can shape early network-patterns 

(reviewed by Ben-Ari et al., 2007). The effects of GABA are mediated by ligand-gated ion-

channels, which are permeable to Cl-- and HCO3
--anions. The direction of the current is determined 

by the membrane potential and the equilibrium potential of the given ions. In certain cases cells 

have higher internal Cl--concentrations and according to the Nernst-equation it leads to a smaller 

(less negative) Cl--equilibrium potential. When this equilibrium potential exceeds the actual 

membrane potential, the GABA-current can change its direction and instead of being an inward 
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negative current, it represents an outward negative current. This can lead to depolarization of the 

cells (Cohen et al., 2002; Stein & Nicoll, 2003), in certain cases in the form of shunting-inhibition 

(Vida et al., 2005), in other cases might also induce action-potentials (Szabadics et al., 2005). The 

cellular Cl--concentration is regulated by two transporters: the KCC2 (K+-Cl-cotransporter 2) and 

NKCC1 (Na+-K+-Cl- cotransporter 1) channels. The latter imports Na+, K+ and 2 Cl- ions into the 

cell whereas the former extrudes Cl- anions coupled to K+-export (Delpire, 2000). The expression of 

these molecules is developmentally regulated and this can account for the higher internal Cl--

concentrations during development and early postnatal periods when in many cases GABA is 

excitatory. Rodent infants are especially prone to seizures, which may reflect the immature 

inhibitory system in their brain at that age. Another phenomenon, which is generally associated with 

the switch of Cl--gradient is the giant depolarizing potential (GDP, reviewed by Ben-Ari et al., 

2007). It occurs in cortical areas of newborn or infant mammals but disappears later. However, 

according to Imre Vida and Marlene Bartos, a large proportion of hippocampal pyramidal cells 

might also exhibit the same properties as neurons early in development (Vida et al., 2005). In that 

situation GABA has a shunting-inhibitory effect. In other words it depolarizes the cell to some 

extent but then it fixes the membrane potential close to the Cl--equilibrium potential, thereby also 

inhibiting action potential generation. These effects may have important implications in the 

generation of oscillations where they might contribute to the precise timing of cell-discharge in 

large cell-populations. 

Interneurons in general fire at a higher rate than principal cells. In case of basket 

interneurons or axo-axonic cells, the innervation they provide is also more efficient than that of 

provided by principal neurons that generally innervate distal dendritic domains. The higher 

discharge-frequency of basket cells is brought about by several mechanisms of which the 

expression of fast repolarizing potassium-channels such as Kv3.1 or Kv3.4 is of utmost importance 

(Baranauskas et al., 2003). By their fast action, the depolarization-block of Na+-channels is relieved 

very rapidly on the interneurons. 

 

Putative roles of interneurons 

 

As we have seen, interneurons not only can inhibit other cells but in some instances can also 

excite them. Inhibition is a powerful tool to overcome deleterious effects of spreading excitation (in 

case of epileptic seizures for example). The principles of “synfire-chains” proposed by Abeles and 

Aertsen (Gewaltig et al., 2001) describe network-activities lacking a substantial inhibition. In this 

case, which resembles epileptic seizures, the excitation can propagate and activate an ever-growing 

cell-population and can only be stopped by the “exhausted” or “pseudo-refractory” state of the 
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system, determined primarily by neurotransmitter-release and properties of ion-channels (e.g. 

desensitization kinetics). Interneurons can circumvent these problems purely by their inhibitory 

action. Interneurons can also have a contrasting effect (collateral inhibition) that makes the output 

of principal neurons more specific to certain stimuli and thus also minimizes the energy-cost of 

information-processing. Phasic inhibition imposed on principal-cell-bodies enhances synchrony 

between distinct cells. In certain ways interneurons can have a role in the generation of gamma- and 

ripple-oscillations by their rhythmic inhibitory effect that also relieves the depolarization block 

from the Na+-channels (Klausberger et al., 2004). As a consequence, a large number of principal 

cells (and also interneurons) can be available for excitation and fire together. This happens for 

instance in the hippocampal CA1-region in slow-wave sleep (SWS) when ripples (oscillations in the 

frequency range between 130 and 250 Hz) occur. 

 

Plasticity at synaptic and network level 

 

Plastic changes belong to the most important ones in our brain-operations and without them 

we could hardly imagine our daily life. Electrophysiologists often relate certain in vitro and in vivo 

paradigms with plasticity. In general, we call synaptic plasticity any change in the efficacy of 

synaptic transmission. These synaptic changes can affect the release-probability of the presynaptic 

terminal, the number of released transmitter-molecules, the currents evoked on the postsynaptic side 

and also the structure of the synapses (Kandel et al., 2000). Plasticity can occur on shorter and 

longer time-scales at excitatory and inhibitory synapses leading either to an augmentation 

(potentiation) or a depression of synaptic transmission. The terms “paired-pulse facilitation” or 

“paired-pulse depression” denote short-term plasticity. Very often the kinetics of vesicular release 

explain this kind of plasticity. Upon an action potential synaptic vesicles are mobilized and get 

close to the release sites. When a new action-potential is generated, more or fewer vesicles are 

available for release, depending on the distance between the release site and the vesicles. Another 

aspect of short-term plasticity is the polyamine-dependent facilitation that is a postsynaptic 

mechanism. Certain polyamine molecules, such as spermin, spermidin or putrescin block the 

internal side of certain AMPA-receptors lacking GluR-B. Upon prolonged depolarization the 

polyamines exit the channels, thereby allowing a larger pool of channels to conduct ions. This effect 

is often accompanied by changes of the I-V (current-voltage) curve of the given channels, being 

inwardly-rectifying in the beginning, and double-rectifying after this form of plasticity takes place 

(Rozov et al., 1998). Not only interneurons can have this form of plastic change, but also pyramidal 



 21

cells, especially when they do not express GluR-B in a sufficient amount (Burnashev, 2003) and 

this effect can contribute to epileptogenesis.  

Long-term potentiation (LTP, originally described by Bliss & Lømo, 1973) requires 

alterations on either the pre- and/or postsynaptic side of the synapses. Postsynaptic LTP involves 

the incorporation of different sets of ion-channels on the synaptic membrane for instance or the 

synthesis of new proteins as well as induction and repression of genes. These different steps are also 

reflected by the staging of LTP: LTP1 is linked to posttranslational protein-modifications, LTP2 is 

reflected in changes in protein synthesis without changes at mRNA-levels whereas LTP3 depends 

on gene-expression alterations (reviewed by Bliss & Collingridge, 1993; Reymann & Frey, 2007). 

The Ca2+-current of NMDA-receptors is thought to be a key mediator in LTP-induction, however, 

the activation of Ca2+-permeable AMPA-receptors can also lead to LTP under physiological (Lamsa 

et al., 2007) as well as pathological conditions (Feldmeyer et al., 1999).  

Protocols, most commonly used in slice-preparations to evoke LTP are pairing, tetanic 

stimulation (Bliss & Lømo, 1973) or high-frequency stimulation (HFS) and theta-burst stimulation 

(TBS, Larson et al., 1986). As we will see later, the pairing protocol “associates” the activation of 

presynaptic inputs with the postsynaptic activity of the cell, so it relies on the concept of spike-time-

dependent plasticity*. 

*When action potentials are generated in neurons, the potential changes propagate back into their dendritic 

tree. As a consequence, Ca2+-channels open and increase Ca2+-levels in distant dendritic domains. Thus, a well-timed 

input on a given synapse can gain efficiency and be strengthened (Markram et al., 1997).  

HFS also resembles physiological network-processes, such as ripples when cells can fire 

with a high frequency for a short time-period while TBS consists of a high-frequency input wrapped 

in 5 Hz clusters (a good example is described by Raymond & Redman, 2006). Since pyramidal cells 

of the hippocampus tend to discharge during explorative behaviour (ongoing theta-rhythm in the 

hippocampus in the frequency-range of 4-8 Hz) and place cells often fire in bursts, we can see this 

protocol as a real counterpart of an in vivo situation which potentiates synaptic in- and outputs of 

place cells or other types of output neurons. Experiments show that the longer a given pyramidal 

cell is silent, the higher the probability that it will respond with burst firing to a sufficient excitatory 

input (Harris et al., 2001). The underlying mechanism is probably related to the de-inactivation 

kinetics of Na+-channels responsible for action potentials. Interestingly, pyramidal neurons are the 

most “bursty” not exactly in their place field-centre, but in places where the average spiking-or-

bursting-frequency is around 6-7 Hz, a frequency like that of theta-rhythm. In certain cases, this 

characteristic can make place fields sharper. Overall, it is proposed that single spikes can also gate 

the efficiency of burst-spikes on dendritic domains, thereby contributing to the dimensions of 
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plasticity (Harris et al., 2001). Remarkably, LTP can also be induced in vivo by certain learning 

paradigms, like inhibitory avoidance (Whitlock et al., 2006). The resulting increase in field 

potentials showed resistence to further high-frequency stimulation (LTP-occlusion), suggesting that 

the electrophysiological basis of learning correlates with changes induced with LTP-paradigms. The 

hippocampus has an extensive monoaminergic innervation and it is indeed thought that these 

monoamines play a role in learning. The performance of animals in learning paradigms can be 

enhanced by a modest stress, such as swim-stress (reviewed by Reymann & Frey, 2007). This 

observation is also underlined by the fact that ripples show alterations after administration of certain 

serotonergic (5-HT1A and 5-HT3 receptors) and histaminergic (H1 and H2 receptors) antagonists 

(Ponomarenko et al., 2003a). Low-frequency stimulation usually leads to depression of synapses. 

These processes are extremely important with respect to brain oscillations since rhythmic in- 

and output during oscillations can underlie synaptic modifications and in turn, these synaptic 

changes can then alter local or global features of oscillations. Cells firing together within a short 

time-window determined by an oscillatory cycle can potentiate their connections easier as reflected 

by the concept of “cell-assemblies”. Another eloquent example is constituted by the “spindle 

bursts”, high-amplitude synchronous events of 10-11 Hz, recorded from somatosensory cortices of 

newborn rat pups. These network patterns are brought about by limb-movements and are supposed 

to shape the sensory map of their body at that age (Khazipov et al., 2004).  

 

Brain oscillations in general 

 

Network synchrony has been a focus of research in neuroscience for almost hundred years 

now. Even though basic principles of synchrony and the underlying circuitry have been described, 

there are still many debates regarding mechanisms and physiological roles of oscillations. The main 

oscillation-types that can be recorded from the skull surface are usually in the slower frequency-

ranges of delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). This is because the 

slower an oscillation is, the bigger the entrained cell-population and thus one can record these 

massive effects even from the skull where the signals are heavily attenuated. In other words, the 

relation between oscillation-frequency and oscillatory power can be described by a power-law 

(logarithmic relation, Buzsáki & Draguhn, 2004). For the long-range synchrony pacemakers and 

long-range connections between distant cortical domains are also required in addition to the 

numerous short-range connections. Theoretical estimations and anatomical measurements suggest, 

however, that even a small percentage (0.5 %) of connections when long-range can fulfill this 

function (Buzsáki, 2006). However, they need to be at critical places. For example the thalamic 
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inputs coming from nonspecific thalamic nuclei (such as the reticular thalamus) provide a major 

contribution to the generations of delta- and alpha-rhythms, and sleep-spindles as well (both 

thalamocortical and corticothalamic projections are needed in this process, reviewed by Steriade, 

1999). These nuclei are also responsible for generation of cortical UP- and DOWN-states that 

constitute an ongoing switch between a depolarized and hyperpolarized state of the cellular 

membrane potential, inflicted by the thalamic pacemakers. One might speculate that for faster 

rhythms short-range synchrony can be of bigger importance. That is indeed the case but not in an 

exclusive sense. CA1-ripples for instance, even though being very fast emerge synchronously in the 

two hemispheres even if they do not show cycle-by cycle coherence (Chrobak et al., 1996). In this 

case commissural projections between the two hippocampi take part in their synchronization.    

 

Oscillations of the hippocampus 
 

The hippocampus shows a wide array of oscillatory patterns in the characteristic frequency 

bands of theta- (4-12 Hz), gamma- (30-85 Hz) and ripple-range (130-250 Hz). These oscillations 

are spatiotemporal summations of electric currents of orchestrated cell-populations. The laminar 

organization of the hippocampus is quite suitable for recording purposes because of the high cell-

density of the pyramidal-layer resulting in a high density of transmembrane currents. We have to 

keep in mind that cellular synchrony determines the extracellular rhythms, and what we simply call 

electroencephalogram (EEG) or local field potential (LFP) is generally a shadow of intracellular 

events and action potentials. 

Ripple-oscillations (figure 3.) are characteristic for the CA1-region and even though in vitro 

also CA3 can generate them, CA3-ripples cannot be accounted for as traditional ripples, their 

frequency in vivo also being slightly smaller than those of CA1 (Csicsvári et al., 1999a). Distinct 

oscillations are characteristic of certain behavioural states, ripples are brought about during slow-

wave sleep (SWS), waking immobility, consummatory and grooming behaviour whereas theta-

rhythm nested with gamma (figure 3.) usually occurs during exploratory behaviour and REM-sleep 

(rapid eye movement sleep or paradoxical sleep, described by Jouvet; Buzsáki, 2006). The structure 

of the theta-related EEG also shows species-specific differences. For example theta of the human 

REM-sleep is rather “fragmented” (Buzsáki, 2006) and also reflects evolutionarily conserved 

navigation strategies, such as that of bats, in which theta is “packed” synchronously with 

ultrasound-emission used for echolocation (Ulanovsky & Moss, 2007). 

Regarding the theta-rhythm we can claim that its generation is not specific and restricted to 

the hippocampus and that probably many oscillators interact while bringing it about, involving also 

the septal nuclei with its cholinergic and GABAergic projections to the hippocampus. Also 



 24

GABAergic back-projections from the hippocampus to the septum play a role. Based on 

pharmacological and behavioural correlates, theta activity is often dissected into type I and type II 

theta. Both types occur during locomotion, but only type II that is atropin-sensitive can be recorded 

under urethane-anaesthesia when theta is usually evoked by sensory-stimulations, such as a tail-

pinch (Yoder & Pang, 2005). As determined form partial coherence analysis, even the hippocampal 

formation contains two theta-generators, one of them mediated by the entorhinal inputs via the 

perforant path terminating in the stratum lacunosum-moleculare, the other by the CA3-Schaffer-

collaterals, innervating dendritic domains of the stratum oriens and radiatum (Kocsis et al., 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.: Examples of hippocampal oscillations. On the left side a ripple is shown (lower trace is 

raw signal, upper trace after filtering between 130 and 250 Hz). On the right side a very short 

segment recorded during REM-sleep is shown, with characteristic theta- and gamma-oscillations 

(lower trace is the raw signal, the upper one is the filtered signal between 30 and 85 Hz). The time 

bar for ripples is 0.2 s, for gamma 0.5 second. Note that the amplitude of these events in the mouse 

hippocampus is in the mV-range.  
 

The gamma-rhythm is not specific for the hippocampus but can also occur in distinct 

neocortical domains. The most well known examples are the visual and the auditory cortices where 

the incoming input promotes network oscillations (Gray & Singer, 1989). In their classical 

experiment these scientists recorded from the visual cortex of anaesthetised cats with extracellular 

electrodes while they projected moving bars onto the retina of the animals. They found that at 

certain recording locations the power of gamma showed a tuning-curve depending on the direction 

of the bar or arrow they moved. Interestingly, but not surprisingly they also found that the cells 
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showed very similar tuning curves on that location and those cells which had the same directional 

preference showed a quite remarkable phase-locking to the ongoing gamma-rhythm. Gamma-

synchrony in the visual cortex is not only promoted by sensori stimuli but is also influenced by 

stimulus-selection* (Fries et al., 2002), implying that perceptual differences can adjust the level of 

“synchrony” and can also gate sensori inputs.  

*Stimulus-selection means a “decision” on which one of the stimuli projected onto the eyes separately would 

be the dominant one if there are contrast- or illumination-differences between them or if they are projected onto the 

retina of the dominant or subdominant eye. 

The hippocampal gamma-rhythm in classical situations, such as locomotor behaviour and 

REM-sleep, is nested within theta-rhythm. In addition, given parameters, such as amplitude and 

frequency of the gamma are modulated by characteristics of theta, such as the phase of theta but 

also amplitude of the underlying slower rhythm (Bragin et al., 1995). 

It is not entirely correct to speak about a given gamma-rhythm in the hippocampus. It seems 

that this structure has two gamma-generators, one of them being the DG (driven by the entorhinal 

cortex), the other the CA3-CA1 circuitry, and these two systems interact with each other (Csicsvári 

et al., 2003b). It is generally accepted that the UP and DOWN states of the neo- and paleocortical 

areas influence these generators. UP-states can drive a specific set of dentate granule cells, which 

can oscillate at gamma-frequency and can activate a selective set of pyramidal cells in the CA3 

whereas most of the pyramidal cells are inhibited by interneurons. In this scenario the CA3-CA1 

gamma- and ripple-generator would be suppressed whereas the generator in DG would be active. 

During a DOWN-state, however, the DG would not exert suppression on the CA3-CA1 axis, 

allowing the generation of CA3-CA1 gamma and ripples (Isomura et al., 2006). The suppressive 

effect of entorhinal inputs is corroborated by the fact that by dissecting entorhinal inputs, the 

gamma-power in the CA3-CA1 system shows a strong increase (Bragin et al., 1995). The function 

of CA3-pyramidal cells is of utmost importance in the gamma-synchrony of CA1 since by 

removing CA3-inputs to CA1, one can extinguish oscillations in the latter (Fisahn et al., 1998). It 

seems that both the recurrent excitatory loops within CA3, as well as the monosynaptic drive of 

CA3-pyramidal cells onto CA1-pyramids and CA1-interneurons contribute to synchronous network 

activities of CA1 (Csicsvári et al., 2003b). Since pyramidal cells show the tightest coupling to the 

gamma-rhythm recorded on the same electrode, it has been speculated that the local gamma-power 

is the reflection of EPSPs (excitatory postsynaptic potentials) and IPSPs (inhibitory postsynaptic 

potentials) in the neighbourhood of the recording site. That way, an analogy with the visual cortex 

can be drawn since the local gamma-power would be determined by the actual spatial input and the 

receptive field of the given cells of a particular location (Gray & Singer, 1989). 
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Ultrafast (above 100 Hz) synchrony resembling ripples can occur in the neocortex also 

normally but more often under pathological conditions. Epileptic activity is an extreme grade of 

ultrafast synchrony. However, ripples represent a physiological mechanism, thought to be important 

for memory-consolidation processes. It is estimated that roughly 10-15 % of all hippocampal 

neurons can be active during a given ripple, hence during a short time-window spanning no longer 

than 100 ms. This extreme temporal synchrony is supposed to bring together cells in the form of 

“cell-assemblies” that might be the primary storage-place for memory-traces. Ripples are not 

specific for the hippocampus but also occur in the amygdala (Ponomarenko et al., 2003b) and in 

certain output routes of the hippocampal formation, such as the subiculum and entorhinal cortex 

(Chrobak & Buzsáki, 1996) and unitary analysis confirms that ripples are indeed generated there. 

