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Abstract

The main object of this thesis is the rigorous derivation of continuum models in mechanobiology
via multiscale analysis. On the microscopic level, models in terms of energy functionals defined
on networks / lattices are considered. Using concepts of Γ-convergence rigorous convergence
results as well as explicit homogenisation formulae can be derived. Based on a characterisation via
energy functionals, appropriate macroscopic stress-strain relationships (constitutive equations) are
determined.

Mechanics of the membrane-bound cytoskeleton of red blood cells, and accordingly mechanics of
red blood cells, are considered as one test case. The rigorous derivation of a macroscopic continuum
model is based on a realistic discrete microscopic model. Simulations of optical tweezer experiments
confirm the model qualitatively as well as quantitatively.

For these simulations an appropriate computational framework for single cell mechanics is
developed using finite element methods. It accounts explicitly for membrane mechanics and its
coupling with bulk mechanics. The approach is highly flexible and can be generalised to many other
cell models, also including biochemical control.

As a test case considering the interactions between biological processes and mechanics, growing
cell cultures are investigated. From a discrete cellular-automaton-like description macroscopic con-
tinuum models are derived. Furthermore, it is shown that the models can account for branching
morphogenesis - a typical phenomenon observed in growing cell cultures, where growth is promoted
by a diffusing substance.

Zusammenfassung

Das Thema der Doktorarbeit ist die rigorose Herleitung von kontinuierlichen Modellen in der
Mechanobiologie durch Skalenübergänge. Auf mikroskopischer Ebene werden Modelle betrachtet,
welche durch Energiefunktionale auf Netzwerken / Gittern gegeben sind. Die Konvergenz solcher
mikroskopischen Energiefunktionale gegen kontinuierliche makroskopische Energiefunktionale kann
im Sinne der Γ-Konvergenz gezeigt werden. Die kontinuierlichen Grenzfunktionale werden durch
explizite Homogenisierungsformeln charakterisiert. Auf der Basis solcher expliziten Grenzfunktionale
werden Stress-Verzerrungs-Relationen (konstitutive Gleichungen) hergeleitet.

Als ein Musterfall wird die Mechanik des membrangebundenen Zytoskeletts von roten Blutkörper-
chen bzw. die Mechanik der roten Blutkörperchen selbst betrachtet. Die rigorose Herleitung eines
kontinuierlichen makroskopischen Modells basiert auf einem realistischen diskreten mikroskopischen
Modell. Simulationen von Experimenten mit optischen Pinzetten bestätigen das hergeleitete Modell
sowohl in qualitativer als auch in quantitativer Hinsicht.

Zu diesem Zweck wird ein entsprechendes numerisches Verfahren für Einzelzell-Mechanik mit
Hilfe der Finite Elemente Methode entwickelt. Die Mechanik der Membran sowie deren Kopplung
mit der Mechanik des Zellinneren wird bei diesem Ansatz explizit berücksichtigt. Die Simulations-
umgebung ist sehr flexibel und kann für andere Zellmodelle erweitert werden, wobei eine gleichzeitige
Berücksichtigung der Biochemie möglich ist.

Als ein Musterfall für die Interaktion zwischen biologischen Prozessen und Biomechanik werden
wachsende Zellkulturen betrachtet. Auf der Basis eines diskreten Modells für einzelne Zellen werden
kontinuierliche makroskopische Modelle hergeleitet. Weiterhin wird gezeigt, dass diese Modelle Ver-
zweigungsstrukturen ausbilden können - ein typisches Phänomen in Zellkulturen, deren Wachstum
durch eine diffundierende Substanz angeregt wird.





Contents

1 Introduction 1

1.1 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Multiscale analysis 7

2.1 Microscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A short introduction to Γ-convergence . . . . . . . . . . . . . . . . . . 10

2.3 Γ-convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Energies as constitutive relations . . . . . . . . . . . . . . . . . . . . . 18

2.5 Evolving networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Red blood cells 23

3.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Growing cell cultures 67

4.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Outlook 95



A Notation 99

B Some geometric analysis 101

C Some polymer physics 103

D Bibliography 107



Chapter 1

Introduction

Cell and tissue, shell and bone, leaf and flower, are so many portions of

matter, and it is in obedience to the laws of physics that their particles have

been moved, moulded and conformed. They are no exceptions to the rule

that Their problems of form are in the first instance

mathematical problems, their problems of growth are essentially physical

problems, and the morphologist is, ipso facto, a student of physical science.

(D’Arcy Thompson, 1917)

Biological processes and their interactions with biomechanics belong to the most com-

plicated systems studied in the natural sciences. The investigation of these issues has

a long tradition dating back to the seminal book On Growth and Form by D’Arcy

Thompson (1917). However, only recently major insights have been gained due to the

fast development of experimental, mathematical, and computational methods. These

advances have led to the new discipline mechanobiology (for a short review see Wang

and Thampatty, 2006), merging mechanics and molecular biology.

The interactions between mechanics and biological processes play a central role

on multiple levels, from the molecular all the way up to the tissue and organ level.

Many studies have shown that mechanical load can affect diverse cellular functions,

such as gene induction, protein synthesis, cell growth, cell death, and differentiation.

Among major cellular components involved in the mechanotransduction mechanisms,

i.e. in signal transductions converting mechanical stimuli into chemical signals, is the

cytoskeleton (Wang and Thampatty, 2006), whose mechanical properties are investi-

gated in this thesis. A variety of experimental techniques are available to probe me-

chanical properties of cells and their interactions with biological processes on different

scales (Bao and Suresh, 2003), e.g. uni-axial stretching of cells bound to microplates

shown in Fig. 1.1 (Beil et al., 2003).

From a mechanist’s point of view, many biological soft tissues are well charac-

terised by a continuum theory on a macroscopic level. Considering short time scales,

the tissues are usually described by hyperelastic (or Green elastic) materials. These
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Fig. 1.1. Stretching of a Panc-1 cell chemically bound to the microplates in serum free
medium. (courtesy to Joachim Spatz, University of Heidelberg)

are materials that respond elastically up to large strains and are typically given by

stress-strain relationships that are derived from strain energy density functions. Such a

description is only valid for short time scales. Investigating large time scales, viscoelas-

tic effects (Forgacs et al., 1998) or even remodelling have to be taken into account. On

a microscopic level, e.g. on the scale of the cytoskeleton of a cell, continuous descrip-

tions are often not appropriate and discrete descriptions are preferable. At the same

time, different physical concepts like entropic forces have to be considered. These are

forces not determined by the underlying microscopic forces, e.g. atomic interactions

on a lattice, but by the system’s statistical tendency to increase its entropy. This

complexity of biological materials often does not allow the use of standard continuum

mechanics, but rather requires to derive [new] basic equations [which] is even so much

a mathematician’s duty as to study their properties (Trusdell, 1983).

The object of this thesis is the extension of multiscale techniques to biomechani-

cal applications. These techniques allow the rigorous derivation of appropriate basic

macroscopic models based on microscopic descriptions. In many examples from biome-

chanics, discrete models are an appropriate description on a microscale, e.g. for cells

in a tissue or filaments in the cytoskeleton. Often microscopic descriptions in terms

of energy functionals have been proposed, i.e. “functions” which relate a given state

of a system to an energy. On the macroscopic level a continuum description is typ-

ically appropriate. Multiscale analysis, especially Γ-convergence, allows to close the

gap between those two descriptions systematically: based on a microscopic description

an explicit continuous macroscopic description can be rigorously derived in terms of

energy functionals. From the latter, stress-strain relationships used in the framework

of hyperelasticity can be calculated.

Typically continuum models are again discretised for computations raising the

question why the derivation of these is necessary. Within a discrete description the

discretisation of the system is naturally given. On the other hand, one is relatively free

to choose a discretisation for continuum models. This allows relatively coarse discreti-

sations speeding up simulations. The efficiency of computations for continuum models

can be further increased by appropriate mesh refinement strategies. Another advan-

tage of continuum models is that they are usually more accessible to mathematical

analysis than discrete models.
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In this thesis, we consider the mechanics of red blood cells and the mechanics of

growing cell cultures illustrating the power of multiscale analysis in mechanobiology.

The first test case is solely a mechanical problem, whereas the latter takes interactions

between biological processes and mechanics into account. Using simulations (in the

case of red blood cells) and analysis (in the case of growing cell cultures) the behaviour

of the two examples is investigated. With respect to simulations the development of

appropriate computational techniques for single cell mechanics is important, especially

when having more intricate examples in mind. The setup of an appropriate computa-

tional framework for single cell mechanics within the finite element toolkit Gascoigne

(Becker et al., 2007) is another pillar of this thesis.

The extension of mathematical multiscale techniques and the development of a

highly flexible computational framework for single cell mechanics offers the possi-

bility to tackle many unsolved questions in the field of mechanobiology in the near

future. We believe that theses techniques will have a significant impact on modelling

in mechanobiology, as underlined by the test cases considered in this thesis.

1.1 Outline of the thesis

The outline of the thesis (see also Fig. 1.2) is as follows: first, we present in

Chapter 2 mathematical concepts of Γ-convergence and corresponding results con-

necting microscopic discrete descriptions with macroscopic continuous descriptions.

In Chapter 3, we consider the mechanics of red blood cells as one test case. Here, the

gap between a description on a subcellular scale and a description on a cellular scale

is bridged. A major topic of this chapter is further the development of a highly flexi-

ble computational framework for single cell mechanics. As a test case considering the

connection between a description on a cellular level and on a tissue level we investigate

growing cell cultures in Chapter 4.

Readers not interested in mathematical details can skip Chapter 2 and start with

the self-contained Chapters 3 or 4, discussing biological applications of multiscale

analysis. For more details on the notation we refer to Appendix A. Readers who are

unfamiliar with basic geometric analysis or the concept of entropic forces are referred

to Appendix B, respectively Appendix C.

Chapter 2: Multiscale analysis

In this chapter, we outline the mathematical concepts of multiscale analysis. This

chapter can be omitted without loss of continuity. We begin with a short outline

of the discrete energy models which are considered in this thesis. In Section 2.2,

we repeat the concept of Γ-convergence and its main features for the convenience

of the reader. A theorem stating the convergence of discrete energy functionals to
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Fig. 1.2. Outline of the thesis: using multiscale analysis “gaps” between models on different
spatial scales can be closed systematically.

continuous ones is presented in Section 2.3. The limit can be characterised by an

auxiliary minimisation problem, which can be reduced to an explicit homogenisation

formula. The approach presented in Section 2.3 is based on the ideas of Alicandro and

Cicalese (2004), which are generalised to the more complex interactions considered

in this thesis. In Section 2.4, connections to standard elasticity in the framework of

hyperelasticity are discussed, and Section 2.5 deals with aspects of evolving networks.

Chapter 3: Red blood cells

This self-contained chapter considers mechanics of red blood cells, one of the most

simple cells. Here, we restrict ourselves solely to mechanics and neglect any interactions

with biological processes. Components involved in the mechanics of red blood cells

are the cytosol, the lipid bilayer, as well as the membrane-bound cytoskeleton. Main

biological facts are summarised in Section 3.1. In Section 3.2, we derive in terms of

energy functionals a continuum description of the cytoskeleton, which is a discrete

quasi-two-dimensional structure (Boey et al., 1998; Discher et al., 1998). Based on the

continuum description of the cytoskeleton and the lipid bilayer via energy functionals,

an appropriate description within the standard equations of continuum mechanics

(balance of momentum and mass) is given using a variational approach. This is, to

our knowledge, the first rigorous multiscale approach treating mechanics of red blood

cells.
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Red blood cells serve not only as a test case for the multiscale analysis, but also as

a test case for the development of a highly flexible finite element framework for single

cell mechanics. A main difficulty is the coupling of mechanics on hypersurfaces with

bulk mechanics, as well as the treatment of the lipid bilayer. We do not rely on any

special assumptions on the underlying equations, as required e.g. by boundary element

methods typically being the method of choice (e.g. Pozrikidis, 2003a). Our approach is

outlined in Section 3.3 and simulations of optical tweezer experiments with red blood

cells are presented. The simulations agree quite well with experimental results, both

qualitatively and quantitatively. This underlines the usefulness of multiscale analysis

in biomechanics.

Chapter 4: Growing cell cultures

Here, we consider growing cell cultures as a test case for the derivation of macroscopic

models based on discrete descriptions where interactions between biological processes

and biomechanics play a role. In particular, we pay attention to branching mor-

phogenesis, a typical phenomenon in developmental biology. The relevant biological

background is reviewed in Section 4.1. Cell cultures can be described quite well by

viscoelastic laws (Forgacs et al., 1998). Considering growing cell cultures, a difficulty

is to choose the right deformation measure for such a description, since growth induces

deformations which do not lead to stress. At the same time remodelling might take

place, i.e. an evolution of the stress-strain relationships, complicating the derivation

of appropriate mechanical laws.

Using the techniques of chapter 2, we present in Section 4.2 an appropriate model

in terms of a solely elastic description. In the case of isotropic growth it coincides with

the so-called notion of multiple natural configurations (Lubarda, 2004). Considering

anisotropic growth, the ansatz yields some information on the evolution of the stress

tensor in the elastic regime. The model is then generalised to a viscoelastic model

as well as to the corresponding “viscous” model in the limit of fast stress relaxation.

Because stress relaxation is typically faster than growth, the latter is an appropri-

ate model for growing soft tissues on large time scales. In Section 4.3, we show its

capability to reproduce branching morphogenesis via a linear stability analysis. The

qualitative properties of the model agree well with a simpler, but less realistic model

successfully applied as an explanation of branching morphogenesis (Hartmann and

Miura, 2007, 2006).

The example of culture growth shows the explanatory power of the multiscale

approach also in the case of interactions between mechanics and biological processes,

which typically implies an evolution of the underlying discrete models / networks.





Chapter 2

Multiscale analysis

Biomechanical systems can be typically characterised by energy functionals. Often a

discrete microscopic energy functional is an appropriate description. In this chapter,

we investigate the existence and characterisation of corresponding continuous macro-

scopic energy functionals in the limit of small network length scales. The type of

microscopic models considered in this thesis are introduced in Section 2.1.

Because we are generally interested in deformations with minimal energies,

Γ-convergence (a variational convergence) is an appropriate framework (Braides, 2002),

which is repeated in Section 2.2 for the convenience of the reader. Using the concepts

of Alicandro and Cicalese (2004), Γ-convergence of the discrete energy functionals to

continuous energy functionals is shown rigorously in Section 2.3. It is further proven

that the continuous limit functionals can be characterised by auxiliary minimisation

problems. Under the assumption of convexity, the homogenisation formulae can be

reduced to “cell” formulae, which can be explicitly calculated.

With respect to mathematical analysis, we restrict ourselves to energy minimisation

problems. Nevertheless, a connection to dynamics is possible. In this case the energy

functionals serve as constitutive relations (Section 2.4).

2.1 Microscopic model

In this thesis, we would like to investigate appropriate macroscopic mechanical models

of polymer networks (Chapter 3) and cell cultures (Chapter 4) as two examples of

biomechanical systems (Fig. 2.1a-b). For simplicity, we restrict ourselves to the two-

dimensional situation. Let us first outline the basic microscopic geometry and then

introduce the type of energies which are considered in this chapter.
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(a) (b) (c)

Fig. 2.1. (a) A polymer network as found in red blood cells (see Chapter 3); (b) Interacting
cells in a culture (see Chapter 4); (c) Abstraction of the network considered in the two
situations.

2.1.1 Microscopic geometry

All applications considered in this thesis have a hexagonal symmetry. Therefore, let

us introduce the hexagonal lattice / network

G = {X ∈ R2 : X = µ1g1 + µ2g2 with µi ∈ Z}

with g1 = (1, 0), g2 = (1/2,
√

3/4), such that a typical discrete reference configuration

(see Fig. 2.1c) is given by

εG ∩ Ω

with Ω ⊂ R2 bounded. Here, ε is the typical length scale of the network. The basic

units of the hexagonal network are the links

Gξ = {ξ1 = g1, ξ2 = g2, ξ3 = g2 − g1, ξ4 = −ξ1, ξ5 = −ξ2, ξ6 = −ξ3}

and triangles

G! = {%1 =! (ξ1, ξ2),%2 =! (ξ2, ξ3),%3 =! (ξ3, ξ4),

%4 =! (ξ4, ξ5),%5 =! (ξ5, ξ6),%6 =! (ξ6, ξ1) with ξi ∈ Gξ},

where ! (ξi, ξi+1) is the triangle spanned by the vectors ξi, ξi+1 ∈ Gξ.

Let X ∈ εG ∩Ω be the position of a network vertex in the reference configuration.

Its motion / deformation is given by the function

x = χ : εG ∩ Ω & X '→ χ(X) ∈ R2. (2.1)

Since we are interested in mechanics, we will restrict us to deformations preserving

the orientation. Additionally, let us introduce the finite difference quotient along any

direction ξ

Dξ
εχ(X) =

χ(X + εξ)− χ(X)

ε|ξ| ,
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where we will typically consider |ξ| = 1 (e.g. ξ ∈ Gξ), and the discrete “Jacobian”

A!ε χ(X) =
det

(
Dξi

ε χ(X)⊗Dξi+1
ε χ(X)

)

√
3/2

.

The discrete Jacobian is given as the deformed area of the unit equilateral triangle,

spanned by the vectors ξi and ξi+1, divided by its undeformed / initial area
√

3/4.

In terms of the Jacobian, the orientation preserving condition of the deformations is

nothing but its positivity.

2.1.2 Microscopic energies

Mechanical interactions on the network will be characterised by microscopic energy

functionals. To be more precise: given an open set Ω ⊂ R2 and ε > 0, we consider

microscopic energies defined on functions χε : εG ∩Ω → R2, c.f definition (2.1), of the

form

Fε(χ, Ω) =
∑

X∈εG∩Ω

[
1

2

∑

ξ∈Rξ
ε(X,Ω)

ε2

√
3

2
fL

(
Dξ

εχ(X)
)

+
1

3

∑

!∈R!ε (X,Ω)

ε2

√
3

2
fA

(
A!ε χ(X)

)]
(2.2)

where

Rξ
ε(X, Ω) = {ξ ∈ Gξ : [X, X + εξ] ⊂ Ω},

R!ε (X, Ω) = {% ∈ G! : X + ε% ⊂ Ω}.

In (2.2) the first term is due to pair interactions with nearest neighbours in the hexag-

onal lattice, where the factor 1/2 is needed as each interaction is counted twice. The

second term represents an energy depending on the enclosed faces / triangular pla-

quettes in the hexagonal network. Here, the factor 1/3 accounts for the fact that

each triangle is counted three times. The latter term in (2.2), considering “triple”

interactions, plays an important role in biomechanical problems. It accounts e.g. for

steric repulsion of single polymer filaments in cytoskeletal networks (see Chapter 3).

Studying the asymptotic behaviour of lattice systems with “atomistic” interactions

usually only pair interactions are considered (Alicandro and Cicalese, 2004). The scal-

ing ε2
√

3/2 in (2.2) is the obvious geometrical scaling. It is the only scaling, which

yields a nontrivial limit. For further analysis, we adopt the following assumptions:

Assumption 2.1.

• fL is a positive super-linearly growing function with p-growth,

i.e. c(|z|p − 1) ≤ fL(z) ≤ C(|z|p + 1) for 1 ≤ p < ∞.

• fA is a positive and bounded function.
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Expression (2.2) considers pair interaction energies fL independent of the direction

of interaction ξ ∈ Gξ. As we will see in Chapter 4, energies might also depend on

ξ. For notational convenience, we restrict ourselves to (2.2). But all proofs in the

following sections still hold considering a dependence on ξ.

Above, we have further restricted ourselves to two-dimensional networks εG ∩ Ω

with a hexagonal symmetry. An extension to more general lattices or more dimensions

is of course possible.

2.2 A short introduction to Γ-convergence

The theory of Γ-convergence is a very flexible tool for the description of the asymptotic

behaviour of variational problems. Here, we give only a brief outline and for more

details, we refer to the monographs of Dal Maso (1993) and Braides (2002).

Definition 2.2 (Γ-convergence). We say that a sequence of functionals (Fε) :

Lp(Ω;Rd) → [0,∞] Γ-converges in Lp(Ω;Rd) to a functional F : Lp(Ω;Rd) → [0,∞]

as ε → 0, if for all sequences (εj) converging to 0 and for all u ∈ Lp(Ω;Rd) the

following two conditions hold:

(i) (lim inf inequality) for every sequence (uj) converging to u in Lp(Ω;Rd)

F (u) ≤ lim inf jFεj(uj),

(ii) (lim sup inequality) there exists a sequence (uj) converging to u in Lp(Ω;Rd)

such that

F (u) ≥ lim sup jFεj(uj).

The function F is called the Γ-limit of (Fε), and we write F = Γ-lim ε→0Fε.

The concept of Γ-convergence has several nice properties: It is stable under contin-

uous perturbations and it is given in local terms, i.e. one can speak about convergence

in one point. But most importantly, it implies a convergence of minimisers and mini-

mum values under suitable assumptions.

Theorem 2.3 (Convergence of minimisers). Let F = Γ-lim ε→0Fε and Fε mildly coer-

cive for all ε, i.e. there exists a compact set K ⊂ Lp(Ω;Rd) such that

infLp(Ω;Rd) Fε = infK Fε for all ε. Then there exists

min
Lp(Ω;Rd)

F = lim
ε→0

inf
Lp(Ω;Rd)

Fε.

Furthermore, if (εj) and (uj) are converging sequences such that

limj Fεj(uj) = limj infLp(Ω;Rd) Fεj , then its limit is a minimum point for F .
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2.3 Γ-convergence result

Energies of the form (2.2) with fL satisfying Assumption 2.1 and fA ≡ 0 are well

studied in the framework of Γ-convergence, e.g. they are a special case of the energies

considered by Alicandro and Cicalese (2004). Typical results include existence of the

Γ-limit as well as homogenisation formulae, which provide an explicit characterisation

of the macroscopic energy functional.

The main idea of Alicandro and Cicalese (2004) is to consider the discrete and con-

tinuous energy functionals as pairs function-set and to use corresponding Γ-convergence

results.It is then shown that the more or less abstract Γ-convergence result can be made

precise by appropriate homogenisation formulae. A constructive proof, calculating the

lim inf and lim sup inequalities directly is relatively straight forward in one dimension

(see e.g. Braides, 2001). In higher dimensions, the direct calculation of the lim inf

inequality is, however, highly non-trivial, unless the problem can be reduced to several

one-dimensional problems, e.g. in the direction of the coordinate axes. Due to the

“area”-energies fA such a reduction is not possible here. Let us therefore follow the

approach of Alicandro and Cicalese (2004) to show the existence of the Γ-limit and

the corresponding homogenisation formula in the case fA /= 0.

To apply the theory of Γ-convergence, we identify the discrete maps

χ : εG ∩ Ω → R2 with maps χ : Ω → R2 constant on each cell of the lattice,

such that the function space to which the functions χ belong is fixed. Therefore, let

us introduce the following function spaces

Fε(Ω) ≡ {u : Ω → R2 : for any X ∈ εG, u is constant on

{Y ∈ R2 : Y = X + µ1g1 + µ2g2, 0 ≤ µi < ε}},
Fε,φ(Ω) ≡ {u ∈ Fε(Ω) : u(X) = φ(X) if dist (X, ∂Ω) < 1}.

Of course other embeddings, e.g. assuming piecewise linear functions, can be consid-

ered equivalently.

Theorem 2.4. Let Ω ⊂ R2 be bounded; let fL and fA satisfy Assumption 2.1.

Then for every sequence (εj) of positive real numbers converging to 0, there exists

a subsequence (εjk
) and a continuous quasi-convex function Ψ : R2×2 → [0,∞)

satisfying

c(|M |p − 1) ≤ Ψ(M) ≤ C(|M |p + 1)

with 0 < c < C, such that (Fεjk
(·, ·)) given in (2.2) Γ-converges with respect to the

Lp(Ω;R2)-topology to the functional F : Lp(Ω;R2) × {A ⊂ Ω: A open} → [0,∞]

defined as

F (χ, A) =

{∫
A Ψ(∇χ)dµ if χ ∈ W 1,p(A;R2)

∞ otherwise.
(2.3)
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As already mentioned, Alicandro and Cicalese (2004, Theorem 3.3) consider the en-

ergies (2.2) with fA ≡ 0 and their Γ-limits as functionals defined on pairs function-set.

They show that the upper and lower Γ-limits are inner-regular increasing set func-

tions. This allows the use of a corresponding compactness and integral representation

result (Braides and Defranceschi, 1998). Considering the case fA /= 0 the arguments

of Alicandro and Cicalese (2004) can be repeated. The “difficult” part are the pair

interactions fL. Because the energy fA is bounded, the proof of Theorem 2.4 goes

along the lines of the original proof.

Theorem 2.4 considers an unconstrained Γ-limit. However, often one is interested

in problems with prescribed boundary conditions. Corresponding convergence results

with restrictions to χ ∈ Fε,φ, and accordingly χ − φ ∈ W 1,p
0 (Ω;R2), can be proven

(Alicandro and Cicalese, 2004, Theorem 3.10). A similar result holds for periodic

boundary conditions (Alicandro and Cicalese, 2004, Theorem 3.12).

The embedding of W 1,p(Ω;R2) to Lp(Ω;R2) is compact (Alt, 2002a). Hence, Theo-

rem 2.4 implies also the convergence of minimisers to a minimiser of the limit functional

(Alicandro and Cicalese, 2004, Theorem 3.3):

Corollary 2.5. Let Ω ⊂ R2 be bounded; let fL and fA satisfy Assumption 2.1. Ad-

ditionally, let (εjk
) be the converging subsequence of Theorem 2.4. Then, for all open

A ⊂ Ω we have

lim
k

inf{Fεjk
(χ, A) : χ ∈ Fεjk

(A)} = min{F (χ, A) : χ ∈ W 1,p(A;R2)}

with Fεjk
(χεjk

, A) as in (2.2) and F (χ, A) given by (2.3). Moreover, if (χk) is a

converging sequence such that

lim
k

Fεjk
(χk, A) = lim

k
inf{Fεjk

(χ, A) : χ ∈ Fεjk
(A)},

then its limit is a minimiser for min{F (χ, A) : χ ∈ W 1,p(A;R2)}.

The corollary holds also in the case of Dirichlet (Alicandro and Cicalese, 2004,

Corollary 3.11) or periodic boundary conditions (Alicandro and Cicalese, 2004, Corol-

lary 3.13).

2.3.1 Homogenisation

Let us first define the “rectangle”

QN = {X : X = µ1g1 + µ2g2 with 0 ≤ µi < N , i = 1, 2 }.

In analogy to the approach of Alicandro and Cicalese (2004), the following homogeni-

sation result holds:
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Theorem 2.6. Let Ω ⊂ R2 be bounded; let fL and fA satisfy Assumption 2.1.

