


 
 
 
 

Dissertation 

submitted to the 

Combined Faculties for the Natural Sciences and for 

Mathematics 

of the Ruperto-Carola University of Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

presented by 

Masters in Biology Anna Dondzillo 

from Warsaw, Poland 

 Oral-examination:_________________________________ 



 

 

 

 

Active zone proteins Bassoon and Piccolo at the 

calyx of Held: age - dependent localization and 

targeted in vivo perturbation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Referees: Prof. Dr. Bert Sakmann 

    Prof. Dr. Thomas Kuner 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that this submission is my own work and that, to the 

best of my knowledge and belief, it contains no material previously 

published or written by another person nor material which to a substantial 

extent has been accepted for the award of any other degree or diploma of 

the university or other institute of higher learning, except where due 

acknowledgment has been made in the text. 

 

 

 

Heidelberg, 27 November 2007  __________________________ 

        Anna Dondzillo 



Active zone proteins Bassoon and Piccolo at the calyx of Held: age - 
dependent localization and targeted in vivo perturbation 

Summary 

Neurons communicate with each other via synaptic transmission. Chemical synapses 

transfer information through the release of neurotransmitter. This process involves a 

cascade of tightly controlled molecular reactions, designed to allow reliable 

transmission of activity and to accommodate mechanisms of experience-dependent 

plasticity. In contrast to the very detailed knowledge of the functional capabilities of 

synapses and the fact that most presynaptic proteins have been identified, the 

molecular mechanisms underlying neurotransmitter release remain poorly understood.  

The active zone (AZ), the site of Ca2+-dependent neurotransmitter release in 

nerve terminals, is a morphological specialization of the presynaptic plasma 

membrane with a set of proteins necessary for the organization of exo- and 

endocytotic molecular machineries. Bassoon and Piccolo are structurally related, large 

multidomain proteins specifically and exclusively located in AZs of the mammalian 

nervous system. In conjunction with Rim, CAST, Munc13 and ELKS, Bassoon and 

Piccolo are thought to organize AZs through their multidomain capability of 

interaction with many other proteins. 

Specific deletion of Bassoon in mice resulted in a significantly lower number 

of active synapses in hippocampal autaptic cultures. Bassoon deletion did not result in 

compensatory changes of AZ proteins but Piccolo, which was increased 1.4 times. 

Hence, the presence of Piccolo may prevent a loss of function in Bassoon knockout 

mice. To assess the role of Bassoon and Piccolo in neurotransmitter release, we 

examined their localization in the calyx of Held giant presynaptic terminal and 

attempted a simultaneous knockdown of both proteins using RNA interference.  

First, we examined the three-dimensional (3D) localization of Bassoon and 

Piccolo in the rat calyx of Held between postnatal days (P) 9 and 24, a period 

characterized by pronounced structural and functional changes. To unequivocally 

assign immunohistochemical (IHC) signals to the calyx, we expressed membrane-

anchored GFP (mGFP) or synaptophysin-GFP in the calyx using targeted stereotaxic 

delivery of adeno-associated virus (AAV) vectors. We then examined the distribution 

of Bassoon and Piccolo using IHC in slices containing calyces with labeled plasma 

membrane or synaptic vesicles (SV) using confocal microscopy and 3D 

reconstructions. We found that both Bassoon and Piccolo were arranged in clusters 

resembling the size of AZs. These clusters were located in the presynaptic membrane 



facing the principal cell, close to and partially overlapping with SV clusters. 

Simultaneous application of both antibodies revealed a ~90% overlap, indicating that 

both proteins co-localize. We found about 200-400 clusters in both P9 and P24 

calyces. The number and distribution of clusters did not differ, suggesting that these 

parameters do not contribute to postnatal functional maturation. Furthermore, we 

observed IHC-signals in the spaces between finger-like protrusions of the calyx, 

consistent with intermingled non-calyceal inputs located on the principal cell. As 

these signals mimic a calyx-like distribution, particularly in 2D images, pre-labeled 

calyces are essential for IHC studies of protein distribution in the calyx of Held. 

To understand the function of Bassoon and Piccolo in AZ organization and 

their contribution to neurotransmitter release, we attempted to down-regulate each of 

these proteins in vivo in the calyx of Held using RNA interference. Small hairpin 

RNAs (shRNA) directed against Bassoon and Piccolo were expressed through AAV 

vectors. Viral particles were stereotaxically delivered to the ventral cochlear nucleus, 

where the somata of neurons giving rise to calyx terminals are located. Using 3D 

fluorescence immunohistochemistry, we could demonstrate a down-regulation of 

Piccolo at its most relevant site - the nerve terminal. With this approach we were able 

to show a decreased amount of Piccolo in the calyces treated with shRNA as 

compared to control calyces. Preliminary results suggest a knockdown of Bassoon 

using the same approach. However, low titers of the virus preparations did not yield 

numbers of perturbed calyces sufficient for functional analyses in brain slices. This 

also precluded knocking down Bassoon and Piccolo simultaneously. Attempts of 

improving viral titers remained unsuccessful, posing a potential general limitation to 

AAV-mediated applications of shRNAs for targeted in vivo RNA interference. 

In summary, we developed a novel approach to quantify in vivo perturbation of 

proteins at the level of a single synapse. Furthermore, we show that any 

immunohistochemistry-based characterization of proteins in the calyx of Held 

requires the prelabelled calyces. We found that the number of AZs as identified with 

Bassoon and Piccolo fluorescent immunohistochemistry did not change in 

development of the calyx of Held, suggesting that this parameter is not involved in 

increasing release efficiency during postnatal maturation. 



Active zone proteins Bassoon and Piccolo at the calyx of Held: age - 
dependent localization and targeted in vivo perturbation 

Zusammenfassung 
Nervenzellen kommunizieren untereinander über Synapsen, wobei chemische Synapsen die 

Information durch die Ausschüttung von Neurotransmittern übertragen. Dieser Prozess 

beinhaltet eine Kaskade stark regulierter Protein-Protein Wechselwirkungen die eine 

zuverlässige Übertragung der elektrischen Aktivität garantieren und gleichzeitig 

Mechanismen der synaptischen Plastizität zulassen. Während die funktionellen Aspekte der 

Präsynapse gut untersucht und die meisten der ihrer Proteine identifiziert sind, bleiben die 

exakten molekularen Mechanismen die zur Ausschüttung der Neurotransmitter führen unklar. 

Die aktive Zone (AZ), der Ort in den Nervenendigungen, an dem die Ca2+-abhängige 

Neurotransmitterausschüttung stattfindet, ist ein spezieller Abschnitt der präsynaptischen 

Plasmamembran, der sich morphologisch von Rest der Zelle unterscheidet, und in dem 

Proteine der Exo- und Endocytosemaschinerie vorliegen. Bassoon und Piccolo sind 

strukturell verwandte, große Multidomänenproteine die spezifisch und exklusiv in den AZs 

des Nervensystems von Säugern vorliegen. Es wird vermutet, dass Bassoon und Piccolo 

zusammen mit Rim, CAST, Munc13 und ELKS die Grundstruktur der AZ bilden, wobei ihr 

Multidomänenaufbau die Wechselwirkung mit diversen anderen Proteinen der AZ erlaubt. 

Die spezifische Ausschaltung von Bassoon in Mäusen führte zu einer signifikanten 

Reduktion der Anzahl von Synapsen in autaptischen Kulturen des Hippocampus. Außer einer 

1,4fachen Hochregulierung von Piccolo wurden jedoch keine durch die Ausschaltung von 

Bassoon verursachten kompensatorischen Veränderungen in den Mengen anderer AZ-

Proteinen beobachtet. Die Anwesenheit von Piccolo könnte also einen Verlust der Funktion in 

Bassoon-knock-out-Mäusen verhindern. Zur genaueren Bestimmung der Rolle von Basson 

und Piccolo untersuchten wir ihre Lokalisation in der Heldschen Calyx, einer 

Riesennervenendigung, und versuchten beide Proteine mittels RNA interference 

auszuschalten. 

Zunächst untersuchten wir die dreidimensionale (3D) Lokalisation von Bassoon und 

Piccolo in der Heldschen Calyx der Ratte zwischen dem neunten und vierundzwanzigsten Tag 

nach der Geburt, einer Phase in der bedeutende strukturelle und funktionelle Veränderungen 

der Synapse stattfinden. Um immunhistochemische Signale zweifelsfrei der Calyx zuordnen 

zu können, wurden membrangebundenes GFP (mGFP) oder Synaptophysin-GFP gezielt in 

der Calyx exprimiert. Dabei wurden stereotaktische Injektionen von adeno-assoziierten Viren 

(AAV) als Vektoren für die GFP-Konstrukte benutzt. Danach bestimmten wir die Verteilung 

von IHC-Signalen gegen Basson und Piccolo in Hirnschnitten markierter Calyces 

(Plasmamembran oder synaptische Vesikel (SV)). Dazu wurden konfokale Mikroskopie und 

3D-Rekonstruktionen verwendet. Hierbei stellten wir fest, dass sowohl Bassoon als auch 

Piccolo in Clustern, die der Größe der AZ entsprachen, organisiert waren. Diese Cluster 



befanden sich in der Plasmamembran der Calyx, die der Prinzipalzelle zugewandt war, wobei 

in der Nähe und teilweise mit dem IHC-Signal von Bassoon und Piccolo überlappend, SV-

Cluster detektiert wurden. Die gleichzeitige Applikation von Antikörpern gegen beide 

Proteine führte dazu, dass eine ca. 90%ige Überlappung der IHC-Signale erhalten wurde, was 

darauf hindeutet, dass die beiden Proteine kolokalisiert vorlagen. Es wurden sowohl in P9 als 

auch in P24 Ratten 200-400 Bassoon- bzw. Piccolo-Cluster pro Calyx detektiert. Weder die 

Anzahl noch die Verteilung der Cluster unterschieden sich in den beiden Altersgruppen, was 

zu der Annahme führt, dass diese beiden Parameter keine Rolle bei der funktionellen Reifung 

des Calyx spielen. Außerdem fanden wir IHC-Signale zwischen den fingerähnlichen 

Fortsätzen des Calyx, welche zu anderen Synapsen der Prinzipalzelle als der Calyx gehören. 

Da diese Signale aber besonders in 2D-Bildern eine Calyx-ähnliche Verteilung besitzen, ist 

eine vorher markierte Calyx, beispielsweise mit mGFP, essentiell um IHC-Studien in der 

Heldschen Calyx durchführen zu können. 

Um die Funktion von Bassoon und Piccolo bei der Organisation der AZ und ihren 

Beitrag zur Neurotransmitterfreisetzung besser zu verstehen, versuchten wir jedes der 

Proteine mittels RNA interference in vivo herunter zu regulieren. Small hairpin RNAs 

(shRNAs), gegen Bassoon oder Piccolo gerichtet, wurden mittels AAV-Vektoren exprimiert. 

Dazu wurden Viruspartikel stereotaktisch in den ventralen cochlearen Nukleus, der die 

Somata der Neuronen welche die Heldsche Calyx bilden enthält, injiziert. Mit Hilfe von 3D 

Fluoreszenzimmunhistochemie konnten wir eine Herunterregulierung von Piccolo in shRNA 

exprimierenden Calyces detektieren. Ähnliche, vorläufige Ergebnisse wurden mit dieser 

Methode bei entsprechenden Versuchen zur Herunterregulierung von Bassoon erhalten. Die 

niedrigen Titer der Viruspräparationen führten allerdings nicht zu einer für die funktionelle 

Analyse ausreichenden Anzahl von Calyces die shRNA exprimierten. Das gleiche Problem 

trat auch bei dem Versuch auf Bassoon und Piccolo gleichzeitig herunterzuregulieren. Eine 

Erhöhung der Virustiter war nicht möglich, so dass hier eventuell eine generelle Grenze der 

Anwendbarkeit von AAV-vermittelter shRNA-Expression zur gezielten RNA interference in 

vivo erreicht wurde. 

Zusammenfassend kann gesagt werden, dass hier ein neuer Ansatz zur 

Quantifizierung der Proteinpertubation in einzelnen Synapsen, in vivo, entwickelt wurde. 

Außerdem konnten wir zeigen, dass eine vorherige Markierung der Calyx, beispielsweise 

durch mGFP, für immunhistochemische Charakterisierungen von Proteinen in der Heldschen 

Calyx unerlässlich ist. Wir fanden mit Hilfe von Fluoreszenzimmunhistochemie heraus, dass 

die Anzahl der mittels Bassoon und Piccolo identifizierten AZs sich während der 

Entwicklung nicht veränderte. Daraus schließen wir, dass die Anzahl der AZs nicht an der 

Steigerung der Freisetzungseffizienz während der postnatalen Reifung der Heldschen Calyx 

beteiligt ist. 
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Introduction 

1 

1 Introduction 
 

Nerve cells basic structure remains similar to that of other cells. Each neuron has a 

nucleus, Golgi apparatus, endoplasmic reticulum, ribosomes, mitochondria and other 

organelles essential for any cell to function. Neurons differ from other cells and each 

other by specific morphological and functional features. They have one property in 

common: integration of incoming information. In the human nervous system, a single 

neuron can receive from 1 to 100 000 inputs (Purves et al., 2004), and this variability 

depends on the type and function of any given neuron. In general, the information 

received from the inputs is conducted via a regenerating electrical impulse – the 

action potential (AP), along neuronal axon. In the majority of the central nervous 

system (CNS) nerve cells, the signal is received at the dendrites or the soma and 

conducted to the axon terminal. 

 

1. 1 Different types of synapses in the brain 

Information is passed between neurons via specialized site called synapse. In general, 

a synapse consists of a pre-synaptic compartment, which is located on an axon 

terminal, and a post-synaptic compartment, often a dendrite or a cell soma of the next 

neuron. Usually both pre- and post-synaptic sites are physically separated by an 

extracellular gap – the synaptic cleft. The synaptic cleft can be extremely small in 

electrical synapses or bigger in chemical ones. In chemical type of synapses, 

information has to be first converted from the incoming AP to a chemical signal and 

then back to an AP after crossing the synaptic cleft. Another type of synapse, less 

common in the CNS, has a very small gap, so small that there is a physical connection 

established between pre- and post-synaptic compartments. Communication between 

such synapses is based on direct electrical transduction hence these synapses are 

called electrical synapses. 
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1. 1. 1 Synaptic communication 

The information about stimulus intensity is encoded in spike frequency and send 

along neuronal axon. Such coding features temporal and electrical potential 

characteristics: frequency, length of occurrence (represented by width at half-maximal 

action potential amplitude), and amplitude of the AP.  Transfer of the AP down the 

axon without losing any of the characteristics requires active electrical conductances, 

which are based on the electrical gradient present across the axon membrane and 

controlled permeability of the membrane for negatively and positively charged ions. 

This selective permeability of a membrane for ions is achieved via ion channels 

spanning the membrane. When the AP arrives at the terminus of the axon it has to be 

passed to the next neuron. There are two fundamentally different transmission 

mechanisms used for such inter – neuronal transmission. The one at chemical 

synapses involves transforming an electrical impulse to a chemical signal at a 

specialized terminal, the second mechanism seen at electrical synapses permit current 

to flow passively through intracellular channels between two contacting neurons.  

 

1. 1. 2 Chemical and electrical synapses 

In vertebrates the electrical synapses, identified by their molecular substrates, have 

been found in glia astrocytes and oligodendrocytes, as well as in some neuronal 

subpopulation e.g. in the brain stem, in the basal ganglia etc (Dermietzel and Spray, 

1993). The electrical synapse consists of a pre- and postsynaptic compartment, but 

that is where the similarity to chemical synapse ends. The two communicating 

neurons are very close to each other at the synapse so that there is very little space 

(~3nm) in between pre- and postsynaptic compartments. Pairs of channels formed by 

connexins, members of larger family of proteins, are located in pre- and postsynaptic 

membrane and aligned with each other creating an aqueous pore of ~ 1.5 nm diameter 

through the two membranes. This complex is called gap junction. The communication 

is based on passive ionic current flow through the gap junction pores from one neuron 

to the downstream one. Such connection can be bidirectional since it depends on the 

potential difference between two connected neurons, which is generated locally by the 

AP. Thus depending on which neuron receives an AP the connection will act in the 

direction from higher to lower potential. However, unidirectional electrical synapses 
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have also been described. Another feature of electrical synapses is their speed of 

transmission, which is almost instantaneous at ≤0.1ms (versus ~0.5ms delay between 

neurons connected with chemical synapse). For that reason electrical synapses exist in 

systems where extremely fast reaction from sensory input to motor response is 

required e.g. neurons involved in crayfish escape behavior. Neurons connected with 

electrical synapses are also present in systems where electrical activity of neurons 

needs synchronization, e.g. hormone-secreting neurons within mammalian 

hypothalamus or neural coupling in control of electric organs of fishes (for review see 

Bennett, 1997).  

 At the chemical synapse, signal has to be converted from digitally encoded all 

or nothing AP wave to analog chemical information. Such incoming AP is converted 

into chemical signal at the presynaptic compartment. An analog phase of neuronal 

transmission allows for integration of the information. At the conversion phase the 

characteristics of AP are read out. Chemical transfer requires different morphological 

specializations than that of electrical transfer, and allows for connecting interface to 

convert, integrate, and filter of the passing information. Chemical neurotransmitter is 

stored in small ~40nm diameter synaptic vesicles (SV) located in the presynaptic 

compartment. Because of such packaging of neurotransmitter in SVs the release of it 

is quantal and offers potential for spatial and temporal summation. Anatomically 

chemical synapse consist of three compartments: presynaptic compartment – mostly 

axon terminal that releases chemical neurotransmitter in response to calcium influx 

triggered by incoming AP, postsynaptic compartment – a dendrite or cell soma with 

neurotransmitter receptors, and a synaptic cleft – a space of ~20 – 30 nm width 

between pre- and postsynaptic compartments filled with fuzzy electron dense material 

into which chemical neurotransmitter diffuses.  Complex ultrastructural machinery of 

protein interactions coordinates the series of presynaptic events leading to a fusion of 

the synaptic vesicles with the presynaptic membrane and a release of neurotransmitter 

to the synaptic cleft. Neurotransmitter diffuses in the cleft and binds to the receptors 

located on the postsynaptic neuron. This invokes either excitatory or inhibitory action 

on the recipient neuron. Whether neuron is excitatory or inhibitory depends on the 

type of the neurotransmitter it produces, the type of the postsynaptic receptors ion 

channels and the postsynaptic transmembrane ion gradients that set the polarity and 

driving force of the channel-mediated current. Majority of neurons however can be 
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qualified based on their neurotransmitter as being excitatory – with glutamate or 

inhibitory – with gamma-amino butyric acid (GABA) or glycine as their 

neurotransmitters. 