Ripples are thought to be dependent on the CA3 subregion and the Schaffer-collateral inputs and in 

slice-preparations spontaneously occurring ripples travel from CA3 towards CA1 (Maier et al., 

2003). Interestingly, one can also induce ripples with LTP-protocols in slices, in which previously 

no ripples occurred spontaneously (Behrens et al., 2005). This observation would imply that ripple-

generation relies on cell-assembly formation in the CA3-network. The CA3 region cannot be 

considered homogeneous regarding either its histology or its involvement in the generation of ripple 

oscillatory epochs. The CA3a and CA3b domains are characterized by extensive recurrent 

collaterals that can recruit subsequently more and more cells in the beginning of sharp waves 

whereas CA3c would rather be an “output-connector” towards CA1. Interestingly, at least 10 % of 

CA3 pyramids need to be recruited in a 100 ms window to have a considerable effect on CA1-

synchrony in forms of ripples (Csicsvári et al., 2000). Remarkably, lower grade synchrony is 

associated with a smaller increase in firing rates of CA3-pyramids than of CA1-pyramids, but this 

relation is completely the opposite for higher-grade synchrony (synchrony meaning the number or 

percentage of cells firing in a short time-window), which probably also reflects the activity of 

recurrent loops. On the other hand, József Csicsvári and his colleagues made very interesting 

observations and distinctions based on the actual ripple-amplitude generated in CA1. They 

classified ripples into big (>7SD above threshold) and medium size (7SD>size>4SD above 

threshold) categories and they saw that high-amplitude ripples are more coherent across different 

recording sites of CA1 whereas smaller ripples are not so much. Besides, they found that the 

activity of given CA3 neurons could be predictive of the character of the upcoming CA1-ripple. 

This leads to the idea that ripples might reflect the coherent and synchronized activity of CA1- (and 

also CA3-) microdomains, CA1-neurons being strongly correlated with certain CA3-pyramids on 

one hand, on the other hand it suggests that ripples of different amplitude or morphology represent 

different activated cell-assemblies. Similarly to gamma, pyramidal cells show the strongest 
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coherence with “their local” ripples and show much weaker with distant ones whereas interneurons 

show a high coherence with distant locations as well, suggesting a more general role for them in the 

generation of gamma- and ripple-oscillations. 

To nail it down to an anatomical scheme, the story begins in the CA3 where the recurrent 

loops gather more and more CA3-cells firing and bringing about a sharp-wave, which is equivalent 

to the excitatory input via the Schaffer-collaterals. In CA1 this input excites pyramidal cells and 

interneurons in parallel (feed-forward excitation and feed-forward inhibition). The inhibitory effect 

of the interneurons on the pyramidal cells then will be delayed by one synaptic delay with respect to 

the maximal excitation of pyramids. The CA1-pyramids also activate CA1-interneurons, which 

exert inhibition on them (feed-back inhibition). The interneurons hyperpolarize the cells, which 

ensures the relief from the Na+-channel block and therefore pyramidal cells can fire synchronously 

again, activating again the interneurons that will inhibit them. The “energetic drive” is the CA3 and 

the ripple lasts until the underlying sharp wave lasts. 

We know very little about the subcellular and molecular details of the generation of ripples 

and in many respects of gamma-rhythm. Besides chemical neurotransmission recent studies also 

suggest the involvement of gap junctions in this process (Draguhn et al., 1998; Traub & Bibbig, 

2000; Whittington & Traub, 2003), even though the importance of “electrical synapses” in higher-

order brain functions of phylogenetically more developed species has been underestimated for a 

long time. Gap junctions are molecular complexes that allow for an intercellular transport of 

molecules smaller than 2 kDa. The gap junctions are usually formed from two hemichannels, 

expressed on the neighbouring cells, these are called connexons, and each connexon is built up from 

six connexin molecules (Kandel et al., 2000). Since there are many types of connexins expressed in 

the brain, the subunit-composition of each connexon can vary to a great extent, this also leads to a 

great versatility of the conducted currents. There are connexins, for instance connexin36, which are 

expressed exclusively on neurons whereas others, for instance connexin43, are expressed both on 

neurons and glial cells. Pannexins are also supposed to form gap junctions (Bruzzone et al., 2003). 

As far as we know the mostly known pannexins: pannexin1 and pannexin2 are specific neither for 

pyramidal cells nor for interneurons, but can be expressed in both neuronal populations (Vogt et al., 

2005). Connexin36, however, seems to be more specific for interneurons (Hormuzdi et al., 2001). 

Certain connexins, such as connexin36 are located mainly on dendrites whereas pannexins are 

supposed to be mostly located on axons. It seems that both axonal (Schmitz et al., 1996) and 

dendritic gap junctions can facilitate the rhythmogenesis in the gamma- and ripple-frequency range 

since action potentials or postsynaptic potentials can propagate between cells practically without 

any synaptic delay. Slices from the hippocampus of connexin36 knockout mice displayed reduced 
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gamma-oscillations in vitro (Hormuzdi et al., 2001) and certain alterations in ripples as well (Maier 

et al., 2002). The connexin36-deficient mutant mouse also showed diminished gamma-power 

during exploratory behaviour (Buhl et al., 2003).  

Based on the findings of Dietmar Schmitz it was speculated that the average number of gap 

junctions that an axon forms with other axons is actually very low, 1 or 2. However, as also 

modeling studies (Traub & Bibbig, 2000) show, even that number can make ripple-oscillations very 

robust since the excitatory output of the network would not depend so much on the individual 

excitation of pyramidal cells. Roger Traub and his colleagues developed an interesting 

multicompartmental model composed of both principal cells and interneurons in which in addition 

to chemical synapses axo-axonal gap junctions are also present between principal cell axons. Based 

on their computation, axons can “fire” with a very high frequency, even if the cell somata cannot 

follow this high frequency. The major requirements for this are a critical density of axo-axonal 

coupling (the before mentioned 1-2, on average 1.6 per axon), a sufficient conductance of the gap 

junction channels (so that the action potential can jump quickly from one axon to the other or at 

least can induce spikelets) and some ongoing firing of certain pyramidal cells, which becomes more 

robust upon dendritic depolarization occurring in the form of sharp waves. Their prediction is that 

the frequency of the evolving “rippling” is higher when either the conductance of a single gap 

junction is increased or the density of the gap junctions on an axon is increased. However, by 

increasing the strength of inhibition, the oscillation-frequency approaches the gamma-range, so it 

slows down. The weaker inhibition also favours the antidromic propagation of action potentials 

whereas stronger inhibition and lower frequency is favourable for orthodromic spike-propagation. 

Even though the principle of axo-axonal coupling is thoroughly discussed nowadays (however, with 

a lot of debate), it raises certain problems regarding the specificity of output processing since 

principal cells are considered the output neurons of our brain. 

Another remarkable feature of the gap junctions is that they connect almost exclusively 

neurons of the same type, either principal cells or different subclasses of interneurons (Blatow et al., 

2003). This might indicate a developmental role for gap junctions as well, expressed already at 

earlier stages of the ontogenesis in precursors of specific neuronal subclasses. 

Even though gap junctions might have a role in the generation of gamma- and ripple-

rhythms, inhibitory neurotransmission is indeed involved in oscillogenesis. One can record very 

small amplitude intracellular membrane potential-fluctuations in synchrony with ripples and the 

polarity of these oscillations reverses around the Cl--equilibrium potential, indicating that 

GABAergic transmission is most probably involved in their generation (Ylinen et al., 1995). 

Besides, ripples show changes after the application of different GABAergic agonists and 
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antagonists, such as benzodiazepines, zolpidem and flumazenil (Ponomarenko et al., 2004). These 

and other experiments (Penttonen et al., 1998) also suggest that IPSPs and also EPSPs on both 

pyramidal neurons and interneurons contribute to the extracellular LFP-oscillations, be they ripples 

or gamma-oscillations.  

 

Network synchrony in vitro 
 

Many of the mentioned rhythms also exist in brain slices, suggesting that the mechanisms 

bringing them about rely on smaller circuitries. Spontaneously occurring ripples can easily be 

recorded from CA3 and CA1 in slice-preparations (Draguhn et al., 1998), but they can also be 

induced by electrical stimulation. The application of the GABAergic blocker gabazin actually 

facilitates the ultrafast oscillations, even if not in the form of sharp wave-ripples (SPW-ripples, 

Maier et al., 2003) which often leads to the hypothesis that GABAergic transmission is not 

necessary for the generation of high-frequency oscillations. Besides, since these oscillations are 

sensitive to the gap-junction-blockers octanol and carbenoxolon, it has been hypothesized that axo-

axonal gap junctions may contribute to their generation (Draguhn et al., 1998; Maier et al., 2003). 

On the other hand, the slicing procedure can destroy longer axons which might also be coupled via 

gap junctions. One might thus underestimate their importance in network synchrony or depending 

on the orientation of slices one might get different results. 

Gamma-oscillations can also be induced by tetanic stimulation or pharmacologically in 

hippocampal (Fisahn et al., 1998; Bartos et al., 2007), entorhinal (Cunningham et al., 2003) and 

auditory cortical slices (Cunningham et al., 2004; Traub et al., 2005). The most commonly used 

drugs in these protocols are kainate, domoate and the cholinergic agonist carbachol. However, one 

must be aware that the mechanisms underlying the rhythms in these in vitro models do not 

necessarily match each other or either the real in vivo situation. Carbachol for instance activates 

metabotropic cholinergic-receptors on pyramidal cells first and interneurons are activated 

secondarily via the principal cells. This type of oscillation is both sensitive to the AMPA-receptor 

blocker NBQX and the GABAA-blocker bicuculline (Fisahn et al., 1998). However, when the 

network is activated via kainate-receptors, pyramidal cells and interneurons are activated 

simultaneously and since kainate can provide sufficient excitation, it is not sensitive to NBQX 

(Bartos et al., 2007). Furthermore, mechanisms can be different in hippocampal subregions. Last, 

but not least, gamma-oscillations in slice-preparations occur in absence of theta-rhythm, which is 

normally not the case in vivo.  
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Interestingly, interneurons can also synchronize when glutamatergic neurotransmission is 

blocked in the network, indicating that via GABAergic inhibition they can pace each other (Traub et 

al., 1998). However, since GABA might also have a shunting inhibitory effect and gap junctions 

may also contribute to synchrony, we cannot clearly attribute a major role to phasic inhibition in 

this process.  

Slower oscillations can also be induced pharmacologically, in neocortical preparations for 

instance where the application of carbachol evokes synchronized intracellular membrane potential-

oscillations in mutually coupled interneurons (multipolar bursting cells) in the theta-frequency-

range (Blatow et al., 2003).  

However, not only electrophysiological paradigms can be helpful in understanding the 

principles of network synchrony. A newly developed method, the two-photon microscopy offers an 

excellent opportunity to investigate synchrony in smaller local circuits using optic principles. The 

application of Ca2+-sensitive dyes allows for pursuing the activity-state of a given neuron while the 

use of a shorter wavelength irradiating laser source enhances the penetration depth of the light 

beam, thus expanding the histological volume one can examine (Denk & Svoboda, 1997). One can 

then correlate the state of neighbouring neurons with a relatively good time-resolution, in the range 

of tens of milliseconds. 

Multi-electrode arrays (MEAs) can also be used to record from several sites of an in vitro 

preparation (Mann et al., 2005). The application of voltage-sensitive dyes can also inform us about 

the coherent activity of bigger cell-populations, their depolarized and hyperpolarized states. 

However, their use is limited due to the toxicity of the dyes. 

 

Brain synchrony in vivo 
 

Neuronal synchrony in vivo can be measured with a wide array of methods. The EEG can be 

recorded either on the skull or from the brain in situ using implantable electrodes or grid-electrodes 

which are usually applied to the cortical surface. In certain pathological conditions, such as 

pharmacologically untreatable epilepsy, intracerebral recordings can help localize the seizure-center 

and can lead to a full recovery of the patient after the operation. We have to be aware that with 

skull-EEG one obtains only attenuated signals that are furthermore restricted to a lower frequency-

range due to the bone capacitance. Besides, signals are usually summations of a larger brain surface, 

which can lead to imprecision. The magnetoencephalography (MEG) uses the principle that 

alternating currents (such as our neural postsynaptic and action potentials) generate magnetic fields 

which can be recorded with loop-like devices. Since for the recording an optimal orientation of the 
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magnetic field is required, the MEG is usually more straightforward in following the activity of 

brain sulci and fissures than that of planar cortical regions (Buzsáki, 2006). 

Implantable electrodes are of wide use in neurophysiology of animals, especially in rodents 

but also in monkeys. In general, one uses extracellular electrodes, such as single-wires or 

stereotrodes, the latter being better in unitary recordings since they enhance the efficiency of unit-

separation. The most commonly used is the tetrode. Tetrodes consist of four very thin metal wires 

that are twisted around each other. The thickness of one such wire is precisely in the range of 

cellular size. Thus, the distinct channels will give an excellent spatial resolution since action 

potentials recorded on different channels will be of different amplitude due to the very steep decay 

of the recorded action potential with distance (McNaughton et al., 1983; Buzsáki, 2004). Indeed, 

tetrodes were first applied to reconstruct spatial arrangement of closely spaced cells. The 

“extracellular” action potential is not simply a mirror image of the intracellular one but can be 

approximated with the first derivative of it in time. With the help of tetrodes one can relate LFP-

oscillations with single cell data. Silicon probes also show the stereotrode principle, however, their 

major aim is different. Their big advantage is that one can record from many histological layers 

simultaneously (Csicsvári et al., 2003) and thereby reconstruct current-source density (CSD) 

profiles to reveal what kind of currents underlie the rhythms and to determine in which layers they 

are generated (Mitzdorf, 1985). This computation can be complicated since the relation between 

intracellular currents and their extracellular “reflections” are quite complex. In case of an action 

potential the cell gets temporarily positive relative to its resting potential, due to the cation-influx. 

Since these charges stem from the extracellular space, their close environment gets temporarily 

negative, that is why we normally see action potentials as negative deflections on extracellular 

recordings. However, LFP-oscillations are not only a summation of action potentials of the 

neighbouring neurons, but postsynaptic potentials of large neuronal populations most probably have 

an even larger contribution. When a cellular domain gets depolarized, the extracellular space around 

shows negativity. However, on other parts of the cell positive charge will be released to compensate 

for the depolarization, that is why the extracellular space surrounding those cellular domains will 

become slightly positive. If we record from different histological layers simultaneously, we 

normally find these sink-source pairs. In this case there will be an active sink and a passive source 

representing a so-called return current. This can also be the opposite, in case of inhibitory 

neurotransmission. To find out, which is the active and passive current of the sink-source pair, one 

usually needs unitary analysis as well.  

The optical methods used in in vivo functional imaging have a much lower spatial and 

temporal resolution than electrophysiological methods. Nevertheless, they can provide useful 
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information on the function of distant brain regions in different cognitive tasks. Functional magnetic 

resonance imaging (fMRI) and the resultant blood oxygen level dependent (BOLD) signal relies on 

the principle that the blood supply of active brain regions increases (Kandel et al., 2000; Buzsáki, 

2006). Due to the delay of intracellular cascades involved in blood-vessel regulation, the temporal 

resolution of this method is in the range of seconds. 

 

Interneurons in oscillations and plasticity 

 

Certain interneurons are active at distinct behavioural states and distinct phases of 

oscillations (Table 1.). One of the most synchronous oscillatory events of the brain is the previously 

described “SPW-ripple” complex. Axo-axonic cells are active usually in the very beginning of the 

ripples and they seem to be silent afterwards (Klausberger et al., 2003). Both PV-positive basket 

cells and bistratified cells increase their firing during ripples (Klausberger et al., 2004), but CCK-

positive interneurons (CCK-cells) do not change their activity (Klausberger et al., 2005) whereas O-

LM cells are silent during these events. Interneurons are also active at distinct phases of the theta-

cycle (Table 1.), thereby leading to the assumption that CCK-cells might be important in the phase-

precession of pyramidal cells for instance and that O-LM cells might be important in theta-

generation. The methodology used in the Somogyi-lab allows for a good post hoc identification of 

the recorded cell-type but urethane-anaesthesia used in their experiments is a certain limitation. 

Tetrode-recordings from freely behaving animals allows for the distinction between pyramidal cells 

and interneurons, but the identification of interneuron-subtypes can be more problematic. Studies 

from the Buzsáki-lab confirm that interneurons also tend to fire on the ascending phase of ripple-

waves (whereas pyramidal cells in the troughs) and generally on the descending slopes of theta-

waves (Buzsáki et al., 2003 for mice; Csicsvári et al., 1999b for rats), as we see for PV-positive 

basket cells in anaesthetized rats. 

 

Cell type Theta-phase Ripples 

Basket cell Descending (PV),  
or ascending (CCK) 

Increases, ascending phase 
(PV), does not change (CCK) 

Chandelier (axo-axonic) cell Peak In the beginning 
Bistratified cell Trough Increases, ascending phase 
O-LM cell Trough Silent 
Table 1.: Interneurons functioning in distinct ways during different oscillations. Table is based 

mainly on data obtained in the Somogyi-lab. 
 

Very important distinctions between interneurons can be made according to biochemical 

markers that they express. The PV-positive basket cells also express certain K+-channels (Kv3.1 
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and Kv3.4) that ensure their fast repolarization after action potential generation (Baranauskas et al., 

2003). These K+-channels also ensure that they can fire with a high frequency, in slice-preparations 

up to 100 Hz. CCK-cells on the other hand can follow a frequency only up to about 40 Hz 

(reviewed by Freund, 2003). Glutamate receptor expression on interneurons is also different: PV-

positive basket cells express kainate- and AMPA-receptors at a great density, but only very small 

amount of NMDA-receptors whereas CCK-cells have a much higher density of NMDA-receptors 

on their surface. Therefore, PV-cells might be more static actors whilst CCK-cells more plastic. 

