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Summary 

In this thesis, a novel procedure for linear amplification of messenger RNA 
(mRNA) molecules and labeling with fluorescently modified nucleotides was 
developed, that can be used to perform genome-wide expression analysis from 
minute tissue samples using microarrays of long gene-specific oligonucleotide 
DNA probes. The procedure was then applied to analyze core needle biopsies 
taken at time of diagnosis from tumors of female primary breast carcinoma 
patients. Upon receiving chemotherapy consisting of gemcitabine, epirubicin 
and docetaxel, the patients were classified according to their response to the 
chemotherapy into responders, defined as patients with a pathological 
complete remission of the tumor, and non-responders, defined as patients with 
no change or pathological partial remission. 

The gene expression profiles of the tumors from these patients were then 
bioinformatically processed and analyzed to identify a gene expression 
signature, which could be used to predict the response of the patients. 
Additionally, this gene signature was inspected for the significantly enriched 
pathways and biological processes, and a subset of genes was analyzed in the 
patient's biopsies with respect to RNA expression as validated by real-time 
quantitative polymerase chain reaction and protein expression as measured by 
immuno-histochemistry. 

The gene expression signature contained 512 genes, which allow a prediction of 
the patient response with an overall accuracy of 88%, a sensitivity of 78% and 
a specificity of 90%. Signaling pathways and biological processes identified 
with significant enrichment in the gene set were the Ras pathway, TGF β 
signaling, DNA damage response and apoptosis. From these pathways, the 
genes DAPK2, BAMBI, LMO4 and SMAD3 could be validated by RQ-PCR, but 
not SRC. In protein analysis by IHC, BAMBI was strongly associated with the 
patient's outcome, while BMP4, LMO4, SMAD3 and SRC were not directly 
associated. Additionally, BAMBI protein expression showed strong relationship 
with BRCA1 expression in the primary female breast carcinoma. 

Taken together, these results show the applicability of the novel developed 
procedure for amplification and labeling of mRNA for genome-wide gene 
expression analysis with the long oligonucleotide microarray technique and the 
successful use in biological and clinical investigations. The analysis of gene 
expression profiles of the primary breast tumors revealed an association of the 
Ras pathway, TGF β signaling, DNA damage response and apoptosis with the 
outcome of the patients after chemotherapy, as well as associations of several 
genes within these pathways and biological processes. 
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Zusammenfassung 

In der vorliegenden Dissertation wurde eine neue Methode zur Amplifikation 
von Boten-RNS und der Markierung mit fluoreszierenden Nukleotiden 
entwickelt, die sich zur Erstellung von Genexpressions-Profilen aus sehr 
kleinen Gewebeproben mit Hilfe genspezifischer Proben aus langen DNS-
Oligonukleotiden auf Microarrays eignet. Nachfolgend wurde diese Methode 
angewendet, um Feinnadel-Biopsien aus Mamma-Karzinomen zu untersuchen, 
die den Patientinnen bei Diagnose entnommen worden waren. Nachdem die 
Patientinnen eine Kombinations-Chemotherapie aus Gemcitabin, Epirubicin 
und Docetaxel erhalten hatten, wurden sie je nach Ansprechen in "Responder", 
definiert als Patientinnen mit pathologisch gesicherter kompletter Remission, 
oder "Non-Responder", definiert als Patientinnen ohne Veränderung oder mit 
partialem Rückgang des Tumors, klassifiziert. 
Die Genexpressions-Profile dieser Tumoren wurden mit Hilfe bioinformatischer 
Methoden verarbeitet und analysiert, um eine Gensignatur zu identifzieren, die 
eine Vorhersage des Therapieansprechens erlaubt. Zusätzlich wurde diese 
Gensignatur auf signifikant überrepräsentierte Signalwege und biologische 
Prozesse hin untersucht. Ein Teil der Signaturgene wurde in den Biopsien der 
Patientinnen bezüglich der RNS- und Protein-Expression mit Hilfe von 
quantitativer Echtzeit-PCR bzw. immunhistochemischer Färbungen analysiert. 
Die ermittelte Genexpressions-Signatur enthält 512 Gene, und ermöglicht die 
Vorhersage des Therapieansprechens mit einer Gesamtgenauigkeit von 88%, 
einer Sensitivität von 78% und einer Spezifität von 90%. Als für das 
Ansprechen relevante Signalwege und biologische Prozesse wurden der Ras-
Signalweg, die TGF-β-Kaskade, Antwortprozesse bei DNS-Schädigungen sowie 
der Apoptosemechanismus identifiziert. Aus diesen Signalwegen konnten die 
Gene DAPK2, BAMBI, LMO4 und SMAD3 durch qEZ-PCR validiert werden, 
nicht jedoch die Expression von SRC. Die Proteinanalyse zeigte eine starke 
Assoziation von BAMBI mit dem Therapieansprechen, während BMP4, LMO4, 
SMAD3 sowie SRC nicht direkt assoziiert waren. Zudem wurde ein starker 
Zusammenhang zwischen der Proteinexpression von BAMBI und BRCA1 in den 
primären Brusttumoren festgestellt. 
Zusammengefaßt zeigen die Ergebnisse die Einsetzbarkeit der neu ent-
wickelten Methode zur Amplifikation und Markierung von Boten-RNS für die 
genomweite Expressionanalyse mit der verwendeten Microarray-Technik, sowie 
die erfolgreiche Anwendung der Methode zur Untersuchung biologischer und 
klinischer Fragestellungen. Die Analyse der Genexpressions-Profile der Primär-
tumoren von Brustkrebspatientinnen zeigte Assoziationen des Ras-Signalwegs, 
der TGF-β-Kaskade, der Antwortprozesse bei DNS-Schädigungen sowie des 
Apoptosemechanismus mit dem Ansprechen der Patientinnen auf die 
Chemotherapie. Zudem wurden Abhängigkeiten zwischen diesen Signalwegen 
und biologischen Prozessen anhand verschiedener Gene nachgewiesen. 
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1. Introduction 

 

1.1. Cancer 

Cancer is a very heterogeneous disease, comprising more than 100 different 

types of malignant tumors. Concurrently, it is the second leading cause of 

death, with a rate of 22.7% of all deaths worldwide in 2003.1 Only the 

cardiovascular diseases, with a share of 28%, have a larger percentage. 

 

1.1.1. Development of Cancer 

The formation of a tumor depends on the transformation of at least one cell 

within the organism. The transformation can be fostered by cancerous agents, 

which due to their DNA mutating effect are also called mutagens. Such 

substances or media include different toxins, like those contained in tobacco 

smoke, free radicals like reactive oxygen or nitric oxide species, but they also 

include physically damaging sources like UV light or ionizing irradiation. Other 

sources of degeneration on the level of DNA include different viruses, like 

hepatitis B or C viruses (HBV, HCV) or human papilloma viruses (HPV). DNA 

damage can also occur on during chromosome segregation, leading to 

aneuploidy or translocations of chromosome parts. 

Many of these events happen often during the life time of a cell. Even in an 

environment that is free of mutagens, mutations will occur spontaneously at 

an estimated rate of about 10-6 mutations per gene per cell division. Compared 

to the total number of cell divisions, estimated as 1016 in the course of a 

lifetime, this equates to approximately 1010 mutation events per gene in the 

whole human body.2 

Nonetheless, most of these events do not lead to a cancerous cell. First of all, 

cells possess DNA repair mechanisms that check and repair single nucleotide 

mutations, e.g. during replication. Secondly, not all mutations actually lead to 

an amino-acid change in the protein, or the change translates but does not 

lead to a functional change. Thirdly, if the function of the protein or even the 

cell is severely restricted, it usually leads to a cell death program called 

apoptosis. And lastly, few cells actually live for the entire time span of the 

organism, as most somatic cells have a turnover rate and also stem cells are 
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limited in the number of cell divisions they are allowed to make by restriction 

mechanisms, e.g. through the length of their telomeres. 

Only if the deteriorations are severe, like chromosomal translocations, genetic 

mutations that lead to a defect in the above-mentioned safeguard mechanisms 

themselves or several mutations that happen in a short interval, will they likely 

cause transformation and subsequently can lead to tumor formation. 

In the year 1971, Alfred G. Knudsen proposed his model based on statistical 

analysis of retinoblastoma, which is today called the "two-hit" model.3,4 In 

short, his hypothesis implies that dominantly inherited predisposition to 

cancer entails a germline mutation, while tumorigenesis requires a somatic 

mutation of the second copy of the respective gene. Only by the manifestation 

of both mutations, the early and frequent development retinoblastoma could be 

explained. This very specific finding is still seen as a basic but key concept in 

tumor genetics, even if certain modifications are necessary. As explained 

before, a single somatic mutation mostly does not lead to cancer. Conversely, if 

for example the DNA repair mechanisms are disabled by mutations in the 

respective repair genes, other mutations can easily manifest and lead to a 

degeneration of the cell, e.g. resulting in its micro-environmental survival 

advantage. Another example is a mutation leading to the activation of the 

hTERT gene, which encodes the human telomerase protein. The telomerase is 

capable of lengthening the telomeres, the ends of chromosomes, which 

normally are gradually lost by cell division and finally initiate the death of the 

cells after their complete breakdown. An activation of the telomerase protein in 

somatic cells leads to their immortalization, allowing other mutations in the 

affected cells to accumulate over time. These mutations then have a much 

higher probability to manifest and in effect cause such cells to transform. 

 

1.1.2. Cancer Progression Models 

Following the transformation of a cell to gain tumorigenic potential, for example 

by two or more mutation events, a clonal outgrowth may occur, if the cell has a 

survival advantage over those in its neighboring tissue environment. 

In 1993, Bert Vogelstein and Kenneth Kinzler proposed a model that also 

explained the occurrence of sporadic tumors, in which they argued that for a 

cell or small group of cells to become a tumor, many subsequent steps are 
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necessary.5 This multistep process involves several pathways and interactions, 

both within the tumor and its surrounding stroma, including inflammation, 

invasion, metastasis and vascularization. Vogelstein and Kinzler worked on 

colon carcinoma, which develop in well-defined morphological stages, a fact 

that could not be explained with the models existing at the time. They 

demonstrated that certain subsequent mutations, which happen rather in 

preferential than in a fixed order, could be associated with the disruption or 

over-activation of certain pathways and consequently lead from benign to pre-

cancerous lesions, then to malignant carcinoma and finally to invasive 

carcinoma. 

In recent research, another aspect of tumorigenesis has come into focus, 

namely the emergence of cancer stem cells.6-9 There are two major questions in 

this respect to be answered: (i) Do tumors (and metastases) develop from a 

single or few progenitor cell(s), analogous to tissues deriving from one or few 

stem cells? (ii) Do tumors develop from mutations that had already occured in 

natural stem or progenitor cells? Of course, many more questions are 

connected to this concept, e.g. whether there is an asymmetric division of the 

tumor stem cell and a progression of its progenitor cells. However, the 

existence of cancer stem cells or tumor initiating cells, as they are sometimes 

more carefully referred to, seems to provide a valuable idea for understanding 

the progressive behavior of tumors. Nonetheless, some refinements to the very 

simple idea have to be taken into consideration as well, like the influence of 

tumor-stroma interaction, cross-talking processes involved in tumor invasion 

and vascularisazion, and the existence of so-called "dormant" cells. The latter 

appear for example in the bone marrow of breast cancer patients, but clearly 

show properties they inherited from the primary breast tumor.10-13 The cancer 

stem cell idea seems also very valuable in the explanation of tumor relapse and 

the formation of distant metastases. 
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1.2. Breast Cancer 

Breast cancer is the most common malignant tumor in women, both world-

wide and in the high-income countries, as defined by the World Bank. It leads 

to more than 500,000 deaths per year in the world, and belongs to the top ten 

mortal diseases in the high-income countries, with a mortality rate of 1.9% for 

2002.14 In order to put these absolute numbers into a more substantial 

measure, the lifetime risk of a woman living in the USA to develop cancer is 

estimated to be between 33% and 43%, while her lifetime risk to develop breast 

cancer dropped from one in eight to one in 13 individuals in the last five 

years.1,15  

 

According to the American Society of Cancer, in the USA there were an 

estimated 270,000 new cases of breast cancer in the year 2005, and 40,410 

deaths caused by the disease in the same time period.15 Even though breast 

cancers display a relatively high survival rate compared to cancers of e.g. lung, 

stomach or colorectum, the vast numbers of cases and high incidence rates of 

approximately 128 invasive breast cancers per 100,000 US women plus 

approximately 30 non-invasive cases per 100,000 for the years 2000-2004, 

make breast cancer a clinically very important and highly investigated disease. 

 

Besides the large number of cases, breast carcinoma is also among the most 

heterogeneous types of cancer: firstly, in terms of the clinical course and 

classification; secondly, in terms of the cellular and genetic background of the 

actual tumor mass. A successful treatment of patients with primary breast 

carcinoma is therefore highly dependent on an in-depth characterization of 

each individual case. This comprises not only acquiring standard clinical data 

like age, menopausal status or histopathological staging of the cancer. A more 

profound examination, e.g. concerning the local spread, the tissue origin 

(ductal, lobular, and others), the estrogen and progesterone hormone receptor 

status, as well as a detailed histochemical characterization of expressed 

proteins like HER2/NEU, P53, BCL-2 or the proliferation marker KI67, is 

today's clinical standard.16 
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Figure 1 

 
US Incidence rates of Primary Breast Cancer. Depicted are females of all ethnities, separated for age and 
malignancy. From the National Cancer Institute (NIH), 2007.15 
 

1.2.1. Breast Cancer Types 

As the incidence rates demonstrate, the large majority of breast cancer cases 

are comprised of malignant or invasive forms of breast cancer. However, while 

the incidence rate of these has not changed significantly over the past three 

decades, the incidence rate of the non-invasive in situ lesions has increased 

considerably from the early 1980s (up to five per 100,000) to the late 1990s 

(more than 11 per 100,000; Fig. 1). This is due to the fact that the introduction 

of mammography screening, at least in high-income countries like the USA 

represented here, has lead to a great improvement of the early diagnosis. 

Almost all invasive breast tumors are adenocarcinoma (96.9%), with the only 

other histology worth mentioning being the sarcoma (0.3%), the rest are of 

mixed histologies (2.7%). Among the adenocarcinoma, the largest subgroup is 
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comprised of the invasive or infiltrating ductal carcinoma with 67.3% of all 

breast carcinoma, followed by the infiltrating ductal and lobular carcinoma 

(12.7%) and the infiltrating lobular carcinoma (8.0%). Other adenocarcinoma 

subtypes, like mucinous, tubular, papillary, medullary or those not otherwise 

specified (NOS) arise only to very low percentages (2.6%, 1.6%, 0.4%, 0.7%, 

and 1.1%, respectively).15 

Following the consistent screening for breast cancer since the 1980s, the 

percentage of non-invasive lesions has increased from 3% to currently 

20 - 35%.17,18 The largest proportion of non-invasive breast cancer cases in 

high income countries is comprised of the ductal carcinoma in situ (DCIS) with 

approximately 85%, followed by the lobular carcinoma in situ (LCIS) with 12% 

(numbers for USA, averaged for 1998-2002). 

 

1.2.2. Hereditary Mammary Carcinoma 

Albeit the immense number of cases, only a small proportion of patients 

presenting with mammary carcinoma could be associated with an inherited 

susceptibility to develop breast cancer. The hereditary breast tumors differ 

from the sporadic cases mostly by their incidence at an earlier age (mostly 

premenopausal), higher prevalence of bilateral manifestations and, of course, 

the significant number of associated tumors within families.19 Genetic factors 

that have been directly associated with breast cancer comprise for 

approximately 5% of all patients, and the risk to develop breast cancer is 

significantly larger in families with a mammary carcinoma history.20 On the 

other hand, in hereditary breast carcinoma carriers, general risk factors like 

late pregnancy, the number of pregnancies or the menopausal state do not 

alter the risk of developing the tumor significantly.21 

In the middle of the 1990s two major susceptibility genes, BRCA1 

(Chromosome 17q21) and BRCA2 (13q12), were discovered to be directly 

associated with the development of the disease.22 These harbor autosomal 

dominant mutations, and have therefore found their way into clinical patient 

management in cases with a family history.23 

However, since there are familial patterns that cannot be associated with 

BRCA1/2 genes, the importance of other genetic factors in this context has 

been under constant investigation. Yet, whether these contribute only to small 
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subgroups of patients each, or if many genes have to be considered to form a 

polygenic model, is still not known.24-26 Proposed genes to contribute to the 

predisposition to develop breast cancer are TP53, PTEN, LKB1, ATM, PALB2 and 

CHEK2, but less than 1% of cases have been reported with a positive 

association.27,28 

 

More than 60% of breast cancer patients with a BRCA1/2 mutation develop the 

tumor before 50 years of age. These patients have a very high incidence of a 

tubular carcinoma, but their histopathology does not differ significantly from 

those of sporadic cases. The 5-year survival rate is also similar to that of 

sporadic cases, so currently, the therapeutic options remain the same as well. 

The poly(ADP-ribosyl)-transferases (PARP) 1 and 2, which are thought to be 

potential modulators of DNA-repair-mediated resistance to cytotoxic therapy, 

are targeted by novel PARP inhibitors, which are now investigated in clinical 

trials as therapeutic option for BRCA-positive cases of cancers.29,30 

 

1.2.3. Clinical Treatment of Breast Cancer 

Following the diagnosis of an invasive mammary carcinoma, the standard 

therapeutic approach is surgical removal of the tumor, either through local 

excision (breast-conserving) or by removal of the entire breast (mastectomy).  

Of course, breast conserving strategies are favored; however, there are cases for 

which the mastectomy indisputably is the only option, namely those of an 

inflammatory carcinoma, multicentric carcinoma or an intraductal carcinoma 

in situ with a particular classification (Van Nuys score 7-9).31 

 

Systemic therapies, consisting of either chemotherapy, endocrine (hormonal) 

treatment, or a combination of both, have been developed and new protocols 

are constantly under investigation in clinical studies.32 In the adjuvant setting, 

the systemic treatment is given after surgery, to prevent relapse of the breast 

tumor. In the primary systemic (neo-adjuvant) setting, the treatment precedes 

surgical removal of the tumor, with the additional advantage of performing a 

systemic treatment and monitoring of the therapeutic effect on the tumor. 
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In order to investigate the long-term effect of adjuvant chemotherapy, a meta-

analysis of several studies was conducted.33,34 In summary, 33% of the 

patients investigated showed a relapse and 36% of the patients deceased (of 

which 5% not due to the treatment). In respect to no chemotherapy, the 

relative risk of death decreased by 14.9% with poly-chemotherapy, while the 

occurrence of relapse was reduced by 23.7% relatively. The number of deaths 

not directly associated with the breast cancer was not significantly different in 

the poly-chemotherapy treated patients. 

The analysis also revealed that therapy protocols containing anthracyclines 

(e.g. doxorubicine, epirubicine) have a significant survival advantage for the 

patients in comparison with protocols of the CMF combination scheme 

(cyclophosphamide, methotrexate, and 5-fluorouracil), but the long-term 

toxicity has not been investigated well enough for a final conclusion. 

 

Endocrine therapies are relevant for patients with a hormone receptor status of 

at least 10% of tumor cells being positive for the estrogen or progesterone 

receptors (ER, PR).35,36 These patients are treated effectively with tamoxifen 

doses starting at 20 mg/day, and it could be shown that a 5-year treatment 

has a significant advantage for the patients versus no, only one or two years of 

treatment. 

ER-positive patients treated with tamoxifen for 5 years showed a proportional 

recurrence reduction after 10 years of follow-up of 47%, and the relative risk of 

death was reduced by 26%. The proportional mortality reductions were similar 

for women with node-positive and node-negative breast cancer, but the 

absolute mortality reductions were greater in node-positive women: In the trials 

of about 5 years of adjuvant tamoxifen, the absolute improvements in 10-year 

survival were 10.9% for node-positive and 5.6% for node-negative patients. 

 

The primary systemic (neo-adjuvant) treatment has become the standard 

therapy for inoperable or inflammatory mammary carcinoma.37 Other than 

that, patients who are candidates for mastectomy but wish to have a breast-

conserving therapy and patients participating in clinical studies are treated 

currently with primary systemic therapy protocols.38 A major advantage of this 

method, is the possibility to monitor the effect of treatment on the tumor and 
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thus the sensitivity of the tumor to the applied drugs before its surgical 

removal.39 It was also shown that for the use in primary systemic therapy, the 

third generation aromatase inhibitors, e.g. letrozole and anastrozole or 

exemestane show an improvement compared to tamoxifen40-42, whereas the 

results for raloxifen are not conclusive.43,44 

The NSABP-B-27 study shows an improvement of the response rate by 

sequentially adding 4 x Doc (docetaxel) to the standard neoadjuvant therapy of 

4 x AC (doxorubicine, cyclophosphamide).45,46 

The effectiveness in terms of disease-free and overall survival of the 

neoadjuvant therapies was shown to be the same as in the adjuvant setting, 

but there is an improvement in the number of breast conserving tumor 

surgeries.39,47 

 

New developments in systemic therapy of breast cancer include mostly the use 

of trastuzumab (Herceptin) in addition to or as substitution of chemotherapy, 

since it has been approved both in combination to chemotherapy or as a mono-

therapy.48 The mode of action of this monoclonal antibody against the HER2 

protein is not only given by blocking of the HER2 signaling pathway, but also 

through activation of cytotoxic lymphocytes and the inhibition of 

angiogenesis.49 However, side effects to the cardiac system have been reported; 

therefore, the therapy is restricted to clinical studies and not in use as a 

primary therapy option.50,51 The prerequisite is a standardized characterization 

of HER2 overexpression in the patients (HERCEP test). Besides, trastuzumab is 

becoming increasingly used in palliative therapy. 

To overcome the problem of resistance and improve the tolerance to the 

trastuzumab treatment, current research in the field includes different kinds of 

combinations with other antibodies (e.g. against EGFR and VEGF proteins), as 

well as the development and testing of pertuzumab, an improved anti-HER2 

antibody directed against the dimerization domain of the protein, that could be 

used in addition in case of resistance or as successor of the trastuzumab anti-

HER2 antibody.52-55 

 

Another emerging therapy is the adjuvant use of bisphosphonates. It has been 

shown that these decrease the risk of bone marrow metastasis.56-59 However, 
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their therapeutic use is controversial, since they have also been reported to 

increase the rate of visceral metastases.60 Long-term studies are currently 

ongoing to prove their therapeutic applicability.  

 

The therapy of non-invasive mammary carcinoma has gained importance by 

the increasing early detection of non-invasive lesions.61 However, the two major 

histologies, DCIS and LCIS, show little similarities, especially in respect to their 

tumorigenic potential. This results in two separate strategies for the therapy of 

these patients. 

 

The ductal carcinoma in situ develops from cells within the ductal system, 

which show at this stage no infiltration of surrounding stroma tissue. The 

histopathology of DCIS is very heterogeneous, as well as the clinical course of 

the patients and their prognosis. Without any therapy, approximately 30% of 

patients develop an invasive breast carcinoma within 3 - 10 years. Patients 

undergoing a mastectomy have a 98% probability to be completely cured, while 

breast conserving surgery and excision of the lesion lead to a relapse rate of 

50%.62 The risk of relapse can be reduced by approximately 10% as a result of 

the application of radiotherapy after excision. 

A breakthrough in reducing the rate of mastectomies in the therapy of DCIS 

was the development of the Van Nuys Prognostic Index by Silverstein et al. in 

1996.63,64 Depending on their risk group, patients can be cured by a more 

extensive excision of the lesion alone, additional radio therapy (NSABP-B-17 

study) and additional tamoxifen treatment (NSABP-B-24), allowing to limit the 

need to perform a mastectomy to the cases with indisputably no other 

option.65,66 

 

The lobular carcinoma in situ differs in its biology from the DCIS, as the lesion 

is formed by proliferation of relatively uniform cells in the lobuli and often in 

the terminal ducts. The LCIS is very difficult to detect early and often an 

incidental diagnostic finding, since there is no perceptibility of small tumors by 

palpation or mammography screening due to the lack of micro-calcifications. 

The LCIS is relatively uncommon, its incidence amounts to 1 - 2% of all breast 

tumors. It leads to a mammary carcinoma in about 35% of the cases identified 
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even with a follow-up of 35 years.67 Therefore, the current clinical management 

of patients with an LCIS is a regular examination of the lesion's spread by 

mammary sonography. 

 

1.2.4. Diagnosis and Treatment Options 

The attempt to achieve an individualized approach to cope with the 

heterogeneity of the clinical course and biology of breast cancer cases requires 

an exact and differentiated diagnosis of each patient, including e.g. the local 

spread of the lesion or carcinoma and the estimation of lymphatic 

metastases.68 

Imaging techniques to facilitate diagnostics not only include mammography 

and sonography, but also newer and more detailed methods. Examples for 

these are Magnetic Resonance (MR) mammography and Sentinel Lymph Node 

Biopsy (SLNB). 

MR mammography is used as an additional method for refinement or validation 

of conventional mammography and sonography findings. Indications for its use 

are in-breast relapse in previously surgically treated cases, axillary lymph 

nodes containing metastases, evaluation of response to primary systemic 

chemotherapy, screening of high risk populations (hereditary risk patients, 

BRCA1/2) or patients with silicone implants. A great advantage of the MR 

mammography is its high sensitivity, and the resolution of blood vessels; its 

disadvantage, however, is the high number of false positive findings in cases of  

DCIS.69 

Sentinel Lymph Node Biopsy is used selectively as a minimally invasive staging 

of the nodal status. Its advantage is the additional opportunity to check the 

lymph nodes by immuno-histochemical examination. A large disadvantage of 

its use is the overestimation of very small tumor lesions or cell populations, 

such as micro-metastases, in respect to the therapeutic course of action for 

these patients. Therefore, the currently favored proceeding in such cases is to 

dissect the axillary lymph nodes.70 

 

Beyond determination of the actual state of the carcinoma or lesion, the 

individual therapeutic plan of action is highly dependent on the estimation of 

the progression of the disease and the clinical course of the patient. Therefore, 
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the goal is to make a profound prognosis for each patient and give a prediction 

of each therapeutic action to be implemented.71 

Generally, patients can be classified as those with a very good prognosis, 

showing little risk of a relapse; these can be treated locally, and do not need 

any chemotherapy. On the other end of the spectrum are patients with a poor 

prognosis, who definitely need a systemic treatment, including chemotherapy 

or more aggressive therapy. To assess each patients options and the optimal 

course of action, it is therefore most important to predict the therapy response 

versus resistance or relapse. 

 

In order to estimate the prognostic value of certain parameters, Hayes et al. 

published in 1996 a list of criteria to be fulfilled.72 It consists of (i) the 

understanding of the biological model, (ii) the quick and reliable estimation, 

including quality assurance, of the test, (iii) a prospective planning of the 

statistical analysis, e.g. the establishment of threshold values, (iv) the 

independent validation of the test and finally, (v) the clinical relevance for the 

decision of the therapy choice. Meeting all these criteria, there are currently the 

following clinically relevant prognostic factors for breast cancer.73,74 

(a) Lymph node status, especially in axillary lymph nodes, displays the highest 

prognostic value: patients with a negative lymph node status can be cured 

by local treatment with a success rate of 70%. 

(b) Tumor size: patients with tumors smaller than 1 cm have a very good 

prognosis.75-77 

(c) Histological type of cancer: tubular, mucinous and medullary carcinoma 

show very good prognosis.78  

(d) Grading: very well differentiated (WHO grade: G1) tumors have a 

significantly better prognosis than undifferentiated tumors (G3);79 however, 

70 - 80% of carcinoma are intermediately differentiated (G2). 

(e) Hormone receptor status: 75% of patients are ER and/or PR positive and 

have a significantly better prognosis.76,77 However, the hormone receptor 

status is more important as a predicitve factor for hormone treatment. 

(f) Age: very young patients (<35 years) show a very bad prognosis, and have 

extremely aggressive tumors.80 In contrast, menopause is more of a 

predictive factor for hormone treatment than a prognostic factor. 
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Newly developed prognostic factors, which are currently under validation, are 

the urokinase type plasminogen activator (uPA) and its inhibitor PAI-1.81 They 

have been reported to play a key role in invasion and metastasis; however, 

classification is difficult because these factors show a heterogeneous 

expression in both tumor and stroma cells. Patients expressing low levels of 

both uPA and PAI-1 have a good prognosis, and patients who additionally have 

a negative nodal status do not need chemotherapy.82 uPA and PAI-1 could 

therefore prove to be important prognostic factors for patients with 

intermediate grading (G2). 

Another factor of high prognostic value is the growth factor receptor HER2.76,77 

However, the classification is still not uniform enough to make a reliable 

prognosis due to a lack of standardization. ERBB2/HER2/NEU gene 

amplification has shown to be of higher prognostic value than immuno-

histochemical detection of HER2 protein.83-85 Patients with a high expression or 

gene amplification have a bad prognosis. 

Proliferation markers, like the mitotic index and the expression of marker 

proteins (KI67, MIB1, PCNA) as measured by IHC, have currently no prognostic 

value useful for the clinical routine. Nevertheless, they are continuously 

measured for later analyses. Other prognostic characteristics currently under 

investigation are invasion (e.g. laminin receptors), angiogenesis (VEGF), 

oncogenes (TP53 or NM23), and apoptotic markers (BCL-2). 

 

Predictive factors relevant for the clinical use are currently not sufficiently 

available for chemotherapeutic protocols. The steroid hormone receptors can 

predict the response to anti-hormonal therapy like tamoxifen: ER negativity is 

significantly correlated with no response.34 HER2 gene amplification or 

overexpression has been shown to predict the response to trastuzumab 

(Herceptin), either as systemic therapy or in palliative use during 

chemotherapy.48 Again, FISH and RQ-PCR data correlate better than protein 

overexpression measured by IHC;86,87 and additionally, it was shown that the 

serum level could also be correlated with response.88 HER2 positive patients 

have also been reported to respond poorly to CMF chemotherapy 

(cyclophosphamide, methotrexate, and 5-fluorouracil), but well to 
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chemotherapies containing anthracyclines (doxorubicine, epirubicine, and 

others) and taxanes (docetaxel, paclitaxel).89-91 An overview of predictive factors 

currently in clinical use is given in Table 1. 

 

 

The promising results achieved by prognostic and predictive factors currently 

used for some therapies in the clinic show the importance of developing more 

and improving the existing ones. This is especially important in the case of 

chemotherapeutic treatment, both in the adjuvant and the primary systemic 

setting. From the presently available factors, a benefit could be achieved by 

combining some of these into multifactorial models, but this approach requires 

advanced mathematic models, which have to be developed and validated. To 

integrate many factors and limit the laboratory effort at the same time, there is 

a strong need to miniaturize and to integrate multiple measurements into a 

smaller number of experiments. Efforts in this direction have been and still are 

currently undertaken in many laboratories and clinical institutions, both in the 

proteome analysis92 as well as in great numbers on the level of DNA and RNA 

analysis, e.g. by molecular profiling.93 

 

1.2.5. Molecular Profiling in Prognosis and Therapy Response Prediction 

The characterization of tumor patients as currently feasible in the clinical 

routine has not led to a reliable means of classification into tumor subtypes 

according to the patients prognosis after chemotherapy and does not allow 

predicting their response to chemotherapeutic treatment.16,94,95 This is 

especially unfortunate, since in breast cancer the chemotherapy has a 

Table 1 Predictive Factors for Mammary Carcinoma with Clinical Relevance 68 
   

  Factor Class Predictive for response to   
   

  steroid hormone receptors positive endocrine therapy   

  menopausal status premenopausal ovary ablation   

  positive Herceptin, palliative use   

  positive chemotherapy (Anthracyclines/Taxanes)§   

  negative chemotherapy (CMF)§   

  

HER2 status 

negative endocrine therapy§   
§ Currently not recommended for selection of therapy, only retrospective data available 
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substantial therapeutic impact on the clinical outcome of the patients. To 

successfully cure the patients with this method, there are many different 

therapeutic agents, combinations of these and protocols including delivery 

schedules, that are currently under investigation.96,97 None of these has a 

proven general applicability to treat patients with a substantially better 

response compared to other protocols, yet their success may differ largely when 

applied to individual patients. 

The measure taken into consideration for the success of any individual 

chemotherapy protocol is the rate of pathological complete remission (pCR), 

defined as the disappearance of all viable tumor cells in the tissue. Since the 

pCR rate is highly correlated with the disease-free and overall survival rates of 

treated patients, it can be used as an early and direct surrogate marker for 

treatment success.98-101 

 

Current chemotherapy treatment protocols, as for example the neoadjuvant 

therapy administered in the study investigated in this dissertation, yield pCR 

rates of approximately 25 - 30%.45,47,102-104 These rates could be substantially 

improved, if there was a more reliable way to predict the success of the 

treatment for each individual patient before application. Considering the 

multitude of treatment options just in the case of chemotherapy alone, this 

would hopefully result in an improvement of the overall treatment success. 

The only way to substantially improve the pCR rates in the currently known 

chemotherapies seems to be an extensive and detailed multifactorial 

assessment of each patient's genetic or biochemical record, or likewise of the 

tumor to be treated, as a prerequisite to a tailored application of optimal 

therapy options.  

To perform this multifactorial assessment, a number of methods are 

applicable. On the molecular biology level, array-based comparative genome 

hybridization (aCGH), expression profiling by means of microarrays and real-

time quantitative polymerase chain reaction (RQ-PCR) provide suitable 

information. On the protein level, currently only advanced classical methods 

like two-dimensional electrophoresis followed by transfer to Western blots and 

immuno-histochemical staining, or IHC staining of tissue sections or tissue 

microarrays have the necessary precision and laboratory applicability. More 
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recent methods, like antibody or protein microarrays as well as small volume 

applications have not yet a proven reliability and lack necessary 

standardization. 

All these procedures, however, are currently not feasible to be performed for 

each single patient on a daily clinical routine basis. Therefore, the genes or 

proteins used for determination of prognosis and prediction need to be 

identified first, and then narrowed down to a suitable number, in order to be 

effective both in regards to time and costs. 

  

Recent developments to achieve prognosis of disease-free and overall survival 

after breast cancer have come from studies using cDNA microarrays, 

oligonucleotide microarrays or RQ-PCR (Table 2).95,105 In order to find good 

prognostic markers, an unsupervised clustering of gene expression 

measurements in tumor samples from patients with breast cancer revealed 

different tumor subtypes than the clinically established ones. These groups 

show distinct gene expression patterns and different prognoses, as estimated 

by survival analysis in prospective studies.93,106-109 The classification into 

groups distinguished by their molecular patterns, as represented in Figure 2, 

not only allows for a better subclassification, leading to more accurate 

prognosis of patients with primary breast cancer, but also includes patients 

who developed metastases.  

 
Table 2 Studies Investigating Clinical Potential of Multi-Gene Factors  

Authors Tumors 
(n) Primary Endpoint Molecular Tool Genes 

(n) 
Year 

published 

Sørlie T et al. 78 Classification to outcome custom cDNA array 
(8,102) 427 09/2001,106 

PNAS 

van 't Veer LJ & Dai H & 
van de Vijver M et al. 98 Prediction of distant 

metastases 
Affymetrix, 

Hu25K 231 01/2002,93 
Nature 

van de Vijver MJ et al. 295 Prediction of distant 
metastases 

Affymetrix, 
Hu25K 70 12/2002,109 

N Engl J Med 

Chang JC et al. 24 Prediction of reponse* to 
chemotherapy (A) 

Affymetrix, 
HgU95-Av2 (12k) 92 08/2003,110 

Lancet 

Ayers M et al. 42 Prediction of pCR in 
chemotherapy (T/FAC) 

custom cDNA array 
(31k) 74 06/2004,111 

J Clin Oncol 

Paik S et al. 668 Prediction of distant 
metastases RQ-PCR 21 12/2004,112 

N Engl J Med 

Wang Y et al. 286 Classification to outcome Affymetrix, 
Hu133a (22k) 76 02/2005,113 

Lancet 

Hannemann J et al. 48 Prediction of "near" pCR in 
chemotherapy (AD;AC) custom cDNA (18k) -- 05/2005,114 

J Clin Oncol 

  

* response defined as ≥75% regression of tumor 
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While these molecular classification models have been developed independently 

from the clinical parameters, they do reflect some of the clinical classifications. 

This includes, for example, the estrogen receptor positive and negative groups 

or the HER2 positive patients. However, the molecular patterns allow the 

identification of subgroups within these larger classes, and integrate a finer 

mapping of the biological setup. Prominent examples are luminal subtypes A, B 

and C, which together represent the ER positive patients, but show a varying 

prognosis and therefore benefit from different kinds of treatment.106 The 

clinical group of HER2 positive patients, on the other hand, can also be further 

subdivided into those that have a prognosis similar to some of the luminal 

subtypes and those behaving differently. This demonstrates that while 

classifications based on single genomic or protein factors alone cannot be used 

in this example, the gene expression levels incorporated for several genes are 

able to identify distinct groups of patients with a high prognostic value. 

Additional groups of patients distinguished by molecular profiling include the 

basal-like subtype that includes BRCA1/2 mutation or deregulation carriers, 

and the ER negative "normal breast-like" subtype. 

These molecular subtypes allow for a better decision regarding their different 

treatment options; e.g. only the luminal subtype A with a low expression of 

proliferative genes shows a good prognosis, therefore suggesting a successful 

treatment with endocrine therapy alone. 
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Figure 2 

 
Hierarchical clustering of patients using microarrays. Gene expression patterns of 85 samples (78 carcinomas, 
three benign tumors, four normal tissues) analyzed by hierarchical clustering using the 476 cDNA intrinsic clone set. 
(A) The tumor specimens were divided into subtypes based on differences in gene expression. The cluster dendrogram 
showing the subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, orange; luminal 
subtype C, medium blue; normal breast-like, green; basal-like, red; and ERBB2+, pink. Estrogen receptor positive 
subtypes, solid brown; Estrogen receptor negative subtypes, dashed purple. (B) The full cluster diagram scaled down. 
The colored bars on the right represent the inserts presented in C-G. (C) ERBB2 amplicon cluster. (D) Novel unknown 
cluster. (E) Basal epithelial cell–enriched cluster. (F) Healthy breast-like cluster. (G) Luminal epithelial gene cluster 
containing ER. Adapted from Sorlie et al., 2001.106 
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In order to estimate a predictive score, studies integrating the prognostic 

groups, e.g. for the luminal A group, to predict the recurrence of relapse after 

tamoxifen treatment identified a capable predictor of 21 genes.112,115 In the 

case of predicting response to chemotherapy treatment protocols, several 

studies have been performed.93,110,111,113 These studies yielded gene expression 

signatures of less than 100 genes, and outperformed other clinical parameters 

in their predictive power. However, the patient sets that were included in these 

studies were either limited in number or pre-selected in their patient cohorts 

(e.g. mean age below 50 years, node-negative patients). 

The very urgent need to improve the pCR rate significantly is underlined by the 

continuous search for improvements to the existing chemotherapy 

protocols.42,96,97 However, since these are yet to prove their ubiquitous 

applicability with a significant percentage of pCR patients, the gene expression 

signatures are currently the most promising approach to reach that goal 

without a long delay. In December of the year 2006, a large phase III trial 

(planned recruitment: 6,000 patients) was initiated to assess the clinical 

relevance of the 70-gene prognosis signature, and how it compares with 

common prognostic factors for assigning adjuvant chemotherapy for patients 

with node-negative breast cancer ("Microarray In Node-Negative Disease May 

Avoid Chemotherapy", MINDACT).116,117  
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1.3. DNA Microarrays 

Over the past decade, the microarray technique has taken considerable steps 

forward. Originally, DNA microarrays had been developed from cDNA or 

genomic material, incorporated into plasmids or BACs (bacterial artificial 

chromosomes), respectively, then stored and sustained in E.coli libraries, and 

finally further amplified as PCR products before being spotted onto coated 

glass slides.118,119 Since the information, which cDNA was contained within 

each clone of the library and thus contained in each feature of the array had to 

been obtained by sequencing of the cDNA, the annotation was insufficient for 

most of the collections. 

