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The fascinating way nature relies on biomolecules, mostly proteins and sometimes RNA, to 
carry out sophisticated chemical processes led to more and more efforts to use the concepts of 
biology for preparing efficient chiral catalysts. The “hybrid catalyst” approach that combines 
the steric information derived from a protein scaffold with the catalytic activity of transition 
metal complexes offers a resourceful means of developing semisynthetic metalloenzymes for 
enantioselective applications. Since the discovery of nucleic acids with enzyme-like functions, 
the catalytic potential of nucleic acids is being revealed by in vitro selection and evolution of 
novel ribozymes and DNAzymes. Nucleic acids, especially RNA, appear to be versatile 
catalysts capable of accelerating a broad range of reactions and exquisitely discriminating 
between chiral targets. However, while proteins dominated the construction of hybrid catalysts, 
the application of DNA and RNA in asymmetric catalysis has hardly been explored.  
This work aimed at exploring the chirality of nucleic acids and generating hybrid catalysts 
based on DNA and RNA. Towards the development of metallo-(deoxy)ribozymes assisted by 
combinatorial strategies (e.g., SELEX), a straightforward synthetic way of embedding transition 
metal complexes in nucleic acids folds was established. DNA sequences carrying mono- and 
bidentate phosphine ligands as well as P,N-ligands were successfully prepared starting from 
amino-modified oligonucleotide precursors. The optimized “convertible nucleoside” approach 
allowed the parallel, high-yielding synthesis of various alkylamino-DNA conjugates differing in 
length and structure of the spacer. Coupling of amino-oligonucleotides with PYRPHOS, BINAP 
and PHOX ligands equipped with a carboxyl group led to the incorporation of phosphine 
moieties at predetermined internal sites. Moreover, the stability of the DNA-tethered BINAP 
and PHOX was reasonably high, which makes them attractive candidates for the development 
of transition metal-containing oligonucleotides. To this end, systematic studies on the behavior 
of phosphine- and PHOX-metal complexes in aqueous medium - a prerequisite of nucleic acid 
catalysts - were carried out. Two model organometallic transformations were selected that were 
compatible with the structure and chemistry of nucleic acids. The rhodium(I)-catalyzed 1,4-
addition of phenyl boronic acid to 2-cyclohexen-1-one and iridium(I)-catalyzed allylic 
amination of the branched phenyl allyl acetate, respectively, proceeded efficiently in the 
presence of phosphorus-based ligands, in aqueous medium, at room temperature and low 
catalyst concentration. For the first model reaction, the best conversion (80%) was achieved 
with the isolated [Rh(nbd)BINAP]BF4 complex, in 6:1 dioxane/water, and TEA additive. On the 
basis of these data, a suitable system for assessing the catalytic potential of the DNA-BINAP 
ligand was implemented. In the second chosen reaction the in situ formed Ir(I)-PHOX 
complexes (0.05-0.1 mM) gave rise to racemic, branched allylic amination products in good 
yields (33-75%), in 3:7 dioxane/water. Kinetic resolution of the racemic substrate was then 
attempted by employing catalysts generated from the [Ir(cod)Cl]2 precursor and single- and 
double-stranded DNA-PHOX conjugates. Good conversions were obtained in the presence of 
G-poor DNA/DNA and RNA/DNA hybrids bearing the PHOX moiety, indicating a potential 
role of the G-N7 site in the first coordination sphere. With all tested DNA-PHOX conjugates, 
the levels of enantioselectivity remained modest. The results described in this work provide 
useful information for understanding the influence of nucleic acid sequence and covalent 
tethering on the reaction outcome. These are the first reported applications of DNA-based 
ligands in organometallic catalysis and they build the fundamentals for further development of 
selective nucleic acid catalysts, by means of rational design and in vitro selection approaches. 



 



 

Zusammenfassung  
 
Die faszinierende Art und Weise, in der die Natur auf Biomoleküle - meist Proteine und 
teilweise RNA - zurückgreift um anspruchsvolle chemische Prozesse auszuführen, hat zu immer 
mehr Bemühungen geführt, die Konzepte der Biologie für die Herstellung effizienter chiraler 
Katalysatoren zu nutzen. Die Verbindung dreidimensionaler Proteinstrukturen mit der 
katalytischen Aktivität von Übergangsmetallkomplexen ist eine interessante Herangehensweise 
in der Synthese sogenannter Hybrid-Katalysatoren für enantioselektiven Anwendungen. Seit der 
Entdeckung von Nukleinsäuren mit enzym-ähnlichen Funktionen wurde deren katalytisches 
Potential durch in vitro Selektion und Evolution neuer Ribozyme und DNAzyme deutlich 
gezeigt. Nukleinsäuren, insbesondere RNA, sind demnach vielseitige Katalysatoren, die in der 
Lage sind eine breite Palette an Reaktionen zu beschleunigen und außerordentlich gut zwischen 
chiralen Zielmolekülen zu unterscheiden. Während Proteine die Entwicklung von Hybrid- 
Katalysatoren jedoch weitgehend beherrschen, wurde die Anwendung von DNA oder RNA in 
der asymmetrischen Katalyse bisher kaum untersucht.  
Das Ziel dieser Arbeit war die Synthese von Hybrid-Katalysatoren auf Basis eines DNA und 
RNA Gerüstes. Für die kombinatorisch-gestützte Entwicklung von Metallo-Ribozymen und -
Deoxyribozymen (z. B. mittels SELEX) wurde ein direkter Syntheseweg zum Einbau von 
Übergangsmetall-Komplexen in Nukleinsäurestrukturen etabliert. DNA Sequenzen welche ein- 
und zweizähnige Phosphin-Liganden sowie P,N-Liganden tragen, wurden ausgehend von 
amino-modifizierten Oligonukleotid Vorstufen erfolgreich synthetisiert. Der optimierte Ansatz 
mittels sogenannter „convertable nucleosides“ erlaubt die parallele Synthese verschiedener 
alkylamino-DNA Konjugate, welche sich in Länge und Struktur der Spacer unterscheiden. Die 
Kopplung der Amino-Oligonukleotide mit PYRPHOS-, BINAP- und PHOX-Liganden, welche 
mit einer Carboxylgruppe ausgestattet sind, führt zum Einbau der Phosphin Bausteine an einer 
zuvor festgelegten Stelle im Nukleotidstrang. Ferner macht die hohe Stabilität der DNA-
gebundenen BINAP und PHOX Liganden diese zu attraktiven Kandidaten für die Entwicklung 
von Oligonukleotiden, die Übergangsmetall-Komplexe enthalten. Zu diesem Zweck wurden 
systematische Studien zum Verhalten von Phosphin- und PHOX-Metallkomplexen im 
wässrigen Medium durchgeführt - eine Voraussetzung für Katalysatoren auf Nukleinsäurebasis. 
Zwei metallorganische Transformationen, die mit der Struktur und den chemischen 
Eigenschaften von Nukleinsäuren kompatibel sind, wurden als Modellreaktionen ausgewählt. 
Die Rhodium(I)-katalysierte 1,4-Addition von Phenylborsäure zu 2-Cyclohexen-1-on und die 
Iridium(I)-katalysierte allylische Aminierung des verzweigten Phenylallylacetats verliefen 
erfolgreich in Anwesenheit von phosphorbasierten Liganden, in wässrigem Medium, 
Raumtemperatur und niedriger Katalysatorkonzentration. Für die erste Modellreaktion wurde 
die beste Umsetzung mit dem isolierten [Rh(nbd)BINAP]BF4 Komplex in 6:1 Dioxan/Wasser 
und unter TEA Zugabe erzielt (80 %). Auf Grundlage dieser Daten wurde ein geeignetes 
System erstellt, um das katalytische Potential von DNA-BINAP Liganden zu beurteilen. Bei der 
zweiten Modellreaktion führte der in situ gebildete Ir(I)-PHOX Komplex (0.05-0.1 mM) in 3:7 
Dioxan/Wasser zu guten Ausbeuten (33-75 %) der racemischen, verzweigten 
Aminierungsprodukte. Bei der kinetischen Auflösung racemischer Substrate wurden 
Katalysatoren verwendet, die aus dem [Ir(cod)Cl]2-Vorstufe und einfach- und doppelsträngigen 
DNA-PHOX Konjugaten hergestellt wurden. Gute Umsätze wurden in Anwesenheit von G-
armen DNA/DNA und RNA/DNA Hybriden, die eine PHOX Gruppe tragen, erzielt, was auf 
eine mögliche Funktion der G-N7 Position in der ersten Koordinationsspähre hindeutet. Die 
Enatioselektivität blieb jedoch bei allen getesteten DNA-PHOX Konjugaten gering. Die 
Ergebnisse dieser Arbeit bieten hilfreiche Informationen für das Verständnis darüber, welchen 
Einfluss die Nukleinsäuresequenz und die kovalente Verknüpfung auf den Ausgang der 
Reaktion haben. Dies ist der erste Bericht über die Anwendungen von DNA-basierten Liganden 
in der metallorganischen Katalyse und setzt den Grundstein für die weitere Entwicklung 
selektiver Nukleinsäurekatalysatoren mittels der Methodik des rationalen Designs und der in 
vitro Selektion. 
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1 Introduction 

1.1 Synthesis of Chiral Organic Molecules 

 

“How would you like to live in a looking-glass house, Kitty? ... Perhaps looking-glass 

milk isn’t good to drink.” (Lewis Caroll, Through the Looking-Glass) 

„Chirality ... is an intrinsic universal feature of various levels of matter.“[1]  

 

Living world depends on molecular chirality, in that crucial biopolymers associated 

with life are made up of chiral monomers (L-amino acids in proteins, D-sugars in RNA 

and DNA).[2, 3] Chirality was first described in 1848 by Louis Pasteur who demonstrated 

that tartrate enantiomers rotated the plane of the polarized light in different ways, and 

only the right-handed enantiomer was present in wine lees.  

In living organisms, all chemical transformations, recognition or information processing 

involve chiral molecules, such as enzymes or hormones.[4] Most physiological processes 

are based on precise molecular interactions between the chiral host molecules and the 

two enantiomeric guest molecules. Despite the structural similarity, two enantiomers 

behave and are recognized differently in a chiral environment. Biological chiral 

receptors, for example, interact mostly with drug molecules having the proper absolute 

configuration, leading to distinct biological activities of the two enantiomers. The 

importance of the relationship between pharmacological activity and chirality was 

demonstrated in the early 1960s, by the tragic administration to pregnant women of 

thalidomide (Figure 1.1), in the racemate form. The R enantiomer has the desired 

sedative properties, while (S)-thalidomide is teratogenic and led to fetal 

malformations.[1] However, even in 2000, only 40% of synthetic chiral drugs were sold 

in single enantiomer dosage form.[5] 
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Figure 1.1. Thalidomide enantiomers and their biological properties. 
 

The fascinating way nature is producing substances with chirality and the preference of 

one enantiomer over the other in the living matter have attracted considerable interest 

for developing synthetic routes to enantiomerically pure compounds, with the major 

goal of gaining significant clinical, scientific and industrial benefits. Three main 

strategies have been established: (i) enantiomer separation; (ii) transformation of a 

chiral precursor and (iii) enantioselective reactions. Enantiomerically pure substances 

were earlier obtained by the classical resolution of a racemate or chemical conversion of 

naturally occurring chiral compounds, such as tartaric and lactic acids, amino acids, 

carbohydrates, terpens, or alkaloids. Nevertheless, the use of enantioselective catalysts 

became over years the most efficient and attractive approach. 

For many years, the practical access to pure enantiomers relied on biochemical or 

biological methods. Nature utilizes enzymes for this purpose and relies on 

configurational and conformational optimization by structural variation of the chiral 

building blocks. The complex biological structures nature offers us have often modest 

applicability in chemical synthesis due to their limited substrate scope and operational 

stability.[6] However, with the help of protein engineering techniques, such as mutation, 

selection, and directed evolution, enzymes have been successfully improved and 

biocatalysts with novel properties developed.[7]  

In parallel to this field, metal-catalyzed enantioselective transformations have received 

much attention. Transition metal catalysts possess great potential in synthesis of 

enantiopure compounds from achiral/prochiral precursors, namely through an 

asymmetric reaction[8], or from racemic mixtures. Such metal catalysts usually consist 
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of a metal centre and a ligand carrying the stereochemical information in order to ensure 

the catalysis to proceed in a stereoselective manner.[9] In 2001, Noyori, Sharpless and 

Knowles were rewarded with the Nobel Prize for their achievements in the field of 

asymmetric organometallic catalysis.[1, 10, 11] 

1.1.1 Asymmetric Catalysis with Phosphorus Ligands 

 
The search for valuable asymmetric catalytic systems is one of the most active research 

areas in organic and bioorganic chemistry. A wide range of man-made catalysts has 

been constructed over the past four decades, and is mainly based on chiral metal 

complexes. The chiral information in the products prepared by enatioselective catalysis 

derives from the optically active ligands bound to the transition metal. Therefore, the 

proper design of the chiral ligands is the most important requirement for achieving high 

efficiency.[12, 13] Much effort has been dedicated to the synthesis of new chiral ligands or 

tuning of existing ligands to obtain high selectivity and reactivity. 

After the discovery of Wilkinson’s homogeneous hydrogenation catalyst 

[RhCl(PPh3)3][14], phosphorus ligands have attracted considerable interest. A second 

development in the mid-1960s was made by Knowles and Horner who replaced the 

triphenylphosphine of the Wilkinson’s catalysts with chiral monophosphines. These 

ligands were used in hydrogenation reactions, albeit with poor enantioselectivities. Few 

years later, monophosphines were successfully replaced due to the rapid development of 

chiral bisphosphorus ligands. Some of the most relevant phosphorus-based ligands will 

be reviewed here. 

1.1.1.1 PYRPHOS Ligands 
 

A large number of chelating bisphosphine ligands bearing a chiral carbon backbone has 

been synthesized and mainly employed in Rh-catalyzed asymmetric hydrogenation of 

dehydroamino acids. The discovery of 1,2-bisphosphine PYRPHOS-type (3,4-bis-

diphenylphosphino-pyrrolidine) ligands[15] enlarged the spectrum of substrates that 

could be processed with chiral bisphosphines in Rh-catalyzed hydrogenations (e.g. N-

(acylamino)acrylates, enamides, enol acylates, and itaconic acids.[16-18] A few selected 

examples of such ligands are illustrated in Figure 1.2. 
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Figure 1.2. PYRPHOS ligands. 
 

The majority of bisphosphine ligands consisting of a chiral carbon-backbone contain 

two aryl substituents attached to each phosphorus atom, which exert strong steric and 

electronic influences in their transition metal complexes. The orientation of the phenyl 

substituents has been reported to control the stereoselectivity and, therefore, the 

sterically congested phosphines possess remarkable catalytic properties. For example, 

PYRPHOS ligands, which contain a symmetrically placed nitrogen atom, generate rigid 

five-membered chelate rings with transition metals beneficial for the optimal transfer of 

chirality to the reaction centre. With Rh-PYRPHOS as catalyst, hydrogenation of N-

(acetylamino)cinnamic acid to (S)-N-acetyl-phenylalanine proceeded with >99% yield 

and over 95% ee.[15, 19] An important advantage of these ligands is that they can be 

readily tuned by variations of the N-substituent. Moreover, they can be easily attached 

to a linker through an amide bond and therefore facilitate the further immobilization of 

their transition metal complexes on polyethylene glycol supports,[20] silica gel,[15] gold 

surfaces,[21] or at the end of dendrimers.[18, 22] In general, the stereoselectivity of the 

immobilized systems was comparable to those obtained using analogue homogeneous 

transition metal catalysts. Interesting examples of PYRPHOS application have been 

reported by Gade and co-workers in early 2000s. Upon fixation of the ligand in the 

densely packed environment of a dendrimer, the resulting polynuclear complexes 

induced enantioselectivities of 74-93% in Rh(I)-catalyzed hydrogenation of Z-methyl-

N-(acetylamino)cinnamate and dimethyl itaconate,[18] and 69% in Pd(0)-catalyzed 

allylic amination of 1,3-diphenyl-1-acetoxypropene,[22] respectively. 
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1.1.1.2 BINAP Ligands 
 

Numerous studies have generally demonstrated that ligands with C2 symmetry elements 

perform excellent stereochemical control,[12] most likely due the reduced number of 

conformations the ligand can adopt in the coordination sphere of the metal. Noyori’s 

pioneering work on atropisomeric C2-symmetric bisphosphine ligand BINAP (2,2'-

bis(diphenylphosphino)-1,1'-binaphthyl)[23] (Figure 1.3) and its successful applications 

in Rh-catalyzed hydrogenation of α-(acylamino)acrylic acids and esters[24] (Table 1.1, 

entry 1) opened the way to a new class of fully aromatic chiral phosphorus ligands. The 

BINAP skeleton is conformationally flexible and can accommodate a large variety of 

transition metals, generating seven-membered rings that contain only sp²-hybridized 

carbon atoms. The rotational freedom around the donor atom-metal bond in the 

resulting chelate structures is therefore restricted. This feature, responsible for the 

chirality transfer to the metal coordination sites involved in the catalytic transformation, 

explains the high chiral recognition ability of BINAP ligands in numerous catalytic 

reactions.  

 
 
Figure 1.3. BINAP ligands. 
 

Transition metal-BINAP complexes have been extensively employed to reduce 

prochiral C=O, C=N, or C=C bonds. Enantioselective hydrogenation of olefins with 

chiral rhodium or ruthenium catalysts is one of the most established methods in 

asymmetric catalysis. Examples of substrates processed with BINAP-based 

hydrogenation catalysts include functionalised olefins and ketones (e.g. α-

dehydroamino acid derivatives,[24, 25] (β-acylamino)acrylates,[26] cyclic enamides,[27, 28] 

α,β-unsaturated acids,[29] allylic alcohols,[30] itaconic acids, α or β-keto esters,[31, 32] and 

imines.[33] 
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Sato’s preliminary work on Pd-catalyzed Heck reactions with BINAP ligands,[34] 

followed by several studies on substrates variation,[35-38] clearly demonstrated the 

potential of such chiral bisphosphines in enantioselective C-C bond forming processes. 

Although BINAP commonly induced modest regio- and stereoselectivity in asymmetric 

Heck reactions,[39] its high catalytic performance has been confirmed in Rh-catalyzed 

conjugate 1,4-additions. 
 