CCK-cells also express CB1 (cannabinoid) receptors, to whom an important role in DSI 

(depolarization-induced suppression of inhibition) has been attributed. When a pyramidal cell is 

active and emits “bursts” (let us imagine a place cell at a given location during active exploratory 

behaviour), cannabinoids are synthesized in the pyramidal cell and diffuse to the inhibiting basket 

cells. Since CCK-cells express cannabinoid receptors, they can sense the endocannabinoid. This 

leads to a decreased GABA-release from their synaptic terminal (Klausberger et al., 2004). 

Therefore the given pyramid is not inhibited so much and it can emit spikes even with a smaller 

degree of excitation. So it can slide downwards on the slope of the theta-wave, and thus accounts 

for phase-precession. Not surprisingly, the consumption of marihuana leads to learning- and 

memory-deficits. Application of cannabinoid agonists in vivo resulted in decreased LFP-power 

especially in the ripple-frequency range, which was not associated with any change in the 

discharge-rates of neurons. However, the coordination in cell-assemblies and the spiking-regularity 

was influenced by the drugs explaining the oscillatory-findings and also the learning-deficits 

(Robbe et al., 2006). GABAA-receptor subtypes are also differentially expressed                                                                 

 

Figure 4.: Distinct 

basket cell populations 

may perform distinct 

functions. CCK-cells 

and PV-cells express 

different receptors on 

their synaptic terminals 

and their electro-

physiological properties 

are different as well. 

Picture comes from 

Freund & Katona, 2007, 

Neuron, artwork was 

done by Gábor Nyíri. 

 



 34

on the synapses formed by the diverse basket cell-population: PV-cells having mainly α1, CCK-

cells α2 on their postsynaptic targets. It is important to note that α2 subtypes of GABAA-receptors 

are responsible for the anxiolytic effect of benzodiazepins (reviewed by Freund, 2003). 

I mentioned the absence of plasticity in interneurons that do not or only weakly express 

NMDA-receptors. Certain LTP paradigms almost exclusively point to the importance of NMDA-

receptors in the induction of Hebbian LTP (which means that pairing stimulation of a given 

pathway with the depolarization of the postsynaptic cell leads to strengthening of the “targeted” 

synapses). This can be more or less true for CCK-cells since they express NMDA-receptors in a 

good quantity which conduct Ca2+-ions at a relatively positive membrane potential. However, in 

case of oriens or alveus-associated interneurons that only have Ca2+-permeable AMPA-receptors 

activated at a more negative voltage, LTP is anti-Hebbian, meaning that pairing of 

hyperpolarization with the stimulation of a given pathway leads to synaptic strengthening (Lamsa et 

al., 2007). This holds true for PV-cells as well, due to their low-level NMDA-receptor expression.  

There are also other differences between PV- and CCK-cells that suggest a more plastic role 

of the latter type in network phenomena. Ca2+-channels on the presynaptic terminals of PV-cells are 

of the P/Q-family, with a strong coupling between these channels and the Ca2+-sensor required for 

vesicular GABA-release. This kind of mechanism usually excludes short-term facilitating effects on 

these synapses. In contrast, CCK-cells express N-type Ca2+-channels on their presynaptic boutons. 

These channels are located further away from the sensor, thereby allowing facilitation to occur on 

those GABAergic synapses that are formed by CCK-cells (reviewed by Freund & Katona, 2007). 

CCK-cells are also modulated by a number of modulatory afferents, such as serotonin (5HT). 

Besides, GABAB-receptors expressed on their axon-terminals extrasynaptically can inhibit GABA-

release in an autocrine manner. These observations attribute a more rigid role to PV-cells in 

network synchrony whereas the CCK-cells would have a more delicate, tuning role, which requires 

certain plastic capabilities of course. 

 

Proposed functions of the hippocampus 

 

We have seen the anatomical architecture and histological constitution of the hippocampus 

and have hints, how these can serve electrophysiological phenomena, such as oscillations or 

plasticity. Now we have to see, what cognitive tasks this structure performs and if there is any 

correlation between network synchrony and cognitive behaviour. The hippocampus has been 

implicated in many cognitive functions and depending on the animal species the hippocampus 

might perform different sets of “intellectual” tasks. The importance of the hippocampus in learning 
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was first supposed in the mid of the 20th century when clinical and neurosurgical cases proved that 

without an intact temporal lobe, learning of new information is impossible. A patient often referred 

to (H.M.) suffered a complete loss of the capability of acquiring new information after a surgical 

bilateral lesion of his temporal lobes, even though his memories from his life before the operation 

were more or less preserved (Scoville & Milner, 1957)*. Another important cause for hippocampal 

destruction can be a herpes-encephalitis, which destroys the temporal structures with a great 

propensity, or the Wernicke-Korsakow-syndrome, a dietary B1-vitamin deficiency. The latter, 

however, is not specific for the hippocampus but rather to its fornical and mammillary projections. 

The recurrent wiring of the hippocampus (especially that of CA3) via its activity-related energy 

consumption also makes it quite vulnerable to hypoxia. Probably it is also related to the 

hippocampal wiring that the seizure threshold for this brain area is low and epilepsy eventually 

leads to neurodegeneration. The pathological changes of Alzheimer Disease in its classical form are 

first seen in the temporal lobe and also hippocampus (for a complete view on the pathology of 

hippocampus see Szirmai, 2005). All the named diseases perturb learning-mechanisms and 

memory. An interesting aspect of H.M.’s postoperative deficits reflects a contextual retrieval 

problem. The patient remembered persons he had just met before, as long as these persons were in 

the same context, for instance the same room. When they moved to a new room he could not 

recognize the same persons any more.  

*However, other symptoms caused by the loss of the temporal lobes might not be directly related to the 

hippocampus proper. The Klüver-Bucy-syndrome for instance, which is characterized in monkeys, is due to the loss of 

the corpus amygdaloideum. Since the amygdala is involved in fear conditioning, the animals usually exhibit a loss of 

fear even towards noxious or dangerous factors, such as snakes. In addition, they become hypersexual and develop oral 

tendencies. 

The classical idea is that the hippocampus would be a temporary storage place of newly 

acquired information and thereby the residing place of memory traces shortly after their acquisition. 

According to this view, the information would be “written out” from the hippocampus to 

neocortical areas during SWS (Buzsáki, 1989; Buzsáki, et al., 1994). This memory-consolidation 

process would require the strengthening of synapses between hippocampal output neurons and their 

targets. Ripples represent a highly synchronized hippocampal activity and it is supposed that they 

have an important role in the consolidation process. Besides, pyramidal cells often fire with a high 

frequency during ripples, which is quite suitable for modifying neocortical synapses (just as an in 

vivo LTP-protocol). It was shown that performance in certain cognitive tasks increases after sleep, 

and the performance correlates well with the time spent in SWS (Buzsáki, 2006). However, ripples 

can also occur in awake immobile periods and sometimes also during exploratory behaviour 

(O’Neill et al., 2006). The role of these ripples (with theta-rhythm interspersed SPW-ripple 
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complexes) would be to provide a better update of the recently learned environment and to cope 

with the huge place-related information coming in during exploration. During REM-sleep, the 

period when normally dreams occur, most of the potentiated cells also show a reactivation (it can be 

considered a replay-mechanism). Since inhibition is somewhat looser during sleep than during 

wakefulness, some previously not perfectly potentiated output neurons can also be activated. This 

effect might be responsible for the somewhat confounding and very often quite creative character of 

our dreams*. 

*As we shall later see, memories are often thought to be stored in the coherent activity of cell-assemblies, via 

their well-correlated activity. As Freud points out in many of his clinical cases (“Dora: An analysis of a case of 

hysteria” or “Little Hans”), subjects or locations in dreams are mainly transferred to other subjects or places (which 

could coalesce with a slightly perturbed assembly-coordination). On the other hand he implies that in many cases the 

logical relations between subjects are preserved, sometimes are turned to opposite and mimic that of the original 

persons and objects. Thus, it might be that more stable connections between cell-assemblies would be representing 

logical operations. 

According to evolutionary psychiatrists, dreams could also have an adaptive role during 

phylogenesis by providing subjects with “novel ideas” during their everyday struggle for potential 

resources (Stevens & Price, 1996). An alternative proposal relies on the analysis of the most 

frequent dream contents. The fulfillment of basic instincts in many dreams (sexual contents), the 

quite frequent archetypal contents (such as proposed by Jung) and behavioural patterns often 

performed when arousal happens in the middle of a dream (“flight and fight” for instance) imply 

that genetic determinants can be involved in the programming of dream contents. These programs 

could have a role in “pretraining” subjects in infancy or childhood for dangers lurking around them 

in prehistoric times (actually a similar thing happens in the well-known movie “Matrix”). However, 

evolutionary studies also suggest that REM-sleep has something to do with the economy of brain in 

terms of memory storage. Certain egg-laying mammals, representing a very early stage in the 

mammalian development do not have REM-sleep at all, on the other hand they have a huge 

neocortex compared to their overall body-size. It may well be that sleeping also has a role in 

removing unnecessary memory-traces, and keeping only the really necessary ones, thereby 

minimizing the spatial requirements for memory storage (for more details see Stevens & Price, 

1996). 

However, certain theories imply that the hippocampus is also involved in memory retrieval. 

According to these ideas the two hippocampi would not be equal but one of them rather specialized 

for memory acquisition and the other to memory retrieval. In this case the latter would function as a 

“librarian”, who, according to the “memory-indexing hypothesis” would provide access to the 

information stored in the neocortex (Lytton & Lipton, 1999). 
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An interesting theory proposes that the information can be stored in the form of cell-

assemblies, like small engrams and with time these engrams would be transported along the 

temporoseptal axis of the hippocampus. According to this model the oldest information would be 

stored around the temporal pole of hippocampus whereas newer engrams would be located closer to 

the septal pole (temporoseptal engram shift model, Lytton & Lipton, 1999). However, a theory like 

this might be difficult to reconcile with the stability of place fields observed in rodents and with the 

memory-indexing hypotheses since it would require a day-to-day update and continuous change in 

the indexing synapses’ strength. However, certain imaging studies seem to support this idea in 

human subjects. Since the rodent and human hippocampus is of different size and the proposed size 

of engram-modules is roughly the same, the information would need more time to travel along the 

human hippocampus than it would need in rodents.  

In rodents, however, the hippocampus performs navigational tasks as well. As an animal 

explores and learns a new environment, it uses certain navigation strategies. The intellectually most 

demanding is called taxon navigation that uses allocentric (meaning external) cues, usually distal 

landmarks for its spatial navigation (for example trees, hills, the sun, rivers, etc.). A major hallmark 

of this strategy is a multimodal perceptual integration of all incoming environmental information. 

Indeed, the hippocampal formation receives extensive innervation from brain regions involved in 

visual and olfactory processing. As an animal is getting acquainted to an environment, it develops 

alternative strategies to navigate in it. First, it might memorize turning or intersection points of the 

maze, just as we learn to find our goals using streets of a town. This form of orientation is called 

praxic navigation and is usually related to the striatum. In the next step of abstraction the animal 

plans its trajectory based on earlier experience just by knowing its initial location, the goal location, 

its speed and the direction of its own movement. This type of navigation, also referred to as path 

integration, does not require external cues, but egocentric (or idiothetic) ones. Different brain 

regions might be involved in this form of orientation, supposedly mainly the entorhinal cortex. In 

the next part we shall discuss the different cell types involved in the navigation (for a more 

complete view an spatial navigation see Redish, 1999; on path integration see McNaughton et al., 

2006). A navigation strategy for a given environment does not exclude others, the animal might 

switch back to the hippocampal one when its striatum is compromised in its function, as was shown 

by experiments in which lidocain-injections were administered (reviewed by Redish, 1999).   

Distinct subregions of the hippocampus might perform different tasks in orientation and 

spatial navigation. Nakazawa et al. (2002) showed that a CA3 region-specific NMDA-receptor 

knockout mouse is impaired in a pattern completion task (after an already learned environment is 

represented with certain external cues, some of them are removed and then an experimental subject 
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has to recognize the same environment based on the remaining cues). According to their hypothesis, 

this would be accomplished by the autoassociator CA3-loops, which can “fill in” the missing gaps 

with the help of their recurrent connections (reviewed by Nakazawa et al., 2004). The CA3 also 

seems to be important for the acquisition of one-time experience (Nakazawa et al., 2003). Another 

phenomenon, the pattern separation (discrimination between superficially similar but basically 

different environmental arrangements) would be performed by the dentate gyrus (McHugh et al., 

2007). 

 

Cells specialized for navigation 
 

In the seventies an interesting observation was made by O’Keefe and Dostrovsky. They 

found that the activity of a great percentage of hippocampal pyramidal cells is bound to the location 

of a rat in a given recording environment (O’Keefe & Dostrovsky, 1971). They christened them 

place cells since they were only active when the rat was at a given location and remained silent in 

other places (figure 5.). In parallel, other cells were described in certain thalamic nuclei, in the 

mammillary nucleus and in the retrosplenial cortices that fired only when the animal’s head faced a 

certain direction. These cells were named head-direction cells (Ranck, 1984). Both the animal’s 

position and the head-direction that usually indicates the direction of motion contain indispensable 

information for path integration.  

 

Place cells can be found in the CA3 and CA1 areas as well. However, their characteristics 

are somewhat different. One should note that place fields are context-dependent. They display a 

given field in a specific environment but they can fire in a different place in a contextually different 

one. Besides, the animal’s near past and future can also influence their activity. This is called 

retrospective and prospective coding (Wood et al., 2000). Place fields might be bidirectional or 

unidirectional (normally it is only visible on tracks where the animal can explore a given location 

only from two directions and cannot make “junction crossings” such as in open fields or more 

realistic environments). What makes place cells interesting with respect to oscillations is their 

phase-precession. This means that while the animal approaches and traverses the receptive field of a 

given cell, the cell emits spikes on earlier and earlier phases of subsequent theta-cycles. This 

Figure 5.: Place cells are usually represented by firing rate maps. A 

typical CA1 place cell (picture is from Kentros et al., 2004, Neuron) has 

a single receptive field where its firing is maximal (peak frequency,

indicated with dark blue) while its activity sharply decreases with 

increasing distance from the centre. Different species have different 

place field sizes.  
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phenomenon is often explained by the interaction of two oscillators, a somatic and a dendritic one, 

the former representing perisomatic inhibition and the latter dendritic excitation upon 

environmental exploration. The dendritic excitation depends on the animal’s spatial position. Since 

the extracellular local field would be generally composed of the interference of the “two theta-

oscillations” but the action potential emission is rather determined by the excitation strength which 

invades the soma upon dendritic depolarization, the spikes come earlier and earlier, as the drive is 

getting stronger (Harris et al., 2002). As the animal traverses many place fields while moving in the 

environment, several place cells are activated in a sequence. As the animal reaches the center of one 

place field, cells which predict the animal’s future location are already activated but the neurons 

representing the present and near past locations are still active, although on different phases of the 

theta-rhythm. Given the principle of phase-precession, there would be many cells firing in one 

theta-cycle, in different phases of the ongoing theta-rhythm. Thus, both the animal’s past, present 

and future is represented this way in a compressed time-scale and to pack this spatial information in 

cell ensembles the theta-clockwork seems to be a prerequisite (Buzsáki, 2006).  

There are several models describing the coordination of neurons in this cell-assembly. The 

pacemaker-model suggests that the cellular activity would solely be determined by an external 

pacemaker representing environmental input. However, the cell-assembly model proposes that there 

is also an internal coordination between members of the cell-assembly in the hippocampus itself 

(Dragoi et al., 2006). According to the cell-assembly model the precision of information processing 

would be enhanced, since the firing-order of pyramidal cells would also be determined by the 

synaptic interactions between assembly members. Taken together, it appears that space-

representation involves distinct computational strategies within the same system: spatial location is 

represented by the phase of the theta-cycle when a given place cell discharges (temporal- or phase-

code), by the spike frequency generated by a cell (frequency-code) as the animal gets closer to the 

center of the place field and by the combination of active cells at a given time thus denoting a cell-

assembly (population code). 

Place fields are not rock-solid entities, they can change in a dynamic way. The stability of 

place fields is strongly influenced by the attention level of the animal when it learns its 

environment. For example, the performance of an intellectually demanding task in a maze leads to 

more stable place fields (Kentros et al., 2004). In an interesting experiment Dragoi and his 

colleagues used LTP-protocols on the Schaffer-collateral inputs to modulate place cell activity of an 

already learned environment. This way they found certain changes and rearrangements of place 

fields, which in many cases turned out to be reversible (Dragoi et al., 2003). As also these 
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electrophysiological insights suggest, NMDA-receptors play a role in place encoding. Indeed, mice 

with a CA1-specific NR1-deletion display smeared hippocampal place fields (McHugh et al., 1996). 

As mentioned earlier, animals may recognize the same environment even after slight changes. This 

is generally reflected by the behaviour of place cells that fire in similar locations although small 

alterations are carried out in the environment. However, the firing frequency of pyramidal cells 

might change, this is called partial or rate remapping. When the environment is changed to a 

different one, cells do not preserve their original place field but fire on distinct locations and with 

distinct characteristics. In this case also the spatial interrelation between distinct place fields is lost 

compared to the original environment. This is called global remapping, which implies a contextual 

shift regarding the animal’s place-representation. These phenomena can be investigated with so-

called “morphed environments”, which involve gradual alterations on the maze the animal learns 

(Leutgeb et al., 2005). 

Place cells are not only active during exploration but in sleep they show “reactivation”. As 

we have seen for the cell-assemblies during theta-rhythm, it has been proposed that the sequential 

order of reactivated cells firing inside ripples during SWS reflects the order of activation during the 

exploration (Buzsáki, 1994). However, when reactivation occurs in ripples of waking immobile 

periods, the reactivation order is just the opposite of the “place-acquisition-order” (Foster and 

Wilson, 2006). It is thought that this “reverse replay” would enhance the efficiency of reward-

related learning. Since normally an animal has to reach its target-location first to get a reward, the 

reverse-order would ensure the activation of cells related to reward (maybe somehow connected to 

dopamine-release) already in the beginning of an oscillatory epoch and thus it would “mark” (so to 

say enhance the potentiation on) the whole sequence of the activated place cells. 