Then for every sequence (εj) of positive real numbers converging to 0, the se-

quence (Fεj) given in (2.2) Γ-converges with respect to the Lp(Ω;R2)-topology to

F : Lp(Ω;R2)× {A ⊂ Ω : A open } → [0,∞] defined as

F (χ, A) =

{∫
A Ψhom(∇χ)dµ if χ ∈ W 1,p(A;R2)

∞ otherwise,
(2.4)

where the integrand Ψ : R2×2 → [0,∞) satisfies the homogenisation formula

Ψhom(M) = lim
N→∞

1

N2
min

{ ∑

X∈G∩QN

[
1

2

∑

ξ∈Rξ
1(X,QN )

fL
(
Dξ

1χ(X)
)

(2.5)

+
1

3

∑

!∈R!1 (X,QN )

fA
(
A!1 χ(X)

)]
: χ ∈ F1,M·X(QN)

}
.

An analogous result holds also in the case of Dirichlet or periodic boundary conditions

with the same characterisation of Ψhom.

Proof. By the definition of Γ-convergence, the Γ-limit F (χ) is a lower semicontinuous

function (Braides, 2002, Proposition 1.28). Hence, Ψhom is a quasi-convex function

(Dacorogna, 1989, Chapter 4, Theorem 2.1), i.e. for all A ⊂ Ω, M ∈ R2×2, and

χ−M ·X ∈ W 1,p
0 (A;R2) we have by definition of quasi-convexity

Ψhom(M) ≤ 1

|A|

∫

A

Ψ(∇χ)dµ.

Due to the p-growth property of F (Theorem 2.4), and accordingly of Ψhom, we obtain

(Dacorogna, 1989, Chapter 4, Theorem 2.9)

Ψhom(M) =
1

|A| min

{∫

A

Ψ(∇χ)dµ : χ−M ·X ∈ W 1,p
0 (A;R2)

}

=
1

|A| min

{
F (χ, A) : χ−M ·X ∈ W 1,p

0 (A;R2)

}

for any open A ⊂ Ω and M ∈ R2×2. Using Corollary 2.5 in the case of Dirichlet

boundary conditions (Alicandro and Cicalese, 2004, Corollary 3.11), yields

Ψhom(M) =
1

|A| lim inf
N

{
FεN (χ, A) : χ ∈ FεN ,M·X

}
.
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QN
i,jQN

2,jQN
1,j

QN
2,2 QN

i,2

QN
i,1QN

2,1QN
1,1

QM

QN
1,2

R

Fig. 2.2. Tessellation of the “rectangle” QM with “rectangles” QN .

Without loss of generality, let us consider εN = 1
N and A = Q1, i.e. |A| =

√
3/2.

After rescaling

X̃ =
1

εN
X, χ̃(X̃) =

1

εN
χ(εNX̃),

we recover

Ψhom(M) = lim
N→∞

ΨN(M) (2.6)

with

ΨN(M) =
1

N2
min

{ ∑

G∩QN

[
1

2

∑

Rξ
1(X,QN )

fL
(
Dξ

1χ(X)
)

+
1

3

∑

R!1 (X,QN )

fA
(
A!1 χ(X)

)]
: χ ∈ F1,M·X(QN)

}
.

Formula (2.5) is obtained and Theorem 2.6 is proven, once we show that the limit

(2.6) exists (see next proposition).

Proposition 2.7. For all M ∈ R2×2 the limit Ψ(M) = limN ΨN(M) exists.

Proof. For given M ∈ R2×2 and M , N ∈ N let us consider a tessellation of QM

with translates QN , numbered Qi,j
N as shown in Fig. 2.2. In addition, we choose

χM ∈ F1,M·X(QN) such that

χM =

{
χN(X − iNg1 − jNg2) + M · (iNg1 + jNg2) if X ∈ Qi,j

N

M ·X otherwise,

where χN ∈ F1,M·X(QN) is a minimiser for ΨN . Thus, we obtain

ΨM(M) ≤ 1

M2

∑

G∩QM

[
1

2

∑

Rξ
1(X,QM )

fL
(
Dξ

1χ(X)
)

+
1

3

∑

R!1 (X,QM )

fA
(
A!1 χ(X)

)]
.

The right hand side can be split up into problems on the domains Qi,j
N plus some

correction accounting for interactions across the boundaries of the tessellation Qi,j
N
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and for interactions in the rest R = QM \∪Qi,j
N . Since in these regions the deformation

equals M ·X by construction, we can estimate

ΨM(M) ≤ 1

N2

∑

G∩QN

[
1

2

∑

Rξ
1(X,QN )

fL
(
Dξ

1χ(X)
)

+
1

3

∑

R!1 (X,QN )

fA
(
A!1 χ(X)

)]

+ C(
1

N
+

N

M
)(1 + |M |p)

≤ ΨN(M) + C(
1

N
+

N

M
)(1 + |M |p).

Taking first the lim sup in M and then the lim inf in N the proposition is proven.

With respect to the derivation of a cell problem formula (Section 2.3.2), the follow-

ing equivalent characterisation of Ψhom will be useful (Alicandro and Cicalese, 2004,

Remark 4.4):

Remark 2.8. The function Ψhom of Theorem 2.6 also satisfies

Ψhom(M) = lim
N→∞

1

N2
min

{ ∑

X∈εG∩Qh

[
1

2

∑

ξ∈Rξ
1(X,QN )

fL
(
Dξ

1χ(X)
)

+
1

3

∑

!∈R!1 (X,QN )

fA
(
A!1 χ(X)

)]
: (2.7)

χ = M ·X + u with (N − 2)-periodic u ∈ F1(QN)

}
.

Above, (N − 2)-periodic functions u, i.e. u(X + (N − 2)g1) = u(X) as well as

u(X + (N − 2)g2) = u(X), are considered to ensure that the discrete derivative of

the perturbation on the boundary is zero.

2.3.2 A cell problem

The homogenisation formula (2.5), and accordingly (2.7), is given as a minimisation

problem over a growing rectangle QN (N → ∞). Under the assumption of convexity

for the functions fL and fA, the homogenisation formula can be reduced to a cell

problem:

Theorem 2.9. Let Ω ⊂ R2 be bounded. Additionally, let fL and fA be convex

functions, which satisfy Assumption 2.1. Then the conclusion of Theorem 2.6 holds,

with Ψhom(M) given by

Ψhom(M) =
1

2

∑

ξ∈Gξ

fL (M · ξ) +
1

3

∑

!∈G!
fA (det M) . (2.8)
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Proof. For simplicity, we split the proof into two parts: (a) the case fA ≡ 0 and (b)

fL ≡ 0. For all N , we show that in both cases χ = M · X is a minimiser of (2.5),

or rather (2.7). Since fL and fA are non-negative, the minimum in the general case

fL /= 0 and fA /= 0 is also realised by χ = M ·X, i.e. formula (2.8) holds.

Case (a): fA ≡ 0

Set fA ≡ 0 and let us show that χmin = M · X + umin, with umin constant, is a

solution of the minimisation problem (2.7) independent of N . That is, among all

(N − 2)-periodic functions u ∈ F1(QN) the energy

F1(M ·X + u, QN) =
∑

εG∩QN

1

2

∑

Rξ
1(X,QN )

fL
(
Dξ

1 (M ·X + u(X))
)

(2.9)

is minimised by umin constant. Let us choose an arbitrary minimiser ũmin ∈ F1(QN)

of F1 given by (2.9). By definition, the minimiser is at least N − 2 periodic. Hence,

the function ũ(X) ∈ F1(QN) defined by

ũ(X) =
1

(N − 2)2

∑

i,j∈[0,N−2]

ũmin(X + ig1 + jg2)

is one periodic and thus constant by construction of F1(QN). By convexity of fL and

hence convexity of F1 given by (2.9), the function ũ satisfies the inequality

F1(M ·X + ũ, QN) ≤ 1

(N − 2)2

∑

i,j∈[0,N−2]

F1 (M ·X + ũmin (X + ig1 + jg2) , QN) .

Since F1 depends only on the gradient of χ, it is invariant under a shift, e.g. under

the shift X + ig1 + jg2. Hence, we can conclude

F1(M ·X + ũ, QN) ≤ 1

(N − 2)2

∑

i,j∈[0,N−2]

F1 (M ·X + ũmin (X) , QN) . (2.10)

Therefore also ũ(X) is a minimiser of F1, and accordingly χmin(X) = M ·X + ũ(X).

Since ũ(X) is an arbitrary constant and F1(χ, QN) depends only on the discrete

gradient of χ, we can choose χmin(X) = M · X. If fL is strictly convex, inequality

(2.10) is strict, which implies uniqueness of the minimiser (up to a constant).

Case (b): fL ≡ 0

Choose fL ≡ 0 and let us prove that χmin = M ·X is also a solution of the minimisation

problem (2.5) for all N . That is, it minimises

F1(χ, QN) =
∑

G∩QN

1

3

∑

R!1 (X,QN )

fA
(
A!1 χ(X)

)
(2.11)

among all χ ∈ F1,M·X(QN).
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Mg1
M

g 2

8Q

Fig. 2.3. Deformation of a given network

Let us fix N . For all deformations χ ∈ F1,M·X(QN) the total area of QN after the

deformation equals N2
√

3/2 det M , since it depends only on the value of χ on ∂QN

(see also Fig. 2.3) and |QN | = N2
√

3/2. Hence, it follows

N2

√
3

2
det M =

∑

G∩QN

∑

R!1 (X,QN )

√
3

4
A!1 χ(X) (2.12)

for all χ ∈ F1,M·X(QN). The energy F1(χ, QN) given by (2.11) can be minimised only

by a variation of the triangular plaquette areas A!1 (M ·X) under the constraint that

the sum (total area) is constant. Using A!1 (M · X) = det M and (2.12), we obtain

for arbitrary χ ∈ F1,M·X(QN)

∑

G∩QN

∑

R!1 (X,QN )

fA(A!1 M ·X) = 2N2fA(det M)

= 2N2fA(
1

2N2

∑

G∩QN

∑

R!1 (X,QN )

A!1 χ(X)).

By convexity of fA, have

∑

G∩QN

∑

R!1 (X,QN )

fA(A!1 M ·X) ≤
∑

G∩QN

∑

R!1 (X,QN )

fA(A!1 χ(X)) (2.13)

for any χ ∈ F1,M·X(QN). The energy of the deformation χ = M ·X is smaller than

or equal to the energy of any other deformation χ, which shows χmin = M · X and

thus completes the proof. Considering strictly convex fA the inequality (2.13) is strict

yielding uniqueness of the minimiser.

The homogenisation formula (2.8) of Theorem 2.9 can be evaluated explicitly and

allows us to determine directly the limit functional (2.5) stated in Theorem 2.6. In

Chapter 3, this formula enables us to calculate the corresponding macroscopic energy

for red blood cells and in Chapter 4 it is used to calculate the energy corresponding

to deformations of growing cell cultures.
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2.4 Energies as constitutive relations

So far, we have considered only energy minimisation problems, i.e. the deformation

due to mechanics is given by the minimal energy configuration. Rather than such a

static approach, one is sometimes also interested in dynamics, which are determined

by the balance of momentum. Therefore, corresponding stress tensors σ need to be

determined. An extension to dynamics is possible using a thermodynamic approach.

Assumption 2.10. Energy supplied to the system is stored only as mechanical en-

ergy, i.e. the free energy density Ψ is a function of the deformation tensor F alone.

Furthermore, for any isothermal motion the mechanical work done on the material is

equal to the rate of change of free energy.

This assumption implies perfect reversibility under isothermal conditions, as well

as history and rate independence. If Assumption 2.10 holds, the stress tensor σ can

be calculated as shown below. The energy density Ψ serves as a constitutive relation,

which is a standard characterisation for so-called hyperelastic materials.

Proposition 2.11. Under Assumption 2.10 the energy plays the role of a consti-

tutive relation, i.e. we can characterise the relationship between stress and strain

using the free energy density Ψ:

σij =
ρ0

J

∑

k

∂Ψ

∂Fik
F T

kj, (2.14)

where F is the deformation tensor, J = det F its Jacobian, and ρ0 = ρJ the material

density in the reference configuration.

Proof. Let us calculate first the temporal change of the free energy

d

dt

∫

Ω

ρΨdµ =
d

dt

∫

Ω0

ρ0Ψdµ0

=

∫

Ω0

ρ0Ψ
′ :

d

dt
F dµ0

=

∫

Ω0

ρ0(Ψ
′ · F T ) : Ldµ0,

(2.15)

where d
dtF = L · F and L = ∇v is the stretch rate tensor (v is the material speed).

Using power =
∫

force · velocity dµ, we recover in terms of Assumption 2.10

d

dt

∫

Ω0

ρ0Ψdµ0 =

∫

Ω0

σ : DJdµ0 =

∫

Ω0

σ : LJdµ0, (2.16)

where D = 1
2(L+LT ) is the symmetric stretch rate tensor. The last equality in (2.16)

relies on the symmetry of the stress tensor σ.

Comparing expression (2.15) with expression (2.16), the characterisation (2.14) of

the stress tensor is recovered.
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Equation (2.15) can be easily illustrated using the balance of linear momentum,

i.e. ∂
∂t(ρv)+∇· (ρv⊗v) = ∇·σ, and accordingly using balance of mass ρ d

dtv = ∇·σ.

Testing the balance of linear momentum with the material speed v, integrating with

respect to Ω0, assuming no momentum flux across the boundaries (σ · n = 0), and

using the symmetry of σ, one has

d

dt

∫

Ω0

1

2
ρ0v

2dµ0 = −
∫

Ω0

σ : DJdµ0. (2.17)

The right hand side of (2.17) equals the change of the kinetic energy. If we assume

that no energy is lost, the change in the kinetic energy must equal minus the change

in the free energy, i.e. d
dt

∫
Ω0

ρ0v2dµ0 = − d
dt

∫
Ω0

ρ0Ψdµ0, and hence (2.15) is recovered.

The characterisation of the stress tensor σ using a thermodynamic framework, i.e.

Proposition 2.11, agrees with the following characterisation:

Corollary 2.12. Forces are determined by the steepest decent of the L2- gradient of

the free energy:

∫

Ω

(∇ · σ) · φdµ = − d

dε

∫

Ω0

ρ0Ψ(∇0x + ε∇0φ)dµ0

∣∣∣∣
ε=0

(2.18)

with φ ∈ C∞(Ω0;Rn).

Expression (2.18) can be related directly to the thermodynamic approach of Proposi-

tion 2.11 by considering small variations x + δx = x + vδt.

2.4.1 Principle of virtual work

The characterisation of the stress tensor is not only useful in a dynamic framework.

Following the classical method of the calculus of variations, the principle of virtual

work can be used to determine energy minimising configurations:

Let us consider a deformation χ such that the solid is in an equilibrium state, i.e.

the free energy
∫

Ω0
ρ0Ψdµ0 is (locally) minimal. The principle of virtual work states

that if the solid is subject to infinitesimal deformations in any direction (so-called

virtual displacements), the (virtual) work of all external forces is zero. Hence, the

energy of the solid does not change. And conversely, if the total (virtual) work of all

external forces acting on a solid is zero then the body is in equilibrium. That is, if the

variation of the energy (2.18) vanishes, the body is in equilibrium and accordingly a

local energy minimum is attained.

The consideration of infinitesimal deformations corresponds to the derivation of the

weak form of the Euler-Lagrange equations via Corollary 2.12. The so-called classical

method in the calculus of variations.
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(a) (b) (c)

Fig. 2.4. Minimal energy configurations of a network modelling a growing cell culture: Each
vertex corresponds to a cell and edges correspond to mechanical interactions. The energy
corresponding to the deformation of a link with length Li is given by Ei(Li) = (Li

0 − Li)2,
where Li

0 is the rest length of the link. Growth, encoded by colours, implies an increasing
distance/rest length to the neighbouring cells.

2.5 Evolving networks

So far, we have considered only static networks which do not evolve in time. In many

biomechanical applications, this might not be the case, e.g. the properties of single

links could alter or even the network topology could change. An example of such an

evolving network are growing cell cultures considered in Chapter 4 (see also Fig. 2.4).

Considering growing cell cultures, the network topology is fixed, but the properties of

single links change depending on growth. One difficulty considering evolving networks

and non-static mechanics at the same time is a possible emergence of dissipation due

to an evolution of the network (Di Carlo and Quiligotti, 2002).

Therefore, we investigate in this thesis only examples where the dynamics of net-

work evolution are significantly slower than mechanics. We can therefore adopt the

following assumption, which is often considered in the theory of plasticity and also for

growing cell cultures (Lubarda, 2004):

Assumption 2.13. The time scale of mechanics, i.e. the time scale on which an

equilibrium is attained, is much faster than the time scale of network modifications.

Lifting the assumption of quasi-steady mechanics, special care has to be taken

about thermodynamically admissible evolution laws for the network / system. Such

laws are discussed e.g. by Di Carlo and Quiligotti (2002) and Ambrosi and Guana

(2005) in the case of growing materials.
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2.6 Summary and discussion

In this chapter, we have investigated the connection between discrete mechanical sys-

tems on a microscale and the continuous macroscopic counterparts. The examples

considered in this thesis are only of a static, alternatively quasi-static, type. There-

fore, we have restricted our analysis to energy functionals and energy minimising

deformations.

Using the quite advanced theory of Γ-convergence, we have set forth how a discrete

description of simple periodic networks converges to a continuum description when the

typical length scale of the network converges to zero. The concept of Γ-convergence is a

variational theory and implies a convergence of the energies as well as their minimisers.

Here, we have extended the approach of Alicandro and Cicalese (2004). Recently a

more direct approach considering the passage from a discrete to a continuum theory has

been proposed by Schmidt (2005). This ansatz should principally be also applicable

for the energies considered here and should be considered in the future.

Further, the continuous energy functionals have been characterised by an auxiliary

minimisation problem. The latter could be reduced to a cell problem formula assuming

convexity of the discrete interactions. That the discrete energy functionals and their

minimisers can be explicitly characterised by continuous descriptions via cell problems

in the limit of a vanishing network length scale is far from being obvious, as shown by

Friesecke and Theil (2002).

So far, we have not derived rigorous error estimates. With respect to applications

error estimates are useful and should be investigated in the future. In addition, ex-

tensions with respect to more general energies might be possible (Schmidt, 2005). As

we will see in the case of red blood cells (Chapter 3), such a generalisation should be

addressed in the future. It is further possible to consider networks with long range in-

teractions in the framework of Γ-convergence (Schmidt, 2005; Alicandro and Cicalese,

2004). If such general interactions are, however, relevant in biomechanics is not clear.

The restriction to periodic and symmetric networks has been made for mathemat-

ical reasons. Although many networks considered in biomechanics are quite regular,

e.g. the spectrin network of red blood cells, a perfect symmetry is rarely the case.

Non-symmetric or “thermodynamical” networks might however exhibit a different be-

haviour (Discher et al., 1997). Therefore, the investigation of non-symmetric networks

is a topic of high importance which has to be investigated from a rigorous mathemati-

cal point of view in the future. The restriction to hexagonal symmetries could be lifted

by assuming a periodicity being a multiple of a typical link length in the network. In

this case, still a “cell problem” could be derived. However, the “cell problem” would

typically not lead to an explicit formula and would have to be evaluated by compu-

tational means. In the framework of Γ-convergence also random networks could be

considered as shown by Braides and Piatnitsky (2004). But in the random case it does

not seem possible to derive an explicit homogenisation formula.
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In Section 2.4, we have shown how the theory could be generalised to dynamical

systems, i.e. working with balance of forces rather than energy minimisation. A direct

approach considering the dynamic behaviour of spring networks has been proposed by

Berezhnyy and Berlyand (2006). Considering only systems without dissipation allows

the authors to transform the problem with a Laplace transformation to a minimisation

problem. The approach of Berezhnyy and Berlyand (2006) as well as our approach

relied on energy conservation, i.e. dissipation is not considered. With respect to

“realistic” biological applications viscous effects cannot always be neglected. A rough

sketch of a theory considering also viscous effects has been outlined by Alt (2002b).

A rigorous treatment is, however, still an open problem.

The extension of the theory outlined in this chapter to networks which evolve

in time is rather delicate, since evolution might induce dissipation (Di Carlo and

Quiligotti, 2002). In this thesis, we have therefore only considered examples, in which

dynamics of the mechanics are much faster than network evolution. This allowed

us to consider steady mechanics on a network, which might be evolving. A possible

extension to the rather general situation, where one cannot clearly distinguish between

the time scales, has been addressed by Di Carlo and Quiligotti (2002) and Ambrosi

and Guana (2005) in a continuum theory based on a thermodynamical framework.

As we will see in the following chapters, the concept of Γ-convergence is a very powerful

tool for the derivation of macroscopic continuum models from a discrete description.



Chapter 3

Red blood cells

As a first test case of the multiscale analysis introduced in Chapter 2, we treat the

mechanics of red blood cells (RBC). The investigation of RBCs has a long history

in biomechanics. Since they are one of the most simple cells, they often serve as

test cases. Our starting point for the analysis is the discrete model of Discher et al.

(1998), refined by Li et al. (2005), describing the mechanical properties of RBCs.

From this discrete model we rigorously derive its continuous counterpart in terms of

an energy functional (Section 3.2). Based on this characterisation of mechanics via

energy functionals corresponding stress tensors are determined.

Furthermore, the RBC serves as a test case for the development of a numerical

scheme for the simulation of single cells mechanics. As a specific example, we choose

an optical tweezer experiment (Hénon et al., 1999). A main issue here is the explicit

consideration of the shell, i.e. coupling mechanics of a hypersurface (the membrane)

with mechanics of a bulk medium (the cytosol). The model is implemented using the

software library Gascoigne (Becker et al., 2007) and simulations are presented in

Section 3.3.

3.1 Biological background

Red blood cells (RBC) have a relatively simple structure and therefore often serve

as model systems for the development of theoretical and experimental models in bio-

physics. On the basis of such a simple model, more complex analysis can be developed

for other cells.

Via its roughly 300 million hemoglobin molecules in the cytosol, the RBC trans-

ports oxygen from the lungs to the tissues and then transports CO2 back. In this

process, the RBC must pass through small capillaries whose inner diameters (down

to 3µm) are smaller than the cell diameter (around 8µm). This requires enormous

deformations of the cell with large strains (Fung, 1980). In addition, mechanics of

RBCs are known to be strongly linked to diseases, such as malaria. These two issues



24 Red blood cells

(a) (b)

Fig. 3.1. (a) Spread membrane skeleton examined by negative-staining electron microscopy.
It clearly shows the RBC’s hexagonal lattice of junctional complexes. (reprinted from Liu
et al., 1987, c©1987 Rockefeller University Press) (b) Schematic presentation of the organ-
isation of the spectrin network. (reprinted from Hansen et al., 1997, c©1997 Biophysical
Society)

underline, why an understanding of the mechanics of RBCs is of high interest in the

life sciences (Dao et al., 2003).

Under physiological conditions, a normal human RBC assumes a biconcave discoid

shape approximately 8µm in diameter. The average unstressed biconcave shape can

be parametrised by

z = R
√

1− (x2 + y2)/R2[c0 + c1(x
2 + y2)/R2 + c2(x

2 + y2)2/R4], (3.1)

with R = 3.91µm, c0 = 0.1035805, c1 = 1.001270, and c2 = −0.561381 as shown

by Evans and Skalak (1980). However, a variety of agents can modify this shape

systematically and reversibly (Lim et al., 2002).

RBCs are non-nucleated cells with relatively simple subcellular structures. The

nucleus and other organelles that are present in RBCs during their development

are expelled before and shortly after the cells are released into the circulatory sys-

tem, leaving the mature cells with no internal structural components other than the

membrane-associated spectrin cytoskeleton as shown in Fig. 3.1 (Boal, 2002). Basic

building blocks of the spectrin network are 200nm long spectrin tetramers (edges)

which crosslink the junctional complexes of actin (vertices). According to Liu et al.

(1987) there are over 80% degree-6 vertices in spectrin networks extracted from healthy

human RBCs, which suggest a relative regular hexagonal structure of the spectrin net-

work (c.f. Fig. 3.1). However, recent experiments indicate that the network might be

more disordered with a significant lower average vertex degree (for a discussion see Li

et al., 2005). The average length of a spectrin link is 80 nm (Liu et al., 1987). Hence,

the end-to-end distance of spectrin tetramers is significantly smaller than their contour

length, which strongly underlines that the mechanics are due to entropic effects (see

Appendix C).
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F = 0 pN F = 25 pN F = 56 pN

Fig. 3.2. Discotic RBC with two silica beads in diametrical position. The deformation in-
creases with increasing force F applied on both sides. The scale-bar denotes 5µm. (reprinted
from Hénon et al., 1999, c©1999 Biophysical Society)

Due to thermal fluctuations, the spectrin network is constantly rearranging. This

process is strongly affected by ATP. It is usually present in the RBC and the con-

centration can be self-regulated by the cell (Gov and Safran, 2005). ATP can effect

junctional actin complexes by inducing spectrin-actin dissociations (Gov and Safran,

2005) via the phosphorylation of the protein-41. Creation and motion of such defects

allows the network to rearrange constantly. The reassociation times τre ≈ 10−7s are

relatively short, which implies a small probability that spectrin filaments reassociate

at nodes different from the ones they were dissociated. Otherwise they would need

to surmount an energy barrier originating from steric repulsion from neighbouring fil-

aments. On large time scales, it is postulated that the spectrin vertices of the RBC

behave like a liquid as their dynamics allow a relaxation of the in-plane shear elastic

energy (Li et al., 2005). However, if the deformations of RBCs are fast (much faster

than the remodelling rate of the cytoskeleton), they can manifest large shear.

In particular, we concentrate in the following on optical tweezer experiments, which

are quite popular (Hénon et al., 1999; Bao and Suresh, 2003; Mills et al., 2004). Using

focused laser beams, optical tweezers allow to exert forces in the range of pico Newtons

to dielectric microbeads and thus to control also their positions (see e.g. Neuman and

Block, 2004). When the laser ray enters and exits the dielectric bead it is refracted due

to different dielectric indices of the microbead and the outside medium. As a result, the

ray exits in a direction different from which it originated. Since light has a momentum

associated with it, this change in direction indicates that its momentum has changed.

By Newton’s laws the momentum of the microbead has changed correspondingly, i.e.

a force has been excerted.

In a typical optical tweezer experiment one tries to pull a RBC clamped between

two microbeads (Fig. 3.2, see also Fig. 3.4). Usually, the deformation rate is faster

than the relaxation rate of stresses, such that relaxation can be neglected (Li et al.,

2005). The experiments allow to estimate the involved mechanical moduli, because

forces and deformations can be determined quite well.
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Discrete microscopic models Continuous macroscopic models

S
ta

ti
c

m
o
d
e
ls

Hansen et al. (1997)
Discher et al. (1997)
Boey et al. (1998)
Discher et al. (1998)
Li et al. (2005)

Evans and Skalak (1980)
Kuzman et al. (2004)
Lim et al. (2002)
Mukhopadhyay et al. (2002)

D
y
n
a
m

ic
m

o
d
e
ls

Noguchi and Gompper (2005) Fung (1980)
Drury and Dembo (1999, 2001)
Pozrikidis (2001, 2003b,c, 2005)

Table 3.1. Different models for red blood cells found in the literature.

