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1 Introduction

Initially, the Galois theory of q-difference equations was built for q unequal to a root of
unity (see for instance [25]). This choice was made in order to avoid the increase of the
field of constants to a transcendental field. However, P.A. Hendricks studied this problem
in his PhD work under the supervision of M. van der Put (see [12]). In Chapter 6 he gave
a notion of Galois groups for q-difference equations over C(z) with qm = 1. His idea was to
compare the category DiffC(z) of q-difference modules over C(z) with the category FModZ
of modules over the ring C(zm)[t, t−1]. He thus obtained an equivalence of categories and a
fiber functor from DiffC(z) with values in the category V ectC(zm) of vector spaces of finite
dimension over C(zm). However, in his case there is no unique Picard-Vessiot ring of a
q-difference equation. This construction is also not totally satisfying because we do not
want to have such transcendental base fields for Galois groups.

In the same matter, the question of the constant field for differential modules in positive
characteristic has given rise to the construction of a new differential Galois theory in posi-
tive characteristic. The first work in this direction was made by H. Hasse and F.K. Schmidt
[11], but it was only in 2000 when B.H. Matzat and M. van der Put set up a modern and
systematic approach to this theory (see [17] and [16]). The main idea is to consider not
only one derivation but a whole family of derivations, called higher derivations or iterative
derivations. By defining the constants as the elements annihilated by the whole family
of derivations, they succeeded in getting a good constant field, for instance Fp instead of
Fp(zp). So they were able to give a complete description of the Picard-Vessiot theory of
differential equations in positive characteristic and relate it to a Tannakian approach.

For q-difference theory, the problem is not the characteristic but the roots of unity. In-
spired by the work of B.H. Matzat and M. van der Put, we consider in this paper a family of
iterative difference operators instead of considering just one difference operator, and in this
way we stop the increase of the constant field and succeed in setting up a Picard-Vessiot
theory for q-difference equations where q is a root of unity. The theory we obtain is quite
the exact translation of the iterative differential Galois theory developed by B.H. Matzat
and M. van der Put to the q-difference world. This analogy between iterative differential
Galois theory and iterative difference Galois theory could perhaps be explained in a more
theoretical way, as it is done in the paper of Y. André [1] for classical theories. But for the
moment, we will only focus on the construction of iterative q-difference Galois theory.

The interests of building such a theory are multiple. The first one is to fill in the
gap in the classical q-difference Galois theory for roots of unity. The theory of iterative
q-difference operators developed in this paper encompasses and extends the work of Singer
and van der Put ([25]). For instance, this could provide a good functor of p-adic confluence
from the world of q-difference to the world of differential equations, following the work of
A. Pulita ([18]). However, instead of considering a (σq, ∂)-module at the roots of unity, (as
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it is done in [18]), it will be more suitable to consider an iterative q-difference module. In
a similar way, it will be very enlightening to build a confluence functor in characteristic p
from iterative q-difference modules to iterative differential modules. Another goal of this
theory will be to obtain an iterative q-difference version of the Grothendieck Conjecture
following the work of L. Di Vizio [8] and the work of P.A. Hendricks [12]. In other words,
we want to prove that our iterative q-difference groups are generated by the curvatures,
which are linear operators in characteristic zero in the case of q a root of unity.
For the whole paper, we fix an algebraically closed field C and q ∈ C with q 6= 1. Let
F = C(t) denote the field of rational functions over C and σq the automorphism of F
which associates to a function f(z) the function f(qz).
In the second section, we introduce the arithmetic basis of iterative q-difference algebra. In
this section we work in all generality, i.e., we do not make any assumptions wether q is a
root of unity or not. With this choice we want to emphasize the fact that we just generalize
the Galois theory of q-difference of M.F Singer and M. van der Put ([25]). From the third
section until the end of the paper, we will restrict ourselves to the case of q a primitive root
of unity, where the most peculiar phenomena appear. In Section 3 we define the category
of iterative q-difference modules and their relation with some specific category of projective
systems. As in [16], the equivalence of categories yields a family of q-difference equations,
related to the fact that an iterative q-difference operator is a family of maps. Such a family
of equations can be regarded in two different ways, a general and a relative one using the
projective system. Both formulations are used in later sections.
In Section 4, we build a Picard-Vessiot theory for iterative q-difference equations by using
the classical theory as formulated for instance in [25]. To be a little more concrete, at
the end of the section, we give a method to realize groups in dimension one as iterative
q-difference Galois groups.
In Section 5, we adopt Kolchin’s way of thinking and show how an iterative q-difference
Galois group is formed by the C-points of an affine group-scheme. We also obtain the
analogue of Kolchin’s theorem for our theory and the usual Galois correspondence.
As a conclusion to this paper, we state an analogue of the Grothendieck-Katz conjecture
for iterative q-difference Galois groups as in the work of L. Di Vizio.
I would like to thank A. Roescheisen and J. Hartmann for all their help, remarks and so
useful comments. Last but not least, I am sincerely grateful to the Professor B.H. Matzat
for the inspiration his theory has provided to me and for all his help and encouragement
to pursue this study.

2 Iterative q-difference rings

In considering an element q of a field C which may be a primitive root of unity and trying
to construct a q-difference Galois theory, we have to deal with the problem that the field
of constants of the usual q-difference operator extends to a transcendental field. To avoid
this increase of the constants, we have to consider a more arithmetic approach, such as the
one introduced by H. Hasse and F.K. Schmidt [11] for differential equations. Until the end
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of this article, we let F = C(t) denote the field of rational functions over C and σq the
q-difference operator of F defined as follows : σq(f(z)) := f(qz).

2.1 q-Arithmetic properties

In this paragraph, we just recall the most usual q-arithmetical objects.

Definition 2.1 Let k ∈ Z. Put [k]q := qk−1
q−1

.

1. Let [k]q! denote the element of C defined by [k]q[k − 1]q...[1]q. We will say that [k]q!
is the q-factorial of k.

2. Let
(
r
k

)
q

denote the element of C defined by [r]q !

[k]q ![(r−k)]q !
. We will say that

(
r
k

)
q

is the

q-binomial coefficient of r over k.

3. (1− t)m := (1− t)(1− qt)...(1− qm−1t).

Proposition 2.2 1.
(
r
0

)
q

=
(
r
r

)
q

= 1.

2.
(

0
k

)
q

= 0 if k 6= 0 and
(
0
0

)
q

= 1.

3. Assume that q is a primitive n-th root of unity. Then for two integers a > b,(
an

bn

)
q

=

(
a

b

)
. (1)

4.
∑

i+j=k,i≤s,j≤r
(
r
j

)
q

(
s
i

)
q
qi(r−j) =

(
r+s
k

)
q

for all (k, r, s) ∈ N3 with r + s ≥ k.

Proof of part 4
Let m ∈ N. The function (1− t)m of C(t) defined in 2.1 part 3 gives

(1− t)m =
m∑
j=0

(−1)j
(
m

j

)
q

qj(j−1)/2tj. (2)

Because qn = 1 and n is the order of q, we have (1− t)an = (1− t)an. Using Equation (2),
we obtain

an∑
j=0

(−1)j
(
an

j

)
q

qj(j−1)/2tj =
a∑
j=0

(
a

j

)
(−1)njqn(n−1)j/2tnj.

By comparing the terms in tbn, we obtain
(
an
bn

)
q
q

bn(bn−1)
2 =

(
a
b

)
qb

n(n−1)
2 .

Proof of part 5
Let (k, r, s) ∈ N3 with r + s ≥ k. We have

(1− t)r+s = (1− t)r(1− qrt)s. (3)
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By comparing the terms in tk, we obtain

(−1)kqk(k−1)/2

(
r + s

k

)
q

=
∑

i+j=k,i≤s,j≤r

(−1)i+jqk(k−1)/2

(
r

j

)
q

(
s

i

)
q

qi(r−j).

Remark 2.3 If C is of characteristic p > 0, then for pj > i we get from equation (1)(
npj

ni

)
q

= 0.

2.2 Iterative q-difference ring

In this paragraph, we define the formal properties of the iterative q-difference operator. In
the world of q-difference the analogue of the derivation d

dt
is the operator δq := σq−id

(q−1)t
(see for

instance [20]). Heuristically speaking, when q goes to 1, δq goes to the usual derivation d
dt

.
Thus the main idea of our constructions is to deform the iterative derivations into iterative
difference operators by replacing ∂ by δq and all the arithmetical factors occurring in their
Definition 1.1 in [16] by q-analogues. The only change appears at the part 4 of Definition
2.4, where a twist by σq occurs.

Definition 2.4 Let R be a q-difference extension of C(t) in the sense of [25], let σq be the

q-difference operator of R and let δ∗R := (δ
(k)
R )k∈N be a collection of maps from R to R. The

family δ∗R is called an iterative q-difference operator on R, if for all a, b ∈ R and all
i, j, k ∈ N, the following properties are satisfied

1. δ
(0)
R = id,

2. δ
(1)
R = σq−id

(q−1)t
,

3. δ
(k)
R (x+ y) = δ

(k)
R (x) + δ

(k)
R (y),

4. δ(k)(ab) =
∑

i+j=k σ
i
q(δ

(j)
R (a))δ

(i)
R (b),

5. δ
(i)
R ◦ δ(j)

R =
(
i+j
i

)
q
δ
(i+j)
R .

The set of iterative q-difference operators is denoted by IDq(R). For δ∗R ∈ IDq(R), the tuple
(R, δ∗R) is called an iterative q-difference ring (IDq-ring). We say that an element c of

R is a constant if δ
(k)
R (c) = 0 for all k ∈ N∗. We denote by C(R) the ring of constants of

R.

Remark 2.5 1. If R is a ring, then C(R) is a ring. If R is a field, then C(R) is a field.

2. We have for all j, i ∈ N,

σjqδ
(i)
R =

1

qji
δ
(i)
R σ

j
q . (4)
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Proof
In order to prove Equation (4), it is sufficient to prove it for j = 1, the general case obviously
follows from this case.
For all k > 0, we have

δ
(k)
R (t

1

t
) = 0 = δ

(k)
R (t−1)t+ σq(δ

(k−1)
R (t−1)). (5)

By part 5 of Definition 2.4, we get δ
(1)
R ◦ δ(i)

R = δ
(i)
R ◦ δ(1)

R for all i ∈ N. Using part 2 and
4, we obtain that

σq − id

t
◦δ(i)

R (x) = δ
(i)
R ◦(

σq − id

t
)(x) =

i∑
k=1

σkq (δ
(i−k)
R (σq−id)(x))δ(k)

R (t−1)+δ
(i)
R ((σq−id)(x))t−1

for all x ∈ R and i ∈ N. By Equation (5), we get

σq
t
◦ δ(i)

R (x) =
−1

t
σq[

i−1∑
k=0

σkq (δ
(i−1−k)
R (σq − id)(x))δ

(k)
R (t−1)] +

δ
(i)
R ◦ σq(x)

t
,

i.e.,

σq
t
◦ δ(i)

R (x) =
−1

t
σq(δ

(i−1)
R ◦ δ(1)

R (x)) +
δ
(i)
R ◦ σq(x)

t

that is,

σq
t
◦ δ(i)

R (x) = −q − 1

t
σq ◦ (

qi − 1

q − 1
δ
(i)
R )(x) +

δ
(i)
R ◦ σq(x)

t
.

This last equation gives

σqδ
(i)
R (x) =

1

qi
δ
(i)
R σq(x)

which concludes the proof.

Remark 2.6 (Classical case) If q is not a root of unity then δ
(k)
R =

(δ
(1)
R )

k

[k]q !
and the itera-

tive q-difference rings that we consider are the q-difference rings studied by M. van der Put
and M.F Singer in [25].

Main example : The field of rational functions over C

Definition 2.7 Let k ∈ N. Let δ
(k)
q denote the additive map from C[t] to C[t] defined

by δ
(k)
q (λtr) := λ

(
r
k

)
q
tr−k, for all r ∈ N, and λ ∈ C. Using the formula δ(k)(ab) =∑

i+j=k σ
i
q(δ

(j)
q (a))δ

(i)
q (b), we extend δ

(k)
q to F = C(t).
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Proposition 2.8 The collection (δ
(k)
q )k∈N of maps from F to F , defined previously, satisfy

1. δ
(0)
q = id,

2. δ
(1)
q = σq−id

(q−1)t
,

3. for all k ∈ N, the map δ
(k)
q is additive,

4. δ
(i)
q ◦ δ(j)

q =
(
i+j
i

)
q
δ
(i+j)
q .

Proof

By construction of (δ
(k)
q )k∈N, it is sufficient to prove that all the formulas hold upon

evaluation on tr with r ∈ N.

1. Because
(
k
0

)
q

= 1, it is obvious that δ
(0)
q = id.

2. For all r ∈ N, we have δ
(1)
q (tr) =

(
r
1

)
q
tr−1 = qrtr−tr

(q−1)t
= σq−id

(q−1)t
(tr).

3. Let r ∈ N. We have

δ(i)
q ◦ δ(j)

q (tr) =

(
r − j

i

)
q

(
r

j

)
q

tr

and (
r − j

i

)
q

(
r

j

)
q

=

(
i+ j

i

)
q

(
r

i+ j

)
q

,

which gives

δ(i)
q ◦ δ(j)

q (tr) =

(
i+ j

i

)
q

δ(i+j)
q (tr).