 

1. 1. 3 Excitatory and inhibitory chemical synapses 

Synapses of the inhibitory neurons differ morphologically from those of the excitatory 

neurons. Gray (1959) described two types of chemical synapses based on the EM 

images: symmetrical or type II synapses and asymmetrical or type I synapses. The 

symmetrical synapses were later confirmed to be inhibitory synapses while 

asymmetrical or type I – excitatory. Morphologically symmetrical synapses both pre- 

and postsynaptic membranes look alike, with very few electron dense structures at the 

juxtaposed membranes. These synapses are having no clear postsynaptic density 

(PSD), neither clearly visible distinct release site called active zone (AZ). Also, 

synaptic vesicles located at the presynaptic membrane, are not circular but rather 

elongated (Somogyi and Cowey, 1981). Molecular components of inhibitory synapses 

differ also from those of excitatory mainly with neurotransmitter type at the 

presynaptic site and different receptor types and scaffolding proteins at the 

postsynaptic compartments. A major postsynaptic protein in the inhibitory synapses 

indicated in anchoring of the receptors at the postsynaptic membrane is gephyrin. In 

excitatory synapses this function is played mostly by Post Synaptic Density of 95 kDa 

protein (PSD 95). GABA and glycine, major inhibitory neurotransmitters of central 

nervous system (CNS) bind to their receptors after diffusion into the cleft. GABA 

receptors can further be divided into ligand-gated ionotropic GABAA receptors 

(GABAARs) and metabotropic ((G)-protein-coupled) GABAB receptors (GABABRs). 

 Morphologically the excitatory, glutamatergic synapse is characterized with 

electron dense structures at both pre- and postsynaptic membrane, although the latter 

one appears thicker (hence the apparent asymmetry). The presynaptic compartment 

has distinct AZs visible as electron dense area. It appears to contain structures 

reaching up to ~ 100 nm from the membrane to the cytoplasm in EM images (Landis, 

et al., 1988), these structures are thought to represent scaffolding proteins. The AZ is 

a specialized release site with proteins involved in recruiting SVs to the membrane 

(Bassoon, RIM1), docking and priming (Munc13, Munc18) and fusing (soluble N-

ethylmaleimide sensitive factor attachment receptor - SNARE complex) of the SVs 
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membrane with the presynaptic membrane. At the AZ, few SVs (depending on the 

type of synapse from 2-3 in the giant terminal of the calyx of Held, to 8 -10 in nerve 

terminals in cerebellum, hippocampus and cortex) are docked and primed for Ca2+-

dependent fusion with the presynaptic membrane. These vesicles are thought to 

belong to the readily releasable pool (RRP) (Elmqvist and Quastel, 1965) which 

consists of ~1% of all the SVs present in the compartment. The classical three-pool 

model (see rev. Rizzoli and Betz, 2005) includes also the reserve pool (80-90% of the 

total pool of SVs) (Heuser and Reese, 1973), and smaller recycling pool ~10-15% 

(Pyle et al., 2000). The recycling pool is thought to be maintaining physiological rate 

of release, while the reserve pool is only involved during the intense stimulation. 

 In response to Ca2+ entering the presynaptic compartment through voltage 

gated calcium channels, the calcium sensing protein synaptotagmin triggers SVs 

fusion with the presynaptic membrane and release of neurotransmitter into the cleft. 

Neurotransmitter passively diffuses within the cleft and binds to specific 

neurotransmitter receptors located on the membrane of the postsynaptic neuron. The 

PSD region of the membrane is precisely aligned with the AZ of presynaptic neuron 

and contains the neurotransmitter receptors. In vertebrates CNS glutamate is a major 

excitatory neurotransmitter and in general it involves both ionotropic and 

metabotropic glutamate receptors. The ionotropic receptors can further be divided 

based on their pharmacological properties (Jonas and Moneyer, 1999) in L-alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs), kainate 

receptors (KARs) and N-methyl-D-aspartate receptors (NMDARs). Different neurons 

express different receptors depending on the network in which they are located and 

the tasks they perform. Some neurons, like neurons of the inferior colliculus, are 

involved in integration of inputs from multiple sensory areas, or thalamocortical 

neurons involved in filtering of the information send from one layer of the neo-cortex 

to another. In the auditory system, which relies on the interaural time difference for 

detection of the location of sound sources, neurons have to carry the information fast 

and reliably. In the lower auditory pathway of the mammalian brainstem neurons 

relaying information with high temporal fidelity have large calyx-like synaptic 

terminals for reliable transmission. Primary auditory neurons, which receive the 

excitatory input from cochlear hair cells form giant synapses called end bulbs of Held 

with neurons located in the cochlear nucleus (CN).  
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1. 1. 4 Calyx of Held as a model system of excitatory synapses 

The auditory system utilizes precise timing detection for spatial localization of the 

sound source. This requires neurons transmitting the information to have a phase 

locking capability. Such transmission has to be reliable and thus neurons have to be 

able to fire with high fidelity (review McAlpine, 2005). In mammalian auditory 

brainstem excitatory globular bushy cells (GBC) specialized both morphologically 

and functionally to reliably carry the signal from the ventral cochlear nucleus (VCN) 

to the contralateral side of the brainstem. Their axons, the largest diameter fibers of 

the trapezoid body (5-10 µm in cats: Rowland et al., 2000) and <2 µm in rats 

(Rodriguez-Contreras et al., 2006) terminate in a giant synaptic ending (~ 20µm 

diameter) known as calyx of Held located in the medial nucleus of the trapezoid body 

(MNTB; Spirou et al., 1990; Kuwabara et al., 1991; Smith et al., 1991). The calyx of 

Held is a glutamatergic terminal (Grandes and Streit, 1989; Banks and Smith, 1992), 

which serves as sign-inverting relay in the sound-source localization pathway. The 

principal neurons of MNTB innervated by the calyx of Held synapse send their 

inhibitory efferents to ipsi-lateral lateral superior olive (LSO).  

 Initially the calyx of Held has become the synapse of choice for 

electrophysiological analysis of mammalian synaptic transmission because its large 

size allows simultaneous pre- and postsynaptic recordings. Besides the size of the 

calyx, other features like compartmentalization, a few millimeters distance between 

the cell soma and terminal make it ideal for acute genetic perturbations. Since 

injection side does not interfere with the terminal itself. The calyx profound 

morphological and functional developmental changes suit well the analysis of 

molecular mechanisms underlying increasing efficiency of transmission.  

 

1. 2 Morphology of the calyx of Held 

The calyx of Held does not reach its full synaptic capabilities instantaneously but 

rather it develops morphologically and functionally throughout the first three weeks 

of postnatal life in the rat. The ontogeny of the efferent projections from cochlear 

nucleus (CN) can be divided in three major periods (Kandler and Friauf, 1993). The 

first period still at the embryonic days (E15-E17) is characterized by axonal 

outgrowth. During the second period E18 to postnatal day 5 (P5) collaterals of the CN 
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fibers develop in the auditory brainstem nuclei. Third period P5 – P14 comprise 

further maturation of terminal structures. As for the establishing of functional 

synapses, it is not clear whether and how long of a waiting time occurs between CN 

axons invading MNTB and establishing synapses. However the first events of 

synaptic transmission at the calyx of Held synapse has been recorded in P2 rats. In 

young animals axons of developing calyces are free of myelin sheath which makes the 

calyces easily accessible for the recording electrodes. The size of the calyx, already at 

the early stages (P8-P11) is also sufficient for presynaptic patching. These features 

made the calyx of Held an attractive target for uncovering physiological properties of 

the synapses in the vertebrate CNS. Additionally the postnatal development of both 

morphological and functional properties of the neuron with large, easily accessible 

terminal offers a unique insight into the structure-function interplay in the CNS 

neurons. 

 

1. 2. 1 Postsynaptic compartment 

Principal cells of the MNTB form inhibitory connections with neurons located in the 

medial and lateral superior olivary complex (SOC). SOC is thought to act as 

coincidence detector because it receives input from both contra-, and ipsilateral CN. 

Additional role for this pathway has been suggested by thin collaterals branching 

from calyceal axons as well as MNTB principal cells axons (Kuwabara, et al., 1991). 

Principal cells major excitatory input comes mostly from globular bushy cells of the 

contralateral CN via calyx of Held terminal (Warr, 1972; Tolbert et al., 1982; 

Glendenning et al., 1985; Friauf and Ostwald, 1988; Spirou et al., 1990; Smith et al., 

1991). However, other mainly inhibitory (Guinan and Li, 1990; Awatramani et al., 

2004) terminals are known to innervate principal cells as well. Intracellular labeling 

showed local afferents from ventral nucleus of the trapezoid body (VNTB), and from 

three other nuclei from the periolivary nuclei group but also descending projection 

presumably from higher brain regions like the lateral lemniscus (Kuwabara et al., 

1991). Principal cells of MNTB have been shown to undergo a switch from GABAA 

receptor to glycine receptor mediated inhibition. In older animals (P25-P27) this 

inhibition can be strong enough to shunt calyx-driven excitation (Awatramani, et al., 

2004). The source of this inhibition is not known but recurrent collaterals of the 

MNTB are the possible source. Immunocytochemical study of rat MNTB using 
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antibody against alpha-1 glycine receptor (GlyR) subunit revealed that developmental 

increase of this subunit in the MNTB starts at around P8. By P21 alpha 1 GlyR 

reaches an adult pattern (Friauf et al., 1997).   

 

1. 2. 2 Presynaptic compartment 

Protocalyces start forming at around P2 they still have growth cone filaments, which 

disappear a few days later. From P5 – P7, the calyx differentiates into a cup-like 

structure covering much of the postsynaptic cell. At this stage a calyx has an AP of 

slow kinetics (more than 2 fold slower than at P14), and pronounced short-term 

depression. The change of calyx shape from solid protocalyx at young age to 

digitiform with stalks and swellings (Morest, 1968; Kandler and Friauf, 1993) in the 

adult is due to the decrease in terminal substance, fenestration mechanism (Kandler 

and Friauf, 1993). At the age of P8-P10, calyx matures further and forms single, large 

compartment that covers about half of the principal cell. It potentially increases 

contact areas with the principal cell. From the time of ear canal opening (P11/12) to 

P16 the calyx is more fenestrated and its action potentials become faster and synaptic 

depression is less pronounced. The physiological maturation of the synapse is very 

advanced but not complete. In vitro recordings from P14 calyx at physiological 

temperature (35ºC) shown that the synapse is capable to reliably follow stimuli up to 

800 Hz. This indicates parallel changes of the pre- and postsynaptic properties 

(Taschenberger and von Gersdorff, 2000). Several factors contribute to such increase 

in firing efficiency. Acceleration of an AP leads to decrease in Ca2+ influx but yet the 

EPSC amplitude increases in maturing calyces. Also inactivation and recovery from 

inactivation speeds up during development, these factors together suggest 

enhancement in coupling efficacy (Yang and Wang, 2006). Change in Ca2+ channel 

contribution from N-, R-, P-type to mostly P-type from around P10 in rats (Forsythe 

et al., 1998) is responsible for short lasting up to 100ms Ca2+ - dependent facilitation 

observed in maturing calyces (Borst and Sakmann, 1998; Cuttle et al., 1998). The 

increase in calyx physiological capabilities coincides with the finding, using 

fluorescent confocal microscopy and EM, that SVs clusters and AZs are organized in 

“donut”-like assemblies of ~1 µm in diameter (Wimmer et al., 2006). These “donuts” 

only appear during maturation at the time of the ear canal opening P11/12 (Blatchley 

et al., 1987; Geal-Dor et al., 1993). Such arrangement might reflect microstructural 
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optimization of the release apparatus leading to increased efficacy of the synapse. 

Described developmental phases ranging from P2 to P14 are characterized with high 

variability of calyceal structures including immature to very mature morphologies. 

The structural development of the calyx at P21 is probably complete although there is 

not much of the ultrastructural comparative study covering this age. The functional 

state of P21 calyx remains unknown, since due to an increase in myelination, the pre- 

and postsynaptic patch-clamp study becomes very hard if not impossible as of today. 

 

1. 2. 3 Neurotransmitter release 

At the ultrastructural level, electron microscopic (EM) study have shown that 

individual active zones of the calyx of Held are similar to those of conventional small 

nerve terminals. An EM reconstruction of an entire P9 calyx has shown that there is ~ 

600 AZs per calyx located at an average nearest-neighbour distance of 0.6µm. An 

average active zone surface area has been shown to be 0.1µm2 (Saetzler et al., 2002). 

Another study has shown that the extrapolated number of AZs increases from ~300 at 

P5 to ~680 at P14 (Taschenberger et al., 2002). All the AZs create something like 

parallel release sites each with its own Ca2+ channels clusters (model prediction 

Meinrenken et al., 2002; experimental work Wadel et al., 2007). Each release site 

experiences a local increase in Ca2+ concentration resulting in a microdomain with a 

Ca2+ gradient depending on the distance from the AZs. Incoming AP causes elevation 

of the Ca2+ concentration in the presynaptic compartment and triggers SVs fusion with 

the presynaptic membrane and neurotransmitter release. At the rat P8-P10 calyx 

influx of Ca2+ creates a microdomain in which Ca2+ concentration reaches 10µM 

(Bollmann et al., 2000) or 25µM when measured using a different method 

(Schneggenburger and Neher, 2000).  The distance between calcium channels and 

SVs has not been directly measured. There are models that predict that about ten Ca2+ 

channels influence release within a microdomain of ~200nm (Meinrenken et al., 

2003). Research on the developmental changes of Ca2+ influx triggering SVs fusion 

indicated tighter spatial coupling between the Ca2+ channels and sites of synaptic 

release (Fedchyshyn and Wang, 2005) in the older animals (P16-P18) as compared to 

younger (P8-P12). Calcium sensors, are located within the Ca2+ microdomains, which 

within ~300µs (Bollmann and Sakmann, 2005) gradually spreads over the surface of 

the AZ. Synaptic vesicles that are docked to the membrane at the release site are 
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primed for calcium dependent fusion, so that when Ca2+ concentration is elevated SVs 

immediately fuse with the presynaptic membrane and the neurotransmitter glutamate 

is released to the synaptic cleft. The gradient of Ca2+ in microdomains is responsible 

for different release probability of those docked readily releasable SVs.  

 

1. 2. 4 Active zone as specialized area of neurotransmitter release 

Docked synaptic vesicles are only present at the AZs and therefore transmitter release 

is restricted to this specific site. This is the first - organizational role of the AZ – a 

precise alignment of the release site with its postsynaptic counterpart PSD containing 

neurotransmitter receptors. Formation of AZs in primary hippocampal cultures has 

been shown to occur as early as at 11 day in vitro (div) from “transport packets” a 

subset of dense core vesicles (Ahmari et al., 2000). Another study (Zhai et al., 2001) 

described 80 nm Golgi-derived AZs precursor vesicles containing active zone 

proteins Piccolo and Bassoon. The authors concluded that such Piccolo-Bassoon 

transport vesicles (PTV) may very well carry all necessary structural components of 

an AZ. Considering the surface of a single granulated vesicle they approximated that 

single PTV would, after fusion with the presynaptic membrane, establish ~3-4 release 

sites.  The docking site of the SV is its most likely fusion site, and the concentration 

of docking sites within AZ and the size of AZ most likely define the number of SVs 

docked at the AZ. EM studies in which the AZ surface was measured noted very large 

coefficient of variation. This could suggest either that the mechanism defining the size 

of AZs is quite inaccurate or that the size of AZs provides ready space for probably 

mobile release sites that have to be well aligned with postsynaptic spots of densely 

packed receptors.  

 

1. 3 Molecular organization of the active zone 

The active zone morphologically is a partition of presynaptic plasma membrane with 

a set of proteins probably necessary for the organization of exo- and endocytotic 

molecular machineries relative to each other and the presynaptic plasma membrane. 

Also, AZ proteins are thought to be involved in anchoring plasma membrane proteins, 

e.g. voltage gated Ca2+ channels, or cell adhesion molecules.  
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1. 3. 1 Active zone proteins 

Most of the proteins present in the active zone can also be found in other cellular 

compartments. These proteins can be divided based on their function at the active 

zone into: 1) fusing SVs with the plasma membrane e.g. syntaxin, SNAP-25; 2) 

scaffolding proteins like CASK, Mint, SAP97 and Velis/MALS; 3) cytoskeletal 

proteins, e.g. actin, tubulin, myosin, spectrin and beta-catenin; 4) voltage gated Ca2+ 

channels; 5) cell adhesion molecules e.g. neurexins, cadherins. Proteins specific for 

the AZs belong to seven families: Munc13, RIMs, ELKS/CAST/ERC, Bassoon, 

Piccolo/Aczonin, Liprin-α, and RIM-BPs (RIM-binding proteins) (Schoch and 

Gundelfinger, 2006). These multidomain proteins are thought to be directly involved 

in scaffolding of the AZ, and indirectly via their interacting partners, in mechanisms 

underlying neurotransmitter release. Interaction partners of Bassoon and Piccolo as 

well as other AZ proteins are depicted in Fig.1.1. 

 In vertebrates there are four isoforms of Munc13 (1 to 4, with Munc13-2 

having further two isoforms, one ubiquitously and one brain expressed (Betz et al., 

2001). Munc13 proteins are necessary for priming – preparing SVs for Ca2+ -

dependent fusion. In vitro Munc13-1 binds syntaxin (Betz et al., 1997) therefore its 

thought to promote formation of the SNARE complex.  

 RIMs (Rab3-interacting molecule) have six isoforms (RIM1α, RIM2α, 

RIM2β, RIM2γ, RIM3γ, RIM4γ) (Wang et al., 1997, 2000; Wang and Sudhof 2003). 

RIMs have been found to interact with ~10 different proteins (for the review see 

Schoch and Gundelfinger, 2006). Through these interactions diverse functions of 

RIMs are proposed, e.g. scaffolding, stabilization, calcium-dependent plasticity, 

cytoskeleton anchoring and regulation, SVs priming, SNARE complex regulation, 

presynaptic long-term plasticity and many others.  

 Total of two proteins belong to ELKS/CAST/ERC family. ELKS1 protein has 

two isoforms: ELKS1A and ELKS1B and ELKS2 protein is present in one isoform. 

The expression of ELKS1B and ELKS2 proteins starts within embryonic 

development  (~E14) and is restricted to the brain, while the ELKS1A is exclusively 

synthesized outside the brain early during development (Wang et al., 2002). The 

ELKS1B and ELKS2 interact with RIMs (Ohtsuka et al., 2002; Wang et al., 2002) 

and Piccolo/Aczonin and Bassoon (Takao-Rikitsu et al., 2004) among other 

interacting partners. Study of the ELKS2 deletion mutants in cultured neurons 
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suggested that ELKS is necessary to localize RIM at the AZ (Ohtsuka et al., 2002). 

However, a study using C.elegans, that was missing ELKS homolog, showed that 

ELKS was not necessary for RIM to localize to the AZ (Deken et al., 2005). Whether 

ELKS play a different role in synaptic transmission in C.elegans than in mammals is 

not yet known.  

 Bassoon (tom Dieck et al., 1998) and Piccolo/Aczonin (Cases-Langhoff et al., 

1996; Fenster et al., 2000; Wang et al., 1999) are structurally related and are the 

largest known AZ-specific proteins (420kDa and 530kDa respectively). They are not 

evolutionary conserved in worms and flies, but are only present in vertebrates. 

Bassoon and Piccolo are indicated in scaffolding functions within the AZ. Spatially 

restricted to the AZ they together with RIMs, Munc13 and ELKS appear to have an 

organizational function mostly due to their multidomain capability of interaction with 

many other proteins (tom Dieck et al. 2005; Takao-Rikitsu et al. 2004; Fenster et al. 

