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Summary 
 

Iodine is an important element in oceanic, atmospheric, and terrestrial systems. Firstly, 

radical reactions in the troposphere can lead to significant ozone depletion, and secondly, 

nucleation of gaseous iodine molecules can produce new aerosol formation events, presenting 

possible direct and indirect natural cooling effects on climate. In the terrestrial environment iodine 

is a vital micronutrient for all mammals, with a lack of iodine intake leading to several debilitating 

disorders such as goiter and cretinism. The aim of this study was to investigate iodine systematics, 

and particularly speciation, in the atmosphere (aerosols, rain, and snow) and terrestrial 

hydrosphere (lakes) in order to gain a better understanding of how iodine moves between and 

within each environmental compartment. A subsidiary aim was to develop an inexpensive, but 

sensitive and accurate method for iodine quantification in soils and sediments using conventional 

analytical equipment.  Rain and snow samples were taken from both northern (Germany, 

Switzerland, Ireland, Greenland) and southern (Australia, New Zealand, Chile) hemispheres 

whereas aerosols were obtained from Mace Head, Ireland using cascade (5 stages) and PM 2.5 

impactors. Iodine cycling in lakes was investigated in the Mummelsee, a small headwater lake in 

the Black Forest. Speciation measurements were conducted by coupling an ion chromatograph to 

an ICP-MS and the organic fraction calculated as total iodine minus the inorganic species iodide 

and iodate.  

 
Organically bound iodine was the most abundant fraction in the atmospheric aqueous 

phase, despite the fact that iodine oxides are currently thought to be the theoretical sink species. 

Aerosols from Mace Head, Ireland, contained a median of 50 pmol m-3 total iodine, with more 

than 90 % being associated with organic matter. Iodide was the next most abundant species 

(median 5 %) with iodate being the least abundant (median 0.8 %). Similar results were found in 

the precipitation samples from northern and southern hemispheres, with organic iodine composing 

over half of the total iodine, and in the snow from Greenland up to 88 %; although in general the 

organic fraction was lower in precipitation than in aerosols. Up to 5 unidentified peaks, 

representing iodine species in addition to iodide and iodate, were observed in aerosol and 

precipitation chromatograms, providing direct evidence for organic iodine compounds in aerosols 

and precipitation. While these species remain unidentified, they are thought to be anionic and 

relatively small (i.e. low molecular weight). It is suggested that these compounds and iodide form 

during (photolytic) decomposition of organo-I of high molecular weight, the organic material 

possibly stemming from the ocean surface microlayer. It was also found that orographically 

induced precipitation significantly effects iodine concentrations in snow, with iodine levels 
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decreasing exponentially with altitude over a transect in the Black Forest; indeed, more than 

halving (38 to 13 nmol l-1) over an altitude change of 840 m and horizontal distance of only 5 km. 

It is suggested that orographic affects may be more important than lateral distance from the ocean 

in determining iodine levels in continental precipitation.  

 
Once precipitation enters terrestrial ecosystems it may interact with soils, rocks, and biota. 

Iodine levels in the Mummelsee were very similar to rain and snow, averaging 15.2 ± 2.4 nmol l-1, 

suggesting at very little iodine input from the catchment geology. Iodine in the lake and the spring 

inflow was dominantly associated with organic matter with, on average, 85 ± 7 % organically 

bound. However, inorganic iodine cycling in the lake was also important, and displayed 

pronounced redox chemistry, with both iodide release from the sediments and iodate reduction in 

the hypolimnion during anoxic stratified conditions. The iodide flux (up to 10.1 nmol m-2 d-1) back 

into the water column is probably due to the decomposition of detritus in the top few centimeters 

of the sediments. In contrast to the hypolimnion, iodide was removed from the epilimnion during 

the summer and autumn months, whereas iodate levels increased slightly over the same time 

period, suggesting at the importance of biological reactions. This was supported by a sediment 

core that contained high iodine concentrations, averaging 92 µmol kg-1 total iodine, and a 

significant correlation with organic carbon (p<0.001).  

 
The analytical method entailed combusting sediment or soil samples in the oven of an 

AOX apparatus at 1000 oC and trapping the vapours in Milli-Q water. The solution was then 

analysed for iodine by a kinetic UV/Vis photospectrometry whereby iodide quantitatively 

catalyses the oxidation of As3+ and reduction of chromophoric Ce4+. The method was shown to be 

sensitive (detection limit 49 ng at 95 % confidence) and precise with relative standard deviations 

less than 5%.  

 
In conclusion, while this work has shown that organic matter plays a very important role in 

the hydrosphere, particularly in regards to iodine cycling, considerably more work needs to be 

conducted on themes such as identifying the organic iodine species, how is the iodine bound to the 

organic material and what is the role of organisms in the formation of organic iodine. With the 

current interest in iodine chemistry it is hoped that these and many other pressing questions will be 

answered in the near future.  
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Zusammenfassung 
 

Jod ist ein wichtiges chemisches Element des ozeanischen, atmosphärischen und 

terrestrischen Ökosystems. So führen seine Radikalreaktionen in der Troposphäre zu bedeutendem 

Ozonabbau, aber auch kann die Nukleation gasförmiger Jodverbindungen zur Produktion neuer 

Aerosole führen, welche direkte und indirekte kühlende Effekte auf das Klima haben können. In 

der terrestrischen Umwelt ist Jod ein essentielles Spurenelement für alle Säuger und ein Joddefizit 

in der Ernährung führt zu verschiedenen Behinderungen wie z.B. Kropfbildung oder Kretinismus. 

Ziel dieser Studie war, das Verhalten des Elementes Jod in der Umwelt zu untersuchen und dabei 

vor allem seine Speziation in der Atmosphäre (Aerosole, Regen und Schnee) sowie der 

terrestrischen Hydrosphäre (Seen), um letztlich ein tieferes Verständnis für den Jodkreislauf zu 

gewinnen. Ein ergänzendes Ziel war die Entwicklung einer preiswerten, aber dennoch 

empfindlichen und präzisen Methode für den quantitativen Nachweis von Jod in Böden und 

Sedimenten mittels konventioneller Laborausstattung. Regen- und Schneeproben wurden sowohl 

in der Nordhalbkugel (Deutschland, Schweiz, Irland, Griechenland) als auch der Südhalbkugel 

(Australien, Neuseeland, Patagonien) genommen. Aerosole wurden mittels Kaskaden- (5 Stufen) 

und PM 2.5-Impaktor in Mace Head, Ireland, gesammelt. Der limnische Jodkreislauf wurde am 

Beispiel des Mummelsees, einem kleinen oberläufigen Gewässer im Schwarzwald, untersucht. 

Untersuchungen der Speziation wurden durch Verknüpfung eines Ionenchromatographens mit 

einem ICP-MS durchgeführt und die organische Fraktion als Gesamtjod minus anorganischer 

Anteil (Jodid und Jodat) berechnet. 

 
Die Untersuchungen zeigten, dass organisches Jod den größten Anteil atmosphärischer 

wässriger Phasen ausmacht, obwohl das momentane Verständnis Jodoxid als theoretische 

Senkenspezies annimmt. Aerosole von Mace Head, Irland, bestanden im Mittel aus 50 pmol m-3 

Gesamtjod, von dem über 90% mit organischem Material assoziiert war. Jodid war die 

zweithäufigste Spezies (im Mittel 5%) und Jodat am geringsten vertreten (im Mittel 0.8%). 

Ähnliche Ergebnisse wurden für die Niederschlagsproben der Nord- und Südhalbkugel gefunden,  

in denen die organische Fraktion mehr als die Hälfte des Gesamtjods ausmachte und in 

Schneeproben aus Grönland sogar bis 88% erreichte. Insgesamt waren sowohl organische Fraktion 

als auch Gesamtkonzentration im Niederschlag stets geringer als in Aerosolen. In den 

Chromatogrammen der Aersosole und des Niederschlags wurden zusätzlich zu Jodid und Jodat 5 

weitere Peaks beobachtet, die das Vorkommen von organischen Jodverbindungen in Aersolen und 

Niederschlag bestätigen. Es wird angenommen, dass diese Spezies von Aersolen zum 

Niederschlag überführt werden. Obwohl diese Verbindungen selbst unbekannt sind, wird vermutet, 
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dass es sich um anionische Spezies geringer molekularer Größe handelt. Es wird hier 

vorgeschlagen, dass die unbekannten Verbindungen und Jodid während des (photolytischen) 

Abbaus organischer Jodverbindungen höheren molekularen Gewichts entstehen, die ihrerseits 

wahrscheinlich der ozeanischen Oberflächenschicht entstammen,. Außerdem wurde festgestellt, 

dass orographisch induzierter Niederschlag Jodkonzentrationen im Schnee signifikant beeinflusst, 

mit exponentiell abnehmenden Jodgehalten bei ansteigender Höhe eines Transektes im 

Schwarzwald. Tatsächlich fiel die Konzentration über die Hälfte, von 38 zu 13 nmol l-1 über einem 

Höhenunterschied von 840m und einer horizontalen Distanz von nur 5 km ab. Möglicherweise ist 

der Einfluss orographischer Effekte an der Jodkonzentration in kontinentalem Niederschlag größer 

als die laterale Distanz vom Ozean. 

 
Sobald der Niederschlag in die terrestrischen Ökosysteme eintritt, beginnen 

Wechselwirkungen mit Boden, Gestein und den dort lebenden Organismen. Die Jodgehalte im 

Mummelsee betrugen im Durchschnitt 15.2 ± 2.4 nmol l-1 und waren somit denen im Regen und 

Schnee sehr ähnlich. Daraus ist zu schließen,, dass die Geologie des Einzugsgebietes nur einen 

sehr geringen Einfluss hat. Jod im See und aus dem Quellzufluss war hauptsächlich mit 

organischem Material assoziiert, im Durchschnitt zu 85 ± 7 %. Dennoch spielen anorganische 

Jodkreisläufe eine wichtige Rolle im limnischen System, in dem ausgeprägte Redoxprozesse 

erkennbar sind. So wird bei anoxischer Stratifikation des Sees Jodid aus dem Sediment freigesetzt 

und Jodat im Hypolimnion reduziert. Der Jodidfluss (bis zu 10.1 nmol m-2 d-1) in die Wassersäule 

entstammt wahrscheinlich sowohl dem organischen Abbaus in den obersten Zentimetern des 

Sedimentes als auch der Mobilität dieser Spezies unter reduzierten Bedingungen. Im Gegensatz 

zum Hypolimnion wurde Jodid im Epilimnion während der Sommer- und Herbstmonate entfernt, 

wobei die Jodatgehalte über dem gleichen Zeitraum leicht anstiegen. Dies deutet auf den wichtigen 

Einfluss biologischer Reaktionen hin. Darauf wiesen auch hohe Jodkonzentrationen in einem 

Sedimentbohrkern (durchschnittlich 92 µmol kg-1) und die signifikante Korrelation (p<0.001) mit 

organischem Kohlenstoff hin. 

 

Die entwickelte, analytische Methode beinhaltet Verbrennung der Sediment- oder 

Bodenprobe im Ofen eines AOX Gerätes bei 1000°C und das Auffangen der Dämpfe in Milli-Q 

Wasser. Diese Lösung wird mittels UV/Vis Photospektrometrie auf Jod analysiert, wobei Jodid 

quantitativ die Oxidation von As3+ und die Reduktion des chromatophoren Ce4+ katalysiert. Es 

wurde aufgezeit, dass diese Methode mit relativer Standardabweichung von unter 5% präzise und 

sensitiv (Nachweisgrenze 49 ng bei einem Konfidenzintervall von 95 %) ist. 
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Zusammenfassend kann gesagt werden, dass diese Arbeit den wichtigen Einfluss 

organischen Materials in der Hydrosphäre, insbesondere im Zusammenhang mit dem Jodkreislauf, 

gezeigt hat. Deutlich mehr Forschung muss in diesem Bereich erfolgen, um z.B. zu klären, um 

welche unbekannten organischen Jodverbindungen es sich handelt, oder wie Jod sich mit 

organischem Material verbindet und welche Rolle biologische Prozesse bei der Bildung haben.  

Auf Grund des derzeitigen wissenschaftlichen Interesses an der Jodchemie besteht die Hoffnung, 

dass diese und weitere Fragen in baldiger Zukunft geklärt werden. 
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1.0 Introduction 

1.1 Current state of knowledge 

1.1.1 Biogeochemical cycles 
 
Element cycling through and between our environmental compartments is a unifying theme in the 

geosciences (geosciences used here in its broadest sense). Vital elements for life such as C, N, P, 

metals such as Ca and K and the halogens F, Cl, Br, and I are continually moving between the 

geosphere (largely pertaining to rocks), pedosphere, biosphere, hydrosphere, and atmosphere. The 

cycling of elements has been of interest since the early days of science, however the actual 

interaction and interdependence between the spheres on a quantitative level has only recently 

received a concentrated effort in all areas of sciences. Such a quantitative understanding is vital in 

learning how the different natural compartments shape and influence our world, and indeed how 

we as part of this system, play a role in global dynamics.  

 
Life as a driving force on global dynamics and element cycles was brought to the forefront of both 

scientific and public attention initially by Lovelock,  (1979) with the Gaia theory and subsequently 

backed up with a strong scientific basis by Charlson et al.  (1987) with what was to be known as 

the CLAW hypothesis (after the authors names: Charlson, Lovelock, Andreae, and Warren). 

Charlson et al.  (1987) demonstrated in a quantitative manner that emissions of dimethyl sulfide 

(DMS) produced by marine phytoplankton and subsequent formation of cloud condensation nuclei 

(CCN), and thus droplet number density and cloud cover, could significantly influence the earth’s 

albedo and so also global climate. In this scheme oxidation and nucleation of DMS and further 

production of clouds was related to changes in phytoplankton community structure, which in turn 

was a function of sea temperature and solar radiation. As such, organisms (unknowingly) could 

regulate the earth’s climate to suit the sustainable progression of life. What is interesting in the 

CLAW model is that through a series of negative feedback mechanisms the temperature of the 

atmosphere is able to stay relatively stable despite changes in external forcing, such as increasing 

solar luminosity. Despite the controversy this created within the geosciences, interactions and 

cycling between the biosphere and the other spheres (particularly the atmosphere) to sustain life 

has received increasing attention, albeit under more conservative names than ‘Gaia’ as proposed 

by Lovelock, (1972). Moreover, many elements other than sulfur have been seen to move from one 

sphere to another. The elucidation of such pathways has allowed a better understanding of the 

environment in which we dwell, and the natural processes on which we, as a species, depend.  
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One of the most interesting points in the cycling of the elements is that they appear in many 

respects to operate on a fractal basis. Within each of the spheres, there exists a multitude of cycles 

at different scales, both biological and abiological. For example, carbon cycling works on scales 

from microbiological communities in the soils, which break down large macromolecules to be 

used as an energy source for higher organisms, to photosynthesis which produces the annual 

oscillations in atmospheric carbon dioxide concentrations observed in the Keeling curve from 

Mauna Loa (the most recent data can be found at http://scrippsco2.ucsd.edu/) The 

interconnectedness of these systems is complex, and as mentioned above for sulfur in the DMS 

cycle, involves feedbacks that often mean that the cycles cannot be modeled as a combination of 

simple linear dynamics.  

 

One such element that has only recently received considerable attention is iodine, a biophilic 

element that is also a required nutrient for all mammals (despite its sparse abundance in the 

terrestrial environment) (de Benoist et al., 2004). Iodine is transferred between the spheres on 

different time scales and in different chemical forms (species). However, the dominant transfer 

pathway is either through the atmosphere as reactive gases (e.g. I2, CH2I2, CH2ICl, CH3I) or in the 

aqueous phase (i.e. aerosols, rain, rivers, lakes and oceans). The largest iodine reservoirs are soils, 

rocks and the ocean (Fuge and Johnson, 1986). As in most systems these phases are not mutually 

exclusive, with photolysis of gaseous iodine compounds leading to uptake on, or even formation 

of, aerosols, which can be transferred to rain, soils, rivers, and lakes. Factors governing the 

migration through, and reactivity within, each subsystem are largely determined by the 

components in that system and also by the iodine species present. An interesting contrasting 

example is firstly iodide (I-), which has very little affinity for sorption sites on soil and so can 

migrate readily to rivers and streams, and secondly iodate (IO3
-) which is strongly sorbed to clay 

and Fe oxide surfaces (Neal and Truesdale, 1976; Ullman and Aller, 1980).  

1.1.2 Discovery of iodine and brief history 
 
It is interesting to note that iodine was first discovered in 1811 (by Bernard Courtois) by accidental 

addition of excess sulfuric acid to a vat containing seaweed residues from the French Coast. This 

subsequently led to rapid volatilization of I2 gas which then condensed on cold surfaces as I2 

crystals. Such information may seem trivial at first, but as will be seen the role played by coastal 

seaweed, in terms of its high iodine content and emissions of iodine compounds, such as I2, is of 

vital importance in many parts of the iodine cycle.  

 

Iodine in aerosols and precipitation became of interest in the atmospheric sciences, despite some 

earlier work, by studies conducted at Mauna Loa, Hawaii, by Duce et al., (1963; 1965; 1967) and 
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Duce and Woodcock, (1971). These authors found, in contrast to the other halogens, that iodine 

was strongly enriched relative to its oceanic source. Indeed, enrichment factors relative to Cl in 

aerosols and precipitation were on the order of 1000 times. This was some of the first evidence that 

iodine was a biogenic element that was efficiently transferred from the ocean into the atmosphere, 

in stark contrast to the other halogens. At a similar time, iodine speciation in the ocean was gaining 

attention, particularly with the observation that iodide and iodate were not in thermodynamic 

equilibrium in the surface ocean, with iodide levels a few orders of magnitude higher than 

predicted (Sugawara and Terada, 1967; Luther et al., 1995). This was attributed to biological 

reduction of iodate and excretion of iodide in the surface waters, the most convincing field 

evidence coming from Elderfield and Truesdale, (1980). Some of the first evidence for iodine 

emissions from the ocean came from laboratory studies by Miyake and Tsunogai, (1963) and field 

samples over the open ocean by Lovelock et al., (1973), further suggesting important biological 

and photolytic components in the iodine cycle. Iodine quantification in the terrestrial aquatic 

environment, particularly in regards to speciation, only gained interest in the 1980s (Jones and 

Truesdale, 1984). This may have been due to the low levels of iodine in freshwaters, although 

Duce et al., (1963) had developed a sensitive neutron activation technique that was capable of 

quantifying total iodine into the µg l-1 range. Moreover, iodine cycling in rivers and lakes was 

largely thought to be the same as that in the ocean, with biology playing a role in maintaining the 

disequilibrium between iodide and iodate whereas organic iodine species were believed to be 

negligible.  

 

Since these early studies significant research has been conducted in all of these spheres on iodine 

cycling within and between environmental compartments. The following section will review the 

most pertinent developments in each of the areas of interest to this thesis: The Ocean, as a source 

of atmospheric iodine. The Atmosphere, as one of the most important mediums for iodine cycling 

in terms of iodine species transformations, climate influences, and transport of iodine from the 

ocean to the terrestrial ecosystems. Finally, I will confine the Terrestrial Environment in this 

work primarily to the terrestrial aqueous environment i.e. iodine in rivers and lakes but will also 

give a limited review of iodine in soils and sediments as such processes will undoubtedly impact 

on aqueous geochemistry.  

1.1.3 Oceans 
 
Iodine concentrations in the oceans tend to vary slightly with salinity; however, when normalized 

to 35 ‰ it is relatively homogeneous at 58 µg l-1 (0.46 µmol l-1) (Elderfield and Truesdale, 1980). 

Theoretically, based on conventional thermodynamics, iodate should be the only detectable species 

in the ocean with IO3
-/I- ratios on the order of 1013.5 (Luther et al., 1995). The continual 
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observation of iodide in surface waters, which correlates very well with a decrease in iodate levels, 

is thought to be due to biological reduction of iodate (Sugawara and Terada, 1967; Elderfield and 

Truesdale, 1980; Jickells et al., 1988; Tian and Nicolas, 1995; Chance et al., 2007). This may 

occur through coupling to nitrate uptake (nitrate reductase), as suggested by early work; however 

the actual mechanism has been very difficult to elucidate with evidence both for, and against, 

nitrate related reduction (Sugawara and Terada, 1967; Butler et al., 1981; Tian and Nicolas, 1995; 

Wong et al., 2002; Truesdale et al., 2003; Chance et al., 2007). It has also been shown that 

decomposition of organically bound iodine in near-shore waters produces iodide, although 

concentrations of organic iodine species in the open ocean water are thought to be relatively low 

(Wong and Cheng, 1998). In addition to dissolved iodine, particulate iodine plays an important 

role in removing iodine from the surface ocean to the sediments and deep water (Wong et al., 

1976).  

 

Since the oceans cover the largest surface area on earth, they are potentially the most important 

contributor to atmospheric iodine budgets. In most cases emission of volatile iodine species such 

as I2, CH3I, C3H7I CH2I2, CH2ICl and CH2IBr have been related to biological production. There is 

also some strong evidence for abiological production of CH3I, related to photolytic processes or 

Fe-catalyzed cycles (Richter and Wallace, 2004; Williams et al., 2007). It has been postulated that 

biological production of volatile organic iodine compounds is a defense mechanism against 

environmental stress such as ozone or bacterial attack (Palmer et al., 2005), and is thought to be 

enzymatic (Küpper et al., 1998).  Unfortunately, the literature is strongly biased towards CH3I 

concentrations and fluxes over the oceans despite the fact that less stable iodine compounds (e.g. 

CH2I2) would have the same impact on atmospheric processes at one thousandth the concentration 

(Carpenter, 2003). This is due to the relatively long lifetime of CH3I (about 5 days) against 

photolytic decomposition compared to more reactive volatile halogen species (von Glasow and 

Crutzen, 2007). The emission flux of each species into the atmosphere is a product of the source 

strength multiplied by the surface area, and therefore despite the very low area of the coastal zone 

their very large fluxes may be sufficient to match open ocean fluxes of reactive iodine species such 

as I2 and CH2I2. It is also important to note that the less stable volatile iodine compounds also 

decompose in the water column, so that despite their biological production they may have only a 

limited effect on atmospheric processes (Martino et al., 2006; Jones and Carpenter, 2007). Some of 

these compounds also undergo transformations (such as electrophilic substitution) in seawater into 

more stable volatile compounds, which can then degas to the atmosphere. A prime example is 

CH2I2, which reacts with Cl- to form CH2ICl; a product that has been observed in the remote 

marine boundary layer (Carpenter et al., 2003; Jones and Carpenter, 2007).  
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1.1.4 Atmosphere  

1.1.4.1 Gas phase 
 

Iodine is emitted into the marine boundary layer as simple short chain organohalogens, the most 

important being CH3I, C3H7I, CH2I2, CH2ICl and CH2IBr. Recently, I2 has also been observed in 

coastal environments, emitted from macroalgae such as Laminaria sp. during oxidative stress 

(Palmer et al., 2005), and is thought to be the largest contributor of iodine radicals in these areas 

(McFiggans et al., 2004; Saiz-Lopez and Plane, 2004; McFiggans, 2005; O’Dowd and Hoffmann, 

2005; Peters et al., 2005). It remains to be seen how widespread I2 emissions are, however due its 

rapid photolysis and high iodine radical yield per mole I2 photolysed, it has the potential to have a 

major influence in the marine boundary layer. It must also be noted that, in contrast to Br and Cl, 

aerosols derived from the ocean surface are a net sink for iodine rather than a source, with iodine 

enrichment factors in aerosols and precipitation around 1000 times and in extreme cases up to 

16000 times sea water (Duce and Woodcock, 1971; Moyers and Duce, 1972; Sturges and Barrie, 

1988).  

.  

 Once iodine is emitted into the atmosphere it undergoes a complex series of radical reactions, 

summarized concisely in a review paper by von Glasow and Crutzen, (2007) (Figure 1). The most 

important parts of the atmospheric iodine cycle are, 1) the ability to destroy ozone in much the 

same manner as Cl and Br, and 2) nucleation of iodine gases to form new nanometer sized 

aerosols. The classic ozone destroying reaction can be written as: 

 

I  +  O3   IO  +  O2        Eq. 1 

IO  +  hv  +  O2  I  +  O3       Eq. 2 

 

This is a null cycle with no net change. However, IO is also able to react with other compounds in 

the atmosphere to catalytically destroy ozone, for example:  

IO  +  HO2    HOI  +  O2       Eq. 3 

HOI  +  hv    I  +  OH    and      Eq. 4  

HOI  +  aerosol  uptake       Eq. 5 

HOIaq  +  X-
aq    IX  +  OH-

aq      Eq. 6 

IX  +   hv     I  +  X        Eq.7 

I  +  O3  IO  +  O2        Eq. 8 

 

X is Cl, Br or I and subscript aq denotes the reaction is taking place in the liquid phase (aerosols or 

precipitation). Iodine radicals can also be formed by the IO-IO self reaction: 



 7 

 

 

IO  +  IO   OIO  +  I       Eq.9 

 

Which is also equivalent to: 

 

IO  +  XO    OIO  +  X       Eq.10 

 

The halogen radical released can cycle back into Eq. 1 to destroy more ozone, whereas OIO may 

be the monomer unit for aerosol condensation since it is relatively stable against photolysis 

(Hoffmann et al., 2001; von Glasow and Crutzen, 2007).Reactions with nitrogen dioxide occur by: 

 

IO  +  NO2   IONO2        Eq. 11 

IONO2  +  hv   I  +  NO3       Eq.12 

 

Again releasing iodine radicals to react via Eq.1. The terminal reaction for iodine is thought to be 

oxidation to higher iodine oxides such as I2O5 (Saunders and Plane, 2005) and uptake by aerosols 

and droplets, although these oxides remain to be found in field samples (Baker, 2005; Gilfedder et 

al., 2007a,b). Evidence for an important role of iodine in ozone destruction came from the direct 

observation of IO in the boundary layer in the late 1990s (Alicke et al., 1999), and has since been 

identified in many coastal environments using LP-DOAS (long path differential optical absorption 

spectrometry), for example, Mace Head Ireland, Dagebüll Germany, Lilia and Roscoff, France,  

(Saiz-Lopez and Plane, 2004; Peters et al., 2005; Whalley et al., 2007). Observations from non-

coastal environments are less numerous, but include the Arctic (Wittrock et al., 2000), Antarctica 

(Saiz-Lopez et al., 2007b), the Dead Sea (Zingler and Platt, 2005), Cape Grim, Tasmania (as an 

open ocean signal), Tenerife, (Allan et al., 2000) and the stratosphere (Bösch et al., 2003). A 

summery of IO measurements by DOAS is presented in Peters et al., (2005). One of the drawbacks 

of DOAS measurements is that it does not capture iodine emissions on small scales, for example 

inter tidal zones, averaging IO levels over a light path of at least a few km. Interestingly two novel 

methods have recently been employed for point IO measurements, LIF (laser induced 

fluorescence) and CRDS (cavity ring-down spectroscopy), both of which appear to support a 

primarily coastal source of iodine emissions (Wada et al., 2007; Whalley et al., 2007).  



 8 

 

 
Figure 1: Schematic of iodine reactions in the marine boundary layer (von Glasow and Crutzen, 

2003).  

 

Some interesting and potentially important chemical feedbacks can occur through these reactions. 

Perhaps most significantly decreasing the HO2/OH ratio, and thus affecting oxidation capacity of 

the atmosphere (Bloss et al., 2005). Such effects have been noted at Mace Head, Ireland (Bloss et 

al., 2005) and most recently in Antarctica (Saiz-Lopez et al., 2007b). It is important to note here 

that iodine’s ability to destroy ozone is largely confined to the troposphere due to its reactivity. We 

note however that iodine may be transported into the stratosphere (Wittrock et al., 2000), perhaps 

associated with tropospheric aerosols, and thus may play a limited role there as well (see Figure 3 

in Murphy et al., 2007).  

 

While ozone depletion by the halogens, and iodine in particular, are important for the marine 

boundary layer, iodine’s effects can be most significant, and most noticeable, in the Polar Regions 

during spring. Indeed, complete ozone depletion events (ODE) have been observed in the artic 

under exceptionally stable boundary layer conditions, and are thought to be a result of halogen 

chemistry (Tarasick and Bottenheim, 2002; Hönninger et al., 2004). The rapid increase in 

tropospheric bromine during polar spring has been termed the ‘bromine explosion’ (Frieß et al., 

2004) and a similar explosion has also been observed for iodine. The first observations of IO in the 

Antarctic where made by Frieß et al.,  (2001). These authors found that the IO was most likely 

confined to the boundary layer and observed concentrations up to 10 pptv during the summer of 

1999. More recently, Saiz-Lopez et al.,  (2007b) have produced LP-DOAS  IO data from Halley 

station, Antarctica, that show IO levels up to 20 pptv; some of the highest values to date. They also 
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observed a strong seasonal cycle, with highest levels of IO occurring in spring, consistent with the 

iodine explosion hypothesis mentioned above (Figure 2). Interestingly, they also note a second 

smaller peak in IO levels during the autumn, which is not observed for bromine, suggesting that IO 

precursors have a different origin than BrO. Such observations are also consistent with satellite 

data retrieved from the SCIAMACHY satellite (Saiz-Lopez et al., 2007a; Schönhardt et al., 2007), 

and is thought to result from biological iodine emissions from the underside of the sea ice (Figure 

3).  

 
Figure 2: IO and BrO levels from Halley station, Antarctica (Saiz-Lopez et al., 2007b).  

 

 
Figure 3: Global iodine oxide levels as observed from space (Schönhardt et al., 2007) 



 10 

 

1.1.4.2 New particle formation 
 

One of the most novel and interesting aspects of atmospheric iodine chemistry is nucleation of 

gaseous iodine precursors (most importantly I2 and CH2I2) to form new aerosol particles. If the 

global flux of these particles is large enough they could have a significant cooling influence on 

climate (by increasing albedo) (1) directly through scattering a reflectance of incoming solar 

radiation back out to space (degree of reflectivity verses absorption depending on optical 

properties such as colour and shape), and (2) indirectly through increasing the number of cloud 

condensation nuclei, hence droplet number concentrations and further scattering and reflectance of 

solar radiation (Cainey, 2007). Indeed, one of the least understood parts of current global energy 

budgets is the radiative forcing introduced by aerosols. For example, Ramanathan et al., (2001) 

have found that the top of atmosphere forcing by aerosols alone could rival (but as a negative 

force) that of greenhouse gases. This climatic effect is similar to the suggested DMS-aerosol-cloud 

feedback system introduced in the first section of this thesis.  

 

Iodine nucleation was first discovered in chamber experiments using CH3I by Cox and Coker, 

(1983), but was in essence ‘rediscovered’ by Hoffmann et al.,  (2001) in an attempt to explain the 

nucleation bursts (up to 106 particles per cm-3) observed at Mace Head, Ireland (Figure 4). These 

authors exposed CH2I2 to ozone and light within an atmospheric simulation chamber and found 

very large particle production. These experiments were conducted more comprehensively (i.e. 

within the Caltex smog chamber, and product analysis by  AMS-Aerosol Mass Spectrometry) by 

O’Dowd et al., (2002), who proposed that iodine emissions and aerosol formation could be 

radiatively important if nucleation also occurred over the open ocean. 