3.2 Modelling

Steady state deformations of RBCs are mainly determined by the membrane and

the quasi-two-dimensional membrane skeleton. Models for RBC membranes, found

in the literature, can be divided into two classes: macroscopic continuum models and

microscopic molecular based models, i.e. discrete models. They can be further divided

into solely static models, i.e. models based on energy minimisation, or dynamic models,

mainly RBCs embedded in a fluid flow. References to some of the different models are

summarised in Table 3.1.

We start our analysis from the popular discrete model of Discher et al. (1998),

which is based on an energetic description. The model and its generalisation by Li

et al. (2005) are outlined in Section 3.2.1. Continuum models based on an energetic

description are reviewed in Section 3.2.2. In Section 3.2.3, we show how a static

macroscopic model can be rigorously derived from a microscopic description using the

results of Chapter 2. We then derive in Section 3.2.5 the corresponding stress tensors,

which are the basis for a dynamic model.

Further, we compare our continuum model with models proposed in the literature,

which are revised in Section 3.2.6. Finally, in Section 3.2.7 we propose a model de-

scribing optical tweezer experiments, which are one of the standard experiments to

investigate the mechanical properties of RBCs and cells in general.

3.2.1 Static microscopic models

Many microscopic models go back to the work of Boey et al. (1998) and Discher

et al. (1998). Based on the observations of Liu et al. (1987), Discher, Boal, and

Boey propose to model the mechanics of RBCs using a quasi-two-dimensional network

with hexagonal symmetry (including 12 topological defects, which are needed to cover
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Fig. 3.3. Illustration of the network with its intrinsic quantities used in the discrete models
of Discher et al. (1998) and Li et al. (2005).

a sphere with a hexagonal net). Because experiments show that the assumption of

a spectrin network with a strict hexagonal symmetry might be oversimplified, the

approach has been extended to more general topologies by Li et al. (2005).

The degrees of freedom of the model are the actin vertex coordinates {xn}n∈1...N

(see Fig. 3.3). All intrinsic quantities of the model can be expressed in terms of these:

Li = |xm − xn|,
Aα = |(xm − xl)× (xn − xl)|/2,
xα = (xl + xm + xn)/3,

θαβ = ± arccos (nα · nβ),

where Li is the length of a spectrin link i ∈ 1 . . . S, connecting the vertex pair (m, n),

Aα is the area of the triangle α ∈ 1 . . . Π, formed by the vertex triplets (l, m, n), and

xα it’s centre of mass. It is assumed that the unit normal nα points outwards the

cell interior. θαβ is the spontaneous curvature angle between two adjacent triangles.

Two triangles α and β are considered to be adjacent if they share a common spectrin

link. The total area of the cell is given by Atotal =
∑

α Aα and the total volume by

Ωtotal = 1
3

∑
α(xα·nα)Aα, since the continuum divergence theorem |Ω| = 1

3

∫
∂Ω(x·n)dµ

holds.

Li et al. (2005) have invoked the physical hypothesis, that the spectrin network

undergoes constant remodelling to always relax the in-plane shear elastic energy to

zero at any macroscopic shape, at some slow characteristic time scale. This implies

that the spectrin network has no “strict” hexagonal symmetry as proposed by Discher

et al. (1998). The topologies used by Li et al. (2005) have been generated by quite

elaborated Monte Carlo schemes. For each simulation of an optical tweezer experiment

the topology of the network is frozen, which is reasonable since the time scale of net-

work remodelling should be larger than the time scale of optical tweezer experiments,
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which is in the order of seconds. The actual shape of the RBC is determined according

to the following model.

Model 3.1 (Discher et al., 1998; Li et al., 2005). The shape of the RBC minimises

the free energy:

FL0({xn}) = FL0,in-plane + FL0,bending + Fsurface constraint + Fvolume constraint,

where the different terms are explained below.

The subscript L0, used above, indicates the typical length scale of the discrete

network. Later on, it will be replaced by ε to coincide with the notation used in

Chapter 2. The non-physical energies

Fvolume constraint =
kvolumekBT (|Ωcell| − Vdesired)2

2L3
0Vdesired

(3.2)

and

Fsurface constraint =
ksurfacekBT (|∂Ωcell| − Adesired)2

2L2
0Adesired

(3.3)

account phenomenologically for the incompressibility of the cytosol and of the lipid

bilayer.

Due to the fluid character of the lipid bilayer it cannot sustain shear stress, never-

theless it possesses a bending stiffness and a large compressional stiffness (It is often

assumed to be incompressible). Here, it is assumed that these two stiffnesses can be in-

cluded into the cytoskeleton since it is anchored to the lipid bilayer via anchor proteins.

I.e. the effects of the lipid bilayer are assumed to be represented as coarse-grained lo-

cal free energies, such that only the degrees of freedom of the cytoskeleton need to be

considered. The compressional stiffness is already included in Fsurface constraint and the

bending stiffness is modelled by the free energy

FL0,bending =
∑

adjacent α, β pair

kbend[1− cos(θαβ − θ0)],

in which kbend is the average bending modulus of the lipid membrane and θ0 is the

spontaneous curvature. The “discrete” functional can be related to the continuous

bending functional of Canham and Helfrich (Canham, 1970; Helfrich, 1973)

Fbending =
κ

2

∫

Γ

(H −H0)
2dµ + κg

∫

Γ

Kdµ, (3.4)

with cell membrane Γ, bending elasticity moduli κ, κg, mean curvature H = C1 + C2,

Gauss curvature K = C1C2, principal curvatures C1, C2, and the constant H0, which

represents the spontaneous curvature.
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The in-plane free energy of the bilayer membrane and the cytoskeleton, which

is the dominant term in the context of large deformations (e.g. in optical tweezer

experiments), is given by

FL0,in-plane =
∑

i ∈ links

V %
WLC(Li) +

∑

α ∈ plaquettes

C%

Aq
α
, (3.5)

where Li is the length of the spectrin link i and Aα is the area of the triangular

plaquette α. C% > 0 and q > 0 are constants. The first term in (3.5) is the entropic

energy stored in the spectrin links (see also Appendix C). It is assumed that the energy

is given by the worm-like chain model introduced by Marko and Siggia (1995), which

is widely used and tested for DNA. The energy is given by

V %
WLC(L) = −

∫ L

0

fWLC(ξ)dξ =
kBTL2(2L − 3Lmax)

4p(L − Lmax)Lmax
,

where fWLC(·) is the force versus chain length relationship given by Marko and Siggia

(1995), Lmax is the maximum or contour length of the chain, L the instantaneous

length of the chain, and p the persistence length. Considering only V %
WLC in (3.5), the

minimum of FL0,in-plane corresponds to a collapsed network. However, due to repulsive

forces of steric interactions (i.e. entropic forces) the network does not collapse. The

end-to-end distance of the spectrin filaments is much smaller than their contour length.

Hence, the spectrin fibres are polymer coils with a non-negligible width leading to

repulsion (see Appendix C). Therefore, the second sum is introduced into the model.

It is of a phenomenological origin and accounts for steric interactions (Discher et al.,

1998). In addition, it accounts for the elastic energy stored in the lipid membrane

and other protein materials (Li et al., 2005). Because these terms depend only on the

plaquette areas {Aα} there is no shear stress contribution. Often the case q = 1 is

adopted (Discher et al., 1998; Li et al., 2005).

The bending stiffness energy FL0,bending corresponds to the Canham-Helfrich energy

given in (3.4) and is therefore well understood. Parameters can be obtained relatively

easily from experiments (Mohandas and Evans, 1994). However, the exact nonlinear

behaviour of FL0,in-plane is not obvious and is based more or less on a heuristic approach.

With respect to exact quantitative simulations, detailed measurements on the discrete

level should be undertaken in the future. A further important issue for the simulation,

e.g. of optical tweezer experiments, is the choice of appropriate reference shapes. Li

et al. (2005) suggest to use an energy minimum shape with respect to the energy

FL0,bending + Fsurface constraint + Fvolume constraint, i.e. neglecting the in-plane energy, since

stresses in the membrane skeleton relax over long time scales. For more details on an

appropriate choice of the reference shape see the original paper.
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The major advantage of discrete models is their simplicity, which allows straight

forward numerical schemes. A typical application is the determination of minimal

energy configurations, i.e. steady states. Using Monte Carlo simulations the calcu-

lated shapes typically agree well with the experimentally observed shapes (Lim et al.,

2002). A drawback of the approach outlined above is the introduction of the more or

less non-physical energies (3.2) and (3.3), which account for the incompressibility of

the volume and membrane.

In view of the derivation of a corresponding continuous macroscopic energy func-

tional, let us rewrite (3.5) in the following way:

FL0,in-plane =
∑

i ∈ links

L2
0

√
3

2
VWLC

(
L
L0

)
+

∑

α ∈ plaquettes

L2
0

√
3

2

C

(Aα/A0)q
,

with A0 =
√

3/4L2
0,

VWLC

(
L
L0

)
=

kBT

2
√

3pLmax

(L/L0)2(2L/L0 − 3Lmax/L0)

(L/L0 − Lmax/L0)

and

C =
2C%Aq

0√
3L2

0

.

Alternatively, using ε = L0 we recover

Fε,in-plane =
∑

i ∈ links

ε2

√
3

2
VWLC

(
L
ε

)
+

∑

α ∈ plaquettes

ε2

√
3

2

C

( Aα

ε2
√

3/4
)q

, (3.6)

which corresponds to the microscopic energies (2.2) considered in Chapter 2.

3.2.2 Static macroscopic models

Microscopic models are computationally very expensive since each fibre of the cy-

toskeleton must be computed. Therefore, often macroscopic continuum models are

preferred.

As already stated, the bending energy of the lipid bilayer is well characterised by

the Canham-Helfrich energy (Canham, 1970; Helfrich, 1973)

Fbending =
κ

2

∫

Γ

(H −H0)
2dµ + κg

∫

Γ

Kdµ, (3.7)

where κ, κg are the moduli of bending elasticity, H is the mean curvature, K the

Gauss curvature, C1, C2 are the principal curvatures, and the constant H0 represents
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the spontaneous curvature (see Appendix B). An extension of the Canham-Helfrich

energy is the so called area difference elasticity model Boal (2002), which is a non-local

model. Therefore often the Canham-Helfrich model is preferred. The network energy

Fin-plane is usually “guessed”, examples of isotropic energies are:

FMukhop. et al. (2002)
in-plane =

K

2

∫

Γ0

(λ1λ2 − 1)2dµ0 +
µ

2

∫

Γ0

(
λ1

λ2
+

λ2

λ1
− 2)2dµ0,

FKuzman et al. (2004)
in-plane =

K

2

∫

Γ0

(λ1 − λ2)
2dµ0 +

µ

2

∫

Γ0

(λ1 + λ2 − 2)2dµ0,

F Lim et al. (2002)
in-plane =

K

2

∫

Γ0

((λ1λ2 − 1)2 + a3(λ1λ2 − 1)3 + a4(λ1λ2 − 1)4)dµ0

+µ

∫

Γ0

(
(λ1 − λ2)2

2λ1λ2
+ b1(λ1λ2 − 1)

(λ1 − λ2)2

2λ1λ2
+ b2

(λ1 − λ2)4

(2λ1λ2)2
)dµ0,

where λ1 and λ2 are the local principal extension ratios. Furthermore, K is the stretch-

ing modulus and µ the shear modulus. The energies depend on both, the relaxed shape

and on the way it is actually distributed. In order to calculate the energy we need to

specify nominal relaxed shapes, which has been discussed in Section 3.2.1.

Discretising the macroscopic continuum models using a triangularisation of the

RBC’s membrane, discrete formulations similar to the microscopic model outlined in

Section 3.2.1 are recovered. Using the principle of energy minimisation, these ap-

proaches have been successfully applied e.g. in the explanation of the different shapes

observed in the experiments (Lim et al., 2002).

3.2.3 Derivation of a Macroscopic Model for Fin-plane

In the following, we derive a continuous energy functional from the microscopic model

outlined in Section 3.2.1, i.e. the discrete energy of a single RBC is given by Model

3.1. However, the only “true” discrete energy is the in-plane energy Fε,in-plane, which

represents the energy contribution of the discrete spectrin cytoskeleton / membrane

skeleton. We do not consider the energies Fsurface constraint and Fvolume constraint because

they have no direct physical meaning, and the discretisation Fε,bending of the Canham-

Helfrich energy, which has a natural continuous counterpart.

For the derivation of the macroscopic energies, it is necessary to introduce some reg-

ularisations of the membrane skeleton energy (3.6), since it does not fulfil

Assumption 2.1 required by Theorem 2.6. For mathematical reasons, we therefore

consider only approximations of the energy (3.6). Further, we restrict ourselves to

periodic networks with hexagonal symmetry, which might not be the case (c.f. Section

3.1). Li et al. (2005) consider rather networks dominated by degree-6 junctions, which

should be relatively “close” to networks with a solely hexagonal structure.
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Assumption 3.2.

• In-plane deformations are characterised by the discrete energy

Fε,in-plane =
∑

i ∈ links

ε2

√
3

2
ṼWLC(Li/ε) +

∑

α ∈ plaquettes

ε2

√
3

2

C

(Aα/(ε2
√

3/4))q + η
. (3.8)

Here, the constant η is a regularisation term and ṼWLC(Li/ε) is an expansion

of VWLC(Li/ε) of order p around 1. That is, we consider energies approximat-

ing (3.6) given by Discher et al. (1998).

• We restrict ourselves to the two-dimensional tangent space of the membrane,

since Fε,in-plane is independent of deformations perpendicular to the membrane.

Let F̃ Γ ∈ R2×2 with det F̃ Γ > 0 (orientation is preserved) be the corresponding

surface deformation tensor in the continuous case.

• The network has a hexagonal symmetry.

Theorem 3.3. Let Assumption 3.2 be true. Then the discrete energy Fε,in-plane

Γ-converges in the limit ε → 0 to a continuous energy functional Fin-plane =
∫

Γ Ψdµ.

The energy density Ψ is given by the following homogenisation formula :

Ψ =
1

2

∑

i=1...6

ṼWLC(L̃i) + 2
C

(Ãq + η)
, (3.9)

with the constant η > 0, the lengths L̃i = |F̃ Γ · ξi| of the deformed links in the “unit

cell” and the areas Ã = | det F̃ Γ| of the triangles in the “unit cell”. The displacement

of the deformation is given by the two-dimensional surface deformation tensor F̃ Γ in

the tangent space and the vectors ξi ∈ Gξ with |ξi| = 1 corresponding to the spectrin

edges in the undeformed “unit cell”.

For notational convenience, we consider two-dimensional deformations in the tan-

gent space (c.f Appendix B). The corresponding deformation tensor F̃ Γ ∈ R2×2 can

be related to the three-dimensional surface deformation tensor F Γ ∈ R3×3. The latter

is given by F Γ ≡ F ·P0 = P ·F ·P0, where P0 = I−n0⊗n0 is the surface projection

operator with respect to the reference configuration (indicated by the subscript 0) and

P = I −n⊗n the one with respect to the current configuration (n0 and n are outer

unit normals of the surface).

Proof. Using Li = ε|Dξi
ε χ| and Aα = ε2

√
3/4A!ε χ, the discrete energies Fε = Fε,in-plane

given in Assumption 3.2 are of the type (2.2). Because ṼWLC is a super-linear growing

function and C
((·)q+η) is a bounded function, Assumption 3.2 is consistent with the one

of Theorem 2.6 in Chapter 2. Hence, the discrete energies Fε = Fε,in-plane Γ-converge

to the continuous functional F (χ) =
∫

Ω Ψ(∇χ)dµ, where Ψ can be characterised by a

minimisation problem on a growing domain, i.e. by homogenisation formula (2.5).
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Since ṼWLC, | · |, and C
((·)q+η) are convex functions, we can apply Theorem 2.9.

Therefore, Ψ is given by the following cell problem

Ψ(M) =
1

2

∑

ξ∈Gξ

fL (M · ξ) + 2fA (det (M)) ,

which completes the proof.

The energy Fin-plane given in (3.9) is generally not isotropic with respect to surface

deformations (see below). However, the proposed macroscopic energies, reviewed in

Section 3.2.2, depend only on invariants of the surface deformation tensor and hence are

isotropic. Since the symmetry of the network is only roughly hexagonal, an isotropic

dependence seems to be more realistic. But our ansatz requires the assumption of

hexagonal symmetry for the sake of a homogenisation formula, therfore we will need

to account heuristically for the imperfect symmetry by some type of averaging. A

rigorous approach is an open problem.

For the derivation of Theorem 3.3, we work with expansions instead with VWLC

itself. This is only due to technical reasons and might be lifted as outlined in Discussion

2.6. So far, a rigorous treatment of the interchange of expansions and Γ-convergence

is an open problem. Similarly, the regularisation term η in Assumption 3.2 has been

introduced for mathematical reasons. A rigorous extension of the proof to the limit

η → 0 is an open mathematical problem, which should be investigated in the future.

For the rest of this chapter let us assume η = 0.

3.2.4 Characterisation of Fin-plane using invariants of F̃ Γ

Throughout the literature different invariants are used in the context of hyperelastic

materials. Usually, the invariants are expressed in terms of principal stretches λ1 and

λ2. λ2
1 and λ2

2 are the eigenvalues of the tensor (F̃ Γ)T · F̃ Γ, alternatively of the tensor

F̃ Γ · (F̃ Γ)T . We work with the following invariants, similar to the ones proposed by

Skalak et al. (1973):

I1 = JΓ − 1 and I2 = tr (F̃ Γ · (F̃ Γ)T )− 2

= λ1λ2 − 1 = λ2
1 + λ2

2 − 2,
(3.10)

which appear naturally in the derivation. Here, JΓ = det F̃ Γ > 0 (We consider only

deformations preserving the orientation.) is the surface Jacobian. These invariants

are normalised such that they are zero if no stretches are present, i.e. λi = 1. For a

comparison of the invariants with the ones found in the literature see Table 3.2.

Let us try to relate the invariants (3.10) to the corresponding three-dimensional

surface deformation tensor F Γ ≡ F · P0 ∈ R3×3 with det F > 0 (orientation is pre-

served). The eigenvalues of the symmetric tensor F ΓT · F Γ are λ2
1, λ2

2, and zero,

where the former eigenvalues are the eigenvalues of (F̃ Γ)T · F̃ Γ. We therefore have
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Skalak et al. (1973) I%
1 = (I2 + 1)2 − 1 I%

2 = I1

Evans and Skalak (1980) α =
√

I2 + 1 β =
I1 + 2

2
√

I2 + 1
− 1

Barthés-Biesel and Rallison (1981) ΛS
1 =

1

2
ln I2 + 1 ΛS

2 =
1

2
I1

McDonald (1996) IV
1 =

1

I2 + 1
+ I1 + 2 IV

2 = I1 + I2 + 3

Table 3.2. Invariants of F̃ Γ used in the literature

I2 = tr (F Γ · F ΓT
)−2, but I1 /= det F = 0. Let t1 and t2 be two orthogonal vectors in

the tangent space of the surface. Then, the “Jacobian” JΓ of the surface deformation

is given by JΓ =
√

det g with the metric tensor

(g)ij = (F Γ · ti)
T · (F Γ · tj) with i, j ∈ {1, 2} (3.11)

(c.f. Appendix B), rather than by det F Γ. We have

I1 = JΓ − 1 =
√

det g − 1 and I2 = tr (F Γ · (F Γ)T )− 2. (3.12)

For notational convenience, we work however in the following with the F̃ Γ, rather than

F Γ.

The derivation of formula (3.9) is restricted to expansions of VWLC for mathematical

reasons (Assumption 3.2). Let us consider Taylor expansions in terms of L̃2
i around

1, i.e. around the length in the reference configuration. A further Taylor expansion

of formula (3.9) with respect to Ai around 1, i.e. around the areas in the reference

configuration, yields

Ψ =
1

2

∑

i=1...6

[
Ṽ (1) +

Ṽ ′(1)

2

(
L2

i − 1
)

+
−Ṽ ′(1) + Ṽ ′′(1)

4

(
L2

i − 1
)2

+
3Ṽ ′(1)− 3Ṽ ′′(1) + Ṽ ′′′(1)

8

(
L2

i − 1
)3

]

+2C − 2qC (A− 1) + q(q + 1)C (A− 1)2

− q(q + 1)(q + 2)C

3
(A− 1)3 + h.o.t.,

(3.13)

where primes denote derivatives and Ṽ = ṼWLC for notational convenience.

Now let us determine (L2
i − 1)k and (Ai − 1)k in terms of the invariants I1 and

I2. By definition of the invariants (3.10), we have for the “area” terms in the Taylor

expansion (3.13)

A− 1 = I1. (3.14)
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The tensor (F̃ Γ)T · F̃ Γ is symmetric and positive definite, it can be diagonalised, i.e.

(F̃ Γ)T · F̃ Γ = ΦT ·Λ ·Φ

with Λ = diag(1+1/2(I2+
√

I2
2 + 4I2 − 4I2

1 − 8I1), 1+1/2(I2−
√

I2
2 + 4I2 − 4I2

1 − 8I1))

and a rotation Φ around an angle φ, where I1 and I2 are the invariants given in (3.10).

Using Li(λ1, λ2, φ) = |F̃ Γ · ξi| =
√

ξT
i · (F̃ Γ)T · F̃ Γ · ξi we obtain

L2
i (λ1, λ2, φ)− 12 = (Φ · ξi)

T · (Λ− I) · (Φ · ξi),

which implies for the “length” terms in the Taylor expansion (3.13):
∑

i=1...6

(
L2

i − 1
)

= 3I2,

∑

i=1...6

(
L2

i − 1
)2

=
3

4
(4I2 − 8I1 + 3I2

2 − 4I2
1 ),

∑

i=1...6

(
L2

i − 1
)3

=
3

8
I2(12I2 + 5I2

2 − 12I2
1 − 24I1)

+
3

16
(I2

2 + 4I2 − 4I2
1 − 8I1)

3/2 cos(6φ).

The hexagonal structure of the network is reflected in the terms (L2
i − 1)j with

j > 2. These depend not only on the invariants, but also on cos(6φ), or rather on φ.

As mentioned above, an energy incorporating explicitly the hexagonal symmetry might

not be appropriate and some averaging is necessary. Here, we propose the arithmetic

average over the angle φ:

Ψ%(I1, I2) =

∫ 2π

0

Ψ(I1, I2, φ)dφ. (3.15)

This might be interpreted as a geometry which has not a strictly hexagonal symmetry,

but consists locally of slightly rotated reference cells.

The averaging (3.15) allows us to drop the dependence on the angle φ in (3.13)

and therefore yields

Ψ% = 3Ṽ (1) +
3Ṽ ′(1)

4
I2 +

3(−Ṽ ′(1) + Ṽ ′′(1))

32
(4I2 − 8I1 + 3I2

2 − 4I2
1 )

+
3(3Ṽ ′(1)− 3Ṽ ′′(1) + Ṽ ′′′(1))

128
I2(12I2 + 5I2

2 − 12I2
1 − 24I1)

+ 2C − 2qCI1 + q(q + 1)CI2
1 −

q(q + 1)(q + 2)C

3
I3
1 + h.o.t..

(3.16)

Since the averaging (3.15) is quite heuristic, some better approaches might exist and

alternatives should be investigated (see Discussion 2.6).

In principal, the isotropic averaged energy Ψ% can be compared with the different

energies proposed in the literature, i.e. we can calculate the coefficients of the pro-

posed energies from microscopic models rather than “guessing” them. However, the
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comparison is rather difficult as a wide variety of invariants is used in the literature,

c.f. Table 3.2.

For the rest of this chapter, we adopt the following assumptions:

Assumption 3.4.

• The membrane skeleton is initially not stressed.

• We restrict ourselves to Taylor expansions of (3.9) up to order (L2
i − 1)2, and

accordingly (A− 1)2.

• Without restriction of generality, we consider normalised energies such that

E = 0 if I1 = I2 = 0.

The assumption of an initially unstressed membrane skeleton might not hold true.

Prestress is an important concept in biology (Ingber, 2003) and also might play a role

in RBCs (Boey et al., 1998). However, this assumptions enables us to determine the

constant C, as we will see below. The restriction to Taylor expansions of (3.9) of

order (L2
i − 1)2 and accordingly (A− 1)2 implies that the hexagonal structure of the

membrane skeleton is not reflected in the energy Ψ since we drop terms including the

angle φ. Therefore, it is not necessary to average energies as in (3.16) and we have

Ψ = Ψ%. Considering higher terms might not be appropriate due to the relatively rude

microscopic model. The restriction to normalised energies in Assumption 3.4 is only

for notational convenience.

For the moment, let us consider a deformation consisting only of compression,

or alternatively dilatation, to determine the constant C using the assumption of an

initially unstressed network. In the case of compression alone we have I2 = 2I1.

Considering only linear terms in I1 and I2 of (3.16), we obtain

Ψ =
3Ṽ ′(1)

4
I2 − 2qCI1 + h.o.t.. (3.17)

Because we have assumed that the network is initially unstressed, the energy (3.17)

should be at a minimum and hence all linear terms should vanish. We therefore have

C =
3Ṽ ′(1)

4q
. (3.18)

The same result is obtained, if we work with the direct characterisation (3.13) rather

than with the invariants I1 and I2. Using Assumption 3.4 and expression (3.18), we

can rewrite (3.16) in the following way

Ψ =
3

16
(3Ṽ ′(1) + Ṽ ′′(1))(I2 − 2I1) +

9

64
(−Ṽ ′(1) + Ṽ ′′(1))I2

2

+
3

16
((4q + 5)Ṽ ′(1)− Ṽ ′′(1))I2

1 .
(3.19)
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Let us first consider the case q /= 1. Simple algebraic manipulations of expression

(3.19) yield:

Ψ =
µ

2
(I2 − 2I1)−

3(K − µ(q + 1))

8(q − 1)
I2
2 +

3K − (5 + q)µ

2(q − 1)
I2
1

with

µ =
3(3Ṽ ′(1) + Ṽ ′′(1))

8
,

K =
3((1 + 2q)Ṽ ′(1) + Ṽ ′′(1))

4
.

The suggestive notation used here implies indeed that K is the modulus of rigidity

and µ the modulus of hydrostatic compression. This can be verified by calculating the

corresponding stress tensor of the energy density Ψ (c.f. Section 3.2.5) and considering

infinitesimal deformations, i.e. its linearisation. In the case q = 1, we obtain

Ψ =
µ

2
(I2 + 2I2

1 − 2I1) + β(I2
2 − 4I2

1 )

with

µ =
K

2
=

3(3Ṽ ′(1) + Ṽ ′′(1))

8
,

β =
9(−Ṽ ′(1) + Ṽ ′′(1))

64
,

which agree with the expressions above. The case q = 1 implies µ = K
2 , which agrees

quite well with the experimental results found by Lenormand et al. (2001), see also

Table 3.6. The constant β has no direct interpretation in a linear theory.