 

The publication of the human genome sequences and those of other important 

mammalian species around the year 2001 has made detailed genomic 

information publicly available, giving commercial oligonucleotide 

manufacturers the opportunity to bioinformatically design and create specific 

oligonucleotides for each gene or genomic locus.119,120 Today, the most common 

forms of the genomic and expression profiling microarrays contain either 

probes synthesized in situ on the support material as 20- to 60-mers, or 

oligonucleotides that were synthesized in vitro, e.g. as 70-mers, and then 

deposited onto glass slides as had been done with the PCR products.120 

Advantages to the former, the in situ synthesis, are mass production with tight 

feature reproducibility, a much smaller feature size and therefore the 

possibility to analyze many samples on a vast number of DNA probes at once in 

a comparative manner. Their disadvantage is the higher production cost of the 

microarrays. Furthermore, Affymetrix' 20- to 25-mer oligonucleotide GeneChips 

require the addition of immobilized DNA probes containing single nucleotide 

mismatches to quantify unspecific hybridization events. 

Advantages of the in vitro synthesized oligonucleotides are the much simpler 

and already highly standardized synthesis that leads to a dramatically lower 

cost per probe and the inclusion of quality control for the synthesized probes 

before actually depositing them on the array.  

Common to both methods is the high consistency of the hybridization 

characteristics of the probes. This results from standardization of parameters 

like base content, length and melting temperature of the oligonucleotides, as 
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well as from prevention of loop structures, cross-reactivity and repetitive 

sequences, by bioinformatic design of the oligonucleotides. The uniformity is 

the major advantage of these types of arrays over their former cDNA 

counterparts. Additionally, changes in the annotation and mapping of the 

genome can be represented quickly and cost-effectively by adding new probes 

to the set. Furthermore, different splice variants of mRNAs from the same gene 

can be represented using specific oligonucleotides for common versus unique 

exons, if necessary.  

 

In cDNA arrays, the variance in DNA content of the single features is large, as 

they are subject to the amplification efficiency, consequently resulting in 

varying hybridization requirements of the individual spots. Secondly, within 

each feature, different DNA molecules have to be expected as a result of full 

length and partial length PCR products. Thirdly, since they derive from full 

length cDNA molecules, the products to be PCR amplified range from 500 to 

2,500 base pairs in length. However, longer initial cDNA molecules are more 

probable to be amplified partially.  

Additionally, for their optimal hybridization performance, longer DNA 

molecules require different reaction buffers and/or temperatures than shorter 

ones, while a higher DNA molecule content dictates a different reaction time 

than lower density spots, respectively. As all the features are hybridized 

together on a single array, they can only be incubated in a certain buffer at a 

certain temperature for a certain time. 

This heterogeneity of hybridization optima for the molecules between and 

within the features therefore leads to a deviation of results, making 

normalization a difficult yet very important process in the analysis of the raw 

data. Nevertheless, a direct comparison between single features can not be 

made without taking this aspect of heterogeneity into account. 

 

Oligonucleotide DNA microarrays have eliminated this problem almost entirely, 

since all molecules have a very tight distribution of hybridization properties, for 

example the Tm of the melting temperature usually varies only by ± 2 K. As the 

DNA quantity in each spot is the same for every feature, the hybridization 
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conditions are very homogeneous for the entire array, resulting in a much 

higher reproducibility of the gene expression measurements. 

 

The advantages of the oligonucleotide-based microarrays have lead to an 

increase of their use and thus a much higher comparability of the results 

generated, e.g. experiments performed in different laboratories or even between 

different studies. A study comparing expression profiling experiments using 

different oligonucleotide microarray platforms on patient material was 

performed to show the consistency of the results.121 

 

The workflow of obtaining tumor tissue, extracting nucleic acids from the 

tumor cells, amplifying the genetic material and generating labeled 

polynucleotides to hybridize onto microarrays is shown schematically in 

Figure 3. 
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Figure 3 

 
Schematic workflow of gene expression profiling using microarrays. (A) Extraction of tissue from tumor mass (M) 
by needle biopsy (N) under sonographic surveillance. (B) 1. Extraction and isolation of DNA and RNA from reference 
and tumor tissues*, 2. amplification and labeling of the genetic material with fluorescent dyes; 3. mixing of tumor and 
reference samples appropriately labeled for 4. competitive hybridization on DNA microarrays. (C) Spotting of cDNA or 
oligonucleotide microarrays by deposition of DNA onto glass slides. (D) Scanning of microarrays to measure intensities 
of hybridized sample molecules using Axon Microarray Scanner Model 4000B. (E) Scanned microarray image showing 
individual DNA probes hybridized with Cy3- and Cy5-labeled sample DNA (green and red, respectively). 

* Reference RNA can also be used from independent sources, e.g. cell lines. 



 24 

1.4. Messenger RNA Amplification Methods 

Even though the sensitivity and reproducibility of DNA microarray techniques 

for expression analysis have increased, there is a certain detection limit of 

these methods. This limit is given by the technical or biochemical variances of 

comparative hybridization, fluorescent labeling and detection of the molecules 

in respect to variations between the expression levels of different genes. 

Such a limit, e.g. 1 µg of mRNA to be reversely transcribed and directly labeled 

with Cy-dye coupled nucleotides for hybridization to spotted cDNA or 

oligonucleotide microarrays, usually cannot be accomplished with small tumor 

samples, like biopsies or small cell cultures. In most applications, it is 

therefore necessary to enrich and specifically amplify the mRNA against other 

RNA types, since mRNA constitutes only 5 - 10% of the total RNA in cells on 

average. 

Several different methods have been developed to achieve the necessary 

amount of DNA or RNA that can be successfully labeled, hybridized and 

detected.122-129 These can generally be divided into two groups: Those that 

amplify linearly, mostly using in vitro transcription (IVT), and those amplifying 

exponentially, using polymerase chain reaction (PCR) based protocols. In both 

cases, the input nucleic acid is generated by reversely transcribing the mRNA 

into cDNA, firstly because the mRNA molecules can be selectively transcribed 

by making use of their poly(A) tails, secondly because they will then be 

transcribed into more stable and less digestion sensitive DNA molecules. There 

is an exception to the classification into these two groups, in that special Taq 

DNA polymerase based variants can also be used to amplify linearly.127,128 

The advantage of the exponential amplification methods based on PCR is their 

rapid and effective usage. Since PCR is a standard method in scientific 

laboratories, they can be performed with widely used enzymes and materials, 

therefore resulting in great cost and labor efficiencies. Their disadvantage, 

however, lies in the exponential amplification itself: As the ratio of two different 

mRNA molecules in a cellular sample can exceed 1000-fold easily, the 

representation of the ratio would be greatly exaggerated by the exponentially 

amplification method. This can be explained by the probability of each single 

molecule to be processed by a polymerase, which is the limiting component in 

this reaction. Additionally, with increasing length of the mRNA molecules, the 
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probability to receive a full-length amplification product necessary to generate 

a signal decreases. Therefore, longer mRNAs are underrepresented. Another 

bias is introduced by the initial random selection of molecules to be amplified: 

as the number of DNA molecules exceeds the number of available DNA 

polymerase proteins, the selection of amplified sequences occurs randomly. At 

the initial steps of the PCR, this selection will introduce a bias, which will be 

exaggerated by the exponential amplification. The PCR-based methods are only 

suitable to significantly detect differences, if these are either occurring in 

highly abundant mRNA molecules or if the molecules differ only slightly in 

numbers or length. Otherwise, the results of the method do not represent the 

true situation within the cells, and can only be used as a qualitative result. As 

mentioned above, exceptions to this classification are the protocol variants in 

which the amplification occurs linearly despite usage of Taq DNA polymerase. 

The advantage of linear amplification methods, mostly performed by IVT, is the 

preservation of cDNA molecule ratios independently of their original 

abundance. Their disadvantages, however, are the reintroduction of RNA 

molecules into the amplification procedure, which is less stable and prone to 

unintentional digestion, and the relatively high laborious effort. 

Since the disadvantages of the exponential PCR-based methods outweigh the 

disadvantage of the more reliable linear methods, the standard method for 

amplification of mRNA and labeling onto cDNA microarrays has become the 

IVT-based protocol, as described by the laboratories of Eberwine and Baugh 

and later optimized by Kenzelmann and co-workers.123-125 

 

With the introduction of single-stranded oligonucleotide microarrays into the 

laboratories, another disadvantage of the linear IVT-based method became 

obvious: Since the amplification step produces antisense-orientated RNA 

molecules, their labeled complementary DNA products are, of course, sense-

orientated. However, these can not hybridize onto the oligonucleotide 

microarrays with sense-orientated DNA probes, which had been designed as 

such to be used with directly labeled antisense-orientated cDNA. 

This incompatibility of IVT-based linear amplification and labeling with the use 

of sense-oriented oligonucleotide microarrays needs to be overcome in order to 

perform expression profiling studies with the oligonucleotide array technology. 
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Therefore, a novel protocol suitable for the amplification of mRNA yielding 

fluorescently labeled antisense nucleic acid and for the usage in expression 

profiling hybridization experiments with long oligonucleotide microarrays is 

required. 
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2. Aim and Procedure 

 

The aim of this dissertation was to assess the applicability of the microarray 

expression profiling technology for finding a reliable predictive set of genes from 

small tumor biopsies of female primary breast cancer patients for the response 

to the tested neo-adjuvant chemotherapy comprised of gemcitabine, epirubicin 

and docetaxel.  

Patients were considered as responders only if they had a pathological 

complete remission (pCR) after primary systemic chemotherapy. Patients with 

residual tumor cells at surgery, either resulting in pathological partial 

remission (pPR) or pathologically no change (pNC), were considered as non-

responders. 

 
For this purpose, the technique to generate 70-mer oligonucleotide microarrays 

representing transcripts of the whole human genome had to be established and 

optimized for the use with the given infrastructure in the laboratory. 

Additionally, a protocol to linearly amplify mRNA and fluorescently label the 

nucleic acids needed to be developed that could be used with spotted sense-

orientated oligonucleotide microarrays and, at the same time, had the 

necessary fidelity to analyze small tumor biopsies. 

 
After performing the genome-wide expression profiling of the tumors, an 

extensive bioinformatic analysis of the contained genes had to be performed to 

establish the gene signature predicting the classification of patients into 

responders and non-responders. For this purpose, the samples had to be split 

into two sets, one used as a training set to discover a predictive gene set, the 

other to validate its predictive power. Algorithms used to identify the genes 

were support vector machines and receiver-operator characteristic curve 

analysis. 

 
In order to elucidate the biological mechanisms of response to the 

chemotherapy, it was of great interest to investigate the genes contained in this 

signature. Therefore, further pathway and immuno-histochemical analyses of 

some of these genes were the concluding objectives of this dissertation. 
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3. Material and Methods 

 

3.1. Microarrays  

DNA microarrays were generated using oligonucleotides which had been 

evaluated earlier.130 Based upon these data, the Human Oligo Set 2.0 (Operon), 

containing 21,329 gene-specific 70-mer sequences plus controls, were 

obtained. After production and usage of microarrays with this set for the first 

group of patients, an upgrade set of 5,462 sequences was added. The new 

entire collection, containing 26,791 oligonucleotide probes (Human Oligo Set 

2.1.1), was then used for the second group of patients, in the second patient 

group of the study (see Chapter 3.3). 

 

3.1.1. Generation of Microarrays 

The technique used here to deliver small spots of DNA onto coated microscope 

slides was split pin printing. For this method, oligonucleotides were diluted in 

an appropriate spotting buffer and distributed in 384-well plates. A robot 

equipped with steel pins, which have a fine slit, dipped these into the DNA 

solution and the pins were allowed take up a small but defined volume by 

capillary force. Subsequently, the pins were brought into contact with each of 

the slides to deliver a small drop on them. Afterwards, the pins were washed 

several times and dried. This cycle was repeated until all sequences of the 

entire set were successively deposited in spots, creating an array of the 

different DNA molecules, each with a defined position on the slide. 

The oligonucleotides were delivered by the manufacturer in lyophilized form, 

600 pmol of each DNA probe in 384-well plates. To obtain a concentration of 

40 mM as recommended by the manufacturer, the sequences were dissolved in 

15 µl of buffer. As seen during the evaluation of the oligonucleotides, the 

spotting buffer "FBNC", developed by Dr. Gunnar Wrobel, proved to be most 

useful for printing oligonucleotides on glass slides.131 It contained formamide, 

aqueous betaine solution and nitrocellulose diluted in DMSO (Table 3). Along 

with its good spot versus background intensity ratio characteristic, it offered an 

important practical advantage over commonly used 3 × SSC or 3 × SSC / 1.5 M 

betaine spotting buffers, namely the minimized evaporation due to the 

components formamide and DMSO. The disadvantage of the buffer, a slightly 
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wider spread of the spots at delivery due to DMSO, was minimized by setting 

and the relative humidity of the air in the room to a maximum of 40%. 

 

Table 3 FBNC Spotting Buffer, per 10 ml 130 

  2.50 ml formamide (p.A.; Merck)   
  0.25 ml  20 mg/ml nitrocellulose (Sigma-Aldrich) in DMSO (Merck)   
  2.00 ml 2.5 M betaine hydrochloride (pH 6.0; Sigma-Aldrich)   
  5.25 ml H2O (Milli-Q)   
        

 

To print the DNA onto the epoxy-silane coated slides (Schott Nexterion), two 

spotting robots available in the laboratory were used, first the GeneMachines 

OmniGrid 100 (Genomic Solutions) with a capacity of 100 slides, later the 

VersArray ChipWriter Pro System (Bio-Rad, Figure 4), with a capacity of 108 

slides. Both were equipped with a print head capable of carrying up to 48 

SMP3 pins (TeleChem, Figure 5). The advantage of the VersArray System lay in 

its ability to process stacks of up to 4 × 13 plates, while the OmniGrid robot 

could only process one plate at a time, which required manually changing each 

plate of a set. 

 

Figure 4 

 
VersArray Microarray Spotting System. From Bio-Rad Laboratories, Inc. 
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Figure 5 

 
Microarray SMP3 split pin needle (left) and pin head holding 48 pins (right). From Telechem Inc. 

 

Another restriction of the OmniGrid was the incompatibility of its software to 

manage the required 4 × 6 pin setting, required for spotting array duplicates 

with the maximum distance between two repeat spots and maximum 

processing speed. The minimal possible distance of the spots with the FBNC 

buffer of 125 µm, limited the arrays to a maximum of 54 384-well plates in a 

4 × 4 pin configuration with this robot. To spot arrays larger than 54 plates, 

e.g. the Operon Human Oligo Set 2.0 (57 plates), a 2 × 12 pin configuration, 

had to be used, which allowed only for array duplicates with a much lower 

distance of the repeat spots to each other. On the other hand,  this setting had 

a more suitable spot-to-spot distance of 145 µm (961 spots / pin × 24 pins = 

23,064 different spots) with up to 60 384-well plates. Spotting the entire 

Human Oligo Set 2.1.1, consisting of 72 plates including the update, was 

performed solely by using the VersArray system and a 4 × 6 pin configuration, 

with a spot-to-spot distance of 130 µm, creating 27,648 different spots in array 

duplicate. 

For all spotting runs, SMP3 spotting pins were used (TeleChem, Figure 5, left 

panel), which have a take-up volume of 0.25 µl, and the robots set to a slide 

approach speed of 1 mm/s. On average, this generated spots with a diameter 

between 60 and 65 µm, so the spot-to-spot distance, e.g. for the entire Human 
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Oligo Set 2.1.1, was twice as large as the spots themselves. Each drop 

contained an estimated volume of 0.625 nl. 

After spotting, arrays were post-processed by drying the slides for 60' at 60 °C 

in an oven and cross-linking of the DNA to the coated surface by UV-radiation 

(254 nm) for 2 × 2' in a Stratalinker 2400 (Stratagene), with "Auto-Crosslink" 

setting (maximum of 120 J/cm2). Microarrays were sealed together with silica-

gel in airtight packages for keeping them dry and stored at 4 °C. 

Directly before usage, the microarrays were washed for 2' in 0.2% SDS (w/v) at 

room temperature, 2' in ddH20 at room temperature, and 10" in boiling ddH20. 

Right after that, the slides were immediately transferred to 50 ml-Falcon tubes 

and locked in to avoid evaporation of remaining water on the slides. To remove 

residual water, the arrays were centrifuged for 1' at 1000 rpm in a Heraeus 

Varifuge 3R (Kendro). 

 

3.1.2. Hybridization and Post-Processing 

Labeled and washed DNA or RNA samples (see Chapter 3.2) were diluted in 

UltraHyb buffer (Ambion), which had been pre-heated to 70 °C, to a final 

volume of 120 µl. The mix was pre-incubated for 30' (RNA) or 60' (DNA) at 

60 °C while shaking at 1,200 rpm and shielded from light. Meanwhile, the 

microarrays were mounted in a GeneMachines HybStation (Genomic Solutions) 

and pre-heated for 5' at 60 °C. Finally, the samples were heated for 10' at 70 °C 

in the same conditions as before and spun down briefly to collect condensed 

solvent. The samples were then immediately injected into the HybStation 

chambers onto the slides. 

Hybridization was performed for 16 h at 42 °C with agitation of the 

hybridization mix by the HybStation. Afterwards, each slide was washed with 

Medium Stringency Buffer (40" flow, 5' hold), High Stringency Buffer (40" flow, 

3' hold) and Postwash Buffer (40" flow, 2' hold) at 36 °C on the HybStation (see 

Table 4 for composition of the buffers). Each microarray was then dismounted, 

immediately dipped into Postwash / Tween Buffer at room temperature and 

transferred to 50 ml-Falcon tubes which were immediately locked to avoid 

evaporation. Slides were centrifuged for 4' at room temperature in the Varifuge. 

Centrifugation was started at 500 rpm and the speed was increased every 30" 

by 500 rpm, resulting in a maximum centrifugation speed of 2,000 rpm, which 
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was kept for the remainder of the time (approximately 90" to 120"). The dried 

slides were then protected from light until scanning on the same day. 

 

 

 

3.1.3. Scanning and Data Pre-Processing 

An Axon Microarray Scanner, Model 4000B (Molecular Devices), was used to 

document hybridization of the fluorescently labeled DNA or RNA samples to the 

gene-specific sequences immobilized on the array. For each channel, the 

fluorescent molecules were excited at their characteristic optimal wavelength 

with dedicated lasers, the locally emitted photons were specifically filtered by 

their wavelength and amplified via photo-multiplier tubes (PMTs) to be 

measured digitally on a 16-bit scale (maximum intensity = 65,536).  

Scanning was performed at a resolution of 5 µm, and the voltage of the PMTs 

was adjusted so that the overall rate of pixels reaching saturation did not 

exceed 0.1%. At the same time, it was assured that the distribution of 

intensities for both channels was as similar to each other as possible, as seen 

in the histogram (Fig. 6). This was necessary to compensate for different 

incorporation rates of the labeled nucleotides as well as emission and 

bleaching specifics of the used fluorescent dyes Cy3 and Cy5. 

The primary data generated from the measurement consisted of pixel intensity 

values, which had to be matched to the individual spots of DNA in the array. 

Therefore, a corresponding grid needed to be compiled, based on the table of 

the DNA sequences in the plates, using the software of the spotting robot. This 

grid was then overlaid in the scanner software GenePix Pro 5.0 (Molecular 

Devices) with the image representing each scan. This enabled averaging values 

of all pixels representing the individual DNA spots and the labeled samples 

Table 4 Microarray Hybridization Wash Buffers 

  Medium 
Stringency 

High 
Stringency Postwash 

Postwash 
/ Tween Component 

  

  0.5 x 0.05 x 0.05 x 0.05 x SSC (150 mM NaCl, 15 mM Na3-citrate, 
pH 7.0) 

  

  0.1% 0.1% -- -- SDS (w/v)   

  -- -- -- 0.05% Tween-20 (v/v)   
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hybridized to them. For each spot, pixels from the surrounding area were taken 

as a background value. Spots which could not be considered as representative 

for a gene, e.g. neighboring spots that had accidentally joined or those 

significantly too small or large were marked manually as outliers. Spots near or 

below the background intensity, which could not be faithfully taken for a 

measurement, where marked automatically by the GenePix Pro software. The 

entire dataset was then exported and saved for each scanned slide. This raw 

data table contains values for each spot consisting of its position, the number 

of pixels, the fore- and background intensity values for each channel averaged 

as arithmetic mean and median, flags representing validity of the spot, and 

other data. 

 

 

 

 

 

 

 

Figure 6 

 

Histogram of pixel intensities. Scanned images were analyzed for pixel intensities in both dye channels in an overlay. 
Relative incidence gives ratio to sum of intensities for all pixels in the respective channel of the image. Value denotes 
pixel intensity measured in arbitrary units (max. intensity, 65,536). 
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3.2. Messenger RNA Amplification and Labeling Protocol 

To successfully use microarrays generated from sense-orientated 

oligonucleotides, the sample RNA needed to be converted into labeled RNA or 

DNA with antisense-orientation. For this purpose, different protocols were 

developed and tested, partly in cooperation with Dr. Jörg Schlingemann. 

 

3.2.1. Sample and Reference RNA 

RNA used for the development of suitable amplification and labeling protocols 

for hybridization onto oligonucleotide arrays was generated from cell lines 

grown and harvested in the laboratory. Since the comparison of protocols 

included analyses concerning reproducibility and linearity of the amplification, 

two cell lines with well defined but limited genetic differences between them 

were chosen. The expression patterns of these cell lines was needed to include 

equally expressed genes as well as differentially expressed genes between the 

two, enabling analysis of various aspects for the suitability of the amplification 

protocols in question. Details of the chosen cell lines HL-60 and NU-DHL-1 are 

given in Appendix A. 

 

Culture and Harvest of Cells 

Both cell lines HL-60 and NU-DHL-1 are from myeloid origin and grow in 

suspension. Cells from frozen stocks (-80 °C or -196 °C) were quickly diluted in 

5 ml 1640 RPMI medium (GibCo) containing 20% fetal calf serum (FCS, GibCo) 

and 1% 100 x Pen-Strep Solution (10,000 U/ml Penicillin, 10,000 µg/ml 

Streptomycin; GibCo), pre-incubated at 37 °C. After 4 h of incubation at 37 °C 

and 5% CO2 (standard conditions) cells were pelleted at mild conditions (2' at 

500 rpm) to remove residual DMSO from the freezing medium. Medium 

supernatant was removed and cells were again diluted in 5-10 ml of the same 

medium as before (containing 20% FCS) and incubated overnight at standard 

conditions. This procedure of pelletting and resuspension in medium 

containing 20% FCS was repeated every 12 h until the cells had grown into 

clusters for the first time, usually after 2-4 days. Cells were then diluted 1:2 to 

1:2.5 and transferred to larger flasks, resuspending them in 20-25 ml medium 

containing 20% FCS, but changing the medium only every 24 h. When the cells 

formed clusters for the second time, they were again diluted 1:2 but now in 
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50 ml medium containing only 10% FCS. In this medium, the cell number 

doubled every 2-3 days on average and they were therefore diluted 1:2 to 1:4 

every 2-4 days, as necessary. During resuspension, clusters were disintegrated 

by passing the cells from the pellet through the end of a glass pipette for 

several times. 

Cells were harvested by centrifugation from 50-100 ml culture medium under 

harsh conditions (2' at 2,000 rpm). Medium supernatant was discarded and 

the cell pellet was resuspended in 10-15 ml TRIzol reagent (Invitrogen) at 4 °C. 

 

RNA Extraction 

Cells suspended in TRIzol reagent were incubated at room temperature for 5' 

and then mixed vigorously on a vortex. Chloroform, 1/5 of the volume of TRIzol 

used (2-3 ml), was added and the suspension was again mixed vigorously. To 

separate aqueous and organic phases, the tubes were then centrifuged for 

30' - 60' at 3,000 rpm and 4 °C. The upper RNA containing aqueous phase 

(approximately 60% of the total volume) was collected with a pipet, thereby 

taking care not to take up any of the other two phases. The white intermediate 

phase contains DNA and proteins, while the pink organic phase contains 

membrane lipids, DNA and insoluble cell debris. When any amount of these 

phases was taken up into the pipet tip, this volume was discarded. 

The aqueous phase was collected in a new falcon tube and mixed 1:2 with 

ethanol (p.A.). Immediately afterwards, this mixture was applied to RNeasy 

midi columns (Qiagen) at room temperature. After each loading step, columns 

were centrifuged at 3,750 rpm for 5' and the flow-through was discarded. The 

columns were washed with 4 ml buffer RW1 (Qiagen) and centrifuged for 5' at 

3,000 rpm, followed by 2.5 ml buffer RPE (Qiagen) and centrifugation for 2' at 

3,000 rpm and again with 2.5 ml buffer RPE but centrifuged for 5' at 

3,000 rpm. Each flow-through was discarded. The RNA from the columns was 

then eluted twice with 250 µl RNase-free water as recommended by the 

manufacturer. Total RNA was stored at -80 °C. 

 

Quality Control of Extracted Total RNA 

Before the first usage or after several freeze-thaw cycles, extracted total RNA 

needed to be analyzed for yield and integrity or degradation. The yield was 



 36 

determined by photometric measurements either with UV-spectrometer Cary 

50 Bio (Varian Inc.), usually with 1:25 dilutions in RNase-free water, or 

undiluted in a ND-1000 spectrometer (NanoDrop Technologies). Measurements 

were taken at 260 and 280 nm wavelength and scans were taken from 230 to 

400 nm wavelength. For integrity and degradation analysis, the 2100 

BioAnalyzer (Agilent) with RNA 6000 Nano LabChip Kit was used as 

recommended by the manufacturer. The device works by application of high 

voltages to a current running through a matrix according to the principle of 

capillary electrophoresis. It requires only small amounts of RNA for a 

measurement (25-500 ng). The design of the RNA measurement kit is explained 

in Figure 7. 

 

Figure 7 

 

Schematic view of the Agilent BioAnalyzer RNA Nano 6000 electrophoresis chip. From Agilent Technologies. 

 

 

3.2.2. Comparative Amplification and Labeling of RNA 

Direct Labeling with Reverse Transcription (RT) 

The commonly used protocol for creating fluorescently labeled cDNA from 

mRNA takes advantage of the Reverse Transcriptase, for example from Moloney 

Murine Leukemia Virus (M-MLV). Here, the enzyme SuperScript II (Invitrogen) 
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was used, which had been genetically engineered by the manufacturer to 

reduce RNase H activity and increase thermal stability. This improves overall 

yield and incorporation of the bulky nucleotides, as they are covalently coupled 

with fluorescent Cy-dyes (Amersham). The protocol was not only the starting 

point but also the benchmark for the testing of amplification procedures. 

To ensure selective reverse transcription of messenger RNA, which contains the 

polyadenylation signal [poly(A)], an "anchored" oligo-d(T)21-VN primer was used 

(Biospring; V = any except thymine, N = any nucleotide). 

 

Table 5 Direct Labeling Protocol 

  SuperScript II RT mix, on ice! volume [µl]   

  5 x 1st strand buffer (Invitrogen) 6.00   

  0.1 M DTT (Invitrogen) 3.00   

  RT dNTP-Mix (25 mM dATP, dCTP, dGTP; 10 mM dTTP) 0.60   

  Cy-dUTP (1 mM) (Amersham) 3.00   

  RNase Inhibitor (40 U/µl) (Promega) 1.50   

  SuperScript II RT (200 U/µl) (Invitrogen) 2.00   

  total volume RT mix 16.10   
        
  RNA (2-5 µg mRNA or 40-100 µg total RNA) 0.50 - 11.90   

  Oligo-d(T)21 (1 µg/µl) 2.00   

  RNase-free water ad 13.90   

  total volume RNA / primer 13.90   

  total reaction volume 30.00   
        

  Denature 13.9 µl RNA / primer 4' @ 70 °C and chill on ice   

  add 16.1 µl RT mix    

  3' @ 25 °C    

  60' @ 42 °C    

  add 1 µl SuperScript II (200 U/µl)    

  60' @ 42 °C    

  add 15 µl 0.1 M NaOH, 2 mM EDTA    

  20' @ 70 °C    

  add 15 µl 0.1 M HCl    

        

 

At least 40 µg of total RNA are necessary as input per channel and experiment 

to successfully hybridize the generated cDNA onto a microarray with 70-mer 

oligonucleotide DNA. Assuming an mRNA content of approximately 5% in total 

RNA extracted with the TRIzol procedure, this corresponds to 2 µg of mRNA. 
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Total RNA and oligo-d(T) primer were mixed and denatured for 4' at 70 °C and 

immediately chilled on ice. The RT reagents were mixed according to Table 5 for 

each fluorescent dye separately. Denatured RNA and primer were mixed with 

the RT reagents and pre-incubated for 3' at room temperature. The reaction 

was performed for two hours at 42 °C with addition of another 1 µl (200 U) 

SuperScript II after one hour. Next, RNA was selectively degraded by addition 

of 15 µl 0.1 M NaOH / 2 mM EDTA and incubation for 20' at 70 °C, and finally 

the mix was pH-neutralized by addition of 15 µl 0.1 M HCl. 

For disposal of non-incorporated fluorescent nucleotides, very short products 

and degraded RNA, the reaction mix was passed through Microcon YM-30 

columns (Millipore), which retain molecules of at least 30 kDa molecular 

weight. This corresponds to oligonucleotides with a minimal length of 

approximately 90 DNA bases, if no fluorescent dyes were incorporated, or 100 

RNA bases. The enzymes were also retained, but denatured before by the 

incubation at 70 °C. For washing, the reaction mixes for both labelings (Cy3 or 

Cy5) of a hybridization experiment were mixed and diluted with TE buffer to a 

total volume of 450 µl, then passed through the Microcon columns by 

centrifugation at 13,000 rpm for 10' and the flow-through was discarded. This 

washing procedure was repeated twice. In the last cycle, the cDNA was washed 

with 450 µl TE containing 0.25 µg Cot-1 DNA (Roche), 0.25 µg poly(A) RNA and 

0.75 µg bovine or yeast tRNA (both Sigma-Aldrich) per 1 µg total RNA input and 

centrifuged as above, but this time until the membrane started to become dry 

in the middle, though not entirely. In this manner, the residual volume was 

reduced to approximately 10-20 µl. The Cot-1 DNA, poly(A) RNA and tRNA were 

added as blocking mix to prevent unspecific hybridization events that would 

give background signals on the array. Although the 70-mer oligonucleotides 

spotted onto the arrays are said to be designed free of repeat elements by their 

manufacturer, this blocking procedure was kept as standard. After the last 

washing step, the columns with the residual volume were inverted into a 

collection tube and centrifuged for 1' at 13,000 rpm to collect the labeled cDNA 

and blocking mix. If not used for hybridization immediately, this mix was 

stored at -20 °C in the dark. 
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In Vitro Transcription Labeling with T7-RNA Polymerase 

The most straightforward solution to the problem of limited RNA available for 

hybridization from small tissue samples included linear RNA amplification and 

simultaneously generating labeled antisense RNA. This was performed by first 

creating double-stranded cDNA from the mRNA introducing a T7 promotor, and 

then to perform the in vitro transcription (IVT) with simultaneous incorporation 

of fluorescently labeled nucleotides. If feasible, this would produce labeled 

antisense RNA, thereby amplifying the copy numbers of aRNA by repeatedly 

transcribing from the double-stranded DNA. 

Similar protocols are used both by Affymetrix in the GeneChip technique and 

by Agilent for their Linear Amplification Kit PLUS.43,132 The difference between 

the approaches proposed here or by Agilent and the protocol based on works 

by Lockhart et al. (Affymetrix) is that the latter recommend the usage of 

biotinylated RNA nucleotides. The cRNA containing these biotin labels are first 

hybridized onto the GeneChip Arrays, then in a second step detected by 

binding of streptavidin and thirdly anti-streptavidin antibodies. Consequently, 

the Affymetrix protocol allows only for detection of one channel per 

hybridization experiment, a competitive hybridization with two differently 

labeled samples is impossible. Therefore, a comparison between two tissues, 

e.g. tumor and reference, requires two different chips or arrays, and 

concentration or input deviations have to be addressed additionally. 

The downside of the approach of incorporating fluorescently labeled 

nucleotides during IVT is that the T7-RNA polymerase, which is used for in 

vitro transcription, is barely permissive for bulky or modified nucleotides, and 

therefore has only a low incorporation rate for them. In the tested protocol, we 

tried to overcome this restraint by using a high concentration of fluorescently 

labeled nucleotides, which is of course a lavish solution. 
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Table  6 In vitro Transcription (IVT) Labeling Protocol 
  1. Reverse Transcription (RT)   Promega IVT# vol [µl] Conc. OK   
  RNA/primer, on ice! vol [µl] m [µg] OK RNAse-free water 0.0   
  total RNA 4.0 0.02 - 2     5x T7 Transcr. Buffer 8.0       
  (dT)-T7 primer (100 ng/µl) 1.0 0.1     100 mM ATP 2.6 6.5 mM     
      100 mM CTP 2.6 6.5 mM     
  RT-Mix, on ice! vol [µl] m [µg]     5 mM Cy-UTP (not dUTP) 9.6 1.2 mM     
  1st strand buffer 2.0      100 mM GTP 2.6 6.5 mM     
  100 mM DTT 1.0      100 mM UTP 2.1 5.25 mM     
  10 mM dNTP-mix 0.5      T7 Enzyme Mix 4.0       
  5-8 mg/ml T4gp32 0.5 2.5 - 4     SSS resuspension 8.5       
  RNase Inhibitor 0.5      Total 40.0       
  SuperScript II (200 U/µl) 0.5          
  total 5.0       mix by pipetting and gentle vortexing   
      incubate 6h @ 37 °C in dark condition!!!   
  denature RNA/primer 4' @ 70 °C, chill @ 4 °C   mix regularly (every 15-30') by gently flicking   
  add ice cold RT-Mix, mix well      
  incubate 1 h @ 50 °C with heated lid   4. aRNA Cleanup   
  inactivate 15' @ 65 °C RLT/β-ME - mix vol [µl] m [µg] OK
  chill on ice / 4 °C forever   β-mercaptoethanol 3.5       
     water 76.5       
  2. Second Strand Synthesis (SSS)   RLT (Qiagen) 350.0       
  SSS-mix, on ice! vol [µl] m [µg] OK total 430.0   
  5x 2nd strand buffer 15.00           
  10 mM dNTP 1.50       aliquot into 1.5 ml tube 430.0       
  DNA Pol. I (9 U/µl) 2.22       add IVT product (aRNA) 40.0       
  RNase H (10 U/µl) 0.10       mix well   
  DNA Ligase (10 U/µl) 0.50       add 100% EtOH 250.0       
  RNase-free water 45.68       apply to RNeasy mini column (Qiagen)   
  total 65.00       spin 15" @ 8,000 x g (9,900 rpm)   
      discard flow-through   
  add ice cold(!) SSS-mix to RT reaction   transfer column to new 2 ml tube   
  mix well   wash with 500 µl RPE (contains ethanol)   
  incubate 2 h @ 14-16 °C in thermal cycler   spin 15" @ 8,000 x g (9,900 rpm)   
  add 10 U T4 DNA-Polymerase (3 U/µl; 3.33 µl)   discard flow-through   
  mix by flicking and gentle vortexing   wash with 500 µl RPE (contains ethanol)   
  incubate 15' @ 14-16 °C in thermal cycler   spin 2' @ 13,000 rpm   
  heat inactivate 10' @ 70 °C   discard flow-through   
  add 75 µl phenol/chloroform/isoamylalcohol (pH 8)   wash with 500 µl RPE (contains ethanol)   
  mix vigorously by pipetting   spin 2' @ 13,000 rpm   
  transfer to pre-spun PLG Heavy 0.5 ml *   discard flow-through   
  spin 5' @ 13,000 rpm / RT   transfer column to new 1.5 or 2 ml tube   
  transfer aqueous phase to prepared P-6 MicroSpin **   spin 1' @ 13,000 rpm   
  spin 4' @ 1,000 x g (3,500 rpm), recover eluate   transfer column to new 1.5 ml tube   
     add 30 µl RNase-free water onto membrane   
  3. In vitro Transcription (IVT)   spin 1' @ 8,000 x g (9,900 rpm)   
  SSS-resuspension vol [µl] m [µg] OK repeat eluting steps
  transfer eluate to 0.6 ml PCR tube   clean with Microcon YM-30   
  add LPA   5     wash with 450 µl TE   
  add 1/25 vol 5 M NaCl 3.5       wash with 500-50 µl TE§ / blocking mix   
  add 2.5 vol 100% EtOH 220.0       concentrate to ~ 10 µl and "elute"   
  mix well      
  precipitate 30-60' @ -70 °C or 2h - o/n @ -20 °C   * 30'' @ 13,000 rpm   
  spin tube 30' @ 13,000 rpm, remove s/n   ** resuspend, drain by gravity, 2' @ 3,500 rpm   
  wash pellet with 500 µl 70% Et-OH     
  spin tube 5' @ 13,000 rpm, remove s/n   

§ Optionally measure incorporation rate before adding 
mix (use 50 µl of 500 µl TE resuspension)   

  pulse spin, remove s/n completely     
  allow pellet to dry 2-3' @ room temp.   

#All reagents for IVT mix, except enzyme, must be 
used @ room temp.    

  resuspend in 8.5 µl water      
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The first steps of the protocol, reverse transcription, second strand synthesis 

and cleanup of double-stranded DNA, were adapted from Kenzelmann et al. 

(Table 6).125 In short, mRNA from 2 µg total RNA was reverse transcribed using 

a protocol modified from the Direct Labeling procedure, including a primer 

combining the promotor sequence for T7-RNA polymerase with the oligo-

d(T)21VN sequence from above to 5'-GCA-TTA-GCG-GCC-GCG-AAA-TTA-ATA-

CGA-CTC-ACT-ATA-GGG-AGA-(T)21VN-3'.123 The RNA in the resulting DNA-

RNA heteroduplex was slowly digested using low concentrated RNase H 

(Epicentre); thus it could be used to prime the second strand synthesis using 

DNA polymerase I from E. coli (Promega). Joints resulting from different 

polymerized DNA stretches were closed with DNA ligase, also from E. coli 

(Amersham). Afterwards, overhanging ends were filled ("polished") by use of 

T4 DNA polymerase (New England Biolabs). Double-stranded DNA was 

extracted from the reaction mix by use of phenol:chloroform:isoamylalcohol 

(24:25:1, Sigma) and Phase-Lock-Gels (Eppendorf) and subsequently washed 

through P-6 MicroSpin columns (Bio-Rad) buffered with TE according to the 

manufacturer's recommendations. Finally, the DNA was precipitated, using 

Linear Polyacrylamide (LPA, Ambion) as nucleation agent, and resuspended in 

RNase-free water to the appropriate volume. 

The double-stranded DNA, featuring the T7-RNA polymerase promotor 

sequence, was used for in vitro transcription, using the RiboMAX Large Scale 

RNA Production System (T7; Promega), modified from the manufacturer's 

protocol for 40 µl reaction volume and incorporation of Cy-UTPs. The resulting 

aRNA was cleaned using RNeasy mini columns (Qiagen), also modified slightly 

from the manufacturer's protocol to contain one more washing step. Analogous 

to the Direct Labeling procedure, RNA was again washed, blocking mix was 

added and the blend was concentrated using Microcon YM-30 columns. Before 

the addition of blocking mix, 10% of the TE-buffered RNA was withdrawn to 

measure dye-associated nucleotide incorporation rates for both channels. 

Fluorescently labeled and concentrated aRNA was used immediately for 

hybridization. 
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"Baugh Standard" and "Baugh + Klenow" (TAcKLE) Protocols 

 Based on protocols developed by Eberwine et al. and Baugh et al. for linear 

amplification of RNA by in vitro transcription (IVT), a protocol for amplification 

and labeling was developed that is useful in finally yielding antisense 

fluorescently labeled DNA.123,124 To obtain labeled antisense DNA from aRNA, 

their protocols were consequently reduced to a reverse transcription without 

labeled nucleotides, and a different step to transcribe sense DNA into antisense 

DNA was appended that could be used for labeling. For the enzymatic reaction 

step, a DNA-dependent DNA polymerization, the Klenow-fragment of DNA 

polymerase I (BioPrime Kit, Invitrogen) was selected. It had already been proven 

useful for generating fluorescently labeled DNA from fractionated genomic DNA 

in protocols used for Matrix- or Array-CGH.133  To compare the methods, both 

the original protocol, as adopted by Kenzelmann et al. including labeling during 

the 2nd round RT reaction, and the labeling procedure with the Klenow enzyme 

afterwards were performed and evaluated by hybridizing the products onto 

oligonucleotide microarrays. 