Table 1.1. Rh(I)-BINAP catalyzed asymmetric addition 

 
Entry Olefin  Ar % ee 

1[40]  

n

n = 0, 1, 2

O

 

PhB(OH)2  
 

 

 

93-97 

2[40] 

R1

O

R1 = i-Pr, Am  

PhB(OH)2  92-97 

3[41, 42]  
R1

O

O
R2

R1 = Me, n-Pr
R2 = Me, Et, t-Bu, CH2Ph  

ArB(OH)2

Ar = Ph, 3-MeOC6H4  

87-95 

4[43] P(OR2)2
O

R2 = Me, Et, Ph  

(ArBO)3

Ar = C6H5,  4-CH3C6H5, 3-ClC6H5  

91-96 

 

In 1998, Miyaura and Hayashi described the conjugate addition of arylboronic acids to 

α,β-unsaturated ketones in the presence of a Rh-phosphine complex (Table 1.2).[44] 

Under optimized reaction conditions, high yields and stereoselectivities were achieved 

for a wide range of substrates using BINAP as chiral ligand.[40, 45] The stereochemical 

outcome of the enantioselective additions using BINAP is dictated by the formation of a 

chiral pocket containing the vacant coordination site in the highly distorted structure of 

the Rh complex.[46] For this reason, BINAP ligands remain the most efficient 

bisphosphines examined in Rh-catalyzed conjugate addition,[41] affording high yields 

and over 90% enantioselectivity with various types of cyclic or linear enones and 
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organoboronic acids.[47] Several examples of electron-deficient olefins, including α,β-

unsaturated ketones or esters, and phosphonates, as well as organoboron/boroxine 

reagents employed in Rh-BINAP catalyzed asymmetric 1,4-additions, are summarized 

in Table 1.1. 

A common aspect of Rh-catalyzed 1,4-additions is that they are usually accelerated by 

the presence of water as cosolvent. Therefore, the development of water-soluble 

organometallic catalysts has attracted considerable attention. A typical example is 

introduction of water-soluble functional groups onto BINAP. This strategy has been 

used to generate BINAP analogues (i.e., diguanidinium-BINAP,[48] the bromohydrate 

form of the 6,6’-dimethylamino-BINAP[49]) for Rh- or Ru-mediated hydrogenation 

reactions, while aqueous 1,4-addition employs a resin-bound Rh-BINAP variant. The 

connection of BINAP with the amphiphilic polymer having an amino group was done 

via amide bond formation, using a BINAP-carboxylic acid derivative (Figure 1.3).[50] 

The resulting polymer-supported BINAP-Rh catalyst afforded high yield (71-95%) and 

high enantioselectivity (91-97%) in water for the 1,4-addition of phenylboronic acid to 

α,β-unsaturated ketones. 

An interesting family of heterobidentate chiral P,S-ligands, BINAP(S) (Figure 1.3), 

generated by conversion of BINAP to mono-sulfides, was reported in the early 

2000s.[51] With such ligand systems, highly selective Pd-catalyzed racemate 

resolution,[52, 53] as well as asymmetric amination of allylic substrates was obtained 

(Figure 1.4).[53, 54] The observed regioselectivity in case of allylic substrates containing 

rather small substituents was in contrast to the traditional regioselectivity of Pd systems, 

and branched products were predominantly formed. These intriguing results, together 

with the induced high regio- and stereoselectivities, made BINAP(S) a ligand of choice 

for further development in the field of allylic substitution reactions, where usually chiral 

P,N-ligands are used. 

 
Figure 1.4. Pd-catalyzed allylic substitution with BINAP(S) ligand. 
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1.1.1.3 PHOX Ligands 
 

A powerful class of chiral bidentate P,N-ligands,[55] namely phosphinooxazolines 

(PHOX) (Figure 1.5), structurally similar to Crabtree’s catalysts  combines a hard, N 

(oxazoline) with a soft, P (phosphine) donor and has been introduced by Helmchen in 

1993.[56]  

PHOX chirality derives from an asymmetric centre placed in the oxazoline ring directly 

connected to an aromatic phosphine moiety. Upon transition metal coordination, PHOX 

ligands form six-membered chelates that bind the substrate in a stereoselective manner. 

It has been assumed that such nonsymmetrical ligands would allow more enantiocontrol 

than C2-symmetric ligands[57] that dominated for long time asymmetric catalysis.  

Chiral PHOX ligands were initially used in Pd-catalyzed allylic alkylation of 

symmetrically substituted allyl acetates,[56] yielding complete substrate conversion and 

high enantioselectivity. Additionally, they induced excellent enantioselectivities in Ir-

catalyzed asymmetric hydrogenation of unfunctionalized olefins[58-60] for which 

classical Rh or Ru-BINAP catalysts were not efficient. Promising results were also 

obtained with olefins lacking a polar group,[61] and imines,[62] as substrates for 

hydrogenation. 

Remarkable contributions from the groups of Helmchen and Pfaltz demonstrated the 

great catalytic properties of PHOX ligands in transition metal-catalyzed C-C and C-N 

bond formation, including allylic substitutions and Heck reactions. Due to their modular 

structure, a number of very effective PHOX ligands were readily generated by varying 

the substituent at the stereogenic centre of the oxazoline moiety, responsible for catalyst 

reactivity.[63, 64] Commonly, high conversions were obtained with bulky groups located 

next to the metal centre. PHOX ligands with W, Mo, Pd, and Ir precursors have been 

tested for various allyl systems, either symmetrically substituted,[56, 65, 66] or 

monosubstituted linear substrates[67, 68] in reaction with nucleophiles, such as dimethyl 

malonate,[57] amines,[65] nitro compounds,[69] and sulfinates.[70] High enantiomeric 

excess and metal-dependent regioselectivity were mainly achieved with arylallyl 

derivatives.[57] Furthermore, interesting results were obtained in intramolecular 

aminations,[71] in spite of long reaction times generally required in PHOX-Ir catalyzed 



1.1. Synthesis of Chiral Organic Molecules 25 

 
allylic substitutions with amines.[72] So far, conversion of racemic monosubstituted allyl 

compounds to a single enantiomer through kinetic resolution in the presence of chiral 

PHOX ligands has not been reported.  

 
 

Figure 1.5. (A) Enantioselective hydrogenation in the presence of PHOX-Ir complexes. (B) Transition 
metal-catalyzed allylic alkylations and Heck reactions using PHOX ligands. 
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Although impressive enantioselectivities have been also observed in Pd-catalyzed Heck 

reactions, the use of PHOX ligands in such transformations appeared to be limited due 

to their low reactivity.[63] Figure 1.5 illustrates several applications of PHOX complexes 

in asymmetric catalysis. 

1.1.1.4 Phosphite and Phosphoramidite Ligands 
 

Traditionally, chelating phosphine ligands with a -PPh2 moiety, appeared to be ideal in 

many asymmetric transformations, but P-O and P-N containing monodentate 

phosphorus ligands, such as monophosphites and phosphoramidites, were often found to 

be as effective. This type of ligands benefits of straightforward preparation, modular 

construction for tuning of properties, high π-acidity, and, in contrast to phosphine 

analogues, resistance to oxidation.[73, 74] Although the relative instability, especially in 

protic solvents, noticeably limited their utility, within the last decade several new 

classes of phosphite and phosphoramidite ligands of high stability have been developed. 

Such ligands are capable of rate acceleration and stereoselectivity in a number of 

essential organic transformations, such as allylic substitution, hydrogenation and 

conjugate addition.[74]  

Some of the most simple and, at the same time, selective monophosphite ligands are the 

biaryl-derived species (Figure 1.6). In combination with an iridium catalyst precursor, 

triphenylphosphites were found to induce high rate acceleration and regioselectivity in 

favour of the branched product for both aryl and alkyl substrates in allylic substitution 

reactions.[75-77] Chiral biaryl-derived phosphites gave excellent results in Ir-catalyzed 

transformations of unsymmetrical allylic substrates.[78, 79] Structurally related phosphite-

phosphine combinations have been successfully applied to Pd-catalyzed allylic 

transformations of symmetrically disubstituted substrates.[80] 

 
Figure 1.6. BINOL and biphenyl-derived monophosphite ligands. 
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The use of BINOL-derived structures appeared to be important for achieving high 

enantioselectivity. For example, chiral BINOL-derived monophosphites afforded high 

levels of enantioselectivity in Rh-catalyzed hydrogenation of itaconic acid.[81, 82] 

Furthermore, P-O/N bond containing ligands have been demonstrated to be very good 

chiral sources for use in asymmetric conjugate addition reactions. After the successful 

applications of Cu(II)-phosphoramidite complexes based on the BINOL scaffold,[83-88] 

structurally related phosphite ligands containing a biphenolic unit and a chiral P-bonded 

alcohol were also screened in Rh-catalyzed 1,4-additions of arylboronic acids to enone. 

In aqueous media and under basic conditions, phosphites afforded excellent yields but 

only moderate enantioselectivities, albeit higher than the corresponding 

phosphoramidites.[89] 

1.1.2 Biocatalysis 

 
An attractive alternative to enantioselective metal catalysts is offered by biological 

systems. Natural enzymes catalyze biological transformations with remarkable 

specificity and efficiency, using a limited number of functional groups in the protein 

structure. Given that enzymes are products of evolution, they mostly function with high 

selectivity only with polar, polyfunctional natural substrates (e.g., carbohydrates, acid 

derivatives, and biopolymers), and under physiological conditions. Furthermore, the 

single-handed orientation and lock-and-key specificity of the proteins significantly 

reduce the substrate pool of catalysis, and might often cause severe product inhibition. 

By this means, natural enzymes are generally not optimal catalysts. 

One example of highly versatile class of natural enzymes used in synthesis of optically 

pure compounds consists of hydrolases, namely lipases and esterases.[90-92] Many of 

them were found to perform well even in organic solvents. Although lipases/esterases 

can generally accommodate various synthetic substrates and maintain their chiral 

recognition properties, they do not always exhibit satisfying catalytic performance, in 

terms of activity, stability and most importantly, enantioselectivity.  
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1.1.2.1 Artificial Enantioselective Enzymes 

 
Protein engineering has been employed to generate artificial enzymes that are modified 

to be compatible with a desired chemical process. Two main approaches, namely (i) 

rational design for fine-tuning existing biocatalysts, and (ii) combinatorial techniques 

based on libraries and suitable selection methods[93] have been developed. In the first 

approach, one or few amino acids in the enzyme are rationally either replaced with the 

remaining natural amino acids by using site-directed mutagenesis techniques,[94, 95] or 

chemically modified.[96] However, this method is rather challenging as it requires a 

thorough understanding of the structure and mechanism of the targeted enzymes. An 

efficient alternative to rational protein design was developed, namely the directed 

evolution[95, 97, 98] (Figure 1.7). Large libraries were generated by random mutagenesis 

(e.g., error-prone PCR)[99] of the gene encoding the catalyst, or recombinative methods 

of gene fragments (e.g., DNA-shuffling).[100] The resulting mutants were then subjected 

to gene expression and high-throughput screening methods[101, 102] in order to identify 

improved variants. The mutant gene of the optimal enzyme variant can be resubmitted 

to mutagenesis/expression/screening cycles until biocatalysts with improved properties 

are obtained.  

The first example of an in vitro evolved enantioselective enzyme was reported by Reetz 

in 1997.[103]  The isolated lipase afforded >90% ee in hydrolytic kinetic resolution of 

chiral esters, while the wild-type enzyme from Pseudomonas aeruginosa gave only 

2%.[103, 104] Several enantioselective enzymes, such as lipases,[105, 106] esterases,[107] 

aldolases,[108] or oxygenases,[109] were optimized by in vitro evolution and mainly 

employed in biological transformations.  
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Figure 1.7. Directed evolution of (enantioselective) enzymes. 
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1.1.2.2 Hybrid Catalysts 
 

The applications of the artificial enantioselective enzymes in chemical processes were 

expanded by the development of “hybrid catalysts” for use in transition-metal catalyzed 

organic reactions. This term was introduced by Reetz in 2002,[110, 111] and consists in 

embedding ligands and metal complexes thereof at a specific site in a protein. This 

approach was inspired by Whitesides’ work, who showed that asymmetric catalytic 

hydrogenations of α-acetamido-acrylic acid could be performed by anchoring an achiral 

diphosphinerhodium(I) complex, via a biotin carrier, in a chiral cavity of the protein 

avidin[112] (Figure 1.8). A similar system based on interaction of enantiopure 

biotinylated PYRPHOS-rhodium(I) complex with the host protein avidin, was used as 

catalyst in asymmetric hydrogenation of itaconic acid.[113] In both cases, the chirality of 

the protein induced modest levels of enantioselectivity, with observed ee values ranging 

between 33 and 44%, but definitely proved the principle of hybrid catalysts. 
 

 
Figure 1.8. Asymmetric hydrogenation with avidin containing biotinylated phosphine-rhodium (I) 
complex. 
 
The enantioselectivity was later significantly improved by chemical tuning and rational 

protein design. Ward introduced different spacers between biotin and the achiral 

diphosphinerhodium(I) complexes, replaced avidin with streptavidin - a similar protein 

with a deeper binding pocket - and, upon site-directed mutagenesis, obtained 96% 

enantioselectivity in hydrogenation of α-acetamido-acrylic acid.[114, 115] Using the same 

chemo-genetic optimization procedure,[96] enantioselective hydrogenases for Ru-

catalyzed reduction of prochiral  ketones have been developed (97% ee).[116]  
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Figure 1.9. (A) Non-covalent anchoring of an active catalyst within a chiral host (hybrid catalyst). (B) 
Examples of artificial metalloenzymes in asymmetric catalysis. 
 

Transport proteins, such as serum albumins, are another class of efficient host proteins 

able to strongly bind hydrophobic guests, for example porphyrins. Albumin-conjugated 

manganese(III) and copper(II) complexes were found to catalyze sulfoxidation reactions 
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and, respectively, Diels-Alder cycloadditions, with moderate to good 

enantioselectivities.[117-119] Non-covalent insertion of chromium(III)-salophen 

complexes into apomyoglobin mutants yielded metalloenzymes with low catalytic 

efficiency in asymmetric sulfoxidation (27-83% yield, ee <13%).[120] 

Reetz and co-workers applied the directed evolution approach for tuning the 

enantioselectivity of hybrid catalysts, using the Whitesides system and streptavidin.[110, 

111, 121] A library of mutant hybrid catalysts was produced via random mutagenesis, and 

posttranslational, non-covalent modification with metal complexes. Iterative cycles of 

mutagenesis coupled with enantioselective screening procedure led to an improved 

protein mutant, showing 65% ee.[121] A few examples of evolved artificial 

metalloenzymes generated by non-covalent anchoring to protein cavities are depicted in 

Figure 1.9 B. 

In parallel to non-covalent anchoring strategies, covalent incorporation of transition 

metal catalysts ensures an unambiguous localization of the metal centre in the host 

protein. For this purpose, proteins with a single accessible reactive amino acid residue, 

typically cysteine or serine, are site-specific functionalized with appropriately modified 

ligand moieties. Di Stefano reported an artificial metalloenzyme obtained by attachment 

of 1,10-phenanthroline to the cysteine residue of the adipocyte lipid-binding protein for 

use in Cu-catalyzed enantioselective hydrolysis of amides and esters (31-86% ee).[122] 

Using this approach, Reetz introduced salen and dipyridine moieties in the binding site 

of papain[111, 123] (Figure 1.10). Preliminary studies showed that hybrid manganese-salen 

and rhodium-dipyridine catalysts were active in epoxidation and hydrogenation, albeit 

with low enantioselectivities (ee <10%). 

De Vries described the covalent anchoring of a monophosphite to the cysteine residue 

of papain (Figure 1.10), that yielded 100% racemic product in Rh-catalyzed reduction 

of methyl-acetamidoacrylate.[124] 
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Figure 1.10. Catalysis with transition metal complexes covalently attached to proteins. Rhodium-
phosphite- (top) and manganese-salen-functionalized papain (bottom).  
 

Alternatively, diphosphine ligands carrying a p-nitrophosphonate moiety were 

covalently linked to the serine residue in the active site of lipase. However, this 

functionalization  turned out to be reversible, and undesired hydrolysis of the 

phosphonate moiety was observed.[111] 

1.2 Nucleic Acid Enzymes 

1.2.1 Chirality in the Structure of Nucleic Acids 
 

Nucleic acids are polymers composed of a polar, negatively charged sugar-phosphate 

backbone and hydrophobic nucleobases (Figure 1.11). This amphiphilic nature, together 

with the hydrogen bonding and stacking potential of nucleosides, determines the 

assembly and maintenance of secondary and tertiary structures within nucleic acids. 

The asymmetric D-ribose and D-2-deoxyribose sugars contain stereogenic centres, 

whose pucker configuration is important for the overall DNA or RNA structure. 

Typically, DNA adopts a double helical, antiparallel structure, via Watson-Crick base 

pairing (Figure 1.12), whereas RNA exists mainly in a single-stranded form. However, 

double helix elements are also a common feature of RNA structure and are fundamental 

in biological functions of RNA. 
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Figure 1.11. Constitution of DNA and RNA, with the name of the monomeric nucleoside units.  
 

The most common DNA conformations are the B- and the A-forms (Figure 1.13), both 

right-handed, but with different sugar conformation (C2’-endo for B-DNA and C3’-

endo for A-DNA, Figure 1.14). In addition, each form displays distinctive helical 

parameters, such as diameter, pitch, twist and tilt angels.[125, 126] The B-DNA appears as 

a compact cylinder with a hydrophobic interior of base pairs stacked nearly 

perpendicular to the helix axis at 3.4 Å intervals, achieving a complete rotation after 10 

base pairs.[127, 128] An important feature of the B-form is the presence of two 

distinguishable minor and major grooves providing selective surfaces for the binding of 

ligands such as proteins or small molecules. The A-DNA is wider and shorter than the 

B-helix, and its bases are tilted to the helix axis (Figure 1.13). This form is 

characterized by a complete turn after eleven base pairs and a reduced rise per base pair 

of 2.6-3.3 Å.[127, 129] In this channel-type arrangement the minor groove is smaller, while 

the major grove becomes deeper and narrower. This A-type helical orientation is 

preferred by double-stranded regions of RNA (as in hairpins), RNA-DNA hybrids, as 

well as by DNA-DNA duplexes containing one or more ribose units. A third 

conformation type, although not very common in nature, is the left-handed Z-DNA. It is 

generated by alternating conformations of the ribose rings (C2’-endo and C3’-endo) and 

of the nucleobases (syn and anti) (Figure 1.14), and contains only one deep helical 

groove. 
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Figure 1.12. A) Watson-Crick base pairs in DNA (top) and RNA (bottom). B) Hoogsteen base pairs in 
DNA.  

 
Figure 1.13. Different DNA helices. 
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Figure 1.14. A) C2’-endo or C3’-endo conformations of the ribose ring, B) anti and syn base orientation 
(exemplified by adenine). 
 