 
Figure 4: A strong (iodine) nucleation event at Mace Head research station. Notice coincidence 
with low tide, but slightly before maximum sulfuric acid peak (O’Dowd and Hoffmann, 2005). 
JO(1D) is an indicator of radiative intensity.  
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The nucleation events at Mace Head could not be explained by conventional ternary NH3-SO4 –

H2O nucleation physics, which, if it was to be an explanation, required an additional condensing 

gas to drive NH3-SO4 clusters over the thermodynamic energy barrier to form stable measurable 

nuclei (Kulmala et al., 2002; O’Dowd and Hoffmann, 2005). The iodine nucleation mechanism 

original proposed by Hoffmann  et al.,  (2001) was thus: 

 

CH2I2  +  hv    I  +  CH2I       Eq.13 

I  +  O3   IO  +  O2        Eq.14 

IO  +  IO   OIO  +  I       Eq.15 

OIO  +  OIO     I2O4       Eq.16 

I2O4  +  nOIO   (I2O4)1+n/2       Eq.17 

 

As can be seen in Eq.16, I2O4 is the basic unit for polymerization of iodine oxides, which can then 

condense from the gas phase to form nanometer sized aerosols. The basic unit has been of some 

discussion however, with Saunders and Plane, (2005) suggesting that I2O5 may be the basic unit, 

formed by sequential oxidation of I2O2 by O3:  

 

IO  +  IO   I2O2        Eq.18 

I2O2  +  O3    I2O3  +  O2       Eq.19 

I2O3  +  O3   I2O4  +  O2       Eq.20 

I2O4  +  O3   I2O5  +  O2       Eq.21 

 

This sequence was shown to be thermodynamically favorable, although I2O5 is relatively soluble, 

which does not fit well with the hydroscopic data measured for 8 nm particles at Mace Head by 

UF-TDMA (Ultrafine Tandem Differential Mobility Analyzer). UF-TDMA data from Mace Head 

showed that particles formed during nucleation events were quite insoluble, with growth factors at 

90 % relative humidity of about 1.1 (Väkevä et al., 2002). This is more inline with I2O4. The basic 

monomer unit is therefore yet to be fully elucidated.  

 

Once nucleation was found to occur in the laboratory it was then necessary to determine if iodine 

emissions were large enough in the field to produce the observed nucleation events. It was thought 

that the large beds of macro algae, such as Laminaria digitata, were responsible for the iodine 

emissions due to their very high iodine concentrations and previous work showed significant 

fluxes of volatile iodocarbon compounds from the inter tidal region (Carpenter et al., 1999). 

Incubation studies showed that, indeed, exposure of algae species found around Mace Head to 

light and ozone could lead to significant particle production (McFiggans et al., 2004; Sellegri et 
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al., 2005). However, it was also found that I2, rather than iodocarbon compounds, was the major 

source of gas phase iodine species, contributing some orders of magnitude more iodine radicals to 

the atmosphere than CH2I2; the compound previously thought responsible for iodine nucleation at 

Mace Head (McFiggans et al., 2004; McFiggans, 2005).  Indeed, around the same time I2 was 

identified at the site by LP-DOAS (Saiz-Lopez and Plane, 2004) and has since been backed up by 

additional studies (Peters et al., 2005 and refs. therein). The laboratory study by McFiggans et al.,  

(2004) also appeared to confirm the nucleation mechanism, with direct identification of IO 

fragments by AMS, which agreed very well with laboratory produced spectra using synthetic I2 

(Figure 5). While this all appears to agree quite well with the iodine oxide nucleation hypothesis, 

there have also been some anomalous findings. For example, particles produced by Cainey et al.,  

(2007a) also in a chamber containing a macro algae species at Cape Grim Tasmania, Australia, 

were only stable when collected on plates coated with xylene, suggestive of an aromatic 

compound. Unfortunately more robust speciation techniques for nucleation size aerosols are 

hampered by a method that can collect enough mass of nm-sized aerosols for offline analysis. On-

line analysis techniques (e.g. AMS) have a lower aerodynamic diameter cutoff of about 30 nm, and 

therefore also cannot currently be used for iodine speciation in nucleation size aerosols. While 

iodine nucleation events have been observed at Mace Head, there is very little work in other 

locations. Moreover, despite rather extensive macro algae beds at Cape Grim, Tasmania, no iodine 

related nucleation has been observed (Cainey et al., 2007b). Nucleation events have been noted in 

Antarctica, the Great Barrier Reef and a number of other coastal areas, and therefore it is vital to 

determine if these events are related to iodine chemistry, sulfur chemistry or some other unknown 

mechanism (Bigg and Turvey, 1978; Broadbent and Jones, 2004; Jones and Trevena, 2005; Yoon 

et al., 2007).  

 

C

B

A
 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5: AMS spectra of (A) particles produced by synthetic CH2I2 in the Caltech chamber, (B) 
particles produced from Laminaria digitata, (C) particles produced by I2 (McFiggans et al., 2004).  
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There is a significant amount of research that has, and continues, to go into elucidating iodine gas 

phase chemistry and sources. Unfortunately, very little research has been conducted on iodine 

speciation within aerosols, rain, or snow. Iodine speciation in the atmospheric aqueous phase has 

large implications for verifying gas phase reactions and assumed reactions that occur within the 

aerosols as employed in models (McFiggans et al., 2000; Pechtl et al., 2007). Moreover, it has 

been hypothesized that aerosols may contribute to gas phase iodine chemistry through degassing, 

for example by Eq.5 and 6 (McFiggans et al., 2000) and therefore knowledge of speciation within 

aerosols is vital in predicting how important these reactions will be. 

 

As noted above, iodine should theoretically exist in aerosols as iodate, as IO3
- is believed to be 

chemically stable in the atmosphere.  In most existing models iodate is treated as the iodine sink 

species and once it is formed it is essentially removed from atmospheric cycles (Vogt et al., 1999; 

McFiggans et al., 2000; Pechtl et al., 2006). Moreover, iodide should be oxidized at diffusion-

controlled rates (~k=5x109) to species such as HOI and XI, and therefore should be well bellow 

current detection limits. However, as will be highlighted throughout the atmospheric section of this 

thesis (e.g. Gilfedder et al., (2007b)), there is very little evidence of iodate dominance in field 

samples and strong evidence for the presence of iodide. Moreover, it is also likely that non-volatile 

organic iodine species play a significant role in iodine speciation in the aqueous phase (Baker et 

al., 2001; Baker, 2005; Gilfedder et al, 2007a,b,c Pechtl et al., 2007). For example, Baker, (2005) 

found during 2 extensive cruises of the Atlantic ocean (both northern and southern hemispheres) 

that iodate, iodide and organically bound iodine were present in both fine mode (<1 µm) and 

coarse mode (> 1 µm) aerosols. The organically bound iodine was concentrated in the fine mode, 

whereas iodate was predominantly in the course mode particles. Gilfedder et al., (2007b) also 

found direct evidence of organic iodine species (although all were unidentified except for 

iodoacetic acid) in IC-ICP-MS chromatograms, in addition to the calculated organically bound 

fraction.  

1.1.4.3 Precipitation 
 

Precipitation is the only source of fresh water for the terrestrial environment. It also plays vital 

roles in shaping the earth, via processes such as erosion, and governing spatial distribution of 

ecological systems. No living animal can live without the input of precipitation, albeit that some 

organisms have been able to evolve some very nifty characteristics to cope with water scarcity. It 

is interesting to note then that all water droplets are water vapor condensed on aerosols, and that 

the properties of the aerosols (e.g. size and chemistry) affect the efficiency of this condensation. 

This is concisely given by Köhler theory, but a thorough description is out of the scope of this 

thesis and interested readers are direct to the recent review by McFiggans et al., (2006). It is 
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sufficient to note that the chemistry of the aerosol will influence the probability of droplet 

formation. Importantly, iodine in precipitation is most likely transferred directly from the aerosol 

to the droplet during aerosol activation (Gilfedder et al., 2007b). This represents an important 

pathway for iodine transfer from the oceans to the continents, where it is a vital nutrient for all 

mammals (to be discussed latter) (Fuge and Johnson, 1986). As such, it is important to know the 

processes that are occurring within each aerosol and droplet (particularly speciation) as well as the 

processes that effect the bulk iodine concentration within clouds.  

 

Iodine levels in rain and snow generally range between 0.2-10 µg l-1 (1.6-78 nmol l-1), and do not 

appear to depend strongly on distance from the ocean, but decrease rapidly with increasing 

elevation (Truesdale and Jones, 1996; Moran et al., 1999; Baker et al., 2001; Gilfedder et al., 

2007c). It must be noted however, that so-called total iodine levels given by various authors may 

be dependent on analytical methods. For example, Campos et al., (1996) assume that the sum of 

inorganic species (iodide and iodate) is equal to total iodine, and Neal et al., (2007) use a UV-Vis-

spectrometric method that integrates inorganic iodine as well as an unknown fraction of 

organically bound iodine (Wong and Cheng, 1998). There are a growing number of studies that 

increasingly hint at the importance, or indeed dominance, of organically bound iodine in both 

marine (Baker et al., 2001; Gilfedder et al., 2007b ) and continental (Gilfedder at al., 2007a,b,c) 

precipitation and thus interpretation of total iodine levels must also consider the analytical method 

employed for quantification. The most reliable method for total iodine analysis is currently 

inductively coupled plasma mass spectrometry (ICP-MS), which decomposes all iodine species to 

I+ (plasma temperatures ca. 6000K) before quantification with the mass spectrometer.  

 

The discussion above also highlights that accurate speciation of iodine is necessary when 

attempting to reconstruct iodine cycling in the atmospheric aqueous phase. Due to the low 

concentrations of individual iodine species typically found in precipitation (less than 1 µg l-1; 7.9 

nmol l-1), it is often difficult to achieve satisfactory accuracy and precision with the few methods 

that do exist. Current techniques include square wave voltammetry, differential pulse 

polarography, UV-Vis spectroscopy, and ion chromatography-ICP-MS with differing sensitivities 

and difficulties (Truesdale and Spencer, 1974; Luther and Cole, 1988; Campos et al., 1996; Biester 

et al., 2004; Gilfedder et al., 2007c). Undoubtedly, whichever method is applied it must at least be 

able to measure iodide, iodate and total iodine. Currently all measurements of iodine speciation in 

precipitation have been made at coastal locations, and especially in Britain (Truesdale and Jones, 

1996; Campos, 1997; Baker et al., 2001). These studies found that  about half of inorganic iodine 

was iodate and half was iodide. However, Baker et al., (2001) showed that organic iodine may 

compose a significant fraction of the total iodine, and that speciation depended on air mass origin. 
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The presence of iodide in precipitation (as mentioned above for aerosols) is currently an anomaly 

that cannot be reproduced by models due to iodide’s theoretical very rapid oxidation kinetics. 

When this is combined with the observation of organic iodine and lack of iodate it points to a large 

gap in the current knowledge of aqueous phase iodine speciation in the atmosphere.  

1.1.5 Terrestrial environment 
 

Iodine enters the terrestrial environment via precipitation. It was historical thought that once in 

terrestrial systems the halogens (F, Cl, Br and I) behave conservatively, meaning they reacted only 

very sparingly with their surroundings. Indeed, the parameter ‘adsorbable organic halogens 

(AOX)’ was, and in some cases still is, used to quantify organic halogen compounds thought to be 

purely from anthropogenic sources (Müller, 2003). However, in the last 15-20 years or so, it has 

become increasingly apparent that the halogens do not behave conservatively, and that organic 

halogen compounds form by natural (not related anthropogenic pollution) means (Asplund and 

Grimvall, 1991; Müller et al., 1996; Müller, 2003; Schöler et al., 2003). Natural formation of 

organohalogens can occur biologically by haloperoxidase and other similar enzymatic reactions 

(e.g. Gribble, 2003), or, as shown by Schöler and Keppler (2003), through abiological mechanisms 

involving Fe. In this abiotic catalytic system Fe3+ is reduced by organic matter, Fe2+ can then 

oxidize iodide to I2, which will then react with the abundant  organic matter in the soil to form 

organoiodine compounds such as Me-I. The Fe2+ is reoxidised to Fe3+ and the cycle may then start 

again. Natural abiotic formation of organohalogens has even been shown to have occurred in the 

primordial solar system, with identification of organochlorines in carbonaceous chondrites 

(Schöler et al., 2005).  

.   

Iodine is of vital importance for ecological systems on the continents, as all mammals (including 

humans) require a dietary iodine intake for correct function of the thyroid gland. Insufficient 

iodine may lead to some severe and debilitating diseases and syndromes, such as goiter and most 

devastatingly, cretinism. As summarized by Slavin, (2005), cretinism is a lifelong mental and 

physical retardation,  acquired while in the womb, by insufficient iodine intake by the mother. 

Health issues derived from lack of iodine are related to the production of two hormones, thyroxine 

and triiodothyronine, that are responsible for maintaining the metabolism at a basal rate and 

building nerve cells in the brain. While goiters (enlarged thyroid) are often an outward sign of 

iodine deficiency, the goiter itself are is not of large health concern. Rather, it is the other 

syndromes caused by iodine deficiency, which the goiter signifies, that has led to the World Health 

Organization listing iodine deficiency disorders (IDDs) ‘‘as the worlds most prevalent, yet easily 

preventable, causes of brain damage’’ (http://www.who.int/nutrition/topics/idd/en/). Iodine 

deficiencies do not only affect less developed countries (Figure 6). More developed countries, such 

http://www.who.int/nutrition/topics/idd/en/
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as France and Ireland (despite the iodine emissions mentioned above!) are currently listed as 

iodine deficient (Andersson et al., 2007). Indeed insufficient iodine intake by school children 

between 6-12 years is currently at 22.2 million pupils (42 % of school children) in Europe alone 

(Figures 7) (Andersson et al., 2007).  

 

The distribution of iodine deficiency has been associated with many causes since it was first noted 

by the Romans in populations of the European Alps (Slavin, 2005). There was even a time where a 

goiter was seen as common place in Europe, and even attractive when only slightly enlarged 

(Andersson et al., 2007). It has been commonly associated with drinking water from mountainous 

regions and limestone bedrock, although to date there is very little scientific evidence for a direct 

relationship between these factors and goiter (Fuge and Johnson, 1986; Slavin, 2005). To date 

IDDs appear to be multifaceted, with contributions from genetics (inbreeding particularly enhances 

the prevalence of IDD, as observed in Derbyshire England (Slavin, 2005)), lack of selenium and 

compounds known as goiterogens that inhibit the uptake of iodine. Currently the major source of 

iodine for more industrialized nations and some of the less industrialized countries is iodine 

supplements added to salt.  

 

Natural sources of iodine are particularly important in areas that do not currently have access to 

iodine supplements, or rich iodine sources such as fish, seaweed, and milk. The iodine in milk may 

not only originate from grass, which generally has low iodine levels, but also from direct ingestion 

of soil by bovine. Therefore it is also important from a health prospective to understand the natural 

iodine cycle and the major reservoirs of iodine in the terrestrial environment.  It is particularly 

important to understand iodine speciation in this regard, as some iodine compounds are beneficial 

to health (such as the inorganic species), while others are detrimental (such as the carcinogenic 

iodoacetic acid (Plewa et al., 2004)). It seems that the health benefits of iodine bound to dissolved 

humic material is currently unknown. Therefore it is vital not just from a geochemical perspective, 

but also from a health perspective to understand how these substances cycle through the 

environment, and in particular the processes effecting their concentrations. Indeed, as shown by 

Gilfedder et al., (2007d), humic bound iodine is the dominant species in fresh lake waters from the 

Black Forest, and so organic iodine species will need to be further investigated by public health 

departments if a better understanding of the causes of iodine deficiencies are to be understood.   
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Figure 6: Global iodine intake status (de Benoist et al., 2004). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Iodine deficiency status in Europe (Andersson et al., 2007).  

 

A second important initiative to research iodine cycling in the terrestrial environment has only 

arisen since the nuclear age. During nuclear fission a series of radioactive iodine isotopes are 
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produced (approximately 20) by the decay of 238U. The two most important radioactive isotopes of 

iodine are 129I (half life ~15 Ma) and 131I (half life 8 days). Iodine-129 is only a low energy beta 

and gamma emitter, and therefore is currently of little health threat. However, because of its high 

mobility and volatility it is becoming a widespread anthropogenic radionuclide (Moran et al., 

1999; Raisback and Yiuo, 1999; Oktay et al., 2001; Michel et al., 2002; Moran et al., 2002a; 

Reithmeier et al., 2006).  For example, Snyder and Fehn,  (2004) have observed 129I transport from 

the nuclear reprocessing facilities at La Hague (France) and Sellafield (England) from the North to 

the South Pole. Interestingly, because of its near-zero natural abundance, it has also become a 

useful tracer for natural processes, such as ocean currents (Santschi and Schwehr, 2004). In 

contrast to 129I, 131I is a high-energy nuclide, and therefore presents a significant health risk 

following release of radioactive material into the environment, such as occurred during the 

Chernobyl accident. One of the primary concerns with 131I is that it accumulates in the thyroid 

gland due to iodine’s status as a nutrient. It then poses a significant threat of thyroid cancer. A 

through review of the radiological and geochemical properties of iodine isotopes is outside the 

scope of this thesis and the interested reader is direct to texts such as Szidat et al., (2000), Snyder 

and Fehn,  (2004), Moran et al., (2002a) and refs. therein.  

 

Given the above importance of iodine in the terrestrial environment, it is unfortunate that scientific 

observations have generally been much less systematic than in the atmosphere, with few long-term 

or collaborative wide-ranging studies.  The iodine cycle in the terrestrial environment must, of 

course, start with rocks and soils. Iodine concentration in rocks is usually very low, less than a few 

mg kg-1 and generally less than 1 mg kg-1, unless there is a significant amount of organic matter 

present. The highest concentrations are associated with hydrocarbon deposits due to the elevated 

concentration of organics in these strata. One of the primary factors effecting iodine’s distribution 

in minerals is its large ionic radii and as such iodine does not easily substitute into the crystal 

lattices of most minerals. It is currently thought that the small iodine concentrations present in 

rocks is as a heteroatom, in essence ‘floating’ within and between crystal structures or sorbed on 

crystal edges and defects. Iodine concentrations in most common rock types is listed by Fuge and 

Johnson,  (1986) in the order: recent sediments>carbonates and shales >sandstones>igneous rocks. 

More recent work by Muramatsu and Wedepohl, (1998) have shown this to be approximately true, 

but also show that metamorphic rocks are higher in iodine than igneous but lower than 

sedimentary rocks. They suggest that iodine is degassed from the sedimentary rocks during 

subduction, and particularly during high temperature melting associated with igneous rock 

formations. This appears to be consistent with very high concentrations of iodine and bromine 

measured in volcanic plumes (von Glasow and Crutzen, 2007). It has been suggested on numerous 

occasions that the high iodine content in sedimentary rocks is a result of their biogenic origin, a 
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fact highlighted by iodine’s association with organic rich deposits (such as oil and coal). A 

summary of the iodine content in rocks and their relative contribution to the total crustal iodine 

inventory is shown in Table 1.  

 

Table 1: Iodine inventory for the earth’s curst (redrawn from Muramatsu and Wedepohl, 1998).  
Thickness Crustal units Subunits Average 

concentrations 
(ppb I) 

Average 
concentrations 
(ppm Cl) 

Cl/I 
Ratio 
x1000 

2.9 km =7.3 % Sedimentary 
rocks 

56 % Shales 
26 % Sandstones 
18 % Limestones 

1800 
136 
2500 

 
1490 

1100 
1340 
720 

 
2850+ 1.9 

10.4 km =26 % Felsic intrusive 
magmatic rocks 

50 %Granites  
50 % Granodoirites 
and Tonalites 

4 
7.2 

 
6 

280 
280 

 
280 

46.7 

1.3 km =3.3 % Mafic intrusive magmatic rocks 9  190 21.1 
6.3 km = 
 15.8 % 

Metamorphic 
rocks of the 
upper crust 

64 % Gneisses 
15 % Mica schists 
18 % Amphibolites 
3 % Marbles 

24 
25 
23 
31 

24 320 
320 
300 
300 

316 13.1 

11.9 km=29.8% Felsic granulites of lower crust 12  330 27.5 
7.2 km=18 % Mafic granulite of lower crust 9  70 7.8 
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40 km Bulk continental crust  119  448 3.8 
+ Including 2.8 x 1015 t Cl in evaporates.  
 

It has long been established that rock weathering has only a minor effect on iodine concentrations 

in soils, the dominant source being atmospheric input (Fuge and Johnson, 1986). As observed in 

rocks, iodine concentrations in soils also vary widely, and depend on many chemical and physical 

factors such as pH, Eh, drainage, climate, clay content, and most importantly organic matter 

content. The combined effects of these factors has been shown in the long term study (25 years) by 

Neal et al.,  (2007). An increase in stream water iodine levels over the last two decades was a 

result of ‘wetting-up’ of the soil and subsequent decrease in Eh and increase in DOC release.  The 

role of organic matter in binding iodine can best be seen by iodine concentrations in peatlands, 

where concentrations can be 10’s of mg kg-1 (Biester et al., 2004), porewater levels in excess of 20 

µg l-1 (Biester et al., 2006) and retention of input in approximately of 50 % (Keppler et al., 2004). 

However, the sorption capacity of most soils (excluding peat) is also strongly dependent on iodine 

speciation, with very little sorption of iodide by clays and iron (oxy)hydroxides, but significant 

sorption of iodate (Neal and Truesdale, 1976; Ullman and Aller, 1980). Unfortunately, the sorption 

properties of organically bound iodine are hindered by the unknown organo-I species in soils and 

soil solutions and as such are currently unknown. Iodine may also be lost from the soil as volatile 

species such as methyl iodide and other polyhalomethanes formed during biotic or abiotic 

degradation of natural organic matter (Keppler et al., 2000; Schöler and Thiemann, 2005). This 

represents a feedback cycle to the atmosphere that has largely been overlooked and must be further 

elucidated in the future.  
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Iodine levels in streams are usually less than 10 µg l-1, although some higher levels have been 

noted in arid and semi-arid environments or groundwater draining organic rich (e.g. coal) deposits 

(Neal et al., 1990; Andersen et al., 2002; Moran et al., 2002b; Laurberg et al., 2003; Snyder and 

Fehn, 2004; Atarashi-Andoh et al., 2007; Neal et al., 2007).  While the number of studies 

quantifying total iodine is relatively numerous, iodine speciation and cycling are infrequent, 

particular over longer time scales. The work of the Heumann group from Mainz, Germany, is an 

exception, as they have developed numerous hyphenated ICP-MS methods for iodine speciation 

(see review paper by Heumann et al., 1998). Method development is vital; however without 

sustained (temporal) use there is no way to gain an understanding of iodine’s behavior in the 

environment. Rather, it gives a ‘snap shot’, that may just be a transitory state. Work by the 

Haumann group has, however, shown using IC-ICP-IDMS, HPLC-ICP-IDMS and SEC-ICP-

IDMS that iodine in terrestrial aqueous systems is mostly bound to organic matter, and that 

microbiological transformations may be important (Reifenhäuser and Heumann, 1990; Rädlinger 

and Heumann, 1997; Heumann et al., 1998; Rädlinger and Heumann, 2000). Iodine was also found 

to be bound covalently to humic organic matter by electrospray-mass spectrometry and 

synchrotron techniques in groundwater samples (Moulin et al., 2001; Reiller et al., 2006; Schlegel 

et al., 2006). So far there is little consensus on the exact organo-iodine species, with most authors 

being content with an organo-I fraction. Some evidence exists for an aromatic iodine species 

(Moulin et al., 2001; Schlegel et al., 2006), although iodophenols cannot be responsible for the 

bulk of organo-I (Wuilloud et al., 2003). 

 

The only long-term study on iodine speciation and cycling in the terrestrial aqueous environment is 

from Jones and Truesdale,  (1984). These authors essentially monitored inorganic iodine speciation 

and cycling in two British lakes over a 14-month period. They found that iodide increased in the 

hypolimnion during anoxia, but could not derive whether it was from the sediments or lake water 

column. They also noted that in the epilimnion of both lakes IO3
-/I- ratios were significantly out of 

equilibrium, as noted for the marine environment. It was suggested that the disequilibrium was 

related to biological reduction of iodate. Jones and Truesdale,  (1984) also suggested that iodine 

behaved as a micronutrient, conforming to Redfield-like ratio with an I/C mass ratio of about 1x10-

4. Similar values were found in sediment trap samples from the lakes district, UK, supporting 

iodine’s possible role as a micronutrient (Pennington, 1974).  

1.2 Aims of this work 
 

The aim of this project was essentially to gain a more holistic understanding of the aqueous iodine 

cycle in the atmosphere (i.e. rain, snow, and aerosols) and terrestrial hydrosphere (lakes and 

streams). In particular, direct observation of iodine speciation (including inorganic and organic 
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iodine species) and temporal changes in speciation were seen as vital in gaining a more thorough 

understanding of iodine systematics. This was in part due to the observation that despite the fact 

that iodine oxides are theoretically the only sink specie in the atmosphere, very little field 

observations currently exist to confirm model predictions. The temporal component in iodine 

cycling in lakes was also especially interesting, as no long-term study in freshwaters has been 

undertaken since Jones and Truesdale, (1984). Moreover, the behavior and cycling of organically 

bound iodine in lake is currently unknown, despite iodine’s vital importance as a micronutrient and 

previous work showing that the proportion of organically bound iodine is significant. Indeed, this 

is also important from a health perspective, as uptake efficacy studies have mostly focused on the 

inorganic species and there is little knowledge of organic iodine species ability to relieve IDDs. It 

also must be noted that the work evolved significantly during the three years of study; most 

importantly the cooperation with Senchao Lai and Professor Thorsten Hoffmann from the 

University of Mainz in the second and third years allowed a much deeper understanding of 

atmospheric processes in terms of iodine speciation in aerosols and precipitation.  

 

A second aim was to develop a cheap, sensitive, and rapid method for iodine quantification in 

sediments and soils which could even be applied in the basic laboratories often found in less 

developed areas were IDD is most prevalent. This arose during the doctoral work, as, 

unfortunately, the most common technique for total iodine quantification in solid samples is 

neutron activation analysis, which requires access to a nuclear rector and is expensive to 

commission. 

 

The thesis is broken into 2 primary chapters and 2-3 sub-chapters. Each of the sub-chapters are 

manuscripts that have ether been published (3) or submitted (2) to internationally recognized 

journals:  

 Chapter 1 - Atmosphere  

• 2.1 Iodine speciation in rain and snow: Implications for the 

atmospheric iodine sink (Published in Journal of Geophysical 

Research: Atmospheres) 

• 2.2 Iodine and Bromine speciation in snow and the effect of 

orographically induced precipitation (Published in Atmospheric 

Chemistry and Physics) 

• 2.3 Iodine speciation in rain, snow and aerosols and possible transfer 

of organically bound iodine species from aerosol to droplet phases 

(Submitted to Atmospheric Chemistry and Physics 2008)  
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 Chapter 2 - Terrestrial  

• 3.1 A thermo extraction–UV/Vis spectrophotometric method for 
total iodine quantification in soils and sediments (Published in 
Analytical and Bioanalytical Chemistry) 

•  
• 3.2 Iodine speciation and cycling in limnicsystems: observations 

from a humic headwater lake (Mummelsee) (Published on-line in the 
discussions forum of Biogeosciences) 

1.2.1 Methods 
 
The largest difficulties in determining iodine speciation in aqueous samples are firstly the very low 

levels of individual iodine species and, secondly, being able to unequivocally quantify total iodine. 

Previous methods, such as square wave voltammetry are sufficient for oceanic samples, but are not 

sensitive enough for terrestrial freshwater iodine levels (Cook et al., 2000). Spectrometric methods 

can presumably (effects induced by addition of chemicals on organo-I are unknown) quantify 

iodate, but not iodide. As pointed out recently, quantification of total iodine in aqueous samples is 

also not such an easy procedure due to the complex and refractory nature of natural dissolved 

humic material (Schwehr and Santschi, 2003). They propose a complex and time consuming 

procedure to completely destroy carbon-iodine bonds, however such procedures are circumvented 

by the use of ICP-MS. ICP-MS can unequivocally determine total iodine due to plasma 

temperatures higher than 6000 K, and quantification by mass spectrometry. The major benefit of 

ICP-MS is the very low detection levels, and its element selective technique. Also, this technique 

has become a routine procedure in many laboratories, and as such most interferences and 

complications are known and can be accounted for (for example, mass interferences). For aqueous 

speciation we have employed normal mode ICP-MS for total iodine quantification, and coupled an 

ion chromatograph (IC) to the ICP-MS for iodine speciation. An example of an ion chromatograph 

of rain and aerosols from Mace Head Ireland using an anion exchange resin is shown in Figure 8. 

Organically bound iodine is calculated as total iodine minus the inorganic species, iodide and 

iodate. IC-ICP-MS has been used by various workers (e.g. see Heumann et al., (1998)), however 

the combination used here is significantly more sensitive due to the introduction of a Meinhard 

nebulizer and cyclone spray chamber as well as a column that produces very good peak shapes 

(Dionex AS16 column with an AG16 guard column). The column is particularly important in 

gaining precise results at low detection limits. An estimated detection limit of 30 ng l-1 was 

obtained for inorganic iodine species using this combination. Accuracy was check by running 

standard reference material BCR-611, which is a groundwater sample with iodine levels of about 

9.4 µg l-1.  
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Figure 8: Typical anion chromatograph of rain samples from Mace Head (MHC and MHS) and 
aerosols also sampled from Mace Head using a Birner cascade impactor. The iodate peak in the 
rain samples contains approximately 1.8 nmol l-1. The peak in the middle is an unidentified, 
presumably organic, iodine species.  

Retention time 

 

The second major aim of this work was to develop a method for total iodine analysis in soils that is 

cheap, but also accurate and precise with low detection limits.  Iodine was thermally extracted in 

an AOX machine at 1000 oC and the released gases were trapped in Milli-Q water and analysed by 

UV-Vis spectrometry. Weighed soil or sediment samples (8-300 mg) were placed into the 

automated injection system of the AOX machine and injected at a rate of 2 mm s-1, dried at the 

edge of the furnace and then moved into the primary combustion section. The released gases were 

carried by O2 (which also assisted with combustion of organic matter) into the traping apparatus 

(previously the sulfuric acid bubbler of the AOX). The iodine, trapped in Milli-Q water, was 

decanted into a Falcon tube and filled to the nearest marker, generally about 12 ml. This was then 

analysed by a kinetic photolytic method, whereby iodine quantitatively catalyses the reduction of 

orange coloured Ce4+ and oxidation of As3+. The rate of this reaction is determined as absorbance 

at λ = 432 nm at a pre-selected reaction time. Generally 10 or 15 minutes were sufficient for iodine 

concentrations in solution between 10-150 µg l-1. The spectrometric method was calibrated with 

iodide standards and the entire method was checked by burning two soil standard reference 

materials and one stream sediment material. After optimization the method was found to be 

accurate and very precise with relative standard deviations of less than 5 % for samples and 

standard reference materials.   

 

One of the complicating factors in determining the detection limit in this method, as pointed out by 

Michel and Villemant, (2003), is that by increasing the mass of sample burnt in the furnace 

increasingly lower detection limits can be obtained. We overcame this problem by adapting a 

statistical approach, whereby a selection of masses of reference material NCS DC 73312 were 

burnt in the furnace and the absolute iodine levels were plotted verses ln transformed absorbance. 

By fitting confidence limits to this graph we were able to calculate the minimum absolute 

detection limit rather than on a per-mass basis. The statistical procedure is described in Clayton et 
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al., (1987) and DIN 32645, (1994). The major benefit is that the detection limit is calculated with a 

known statistical certainty; we opted for 95 % confidences, instead of the more common ‘3 times 

the standard deviation of the baseline’ as this only has a confidence of 50 %. The calculated 

detection limit was then 49 ng iodine, which is sufficient for iodine quantification in most 

geological materials.  