Proposition 2.9 The field F = C(t) endowed with the collection of maps (δ
(k)
q )k∈N as in

Definition 2.7 is an iterative q-difference field with δ
(n)
q (tn) = 1 for all n ∈ N and thus

C(F ) = C.

Tensor product of IDq-rings

Lemma 2.10 Let (R1, δ
∗
R1

) and (R2, δ
∗
R2

) be two iterative q-difference rings. We have∑
i+j=k

σiq(δ
(j)
R1

(a))⊗ δ
(i)
R2

(b) =
∑
i+j=k

δ
(j)
R1

(a)⊗ σjq(δ
(i)
R2

(b)) (6)

for all k ∈ N, (a, b) ∈ R1 ×R2.
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Proof
The formula (6) is obviously true for k = 1, using the definition of δ(1). If (6) holds for k
and l in N, we have

(
k + l

k

)
q

∑
i+j=k+l

σiq(δ
(j)
R1

(a))⊗ δ
(i)
R2

(b) =

(∑
r+s=l

σrq(δ
(s)
R1

)⊗ δ
(r)
R2

)(∑
i+j=k

σiq(δ
(j)
R1

(a))⊗ δ
(i)
R2

(b)

)

that is

(
∑
r+s=l

σrq(δ
(s)
R1

)⊗δ(r)
R2

)

(∑
i+j=k

σiq(δ
(j)
R1

(a))⊗ δ
(i)
R2

(b)

)
=

(∑
r+s=l

δ
(r)
R1
⊗ σrq(δ

(s)
R2

)

)(∑
i+j=k

δ
(j)
R1

(a)⊗ σjq(δ
(i)
R2

(b))

)

and thus(
k + l

k

)
q

∑
i+j=k+l

σiq(δ
(j)
R1

(a))⊗ δ
(i)
R2

(b) =

(
k + l

k

)
q

∑
i+j=k+l

δ
(j)
R1

(a)⊗ σjq(δ
(i)
R2

(b)).

Then, if
(
k+l
k

)
q
6= 0, the formula (6) holds for k + l. If q is not a root of unity, we can

conclude by induction.
Assume now that qn = 1. It remains to show that Formula (6) holds for k ∈ nN. We will
first prove it for k = n.
Because

∑
i+j=n σ

i
q(δ

(j)
R1

(a))⊗ δ(i)
R2

(b) = δ
(n)
R1

(a)⊗ b+a⊗ δ(n)
R2

(b)+
∑n−1

i=1 σ
i
q(δ

(n−i)
R1

(a))⊗ δ(i)
R2

(b),
the proof for k = n will be complete if we show that

n−1∑
i=1

σiq(δ
(n−i)
R1

(a))⊗ δ
(i)
R2

(b) =
n−1∑
i=1

δ
(i)
R1

(a)⊗ σiq(δ
(n−i)
R2

(b)). (7)

We have δ(k) = (δ(1))k

[k]q !
and

(δ(1))k =
(−1)k

((q − 1)t)k

k∑
j=0

(−1)j
(
k

j

)
q−1

q−
j(j−1)

2 σjq =
1

((q − 1)t)k

k∑
j=0

aj,kσ
j
q

for 0 < k < n (see [8], Lemma 1.1.10). Then,

n−1∑
i=1

σiq(δ
(n−i)
R1

(a))⊗δ(i)
R2

(b) =
1

((q − 1)t)n

n∑
l=1

l∑
k=0

σlq(a)⊗σkq (b)(
i=l,i6=n∑
i=k,i6=0

al−i,n−iak,iq
−i(n−i)

[n− i]q![i]q!
). (8)

If l 6= n, k 6= 0 and l 6= k, we have

i=l,i6=n∑
i=k,i6=0

al−i,n−iak,iq
−i(n−i)

[n− i]q![i]q!
=

(−1)l+nq−
n(n−1)

2

[n− l]q−1 ![k]q![l − k]q!

l−k∑
i=0

(−1)i
(
l − k

i

)
q

q
i(i−1)

2 = 0

8



(expand (1− 1)l−k). If l = n, then

i=n,i6=n∑
i=k,i6=0

an−i,n−iak,iq
−i(n−i)

[n− i]q![i]q!
=

(−1)n+k+1q−
n(n−1)

2

[k]q![n− k]q−1

=

i=k,i6=n∑
i=0,i6=0

ak−i,n−ia0,iq
−i(n−i)

[n− i]q![i]q!

(expand (1 − 1)k and (1 − 1)n−k). Because σnq = id , it follows that the equation (8) is
symmetric in a and b. Thus the formula (7) holds and the equation (6) is true for k = n.
For k = 2n, we have∑

i+j=n

σiq(δ
(j)
R1

(a))⊗ δ
(i)
R2

(b) = δ
(2n)
R1

(a)⊗ b+ a⊗ δ
(2n)
R2

(b)+

n−1∑
i=1

σiq(δ
(2n−i)
R1

(a))⊗ δ
(i)
R2

(b) + δ
(n)
R1

(a)⊗ δ
(n)
R2

(b) +
2n−1∑
i=n+1

σiq(δ
(2n−i)
R1

(a))⊗ δ
(i)
R2

(b).

Because δ(2n−i) = δ(n−i) ◦ δ(n) for all i = 1, ..., n− 1, we obtain by (7)

n−1∑
i=1

σiq(δ
(2n−i)
R1

(a))⊗ δ
(i)
R2

(b) =
n−1∑
i=1

σiq(δ
(n−i)
R1

(δ
(n)
R1

(a)))⊗ δ
(i)
R2

(b) =
n−1∑
i=1

δ
(n+i)
R1

(a)⊗ σiq(δ
(n−i)
R2

(b))

=
2n−1∑
i=n+1

δ
(i)
R1

(a)⊗ σiq(δ
(2n−i)
R2

(b)).

We also have

2n−1∑
i=n+1

σiq(δ
(2n−i)
R1

(a))⊗ δ
(i)
R2

(b) =
n−1∑
i=1

δ
(i)
R1

(a)⊗ σiq(δ
(2n−i)
R2

(b)).

This concludes the proof for k = 2n. The same arguments gives the other cases.

Proposition 2.11 (proposition, definition) Let (R1, δ
∗
R1

) and (R2, δ
∗
R2

) be two iterative

q-difference rings. We define a collection of maps (δ
(k)
R1⊗R2

)k∈N from R1⊗F R2 to R1⊗F R2

as follows :

δ
(k)
R1⊗R2

(r1 ⊗ r2) :=
∑
i+j=k

σiq(δ
(j)
R1

(r1))⊗ δ
(i)
R2

(r2) for all k ∈ N, r1 ∈ R1 and r2 ∈ R2.

Then (R1 ⊗F R2, δ
∗
R1⊗R2

) is an iterative q-difference ring.

Proof
It is obvious that the family (δ

(k)
R1⊗R2

)k∈N satisfies the three first parts of Definition 2.4. By
Lemma 2.10 we have

δ
(k)
R1⊗R2

(r1 ⊗ r2) =
∑
i+j=k

σiq(δ
(j)
R1

(r1))⊗ δ
(i)
R2

(r2) =
∑
i+j=k

δ
(j)
R1

(r1)⊗ σjq(δ
(i)
R2

(r2))

9



for all k ∈ N. Let (a, c) ∈ R2
1 and (b, d) ∈ R2

2. We have

δ
(k)
R1⊗R2

((a⊗ b)(c⊗ d)) =
∑
i+j=k

σiq(δ
(j)
R1

(ac))⊗ δ
(j)
R2

(bd),

δ
(k)
R1⊗R2

((a⊗ b)(c⊗ d)) =
∑

i1+i2+j1+j2=k

σi1+i2+j1
q (δ

(j2)
R1

(a))σi1+i2
q (δ

(j1)
R1

(c))⊗ σi1q (δ
(i2)
R2

(b))δ
(i2)
R2

(d),

and thus,

δ
(k)
R1⊗R2

((a⊗ b)(c⊗ d)) =
∑

i1+j2+i=k

σi1+i
q (δ

(j2)
R1

(a))⊗ δ
(i1)
R2

(d)(σi1q (δ
(i)
R1⊗R2

(c⊗ b))).

This gives

δ
(k)
R1⊗R2

((a⊗ b)(c⊗ d)) =
∑

i1+i2+j1+j2=k

σi1+i2+j1
q (δ

(j2)
R1

(a))σi1q (δ
(i2)
R1

(c))⊗ σi1+i2
q (δ

(j1)
R2

(b))δ
(i1)
R2

(d),

and thus
δ
(k)
R1⊗R2

((a⊗ b)(c⊗ d)) =
∑
i+j=k

σiq(δ
(j)
R1⊗R2

(a⊗ b))δ
(i)
R1⊗R2

(c⊗ d).

This is part 4 of Definition 2.4.
We now prove part 5. Let (k, l) ∈ N2 and (a, b) ∈ R1 ×R2. We have

δ
(k)
R1⊗R2

◦ δ(l)
R1⊗R2

(a⊗ b) =
∑

i+j=l,i1+j1=k

qij1
(
j1 + j

j1

)
q

(
i1 + i

i

)
q

σi1+i
q (δ

(j1+j)
R1

(a))⊗ δ
(i1+i)
R2

(b),

that is

δ
(k)
R1⊗R2

◦ δ(l)
R1⊗R2

(a⊗ b) =
∑

r+s=k+l

σrq(δ
(s)
R1

(a))⊗ δ
(r)
R2

(b)(
∑

i+j=k,i≤s,j≤r

(
r

j

)
q

(
s

i

)
q

qi(r−j)).

Using part 5 of Proposition 2.2, we obtain

δ
(k)
R1⊗R2

◦ δ(l)
R1⊗R2

(a⊗ b) =

(
k + l

k

)
q

∑
r+s=k+l

σrq(δ
(s)
R1

(a))⊗ δ
(r)
R2

(b),

that is

δ
(k)
R1⊗R2

◦ δ(l)
R1⊗R2

(a⊗ b) =

(
k + l

k

)
q

δ
(k+l)
R1⊗R2

(a⊗ b).
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2.3 Twisted ring of formal power series

This paragraph is devoted to the relations between IDq-rings and rings of formal power
series. By encoding all properties of an iterative q-difference operator into twisted formal
power series, Property 2.15 provides us with a very powerful tool for the proofs to come.
This kind of twisted ring appears already in the work of Yves André (see [1]).

Definition 2.12 Let (R, δ∗R) be an iterative q-difference ring. The twisted ring Rσq [[T ]] of
formal series with coefficients in R is defined as follows : the additive structure of Rσq [[T ]]
is the same as the one of R[[T ]], the multiplicative structure is given by

λT r ∗ µT k := σrq(µ)λT r+k

and extended by distributivity to R[[T ]].

We will denote by ”.” the usual multiplication law on R[[T ]].

Lemma 2.13 The twisted ring (Rσq [[T ]],+, ∗) as in Definition 2.12 is a non commutative
ring with unity. We will denote by ”.” the usual multiplication law on R[[T ]].

Proof
We have :

λT r ∗ 1 = λT r ∗ T 0 = σrq(1)λT
r+0 = λT r = 1 ∗ λT r = σ0

q (λ)T r = λT r.

Thus 1 is a neutral element for the twisted multiplication ∗.
Let us prove then, that ∗ is associative.

νT s ∗ (λT r ∗ µT k) = νT s ∗ (σrq(µ)λT r+k) = σr+sq (µ)σsq(λ)νT r+s+k

and
(νT s ∗ λT r) ∗ µT k = (σsq(λ)µT r+s) ∗ µT k = σr+sq (µ)σsq(λ)νT r+s+k

give
νT s ∗ (λT r ∗ µT k) = (νT s ∗ λT r) ∗ µT k.

The product ∗ is therefore associative.
Now, we want to introduce an iterative q-difference operator on (Rσq [[T ]],+, .), that is to
say a collection of maps δ∗T which satisfies all the properties of Definition 2.4.
First we need an automorphism σq on (Rσq [[T ]],+, .) such that (Rσq [[T ]],+, .) is a q-
difference ring extension of F . We put σq(aT

i) := σq(a)q
iT i for all i ∈ N and a ∈ R.

By extending this definition R-linearly, Rσq [[T ]] becomes a q-difference ring extension of F .

We put δ
(k)
T (T r) :=

(
r
k

)
q
T r−k for all (k, r) ∈ N2 and extend this definition by R-linearity.

Obviously (δ
(k)
T )k∈N is an iterative q-difference operator over (Rσq [[T ]],+, .) (see Definition

2.4).

11



Definition 2.14 For all a ∈ R,

Ta(T ) :=
∑
k∈N

δ
(k)
R (a)T k.

is called the q-iterative Taylor series of a.
Two iterative q-difference operators δ∗R and δ̃∗R are called equivalent (viz δ∗R ∼ δ̃∗R), if there
exist numbers n and m in N such that Ta(T

n) = T̃a(T
m) for all a ∈ R, where T̃a denotes

the q-iterative Taylor series associated to δ̃∗R.