Beside the standard double helix form, DNA can adopt a number of different, more 

complex structures, such as triplexes (through Hoogsteen base-pairing (Figure 1.12 B), 

at low pH), quadruplexes (by folding of a guanosine-rich single chain), and Holliday 

junctions (of four DNA strands),[126, 130, 131] important for interaction with biological 

components, such as proteins. By comparison to DNA, RNA possesses higher structural 

and dynamic flexibility and has a higher the propensity to fold and form 3D higher-

ordered structures that alternate helices and single-stranded regions or loops. 

These structural features confer distinctive properties to nucleic acids and provide 

numerous discriminatory intermolecular contacts with target molecules. In particular, 

chirality plays a crucial role on the interactions of nucleic acids with chemical species, 

such as drugs, or metal complexes,[125] determining the DNA/RNA molecular 

recognition, binding affinity, and, if applicable, enantiodiscrimination. 

For example, nucleic acids are able of forming precise binding pockets for the specific 

recognition of substrates and cofactors. Therewith, combinatorial chemistry has been 

used to identify nucleic acid sequences, namely aptamers, which recognize and bind 

targets ranging from simple ions and small molecules, to peptides and single proteins. A 

large number of small-molecule RNA aptamers have been isolated that can interact with 

nucleotides and free nucleobases, amino acids, cofactors, basic antibiotics, and 

transition-state analogues.[132] Single-stranded DNA can also recognize a variety of 

small molecules, including ATP, organic dyes, porphyrins, and arginine.[133] 
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Figure 1.15. Binding pocket of the theophylline-RNA aptamer complex.[134, 135] 
 

Structural studies have revealed that, upon contacting the ligand and conformational 

change, the aptamers are able of forming precise, highly-ordered pockets, consisting 

mainly of purine-rich loops. These elements are highly conserved and, by interactions 

with spatially close nucleotides, often engaged in forming triplex, quadruplex, junctions 

or pseudoknot structures.[136] Since planarity of the target molecules, presence of H-

bond donors and acceptors, and positively charged groups appear to be the main factors 

involved in molecular recognition, molecules bind with different affinities depending on 

their geometry, hydrophobicity and overall charge. Aminoglycoside antibiotics with 

multiple primary amino groups,[137, 138] as well as the nucleotides,[139] and 

nucleobases[140] are among the high-affinity ligands. In addition, many RNA aptamers 

show high substrate specificity and can differentiate among closely related molecules. 

The theophylline aptamer (Figure 1.15), for example, discriminates against caffeine, 

which has only one additional methyl group, by 104-fold.[141]  

Some aptamers can discriminate enantiomers of the target molecules, such as amino 

acids and synthetic drugs, and bind them with high enantioselectivity. Examples of 

small ligand enantiomers include L-arginine,[142] L-histidine,[143] or (R)-thalidomide.[144]  

Small molecules can interact with the minor groove of B-DNA (e.g., polyamides[145]), 

or intercalate between the base pairs. DNA intercalators contain a planar aromatic 

heterocyclic functionality (achiral) which can insert and stack between the base pairs of 

helical DNA. Their conjugation with chiral moieties can lead to a stereochemical 

preference for interaction. Beside small chiral molecule recognition, nucleic acids 

structures offer potential chiral environment,[146, 147] or chiral template for asymmetric 
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synthesis.[148, 149] However, this field of research is practically unexplored. Nevertheless, 

exploring the chirality of nucleic acids in combination with in vitro evolution and 

selection methodologies is a promising approach and may lead to a new generation of 

bio-inspired functional molecules. 

1.2.2 In vitro Selection of Nucleic Acid-Enzymes 
 

Protein enzymes have dominated for a long time the field of biocatalysis. The 20 amino 

acid components, in addition to the hydrogen bonding ability of the polyamide 

backbone ensure substantial chemical diversity and structural versatility in enzymatic 

catalysis. In contrast to proteins, nucleic acids with just four monomers and few 

functional groups are restricted to hydrogen bonding, π-stacking, and metal-ion 

coordination (Figure 1.16) for folding and interactions with potential substrates,[150] and 

therefore catalytically limited. Only a few nucleic acid enzymes are found in nature, all 

of them being RNA enzymes (ribozymes) (e.g., hammerhead ribozyme, hepatitis delta 

virus ribozyme, group I self-splicing introns, and the ribosome).[151-153] They mediate 

phosphodiester bond cleavage/formation and are responsible for peptide bond formation 

in protein biosynthesis.[154-156]  DNA is less catalytically competent than RNA, in part 

since it lacks the 2’-hydroxyl group that can engage in hydrogen bonding as both donor 

and acceptor (Figure 1.16). Moreover, the DNA double-helical form restricts the 

structural flexibility and the potential of folding permitted by single-stranded 

confomations and possibly required in catalysis.  

 
 
Figure 1.16. Interactions occurring in DNA and RNA structures and that can contribute to catalysis.  
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Directed evolution[157] and in vitro selection strategies have led to the development of 

DNA and RNA molecules with specific molecular recognition properties and catalytic 

abilities. Various DNA enzymes (DNAzymes) and an even larger number of ribozymes 

able of catalyzing a broad range of chemical reactions have been isolated using SELEX 

techniques (Systematic Evolution of Ligands by EXponential enrichment).[151, 158-162]  
 

 
 
Figure 1.17. In vitro selection of nucleic acids. The enriched DNA pool re-enters the selection cycle. 
 

A general in vitro selection approach is shown in Figure 1.17. SELEX involves 

screening of combinatorial libraries containing random sequences. For a given reaction, 

one substrate (bond forming) or product molecule (bond cleavage) is attached to the 

population of potential catalysts. A chemical tag (e.g., biotin) is appended to the other 

substrate or to the product, so that a bond-forming reaction results in joining the tag to 

the catalyst, whereas a bond-breaking reaction results in releasing the tag from the 

catalyst. The tag is typically captured by affinity chromatography (e.g., streptavidin-

coated support). The applied selection procedure is tag specific, retaining tagged 

molecules in case of a bond-forming reaction or rejecting tagged molecules in case of 
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bond-cleavage reaction. The active species are isolated, forming an enriched library, 

which is then amplified. After iterated selection-amplification cycles, the individual 

catalytically active species are identified by cloning and sequencing protocols, and 

further optimized by rational design. 

1.2.3 DNA-zymes 
 

Deoxyribozymes isolated from pools of random-sequence DNAs catalyze the Pb2+-

dependent cleavage of RNA[163] and the oxidative Cu2+-mediated cleavage of DNA,[164] 

facilitate the 3’,5’-linkage between two chemically activated DNA sequences in the 

presence of Zn2+ or Cu2+,[165] formation of 3’-5’ and 2’-5’ junctions and of linear 

(Figure 1.18) and branched RNA,[166] promote the metallation of porphyrin rings,[167] 

and display peroxidase activity upon binding to hemin (Fe(III)-protoporphyrinIX).[168] 

Many other reactions involving nucleic acid covalent modification are catalyzed by 

DNA: ATP-dependent self-phosphorylation,[169] DNA adenylation (capping),[170] and 

site-specific deglycosylation (depurination).[171] Overall, deoxyribozymes appeared to 

generate rate enhancements similar to that of typical RNA enzymes, albeit inferior to 

their protein counterparts.[172] 

 
Figure 1.18. RNA ligation catalyzed by deoxyribozymes. Formation of 2’-5’ and 3’-5’ junctions between 
readily available termini results in a linear RNA product.  
 

Nearly all DNAzymes require metals for catalysis. Monovalent, divalent and even 

lanthanide metal ions[173] can assist the optimal folding of DNA to form complex 

tertiary structures. Moreover, divalent metal ions and lanthanides behave as Lewis acid 

catalysts or general acid/base catalysts and trigger the reaction at the active site of the 

enzyme.[173, 174] 

To compensate for the lack of chemical moieties present in proteins, additional amino 

acid cofactors have been incorporated into DNA. For example, an L-histidine dependent 

deoxyribozyme has been reported to catalyze RNA transesterification in the absence of 
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divalent metal ions.[175] Histidine might act as general base catalyst to assist in 

deprotonation of the target-site 2’-hydroxyl group. 

Several approaches make use of modified nucleotides to expand the array of chemical 

functionality of DNA. For example, imidazole and primary amino groups have been 

incorporated into DNA (Figure 1.19) as surrogates for histidine and lysine. These 

modified DNAzymes are able to catalyze RNA hydrolysis independently of a divalent 

cation.[176, 177] The same amino-modified deoxyribozyme was found to effect scission of 

DNA containing abasic sites and display apurinic/apyrimidinic lyase-endonuclease-

activity.[178] 
 

 
Figure 1.19. A) RNA-cleaving modified deoxyribozyme (black, modified nucleotides are shown in blue) 
and its target sequence (green). B) Structures of the modified nucleotides: histaminyldeoxyadenosine (A) 
and aminoallyl-deoxyuridine (U). 

1.2.4 Ribozymes 
 

Since the discovery of catalytic properties of natural RNAs 25 years ago[179, 180], a large 

number of ribozymes with novel catalytic properties has been developed by means of in 

vitro selection. The chemical transformations catalyzed by RNA range from classical 

reactions such as RNA hydrolysis and ligation to reactions including redox catalysis,[181] 

urea synthesis,[182] glycosidic bond formation and nucleotide synthesis,[183, 184] RNA 

polymerisation,[185, 186] and aminoacylation of tRNA with aminoacids.[187, 188] Moreover, 

it has been demonstrated that C-C bond forming reactions could be also accelerated by 

RNAs. Examples include Diels-Alder reaction,[189-191] Michael addition,[192] and aldol 

condensation.[193] 
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The impressive catalytic potential of RNA comes from its ability to fold into 3D 

structures and form binding cavities for various substrates and metal ions.[194] In the 

presence of divalent ions, RNAs can properly fold in very stable and rigid 

conformations. In some cases, metal ions are involved directly in catalysis, by 

stabilizing leaving groups or transition states.  

Interesting examples of nucleic acids interactions with metal ions in aid of activity 

regulation are revealed by the metal-binding allosteric ribozymes. Breaker described 

several hammerhead ribozymes that are triggered and regulated selectively by binding 

of certain metal ions (Figure 1.20), such as Cd2+, Co2+, Mn2+, Ni2+, Zn2+, Fe2+.[195] 

 
 
Figure 1.20. Selection scheme for the isolation of cation-dependent ribozymes. The ribozyme core 
contains a 40 nucleotide random-sequence domain (40nt). The RNA population is prepared by T7 
transcription (1) and submitted to negative (no metal effectors) selection (2) and positive (with metal 
effectors) (3) selection. The RNA species enriched for allosteric function are amplified by RT-PCR. Mg2+ 
ions (steps 2 and 3) are included in the selection cycle to promote high catalytic activity of the 
hammerhead ribozyme.  
  

The important role of metal ions as cofactors has been demonstrated not only in 

reactions involving phosphodiester chemistry, as in the Pb2+-dependent 2’-O-mediated 

RNA self cleavage or the 2’,3’-cyclic phosphate hydrolysis. For example, ribozymes 

showing alcohol dehydrogenase activity,[181] or catalyzing racemic aldol reactions[193] 

were selected in the presence of Zn2+. The catalytic activity of the Diels-Alder ribozyme 

evolved in Eaton’s group was dependent on the presence of Cu2+and 4-pyridyl modified 

uracil residues. Likely, Cu2+ and Ni2+ play a key role either in the structure of RNA or 

in catalysis by providing Lewis acid sites upon coordination to the pyridyl moieties.[196, 



1.2 Nucleic Acid Enzymes  43   

197] In contrast, the Diels-Alder ribozyme isolated by Jäschke’s group showed fast 

multiple turnovers without requiring transition metals or replacement of the natural 

nucleotides. In this case, hydrophobic interactions, electronic and proximity effects 

were responsible for achieving catalysis. The crystal structure revealed the presence of a 

preformed catalytic pocket almost perfectly complementary to the reaction product.[198] 

Furthermore, this is the single reported example where the chiral binding cavity of a 

selected RNAzyme directed the reaction towards one enantiomer of the chiral product, 

resulting in an enantiomeric excess of 89%[147] (Figure 1.21).  

 
Figure 1.21. A) Diels-Alder ribozyme crystal structure. B) Diels-Alder reaction between oligo(ethylene 
glycol)anthracene derivatives and N-pentylmaleimide catalyzed by the ribozyme.[147] 
 

The observation that RNA is capable of stereodiscrimination was also supported by 

Eaton’s work on in vitro selection of RNA urea synthase. This ribozyme, that promotes 

the formation of a urea bond between peptide phosphonate substrates and the exocyclic 

amino group of the 3’-terminal cytidine, can stereoselectively recognize peptide 

substrates for catalysis.[182] 

1.2.5 DNA-Based Hybrid Catalysts 
 

While proteins proved to be suitable chiral scaffolds to form hybrid catalysts and induce 

enantioselectivity in asymmetric catalysis, attempts of employing nucleic acids in a 

similar context have been only recently described. In 2005, Feringa and co-workers 

reported on a supramolecular catalyst generated by intercalation of a copper-based 

Lewis acid in salmon testes DNA (Figure 1.22). The double helical DNA provides then 

enantioselectivity in Lewis acid catalyzed Diels-Alder cycloadditon of aza-chalcone to 

cyclopentadiene, in water.[146, 199] Feringa’s work provided the first example of the use 
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of DNA as source of chirality in asymmetric catalysis. 

 
Figure 1.22. Diels-Alder reaction of cyclopentadiene with aza-chalcone catalyzed by copper complexes 
in the presence of DNA. 
 

In this approach two classes of catalysts have been investigated. In the first case, achiral 

bidentate pyridine ligands for Cu2+ coordination were attached via short spacers to 9-

amino acridine, a DNA intercalating moiety (Figure 1.22). As a result, the active Cu2+ 

centre is brought into close proximity to the DNA chiral environment and allows for 

transferring the chirality from DNA to the reaction product. With such catalysts, 

moderate to good enantiomeric excesses were achieved: 53% for the major isomer 

(endo) and up to 90% for the minor (exo) isomer.[146] Interestingly, the design of the 

metal binding ligand and the distance between the metal complex and the DNA helix 

considerably affected the enantioselectivity. Thereby, aryl- and naphthyl-containing 

ligands induced preference for the synthesis of opposite enantiomers. Elongation of the 

spacers (n=3) resulted in change of the enantiopreference observed with a short linker 

(n=2), while longer linkers (n=5) gave unsatisfactory results. 

Optimization studies led to a second class of DNA-based catalysts (Figure 1.22), by 

replacing the intercalator-spacer-ligand system with a bipyridine-containing moiety, 

which behaves both as intercalator and bidentate ligand. In this system, the catalytic 

metal centre is accommodated much closer to the DNA backbone. The obtained endo-

selectivities and enantioselectivities were dependent on the size and DNA binding 
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strength of the aromatic ligands. The best results (>99% endo isomer, >99% ee) were 

given by smallest ligands, indicating that a shorter distance between Cu2+ and DNA is 

beneficial for chirality transfer. In addition, the most active catalysts contained medium 

DNA binders, suggesting that some flexibility in the binding of the complex favours a 

preferred orientation of the reaction product.[199, 200] 

The chirality transfer is explained by two possible mechanisms. In a one step 

mechanism, the chiral DNA environment directs the orientation of the diene towards 

one of the prochiral faces of the copper-bound dienophile. This pathway might 

correspond to catalysts where Cu2+ is positioned very close to the DNA, which is 

achieved by binding to intercalating ligands. Alternatively, in a two step mechanism, the 

DNA chirality could be transmitted to the achiral ligand, leading to 

enantiodiscrimination and different DNA binding affinities of the resulting chiral metal 

complex. A preferred chiral conformation of the catalyst would then translate into 

enantioselectivity in the catalyzed reaction.  

However, in these systems the exact position of the metal complexes within the DNA is 

not defined, making a thorough understanding of the role of DNA difficult. Towards 

this end, a well-defined positioning of the metal complex and a precise control of the 

coordination environment are essential. This prerequisite has been addressed by Kamer 

who, at the beginning of 2007, reported on site-specific incorporation of 

monophosphine ligands into DNA trimers.[201] Solid-phase bound synthetic 

oligonucleotides containing internal 5-iodo-2’-deoxyuridine have been reacted with 

diphenylphosphine under Pd-catalyzed cross-coupling conditions. The resulting 

trinucleotide-phosphine ligands have been tested in Pd-catalyzed allylic substitution, in 

25% aqueous medium, giving <83% conversion and <12% stereoselectivity. In these 

systems, the stereocontrol comes from the ribose moiety and not from the DNA folding.  

Nevertheless, in the absence of more elaborate systems with well-defined secondary 

structures, the application of nucleic acids as catalysts or scaffolds for transition metal 

catalysts remains rather limited. 
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1.3 Transition Metal-DNA Conjugates 

 

Although it became clear that DNA and RNA could optimally fit substrates or transition 

states in a binding pocket and induce enantioselectivity, the catalytic potential of nucleic 

acids in asymmetric catalysis remained practically unexplored. So far, the incorporation 

of transition metal complexes into DNA and RNA was only considered for the 

development of functional biomolecules with potential applications as therapeutics,                        

artificial nucleases, and as nanotechnology construction material. Metal complexes can 

bind to nucleic acids via both noncovalent interactions and covalent attachment. 

1.3.1 Non-covalent Interactions 
 

Metal complexes are a very interesting class of reagents, which can site-specifically 

target double-stranded DNA and RNA. Therefore, they found useful applications as 

luminescent probes for DNA, mismatch recognition tools and structural probes for 

RNA.  

A labile ligand of the transition metal complex can be substituted by a nucleophile in 

DNA, leading to formation of metal-DNA adducts. Nucleobases or phosphate groups 

are available for direct coordination to the metal centre. Certain highly reactive metal 

complexes are known to possess therapeutic effects due to irreversible binding to DNA. 