2003). Bassoon and Piccolo occur at excitatory and inhibitory CNS synapses but not 

in cholinergic synapses (Cases-Langhoff et al., 1996; Fenster et al., 2000; tom Dieck 

et al., 1998; Richter et al., 1999; Brandstatter et al., 1999). In primary cultures of 

hippocampal neurons both of the proteins colocalize at a majority of the synapses 

(Fenster et al., 2000; tom Dieck et al., 1998). However in the inner plexiform layer 

(IPL) of the retina, Bassoon and Piccolo have been found not to colocalize at all 

conventional synapses. Rather, Bassoon expression at GABA-ergic synapses is higher 

than that of Piccolo (Dick et al., 2001).   
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Fig.1.1: Schematic diagram of interactions of CAZ proteins and the resulting network at 
the active zone. The binding partners of all members of individual families are presented. SV 
synaptic vesicle, Abp actin binding protein, ARF-GEF ADP-ribosylation factor guanine 
nucleotide exchange factors, CaM calmodulin, cAMP-GEFII cAMP-dependent guanine 
nucleotide exchange factors, CASK a scaffolding protein CtBPs C-terminal-binding 
protein/connected to Bassoon and Piccolo, GIT G-protein-coupled receptor kinase interactor, 
KIF1A kinesin motor, LAR leukocyte common antigen-related receptor tyrosine phosphatase, 
RIM-BPs RIM-binding proteins) (from Schoch and Gundelfinger, 2006).  
 

1. 3. 2 Bassoon 

Structurally, Bassoon consists of two Zn2+ finger domains and three coiled coil (CC) 

domains. Post-translational modification adds myristoylate to the N-terminal of 

Bassoon (Dresbach et al., 2003). Interacting proteins for Bassoon are ELKS via the 

third CC domain of Bassoon (Takao-Rikitsu et al., 2004) and two members from 

family of CtBP (C-terminal binding protein) (tom Dieck et al., 2005).  

Bassoon cDNA clone sap7f was found by screening λgt11 expression library with 

polyclonal antibodies generated against rat brain synaptic junction preparation. The 

cDNA clone sap7f (733bp) was later used for production of monoclonal antibody 

against Bassoon (tom Dieck et al., 1998). On western blot sap7f detects two major 

protein bands of > 400 and 350kDa. However, Northern blot analysis of RNA 

transcripts from different brain regions did not detect additional Bassoon transcripts. 

The authors concluded that smaller polypeptides visible on the Western blot are 
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products of proteolytic degradation and not alternatively spliced variants (tom Dieck 

et al., 1998). An EM immunogold analysis using sap7f antibody against Bassoon 

found gold particles between SVs and in close proximity - at about one synaptic 

vesicle diameter - distance from active zone in synaptosomal preparations, mossy 

fiber terminals in hippocampal CA3 region and in ribbon synapses (tom Dieck et al., 

1998; Zhang et al, 2000, Brandstatter et al, 1999). In situ hybridization showed high 

levels of Bassoon transcripts in hippocampus and the cerebellum (tom Dieck et al., 

1998) of the P30 rat brain. Developmental analysis (Zhai et al., 2000) of Bassoon 

mRNA using Northern blot method shown that it is synthesized as early as by E19 

(total brain extract), and that its expression increases significantly until P10-P20 and 

reaches final adult level by ~ P40. Using in situ hybridization authors have shown that 

the peak expression of Bassoon in hippocampus occurs at P21, which is the time of 

neuronal differentiation and synaptogenesis. Bassoon protein is seen in the 

hippocampal primary culture as early as synaptotagmin1 at div2 (day in vitro 2) (Zhai 

et al., 2000). Elimination of the central region of Bassoon was used to create knock 

out (KO) mice (Bsn∆Ex4/5). The central region (between 1692 – 3263aa) is known to 

be essential for CAZ association of Bassoon (Dresbach et al., 2003). Physiologically, 

Bassoon deficient mice display significantly weaker synaptic depression during 

stimulus application in CA1 (cornu Ammonis) pyramidal cells and the number of 

active synapses is significantly reduced in KO neurons as compared to WT. 

Structurally, mutant hippocampal synapses look normal as evaluated with EM 

(Altrock et al., 2003). However, unlike in hippocampus, in the retina, lack of Bassoon 

disturbs formation of functional photoreceptor ribbon synapses because ribbons do 

not attach to the presynaptic membrane, but instead float in the cytoplasm (tom Dieck 

et al., 2005). Interestingly, in the Bassoon KO mice amounts of other CAZ proteins, 

like Munc13 and RIM remain unchanged but Piccolo protein level was up regulated 

1.4 fold compared to WT. 

Phenotypically Bassoon -/- mutant mice develop spontaneous epileptic seizures 

(Altrock et al., 2003). Anatomical characterization of Bassoon KO mice using 

Manganese-enhanced magnetic resonance imaging (ME-MRI) showed a marked 

increase in total brain volume as compared to WT. Also, disturbed formation of 

normal basal cortical activation patterns was found (Angenstein, et al., 2006). These 

two recent characteristics might indicate disturbed balance of excitatory and 
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inhibitory inputs. Recent metabonomic study using H-nuclear magnetic resonance (H-

NMR) spectroscopy, focused on metabolic changes in the mice lacking functional 

Bassoon. The authors demonstrated cortex-layer dependent alterations in the ratio 

between neurons and glia cells. Furthermore, the authors observed metabolic 

disturbances in the glutamine-glutamate and N-acetyl aspartate (a neuron-associated 

metabolite, for a review see Baslow 2003) metabolism in the cortex and hippocampus 

but not in the cerebellum (Angenstein et al., 2007).  

 

1. 3. 2 Piccolo/Aczonin 

Piccolo/Aczonin consists of ten regions of high sequence similarity to the regions 

found in Bassoon. These regions are called Piccolo Bassoon homology domains 

(PBH). They include two zinc finger domains, and three CC domains. Piccolo but not 

Bassoon also has a PDZ-domain and two C2-domains (C2A and C2B) in its C-

terminal region. The N-terminal has proline-rich Q-domain. Piccolo has been found as 

a result of screening of the components of the rat synaptic junction preparations 

(Cases-Langhoff et al., 1996). Screening chicken brain expression library with rabbit 

polyclonal antibodies against chicken brain synaptic plasma membranes lead to 

discovery of Aczonin. Aczonin is a chicken ortholog (same protein found in different 

species) of rat Piccolo. Piccolo has multiple splice variants with two manifesting by 

presence or absence of C2B-domain and resulting in short or long variants of Piccolo 

(Wang et al., 1999). Piccolo with its C-terminal C2A and C2B domains is the only 

known low-affinity Ca2+ sensor at the synapse (Gerber et al., 2001). Piccolo C2A 

domain is similar to synaptotagmin and other proteins C2-domains. However 

properties of Piccolo C2A domain calcium binding differs from those of C2-domain 

found in synaptotagmin. Piccolo C2A-domain binds Ca2+ with low affinity but high 

specificity. Binding of calcium to Piccolo C2A-domain evokes major conformational 

change in the entire domain (Gerber et al., 2001). Furthermore Piccolo C2A-domain 

also exists in two splice variants, with or without a short nine-residues sequence 

(Garcia et al., 2004). Depending on the splice variant, biophysical and biochemical 

properties of Piccolo C2A-domain differ. Lack of the nine-residues sequence 

increases Ca2+ affinity of the C2A-domain. Such unusual splice controlled C2A-

calcium binding domain indicates possible role for Piccolo in signaling events. 
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 Like Bassoon, Piccolo also interacts with ELKS via its third CC domain as 

well as with CtBP1 and CtBP2. Unique for Piccolo is the region between the first and 

second CC domain, which interacts with G-protein-coupled receptor kinase interactor 

(GIT) proteins. GIT proteins have been indicated in multiple functions such as 

reorganization of the actin cytoskeleton, membrane trafficking, and endocytosis (Kim 

et al., 2003). Piccolo functions inferred from its interacting partners are summarized 

below. 

 

ELKS (Takao-Rikitsu et al. 2004) Scaffolding 

Abp1 - (actin-binding protein) (Fenster et al. 2003) actin binding, endocytosis 

PRA1 (Fenster et al. 2000) actin binding, endocytosis 

GIT (ARF-GAP) (Kim et al. 2003) membrane trafficking 

Profilin (actin binding protein) (Wang et al. 1999) actin regulation 

cAMP-GEFII (Shibasaki et al. 2004) insulin secretion 

RIMs (Shibasaki et al. 2004) scaffolding 

Piccolo (Shibasaki et al. 2004) scaffolding 

Table 1.1: Piccolo/Aczonin - interacting partners. Various binding partners of Piccolo (left 
column) suggest multiple functions in which Piccolo might be involved (right column). 
 

 In summary Bassoon and Piccolo are involved in AZs formation and possibly 

in synaptic neurotransmitter release. Also in most of the synapses they co-exist and 

very likely are able to take over each other function. However the exact Bassoon and 

Piccolo localization within synapse compartments, developmental change in the 

protein content and their functional significance at individual synapse are not known.  

 

1. 4 Strategies of localizing proteins in tissue 

All approaches to localization of endogenous proteins are based on antibody binding 

to its specific antigen. Protein can be detected in the sample that has been 

homogenized, or identified in an intact tissue (in situ). For homogenate, a wide 

variety of techniques are available e.g. electrophoretic separation and detection on 

Western blot with all its high throughput versions, or enzyme-linked immunosorbent 

assay (ELISA) if a protein is in the liquid solution and antibody immobilized to a 
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solid support. Alternatively, if it is a fixed cell that constitutes a support and antibody 

is in the solution. Methods based on tissue homogenization offer quantitative 

information about the protein presence in particular, tested regions. On the other hand, 

methods that preserve cellular entity of the sample are better for localization of the 

protein in its natural place of occurrence. Such localization methods are still based on 

antibodies typically applied on primary cell cultures, organotypic cultures or tissue 

slices. Direct and indirect methods of immuno-detection are available. The first 

method is based on labeled primary antibody binding specifically to its antigen, while 

the second method utilizes sandwiching effect of secondary antibody binding to an 

antigen-bound primary antibody. For the fluorescent detection the indirect method 

increases the number of fluorescent molecules per antigen. Also allows for 

colocalization of multiple proteins using different fluorescent molecules. 

Fluorochromes emit visible light after excitation with light of the shorter wavelength 

than the one they emit. There are fluorochromes emitting lights at wide range of 

visible spectrum and beyond it. None-fluorescent detection mostly utilizes enzymes as 

labels of the antibodies, e.g. horseradish peroxidase or alkaline phosphatase. 

Chromogen substrate for the enzyme forms darker precipitates in the site of reaction, 

that is at the site of antibody bound to antigen, one of the commonly used substrates is 

3’-diaminobenzidine tetrahydrochloride (DAB).  

 In this work, we used indirect fluorescent immunohistochemical detection of 

the antigens, because we were interested in the specific localization of the proteins 

within confined area of individual synapse. Moreover we wanted to describe position 

of detected antigens relative to other fluorescently labeled structures. 
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1. 5 Molecular perturbation technologies 

Complexes of proteins interacting with each other in their natural environment 

underlie various cell functions. Understanding protein interactions in situ is based on 

elimination of a single protein from the complex and analysis of the functional 

outcome at the cellular, network or behavioral level. In an ideal scenario only the 

protein of interest is removed, only in the region (spatially-specific) and at the time 

frame desired (temporally restricted) by an experimenter. Many techniques leading 

ultimately to elimination of a protein of interest have been developed.  Approaches 

based on binding and inactivating the functional domain of the protein of interest or 

its functional target (dominant negative peptides, pharmacological agents, toxins), 

over-expressing the protein of interest which in some cases results in dominant 

negative behavior. Additionally genetical approaches, specifically reverse genetic 

when a gene of the protein of interest is known, but its function is not, are now also 

available. The latter technologies utilize targeted homologous recombination in 

embryonic stem cells (Thomas and Capecchi, 1987), which allows for developing 

mice with a specific mutation. Additionally conditional mutagenesis with use of site-

specific DNA recombinase (e.g. Cre-lox inducible system (Rajewsky et al., 1996)) 

allows for precise and timely manner of switching the gene off. Other techniques are 

nucleic-acid based approaches that silence gene expression in the sequence specific 

manner, e.g. antisense oligodeoxyribonucleic acids (ODNs) and ribozymes both 

techniques are based on chemically modified molecules (for the review see Scherer 

and Rossi, 2003). The newest addition to the arsenal of methods leading to 

deactivation of a protein of interest is RNA interfering (RNAi) technique (Hamilton 

and Baulcombe, 1999). Such RNAi can be delivered to the cell directly in form of 

short interfering RNA (siRNA) fragments, or expression constructs, or via viral 

mediator. When naked siRNA is delivered the effect is only transient, however when 

it is expressed from a vector the effect can be long lasting. 

 

1. 5. 1 RNA interference 

Post-transcriptional gene silencing (PTGS) or RNA silencing conceptually introduced 

during 1990s has been described as specific degradation of a population of 

homologous RNAs and was first discovered in plants (for review see Vaucheret et al., 
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2001). Study of transgene- or virus-induced PTGS in Arabidopsis plant found high 

number of short (21-25 nucleotide (nt)) RNA molecules complementary to both 

strands of the silenced gene. These short RNAs resulted from processing of a long 

dsRNA precursor (Hamilton and Baulcombe, 1999). In animals (Caenorhabditis 

elegans) siRNA-mediated interference activity was first described by Fire et al., 1998, 

the authors have also shown that double stranded RNA (dsRNA) silencing was more 

potent in silencing an endogenous gene activity than a single stranded RNA. In 2006 

Andrew Fire and Craig C. Mello (the first and the last authors respectively) received a 

Nobel Prize in Physiology or Medicine “for their discovery of RNA interference – 

gene silencing by double-stranded RNA”. In mammalian cell cultures the RNAi 

pathway has also been described and shown to be inducible by short dsRNA that 

mimics cell native endonuclease products (Elbashir et al., 2001).  

 Steps leading to silencing of endogenous mRNA with dsRNA partly overlap 

with endogenous micro RNA (miRNA) processing machinery (Fig. 1.2). They 

comprise an enzymatic cleavage of dsRNA into short 21-23nt RNA fragments 

mediated by enzyme Dicer. These short RNA fragments induce then the RNAi-

induced silencing complex (RISC) and RISC cleaves endogenous mRNA, which 

matches to complementary antisense strain from the short RNA. The usefulness of the 

technique increased once it was discovered that dsRNA can be effective when derived 

from stem-loop form of RNA- short hairpin (shRNA) (Paddison et al., 2002) which in 

turn could be transcribed from DNA vector or virus. 
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Fig. 1.2: A basic model for the conserved central core mechanism in RNAi. Once long 
dsRNA enters the cell it is recognized by dsRNA – binding protein and dsRNA-specific 
nuclease Dicer (RDE4 for C.elegans). This enzyme cleaves dsRNA into short dsRNA 
fragments, which are then inducing RNA-Induced-Silencing Complex (RISC). This complex 
looks for matching target mRNA sequences in the cell and then cleaves them which 
ultimately leads to their degradation (from Fire, 2007)   
 

1. 5. 1. 1 Short hairpin RNA in vivo down regulation of genes 

A transient effect of RNAi in mammalian cell culture can be achieved by transfecting 

these cells with exogenously generated shRNA. However, for the long lasting effect 

in vitro or for the siRNA effect in vivo transcription from DNA vector or virus is 

necessary. Polymerase III promoters (most commonly used U6, H1, or micro-RNA 

7sK) mediate expression of shRNA from DNA vectors. Polymerase III characteristic 

features such as specific onset position and stretch of five thymidines for termination 

of transcription allow for generation of precise sequence of shRNA complementary to 

a fragment of mRNA of interest.  

Many attempts of designing rules for selecting the most efficient shRNA has been 

made and some of the rules have proven valuable over time, while others shown no 

clear advantages (for an extensive review on designing effective siRNAs see Pei and 

Tuschl, 2006). Virus mediated delivery of shRNA is the most efficient way of 

targeting bulk of cells within mammalian organism. It also permits better control over 
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tissue specificity since many viruses have naturally occurring tropism toward 

particular cell types, or they can be engineered to reach expected target.  

 

1. 5. 1. 2 Adeno-Associated virus mediated shRNA delivery system 

In mammals delivery of shRNA and achieving stable long-term expression was of 

high interest mainly because of the potential medical application of shRNA in human.  

Because of this therapeutic potential viruses used should be: a) safe, b) specific, c) 

with high and long lasting expression and d) easy in production. Adeno-Associated 

virus fulfills most of these criteria in a manner superior to other viruses. AAV has 

been found in human as well as simian species with different serotypes being specific 

for either species. In fact one study have shown that in ~ 80% of human population 

AAV serotype 2 antibodies are present (Erles et al., 1999). This indicates wide spread 

of a virus in a population yet so far AAVs have not been associated with any human 

diseases. AAVs exist in a variety of serotypes that are naturally specific for certain 

tissues e.g. AAV1 is glia and neurons specific. AAVs are capable of multi particle 

infection, which potentially sets high number of shRNA copies from the beginning. 

The amount of shRNA expression however is rather difficult to predict, since it 

depends on its own promoter efficiency. Once AAV is expressed in a host cell it can 

remain active for years. Production of recombinant AAV has been significantly 

simplified and no adenovirus is necessary for AAV formation. Additionally different 

serotypes can be combined into a hybrid in order to increase infection efficiency and 

to obtain particular specificity. Such as for example AAV serotypes 1 and 2 can be 

assembled into a hybrid virus AAV1/2, which has high tropism for neurons and 

expresses more robustly than single AAV1 serotype.   

 

1. 5. 2 Viral gene transfer 

Virus particles expressing gene of interest can be delivered in precisely defined space 

and time to a living animal.  Moreover, in combination with genetically modified 

mice with conditional mutagenesis, specifically injected viral particles can be used to 

spatially restrict conditional expression (suppression). Delivering of a various 

genetically encoded proteins in vivo has served in multiple applications. In 

anatomical studies expression of genetically encoded fluorescent proteins facilitated 
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tracing of neuronal projections and visualization of specific types of neurons and their 

synapses e.g. calyx of Held (Wimmer et al., 2004). Since the discovery of RNA 

interference and its applicability in a gene down-regulation viral transfer became 

essential for shRNA long term and tissue specific expression in mammals. In our 

study we used two very different virus types, namely AAV and sindbis virus. 

 

1. 5. 2. 2 Sindbis virus 

Sindbis virus is an alpha virus, a group of mosquitoes –borne viruses and belongs to 

Togaviridae family. Sindbis produces 40-50nm in diameter virions. Its genome of ~12 

kb single, positive-strand RNA virus in encapsulated in icosahedral capsid with lipid 

envelope. Its genome consists of genes encoding for nonstructural proteins (nsP1-4) 

and structural proteins capsid and envelope glycoproteins (E1 and E2). Glycoproteins 

from the envelope mediate viral attachment, entry and fusion with the invaded cell. 

Sindbis virus shows strong tropism to neurons and high level of infectivity and fast 

onset of expression within ~ 5 hours after injection. These features together with 

cloning capacity of ~ 6 kb make Sindbis an excellent tool for delivery and expression 

of a gene of interest cloned into its genome. Sindbis does however induce cell death 

(apoptosis) when expression lasts over 24 hours. Also its safety level 2 makes it more 

difficult to handle. However, in our experiments where developmental analysis is of 

our interest Sindbis virus with fast onset and high expression is ideal, because it 

allows for expression analysis in as soon as ~16 hours after injection. 