Proposition 2.15 Let R be a q-difference ring extension of F and let δ∗R = (δ
(k)
R )k∈N be a

sequence of maps from R to R. Let δ∗T be the iterative q-difference operator of (Rσq [[T ]],+, .)
defined previously, and let I denote the map

I : Rσq [[T ]] // R,
∑

k∈N akT
k � // a0 .

Then δ∗R is an iterative q-difference operator for R if and only if

1. T is a ring homomorphism from R to (Rσq [[T ]],+, ∗) , with I ◦T = idR,

2. δ
(k)
T ◦T = T ◦ δ(k)

R for all k ∈ N.

Proof
The fact that T is additive is equivalent to statement 3 in Definition 2.4. The compatibility
of T with the multiplication law in R and the twisted law ∗ in Rσq [[T ]], in the case where
δ∗R is an iterative q-difference operator comes from the equations

Tab(T ) :=
∑
k∈N

δ
(k)
R (ab)T k =

∑
k∈N

(
∑
i+j=k

σiq(δ
(j)
R (a))δ

(i)
R (b))T k = Ta(T ) ∗Tb(T ).

The second property is equivalent to the property 5 of the same definition.

2.4 Iterative q-difference morphisms and iterative q-difference
ideals

Definition 2.16 Let (R, δ∗R) and (S, δ∗S) be two iterative q-difference rings. We say that
a ring morphism φ from R to S is an iterative q-difference morphism if and only if
δ
(k)
S ◦ φ = φ ◦ δ(k)

R for all k ∈ N.

The set of all iterative q-difference morphisms from R to S is denoted by HomIDq(R,S).

An iterative q-difference ideal I ⊂ R (IDq-ideal) is an ideal of R stable by δ
(k)
R for all k ∈ N.

Lemma 2.17 Let I be an IDq-ideal of an iterative q-difference ring R, that is to say that
I is stable under the action of δ∗R. Then the radical of I is a IDq-ideal.

12



Proof
Assume that q is a n-th primitive root of unity. From δ

(1)
R = σq−id

(q−1)t
, we get

σq(a) = (q − 1)t(δ
(1)
R (a)− a), for all a ∈ I.

This shows that σq(a) ∈ I for all a ∈ I. Thus I is a σq-ideal. Conversely, if I is a σq-ideal

then it is a δ
(1)
R -ideal. Now, let us consider a ∈

√
I. There exists m ∈ N such that am ∈ I.

But, σq(a
m) = (σq(a))

m ∈ I. Thus σq(a) ∈
√
I.

Now, we will prove by induction that for all i < n, δ
(i)
R stabilizes

√
I.

It is true for i = 1. If it is true for k < n− 1, then k < n and we have :

δ
(1)
R ◦ δ(k−1)

R =

(
k

1

)
q

δ
(k)
R

where
(
k
1

)
q
6= 0 because k < n. We have that δ

(1)
R and δ

(k−1)
R stabilize

√
I (by first step and

by inductive assumption). Thus δ
(k)
R stabilizes

√
I. This concludes the proof by induction.

It remains to consider the case where k = n. Let a ∈
√
I and m ∈ N such that am ∈ I. We

have:
δ
(nm)
R (am) =

∑
i1+...+im=nm

σi2+...+im
q (δ

(i1)
R (a))...σimq (δ

(im−1)
R (a))δ

(im)
R (a). (9)

Because σnq = id, we can rewrite the equation (9) as follows δ
(nm)
R (am) = (δ

(n)
R (a))m +B

with

B =
∗∑

i1+...+im=nm

σi2+...+im
q (δ

(i1)
R (a))...σimq (δ

(im−1)
R (a))δ

(im)
R (a)

where
∑∗

i1+...+im=nm means that we only consider the (i1, ..., im) such that there exists at

least one j with ij < n. We have already proved by induction that
√
I is stable by σq

and by δ
(i)
R for i < n. This implies that B ∈

√
I. Then (δ

(n)
R (a))m belongs to

√
I since

δ
(nm)
R (am) ∈ I because I itself is an IDq-ideal. It follows δ

(n)
R (a) ∈

√
I.

So we have proved that
√
I is stable under δ

(k)
R for all k ≤ n. Using the formula

δ
(i)
R ◦ δ(k−i)

R =
(
k
i

)
q
δ
(k)
R and an inductive proof, we easily show that

√
I is stable under δ

(k)
R

for all k /∈ nN. The proof for k ∈ nN is an analogue of the case k = n. Therefore
√
I is an

IDq-ideal.

Remark 2.18 (Classical case) For q not equal to a root of unity, the proof of the previous
lemma is more elementary (see Lemma 1.7 in [25]). The reason is that if I is a σq-ideal
then its radical is obviously a σq-ideal because σq is an automorphism.
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2.4.1 Extending iterative q-difference operator

Proposition 2.19 Let R be an integral domain, and let S ⊂ R be a multiplicatively closed
subset of R stable under the action of σq such that 0 /∈ S. Let δ∗R be an iterative
q-difference operator on R. Then there exists a unique iterative q-difference operator δ∗S−1R

extending δ∗R to S−1R.

Proof
Because δ∗R is an iterative q-difference operator, the application T : R 7→ (Rσq [[T ]],+, ∗)
defined by a 7→ Ta(T ) is a ring homomorphism (see 2.15). Since R is commutative, we
have

Tab(T ) = Ta(T ) ∗Tb(T ) = Tb(T ) ∗Ta(T ) for all a, b ∈ R.

This allows us to define the quotient Ta(T )
Tb(T )

∗
of Ta(T ) by Tb(T ) with respect to the multipli-

cation ∗ for all (a, b) ∈ R×R∗. Thereby, the map T uniquely extends to a homomorphism

T̃ : S−1R 7→ ((S−1R)σq [[T ]],+, ∗) via a
b
7→ T̃a

b
(T ) := Ta(T )

Tb(T )

∗
. Define δ

(k)

S−1R(a
b
) to be the

coefficient of T k in T̃a
b
(T ). Then the collection of maps (δ

(k)

S−1R)k∈N of S−1R to itself satisfy

conditions 1 and 2 of Proposition 2.15. Thus (δ
(k)

S−1R)k∈N is an iterative q-difference operator
for S−1R. We also have

T̃
δ
(k)

S−1R
(a)

(T ) = δ
(k)
T (T̃a(T )) for all a ∈ R, k ∈ N.

The Taylor series associated to both sides of the previous equation extend uniquely to
(S−1R)σq [[T ]] and since they coincide on Rσq [[T ]], they have to be equal. Then

T̃
δ
(k)

S−1R
(a)

(T ) = δ
(k)
T (T̃a(T )) for all a ∈ S−1R, k ∈ N.

By Proposition 2.15, we get that (δ
(k)

S−1R)k∈N is an iterative q-difference operator of S−1R

which uniquely extends (δ
(k)
R )k∈N.

Remark 2.20 Let (R, δ∗R) be an integral iterative q-difference ring. It is obvious that the
set S of non zero divisors of R is a multiplicatively closed set and moreover stable under
the action of σq.

Remark 2.21 In this paragraph we did not mention the possibilities of extending an iter-
ative q-difference operator over a field K to a finitely generated separable field extension
E/K. In fact, this problem appears already in the classical q-difference Galois theory : ex-
tending σq to an algebraic extension gives rise to uniqueness problems. Here is an example.
Consider a difference field (K, σq), where σq is the identity on some algebraically closed
field C containing Q, K contains a solution y of σ(x) = cx, where c ∈ C is non-zero and
is not a root of unity. Moreover assume that K does not contain the n-th roots of y for
some n > 1. Consider the extension of K given by bn = y. Then σ(b) = rb, where rn = c.
The possible choices for σ on K(b) depend on the choices of r, and there are n possibilities,
which give rise to n non-isomorphic difference field extensions of K.
But by chance, we will not have to handle such kind of extension till the end of the paper.
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2.5 The Wronskian determinant

In classical Galois theory of q-difference equations, there exists an analogue of the Wron-
skian called the q-Wronskian or the Casoratian. If we consider a σq-module M over a field
K and a family F := {y1, ..., ym} of elements of M, we will define the q-Wronskian of the
family F as

Wq(y1, ..., ym) := det((σi−1
q (yj))1≤i,j≤m).

The nullity of the q-Wronskian gives a criterion for linear independence of the yi’s (see for
instance [15]). But when q is a root of unity, the q-Wronskian could vanish for other reasons
(for instance because σnq = id). Thus, we have to change the notion of q-Wronskian for
iterative q-difference operators in order to get a similar criterion to the one in the classical
theory.

Theorem 2.22 Let (K, δ∗K) be an iterative q-difference field with field of constants C.
Then for any elements x1, ..., xr of K linearly independent over C, the iterative Taylor
series Tx1 , ...,Txr are linearly independent over K.

Proof
This statement is obviously true for r = 1. We will proceed by induction on r. Let (Hr)
be the hypothesis of induction, i.e., for any elements x1, ..., xr of K linearly independent
over C, the iterative Taylor series Tx1 , ...,Txn are linearly independent over K. Suppose
that (Hr−1) is true and let x1, ..., xr ∈ K be linearly independent over C. Assume that
Tx1 , ...,Txr are linearly dependent over K, i.e. :

Txr =
r−1∑
j=1

ajTxj

where aj ∈ K not all equal to zero. This relation implies that

δ(k)(xr) =
r−1∑
j=1

ajδ
(k)(xj) for all k ∈ N (10)

We will prove that σq(aj) = aj for all 1 ≤ j ≤ r − 1. First of all, let us remark that if
x1, ..., xr−1 ∈ K are linearly independent over C then σq(x1), ..., σq(xr−1) ∈ K are linearly
independent over C.
Because of δ(1) = σq−id

(q−1)t
and from Equation (10), we have :

σq(δ
(k)(xr))− δ(k)(xr) =

r−1∑
j=1

ajσq(δ
(k)(xj))−

r−1∑
j=1

ajδ
(k)(xj)

and

σq(δ
(k)(xr)) =

r−1∑
j=1

σq(aj)σq(δ
(k)(xj)).

15



We also obtain that
r−1∑
j=1

(σq(aj)− aj)σq(δ
(k)(xj)) = 0

for all k ∈ N. Because σq(δ
(k)(xj)) = 1

qk δ
(k)(σq(xj)), we get

r−1∑
j=1

(σq(aj)− aj)(δ
(k)(σq(xj))) = 0

for all k ∈ N. This means that
∑r−1

j=1(σq(aj) − aj)Tσq(xj) = 0. Since x1, ..., xr−1 ∈ K are
linearly independent over C, σq(x1), ..., σq(xr−1) ∈ K are linearly independent over C. Thus
we can apply the induction hypothesis (Hr−1) to the set of elements σq(x1), ..., σq(xr−1) of
K and so σq(aj) = aj for 1 ≤ j ≤ r − 1 as desired.
For all k, i ∈ N, we have(

i+ k

k

)
q

δ(i+k)(xr) = δ(i)δ(k)(xr) =
r−1∑
j=1

i∑
l=0

σi−lq (δ(l)(aj))

(
i+ k − l

k

)
q

δ(i+k−l)(xj)

and (
i+ k

k

)
q

δ(i+k)(xr) =

(
i+ k

k

)
q

r−1∑
j=1

ajδ
(k)(xj).

Because σq(aj) = aj for 1 ≤ j ≤ r − 1, the term for l = 0 on the right hand side is equal
to the left hand side, thus

r−1∑
j=1

i∑
l=1

σi−lq (δ(l)(aj))

(
i+ k − l

k

)
q

δ(i+k−l)(xj) = 0. (11)

For i = 1, we deduce from equation (11) that

r−1∑
j

δ(1)(aj)δ
(k)(xj) = 0.

By applying δ(1), we obtain :

r−1∑
j

σq(δ
(1)(aj))δ

(1)(δ(k)(xj)) +
r−1∑
j

δ(1)(δ(1)(aj))δ
(k)(xj) = 0,

i.e., since σrqδ
(s) = 1

qrs δ
(s)
R σrq for all r, s ∈ N, and the aj’s are fixed by σq,

r−1∑
j

q(qk+1 − 1)

q − 1
δ(1)(aj)δ

(k+1)(xj) +
r−1∑
j

(q + 1)(δ(2)(aj))δ
(k)(xj) = 0.
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For i = 2, we deduce from equation (11) that

r−1∑
j

σq(δ
(1)(aj))

(
k + l

k

)
q

δ(k+1)(xj) +
r−1∑
j

δ(2)(aj)δ
(k)(xj) = 0.

By subtracting this from the equality above, we find :

r−1∑
j

δ(2)(aj)δ
(k)(xj) = 0.

By induction, the same arguments yields

r−1∑
j

δ(i)(aj)δ
(k)(xj) = 0 for k ≥ 0 and i ≥ 1.

This leads to

r−1∑
j

δ(i)(aj)Txj
= 0.

By hypothesis of induction (Hr−1), this implies that δ(i)(aj) = 0 for all i ≥ 1 and all
1 ≤ j ≤ r − 1. Hence all the aj’s are constants and lie in C. But we have xn =

∑r−1
j=1 ajxj

(see equation (11) for k = 0) and thus by assumption of C-linearly independence of x1, ..., xr,
we get that aj = 0 for all 1 ≤ j ≤ r − 1. This is the end of the proof.