 The first two steps, from the first RT reaction to the beginning of the IVT, were 

the same as given in the IVT labeling (see Table 6), since both protocols were 

derived from the same sources. The IVT itself differed, since here there are no 

labeled nucleotides incorporated (Table 7). Therefore, it was only slightly 

modified from the manufacturer's recommendations, with respect to the 

reaction volume. Antisense RNA extraction and cleanup were again similar to 

the IVT labeling protocol, using RNeasy mini columns (Qiagen) as above. 

Afterwards, the aRNA was additionally precipitated, again using LPA as 

nucleation agent, but using ammonium acetate for RNA precipitation instead of 

NaCl for double-stranded DNA. 

For the "Second Round RT" reaction in the "Baugh + Klenow" protocol (later 

termed TAcKLE), a slightly different procedure than for the first RT was 

applied, with respect to its aRNA concentration of 0.25 µg/µl, the use of 

random hexamer primers (N6), SuperScript II reverse transcriptase and the 

reaction temperature profile, as given in Table 8. 

For the labeling with Klenow fragment, the enzyme and random primer 

solutions from the BioPrime Labeling Kit (Invitrogen) were used with a slightly 
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modified protocol from the recommended one, again concerning the scale of the 

reaction. 

 

  

The incubation time of 16 h was used as proposed for Matrix-CGH 

experiments.133 

Since the Klenow enzyme and random octamer primer in the reaction mix 

allowed copying one DNA strand from another regardless of sense or antisense 

orientation, this introduced an approximately 20-fold amplification of copy 

Table 7 Baugh Standard Protocol 
  3. In vitro Transcription (IVT)   apply to RNeasy Mini column   
  SSS-eluate @ RT vol [µl] m [µg] OK spin 15" @ 8,000 x g (9,900 rpm)   
  transfer eluate to 0.6 ml PCR tube   discard flow-through   
  add LPA   5     transfer column to new 2 ml tube   
  add 1/25 vol 5 M NaCl 3.5      wash with 500 µl RPE (contains ethanol)   
  add 2.5 vol 100% EtOH 220.0      spin 15" @ 8,000 x g (9,900 rpm)   
  mix well   discard flow-through   
  precipitate 60' @ -70 °C or 2 h - o/n @ -20 °C   wash with 500 µl RPE (contains ethanol)   
  spin tube 30' @ 13,000 rpm, remove s/n   spin 2' @ 13,000 rpm   
  wash pellet with 500 µl 70% EtOH   discard flow-through   
  spin tube 5' @ 13,000 rpm, remove s/n   wash with 500 µl RPE (contains ethanol)   
  spin tube 2' @ 13,000 rpm, remove s/n completely   spin 2' @ 13,000 rpm   
  allow pellet to dry 2-3' @ 20-40 °C   discard flow-through   
  resuspend in 10 µl water   transfer column to new 1.5 or 2 ml tube   
      spin 1' @ 13,000 rpm   
  Promega IVT# vol [µl] m [µg] OK   transfer column to new 1.5 ml tube   
  RNase free water 6.0       add 30 µl RNase-free water onto membrane   
  5x T7 Transcr. buffer 8.0       spin 1' @ 8,000 x g (9,900 rpm)   
  100 mM ATP 3.0       repeat eluting steps, measure RNA conc. (5 µl)   
  100 mM CTP 3.0         
  100 mM GTP 3.0       

precipitate aRNA with 1 µl LPA, 0.5 vol 7.5 M 
ammonium acetate and 2.5 vol 100% EtOH   

  100 mM UTP 3.0       wash pellet with 500 µl 70% EtOH   
  T7 Enzyme Mix 4.0       resuspend in 10 µl water   
  SSS eluate 10.0          
  Total 40.0       5. Labeling   
    RT mix, on ice! vol [µl] m [µg] OK   
  mix by pipetting and gentle vortexing @ room temp   10x Buffer RT 2.0       
  incubate 6 h @ 37 °C   RNase Inhibitor 1.0       
  mix regularly (every 15-30') by gently flicking   RT dNTP-Mix 0.4       
  (freeze @ -20 °C or proceed)   N6-primer (2 µg/µl) 3.0 6 µg     
      Cy-dUTP (Amersham) 1.5       
  4. aRNA Cleanup   Omniscript RT (Qiagen) 1.5       
  RLT / β-ME - mix vol [µl] m [µg] OK aRNA 10.0 2 - 5 µg   
  β-mercapto-ethanol 3.5       Water ad 20.0       
  RNase-free water 76.5       Total 20.0       
  RLT buffer (Qiagen) 350.0           
  Total 430.0       clean with Microcon YM-30   
      wash with 450 µl TE   
  aliquot into 1.5 ml tube 430.0       wash with 500-50 µl TE§ / blocking mix   
  add IVT product (aRNA) 40.0       concentrate to ~ 10 µl and "elute"   
  mix well      
  add 100% EtOH 250.0         
    

§ Optionally measure incorporation rate before adding 
mix (use 50 µl of 500 µl TE resuspension)   

 

# All reagents for IVT mix, except enzyme, must be 
@ room temp.     
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numbers. But as the random octamers could prime anywhere in the template 

sequences, the resulting DNA strands became shorter with every copy cycle. In 

consequence, the Klenow labeling procedure resulted in both sense and 

antisense strands comprising fluorescent nucleotides, which differ in length. 

The cleanup method, however, excluded DNA strands of 90 nucleotides or less 

as an effect of the pore size of the Microcon YM-30 columns.  

 

Table 8 Baugh + Klenow Protocol (TAcKLE) 
  5. 2nd Round RT   6. Klenow Labeling   

  RNA/primer, 4 °C vol [µl] m [µg] OK Klenow mix, 4°C vol [µl] m [µg] OK
  aRNA 4.0 1     eluted cDNA 10.0 ~ 1     
  N6-primer (0.5 µg/µl) 41.0 0.5     2.5x Random Primer 40.0       
      10x dNTP (low dTTP)# 10.0       
  RT-Mix* vol [µl] m [µg]     Cy-labeled dUTP 3.0       
  1st strand buffer 2.0       water ad 98 µl 35.0       
  100 mM DTT 1.0       mix briefly    
  10 mM dNTP-mix 0.5       Klenow fragment 2.0       
  5-8 mg/ml T4gp32 0.5 2.5 - 4     total 100.0       
  RNase Inhibitor 0.5           
  SuperScript II (200 U/µl) 0.5       mix gently but thoroughly   
  total 5.0       centrifuge 15-30"   
      incubate o/n @ 37 °C (~16 h)   
  denature RNA/primer 5' @ 70 °C   clean with Microcon YM-30   
  snap cool on ice 2'   wash with 450 µl TE   
  hold 5' @ room temp.   wash with 500-25 µl TE§ / blocking mix   
  mix well   concentrate to ~ 10 µl and "elute"   
  incubation:         
  20' @ 37 °C     * RT mix for 2nd Round RT must be @ room temp.!   
  20' @ 42 °C       
  10' @ 50 °C     

§ Optionally measure incorporation rate before adding 
mix (use 25 µl of 500 µl TE resuspension)   

  10' @ 55 °C         
  15' @ 65 °C     #10x dNTP (low dTTP) Final conc. Stock conc. µl   
  hold at 37 °C     dTTP 0.5 mM 100 mM 5   
  add 1U RNase H     ATP 2.0 mM 100 mM 20   
  30' @ 37 °C     CTP 2.0 mM 100 mM 20   
  2' @ 95 °C     GTP 2.0 mM 100 mM 20   
  4 °C forever     TE buffer (pH 8.0) ad 1000 µl 935   

                      

 

Primer-Assisted Linear DNA Amplification (PALDA) 

In addition to the abovementioned protocols of IVT-based amplification, 

protocols based on PCR amplification were also tested. As the standard 

protocol of PCR uses two primers, one at each end of the sequence in question, 

each DNA strand is doubled in copy number per cycle. Consequently, the 

amplification occurs exponentially. However, since the mRNA sequences differ 

in length from a few hundred to a few thousand bases, there is in theory a bias 

introduced by an exponential PCR amplification: the length of each cycle 

determines how many nucleotides can be polymerized in the given time. With 
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two primers, only a full length sequence will be amplified in all following cycles. 

Consequently, long sequences have a lower probability to be amplified for the 

full set of cycles as shorter sequences. 

 

 

 Table 9 PALDA Protocols (Taq versus Pfu exo-)  
  3. PCR Labeling Taq Polymerase    3. PCR Labeling Pfu Polymerase   

  SSS-eluate @ RT vol m [µg] OK SSS-eluate @ RT vol m [µg] OK
  transfer eluate to 0.6 ml PCR tube      transfer eluate to 0.6 ml PCR tube     
  add LPA   5      add LPA   5     
  add vol 5 M NaCl 3.5        add 5 M NaCl 3.5       
  add vol 100% EtOH 220.0        add 100% EtOH 220.0       
  mix well    mix well   
  precipitate 60' @ -70 °C or 2h - o/n @ -20 °C    precipitate 60' @ -70 °C or 2h - o/n @ -20 °C   
  spin tube 30' @ 13,000 rpm, remove s/n    spin tube 30' @ 13,000 rpm, remove s/n   
  wash pellet with 500 µl 70% EtOH    wash pellet with 500 µl 70% Et-OH   
  spin tube 5' @ 13,000 rpm, remove s/n    spin tube 5' @ 13,000 rpm, remove s/n   
  spin tube 2' @ 13,000 rpm, remove s/n completely    spin tube 2' @ 13,000 rpm, remove s/n completely   
  allow pellet to dry 2-3' @ 20-40 °C    allow pellet to dry 2-3' @ 20-40 °C   
  resuspend in 10 µl water    resuspend in 10 µl water   
           
  PCR mix, on ice! vol Conc. OK    PCR mix, on ice! vol Conc. OK   
  10x PCR buffer 5.00        10x PCR buffer 5.00       
  25 mM MgCl2 3.00        25 mM MgCl2 3.00       
  10 mM dATP 1.00        10 mM dATP 1.00       
  10 mM dCTP 1.00        10 mM dCTP 1.00       
  10 mM dGTP 1.00        10 mM dGTP 1.00       
  10 mM dTTP 0.88        10 mM dTTP 0.88       
  1 mM Cy-dUTP 1.25        1 mM Cy-dUTP 1.25       
  BSA (10 µg/µl) 0.50 0.1 µg/µl      BSA (10 µg/µl) 0.50 0.1 µg/µl     
  T7 PCR primer [100 µM] 25.00 50 µM      T7 PCR primer [100 µM] 25.00 50 µM     
  2nd strand cDNA 10.00       2nd strand cDNA 10.00       
  Taq Pol [5 U/µl] 1.00 0.02 U/µl      Pfu Pol exo- [2.5 U/µl] 1.00 0.01 U/µl     
  water 0.38        water 0.38       
  total 50.00        total 50.00       
           
  initital denaturing: 1' @ 95 °C      initital denaturing: 1' @ 95 °C     
  2x 50 cycles of:      2x 50 cycles of:     
  25" @ 95 °C (denature)      45" @ 95 °C (denature)     
  45" @ 65 °C (anneal)      45" @ 65 °C (anneal)     
  60" @ 72 °C (elongate)      120" @ 72 °C (elongate)     
  final elongation: 5' @ 72 °C      final elongation: 10' @ 72 °C     
  4 °C forever      4 °C forever     
  after first 50 cycles:      after first 50 cycles:     
  (take 1 µl, measure DNA content)      (take 1 µl, measure DNA content)     
  add 1µl Taq Pol [5 U/µl]      add 1µl Pfu Pol exo- [2.5 U/µl]     
  run 2nd time 50 cycles      run 2nd time 50 cycles     
           
  clean with Microcon YM-30    clean with Microcon YM-30   
  wash with 450 µl TE    wash with 450 µl TE   
  wash with 500-50 µl TE§ / blocking mix    wash with 500-50 µl TE§ / blocking mix   
  concentrate to ~ 10 µl and "elute"    concentrate to ~ 10 µl and "elute"   
              
  § Optionally measure incorporation rate before adding mix (use 50 µl of 500 µl TE resuspension)   
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To circumvent this restraint, a similar reaction which comprises only one 

primer was used, excluding the limiting factor of transcript length and thereby 

ensuring that the amplification occurs linearly. Analogous to the IVT labeling, 

the procedure was set up to incorporate the nucleotides during the 

polymerization reaction. 

Reverse transcription and second strand synthesis as well as extraction of the 

double-stranded DNA were performed as described before. Then, a PCR-like 

reaction with a single primer, containing a part of the T7 promotor sequence 

(5'-GCG-GCC-GCG-AAA-TTA-ATA-CGA-CTC-ACT-ATA-GGG-3'), was performed. 

PCR conditions were optimized for this primer. As the Taq DNA polymerase 

(from Thermus aquaticus, Amersham) has a limited tolerance for the bulky dye-

associated nucleotides, single primer PCR reactions were performed for 2 x 50 

cycles and the Taq DNA polymerase was renewed after the first 50 cycles. The 

general feasibility of incorporation of fluorescently labeled nucleotides during 

the PCR reaction had been assured by the manufacturer. In addition, the same 

protocol was also tested with another thermally stable polymerase, Pfu exo- 

(from Pyrococcus furiosus, Stratagene), which had been modified by the 

manufacturer for elimination of exonuclease activity. This modification was 

similar to a modification that the M-MLV reverse transcriptase had been 

subjected to in order to allow for incorporation of bulky nucleotide 

modifications. The washing and blocking steps were performed as described 

above. 

 

Single Primer Amplification (SPA) 

Another protocol based on amplification with Taq DNA polymerase was tested, 

which had been published just before the comparison was started.128 To be 

able to compare this published protocol with the ones introduced here, the 

reactions were modified to be used with the same enzymes and reagents 

already made use of (Table 10). In brief, mRNA from total RNA was reverse 

transcribed using oligo-d(T) - T7 primer and cDNA was complemented to 

double-stranded DNA as described before. A single primer PCR was performed 

as above, but using only unlabeled dNTPs (10 mM nucleotide mix). Amplified 

antisense DNA was then labeled using the Klenow fragment as described.  
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Table 10 SPA Protocol, using Taq Polymerase  
  3. SPA   PCR-eluate vol [µl] m [µg] OK   

  SSS-eluate @ RT vol [µl] m [µg] OK transfer eluate to 0.6 ml PCR tube 
  transfer eluate to 0.6 ml PCR tube     add LPA   5     
  add LPA   5     add 1/25 vol 5 M NaCl 3.5       
  add 1/25 vol 5 M NaCl 3.5       add 2.5 vol 100% EtOH 220.0       
  add 2.5 vol 100% EtOH 220.0       mix well   
  mix well   precipitate 60' @ -70 °C or 2h - o/n @ -20 °C   
  precipitate 60' @ -70 °C or 2 h - o/n @ -20 °C   spin tube 30' @ 13,000 rpm, remove s/n   
  spin tube 30' @ 13,000 rpm, remove s/n   wash pellet with 500 µl 70% Et-OH   
  wash pellet with 500 µl 70% Et-OH   spin tube 5' @ 13,000 rpm, remove s/n   
  spin tube 5' @ 13,000 rpm, remove s/n   spin tube 2' @ 13,000 rpm, remove s/n completely   
  spin tube 2' @ 13,000 rpm, remove s/n completely   allow pellet to dry 2-3' @ 20-40 °C   
  allow pellet to dry 2-3' @ 20-40 °C   resuspend in 10 µl water   
  resuspend in 10 µl water       
      4. Klenow Labeling   

  PCR mix, on ice! vol [µl] Conc. OK Klenow mix, on ice! vol [µl] m [µg] OK
  10x PCR buffer 10.0       eluted cDNA 10.0 1 µg     
  10 mM dNTP 2.0       2.5x Random Primer 40.0       
  BSA (10 µg/µl) 1.0 0.1 µg/µl     10x dNTP (low dTTP) 10.0       
  T7 PCR primer [100 µM] 2.0 2 µM     Cy-dUTP 3.0       
  2nd strand cDNA 5.0 0.01 µg/µl     water ad 98 µl 35.0       
  Taq DNA Pol. [5 U/µl] 4.0 0.2 U/µl     mix briefly     
  water 76.0       add Klenow fragment 2.0       
  total 100.0       total 100.0       
          
  initital denaturing: 3' @ 94 °C     mix gently but thoroughly     
  50 cycles of:     centrifuge 15-30"     
  1' @ 94 °C (denature)     incubate o/n @ 37 °C (~16 h)     
  1' @ 62 °C (anneal)     clean with Microcon YM-30     
  2' @ 72 °C (elongate)     wash with 450 µl TE     
  final elongation: 5' @ 72 °C     wash with 500-25 µl TE§ / blocking mix     
  4 °C forever     concentrate to ~ 10 µl and "elute"     
            
  clean with Microcon YM-30       
  wash with 450 µl TE     

§ Optionally measure incorporation rate before adding 
mix (use 25 µl of 500 µl TE resuspension)   

  wash with 450 µl TE           
  concentrate to ~ 50 µl and "elute"           
      

 

As this published protocol was originally created and optimized for microarrays 

generated from PCR-amplified cDNA libraries, strand specificity had not been a 

consideration of the authors. The primary product of the labeling step here, 

using Klenow fragment and the antisense SPA product as a template, was 

sense DNA. As described, antisense DNA was expected to be generated by 

Klenow fragment reactions with the labeled sense product as a new template. 

Therefore, it was tested whether this protocol produced enough labeled 

antisense DNA to be hybridized against the sense-orientated DNA on the 

microarrays, and whether the signal was sufficient despite the additionally 

created labeled sense DNA. 
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Template-Switch Single Primer Amplification (ts-SPA) 

A special feature of the M-MLV reverse transcriptase as used in the initial step 

of all protocols described here is the terminal addition of a few nucleotides to 

the cDNA transcript, mostly three cytosines. Though this represents only a 

short template, it had been shown to be sufficient for priming a 3'-extension of 

the first strand cDNA.127  

This effect had been used for switching the template from sense (second) to 

antisense (first) strand of the double-stranded DNA.129 Therefore, the single 

primer PCR could be used to amplify DNA using the elongated first strand as 

template, yielding multiple copies of the sense strand. These could then be 

replicated again, using the Klenow fragment, into labeled antisense DNA. 

The only difference in the ts-SPA reactions to ones described for SPA was the 

addition of a TS primer to the oligo-d(T) - T7 primer, during the RT reaction (TS 

primer sequence: 5'-CG-GCC-AGT-GAA-TTG-TAA-TAC-GAC-TCA-CTA-TAG-

GCG-3']. The TS primer then remained present during the second strand 

synthesis; consequently the first strand could be extended in the course of the 

reaction. For the single-primer amplification PCR, the same TS primer was 

used again to create the sense DNA. Klenow labeling reaction was performed as 

described before.  

 

PCR 

To have a benchmark for analysis using abovementioned different PCR 

amplification variants, a normal or standard PCR amplification with two 

primers and fluorescently labeled nucleotides was also performed. Since these 

bulky nucleotide derivatives were known to have a low incorporation rate, the 

protocol was modified according to the above described PALDA protocols. In 

brief, the number of cycles was also increased to 100 with intermediate 

refreshment of Taq DNA polymerase after 50 cycles, but the usage of the 

modified dCTP nucleotide derivatives instead of dUTP. The primers used for the 

reverse transcription using SuperScript II were oligo-d(T)21VN primer and the 

TS-primer (see above). Subsequently, cDNA was cleaned using Microcons 

columns as described before. Then the PCR reaction was performed on 1 µg 

cDNA with internal primers, to suppress amplifying false products, and in 
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presence of fluorescently labeled dCTP nucleotides. Amplified and labeled DNA 

was again cleaned up with Microcon columns as described. 

 

Blocking Mix 

The products of all abovementioned protocols were hybridized to microarrays in 

presence of a mix consisting of Cot-1 DNA (Roche), tRNA and poly(A)-RNA (both 

Sigma-Aldrich). These nucleotide sequences were used to inhibit binding of free 

repetitive RNA sequences or non-messenger RNA molecules, mostly in an 

unspecific manner, to probes on the microarray. Although this procedure is not 

necessary in each of the above introduced protocols, it was nevertheless 

performed in all of them for comparative reasons. 

 

Table 11 Blocking Mix  
  Blocking Mix vol [µl] m [µg] OK   
  Cot-1 DNA (1 µg/µl) 25.0 25     
  Poly(A) RNA (5 µg/µl) 5.0 25     
  tRNA (10 µg/µl) 7.5 75     
  total 37.5       

            

 

 

3.2.3. Analysis of Comparative Amplifications 

DNA and RNA Purity 

Nucleic acid purity and concentration were measured to ensure the optimum 

prerequisites for a successful hybridization event. This was performed during 

the last washing step at the end of each protocol, before the blocking mix was 

added and the volume was reduced on the Microcon columns. A small volume 

(5-10%) was taken and measured on the UV-spectrometer Cary 50 Bio (Varian 

Inc.), taking the absorption value at the peak of 260 nm (A260) for DNA or RNA 

content and applying multiplication factors (37 µg/ml, single stranded DNA; 

40 µg/ml, single stranded RNA) to estimate the nucleic acid concentration. 

Calculating the ratio of A260 over A280 was used for purity measurements, 

anticipating values for DNA of 1.8 to 2.0 and for RNA of 1.9 to 2.1 for good 

results. 
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Incorporation Rates of the Fluorescently Labeled Nucleotides 

The performance of each of the amplifying and labeling methods tested was 

evaluated by measuring and calculating the incorporation rate of labeled 

nucleotides. This was carried out together with the DNA or RNA concentration 

and purity estimations on the UV-spectrometer.  

Incorporation of fluorescently labeled nucleotides was estimated from the 

characteristic absorption maxima for Cy3 and Cy5 dyes, at 550 nm and 

650 nm, respectively. These peak values were set into relation with the nucleic 

acid concentration to determine the incorporation rate. The rates for each 

channel were compared with each other, to identify imbalances in the tolerance 

of the different enzymatic approaches to the two types of bulky nucleotides. To 

estimate the incorporation yield of the corresponding reaction of each labeling 

procedure, an approximation to the average incorporation efficiency, given as 

 
 A dye ε Nucl. Acid 
 r I =  x [1] 
 A 260 ε dye 

 
was used. Here, r I is the incorporation ratio, A is the absorbance at a specific 

wavelength in nm (550 nm for Cy3 dye and 650 nm for Cy5 dye, respectively),  

and ε is the extinction coefficient in cm-1M-1 at the absorption maximum for 

either nucleic acid or the respective dyes. Values for DNA (ε = 10,162.5 cm-1M-1) 

and RNA (ε = 10,418.75 cm-1M-1) were estimated from averages per nucleotide 

of measured and published values for any possible dinucleotide.134 Values for 

the two dyes Cy3 (ε = 150,000 cm-1M-1) and Cy5 (ε = 250,000 cm-1M-1) were 

provided by the manufacturer. The r I was additionally multiplied with 1,000 to 

calculate the average number of incorporated fluorescently labeled nucleotides 

per 1,000 nucleotides. 

 

Outlier Features 

After scanning the microarray images, the grid was placed in GenePix Pro 

Software onto the image and feature alignment as well as detection of false 

positive spots, which were flagged as outliers, were performed as described. 

Only features of good quality were used for further analyses, and the rate of 

outlier features was considered as a quality estimate. 
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Spot Homogeneity 

Each feature spot consists of some 50 to 500 pixels, which are taken as 

foreground measurement. To receive a single intensity value for the feature, 

either the median or mean of the intensities of these pixels can be used. To see 

whether the intensity distribution within the spot of a feature is homogenous, 

the ratio of mean over median was taken. Ideally, this ratio should have the 

value of one for a homogenous spot. A deviation of up to 0.2 below or 0.25 

above this quotient was considered acceptable, features with a mean to median 

ratio outside the interval were considered inhomogeneous. 

 

Feature and Background Signal Comparison 

A general assessment of the amplification and hybridization success was 

achieved when comparing the median signal intensities of features versus each 

feature's local background (the surrounding area of the DNA spot). These were 

set into relation to each other and averaged across all features of each chip to 

estimate a compatible value for the different protocols. 

 

Scatter Plots 

Scatter plots represent the intensities of the features in one dye channel versus 

the other. For this scheme, median intensity values from the raw data tables 

for each feature were plotted on a two-dimensional scale, each feature being 

represented by its corresponding logarithmic values for Cy3 and Cy5 intensity. 

To integrate dye-swap experiments, the ratios between the two channel values 

were taken for each DNA spot and transformed by natural logarithm. These 

ratios were then plotted against each other for both experiments. 

This method allowed for a more elaborate examination of the distribution for 

the following reasons: A bias, e.g. towards smaller intensities or loss of 

dynamic range, could be detected much better when looking at the 

corresponding plots as compared to looking at the images themselves or an 

average of signal to background. In this respect, the different amplification and 

labeling procedures were much easier to compare on the basis of their scatter 

plots. In addition, differential and same-versus-same hybridization results 

could be compared with each other to identify effects derived from the 
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amplification procedure but independent from the distribution of the different 

mRNA copy numbers between the two cell lines. 

 

Linear Trend of Intensity Scatter Plots 

Taking the median feature intensity values from the raw data table for each 

channel, the differences between procedures to amplify and label were also 

accountable for in measurable parameters. The distribution of these 

intensities, as seen on the scatter plots, was described by calculating the slope 

and intercept of the trend line derived from the feature intensity spots 

scattered on the plot. A deviation of the slope from the value one, which 

represents the bisecting line of the plot, could be explained by different input 

amounts. The intercept or offset on the ordinate, however, expresses a bias 

towards one of the channels, e.g. by incorporation incompatibilities of the dyes.  

 

Correlation of Gene Expression Patterns 

To account for similarity between the distributions of intensities across all 

features of a chip for both channels, the Pearson's coefficient was estimated. 

On a scale from -1 to 1, it provided an assessment of similarity between two 

data sets, or matrices representing them, independent of the slope of the trend 

line of their distribution. The grades of similarity between same-versus-same 

hybridization intensities or between repeat experiments, such as the dye-

swaps, were of particular interest in this comparison. In the case of repeat 

experiments, this value signified the reproducibility of the amplification 

procedure.  

 

The calculations described in this chapter were performed with the statistical 

software "R" [www.r-project.org], a script-based programming environment.135  
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3.3. Gene Expression Signature Predictive for Chemotherapy in Primary Breast 

Cancer  

This study was conducted to investigate whether a gene expression signature 

could be identified in tissue specimens taken from primary breast tumors of 

patients that allows for predicting the patient's outcome, or response, to a 

chemotherapy applied after taking the specimen. 

To generate this gene expression signature, the principles of the techniques 

described above were applied, extracting the RNA from the tumor samples, 

amplifying the mRNA with the chosen procedure (see chapter 4.1), labeling 

them with fluorescent dyes in the process, and hybridizing them to microarrays 

generated from the Human Oligo Set 2.0 or 2.1.1. 

 

3.3.1. Patients and Chemotherapy Protocol 

The primary breast cancer specimen used here were provided by the 

Department of Gynecology and Obstetrics of the University Hospital Heidelberg 

(Universitäts-Frauenklinik) from female patients (n=148) who participated in 

two similar studies evaluating new chemotherapy protocols, combining 

gemcitabine, epirubicin and docetaxel as anti-cancerous agents. Patients were 

recruited with their voluntary commitment, if they had no prior chemotherapy 

treatment, their tumor had a diameter of at least 2 cm, they had a maximum of 

nine metastatic local (internal) or axillary lymph nodes and no distal 

metastases (WHO classification: T2-4 N0-2 M0), among other criteria. 

The evaluation of the chemotherapy protocols concerned the treatment dosages 

and schedule. In the course of this assessment, these parameters were 

modified, resulting in two different cohorts, treated with either the "GEDoc" or 

"GEsDoc" protocols (Figure 8). The major difference between the two schedules 

was comprised of the sequential application of docetaxel. 
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Figure 8 

 
Patients enrolled in clinical study evaluating GEDoc or GEsDoc chemotherapies. Patients participated in one of 
either studies of neoadjuvant chemotherapy protocols administering gemcitabine, epirubicine and docetaxel in the 
Clinic for Gynecology and Obstetrics, University of Heidelberg. After therapy, surgery of the residual tumor was 
performed and the response to chemotherapy was estimated by pathology (pCR, pathological complete remission; pPR, 
pathological partial remission; pNC, pathological no change). Modified after A. Schneeweiß, University of Heidelberg. 
 

 

3.3.2. Tumor Samples and Reference 

Tumors were sampled by taking core cut biopsies with a 14-gauge needle 

under surveillance of sonographic life-imaging. Up to five of these biopsies, 

each yielding a tissue sample with a maximal size of 20 × 2 × 2 mm, were taken 

from each tumor at the time of diagnosis, before chemotherapy treatment of 

the patient. One or two of these samples per patient were available for gene 

expression measurements with the microarray technique. These tissue samples 

were locked in cryo tubes and shock frozen in liquid nitrogen (-196 °C) within 

10’ after being taken from the tumor and were kept at -80 °C until processing. 

The total number of investigated tumor samples was 174, taken from 148 

patients. 

 

Extraction of RNA 

Deep frozen tumor tissue samples were cooled in liquid nitrogen to -196 °C and 

quickly transferred from the cryo tubes to polytetrafluoroethylene (PTFE or 

Teflon®) containers (NeoLab) suitable for ball milling, which had been pre-

cooled in liquid nitrogen as well. The containers containing the tissue sample 
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were then equipped with the appropriatly pre-cooled tungsten balls (5 mm 

caliber, NeoLab), locked and again cooled in liquid nitrogen to ensure that the 

sample remained deeply frozen. Then the sample was milled in the container 

with a dismembrator (B.Braun) at 3,000 rpm for 10", if necessary for several 

times with intermediate cooling of sample, ball and container in liquid nitrogen, 

until the tissue sample was completely ground to powder. After another cooling 

cycle, the tissue powder was collected into a 15 ml-Falcon tube which had been 

prepared to contain 5 ml of TRIzol solution at 4 °C. The mix was vigorously 

shaken and left for 5' to equilibrate at room temperature. Then, 1 ml of 

chloroform was added and the suspension was again vigorously shaken and 

mixed on a vortex. Centrifugation and obtaining of the aqueous phase 

containing the RNA was carried out as described before (Chapter 3.2.1). After 

mixing of the aqueous phase 1:2 with ethanol (p.A.), it was applied to RNeasy 

mini columns (Qiagen) and centrifuged at room temperature for 4' at 8,000 rpm 

(6,000 × g) in a bench-top Biofuge fresco (Kendro). The columns were washed 

as recommended by the manufacturer with the buffers provided, and the RNA 

was eluted twice with 30 µl RNase-free water. After taking 5 µl of the elution for 

RNA yield and quality assessments, the remaining total RNA dilution was 

stored at -80 °C until used for amplification and labeling. The yield and purity 

were measured in 1:25 dilution of the RNA (3 µl in 75 µl total volume) as 

described on the UV-spectrometer and the quality was assessed by application 

of the "Lab-on-a-chip" system (Agilent) as described before (Chapter 3.2.1). 

 

Reference RNA 

For clinical and ethical reasons, only a restricted amount of non-cancerous 

tissue of the mammary was available and could not be used as source for 

reference RNA. The RNA chosen was Human Universal Reference RNA 

(Stratagene), consisting of total RNA from a mixture of ten cell lines of different 

cancer origin. Since expression levels of different tumor classes between each 

other were compared here, namely those from patients with complete remission 

versus those with partial remission or no change, the origin of the reference 

RNA could be neglected. 
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3.3.3. Amplification of mRNA from Samples and Reference RNA 

The Baugh + Klenow protocol, also named TAcKLE (see chapters 3.2, 4.1 and 

5.1) was chosen for amplification and labeling of the tumor mRNA. To avoid 

introducing a bias between RNA extracted from the tumor specimens and the 

reference RNA, the latter was also amplified using this procedure. Since tumor 

samples were recruited consecutively, reference RNA was amplified in bulk and 

the c*DNA was pooled before labeling the aliquots as needed. 

The RNA extracted from tumor samples was precipitated using LPA, 

ammonium acetate and ethanol as before for aRNA cleanup during the TAcKLE 

procedure, and suspended to a concentration 0.5 µg/µl. Such prepared RNA 

was amplified in two different aliquots with a maximum of 2 µg total RNA input 

each, and the sense-orientated c*DNA was copied, including labeling using 

Cy3- and Cy5-modified dUTPs, respectively, to perform color switch repeat 

experiments. Each labeled tumor sample was then mixed with adversely 

labeled reference RNA sample, washed on Microcon columns and 

complemented with blocking mix containing 25 µg Cot-1 DNA (Roche), 25 µg 

poly(A) RNA and 75 µg tRNA (both Sigma-Aldrich). These combined sample-

reference mixes, ready for hybridization, were stored at -20 °C for a maximum 

time of two weeks, if they were not applied to the microarrays on the same day. 

 

3.3.4. Hybridization to Microarrays and Data Pre-Processing 

Labeled tumor and reference sample mixes were hybridized to the 

oligonucleotide microarrays generated on the HybStation as described. The 

hybridized microarray slides were scanned using the Axon 4000B scanner at 

5 µm resolution with adaptation of the optimal settings for the PMT voltages to 

correct for different incorporation rates and bleaching characteristics of the 

different Cy-dyes attached to the dUTP nucleotides.  

Raw data tables were generated by imposing the appropriate grid on the 

microarray images, inspecting and flagging degenerated resulting spots and 

saving the data set to the computer. Since all tumor RNA samples had been 

amplified and labeled with both Cy3- and Cy5-modified nucleotides, the entire 

data set for each patient contained two of these raw data tables. Together with 

the clinical data relevant for analysis of the gene expression signatures, these 
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raw data were uploaded into a database (ChipYard), developed and maintained 

by Grischa Tödt from the Division of Molecular Genetics.  

 

3.3.5. Data Analysis 

The pre-processing and data analysis described in this chapter were performed 

in collaboration with Grischa Tödt from the Division Molecular Genetics. 

In a first step, the raw data tables from the microarrays were inspected for 

aspects of quality concerning the hybridization experiment, the amplification 

and the integrity of the underlying RNA input. These quality assessments were 

achieved by (i) plotting the median intensity values for both channels in scatter 

plots, (ii) box plots showing average, upper and lower 25% percentiles for each 

microarray and channel, (iii) screening of the averages for red and green 

intensities per spot versus their log ratio (M/A plots) and (iv) plotting the 

distribution of the spot background intensities according to spot localization. In 

the course of this quality examination, repeat hybridizations with switched dye 

assignments were compared with each other for estimating reproducibility. 

Based on these analyses, experiments showing low quality of RNA, improper 

amplification or hybridization results were identified and excluded from further 

processing and analysis. Data sets for patients with excess RNA, whose low 

quality outcome could not be explained by low RNA quality as evaluated with 

the BioAnalyzer, where highlighted. If possible, for these both dye swap 

experiments were repeated from the beginning of the amplification procedure, 

even if only one of the experiments showed low quality in the assessment of the 

raw data. This guaranteed prevention from a bias introduced by different 

experiments within dye-swap pairs. 

 

Individual spots were scored for homogeneity by calculating mean over median 

of the raw intensity values, and for dynamic range (signal-to-background 

intensity ratio) by calculating corresponding median fore- over background 

intensity ratios. As a third component, the standard deviation of intensity 

ratios (before normalization) between replicate spots within one microarray was 

also calculated. The scores of these three feature quality measurements were 

combined by multiplication, features were ranked and the lower 30% of them 

were eliminated.  
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After choosing the data sets for experiments with sufficient reliability, the 

values for median spot intensities were normalized to balance out the different 

dynamic ranges between individual microarrays. For this purpose, the variance 

stabilizing normalization (vsn) method was applied.136 In the course of this 

calibration, the median intensities (x) were transformed by 

 
 h (x) = arsinh (a + bx) [2] 

 
The parameters a and b describe the onset and magnitude of contraction of 

small intensities (near the detection limit) towards zero in comparison with the 

logarithmic conversion and are estimated iteratively by the vsn function. Large 

intensities, on the other hand, are affected by this contraction to a much lesser 

extent and therefore coincide with a natural logarithmic transformation. For 

this reason, the variance stabilizing normalized values h could be used for 

building ratios between intensities in the same manner as logarithmically 

transformed values, meaning that while 

 
 logn (xi,red / xi,green) = logn (xi,red) - logn (xi,green) [3], 

 
the logarithm was in this case substituted with the vsn transformation h (x) to 

 
 logn (xi,red / xi,green) ≈ h (xi,red) - h (xi,green) [4]. 

 
This derivation of the logarithmic transformation, however, required caution 

when considering ratios resulting from low intensity values. 

After normalization, repeat spots within one microarray and corresponding 

values for color-switch repeat experiments were averaged. If, according to the 

filtering that had been performed before, individual features had been removed 

from one array, the matching dye swap partner had to be eliminated as well. 
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3.3.6. Identification of the Gene Expression Signature 

The data analysis described in this chapter was performed in collaboration 

with Grischa Tödt from the Division Molecular Genetics and Dr. Patrick Warnat 

from the Division Theoretical Bioinformatics. 

To detect the most relevant genes to distinguish between patients with a 

complete response to chemotherapy (pCR) and patients with a partial response 

or no change in tumor growth (pPR or pNC, respectively), the genes had to be 

ranked according to their predictive power. The ranking of genes was 

performed in the process of learning to classify the patients by usage of the 

Support Vector Machines (SVM) algorithm on the training subset (GEsDoc 

patients) with five times repeated five-fold cross-validation.137 Afterwards, the 

most predictive genes were chosen and the predictive power of the set of genes 

was estimated. To test independently whether the prediction based on the 

ranked genes is accurate, the expression data were divided into two sets, one to 

identify the predictive gene subset (training set), and the other data set to test 

the predictive power (test set).  

To minimize the number of genes, the Recursive Feature Elimination (RFE) 

algorithm was applied.138 The RFE approach recursively reduces the number of 

genes used in the predictor function by removal of those genes with lowest 

weights and re-fitting of the SVM algorithm using the remaining genes. In the 

first step, the number of genes used is reduced to the highest power of two that 

is smaller than the total number of genes. In each following step of the RFE 

procedure, half of the genes are eliminated from the predictor model until only 

one gene is left. The minimal number of used genes with a predictive value of at 

least 0.8, which was set as a threshold, was the constraint of this selection. 

Finally, the RFE approach was applied once on the training set to generate a 

final predictive model with the optimal number of genes as determined in 

cross-validation. Microarray data for patients receiving GEDoc therapy (48 

patients) were used as a test set for independent validation of this gene 

expression based predictor of pCR. The final predictive model generated a 

predictor score for every patient in the test set. Sensitivity and specificity, 

resulting from different cut-off values, were visualized by a Receiver Operating 

Characteristic (ROC) graph. A ROC graph shows how sensitivity and specificity 

vary together as the cut-off value (that determines the class prediction for a 
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given sample) on the output of a prediction function for a given test set of 

samples is varied between the extremes of the prediction function output. The 

cut-off value yielding a maximal Youden's Index (sensitivity + specificity - 1) 

was used to determine the binary classification of the test set into pCR and 

non-pCR cases. 

 

 

3.4. Real-time Quantitative PCR 

To validate the results from the microarray data for gene expression, a real-

time quantitative PCR (RQ-PCR) was performed on reverse transcribed mRNA 

from all patients with sufficient RNA after performing the microarray analysis, 

for selected genes. The selection was comprised of genes belonging to the 

signature predicting the patient's outcome, plus two genes (ESR1, HER2) which 

belong to markers classically used in immuno-histochemical pathology and 

another two genes (DCTN2, GALNAC4S-6ST) which were used as reference 

genes. The references were chosen from the genes on the microarray by 

analyzing the results of these for minimal differential expression between the 

two patient groups (responder versus non-reponders), minimal standard 

deviation across patients within these groups, and functional ontology in the 

sense of metabolic and/or structural activity within living cells. This was 

necessary to ensure that the results were unbiased for tumor cell activity, since 

these standard genes were used to normalize between individual patients and 

across all genes of interest (target genes). 