 

1.5.2.3 Adeno-Assocaciated Virus 

Adeno-associate virus - single stranded DNA virus belonging to Parvoviridae family. 

Wild type AAV requires adeno-virus for productive infection, and thus it is 

considered naturally defective. Small ~ 20nm AAV virion consists of nonenveloped, 

icosahedral capsid, and contains linear DNA molecule. Viral genome is short (4681 nt 

– AAV2) and comprises two genes (rep and cap) that encode four nonstructural (Rep) 

and three structural (VP) proteins. The rep and cap genes are positioned between 

internal terminal repeats (ITRs) of an AAV genome. ITRs are responsible for 

packaging of the genome in the viral capsid.  In infected cells ITRs are involved in 

converting single stranded to double stranded DNA, which occurs before the onset of 
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expression. The fact that ITRs are the only sequences in cis position required for 

successful packaging allowed for creating serotype hybrids by retaining ITRs from 

one serotype and providing capsid proteins from another. There are 108 AAV 

serotypes identified so far, 55 were isolated from human and 53 from nonhuman 

primates (Gao et al., 2004). These serotypes offer wide range of natural targets, such 

as for example AAV2 with natural tropism to neurons. In this study a chimera of 

serotype 1 and 2 namely AAV1/2 was used for it retains tropism for neurons, and has 

increased infectivity level as compared to AAV2 only. 

 

1. 6 Goals of this work 

Since we are interested in molecular mechanisms underlying neurotransmitter release, 

we wanted to investigate developmental changes in the number of AZs at the calyx of 

Held. Such structural change occurring during calyx maturation could potentially 

factor in increasing efficiency of the calyx transmission. Two closely related 

cytoskeletal active zone proteins Bassoon and Piccolo contribute to AZ formation and 

might in fact represent AZs. Therefore we first aimed to anatomically characterize 

their developmental changes in distribution and localization in the calyx of Held.  

Secondly, based on these proteins as active zone markers we expected to quantify 

potential changes in the active zone content within maturing calyces. Finally, we 

attempted to down-regulate both Bassoon and Piccolo using Acute Targeted Gene 

(ATG) transfer technique together with short hairpin RNA expression mediated by 

AAV1/2 virus and elucidate physiological effects of such perturbation on the calyx of 

Held. This was necessary because: 1) Bassoon KO have shown inconclusive results 

possibly due to up regulation of Piccolo expression, 2) double KO of Bassoon and 

Piccolo does not exist as of today, and 3) such approach allows for direct link 

between structural changes in the protein involved in AZ formation and the calyx of 

Held functional output.  
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2. Results 

We are interested in potential contribution of presynaptic active zone proteins 

Bassoon and Piccolo to morphological changes in maturing calyx of Held. Thus we 

first describe our novel approach of localizing Bassoon and Piccolo specifically 

within 3D space of individual calyx. Next we describe localization of those proteins 

within sub-compartments of the calyx and in relation to SVs clusters, and finally we 

quantify fluorescent immunohistochemical labeling of Bassoon and Piccolo at two 

different ages, before (P8-10) and after onset of hearing (P21-25). 

 

2.1 Localization of presynaptic proteins in the calyx of Held 

Bassoon and Piccolo fluorescent immunohistochemical (FIHC) clusters created 

characteristic circular patterns within MNTB (Fig. 2.1 A and B). Outside borders of 

the MNTB both antibodies FIHC signal appeared in small densely distributed clusters 

(exemplified by Bassoon staining Fig. 2.1 A – white arrows), reminiscent of a pattern 

seen in primary hippocampal cultures stained with anti-Bassoon antibody. At the 

detailed examination we observed that the expected FIHC signal semi circular pattern 

often appeared as an entire circle (Fig. 2.1 C and D). Furthermore, we observed only a 

few FIHC clusters present in between the circular patterns, suggesting that only very 

few synapses did not terminate at the principal cells of the MNTB. We then checked 

whether such obtained staining allows for discrimination between calyceal and non-

calyceal synapses. We used set of antibodies against pre- and postsynaptic proteins to 

label both parts of the synapse. We used antibody against CASK (belongs to 

MAGUKs scaffolding proteins family) – known to be present at both pre and 

postsynaptic compartment. It showed circular patterns, similar to that of Bassoon or 

Piccolo, but without giving any clue into which fluorescent cluster might be in the 

calyx (Fig. 2.2 A). Antibody against vesicular glutamate transporter protein 

(VGLUT1) – synaptic vesicle specific protein, revealed big fluorescent clusters highly 

reminiscent of a calyx shape, but without really delineating borders of the calyx (Fig. 

2.2 B). Fluorescent signal detected after application of antibody against vesicular 

GABA transporter (VGAT) showed smaller and less abundant clusters that aligned 

along arched shapes (Fig. 2.2 C). Finally we also tried to visualize postsynaptic 
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density using an antibody against PSD95, a protein specific for postsynaptic density 

compartment. This antibody seemed to be not very specific and we only managed to 

stain tissue of one young (P9) rat (Fig. 2.2 D). Also antibody penetration of the tissue 

was very low, and we could not use it for adult animals since meylination there is 

much more profound than in young animals.  

Do all the clusters present within circular pattern really belong to only one and 

the same calyx? Moreover, which FIHC clusters are from the collaterals that are 

known to be present within MNTB?  

Figure 2.1: Overview of MNTB fragments treated with anti-Bassoon and anti-Piccolo 
fluorescent immunohistochemistry. A - circles of anti-Bassoon antibody indicate presence 
of the calyces. Note area outside the MNTB which lacks Bassoon circles – white arrows, rat 
P9. B - fluorescent immuno-clusters of anti-Piccolo, rat P13, also form circular patterns. C - 
circular pattern of anti-Bassoon fluorescent signal in higher zoom. Note absence of the 
fluorescent clusters in the areas between the circles, rat P21. D - highest zoomed circular 
pattern of anti-Piccolo antibody fluorescent clusters in the MNTB of P18 rat. Images A and C 
are projections along z-axis from a confocal stack of optical sections; images B and D are top 
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view of 3 D reconstruction of stack of confocal images. Scale bars: 40µm in A and B, 20µm 
in C, and 10µm in D. 

 

Figure 2.2: Overview of the MNTB fragments processed with various pre- and 
postsynaptic antibodies. A - FIHC of antibody against synaptic protein CASK, which is 
characterized as present in both pre- and postsynaptic compartments of contacting neurons. B 
- FIHC signal from VGLUT1 antibody against vesicular glutamate transporter indicates SVs 
clusters. C - FIHC signal after treatment with VGAT antibody against vesicular GABA 
transporter indicates inhibitory synapses. D - FIHC signal from antibody against postsynaptic 
density protein PSD95. The samples were prepared from: P9 A, D, C, and P11 - B rats. All 
the images are projections along z-axis from confocal stack. Scale bar 20µm. 
 

2. 2 Labeling of calyx membrane with membrane-bound GFP 

To assure calyceal localization of Bassoon and Piccolo fluorescent clusters we labeled 

calyces with genetically expressed mGFP tag (Fig. 2.3). This labeling revealed great 

morphological details of calyces at both age groups. We visualized calyces at great 
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details of individual distinct finger like protrusions in the adult calyces (Fig. 2.3 A). 

Also in young calyces we could trace many filopodia like extensions and some of 

them even for a few micrometers (Fig. 2.3 B).  

Figure 2. 3: Virus mediated membrane targeted GFP expression in the calyx of Held.  
A - adult (P22) typically fenestrated calyx. B - young (P9) solid cup-like shape calyx with 
characteristic long protrusion. Both images are projections along z-axis from confocal stack 
of optical slices. Scale bar 10µm.  
 

Furthermore this labeling allowed us to delineate borders of the calyx with precision 

of a single outer or inner part of the calyx membrane (Fig. 2.4). We have measured 

fluorescent signal intensity distribution in mGFP labeled calyceal axon (Fig. 2.4 A 

and B), and found that mGFP labeled membranes appear to be separated from each 

other by ~ 5µm (Fig. 2.4 C). Similarly using mGFP we could discern inner sub-

compartments of the calyx: the membrane of the calyx that faces the principal cell, the 

cytoplasmic space between the membranes, and the outer membrane away from the 

principal cell (Fig. 2.4 D and E). Distance between plasma membrane facing principal 

cell and the outer plasma membrane of the calyx is smaller than that seen in the axon 

but can also be discerned by fluorescent intensity measurement (Fig. 2.4 F).  
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Figure 2.4: In the calyx of Held membrane targeted GFP allows for differentiation 
between plasma membrane side located toward principle cell of MNTB versus the outer 
side. A - surface rendered reconstruction of P24 calyx – green with probe line - orange across 
fragment of an axon. B - single cross section of the axon from A with the probe crossing its 
diameter. C - histogram of intensities along a probe line from A and B. Note two clearly 
separated peaks of intensity indicating membranes. D - surface rendered reconstruction of the 
calyx (same as in A) with top of the calyx removed and probe – orange located across one of 
the calyceal fingers. E - single cross section of the calyx from A and D with the probe D 
across calyceal finger. F - histogram of intensities along a probe line from D and E. Note two 
clearly separated peaks of intensity indicating membranes. Scale bars: 20µm in A, D, E and 
5µm in B. 
 

Pre-labeling of calyces with mGFP prompted us to develop an effective approach of 

isolating fluorescent antibody signal located within the calyx from the one beyond it. 

Excision of the immuno-labeled signal from the pre-labeled calyces was done via 

thresholding of the calyx channel and multiplying it by antibody channel (see 
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Methods, Fig. 2.5 A and B). The outcome of the procedure was a channel with 

immuno-labeled clusters remained within the calyx area only (Fig. 2. 5C and D).  

Since calyces change their shape profoundly during development, it is also 

likely that their overall size changes. For further quantification of the proteins 

fluorescent clusters content within calyces it is important to know whether any 

potential difference in number of clusters could simply be related to different calyx 

sizes. To establish whether the volume of the calyces between age groups differs, we 

measured it in surface rendered 3D calyces. In total we measured 12 entire calyces 

from each age group and compared their average size. We have detected no difference 

on average size of the calyx between young (P9-P10) and adult (P21-P25) calyces 

(Fig. 2.6). However we observed large variability of calyx size within age groups.  

Figure 2.5: Excision of fluorescent immunolabeled Bassoon clusters from the volume of 
the mGFP labeled calyx.  
A - Bassoon channel as seen in 3D reconstruction of confocal scan, immuno-clusters 
distributed within the entire scanned cube of the tissue, note the circular pattern in the 
middle of the cube. B - calyx channel overlaid with Bassoon channel. C - calyx has 
been rendered in 3 D using threshold selection so that calyx was assign value 1 and 
the rest of this channel content value 0. Having such selected calyx we multiplied 
Bassoon channel by thresholded calyx channel and in result received Bassoon signal 
present only within calyx volume. All clusters that did not belong to the calyx were 
eliminated. D - surface rendered calyx (transparent mode) with red bassoon clusters 
within its volume. E - surface rendered calyx (shaded mode). F - Bassoon fluorescent 
immuno-clusters excised from the calyx volume. Scale bar 8µm. 
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Figure 2. 6: Average volume of the calyx rendered in 3D. Comparison between two age 
groups shows no statistically significant difference of the calyx volume. However we have 
observed large variability of sizes within age group (CV for P9 = 0.5, and CV for P24 = 0.4). 

 

2. 3 Localization of Bassoon 

For the anatomical description of Bassoon localization and potential distribution 

changes during calyx maturation we systematically analyzed calyces at young (P8-

P10) and adult age (P21-P25). We quantitatively analyzed and compared data from 

both age ranges.  

 

2. 3. 1 Bassoon in young calyces (P8-P10) 

Immunohistochemistry with anti-Bassoon antibody on young calyces revealed 

fluorescent clusters present on the inner site of the cup-like shape of calyces. 

Distribution of the fluorescent clusters was rather random within the entire cup-like 

shaped calyces (Fig. 2.7).  Sporadically we observed some Bassoon fluorescent signal 

in thin protrusions formed extensively by young calyces (Fig. 2.7 A, B arrows). These 

protrusions may reflect calyceal collaterals. Hence, Bassoon also present in filopodia 

could indicate potential for AZ forming once a connection with target is established.  

Localization of fluorescent clusters inside calyx volume was mainly toward the inner 

membrane but not overlapping with it (Fig. 2.8). Additionally we observed some 

fluorescent clusters aligned with the perimeter of a principal cell that did not belong 

to the calyx (Fig. 2.8 D). Here we see that fire-red fluorescent clusters of Bassoon are 

present in calyx but also on the opposite site from it, suggesting other synaptic 

contacts to the principal cell.  
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Figure 2. 7: Representative pattern of Bassoon FIHC distribution observed in young 
calyces.  
A - one entire and one partial calyces from P9 rat surface rendered (transparent mode) to 
visualize Bassoon FIHC on the inner site of the calyx cup. B - calyx from P9 rat reconstructed 
in 3D (surface not rendered) with Bassoon FIHC surfaced rendered clusters. C - calyx from 
P8 rat surface rendered (transparent mode) with Bassoon FIHC clusters distributed on the 
inner, principal cell facing side of the calyx cup. Arrows indicate thin protrusions with FIHC 
Bassoon. Scale bar 10µm.  



Results 

 32 

Figure 2. 8: Localization of Bassoon FIHC relative to the calyx plasma membrane 
labeled with mGFP.  
A - cross-section through P9 calyx, the cup part of the calyx is removed to visualize Bassoon 
FIHC clusters-red within calyx membranes. B - cross cut P9 calyx with the side facing 
postsynaptic cell exposed. At the cross section of the calyceal membrane Bassoon FIHC 
clusters. C - transparent cross section to visualize Bassoon FIHC – fire red within single 
optical section in relation to fully visible 3D calyx of P9 rat. D - single optical section through 
both P9 calyx - white and Bassoon FIHC clusters – fire red with nuclear DAPI stain labeling 
nuclei of principle cells – blue. Note that some Bassoon FIHC clusters do not belong to the 
calyx – arrows. Scale bars 10µm. 
 
 

2. 3. 2 Bassoon in adult calyces (P21-P25) 

Adult calyces are fenestrated, and contain less of continues surfaces as compared to 

young calyces. Bassoon localization follows this anatomical modification of a calyx 

and it distributes within finger–like protrusions but without any obvious sub-

clustering (Fig. 2.9).  



Results 

 33 

 
Figure 2. 9 Typical Bassoon fluorescent immunohistochemistry clusters distribution in 
the adult P24 calyx. Bassoon FIHC clusters-red within the inner site of the calyx, view 
through absent principal cell of the MNTB. Note Bassoon FIHC clusters on the rim of the cut 
open calyx – yellow. Calyx and Bassoon clusters shown in 3D reconstruction, surface not 
rendered. Scale bar 10µm. 
 

The fluorescent signal is clearly located proximal to the membrane of the calyx facing 

the postsynaptic principal cell (Fig. 2.10). We observed most of Bassoon fluorescent 

clusters located in the vicinity of the inner membrane of the calyx, along the length of 

the finger like protrusions (Fig. 2.10 A). Some times we were finding clusters of 

Bassoon that localized exactly within fluorescently labeled membrane of the calyx. 

Sporadically we saw clusters that span the space between juxtaposed finger-like 

protrusions (Fig. 2.10 B) The latter ones most likely represented Bassoon clusters 

from outside the calyx located so close that our excision method could not resolve the 

difference.   
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Figure 2. 10: Bassoon signal localizes to the site of the calyx that faces principal cell.  
A - three dimensional, surface rendered calyx of P22 rat, cut open to visualize the inner area 
between plasma membranes. B - single optical section of a zoomed fragment of calyx from A. 
Fluorescent Immunolabeled clusters of Bassoon – red localize along the inner site of the calyx 
membrane, and within the membrane. Scale bars 10µm in A and 3µm in B. 
 

The assumption that Bassoon clusters might represent active zones within calyx 

implies that their localization should correlate with synaptic vesicle clusters. We have 

checked this by using genetically encoded synaptophysin over-expression together 

with bassoon fluorescent immuno-labeling. We have observed that indeed synaptic 

vesicle clusters were mostly located between Bassoon clusters and outer membrane of 

the calyx. Such that Bassoon clusters would be lying directly at the site of the calyx 

that faces the principle cell and synaptic vesicles were above them (Fig. 2.11). In 

general Bassoon fluorescent signal appears closest to the plasma membrane, with 

clusters of synaptic vesicles filling more distant spaces. 

We also observed that fluorescent Bassoon clusters that do not belong to the calyx but 

align along principal cell perimeter are not VGLUT1 positive (Fig. 2.12 A). These 

extra-calyceal inputs can be inhibitory as we also saw VGAT-positive labeling in the 

calyx (Fig. 2.12 B), or excitatory that are, unlike calyx, VLGUT1 negative.  
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Figure 2. 11: Bassoon fluorescent immuno-signal localizes within volume of synaptic 
vesicles clusters in the calyx of Held. 
A - calyx (P25) in 3D reconstruction with removed top part – light green. Bassoon FIHC 
signal – red and arrow-heads at the cross section, located within clusters of synaptic vesicles - 
cyan. Synaptic vesicles are labeled with antibody VGLUT1. B - surface rendered 3D 
reconstruction (transparent mode) of synaptic vesicle clusters – cyan labeled with genetically 
expressed synaptophysin in P17 calyx. Fluorescent immuno-signal of bassoon antibody – red 
shown in surface rendered (shaded mode) 3D reconstruction.  Scale bars 10µm. 
 

Figure 2. 12: Bassoon FIHC clusters, located outside the calyx aligned with perimeter of 
the principal cell, belong to VGLUT1 negative synapses and might be inhibitory. 
A - calyx of P25 rat labeled with mGFP – green, immunostained for VGLUT1 protein – blue, 
and Bassoon – red. Note that Bassoon FIHC clusters within calyx localize closer to the 
membrane facing the postsynaptic cell and clusters of synaptic vesicles are above those of 
Bassoon. FIHC Bassoon clusters that do not belong to the calyx also do not have VGLUT1 
positive clouds of SVs.  B - VGLUT1 clusters – blue are interspersed with VGAT positive 
clusters – red, in P22 calyx. Scale bars: 10µm. 
 



Results 

 36 

 

2. 3. 3 Quantification of Bassoon at two developmental stages of calyx 

We assumed that a single fluorescent cluster might in fact represent an active zone or 

two if they are located close to each other. Therefore, we have analyzed the 

distribution of Bassoon clusters after rendering their surface in three dimensions. We 

have observed large variability in protein cluster size distribution (Fig. 2.13 A – point 

marks) within the age group and between the ages. At both ages P24 and P9 

fluorescent signal of Bassoon localizes in small clusters 0.066 ± 0.001µm3 (n=3394) 

and 0.041 ± 0.001µm3 (n=1468) respectively. Consistent with similar size distribution 

between two age groups, also contribution to a total volume of calyx was similar (Fig 

2.13 A – bar graph). Bassoon fluorescent clusters contribution was very small and did 

not differ between P24 and P9 calyces. These clusters occupied on average 0.007 ± 

0.001% (n calyces = 6) and 0.006 ± 0.001%  (n calyces = 6) of calyx volume at P24 

and P9 respectively. Next we looked whether there is a change in total number of 

Bassoon fluorescent clusters per calyx over time (Fig 2.13 B). We found that number 

of those clusters per calyx at P24 was higher than at P9 (P = 0.02, unpaired t-test with 

Welch correction). At P24 we found 378 ± 42 (n=9) clusters and at P9 247 ± 18 (n=6) 

clusters. Since calyces can differ in size even within the same MNTB and high 

number of fluorescent clusters may simply reflect bigger calyx, we looked also at the 

density of Bassoon fluorescent signal within calyx volume (Fig. 2.13 C). In P24 calyx 

we found 0.3 ± 0.04 (n=6) clusters/µm3 and in P9 calyx 0.24 ± 0.03 (n=6) 

clusters/µm3. Density analysis did not show a statistically significant difference 

between age groups. Therefore we conclude that Bassoon content within calyx 

synapse does not change during development at least within the ages analyzed in this 

work. 
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A - volume of Bassoon 

FIHC clusters isolated 

from calyces – point 

markers - (left y-axis).  