Corollary 2.23 In the notation of Theorem 2.22, there exist numbers d1, ..., dr ∈ N such
that

det((δ(di)(xj))
r
i,j=1) 6= 0.

Definition 2.24 Let (K, δ∗K) be an IDq field with C(K) = C and let x1, ..., xr ∈ K be
linearly independent over C. The smallest numbers d1, ..., dr ∈ N (in lexicographical order)
such that det((δ(di)(xj))

r
i,j=1) 6= 0 (which exist by Corollary 2.23) are called the difference

orders of x1, ..., xr. The determinant

wr(x1, ..., xr) := det((δ(di)(xj))
r
i,j=1)

is called the Wronskian determinant of x1, ..., xr.

3 Iterative q-difference modules

Until the end of this article, we will assume that q is a n-th primitive root of unity con-
tained in an algebraically closed field C. But we do not make any assumption about the
characteristic of the field C.
In Section 2, we have defined iterative q-difference rings. Following the classical way, we
extend this concept to modules, in order to get a suitable notion of iterative q-difference
equations associated to these modules.
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Definition 3.1 Let (R, δ∗R) be an iterative q-difference ring. Let M be a a free R-module
of finite type over R. We will say that (M, δ∗M) is an iterative q-difference module if

there exists a family of maps δ∗M = (δ
(k)
M )k∈N, such that for all i, j, k ∈ N

1. δ
(0)
M = idM ,

2. φM := (q − 1)tδ
(1)
M + idM is a bijective map from M to M ,

3. δ
(k)
M is an additive map from M to M ,

4. δ
(k)
M (am) =

∑
i+j=k σ

i
q(δ

(j)
R (a))δ

(i)
M (m) for a ∈ R and m ∈M ,

5. δ
(i)
M ◦ δ(j)

M =
(
i+j
i

)
q
δ
(i+j)
M .

The set of all iterative q-difference modules over R is denoted by IDMq(R).

Remark 3.2 (Classical case) If q is not a root of unity, it is easy to see that φM(am) =

σq(a)φM(m) for all a ∈ R and m ∈M . Moreover, δ
(k)
M =

δ
(1)
M

k

[k]q !
. Thus, in the case where q is

not a root of unity, an IDq-module is nothing else than a q-difference module in the sense
of [25].

As in 2.5, we easily show that we have for all j, i ∈ N,

φjMδ
(i)
M =

1

qji
δ
(i)
M φ

j
M . (12)

Definition 3.3 Let (M, δ∗M) and (N, δ∗N) be two iterative q-difference modules over R and
let φ ∈ HomR(M,N). We will say that φ is an iterative q-difference homomorphism

if δ
(k)
N ◦ φ = φ ◦ δ(k)

M for all k ∈ N.

Definition 3.4 Let (R, δ∗R) be an iterative q-difference ring. Let (M, δ∗M) be an iterative
q-difference module over R. The C(R)-module

VM :=
⋂
k∈N

Ker(δ
(k)
M )

is called the solution space of the iterative q-difference module M . We will say that M
is a trivial iterative q-difference module if M ' VM ⊗C(R) R.

Theorem 3.5 Let (L, δ∗L) be an iterative q-difference field. Let us denote by IDMq(L) the
category with objects the iterative q-difference modules over L and morphisms the iterative
q-difference morphisms. Then IDMq(L) is a neutral Tannakian category over C(L). The
unit object is (L, δ∗L).
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We refer to [16] for the fact that IDMq(L) is an abelian category, the case for iterative
differential modules being the same as the one of iterative q-difference modules. For M
and N two objects of IDMq(L), we define the tensor product M ⊗N := M ⊗L N by the
usual tensor product as L-modules and turn it to an IDq-module via

δ
(k)
M⊗N(x⊗ y) =

∑
i+j=k

φjM(δ
(i)
M (x))⊗ δ

(j)
N (y)

for all x ∈ M, y ∈ N . The proof that (δ
(k)
M⊗N)k∈N is an iterative q-difference operator on

M ⊗N is analogous to the proof of Proposition 2.11.
The dual of an object M of IDMq(L) is then given by M∗ = HomL(M,L) together with

δ
(k)
M∗(f) =

∑
i+j=k

(−1)iq
i(i+1)

2 σiq(δ
(j)
L ) ◦ f ◦ δ(i)

M ◦ φ−iM

for all f ∈ M∗. The proof that (M, δ∗M∗) is an iterative q-difference module is left to the
reader. We just recall that if (M,φM) is a q-difference module in the sense of [25], then the
M∗ is endowed with a q-difference module structure via

φM∗(f) := σq ◦ f ◦ φ−1
M .

The evaluation ε : M ⊗M∗ → 1IDMq(L) = L sends x ⊗ f to f(x), and the coevaluation
η : L→M∗⊗M is defined by mapping 1 to

∑n
i=1 x

∗
i ⊗xi, where {xi}ni=1 denotes an L-basis

of M and {x∗i }ni=1 the associated dual basis of M∗. Note that the definition of η does not
depend on the chosen basis. It remains to show that ε and η are IDq-homomorphism and
that they satisfy (ε ⊗ idM) ◦ (idM ⊗ η) = idM and (idM∗ ⊗ ε) ◦ (η ⊗ idM∗) = idM∗ for all
objects M of IDMq(L). We have

ε ◦ δ(k)
M⊗M∗(x⊗ f) = ε

(∑
i+j=k δ

(i)
M (x)⊗ φiM∗(δ

(j)
M∗(f))

)
=
∑

i+j=k φ
i
M∗(δ

(j)
M∗(f))(δ

(i)
M (x))

=
∑

i+j=k

∑j
l=0(−1)lql(l+1)/2σi+lq (δ

(j−l)
L ) ◦ f ◦ δ(l)

M ◦ φ−(i+l)
M (δ

(i)
M (x))

=
∑

i+j=k

∑j
l=0(−1)lql(l+1)/2σl+iq (δ

(j−l)
L ) ◦ f ◦ qi(i+l)

(
i+l
i

)
q
δ
(i+l)
M (φ

−(i+l)
M (x))

and thus

ε ◦ δ(k)
M⊗M∗(x⊗ f) =

∑
i∗+j∗=k

σi∗q (δ
(j∗)
L ) ◦ f ◦ δ(i∗)

M (φ−i∗M (x))

(
i∗∑
i=0

(−1)iqi(i−1)/2

(
i∗
i

)
q

)
.

By expanding (1 − 1)i∗ , we see that the inner sum equals zero if and only if i∗ 6= 0. We
thus get

ε ◦ δ(k)
M⊗M∗(x⊗ f) = δ

(k)
L f(x) = δ

(k)
L ◦ ε(x⊗ f).

The proof for η is analogous.
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Let x =
∑n

i=1 aixi be in M , then (ε⊗idM)◦(idM⊗η)(x) = ε⊗idM(x⊗(
∑n

i=1 x
∗
i ⊗xi)) =

ε⊗idM(
∑n

i=1(x⊗x∗i )⊗xi) =
∑n

i=1 x
∗
i (x)⊗xi =

∑n
i=1 aixi = x. Again, the second statement

is proved analogously. Finally,we note that

EndIDMq(L)(1IDMq(L)) = EndIDq(L) = C(L),

finishing the proof.

3.1 Iterative q-difference modules and projective systems

In this paragraph, we will show that iterative q-difference operators and iterative derivations
are closely related. First of all, let us consider the following proposition :

Proposition 3.6 Let q be a n-th root of unity. Let (L, δ∗L) be an iterative q-difference field

and let (M, δ∗M) be an iterative q-difference module over L. Set L0 = ∩j /∈nNKer(δ
(j)
L ) and

M0 = ∩j /∈nNKer(δ
(j)
M ). Then (M0, (δ

(nk)
M )k∈N) is an iterative differential module over L0 (see

[16]).

Therefore, one could hope to get as in [16] some projective system deeply associated to
our iterative q-difference module. But the problem is the following. In the case of charac-
teristic zero we may regain all the iterative q-difference operators only with the knowledge

of δ
(1)
M and δ

(n)
M . This is due to the formula (δ

(n)
M )n

k−1
= (nk−1)!δ

(nk)
M and to the fact that

the family {δ(1)
M , (δ

(nk)
M )k∈N} generates the iterative q-difference operator. But in positive

characteristic, we have to consider the whole family {δ(1)
M , (δ

(npk)
M )k∈N} to recover the iter-

ative q-difference operator. Therefore, we can only obtain projective systems in positive
characteristic. But, this fact is not a hindrance to the construction of iterative q-difference
equations in characteristic 0.
As we have mentioned in the introduction, we will show that in positive characteristic, the
category of iterative q-difference modules is closely related to the category of some specific
projective systems. In this paragraph we obtain an equivalence between these two cate-
gories. This is a very nice tool because it allows us translate our computations from the
non commutative world of iterative q-difference modules to the world of linear algebra, via
the vector spaces associated to the projective systems.
This comparison between iterative differential modules and specific projective systems ap-
pears already in the work of B.H. Matzat and M. van der Put. But to obtain an equivalence
of categories between the projective systems linked to iterative derivations and the ones
associated to iterative q-difference, we need to have qp = 1 and this assumption makes no
sense. A hope for realizing this equivalence will be perhaps to rebuild both theories over
non-algebraically closed base rings, such as Z/pmZ and try to reach the Witt vectors. But
this is a a future research topic.
However, it is very easy to obtain from a iterative q-difference module an iterative differ-
ential module (see 3.6).
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3.1.1 Case of characteristic p

Let (L, δ∗L) be an iterative q-difference field of characteristic p and let (M, δ∗M) be an iter-
ative q-difference module over L. In positive characteristic, we have the exact analogue of
the equivalence of categories obtained by Matzat in [16] Theorem 2.8.

Put L1 = Ker(δ
(1)
L ) and Lk+1 = ∩0≤j<kKer(δ

(npj)
L ) ∩ L1 for k > 1 and L0 = L.

Put M1 = Ker(δ
(1)
M ), Mk+1 = ∩0≤j<kKer(δ

(npj)
M ) ∩M1 for all k > 1 and M0 = M .

Proposition 3.7 1. Mk is an Lk-vector space of finite dimension,

2. (Mk, φk)k∈N, where φk denotes the obvious injection from Mk+1 to Mk, is a projective
system,

3. the map φk extends to an isomorphism of Lk-vector-spaces from Mk+1 ⊗ Lk to Mk.

Proof
The two first statements are obvious. Let us prove the third one. Let (m1, ...,ms) be s
elements ofMk+1 linearly independent over Lk+1. Suppose that there are linearly dependent
over Lk and let ∑

i=i0,i∈I

λimi = 0 (13)

be a non trivial linear combination of the mi’s over Lk where I denotes a set of index of
minimal length. Without loss of generality we may assume that λi0 = 1.

For npk ≤ j < npk+1, apply δ
(j)
M to Equation (13). We thus have, since mi ∈Mk+1,∑

i=i0,i∈I

j∑
s=0

σsq(δ
(j−s)
L (λi))δ

(s)
M (mi) =

∑
i=i0,i∈I

δ
(j)
L (λi)mi = 0. (14)

Substracting (17) from (16), we obtain∑
i=i0,i∈I

(δ
(j)
L (λi)− λi)mi = 0. (15)

By minimality, we have δ
(j)
L (λi) − λi = 0 for all i > i0 and for all npk ≤ j < npk+1.

That is to say that λi ∈ Lk+1. Because (m1, ...,ms) are linearly independent over Lk+1,
we get that λi = 0 for all i. This is a contradiction. We thus have dimLk+1

(Mk+1) ≤
dimLk

(Mk). For all k ∈ N, the application δ
(npk)
M is Lk+2-linear on Mk+1 and (δ

(npk)
M )p = 0,

so dimLk+2
(Mk+2) = dimLk+2

(Ker(δ
(npk)
M )|Mk+1

) ≥ 1
p
dimLk+2

(Mk+1) ≥ dimLk+1
(Mk+1), where

the last inequality comes from the fact that δ
(npk)
L is an Lk+2-linear endomorphism of Lk+1

of order of nilpotence p.
But we also have (δ

(1)
M )n = 0. Therefore, we have dimL1(M1) = dimL1(Ker(δ

(1)
M |M) ≥

1
n
dimL1(M) ≥ dimL(M), where the last inequality comes from the fact that δ

(1)
L is an

L1-linear endomorphism of L of order of nilpotence n (q is a n-th primitive root of unity).
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3.1.2 Case of characteristic 0

Let (L, δ∗L) be an iterative q-difference field of zero characteristic and let (M, δ∗M) be an itera-

tive q-difference module over L. Put, for all k ∈ N∗, Lk = ∩0≤j<kKer(δ
(nj)
L ), L′0 = Ker(δ

(1)
L )

and L0 = L.

Put, for all k ∈ N∗, Mk = ∩0≤j<kKer(δ
(nj)
M ), M ′

0 = Ker(δ
(1)
M ) and M0 = M .

Proposition 3.8 1. Mk is a Lk-vector space of finite dimension.