One of the best examples is cis-platinum (cis-PtCl2(NH3)2), a square planar complex, 

which is a very effective anticancer drug. Cis-platinum targets the nuclear DNA, 

forming a critical lesion by cross-linking two adjacent guanines or an adenine and a 

guanine on the same strand, through coordination of the platinum ion to the N7 

nitrogen.[125, 202] Furthermore, antitumor activity and pronounced metastatic properties 

were observed with ruthenium analogues, such as cis- and trans-RuIICl2(DMSO)4, 

RuII(bpy)2Cl2, RuIII(tpy)Cl3, and [RuII(NH3)5Cl]Cl.[203, 204] 

On the other hand, metal complexes interact with DNA via electrostatic binding, surface 

binding to the minor or major groove, or intercalation of planar aromatic ligand into the 

stacked base pairs.[205] In this category, coordinatively saturated octahedral complexes 

of Ru2+ and Rh3+ containing phenanthroline units have been extensively employed as 
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luminescent reporters,[205] DNA cleaving,[206] or cross-linking agents,[207] and for the 

study of long range energy and electron-transfer processes through DNA.[208] 

Complexes in which one phenanthroline moiety is replaced by 9,10-

phenanthrenequinone diimine (phi) or extended by two aromatic rings such as in 

dipyridophenazine (dppz) ligand are among the most studied major groove metallo-

intercalators. Rhodium, ruthenium, and osmium complexes containing phi ligands 

promote cleavage of DNA and RNA sites upon photoirradiation, and can be used as 

probes for nucleic acids structure.[205] [Ru((phen)2dppz)]2+ possesses interesting 

photophysical properties, and induces a “light-switch” effect, upon DNA 

intercalation.[209] Minor groove binding molecules, such as bis(1,10-

phenanthroline)copper(I),[210, 211] Fe(II)-bleomycin,[212] and metal-porphyrins, display 

DNA strand scission without irradiation.[213]  

The coordination chirality of octahedral complexes gives rise to different binding 

constants and recognition properties for the two enantiomers of the same metal 

complex. The enantioselectivity in DNA binding was clearly established by Barton et 

al. An interesting example refers to tris(2,7-diphenylphenanthroline)ruthenium(II), 

whose enantiomeric forms specifically target right-handed B-DNA, and left-handed Z-

DNA, respectively, suggesting a correlation between the handedness  of the complex 

and that of the host DNA.[214]  

1.3.2 Covalent Attachment 
 

The requisite for metal complexes to target nucleic acids in a sequence-specific fashion 

has led to the development of synthetic strategies for precise incorporation. The most 

attractive way of achieving this goal involves tethering metal complexes to nucleic 

acids via covalent attachment. In principle, metal binders can be appended to 

oligonucleotide sequences either at the 5’- or 3’-termini or internally, at the nucleobase 

residue or at the ribose 2’-position (Figure 1.23). 

1.3.2.1 Post-synthetic Functionalization 
 

Covalent attachment has been traditionally accomplished by post-synthetic strategies, 

namely conjugation of a functionalized oligonucleotide with either a metal-chelator, 
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followed by metal complexation (1), or directly with a metal complex (2) (Figure 1.23). 

In both cases, the post-synthetic derivatization has been commonly addressed by 

reacting oligonucleotides containing 3’ or 5’-terminal amines or amine-tethered 

nucleosides, with activated esters. These approaches afford nucleic acids that carry for 

example metal-based cleavage reagents,[215] luminescent probes and redox-active 

species.[216-218] Several examples are briefly described here (Figure 1.23).  
 

 
 
Figure 1.23. Functionalization of DNA with transition metal complexes: 1) ligand attachment followed 
by metallation, and 2) conjugation with transition metal complex. The DNA sites for attachment are 
shown in blue. tap = 1,4,5,8-tetraazaphenanthrene, tpy = 2,2’:6’,2”-terpyridine. 
 

Sigman reported on 5’-terminal attachment of 1,10-phenanthroline ligand to DNA 

(Figure 1.23 left), which upon hybridization with an RNA target, induced site-directed 

Cu2+-mediated hydrolysis of RNA and DNA.[219, 220] Internal modifications of DNA 

with metal binding moieties has been described by Telser et al. N-hydroxysuccinimidyl 

(NHS) esters of bipyridine ligands for ruthenium coordination (Figure 1.23 left) have 

been attached to DNA sequences containing 4- or 5-amino modified cytidine, 

respectively deoxyuridine residues.[216] Recently, Liu et al. developed a method for 

introduction of monophosphines into 3’- or 5’-amino tethered oligonucleotides.[221, 222] 

Chemically stable metal complexes (e.g., ferrocene, Ru(II) complexes) (Figure 1.23 

right) have been incorporated into DNA by postsynthetic derivatization of appropriate 

amino-modified oligonucleotide precursors at position 5 of a thymine,[217, 223] 3’/5’- 

termini,[218, 224] or at internucleotide positions.[218]  
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Post-synthetic solid phase strategies proved to be very efficient for attachment of 

sensitive metalating species, due to the fact that all manipulations could be performed in 

organic solvents. Oligonucleotides equipped with a 3’- or/and 5’-alkylamino 

functionality were successfully derivatized with [Rh(phi)2(bpy’)]3+ and 

[Os(phen)(byp’)(Me2-dppz)]2+ complexes (phi = 9,10-phenanthrene quinonediimine, 

bpy’ = 4-butyric acid-4’-methyl bipyridyl; phen = 1,10-phenanthroline, Me2-dppz = 7,8-

dimethyldipyridophenazine), while still attached onto the solid support[225] (Figure 

1.24). 

 
Figure 1.24. Solid phase synthesis of DNA-tethered rhodium and osmium complexes: 1) coupling of 3’-
amino modified DNA with the NHS ester of [Rh(phi)2(bpy’)]3+ complex, 2) 5’-amino functionalization of 
the resin bound DNA, 3) coupling of the 5’-amino modified oligonucleotide with [Os(phen)(byp’)(Me2-
dppz)]2+ complex. DMT = 4,4’-dimethoxytrityl. 
 

A similar approach was very recently reported by the group of Kamer. Resin-bound 

trinucleotide DNA containing 5-iodo-2’-deoxyuridine was functionalized with 

triphenylphosphine under Pd(0)-catalyzed cross-coupling conditions.[201] 

1.3.2.2 Automated Solid-phase Synthesis 
 

Interesting approaches of “on-column” derivatization have been established by Grinstaff 

et al., in which metal complexes were incorporated into DNA during automated solid 

phase synthesis. These methods couple an alkyne functionalized-ferrocene,[226, 227] or -

Ru(bpy)3
2+,[228] to a solid phase-bound oligonucleotide, containing 5-iodo-deoxyuridine 

(Figure 1.25). 
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Figure 1.25. Conjugation of ferrocene and Ru(bpy)3

2+ complexes (B = A, C, G or T): 1) incorporation of 
5-iodo-2’-deoxyuridine phosphoramidite during standard DNA synthesis, 2) Pd(0) cross-coupling of 
alkyne functionalized metal complex and the resin-bound 5-iodo-2’-deoxyuridine, 3) normal 
oligonucleotide synthesis is resumed. 
 

Alternatively, solid-phase methodologies have utilized ligand-tethered or metallated 

nucleoside analogues or metal-coordinating nucleoside mimics for subsequent use in 

automated DNA assembly. Non-nucleoside based moieties such as 2,2’-bipyridine,[229] 

phenanthroline or terpyridine[230] ligands, for Ru(II) and Cu(II) coordination, have been 

converted into phosphoramidite building blocks and introduced via automated synthesis 

at internal positions into DNA sequences. In other approaches, conjugation of EDTA 

with C5-amino-modified thymidine via amide bond formation,[231] and coupling of 

phenanthroline to the N2 position of deoxyguanosine,[232] followed by standard solid-
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phase phosphoramidite chemistry, afforded oligonucleotides to promote Fe(II)-mediated 

sequence-specific cleavage of DNA. Bipyridine ligands have been attached to 

nucleobases (e.g., C5-iodo-deoxyuridine) by Sonogashira coupling, resulting in ethynyl-

linked conjugates.[233] A similar strategy has been employed by Tor’s group for site-

specific incorporation of Ru(II) donor and Os(II) acceptor polypyridine complexes as 

tools to study photoinduced energy transfer in DNA duplexes.[234] Under Pd-catalyzed 

cross-coupling conditions, ferrocene was tethered to 5-iodo-deoxyuridine and 

incorporated into DNA using automated synthesis techniques.[227, 235] 

Beside metallated phosphoramidite monomers that can be incorporated during solid-

phase synthesis, customized solid supports containing metallonucleosides, such as 2’-

Ru(bpy)2-deoxyuridine, have instead been prepared to initiate DNA synthesis, yielding 

3’-metallated oligonucleotides.[236] 

 
 

Figure 1.26. Modified oligonucleotides containing pyridine (A), 2,2’-bipyridine (B) and salen (C) 
ligandosides coordinated to copper and manganese ions. D) The assembly of ten metal-salen base pairs 
inside a DNA duplex. 
 

Recently, the groups of Shionoya, Schultz, Sheppard, Tor and Carell reported metal-

coordinating nucleic acids consisting of nucleoside mimics, called ligandosides, where 

the heterocyclic base is replaced by a strong chelator. Moreover, such metal-binding 
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nucleosides could pair through metal coordination and replace the natural hydrogen-

bonded base-pairs. In  particular, pyridines,[237] bipyridines,[237, 238] and salicylaldehyde 

derivatives, precursors of salen ligands,[239-241] were coupled to the ribose units, 

converted into phosphoramidites, and finally assembled into DNA sequences by solid 

phase synthesis (Figure 1.26). Metal-mediated (e.g., Pd2+, Cu2+, Ni2+, Zn2+, and Mn2+) 

ligandosides base pairing were then formed, affording stable DNA assemblies. In these 

structures the metal is located inside the duplex structure. In addition, polynuclear metal 

complexes could be formed in a predictable manner by incorporation of consecutive 

metal-base pairs, thereby creating a double helix DNA where five copper,[242] or ten 

manganese[243] (Figure 1.26 D) ions are stacked on top of each other. Such assemblies 

are presumably precursors of molecular devices, such as molecular magnets and wires.  

Despite several advantages of the solid-phase synthesis methodology, including 

versatility, high yields of metal incorporation, and routine product isolation, the success 

of this approach depends on the synthesis of individual metallated monomers, 

compatible with automated DNA synthesis. A severe limitation is the requirement for 

stable ligands that can survive the conditions used during synthesis, like deprotection, 

oxidation, capping, or isolation. Therefore, the known repertoire of metal-binding 

functionalities is rather scarce and consists mainly of nitrogen- and oxygen-donor 

ligands. Moreover, the majority of metal complexes conjugated to oligonucleotides are 

kinetically inert or without catalytic activity, except for their Lewis acidity.  

The development of an efficient and flexible synthetic strategy for the incorporation of 

other interesting classes of ligands would therefore be beneficial for the further progress 

of the field and facilitate the generation of novel metalloribozymes and -DNAzymes.
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2 Objectives 
 

The continuous interest in isolation of RNA and DNA molecules with novel catalytic 

activities, in particular in chemical processes not existing in the biological world, and 

the success of semisynthetic metalloenzymes in asymmetric catalysis prompted us to 

become interested in the design of nucleic acid-based hybrid catalysts for 

organometallic transformations.  

This project aims at introducing metal-binding ligands into RNA and DNA folds and 

developing transition metal complexes in which the activity is primarily dictated by the 

organometallic catalyst precursor, while the selectivity is governed by the chiral cavity 

created in the host nucleic acid molecule. The molecular recognition power of nucleic 

acids, combined with the catalytic properties of transition metal complexes, is assumed 

to facilitate catalytic reactions for which no enzymes or ribozymes are known. Since in 

this case, a rational design approach could not span all possible structures, the 

application of combinatorial methods is expected to generate artificial metallo-

DNAzymes and -ribozymes with the desired activity and selectivity. The combinatorial 

selection of RNA-based hybrid catalysts is, however, a long term goal, which requires a 

well-matched selection scheme. Unlike the known ribozymes, the in vitro selection of 

RNA-hybrid catalysts needs an overall system that combines structural and functional 

information from both nucleic acids and organometallic chemistry. For this, the 

following major subjects have to be challenged: 

• well defined positioning of the metal complex in the RNA molecules 

• suitable reactions compatible with the structure and chemistry of nucleic acids  

• low stereoselectivity provided by the transition metal catalyst in the absence of 

nucleic acids.   

Towards this end, several specific questions should be addressed. For the selection of 

RNA-transition metal catalysts the use of relatively short DNA/RNA hybrids is 

envisioned as a way to provide the system with the necessary ligand for a transition 

metal ion. The main focus of this work is aimed at the development of versatile methods 

for the site-specific incorporation of metal-binding functionalities into nucleic acids. 
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These approaches will be applied to covalently attach phosphites, mono- and bidentate 

phosphines, as well as P,N-ligands either at the termini or at specific internal positions 

of oligonucleotides and also in combination with various structural parameters. This 

will allow expanding the repertoire of DNA sequences specifically interacting with 

transition metals and afford attractive precursors for the development of metallo-

(deoxy)ribozymes. Studies on metal complex formation with phosphine and 

phosphinooxazoline ligands in aqueous mixtures are carried out in order to explore the 

suitability of phosphorus ligands for nucleic acid-based transition metal catalysis. 

Moreover, a major target is the selection of suitable model reactions, namely transition 

metal-catalyzed transformations that can be performed in water, and subsequently in 

combination with DNA- and RNA-based ligands. In addition, rigorous analytical 

methods need to be established that allow the detection of activity and selectivity with 

pmol amount of catalyst. Since the steric course of the reaction is expected to be 

influenced by the nucleic acid fold, transition metal complexes are chosen/designed that 

catalyze the background reaction with modest or, preferably, no stereoselectivity. 

Towards this end, the synthesis, characterization, and evaluation of the ligand systems 

and transition metal complexes thereof, as well as of the reaction substrates will be 

carried out and discussed in detail.  

Implementation of achiral ligands in these systems and therefore the exploitation of the 

nucleic acid scaffold as the only source of chirality are severely restricted by the 

covalent attachment of the ligand to the biopolymer. Therefore, this work aims at 

assessing to what extent the stereogenic information carried by a chiral ligand will be 

complemented by that of the nucleic acid part. On the way to the goal of creating 

nucleic acid-based catalysts, the influence of DNA and RNA on the activity and 

selectivity of the tethered metal complexes will be investigated by employing rationally 

designed model compounds. Due to the inherent chirality of the DNA backbone, DNA- 

based ligands may effect transfer of chiral information to the chemical reaction. 

Additionally, from the design and synthesis standpoint such DNA conjugates are 

attractive systems to work with.  Finally, exploring the DNA sequence design, ligand 

tethering and nucleic acid helix properties is anticipated to aid in gaining insights into 

the structural basis of DNA-transition metal interactions and to provide tools for 

designing DNA-based catalysts with improved properties. 
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3 Results and Discussions 

3.1 Incorporation of Metal Complexes into Nucleic Acids 

 

Design of RNA-transition metal system 

 

In the particular case of RNA-hybrid catalysts, the selection procedure requires an 

additional step for embedding transition metal complexes within RNA sequences 

(Figure 3.1). Furthermore, a well-defined localization of the transition metal in the 

nucleic acid scaffold is essential for a clear understanding and, later on, for 

manipulating the RNA’s role in catalysis.  

 

 
Figure 3.1. General scheme for in vitro selection of RNA-based hybrid catalysts. 
 

Therefore, we aim at creating precise metal binding sites in RNA by careful placement 

of ligands (preferably achiral) within the context of the overall tertiary structure. For 
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that, two possible approaches were considered: 1) incorporation of metal-binders at a 

particular nucleotide site within the random region of each sequence of the RNA pool 

(Figure 3.1 and 3.2 A); 2) co-selection in the presence of a stoichiometric amount of 

DNA functionalized with a ligand for metal coordination (Figure 3.1 B).  

 
Figure 3.2. Site-specific incorporation of transition metal complexes into RNA and DNA. 
 

The first approach requires either ligand-tethered nucleotides or modified nucleotides 

bearing functionalizable groups for post-transcriptional modification with metal 

chelators. For that, one must take into account the factors affecting the synthetic 

accessibility of the unnatural nucleotides in the form of triphosphates,[244-246] their 

compatibility with the known polymerases[247] involved in the selection cycle, and the 

stability of metal complexes during enzymatic manipulation.[248] Additionally, 

substituting an unnatural base in the DNA or RNA template involves a novel hydrogen-

bonding pattern in order to retain the high-fidelity in transcription, PCR and reverse-

transcription reactions and to afford the site-specific introduction of its corresponding 

complement. Therefore, establishing a unique, convenient base-pairing system to be 

reproducibly incorporated at a site-specific occurrence during each selection cycle 

appears very challenging and time-consuming.[249] 

As an alternative to achieve precise positioning of the transition metal complex in the 

RNA fold, a double-stranded DNA/RNA hybrid based on a short modified DNA 

fragment that matches the 3’-end constant region (cDNA priming site) of the original 

random-sequence population was chosen (Figure 3.2 B). With the help of a transition 

metal-DNA carrier a new selection scheme could be designed. In this case, the 

localization of the DNA-tethered metal complex to the RNA sequence is primarily 

directed by proximity and Watson-Crick base-pairing. However, these hybridization 

methods are necessarily limited to reaction conditions compatible with DNA/RNA 
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duplex formation, such as aqueous environment, precluding a large number of potential 

chemical transformations. Therefore, the DNA/RNA hybrid approach requires the study 

of a model reaction, in which proper conditions for RNA folding, proximity effects and 

tertiary interactions, important for generating local binding sites and catalytic pockets, 

are maintained. 

 

Criteria of ligand choice 

 

The design of the ligand should produce a structure which can be synthesized fairly 

readily and appropriately for incorporation into DNA/RNA. Furthermore, the choice of 

the ligand must take into account the factors affecting the stability of metal complexes 

in close location to nucleophilic sites in nucleic acids. Nucleobases or phosphate groups 

in nucleic acids are available for direct coordination to the metal centre. Thus, they can 

substitute and prevent the ligands from binding, and finally dramatically influence the 

reactivity of transition metal catalysts. It is anticipated that strong metal binders might 

overcome this problem by reducing the lability of metal complexes with respect to 

simple substitution, and dominate the control on metal coordination environment by 

virtue of the electron-rich nature and chelate effects.  

An efficient approach to the modification of DNA with transition metal chelators needs 

to fulfill the following requirements: (1) generality - the incorporation of ligands for 

metal coordination at any position along the DNA should be possible; (2) structural 

stability - the modification should ensure minimal structural perturbation of the DNA 

duplexes; (3) versatility and tunability - various metal binders as well as tethers for 

attachement to the DNA should be accessible; (4) simplicity - synthetic approach 

compatible with the chosen ligands; and (5) high yielding and regioselective DNA 

functionalization. 

Phosphorus ligands possess high affinity for transition metals and are among the most 

efficient and extensively used ligands in transition metal catalysis. Attracted by the 

broad applicability of this class of ligands, we attempted the preformation of phosphite-

containing oligonucleotides (ODN) and also prepared DNA conjugates carrying mono- 

and bidentate phosphine and phosphinooxazoline ligands as precursors for introducing 

metal centres at well-defined positions in DNA and RNA sequences. 
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3.1.1 Functionalization of DNA with Phosphoramidite Ligand 

Precursors  
 

Cyclic phosphites were initially chosen as target ligands for incorporation into DNA 

employing solid-phase synthesis. This approach involves the synthesis of 

phosphoramidites analogues P1-3 (Scheme 3.1) and their sequence-specific 

incorporation into oligonucleotides using the phosphoramidite chemistry. The choice of 

such ligands originated from the following criteria: (1) low sensitivity to oxidation 

compared to phosphines and (2) straightforward synthesis from phosphoramidite 

precursor. 

