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Zusammenfassung
Quantenmanipulation von Photonen und Atomen

Quanteninformation wird seit den achtziger Jahren des vergangenen Jahrhunderts ein grosser wis-
senschaftlicher Wert und grosse Anwendbarkeit bezeugt. Die hier vorgestellte wissenschaftliche
Arbeit gliedert sich in zwei Hauptteile: die Manipulation von Multiphotonen-Verschränkung und
Quantenspeicher basierend auf atomaren Ensembles. Im ersten Teil werden die experimentellen
Methoden von Multiphotonen-Verschränkung weiterentwickelt um fundamentale Fragen der Quan-
tenmechanik zu studieren und bemerkenswerte Anwendungen zur Quantenkommunikation und
Quantenrechnungen zu untersuchen. Genauer gesagt handelt es sich dabei um die Demonstration
eines Bit-Flip fehlerfreien Transfers von Quanteninformation, die Verletzung der Bell’schen Un-
gleichung über die Tsirelson Grenze, die Teleportation eines zwei Qubit-Kompositsystems, sowie
um eine Einwegquantenrechnung mittels eines Zwei-Photonen-Vier-Qubit-Clusterzustandes. Um
die Unskalierbarkeit durch die probabilistischen Eigenschaften in der linearen Quanteninforma-
tionsverarbeitung zu überwinden, haben wir im zweiten Teil der vorliegenden Arbeit die Physik
von Quantenspeichern basierend auf atomaren Ensembles untersucht. Wir zeigen theoretisch, dass
Verschränkung zwischen entfernten Orten deterministisch erzeugt werden kann. Mit den exper-
imentell sorgfältig entwickelten Techniken haben wir eine deterministische Einzelphotonenquelle
umgesetzt, die Interferenz von Photonen von unabhängigen atomaren Ensembles erreicht, die Tele-
portation zwischen einem photonischen und atomaren Qubit verwirklicht, einen neuen Weg zur
Erzeugung von robuster Verschränkung zwischen einem atomaren und einem photonischen Qubit
entwickelt und speicherbasierten Verschränkungstausch nachgewiesen. Wir glauben, dass die hier
dargestellten Techniken den Fortschritt in vielen Feldern wie der globalen Quantenkommunika-
tion, der linearen optischen Quantenrechnung, den Fundamenten der Quantenmechanik usw. eine
dramatische Erleichterung bringen werden.

Abstract
Quantum manipulation of photons and atoms

Quantum information has been witnessing great science value and latent application since 1980’s.
The research work presented here consist of mainly two important parts: manipulations of multi-
photon entanglement and atomic ensembles based quantum memory. In first part, the experimental
technique multi-photon entanglement is further developed to study fundamental issues in quan-
tum mechanics, remarkable applications to quantum communication and quantum computation.
Specifically, we have demonstrated a bit-flip error-free transfer of quantum information, violation
of Bell’s inequality beyond Tsirelson’s bound, teleportation of a two-qubit composite system, as
well as the one-way computing by two-photon-four-qubit cluster state. To overcome un-scalability
problem due to probabilistic feature in linear optical quantum information processing, we inves-
tigated in the second part the physics of atomic ensembles based quantum memory. We show
that theoretically, entanglement between distant locations can be deterministically generated. The
experimental work has thoroughly developed the necessary techniques and we have achieved deter-
ministic single photon source, and interference of the photons from independent atomic ensembles,
teleportation between photonic and atomic qubits, a novel way to create a robust entanglement be-
tween an atomic and a photonic qubit, and memory based entanglement swapping. We believe, the
developed techniques here would dramatically facilitate progresses in many fields including global
quantum communication, linear optical quantum computation and the foundations of quantum
mechanics etc.
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摘  要 

光子和原子的量子操纵 

量子信息学是基于上世纪物理学最重大的发展之一量子力学的基础之上
的，由于其潜在的应用价值和重大的科学意义，上世际八十年代以来，量子
信息学成为一门迅速发展的新兴学科，同时引起了各国政府和广大科学界的
高度关注。 

 
本文主要研究多光子纠缠以及基于原子系综的量子存储在量子信息处理

中的应用。本文主要包括两个部分：多光子纠缠的实验操纵和基于原子系综
的量子存储的操纵。 

 
在第一部分中，我们在实验上进一步发展了基于参量下转换的多光子纠

缠的实验技术，除了研究多光子纠缠在量子力学基础问题上的性质之外，我
们也实现了其在量子通讯以及量子计算学等方向的重要应用：实验实现无比
特翻转误差的量子态传输；验证了高于 Tsirelson 极限的贝尔不等式的违背；
双光子复杂系统的隐形传态；通过双光子四比特簇态实现了基于测量的高速
单向量子计算。 

 
然而，由于源的概率性，限制了基于参量下转换的量子信息处理往更复

杂化升级，人们提出了量子存储来解决这一问题。在本文的第二部分，我们
从理论上以及实验上研究了基于原子系综的存储可行性。理论研究表明，通
过原子系综的帮助，我们可以确定性的在两个距离遥远的地方之间产生最大
纠缠态。进一步的，我们发展了必须的实验技术以在实验上研究量子存储：
通过读写原子系综产生的非经典光子对，我们实验实现了确定性的单光子源；
进一步的我们研究了基于两个独立系综的两个光子之间的相干及其不可区分
性；利用两个系综作为一个量子比特，我们实现了从光子比特到原子比特的
量子隐形传态；进一步的我们发展了一个更新奇稳定的光子原子纠缠源，基
于这样一个纠缠源我们实现了基于量子存储的量子纠缠交换。 

 
最后，我们的实验方法将大大促进未来的全球量子通讯，线性光学量子

计算，量子力学基础检验等重要科学问题的研究。 
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2
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Chapter 1

Introduction

Quantum information, a combination of quantum mechanics, information theory and computer
science, has provided and will continue to provide profound new insights into fundamental prob-
lems relating to both computation and physical science. Because quantum information has latent
application value and great science value, it is both the new rapidly developing subject and noticed
by lots of governments and scientists from 1980’s. It is expected that the flourishing of this new
field in the new century may guide the way to revolutionary advances in technology and in our
understanding of the physical universe.

1.1 Basic concepts of quantum information

Quantum information processing (QIP) can mainly be divided into two major subfield: quantum
communication and quantum computation [1, 2]. Unlike the unproven complexity computational
assumptions in classical communication, the security of quantum communication is based on fun-
damental principles of quantum mechanics [3]. Meanwhile, by taking advantage of microcosmic
quantum phenomena such as superposition, entanglement [4, 5, 6] and teleportation [7] , a quantum
computer and quantum information could, in principle, outperform a classical computer in many
difficult computational tasks [8].

While today’s digital classical information is encoded in bits, a quantum information is en-
coded in quantum bits, or qubits [9]. A qubit is a quantum system that can exist in a coherent
superposition of two distinguishable states, and can be entangled with other such systems. The
two distinguishable states might be, for example, internal electronic states of an individual atom,
polarization states of a single photon, spin states of an atomic nucleus, or charges in superconduc-
tors. Entanglement [4, 5, 6] is a subtle quantum kind of correlation having no classical analog,
and can be roughly described by saying that two systems are entangled when their joint state is
more definite and less random than the state of either system by itself. Two obvious properties of
classical information are that it can be read and copied without being disturbed, and that the state
of a composite system can be fully specified by specifying the state of each of its parts. But infor-
mation carried by a quantum system flouts such common-sense principles by quantum non-cloing
theorem [10]. This allows the absolutely secure transfer of classical messages by means of quantum
cryptography or faithful quantum teleportation of unknown quantum states [11, 3]. Unlike the
former applications of quantum mechanics, what is used in quantum information is quantum state
itself. The basic tasks include generation, manipulation, transfer, and storage of quantum states.
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1.2 Quantum communication and quantum cryptography

With ongoing technological improvements, QIP of moderate complexity should soon be feasible in
a variety of physical implementations. It is reasonable to hope that one such implementation will
eventually enable a full-scale quantum computer [8], but not any time soon. The technology of
quantum cryptography such as quantum key distribution (QKD) [12, 11] or dense coding [13] is
now pretty mature and much close to commercial realization.

Cryptography is the art of rendering a message unintelligible to any unauthorized party. For
a crypto-system to be secure, it should be impossible to unlock the cryptogram without the key.
However, classically in practice, this requirement is often weakened so that the system is just
extremely difficult to creak, based on unproven assumptions. For instance, the most widely used
system in internet and financial business is the asymmetrical crypto-system, which was developed
by Ronald Rivest, Adi Shamir, and Leonard Adleman [14], known as RSA. The security of the
RSA system is based on computational complexity of the factorization of large integers. In spite of
its elegance, this technique suffers from a major flaw. It has not been possible yet to prove whether
factoring is “difficult” or not. This implies that the existence of a fast algorithm for factorization
cannot be ruled out. In particular, in 1994 Peter Shor discovered a polynomial algorithm allowing
fast factorization of integers with a quantum computer [15].

In a society where information and secure communication are of the utmost importance, one
cannot tolerate such a threat. Fortunately, quantum communication offers an absolutely secure
way for transfer of classical messages by means of quantum cryptography [12, 11, 3]. Quantum
cryptography is based on the “one-time pad” crypto-system proposed by Vernam [16]. Once the
quantum channel is generated, the secure key can be generated real-timely between distant loca-
tions. This is so-called QKD. Because of the basic properties of quantum mechanics, the no-cloning
theorem [10], no eavesdropper can track any information without being detected; thus, particularly
the absolute security is ensured.

Besides the absolutely secure cryptosystems (systems that combine communications and cryp-
tography), quantum physics also allows a sort of “teleportation”. Teleportation is such a condition,
one object for example a person, he disappears in one place and appears in another place without
moving it. In classical physics, the teleportation machines of science fiction present no problem of
principle. One simply measures the state of every atom of the object to be teleported, transmits
that information, and any number of copies of the object can be reconstructed by any receiver.
But quantum physics fundamentally limits the accuracy of any such process because one cannot
experimentally determine an unknown state. In a seminal paper, Bennett, Brassard, Crépeau,
Jozsa, Peres and Wootters showed how an unknown quantum state can be “teleported” from one
place to another [7]. Namely, by using entanglement, one can transfer the quantum state without
getting any information about the state in the course of this transformation. Later, it is found that
quantum teleportation is central to quantum communication [17] and plays an important role in a
number of quantum computation protocols [18, 19, 20].

1.3 Quantum computation

The art of computing is as old as human history itself. Elegant tools were developed to do compli-
cated computations. The earliest known tool for computation was the abacus, which was invented
around 2400 BC. Modern computer science, born in the middle of last century as the combination
of mechanical inventions and mathematical theories, has been involved in nearly every field of both
natural science and social science, and has now contributed a lot to human civilization.

Indeed, quantum computer can be exploited to perform tasks that would be impossible or very
difficult in a classical world.

For example:
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• Today’s digital super computers would take billions of years to find the prime factors of a
number that is a few hundred digits long, whereas large-scale quantum computers, if they
can eventually be built, can perform that task in just seconds [15, 21].

• A classical computer requires a time proportional to N to search for a particular item in a
list of N items, whereas a quantum computer can perform the search in a time proportional
to the square root of N [22].

• If quantum information rather than classical information is exchanged between processors,
then the amount of communication required to perform certain distributed computing tasks
can be drastically reduced.

• A quantum computer can efficiently and accurately simulate the evolution of quantum many-
body systems and quantum field theories that cannot be simulated on classical computers
without making unjustified approximations.

• If quantum information is exchanged, cryptographic protocols can be devised in which pri-
vacy is ensured by principles of fundamental physics. In contrast, the security of public-key
cryptosystems that are currently in widespread use rests on the assumption that decrypting a
message requires a time-consuming computation (such as prime factorization), an assumption
that could prove unwarranted if large-scale quantum computers become available.

A new and probably more practical approach is the concept of a “one-way quantum computer”
[23]; for its linear optical implementation. Unlike the standard quantum computation based on
sequences of unitary quantum logic gates which process qubits, the one-way quantum computer
proposed by Raussendorf and Briegel [23] is entirely different. This new model requires qubits to
be initialized in a so-called “cluster state” [24]. The computation algorithm is then performed by
applying a sequence of one-qubit measurements (whose order and choices determine the algorithm
computed) with classical feedforward of their outcomes. The outcomes will directly show the
computation result. Remarkably in 2004, by combining cluster-state quantum computation (the
one way computer) and KLM, Nielsen proposed that, without using the elaborate teleportation and
Z-measurement error correction required in the original KLM scheme, any nontrivial linear optical
gate that succeeds with finite probability is sufficient to obtain efficient quantum computation [25].

Of the theoretical discoveries concerning quantum information, one of the most important
and unexpected is that noisy quantum devices (if not too noisy) can reliably store and process
suitably encoded quantum states. Ordinarily, complex quantum states like those that arise during
intermediate stages of a quantum computation are extraordinarily fragile. But if a logical qubit
is encoded, not as a single physical qubit, but instead in the form of entanglement among several
physical qubits, it becomes far more robust. The new quantum error-correcting codes [26, 27, 28, 29]
and fault-tolerant methods [18] will be an essential part of any future effort to create, maintain,
and manipulate intricate many-qubit quantum states.

1.4 Linear optical quantum information processing

Recent years, there were scientific breakthroughs of QIP in both experimental and theoretical sides:
by exploiting entanglement one can efficiently encode classical messages (quantum dense coding)
[13, 30], transfer quantum information to a remote location (quantum teleportation) [7, 31, 32],
entangle two remote particles that have no common past (entanglement swapping) [33, 34], purify
less entangled states of a larger ensemble into more entangled states of a smaller ensemble [35,
36, 37, 38], demonstration of multi-particle entanglement [39, 40, 41, 42, 43, 44, 45, 46] particle
entanglement, experimental violation between quantum mechanics and local realism [47, 48, 49,
50], based on the preparation of highly entangled multi-qubit states simple adaptive one-qubit
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measurements one can exploit the so-called “one-way quantum computer” [23, 24, 25, 51] and etc.
All these theoretical and experimental results demonstrate that quantum information has become
the brand-new application of quantum mechanics.

After spontaneous parametric down conversion (SPDC) [52, 53] became most standard method
to generate entangled photon pairs, significant progress in linear optical QIP has been essentially
achieved [54], which allows new studies of the fundamentals of quantum theory. For instance, three-
[39], four- [42], five- [43] and yet six- [45] photon entanglement were successively demonstrated, and
further used to test quantum nonlocality in an“all-versus-nothing”way [49, 50, 55, 56]. Based on the
manipulation of photon entanglement, quantum dense coding was first demonstrated in 1996 [30];
quantum teleportation was first demonstrated in 1997 [31] and later freely propagating teleported
qubits [57], open destination teleportation [43] and teleportation of two-qubit composite state were
realized; entanglement based QKD was simultaneously realized in three different groups [58, 59, 60],
and third-man quantum cryptography and quantum secret sharing was also demonstrated [61];
implementations of nondestructive Controlled-NOT gates were reported [62, 63, 64] and etc.

While one of the ultimate dreams is long-distance or even global quantum communication, many
efforts have been made in the past years to extend the maximum distances for the observation of
entanglement or for the realization of quantum cryptography between distance locations. Using
optical fibers as the quantum channel, entanglement has already been achieved between photons
separated by 50 km of fiber [65], and QKD has been demonstrated over distances up to around 100
km [3, 66]. Progress has also been made toward entanglement distribution in free space, with the
achieved distances of about 10 km [67]. However, in spite of all the developments, the linear optical
QIP suffers from some fundamental limitations. To solve photon losses and the decrease in the
quality of entanglement requires exponentially large physical resources. As a combination of the
ideas of entanglement purification [35, 37], entanglement swapping [33, 34], and most importantly,
quantum memory, the quantum repeater protocol [17, 68] enables to establish high-quality long-
distance entanglement with resources increasing only polynomially with transmission distance.
Thus, it enables long-distance quantum communication.

Early physical implementations of a quantum repeater were based on atoms trapped in high-
finesse cavities [69], where strong coupling between atoms and photons is required. However, these
techniques require a extremely complicated experimental setup. In a seminal paper [70], Duan et
al. (DLCZ) proposed an implementation of the quantum repeater by using atomic ensembles and
linear optics. In this protocol atomic ensembles are used as memory qubits to avoid the challenging
request for strong coupling between atoms and photons. Besides, the DLCZ protocol has built-in
entanglement purification and thus is photon-loss tolerant. In the efforts of realizing the atomic
ensemble based quantum repeater protocol, significant experimental advances have been achieved
recently. Non-classical correlated photon pairs were generated from a MOT and a hot vapor [71, 72].
Controllable single photons were generated from atomic ensembles with the help of event-ready
detection and feedforward circuit [73, 74, 75]. Interference of photons emitted from different atomic
ensembles are studied [76, 77, 78]. Entanglement between two atomic ensembles either in the same
MOT or in two MOTs were generated by detecting single photons [79, 80] and used for memory-
bulit-in quantum teleportation between photonic and atomic qubits [81]. Recently, segment of the
DLCZ protocol was demonstrated [82].

Photons are ideal quantum information carriers for quantum communication, because they have
very weak coupling to the environment and are the fastest. Although for quantum computation,
since it requires nonlinear coupling, implementations with stationery system like atoms, ions or
solid-state devices seem to be more feasible. Surprisingly, the discovery that some gates could be
realized through teleportation [18] shows that photons also offer interesting possibilities for quan-
tum communication, despite the difficulty in storing them. Later, Knill, Laflamme, and Milburn
(KLM) [19] showed that, with the help of quantum memory, even with linear optical elements, in
principle, universal quantum computation could be realized. This is quite a breakthrough in the
field of quantum computing theory. Following these suggestions, various linear optical quantum
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computation protocols have been proposed to reduce the complexity of the KLM scheme while
improving its theoretical efficiency [83, 25, 84]. Thus, linear optics with photon counting shows the
prominent potential as a candidate for practical quantum computing [85].

1.5 Objective of this work

In this thesis we cover both the manipulation of multi-photon entanglement and atomic ensemble
based quantum memory. After a brief introduction to the QIP and to the recent progress in linear
optical QIP, the work consists of two parts each of which presents a dedicated topic in complete
and self-contained form:

• Part I focuses on manipulation of photons: the photon-photon entanglement and its applica-
tions in linear optical QIP.

– In Chapter 2, we theoretically describe how to generate polarization entanglement pho-
tons by spontaneous parametric down conversion and briefly introduce how to further
generate multi-photon entanglement.

– In Chapter 3, a bit-flip error rejection code for error-free transfer of quantum information
through a noisy quantum channel is experimentally demonstrated. We report a full
realization or encoding and decoding process.

– In Chapter 4, we report an observation of a violation of the Clauser-Horne-Shimony-
Holt-Bell inequality beyond Tsirelson’s bound by 7 standard deviations. In addition,
using part of our results, we obtain a violation of the Mermin inequality by 39 standard
deviation.

– In Chapter 5, we develop and exploit a six-photon interferometer to teleport an arbitrary
polarization state of a two-photon composite system.

– In Chapter 6, a two-photon four-qubit cluster state source is developed and used to im-
plement a highly efficient Grover’s search algorithm and high-fidelity two-qubit quantum
gates.

• In part II we present theoretical and experimental investigations on atomic ensemble based
quantum memory.

– In Chapter 7, we analyze in detail the seminal quantum memory scheme based on atomic
ensembles proposed by Duan-Lukin-Cirac-Zoller (DLCZ) and show that the severe re-
quirement of the phase stability problem in the original protocol makes a long-distance
quantum communication impossible. Then we propose a robust quantum repeater ar-
chitecture building on the DLCZ protocol, which is insensitive to phase stability.

– In Chapter 8, we first show the atomic ensemble can be used as a storage of single
photons and further report a deterministic single photon source.

– In Chapter 9, we create two independent, synchronized single-photon sources and ex-
perimentally investigate the interference between the photons emitted from respective
source. Based on quantum memory, polarization entangled photon pair are efficiently
generated.

– In Chapter 10, quantum teleportation between photonic (flying) and atomic (stationary)
qubits is reported. An unknown single-photon state is teleported to an atomic qubit,
stored for up to 8 microseconds and successfully read out.

– In Chapter 11, we develop a novel way to efficiently creat a stable atom-photon en-
tanglement with inherent built-in quantum memory. The entanglement exists for more
than 20 microseconds by violation of CHSH-Bell inequality.
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CHAPTER 1. Introduction

– In Chapter 12, we generate two independent atom-photon entanglement sources, and
further entangle the two atomic ensembles in distant location via entanglement swap-
ping.

We conclude this thesis by summarizing its main results and providing an outlook to future
work in Chapter 13.
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Part I

Manipulation of Photons:

Multi-photon Entanglement
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Chapter 2

Multi-photon entanglement

Quantum Entanglement, a simple name for superposition in a multiparticle system, is essence of the
quantum world. It was first noticed by Schrödinger [5] and since then it has baffled generations of
physicists. It is at the heart of the discussions of the Einstein-Podolsky-Rosen (EPR) paradox [4], of
Bell’s inequality [86], and of the non-locality of quantum mechanics. In recent years, entanglement
has become a new focus of activities in quantum physics because of immense theoretical and
experimental progress both in the foundation of quantum mechanics and in the new field of quantum
information processing.

To generate entangled states of a composite system, there exist various possibilities. First, the
subsystems of the composite system could be entangled by controllable interaction, which may
implement, e.g., controlled-NOT (CNOT) gate. Second, in some nonlinear decay processes, a par-
ent particle might be splitted into two daughter particles. Then certain conservation laws (e.g.,
momentum, energy and angular momentum conservations) may enforce that the daughter particles
are entangled. Third, the utility of quantum eraser technique [87] will be encountered in the case of
polarization entanglement creation. A further possibility is the entanglement creation via projec-
tive measurements, as illustrated by entanglement swapping [33] and multi-photon entanglement
creation.

Entangled photon sources play a central role in the experimental study of quantum mechanical
foundations and are resources for quantum information processing. The early entangled photon
source was pairs emitted from an atomic cascade [47, 88, 48]. However, such a source has some
drawbacks such as very low collection efficiency for the entangled photons. Fortunately, the process
of SPDC [52, 53] provides mechanisms by which pairs of entangled photons can be produced with
reasonable intensity and in good purity. Today, the well developed SPDC entangled photon sources,
with increasing quality, brightness and numbers of entangled photons, can be routinely realized,
which enabled a significant fraction of key progresses in the emerging field of quantum information
processing.

In the SPDC process, one uses a non-centrosymmetric crystal with nonlinear electric suscepti-
bility. In such a medium, an incoming higher-energy pump photon can decay with relatively small
probability into two lower-energy daughter photons in a way that energy and momentum inside the
crystal are conserved. The photon pair is explicitly correlated in energy and momentum or equiv-
alently in space and time. In this chapter, we will give a brief review of SPDC entangled photon
source and give a most common method of post-selected generation of multi-photon entanglement,
by which we can conveniently observe multi-particle GHZ correlations.
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CHAPTER 2. Multi-photon entanglement

2.1 Polarization-entangled photon pairs

So far, the most widely used photon entanglement source is polarization-entangled photon pairs
using the process of non-collinear type-II SPDC process [53]. In the experiment, the desired
polarization-entangled state is produced directly out of a single nonlinear beta-barium-borate
(BBO) crystal. In that process, the two photons are emitted with different polarization (Fig.
2.1). Photons of each polarization are emitted into one cone in such a way that momenta of two
photons always add up to the momentum of the pump photon. Thus, the emission direction of
each individual photon is completely uncertain within the cone, but once one photon is registered,
and thus its emission direction is defined, the other photon is found just exactly opposite from the
pump beam on the other cone. The total quantum mechanical state is therefore extremely rich
and is a superposition of all such pairs of emission modes.

The interesting point is now that the crystal can be cut and arranged such that the two cones
intersect, as shown in Fig. 2.1. Then, along the lines of intersection, the polarization of neither
photon is defined, but what is defined is the fact that the two photons have to have different
polarization. This contains all the necessary features of entanglement in a nutshell. Measurement
on each of the photons separately is totally random and gives with equal probability vertical or
horizontal polarization. But once one photon, for example photon A, is measured, the polarization
of another photon B is orthogonal. Choosing an appropriate basis e.g., |H〉 and |V 〉, where H (V )
denotes horizontal (vertical) linear polarization, the state emerging through the two beams A and
B is thus a superposition of |H〉|V 〉 and |V 〉|H〉, i.e.

1√
2

(
|H〉A|V 〉B + eiα|V 〉A|H〉B

)
, (2.1)

where the relative phase α arises from the crystal birefringence, and an overall phase shift is
omitted.

Using an additional birefringent phase shifter (or even slightly rotating the down-conversion
crystal itself), the value of α can be set as desired, e.g., to the values 0 or π. Somewhat surprisingly,
a net phase shift of π may be obtained by a 900 rotation of a quarter wave plate (QWP) in one
of the paths. Similarly, a half wave plate (HWP) in one path can be used to change horizontal
polarization to vertical and vice versa. One can thus very easily produce any of the four maximally
polarization-entangled states (so-called Bell states)∣∣Φ±〉 = (|H〉 |H〉 ± |V 〉 |V 〉)/

√
2∣∣Ψ±〉 = (|H〉 |V 〉 ± |V 〉 |H〉)/
√

2. (2.2)

The birefringent nature of the down-conversion crystal complicates the actual entangled state
produced, since the ordinary and extraordinary photons have different velocities inside the crystal,
and propagate along different directions even though they become collinear outside the crystal (an
effect well known from calcite prisms, for example). The resulting longitudinal and transverse walk-
offs between the two terms in the state (2.1) are maximal for pairs created near the entrance face,
which consequently acquire a relative time delay δT = L(1/uo − 1/ue) (L is the crystal length,
and uo and ue are the ordinary and extraordinary group velocities, respectively) and a relative
lateral displacement d = L tan ρ (ρ is the angle between the ordinary and extraordinary beams
inside the crystal). If δT ≥ τc, the coherence time of the down-conversion light, then the terms in
Eq. (2.1) become, in principle, distinguishable by the order in which the detectors would fire, and
no interference will be observed. Similarly, if d is larger than the coherence width, the terms can
become partially labeled by their spatial location.

Because the photons are produced coherently along the entire length of the crystal, one can
completely compensate for the longitudinal walk-off [89]—after compensation, interference occurs
pairwise between processes where the photon pair is created at distances ±x from the middle of
the crystal. The ideal compensation is therefore to use two crystals, one in each path, which are
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2.1. Polarization-entangled photon pairs

Figure 2.1: Principle of type-II spontaneous parametric down-conversion. Inside a nonlinear BBO
crystal, an incoming pump photon can decay spontaneously into two photons. Two down-converted
photons arise polarized orthogonally to each other. Each photon is emitted into a cone, and the
photon on the top cone is vertically polarized while its exactly opposite partner in the bottem cone
is horizontally polarized. Along the directions where the two cones intersect, their polarization
are undefined; all that is known is that they have to be different, which results in polarization
entanglement between the two photons in beams A and B.
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identical to the down-conversion crystal, but only half as long. If the polarization of the light is
first rotated by 90◦ (e.g., with a half wave plate), the retardations of the o and e components are
exchanged and complete temporal indistinguishability is restored (δT = 0). The same method
provides optimal compensation for the transverse walk-off effect as well. Here, the compensation
crystals were oriented along the same direction as that of the down-conversion crystal.

In this part, except the experiment described in Chapter 6, where the entangled photon source
is produced by type-I SPDC, all the other experiments are based on type-II SPDC process.

Moreover, we would like to define that, in this thesis, the polarization of the photon will be
analyzed in one of three different basis:

• The X basis, which is defined as the linear polarization basis H/V rotated by 450, which is
denoted as +/−;

• The Y basis, which is defined as the circular polarization basis R/L (right-hand/left-hand);

• The Z basis, which is the linear polarization basis H/V .

These polarization bases of X and Y can be expressed in terms of the H/V basis as

|+〉 =
1√
2

(|H〉+ |V 〉) , |−〉 =
1√
2

(|H〉 − |V 〉) ,

|R〉 =
1√
2

(|H〉+ i|V 〉) , |L〉 =
1√
2

(|H〉 − i|V 〉) . (2.3)

2.2 Multi-photon entanglement

While Bell’s proof of the impossibility of EPR’s “elements of reality” [4]was based on statistical
predictions and inequalities [86], Greenberger-Horne-Zeilinger (GHZ) showed that a simpler proof
can be achieved with perfect correlations and without inequalities [90]. This is in contrast to the
case of the Bell experiments with two entangled particles testing Bell’s inequalities, where the
conflict only arises for the statistical predictions of quantum theory [86, 91]. Further, quantum
mechanics can violate the multi-particle Bell-type inequalities imposed by local realism by an
amount that grows exponentially with the number of entangled particles [92, 93], that is, for
entangled systems of more particles, the conflict between quantum mechanics and local realism
becomes even stronger. Besides fundamental interest, entanglement between several particles is
also the most important feature of many quantum communication and computation protocols [1],
e.g. quantum secret sharing [94] and third-man quantum cryptography [95], as realized using four-
photon entanglement [61]. Although the extension from two to a few entangled particles might
seem to be only a modest step forward, the implications are rather profound.