2. Mk = M1 for all k ≥ 1.

3. Let φ1 be the obvious injection from M1 to M ′
0. Then the map φ1 extends to a

monomorphism of L′0-vector-spaces from M1 ⊗ L′0 to M ′
0.

4. Let φ0 be the obvious injection from M ′
0 to M0. Then the map φ0 extends to an

isomorphism of L-vector-spaces from M ′
0 ⊗ L to M0.

Proof
The first statement is obvious. Because (δ

(n)
M )n

k−1
= (nk−1)!δ

(nk)
M for all k ≥ 1 (see part 4 of

Proposition 2.2), we have Mk = M1 for all k ≥ 1. The third statement is obvious.
We now prove the fourth statement. Let (m1, ...,ms) be s elements of M ′

0 linearly indepen-
dent over L′0. Let us assume that they are linearly dependent over L and let us consider a
non trivial linear combination of the mi’s over L where I denotes a set of index of minimal
length : ∑

i=i0,i∈I

λimi = 0. (16)

Without loss of generality we may assume that λi0 = 1.

Let us apply δ
(1)
M to Equation (16). We then have, since mi ∈M ′

0,∑
i=i0,i∈I

1∑
s=0

σsq(δ
(1−s)
L (λi))δ

(s)
M (mi) =

∑
i=i0,i∈I

δ
(1)
L (λi)mi = 0. (17)

By subtracting (17) from (16), we obtain :∑
i>i0,i∈I

(δ
(1)
L (λi)− λi)mi = 0. (18)

By minimality, we have δ
(1)
L (λi)− λi = 0 for all i > i0, that is to say that λi ∈ L′0. Because

(m1, ...,ms) are linearly independent over L′0, we get λi = 0 for all i. This is a contradiction.
We then have dimL′0

(M ′
0) ≤ dimL(M).

Conversely, from (δ
(1)
M )n = 0 and (δ

(1)
L )n = 0 follows

dimL′0
(M ′

0) = dimL′0
(Ker(δ

(1)
M |M)) ≥ 1

n
dimL′0

(M) ≥ dimL(M).
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3.1.3 Equivalence of categories in the case of positive characteristic

In this paragraph, we keep the notation of Paragraph 3.1.1.

Notation 3.9 Let (L, δ∗L) be an iterative q-difference field of characteristic p. Let us denote
by Projq(L) the category of projective systems (Nk, ψk)k∈N over L with the properties:

1. Nk is an Lk-vector space of finite dimension and ψk is Lk+1-linear,

2. each ψk uniquely extends to an Lk-isomorphism

ψ̃k : Lk ⊗Lk+1
Mk+1

// Mk.

Theorem 3.10 Let (L, δ∗L) be an iterative q-difference field of positive characteristic. Then
the category Projq(L) is equivalent to the category IDMq(L).

Proof
We already saw in Proposition 3.7 how an object of IDMq(L) leads to an object of Projq(L).
Conversely, let us consider (Nk, ψk)k∈N in the category Projq(L). We will now construct
its associated iterative q-difference module.
Put M0 := N0 and define Mk := ψ0 ◦ ψ1 ◦ ...ψk−1(Nk). Then Mk ⊂ Mk+1 ⊂ ... ⊂ M0. Let
Bk = {b1, ..., bm} be an Lk-basis for Mk, then by property 2, Bk is an L-basis of M . Let
x ∈M , there exits (λi)i=1,...,m ∈ Lm such that x =

∑m
i=1 λibi. Then, for all j < k, set

δ
(j)
M (x) :=

m∑
i=1

δ
(j)
L (λi)bi.

This is possible because we want Bk to lie in the kernel of δ
(j)
M for j < k. Obviously

the definition is independent of the choice of the basis. Therefore, (M0, δ
∗
M0

) is an object
IDMq(L).
Let us consider two objects M := (Mk, φk)k∈N and N := (Nk, ψk)k∈N of Projq(L) and α a
morphism from M to N in the category Projq(L), i.e. αk is Lk linear and the diagram

Mk
αk // Nk

Mk+1

φk

OO

αk+1 // Nk+1

ψk

OO

is commutative. Then we have δ∗N ◦ α0 = α0 ◦ δ∗M . Also, with this property, it is then easy
to verify that

Projq(L) // IDMq(L)

(Nk, ψk)
� // (M0, δ

∗
M0

)

(with δ∗M0
as defined above) is in fact an equivalence of categories.
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3.2 Iterative q-difference equations

As we expect from standard q-difference Galois theory, any iterative q-difference module
should give rise to an iterative q-difference equation consisting of a family of equations.
Proposition 3.12 in the case of positive characteristic and Proposition 3.17 for characteristic
zero show how to obtain this equation from a given IDq-module.

3.2.1 Case of the characteristic p

Proposition 3.11 Let (L, δ∗L) be an iterative q-difference field of characteristic p, and
let (M, δ∗M) be an object of IDMq(L). Let us consider the canonical projective system
(Mk, φk)k∈N associated to M . For all k ∈ N, let us choose an Lk-basis Bk of Mk with
φkBk = Bk+1 and let Dk ∈ Gln(Lk) denote the matrix of φk with respect to that basis, i.e.,
BkDk = Bk+1.

Then, for any l ∈ N and for any X ∈ Ln, we have :

1. B0X = BlXl where Xl = D−1
l−1...D

−1
0 X,

2. δ
(k)
M (B0X) = Blδ

(k)
L (Xl) for k < l.

Proof
Part 1 is obvious by definition. Part 2 follows from

δ
(k)
M (B0X) = δ

(k)
M (BlXl) = Blδ

(k)
L (Xl) for k < l.

Proposition 3.12 With the previous notation, and a basis B0 = {b1, ..., bn} of M , the
following statements are equivalent

1. B0y =
∑n

i=1 yibi ∈ VM = ∩k∈NMk.

2. For all l ∈ N, we have δ
(1)
L (y1) = 0 and δ

(npk)
L (yl) = 0 for 0 ≤ k < l, where yl =

D−1
l−1...D

−1
0 y.

3.
δ
(npk)
L (y) = Ak+1y,

for all k ≥ 0 where Ak+1 = δ
(npk)
L (D0...Dk+1)(D0...Dk+1)

−1 and δ
(1)
L (y) = A1y where

A1 = δ
(1)
L (D0D1)(D0D1)

−1.

Proof
First, we show that statements 1 and 2 are equivalent : B0y ∈ VM if and only if δ

(k)
M (B0y) =

0 for all k ∈ N∗. The claim is obvious by using the equation

δ
(k)
M (B0y) = Blδ

(k)
L (yl)
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which holds for k < l (see the previous proposition).
Finally, the equivalence of 2 and 3 is obtained using:

δ
(npl)
L (y) = δ

(npl)
L (Dl+1yl+2) = δ

(npl)
L (D0...Dl+1)yl+2+D0...Dl+1δ

(npl)
L (yl+2) = Al+1y+δ

(npl)
L (yl+2)

and

δ
(1)
L (y) = δ

(1)
L (D1y2) = δ

(1)
L (D0...D1)y2 +D0...D1δ

(1)
L (y2) = A1y + δ

(1)
L (y2).

Definition 3.13 The family of equations {δ(1)
L (y) = A1y, δ

(npk)
L (y) = Aky}k≥0 related to

the IDMq-module (M, δ∗M) by Proposition 3.12 is called an iterative q-difference equa-
tion (IDqE).

We now give some examples of iterative q-difference equations over fields of positive
characteristic.

Example 3.14 Let p be a prime number, let C = Fp be an algebraic closure of Fp and
let F = C(t) be the rational function field with coefficients in C. Let (al)l≥0 be a set of
elements in C. Let M = Fb1. Suppose that, Dl+1 = (talnp

l
) ∈ Gl1(Fl+1) for l ∈ N and

D1 = (1). We have

Ak+1 = δ
(npk)
L (D0...Dk+1)(D0...Dk+1)

−1 = δ
(nk)
L (t

Pk
l=0 alnp

l

)t−
Pk

l=0 alnp
l

=
ak
tnpk

because
(Pk

j=0 ajnp
j

npk

)
q

= ak. Hence δ
(npk)
M (y) = ak

tnpk y for all k ∈ N.

Example 3.15 Let p be a prime number, let C = Fp be an algebraically closure of Fp and
let F = C(t) be the rational function field with coefficients in C. Let (al)l≥0 be a set of
elements in C. Let M = Fb1 ⊕ Fb2. Suppose that,

Dl+1 :=

(
1 alt

npl

0 1

)
for all l ∈ N

and

D1 :=

(
1 0
0 1

)
.

Using the formula (1), we obtain,

Ak+1 =

(
1 ak
0 1

)
and A1 = 0. So, the associated IDqE associated to M is

δ(npk)(Y ) = AkY =

(
0 ak
0 0

)
Y for all k ∈ N.
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3.2.2 Case of characteristic zero

Let (L, δ∗L) be an iterative q-difference field of characteristic zero and let (M, δ∗M) be an

iterative q-difference module over L. As in Paragraph 3.1.2, L1 = ∩0≤j<1Ker(δ
(nj)
L ),

L′0 = Ker(δ
(1)
L ), L0 = L, M1 = ∩0≤j<1Ker(δ

(nj)
M ), M ′

0 = Ker(δ
(1)
L ) and M0 = M .

Notation 3.16 Let B′
0 = {b′1, ..., b′n} (resp. B0) be a L′0-basis of M ′

0 (resp. a L0-basis of
M0). Because of Proposition 3.8, we have M ′

0⊗L 'M . Now let us denote by D0 ∈ Gln(L′0)
the matrix of φ0 with respect to the basis B′

0 and B0, i.e., B0D0 = B′
0. Let Ck be the matrix

of δ
(k)
M with respect to the basis B0 and let Φ ∈ Gln(L) be the matrix of the action of σq with

respect to the basis B0. Set

1. A0 := Id, A1 := −Φ−1C1, and

2. Ak := −Φ−k(
∑k−1

j=0 ΦjCk−jAj) for k > 1 inductively.

Proposition 3.17 Using the previous notation, the following statements are equivalent:

1. B0y =
∑n

i=1 yibi ∈ VM = ∩k∈NMk.

2. For k ∈ N, we have δ
(k)
L (y) = Aky, with Ak defined in Notation 3.16.

Proof
If B0y =

∑n
i=1 yibi ∈ VM , then for all k ∈ N we have δ

(k)
M (B0y) = 0.

Let us first consider the case k = 1. We have

δ
(1)
M (B0y) = σq(B0)δ

(1)(y) + δ
(1)
M (B0)y,

and thus
δ(1)(y) = −Φ−1C1.

We will proceed by induction and assume that we have δ
(j)
L (y) = Ajy for all j < k. Then

δ
(k)
M (B0y) = 0 =

k∑
j=0

σjq(δ
(k−j)
M (B0))δ

(j)(y) =
k−1∑
j=0

B0Φ
jCk−jAjy +B0Φ

kδ(k)(y),

and thus

δ(k)(y) = −Φ−k(
k−1∑
j=0

ΦjCk−jAj)y = Aky.

Hence the first statement implies the second. By going through the computation back-
wards, we obtain the equivalence between the two statements.

Definition 3.18 The family of equations {δ(k)
L (y) = Aky}k∈N related to the IDMq-module

(M, δ∗M) by Proposition 3.17 is called an iterative q-difference equation(IDqE).
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Remark 3.19 We shall recall the introduction of Paragraph 3.1.2 : in the case of charac-
teristic zero we may regain the iterative q-difference operator from the knowledge of δ(1) and
δ(n). Therefore, for the study of an iterative q-difference equation in zero characteristic, it
is sufficient to know the iterative q-difference equations at level 1 and n.

Remark 3.20 We keep using Notation 3.16 and we will show how to compute Cj by in-
duction for j < n. We have by definition C1 = Φ−Id

(q−1)t
. This implies

qj − 1

q − 1
δ
(j)
M (B0) = δ

(1)
M δ

(j−1)
M (B0) = δ

(1)
M (Cj−1B0) = (σq(Cj−1)C1 + δ(1)(Cj−1))B0,

and thus

Cj =
q − 1

qj − 1
(σq(Cj−1)C1 + δ(1)(Cj−1)). (19)

Example 3.21 Let L = C(t) and let q be a n-th primitive root of unity. Let M = Fb1 be
a rank one IDMq(L)-module and suppose that Φ(b1) = b1. Then an easy computation leads
to Cj = 0 for all 1 ≤ j < n and Aj = 0 for 1 ≤ j < n. Now, let a1 be an integer and set
Cn = a1

tn
. Then An = a1

tn
. By induction we get

Akn =
ak
tkn

, for all k ∈ N where ak+1 =
1

k + 1
(kak + aka1).

4 Iterative q-difference Picard-Vessiot extensions

In this section, we develop a Picard-Vessiot theory for iterative q-difference equations. We
build the Picard-Vessiot ring inspired by the usual construction, but we have to adapt our
construction to a infinite set of variables, and thus some modifications are necessary.

4.1 Iterative Picard-Vessiot rings

Notation 4.1 Let (L, δ∗L) be an iterative q-difference field. If,

1. the characteristic of the constants field C of L is zero then let us denote by (kC) the
family (k)k∈N,

2. the characteristic of the constants field C of L is positive equal to p then let us denote
by (kC) the family {1, (npk)k∈N}.