For the rest of this chapter, we restrict ourselves to the case q = 1.

Corollary 3.5. Adopting Assumption 3.4 and choosing q = 1, Theorem 3.3 implies

the following characterisation for the membrane skeleton in terms of invariants of

the deformation tensor:

Ψ =
µ

2
(I2 + 2I2

1 − 2I1) + β(I2
2 − 4I2

1 ) (3.20)

with µ and β as given above. The constant µ is the modulus of hydrostatic compres-

sion and the constant β determines the nonlinear behaviour (It does not influence

the linear part of the mechanics.).

Li et al. (2005) propose the following parameters for the worm-like chain model

VWLC (see Section 3.2.1):

L0 = 75.0nm, Lmax = 237.6nm,

p = 7.5nm, T = 300K.
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Together with the Boltzmann constant kB = 1.38 · 10−23 J
K , we obtain from (3.2.4)

µ =
K

2
= 8.30 · 10−6N

m
,

β = 0.25 · 10−6N

m
,

which agrees well with the results of Li et al. (2005), who are using a similar approach.

3.2.5 Variational derivation of a model for red blood cells

The models considered above are all based on an energetic description. It is a static

approach and actual shapes of RBCs are determined by energy minimisation. In the

following, we derive corresponding forces / stress tensors using variational methods

as explained in Section 2.4. From these we can easily determine minimal energy

configurations using the principle of virtual work (see Section 2.4.1). At the same

time the derivation of the forces allows us to describe the RBC in the framework of

momentum balance. Given an appropriate stress tensor σcytosol for the cytosol, the

mechanics of the RBC are completely determined within a dynamic theory.

Assumption 3.6.

• The membrane of the RBC is considered as a two-dimensional hypersurface in

R3.

• The bending energy of the membrane is given by the Canham-Helfrich energy

(3.7).

• The in-plane energy of the membrane-bound spectrin skeleton is given by the

homogenised energy (3.9) with η = 0, i.e. energy (3.20).

In microscopic descriptions of the RBCs (Section 3.2.1), the energies corresponding

to bending and in-plane deformations are not coupled. Therefore, also the correspond-

ing forces are not coupled. The momentum balance on the cell membrane, which is a

two-dimensional hypersurface, reads:

(σcytosol − σout) · n = N + T ,

where σcytosol is the stress tensor of the cytosol, σout the stress tensor of the ambi-

ent medium, n the outward unit normal vector, N the force due to resistance to

bending, and T the force due to in-plane stresses. The membrane forces N and T

are determined by the steepest decent of the L2- gradient of the membrane energy

(Section 2.4).
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Resistance to bending

Since the energies are decoupled, we can neglect the in-plane energy, i.e. in-plane

stresses, for the moment. Normal forces N are uniquely due to the resistance of the

membrane to bending. Let the bending energy of the membrane be given by the

Canham-Helfrich energy (Canham, 1970; Helfrich, 1973)

Fbending =
κ

2

∫

Γ

(H −H0)
2dµ + κg

∫

Γ

Kdµ, (3.21)

where Γ is the membrane, κ, κg are the moduli of bending elasticity, H = C1+C2 is the

mean curvature, K = C1C2 is the Gauss curvature, Ci are the principal curvatures, and

the constant H0 is the spontaneous curvature. The Gauss-Bonnet theorem (Willmore,

1993) states that the integral over the Gauss curvature depends only on the topology

and not on the shape of Γ. Because we allow only variations over a fixed topology, the

integral
∫

Γ Kdµ is constant and can therefore be neglected.

Under the assumption that the normal force N is determined by the steepest

decent of the L2-gradient of Fbending, we have
∫

Γ

N · (nφ)dµ = −
〈
F ′

bending, φ
〉

= − d

dε

κ

2

∫

Γε

(Hε −H0)
2dµε

∣∣∣∣
ε=0

,
(3.22)

with Hε = H(Xε), dµε = dµ(Xε), and Xε = X + εnφ. Here, n is the outer unit

normal of the surface Γ and φ ∈ C∞(Γ;R) is an arbitrary test function. It is sufficient

to consider only variations εnφ, since a variation in the normal direction completely

describes the evolution of the interface. Following Willmore (1993, Chapter 7.4, Atten-

tion, Willmore uses a different definition of mean curvature, i.e. HWillmore = −H/2),

the variation of the mean curvature is given by

d

dε
Hε

∣∣∣∣
ε=0

= −∆Γφ− φ|∇Γn|2

= −∆Γφ− φ(H2 − 2K)

and the variation of the integration measure is given by

d

dε
dµε

∣∣∣∣
ε=0

= φHdµ.

Here, ∇Γ is the surface gradient and ∆Γ is the Laplace-Beltrami operator (surface

Laplace). We have ∇Γ = P · ∇, where P = I − n ⊗ n is the projection operator to

the surface (see Appendix B). Hence, we recover from expression (3.22)
∫

Γ

N · (nφ)dµ =
κ

2

∫

Γ

[2(H −H0)(∆
Γφ + φ(H2 − 2K))− (H −H0)

2φH]dµ

= κ

∫

Γ

[∆ΓH + (H −H0)(H
2 − 2K)− 1

2
(H −H0)

2H]φdµ,
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where we have used the product rule and Green’s theorem for surfaces (see Appendix

B). Thus, we can determine the equivalent strong formulation of N :

N = κ(∆ΓH + (H −H0)(H
2 − 2K)− 1

2
(H −H0)

2H)n. (3.23)

Setting the material speed v proportional to N and considering the case H0 = 0,

the so-called Willmore flow (see Section 3.3.1) is obtained (Willmore, 1993; Deckelnick

et al., 2005). Considering a constant surface energy density instead of (3.21), a force

proportional to the mean curvature is recovered, i.e. N ∼ Hn. Such a force typi-

cally describes interface tensions and is quite often used modelling capsules and cells

(Pozrikidis, 2003a).

Resistance to in-plane deformations

As derived in Section 3.2.3, the energy corresponding to the resistance to in-plane

deformations is given by (considering η = 0)

Fin-plane =

∫

Γ0

[
1

2

∑

i=1...6

ṼWLC(Li) + 2
C

Aq

]
dµ0 (3.24)

with the initial shape Γ0 of the membrane. As in Section 3.2.3, let us consider for

notational convenience deformations F̃ Γ ∈ R2×2 in the tangent space with det F̃ Γ > 0

(the orientation is preserved). Hence, we have Li = |F̃ Γ · ξi| and A = det F̃ Γ.

Considering variations of the form xε(X) = x(X) + εφ(X) with test functions

φ ∈ C∞(Γ0;R2), we obtain

d

dε
F̃ Γ

∣∣∣∣
ε=0

= ∇Γ
0φ

=
(
∇Γφ

)
· F̃ Γ.

Hence, the variations of the lengths Li =
√

(F̃ Γ · ξi)T · (F̃ Γ · ξi) read:

dLi

dε

∣∣∣∣
ε=0

=
1

2Li
ξT

i ·
(

d(F̃ Γ)T · F̃ Γ

dε

∣∣∣∣
ε=0

)
· ξi

=
1

2Li
ξT

i · (F̃ Γ)T · ((∇Γφ)T + (∇Γφ)) · F̃ Γ · ξi,

where ξi is the vector of the ith link in the undeformed unit cell. Similarly, we obtain

dA
dε

∣∣∣∣
ε=0

= det F̃ Γ tr

((
F̃ Γ

)−1

· dF̃ Γ

dε

∣∣∣∣
ε=0

)

= A tr (∇Γφ),
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where we have used the identity ∂
∂ε det F̃ Γ = det (F̃ Γ) tr ((F̃ Γ)−1 · ∂

∂εF̃
Γ) based on

Jacobi’s formula. Hence, it follows

∫

Γ

T · φdµ = −
〈
F ′

in-plane, φ
〉

= − d

dε
Fin-plane

∣∣∣∣
ε=0

= −
∫

Γ0

[
1

2

∑

i=1...6

1

2Li

∂ṼWLC(Li)

∂Li
ξ̂i · ((∇Γφ) + (∇Γφ)T ) · ξ̂i

− 2q
C

Aq+1
A tr (∇Γφ)

]
dµ0,

where ξ̂i = F̃ Γ · ξi is the vector of the ith link after the deformation F̃ Γ. Integration

by parts yields

∫

Γ

T · φdµ =

∫

Γ0

∇Γ ·
(

1

2A
∑

i=1...6

1

Li

∂ṼWLC(Li)

∂Li
ξ̂i ⊗ ξ̂i − 2q

C

Aq+1
I

)
· φAdµ0, (3.25)

where boundary terms do not need to be considered since Γ0, and accordingly Γ, is a

closed surface. The corresponding strong formulation of this weak characterisation is

given by

T = ∇Γ · τ (3.26)

with the so-called surface stress tensor

τ =
1

2A
∑

i=1...6

1

Li

∂VWLC(Li)

∂Li
ξ̂i ⊗ ξ̂i − 2q

C

Aq+1
I. (3.27)

The stress tensor τ as given in (3.27) reflects the hexagonal symmetry of the

underlying network. As explained in Section 3.2.3, an isotropic energy, and accordingly

an isotropic stress tensor, seems to be more appropriate due to the stochastic nature

of the membrane skeleton. Isotropic energies can be characterised by the invariants of

the surface deformation tensor F Γ alone. Considering the invariants I1 and I2 given

in (3.10), or rather (3.12), the variational approach yields

τ =
2

1 + I1

∂Ψ

∂I2
F Γ · F ΓT

+
∂Ψ

∂I1
P , (3.28)

where P = I −n⊗n is the surface projection operator and Ψ ≡ Ψ(I1, I2) the energy

of the membrane skeleton in terms of the invariants I1 and I2. In the following we

work with this characterisation of τ rather than with expression (3.27).
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Proposition 3.7. Adopting Assumption 3.6, the mechanics of the RBC’s membrane

are given by the following balance law across the membrane

(σcytosol − σout) · n = ∇Γ · τ + κ(∆ΓH + (H −H0)(H
2 − 2K)− 1

2
(H −H0)

2H)n.

Here, σcytosol/outs are the stress tensors of the RBC’s cytosol and the outside medium.

Furthermore, τ is the in-plane stress tensor given by (3.28), i.e.

τ =
2

1 + I1

∂Ψ

∂I2
F Γ · F ΓT

+
∂Ψ

∂I1
P ,

with surface deformation tensor F Γ and invariants I1, I2 given in (3.12).

Typically, it is assumed that the cytosol is well described by the incompressible

Stokes equation, i.e. σcytosol = σStokes. The outside medium is also often considered to

be a Stokes flow. In this case the evolution of the RBC and the surrounding flow can

be simulated efficiently using boundary element methods (Pozrikidis, 2003a). If the

RBC is not immersed in a flow, e.g. as in optical tweezer experiments, the outside flow

can be neglected. It is assumed that the surrounding fluid has a vanishing viscosity

and hence σout = −poutI, where pout is a constant pressure.

In the next section, we compare the model for the RBC’s mechanics given in Propo-

sition 3.7 with other popular continuum models in the literature (see also

Table 3.1). Then in Section 3.2.7, we finally specify the model which we will use

for the simulation of optical tweezer experiments.

3.2.6 Other dynamic models

Discrete models

As in the static case, discrete models are quite popular when considering dynamics

(Noguchi and Gompper, 2005). Such models can not only explain the observed shapes,

but e.g. also the behaviour of RBCs in flow. Starting from the discrete microscopic

model outlined in Section 3.2.1, the derivation of the corresponding forces is analogous

to the concept in the continuum case (Section 3.2.5). Working in a discrete setting, i.e.

in a finite dimensional setting, the algebra simplifies substantially. Another advantage

is the more or less straight forward computational implementation of these models.

A drawback of discrete approaches is that typically each discrete computational

object does not correspond to a physical object, e.g. a spectrin vertex. The number of

physical objects is typically very large such that due to a limitation of computational

resources some coarse graining is necessary. Therefore, one often prefers to work with

a continuum model at first hand and to discretise it appropriately.



3.2. Modelling 43

Fully three-dimensional models

Dao et al. (2003) and Mills et al. (2004) model the membrane as a thin elastic body

with a small, but finite, thickness. This allows them to use standard numerical code

developed for three-dimensional solid mechanics. It is however questionable if a three-

dimensional solid is an appropriate description of the lipid bilayer, which is best de-

scribed as a two-dimensional hypersurface (Boal, 2002).

Thin shell models

From three-dimensional elastic models with a small thickness (e.g. Dao et al., 2003;

Mills et al., 2004) so-called shell models can be derived. These are models which

describe curved, thin-walled structures within a two-dimensional theory (Libai and

Simmonds, 1996). Hence, these theories consider mechanics of a hypersurface em-

bedded in a three-dimensional space, similar to our approach. The equations of shell

mechanics including the corresponding constitutive equations can be derived directly

from a three-dimensional description. However, the more usual approach is to start

from the balance of momentum for thin shells and postulate appropriate constitutive

relations. Following the work of Pozrikidis (2001), the balance of linear momentum

on the cell membrane reads

(σcytosol − σout) · n = ∇Γ · (τ + nq), (3.29)

where inertial effects of the cell membrane are neglected. Here, σcytosol/out are the bulk

stress tensors and τ is the in-plane stress tensor. The transverse shear tension in the

direction of the unit normal vector n exerted on the membrane that is normal to the

tangential unit vector b is given by q ·b. An investigation of the torque balance across

the membrane yields the following relationships

q = P ·
(
∇Γ ·m

)
,

τ − τ T = B ·mT −m ·B,
(3.30)

where P = I−n⊗n is the tangential projection operator, B = ∇Γn is the Cartesian

mean curvature tensor, m the bending moment tensor, and ∇Γ the surface gradient

(see Appendix B). Note, that the stress tensors used within this work are the trans-

posed of the ones considered in the work of Pozrikidis (2001). For a description of cells

within shell theory, typically the following constitutive relations are used (Pozrikidis,

2003a):

τ =
2

1 + I1

∂Ψ

∂I2
F Γ · F ΓT

+
∂Ψ

∂I1
P

m = κ(H −H0)P ,

where the first expression agrees with (3.28), H is the mean curvature, and H0 is a

reference curvature similar to the Canham-Helfrich energy (3.7). Furthermore, F Γ is

the surface deformation tensor and I1, I2 are the invariants given in (3.12).
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The description of in-plane stresses agrees with our approach. However, the de-

scription of the bending resistance of the lipid bilayer differs significantly. The deriva-

tion of the forces considered in our approach is based on the experimentally quite

well verified Canham-Helfrich energy (Canham, 1970; Helfrich, 1973). On the other

hand, the postulated constitutive relation for the bending moment tensor m as given

by Pozrikidis (2001) can be related to the Canham-Helfrich energy only in the case

of an incompressible one-dimensional membrane in a two-dimensional setting. A rela-

tion to a corresponding energy in three dimensions, i.e. considering a two-dimensional

hypersurface, is an open problem.

3.2.7 Modelling optical tweezer experiments

In Section 3.2.5, we have derived a continuum model for the evolution of RBCs. For

a validation, we investigate a typical RBC experiment, namely an optical tweezer

experiment as illustrated in Fig. 3.4 (Hénon et al., 1999; Dao et al., 2003; Li et al.,

2005; Mills et al., 2004).

With respect to modelling, we adopt the following assumptions:

Assumption 3.8.

• Thermodynamical effects (e.g. membrane undulations) are neglected.

• The time scale of the experiment is fast compared to relaxation times.

• Linear momentum and masses are conserved.

• Inertial effects can be neglected, i.e. we consider a quasi-steady situation.

• The mechanics of the RBC membrane are modelled as in Proposition 3.7.

• In-plane stress-strain relationships are given by Corollary 3.5.

• The membrane is incompressible.

• The cytosol is described by the static incompressible Stokes equation.

• The outside medium is described by a constant external pressure pout.

• The optical tweezers are rigid and prescribe the normal direction of deforma-

tion, alternatively the normal force.

• The reference state/initial state is the biconcave shape (3.1) determined by

Evans and Skalak (1980). Due to constant remodelling of the spectrin network,

it should be in a state with zero shear energy (Li et al., 2005).
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laser

deformation
force /

Fig. 3.4. Illustration of a typical optical tweezer experiment.

Then using Assumptions 3.8 the model for an optical tweezer experiment reads:

Model 3.9. Using Assumption 3.8, the full three-dimensional model of an optical

tweezer experiments reads (for some fixed time T ):

du

dt
= v in Ωcell(t)× [0, T ),

bulk mechanics

0 = ∇ · σcytosol in Ωcell(t)× [0, T ),

0 = ∇ · v in Ωcell(t)× [0, T ), (3.31)

surface mechanics

(σcytosol + poutI) · n = T + N on ∂Ωcell(t) \ ∂Ωtweezer(t)× [0, T ),

0 = JΓ − 1 on ∂Ωcell(t)× [0, T ),

t · σcytosol · n = −t · ∇Γ · τ on ∂Ωtweezer(t)× [0, T ),

and in the case of a prescribed bead deformation with normal speed Vn

Vn = n · v on ∂Ωtweezer(t)× [0, T ),

alternatively in the case of a prescribed bead force fforce

n · (σcytosol − poutI) · n = fforce on ∂Ωtweezer(t)× [0, T ).

The evolution of Ωcell(t) is given by the speed on the boundary. We use the following

constitutive relations

σcytosol = −pI + η
(
∇v + (∇v)T

)
,

T = ∇Γ · τ ,

N = κ(∆ΓH + (H −H0)(H
2 − 2K)− 1

2
(H −H0)

2H)n,

τ = −qP +
2

1 + I1

∂Ψ

∂I2
F Γ · F ΓT

+
∂Ψ

∂I1
P .

The energy density Ψ is given by Corollary 3.5, i.e.

Ψ =
µ

2
(I2 + 2I2

1 − 2I1) + β(I2
2 − 4I2

1 )

with I1 = JΓ − 1 and I2 = tr (F Γ · F ΓT
)− 2 (c.f. the definition given in (3.12)).
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Here, u is the material displacement, i.e. the current position of a particle at position

X in the reference configuration is given by x = X + u(X). Further, F Γ denotes the

surface deformation gradient, JΓ the surface Jacobian given by (3.12), v the material

speeds, p the volume pressure, q the surface pressure, n the outer unit normal of the

cell membrane, and t an arbitrary tangential unit vector. In addition, H is the mean

curvature, K the Gauss curvature, ∇Γ the surface gradient, ∆Γ the Laplace-Beltrami

operator, and P the surface projection operator (see Appendix A). Parameters of

Model 3.9 are the constant outside pressure pout, the cytosol viscosity η, the modulus

of bending rigidity κ, the surface shear modulus µ, and the constant β determining

the nonlinear surface elasticity.

The incompressibility of the membrane, i.e. 0 = JΓ − 1 in (3.31), is equivalent to

the condition

0 = ∇Γ · v on ∂Ωcell(t)× [0, T ), (3.32)

which can be easily checked by differentiation of JΓ with respect to time. For a compu-

tational implementation the condition in (3.31) is, however, more suitable since errors

do not accumulate in time. This might be the case considering the incompressibility

condition (3.32).

In Model 3.9, the bulk mechanics are given by the stationary incompressible Stokes

equation. These are second order equations which are quite well studied from an

analytical as well as numerical point of view. The tangential component of the surface

mechanics is a typical example of a hyperelastic material. It is also a second order

equation, which is quite well understood. On the other hand, the normal mechanics of

the lipid bilayer involve fourth order derivatives and the structure is “nearly identical”

to Willmore flow (see Section 3.3.1). From a numerical as well as analytical point of

view only a few studies have been devoted to Willmore flows. Due to the coupling

of the different models, especially the coupling of surface (two-dimensional models

on a hypersurface) with bulk mechanics (three-dimensional models), investigations of

Model 3.9 are quite challenging.

Here, we restrict ourselves to an investigation from a numerical point of view.

Therefore, let us adopt the following assumption. A rigorous analytical treatment is

an open problem which is far beyond the scope of this thesis.

Assumption 3.10. For the rest of this chapter, we assume that solutions of Model

3.9 exist and are sufficiently regular.

The optical tweezer experiment serve not only as a test case (benchmark problem)

for the model derived here, but also as a test case for the development of appropriate

numerical schemes for single cell mechanics. In the next section, we present appropriate

numerical schemes, as well as some simulations.
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3.3 Simulations

Let us first review some typical computational studies of RBCs: Simulations of mi-

croscopic models so far include shape minimisation (Lim et al., 2002; Li et al., 2005),

optical tweezer experiments (Li et al., 2005) and micropipette aspiration experiments

(Discher et al., 1998). Only recently, the dynamics of “discrete” cells suspended in

flow have been investigated (Noguchi and Gompper, 2005). Being interested in steady-

states, the deformed state is usually obtained by energy minimisation using Monte

Carlo methods. Otherwise an integration of the Newtonian equations of motion is

used.

Simulations of continuum models include optical tweezer experiments (Dao et al.,

2003; Mills et al., 2004) and the evolution of RBC cells in flow (Pozrikidis, 2001,

2003a,b, 2005). Only in the latter case a two-dimensional continuum theory has been

used for the description of membrane mechanics. However, as discussed in Section

3.2.6, the formulation of Pozrikidis does not coincide with the variation of the Canham-

Helfrich energy, which is probably more realistic and is investigated here. Using shell

theory, i.e. considering explicitly the coupling of mechanics of a hypersurface with

bulk material, boundary element methods are typically used. Since boundary element

methods require the Stokes equation for the fluid, they are restricted only to a small

class of problems.

Here, we use a Lagrangian approach for the simulation of optical tweezer exper-

iments. The approach is very general and can be extended easily to more complex

equations. For the simulations, we use the software library Gascoigne (Becker et al.,

2007), which allows a quite flexible handling. All visualisation is done with the visu-

alisation toolkits VisuSimple (Becker et al., 2007) and ParaView (Kitware Inc.).

Our approach is similar to the one of Drury and Dembo (1999, 2001), who consid-

ered neutrophils. However, it is not restricted to two dimensions and allows implicit

time stepping schemes. Here, we need to consider a three-dimensional setup because

the initial rotational symmetry of the RBC is not conserved during an optical tweezer

experiment. Further, our approach to membrane mechanics is based on the Canham-

Helfrich energy, which suggest the use of implicit schemes. A variational formulation

of the Canham-Helfrich energy corresponds to Willmore flows, which involve spatial

derivatives of fourth order. Explicit time stepping schemes would imply very small

time steps (Clarenz et al., 2004), thus implicit schemes are the method of choice.

As a test case for the validation of the derived models and numerical schemes, we

consider a typical optical tweezer experiment (Hénon et al., 1999; Dao et al., 2003; Li

et al., 2005; Mills et al., 2004). The main difficulty in the simulation of cell mechanics

is the calculation of the membrane forces given by (3.23). As already stated, this

problem is equivalent to Willmore flows, a typical problem of curvature dependent

interface motion governed by geometric partial differential equations. Therefore, we

first study some problems related to curvature dependent interface motion. These
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are used to develop appropriate numerical schemes and to perform some basic tests,

investigating convergence properties of the applied schemes.

3.3.1 Interface motion

Curvature dependent interface motion governed by geometric partial differential equa-

tions is a wide research topic in mathematical as well as in numerical analysis. A main

idea from a computational point of view is the characterisation of the curvature via

the Laplace-Beltrami operator of the interface parametrisation. This characterisation

allows a weak formulation in a straight forward way, and simplifies in some cases the

equations. For a general overview on interface motion, we would like to refer to the

review of Deckelnick et al. (2005).

Often (apart from level set approaches) it is enough to consider all involved quan-

tities on the hypersurface alone, i.e. the grid underlying the computations is also a

hypersurface. But as we are interested in a coupling of membrane mechanics with

bulk mechanics, we also need to incorporate the bulk medium enclosed by the mem-

brane. Therefore, we consider the problem of curvature dependent interface motion

as a bulk problem (formulated in the Lagrangian coordinate system). Solutions of

the geometric partial differential equations on the interface are implicitly coupled with

Laplace-equations in the interior (bulk problems) via weak Dirichlet boundary condi-

tions.

The approach taken here is validated by the investigation of some well studied test

cases: mean curvature flow (Dziuk, 1991), surface diffusion (Bänsch et al., 2005), and

Willmore flow (Clarenz et al., 2004).

Strong formulation of the problem

To be more precise, we consider the following models:

Model 3.11. An embedding of two-dimensional surface evolution determined by mean

curvature flow, surface diffusion, or Willmore flow in a three-dimensional space is

given by the bulk equation

du

dt
= v in Ω(t)× [0, T ),

0 = ∆v in Ω(t)× [0, T )

with Dirichlet boundary conditions

v = vΓ
mean curv / surf diff /Willmore on ∂Ω(t)× [0, T ),

Y = −∆Γx on ∂Ω(t)× [0, T ).
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for some fixed time T > 0. The evolution vΓ of the surface is given by

vΓ
mean curv = −Y = −Hn on ∂Ω(t)× [0, T )

in the case of mean curvature flow, by

vΓ
surf diff = (∆ΓH)n on ∂Ω(t)× [0, T )

in the case of surface diffusion, and by

vΓ
Willmore =

(
∆ΓH + H

(
1

2
H2 − 2K

))
n on ∂Ω(t)× [0, T )

in the case of Willmore flow.

Here, u is the material displacement, i.e. the current position of a particle at

position X in the reference configuration is given by x = χ(X) = X + u(X), and v

is the material speed. In addition, Y is the mean curvature vector, H = C1 + C2 =

Y · n is the mean curvature (C1 and C2 are the principal curvatures), K = C1C2 =
1
2H

2− 1
2 |∇

Γn|2 is the Gauss curvature, ∇Γ the tangential gradient, ∆Γ is the Laplace-

Beltrami operator, and n the outer unit normal to ∂Ω(t). In the case of mean curvature

flow, the introduction of the mean curvature vector Y as an additional variable is of

course not necessary.

Weak formulation of the problem

Finite element methods are based on weak formulations of the considered problems.

Let us therefore derive the corresponding weak formulations of Model 3.11. In the

case of mean curvature flow, the weak formulation reads:

Model 3.12. The componentwise weak formulation of Model 3.11 considering mean

curvature flow is given by the bulk part

∫

Ω(t)

φ
du

dt
dµ =

∫

Ω(t)

φvdµ,

0 =

∫

Ω(t)

(∇v) · (∇φ)dµ

with v = vΓ on ∂Ω(t) in the weak sense and the surface part

∫

∂Ω(t)

φΓvdµ = −
∫

∂Ω(t)

(∇ΓxΓ) · (∇ΓφΓ)dµ,

where φ ∈ C∞
0 (Ω(t);R) and φΓ ∈ C∞(∂Ω(t);R) are arbitrary test functions.
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Multiplying the equations in Model 3.11 with test functions φ ∈ C∞
0 (Ω(t);R) and

φΓ ∈ C∞(∂Ω(t);R), the weak formulation 3.12 is recovered after partial integration.