Total Bassoon FIHC 

clusters volume 

contribution to the calyx 

volume (right y-axis).  

 

 

 

 

B - number of FIHC-

labeled Bassoon clusters 

per calyx.  

 

 

 

 

 

 

 

 

C - density of Bassoon 

FIHC clusters per calyx 

volume.  

 

 

 

 

 

Figure 2. 13 Comparison of Bassoon FIHC, 3D surface-rendered, clusters 

quantification between two age groups (numbers represent mean ± SEM).  
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2. 3. 4 Bassoon represents active zones 

Bassoon fluorescent clusters are found mostly at the calyx plasma membrane facing 

the postsynaptic cell. Count of fluorescent signal from immuno-labeling with anti-

Bassoon antibody revealed about two fold less clusters than counts of active zones 

from EM studies. We also observed that immuno-fluorescent clusters tend to align 

between the calyx membrane and SVs clusters labeled with genetically expressed 

synaptophysin. Therefore, we suggest that Bassoon FIHC clusters may represent 

active zones, albeit at the resolution of about two AZs per single FIHC cluster. 

 

2. 4 Localization of Piccolo 

Using the same approach as for Bassoon we have analyzed immuno-fluorescent 

clusters of Piccolo at two developmental stages of the calyx of Held. In young (P8-

P10) and adult (P21-P25) calyces we found analyzed parameters very similar to what 

we saw in the case of Bassoon. The two proteins are known to coexist in many but not 

all synapses, thus we also looked whether they co-localize in the calyx of Held. We 

found that Bassoon and Piccolo fluorescent immuno-clusters do indeed coexist within 

most fluorescent spots (Fig. 2.14). Quantification of both signals based on 3D 

reconstruction and surface rendering of each cluster revealed co-localization of ~ 90% 

between Bassoon and Piccolo. 
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Figure 2. 14: Colocalization of Bassoon and Piccolo FIHC clusters in P9 calyx of Held. In 
green labeled calyx, Bassoon FIHC clusters – blue co-exist with Piccolo FIHC – red in most 
but not all of the fluorescent spots. Sites where Piccolo FIHC appears without Bassoon FIHC 
-arrowheads. Scale bar 10µm. 

 

2. 4. 1 Piccolo in young calyces (P8-P10) 

Fluorescent immuno-signal localized rather evenly within a solid area of the cup 

shaped calyx. Within internal volume of the calyx Piccolo fluorescent labeling was 

aligned toward the inner site near the plasma membrane closer to a principal cell (Fig. 

2.15 A). We also saw some of the fluorescent clusters at axonal collaterals of the 

calyces (Fig. 2.15 B). Similarly to our observations from Bassoon, some of the 

fluorescent signal of Piccolo was also aligned at the perimeter of a principal cell but 

did not belong to the calyx (Fig. 2.16, arrow heads). 
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Figure 2. 15: Piccolo FIHC clusters localization in young P9 calyx.   
A - in most cases Piccolo FIHC clusters - red align along membrane of the calyx - green that 
faces postsynaptic principal cell. B - occasionally Piccolo FIHC clusters were present at the 
distal ends of calyceal protrusions in young calyces. Zoomed view of calyx protrusion  from 
the window marked in A. Scale bars: 10µm in A and 5µm – B. 

 
Figure 2. 16: Piccolo FIHC clusters localized within and outside the calyx. Fluorescent 
clusters align with the principal cell perimeter – arrowheads. Scale bar 10µm. 
 

2. 4. 2 Piccolo in adult calyces (P21-P25) 

Like in case of Bassoon clusters, Piccolo immuno-fluorescent signal was found rather 

evenly distributed within finger-like protrusions of adult fenestrated calyces (Fig. 
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2.17). No obvious sub-clustering patterns of fluorescent immuno-signal were visible. 

As it was in the case of young calyces, also in the adults we observed Piccolo 

fluorescent clusters outside the calyx area but still aligned in semi circle, suggestive 

of principal cell perimeter (Fig. 2.18 A - arrowheads). Piccolo fluorescent immuno-

signal localized closer to the plasma membrane of the calyx that was facing a 

postsynaptic principal cell of the MNTB (Fig. 2.18 A and B - arrows). To establish 

localization of Piccolo fluorescent immuno-signal relative to SVs clusters we used 

genetically expressed synaptophysin together with FIHC. We found that, similarly to 

Bassoon, also fluorescent Piccolo signal appears to be mostly between calyx plasma 

membrane and SV clusters (Fig. 2.18 B).  

 
Figure 2. 17: Piccolo FIHC localize evenly within finger-like structures of an adult calyx 
(P21).  Calyx (3D reconstruction) – green cut open to visualize its inner site spotted with 
Piccolo FIHC clusters – red. Scale bar 10µm. 
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Figure 2. 18: Piccolo FIHC clusters localization within adult calyx (P21). 
A - calyx labeled with mGFP – green, with Piccolo FIHC clusters within calyx membranes - 
arrows, and outside of them but aligned with the principal cell perimeters – arrowheads. B - 
Piccolo FIHC clusters – yellow localize closer to the membrane facing postsynaptic cell – 
arrows, with SVs clusters – purple positioned further away from this membrane. Scale bars 
10µm in both images. 

 

2. 4. 3 Quantification of Piccolo at two developmental stages of calyx 

Similar to Bassoon also for Piccolo fluorescent immuno-labeling we have observed 

large variability in cluster size distribution (Fig. 2.19 A – left y-axis) within the age 

group and between the ages. Piccolo average cluster size at P24 was 0.04 ± 0.001µm3 

(n=1883) and similarly at P9 where this value was almost identical 0.05 ± 0.001µm3 

(n=1249). On average Piccolo fluorescent-immuno-clusters were occupying the same 

amount of calyx volume at P9 0.008 ± 0.003% (n calyces = 6) as at P24 rat 0.005 ± 

0.001% (n calyces = 6) (Fig. 2.19 A – right y-axis). To find whether number of 

fluorescent clusters changes between the two age groups we counted the 3D rendered 

individual clusters and found no difference between younger and adult calyces. At P9 

calyces we detected average of 206 ± 51 (n=6) per calyx and at P24 we found 310 ± 

53 (n=6) (Fig. 2.19 B).  Density measurements of fluorescent clusters also showed no 

statistical difference between young and adult calyces. Average Piccolo fluorescent 

clusters density at P24 calyx was 0.3 ± 0.05 (n=6) clusters/µm3 versus 0.28 ± 0.03 

(n=6) clusters/µm3 at P9 calyx (Fig. 2.19 D). In conclusion, we found no difference in 

Piccolo content between young and fully developed calyces. This indicates that 

Piccolo just like Bassoon does not contribute to developmental changes occurring in 

the calyx during maturation. 
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A - volume of Piccolo FIHC clusters 

isolated from calyces – point markers - 

(left y-axis).  

Total Piccolo FIHC clusters volume 

contribution to the calyx volume (right 

y-axis).  

 

 

 

 

B - number of FIHC-labeled Piccolo 

clusters per calyx.  

 

 

 

 

 

 

 

 

C - density of Piccolo FIHC clusters per 

calyx volume.  

 

 

 

 

 

 

 

 

Figure 2. 19 Comparison of Piccolo FIHC, 3D surface-rendered, clusters 

quantification between two age groups (numbers represent mean ± SEM).
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2. 4. 4 Piccolo represents active zones 

Pattern of Piccolo distribution as well as specificity of localization relative to synaptic 

vesicle clusters was very similar to what we observed in fluorescent Bassoon clusters. 

Colocalization experiments have shown that both proteins co-exist in many (~ 90%) 

fluorescent spots. In experiments where we labeled SV (see Fig. 2.18) we observed 

that Piccolo localizes mostly at the membrane of the calyx facing the postsynaptic 

cell, below SV clusters. Morphological characterization of Piccolo strongly suggests 

that it indeed might represent AZs.  

 

2. 5 Down-regulation of Bassoon and Piccolo in vivo 

We characterized both proteins distribution and localization within the calyx of Held. 

In this way we established bases for fluorescent immunohistochemichal quantification 

of down-regulation of Bassoon and Piccolo. We used the short interfering RNA 

method to down-regulate either of the proteins. To assess down-regulation efficiency 

we used fluorescent immunohistochemistry on both shRNA treated and control 

calyces and compared the amount of protein between synapses. This approach 

involved simultaneous injection of two viruses, one carrying shRNA and also 

expressing mGFP and the second expressing only mOrange, as a control.  

 

2. 5. 1 Two-step cloning of the shRNA into viral plasmid AAV2 

We have developed two-step cloning strategy to insert RNA hairpins into adeno-

associated virus serotype 2 (AAV2) plasmid. First, we used commercially available 

psiRNA plasmid as a shuttle plasmid in which we constructed promoter-shRNA 

cassette. Next, such prepared cassette was non-directionally inserted into previously 

prepared AAV2 plasmid (Fig. 2.20). Details about preparatory steps leading to 

establishing this convenient cloning are described in methods section.  
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Fig. 2. 20: Schematic drawing of the two-step cloning strategy. 
Left - commercially available psiRNA-h7skneo plasmid was used to construct shuttle plasmid 
with alternative promoter. PCR cloning was used to replace h7sk with hu6 promoter. Right - 
independently additional restriction enzyme recognition site was added to AAV2 plasmid to 
enable shRNA cassette insertion. Below - linearized construct consisting of polymerase III 
promoter-shRNA cassette followed by CBA promoter and mGFP represents just one of two 
possible directions of the shRNA cassette cloning. 
 

2. 5. 2 Quantification of Bassoon in shRNA expressing calyces 

Quantification of fluorescent immuno-signal in the calyces targeted with shRNA was 

based on pairs of calyces each infected with different AAV1/2 virus. One of the 

calyces from such a pair would express shRNA – and the fluorescent protein (mGFP), 

and the second calyx – mock control would express another fluorescent protein 

(mOrange) from second virus. Due to technical difficulties including low viral titer, of 

either shRNA carrying virus or mOrange, we could not find satisfying number of 

calyces labeled with expression proteins from shRNA and control plasmids present in 

the same field of view. Thus we have analyzed calyces from the same slice within the 

same MNTB. Due to unknown half-life of Bassoon in the synapse we incubated 

animal injected at P7 for 17 days (until P24) to increase chances for Bassoon removal 

from the AZs. We calculated average number of Bassoon fluorescent clusters per 

calyx from all the calyces in shRNA group and compared it to such average from 

mOrange group (Fig. 2.21). We have observed high variability in the number of 

Bassoon FIHC clusters within the control group (CV=1) but not in shRNA group. We 
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found no statistical difference between average number of Bassoon clusters per calyx 

in control mOrange group (n=8) and shRNA treated calyces (n=6). The high 

variability of the number of Bassoon clusters per calyx strengthens the notion that the 

most proper comparison of such calyces should be based on pair wise analysis. This 

however turned out to be very low yielding procedure.  

 
Fig. 2. 21: Quantification of Bassoon FIHC clusters in shRNA treated versus non-
treated mOrange calyces. 
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2. 5. 3 Quantification of Piccolo in shRNA expressing calyces 

Quantification of Piccolo was done using the same method as for Bassoon. Here we 

also used mOrange expressing calyces as virus control. We have found one pair of 

calyces within the same field of view and we pooled the results with additional two 

calyces from different fields of view but scanned at the same parameter and from the 

same MNTB/slice. Again total of four calyces, 2 expressing shRNA and 2 mOrange is 

not sufficient for any statistics, but we have observed trend toward reduced number of 

Piccolo clusters per calyx and calyx volume in shRNA expressing calyces (Tab. 2.1). 

In this analysis we used the procedure of subtracting outliers, as described in methods. 

 

Calyx expressing Calyx ID Picc No./calyx 

Vol. 

Picc No./calyx 

Vol. 

mOrange 1 337 0.59 

mOrange 2 331 0.72 

shRNA 1A 267 0.28 

shRNA 3 185 0.27 

 
Table 2. 1: Comparison of the effects of shRNA against Piccolo. Number and density of 
Piccolo fluorescent immuno-clusters in calyces treated (shRNA) and non-treated (mOrange) 
with siRNA. Calyx ID: 1 and 1A indicates calyces from the same field of view; 2, and 3 are 
from the same MNTB/slice.  
 

Interestingly we observed that FIHC Piccolo clusters seen in shRNA treated calyx are 

still present and appear in circular pattern indistinguishable from the control calyx 

(Fig. 2. 22 A). However at closer analysis with labeled calyx overlaying Piccolo 

channel it can be seen that many of the FIHC clusters from the circular pattern do not 

belong to the calyx (Fig. 2.22 B). Moreover FIHC clusters located within shRNA 

calyx appear smaller than clusters seen in the control calyx. Notably clusters that do 

not belong to the shRNA treated calyx also appear bigger than those from within the 

calyx (Fig 2. 22 arrowheads-within calyx, arrows outside calyx). This difference was 

not seen when we compared FIHC clusters from within the control calyx with those 

aligned with perimeter of the principal cell outside the calyx. Immuno-signal seen 

within the principal cell area indicates that some Piccolo is also present in neuronal 

somata. 
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Figure 2.22: Piccolo FIHC labeling in shRNA and mOrange calyces. A - fluorescent 
immuno signal creates circular pattern suggestive of two calyces. Note that both patterns are 
very similar. B – cross section of mOrange labeled calyx – top and shRNA with mGFP 
labeled calyx – bottom.  With calyces superimposed on Piccolo signal it is noticeable that 
FIHC clusters outside calyx are bigger (arrows) than those found within it (arrowheads) in the 
shRNA calyx, but not in mOrange control calyx. Scale bars 10µm.
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3.  Discussion 

3. 1 Immonohistochemical localization of proteins in the calyx of 

Held 

We have developed a novel approach of identifying and localizing proteins in the 

calyx of Held by combining previously described labeling of calyces via the targeted 

expression of fluorescent proteins in vivo with fluorescent immunohistochemistry in 

vitro on tissue slices. Immunohistochemistry has been widely used before in the 

MNTB for localization of various proteins, e.g. study of localization of mGluR2/3 at 

different developmental stages of rat in conjunction with EM analysis (Elezgarai et 

al., 2001), localization of voltage-dependent potassium channel Kv3.1b within calyx 

and the principal cell at different developmental stages also with additional EM 

analysis, (Elezgarai et al., 2003), light immunofluorescent study that identified 

different voltage-gated potassium channels in the calyx of Held (Ishikawa et al., 

2003). In some of the immunohistochemical studies localization of the protein of 

interest within the calyx of Held was obtained by colocalizing it with presynaptic 

markers such as Rab-3A colocalized with calretinin (Felmy and Schneggenburger, 

2004). One study examined the distribution of VGLUT transporters in the rat superior 

olivary complex (SOC) as well as within a single presynaptic terminal the calyx of 

Held (Billups, 2005). The author used double immunohistochemical labeling of 

VGLUT1 and 2 to analyze their co-localization in the calyx but without additional 

identification of the calyx. In another study calyces were patched and filled via patch-

pipette recording with a dye Lucifer yellow and post hoc immunolabeled with 

antibody anti-sodium channels and anti-synaptic vesicle protein 2 (Leao et al., 2005). 

Approaches based on only colocalization of presynaptic markers with the protein of 

interest lack specific identification of the calyx. Such identification is needed because 

the calyx of Held is not the only presynaptic terminal present at the principal cell of 

the MNTB, and, these other synapses, when arranged along the perimeter of the 

principal cell, may pretend the pattern considered typical for calyceal origin. Other 

than calyceal excitatory terminals have been identified using EM in aging study of the 

MNTB (Casey and Feldman, 1985). Both excitatory and inhibitory additional 

terminals, has been also identified on the postsynaptic cell of the MNTB in the IHC 

study of cat superior olive complex (Adams and Mugnaini, 1990). In our study we 
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identified synaptic terminals labeled with anti-Bassoon but VGLUT1-negative and 

using ATGp showed that these terminals do not belong to the calyx. In another 

experiment we have found VGAT and VGLUT1 positive stain together forming 

circular pattern but without overlapping at any of the sites. Additionally, we have 

shown using various presynaptic antibodies, that circular patterns of immuno signal in 

the MNTB might be not unique to the calyx and represent other non-calyceal 

synapses. Thus, for IHC localization of the proteins within the calyx, proper labeling 

of it is necessary. One way of labeling namely filling the calyx with a dye via the 

patch-pipette recording overcomes this identification problem. However, since 

presynaptic recordings from the calyx of Held has been feasible up until the age of 

~P14 it might be challenging to use this method for labeling adult P21 calyces. 

Furthermore passive, diffusion-based filling does not faithfully label thin protrusions 

of the calyces. Thus, injections of the virus-mediated genetically encoded fluorescent 

proteins to label calyces is clearly superior in the older rats. Also in the younger 

animals when membrane targeted GFP is expressed from the viral plasmid, level of 

visible details of the calyx (outer vs. inner plasma membrane with cytoplasm in 

between them) is superior to any patch-pipette fill for the calyx labeling.  

 

3. 2 Localization of Bassoon and Piccolo 

Combining ATGp and FIHC anti Bassoon and anti Piccolo we have described their 

localization relative to the calyx plasma membranes and SV clusters. Both of the 

proteins have been reported in the presynaptic compartments and 

immunocytochemical (ICC) identification of their punctate staining has been shown 

previously, e.g. Bassoon fluorescent signal in the hippocampal CA3 region in brain 

slices (tom Dieck et al., 1998), Piccolo fluorescent puncta in various regions of rat 

brain (Cases-Langhoff et al., 1996) and Bassoon together with Piccolo in primary 

hippocampal cultures (Altrock et al., 2003). These studies characterized localization 

of both of the proteins at the synapses and ultimately lead to acceptance of Bassoon 

and Piccolo being used as presynaptic markers, when present (some synapses e.g. 

bipolar cell ribbon synapses in the inner plexiform layer of retina, lack Bassoon 

(Brandstatter et al., 1999) and only contain Piccolo (Dick et al., 2001)). In our study, 

we were interested in describing molecular structure-function developments of the 

active zone proteins in the synapse. We took advantage of a large size of the calyx of 
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Held and were able to focus our analysis at the single synapse level utilizing 3D 

capabilities of the confocal microscope. We have shown that both of the proteins exist 

in the calyx of Held, and mostly localize at the inner site of the calyx. Furthermore, 

compared to SVs clusters labeled with genetically encoded synaptophysin or with 

antibody against VGLUT1 Bassoon and Piccolo appear below those clusters, closer to 

the calyceal membrane.  