1.3 Summery of Findings 

1.3.1 Iodine speciation in rain and snow: Implications for the atmospheric iodine sink 
 
This first paper describes 11 months of precipitation (rain and snow) measurements from Lake 

Constance (Überlingen), and more transitory measurements from the Black Forest (snow and rain), 

the Alps (rain and a glacier ice core) and Patagonia (rain from Biester et al.,  (2004)). It also 

outlines the IC-ICP-MS method used for iodine speciation. As noted in the literature section, 

iodine oxides are predicted as the only stable sink species for iodine in aerosols and precipitation, 

with other species being only short-lived transitory oxidation states. It was found that total iodine 

levels in rain were considerably higher than in previous studies that had only quantified inorganic 

iodine species and assumed that this was total iodine (e.g. Truesdale and Jones, 1996). The 

discrepancy was due to the presence, and indeed dominance, of organically bound iodine, which at 

Lake Constance made up on average 54 % of the total iodine, followed by iodide (27 %) and 

finally iodate (~10 %). Moreover, organically bound iodine was also found to be the most 

abundant iodine fraction at all of the sample locations. One of the implications of this was that 

significant correlations were found between total iodine, Na and Br whereas previous studies had 

found no relationship between these elements  (e.g. Campos et al., 1996). Significantly, 

organically bound iodine is currently not parameterized in any atmospheric iodine models (Vogt et 

al., 1999; McFiggans et al., 2000), with only the study by Pechtl et al., (2007) including any 

iodine-organic reactions. These authors found that reduction of iodine species such as HOI could 

aid in maintaining iodide levels, which are currently an anomaly due to theoretically very fast 

oxidation kinetic (diffusion controlled).   

 
In addition to the organically bound fraction described above, up to 5 unidentified peaks were 

found in IC-ICP-MS chromatograms from all sampling locations (Figure 9). These species must be 

organic due to the short lifetime of all other inorganic iodine species and anionic due to the 

consistent separation by the anion exchange column.  
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Figure 9: Typical IC-ICP-MS chromatograms in rain from various locations.  
 
As found by previous studies, iodine in precipitation was strongly enriched in rain and snow 

relative to ocean water  (based on I/Na ratios) by 280-2100 times (Winchester and Duce, 1967; 

Woodcock et al., 1971; Moyers and Duce, 1972; Baker et al., 2001). This highlights that, in 

contrast to the other halogens, aerosols and precipitation act as a net sink for iodine rather than a 

source. This extra iodine undoubtedly stems from oceanic biogenic iodine emissions, with perhaps 

minor sources form the terrestrial environment. It is concluded that iodine organic matter 

interactions must be included in models, and that such reactions could have significant 

implications for atmospheric chemistry such as ozone depletion.  

1.3.2 Iodine and Bromine speciation in snow and the effect of orographically induced 
precipitation 
 

The effect of distance from the ocean is one of the controversies that currently obscure a better 

understanding of processes relating to iodine levels in precipitation. There have been some authors 

that favor a strong iodine gradient from the ocean inland (Fuge, 2005), while other workers have 

found little or no effect of distance from the ocean (Krupp and Aumann, 1999; Moran et al., 1999). 

The aims of this paper were to asses the effect of orographically induced precipitation on iodine 

levels in snow from the Black Forest and quantify the dominant iodine species in snow from this 

region. The study site in the northern Black Forest was chosen explicitly to extenuate orographic 

effects while minimizing horizontal distances. A transect was chosen between Ottenhöfen (326 

masl) and Hornisgrinde, the highest mountain in the northern Black Forest (1164 masl). Samples 

were taken at different heights between these two endpoints and analysed for total iodine and 

iodine speciation. Prior to sampling the air mass had advected from the west over the mountains.   

 

It was found that orographically induced precipitation had a large and significant effect on iodine 

levels in snow; with total iodine levels more than halving over the 840 height meter transect (38 to 

13 nmol/l). Iodine levels decreased expediently for all species over the transect, with regression 

coefficients higher than 0.77 and all were statistically significant (p<0.001). As such it was 
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suggested that orographically induced precipitation has a significant influence on iodine levels and 

iodine transport inland. Moreover, the conflicting reports by other workers may be due to 

orographic effects at the different sampling sites rather than to horizontal distance from the ocean.   

 
As found in the first paper organically bound iodine was the dominant species in all snow samples, 

making up 61-75 % of the total iodine levels. Iodide was the next most abundant species, while 

iodate was below detection limits in nearly all samples. It is thought that the majority of the 

organic iodine is of high molecular weight, which is not eluted from the column or contributes to 

the baseline. Two of the unidentified anionic species observed in IC-ICP-MS chromatograms 

described in the first paper were also found in all snow samples in the Black Forest, and also 

decreased in concentration with increasing altitude. As observed in other studies iodine was highly 

enriched relative to the ocean (EF>130), increasing linearly until 796 masl, after this point the 

pattern was not so clear. Significant correlations were noted between iodine and other elements 

such as Br, Li, V, Mn, Co, Pb, Ba, Sb, and U (r>0.82, p<0.001), suggesting that iodine was 

internally mixed within the snow crystals and that the orographic effect is a general process 

affecting all elements.  

1.3.3 Iodine speciation in rain, snow and aerosols and possible transfer of organically 
bound iodine species from aerosol to droplet phases 
 

All precipitation originates from condensation of water vapor on aerosol particles (CCN), and 

grows both by coalescence and vapor deposition until it gains enough mass to fall against the 

updraft. As such, we thought it would be interesting to sample aerosols and precipitation in unison 

and try to trace iodine species from the aerosol phase into the droplet phase. A second aim was to 

elucidate if the unidentified species observed in rainfall were more widely distributed globally and 

also if they existed in the aerosol phase. Finally, aerosols were sampled diurnally to try to elucidate 

day-night differences in iodine speciation. Precipitation samples were collected from Australia, 

New Zealand, Mace Head, Ireland, Germany, Switzerland, and Greenland. Some of the data from 

the previous papers (e.g. Patagonia, the Black Forest, and Lake Constance) were also included for 

comparison between sampling locations. Aerosol samples were taken from Mace Head research 

station between the 15th June-6 July with a 5 stage Birner cascade impactor and PM 2.5 impactor. 

One day of PM 2.5 day-night aerosol samples was also obtained from a ship cruise of the Atlantic 

aboard the Celtic Explorer.  The aerosol size ranges for the cascade impactor were between 0.085 

µm and 10 µm. The filters were extracted with Milli-Q water with ultra-sonification. As in the 

other papers iodine was analysed by ICP-MS and IC-ICP-MS. Back trajectories for aerosol 

samples were modeled with the NOAA-HYSPLIT model.  
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In contrast to current theory, organically bound iodine was by far the dominant iodine species in 

the aerosol samples from Mace Head, accounting for a median of 91 % during the day and 94 % 

during the night of total iodine. The dominance of organic iodine was consistent between both 

impactors and was also observed in the offshore samples. Iodide was the next most abundant 

species, with iodate levels the lowest of all species in the aerosols.  

 

In terms of day night systematics, we could not observe any significant (p>0.05) day night 

differences for total iodine, organo-I, or iodate. However, it was found that there was significantly 

more observations of iodide enrichment during the day compared to the night (p<0.05), and was 

particularly noticeable in the <2 µm samples. This could also be seen when each impactor sage 

was averaged over the sampling period. It was suggested that the organo-I is photolytically 

degraded to yield iodide, a process support by observations from the marine environment (Wong 

and Cheng, 1998).  

 

Large org-I + hv → Small org-I + hv → I- + CO2              Eq. 22
 

Despite no significant observations of decreased organo-I levels during day, which are implied by 

Eq. 22, this does not make the suggestion of photolytic disintegration invalid. There are two extra 

points to consider here, (1) that we have only sampled the water soluble iodine, whereas the 

majority of organic matter in aerosols at Mace Head is insoluble (O’Dowd et al., 2004), and (2), 

the major aim at the outset of the study was to trace iodine from the aerosol phase into rain and as 

such selected sampling days did not have high solar radiation, making it difficult to test Eq.22.  

 

Interestingly, the unknown species previously described in precipitation samples were also 

observed in high concentrations in aerosols from Mace Head. Indeed, up to 5 unknown peaks were 

observed in IC-ICP-MS chromatograms. Rain samples taken at the same time as the aerosols also 

displayed at least the largest of these peaks, indicating that whatever this species is, it is transferred 

from aerosols into rainfall during aerosol activation. These species were also observed in 

precipitation from the other sampling locations in both southern and northern hemispheres, 

suggesting they are globally ubiquitous and are derived from marine aerosols (Figure 10).  
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Moving from the atmosphere into the terrestrial aqueous iodine cycle, this paper describes one 

year of iodine cycling and speciation in the Mummelsee. The Mummelsee is a humic rich, 

Headwater Lake in the northern Black Forest, located at an altitude of 1036 masl, just below the 

peak of Hornisgrinde. As noted in section 1.6, there are very few studies concerned with temporal 

changes in iodine speciation (particularly organic iodine) in freshwater limnic systems, and 

therefore the aim of this study was to identify the most important species and their cycling 

behaviour under changing redox conditions. Depth profiles were collected from the deepest part of 

the lake each month (including when the lake was frozen) in 1 m depth intervals, filtered in the 

field, and transported back to the cool room at the Institute for Environmental Geochemistry, 

Heidelberg. As above, samples were analysed by ICP-MS and IC-ICP-MS for total iodine and 

iodine speciation, respectively. In addition, selected redox sensitive metals (e.g. Fe and Mn) were 

also measured by ICP-OES on acidified filtered and unfiltered samples collected in conjunction 

with the iodine samples.  

 

Iodine levels in the Mummelsee averaged 1.93 µg l-1 (15 nmol l-1), which is on the low end of the 

scale for fresh waters and nearly identical to precipitation at this location (Snyder and Fehn, 2004; 

Gilfedder et al., 2007c). The majority of iodine in the lake was bound to organics with, on average, 

85 ± 5 % of the total iodine as organo-I. Seasonal changes in organo-I were not pronounced, with a 

slight increase in the epilimnion during summer and decrease in the hypolimnion during 

September and October and a total loss of organo-I in the bottom 2 m during May 2006. There also 

appeared to be a net formation of organo-I during turnover events, when oxygen was mixed into 

the anoxic hypolimnion.  

 

In contrast to the organically bound iodine, the inorganic species showed pronounced seasonal 

variation. Iodide was depleted to below detection limits in the epilimnion during the summer and 

autumn, whereas iodate concentrations continuously increased during the year. This trend was 

reversed in the hypolimnion during low dissolved oxygen conditions, with strong release of iodide 

from the sediments into the overlying water column and reduction of iodate. It was suggested that 

the loss of iodide in the epilimnion was associated with biological uptake and precipitation of 

detritus to the sediments. This was supported by a sediment core, which displayed high iodine 

(11.7 ±1.7 mg kg-1) and organic carbon (>20 %) levels and significant correlations between 

organic carbon and total iodine (p<0.001). Indeed, enrichment factors of sedimentary iodine over 

water column levels indicate that iodine is enriched by ~6600 times, and that the sediments are a 

net sink for iodine in this lake. The increase in iodate is more perplexing, as most studies are 

focused on iodate reduction due to the disequilibrium between I-/IO3
- discussed above. Oxidation 

of iodide and other transitory species, while thermodynamically favorable, are not kinetically 
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plausible (Luther et al., 1995). Indeed, even in ocean surface waters with very high Eh, oxidation 

of reduced iodine to iodate by either O2 or even more oxidizing species such as H2O2 are not 

feasible, requiring prohibitively long time scales. Truesdale et al., (2001) have suggested 

biological mediation, facilitated by ammonia oxidizing bacteria. We also favor such reaction 

schemes, as during lake mixing there was a net production of iodate in the depth profile, 

particularly in the previously anoxic zone. This cannot be a photolytic process due, firstly, to the 

very cromophoric nature of the humic water which does not allow much light penetration below 

about 1 m, and secondly to covering of the lake in ice and snow during the winter. Substantially 

more work needs to be done on biological iodine transformations in fresh water ecosystems before 

a more certain pathway can be suggested. Iodate reduction in the hypolimnion was associated with 

low oxygen conditions and as such reduction by reduced species such as H2S are feasible (Jia-

Zhong and Whitfield, 1986). Reduction by microbiology is also feasible, for example, transferring 

from nitrate to iodate as an electron acceptor.  

 

One of the clearest features in the Mummelsee’s iodine cycle is the release of iodide during anoxic 

conditions in the hypolimnion. The flux was derived from the sediments and is thought to be 

associated with decomposition of detritus. There was also a very clear distinction between the epi- 

and hypolimnion based on iodide levels and particularly I-/IO3
- ratios. Fluxes of iodide from the 

sediments were estimated to range between a maximum of 1.28 µg m-2 day-1 and minimum of 

minus 1.98 µg m-2 day-1. The negative flux occurred in the October-November interval and is 

thought to be a result of major lake mortalities with the oncoming winter and subsequent 

scavenging of iodide to the sediments.  

Interestingly, organo-I was also the dominant fraction in the spring inflow, with iodate being the 

next most abundant species. Iodide concentrations were low, but increased slightly throughout the 

year until late autumn (Figure 11). Overall iodine appears to be controlled by organic matter in the 

aqueous terrestrial environment, but there also remain many factors that are unknown, particularly 

the actual species of organic iodine and the mechanism for iodination. Moreover, more specific 

reaction mechanisms need to be elucidated by laboratory studies.  
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Figure 11: Iodine speciation in the spring inflow.  

 

1.4 Conclusions  
 

Iodine is a vital nutritional element for all mammals, including humans and also plays an 

important role in the atmosphere by catalytic ozone destruction and aerosol nucleation in the 

troposphere. In this thesis I have investigated iodine cycling in specific aqueous phase 

compartments: aerosols, precipitation, lakes, and springs. Some important and interesting results 

have been found, namely that organically bound iodine is the dominant fraction in aerosols and 

precipitation rather than iodine oxides such as iodate. Interestingly, unidentified, presumably 

anionic organic species were found in aerosols, rain and snow providing a direct observation of 

organic iodine. I have also shown some of the first results of organic iodine concentrations and 

cycling in limnic and shallow groundwater environments, in addition to the inorganic species 

cycling. Such processes appear to control iodine behavior in the natural environment. However, 

there remain many uncertainties in all compartments that remain to be elucidated, in particular: 

o What is the iodine species condensing from the gas phase? Is it iodine oxides as 

currently believed or an organic species? 

o How is iodine attached to organic matter, when is it bound (e.g. gas phase or 

aqueous phase) and if iodine is taken up as an oxide how is it reduced to iodide 

or reactive nucleophilic species such as HOI? 

o What are the organic iodine species, both those observed in chromatograms, and 

that calculated by total iodine minus inorganic iodine? 

o How is iodide maintained at observable levels in aerosols and precipitation 

despite theoretically very fast oxidation kinetics? 

o How large is the global flux of iodine-derived aerosols? Is this important for the 

global radiation budget? 

o How does organic iodine affect the flux of iodine from aerosols back into the 

gas phase and what does this imply for transport to the continents? 
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o What are the organic species in the Mummelsee and spring flow, how and 

where are they formed (e.g. soils, groundwater or in the lake)? 

o How do organisms, and particularly microorganisms such as bacteria, effect 

iodine cycling and speciation, particularly iodination of organic matter and 

oxidation of iodide? 

o How has iodine’s flux to the sediments changed through time and how does 

climate affect this flux? Can iodine be used as a climate proxy? 

o What new methods will be necessary to fulfill the questions raised above? 

 

It is expected that, with the current interest in iodine chemistry, these and many other pressing 

questions will become clearer in the near future. 
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Abstract:  
Atmospheric iodine models currently predict iodate as the only stable iodine sink species in the 
troposphere. However, it is shown here using IC-ICP-MS that iodate is the least abundant iodine 
species in precipitation (rain and snow) collected from various locations in southern Germany, the 
Swiss Alps and Patagonia (Chile). The majority of iodine is associated with organic compounds 
(av. 56 %) followed by iodide (av. 27 %). Although the exact structure of the organic fraction 
remains ambiguous and is probably of higher molecular weight, a smaller portion of the iodo-
organic compounds are anionic (5-20% of total I). One of these anionic organo-I peaks is present 
in all rain and most snow chromatograms and is generally responsible for 5-18% of total iodine. 
This suggests a ubiquitous atmospheric iodine species. The data indicate that organic iodine 
compounds play an important role in the global atmospheric iodine cycle and the atmospheric 
iodine sink. As such, future tropospheric iodine models must consider organic-I reactions.  
 
2.1.1 Introduction
 
Iodine is involved in a number of important tropospheric cycles. In particular, ozone destruction 

and cloud condensation nuclei formation (and perhaps therefore an influence on the earth’s albedo) 

are significant aspects of atmospheric iodine chemistry [O’Dowd et al., 2002b; von Glasow and 

Crutzen, 2003].  Gas phase iodine species  [e.g. CH3I, CH2I2, C2H2I, CH2ClI and I2; Alicke et al., 

1999; McFiggans et al., 2000 McFiggans, 2005] and source strengths of iodine emitted from the 

ocean have been rather extensively researched since the pioneering work of Lovelock et al., 

[1973], although the global iodine flux (ca. 250-400 Ggyr-1) is still poorly constrained [Orlando, 

2003]. So far, it has been shown that these simple organo-halogens and I2 are rapidly photolysed in 

the atmosphere to I0, whereafter I0 can cycle through a multitude of short lived highly reactive 

species including IO, OIO, HOI, IBr, HI, and I2O2 [see von Glasow and Crutzen, 2003 for a 

concise review]. These species are thought to form iodine oxide aerosols (I2O5; Saunders and 

Plane, [2005]) as the final iodine sink species; although  Baker,  [2005]   has shown in two cruises 

of the northern and southern hemispheres that a significant proportion of marine aerosol iodine is 

either iodide or organically bound. While it is well known that wet and dry deposition are the 

terminal sinks for atmospheric iodine [Vogt et al., 1999], there is very little field data on iodine 

speciation in rainfall or aerosols. Moreover, most of the research to date is theoretical and 
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calculated through models with many inherent assumptions that may or may not be applicable. 

Aside from the interest in atmospheric chemistry, rainfall is thought to be one of the major 

contributors (the other is rock weathering; Moran et al., 2002) to terrestrial iodine levels and may 

therefore be a direct influence on the prevalence of iodine deficiency disorders.  As such, our aim 

with this communication is to shed some light on the final atmospheric iodine sink by analysing 

iodine speciation in precipitation. To the best of our knowledge this is the first report of iodine 

speciation, including the organically bound fraction, in rain and snow from a continental interior. It 

also presents the first ‘hints’ as to the nature of the organically bound iodine in rainfall.  

2.1.2 Methods: 
 
 The majority of precipitation samples were collected periodically (March 2005 to February, 2006) 

on the roof of the Bodensee Wasserversorgung laboratory located on the shore of the Überlinger 

See, Lake Constance, Germany (Figure 1). For monthly samples at Lake Constance a glass funnel, 

packed with a small amount of quartz wool, was placed into a 1 l LDPE bottle, and secured on the 

laboratory roof. For samples taken over a 24h period or less no quartz wool was used. No 

distinction was made between wet and dry deposition and we assume the results are the sum of 

both. One-off rain samples were also taken from the Alps (Sedrun), a small lake in the northern 

Black Forest (Mummelsee), both locations >1000m a.s.l, and ‘SKY’ and ‘GC1’ peat bogs in 

Patagonia, Chile, from Biester et al., [2003]. Fresh and aged snow was sampled from various sites 

around Lake Constance whereas only fresh snow was collected from the Mummelsee. In addition, 

glacier ice samples (gratefully donated by Dr. Margit Schwikowski) from the Fiescherhorn glacier 

(3900m asl dated 1947-1969 [Jenk et al., 2004; Jenk et al., 2002]) were also analysed.  

 

Black Forest 

Lake Constance 

Fiescherhorn 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Primary rain, snow and glacier sample locations.  

All samples were filtered through rinsed 0.45 µm cellulose acetate filters after a small amount of 

sample was first filtered and discarded. Samples were then refrigerated at 4ºC until analysed 

[usually within 4 days but in some instances within 1 month; Campos, 1997]. Samples taken over 

a 24h period or less were analysed on the day of collection. While no sterilizing agents were added 
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to the sample bottles, the organically bound iodine content of samples taken and analysed over a 

24h period or less showed no significant differences to those sampled over longer time frames. As 

such, we do not consider that post-depositional changes have significantly affected our results. 

Total iodine and bromine concentrations were measured by inductively coupled plasma-mass 

spectroscopy (ICP-MS). Iodine and bromine species (iodide, iodate, bromide, bromate and 

organically bound I/Br) were quantified by coupling an ion chromatograph to the ICP-MS (IC-

ICP-MS). Iodine and bromine species were quantified using a Dionex AS16 column with an AG16 

guard column, 35 mmol NaOH eluent, a flow rate of 0.9 mlmin-1, a syringe flush volume of 1 ml 

between samples, and cyclone spray chamber on a Perkin Elmer quadrupole ICP-MS. This method 

has a detection limit for aqueous iodine species of about 0.2 nmol/l. Memory effects were 

evaluated by periodically running blank samples between regular samples. All iodine species in 

blanks were consistently below detection limits. Organically bound iodine was calculated as total 

iodine minus the inorganic iodine species. Often unidentified organic iodine species were observed 

in the chromatograms; while not strictly correct these species have been quantified based on the 

iodide calibration curve. This should not pose a large problem as all iodine is converted to I+ in the 

plasma prior to quantification with the mass spectrometer. Sodium was analysed when enough 

sample material was available with a Perkin Elmer flame AAS after acidification with HNO3.  

2.1.3 Results 
 

 2.1.3.1 Total iodine concentrations and its terrestrial distribution 

Total iodine concentrations in rainfall at Lake Constance 2005 averaged 11.4 ± 6.7 nmolL-l (Figure 

2). The rain samples from the Alps and the Black Forest contained 10.1 nmolL-1 and 14 nmolL-1 

total iodine respectively. It is difficult to compare total iodine concentrations with many past 

works, for example Campos et al., [1996] and Baker et al., [2001], as these studies do not quantify 

the organic fraction, assuming that total iodine is the sum of the inorganic species I- and IO3
-. 

Indeed, on comparing the average ∑ inorganic iodine concentration (6.8 nmolL-1) from Campos et 

al., [1996] against our total iodine levels we note that their iodine levels are comparatively low. 

ICP-MS data from Moran et al., [1999], sampling a wide area of the United States, and Michel et 

al., [2005] from northern Germany found similar iodine concentrations (average 13.4 and 10.8 

nmolL-1 respectively) to our results. Our values are slightly lower than neutron activation analysis 

results (av. 17.3 ± 6.3 nmolL-1) given for a nearby site in Krupp and Aumann,[1999].  
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Figure 2: Total iodine, I-, IO3
- and organically bound iodine in rain samples from Lake Constance. 

Where no data exists no analysis was made. 

 It appears that total iodine concentrations slightly increase over the summer months (Figure 2); 

however, the varying sample dates make it difficult to ascertain a clear pattern. Campos et al., 

[1996] also suggest an increase of iodine concentrations over summer, while Truesdale and Jones, 

[1996] and Baker et al., [2001] note no relationship between iodine concentrations in rain and 

season. Thus, a seasonal variation in atmospheric iodine levels, as represented by rainfall, remains 

uncertain. The highest iodine concentration was associated with a summer electrical storm, which 

was followed by substantially lower iodine concentrations two days later. The storm rainfall also 

displayed the highest concentration of organically bound iodine and was the only rain sample to 

contain bromate (7.9 nmolL1; supporting information Table 1) and either iodoacetic acid or 

iodopropionic acid. We also note bromate in some aged snow samples which may be related to 

extended exposure to sunlight, however there is insufficient data to make any firm assessment 

(Supplementary Material Table 1).  

 
Table 1: Averages and ranges (brackets) for total iodine, iodide, iodate, organically bound iodine 
(nmolL-1), and iodide/iodate ratios in rain and snow samples.  
 

Sample site Total I I- IO3
- Org-I IO3

- /I-

Lake Constance rain  n=21 11.4 (4.7-26.2) 3.9 (0.5-8.5) 0.95 (<0.2-3) 7.15 (3.5-17) 0.24 (0.13-0.56)
Lake Constance snow  n=15◊ 5.3  (1.6-9.8) 2.7 (0.6-4.4) 0.26 (0.3-5)§ 2.8 0.1§

Alps rain (Sedrun) n=1 10.1 4.1 0.17 5.7 0.04 
Mummelsee (rain) n=1 14.03 3.31 1.94 8.75 0.6 
Mummelsee (snow) n=4 14.7 6 <0.17 8.67 - 
Patagonian peat bogs* n=3 4.02 2.7 <0.1 1.34 - 

* Analysed with a less precise ion exchange column and a Scotts spray chamber that rendered a detection limit of 0.2 nmol/L. § Only 4 snow 

samples had iodate above the detection limit.◊ old column for 8 out of the 15 samples.  

Atmospheric iodine systematics in the terrestrial environment is of major importance as it is a vital 

element for all mammals [Fuge and Johnson, 1986].  Research to date, assuming the sum of 

inorganic iodine accounts for total iodine, suggest that iodine is not associated with oceanic 
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saltwater particles as no significant correlation between Na and I∑inorganic has been found [Campos 

et al., 1996]. However, by using ICP-MS to unequivocally determine total iodine concentrations 

we have found highly significant correlations (Figure 3b; r2=0.67, p<0.001) between Na and total 

iodine and also between total iodine and total bromine in rain and snow from Lake Constance, the 

Black Forest and ice samples form the Fiescherhorn glacier (r2=0.82, Figure 3a). Moreover, when 

we sum the inorganic iodine and assume this is total iodine, as conducted in previous studies, no 

relationships are observed (I:Br r2=0.22, I:Na r2=0.03, data not shown). This suggests that previous 

methods do not capture the total iodine flux and hence significant relationships may be obscured. 

The correlations observed here is most likely the result of common scavenging mechanisms during 

precipitation.  
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Figure 3: a) Correlation between total iodine and bromine in rain, snow and glacier samples from 
Lake Constance (LC), the northern Black Forest (Ms) and the Fiescherhorn glacier, Switzerland 
(Fh). b) Correlation between Br and I to Na: snow samples from the Black Forest and rain samples 
from Lake Constance. 
 
In contrast to chlorine, which is derived from direct transfer of seawater directly to the atmosphere 

with little or no fractionation, iodine is highly enriched (relative to seawater) in precipitation from 

Lake Constance and the Black Forest. Enrichment factors for iodine in rainfall (defined as molar 

I:Na ratio in rain/I:Na ratio in seawater, given hereafter as EFNaI), at Lake Constance range from 
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280 to ~ 2100 with an average of 970. Snow data from the Black Forest indicates that the 

enrichment of iodine in snow is lower (average = 200) than the iodine enrichment in rain, although 

this is a small dataset and is confined to one sampling campaign (n=11). This relatively small 

dataset can be significantly increased if, instead of EFNaI ratios, we consider EFBrI ratios. This is 

valid due to the very little enrichment or depletion of Br (compared to that of iodine)  in rainfall 

and snow compared the ocean. EFBrI data show much the same trend as BrNaI with average iodine 

enrichments in rain and snow from Lake Constance of 566 and 350 respectively. Enrichment of 

iodine using EFBrI in the glacial samples shows a virtually identical enrichment factor to that 

observed in snow samples from Lake Constance with an average EF of 370. These high values are 

not unexpected and are very similar to rain and aerosol enrichment factors observed in <1µm 

aerosols near and over the ocean [Baker, 2005; Baker et al., 2000; Duce et al., 1963; Duce et al., 

1965; Sander et al., 2003; Woodcock et al., 1971]. Enrichment of iodine in oceanic aerosol and 

rain has been known for some time [Duce et al., 1965; Woodcock et al., 1971] and is thought to be 

a product of both; 1) condensation of gaseous iodine species produced by oxidation of biogenic 

iodine emissions; and 2) the bubble bursting phenomena where iodine is preferentially 

concentrated in ejaculated droplets, probably derived mostly from the oceanic surface microlayer. 

Aerosol iodine may also be mixed with marine salt, probably as particles grow, and is usually 

associated with organics [Baker, 2005; Middlebrook et al., 1998; Murphy et al., 1997; Seto and 

Duce, 1972]. The consistently higher enrichment factors in rain compared to snow may be related 

to either higher biological productivity in the ocean over summer months or exclusion of the large 

iodine atom from the snow crystal structure during freezing.   

2.1.3.2 Iodine speciation and the atmospheric iodine sink 
 
The atmospheric chemistry of iodine is a complicated system comprised of multiple photocatalytic 

cycles producing highly reactive intermediate iodine species [e.g. HOI, IO, I2 and IBr; von Glasow 

and Crutzen, 2003]. While there is continuing work on the iodine flux species [McFiggans et al., 

2004], there has been sparse research on the final atmospheric iodine sink and particularly the 

speciation of iodine once it condenses from the gas phase to aerosol or diffuses into aqueous 

droplets. The next section presents the results for iodine speciation in precipitation and gives an 

insight into iodine speciation in the terminal atmospheric sink.  

 

The majority of iodine in precipitation at Lake Constance is organically bound (av. 6.3 nmolL-1; 

56%), and I- (av. 4 nmolL-1; 27%) is consistently more abundant than IO3
- (av. 1.3 nmolL-1; ~10%) 

(Figure 2 and Table 1). Moreover, snow consistently displayed lower molar IO3
-/I- ratios than rain 

when iodate was detectable. A similar species distribution is observed for rain samples from the 

Alps, the Black Forest, and Patagonia (Table 1). For Lake Constance, there do not appear to be any 
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strong seasonal patterns in inorganic iodine speciation. In contrast, organically bound iodine 

concentrations (and percentages; see supplementary material Figure 1) are higher during the 

summer months than during the winter (Figure 2). This may be due to increased incoming 

radiation from the sun during the summer (and vice versa in the winter) leading to 1) more (or in 

winter, less) energy for photolytic reactions in the atmosphere; and 2) considerably higher amounts 

of volatile and particulate organic carbon (VOC) compounds from the ocean and forest ecosystems 

during the summer [Cavalli et al., 2004; O’Dowd et al., 2002b].  

 

The rain speciation data, and particularly the low iodate levels, differ from tropospheric iodine 

speciation models, which suggest that IO3
- (as an aerosol) is the only stable iodine sink [Chatfield 

and Crutzen, 1990; McFiggans et al., 2000; Vogt et al., 1999]. In fact, atmospheric halogen 

models give such a rapid oxidation rate for I-  by, for example HOCl, that I-  should theoretically 

be non-existent [Vogt et al., 1999]. Moreover, I- should be photolysed at the particle surface to I2 

and subsequently reenter the gas phase.  The discrepancy between observed and predicted iodine 

speciation was also pointed out by Baker et al. [2001] were IO3
-/I- ratios measured in rainfall from 

a coastal site in England were significantly lower than predicted by model calculations (max. ratio 

of 10 for oceanic and 0.8 for continental rain). Moreover, no IO3
- was detected in marine aerosols 

in the southern hemisphere during an extended cruise [Baker, 2004]; although a subsequent 

transect by the same author found iodate and organically bound iodine in marine aerosols from 

northern and southern hemispheres [Baker, 2005]. Murphy et al., [1997] and Middlebrook et al., 

[1998] have also elegantly shown, using the PALMS instrument, a strong association between 

iodine and organic rich particles in unpolluted aerosols of marine origin. In contrast Laniewski et 

al., [1999] found very little iodine associated with organics in rain and snow. However, this is 

more likely a function of the AOX method used to isolate the organo-halogens as it was initially 

developed for wastewater rather than trace analytics.  