Sometimes one can find cells with more complex properties in the parahippocampal 

structures, such as the pre- and parasubicular cortices. These include the TPD-cells (theta-

modulated place-by-direction cells, Cacucci et al., 2004). The activity of these neurons is not just 

simply a function of the animal’s location but also shows a dependence on their head-direction. 

Interestingly, in remapping experiments the two modalities were independent of each other since 

place-related activity showed global remapping while the directional preference of these cells 

remained constantly the same. 

A recent discovery suggests that place-related activity is not unique for pyramidal cells but 

can be found for interneurons as well (Ego-Stengel & Wilson, 2006; Maurer et al., 2007). It has 

been proposed that those interneurons can inherit activity-patterns from the innervating pyramidal 

cells but the function of this phenomenon is still unknown. In many cases interneurons show phase-

advancement, meaning that they are activated at later and later phases of subsequent theta-cycles. 
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This phenomenon is explained by the differential kinetics of excitatory and inhibitory drive that 

interneurons receive, which can be different from that of pyramidal cells. 

In 2005 an interesting cell type was found in the entorhinal cortex, a structure that provides 

a substantial input to the hippocampus. These cells discharge when the animal is located in the 

vertices of a hexagonal spatial matrix and are called grid cells (Hafting et al., 2005). The geometry 

of this system can be described with three major parameters; the grid spacing (the distance of 

vertices from each other), the phase of the grid (describing the orientation of the matrix or the axes 

of the lattice) and the gridness score (describing how well a given cell can be fitted with grid-like 

properties). Interestingly, grid cells recorded from the same location show very similar features 

(figure 6.) and there is a correlation between anatomical position in the dorsomedial entorhinal 

cortex and the grid spacing for instance. In one report the grid spacing was also correlated with 

intrinsic cellular properties, such as resonance-frequency in the theta-range (Giocomo et al., 2007), 

implying a relation with oscillations. The formation of grid-structure is dependent on distal cues and 

landmarks but it persists without them (for example in darkness). By rotating cue-cards in the 

environment the grids move together with them, suggesting a remapping-phenomenon.  

 

 

 

 

 

 

 

 

 

 

 

 

The entorhinal cortex also possesses head-direction cells and cells that comprise both grid-

like- and head-direction-properties. These cells are the so-called conjunctive cells. Interestingly, 

when researchers rotate the cue-configuration in the animal’s environment, grid cells and head-

direction cells rotate their tuning-curves to the same degree, suggesting that they are involved in the 

same sort of place-representation (this behaviour is different from that of the TPD-cells where after 

remapping directional tuning remains the same even with a different place-preference). The activity 

of the conjunctive cells is modulated by the speed of the animal. Altogether these facts suggest that 

Figure 6.: Grid cells from the 

entorhinal cortex, picture from 

Hafting et al., 2005, Nature.  

On the upper part one can see 

firing rate-maps and grid centers of 

three grid cells. In the lower row 

spatial cross-correlograms for 

pairs of three distinct grid cells 

recorded on the same tetrode are 

seen. The orientation and spacing 

of the grids are quite similar to 

each other, as shown by the cross-

correlograms and grid centres can 

be superimposed on each other by a 

simple translocation. 
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the entorhinal cortex could be sufficient for the generation of path integration (Sargolini et al., 

2006). Thus, the entorhinal cortex would provide a spatial metric system for navigation while the 

role of the hippocampus would be to integrate multimodal information from the environment. 

Which mechanism is the primary one, needs to be verified. 

 
The importance of PV-positive interneurons and their involvement in learning 
 

In the previous parts I summarized current knowledge on hippocampal oscillations and 

explained with a few examples how these oscillations can be related to plasticity and to the roles the 

hippocampus performs in behaviour. But is there anything known regarding the link between 

hippocampal interneurons specifically and behaviour? 

PV-positive interneurons (PV-cells) comprise roughly 25 % of the hippocampal interneuron 

population, this number and their diversity (both axo-axonic, bistratified and a great percentage of 

basket cells belong to them, and many O-LM cells also express PV weakly, Klausberger et al., 

2003) also suggest an important role for hippocampal physiology. Indeed, malfunction of PV-cells 

may be involved in the pathogenesis of human psychiatric disorders, such as schizophrenia (Zhang 

& Reynolds, 2002). Basket cells are responsible for perisomatic inhibition and together with the 

axo-axonic cells their basic presumed function would be the output-control of principal cells. 

However, axo-axonic cells might not exclusively be inhibitory, but in many instances they are 

excitatory. PV-cells have an exquisitely high density of excitatory terminals on their dendritic tree 

compared to other interneuron types (Gulyás et al., 1999, see also figure 7.), which suggests a very 

reliable coupling to synchronous excitatory events.  

We have seen that PV-cells are coupled to ongoing oscillatory rhythms, both to theta and to 

ripples, but different PV-positive subpopulations might be involved in different ways in these 

processes. Axo-axonic cells are active just in the beginning of ripples and stay silent afterwards 

whilst PV-positive basket cells increase their activity throughout ripple activity, just as bistratified 

cells do. PV-cells express NMDA-receptors at low levels, therefore they are considered less plastic 

than CCK-cells (Freund, 2003). 

In our laboratory Elke Fuchs generated transgenic mice that express Cre-recombinase in PV-

cells. By crossing these mice with floxed GluR-A mice (Zamanillo et al., 1999) she obtained 

offsprings in which PV-cells lose their GluR-A-expression (PV-GluR-A KO mice). She also 

generated and analyzed GluR-D knockout (GluR-D KO) mice, with the advantage that normally 

GluR-D-expression is almost restricted to PV-cells. In vitro electrophysiological insight into these 
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Figure 7.: PV-positive cells receive a robust excitatory innervation on their dendrites compared to 

CB- and CR-positive cells (electronmicroscopic studies by Gulyás et al., 1999).  

 

mice revealed that they have smaller AMPA-currents on their PV-cells than normal mice have and 

pharmacologically induced gamma-oscillations were decreased in their power in both mouse 

mutants (Fuchs et al., 2007). She also analyzed the animals in learning-paradigms, in spatial 

working memory (T-maze), reference-memory (Y-maze and hidden platform Morris water-maze) 

tests and novel object recognition*. Interestingly, the animals underperformed in spatial working 

memory (figure 8.B) and novel object exploration but were practically normal in reference memory 

(figure 8.A), indicating a defect in the early phases of memory-acquistion.  

*In the T-maze an animal initially finds a food pellet in a given arm of the maze. In the next run the food pellet 

is placed in the other arm and the animal has to remember for a short time that it already consumed the food in the first 

arm. Therefore in an optimal case he will turn to the actual, food-storing arm. In the Y-maze the animal always finds the 

food pellet in a given location but its initial location is kept flexible. So this test is designed for spatial navigation and 

long-term memory functions. In the novel object exploration test the animal explores distinct objects placed in a cage 

for a certain time, and the time it spends with each object is measured in a session. Subsequently one object is displaced 

by a new one and the time spent with the two objects is measured again. In a normal situation the animals prefer 

exploring the new object. 

 

These data underline the possible involvement of PV-cells in learning processes and their 

involvement to alterations in network synchrony.  
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Figure 8.: Both the general 

GluR-D KO and the PV-cell 

specific GluR-A KO mice 

display normal spatial reference 

memory (A), but have deficits in 

spatial working memory (B). In 

the reference memory-test one 

can see the gradual increase in 

performance from 50 % 

(chance-level) towards higher 

values. Thus, with time even 

these mutant animals can learn 

to navigate in that  

environment. The test for 

working memory shows that the 

mutants perform significantly 

worse than WT mice (B). The 

figure is from Fuchs et al., 

2007, Neuron. 
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THE MAIN SCIENTIFIC QUESTIONS OF THIS STUDY  

 

Brain oscillations are supposed to provide a temporal frame for information processing and 

many cognitive functions, as suggested by a wide literature (Gray & Singer, 1989; Buzsáki et al., 

1994; Buzsáki, 2006). However, so far this assumption turned out to be difficult to prove 

experimentally due to the lack of appropriate model systems. 

In vitro electrophysiological and behavioural studies (Fuchs et al., 2007) carried out in our 

lab showed that the mice in which GluR-A has been knocked out specifically in PV-positive 

interneurons (later on referred to as PV-GluR-A KO mice) exhibit a complex phenotype, involving 

perturbed network synchrony and deficits in hippocampus-specific behavioural and learning 

paradigms (see the respective part of the Introduction). Based on these findings and the literature, 

we wanted to investigate, whether certain aspects of synchronous network activities and various 

forms of cognitive behaviour can be correlated with each other. 

In my experiments the main goals and questions were the following:  

 

I.  What kind of changes if any do different hippocampal oscillations show in the PV-GluR-

A KO mice in vivo? Given the proposed roles of PV-positive cells in gamma- and ripple-rhythms, 

we hypothesized that gamma- and ripple-oscillations show alterations in vivo. In other words, what 

is the function of PV-positive interneurons (mainly PV-positive basket cells) in the generation of 

hippocampal gamma- and ripple-oscillations? 

 

II.  What features can we extract from unitary analysis in the mutant animals? How do these 

alterations on a cellular level (pyramidal cells and interneurons) translate into modifications on a 

multicellular network level? To answer this, we analyzed unitary activity in wildtype (WT) and PV-

GluR-A KO mice and tried to correlate unitary results with oscillations. 

  

III. Can we draw any correlation between network synchrony (in the form of oscillations 

and unitary activity) and the behavioural deficits in these animals?  

 

To address these questions we applied in vivo electrophysiological measurements in freely 

moving and behaving mice using three types of electrodes: single tungsten wire-arrays, tetrodes and 

silicon probes.  
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MATERIALS AND METHODS 

 

Animals 

 

In this study we used fourteen mice, seven WT (mostly floxed GluR-A mice), and seven KO 

(floxed GluR-A animals with Cre-expression under the PV-promoter). The PV-GluR-A KO mice 

were generated by Elke Fuchs based on the floxed GluR-A mice (Zamanillo et al., 1999), which 

were crossed with the PV-Cre mice (Fuchs et al., 2007). The floxed GluR-A, PV-Cre or complete 

WT littermates served as negative controls in our experiments (Table 2).  

 

Wildtype mice PV-GluR-A KO mice 

M60 (floxed GluR-A) M187 

M210 (3 tetrodes)(WT) M209 

M221 (floxed GluR-A) M220 

M1096 (PV-Cre) M486 (7 tetrodes) 

M1097 (floxed GluR-A) M1086 

M671 (floxed GluR-A) M672 

M701 (WT) M700 

 

Table 2.: The animals used in this study, numbers mean identification numbers in the Central 

Animal Facility of the Heidelberg University. In case of the pairs 209-210, 220-221, 1086-1097 

(together with 1096), 671-672 and 700-701 WT controls were littermates of the KO mice, in case of 

the remaining animals this was not so. Animals implanted with silicon probes are marked with bold 

signals and gray shading. 

 

Eight mice were implanted with single tungsten wire-array electrodes (tungsten wires of 45 

µm, obtained from California Fine Wires Company), two with tetrodes (a WT with 3 and a KO with 

7 tetrodes) and four with silicon probes (Table 2). The age of the animals on the day of the surgery 

was between three and four months on average (101±33 days for WT and 94±27 days for KO, 

means and standard deviations). The average weight of the mice was in the range of 25-30 gramms, 

they were provided with food and water ad libitum.  

 

Electrodes 

 

The electrode drives were prepared manually from prefabricated elements. They consisted 

of movable pieces (their number ranging from 3 to 7 for tetrodes or just 1 in case of wire-arrays or 
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silicon probes), which could be advanced or retracted with a screwdriver. The connection board and 

the PIN-connector were fixed with a small and thin metal framework on the drives. The electrodes 

were guided by silica-tubes with 75 µm internal and 150 µm of external diameter (from Polymicro 

LLC, www.polymicro.com), they were fixed in the tubes with glue and protruded from them 3-4 

millimeters. Tetrodes were prepared from polyimide-coated platinum-iridium wires 12 µm in 

diameter, obtained from the Kantal Palm Coast company. Since the impedance of the tetrodes was 

above 1 MΩ, we had to decrease the capacitance of their tip by using a gold-chloride (AuCl3) 

solution (SIGMA, 200 mg/dl). After plating their impedance was around 250-400 kΩ. The 

connection between the tetrode-channels and the connection-board was established with a 

silverprint (Auromal 38, AMI DODUCO GmbH). The respective channels of the board and the 

PIN-connector were soldered together with an aluminium-based soldering pen. 

 

            

 

Figure 9.: Two special electrode-types used in this study. On the left side a tetrode-drive is shown. 

One can see the seven microdrives that can be moved independently from each other and the very 

thin tetrodes protruding from the silica-tubes. The small “legs” at the very right of the picture are 

used for the fixation on the animal’s skull. On the right side a characteristic design of silicon 

probes is shown (picture from Csicsvári et al., 2003a, Journal of Neurophysiology). A: global view 

of a probe, B: the connector side, B1-B2: shanks magnified with the arrangement of recording sites, 

C-D: connection schemes of preamplifier modules used with silicon probes. 

 

Silicon probes have been purchased from a company (ACREO). In these experiments 8-

shank, 64-site probes were used, comprising 8 recording sites on each shank, their vertical spacing 

being 50 µm. The distance of the shanks from each other was 60 µm, thereby creating an 8 times 8 

rectangular matrix spanning more than 400 µm of the hippocampus in lateral direction, and 

allowing for recording from both the stratum oriens, stratum pyramidale and stratum radiatum 

simultaneously. To protect the drives and to provide a good electromagnetic “shielding” we applied 

an aluminium foil-based coverage to the drives, which we hardened with epoxy-glue (R&G GmbH, 

Microdrives 

Legs 

Silica-tubes 

PIN-connector 
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www.r-g.de). The shielding was also grounded. The recording sites of the probes were connected 

with two flexible circuits comprising 32 channels to a small board, which ensured a proper contact 

between the probe itself and the preamplifiers. We used 32-channel preamplifiers with an input-

resistance of 10 MΩ to minimize the signal amplitude-decrease resulting from the use of high-

impedance electrodes, such as silicon probes. These preamplifiers were ordered from the Brain 

Technology Team (www.braintelemeter.atw.hu, Pécs, Hungary).  

 

Surgery 

 

Animal handling, anaesthesia and surgery were carried out in accordance with the German 

Laws for Animal Care and Animal Wellfare. For operation narcosis we used volatile isoflurane 

anaesthetic. The mice were preanaesthetised in a chamber in a way that they were dizzy enough to 

endure the fixation on the stereotaxic frame meanwhile they also inhalated the gas (1 liter of 

atmospheric pressure air/minute supplied with required amount of isoflurane, around 4-5 % for 

anaesthesia-induction and later on around 1 % for the maintenance of the narcosis), which provided 

a smooth continuum for the deeper anaesthesia stages. The very fast equilibrium between brain 

tissue, blood and inhalation mixture allowed for an excellent control over the depth of narcosis. The 

depth of anaesthesia during the operation was controlled frequently by the hindpaw-reflex and 

cornea-reflex. No incision took place until these reflexes disappeared. During the operation the eyes 

were covered with a polycarbohydrate-based gel (Vidisin Optic from Dr. Mann Pharma) and the 

thermal stability of the mice was ensured by a heating pad. The very top of the mouse head was 

shaven, the skin above the skull after desinfection was incised and the skull surface was disclosed. 

For the later fixation of the electrode head-set and for grounding and referenceing purposes stainless 

steel screws were also implanted, two above the prefrontal cortical region and two above the two 

cerebellar hemispheres respectively. We also implanted wire-electrodes into their neck-musculature 

for electromyography (EMG) recording purposes. Subsequently a small hole (1-1.5 mm in 

diameter) was drilled into the skull above the parietal cortical areas. The centre of the hole was 

located 2 mm posterior and 1 mm lateral to the bregma (the implantation coordinates were based on 

George Paxinos & Keith B. Franklin: The mouse brain in stereotaxic coordinates). The dura mater 

was removed using a small pincette and electrodes were implanted in the neocortical layers or the 

corpus callosum of that region. Silicon probes were implanted in a “coronal” plain to provide a 

“coronal electrophysiological section” of the respected hippocampi. After the implantation the 

electrode-parts lying free and the brain surface in between the borders of the hole were covered with 
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wax, and the “legs” of the drive were fixed on the skull and onto the screws with dental acrylic 

(Paladur).  

 

EEG-recordings 

 

After the recovery of the animals, the electrodes were slowly advanced to the hippocampal 

pyramidal cell layer where recordings were obtained using an MCP Plus system (and AlphaMap 

software, from Alpha Omega) in the frequency range from 1 to 10000 Hz. For recordings, animals 

were placed in a circular arena of 48 cm in diameter with plastic walls of 50 cm height. The floor 

and walls of the arena were cleaned with ethanol after every recording session. The animal’s 

headset was connected with the preamplifier and the preamplifier was connected with a cabel to the 

amplifier channels of the recording setup. Signals were digitized with an analog-digital conversion 

board allowing for a sampling rate of 20 kHz. In addition to recordings in CA1 stratum pyramidale, 

we  also acquired recordings from the stratum oriens and stratum radiatum and in some cases from 

CA3 and DG. After completion of the experiments the mice were deeply anaesthetized with 

ketamin (Ketavet, Pharmacia GmbH) and an electrolytic lesion was induced via a selected electrode 

located in the stratum pyramidale. For the lesion a square-wave pulse of 150 µA and 2 sec duration 

was applied with a Digitimer Ltd. stimulator. Subsequently mice were perfused transcardially with 

20 ml physiological saline solution followed by the same amount of 4 % PFA (para-formaldehyde). 

Their brain was removed, sliced on a vibratome and stained with cresylviolet. In all cases the 

successful positioning of the electrodes in CA1 was verified histologically.  

 

Analysis of the data 

 
Analysis of oscillations 
 

Recordings were analyzed off-line with the Spike2 software and MatLab-scripts (see 

Matlab-website at www.mathworks.com), and occasionally also with GraphPad Prism 

(www.graphpad.com). For LFP- and oscillation-analysis preselected recordings were split based on 

a 700 Hz low-pass and high-pass filter into EEG-signal and spike-related potentials (Spk-files) 

(mprocess-algorithm, designed by József Csicsvári). The EEG-files had a sampling rate of 1250 Hz. 