Remark 4.2 (Classical case) As mentioned before, when q is not a root of unity, an
iterative q-difference module is the same object as a q-difference module. Moreover, in this
case the iterative q-difference equation is just obtained by considering the equation of level
1 and if there exists Y ∈ Gln(R) such that δ

(1)
L (Y ) = A1Y then for all k ∈ N we have

δ
(kC)
L (Y ) = AkY . Thereby, when q is not a root of unity, an iterative q-difference equation

is simply a q-difference equation in the sense of [25].

27



Definition 4.3 Let (L, δ∗L) be an iterative q-difference field, let (M, δ∗M) be an object of

IDMq(L), and let {δ(kC)
L (y) = Aky}k∈N be an iterative q-difference equation related

to the IDMq-module (M, δ∗M), denoted by IDqE(M).
Let (R, δ∗R) be an iterative q-difference extension of (L, δ∗L). A matrix Y ∈ Gln(R) is called

a fundamental solution matrix for IDqE(M) if δ
(kC)
R (Y ) = AkY, for all k ∈ N.

The ring R is called an iterative q-difference Picard-Vessiot ring for IDqE(M)
(IPVq-ring for short) if it fulfills the following conditions :

1. R is a simple IDq ring (that means that R contains no proper iterative q-difference
ideal ),

2. IDqE(M) has a fundamental solution matrix Y with coefficients in R,

3. R is generated by the coefficients of Y and det(Y )−1,

4. C(R) = C(L).

Remark 4.4 (Classical case) As in Remark 4.2, we easily see that if q is not a root of
unity, the notion of an iterative Picard-Vessiot ring is exactly the same as the notion of
Picard-Vessiot ring in the sense of Singer, van der Put ([25]).

Proposition 4.5 Let (L, δ∗L) be an iterative q-difference field, with algebraically closed field
of constants C(L), and let R/L be a simple IDq-ring. Then R is a reduced IDq-ring.
Moreover, if R is finitely generated over L, we have C(L) = C(E) where E denotes the
localization of R by its set of non zeros divisors.

Proof
The fact that R is a reduced IDq-ring is a consequence of Lemma 2.17 where it is shown
that if I is an IDq-ideal the same is true for its radical. For the second statement, let us
assume that R is finitely generated over L. Let c be a non zero constant of E and put J =
{a ∈ R|a.c ∈ R}. First of all, because δ

(1)
E = σq−id

(q−1)t
, we have that σkq (c) = c for all k ∈ N. It

is then quite clear that J is an IDq-ideal of R because of δ
(k)
R (a.c) = σkq (c).δ

(k)
R (a) = c.δ

(k)
R (a)

for all k ∈ N. Since R is simple, and J is a non trivial IDq-ideal, we have J = R, and thus
1.c = c ∈ R. Suppose that c /∈ C(L). Thus for all d ∈ C(L) the ideal (c − d)R is a non
trivial IDq-ideal in R and also equal to R. This means that (c− d) ∈ R∗ for all d ∈ C(L).
Let φc : Spec(R) 7→ A1

L be the morphism induced by

φ : L[T ] // R, T
� // c.

Since Im(φc) ∩ A1
L(C(L)) is empty, Im(φc) does not contain any open subset of A1

L.
Therefore the image of φc in A1

L is finite and closed. This implies that c is algebraic
over L. Let P ∈ L[X] be the minimal monic polynomial annihilating c. We have

δ
(k)
L (P (c)) = P δ

(k)
L (c) = 0 where P δ

(k)
L denotes the element of L[X] obtained from P by

applying δ
(k)
L on the coefficients of P . By minimality of P we conclude that P ∈ C(L)[X].

Because C(L) is algebraically closed, we then have c ∈ C(L). This is a contradiction!
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Proposition 4.6 Let (L, δ∗L) be an IDq-field and (R, δ∗R) be an IDq-ring with q-difference
operator extending the one given on L. Let Y and Ỹ be two elements of Gln(R), funda-

mental matrices of solutions for the IDqE, δ
(kC)
R (y) = Aky. Then, there exists a matrix

P ∈ Gln(C(R)) such that Ỹ = Y P . Moreover, if both L and R satisfy the conditions of
Proposition 4.5 then P ∈ Gln(C(L)).

Proof

It is obvious that there exists P ∈ Gln(R) such that Ỹ = Y P . We want to show by

induction that for all k ∈ N∗, we have δ
(k)
R (P ) = 0. For k = 1 we obtain

δ
(1)
R (Ỹ ) = δ

(1)
R (Y )P + σq(Y )δ

(1)
R (P ) = A1Ỹ + σq(Y )δ

(1)
R (P ).

Thus, δ
(1)
R (P ) = 0 (because σq is an automorphism of Gln(R)). Using the formula

δ
(k)
R (Ỹ ) =

∑
i+j=k

σiq(δ
(j)
R (Y ))δ

(i)
R (P ),

we get by induction that δ
(k)
R (P ) = 0 for all k ∈ N∗. This implies that P ∈ Gln(C(R)).

Theorem 4.7 Let (L, δ∗L) be an iterative q-difference field with C(L) algebraically closed

and let (M, δ∗M) be an object of IDMq(L) with iterative q-difference equation δ
(kC)
L (y) = Aky

(IDqE(M)). Then there exists an iterative q-difference Picard-Vessiot ring for the iterative
q-difference equation which is unique up to iterative q-difference isomorphism.

Proof
Let m be the dimension of M over L and set U = L[x(i,j), det(x(i,j))

−1]. The algebra
U0 := L[x(i,j)] is given a structure of q-difference extension of L via σq(X) := A1

(q−1)t
X +X

where X = (x(i,j))(i,j). Because σq is a ring-automorphism, we have that the ideal S
generated in U0 by det(xi,j) is a σq-ideal and a multiplicatively closed set. U0 has a non
trivial IDq-structure via

δ∗U0
:= δ

(kC)
P (X) = AkX, for all k ∈ N.

Because S satisfies the condition of Proposition 2.19, there exists a unique iterative q-
difference operator δ∗S−1U0

extending δ∗U0
on U = S−1U0. Let P ⊂ U be a maximal IDq-

ideal of U . Then R := U/P is a simple IDq-ring and Y := X, the image of X under
the projection of U to R, is a fundamental solution matrix of IDqE(M). Moreover R/L
is generated by the coefficients of Y and det(Y )−1. Thus R is an iterative q-difference
Picard-Vessiot ring.
Assume that (R1, δ

∗
R1

) and (R2, δ
∗
R2

) are two iterative q-difference Picard-Vessiot rings for
M with fundamental solution matrix Y1 (resp. Y2) in R1 (resp. R2). Put N = R1 ⊗L R2.
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As in Proposition 2.11 we endow N with an IDq-structure. Let P ⊂ N be a maximal
IDq-ideal, then R′ := N/P is a simple IDq ring. The two maps :

φ1 : R1
// R′, r1 � // (r1 ⊗ 1)

and
φ2 : R2

// R′, r2 � // (1⊗ r2) .

induced by the natural inclusions are IDq-monomorphisms, and φ1(Y1) and φ2(Y2) are two
fundamental matrix solutions for M in R′. By Proposition 4.6, there exists P ∈ Gln(C(L))
such that φ1(Y1) = φ2(Y2)P (C(L) = C(R1) = C(R2) = C(R′)), which implies that
φ1(R1) ' φ2(R2). This concludes the proof.

4.2 The iterative q-difference Galois group

In this section, we will define the iterative q-difference Galois group associated to an iter-
ative q-difference module. The way of describing such a group is the exact translation in
the q-difference world of the work of A. Roescheisen (see [19]) in the case of iterative differ-
ential Galois theory. Until the end of this section, (L, δ∗L) will be an iterative q-difference
field with algebraically closed field of constants C, (R, δ∗R) an iterative q-difference Picard-

Vessiot ring for the iterative q-difference equation {δ(kC)
L Y = AkY, k ∈ N} defined over

L.

Notation 4.8 Let S be a ring. We denote by Loc(S) its localization by its set of non-zero
divisors.

4.2.1 Functorial definition

First of all, let us remark that, given an algebra A over C and an iterative q-difference ring
(S, δ∗S), we define an iterative q-difference operator on S ⊗C A by setting δ

(k)
S⊗CA

(s⊗ f) :=

δ
(k)
S (s)⊗ f for all k ∈ N. As in [19], we say that δ∗S is extended trivially to S ⊗C A.

Definition 4.9 Let us define the functor

Aut(R/L) : (Algebras/C) // (Groups), A
� // AutIDq(R⊗C A/L⊗C A)

where δ∗R (resp. δ∗L) is extended trivially to R⊗C A (resp. L⊗C A).

In the following, we will show that the functor Aut(R/L) is representable by a certain
C-algebra of finite type and hence is an affine group-scheme of finite type over C.
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Lemma 4.10 Let R be a simple IDq-ring with C(R) = C, let A be a finitely generated
C-algebra and RA := R ⊗C A with IDq-structure trivially extended from R. Then there is
a bijection

I(A) // IIDq(RA)oo

I
� // RA(1⊗C I) = R⊗C I,

J ∩ (1⊗C A) J
�oo

between the ideals of A and the IDq-ideals of RA.

Proof
Obviously, the two maps are well defined, and we only have to prove that they are inverse
to each other.

1. We will prove that for I ∈ I(A), we have (R⊗C I)∩ (1⊗C A) = I. It is obvious that
I is contained in the ideal on the left side. Now let us consider a C-basis {ei|i ∈ Ñ}
of I ; then R ⊗C I is a free R-module with basis {1 ⊗ ei|i ∈ Ñ} and an element
f =

∑
i∈Ñ ri ⊗ ei ∈ R⊗C I is constant if and only if all the ri’s are constants, i.e., if

f ∈ I.

2. Conversely we have to prove that for J ∈ IIDq(RA), we have R⊗C J ∩ (1⊗C A) = J .
It is clear that J contains the ideal on the left side. Now, let {ei|i ∈ N} a C-basis of
A, where N denotes an index set. Then, {1 ⊗ ei|i ∈ N} is also a basis for the free
R-module RA.
For any subset N0 of N and i0 ∈ N0, let AnnN0,i0 be the ideal of all r ∈ R such
that there exists an element g =

∑
i∈N0

si ⊗ ei ∈ J with si0 = r. Since the iterative
q-difference operator of RA acts trivially on A and J is an IDq-ideal, it is clear that
AnnN0,i0 is an IDq-ideal. Because R is simple, AnnN0,i0 is equal to (0) or R.
Now, let N0 ⊂ N be minimal for the property that AnnN0,i0 6= (0) for at least one
index i0 ∈ N0 (minimal in the lattice of subsets). So there exists g =

∑
i∈N0

si⊗ei ∈ J
with si0 = 1 and by minimality of N0 we conclude that for all k ∈ N∗, δ(k)(g) =∑

i∈N0,i6=i0 δ
(k)
R (si)⊗ei = 0. This implies g ∈ J∩(1⊗CA). Now let g =

∑
i∈N si⊗ei ∈ J

be an arbitrary element and denote by N1 the set of indices i with si 6= 0. It follows
from the definition that AnnN1,i 6= (0) for all i ∈ N1. Hence there exists N0 ⊂ N1

minimal as above, i0 ∈ N0 and f =
∑

i∈N0
ri ⊗ ei ∈ J ∩ (1 ⊗C A) with ri0 = 1. By

induction on the cardinality of N1, we may assume that g−si0f ∈ R⊗CJ∩(1⊗CA) ⊂
J . Therefore g = g−si0f+si0f ∈ R⊗C J∩(1⊗CA) and hence R⊗C J∩(1⊗CA) = J .

Proposition 4.11 Let R/L be an iterative q-difference Picard-Vessiot ring associated to
an iterative q-difference equation and let T be a IDq-simple ring containing L with C(T ) =
C = C(L) such that there exists a fundamental matrix of solutions Y ∈ Gln(T ). Then
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there exists a finitely generated C-algebra U (with trivial IDq-structure) and a T -linear
IDq-isomorphism

γT : T ⊗L R // T ⊗C U.

where the IDq-structure is extended trivially to T ⊗C U .
(Actually U is isomorphic to the ring of constants of T ⊗L R.)

Proof
R is obtained as a quotient of L[Xi,j, (det(X))−1] with iterative q-difference operator given
by δ(k)(X) = AkX for all k ∈ N by a maximal IDq-ideal P ⊂ L[Xi,j, (det(X))−1]. We then
define a T -linear homomorphism

γT : T ⊗L L[Xi,j, det(X)−1] // T ⊗C C[Zi,j, det(Z)−1]

by Xi,j 7→
∑n

k=1 Yi,k ⊗ Zk,j. The morphism γT is indeed a T -linear isomorphism and if we
extend the IDq-structure trivially to L[Zi,j, (det(Z))−1], γT induces an IDq-isomorphism.
By the previous lemma, the IDq-ideal γT (T ⊗ P ) is equal to T ⊗ I for an ideal I ⊂
C[Zi,j, (det(Z))−1]. So for U := C[Zi,j, (det(Z))−1]/I, γT induces an IDq-isomorphism

γT : T ⊗L R // T ⊗C U.