 

The results from this study further indicate that organic iodine compounds and I- are the most 

important sink for atmospheric iodine and that IO3
- is relatively insignificant. For example, the 

maximum IO3
-/I- ratio observed at Lake Constance was 0.56 with an average of 0.24; significantly 

lower than the IO3
-/I ratio for rain derived from European continental air masses (0.8 and 3.9 n=2) 

given in Baker et al.,  [2001] and marine rainfall (av. ratio ~1 n>100) given by Campos et al., 

[1996] and Truesdale and Jones, [1996].  This suggests that once I- is formed deposition occurs 

before oxidation can take place or that oxidation of I- to IO3
- is too slow to be significant under 

normal atmospheric conditions. It also indicates that iodine oxide aerosols are reduced during their 

evolution. Iodide  that is oxidized to I2 or HOI, as per the conceptual model in von Glasow and 

Crutzen  [2003], is likely to react with atmospheric organic compounds such as material from the 
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oceanic surface micro layer, terrestrial and oceanic isoprenes or terrestrially derived terpenes or 

their derivatives [Cavalli et al., 2004; Greenberg et al., 2005; Middlebrook et al., 1998]. There is 

an increasing amount of data suggesting that such natural organic compounds play an important 

role in atmospheric chemistry, e.g. forming aerosols and CCN [Claeys et al., 2004; Jacobson et 

al., 2000; O’Dowd et al., 2002a; O’Dowd et al., 2004]. The organic iodine species may also be of 

marine origin, as Middlebrook et [1998] have demonstrated the existence of I-organic associations 

in unpolluted marine aerosols at Cape Grim, Tasmania, Australia. It was assumed that the organo-I 

originated from bubble bursting and subsequent ejaculation of the organic rich surface film into the 

atmosphere; although Baker, [2005] prefers a direct gas to particulate reaction for aerosol organo-

I. Therefore, no matter the source of the organic entities, it seems likely that the highly reactive I2 

or HOI, formed by photolytically driven activation of I- at the aerosol surface, will also react with 

condensed VOCs or other organic compounds to form C-I.  

 

While the exact structure of the organo-I compounds in precipitation remains elusive, a portion of 

the organically bound iodine is associated with unidentified, but probably anionic (interacts with 

the ion exchange column’s stationary phase) moieties. This can be seen as 1-5 additional peaks 

that consistently appear in IC-ICP-MS chromatograms of rain and snow from Lake Constance, the 

Alps, the Black Forest and Patagonia, Chile (Figure 4 and supporting data Figures 2-4). These 

peaks account for 5-20% of total iodine in rain and 5-15% of iodine in snow samples.  

 

Figure 4: IC-ICP-MS chromatograms of selected snow (a) and rain (b) samples from Lake 
Constance, the Alps and the Black Forest. Note anionic iodine species between iodide and iodate. 
Shifts in the retention time are related to column age.  
 



 50 

 

Two of these unidentified peaks are also observed in certain ice core samples from the 

Fiescherhorn glacier, Switzerland. Of particular interest, one unidentified peak between the iodate 

and iodide peaks (retention time 6.8-7.4 mins depending on column age) is evident in all rain, 

many of the snow and one of the ice core chromatograms. This peak alone usually accounts for 5-

10% of total iodine in rain and snow, and on one occasion even made up 20% of the total rain 

iodine. This suggests a globally important iodine species. Interestingly, many of the ice core 

samples, although more than one year old, contained another unidentified iodine species at a 

shorter retention time (ca. 5.5 mins). This same peak is also seen in rain chromatograms at Lake 

Constance and in snow from the Black Forest. These observations indicate that organically bound 

iodine is able to be dispersed over a wide area by both rain and snow. Definitive identification of 

these compounds is hampered by the unavailability of reference materials and perhaps an 

unequivocal method that can characterize the other elements in the organic molecules. So far, 

iodoacetic acid, diiodoacetic acid, iodopropronic acid, I3
- and a variety of aromatic iodine 

compounds have been tested; however none of these, as yet, correspond to the observed peaks.  

2.1.4 Conclusions  
 
Organo-I was the dominant iodine species in all precipitation samples analysed. We believe that at 

least one of these species is globally ubiquitous based on rain and snow samples from the Black 

Forest and Lake Constance (Germany), Patagonia (Chile) and the Fiescherhorn glacier 

(Switzerland). Moreover, in contrast to existing atmospheric iodine models iodide is considerably 

more abundant than iodate (IO3
-/I-= 0.25), suggesting reduction of iodate and possibly cycling 

between organo-I and iodide. This has some interesting implications. Firstly, reactions between IO 

HOI, and I2 and atmospheric organic matter may reduce iodine’s ozone destruction potential by 

forming stable C-I bonds and, secondly, indicates that organic reactions must be incorporated into 

iodine atmospheric cycling models.  
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Supplementary Figure 1: Percent organically bound iodine in rainfall from Lake Constance, 
Germany March 2005 to Febuary 2006. One value, collected from 5/12/05 to 29/1/06 has been 
excluded due to low total iodine concentrations and the long sampling period probably inflating 
the %-organically bound iodine.   
 
 
 
 I-

 

0

5

10

15

20

25

0 5 10 15 20 25 30 35

IO3
- Organo-I 

 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 2: IC-ICP-MS chromatogram of a rain sample from Patagonia, Chile. This 
chromatogram was produced using a different software package and a column with lower 
resolution than the current method, hence the difference in appearance.  
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Supplementary material Figure 3: IC-ICP-MS chromatogram of a rain sample from Patagonia 
(Chile). This chromatogram was preformed with an older ion exchange column, hence the longer 
retention time and noisier baseline. Unfortunately the electronic data for this chromatogram was 
lost during transition between software packages, and only the hard copy has survived. Hence the 
scanned version given here.  
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Supplementary Figure 4: IC-ICP-MS chromatograms of snow (Lake Constance, LC, and the Black 
Forest) and glacier ice (Fiescherhorn, Switzerland). Note the nearly identical retention time of the 
organo-I species in all samples shown.  
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Supplementary Table 1: Average total bromine, bromide, bromate, organically bound bromine, 
and %-organically bound bromine in rain and snow samples. All data in nmol/L except were 
indicated. 
 

Sample site Total Br Br- BrO3
- Org-Br % org-Br

Lake Constance rain (av.) n=14 44.4 (6-105) 38.7 (11-81)  7.9* 7.2◊ (1.8-23) 16 
Lake Constance snow (av) n=15 32  (9.5-62) 29.3 (10-60) 2.4§ 3.8♠ 12 
Alps rain (Sedrun) n=1 3.08 2.93 - 0.15 5 
Mummelsee (snow) n=4 5.13 6.36 - 1.5 28 
Patagonian peat bogs♣ n=3 15.3 16.1 - - - 

 

* only found in one rain sample after an electrical storm. ◊ excluding one negative value. § only found in 6 aged snow samples.  ♠ excluding 5 negative 

values, n=10.  ♣ Data from Beister et al. 2003, negative organo-Br values probably related to imprecision in our old ion exchange column.  



 56 

 

2.2 Iodine and Bromine speciation in snow and the 
effect of orographically induced precipitation 

 
B. S. Gilfedder1, M. Petri2 and H. Biester1  
 
1. Institut für Umweltgeochemie, Neuenheimer Feld 236 69120 Heidelberg Germany 

2. Bodensee-Wasserversorgung, Sipplingen Laboratory Germany 

Status: published Atmospheric Chemistry and Physics 
 

 Abstract 
 
Iodine is an essential trace element for all mammals and may also influence climate through new 
aerosol formation. Atmospheric bromine cycling is also important due to its well-known ozone 
depletion capabilities. Despite precipitation being the ultimate source of iodine in the terrestrial 
environment, the processes effecting its distribution, speciation and transport are relatively 
unknown. The aim of this study was to determine the effect of orographically induced precipitation 
on iodine concentrations in snow and also to quantify the inorganic and organic iodine and 
bromine species. Snow samples were collected over an altitude profile (~840 m) from the northern 
Black Forest and were analysed by ion-chromatography - inductively coupled plasma mass 
spectrometry (IC-ICP-MS) for iodine and bromine species and trace metals (ICP-MS). All 
elements and species concentrations in snow showed significant (r2>0.65) exponential decrease 
relationships with altitude despite the short (5 km) horizontal distance of the transect. In fact, total 
iodine more than halved (38 to 13 nmol/l) over the 840 m height change. The results suggest that 
orographic lifting and subsequent precipitation has a major influence on iodine concentrations in 
snow. This orographically induced removal effect may be more important than lateral distance 
from the ocean in determining iodine concentrations in terrestrial precipitation. The microphysical 
removal process was common to all elements indicating that the iodine and bromine are internally 
mixed within the snow crystals. We also show that organically bound iodine is the dominant 
iodine species in snow (61-75 %), followed by iodide. Iodate was only found in two samples 
despite a detection limit of 0.3 nmol/l. Two unknown but most likely anionic organo-I species 
were also identified in IC-ICP-MS chromatograms and comprised 2-10 % of the total iodine. The 
majority of the bromine was inorganic bromide with a max. of 32 % organo-Br.  

 

2.2.1 Introduction 
 
Iodine is an essential nutritional element for all mammals, including humans. A lack of dietary 

iodine intake can lead to iodine deficiency disorders such as goiter and in more severe cases, 

cretinism, which can cause both mental and physical disabilities (Dobson, 1998; WHO, 2004; 

Slavin, 2005). Iodine transport from the oceans by clouds and aerosols and subsequent 

precipitation as rain or snow is one of the primary factors influencing iodine levels and availability 

on the continents (Whitehead, 1984; Fuge and Johnson, 1986; Krupp and Aumann, 1999; Moran et 

al., 2002). However, there is also conflicting evidence regarding the terrestrial processes effecting 
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iodine concentrations in rainfall and particularly with the suggestion that iodine levels decrease 

with distance from the ocean (Fuge and Johnson, 1986; Krupp and Aumann, 1999; Schnell and 

Aumann, 1999; Slavin, 2005). Most studies concentrate on lateral distances and to the best of our 

knowledge there has been only one other study focusing on the influence of orographically 

induced precipitation on iodine levels in rainfall (Duce et al., 1965).  Iodine in rainfall is not a 

simple product of sea spray as observed for Cl, with large (100-10 000) enrichment factors in both 

rain and aerosols compared to ocean water (Duce et al., 1965; Duce et al., 1967; Winchester and 

Duce, 1967; Woodcock et al., 1971; Sturges and Barrie, 1988). Bubble bursting and ejection of 

iodine rich material from the ocean surface microlayer is one possible mechanism for the iodine 

enrichments (Seto and Duce, 1972), although this can only produce, at maximum, an enrichment 

factor of ~50. Therefore, condensation of gaseous biogenic iodine compounds onto (or forming) 

aerosols is required to explain the large iodine enrichments observed in aerosols and rainfall 

(Woodcock et al., 1971; Moyers and Duce, 1972; Duce and Hoffman, 1976; O’Dowd et al., 2002; 

Baker, 2005). Although research on iodine in rainfall is still limited, iodine levels and particularly 

speciation in snow is almost non-existent. Snow is an important factor in the hydrological cycle 

during winter at higher latitudes and as such warrants further attention. One explanation for the 

lack of speciation data is undoubtedly the very low concentrations of individual iodine species in 

rain and snow and therefore methods for reliable speciation are often complex or unavailable. 

However, with the wide spread use of ICP-MS and the ability to couple an ion chromatograph to 

this extraordinarily sensitive instrument (Heumann et al., 1998; Gilfedder et al., 2007) it is 

possible to measure anionic iodine and bromine species down to sub nmol concentrations. One of 

the features of this method is that many interfering ions, such as Cl, are separated from the element 

of interest and therefore the sensitivity of individual species is even greater than observed for total 

concentrations. Iodine speciation is also of interest for atmospheric iodine cycling as there is a 

discrepancy between most model calculations, which suggest that iodate should be the dominant 

iodine species in the particulate phase (Vogt et al., 1999; McFiggans et al., 2000), and field 

observations which show that organically bound iodine and iodide are the dominant iodine species 

(Baker et al., 2001; Baker, 2004, 2005; Gilfedder et al., 2007). Recent modeling work to reconcile 

this discrepancy further highlights the potential importance of organo-I in atmospheric chemistry 

cycles (Pechtl et al., 2007). For example, organo-I has implications for the sea/atmosphere 

fractionation mechanism that concentrates iodine in aerosols and rain and perhaps for iodine’s 

effectiveness in destroying tropospheric ozone (Duce and Hoffman, 1976; Calvert and Lindberg, 

2004; Baker, 2005). Bromine is also of interest in atmospheric research due to (1) its well-known 

ozone depletion capabilities, and (2) the interesting observation that activated bromine (Br2) is 

librated from larger size aerosols causing bromine depletion relative to seawater, whereas small 

aerosols tend to be enriched in bromine (Sander et al., 2003). In this work we investigate the 
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changes in iodine and bromine species (including the organically bound fraction), and metal 

concentrations in snow with altitude. The primary aims of this study are to clarify the role of 

microphysical landscape features (mountains) and the associated atmospheric processes 

(orographically induced precipitation) on the distribution of iodine and bromine as well as 

determine the dominant iodine species in snow.  

2.2.2 Methods 
 
A transect for snow sampling was selected in the northern Black Forest between the village of 

Ottenhöfen (326 masl) and the summit of the highest peak in the area; ‘Hornisgrinde’ (1164 masl). 

This transect was chosen to minimize the horizontal distance (5 km) and maximize changes in 

elevation. Fresh snow was collected on the 11th and 12th of February 2006 in new LDPE bottles at 

selected locations between Ottenhöfen and Hornisgrinde along the hiking track ‘Elsa Weg’. Back 

trajectories (HYSPLIT model; http://www.arl.noaa.gov/ready/hysplit4.html) of air masses arriving 

at the site were calculated for the previous six days with a new trajectory starting each day at 0h 

UTC using an altitude of 500m above ground level and the FNL meteorological database (Fig. 1).  

The data show that the majority of the precipitation sampled was derived from the Atlantic Ocean. 

Also, the weather system had passed from the low lands to the west of the sampling site before 

being orographically lifted over the Black Forest mountain range.  All samples were collected 

from open areas and clearings in the forest. Four samples were also taken on 26 January 2006 at a 

height of 1034 masl (Mummelsee) and again four additional samples were taken in mid April 

(14/04/06) from very old snow deposits at 796 masl and above on the same transect. This remnant 

snow was only present due to the elevation and all snow from lower altitudes had previously 

melted. It appeared to be recrystallised into small ice particles and had probably undergone partial 

melting and refreezing. It also contained small debris from the surrounding forest on the surface 

which was discarded by filtering. The snow was thawed, filtered (0.45 µm) and stored at 4ºC until 

analysed (max. 1 month). It has been shown that no significant changes in iodine speciation occur 

in samples stored for up to two months (Campos, 1997). Samples were allowed to warm to room 

temperature and were then analysed for total iodine and bromine by an inductively coupled 

plasma–mass spectrometer (ICP-MS). For iodine we scanned on the only stable isotope, 127I, and 

for bromine on the 79Br isotope. 187Re was added to the samples as an internal standard. Iodine and 

bromine species (iodide, iodate, bromide, bromate and organically bound I/Br) were analysed by 

coupling an ion chromatograph to the ICP-MS (IC-ICP-MS). Organically bound iodine and 

bromine was calculated as total iodine minus the sum of the inorganic species (i.e. Org-I = total I – 

(I- + IO3
-)). 

 

http://www.arl.noaa.gov/ready/hysplit4.html
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Fig. 1: A) Europe map with sampling site and 6 day back trajectory for air parcels arriving at 
Ottenhöfen, B) The Black Forest mountain range and sampling site, C and D) Sampling transect 
and sampling sites (green circles) from Ottenhöfen (326 masl) to Hornisgrinde (1164 masl).  
 

Iodine and bromine species were quantified using a Dionex AS16 column with an AG16 guard 

column, 35 mmol NaOH eluent, a flow rate of 0.9 ml/min and a Meinhard nebulizer with a cyclone 

spray chamber on a Perkin Elmer quadrupole ICP-MS. Samples were injected into the 

chromatographic system with a Perkin Elmer series 200 autosampler. This method has a detection 

limit for aqueous iodine species of about 0.3 nmol/l and each sample has a run-time of only 12 

minutes. Moreover, no sample pretreatment is required. Unidentified organic iodine species were 

observed in all chromatograms; while not strictly correct these species have been quantified based 

on the iodide calibration curve. This should not pose a large problem as all iodine atoms are 

converted to I+ in the plasma prior to quantification with the mass spectrometer. Precision was 

checked for total iodine and bromine by running replicates of samples from 326, 400, 560, 597, 

614 masl and triplicate analysis of the sample from 478 masl. The maximum relative standard 

deviation (RSD) for iodine was 1.3 % which equated to a concentration standard deviation (SD) of 

± 0.45 nmol/l. For bromine the highest RSD was 4.8 % with an associated SD of ± 4.9 nmol/l. As 



 60 

 

such, a RSD of 1.3 % for iodine and 4.7 % for bromine was used for propagation of errors for 

samples where no replicates were analysed. No replicates were made for speciation, however this 

method (based on our experience and from other IC-ICP-MS studies (Heumann et al., 1994)) 

consistently has a RSD less than 2 % for iodine species and between 5-7 % for bromide. As such 

we have adopted a RSD value of 2 % for iodine species and 7 % for bromide when propagating 

errors for calculation of organo-I and organo-Br. The accuracy of total iodine, total bromine, 

bromide, and iodide concentrations were checked using standard reference material BCR-611. 

BCR-611 is a groundwater reference material with a certified bromide level of 93 ± 4 µg/l. It also 

gives indicative values for total bromine (107 ± 11 µg/l), total iodine (9.3 ± 1.3 µg/l), and iodide 

(9.0 ± 1.1 µg/l). More information on this reference material can be found at the European Institute 

for Reference Materials and Measurements website: http://www.irmm.jrc.be. All of our values 

were consistently within the error given in the certificate except for total bromine which was 

slightly lower (bromide 93.5 µg/l, total bromine 94 µg/l, iodide 9.4 µg/l, and total iodine 9.65 

µg/l). We believe that our value for total bromine is more realistic than the reference material 

average of 107 µg/l, as this high concentration would imply a relatively large proportion of 

organically bound bromine in the groundwater, which is unlikely. After withdrawal and analysis of 

the halogens the remaining snowmelt was acidified to pH < 2 with suprapur® nitric acid and stored 

at 4oC. The samples were analysed for total metals (Li, V, Mn, Co, Rb, Zn, As, Mo, Pb, Ba, Sb, 

and U) 3 months after acidification with the ICP-MS. RSDs for metals using this method was 

lower than 8 %, usually around 2 %. Standard reference material TM-23.2 from Environment 

Canada’s national water research institute was used to check the accuracy of the metal analysis 

after dilution by a factor of 10 to ensure that the concentrations were similar to that in the snow. 

This lake water reference material is certified for Pb, Sb, Mo, As, Ba, Co, Mn, U, and V. All 

analysed values were well within the error given in the certificate and deviated from the average 

certificate value by less than 10 %.  More information on this reference material can be found on 

the Environment Canada webpage: http://www.nwri.ca/nlet/crm-e.html.  Sodium was analysed by 

a Perkin Elmer flame AAS after the acidification. Standard deviations were calculated from five 

consecutive injections.  

2.2.3 Results 
 
Total iodine concentrations in snow samples were slightly higher than or similar to other existing 

studies (Duce et al., 1965; Jickells et al., 1991; Moran et al., 1999; Gilfedder et al., 2007), but 

decreased exponentially with increasing elevation (r2 = 0.85; Fig. 2a). Over the 838 m height 

change from Ottenhöfen (326 masl) to Hornisgrinde (1164 masl) total iodine levels decreased from 

a maximum of 38 nmol/l to 13 nmol/l, respectively.  

http://www.irmm.jrc.be/
http://www.nwri.ca/nlet/crm-e.html
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Fig. 2: a) Total iodine, iodide, and organically bound iodine in snow vs. altitude. b) Total bromine, 
bromide, and organically bound Br in snow vs. altitude. All data points are from the 11th and 12th 
of February 2006 and fitted with exponential decay functions.   Error bars represent analytical 
precision and were calculated as 1σ of replicate analysis.  
 

IC-ICP-MS iodine speciation analysis showed similar results to total iodine. Iodide concentrations 

decreased exponentially with increasing altitude from 11.4 nmol/l at Ottenhöfen to 3.9 nmol/l at 

Hornisgrinde (r2=0.92; Fig. 2a). No iodate was observed in any of these snow samples. 

Organically bound iodine also decreased with altitude, with maximum concentrations at Seebach 

(400 masl; 28.8 nmol/l) and then steadily decreased to 9.1 nmol/l at Hornisgrinde (Fig. 2a). 

Organically bound iodine was the most abundant iodine species in all samples (61-75 % of total 

iodine), with no clear change in percentages with altitude (Supplementary Fig. 1). Interestingly, 

two unidentified organo-I species were consistently found in IC-ICP-MS chromatograms in all 

snow samples between the iodide and iodate peaks (Fig. 3). It is thought that these peaks are 

anionic organic iodine compounds due to their consistent separation by the anion exchange column 

and stable behavior. The larger of the two peaks had a retention time of 6.8 minutes and the 

smaller peak eluted at a slightly shorter time of 5.4 minutes. These peaks generally accounted for 

5-10 % of the total iodine concentrations and also displayed an inverse relationship with altitude 

(Supplementary material Table 1).  

 

Total bromine concentrations showed much the same pattern as iodine, decreasing exponentially 

with altitude from 129 nmol/l at Seebach to 38.8 nmol/l at Hornisgrinde (Fig. 2b). Bromide was 

also inversely correlated with altitude with an r2 value of 0.92. Organically bound bromine was not 

so well correlated with altitude (r2=0.66), however the trend is still clear, as with all other species: 

exponentially decreasing concentrations with increasing altitude. Percent organically bound 

bromine displayed no relationship with altitude (r2=0.02; data not shown). In contrast to iodine, the 

majority of bromine in snow was inorganic bromide (68-81 %). Bromate was not observed in any 

of the samples, whereas organically bound bromine accounted for 18-32% of the total bromine.   
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Fig. 3: IC-ICP-MS chromatogram of iodine species in snow. Iodate less than 0.3 nmol/l. Largest 
iodide peak 11.4 nmol/l.  
 

Metal concentrations also decreased exponentially with altitude (Fig. 4 and supplementary material 

Fig. 2). In fact, many of the metals even showed a stronger inverse relationship with altitude than 

iodine and bromine. Also, significant positive (p<0.001) correlations between all elements, 

including iodine and bromine, were observed (Table 1 and Supplementary material Table 1).  

 

Table 1: Selected correlation coefficients (r) between iodine, bromine, and metals. 

Elements r Element r 

I-Br 0.97 Br-Na 0.86

I-Li 0.92 Br-Li 0.96

I-V 0.98 Br-V 0.98

I-Mn 0.88 Br-Mn 0.95

I-Co 0.82 Br-Rb 0.90

I-Pb 0.897 Br-As 0.95

I-Ba 0.90 Br-Pb 0.96

I-Sb 0.90 Br-Ba 0.93

I-U 0.92 Br-Sb 0.96

 

Total iodine concentrations in the four snow samples taken in January from the surface of a small 

frozen lake at 1036 masl (Mummelsee) were similar (although slightly lower) to those taken in 

February. Organo-I accounted for 53-62 % of the total iodine in these samples and again no iodate 

was observed. The only notable observation for bromine from these samples is that the percent 

organically bound bromine is nearly identical to all other samples and is therefore relatively 

invariant with time (ca. 30%). The snow sampled in April contained significantly lower iodine (av. 

3.9 nmol/l) and bromine (av. 33.4 nmol/l) concentrations than the previous sampling tours and 

showed no significant relationship with altitude. These anomalously low results are undoubtedly 

due to partial melting and refreezing and other post depositional changes. It is thought that, due its 
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large ionic radii, iodine is excluded from the recrystallizing ice and hence is preferentially leached 

from the snow during partial melting. Organo-I composed approximately 50 % of the total iodine 

with iodide being the next most abundant species. Iodate was also observed in two 

chromatograms, although it was only responsible for at maximum 16 % of the total iodine. 

Interestingly, we also observed the same unidentified iodine peak (retention time 6.8 minutes) 

between the iodate and iodide peaks as noted above. This suggests that this species is stable and 

can remain in the snow during melting-refreezing events.  

 
Fig. 4: Sodium, Co, Ba and Rb concentrations in snow  vs. altitude in the northern Black Forest, 

Germany. Fitted with exponential decay functions. Error bars represent analytical precision and 

were calculated as 1σ of replicate analysis.  

 

Molar iodine and bromine enrichment factors (EF) relative to seawater may be able to trace the 

origin of these elements (Winchester and Duce, 1967; Woodcock et al., 1971; Gilfedder et al., 

2007). EFs are calculated by dividing the halogen to sodium ratios in snow by halogen to sodium 

ratios in seawater (e.g. I/Na in snow divided by I/Na seawater). When these enrichment factors are 

calculated, it is immediately apparent that iodine is highly enriched in snow (average EF 204, max 

281). EFs appear to increase linearly with elevation until 796 masl (r2=0.95), whereafter the 

relationship is less clear (Fig. 5). If the sample from 934 masl is excluded and a 2nd order 

polynomial is fitted to the data it appears that the iodine EFs decrease after ~800 masl (r2 = 0.87). 

However, this is only based on the last two sample points and further studies are needed to confirm 

or refute this decrease in EF at higher altitudes. In contrast to iodine, bromine enrichment factors 

range from slightly depleted (0.7) at Ottenhöfen to no enrichment or only slightly enriched over 
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the remainder of the transect (max. 1.4).  Bromine enrichment factors also increases linearly with 

altitude (r2= 0.84) up to 796 masl, whereafter the relationship again appears to decrease if the point 

from 934 masl is removed (r2 = 0.8; Fig. 5).  In part the anomalous trend in these last three points 

is due to Na following a decrease curve with a significantly different ‘decay’ constant than iodine 

and bromine.  We can also calculate iodine enrichment factors relative to bromine (I/Br in snow 

divided by I/Br in seawater). These EFs (av. 602, max 665) show that iodine is more enriched 

relative to bromine than to sodium, however there is no relationship with altitude (r2=0.3; data not 

shown). Enrichment factors for iodine relative to bromine from the January samples were lower 

than those taken in February, averaging 402.   
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Fig. 5: Iodine enrichment factors relative to seawater Na concentrations. Linear fit is excluding the 
last 3 samples whereas the polynomial is excluding the sample from 934 masl  

2.2.4 Discussion  

2.2.4.1 Microphysical processes 
 
There is growing evidence that suggests iodine concentrations in rainfall are not simply related to 

distance from the ocean (Krupp and Aumann, 1999; Moran et al., 1999; Michel et al., 2002). 

While back trajectories are not given in any of these studies and the authors assume that the closest 

ocean is the source of rainfall, the data still appears to be relatively robust.  The data presented 

here indicates that, compared to lateral distance, removal by orographically induced precipitation 

has a large effect on the total iodine concentrations as well as the individual iodine species in 

snow. In fact, iodine concentrations more than halve over a horizontal distance of only 5 km and a 

vertical change of ~ 800 m. Duce et al., (1965) found a relatively linear inverse relationship 

between height (and thus a decrease in vapor pressures and assumingly an increase in the 

precipitation rate) and iodine concentrations in Hawaii, however the scatter in their data points was 

much greater than observed in this study. Interestingly, Reithmeier et al., (2006) have also 
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suggested recently that, based on differences in 129I concentrations between Zürich and the 

Fiescherhorn (~4000 masl) glacier Switzerland, radiogenic iodine is removed with increasing 

altitude. Moreover, the systematic exponential decrease in concentration is not confined solely to 

iodine and bromine as the 12 metals also analysed displayed a similar pattern. Our data suggest 

that depletion of elements due to orographic lifting and removal by precipitation is a general 

atmospheric microphysical processes rather than element specific. This is supported by the 

significant correlations between all of the elements, which also indicate that iodine, bromine and 

metals are internally mixed within the snow crystals. Such an altitude dependence for iodine is 

perhaps not unexpected considering that some of the areas most effected by iodine deficiency 

disorders are (or in some cases, were, before introduction of iodinated salt) located in mountainous 

regions such as the Alps or the Himalayas (Stewart, 1990; Slavin, 2005). Perhaps the altitude that a 

weather system must pass over, and thus the degree of orographically induced precipitation exerted 

on this system, will have the largest influence on iodine concentrations in rainfall rather than the 

lateral distance traveled.  

 

All elements appear to follow an exponential decrease curve. It is especially difficult to model this 

complex system without significantly more data such as updraft velocity, droplet size distributions, 

riming potential, temperature at the time of precipitation, atmospheric pressure, and aerosol 

chemistry and distributions etc. It is even possible that two effects are occurring in unison to lower 

the iodine, bromine and metal levels with increasing altitude; the rainout and depletion effect 

suggested above, and also dilution due to condensation of water vapor (obviously iodine free) onto 

the snow crystals as the cloud parcel rises and cools. The rainout effect continually removes a 

portion of the ‘total’ iodine available to precipitate, whereas the rate of the second, dilution effect, 

would increase with altitude due to the decreasing vapor pressure associated with lifting and 

cooling of the cloud mass. If we conceptually parameterize rainout the processes with arbitrary 

values (i.e. a set amount of iodine in the cloud is available to precipitate and the removal rate is 

constant with altitude) then iodine levels in the snow should decrease following an exponential 

decrease relationship similar to that observed here. This model is, however, undoubtedly too 

simplistic and should be further refined when more results are available. The second ‘dilution’ 

possibility is more complicated to model, as modeling droplet (or snowflake) growth requires 

considerably more variables than measured here and is unfortunately out of the scope of this work. 

However, we suggest that future projects monitor such variables as vapor pressure, updraft speed, 

and supersaturation so that the possibility of a dilution effect due to growth from the vapor phase 

can be assessed.  
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2.2.4.2 Speciation 
 
Iodine is of particular interest in atmospheric chemistry due to its possible role in new aerosol 

formation (O’Dowd et al., 2002), tropospheric ozone depletion (von Glasow and Crutzen, 2003; 

Calvert and Lindberg, 2004), atmosphere-ocean interactions (Duce and Hoffman, 1976) and more 

generally as an important constituent of tropospheric chemical cycles. While there has been a large 

research effort to quantify the gaseous iodine flux species from the ocean and their role in new 

particle formation in recent years, most of these studies have concentrated on inorganic speciation 

in the particulate and aqueous phase. Indeed, the majority of atmospheric models indicate that 

iodate should be the only stable long-term iodine species in particles and the aqueous phase, 

although more recent attempts have began to tackle this problem by incorporating an organic 

fraction (Vogt et al., 1999; McFiggans et al., 2000; Saiz-Lopez et al., 2006; Pechtl et al., 2007). 

However, it is becoming apparent that organically bound iodine is a major, if not the most 

important iodine species in small aerosol  particles, rain, and snow (Baker et al., 2000; Baker, 

2005; Gilfedder et al., 2007). It is obvious from the data presented here that organically bound 

iodine is the dominant species in snow from the northern Black Forest, accounting for between 60-

75% of total iodine. To date, there appears to be three plausible mechanisms for the formation of 

organically bound iodine in the atmosphere; 1) ejaculation of iodo-organic rich material from the 

ocean surface micro-layer into the atmosphere during bubble bursting, whereafter the small 

droplets evaporate leaving a small aerosol which may subsequently deliquesce and become a cloud 

droplet (Seto and Duce, 1972; Cavalli et al., 2004); 2) biogenic iodine gases emitted from the 

ocean (e.g. CH3I, I2 or CH2I2) are photolysed to Io which, after a series of reactions, ends up as IO, 

I2 or HOI (von Glasow and Crutzen, 2003). These species may easily bind to atmospheric organic 

material, either gaseous (e.g. terpenes and/or isoprene (Greenberg et al., 2005)) or particulate 

matter; 3) Biogenic terrestrial organo-I emissions (Dimmer et al., 2000); these can probably be 

neglected in this study due to very little terrestrial biological productively during the European 

winter. The second mechanism may reduce the impact of iodine on ozone depletion in the 

troposphere by reactions between highly reactive iodine species and organic material. Mechanisms 

1 and 2 could also be occurring simultaneously, which may lead to two organically bound 

fractions, those associated with secondary iodo-organics, and those associated with higher 

molecular weight material from the ocean surface. An interesting finding is the two unknown, 

most likely organic, peaks observed in the snow IC-ICP-MS chromatograms. These same species 

have also been observed in rain from Lake Constance, Germany, Patagonia, Chile and in a glacier 

core from the Fiescherhorn glacier (Gilfedder et al., 2007). This supports our earlier suggestion 

that these are important iodine species in the atmosphere, and may even be globally ubiquitous. 