Cyclic phosphoramidites P1-3 were obtained by direct phosphitylation of appropriate 

diols with neat phosphorus trichloride, resulting in a chlorophosphite, followed by 

displacement with amines (Scheme 3.1). The phosphoramidites were purified by flash 

chromatography over silicagel. These building blocks were thus obtained in high purity 

(important for high coupling efficiency during oligonucleotides synthesis) and 

characterized by 1H and 31P NMR.  

 
Scheme 3.1. Synthesis of phosphoramidites P1-3. 
 

As model systems we have chosen to covalently attach the aromatic phosphoramidite 

P2 at the 5’-end of pentanucleotide DNA sequences using standard solid phase 

phosphoramidite DNA synthesis conditions and to generate a phosphite-type linkage 

(Scheme 3.2). Attachment of an achiral phosphoramidite precursor (P1) or chiral but 

configurationally fluxional P-bonded biphenol unit (P2,3)[82, 89] would result in chiral 

DNA-based ligands in which the chirality is exclusively dominated by the nucleic acid 
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structure. 

Incorporation of phosphite units required several adaptations in the automated synthesis 

of oligonucleotides, especially omission of the iodine-oxidation and deblocking step in 

this particular coupling cycle. Despite the stability of these ligands, the phosphoramidite 

unit is not likely to tolerate the acidic treatment required by removal of trityl groups.  

Phosphoramidite P2 was initially coupled to sODN1 (Chapter 5.4.1) as the last residue, 

using the trityl-on synthesis mode. The deprotection and cleavage of the completed 

oligonucleotides from the solid support was achieved by overnight incubation with 

concentrated ammonium hydroxide at room temperature, affording the crude 

oligonucleotide. The product was analyzed by reversed-phase HPLC (Figure 3.3 A), 

and identified as the 5’-OH unmodified sODN1 by MALDI-TOF MS.  

 
Scheme 3.2. Attempted solid-phase synthesis of phosphite-containing oligonucleotides sODN1-3. 
Reaction conditions: (a) detritylation (TCA, dichloromethane), P2 phosphoramidite coupling (BTT, 
acetonitrile), (b) I2 oxidation, (c) deprotection and cleavage from the solid support with 28% NH4OH, rt, 
overnight. 
  

Further attempts to couple either P1 or P2 to 5mer oligonucleotides containing non-

standard phosphoramidite building blocks (e.g., a decaethyleneglycol spacer molecule 

S[250] as for sODN2 and sODN3, Scheme 3.2) gave in all cases unsatisfactory results. 

However, for proving the assembling of P2, the synthesis of the phosphite-

functionalized DNA conjugate was re-attempted carrying out the same solid-phase 

protocol under usual conditions, without excluding the oxidation step of automated 
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oligonucleotide synthesis. Upon iodine-oxidation the presumably formed phosphite 

linkage would result in a highly stable phosphate ester-type functionality (Scheme 3.2), 

unproblematic for post-synthetic manipulations.  

As a result, removal of the DNA from the solid support using concentrated ammonium 

hydroxide, followed by overnight incubation at room temperature yielded a single 

product as observed in the HPLC chromatogram (Figure 3.3 B). Owing to the 

hydrophobicity added by the phosphite moiety, the modified DNA conjugate eluted 

with later retention time (tR = 29.9 min) compared to the unmodified DNA (tR = 18.0 

min). The isolated product was then analyzed by mass spectrometry and, corresponded 

indeed to the biphenyl-phosphate containing DNA conjugate sODN1-P2(O) (overall 

yield: 45%; calculated [M-H]-: 1691, measured: 1710). 

 
Figure 3.3. HPLC chromatograms of the attempted DNA solid-phase derivatization (no iodine oxidation) 
with P2 (A), the phosphate-containing DNA conjugate sODN1-P2(O) (iodine oxidation) (B), and the 
crude DNA product obtained after treatment of resin-bound DNA-phosphite sODN1-P2 with 
[Rh(cod)Cl]2, followed by ammonium hydroxide deprotection. ■ Failure DNA sequences obtained by 
automated solid-phase synthesis and 5’-OH unmodified sODN1; ● protected oligonucleotide and residual 
organic molecules. 
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Having demonstrated the coupling of P2 phosphoramidite, we were still confronted 

with stability and isolation of DNA-phosphite conjugates. At this point, we assumed 

that long time exposure to basic conditions required by post-synthetic DNA cleavage 

and deprotection might lead to decomposition of the DNA-appended phosphite. 

It is known that compounds containing P–O/N bonds have proved to some extent 

unstable, being able to undergo hydrolysis in protic solvents and lead to either cyclic H-

phosphonates or ring-cleavage products[251] due to the tendency of phosphorus to form 

P=O bonds.  For example, Feringa reported on stability of phosphoramidite ligands 

which after heating to 100 °C for 5 hours in dioxane/H2O 10:1 were completely 

hydrolized, whereas their corresponding rhodium(I) complexes remained unchanged 

despite the drastic conditions.[252] This observation was also confirmed in the case of 

phosphite ligands that appeared to be fully stable in protic solvents upon coordinating 

transition metals.[253] 

Prompted by these findings, we made use of the phosphites ability to bind transition 

metals and form stable complexes, as a way to overcome the problematic isolation of 

phosphite-containing DNA from aqueous mixtures. Complex formation between the 

DNA-appended phosphite and 1,5-cyclooctadienerhodium(I) chloride dimer was 

attempted by simply combining the solution of [Rh(cod)Cl]2 precursor in acetonitrile 

with the CPG beads coated with the DNA conjugate and stirring the resulting 

suspension. In this approach, the phosphate moieties of the DNA backbone were all 

protected as cyanoethyl esters so the oligonucleotide was uncharged and well solvated 

by organic solvents. The crude DNA was liberated from the bead and the protecting 

groups removed by treatment with aqueous ammonia. This final step was monitored by 

reversed-phase HPLC under the same conditions employed for analysis of unmodified 

oligonucleotides. Figure 3.3 C shows the chromatogram of the crude DNA product after 

30 minutes incubation at 65°C with ammonium hydroxide. Several early-eluting side 

products that did not contain the hydrophobic biphenolic moiety, likely failed sequences 

in the DNA synthesis, and the 5’-OH unmodified sODN1 oligonucleotide were 

obtained. Additional DNA products with higher retention times might correspond to 

protected oligonucleotide likely due to insufficient deprotection time. The single DNA 

conjugate (tR = 27.8 min) not belonging to any of these two categories was isolated in 

18% yield, liophylized and characterized by MALDI-TOF mass spectrometry. The mass 
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spectrum confirmed that the isolated species was the pure sODN1-P2 phosphite-DNA 

conjugate (sODN1-P2: calc. [M-H]- 1675, found 1685) and no trace of decomposition 

products could be detected.  

These results indicate that the Rh complex was formed, in a certain extent, and was 

fairly stable under the conditions employed in the deprotection and cleavage protocol. 

However, the moderate yield does not exclude the presence of free DNA- phosphite in 

the crude reaction mixture because free phosphite ligand hydrolyses in water, leading to 

5’-OH unmodified sODN1, which was observed during HPLC analysis. Furthermore, 

the isolation of rhodium complexes on reversed-phase chromatography appears difficult 

and generally results in displacement of the transiton metal ion from the complex due to 

the hemilability of P-Rh bond.  

All these observations directed our attention to phosphine ligands, known to be more 

stable against hydrolysis, albeit highly sensitive to oxidiation, as suitable metal-binding 

moieties for DNA functionalization.   

3.1.2 DNA-Phosphine Ligands 
 

Obviously, phosphine ligands need to be incorporated after DNA synthesis to avoid 

exposure to the oxidation step during automated solid-phase synthesis. We envisioned 

the post-synthetic modification of oligonucleotides as the most suitable and versatile 

approach for the preparation of phosphine-carrying DNA conjugates. Various 

aminoalkyl-modified oligonucleotides have been successfully reacted at predetermined 

internal sites with carboxylate derivatives of PYRPHOS, BINAP and PHOX ligands 

(Figure 2.3), affording the first examples of DNA sequences carrying mono- and 

bidentate phosphine ligands as well as P,N-ligands.[254] 

3.1.2.1 Amino-Functionalized Oligonucleotides 
 

For the preparation of amino-modified oligonucleotides, we employed the “convertible 

nucleoside” approach developed by Verdine[255] and Swann.[256] The oligonucleotide 

chain is elongated using a building block that is a precursor of the amino-functionalized 

nucleoside, a so-called “convertible nucleoside”. This precursor may be transformed 

into a range of differently modified nucleosides in the final steps of the synthesis[257-259] 
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(Scheme 3.3). This strategy applies to the modification of exocyclic positions, such as 

the 4-position of deoxycytidine, a biologically important site as it is directly involved in 

DNA Watson-Crick base pairings.[255, 256, 260, 261] 

 
Scheme 3.3. Synthesis of amino-modified oligonucleotides using the “convertible nucleoside” approach 
(convertible nucleoside = 4-triazolyl-2’-deoxyuridine). PG = protecting group,     = CPG.  
 

The “convertible nucleoside” approach (Scheme 3.3) involves three steps: (1) 

preparation of a versatile monomer containing a suitable leaving group on the 

nucleobase, such as 4-triazolyl-deoxyuridine; (2) incorporation of the monomer into 

oligomers; (3) replacement of the leaving group after DNA synthesis with diamines. 

This approach offers the advantage that the triazolyl leaving group is stable during DNA 

synthesis and subsequent deblocking step and only post-synthetically convertible to 

introduce the required alkylamino group on the base.  

In our case, the “convertible nucleoside” strategy was adapted and optimized. 

Oligomers containing 4-triazolyl-deoxyuridine were prepared by automated DNA 

synthesis, on 1 µmol scale. No modification was made for the incorporation of the 

modified monomer compared to the natural ones, for which a satisfactory coupling 

yield, mostly over 95%, was obtained. All oligonucleotides were synthesized with 

retained 5’-terminal trityl group that simplifies the purification of the desired full-length 

products.  
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In order to facilitate the removal of the protecting groups from normal bases, we chose 

to use base-labile monomers, in which dA, dG and dC are protected with the t-butyl-

phenoxyacetyl (TAC) group. This protecting group can be readily removed by 

concentrated aqueous ammonia solution within 2 h at room temperature or 15 min at 

55°C (Proligo’s protocol). Together with other non-standard phosphoramidite building 

blocks (e.g., a decaethyleneglycol spacer molecule S as for ODN3), or 7-deaza-

guanosine monomer (ODN5a,b), this protocol allowed moderate to high-yielding 

syntheses of long ODNs with the convertible nucleotide at varying internal positions. 

After synthesis, the ODNs were treated with suitable diamines (Table 3.1): 

ethylenediamine, 1,4-butanediamine, and 1,13-diamino-4,7,10-trioxatridecane, 

affording conversion of the 4-triazolyl-dU to different 4-alkylamino-dC derivatives that 

can base-pair like a normal cytidine nucleotide.[260] At the same time, the ODN is 

cleaved from the support and deprotected.  
 
Table 3.1. Preparation of amino-modified ODN1-5.[a] 
  

 
 

ODN Sequence R Yield[b] 

[%] 
ODN1a  H2N  

35 

ODN1b 5'-GC AGT GAA GGCR TGA GCT CC-3' H2N  42 
ODN1c  H2N O

O2  
40 

ODN2 5'-GC AGT GAA GGC TGA GCT CCT ACRC-3' H2N  
32 

ODN3[c] 5'-GC AGT GAA GGC TGA GCT CCS CRC-3'  H2N  
30 

ODN4a  H2N  25 
ODN4b 5'-GC AGC GAT AACR TAA GCG CT-3'  H2N  21 

ODN4c  H2N O
O2  

22 

ODN5a[d] 5'-GC AGT GAA XXCR TXA GCT CC-3'  H2N  14[e] 
ODN5b[d]  H2N  5[e] 

[a] Reaction conditions: 5 M aqueous solution of 1,4-diaminobutane or ethylenediamine, r.t., 4 h or neat 
1,13-diamino-4,7,10-trioxatridecane, r.t., 4 h (followed by additional treatment with water, 5 h). [b] 
Isolated yields after solid phase synthesis (1 µmol), conversion and purification. [c] A decaethylene 
glycol unit S was incorporated during solid phase synthesis. [d] X denotes 7-deaza-guanosine nucleotide. 
[e] Moderate yields due to low coupling efficiency of the X monomer. 
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To investigate the reaction time required for complete deprotection, cleavage and 

replacement of the triazolyl group, the resin-bound DMT-on ODN1 was treated with 

1,4-butanediamine at room temperature and monitored by reversed-phase HPLC (Figure 

3.4). The desired amino-modified oligomer as confirmed by MALDI-TOF mass 

spectrometry was obtained in 4 hours and longer reaction times did not improve the 

yields of deprotection, cleavage and conversion.  

Compared to reported methods, this mild one-pot conversion, deprotection and cleavage 

procedure gives consistently high yields of amino-modified DNA sequences in short 

reaction times.  

 
Figure 3.4. Reversed-phase HPLC chromatograms of the crude tritylated ODN1a at different reaction 
times. 
 

Furthermore, our synthetic approach allows the parallel synthesis of various conjugates 

differing in length and structure of the spacer, which may be of particular relevance in 

determining the interaction between the transition metal complex and the 

biopolymer.[146]   

3.1.2.2 Duplex Stability of Amino-Tethered Oligonucleotides 
 

It is well known that in B-DNA form, the non-base-paired substituent on the N4-

position of deoxycytidine projects directly into the central space of the major groove 

(Figure 3.5) and provides an excellent location for the attachment of DNA-interacting 

ligands.[255] At the same time, it corresponds to one of the least sterically demanding 

positions available on a DNA base.  
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Figure 3.5. N-alkyl tethers attached to the exocyclic amine of dC, allowing the major groove to be 
targeted without interfering with Watson-Crick base-pairing. 
 

Therefore, attachment of a tether at this site should induce little steric perturbation of 

duplex DNA structure as demonstrated by X-ray crystallographic studies on duplex 

DNA containing the related N6-methyladenine.[262] Figure 3.6 illustrates the positioning 

of the tether in a 4-thioethyl-dC containing B-DNA model.  
 

 
Figure 3.6. Location of N4-ethylthiol in dC-tethered B-DNA.[255] 
 

However, it has been shown that N4-alkylamine and -alkylthiol substitutents (Figure 

3.6) do destabilize duplex DNA, in some extent, on the basis of electronic factors. For 

example, a destabilizing effect of 6-7°C has been observed for a 15mer double-stranded 

DNA, each strand containing either a N4-butylamino- or ethylamino-modified 2’-

deoxycytidine residue. Therefore, in many applications the effects of single unnatural 

bases of this type on DNA duplex stability have been considered relatively modest. 
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Moreover, it has been assumed that further derivatization and subsequent covalent 

attachment of DNA-interacting moieties would not exert a strong effect on duplex 

stability.  

These systems resemble very well our amino-modified oligonucleotides ODN1a and 

ODN1b, respectively. Therefore, we assumed that also in our case the effect of 

alkylamine tethers on DNA stability would be low in aqueous solutions containing salts. 

Since we aim at performing organometallic transformations in the presence of DNA 

hybrids, we were uncertain what amount of organic solvent would be optimal for our 

system. The amino-modified oligonucleotide ODN1a precursor (Table 3.1) which 

contains an intermediate C4-linker was used to study the effect of organic solvents on 

the double-helical DNA conformation. We then prepared the complementary DNA 

strand cDNA1 (5’-GG AGC TCA GCC TTC ACT GC- 3’) using standard solid-phase 

synthesis and deprotection procedures (Chapter 5.3.4). The duplexes were formed by 

combining equimolar amounts (2 nmol) of each strand in Hepes buffer (15 mM, pH 

7.5)[263] in the presence of dioxane (0-30% v/v), annealing them together by heating to 

90 °C and gradually cooling to room temperature. The results are depicted in Figure 3.7.  
 

 
Figure 3.7. A) Melting profiles of the ODN1a/cDNA1 duplex in the presence of various concentrations 
of dioxane. B) Plot of melting temperature versus dioxane concentration. 
 

The black curve in Figure 3.7 A shows the change in absorbance at 260 nm of the 

ODN1a/cDNA1 duplex dissolved in 100% buffer containing 150 mM NaClO4 and 7.5 

mM Mg(ClO4)2 when subjected to heating from 15 to 90°C at 5°C per min (control 

experiment). The shape of the curve resembles a typical DNA denaturation curve.[264] 

Thermal denaturation involves unstacking of the bases, which gives rise to an increase 

in absorbance. The Tm value determined for this curve in Figure 3.7 B is 57.6±0.6°C.  
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When the DNA duplex pre-formed in 5-30% dioxane was subjected to the same 

heating/cooling annealing procedure as in water, it yielded the same sigmoidal 

dependence as the black curve in Figure 3.7 A, indicating that annealings in neat water 

and in dioxane/water mixtures show the same behaviour.[265, 266] Under these conditions 

the melting profiles of double-stranded amino-modified DNA were substantially shifted 

with increasing concentration of organic solvent. However, the hyperchromicities 

remained unchanged, indicating that the organic solvent did not alter the DNA integrity 

significantly at room temperature.  

The melting temperatures were plotted as a function of the volume percentage of 

dioxane. Figure 3.7 B shows an almost linear dependence of the Tm values on the 

dioxane concentration, in agreement with literature data that supported a linear decrease 

of the thermal stabilities of DNA/DNA and RNA/DNA duplexes with increasing 

concentration of formamide.[267] 

Our results demonstrated that ODN1a/cDNA1 still preserved its double-helical 

conformation in 30% aqueous dioxane, at high salt concentration, although its thermal 

stability was lower than in 100% water, as reflected by a 21.4°C reduction in the Tm 

value (Figure 3.7 B). We estimate that structurally related DNA/DNA and DNA/RNA 

duplexes, for example functionalized with metal-chelating moieties, would show similar 

behaviour in aqueous-dioxane mixtures as their amino-tethered double-stranded DNA 

precurors. 

3.1.2.3 Reactivity of Amino-Modified Oligonucleotides 
 

Before studying the phosphine systems and their attachment to DNA, which were 

expected to require anaerobic conditions, the coupling reaction of amino-modified 

ODNs with carboxylic acid groups and amide bond formation were initially investigated 

using the N,N’-bis(2-picolyl)amine derivative bpa[268], highly stable against oxidation.  