 

3.4.1. Reverse Transcription 

The Reverse Transcription (RT) reaction to create cDNA, and the following 

RQ-PCR reaction mix to measure the content of each specific gene transcript 

were carried out as given in Table 12. For estimation of amplification efficiency, 

the cDNA generated from of Universal Reference RNA (Stratagene) was diluted 

in seven serial 1:4 dilution steps, starting with cDNA corresponding to 512 ng 

total RNA. 
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 Table 12 RQ-PCR Protocol  

Reverse Transcription for RQ-PCR 
RNA/primer mix amount [ng] vol [µl] OK 

d(T)21VN primer, 1 µg/µl 300 0.30   
total RNA, 2 µg/µl 3,000 1.50   
dNTP, 10 mM   0.60   
ddH2O   5.40   
mix, 5' @ 65 °C, snap cool on ice, spin down   
add 5x 1st strand buffer   2.40   
add DTT, 0.1 mM   1.20   
mix and incubate 2' @ 42 °C   
add SuperScript II, 200 U/µl   0.60   

total volume: 12.00   
incubate 50' @ 42 °C   
incubate 15' @ 70 °C   
dilute by 1:1.25 to 0.01 µg/µl cDNA (≈ 5% of total RNA), 
add 3 µl H2O   

RQ-PCR 
2x SYBR Mix (Thermo Scientific) 10.00   
upper primer, 5 mM   0.20   
lower primer, 5 mM   0.20   
template cDNA, 0.01 µg/µl 32 3.20   
ddH2O   6.40   

  

total volume: 20.00   

 

  
 

 

3.4.2. Primer Design 

For each of the measured genes, at least two primer pairs were designed. For 

exclusion of quantitative bias resulting from amplification of genomic DNA 

during the PCR reaction, the two primers of each pair were located within 

different exons of the gene with the largest possible intron, or more than one 

intron embedded between them, to create a minimum genomic distance of 2kb. 

The maximal distance on the mature mRNA between the two primers, however, 

was limited to a size of 100 to 400 bases, so the amplicon could be optimally 

duplicated during each round of PCR, as given by the distinct elongation time. 

To ensure a uniform annealing performance, all primers were designed to have 

a Tm of 60 °C, and the resulting amplicon was required to have a minimum Tm 

of 78 °C (both estimated with standard PCR conditions of 50 mM Na+ and 250 

pM primer concentration). 
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Each primer pair was tested for optimal results with templates of 25, 50 and 

100 ng of total RNA from the reference RNA to estimate correct efficiency, 50 ng 

of genomic DNA to exclude amplification of genomic templates and "no 

template control" to exclude primer dimerization products. Primer pairs with 

efficiency outside 1.7 to 2.05 or products with a crossing point (CP) larger than 

40 cycles were neglected, and a new primer pair was generated for the 

respective gene. Primer pairs were also neglected if their product's melting 

curve, as measured with the RQ-PCR thermocycler by fluorescence, did not 

match with the estimated melting temperature characteristics. For resulting 

primer sequences, see Appendix C. 

 

3.4.3. RQ-PCR Measurements and Analysis 

Measurements of real-time quantitative PCR were performed on an ABI PRISM 

7700 Sequence Detection System (Applied Biosystems) in triplicates; using 

10 µl of 2x SYBR Mix (Thermo Scientific), cDNA derived from 32 ng of total RNA 

and a concentration of 50 nM of each primer in a total volume of 20 µl per well 

(Table 12). Only one 384-well plate per gene was used, and all control RNA 

dilutions and samples were measured on the same plate to eliminate plate-to-

plate variance bias within genes. 

 

Analysis was performed using algorithms based on the efficiency of the PCR 

reaction for each tested gene. This efficiency estimation [5] uses the slope of the 

CP values versus the logarithmic input for the dilution series of the reversely 

transcribed control RNA.139 

 
 Ε = 10 [–1/slope] [5] 

 
The difference of expression levels of each gene in question (target genes) 

between cDNA from the control RNA and sample RNA were then normalized to 

the differences between controls and samples for the reference genes [6], 

resulting in a normalized ratio of expression in samples versus control. 
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      [6] 

 

These normalized expression ratios for each gene of interest (target gene) 

against the two different reference genes were averaged to further lower any 

bias produced by different expression levels of these reference genes. This 

average was used as the final expression ratio and compared between the 

groups of patients either completely responding to the chemotherapy (pCR) or 

not completely responding (pPR and pNC combined) to validate the microarray 

expression data. 
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3.5. Antibody Generation 

To create a monoclonal antibody, it was necessary to produce recombinant 

protein of interest and isolate it to a very high grade. This was performed for 

the BAMBI protein, a TGF-β receptor - like protein residing in the plasma 

membrane of certain epithelial cells. Due to its nature as a plasma membrane 

protein and its considerable amino acid sequence similarity to the TGF-β 

receptor family protein BMP-receptor type 1b, only the cytosolic parts of the 

protein not homologous to BMPR1B were expressed for generating an antibody 

against (BAMBI cytosolic fragment). For later testing of the generated antibody 

serum candidates, BAMBI full length and BMPR1B proteins were expressed 

both in eukaryotic and prokaryotic settings.  

 

3.5.1. Preparation of cDNA and Cloning into Expression Vectors 

 To obtain vectors for prokaryotic and eukaryotic expression of BAMBI protein, 

the mRNA was first reversely transcribed into cDNA, as described above and in 

Table 12. Then the BAMBI coding sequence (CDS) was isolated using a PCR 

with gene-specific primers and a low cycle number (n=15). Using agarose gel-

electrophoresis to identify and excise the correct DNA strands, and Rapid Gel 

Extraction Protocol (Marligen Bioscience) to clean them up, excess cDNA was 

discarded. In a second step PCR reaction, primers were used which 

additionally contain the necessary sequences for enzymatic restriction and re-

ligation into the expression vectors pBCHGs and pQC-His, using the sites for 

Bam HI and Hind III. 

 As a negative control for later experiments, the same procedure was also 

conducted for BMPR1B protein. However, for the successful isolation of the 

BMPR1B coding sequence, the PCR had to be performed using nesting primers, 

containing locus-specific sequences outside of the actual coding sequence. 

After agarose gel-electrophoresis and clean-up of this longer PCR product, the 

second PCR was performed again using primers containing the gene-specific 

sequences and the additional restriction sites. Primer sequences are given in 

Table 13. 
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 Table 13 Primers used for Cloning from Reversely Transcribed mRNA  

Gene Position Use Sequence (5'- … -3') 

upper cDNA ATG-GAT-CGC-CAC-TCC-AGC-TAC-ATC 

lower cDNA TCA-TAC-GAA-TTC-CAG-CTT-CCC-GTG 

upper cloning GAG-AGA-GGA-TCC-ATG-GAT-CGC-CAC-TCC-AGC-TAC-ATC 

lower cloning GAG-AGA-AAG-CTT-TCA-TAC-GAA-TTC-CAG-CTT-CCC-GTG-C 

upper sequencing GGC-GGA-TCC-ATG-GAT-CGC-CAC-TCC 

BAMBI 

lower sequencing GGC-AAG-CTT-TCA-TAC-GAA-TTC-CAG-CTT-CCC 

upper cDNA, 
nesting 

CAG-CCG-CGG-GGT-GGA-GTT 

lower cDNA, 
nesting 

TGA-TGT-CTT-TTG-CTC-TGC-CCA-CAA 

upper cloning GAG-AGA-GGA-TCC-ATG-CTT-TTG-CGA-AGT-GCA-GGA-AA 

lower cloning GAG-AGA-AAG-CTT-TCA-GAG-TTT-AAT-GTC-CTG-GGA-CTC-TGA-C 

upper sequencing TCA-GAG-TTT-AAT-GTC-CTG-GGA-CTC-TGA-C 

middle 1 sequencing GAA-GTG-GAT-CAG-GCC-TCC-CTC-TG 

middle 2 sequencing CGA-GTT-GGC-ACC-AAA-CGC-TAT-ATG 

BMPR1B 

lower sequencing ATG-CTT-TTG-CGA-AGT-GCA-GGA-AAA 

pQC-His plasmid, 40bp 
upstream of Bam HI site sequencing CGG-ATA-ACA-ATT-TCA-CAC-AG 

  
pBCHGs plasmid, 60bp 
upstream of  Bam HI site sequencing GGT-CCT-TCT-TGA-GTT-TGT-AAC-AG 

 
  

 

 Afterwards, gel-electrophoresis and clean-up was performed again for both 

constructs to isolate the correct length CDS / restriction site product and 

discard excess primers, nucleotides and polymerase. DNA concentration was 

determined using spectrometric measurements and the DNA was stored at 

-20 °C. To ensure that no mutations had been introduced during the previous 

PCR reactions, a small aliquot of 500 ng was used for sequencing. 

 

Vector DNA for pBCHGs and pQC-His was provided by the laboratory of Prof. 

Dr. Hanswalter Zentgraf from the DKFZ. 100 µl of E.coli bacterial cells of strain 

XL1-Blue (Stratagene) were transformed with 1 - 10 ng of the vector DNA 

[retransformation], harboring an ampicillin resistance gene (β-lactamase), and 

the competent bacterial cells were plated in 1/5 and 4/5 aliquots onto two LB-

agar plates each, containing 100 µg/ml ampicillin. Cells were grown overnight 

(12-16 h) at 37 °C, then stored at 4 °C. 

For each preparation, up to six isolated bacteria clones from these plates were 

picked and used to inoculate LB-Amp mini-cultures (5 ml LB containing 

100 µg/ml ampicillin). Again, these cultures were grown overnight (12-16 h) 
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and plasmid DNA was harvested with Plasmid Mini kits (Qiagen) according to 

the manufacturer's protocol. The DNA was checked for concentration by 

photometric measurement on a NanoDrop spectrometer and for plasmid purity 

by electrophoresis on 1.2% agarose gels. 

The plasmids and cDNA inserts were then each digested using both restriction 

enzymes Bam HI and Hind III (Roche) in a combined restriction reaction, using 

SureCut buffer B (Roche) according to the manufacturer's protocol. Linearized 

plasmid DNA was then separated by agarose gel electrophoresis, excision, 

clean-up as above and concentration measurement. 

Afterwards, the linearized vector strands were processed with shrimp alkaline 

phosphatase (Roche) according to the manufacturer's protocol to 

dephosphorylate the 5'-phosphate from the DNA. This optional step was 

performed to limit the number of unspecifically re-ligating vectors. 

Ligations of plasmids with insert constructs were performed using T4 DNA 

ligase (Roche) according to the manufacturer's protocol, but with 4 U of enzyme 

in 40 µl reaction volume. Input DNA used were 60 ng for pQC-His and 100 ng 

for pBCHGs, and exactly three times more molecules, as calculated by the 

number of basepairs, for each PCR product (BAMBI cytosolic fragment, 

15 ng / --; BAMBI full length CDS, 42 ng / 50 ng; BMPR1B, 80 ng / 94 ng; for 

ligations with pQC-His / pBCHGs, respectively). Ligation reactions were 

performed for 10 h at 12 °C followed by 4 h at 8 °C. The vector charts for the 

ligated products are given in Figure 9. 

After ligation, 20 µl of the reaction volume were directly used for 

transformation of E.coli XL-10 gold strains and seeded on LB-Amp agar plates 

to select for re-ligated colonies, as described above. Of each of the ligation 

constructs, clones were picked to conduct a colony PCR as well as grow a mini 

culture (10 ml LB-Amp medium). The remainders of the ligation reactions were 

stored at 4 °C for a few days or at -20°C for long term, while the LB-Amp plates 

were stored at 4 °C. 

If the colony PCR proved the plasmids positive for inserts, 2 ml of the 

corresponding mini cultures were harvested and the remainder was used to 

seed maxi cultures (400 ml). The harvested bacteria were used to isolate the 

DNA, again using Plasmid Mini kits (Qiagen) and the DNA was sequenced to 

check for mutations. After confirming the correct sequence, the plasmid DNA 
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was harvested from the maxi cultures with Plasmid Maxi kits (Qiagen), using 

the manufacturer's recommendations but with 30 ml of each buffer P1 - P3 

and adjusting the protocol accordingly. 

 

Figure 9 

 
Vector charts. Eukaryotic pBCHGs and prokaryotic pQC-His vectors were subcloned to contain the respective coding 
sequences (CDS) of BAMBI cytosolic fragment, BAMBI full length CDS or BMPR1B full length CDS. 6x His, tag 
consisting of 6 subsequent histidine amino acids for purification purposes; Amp (R), ampicillin resistance gene β-
lactamase. Charts were generated using Vector NTI software (Invitrogen). 

 

 

3.5.2. Protein Expression in the Prokaryotic System and Isolation 

For the expression of proteins in E.coli, BL21 CodonPlus (DE3)-RIL Competent 

Cells (Stratagene) were transformed with pQC-His construct plasmids bearing 

coding sequences of BAMBI cytosolic fragment, BAMBI full length protein or 

BMPR1B full length protein. These cells had been engineered to allow for a 

higher protein yield than normal XL-Blue or XL-Gold strains, and easy 

induction of the T7 RNA polymerase-driven expression by the manufacturer. 

Transformation was carried out with 50 µl of cells and 100 ng of plasmid DNA 
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each. Cells were kept 15' on ice, then heat-shocked for 3' at 37 °C and cooled 

again 3' on ice before adding 400 µl of LB medium and incubating at 37 °C for 

45' in a shaker at 600 rpm. Cells were then plated on LB-Amp agar, incubated 

overnight, and clones were picked for each construct and transferred to mini-

cultures (5 ml) as described above. 

E.coli mini cultures were diluted in a rich medium (TB-Amp) to a final volume 

of 30 ml and grown under periodical surveillance of growth at OD600 on the 

spectrometer until an optical density of 0.6 was reached. Then, isopropyl β-D-

1-thiogalactopyranoside (IPTG, dioxane-free, Fermentas) was added to a final 

concentration of 1 mM for induction of desired gene expression. Cells were 

continuously grown at 37 °C and 200 rpm. After 6 h of incubation, cells were 

harvested by centrifugation at 2,000 rpm in a Heraeus Varifuge 3.0 and the 

medium supernatant was discarded. 

Depending on the purification of protein with native or denaturing protocol, 

cells were resuspended in 10 ml of the appropriate lysis buffer, as 

recommended by the Ni-Agarose manufacturer, sonified three times for 30' 

with intermediate cooling on ice, and the lysed cells were incubated overnight 

at 4 °C. 

After pelletting the cell debris for 90' at 4 °C and 4,300 rpm (4,000 x g) in the 

Heraeus Varifuge, the supernatant containing the protein was decanted into a 

new tube. 5 ml of the solution were mixed with 4 ml of Ni-Agarose slurry 

(Qiagen) and the protein purification protocol was continued according to the 

manufacturer's protocol, but with 3 x 2 ml aliquots per washing step. Cleared 

protein fractions were stored at 4 °C. 

 

To check for the protein content, 20 µl of the mini culture, lysis supernatant as 

well as each of the fractions were mixed with 10 µl Laemmli gel loading buffer, 

incubated for 15' at 96 °C and loaded onto a 15% polyacrylamide gel 

(containing SDS, Bio-Rad). Size marker used for direct staining was Unstained 

Protein Molecular Weight Marker and for subsequent blotting PageRuler 

Prestained Protein Ladder (both Fermentas). Electrophoresis was performed for 

approximately 2 h with 20W constant electrical current per mini gel, until the 

front of the loading buffer reached the end of the gel. 
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For immediate results, gels were stained with Coomassie Blue for at least 60' or 

overnight, destained with 20% isopropanol / 7% acetic acid (v/v) until the 

staining of background had diminished, and fixed in 7% acetic acid (v/v) for at 

least 30' or overnight. For long term storage, stained gels were spread on 

Whatman paper and dried under vacuum at 80 °C for 105'. 

 

3.5.3. Immunization of Mice and Generation of Hybridoma Cells 

The generation of antibodies from mice hybridoma cells was carried out in 

cooperation with the laboratory of Prof. Dr. Hanswalter Zentgraf, DKFZ 

Heidelberg. 

In brief, mice of strain BALB/c, 8-12 weeks old, were injected subcutaneously 

with 20 µg of soluble protein as immunogen. The preparation of the 

immunogen included a nonspecific immunogenic stimulator (Freund's 

Adjuvant) containing mineral oils. This procedure is administrated for the 

primary immunization to enhance the immune response of the animals and 

protect the immunogen from rapid catabolism. Primary immunization of the 

mice was performed with a conjugate made of BAMBI cytosolic fragment with 

keyhole limpet hemocyanin (KLH) by thiol-coupling according to Sawin and co-

workers.140 Second and third immunizations, in two weeks intervals, were 

performed with 20 µg of the antigen alone to boost the specific immune 

response against the BAMBI cytosolic fragment. Three days later, spleen cells 

from the immunized mice were fused with cells of the myeloma line 

P3x63Ag8.65 3 using polyethylene glycol as described.141 Cell culture 

supernatants were screened for antibodies by ELISA and immunoblotting. 

Positive cell lines were subcloned by limited dilution. 

 

3.5.4. Validation by Western Blotting 

For testing of antibodies, prokaryotic expression of proteins and PAGE were 

performed as described above, but with BAMBI full length protein as well as 

BMPR1B protein, on 15% polyacrylamide gels. 

Gels were blotted using polyvinylidene fluoride (PVDF) membrane (Millipore) in 

a standard mini-gel tank-blotting apparatus (Bio-Rad) according to 

manufacturer's instructions. The buffer used for transfer was Tris/Glycine 

based but without SDS and contained 20% methanol (v/v). Blots were then 
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washed, blocked and incubated with antibodies. Transfer and washing buffers 

were prepared and used according to protocols given in the "QIAexpress 

Detection and Assay Handbook for Anti·His Antibodies" (Qiagen). The only 

exception to these recommendations was the blocking mix, for which 5% milk 

powder (w/v) and 3% BSA (w/v) in TBS-Tween buffer containing 0.05% 

Tween-20 (v/v) were used. 

Hybridoma cell supernatants were used undiluted to test antibodies. For 

positive controls, anti-P53 antibody was used on the blots against P53 protein 

(both kindly provided by Hanswalter Zentgraf), which was additionally loaded 

onto the acrylamide gels. As negative controls, antibodies against either P53 or 

BRWD3 protein (the latter provided by Magdalena Schlotter) were used against 

whole cell lysate. All controls were performed at concentrations recommended 

by the provider. 

 

 

3.6. Pathway Analysis 

For the identification of cellular signaling pathways involved in the course of 

the disease, as characterized by the classification between responders and non-

responders with the gene expression signature, the contained genes were 

analyzed using designated software and tools. 

The most comprehensive and best known database is Gene Ontology (GO). 

Since GO and its use are public, other tools use it to integrate the information 

for providing statistical analyses (AmiGO, FatiGO)142,143 or graphical 

illustrations of the interplay (KEGG)144 between proteins or lists of genes and 

proteins. To identify pathways deregulated or altered between the responder 

and non-responder groups of breast cancer patients, the FatiGO and KEGG 

analysis tools and databases were used, as well as the raw information 

published and stored in the GO database and information collected in the Gene 

and Pubmed databases of the National Center for Biotechnology Information 

(NCBI), which belongs to the United States National Institutes of Health (NIH). 
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3.7. Immuno-Histochemistry 

To validate results from the gene expression data acquired by microarray and 

RQ-PCR measurements, the translation of the deregulated genes into proteins 

was assessed by immuno-histochemical measurement in sections of breast 

tumor samples from the same patients. These formalin-fixed and paraffin-

embedded tissue samples as well as the sections thereof were provided by Prof. 

Hans-Peter Sinn from the Department of Pathology at the Hospital for 

Gynecology and Obstetrics of the University of Heidelberg. In total, 80 patients 

from both GEDoc and GEsDoc studies were available for immuno-

histochemical experiments, with four consecutive sections per patient, cut at 

5 µm thickness. 

 

Deparaffination and Antigen Retrieval 

Embedded tissue sections were deparaffinated and antigen retrieval was 

carried out by incubation of the pre-processed tissue section slide by boiling for 

25' in either citrate buffer (10 mM citric acid, 0.05% Tween-20, pH 6.0) or 

EDTA buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween-20, pH 9.0) and left to 

cool down at room temperature for another 25' (Table 14).145-147 For each 

antibody, the optimal retrieval method was tested on excess sections and the 

optimal protocol was then applied to the sections from tumor specimen of the 

breast cancer patients from the GEDoc and GEsDoc study cohorts.  

 

Table 14 Preprocessing of Paraffin Sections  
Incubate in xylol, 3x 5' 
Incubate in 100% EtOH, 2x 5' 
Incubate in 95% EtOH, 2x 5' 
Incubate in 80% EtOH, 2x 2' 
Incubate in aqua dest., 1' 
Incubate in Tris-EDTA (pH 9.0) / citrate (pH 6.0) buffer, 25' @ 97 °C 

  

25' cool down at room temperature 

 

  
 

Immuno-Staining Reactions 

Antibodies against BAMBI, BMP4, BRCA1, LMO4, SMAD3 and SRC proteins 

were purchased and used as given in Table 15. Washing of the sections, 

incubation with the antibody dilutions and staining with chromogens was 

carried out on a TechMate Horizon (Dako) using protocol MSIP and the 
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solutions provided, as recommended by the manufacturers. Double-stains 

(BAMBI/SRC and BMP4/SMAD3) were performed sequentially using NovaRed 

chromogen first and SG chromogen (both Vector) second, and in accordance 

with deparaffination method and subcellular location compliance of the two 

antigens. Counterstaining with hematoxylin & eosin solution was performed 

during the first staining run and substituted with Washing Buffer 4 during the 

second staining run. 

 

 Table 15 Antibodies and Dilutions  

Target 
Protein Antibody No. Manufacturer Clonality Origin 

Species Dilution Chromogen 

BAMBI a H00025805-M01 Abnova monoclonal Mouse 1:150 NovaRed 
(red, Vector) 

BMP4 b NCL-BMP4 NovoCastra monoclonal Mouse 1:50 NovaRed 
(red, Vector) 

BRCA1 ab16780 Abcam monoclonal Mouse 1:100 NovaRed 
(red, Vector) 

LMO4 sc-11120 Santa Cruz polyclonal Goat 1:100 DAB 
(red, Dako) 

SMAD3 b ab28379 Abcam polyclonal Rabbit 1:100 SG 
(grey, Vector) 

  
SRC a ab32102 Abcam monoclonal Rabbit 1:150 SG 

(grey, Vector)  
a,b Double stains performed on the same sections. 
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4. Results 

 

In the presented study, the discovery of a gene expression signature based on 

RNA samples from small tissue biopsies, obtained from primary tumors of the 

breast, was elucidated. As the RNA yield was very small, the appropriate 

method for amplification of mRNA to be used with long gene-specific 

oligonucleotide microarrays had to be developed. Then, the amplification 

procedure was applied to a large set of biopsies from breast cancer patients, 

and whole-genome gene expression experiments were performed to identify a 

gene signature predicting response of the patients to chemotherapy. The 

prediction performance of the obtained gene expression signature was then 

tested for significance in an independent set of patients, who received 

chemotherapy with the same drugs. Genes contained in the predictive gene 

signature demonstrating biological relevance of the corresponding pathways 

were selected to confirm the microarray expression results using RQ-PCR and 

to further investigate these pathways by immuno-histochemical staining of 

tumor biopsy sections from the same patients. 

 

4.1. Messenger RNA Amplification Protocols 

To overcome restrictions imposed by the strand incompatibility of the sense-

orientated oligonucleotide DNA probes of the microarray with established 

mRNA amplification protocols yielding sense orientated labeled DNA samples, 

six different procedures and additional variations thereof to amplify nucleic 

acids were developed or introduced and tested in collaboration with Dr. Jörg 

Schlingemann. In order to have a direct comparison and minimize bias, the 

protocol steps that were shared between the individual methods were 

performed correspondingly, e.g. using the same enzymes and concentrations of 

reagents. Then, various measurements were made to estimate the performance 

of these methods like fluorescent dye incorporation, microarray signal 

intensity, reproducibility, and others. The source material used for testing was 

generated from two different cell lines, HL-60 and NU-DHL-1, which both are 

from myeloid origin but represent different genetic alterations (see Appendix A). 

For a short summary of the different amplification methods, see Figures 10-12. 
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Figure 10 

 

Schematic view of Direct Labeling and In Vitro Labeling protocols. ssDNA, second strand DNA, complementary 
strand of cDNA; aRNA, antisense RNA. Sense and antisense refer to the orientation of mRNA. 

 

 

Figure 11 

 

Schematic view of Baugh Standard and Baugh + Klenow protocols. ssDNA, second strand DNA, complementary 
strand of cDNA; aRNA, antisense RNA; c*DNA complimentary sense DNA. Sense and antisense refer to the orientation 
of mRNA. 
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Figure 12 

 

Schematic view of PALDA and ts-SPA protocols. ssDNA, second strand DNA, complementary strand of cDNA; c*DNA 
complimentary sense DNA. Sense and antisense refer to the orientation of mRNA. 

 

4.1.1 Incorporation of Fluorescently Labeled Dyes 

The first step in evaluating the performance of the different protocols for 

amplifying nucleic acid material was comparing the rate of incorporated 

fluorescent dyes per 1000 nucleotides. Since the Cy dyes are covalently bound 

to the nucleotides, resulting in a much higher molecular weight and surface 

area, this rate of incorporation depends on the different enzymes that are used 

to polymerize the nucleic acids. Some of the enzymes had been modified 

accordingly by their manufacturers, e.g. by reducing the proof-reading capacity 

or modifying the size of the grooves for nucleotide entry and polynucleotide 

exit. For unmodified enzymes, the tested protocols had been adapted to 

increase the ratio of labeled to normal nucleotides, thereby increasing the 

probability to incorporate the labeled ones (PALDA Taq / Pfu and IVT Labeling). 

The Primer-Assisted Linear DNA Amplification (PALDA) protocols did not 

incorporate these bulky nucleotides well (Figure 13), although the used Pfu 

DNA polymerase with the lowest incorporation rate (below 2 per 1000 

nucleotides) has a decreased exonucleoase activity (exo-). PALDA using the Taq 
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DNA polymerase as well as In Vitro Transcription (IVT) labeling performed 

significantly better (7.3 and 10.1 per 1000 nucleotides, respectively), but their 

incorporation rates were considerably low when compared to the other 

protocols. Using the Klenow fragment of DNA polymerase I, as in Baugh + 

Klenow and the two Single Primer Amplifications (SPA) protocols, performed 

substantially better (24.3, 49.9 and 52.3 per 1000 nucleotides for Baugh + 

Klenow, ts-SPA and SPA, respectively). 

Figure 13 

 

Incorporation rates for fluorescently labeled nucleotides. Bars represent labeled nucleotides per 1000 nucleotides 
as a result of the different protocols for amplification, estimated by photometric measurements after amplification. 

 

Another very important aspect in evaluating the incorporation rates of the 

labeled nucleotides is the ratio between the two different fluorescent dyes. As 

these have different molecular weights and surface areas, a difference in their 

incorporation into the nucleic acids was expected, especially for the 

incorporating enzymes with low processivity for these bulky nucleotides. 

However, the only protocol showing a dramatic bias towards one of the dyes 

was the IVT Labeling protocol (1.99 for Cy3 over Cy5, Figure 13 & 14). The RNA 

polymerase II, which was used in this protocol with the labeled nucleotides, 

showed a strong discrimination in its processivity between the dyes, as the Cy5 

dye has the bulkier fluorescent molecule group and therefore requires more 
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space to be integrated. The enzyme with the lowest dye bias was the Pfu exo- 

polymerase, although it had a very limited total incorporation. The protocols 

using the Klenow fragment, as well as the PALDA Taq method, had a moderate 

bias for the benefit of Cy3 dye (1.24 to 1.38). 

Figure 14 

 

Biased incorporation of fluorescently labeled nucleotides between dye channels. For different amplification 
protocols, the ratio of Cy3 over Cy5 incorporation rates after amplification was calculated. 

 

4.1.2 Performance of Amplified Messenger RNA on Oligonucleotide Microarrays 

After evaluation of the dye incorporation, the second but even more critical 

aspect of the amplification protocols was to investigate their performance on 

the oligonucleotide microarrays. In order to obtain valuable data, the 

experiments were performed at least in duplicates. For comparison, directly 

labeled cDNA as well as DNA amplified and labeled with the Klenow standard 

protocol and by PCR were also included. Since the PALDA protocol with Pfu 

exo- enzyme did not yield sufficient fluorescent labeling, this protocol was not 

pursued anymore. 
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Signal Intensity 

Beyond the general incorporation as estimated above, the amount of 

fluorescently labeled nucleic acid actually available for hybridization to the 

DNA probes on the microarray was analyzed. To obtain this measure, the total 

intensity of each feature, representing hybridized sample molecules, was 

calculated versus its local background of the surrounding area and averaged 

for all valid features. These ratios were compared for the different protocols 

(Figure 15). 

Figure 15 

 

Signal to background ratio. Intensity values from feature foreground (signal) to local area surrounding feature 
(background) were averaged for both dye channels of microarray experiments, and the ratio was calculated. 

 

Compared to the direct labeling procedure used as benchmark (signal to 

background ratio of 56.7), only one method showed superior signal to 

background ratio, the IVT Labeling (237.8). Next closest to the direct labeling, 

but lower, is the Baugh + Klenow method. Even though the input amount of 

total RNA was modified (0.5, 1.0 and 2.0 µg), the protocol yielded higher signal 

to background ratios than the next best method (18.9, 26.7 and 24.2, 

respectively). Both SPA and template-switch SPA yielded relatively low ratios 

when compared with the direct labeling (12.8 and 16.2, respectively), while the 
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other protocols (Baugh Standard, 8.0; PALDA Taq, 3.1; PCR, 3.0) did not yield 

sufficient signal to background ratio. 

 

Same-versus-same (Equivalent) and Differential Expression Correlation 

To analyze whether the signals received from the microarray hybridizations 

were gene-specific and reproducible, expression ratios from hybridizations of 

same-versus-same (referred to as equivalent) experiments as well as from 

experiments with the two different cell lines (differential) were compared. 

Unfortunately, the PALDA Taq protocol did not yield enough labeled product to 

perform same-versus-same hybridizations, so only differential experiments 

could be carried out. The Pearson's Correlation for all valid features was 

calculated both in equivalent and differential experiments, to evaluate 

reproducibility or difference (Figure 16). While most protocols show good 

reproducibility, as shown by high values for the equivalent comparisons, the 

Baugh Standard, SPA and PCR methods have low or no correlation. The PALDA 

Taq protocol could not be evaluated in this aspect. In the differential 

experiments, a medium (0.5) to slightly elevated (0.65) correlation was 

expected, as the two cell lines have some, but not high similarities. However, 

the Direct Labeling, PALDA Taq and ts-SPA methods have a higher than 

expected correlation, while the SPA protocol shows very low correlation.  
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Figure 16 

 

Squared Pearson's correlation coefficient. Repeat hybridizations in same-versus-same (equivalent) or differential 
hybridizations between cell lines HL-60 or NU-DHL-1 were compared across all valid features of the respective 
microarrays. 
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Outlier Features 

The GenePix software detecting the hybridized microarray features, as guided 

by the manual inspection of the user, was used to identify features without 

hybridization as well as spots representing artificial or otherwise false positive 

signals. The proportion of these so-called outlier features could be determined 

for each protocol (Figure 17). A certain extent of missing features was expected, 

since not all genes are expressed in one or both of the cell lines. A very high 

percentage of outlier features was seen in amplifications with the PCR (50.1%) 

and the PALDA Taq (28.5%) methods, while the SPA and ts-SPA protocols 

showed an elevated percentage (18.6% and 16.1%, respectively), when 

compared to the remaining protocols (11.5% - 14.2%). 

 

Figure 17 

 

Percentage of non-valid features (outliers). Outlier features were identified by microarray scanning software or 
manually flagged by user inspection, and set in relation to total number of spots per microarray. 
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Linear Trend of Intensity Scatter Plots 

By spreading the median intensities of all spots on the microarrays on scatter 

plots, either in same-versus-same (equivalent) or differential hybridizations, 

and calculating the linear trend of the resulting data points, the slope and 

intercept of the trend line could be used to describe key features of the 

amplification performance and hybridization to the probes on the microarrays. 

The intercept of this line expresses a bias of the corresponding dye intensity, as 

the scanner was set to a higher PMT voltage in the corresponding channel to 

compensate for the intensity loss. Such a bias is seen as a very high intercept 

of the trend in IVT labeling (1885.5), and as an elevated intercept in the PCR 

protocol (608.3). 

 

Figure 18 

 

Ordinate intercept points of the linear trend. Linear models were fitted to the scatter plots of feature intensities 
between both dye channels, Cy3 and Cy5, and the ordinate intercept was calculated. 
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Spot Homogeneity 

The homogeneity of the spots was another factor used for evaluation of the 

amplification protocols. Spots with inhomogeneous pixel intensities have to be 

dismissed, as they do not represent a substantial intensity value. Therefore, 

the percentage of homogeneity outlier features was used as a measure of 

intensity validity, accepting features for data analyses if the ratio of mean to 

median was between 0.8 and 1.25. The percentage of the features with a ratio 

outside this interval was estimated for each protocol (Figure 19). With a 

homogeneity outlier percentage above that of the PCR amplification (40.9%), 

the Baugh Standard (63.6%) and PALDA Taq protocols (61.6%) showed very 

high values. IVT labeling showed an elevated homogeneity outlier percentage of 

27.6%, while the Baugh + Klenow protocols (11.6% - 19.1%) and the SPA 

methods (ts-SPA, 14.3%; SPA, 14.9%) were within acceptable range of the 

Direct Labeling protocol (17.2%). 

 

Figure 19 

 

Homogeneity outlier percentage. Valid features with a mean to median ratio of feature intensity pixels outside the 
acceptable interval of 0.8 to 1.25 were calculated in respect to total number of valid features. 
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Based on the results shown, it was evident that the protocol for amplification of 

messenger RNA to be used for small amounts such as those obtained from 

clinical biopsies to be used together with the oligonucleotide microarray 

technology was best met with the Baugh + Klenow method. In all aspects 

measured and displayed, it performed best or second to best and showed good 

reliability in laboratory practice. Since its denomination was derived from the 

original author and the enzyme nickname that was used for its additional 

extension, it was finally entitled "T7-based Amplification of cDNA and Klenow 

Labeling for Expression Analysis", abbreviated TAcKLE Analysis. 
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4.2 Gene Expression Signature Predictive for Chemotherapy in Primary Breast 

Cancer 

A total of 148 patients had been enrolled in two combined clinical phase II 

studies to determine the efficacy and dosage compatibility of a neoadjuvant 

chemotherapeutic regimen of gemcitabine, epirubicin and (or sequentially 

followed by) docetaxel, termed GEDoc and GEsDoc, respectively, for therapy of 

patients with primary breast cancer at the Clinic for Gynecology and Obstetrics 

of the University of Heidelberg. This protocol includes the addition of the drug 

gemcitabine, a nucleoside analog like fluorouracil, to the combination therapy 

of an anthracycline (epirubicine) and a taxane (docetaxel). The addition of 

gemcitabine promised an improvement of the response of the tumors to 

established chemotherapy regimens, resulting in an increase in both the 

number of patients with a complete response (no residual tumor) and the 

number of patients with a partial response (decreased tumor size).47,104  

 

To supplement these studies, an accompanying trial was conducted at the 

German Cancer Research Center (Deutsches Krebsforschungszentrum) in 

Table 16 Patient Characteristics  
GEsDoc GEDoc   

n % n % 
No. of patients 52 100 48 100 

Age [median (range)], years                    45 (29 to 65) - 49 (30 to 65) - 

Tumor size by US  [median (range)], cm   3.5 (2.1 to 8.0) - 3.5 (2.1 to 10.0) - 

Histology, ductal / lobular / other 45 / 4 / 3 87 / 8 / 6 37 / 7 / 4 77 / 15 / 8 

Histological grade, 1 / 2 / 3 / n.a. 2 / 22 / 25 / 3 4 / 42 / 48 / 6 2 / 19 / 23 / 4 4 / 40 / 48 / 8 

Clinical nodal status, N0 / N+ 31 / 21 60 / 40 20 / 28 42 / 58 

Hormone receptor expression, ER or 
PGR score ≥ 1 / ER & PGR score 0 37 / 15 71 / 29 35 / 13 73 / 27 

HER2 expression, 0 / 1+ / 2+ / 3+ 40 / 2 / 1 / 9 77 / 4 / 2 / 17 33 / 3 / 1 / 11 69 / 6 / 2 / 23 

KI67 expression, ≤ 50% / > 50% / n.a. 34 / 18 / 0 65 / 35 / 0 37 / 8 / 3 77 / 17 / 6 

P53 expression, ≤ 20% / > 20% 39 / 13 75 / 25 38 / 10 79 / 21 

BCL2 expression, 0 / 1+ / 2+ / 3+ 21 / 10 / 12 / 9 40 / 19 / 23 / 17 29 / 4 / 10 / 5 60 / 8 / 21 / 10 

Clinical response after 6 weeks of PST, 
CR / PR / NC / PD / n.a. 

1 / 28 / 21 / 0 / 
2 

2 / 54 / 40 / 0 / 
4 

0 / 30 / 18 / 0 / 
0 

0 / 63 / 38 / 0 / 
0 

Pathologic response at surgery   

pT0 / pTis / pT1-4 12 / 3 / 37 23 / 6 / 71 5 / 4 / 39 10 / 8 / 81 

pN0 / pN+ / n.a. 19 / 32 / 1 37 / 62 / 2 34 / 14 / 0 71 / 29 / 0 

pCR breast (pT0 and pTis) 15 29 9 19 

pCR breast+axilla [(pT0 or pTis) & pN0] 13 25 9 19 

  
CR, complete remission; ER, estrogen receptor; n.a., not available; N, nodal status; NC, no change; PD, progressive 
disease; pN, pathologically determined nodal status; PGR, progesterone receptor; PR, partial remission; PST, primary 

systemic chemotherapy; pT, pathologically determined tumor status (is, tumor in situ); US, ultrasound 
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Heidelberg to establish and test a gene expression signature that allows the 

prediction of the response of patients to this chemotherapy. 

To conduct the necessary experiments, core needle biopsies of the primary 

tumor were taken from the patients under sonographic surveillance at the 

clinic and one to two of these tumor specimens were subjected to microarray 

analysis in our laboratory as described. For the number of 100 patients, the 

mRNA could be successfully extracted, amplified and analyzed on the 

oligonucleotide microarrays. A detailed overview of the characteristics of this 

cohort of patients is given in Table 16. 

 

4.2.1. Identificaton of the Gene Expression Signature 

In order to obtain statistical significant genes predicting the response of the 

patients to the chemotherapy, two preconditions had to be set. First, the 

patients needed to be classified as responders or non-responders. According to 

the clinical behavior of the patients, only those who achieved a pathologically 

confirmed complete remission of their tumor, defined as the disappearance of 

all viable tumor cells in the specimen at surgery after chemotherapy, termed 

pathological complete remission (pCR), were classified as responders. All other 

patients were classified as non-responders. Secondly, to minimize overfitting 

bias of the algorithms identifying the classifier, the total number of 100 

patients had to be divided into two cohorts of similar size. One of these sets 

was used as a training set to discover the gene signature, while the other 

completely independent set was exclusively used to test the gene signature and 

estimate its predictive power. As the patients had enrolled in two slightly 

different studies, of which almost identical numbers of patients were 

successfully analyzed, these were used as training and test sets. For the 

training set, the GEsDoc study patients were chosen, as they had the larger 

proportion of responders (29%) and thus the greater probability to establish a 

significantly predicting gene signature. The GEDoc study patients were then 

used to test the gene signature. 

 

Of the initially 21,329 gene-specific oligonucleotides contained on the 

microarray, 15,355 were expressed and passed quality checks in at least 80% 

of the patients. Therefore, only these genes were considered for the 
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establishment of the gene signature. Applying the Support Vector Machines 

algorithm, the training set was used to discriminate the predictive power of 

these genes. Subsequently, the number of genes was halved stepwise by 

Recursive Feature Elimination, and each time the predictive power of the 

subset of genes, given as misclassification error, was estimated by cross-

validation (Figure 20). On the basis of the minimal misclassification error, the 

selected gene signature contained the 512 (29) most predictive genes. The list of 

the genes contained in the signature is given in Appendix D. 