Since ∂Ω is closed, no additional boundary conditions for vΓ have to be considered.

The derivation of a corresponding weak formulation for surface diffusion is outlined

in the work of Bänsch et al. (2005). For an appropriate weak formulation with respect

to numerical implementation the mean curvature H and the normal surface speed V Γ
n

have to be introduced as additional variables:

Model 3.13. The componentwise weak formulation of Model 3.11 in the case of surface

diffusion is given by the bulk part
∫

Ω(t)

φ
du

dt
dµ =

∫

Ω(t)

φvdµ,

0 =

∫

Ω(t)

(∇v) · (∇φ)dµ

with v = vΓ on ∂Ω(t) in the weak sense and the surface part
∫

∂Ω(t)

φΓvΓdµ =

∫

∂Ω(t)

φΓV Γ
n ndµ,

∫

∂Ω(t)

φΓY dµ =

∫

∂Ω(t)

(∇Γx) · (∇ΓφΓ)dµ,
∫

∂Ω(t)

φΓHdµ =

∫

∂Ω(t)

φΓY · ndµ,
∫

∂Ω(t)

φΓV Γ
n dµ = −

∫

∂Ω(t)

(∇ΓH) · (∇ΓφΓ)dµ,

where φ ∈ C∞
0 (Ω(t);R) and φΓ ∈ C∞(∂Ω(t);R) are arbitrary test functions.

The weak formulation of Model 3.11 considering Willmore flow is given by

Model 3.14. The componentwise weak formulation of Model 3.11 in the case of Will-

more flow is given by the bulk part
∫

Ω(t)

φ
du

dt
dµ =

∫

Ω(t)

φvdµ,

0 =

∫

Ω(t)

(∇v) · (∇φ)dµ

with v = vΓ on ∂Ω(t) in the weak sense and the surface part
∫

∂Ω(t)

φΓvΓdµ =

∫

∂Ω(t)

−1

2
|Y |2(∇Γx) · (∇ΓφΓ) + (∇ΓY ) · (∇ΓφΓ)

−2n⊗ n · (∇ΓY ) · (∇φΓ)dµ,∫

∂Ω(t)

φΓY dµ =

∫

∂Ω(t)

(∇Γx) · (∇ΓφΓ)dµ,

where φ ∈ C∞
0 (Ω(t);R) and φΓ ∈ C∞(∂Ω(t);R) are arbitrary test functions.
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Eulerian Coordinate System Lagrangian Coordinate system

∫

Ω(t)

. . . dµ

∫

Ω(0)

. . . Jdµ0

∫

∂Ω(t)

. . . dµ

∫

∂Ω(0)

. . . JΓdµ0

∇φ (∇0φ) · F−1 = (F−T · ∇0)φ

∇Γφ = ((I − n⊗ n) · ∇0)φ ∇Γφ = ((I − n⊗ n) · F−T · ∇0)φ

Table 3.3. Differential and integral operators appearing in Model 3.12 - 3.14 in Lagrangian
and Eulerian formulations. Here, J = detF is the Jacobian of the deformation tensor
F = ∇0x, JΓ =

√
det g is the surface Jacobian with the metric tensor g (see expression

(3.11) or Appendix B), and n the outer unit normal of Ω(t).

Multiplying the equations in Model 3.11 with test functions φ ∈ C∞
0 (Ω(t);R) and

φΓ ∈ C∞(∂Ω(t);R), the weak formulation 3.14 is recovered after partial integration,

except the equation determining vΓ
Willmore. The derivation of the latter is less straight

forward, because the corresponding strong formulation 3.11 is not given in a diver-

gence form. One possible derivation of the weak formulation starting directly from

the variation of
∫

Γ H2dµ has been proposed by Rusu (2005). Here, we would like

to refer to Section 3.3.2, where we outline a weak formulation of the normal forces

N = κ(∆ΓH + (H −H0)(H2 − 2K)− 1
2(H −H0)2H)n. The normal forces N are de-

rived in Section 3.2.5 from a variation of the more general surface energy
∫

(H−H0)2dµ

with resting curvature H0. Choosing H0 = 0, the Willmore flow vWillmore is recovered.

Note that the weak formulation of Willmore flows in Model 3.14 involves only first or-

der spatial derivatives, whereas the original strong formulation (Model 3.11) is a fourth

order problem. With respect to computations this is a significant simplification.

Numerical implementation

The strong and weak formulations of the surface evolution given above are all based on

the Eulerian description. The Lagrangian description is, however, more appropriate

with respect to implementation using standard finite element packages. Consider-

ing the Lagrangian coordinate system instead of the Eulerian for Models 3.12-3.14,

differential and integral operators have to be transformed appropriately. The corre-

sponding transformations can be derived by successive applications of the chain rule

and are shown in Table 3.3.

The definition of the tangential surface gradient ∇Γ given in Table 3.3 is equivalent

to the following definition, which is probably more common: given a local parametri-

sation x(u1, u2) of the surface, the tangential gradient can be formulated using the
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(a) (b) (c)

Fig. 3.5. Typical discretisations: (a) initial discretisation; (b) discretisation with one global
refinement (12 surface quadrilaterals); (c) discretisation with one global refinement and 2
refinements in the vicinity of the surface (192 surface quadrilaterals)

metric tensor g (see see expression (3.11) or Appendix B)

∇Γφ(u1, u2) =
2∑

i,j=1

(
gij ∂φ (u1, u2)

∂ui

∂x (u1, u2)

∂uj

)
,

where gij and gij are the components of the metric tensor and the inverse of the metric

tensor, respectively.

Using the transformations to the Lagrangian coordinate system, Models 3.12-3.14

have been implemented using the finite element library Gascoigne (Becker et al.,

2007). The software package Gascoigne does not allow to distinguish between surface

and bulk variables. Hence, variables defined only on the boundary have to be extended

appropriately. Here, we have chosen an extension by Laplace’s equation. The surface

speed vΓ and the bulk speed v are considered as one variable, which allows a direct

implicit coupling. Since the weak formulations 3.12 - 3.14 of Model 3.11 involve only

first order derivatives, we use tri-linear finite elements in the bulk part and accordingly

bi-linear finite elements on the surface. The evolution in time is discretised using

implicit schemes, e.g. Euler or Fractional-Theta schemes. Using Newton’s method,

the resulting nonlinear systems are solved. Corresponding linearisations are solved

with a GMRES preconditioner and a multigrid method.

The finite element toolkit Gascoigne offers the possibility of local mesh refine-

ment, which allows a reduction of computational effort. In the case of surface evolution

problems, the extension to the interior is only an auxiliary problem and does not re-

quire a high accuracy. We therefore always choose an adaptive discretisation refined

in the vicinity of the surface (see Fig. 3.5). Most of the applications we consider have

reflection symmetries with respect to the coordinate planes. This allows us to consider

only one eighth of the object, reducing the computational effort further.

Considering the case of surface diffusion in Model 3.13 some stabilisation with

respect to the tangential directions is necessary. Surface diffusion flow is not as gentle

as its corresponding mean curvature flow, such that severe mesh-distortions might

occur (Bänsch et al., 2005). Here, we choose an ad-hoc stabilisation by a pseudo-

mechanical problem in the tangential direction (similar to the membrane mechanics
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Nsurface |Rn(T )−R∞(T )| EOC
48 0.002530
192 0.000580 2.1250
768 0.000096 2.5949
3072 0.000025 1.9411

Table 3.4. Experimental order of convergence for mean curvature flow of a sphere with
initial radius R(0) = 1.0 using a Crank-Nicolson scheme with δt = 10−4 and n subsequent
local mesh refinements in the vincinity of the surface, corresponding to Nsurface surface
quadrilaterals. Radii are compared at time T = 0.1 with the explicit solution (3.33), i.e.
R∞(T ) =

√
0.6.

of the RBC). Instead of the speed vΓ
surf diff given in Model 3.11, we considered the

stabilised counterpart given by

vΓ
surf diff = (∆ΓH)n + µstab∇Γ · (F Γ · F ΓT

),

where F Γ is the surface gradient. However, the influence of the stabilisation has not

been investigated systematically.

Numerical tests and convergence

As a first test, we investigate the evolution of a sphere under mean curvature flow

(Model 3.11 with vΓ
mean curv), which is a second order problem. Given a sphere with

radius R(t) the mean curvature is given by H = 1/R(t) + 1/R(t). The evolution of

the sphere is therefore determined by the following ordinary differential equation

∂R(t)

∂t
= − 2

R(t)
,

which can be solved explicitly

R(t) =
√

R(0)− 4t. (3.33)

Comparing the explicit solution (3.33) with computations, the convergence rates

can be determined. To do so, we have simulated the evolution of the radii using com-

putations with Nsurface = 48−3072 (3 ·42−3 ·45) roughly equally spaced quadrilaterals

discretising the surface. Convergence properties of simulations using a Crank-Nicolson

time stepping scheme are shown in Table 3.4. With respect to convergence properties,

it is sufficient to consider the surface discretisation alone, since the bulk part is only

an auxiliary problem, which does not influence the evolution of the surface. The ex-

perimental order of convergence is roughly two, which coincides with the theoretically

expected rate of convergence (Deckelnick et al., 2005).
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t = 0.0000 t = 0.0002 t = 0.0005 t = 0.0010 t = 0.0020

t = 0.0050 t = 0.0100 t = 0.0200 t = 0.0500 t = 0.1000

Fig. 3.6. Different time steps of a box under surface diffusion flow. The colouring indicates
the magnitude of the mean curvature, but it is not normalised. For the simulations we
have chosen an implicit Euler scheme with δt = 10−4 and a stabilisation via an additional
mechanical problem with µstab = 10.

t = 0.0000 t = 0.0200 t = 0.0800

Fig. 3.7. Different time steps of a Willmore flow for an initially spherical surface with
a flattened part. The solution has been computed using an implicit Euler scheme with
δt = 10−4.

As test cases of fourth order problems, we have simulated two typical problems:

the evolution of a box under surface diffusion (see Fig. 3.6, Bänsch et al., 2005)

and the surface restoration of a sphere with a flattened part (see Fig. 3.7, Clarenz

et al., 2004). The latter problem is a slight modification of the example considered

by Clarenz et al. (2004): here we allow the whole sphere to evolve and not only the

flattened part. The results are similar, as the sphere is a stationary solution of the

Willmore flow (Willmore, 1993). Our simulations of both test cases agree well with

the results obtained by Bänsch et al. (2005) and Clarenz et al. (2004).

For a more systematic investigation of Willmore flows, we have further simulated

the evolution of an ellipsoid using different mesh qualities (see Fig. 3.8). To be more

precise, we have considered the ellipsoid given by

Ω0 = {x = (x, y, z) ∈ R3 : (x/1.5)2 + y2 + z2 ≤ 1}. (3.34)

Owing to the symmetry of the ellipsoid and the problem, it is enough to consider one

eighth of the ellipsoid. Evolution under Willmore flow has been solved on a grid with
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t = 0.000 t = 0.025 t = 0.05

Fig. 3.8. Different time steps of a Willmore flow for 1/8th of the ellipsoid (3.34), where we
have used an implicit Euler scheme with δt = 10−4. The colour encodes the magnitude of
curvature, but it is not normalised.

Nsurface ‖un(T )− u6(T )‖L2(Ω;R3) EOC
48 0.00364
192 0.00134 1.44
768 0.00039 1.79
3072 0.00010 1.97

Table 3.5. Experimental order of convergence using an implicit Euler time stepping scheme
with δt = 10−4 and n subsequent local mesh refinements in the vicinity of the surface,
corresponding to Nsurface surface quadrilaterals. The errors are determined at T = 500 δt by
a comparison with the solution u6(T ) determined on a grid, where the surface is discretised
by 3 · 46 = 12288 quadrilaterals.

48 − 12288 (3 · 42 − 3 · 46) roughly equally spaced quadrilaterals approximating one

eighth of the ellipsoid’s surface (3.34). With respect to an investigation of convergence,

it is sufficient to consider the discretisation of the surface alone, as mentioned above.

Relatively small time steps have been chosen for the simulations, such that the error

of the time stepping scheme should be negligible compared to errors of the spatial

discretisation. The experimental order of convergence is shown in Table 3.5. It is

slightly higher than the experimental order of convergence of 1.5 reported by Clarenz

et al. (2004).

Simulations of u6, i.e. simulations with a discretisation of 3 · 46 = 12288 surface

quadrilaterals, correspond to over 70000 nodes discretising the ellipsoid. Using implicit

schemes this corresponds to over 9 · 70000 = 630000 unknowns. The linear systems

have been solved with a GMRES preconditioner and a multigrid method. This is a

rather efficient method to solve sparse systems. Nevertheless, computation times were

roughly 5 days on a standard PC with 3.0 GHz and 2 GB Ram. Due to computation

times and required memory, we have not considered larger discretisations so far.
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3.3.2 Red blood cells

In Section 3.2.7, we have derived Model 3.9 for the description of a RBC in an optical

tweezer. To account for the optical tweezer, different boundary conditions have been

prescribed on the boundary ∂Ωcell of the RBC. For simplicity, we consider a modified

version with only “one” boundary condition: we account for the optical tweezer via

additional forces on the boundary. Simulations including different boundary conditions

should also be possible following the approach taken by Clarenz et al. (2004) in the

case of Willmore flow on non-closed surfaces. Such an approach would require that

the edges of the discretisation coincide more or less with the boundaries of the optical

tweezer. A construction of such a grid within the finite element library Gascoigne

is at the moment not straight forward, but will be investigated in the future.

Model 3.15. The mechanics of a RBC clamped into an optical tweezer can be

described by the following model (for some fixed time T > 0):

du

dt
= v in Ωcell(t)× [0, T ),

0 = ∇ · σcytosol in Ωcell(t)× [0, T ),

0 = ∇ · v in Ωcell(t)× [0, T ),

with boundary conditions

(σcytosol + poutI) · n = T + N + Ftweezer on ∂Ωcell(t)× [0, T ),

0 = JΓ − 1 on ∂Ωcell(t)× [0, T ).

The evolution of Ωcell(t) is given by the speed v on the boundary. Here, we use

σcytosol = −pI + η
(
∇v + (∇v)T

)
,

T = ∇Γ · τ ,

N = κ(∆ΓH + (H −H0)(H
2 − 2K)− 1

2
(H −H0)

2H)n,

τ = −qP +
2

1 + I1

∂Ψ

∂I2
F Γ · F ΓT

+
∂Ψ

∂I1
P .

The additional forces modelling the effect of the microbeads in the case of a

prescribed force are given by

Ftweezer = χtweezerfforcenbead,
alternatively by

Ftweezer = χtweezerfspeed(u− Vbeadt)

in the case of a prescribed speed. The energy Ψ is given by

Ψ =
µ

2
(I2 + 2I2

1 − 2I1) + β(I2
2 − 4I2

1 )

with I1 = JΓ − 1 and I2 = tr (F Γ · F ΓT
)− 2 (c.f. the definition given in (3.12)).
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Here, nbead is the normal of the bead, Vbead is the speed of the bead, and χtweezer is

the characteristic function of the microbeads. Further, fforce and fspeed are force con-

stants, where the latter has no physical meaning but ensures Dirichlet-like boundary

conditions for large values. For more details on the notation we would like to refer to

the original formulation of Model 3.9 in Section 3.2.7.

Guided by the examples of Section 3.3.1, we now derive the corresponding weak

formulation of Model 3.15, or rather Model 3.9. The main difficulty in the derivation

are the forces due to curvature, i.e. the Willmore-type forces N . For notational

convenience let us consider the case κ = 1. First, we rewrite the corresponding strong

formulation using the following elementary geometric relations (Rusu, 2005) to obtain

the normal forces in a divergence form, i.e. N = ∇Γ · (. . .),

|∇Γn|2 = H2 − 2K, (3.35)

∆Γn = −|∇Γn|2n +∇ΓH. (3.36)

Here, the sign in front of ∇ΓH differs from the expression of Rusu (2005) since we

work with outward unit normals rather than inward unit normals. The first expression

follows immediately using the fact that the eigenvalues Ci of the shape operator |∇Γn|
are the principal curvatures, and K = C1C2 as well as H = C1 + C2. The second

expression can be proven in a more or less straight forward manner using elementary

definitions and some very tedious algebraic manipulations.

Using (3.35), (3.36), ∇Γ(H −H0) = ∇ΓH, and (H −H0)∇ΓH = 1
2∇

Γ(H −H0)2,

we recover

N = (∆Γ(H −H0))n + (H −H0)
(
H2 − 2K

)
n− 1

2
(H −H0)

2Hn

= (∆Γ(H −H0))n + (H −H0)|∇Γn|2n− 1

2
(H −H0)

2Hn

= (∆Γ(H −H0))n− (H −H0)(∆
Γn) + (H −H0)(∇ΓH)− 1

2
(H −H0)

2Hn,

and hence

N = (∆Γ(H −H0))n− (H −H0)(∆
Γn) +

1

2
(∇Γ(H −H0)

2)− 1

2
(H −H0)

2Hn.

In view of the definition of the tangential gradients, we have P · ∇Γ = ∇Γ as well as

P T = P = ∇Γx, where P is the tangential projection operator. This implies

N =(∆Γ(H −H0))n− (H −H0)(∆
Γn)

+
1

2
(∇Γx) · (∇Γ(H −H0)

2) +
1

2
(H −H0)

2∆Γx,
(3.37)

where we have also used Hn = −∆Γx. Adding

0 = −2∇Γ · [(H −H0)(∇Γn)] + 2(H −H0)(∆
Γn) + 2(∇Γn) · (∇Γ(H −H0)),
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which is also nothing else than the chain rule, to the right hand side of (3.37) and

using the chain rule several times, we have

N =− 2∇Γ · [(H −H0)(∇Γn)] + (H −H0)(∆
Γn) + 2(∇Γn) · (∇Γ(H −H0))

+ (∆Γ(H −H0))n +
1

2
∇Γ · [(H −H0)

2(∇Γx)]

=− 2∇Γ · [(H −H0)(∇Γn)] +∇Γ · [(H −H0)(∇Γn)]

+∇Γ · [n⊗ (∇Γ(H −H0))] +
1

2
∇Γ · [(H −H0)

2(∇Γx)].

After using the chain rule once more, we recover

N = −2∇Γ · [(H −H0)(∇Γn)] + ∆Γ((H −H0)n) +
1

2
∇Γ · [(H −H0)

2(∇Γx)]. (3.38)

The strong formulation (3.38) has now a divergence form, which allows us to per-

form a partial integration after multiplication with an arbitrary test function

φ ∈ C∞(∂Ω(t);R):

∫

∂Ω(t)

φNdµ =

∫

∂Ω(t)

2[(H −H0)(∇Γn)] · (∇Γφ)− (∇Γ((H −H0)n)) · (∇Γφ)

− 1

2
[(H −H0)

2(∇Γx)] · (∇Γφ)dµ,

(3.39)

where no boundary terms appear because ∂Ω(t) is a closed surface.

The weak formulation (3.39) still contains derivatives of the normal n. It can be

simplified using the following geometric equality (Rusu, 2005):

(H −H0)(∇Γn) · (∇Γφ) =∇Γ · ((H −H0)(n · n)n⊗ (∇Γφ))

− n⊗ n · (∇Γ((H −H0)n)) · (∇Γφ)− (H −H0)n∆Γφ.

The equality follows from the chain rule and n · n = 1, and accordingly ∇Γ(n · n) =

2n · (∇Γn) = 0. Integration over ∂Ω(t) yields

∫

∂Ω(t)

(H −H0)(∇Γn) · (∇Γφ)dµ =

∫

∂Ω(t)

[
∇Γ · ((H −H0)(n · n)n⊗ (∇Γφ)) (3.40)

− n⊗ n · (∇Γ((H −H0)n)) · (∇Γφ)− (H −H0)n∆Γφ

]
dµ,

or rather
∫

∂Ω(t)

(H −H0)(∇Γn) · (∇Γφ)dµ =

∫

∂Ω(t)

[
−n⊗ n · (∇Γ((H −H0)n)) · (∇Γφ)

+ (∇Γ((H −H0)n)) · (∇Γφ)

]
dµ (3.41)
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using partial integration. The first term on the right hand side of (3.40) vanishes since

it has a divergence form and only closed surfaces are considered, i.e. no boundary

terms appear.

Applying equality (3.41), expression (3.39) simplifies to

∫

∂Ω(t)

φNdµ =

∫

∂Ω(t)

(∇Γ((H −H0)n)) · (∇Γφ)− 2n⊗ n · (∇Γ((H −H0)n)) · (∇Γφ)

− 1

2
[(H −H0)

2(∇Γx)] · (∇Γφ)dµ,

which agrees with the results of Rusu (2005) considering H0 = 0. Introducing the

mean curvature tensor

Y = −∆Γx−H0n

as an additional variable, we recover a weak formulation for the normal surface forces

N , which includes only first order derivatives. This formula is suitable for implemen-

tation in “standard” finite element libraries. The weak formulation of all other terms

in Model 3.15 is more or less straight forward, such that we recover the following weak

version.

Model 3.16. The weak formulation of Model 3.15 is given by
∫

Ω(t)

φ
du

dt
dµ =

∫

Ω(t)

φvdµ,

0 =

∫

Ω(t)

σcytosol · (∇φ)dµ,

0 =

∫

Ω(t)

φ∇ · vdµ,

and
∫

∂Ω(t)

φΓ(σcytosol + poutI) · ndµ =−
∫

∂Ω(t)

τ · (∇ΓφΓ)dµ

− κ

∫

∂Ω(t)

1

2
|Y |2(∇Γx) · (∇ΓφΓ)− (∇ΓY ) · (∇ΓφΓ)

+ 2n⊗ n · (∇ΓY ) · (∇ΓφΓ)dµ

+

∫

∂Ω(t)

φΓFtweezerdµ,

0 =

∫

∂Ω(t)

(JΓ − 1)φΓdµ,

∫

∂Ω(t)

φΓY dµ =

∫

∂Ω(t)

(∇Γx) · (∇ΓφΓ)− φH0ndµ,

where φ ∈ C∞
0 (Ω(t);R) and φΓ ∈ C∞(∂Ω(t);R) are arbitrary test functions. Here,

σcytosol, τ , and Ftweezer are defined as in Model 3.15.



60 Red blood cells

(a) (b)

Fig. 3.9. Typical discretisations: (a) initial discretisation; (b) discretisation after grid
refinement (2048 surface quadrilaterals)

The bulk part of Model 3.15 corresponds to a stationary incompressible Stokes

flow. Here, we consider the following perturbed version of the Stokes equation

0 = ∇ · σcytosol in Ωcell(t)× [0, T ),

0 = ∇ · (v + εstab,1∇p) in Ωcell(t)× [0, T )
(3.42)

with an additional natural boundary condition for p, i.e.

n · ∇p = 0 on ∂Ωcell(t)× [0, T ).

This perturbation allows a discretisation via the standard Galerkin procedure, i.e.

using the same type of ansatzfunctions for all variables. Typically one uses εstab,1 ≈ δx2

µ ,

where δx is the size of the discretisation. In many cases the solutions depend only

weakly on the exact value of εstab,1. Similarly to the incompressible Stokes equation,

we work with the following perturbed problem for the membrane mechanics:

(σcytosol + poutI) · n = T + N + Ftweezer on ∂Ωcell(t)× [0, T ),

0 = JΓ − 1 + εstab,2∆
Γq on ∂Ωcell(t)× [0, T ).

(3.43)

An introduction of additional boundary conditions for the surface pressure q is not

necessary since ∂Ωcell is closed. An extension of the weak formulation 3.16 with respect

to the perturbed problems (3.42) and (3.43) is straight forward.

In Model 3.15, we include the optical tweezers as additional forces on the bound-

ary. This implies the introduction of the characteristic function χtweezer of the optical

tweezers. The tweezers coincide of course not directly with the grid. This might lead

to inaccuracies if the grid-size and the microbead are of a similar order. Therefore, we

have chosen an “adaptive” integration with 100 function evaluations per quadrilateral

close to the optical tweezer. Typically, the weak formulation is approximated by an

integration formula with four function evaluations. Grids used in the computations

are shown in Fig. 3.9. For further implementational aspects we refer to Section 3.3.1.
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Bending elasticity κ 2 · 10−19J Scheffer et al. (2001),
Mohandas and Evans (1994)

Shear elasticity modulus µ 2− 6 · 10−6N/m Lenormand et al. (2001),
Mohandas and Evans (1994)

Cytosol viscosity η 6.0cp = 6.0 · 10−3Pa s Pozrikidis (2003b)

Spont. membrane curvature H0 0− 0.35 · 106m−1 see text

Initial shape Evans and Skalak (1980)

Table 3.6. Experimentally determined parameters

Simulations

The goal of this section is to simulate Model 3.15 in a setting as realistic as possible.

To do so, parameters and initial conditions are taken from experiments rather than

from a microscopic estimation of parameters as given in Section 3.2.3. Once “better”

microscopic models are available, a connection between microscopic and macroscopic

equations in a quantitative way should be possible. The simulations presented here

are compared with experimental results, obtained by Hénon et al. (1999) and Li et al.

(2005).

A quantitative characterisation of the rest shape of RBCs has been given by Evans

and Skalak (1980), c.f. formula (3.1). This characterisation is used as the initial shape

in our simulations. We follow Li et al. (2005) and assume that the attachment of the

microbead to the RBC does not alter the initial shape of the RBC. This is of course a

quite crude assumption, but it should not influence the results quantitatively on the

order of experimental accuracy. Let the contact area of the microbead with respect to

the reference configuration be given by

∂Ωtweezer,0 = {x = (x, y, z) ∈ ∂Ωcell,0 : x2 + z2 ≤ R2
tweezer}, (3.44)

with Rtweezer = 0.8µm. This corresponds to an area of contact of approximately 2.1µm2

per bead.

Parameters of Model 3.9 for RBCs found in the literature are summarised in Table

3.6. The spontaneous membrane curvature can be “guessed” only roughly: The vol-

ume of the RBC equals V = 1.57R3
0 = 94.10µm3, which corresponds to a ball of radius

R = 2.82µm. We therefore expect the spontaneous membrane curvature in the range

from H0 = 0 to H0 = 1
2.82 · 106m−1. Since the exact nature of nonlinearities in surface

elasticity is not clear (Li et al., 2005), we choose for simplicity β = 0. In a later step,

parameter estimation could be used to extract corresponding parameters of our model

from experiments (see e.g. Mills et al., 2004).
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(a)

(b)

Fig. 3.10. Relaxation of the initial shape of a red blood cell given by Evans and Skalak
(1980), i.e. formula (3.1). Here, we have used an implicit Euler time stepping scheme with
time step size δt = 0.0003s and parameters µ = 0, κ = 0.2 · 10−19J, H0 = 0.1 · 106m−1,
η = 6.0cp. Figure (a) shows the initial shape given by formula (3.1). Figure (b) shows the
relaxed shape after 3s. In the left part the deformation in the radial direction and in the
right part the deformation in the z-direction is shown.