As an example of generating multi-photon entanglement, we consider the experiment setup
(shown in Fig. 2.2b) for the four-photon entanglement. There exist two entangled photon pair
sources (EPR), A and B. Each of them produces a photon pair,denoted as photon 1 and 2, and
photon 3 and 4 respectively. For simplicity, let the photon pairs from both sources be in the same
entangled state 1√

2
(|H〉|H〉 + |V 〉|V 〉). Then, after passing through the polarizing beam splitter

(PBS) the state of the four photon will be in the superposion

1
2

(|H1〉|H2〉|H3〉|H4〉+ |V1〉|V2〉|V3〉|V4〉+ |H1〉|H3〉|V3〉|V4〉+ |V1〉|V2〉|H2〉|H4〉) . (2.4)

It is clear that, only for the first two parts |H1〉|H2〉|H3〉|H4〉 and |V1〉|V2〉|V3〉|V4〉, one observe
four-fold coincidence. Therefore as long as we observe four-fold coincidence, we know these four
particles are in the superposition

|H1〉|H2〉|H3〉|H4〉+ |V1〉|V2〉|V3〉|V4〉.
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Figure 2.2: Diagram showing the principle of generating three photon (a) and four photon (b)
entanglement. The single photon source (S) emits a photon in a polarization state H +V , and the
entangled photon sources (EPR), each one emits a photon pair in the entangled state HH + V V .

Note that the GHZ state is not directly prepared, but we know that the four particles are in a GHZ
state under the condition that one particle each is detected in each of the outgoing beams 1, 2, 3
and 4. This is a much weaker condition than any post-selection procedure which might be based
on properties of the particles. In an experiment our case will not be distinguishable from the real
situation occurring anyway because of finite detector efficiency. That is, from a practical point of
view, even if one definitely prepares a full GHZ state one only will observe four-fold coincidence
in a fraction of time anyway. Thus, we conclude that using our conditional GHZ-state one will be
able to experimentally demonstrate all features of a four-particle GHZ state

1√
2

(|H1〉|H2〉|H3〉|H4〉+ |V1〉|V2〉|V3〉|V4〉) . (2.5)

In the same way, our scheme can also generate unconditional three-photon GHZ states as shown
in Fig. 2.2. Consider one single photon source and one entangled photon pair source, the single
photon in the state 1√

2
(|H〉+ |V 〉) is guided to a PBS where it is overlapped with one of the photon

from the emitted EPR pair in the state 1√
2
(|H〉|H〉+ |V 〉|V 〉). Then, the state of the three photons

13



CHAPTER 2. Multi-photon entanglement

immediately after passage through the PBS will be at the superposion

1
2

(|H1〉|H2〉|H3〉+ |V1〉|V2〉|V3〉+ |H2〉|V2〉|V3〉+ |V1〉|H1〉|H3〉) . (2.6)

Again by observing three-fold coincidence, we know these three photon are in the three photon
GHZ state |H1〉|H2〉|H3〉+ |V1〉|V2〉|V3〉.

However, since the absence of single photon source, normally we use a weak coherent pulse as the
single photon source required in Fig. 2.2. The problem is the double emission from weak coherent
pulse will greatly reduce the visibility of generated three photon GHZ state (for more details, see
the analyzation in § ??). Thereby, normally we use another way to generate unconditional three-
particle GHZ states via so-called entangled entanglement [96]. For example, one could analyze the
polarization state of photon 2 in X basis, that is +/− basis as shown in Eq. (2.3). Then the
polarization state of the remaining three photons 1, 3 and 4 will be projected into

1√
2

(|H1〉|H3〉|H4〉+ |V1〉|V3〉|V4〉)

if and only if detector D2 detects a single photon in state |+〉. Correspondingly, the state of photons
1, 3 and 4 will be projected into

1√
2

(|H1〉|H3〉|H4〉 − |V1〉|V3〉|V4〉)

if and only if detector D2 detects a single photon in state |−〉. In the scheme, the detection of
photon 2 actually plays the double role of both getting rid of the last two terms in Eq. (2.4) and
projecting the remaining three photons into a spatially separated and freely propagating GHZ
state. Such a GHZ-state could be extremely useful both in further test of local realism versus
quantum mechanics and in future applications of secret sharing and third-man cryptography.

In the same way, with more photon pairs or single photons and PBSs, one can post-selectly
generate more particle entanglement, not only GHZ state but also other kind of multi-particle
entanglement e.g. cluster state [45] as well.
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Chapter 3

Quantum error rejection

3.1 Introduction

A crucial step in the full realization of long-distance quantum communication is to overcome the
problems caused by decoherence and exponential photon loss in the noisy quantum channel [3].
As a general solution, two distant parties could first share highly entangled photon pairs, the
transmission of quantum states for various applications in quantum communication can then be
achieved by using ancilla entanglement. As the quantum repeater [17], combining entanglement
purification [35, 36] and entanglement swapping [33], provides an efficient way to generate highly
entangled states between distant locations, many experimental efforts have been made to achieve
entanglement swapping, entanglement purification and quantum memory [34, 38, 80, 97], and even
the demonstration of a prototype of quantum relay [98, 99]. However, one still has a long way to go
before the above techniques can be realistically applied to long-distance quantum communication.

Meanwhile, in the context of quantum error correction (QEC) the way to protect a fragile
unknown quantum state is to encode the state into a multi-particle entangled state [26, 27, 28, 29].
Then, the subsequent measurements, i.e. the so-called decoding processes, can find out and correct
the error during the quantum operations. This is very different from the classical error correction
since the unknown qubit in principle can not be copied [10] or observed exactly. Therefore the
simple repetition code used in classical coding is not applicable here. Although the QEC codes
are primarily designed for large scale quantum computing, the similar idea is also inspired to
implement error-free transfer of quantum information through a noisy quantum channel, i.e. an
unknown qubit can be sent to a remote party robustly through a noisy channel if we use the QEC
code by encoding and decoding process.

Several QEC protocols have been experimentally demonstrated in the NMR [100, 101] and
ion-trap [102] systems. However, the NMR [100, 101] demonstration is not a strict demonstration
since no quantum entanglement is involved. And the demonstration in ion-trap [102] is difficult
to extend to large distance in the application of quantum communication. So far there’s no such
implementation using photons. The reason is that all theoretical schemes are based on controlled-
NOT operations between single particles. For photons, this operation would require either a strong
nonlinear interaction between individual photons, which is extremely difficult to achieve, or ancilla
photons [63, 64], which needs too many resources. In 2001, a scheme of the optical realization
of quantum error- rejection code over the bit-flip-error channel is considered [103]. It was shown
that the controlled-NOT operation in quantum error correction can be done probabilistically by
a polarizing beam splitter and one can transfer a qubit robustly over a bit flip channel by the
teleportation.

In this chapter, we will report an experimental demonstration of an improved bit-flip error
rejection protocol for error-free transfer of quantum information through a noisy quantum channel.
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Figure 3.1: Scheme for one bit-flip quantum error-rejection.

In the experiment, an unknown state to be transmitted is encoded into a two-photon entangled
state, which is then sent through an engineered noisy quantum channel. At the final stage, the un-
known state is decoded by a parity measurement, successfully rejecting the erroneous transmission
over the noisy quantum channel.

3.2 Two-bit bit-flip error-rejection code

The main idea in the original scheme is to encode an unknown quantum state of single particle
into a two-particle entangled state [103]. After the encoded state is transmitted over the noisy
quantum channel, a parity check measurement [104] is sufficient to reject the transmission with
bit-flip error instead of correcting the errors to simplify the experimental realization. Such a scheme
has the advantage of avoiding the difficult photon-photon controlled-NOT gates necessary for the
usual QEC. Moreover, the proposed error rejection scheme promises additional benefit of high
efficiency, compared with the QEC based on linear optics quantum logic operations [19], since the
crucial feed-forward operations in linear optics QEC will lead to very low efficiency. Although the
original scheme is within the reach of the current technology as developed in the recent five-photon
experiments [43, 63], it is not optimal in its use of ancilla entangled state because the encoding
process is implemented via a Bell-state measurement.

Remarkably, it is found recently [105] that one pair of ancilla entangled states is sufficient
to implement the two-photon coding through two quantum parity measurements. Thus, an ele-
gant modification of the previous experiment on four-photon entanglement [42] would allow a full
experimental realization of the error rejection code.

3.2.1 Encoding

Suppose that Alice wants to send Bob a single photon in an unknown polarization state

|ψ〉 = Cos(θ/2) |H〉1 + eiφSin(θ/2) |V 〉1 , (3.1)
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to Bob through a noisy quantum channel. As shown in Fig. 3.1, instead of directly sending it to
Bob, Alice can encode her unknown state onto a two-photon entangled state with an ancilla pair
of entangled photons: ∣∣φ+

〉
23

= 1√
2

(|HH〉23 + |V V 〉23) . (3.2)

The photon in the unknown polarization state and one photon out of the ancilla entangled photon
are superposed at a polarization beam splitting (PBS1). Behind the PBS1, with a probability of
50% we obtain the renormalized state corresponding to the three-fold coincidence among modes
1′, 2′ and 3

|ψ〉1′2′3 = Cos(θ/2) |HHH〉1′2′3 + eiφSin(θ/2) |V V V 〉1′2′3
= |+〉1′(Cos(θ/2)|HH〉2′3 + eiφSin(θ/2)|V V 〉2′3)

+ |−〉1′(Cos(θ/2)|HH〉2′3 − eiφSin(θ/2)|V V 〉2′3). (3.3)

Eq. (3.3), implies that conditional on detecting photon 1′ in the |+〉 polarization state (with
probability 50%), the remaining two photons are projected onto the following entangled state:

|ψ〉2′3 = Cos(θ/2) |HH〉2′3 + eiφSin(θ/2) |V V 〉2′3 . (3.4)

Thus, through a quantum parity measurement between modes 1′ and 2′, a two-photon encoding
operation can be realized.

3.2.2 A bit flip noisy quantum noisy channel

If the qubit with the initial state (3.1) is directly sent through the channel with flipping probability
p, the qubit state after passing through the bit flip noisy channel will be

ρ = (1− p)|ψ〉 〈ψ|+ p|ψf 〉 〈ψf | (3.5)

here

|ψf 〉 = Cos(θ/2)|V 〉+ eiφSin(θ/2)|H〉
= Sin(θ)Cos(φ)|ψ〉+ eiφ(−Cos(θ)Cos(φ) + iSin(φ))|ψ⊥〉, (3.6)

Here, |ψ⊥〉 = (eiφSin(θ/2))|H〉 − Cos(θ/2)|V 〉 is orthogonal to |ψ〉 (state 3.1). Therefore, for all
possible initial states on the Bloch sphere, the average quantum bit error rate (QBER) caused by
the noisy channel is

E0 = 1− 1
4π

∫ π

0

∫ 2π

0

〈ψ|ρ|ψ〉Sin(θ)dθdφ =
2
3
p. (3.7)

3.2.3 Parity check and decoding

After finishing the encoding process, Alice sends photons 2′ and 3, which are the encoded state
(3.4) to Bob through the bit flip noisy quantum channel and Bob will recombine the two photons
at the PBS2 in order to do the parity check to identify and reject the erroneous transmission. If
there is no error in the quantum channel, Bob will obtain the same quantum state as in (3.4) after
PBS2. The state between photon 2′′ and photon 3′ can be rewritten as

|ψ〉2′′3′ = |+〉2′′(Cos(θ/2)|H〉3′ + eiφSin(θ/2)|V 〉3′)
+ |−〉2′′(Cos(θ/2)|H〉3′ − eiφSin(θ/2)|V 〉3′). (3.8)

Thus, projecting photon 2′′ into the |+〉 state with a success probability of 50%, photon 3′ will
be left in the unknown state Cos(θ/2) |H〉 + eiφSin(θ/2) |V 〉. Through the decoding process, i.e.
conditional on detecting in mode 2′′ one and only one |+〉-polarized photon, Bob can recover the
state originally sent by Alice.
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If a bit-flip error occurred for one of the two transmitted photons, the two photons will have
different polarizations and exit the PBS2 in the same output arm. Therefore, no coincidence will
be observed between modes 2′′ and 3′. That is to say, the bit-flip error during the transmission
of quantum states over the noisy channel has been simply rejected by the final quantum parity
measurement. However, if both bit-flip errors occurred simultaneously for the two transmitted
photons, Bob would finally obtain the polarization state of (3.6) via the same quantum parity
measurement for decoding operation and the error can not be effectively rejected.

Moreover, from Eq. (3.3) the detection of photon 1′ in the |−〉 state also leads to encoding of
the initial quantum state in a two photon state, provided the associated phase flip is taken into
account. Obviously, as shown in Eq. (3.8) the same holds for the decoding at Bob’s: projection
onto the |−〉 state is associated with a phase flip that can be compensated for. The coding and
decoding efficiency can thus be increased by a factor of two each.

3.2.4 Fault tolerance property

Specifically, suppose that Alice would send photons to Bob in state (3.4) through the noisy quantum
channel with the bit flipping probability p, as analyzed in §3.2.3, with a probability (1− p)2, that
is no error occurring in both photons, the final state will be exactly the same as the initial state
(3.1), |ψ〉3′ = Cos(θ/2) |H〉3′ + eiφSin(θ/2) |V 〉3′ . And if the bit-flipping error occurring in both
photons with a probability p2, Bob will obtain a wrong state (3.6). Given that in the case with
one bit error occurring in one photon, the state will be rejected. The final state in Bob’s hand can
be described as:

ρ′ =
(1− p)2|ψ〉〈ψ|+ p2|ψf 〉〈ψf |

(1− p)2 + p2
. (3.9)

Therefore, the final average QBER is

E1 = 1− 1
4π

∫ π

0

∫ 2π

0

〈ψ|ρ′|ψ〉Sin(θ)dθdφ

=
2p2

3((1− p)2 + p2)
(3.10)

Therefore, the QBER of E1 will be lower, compared to the QBER of E0 for any p < 1/2. For small
p, E1 is on the order of p2. The transmission fidelity can thus be greatly improved by using the
quantum error rejection code.

Note that, conditional detection of photons in mode 1′ implies that there is either zero or
one photon in the mode 2′. But, as any further practical application of such a coding involves a
final verification step, detecting a threefold coincidence makes sure that there will be exactly one
photon in each of the modes 2′ and 3. This feature allows us to perform various operations like,
for example, the recombination of two photons at PBS2 before the final detection. This makes
our encoding scheme significantly different from a previous two-photon encoding experiment [106],
where there are certain probabilities of containing two photons in one of two encoding modes.
Thus, the previous two-photon encoding experiment cannot be applied to the error-rejection code.

Moreover, we would like to emphasize that, compared to the two recent experiments on fault-
tolerant quantum information transmission [107, 108] our protocol has two essential advantages.
On the one hand, the work in [107] can only encode and send a known state instead of encoding
and sending arbitrary unknown states required by many quantum communication protocols. On
the other hand, the experiment in [108] can only filtrate half of the single phase-shift error. Thus,
if the error rate of the channel is p, after applying the error filtration method the remaining QBER
is still larger than p/2 even in the ideal case. Note that, the error filtration probability in [108] can
be increased by coding a qubit in a larger number of time-bins, however, this would need much
more resources. In contrast, our method can in principle reject any one bit-flip error with certainty
as analyzed before. In fact, the ability to suppress the first order error (p) to the second order (p2)
is essential to overcome the channel noise in scalable quantum communication.
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Figure 3.2: Experimental set-up for quantum error-rejection.

3.3 Experimental setup

A schematic drawing of the experimental realization of the error rejection is shown in Fig. 3.2. An
ultraviolet pulse (with a duration of 200fs, a repetition rate of 76MHz and a central wavelength
of 394nm) passes through a + crystal twice to generate two entangled photon pairs 1, 4 and 2, 3
in the state |φ+〉 [53]. The high quality of two-photon entanglement is confirmed by observing a
visibility of (94±1)% in the |+〉 / |−〉 basis. One QWP and one polarizer (Pol.) in front of detector
D4 are used to perform the polarization projection measurement such that the input photon in
mode 1 is prepared in the unknown state.

The two photons in modes 1 and 2 are steered to the PBS1 where the path length of photon
1 have been adjusted by moving the delay mirror Delay 1 such that they arrive simultaneously.
Conditional on detecting photon 1′ in the |+〉 polarization, the unknown polarization state was
encoded into the modes in 2′ and 3. The encoded two-photon state is transmitted through the
engineered noisy quantum channel and then recombined at the PBS2. Furthermore, the path length
of photon 2′ has been adjusted by moving the Delay 2 such that photons in modes 2′ and 3 arrive at
the PBS2 simultaneously. Through the whole experiment, spectral filtering (with a FWHM 3nm,
F in Fig. 3.2) and fiber-coupled single-photon detectors have been used to ensure good spatial and
temporal overlap between photons in modes 1 and 2, and photons in modes 2′ and 3 [109].

To characterize the quality of the encoding and decoding process, we first measure the inter-
ference visibility at the PBS1. Since photon pairs 1-4 and 2-3 are in the state |φ+〉, it is easy
to see that the four-fold coincidence in 1′, 2′, 3 and 4 corresponds to a four-photon GHZ state
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1√
2
(|HHHH〉1′2′34 + |V V V V 〉1′2′34) [42]. The four-photon entanglement visibility in the |+〉 / |−〉

basis was observed to be (83 ± 3)%. Similarly, the four-photon entanglement visibility in modes
1′, 2′′, 3′ and 4 is observed to be (80± 3)%, before introducing artificial channel noise. Note that,
the visibility is obtained after compensating the birefringence effect of the PBSes [57].

3.3.1 Noisy quantum channels

In order to show the quantum error rejection code, it is necessary to have a bit-flip noisy quantum
channel. In the experiment, the noisy quantum channels are simulated by one HWP sandwiched
with two QWPs. Denote the operations of the QWP and HWP as QWP (α) and HWP (β) respec-
tively, α and β represent the set angle of the wave plates. i.e.,

QWP (α) =
(

sin(α) cos(α)
−cos(α) sin(α)

)+

•
(
e−i

π
4 0

0 ei
π
4

)
•
(

sin(α) cos(α)
−cos(α) sin(α)

)
=

1√
2

(
1 + icos(2α) −isin(2α)
−isin(2α) 1− icos(2α)

)
, (3.11)

and

HWP (β) = −i
(

cos(2β) sin(2β)
sin(2β) −cos(2β)

)
. (3.12)

Each of two QWP is set at 900 such that the horizontal and vertical polarization will experience
900 phase shift after passing through the QWPs. The total operation matrix will be

QWP (
π

2
) •HWP (β) •QWP (

π

2
) =

(
−cos(2β) −isin(2β)
−isin(2β) −cos(2β)

)
. (3.13)

Rewrite the input photon in the initial state (3.1) as |ψ〉 =
(

cos(θ/2)
eiφsin(θ/2)

)
. The state of the

photon after passing though the simulation channel can be written as

|ψ(β)〉 = QWP (
π

2
) •HWP (β) •QWP (

π

2
) •
(

cos(θ/2)
eiφsin(θ/2)

)
. (3.14)

By randomly setting the HWP axis to be oriented at ±β with respect to the horizontal direction,
the final density matrix can be described as

ρ(β) =
1
2
|ψ(β)〉〈ψ(β)|+ 1

2
|ψ(−β)〉〈ψ(−β)|

=
1
2

(
1 + cos(4β)cos(θ) sin(θ)(sin(φ)− icos(4β))sin(θ)

sin(θ)(sin(φ)− icos(4β))sin(θ) 1− cos(4β)cos(θ)

)
. (3.15)

On the other hand, consider p = sin2 (2γ) the density matrix (3.5) can be written as

ρ =
1
2

(
1 + cos(4γ)cos(θ) sin(θ)(sin(φ)− icos(4γ))sin(θ)

sin(θ)(sin(φ)− icos(4γ))sin(θ) 1− cos(4γ)cos(θ)

)
. (3.16)

In comparison with Eq. (3.15) it is clear that with radomly setting the HWP axis to be oriented at
±β, the noisy quantum channel can be engineered with a bit-flip error probability of p = sin2 (2β).

3.4 Experimental results

Before starting the experiment, the bit flip error rate of the engineered noisy quantum channel is
directly measured by sending in an photon with horizontal polarization. The result is shown in Fig.
3.3, the curve shows the desired error rate for corresponding setting of HWP, and the quadrangle
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Figure 3.3: Simulated bit-flip noisy quantum channel. The curve represents the desired error
rate.

dots show the measured bit flip error rate. It is clear that the engineered noisy quantum channel
works nicely.

In order to show that our experiment has successfully achieved the error rejection code, the
quantum states to be transmitted in mode 1 are prepared along one of the three complementary
bases of |H〉 / |V 〉, |+〉 / |−〉, and |R〉 / |L〉. The error rates in the engineered quantum channel
can be varied by simultaneously changing the axis of each half-wave plate. Specifically, we vary
the angle θ to achieve various error rates from 0 to 0.40 with an increment 0.05 in the quantum
channel.

The experimental results of three different input states, after passing through the noisy quantum
channel, are shown in Fig. 3.4, The triangle dots in Fig. 3.4, corresponding to the bit-flip error
rates of single photons, were measured by directly sending the quantum state of photon 1 (after
passing through a polarizer and some wave-plates for state preparing, not shown in Figure) through
the engineered quantum channel while with both PBS1 and PBS2 removed. These dots also shows
the quality of the simulated error of the quantum noisy channel. The quadrangle dots show the
final bit-flip error rates after performing encoding and decoding operation for error rejection with
the help of PBS1 and PBS2. Fig. 3.4a, 3.4b and 3.4c shows the experimental results for the input
states |V 〉, |−〉, and |L〉, respectively. The other three input states have the similar results as the
one with the same basis respectively. And Fig. 3.4d shows the average QBER calculated over all
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Figure 3.4: Experimental results for three different initial states |V 〉 (a), |−〉 (b) and |L〉 (c), and
(d) shows the average QBER (calculated over all the six states). The quadrangle and the triangle
dots are corresponding to the cases that error-rejection and no error-rejection was made, and the
solid curves and the dot curves show the theoretically prediction of QBER for the cases without
and with error rejection respectively.

six input states.

In Fig. 3.4, one can clearly see that our error-rejection operation itself also introduces significant
error rates, even with E0 = 0. Therefore, if the original E0 is comparable with the error rate
caused by the experimental imperfection, no improvement will be gained after error-rejection. In
the |H〉/|V 〉 experiment, the experimental error rate is about 5%. In both |+〉/|−〉 and |R〉/|L〉
experiments an experimental error rate of 10% is observed.

We notice that, whereas both the |+〉/|−〉 and |R〉/|L〉 experiments have roughly the same
visibility, a better visibility is obtained in the |H〉/|V 〉 experiment. This is mainly due to our
two-photon entanglement source, which has a better visibility in the |H〉/|V 〉 basis (97%) than
in the |+〉/|−〉 or |R〉/|L〉 basis (94%). Moreover, it is partly due to the imperfect birefringent
compensation at the PBS1 and PBS2 [57], which leads a reduction of interference visibility, hence
imperfect encoding and decoding process. Moreover, the imperfect encoded state passing through
the noisy channel also leads that in the |+〉/|−〉 basis the result become deteriorate as increasing
of artificial noise.
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3.5 Discussion

From Fig. 3.4a and 3.4c, it is obvious that our error-rejection method can significantly reduce the
bit-flip error as long as E0 is larger than the experimental error rates. However, although ideally
in the |+〉/|−〉 experiment no error should occur after the error-rejection operation, an error rate
no less than 10% is observed, which is in accordance with the limited visibility of 80%.

Although our experimental results are imperfect, they are sufficient to show a proof of principle
of a bit-flip error rejection protocol for error-reduced transfer of quantum information through a
noisy quantum channel. Moreover, Fig. 3.4d shows that for a substantial region our experimental
method does provide an improved QBER over the standard scheme in a six-state QKD. This implies,
with further improvement, the error-rejection protocol may be used to improve the threshold of
tolerable error rate over the quantum noisy channel in QKD [110].

Our experimental realization of bit-flip error rejection deserves some further comments. First,
the same method can be applied to reject the phase-shift error because phase errors can be trans-
formed into bit-flip errors by a 450 polarization rotation. In this way we can reject all the 1 bit
phase-shift error instead of bit-flip error. Second, by encoding unknown states into higher multi-
photon (N -photon) entanglement and performing multi-particle parity check measurement [104]
either the higher order (up to N − 1) bit-flip error or phase-shift error can be rejected for more
delicate quantum communication.

In summary, our experiment shows a proof of principle of a bit-flip error rejection protocol for
error-free transfer of quantum information through a noisy quantum channel. Moreover, by further
improvement of the quality of the resource for multi-photon entanglement, the method may also
be used to enhance the bit error rate tolerance [111, 112] over the noisy quantum channel and offer
a novel way to achieve long-distance transmission of the fragile quantum states in the future QKD.
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Chapter 4

Violation of Bell’s Inequality

beyond Tsirelson’s bound

4.1 Introduction

Bell’s theorem [86, 91], derived from Einstein, Podolsky and Rosen’s notion of local realism [4] is
recognized as “the most profound discovery of science” [113]. It states that the value of certain
measured statistical correlations between multiple systems predicted by quantum mechanics can
be higher than the highest value allowed by local realism. The most commonly form may be so-
called Clauser-Horne-Shimony-Holt (CHSH) [114] inequality, which states that in local realism the
absolute value of a combination of four correlations is bounded by 2. While quantum mechanics
allows 2

√
2 in principle. It is widely believed that “quantum theory does not allow any stronger

violation of the CHSH inequality than the one already achieved in Aspect’s experiment [47] 2
√

2”
[115].

However, as stressed by Peres [115], Bell inequalities [86, 91] have nothing to do with quantum
mechanics. They are constraints imposed by local realistic theories on the values of linear combi-
nations of the averages (or probabilities) of the results of experiments on two or more separated
systems. Therefore, when examining data obtained in experiments to test Bell inequalities, it is
legitimate to do it from the perspective (i.e., under the assumptions) of local realistic theories,
without any reference to quantum mechanics. This approach leads to some apparently paradoxical
results. A remarkable one is that, while it is a standard result in quantum mechanics that no
quantum state can violate the CHSH Bell inequality [114] beyond Tsirelson’s bound (also written
as Cirel’son’s bound), namely 2

√
2 [116], the correlations between two qubits belonging to a three-

qubit system can violate the CHSH-Bell inequality beyond 2
√

2 [117]. In particular, if we use a
three-qubit GHZ state [90], we can even obtain the maximum allowed violation of the CHSH-Bell
inequality, namely 4 [117].

In this chapter, we report the first observation of a violation of the CHSH-Bell inequality
beyond Tsirelson’s bound by using a three-photon polarization-entangled GHZ state produced by
Type-II spontaneous parametric down-conversion. In addition, since the experiment also provides
all the data required for testing Mermin’s three-party Bell inequality [92], we use our results to
demonstrate the violation of this inequality.

4.2 CHSH-Bell inequality

The main idea behind the CHSH-Bell inequality [114] is that, in local realistic theories, the absolute
value of a particular combination of correlations between two distant particles i and j is bounded
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by 2:
|C (A,B)−mC (A, b)− nC (a,B)−mnC (a, b) | 6 2 (4.1)

where m and n can be either −1 or 1, and A and a (B and b) are physical observables taking values
−1 or 1, referring to local experiments on particle i (j). The correlation C (A,B) of A and B is
defined as

C (A,B) = PAB (1, 1)− PAB (1,−1)− PAB (−1, 1) + PAB (−1,−1) , (4.2)

where PAB (1,−1) denotes the joint probability of obtaining A = 1 and B = −1 when A and B

are measured.
The bound 2 in inequality (4.1) can be easily derived as follows. In local realistic theories, for

any individual system, the observables A, a, B and b have predefined valuse vA, va, vB and vb,
either −1 or 1. Therefore, for an individual system the combination of correlations appering in
(4.1) can be calculated as

vB (vA − nva)−mvb (vA + nvb) , (4.3)

which is either −2 or 2, because one of the expressions between parentheses in (4.3) is necessarily
zero and the onther is either −2 or 2. Therefore, the absolute value of the corresponding averages
is bound by 2.

4.2.1 Tsirelson’s bound

However, Tsirelson proved that, for a two particle system prepared in any quantum state |ψ〉,
the absolute value of the combination of quantum correlations appearing in the inequality (4.1) is
bounded by 2

√
2 [116],

|CQ (A,B)−mCQ (A, b)− nCQ (a,B)−mnCQ (a, b) | 6 2
√

2 (4.4)

where the quantum correlation of A and B, CQ (A,B) is defined as 〈ψ|ÂB̂|ψ〉. Here Â and B̂ are
the self-adjoint operators which represent observable A and B. Tsirelson’s bound can easily be
derived as follows [118]. Consider the operator with the same structure as the combination which
appears in inequality (4.4),

Ĉ = ÂB̂ −mÂb̂− nâB̂ −mnâb̂. (4.5)

Since Â2 = â2 = B̂2 = b̂2 = I, where I is the identity operator,

Ĉ2 = 4I−mn[Â, â][B̂, b̂]. (4.6)

Given the fact for all F̂ and Ĝ bounded operators we have

||[F̂ , Ĝ]|| ≤ ||F̂ Ĝ||+ ||ĜF̂ || ≤ 2||F̂ || ||Ĝ||. (4.7)

Thus, ||Ĉ2|| ≤ 8, or ||Ĉ|| ≤ 2
√

2. That is Tsirelson’s bound [116].
However, from the inequality (4.1) itself, a simple question would be if it is possible to violate

the CHSH inequality to 4 instead of 2
√

2, since 4 would be the maximum bound allowed if the four
correlations in the CHSH inequality (4.1) were independent. Assuming local realistic theories’ point
of view, the correlations predicted by quantum mechanics between two distant qubits belonging to
a three-qubit system can violate the CHSH-Bell inequality beyond Tsirelson’s bound [117].