Figure 20 

 

Misclassification error. The sum of false positives and negatives, estimated by cross-validation depending 
on the number of genes of the model within the training set of patients. In collaboration with P. Warnat. 

 

Using the Receiver-Operator Characteristic graph, in combination with the 

Youden's Index (Sensitivity + Specificity - 1), the predictive characteristics of 

the chosen gene signature was calculated on the test set (Figure 21). For the 

optimal Youden's Index of 0.68, the parameters sensitivity (true positive rate, 
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estimated within observed pCR cases), specificity (true negative rate, estimated 

within observed non-pCR cases), positive predictive index (PPV, observed 

within estimated pCR cases), negative predictive index (NPV, observed within 

estimated non-pCR cases) and overall accuracy (PPV + NPV) were calculated 

(Table 17). With a total of seven correctly predicted pCR cases, sensitivity was 

78% and the positive predictive value was 64%. Non-pCR patients were 

correctly classified by the predictor in 35 cases, yielding a specificity of 90% 

and a negative predictive value of 95%. In total, the accuracy was 88%, with 42 

cases correctly classified. Due to the small number of pCR cases, the 

confidence interval of sensitvity and PPV are high.  

Figure 21 

 

Receiver-Operator Characteristics graph. Displayed are the dependencies of the selected 
classification model between true positive rate (sensitivity) and false positive rate (1 - specificity), as 
estimated by cross-validation of the training set of patients. The optimal balance between low false 
positive rate and high true positive rate is marked by the blue arrow. In collaboration with P. Warnat. 
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Table 17 Patient Prediction Characteristics (test set)  

predicted 
  

pCR non-pCR total 

pCR 7 2 9 

non-pCR 4 35 39 
ob

se
rv

ed
 

total 11 37 48 

  cases percentage 95% C.I. 

sensitivity 7 of 9 78% 40% to 97% 

specificity 35 of 39 90% 76% to 97% 

PPV 7 of 11 64% 31% to 89% 

NPV 35 of 37 95% 82% to 99% 

accuracy 42 of 48 88% 75% to 95% 

 
C.I., confidence interval; NPV, negative predictive value; 

pCR, pathologic complete remission; PPV, positive predictive value  
 

 

When comparing the predictive power of the gene signature with the best 

clinical factors in multivariate analysis, it shows superior predictive power, as 

calculated by the Odds Ratio (Table 18). The Odds Ratio describes the relative 

risks of patients in the respective classes for the predicted negative outcome of 

not reaching a pathological complete remission. Of the clinical factors, only 

HER2 (Score 0-2 versus Score 3) has a significant predictive power in the 

tested patient cohort. With p-values lower than 0.25 demonstrating factors to 

be not statistically relevant trends, as the low grading of the tumors for positive 

outcome as well as smaller tumors for negative outcome, the other factors, 

estrogen and progesterone negativity as well as the clinical tumor response 

after six weeks of therapy, are statistically irrelevant. 

 

Table 18 Penalized Logistic Regression of Signature and Clinical Factors  
Factor Odds Ratio 95% C.I. p 

Signature (Predicted negative vs. positive) 38.3 2.43 - 6560 0.01 
Grading (G1, G2 vs. G3) 0.2 0.00 - 2.75 0.23 
HER2 (0-2 vs. 3) 10.5 1.26 - 151 0.03 
ER/PgR (ER 0 & PgR 0 vs. ER >0 or PgR > 0) 0.5 0.03 - 8.19 0.64 
Response after 6 weeks PST (PR, CR vs. NC, PD) 0.6 0.02 - 10 0.70 

  cT max (cT 2-5 cm vs. cT >5 cm) 6.9 0.33 - 1128 0.22  

  
C.I., confidence interval; CR, complete response; cT, clinical tumor size; ER, estrogen receptor; 

NC, no change; PgR, progesterone receptor; PR, partial response; PST, primary systemic chemotherapy   
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4.2.2. Genes and Pathways of the Predictive Signature 

In order to understand the biological implications of response to chemotherapy 

in breast cancer patients, it was of biological interest to investigate the genes 

contained in the gene expression signature in further detail. For this purpose, 

the Gene Ontology entries of the genes in the signature, which had an 

annotation, were studied in respect to cellular localization and molecular 

function (249 and 292 genes, respectively). As these numbers of genes were 

large, they were first depicted in their corresponding groups (Figure 22). Only a 

very small percentage of genes codes for proteins located in the extracellular 

matrix (2%), while the proportion of proteins in the nucleus is relatively large 

(36%), as the cellular components graph (upper panel) illustrates. The 

molecular function graphic (lower panel) shows a large proportion of genes 

coding for proteins involved in catalytic activity (35%) and nucleic acid binding 

(25%), binding of other molecules (21%) and proteins (20%) as well as signal 

transducing (14%) and transcriptional regulation (12%) activities. 
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Figure 22 

 

Analysis of genes contained in the predictive expression signature. Genes are grouped according to their 
annotation in Gene Ontology for cellular localization and molecular function. Due to missing annotations, only 249 
and 292 genes could be categorized, respectively. Pies amount to more than 100% as genes may have entries in 
multiple categories. 

 

In a second step, the GO annotation terms of the genes from the signature 

were analyzed for statistically significant enrichment when compared with all 

genes represented on the microarray using Fisher test (Table 19). Genes 

significantly associated with the metabolic pathways directly targeted by the 
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chemotherapeutic agents gemcitabine and epirubicin were grouped as 

nucleotide metabolisms (yellow), and genes targeted by docetaxel belong to the 

functional groups of microtubular depolymerization and regulation of spindle 

apparatus during the mitotic phase (pink). Protein farnesylation/ prenylation, 

associated with Ras proteins, showed a very high significance (orange), as did 

the significant genes from the TGF-β pathway subfamily of bone remodeling 

proteins (blue) and DNA damage response genes (green). 

 

 Table 19 Significantly enriched GO Terms  
GO ID GO Term p value 

GO:0018343 protein farnesylation 0.0015 

GO:0018347 protein amino acid farnesylation 0.0015 

GO:0018342 protein prenylation 0.0141 

GO:0018346 protein amino acid prenylation 0.0141 

  

GO:0007265 Ras protein signal transduction 0.0347 

 

GO:0045669 positive regulation of osteoblast differentiation 0.0391 

GO:0030501 positive regulation of bone mineralization 0.0391 

GO:0046852 positive regulation of bone remodeling 0.0391 
  

GO:0045778 positive regulation of ossification 0.0391 

 

GO:0009117 nucleotide metabolism 0.0209 

GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism 0.0330 

GO:0009134 nucleoside diphosphate catabolism 0.0391 
  

GO:0046939 nucleotide phosphorylation 0.0391 

 

GO:0009132 nucleoside diphosphate metabolism 0.0087 

GO:0006014 D-ribose metabolism 0.0391 

GO:0009191 ribonucleoside diphosphate catabolism 0.0391 

GO:0046785 microtubule polymerization 0.0391 
  

GO:0045842 positive regulation of mitotic metaphase/anaphase transition 0.0391 

 

GO:0000718 nucleotide-excision repair, DNA damage removal 0.0391 
 

GO:0042769 DNA damage response, perception of DNA damage 0.0391 
 

  
 

A more detailed inspection of the signature genes was performed using the 

KEGG database of genes or proteins, which illustrates the grouping of the 

proteins by their participation in signaling or metabolic cellular pathways. 

Moreover, using the NCBI database of genes, detailed annotations of the genes 

and the function of the encoded proteins were allocated and functional or 

signaling connections between them were identified, as described in 

chapter 5.3. 
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4.3 Validation of Microarray Results by Real-time Quantitative PCR 

In order to validate the results yielded by the TAcKLE amplification method in 

combination with the oligonucleotide gene expression microarrays, and to gain 

more detailed insights into the molecular pathways involved with the prediction 

of chemotherapy response, four genes from the signature were chosen to be 

analyzed for their expression by real-time quantitative PCR (RQ-PCR). 

As discussed in chapter 5.3, the genes selected from the signature were 

DAPK2, BAMBI, LMO4 and SRC for their associations with the DNA damage 

response or TGF-β pathway. Additionally chosen genes for RQ-PCR were 

SMAD3, coding for a transcription factor interconnecting signaling between 

BAMBI and LMO4, as well as ESR1 and HER2, two genes for which the 

corresponding protein levels had been measured for all patients in the clinic. 

The results were averaged for all patients in the corresponding responder class 

(pCR/non-pCR) and the averages set into relation, both in the microarray and 

RQ-PCR data sets (Figure 23). 

 

Figure 23 

 

Comparison of gene expression results as measured by Microarray and RQ-PCR techniques. Displayed here are 
the ratios between expression values averaged for patients with pCR or non-pCR to chemotherapy. 

 



 94 

When comparing these data, it became evident that for all genes except SRC, 

the expression differences between classes relate well between RQ-PCR and 

microarray results. However, the ratios between the patient classes had in 

these cases higher absolute values for the microarrays as compared to the 

RQ-PCR, except for HER2. Genes downregulated in pCR patients as compared 

to non-pCR patients were estrogen receptor (ESR1) and the TGF-β/bone 

morphogenic pathway (BMP) signal transducer SMAD3. BAMBI, the negatively 

regulating pseudoreceptor of the TGF-β/BMP signaling family, as well as 

LMO4, a transcription regulator associated with suppression of TGF-β target 

genes, were both upregulated in tumors pCR patients as compared to the 

tumors of non-pCR patients. Another gene upregulated in tumors of pCR 

patients is the death-associated protein kinase DAPK2, which is thought to 

induce apoptosis. The epithelial growth factor receptor gene HER2 did not show 

significant regulation differences between tumors of pCR and non-pCR patients 

on the transcription level by both methods. 

 

For the proteins estrogen receptor 1 (ESR1) and HER2, the averages of 

immuno-histochemical staining scores of the tumor biopsies (Figure 24) were 

included into the comparison by taking the natural logarithms of the ratios 

between patients from the different response classes (pCR over non-pCR). 

These log-ratios amount to -2.0 for ESR1, given as pCR (average score 1.0) 

versus non-PCR (7.4), and 1.0 for HER2 (pCR, 1.06 versus non-pCR, 0.38), 

respectively. While the protein expression value corresponds very well in case 

of ESR1 to the RQ-PCR and microarray values, it does not reflect transcript 

data for HER2. It should be noted, however, that the HER2 protein expression 

levels were scored on a scale of 0 to 3, and while their means result 1.06 and 

0.38 for pCR and non-pCR, repectively, the medians of the scores have the 

value of 0 in both classes. 
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Figure 24 

 

Immuno-histochemical evaluation of tumor biopsies. Tumor sections from patients participating in GEDoc and 
GEsDoc studies were scored for protein expression of estrogen receptor (ESR1) and HER2/NEU, respectively. 
Maximum score is 12 for ER expression and three for HER2 expression. Scores were averaged for pCR and non-pCR 
patient classes. Data was provided by the Clinic for Gynecology and Obstetrics, University of Heidelberg. 
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4.4 Generation of Antibody using Mouse Hybridoma Cells 

One of the genes contained in the signature discriminating between patients 

classified as responders or non-responders in respect to the chemotherapy was 

the BAMBI gene. It was considered an important protein, as it negatively 

regulates the TGF-β signaling cascade, which was significantly enriched in the 

gene signature. For this reason, it was decided to measure the protein 

expression of BAMBI to reveal insight into its role in breast cancer 

chemotherapy response. Since there was no antibody available at the time the 

signature was discovered, it was necessary to generate one against BAMBI 

protein that would be suited for Western blot analysis and immuno-

histochemistry. In collaboration with the laboratory of Prof. Hanswalter 

Zentgraf at the DKFZ, such antibodies were aimed to be developed. 

 

Figure 25 

 

Antibody sensitivity test. Western blot strips containing BAMBI full length protein (1-1 to 4-2), isolated from whole 
cell lysates of E.coli cells overexpressing the protein, or TP53 protein (4-3 and 4-4) with His-tag attached were stained 
by immune reaction with antibody containing conditioned cell media from different hybridoma cell clones, α-His 
(Qiagen) antibody for positive or TBS buffer for negative control. TP53-His was kindly provided by Prof. Hanswalter 
Zentgraf. 
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Conditioned media of the generated hybridoma cell clones were used for testing 

of the antibodies on Western blots (Figure 25). The sensitivity of the antibodies 

contained in the conditioned media was very high in samples 11, 17, 55, 92, 

118 and 123, but very low in samples 215 and 225. Specificity is low in 

samples 11, 17 and 118, as seen by their detection of other bands. TBS control 

was negative, showing only overshadowing of very strong signal from α-His 

control, and TP53 positive controls are also positive. Samples with the best 

balance of high sensitivity and specificity were 123, 138, 153, 167 and 189. 

 

In order to validate the specificity of the antibodies produced by the hybridoma 

cells, the antibody containing media needed to be tested against whole cell 

lysates containing either BAMBI or BMPR1B proteins in their native form. To 

do such a test, it was therefore necessary to express these proteins in 

mammalian cell lines. However, it proved impossible to generate such cells: 

While transfection of cells was successful with the "empty" pBCHGs vectors, as 

seen by positive fluorescence of GFP protein, the cells transfected with either 

pBCHGs containing GFP-BAMBI or GFP-BMPR1B fusion genes showed no 

significant fluorescence (data not shown). To exclude any cell-type specific 

effects of GFP-BAMBI or GFP-BMPR1B overexpression, the transfection method 

was evaluated with cell lines from different tissue origins, as e.g. epithelial cells 

(MCF-7, HeLa), osteosarcoma cells (U20S), hepatocellular carcinoma cells 

(HEPG2) or embryonic cells (HEK-293). However, even though all of these cells 

incorporated the DNA vectors, none of them produced sufficient amounts of 

fluorescent fusion proteins of GFP with BAMBI or BMPR1B to be used for 

testing with immuno-histochemical methods. 

Some of the tested cell lines did produce very rarely a faint signal of GFP fusion 

proteins, but the signal was too weak. The transfection with GFP-only vectors 

had an efficiency of 60-70%, depending on cell type (data not shown). At this 

point, a commercial monoclonal antibody against BAMBI protein had become 

available, and the development of an antibody was not pursued. 
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4.5 Immuno-Histochemical Analysis of Patients 

With the identification of genes, of which the expression in the tumors of 

primary breast cancer patients allows classification of these patients into 

responders or non-responders to the tested chemotherapy, candidates for 

corresponding marker proteins were identified. 

To test some of these markers for clinical applicability, sections of paraffin-

embedded tumor biopsies were obtained from the Clinic for Gynecology and 

Obstetrics of the University Heidelberg, from 80 of the 100 patients that were 

included in the final microarray analysis. Unfortunately, only four sections per 

patient were available, limiting the number of possible tests. 

Antibodies against six different proteins were selected for their involvement in 

pathways enriched in the gene expression signature (BAMBI, BMP4, LMO4, 

SMAD3, SRC) or for the known responsibility for hereditary predisposition to 

develop breast cancer (BRCA1). Four of these proteins were used in double-

stains, and two solitary in single stains. These proteins were chosen Following 

the recommendations of the manufacturer, the double stains were performed 

with the use of NovaRed and SG (dark grey) chromogens. However, the 

applicability of the technique was limited, as strong and therefore dark red 

stains obscured weaker grey staining (Figure 26). For that reason, the results 

of the staining against SMAD3 and BRCA1 were evaluated with caution. 

The staining for the different proteins was assessed by scoring of the tumor 

cells in the tissue biopsies only. Scoring was performed both in respect to 

staining intensity (scores 0-3) as well as percentage of stained cells. 

Localization of the cell staining was not accounted for. 
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Figure 26 

 

Immuno-histochemical double-staining. Example of breast cancer tissue samples stained with both BMP4 (red) and 
SMAD3 (grey) chromogens. A. Image representing a tissue sample with good discrimination between both stainings 
(yellow arrows). B. Image showing a tissue sample with dark red and/or grey stainings that were difficult to 
discriminate between (green arrows). 
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Figure 27 

 
Box plots showing protein expression of markers. Marker expression was measured by immuno-histochemical 
staining, in tumors from patients of the different response groups. Tumor cells in three different fields of sight were 
evaluated at 10x magnification. Boxes represent values within 1st to 3rd quartile of patients, red lines indicate medians 
of patients and whiskers represent minimum and maximum value within statistical significance. Outlier values, 
representing not statistically significant tumor staining percentages, are represented by circles. KI67 and TP53 
measurements were performed in the Clinic for Gynecology and Obstetrics of the University of Heidelberg. 

 

For statistical analysis, box-plots of the percentages were performed with 

regard to the classification of the patients into responder and non-responder 

patients (Figure 27). Additionally, all different combinations of linear 

dependencies between the staining patterns as well as between them and 

important clinical markers were analyzed using linear models for the 

estimation of probabilities (Table 20). Probability values lower than 0.01 are 

marked by green fields and bold italic writing, while p-values between 0.01 and 

0.05 are marked by yellow fields and bold writing. The upper panel A shows the 

dependencies of the markers as measured by immuno-histochemistry, among 

each other. The lower panel B shows also dependencies of these with the 

clinical markers, as well as therapy (GEDoc versus GEsDoc), patient response 

(pCR versus non-pCR) and pathological status of their tumors (pCR, pPR and 

pNC). The input denotes the percentage value that was used for the 

classification of the scored other variables (output). 



 101

 

Table 20 Probability Values for Dependencies Based on Linear Models *  
Input (Percentage of Stained Tumor Cells) A 

BAMBI % BMP4 % BRCA1 % LMO4 % SMAD3 % SRC % TP53 % KI67 % 

BAMBI   0.119 0.004 0.353 0.064 0.412 0.466 0.903 

BMP4 0.145   0.514 0.106 0.058 0.449 0.662 0.720 

BRCA1 0.004 0.398   0.441 0.517 0.121 0.423 0.394 

LMO4 0.182 0.026 0.075   0.693 0.157 0.615 0.248 

SMAD3 0.134 0.078 0.255 0.167   0.068 0.527 0.308 

SRC 0.113 0.023 0.366 0.155 0.386   0.536 0.047 

TP53 0.972 0.720 0.664 0.117 0.472 0.631   0.174 
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KI67 0.674 0.574 0.340 0.319 0.378 0.964 0.003   

  

Input (Staining Intensity Score / Factor) 
B Re-

sponse 
The-
rapy 

Gra-
ding ER PgR HER2 BCL2 BAM-

BI BMP4 BRCA
1 LMO4 SMAD

3 SRC 

Response   0.385 0.040 0.000 0.000 0.012 0.052 0.557 0.472 0.944 0.101 0.332 0.548 

Therapy 0.385   0.610 0.901 0.745 0.701 0.311 0.001 0.600 0.560 0.920 0.654 0.009 

Grading 0.123 0.563   0.025 0.037 0.050 0.000 0.374 0.441 0.507 0.490 0.331 0.908 

ER 0.000 0.823 0.008   0.000 0.099 0.005 0.507 0.644 0.688 0.307 0.679 0.405 

PgR 0.000 0.409 0.050 0.000   0.048 0.054 0.312 0.811 0.399 0.743 0.468 0.786 

HER2 0.029 0.637 0.056 0.058 0.162   0.491 0.585 0.922 0.358 0.591 0.217 0.711 

BCL2 0.040 0.436 0.001 0.010 0.023 0.621   0.151 0.352 0.020 0.866 0.482 0.397 

BAMBI 0.781 0.005 0.133 0.560 0.969 0.498 0.768   0.076 0.000 0.711 0.222 0.016 

BMP4 0.593 0.557 0.495 0.013 0.035 0.548 0.356 0.157   0.818 0.041 0.026 0.139 

BRCA1 0.116 0.443 0.838 0.466 0.060 0.653 0.025 0.000 0.803   0.716 0.140 0.028 

LMO4 0.262 0.862 0.453 0.426 0.192 0.595 0.804 0.835 0.010 0.876   0.956 0.236 

SMAD3 0.563 0.901 0.712 0.598 0.355 0.290 0.978 0.808 0.110 0.223 0.509   0.534 

SRC 0.708 0.033 0.830 0.101 0.175 0.374 0.411 0.005 0.220 0.024 0.085 0.214   
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Pathol. 
Status 

0.000 0.377 0.122 0.000 0.000 0.042 0.153 0.030 0.628 0.189 0.153 0.428 0.394 

  

 

Response (pCR/non-pCR); Therapy (GEDoc/GEsDoc); Grading (G1/G2/G3); ER, estrogen receptor score (0-12); 
PgR, progesterone receptor score (0-12); Pathol. Status, pathological status at surgery (pCR/pPR/pNC); 

all other markers scored 0-3. Data for ER, PgR, HER2, BCL2, TP53, KI67 as well as clinical factors provided by the 
Clinic for Gynecology and Obstetrics, University of Heidelberg. 

* P-values below 0.01, green; p-values between 0.01 and 0.05, yellow. 

 

 
 

In some cases, a strong reciprocal dependency was detected, e.g. for BAMBI 

with BRCA1 or ER with PgR. However, there are cases that show unidirectional 

dependencies, as for example SRC depending on BMP4 percentage but not vice 

versa. 

According to these linear models, the pathological status (pCR/pPR/pNC) was 

highly associated with ER and PgR status, and HER2 and BAMBI protein 

expression showed good association. Response to chemotherapy (pCR/ 

non-pCR), a slightly different classification, was highly associated with ER and 

PgR status. HER2 protein expression showed good association, but there was 

no significance in expression of BAMBI. Notably, the type of therapy given was 
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associated with BAMBI protein expression, although the therapies were 

administered after aquisition of the samples. 

Between the different marker proteins, the linear models showed strong 

associations of BAMBI and BRCA1, KI67 and TP53, and good associations 

between both LMO4 or SRC and BMP4, respectively. 

One clinical marker, the grade of the tumors, was strongly associated with 

BCL2 score and showed significant association with ER, PgR and HER2 status. 
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5. Discussion 

 

5.1. Messenger RNA Amplification and Labeling Protocol 

The use of oligonucleotide microarrays for expression analysis of small biopsies 

from tumor material from female patients set the task of developing an 

appropriate protocol for amplification of the messenger ribonucleic acids. Since 

the established protocols could not be applied per se to be used with sense-

orientated oligonucleotides spotted on arrays for complementarity reasons, the 

known protocols needed to be either adapted or entirely substituted. 

Several different methodologies were tested for this purpose, and evaluated 

with respect to amplification rate, dye incorporation efficiency in total and in 

comparison of both dyes used, linearity of the amplification across different 

mRNA molecule sizes and applicability to the oligonucleotide microarray 

technology. Additionally, the usefulness from the economic and laboratory 

handling standpoints were also taken into consideration for the decision of the 

most appropriate protocol. 

 

The first analysis, the incorporation rate in total and in comparison between 

both fluorescent dye nucleotide types (Figures 13 and 14), shows a strong 

disadvantage of the PALDA and IVT methods. As the Primer-Assisted Linear 

DNA Amplification (PALDA) uses Taq or Pfu exo- DNA polymerases for 

integration of fluorescently labeled dyes, a low incorporation rate was initially 

expected. To overcome this restraint, a high concentration of labeled dyes was 

used initially, and the amplification procedure was performed for 2x 50 cycles 

to reach the necessary amplification efficiency. Nevertheless, the yield of 

fluorescently labeled DNA was very low in comparison with the other protocols. 

The IVT labeling protocol, designed to integrate fluorescently labeled RNA 

molecules during in vitro transcription, was also expected to have a low 

incorporation rate and thus was started with a high concentration of the 

labeled nucleotides. Although the efficiency of fluorescent nucleotide 

incorporation is not comparable with the best methods in this respect, it is 

significantly better compared to the PALDA protocols and sufficient for 

hybridization to the microarrays. However, the incorporation was shown to 

have a strong bias, supposedly from a preference of the RNA polymerase used 
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in this protocol towards Cy3-labeled nucleotides. This effect, seen as a Cy3:Cy5 

ratio of approximately two, is significantly higher in IVT labeling than all other 

tested protocols, which have a maximum ratio of 1.4. 

 

While the yield and incorporation ratio were measured on the amplified nucleic 

acids directly and in total, the following analyses were performed with amplified 

and labeled nucleic acids actually hybridized to the oligonucleotides on the 

microarrays. As a benchmark for the comparison of the protocols, the direct 

labeling protocol was performed and evaluated along with the amplification 

procedures. 

Consecutive to the yield measurements was the issue of what proportion of 

amplified molecules effectively participated in the hybridization, or to which 

extent the amplified material was an interfering side-product. To answer this 

question of amplification specificity, analyses of signal-to-background intensity 

ratios of the array features were performed (Figure 15). The IVT labeling 

method results in a very high signal-to-background ratio of more than 200, 

approximately 4-fold higher than the direct labeling method with a ratio of 

approximately 57. Not surprisingly, and probably resulting from both the 

fractionation and the strand non-specificity of the Klenow enzyme used in 

these protocols, the Baugh + Klenow (TAcKLE) as well as Single Primer 

Amplification (SPA) methods yielded approximately 50% or 30% of the ratio of 

direct labeling, respectively. However, these results were acceptable, whereas 

the results of the PALDA and Baugh Standard protocol were not. 

 

Continuing with specificity, the results of repeat experiments were analyzed 

both in the same-versus-same (equivalent) and differential hybridization setting 

by estimating correlation coefficients across all valid features of the 

microarrays (Figure 16). Unfortunately, the correlation could not be calculated 

between two differentially hybridized samples for all protocols. In general, the 

correlation allows elucidating, whether the measured signal intensities are 

really specific for the genes. Sufficient reliability was seen for Baugh + Klenow 

(TAcKLE), IVT, ts-SPA and direct labeling, with correlation coefficients of 0.9 or 

higher for R2. Baugh Standard and SPA performed poorly, while for PALDA this 

analysis was not possible due to the very limited yield. On the other hand, 
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results from differential hybridizations showed a limited decrease of correlation 

in case of the direct labeling protocol, as compared to the value for the 

equivalent hybridizations. This is also the case in ts-SPA, while the 

Baugh+Klenow (TAcKLE) shows a strong decrease to approximately 60% of the 

R2 of equivalent hybridizations. 

 

While in the microarray analyses for the performance of amplification methods 

above only valid spots were taken into consideration, the percentage of spots 

not valid for analysis was of great interest too. Figure 17 depicts the ratio of 

these so-called outlier spots, averaged for the arrays of each protocol. Outliers 

are those spots that either have no intensity and were therefore flagged as such 

by the software or those that were manually flagged as false positives by the 

user. The PCR protocol, which was used for negative control, had an extremely 

high percentage of such outliers (50%), and the PALDA protocol (28.5%) also 

had a significantly high proportion. The other PCR-based methods had 

tolerable, but higher percentages than direct labeling (18.6% and 16.1% for 

SPA and ts-SPA, respectively), while the Baugh Standard and Baugh + Klenow 

methods performed similar to direct labeling (12.2%-14.2%). The IVT labeling 

had the lowest outlier percentage (11.5%). 

 

Another view taken on the performance of the amplification and nucleic acid 

labeling was the analysis of linear trend lines from scatter plots of feature 

intensities. This trend should ideally be close to the bisecting line of the plot, 

as the total raw intensity distributions from the two dye channels should be 

similar. Irregularities were displayed by the slope and intersection point on the 

ordinate of this trend. Significant deviations of the slope between the 

intensities for both channels from one or deviations of the intersection on the 

ordinate from the origin were considered hazardous. However, as the slope also 

varies with the amount of input mRNA, slight variations seen with all tested 

methods were considered acceptable. Apart from the PCR method, used as a 

negative control, the slopes were all within 1 ± 0.25 (data not shown). The 

interception on the ordinate showed a very strong variation for the IVT labeling, 

reflecting the differences in the incorporation between Cy3- and Cy5-modified 
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nucleotides (Figure 18). All other protocols considered for amplification were 

well within the acceptable range of 0 ± 500. 

 

Finally, the quality of the valid features was assessed by estimating the 

homogeneity, averaging all ratios of mean to median for each spot per array. 

This parameter is generally used for filtering of features in microarray analysis 

and was therefore an important determinant of data validity. To normalize for 

the different numbers of valid spots, the percentage of valid features outside 

the accepted homogeneity interval was calculated (Figure 19). As the threshold 

for filtering microarray features with this parameter varies between 20% and 

30% in final data analysis, the IVT labeling protocol and PALDA method were 

considered as too erratic.  

 

In summary, the amplification procedure best applicable and most stable in 

the comparison of the protocols was the Baugh + Klenow method, which had 

been based on studies by Eberwine et al., Baugh et al. and Kenzelmann and 

co-workers. It was later named "T7-based Amplification of cDNA and Klenow 

Labeling for Expression Analysis", or TAcKLE analysis. 

The second most appropriate procedure, which had been considered for 

multiple reasons, was the template-switch Single Primer Amplification, or ts-

SPA. This method was based on works of Ena Wang et al. and Matz and co-

workers.127,129 The advantages mainly comprised laboratory handling and 

economic rationales, as the fewer reaction steps are also very commonly used 

and cost-effective. However, the lack of discrimination between differentially 

hybridized samples was the major objective to disregard the method, along with 

its weaker overall performance, e.g. signal-to-background ratio and outlier 

feature percentage. 

 

The TAcKLE analysis procedure was therefore chosen as the method of choice 

to amplify and label mRNA from core needle biopsy samples for subsequent 

hybridization to oligonucleotide microarrays. 
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5.2. Gene Expression Signature Predictive for Chemotherapy in Primary Breast 

Cancer 

 

The study investigated and presented here aimed at the identification of a gene 

expression signature, which allows for the classification of patients according 

to their response to GE(s)Doc chemotherapy. For female primary non-

metastatic breast cancer patients receiving a neoadjuvant triple chemotherapy 

consisting of the regimen gemcitabine, epirubicin and docetaxel, this classifier 

should allow prediction of reaching the pathologically proven complete 

remission of their tumor at time of surgery with high sensitivity and accuracy. 

 

The patients were enrolled in two slightly different clinical studies, designated 

GEDoc and GEsDoc, which differ in their administration schedule and dosage 

(Figure 8). While the GEDoc cohort received all three therapeutics in parallel, 

the GEsDoc cohort received the third therapeutic, docetaxel, sequentially after 

gemcitabine and epirubicin treatment. As both clinical studies yielded the 

same percentage of pathological complete remission (pCR) of 26%, and all other 

parameters remained similar, they were considered to be comparable also on 

the molecular biology level.47,104 The GEsDoc cohort of patients was used as 

training set to identify the gene expression signature, while the GEDoc cohort 

was used as independent test set to estimate predicive power of this signature. 

The patients agreed to contribute to the microarray study with a core biopsy 

taken from their tumor, from which RNA was extracted, amplified, labeled and 

hybridized to the microarrays using the TAcKLE analysis procedure. 

 

As the threshold for the sensitivity of the prediction classifier was set to be at 

least 80% or 12 of 15 patients in the training group to prove its clinical 

applicability, the number of genes necessary for prediction was 512. Although 

it is possible to deduce a ranking of these genes in respect to their 

discriminating power, it is important to point out that in the theory of the used 

algorithm, the Support Vector Machines (SVM), none of the genes has a higher 

importance than the others. Each of the genes used for the classification has 

the same weight, and is therefore as necessary to make the prediction as the 

other genes. 



 108 

 

When comparing the predictive power of the gene expression signature with the 

clinical predictive factors for chemotherapy to date, e.g. tumor grading, HER2 

expression, hormone receptor status or clinical response after six weeks of 

therapy, the signature proved to be of superior predictive value (Table 18). In 

the test patients group, only the HER2 score (0-2 versus 3) shows a significant 

independent predictive value, but with a lower predictive power than the 

signature. Other proposed candidates, e.g. clinical response after 6 weeks of 

treatment, do not have any statistically significant predictive values, while 

tumor size (smaller than 5 cm) and grading (G1/2 versus G3) only show a 

predictive trend. 

 

For comparison of the gene expression signature with other clinically relevant 

expression data published in respect to breast cancer and the usefulness of 

microarrays, these have to be divided into three groups:95,105,148,149 

(a) Prognostic molecular profiles, using unsupervised clustering of all or only 

pre-selected subsets of genes, were aimed at molecular classification or the 

prospective classification of disease-free and overall survival or metastasis. 

These data sets, as those of Sorlie et al., van 't Veer et al., Perou et al. and 

others following since, provide valuable information about the patient's tumors 

genetic setup, and have helped to understand and interpret the heterogeneity 

of the clinical course of patients.93,105,106,150 However, these studies are not 

related with the type of treatment, and thus cannot be compared with this 

study. 

(b) Predictive molecular profiles that are aimed at long-term effects of 

(adjuvant) treatments, e.g. tamoxifen, trastuzumab and others, or at the 

prediction of chemo-resistance had been done in retrospective manner. These 

studies need long follow-up monitoring of the patients, as the effects of 

treatment or resistance can only be seen after five or more years. Therefore, 

results are not available yet for comparison. 

(c) Predictive molecular profiles that identify gene expression signatures for 

chemotherapy, ideally in the neoadjuvant setting, are the only studies that the 

gene expression signature presented here can currently be compared to, if the 

therapy settings are relatively comparable. 
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The latter group of studies is aimed at identifying gene expression patterns or 

signatures predicting response to chemotherapy. This topic is an intensely 

investigated research field, and a number of studies have already been 

published since the start of this thesis (Table 21). It is necessary to define the 

clinical setting that can be effectively compared with the study introduced here. 

Two of these recent trials, by Hannemann et al. and Sorlie et al., completely 

failed to find a predictive gene signature, possibly due to their definition of 

response. Although other studies (Chang JC et al., Iawo-Koizumi K et al., 

Dressman HK et al., Paik S et al.) with a similar definition of response 

succeeded in making predictions based on gene expression, endpoints other 

than pathological complete remission have been shown to be only weakly 

associated with patient overall or disease-free survival.98,101 The two most 

comparable of those (Chang, Dressman) also do not show any gene overlap in 

Table 21 Studies of Gene Signatures Predicting Chemotherapy Response  

Authors Tumors 
(n) 

Prediction 
Endpoint 

Molecular 
Tool 

Genes 
(n) Publication 

08/2003, 110 
Chang JC et al. 24 Response* in (A) Affymetrix HgU95-

Av2 (12k) 92 
Lancet 

06/2004,111 
Ayers M et al. 42 pCR in (T+FAC) custom cDNA 

array (31k) 74 
J Clin Oncol 

01/2005,151 Iawo-Koizumi K 
et al. 70§ CR in (D) ATAC-PCR (2,453) 85 

J Clin Oncol 

05/2005, 114 Hannemann J 
et al. 48 "near" pCR in (AD 

vs. AC) 
custom cDNA 

(18k) -- 
J Clin Oncol 

08/2005,152 
Rouzier R et al. 82 (22b) pCR in (T+FAC) Affymetrix U133A -- (61b) 

Clin Cancer Res 

10/2005,153 
Gianni L et al. 89; 82¶ pCR in (AT+T); 

(T+FAC) 

RQ-PCR (384); 
Affymetrix U133A 

(14k) 
86 (79) 

J Clin Oncol 

02/2006,154 Dressman HK 
et al. 37 Clinical Response# 

in (AT) 
Affymetrix U133 
Plus 2.0 (38.5k) 38 

Clin Cancer Res 

08/2006,115 
Paik S et al. 424 Response† in 

(Tam+CMF/MF) 
RQ-PCR (21) 21 

J Clin Oncol 

11/2006,155 
Sørlie T et al. 81 PR in (A vs. FMi) custom cDNA (8k 

A / 30k FMi) -- 
Mol Cancer Ther 

12/2007,156 Bonnefoi H 
et al. 66; 59¶ pCR in (FEC); 

(D+ED) 
Affymetrix X3P 

(38.5k) NA 
Lancet Oncol 

A, doxorubicin; C, cyclophosphamide; E, epirubicin; F, 5-fluorouracil; D, docetaxel; M, methotrexate; Mi, mitomycin; 
T, paclitaxel; Tam, tamoxifen; CR, complete response; pCR, pathological complete response; PR, partial response 

 
* defined as ≥75% regression of tumor; § primary or locally recurring breast cancers; b basal-like patient subgroup; ¶ two 
differently treated patient cohorts; # defined as absence of pos. lymph nodes; † defined as freedom of distant recurrence 
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their predictive signatures. This could be due to the facts that both studies 

used a very limited number of patients, and without validating their signatures 

in an additional patient set. The studies by Iawo-Koizumi as well as Paik and 

respective co-workers were performed on pre-selected gene sets, and are thus 

not comparable to any of the other studies, including the one performed here. 

 

A limited number of patients (n=42) was also the basis for the analysis Ayers et 

al. performed on chemotherapy comprised of sequentially administering 

T (paclitaxel) and triple therapy with FAC (5-fluorouracil, doxorubicin, 

cyclophosphamide). Nevertheless, the authors split the patients into two 

groups to independently build and then test their signature classifier. While all 

other parameters differed only insignificantly between their training and 

validation cases, the percentage of patients reaching pathologic complete 

remission was significantly higher in the validation group (39%) versus the 

training group (25%). The overall accuracy of their 74-gene classifier in the test 

group was 78%, with a sensitivity of 43% and a specificity of 100%. When 

compared to the present study, the focus of Ayers et al. on the high specificity 

becomes evident, making sure to select only patients that would benefit from 

the therapy. In contrast, the focus of the study discussed here was put on the 

highest overall accuracy (88%), resulting in a much higher sensitivity (78%) but 

accepting a comparably lower specificity (90%). 

Patients receiving the same chemotherapy regimen as in Ayers and co-workers 

study were analyzed in a trial performed by Rouzier et al. In their investigation, 

the authors decided to differentiate the patients first by usage of the "breast 

cancer intrinsic gene set", previously published by Sorlie et al. in 2001.106 

Then, using the four different molecular subtypes of patients they received, 

these were subjected separately to the identification of gene expression 

signatures. As the resulting patient subgroups were again very small, and two 

of them had a very low to no percentage of pCR patients, only the HER2+ and 

basal-like subsets could be used. As a benefit, these two subsets had a higher 

pCR patient percentage (45% in both) than the entire collective. However, only 

for the basal-like subset a gene signature predictive for pCR could be identified, 

containing 61 genes. Due to the pre-clustering of patients, the results of the 
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Rouzier study cannot be compared with the outcome of the study presented 

here. 

Gianni et al. also included patients receiving T/FAC as chemotherapy 

treatment. However, these authors first performed the gene expression 

signature identification on a different set of patients, who received doxorubicin 

and paclitaxel followed by another paclitaxel regimen (AT+T; INT-Milan cohort). 

After identification of the gene signature, it was then tested on patients treated 

with T/FAC (MDACC-Houston cohort). Adding to this complication, the INT-

Milan group was assessed using RQ-PCR to identify a predictive gene subset 

out of 384 pre-selected genes, yielding an 86-gene signature classifier. This 

signature was then tested on the MDACC-Houston cohort, which had been 

profiled using gene expression microarrays, to validate its performance within 

that dataset. Only 79 of the 86 genes were represented in the microarray 

dataset, and 24 of these showed an association with pCR in the MDACC-

Houston dataset of p ≤ 0.05. Again this study cannot be directly compared to 

the investigation here, due to Gianni et al. limiting the number of investigated 

genes for identification of the signature. 

In the most recent study in the field, performed by Bonnefoi and co-workers, 

gene signatures identified by cell culture experiments to be predictive for 

resistance against single chemotherapy agents were used in a combinatorial 

approach. Both investigated patient cohorts, treated either with FEC (5-

fluorouracil, epirubicine and cyclophosphamide) or D+ED (docetaxel 

sequentially followed by epirubicine and docetaxel, published "TET"), were used 

to validate gene expression signatures deduced from cell line experiments for 

the single chemotherapy agents in an earlier study.157 The investigated patients 

of this study, however, were pre-selected to be ER-negative. Although it is also 

not comparable with the study performed in this thesis, the work of Bonnefoi et 

al. is very interesting the way it may lead into the future, as it successfully 

integrated separate gene signatures for each chemotherapeutic drug on a 

bioinformatic level. If this procedure of identifying signatures for single drugs 

and applying them in a combinatorial fashion to patients receiving multi-drug 

therapies proves successful in general, it could facilitate the urgent solution to 

tailor the chemotherapy to each patient's best benefit. 
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In summary, most of these trials, which were published in the four years since 

the presented study was started, are not comparable with it. Often the 

investigators lacked the necessary accuracy in defining the clinically relevant 

study endpoint, a pathologically assured complete remission (response) of the 

tumor after chemotherapy. Additionally, the datasets are often strongly biased, 

either by a pre-selection of genes based on literature research and historical 

presumptions, by the pre-selection of patients to increase the response rates of 

the investigated cohorts artificially, or both. 