Thus, ODN1a, ODN2 and ODN3 were reacted with the in situ formed N-

hydroxysuccinimide (NHS) ester (100-200 equiv) of bpa in 66.7% DMF, pH = 8.5, for 

48 hours, at room temperature (Scheme 3.4). Precautions were taken in the pH 

adjustment of the reaction mixture, because at high pH competing hydrolysis of the 

NHS ester bond occurs. Under our conditions, the coupling of bpa to ODN2 and ODN3 

proceeded to completion, as demonstrated by the PAGE. In the case of coupling to 
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ODN1, the reaction conversion could not be estimated due to co-migration of excess 

bpa activated ester with the amino-modified DNA starting material. 

 

 
Figure 3.8. UV-shadowing of the 18% PAGE gel (λ = 254 nm) used for analysis of the DNA-appeneded 
bpa conjugates ODN14-16. Lane 1 - control amino-modified ODN1a; lane 2 - control amino-modified 
ODN2; lane 3 - control amino-modified ODN3 (see Table 3.1 for abbreviations). Coupling reaction of 
bpa after 48 hours incubation, at room temperature with amino-modified ODN1a - lane 4, ODN2 - lane 
5, and ODN3 - lane 6, respectively. The arrows indicate excess bpa NHS-activated ester and hydrolyzed 
ester, respectively. 
 

Figure 3.8 depicts an analytical denaturing polyacrylamide gel comparing the retarded 

bands corresponding to N,N’-bis(2-picolyl)amine-containing DNA conjugates ODN14-

16 to the starting amino-modified ODN1a. Due to the increased mass, the 

electrophoretic mobility of ODN14-16 is lower than of the oligonucleotide precursor. 

3.1.2.4 Post-synthetic Functionalization of Amino-modified DNA with 

Phosphine Ligands 
 

Having demonstrated the reactivity of amino-modified ODNs, amide bond formation 

between ODN1a and commercially available 4-(diphenylphosphino)-benzoic acid L1 

was chosen as the model reaction to investigate the coupling of phosphine-based ligands 

(Scheme 3.4). Phosphine L1 was first activated by using N-(3-dimethylaminopropyl)-

N′-ethylcarbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS), and the 

in situ generated active ester was directly added to the ODN1a solution.  
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The coupling reaction was analyzed by reversed-phase HPLC and proceeded to 

completion, affording 60% of the desired DNA-phosphine conjugate ODN6. Not 

surprisingly, a fraction (≤20%) of ODN6 was oxidized to the corresponding phosphine 

oxide ODN6(O), presumably during workup. Small amounts of byproducts were 

observed that did not carry a phosphine moiety, suggesting slight degradation of the 

starting material (Figure 3.9). 

The desired phosphine-containing oligonucleotide could be easily isolated by HPLC 

and was stable under the purification conditions. While HPLC purification as described 

here does not cause oxidation of the phosphine-DNA, sample preparation, collection 

and manipulation should be performed in oxygen free conditions. MALDI-TOF mass 

spectrometry of the HPLC purified ODN6, however, gave only the mass of the oxidized 

product ODN6(O) (Table 3.2). 
 

 
 
Scheme 3.4. Post-synthetic functionalization of amino-modified ODN with N,N’-bis(2-picolyl)amine 
bpa, phosphines L1-3 and phosphinooxazoline L6. C* = N4-alkylamino-modified 2’-deoxycytidine. S = 
decaethylene glycol unit. 
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Figure 3.9. HPLC chromatogram of ODN6 pre-purified by chloroform extraction and ethanol 
precipitation to remove the excess of coupling reagents. Trace amounts of degradation products elute 
between 20 and 24 min, similarly to the starting material ODN1a (tR = 21.9 min) (for HPLC conditions 
see Chapter 5.5.1). 
 

To prove the identitity of the oligonucleotide eluting with tR = 39.0 min as phosphine-

DNA conjugate ODN4a, the HPLC eluate was treated with sulfur[269] to yield the air-

stable phosphine sulfide analogue ODN6(S) with tR = 38.0 min. The MALDI mass 

spectrum clearly confirmed that the isolated species was the pure phosphine-DNA 

ODN6 and no trace of the oxide ODN6(O) was detected. 

Amino-modified oligonucleotides ODN2 and ODN3 were also reacted with phosphine 

L1. The coupling reactions proceeded consistently well, affording 65% and 68% of 

ODN7 and ODN8 respectively (Table 3.2). 
 
Table 3.2. Isolated yields and MALDI-TOF analysis of ODN6-8.[a] 

 
ODN(O)[b] ODN(S)[c] 

[M-H]- 
Entry Conversion 

[%] 
Isolated yield 

[%] 
calcd obsd calcd obsd 

ODN6 >99 60 6228 6234 6244 6249 
ODN7 96 65 7424 7430 7440 7447 
ODN8 >99 68 7328 7332 7344 7350 
[a] ODN7 and ODN8 are the coupling products of L1 with ODN2 and ODN3, respectively. [b] ODN(O): 
DNA-phosphine oxide. [c] ODN(S): DNA-phosphine sulfide. 
 

Having established the optimal conditions for coupling the monophosphine derivative 

L1 to DNA, we then studied the reaction of L2,3 and L6 with ODN1a (Scheme 3.4). 

Bisphosphines L2[19] and L3[50] are derivatives of the well-known ligands PYRPHOS 

and BINAP, respectively, extensively used in organometallic catalysis,[13, 18, 21, 22, 40] 
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while L6 belongs to the family of PHOX ligands with applications in allylic 

substitution, hydrogenation and asymmetric Heck reactions.[57, 63] 

Compound L6 was synthesized starting either from commercially available 2-

(diphenylphosphino)-benzoic acid 2a (Scheme 3.5 A) or 2-iodo-benzoic acid 2b 

(Scheme 3.5 B) and L-serine methyl ester hydrochloride 3 (H-L-Ser-OMe), followed by 

oxazoline ring closure in the presence of Burgess’s reagent. In the second synthetic 

approach, the PPh2-group was introduced by palladium-catalyzed P-C cross coupling 

reaction with diphenylphosphine 7.[270] The phosphinooxazoline was isolated as sodium 

salt L6, since acidification results in oxazoline ring opening.[271] 
 

 
Scheme 3.5. Synthesis of phosphinooxazoline L6. 
 

The coupling reactions of L2, L3 and L6 to ODN1a were monitored by reversed-phase 

HPLC and proceeded with 98% and 95% conversion for L2 and L6, respectively. The 

amounts of oxidized species (mono- and bisoxide for ODN9 and monoxide for 

ODN11a) were below 10%. In case of L3, the observed conversion was lower (55%), 

most probably due to the limited solubility of the BINAP derivative in the aqueous 

reaction mixture (Table 3.3). Oxidation products (mono- and bisoxide of ODN10) were 

found to be formed in <7% yield. Conjugates ODN9, ODN10 and ODN11a were 

purified and isolated by reversed-phased HPLC. Figure 3.10 A illustrates typical HPLC 

chromatograms obtained for the coupling of L2, L3 and L6. The isolated products were 

analyzed by mass spectrometry (Table 3.3) in the form of the corresponding phosphine 

sulfide analogues. All other byproducts generated by full or partial oxidation were also 

isolated and characterized: phosphine bisoxides (for L2 and L3) and phosphine 



3.1 Incorporation of Metal Complexes into Nucleic Acids 73   

monoxides (for L6; and for L2 and L3 characterized as monoxide-monosulfide). 

 
Table 3.3. Isolated yields and MALDI-TOF MS analysis of ODN9-11a. 

ODN(O)n
[a] ODN(O)(S) ODN(S)n

[a] 
m/z[b] 

 
Entry 

 
Coupled 
ligand 

 
Isolated yield 

[%] calcd obsd calcd obsd calcd obsd 
ODN9 L2 74 6489 6491 6508 6510 6524 6528 
ODN10 L3 38 6605 6610 6621 6626 6637 6637 
ODN11a L6 78 6297 6296 - - 6313 6314 
[a] n = 2 for L2 and L3, and n = 1 for L6. [b] ODN9 and ODN11a detected in negative mode ([M-H]-), 
ODN10 in positive mode ([M+H]+). DNA sequence: 5’-GC AGT GAA GGC* TGA GCT CC-3’, C* = 
N4-PHOX-appended 2’-deoxycytidine. 
 

While MALDI mass spectrometry was found unsuitable for the direct detection of 

phosphine conjugates, ESI-MS analysis gave in the only one case attempted (ODN9) 

the main peak corresponding to the non-oxidized phosphine, indicating that this 

technique might be suitable for the characterization of phosphine-DNA species without 

the need of sulfur treatment (Figure 3.11).  

DNA-phosphine conjugates ODN6-11a are generally air sensitive and must be 

manipulated under oxygen-free conditions, as commonly done with phosphine ligands. 

Nevertheless, the observed rates of oxidation are notably different, depending on the 

attached ligand. The relative stabilities and the conditions under which these conjugates 

could be handled were investigated by an HPLC assay. Oligonucleotides ODN6, 

ODN9, ODN10 and ODN11a were isolated by HPLC, the eluates stored at room 

temperature for 1 h under argon, and then re-analyzed by HPLC. This allowed 

measuring the extent of oxidation caused by oxygen dissolved in the HPLC solvents 

from the very moment after their isolation. Oligomers ODN6 and ODN9 showed 

disappointingly low stabilities, yielding large amounts of fully oxidized species (60 and 

90%, respectively). In contrast, ODN10 and ODN11a were found to be stable under 

these conditions, giving <10% of oxidized product in case of ODN10 and no detectable 

amount for ODN11a (Figure 3.10 B). These results demonstrate that the stability of the 

DNA-appended BINAP and PHOX conjugates, ODN10 and ODN11a, respectively, is 

high enough to allow manipulations of such conjugates even under suboptimal 

conditions, e.g., outside a glove box. 
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Figure 3.10. HPLC chromatograms of the phosphine and phosphinoxazoline derivatized DNA conjugates 
ODN6, ODN9,10 and ODN11a. A) Crude product after chloroform extraction and ethanol precipitation. 
■ Trace impurity from the starting material ODN1a. B) HPLC purified product, after 1 h at r.t.  
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Figure 3.11. Mass spectrometry analysis of ODN9. A) MALDI-TOF spectrum of ODN9(O)2 (HPLC 
isolated ODN9. B) MALDI-TOF spectrum of ODN9(S)2. C) ESI MS spectrum (part of the deconvoluted 
spectrum) of ODN9 (measured: 6457.28, calculated: 6457.27). 
 

The stability of DNA-tethered BINAP and PHOX ligands makes them attractive 

precursors for the development of metal-containing oligonucleotides. Moreover, we 

chose to generate a series of DNA-based phosphinooxazoline ligands with variable 

spacer length to ensure a reasonably large spectrum of DNA-transition metal 

interactions.  

Beside the four-carbon linker (ODN1a) employed so far for DNA ligand attachment, 

two more flexible linkers were chosen, namely a short two-carbon tether (ODN1b) and 

a 13-atom spacer (ODN1c), respectively (Table 3.1). Amino-modified oligonucleotides 

ODN1b and ODN1c were then reacted with the phosphinooxazoline derivative L6 

(Scheme 3.4), yielding 58% and 75% ODN11b and ODN11c respectively, and below 

10% oxidized products (Figure 3.12). In case of ODN11b, the observed conversion was 

lower (71%) compared to ODN11c (94%), likely due certain steric hindrance caused by 

the shorter linker used for functionalization. 
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Figure 3.12. HPLC chromatogram of ODN11b and ODN11c pre-purified by chloroform extraction and 
ethanol precipitation to remove the excess of coupling reagents. ■ Trace impurity from the starting 
material ODN1b and ODN1c respectively. ● Trace amounts of unreacted starting material (tR = 8.9 min) 
and degradation products (for HPLC conditions see Materials and Methods, Chapter 5.5.1) 
 

It is reasonable to think that the most useful tethers for attaching metal complexes are 

relatively short since a short tether permits more stereoselective control of the DNA 

scaffold. In our amino-modified oligonucleotides strategy, the two-carbon tether was 

the shortest tether that could be introduced to provide reactive amine functional groups 

for subsequent derivatization. A long tether might also prove beneficial for achieving 

enough flexibility to reach catalytic pockets in applications involving DNA/RNA (pool) 

hybrids (Figure 3.2) and in vitro selection. However, for a rational design approach, it 

would be rather difficult to predict the influence of long tethers on the transfer of 

chirality from the DNA to the metal centre. For example, long spacers may provide too 

little interaction between the DNA and the transition metal complex appended onto the 

tether. In addition, a long tether may introduce too much flexibility into the DNA, 

thereby precluding the goal of a structural constraint.   

3.1.2.5 Duplex Stability of Bisphosphine-Tethered DNA 
 

Although it has been generally assumed that further derivatization of N4-alkyl-dC 

residues does not interfere with formation of B-form duplex DNA, several factors, such 

as steric effects, may still influence the relative stability of the modified 

oligonucleotides. For example, the presence of large aromatic ligands in the major 

groove might cause a destabilization effect by repelling water molecules and bound 
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small cations. However, the introduction of a positively charged metal complex is 

expected to cancel this effect and to electrostatically stabilize the duplex.[234] 

The PYRPHOS-appended DNA ODN9 was tested in its ability to form duplexes with 

complementary cDNA1 and cRNA1, as it would be later required according to its use in 

the selection scheme (Figure 3.1).  

 
 

Figure 3.13. Native PAGE showing the formation of duplexes between PYRPHOS-appended DNA 
ODN1a and complementary cDNA1 or cRNA1. Asterisks indicate the presence of a radioactive 32P label 
at the 5’-end of the oligonucleotides. From left to right: Lane 1 - ODN1a*; lane 2 - ODN1a*/cDNA1; 
lane 3 - ODN1a*/cRNA1; lane 4 - cRNA1*; lane 5 - ODN1a/cRNA1*; lane 6 - ODN9(O)2*; lane 7 - 
ODN9(O)2*/cDNA1; lane 8 - ODN9(O)2*/cRNA1; lane 9 - ODN9(S)2*; lane 10 - ODN9(S)2*/cDNA1; 
lane 11 - ODN9(S)2*/cRNA1; lane 12 - ODN9(O)(S)*; lane 13 - ODN9(O)(S)*/cDNA1; lane 14 - 
ODN9(O)(S)*/cRNA1; lane 15 - ODN1a*; lane 16 - cDNA1*; lane 17 - ODN1a*/cDNA1. 
Hybridization buffer: 100 mM HEPES pH 7.5, 200 mM NaCl, 1 mM EDTA. 
 

The hybridization experiments were conducted with only one of the two 

oligonucleotides 5’-32P-labelled, using standard denaturation/reannealing cycles (see 

Materials and Methods, Chapter 5.8.3). As reference, the amino-modified ODN1a was 

used. Due to the fact that all manipulations had to be carried out in air, the bisoxide, 

bisulfide and monoxide-monosulfide analogues, ODN9(O)2, ODN9(S)2, and 

ODN9(O)(S) respectively, were used as replacement for ODN9 to avoid mixtures of 

non-oxidized, partially and fully oxidized products. The formation of duplexes was 
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controlled by native 16% PAGE (Figure 3.13). 

The results of these experiments clearly show that attachment of the ligand does not 

prevent the formation of duplexes. In all cases the hybridization appears to be 

quantitative under the conditions employed. 

3.2 Organometallic Transformations in Water 

Together with synthetic approaches for the incorporation of chelating functionalities 

and, subsequently, of transition metal centres at well-defined positions in DNA or RNA 

sequences, appropriate model reactions for the use of nucleic acid-based ligands are also 

required.  

Most organometallic transformations have been traditionally conducted in polar or 

nonpolar organic solvents. Water has been less used either because of sensitivity of 

organometallic catalysts to water, or because most organic compounds are not easily 

soluble in water. The observations of reaction rate enhancement as well as the 

possibility of achieving new selectivities in water led to an increased interest in 

exploring the properties of water in organometallic-catalyzed reactions.[272-274] A 

number of homogeneous transition metal-catalyzed reactions, such as rhodium(I)-

catalyzed hydrogenation, palladium(II)-catalyzed amination, rhodium(I)-catalyzed 1,4-

addition, copper(II)-catalyzed Diels-Alder cycloaddition, and aldol condensation have 

been successfully carried out in aqueous mixtures, and mainly in the presence of water 

soluble phosphorus ligands.[274] However, a clear understanding of the nature of the 

interactions occurring in aqueous media has still to be worked out.  

 
Scheme 3.6. A) Rhodium(I)-catalyzed 1,4-conjugate addition of phenylboronic acid to α,β-unsaturated 
ketones. B) Iridium(I)-catalyzed allylic amination. 
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The reactions we selected as model systems for the development of nucleic acid based 

hybrid catalyst were: rhodium(I)-catalyzed 1,4-addition of boronic acids to α,β-

unsaturated carbonyl compounds and iridium(I)-catalyzed allylic amination (Scheme 

3.6), because of their compatibility with the aqueous environment. Preliminary studies 

were devised using these model reactions to study the catalytic competence of the new 

DNA-phosphine and phosphinooxazoline ligands ODN9-11.  

3.2.1 Phosphine- and Phosphinooxazoline-Metal Complexes  
 

Phosphine and phosphinooxazoline-metal complexes were prepared using various 

transition metal precursors and standard synthetic procedures. Preliminary assays 

concerning the synthesis and behaviour of such complexes in the presence of water 

were conducted to demonstrate whether such catalysts could be formed and were stable 

enough under these conditions. In addition, maintaining anaerobic conditions during 

handling air-sensitive phosphine ligands and metal complexes thereof in small reaction 

volumes (as required by the use of nucleic acids), in an adequate reaction setup and 

outside a glove box is not trivial. The standard Schlenk techniques and degassing of 

reaction mixtures were found sufficient to avoid air contamination even in reduced scale 

reactions (e.g., <100 μL).  

The first control experiments involved the monophosphine ligand L1. Reaction of 

palladium(II) PdCl2(PhCN)2 with L1 in neat acetonitrile led to the formation of complex 

PdCl2(L1)2 (8) (Scheme 3.7), showing a singlet in the 31P NMR spectrum (DMSO-d6, δ 

= 24.6 ppm). Also, a single complex (9) was obtained when L1 was reacted with 

[Pt(cod)Cl]2 in neat dichloromethane (Scheme 3.7), showing a singlet in the 31P NMR 

spectrum at δ = 14.3 ppm (CD3OD), with platinum-phosphine coupling (satellite JPt,P = 

1852 Hz) characteristic of a trans complex.[201] When the same complex was formed in 

aqueous mixture 93:7 acetonitrile/H2O - likely suitable conditions to prepare DNA-

metal complexes - the 31P NMR spectrum showed a singlet at δ = 18.4 ppm (DMSO-d6) 

indicative for phosphorus-platinum coordination.  