4.2.2 Violation beyond Tsirelson’s bound

To show the principle of violation beyond Tsirelson’s bound, let’s consider three distant qubits,
which are polarization-entangled photons prepared in the GHZ state:

|Ψ〉 =
1√
2

(|H〉|H〉|H〉+ |V 〉|V 〉|V 〉) , (4.8)
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where H (V ) denotes horizontal (vertical) linear polarization. During the experiment, we will
analyze the polarization of each photon in one of two different basis: either in the X basis, or in
the Y basis. These polarization bases can be expressed in terms of the H/V basis as (2.3). The
measurement results + (R) and − (L) are denoted by 1 and −1, respectively.

For each three-photon system prepared in the state (4.8), we will define as photons i and j those
two giving the result −1 when making X measurement on all three photons; the third photon will
be denoted as k. If all three photons give the result 1, photons i and j could be any pair of them.
Since no other combination of results is allowed for the state (4.8), i and j are well defined for
every three-photon system.

We are interested in the correlations between two observables, A and a, of photon i and two
observables, B and b, of photon j. In particular, let us choose A = Xi, a = Yi, B = Xj , and
b = Yj , where Xq and Yq are the polarizations of photon q along the basis X and Y , respectively.
The particular CHSH-Bell inequality (4.1) we are interested in is the one in which m = n = yk,
where yk is one of the possible results, −1 or 1 (although we do not know which one), of measuring
Yk. With this choice we obtain the CHSH-Bell inequality

|C (Xi, Xj)− ykC (Xi, Yj)− ykC (Yi, Xj)− C (Yi, Yj) | 6 2, (4.9)

which holds for local realistic theories, regardless of the particular value, either −1 or 1, of yk.
We could force photons i and j to be those in locations 1 and 2, by measuring X on the photon

in location 3, and then selecting only those events in which the result of this measurement is 1.
This procedure guarantees that our definition of photons i and j is physically meaningful. By
the definition of qubits i and j, and taking into account that the three-photon state (4.8) is an
eigenstate of the self-adjoint operator X̂iX̂jX̂k with eigenvalue 1, the only possible results will be
Xi = Xj = 1 and Xi = Xj = −1. Thus we obtain

C (Xi, Xj) = 1. (4.10)

On the other hand, the state (4.8) is an eigen state of X̂iŶj Ŷk with eigenvalue −1, therefore, we
can obtain

C (Xi, Yj) = −yk, (4.11)

because the only possible results will be Xi = 1,Yj = −yk and Xi = −1, Yj = yk. Given the fact
that the state (4.8) is an eigenstate of ŶiŶjX̂k with eigenvalue −1, the only possible results are
Yi = yk, Xj = −1 and Yi = −yk, Xj = 1. Thus, we obtain

C (Yi, Xj) = −yk. (4.12)

In the end, by the definition of qubit k as the one in which Xk = 1, and taking into account that
state (4.8) is an eigenstate of ŶiŶjX̂k with eigenvalue −1, we can obtain

C (Yi, Yj) = −1, (4.13)

since the only possible result are Yi = −Yj = 1 and Yi = −Yj = −1. From Eq. (4.10−4.13),
the left-hand side of inequality (4.9) is 4, which is the maximum value allowed by the definition
of correlation. Other choices of three-qubit entangled quantum states and observables lead to
violations of the CHSH inequality in the range of 2

√
2 to 4.

4.3 Experiment proposal

Because it does not allow us to measure Y on photon k, the experimental test can not be simply a
test on. The key point for testing inequality (4.9) is noticing that we do not need to know in which
locations are photons i, j, and k for every three-photon system. We can obtain the required data
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by performing suitable combinations of measurements of X or Y on the three photons. In order
to see this, let us first translate inequality (4.9) into the language of joint probabilities. Assuming
that the expected value of any local observable cannot be affected by anything done to a distant
particle, the CHSH-Bell inequality (4.9) can be transformed into a more convenient experimental
inequality [119, 120]:

−1 6PXiXj (−1,−1)− PXiYj (−1,−yk)

− PYiXj (−yk,−1)− PYiYj (yk, yk) 6 0. (4.14)

This can be proved as follows. Since PAB(a, b) = 1
4 〈(I+aÂ)⊗ (I+ bB̂)〉, here a and b can be either

−1 or 1. Thus, the middle term in inequality (4.14) can be expanded as,

PXiXj (−1,−1)− PXiYj (−1,−yk)− PYiXj (−yk,−1)− PYiYj (yk, yk)

=
1
4

(〈(I− X̂i)⊗ (I− X̂j)〉 − 〈(I− X̂i)⊗ (I− ykŶj)〉

− 〈(I− ykŶi)⊗ (I− X̂j)〉 − 〈(I + ykŶi)⊗ (I + ykŶj)〉)

=
1
4

(
〈X̂iX̂j〉 − yk〈X̂iŶj〉 − yk〈ŶiX̂j〉 − 〈ŶiŶj〉 − 2

)
=

1
4

(C (Xi, Xj)− ykC (Xi, Yj)− ykC (Yi, Xj)− C (Yi, Yj)− 2) . (4.15)

Consequently, the inequality (4.14) is equivalent with inequality (4.9). And the bounds l of in-
equalities (4.1) and (4.9) are transformed into the bounds (l− 2)/4 of inequality (4.14). Therefore,
the local realistic bound in (4.14) is 0, Tsirelson’s bound is (

√
2− 1)/2, and the maximum value is

1/2.
To measure the inequality (4.14), we must relate the four joint probabilities appearing in (4.14)

to the probabilities of coincidences in a experiment with three spatial locations, 1, 2, and 3. For
instance, it can be easily seen that

PXiXj (−1,−1) =PX1X2X3(1,−1,−1) + PX1X2X3(−1, 1,−1)

+ PX1X2X3(−1,−1, 1) + PX1X2X3(−1,−1,−1). (4.16)

In addition, PXiYj (−1,−yk) and PYiXj (−yk,−1) are both less than or equal to

PX1Y2Y3(−1, 1,−1) + PX1Y2Y3(−1,−1, 1)

+ PY1X2Y3(1,−1,−1) + PY1X2Y3(−1,−1, 1)

+ PY1Y2X3(1,−1,−1) + PY1Y2X3(−1, 1,−1). (4.17)

Finally,

PYiYj (yk, yk) = PY1Y2Y3(1, 1, 1) + PY1Y2Y3(−1,−1,−1). (4.18)

Therefore, by performing measurements in 5 specific configurations (XXX, XY Y , XYX, Y XX,
and Y Y Y ), we can obtain the value of the middle side of inequality (4.14).

In the state (4.8), the first three probabilities in the right-hand of (4.16) are expected to be 1/4,
and the fourth is expected to be zero; the six probabilities in (4.17) are expected to be zero, and
the two probabilities in the right hand side of (4.18) are expected to be 1/8. Therefore, the middle
side of inequality (4.14) is expected to be 1/2, which means that the left-hand side of inequality
(4.9) is 4, which is not only beyond Tsirelson’s bound, 2

√
2, but is also the maximum possible

violation of inequality (4.9).

4.4 Experimental setup

To generate the three-photon GHZ state (4.8) we use the technique developed in previous ex-
periments [39, 42] as described in § 2.2. The experimental setup for generating three-photon
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Figure 4.1: Experimental setup for generating three-photon GHZ states. An ultraviolet pulse
passes twice through the + crystal to generate two pairs of polarization-entangled photons by
Type-II spontaneous parametric down-conversion used to perform the preparation of three-photon
GHZ state. The ultraviolet laser with a central wavelength of 394 nm has pulse duration of 200fs,
a repetition rate of 76 MHz, and an average pump power of 400 mW. We observe about 2 × 104

entangled pairs per second behind 3.6 nm filters (F) of central wavelength 788 nm. Polarizers
(Pol.) and quarter wave plates (λ/4) in front of the detectors are used for performing X or Y
measurement.

entanglement is shown in Fig. 4.1. A pulse of ultraviolet light passes through a BBO crystal twice
to produce two polarization-entangled photon pairs, where both pairs are in the state

|Ψ2〉 = 1/
√

2 (|H〉|H〉+ |V 〉|V 〉) . (4.19)

One photon out of each pair is then steered to a polarization beam splitter (PBS) where the path
lengths of each photon have been adjusted (by scanning the delay position) so that they arrive
simultaneously. After the two photons pass through the PBS, and exit it by a different output port
each, there is no way whatsoever to distinguish from which emission each of the photons originated,
then correlations due to four-photon GHZ entanglement

|Ψ4〉 = 1/
√

2 (|H〉|H〉|H〉|H〉+ |V 〉|V 〉|V 〉|V 〉) (4.20)

can be observed [42]. After that, by performing a |+〉 polarization projective measurement onto
one of the four outputs, the remaining three photons will be prepared in the desired GHZ state
(4.8).

In the experiment, the observed fourfold coincident rate of the desired component HHHH or
V V V V is about 1.4 per second. By performing a + projective measurement at photon 4 as the
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Figure 4.2: Typical experimental results for polarization measurements on all three photons in
a X basis triggered by the photon 4 at the + polarization. The coincidence rates of + + + and
+ +− components are shown as a function of the pump delay mirror position. The high visibility
obtained at zero delay implies that three photons are indeed in a coherent superposition.

trigger of the fourfold coincident, the ratio between any of the desired events HHH and V V V to
any of the 6 other nondesired ones, e.g., HHV , is about 65 : 1. To confirm that these two events
are indeed in a coherent superposition, we have performed polarization measurements in X basis.
In Fig. 4.2, we compare the count rates of + + + and + + − components as we move the delay
mirror (Delay) by the trigger photon 4 at the + polarization. The latter component is suppressed
with a visibility of 83% at zero delay, which confirms the coherent superposition of HHH and
V V V .

The experiments consists of performing measurements in 5 specific configurations. As shown
in Fig. 4.1, we use polarizers oriented at ±450 and λ/4 plates to perform X or Y measurements.

4.5 Experimental results

For the 5 required configurations, i.e. XXX, XY Y Y XY , Y Y X, and Y Y Y , the experimental
results for all possible outcomes are shown in Fig. 4.3.

Substituting the experimental results (shown in Fig. 4.3) into the right-hand side of (4.16), we
obtain

PXiXj (−1,−1) = 0.738± 0.012. (4.21)
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Figure 4.3: Experimental results observed for the 5 required configurations: XXX, XY Y Y XY ,
Y Y X, and Y Y Y .

Similarly, substituting the experimental results in (4.17), we obtain

PXiYj (−1,−yk) 6 0.072± 0.007,

PYiXj (−yk,−1) 6 0.072± 0.007. (4.22)

Finally, substituting the experimental results in (4.18), we obtain

PYiYj (yk, yk) = 0.254± 0.011. (4.23)

Therefore, the prediction for the middle side of (4.14) is greater than or equal to 0.340±0.019, and
the prediction for the right-hand side of (4.9) is greater than or equal to 3.36± 0.08, which clearly
violates Tsirelson’s bound by 7 standard deviations.

4.5.1 Violation of Mermin’s inequality

In addition, using part of the results contained in Fig. 4.3, we can test the three-particle Bell
inequality derived by Mermin [92],

|C (X1, Y2, Y3) + C (Y1, X2, Y3) + C (Y1, Y2, X3)− C (X1, X2, X3) | 6 2. (4.24)
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From the results in Fig. 4.3 we obtain 3.57 ± 0.04 for the left-hand side of (4.24), which is a
violation of inequality (4.24) by 39 standard deviations. Note that the experiment for observing
the violation beyond Tsirelson’s bound also requires performing measurements in an additional
configuration (Y Y Y ).

4.6 Discussion

In conclusion, we have demonstrated a violation of the CHSH-Bell inequality beyond Tsirelson’s
bound. It should be emphasized that such a violation is predicted by quantum mechanics and
appears when examining the data from the perspective of local realistic theories [117]. In addition,
it should be stressed that the reported experiment is different as previous experiments to test local
realism involving three or four-qubit GHZ states [49, 50], since it is based on a definition of pairs
which is conditioned to the result of a measurement on a third qubit, and requires performing
measurements in additional configurations.
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Chapter 5

Teleportation of two-qubit

composite system

5.1 Introduction

Ever since the wheel was invented more than 5000 years ago, people have been inventing new ways
to travel faster from one point to another, such as the chariot, bicycle, automobile, airplane and
so on. All of these forms of transportation share the same flaw: they require us to cross a physical
distance. However, in both eastern fairy tales and western mythos, there exists an amazing way
of transportation the so-called teleportation. Teleportation is such a condition, one object for
example a person, he disappears in one place and appears in another place without moving it. In
classical physics, we know we can scan all the information of the object and with the information
we can reconstruct one in the other places. However, in quantum world this method is impossible
since it is forbidden to extract all the information from an unknown quantum state.

Surprisingly, in 1993 six scientists proposed a scheme for transferring the state of a quantum
system from one location to another which is the so-called quantum teleportation [7]. By using
entanglement, one can transfer the quantum state without getting any information about the state
in the course of this transformation. Later it is found that quantum teleportation is central to
quantum communication [17] and plays an important role in a number of quantum computation
protocols [18, 19, 20]. Experimental demonstrations have been implemented with photons [31, 32,
34] or ions [121, 122]. Very recently long-distance teleportation [123, 124] and open-destination
teleportation [43] have also been realized. So far, previous experiments [31, 32, 34, 121, 122, 123,
124, 43] have only been able to teleport single qubits. However, since teleportation of single qubits is
insufficient for a large-scale realization of quantum communication and computation [17, 18, 19, 20],
teleportation of a composite system containing two or more qubits has been seen as a long-standing
goal in quantum information science.

In this chapter we will report the first experimental demonstration of a two-photon quantum
teleportation, which utilizes the six-photon interferometer techniques. In the experiment, we de-
velop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two
photons. Not only does our six-photon interferometer provide an important step towards telepor-
tation of a complex system, it will also enable future experimental investigations on a number of
fundamental quantum communication and computation protocols [18, 125, 126, 23]. Realization
of such a teleportation also represents the current state-of-the-art for manipulation of any qubit
system.
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5.2 Two-qubit teleportation scheme

1

2

BSM

EPR Source
3

4

5

6

UOriginal
state

Teleported
state

Classical
Communication

EPR Source

Alice Bob

Figure 5.1: Schematic diagram showing the principle of two-qubit teleportation. Alice wants to
teleport an unknown state of a system composed of photon 1 and 2 to Bob. To do so, Alice and
Bob first share two entangled photon pairs (EPR source), photon pairs 3-5 and 4-6. Alice then
carries out a joint Bell-state measurement (BSM) both on photons 1 and 3 and on photons 2 and
4, respectively. On receiving Alice’s BSM results via classical communication, Bob can then carr
out a corresponding unitary transformation (U ) on both photons 5 and to convert them into the
original state of photons 1 and 2.

Although there exist other ways to achieve teleportation of a composite system [127, 128], our
experimental scheme [19, 129] closely follows the original proposal for teleportation of single qubits
[7]. In the two-qubit teleportation, the sender, Alice, wants to send an unknown state of a system
composed of qubits 1 and 2,

|χ〉12 = α |H〉1 |H〉2 + β |H〉1 |V 〉2 + γ |V 〉1 |H〉2 + δ |V 〉1 |V 〉2 , (5.1)

where α, β, γ and δ are four arbitrary complex numbers satisfying |α|2 + |β|2 + |γ|2 + |δ|2 = 1, to a
distant receiver, Bob (Fig. 5.1). In oder to achieve teleportation, Alice and Bob first have to share
two ancillary entangled photon pairs (photon pairs 3-5 and 4-6) which are prepared in the one of
Bell-states |Φ+〉 = (|HH〉+ |V V 〉)/

√
2. The two-qubit teleportation scheme then works as follows.

Alice first teleports the state of photon 1 to photon 5 following the standard teleportation
protocol. In terms of the four Bell-states of photons 1 and 3,∣∣Φ±〉

13
= (|H〉1 |H〉3 ± |V 〉1 |V 〉3)/

√
2∣∣Ψ±〉

13
= (|H〉1 |V 〉3 ± |V 〉1 |H〉3)/

√
2, (5.2)

the combined state of photons 1, 2, 3 and 5 can be rewritten as

|χ〉12

∣∣Φ+
〉

35
=

1
2

(
∣∣Φ+

〉
13
|χ〉52 +

∣∣Φ−〉
13
σ̂5z |χ〉52

+
∣∣Ψ+

〉
13
σ̂5x |χ〉52 +

∣∣Ψ−〉
13

(−iσ̂5y) |χ〉52), (5.3)

where σ̂x, σ̂y and σ̂z are the well-known Pauli operators. Eq. (5.3) implies, that by performing a
joint Bell-state measurement (BSM) on qubits 1 and 3, Alice projects the state of qubits 5 and 2
onto one of the four corresponding states. After she has told Bob her BSM result via a classical
communication channel, Bob can convert the state of qubits 5 and 2 into the original state |χ〉52 by
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applying to photon 5 a corresponding local unitary transformation (Î , σ̂X , σ̂Y , σ̂Z ), independent
of the original state.

Similarly, the combined state of photons 2, 4, 5 and 6 can be rewritten in terms of the four
Bell-states of photons 2 and 4 as

|χ〉52

∣∣Φ+
〉

46
=

1
2

(
∣∣Φ+

〉
24
|χ〉56 +

∣∣Φ−〉
24
σ̂6Z |χ〉56

+
∣∣Ψ+

〉
24
σ̂6X |χ〉56 +

∣∣Ψ−〉
24

(−iσ̂6Y ) |χ〉56). (5.4)

Following the above procedure, Alice can also teleport the state of photon 2 to photon 6. First,
Alice performs a joint BSM on photons 2 and 4 and sends the BSM result to Bob. Upon the BSM
result received, by applying to photon 6 a corresponding local unitary transformation (Î , σ̂x, σ̂y,
σ̂z ), Bob can convert the state of qubits 5 and 6 into the original state

|χ〉56 = α |H〉5 |H〉6 + β |H〉5 |V 〉6 + γ |V 〉5 |H〉6 + δ |V 〉5 |V 〉6 (5.5)

to accomplish the task of the most general two-qubit teleportation.
The above scheme has a remarkable feature: it teleports the two photonic qubits, 1 and in-

dividually. This way, neither the two original qubits nor the teleported qubits have to be in the
same place. Such a flexibility is desired in distributed quantum information processing, such as
quantum telecomputation [20] and quantum secret sharing [94, 130]. Moreover, the above method
of teleporting each qubit of a composite system individually can be easily generalized to teleport a
N -qubit complex system.

5.3 A stable high-intensity entangled photon source

Although significant experimental advances have been achieved in teleportation of single qubits
(photons and ions), the realization of teleportation of a composite system containing two or more
qubits has remained a real experimental challenge. This is because, on one hand the recent photonic
experiments [123, 124, 43] would have a too low six-photon coincidence rate. On the other hand,
the experiments with trapped ions [122, 121] are limited by the finite life time of ion qubits due to
decoherence and the nonideal fidelity of quantum logic operation between ion qubits. Since photons
are robust against decoherence and high precision unitary transformations for photons can be
performed with linear optical devices, in the present experiment we still chose to use polarization-
entangled photon pairs via parametric down-conversion [53] as the main resource while various
efforts have been made to greatly improve the brightness and stability of the entangled photon
sources.

A natural way to obtain a brighter entangled photon source is to increase the power of the
ultraviolet light necessary for parametric down-conversion. To significantly increase the ultravio-
let power, we would need a more powerful ultra-fast infrared laser system for the up-conversion
process. To achieve this, we have used an all-solid-state CW laser Verdi-V18 instead of Verdi-V10
to pump a modified mode-locked Ti:sapphire laser system Mira900-F (Mira) as is shown in Fig.
5.2. Unfortunately, the conversion efficiency of the Ti:sapphire crystal will drop greatly when the
pump power is beyond a certain threshold, typically 10 in the commercial Mira. This is because
the pump laser Verdi-V18 will bring more heat to the Ti:sapphire crystal. To solve this problem, a
better cooling cycle system around the Ti:sapphire crystal is used. Moreover, a brighter pump laser
in the Mira cavity will make the output infrared pulse unstable. A new output coupler with higher
transmission efficiency is used in the cavity to stabilize the output laser. After these innovations,
we achieved an ultra fast infrared pulse with an output power of about 2.9W with the Verdi-V18
operated at 14W,which is almost twice as high as before.

The high power infrased pulse was properly focused on the LiB3O5 (LBO) crystal to achieve
the best up-conversion efficiency. To avoid damage to the LBO, caused by the focused laser beam,
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Figure 5.2: The method to increase the power of the ultraviolet light. A modified mode-locked
Ti:sapphire laser (MIRA), pumped with an all-solid-state CW laser Verdi-V18 (operating at 14W),
is used to produce high-intensity ultra-fast infrared light pulses. The infrared light pulse passes
through the LBO crystal to generate via up-conversion the ultraviolet pulse necessary for parametric
down-conversion. Behind the LBO, two cylindrical lenses with orthogonal axes, (one horizontal
and one vertical) are used to shape and focus the ultraviolet beam and five dichroic mirrors (DM)
are used to separate the ultraviolet from the infrared light.

the LBO is mounted on a motorized translation stage and will be moved by a distance of to
another point once the reference - single count rate of detector D5H (see Fig. 5.3)- is below a
certain threshold. Since back-reflection of the LBO into the Mira system can destroy the mode-
lock condition,perfect control of the LBO motion is crucial. Due to the brighter infrared pulse,
much more noise(i.e,infrared light)is introduced to the ultraviolet light during the up-conversion
process. To compensate for this, two additional dichroic mirrors are added in comparison to former
experiments to further separate the ultraviolet light with the infrared noise.

To have a better collection efficiency of entangled photon pairs, we significantly shortened the
distance between the BBOs and the fiber couplers to make our setup more compact. Besides
the improvement in collection efficiency, a compact setup also helps to significantly improve the
stability of the whole six-photon interferometer. To optimize the collection efficiency for all three
entangled photon pairs, we chose a 10 cm focus lens between the two BBOs and a 20 cm radius
concave mirror behind the second BBO to refocus the ultraviolet pulse such that it has the same
beam size in all three BBO pumping processes. With these modifications, we achieved a stable
high-intensity entangled photon source.
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Figure 5.3: A schematic diagram of the experimental setup. The ultraviolet pulse passes through
a BBO crystal to generate a polarization-entangled photon pair in mode 3 and 5 (that is, the first
ancillary entangled photon pair). After the first BBO, a 10-cm-focus lens is introduced to refocus
the ultraviolet pulse pumps once more into the second BBO and generates the third entangled
photon pair in modes 4 and 6 (that is, the second ancillary photon pair). Prisms 1 and 2, both
mounted on step motors, are used to compensate the time delay for the interference on polarizing
beam splitters PBS13 and PBS24, respectively. PBS5 and PBS6 are used to verify the teleported
state with the help of wave plates in front of them. The photons are all detected by silicon
avalanched single-photon detectors. Coincidences are recorded with a coincidence unit clocked by
the infrared laser pulses. Pol. are linear polarizers and Filter labels the narrow band filter with
∆λFWHM = 2.8nm.
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5.4 Experimental setup

A schematic diagram of our experimental setup is shown in Fig. 5.3. The developed high-intensity
ultraviolet laser successively passes through two BBO crystals to generate three polarization-
entangled photon pairs [53]. The ultraviolet laser with a central wavelength of 390 nm has a
pulse duration of 180 fs, a repetition rate of 76 MHz and an average power of 1.0 W. All thee
photon pairs are originally prepared in the Bell state |Φ+〉 = (|HH〉+ |V V 〉)/

√
2. As we described

in last section, besides the high-intensity ultraviolet laser, significant efforts have been made to
achieve better collection efficiency and stability of the entangled photon sources. Following these
efforts, we managed to observe on average 105 photon pairs per second from each source. This is al-
most five times brighter than the source achieved in recent teleportation experiment [43]. With this
high-intensity entangled photon source we could obtain in total 10 six-photon events per minute.
This is two orders magnitude higher than any former photonic teleportation experiments could
have achieved.

With the help of wave plates and polarizers, we prepared photon pair 1-2 in the desired two-
qubit state |χ〉12 that is to be teleported. Photon pairs 3-5 and 4-6, which are in the state |Φ+〉,
are used as the two ancillary pairs.

To implement two-qubit teleportation, it is necessary to perform a joint BSM on photons 1 and 3
and photons 2 and 4, respectively. To demonstrate the working principle of two-qubit teleportation
it is sufficient to identify one of the four Bell-states in both BSMs, although this will result in a
reduced efficiency—the fraction of success—of 1/16. In the experiment, we decide to analyze the
Bell-state |Φ+〉. This is achieved by interfering photons 1 and 3 and photons 2 and 4 on the
polarizing beam-splitters, PBS13 and PBS24, respectively. To interfere photons 1 and 3 (photons
2 and 4) on the PBS13 (PBS24), it has to be guaranteed that the two photons have good spatial
and temporal overlap at the PBS such that they are indistinguishable. To achieve this, the two
outputs of the PBSs are spectrally filtered ( ∆λFWHM = 2.8nm ) and monitored by fiber-coupled
single-photon detectors [109]. Moreover, perfect temporal overlap is accomplished by adjusting the
path length of photon 3 (photon 2) by a delay prism 1 (prism 2) to observe“Hong-Ou-Mandel”-type
interference fringes behind the PBS13 (PBS24) in the +/− basis [42]. The required projection of
photons 1 and 3 (2 and 4) onto |Φ+〉 can then be achieved by detecting behind PBS13 (PBS24)
a |+〉 |+〉 or |−〉 |−〉 coincidence between detectors D1 and D3 (D2 and D 4) [42]. Note that, in
the experiment, only the |+〉 |+〉 coincidence is registered, which further reduces the teleportation
efficiency to 1/64. However, by inserting one PBS and two detectors behind each output of PBS13
and PBS24, respectively, both |Φ+〉 (by detecting a |+〉 |+〉 or |−〉 |−〉 coincidence) and |φ−〉 (by
detecting a |+〉 |−〉 or |−〉 |+〉 coincidence) can be identified and thus the efficiency can be increased
up to 1/4 [104].

As shown in equations (5.3) and (5.4), the projection measurements onto |Φ+〉13 and |Φ+〉24

leave photons 5 and 6 in the state |χ〉56, that is, the original state of photons 1 and 2. To
demonstrate that our two-qubit teleportation protocol works for a general unknown polarization
state of photons 1 and 2, we decide to teleport three different initial states: |χ〉A = |H〉1 |V 〉2,
|χ〉B = (|H〉1 + |V 〉1)(|H〉2 − i |V 〉2)/2 and |χ〉C = (|H〉1 |V 〉2 − |V 〉1 |H〉2)/

√
2. |χ〉A is simply

one of the four computational basis vectors in the two-qubit Bloch sphere; |χ〉B is composed by a
linear polarization state and a circular polarization state, which is also a superposition of all the
four computational basis vectors; and |χ〉C is a maximally entangled state.

5.5 Experimental results

We quantify the quality of our teleportation experiment by looking at the fidelity as defined by

F = Tr(ρ̂ |χ〉 〈χ|) (5.6)

38



5.5. Experimental results

Figure 5.4: Experimental results for the teleportation of the |χ〉A state and the |χ〉B state. Each
measurement takes 60 h. A, The |χ〉A state. We measured photon 5 and 6 in |H〉/|V 〉 basis.
B, The |χ〉B state. We measured photon 5 in |+〉/|−〉 basis and photon 6 in |R〉/|L〉 basis. The
fraction of |H〉|V 〉 (|+〉|R〉) to the sum of all counts shows the fidelity for the teleportation of the
|χ〉A(|χ〉B) state in A(B).

where |χ〉 is the original state and ρ̂ is the density matrix of the teleported state. To measure
the fidelity of two-qubit teleportation, two PBSs (PBS5 and PBS6) and corresponding wave plates
(HWP and QWP), as shown in Fig. 5.3, are combined properly to analyze the teleported state of
photons 5 and 6.

The fidelity measurements for the |χ〉A and |χ〉B teleportation are straight forward. Conditioned
on detecting a |+〉 |+〉 coincidence between D1 and D3, D2 and D4, respectively, we analyze the
teleported state of photons 5 and 6 in the H/V basis for the |χ〉A teleportation; whereas we analyze
photon 5 in the ± basis and photon 6 in the R/L basis for the |χ〉B teleportation. As the above state
analysis only involves orthogonal measurements on individual qubits, the fidelity of the teleported
state is directly given by the fraction of observing a |χ〉A or |χ〉B state at detectors D5 and D6.
The measurement results are shown in Fig. 5.4. The experimental integration time for each fidelity
measurement was about 60 hours and we recorded about 100 desired two-qubit teleportation events.
The intergration time is slightly longer than would be expected from the original source rate, due
to the additional losses at the interference PBSs. On the basis of our original data, we conclude
that the fidelity for |χ〉A or |χ〉B is 0.86± 0.03 or 0.75± 0.02, respectively.