The study that can be best compared with the one presented in this thesis is 

the one performed by Ayers et al. Unfortunately, the authors took a different 

perspective on the focus of the statistical analysis, in terms of sensitivity versus 

specificity, than this study. The overlap of genes from their 74-gene signature 

classifier and the 512-gene signature identified here amounts to three genes 

only (APOE, NME2, SCARA3). Taken into consideration that the gene 

expression methods, statistical approaches and most importantly the 

chemotherapeutical treatment for the patients used differ largely, this is not 

surprising. 

 

Whether the signatures derived from all these studies, including the one 

presented here, are specific to the chemotherapeutic regimens used to treat the 

patients, provide a general applicability with any chemotherapy, or a mixture 

thereof remains to be determined. But as the two studies that can be best 

compared directly show very little overlap, a general applicability seems to be 

more unlikely. A more standardized approach to the clinical endpoints as well 

as the molecular methods would be necessary to address this question for 

different studies. However, some of the research groups that investigated gene 

expression signatures for prediction in breast cancer mixed different 

methodologies even within the same study. A truly comparative clinical trial, 

evaluating patients receiving different treatments with the same biological 

methods and statistical approach, is therefore essential to find a definitive 

answer. 
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5.3. Genes and Pathways involved in Prediction of Chemotherapy Response 

The genes of which the expression levels enable to discriminate between 

patients fully responding to the chemotherapy and those not fully responding 

were identified and ranked according to their discriminating power by 

statistical analysis. Of these, the top 512 genes had been determined to be 

necessary for a predictive classification into responders and non-responders 

with a prediction sensitivity of ~80% and thus ensure its significance, as 

proven by multivariate logistic regression testing. 

Most generally, bioinformatic tools to identify gene or protein associations rely 

on the correct annotation of genetic information with the function of their 

corresponding proteins and the interplay they have in a body or cell. This 

information, which is gathered by the scientific community and made known 

through their publications, is collected and stored in databases, which are 

maintained by bodies of scientific consortia. The 512 genes of the signature 

presented here were analyzed using databases incorporating Gene Ontology 

annotation data (GO and FatiGO), revealing functional and signaling 

interconnections of encoded proteins (KEGG) and harboring published 

functional and protein interaction information (NCBI Gene and Pubmed 

databases).142-144 

 

A Fisher test was used to identify statistically significant enrichments of genes 

within the gene signature as compared to all genes represented on the 

microarrays, determined by Gene Ontology (GO) terms (Table 19). According to 

these, the gene signature represents a number of genes that could be 

associated with the chemotherapeutic action of the regimen the patients 

received, consisting of gemcitabine (a cytidine nucleoside analogue to which no 

other nucleoside can be attached), epirubicine (a DNA-intercalating 

anthracycline additionally producing free radicals in the cells) and docetaxel 

(stabilizing GDP-bound β-tubilin and thus preventing depolymerization of 

microtubules). However, groups of genes could be shown to be active in other 

pathways that were not directly associated with the action of the 

chemotherapeutics (Table 22). These include genes associated with RAS 

signaling and the related protein farnesylation metabolic pathway, the TGF-β 

signaling and associated bone remodeling pathways as well as gene involved in 
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DNA damage perception or response and genes playing a role in apoptotic 

pathways. 

 

 Table 22 Signature Genes Related to Pathways or Cellular Processes  
rank gene gene description 

Regulation of TGF-β / EP300 pathway 
19 LMO4 LIM domain transcription factor LMO4 (LIM-only protein 4) (LMO-4) 

(Breast tumor autoantigen). 

23 BAMBI BMP and activin membrane-bound inhibitor homolog precursor 
(Putative transmembrane protein NMA) (Non-metastatic gene A protein). 

24 EP300 E1A-associated protein p300 (EC 2.3.1.48). 

97 BMP4 Bone morphogenetic protein 4 precursor (BMP-4) (BMP-2B). 

98 CREB3 Cyclic AMP-responsive element-binding protein 3 (Luman protein) (Transcription factor LZIP-
alpha). 

107 SMURF2 Smad ubiquitination regulatory factor 2 (EC 6.3.2.-) (Ubiquitin-protein ligase SMURF2) 
(Smad-specific E3 ubiquitin ligase 2) (hSMURF2). 

171 SRC Proto-oncogene tyrosine-protein kinase Src (EC 2.7.1.112) (p60-Src) (c-Src). 

222 TRIP6 Thyroid receptor interacting protein 6 (TRIP6) (OPA-interacting protein 1) 
(Zyxin related protein 1) (ZRP-1). 

325 TGIF2 Homeobox protein TGIF2 (TGFB-induced factor 2) (5'-TG-3' interacting factor 2) 
(TGF(beta)-induced transcription factor 2). 

RAS pathway 
2 RASAL1 RasGAP-activating-like protein 1. 

30 A-RAF A-Raf proto-oncogene serine/threonine-protein kinase (EC 2.7.1.37) (A-raf-1) 
(Proto-oncogene Pks). 

48 DAB2IP DAB2 interacting protein isoform 2. 

133 RAB32 Ras-related protein Rab-32. 

142 RRAGC Ras-related GTP binding C. 

227 RAB5A Ras-related protein Rab-5A. 

298 RASL11B RAS-like family 11 member B. 

307 RASA3 Ras GTPase-activating protein 3 (GAP1(IP4BP)) (Ins P4-binding protein). 

396 RASSF1 Ras association domain family 1 (Ras association, RalGDS/AF-6, domain family 1). 

412 RHEB GTP-binding protein Rheb (Ras homolog enriched in brain). 

456 MRAS Ras-related protein M-Ras (Ras-related protein R-Ras3). 

484 RSU1 Ras suppressor protein 1 (Rsu-1) (RSP-1). 

Regulation of apoptosis 
1 DAPK2 Death-associated protein kinase 2 (EC 2.7.1.37) (DAP kinase 2) 

(DAP- kinase related protein 1) (DRP-1). 
58 DIP death-inducing-protein 

99 KIAA1303 Regulatory-associated protein of mTOR (Raptor) 
(P150 target of rapamycin (TOR)-scaffold protein). 

168 BAK1 Bcl-2 homologous antagonist/killer (Apoptosis regulator BAK) (BCL2- like 7 protein). 

181 MRPS30 Mitochondrial 28S ribosomal protein S30 (S30mt) (MRP-S30) 
(Programmed cell death protein 9) (BM-047). 

208 MRPL37 Mitochondrial ribosomal protein L37 

274 MRPL30 Mitochondrial ribosomal protein L30 isoform a. 

360 FRAP1 FKBP-rapamycin associated protein (FRAP, mTOR) (Rapamycin target protein). 

DNA damage response 
88 BRAP BRCA1-associated protein (EC 6.3.2.-) (BRAP2) (Impedes mitogenic signal propagation) (IMP) 

(RING finger protein 52). 
346 TP53BP1 Tumor suppressor p53-binding protein 1 (p53-binding protein 1) (53BP1). 

355 CHEK2 Serine/threonine-protein kinase Chk2 (EC 2.7.1.37) (Cds1). 

446 TP53RK TP53 regulating kinase (EC 2.7.1.37) (p53-related protein kinase) (Nori-2). 

 

487 RAD51C DNA repair protein RAD51 homolog 3. 
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Genes contained in the signature from these functional groups cannot be 

considered to act independently, as the analysis of protein function of the 

respective relevant genes from these pathways reveals. Signature genes are 

highlighted by blue letters in the following. 

 

RAS Signaling Pathway 

Analysis of genes in the signature using Fisher's test identified protein 

farnesylation as a highly significant metabolic pathway in the Gene Ontology 

terms. The corresponding genes in the signature are members of or closely 

related to the Ras superfamily of proteins, which is well known as potential 

target for oncogenic transformation of cells. Many of the small GTPases, 

including the Ras, Rho and Arf subfamilies of these proteins are post-

translationally modified by covalent addition of a farnesyl group, an isoprenoid, 

which anchors these proteins in the plasma membrane. This modification step 

is administered by an enzyme called farnesyl-transferase. Due to the oncogenic 

potential of Ras, the application of farnesyl-transferase inhibitors (FTI) for 

therapeutical use is currently under investigation in clinical trials.158 

The genes belonging to the Ras signaling pathway or related to it, that were 

contained in the gene expression signature predicting the response, were 

MRAS, a homologue to the main signaling kinase HRAS. MRAS was initially 

found in muscle cells but is now known to be expressed also e.g. in epithelial 

cells, A-RAF, coding for a downstream effector kinase of Ras proteins as well as 

genes coding for other Ras-associated proteins like e.g. RHEB, RRAGC or 

RASAL1, that are held responsible for GTP recruitment or GDP/GTP exchange. 

The latter are necessary for RAS and RAF proteins to perform their 

phosphorylating enzymatic function or for recycling the GTP molecules. 

Muscle RAS oncogene homolog (MRAS), one of the genes of the Ras family, was 

reported to be engaged in regulating cell-cell adhesion via intracellular 

adhesion molecules (ICAMs).159 It was reported to bind to different downstream 

effectors of the RAF subfamily, leading to the inhibition of activation of the 

transcription factor FOS in a competitive manner.160 Mutant MRAS was more 

recently reported to induce epithelial-mesenchymal transition (EMT) and 

tumorigenesis.161 
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The downstream effector of RAS proteins, v-raf murine sarcoma viral oncogene 

homolog (A-RAF) activates the MAP kinase kinase MEK1 in epidermal growth 

factor-stimulated HeLa cells in the classical RAS signaling cascade.162 

Additionally, A-RAF was shown to bind directly to phosphatidylinositol 

3-kinase (PI3K), thus the A-RAF kinase also interacts with the G-protein 

coupled receptor signaling pathway.163 As a third role, A-RAF was also reported 

to interact specifically with two novel human proteins, referred to as hTOM and 

hTIM, which are similar to components of mitochondrial outer and inner 

membrane protein-import receptors from lower organisms.164 A-RAF was 

detected in purified mitochondrial fractions of cells, suggesting that a 

proportion of A-RAF is present in the inner matrix compartment of 

mitochondria. While a current hypothesis exists that the major effector kinase 

RAF1 is involved in apoptotic signaling through its association with BCL2 and 

mitochondrial outer membrane, a similar mode of action for A-RAF could be 

implied by the finding. 

 

TGF-β Signaling Pathway 

The general TGF-β signaling pathway includes TGF-β receptor proteins, which 

tetramerize upon binding of their ligands (BMP or TGF-β) and activate R-SMAD 

transcription factors by phosphorylation. Activated R-SMADs dimerize with Co-

SMAD proteins to form a transcription factor that is able to enter the nucleus 

and bind DNA (Figure 28).165 The transcription is further regulated by site-

specific co-factors as well as co-activator and co-repressor proteins that bind to 

the SMAD-DNA complex and mediate or inhibit the transcription of target 

genes. Members of TGF-β signaling family protein genes were identified to be 

significantly over-represented in the signature, e.g. the bone morphogenic 

ligand BMP4, the pseudo-receptor "BMP and activin membrane-bound inhibitor 

homolog precursor" (BAMBI), the inhibitory downstream regulator "Smad 

ubiquitination regulatory factor 2" (SMURF2) as well as the TGF-β -induced 

transcription factor 2 (TGIF2), the co-factor LMO4, and the co-activators of 

transcription EP300, CREB and the proto-oncogene SRC. 
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Figure 28 

 
Basic TGF-β pathway. Receptor-regulated SMAD transcription factors (R-SMADs) require transforming growth factor-
beta (TGF-β) -induced phosphorylation to assemble transcription regulatory complexes with partner SMADs (co-
SMADs). R-SMADs can move into the nucleus on their own but, to be accessible to membrane receptors, R-SMADs are 
tethered in the cytoplasm by proteins such as SARA (SMAD anchor for receptor activation). Receptor activation occurs 
when TGF-β induces the association of two type I and two type II receptors. Both receptor components have a 
serine/threonine protein kinase domain in the cytoplasmic region. In the basal state, the type I receptor is kept 
inactive by a wedge-shaped GS region, which presses against the kinase domain, dislocating its catalytic centre. In the 
ligand-induced complex, the type II receptor phosphorylates the GS domain and this activates the type I receptor, 
which catalyses R-SMAD phosphorylation. Phosphorylation decreases the affinity of R-SMADs for SARA and increases 
their affinity for co-SMADs. The resulting SMAD complex is free to move into the nucleus and competent to associate 
with transcriptional co-activators or co-repressors. SMADs can contact DNA, but effective binding to particular gene 
regulatory sites is enabled by specific DNA-binding co-factors. R-SMADs that move into the nucleus may return to the 
cytoplasm, but their ubiquitylation- and proteasome-dependent degradation in the nucleus provide a way to terminate 
TGF-β responses. From J. Massague, 2000.165 

The transforming growth factor TGF-β plays a dual role in its mode of action, 

as it can both act as mediator of transformation as well as an inhibitor of 

proliferation. Its dual role is mainly cell-type dependent, and it has been shown 

to have tumor suppressor activity in early stages of tumorigenesis, while 

operating as a promotor of tumor cell invasiveness and metastasis in advanced 
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tumors.165-167 The tumor suppressor activity includes the arrest of the cell cycle 

in epithelial, endothelial and hematopoetic cells at the early G1 phase via 

SMAD protein-mediated transcriptional regulation of critical regulators of the 

cell cycle, e.g. by transcriptionally inhibitory promotor elements leading to 

repression of c-Myc and CDK4, maintenence of Rb in hypo-P state as well as 

control of cell-cycle inhibitors (CKIs) such as p15 (Ink4) and p21/p27/p57 

(Cip/Kip family) proteins. 

TGF-β is also known to induce the epithelial-mesenchymal transition (EMT) in 

an oncogenic manner, thus enhancing proliferative, migratory, invasive and 

metastatic potential of the cells. TGF-β thereby acts in an autokrine loop, 

sustaining its acivity on the invasive cells. On the contrary, closely related BMP 

proteins fail to elicit EMT, and higher levels of BMP proteins inhibit TGF-β from 

inducing EMT. BMPs have been shown to be able to reverse EMT and lead to 

MET. Therefore, the ratio between BMP and TGF-β in tumor cells may be of 

importance in the decision of migration potential and invasiveness. However, in 

a cooperative manner, active RAS/RAF signaling further enhances the 

establishment of EMT, as do PI3K and Rho GTPase signaling. 

 

The transcriptional co-activators or -repressors present in the nucleus facilitate 

and determine the mode of action of the activated SMAD dimers. 

Transcriptional activators include CREB binding proteins, EP300 and 

repressors include TGIFs like TGIF2, among others. The repressors bind 

histone deacetylases (HDACs), while activators generally act as histone 

acetyltransferases (HATs). In general, TGIFs bind to SMAD2 and SMAD3 in a 

competitive manner to EP300, so the relative levels of these transcriptional 

regulator proteins determine the activating versus repressing mode of action of 

TGF-β. Thus, TGF-β signaling leads to inactivation of gene expression in many 

cases.168 Additionally, there is evidence for cross-talk between RAS/MAP-

kinase and the TGF-β pathway in that TGIF2 was shown to be phosphorylated 

in response to EGF signaling. Another known debranching from the classical 

TGF-β pathway leads to a cross-talk with the MAP kinase pathways on the level 

of Jun-amino-terminal kinase (JNK, MAPK8) associated transcription factors, 

also known as AP-1 family.169 It was shown that TGF-β harbors the ability to 

increase the activity of AP-1 (JUN-FOS) complexes through phosporylation by 
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JNK or the activity of ATF2 transcription factor (which also contains HAT 

activity) binding to CREB complexes, either resulting in an activation of AP-1 or 

CREB target genes (Figure 29). 

Figure 29 

 

Crosstalk between the SMAD and mitogen-activated protein kinase pathways. The three principal MAPK 
pathways in mammalian cells may affect the SMAD pathway through various mechanisms. The Ras–MEK–ERK 
pathway can decrease TGF-β receptor levels by controlling expression, attenuate SMAD accumulation in the 
nucleus by phosphorylating SMADs in the linker region and increase the level of the SMAD corepressor TGIF by 
stabilizing this protein. The MKK4/JNK and MKK3/p38 pathways, which can be activated by various cytokines, 
enhance the activity of Jun and ATF2 transcription factors that may cooperate with SMADs through direct physical 
contacts. In certain cell types and conditions, the MKK4/JNK and MKK3/p38 pathways are reportedly activated by 
TGF-β itself, and the proteins XIAP, HPK1 and TAK1 might be involved in this link. The direct nature and 
physiological relevance of these interactions remain to be established. (ATF2, activating transcription factor 2; ERK, 
extracellular-signal-regulated kinase; GRB2, growth factor receptor-binding proteins 2; JNK, Jun amino-terminal 
kinase; XIAP, Xenopus inhibitor of apoptosis; HPK1, haematopoietic progenitor kinase 1; TAK1, TGF-β -activated 
kinase; MAPK, mitogen-activated protein kinase; MKK, MAPK kinase; R-SMAD, Receptor-regulated SMAD 
transcription factors; sos, son of sevenless; TGF-β, transforming growth factor-beta.) From J. Massague, 2000.165 
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The receptor protein BAMBI acts as a negative regulator in the TGF-β signaling 

pathway. It is located in the plasma-membrane of cells, has high homology to 

the BMP receptor BMPR1B, but lacks an intracellular serine/threonine kinase 

domain required for signaling. As the BMP receptor proteins are required to 

tetramerize upon BMP or TGF-β signaling to perform their activating 

phosphorylation function, the BAMBI protein acts as a so-called pseudo-

receptor, inhibiting downstream signaling. Expression of BAMBI was described 

by Sekiya et al. to be upregulated by TGF-β/BMP signaling-mediated activation 

of the transcription factor SMAD3/4 dimer, thus acting in a negative feedback 

loop.170 BAMBI expression was also found by the authors to be elevated in 

colorectal and hepatocellular cancers. 

In 2001, Visvader et al. explored a role for LMO4, initially described as a 

human breast tumor autoantigen, in developing mammary epithelium and 

breast oncogenesis.171 The gene was expressed predominantly in the 

lobuloalveoli of the mammary gland during pregnancy. Consistent with its role 

in proliferation, forced expression of this gene inhibited differentiation of 

mammary epithelial cells. Overexpression of LMO4 mRNA was observed in 5 of 

10 human breast cancer cell lines. Moreover, in situ hybridization analysis of 

177 primary invasive breast carcinomas revealed overexpression of LMO4 in 

56% of specimens. Immuno-histochemistry confirmed overexpression in a high 

percentage (62%) of tumors. These studies implied a role for LMO4 in 

maintaining proliferation of mammary epithelium and suggested that 

deregulation of this gene may contribute to breast tumorigenesis. 

LMO proteins act as transcription factor regulators, do not bind to DNA directly 

but associate with other transcription factors (CLIM1 and especially CLIM2 for 

LMO4). LMO4 expression was also reported to be associated with a worse 

prognosis and overexpression in mammary glands of mice led to inhibition of 

mammary gland development, hyperplasia and intraepithelial neoplasia.172,173  

Identifying LMO4 as a transcription regulation factor that does not bind 

directly to DNA but other transcription factors, Ning Wang et al. recently 

identified BMP7 protein (a BMP4 homologue) as one of the highly significant 

target genes of LMO4 regulation through recruitment of the histone deacetylase 

HDAC2 to the binding site.172,174 Other upregulated genes include e.g. AKT1, 

RHOB, SMAD5 and TGFBRAP1 while among the downregulated genes were e.g. 
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MBD1 (methyl-CpG binding domain protein 1), RERG (RAS-like estrogen-

regulated growth inhibitor) and RRAS. Markedly, the only statistically 

significant Gene Ontology process enriched in the set of deregulated genes was 

apoptosis. In the study presented by Ning Wang et al., BMP7 decreased 

proliferation and induced apoptosis. In 2003, a different role for LMO4 was 

suggested by Sutherland and co-workers as a BRCA1-interacting protein, 

repressing its transcriptional activity.175 The authors concluded that the high 

expression of LMO4 in sporadic breast cancers may alter the stoichiometry of 

BRCA1 expression, leading to an inhibition of its tumor-suppressing function. 

 

Regulation of Apoptosis 

Among the genes contained in the signature, apoptosis regulation seemed to 

play a particular role in classifying patient response groups. While cells that 

undergo apoptosis can be triggered for the programmed cell death by either of 

two pathways, it seemed striking that only those of the mitochondria-related 

apoptosis mechanism were contained, but not genes from the mechanism 

regulated by the caspase protein signaling cascade. 

The signature genes involved in apoptosis regulation included the death-

associated protein kinase 2 (DAPK2), death-induced protein (DIP), BCL2-

antagonist/killer 1 protein BAK1 and other mitochondrial proteins as well as 

the rapamycin-associated protein genes KIAA1303 (RPTOR) and FRAP1. 

Whether DAPK proteins regulate the activation of mitochondrial apoptosis 

program via BAX and BAK1 upon TGF-β signaling, as proposed by Pardali and 

Moustakas (Figure 30), remains unclear.167 However, a direct interaction of the 

TGF-β pathway with the proteins of the AKT/mTOR pathway was 

demonstrated by association of SMAD3 with FRAP1 (also called mammalian 

target of rapamycin, mTOR), in which FRAP1 suppresses the phospho-

activation of SMAD3.176 The authors proposed a model of an AKT kinase-

dependent inhibition of SMAD3 through FRAP1, and a resulting loss of tumor 

suppression by TGF-β in cancer. In 2007, Creighton discovered a link between 

gene expression patterns derived from overexpression of AKT in mouse-models 

and human breast cancer gene expression studies by meta-analysis.177 Genes 

upregulated by AKT and dependent on FRAP1 activity were associated with 

poor prognosis in these studies. 
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Figure 30 

 

The apoptotic response program. TβRII in the TGF-β receptor complex directly binds DAXX, which recruits HIPK2 
and becomes phosphorylated by HIPK2, leading to activation of MKK3/4/7. The same kinases can be activated by 
TAK1 which is activated by Smad7 (I-Smad) bound to the receptor complex. MKKs then phosphorylate and activate 
JNK or p38 MAPKs. JNK activates the AP-1 transcriptional complex, leading to induction of pro-apoptotic genes (red 
circular nodes) in cooperation with Smads. p38 activates caspase-8 (Cas8), which activates the pro-apoptotic factor 
Bid, leading to cytochrome C (cyt C) release and activation of the apoptosome (cyt C/Apaf1/Caspase-9 (Cas9) complex), 
which activates caspase-3 (Cas3) and executes apoptosis. The TGF-β receptor complex signals by unknown mechanism 
(?) to mitochondrial ARTS, which inhibits XIAP, the inhibitor of caspase 3, leading to apoptosis. The activated nuclear 
Smad complex induces transcription of pro-apoptotic genes such as Bim, DAPK, GADD45β, TIEG1, and SHIP. Bim 
activates the pro-apoptotic Bax, which leads to cytochrome C release and caspase activation. DAPK modulates the 
action potential of the mitochondrial membrane and induces apoptosis via yet unknown molecular mechanisms (?). 
GADD45β interacts with and activates MKK4, thus activating the p38 pro-apoptotic pathway. TIEG1 is a transcription 
factor that regulates additional pro-apoptotic genes, but it is not clear whether these include those listed in the figure 
(?). SHIP inhibits PI3K. Smad3 can directly interact and inhibit the activity of Akt/PKB in addition to transactivating 
pro-apoptotic target genes. Activated Smads also induce expression of the pro-survival factor FLIP, which exits the 
nucleus and activates the transcriptional activity of NF-κB, thus inducing the expression of other anti-apoptotic 
factors. Growth factors signaling via receptor tyrosine kinases (RTK) activate the Ras/PI3K/Akt/PKB pathway. Akt 
phosphorylates the pro-apoptotic protein Bad, thus activating the anti-apoptotic protein Bcl-xL, which blocks 
cytochorome C release. Akt also activates FRAP1 (mTOR), which inhibits R-Smad phosphorylation by the TGF-β 
receptor complex, and directly inhibits the pro-apoptotic JNK, while activating the pro-survival NF-κB pathway. In 
addition to NFκB Akt phosphorylates the pro-apoptotic transcription factor FoxO3a, leading to its cytoplasmic 
retention and transcriptional inactivation of its target pro-apoptotic genes such as Fas ligand (FasL). All pro-apoptotic 
events are shown in dark red and all pro-survival events are shown in green. From Pardali & Moustakas, 2006.167 
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DNA Damage Response 

Although representing a smaller group of genes in the signature as the others 

described before, the gene activities involved in perception and regulation of 

DNA damage appeared to be significantly altered (Table 19). Signature genes 

belonging to these pathways were BRAP and RAD51C, two genes associated 

with the BRCA1 protein, TP53BP1 and TP53RK, which are both associated with 

the tumor suppressor TP53, and CHEK2, a cell cycle regulator important for 

checking DNA damage before entering replication. 

The BRCA1-associated protein BRAP was identified by its ability to bind to the 

nuclear localization signal of BRCA1 and to regulate nuclear targeting by 

retaining proteins with a nuclear localization signal in the cytoplasm. In 2004, 

a direct association of BRAP (also named IMP) with the RAS pathway was 

reported and its function as an ubiquitin E3 ligase for a RAF/MEK1 complex 

inhibitor was discovered.178 Whether the interaction of BRCA1 with BRAP has 

to do with its transcription factor or the DNA-damage dependent function of 

BRCA1 is not known. 

RAD51C is known to be involved in the homologous recombinational repair 

pathway of damaged DNA and in meiotic recombination. However, the gene 

coding for this protein is located on a region of chromosome 17q23 where 

amplification occurs frequently in breast tumors. It is therefore unclear, which 

effect is causal for the finding of highly expressed RAD51C transcript.  

Tumor protein p53 binding protein 1, TP53BP1, is clearly associated with 

activation of ATM in response to DNA double strand breaks.179 It binds to ATM 

as well as to TP53 protein. TP53RK, or TP53 regulating kinase, is known to 

activate TP53, but apart from one report claiming a binding of the protein to 

HER2, very little is known about its upstream signaling.180 

 

Expression of the Signature Genes in Perspective of Pathways 

In order to evaluate the measured expression in the female breast cancer 

studies in respect to the response of the patients to the chemotherapy given, it 

was necessary to define the view point of the gene expression regulation 

between the two response classes. Here, the expression ratios between pCR 

and non-responder patients were estimated, and should be taken as up- or 

downregulated in pCR patients versus non-pCR patients (Table 23). 



 124 

As the non-responder patients were comprised of patients with pathologically 

no change as well as partial remission, and the latter in a much larger number, 

these ratios should not be taken as absolute truth. However, it was expected 

that the genes could provide valuable information about the differences and 

maybe even the cause of response to chemotherapy. 

 

Table 23 RNA Expression of Signature Genes and BRCA1  
Gene 

Symbol 
Oligo 

ID logn (pCR) logn 
(non-pCR) 

logn 
(pCR/non-pCR) 

A-RAF OL006360 -0.56 -0.18 -0.378 
MRAS OL020413 1.81 1.39 0.416 

RASAL1 OL014803 0.67 0.10 0.577 

  

RHEB OL017532 -0.71 -1.04 0.325 

  

BAMBI OL006551 -0.93 -1.59 0.657 
BMP4 OL005655 -1.49 -0.94 -0.550 

SMURF2 OL014622 0.48 -0.07 0.554 
CREB3 OL009199 0.20 0.24 -0.035 
EP300 OL003498 0.36 0.55 -0.194 
SRC OL014799 0.84 0.58 0.265 

  

LMO4 OL000848 1.32 0.39 0.932 

  

DAPK2 OL012804 2.32 1.88 0.441 
FRAP1 OL019848 -1.04 -0.83 -0.212 
RPTOR OL002920 -0.33 -0.16 -0.173 

  

BAK1 OL010567 0.19 -0.10 0.292 

  

BRAP OL012396 -0.73 -0.79 0.053 
RAD51C OL001998 -1.16 -1.50 0.341   
BRCA1 OL014601 -1.94 -2.03 0.086 

  

TP53BP1 OL007925 -0.45 -0.34 -0.112 
TP53RK OL017620 -0.38 -0.26 -0.120   
CHEK2 OL013553 -0.71 -1.07 0.359 

  

  
 

As the literature proposed, it may be suggested that the major difference 

between patients not responding to the chemotherapy to the responders is 

given by the fact that activation of RAS was shown to induce EMT. In the 

patients investigated here, the effector kinase MRAS shows a higher expression 

in the responders, leading to the conclusion that responder patients might 

have a higher induction of tumor cell transformation. However, the signal 

transducing protein A-RAF shows the direct opposite expression ratio, with a 

higher expression in the non-responder patients. It is therefore unclear, 
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whether a stronger activation of the Ras pathway and consequently a higher 

induction of EMT in responder patients could be reasoned by these results. 

 

The transcription regulator LMO4, acting most probably as inhibitor of 

differentiation, is strongly upregulated in responder patients, which would fit 

very well to the fact that undifferentiated cells are more likely to respond to 

chemotherapy due to their proliferative turnover, which is targeted by the 

chemotherapeutic regimen. As the interactions of the TGF-β signaling and Ras 

signaling were described, the combination of the findings here would lead to 

the conclusion that the responder patients had tumors cells which were 

proliferating more and had a lower grade of differentiation. This is very well in 

accordance with the KI67 measurements, as seen by IHC (Figure 27), and with 

the findings in the literature that LMO4 maintains cells in a proliferative state, 

and tumors with high LMO4 expression have a worse prognosis. 

While the stronger activation of BMPs was seen as generating the opposite 

effect and rather maintain cells in the differentiated state according to the 

literature, the finding that BMP4 was also upregulated in responder patients 

must not be in disagreement. It is possible to postulate that the highly 

proliferative cells try to find the balance and thus counteract by expressing 

BMPs. The results of a higher expression of BAMBI and SMURF2 in the 

responder tumors, both representing inactivating feedback loops in the TGF-β 

signaling, supports this idea. 

 

As Pao et al. reported, the activating co-regulators of TGF-β -induced 

transcription EP300 and CREB interact with BRCA1 and activate its 

transcription.181 Here, a clear difference in the expression of these coactivators 

could not be seen between response classes, and there were also no differences 

in the expression of BRCA1. However, the highly probable dependencies 

between BAMBI and BRCA1, as well as between SRC and BRCA1, as seen in 

the linear model analysis, imply a strong positive association of the TGF-β 

pathway signaling with the mechanism of DNA damage response. 

 

The upregulation of the DNA damage-related genes RAD51C and CHEK2 

measured in responder patients could not be explained by a more proliferative 



 126 

tumor tissue. It may be possible that due to high proliferation or other 

mechanisms, the DNA of these tumor cells is unstable. However, for TP53BP1 

and TP53RK, the proteins associated with the tumor suppressor TP53, the 

gene expression were measured as slightly downregulated in responder 

patients, again supporting the idea of a more proliferative tumor tissue in these 

patients. 

 

Concerning the genes differentially regulated between patient classes in the 

apoptosis pathways, it is difficult to decide, whether the DNA and microtubule 

damages triggered by the chemotherapy drugs have an additive effect to the 

pre-therapeutic results presented here or not. However, as the transcription of 

DAPK2 and its possible downstream pathway molecule BAK1 showed a very 

clear differentiation between both patient groups, with an upregulation in 

responder tumors, it is explainable that these cells can be killed more 

effectively by chemotherapeutic intervention. 

 

The results presented here for FRAP1 (mTOR), and the associated scaffolding 

protein KIAA1303 (RPTOR) do not conform well to the published data. As 

FRAP1 activation was reported to repress TGF-β -dependent tumor 

suppression, and a dependence of genes predicting poor prognosis on the 

activation of FRAP1 was shown, it is unclear how the downregulation of both 

proteins in responder patients could be matched with these reports. 
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5.4. Antibody Generation using Mouse Hybridoma Cells 

As there was no antibody available against the BAMBI protein at the time when 

the gene expression signature was compiled, a validation of the genetic results 

on protein expression was impossible. However, as the protein seemed to be an 

interesting candidate for a more detailed analysis, a good antibody was 

required. In order to generate it, a truncated form of the BAMBI protein was 

expressed in E.coli cells, containing only the unique cytoplasmatic and 

transmembrane protein domains, and isolated using a His-tag. 

Hybridoma cells, generated using plasma cells from mice vaccinated with this 

truncated BAMBI, were grown in cell culture, and conditioned media of 

different cell clones were tested. These antibody containing media were shown 

to have a sufficient sensitivity for detection of BAMBI, as tested by staining of 

Western blots containing the full length protein, again generated using E.coli 

cells (Figure 26). For a thorough test of the specificity of these antibodies and 

evaluating them in the native state, an expression of the BAMBI protein was 

necessary in eukaryotic cell cultures. 

However, it was not possible to express this gene in such cells in culture, 

although they showed sufficient transfection efficiencies with the vectors 

containing GFP control protein. When human culture cells from different tissue 

origins were transfected with either GFP-BAMBI or GFP-BMPR1B (negative 

control) fusion proteins, they showed no fluorescence and an elevated 

apoptosis rate, so the expression could not be observed (data not shown). 

Therefore, it was impossible to test for specificity of the antibodies from the 

conditioned media, and an appropriate antibody could not be obtained. At this 

point, a commercially produced monoclonal antibody had become available, 

and the generation of an antibody against BAMBI protein was abandoned. 
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5.5. Immuno-histochemical Analysis of Tumors 

In order to validate the results that were generated with gene expression 

profiling on microarrays and with RQ-PCR, a suitable number of genes was 

selected to be analyzed with immuno-histochemical staining on tissue sections 

from the same patient tumor samples. For this purpose, four consecutive 

tumor sections of 80 patients could be obtained. As the number of selected 

proteins was six, however, two of these sections were required to be stained 

with two antibodies each. 

For data analysis, sections for each patient and antibody were interpreted in 

staining intensity (score 0-3) and the percentage of tumor cells, for three 

representative areas, if available. Data for ER and PgR scores, TP53, KI67, 

HER2 and BCL2 were provided by the pathology department of the university 

clinic. The generated data were then analyzed for the patient classes. Using a 

linear model prediction algorithm, the immuno-histochemical stainings were 

analyzed for associations among each other and in comparison with clinical 

data of the patients: tumor grading, pathological outcome and response of the 

patients, as well as the therapy administered to the patients.  

Due to the small sample size, these associations were considered statistically 

significant only if the p-value was below 0.01, even though a p-value below 

0.05 was considered an association. As expected, significant associations were 

seen between ER and PgR scores. Very good associations were also seen 

between response (pCR versus non-pCR) and both ER and PgR, BCL2 and 

tumor grading (G1-2/G3), BRCA1 and BAMBI as well as BAMBI and therapy 

(GEDoc/GEsDoc). The latter seemed not explainable, as the therapy was 

administered after the acquisition of the tumor biopsies analyzed here and as 

both therapies were considered equally effective. However, due to the small 

sample size especially in the case of pCR patients in both therapy studies, such 

a finding might be explained by minor accidental differences between patients, 

or the ability of the linear model algorithms to detect small but consistent 

differences between the groups. However, as the majority of other parameters 

and stainings were far from such a highly significant p-value, a connection 

between differences in the patients achieving pCR concerning the BAMBI 

expression levels of their tumors and the therapy schedule administered 

cannot be ruled out. 
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Statistically not as significant associations were shown between LMO4 and 

each of BMP4, SMAD3 or SRC proteins, but as these belong to the same 

signaling pathway, this was considered a probable result. More astonishing in 

this respect seemed the fact that LMO4 was exclusively associated with BMP4, 

but none of the other TGF-β proteins. 

The protein markers best associated with the response of patients were ER, 

PgR, HER2, BCL2 and LMO4, in decreasing order. 

 

To illustrate the extent of relative differences in the protein expression, 

according to their IHC staining percentages, these were depicted as box-plots 

(Figure 27). In case of TP53, the box plot seems misleading:  Due to the fact 

that patients either showed a very high or low (or no) expression of TP53 

protein, the statistical analysis here was restricted by the different sizes of the 

response groups. As the non-pCR group was large (n=52), the relatively few 

highly TP53-positive patients appear as outliers, while the much smaller pCR 

group (n=17) appears to have a wider dynamic range, thus the high percentage 

tumors are represented as the 3rd quartile. In fact, only one patient shows 

intermediate expression of TP53 (40%), while the others show values of either 

≥90% or ≤20%. This circumstance is represented by the medians in both 

groups, which show similar values. 

In general, for most protein stainings, the box plots showed only lesser 

differences between the patient classes, except for KI67 and LMO4. This 

reflects the results from the microarray gene expression study only in part, as 

some genes show a markedly higher difference in their RNA expression levels, 

as in the cases of BAMBI and BMP4 (Table 23). A significant difference between 

IHC staining and gene expression data, as measured both by microarrays and 

RQ-PCR (Figure 23), is seen in the lower median expression of LMO4 protein in 

the pCR group. However, it should be taken into consideration that only 

samples from 80 patients were available for IHC staining as compared to the 

microarrays (n=100), that the number of pCR patients was small in respect to 

the non-pCR group, that the staining of SMAD3 and BRCA1 were preliminary 

due to double staining evaluation difficulties and that the protein expression 

could be regulated post-transcriptionally as well as post-translationally. 

 



 130 

The deviations seen for some factors between the protein expression, as 

measured by IHC, and the gene activity, as measured by microarray and 

RQ-PCR, seem to make the interpretation of the results uncertain. However, 

given the fact that for all but one of the gene expression values, these 

correspond very well between RQ-PCR and the microarray results, these can be 

considered absolutely valid. Therefore, the RNA expression experiments used 

for the prediction of therapy response and pathway analysis are validated and 

undisputed.  

The differences between the protein expression and the RNA expression, as 

seen in this study, could be explained: Firstly, the mechanisms of post-

transcriptional regulation, like e.g. RNA transport from the nucleus, 

modifications to or even degradation of the mRNA (editing, silencing and 

interference mechanisms) as well as the translation into proteins have long 

been known.2,182 Secondly, such differences between the expression levels of 

RNA and protein, especially in cancer, have been reported, for example by the 

oncogenic deregulation of RNA translation into protein by phosphatidylinositol-

3-kinase (PI3K), which has been identified as required for the transformation 

cells to and has been reported to be dependent on mTOR and RHEB.183 

Whether the proteins of the genes, for which a deregulation between RNA 

expression and protein expression in this study is seen, are activated or 

deactivated by such a mechanism, could not be elucidated here. A much more 

detailed protein analysis, which also includes analysis of post-translational 

modifications such as phosphorylation, would be needed for this question to be 

answered. 
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6. Outlook 

In the thesis presented here, the method of microarray expression profiling 

analysis using long oligonucleotide DNA probes was applied for the 

identification of a gene signature predicting response to chemotherapy in 

breast cancer, starting from small tumor biopsies taken at time of diagnosis. 

For this aim, a novel procedure to amplify and label mRNA from small RNA 

sources for hybridization to oligonucleotide microarrays had to be developed 

and introduced, and had also proven applicable. However, the input minimum 

of 2 µg of total RNA limits its usefulness, and thus has been improved to 

500 ng in the meantime. Further improvements to the minimum input amount 

are currently only possible through a repetition of the amplification steps, 

resulting in a further fragmentation and shortening of the labeled nucleic acid 

chains yielded and therefore a loss of dynamic range of the expression profiles. 

Protocols using two-round amplification are currently being investigated for the 

exploitation of microdissected cells retrieved from freshly frozen or paraffin-

embedded tissue sections to be used for oligonucleotide microarrays. A further 

reduction of total RNA input amounts in a single round amplification, below 

500 ng, could improve the quality of the results obtained in such experiments 

and at the same time make more patient samples available for investigation 

using whole-genome expression analysis with long oligonucleotide microarrays. 

 

The signature identified for prediction of the pathologic complete remission of 

primary breast tumors after neoadjuvant application of gemcitabine, epirubicin 

and docetaxel in a tri-fold chemotherapy regimen is comprised of 512 genes, 

and displays a higher sensitivity and specificity than the classical markers 

currently used in the clinic. 