Relaxation experiments (Fig. 3.10): (Li et al., 2005) have proposed that rest

shapes of RBCs minimise the Canham-Helfrich energy (3.21), since the membrane-

bound cytoskeleton is constantly rearranging and thus allows relaxation of any stresses

on long time scales. The minimal energy configuration of the Canham-Helfrich energy

depends solely on the volume/area ratio and the spontaneous curvature H0 (Seifert

et al., 1991). The rest shape given by formula (3.1) is based on an experimental

characterisation of RBCs by Evans and Skalak (1980). Hence, it might not necessarily

be a minimal energy configuration with respect to the Canham-Helfrich energy.

Let us neglect the mechanics of the membrane-associated cytoskeleton for the

moment. Simulations with an initial shape given by formula (3.1) are shown in

Fig. 3.10. The shape has been allowed to relax over 3s (104 time steps), after

which the velocity is virtually zero. Since the shape has relaxed only slightly, we can

conclude that the minimal energy configuration of the Canham-Helfrich energy with

H0 = 0.1 · 10−6m−1 is indeed close to the experimentally observed rest shapes. A vari-

ation of H0 within the range 0−0.2 ·10−6m−1 does not change the results qualitatively.

Deformation experiments (Fig. 3.11): The next computational experiment con-

siders the evolution of a RBC with a prescribed deformation of the optical tweezers.

As explained above, this is achieved via non-physical forces enforcing the deformation

of the tweezer. The results shown in Fig. 3.11 agree qualitatively with the discrete

model of Li et al. (2005) as well as with the shapes observed by Hénon et al. (1999).
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t = 0 s t = 30 s

t = 60 s t = 90 s

t = 120 s t = 150 s

Fig. 3.11. Evolution of a red blood cell (Model 3.15) under a prescribed deformation of
the microbead. Parameters of the model are η = 6.0cp, µ = 4 · 10−6N/m, κ = 0.2 · 10−19J,
and H0 = 0.1 · 106m−1 (see Table 3.10). The results have been obtained using an implicit
Euler scheme with time step size δt = 0.06s.

Force experiments (Fig. 3.12): Typical experiments consider microbeads subject

to a constant force and not subject to a prescribed deformation as above. The objective

of such force experiments is to measure the longitudinal and transversal radii as a

function of the applied stretching force (Hénon et al., 1999; Li et al., 2005). Here, we

consider the same experiments in silicio using Model 3.15. The results for different

shear elasticity moduli µ are shown in Fig. 3.12. They agree within experimental

accuracies quantitatively quite well with the ones reported in the literature (Hénon

et al., 1999; Li et al., 2005).

Choosing different radii of the microbeads, our results change only slightly, i.e.

curves shown in Fig. 3.12 cannot be distinguished. This justifies our very crude

approach introducing the microbeads.
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Fig. 3.12. Evolution of a red blood cell (Model 3.15) for different values of µ and prescribed
forces. Parameters are η = 6.0cp, κ = 0.2 · 10−19J, and H0 = 0.1 · 106m−1.

Nsurface |RL
n −RL

5 | EOC
128 0.0184
512 0.0054 1.77
2048 0.0018 1.59

Table 3.7. Experimental order of convergence with respect to the longitudinal radius RL of
the red blood cell after stretching by a given force. The different surface discretisations with
Nsurface quadrilaterals are obtained by n subsequent local mesh refinements in the vicinity
of the surface. The following parameters have been used µ = 6 · 10−6N/m, η = 6.0cp,
κ = 0.2 · 10−19J, and H0 = 0.1 · 106m−1.

In addition, we have used the force experiments to determine convergence prop-

erties of the applied numerical scheme. To do so, we have simulated the same set of

parameters on meshes with different local mesh refinements close to the surface. An

experimental order of convergence determined from this set of simulations (see Table

3.7) is however only a rough guideline. It is based on subsequent refinements close to

the surface, whereas the evolution of the cell is due to the interaction of membrane

and bulk mechanics. But as the evolution is driven by surface mechanics, the region in

the vicinity of the surface and the surface itself should the “critical” regions where the

largest error is made. Thus the experimental order of convergence shown in Table 3.7

should have some predictive power and therefore affirms convergence of the applied

numerical scheme. A more rigorous investigation using adaptive mesh refinement is

an open problem for future research.
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3.4 Summary and discussion

In this chapter, we have rigorously derived a macroscopic continuum model for the

RBC based on a microscopic description. Mechanics of the RBC are determined by

the mechanics of the cytosol, the membrane (lipid bilayer), and the membrane-bound

cytoskeleton. The latter consists of a network of spectrin filaments with a roughly

hexagonal symmetry. The considered microscopic models of the spectrin network is

given in terms of an energy functional, as it is typical in soft-matter physics. Such

a microscopic description via energy functionals has allowed us to apply the mathe-

matical tools outlined in Chapter 2. Considering the limit where the length scale of

the spectrin network converges to zero, we have rigorously derived the corresponding

continuum model. Further, we have assumed that the mechanics of the lipid bilayer

are determined by the Canham-Helfrich energy (Canham, 1970; Helfrich, 1973). Using

a variational approach, corresponding stress tensors have been derived (Section 3.2.5).

Together with a model of the cytosol, we have been thus able to give a complete

continuum description of the RBC.

In Section 3.2.3, we have shown convergence of the discrete models to a continuum

model considering the limit of vanishing spectrin link lengths. However in reality, the

structure is discrete with link lengths strictly larger than zero. It is an open problem

to determine rigorous error estimates. With respect to simulations and a comparison

to experimental results such an analysis would be highly relevant.

A drawback of the approach pursued here is the required hexagonal symmetry for

the derivation of a homogenisation formula. With respect to convergence results this

assumption might be lifted (see Discussion 2.6). Assuming a hexagonal symmetry

in the discrete model, the continuum model usually reflects the symmetry. However,

the membrane skeleton does not show a perfect hexagonal symmetry, such that an

isotropic description would be more realistic. Here, we have applied some heuristic

averaging to account for isotropy. Alternative approaches should be investigated in

the future. A stochastic approach would offer the chance to characterise continuum

models quantitativly very exactly, as a statistical description of cytoskeletal networks

is well in reach (Beil et al., 2006).

Our rigorous approach is similar to the formal approach of Discher et al. (1997) or

Dao et al. (2006). However in this thesis, we have proved rigorous convergence results

and related the results to typical constitutive relations used for hyperelastic materials.

Within hyperelasticity the constitutive relations, i.e. the relations linking strain and

stress, or rather deformation and force, are given as energy functions in terms of

invariants of the deformation tensor. In addition, Dao et al. (2006) and Mills et al.

(2004), like many others, do not consider the membrane and the membrane-associated

cytoskeleton as a hypersurface. Instead, they assume that the membrane is an object

with a small, but finite thickness. Thus standard commercial finite element solvers

can be used. However, a two-dimensional surface embedded in a three-dimensional
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space is the widely accepted description for the lipid bilayer (Boal, 2002).

In this chapter, we have further investigated the application of the derived contin-

uum model to optical tweezer experiments. To do so, the model has been implemented

using the finite element toolbox Gascoigne (Becker et al., 2007). Considering the

membrane as a hypersurface and assuming that bulk mechanics are given by the Stokes

equation, boundary element methods are typically used (e.g. Pozrikidis, 2001). These

allow an efficient simulation but are restricted to linear models for bulk mechanics.

Using a finite element approach allows a greater flexibility with respect to an extension

to more complex cells. Therefore, our implementation within a finite element frame-

work does not only serve as a verification of the derived model, but also as a test case

for the development of flexible computational tools for single cell mechanics.

The implementation of the derived model within a finite element framework is dis-

cussed in detail in Section 3.3. A fully implicit coupling of surface mechanics with bulk

mechanics has not been investigated so far. Therefore, some typical surface evolution

problems of differential geometry have been considered to validate the approach and

to determine convergence properties of the numerical schemes (Section 3.3.1). Sim-

ulations of optical tweezer experiments with the developed computational framework

reproduce the experimental results qualitatively and quantitatively quite well (Section

3.3.2). Hence, the models as well as the applied numerical schemes are validated.

The developed numerical framework is highly flexible. We thus hope to apply it

in the future to different experiments, e.g. micropipette aspiration, to more realistic

models, e.g models including viscoelasticity, as well as to other more complex cells.

Using the optimisation package RoDoBo (Becker et al., 2007) for partial differential

equations with an interface to Gascoigne, also parameter estimation problems are

directly accessible by our approach. Since the computations are quite time consuming,

the use of adaptive mesh refinement strategies is a further important issue, especially

with respect to parameter estimation problems, to be addressed in the future.

The developed modelling and simulation framework is a promising starting point for

theoretical investigations of cytoskeletal networks, or alternatively polymer networks,

and single cell mechanics.
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Growing cell cultures

Our investigation of red blood cells has been restricted to mechanics alone. In this

chapter, we investigate growing cell cultures as a test case for the multiscale analysis

introduced in Chapter 2 considering also the interactions between biological processes

and mechanics. From an experimental point of view, cell cultures are less understood

than red blood cells, therefore this chapter is more concerned with qualitative rather

than quantitative behaviour.

First, we review some biological facts about growing cell cultures in Section 4.1.

Describing growing cell cultures as an elastic or viscoelastic material, the characteri-

sation of constitutive equations (stress-strain relations) is non-trivial. Using the mul-

tiscale ansatz, an appropriate derivation of stress-strain relationships is possible. Our

approach, outlined in Section 4.2, is based on a simple microscopic cellular-automaton-

like description of a growing cell culture.

To validate the derived continuum models, we investigate the generation of branch

structures common to many growing cell cultures. Considering a viscoelastic model in

the limit of fast stress relaxation, we show in Section 4.3 via a linear stability analysis

that the model can reproduce the formation of branch structures.

4.1 Biological background

Spatial growth of cell populations is a major issue in biology, e.g. developmental

biology, and it has been studied from an experimental viewpoint for a long time.

Since growth fulfils many different functions in biological systems, quite a variety of

different growth processes are found. In a coarse classification, one can distinguish

between tip growth, surface growth, and volumetric growth. Tip growth is typically

found in many filamentary systems, like fungi or plants, whereas surface growth is

typically responsible for growth of hard tissues, like teeth or horns and to a lesser

extent bones (Ben Amar and Goriely, 2005). Here, we restrict ourselves to volumetric

growth typically found in soft tissues, e.g. embryonic tissues (Miura and Shiota,
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2002), growth of arteries (Ambrosi et al., 2007), or tumour growth (Ambrosi and

Mollica, 2002). As an application of our multiscale approach, we consider the problem

of branching morphogenesis in developmental biology (see Section 4.1.2).

4.1.1 Different aspects of volumetric growth

For an appropriate modelling of growth a lot of different effects have to be considered.

In this thesis, we concentrate on the interplay between growth and mechanics. Let us

first outline a few aspects which are important in this context. For more details we

would like to refer to the review of Cowin (2004).

Typically, growth is modulated by availability of nutrients as well as by a complex

chemical control. In addition, a dependence of growth on mechanical stresses has been

reported (Ambrosi and Mollica, 2002; Ambrosi and Guana, 2005). Such a dependence

accounts for the natural tendency of biological systems to maintain equilibrium by

adaptation. Due to this complex “control”, growth is typically non-uniform as well

as anisotropic. This complicates the identification of corresponding growth laws from

experiments. But in general the influence is bidirectional: on the one hand stresses

influence growth, on the other hand growth also influences the mechanics of a biolog-

ical material. Because growth is often not uniform it enforces the material to stretch

or shrink, ensuring that no cavitation or overlap occurs, i.e. growth induces stresses.

Furthermore, growth implies in many cases also a remodelling of the biological system

via an adaptation of the shape and internal microstructure. Therefore, growth influ-

ences the way the material responds to strains, i.e. growth implies an evolution of the

constitutive equations.

4.1.2 Morphogenesis and growth

Understanding growth is of high interest in the field of morphogenesis, a fundamen-

tal aspect of developmental biology. Morphogenesis is concerned with the shapes of

tissues, organs, and entire organisms. Such shapes do not exist as a blueprint in

the genome, but are rather the achievement of self-organisation via the interactions of

growth, mechanics, and chemical control. One example of such highly organised struc-

tures are branch structures, typically found in systems where growth is stimulated by

the uptake / binding of a diffusing chemical (see Fig. 4.1).

Among the systems showing branching morphogenesis, epithelial lung cell cultures

are one of the best studied systems, since good in vitro experimental systems are

available. Functionally, the formation of branch patterns in vivo enlarges the surface

area of the lung to exchange O2 and CO2. From a physiological point of view it is of

high interest to understand the generation of branch structures.
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(a) (b) (c)

Fig. 4.1. Three examples of branch structures in growing cell cultures: (a) lung epithelium
cells (courtesy to Takashi Miura, Kyoto University); (b) biofilm composed of two bacterial
species, Klebsiella pneumoniae and Pseudomonas aeruginosa ( c©McFeters. Licensed for use,
ASM MicrobeLibrary.org); (c) Bacillus subtilis colony growing on an agar plate with only a
few nutrients (courtesy to Mitsugu Matsushita).

Fig. 4.2. Phase diagram of lung explant morphology with different initial fibroblast growth
factor concentrations (FGF) c0 and diffusion coefficients D. Under very low FGF concentra-
tions branching morphogenesis does not occur since no growth takes place. Under low FGF
concentrations a branched morphology is more prominent, and as the FGF concentration
rises we obtain a cyst-like morphology with clefts. (reprinted from Hartmann and Miura,
2006, c©2006 Elsevier)

Using in vitro experiments, chemical control as well as mechanical influences on the

pattern formation are well documented for epithelial lung cell cultures. Varying the

chemical control via a modification of the concentration and the diffusion coefficient

of fibroblast growth factors (FGF) it is possible to systematically modify the resulting

patterns (see Fig. 4.2). Similarly, the resulting patterns can be modified by changing

mechanical properties of the cell culture via cytochalasin D (Hartmann and Miura,

2006), which is known to affect actin polymerisation.

Despite all experimental efforts, the main principles of branching morphogenesis

of lung cell cultures are not understood among experimental biologists. Especially,

it remains unrevealed why the same type of tissue can generate different structures

varying among species (Romer and Parsons, 1986): the lung is homologous to the fish

swim-bladder, in which no branch structures exist. In birds, distal parts of the airway

form simple sac-like structures called air-sacs, while proximal parts retain branched

structures. In humans, an initial 2-3 branch pattern is common and at the distal part

branch patterns become stochastic.

http://www.microbelibrary.org
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To answer this type of questions, mathematical modelling may provide a more ap-

propriate form of analysis than molecular biology. Therfore, it is necessary to develop

adequate models for interactions between growth, mechanics, and chemical control.

Due to the complexity of the biological and mechanical nature of the problem, such a

modelling approach is rather hard and has to rely often on crude assumptions. Using

the multiscale approach outlined in Chapter 2, we derive appropriate models including

mechanical effects in a “realistic” way. The models introduced here, clearly improve

the models applied so far as an explanation of branching morphogenesis (Hartmann

and Miura, 2007, 2006).

4.2 Modelling

Due to the complexity of the mechanics and biology involved in growth, quite a range

of models have been proposed for growing cell cultures: reaction-diffusion equations

(Greenspan, 1976), fluid-like models (Cogan and Keener, 2004), elastic models (Am-

brosi and Mollica, 2002), as well as multiphasic systems (Humphrey and Rajagopal,

2002), to mention only a few continuous modelling approaches.

Here, we consider a continuous mechanical model (Section 4.2.1): the evolution

of the culture due to growth is governed by the balance of mass and momentum.

Within this class of models, we restrict our analysis to elastic and viscoelastic models.

Corresponding elastic stress tensors are derived in Section 4.2.2 using the multiscale

techniques introduced in Chapter 2. In a next step, the derived stress tensors are

extended to viscoelastic models (Section 4.2.4).

4.2.1 Continuum model

Let us consider an idealised cell culture Ωcult(t) embedded in a medium Ω, as shown

in Fig. 4.3a. We consider the cell culture as a continuous material with a sharp

boundary, i.e. we treat the evolution of biomass with density ρ and not the evolution

of single cells. This makes perfectly sense since typically the number of cells is rather

large and one does not see any localisation of growth in single cells. Additionally, let

us assume that the medium outside the culture has no influence on the mechanics of

the culture. Indeed, it can be shown via a linear stability analysis as in Section 4.3.2

that the mechanics of the outside medium would have no influence on the qualitative

behaviour. In our model, the sharp boundary ∂Ωcult(t) between the tissue and the

surrounding material is considered explicitly.

Let us further assume that growth is promoted by a diffusing chemical substance,

e.g. nutrients or growth factors. The chemical substance is taken up by the culture

which subsequently induces growth as a function of “consumed” chemicals, one of the

most simple bio-chemical controls. A generalisation to more complicated biochemical
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Fig. 4.3. Illustrations of a growing cell culture. Since cells are only compressible to some
extent, growth causes an expansion of the culture.

pathways is of course possible. The evolution of the concentration of the growth

promoting substance c should be determined by the balance of mass with fluxes given

by Fickian diffusion. Further, the concentration should have a smooth distribution

throughout the whole domain Ω.

Because cells are only compressible to some extent, growth causes expansion of the

culture area Ωcult(t) as illustrated in Fig. 4.3b. Here, we assume an incompressible

cell culture, which seems reasonable considering that cells consist mainly of water.

The evolution of Ωcult(t) ⊂ Ω is given by the material speed v, which is determined

by the balance of linear momentum and mass. We further assume that the expan-

sion of the cell culture might be constrained by membrane mechanics of the culture

boundary. For example, in the case of epithelial cell cultures such mechanical resis-

tance might originate from the basement membrane. It is a supportive matrix that

contains macromolecular components like collagen or laminin, bordering the culture.

The mechanical properties of the boundary might be also an “artifact” of the tightly

linked cells on the boundary of the cell cultures or due to surface tension. As we will

see later, such surface mechanics are important to stabilise the growth of the culture,

otherwise one would expect instabilities with “arbitrarily small” wavelengths. One

of the simplest approaches to surface mechanics is a description via surface tension,

which is supported by the experimental evidences found by Forgacs et al. (1998).

In summary, the following assumptions should hold:

Assumption 4.1.

• The cell culture is incompressible and its evolution is determined by the balance

of momentum and mass.

• Mechanics of the outside medium are negligible.

• The boundary of the cell cultures resists extension via an effective surface tension.

• Growth is promoted by a diffusing chemical, whose evolution is given by a con-

servation equation with Fickian diffusion.



72 Growing cell cultures

The assumptions agree quite well with typical examples of growing cell cultures, e.g.

tumour growth (Friedmann, 2004; Ambrosi and Mollica, 2004; Byrne, 1999; Chaplain

et al., 1995) or growth of lung epithelial cells in vitro (Hartmann and Miura, 2006).

They imply that the evolution of the growing cell culture is determined by the following

free boundary model, where appropriate boundary conditions on Ω, as well as initial

conditions still have to be specified.

Model 4.2. Let Assumption 4.1 be true, then the evolution of the cell culture is de-

termined by the following set of equations (for some fixed time T > 0)

d

dt
u = v in Ωcult(t)× [0, T ),

∂

∂t
ρ +∇ · (ρv) = ρg(c) in Ωcult(t)× [0, T ),

∂

∂t
(ρv) +∇ · (ρv ⊗ v) = ∇ · σ + g(c)ρv in Ωcult(t)× [0, T ),

∂

∂t
c−∇ · (D∇c) = −χΩcult

ρf(c) in Ω × [0, T ),

(4.1)

with the balance of momentum across the culture boundary

(σ + pmediumI) · n = −κHn on ∂Ωcult(t)× [0, T ).

The evolution of Ωcult(t) ⊂ Ω is given by the normal speed of the culture boundary

Vn = n · v on ∂Ωcult(t)× [0, T ).

The constant ρ is the material density, u the material displacement, v the material

speed, c the growth factor concentration, and pmedium the constant pressure outside the

culture. Further, n is the outside unit normal, H the mean curvature, and χΩcult(t)(x)

the characteristic function of the culture. So far the kinetics f and g, the diffusion

constant D, the stress tensor σ, and the modulus of bending resistance κ have not been

specified. Above, we have implicitly assumed that growth also implies the generation

of momentum via mass growth, which is a typical assumption considering growing

cell cultures (Ambrosi and Mollica, 2002). Furthermore, we have neglected any body

forces.

The assumption of a surface tension modelling the resistance of the culture bound-

ary might be oversimplified. In a more “realistic” setting one should consider a shell

theory (Libai and Simmonds, 1996), e.g. by extending the approach proposed for a sin-

gle cell by Pozrikidis (2001) (c.f. Section 3.2.6). To do so, let us assume for simplicity

the following linear constitutive relation for the bending moment tensor m:

m = κHP , (4.2)

where κ is the bending modulus, H is the mean curvature, and P = I − n ⊗ n is

the surface projection operator. Neglecting tangential mechanics, using ∇Γ · P =

∇Γ · (∇Γx) = Hn with surface gradient ∇Γ = P · ∇, as well as relations (3.29) and

(3.30), we obtain the following balance of momentum across the culture boundary:
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Remark 4.3. Considering the boundary of the cell culture as a thin shell and assuming

a linear relationship between the bending moment tensor m and the mean curvature

H, the following balance of momentum across the boundary follows:

(σ + pmediumI) · n = κ∇Γ ·
(
n⊗∇ΓH

)
on ∂Ωcult(t)× [0, T ).

As already mentioned, we have not specified the stress tensor σ used in Model 4.2

so far. In general, σ could depend on the material velocity v as well as on the material

displacement u, or rather their gradients. Due to cell culture growth, we would expect

large displacements u and especially large displacement gradients. However, these

might not coincide with large stresses, since the displacements are mainly due to

growth. This raises the question: deformations with respect to what? (Ambrosi and

Mollica, 2002). In the case of small growth and small displacements, we could use

the theory of linear thermo-elasticity (Landau and Lifschitz, 1991). However, here we

expect large growth and therefore cannot apply a linear theory.

Restricting ourselves to the solely elastic case, we derive in Section 4.2.2 an appro-

priate stress tensor based on the multiscale analysis outlined in Chapter 2. In Section

4.2.4, we then generalise this ansatz to Maxwell’s viscoelastic theory, which in many

cases seems to be a more appropriate description of cell cultures (Forgacs et al., 1998).

4.2.2 Multiscale derivation of the stress tensor

A popular approach for the description of growing cell cultures are cellular automaton

models. Among them the most promising are off-lattice models (often referred to as

individual based models), where the basic units are single cells. Cells are typically

modelled as deformable quasi-spherical (e.g. Drasdo and Höhme, 2005) or as ellip-

soidal (e.g. Palsson and Othmer, 2000) particles. The deformation of a cell culture is

solely determined via the interaction of the discrete cells, usually given in an energetic

description.

Based on a cellular automaton approach, Drasdo (2005) has derived a macroscopic

description of growing cell cultures in the framework of reaction-diffusion systems by

computational means. Drasdo compared computations of reaction-diffusion equations

and off-lattice cellular automata model to determine coefficients and functional de-

pendencies of the continuous reaction-diffusion systems. However, this approach is

not rigorous and makes a priori assumptions on the approximating continuum model.

Here, we show how to derive rigorously a continuum model based on a discrete descrip-

tion without any a priori assumptions on the structure of the continuum model. To do

so, we restrict ourselves without loss of generality to a two-dimensional cell culture.
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Multiscale derivation of continuous energy functionals

Let us first consider a quasi-static discrete cell culture, where the mechanics are given

by energy functionals. From such a discrete description a continuum model can be

derived as we have shown in Chapter 2. To do so, we consider the two-dimensional

idealised cell culture shown in Fig. 4.4 which satisfies:

Assumption 4.4.

• For simplicity, the cell culture is two-dimensional.

• Cells tightly adhere to each other in a hexagonal manner.

• By definition, the size of the cells is given such that the centre of a link between

two cells is at the point of contact of the two cells, i.e. at the adhesion site of

the two cells.

• The elastic response of the cell culture is due to the cytoskeleton, modelled as

springs with rest lengths L̂i,ξ(t). The mechanical interactions are determined

by the energies

flink(Li,ξ(t)/L̂i,ξ(t)) = klink

(
Li,ξ(t)− L̂i,ξ(t)

L̂i,ξ(t)

)2

.

Here, ξ is the vector in the reference configuration of the link between two cells

and Li,ξ(t) its length in the deformed configuration at time t.

• Growth of cell i implies growth of the rest lengths L̂i,ξ(t), i.e.

L̂i,ξ(t) = γ(i, ξ; t)L̂i,ξ(0) = γ(i, ξ; t)ε,

where the initial rest length L̂i,ξ(0) is given by the network spacing ε. Growth

may be anisotropic, i.e. γ(i, ξ; t) may depend on ξ. Division of cells is not

considered explicitly.

• Growth is typically continuous and hence can be considered to be locally con-

stant. Here, we restrict ourselves to constant growth, i.e. γ(i, ξ; t) ≡ γ(ξ; t)

does not depend on i. Symmetry requires γ(i, ξ; t) = γ(i + ξ,−ξ; t).

• Time scales of growth and mechanics can be clearly distinguished, i.e. we

assume that the mechanics are in a quasi-steady state.

Assumption 4.4 implies a solely elastic cell culture which is at any time in a static

state. Any mechanical response is solely due to the cytoskeleton of the cell. In a

“realistic” setting also the mechanics of the membrane as well as a compressible cytosol

should be taken into account.
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Fig. 4.4. A simple cellular-automaton-like model for mechanical interactions of cells. Each
cell consists of six cytoskeletal fibres ξ with lengths Li,ξ/2 anchored on one side at the
adhesion points of the cells and on the other side at the cell centre (cell nucleus). Links
between two cells, which are considered in the model, consist of the two cytoskeletal fibres
connecting the corresponding nuclei.

For a given evolution law of growth γ(ξ; t), we consider the following microscopic

model for the cell culture:

Model 4.5. Let us consider a cell culture satisfying Assumption 4.4, as shown in Fig.

4.4. Then for any time t ∈ [0, T ), T > 0 fixed, the quasi-steady state mechanics are

determined by the following energy functional

Fε,culture(t) =
∑

i∈cells

∑

ξ∈fibres

ε2

√
3

4
flink

(
Li,ξ(t)

εγ(ξ; t)

)
, (4.3)

i.e. the deformation of the cell culture is given by minimisers of the energy Fε,culture(t).