Our observation that Bassoon and Piccolo FIHC clusters in the calyx lay close 

to but not within the calyx membrane is expected because of their scaffolding role in 

AZ formation, big size of either of the protein (420kDa Bassoon and 530kDa Piccolo) 

and sandwiching effect of the antibodies. This observation is in good agreement with 

the EM studies of the active zone showing fuzzy electron dense material sticking out 

to the cytoplasm for ~ 100nm (Landis et al., 1988). To our knowledge this is the first 

FIHC study to describe localization of the active zone specific proteins within 

different compartments of three dimensionally reconstructed calyx of Held. This 

approach allows for quantification of FIHC clusters present exclusively within the 

presynaptic compartment and comparison of such data between different 

developmental stages of the calyx of Held.  

 

3. 3 Bassoon and Piccolo represent active zones 

We have shown using ATGp and FIHC approach that Bassoon and Piccolo are 

present in the calyx of Held and localize in discrete clusters distributed on the inner 

side of the calyx, the one that faces the postsynaptic cell. Since both of the proteins 

are found exclusively in the presynaptic cytoskeleton and associate with AZs (Cases-

Langhoff et al., 1996; tom Dieck et al., 1998; Wang et al., 1999) they could be used to 

describe the localization of AZs in the calyx of Held. Our quantitative analysis 

yielded results numerically similar to the number of active zones known from the 

literature. Based on this we assume that fluorescent anti-Bassoon clusters could in fact 

represent active zone, baring in mind ~2 fold underestimation of active zone number 

due to optical spatial resolution restrictions. We have shown that the number of such 

FIHC clusters correspond well with previously reported number of AZs in young, P9 

calyx (Saetzler et al., 2002). Specifically, Sätzler and colleagues reported 550 AZs 

with an average surface of 0.100µm2. An average distance between nearest-neighbor 

AZs measured from their center of gravity was 0.59µm. In our study we report ~250 
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and ~380 FIHC clusters for Bassoon and ~210 and 310 FIHC clusters for Piccolo (P9 

and P24 respectively) per calyx. The lateral optical resolution obtainable from our 

system is ~ 200 nm at wavelengths used for detection of the FIHC clusters. Thus, 

theoretically a single cluster of FIHC could represent single AZ since on average they 

are ~ 600 nm apart. However the axial optical resolution is about 3.5 fold lower 

(~700nm) than lateral, thus in practice we should assume about 2-fold 

underestimation of the number of AZ as represented by FIHC clusters. If we correct 

for this underestimation, the number of FIHC clusters agrees well with the number of 

AZs found in a fully reconstructed P9 calyx. Furthermore, the assumption that 

Bassoon and Piccolo clusters might represent active zones within calyx implies that 

their localization should correlate with synaptic vesicle clusters. We have 

demonstrated this by visualizing SVs either using genetically encoded synaptophysin-

GFP expression or an antibody VGLUT1. We have shown that both Bassoon and 

Piccolo fluorescent signal was mostly located within the SV clusters, closer to the 

calyx membrane. Only a small fraction of either of the protein fluorescent cluster was 

not within SV clusters. Localization of fluorescent clusters within SVs strengthens 

our prediction about Bassoon and Piccolo representation of the AZs. However their 

clusters smaller fraction outside SVs is not clear, but might suggest newly arrived 

Bassoon and Piccolo, not yet incorporated into functional release sites. 

 

3. 3. 1 Quantification of Bassoon and Piccolo 

Any fluorescent cluster represents the sum of protein molecules together with primary 

and secondary antibodies plus conjugated fluorescent dye molecules present in one 

place. Therefore, the best way of expressing their size was to measure their volume 

because of their truly three-dimensional structure (as compared to ultra-thin AZs 

traced in EM images). For this reason we did not attempt to compare reported sizes of 

AZs with our finding of fluorescent immuno-clusters volumes. We found that number 

of AZs as represented by FIHC clusters does not change during calyx development 

between the age of P9 and P24. This observation might suggest that the initial 

increase in the number of AZs observed between ages of P5-P7 and P12-14 

(Taschenberger et al., 2002) is most likely concluded by P9 and no further increase in 

the number of AZs occurs by P24. An alternative explanation could be that the 

amount of Bassoon and Piccolo proteins detected by IHC and visualized as 
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fluorescent clusters does not change over time, but the number of active zones 

increases nevertheless. This could be possible if newly formed active zones remained 

at distance smaller than optical resolution and thus were undetectable by our 

approach. Although we did detect an increase in the number of Bassoon FIHC 

clusters per calyx between P9 and P24, this difference disappeared when FIHC 

clusters density was compared suggesting different size of calyces used for Bassoon 

analysis at different age groups. 

 Comparison of Bassoon and Piccolo FIHC reveals similar number of Piccolo 

FIHC clusters compared to Bassoon FIHC at either age group in the calyx of Held. 

This observation is confirmed also by co-localization and 3D quantification of the co-

localized clusters in P9 rat. Specifically we found an average ~86% (n=2) of Bassoon 

FIHC clusters co-localized with entire population of Piccolo FIHC clusters leaving 

~14% of Bassoon FIHC clusters without Piccolo partner. Interestingly, in another two 

calyces, where the secondary antibodies were swapped as compared to previous two 

calyces, we saw different results. That is an average of 75% of Piccolo FIHC clusters 

co-localized with entire Bassoon FIHC cluster population, leaving 25% of Piccolo 

FIHC clusters without Bassoon partner. These results seem to be related to the 

brightness of the secondary antibody rather than biological differences in the number 

of Bassoon versus Piccolo clusters. This observation adds to the complications related 

to immunohistochemical method of quantifying co-localization of different proteins.  

In general, high variability in the number and size of the FIHC clusters was observed. 

Such variability has been reported previously in an anatomical study where Sätzler 

with colleagues (2002) observed high variability of the AZ sizes. They did not make 

any variability assessment of the number of AZs since they analyzed one 3D 

reconstructed EM calyx. In another study where partially reconstructed calyces were 

analyzed and number of AZs was approximated the authors reported some 

heterogeneity in AZs size but not AZs number between calyces and within any given 

calyx (Taschenberger et al., 2002). In our work variability that we observed might 

reflect truly biological differences in AZs sizes. That is if we assume that smaller AZs 

consisted of less Bassoon or Piccolo, they would bind fewer antibody molecules and 

produce less of the fluorescent signal. However, we cannot rule out the possibility that 

variability comes mostly from technical constraints of the method. For example, 

variable binding of the secondary antibody to the primary antibody, various amount of 
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fluorescent dye conjugated to the secondary antibody could also produce size 

differences of observed FIHC. These elements can introduce or enhance variability 

but since all of the abovementioned problems apply to all the data at random, they 

would cancel out in the final analysis. Nonrandom differential binding of the primary 

antibodies in different tissue types i.e. binding might be hindered in more myelinated 

tissue in such way that less antibody particles arrives to antigen, is more problematic. 

In almost all cases we have seen the thin surface (0.5-1µm) of the tissue stained more 

intensely than the remaining areas below and this was observed in either age group. 

However staining below this intense thin surface would very often appear equal at 

various depths. In a few cases we have observed a severe drop of intensities in 

antibody staining and those experiments were not used in the quantitative analysis. To 

circumvent the problem of the surface staining but without experimenter biased 

cropping of the raw data we decided to subtract outliers from each data set. Post-hoc 

we have arbitrary removed values above the calculated border defined as 1.5x(75th 

percentile – 25th percentile) from the data pool. With abovementioned technical 

constraints of the method in mind certain controls can be introduced to increase 

quantitative strength of Bassoon and Piccolo FIHC clusters analysis. To avoid 

uncertainty of antibodies, ideally comparison should be made at the same tissue 

treated with the same antibody at the same time. When comparing distribution of 

FIHC clusters between two calyces, ideally both of the calyces should be located 

within the same field of view, or at least within the same slice and MNTB, and at 

similar depths. In fact if these requirements are met such analysis can have great 

advantages for quantitative comparison of FIHC clusters because it allows for direct 

comparison of treated and control calyces in the same animal. 

 

3. 4 Gene down regulation in vivo 

We have used this unique opportunity of comparing shRNA treated calyces, which 

were also labeled in green, with control calyces – labeled in red, in an attempt of 

down regulating Bassoon and Piccolo proteins in vivo. We used AAV1/2 virus 

plasmid expressing shRNA from polymerase III promoter together with AAV1/2 

plasmid expressing mOrange as a control for down regulation of Bassoon or Piccolo 

expression. The AAV1/2 virus is capable of multiple infection of the same cell but 

efficiency of such double infection is linearly related to viral titer with low titer 
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viruses less likely co-infecting the same cell. We used low titer viruses for expressing 

shRNA cassettes and control plasmids. Combined ATGp with FIHC techniques in 

detecting shRNA mediated protein expression down regulation theoretically offers set 

of advantages. First, down regulation is applicable in vivo by injecting living animal 

with two viral constructs one expressing shRNA and another - control plasmid. Since 

we used stereotaxic brain injection we targeted specifically the area of interest and 

avoided other brain regions. Second, since the animal recovers after the surgery we 

can adjust the incubation time to allow long half-life proteins to turn over. Third, 

recently we were capable of delivering shRNA as early as at P2 before the time of 

calyceal formation (P3-P4). Fourth, using quantitative 3D FIHC approach we could 

detect a decrease in the protein level by counting the number of fluorescent clusters 

and measuring volume of those clusters. Fifth, comparing FIHC clusters in treated 

and non-treated calyces we analyze protein content in its most relevant site – the 

synapse. Finally, such approach allows for best assessment of down regulation of the 

AZ protein at the synaptic site and directly justifies functional approach via 

electrophysiological methods.  

 In practice we have encounter certain hard to predict yet significant obstacles. 

First, since we did not know the time needed for clearance of native Bassoon or 

Piccolo proteins from the AZs in the calyx of Held we first constructed viral plasmids 

carrying shRNA against mRNA of each of the protein separately. It was important to 

establish half-life of these proteins because in the calyx of Held electrophysiological 

postsynaptic recordings are possible up to an age of P18 in rats, since thick 

myelination hampers accessibility of the cell. Thus P18 is the upper limit of the 

incubation time after viral infection. We developed coordinates and surgical 

procedure for targeting ventral cochlear nucleus (VCN) with viral injection as early as 

at P2 and this sets the lower limit for the incubation time after infection. Thus half-life 

of the protein of interest should not exceed two weeks if physiological study is 

considered. Only after defining the incubation time we planed to target both proteins 

simultaneously. Second, efficiency we observed when injecting low titer viruses was 

below optimal. Third, injections of P2 animals are more variable than that of P7 and 

older and additionally ~24hrs needed by AAV to reach full expression capability plus 

time for increase in shRNA concentration most likely set back the actual action of 

shRNA to occur within but not ahead of calyces formation. Fourth, calyces labeled 
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with mGFP with shRNA were differently labeled than that of control - mOrange 

volume fill calyces. This brought certain risk of missing FIHC clusters located close 

to the membrane in the volume filled calyces, because in those calyces membranes 

are not well defined. It could cause bias toward detecting less FIHC clusters in 

volume fill calyces, vs. membrane labeled ones. Finally, the preliminary results with 

effects described below were obtained from P24 (Bassoon) and P25 (Piccolo) rat after 

22 - 23 days of incubation, raising the possibility of a very long turnover of the 

proteins already present in the AZs. The above mention factors and additional 

technical variables, like primary and secondary antibody good performance all need 

to coincide to make successful image.  

 The above described problems together with technical variables turned out to 

be a low yielding strategy. Therefore, even though that many trials were made only 

small sample of data was collected consisting of shRNA treated and control calyces. 

This said we established data for Piccolo where we demonstrated (with low n) that 

indeed shRNA might be down regulating expression of Piccolo and with our FIHC 

method we are able to detect it. We have never seen down regulation of neither of the 

proteins when scrambled control shRNA was applied as compared to wild type 

calyces.  

 

3. 5 Improvements of the in vivo down regulation system 

Our work has shown potential capabilities of combined shRNA ATGp and FIHC 

system in down regulation experiment but it also revealed some shortcomings of the 

approach. Fortunately most of the practical problems can be solved. The very first 

complications showed themselves at the constructing of the plasmids. We have 

observed that cloning of the shRNA-casette in AAV2 plasmid can sometimes alter the 

ITR located close to the insertion site of the cassette and impair packaging of the viral 

plasmid to its capsid. From our experience most of these alterations can be detected 

by analytical digest of the AAV2 with endonuclease SmaI after the cloning. However, 

such sensitivity of AAV2 to any cloning needs to be taken in account for the future 

cloning of two shRNA-cassettes against Bassoon and Piccolo each. It is obvious now 

that large insert consisting of two promoters driving each shRNA would have to be 

assembled outside AAV2 plasmid, and cloned into it in one step. After that, besides 

sequencing of new constructs, screening could be introduced to streamline assessment 
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of down regulation efficiency of shRNAs used. In this work our collaborators 

provided the shRNA sequences tested in the primary hippocampal cultures that we 

used in the experiments for down regulating Bassoon and Piccolo. However shRNA 

tested in vitro does not necessarily work in vivo system. Thus after inserting these 

sequences into AAV2 plasmid and producing the virus we started directly with in 

vivo tests. We assumed that since our collaborators did in vitro tests we do not need to 

perform another testing in the neuronal cultures with Western blot as a quantification 

method. Nevertheless, from today’s point of view, such an in vitro test seems to be 

necessary regardless of whether shRNA sequences were tested somewhere else or not. 

This is because such testing, including a Western blot technique, would: 1) test 

shRNA-cassette expressing from our AAV1/2 virus, in contrast to naked or non virus 

expressed siRNAs, 2) would shorten and ease the way to obtain confirmation of 

efficiency of the tested shRNA, 3) could reveal an approximate time needed by the 

protein to be down regulated, which could be used to estimate incubation time in the 

in vivo system, 4) would be a proof of case for any promoter – shRNA expression 

cassette, even if later it would not work in vivo. In this way we could relatively 

quickly screen through multiple viral constructs carrying shRNA-cassette inserts. 

Only after passing the screen, we would use qualifying virus for in vivo system. In 

use of FIHC cluster count in shRNA treated and control calyces, similarity of calyx 

detection is important because it is a number or a volume of FIHC clusters that is 

compared between two treatments. However doing experiments we observed 

difference in the calyx labeling that depended on the expressed fluorescent protein. In 

this work we used shRNA-cassette expressed from AAV2 plasmid that also encoded 

membrane targeted GFP, and mOrange fluorescent protein expressed from the control 

virus that was not carrying any shRNA. The mGFP labels with an outstanding 

precision delineating membranes of calyces thus shows FIHC clusters of Bassoon or 

Piccolo close to membrane localization. The mOrange fills volume of the calyx and 

often under represents narrow areas like stalks on which calyceal swellings develop, 

any FIHC cluster that would localize in the stalk would not be counted. Furthermore 

since mOrange does not show membrane localization of the calyx it often leads to 

FIHC clusters appearing just above or merely touching mOrange labeled calyx. These 

in turn may cause under representation of the number or volume of FIHC clusters 

belonging to given calyx. On the other hand such bias toward under representation of 



Discussion 

 58 

FIHC clusters in the control calyces only strengthens our results but it also miss 

represents real potential of shRNA in down regulation of Piccolo. Therefore in the 

future we plan to swap these two fluorescent proteins between constructs. In such way 

that mGFP would be expressed from the control plasmid and mOrange would be 

expressed from plasmid carrying shRNA-cassette. This would produce two-fold 

effect. First we could use mGFP-expressing virus at higher titers, so that it would also 

infect cells expressing control plasmid. By doing so we could only need to look for a 

hint of mOrange within mGFP expressing calyx to qualify it as shRNA targeted 

calyx. Second we would be able to always use mGFP for identifying calyces and 

quantifying their FIHC cluster content in a very consistent way. This approach should 

allow for more precise estimation of down regulation potential of shRNA used.  

The last but not least improvement that we will need to introduce for the future 

experiments stems out of ongoing developments in understanding of siRNA system 

workings. When we have started our experiments the shRNA approach was very little 

known. Short RNA sequence that would not match any known gene, so called 

scrambled sequence, was an accepted control for siRNA down regulation at the times. 

With time, it became obvious that shRNA can act at two different pathways within a 

cell, one utilizing sequence specific matching leading to cleavage of the 

complementary mRNA of the host cell. The other pathway triggered by partly 

mismatched siRNA leading to non-specific cleavage of non-targeted mRNA. These 

observations lead to introduction of changes in accepted control for shRNA 

specificity. Namely that shRNA has to lose its specific down regulation capabilities 

when only one nucleotide is mismatch with the targeted mRNA. Therefore we will 

have to redesign and create new control shRNA for our future experiments with down 

regulation of Bassoon and Piccolo.  

 

3. 6 Summary and outlook 

We are interested in understanding molecular mechanisms underlying 

neurotransmitter release. The calyx of Held, the model synapse we focused on, offers 

a unique opportunity to study developmental structure-function modifications leading 

to increased efficacy of transmission. For our study we chose two active zone 

associated cytoskeletal proteins Bassoon and Piccolo to follow potential changes in 

the molecular structure of release sites in the calyx of Held at P7-9 and P21-25 old 
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rats. We chose these AZ-associated proteins for two reasons. Because results from 

previous studies using rat calyx EM analysis suggest possible addition of AZs during 

calyx development. As well as because of an observation of a fraction of silent 

synapses in the Bassoon knock out (KO) mouse hippocampal culture. Protein content 

analysis in the Bassoon KO mouse revealed increased amount of Piccolo suggesting 

possible share of function between the two proteins.  

  We have developed a novel approach of single calyx 3D fluorescent 

immunohistochemical analysis combined with acute targeted gene perturbation 

method. We demonstrated that Bassoon and Piccolo are present in the calyx of Held, 

and their FIHC clusters number and distribution within the calyx area resembles that 

of AZs. We conclude therefore that in the calyx of Held both Bassoon and Piccolo 

represent localization of AZs. We then compared changes of FIHC clusters between 

two age groups P7-9 and P21-25, and found no statistically significant difference in 

number and size of the clusters. Using Bassoon antibody we have also identified non-

calyceal synapses located at the perimeter of principal cells, that were also VGLUT1 

negative, suggesting that they are inhibitory synapses, or VGLUT1 negative 

excitatory ones.  

To look for functional implications of Bassoon and Piccolo presence in the AZ 

we first attempted to down-regulate Bassoon and Piccolo content in the calyx in vivo 

using the RNA interference method. We have constructed several viral plasmids 

carrying shRNA expressed from polymerase III promoter against Bassoon or Piccolo. 

We then took advantage of combined ATGp and FIHC approach and attempted to 

quantify perturbation of Bassoon and Piccolo in the calyx. However, due to several 

reasons such as shRNA itself being a relatively novel method with rules governing its 

efficiency in down regulating target mRNA not well understood, and low titers of the 

viruses carrying shRNA cassettes and strict rules of FIHC, we have encountered 

problems in achieving reproducible results. We have managed, however, to obtain 

preliminary data demonstrating that our ATGp and FIHC approach can be functional.   