In a new study pursuing the one presented here, other chemotherapy regimens 

for the neoadjuvant therapy of primary female breast cancers are tested in the 

same manner to identify such predictive gene expression signatures. This 

study is comprised of two different treatment arms, is performed in a double-

blind setup, and contains a similar number of patients in each arm as in the 

study presented here. In addition to the task of providing predictive gene 

signatures for each of the treatment arms, the new study will also allow for an 

evaluation of the gene signature presented here in its general applicability of 



 132 

predicting response of female breast cancer to chemotherapy treatment. In this 

way, the genes responsible or predictive for a general response to 

chemotherapy may possibly be identified as well as the genes predictive or 

responsible for the individual chemotherapeutic drugs. The recent finding of 

Bonnefoi et al., who successfully combined genes into a predictive signature 

based on individual gene signatures derived from cell culture experiments with 

single drugs, encourages this point of view.156 Such cell line experiments could 

also be performed for comparison with the gene signatures presented here and 

identified in the pursuing study. 

 

Some of the genes within the predictive signature, that classifies patients 

according to their therapy response as discussed in this thesis, were identified 

to be functionally related. Upon analyzing these genes for possible pathway 

interactions, several genes from the TGF-β and Ras signaling pathways as well 

as genes involved in DNA damage response and apoptosis were identified. 

These genes could possibly represent pathways that are not only functionally 

related to the response of the patients, but also to the development of breast 

cancers and its different tumor types. A closer investigation of the relationships 

between these pathways and the development of breast tumors might be very 

helpful in understanding the heterogeneity of breast cancer patients. 

Additionally, they could provide new drug targets and be good candidates for 

further improvements of existing targeted therapies. As some of these had 

already been identified as genes or proteins related to breast cancer, as e.g. 

BAMBI and LMO4, they should be investigated in greater detail. 
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ʺWhat we observe is not nature itself,  

but nature exposed to our method of questioning.ʺ 

 

Werner Heisenberg   
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8. Appendix 
 

A. Cell Lines HL-60 and NU-DHL-1 

  NU-DHL-1 HL-60 
Cell type human B cell lymphoma human acute myeloid leukemia 

DSMZ N° ACC 583 ACC 3 

Origin 

established from the left inguinal lymph node of a 73-
year-old Caucasian man with B-cell Non-Hodgkin 
lymphoma (B-NHL, diffuse large cell lymphoma, non-
cleaved cell type) in 1982 

established from the peripheral blood of a 35-year-
old woman with acute myeloid leukemia (AML FAB 
M2) in 1976; cells can be used for induction of 
differentiation studies; described to be responsive to 
DMSO, phorbol ester TPA and other reagents and to 
carry amplified MYC gene; present cells are 
apparently tetraploid derivates of hypodiploid original 
where MYC was amplified in dmin (instead of hsr) 

References Epstein et al., Int J Cancer 35:619-627 (1985);184 
Winter et al., Blood 63:140-146 (1984).185 

Collins et al., Nature 270:347-349 (1977);186 
Gallagher et al., Blood 54:713-733 (1979);187 
Dalton et al., Blood 71:242-247 (1988);188 
Collins, Blood 70:1233-1244 (1987, review).189 

Depositor Dr. A. L. Epstein, USC, Los Angeles, CA, USA Dr. E. Porfiri, The Royal Free Hospital, Department of 
Haematology, London, UK 

DSMZ Cell Culture Data 

Morphology single, round to polymorph cells growing in 
suspension round, single cells in suspension 

Medium 80-90% RPMI 1640 + 10-20% FBS 90% RPMI 1640 + 10% FBS 

Subculture 

split saturated culture 1:2 to 1:4 every 2-3 days; 
seed out at ca. 1.0 x 106 cells/ml; maintain at ca. 
0.5-1.0 x 106 cells/ml; recommended to start culture 
in a 24-well-plate and with 20% FBS 

maintain at 0.5-1.0 x 106 cells/ml, split 1:2 to 1:5 
every 1-2 days; seed out at about 1 x 106 cells/ml 

Incubation  at 37 °C with 5% CO2 at 37 °C with 5% CO2 

Doubling time ca. 50 hours ca. 25 hours 

Harvest cell harvest of ca. 1.5 x 106 cells/ml maximal density of 1.5-2.0 x 106 cells/ml 

Storage frozen with 70% medium, 20% FBS, 10% DMSO at 
about 5 x 106 cells/ampoule 

frozen with 70% medium, 20% FBS, 10% DMSO at 
about 4-5 x 106 cells/ampoule 

DSMZ Scientific Data 

Mycoplasma negative in microbiological culture, PCR assays negative in DAPI, microbiological culture, RNA 
hybridization, PCR assays 

Immunology 

CD3 -, CD10 -, CD13 -, CD19 +, CD20 +, CD34 -, 
CD37 +, CD38 -, CD79a +, cyCD79a +, CD80 -, 
CD138 -, HLA-DR +, sm/cyIgG -, sm/cyIgM +, 
sm/cykappa -, sm/cylambda + 

CD3 -, CD4 +, CD13 +, CD14 -, CD15 +, CD19 -, 
CD33 +, CD34 -, HLA-DR - 

Fingerprint fluorescent nonaplex PCR of short tandem repeat 
markers revealed a unique DNA profile 

multiplex PCR of minisatellite markers revealed a 
unique DNA profile 

Species confirmed as human by cytogenetics and species PCR confirmed as human with IEF of MDH, NP 

Cytogenetics 

human hyperdiploid karyotype with 4% polyploidy 
51(46-53)<2n>XY, +5, +8, +9, +12, +12, 
t(3;8)(p25;q24), i(5p), dup(7)(q21.3q31.1), 
der(8)t(3;8)(p25;q24), i(9p), del(12)(q11), i(12p), 
der(14)t(14;18)(q32;q21)x1-3 
sideline with dup(2)(p2?1p2?4) 
carries t(3;8) and t(14;18) effecting respective 
rearrangements of MYC and IGH-BCL2 
resembles published karyotype 

human flat-moded hypotetraploid karyotype with 
hypodiploid sideline and 1.5% polyploidy 
82-88<4n>XX, -X, -X, -8, -8, -16, -17, -17, +18, +22, 
+2mar, ins(1;8)(p?31;q24hsr)x2, 
der(5)t(5;17)(q11;q11)x2, add(6)(q27)x2, 
der(9)del(9)(p13)t(9;14)(q?22;q?22)x2, 
der(14)t(9;14)(q?22;q?22)x2, 
der(16)t(16;17)(q22;q22)x1-2, add(18)(q21) - 
sideline with: -2, -5, -15, del(11)(q23.1q23.2) - c-myc 
amplicons present in der(1) and in both markers 

Viruses EBV -, HBV -, HCV -, HIV -, HTLV-I/II - ELISA: reverse transcriptase negative; PCR: EBV -, 
HBV -, HCV -, HHV-8 -, HIV -, HTLV-I/II - 
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B. Manufacturers of Chemicals and Laboratory Material 

 

Agilent 
Agilent Technologies, Inc. 
5301 Stevens Creek Blvd 
Santa Clara , CA 95051 
USA 

Millipore 
Millipore 
290 Concord Rd. 
Billerica, MA 01821 
USA 

Ambion 
Applied Biosystems 
850 Lincoln Centre Drive 
Foster City, CA 94404 
USA 

Molecular Devices 
Molecular Devices 
1311 Orleans Drive 
Sunnyvale, CA 94089-1136 
USA 

Amersham 

Amersham Place 
Little Chalfont 
Buckinghamshire 
HP7 9NA 
United Kingdom 

NanoDrop Technologies 

NanoDrop Technologies 
3411 Silverside Rd 
Bancroft Building 
Wilmington, DE 19810 
USA 

Applied Biosystems 
Applied Biosystems 
850 Lincoln Centre Drive 
Foster City, CA 94404 
USA 

NeoLab 
neoLab Migge GmbH 
Rischerstr. 7-9 
69123 Heidelberg 
Germany 

B.Braun 
B. Braun Melsungen AG 
Carl-Braun-Straße 1 
34212 Melsungen 
Germany 

New England Biolabs 
New England Biolabs 
240 County Road 
Ipswich, MA 01938-2723 
USA 

Bio-Rad 
Bio-Rad Laboratories 
2000 Alfred Nobel Drive 
Hercules, CA 94547 
USA 

Operon 
Operon Biotechnologies, Inc. 
2211 Seminole Drive 
Huntsville, AL 35805 
USA 

Biospring 
BioSpring GmbH 
Alt Fechenheim 34 
60386 Frankfurt am Main 
Germany 

Promega 
Promega Corporation 
2800 Woods Hollow Road 
Madison, WI 53711 
USA 

Dako 
Dako Denmark A/S 
Produktionsvej 42 
DK-2600 Glostrup 
Denmark 

Qiagen 
QIAGEN GmbH 
QIAGEN Strasse 1 
40724 Hilden 
Germany 

Epicentre 
EPICENTRE Biotechnologies 
726 Post Road 
Madison, WI 53713 
USA 

Roche 
F. Hoffmann-La Roche Ltd 
Grenzacherstrasse 124 
4070 Basel 
Switzerland 

Eppendorf 
Eppendorf AG 
Barkhausenweg 1 
22339 Hamburg 
Germany 

Schott Nexterion 
SCHOTT Jenaer Glas GmbH 
Otto-Schott-Strasse 13 
07745 Jena 
Germany 

Fermentas 
Fermentas, Inc.   
798 Cromwell Park Drive   
Glen Burnie, MD 21061 
USA 

Sigma-Aldrich 
Sigma-Aldrich Co. 
3050 Spruce Street 
St. Louis, MO 63103 
USA 

Genomic Solutions 
Genomic Solutions Inc. 
4355 Varsity Drive 
Ann Arbor, MI 48108 
USA 

Stratagene 
11011 N. Torrey Pines Road 
La Jolla, CA 92037 
USA 

GibCo 
Invitrogen Corporation 
1600 Faraday Avenue 
Carlsbad, California 92008 
USA 

TeleChem 
TeleChem International, Inc. 
524 East Weddell Drive 
Sunnyvale, CA 94089 
USA 

Invitrogen 
Invitrogen Corporation 
1600 Faraday Avenue 
Carlsbad, California 92008 
USA 

Thermo Scientific 
Thermo Fisher Scientific, Inc. 
81 Wyman Street 
Waltham, MA 02454 
USA 

Kendro 
Thermo Fisher Scientific, Inc. 
81 Wyman Street 
Waltham, MA 02454 
USA 

Varian Inc. 
Varian, Inc. 
3120 Hansen Way 
Palo Alto, CA 94304-1030 
USA 

Marligen Bioscience 
Marligen Biosciences, Inc. 
2502 Urbana PikeIjamsville, MD 
21754USA 

Vector 
Vector Laboratories 
30 Ingold Road 
Burlingame, CA 94010USA 

  
Merck 

Merck KGaA 
Frankfurter Str. 250 
64293 Darmstadt 
Germany      
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C. Primers for Real-time Quantitative PCR 

 

Gene Primer  (Exon:Exon)§ Sequence, 5' -> 3' Tm 
[°C]

DCTN2 (2:3) upper CGCCATGGCGGACCCTAAAT 60.5DCTN2 
DCTN2 (2:3) lower TTGTCAGCTCCTCCGCATCGAA 61.5 
GALNAC4S-6ST (5:6,7) upper ATCCACGCCTTTCAGCCAAATG 59.8 

GALNAC4S-6ST 
GALNAC4S-6ST (5:6,7) lower AGCCCAACCTGGAGCCTCACA 60.4 
ERBB2 (16:17) upper CATCAACTGCACCCACTCCTGTGT 59.8 

HER2 
ERBB2 (16:17) lower CTCCACCAGCTCCGTTTCCTG 58.3 
ESR1 (6:7) upper CTCTTGGACAGGAACCAGGGAAAAT 59.6 

ESR1 
ESR1 (6:7) lower CAGGGTGCTGGACAGAAATGTGTAC 58.6 
BAMBI (1:2) upper CGTGCTGCTCACCAAAGGTGAAAT 61.1 

BAMBI 
BAMBI (1:2) lower CATGGGTGAGTGGGGAATTTGAG 59.1 
DAPK2 (7,8:9,10) upper GGCCAAGGACTTTATTCGGAAGC 59.1 

DAPK2 
DAPK2 (7,8:9,10) lower CACAGGGACACGATGCTGAAGGA 60.8 
LMO4 (4:5) upper GTCCCGGGAGATCGGTTTCACT 60.0 

LMO4 
LMO4 (4:5) lower ATGGGATCCACCTGTGATGAACAAA 60.2 
SMAD3 (3,4:5,6) upper GAGCCCCAGAGCAATATTCCAGA 58.3 

SMAD3 
SMAD3 (3,4:5,6) lower GGCCGGCTCGCAGTAGGTAACT 60.4 
SRC (3:4) upper CTGGCCGGTGGAGTGACCAC 59.8 

  

SRC 
SRC (3:4) lower CAAAATACCACTCCTCAGCCTGGAT 58.6 

 

§ primers spanning exon borders are denoted by kommata; PCR products spanning exon borders are denoted by colons 
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D. Genes Contained in the Predictive Gene Expression Signature 

Rank Symbol Description Mapping Ensembl ID Operon ID 

1 DAPK2 Death-associated protein kinase 2 (EC 2.7.1.37) (DAP 
kinase 2) (DAP- kinase related protein 1) (DRP- 15q22.31 ENSG00000035664 H200012808 

2 RASAL1 RasGAP-activating-like protein 1. 12q24.13 ENSG00000111344 H200014809 

3 THAP8 THAP domain protein 8. 19q13.12 ENSG00000161277 H200020498 

4         H200015020 

5 OAT Ornithine aminotransferase, mitochondrial precursor 
(EC 2.6.1.13) (Ornithineoxo-acid aminotransfer 10q26.13 ENSG00000065154 H200006115 

6 CPM Carboxypeptidase M precursor (EC 3.4.17.12). 12q15 ENSG00000135678 H200019714 

7 PITPNM2 phosphatidylinositol transfer protein, membrane-
associated 2, PYK2 N-terminal domain-interacting rec 12q24.31 ENSG00000090975 H200016945 

8 SLC35B2 
solute carrier family 35, member B2, 3'-
phosphoadenosine 5'-phosphosulfate transporter 
[Homo sapiens 

6p21.1 ENSG00000157593 H200008629 

9 CRYBB2 Beta crystallin B2 (BP). 22q11.23 ENSG00000100058 H200007805 

10 TCF8 Transcription factor 8 (NIL-2-A zinc finger protein) 
(Negative regulator of IL2). 10p11.22 ENSG00000148516 H200015445 

11         H200001488 

12         H200019153 

13 TOR1B Torsin B precursor (Torsin family 1 member B) 
(FKSG18 protein). 9q34.11 ENSG00000136816 H200016328 

14 SMU1 
smu-1 suppressor of mec-8 and unc-52 homolog, 
ortholog of rat brain-enriched WD-repeat protein, 
homo 

9p21.1 ENSG00000122692 H200014545 

15 SMYD3 SET and MYND domain containing protein 3 (Zinc 
finger MYND domain containing protein 1). 1q44 ENSG00000185420 H200001594 

16 ARMC8 armadillo repeat containing 8, HSPC056 protein 
[Homo sapiens]. 3q22.3 ENSG00000114098 H200011194 

17 C18orf1   18p11.21 ENSG00000168675 H200013878 

18 PRDX1 Peroxiredoxin 1 (EC 1.11.1.-) (Thioredoxin peroxidase 
2) (Thioredoxin- dependent peroxide reductase 1p34.1 ENSG00000117450 H200008482 

19 LMO4 LIM domain transcription factor LMO4 (LIM-only 
protein 4) (LMO-4) (Breast tumor autoantigen). 1p22.3 ENSG00000143013 H200000848 

20 CSNK2A2 Casein kinase II, alpha' chain (CK II) (EC 2.7.1.37). 16q21 ENSG00000070770 H200006904 

21 PTPN13 Protein tyrosine phosphatase, non-receptor type 13 
(EC 3.1.3.48) (Protein-tyrosine phosphatase 1E) ( 4q21.3 ENSG00000163629 H200015130 

22         H200011178 

23 BAMBI 
BMP and activin membrane-bound inhibitor homolog 
precursor (Putative transmembrane protein NMA) 
(Non 

10p12.1 ENSG00000095739 H200006552 

24 EP300 E1A-associated protein p300 (EC 2.3.1.48). 22q13.2 ENSG00000100393 H200003499 

25   GT198, complete ORF, TBP-1 interacting protein 
[Homo sapiens]. 17q21.2 ENSG00000131470 H200017422 

26 SRF Serum response factor (SRF). 6p21.1 ENSG00000112658 H200014058 

27 STK32B serine/threonine kinase 32B, gene for 
serine/threonine protein kinase [Homo sapiens]. 4p16.2 ENSG00000152953 H200005311 

28 NICAL NEDD9 interacting protein with calponin homology 
and LIM domains (Molecule interacting with CasL pro 6q21 ENSG00000135596 H200010147 

29 TTC14 Tetratricopeptide repeat protein 14 (TPR repeat 
protein 14). 3q26.33 ENSG00000163728 H200004622 

30 ARAF1 A-Raf proto-oncogene serine/threonine-protein kinase 
(EC 2.7.1.37) (A- raf-1) (Proto-oncogene Pks). Xp11.3 ENSG00000078061 H200006361 

31 SLC6A8 Sodium- and chloride-dependent creatine transporter 
1 (CT1). Xq28 ENSG00000130821 H200014389 

32 EVL Ena/vasodilator stimulated phosphoprotein-like 
protein (Ena/VASP-like protein). 14q32.2 ENSG00000196405 H200015749 

33 POLR1D DNA-directed RNA polymerase I 16 kDa polypeptide 
(EC 2.7.7.6) (RPA16). 13q12.2 ENSG00000186184 H200017450 

34     16p11.2 ENSG00000047578 H200004007 

35   ezrin-binding partner PACE-1 isoform 1 [Homo 
sapiens]. 1q24.2 ENSG00000000457 H200003382 

36 WDR5B WD repeat domain 5B [Homo sapiens]. 3q21.1 ENSG00000196981 H200013357 
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37 PAFAH1B
3 

Platelet-activating factor acetylhydrolase IB gamma 
subunit (EC 3.1.1.47) (PAF acetylhydrolase 29 kD 19q13.2 ENSG00000079462 H200001306 

38     22q11.21 ENSG00000183597 H200020502 

39 WDR8 WD-repeat protein 8. 1p36.32 ENSG00000116213 H200004114 

40 PTPNS1 
Protein-tyrosine phosphatase non-receptor type 
substrate 1 precursor (SHP substrate-1) (SHPS-1) 
(Inh 

20p13 ENSG00000198053 H200014140 

41 AGTRAP 
angiotensin II receptor-associated protein, 
angiotensin II, type I receptor-associated protein 
[Homo 

1p36.22 ENSG00000177674 H200002197 

42 PIK3C2B Phosphatidylinositol-4-phosphate 3-kinase C2 domain-
containing beta polypeptide (EC 2.7.1.154) (Phos 1q32.1 ENSG00000133056 H200013011 

43     9q12, 
9p11.2 

ENSG00000196635, 
ENSG00000197068, 
ENSG00000198119, 
ENSG00000196164, 
ENSG00000198052 

H200018900 

44 SULT1A3 Monoamine-sulfating phenol sulfotransferase (EC 
2.8.2.1) (Sulfotransferase, monoamine-preferring), 16p11.2 ENSG00000132207, 

ENSG00000181625 H200017186 

45 PAFAH2 
Platelet-activating factor acetylhydrolase 2, 
cytoplasmic (EC 3.1.1.47) (Serine dependent 
phospholip 

1p36.11 ENSG00000158006 H200015501 

46 C22orf8   22q13.31 ENSG00000100376 H200016550 

47 EPS8L2 epidermal growth factor receptor pathway substrate 
8-like protein 2, EPS8-related protein 2, epiderm 11p15.5 ENSG00000177106 H200005141 

48 DAB2IP DAB2 interacting protein, nGAP-like protein, DOC-
2/DAB2 interactive protein [Homo sapiens]. 9q33.2 ENSG00000136848 H200015622 

49 PCTP Phosphatidylcholine transfer protein (PC-TP) (StAR-
related lipid transfer protein 2) (StARD2) (START 17q23.1 ENSG00000141179 H200008819 

50 TIMM17B Mitochondrial import inner membrane translocase 
subunit Tim17 B (JM3). Xp11.23 ENSG00000126768 H200002793 

51 C14orf12
2 UPF0172 protein C14orf122 (CGI-112). 14q11.2 ENSG00000100908 H200016750 

52 CKAP1 Tubulin-specific chaperone B (Tubulin folding cofactor 
B) (Cytoskeleton-associated protein CKAPI). 19q13.12 ENSG00000105254 H200004062 

53   Pygopus homolog 2. 1q22 ENSG00000163348 H200008025 

54 XRN2 5'-3' exoribonuclease 2 (EC 3.1.11.-). 20p11.22 ENSG00000088930 H200016651 

55   ubiquitin-conjugating enzyme HBUCE1 [Homo 
sapiens]. 7p13 ENSG00000078967 H200002803 

56 SEC14L2 SEC14-like protein 2 (Alpha-tocopherol associated 
protein) (TAP) (hTAP) (Supernatant protein factor) 22q12.2 ENSG00000100003 H200017232 

57     8q11.21 ENSG00000164808 H200017329 

58     22q13.31 ENSG00000075240 H200010685 

59         H200008383 

60         H200010303 

61     2q35 ENSG00000124006 H200013996 

62         H200011048 

63 GALK2 N-acetylgalactosamine kinase (EC 2.7.1.-) (GalNAc 
kinase) (Galactokinase 2). 15q21.1 ENSG00000156958 H200012811 

64 PKN3 protein kinase PKNbeta [Homo sapiens]. 9q34.11 ENSG00000160447 H200004669 

65 GBF1 Golgi-specific brefeldin A-resistance guanine 
nucleotide exchange factor 1 (BFA-resistant GEF 1). 10q24.32 ENSG00000107862 H200014080 

66     7p14.3 ENSG00000105778 H200013693 

67 EXT2 
Exostosin-2 (EC 2.4.1.224) (EC 2.4.1.225) 
(Glucuronosyl-N- acetylglucosaminyl-proteoglycan/N-
acetylg 

11p11.2 ENSG00000151348 H200006075 

68 MKRN2 Makorin 2 (HSPC070). 3p25.2 ENSG00000075975 H200017431 

69 ADCK1 aarF domain containing kinase 1 [Homo sapiens]. 14q24.3 ENSG00000063761 H200002462 

70         H200017729 

71 C9orf25   9p13.3 ENSG00000164970 H200001541 

72 C6orf199   6q21 ENSG00000155085 H200012502 

73 PEPD Xaa-Pro dipeptidase (EC 3.4.13.9) (X-Pro dipeptidase) 
(Proline dipeptidase) (Prolidase) (Imidodipept 19q13.11 ENSG00000124299 H200005894 
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74 BMS1L Ribosome biogenesis protein BMS1 homolog. 10q11.21 ENSG00000165733 H200001947 

75     2p23.3 ENSG00000163026 H200003419 

76 ZNF335 Zinc finger protein 335. 20q13.12 ENSG00000198026 H200007640 

77 AP1G2 
Adapter-related protein complex 1 gamma 2 subunit 
(Gamma2-adaptin) (Adaptor protein complex AP-1 
gam 

14q11.2 ENSG00000092051 H200019914 

78 HPS4 Hermansky-Pudlak syndrome 4 protein (Light-ear 
protein homolog). 22q12.1 ENSG00000100099 H200001277 

79         H200004418 

80 CACNG4 Voltage-dependent calcium channel gamma-4 subunit 
(Neuronal voltage- gated calcium channel gamma-4 s 17q24.2 ENSG00000075461 H200010418 

81         H200002313 

82 KDELR3 ER lumen protein retaining receptor 3 (KDEL receptor 
3). 22q13.1 ENSG00000100196 H200016239 

83 MYST1 MYST histone acetyltransferase 1, histone 
acetyltransferase MYST1 [Homo sapiens]. 16p11.2 ENSG00000103510 H200004571 

84 OPTN optineurin, glaucoma 1, open angle, E (adult-onset), 
tumor necrosis factor alpha-inducible cellular 10p13 ENSG00000123240 H200017355 

85 PROCR Endothelial protein C receptor precursor (Endothelial 
cell protein C receptor) (Activated protein C 20q11.22 ENSG00000101000 H200006932 

86 ACTG1 Actin, cytoplasmic 1 (Beta-actin)., Actin, cytoplasmic 2 
(Gamma-actin). 

7p22.1, 
17q25.3 

ENSG00000075624, 
ENSG00000184009 H200002375 

87 SLC1A3 
Excitatory amino acid transporter 1 (Sodium-
dependent glutamate/aspartate transporter 1) (Glial 
glut 

5p13.2 ENSG00000079215 H200006090 

88 BRAP BRCA1-associated protein (EC 6.3.2.-) (BRAP2) 
(Impedes mitogenic signal propagation) (IMP). 12q24.12 ENSG00000089234 H200012400 

89 INPP4B inositol polyphosphate-4-phosphatase, type II, 105kD, 
inositol polyphosphate 4-phosphatase II, 4-pho 4q31.21 ENSG00000109452 H200013899 

90         H200011830 

91         H200010509 

92         H200019925 

93 COL12A1 Collagen alpha 1(XII) chain precursor. 6q13 ENSG00000111799 H200011114 

94 HESX1 Homeobox expressed in ES cells 1 (Homeobox protein 
ANF) (hAnf). 3p14.3 ENSG00000163666 H200008014 

95 NMNAT1 Nicotinamide mononucleotide adenylyltransferase 1 
(EC 2.7.7.1) (NMN adenylyltransferase 1). 1p36.22 ENSG00000173614 H200007228 

96 NPAS2 Neuronal PAS domain protein 2 (Neuronal PAS2) 
(Member of PAS protein 4) (MOP4). 2q11.2 ENSG00000170485 H200018956 

97 BMP4 Bone morphogenetic protein 4 precursor (BMP-4) 
(BMP-2B). 14q22.2 ENSG00000125378 H200005656 

98 CREB3 cAMP responsive element binding protein 3, cAMP 
responsive element binding protein 3 (luman), cyclic 9p13.3 ENSG00000107175 H200009202 

99   Regulatory associated protein of mTOR (Raptor) 
(P150 target of rapamycin (TOR)-scaffold protein). 17q25.3 ENSG00000141564 H200002921 

100 ATP6V1C
2 

ATPase, H+ transporting, lysosomal 42kDa, V1 
subunit C isoform 2, V-ATPase C2 subunit, ATPase, 
H+ tr 

2p25.1 ENSG00000143882 H200008589 

101 C20orf14 U5 snRNP-associated 102 kDa protein (U5-102 kDa 
protein). 20q13.33 ENSG00000101161 H200004082 

102 AURKB Serine/threonine-protein kinase 12 (EC 2.7.1.37) 
(Aurora- and Ipl1- like midbody-associated protein 17p13.1 ENSG00000178999 H200008454 

103 FBXO18 F-box only protein 18 (EC 3.6.1.-) (F-box DNA 
helicase 1). 10p15.1 ENSG00000134452 H200001177 

104         H200009676 

105 RHOBTB1 Rho-related BTB domain-containing protein 1. 10q21.2 ENSG00000072422 H200002445 

106 PTP4A1 protein tyrosine phosphatase type IVA, member 1, 
Protein tyrosine phosphatase IVA1 [Homo sapiens]. 6q12 ENSG00000112245 H200015401 

107 SMURF2 Smad ubiquitination regulatory factor 2 (EC 6.3.2.-) 
(Ubiquitin protein ligase SMURF2) (Smad-speci 17q24.1 ENSG00000108854 H200014627 

108 UBTF Nucleolar transcription factor 1 (Upstream binding 
factor 1) (UBF-1) (Autoantigen NOR-90). 17q21.31 ENSG00000108312 H200010392 

109         H200002419 

110   Autoantigen NGP-1. 1p34.3 ENSG00000134697 H200006126 
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111 SUPT4H1 Transcription initiation protein SPT4 homolog 1. 17q23.2 ENSG00000108372 H200006614 

112     17q21.2 ENSG00000141698 H200015595 

113     2p11.2 ENSG00000144115 H200001790 

114         H200008842 

115     12q13.2 ENSG00000135482 H200005456 

116         H200017299 

117 CCNL1 cyclin L1, cyclin L ania-6a [Homo sapiens]. 3q25.31 ENSG00000163660 H200000937 

118 RNU3IP2 U3 small nucleolar RNA interacting protein 2 (U3 small 
nucleolar ribonucleoproptein-associated 55-kD 3p21.2 ENSG00000114767 H200013906 

119 ASF1B ASF1 anti-silencing function 1 homolog B, anti-
silencing function 1B, CCG1-interacting factor A-II [ 19p13.12 ENSG00000105011 H200003654 

120 C9orf100   9p13.3 ENSG00000137135 H200015825 

121 SUMO4 Ubiquitin-like protein SMT3B (Sentrin 2) (HSMT3). 17q25.1, 
Xq23 

ENSG00000180283, 
ENSG00000188612 H200008406 

122         H200007932 

123 WFDC2 WAP four-disulfide core domain protein 2 precursor 
(Major epididymis- specific protein E4) (Epididym 20q13.12 ENSG00000101443 H200000668 

124 PABPC4 Polyadenylate-binding protein 4 (Poly(A)-binding 
protein 4) (PABP 4) (Inducible poly(A)-binding prot 1p34.3 ENSG00000090621 H200007875 

125 C10orf7 D123 gene product [Homo sapiens]. 10p13 ENSG00000151465 H200006879 

126 GRM4 Metabotropic glutamate receptor 4 precursor 
(mGluR4). 6p21.31 ENSG00000124493 H200008305 

127 NDUFS1 NADH-ubiquinone oxidoreductase 75 kDa subunit, 
mitochondrial precursor (EC 1.6.5.3) (EC 1.6.99.3) (C 2q33.3 ENSG00000023228 H200001624 

128   phosphatidylinositol-specific phospholipase C, X 
domain containing 1 [Homo sapiens]. Xp22.33 ENSG00000182378 H200003545 

129 TPCN1 two pore segment channel 1, two-pore channel 1, 
two-pore segment channel 1 [Homo sapiens]. 12q24.13 ENSG00000186815 H200003641 

130 TNFRSF7 Tumor necrosis factor receptor superfamily member 7 
precursor (CD27L receptor) (T-cell activation an 12p13.31 ENSG00000139193 H200021166 

131 RKHD2 ring finger and KH domain containing 2 [Homo 
sapiens]. 18q21.1 ENSG00000176624 H200002191 

132 DTYMK 
Thymidylate kinase (EC 2.7.4.9) (dTMP 
kinase).,Thymidylate kinase (EC 2.7.4.9) (dTMP 
kinase). 

2q37.3 ENSG00000168393, 
ENSG00000188547 H200006601 

133 RAB32 Ras-related protein Rab-32. 6q24.3 ENSG00000118508 H200004149 

134 WBSCR18 Williams-Beuren syndrome chromosome region 18 
protein. 7q11.23 ENSG00000176410 H200002733 

135 AKR1C1 Aldo-keto reductase family 1 member C1 (EC 1.1.1.-) 
(Trans-1,2- dihydrobenzene-1,2-diol dehydrogenas 10p15.1 ENSG00000187134 H200018207 

136 GLTSCR1 Glioma tumor suppressor candidate region gene 1 
protein. 19q13.32 ENSG00000063169 H200010786 

137         H200016743 

138         H200000805 

139 SOX9 Transcription factor SOX-9. 17q24.3 ENSG00000125398 H200000590 

140 ST7 suppression of tumorigenicity 7 isoform a, family with 
sequence similarity 4, subfamily A, member 1, 7q31.2 ENSG00000004866 H200001109 

141 SLC39A14 solute carrier family 39 (zinc transporter), member 14, 
solute carrier family 39 (metal ion transpor 8p21.3 ENSG00000104635 H200010399 

142 RRAGC Ras-related GTP binding C, Rag C protein [Homo 
sapiens]. 1p34.3 ENSG00000116954 H200011726 

143         H200016422 

144 FAM20A Protein FAM20A precursor (UNQ9388/PRO34279). 17q24.2 ENSG00000108950 H200013465 

145         H200002577 

146 SALL2 Sal-like protein 2 (Zinc finger protein SALL2) (HSal2). 14q11.2 ENSG00000165821 H200006732 

147 SLC39A11 
solute carrier family 39 (metal ion transporter), 
member 11, chromosome 17 open reading frame 26 
[Ho 

17q24.3 ENSG00000133195 H200000782 

148 GFPT2 Glucosaminefructose-6-phosphate aminotransferase 
[isomerizing] 2 (EC 2.6.1.16) (Hexosephosphate am 5q35.3 ENSG00000131459 H200003997 

149 MRS2L MRS2-like, magnesium homeostasis factor, MRS2 (S. 
cerevisiae)-like, magnesium homeostasis factor [Ho 6p22.2 ENSG00000124532 H200003978 

150         H200009425 
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151 GBA Glucosylceramidase precursor (EC 3.2.1.45) (Beta-
glucocerebrosidase) (Acid beta-glucosidase) (D-gluc 1q22 ENSG00000177628 H200020059 

152 MYO9A myosin IXA [Homo sapiens]. 15q23 ENSG00000066933 H200003274 

153   HTPAP protein [Homo sapiens]. 8p12 ENSG00000147535 H200007814 

154 SETBP1 SET-binding protein (SEB). 18q12.3 ENSG00000152217 H200013788 

155 SRI Sorcin (22 kDa protein) (CP-22) (V19). 7q21.12 ENSG00000075142 H200009922 

156 ABCB8 
ATP-binding cassette, sub-family B, member 8, 
mitochondrial precursor (Mitochondrial ATP-binding 
cas 

7q36.1 ENSG00000197150 H200012134 

157     15q15.1 ENSG00000137824 H200001578 

158 HOXB6 Homeobox protein Hox-B6 (Hox-2B) (Hox-2.2) (HU-
2). 17q21.32 ENSG00000108511 H200010880 

159 ATP11A Potential phospholipid-transporting ATPase IH (EC 
3.6.3.1) (ATPase class I type 11A) (ATPase IS). 13q34 ENSG00000068650 H200003896 

160 TFCP2L2 leader-binding protein 32 isoform 1, LBP protein 32, 
leader-binding protein 32, mammalian grainyhead 2p25.1 ENSG00000134317 H200018964 

161 KIAA1117   6q14.1 ENSG00000083097 H200017268 

162 ABCD1 Adrenoleukodystrophy protein (ALDP). Xq28 ENSG00000101986 H200007466 

163 CCM2 cerebral cavernous malformation 2, chromosome 7 
open reading frame 22 [Homo sapiens]. 7p13 ENSG00000136280 H200001861 

164   NY-REN-58 antigen [Homo sapiens]. 12q22 ENSG00000173588 H200005210 

165     17q21.2 ENSG00000131475 H200011600 

166   UPF0120 protein DKFZp564C186. 1p36.33 ENSG00000188976 H200013109 

167   CGI-29 protein, APAF1-interacting protein [Homo 
sapiens]. 11p13 ENSG00000149089 H200011285 

168 BAK1 Bcl-2 homologous antagonist/killer (Apoptosis 
regulator BAK) (BCL2- like 7 protein). 6p21.31 ENSG00000030110 H200010571 

169         H200003750 

170 CACNA1H Voltage-dependent T-type calcium channel alpha-1H 
subunit (Voltage- gated calcium channel alpha subu 16p13.3 ENSG00000196557 H200012371 

171 SRC Proto-oncogene tyrosine-protein kinase Src (EC 
2.7.1.112) (p60-Src) (c-Src). 20q11.23 ENSG00000197122 H200014805 

172         H200013303 

173 CXorf37   Xp11.23 ENSG00000101997 H200003626 

174 GPNMB Putative transmembrane protein NMB precursor 
(Transmembrane glycoprotein HGFIN). 7p15.3 ENSG00000136235 H200006911 

175 RBM10 RNA-binding protein 10 (RNA binding motif protein 
10) (DXS8237E). Xp11.3 ENSG00000182872 H200013980 

176     1p34.1 ENSG00000187147 H200010430 

177         H200012709 

178     12q24.13 ENSG00000139405 H200016259 

179 APG10L APG10 autophagy 10-like [Homo sapiens]. 5q14.1 ENSG00000152348 H200009074 

180 UBE2A Ubiquitin-conjugating enzyme E2 A (EC 6.3.2.19) 
(Ubiquitin-protein ligase A) (Ubiquitin carrier prot Xq24 ENSG00000077721 H200006776 

181 MRPS30 
Mitochondrial 28S ribosomal protein S30 (S30mt) 
(MRP-S30) (Programmed cell death protein 9) (BM-
047) 

5p12 ENSG00000112996 H200003850 

182         H200013007 

183 C10orf33   10q24.2 ENSG00000119943 H200010766 

184 TRIP10 Cdc42-interacting protein 4 (Thyroid receptor 
interacting protein 10) (TRIP-10). 19p13.3 ENSG00000125733 H200005905 

185         H200012966 

186     3p21.31 ENSG00000198530 H200020692 

187     1p34.3 ENSG00000163875 H200002622 

188   XTP3-transactivated protein A [Homo sapiens]. 16p11.2 ENSG00000179958 H200015610 

189 NFIB Nuclear factor 1 B-type (Nuclear factor 1/B) (NF1-B) 
(NFI-B) (NF-I/B) (CCAAT-box binding transcripti 9p22.3 ENSG00000147862 H200004230 

190 PRKCH Protein kinase C, eta type (EC 2.7.1.-) (nPKC-eta) 
(PKC-L). 14q23.1 ENSG00000027075 H200018874 

191         H200019805 

192   CGI-111 protein [Homo sapiens]. 5q23.3 ENSG00000066583 H200001967 
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193     12q21.31 ENSG00000111058 H200002237 

194 TRIM41 Tripartite motif protein 41. 5q35.3 ENSG00000146063 H200020110 

195 DHRS4 
Dehydrogenase/reductase SDR family member 4 (EC 
1.1.1.184) (NADPH- dependent carbonyl 
reductase/NADP 

14q11.2 ENSG00000157326 H200001202 

196 AMACR Alpha-methylacyl-CoA racemase (EC 5.1.99.4) (2-
methylacyl-CoA racemase). 5p13.3 ENSG00000082196 H200012768 

197         H200020351 

198 MINA MYC induced nuclear antigen isoform 2, myc-induced 
nuclear antigen, 53 kDa, mineral dust induced gen 3q11.2 ENSG00000170854 H200003264 

199         H200010060 

200   Protein HSPC020. 11q13.4 ENSG00000110200 H200004421 

201 FGD1 Putative Rho/Rac guanine nucleotide exchange factor 
(Rho/Rac GEF) (Faciogenital dysplasia protein) ( Xp11.22 ENSG00000102302 H200000409 

202         H200010990 

203   Arylsulfatase G [Homo sapiens]. 17q24.2 ENSG00000141337 H200017561 

204 RKHD3 ring finger and KH domain containing 3 [Homo 
sapiens]. 15q25.2 ENSG00000183496 H200011330 

205   Guanine nucleotide exchange factor-related protein 
(Deafness locus associated putative guanine nucle 11p15.1 ENSG00000129158 H200004794 

206 PTPRU 
Receptor-type protein-tyrosine phosphatase U 
precursor (EC 3.1.3.48) (R-PTP-U) (Protein-tyrosine 
pho 

1p35.3 ENSG00000060656 H200002847 

207 B4GALT2 Beta-1,4-galactosyltransferase 2 (EC 2.4.1.-) (Beta-
1,4-GalTase 2) (Beta4Gal-T2) (b4Gal-T2) (UDP-gal 1p34.1 ENSG00000117411 H200015011 

208 MRPL37 mitochondrial ribosomal protein L37, ribosomal 
protein, mitochondrial, L2 [Homo sapiens]. 1p32.3 ENSG00000116221 H200000887 