Unfortunately, it has not been possible to identify these peaks with the standards available to date. 
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These species may be formed by photolysis of iodo-organics derived from primary aerosols or by 

secondary gas phase-particle phase reactions.  

 

The majority of the total bromine is bromide, of which the majority is most likely from ocean 

water as suggested by relatively little depletion or enrichment compared to this source. The 

organically bound bromine in snow (max. 32%) may be derived from the ocean surface layer as 

discussed above for iodine or between reactive bromine species such as BrCl and organic material.  

 2.2.4.3 Origin of the iodine and bromine 
 
Finally we consider the enrichment factors and the possible origin of iodine in snow. Iodine in 

snow is highly enriched relative to both iodine/bromine and iodine/sodium ratios in seawater. 

Similar enrichments are well documented in marine aerosols and rain samples and is thought to be 

a function of both fractionation at the ocean surface during bubble breaking and emissions of 

biogenic iodine gases (Duce et al., 1965; Duce et al., 1967; Woodcock et al., 1971; Sturges and 

Barrie, 1988; Baker, 2004, 2005). The observation that the snow sampled here display almost 

identical enrichment factors as marine aerosols (Duce et al., 1965; Baker, 2005) tend to suggest 

that iodine and bromine in snow originate from deliquescence and growth of these aerosols. As 

such, we hypothesize that iodine is transported to the continents from the ocean primarily by 

aerosols and aerosol derived droplets. It is interesting to note that iodine enrichment factors in 

precipitation are also large in the winter, when biological productivity in the ocean is generally low 

at mid to high latitudes (O’Dowd et al., 2004). This suggests that at least a part of the enrichment 

is due to physical mechanisms such as bubble bursting rather than purely biological. As mentioned 

above, it is likely that the enrichment of iodine in aerosol, rain, and snow is related to both 

biological and physical mechanisms. 

2.2.5 Conclusion 
 
Iodine is an essential element for all mammals and may also be involved in new aerosol formation. 

We have presented here iodine and bromine speciation and total metal concentrations in snow over 

an altitude profile ranging from 326 to 1164 masl in the northern Black Forest. Iodine species 

(total I, I- and organo-I), bromine species (total Br, Br-, and organo-Br) and metals decreased 

exponentially over the height change within only 5 km horizontal distance. In fact iodine 

concentrations more than halve over this distance. Therefore, it is suggested that orographic lifting 

of cloud masses and subsequent removal by precipitation is the major influencing factor on iodine 

and bromine concentrations in precipitation. This may reconcile previous data, which has been 

ambiguous as to the relationship between iodine concentrations in rainfall and distance from the 

coast. It is proposed that orographic cloud lifting and the intense precipitation this often produces 
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by rapid cooling of the air mass may be the dominant influence on terrestrial iodine rather than 

horizontal distance.  

 

Iodine:sodium ratios in snow from the northern Black Forest indicate that iodine is highly enriched 

compared to iodine:sodium ratios in ocean water, whereas bromine ranges from slightly depleted 

to slightly enriched relative to seawater. Based on these enrichment factors and their resemblance 

to marine aerosol it is proposed that iodine and bromine in snow are derived from deliquescence of 

marine aerosol and subsequent growth into snow crystals. 

 

In contrast to most atmospheric models, which predict iodate as the only stable iodine species in 

particulate and aqueous phases, organically bound iodine was the most abundant iodine species in 

snow, followed by iodide. No iodate was found in the snow samples from January or February 

although a small amount was observed in two samples of very old snow in April. The organic 

iodine probably originates from a combination of 1) ejaculation of iodine-rich material from the 

oceanic microlayer into the atmosphere as well as 2) addition of gaseous or (gas phased derived) 

reactive iodine species to preexisting organic molecules. Active species such as HOI, I2 and IO are 

likely candidates for such reactions. It is clear from this and previous studies that organic iodine is 

an important part of the atmospheric iodine cycle and as such warrants further attention.  
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Sup. Fig. 1: % organically bound iodine in snow vs. altitude. Error bars represent 1σ of replicate 
analysis.  
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Sup. Fig. 2: Change in metal concentrations in snow with altitude from the northern Black Forest. 
All plots fitted with exponential decay functions. Error bars represent analytical precision and were 
calculated as 1σ of replicate analysis.  
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Sup. Table 1: Total iodine, iodide and organically bound iodine in snow samples from the northern 
Black Forest. All concentrations in nmol/l.   

 

Sample 
location 

Date Altitude 
(masl) 

Total 
I 
 

I-

 
IO3

- Organo-
I 
 

Unknown  peak 
1 

Ret. 5.4 mins. 

Unknown peak 
2 

Ret. ca 6.8 
mins 

Na 
µmol 

Ottenhöfen 
N 48º34’06.6’’ 

E 
008º09’42.0’’ 

11.02.06 326 29.5 11.4 - 18 1.3 2.6 87 

Seebach 
N 48º34’44.1’’ 

E 
008º10’13.4’’ 

11.02.06 400 38.0 9.1 - 28.8 1.5 3.0 65 

Oberseebach 
N 48º34’43.7’’ 

E 
008º10’54.7’’ 

11.02.06 478 37.3 9.4 - 27.9 0.9 2.9 50 

Elsa Weg 1 
N 48º34’59’’ 

E 
008º10’54.5’’ 

11.02.06 560 33.5 8.7 - 24.8 1.3 3.5 47 

Elsa Weg 2 
N 48º35’03.9’’ 

E 
008º10’41.7’’ 

11.02.06 597 33.3 9.8 - 23.5 1.2 2.8 48 

Elsa Weg 3 
N 48º35’13.2’’ 
E 008º10’29’’ 

11.02.06 614 32.3 9.5 - 22.9 1.1 2.7 47 

Elsa Weg 4 
N 48º35’21.8’’ 

E 
008º10’47.1’’ 

12.02.06 718 18.6 6.1 - 12.5 0.6 1.7 27 

Elsa Weg 6 
N 48º35’19.3’’ 
E 008º11’24.7’ 

12.02.06 796 19.9 6.2 - 13.6 0.7 2.0 23 

Elsa Weg 7 
N 48º35’39’’ 

E 008º11’24.3’ 
12.02.06 934 18.1 5.8 - 12.4 0.6 0.8 37 

Mummelsee 
N 48º35’52’’ 
E 008º12’08’ 

12.02.06 1036 16.4 5.1 - 11.3 0.4 0.6 21 

Hornisgrinde 
N 48º36’05.2’’ 
E 008º12’03.2’ 

12.02.06 1164 13.0 3.9 - 9.1 0.3 0.6 21 

Mummelsee 26.01.06 1036 13.5 6.4 - 7.1  0.2  
Mummelsee 26.01.06 1036 15.4 7.2 - 8.1  0.6  
Mummelsee 26.01.06 1036 13.5 5.3 - 8.2  0.4  
Mummelsee 26.01.06 1036 13.7 6.8 - 6.9    
Elsa Weg 6 

N 48º35’19.3’’ 
E 008º11’24.7’ 

14/4/06 796 
 1.6 0.7 - 0.9  0.4  

Elsa Weg 7 
N 48º35’39’’ 

E 008º11’24.3’ 
14/4/06 934 1.4 0.9 0.23 0.3  0.5  

Mummelsee 
N 48º35’52’’ 
E 008º12’08’ 

14/4/06 1036 4.9 2 0.4    2.4  1.1  

Hornisgrinde 
N 48º36’05.2’’ 
E 008º12’03.2’ 

14/4/06 1164 2.4 1.1  1.3  0.5  
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Sup. Table 2: Total bromine, bromide and organically bound bromine in snow samples from the 
northern Black Forest. All concentrations in nmol/l.  
 

Sample location Date Altitude 
(masl) 

Total Br 
 

Br-

 
Organo-Br 

 % org-Br 

Ottenhöfen 
N 48º34’06.6’’ 
E 008º09’42.0’’ 

11.02.06 326 114.5 93.4 21.2 
 

18 
 

Seebach 
N 48º34’44.1’’ 
E 008º10’13.4’’ 

11.02.06 400 128.5 92.9 35.7 27 
 

Oberseebach 
N 48º34’43.7’’ 
E 008º10’54.7’’ 

11.02.06 478 116.4 79.7 36.7 31 
 

Elsa Weg 1 
N 48º34’59’’ 

E 008º10’54.5’’ 
11.02.06 560 99.9 78.0 21.9 22 

 

Elsa Weg 2 
N 48º35’03.9’’ 
E 008º10’41.7’’ 

11.02.06 597 104.3 77.6 26.7 25 
 

Elsa Weg 3 
N 48º35’13.2’’ 
E 008º10’29’’ 

11.02.06 614 106.8 77.5 29.3 27 
 

Elsa Weg 4 
N 48º35’21.8’’ 
E 008º10’47.1’’ 

12.02.06 718 64.1 47.1 17.0 
26 

 
 

Elsa Weg 6 
N 48º35’19.3’’ 
E 008º11’24.7’ 

12.02.06 796 58.6 47.9 10.6 
18 

 
 

Elsa Weg 7 
N 48º35’39’’ 

E 008º11’24.3’ 
12.02.06 934 62.8 51.8 11.0 17 

 

Mummelsee 
N 48º35’52’’ 
E 008º12’08’ 

12.02.06 1036 47.6 37.4 10.1 21 
 

Hornisgrinde 
N 48º36’05.2’’ 
E 008º12’03.2’ 

12.02.06 1164 38.7 28.2 10.5 27 
 

Mummelsee 26.01.06 1036 55.2 35.4 19.8 36 
Mummelsee 26.01.06 1036 91.0 63.7 27.3 30 
Mummelsee 26.01.06 1036 62.8 45.1 17.8 28 
Mummelsee 26.01.06 1036 64.2 43.3 20.5 32 
Elsa Weg 6 

N 48º35’19.3’’ 
E 008º11’24.7’ 

14/4/06 796 
 114.5 93.4 21.2 30 

Elsa Weg 7 
N 48º35’39’’ 

E 008º11’24.3’ 
14/4/06 934 128.5 92.9 35.7 29 

Mummelsee 
N 48º35’52’’ 
E 008º12’08’ 

14/4/06 1036 116.4 79.7 36.7 30 

Hornisgrinde 
N 48º36’05.2’’ 
E 008º12’03.2’ 

14/4/06 1164 99.9 78.0 21.9 37 
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Sup. Table 3: Metal concentrations in snow from the northern Black Forest.  

 

Sample location Date Altitude 
(masl) 

Li 
nmol 

 

V 
nmol 
 

Mn 
nmol 
 

Co 
nmol 
 

Rb 
nmol 
 

Zn 
nmol 
 

As 
nmol 
 

Mo 
nmol 

Pb 
nmol 

Ba 
nmol 

Sb 
nmol 

U 
pmol 

Ottenhöfen 
N 48º34’06.6’’ 
E 008º09’42.0’’ 

11.02.06 326 17.3 28.9 158.0 1.6 8.0 959 4.1 5.0 36.9 23.3 4.4 33.6 

Seebach 
N 48º34’44.1’’ 
E 008º10’13.4’’ 

11.02.06 400 17.3 36.7 176.0 1.4 6.5 692 5.2 5.9 44.3 21.8 5.4 33.6 

Oberseebach 
N 48º34’43.7’’ 
E 008º10’54.7’’ 

11.02.06 478 14.4 30.8 118.5 1.1 5.1 606 4.6 4.3 38.1 16.3 4.4 21.0 

Elsa Weg 1 
N 48º34’59’’ 

E 008º10’54.5’’ 
11.02.06 560 14.4 33.0 114.7 1.0 4.9 637 4.0 4.9 43.0 16.0 4.6 25.2 

Elsa Weg 2 
N 48º35’03.9’’ 
E 008º10’41.7’’ 

11.02.06 597 10.1 29.6 100.5 0.9 4.4 587 3.7 3.6 37.0 14.0 3.5 21.0 

Elsa Weg 3 
N 48º35’13.2’’ 
E 008º10’29’’ 

11.02.06 614 14.4 29.8 111.6 1.0 4.9 613 4.8 4.3 40.2 16.7 4.1 21.0 

Elsa Weg 4 
N 48º35’21.8’’ 
E 008º10’47.1’’ 

12.02.06 718 5.8 19.4 56.2 0.6 2.9 362 2.9 2.6 22.6 8.6 2.5 12.6 

Elsa Weg 6 
N 48º35’19.3’’ 
E 008º11’24.7’ 

12.02.06 796 5.8 18.1 46.4 0.5 3.3 362 3.0 2.6 20.1 7.6 2.1 12.6 

Elsa Weg 7 
N 48º35’39’’ 

E 008º11’24.3’ 
12.02.06 934 4.3 17.9 46.2 0.5 3.3 372 3.0 2.5 19.9 7.6 2.1 12.6 

Mummelsee 
N 48º35’52’’ 
E 008º12’08’ 

12.02.06 1036 2.9 15.3 45.1 0.4 2.1 323 2.9 2.2 17.1 8.4 2.0 8.4 

Hornisgrinde 
N 48º36’05.2’’ 
E 008º12’03.2’ 

12.02.06 1164 2.9 11.0 34.4 0.3 1.5 275 2.3 1.6 12.9 6.4 1.7 8.4 
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Correlations

1 -.880** -.938** -.815** -.917** -.886** -.871** -.941** -.955** -.794** -.936** -.911** -.917** -.945** -.938** -.906** -.853** -.918**
.000 .000 .002 .000 .000 .000 .000 .000 .004 .000 .000 .000 .000 .000 .000 .001 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.880** 1 .884** .988** .891** .927** .738** .969** .932** .935** .916** .979** .886** .821** .798** .782** .937** .915**
.000 .000 .000 .000 .000 .009 .000 .000 .000 .000 .000 .000 .002 .003 .004 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.938** .884** 1 .800** .900** .853** .902** .940** .964** .770** .923** .889** .892** .916** .927** .947** .837** .874**
.000 .000 .003 .000 .001 .000 .000 .000 .006 .000 .000 .000 .000 .000 .000 .001 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.815** .988** .800** 1 .842** .905** .647* .930** .874** .942** .867** .959** .839** .748** .715* .688* .922** .882**
.002 .000 .003 .001 .000 .032 .000 .000 .000 .001 .000 .001 .008 .013 .019 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.917** .891** .900** .842** 1 .913** .840** .923** .950** .750** .932** .950** .931** .905** .896** .882** .855** .957**
.000 .000 .000 .001 .000 .001 .000 .000 .008 .000 .000 .000 .000 .000 .000 .001 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.886** .927** .853** .905** .913** 1 .667* .885** .875** .800** .888** .935** .813** .774** .767** .760** .826** .876**
.000 .000 .001 .000 .000 .025 .000 .000 .003 .000 .000 .002 .005 .006 .007 .002 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.871** .738** .902** .647* .840** .667* 1 .865** .919** .639* .891** .781** .921** .967** .974** .977** .753** .864**
.000 .009 .000 .032 .001 .025 .001 .000 .034 .000 .005 .000 .000 .000 .000 .007 .001

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.941** .969** .940** .930** .923** .885** .865** 1 .984** .914** .962** .972** .952** .922** .904** .883** .948** .951**
.000 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.955** .932** .964** .874** .950** .875** .919** .984** 1 .827** .965** .956** .957** .954** .952** .935** .910** .959**
.000 .000 .000 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.794** .935** .770** .942** .750** .800** .639* .914** .827** 1 .838** .888** .825** .739** .683* .656* .918** .817**
.004 .000 .006 .000 .008 .003 .034 .000 .002 .001 .000 .002 .009 .021 .028 .000 .002

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.936** .916** .923** .867** .932** .888** .891** .962** .965** .838** 1 .939** .969** .951** .937** .929** .928** .974**
.000 .000 .000 .001 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.911** .979** .889** .959** .950** .935** .781** .972** .956** .888** .939** 1 .920** .864** .841** .820** .935** .962**
.000 .000 .000 .000 .000 .000 .005 .000 .000 .000 .000 .000 .001 .001 .002 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.917** .886** .892** .839** .931** .813** .921** .952** .957** .825** .969** .920** 1 .975** .944** .925** .910** .974**
.000 .000 .000 .001 .000 .002 .000 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.945** .821** .916** .748** .905** .774** .967** .922** .954** .739** .951** .864** .975** 1 .990** .967** .851** .939**
.000 .002 .000 .008 .000 .005 .000 .000 .000 .009 .000 .001 .000 .000 .000 .001 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.938** .798** .927** .715* .896** .767** .974** .904** .952** .683* .937** .841** .944** .990** 1 .976** .822** .917**
.000 .003 .000 .013 .000 .006 .000 .000 .000 .021 .000 .001 .000 .000 .000 .002 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.906** .782** .947** .688* .882** .760** .977** .883** .935** .656* .929** .820** .925** .967** .976** 1 .778** .888**
.000 .004 .000 .019 .000 .007 .000 .000 .000 .028 .000 .002 .000 .000 .000 .005 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.853** .937** .837** .922** .855** .826** .753** .948** .910** .918** .928** .935** .910** .851** .822** .778** 1 .932**
.001 .000 .001 .000 .001 .002 .007 .000 .000 .000 .000 .000 .000 .001 .002 .005 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.918** .915** .874** .882** .957** .876** .864** .951** .959** .817** .974** .962** .974** .939** .917** .888** .932** 1
.000 .000 .000 .000 .000 .000 .001 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.897** .972** .903** .945** .948** .940** .782** .964** .951** .876** .948** .992** .911** .854** .835** .835** .928** .954**
.000 .000 .000 .000 .000 .000 .004 .000 .000 .000 .000 .000 .000 .001 .001 .001 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.909** .850** .915** .786** .912** .785** .948** .932** .950** .776** .969** .885** .988** .982** .961** .963** .886** .954**
.000 .001 .000 .004 .000 .004 .000 .000 .000 .005 .000 .000 .000 .000 .000 .000 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.905** .946** .872** .922** .935** .890** .838** .965** .950** .879** .976** .973** .968** .914** .880** .866** .942** .987**
.000 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .001 .000 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
-.920** .845** .890** .788** .954** .818** .941** .924** .956** .736** .954** .902** .981** .977** .965** .943** .848** .968**
.000 .001 .000 .004 .000 .002 .000 .000 .000 .010 .000 .000 .000 .000 .000 .000 .001 .000

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
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Abstract 
 
Iodine oxides such as iodate should, theoretically, be the only stable sink species for iodine in 
the troposphere. However, of field observations have increasingly found very little iodate and 
significant amounts of iodide and organically bound iodine. The aim of this study was to 
investigate iodine speciation, including the organic fraction, in rain, snow, and aerosols in an 
attempt to further clarify aqueous phase iodine chemistry. Diurnal aerosol samples were taken 
with a 5 stage cascade impactor and a virtual impactor (PM 2.5) from the Mace Head research 
station during summer 2006. Rain was collected from Australia, New Zealand, Patagonia, 
Germany, Ireland, and Switzerland whereas snow was obtained from Greenland, Germany, 
Switzerland, and New Zealand. All samples were analysed for total iodine by inductively 
coupled plasma mass spectrometry (ICP-MS) and speciation was facilitated by coupling an 
ion chromatography unit to the ICP-MS. Total iodine in the aerosols from Mace Head gave a 
median concentration of 50 pmol m-3 of which the majority was associated with the organic 
fraction (median day:  91 ± 7 %, night: 94 ± 6 % of total iodine). Iodide exhibited higher 
concentrations than iodate (median 5 % vs. 0.8 % of total iodine), and displayed significant 
enrichment during the day compared to the night. Interestingly, up to 5 additional, presumably 
anionic organic peaks were observed in all IC-ICP-MS chromatograms, composing up to 15 
% of the total iodine. Organically bound iodine was also the dominant fraction in all rain and 
snow samples, with lesser amounts of iodide and iodate (iodate particularly low in snow). 
Two of the same unidentified peaks found in aerosols were also observed in precipitation 
from both southern and northern hemispheres, suggesting that these species are transferred 
from the aerosol phase into precipitation. It is suggested that organo-I is formed by reactions 
between HOI and organic mater derived from the ocean surface layer. This may then 
photolytically decompose to give iodide and the unidentified species. The data in this study 
show that iodine oxides are the least abundant species in rain, snow, and aerosols and 
therefore considerably more effort is required on aqueous phase iodine chemistry for a holistic 
understanding of the iodine cycle.  

2.3.1 Introduction 
 
Iodine speciation in aerosols and precipitation has been of interest recently in both 

atmospheric research and more applied environmental geochemistry and health. For example, 
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release and photolysis of iodine gases such as I2 and CH2I2 followed by homogeneous 

nucleation of iodine oxides has been suggested as a novel processes leading to new particle 

formation in the marine/coastal boundary layer (O’Dowd et al., 2002; McFiggans et al., 2004; 

Saiz-Lopez and Plane, 2004; O’Dowd and Hoffmann, 2005; Sellegri et al., 2005; Whalley et 

al., 2007). If the global flux of these particles is large enough they may influence the global 

energy budget by scattering of incoming solar radiation. Moreover, it has also been suggested 

that these particle may grow large enough to form cloud condensation nuclei, and thus lead to 

enhanced droplet number concentrations and so further increase reflectance and scattering of 

incoming solar radiation (Cainey, 2007). At the very least, plumes of iodine derived aerosols 

have been observed extending  to a few hundred meters into the coastal boundary layer at 

Mace Head (Sellegri et al., 2005 and refs. therein).  To date, the new particles are thought to 

form through polymerization of IO2 dimers and to initially consist of purely oxidized forms of 

iodine such as I2O4 or I2O5 (McFiggans, 2005; Saunders and Plane, 2005). These species 

should decay to IO3
- shortly after formation or may even be taken up as HIO3 from the gas 

phase (Pechtl et al., 2007). Most models predict that iodate is the only stable iodine species in 

aerosols, rain and snow and that any reduced iodine species such as iodide should be oxidized 

(by ICl, O3 and other highly oxidizing species) at diffusion controlled rates to I2, HOI and then 

further to IO3
- (Vogt et al., 1999; McFiggans et al., 2000; Pechtl et al., 2006; Saiz-Lopez et 

al., 2006; Enami et al., 2007). Alternatively, models predict that the intermediate species such 

as I2 or IBr may degas to the gas phase leaving the aerosol progressively depleted in halogens 

during ageing. However, field studies and more recent modeling attempts have suggested at 

the importance of organic iodine species in aerosols and precipitation and have also found 

iodine enrichment factors (relative to ocean water) in excess of 1000 (Gilfedder et al., 2007b). 

Moreover, Rosinski and Parungo (1966) have shown data from both field and laboratory 

experiments that suggest reactions between gaseous iodine (I2) and vegetation derived VOCs 

(e.g. terpenes) to form ice nuclei on exposure to UV radiation and natural sunlight. Both 

camphor-I compounds and CH3I were identified by mass spectrometry, although due to the 

rather rudimentary experimental setup it is impossible to tell if the iodine was bound to the 

organics in the gas phase or within the aerosols after nucleation of the organic precursors. 

Indeed, despite many laboratory studies showing the formation of IO2-IO2 derived aerosols, 

little direct field evidence exists for the presence of oxidized iodine species in the particle 

phase. This is mostly hampered by methods for reliable speciation at low iodine 

concentrations and a method for sampling nucleation size aerosols. 

 

 On a more applied level, 30 % of the world’s population suffers from insufficient iodine 

intake (de Benoist et al., 2004). This is not unilaterally confined to less developed countries 
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either; many of the more industrialized countries (e.g. Ireland) also have insufficient iodine 

intake despite iodine supplements added to salt (de Benoist et al., 2004). As such, the sources 

and species of natural iodine in precipitation (which is the dominant iodine contributor to 

soils: Fuge and Johnson, (1986) Schnell and Aumann,  (1999)) are of concern to the wider 

population.   

 

The aim of this communication is to demonstrate that 1) organo-I is the dominant iodine 

species in size segregated and PM 2.5 aerosols sampled at Mace Head, west coast Ireland, and 

that iodate is the least abundant species and; 2) organo-I in precipitation occurs globally and 

that at least one organo-I species is transferred from marine aerosols into rain and snow in 

both southern and northern hemispheres.  

2.3.2 Methods:  

2.3.2.1 Aerosol sampling 
 
During the 2006 MAP (Marine Aerosol Production from natural sources) campaign aerosols 

were sampled at the Mace Head atmospheric research station using a Berner 5 stage cascade 

impact sampler fitted with cellulous nitrate filter paper and housed in a protective shelter. The 

samples were taken on the 15, 17-20, 25, 26, and 29 of June and 4 of July and were 

segregated into day (8:00-20:00) and night (20:00-8:00) in the size ranges: stage 5 5.9-10 µm, 

stage 4 2-5.9 µm, stage 3 0.71-2 µm, stage 2 0.25-0.71µm and stage 1 0.085-0.25 µm. 

Typically about 50 m3 of air were sampled per 12 hour sampling period at a flow rate of 4.5 l 

h-1. To ensure that the results were not sampler dependent and to gain a better idea of short 

term temporal changes (morning, 8:00-14:00, afternoon, 14:00-20:00 and night, 20:00-8:00) 

we also employed a virtual impactor (PM 2.5 µm) for the 15, 17-20, 25, 26 and 29 of June 

and 6 of July. This was operated at a flow rate of 1.5 l h-1. In addition, to test whether the filter 

material was influencing the concentrations and proportion of organic iodine we also took one 

sample from a high volume sampler (PM 10 µm) fitted with a quartz filter that had been 

precombusted at 500 oC for 24 h. It was operated at a nominal flow rate of 1.013 l min-1. One 

day (15/6/06) of PM 2.5 samples were also taken offshore (North Atlantic Ocean) aboard the 

Celtic Explorer with a virtual impactor (PM 2.5 µm) during the day (8:00-20:00) and night 

(20:00-8:00). Back trajectories for these dates using the NOAA-HYSPLIT model (Sup. Figs. 

1-9) and black carbon data from the Mace Head station 

(http://macehead.nuigalway.ie/map/g_database.html) indicated that on the 15th, 17th , 19th, 

20th, and 29th of June clean marine air was arriving at the site. Samples on the 18th and 

particularly the 25th, 26th of June and 4th July were polluted. All aerosol samples were 
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extracted with milli-Q water by ultrasonification for 20 minutes and the liquid was 

subsequently filtered (0.45 µm) and analysed by the methods outlined in section 2.3.  

2.3.2.2 Precipitation sampling  
 
Rain samples were obtained from various locations from the southern and northern 

hemispheres: 2 samples from a rural location in Australia (late summer Barkers vale, N.S.W.), 

1 sample from a costal rural location on the north island of New Zealand (early autumn, 

Oakura), 4 samples from Patagonia Chile (from Biester et al., (2004) as given in Gilfedder et 

al., (2006)), 8 samples from Mace Head, Ireland (collected on the same dates as aerosol 

samples to allow a comparison between aerosol and droplet phases), 1 sample from rural East 

Germany (summer, Lauchhammer), 1 sample from the Black Forest Germany (spring), 26 

samples from Lake Constance, Germany (Gilfedder et al., 2007b), and 2 samples from 

different parts of the Alps (autumn, Sedrun and summer, Interlarken), Switzerland. Note that 

the samples from Mace Head were collected at two locations; firstly from the atmospheric 

research station located near the shore and secondly from a small cottage about 200 m inland 

from the station. Samples were collected either directly into LDPE bottles or with a 

polypropylene funnel (that had previously been cleaned with Milli-Q water) draining into the 

sample bottle. Snow samples were collected in LDPE from Greenland (clean sector, Summit 

camp), Lake Constance, and the Black Forest (from Gilfedder et al., (2007a)), both Germany, 

the Alps (Fiescherhorn Glacier ice and hail from the mountains around Interlaken), 

Switzerland and Mt. Eggmont, New Zealand. Most samples from Europe were analysed 

within a few weeks and all samples were analysed within 2 months.  

2.3.2.3 Analytics 
 
All rain, snow  and aerosol samples were filtered through 0.45 µm filters and analysed for 

iodine species by ion chromatography-inductively coupled plasma mass spectrometry (IC-

ICP-MS) by the methods outlined in Gilfedder et al., (2007a). Total iodine was measured by 

normal mode ICP-MS. Due to the high total iodine concentrations in aerosol samples total 

iodine was diluted by a factor of 10 prior to analysis. Organically bound iodine was calculated 

as total I - ∑inorganic species. Unknown species identified in IC-ICP-MS chromatograms 

were quantified using the iodide calibration curve. This should not present a problem as all 

iodine is ionized to I+ in the plasma prior to being quantified by the MS system. Total iodine 

and iodide calibrations were checked periodically with standard reference material BCR611, 

which has a recommended total iodine concentration of 9.65 µg l-1 and iodide level of 9.4 µg 

l-1. Unfortunately, there is currently no standard reference material for iodate. Concentrations 

were always within the standard deviation given in the certificate and deviated from the 
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average value by less than 10 %. Replicate analysis for three consecutive aerosol samples 

gave a relative standard deviation of 2.2 % for total iodine. The precision of the speciation 

measurement was calculated based on 15 replicates of the standard reference material over 2 

months, which gave a value of 4.1 %.  

2.3.3 Results 

2.3.3.1 Iodine speciation in aerosols and rain from Mace Head 
 

 Total iodine levels in size-segregated aerosols were relatively consistent over the sampling 

period (median 50 pmol m-3), except for on the 15 of June, when concentrations were 

considerably higher (up to 532 pmol m-3) than on all other sampling dates (Figure 1). 

Organically bound iodine was the dominant species in the aerosol samples from Mace Head 

(median 41 pmol m-3, range 3.71-509 pmol m-3), accounting for 67-95 % (median 91 ± 7 %) 

of the total iodine during the day and 70-98 % (median 94 ± 6 %) of the total iodine during 

the night (Figure 1).  

 
Figure 1: Total iodine, organically bound iodine, iodide, and iodate concentrations in size-
segregated aerosols from Mace Head research station. Numbers in graph represent the 
different impactor stages and the grey shading shows nighttime sampling. 
 

Iodide was the most abundant inorganic aerosol species (median 2.5 pmol m-3, range 0.3-58 

pmol m-3), except for a few isolated cases in the largest size modes, where iodate and iodide 

concentrations were about equal. Iodate concentrations ranged from below detection to 15 

pmol m-3, with a median of 0.8 % and maximum of 24 % of the total iodine. Figure 2 presents 

the night to day ratio of iodine concentrations in the size-segregated aerosols to highlight 

diurnal trends in the data. Values above one indicate enrichment during the night relative to 

the previous day, whereas values below one demonstrate and enrichment during the day 
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relative to the night. Each iodine species in Figure 2 was subject to a Chi-square (χ2) statistical 

test with Yates correction for continuity in an attempt to ascertain weather day-night 

differences in iodine speciation were significant. This test ignores the magnitude of the 

enrichments, and treats the data nominally, being either ‘day’ or ‘night’ enriched. Data that 

showed neither enrichment during the day or night (i.e. fell onto the ‘1’ line) was excluded 

from the test. The results demonstrated that there was no significant difference between the 

numbers of observations being enriched during the night compared to the day for all species 

except for iodide (p>0.05). For iodide the number of observations of daytime enrichment was 

significantly higher than the number of observations falling into the night enriched category 

(p<0.05). There was no noticeable dependence of iodine species on aerosol size classes unless 

the data was normalized by the logarithm of impactor size ranges (i.e. by channel size; 

concentration/dlogDp). Such transformations allow a more representative comparison 

between the impactor stages and, as shown in Figure 3, is given here as the average for each 

aerosol size class over the study period. After normalization, there was still very little 

difference between the different aerosol size class for total iodine, organo-I, and iodide 

(Figure 3). Iodate appeared to be concentrated in the largest size fractions during both day (67 

% of iodate in the >2 µm fraction) and night (79 % of iodate in the >2µm fraction) in 

agreement with the data in Baker,  (2005). Figure 3 also shows that, on average, iodide levels 

were higher during the day than during the night, except for on impactor stage 4.  