Our research established solid base for any future FIHC based localization of 

presynaptic proteins in the calyx of Held. We have also reconfirmed presence of non-

calyceal synapses on the principal cells of the MNTB. It would be interesting to better 

immunoshitochemically characterize those different types of synapses, as well as 

ultimately trace their axons back to the cell bodies. This would be interesting to 
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describe, because the calyx of Held already seems to be more than just a relay 

synapse. Another open question stemming from our work is whether Bassoon and 

Piccolo can take over their function, and whether down regulation of both of the 

proteins would cause similar effects to those observed in Bassoon KO hippocampal 

cultures.  

One more interesting question is more provocative than previous ones. We have 

sporadically observed Bassoon FIHC clusters on the outer site of the calyx, away 

from the postsynaptic cell. Similarly in a subset of only few experiments that we 

made we have seen VGAT positive staining located on the outer site of the calyx. 

There is an increasing notion that the calyx might possess additional release sites 

located on the outer site, that are used for sending signals to the glia astrocytes 

(Kettenmann personal communication). It would be very interesting to follow on our 

preliminary observations in a systematic way to find out whether those release sites 

show AZ specific immunohistochemical blueprint.  
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4. Material and Methods 

4. 1 Genetic techniques 

 

4. 1. 1 Standard methods of molecular biology 

Standard molecular biology methods like cutting DNA with restriction endonucleases, 

ligation, agarose gel electrophoresis, transformation and culture of bacteria 

Escherichia coli, dephosphorylation of DNA terminals were done according to 

standard protocols from laboratory handbook by J. Sambrook, E.F. Fritsch and T. 

Maniatis “Molecular cloning: a laboratory manual.” vol. 1-3 (2 Ed., 1989) 

4. 1. 2 Isolation of plasmid DNA from E.coli 

For isolation of low amounts of DNA (up to 10µg) the “QIAprep Miniprep Kit” was 

used while for larger amounts (up to 500µg) the “QIAprep Maxiprep Kit” was used, 

(both from QIAgen company). Isolation procedure was according to company 

manual. The principle of the DNA isolation in this system is based on three steps: 

alkaline lysis of bacteria, adsorption of DNA to the silica column at the high salt 

concentration and elution from the column at the low salt concentration. 

The purified DNA is of very high purity and can be directly used for further 

processing like sequencing, transformation etc. 

4. 1. 3 Sequencing 

Sequencing of pAAV2 plasmids without region of ITRs and fragments of psiRNA-

neo-shRNA plasmids was done in house. The DNA for sequencing was mixed with 

the “Big Dye Terminator Mix V3.1” (ABI) and run in the Capillary Sequencer “3100 

Genetic Analyzer” (ABI). Typically sequenced fragments would reach the length of 

300 bp. Sequencing of final constructs of AAV2-“promoter-shRNA” plasmids was 

done commercially by MWG with our own primer design. All the sequencing primers 

for sequencing were design by us. The primers used for sequencing of different 

constructs are listed in table 4.1. 
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Sequencing target Primers sequence Primer ID 

plasmid AAV2 primers 
5’ ITR  5’-ACGCGGCTACAATTAATACA-3’ AD05 
5’ CBA  5’-TGCCCAGTACATGACCTTA-3’ AD06 
5’ Xba, BamH1/GFP  5’-CTTGGTTTAATGACGGCTT-3’ AD07 
3’ end of GFP  5’-TACAAAGGCATTAAAGCAGC-3’ AD08 
3’ end of WPRE  5’-TCTAGTCGAGCCCCAGC -3’ AD09 
3’ end of KpnI  5’-TATGTAACGCGGAACTCCA-3’ AD10 
3’ ITR  5’-ACCATAGTCCCGCCCCT-3’ AD11 
3’end of KpnI  5'-AAATTGGGGGTGGGGA-3’ AD14 
3’end of KpnI  5’- CAAGTGGGCAGTTTACCGT- 3’ AD15 
3’end of EcoRI, EcoRV 
and HindIII  5’-ACGGTATCGATGCGGG-3’  AD16 
5’end bGH and ITR 5’-CCTCTTCCGCGTCTTCG-3’ AD17 
5’end bGH and ITR 5’-GGCCCTCAATCCAGCG-3’ AD18 
3’end XbaI and BamHI 5’-CCTTGGTCACGCGGAT-3’ AD19 

plasmid psiRNA-neo-hU6 or h7sK 
to confirm promoter 5’-GATCCGGCAAACAAACC-3’ AD22 
to confirm promoter 5’-CCAAAAAGTCTTCCTAGCTC-3’ AD23 

final construct pAAV2 plasmid with promoter-shRNA caseette inserted 
promoter-shRNAcassette 5'-TCCAACCAAACCGACTCTGA-3’  AD66 

promoter-shRNAcassette 
5'-AGATGGGGAGAGTGAAGCAGAACG-
3’ AD67 

 
Table 4.1: List of primers. Table is organized chronologically to reflect progressing order of 
making virus constructs for shRNA in vivo delivery (top to bottom). Plasmids psiRNA were 
used as shuttles to assemble a promoter-shRNA cassette – the original contained the h7SK 
promoter, and newly constructed had h7SK replaced with hU6 promoter. The final pAAV2 
viral plasmid with inserted cassette of promoter-shRNA, ready for virus production. 
 

4. 1. 4 Polymerase Chain Reaction-based cloning 

The PCR – cloning method was used for extraction of DNA fragment of interest from 

one plasmid with simultaneous alterations of 5’ and 3’ ends of such extracted DNA 

and cloning it into another plasmid. In principle forward and reverse primers were 

designed to be complementary for about 18 – 25 bp with the DNA fragment of 

interest and their additional 12 – 15 bp were carrying sequences recognizable by 

desired restriction enzymes, those fragments were not complementary. The product of 

such PCR would be the DNA of interest flanked by the restriction enzyme sites that 

were needed for further cloning steps. All the primers for PCR-cloning were designed 

by us. PCR – based cloning was used: 
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A) in constructing psiRNA shuttle plasmid to insert hU6 promoter after removing 

of commercially inserted h7sk promoter, 

B) in constructing AAV2 – mGFP plasmid, from originally available AAV2-

hrGFP plasmid. 

Specifically: 

A) Inserting hU6 promoter into plasmid psiRNA-7sK-neo-mcs 

1. Excise fragment ClaI (2649) – Bsu36I (2913). 

2. PCR humanU6 polymerase III promoter from psiRNA-hu6-neo-mcs (Ambion 

cat#7209) with primers:  

• 5PhU6=AD13=5’primer with ClaI & XbaI  

5-GACCATCGATTCTAGACCCCAGTGGAAAGACGC-3 
  ClaI XbaI 

• 3’PhU6=TS-AD04=3’primer with BbsI and Bsu36I 

5-GCTACCTCAGGTGAAGACCCGGATCCCGCGTCCTTTC-3 

    BSu36I      BbsI 

3. Ligate PCRed hU6 promoter with digested psiRNA-7sK-neo-mcs (as in “1”) 

4. Confirm liagation with analytical digest  

 XbaI should yield two bands: 2670, 712 

 XbaI is unique in original psiRNA-7sK-neo-mcs – linerarizes this plasmid. 

 

B) Cloning of membrane targeted GFP to AAV2-hrGFP plasmid  

The mGFP was PCRed from pBKS plasmid with the forward primer containing 

BamHI (a) and reverse primer containing HindIII (b) recognition sites: 

(a) – 5’ CAT AGC GGA TCC ATG GGT TGC TGT TTC TCC – 3’  

(b) – 5’ CAT AGC AAG CTT TTA CTT GTA CAG CTC GTC CAT G – 3’  

Final product of PCR the mGFP flanked with BamHI and HindIII sites was digested 

with BamHI and HindIII restriction enzymes and purified. 

After excising hrGFP from AAV2 plasmid with the abovementioned two restriction 

enzymes, the digested PCR mGFP was ligated with linearized AAV2 plasmid. Total 

of 16 clones were finally selected for analytical digest with following restriction 

enzymes: AvaII - to ensure mGFP insertion to AAV2 plasmid and SmaI – to check 

the integrity of ITRs. SmaI recognition site is located in the middle of ITR sequences 

thus if ITR sequence was destroyed SmaI site would also be lost. Twelve out of 16 

clones passed the analytical digest as positive and out of those 10 clones were 
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screened for their brightness via transfection into primary hippocampal culture. Total 

of four clones were the brightest and out of them one was selected for test in the virus 

production. The viral titer with this clone was as good as the other highest titer 

constructs and reached ~7x106 infectious particles per ml. This construct was further 

used in siRNA plasmid production. 

 Creating a unique site for insertion of the shRNA cassettes. 

The AAV2 plasmid was altered before the transfer of shRNA cassette could take 

place. We first designed short oligoneucleotide containing SpeI recognition site in the 

middle and flanked by KpnI sites on 5’ and 3’ ends. One of the KnpI sites was made 

to be lost after cloning into AAV2 plasmid. The cloning was based on a single unique 

KpnI site present in the AAV2 plasmid. After inserting unique site for SpeI restriction 

enzyme we obtained the master plasmid for any further shRNA-casettes cloning. 

4. 1. 5 RNAi 
Both Bassoon and Piccolo have two (each) different target sequences both near the N-

terminal. Two shRNAs are produced against each target sequence one is driven from 

hU6 and the other h7sk polymerase III promoter. The list of shRNA anti Bassoon and 

shRNA anti Piccolo sequences and their complementary target sites are listed below: 

 

BASSOON 

hU6-2425/2627 

In bassoon gene aligns to bp: 555 – 573 

 

hU6- 3233/3435 

In bassoon gene aligns to bp: 543 – 571  

 

h7sK-2627/2829 

In bassoon gene aligns to bp: 555 – 573  

 

h7sK-3435/3637 

In bassoon gene aligns to bp: 543 – 571  

 

PICCOLO 

hU6-4041/4243 
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In piccolo gene aligns to bp: 336 – 354  

 

hU6-4849/5455c 

In piccolo gene aligns to bp: 642 – 660  

 

h7sK-4445/4243 

In piccolo gene aligns to bp: 336 – 354  

 

h7sk-5253/5455c 

In piccolo gene aligns to bp: 642 – 660 

 

Design of short hairpin sequences 

Terminals of the short hairpin sequences required specific design to fit into the shuttle 

plasmids of our choice. First - 5’ ends of hairpin sequences had to be specially 

designed because the polymerase of hU6 promoter has a preference to initiate 

transcription with purine (Guanine or Adenine), human 7sK promoter is very 

permissive, and second the 3’ ends of the hairpin had to incorporate poly-thymidine 

(polyT) tail used as termination site for the polymerase III. Additionally the general 

design of an entire short hairpin insert was constrained by the type of the cloning sites 

available in the psiRNA plasmids namely BbsI recognition sites. The BbsI restriction 

enzyme cleaves DNA six nucleotides away from its recognition sequence. This kind 

of cloning offers possibility to insert the short hairpin sequence at close proximity to 

the polymerase III promoter. We have designed the shRNA sequences with the 5’ 

overhang designed either for h7sk or hU6 promoters (Fig. 4.1) 
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Figure 4. 1: A schematic of short hairpin RNA design. Each hairpin was assembled from 4 
short oligonucleotides (labeled here as: hU6/h7sk overhang, 1, 2 and 3). Five prime overhang 
was designed to ligate with h7sk or hU6 promoter. Left zoomed window shows: 3’ end 
sequence of h7sk or hU6 prmoter– blue box and blue letters; recognition site (GTCTTC) and 
cleavage site of BbsI - red letters; reconstructed parts of the h7sk or hU6 sites included into 
shRNA short oligo design – red letters with green underline. 
Right zoomed window shows how each elementary oligonucleotide was separated from each 
other at the loop site (the loop sequence TTCAAGAGA). The loop sequence had one 5’end 
phosphorylated to facilitate ligation. 
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4. 2 Immunohistochemistry 

 

Antibodies used in this work are summarized below.  

. antibody developed 
in 

mono/polyclonal catalogue No. Company 

mAb7f mouse mono 
Gundelfinger, 
ED   

gp-44a guinea pig poly 
Gundelfinger, 
ED   

PSD95 
(SAP90) rabbit poly cat: 124002 SySy 
Synaptophysin mouse mono cat: 101011 SySy 
VGAT mouse mono cat: 131011 SySy 
CASK rabbit poly cat: 150002 SySy 
VGLUT1 rabbit poly cat: 135303 SySy 

 
Table 4. 2: List of primary antibodies with catalogue number and company name. 
 

Secondary antibodies were purchased from Molecular Probes and were conjugated 

with Alexa Fluor: 

goat anti-mouse, A546 cat: 21123; A647 cat: 21235 

goat anti-rabbit, A568 cat: 11011, A647 cat: A21244 

goat anti-guinea pig, A647 cat: A21450 

 

4. 2. 1 Tissue preparation 

Rats were overdosed with intraperitoneal injection of Narcoren (70mg/kg of body 

weight). Intracardial perfusion of normal rat ringer (contains: 135.0 mM NaCl, 5.4 

mM Kcl, 1.8 mM CaCl2, 1.0 mM Mg Cl2, 5.0 mM Hepes, pH7.2) was followed by 

perfusion of 4% paraformaledhyde solution in 0.1M phosphate buffer (contains: 0.1M 

Na2HPO4 and 0.1M NaH2PO4). The brain was extracted from the skull and post-fixed 

for 90 to 120 min in 4% PFA solution at 4ºC. After post-fixation brains were moved 

to 0.1M PB solution and stored at 4ºC for 2-12hrs until further processing.  

 

4. 2. 2 Staining of presynaptic proteins in free floating sections 

Coronal sections of the auditory brainstem were cut on a vibratome (HR2, Sigmann 

Elektronik) at 50-100µm of thickness. All further processing was done at 4ºC. 
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Sections were always incubated at 1 – 2 sections per volume of 1ml/well. For 

processing sections were incubated in 0.4% - 1% (depending on the age of the rat) of 

Triton X100 and 5% normal goat serum (Jackson ImmunoResearch Laboratories, 

Inc., cat. # 005-000-121) in PB for 60–120 min. Primary antibodies were diluted in 

1% NGS and 0.2% TX100 in PB and tissue was incubated for 12 to 20 hrs at 4ºC. 

After the primary antibody incubation stringent rinsing with 2% NGS in PB was 

applied. The secondary antibody was also prepared in 1% NGS and 0.2% TX100 and 

sections were incubated at 4ºC for 12 hrs. After final rinsing sections were mounted in 

SlowFade Gold antifade reagent (Molecular Probes, cat. # S36936). 

 

4. 3 Acute targeted genetic perturbation (ATGp) 

ATGp method was developed previously in our lab (Wimmer et al., 2004). Briefly, 

this method is based on stereotaxic delivery of viral gene shuttles to VCN. In 

principle this approach allows for selective targeting of the calyx of Held terminals.  

This method facilitates acute manipulation of protein composition in the synapse at in 

vivo system.  

4. 3. 1 Virus systems suitable for gene transfer 

We used two different viral systems, sindbis and adeno-associated virus. 

These viruses offer different advantages for the use in acute gene transfer but also 

have their own disadvantages. We will describe each of the systems separately and 

point out unique features utilized for gene transfer. We also describe detail production 

protocols for each of the virus. 

4. 3. 1. 1 Sindbis virus 

Sindbis virus is well suited for protein expression for its fast onset and high 

expression level. Additionally because of cytotoxicity observed at ~30hrs after the 

onset of expression it is useful for only short time of incubation. Therefore we used 

Sindbis for expression of fluorescent proteins in young animals (P7-P9) with injection 

at P6-P8, and incubation for ~ 18 - 24 hrs, to avoid toxic side effects of the virus. This 

time of incubation yielded satisfactory results of labeling for the calyx identification. 
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4. 3. 1. 2 Adeno-Associated virus 

Hybrid virus containing AAV2 ITRs and AAV1 capsid proteins was used for its 

natural tropism toward neurons (supported by AAV2) and enhanced expression level. 

However onset and level of expression are lower than that known for alpha viruses, 

thus we used the AAV1/2 for adult animals (P21 – P25). We injected young P7 –P9 

pups and incubated them for a period of minimum 10 days.  

 

4. 3. 2 Generation of viral particles 

Protocol for production of AAV1/2 viral particles was based on commercially 

available Stratagene protocol (cat. # 240071) and optimized in our lab by technical 

assistant. Protocol for Sindbis production previously described (Wimmer et al., 2004) 

followed standard protocol from Invitrogen (cat. # K750-01)  

 

4.3.2.1 Production of Sindbis virus 

Sindbis is an alpha virus belonging to the togaviridae family. It is a positive, single- 

stranded RNA virus that does not integrate into the host genome. In order to make it 

accessible for safe gene delivery, the wild type viral genome was split and inserted 

into two plasmids. The gene of interest is cloned into pSinRep5 that contains the 

genes for the nonstructural proteins 1-4 (nsp1-4). The nsps ensure the intracellular 

replication of the virus genome as well as of the subgenomic RNA that serves as 

functional mRNA in the host cell. The helper plasmid p26S encodes for the structural 

proteins, which produce the protein capsid, and the envelope proteins. Packaging of 

the helper plasmid into capsids is prevented due to a lack of the packaging signal. 

Both plasmids were introduced into the baby hamster kidney (BHK) production cell 

line by electroporation. After 20 – 24 hours of incubation BHK cells produced viral 

particles containing only the RNA with the transgene and nsps. An overview of 

Sindbis virions production is shown in Fig. 4.2. 
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Figure 4.2: Preparation of recombinant virions. Baby hamster kidney cells (BHK) are 
made competent for RNA uptake by electroporation. Cells produce infectious but replication 
deficient virions encoding the gene of interest (red) and the nonstructural proteins 1-4 (nsp1-
4). The RNAs are flanked with a 3´-poly adenylyl tail (AAAA) and with the 5´-methyl 
guanylyl (Cap). E1 and E2 are the envelope proteins encoded by the helper plasmid. Modified 
from Invitrogen Sindbis expression manual. 
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In vitro transcription of the viral RNA 

The recombinant plasmids pSinRep5 and the helper plasmid p26S were linearized by 

a restriction digest at their linearization sites XhoI. The DNA was purified by 

extraction with phenol / chloroform and precipitated with ethanol / ammonium 

acetate. The in vitro transcription was prepared as follows (Gurevich, Pokrovskaya et 

al. 1991): 

1-3μg DNA (in 7μl RNAse-free water) 

2.5μl 10x transcription buffer 

2.5μl 100mM DTT 

7.5μl NTPs (ATP, CTP, UTP) 

1.25μl GTP 

1.25μl 5’-methylguanosin-Cap (Cap-analogue) 

1μl RN Ase inhibitor 

2μl SP6-polymerase 

Following one hour incubation at 37°C, a volume of 1.5 μl was denatured for 10 min 

at 85°C and analyzed on a gel containing 1% agarose. RNA was stored at - 70°C and 

used within 2 hours. 

Electroporation of baby hamster kidney cells 

These manipulations, including the harvesting and injection were performed in 

biosafty level II environments. Two 10 cm plates with BHK cells were used, cells 

were 80-90 % confluent. Cells were washed with 1x PBS and αMEM and then 

detached with 2.5 ml / plate trypsin. Trypsination was stopped after ~2 min with 

αMEM. Following gentle centrifugation, the pellet was re-suspended in αMEM and 

washed with cation free PBS. Cells were again collected and re-suspended in 500 μl 

PBS without cations. This volume was mixed in an electroporation cuvette (Gene 

Pulser cuvettes, Biorad) with 15μl of 

recombinant RNA and 10μl helper RNA. 