We selected recordings from stratum pyramidale where ripple amplitudes were maximal from a 

given animal and where sharp waves preferentially showed a biphasic profile (according to the 

pyramidal layer). The recordings (roughly 1.5-2 hours in length) were scored according to the 

behavioural state of the animals with a 10 sec bin-size. The behavioural staging was performed 
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using the prefrontal cortical EEG-signal, the EMG-signal and in certain cases the hippocampal EEG 

itself. Awake exploration was characterized by so-called “desynchronized” signal on the prefrontal 

and theta-oscillations on the hippocampal channels combined with phasic muscle-activity. To fulfill 

criteria for slow-wave sleep (SWS) the prefrontal and hippocampal EEG had to show large 

amplitude slow-waves (so-called “synchronized” patterns) corresponding to delta waves and sleep-

spindles and the EMG-channels had to display a lack of considerable muscle-related activity. REM-

sleep criteria were desynchronized cortical activity and hippocampal theta-rhythm with muscle 

atonia. Intermediate stages were allocated to segments, which did not fit to either of these groups 

but they were not included in the analysis later.  

Ripples (selected from SWS) and gamma-oscillatory events (selected from REM-sleep and 

awake exploration) were first analyzed as events with a threshold-based peak-detection algorithm 

(Ponomarenko et al., 2004). For ripple-analysis, recordings were filtered in the 130-250 Hz range 

with a 15 Hz transition band, for gamma a 30-85 Hz range was used with a 5 Hz transition. The 

filtered signals were also rectified and smoothed with 0.005 s windows for ripples and 0.015 s for 

gamma-analysis. Detection thresholds were computed based on the smallest variance 3 s long 

recording segment from the rectified and smoothed signal. The mean (M) and standard deviation 

(SD) of this baseline segment served later for computing thresholds for ripple-detection (M+7SD) 

and gamma-envelopes (M+2SD). As additional criteria, these signal-segments had to be at least 15 

ms long in case of ripples and 25 ms long in case of gamma-envelopes. The final length of these 

events was determined based on the points where they fall below M+0.5SD and M+1SD (ripples 

and gamma respectively) on the rectified signal. The amplitude of the detected events was 

calculated from the filtered (but not rectified) signals and was normalized later to the SD and 

threshold values of the baseline: (amplitude-threshold)/SD. For frequency-analysis a wavelet-

function (Morlet) was applied in the region of the ripple- and gamma-peaks on the filtered signal. 

This analysis was followed by a power spectral analysis (multi-taper method, modified by Partha 

Mitra). This algorithm used the peak-amplitude points of the ripples and computed the frequency-

composition in the time-segment located 64 ms around the amplitude-peak using a 2048-point Fast 

Fourier Transform (FFT) function. The power spectrum was computed as a second power of the 

Fourier Transform. We also analyzed ripples of different amplitude-ranges, most prominently 

ripples bigger than the median of amplitude distributions but smaller than those belonging to the 

upper 5 percentile. This way our estimates were more robust against threshold-differences and 

outliers. Ripples whose prominent frequency was higher than 140 Hz in their power spectrum were 

also compared between the animals and animal groups.  
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To gain insight into the theta- and gamma-bands, a similar multi-taper method was used, 

with the exception that we selected REM-sleep and awake exploratory episodes from representative 

recordings based on hypnograms and these segments were used in total for spectral decomposition. 

The spectrum of SWS was analyzed in a similar way. We also analyzed amplitude- and frequency-

modulation of gamma-rhythm by theta. First we computed the Hilbert-transform of the selected 

signals in the theta-band to get the most precise approximation of the theta-phase at each sampled 

point. This way the precise and corrected theta-phase could be allocated to the gamma-peaks. A 

complete and Hilbert-transformed theta-wave was split into 24 equal phase-bins (15 degrees or 

actually π/12 radians) and the mean gamma-wave amplitude (from filtered gamma) in each 

particular bin was computed by averaging the gamma-waves peaking in that particular phase-bin. In 

a similar way the frequency-modulation was computed using the interpeak-intervals of gamma-

cycles covering the theta-wave and the values were arranged according to the timing of the gamma-

waves they stem from. In these cases gamma was treated as a continuous oscillation. These 

measures, however, were also analyzed separately for gamma-cycles of detected gamma-events. For 

ripple-waveform analysis, ripples extracted from the EEG were aligned to each other with their 

positive peaks. For coherence-studies cross-spectral coherence and interpeak-intervals were 

calculated. To achieve that, time-lags between peaks of successive oscillatory cycles were 

computed on different positions (actually different channels) and their difference served as a base 

for frequency comparison with IPI (the difference between the interpeak-intervals on the compared 

channels). The cross-spectral coherence of different channel-combinations was computed from the 

multi-taper Time Frequency Cross-Spectrum of the respective channels (originally developed by 

Partha Mitra). The cross-spectrum is practically the FFT-based spectrum of the reference channel 

multiplied with the spectrum of the respective channel. To make this measure insensitive to the 

signal-amplitudes, the second power of the cross-spectrum was divided by the multiplied product of 

the cross-spectra of the individual channels (the cross-spectrum of an individual channel is 

practically the second power of its individual spectrum). Thus, in other words 

NormCrossSpectralCoh12 = (CrossSpect12)
2/(CrossSpect11*CrossSpect22). To describe phase-

coherence, phase-shifts between the peaks of oscillatory cycles on the compared channels (any 

given channel relative to a reference channel) were computed separately for gamma- and ripple-

envelopes. 

We also applied current-source density (CSD) analysis to uncover the underlying currents of 

ripple-oscillations. To do so, different channels (on the same shank) of silicon probe recordings 

were used. Average waveforms were computed on the different channels triggered by the ripple-

peaks on a given pyramidal-layer channel. From the average waveforms spanning 240 ms centered 
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at the ripple peak, the second spatial derivative was derived for each sampled point. For the 

derivation we used a spatial difference of 2 channels (practically 100 microns).  Finally, to make the 

results more comprehensive, a linear interpolation was used and the results were plotted with a 

colour-code in the two-dimensional time-depth matrix.  

 

Unitary analysis 
 

For spike-sorting the above-mentioned Spk-files were used for feature-extraction which was 

based on Principal Component Analysis. These features (altogether 17) were used later for a 17-

dimensional hierarchical clustering (KlustaKwik, written by Ken Harris, available at 

http://sourceforge.net/projects/klustakwik). The resultant clusters were verified and merged 

manually by using the Klusters software (designed by Lynn Hasan). 

For the identification of units we used distinct criteria for pyramidal cells (less than 3 Hz 

average firing rate, a characteristic autocorrelation function with “bursty” sidepeaks and more than 

0.35 ms spike-width) and interneurons (more than 7 Hz average firing rate, distinct autocorrelation, 

lack of “burstiness”, spike-width shorter than 0.35 ms, figure 10.). The autocorrelation of a given 

cell describes the relation of its spikes to each other in time, and thus is very similar in its meaning 

to the interspike-interval histogram. The spike-width was computed between the points of 25 % of 

the maximal spike-amplitude (Csicsvári et al., 1999b). The units characterized by firing between 3 

and 7 Hz were classified as “intermediate type cells”, they might include very fast pyramids or 

special, slower interneuron-types. 

Units were considered “clean”, if they did not contain any spikes in their autocorrelogram in 

the first 2 ms bins. For the analysis of interneurons, also some units containing a lower number of 

spikes in the respective bins of their autocorrelogram were used as multiunits. In this case their 

“contamination” was estimated by relating the firing rate in the refractory period (refractory rate) to 

the “asymptotic firing rate” reflecting the average firing rate. A refractory rate of 100 would mean 

that in the given multiunit every second action potential stems from a contaminating unit. However, 

we included only much “cleaner” multiunits in the analysis. The isolation-quality was described 

with the isolation distance or Mahalanobis-distance, reflecting the overlap between the cluster-

clouds (Harris et al., 2000). An isolation distance above 30 indicated a good isolation quality and 

above 40 an excellent separation (Harris et al., 2000). To minimize the inclusion of cells which 

were recorded more than once (and therefore could have biased the distributions), we applied an 

electrode-advancement protocol and also a redundancy-screen that compared features of the units 
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from subsequent recordings. In this way one cell was usually represented by one recording session 

in our database. 

Recordings were also analyzed in distinct EEG-states based on an automatic theta- and 

ripple-detection routine. The automatic ripple- and gamma-detection was performed as described 

previously. For automatic theta-detection a 2048-point FFT-analysis was performed on the selected 

 

              

Figure 10.: The Klusters software (Hazan et al., 2006) was used to analyze multiunit recordings. 

The platform shows four windows illustrating cluster-clouds of three selected units, the waveforms 

of these three cells on the four tetrode-channels, the cluster-similarity matrix and the interspike-

interval histograms (or so-called autocorrelations). The purple cell is a putative basket cell, the 

other two are pyramidal cells. Cross-correlations (relation between the firing of distinct neurons) 

are indicated in white. 

 

EEG-file with a 2.5 s bin-window size and 1.25 s overlap between them. Segments were selected as 

theta, if the ratio of the spectral power between 6-12 Hz (theta) and 2-5 Hz (delta) exceeded 6 in a 

given bin. For oscillatory phase-computations the peaks and troughs of oscillatory waves (theta, 

gamma and ripples) were determined and these time points were set as π (or 180 degrees which is 

equal to - π or -180 degrees due to the circular nature of oscillations) and 0 respectively, and the 

phase values between these points were interpolated. Since theta-waves show a physiological 

asymmetry (their descending slope lasting longer than the ascending) and cannot be described 
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perfectly with harmonic oscillator models (Siapas et al., 2005), a correction of non-uniformity 

distribution was also applied for their analysis. This way, unitary activity could be investigated 

during distinct oscillatory types (theta, gamma and ripples). In addition to average firing rates, 

faster spike-trains (more than 50 Hz, corresponding to spikes omitted in a time-window shorter than 

20 ms) were described with the instantaneous or “bursting” frequency. The phase-locking of 

isolated units was analyzed in distinct ways. The number of spikes of a given cell was computed in 

20 bins covering a complete wave (from - π to π), and the spike-phase histograms were averaged 

after normalization to the overall number of spikes emitted by a given unit. In a complementary 

way the phase-preference of units was estimated with the Rayleigh test. We also estimated the 

modulation-strength with the so-called “modulation depth”, the relative difference in the spike 

count between the phase-bins with the maximal and minimal counts.  

 

Statistical analysis 

 

The examined parameters from WT and KO animal groups were compared using the 

Wilcoxon rank sum test, and in case of normal distributions with the t-test. Regression slopes were 

compared with covariance analysis. We used the statistical toolboxes of the Matlab and GraphPad 

Prism packages. We applied the Watson-Wheeler test to compare circular distributions. If not 

otherwise indicated, distributions are represented by their mean values and standard errors. 
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RESULTS 

 

Hippocampal oscillations in PV-GluR-A KO mice 

 

Earlier in vitro experiments on the PV-GluR-A KO mice were performed by Aleksandar 

Zivkovic, Andrey Rozov and Marc Cunningham. Their most important finding was that AMPA-

currents on PV-cells were decreased. In addition, pharmacologically induced gamma-oscillations 

were reduced in the KO mice. These effects were even more pronounced in a similar mutant, the 

complete GluR-D KO (GluR-D is expressed almost specifically in PV-cells). In the GluR-D KO 

mice, the precision of spike timing of CA3-interneurons was reduced in terms of gamma-phase-

locking as well (Fuchs et al., 2007). Since PV-positive basket cells are supposed to play an 

important role in the generation of fast oscillations and in the PV-GluR-A KO mice PV-positive 

cells receive much less excitatory drive, our prediction was that both gamma-synchrony and ripples 

would be perturbed in these mutants in vivo. To our surprise gamma-oscillations and ripples were 

preserved in the hippocampus of the PV-GluR-A KO mice, although there were certain alterations. 

To analyze these events we have to extract them from a composite “material”, namely the 

hippocampal EEG. By looking at EEG-recordings from this brain-structure, one has the feeling of 

traveling on a fantastic highland (like Tibet), involving big mountains (delta-waves and sharp 

waves), sometimes these mountains have refined riffs on their top (ripples on the sharp waves), 

sometimes there are deep canyons (radiatum sharp waves), and often there are flat plains situated 

between the mountains. This pattern, occurring usually during SWS, is called large-amplitude 

irregular activity (LIA), sometimes comprising slow oscillations as well (Wolansky et al., 2006). 

Another time one can find a regular pattern of mountains with faster riffs located on them (theta 

waves nested with gamma), this is what we see during active exploration and REM-sleep. To 

navigate this landscape we have to subdivide it into smaller pieces based on the bigger and slower 

components, which also reflect behavioural stages (hypnogram-scoring), and then look at its 

components in different frequency-ranges. 

After sorting according to behavioural stages we analyzed the power of gamma- and ripple-

oscillations (frequency-bands are 30-85 Hz for gamma and 130-250 Hz for ripples) using two 

approaches. We applied a threshold-based event-detection algorithm which one can run on the 

recording-signals already filtered in the appropriate frequency bands. This gives us information on 

the amplitude, duration and leading-frequency of a given event. However, since the recorded signal-

amplitude also depends on the electrode-impedances, we could not use the voltage values directly, 

but only after normalizing them to the detection threshold and standard deviation of the baseline 
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(see Materials and Methods). After computing the event- (ripple- and gamma-) arrays of individual 

animals, we also pooled the data for WT and PV-GluR-A KO mice. It turned out that neither 

gamma-oscillations, nor ripples show statistically significant alterations in the mutant mice in either 

of the examined parameters (figure 11.).  
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Figure 11.: Ripples and REM-gamma as events based on a peak-detection algorithm. Columns on 

the left refer to ripples (from SWS), those on the right to gamma-epochs from REM-sleep. The mean 

of medians of the individual animals from the WT and KO group are plotted indicating standard 

deviations as well. 

 

Interestingly, when we grouped the animals according to the implanted electrode-types 

(wire-electrodes, including tetrodes versus silicon probes), we found different results regarding the 
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amplitude of ripple-oscillations: ripples were of higher amplitude in wire-implanted KO mice and 

smaller in probe-implanted mutants than in WT mice. Wire-electrodes have a low impedance while 

tetrodes have intermediate resistance but uncomparably smaller than silicon probes. The high 

impedance of the latter devices can account for a bigger signal-amplitude loss in our amplification 

system (see later, figure 17.). In addition to this, silicon probes implanted in KO mice had a higher 

impedance than those implanted in WT animals and this unfortunate circumstance can explain, why 

we did not find bigger ripples in the KO mice implanted with silicon probes. We also compared the 

ripple-oscillations in yet another way to obtain the power spectrum of the ripples. For this analysis 

we detected the ripple-peaks in the recordings and computed the power spectrum in the EEG-

segment 64 ms around the ripple-peak (figure 12.). We also selected those ripples whose peak-

frequency was above 140 Hz and plotted their power spectrum separately. 

       

          

 

Figure 12.: Power spectrum of ripples (A) and “real ripples” (B, peak-frequency above 140 Hz) 

from 5 WT and 5 KO mice implanted with wires (blue indicates WT, red KO mice). The power 

spectra are based on EEG-segments comprising 64 ms around the ripple-peaks. In panels C and D 

the mean power spectra plus standard errors are shown for the wire-implanted mice. 

 

A B 

C D 
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The power spectral analysis takes into account that the power a given oscillation conveys is 

proportional to the second power of the voltage (just as sound intensity is proportional to the second 

power of the sound pressure). With this method we see an increased ripple-power in the individual 

as well as in the pooled power spectra of PV-GluR-A KO mice compared to that of WT mice. 

However, as before, the increased ripple-power holds for the wire-implanted mice whereas it is just 

the opposite in case of silicon probe-implantations. An explanation for that can be that the ripple-

detection thresholds were very similar among wire-implanted mice but unfortunately were different 

for probe-implanted WT and PV-GluR-A KO mice. Thus, the considerably lower detection-

threshold (which also reflects the mentioned impedance-differences between silicon probes) in KO 

animals can account for the lower ripple-power among probe-implanted KO mice. As can also be 

seen later on figure 17, the power-decrease is practically homogeneously affecting the complete 

frequency-spectrum of the SWS- and REM-sleep of the mutants, which is also an indication that the 

impedance of silicon probes implanted in the KO animals was unfortunately higher compared to 

those used for WT mice.  

Interestingly, ripples from the PV-GluR-A KO mice very often looked “strange”, meaning 

that many of them showed huge variability in their cycle-to-cycle wave-amplitude and morphology. 

To approach this problem more precisely, we computed average ripple-waveforms by aligning 

ripples to each other by their peaks but surprisingly the average waveforms looked normal in the 

KO mice (figure 13.). The mean ripple-frequency (as determined by Gaussian fittings of the ripple-

power spectra) did not show a significant difference between the groups (138.23±2.25 Hz in WT 

and 136.70±2.17 Hz in KO, means and standard errors, p=0.63, t-test).   
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Figure 13.: Average ripple-waveforms from 5 WT and 5 KO mice implanted with wire-electrodes 

(A). Ripples from the raw signal were aligned with their positive peaks. A 64 ms time-window is 

shown with mean waveforms and standard errors. B: average ripple-waveforms with the inclusion 

of probe-implanted animals (altogether 7 WT and 7 KO mice). KO mice display bigger amplitudes.  

 

Thus, this method could not reveal these slight disturbances, however, one might try to 

subgroup ripples according to distinct features and to cluster them in distinct groups. Another 

characteristic feature of ripples is the “intraripple frequency accommodation”, meaning that the 

A B 
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frequency of the ripple is maximal in its beginning and slightly decays towards the end of the event 

due to the spike-frequency-accommodation of the participating cells. Since ripples change this 

“deceleration-profile” upon application of various GABAergic agonists (Ponomarenko et al., 2004), 

it is thought to be a sensitive measure of inhibitiory network state during ripples. We used a 

wavelet-based method to determine the ripple-frequency every 5 ms after its beginning and 

analyzed it between 15 and 50 ms, since in the very beginning of these ultrafast events there is a 

frequency-peak that we cannot fit with linear models. Interestingly, we did not find any significant 

alteration in the intraripple frequency accommodation in the PV-GluR-A mutant mice (figure 14.). 
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To analyze the overall spectral composition of the hippocampal EEG in distinct behavioural 

states, we performed a Fourier Transform based power spectral analysis on SWS and REM-sleep 

EEG-segments in WT and KO mice. As figure 15. shows, the power-increase in the ripple-band in 

KO animals is also quite conspicuous in this analysis. There is also a slight increase in the gamma-

band but to a lesser degree. 

                                                              

Figure 14.: Intraripple frequency 

accommodation is a sensitive measure of 

network mechanisms underlying ripples. 