Theorem 4.12 Let R/L be an iterative q-difference Picard-Vessiot ring. Then the group
functor Aut(R/L) is representable by the finitely generated C-algebra U = C(R⊗LR), i.e.,
Aut(R/L) is an affine group-scheme of finite type over C.

Definition 4.13 We call the affine group scheme Aut(R/L) the Galois group scheme
Gal(R/L) of R over L.

Proof of theorem 4.12
First we will show that for every C-algebra A any LA-linear IDq-homomorphism

f : RA
// RA is an isomorphism. The kernel of such a homomorphism f is an IDq-

ideal of RA. So by Lemma 4.10, it is generated by constants, i.e., elements in 1 ⊗ A.
But f is A-linear so its kernel is zero. If X ∈ Gln(R) is a fundamental solution matrix,
then f(X) ∈ Gln(RA) is also a fundamental solution matrix and so there exists a matrix
D ∈ Gln(CRA

) = Gln(A) such that X = f(X)D = f(XD). Hence Xi,j, det(X)−1 ∈ Im(f)
and since R is generated by Xi,j, det(X)−1 over L, the homomorphism f is also surjective.
Using the isomorphism γ := γR of Proposition 4.11, for a C-algebra A, we obtain a chain
of isomorphisms

AutIDq(RA/LA) = Hom
IDq

LA
(RA, RA) ' Hom

IDq

RA
(RA ⊗L R,RA)

' Hom
IDq

RA
(RA ⊗C U,RA) ' Hom

IDq

C (U,RA) ' HomC(U,A).

Hence U represents the functor Aut(R/L).
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Remark 4.14 By taking a closer look on the isomorphisms in the previous proof, we
see that the universal object idU ∈ HomC(U,U) gives birth to the IDq-automorphism

ρ⊗ idU : R⊗C U // R⊗C U where ρ = γR ◦ (1⊗ idR) : R // R⊗L R // R⊗C U .

Corollary 4.15 Let R/L be an iterative q-difference Picard-Vessiot ring over L and G :=
Gal(R/L) the Galois group scheme of R. Then Spec(R) is a GL-torsor.

Proof
The isomorphism γ := γR of proposition 4.11, determines an isomorphism of schemes

Spec(γ) : Spec(R)×L GL = Spec(R)×C G // Spec(R)×L Spec(R).

By the previous remark and R-linearity of γ, the composition of Spec(γ) with the projection
on the second factor gives the action of GL on Spec(R) and the composition with the
projection on the first factor equals the map Spec(R) ×L GL → Spec(R). In other words,
Spec(R) is a GL-torsor.

4.2.2 Galois correspondence

Proposition 4.16 (Structure of the iterative q-difference ring) Let R/L be an iter-
ative q-difference Picard-Vessiot ring over L. Then, there exist idempotents e1, .., es ∈ R
such that

1. R = R1 ⊕ ...⊕Rs where Ri = eiR and is a domain,

2. The direct sum E of the fraction fields of the Ri’s is an iterative q-difference ring. E
is called the total iterative q-difference Picard-Vessiot extension of R.

Proof
Here, we give a partial analogue of Corollary 1.16 of [25]. We will thus follow the proof
of Singer, van der Put. But because we work in any characteristic, it will be necessary to
appeal to the book of Demazure, Gabriel ([7]) to assure smoothness.
Let L be an algebraic closure of L and R = O(Z) for some GL-torsor Z. Since GL(L)
acts transitively on Z(L), this latter algebraic subset must be smooth ([7]). Therefore the
L-irreducible components Z1, ...,Zs must be disjoint. Thus O(Z) is equal to the product
of the integral domains Ri = O(Zi). Now let us consider the set S of non zero divisors in
R. It is a multiplicatively closed set which does not contain 0, stable under the action of
σq. By Proposition 2.19, the ring RS−1 is endowed with an iterative q-difference structure
and it is obvious that RS−1 =

⊕s
i=1 Frac(Ri) where Frac(Ri) denotes the fraction field of

Ri.
The next proposition shows that to be a torsor for an IDq-simple ring means, roughly

speaking, to be an iterative q-difference Picard-Vessiot ring.
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Proposition 4.17 Let R/L be a simple IDq-ring with algebraically closed field of constants
C(R) = C. Further let G ⊂ Gln,C be an affine group scheme over C. Assume that Spec(R)
is a GL-torsor such that the corresponding isomorphism γ : R ⊗L R → R ⊗C C[G] is an
IDq-isomorphism. Then R is an iterative q-difference Picard-Vessiot ring over L.

Proof
Since Spec(R) is a GL-torsor, the fiber product Spec(R)×GL

Gln,L is a Gln,L-torsor.
(Spec(R) ×GL

Gln,L is obtained as the quotient of the direct product by the GL-action
given by (x, h).g := (xg, g−1h) and is a right Gln,L-scheme acting on the second factor.)
By Hilbert’s Theorem 90, every Gln,L-torsor is trivial, i.e., we have an Gln,L-equivariant
isomorphism

Spec(R)×GL
Gln,L // Gln,L .

Then the closed embedding Spec(R) // Spec(R)×GL
Gln,L // Gln,L leads to an epi-

morphism L[Xi,j, (det(X))−1] // R , which is GL-equivariant. Denote the image of X by

Y . Then we obtain that the action of G on Y is given by Y 7→ Y g for any L-valued point
g ∈ GL(L). Since by assumption for every C-algebra A with trivial IDq-structure, the
action of G(A) commutes with the iterative q-difference operator δ(k)(Y ).Y −1 is G-invariant
for all k ∈ N. So δ(k)(Y ).Y −1 = Ak belongs to Gln(L) and Y is a fundamental solution
matrix for the equation {δ(k)(Y ).Y −1}k∈N. Hence R is an IDq-Picard-Vessiot ring.

In order to get a convenient Galois correspondence, we are obliged to define the notion
of an invariant in a functorial way. Let S be a C-algebra and H/C be a subgroup functor
of the functor Aut(S/C), i.e., for every C-algebra A, the set H(A) is a group acting on
SA and this action is functorial. An element s ∈ S is called invariant if for all A, the
element s⊗ 1 ∈ SA is invariant under H(A). The ring of invariants is denoted by SH. Let
E = Loc(S) be the localization of S by all non zero-divisors. We call an element e = r

s
∈ E

invariant under H, if for each C-algebra A and all h ∈ H(A),

h.(r ⊗ 1).(s⊗ 1) = (r ⊗ 1).h.(s⊗ 1).

EH denotes the ring of invariants (for the independence of this definition of the choice of
representation of e see [19]).

Lemma 4.18 Let R/L be an iterative q-difference Picard-Vessiot ring over L, let E denote
its total iterative q-difference Picard-Vessiot extension and G := Gal(R/L) the Galois group

scheme of R. Let H ⊂ G be a closed subgroup-scheme. Denote by πGH : C[G] // C[H]

the epimorphism corresponding to the inclusion H � � // G . Then an element of r
s
∈ E is

invariant under the action of H if and only if r ⊗ s− s⊗ r is in the kernel of the map

(idR ⊗ πGH) ◦ γ : R⊗L R // R⊗C C[H].
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Proof
The following proposition is a special case of the Galois correspondence stated in Theorem
4.20.

Proposition 4.19 For every closed subgroup scheme H ⊂ G, the ring EH is an IDq-ring
in which every non zero divisor is a unit. Furthermore we have EH = L if and only if
H = G.

Proof
By the previous lemma, it is obvious that EH is an IDq-ring in which every non-zero divisor
is a unit. Next, let r

s
∈ EH. Then for all k ∈ N, we have

δk(r ⊗ s− s⊗ r).(sk ⊗ sk) =∑
i1+i2+i3=k

σi1+i3
q (δ(i2)(

r

s
))skσi3q (δ(i1)(s))⊗ δ(i3)(s)sk− δ(i1)(s)sk⊗σi1+i3

q (δ(i2)(
r

s
))skσi1q (δ(i3)(s))

=
∑

i1+i2+i3=k

(σi3q (δ(i1)(s))⊗ δ(i3)(s))(σi1+i3
q (δ(i2)(

r

s
))sk ⊗ sk)−

∑
i1+i2+i3=k

(δ(i1)(s)⊗ σi1q (δ(i3)(s)))(sk ⊗ σi1+i3
q (δ(i2)(

r

s
))sk) =

∑
i+j=k

(δ(i)(s⊗ s))(σiq(δ
(j)(

r

s
))sk ⊗ sk − sk ⊗ σiq(δ

(j)(
r

s
))sk).

The left hand side lies in Ker(idR⊗πGH), since this kernel is an IDq-ideal . So by induction,
we get that (s⊗s)(δ(k)( r

s
)sk⊗sk−sk⊗δ(k)( r

s
)sk) ∈ Ker(idR⊗πGH) and hence δ(k)( r

s
) ∈ EH.

For the second statement : if H = G, then πGH = idC[G] and the considered kernel is trivial.
Hence r ⊗ s = s⊗ r ∈ R⊗L R is trivial for all r

s
∈ EG. Thus, there exists c ∈ L such that

r = cs, i.e., r
s

= c ∈ L.
Assume H ( G.Since Z = Spec(R) is a GL-torsor, the quotient scheme Z/GL is equal
to Spec(L), in particular it is a scheme, and since GL and HL are affine, GL/HL also is
a scheme. So by [13],I.5.16.(1), Z/HL ' Z ×GL (GL/HL) is a scheme. According to
Proposition 4.16, Z is equal to the disjoint union of its irreducible components {Zi}i=1,...,s.
Let pr : Z 7→ Z/HL denote the canonical projection. Now let U ⊆ Z/HL be an affine
open subset such that its inverse image U by pr has a non empty intersection with all the
Zi. We have a monomorphism pr∗ : OZ/HL

(U) → OZ(U) whose image is OZ(U)H. By
construction of U , we have OZ(U)H ⊂ EH. If EH = L, then also OZ(U)H = L. So, for
every affine open subset U ⊆ Z/HL such that its inverse image U by pr has a non empty
intersection with all the Zi, we have OZ/HL

(U) = L, i.e., U ' Spec(L) is a single point.
Hence Z/HL = Spec(L), which contradicts the assumption H ( G.

Theorem 4.20 (Galois correspondence) Let R/L be an iterative q-difference Picard-
Vessiot ring over L, let E denotes its total iterative q-difference Picard-Vessiot extension
and let G := Gal(R/L) be the Galois group scheme of R.
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1. Then there is an antiisomorphism of lattices between:

H := {H|H ⊂ G closed subgroup scheme of G}

and

T := {T |L ⊂ T ⊂ E intermediate IDq−ring s.t. any non zero divisor of T is a unit of T}

given by Ψ : H → T, H 7→ EH and Φ : T → H, T 7→ Gal(RT/T ).

2. If H ⊂ G is normal then RH is an iterative q-difference Picard-Vessiot ring over L
and EH is its total iterative q-difference Picard-Vessiot extension; the Galois group
scheme of RH over L is isomorphic to G/H.

3. For H ∈ H, the extension E/EH is separable if and only if H is reduced.

Proof

1. Let T ∈ T be an intermediate IDq ring such that any non zero divisor of T is a unit of
T. Then the compositum RT ⊂ E is a IDq-Picard-Vessiot ring over T . Furthermore,
the canonical IDq-epimorphism RT ⊗C C[G] 7→ RT ⊗T RT gives rise to an IDq-
epimorphism

RT ⊗C C[G]
γ−1

RT // RT ⊗ LR // RT ⊗T RT .

By Lemma 4.10, the kernel of this epimorphism is given by RT ⊗C I for some ideal
I ⊂ C[G]. Denote by H the closed sub-scheme of G defined by I, then γRT induces a
isomorphism

RT ⊗T RT ' RT ⊗C C[H].

By construction, this isomorphism is the isomorphism for the base ring T , hence
the sub-scheme H equals the Galois group scheme Gal(RT/T ). Thus Gal(RT/T ) is
indeed a closed subgroup scheme of G.
Now let us apply Proposition 4.19 to the extension E/T . It follows that EGal(RT/T ) =
T , so Ψ ◦ Φ = idT. On the other hand, for given H ∈ H and T := EH, we get an
IDq- epimorphism RT ⊗T RT 7→ RT ⊗C C[H] induced by γRT . This embeds H as a
closed subgroup scheme in Gal(RT/T ). But the localization Loc(RT ) of RT by its
set of non zero divisors is equal to E, so Loc(RT )H = EH = T and so by Proposition
4.19, we have H = Gal(RT/T ). Thereby Φ ◦Ψ = idH.
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2. Let H ⊂ G be normal. The isomorphism γ is H-equivariant and hence we get an
IDq-isomorphism

R⊗L R
H ' R⊗C C[G]H.

Since R is normal, G/H is an affine group scheme with C[G/H] = C[G]H ([7], III,
Sec. 3, Thm. 5.6). Again by taking invariants the isomorphism above restricts to an
isomorphism

RH ⊗L R
H ' RH ⊗C C[G/H].