The measurement on the fidelity of the |χ〉C teleportation is a bit more complex, since a
complete Bell-state analysis on photons 5 and 6 usually requires nonlinear interaction between
them. Fortunately, the fidelity can still be determined by local measurements on individual qubits.
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Figure 5.5: Experimental results for |χ〉C teleportation. Three complementary bases were used:
(A) |H〉/|V 〉, (B) |+〉/|−〉 and (C) |R〉/|L〉 corresponding to the three different local measurements
σ̂xσ̂x, σ̂yσ̂y and σ̂zσ̂z. Each measurements takes 60 h. In (A) whenever there is a |H〉|H〉 or |V 〉|V 〉
coincidence, the result of the σ̂xσ̂x is +1, whereas |H〉|V 〉 or |V 〉|H〉 represents −1. In (B), |+〉|+〉
or |−〉|−〉 represents +1, whereas |+〉|−〉 or |−〉|+〉 represents −1. In (C), |R〉|R〉 or |L〉|L〉 displaces
+1, whereas |R〉|L〉 or |L〉|R〉 displaces −1.

To see this, we write the density matrix of |X〉C in terms of the Pauli matrices:

|χ〉C 〈χ| =
∣∣Ψ−〉 〈Ψ−∣∣ =

1
4

(Î − σ̂xσ̂x − σ̂yσ̂y − σ̂zσ̂z). (5.7)

By Eq. (5.6), we have:

F = Tr(ρ̂
∣∣Ψ−〉 〈Ψ−∣∣) =

1
4
Tr[ρ̂(Î − σ̂xσ̂x − σ̂yσ̂y − σ̂zσ̂z)]. (5.8)

This implies that, we can obtain the fidelity of |χ〉C teleportation by consecutively carrying out
three local measurements σ̂xσ̂x, σ̂yσ̂y and σ̂zσ̂z on the two teleported qubits. The measurement
results for the three operators are shown in Fig. 5.5, each of which took about 60 hours. Using
equation (5.8) we determine an experimental fidelity of 0.65± 0.03.

5.6 Discussion

As can be seen from the above experimental results, all the teleportation fidelities are well beyond
the state estimation limit of 0.40 for a two-qubit composite system [131], hence successfully demon-
strating quantum teleportation of a two-qubit composite system. The imperfection of the fidelities
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Fidelities after
Original States Fidelities subtraction of noise
|H〉|V 〉 0.86± 0.03 0.97± 0.03

(|H + V 〉|H − iV 〉)/2 0.75± 0.02 0.83± 0.02
(|H〉|V 〉 − |V 〉|H〉)/

√
2 0.65± 0.03 0.77± 0.03

Average 0.75± 0.03 0.86± 0.03

Table 5.1: Fidelities of quantum teleportation of a two-qubit composite system.

is mainly due to the noise caused by emission of two pairs of down-converted photons by a single
source [31]. In our experiment, this noise contributes around 10 spurious six-fold coincidences in
60 h and was not subtracted in the fidelity estimation. As comparison, by taking into account
the experimental parameters, as done in a former experiment [31], subtracting this kind of noise
clearly improves the fidelities, as shown in the last column of Table 5.1. Besides the double pair
emission, the limited interference visibility and imperfect entangled state also reduce our telepor-
tation fidelities. We notice that the fidelities of |χ〉B and |χ〉C teleportation are worse than those
of |χ〉A. This is because the fidelities of |χ〉B and |χ〉C teleportation depend on the interference
visibility on PBS13 and PBS24, while the |χ〉A teleportation fidelity does not. Moreover, as the
quality of the initial entangled state |χ〉C is not as good as for the disentangled states |χ〉A and
|χ〉B , the fidelity of |χ〉C teleportation is worse than that of the other two.

In summary we have developed and exploited a six-photon interferometer to report the first ex-
perimental demonstration of a two-qubit composite system. Not only does our experiment present
an important step towards teleportation of a complex system, the techniques developed also en-
able immediate experimental investigations on novel quantum communication and computation
protocols. First, by reinterpreting the teleportation of state as a process of entangling two distant
photons 5 and 6 that never interacted our experiment can be seen as a two-stage realization of en-
tanglement swapping, which allows new studies on the advantages of quantum relay [125]. Second,
exactly the same experimental setup used in the teleportation can be used to observe a six-photon
Schrödinger Cat state and test its quantum nonlocality [92]. Moreover, using a slightly modified
experimental setup one can first prepare photons 3, 4, 5 and 6 in a four-photon cluster state [132]
and further exploit the four-photon cluster state to demonstrate teleportation-based CNOT oper-
ation between photons 1 and 2, which is the kernel of fault-tolerant quantum computation [18].
Finally, whereas a modified six-photon interferometer can be used to prepare a six star-ring cluster
state [133] and further implement universal quantum error-correction code [134] by performing a
projection measurement on the input qubit, our six-photon interferometer can also be modified to
produce various four, five and six-photon clusters [84] which are essential resources for one-way
quantum computation [23, 51].
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Chapter 6

One-way quantum computing

6.1 Introduction

Highly entangled multipartite states, so-called cluster states, have recently raised enormous in-
terests in quantum information processing. This sort of states are crucial to be a fundamental
resource and a building block aiming at one-way universal quantum computing [23, 24, 135]. They
are also the essential elements for various quantum error correction codes and quantum communi-
cation protocols [136, 130]. Moreover the entanglement are shown to be robust against decoherence
[137], be persistent against loss of qubits [24], and thus are exceptionally well suitable for quan-
tum computing and many tasks [23, 24, 135, 136, 130]. Considerable efforts have been stepped
toward generating and characterizing cluster states in linear optics [84, 138, 139, 51, 140, 141, 45].
Recently the principal feasibility of one-way quantum computing model has been experimentally
demonstrated through 4-photon cluster state successfully [51, 141, 142].

So far, preparing photonic cluster state still suffers from several serious limitations. Due to
the probabilistic nature and Poissonian distribution of the parametric down-conversion process,
the generation rate of 4-photon cluster states is quite low [139, 138, 51, 141], and largely restricts
speed of computing. Besides, the quality and fidelity of prepared cluster states are relatively low
[138, 51, 141], which are difficult to be improved substantially. These disadvantages consequently
impose great challenges of advancement even for few-qubit quantum computing.

Fortunately, motivated by the progress that an important type of states termed hyper-entangled
states have been experimentally generated [55, 56, 143, 144], we have the possibility to produce
a new type of cluster state (2-photon 4-qubit cluster state) with nearly perfect fidelity and high
generation rate. The hyper-entangled states have been used to test “All-Versus-Nothing” (AVN)
quantum nonlocality [145, 146, 55, 56], and are shown to lead to an enhancing violation of local
realism [147, 148]. The states also enable to perform complete deterministic Bell state analysis
[149] as demonstrated in [144, 150].

In this chapter, we present an experimental realization of one-way quantum computing with
such a 2-photon 4-qubit cluster state. The key idea is to develop and employ a bright source which
produces a 2-photon state entangled both in polarization and spacial modes. We are thus able to
implement the Grover’s algorithm and quantum gates with excellent performances. The genuine
four-partite entanglement and high fidelity of better than 88% are characterized by an optimal
entanglement witness. Inheriting the intrinsic two-photon character, our scheme promises a brighter
source by 4 orders of magnitude than the usual multi-photon source, which offers a significantly
high efficiency for optical quantum computing. It thus provides a simple and fascinating alternative
to complement the latter. With ease of manipulation and control, the nearly perfect quality of this
source allows to perform highly faithful and precise quantum computing.
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6.2 State preparation

The desired four-particle cluster state can be written in the form

|C4〉 =
(
|0000〉1234 + |0011〉1234

+ |1100〉1234 − |1111〉1234

)
/2. (6.1)

To generate the cluster state, unlike the experiments presented in former chapters, we use the
technique developed in previous experiments [55] with type-I SPDC source [151] instead of type-II
SPDC source. The experimental setup is shown in Fig. 6.1a. A pump pulse of ultraviolet light has
a central wavelength of 355 nm with a repetition rate of 80 MHz and an average power of 200 mW.
After it pass through two contiguous BBO with optic axes aligned in perpendicular planes, with a
small probability, via the parametric down-conversion, it produce a polarization entangled photon
pair in the forward direction with a state

1√
2

(|H〉A |H〉B + |V 〉A |V 〉B) (6.2)

on spacial (path) modes LA,B . Now if the pump pulse is reflected and passes through the BBO crys-
tal a second time, then by properly adjust the QWP for another possibility, it generate polarization
entangled photon pairs in the backward direction with a state

1√
2

(|H〉A |H〉B − |V 〉A |V 〉B) (6.3)

on modes RA,B .
Through perfect temporal overlaps of modes RA and LA and of modes RB and LB , one can

obtain a state with coherent superposition((
|H〉A |H〉B + |V 〉A |V 〉B

)
|L〉A |L〉B +

eiθ
(
|H〉A |H〉B − |V 〉A |V 〉B

)
|R〉A |R〉B

)
/2. (6.4)

By properly adjusting the distance between the concave mirror and the crystal so that θ = 0, the
state (6.4) will be ((

|H〉A |H〉B + |V 〉A |V 〉B
)
|L〉A |L〉B +(

|H〉A |H〉B − |V 〉A |V 〉B
)
|R〉A |R〉B

)
/2. (6.5)

To do so, the concave mirror and the prism are scanned by a motor translation stage and piezo
translation stage respectively. The interference fringe is observed, as shown in Fig. 6.2, by mea-
suring the twofold coincidence between the output modes toward detectors D1 and D2 behind
22.5◦ HWPs and corresponded PBSs. By setting the piezo system to a position where we observe
maximum twofold coincidence of D1 −D2, we achieve θ = 0.

In this way, the generated state will be exactly the desired cluster state (6.1) if we identify
photon A to be qubits 2,3 and photon B to be qubits 1,4 and encode logical qubits as

|H(V )〉B ↔ |0(1)〉1
|H(V )〉A ↔ |0(1)〉2
|L(R)〉A ↔ |0(1)〉3
|L(R)〉B ↔ |0(1)〉4. (6.6)

We observe a cluster state generation rate about 1.2× 104 per second for 200mw ultraviolet pump,
which is 4 order of magnitude brighter than the usual 4-photon cluster state production [51, 141,
138] where only a rate of about 1 per second is achieved .
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6.2. State preparation

Figure 6.1: Schematic of experimental setup. (a). By pumping a two-crystal structured in
a double pass configuration, one polarization entangled photon pair is generated either in the
forward direction or in the backward direction. Two QWPs are tilted along their optic axis to vary
relative phases between polarization components to attain two desired possibilities for entangled
pair creation. Concave mirror and prism are mounted on translation stages to optimize interference
on two beam splitters(BS1,2) or polarizing beam splitters (PBS1,2) for achieving the target cluster
state. HWPs together with PBS and 8 single-photon detectors (D1-D8) are used for polarization
analysis of the output state. IF are 3 nm filters with central wavelength 710 nm. (b). In the place
where BS1,2 or PBS1,2 are located, three apparatuses are for measuring all necessary observables.
Setup (i) is for Z measurement while setup (ii) is used for X measurement for spacial modes. If an
α phase shifter is inserted at one of the input modes in (ii), an arbitrary measurement along basis
B(α) can be achieved. Setup (iii) can be for Z measurement of spacial mode and, simultaneously,
for Z measurement of polarization.
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CHAPTER 6. One-way quantum computing

Figure 6.2: Interference fringe observed when the concave mirror and the prism being moved
to achieve perfect temporal overlap and to adjust the phase θ = 0. a We measure the two fold
coincidence between the output modes toward detectors D1 and D2 behind 22.5◦ HWP and PBS,
by scanning the position of the prism. The envelope of the observed twofold coincidence varies
indicating the visibility of the two photon coherence. Inside the coherent region, the best visibility
is obtained at the position where perfect temporal overlap is achieved. b We use a piezo translation
stage to move the concave mirror to perform a fine scan around the centre of the envelope. By
setting the piezo system to a position where we observe maximum twofold coincidence of D1-D2,
we then achieve θ = 0. 46



6.3. Cluster state based one-way computing

Observable Value Observable Value
XXIZ 0.9070± 0.0036 IZXX 0.9071± 0.0037
XXZI 0.9076± 0.0035 ZIXX 0.8911± 0.0040
IIZZ 0.9812± 0.0016 ZZII 0.9372± 0.0030

Table 6.1: Experimental values of all the observable on the state |C4〉 for the entanglement witness
W measurement. Each experimental value corresponds to measure in an average time of 1 sec and
considers the Poissonian counting statistics of the raw detection events for the experimental errors.

6.2.1 State analysis

To evaluate the quality of the state, we apply an optimal entanglement witness [152]. The witness
is of form

W =
(

4 · I⊗4 − (XXIZ +XXZI + IIZZ

+IZXX + ZIXX + ZZII)
)
/2, (6.7)

where I is a 2-dimensional identity matrix while

Z = (|0〉〈0| − |1〉〈1|),
X = (|0〉〈1|+ |1〉〈0|) (6.8)

are Pauli matrices. A negative value for the witness implies 4-partite entanglement for a state
close to |C4〉 and will be optimally as -1 for a perfect cluster state. Two experimental settings of
XXZZ and ZZXX are needed. XXZZ can be attained by measuring in the +/− basis for the
polarization in each output arm after apparatus (i) in Fig. 6.1b. while ZZXX can be realized by
measuring in the H/V basis after apparatus (ii). This is because BS acts exactly as a Hadamard
transformation for the path modes to change Z basis to X basis for measurement, namely,

|L〉A,B →
1√
2

(|R′〉A,B + |L′〉A,B)

|R〉A,B →
1√
2

(|R′〉A,B − |L
′〉A,B). (6.9)

All of the observables for evaluating the witness are listed in Table 6.1. Substituting their exper-
imental values into Eq. (6.7) yields 〈W〉exp = −0.766 ± 0.004, which clearly proves the genuine
four-partite entanglement by about 200 standard deviations. As shown in [152], one can obtain a
lower bound for fidelity of experimental prepared state to |C4〉

F ≥ 1
2
− 1

2
〈W〉exp = 0.883± 0.002. (6.10)

This proves to be a better cluster source than the ones in [51, 141, 138] where fidelities are about 0.63
[51, 141] and 0.74 [138] respectively. We attribute impurity of our state to imperfect overlapping on
BS, deviations of BS from 50%, as well as imperfections in the polarization and path modes analysis
devices. To get a qualitative depiction for these imperfections, we scan the concave mirror with
piezo translation stage displacements and observe interference after BS1,2. By measuring along
H/V basis in each output arm, we have obtained visibility of 0.842± 0.008, 0.943± 0.006, 0.968±
0.004, 0.949±0.006 for coincidences among detectors D1-D2,D1-D4,D3-D2 and D3-D4 respectively.

6.3 Cluster state based one-way computing

A cluster state can be represented by an array of nodes, where each node is initially in the state
of |+〉 = (|0〉+ |1〉) /

√
2. Every connected line between nodes experiences a controlled-phase
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Figure 6.3: Demonstration of Grover’s algorithm. a. Equivalent quantum circuit of Grover’s
algorithm using box cluster state. The ‘oracle’ encodes the element ‘00’ by measuring along basis
B2,3(π), while the inverse and readout sections will find this entry with certainty by a single query.
b. A successful identification probability of (96.1 ± 0.2)% is achieved deterministically with feed-
forward, while it is (24.9 ± 0.4)% without feed-forward. This is in an excellent agreement with
theoretical expectations. The trick is that the black box provides only outcomes but not basis
information for feed-forward. Thus the oracle encoding is hidden before feed-forward on readout.

(“CPhase”) gates acting as [24, 23, 135]

|j〉 |k〉 → (−1)jk |j〉 |k〉 , j, k ∈ {0, 1} . (6.11)

For a given cluster state, consecutive single-qubit measurements in basis Bk(α) = {|α+〉k , |α−〉k}
will define a quantum computing in addition to feed-forward of measurement outputs, where

|α±〉k = (|0〉 ± eiα |1〉)k/
√

2, (α∈R). (6.12)

A measurement output of |α+〉k means ‘0’ while |α−〉k signifies ‘1’. This measurement basis deter-
mines a rotation Rz(α) = exp(−iαZ/2), followed by a Hadamard operation H = (X + Z)/

√
2 of

encoded qubits. The state |C4〉 can be represented by a box type graph shown in Fig. 6.3a, up to
a local unitary transformation.

6.3.1 Grover’s algorithm

For an unsorted database with N entries, Grover’s search algorithm gives a quadratic speed-up
for with ∼

√
N consultations on average [22]. Striking linear optics implementations have been

achieved in [153, 154], although it is questionable whether the algorithm is truly ‘quantum’ due
to a demonstration [154] based on interference of classical waves. One-way realizations have been
carried out [51, 141] recently. In the case of four entries |00〉 , |01〉 , |10〉 , |11〉, a single quantum
search will find the marked element An execution goes as follows: an oracle encodes a desired entry
by changing its sign through a black box with initial state |++〉. After an inversion-about-the-
mean operation, the labeled element will be found with certainty by readout. It is shown in [51]
that this can be exactly finished with the box cluster state in Fig. 6.3a. For demonstration, we
experimentally tag the element |00〉 on qubits 2, 3 and make the readout on qubits 1, 4 all along
basis B(π). Noting the fact that the state Eq. (6.1) differs the box cluster from a H transformation

48
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Figure 6.4: Two-qubit quantum gates realizations. a. CPhase gate realization with the horseshoe
cluster. b. Experimental measured fidelities of output states to the ideal Bell states (unnormalized)
in the lab basis. They are 0.954 ± 0.003, 0.940 ± 0.004, 0.936 ± 0.005, 0.910 ± 0.005 for outcomes
00,01,10,11 on qubits 2,3 respectively. c. Quantum gate implementation that does not generate
entanglement with the box cluster. d. Measured fidelities of output states to the ideal product
states in the lab basis. They are 0.935±0.005, 0.962±0.004, 0.969±0.003, 0.975±0.003 for outcomes
00,01,10,11 on qubits 2,3 respectively.

on every qubit and a swap between qubits 2 and 3, this amounts to measure along the V/H basis
after apparatus (iii) in Fig. 6.1b. Two PBS here are for interfering, to ensure the desired cluster
state. In the meantime they are acting as polarization measurement devices, which is equivalent
to use apparatus (i) in this case. The outputs of the algorithm are two bits {s3⊕ s4, s1⊕ s2} in lab
basis by feed-forwarding outcomes of qubits 2,3, where si are measurement outcomes on qubits i.
The experimental results are sketched in Fig. 6.3b.

6.3.2 Quantum gates

Non-trivial two-qubit quantum gates such as the CPhase gate are at the heart of universal quantum
computation, that can be realized by cluster states conveniently. Depending on the initial cluster
state and measurement basis, states with different degrees of entanglement can be generated. The
horseshoe or box cluster shown in Fig. 6.4a and 6.4c can realize such important gates. For the case
of horseshoe cluster in Fig. 6.4a, depending on the outcomes when measuring along basis B2(α)
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and B3(β), the output state on qubits 1,4 would be

|Ωout〉 = (Xs2 ⊗Xs3)(H ⊗H)
(
Rz(−α)⊗Rz(−β)

)
CPhase |Ωin〉 (6.13)

where |Ωin〉 = |++〉. The state |Ωout〉 is always a maximal entangled state. Taking α = β = 0
and consider outcomes ‘00’ in qubits 2,3. This implies a final Bell state of |Ωout〉 = (|+〉 |0〉 +
|−〉 |1〉)/

√
2. Note that the horseshoe cluster state is equivalent to the state Eq. (6.1) up to a

HIIH transformation, in lab basis this amounts to the fact that the output state is exactly |Ωout〉,
that is symmetric under HH transformation. To characterize quality of quantum gates outputs,
we put a birefringent crystal in path RB to make a transformation |+〉 ↔ |−〉 for polarization.
After BS2, all the Bell states on qubits 1,4 will change as

(|+〉1 |0〉4 ± |−〉1 |1〉4)/
√

2 −→ |+〉1 |±〉4 ,
(|−〉1 |0〉4 ± |+〉1 |1〉4)/

√
2 −→ |−〉1 |±〉4 ,

(6.14)

which can be completely and deterministically discriminated by measuring along |±〉 basis. The
fidelities of the output states in the lab basis to the ideal Bell state are shown in Fig. 6.4b. Similarly,
for the box cluster state shown in Fig. 6.4c, measurements on qubits 2,3 along basis {B2(α), B3(β)}
will give an output state on qubits 1,4 with

|Ωout〉 = (Z ⊗X)s3(X ⊗ Z)s2CPhase(H ⊗H)
(
Rz(−α)⊗Rz(−β)

)
CPhase |Ωin〉 (6.15)

which is a product state when α = π and β = 0. Since we can completely distinguish 4 different
products states, output fidelities can be obtained directly, as shown in Fig. 6.4d. By employing the
techniques developed in [141] with active feed-forward, one can expect to achieve deterministically
quantum computing with excellent quality outputs.

6.4 Discussion

We remark that other 2-qubit states can be generated, by suitable measurements on qubits 2,3.
However, an arbitrary single-qubit rotation needs generally 3 single-qubit measurements on a cluster
for one-way implementation [51, 141], which is a big consuming of resource. Fortunately, this
rotation can be easily attained by linear optical components both for polarization and spacial
modes. Therefore a hybrid framework would be more practical with one-way realization of two-
qubit gates and the usual single-qubit gates. Due to low efficiency for producing multi-photon and
concurrent occupations for polarization-spacial degrees of freedom of the photons, our source is
not yet scalable, the same as the multi-photon source [141]. However, the scheme developed here
leads to quantum computing with a quality and efficiency at present largely unmatched by previous
methods.

In summary, we have developed a scheme for preparation of a 2-photon 4-qubit cluster state,
designed and demonstrated the first proof-of-principle realization of one-way quantum computing
employing such a source. The excellent quality of the state with fidelity better than 88% is achieved.
The high count rates enable quantum computing by 4 orders of magnitude more efficient than
previous methods. We have implemented the Grover’s algorithm with a successful probability of
about 96% and quantum gates with high fidelities of about 95% on average. Our scheme helps to
make a significant advancement of quantum information processing, and the source constitutes a
promising candidate for efficient and high quality one-way optical quantum computing. By using
more photons and more degrees of freedom, one can expand our ability to generate many-qubit
cluster states for performing quantum computing and other complex tasks. Our results can also
find rapid applications in quantum error correction codes, multi-partite quantum communication
protocols [136, 130], as well as novel types of AVN tests for nonlocality [145, 146].
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Manipulation of Atoms: Quantum

Memory
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Chapter 7

Atomic ensemble based quantum

repeater

7.1 Introduction

While photons are the ideal information carriers for long-distance quantum communication, the
photon losses and the decoherence which both scales exponentially with the length of the commu-
nication channel. Entangled swapping [33, 3] and entanglement purification [35, 37] are proposed
to solve these two serious problems. Significant experimental advances in both proposals have been
achieved [34, 155, 38, 98] in laboratory via SPDC source, however, the probabilistic property of
SPDC source makes the the requirement of resources increases exponentially with the communica-
tion length. Fortunately, the quantum repeater protocol [17, 68] enables to establish high-quality
long-distance entanglement in the communication time increasing only polynomially with trans-
mission distance.

Early physical implementations of a quantum repeater were based on atoms trapped in high-
finesse cavities [69], where strong coupling between atoms and photons is required. However, these
techniques require a extremely complicated experimental setup. In a seminal paper [70], Duan et
al. (DLCZ) proposed an implementation of the quantum repeater by using atomic ensembles and
linear optics. In this protocol atomic ensembles are used as memory qubits to avoid the challenging
requirement for strong coupling between atoms and photons. In the efforts of realizing the atomic
ensemble based quantum repeater protocol, significant experimental advances have been achieved
recently. Non-classical correlated photon pairs were generated from a MOT and a hot vapor cell
[71, 72]. Controllable single photons were generated from atomic ensembles with the help of “event-
ready” detection and feedforward circuit [73, 74, 75]. Interference of photons emitted from different
atomic ensembles are studied [76, 77, 78]. Entanglement between two atomic ensembles either in
the same MOT or in two MOTs were generated by detecting single photons [79, 80] and used
for memory-built-in quantum teleportation between photonic and atomic qubits [81]. Recently, a
segment of the DLCZ protocol was demonstrated [82].

However, the DLCZ protocol has an inherent drawback which is severe enough to make long-
distance quantum communication extremely difficult [156]. In this Chapter, first we will introduce
the basic conception of original DLCZ protocol and show that the phase stability problem in the
DLCZ protocol is so severe that it makes a long-distance quantum communication impossible. Then
we will propose a robust quantum repeater architecture building on the DLCZ protocol, which is
insensitive to phase stability. The robustness is improved about 7 orders of magnitude higher in
comparison with the original DLCZ protocol.
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7.2 The DLCZ protocol

7.2.1 Light-atoms coupling

Figure 7.1: Setups for entanglement generation and entanglement swapping in the DLCZ protocol.
a). Forward-scattered anti-Stokes photons, generated by an off resonant Write laser pulse via
spontaneous Raman transition, are directed to beam splitter (BS) at the center. Entanglement is
generated between atomic ensembles at sites a and b, once there is a click on either of the detectors.
The inset shows the atomic level structure, with a pair of metastable state |g〉 and |s〉, and excited
state |e〉. b). Entanglement has been generated between atomic ensembles (a, bL) and (bR, c). The
atomic ensembles at site b are illuminated by near resonant Read laser pulses, and the retrieved
Stokes photons are subject to BS at the center. A click on either of the detectors will prepare the
atomic ensembles at a and c into an entangled state.

Let us first consider a pencil shaped atomic sample of N atoms with Λ level structure (see
inset in Fig. 7.1), a pair of metastable lower states |g〉 and |s〉 and the excited state |e〉. Initially,
all the atoms are prepared in the ground state |g〉. The so-called “Write” pulse, an off-resonant
weak light pulse with the transition |g〉 → |e〉, induces a spontaneous Raman transition into the
metastable atomic state |s〉, which prepares the forward-scattered anti-Stokes mode1 and collective

1The radiation emitted during Raman scattering is separated by its detuning from the original laser frequency:

red detuned radiation has the name Stokes light, while the blue detuned is called anti-Stokes light. Since in all the

experiments described in Part II, the initial ground state has a higher energy level as the other metastable state,

thus we call the light field scattered by ‘Write’ process as anti-Stokes light and the one by ‘Read’ process as Stokes

light.
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atomic state into a two mode squeezed state [70]. The light-atom system can be described as

|ψ〉 = |0a0s〉+ eiφ
√
χS†a†|0a0s〉+O(χ) (7.1)

where φ is an phase which is determined by that of the write pulse, |0a〉 =
⊗

i |g〉i is the ground
state of the atomic ensemble and |0s〉 = |vac〉 denotes the vacuum state of the Stokes photons.
Here, a† is the creation operator of the Stokes mode, and the collective atomic excitation operator
is defined by S† = 1√

N

∑
i |s〉i〈g|, since one is not able to tell which atom is transferred. The small

excitation probability χ� 1 can be achieved by manipulating the write laser pulse [157].
The pair of metastable lower states |g〉 and |s〉 can be hyperfine or Zeeman sublevels of the

electronic ground state of alkali-metal atoms so that collective atomic state has a long coherence
lifetime. By sending in a so-called “Read” pulse resonant with the transition |s〉 → |e〉, the col-
lective spin excitation can be retrieved back to Stokes light field at the transition |e〉 → |g〉. The
reading process is closely related to an electromagnetically induced transparency process [158]. The
resultant state of the anti-Stokes – Stokes modes can be written as

|ψ〉AS,S = |0〉AS|0〉S + eiφ
′√
χ|1〉AS|1〉S +O(χ), (7.2)

φ′ is determined by both write and read pulses. Thus, the photon numbers in the two modes are
correlated. The nonclassical correlation between anti-Stokes and Stokes are experimentally verified
and will be described in Chapter 8. Moreover, an anti-Stokes detection click will herald the atoms
in the collective state S†|vac〉, and thus can be used to generate single photons on demand (see
also Chapter 8).

7.2.2 Entanglement generation

The schematic entanglement generation setup is shown in Fig. 7.1a. Let us consider two atomic
ensembles at site a and b at a distance of L0 ≤ Latt, with Latt the channel attenuation length
2. Two write pulses excite both ensembles simultaneously, and the anti-Stokes photons generated
from both sites are directed to the beam splitter (BS) at the center. Once there is a click on the
detectors, entanglement between communication sites a and b is established

|ψ〉a,b = (S†a + ei∆φS†b )/
√

2|vac〉+O(
√
χ), (7.3)

where ∆φ denotes the difference of the phase shifts between the left and the right side of channel.