We did not find any significant change in 

the deceleration profile in KO mice 

compared to WT animals. Linear 

regression analysis indicates that the 

deceleration rate for WT: 0.087 Hz/ms 

and for KO: 0.105 Hz/ms (p=0.37, 

analysis of covariance). The mean of the 

ripple-frequency medians of the 

individual animals in the two groups is 

plotted as a function of time. 95 % 

confidence intervals are also indicated. 

Figure 15.: Power spectrum of 

SWS-periods from WT (blue) 

and KO (red) animals. In this 

analysis all 7 WT and 7 KO 

mice (implanted with wires and 

silicon probes) were included. 

The respective EEG-segments 

were selected based on 

hypnograms. Even though we 

find a slight increase in theta-

and gamma-power as well, the 

ripple-power increase is much 

more pronounced. Plotted were 

the logarithms of the mean 

power values with standard 

errors on a decibel scale. 



 60

The power-increase in the ripple-band in the PV-GluR-A KO mice, however, may not only 

be an indication of increased ripple-size but can also result from an increase in the occurrence-

frequency or duration of ripples (this tendency, even if not significant is present; ripple-length in 

WT: 104.690±3.455 ms, in KO: 116.800±4.615 ms, means and standard errors of the median values 

from 7 WT and 7 KO animals, p=0.16, t-test). We also looked at the ripple-occurrence frequency 

and found that in KO mice they are generated a bit more frequently, however, this effect was not 

significant (1.43±0.128 Hz in WT and 1.77±0.159 Hz in KO, p=0.12, t-test). Thus, it seems that we 

have a complex phenotype in which ripple-generation is affected at multiple levels. 

          

Figure 16.: Theta- and gamma-power in REM-sleep episodes (A) and during awake exploration 

(B), WT is indicated in blue, KO in red. There is a modest power-increase in the KO mice in both 

the theta- and gamma-band, which is, however, much smaller than that in the ripple-band. Power 

spectra of 5 WT and 5 KO animals were averaged for REM-sleep and for awake exploration 

(animals with silicon probes were omitted due to impedance-differences and the high noise-levels 

that silicon probes show during awake exploration). Logarithms of the mean powers with standard 

errors are plotted using a decibel scale. 

 

The gamma-power was slightly increased in REM-sleep and during exploration, which was 

paralleled by a modest increase in the theta-power in these states. However, these alterations were 

much lighter than those of the ripples and were practically due to one outlier animal in the KO 

group. One can also see on the power spectra that the maximal amplitude-peak of REM-gamma is 

shifted to lower values in the KO mice (figure 16.), a result which is corroborated by the analysis of 

theta-gamma comodulation (figure 18.). Silicon probe-implanted mice were treated separately 

(figure 17.B) due to the electrode-impedance problems. 

We also looked at the relation between theta- and gamma-oscillations. It is known that theta-

oscillations modulate certain features of gamma-oscillations (Bragin et al., 1995). Theta-oscillations 

are in phase in the stratum oriens and pyramidale but in the stratum radiatum their phase changes 

and gradually turns to a phase-reversal. To minimize the variability resulting from different 

locations, the modulations were always computed from pyramidal layer recordings. There are 

A B 
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distinct features of oscillations that can modulate other oscillations. The phase of theta modulates 

both the amplitude and frequency of gamma-oscillations. The maximal gamma-frequency we 

normally find around the peak of theta-waves whereas on the slopes of the theta-waves the gamma-

rhythm is somewhat slower. The maximal gamma-amplitude we find on the peak or on the 

descending slope, slightly after the peak of the theta-waves. Sometimes these gamma-waves can be 

as huge in amplitude as the underlying theta, thus we can call them “gamma-spikes” (Buzsáki et al., 

2003). There is also a positive correlation between the theta-amplitude and gamma-power and 

frequency. Interestingly, there is a weak negative correlation between the amplitude and frequency 

of theta, meaning the bigger a theta-wave the slower it is (data not shown). In case of ripples, this 

relation is usually positive (Csicsvári et al., 1999a). As most of the features of the two oscillations 

are somehow modulated by each other, it is very difficult to say in the end, which feature modulates 

exactly what, so the term “co-modulation” may be more correct to describe this phenomenon. We 

also looked at how the gamma is modulated by theta in the PV-GluR-A KO mice. To our big 

surprise we find that gamma is nicely modulated by the phase of theta both in amplitude and 

frequency in the PV-GluR-A KO animals (figure 18.). This effect can be seen both during REM-

sleep and awake exploration. We find a slower gamma-rhythm in the REM-sleep of the mutant 

mice, this difference is 2.13 Hz if we account for the complete theta-wave and 2.87 Hz when we 

look at the region around its peak. These differences are significant (p<0.0001, paired t-test 

comparing respective phase-bins of the theta-cycle). Theta-power seems to be very slightly 

increased in the PV-GluR-A KO mice both in REM-sleep and explorative behaviour (again due to 

an outlier animal, figure 16.), but frequency-composition in the theta-range seems to be unaltered. 

           

 

Figure 17.: Power spectra of SWS (A) and REM-sleep (B) from silicon probe recordings. The blue 

colour indicates WT and the red KO mice. One can see an overall decrease in the powers of KO 

mice, which is, unfortunately, due to the impedance-difference of these high-resistance electrode 

types, which affected more seriously the KO group. Logarithms of the mean powers with standard 

errors are plotted on a decibel scale. 
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Figure 18.: Co-modulation of theta- and gamma-rhythms is preserved in the PV-GluR-A KO mice 

both during REM-sleep and awake exploration. This holds true also for the amplitude of gamma-

peaks (first row) and the frequency of the gamma-rhythm (second row) all over the selected theta-

ranges and also for the number of gamma-cycles and gamma-frequency in detected gamma-

envelopes (third and fourth rows). One can see that there is a slight decrease in REM-gamma-

frequency in mutants, which is, however, not seen during explorative behaviour. Nevertheless, this 

can also be the consequence of the overall slightly slower gamma-rhythm in exploration where the 

capacity for gamma-frequency increase is not exploited maximally.   
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Hippocampal oscillations measured in defined layers 

 

EEG-oscillations are brought about by the spatiotemporal summation of extracellular 

currents propagating in three dimensions. In the hippocampus these spatial dimensions are 

represented by different histological layers and the precise topological arrangement of the 

histological constituents underlies the remarkably different and very characteristic EEG-profiles. 

Basic oscillatory features as described in the previous section were analyzed in the pyramidal cell 

layer of CA1. However, most of the investigated patterns are also visible in other layers. Thus, 

gamma-oscillations can also be recorded in the stratum oriens and stratum radiatum. This applies to 

ripples as well, with the difference that ripples vane in the stratum radiatum whereas gamma-

oscillations become stronger there. However, this is due to the fact that ripple-generation is unique 

for the stratum pyramidale whereas gamma-oscillations are also generated in the DG. Thus, the 

gamma-oscillations we record in the deep stratum radiatum and in the stratum lacunosum-

moleculare are actually mixtures of gamma-oscillations passively volume-conducted from the hilus 

and from the pyramidal cell layer. Gamma-oscillations show phase-reversal in the stratum radiatum, 

suggesting that dendritic excitation from the Schaffer-collaterals is involved in their generation. 

This idea was also proven in vitro with the use of voltage-sensitive dyes and current-source density 

analysis (Mann et al., 2005). Theta-oscillations reverse their phase below the stratum pyramidale, 

therefore also the phase-relation between theta and gamma changes there, the maximal-amplitude 

gamma-waves sliding to the theta-troughs. This feature and the constantly increasing gamma-

amplitude towards the DG is responsible for the fact that in the stratum lacunosum-moleculare 

gamma looks even more prominent than the theta-rhythm. Coming to SWS, ripples look the most 

robust in the pyramidal cell layer, however, their underlying driving force, the sharp wave is not 

always visible there but is more intense at the border of the stratum oriens and stratum pyramidale 

(in the form of a positive deflection) or is dominant in stratum radiatum in the form of a big 

negative deflection (positive and negative refer to the appearance but following convention the 

radiatum sharp wave is called “positive”). The bigger sharp waves usually represent a bigger drive 

of the Schaffer-collaterals, therefore the ripples associated with them also tend to be of higher 

amplitude. Silicon probes are extremely suitable for examining oscillations in many histological 

laminations simultaneously (Csicsvári et al., 2003a). In figure 19. two short segments from a probe-

recording are visible, the first one exemplifying SWS with ripples and the second a fragment of 

REM-sleep. These recordings make it possible that by a computational procedure one can determine 

which layers take part in the generation of different rhythms, whether they participate actively or 

passively and whether they constitute a current-source or current-sink. 
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To gain insight into the histological profile of gamma- and ripple-oscillations we analyzed 

silicon probe recordings. The depth-profiles look very similar in the WT and PV-GluR-A KO mice 

for gamma- and ripple-rhythms and also sharp waves.  

We also performed current-source density (CSD) analysis to determine the generation site of 

ripple-oscillations (figure 20.).  

                                                 

 

B: Theta-rhythm nested 

with gamma-oscillations 

from REM-sleep. One 

can see the gradual 

phase-shift of theta 

beneath the pyramidal 

cell layer and the phase-

reversal of gamma-

waves in the stratum 

radiatum.  

Figure 19.: Silicon probe 

recordings from a WT 

mouse. The 8 channels 

shown are spaced 50 µm 

apart from each other. 

The upper trace is from 

the stratum oriens, the 

following four represent 

stratum pyramidale and 

the lower traces were 

recorded in stratum 

radiatum. 

  

A: A segment from SWS 

with ripples and sharp 

waves which are very 

prominent in the stratum 

radiatum.  
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The CSD-analysis provides evidence that the generation of ripples is confined to the 

pyramidal cell layer in the PV-GluR-A KO mice, and it is associated with dendritic depolarization 

in the stratum radiatum, indicating that the anatomical substrates of ripple-oscillations did not 

change in the mutant hippocampus.   

Due to the precise arrangement of recording sites on silicon probes these recordings are 

suitable for coherence-analysis. Oscillations may look different in distinct recording sites of CA1 

because projections may reach the targets with short time-delays that can cause measurable phase-

offsets during gamma- and ripple-oscillations. This effect can be described by the phase-shift of 

oscillatory peaks. However, spectral parameters at a given recording site can also reflect 

inhomogeneities in the recorded cell-population. Thus, since fast excitatory transmission is reduced 

in PV-cells, we may speculate that individual interneurons would function rather independently 

Figure 20.: CSD-analysis of 

ripples from a WT (A) and a PV-

GluR-A KO (B) mouse. Ripples 

were detected on a silicon probe-

channel located in the pyramidal 

cell layer. Ripple-peaks were used 

as a trigger for the computation 

of average waveforms on distinct 

channels and the waveforms 

served for computing the CSD-

maps. The plots show a time-

segment of 120 ms around the 

ripple-peak, 0 depth indicates the 

pyramidal layer, positive values 

denote a direction towards 

stratum oriens, negative values 

mark a direction towards stratum 

radiatum. Around the ripple-peak 

one can see a sink in the stratum 

radiatum, resulting from the 

Schaffer-collateral input during 

sharp waves. It is combined with 

a current-source in the pyramidal 

layer which most probably results 

from perisomatic inhibition. We 

also find a current-source in the 

stratum radiatum and a sink in 

the pyramidal layer following 

sharp waves. The CSD-analysis 

indicates that there is no 

profound difference in the 

generation of sharp wave-ripples 

between WT and PV-GluR-A KO 

mice. 

A 

B 



 66

from each other and therefore the inhibition they inflict on pyramidal cells would be 

inhomogeneous. This could lead to a jitter in the timing of postsynaptic and action potentials of 

pyramidal cells, which would be visible on the spectral difference on distinct locations. To describe 

these phenomena we computed the cross-spectral coherence and interpeak-interval (difference in 

the interpeak-interval between oscillatory cycles of given site-pairs, IPI). It is of immense value that 

these measures are independent of signal-amplitudes and thus provide highly reliable results (see 

Materials and Methods). 

                                                 

Gamma Ripples

A

B

C

 

We recorded four mice with silicon probes, two KO and two WT animals, the KO and WT 

controls pairwise coming from the same litter. We found that in one animal pair the examined 

parameters did not differ significantly, however, in the other pair we found a slight decrease in 

cross-spectral and phase-coherence both with respect to gamma- and ripple-oscillations. Overall, 

when pooling the results we do not find these alterations significant, implying that synchrony in the 

Figure 21.: Cross-site 

coherence measures from WT 

(blue) and PV-GluR-A KO 

(red) mice implanted with 

silicon probes. On the 

electrode-shanks at the left 

and right side of the probe a 

given channel (located in the 

stratum pyramidale) was 

selected as a reference site. 

Coherence measures for 

distinct shanks with respect to 

the reference channel were 

calculated as an average of 

three pyramidal layer 

channels on the given shanks. 

The plotted results are 

averages of two animals (2 

WT and 2 KO). One can see 

that neither the spectral 

parameters (A: cross-spectral 

coherence and B: IPI) nor the 

phase-coherence (C) differs 

significantly between the 

animal groups. Due to the 

huge standard deviations only 

the mean values are plotted. 
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gamma- and ripple-frequency bands is not significantly perturbed in the spatial dimension upon 

reducing excitatory input in PV-cells (figure 21.). 

                         

Unitary analysis in the PV-GluR-A KO animals 

 

To understand, how unitary activity underlies oscillatory phenomena, we isolated pyramidal 

cells and interneurons from tetrode- and silicon probe-recordings. Tetrodes are the most powerful 

tools in recording multiple single units from freely moving and behaving animals* whereas silicon 

probes, depending on the spacing of the recording sites can also be useful but not to that extent (at 

least with intersite-spacings more than 50 µm they are less powerful). 

*To understand the tetrode-principle, one should imagine an experimentator walking in a dark forest on a 

sunny afternoon. Several birds, belonging to distinct species are singing in the trees but due to the leaves and low light-

penetration the scientist would not see them. However, he hears their songs coming from different directions. The bird-

songs reach the two ears of the investigator with some time-delay, and also with a power-difference due to the different 

distances the sound waves travel to reach the ears and due to the shadowing effect of the head on the ear which is 

located more distant to the bird. Therefore he can estimate the direction and the distance of a given bird based on these 

principles. If he is an ornithologist, he will also be able to distinguish between birds based on the peculiarities of their 

song (like pitch-frequency, intonation etc.), even if they come from similar directions. If there are two people walking 

there, the spatial arrangement of their four ears will increase the spatial resolution and species-recognition to an even 

higher degree. Due to the different action potential waveforms that pyramidal cells and interneurons emit and due to the 

amplitude-distributions on the four tetrode-channels they can also be sorted quite efficiently. 

Pyramidal cells and interneurons can be easily distinguished in our recordings by distinct 

features, such as spike width, firing rate and autocorrelations (see Materials and Methods). The 

main advantage of our recordings compared to those from anaesthetized preparations relies in the 

more physiological circumstances a given cell is examined in since animals are not affected by the 

narcotics. Besides, one can record the same cell for several days, and also microcircuits can be 

examined given the relatively big number of cells isolated from a stereotrode. However, since we 

cannot fill the cells, the histological verification is more problematic. We cannot clearly distinguish 

between many of the interneuron-subtypes. Nevertheless, in many cases the location of the cell 

and/or firing patterns are predictive (figure 22., Csicsvári et al., 1999b). We can also correlate our 

data with those obtained from anaesthetized animals since in those experiments many interneurons 

show distinct features regarding oscillations.  

At a microcircuit level we can also relate the activity of cells relative to each other. The 

cross-correlation of cells can be indicative of whether there is excitatory or inhibitory transmission 

between the examined cells. In figure 10. (Materials and Methods) one can see two pyramidal units 

and an interneuron recorded from CA3. The cross-correlations indicate that there is a relatively high 
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A                                                                               B 

           

C                                                                               D 

           

Figure 22.: Interneurons from specific locations of our recordings. A: a putative CA1-basket cell, 

with characteristic autocorrelation. B: a putative O-LM interneuron (however, it can also be a 

basket cell) suggested by its location (CA1 stratum oriens). C: a putative basket cell from the DG. 

D: an “intermediate cell”, the autocorrelation resembles that of interneurons but the firing rate is 

only ~3 Hz. A, B and C were recorded from a KO animal with tetrodes, D is from a WT mouse 

implanted with a silicon probe. For visual inspection the first 30 ms range of the autocorrelations is 

selected. 

 

probability that both pyramidal cells innervate the interneuron (shown by the positive peaks close to 

the zero ms bin) whereas the interneuron probably inhibits one of the pyramidal units (shown by the 

negative deflection next to the positive peak). In vitro experiments on neocortical slices showed that 

special interneurons can also excite pyramidal cells (Szabadics et al., 2006), therefore it would be 

interesting to show this phenomenon in hippocampal in vivo recordings as well, based on the 

analysis of cross-correlation functions. A monosynaptic excitatory coupling from an interneuron to 

a principal neuron would be an in vivo proof for that. Cross-correlations of cell-combinations of 
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different tetrodes can also reveal synaptic connections between distant cells, an advantage, which 

due to the thin slice-preparations, cannot be achieved in vitro. 

From the huge number of cells recorded from the PV-GluR-A KO mice and their WT 

littermates, we selected 42 pyramidal cells and 24 interneurons from the CA1 of WT mice, and 134 

pyramidal units and 99 interneurons from the CA1 of PV-GluR-A KO mice. The selected cells had 

an isolation distance of at least 30 (see Materials and Methods). Besides, we had recordings from 

24 CA3-pyramidal cells and 11 CA3-interneurons from a KO animal, and we also recorded 1 DG-

interneuron that satisfied the named criteria in both a WT and in a KO animal. These recordings 

were mainly from two mice implanted with several tetrodes but silicon probes also contributed 

substantially. From this pool we selected 34 pyramidal cells from the WT and 114 from the KO 

group, and 17 WT and 62 KO interneurons based on more stringent criteria. These cells were 

chosen based on a redundancy-screen that excluded those neurons that could be recorded more than 

once and had a higher probability of being the same. All the selected units were recorded in CA1. 
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We used only single units from pyramidal cells but also multiunits from interneurons. The 

contamination percentage of a given interneuron was approximated using its autocorrelation 

function. The area in the first 2 ms of this function (refractory period) was compared to the 

asymptotic rate of the neuron. In this way we got a rough estimation of the percentage of spikes in a 

given cluster that originated from a different, “contaminating” unit (figure 24.). The isolation 

distance did not differ significantly between WT and KO interneurons (figure 23.), nor did it for 

pyramidal cells. We did not find a significant difference between the contamination percentage of 

WT and KO interneurons either (figure 24.). 