The palladium and platinum complexes were formed quantitatively and no oxidized 

products were observed. Moreover, the interaction between the phosphine L1 and the 

solvent appeared to remain unchanged in water. The platinum complex 9 could be 
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easily prepared in water and was stable under the conditions employed. 

 
Scheme 3.7. Synthesis of palladium(II)- and platinum(II)-L1 complexes. 
 

The PYRPHOS ligand L2 was first treated with one equivalent of PdCl2(PhCN)2 or half 

equivalent of [Pt(cod)Cl]2 per bisphosphine unit, at ambient temperature in neat 

dichloromethane to afford palladium(II) or platinum(II) complexes 10 and 11 (Scheme 

3.8). The complex formation was monitored by 31P NMR spectroscopy. The 31P NMR 

spectra demonstrated the absence of unreacted PYRPHOS after the complete 

conversion and displayed a single coordination-shifted resonance at δ = 42.6 ppm 

(DMSO-d6) and 26.4 ppm (CD3OD) for 10 and 11 repectively (δ = -11.0 to -12.2 for the 

non-metallated phosphine.[18] For complex 11 the platinum-phosphorus coupling 

constant JPt,P = 1163 Hz corresponded to the expected range of such phosphine-platinum 

compounds. The absence of 1,5-cyclooctadiene and benzonitrile resonances in the 1H 

NMR spectrum indicated that in both isolated complexes the coordination sites were 

likely occupied by chlorine atoms. 

The binding capability of PYRPHOS ligand L2 was also investigated in aqueous 

solvent. Stirring L2 with [Rh(cod)Cl]2 (one equivalent bisphosphine per Rh) at room 

temperature, in 40% water with acetonitrile cosolvent, gave the metallated complex 12 

(Scheme 3.8). The complete reaction was confirmed by the 31P NMR spectrum. The 

resonance of the free phosphine unit was shifted to lower field (ABX system[18]; 

CD3OD, δA = 38.2 ppm, δB = 36.8 ppm) due to the metal complexation. The signal 

splitting was attributed to Rh(I = 1/2)/P coupling. The JRh,P constants of 150 and 153 Hz 

are within the expected range for such phosphinerhodium compounds. 

To further investigate the stability of rhodium(I)-PYRPHOS complex towards air and 
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aqueous media, complex 13 was prepared using Rh(nbd)BF4 as metal precursor. This 

precursor was generated from [Rh(nbd)Cl]2 and AgBF4 in acetone (Scheme 3.8) 

followed by removal of the precipitated AgCl. The resulting complex 

[Rh(L2)(nbd)]+BF4
-  was analyzed by 1H and 31P NMR. The NMR spectra confirmed 

the desired metal complex (Acetone-d6, P resonances: δA = 36.9 ppm, δB = 35.6 ppm). 

 
Scheme 3.8. Synthesis of palladium(II), platinum(II) and rhodium(I)-L2 complexes. 
 

The complex 13 was immediately dissolved in acetonitrile and analyzed by ESI mass 

spectrometry. In this case, the base peak corresponds to a complex without 

norbornadiene ligand (Figure 3.14 A). Instead, two solvent molecules seem to 

coordinate the metal. An additional peak could be assigned to oxidized species. Other 

signals could not be attributed so far. A certain level of decomposition of the Rh(I) 

complex 13 was observed after one week storage in acetonitrile, at room temperature 

and air. However, under these conditions, the main compound still formed the most 

abundant signal (Figure 3.14 B). 



3.2 Organometallic Transformations in Water 82   

 
 
Figure 3.14. ESI MS spectrum of complex 13: A) in acetonitrile, immediately sprayed; B) sprayed after 
one week storage in acetonitrile at ambient temperature and air. 
 

To verify the hypothesis of solvent molecules as ligands instead of norbornadiene, two 

other solvents were tested. Firstly, the complex was dissolved in acetone. After storage 

for one week at room temperature and air, the solution was analyzed by ESI MS (Figure 

3.15 A). In this case, the base peak is due to a Rh-complex similar to the one observed 

in acetonitrile: Rh(L2)(acetone)2
+ (m/z: calcd. 772.18, obsd. 772.17). Three other 

signals could be readily assigned: Rh(L2)(acetone)+ (m/z: calcd. 714.14, obsd. 714.13), 

Rh(L2)+ (m/z: calcd. 656.10, obsd. 656.09) and Rh(L2)(water)+ (m/z calcd. 674.11, 

obsd. 674.10). Unlike the spectrum recorded in acetonitrile (inhomogeneous solution), 

the impurities containing the oxidized species showed higher intensities. When the Rh-

complex was dissolved in methanol and immediately sprayed, the results were similar to 

the acetone solution, the coordinated solvent molecules being now methanol (Figure 

3.15 B). 
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Figure 3.15. ESI MS spectrum of complex 12: A) sprayed after one week storage in acetone at ambient 
temperature and air; B) in methanol, immediately sprayed. 
 

Finally, the CID-MS/MS of the isolated ion m/z 772.17 sprayed from acetone was 

recorded to give additional evidence for the formation of Rh(I)-PYRPHOS complex, 

and, implicitly, Rh(L2)(acetone)2
+ species. The observed pattern perfectly matched the 

expectations and two acetone molecules were sequentially lost (Figure 3.16). 

  

 
 
Figure 3.16. CID-MS/MS spectrum of Rh(L2)(acetone)2

+. 
 

In conclusion, the rhodium(I)-PYRPHOS complex can be analyzed by ESI-MS in 

acetone and in acetonitrile. The proposed cation structure Rh(L2)(nbd)+could not be 
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confirmed. No norbornadiene ligand was found attached to the rhodium centre. Instead, 

up to two solvent molecules, either acetone or acetonitrile or methanol or water were 

coordinated. Norbornadiene as ligand was observed only in complexes with partially 

oxidized L2. These results could indicate that L2 binds to rhodium not only via the 

phosphorus atoms, but also with one or two carbonyl groups. In all cases, significant 

amounts of degradation were observed after one week in solution at room temperature 

and in air, but in each case, the original compound was stable enough to still be 

detectable without difficulties. 

It was also interesting to investigate the stability of phosphinooxazoline-based 

complexes against oxidation. Control experiments in organic solvent were initially 

carried out. For solubility reasons, we chose to evaluate metallation of 

phosphinooxazoline L5 which contains a methylester functionality (Scheme 3.9), 

instead of the L6 carboxylate analogue. Reaction of the complex [Rh(nbd)Cl]2 with 

AgBF4 in acetone proceeded with cleavage of the chloride bridges, followed by 

exchange of the chloride ion with BF4
- to give the monomeric precursor Rh(nbd)BF4. 

Reaction with one equivalent L5 yielded the compound [Rh(L5)(nbd)]+BF4
- 14 

(Scheme 3.9) as confirmed by ESI mass spectrometry (m/z: calcd. 584.09, obsd. 

584.09), and no additional (oxidation) byproducts were observed. Also according to 31P 

NMR of the isolated complex, only one product was formed. The coordination of the 

phosphorus donor atom to the rhodium was evident due to the characteristic downfield 

shift of the phosphorus resonance δ = 31.9 compared to -4.8 ppm (CDCl3) of the free 

L5. The iridium(I) complex 15 was prepared in a similar way starting from [Ir(cod)Cl]2 

(Scheme 3.9). Also in this case, the desired complex [Ir(L5)(cod)]+BF4
- was obtained as 

demonstrated by 31P NMR anlysis (CDCl3 δ = 14.8). Both complexes were stable 

against air and moisture and could be easily handled in the laboratory atmosphere. The 

isolated solid products are fine powders, and our attempts to grow crystals have been 

fruitless to date.  
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Scheme 3.9. Synthesis of rhodium(I) and iridium(I)-L4/L5 complexes. 
 

We next attempted the formation of iridium(I) complexes in aqueous media, using the 

well-described, commercially available compound L4 in comparison with our ligand L5 

(Scheme 3.9). Control experiments were also performed in neat organic solvent. Both 

ligands were dissolved in either neat dioxane or 3:7 dioxane/water. After addition of 

[Ir(cod]Cl]2 (0.1 mM final concentration of Ir-complex, as later used in catalytic 

attempts), the metallation was complete within seconds, as was evident from the change 

of color from orange-yellow to dark red, and monitored by 31P NMR spectroscopy. In 

most of the cases the 31P NMR spectrum indicated the presence of single species. The 

observed phosphorus resonances were in good agreement with those reported in 
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literature for similar Ir(I)-PHOX complexes in neat organic solvents:[275, 276] 10.3 ppm 

(dioxane, 10% CDCl3) and 15.7, 15.6 ppm (3:7 dioxane/water, 10% D2O) for L4, and 

8.8 ppm (dioxane, 10% CDCl3) and 15.2 ppm (3:7 dioxane/water, 10% D2O) for L5, 

respectively (Figure 3.17).  
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Figure 3.17. 31P NMR spectrums of iridium(I)-phosphinooxazoline complexes showing phosphorus 
metallation: A) Ir-L4 in dioxane, B) Ir-L4 in 3:7 dioxane/water, C) Ir-L5 in dioxane, D) Ir-L5 in 3:7 
dioxane/water.  
 

Phosphinooxazoline complexes of Ir(I) have not been so far characterized in the 

presence of water. Moreover, catalytic applications of such complexes in aqueous 

environment have not been reported until now. Our preliminary analyses provide useful 

information about the metallation process in water, although additional work has to be 

done to elucidate the role of the solvent in coordination and interaction with the metal 

centre. 

These studies concerning the synthesis and stability of phosphine and 

phosphinooxazoline complexes in aqueous media supports the hypothesis that such 

complexes are reasonably stable and suitable for organometallic asymmetric reactions 

performed in the presence of water. 
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3.2.2 Rhodium(I)-Catalyzed 1,4-Addition 
 

In 1997 Miyaura reported the first non-asymmetric 1,4-addition of aryl- and alkenyl-

boronic acids to α,β-unsaturated ketones using a phosphine-Rh(I) catalyst in 15% 

aqueous mixture.[44] In 2003, under similar reaction conditions (10:1 dioxane / water), 

Feringa demonstrated that monodentate phosphoramidites could be also used as ligands 

in the rhodium-catalyzed asymmetric conjugate addition of boronic acids, offering the 

advantage of straightforward fine-tuning the ligand for selectivity improvement.[252, 277] 

In most of 1,4-addition studies, the amount of water used in combination with the 

organic cosolvent (often dioxane) was in the range of 9-15%, while with an 

immobilized Rh-BINAP complex (Figure 1.3), the reaction could be performed in pure 

water.[50] In addition, in most of the cases high temperatures (50-100°C) and catalyst 

loading (1-3%) were used. 

Miyaura and coworkers observed great rate acceleration in conjugate addition of 

phenylboronic acid to cyclohexenone when using a Rh(I)-BINAP complex in the 

presence of inorganic or organic bases.[278] This discovery allowed them to perform the 

reaction at room temperature with quantitative conversion while, in the absence of base, 

only trace amounts of product were obtained. The best performing base was found to be 

triethylamine which could be used in 0.1-1.0 equiv in respect to the substrate. Recently, 

Piarulli employed similar conditions (1.0 equiv KOH instead of triethylamine) with 

combinations of biphenolic phosphoramidite and phosphite ligands, and obtained high 

yields and stereoselectivities.[89] 

Cyclic enones are the most commonly investigated substrates due to their high 

reactivity. Phenylboronic acid 16 and 2-cyclohexen-1-one 17 are commercially 

available. Reference product 3-phenyl-1-cyclohexanone 18 was prepared according to 

Scheme 3.10, in racemic form, and the analytical methods for monitoring the reaction 

and determining the enantioselectivity have been established (Figure 3.18). 

 
Scheme 3.10. Synthesis of 3-phenyl-1-cyclohexanone 18. 
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Figure 3.18. A) Reversed-phase HPLC analysis of 1,4-addition of phenylboronic acid 16 to 2-
cyclohexen-1-one 17 (Elution: 30% water, 70% acetonitrile; tR(17) = 3.0 min, tR(16) = 3.3 min, tR(18) = 
5.1 min). B) Calibration curve with 3-phenyl-1-cyclohexanone product 18. 
 

Initial studies were focused on the optimization of reaction conditions, including 

temperature, solvent, phosphorus ligands and Rh-complexes thereof (Figure 3.19), for 

carrying out addition of phenylboronic acid 16 to 2-cyclohexen-1-one 17 to obtain 3-

phenyl-1-cyclohexanone 18.  
 

 
Figure 3.19. Phosphorus-based ligands and Rh(I) complexes screened for activity in 1,4-addition 
reaction. 
 

The phosphoramidites P1 and P2 were screened initially, under standard reaction 

conditions,[252] in 10:1 dioxane/water, using 1.5 mol% [Rh(cod)Cl]2 and 7.5 mol% of 

ligands (Rh/L= 1:2.5), without basic additives. The reaction was also performed under 

increased concentration of water at room temperature for 24-72 hours. All experiments 
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were carried out under argon atmosphere without pre-degassing the solvents and 

reagents.  A few selected results are presented in Table 3.4.  
 
Table 3.4. Rh-catalyzed conjugate addition of arylboronic acid 16 to 2-cyclohexen-1-one 17 with 
phosphoramidite P1 and P2 ligands. 
Entry Ligand Dioxane/water Temp. 

[°C] 
Time 
[h] 

Conversion[c] 

[%] 
1 P1 10:1 60 2 80% 
2 P1 1:5 60 24 70% 
3 - 1:10 rt 24 <5% 
4 P1 1:10 rt 72 20% 
5 P2 1:10 rt 24 <5% 
6[b] P1 1:10 rt 72 <5% 
[a] Reaction conditions: 0.08 mmol 17, 0.25 mmol 16 (3.0 equiv - excess due to competitive hydrolysis), 
3 mol% catalyst loading, 2.2 mL reaction volume. [b] 0.5 mol% [Rh] catalyst loading. [c] The 
conversions were estimated by 1H NMR analysis with i-propanol as internal standard (entries 1-2 and 4-6) 
and by thin-layer chromatography (entry 3). 
 

In general, the catalysts were efficient when the reaction was carried out at 60°C in 10:1 

or 1:5 dioxane/water (70-80% conversion) (Table 3.4, entries 1-2), while at room 

temperature and 1:10 dioxane/water the conversion dropped dramatically even after 

long reaction times (Table 3.4, entries 4-5). Moreover, the catalyst precursor 

[Rh(cod)Cl]2 was found almost inactive (Table 3.4, entry 3), although, under the 

conditions employed by Miyaura et al.,  the same catalyst showed high reactivity.[278] In 

a parallel test reaction, the Rh catalyst loading was reduced to 0.5 mol%, and after 72 

hours reaction time only trace amount of product was formed (Table 3.4, entry 6). 

Surprisingly, biphenolic phosphoramidite P2 seemed to be less active than the P1 

ligand, although structurally related ligands have been reported as efficient systems in 

similar transformations, albeit in 10:1 dioxane/water.[89] The reduced yields could be 

explained by the fact that the Rh-phosphoramidite catalysts were generated in situ in 

1:10 dioxane/water mixtures, where ligand hydrolysis might compete in a higher extent 

with metal complex formation. In addition, under these conditions, the system became 

heterogeneous, making the results unreproducible. However, in the absence of the base, 

high temperature appeared to be absolutely necessary for achieving good conversions.  

Prolonging the reaction time did not improve the yields due to the competitive 

hydrolytic deboronation of arylboronic acids with water (Table 3.4, entry 4 versus 3 and 

5). 

For homogeneity reasons we chose to attempt 1,4-addition with water-soluble 

phosphine ligands.[279] Rhodium complex [Rh(cod)Cl]2  was combined with the 
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commercially available phosphine ligand TPPDS L7 (0.38 mol % catalyst) 1:10 

dioxane/water mixture and reacted with 17, 2.5 equivalents of phenylboronic acid 16, 

and 2.1 equivalents of K2CO3 at 37°C for 48 hours. To prevent hydrolytic deboronation 

of 16 to unreactive benzene, a phase transfer reagent, i.e. sodiumdodecyl sulfate (SDS, 

0.5 equivalent), was added to the reaction mixture.[279] As alternative to aqueous 

solution of K2CO3, Tris buffer (20 mM, pH 8.0) was used instead. The same reaction 

conditions were also employed only with [Rh(cod)Cl]2 precursor. In parallel, 1,4-

addition reaction was conducted with monophosphine L1 ligand, under reduced 

concentration of organic solvent, i.e. 1:1 dioxane/water and 1:1 methanol/water, at 50° 

and with 3.85 mol% catalyst loading. The results are illustrated in Table 3.5. 
 
Table 3.5. Rh-catalyzed conjugate addition of arylboronic acid 16 to 2-cyclohexen-1-one 17 with 
monophosphines L1 and L7.[a] 
Entry Ligand Solvent Base Phase transfer 

reagent 
Temp. 
[°C] 

Time 
[h] 

Conversion[c] 

[%] 
1 L7 - - 37 48 <1 
2 L7 - SDS 37 48 <1 
3 L7 K2CO3 SDS 37 48 10 
4 - Tris SDS 37 48 41 
5 L7 

dioxane/water 1:10 

Tris SDS 37 48 7 
6[b] L1 dioxane/water 1:1 - SDS 50 19 3 
7[b] L1 methanol/water 1:1 - SDS 50 19 1 
[a] Reaction conditions: 0.52 mmol 17, 1.3 mmol 16 (2.5 equiv), 0.38 mol% catalyst loading, 2.2 mL 
reaction volume. [b] 3.85 mol% [Rh] catalyst loading. [c] The conversions were determined by reversed-
phase HPLC (elution: 30% water, 70% acetonitrile), using the calibration curve showed in Figure 3.18 B. 
 

The best results were obtained with [Rh(cod)Cl]2 which gave 18 in 41% yield (Table 

3.5, entry 4). The fairly high activity of the Rh catalyst in 91% water might be explained 

by the basic conditions provided by K2CO3 and also by reduced competivive hydrolytic 

deboronation due to the presence of SDS. However these additives apperead to be 

inefficient in combination with Rh-phosphine complexes. Although the Rh-TPPDS 

complex was highly reactive in 1,4-addition reactions in neat water,[279] in our case, the 

addition of organic cosolvent (9-50%) with the sulfonated phosphine ligand L7 or with 

triphenylphosphine L1 resulted in almost no reaction after 48 hours (Table 3.5, entries 4 

and 5-7).  