7.2.3 Entanglement connection

The maximum distance between the entangled ensemble a and b is limited by the attenuation length
Latt of the communication channels. To extend the distance, one can apply then entanglement
connection via entanglement swapping. The entanglement swapping setup is depicted in Fig. 7.1b.
Assume we have created entangled states (7.3) between atomic ensembles (a, bL) and (bR, c) as

|ψ〉a,bL = (S†a + eiφLS†
bL

)/
√

2|vac〉, (7.4)

|ψ〉bR,c = (S†
bR

+ eiφRS†c )/
√

2|vac〉, (7.5)

neglecting the higher order excitations. The two atomic ensembles bL and bR are illuminated
simultaneously by read laser pulses. The retrieved Stokes photons are subject to the BS, and a
click on either of the single photon detectors will prepare the atomic ensembles at sites a and c

into an entangled state. In this way, the entangled pair can be connected to arbitrary distance via
entanglement swapping.

Note that, once the entanglement at one site is generated, it can be hold due to the quantum
memory until another pair is ready. This is an important advantage of the quantum repeater idea,
which is responsible for the polynomial growth with the communication distance.

2The length that the channel attenuation reaches 1/e.
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7.2.4 Phase instability analysis

However, as we present above, both entanglement generation and entanglement swapping in DLCZ
protocol depend on Mach-Zehnder-type interference. Thus, relative phase between two remote
entangled pairs is sensitive to path length instabilities, which has to be kept constant within a
fraction of photon’s wavelength. Moreover, entanglement generation and entanglement swapping
are probabilistic. If connecting neighboring entangled pairs doesnot succeed after performing en-
tanglement swapping, one has to repeat all previous procedures to reconstruct the entangled pairs.
This means the path length fluctuation must be stabilized until the desired remote entangled pairs
are successfully generated. A particular analysis shows that, to maintain path length phase insta-
bilities at the level of λ/10 (λ: wavelength; typically λ ∼ 1 µm for photons generated from atomic
ensembles) requires the fine control of timing jitter at a sub-femto second level over a timescale of
a few tens of seconds, no matter whether entanglement generation is performed locally or remotely
[156]. It is extremely difficult for current technology to meet this demanding requirement, since
the lowest reported jitter is about a few tens of femto-seconds for transferring a timing signal over
kilometer-scale distances for averaging times of ≥ 1 s [159]. Thus the requirement to stabilize the
relative phase in the DLCZ scheme is still extremely demanding for current techniques [156].

7.3 Robust quantum repeater

7.3.1 Motivation

As is well known, the two-photon Hong-Ou-Mandel-type interference is insensitive to phase in-
stability [160]. The path length fluctuations should be kept on the length scale within a fraction
of photon’s coherence length (say, 1/10 of the coherence length, which is about 3 m for photons
generated from atomic ensembles [73]). Therefore the robustness is improved about 7 orders of
magnitude higher in comparison with the single-photon Mach-Zehnder-type interference in DLCZ
protocol. The interference of two photons from independent atomic ensembles has been reported
recently [76, 77, 78]. This type of two-photon interference has been widely used in quantum com-
munication and quantum computation [161, 162, 163, 164, 84].

To exploit the advantage of two-photon interference, it is natural to extend the DLCZ protocol
by polarization encoding a memory qubit with two atomic ensembles [80, 81], and entangling two
memory qubits at neighboring sites via a two-photon Bell-state measurement. Unfortunately, as
shown below, the Bell-state measurement will not create the desired entangled state, but a com-
plex superposition state with spurious contributions from second-order excitations, which preclude
further entanglement manipulation.

7.3.2 Basic protocol

Let us consider two communication sites A and B at a distance of L0. A schematic setup of
entanglement generation is shown in Fig. 7.2. Each site has two atomic ensembles encoded as one
memory qubit and the two atomic ensembles at each node are excited simultaneously by write laser
pulses. We assume the Stokes photons generated from the two atomic ensembles at the same site
have orthogonal polarization state, e.g., |H〉 and |V 〉, which denote horizontal and vertical linear
polarization, respectively. In this way the memory qubit is effectively entangled in the polarization
states of the emitted Stokes photons.

The anti-Stokes photons generated from both sites are directed to the PBS and subject to
BSM-I in the center to entangle the two neighboring memory qubits. However, the two-photon
state generated in the second-order spontaneous Raman process will also induce coincidence counts
on the detectors. Thus the BSM-I can only prepare the neighboring memory qubits into a complex
superposition state with spurious contributions from second-order excitations. For instance, a
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Figure 7.2: Setup for entanglement generation between sites A and B. Forward-scattered anti-
Stokes photons, generated by an off-resonant write laser pulse via spontaneous Raman transition,
are subject to Bell-state measurement (BSM-I) at the center. The Stokes photons generated at
the same site are assumed to have different polarization i.e., |H〉 and |V 〉. PBS (PBS±) reflects
photons with polarization |V 〉 (|−〉) and transmits photons with polarization |H〉 (|+〉), where
|±〉 = 1√

2
(|H〉 ± |V 〉). After passing through the PBS± and PBS successively, the Stokes photons

are detected by single photon detectors. A coincidence count between single photon detectors D1

and D4 (D1 and D3) or D2 and D3 (D2 and D4) will project the four atomic ensembles into the
complex entangled state |ψ〉AB up to a local unitary transformation.

coincidence count between D1 and D4 projects the two memory qubits into

|ψ〉AB =
(
ei(φA+φB)

S†uAS
†
uB + S†dAS

†
dB

2

+
ei2φAS†2uA + ei2φBS†2uB − e

i2φAS†2dA − e
i2φBS†2dB

4
)
|vac〉, (7.6)

where φA and φB are the phases that the photons acquire, respectively, from site A and B during
the BSM-I. The atomic ensembles are distinguished by subscript (u, d) and (A,B). The first part is
the maximally entangled state needed for further operations, while the second part is the spurious
two-excitation state coming from second-order excitations. The success probability is on the order
of O(χ2η2

1e
−L0/Latt), where η1 is the detection efficiency. The time needed in this process is

T0 ≈
Tcc

χ2η2
1e
−L0/Latt

,

with Tcc = L0/c the classical communication time.
It is obvious that the phases φA and φB only lead to a multiplicative factor ei(φA+φB) before

the desired entangled state and thus have no effect on the desired entanglement. The prize to
pay is that some spurious coincidence counts from the two-excitation terms are also registered,
which obviously prevents further entanglement manipulation and must be eliminated by some
means. However, we find that it is not necessary to worry about these terms, because they can
be automatically washed out if the Bell-state measurement in the entanglement swapping step is
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Figure 7.3: Setup for entanglement connection between sites A and C via entanglement swapping.
Complex entangled states have been prepared in the memory qubits between sites (A,BL) and
(BR, C). The memory qubits at site B are illuminated by near resonant read laser pulses, and the
retrieved anti-Stokes photons are subject to BSM-II at the center. The Stokes photons at the same
site have different polarizations |H〉 and |V 〉. After passing through PBS and PBS± successively,
the Stokes photons are detected by single photon detectors. Coincidence counts between D1 and
D4 (D1 and D3) or D2 and D3 (D2 and D4) are registered. The memory qubits will be projected
into an effectively maximally entangled state ρAC up to a local unitary transformation. Note that
the sequence of PBSs in BSM-II is different from BSM-I. This helps to eliminate the spurious
contributions from second-order excitations.

carefully designed. In the ideal case a maximally entangled state can be created by implementing
entanglement swapping.

The entanglement swapping setup is depicted in Fig. 7.3. Let us consider three communication
sites A,B and C, and assume that we have created the complex entangled states (Eq. 7.6) |ψ〉ABL
and |ψ〉BRC between (A,BL) and (BR, C), respectively3. The memory qubits BL and BR at site
B are illuminated simultaneously by read laser pulses. The retrieved Stokes photons are subject
to BSM-II. Note that the sequence of the PBSs in BSM-II is different from BSM-I. The BSM-II is
designed like this in order that the two-photon states converted from the spurious two-excitation
terms are directed into the same output and thus will not induce a coincidence count on the
detectors. In the ideal case, if the retrieve efficiency is unity and perfect photon detectors are
used to distinguish photon numbers, only the two-photon coincidence count will be registered and
project the memory qubits into a maximally entangled state. For instance, when a coincidence
count between D1 and D4 is registered one will obtain

|φ+〉AC = (S†uAS
†
uC + S†dAS

†
dC

)/
√

2|vac〉. (7.7)

3Note that in Ref. [165], both entnaglement swapping and entanglement generation is performed remotely, so we

need at least two atomic ensembles at each node. Here entanglement swapping is performed locally following the

standard quantum repeater protocol [24], and thus we have to manipulate at least four atomic ensembles at each

communication site.
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7.3. Robust quantum repeater

In this way a maximally entangled state across sites A and C is generated by performing en-
tanglement swapping. The maximally entangled state can be extended by further entanglement
swapping as usual. Both the entanglement creation and entanglement connection in our scheme
rely on two-photon interference, so the improvement in insensitivity to path length fluctuations, as
compared to the DLCZ scheme, is about 7 orders of magnitude.

In practice, the retrieve efficiency ηr is determined by optical depth of the atomic ensembles
[166]. Furthermore, current single photon detectors are incapable of distinguishing photon numbers.
Taking into account these imperfections, the multi-photon coincidence counts in the BSM-II have
to be considered. Through some simple calculations, one can find that the coincidence counts will
prepare the memory qubits into a mixed entangled state of the form

ρAC = p2ρ2 + p1ρ1 + p0ρ0, (7.8)

where the unnormalized coefficients are calculated to be

p
(u)
2 =

η2
rη

2
1

32
,

p
(u)
1 =

η2
r(1− ηr)η2

1

16
+
η3
r

32
(
η1η2

2
+ η2

1),

p
(u)
0 =

η3
r

32
(1− ηr)(

1
2
η1η2 + η2

1)+

η2
r(1− ηr)2η2

1

32
+
η4
r

64
(
1
4
η2

2 + η2
1), (7.9)

where η1 and η2 are the detector efficiency for single photon state and two photon state. The success
probability of entanglement swapping is p = p

(u)
2 + p

(u)
1 + p

(u)
0 . ρ2 = |φ+〉AC〈φ+| is a maximally

entangled state, ρ1 is a maximally mixed state, where only one of the four atomic ensembles has
one excitation, and ρ0 is the vacuum state where all atomic ensembles are in the ground states.

It is easy to see that ρAC is in fact an effectively maximally entangled states, which can be
projected automatically to a maximally entangled state in the entanglement-based quantum cryp-
tography schemes. When implementing quantum cryptography via the Ekert protocol [11], we
randomly choose the detection basis at the remote sites and detect the photons retrieved from
the atomic ensembles. Then we compare the detection basis by classical communication. In this
process, only the coincidence counts are registered and used for quantum cryptography. In our
case only the first term ρ2 will contribute to a coincidence count between the detectors at the two
sites and will be registered after classical communication. The maximally mixed state term ρ1 and
the vacuum term ρ0 have no contribution to the experimental results, and thus ρAC is equivalent
to the Bell state |φ+〉AC = (S†uAS

†
uC + S†dAS

†
dC

)/
√

2|vac〉.

7.3.3 Entanglement connection and scalability

Effectively entangled states can be connected to a longer communication distance via further en-
tanglement swapping. To implement a quantum repeater protocol, a nesting scheme is used in
entanglement connection process [17, 68]. Taking into account higher-order excitations, the gener-
ated effectively entangled pair Eq. (7.8) can be re-written as

ρ′ = ρ+ p′2ρ
′
2 + p′3ρ

′
3,

where the normalized density matrix ρ′2 and ρ′3 denote the two-excitation mixed state and three-
excitation mixed state generated due to higher-order excitations in the spontaneous Raman process,
and the small coefficients p′2 and p′3 are on the order of O(χ) � 1. After the j-th swapping step,
the effectively entangled pair can be described as [156]

ρ′sj = p2sjρ2sj + p1sjρ1sj + p0sjρ0sj + p′2sjρ
′
2sj + p′3sjρ

′
3sj . (7.10)
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CHAPTER 7. Atomic ensemble based quantum repeater

Figure 7.4: Elementary entangled pairs are first locally generated via the standard DLCZ protocol.
The anti-Stokes photons are subject to BSM-I to connect neighboring communication nodes. We
also assume the anti-Stokes photons retrieved from atomic ensembles at the same site have different
polarization. Note that BSM-I also helps to eliminate the spurious contributions from higher order
excitations.

Here ρ2sj is the maximally entangled state between two memory qubits at a distance of L = 2jL0,
and ρ1sj and ρ0sj are also the maximally mixed state and vacuum state, respectively. Note that
ρ′s1 = ρ′ is just the mixed entangled state created after the first entanglement swapping step. The
coefficients can be estimated to be

p′2sj ∼ O(jχ), p′3sj ∼ O(χ), (7.11)

pαsj ≈ pαsj−1 +O(jχ), (α = 0, 1, 2). (7.12)

From Eq. (7.11), it is easy to see that the contributions from higher-order excitations ρ′2sj and
ρ′3sj can be safely neglected, as long as the small excitation probability fulfills jχ � 1, which can
be easily achieved by tuning the write laser pulse. One can also see that the coefficients p2sj , p1sj

and p0sj are stable to the first order of jχ, therefore the probability to find an entangled pair in
the remaining memory qubits is almost a constant and will not decrease significantly with distance
during the entanglement connection process. The time needed for the j-th connection step satisfies
the iteration formula

Tsj =
1
psj

[Tsj−1 + 2j−1Tcc]

with psj the success probability of the j-th swapping step. The total time needed for the entangle-
ment connection process is

Ttot ≈ T0

∏
j

p−1
sj ≈

Tcc
χ2η2

1

eL0/Latt(L/L0)log2 1/η, (7.13)
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where η = η2
rη

2
1 is a constant. The excitation probability can be estimated to be χ ∼ L0/L, and

then the time needed in the entanglement connection process

Ttot ∝ (L/L0)2+log2 1/η

scales polynomially or even quadratically with the communication distance.
One can modify our protocol by performing entanglement generation locally and entanglement

swapping remotely. It will help to increase the scalability, since entanglement generation is usually
the rate-limiting stage due to the low excitation probability. Local entanglement can also be
generated via the standard DLCZ protocol and then connected by two-photon Hong-Ou-Mandel
interference, because local path length fluctuations can be well controlled. The experimental setup
is shown in Fig. 7.4. Here we need BSM-I to eliminate spurious contributions from high-order
excitations. Note that the setup in Fig. 7.4 is a simple variation of the scheme proposed Jiang
et al. [167], where entanglement swapping is performed locally and entanglement generation is
performed remotely – thus, it still requires a fine control of timing jitter at a sub-femto second level
over a timescale of a few tens of seconds. Therefore, we remark that such a simple modification
is crucial to long-distance quantum communication, as entanglement generation relies on single-
photon interference and must be performed locally.

7.3.4 Alternative approach

The locally entangled memory qubits can be generated by other means. Atomic ensembles can also
serve as a quantum memory to store a photonic state [168, 169]. By applying a time dependent
classical control laser pulse of a Rabi frequency Ωc, the whole system has a particular zero-energy
eigenstate, i.e., the dark-state-polariton. The single-polariton state is

|D, 1〉 =
Ωc(t)√

Ω2
c(t) + g2N

|1〉p|0〉a −
g
√
N√

Ω2
c(t) + g2N

|0〉pS†|0〉a, (7.14)

with g being the coupling constant for the |g〉−|e〉 transition. Here |0〉p (|1〉p) is the vacuum (single-
photon) state of the quantized field to be stored. The quantum memory works by adiabatically
changing Ωc(t) such that one can coherently map |D, 1〉 onto either purely atom-like state |0〉pS†|0〉a
where the single photon is stored, or purely photon-like state |1〉p|0〉a, which corresponds to the
release of the single photon.

To exploit the advantage of two-photon Hong-Ou-Mandel-type interference, we need a quantum
memory for the photonic polarization qubits. Figure 7.5 shows quantum memory for storing any
single-photon polarization states by the dark-state-polariton method. Two atomic ensembles being
a quantum memory for polarization qubits at each node are thus the required localized memory
qubit in our scheme. Thus transformation between an arbitrary photon polarization state α |H〉+
β |V 〉 and the corresponding state stored in atomic ensembles (αS†h + βS†v) |0〉 can be achieved
by adiabatically manipulating the control laser pulse. Importantly, our quantum memory works
even when the two probability amplitudes in the stored state α |H〉+ β |V 〉 are not c-numbers but
quantum states of other photonic qubits. As a result, two memory qubits U and D at one site (see
Fig. 7.6a) can be deterministically entangled in their “polarizations” by storing two polarization-
entangled photons, e.g.,

1√
2

(S†hUS
†
hD

+ S†vUS
†
vD )|vac〉 ↔ 1√

2
(|H〉 |H〉+ |V 〉 |V 〉). (7.15)

The latter state in Eq. (7.15) are generated by a deterministic polarization-entangler using four
single photons, linear optics and an event-ready detection [170]. With an overall success probability
of 1

8 for perfect photon counting, such an “event-ready” entangler can deterministically generate
two maximally polarization-entangled qubits.

61



CHAPTER 7. Atomic ensemble based quantum repeater

Figure 7.5: Quantum memory for photonic polarization qubits. Two ensembles are a classical
control field. Classical and quantized light fields are fed into the first PBS and will leave at two
different outputs of the second PBS. As each atomic cell works as quantum memory for single
photons with polarization |H〉 or |V 〉 via the adiabatic transfer method, the whole setup is then
quantum memory of any single-photon polarization states. The inset shows the relevant level
structure of the atoms. The |e〉 − |s〉 transition is coherently driven by the classical control field of
Rabi frequency Ωc, and the |g〉 − |e〉 transition is coupled to a quantized light field.

Polarization encoding allows a two-photon interference entanglement swapping to construct
entanglement between adjacent sites. As shown in Fig. 7.6, one can first create each memory pair
in a maximal event-ready entanglement at two adjacent communication nodes and then the two
photons stored in the two U memories are simultaneously retrieved and subject to a two-photon
Bell-state measurement at the center. Conditioned on the result of this Bell-state measurement,
the remaining two D memory qubits are maximally entangled, also in an event-ready way. Usual
entanglement swapping can be applied to the polarization encoding memory qubits and thus allows
the implementation of a robust quantum repeater.

7.3.5 Entanglement purification

With imperfect entanglement and erroneous local operations, entanglement connection, together
with decoherence, will reduce the fidelity of entanglement. Then at certain stage of entanglement
connection, the less entangled states have to be purified via the entanglement purification protocol
[37, 38] to enable further entanglement connection. Fig. 7.7 shows how to achieve linear optical
entanglement purification between any specified two nodes, e.g., node-I and node-J , across which
one has less entangled pairs of quantum memories.

Assume two effectively mixed entangled pairs of fidelity F are created in parallel via entangle-
ment connection as we discussed above. The effectively entangled states stored in the four memory
qubits are converted into entangled photons by the read laser pulses, and then subject to two PBSs,
respectively. The photons in mode b1 and b2 are detected in |±〉 = 1√

2
(|H〉 ± |V 〉) basis by single

photon detectors, and will project the photons in mode a1 and a2 into an effectively maximally en-
tangled state of higher fidelity F ′ [37, 38]. The higher-fidelity entangled pair in mode a1 and a2 can
be restored into two distant memory qubits at nodes I and J by means of the dark-state-polariton
method for further manipulation.

To generate a remote entangled pair, the nested quantum purification has to be implemented
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Figure 7.6: a). Entanglement swapping between adjacent communications nodes A and B. Two
pairs of entangled memory qubits are first generated by storing the event-ready entanglement of
two photons at each node. Then the two photons stored in the U memory at the two nodes are
simultaneously retrieved and subject to a two-photon Bell-state measurement at the center. This
entanglement swapping process will in an “event-ready” way entangle the two distant D memory
qubits. b). Entanglement connection to extend the communication length. Two well entangled
pairs of memory qubits, one across nodes (A,BL) and (BR, C) are prepared in parallel. The Bell-
state measurement on the two photons released simultaneously from the two memories at node B
results in, with a probability of 1/2 , well entangled quantum memories across nodes A and C in
a definite Bell state.

[17, 68]. The total time overhead to create entanglement across two communication nodes at a
distance of 1280 km can be numerically estimated. In our calculation, we assume the distance
L0 = 10 km and the photon loss rate is 0.1 dB/km in free space. To improve the scalability, we
assume entanglement generation is performed locally as described in § 7.3.4 and the entanglement
generation time is considered to be 100 µs. The fidelity of the adjacent entangled memory qubits
is F = 0.88, as can be estimated by connecting two adjacent memories from two pairs of photon-
memory entanglement after 5 km free space transmission of both photons [67]. One of the major
factors affecting the efficiency of our scheme is single-photon detection. Fortunately, high-efficiency
photon counting is feasible by using quantum state transfer and state-selective fluorescence detec-
tion with nearly unit efficiency [171, 172]. To increase the efficiency, we assume photon counting
detectors with detection efficiency 99% are used, and the retrieve efficiency is considered to be 98%.
Entanglement purification is performed three times during the entanglement connection process
to improve the fidelity. Our numerical results give a total time of about 23 seconds to create an
effectively entangled pair, with a probability of 0.75 to get the entangled pair of fidelity 94%.
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Figure 7.7: Setup for quantum entanglement purification. Entangled states have been prepared
in the memory qubits between two distant nodes I and J . The memory qubits at the two sites are
illuminated by near resonant read laser pulse, and the retrieved entangled photon pairs are directed
to two PBS respectively. The photons in mode b1 and b2 are detected in |±〉 = 1√

2
(|H〉±|V 〉) basis

and the remaining photons in mode a1 and a2 are restored in the memory qubits at the two sites
respectively.

7.4 Conclusion

In summary, we have given a particular analysis on phase stability problem of the DLCZ protocol.
This problem can be overcome by taking advantage of two-photon Hong-Ou-Mandel-type interfer-
ence, which alleviates the phase stability requirements by about 7 orders of magnitude. Most of the
ingredients in our protocol have been experimentally realized in recent years [78, 81] (see Chapter 9
and 10). A long storage time is crucial for implementing atomic ensemble based quantum repeater
protocol. Storage time of up to 30 µs was reported recently [80]. An optical dipole trap may have
the potential to extend the storage time to 1 second. According to a recent proposal, quantum
memory with nuclear atomic spins might have very long storage time of about hours [173]. Our
scheme also relies on the ability to reliably transfer of photon’s polarization states over a free-space
or optical fiber channel. Two recent experiments demonstrated this ability up to 100 km in free
space [174] and in fiber [175]. Our scheme faithfully implements a robust quantum repeater and
thus enables a realistic avenue for relevant long-distance quantum communication.
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Chapter 8

Deterministic single photon source

8.1 Introduction

Although weak coherent beams can be used as a pseudo single-photon source, the advent of quan-
tum information processing has placed stringent requirements on single photons either on demand
or heralded [176]. In particular, linear optical quantum computation [19] depends on the avail-
ability of such single-photon sources. The single-photon nature guarantees unconditional security
and high efficiency in quantum cryptography [3]. Different approaches have been attempted in
the last decade to develop an on-demand single-photon source, such as quantum dots [177, 178],
single atoms and ions [179, 180], and color centers [181]. However, all of them are confronted
with different challenges. For example, the single-atom implementation provides spectrally narrow
single photons with a well defined spatial mode, but the manipulation of single atoms requires
sophisticated techniques and expensive setups [179]. Quantum dots are a potential source with
high single-photon rate, but the requirement of spectral filtering entails inevitable losses. It is
very difficult to prepare truly identical sources due to inhomogeneities in both the environment
of the emitters and the emitters itself [182]. Color centers are excellent sources, even at room
temperature, however, the high peak intensities of a pulsed excitation can lead to complex and
uncontrollable dark states [176]. So it has been taken as a formidable task to develop a promising
deterministic single-photon source.

Moreover, an important challenge in distributed quantum information processing is the con-
trollable transfer of quantum state between flying qubit and macroscopic matter. Starting from a
recent proposal for long-distance quantum communication with atomic ensembles [70], it is possible
to implement both a single-photon source on demand and controllable transfer of quantum state
between a photonic qubit and macroscopic matter, provided that proper feedback is applied. A
single spin excitation can be generated in an atomic ensemble by applying a series of subsequent
clean (optical pumping) and write pulses stimulating spontaneous Raman scattering. The success-
ful generation of a spin excitation is indicated by the detection of a corresponding Raman photon.
This information is used as feedback to stop the sequence, and further on to start the next process,
for example to convert the spin excitation back into a single photon. Such a sequence can be taken
as having a feed-forward ability for the deterministically converted single photon.

Recently, significant experimental progresses have been achieved in demonstration of quantum
storage and single-photon sources [71, 183, 184, 73], and even entanglement between two atomic
ensembles [80, 79] has been generated. However, coincidence-based post-selection was used in
these experiments. No feedback was applied and consequently the requirement of resources would
increase exponentially with each new step of operation. This significantly limits the scalability of
the schemes [19, 70].

In this chapter, we present an experimental realization of a deterministic and storable single-
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photon source. Single spin excitations in an atomic ensemble are generated by detecting anti-Stokes
photons from spontaneous Raman scattering. This detection allows to implement feed-forward
and convert the spin excitations into single photons at a predetermined time. It is shown that
the single-photon quality is conserved while the production rate of single photons can be enhanced
significantly by the feedback circuit. In principle, the spatial mode, bandwidth, and frequency of
single-photon pulses are determined by the spatial mode, intensity and frequency of the retrieve
laser [73]. It is feasible to integrate such a single-photon source with the storage medium, atomic
ensembles. Our controllable single-photon source potentially paves the way for the construction of
scalable quantum communication networks [70, 17] and linear optical quantum computation [19].

8.2 Basic conception

8.2.1 Non-classical photon pair generation

The basic primitive integral to the DLCZ scheme is the generation of non-classical pair. Specifically,
an initial write pulse is employed to create a state of collective atomic excitation as heralded by
photoelectric detection of an anti-Stokes photon. After a programmable delay δt, a subsequent read
pulse interrogates the atomic sample, leading to the emission of a Stokes photon. The manifestly
quantum (or nonclassical ) character of the correlations between the anti-Stokes and Stokes photon
can be verified by way of the observation of cross-correlation. Any classical correlation would have
a cross-correlation of 1 and coherent pulse has a cross-correlation of 2. Any correlation bigger than
2 represents the quantum property.

The basic concept of our experiments is shown in Fig. 8.1. Cold atoms with Λ-type level
configuration (two ground state |a〉, |b〉 and an excited state |e〉) collected by a magneto-optical
trap (MOT) are used as the media for quantum memory. The atoms are initially optically pumped
to state |a〉 by a pump laser. Then a weak classical write pulse, with the Rabi frequency ΩW , close
to the resonance of transition |a〉 to |e〉 is introduced in the atomic cloud. Due to the spontaneous
Raman process, a photon of anti-Stokes field âAS is emitted into the forward scattering mode.
Simultaneously, a collective spin excitation corresponding to the mode of the anti-Stokes field âAS
is generated in the atomic ensemble [70, 185]. The state of the field âAS and the collective spin
state of the atoms can be expressed by the superposed state

|Ψ〉 ∼ |0AS0b〉+
√
χ|1AS1b〉+ χ|2AS2b〉+O(χ3/2), (8.1)

where χ is the excitation probability of one spin flip, |iASib〉 denotes the i-fold excitation of the
anti-Stokes field and the collective spin. Ideally, conditioned on detecting one and only one anti-
Stokes photon in detector D1, a single spin excitation is generated in the atomic ensemble with
certainty. After a controllable time delay δt (in the order of the lifetime τc of the spin excitation),
another classical read pulse with the Rabi frequency ΩR, which is on-resonance with the transition
from |b〉 to |e〉, is applied to retrieve the spin excitation and generate a photon of Stokes field âS.

In our present experiment, more than 108 87Rb atoms are collected by the MOT with an optical
depth of about 5 and the temperature of about 100 µK. The earth magnetic field is compensated
by three pairs of Helmholtz coils. The two ground states |a〉 and |b〉 and the excited state |e〉 in
the Λ-type system are |5S1/2, F = 2〉, |5S1/2, F = 1〉, and |5P1/2, F = 2〉, respectively. The write
laser is tuned to the transition from |5S1/2, F = 2〉 to |5P1/2, F = 2〉 with detuning of 10 MHz and
the read laser is locked on resonance to the transition from |5S1/2, F = 1〉 to |5P1/2, F = 2〉. By
using orthogonal polarizations, write and read beams are spatially overlapped on a polarized beam
splitter (PBS1), and then focused into the cold atoms with the beam waist of 35 µm. After passing
the atomic cloud, the two beams are split by PBS2 which serves as the first stage of filtering the
write (read) beam out from the anti-Stokes (Stokes) field. The leakage of write (read) field from
PBS2 propagating with the anti-Stokes (Stokes) field will be further filtered by a thermal cell filled
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Figure 8.1: Illustration of the experimental setup (a) and the time sequence with the feedback
circuit for the write and read process (b). The atomic ensemble is firstly prepared in the initial
state |a〉 by applying a pump beam resonant with the transition |b〉 to |e′〉. A write pulse with the
Rabi frequency ΩW is applied to generate the spin excitation and an accompanying photon of the
mode âAS. Waiting for a duration ∆t, a read pulse is applied with orthogonal polarization and
spatially overlap with the write beam in PBS1. The photons, whose polarization is orthogonal to
that of the write beam, in the mode âAS are spatially extracted from the write beam by PBS2 and
detected by detector D1. Similarly, the field âS is spatially extracted from the Read beam and
detected by detector D2 (or D3). Here, FC1 and FC2 are two filter cells, BS is a 50/50 beamsplitter,
and AOM1 and AOM2 are two acousto-optic modulators.
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Figure 8.2: Intensity correlation function g(2)
AS,S along the excitation probability pAS with δt = 500

ns (a) and along the time delay δt between read and write pulses with pAS = 3 × 10−3(b). The
black dots are obtained from current experiment and the curves correspond to a least-square fit
procedure according to Eq. (8.2) and (8.3). The observed lifetime is τc = 12.5± 2.6 µs.

with 87Rb atoms, in which the rubidium atoms are prepared in state |5S1/2, F = 2〉 (|5S1/2, F = 1〉)
initially. Coincident measurements among D1, D2 and D3 are performed with a time resolution of
2 ns.