Figure 23.: The isolation distances of 

the selected pyramidal cells (Pyr, 

single units) and interneurons (Int, 

mainly multiunits). The isolation 

distances were not significantly 

different between pyramidal cells of 

WT (50.139±4.697, means and 

standard errors from 34 cells) and 

KO mice (39.461±0.815, 114 cells) 

and between interneurons of WT  

(120.990±20.784, 17 cells) and KO 

animals (91.423±8.215, 62 cells; 

p=0.156, Wilcoxon rank sum test). 

However, interneurons generally 

have a higher isolation distance than 

pyramidal cells.  
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I mentioned that in extracellular recordings units are usually indicated by negative 

deflections. However, sometimes we find small positive potentials at the beginning of spikes. These 

could represent hyperpolarization just before spikes are generated and the recorded spikes may be 

“rebound spikes”. By measuring the time between the positive and negative peaks of the spike-

signals we can have a rough estimate of the duration of action potentials. In our practice, however, 

we measured the spike-width between the points with 25 % amplitude of the maximal negative 

peak. As mentioned above, interneurons express specific sets of ion-channels, which contribute to 

the short spike-width whereas pyramidal cells have a slower action potential and usually have 

longer-lasting after-hyperpolarizations. Neither pyramidal cells nor interneurons showed significant 

difference in their spike-width when we compared WT with PV-GluR-A KO mice (figure 25., 

p=0.11 and 0.68 for pyramidal cells and interneurons, Wilcoxon rank sum tests). However, it is also 

not surprising since AMPA-currents usually do not contribute much to the currents of action 

potentials but rather to excitatory postsynaptic currents, and are activated at more negative 

membrane potentials whereas sodium channels open only at more positive values. 
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Figure 25.: The spike-width of cells. 

Pyramidal cells (Pyr) have a longer 

action potential and consequently a 

bigger spike-width (0.436±0.015 ms for 

pyramidal cells of WT and 0.430±0.009 

ms for those of KO) than interneurons 

(Int, WT: 0.256±0.009 ms and KO: 

0.251±0.005 ms) where the expression 

of certain K
+
-channels ensures a faster 

action potential (see Introduction). 

However, the spike-width of the same 

cell-type did not differ between 

genotypes (p=0.11 for pyramidal cells, 

and 0.68 for interneurons, Wilcoxon 

rank sum test).  

Figure 24.: The contamination degree of WT     

and KO interneurons, expressed as a percentage 

of the refractory and asymptotic firing rate. There 

is no significant difference between the groups, 

(19.053±3.303 for WT and 21.105±1.789 for KO; 

p=0.59, t-test). Mean values with standard errors 

are plotted.   
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Unitary firing rates in distinct behavioural states 

 

First we determined the average firing rates of CA1 pyramidal cells and interneurons in WT 

and PV-GluR-A KO mice respectively. Interestingly, there was no significant difference either for 

pyramidal neurons (0.370±0.044 Hz for 34 WT units and 0.491±0.045 Hz for 114 KO units, 

p=0.72, Wilcoxon rank sum test) or local circuit neurons (15.904±1.367 Hz for 17 WT and 

15.570±0.908 Hz for 62 KO interneurons, p=0.40, Wilcoxon rank sum test). There was only a very 

slight tendency towards an increased firing rate in pyramidal cells but it did not reach statistical 

significance (figure 26.). An explanation for this phenomenon could rely in the diversity of 

interneurons we recorded. Since we cannot really discriminate between PV-cells and other 

interneuron-subtypes that in fact comprise the majority of the hippocampal interneuron-family, our 

results do not exclude the presence of silent or slowly-firing PV-cells in the CA1 area of the 

hippocampus. 
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Figure 26.: Average firing rates of pyramidal cells and interneurons in WT and PV-GluR-A KO 

animals. Mean values and standard errors of the distributions are plotted.  
 

The characteristic firing mode differs between the two cell types. Pyramidal cells tend to fire 

in bursts, meaning that within bursts very short time-periods elapse between successive action 

potentials but after emitting a burst the cell can stay silent for a longer time-interval, even seconds. 

This effect overall leads to a lower average firing rate of principal cell-activity. Interneurons 

discharge with a much higher frequency, however, usually less likely in bursts, so their activity is 

less clustered in time. To gain insight into these kinetical parameters we also looked at the bursting 

firing frequencies of the well-isolated units (see Materials and Methods and figure 27.). 

Pyramidal cells in KO mice displayed an overall higher bursting frequency (157.630±7.401 

Hz and 198.280±3.693 Hz for 34 cells from WT and 114 pyramidal cells from KO animals, 

respectively, p<0.0001, Wilcoxon rank sum test). Interneurons, however, did not differ in this 

respect (104.400±7.041 Hz for 17 WT and 94.416±3.793 Hz for 62 KO interneurons, p=0.21, 
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Wilcoxon rank sum test). This observation implies that even though PV-cells have a diminished 

excitatory drive, interneurons overall can be efficiently recruited during faster discharges. Thus, 

additional mechanisms may be involved in their “acceleration”. 
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We were also interested in the propensity of pyramidal cells to fire in bursts. Therefore we 

determined the “burst-spike index” for pyramidal cells (figure 27.C), by counting the spikes that 

were emitted during bursts and relating it to the overall number of action potentials that a given cell 

emitted. Whereas in WT mice this ratio is 0.434±0.024, in PV-GluR-A KO mice it is 0.601±0.016, 

indicating that on average 43 % of the spikes of WT pyramidal cells is clustered in bursts whereas 

in PV-GluR-A KO mice roughly 60 % of the spikes belongs to burst firing. This difference is also 

highly significant (p<0.0001, Wilcoxon rank sum test).     

The mechanisms underlying cellular behaviour are most likely dissimilar during different 

behavioural and network states, therefore we analyzed unitary activity during different oscillations: 

theta-, gamma- and ripple-activity respectively. The most interesting finding was that during theta-

oscillations pyramidal cells fired with a significantly lower average rate in PV-GluR-A KO mice 

than in WT mice (2.631±0.449 Hz for 32 WT and 1.981±0.189 Hz for 113 KO pyramidal cells, 

p=0.012, Wilcoxon rank sum test, figure 28.). However, even though there is a slight tendency 

towards a decreased firing rate of interneurons in KO animals during theta-rhythm (29.801±2.379 

Hz for WT and 24.845±1.636 Hz for KO, 17 and 62 cells respectively, p=0.09, Wilcoxon rank sum 

A B 

C 

Figure 27.: The instantaneous (or bursting) 

frequency of pyramidal cells (A) and 

interneurons (B). Pyramidal cells in KO mice 

can fire bursts at higher frequency. Pyramidal 

cells in the PV-GluR-A KO mice are more 

prone to fire in bursts (C). Means and standard 

errors are plotted.   
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test), this effect is not statistically significant. We do not see any difference in pyramidal cell or 

local circuit neuron firing during ripples ( fig. 29.).  
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Figure 28.: Unitary firing rates during theta-oscillations. Pyramidal cells of the KO group fire 

significantly less in these states. 
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Figure 29.: Firing rates during ripple-oscillations. Neither pyramidal cells (2.321±0.473 Hz and 

2.409±0.391 Hz for 31 WT and 111 KO pyramidal cells, p=0.140, Wilcoxon rank sum test), nor 

interneurons (46.853±5.596 Hz and 45.228±3.607 Hz for 17 WT and 59 KO interneurons 

respectively, p=0.825, t-test) show any change during ripple-oscillations. 

 

The increased “burstiness” of pyramidal cells and their decreased average firing rate during 

theta-oscillations in KO mice tempted us to analyze bursting characteristics in distinct oscillatory 

forms. Interestingly, when we looked at instantaneous (or bursting) frequency of pyramidal cells in 

theta-related states, we found a significant increase (87.831±8.614 Hz for 30 WT and 139.020 

±5.407 Hz for 106 KO pyramidal neurons, p<0.0001, t-test, figure 30.A). Thus, even though 

pyramidal cells in the PV-GluR-A KO mice fire on average less during theta-oscillations, when 

bursts occur, they can accelerate to a higher rate than pyramidal cells in WT mice. It is of note that 

even though the gene-deletion is PV-cell specific, we find the main effect on pyramidal cells. This 

observation suggests that network mechanisms are brought about by an interplay between 

pyramidal cells and interneurons in the mouse hippocampus. 
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                                     Bursting frequencies in different oscillations     
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Figure 30.: Instantaneous, reflecting bursting frequencies of pyramidal cells and interneurons in 

theta-related behavioural states (A), during gamma- (B) and ripple- (C) oscillations. The 

pyramidal cells of the KO group display a marked increase in this parameter. 

 

The bursting frequency of pyramidal cells was also higher for gamma- and ripple-events 

(Gamma: 99.547±6.291 Hz for 34 WT and 148.940±4.169 Hz for 114 KO cells, p<0.0001; ripples: 

105.840±6.541 Hz for 30 WT and 130.930±4.334 Hz for 108 KO pyramids, p<0.01, Wilcoxon rank 

sum tests) even though this effect was not so pronounced as in case of the theta-rhythm. 

Interneurons did not show any alteration in KO compared to WT mice (Theta: 68.348±5.109 Hz for 

17 WT and 70.320±2.888 Hz for 62 KO interneurons, p=0.98, Wilcoxon rank sum test; gamma: 

B 

C 

A 
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75.862±4.185 Hz for 17 WT and 79.292±1.956 Hz for 62 KO interneurons, p=0.43, t-test; ripples: 

92.960±6.118 Hz for 17 WT and 95.220±4.162 Hz for 59 KO interneurons, p=0.78, t-test; figure 

30. A, B and C.).  

Ripples are highly synchronous events when 10-15 % of pyramidal cells discharge together 

in a 100 ms time-window. However, a given pyramidal cell does not discharge in every ripple: 

depending on the cell, the percentage of ripples a principal cell contributes to can be from 0 to up to 

50 % or even more (Ylinen et al., 1995). This suggests that there are pyramidal cells that have a 

more stable contribution whereas others fire rarely. We also approached this problem by computing 

the firing rate of cells in all ripples and selectively in the ripples in which they were active. In this 

computation we became the former measure by accounting for the overall length of all the ripples 

(even if the cell was not active in most of them) present in the recording and the latter value was 

received by accounting for the overall length of only those ripples where the given cell was active. 

Very interestingly for pyramidal units the latter values are roughly 8-10 times as big as the first 

(17.858±0.577 Hz versus 2.321±0.473 Hz for WT pyramidal cells and 20.170±0.821 Hz versus 

2.409±0.391 Hz for KO pyramids, means and standard errors), indicating that on average a 

pyramidal cell is involved in the generation of 10 % of the ripples (figure 31.).  

 

However, the situation is different for interneurons: in their case these numbers are not 

really different (52.005±4.832 Hz versus 46.853±5.596 Hz for WT and 50.072±3.205 Hz versus 

45.228±3.607 Hz for KO interneurons), indicating that interneurons have a more general 

contribution to ripples whereas pyramidal cells may contribute in a more specific way to their 

generation. Overall, as suggested by previous data (Csicsvári et al., 2000) and also revealed by our 

study, distinct ripples may be brought about by different cell-assemblies which might also have an 

internal coordination, and interneurons can participate more generally by controlling the whole cell-

Figure 31.: Distribution of pyramidal 

cells regarding their involvement in 

ripple-generation or ripple-participation. 

The firing rate of each pyramidal cell 

was computed all over the detected 

ripples and only in those ripples in which 

they were active. The ratio of these two 

values served as an approximation to 

evaluate, how extensively a given cell 

contributes to ripple-oscillations with 

spike-emission. WT is blue, KO is red.  
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population. By analyzing the actual firing rate of interneurons during ripples, we find that in most 

cases both in wild types and in mutants they increase their firing rate. However, this observation 

holds true only in a general sense.  

The literature suggests that interneurons can be grouped into several classes according to 

their behaviour during ripple- and theta-oscillations. Most interneurons located in the stratum 

pyramidale increase their firing rate all over the ripple-event. Some cells, however, have a double 

peak on the cross-correlations between the ripple-peaks and their spikes. Thus, they are active in the 

very beginning and at the end of the ripple-episode, with background activity levels in the middle of 

the oscillatory event, most probably for they also receive a strong inhibition there. “Anti-sharp wave 

cells”, located mainly in the stratum oriens decrease their firing during ripples (Csicsvári et al., 

1999b). Figure 32. shows an example of a “sharp wave-ON cell”. PV-positive basket cells indeed 

have been shown to increase their firing during ripples (Klausberger et al., 2003) whereas CCK-

cells usually do not increase it (Klausberger et al., 2005), and axo-axonic cells are only active in the 

beginning of these ultrafast oscillatory epochs and remain silent afterwards (Klausberger et al., 

2003). O-LM cells are silent during ripples in anaesthetized rats (Klausberger et al., 2003), therefore 

they may correspond to the real “anti-sharp wave cells”. Interestingly, even though in anaesthetized 

rats O-LM cells tend to fire in the trough of theta-waves, in freely moving animals most 

interneurons in the stratum oriens were also bound to the descending slope of theta-waves, just as 

most interneurons from the pyramidal cell layer (Csicsvári et al., 1999b). Axo-axonic (chandelier) 

cells fire preferentially on the peak of theta-waves in anaesthetized rats (Klausberger et al., 2003). 

            

 

Figure 32.: A “sharp wave-ON cell”

from a KO animal. The firing probability 

of the interneuron was computed as a 

function of time-difference from the 

ripple-peak (cross-correlation). I plotted 

a 250 ms region around the ripple-peaks 

with a 10 ms bin-size. On the upper trace 

an average ripple-waveform is shown, 

indicating that the recording position 

was at the border between stratum oriens 

and pyramidale. This location also 

suggests that most probably the 

interneuron was a basket cell.  

On the lower trace one can see that 

notwithstanding the decreased excitatory 

drive on PV-cells this cell was recruited 

to ripple-events very efficiently. 
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Thus, we have some hints, which interneurons belong to the “sharp wave-ON” and “anti-

sharp wave” categories, even though it is difficult to verify this in vivo. Altogether these results also 

indicate that notwithstanding the decreased excitatory drive on PV-cells most of them can still be 

efficiently recruited by ripple-oscillations.          

 

Rhythmic modulation of unitary activity during distinct oscillations 
 

LFP-oscillations represent the spatiotemporal summations of EPSPs and IPSPs at a 

population-level. Since action potential firing is related to the course of EPSP, there is a relation 

between the phase of oscillations and unitary activity. We call this phenomenon phase-locking. 

Based on previous studies (Csicsvári et al., 1999b, Buzsáki et al., 2003) it was suggested that during 

theta-rhythm interneurons fire preferentially on the descending slope of theta-waves while 

pyramidal cells have a double peak, just shortly after the theta-trough and around the theta-peak. 

During ripples pyramidal units are the most active near the ripple-troughs while interneurons prefer 

the ascending slopes which is not surprising considering the monosynaptic excitatory coupling 

between pyramidal cells and inhibitory neurons in CA1. As shown in pharmacologically induced 

gamma-oscillation models in vitro (Mann et al., 2005) and also in vivo (Penttonen et al., 1998; 

Csicsvári et al., 2003b), pyramidal cells are generally phase-locked to the trough of gamma-

oscillations (recorded in the pyramidal cell layer) and interneurons follow them with a small phase-

lag and are positioned on the ascending slope of gamma-waves indicating again a monosynaptic 

connection between the participating elements.  

We also examined phase-locking of pyramidal cells and interneurons in WT and PV-GluR-

A KO mice. The mean phase of averaged spike-phase histograms of pyramidal cells did not differ 

much between WT and KO mice either during gamma- or ripple-oscillations. In agreement with the 

literature, the maximum firing probability of pyramidal cells was roughly in the trough of gamma-

oscillations (315.98±8.92 and 330.08±3.90 degrees for 26 WT and 90 KO pyramidal neurons; 

circular means and standard errors of the circular means; 0 and 360 degrees being the trough of the 

oscillatory wave and 180 degrees denoting the peak of it; p=0.33, to compare circular means 

Watson-Wheeler circular test is used throughout this chapter) and very close to the trough of ripple-

oscillations (289.98±5.08 versus 280.48±3.11 degrees from 26 and 98 pyramidal cells from WT and 

KO animals respectively, p=0.28). However, in our study, contrary to the literature the maximal 

firing probability of pyramidal cells is during the descending slope of theta-waves (266.83±5.99 and 

288.78±4.40 degrees for 29 WT and 103 KO pyramids, p=0.02). When analyzing interneurons, we  
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Figure 33.: Phase-modulation of pyramidal cells (left panels) and interneurons (right panels) 

during distinct oscillations. Cells from WT animals are indicated with blue, those of KO with red. 

During theta-oscillations (A) pyramidal cells were less well modulated in the mutants whereas 

interneurons were tuned a bit more sharply. In theta-related gamma-rhythm (B), interneurons 

displayed an increased modulation depth in KO mice whereas pyramidal cells showed a decreased 

modulation. In ripples (C) both principal cells and interneurons were more sharply modulated. One 

can also see that during gamma, interneurons in KO mice are relatively delayed compared to those 

in WT mice. The same holds true for ripples. Note that on these plots the spike-counts in each 

phase-bin are normalized to the trough of the modulation curves, therefore troughs are always 

represented by the value 1. The phase-values are given in degrees, the green curve represents an 

oscillatory reference-wave. 
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found a phase-shift in the spike-phase histograms both for theta-, gamma- and ripple-oscillations. 

Surprisingly interneurons tended to discharge a bit “earlier” on the descending slope of theta-waves 

in the KO group (figure 33.A, 289.68±9.73 degrees for 17 WT and 267.40±4.71 degrees for 62 KO 

interneurons). However, this effect was not significant (p=0.84). During gamma-oscillations 

(gamma nested within theta-rhythm) interneurons fired slightly later in the KO than in the WT 

group (figure 33.B, 2.83±9.65 degrees for 16 WT and 56.175±4.05 degrees for 60 KO interneurons, 

p=0.15), not in the troughs as the WT interneurons did but rather on the ascending slopes of 

gamma-waves. Even though this tendency was not significant, we also found it during ripples of the 

KO mice when comparing it with cells from the WT mice (figure 33.C, 288.35±11.14 versus 

341.44±4.57 degrees for 16 WT and 59 KO interneurons, p=0.18). To sum up these results, it seems 

that during gamma-oscillations of WT mice interneurons followed the pyramidal cells with a slight 

phase lag (around 45 degrees) which became much longer (almost 90 degrees) in PV-GluR-A KO 

mice. During ripples of WT mice the pyramidal cells and local circuit neurons fired almost at the 

same time but in the PV-GluR-A mutants there was a delay of almost 60 degrees.  