Cells were electroporated two times with the following parameters: 

0.45kV 

1.25μF external capacity 

2.2-2.5ms time constant 

1125V/cm2 

After a short incubation on ice, cells were plated on one 10 cm plate with 10 ml 
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complete αMEM. 

 Harvest and concentration of viral particles 

Transfected BHK cells were incubated for 20 – 24 hours at 37ºC, 5% CO2 incubator. 

The medium was collected in 50ml Falcon tubes and centrifuged to remove cell 

debris. The supernatant was filtered through 100K Amicon Filter (Millipore, UFC9 

10024), which restricts passage to molecules <100.000 MW and centrifuged at 4500 

rpm. Typically 150 μl remain after 30 min of centrifugation, which contain the 

concentrated virions. BSA was added to a final concentration of 50 μg/ml to preserve 

the activity of viral particles after freezing and thawing. Therefore, virus was diluted 

with filtered BSA/PBS (1:5.5), aliquoted and immediately shock-frozen in methanol 

dry ice and stored at –70°C. 

 

4. 3. 2. 2 Production of AAV virus 

Cell culture 

For one batch of virus 1-10 (1 for vector check, 5 for “small-scale” and 10 for “large-

scale” virus production) 15 cm dishes with 1.0-1.2 x 107 AAV 293 cells per plate in 

25 ml DMEM were used. The cells should be less than passage 30. The plates should 

be approx. 70-80% confluent by the time of transfection. 

Transfection 

1. Three hours before transfection get 2 x HeBS buffer, 2.5 M CaCl2 and distilled 

H2O out to warm up to room temp. 

2. Prewarm the DMEM to 37oC in a water bath. 

3. In Nunc 50 ml tubes prepare the transfection mixture: 

Per 15 cm dish use: 

12.5µg AAV plasmid  

19µg Helper plasmid pDP1 (#174) 

19µg Helper plasmid pDP2 (#175) 

150µl 2.5 M CaCl2   

Add ddH2O to final volume of 1.25 ml  

4. Make the transfection solution up in 50 ml Nunc tube, adding ingredients in 

the following order – water, CaCl2, plasmids. Mix well this DNA/CaCl2-mix.  

5. Take an aliquot of transfection mix and quickly add 1.25 (12,5) ml of 2 x 

HeBS buffer with a pipetter. Keep vortexing for a further 10-15sec and leave 
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the solution to stand on the bench (total of 1-2 min max) for optimal formation 

of the precipitate. A very fine white precipitate should form, clearly visible to 

the naked eye. This will be very obvious when comparing this mix to a 

polystyrene tube containing water only.   

6. Add 22.5 (225) ml of the DMEM growth medium to DNA/ CaCl2 /HeBS-mix. 

Take the plates out of the incubator and remove medium by aspiration. Add 

transfection solution (25 ml to each plate) dropwise, slowly on the cell 

monolayer. The medium must be prewarmed at 37oC. Add the medium very 

gently to the cells. After transfection solution is added shake but do not stir the 

plates. 

7. Return the tissue culture plate to the 37oC incubator. 

8. 16 hours after transfection remove the medium and replace with 25 ml per 

plate of fresh DMEM. Transfection efficiency must reach 50-80% to be 

considered succesfull. This is determined by counting cells which 

simultaneously fluorescence green (GFP-vector) and red (mRFP-helper).  

Harvesting cells 60-72 hours after transfection: 

1. Prepare the ice-ethanol bath and 37oC water bath. 

2. Remove media from cells and discard. Wash the cells in 1xPBS, i.e. carefully 

add 25ml warm 1xPBS to the plate, swirl and remove (discard). Add 25ml of 

1xPBS to each plate and detach cells by using a cell scraper and collect in 50 

ml tissue culture tubes.  

3. Pellet cells at 200g (Rotina 1050 rpm) for ~15 min, RT. 

4. Discard supernatant and resuspend cell pellets in 150mM NaCl, 50mM Tris 

pH 8.5. Volume to use is 1 ml per 15 cm plate. Transfer the cell suspension to 

a fresh 50ml tube. 

5. Subject the cell suspension to three or four rounds of freeze/thaw by 

alternating the tubes between the ice-ethanol bath and 37oC water bath, 

vortexing briefly after each thaw. Each freeze and each thaw will require 

approximately 10 min. incubation time.  

6. Add Benzonase endonuclease (Sigma #E1014) to a final concentration of 25-

50U/ml. Mix contents of tube thoroughly. 

7. Incubate in a 37oC waterbath for 1hr, before removing cell debris by 

centrifugation at 3000g (Rotina 4500 rpm) x 15min, 4oC. 
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8. Filter the supernatant trough a 13 or 32 mm 0.45µm Acrodisc syringe filter 

into a fresh tube and freeze at –20oC until column purification (= crude 

lysate). 

Heparin column purification  

1. Defrost samples at room temp. 

2. Pre-equilibrate the column (1- 5-ml Heparin Agarose type I columns, Sigma 

#H 6508) with PBS-MK pH 7.2  (4-5 x volume of HepAg).  

3. Load the 1-10 ml of crude lysate prepared above onto the column and 

incubate for 1-2 h at room temperature with constant agitation (alternatively, 

use a Harvard infusion pump set with a flow rate of 1ml/min). 

4. Wash column with PBS-MK pH 7.2 (4-5 x volume of HepAg) by gravity flow 

(using the infusion pump - a flow rate of 1ml/min). 

5. Elute virus off column with PBS-MK 0.5M NaCl pH 7.2 (3 x volume of HepAg). 

6. Concentrate virus eluate using 15ml AMICON ULTRA- (100000MWCO; 

Millipore), centrifuge at 3000g for 15 min. Wash the virus preparation by 

adding 3-4 times 15 ml PBS to the concentrator. Flow through – discard. 

Centrifuge down to as small a volume as possible (approximately 200ul).  

7. Sterilise by filtration through a 13mm 0.2µm syringe filter. Do not use a larger 

diameter filter.  

8. Run 10µl purified vector on a Coomassie protein gel to see how pure it is 

(only viral proteins should be present).  

Titration of recombinant AAV 

Determination of infectious particles by Fluorescence Cell Assay (FCA) 

Transfection of the cells requires 5 days. On day 1 the cells are split. On day 2 the 

cells are infected. One day 5 the cells are visually monitored using a fluorescence 

microscope. At ~ 24 hr prior to infection, seed 24-well dish with 5x104 HT 1080 

cells/w in DMEM, at about 70% confluence. Prepare a 10-fold serial dilution of your 

virus stock. Infect cells by adding AAV directly to the medium of the cells or mix 

virus stock with fresh DMEM immediately before adding it to the cells. At 48 to 72 

hr post infection, count the number of positive (fluorescence) cells using a 

fluorescence microscope. 
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4. 3. 3 Stereotaxic injections 

All procedures involving animals were performed according to the German law for 

animal protection. Sprague-Dawley rats were used for the entire experiment. The 

technique of stereotactic VCN injections was developed by V. Wimmer and T. Kuner 

(Wimmer et al. 2004). 

 Injection capillaries were pulled on a horizontal P87 puller (Sutter Company, 

USA) from 5 μl micro pipettes (intraMAR, BlauBrand). Very long, tube-like tips 

were obtained after setting the time variable to zero. Tips were trimmed with scissors 

to a length of ~1cm immediately before use. The tips had an inner diameter of 10-

20μm. The pipettes have a calibrated scale (1μl) to estimate the injection volume. 

Rats were injected with ~1μl virus solution under binocular control. 

 The stereotax (Cartesian Instruments, USA) was subjected to a calibration 

procedure according to the manufacturers guidelines before each experiment. The 

anesthetized animal was fixed in the head stage with ear bars and a tooth ring. The 

scalp was opened and the bregma, a common point at the intersection of sutures 

between frontal and parietal bones was observed on the rostral cranium. The bregma 

served as the zero point and all other positions were referred to bregma. Therefore the 

head had to be adjusted until bregma was localized in zero position of the stereotax in 

all three dimensions. By means of a cross hairs equipped ocular, bregma was first 

zeroed in the X Y Z axis. 

 

4. 3. 3. 1 Surgery 

Rats were anesthetized with isoflurane inhalation anesthesia with oxygen used as gas 

carrier delivered directly to rat snout via stereotaxic gas mask. Initial concentration of 

isoflurane was at 3-5% for about 4-5mins, and sustained concentration of 1 – 1.8% for 

the duration of the surgery. Local anesthetic Licain (Lidocaine, 1%) was injected (50 

– 100µl) subcutaneously under the scalp at ~10 min ahead of skin incision to ensure 

total pain blockade. Skin was cut open with scalpel along the midline in anterio-

posterior direction. After zeroing the stereotax coordinates on Bregma point on the 

skull, and establishing Lambda point position, little hole was drilled (~1.5mm 

diameter) in the skull at the injection site area as determined by Cartesian coordinates. 

Body temperature was monitored throughout the whole surgery with a rectal probe 
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and hold constant at 37.5°C. 

 

4. 3. 3. 2 Cartesian coordinates  

The coordinates used for injections were as follows. 

For P7 -9 rats:   and for P21 and older rats: 

Y X    Y  X 

-9.8 1.3    -10.5  0.9 

-9.5 1.3    -10.2  0.85 

-9.2 1.25    -9.9  0.85 

-9.9 1.15    -10.4  0.75 

-9.6 1.1    -10.1  0.7 

-9.3 1.1    -9.8  0.7 

-9.0 1.05    -9.5  0.7 

For all the injections vertical Z coordinate was always set to + 0.45. Angled injection 

arm was advanced along the VCN axis into Axial1= 9.2 and Axial2 = 9.4 coordinates 

ensuring maximal filling of the nucleus. 

 

4. 3. 3. 3 Injection 

The stereotaxic injections into VCN and tissue processing were done as reported 

previously (Wimmer et al., 2004). Briefly, the VCN of rats was injected with 1µl of 

virus solution. After in vivo protein expression for the time periods indicated below, 

rats were transcardially perfused, brains were sectioned and examined with confocal 

microscopy. For analysis of young (P7-P9) rats sindbis virus was used and rats were 

injected at P6 - P8 and sacrificed 24 h later. For analysis of older rats (P21- P24) the 

P7 – P9 rats were injected and sacrificed ~14 days later.  

 

4. 4 Confocal microscopy 

Sections of fluorescently immuno-labeled brainstem slices were imaged on confocal 

microscope at the in-house imaging facility. Confocal microscope technical 

parameters, as well as details of image acquisition will be described in the following 

sections.  
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4. 4. 1 Confocal microscope hardware and software 
 

• LEICA TCS SP2 confocal microscope equipped with: 

• two microscope stages (upright, inverted) 

• Ar UVLaser (352, 364 nm) 

• Ar Laser (457, 476, 488,514 nm) 

• HeNe Laser (543 nm) 

• HeNe Laser (633 nm) 

• Acousto Optical Beam Splitter (AOBS) as main beam splitter for free 

selection of and rapid switching between reflected / transmitted 

wavelengths 

• Spectral scanner with adjustable windows for fluorochromes showing blue 

to dark red fluorescence and for different Green Fluorescent Protein 

Variants (CFP, GFP, YFP) and dsRed 

• 4 PMTs (epifluorescence and reflection mode) 

• One PMT (transmission mode) 

• Maerzhaeuser XY stage (manual and software-controlled mode) 

• Software for sequential / simultaneous / time lapse / spectral recording / 

and for photobleaching experiments 

Scans were made on the above Leica TCS SP2 confocal microscope with 63x 

objective and 1.3 NA, with glycerol based immersion medium of 1.45 refractive index 

for collecting stacks of optical sections or 20x objective for overview images. All the 

hardware used was controlled from Leica confocal software version 2.61 Build 1537.  

 

4. 4. 2 Acquisition parameters 

Scans were made at 512 or 1024 format at 8 bit resolution with PMTs and lasers 

settings to ensure the whole range of grayscale values. At lower magnification for 

scans that were not deconvolved four times line averaging was used. After collecting 

images at 1.8 to 3 - fold oversampling, data was deconvolved with Huygens2 software 

(Scientific Volume Imaging). 
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4. 5 Processing of image data and statistics 

All our data is based on fluorescent indirect immunohistochemistry performed on 

slices. Revealing localization of antibody-bound antigens by fluorescently labeled 

secondary antibody was done with the confocal microscopy. Like any method, also 

this one is not free from methodological challenges and requires careful consideration 

to overcome potential technical problems. We will describe theoretical consideration 

of limitations and shortcomings of immunohistochemistry combined with confocal 

visualization in respect of quantitative approach. We will also suggest possible 

solutions to some of these problems.  

 

4. 5. 1 Theoretical considerations of problems in IHC/confocal study  

Using immunohistochemistry for labeling antigens of interest requires well 

characterized antibodies, whose specificity has been established rigorously. In the 

case of antibodies used in this study, anti-Piccolo and anti-Bassoon, such 

characterization has been thoroughly performed earlier (Dick et al., 2001; tom Dieck 

et al., 1998 respectively). Even then, however, immuno-labeled proteins are 

notoriously difficult to quantify. This is due to several factors that increase the 

complexity of immuno-labeling approaches. Factors related to antibody characteristic, 

like number of primary antibodies binding to antigen, number of secondary antibody 

molecules binding to primary and finally number of fluorescent molecules conjugated 

to secondary antibody are all variable and impossible to quantify in tissue stainings. 

The above factors render an estimation of a number of Bassoon or Piccolo particles 

within any given fluorescent cluster very hard if not entirely out of reach. 

Visualization of a signal created by fluorescent dye molecules conjugated to the 

secondary antibody using confocal microscope creates its own set of issues worth 

careful considerations. Confocal imaging offers great three-dimensional capabilities 

by creating series of thin optical sections along depth (z-axis) facilitated by 

confocality of the pinholes. It uses specific laser-generated light of defined 

wavelengths to excite each fluorophore separately. Light from the excited fluorescent 

molecule passes through appropriate wavelength filter (or Acousto-optic Tunable 

Filters AOTF) and falls on the photomultiplier (PMT). Fluorescent signal collected 
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from two different sources, located in a tissue sample, passed in two separate 

channels, can differ in intensity due to: 

- number of fluorescent molecules generating that signal,  

- quantum yield which determines brightness of a dye 

- presence of highly diffractive structures on the light path that can cause 

increased dispersion and ultimate loss of signal  

PMTs allow the user to optimize the range of scanned intensities and prevent 

clipping, which is collecting an entire signal at either too high or too low intensities 

(e.g. at 0 or 255 grayscale values when scanned at 8 bit) instead of using the full 

range. In this study we have decided to preserve the full range of scale and always 

scan at optimal intensity settings for each sample rather than using the same setting of 

intensity for a given antibody between age groups (but compare Billups, 2005). 

Keeping the same PMTs setting between age groups could miss signal in tissue 

samples from old animals. In these animals densely packed myelinated axons of the 

medial nucleus of the trapezoid body (MNTB) hinder visibility of calyces.    

 

4. 5. 2 Deconvolution with Huygens2 software 

Collected images were processed at Huygens2 software for deconvolution. This 

processing reduces noise, removes blur and improves visible resolution. 

Deconvolution was run using High quality Classic Maximum Likelihood Estimation 

(CMLE) algorithm with estimated point spread function (PSF). 

   

4. 5. 3 Quantitative analysis in three dimensions 

All 3D reconstructions, surface rendering and volume measurements were done in 

Amira 4.1.1 software (Mercury Computer Systems, Inc). Excision of the immuno-

labeled signal from the pre-labeled calyces was done via thresholding of the calyx 

channel and multiplying it by the Bassoon or Piccolo channel. The outcome of the 

procedure was a channel with immuno-labeled clusters of original intensity retained 

only within the calyx volume. 

Due to the non-specific surface labeling, the data had a consistent bias towards 

extremely large immuno-clusters at the surface located parts of the calyx (e.g. a 100x 

the size of any clusters from below the surface). These extremely large clusters were 
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removed and to avoid any experimenter bias we used mathematically defined outliers. 

On the cluster size data we calculated the outliers with the border size defined as 1.5 x 

(75th percentile - 25th percentile). The clusters above the border size were subtracted 

from the raw data set (they account for ~20%). All further analysis was done on the 

data without outliers. A nonparametric statistical test (unpaired t-test with Welch 

correction) was used to compare semi-quantitative data obtained from measurements 

of fluorescently labeled immno-clusters.  Data are expressed as mean ± standard error 

of the mean. 

 For quantification of calyces treated with shRNA as compared to WT control, 

set of rules was developed to minimize variability introduced by fluorescent imaging 

method itself. These included keeping constant laser power, PMT gain, and offset, 

using the same FIHC preparation, ensuring similar scanning time, avoiding 

comparing calyces if at least one of them was located at the surface. These rules could 

be fulfilled thoroughly only if we compared treated and control calyces located within 

the same field of view.  

Once such pair of calyces was found, the processing methods including, clusters 

excision from the calyx volume and 3D cluster reconstruction were applied. We have 

used thresholding method to identify FIHC clusters. In such case if a protein was 

down regulated FIHC clusters would appear smaller (less bright clusters) or there 

would be less of them in total. To take in account both of these cases we always have 

set threshold first at the shRNA treated calyx, assuming that these clusters might be 

less bright, due to reduced number of antibody bound antigens. We would then reuse 

the same threshold value in control calyces. In result if the protein expression was 

reduced in shRNA treated calyx then in the control we would detect more or bigger 

(or either) of FIHC clusters. For this reason we have quantified both the number of 

FIHC clusters as well as their total volume.  
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List of abbreviations 
 
 
AAV  adeno-associated virus 

AMPAR L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor 

AP  action potential 

AZ  active zone 

bp  base pairs 

CA3  cornu Ammonis 

CN  cochlear nucleus 

CNS  central nervous system 

div  day in vitro 

dsRNA double strand RNA 

E15  embryonic day 15 

EM  electron microscopy 

EPSC  excitatory postsynaptic current 

FIHC  fluorescent immunohistochemistry 

GABA  gamma-amino butyric acid 

GABAR gamma-amino butyric acid receptor 

GBC  globular bushy cell 

GFP  green fluorescent protein  

GlyR  glycine receptor 

H-NMR H-nuclear magnetic resonance 

IHC  immunohistochemistry 

IPL  inner plexiform layer 

ITR  internal terminal repeats 

KAR  kainate receptor 

kbp  kilo base pairs 

kDa  kilo Dalton 

KO  knock out 

LSO  lateral superior olive 

ME-MRI Manganese-enhanced magnetic resonance imaging  

miRNA micro RNA 

MNTB  medial nucleus of the trapezoid body 
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NMDAR N-methyl-D-aspartate receptor 

nt  nucleotide 

P9  postnatal day 9 

PB  phosphate buffer 

PBS  phosphate buffer saline 

PCR  polymerase chain reaction 

PSD  postsynaptic density 

PTV  piccolo-bassoon transport vesicles 

RNAi  RNA interference 

RRP  readily releasable pool 

SEM  standard error of the mean 

shRNA short hairpin RNA 

SOC  superior olivary complex 

SV  synaptic vesicle 

VCN  ventral cochlear nucleus 

VNTB  ventral nucleus of the trapezoid body 

WT  wild type 
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