 

In the PM 2.5 samples total iodine concentration were considerably higher on the 15th of June 

compared to all other sampling days, as observed in the sized segregated samples (Figure 4). 

Also, the concentrations were considerably higher with the Virtual impactor than with the 

cascade impactor, with a maximum of 1534 pmol m-3 on the morning of the 15th. The PM 2.5 

results also displayed a pronounced minima in total iodine levels during the night in most 

cases, while there were no notable systematic differences between morning and afternoon 

samples. Organically bound iodine was the dominant species accounting for 69-96 % of the 

total iodine and iodate was the least abundant, with a median and maximum of 1.24 % and 6 

% respectively. The offshore PM 2.5 samples from the 15th of June contained significantly 

lower iodine levels (day-410 pmol m-3, night 561 pmol m-3) compared to the Mace Head 

station samples collected on the same day (Figure 4) but closely resembled the station data 

between 17-29 of July. This strongly suggests that the coastal environment was the source of 

the excess iodine in the station samples observed on the 15th and that the other samples more 

closely represented background marine conditions. This is supported by the diurnal iodine 

data from Rancher and Kritz, (1980), which showed very similar iodine concentrations to 

those presented here, despite being taken during clean marine conditions aboard the R/V 
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Capricorne over the Atlantic Ocean.  Organically bound iodine was again the dominant 

iodine component in both offshore samples (day 92 %, night 91 % of the total iodine) 

followed by iodide (day 28 pmol m-3, night 49 pmol m-3) and iodate (day 1.9 pmol m-3, night 

1.6 pmol m-3).  

 
 
Figure 2: Size segregated iodine concentrations from nighttime samples divided by iodine 
concentrations in samples from the previous day. Numbers indicated impactor stage (i.e. 
aerosol size fraction) and doted line shows 1:1 relationship between day and night. Note that 
were no data exists either measurement was not possible or concentrations were below the 
detection limit.  
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Figure 3: Normalized (dlogDp) average iodine speciation in size segregated aerosols. Each 
stage is averaged over the respective impactor stages and the study period.  

 

 
Figure 4: Organically bound iodine, iodide and iodate concentrations in aerosols collected 
with a Vitual impactor (PM 2.5) during the morning (8:00-14:00), afternoon (14:00-20:00) 
and night (20:00-8:00).  
 

In addition to the organically bound iodine calculated by the mass balance approach described 

above, the IC-ICP-MS chromatograms also contained up to 5 peaks in addition to the 

inorganic iodide and iodate species (Figure 5 and 6). These peaks were observed in size-

segregated samples, and PM 2.5 samples from the station and offshore as well as the PM 10 

sample (Supplementary material Figures 10 and 11). Other than the peak eluting shortly after 
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iodate (retention time ca. 4 min. 40 sec; note that the exact retention time depends on age of 

the column and to a lesser extent ambient conditions such as room temperature) which 

corresponded to an iodoacetic acid standard, all of these additional peaks remain unidentified. 

The iodoacetic acid concentrations had a median value of 0.2 pmol m-3 (<0.03-1.66 pmol m-3; 

n=30) during the day and 0.1 pmol m-3 (<0.03-0.3 pmol m-3; n=25) during the night. 

Unfortunately there were not enough consecutive data points to allow any thorough 

investigation of diurnal or aerosol size related trends. To date we have injected all 

commercially available standards such as iodoacetic acid, diiodoacetic acid, I3
-, iodopropionic 

acid, and a range of aromatic iodine compounds into the IC-ICP-MS system. Unfortunately 

none of these matched the unidentified peaks. However, these species must be organic (due to 

the instability of all inorganic species other than iodide and iodate), and anionic as they are 

efficiently separated by the anion exchange column. The largest of these unknown species 

(termed peak (p) 4; elution time ca. 7-8 min.) was often even more abundant than iodate. 

There were also significant correlations between the unknown peaks and iodide during the 

day, although this tended to collapse during the night. Correlations with total iodine, organo-I 

and iodate were much weaker (Figure 7).  

 

Organically bound iodine was also the major fraction in the rain samples from Mace Head 

station and the cottage (Table 1). However, the organically bound iodine in rain consistently 

composed a lower proportion of the total iodine compared to the aerosol samples and 

generally had a larger proportion of iodate. In fact, in some of the rain samples iodate was at a 

similar, or slightly higher, concentration than iodide. This is in very good agreement with 

inorganic iodine speciation measurements in rainfall from the North Sea region, analysed by 

electrochemistry (Campos et al., 1996), and rainfall from west England measured by 

photometry (Truesdale and Jones, 1996). This is further conformation that our speciation 

technique is accurately recording the iodide and iodate levels. Interestingly, the largest of the 

unknown compounds (p4) observed in the aerosol chromatograms was also consistently found 

in the Mace Head rain chromatograms (Figure 8).  

 
Table 1: Total iodine concentrations and speciation in rainfall from the Mace Head station and 
Mace Head cottage. All concentrations in nmol l-1 except where indicated.  

Sample location Sample date Total iodine Iodide Iodate Organo-I % organo-I
Mace Head station 17-18/6/06 19.7 3 3.4 13.3 67 
Mace Head cottage 17-18/6/06 20.5 2.3 3.7 14.5 70 
Mace Head station 19-20/6/06 24.4 5 3.7 15.8 64 
Mace Head cottage 19-20/6/06 33.1 8.7 4.7 19.7 60 
Mace Head station* 26/6/06 37 6.8 4.2 26 70 
Mace Head cottage 29/6/06 30.7 5.8 3.9 20.9 68 
Mace Head station 8/7/06 47.3 6.4 1.72 39.2 83 
Mace Head cottage 8/7/06 18.1 4.3 1.8 12.0 66 
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* taken over a 4 hour rain period. + Very old snow sampled about halfway up the cone of the dormant Mt. Eggmont volcano.  

 
Figure 5: IC-ICP-MS speciation chromatograms of aerosols from Mace Head 17-19 of June 
2006. p1 to p5 are unidentified peaks 1 to peak 5.  
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Figure 6: IC-ICP-MS chromatograms of iodine speciation in aerosols in from Mace Head.  
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Figure 7: Correlations between the unknown peaks and iodide and total iodine. The points 
outlined in red are from the 15th of June and are not included in the correlations due to 
suspected coast influence. 

2.3.3.2 Iodine speciation in rain and snow samples 
 
 Iodine concentrations in rain and snow samples from both northern and southern hemispheres 

were surprisingly similar given the different environments from which they were taken 

(Tables 2 and 3). As would be expected, the highest average concentrations were observed 

near the coast (e.g. Mace Head and Oakura). However, total iodine levels further inland, such 

as at Lake Constance, often displayed similar concentrations to locations directly adjacent to 

the coast. As such, there is no evidence for a strong (if any) iodine concentration gradient 

between the ocean and the terrestrial environment. This is at least partially supported by 

recent work that has found significant fluxes of methyl iodide from a number of terrestrial 

environments (Keppler et al., 2000; Manley et al., 2007; Sive et al., 2007). In addition, the 

relative uniformity observed in rain fall between the locations (see also (Krupp and Aumann, 

(1999)) could also be related to rapid transport of precipitation and aerosols inland from the 

coast. The lowest iodine concentrations in snow were observed at high altitudes, such as at the 

Summit camp Greenland (3200 masl), the Swiss Alps and higher parts of the Black Forest; in 

agreement with the exponential decrease in iodine levels with increasing altitude found by 

Gilfedder et al., (2007a). 
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Table 2: Total iodine and iodine species levels in rain from northern and southern 
hemispheres. All concentrations in nmol l-1 except where indicated.  
 

Sample Location Total iodine Iodide Iodate Org-I %-Org-I 
Lake Constance* 

S. Germany (n=26) 
11± 6.7 4.1 ± 2.6 1.3 ± 0.86 7.2 ± 4.6 

 
54 

Lauchhammer  
E. Germany (n=1) 

 2 0.3   

Sedrun 
Swiss Alps (n=1) 

10.1 4.1 0.17 5.8 56 

Oakura  
New Zealand (n=1) 

13.7 2.6 1.8 8.7 63 

Barkers vale 
E. Australia (n=2) 

5.2 1.8 0.47 3 58 

Patagonia 
Chile (n=2) 

4.02 2.7 <0.8 1.34 33 

* Some of this data has been given in Gilfedder et al., (2007b).  

As observed in Mace Head rainfall, organically bound iodine in rain and snow from both 

northern and southern hemispheres was the dominant iodine species in most samples, 

generally accounting for over 50 % but up to 80 % of the total iodine (Tables 2 and 3). In all 

continental rain and particularly in the snow samples, iodate was the least abundant species, 

often falling below the detection limit of the method. Also, iodate levels were always higher 

in coastal samples than further inland. The same unidentified species described above for 

Mace Head rain and aerosol samples (p4) was also found in most of the rain and snow 

samples from both northern and southern hemisphere locations (Figure 9). In particular, the 

largest peak (p4) observed in aerosols from Mace Head could be traced directly from the 

aerosols into the rain (Figure 8). As p4 was also found in rain and snow samples at the other 

sampling locations, it also seems at least plausible that this unidentified species is also present 

in the global aerosol population.  

 
Table 3: Total iodine and iodine species levels in snow from northern and southern 
hemispheres. All concentrations in nmol l-1 except where indicated.  
 

Sample Location Total iodine Iodide Iodate Org-I %-Org-I
Summit 
Greenland (n=6) 

4.02 ± 0.2   0.42 ± 0.24 
 

<0.2 
 

3.53 ± 0.42 
 

88 
 

Lake Constance* 

Germany (n=16) 
5.3 ± 2 
 

2.7 ± 1 
 

0.4 ±  0.2 
 

2.6 ± 1.2 
 

48 
 

Black Forest altitude profile# 

Germany (n=19) 
18.7 
 

5.7 
 

0.4 
 

12.6 
 

72 

Fiescherhorn glacier  
Switzerland (n=3) 

4.04 ± 1.7 1.4 ± 0.1 
 

<0.2 
 

2.6 ±0.8 
 

68 

Alps Hail 
Switzerland (n=1)  

1.02 0.55 
 

<0.2 
 

0.47 
 

46 

Mt. Eggmont+ 

New Zealand (n=1) 
0.9 0.31 0.46 0.09 10 

 

*Some of this data has been given in Gilfedder et al., (2007b).  

# No standard deviation given because concentrations decrease exponentially with increasing altitude as discussed in Gilfedder et al., 

(2007a).  
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Figure 8: IC-ICP-MS chromatograms of rain samples from the southern and northern 
hemispheres. MHS is samples from Mace Head Station and MHC is samples from Mace Head 
Cottage. Note that in part (a) and (f) Mace Head aerosol sample 0.25-0.71 µm from the 
15/6/06 is overlaid for a comparison between aerosol and rain speciation.  
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Figure 9: IC-ICP-MS chromatograms of snow samples from different locations around the 
world. Lake Constance is in southern Germany, Mt. Eggmont is on the west coast of the north 
island of New Zealand, Interlaken is a sample taken from the mountains surrounding the city 
of Interlaken, Swiss Alps, Bf is snow from the Black Forest Germany.  
 

2.3.4 Discussion  
 
The current understanding of iodine cycling in the atmosphere states that the majority of 

gaseous iodine is taken up, or nucleates, as iodine oxides such as HIO3 or I2O5.  Theoretically, 

iodine oxide should be a stable sink species for iodine and thus removed from further cycling 

reactions in the atmosphere. While such mechanisms have traditionally been implemented in 

models, it is obvious from the field results presented here and elsewhere that iodate is often 

the least abundant species in rain, snow and aerosols (Baker et al., 2000; Baker et al., 2001; 
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Baker, 2004, 2005; Gilfedder et al., 2007b, a). Recent modeling studies have attempted to 

implement some simple organic-iodine reactions in an attempt to reconcile field data with 

theoretical calculations (Pechtl et al., 2007). However, even these simplified schemes are 

severely limited by a lack of structural identification of the iodoorganic compounds, kinetic 

data and indeed even if organically bound iodine is a global phenomena. The data in Baker, 

(2005) has, to a large degree, shown that organically bound iodine is of global importance, but 

other studies using complementary methods are obviously required to add weight to Baker’s 

findings.  

 

The data presented here shows that organically bound iodine is the most abundant species in 

aerosols sampled at Mace Head. In addition to the calculated organic iodine fraction (i.e. total 

– inorganic species) we also observe unidentified anionic iodine species in IC-ICP-MS 

chromatograms that can only be organic compounds. Although the largest of these species 

only made up, at maximum, 10-15 % of the total iodine, these species provide direct evidence 

that organic iodine exists in the aerosols. This is further shown by the tentative identification 

of low concentrations of iodoacetic acid. The unidentified peaks are most likely anionic 

organic iodine species of low molecular weight, as they are efficiently separated by the anion 

exchange resin which was initially developed by Dionex for separation of highly polarizable 

anions. It is thought that these species are formed by oxidative and/or photolytic 

decomposition of organic-iodine molecules of high molecular weight, such as iodinated 

marine gels or colloids and their decomposition products, observed globally in submicron 

aerosols by Leck and Bigg, (2005), Leck and Bigg,(2007) and Bigg, (2007). These gels are 

transferred into the atmosphere by bubble bursting and have been observed by microscopy at 

less than 50 nm sizes. Marine gels decompose both photolytically and by acidification (Chin 

et al., 1998; Orellana and Verdugo, 2003). For example:  

 

Large org-I  +  hv → Small org-I  + hv  →  I-  +  CO2      Eq. 1 

 

This very general reaction has been shown to occur in the marine environment, with iodide 

production rates on the order of 12-30 nM m2 kW-1 h-1  (Wong and Cheng, 2001). Moreover, 

Eq.1 is further suggested by the number of observations of iodide enrichment being 

significantly higher during the day compared to the night. Some caution must be used in 

extrapolating rate constants from the marine environment however, as both chemical and 

physical conditions are vastly different to aerosols.  Iodine bound to the organic molecules in 

the aerosols and precipitation must originate from the gas phase rather than via bubble 

bursting, as enrichment factors relative to ocean water are consistently higher than 1000 and 
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up to 10 000 (Duce et al., 1965; Moyers and Duce, 1972; Rancher and Kritz, 1980; Sturges 

and Barrie, 1988). In contrast, bubble bursting can only produce, at maximum, enrichment 

factors of ~50 (Seto and Duce, 1972). If iodine is taken up by aerosols as iodine oxides, as 

currently thought, it must be rapidly reduced to species such as I- and HOI. Until recently 

there has been no mechanism for the reduction of iodate in the atmosphere. However, Pechtl 

et al., (2007) have recently proposed a reaction which may be able to fulfill this function: 

 

IO3
-  +  I-  +  2H+  →  HIO2  +  HOI              Eq. 2 

 

Alternatively to Eq.2 the organic matter from the surface layer of the ocean may possess 

sufficient reductive potential to reduce the iodate to more reactive intermediate species, 

although this remains to be seen. According to the modeling work of Pechtl et al., (2007) HOI 

will also be formed by oxidation of iodide at diffusion controlled rates (i.e. very fast). For 

example: 

 

I-  +  ICl  →   I2  +  Cl-    then    I2 → HOI + I-  + H+              Eq.3 

 

In either case, it is most likely that it is HOI which is responsible for iodination of organic 

matter, as it is highly electrophilic. HOI has a strong affinity for carbon bonds, and conjugated 

double bonds in particular. It could be expected that the marine gels, derived from 

spontaneous polymerization of marine DOM in the ocean microlayer and tends to be 

concentrated in submicron particles by the bubble bursting process (Chin et al., 1998; 

O’Dowd et al., 2004), are an ideal substrate for iodination. For example, 

  

HOI  +  Org-H  → Org-I  +  H2O              Eq. 4 

 

In this reaction iodine abstracts a hydrogen atom from the carbon substrate. As an alternative 

to Eq. 1, the HOI may also react with small organics to form the iodoacetic acid and the other 

unknown compounds observed in the chromatograms. It is envisioned that the reaction 

between iodine and organics is a highly non-linear reaction, as the HOI would have a 

preference for unsaturated bonds. Unsaturated bonds are particularly prone to oxidation (by 

e.g. O3, OH or even XO), and thus the most optimal halogenation sites are expected to 

decrease with time. It is also feasible that once there is no, or few, available halogenation sites 

reduction of HOI by organic matter may play a role in maintaining iodide concentrations as 

implayed in the reaction cheme of Pechtl et al., (2007). For example,  
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R·  +  HOI  →  R-O  +  I-  +  H+              Eq. 5 

One interesting implication of the combination of Eq. 1, Eq. 3, Eq.4 and Eq.5 is that iodine 

may oscillate between iodide and organic iodine and escape both degassing from the aerosols 

and oxidation to higher valance states. Interestingly, this may also increase the rate of Eq. 2, 

which is limited by the iodide concentrations in the aerosols (Pechtl et al., 2007). Obviously, 

such hypothesis depends on the as yet unknown rates of Eq. 1, Eq.4 and Eq.5. Indeed, as just 

mentioned, the rate of Eq. 4 may change with time depending on the organic substrate 

characteristics and reduction potential. Also, Eq.1 is dependent on solar radiation and 

therefore should not be active during the night, suggesting that a diurnal cycle should be 

observed in the day-night data. 

 

This ties into the diurnal sampling at Mace Head, where we attempted to identify difference in 

speciation during day and night, but unfortunately no strong difference was observed except 

for iodide. There may be two reasons for this, and the lack of an obvious cycle does not 

automatically render the first step of Eq. 1 invalid. Firstly, the samples were all taken on rainy 

days, as the primary aim at the outset of the experiment was to trace iodine species from the 

aerosol phase into the droplet phase. Such conditions would not be conducive to a robust 

testing of Eq. 1. Secondly, we have only measured the soluble organic iodine, whereas the 

majority of organic matter in submicron aerosols from Mace Head is insoluble (O’Dowd et 

al., 2004). As such, any temporal and/or diurnal trends in the data may be obscured by the 

extraction method which may only sample a small portion of the organic iodine. For example, 

we may only be sampling the second step in Eq. 1, where the largest of the insoluble organic 

matter has been partially oxidized to give more soluble, although still relatively large, 

compounds. Future studies focused on the diurnal cycling of iodine should choose days with 

high solar intensities and analyze the total iodine in the samples in addition to the water-

soluble iodine to maximize the possibility of observing the iodination-deiodination 

mechanism.  

 

So far we have only considered iodine-organic interactions in the aqueous/particle phase. 

While there have been limited studies on interactions between halogens and organics in the 

gas phase it is a worthy area of future research. For example, Toyota et al., (2004) have found 

that up to 20 % of atmospheric Br may end up as organo-Br formed through gas phase 

reactions between gaseous Br radicals and simple organics (up to C3 hydrocarbons). Also, as 

mentioned in the introduction, Rosinski and Parungo, (1966) showed that iodine and biogenic 

gases react (forming iodoorganics as observed by mass spectrometry) to decrease the freezing 

temperature of ice nuclei. Moreover, chamber studies with brown macroalgae Drvillaea 
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potatorum at Cape Grim Australia found that particles produced on exposure to ozone and 

light were only stable in xylene, suggestive on an organic aromatic species (Cainey et al., 

2007); a finding quite different to that observed in chamber experiments in the UK by 

McFiggans et al., (2004). Nucleation of an organic iodine species would still be consistent 

with the low solubility of 8 nm size aerosols found with a UF-TDMA by Väkevä et al., 

(2002). Therefore, while iodine oxide nucleation is still the most plausible mechanism for the 

large nucleation bursts observed at Mace Head (given the rather robust laboratory data of 

McFiggans et al.,  (2004) and fast kinetics of the IO-IO reaction) it would still be useful to run 

some chamber studies on iodine-organic interactions in the gas phase.  

2.3.5 Conclusions  
 

Atmospheric iodine chemistry is of increasing interest due to the nucleation of iodine gases to 

form new nucleation sized aerosols. These aerosols are supposedly composed of iodine oxide, 

although, as shown here iodine oxides are the least abundant species in accumulation and 

course mode aerosols, rain and snow with organic iodine species being dominant species. Up 

to five organic anionic species can be observed in the IC-ICP-MS chromatograms, but except 

for iodoacetic acid, remain unidentified. The most important consequence of the organo-I in 

the aerosols is probably by effecting the residence time of iodine within the particles, in 

particular by retarding iodine release to the gas phase (thus possibly decreasing ozone 

destruction). Organo-I may also facilitate iodine buildup in aerosols and rain to enrichment 

factors greater than 1000. While it is most likely that organo-I forms by aqueous phase 

chemistry in the aerosol, it would be useful for future laboratory based studies to investigate 

the possibility of iodine-organic reactions in the gas phase and subsequent condensation as an 

alternative to the IO2-IO2 nucleation hypothesis.  
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Sup. Fig. 1: Back trajectories for the 15th June samples.  
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Sup. Fig. 2: Back trajectories for samples from the 17th June.  
 

 
Sup. Fig. 3: Back trajectories for samples from the 18th June.  
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Sup. Fig. 4: Back trajectories for samples from the 19th June.  

 
Sup.Fig. 5: Back trajectories for samples from the 20th June.  
 

 
Sup. Fig. 6: Back trajectories for samples taken on the 25th June.  
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Sup. Fig. 7: Back trajectories for samples taken on the 26th June.  

 
Sup. Fig. 8: Back trajectories for samples taken on the 29th June.  
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Sup. Fig. 9: Back trajectories for samples taken on the 4th July.  
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Sup. Fig. 10: IC-ICP-MS chromatograms of aerosol samples from Mace Head and offshore 
aboard the Celtic explorer.  
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Sup. Fig. 11: PM 2.5 chromatograms of aerosols from Mace Head.  
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Status: published Analytical and Bioanalytical Chemistry 

Abstract 
Iodine in soils and sediments is a difficult element to analyze due to its volatility in acidic 
conditions. Traditionally it has been quantified using neutron activation analysis techniques, 
which, unfortunately, requires access to a nuclear reactor. We present here a simple method 
for solid phase iodine analysis by thermo extraction at 1000 oC and quantification by UV/Vis-
photometry. Samples are combusted in an oxygen stream and trapped in Milli-Q water. The 
extracts are then quantified by an As3+-Ce4+ spectrometric method whereby iodide catalyzes 
the oxidation of As3+ to As5+ and reduction of Ce4+ to Ce3+. Three standard reference 
materials were analysed with excellent recoveries (97-113 %) and RSDs (<5 %). Moreover, 
the detection limit was less than 50 ng absolute iodine with a confidence limit of 95 %. When 
applied to carbonate rich samples from sediment traps deployed in Lake Constance we found 
very low iodine levels (0.8-2 mgkg-1). Despite the low concentrations, the precision of the 
method was consistently better than 5 % RSD. However, the method needed to be slightly 
modified for organic and iodine rich sediments (20-30 % org-C) from a lake in the Black 
Forest by increasing the oxygen flow rate and decreasing the combustion time. Using the 
modified method we were able to achieve RSDs lower than 5 %. 

 

3.1.1 Introduction  
Iodine is an essential trace element for all mammals including humans. Iodine deficiency 

disorders are currently thought to affect up to 30 % of the world’s population, in both 

developed and less developed nations (de Benoist et al., 2004). For example, it is estimated 

that the prevalence of goiter in Europe has risen by ~ 80 % since 1993 and currently more 

than half of the European population has insufficient iodine intake despite the addition of 

iodine to salt (de Benoist et al., 2004). One factor influencing iodine deficiency in continental 

regions is the concentration of iodine in the soil, as this has a direct influence on the natural 

iodine levels available for human (and other animals) uptake via plant foodstuffs and dairy 

products. However, iodine is relatively difficult to analyse in the solid phase. In acid assisted 

digestions, such as the commonly used aqua-regia procedure for metal extraction, iodine is 

converted to volatile I2 and is lost to the gas phase; a process exacerbated by heating. Neutron 

Activation Analysis (NAA; instrumental, chemical or photo, see Wagner et al. for an 
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example, (Wagner et al., 1998)) is the industry standard for iodine analysis in solids and has 

been applied for at least the last 30 years. However, it is not available to all groups as it 

requires access to a nuclear reactor and is expensive to commission when a large number of 

samples need to be analysed. Analysis by external laboratories also has the disadvantage that 

the sample-submitter does not have any control over the operating conditions (e.g. decay and 

counting time) and samples are usually run in conjunction with many other samples with 

various matrices and iodine concentrations. Also, detection limits quoted from commercial 

laboratories are no lower than 1 mgkg-1, which can be a significant problem in low iodine 

content soils and rocks. Other procedures such as fluxing with KOH-KNO3 (Brown et al., 

2005) requires expensive quantification equipment such as an ICP-MS to achieve sufficiently 

low detection limits and are relatively time consuming when many samples need to be 

processed. Other, less commonly used techniques, such as derivatization after dry ashing and 

analysis by GC-MS (Marchetti et al., 1994) require a relatively large number of steps and so 

are also quite time consuming. Such analytical limitations are particularly important in less 

developed countries where significant proportions of the population suffer from iodine 

deficiency disorders while laboratories are often rather rudimentary. Here we present a 

thermo-extraction method followed by Vis-spectrometry for iodine quantification in solid 

materials. Most importantly, this procedure is cheap despite having detection limits below 50 

ng at 95 % confidence and a RSD of 3-5 %.  

3.1.2 Material and methods 

3.1.2.1 Chemicals  
 
Starting reagents: All water used was from a Milli-Q 18 MΩ cm-1 system. The following 

chemical solutions are taken from German norm method DIN 38405-33 (DIN 38405-33, 

2001). Firstly, a 11.12 molL-1 sulfuric acid stock solution was made from 97 % H2SO4, and 

4.5 molL-1 HCl stock solution was made from 37 % HCl. A 16 mmolL-1 Ce(SO4)2·4H2O 

solution was made by mixing 400 ml water with 35 ml of the stock H2SO4 solution, to which 

3.20 g of pro analysis Ce(SO4)2·4H2O was added and dissolved with a magnetic stirrer. The 

Ce(SO4)2·4H2O solution was then made up to 500 ml with water and stored for future use. A 

15 mmolL-1 As2O3 solution was made by first dissolving 2 g NaOH and 3.71 g pro analysis 

As2O3 in 200 ml warm water. Once the As was dissolved the solution was acidified by 

addition of 53 ml of the H2SO4 stock solution and made up to 500 ml. It was then stored for 

future use. Calibration standards were made from ICP-MS grade 1000 mgl-1 iodide stock 

solution and were diluted to 10-160 µgl-1.  
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3.1.2.2 Thermal iodine extraction 
The thermal iodine extraction procedure employed here is very similar to that of Schnetger 

and Muramatsu (Schnetger and Muramatsu, 1996) and Putschew et al. (Putschew et al., 

2003). This study used a Thermo-AOX (ECS2000 Euroglass Analytical Instruments) with 

automatic sample injection. This apparatus is simply a quartz combustion tube passing 

through a furnace capable of 1000 oC (Schnetger and Muramatsu (Schnetger and Muramatsu, 

1996) state that 800 oC is enough for iodine extraction). The combustion tube is then 

connected to a glass iodine trap filled with Milli-Q water (Figure 1). 

 

 

Figure 1: Set up of thermo-extraction apparatus. This is essentially the combustion and 
trapping parts of an AOX machine (Euroglass ECS2000). Not to scale. 
 
 
 Note that our method differs from that of Schnetger and Muramatsu (Schnetger and 

Muramatsu, 1996) and Putschew et al. (Putschew et al., 2003), in that we did not add a 

reducing agent (such as sulfite or sulfide) to the trapping solution. No loss of iodine was 

found due to sorption to the glass walls or volatilisation. The AOX machine was modified by 

removing the colorimetric cell used for standard AOX measurement, draining and thoroughly 

washing the sulfuric acid bubbler and using this bubbler as the iodine trap. The connecting 

glass pipe between the furnace and the trap was also heated to 200 oC with resistance heating 

wire. Each dried soil or sediment sample (7.8-300 mg) was weighed into a quartz ‘boat’ and 

placed in the quartz tube under an oxygen stream of 150 mlmin-1 and a bypass oxygen flow 

rate of 40 mlmin-1. The boat was then slowly (automatically) moved into the hot part of the 

furnace where-after the iodine vapor released on combustion was collected in the trap solution 

(Figure 2). The settings for the automated injection were: injection speed 2 mm/second, 

drying time 2 minutes, combustion time 5 minutes. After each sample had spent 5 minutes in 

the furnace the trap was drained into a test-tube and filled to the nearest volume marker. This 
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volume was then recorded for later quantification. Typically the trap contained 9-13 ml of 

water. An overview of the method is presented in Figure 2.  

 

 
Figure 2: Flow chart of entire combustion and quantification procedures used for 
quantification of iodine in soils and sediments.  

3.1.2.3 Quantification  
 
The iodine quantification method used here is based on the German norm method DIN 

38405-33 (DIN 38405-33, 2001) and is described in detail below. Iodide catalyzes the 

oxidation of aqueous As3+ to As5+ by Ce4+, which is reduced to Ce3+. In the absence of iodide 

the As-Ce redox reaction rate is so slow it is negligible for practical purposes, and as such the 

reaction rate can be quantitatively related to the iodide concentration in solution. Thus, the 

loss of the yellow coloured Ce4+(measured as absorbance at λ=436 nm) after a preselected 

reaction time can be related directly to the aqueous iodide concentration. This reaction is 

relatively well studied and has been used for iodine quantification in seawater (Truesdale and 

Spencer, 1974; Elderfield and Truesdale, 1980), estuarine water (Ullman et al., 1988), 

sediment pore water (Ullman and Aller, 1980) and fresh water (Jones and Truesdale, 1984; 

Truesdale and Jones, 1996; Neal et al., 2007). Note that all other iodine species in solution, 
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such as iodate, are rapidly reduced to iodide by the excess concentrations of As3+ (Truesdale 

and Spencer, 1974). As the method is kinetically based (i.e. dependent on a reaction rate) the 

reaction is sensitive to temperature and, most importantly, the time allowed for the reaction to 

take place. Therefore the optical density (absorption) reading must always be taken after an 

exact pre-selected reaction time at constant (as possible) room temperature. In practice, 

perturbations in room temperature generally have only a minor effect on absorbance and can 

be easily corrected for by running a checking standard within each sample batch. The reaction 

time selected is the most important variable and needs to be selected depending on the 

estimated iodide concentration range in the sample solutions, as discussed later. The reaction 

rate is measured with a UV-Vis spectrometer at a wavelength of 436 nm at the preselected 

reaction time. The procedure followed was thus (and is summarised in Figure 2): 

 
• 0.5 ml of sample (or calibration standard) 
• 0.5 ml of the As3+ solution 
• 0.1 ml of the HCl solution  

 
Were added to a (disposable) 1 cm cuvette in this order, then  
 

• 0.5 ml of the Ce4+ solution was added and at exactly the same time a timer was started 
• The solution should be sucked up and ejected back into the cuvette 3 times to ensure 

adequate mixing. 
• Record the absorbance at λ= 436 nm at exactly the end of the preselected reaction 

time. (e.g. after exactly 15 mins.) 
 