The ring RH is IDq-simple, because for every IDq-ideal P ⊂ RH, the ideal P.R ⊂ R
is an IDq-ideal, hence equals (0) or R and so P = (P.R)H is (0) or RH. Since
L ⊂ RH ⊂ R, we also have C(RH) = C. So by proposition 4.17, RH is an IDq

Picard-Vessiot ring over L with Galois group scheme G/H. It remains to show that
EH = Loc(RH).
Let L̃ := Loc(RH) and G̃ := Gal(E/L̃). Then H is a normal subgroup of G̃ and by
the previous (R.L̃)H is a G̃/H-torsor. But (R.L̃)H = RH.L̃ = L̃, so G̃ = H, and hence

EH = EG̃ = L̃ = Loc(RH).

3. Without loss of generality we may assume that H = G. Let us denote by Gred ⊂ G the
closed reduced subgroup given by the nilradical ideal . Since Gred is normal in G, by
the second statement L̃ := Loc(RGred) is an IDq Picard-Vessiot extension of L with
Galois group scheme Gal(L̃/L) = Gred. But this group scheme is infinitesimal and so
by [4], Cor. 1.12, L̃/L is purely inseparable. On the other hand, if E/L is inseparable

and p = char(L), then L̃ := E ∩ L
1
p 6= L is a finitely purely inseparable IDq-ring

extension of L. Since every such extension is an IDq- Picard-Vessiot ring with an
infinitesimal Galois group scheme, G has a non reduced quotient and therefore G is
not reduced.

4.2.3 Examples of Galois groups

The Galois group Gm in characteristic p Let us denote by C = Fp the algebraic
closure of Fp, where p is a prime number. Let F = C(t) be a rational function field with
coefficients in C. Let (al)l≥0 be a set of elements in Fp. Let M = Fb1 be the IDq-module
with corresponding IDqE:

δ
(npk)
M (y) =

ak
tnpk y

where k ∈ N and
δ
(1)
M (y) =

y

t
.

Theorem 4.21 Let M be as above with its associated IDqE, and let α =
∑

l≥0 alp
l ∈ Qp.

Then for an iterative Picard-Vessiot extension E/F for M , we have
Gal(E/F ) ' Z/mZ for some m if α ∈ Q and Gal(E/F ) ' Gm if α /∈ Q.

37



Proof
First of all, let us show that Gal(E/F ) is a subgroup of Gm. Let y be a solution of the IDqE

associated to M , then E = F (y). Let τ ∈ Gal(E/F ) and l ∈ N, we have δ(npl)( τ(y)
y

) = 0 and

δ(1)( τ(y)
y

) = 0. Thus, there exist c ∈ C∗ such that τ(y) = cy. Therefore, Gal(E/F ) ⊆ Gm.

Let us assume that α = a
m

where (a,m) ∈ Z × N∗. Put z = ta/m. Because z = tα, we
have δ(j)(z) = 0 if j 6= nk. We have

δ(npk)(zm) =
∑

i1+...+im=npk

σi2+...+im
q (δ(i1)(z))...σimq (δ(im−1)(z))δ(im)(z).

If one of the ij is not equal to npk, there exists il such that il 6= pj for j ≤ npk. Then, an
easy computation shows that for all k ∈ N,

δ(npk)(zm) = mzm−1δ(npk)(z).

It follows that

mzm−1δ(npk)(z) =

(
a

npk

)
q

ta−np
k

.

By Proposition 2.2, we have
(
a
npk

)
q

= mak and thus δ
(npk)
M (z) = ak

tnpk z. Because E = F (z)

and zm ∈ F , we get that Gal(E/F ) is a cyclic group.
Conversely, suppose that y is an algebraic solution of the IDqE associated to M , then

E = F (y) is algebraic over F and Gal(E/F )(C) ( Gm(C) is a cyclic group of order m. So
there exist s ∈ Z and (bi)i≥s with bs = 1 such that ym =

∑
i≥s bit

i ∈ F . Thus,

mym−1δ(n)(y) = ym
a0

tn
= δ(n)(ym) =

∑
i≥s

bi

(
i

n

)
q

ti−n.

By comparing the coefficient of tl, we obtain

mao = bi

(
i

n

)
q

for alli ≥ s.

Since bs = 1 and because of the properties of q-binomials coefficients, we obtain

1. s = ksn with ks ∈ Z and a0 = ks

m
,

2. bi = 0 for all i 6= 0 mod n.

Induction using the higher iterative differences shows that bi = 0 for all i > s and hence
that ym = ts. By an argument used in the first part of the proof it follows that α = s

m
.
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The Galois group Gm in characteristic 0 Let L = C(t) and let q be a n-th primitive
root of unity. Let M = Fb1 be a rank one IDMq(L)-module and suppose that Φ(b1) = b1.
Let a ∈ C. Then, let us consider the IDqE associated to M , that is δ(1)(y) = 0 and
δ(n)(y) = a

ntn
y.

Theorem 4.22 Let M be as above with its associated IDqE. Then for an iterative Picard-
Vessiot extension E/F for M , we have

Gal(E/F ) is finite cyclic if a ∈ Q and Gal(E/F ) ' Gm if a /∈ Q.

Proof
First of all, let us show that Gal(E/F ) is a subgroup of Gm. Let y be a solution of the
IDqE associated to M , then E = F (y). Let τ ∈ Gal(E/F ). Then, we have

1.

δ(1)(
τ(y)

y
) = σq(

1

y
)τ(δ(1)y) + δ(1)(

1

y
)τ(y) = 0, (δ(1)(y) = 0),

2.

δ(n)(
τ(y)

y
) = (

1

y
)τ(δ(n)y) + δ(n)(

1

y
)τ(y) = − a

ntn
τ(y)

y
+

1

y
τ(

a

ntn
y) = 0

Thus, there exist c ∈ C∗ such that τ(y) = cy. Therefore, Gal(E/F ) ≤ Gm.

Let us assume that a = nb
m

where (b,m) ∈ Z × N∗. Put z = tnb/m. Because z = ta, we
have δ(j)(z) = 0 if j /∈ nN. We have

δ(n)(zm) =
∑

i1+...+im=n

σi2+...+im
q (δ(i1)(z))...σimq (δ(im−1)(z))δ(im)(z).

If one of the ij is not equal to n, there exists il such that il 6= n. Then, an easy computation
shows that

δ(n)(zm) = mzm−1δ(n)(z).

It follows that,

mzm−1δ(n)(z) =

(
nb

n

)
q

tnb−n.

By Proposition 2.2, we have
(
nb
n

)
q

= b = m a
n

and thus δ
(n)
M (z) = a

ntn
z. Thus E = F (z) and

zm ∈ F . It follows that Gal(E/F ) is a finite cyclic group.
Conversely, suppose that y is an algebraic solution of the IDqE associated to M , then

E = F (y) is algebraic over F and Gal(E/F ) ( Gm is a cyclic group of order m. So there
exist s ∈ Z and (bi)i≥s with bs = 1 such that ym =

∑
i≥s bit

i ∈ F . Thus,

mym−1δ(n)(y) = ym
a

ntn
= δ(n)(ym) =

∑
i≥s

bi

(
i

n

)
q

ti−n.
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By comparing the coefficient of tl, we obtain that a
n

= bi
(
i
n

)
q

for all i ≥ s. Since bs = 1 and

because of properties of the q-binomials coefficients, we get that:

1. s = ksn with ks ∈ N and a = nks

m
;

2. bi = 0 for all i 6= 0 mod n.

Induction using the higher iterative difference shows that bi = 0 for all i > s. It follows
that ym = ts and a = nks

m
.

The Galois group Ga in positive characteristic Let us denote by C = Fp the alge-
braic closure of Fp, where p is a prime number. Let F = C(t) be a rational function field
with coefficients in C. Let (al)l≥0 be a set of elements in Fp. We choose q ∈ C a n-th
primitive root of unity with n prime to p.

Let M = Fb1 ⊕ Fb2 be the IDq-module with corresponding IDqE:

δ(npk)(Y ) = AkY =

(
0 ak
0 0

)
Y

for k ∈ N.

Theorem 4.23 Let M be as above with its associated IDqE. Let α =
∑

l≥0 alp
l ∈ Qp.

Then for an iterative Picard-Vessiot extension E/F for M , we have
Gal(E/F ) is a finite subgroup of order r of Ga if α ∈ Q and Gal(E/F ) ' Ga if α /∈ Q.

For the proof, we need the following lemma.

Lemma 4.24 Let (al)l≥0 be a sequence of elements in Fp. The following statements are
equivalent :

1. The sequence (al)l≥0 is periodic from a certain rank;

2. g =
∑

l∈N alt
npl ∈ C((t)) is separable algebraic over C(t).

Proof
see [16] p.30 and replace t by tn.
Proof of Theorem 4.23
We start with the iterative differential equation,

δ(npk)(Y ) = Ak =

(
0 ak
0 0

)
Y

for k ∈ N.
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Writing Y =

(
y1

y2

)
, we find that δ(k)(y2) = 0 for all k ∈ N, which implies y2 ∈ C.

Using this result we obtain δ(npk)(y1) = aky2 for all k ∈ N and δ(1)(y1) = a−1y2. Thus, the
formal solution y1 is equal to

y1 = y2(
∑
l∈N

alt
npl

).

Then E = F (y1, y2) = F (y1), and for any τ ∈ Gal(E/F ) we get

δ(npl)(τ(y1)− y1) = τ(δ(npl)(y1))− δ(npl)(y1) = τ(y2al)− y2al = 0.

thus there exists d ∈ c such that τ(y1) = y1 + d. Therefore Gal(E/F ) is a subgroup of Ga.
Using Lemma 4.24, we obtain

1. the solution y1 is separable algebraic over F if α ∈ Q (the sequence (al)l≥0 is periodic
from a certain index if and only if α ∈ Q), so the Galois group is actually finite.

2. If α /∈ Q, then y1 is transcendent over F , and hence E/F is purely transcendental of
degree 1, showing that Gal(E/F ) ' Ga.

Remark 4.25 These examples of iterative q-difference equations are obtained by q-deformation
of the examples of B.H. Matzat in [16] example 2.14 and 2.15. The Galois groups obtained
here are the same as those obtained by Matzat. The fact that simple Galois groups such as
Gm and Ga do not degenerate by q-deformation give us a nice hope for confluence studies.

5 An analogue of the Grothendieck-Katz conjecture

In this section, we state an analogue of the Grothendieck-Katz conjecture for iterative q-
difference equations. In [8], L. Di Vizio proves this conjecture for q-difference equations
with q non equal to a root of unity. Briefly, she shows that given a q-difference equation,
Ly = 0 with coefficients in Q(t), one can describe the behavior of the solutions of L by
considering the reduction of L modulo the prime numbers.
Here is the iterative q-difference version of this conjecture.

Let K be a number field and OK the ring of integers of K. We choose an element q in
K∗, non equal to 1. We denote by Σf the set of all finite places v of K. The uniformizer
of the finite place v is denoted by πv and ||v denotes the v-adic absolute value of K. We
denote by pv be the characteristic of the residue field kv of πv. For almost all finite places
v, let κv be the multiplicative order of the image of q in kv. If q is not a root of unity, let
πq,v be the integer power of πv such that |πq,v|v = |1 − qκv |v. If q is a root of unity, let
πq,v = πv.
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Conjecture 5.1 Let (M, φM , δ
∗
M) be an iterative q-difference module defined over K(t).

The iterative q-difference module M is isotrivial, i.e. becomes trivial after a finite base
field extension if and only if for almost all finite places v, the reduction modulo πq,v of φκv

M

is the identity and the one of (δ
(κv)
M )pv is equal to zero.

If q is not a root of unity, Conjecture 5.1 is equivalent to Theorem 7.1.1 in [8] and when
q goes to 1, we retrieve the classical Grothendieck’s conjecture on p-curvatures, which pre-
dicts :

The differential equation Ly = 0 with L ∈ Q[∂] has a full set of algebraic solutions if
and only if for almost all primes p ∈ Z the reduction modulo p of Ly = 0 has a full set of
solutions in Fp(t) i.e. the p-curvature of L is equal to zero.

Here is an example where Conjecture 5.1 holds.

Example 5.2 (Example 3.21) Let a ∈ K. Then, let us consider the IDqE : δ(1)(y) = 0
and δ(n)(y) = a

ntn
y. Let v be a place of K. A simple calculation shows that the reduction

of δ
(κv)
M )pv modulo πq,v is equal to a(a − 1)...(a − (pv − 1)). If, we assume that for almost

all finite places v, the reduction modulo πq,v of φκv
M is the identity and the one of (δ

(κv)
M )pv

is equal to zero, we get that for almost all finite places v there exists av ∈ Z such that the
valuation of a − av in πv is strictly positive. By the Density Theorem of Chebotarev, we
obtain that a ∈ Q. We have proved in Theorem 4.22 that a ∈ Q if and only if M has a
finite Galois group.
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[19] A. Röscheisen. Galois Theory of Iterative Connections and Nonreduced Galois Groups.
available from arXiv at http://arxiv.org/abs/0712.3748.

[20] J. Sauloy. Galois theory of Fuchsian q-difference equations, Ann. Sci. École Norm.
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