The factor ε2
√

3/4 accounts for the geometrical scaling, as well as the fact that each

link is actually counted twice (consists of two cytoskeletal fibres). Similarly to energy

(3.8) in Assumption 3.2, it is possible to introduce also an energy which accounts for

the compressibility of the cytosol. In analogy to Theorem 3.3, we have:

Theorem 4.6. Let us consider the discrete Model 4.5. The discrete energies

Fε,culture(t) Γ-converge in the limit ε → 0 to a continuous energy functional

Fculture(t) =
∫

Ω Ψ(t)dµ. The energy density Ψ is given by the following homogenisa-

tion formula:

Ψ(t) =
∑

i=1...6

flink (|F (t) · ξi|/γ(ξi; t)) , (4.4)

where F (t) is the deformation gradient and ξi ∈ Gξ are the undeformed fibre vectors.

Proof. The lengths Li,ξ(t) in (4.3) can be reformulated in terms of finite difference

quotients Dξ
εχ (see Section 2.1):

Li,ξ(t) = |Dξ
εχ|ε.
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We have assumed, that the energies flink(| · |/γ(ξ; t)ε) are convex functions with

2-growth and thus they satisfy Assumption 2.1. They depend however on the direction

of interaction ξ, or rather on γ(ξ; t), opposed to the ones outlined in expression (2.2).

But as already discussed in Section 2.1, all arguments in the proofs of Section 2.3 hold

also for pair interactions dependent on the direction of interaction (see also Alicandro

and Cicalese, 2004). Therefore, the proof follows directly from Theorem 2.6.

Proposition 2.11 holds also in the case of growing materials if the timescale of me-

chanics is faster than the timescale of growth (Di Carlo and Quiligotti, 2002; Ambrosi

and Guana, 2005), such that the energy density Ψ(t) can be considered as a consti-

tutive relation and corresponding stress tensors can be derived. In general, the stress

tensors reflect the underlying symmetries as in the case of red blood cells (see Section

3.2.5). Such a symmetry might not be realistic from a biophysical viewpoint. Hence,

some averaging would be necessary.

The mechanics of growing cell cultures are far more complicated and less under-

stood than the mechanics of red blood cells. Therefore, the multiscale analysis bridging

the gap between discrete and continuous models has only an illustrative character: it

shows the structure of appropriate continuum equations, but it is not yet possible to

extract coefficients from the microscopic theory in a quantitative way. Our approach

shows that a description via an elastic theory, alternatively viscoelastic theory, as it

will be discussed in Section 4.2.4, is probably more appropriate than a characterisa-

tion via reaction-diffusion systems as proposed by Drasdo (2005). In addition, this

approach yields some information on underlying material laws.

Notion of multiple natural configurations

To classify the continuous energetic description (4.4) in Theorem 4.6 within the existing

literature, let us shortly review the notion of multiple natural configurations. It has

been originally introduced for modelling problems in thermo-elasticity and elasto-

plasticity (Lubarda, 2004). As a description of biological growth it has been first

introduced by Rodriguez et al. (1994). The main idea is to decompose the deformation

tensor F into two consecutive deformations (see also Fig. 4.5):

F = F m ·G.

Considering growth phenomena, the tensor G, which is assumed to be invertible,

is a map from a reference state, e.g. the initial force-free configuration, to the current

natural, i.e. force-free, configuration. The tensor G can be directly related to growth.

F m is the deformation tensor due to mechanics. Hence, the stress tensor σ should

depend on F m rather than on F . Similarly, the “mechanical”energies should depend

on F m. Here, it has been assumed that the natural state, which is reached upon

unloading from the current configuration, is unique. A consequence of this assumption
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Fig. 4.5. The multiplicative decomposition of the deformation gradient F = F m ·G

is that the density field in the natural configuration is identical to the density field

in the original reference configuration (Ambrosi and Mollica, 2002). In addition, it is

typically assumed that the constitutive relation of the stress tensor σ, i.e. the relation

between stress and mechanical deformation F m, is independent of growth.

Let us revisit our discrete (4.3), and accordingly continuous (4.4), energy func-

tionals and try to reformulate them in a similar manner as the approach of multiple

natural configurations. To do so, we further assume that the growth of the cytoskele-

ton, and hence of the cell, is such that it does not induce additional mechanical energy.

The three factors γ(ξ1/4; t), γ(ξ2/5; t), and γ(ξ3/6; t) are not independent of each other.

Since we have restricted ourselves to the two-dimensional case, we have only two

free parameters. Without loss of generality let us consider the two free parameters

γ(ξ1; t) = γ1(t) and γ(ξ2; t) = γ(ξ3; t) = γ2(t).

This allows us the reformulation in terms of a growth tensor, i.e.

γ(ξi; t) = G(t) · ξi

|ξi|

with

G(t) = ΦT ·
(

γ1(t) 0

0
√

4
3γ2(t)2 − 1

3γ1(t)2

)
·Φ

and a rotation Φ around an angle φ. Let us assume that φ is chosen such that after

rotation ξi

|ξi| = (cos (−2π/6(i− 1)), sin (−2π/6(i− 1))) for i = 1 . . . 6. The energy flink

in Model 4.5 depends on Li,ξ(t)/L̂i,ξ(t) − 1. Assuming that the growth tensor G is
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invertible, we conclude

(Li,ξ)

(L̂i,ξi)
=

(F · ξ)T · (F · ξ)

(G · ξ)T · (G · ξ)

=
(F ·G−1 ·G · ξ)T · (F ·G−1 ·G · ξ)

(G · ξ)T · (G · ξ)

=
(G · ξ)T · (F ·G−1)T · (F ·G−1) · (G · ξ)

(G · ξ)T · (G · ξ)

and hence

(Li,ξ)

(L̂i,ξi)
=

ξ̂T

|ξ̂|
· (F ·G−1)T · (F ·G−1) · ξ̂T

|ξ̂|
, (4.5)

where ξ̂ = G · ξ is the link-vector in the grown configuration. For notational conve-

nience, we have dropped the dependence on t above.

Isotropic growth: In the case of isotropic growth, i.e. G = γI, we have

ξ̂/|ξ̂| = ξ/|ξ|, and hence (Li,ξ)2

(L̂i,ξi
)2

= ξT · (F · G−1)T · (F · G−1) · ξ. It follows that

the mechanical energies Fε,culture(t) and accordingly Fculture(t) depend only on the me-

chanical deformation tensor F m = F · G−1. The stress tensor σ is a function of F m

as postulated by the notion of multiple natural configurations.

Anisotropic growth: Considering our relatively simple setup (Fig. 4.4) in the case

of anisotropic growth, there is however a difference between our approach and the

typical approaches in the framework of multiple natural configurations (e.g. Ambrosi

and Guana, 2005). Rewriting relation (4.5) in terms of mechanical deformations F m =

F ·G−1, we obtain

Li,ξ

L̂i,ξi

=
ξ̂T

|ξ̂|
· (F m)T · F m · ξ̂T

|ξ̂|
.

In the case of multiple natural configurations, the energy / stress tensor should solely

depend on F m. Since ξ̂ = G · ξ still depends on G, also the energies Fε,culture and

Fculture, alternatively the corresponding stress tensors, would depend on G in general.

Growth also influences the constitutive relation. Typically, this is neglected in ap-

proaches using the framework of multiple natural configurations. However, already

our very simple idealised cell culture shows that an adaptation of the material should

be considered in biological systems in the case of anisotropic growth.
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Remark 4.7. In the case of isotropic growth, i.e. G = γI, the mechanical en-

ergy and hence the stress tensor σ depend on the mechanical deformation tensor

F m = F · G−1 rather than on the true deformation tensor F . This is in perfect

agreement with the so-called notion of multiple natural configurations (Rodriguez

et al., 1994; Ambrosi and Mollica, 2002; Lubarda, 2004).

In the case of anisotropic growth it becomes clear that it is necessary to consider

not only the “right” deformations, i.e. σ(F m), but also an evolution of the con-

stitutive relations. That is, growth implies often also remodelling of the material.

The latter is typically neglected and assumed to be independent of growth. But as

our simple example shows, remodelling is important in growing biological systems

and should be considered in the case of anisotropic growth. The multiscale approach

indicates how remodelling might influence the constitutive relations.

For the rest of this chapter, we restrict ourselves to isotropic growth. This implies

that the constitutive relations do not evolve. Because modelling single components of

our idealised cell culture would be not more than vague speculation, we prefer to work

at the moment with typical constitutive relations proposed in the literature rather

than with stress tensors based on a multiscale approach. Nevertheless, the multiscale

approach will become very useful once better experimental data is available. In the

following, we consider a Blatz-Ko (1962) material as proposed by Ambrosi and Mollica

(2002) modelling tumour growth:

σ =
µ

det F m

(
F m · F mT − (det F m)qI

)
(4.6)

with constants µ and q < 0. Here, µ it the shear modulus and the constant q can be

related to the bulk modulus K:

K = (1− q)µ.

4.2.3 Evolution of growth

Often, it is much more convenient to describe growth in terms of growth rates, rather

than growth tensors. To relate both, let us consider a given evolution of the growth

tensor G(t). Considering only growth and no mechanical deformations, i.e. F m(t) ≡ I

and hence F (t) = G(t), we obtain the following relationship between the initial volume

of the cell dVcell(0) and its volume dVcell(t) at time t:

dVcell(t) = (det G(t))dVcell(0).

If we restrict our consideration to one cell the assumption F m(t) = I clearly holds,

since we have chosen the setup such that growth does not induce stresses inside the
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cell. Assuming further that the density ρ is not influenced by growth, we obtain the

following evolution law for the cell mass:

dMcell(t)

dt
= ρ

dVcell(t)

dt

= ρVcell(0)
ddet G(t)

dt
= dMcell(0) tr DG(t) det G(t)

and hence

dMcell(t)

dt
= dMcell(t) tr DG(t), (4.7)

where we have used d
dt det G = det (G) tr (G−1 · d

dtG) and the definition

2DG = ( d
dtG ·G−1)T + ( d

dtG ·G−1) (Ambrosi and Mollica, 2002).

Comparing relation (4.7) with the Lagrangian formulation of mass balance, i.e.

with d
dtdM(t) = dM(t)g(c), we recover the following equality

tr DG = g(c). (4.8)

Therefore, the growth rate determines at least one of the invariants of the growth

tensor. In the case of isotropic growth G(t) = γ(t)I, the growth tensor is completely

determined:
dγ(t)

dt
=

γ(t)

n
g(c), (4.9)

where n is the dimension of space.

Relation (4.8), and accordingly relation (4.9), imposes some restrictions on the

evolution of the growth tensor G(t) in terms of growth rates. Considering not only

quasi-steady state mechanics, as we have done here, further thermodynamical restric-

tions for the structure of the growth tensor exist (Di Carlo and Quiligotti, 2002).

4.2.4 Maxwell viscoelasticity

In Section 4.2.2, we have derived appropriate constitutive relations for growing cell

cultures using techniques from multiscale analysis. To do so, we have assumed that

the culture is elastic and that the mechanics are always in a steady state, i.e. the de-

formations are minimisers of the energy functionals. Although the quasi-static elastic

approach is quite often used in the context of growing cell cultures (Ambrosi and Mol-

lica, 2002; Ben Amar and Goriely, 2005), it might not be very realistic in soft tissues.

The time scale of growth is quite slow, hence we expect relaxation of stresses due to

the viscoelastic nature of cell cultures (Forgacs et al., 1998). The “passive” mechanical
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behaviour of cells can be approximated quite well by Maxwell’s theory of viscoelastic-

ity on long time scales. In one dimension such a behaviour can be characterised by a

spring and a dashpot in series

Gσ + η
dσ

dt
= Gη

dε

dt
, (4.10)

where G is the modulus of elasticity, η is the modulus of friction, σ is the force / stress,

and ε is the deformation / strain (Findley, 1976).

To derive an appropriate description in a viscoelastic setting let us drop the as-

sumption of a quasi-steady state adopted in Section 4.2.2. We rather start from a

given stress tensor and then derive corresponding viscoelastic laws which will be used

for modelling. This approach is only formal and solely based on physical principles, a

rigorous treatment is an open problem.

For simplicity, let us assume that growth is isotropic and let the elasticity of the

cell culture in the elastic case (i.e. considering experiments on a time scale much faster

than stress relaxation) be of a Blatz-Ko (1962) type as discussed above. Of course

also stress tensors derived from a multiscale approach as in the case of red blood cells

(c.f. Chapter 3) could be considered. But due to our limited knowledge on the mi-

croscale we prefer to work with the stress tensor given in (4.6). Additionally, we restrict

ourselves for the moment to small mechanical deformations F m. (Attention, F still

might be quite large due to growth.) Following the standard derivation of Maxwell’s

theory of viscoelasticity, we show that our ansatz leads to an additive correction term

in the viscoelastic evolution law of the stress tensor.

For the rest of this section, we rely on the following assumptions:

Assumption 4.8.

• Growth is isotropic, i.e. G = γ(t)I.

• The behaviour of the cell culture in the elastic regime is of a Blatz-Ko (1962)

type, i.e.

σelastic =
µ

det F m

(
F m · F mT − (det F m)qI

)
. (4.11)

• Mechanical deformations F m are small, i.e. |F m − I| 7 1.

Adopting Assumption 4.8 and considering times much smaller than the relaxation

time the behaviour of a Maxwell solid is well described by σelastic, given in (4.11),

with F m = 1
γ F . Taking the total time derivative of σelastic and using d

dt det F =

det (F ) tr (F−1 · d
dtF ), or rather d

dt det F = det (F ) tr (D), as well as (4.9), we obtain

dσ

dt
=

µ

det F m
(g(c)− tr D)

(
F m · F mT − (det F m)qI

)

+
µ

det F m

(
F m · F mT ·LT + L · F m · F mT − 2

n
g(c)F m · F mT

)

− qµ

det F m
(det F m)q (tr D − g(c)) ,
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where n is the dimension under consideration, L = ∇v, and D = 1
2(L + LT ). Since

we have assumed small deformations, i.e. |F m−I| 7 1, using relation (4.9) we obtain

∂σ

∂t
= 2µ(D − 1

n
g(c)I) + (K − µ)(tr (D)− g(c))I (4.12)

in a first order approximation. In analogy to Maxwell viscoelasticity, let us allow for

relaxation of stresses by introducing the decay term −λσ on the right hand side of

evolution law (4.12) with λ = G
η , c.f. relation (4.10). Thus, the following material law

is found:

Remark 4.9. The evolution of the stress tensor for a growing Maxwell viscoelastic

material is given by

dσ

dt
= 2µ(D − 1

n
g(c)I) + (K − µ)(tr (D)− g(c))I − λσ, (4.13)

where λ is proportional to the relaxation time. We can therefore conclude, that

growth appears only as an additive correction in the evolution law for the stress

tensor.

A treatment of such viscoelastic laws is even more difficult as the solely elastic case,

since it includes additional equations for the evolution of the stress tensor. Therefore, it

often makes sense to restrict oneself to the situation of slow relaxation or the situation

of fast relaxation. Neglecting relaxation, i.e. in the limit of slow relaxation, the

stress tensor σ is given by the “standard” elasticity tensor (4.11). In the limit of

fast relaxation, we can neglect the time derivative in (4.13) and have the following

“fluid-type” stress tensor:

σ =
2µ

λ
(D − 1

n
g(c)I) +

K − µ

λ
(tr (D)− g(c))I. (4.14)

Choosing κ = µ this definition differs from the stress tensor of a Stokes fluid by the

correction terms due to growth. In the case of no growth, expression (4.14) is identical

to the stress tensor of a Stokes fluid.

4.2.5 A viscoelastic model in the limit of fast relaxation

In Section 4.2.1, we have outlined a continuum model for growing cell cultures up to

a specification of the constitutive relations as well as the kinetics. Let us now specify

these with respect to a typical experimental setup considered in branching morpho-

genesis (Hartmann and Miura, 2006). In addition to Assumption 4.1 the following

assumptions are made.
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Assumption 4.10.

• Mechanics of the cell culture are viscoelastic with a relaxation time much faster

than the time scale of growth, i.e. we consider the “fluid-like” stress tensor

(4.14).

• The diffusion coefficient D is linear. Kinetics are given by f(c) = Fc and

g(c) = Gc.

• Inertial terms and body forces in the balance of linear momentum (4.1) are

negligible. We consider only quasi-steady states.

Since we do not aim at predicting quantitative properties so far, we should take

the simplest kinetics f and g reproducing the results qualitatively. Therefore, we

assume simple linear mass action laws. For the same reasons, we choose D to be

constant in the whole domain Ω. So far we have not specified the spatial dimension

n. Typical experiments involve cell culture growth in two or three dimensions. The

analysis performed in the next chapter is based on the case n = 2.

Inserting the balance of mass into the balance of linear momentum in Model 4.2

and using ρ = const. the balance of linear momentum reads

ρ
( ∂

∂t
v + v · ∇v

)
= ∇ · σ.

Neglecting inertia terms and using Assumption 4.10, Model 4.2 reads:

Model 4.11. Let Assumption 4.1 and 4.10 be true. Then the evolution of a growing

cell culture is described by the following set of equations (for some fixed time T > 0):

ρ∇ · v = ρGc in Ωcult(t)× [0, T ),

0 = ∇ · σ in Ωcult(t)× [0, T ),
∂

∂t
c−∇ · (D∇c) = −χΩcult

ρf(c) in Ω × [0, T ),

with the balance of momentum across the culture boundary

(σ + pmediumI) · n = −κHn on ∂Ωcult(t)× [0, T )

and stress tensor

σ = −pI +
2µ

λ
(D − 1

n
GcI),

where p is the pressure of the culture due to incompressibility. The evolution of

Ωcult(t) ⊂ Ω is given by the normal speed of the culture boundary

Vn = n · v on ∂Ωcult(t)× [0, T ).

Furthermore, zero-flux boundary conditions for the chemical c are imposed on ∂Ω.

Initial conditions are v(x; 0) = 0, c(x; 0) = c0 constant, and a compact Ωcult(0).
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Fig. 4.6. A plane wave in an infinite domain Ω = R2. The gradient encodes growth factor
concentration c0.

In the following, we use µ% = µ/λ for notational convenience. Simulations of Model

4.11 are beyond the scope of this thesis. Here, we restrict ourselves to an analytical

investigation of the instabilities leading to branch structures. Although all terms in

Model 4.11 are linear, the model is nonlinear with the nonlinearity coming from the free

boundary. This nonlinearity makes the equations rather hard to study. Nevertheless,

some results can be obtained as shown in the next section.

4.3 Analysis

Investigating partial differential equations, it is often beneficial to look for specific

solutions which reflect various symmetries of the equations. In the following, we in-

vestigate plane waves:

Definition 4.12 (Evans, 1998). A solution u of a partial differential equation in the

n + 1 variables x = (x1, . . . xn) ∈ Rn, t ∈ R having the form

u(x, t) = v(y · x− V t) (x ∈ Rn, t ∈ R)

is called a travelling wave or plane wave with a wavefront normal to y ∈ Rn (|y| = 1),

velocity V , and profile v.

In the case of isotropy and homogeneity one can fix y without loss of generality.

Let us assume y = (1, 0, . . .), i.e. a plane wave in the x1-direction. For Model 4.11

explicit plane wave solutions can be constructed (Section 4.3.1). In Section 4.3.2,

we investigate their linear stability. The corresponding dispersion relations (relation

between growth rate and wavelength of a perturbation) show that the travelling waves

exhibit a front instability, which can lead to branch patterns.
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For the rest of this chapter, we consider for simplicity a two-dimensional setup

Ω ⊂ R2 as shown in Fig. 4.6. Often a two-dimensional description of a growing cell

culture is sufficient, e.g. in the case of lung cells cultured in vitro (Miura and Shiota,

2002). Therefore, let us consider the following model (c.f. Model 4.11):

Model 4.13. Considering an infinite domain Ω = R2 as shown in Fig. 4.6,

Model 4.11 reads (for some fixed time T > 0):

ρ∇ · v = ρGc in Ωcult(t)× [0, T ),

0 = ∇ · σ in Ωcult(t)× [0, T ),
∂

∂t
c−D∆c = −χΩcult

ρf(c), in R2 × [0, T ),

(4.15)

with the balance of momentum across the culture boundary

(σ + pmediumI) · n = −κHn on ∂Ωcult(t)× [0, T )

and the asymptotic behaviour

lim
x1→+∞

c = c0, lim
x1→−∞

c = 0, lim
x1→−∞

v = 0. (4.16)

4.3.1 Existence of plane waves

Many reaction-diffusion systems are well known to exhibit plane wave / travelling

wave solutions (Heinze, 1987). As the following proposition shows, this is also the

case for Model 4.11, and accordingly Model 4.13. Given a constant wave speed V ,

we know a priori the evolution of the free boundary. This eliminates the nonlinearity

of the models (the coupling of the equations with the free boundary) and plane wave

solutions can be calculated explicitly.

Proposition 4.14. Let c0 = F
G be true and let the front pass x = 0 at time t = 0.

Then for any given wave speed V , bounded plane wave solutions of Model 4.11 exist

and can be calculated explicitly:

cTW(ξ) =






2c0V
V +

√
V 2+4FD

exp
(
−V +

√
V 2+4FD
2D ξ

)
ξ ≤ 0

c0 +
(

2c0V
V +

√
V 2+4FD

− c0

)
exp

(
−V

Dξ
)

else,

vTW(ξ) = V exp

(
−V +

√
V 2 + 4FD

2D
ξ

)
ξ ≤ 0,

pTW(ξ) =
2µc0GV

V +
√

V 2 + 4FD
exp

(
−V +

√
V 2 + 4FD

2D
ξ

)
ξ ≤ 0,

(4.17)

with ξ = (1, 0) · x− V t and Ωcult = {ξ = y · x− V t < 0}.
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Proof. Transforming Model 4.13 to a moving coordinate system and considering plane

wave solutions, i.e. considering v(x, t) = v((1, 0) · x− V t) and c(x, t), p(x, t) similar,

the system (4.15) simplifies to

−V
∂cTW

∂ξ
= D

∂2cTW

∂ξ2
cTW − χR− FcTW in R,

∂vTW
1

∂ξ
= GcTW in R−,

0 = −∂pTW

∂ξ
+ µ%

(
∂2vTW

1

∂ξ2
−G

∂cTW

∂ξ

)
in R−.

(4.18)

Splitting the first equation in (4.18) into one part inside the culture (ξ ∈ R−) and one

part outside the culture (ξ ∈ R+), the system of ordinary differential equations can be

integrated explicitly. Requiring continuity of concentration and fluxes of the growth

factor across the culture interface (ξ = 0) together with the boundary conditions

(4.16), the travelling wave solutions (4.17) are recovered.

The material speed at the front should equal the speed of the travelling wave, i.e.

(V, 0) = vTW(0). This implies

c0 =
F

G
, (4.19)

which we call in the following the plane wave condition: given a set of parameters

(F , G, ρ) only for one initial concentration of chemicals c0 plane waves exist.

Above, we have proven that travelling waves with an arbitrary speed V exist if

the plane wave condition (4.19) is fulfilled. The issue whether solutions of a one-

dimensional version of Model 4.13 converge to plane waves or not has not been ad-

dressed. This question as well as the question of the selected wave speed are of im-

portance and should be considered in the future. Here, we have restricted ourselves to

linear kinetics, since in this case explicit solutions can be obtained. Being not inter-

ested in explicit solutions, it is possible to consider a wider class of kinetics and prove

the existence of travelling waves (Dockery and Klapper, 2001; Hartmann and Miura,

2007).

4.3.2 Stability analysis of plane waves

In this section, we investigate the stability of plane wave solutions (4.17) of

Model 4.13 with respect to small perturbations of the front, i.e. x1 = V t + δ(x2, t)

with δ 7 1. If the front is unstable to such perturbations, the model can account for

branching morphogenesis.

Any sufficiently regular perturbation δ(x2, t) of the plane wave front can be de-

composed into spatial Fourier components. The Fourier components are periodic in
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space, but generally the periodicity is not conserved. However within a linear the-

ory, i.e. for small perturbations, the periodicity can be assumed to be conserved. By

superposition, we can restrict our analysis to one wavenumber k.

Assumption 4.15.

• The interface of the culture moving in direction y = (1, 0) with speed V is slightly

perturbed, i.e.

Ωcult(t) = {x = (x1, x2) ∈ Ω : x ≤ V t + δ exp (θt) exp (ikx2) + O(δ2)}

with δ 7 1.

This assumption allows us to consider only first order approximations in δ and to

drop all contributions from terms of the order O(δ2), i.e. we work within a linear

theory. Under this assumption the evolution of the perturbation can be characterised

explicitly for small times:

Proposition 4.16. Let Assumption 4.15 be true and cTW, vTW, pTW the plane wave

solution (4.17) of Model 4.14 with the interface ∂Ωcult = {y · x − V t = 0}. Then,

for short times the evolution of a small and sufficiently smooth perturbation of the

interface is given by

∂Ωcult(0) =

{
x1 −

(
V t +

∫

R

δ(k, t) exp (ix2k)dk

)
= 0

}
(4.20)

with

δ(k, t) = δ(k, 0) exp (θ (k) t).

The exponential growth rate θ(k) (not necessarily unique) is determined by the dis-

persion relation

0 = −θ(k)− κk

2µ%
+

2V F

V +
√

V 2 + 4FD

+
4c0V F

(
√

V 2 + 4Dθ(k) + 4k2D2 +
√

V 2 + 4Dθ(k) + 4k2D2 + 4FD)

×
F (−V + 2Dk −

√
V 2 + 4Dθ(k) + 4k2D2 + 4FD)

2c0(F + θ(k) + V k)(V +
√

V 2 + 4FD)
.

(4.21)

Note, that the growth rate θ still depends on the speed V of the travelling wave,

which is a priori not known. The proof of Proposition 4.16 given here is only a formal

proof. A rigorous proof is an open problem and should be addressed in the future.

Proof. We have restricted ourselves to small perturbations. By superposition, it

is therefore sufficient to consider the evolution of a single Fourier component with
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wavenumber k. For notational convenience we drop the dependence on k in the fol-

lowing.

Let us consider the slightly perturbed culture

Ωcult(t) = {x = (x1, x2) ∈ Ω : x ≤ V t + δ exp (θt) exp (ikx2) + O(δ2)}, (4.22)

with δ 7 1. The assumption of exponential growth / decay of perturbations, i.e

δ(k, t) = δ(k) exp (θ(k)t), is reasonable because we are considering basically a linear

model. Ansatz (4.22) implies the normal speed of the boundary

Vn = n · (V + δθ exp (θt) exp (ikx2), 0) + O(δ2)

= V + δθ exp (θt) exp (ikx2) + O(δ2),
(4.23)

where n is the outer unit normal, and the mean curvature

H = − ∂2

∂x2
2

[
F (t) + δ exp (θt) exp (ikx2) + O(δ2)

]

= k2δ exp (θt) exp (ikx2) + O(δ2)

of the boundary.