The Ce4+ solution can be added to the next sample every 30 seconds or 1 minute depending on 

how familiar the user is with the method so that up to 30 samples can be run in a single 15-

minute batch. Note that the same reaction time must be used for all samples and standards.  

 
 
The sensitivity of this method is dependent on the reaction time selected, with higher 

sensitivities at longer reaction times. This is shown graphically in Figure 3 where the same 

standards are run at 5, 10 and 15 minutes reaction time. The optimum reaction time depends 

on the iodide concentration in the sample, and thus can be modified as the analyst requires, 

with lower iodide concentrations favoring a longer reaction time whereas higher iodide 

concentrations require a shorter reaction time. However, the working range of this 

photometric method is quite large, and in our experience from analysing standards, reference 

materials, and real samples 15 minutes reaction time is optimum for iodide concentrations 

between 10-100 µgl-1. However, at iodide concentrations higher than 100 µgl-1 the absorbance 

of Ce4+ is too low for reliable detection with the photometer. Therefore, 10 minutes reaction 

time is preferable for iodide concentrations greater than 100 µgl-1. For concentrations between 

1-10 µgl-1 we have found that 35 minutes is an adequate reaction time using standards, 



 - 111 - 

 

however, we did not find any soil extract concentrations in this range. Standard calibration 

solutions (10-160 µgl-1) of iodide were analysed prior to the reference materials and real 

samples using the above procedure and consistently gave r2 values better than 0.9995. Note 

that the relationship between iodide concentration and optical density is inversely logarithmic. 

Therefore all absorbance data were transformed into a linear relationship by Anew= 

ln(1/Asample). If samples are to be run at a later time on the same day, a correction standard 

should also be run to account for any change in room temperature as mentioned above.  

 
Figure 3: The effect of reaction time on transformed absorbance. Notice the increasing 
sensitivity with increasing reaction time. 

3.1.2.4 Samples  
 
Three standard reference materials with certified iodine concentrations were analysed to test 

the recovery, accuracy, precision, and reproducibility of the method:  

 
1. Chinese stream sediment NCS DC 73312 with a certified iodine concentration of  

2.9 ± 0.4 mgkg-1; 
2. Chinese soil NCS DC 73321 with a certified iodine concentration of 9.4 ± 1.1 mgkg-1;  
3. Montana soil SRM 2711 with a recommended iodine concentration of 3 mgkg-1. 

 
To test the precision of the method at low iodine concentrations, sediment samples were also 

obtained (from Langenargen Lake Research Center, Germany) from sediment traps deployed 

in Lake Constance, Germany. The carbonate dominated (~5 % inorganic-C), low organic 

carbon and low iodine content samples are presented here. We also sampled a 42 cm sediment 

core from the Mummelsee, a small humic-rich headwater lake (1036 masl) in the northern 

part of the Black Forest. Three selected samples from this core are presented to illustrate the 

applicability of the method to samples containing high organic carbon content (20-30 % org-

C).  
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3.1.2.5 Detection limit 
 
Calculating the detection limit for this method poses the problem that at lower iodine 

concentrations ever-larger masses of sample can be taken to ensure iodine levels are above 

instrument detection limits (Michel and Villemant, 2003). To overcome this problem we have 

calculated the minimum absolute (rather than mass per mass) iodine concentration that can be 

detected with 95 % confidence. For this calculation we have adopted the ‘95 %confidence 

interval’ approach whereby known amounts of analyte are plotted vs. instrument response (in 

our case absorbance) and fitted with 95 % confidence limits. Calculation of the detection limit 

from the 95 % confidence intervals was preformed according to German norm DIN 32645 

(DIN 32645, 1994), which gives identical results to the statistical method suggested by 

(Clayton et al., 1987). This was accomplished by burning, trapping (in 12 ml water) and 

measuring (15 mins reaction time) increasing amounts (10-300 mg) of standard reference 

material NCS DC 73312 and plotting the transformed absorbance against absolute iodine 

mass (Figure 4). The detection limit given here must not be confused with the standard 

method of 3 times the standard deviation of the blank, which statistically only gives a 

detection certainty with 50 % confidence (Clayton et al., 1987; Sanders et al., 1996).  

3.1.3 Results and Discussion  

3.1.3.1 Reference materials 
 
Iodine recoveries from the standard reference materials were consistently in the range given in 

the certificates and varied between 97-113 % for all samples (Table 1). The average value for 

the the Chinese stream sediment was 3.09 ± 0.15 mgkg-1 (n=15), whereas the average iodine 

concentration in the Chinese soil was 9.51 ± 0.22 mgkg-1 (n=18). Although no error is given 

for the Montana soil standard reference material, the recovery was also very good compared 

to the recommended value of 3 mgkg-1 (2.9 mgkg-1, 97 %; Table 1). Moreover, the RSD for 

each run was usually less than 3.5 % for the Chinese reference materials. The RSD of all 

analysis, and so incorporating differences in daily calibrations etc., was ~ 4.8 % for the 

Chinese stream sediment and 2.3 % for the Chinese Soil. The weight of soil used did not 

appear to influence the result, as even using only 7.8 mg of the Chinese soil gave a recovery 

of 103 % (9.65 mgkg-1) and 300 mg of the Chinese stream sediment gave 109 % (3.16 mgkg-

1), both well within the range given in the certificates (Table 1).  

 
The plot of absolute iodine mass vs transformed absorbance used for quantification of the 

detection limit is shown in Figure 4. The regression coefficient was very good at r2 = 0.998 

despite the fact that it incorporates all potential errors in the method, from sample 
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heterogeneity, to weighing the sample into the boat and the combustion and photometric 

procedure. Based on the 95 % confidence intervals for this plot the detection limit was 49 ng 

iodine. For comparison with other studies that use the ‘3 times the standard deviation of the 

blank’ method we have also calculated the detection limit at 50 % confidence from 

confidence intervals to be 25 ng absolute iodine. However we do not recommend the use of 

this value as it is associated with a 50% chance of a type 2 error (i.e. a negative finding when 

in fact the analyte is present above the given detection limit) (Clayton et al., 1987; Sanders et 

al., 1996).  

Table 1: Iodine recoveries from standard reference materials.  
Sample name Analysis 

Date 
Ref. Value iodine 

(mgkg-1) 
Weight 

(g) 
Iodine found 

(mgkg-1) 
Recovery 

(%) 
Chinese Stream sediment 
NCS DC 73312 

17/1/07 2.9 ± 0.4 0.1009 3.19 110 % 

Chinese Stream sediment 17/1/07 2.9 ± 0.4 0.1194 3.28  113 % 
Chinese Stream sediment 18/1/07 2.9 ± 0.4 0.1314 3.21 110 % 
Chinese Stream sediment 25/1/07 2.9 ± 0.4 0.0572 2.85 98 % 
Chinese Stream sediment 25/1/07 2.9 ± 0.4 0.0924  2.84  98 % 
Chinese Stream sediment 25/1/07 2.9 ± 0.4 0.0509 2.94 102 % 
Chinese Stream sediment 25/1/07 2.9 ± 0.4 0.1000 3.04 104 % 
Chinese Stream sediment 30/1/07 2.9 ± 0.4 0.3006 3.16 109 % 
Chinese Stream sediment 30/1/07 2.9 ± 0.4 0.0739 3.16 109 % 
Chinese Stream sediment 06/2/07 2.9 ± 0.4 0.1142 2.96 102 % 
Chinese Stream sediment 06/2/07 2.9 ± 0.4 0.1619 2.95 102 % 
Chinese Stream sediment 06/2/07 2.9 ± 0.4 0.1017 3.09 106 % 
Chinese Stream sediment 06/2/07 2.9 ± 0.4 0.0744 3.10 107 % 
Chinese Stream sediment 09/2/07 2.9 ± 0.4 0.1148 3.13 108 % 
Chinese Stream sediment 09/2/07 2.9 ± 0.4 0.0618 3.15 109 % 
Chinese soil NCS DC 73321 17/1/07 9.4 ± 1.1 0.0985 9.58 102 % 
Chinese soil  17/1/07 9.4 ± 1.1 0.0516 9.89 105 % 
Chinese soil  17/1/07 9.4 ± 1.1 0.1110 9.63 102 % 
Chinese soil  17/1/07 9.4 ± 1.1 0.0992 9.43 100 % 
Chinese soil  17/1/07 9.4 ± 1.1 0.1474 9.60 102 % 
Chinese soil  25/1/07 9.4 ± 1.1 0.0819 9.40 100 % 
Chinese soil  25/1/07 9.4 ± 1.1 0.0599 9.84 105 % 
Chinese soil  25/1/07 9.4 ± 1.1 0.0214 9.38 100 % 
Chinese soil  25/1/07 9.4 ± 1.1 0.1002 9.85 105 % 
Chinese soil  30/1/07 9.4 ± 1.1 0.0652 9.28 99 % 
Chinese soil 30/1/07 9.4 ± 1.1 0.1025 9.23 98 % 
Chinese soil 30/1/07 9.4 ± 1.1 0.0656 9.63 102 % 
Chinese soil 30/1/07 9.4 ± 1.1 0.0484 9.51 101 % 
Chinese soil 30/1/07 9.4 ± 1.1 0.0706 9.54 102 % 
Chinese soil  06/2/07 9.4 ± 1.1 0.0561 9.17 98 % 
Chinese soil 06/2/07 9.4 ± 1.1 0.0332 9.48 101 % 
Chinese soil 06/2/07 9.4 ± 1.1 0.1086 9.21 98 % 
Chinese soil 16/2/06 9.4 ± 1.1 0.0078 9.65 103 % 
Montana soil SRM 2711 30/1/06 3 ± ? 0.0414 2.90 97 % 
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Figure 4: Absolute iodine concentrations from standard reference material NCS DC 73312 vs 
transformed absorbance ln(1/A). The confidence intervals for this graph were used to 
calculate the detection limit of 49 ng with 95 % certainty. 
 

 Real samples 
 

As expected, the iodine concentrations in the carbonate rich sediment from the Lake 

Constance sediment traps were very low, ranging from 0.78-2.08 mgkg-1 for the two samples 

shown here (Table 2). Despite the low concentrations, the precision of the method was still 

very good, with a RSD of 1.3 % for the sediment trap sample containing 2.04 mgkg-1 and 4.8 

% in the sample with an average of 0.82 mgkg-1. These samples illustrate one of the 

advantages of this method; the weight of sample taken can be modified based on the expected 

iodine concentration in the sample. For example, when very low iodine concentrations are 

expected (e.g. <2 mgkg-1) more sample material can be burnt in the furnace to ensure that the 

absolute iodine concentration is above the 49 ng detection limit given above. This also applies 

to samples containing high iodine concentrations, i.e. a low weight of material can be selected 

to ensure that the iodine levels are not above the usual calibration curve. Indeed, high iodine 

levels in the extraction solution can be more of a problem than low concentrations, as, due to 

the inverse logarithmic nature of the calibration curve, higher sensitivity is observed at lower 

iodine concentrations. Moreover, when iodine levels are very high the Ce4+ is reduced too 

rapidly and all colour in the cuvette is lost. This can be circumvented by selecting a shorter 

reaction time to ensure that there is enough Ce4+ to give a reliable absorbance reading (Figure 

3). Again this is true vice versa; a longer reaction time can be selected for low iodine 

concentrations. 

When we applied the method described above to the organic rich Mummelsee sediments the 

RSDs were relatively high (<10 %). Therefore we varied the oxygen flow rate, injection 

speed, evaporation time and combustion time in attempt to reduce the standard deviation to 
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less than 5 %. The most appropriate (i.e. lowest RSDs) method was with an increased oxygen 

flow rate (~225 mlmin-1) and shorter burning period (2 minutes). The increased oxygen flow 

rate was necessary, as the organic carbon tended to combust at the edge of the furnace and the 

energy (heat) release during combustion probably volatilized a portion of the iodine. The 

higher oxygen flow ensured that any iodine volatilized at the edge of the furnace passed 

through the hot part of the furnace into the trapping solution. With this modified method 

iodine concentrations in the three core samples from the Mummelsee were significantly 

higher (8.5 ±0.4 to 15 ± 0.5 mgkg-1) than those observed in the carbonate rich samples from 

Lake Constnace with RSDs <5 % (Table 2) The modified method also gave accurate results 

for the standard reference materials (Table 2).  

 
Table 2: Iodine concentrations, standard deviations (mgkg-1) and relative standard deviations 
(%) in sediments collected from sediment traps deployed in Lake Constance , (LC), and a 
sediment core from the Mummelsee (Ms), Black Forest, both from Germany. Iodine 
concentrations in standard reference materials using the modified method are also shown.  
 

Sample Sample date Weight Iodine 
mgkg-1

Mean 
mgkg-1

SD 
(mgkg-1) 

RSD 
(%) 

LC-5569 30/5 -14/6/05 0.1769 2.03 
rep 1  0.1304 2.08 
rep 2  0.1861 2.04 
rep 3  0.1801 2.01 
rep 4  0.1645 2.05 

2.04 0.02 1.3 

LC-5765 22-29/8/05 0.2443 0.84 
rep 1  0.1423 0.89 
rep 2  0.1056 0.77 
rep 3  0.0989 0.79 
rep 4  0.1553 0.78 
rep 5  0.1599 0.81 
rep 6  0.1221 0.84 
rep 7  0.1265 0.81 

0.82 0.04 4.8 

Ms-4 cm  0.0338 12.14 
rep 1  0.0395 12.22 
rep 2  0.0285 12.82 
rep 3  0.0322 13.32 
rep 4  0.0323 11.9 

12.48 0.58 4.6 

Ms-18 cm  0.0485 8.74 
rep 1  0.0540 7.96 
rep 2  0.0354 8.49 
rep 3  0.0309 8.79 

8.5 0.38 4.5 

Ms-28 cm  0.0313 15.04 
rep 1  0.0271 14.93 
rep 2  0.0273 14.56 
rep 3  0.0297 14.59 
rep 4  0.0269 15.77 

15 0.5 3.3 

NCS DC 73321  0.0649 9.68    
NCS DC 73312  0.0585 3.16    

 

3.1.4 Conclusions  
We have presented here a relatively simple technique for iodine quantification in soils and 

sediments. When compared to standard reference materials the recoveries were between 97-



 - 116 - 

 

113 % depending on the reference material and were well within the error given in the 

certificates. All replicate analysis had RSD’s below 5 % and the method had a detection limit 

of 49 ng absolute iodine with a 95 % confidence limit. Analysis of real sediment samples 

showed that organic rich sediments (> 15 % org-C) have significantly higher iodine 

concentrations than the carbonate rich and organic poor samples (inorg-C~5 %, org-C < 2 %). 

However, to obtain satisfactory results in the high org-C samples the method needed to be 

modified by increasing the oxygen flow rate and decreasing the combustion time.   

 
 
The major benefit of this method is that the detection limit is significantly lower than 

commercially available NAA, which is not less than 1 mgkg-1. Moreover, the method is less 

time consuming than dry fluxing at high temperatures with either ICP-MS or derivitisation 

combined with GC-MS quantification (Marchetti et al., 1994; Michel and Villemant, 2003). It 

also has low relative standard deviations comparable to, or lower than, other methods despite 

utilizing low cost technology. Indeed, the method is comparatively cheap and rapid compared 

to all other iodine quantification procedures, and, in particular, does not require access to a 

nuclear reactor as in NAA. As such, it is an ideally suited method for use in areas that are 

currently effected by iodine deficiency but do not have access to expensive analytical 

equipment.  
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Abstract 
Iodine undergoes several redox changes in the natural environment, existing as iodate, iodide, 
and covalently bound to organic matter. While considerable attention has been given to iodine 
speciation and cycling in the marine environment, very little is known about iodine cycling 
and speciation in terrestrial fresh water systems. Here we show iodine speciation (measured 
by IC-ICP-MS) data from one year of monthly sampling of a small humic rich lake in the 
Black Forest (Mummelsee) under varying redox conditions. The aim was to elucidate the 
seasonal cycles of iodine species in the lake water column and to quantify both inorganic and 
organic iodine species. A sediment core was also collected for iodine analysis. Total iodine 
levels in the Mummelsee averaged 1.93 ± 0.3 µg l-1. Organo-I was the dominant species in the 
lake, making up on average 85 ± 7 % of the total iodine. No strong seasonal variation in 
organo-I was observed, with only small variations occurring in the epi- and hypolimnion. 
Iodide was scavenged from the epilimnion during the summer and autumn, which could be 
related to (micro)biological uptake and co-precipitation. This was also suggested by the high 
iodine levels in the sediment core (av. 11.8 ± 1.7 mg kg-1). In the hypolimnion, a strong flux 
of iodide was observed from the sediments into the water column during anoxic and hypoxic 
conditions, observed during the summer, autumn and, in the bottom 2 m, the winter. This 
iodide flux was derived from the bottom sediments and is thought to occur during 
decomposition of biological material. Iodate levels in the epilimnion increased consistently 
over the year, whereas it was reduced below detection limits in the hypolimnion during low 
oxygen conditions. The winter partial turnover lead to reintroduction of oxygen into the 
hypolimnion and the formation of iodate and organo-I, as well as removal of iodide. In 
conclusions, iodine cycling in the Mummelsee was controlled by organo-I, although redox 
conditions were also important, particularly in the hypolimnion during stratification.  

3.2.1 Introduction 
 
Iodine species in fresh waters generally occur as iodide, iodate, and organically bound iodine. 

Under typical oxidizing conditions the inorganic iodine speciation should be dominated by 

iodate whereas iodide should be well below detection limits (Luther et al., 1995). The 

disequilibrium observed in both freshwater and oceanic environments, where significant 

concentrations of iodide (0.3-20 µg l-1) have consistently been observed over at least the past 

four decades, has largely been attributed to biological activity and perhaps also to photolytic 

processes (Elderfield and Truesdale, 1980; Jones and Truesdale, 1984; Jickells et al., 1988; 
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Luther and Cole, 1988; Tian and Nicolas, 1995; Spokes and Liss, 1996; Cook et al., 2000; 

Wong and Cheng, 2001; Chance et al., 2007). It is becoming increasingly apparent that 

organically bound iodine also makes up a significant fraction of the aqueous iodine pool, 

particularly in near-shore and estuarine waters as well as at the interface between oxic and 

anoxic waters (Ullman et al., 1990; Luther and Campbell, 1991; Stipanicev and Branica, 

1996; Wong and Cheng, 1998; Cook et al., 2000). For example, Stipanicev and Branica, 

(1996) have found up to 30 % organically bound iodine in Rogoznica Lake, a coastal cast 

depression filled with sea water. However, all of these studies are from marine or marine 

influenced environments and few analogous studies exist from freshwater systems. Moreover, 

while reports of total iodine concentrations in fresh waters are relatively numerous (e.g. Fuge 

and Johnson, 1986; Bird et al., 1995a; Oktay et al., 2001; Moran et al., 2002; Neal et al., 

2007), detailed studies focusing on speciation are few and often one-off, intended only to 

develop a method (Reifenhäuser and Heumann, 1990; Rädlinger and Heumann, 1997; 

Heumann et al., 1998; Grüter et al., 2000; Wuilloud et al., 2003). Some of these studies have 

been vital in classifying the presence (e.g. Heumann et al., 1998 and references therein), and 

nature (Moulin et al., 2001; Reiller et al., 2006; Schlegel et al., 2006), of organically bound 

iodine, but are unable to elucidate any temporal trends or behaviour of iodine in the natural 

environment.  Indeed, to the best of our knowledge there has only been one long-term 

systematic study on iodine speciation in freshwater, and in limnic systems in particular (Jones 

and Truesdale, 1984). This study was able to clarify inorganic iodine speciation cycles in two 

lakes with differing redox conditions and has not been superseded in detail or 

comprehensiveness despite 22 years of analytical advancements. It demonstrated that iodine is 

sensitive to water column redox changes and in the oxidized zone of the lake, iodide and 

iodate were not in equilibrium. In the anoxic hypolimnion iodide and chloroform extractable 

iodine were the only detectable iodine species. Unfortunately, due to the analytical 

capabilities of the time it was not possible to unequivocally quantify organically bound 

iodine. In relation to iodine speciation in anoxic environments it is also possible to draw from 

oceanic and estuarine analogs, where iodide is the dominant inorganic species in anoxic 

bottom waters and sediments (Wong and Brewer, 1977; Luther and Cole, 1988; Ullman et al., 

1990; Luther and Campbell, 1991; Luther et al., 1995). For example, in the Cariaco Trench 

off the coast of Venezuela Wong and Brewer, (1977) observed direct conversion of iodate to 

iodide in a near 1:1 ratio at the oxic-anoxic boundary and also highlighted the release of 

iodide from sediments in the Black Sea. Similarly, Žic and Branica, (2006) have found 

reduction of iodate and release of iodide from sediments and during diagenesis of biological 

material in anoxic and hypoxic waters of a saline lake that has limited connection with the 

Adriatic Sea.  However, the common theme throughout all of these studies has been the 
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inorganic aqueous iodine cycle. Perhaps due to problems with methodology it has been 

relatively difficult, up until recently, to accurately quantify the organically bound iodine 

fraction. However, with the wide spread use of ICP-MS it is now possible to unequivocally 

quantify total iodine without the need for lengthy chemical treatment (i.e. 

dehydrohalogenation; Schwehr and Santschi, (2003)). Furthermore, by coupling an ion-

chromatograph to the ICP-MS, it is also possible to quantify iodide and iodate directly into 

the ngl-1 range. For example, organically bound iodine is the dominant species in peat bogs, 

although this is hardly unexpected given that concentrations of dissolved organic carbon often 

exceed 50 mgl-1 and even chlorine is bound to organic moieties (Biester et al., 2004).  We 

present here a 12-month study of iodine speciation and cycling from a humic rich lake in the 

Black Forest, Germany, under changing redox conditions. He aim is to extend the earlier 

studies by Jones and Truesdale, (1984) on iodine cycling and speciation in freshwater lakes by 

analysing organic and inorganic iodine species as well as taking a sediment core for 

comparison with aqueous phase iodine levels.   

3.2.2 Study site and Methods 
 
The Mummelsee is a small humic (DOC ~7 mgl-1) cirque lake located in the northern part of 

the Black Forest, Germany, at 1036 masl (Figure 1). The lake has a maximum depth of 17 m, 

surface area of 3.7 ha and volume of 277 500 m3. It has only one very small spring inflow 

located two meters from the lake shore which means that, despite its small size, the lake has a 

water residence time of about 470 days (Thies, 1991). The lake has a catchment area of 18 ha, 

which is mostly forested by Norway spruce. Historically, as in many parts of the Black Forest, 

the Mummelsee and its catchment were affected by acid deposition, with the pH of the inflow 

and lake dropping to 4.4 and 5 respectively (Thies, 1987). Its susceptibility to acid conditions 

is mainly due to the underlying geology (early Triassic Red Sandstone; Buntsandstein) and 

acid podsol soils, both of which have a very low buffering capacity. Thies, (1987) speculated 

that during much of the French occupation of the catchment area after the second world war 

sewage was allowed to leak into the lake’s catchment causing eutrophication. Also, heavy 

salting of the only road in the lake’s catchment, which was previously used to access war and 

postwar (French occupation) radio and radar towers, caused relatively high Na, Cl and EC 

(>100 µs cm-1) values. Our measurements have shown that the lake has, to a large degree, 

recovered since this time with EC dropping to ~ 33 µs cm-1 and pH ranging from 6-7.  
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Figure 1: The Mummelsee study site. Maximum width of the lake is 180 m and max length is 

280 m. Depth contours every 2 meters.   The bathymetry map is oriented the same as the 

insert photo.  

3.2.2.1 Water samples 

The Mummelsee and its inflow were sampled monthly between April 2005 and May 2006. It 

was not possible to sample in December 2005 and March and April 2006 as the lake was 

covered with a thin layer of ice that could not be traversed but also did not allow a boat to 

pass over the lakes surface. When the lake was frozen in January and February 2006 samples 

were taken by drilling a hole through the snow and ice cover and lowering the UWITEC 1 L 

depth profile sampler into the waters below. Samples were taken every meter between the 

surface and 17 m depth. The temperature was recorded from the thermometer installed in the 
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sampler, EC, Eh, and after the first 4 months dissolved oxygen was also recorded in the field 

using standard electrode techniques. All samples for iodine and dissolved metals (Fe, Mn, Al, 

Si, Al) were filtered in the field (0.45 µm cellulose acetate) by syringe filtration directly after 

recording the temperature. Unfiltered samples were also collected for metal analysis to study 

the partitioning of metals between the operationally defined particulate (>0.45 µm) and 

dissolved (<0.45 µm) phases. This was done in an attempt to trace redox changes and any 

possible correlations between iodine species with (oxy)hydroxides. Samples for metal 

analysis were acidified in the field to pH<2 with 65 % suprapur (Merc) nitric acid and all 

samples were kept cool at 4oC until analysed. For iodine this was usually less than two weeks 

but always within one month, which should be adequate to preserve the original iodine 

speciation (Campos, 1997). 

Total iodine concentrations were measured by inductively coupled plasma-mass spectrometry 

(ICP-MS) after adding 187Re as an internal standard. Iodine species (iodide, iodate, and 

organically bound iodine) were analysed by coupling an ion chromatograph to the ICP-MS 

(IC-ICP-MS). Organically bound iodine was calculated as total iodine minus the sum of the 

inorganic species (i.e. Organo-I = total I – (I- + IO3
-)). Iodine species were quantified using a 

Dionex AS16 column with an AG16 guard column, 35 mmol NaOH eluent, a flow rate of 0.9 

ml min-1 and a Meinhard nebulizer with a cyclone spray chamber on a Perkin Elmer Elan 

6100 quadrupole ICP-MS. Samples were injected into the chromatographic system with a 

Perkin Elmer series 200 autosampler and the entire system was operated with Chromera 

software also from Perkin Elmer. This method has a detection limit for aqueous iodine species 

of about 30 ngl-1 and each sample has a run-time of only 12 minutes (Figure 2). Moreover, no 

sample pretreatment or chemical additives are required. Memory effects were evaluated by 

periodically running blank samples between regular samples, however all iodine species in 

blanks were consistently below detection limits. Replicates, triplicates or at most 7 replicates 

were analysed for selected samples in most sample batches and ranged from a relative 

standard deviation (RSD) of <1% to a maximum of 6%. Eight replicates for speciation were 

also run for a sample from the epilimnion over two days and are shown in Table 1. Iodate, at 

an average 0.15 µg l-1 concentration level, gave a standard deviation (STD) of ±0.006µg l-1 

and a relative standard deviation (RSD) of 4 % whereas iodide, at a concentration level of 

0.06 µg l-1 gave STD of 0.005 µg l-1 and a RSD of 8 %. The accuracy of total iodine and 

iodide concentrations were checked using standard reference material BCR-611. BCR-611 is 

a groundwater certified reference material for bromide that also gives indicative values for 

total iodine (9.3 ± 1.3 µ gl-1), and iodide (9.0 ± 1.1 µg l-1). All of our values were consistently 

within the error given in the certificate and averaged 9.7 µg l-1 for total iodine and average 9.4 
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± 0.4 µg l-1 for iodide. Metals were analysed using inductively coupled plasma - optical 

emissions spectrometry (ICP-OES) and checked with standard reference material NIST-

1643e. All concentrations were within 10 % of the certificate value.  

Table 1: Precision of iodine speciation by IC-ICP-MS. All concentrations in µg l-1.   

Replicate Iodate Iodide

Rep 1 0.16 0.06 

Rep 2 0.15 0.06 

Rep 3 0.15 0.06 

Rep 4 0.15 0.06 

Rep 5 0.15 0.07 

Rep 6 0.16 0.05 

Rep 7 0.15 0.06 

Rep 8 0.14 0.07 
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Figure 2:  IC-ICP-MS iodine speciation chromatograms of samples from 0 m and 17 m depth, 
the spring inflow, and a rain sample collected on the shore of the lake. The rain sample is 
from the data in Gilfedder et al., (2007c).  

3.2.2.2 Sediment core  
A 42 cm sediment core was taken from the deepest part of the lake in October 2006 using a 

gravity corer and a 1 m Plexiglas tube. The core consisted of 42 cm black, organic rich 

sediment and 25 cm of the overlying water column. Only very minimal disturbance to the 

sediment/water interface occurred during sampling. The overlying water was highly anoxic at 

the time of sampling with a strong ‘H2S’ smell. The core was taken directly to the cool room 

at Heidelberg University and after three days sectioned into 1 cm slices in a glove bag under 
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an N2 atmosphere and transferred into 50 ml FalconTM centrifuge tubes. The samples were 

then centrifuged (5000 rpm) and the supernatant, again in the glove bag, decanted into 15 ml 

test tubes. The porewater was subsequently analysed for total iodine by ICP-MS, however as 

they were unfiltered and probably were influenced by particle and humic material of high 

molecular weight it was decided not to report the results here. The porewater accounted for 

less than 0.5% of the total iodine. After pore water extraction the remaining sediment was 

freeze dried, milled in an agate ball mill and then analysed for total iodine concentrations as 

given in Gilfedder et al.,  (2007a). Briefly, each dried and milled sediment sample (20-50 mg) 

is placed in the quartz tube of an AOX machine and combusted in an oxygen stream at 

1000oC. The released iodine vapour is then trapped in a connecting bubbler (formerly the 

sulfuric acid bubbler of the AOX) by Milli-Q water. Our system employed a Thermo-AOX 

(ECS2000 Euroglass Analytical Instruments) with automatic sample injection. The settings 

were: 2 mm s-1 injection speed, 2 min drying time, and 2 min combustion time. The trapping 

solution was then analysed by an As-Ce spectrometric method whereby iodide quantitatively 

catalyses the reduction of Ce4+ by As3+ and loss of the yellow coloured Ce4+ is measured at 

436 nm after a pre-selected reaction time in a UV/Vis spectrometer. Two standard reference 

materials, Chinese stream sediment (NCS DC 73312) and Chinese soil (NCS DC 73321), 

were analysed at the start, middle, and end of the sediment core to ensure the accuracy of the 

method. Also, each second sample was burned and analysed in triplicate to assess the 

precision of the method. This is given as 1 standard deviation of the mean in Figure 6 and 

was, in nearly all cases, less than 5 %. Two samples had a relative standard deviation of < 7 

%. Total carbon was analysed with a LECO C/S analyzer. As this humic lake displays circum 

neutral pH values (6-7), and the sediments were a black/brown colour, total carbon was 

assumed to be solely composed of organic carbon, and the term ‘organic carbon’ is used 

throughout this manuscript. The first 21 cm of the core was date by 210Pb using the constant 

rate of supply model. The 214Am bomb peak at 9 cm was taken as 1963 and then dating was 

extrapolated to the present day and back to the 21 cm 1841 ± 9.5 years. The 214Am peak also 

agreed perfectly with the first 137Cs peak, also at 9 cm depth. When extrapolating to the 

current day the 1-2 cm sample corresponded to 2005 ± 0.3 years; i.e. when the core was taken.  

3.2.3 Results 
   

  3.2.3.1 Temperature profiles and stratification 
 
The temperature depth profiles from the Mummelsee displayed patterns typical for lakes in 

temperate environments (Figures 3 and 4). In 2005, homothermy and spring overturn occurred 
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shortly before April and, as the spring and summer progressed, the lake became strongly 

stratified with the maximum depth of the epi- and metalimnion extending to 9 m. Late autumn 

and winter cooling of surface water caused a second, partial overturn and inverse 

stratification, with mixing occurring to ~15 m depth. As such the Mummelsee can be 

classified as a dimictic lake. As mentioned above, it appears that in autumn 2005 and spring 

2006 the mixing was incomplete, with the bottom two meters of the lake remaining highly 

anoxic with pe ~0 and a strong ‘H2S’ smell. This is commensurate with depth profiles for 

redox sensitive elements Fe and Mn, which dramatically increase in concentration from Fe 

<100 µg l-1 and Mn <10 µg l-1 in the epilimnion to Fe >2 mgl-1 and Mn >80 µg l-1 in the 

anoxic zone. The partial turnover was probably due to the Mummelsee being relatively 

sheltered from the wind by the bowl of the cirque.  