After switching off the MOT, the atoms are optically pumped to the initial state |a〉. The write
pulse containing about 104 photons with a duration of 100 ns is applied onto the atomic ensemble,
to induce the spontaneous Raman scattering via |a〉 → |e〉 → |b〉. The state of the induced anti-
Stokes field and the collective spin in Eq. (8.1) is generated with a probability χ � 1. After a
controllable delay of δt, the read pulse with the duration of 75 ns is applied for converting the
collective excitation into the Stokes field. In comparison, the intensity of the read pulse is about
100 times stronger than that of the write one.

Assume the probability to have an anti-Stokes (Stokes) photon is pAS (pS), and the coincident
probability between the Stokes and anti-Stokes channels is pAS,S, then the intensity correlation
function g

(2)
AS,S = pAS,S/(pASpS). We measured the variation of g(2)

AS,S as a function of pAS shown
in Fig. 8.2(a) with a time delay of δt = 500 ns. Considering the background in each channel, we
obtain

pAS = χηAS +BηAS, (8.2a)

pS = χγηS + CηS, (8.2b)

pAS,S = χγηASηS + pASpS. (8.2c)

Here, ηAS and ηS are the overall detection efficiencies in the anti-Stokes and Stokes channels respec-
tively, which include the transmission efficiency ηt of filters and optical components, the coupling
efficiency ηc of the fiber couplers, and the quantum efficiency ηq of single photon detectors (ηAS
includes an additional spatial mode-match efficiency ηm [184]), γ is the retrieve efficiency which is
a time-dependent factor, and B (C) is determined by the background in the anti-Stokes (Stokes)
channel. The red curve in Fig. 8.2(a) is the least-square fit result according to Eq. (8.2), assuming
B = 0 for simplicity. The efficiency in the anti-Stokes channel is observed as ηAS ∼ 0.07 and the
retrieve efficiency γ ∼ 0.3. The largest correlation g(2)

AS,S (101± 6) appears at the lowest excitation
probability pAS of 3.5× 10−4.

The finite lifetime of the spin excitation results from the dephasing of the collective state due
to the Larmor precession of the spins in the residual magnetic field. It can be characterized by
the decay of the retrieve efficiency γ(δt) = γ0 exp(−δt2/τ2

c ) [184], where τc is the lifetime of the
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collective state. It can be determined from the decay of the measured intensity correlation function
g

(2)
AS,S(δt) as shown in Fig. 8.2(b), taken at pAS = 0.003. Using Eq. (8.2), the intensity correlation

function reads

g
(2)
AS,S(δt) = 1 +

γ(δt)
(B + χ)γ(δt) +D

, (8.3)

where C is absorbed by the new constant D. Our data give a lifetime of τc = 12.5 ± 2.6 µs. The
cross correlation of the first point is slightly lower which might be caused by noise arising from the
elastic scattering of the write beam.

8.2.2 Single photon source

The excellent correlation between anti-Stokes and Stokes photon pair allow us generating a heralded
single photon source [186, 187]. The key idea of is that a single photon (here, Stokes photon) can be
generated at a predetermined time if we know that the medium contains an atomic excitation. The
presence of the latter is heralded by the measurement of a scattered photon in the write process.
After this point one simply waits and reads out the excitation at the predetermined time. The
performance of heralding measurements represents a conditional process.

Moreover, by applying more write pulses in each experimental trial, and a feedback protocol, we
can greatly increase the generation probability of the single photon while the single photon quality
will conserve. To do so, as shown in Fig. 8.1(b), in the time interval ∆T , N independent write
sequences with a period of δtW are applied to the atomic ensemble. Each write sequence contains
a cleaning pulse (the optical pumping to the initial state) and a write pulse. Once an anti-Stokes
photon is detected by D1 the feedback circuit stops the further write sequence and enables the read
pulse to retrieve the single Stokes photon after a time delay ∆t. The maximum number of trials
(N) is given by the life time of the excitation. The feedback protocol enhances the production rate
of Stokes photons according to the new excitation probability

PAS =
N−1∑
i=0

pAS(1− pAS)i

while the single-photon quality is conserved.
Our protocol can be executed in different modes. In a first mode, one can fix the retrieve time

∆T . Therefore, the delay ∆t varies because the spin excitation is created randomly by one of
the write sequences. Single photons are produced at a given time with a high probability, ideally
approaching unity if N � 1. Furthermore, the retrieve efficiency could be improved significantly
by an increased optical depth of the atomic ensemble and an optimal retrieve protocol [166]. This
mode serves as a deterministic single-photon source. In a second mode, we retrieve the single
photon with a fixed delay ∆t after a successful write. More general the imprinted single excitation
can be converted into a single photon at any given time with the life time τc. This is well suited
for a quantum repeater [17, 70] where one needs to synchronize the nodes.

In the first experiment, we fixed ∆T = 12.5 µs and δtW = 1 µs, and N = 12 subsequent write
sequences were applied. The quality of the single-photon source can be characterized by the anti-
correlation parameter α [186], which is equivalent to the second-order auto-correlation function
g

(2)
S,S of the Stokes photon on the condition of an anti-Stokes photon is detected. When we use N

write pulses and the feedback protocol, the detection probabilities in D2, D3 and the coincidence
detection probability D23 conditioned on a registration of an anti-Stokes photon in D1 are

Pm|AS =
∑N−1
i=0 pAS(1− pAS)ipm|AS(∆T − n · δtW )∑N−1

i=0 pAS(1− pAS)i
, (8.4)

where m = 2, 3, 23 and pm|AS(∆T − n · δtW ) is a time-dependent probability conditioned on a
click in the anti-Stokes channel. The anti-correlation parameter α is given by P23|AS/(P2|ASP3|AS).
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Figure 8.3: The anti-correlation parameter as a function of pAS (a) and ∆t (b). In Fig (a), the
data in black correspond to the experiment without feedback circuit, in which each write sequence
is followed by one read pulse. The data in red correspond to the experiment with feedback circuit,
in which 12 successive write sequences are followed by one read pulse. The red curve is the
theoretical evaluation taking into account the fitted background of the black dots. In Fig (b), 12
write sequences were applied in each trial while measuring.

Fig. 8.3(a) shows the measured α as a function of the excitation probability pAS. For N = 1
(black) the variation of α is nearly linear in the region of pAS = 0 ∼ 0.006. The black curve is
the fit according to Eq. (8.4). When using 12 successive write sequences, we plot α versus 12pAS
as red dots. The red line is a no free parameter calculation from Eq. (8.4), taking the fitted
parameters from N = 1 setting N = 12. We note that, for pAS → 0 the value of α is 0.057± 0.028,
which in principle should be 0. This offset comes from noise including residual leakage of the
write and read beams, stray light, and dark counts of the detectors. However, the advantage of
the feedback protocol is not degraded by such noise. It is verified that α is conserved even with
enhanced excitation probability. If the lifetime of the spin excitation is sufficiently long to allow
many write sequences, the excitation probability can reach unity while the single-photon nature is
still conserved. Then the generation efficiency then only depends on the retrieve efficiency itself.

In the second experiment, we use δtW = 1 µs and N = 12. Fig. 8.3(b) shows the measured α

as a function of ∆t. For every ∆t, ∆T varies due to the random creation of the spin excitation by
the N write sequences. The behavior of α(∆t) is related to a reversed profile of g(2)

AS,S(δ) in Fig.
8.2(b). For the delay ∆t < τc, the value of α stays at a low level and varies slowly. For ∆t > τc,
α(∆t) increases towards 1. But even for a delay of 20 µs (∼ 2τc) we find α ∼ 0.6. A satisfying
agreement is observed between the theoretical curve and the experimental data.

8.3 Discussion

Typically, the single spin excitation can be produced at a rate of 600 per second, while the detection
success probability per trial is 2.5%, the overall detection rate of single-photon production is ∼15
s−1. As demonstrated in the present work, the lifetime of collective states is important for the
quality and production rate of single photons. In the atomic ensemble, the coherence time of the
collective state suffers from the residual magnetic field around the MOT and the thermal motion of
the atoms. The latter effect is negligible because of the very low temperature of the atomic cloud.
Using a better compensation of residual magnetic field or using field insensitive clock states we
can significantly increase the lifetime of the collective state. Moreover, by further improving the
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control circuit, i.e. reducing the period of write pulses due to electronic delays, we can apply more
write pulses within the lifetime. In particular, in the case with pAS = 0.003 and a write period of
300 ns, we can obtain a single-photon source with a probability as high as 95% within a lifetime
of 300 µs.

In conclusion, we have demonstrated an experimental realization of an controllable single-
photon source with atomic storage. The lifetime of the collective spin excitation reaches 12.5 µs.
A feedback circuit was constructed to control the generation of the spin excitation and the storage
time δt. Being a key device in the scalable quantum communication network, this circuit also shows
a promising performance in the enhancement of the excitation probability while the single-photon
quality is conserved. This single-photon source is able to work at either a deterministic mode
or a time controllable mode heralded by the feedback circuit. The single-photon source based on
atomic ensemble has the advantages of narrow band, high quality and controllable character, which
is helpful for the construction of scalable quantum information processing system in the future.
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Chapter 9

Interference of photons from

independent atomic ensembles

9.1 Introduction

Synchronized generation of either deterministic and storable single photons or entangled photon
pairs is essential for scalable linear optical quantum information processing (LOQIP). With the
help of quantum memory and feed-forward, one can thus achieve long-distance quantum commu-
nication [17, 37, 70] and efficient quantum computation [19, 23, 25, 84]. Very recently, interfering
synchronized independent single photons [188] and entangled photon pairs [155] have been exper-
imentally achieved with two pulsed spontaneous parametric down-conversion sources pumped by
two synchronized but mutually incoherent femto-second lasers. However, due to the absence of
quantum memory for broad-band (a few nm) single photons no feedback was applied in the above
experiments, single photons or entangled photon pairs were merely generated probabilistically in
each experimental run, i.e. with a small probability p. Thus, in an experiment concerning ma-
nipulation of N synchronized single (or entangled) photon sources, the experimental efficiency will
decrease exponentially with the number of sources (proportional to pN ). Moreover, the short coher-
ence time of down-converted photons (∼ a few hundred fs, defined by the bandwidth of interference
filters) also makes hard the overlap of photon wavepackets coming from two distant sites. These
two drawbacks together make the above experiments inappropriate for scalable LOQIP.

Following a recent proposal for long-distance quantum communication with atomic ensembles
[70] (see also the improved schemes [156]), it is possible to generate narrow-band single photons
or entangled photon pairs in a deterministic and storable fashion. In the past years, significant
experimental progresses have been achieved in demonstration of quantum storage and single-photon
sources [184, 73], and even entanglement in number basis for two atomic ensembles has been
demonstrated experimentally [79]. Moreover, deterministic narrow-band single-photon sources have
been demonstrated most recently with the help of quantum memory and electronic feedback circuits
[74, 189, 75].

In this Chapter, we develop further the techniques used in Chapter 8 to implement synchronized
generation of two independent single-photon sources from two remote atomic ensembles provided by
MOT. The two synchronized single photons are further used to demonstrate efficient generation of
entangled photon pairs. Since our single-photon sources are generated in principle in a deterministic
and storable fashion, with the help of feed-forward the experimental methods can be used for
scalable generation of photonic entanglement. Moreover, compared to the short coherence time of
down-converted photons in Refs. [188, 155] the coherence time of our synchronized narrow-band
single photons is about 25 ns, four orders longer, which makes it much easier to overlap independent
photon wavepackets from distant sites for further applications of LOQIP. Finally, it is worth noting
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that the read and write lasers used for different single-photon sources are fully independent to each
other. The synchronization was achieved by separate electronic signals generated by the control
electronics.

9.2 Experiment

The basic concept of our experiment is illustrated in Fig. 9.1. Atomic ensembles collected by
two MOT’s 0.6 m apart function as the media for quantum memories and deterministic single-
photon sources. Each ensemble consists of about 108 87Rb atoms. The two hyperfine ground states
|5S1/2, F = 2〉=|a〉 and |5S1/2, F = 1〉=|b〉 and the excited state |5P1/2, F = 2〉=|e〉 form a Λ-type
system |a〉-|e〉-|b〉. The atoms are initially optically pumped to state |a〉. A write pulse ΩW with
the detuning of ∆ = 10 MHz and a beam diameter about 400 µm is applied to generate the spin
excitation and an accompanying photon of the anti-Stokes field âAS with a beam diameter about
100 µm. The mode âAS, tilted 3◦ from the direction of the write beam, is coupled in a single-mode
fiber (SMF) and guided to a single-photon detector. The superposed state of the anti-Stokes field
âAS and a collective spin state of the atoms can be described as,

|Ψ〉 ∼ |0AS0b〉+
√
χ|1AS1b〉+ χ|2AS2b〉+O(χ3/2), (9.1)

where χ� 1 is the excitation probability of one spin flip, and |iASib〉 denotes the i-fold excitation
of the anti-Stokes field and the collective spin. Ideally, conditioned on detecting one and only one
anti-Stokes photon, a single spin excitation is generated in the atomic ensemble with certainty. In
practice, considering photon loss in the detection, this condition can be fulfilled by keeping χ� 1 so
as to make the multi excitations negligibly small. After a controllable time delay δtR (in the order
of the lifetime τc of the spin excitation), another classical read pulse with the Rabi frequency ΩR

is applied with orthogonal polarization and spatially mode-matched with the write beam from the
opposite direction. The spin excitation in the atomic ensemble will be retrieved into a single photon
of the Stokes field âS, which propagates to the opposite direction of the field âAS and is also coupled
in SMF. If the retrieve efficiency reaches unity, the Stokes photon is no longer probabilistic because
of the quantum memory and feedback control [75, 189, 74], which now can serve as a deterministic
single-photon source. As shown in Fig. 9.1, Alice and Bob both have such a source. They prepare
collective spin excitations independently and the one who finishes the preparation first will wait for
the other while keeping the collective spin excitation in her/his quantum memory. After they agree
that both have finished the preparation, they retrieve the excitations simultaneously at anytime
they want within the lifetime of the collective state. Therefore the retrieved photons arrive at the
beam splitter with the required timing.

Compared to a probabilistic photon source, the present implementation with atomic ensembles
contributes a considerable enhancement to the coincidence rate of single photons coming from
Alice and Bob. For instance, we consider a similar setup but without feedback circuit, where Alice
and Bob apply write and read in every experimental trial and thereafter measure the four-fold
coincidence of anti-Stokes and Stokes photons in the four channels D1, D2, C1 and C2. Assume the
probability to have an anti-Stokes photon in channel D1 (D2) is pAS1 (pAS2) and the corresponding
retrieve efficiency for conversion of the spin excitation to a Stokes photon coupled into channel C1
(C2) is γ1(δtR) [γ2(δtR)], then the probability of four-fold coincidence is

p4c = pAS1γ1(δtR)pAS2γ2(δtR).

This has to be compared with using the feedback circuits shown in Fig. 9.1, where we can apply
at most N (limited by the lifetime of the quantum memory and the speed of the feedback circuit)
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Figure 9.1: Illustration of the relevant energy levels of the atoms and arrangement of laser beams
(a) and the experimental setup (b). Alice and Bob each keeps a single-photon source at two remote
locations. As elucidated in Chapter 8, Alice applies write pulses continuously until an anti-Stokes
photon is registered by detector D1. Then she stops the write pulse, holds the spin excitations
and meanwhile sends a synchronization signal to Bob and waits for his response (This is realized
by the feedback circuit and the acousto-optic modulators, AOM). In parallel Bob prepares a single
excitation in the same way as Alice. After they both agree that each has a spin excitation, each
of them will apply a read pulse simultaneously to retrieve the spin excitation into a light field âS.
The two Stokes photons propagate to the place for entanglement generation and Bell measurement.
They overlap at a 50:50 beam splitter (BS) and then will be analyzed by latter half-wave plates
(λ/2), polarized beam splitters (PBS) and single photon detectors Da, Db, Dc, and Dd.
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Figure 9.2: Hong-Ou-Mandel dips in time domain (left panel) and frequency domain (right panel).
The circle in the right panel was obtained by setting the polarization of the two photons perpen-
dicular to each other and zero detuning between two read lasers. The Gaussian curves that roughly
connect the data points are only shown to guide the eye. The dashed line shows the plateau of the
dip. Error bars represent statistical errors, which are ± one standard deviation.

write pulses in each trial. Then the probability of four-fold coincidence becomes

P4c =
{∑N−1

i=0 pAS1(1− pAS1)i
∑N−1
j=i pAS2(1− pAS2)j

×γ2(δtR)γ1[(j − i) · δtW + δtR]
}

+
{
· · ·
}

1↔2
, (9.2)

where δtW is the time interval between the sequential write pulses [75] and {· · · }1↔2 is the same
as the first term with index 1 and 2 being exchanged. Assume pAS1 � 1 and pAS2 � 1 and a long
lifetime τc, we obtain

P4c ∼ N2pAS1γ1(δtR)pAS2γ2(δtR)

for a definite number N . So the probability of four-fold coincidence is enhanced by N2 for each
trial. For our case pAS1 ≈ pAS2 = 2.0 × 10−3 (the relevant cross correlation g

(2)
AS,S = 30), N = 12,

τc ∼ 12 µs, δtW = 800 ns, δtR = 400 ns, and γ1(0) ≈ γ2(0) = 8%, the enhancement is 136.
The four lasers in Fig. 9.1 are independently frequency stabilized. The linewidths of W1

and R1 are about 1 MHz while those of W2 and R2 are about 5 MHz of the full width at half
maximum (FWHM). However, they will be broadened to more than 20 MHz because the laser pulse
modulated by the AOM is a Gaussian-like profile with width about 40 ns FWHM. The linewidth of
the retrieved single photons is determined mainly by the linewidth and intensity of the read lasers.
So we try to make the profile of the two independent read pulses identical to each other.

In order to verify that the two Stokes photons coming from Alice and Bob are indistinguishable,
we let them overlap at a BS with the same polarization (horizontal in our case) and measure the
quantum interference indicated by the the Hong-Ou-Mandel (HOM) dip [160]. Having observed
the high visibility of HOM dip in both time domain and frequency domain, we are confirmed that
the two independent photons are indistinguishable. Then we put one of the two photons to vertical
polarized before they enter the BS. By coincidence measurement at the two outputs of the BS, we
generate the Bell state

|Ψ−〉12 =
1√
2

(|H〉1|V 〉2 − |V 〉1|H〉2),

which is verified by the measurement of violation of Bell’s Inequality.
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9.3 Experimental results

Two-photon interference effect at a 50:50 standard BS can be described as follows. Quantum
mechanically, the action of the beam splitter on the input modes can be written as

|â1〉 −→ i√
2
|â3〉+ 1√

2
|â4〉

|â2〉 −→ 1√
2
|â3〉+ i√

2
|â4〉

(9.3)

where, e.g. |âi〉 describes the spatial quantum state of the particle in input beam i. Note that
a standard BS is polarization independent, and thus has no effect on the polarization state of
the photon. Considering two independent photos with polarization state α|H〉1 + β|V 〉1, and
γ|H〉2 + δ|V 〉2 overlap at the BS, the input state can be described as,

|ψi〉 = (α|H〉1 + β|V 〉1)|â1〉·
(γ|H〉2 + δ|V 〉2)|â2〉.

(9.4)

As shown in Eq. 9.3, for photons 1 and 2 passing through the beam splitter their spatial modes
will undergo a corresponding unitary transformation. The state in Eq. 9.4 thus evolves into

|ψf 〉12 = 1√
2
(α|H〉1 + β|V 〉1)(i|â3〉+ |â4〉)·

1√
2
(γ|H〉2 + δ|V 〉2)(|â3〉+ i|â4〉).

(9.5)

If we assume that the two photons have the same frequency and arrive at the beam splitter simul-
taneously thus they are indistinguishable anymore after passing through the beam splitter. The
total two-photon state including both the spatial and the spin part, therefore, has to obey bosonic
quantum statistics. This implies that the outgoing physical state must be symmetric under ex-
change of labels 1 and 2. To do so, one should symmetrize the state |ψf 〉12, that is, also include
its exchange wave-function

|ψf 〉21 = 1√
2
(α|H〉2 + β|V 〉2)(i|â3〉+ |â4〉)·

1√
2
(γ|H〉1 + δ|V 〉1)(|â3〉+ i|â4〉).

(9.6)

The final outgoing state therefore reads

|ψf 〉 =
1√
2

(|ψf 〉12 + |ψf 〉21), (9.7)

and consequently we have

|ψf 〉 =
1
2

[(αγ + βδ)Φ+
12 · i(|â3〉|â3〉+ |â4〉|â4〉)

+(αγ − βδ)Φ−12 · i(|â3〉|â3〉+ |â4〉|â4〉)
+(αδ + βγ)Ψ+

12 · i(|â3〉|â3〉+ |â4〉|â4〉)
+(αδ − βγ)Ψ−12 · (|â4〉|â3〉 − |â3〉|â4〉)]. (9.8)

From Eq. 9.8, it is clear that consider two parallel polarization state photon, i.e. α = γ and
β = δ both of the photons will come out through same outputs. While in the case with two photons
that are not parallel, two photons proceed after the beam splitter in different emerging beams if,
and only if, their polarization state is in the state |Ψ−〉12 (refer to the fourth term of Eq. 9.8). Thus
by post-selecting the two-fold coincidence in mode 3 and 4 we generate the maximally entangled
state Ψ−.

9.3.1 The measurement of HOM dip

We did two measurements to obtain the HOM dip in time domain and frequency domain respec-
tively. To make the photons indistinguishable, the polarizations of the anti-Stokes photons were
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Figure 9.3: Hong-Ou-Mandel dips in time domain with coincidence window (2 ns) much shorter
than the wave-package length. The red spots are measured under perpendicular polarization and
the black ones are measured under parallel cases.

set to horizontal with two half-wave plates before they enter the BS as shown in Fig. 9.1. The
other two half-wave plates after the BS were set to 0◦.

In the first measurement, we measured the four-fold coincidence among detectors D1, D2, Da
and Dd while changing the time delay between the two read pulses (Fig. 9.2, left panel). The
excitation probabilities pAS1 ≈ pAS2 = 2.0 × 10−3. The coincidence rate varies with the delay.
Ideally, there should be complete destructive interference if the wavepackets of the two photons
overlap perfectly. However, it is hard to make the two wavepackets absolutely identical or exactly
overlapped in practice. We obtained the visibility of the dip V = (Cplat − Cdip)/Cplat = (80 ±
1)%, where Cplat is the non-correlated coincidence rate at the plateau and Cdip is the interfering
coincidence rate at the dip. The asymmetry of the profile at negative delay and positive delay shows
that the two wavepackets are (a) not perfectly identical, (b) not symmetric themselves. Assume
the HOM dip is a Gaussian-type profile, we estimate the coherence time is 25±1 ns FWHM.

In the second measurement, we measured the four-fold coincidence among detectors D1, D2,
Da and Dd while changing the frequency detuning between the two read pulses (Fig. 9.2, right
panel). It is the first time to measure HOM dip in the frequency domain at single-photon level.
The excitation probabilities are pAS1 ≈ pAS2 = 3.0 × 10−3, higher than those in the time domain.
Because of the limit of the current setup, the detuning can be varied from −30 MHz to 30 MHz.
In order to verify the coincidence rate at largest detuning reached the plateau of HOM dip, we
measured the coincidence by setting the polarization of the two photons perpendicular to each other
and zero detuning between the two read lasers (shown as a circle in Fig. 9.2). The consistence of
this data with those two at largest detunings shows that we have achieved the plateau of HOM
dip. The visibility is (82 ± 3)% which agrees well with that obtained in time domain. The width
of the HOM dip is 35±3 MHz FWHM, in accordance with the coherence time 25 ns. Therefore,
the narrow-band characteristic of the present source is verified directly by the HOM dip in the
frequency domain.
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Table 9.1: Correlation functions E and the resulting S.

E θ1 = 0◦ θ′1 = 45◦ S

θ2 = 22.5◦ −0.613± 0.037 0.575± 0.039
θ′2 = −22.5◦ 0.606± 0.038 0.579± 0.039 2.37± 0.07

9.3.2 Time resolved two-photon interference

Note that, in Fig. 9.2 right panel, HOM dip is measured by setting the coincidence window (here ∼
50 ns) lager than the wave-package length of the single photons (∼ 25 ns). In Fig. 9.3, we measure
the time-resolved two-photon quantum interference by setting the wave-package at perfect temporal
overlap and setting the coincidence window (2 ns in the experiment) much shorter than the wave-
package length. The red spots are measured under perpendicular polarization and the black ones
are measured under parallel cases. It is clear there is also a dip at 0 delay, which is consistent with
both the theoretical and experimental results [190, 191] rather than the plateau at 0 delay in ref.
[76].

9.3.3 Efficient entanglement generation

As shown in Fig. 9.1, we set orthogonal polarizations (horizontal and vertical) of the Stokes photons
with the two half-wave plates before the BS. Then the state of the two photons will be projected
to |Ψ−〉12 if there is coincidence between the two output port 3 and 4 as shown in Eq. (9.8). With
another two half-wave plates and two PBS after the BS, the entanglement of the two photons can
be verified by a Clauser-Horne-Shimony-Holt (CHSH) type inequality [114], where S ≤ 2 for any
local realistic theory with

S = |E(θ1, θ2)− E(θ1, θ
′
2)− E(θ′1, θ2)− E(θ′1, θ

′
2)|. (9.9)

Here E(θ1, θ2) is the correlation function where θ1 and θ′1 (θ2 and θ′2) are the measured polarization
angles of the Stokes photon at port 3 (4). The observed values of the correlation functions are listed
in Table 9.1 resulting in S = 2.37± 0.07, which violates Bell’s Inequality by 5 standard deviations.
This clearly confirms the quantum nature of the entanglement state.

9.4 Discussion

Besides the imperfect overlap of the single-photon wavepackets, the two-photon components in
each of the single-photon sources affect the visibility as well. The quality of single-photon source is
characterized by the anti-correlation parameter α = 2PII/P

2
I [75], where PI (PII) is the probability

of generating one (two) photon(s) for each source (the higher orders are negligible small). If the
two wavepackets do not overlap at all, there is no interference between them. Then we obtain the
non-correlated coincidence rate Cplat = P 2

I /2 + PII between Da and Dd. If they overlap perfectly,
there is destructive interference leading to a coincidence rate Cdip = PII. So the visibility of the
HOM dip is V = 1/(1 + α). In our experiment, α = 0.12 for the source prepared later (the spin
excitation is retrieved immediately) and α = 0.17 for the source prepared earlier (it has to wait for
the other one). This leads to an average visibility of 87%. In the frequency domain, the average
visibility is around 83% because of higher excitation probabilities.

Moreover, with our imperfect sources we do not create a perfect |Ψ−〉12. If we consider the two
photon component in the photon sources the created state will be:

|Ψeff〉12 =


P 2

I /2, 1/
√

2(|H〉1|V 〉2 − |V 〉1|H〉2);
PII/2, |H〉1|H〉2;
PII/2, |V 〉1|V 〉2.

(9.10)
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From the quality of the single photons generated from the two ensembles, α = 0.12, 0.17 and
Eq. (9.10), we estimate the expected violation of Bell’s Inequality is around 2.3, which is in good
agreement with our measured value. It is interesting to note that a violation of Bell’s Inequality
needs a single photon source with α < 0.24 according to Eq.(9.10). In order to minimize α,
further improvements, e.g., a higher optical couple efficiency, a lower photon loss, a lower excitation
probability and a higher retrieve efficiency, will be made in our future investigations.