In a linear theory, it is further reasonable to assume that the perturbed travelling

wave solutions of Model 4.13 have the same structure as the interface perturbation

(4.20). This justifies the following ansatz:

c(x1, x2; t) = cTW(x1 − V t) + δcPER(x1 − V t) exp (θt) exp (ikx2) + O(δ2),

v(x1, x2; t) = vTW(x1 − V t) + δvPER(x1 − V t) exp (θt) exp (ikx2) + O(δ2),

p(x1, x2; t) = pTW(x1 − V t) + δpPER(x1 − V t) exp (θt) exp (ikx2) + O(δ2).

(4.24)

Plugging ansatz (4.24) into Model 4.13 and considering a moving coordinate system

ξ = x1 − V t, we have at a first order approximation

θcPER = D

(
∂2cPER

∂ξ2
− k2cPER

)
− χΩcult(t)FρcPER in R2 × [0, T ),

0 =
∂vPER

1

∂ξ
+ kvPER

1 −GcPER in Ωcult(t)× [0, T ),

0 = −∂pPER

∂ξ
+ µ%

(
∂2vPER

1

∂ξ2
− k2vPER

1

)
in Ωcult(t)× [0, T ),

0 = −ikpPER + µ%

(
∂2vPER

2

∂ξ2
− k2vPER

2

)
in Ωcult(t)× [0, T ) .

Splitting up the first equation into one part inside and another outside the culture,

the system of ordinary differential equations can be solved explicitly. Together with

the continuity of the concentration and the flux of growth factors across the culture
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boundary, as well as the boundary conditions (4.16), solutions are approximated up

to first order by

cPER(ξ) =C1 ·





exp

(
−V−

√
V 2+4Dθ+4k2D2+4FD

2D ξ
)

in Ωcult(t)× [0, T )

exp
(
−V +

√
V 2+4Dθ+4k2D2

2D ξ
)

otherwise,

vPER
1 (ξ) = exp (kξ)(−C2 + C3ξ − C3/k)

+ C1G
2DV k2 + (F + θ)(V +

√
V 2 + 4Dθ + 4k2D2 + 4FD)

2(F + θ + V k)(F + θ − V k)

× exp

(
−V −

√
V 2 + 4Dθ + 4k2D2 + 4FD

2D
ξ

)
,

vPER
2 (ξ) =i exp (kξ)(−C2 + C3ξ) (4.25)

+ iC1Gk
2D(F + θ) + V (V +

√
V 2 + 4Dθ + 4k2D2 + 4FD)

2(F + θ + V k)(F + θ − V k)

× exp

(
−V +

√
V 2 + 4Dθ + 4k2D2 + 4FD

2D
ξ

)
,

pPER(ξ) =2µ%C3 exp (kξ)

+ C1Gµ% exp

(
−V +

√
V 2 + 4Dθ + 4k2D2 + 4FD

2D
ξ

)

with constants

C1 =
c0V (V −

√
V 2 + 4FD)

D(
√

V 2 + 4Dθ + 4k2D2 +
√

V 2 + 4Dθ + 4k2D2 + 4FD)
,

C2 =
FV

V +
√

V 2 + 4FD

+
FC1(2DV k2 + (F + θ)(V +

√
V 2 + 4Dθ + 4k2D2 + 4FD))

2c0(F + θ + V k)(F + θ − V k)
,

C3 = +
κk2

2µ%
− FV k

V +
√

V 2 + 4FD

+FC1k
−V + 2kD −

√
V 2 + 4Dθ + 4k2D2 + 4FD

2c0(F + θ + V k)
.

On the culture boundary, the normal material speed n ·v should equal the normal

speed Vn given by (4.23). This closes our ansatz and yields the dispersion relation

(4.21).

Choosing for a given wavenumber k an appropriate growth rate θ(k) determined

by the dispersion relation (4.21), ansatz (4.24) together with (4.25) is a first order

approximation of the perturbed plane wave, i.e. the solution is determined up to

order δ2.
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(a) (b) (c)

(d) (e)

Fig. 4.7. Evaluation of the dispersion relation (4.21) for different parameters: (a) F =
100.0, 80.0, 60.0, 40.0, 20.0, (b) D = 1.0, 2.5, 5.0, 10.0, 20.0, (c) V = 1.0, 0.9, 0.8, 0.7, 0.6,
(d) µ% = 1.0, 0.9, 0.8, 0.7, 0.6, and (e) κ = 1.00, 1.25, 1.50, 1.75, 2.00. The order of the
parameters is chosen such that growth rates decay. If not varied the parameters are ρ = 1.0,
c0 = 1.0, V = 1.0, F = 100.0, D = 1.0, κ = 1.0, and µ% = 1.0.

The linear stability analysis above has yielded a dispersion relation, which de-

termines the growth rate θ of periodic interface perturbations with wavenumber k.

Because the dispersion relation is highly nonlinear for a given wavenumber k, the

growth rate θ might not be unique. In such case it is assumed that the growth rate is

always given by the largest one. Considering an arbitrary perturbation, typically a so-

lution with a length scale of the order of the wavenumber with the largest growth rate

is selected. Numerical solutions of dispersion relation (4.21) obtained with Matlab

(The MathWorks Inc.) are shown in Fig. 4.7 for different parameter values. However,

the dispersion relation still depends on V , which is arbitrary.

The dispersion relations shown in Fig. 4.7 reproduce the experimental evidences

(Miura and Shiota, 2002; Hartmann and Miura, 2006) that a decrease in the growth

factor diffusion leads to an increase in the most unstable wavenumber and in the cor-

responding growth rate. Additionally, the dispersion relation predicts that increasing

κ the most unstable wavenumber decreases and so does its growth rate in accordance

with the experiments. We therefore conclude that within the explanatory power of a

linear stability analysis, Model 4.11, and accordingly Model 4.13, reproduce typical

experimental findings in growing cell cultures. Qualitatively, our results agree well

with the ones obtained previously for a much simpler Darcy-like model (Hartmann

and Miura, 2007), which is based on the assumption that the the material speed is

simply proportional to a pressure gradient.
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Our results do not change qualitatively, if we consider a shell-like theory (see Re-

mark 4.3) as a model for the surface mechanics of the cell culture. The term (κk)/(2µ%)

in the dispersion relation (4.21) is simply replaced by (κk3)/(2µ%), which does not affect

the qualitative structure. If we would neglect completely surface mechanics, arbitrarily

small wavelengths, corresponding to arbitrarily large wavenumbers k, would have the

largest growth rates. The curves shown in Fig. 4.7 would not decay for k →∞.

In this section, we have investigated the linear stability of plane wave fronts of

Model 4.11, and accordingly Model 4.13. The results indicate that the models are

able to reproduce branching morphogenesis. Here, we have restricted ourselves to fast

stress relaxation, linear kinetics, travelling waves, and short time scales. Therefore,

our results can be only of a qualitative nature. The investigated model shows the same

qualitative behaviour as a much simpler model proposed earlier (Hartmann and Miura,

2007). With respect to quantitative predictions more realistic models, as derived in

Section 4.2, have to be considered. However, quantitative predictions can be achieved

only by computational means due to the complexity of the models. A detailed com-

putational investigation of theses models including viscoelasticity and a more complex

chemical control is an open problem which definitely should be addressed in the future.

Our analysis has been restricted to the solely “viscous” Model 4.11, because only

in this case travelling wave solutions could be constructed. But an instability with

similar properties is expected also in the elastic case. Perturbing the front periodi-

cally, the chemical concentration would have the same form, since it is independent of

the mechanical problem - mechanics determine only the evolution of the perturbation.

Moreover, the isotropic growth γ (growth tensor G = γI) would have the same form

as the chemical concentration in a linear theory. Thus, in a linear theory the elas-

ticity equations would have the same structure as the “viscous” model (interchanging

material speed v and displacements u). Therefore, the same instability would be ob-

served, i.e. elasticity of the bulk medium would not stabilise the front within a linear

theory as it might be expected. That is, membrane mechanics would still be needed

to prevent instabilities with arbitrarily large wavenumbers, and accordingly arbitrarily

small wavelength. However, a stabilisation via bulk mechanics might still occur in a

nonlinear way.

4.4 Summary and discussion

This chapter has been devoted to the investigation of growing cell cultures as an

example of the multiscale concept introduced in Chapter 2 where the interactions

between biological processes and mechanics are important.
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The main difficulty modelling mechanics of growing cell cultures is the charac-

terisation of appropriate stress-strain relationships (constitutive equations). Growth

induces deformations, i.e. an evolution of the underlying discrete network, which do

not give rise to stresses. Hence, it is typically not clear which deformation measure

should be used to determine the stress-strain relationships.

Assuming a solely elastic behaviour of the cell culture, we have shown in

Section 4.2 how do derive appropriate macroscopic stress tensors from a discrete de-

scription. We have based our analysis on an oversimplified lattice-free cellular au-

tomaton model (similar to discrete models proposed by Palsson and Othmer, 2000,

or Drasdo, 2005). The approach assumes that the mechanical properties of a cell are

determined by the cytoskeleton, which is growing with cell size. Using the multiscale

theory outlined in Chapter 2, the continuous limit functional has been rigorously and

explicitly determined. In the case of isotropic growth, our approach coincides with

the so-called notion of multiple natural configurations (Lubarda, 2004). It postulates

a multiplicative decomposition of the deformation gradient into a deformation related

to mechanics and one related to growth. However, in the case of anisotropic growth

our approach postulates, in addition, that remodelling has to be considered. That is,

an evolution of the underlying stress-strain relationships (constitutive equations) is

already found in the oversimplified model proposed here. Approaches using multiple

natural configurations directly often neglect remodelling.

One difficulty considering interactions between growth and mechanics is the identi-

fication of appropriate growth laws. The postulation of appropriate growth tensors on

an experimental basis is so far “quite impossible” due to complexity of growth on the

one hand and a limited explanatory power of typical experiments on the other hand.

Only one invariant of the growth tensor can be related to the growth rate. Because of

the limited biological knowledge, we have restricted ourselves in the rest of the chapter

mainly to isotropic growth.

Our multiscale approach in Section 4.2 is based on the assumption that the cell

culture is solely elastic, or rather viscoelastic, an assumption common in many works

(e.g. Rodriguez et al., 1994; Ambrosi and Mollica, 2002; Ben Amar and Goriely, 2005).

However, experimental findings suggest that a Maxwell viscoelastic description is more

appropriate, since stress relaxation occurs on the time scale of growth (Forgacs et al.,

1998). Therefore, in the case of growing cultures the multiscale analysis can yield only

limited information on the structure of the stress tensor. However, using a formal

approach we have further derived a viscoelastic description of growing cell cultures. A

rigorous approach is an open problem.

Based on such a viscoelastic description, we have proposed a model for branching

morphogenesis in the limit of fast relaxation of stresses. The model comprises explicitly

the coupling of biological processes and mechanics: growth occurs due to a signal of

growth factors, which are diffusing inside and outside the cell culture. Since simulations

of the model are not straight forward, we have investigated the model via a linear
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Fig. 4.8. Phase diagram of computed lung explant morphologies with different initial FGF
concentrations c0 and diffusion coefficients D based on a simplified Darcy-like model. The
results agree qualitatively well with the experimental findings shown in Fig. 4.2. (reprinted
from Hartmann and Miura, 2006, c©2007 Elsevier)

stability analysis in Section 4.3. The analysis clearly shows that the model exhibits a

front instability leading to branch patterns. Qualitatively, it has the same properties

as a much simpler model proposed earlier for branching morphogenesis (Hartmann and

Miura, 2007, 2006). The simpler model is based on a Darcy-like assumption that the

material speed is proportional to a pressure gradient, i.e. v = −α∇p. This allows to

neglect the balance of momentum and simplifies the model drastically. The Darcy-like

model reproduces the experimental findings for lung branching morphogenesis on a

qualitative level quite well (Fig. 4.8). However, with respect to quantitative results a

more realistic approach taking mechanics into account is necessary.

Ben Amar and Goriely (2005) have shown that growth can give rise to instabilities

in elastic tissues within the theory of multiple natural configurations even without

external load. The authors considered a spherical shell experiencing large anisotropic

growth, which leads to a buckling instability. The instability observed in our system

is of a different type, it is a diffusive instability as found e.g. in the Stefan problem

(Visintin, 1996). By asymptotic analysis it has been shown formally that the Darcy-like

model “converges” in the limit of small growth factor diffusion to the Stefan problem

(Hartmann, 2007). The applied methods are quite general and a similar approach

should be considered for the more complex model outlined in this chapter. Other

open mathematical questions include a more rigorous approach with respect to the

linear stability analysis, as well as addressing the issue of existence and uniqueness,

which have not been touched at all.

The linear stability analysis presented in Section 4.3 is restricted to travelling waves

and short time scales. Its quantitative predictive power might be questionable. Since

similar models are well accessible by computational techniques (Ambrosi et al., 2007),

it should be possible to perform a stability analysis by numerical means following the

approach of Hartmann and Miura (2007). Thus a numerical stability analysis is the

next logical step to be investigated in future.
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The application of multiscale analysis to the growth of cell cultures underlines that

the multiscale theory outlined in Chapter 2 is not restricted to constant networks, but

can yield valuable information also in the case of evolving networks. We believe that

similar approaches can be used to derive appropriate macroscopic models in many

other applications considering interactions between biological processes and discrete

mechanical elements on a microscopic scale.



Chapter 5

Outlook

In this thesis, we have shown that Γ-convergence, a mathematical concept in multiscale-

analysis, is a powerful tool for rigorously deriving models in biomechanics and mechano-

biology on the basis of a microscopic discrete description. Here, we have considered

microscopic models defined in terms of energy functions on regular networks. As

applications, we have investigated the mechanics of red blood cells (Chapter 3) and

the interactions between mechanics and biological processes in growing cell cultures

(Chapter 4).

Furthermore, we have developed a highly flexible simulation framework for single

cell mechanics. The approach includes the coupling of mechanics on a hypersurface

with bulk mechanics. It allows a realistic treatment of membrane mechanics as well as

a broad class of constitutive relations (stress-strain relationships) for bulk mechanics.

Simulations so far have been restricted to Stokes laws, or considered the membrane

as a three-dimensional body rather than a two-dimensional hypersurface, which is a

more appropriate description (Boal, 2002). The simulation framework can be easily

extended to include biochemical processes inside the cell as well as on the membrane

and makes it an ideal tool for studying the mechanobiology of single cells.

The results achieved in this thesis show the power of multiscale analysis with re-

spect to the derivation of appropriate models. The considered models yield qualitative

as well as quantitative predictions. Especially the latter require sophisticated numer-

ical tools. The two test cases are well defined, but of a relatively “simple” structure.

However, the same techniques could be applied to a wide class of other problems in

mechanobiology.

On a microscopic level the characterisation of biochemical and biomechanical sys-

tems advances incredibly fast. Sometimes not only the biochemical processes or me-

chanical characteristics alone can be determined in detail, but also its interactions,

e.g. in the case of moving epidermal fish keratocytes (Fig. 5.1). In the case of kera-

tocytes a detailed microscopic picture of the underlying actin-myosin machinery and

its biological control has been sketched (Verkhovsky et al., 1999; Oliver et al., 1999).

On the other hand, many models describing movement of keratocytes do not benefit
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(a) (b)

Fig. 5.1. (a) Fish epidermal keratocyte undergoing steady gliding in a straight line. Bold
arrow indicates the direction of locomotion. (b) Modified network contraction model: Ac-
tomyosin contractility along a proposed equatorial sarcomere-like structure (1) generates
pinching tractions (2) and breaks adhesive bonds beneath retraction fibres (3). Dynamic
network contraction generates propulsive tractions in the “wings” of the cell (4), but is
down-regulated at the front leading edge (5). (reprinted from Oliver et al., 1999, c©1999
Rockefeller University Press)

from the available experimental information (e.g. Rubinstein et al., 2005; Kruse et al.,

2005, for an extensive list of models see http://www.cellmigration.org).

Similarly in many other cases, the available microscopic information and data is

used only rarely to derive appropriate macroscopic models. The approaches outlined

in this thesis will provide invaluable information on how to connect the increasing

knowledge on a microscopic scale with macroscopic properties and behaviour. And

thus they follow the dictum of Schnell, Grima, and Maini (2007):

Molecular biology took Humpty Dumpty apart; mathematical modeling is

required to put him back together again.

http://www.cellmigration.org
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Appendix A

Notation

For the sake of notational convenience, we will sometimes consider in the following

scalars and vectors as matrices, i.e. a = a11, respectively (a)i = a1i.

General scheme of notation

a Scalars

a Vectors or matrices with components aij, i.e. (a)ij = aij

a · b Standard matrix / vector multiplication, i.e. (a · b)ik =
∑

j aijbjk

a : b Frobenius or componentwise inner product, i.e. a : b =
∑

ij aijbij

a⊗ b Tensor product of two vectors, i.e. (a⊗ b)ij = aibj

aT Transpose of a matrix, i.e. (aT )ij = (a)ji

Global notation

Ω Domain

Γ = ∂Ω Boundary of the domain Ω

X Lagrangian coordinates, i.e. coordinates with respect to the reference

coordinate system

x Eulerian coordinates, i.e. coordinates with respect to the laboratory

coordinate system

χ Material deformation / motion, i.e. x = χ(X)

v Material speeds

u Material displacements, i.e. u = χ−X

F Deformation gradient, i.e. F = ∇0x and accordingly Fij = ∂xi
∂Xj

J Jacobian of F , i.e. J = det F

L Deformation rate tensor, i.e. L = ∇v

D Symmetric deformation rate tensor, i.e. D = 1
2(L + LT )
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F Γ Surface deformation gradient, defined as F Γ = F · (I − n0 ⊗ n0) (By

construction, we have (I − n⊗ n) · F Γ = F Γ.)

JΓ Surface Jacobian (Attention, JΓ /= det F Γ = 0)

σ True volume stress tensor (or Cauchy stress tensor), defined such that

the force/traction per unit area acting on a plane with normal n is given

by σ · n
τ True surface stress tensor (or Cauchy stress tensor), defined such that

the in-plane traction exerted on a cross section of the membrane that

is normal to the tangential unit vector b is given by τ · b
n Outer unit normal

P Surface projection operator, i.e. P = I − n⊗ n

C1, C2 Principal curvatures

H Mean curvature, i.e. H = C1 + C2

H0 Reference mean curvature

K Gaussian curvature, i.e. K = C1C2

Y Mean curvature vector, defined as Y = Hn

Differential and integral operators

∫
. . . dµ Volume or surface integral

d
dt Total derivative w.r.t. t, which agrees with the material derivative in

all the cases considered in this thesis, i.e. d
dt = ∂

∂t + v · ∇
∂
∂t Partial derivative w.r.t. t

∇a Gradient, i.e. (∇a)ijk = ∂aij

∂xk

∇ · a Divergence operator, i.e. (∇ · a)i =
∑

j
∂aij

∂xj

∆a Laplace operator, i.e. ∆a = ∇·(∇a) and accordingly (∆a)ij =
∑

k
∂2aij

∂x2
k

∇Γa Tangential gradient, i.e. ∇Γa = (P · ∇)a = (∇a) · P and accordingly

(∇Γa)ijk =
∑

l Pkl
∂aij

∂xl

∇Γ · a Surface divergence operator, i.e. (∇Γ · a)i =
∑

jk Pjk
∂aij

∂xk

∆Γa Laplace-Beltrami operator, i.e. ∆Γa = ∇Γ · (∇Γa) and accordingly

(∆Γa)ij =
∑

klm Pmk
∂

∂xk
(Pml

∂aij

∂xl
)

Quantities with respect to the reference or initial configuration, i.e. considering the

Lagrangian coordinate system, are marked by the subscript 0, e.g.

n0 Normal with respect to the initial configuration

∇0, Differential operator with respect to the Lagrangian coordinates∫
. . . dµ0 Integral operator with respect to the Lagrangian coordinates
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Some geometric analysis

For the convenience of the reader, let us repeat the definitions and results from dif-

ferential geometry used in this thesis. For more details especially with respect to

numerical implementations, we refer to the review Deckelnick et al. (2005).

For each t ∈ [0, T ], T > 0, let Γ(t) be a compact, closed, and orientable hypersurface

in Rn, which is twice differentiable. Since Γ is orientable, a vector field n ∈ C1(Γ;Rn)

normal to Γ exists by definition. In the following, we consider only outer unit normals

n.

Parametric representation

Typically, we consider parametric representations: For each point x ∈ Γ there exist an

open set U ⊂ Rn containing x, an open set V ⊂ Rn−1, and a map χ ∈ C2(V,Rn) such

that U
⋂

Γ = χ(V ) and rank Dχ(θ) = n − 1 for all θ ∈ V . A basis of the tangent

space at x = χ(θ) is then given by the vectors ∂χ(θ)
∂θ1

, . . . , ∂χ(θ)
∂θn−1

.

Let us define the metric / metric tensor on Γ:

gij(θ) =
∂χ(θ)

∂θi
· ∂χ(θ)

∂θj
, i, j = 1, . . . , n− 1.

Furthermore, let g = det (gij) and gij be the components of the inverse of the matrix

(gij). Then the tangential gradient and the Laplace-Beltrami operator of a function f

(defined in a neighbourhood of Γ) are given by:

∇Γf =
n−1∑

i,j=1

gij ∂f

∂θj

∂χ

∂θi
,

∆Γf =
1
√

g

n−1∑

i,j=1

∂

∂θi

(
√

ggij ∂f

∂θj

)
.

These characterisations are equivalent to the ones given in Appendix A via the

projection operator P , but are more suitable with respect to a numerical implemen-

tation.
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Shape operator, mean curvature, and Gauss curvature

Let us introduce the shape operator:

H = ∇Γn = (∇n) · P ,

where P = I − n⊗ n is the tangential projection operator.

The shape operator H is a symmetric matrix and hence can be diagonalised. It has

one eigenvalue equal to zero with corresponding eigenvector n. The remaining n − 1

eigenvalues C1, . . . , Cn−1 are called the principal curvatures of Γ. The mean curvature

is defined as

H =
n−1∑

j=1

Cj =
n∑

j=1

Hjj = ∇Γ · n.

Our definition implies in particular that H > 0 if Γ = Sn. Here, we use the definition

of Deckelnick et al. (2005), which differs from the probably more common definition

H = 1
n−1

∑n−1
j=1 Cj.

Other important quantities used in differential geometry are the so-called Gauss

curvature K, defined as

K =
n−1∏

j=1

Cj

and the mean curvature vector

Y ≡ Hn = −∆Γx,

which allows a straight forward weak formulation.

Integration by parts

The following formula of integration by parts is true for any function f , which is

continuously differentiable in a neighbourhood of closed surfaces Γ:
∫

Γ

∇Γfdµ =

∫

Γ

fHndµ.

Using the product rule, we obtain Green’s formula:
∫

Γ

∇Γf · ∇Γgdµ = −
∫

Γ

f∆Γgdµ, (B.1)

where f and g are sufficiently smooth functions. In particular (B.1) implies the weak

characterisation of the mean curvature
∫

Γ

Hν · φdµ =

∫

Γ

∇Γx · ∇Γφdµ,

where φ is an appropriate test function.
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Some polymer physics

Considering mechanics of polymer networks, different concepts than the usual elas-

ticity theory are needed. For example, polymers can usually not be considered as

“simple” elastic rods. The size of single polymers is rather small and therefore ther-

modynamical effects play an important role. By the system’s statistical tendency to

increase its entropy, thermodynamic effects lead to an apparent elasticity, also referred

to as entropic elasticity.

Here, we consider the so-called freely jointed chain, which is a very rough model

of a single polymer. It shows elegantly how entropic effects could lead to an elastic

behaviour. For more details we would like to refer e.g. to the books of Grosberg and

Khokhlov (1997) or Boal (2002).

The freely jointed chain

Let us consider an oversimplified polymer (see Fig. C.1): the freely jointed chain. It

consists of N units ri with a fixed length l = |ri|. The directions of the vectors ri

shall be random and independent of each other. Hence, the end-to-end vector of such

r 1

r 2

rN

rN−1

RN

Fig. C.1. Illustration of a freely jointed chain - an oversimplified polymer.
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a polymer is given by

RN =
N∑

i=1

ri.

Using the recursive relation RN = RN−1 + rN , we can rewrite the average length of

the end-to-end vector to the power 2 as
〈
R2

N

〉
=

〈
R2

N−1 + 2RN−1rN + r2
N

〉

=
〈
R2

N−1 + 2|RN−1|l cos γN + l2
〉

=
〈
R2

N−1

〉
+ l2,

where we have used that the angle γN between RN−1 and rN is random, i.e.

〈cos γN〉 = 0. By induction, we recover

〈|RN |〉 =
√

Nl2 =
√

LN

√
l. (C.1)

Hence, the end-to-end distance of a polymer consisting of N subunits is much smaller

than the contour length LN = Nl. This is the so-called “L1/2 rule”.

Relation (C.1) yields some information on the average length of the idealised poly-

mer. It is also possible to calculate the probability distribution PN(R) of end-to-end

vectors (Boal, 2002). For a large number of subunits this probability distribution

converges to a Gaussian distribution, i.e it holds

P(R) = lim
N→∞

PN(R) =

[
3

2πNl2

]3/2

exp

(
− 3R2

2Nl2

)
. (C.2)

Entropic elasticity

In analogy to an ideal gas (Meschede and Gerthsen, 2006), a free energy can be assigned

to an ensemble of polymers. Considering freely jointed chains the free energy reads

F = −TS,

with temperature T and entropy S. Here, the internal energy of the polymer has

been neglected as it is a constant independent of the end-to-end distance R. (The

subsegments are allowed to rotate freely and are not elastic.)

The entropy S can be calculated using the Boltzmann principle. Suppose there are

Z ways in which molecules can occupy a certain state, then the entropy is given by

S = kB ln Z,

where kB is the Boltzmann constant. Obviously, the number of ways Z in which

the ensemble can attain an end-to-end distance R is proportional to the probability

distribution P(R) given by (C.2). We therefore get (Grosberg and Khokhlov, 1997)

F (R) ∼ kBT

(
3R2

2Nl2

)
. (C.3)
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Using the relation f(R) = −∂F (R)
R between forces f and energies F , we conclude

f ∼ −
(

3kBT

Nl2

)
R.

The force f is proportional to the “deformation” R. That is, the freely jointed chain

obeys Hooke’s law, which has been originally introduced as a description of springs.

Of course there are some fundamental differences. In contrast to springs, the force

constant depends on the temperature T . Further, the average value of R for an

undeformed polymer is zero and we cannot work with relative deformations ∆l/l,

usually used in the definition of Hooke’s law.

The example of the freely jointed chain shows a fundamental concept of polymer

mechanics: Often the apparent elasticity is due to thermodynamic effects and not

due to elastic properties of the polymers themselves. For more details on polymer

mechanics, we would like to refer to the books by Grosberg and Khokhlov (1997)

or Boal (2002). More information on the concept of free energies, entropy, or the

Boltzmann principle can be found e.g. in the book by Meschede and Gerthsen (2006).
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