  3.2.3.2 Iodine speciation: Spring-Summer-Autumn 
 
Thermal stratification and oxygen depletion in the hypolimnion during summer and autumn 

had a large influence on iodine concentrations and speciation in the Mummelsee (Figures 3 

and 4). Initially, after the spring overturn, 2005, total iodine as well as all iodine species were 

relatively uniformly distributed throughout the profile, as expected for homothermy. Total 

iodine averaged 1.88 ± 0.06 µg l-1 and iodide and iodate where approximately equal in 

concentration (~0.1 µg l-1). Organically bound iodine (organo-I) was by far the most abundant 

iodine species averaging 1.68 µg l-1, which is about 90 % of the total iodine (Figure 3). 

Organically bound iodine levels were relatively uniform over the spring-summer period (av. 

1.6 ± 0.15 µg l-1: 85 ± 7 % of total iodine) apart from a slight depletion with depth in the 

epilimnion during spring and an increase in this same area during the summer (Figure 3). 

There was also a decline in hypolimnic organo-I during September and October; however this 

trend was not continued into November. Organically bound iodine was consistently the 

dominant iodine species in the lake accounting for 70-95% of the total iodine. The lower 

percentages were from the hypolimnion where increasing iodide concentrations during 

stratification diluted the organically bound fraction.  

 

 During the spring to summer transition period iodate concentrations began to increase in the 

epilimnion; a trend that continued through the summer (maximum iodate concentration of 

0.18 µg l-1) until the autumn-winter overturn. This iodate-enriched zone extended to a 

maximum depth of 8 m, observed in the November depth profile. In contrast, iodide, after an 

initial rise in June, began to decrease in concentration in the lake’s epilimnion. This continued 

during the summer and autumn until iodide concentrations in the epilimnion were, by August, 

below the detection limit. The iodide decrease in the epilimnion was paralleled by a profound 
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increase in iodide in the hypolimnion. Concentrations in the hypolimnion increased from 

~0.15 µg l-1 after the spring turnover 2005 to 0.8 µg l-1 in late summer and autumn, an 

increase of more than 5 times. Moreover, iodide concentrations decreased consistently with 

height above the lake bottom, with a very distinct boundary between the epi- and 

hypolimnion. In contrast, iodate levels decreased in the hypolimnion during summer and 

autumn, with the change also occurring at the epi- hypolimnion boundary. The chemical 

distinction (i.e. redox boundary inferred from I-/IO3
- ratio, Mnpart/Mndis and Fe) between the 

epilimnion and the hypolimnion became increasingly pronounced as the year progressed. 

However, the increase in iodide cannot be solely related to iodate reduction, as at most this 

could account for <0.1 µg l-1 of the iodide. The increase in iodide concentrations in the 

hypolimnion was also matched by an increase in Fe, Mn, Si and in the Autumn, Al, and a 

decrease in dissolved oxygen (Figure 3). The epi- hypolimnion boundary for all these 

elements became increasingly defined as the year progressed.  The large rise in Fe in the 

hypolimnion was mostly in the particle phase (i.e. >0.45 µm), whereas Mn showed no 

difference between particulate and dissolved concentrations. In contrast, in the oxic 

epilimnion Mn was dominantly in the particulate phase, with a sharp decline in dissolved Mn 

and an abrupt and commensurate increase in particulate Mn at the top of the hypolimnion.  
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 Figure 3: Depth profiles for the Mummelsee. April 2005 to October 2005. f=filtered, nf=not filtered. 
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Figure 4: Depth profiles for the Mummelsee. November 2005 to May 2006. f=filtered, nf=not filtered. 
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3.2.3.3 Iodine speciation: winter and spring-2006 
 

The top 15 m of the lake were well mixed during the winter turnover event, while the bottom 

2 m remained anoxic and reducing (Figure 4). In the well-mixed layer, iodate (0.14 µl-1) and 

organo-I (~1.7 µl-1) dominated the iodine speciation, whereas iodide was generally below the 

detection limit. Indeed, during this period organo-I very closely followed the total iodine 

concentrations, accounting for, on average, 94 ± 3 % of the total iodine. Metal concentrations 

were also relatively uniform in the well-mixed layer and showed little difference between 

particulate (as an indicator for oxidized (oxy)hydroxide species) and dissolved phases 

(reduced species); however levels of all elements began to rise at about 13 m depth, which 

also coincided with the largest decrease in oxygen levels. In contrast, iodate was absent from 

the anoxic bottom waters and iodide concentrations increased to a maximum of 1.2 µg l-1. The 

highly reducing nature of this zone is also shown by little difference between particulate and 

dissolved Fe (2 mgl-1) and Mn (100 µg l-1) levels. Qualitatively, we also noticed a strong 

‘H2S’ smell. It must be noted however, that in the February profile we did not take the first 16 

samples from the deepest part of the lake and that after 16 m the sampler hit the lake bottom, 

making it necessary to bore another hole in the ice for the final 17 m sample. As such, the 

decrease in metal concentrations (and also a higher pe) in the final sample from February 

profile can be related to less reducing conditions at the new location.  However, it can be 

clearly seen that this anoxic bottom layer influenced the chemistry of the overlying water 

column, consuming oxygen and iodate (particularly in February), and allowing iodide and 

metals to diffuse into the overlying water. A similar pattern was also observed after the spring 

2006 turnover (May 2006), with the bottom 2 m remaining highly anoxic and rich in iodide 

(3.24 µg l-1) and dissolved metals (except for Fe, which was mostly in the particulate phase), 

whereas the overlying water contained higher levels of dissolved oxygen and iodate and low 

levels of iodide and dissolved metals. Surprisingly, and in contrast to all other depth profiles, 

the anoxic zone in May 2006 also contained nearly no organically bound iodine, accounting 

for only 2-3 % of the total.  

3.2.3.4 Inflow  
 
The Mummelsee has only one small inflow; a spring located 2 m from the lake’s northeastern 

side. This spring is derived from shallow groundwater, as the catchment is small and the 

Mummelsee is a headwater lake; located just below the summit of the highest mountain in the 

northern Black Forest (Hornisgrinde). The spring water was consistently oxygen saturated, as 

it cascaded over a small waterfall before entering the lake. Total iodine concentrations 

averaged 1.6 ± 0.28 µg l-1 and apart from one high concentration in spring 2005, levels were 
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relatively uniform throughout the year (Figure 5). As observed in the lake, organically bound 

iodine was the dominant iodine species in the inflow, accounting for, on average, 76 % of the 

total iodine. Interestingly, iodate was considerably more abundant than iodide in all of the 

samples (molar IO3
-/I- range from 2.75-6.7; Figure 5), except for one sample from late autumn 

2005 (molar IO3
-/I- 0.6) where concentrations were about equal. Iodide concentrations also 

appeared to increase during the summer to the late autumn maximum.  

 

 
Figure 5: Total iodine concentrations and speciation in the spring inflow.  
 

3.2.3.5 Sediment core  
 
The first 21 cm of the 42 cm Mummelsee sediment core dated at 2005 to 1867. If we assume 

that the rate of sediment supply to each cm was constant, this gives a sedimentation rates 

ranging from 0.04 cm yr-1 at the lowest depth to 0.2 cm yr-1 at 14 cm depth. On average the 

sedimentation rate was 0.14 cm yr-1. The core contained very high concentrations of organic 

material, ranging from 20-30 % org-C. Total iodine concentrations were also high, averaging 

11.8 ± 1.7 mg kg-1, but were quite variable with depth and closely followed the organic-C 

curve (Figure 6). Regression analysis can be used as a more quantitative treatment of the 

relationship between organic-C and iodine. When the entire data set is used (treating organic 

C as the independent variable), there is only a week (r2=0.28), although statistically 

significant (p<0.001), relationship. However, on a closer inspection of the iodine-carbon 

profile it can be seen that it is, in fact, made up of two unique sections (Figure 7). Firstly, 

from 0-20 cm, where the iodine carbon ratio (defined as the gradient of the regression line 

with iodine in mg kg-1 and carbon in %) is 0.43, standard error = 0.1 and r2=0.52 and then 

from 21-42 cm changes to 0.65, standard error 0.1 and r2=0.64 (Figure 7). Both regressions 

are statistically significant (p<0.001). Interestingly, at the point where the I/C relationship 

appears to change there is a large spike, and then drop, in iodine concentrations.   
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Figure 6: Total iodine and organic carbon in a 42 cm sediment core from the Mummelsee. 
Note that organic carbon concentrations are divided by 2 to allow better comparison. Error 
bars on total iodine represent 1σ of triplicate analysis.  
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Figure 7: Total iodine vs. organic-C concentrations in sediments from 0-20 cm and 21-42 cm 
depth.  

 

Some notable changes in the iodine sediment profile are spikes in concentrations in the top 6 

cm (2005-1980), between 19-20 cm (1867-1884) and between 35-40 cm depth. Despite the 

variation in each sediment sample, which is related partially to sample heterogeneity and 

partially to the method, these spikes in iodine concentrations are significantly higher than 

general iodine concentrations. It is interesting to compare the sediment iodine concentrations 

to the overlying water column, from which most of the material is derived given the very low 
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stream inflow rate. It is immediately obvious that the iodine in the Mummelsee sediment is 

highly enriched relative to the overlying water column, with an enrichment factor, defined as 

the average iodine concentration in the sediment divided by the average iodine concentration 

in the epilimnion (taken as the top 7 m of the lake) and assuming 1 l water = 1 kg (so that we 

can dispense of the unit kg/l), of 6592.  

 

3.2.4 Discussion  

While most studies from freshwater environments focus on quantifying total iodine, 

speciation is a vital component in gaining a holistic view of the aqueous iodine cycle. In this 

section we first compare our iodine levels to other studies and then discuss iodine speciation 

and cycling in the Mummelsee.  

 

The total iodine concentrations in the Mummelsee are similar to those reported for fresh water 

in other relatively remote headwater environments; although the different methods employed 

for quantifying total iodine must first be briefly discussed before a thorough comparison can 

be made. The most comprehensive study on iodine concentrations is undoubtedly from Neal 

et al., (2007), where 25 years of weekly to fortnightly iodine data from three tributaries 

located in Wales, UK, are compared. The average concentrations from the main streams were 

found to be 1-1.89 µg l-1, which is very similar to our average value of 1.92 µg l-1. However, 

Neal et al., (2007) used a spectrometric method based on the catalytic effect of iodide on the 

reduction of Ce4+ by As3+. While this method is relatively inexpensive and has low detection 

limits, it has been shown by Wong and Cheng, (1998) that it only quantifies a portion of the 

organically bound iodine in addition to the inorganic species. As such, it may be misleading to 

compare ICP-MS data with Neal et al., (2007). This is highlighted by the fact that the 

Mummelsee, located in a relatively continental location at >1000 masl, has a higher average 

iodine concentrations than that observed in Wales, UK, a relatively maritime climate. Snyder 

and Fehn, (2004), in contrast, have analysed (ICP-MS) one-off surface water samples from 

every continent in the world, with a range from 0.125-137 µg l-1 with higher concentrations 

generally occurring in arid environments. Our total iodine values lie within the lower range of 

their fresh water samples from Europe.  Atarashi-Andoh et al.,(2007) have taken samples 

from various lakes in the English Lakes District and quantified total iodine with ICP-MS. The 

data ranged from 0.9-4.95 µg l-1 over 8 lakes and appeared to depend on season with higher 

levels in autumn; a finding supported by the long-term measurements of Neal et al., (2007). 

From northern Germany, iodine levels taken from ‘surface waters’ are considerably higher 

than observed at our study site in the Black Forest, averaging 11.5 µg l-1 (Szidat et al., 2000; 



 - 133 - 

 

Michel et al., 2002). Rainwater collected from the Black Forest by Krupp and Aumann 

(1999), analysed by neutron activation analysis, were only slightly higher than the lake water 

concentrations found in the Mummelsee, averaging 2.2 µg l-1. Snow samples from the 

Mummelsee’s surface taken during winter (Gilfedder et al., 2007b) had nearly identical 

concentrations (1.84 ± 0.17 µg l-1) to the lake and inflow water, strongly suggesting that the 

majority of iodine is derived from atmospheric deposition rather than from the lithosphere. 

Undoubtedly, many factors will influence the final concentrations of iodine in lakes and 

rivers, in particular, water-soil-rock interactions, evapoconcentration and a strong rainout 

effect that appears to be induced by increasing elevation (Fuge and Johnson, 1986; Oktay et 

al., 2001; Moran et al., 2002; Gilfedder et al., 2007b). Indeed, it is perhaps surprising that 

concentrations from the various areas in Europe are so similar over such wide geographical, 

geological and altitudinal regions. In contrast to these European sites, Moran et al., (2002) 

sampled a large number of rivers from the United States with an average value of 19.9 µg l-1 

and median of 10.2 µg l-1.  The majority of these samples were taken at the lower stretches of 

the rivers and, as such, integrate very large catchment areas that may include substantial 

anthropogenic iodine substances in addition to rock weathering and marine derived iodine. In 

particular, X-ray contrast media from hospitals are a known source of refractory 

anthropogenic iodine in aqueous environments. The two year study by Oktay et al., (2001), 

also from the USA, presents iodine concentrations from the Mississippi that are more in line 

with those observed in Europe, with an average (excluding unfiltered and replicate samples) 

of 5.55 µg l-1.  

 

The iodine cycle in the Mummelsee can be broken into three components: 1) iodide release 

from the sediments during stratified anoxic conditions and scavenging from the epilimnion; 2) 

iodate increase in the epilimnion, production during the winter turnover, and reduction in the 

hypolimnion during stratification; and 3) the dominance of organically bound iodine in both 

the epi- and hypolimnion during all times of the year.  

3.2.4.1 Iodide 
 
Iodide concentrations in the epilimnion consistently declined throughout the summer and 

autumn period until iodide levels were below the detection limit. This suggests that iodide is 

preferentially removed from the surface waters. There are two possible processes for this 

removal, firstly, by (oxy)hydroxide phases and secondly by biological uptake. The first option 

is the least likely, as it has been widely observed that iodide possesses very little affinity for 

(oxy)hydroxid phases, and iron hydroxides in particular (Neal and Truesdale, 1976; Ullman 

and Aller, 1980). The second mechanism, that iodide is taken up by organisms 
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(photosynthetic or otherwise) in the epilimnion of the lake, appears considerably more likely. 

Although data of biological uptake of iodide from fresh water are scarce, such suggestions are 

supported by observations from marine ecosystems, where iodide is generally the preferred 

iodine species for uptake (Sugawara and Terada, 1967). In the marine environment it is 

thought that iodide is an enzymatically oxidized to HOI within the cell wall (most studies are 

from iodine accumulating macroalgae such as Laminaria sp.) and only then taken into cells 

(Küpper et al., 1998). Also, as an alterative to algae/plankton uptake, absorption by bacteria 

(Rädlinger and Heumann, 2000) may also play a role in iodide immobilization and removal 

from the water column, as Amachi et al., (2005) have shown that bacteria isolated from 

marine sediments are able to absorb iodide from solution. Moreover, Fuse et al., (2003) have 

also demonstrated bacterial uptake and conversion of iodide to volatile organic compounds 

(particularly CH2I2). As such, it may be possible that bacteria residing in suspended particles 

take up iodide from the lakes water column and, on sinking of these particles, remove the 

iodide from the epilimnion. Such a non-photosynthetic pathway is suggested by the two 

winter profiles (Jan and Feb 2006), where iodide levels were generally below the detection 

limit in the oxic zone, despite the lake being covered with ice and snow. Biological removal is 

also suggested by the close relationship between total iodine and organic carbon 

concentrations in the sediments and, in addition, the sediment enrichment factors of >6500. 

Due to the lack of data from freshwater systems it is vital for future studies to quantify iodine 

uptake by freshwater algae/plankton/bacteria and, most importantly, which iodine species are 

most susceptible to uptake.  

 
In contrast to the epilimnion, iodide concentrations increased significantly in the hypolimnion 

over the summer months, when oxygen concentrations were low. The increase in iodide 

mobility during anoxic conditions has been recognized for a considerable amount of time, 

particularly in marine environments (Wong and Brewer, 1977; Luther and Cole, 1988; Žic 

and Branica, 2006), but has also been observed in terrestrial systems (Neal and Truesdale, 

1976; Jones and Truesdale, 1984; Bird et al., 1995b; Bird and Schwartz, 1996). Despite the 

consensus on iodide’s mobility, its source in the hypolimnic waters of freshwater lakes has 

not been well documented. Jones and Truesdale, (1984), for example, were not able to 

elucidate if the increase in iodide observed in the hypolimnion of Esthwaite lake during 

anoxia stemmed from the bottom sediments or from sediment (autochthonous or 

allochthonous) decomposition within the water column. It is clear from the depth profiles 

presented in Figures 3 and 4 that the increase in iodide originates from the lake bottom 

sediments and diffuses upwards towards the epilimnion, although a small quantity may also 

stem from de-iodination of organics and reduction of iodate (discussed further below). The 
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large variability in total iodine concentrations with sediment depth suggest that the iodide is 

released into the hypolimnion from a thin (few cm) surficial layer of sediment. This is in 

contrast to sediment from marine environments where iodine concentrations in sediments 

from anoxic waters show little variation with depth (Price and Calvert, 1977). The release of 

iodide from the sediments is then most likely from the decomposition of biological material 

precipitated from the overlying water column. This is further suggested by the increase in all 

element concentrations (and EC, data not shown) in the lower parts of the lake during the 

summer-autumn period.  

 

Now that we have concluded that the iodide in the hypolimnion is mostly derived from the 

sediment, we can estimate some quantitative fluxes. One method to estimate the iodide flux 

across the sediment/water interface can be calculated as: 

 

tdz
dIdI

dt
dI startend 1)(

×
−−−

=
−

           (Eq. 1) 

 

Where: 

 dI-/dt : is the flux of iodide from the sediment in µg m-2 day-1 into the lake 

(dI-/dz)end : is the iodide concentration gradient in µg m-3 m-1 between the top (z=8 m) 

and bottom of the hypolimnion (z=17 m) at the end of any particular time period.  

(dI-/dz)start : is the iodide concentration gradient in µg m-3 m-1 between the top (z=8 m) 

and bottom (z=17 m)of the hypolimnion at the start of any particular time period.  

1/t : is the inverse of the number of days between end and start sampling periods.  

 

The values for the second and third terms were calculated by differentiating the line (linear) of 

best fit for iodide vs. depth from any selected sampling campaigns. The r2 values for these fits 

ranged from 0.52-0.95 and can be found in the supplementary information Figure 1. The dI/dz 

values are plotted in Figure 8a. Note that the top of the hypolimnion varied slightly from 

month to month, but has been set to 8 meters. The results from this exercise can be seen in 

Figure 8b, and range from a strong positive flux in the May-June and September-October 

intervals (1.28 ± 0.3 and 1.09 ± 0.5 µg m-2 day-1 respectively) to a strong negative flux in 

October-November (-1.98 ± 0.5 µg m-2 day-1). It is suggested that the negative flux during 

November is due to major mortalities in lake biology due to the cooling of the lake water 

associated with the oncoming winter. The falling organic debris could then scavenge iodide 

from the hypolimnion. It is also possible to calculate a net flux from the hypolimnion by 
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summing the monthly fluxes. This gives a total net flux of 1.58 µg I- m-2 day-1 over the spring-

summer-autumn period.  

 
Figure 8: (a) dI/dz over the spring-summer-autumn period. (b) iodide flux from the sediments 

and ± 1 standard error.  

3.2.4.2 Iodate 
 
The increase in iodate in the epilimnion is rather puzzling, as it is generally believed that 

iodate is reduced to iodide during biological reactions usually attributed to nitrate reductase 

(Fuge, 2005 and refs. therein). As such, we would expect a decrease in the iodate levels 

during the spring-summer-autumn, when biological activity is at a maximum, if similar 

processes were active in the lake as observed in the ocean. Photooxidation is an unlikely 

mechanism for the formation of iodate in the epilimnion as Wong and Cheng, (1998) have 

shown that organically bound iodine decays to iodide on exposure to natural sunlight. 

Moreover, it is also very difficult to abiologically oxidize iodide to iodate with O2 or even 

more reactive oxygen species such as H2O2 as, as pointed out by Luther et al., (1995), it 

requires removal of 6 electrons and therefore must occur in a series of at least 2 electron 

transfer steps. Rather than oxidizing iodide to iodate, iodide is more easily oxidized to I2 or 

HOI which can then attack the covalent bonds in dissolved organic material. We are only left 

with two possible mechanisms for the increase in iodate in the epilimnion, 1) a biologically 

mediated reaction, or 2) dilution of the epilimnic waters by iodate-enriched water from the 

inflow. In regards to the first possibility, it is unfortunate that the majority of research has 

focused on iodate reduction rather than iodide oxidation despite the majority of the oceans 

iodine existing as iodate. Recently Truesdale et al.,  (2001) have suggested that, based on a 

mass-balance of iodine speciation in the Black Sea, iodide may by oxidized by nitrifying 
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bacteria. In the Black Sea the pH of the seawater was too high make Mn4+ a 

thermodynamically feasible electron accepter, whereas oxidation of iodide by nitrifying 

bacteria was energetically beneficial. A biological source of iodate is also consistent with our 

results, as the largest increase in iodate is found in the top three meters of water, which is 

essentially the maximum light penetration depth and also has the highest oxygen levels. 

However, light must not be essential for the organism as during winter when the lake was 

covered in snow and ice iodate could still be found down to about 13 m depth at 

concentrations similar to those found in the epilimnion over the summer months. As such, a 

rapid net production of iodate must occur during the winter turnover, although unrelated to 

photolytically active organisms. In regards to the favored oxidation pathway, the Eh-pH 

diagrams presented by Truesdale et al., (2001) suggest that a thermodynamically favorable 

MnO2-I couple may exists at the circumneutral pH’s of the Mummelsee. However, we would 

also prefer a nitrifying reaction due to the relatively large number of electrons (six) that must 

be removed for iodide to be oxidised to iodate. Either way, it is unlikely that organisms exist 

that are specific for iodate formation due to the low levels of iodate in the lake, rather it must 

occur by a ‘generalist’ pathway where iodide can substitute for the preferred electron donor. 

Obviously, further work is required on the microbiology of freshwater systems in regards to 

iodate formation before more conclusive suggestions can be made.  

The second possibility for the observed iodate increase in the epilimnion (i.e. the inflow 

influencing the iodate levels in the lake) is also feasible particularly as the inflow is indeed 

enriched in iodate compared to in the lake. The inflow enters the lake at the shallow end, and, 

due to its low flow rate, is rapidly warmed in the shallow water zone. The inflowing water 

will then be confined to the epilimnion due to the density gradient at the thermocline. The 

major drawback to this approach is the low inflow rate compared to the volume of the lake 

(residence time >450 days), however, during stratification the epilimnion is confined to the 

top 7 m depth and therefore contains considerably less volume than the entire lake. By using 

the bathymetry map in Figure 1 it is possible to calculate a residence time of water in the 

epilimnion (assuming epilimnion depth of 7 m and inflow rate of 6.8 l s-1 (Thies, 1987)) of 

407 days. Therefore, over the 192-day spring-summer-autumn study period approximately 50 

% of the epilimnion may have been exchanged. Thus, the increase in iodate levels in the 

epilimnion may be due to the iodate-enriched inflow. Note, however, that this is an upper 

limit as it assumes that all of the inflow flows into the epilimnion without mixing into the 

hypolimnion. 

 

One of the most notable processes occurring in the Mummelsee is iodate reduction in the 

hypolimnion. The most likely mechanism for this is reactions with reduced species in the 
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water column, particularly reduced sulfur groups diffusing into, or forming in, the 

hypolimnion (Jia-Zhong and Whitfield, 1986). The importance of such processes increase as 

the lake bottom waters and sediment become progressively depleted in dissolved oxygen. 

Moreover, Jia-Zhong and Whitfield, (1986) found that the reaction rate of IO3
- with HS- was 

faster than the O2-HS- redox couple, and as such does not require completely anoxic 

conditions to proceed. The reduction of iodate by reduced sulfur compounds such as sulfide 

has also been noted in marine environments, and particularly in biologically productive 

estuaries, marine enclosures and deep anoxic ocean water (Wong and Brewer, 1977; Luther 

and Cole, 1988; Luther and Campbell, 1991; Stipanicev and Branica, 1996). However, it is 

not likely that the iodate is reduced to iodide, as it must first be reduced to the highly reactive 

and electrophilic I+ species, which should then rapidly react with the abundant dissolved 

organic material (Jia-Zhong and Whitfield, 1986). Such processes are often observed at the 

oxic-anoxic boundary in certain marine basins such as the Mediterranean Sea and the Black 

Sea (Ullman et al., 1990; Luther and Campbell, 1991).  However, this cannot be a strong 

source of iodo-organics in the Mummelsee, as the maximum iodate concentrations in the 

hypolimnion just after mixing are about 0.1 µg l-1.  

3.2.4.3 Organically bound iodine 
 

The presence of organically bound iodine in marine environments has been known for at least 

the last 30 years and is generally thought of little consequence for the ocean scale iodine 

cycle. However, the importance of the organo-I fraction in near shore and particularly in 

terrestrial environments has only recently received attention and, as shown here, is the most 

abundant component in the freshwater iodine cycle. As noted in the introduction, the presence 

of organo-I in freshwater environments has been shown in a series of one-off investigations 

aimed mainly at developing methods for on-line quantification of iodine species 

(Reifenhäuser and Heumann, 1990; Rädlinger and Heumann, 1997; Heumann et al., 1998). 

Neal et al., (2007) have also found indirect evidence for organo-I, with strong seasonal co-

variation of total iodine (As-Ce method) with dissolved organic iodine. It has also been noted 

that the dominant iodine species in aerosols, rain and snow is also organic iodine, despite the 

traditional belief that inorganic species dominate in the atmosphere (Baker et al., 2001; Baker, 

2005; Gilfedder et al., 2007c, b). We have analysed organo-I over one year in the Mummelsee 

and found some interesting temporal trends in the different lake compartments (stream inflow, 

epi- and hypolimnion). As such, analysing the temporal changes in organo-I is also an 

essential component in the understanding of the iodine cycle.  
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Organically bound iodine in the inflow had an average concentration and proportion of 1.2 µg 

l-1 and 76 % of total iodine respectively. In contrast, the lake epilimnion had an organo-I 

content of 1.6 µg l-1 and 90 % of the total iodine, respectively. Therefore, there must be net 

formation of organo-I in the lakes epilimnion. This was most notable over the summer-

autumn months and during the winter turnover, where organo-I closely followed the total 

iodine curve. Such temporal changes in organo-I suggests that organisms are involved in its 

formation. However, while likely, this need not occur biologically, as iodate reduced to HOI 

by organic/biological produced (e.g. HS-) reductants will react abiologically with the 

abundant organic matter (Francois, 1987; Reiller et al., 2006). Such a mechanism has been 

observed at the interface between anoxic and oxic ocean waters were considerable amounts of 

abundant iodate are reduced (by sulfide) to reactive intermediate iodine species that 

subsequently bind to organic matter (Ullman et al., 1990; Luther and Campbell, 1991).  

However, we generally favor the biological formation of organo-I in the Mummelsee, as 1) 

there is probably insufficient sulfide in the epilimnion, given the levels of oxygen (generally 

100 % saturation), manganese and iron observed, for HS- to act as an inorganic electron 

donor; 2) the known biophilic nature of iodine makes it susceptible to biological 

transformations. Indeed, Rädlinger and Heumann, (2000) have observed the transformation of 

inorganic iodide to organic forms after only 4 weeks of wastewater incubation with iodide. 

While such mediums as used by Rädlinger and Heumann, (2000) have significantly different 

microbiological communities than the Mummelsee, it demonstrates the possibility, and in fact 

likelihood, of microbiological iodination of organic substances. The lack of any other peaks in 

the anion chromatograms from both the spring inflow and the lake suggests that the iodine is 

bound to high molecular weight, non-ionic carbonaceous species. This is in agreement with 

previous studies from the Synchrotron facility, Grenoble France, on characterization of humic 

bound iodine isolated from groundwater (Schlegel et al., 2006). Schlegel et al.,  (2006) have 

produced the most convincing data to date that iodine is covalently bound to aromatic 

moieties, although earlier research had already come to similar conclusions, but with less 

clear evidence (Moulin et al., 2001).  

 

In the hypolimnion organo-I levels were relatively unchanged except for during September-

October 2005, January 2006, and May 2006. The noticeable decrease in organo-I during 

September, October, and May does not seem to be related specifically to any of the other 

parameters measured, and therefore a clear mechanism is difficult to specify. The most likely 

process is a reductive dehalogenation of the organic mater, as all occasions are associated 

with relatively low oxygen concentrations. It has been suggested previously that due to its 

strong electrophilic properties HS- may be able to abstract iodine from the organic moiety 
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(Francois, 1987). However, the concurrent presence of other oxidizing species in the water 

column during August and September (O2, Fe3+ and iodate) negates an abiological 

mechanism, and again we must speculate about a biological process. In contrast, the lack of 

any significant quantities of organo-I during May 2006 could be related to abiological attack 

of the C-I bond due to the highly reducing nature of the bottom two meters of the lake during 

this time. The end products should yield iodide and organo-S compounds. The winter turnover 

was a unique case in that most of the iodide released from the sediments was converted to 

organo-I. At present we do not fully understand this process, but it must be related to oxygen 

introduction into the hypolimnic waters with overturn. Perhaps the introduction of oxygen to 

water which contained considerable amounts of ammonium (inferred from redox profiles of 

O2, Fe and Mn; Figure 4) produced an outbreak of NH4
+ oxidizing bacteria. In the process of 

NH4
+ oxidation perhaps the I- was also oxidized to reactive intermediate species that could 

then bind to the available organic matter. This is rather speculative and must be confirmed or 

negated in future studies on biological iodide oxidation and subsequent interactions with 

organics.  

3.2.4.4 Sediment core 
 
The sediment core showed some noticeable changes with depth, which is in contrast to marine 

sediments. Typically under reducing condition marine sediments are relatively uniform in 

concentration whereas under oxidizing conditions only show an enhancement in iodine 

concentrations near the surface (Price and Calvert, 1977; Gieskes and Mahn, 2007). 

Unfortunately, without better knowledge of the process that have occurred in the catchment 

over the last few hundred years and without more detailed chemical analysis and dating it is 

difficult to attribute the changes to any particular process with confidence. Speculatively, it 

seems possible that changes in land use within the catchment (e.g. forestry, military 

occupation, fires) have lead to changes in release and retention of iodine within the 

catchment. In-lake processes such as fluctuations in algae and bacterial populations probably 

also contribute to the changes observed in the sediments through time. Further investigations 

are planned for the future with a longer sediment core and more thorough chemical and 

physical analysis.  

3.2.5 Conclusions 
 
Cycling of iodine in terrestrial aquatic systems is a complex process that is sensitive to redox 

changes and biological activity. It has been shown here that organically bound iodine is 

dominant form of iodine (~90 %) in the Mummelsee, a humic rich lake in the Black Forest. 
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This is supported by the sediment core data were total iodine concentrations closely follow 

the organic carbon curve and display enrichment factors (compared to lake water) greater than 

6500. However, we also observed strong iodide fluxes from the lake sediments into the 

hypolimnion, which was driven by low dissolved oxygen concentrations. Moreover, there was 

a net increase in iodate in the epilimnion, suggestive of biological oxidation of either organo-I 

or iodide and iodate reduction in the hypolimnion. Before a more holistic understanding of 

these processes can be understood it is vital for future work to elucidate specific chemical and 

microbiological transformations of iodine species in freshwater environments.  
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