In conclusion, we realized synchronized generation of narrow-band single photons with two
remote atomic ensembles. The Hong-Ou-Mandel dip was observed in both time domain and fre-
quency domain with a high visibility for independent photons coming from two distant sites, which
shows the indistinguishability of these photons. By virtue of quantum memories and feedback
circuits, the efficiency of generating entangled photon pairs was enhanced by a factor of 136, which
claims our single-photon source as a promising candidate for the future implementation of scalable
quantum computation based on linear optics [19, 23, 25, 84]. The present spatially-distributed inde-
pendent single-photon sources (with fully independent write and read lasers) are pre-requirements
for the long-distance quantum communication [17, 156]. The narrow-band property (which makes
the overlap of the photon wavepackets at the order of nanoseconds) of single photons and high
efficiency of entanglement generation also profit the present source to serve as an ideal candidate
for large scale communications, e.g., satellite-based quantum communication.
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Chapter 10

Teleportation between photonic

and atomic qubits

10.1 Introduction

As we introduced in Chapter 5, quantum teleportation [7], the way to transfer the state of a quan-
tum system from one place to another, is one of the most intriguing examples of how quantum
entanglement can assist in realizing practical tasks and is involved in numerous quantum commu-
nication [17] and quantum computation schemes [18, 19]. Teleportation was first demonstrated
between two independent photonic qubits [31]; later developments include demonstration of entan-
glement swapping [34], open-destination teleportation [43] and teleportation of a quantum state
between two ionic qubits [122, 121]. Teleportation has also been demonstrated for continuous vari-
able system, i.e. transferring a quantum state from one light beam to another [192] and, most
recently, even from light to matter [193].

However, the above demonstrations of teleportation have severe drawbacks, especially in long-
distance quantum communication. On the one hand, the absence of quantum storage makes the
teleportation of light alone non-scalable. On the other hand, in teleportation of ionic qubits the
shared entangled pairs were created locally which limits the distance of teleportation up to a few
µm and is difficult to extend to large distances. In continuous variable teleportation between
light and matter the experimental fidelity is extremely sensitive to the transmission loss - even in
the ideal case only a maximal attenuation of 10−1 is tolerable [194]. Moreover, the complicated
protocol required in retrieving the teleported state in the matter [195] is out of the reach of current
technology.

Remarkably, the combination of quantum teleportation and quantum memory of photonic
qubits [70, 165, 167, 156] could provide a novel way to overcome these drawbacks. Even though
both of them have been demonstrated separately in many proof-of-principle experiments [31, 34, 43,
80, 73, 184], the demonstration of such memory-built-in teleportation of photonic qubits, remains
an experimental challenge.

Here we achieve this appealing combination by experimentally implementing teleportation be-
tween discrete photonic (flying) and atomic (stationary) qubits. In our experiment, we use the
polarized photonic qubits as the information carriers and the collective atomic qubits [70, 165,
167, 156, 80] (an effective qubit consists of two atomic ensembles, each with 106 87Rb atoms) as
the quantum memory. In memory-built-in teleportation, an unknown polarization state of single
photons is teleported onto and stored in a remote atomic qubit via a Bell-state measurement be-
tween the photon to be teleported and the photon that is originally entangled with the atomic
qubit. The protocol has several distinct features: First, different from ionic system its informa-
tion carrier (flying photonic qubit) is robust against decoherence and can be easily transmitted
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Figure 10.1: Experimental setup for teleportation between photonic and atomic qubits. The inset
shows the structure and the initial populations of atomic levels for the two ensembles. At Bob’s
site the anti-Stokes fields emitted from U and D are collected and combined at PBS1, selecting
perpendicular polarizations. Then the photon travels 7 m through fibers to Alice’s to overlap
with the initial unknown photon on a beam-splitter (BS) to perform the Bell-state measurement.
The results of the Bell-state measurement are sent to Bob via a classical channel. The results of
the Bell-state measurement are sent back to Bob via a classical channel. Bob then perform the
verification of the teleported state in the U and D ensembles by converting the atomic excitation
to a photonic state. A unitary operation on the converted photon is performed according to the
classical information from the results of Bell-state measurement is performed.

over large distances. Second, different from continuous variable system its teleportation fidelity is
insensitive to photon losses. In practice, an overall transmission attenuation of 10−4 is tolerable
with current technology, as demonstrated in recent experiments [174, 175]. Moreover, since the
collective state of atomic ensembles is used to encode an atomic qubit, the teleported state can
be easily read out in a controllable time for further quantum information applications. Besides
being of fundamental interest, most importantly, our memory-built-in teleportation protocol with
the direct inclusion of a readable quantum memory enables efficient and scalable connection of
quantum networks [165, 167, 156].

10.2 Experiment scheme

A schematic setup of our experiment is shown in Fig. 1. At Bob’s site, a pair of effective maximally
entangled qubits is created by sending two classical light pulses through two atomic ensembles U
(up) and D (down) which are located in two magneto-optical traps (MOTs) of 87Rb 0.6 m apart.
The two ground states |a〉 (5S1/2, F = 2) and |b〉 (5S1/2, F = 1) form together with the excited
level |e〉 (5P1/2, F

′ = 2) a Λ type system. Initially each ensemble is prepared in the ground state
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|a〉. Shining a weak classical write pulse coupling the transition |a〉 → |e〉 with a red detuning ∆
(10 MHz) and the Rabi frequency ΩW into ensembles m (m = U or D), creates a superposition
between the anti-Stokes field âAS and a collective spin state of the atoms [70],

|Ψ〉m = |0AS0B〉m +
√
χm|1AS1B〉m +O(χm) (10.1)

where χm � 1 is the excitation probability of one spin flip in ensemble m, and
√
χm|iASiB〉m

denotes the i-fold excitation of the anti-Stokes field and the collective spin. We adjust χU = χD,
select orthogonal polarization of the two anti-stokes fields and combine them on a polarized beam
splitter (PBS1), as illustrated in Fig. 10.1. Neglecting the vacuum state and higher order excita-
tions, the entangled state between photonic and atomic qubits can be described as an effectively
entangled state,

|Ψ〉 =
1√
2

(
|H〉|Ṽ 〉+ |V 〉|H̃〉

)
(10.2)

where |H̃〉 = |0B〉U |1B〉D (|Ṽ 〉 = |1B〉U |0B〉D) denotes one spin excitation in ensemble D(U). Phys-
ically, the atom-photon entangled state (10.2) is exactly equivalent to the maximally polarization
entangled state generated by spontaneous parametric down-conversion [53]. Note that, the coher-
ence time of the photonic qubit in the atom-photon entangled state 10.2 is about 25 ns [78], which
makes the overlap between the anti-Stokes photon and the photon to be teleported very easy.

After the effectively entangled state (10.2), the Anti-Stokes photon is sent to Alice over a 7 m
long fiber. Suppose that at Alice’s site, the photon to be teleported is in an unknown polarization
state |φ〉 = α|H〉 + β|V 〉. In terms of four Bell states |Ψ±〉 = (|HV 〉 ± |V H〉) /

√
2, and |Φ±〉 =

(|HH〉 ± |V V 〉) /
√

2, the combined state of the three qubits can be rewritten as

|φ〉|Ψ〉 =
1
2

(|Φ+〉σ̂x〉|φ̃〉+ |Φ−〉(−iσ̂y|φ̃〉) + |Ψ+〉|φ̃〉+ |Ψ−〉σ̂z|φ̃〉) (10.3)

where σ̂x, σ̂y and σ̂z are the well-known Pauli operators, and |φ̃〉 = α|H̃〉 + β|Ṽ 〉. It can thus be
seen that a joint Bell-state measurement on the two photons at Alice’s side projects the state of
atomic qubit at Bob’s side into one of the four corresponding states as shown in equation (10.3).
After the Bell-state measurement, the initial state of photonic qubit is thus transferred to and
stored in the atomic qubit. In standard teleportation, depending on the Bell-state measurement
results Bob can then perform a unitary transformation, independent of |φ̃〉, on the atomic qubit to
convert its state into the initial state of the photonic qubit.

To achieve the required Bell-state measurement, the photon from the entangled state 10.2 and
the photon to be teleported are superposed on a 50:50 beam-splitter (BS in Fig. 10.1). The BS
together with the subsequent coincidence measurements is capable of identifying two of the four
Bell-states [30], |Ψ+〉 and |Ψ−〉 in our experiment. This results in a reduced efficiency - the fraction
of success - of 50%. Note that, to demonstrate the working principle of teleportation it is sufficient
to identify only one of the four Bell-states, e.g. via identification of |Ψ+〉 and verification of |φ̃〉
[31, 34, 43].

To verify the success of teleportation, we convert the atomic excitation back to a optical ex-
citation in a controllable time by shining in two simultaneous read pulses, coupling the transition
|b〉 → |e〉 with a blue detuning ∆′ (6 MHz) and the Rabi frequency ΩR. The polarizations of the
two read pulses are selected to be perpendicular with respect to the corresponding write pulses.
The retrieved Stokes fields are then combined at PBS2. Hence, the atomic qubit is converted back
to a single-photon polarization state. Instead of performing a direct measurement on the atomic
qubit, via a polarization measurement on the converted single-photon state we can thus obtain the
experimental teleportation fidelity.

If teleportation occurs, conditional on detecting a |Ψ+〉 state at Alice’s side the state of the
atomic qubit at Bob’s side will be left in the state |φ̃〉 (equation (10.3)). Following the above read
out protocol the collective atomic state |φ̃〉 will be converted into exactly the initial polarization
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state |φ〉. On the other hand, if a |Ψ−〉 state is detected the state of the atomic qubit will then be
left in the state σ̂z|φ̃〉, which after conversion is equivalent to the initial state except for a unitary
transformation σ̂z. Consequently, applying σ̂z on the converted single-photon polarization state we
will again obtain the same initial state |φ〉. It is worth noting that, the ease of both transferring
atomic excitation to optical excitation and exploiting linear optical elements to perform precise
unitary transformation on single-photon states is a distinct advantage of our method.

10.3 Experimental realization

In the experiment, the MOT is loaded for 20 ms at a repetition rate of 40 Hz. The magnetic
field and the cooling beams are then quickly switched off while the repumping beams stay on for
0.5 ms before being switched off in order to prepare the atoms in the initial F = 2 ground state
|a〉. Then, within another 4.5 ms experimental trials (each consisting of successive write, read and
repumping pulses) are repeated with a controllable period depending on the desired retrieve time
of the teleported state. In each experimental trial, two write pulses ΩW with the red detuning
of ∆ = 10 MHz, beam diameter about 400 µm and orthogonal polarization are simultaneously
applied to the two atomic ensembles to generate the spin excitation and two accompanying anit-
Stokes fields âAS with beam diameter about 100 µm. The anti-Stokes modes, are tilted 3◦ from the
direction of the corresponding write beam, and guided to PBS 1 and then sent to Alice’s site by a
single-mode fiber.

Before performing the teleportation, it is necessary to verify the entanglement. To do so, we
map the atomic excitations back into a single photon by sending two classical read pulses through
the two ensembles. The retrieved Stokes fields with perpendicular polarizations are combined
on PBS2 (Fig. 10.1). And, the superposition state of anti-Stokes and Stokes fields is effectively
equivalent to the following maximally polarization entangled state

|Ψ〉AS,S ∼ |H〉AS |V 〉S + ei(φ1+φ2)|V 〉AS |H〉S . (10.4)

Here φ1(2) = ∆θW (R)+∆θAS(S) represents the phase difference between the two anti-Stokes (Stokes)
fields at the PBS1 (PBS2). As shown in Fig. 10.2, ∆θW (R) arises from the path difference of the
two write (read) beams from BS2 (BS1) to the U and D ensembles; ∆θAS(S) arises from the path
difference between the two anti-Stokes (Stokes) fields from the U and D ensembles to the PBS1

(PBS2). In the experiment ∆θW + ∆θAS and ∆θR + ∆θS are actively stabilized by two Mach-
Zehnder interferometers, respectively. Note that, even though the phase φ1(2) might vary from trial
to trial, however, the total phase φ1 +φ2 is actively stabilized and fixed to zero as describing later.

After the effective entanglement between the photonic and atomic qubits is generated, the
photon travels 7 m through an optical fiber to Alice’s site, where it is overlaped with the initial
unknown photon on a BS performing the Bell-state measurement. Knowing the Bell-state measure-
ment result from Alice by a classical channel, Bob then perform the verification of the teleported
state in the U and D ensembles by converting the atomic excitation to a photonic state. If a |Ψ+〉
is registered, Bob directly performs a polarization analysis on the converted photon to measure
the teleportation fidelity. On the other hand, if a |Ψ−〉 is registered, the converted photon is sent
through a HWP via the first order diffraction of an AOM (not shown in Figure). The HWP is set
at 0 degree serving as the unitary transformation of σ̂z. Then the photon is further sent through
the polarization analyer to obtain the teleportation fidelity.

10.3.1 Phase locking

In order to stabilize the phase φ1 +φ2 in expression (10.4) actively, two Mach-Zehnder interferome-
ters are used as shown in Fig. 10.2. Because the spatial mode of anti-Stokes (Stokes) field and Wire
(Read) beam have 3◦ angle, we can not lock the phase φ1(= ∆θW + ∆θAS) and φ2(= ∆θR + ∆θS)
directly. However, we can lock the phase of ∆θW + ∆θR and ∆θAS + ∆θS separately.
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Figure 10.2: Schematic drawing of the phase locking setup. Two Mach-Zehnder interferometers
are used to actively stabilize the phases between the arms of write and read paths (a) and between
the arms of anti-Stokes and Stokes paths (b), respectively. H/V denotes the horizontal/vertical
polarization, and AOM is for an acousto-optic modulator. A polarizer (Pol.) is set at 45◦ to erase
the polarization information. The HWPs (λ/2) are set at 45◦ as well to rotate the horizontal
polarization to vertical. AS (S) denotes the anti-Stokes (Stokes) photon.

To stabilize the phase of ∆θW + ∆θR, the read beam is switched on during the 20 ms MOT
loading stage, used as the locking beam (Fig. 10.2a). During the 5 ms experimental stage, the
shutter is switched off. The interference signal can be used as the error signal of a standard
proportional-intergrate (PI) locking circuit. The error signal is normalized by the duty cycle and
then sent to the homebuilt PI circuit. By controlling the voltage of the piezo (P1) we can lock the
phase ∆θW + ∆θR to a set value.

To stabilize the phase of ∆θAS + ∆θS , an additional locking beam polarized at 45 degree with
the frequency of read beam is sent in at the angle of the first order diffraction of the AOM (Fig.
10.2b) during the MOT loading stage. Passing through the AOM, the locking beam is overlapped
with the Stokes and anti-Stokes beams. Since the anti-Stokes and Stokes light are perpendicularly
polarized, the output of the locking beam is from another port of PBS1. After the locking beam
goes through a polarizer at 45 degree, the interference signal can be detected by a photodiode and
used to lock the phase ∆θAS + ∆θS . During the experimental stage, the shutter and the RF power
of AOM are all switched off to prevent the leakage of the locking beam from entering into the
anti-Stokes – Stokes channels. In this way, the overall phase of φ1 + φ2 is actively locked.
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Table 10.1: Fidelities of teleporting a photonic qubit at a storage time of 0.5 µs. Data for
teleporting each state are collected two hours. The error bars represent the statistical error, i.e.
±1 standard deviation.

Original state fidelities
|H〉 0.865± 0.017
|+〉 0.737± 0.009
|R〉 0.750± 0.009

10.3.2 Photonic qubit to be teleported

We need as well a single photon to prepare the initial state. This can be realized as the described
in Chapter 8. However, to simplify the experiment, we using a weak coherent pulse which has the
same frequency as anti-Stokes photon to prepare the initial state in stead of single photon. Without
loss of generality, we select horizontal (|H〉), 45-degree (|+〉 = 1√

2
|H + V 〉) and right-hand circular

(|R〉 = 1√
2
|H + iV 〉) polarizations as our initial states. As shown in Fig. 10.1, after knowing the

BSM results at Alice’s site, the atomic excitation at Bob’s site is then converted back to a photonic
state in a controllable time to analyze the teleportation fidelity.

With emphasis we note that, since the two-photon events from the weak coherent pulses would
contribute a significant amount of spurious two-fold Bell-state measurement coincidences – which
herald nothing but the arrival of two source photons and can not be distinguished from the true
Bell-state measurement results, a two-fold Bell-state measurement click could only with average
probability of about 40% herald the success of teleportation in our experiment, given an arbitrary
initial state (see § 10.5.1). Therefore, as in previous teleportation experiments [31, 34, 43], in reality
our teleportation only occures posteriorly, i.e. conditional on detecting a three-fold coincidence.

10.4 Experimental result

With a generation probability of anti-Stokes photon 0.003, the signal-to-noise ratio between the
desired (|H〉AS |V 〉S and |V 〉AS |H〉S) and unwanted (|H〉AS |H〉S and |V 〉AS |V 〉S) components is
observed to be 15:1, corresponding to a visibility of 87.5% with a statistical error 0.4%. This
confirms that the |H〉AS |V 〉S and |V 〉AS |H〉S terms are the dominant components. Furthermore,
in order to prove the two terms are indeed in a coherent superposition, we also measure the signal-
to-noise ratio in the 45-degree polarization basis. The experimental results of the polarization
correlation exhibit an interference fringe with a visibility of (82.2 ± 0.4)%, confirming the high
quality of our atom-photon entanglement.

Moreover, the probability of containing a single photon for each weak coherent pulse is 0.03.
And, due to the imperfect retrieve, collection and detection efficiency of the teleported state, 30%,
75% and 50% respectively, in our experiment the overall teleportation success probability is about
10−6. Table 10.1 shows the experimental result of the teleportation fidelities at a retrieve time of
0.5 µs. The result shows the fidelities for different initial states are all well beyond the classical limit
of two-thirds [196], confirming the success of teleportation between photonic and atomic qubits.

To show the ability to store the teleported state in our quantum memory, we further measure
the fidelity of teleportation of right-hand circular polarization for different retrieval time. The
result is shown in Fig. 10.3. Up to 8 µs the fidelity is still above the classical limit [196]. The
fidelity drops down mainly because of the decoherence in the collective atomic state [75].

86



10.5. Discussion – noise estimation

Figure 10.3: Fidelity of the teleported state in atomic ensembles along storage time. The initial
state to be teleported is H+ iV . Until 8 µs the fidelity is still well beyond the classical limit of 2/3.
Each experimental point is measured for about four hours (averagely). The curve is a Gaussian fit,
due to the Gaussian decay of the retrieve efficiency. The error bars represent the statistical error,
i.e. ±1 standard deviation.

10.5 Discussion – noise estimation

In our experiment, the intensity of the write pulses is adjusted such that in each experimental run,
the probability of creating an anti-Stokes photon behind the PBS1 is pAS ∼ 0.003. The intensity
of the read pulses is about 70 times higher than the write pulses. Under this condition we achieve
a retrieve efficiency of γ ∼ 30%. After each write and read process, the probability of emitting a
single photon in Stokes mode (denoted by pS) is measured to be ∼ 0.004. In each weak coherent
pulses, the probability of containing a single photon is p0 ∼ 0.03.

10.5.1 Bell-state measurement

Thus, a Bell-state measurement result, i.e. two-fold coincidence would manly have three compo-
nents:

(1) Coincidence between a single photon from the weak coherent beam and and an anti-Stokes
photon, which is the desired Bell-state measurement result and has a probability of

∼ 1
2
pASp0η

2.

Here η is the average overall detection efficiency of our single-photon detectors, i.e. the product of
the collection efficiency (∼ 75%) and the detection efficiency of the detectors (∼ 50%).

(2) Spurious coincidence contributed by the double emission from the weak coherent beam. In
teleportation of |+〉 and |R〉 states, the probability of registering such two-fold coincidence is given
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by

∼ 1
4
p2

0η
2.

However, since only Ψ± is analyzed in our Bell-state measurement, in teleportation of |H〉 state,
the double emission from the weak coherent beam leads no two-fold coincidence.

(3) Spurious coincidence contributed by the double emission from the atomic ensembles, which
has a probability of

∼ 1
4
p2
ASη

2.

Substituting the experiment parameters, we thus get that, for |H〉 teleportation, a Bell-state
measurement click will with a probability of 95% herald the success of teleportation, however for
|+〉 and |R〉 teleportation, a Bell-state measurement click will only with a probability of 17% herald
the success of teleportation. Thus given an arbitrary input state the average probability to herald
the success of teleportation will be around 40%.

10.5.2 Teleportation fidelity

Our three-fold coincidence would mainly have three components as well:
(1) Coincidence among a single photon of the initial state from the weak coherent beam, an

anti-Stokes photon, and a successfully retrieved Stokes photon, which is the desired event and has
a probability of

∼ 1
2
pASp0γη

3.

Thus, the overall success probability of the teleportation in each experimental run is around 10−6.
(2) Spurious coincidence contributed by a two-photon event (the double emission) from the

weak coherent pulse and a single-photon event in Stokes mode. The same as the noise estimation
in Bell state measurement (§ 10.5.1) in |+〉 and |R〉 teleportation the probability of registering such
three-fold coincidence is given by

∼ 1
4
p2

0pSη
3

and no such spurious three-fold coincidence in |H〉 teleportation.
(3) Spurious coincidence contributed by double emission from the atomic ensembles and one

retrieved Stokes photon, which has a probability of

∼ 1
4
p2
AS

(
2γη − (γη)2

)
η2.

Moreover, the probability of dark counts in each detector is about 10−5 per trial, implying a
signal-to-noise ratio better than 100 : 1. And the errors in polarization are less than 1%. These
two errors are thus negligible. Denote the probability of the desired three-fold coincidence as

S =
1
2
pASp0γη

3

and the probability of the spurious one as

N =
1
4
p2

0pSη
3κφ +

1
4
p2
AS

(
2γη − (γη)2

)
η2

here φ is the initial state, κH = 0 and κ+ = κR = 1. Taking into account the imperfection of
entanglement source, one can thus estimate the final fidelity for |H〉 teleportation by

f =
S(1 + V )/2 +N/2

S +N
,

where V ∼ 0.88 is the entanglement visibility in the H/V basis. A simple calculation shows that
the final fidelity should be around 0.90, which is in good agreement with our experimental fidelity
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0.865 ± 0.017. The slight difference is probably due to the neglected dark count and polarization
errors.

In teleportation of |+〉 and |R〉 states, the experimental fidelity are much lower. This is because,
on the one hand we have one more spurious three-fold coincidence contribution, i.e.

1
4
p2

0pSη
3.

More importantly, the imperfect overlap of the wavepackets on the BS, typically around 90% in our
experiment [78], will further reduce the fidelities significantly. However, note that such imperfection
has no effect on the |H〉 teleportation. Taking these into account, a similar calculation shows that
the final fidelity for |+〉 and |R〉 teleportation should be around 0.79. Given the neglected dark count
and polarization errors, our experimental results again well agree with the calculated fidelities.

10.6 Conclusion

In summary, we have demonstrated quantum teleportation between photonic and atomic qubits.
The ability - teleporting the unknown quantum state of a photonic qubit onto an atomic qubit
and then converting it back to a photonic state in a controllable time - is essential for the recent
quantum repeater protocols [165, 167, 156] that address the extremely difficult phase stabilization,
as required in the original scheme for long-distance quantum communication [70]. However, we
would like to note that, due to the low success probability of teleportation and short life-time
of quantum memory, significant improvements are still needed in order for our method to be
really useful for practical applications. For example, we could use active feed-forward to achieve
both a deterministic entanglement source [165, 167, 156] and a high-quality single-photon source
[74, 75], by which the overall success teleportation rate can be greatly increased while the spurious
coincidence is suppressed. This, given our present excitation rate of anti-Stokes photons, would
require a lifetime of quantum memory up to 1 ms. Moreover, in order to achieve long-distance
quantum communication, e.g. free-space quantum teleportation over 100 km the same order of
storage time is required. To do so, one can confine the atoms in an optical trap and exploiting a
clock state to store the collective spin excitation [197], this could potentially extend the lifetime up
to 1 s. Finally, comparing former photonic teleportation [31, 34, 43], where the coherence time of
down-converted photons is only about a few hundred fs, the narrowband feature of our anti-Stokes
photon source (coherence time ∼ 25 ns) makes the overlap of independent photon wavepackets
from distant sites much easier. This advantage together with the feasible long lifetime quantum
memory may provide an ideal solution for large-scale quantum communications, e.g., satellite-based
quantum communication [198, 67].
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Chapter 11

A novel entanglement source

11.1 Introduction

Quantum communication provides an absolutly secure approach to transfer information by means
of quantum cryptography or faithful teleportation of unknown quantum states. Unfortunately, the
photon transmission loss and the decoherence scale exponentially with the length of the communi-
cation channel. This makes it extremely hard to deliver quantum information over long distance ef-
fectively. A quantum repeater protocol [17, 68] combining the entanglement swapping, purification
and quantum memory provides a remarkable way to establish high-quality long-distance quantum
networks, and makes the communicating resources increase only polynomially with transmission
distance.

Following the DLCZ scheme [70], in recent years, significant experimental advances have been
achieved towards the implementation of the quantum repeater protocol by using the atomic en-
semble and linear optics [71, 184, 73, 80, 79, 75, 82]. However, the DLCZ protocol has an inherent
drawback which is severe enough to make a long distance quantum communication extremely dif-
ficult [165, 156]. The phase fluctuation caused by path length instability over long distance is
very hard to overcome. Recently, a more robust quantum repeater architecture was proposed to
bypass the phase fluctuation over long distance [165]. This architecture is based on the two-photon
Hong-Ou-Mandel-type interference, which is insensitive to the relative phase between two photons.
Several experiments have proven that the path length fluctuations only need to be kept on the scale
of the photon’s coherent length, from hundreds of micrometer [155] to tens of meters [76, 77, 78].
In our original protocol [165, 156] (see also Chapter. 7), two laser beams with fixed relative phase
are needed to excite two atomic ensembles in order to generate the atom-photon entanglement for
the local communication node. Only the path length between two ensembles in the local node
need to be stabilized to sub-wavelength scale. Some recent works close to the requirements of our
protocol have provided the techniques to generate atom-photon entanglement with spin excitation
of magnetic sublevels [199, 189] or dual-species atomic ensemble to prevent for the propagating
phase difference [200]. But for each of these there remain problems like balancing the excitation
between the ensembles or the complexity and efficiency of frequency mixing, which make it hard to
implement the full protocol over long distance. Another kind of atom-photon entanglement is real-
ized using the orbital angular momentum states [201], which could also extend to high-dimensional
entanglement. However, the divergence property of different orbital angular momentum modes
makes it impractical for long-distance quantum communication [202].

In the last Chapter, we use two write excite two atomic ensembles simultaneously, by an active
phase-stablization scheme, we can generate atom-photon entanglement, which is exactly as pro-
posed in ref. [165]. However, the property of two atomic ensembles working as one logic qubit makes
a realistic quantum repeater very complicate (eight atomic ensembles are needed to deterministi-
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cally generate one pair of entanglement between two distant locations as described in Chapter. 7).
In this Chapter, we present a new approach to effectively generate the entanglement between the
atomic qubit and photonic qubit based on atomic ensemble in a local MOT. It fulfil the require-
ments of the improved protocol [165]. Contrast to the previous experiments [80, 79, 199, 189, 200],
the atomic ensemble is excited by only one write beam with single frequency, while two spontaneous
Raman scattered fields (anti-Stokes fields) in different spatial modes are combined on a polarizing
beam splitter and serve as the photonic qubit. The corresponding collective spin excitations in the
atomic ensemble represent the atomic qubit. This new scheme makes the local phase stabilization
simple. Moreover, the relative phase difference between the two selected modes is actively stabi-
lized by the local build-in Mach-Zehnder interferometer (see § 10.3.1). Besides, by extending the
approach to select more spatial modes of collective excitation, high-dimensional entanglement and
hyper-entangled state could be easily realized.

11.2 Experimental conception

The basic setup of our experiment is shown in Fig. 11.1. A cold 87Rb atomic cloud with temperature
about 100 µK in the MOT is used as the medium to generate and store the information of the
quantum excitation. The two hyperfine ground states |5S1/2, F = 2〉=|a〉 and |5S1/2, F = 1〉=|b〉
and the excited state |5P1/2, F = 2〉=|e〉 form a Λ-type system. After loading the MOT, the atoms
are first pumped to initial state |a〉. A single weak 75 ns write beam illuminates the atom cloud
with beam waist of 240 µm and 10 MHz red-detuned to |a〉 → |e〉 transition. Two anti-Stokes
fields (|e〉 → |b〉 Laguerre-Gauss LG00 mode, 70 µm waist) ASL and ASR induced by the write
beam via spontaneous Raman scattering are collected at ±3◦ relative to the propagating direction
of the write beam. This also defines the spatial mode of the atomic ensemble L and R. With small
excitation probability, the atom-light field can be expressed as [70]

|Ψ〉m ∼ |0AS0b〉m +
√
χm|1AS1b〉m +O(χm), (11.1)

where χm � 1 is the excitation probability of one collective spin in ensemble m (m = L,R), and
√
χm|iASib〉m denote the i-fold excitation of the anti-Stokes light field and the collective spin in

atomic ensemble.
When the write beam excites the atomic ensemble and an anti-Stokes photon is generated, it

also transfers the momentum to the collective spin excitation in the atomic ensemble. To fulfill
the momentum conservation, the overall k-vector of the collective excitation after the spontaneous
Raman scattering is ~katom = ~kW − ~kAS , where ~kAS and ~kW are the wave vector of the anti-Stokes
field and write beam, respectively. If no other external field disturbs the atomic state, during the
storage time τ , the momentum of the collective excitation is kept. When the read pulse is applied
on the atomic ensemble to retrieve the collective excitation back into a correlated Stokes field, the
momentum of the collective excitation is transfered back to the Stokes field. The wave vector of the
Stokes field becomes ~kS = ~kR+~katom, where ~kR represents the wave vector of the read beam. Then
after the retrieve process, the wave vector of the correlated Stokes field fulfill the mode-matching
condition [203]

~kS = ~kR + ~kW − ~kAS . (11.2)

Under the counter-propagating condition of read and write beams (shown in Fig. 11.1), we will
have

~kS ' −~kAS .