209 ASH2L ASH2-like protein. 8p12 ENSG00000129691 H200001319 

210 PIGS 
GPI transamidase component PIG-S 
(Phosphatidylinositol-glycan biosynthesis, class S 
protein). 

17q11.2 ENSG00000087111 H200020143 

211     5q32 ENSG00000145882 H200016427 

212     7p22.3 ENSG00000164818, 
ENSG00000188246 H200016943 

213 PEX6 Peroxisome assembly factor-2 (PAF-2) (Peroxisomal-
type ATPase 1) (Peroxin-6) (Peroxisomal biogenesis 6p21.1 ENSG00000124587 H200010054 

214 ENTPD7 ectonucleoside triphosphate diphosphohydrolase 7, 
lysosomal apyrase-like protein 1 [Homo sapiens]. 10q24.2 ENSG00000198018 H200003172 

215         H200002658 

216 ARHGDIG Protein disulfide-isomerase A2 precursor (EC 5.3.4.1) 
(PDIp). 16p13.3 ENSG00000185615 H200010174 

217 ESPL1 Separin (EC 3.4.22.49) (Separase) (Caspase-like 
protein ESPL1) (Extra spindle poles-like 1 protein). 12q13.13 ENSG00000135476 H200013875 

218 PRKWNK2 Serine/threonine-protein kinase WNK2 (EC 2.7.1.37) 
(Protein kinase with no lysine 2) (Protein kinase 9q22.31 ENSG00000165238 H200013033 

219 BCKDHA 
2-oxoisovalerate dehydrogenase alpha subunit, 
mitochondrial precursor (EC 1.2.4.4) (Branched-chain 
a 

19q13.2 ENSG00000142046 H200006590 

220     11q23.1 ENSG00000137702 H200010909 

221 BIRC7 Baculoviral IAP repeat-containing protein 7 (Kidney 
inhibitor of apoptosis protein) (KIAP) (Melanoma 20q13.33 ENSG00000101197 H200016398 

222 TRIP6 Thyroid receptor interacting protein 6 (TRIP6) (OPA-
interacting protein 1) (Zyxin related protein 1) 7q22.1 ENSG00000087077 H200012209 

223         H200018290 

224 NPY1R Neuropeptide Y receptor type 1 (NPY1-R). 4q32.2 ENSG00000164128 H200007802 

225   pyruvate dehydrogenase phosphatase regulatory 
subunit [Homo sapiens]. 16q22.1 ENSG00000090857 H200016507 

226 C20orf18 Ubiquitin conjugating enzyme 7 interacting protein 3 
(Hepatitis B virus X-associated protein 4) (HBV 20p13 ENSG00000125826 H200015861 

227 RAB5A Ras-related protein Rab-5A. 3p24.3 ENSG00000144566 H200005896 

228         H200007233 

229 BRD8 bromodomain containing 8 isoform 1, skeletal muscle 
abundant protein, thyroid hormone receptor coact 5q31.2 ENSG00000112983 H200001063 

230     11p13 ENSG00000176148 H200003139 
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231 NIT1 nitrilase 1 [Homo sapiens]. 1q23.3 ENSG00000158793 H200013566 

232 DEPDC6 DEP domain containing 6 [Homo sapiens]. 8q24.12 ENSG00000155792 H200010250 

233 ZDHHC14 Zinc finger DHHC domain containing protein 14 
(NEW1 domain containing protein) (NEW1CP). 6q25.3 ENSG00000175048 H200004435 

234 CPXM Potential carboxypeptidase X precursor (EC 3.4.17.-) 
(Metallocarboxypeptidase CPX-1). 20p13 ENSG00000088882 H200008267 

235 ARNTL Aryl hydrocarbon receptor nuclear translocator-like 
protein 1 (Brain and muscle ARNT-like 1) (Member 11p15.2 ENSG00000133794 H200005950 

236 PRPSAP2 Phosphoribosyl pyrophosphate synthetase-associated 
protein 2 (PRPP synthetase-associated protein 2) 17p11.2 ENSG00000141127 H200002257 

237   dudulin 2, tumor suppressor pHyde, six 
transmembrane prostate protein 3 [Homo sapiens]. 2q14.2 ENSG00000115107 H200005252 

238 ELOVL5 homolog of yeast long chain polyunsaturated fatty 
acid elongatio, homolog of yeast long chain polyun 6p12.1 ENSG00000012660 H200016204 

239         H200014395 

240 SOX13 SOX-13 protein (Type 1 diabetes autoantigen ICA12) 
(Islet cell antigen 12). 1q32.1 ENSG00000143842 H200014916 

241 CYR61 CYR61 protein precursor (Cysteine-rich, angiogenic 
inducer, 61) (Insulin-like growth factor-binding 1p22.3 ENSG00000142871 H200001697 

242         H200001611 

243         H200009962 

244 NT5M 5'(3')-deoxyribonucleotidase, cytosolic type (EC 3.1.3.-
) (Cytosolic 5',3'-pyrimidine nucleotidase) 17q25.1 ENSG00000125458 H200005632 

245         H200001954 

246 LDLR Low-density lipoprotein receptor precursor (LDL 
receptor). 19p13.2 ENSG00000130164 H200015172 

247         H200003707 

248 C5orf19   5q31.2 ENSG00000132563 H200003814 

249 ADCY3 Adenylate cyclase type III (EC 4.6.1.1) (Adenylate 
cyclase, olfactive type) (ATP pyrophosphate-lyase 2p23.3 ENSG00000138031 H200001647 

250 C5orf3   5q33.2 ENSG00000055147 H200007691 

251 NF1 Neurofibromin (Neurofibromatosis-related protein NF-
1) [Contains: Neurofibromin truncated]. 17q11.2 ENSG00000196712 H200010569 

252     5q31.1 ENSG00000145835 H200009573 

253         H200005644 

254 GNG11 Guanine nucleotide-binding protein G(I)/G(S)/G(O) 
gamma-11 subunit. 7q21.3 ENSG00000127920 H200007026 

255 ZNF259 Zinc-finger protein ZPR1 (Zinc finger protein 259). 11q23.3 ENSG00000109917 H200001377 

256 SUSD2 sushi domain containing 2, Sushi domain (SCR repeat) 
containing [Homo sapiens]. 22q11.23 ENSG00000099994 H200012965 

257 FGA Fibrinogen alpha/alpha-E chain precursor [Contains: 
Fibrinopeptide A]. 4q31.3 ENSG00000171560 H200021184 

258 FNTB Protein farnesyltransferase beta subunit (EC 2.5.1.58) 
(CAAX farnesyltransferase beta subunit) (RAS 14q23.3 ENSG00000125954 H200000075 

259 TIMM23 Mitochondrial import inner membrane translocase 
subunit Tim23. 10q11.23 ENSG00000138297 H200002039 

260         H200002087 

261         H200016707 

262         H200001644 

263 CLECSF12 C-type lectin, superfamily member 12 isoform b, beta-
glucan receptor, lectin-like receptor 1, transm 12p13.2 ENSG00000172243 H200014156 

264         H200000829 

265         H200001681 

266 DGKG 
Diacylglycerol kinase, gamma (EC 2.7.1.107) 
(Diglyceride kinase) (DGK- gamma) (DAG kinase 
gamma). 

3q27.2 ENSG00000058866 H200010327 

267     19q13.2 ENSG00000090924 H200011738 

268 MICA MHC class I chain-related gene A protein [Homo 
sapiens]. 6p21.33 ENSG00000184444 H200010444 

269     11q23.2 ENSG00000180425 H200010517 

270 TMEM25 transmembrane protein 25, 0610039J01Rik [Homo 
sapiens]. 11q23.3 ENSG00000149582 H200021089 
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271         H200003472 

272         H200004592 

273 KEAP1 Kelch-like ECH-associated protein 1 (Cytosolic inhibitor 
of Nrf2). 19p13.2 ENSG00000079999 H200005267 

274 MRPL30 mitochondrial ribosomal protein L30 isoform a [Homo 
sapiens]. 2q11.2 ENSG00000185414 H200002065 

275 HELLS helicase, lymphoid-specific, SWI/SNF2-related, matrix-
associated, actin-dependent regulator of chrom 10q23.33 ENSG00000119969 H200014971 

276 ENC1 Ectoderm-neural cortex-1 protein (ENC-1) (P53-
induced protein 10) (Nuclear matrix protein NRP/B). 5q13.3 ENSG00000171617 H200011342 

277 PSME2 Proteasome activator complex subunit 2 (Proteasome 
activator 28-beta subunit) (PA28beta) (PA28b) (Ac 14q11.2 ENSG00000100911 H200008379 

278 CENPJ centromere protein J, centrosomal P4.1-associated 
protein, LYST-interacting protein LIP1, LAG-3-asso 13q12.12 ENSG00000151849 H200017688 

279 DSCR1 Calcipressin 1 (Down syndrome critical region protein 
1) (Myocyte- enriched calcineurin interacting 21q22.12 ENSG00000159200 H200014262 

280 WNT5B Wnt-5b protein precursor. 12p13.33 ENSG00000111186 H200018203 

281   putative breast adenocarcinoma marker [Homo 
sapiens]. 19q13.43 ENSG00000130724 H200002069 

282     10q22.2 ENSG00000138286 H200004671 

283 SCAMP3 Secretory carrier-associated membrane protein 3 
(Secretory carrier membrane protein 3). 1q22 ENSG00000116521 H200014894 

284         H200003033 

285 RAI3 Retinoic acid induced 3 protein (G protein-coupled 
receptor family C group 5 member A) (Retinoic aci 12p13.1 ENSG00000013588 H200014654 

286         H200004670 

287 NFX1 Transcriptional repressor NF-X1 (EC 6.3.2.-) (Nuclear 
transcription factor, X box-binding, 1). 9p13.3 ENSG00000086102 H200000753 

288 FOS Proto-oncogene protein c-fos (Cellular oncogene fos) 
(G0/G1 switch regulatory protein 7). 14q24.3 ENSG00000170345 H200003548 

289   Cappuccino protein homolog. 4p16.1 ENSG00000186222 H200001457 

290 CARM1 coactivator-associated arginine methyltransferase 1, 
coactivator-associated arginine methyltransfera 19p13.2 ENSG00000142453 H200013420 

291 FBXO17 F-box only protein 17 (F-box only protein 26). 19q13.2 ENSG00000161241 H200016187 

292 NANOG Nanog homeobox, homeobox transcription factor 
Nanog [Homo sapiens]. 

15q14, 
12p13.31 

ENSG00000179437, 
ENSG00000111704 H200019169 

293 PPIL1 Peptidyl-prolyl cis-trans isomerase like 1 (EC 5.2.1.8) 
(PPIase) (Rotamase) (CGI-124) (UNQ2425/PRO49 6p21.2 ENSG00000137168 H200003788 

294 MYO5A Myosin Va (Myosin 5A) (Dilute myosin heavy chain, 
non-muscle) (Myosin heavy chain 12) (Myoxin). 15q21.2 ENSG00000197535 H200007910 

295 C14orf13
8   14q21.3 ENSG00000100483 H200002224 

296 PRKR Interferon-induced, double-stranded RNA-activated 
protein kinase (EC 2.7.1.-) (Interferon-inducible 2p22.2 ENSG00000055332 H200017076 

297     2q37.1 ENSG00000185404 H200016714 

298 RASL11B RAS-like family 11 member B [Homo sapiens]. 4q12 ENSG00000128045 H200001570 

299 C16orf34 Crm, cramped-like, Crm (Cramped Drosophila)-like 
[Homo sapiens]. 16p13.3 ENSG00000007545 H200002479 

300 EDG4 Lysophosphatidic acid receptor Edg-4 (LPA receptor 2) 
(LPA-2). 19p13.11 ENSG00000064547 H200012385 

301 REN, 
KCTD11 

Renin precursor (EC 3.4.23.15) 
(Angiotensinogenase).,potassium channel 
tetramerisation domain containing 11, chromosome 
17 open reading frame 36, retinoi 

1q32.1,17
p13.1 

ENSG00000143839, 
ENSG00000184542 H200015103 

302 UST uronyl-2-sulfotransferase, uronyl 2-sulfotransferase, 
dermatan/chondroitin sulfate 2-sulfotransferas 6q25.1 ENSG00000111962 H200013102 

303 TCFL5 Transcription factor-like 5 protein (Cha transcription 
factor) (HPV-16 E2 binding protein 1) (E2BP-1 20q13.33 ENSG00000101190 H200004024 

304 HIVEP1 Zinc finger protein 40 (Human immunodeficiency virus 
type I enhancer- binding protein 1) (HIV-EP1) ( 6p24.1 ENSG00000095951 H200000081 

305 NUDT5 ADP-sugar pyrophosphatase (EC 3.6.1.13) (EC 3.6.1.-
) (Nucleoside diphosphate-linked moiety X motif 5 10p14 ENSG00000165609 H200017987 

306 LAT Linker for activation of T cells (36 kDa phospho-
tyrosine adaptor protein) (pp36) (p36-38). 16p11.2 ENSG00000169678 H200007039 
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307 RASA3 Ras GTPase-activating protein 3 (GAP1(IP4BP)) (Ins 
P4-binding protein). 13q34 ENSG00000185989 H200012198 

308         H200001307 

309         H200004113 

310 MTX2 Metaxin 2. 2q31.1 ENSG00000128654 H200004105 

311     7p22.3 ENSG00000146540 H200019508 

312 RHOBTB3 Rho-related BTB domain-containing protein 3. 5q15 ENSG00000164292 H200001910 

313 TAF1 Transcription initiation factor TFIID subunit 1 (EC 
2.7.1.37) (Transcription initiation factor TFIID Xq13.1 ENSG00000147133 H200000303 

314         H200001320 

315 USP12 Ubiquitin carboxyl-terminal hydrolase 12 (EC 3.1.2.15) 
(Ubiquitin thiolesterase 12) (Ubiquitin-speci 13q12.13 ENSG00000152484 H200004574 

316 PHC1 
Polyhomeotic-like protein 1 (Early development 
regulator protein 1) (HPH1).,Polyhomeotic-like protein 
1 (Early development regulator protein 1) (HPH1). 

12q13.2, 
12p13.31 

ENSG00000179899, 
ENSG00000111752 H200018199 

317     15q15.3 ENSG00000137770 H200011302 

318 ATP5J2 ATP synthase f chain, mitochondrial (EC 3.6.3.14). 7q22.1 ENSG00000160916 H200014108 

319 PLXNA1 plexin A1, plexin 1 [Homo sapiens]. 3q21.2 ENSG00000114554 H200019013 

320 PLCB4 
1-phosphatidylinositol-4,5-bisphosphate 
phosphodiesterase beta 4 (EC 3.1.4.11) 
(Phosphoinositide pho 

20p12.2 ENSG00000101333 H200017629 

321 C1orf6 Ataxin-1 ubiquitin-like interacting protein A1U. 1q22 ENSG00000160803 H200017798 

322 CCND3 G1/S-specific cyclin D3. 6p21.1 ENSG00000112576 H200007012 

323 C10orf81   10q25.3 ENSG00000148735 H200015418 

324 ZNF228 Zinc finger protein 228. 19q13.31 ENSG00000062370 H200004887 

325 TGIF2 Homeobox protein TGIF2 (TGFB-induced factor 2) (5'-
TG-3' interacting factor 2) (TGF(beta)-induced tr 20q11.23 ENSG00000118707 H200010661 

326 RPP38 Ribonuclease P protein subunit p38 (EC 3.1.26.5) 
(RNaseP protein p38). 10p13 ENSG00000152464 H200010679 

327 PMS2L11 HPMSR6. 7q11.23 ENSG00000186704 H200018214 

328 IARS Isoleucyl-tRNA synthetase, cytoplasmic (EC 6.1.1.5) 
(IsoleucinetRNA ligase) (IleRS) (IRS). 9q22.31 ENSG00000196305 H200008082 

329 SUPT16H chromatin-specific transcription elongation factor large 
subunit [Homo sapiens]. 14q11.2 ENSG00000092201 H200002431 

330     1p34.1 ENSG00000159596 H200014285 

331 PSCD2L Cytohesin 2 (ARF nucleotide-binding site opener) 
(ARNO protein) (ARF exchange factor). 19q13.32 ENSG00000105443 H200018158 

332         H200020364 

333 CD1C T-cell surface glycoprotein CD1c precursor (CD1c 
antigen). 1q23.1 ENSG00000158481 H200000342 

334 POFUT2 GDP-fucose protein O-fucosyltransferase 2 precursor 
(EC 2.4.1.221) (Peptide O-fucosyltransferase) (O 21q22.3 ENSG00000186866 H200003223 

335 TBXA2R NY-REN-24 antigen (Fragment).Thromboxane A2 
receptor (TXA2-R) (Prostanoid TP receptor). 19p13.3 

ENSG00000105298, 
ENSG00000179855, 
ENSG00000006638 

H200012751 

336         H200019921 

337 UBE1 Ubiquitin-activating enzyme E1 (A1S9 protein). Xp11.3 ENSG00000130985 H200000527 

338 CORO1C Coronin 1C (Coronin 3) (hCRNN4). 12q24.11 ENSG00000110880 H200002647 

339 ZNF41 Zinc finger protein 41. Xp11.3 ENSG00000147124 H200015400 

340         H200010439 

341 DPP3 Bardet-Biedl syndrome 1 protein (BBS2-like protein 2). 11q13.2 ENSG00000174483 H200003203 

342 PRAF2 JM4 protein [Homo sapiens]. Xp11.23 ENSG00000102050 H200003933 

343     1p36.12 ENSG00000090432 H200001884 

344     7q22.1 ENSG00000160993 H200016776 

345         H200015636 

346 TP53BP1 Tumor suppressor p53-binding protein 1 (p53-binding 
protein 1) (53BP1). 15q15.3 ENSG00000067369 H200007926 

347 WBP11 
WW domain binding protein 11, Npw38-binding 
protein NpwBP, SH3 domain-binding protein SNP70 
[Homo sa 

12p12.3 ENSG00000084463 H200019689 
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348         H200010493 

349 CDK2AP1 Cyclin-dependent kinase 2-associated protein 1 
(CDK2-associated protein 1) (Putative oral cancer sup 12q24.31 ENSG00000111328 H200000786 

350   nucleostemin isoform 1, putative nucleotide binding 
protein, estradiol-induced [Homo sapiens]. 3p21.1 ENSG00000163938 H200017556 

351         H200008222 

352 VAV3 Vav-3 protein. 1p13.3 ENSG00000134215 H200016605 

353 PHKG2 
Phosphorylase B kinase gamma catalytic chain, 
testis/liver isoform (EC 2.7.1.38) (PHK-gamma-T) 
(Phos 

16p11.2 ENSG00000156873 H200014730 

354 ZNF346 zinc finger protein 346, double-stranded RNA-binding 
zinc finger protein JAZ [Homo sapiens]. 5q35.2 ENSG00000113761 H200008493 

355 CHEK2 Serine/threonine-protein kinase Chk2 (EC 2.7.1.37) 
(Cds1). 22q12.1 ENSG00000183765 H200013557 

356 NT5C2 Cytosolic purine 5'-nucleotidase (EC 3.1.3.5) (5'-
nucleotidase cytosolic II). 10q24.33 ENSG00000076685 H200013286 

357 OSR1 oxidative-stress responsive 1 [Homo sapiens]. 3p22.2 ENSG00000172939 H200010689 

358 PRKAB1 5'-AMP-activated protein kinase, beta-1 subunit 
(AMPK beta-1 chain) (AMPKb). 12q24.23 ENSG00000111725 H200001142 

359 ATP6V1F Vacuolar ATP synthase subunit F (EC 3.6.3.14) (V-
ATPase F subunit) (Vacuolar proton pump F subunit) 7q32.1 ENSG00000128524 H200006486 

360 FRAP1 FKBP-rapamycin associated protein (FRAP) 
(Rapamycin target protein). 1p36.22 ENSG00000198793 H200019855 

361 PHB Prohibitin. 17q21.32 ENSG00000167085 H200012361 

362 ZNF502 Zinc finger protein 502. 3p21.31 ENSG00000196653 H200015276 

363         H200002063 

364         H200010421 

365 OSBPL3 Oxysterol binding protein-related protein 3 (OSBP-
related protein 3) (ORP-3). 7p15.3 ENSG00000070882 H200014777 

366 ACTG2 Actin, gamma-enteric smooth muscle (Alpha-actin 3). 2p13.1 ENSG00000163017 H200006478 

367         H200012250 

368 EXOC7 Exocyst complex component 7 (Exocyst complex 
component Exo70). 17q25.1 ENSG00000182473 H200016731 

369 STARD7 StAR-related lipid transfer protein 7 (StARD7) (START 
domain- containing protein 7) (GTT1 protein). 2q11.2 ENSG00000084090 H200017790 

370   CGI-62 protein [Homo sapiens]. 8q21.12 ENSG00000104427 H200012156 

371 ALG1 beta-1,4-mannosyltransferase, beta-1,4 
mannosyltransferase [Homo sapiens]. 16p13.3 ENSG00000033011 H200004717 

372         H200004334 

373 DDX56 
Probable ATP-dependent 61 kDa nucleolar RNA 
helicase (EC 3.6.1.-) (DEAD-box protein 56) (DEAD-
box pr 

7p13 ENSG00000136271 H200001883 

374 TBC1D1 TBC1 domain family member 1. 4p14 ENSG00000065882 H200017315 

375 CYP27A1 Cytochrome P450 27, mitochondrial precursor (EC 
1.14.-.-) (Cytochrome P-450C27/25) (Sterol 26-hydrox 2q35 ENSG00000135929 H200006956 

376 HEMK1 HemK protein homolog (EC 2.1.1.-) (M.HsaHemKP). 3p21.31 ENSG00000114735 H200004813 

377     17q25.3 ENSG00000178927 H200001827 

378         H200003632 

379     17q25.1 ENSG00000177728 H200009966 

380 LENG8 leukocyte receptor cluster (LRC) member 8 [Homo 
sapiens]. 19q13.42 ENSG00000167615 H200018209 

381         H200001270 

382 PSD4 pleckstrin and Sec7 domain containing 4, ADP-
ribosylation factor guanine nucleotide-exchange factor 2q13 ENSG00000125637 H200011683 

383         H200014351 

384 APBB2 Amyloid beta A4 precursor protein-binding family B 
member 2 (Fe65-like protein) (Fragment). 4p14 ENSG00000163697 H200019090 

385 WISP2 WNT1 inducible signaling pathway protein 2 precursor 
(WISP-2) (Connective tissue growth factor-like 20q13.12 ENSG00000064205 H200014646 

386 TCF3 
Transcription factor E2-alpha (Immunoglobulin 
enhancer binding factor E12/E47) (Transcription 
factor 

19p13.3 ENSG00000071564 H200011103 
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387 SCRT2 UPF0238 protein c20orf139. 20p13 ENSG00000172070 H200013143 

388 TXNDC4 Thioredoxin domain containing protein 4 precursor 
(Endoplasmic reticulum protein ERp44). 9q31.1 ENSG00000023318 H200013926 

389         H200009570 

390 PLAGL2 Zinc finger protein PLAGL2 (Pleiomorphic adenoma-
like protein 2). 20q11.21 ENSG00000126003 H200013939 

391         H200005593 

392         H200008282 

393 TUBGCP3 
Gamma-tubulin complex component 3 (GCP-3) 
(Spindle pole body protein Spc98 homolog) (hSpc98) 
(hGCP3) 

13q34 ENSG00000126216 H200001849 

394 C6orf79   6p23 ENSG00000050393 H200016505 

395         H200000866 

396 RASSF1 Ras association domain family 1 (Ras association, 
RalGDS/AF-6, domain family 1). 3p21.31 ENSG00000068028 H200003705 

397 PDE9A High-affinity cGMP-specific 3',5'-cyclic 
phosphodiesterase 9A (EC 3.1.4.17). 21q22.3 ENSG00000160191 H200002780 

398 PECR peroxisomal trans-2-enoyl-CoA reductase, peroxisomal 
trans 2-enoyl CoA reductase, putative short cha 2q35 ENSG00000115425 H200017595 

399 UAP1 UDP-N-acetylhexosamine pyrophosphorylase (Antigen 
X) (AGX) (Sperm- associated antigen 2) [Includes: 1q23.3 ENSG00000117143 H200003000 

400 PBP Phosphatidylethanolamine-binding protein (PEBP) 
(Prostatic binding protein) (HCNPpp) (Neuropolypepti 12q24.23 ENSG00000089220 H200006761 

401 LRP5 Low-density lipoprotein receptor-related protein 5 
precursor. 11q13.2 ENSG00000162337 H200001207 

402 CHST3 carbohydrate (chondroitin 6) sulfotransferase 3, 
chondroitin 6-sulfotransferase [Homo sapiens]. 10q22.1 ENSG00000122863 H200007322 

403 LEPREL1 leprecan-like 1, myxoid liposarcoma associated 
protein 4, prolyl 3-hydroxylase 3 [Homo sapiens]. 3q28 ENSG00000090530 H200004600 

404 TNRC18 CAGL79 (Fragment). 7p22.1 ENSG00000182095 H200020510 

405 KBTBD2 Kelch repeat and BTB domain containing protein 2 
(BTB and kelch domain containing protein 1). 7p14.3 ENSG00000170852 H200002891 

406 C20orf12
1   20q13.12 ENSG00000124120 H200008681 

407 PNKP Bifunctional polynucleotide phosphatase/kinase 
(Polynucleotide kinase- 3'-phosphatase) (DNA 5'-kinas 19q13.33 ENSG00000039650 H200006474 

408         H200004276 

409     10p11.23 ENSG00000165757 H200004811 

410 MYBBP1A MYB binding protein 1a, p53-activated protein-2 
[Homo sapiens]. 17p13.2 ENSG00000132382 H200003194 

411 FOXC1 Forkhead box protein C1 (Forkhead-related protein 
FKHL7) (Forkhead- related transcription factor 3) 6p25.3 ENSG00000054598 H200020379 

412 RHEB GTP-binding protein Rheb (Ras homolog enriched in 
brain). 7q36.1 ENSG00000106615 H200017539 

413 GPRC5C G protein-coupled receptor family C group 5 member 
C precursor (Retinoic acid induced gene 3 protein 17q25.1 ENSG00000170412 H200005296 

414   Tetraspan NET-7. 10q22.1 ENSG00000099282 H200010703 

415 ETV5 Ets-related protein ERM (ETS translocation variant 5). 3q27.2 ENSG00000171656 H200004645 

416 PGD 6-phosphogluconate dehydrogenase, decarboxylating 
(EC 1.1.1.44). 1p36.22 ENSG00000142657 H200006228 

417 RGS2 Regulator of G-protein signaling 2 (RGS2) (G0/G1 
switch regulatory protein 8). 1q31.2 ENSG00000116741 H200006587 

418 BCL6 B-cell lymphoma 6 protein (BCL-6) (Zinc finger protein 
51) (LAZ-3 protein) (BCL-5) (Zinc finger and 3q27.3 ENSG00000113916 H200014019 

419 UBAP2 ubiquitin associated protein 2 isoform 1, AD-012 
protein [Homo sapiens]. 9p13.3 ENSG00000137073 H200002430 

420 COPB Coatomer beta subunit (Beta-coat protein) (Beta-
COP). 11p15.2 ENSG00000129083 H200000730 

421 GNB4 Guanine nucleotide-binding protein beta subunit 4 
(Transducin beta chain 4). 3q26.32 ENSG00000114450 H200008063 

422 MPHOSPH
6 M-phase phosphoprotein 6. 16q23.3 ENSG00000135698 H200013829 

423     12p13.33 ENSG00000171792 H200007245 

424         H200016752 



 xxxviii

425 C13orf12   13q12.3 ENSG00000132963 H200017498 

426 CYP1B1 Cytochrome P450 1B1 (EC 1.14.14.1) (CYPIB1). 2p22.2 ENSG00000138061 H200013981 

427 GSDML gasdermin-like [Homo sapiens]. 17q21.1 ENSG00000073605 H200002789 

428         H200018267 

429   CDA02 protein [Homo sapiens]. 3q25.1 ENSG00000144895 H200019327 

430     2q21.1 ENSG00000169606 H200018879 

431 ZNF160 Zinc finger protein Kr18 (HKr18). 19q13.41 ENSG00000170949 H200015014 

432 IQCB1 IQ calmodulin-binding motif containing protein 1. 3q13.33 ENSG00000173226 H200007819 

433 IPO4 Importin 4 (Importin 4b) (Imp4b) (Ran-binding 
protein 4) (RanBP4). 14q11.2 ENSG00000196497 H200005457 

434 ZA20D2 Zinc finger A20 domain containing protein 2 (Zinc 
finger protein 216). 9q21.13 ENSG00000107372 H200000830 

435         H200018807 

436     20p11.21 ENSG00000101004 H200015397 

437 MTMR2 Myotubularin-related protein 2 (EC 3.1.3.-). 11q21 ENSG00000087053 H200008529 

438 PRPF18 Pre-mRNA splicing factor 18 (PRP18 homolog) 
(hPRP18). 10p13 ENSG00000165630 H200014051 

439 CDC42EP
1 CDC42 effector protein 1 (Serum protein MSE55). 22q13.1 ENSG00000128283 H200013626 

440 FAM8A1 Autosomal Highly Conserved Protein [Homo sapiens]. 6p22.3 ENSG00000137414 H200010692 

441 NRD1 Nardilysin precursor (EC 3.4.24.61) (N-arginine dibasic 
convertase) (NRD convertase) (NRD-C). 1p32.3 ENSG00000078618 H200000873 

442 LASS2 LAG1 longevity assurance homolog 2 (Tumor 
metastasis-suppressor gene 1 protein) (SP260). 1q21.2 ENSG00000143418 H200008861 

443 C19orf33 Immortalization-up-regulated protein (Hepatocyte 
growth factor activator inhibitor type 2-related sm 19q13.2 ENSG00000167644 H200020296 

444 ASPSCR1 alveolar soft part sarcoma chromosome region, 
candidate 1, ASPL protein, renal cell carcinoma gene o 17q25.3 ENSG00000169696 H200009864 

445 ALG2 
Alpha-1,3-mannosyltransferase ALG2 (EC 2.4.1.-) 
(GDP- Man:Man(1)GlcNAc(2)-PP-dolichol 
mannosyltransf 

9q22.33 ENSG00000119523 H200004499 

446 TP53RK TP53 regulating kinase (EC 2.7.1.37) (p53-related 
protein kinase) (Nori-2). 20q13.12 ENSG00000172315 H200017627 

447 SSR1 
Translocon-associated protein, alpha subunit 
precursor (TRAP-alpha) (Signal sequence receptor 
alpha 

6p24.3 ENSG00000124783 H200016256 

448 CYLN2 cytoplasmic linker 2 isoform 1, Williams-Beuren 
syndrome chromosome region 4 [Homo sapiens]. 7q11.23 ENSG00000106665 H200011328 

449 VIP, 
CPAMD8 

Vasoactive intestinal peptide precursor (VIP).,C3 and 
PZP-like, alpha-2-macroglobulin domain containing 8, 
alpha-2 macroglobulin family protein VIP 

6q25.2, 
19p13.11 

ENSG00000146469, 
ENSG00000160111 H200012267 

450     7q34 ENSG00000006530 H200016499 

451   HBxAg transactivated protein 2 [Homo sapiens]. 1q24.3 ENSG00000117523 H200005686 

452 MRPL2 mitochondrial ribosomal protein L2 [Homo sapiens]. 6p21.1 ENSG00000112651 H200005144 

453     22q11.21 ENSG00000099972 H200017971 

454 PACSIN2 Protein kinase C and casein kinase substrate in 
neurons protein 2. 22q13.2 ENSG00000100266 H200002767 

455 ZNF553 zinc finger protein 553 [Homo sapiens]. 16p11.2 ENSG00000180035 H200002116 

456         H200020420 

457         H200009382 

458 C4orf14   4q12 ENSG00000084092 H200001673 

459 ICAM3 Intercellular adhesion molecule-3 precursor (ICAM-3) 
(ICAM-R) (CDw50) (CD50 antigen). 19p13.2 ENSG00000076662 H200011041 

460 SF3A2 Splicing factor 3A subunit 2 (Spliceosome associated 
protein 62) (SAP 62) (SF3a66). 19p13.3 ENSG00000104897 H200011943 

461 EPHB3 Ephrin type-B receptor 3 precursor (EC 2.7.1.112) 
(Tyrosine-protein kinase receptor HEK-2). 3q27.1 ENSG00000182580 H200000705 

462     1p36.13 ENSG00000169991 H200002318 

463         H200013074 

464   Protein AF1q. 1q21.2 ENSG00000143443 H200006209 

465 RWDD1 RWD domain containing protein 1 (CGI-24) (PTD013). 6q22.1 ENSG00000111832 H200003183 
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466 NDST2 Heparin sulfate N-deacetylase/N-sulfotransferase (EC 
2.8.2.-) (N-HSST) (N-heparin sulfate sulfotrans 10q22.2 ENSG00000166507 H200006518 

467 PRKCZ Protein kinase C, zeta type (EC 2.7.1.37) (nPKC-zeta). 1p36.33 ENSG00000067606 H200006556 

468 PAPD1 PAP associated domain containing 1 [Homo sapiens]. 10p11.23 ENSG00000107951 H200008184 

469 MTRF1 Peptide chain release factor 1, mitochondrial 
precursor (MRF-1). 13q14.11 ENSG00000120662 H200006786 

470     19q13.31 ENSG00000105771 H200001886 

471 KCND1 Potassium voltage-gated channel subfamily D member 
1 (Voltage-gated potassium channel subunit Kv4.1) Xp11.23 ENSG00000102057 H200005164 

472 UPF2 UPF2 regulator of nonsense transcripts homolog, 
regulator of nonsense transcripts 2, yeast Upf2p hom 10p14 ENSG00000151461 H200000853 

473     7q34 ENSG00000006459 H200015246 

474   down-regulated in metastasis [Homo sapiens]. 12q23.2 ENSG00000120800 H200008329 

475 C20orf23 Kinesin-like motor protein C20orf23 (Sorting nexin 
23). 20p12.1 ENSG00000089177 H200011141 

476         H200011386 

477 SGSH N-sulphoglucosamine sulphohydrolase precursor (EC 
3.10.1.1) (Sulfoglucosamine sulfamidase) (Sulphami 17q25.3 ENSG00000181523 H200004063 

478 MPP1 55 kDa erythrocyte membrane protein (p55) 
(Membrane protein, palmitoylated 1). Xq28 ENSG00000130830 H200000477 

479 THUMPD2 THUMP domain containing protein 2. 2p22.1 ENSG00000138050 H200004437 

480 DGCR8 DGCR8 protein (DiGeorge syndrome critical region 8). 22q11.21 ENSG00000128191 H200017967 

481         H200012395 

482         H200008747 

483 B4GALT1 Beta-1,4-galactosyltransferase 1 (EC 2.4.1.-) (Beta-
1,4-GalTase 1) (Beta4Gal-T1) (b4Gal-T1) (UDP-gal 9p21.1 ENSG00000086062 H200014787 

484 RSU1 Ras suppressor protein 1 (Rsu-1) (RSP-1). 10p13 ENSG00000148484 H200006130 

485     7q11.21 ENSG00000198874 H200002559 

486         H200009822 

487 RAD51C DNA repair protein RAD51 homolog 3. 17q23.2 ENSG00000108384 H200001999 

488 TBC1D16 TBC1 domain family, member 16 [Homo sapiens]. 17q25.3 ENSG00000167291 H200010522 

489         H200012718 

490 DRG1 Developmentally regulated GTP-binding protein 1 
(DRG 1). 22q12.2 ENSG00000185721 H200011945 

491 ARID1A SWI/SNF-related, matrix-associated, actin-dependent 
regulator of chromatin subfamily F member 1 (SWI 1p36.11 ENSG00000117713 H200012438 

492 TNFSF5IP
1 

tumor necrosis factor superfamily, member 5-induced 
protein 1, hepatocellular carcinoma susceptibili 18p11.21 ENSG00000128789 H200000820 

493 MRPS22 Mitochondrial 28S ribosomal protein S22 (S22mt) 
(MRP-S22) (GK002). 3q23 ENSG00000175110 H200011494 

494 ZDHHC6 Zinc finger DHHC domain containing protein 6 (Zinc 
finger protein 376) (Transmembrane protein H4). 10q25.2 ENSG00000023041 H200003136 

495         H200009543 

496 CHD8 Chromodomain-helicase-DNA-binding protein 8 (CHD-
8) (Helicase with SNF2 domain 1) (Fragment). 14q11.2 ENSG00000100888 H200008140 

497 KIAA1618   17q25.3 ENSG00000180843 H200018846 

498 BHLHB2 Class B basic helix-loop-helix protein 2 (bHLHB2) 
(Differentially expressed in chondrocytes protein 3p26.1 ENSG00000134107 H200007994 

499 USP5 Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.1.2.15) 
(Ubiquitin thiolesterase 5) (Ubiquitin-specifi 12p13.31 ENSG00000111667 H200000826 

500 ESRRAP 28S ribosomal protein S31, mitochondrial precursor 
(S31mt) (MRP-S31) (Imogen 38). 13q14.11 ENSG00000102738 H200013982 

501 FNTA Protein farnesyltransferase/geranylgeranyltransferase 
type I alpha subunit (EC 2.5.1.58) (EC 2.5.1.5 8p11.21 ENSG00000168522 H200020470 

502     2q31.1 ENSG00000138382 H200016971 

503 ADCK4 aarF domain containing kinase 4 [Homo sapiens]. 19q13.2 ENSG00000123815 H200012914 

504 BCCIP 
BRCA2 and CDKN1A-interacting protein isoform 
BCCIPalpha, BRCA2 and CDKN1A-interacting protein, 
cdk i 

10q26.2 ENSG00000107949 H200017518 

505 METAP1 Methionine aminopeptidase 1 (EC 3.4.11.18) (MetAP 
1) (MAP 1) (Peptidase M 1). 4q23 ENSG00000164024 H200006871 

506 C10orf97   10p13 ENSG00000148481 H200008813 



 xl 

507     1p13.2 ENSG00000143079 H200003341 

508 CSPG6 Structural maintenance of chromosome 3 (Chondroitin 
sulfate proteoglycan 6) (Chromosome-associated p 10q25.2 ENSG00000108055 H200003409 

509 ORC5L Origin recognition complex subunit 5. 7q22.1 ENSG00000164815 H200013856 

510 AKAP1 A kinase anchor protein 1, mitochondrial precursor 
(Protein kinase A anchoring protein 1) (PRKA1) (A 17q23.2 ENSG00000121057 H200006583 

511     19q13.43 ENSG00000105136 H200018815 

512 CDC16 
Cell division cycle protein 16 homolog (CDC16Hs) 
(Anaphase promoting complex subunit 6) (APC6) 
(Cycl 

13q34 ENSG00000130177 H200000418 

      

for Operon IDs http://omad.operon.com/human2/index.php    

for ensembl IDs http://www.ensembl.org/Homo_sapiens/textview    

 

 

E. Publications and Patent 

01/2008 *Schneeweiss A, *Thuerigen O, …, Lichter P, Toedt G. 

 In preparation 

 * Authors contributed equally. 

11/2007  Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, Thuerigen O, 
Sinn HP, Akhtar A, Lichter P. 

 The histone acetyltransferase hMOF is frequently downregulated in primary breast 
carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome 
in medulloblastoma 

 International Journal of Cancer: [Epub ahead of print]; in press 
 

04/2006 *Thuerigen O, *Schneeweiss A, Toedt G, Warnat P, Hahn M, Kramer H, Brors B, 
Rudlowski C, Benner A, Schuetz F, Tews B, Eils R, Sinn HP, Sohn C, Lichter P. 

 Gene Expression Signature Predicting Pathologic Complete Response with 
Gemcitabine, Epirubicin, and Docetaxel in Primary Breast Cancer 

 Journal of Clinical Oncology, Vol. 24(12):1839-45 

 * Authors contributed equally. 
 

02/2005 Schlingemann J, Thuerigen O, Ittrich C, Toedt G, Kramer H, Hahn M, Lichter P. 

 Effective Transcriptome Amplification for Expression Profiling on Sense-oriented 
Oligonucleotide Microarrays 

 Nucleic Acids Research, Vol. 33(3):e29 
 

01/2004 Thuerigen O, Schlingemann J, Hahn M, Lichter P. 

 T7 amplification and cDNA Klenow labeling for expression (TAcKLE) analysis with 
oligonucleotide microarrays 

 European Patent No. 04 000 343.6 
 