Interestingly, during theta-oscillations pyramidal cells in KO animals displayed a reduced 

modulation depth (relative difference between the peak and trough of the spike-phase histograms, 

p=0.0002, paired t-test for 20 phase-bins covering a complete oscillatory cycle) while the difference 

between the phase-modulation of interneurons turned out not to be significant (p=0.84). During 

gamma-oscillations (gamma related to theta-oscillations, this means during exploration or REM-

sleep) pyramidal cells from PV-GluR-A KO animals were less modulated by the local field than 

their WT counterparts (p=0.0062). Interneurons, however, were more sharply tuned in the mutants 

(p=0.0011). During ripples the depth of modulation was higher for both KO pyramidal units and 

interneurons compared to WT units (p=0.0016 for pyramidal cells and p=0.002 for interneurons, 

paired t-tests). Altogether the increased modulation depth of both cell types in the KO mice during 

ripples is in line with the increased ripple-power we usually find in PV-GluR-A KO mice.  

We also estimated whether the recorded units have a certain phase-preference regarding the 

oscillations (figure 34.). The Rayleigh test performed on every unit indicated that all interneurons 

had a certain theta-phase-preference in WT as well as in KO animals whereas a majority but not all 

pyramidal cells were significantly modulated by the theta-rhythm (24 from 29 pyramids in the WT 

and 94 from 103 pyramids in the KO group). 

As also suggested by previous studies (Csicsvári et al., 1999b), many pyramidal cells may 

be place cells that show phase-precession during theta-oscillations. Therefore they may not have 

such a strong phase-preference. Interestingly, practically all interneurons were significantly 

modulated by the gamma-rhythm, (16 cells from 16 WT and 58 from 60 interneurons in the KO) 
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whereas roughly half of the pyramidal cells showed such phase-locking to gamma (15 from 26 in 

the WT and 50 from 90 in the KO group). The majority of both pyramidal cells (25 from 26 WT 

and 91 from 98 KO) and interneurons (14 from 16 WT an 58 from 59 KO) were significantly 

modulated by ripple-waves. 

   

    

 

  

  

    

Figure 34.: Preferred phases of significantly modulated units during theta-oscillations (A), gamma- 

(B) and ripple-rhythms (C). Cells from WT animals are marked with blue, those from KO mice with 

red colour. The preferred phases are plotted on circular histograms in a way that the zero phase 

(and consequently the 360 degrees, on the right side of the circle) indicate the peak of a given 

oscillatory wave and 180 degrees denote the trough (left side of the plots). Therefore the 

descending slopes of oscillatory waves are represented by the upper half of the circles and the 

ascending slopes by the lower halves. The wave proceeds on the plots in a counterclockwise 

fashion. One can see that while there is not much difference regarding pyramidal cells, 

interneurons in KO mice have altered preferred phases with respect to gamma- and ripple-

oscillations, corresponding well with unitary phase-modulation histograms. 
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DISCUSSION 

 
Analyzing in vivo recordings from PV-GluR-A KO mice we made several interesting 

observations. Even though PV-cells in the hippocampus of these mice are supposed to have a 

significantly reduced excitatory input and therefore are thought to be partially uncoupled from the 

excitatory network, we did not find a strong deficit in the generation of gamma- and ripple-

oscillations. Surprisingly, ripples tended to be of even higher amplitude in KO than in WT mice and 

we did not find pronounced changes in the gamma-power either. However, we saw a modest 

gamma-frequency decrease during REM-sleep of these animals. Interestingly, in vitro these mice 

exhibited a strongly reduced gamma-power (Fuchs et al., 2007, figure 35.). Now we have to clarify 

what circumstances could have led to these disparate results. The in vitro study was performed in 

horizontal CA3-slices using a kainate-application protocol. One might speculate that an intact 

hippocampus (as in our experiments) might not be as vulnerable to the genetic defect as a slice-

preparation since many of the anatomical connections are destroyed in the slice. We cannot rule out 

either that other brain structures might adjust their input to the changed hippocampal circuitry, 

thereby providing a different sort of compensation, and it is actually known that parahippocampal 

structures, like the entorhinal cortex, have an impact on hippocampal gamma-generators (Bragin et 

al., 1995). Oscillations evoked in vitro peak around 30 Hz, thus, they are considerably slower than 

gamma-oscillations in vivo, which have a more or less homogeneous spectral distribution between 

30 and 80 Hz. In this manner the gamma-oscillations we examine may be of a different nature and 

origin than gamma-oscillations in vitro. Another possibility is that different hippocampal 

subregions might show different sensitivity to the genetic defect. 

                                                                                                    

The increased ripple-power we see in PV-GluR-A KO mice could be related to the overall 

higher excitability of the pyramidal cell-network, due to the underperformance of local circuit 

Figure 35.: Gamma-oscillations induced by kainate-

application in WT and PV-GluR-A KO animals. The 

upper panel shows the kainate-concentration 

dependence of gamma-oscillations in vitro. In the 

lower panel, example traces of gamma-oscillations in 

WT and KO mice are shown. The power of gamma-

oscillations (measured between 20 and 80 Hz, plotted 

in the lower right corner) is significantly reduced in 

the mutants. 

Figure is from Fuchs et al., 2007. 
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neurons, even though this excitability in vivo does not reach the threshold for epileptic phenomena. 

Indeed, perisomatic inhibition is thought to be very strong during ripples, requiring a very strong 

dendritic excitation on a given pyramidal cell to make it fire during the event. Thus, a weaker 

inhibition would result in increased pyramidal cell firing, making the ripples more pronounced. 

However, a higher ripple-power does not necessarily mean more cells that fire but can also mean 

that individual IPSPs and EPSPs get bigger or that compound postsynaptic potentials get bigger. 

The amplitude of compound postsynaptic potentials can be related to the number of cells 

participating in the potential-fluctuations or to the precise short-time synchrony between them. The 

same number of cells, if more synchronized, can bring about bigger local field potential 

fluctuations. Interestingly, pyramidal cells in PV-GluR-A KO mice did not fire more during ripples 

than pyramidal neurons from the WT group, even though their bursting frequency was higher 

during ripple events. Interestingly, it is rather the increased modulation depth of cell-firing which 

seems to be responsible for the higher ripple-power in the KO mice. Secondary mechanisms like 

gap junctions can also take over the synchronizing function of perturbed inhibition in the 

oscillogenesis. As a consequence, an increased number of spikelets could also result in a higher 

ripple-power. Eventually decreased inhibition might be favourable for antidromic spike-propagation 

and can shift ripple-frequency towards higher values in computer network models (Traub et al., 

2000). However, this scenario would also mean more cells firing during ripples which we actually 

do not find. We cannot rule out that different interneuron-subpopulations might “reinnervate” the 

network in a different pattern which would lead to an altered balance between excitation and 

inhibition. In other words, in conventional knockouts we cannot rule out developmental effects. 

However, since PV-expression starts only around two weeks of age in mice, early developmental 

alterations can be excluded.  

To understand how millisecond-scale synchrony is brought about in ranges of several 

millimeters during gamma- and ripple-oscillations belongs to the daunting questions of 

electrophysiology given that interneuron axons generally do not span more than several hundred 

micrometers. Ripples, however, are synchronized relatively well along the longitudinal axis of the 

hippocampal formation and its output pathways, regions spanning several millimeters (Chrobak & 

Buzsáki, 1996), even though as our results also suggest, there is a substantial drop in the phase-

coherence already in a few hundred micrometers. To exert their synchronizing effect, interneurons 

need either a very precise and coordinated coupling to the excitatory network or very reliable gap 

junction-coupling between themselves (Traub et al., 1998). Recent research also suggests that long-

range interneuron projections exist between the hippocampus, subiculum, presubiculum and other 

retrohippocampal structures and many of these interneurons increase their firing during ripples 
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(Jinno et al., 2007). Interestingly, most of these cells are PV-negative. Our results suggest that by 

compromising the excitatory neurotransmission on PV-cells, the network can still synchronise very 

efficiently. Thus, additional mechanisms, possibly also different cell-types seem to be involved as 

well in this form of network synchrony. An alternative explanation could be that the “excitatory 

deinnervation” of PV-cells “forces” them to switch back to their developmentally premature state 

when GABA can have an excitatory effect. This mechanism could be brought about by the altered 

expression of KCC2- and NKCC1-molecules, as proposed for pyramidal cells in temporal lobe 

epilepsy after traumatic lesions (Cohen et al., 2002; Stein & Nicoll, 2003). In this scenario, phasic 

GABAergic currents in PV-cells could substitute for the missing glutamatergic input. 

Among hippocampal oscillations the theta-rhythm deserves big attention since its relation to 

cognitive functions has been suggested many times. In human subjects for example the performance 

of navigation tasks promotes synchrony in the theta-range and there is a correlation between the 

difficulty of the task and the actual theta-power (Kahana, 2006). The theta-rhythm in the 

hippocampus also seems to be preserved in the PV-GluR-A KO mice. However, given the many 

neurotransmitter systems involved in theta-generation (Yoder & Pang, 2005) we cannot exclude 

that compensatory effects stand behind this phenomenon. Hippocampal interneurons also receive 

GABAergic innervation from septal interneurons and they provide the septum with a reciprocal 

GABAergic projection. As a consequence, theta-generation could be perturbed in the 

septohippocampal loop. On the other hand, the septal nuclei also provide hippocampal interneurons 

with cholinergic input. In this manner, septal pacemakers can maintain a normal theta-rhythm even 

in the PV-GluR-A mutants. This theta can still modulate gamma-oscillations in a normal way. In 

any case, it would be interesting to record from the hippocampus and the medial septum 

simultaneously, to reveal in more detail the features of theta-generation.  

Our unitary findings indicate that by compromising the excitation of PV-cells, the firing 

rates of interneurons do not change substantially even if we find a slight tendency towards 

decreased interneuronal firing rate during theta-oscillations. However, since we cannot discriminate 

between different interneuron-subpopulations in our interneuron-pool, this result can indicate a 

substantially underperforming PV-cell-population together with an unaltered or slightly 

compensating subpopulation of other GABAergic cells, be that CCK-positive neurons or 

interneurons expressing other markers. In a different scenario, PV-cells may possess “pacemaker”-

properties, in which case they could generate action potentials without substantial excitatory input. 

As a result, their overall firing rates might not change much but the firing precision of basket cells 

could decrease, a possible outcome corroborated by the results on in vitro gamma-oscillations from 

GluR-D KO mice. However, as we saw, the PV-GluR-A KO mice are also different from the GluR-
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D KO animals in this respect, because interneurons in PV-GluR-A KO animals displayed an 

increased phase-modulation during gamma- as well as ripple-oscillations. Interneurons in the PV-

GluR-A KO mice increase their firing rate during ripples as WT interneurons do, however, 

additional mechanisms, such as gap junctions can also take part in this process or might become 

prevailing. 

Interestingly, the main effect of modifying interneurons can be measured on pyramidal cells 

in a more sensitive way. Even though the average firing rate of principal cells was unaltered in the 

PV-GluR-A mutants, these pyramidal cells could accelerate to higher values during bursts, which is 

the favoured mode of pyramidal cell discharge. In addition to that, pyramidal cells in the PV-GluR-

A KO mice were more likely to participate in bursts than those in WT mice. The higher bursting 

frequency is even more prominent during theta-oscillations. Pyramidal cells in KO mice exhibited a 

lower firing rate during theta-periods than their WT counterparts but surprisingly their bursting 

frequency was higher than those in WT mice. Thus, we see a complex phenotype. It seems that 

during theta-oscillations pyramidal cells from PV-GluR-A KO mice reach their firing threshold 

more rarely than principal cells from WT mice but when they reach it, they can fire faster. 

Experiments carried out in the Buzsáki-lab (Harris et al., 2001) have shown that the longer a 

pyramidal cell is silent, the more likely it responds with burst firing. It is assumed that this property 

is in connection with the depolarization block of their fast Na+-channels. In this manner, it takes 

longer for a perturbed inhibitory network to relieve this block on pyramidal neurons, but when this 

is achieved, the pyramidal cells can fire faster most probably because of the suboptimal function of 

inhibitory cells. Pyramidal cells in PV-GluR-A KO mice also exhibit normal average firing rates 

during ripples, however, their bursting frequency is also higher during ripples compared to WT 

animals.  

As discussed in the Results section, we do not find drastic changes in the phase-preference 

of either pyramidal cells or interneurons in PV-GluR-A KO mice, even though putative basket cells 

preferentially discharged at a slightly earlier theta-phase in the mutant compared to WT mice and 

also during gamma- and ripple-oscillations interneurons were delayed in the KO animals. However, 

the modulation depth of KO interneurons exceeded that of the WT control especially in gamma- 

and ripple-oscillations. These phenomena can result from the insufficient excitation the interneurons 

receive, because PV-cells would reach their firing threshold only in more circumscribed oscillatory 

phases. The delay of interneurons related to the gamma-phase (and also ripple-phase) indicates a 

problem with the activation of interneurons in feed-forward or feed-back excitation and this delay 

can also explain the gamma-frequency decrease we find in REM-sleep (figure 18., magnified and 

replotted on figure 36.). Interestingly, PV-cells in GluR-D KO mice showed a weaker modulation in 
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in vitro gamma-oscillations (figure 37.) and this would also mean a decreased phase-modulation 

with respect to gamma-oscillations in vivo. 
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However, we cannot directly relate in vitro findings from GluR-D KO mice with in vivo 

results from PV-GluR-A KO mice because the GluR-D subunit also determines the fast kinetics of 

glutamate receptors. Thus, slowing down the AMPA-currents on PV-cells by deleting GluR-D may 

have a more profound effect on the spiking precision which could lead to a decreased gamma-

phase-modulation in vitro, an outcome which we see in GluR-D KO mice but do not find in PV-

GluR-A mutants. The decreased phase-modulation in the GluR-D-mutants can also account for the 

more pronounced gamma-power decrease and the slight gamma-frequency decrease in those 

animals (Fuchs et al., 2007), a result, which is different from that obtained in PV-GluR-A KO mice 

in vivo, even if we see a slight gamma-frequency decrease during REM-sleep in the latter.  

We also find a higher modulation depth for pyramidal neurons and interneurons in PV-

GluR-A KO mice during ripple-oscillations. To understand this finding let us imagine that due to 

Figure 37.: Decreased phase-locking of 

PV-cells in pharmacologically induced 

gamma-oscillations in GluR-D KO mice. 

On the left ten oscillatory waves and the 

same number of action potentials are 

seen as an overlay. On the right the 

precise distribution of action potentials 

with respect to the peak of the gamma-

waves is seen.  

Figure is from Fuchs et al., 2007, 

Neuron. 

Figure 36.: PV-GluR-A KO 

mice display a reduction in the 

REM-gamma-frequency, which 

is most pronounced on peak of 

the theta-waves. 

See the part on oscillatory 

analysis and fig. 18 for more 

details. 
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the perturbed excitatory drive of interneurons, more pyramidal cells are recruited to a given sharp-

wave in the CA3-region of  PV-GluR-A KO than in WT mice. As a consequence, CA1-interneurons 

receive a proportionally stronger drive, which could approach or even exceed the levels in WT 

mice. The stronger drive together with the altered sensitivity of interneurons could bring 

interneurons into motion in a more synchronised way. Thus, by auxiliary mechanisms the 

interneurons can be even sharper modulated and the sharper modulation of the interneurons can also 

be responsible for the sharper modulation depth of pyramidal cells later on. The mutant ripples 

would be the “fruit” of an altered, more synchronised inhibition and a more sharply tuned 

excitation, but still not reaching the threshold for epileptic discharges. 

Even though it is tempting to correlate decreased gamma-power with cognitive deficits, we 

could not reproduce the in vitro results on gamma-oscillations in vivo. However, pyramidal cells in 

the PV-GluR-A KO mice behaved in a different way than those in WT mice, especially during 

theta-oscillations. The unitary analysis suggests that pyramidal cells fire overall less frequently 

during awake exploration and REM-sleep in KO animals. This may affect the navigation skills and 

memory-acquisition of these mice since hippocampal principal cells may be less accessible for 

excitatory inputs in the named behavioural states. However, in certain cases, pyramidal cells could 

fire with higher-frequency bursts. Altogether these features can make their activity less predictable 

and less controllable. A decreased firing precision can be harmful to the stability of cell-assemblies 

and in a similar way to the consolidation and stability of place fields. This can explain why PV-

GluR-A KO animals underperform in short-term memory tests, such as T-maze and novel object 

recognition. The increased bursting frequency of CA1 pyramidal neurons during ripples might also 

mean that less well potentiated pyramidal cells also respond with burst firing in the actual 

oscillatory episode. This may lead to memory-consolidation in a less contrasted way and therefore 

may also lead to memory problems in the long run, even though the reference memory of the PV-

GluR-A mutant mice seemed to be intact. Another possibility could be that as a consequence of 

compromised inhibition gap junctional coupling might be enhanced and this would interfere with 

the function of pyramidal neurons more profoundly, making their output less controllable. This 

model, however, is unlikely and would suggest that gap junctions are atavistic remains in the central 

nervous system and instead of being useful devices, they increase its noise-level. 

 

Outlook 

 

The altered network synchrony observed in the CA1 hippocampal subregion in PV-GluR-A 

KO mice raises many interesting questions. Analysis of place cells and place fields in these mice 
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will be carried out next and will be useful to establish links between single-cell activity and 

behaviour. The impaired performance of the mutants in the novel object recognition tests suggests 

that pattern completion and pattern separation may also be perturbed in these animals. These 

functions have been associated with the CA3 region (Nakazawa et al., 2002) and DG (McHugh et 

al., 2007). Therefore in vivo recordings from CA1, CA3 and DG during cognitive tasks and in 

remapping experiments could further enhance our understanding of cognitive alterations in the PV-

GluR-A KO mice.  

To reduce the probability of developmental alterations in knockout mice, we will resort to 

viral-injection exteriments in distinct hippocampal subfields using adult “floxed” GluR-A mice. The 

Cre-gene in these viruses, however, should be under the control of PV-promoter, which has not yet 

been achieved. 
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