To characterize the light field, we measure the cross correlation g(2)
AS,S [71, 75], which marks the

degree of quantum correlation, between the anti-Stokes and the Stokes fields. As two anti-Stokes
fields ASL and ASR are detected at two different spatial modes, two corresponding Stokes fields
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Figure 11.1: Illustration of the scheme of the experiment setup and the relevant energy levels
of the 87Rb atoms. Cold 87Rb atoms captured by MOT are initially prepared in state |a〉. A
weak write pulse ΩW with a beam waist of 240 µm illuminates the atom cloud to generate the spin
excitation. The spontaneous Raman scattered anti-Stokes field ASL and ASR are detected at ±3◦

to the propagating direction of the write beam, with the beam waist of 70 µm, defining the spatial
mode of the atomic ensembles L and R, respectively. The two anti-Stokes field are combined on a
polarizing beam splitter PBS1 and sent to the polarization analyzer. This creates the entanglement
between the polarization of the anti-Stokes field and the spatial modes of spin excitation of atoms
in atomic ensemble. After a controlled storage time τ , the entanglement is verified by retrieving the
spin excitation back to the Stokes fields SL and SR by a strong read pulse, which is overlapped and
counter-propagates to the write beam. After overlap the Stokes fields on PBS2, the entanglement
can be proved.
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SL and SR can be detected during the retrieve process. For the mode-matched fields SL and
ASL (SR and ASR), the cross correlation g

(2)
AS,S � 1 when χ � 1, which means good quantum

correlation between those fields. But for the unmatched fields SL and ASR (SR and ASL), no
quantum correlation is observed (g(2)

AS,S ∼ 1), which means there’s no cross talk between these two
different modes. The viability of our new approach is guaranteed by this condition.

We adjust the two modes L and R to be equal excited (χL = χR = χ). The two anti-Stokes field
are combined on PBS1 and sent into a polarization analyzer, as illustrated in Fig. 11.1. Neglecting
the vacuum state and high order excitations, the entangled states between the photonic and the
atomic qubit can be described as,

|Ψ〉 =
1√
2

(|H〉|R〉+ eiφ1 |V 〉|L〉) (11.3)

where |H〉/|V 〉 denotes horizontal/vertical polarizations of the single anti-Stokes photon and |L〉/|R〉
denotes single collective spin excitation in ensemble L/R, φ1 is the propagating phase difference
between the two anti-Stokes fields before they overlap at PBS1. Physically, the atom-photon
entangled state (11.3) is equivalent to the maximally polarization entangled state generated by
spontaneous parametric down-conversion [53].

11.3 Characterization of atom-photon entanglement

To verify the entanglement between the anti-Stokes field and the atomic spin excitation, a relative
strong read pulse with 75 ns close to resonance of |e〉 → |b〉 transition counter-propagating with
the write beam is applied after a controllable time τ to convert the atomic collective excitation
back into Stokes fields.

After combine the two Stokes fields on PBS2 (see Fig. 11.1), the superposition state of anti-
Stokes and Stokes fields is the following maximally polarization entangled state

|Ψ〉AS,S =
1√
2
|H〉AS |H〉S + ei(φ1+φ2)|V 〉AS |V 〉S , (11.4)

where φ2 represent the propagating phase difference between two Stokes fields before they overlap
at the PBS2. In our experiment, the total phase φ1 + φ2 is actively stabilized via the build in
Mach-Zehnder interferometer and fixed to zero [81]. After the phase stabilization, the short term
phase fluctuation is measured to be smaller than π/30 and long term drift is cancelled, which
guarantees the stability of our experiment.

11.3.1 Entanglement visibility

To characterize the quality of generated atom-photon entanglement, the scaling of entanglement
with the excitation probability χ is investigated. To do so, we measure the visibility V of the
interference fringes of the coincidence rate between anti-Stokes and Stokes photons for various
value of χ with fixed memory time τ = 500 ns. The half waveplate HWP1 (see Fig. 11.1) is set
to +22.5◦ to measure the anti-Stokes fields under X base and rotate HWP2 to measure the Stokes
fields under different bases. As χ increases, the high order term in Eq. (11.1) can not be neglected.
The visibility V can be expressed as the function of cross correlation between the anti-Stokes and
Stokes fields [189]

V =
g

(2)
AS,S − 1

g
(2)
AS,S + 1

. (11.5)

Ideally, the relationship of the excitation rate χ and cross correlation g
(2)
AS,S is g(2)

AS,S = 1 + 1/χ
at low excitation limit (χ � 1). Considering the overall detection efficiency of the anti-Stokes
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Figure 11.2: Visibility of the interference fringes V between anti-Stokes fields and Stokes fields
various with the changing of the detected rate of anti-Stokes field pAS . The solid line is the fit
corresponding to Eq.(11.6). The dashed line shows the bound of 1/

√
2 which mark the limit to

violate the CHSH-type Bell’s inequality.

field ηAS , we have the detection rate of the anti-Stokes photon pAS = ηASχ. Thus, at the small
excitation rate limit (χ� 1), the visibility can be expressed as

V = 1− 2pAS/ηAS . (11.6)

In our experiment, ηAS ∼ 8%. Figure 11.2 shows the measured visibility V varing with pAS .
As the excitation rate χ decrease, which corresponds to decrease of pAS , the visibility V increases
as does the degree of entanglement. The solid line is the linear fit for the experiment data. At
pAS → 0, V is near 0.95. This imperfection is mainly caused by the overlap of the two anti-
Stokes fields ASL and ASR, the noise of the single photon detectors and the phase fluctuation in
the interferometer. As the detection rate pAS increases, the probability of high order excitations
increases faster than that of the single excitation. Then the correlation g

(2)
AS decreases, as well as

the visibility. At pAS < 1.3 × 10−2, V is larger than 1/
√

2 which marks the bound of violation
of the Clauser-Horne-Shimony-Holt (CHSH) type Bell’s inequality [189, 114]. Moreover, the cross
correlation between different spatial modes, e.g. between ASL and SR, is measured to be 1.1±0.5,
which means the negligible of the crosstalk caused by the Stokes photons emit to the wrong mode.

11.3.2 Storage of entanglement

To further study the storage ability of the atomic ensemble quantum memory, we characterize
the temporal decay of entanglement with storage time τ . Here we measure the decay of the S
parameter, sum of the correlation function in CHSH type Bell’s inequality, where S ≤ 2 for any
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Figure 11.3: Decay of the S parameter in the Bell’s inequality measurement with the storage
time τ . The dashed line shows the classical bound of S = 2.

local realistic theory with

S = |E(θ1, θ2)− E(θ1, θ
′
2)− E(θ′1, θ2)− E(θ′1, θ

′
2)|, (11.7)

here E(θ1, θ2) is the correlation function, where θ1 and θ′2 (θ′1 and θ′2) are the measured polarization
bases of the anti-Stokes field and Stokes field. During the measurement, the HWP1 and HWP2

are set to different angles to make the bases settings at (0◦,22.5◦), (0◦,−22.5◦), (45◦,22.5◦) and
(45◦,−22.5◦), respectively. The excitation rate χ was fixed to having pAS = 2 × 10−3, and the
result of measurement is shown in Fig. 11.3. At the storage time of 500 ns, S = 2.60± 0.03, which
violates Bell’s inequality by 20 standard deviations. As the storage time increases, the S parameter
decreases, indicating the decoherence of the entanglement. At storage time τ =20.5 µs, we still get
S = 2.17± 0.07, which means the character of quantum entanglement is still well preserved. The
decay of S parameter with increasing storage time τ is caused by the residual magnetic field which
inhomogeneously broadens the ground state magnetic sublevels. This process can be observed from
the decay of the retrieve efficiency and the cross correlation between anti-Stokes and Stokes fields.

Shown in Fig. 11.4, the retrieve efficiency and the cross correlation between anti-Stokes and
Stokes field all decreases with increasing the storage time τ . At τ = 500 ns, the overall retrieve
efficiency (including the transmission loss and the detector efficiency) is 12.2± 0.4% and the cross
correlation g

(2)
AS,S = 38 ± 1. At τ =20.5 µs, the retrieve efficiency and cross correlation decrease

to 2.2 ± 0.1% and g
(2)
AS,S = 9.8 ± 0.7, respectively. These values are still sufficient to violate the

CHSH-type Bell’s inequality. When τ is longer than 24µs, g(2)
AS,S < 6 makes it insufficient to violate

the Bell’s inequality.
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Figure 11.4: The decay of retrieve efficiency and cross correlation g
(2)
12 with the storage time τ .

The anti-Stokes detection rate is fixed at pAS = 2× 10−3. The square dots show the decay process
of the retrieve efficiency of the Stokes fields, round dots show the decay of the cross correlation
g

(2)
AS,S between anti-Stokes field and Stokes field.

11.4 Discussion

In conclusion, we have generated a robust atom-photon entanglement with a novel approach. A
single write beam and a single atomic ensemble are used to generate the collective spin excitations.
Two spatial modes of collective excitations are defined by the collection modes of anti-Stokes
fields. The conservation of momentum during the atom-photon interaction prevent for the cross
talk between different excited spatial modes. The visibility of the entanglement and violation of
the CHSH type Bell’s inequality are measured to prove the atom-photon entanglement between
anti-Stokes photon and collective excitation in atomic ensemble. Also with the help of the build-in
quantum memory, the violation of the Bell’s inequality still exists after 20.5 µs, corresponding to
the time of light propagating 4 km in an optical fiber. That means we have successfully achieved a
memory build-in atom-photon entanglement source which can work as a node of the long-distance
quantum communication networks. Moreover, if more anti-Stokes modes are selected at different
angles corresponding to the write beam, this approach can be easily extended to generate higher
order entanglement, which could be very useful in the complex quantum cryptography and quantum
computation.
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Chapter 12

Entanglement swapping

12.1 Introduction

Quantum memories or registers are fundamental requirements in future networks of quantum in-
formation processing like what we are familiar with in traditional computers used in our everyday
life. However, the manipulations on quantum bits, such as storage, retrieve and transportation, are
conceptually different from those on classical electronic bits because of the non-cloning character
of quantum states. Even it is a challenging task to implement high-quality storage and retrieve
of a quantum bit, there have been a few investigations on quantum state transfer between matter
and light. An atom (ion) [204, 205], an atom in an optical cavity [206, 207], and a cloud of atoms
[82, 200, 73, 75, 208] have been used as the medium to store a quantum bit. A distributed quantum
network requires entanglement among two and more remote memories, which has not been accom-
plished yet. In the frame of a quantum repeater protocol [17], a significant progress is the DLCZ
scheme that Duan et al [70] proposed to implement long-distance quantum communication with
atomic ensembles and linear optics, where single-photon interference is used to generate entangle-
ment between atomic ensembles. However, two serious problems make the DLCZ scheme unlikely
to become reality. First, the phase requirement of single-photon interference, where the fluctuation
of fiber length should much less than a wavelength, is too strict to be satisfied in large scale (say
kilometers long) communication. Second, imperfections of photon loss and inefficiency of detection
make the undesired vacuum components in the state increase very fast with communication dis-
tance and therefore account for a sharp decrease of the communication fidelity. Two simultaneously
proposed schemes [165, 167] profile solutions to overcome the above problems, where two-photon
interference is used to generate long-distance entanglement. As we described in Chapter 7 the
fluctuation of fiber length is limited to the order of a coherence length of the photons, which is
7 order loose than that in the DLCZ scheme. The vacuum component will be suppressed and no
longer a dominant term after a few connections.

Most recently, with two-photon interference the entanglement of two remote 171Yb+ atoms has
been reported [209]. A future advantage in this experiment is that single-atom quantum memories
allow the implementation of conditional quantum gates through photonic channels. However, there
are two shortcomings: first of all, the success probability is very low due to low collection efficiency
of the spontaneous radiation while the contribution from dark count events is considerably high
which makes the fidelity pretty low; secondly, the read-out of an atomic bit to a photonic one is
extremely hard since there is no preferential optical mode of the read-out light until the atom could
be coupled to an optical cavity. So, such entanglement is not ready for use in scalable quantum
applications.

In this Chapter, by further developing the atom-photon entanglement introduced in Chapter
11, we report a scalable unit for long-distance quantum communication [165]. This unit is imple-
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Figure 12.1: Illustration of the relevant energy levels of the atoms and the experimental setup.
At Alice’s site, 87Rb atoms are prepared in the initial state |a〉 = |5S1/2, F = 2〉. A write pulse
ΩW with the detuning of ∆ = −10 MHz and a beam waist of 240 µm is applied to generate
the spin excitation (with one atom excited to |b〉 = |5S1/2, F = 1〉 through Raman scattering
|a〉 → |e〉 → |b〉, where |e〉 = |5P1/2, F = 2〉) and an accompanying photon of the anti-Stokes field
âAS with a beam waist of 70 µm. The light modes in channels ASL and ASR, tilted ±3◦ relative
to the direction of the write beam, are overlapped at PBS2 selecting perpendicular polarizations
and coupled in a single-mode fiber (SMF2) for a future Bell-state measurement. Bob has the same
apparatus and simultaneously does the same as Alice. Photon 2 and 3 overlap at BSM through
which the entanglement between the two atomic ensembles I and II is generated. After a time
interval δts, the spin excitations in the two atomic ensembles are retrieved back to single photons
and the entanglement can be verified through polarization analysis of photons 1 and 4.

mented with two clouds of atomic ensembles. By means of entanglement swapping, entanglement
is generated between two remote atomic ensembles connected with either 6 m or 300 m fiber-
based optical channel, where the flying qubits–two emitted photons from the atomic ensembles are
sent to an intermediate station for a joint BSM. Afterwards, the measurement induced entangle-
ment between the atomic ensembles are verified by the violation of an Bell’s inequality and by
an entanglement witness. The striking features, phase-error insensitiveness and scalable flexibility,
promise the present setup as a fundamental unit for future quantum information processing. This
unit is feasible to be assembled in scalable networks of quantum information processing due to its
properties of scalability, narrow band, and high quality of entanglement.

12.2 Experimental setup

12.2.1 Atom-photon entanglement

To generate and verify the entanglement between two remote atomic ensembles, we use three steps
which are implementing two atom-photon entanglement sources [210], sending the flying qubits—
photons to a station for BSM, and verifying the entanglement between the stationary qubits—
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atomic ensembles. The basic principle is shown in Fig. 12.1. Alice and Bob both have a cold
atomic ensemble consisting of about 108 87Rb atoms with the temperature ∼100 µK. After loading
the atoms in two magneto-optical traps (MOT) within 20 ms, they switch off the MOTs and start
the experiment which is 5 ms long. At each site, after the atoms are prepared at the initial state
|a〉, a single weak (50 ns long, ∼1 µW) write beam illuminates the atomic cloud with a beam waist
of 240 µm and 10 MHz red-detuned with respect to |a〉 → |e〉 transition. Two anti-Stokes fields (70
µm waist, |e〉 → |b〉) ASL and ASR induced by the write beam via spontaneous Raman scattering
are collected at ±3◦ angle relative to the propagating direction of the write beam. This also defines
the spatial modes of the atomic ensemble L and R. With a low excitation probability, the state of
the atom-photon field can be expressed as [70]

|Ψ〉m ∼ |0AS0b〉m +
√
χm|1AS1b〉m +O(χm), (12.1)

where χm � 1 is the excitation probability of one collective spin in ensemble m (m = L,R), and
|iASib〉m denote the i-fold excitation of the anti-Stokes field and the collective spin in the atomic
ensemble. When the experimental inefficiencies (e.g. the coupling efficiency of light modes, the
transmission loss and detection efficiency of single photon detectors) are taken into account, the
excitation probability χηAS = 2 × 10−3, where ηAS is the overall efficiency for each anti-Stokes
channel (either ASL or ASR).

The two modes L and R are adjusted to be identical (χL = χR = χ), and overlapped at a
polarizing beam splitter PBS2 with orthogonal polarizations. Neglecting the vacuum state and
higher order excitations, the entangled states between the atomic qubit and the photonic qubit can
be described as,

|Ψ〉at-ph =
1√
2

(
|H〉|R〉+ eiφ1 |V 〉|L〉

)
(12.2)

where |H〉/|V 〉 denotes horizontal/vertical polarization of the single anti-Stokes photon and |L〉/|R〉
denotes single collective spin excitation in ensemble L/R, φ1 is the propagating phase difference
between the two anti-Stokes fields before they overlap at PBS2. Physically, the atom-photon
entangled state (12.2) is equivalent to the maximally polarization-entangled state generated by
spontaneous parametric down-conversion [53].

At this stage we have finished the first step of implementing two atom-photon entanglement
sources at sites Alice and Bob respectively. Before the next step, entanglement swapping, this
entanglement can be verified by converting the atomic spin into a single photon (a Stokes field)
and measuring the correlation functions between this photon and the previous anti-Stokes field.
To do this, a relative strong read pulse (with 50 ns long, ∼60 µW) close to resonance of |e〉 → |b〉
transition and counter-propagating with the write beam is applied after a controllable time δts
to convert the atomic collective excitation back into a Stokes field. Ideally, the retrieve efficiency
reaches unit relying on the mode-match condition and collective enhancement of the atoms [70].
However, there are imperfections, e.g., photon loss, low optical depth of the atomic ensembles,
coupling efficiency of light fields, detection efficiency of single photon detectors, which limit the
overall retrieve efficiency to about 15% in practice. After combine the two Stokes fields on PBS1 (see
Fig. 12.1), the superposition state of the anti-Stokes and Stokes fields is the following maximally
polarization-entangled state

|Ψ〉AS,S =
1√
2

(
|H〉AS|H〉S + ei(φ1+φ2)|V 〉AS|V 〉S

)
, (12.3)

where φ2 represent the propagating phase difference between two Stokes fields before they overlap
at the PBS2. In our experiment, the total phase φ1 + φ2 is actively stabilized via the built-in
Mach-Zehnder interferometer and fixed to zero [81]. As shown in Chapter 11 the entanglement
in Eq. (12.3) still exists with a storage time up to δts =20 µs measured by the violation of a
CHSH-type Bell’s inequality [210].
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Figure 12.2: Correlation functions of a CHSH-type Bell’s inequality with the storage time δts =
500 ns. Error bars represent statistical errors, which are ±1 standard deviation.

12.2.2 Entanglement swapping

Having known the entanglement quality at each site, we generate the entanglement between atomic
ensembles I and II via entanglement swapping [34, 165]. As shown in Fig. 12.1, photon 2 from
Alice and photon 3 from Bob are sent to a station (with each traveling 3 m or 150m in an optical
fiber) for BSM. On condition of the output of the BSM, in our case we choose

|Φ+〉2,3 =
1√
2

(|H〉2|H〉3 + |V 〉2|V 〉3) ,

the state of the two remote atomic ensembles is projected to

|φ+〉I,II =
1√
2

(|R〉I|R〉II + |L〉I|L〉II) .

It is worthy to note here, the double excitations in either atomic ensemble I or II will cause false
events in the BSM [165], which reduces the success probability of entanglement swapping by a
factor of 1/2. However the false events can be eliminated at the stage of entanglement verification
by the four-fold coincidence measurement of photons 1, 2, 3 and 4 (Note here, the arriving time of
photons 1 and 4 is later than that of photons 2 and 3 by a interval δts, which is the storage time
in the memories).

12.3 Experimental result

12.3.1 Violation of CHSH-Bell inequality

Triggered by the output of the BSM, the established entanglement between atomic ensembles I
and II is ready to be verified by converting the atomic spins into single photons 1 and 4 whose
state should be |Ψ−〉1,4. Here we measure the S parameter, sum of the correlation functions in a
CHSH-type Bell’s inequality, where S ≤ 2 for any local realistic theory with

S = |E(θ1, θ4)− E(θ1, θ
′
4)− E(θ′1, θ4)− E(θ′1, θ

′
4)|, (12.4)
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Figure 12.3: Visibility as a function of the storage time. Black dots are for the visibility and the
dashed line shows the threshold for the violation of the CHSH-type Bell’s inequality. Error bars
represent statistical errors, which are ±1 standard deviation.

and E(θ1, θ4) is the correlation function, in which θ1 and θ′1 (θ4 and θ′4) are the measured polar-
ization bases of photon 1 (4). During the measurement, the polarization settings are (0◦,22.5◦),
(0◦,−22.5◦), (45◦,22.5◦) and (45◦,−22.5◦), respectively. With the above excitation rate χηAS =
2× 10−3, the probability of coincidence between photons 2 and 3 is p2,3 = 2(χηAS)2 = 8× 10−6.

When the storage time δts=500 ns, the measured correlation functions are shown in Fig. 12.2,
resulting in S = 2.26±0.07, which violates Bell’s inequality by 3 standard deviations. The four-fold
coincidence rate is observed as ∼ 30 hour−1. In order to show the storage ability of the quantum
memories, we measure the interference visibility of photons 1 and 4 as a function of the storage
time (shown in Fig.12.3). When the storage time is shorter than 6 µs, the visibility is higher than
the threshold 1/

√
2, which means the entanglement still exists between photons 1 and 4. With

these quantum memories, communication can be established between such stationary qubits when
the flying qubits travel 1.8 km in free space, which has never been demonstrated till now. The
entanglement between the atomic ensembles can be improved by reducing the transmission loss of
single photons, extending the lifetime of the quantum memory and increasing the retrieve efficiency
of collective excitations.

12.3.2 Entanglement witness

For an illustration of remote quantum connection between two atomic ensembles, we change the
length of the two fibers SMF2 and SMF3 from 3 m to 150 m. The anti-Stokes photon is delayed
730 ns and the connection length is 300 m between atomic ensembles I and II. Relaxation of the
fiber tension was observed by a measurement of the polarization rotation of an input light. This
relaxation was compensated by two quarter-wave plates and one half-wave plate.

To prove the entanglement of the photons 1 and 4 (therefore atomic ensembles I and II), we use
the method of entanglement witnesses [211]. An entanglement witness is an observable that has a
positive expectation value on all biseparable states. Thus, a negative expectation value proves the
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Figure 12.4: Experimental outcomes of the fractions at different polarization settings. The
polarization bases are chosen as (a) |+〉 and |−〉, (b) |H〉 and |V 〉, and (c) |	〉 and |�〉 respectively.

presence of multipartite entanglement. In our case, we use the witness

W = 1
2 (|HV 〉〈HV |+ |V H〉〈V H|+ |+−〉〈+− |
+| −+〉〈−+ | − |	�〉〈	�| − |�	〉〈�	|) . (12.5)

Here |+〉 =
(
1/
√

2
)

(|H〉+ |V 〉) and |−〉 =
(
1/
√

2
)

(|H〉 − |V 〉) denote diagonally polarized single
photon states, while |	〉=

(
1/
√

2
)

(|H〉+ i|V 〉) and |�〉=
(
1/
√

2
)

(|H〉 − i|V 〉) correspond to the left
and right circular polarization states. The above operator can be locally measured by choosing cor-
related measurement settings that allow detection of the linear, diagonal, and circular polarization
for both photons.

After a storage time of 1230 ns (with a 730 ns delay being taken account), the photons 1
and 4 (shown in Fig. 12.1) are sent to their own polarization analyzer at the same time. Three
series of polarization settings are used and the measured local observables are shown in Fig. 12.4.
The resulting 〈W 〉 =Tr(Wρexp) = −0.33 ± 0.02, which is negative by 16 standard deviations and
therefore proves the presence of entanglement between the two atomic ensembles.

12.3.3 Fidelity

The entanglement swapping can be quantified by the fidelity of the measured state of the atomic
ensembles. To determine the fidelity, we write the density matrix of |φ+〉 in terms of the Pauli
matrices:

|φ+〉〈φ+| = 1
4

(
Î + σ̂xσ̂x − σ̂yσ̂y + σ̂zσ̂z

)
. (12.6)
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By Eq. (12.6), we have:

F = Tr
(
ρexp|φ+〉〈φ+|I,II

)
= Tr

(
ρexp

(
Î + σ̂xσ̂x − σ̂yσ̂y + σ̂zσ̂z

))
. (12.7)

Substituting the experimental results in Eq. (12.7) we obtain the fidelity of final state on |φ+〉 is
F = 0.83 ± 0.02. Note that, to violate the CHSH-Bell inequality, F = 0.78 is needed for Werner
state. Hence, we successfully demonstrating the entanglement swapping to the atomic ensembles.

12.4 Discussion

In summary, we have demonstrate a scalable unit for long-distance quantum communication. It
is of great importance that two macroscopic quantum memories have been entangled at a long
distance of either 6 m or 300 m by entanglement swapping, which paves the way for construction
of future networks of quantum information processing. By the optimization of the quality of local
atom-photon entangled pairs and suppression of the noise, it is expected a much higher count rate
and a better entanglement of the two remote atomic ensembles. Furthermore, the lifetime of the
entanglement source is 24 µs [210], which is expected to be extended to the order ∼10 ms if the
atoms can be confined in a dipole trap with “clock states” [197] as the memory states. Then the
combination of stationary qubits (quantum memories) and flying qubits (photons) will certainly
contribute to the future global quantum communication network.
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Chapter 13

Conclusion and outlook

Quantum information science and atomic optics are the most active fields in modern physics. In
this thesis, we further developed the technique of manipulation of atoms and photons to investigate
the possibility of combining these two active field. In order to conclude this thesis we want to give
a summary of its main points as well as an outlook to future work.

We have first investigated the applications of SPDC source in linear optical QIP by manipu-
lation of multi-photon entanglement: by a full realization of encode and decode process for error-
rejection we showed a proof-in-principle demonstration of error-free transfer for quantum informa-
tion through a noisy quantum channel; by exploiting a three-photon polarization-entangled state,
properly defining the pairs which is conditioned to the result of a measurement on a third qubit and
performing measurements in additional configuration we violated the CHSH-Bell inequality beyond
Tsirelson’s bound; by developing a scheme for creation and characterization of a two-photon-four-
qubit cluster state, we demonstrated successfully one-way computing, both Grover’s algorithm
and quantum gates with excellent fidelity and high generation rates, which enables high efficient
computing; further by developing a tweaked high-intensity laser to exploit a unique six-photon
interferometer, the combined state of two photons have been teleported – while preserving their
entanglement – and this could bring large-scale quantum communication and computation a step
closer.

However, large scale linear optical QIP requires quantum memory. By manipulation of atomic
ensembles, we have successfully demonstrated capabilities proposed in the seminal DLCZ and the
improved protocols, including the generation of two non-classical photon pair and further exploited
to a deterministic single photon source. The indistinguishability of two independent photon emitted
from two distant atomic ensemble is experimentally investigated and by an active feed-forward
circuit we efficiently generate polarization-entangled photon pairs. Two atomic ensembles as one
atomic qubit have been exploited to generate atom-photon entanglement. when demonstrating
quantum teleportation, an unknown photonic qubit state has been teleported into the atomic
qubit, stored in the atomic memory and subsequently transferred from the atomic qubit back to
photonic qubit. A new approach to effectively generate the entanglement between the atomic qubit
and photonic qubit has been proposed ad implemented. The atomic ensemble is excited by only
one write beam with a single frequency, while two spontaneously scattered Raman fields in different
spatial modes are combined on a polarizing beam splitter and serve as the photonic qubit. The
corresponding collective spin excitations in the atomic ensemble represent the atomic qubit. Based
on such an atom-photon entanglement, entanglement between two distant atomic qubits has been
generated via entanglement swapping. These experiments demonstrate a simple and promising
approach toward building a scalable quantum memory.

Although various protocols have been demonstrated in laboratory, we are still on the way to
large scale linear optical QIP. An obvious drawback of the current quantum memory realization is
the storage time is limited to about 15 µs. By exploiting a well-controlled magnetic field one has
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potential to improve the memory time up to hundreds of microseconds, limitation is due to the
diffusion of atom into and out of the desired regions of the atomic ensembles. However, in oder
to archive both a deterministic entanglement source and a high-quality single-photon source by
active feed-forward ability, a lifetime of quantum memory up to milliseconds is needed. Moreover,
in order to achieve long-distance quantum communication, e.g. free-space quantum teleportation
over hundreds of kilometers the same order of storage time is required. To do so, one can confine
the atoms in an optical trap and exploiting the collective spin excitation into a decoherence-free
subspace – a magnetic field insensitive clock state [197], this could potentially extend the lifetime
of quantum memory up to the order of seconds.

Even with long memory time, the original DLCZ protocol is still impractical for long distance
quantum communication [156]: it has serious phase stabilization problem [165]; the scalability is
low [167]; the errors increase significantly and there is no purification. So far, all the improved
protocols can only solve part of these problems [165, 167, 212]. Fortunately, recently we find that
all these problems might be solved by a quasi-pair-source protocol 1.

It is expected that an implementation of scalable and long lifetime quantum memory and the
techniques combining manipulation of photons and atoms would open up realistic prospective for
large scale QIP and dramatically change not only our world view, but also our everyday life. An
enhancement of quality of life is to be expected by taking further efforts into the direction of yet
unachieved, very ambitious goals.

1More research on this protocol is ongoing.
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