Literature data on Rh(I)-catalyzed addition of phenylboronic acids to olefins in the 

presence of sulfonated ligands or triphenylphoshine showed that the use of cosolvents 

or neat organic solvents with such ligands resulted in very low conversions.[279] In these 

systems, the reactivity could be restored by changing to 100% aqueous environment. 
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However, such conditions would not be appropriate for our system due to the poor 

solubility of the product and substrates. 

Finally, we attempted 1,4-addition reactions with Rh-bisphosphine complexes 13, 14, 

and  [Rh(BINAP)(nbd)]+BF4
-[250] (Figure 3.19) at 3 mol% catalysts loading, in  6:1 

dioxane/water mixture. Using either [Rh(cod)Cl]2 precursor or the synthesized 

[Rh(BINAP)(nbd)]+BF4
- complex, the observation of high activity in the presence of 

trietylamine was again confirmed by our experiments. Good conversions, 77 and 80% 

respectively, were obtained after 6 hours in the presence of one equivalent of 

triethylamine, while in its absence the product was formed only in 47% (Table 3.6, 

entries 2 and 6 versus 1). The [Rh(cod)Cl]2 precursor showed again high activity 

without additional ligand (Table 3.6, entries 1-2). 

 
Table 3.6. Effect of oxygen-free conditions[a], ligand and Rh-complex on the 1,4-addition of 
phenylboronic acid 16 to 2-cyclohexen-1-one 17.[b] 
Entry Rh(I) 

precursor 
L Isolated 

Rh(I)-complex 
Base[c] Solvent 

diox/H2O 
Temp 
[°C] 

Time 
[h] 

Conv[d] 
[%] 

1 [Rh(cod]Cl]2 - - - 6:1 37 16 47 
2 [Rh(cod]Cl]2 - - NaHCO3  37 16 47 
3 - - 13 TEA  rt 6 0 
4 - - [Rh(L8)(nbd)]+BF4

- -  rt 6 0 
5 - - [Rh(L8)(nbd)]+BF4

- TEA  rt 6 0 
6 - - [Rh(L8)(nbd)]+BF4

- TEA 6:1 rt 6 80 
7 [Rh(nbd]Cl]2 L8 - TEA  rt 19 12 
8[e] - - 14 TEA 3:7 rt 4 0 
9[e] [Rh(C2H4]Cl]2 L5 - TEA  rt 4 0 
[a] Reactions 1-5 were carried out under argon atmosphere with undegassed solvents and reagents. 
Reactions 6-9 were conducted under oxygen-free conditions. [b] Reaction conditions: 1.0 mmol 17, 1.5 
mmol 16 (1.5 equiv), 3 mol% catalyst loading, 3.5 mL reaction volume, unless otherwise stated. [c] 0.1 
equiv NaHCO3 or 1.0 equiv TEA. [d] Determined by reversed-phase HPLC analysis (elution: 30% water, 
70% acetonitrile, tR(18) = 5.1 min) with the calibration curve showed in Figure 3.18 B, unless otherwise 
stated. [e] Reaction conditions: 41.0 μmol 17, 61.5 μmol 16 (1.5 equiv), 2.4 mol% catalyst loading, 1.0 
mL reaction volume. Conversion determined by reversed-phase HPLC analysis (elution: 50% water, 50% 
acetonitrile, tR(18) = 11.0 min) in the presence of internal standard.[250]  
 

It was also found that the isolated [Rh(BINAP)(nbd)]+BF4
- complex was superior to the 

rhodium complex in situ generated by mixing [Rh(nbd)Cl]2 with 1.5 equivalents of (S)-

BINAP L8 per rhodium, in 6:1 dioxane/water and 1.0 equiv TEA, at room temperature, 

which gave only 12% conversion (Table 3.6, entry 6 versus 7). It was also possible to 

show that it was certainly necessary to run these reactions in an absolutely oxygen-free 

environment (Table 3.6, entry 5 versus 6). Unlike the [Rh(cod)Cl]2 precursor (Table 3.6, 

entries 1 and 2), the Rh-PYRPHOS (13) and -BINAP complexes  were completely 

inactive in the presence of oxygen, independently of TEA additive (Table 3.6, entries 3-
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5). Some of the intermediates formed during the catalytic cycle[280] must therefore be 

very sensitive to oxidation, since [Rh(PYRPHOS)(nbd)]+BF4
- (13) and 

[Rh(BINAP)(nbd)]+BF4
- complexes have been shown to remain reasonably unchanged 

in solution in the presence of air and at room temperature for at least one week (Figure 

3.14 B).[250]  

Other bidentate ligands, such as PHOX ligand L5, did not catalyze the 1,4-addition, no 

matter whether its isolated Rh(I)-complex 14 or in situ generated complex from 

[Rh(C2H4)Cl]2 and 1.1 equivalents L5 per rhodium were used under similar conditions 

(1.0 equiv TEA, 2.4 mol% catalyst loading), albeit in 70% water (Table 3.6, entries 8 

and 9). 

The synthesized Rh-BINAP complex afforded so far the best yield of the addition 

product under oxygen-free conditions, at 3 mol% catalyst loading (10 mM) and with 

TEA additive, while in the presence of free BINAP L8 low conversion was observed. 

These results represent a solid starting point for studies involving DNA-BINAP 

conjugates, such as ODN10 synthesized from amino-DNA ODN1a and the BINAP-

carboxylic acid derivative L3 (Scheme 3.4). Based on all informations, it seems that the 

best way of preparing a DNA-appended Rh(I)-BINAP complex will consist in the pre-

treatment of [Rh(cod)Cl]2 or [Rh(nbd)Cl]2 precursor with AgBF4 and then addition to 

the DNA-phosphine ligand. The concentration of dioxane could not be reduced lower 

than 30% due to the limited solubility of reagents. However, this value seems to be well 

tolerated by double-stranded nucleic acids, as demonstrated in our studies on DNA 

duplex stability in the presence of organic solvents (Chapter 3.1.2.2, Figure 3.7). 

3.2.3 Iridium(I)-Catalyzed Allylic Amination 
 

Transition metal catalyzed asymmetric allylic substitutions are among the most 

important carbon-carbon and carbon-heteroatom bond forming reactions in organic 

synthesis.[281] Two classes of allylic compounds have been enantioselectively 

transformed with chiral catalysts: (1) symmetrically substituted racemic and (2) 

monosubstituted linear or branched (racemic) allylic substrates (Scheme 3.11).  

While Pd(0)-catalysts have been typically used in the former case, the monosubstituted 

allylic substrates were less often employed with such systems because of 
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regioselectivity in favour of linear achiral products. The regioselectivity control of 

allylic substitution reactions is mainly governed by the choice of the transition metal 

ion. For example, with Pd(0)-catalysts, linear products were generally produced 

(Scheme 3.11 A, while Mo-[72, 282-284] or W-based catalysts[285] yielded chiral branched 

products from monosubstituted linear substrates, giving therefore asymmetric induction 

(Scheme 3.11 B). Rh,[286] Fe,[287] or Ru[288, 289] complexes were commonly used to 

catalyze substitutions of enantiomerically enriched branched substrates, yielding 

branched products with retention of configuration and a high degree of conservation of 

enantiomeric excess (“memory effect”) (Scheme 3.11 C).  
 

 
Scheme 3.11. Transition-metal catalyzed allylic substitution of A) symmetrically substituted, B) 
monosubstituted linear and C) monosubtituted branched substrates. 
 

In 1997, Takeuchi reported the first use of Ir-catalysts in allylic substitution, combining 

[Ir(cod)Cl]2 precursor with triphenylphosphite ligand to achieve excellent 

regioselectivities in favour of the branched product from linear allylic substrates.[290] In 

the same year, Helmchen reported the first asymmetric version of allylic substitution 

using chiral phosphinooxazoline ligands.[67] Achiral linear aryl acetates were 

transformed into branched chiral products (Scheme 3.11 B), with high regioselectivity 

and enantiopurity. However, the reaction was slower in comparison to the reaction 

catalyzed by the [Ir(cod)Cl]2/P(OPh)3 system or even [Ir(cod)Cl]2 precursor alone.[76, 
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291] Since then, Ir-catalysts have received much attention in asymmetric allylic 

substitution. 

A large number of catalytic systems consisting of Ir precursors and chiral monodentate 

phosphoramidite [292-297] or achiral phosphite[75, 76] ligands have been developed. In 

contrast, further investigations on Ir-PHOX complexes gave disappointing results 

especially in transformations involving alkyl-substituted allylic substrates: aminations 

were generally slow[72] and interesting results could only be achieved in intramolecular 

aminations.[71]  

Although not many examples of Ir-PHOX-catalyzed allylic aminations have been 

published so far, we chose to study this system with DNA-based catalysts for the 

following reasons: (1) these reactions require polar solvents,[76] (2) bidentate PHOX 

ligands should reduce competition of nucleic acids donor groups in binding the 

transition metal due to their strong chelating properties, (3) the modest catalytic 

performance of the Ir-PHOX systems in allylic amination might be enhanced in 

combination with nucleic acid properties, as finally aimed by our hybrid catalyst 

approach.  

 
Scheme 3.12. Iridium(I)-catalyzed allylic amination of linear 20 and branched 21 phenyl-allyl acetates 
with morpholine 22 and glycine ethyl ester 23, using chiral phosphinooxazoline ligands L4 and L5. 
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As test reactions for probing the catalytic performance of PHOX ligands L4 and L5, 

iridium-catalyzed allylic substitutions of monosubstituted phenyl-allyl acetates 20 and 

21 with amine nucleophiles morpholine 22 and glycine ethyl ester hydrochloride 23 

were selected (Scheme 3.12).  

When monosubstituted allyl substrates (e.g. 20 and 21) are used in allylic amination 

reactions, the possibility of two regioisomeric products arises: the linear isomer and the 

branched isomer. With iridium(I)-catalysts the branched-to-linear-ratio can be shifted to 

the formation of the branched isomer as major product, affording the chance to observe 

asymmetric induction from achiral substrates. We were also interested in the ability of 

Ir-PHOX complexes to effect kinetic resolution[298] of racemic branched substrate, e.g. 

compound 21, and to yield enantiomerically enriched product and substrate, 

respectively. The general principle of kinetic resolution, namely achievement of partial 

or complete resolution by virtue of unequal rates of reaction of the enantiomers in a 

racemate with a chiral catalyst, is illustrated in Figure 3.20. The maximum theoretical 

yield is 50% due to the consumption of only one enantiomer. 

 
 
Figure 3.20. Principle of the classic kinetic resolution. 
 

3.2.3.1 Preparation of Allylic Substrates and Products. Analytical 

Methods 
 

The branched substrate 21 was prepared by esterification of the commercially available 

α-benzylvinyl alcohol 19 (Scheme 3.13). Reference products 24-26 were prepared as 

described in Scheme 3.12. Branched product 24 was obtained as racemic mixture from 

21 via amination with morpholine 22, in ethanol, using a catalyst in situ generated from 

[Rh(cod)Cl]2 and triphenyl phosphite. Achiral linear product 25 was prepared in a 

similar way, involving amination of the commercially available cinnamyl acetate 20 
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with 22 in dry THF, with Pd(PPh3)4 catalyst. The synthesis of the branched product 26 

was performed starting from the racemic allylic acetate 21 and glycine ethyl ester 23 

(hydrochloride form), in 1:1 acetonitrile/water with 2.0 equiv NaHCO3, using 

[Rh(cod)Cl]2 and trimethyl phosphite ligand.  

 
 
Scheme 3.13. Synthesis of phenyl-allyl substrate 21 and of amination products 24-26.  
 

In a large number of studies, allylic carbonates are usually the substrates of choice, 

while allylic acetates are less often used, owing to their lower reactivity and 

selectivity.[292] Preliminary attempts in our group showed that branched 

methylcarbonate derivatives could undergo isomerisation and cleavage of the carbonate 

moiety in aqueous environment.[250] These observations prompted us to use acetate 

substrates instead. Since we aim at carrying out allylic aminations in aqueous solvent, at 

basic pH, the stability of substrate 21 against saponification under these conditions had 

to be initially investigated. Solutions of 21 in 1:1 water/acetonitrile and 0.1 M aqueous 
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NaHCO3/acetonitrile were incubated at room temperature for 9 hours and systematically 

analyzed by reversed-phase HPLC (Figure 3.21). 

Figure 3.21. Stability of allylic acetate 21 in A) 1:1 water/acetonitrile and B) 0.1 M aqueous 
NaHCO3/acetonitrile. Gradient: 50% water and 50% acetonitrile, tR(21) = 14.4 min. ■ Impurity. 
 

 
Figure 3.22. A) Reversed-phase HPLC analysis of branched amination product 24 with naphthalene as 
internal standard. B) Gas chromatography analysis of mixture of branched 21 and linear 20 allylic 
substrates and branched 24 and linear 25 amination products with dodecane as internal standard. C) 
HPLC chiral separation of racemic branched product 24. 
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The HPLC chromatograms show similar behaviour of allylic acetate 21 in both water 

(Figure 3.21 A) and NaHCO3 mixtures (Figure 3.21 B). Even after long incubation 

times, the allylic acetate remained reasonably stable, making it a suitable substrate for 

carrying out aminations in aqueous solvent, under basic conditions. 

The reference substrates and products were then employed to establish analytical 

methods for following the reaction and determining the enantioselectivity: 1) reversed-

phase HPLC, elution with 50:50 acetonitrile/water, tR = 11.8 min (24), 24.0 min 

(naphthalene as internal standard) (Figure 3.22 A); 2) gas chromatography, gradient: 2 

min at 150°C, increase to 230°C with 15°C/min; tR = 3.3 min (dodecane as internal 

standard), 3.9 min (21), 5.5 min (20), 6.4 min (24) and 8.0 min (25) (Figure 3.22 B); 3) 

HPLC chiral separation, elution with n-hexane/i-propanol 99:1, tR(24) = 10.8, 12.4 min 

(Figure 3.22 C). 
 

3.2.3.2 Preliminary Results of Catalysis with Ir-PHOX Complexes 
 

The development of allylic substitutions in water has generally received little attention. 

The main reason for that is likely the hydrolysis of the electrophile reactant that may 

compete with the desired nucleophilic substitution.[299] Only few reports of palladium-

catalyzed allylic substitutions (aminations) in water have been published. The best 

results were obtained with a heterogeneous system based on immobilized phosphine or 

P,N-chelate ligands.[300-302] Uemura and coworkers reported on a homogeneous version 

of palladium-catalyzed allylic substitutions in water, in which a phosphinite-oxazoline 

ligand afforded moderate to high yields and good enantiomeric excess (85%).[303] 

However, this system proved to be more efficient in acetonitrile alone (92% ee) rather 

than in water or water/acetonitrile mixtures. 

Our first studies were conducted to determine if Ir-PHOX catalysts impart activity and 

stereoselectivity in allylic aminations carried out in aqueous media.  Allylic aminations 

of phenyl-allyl acetates 20 and 21 catalyzed by [Rh(cod)Cl]2, [Ir(cod)Cl]2 and 

combinations of these complexes with L5 were initially investigated. The 

phosphinooxazoline L5 is the precursor of L6 derivative used for attachment to the 

DNA. 
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Table 3.7. Effect of transition metal precursor and catalyst concentration on amination of branched allylic 

substrate 21 with amines 22 and 23.[a] 

Entry Catalyst 
precursor 

Ligand Nucleophile 
 

Cat.conc. 
[mM]  

Solvent 
ACN/H2O 

Conv[b] 
[%] 

1 [Rh(cod)Cl]2 - 22 10 1:1   20 
2[c] Rh(nbd)BF4 L5 22 10 1:1   40 
3 [Ir(cod)Cl]2 - 22 10 1:1 >95 
4 [Ir(cod)Cl]2 L5 22 10 1:1 >95 
5[d] [Ir(cod)Cl]2 L5 23 10 1:1      50[e] 
6 [Ir(cod)Cl]2 L5 22 1.0 1:1 >95 
7 [Ir(cod)Cl]2 L5 22 1.0 3:7 >95 
8 [Ir(cod)Cl]2 L5 22 0.5 3:7 >95 
[a] Reaction conditions: 0.05 mmol 21, 0.07 mmol 22 (1.5 equiv), 2 mol% [Ir(cod]Cl]2, 4.2 mol% L5, 1.0 
mL reaction volume, r.t., 14 hours, unless otherwise stated. [b] Conversion estimated by thin-layer 
chromatography, unless otherwise stated. [c] Isolated Rh(I) complex 14 from Rh(nbd)BF4 and L5. [d] 
0.07 mmol 23 (hydrochloride form) (1.5 equiv), 0.07 mmol NaHCO3 (1.5 equiv). [e] Conversion 
determined by reversed-phase HPLC, elution with 50% water and 50% acetonitrile, tR(26) = 12.4 min. 
 

In the first set of experiments, substrate 21 was reacted with morpholine 22 and glycine 

ethyl ester 23. The results, summarized in Table 3.7, clearly show that the complex 

formed in situ by combining [Ir(cod)Cl]2 and L5 is highly active in the presence of 50-

70% water (entries 4 and 6-8). Moreover, complete conversion was achieved with 

morpholine 22 (3.0 equiv) as nucleophile even at 0.1 mol% catalyst loading, that 

corresponds to a [Ir] catalyst concentration of 0.5 mM (Table 3.7, entry 7). The reaction 

rate was significantly higher with morpholine 22 than with glycine ethyl ester 23 (Table 

3.7, entry 4 versus 5). 

High conversion was also induced by [Ir(cod)Cl]2 without additional ligand (Table 3.7, 

entry 3). In addition, the [Ir(cod)Cl]2 precursor was superior to [Rh(cod)Cl]2 which 

under the same conditions gave only 20% product formation (Table 3.7, entry 3 versus 

1). With the isolated cationic complex [Rh(L5)(nbd)]+BF4
- 14 (Table 3.7, entry 2) the 

results were distinctly better than with the [Rh(cod)Cl]2 catalyst precursor, slight rate 

acceleration being observed (entry 1).  

Because of the low reactivity of glycine ethyl ester 23, the next studies were focused on 

aminations with morpholine nucleophile 22.  

Following the results obtained with the branched substrate 21, we next attempted the 

amination of linear allyl acetate 20, using the same Ir(I) catalyst prepared in situ from 

[Ir(cod)Cl]2 and L5. Test reactions were carried out in both standard conditions (neat 

organic solvent), and 70% aqueous solvent as in our early experiments. The results are 

shown in Table 3.8.  



3.2 Organometallic Transformations in Water 100   

Table 3.8. Allylic amination of linear (20) and branched (21) substrates with morpholine 22 in neat 
organic solvent and 70% water, with [Ir(cod]Cl]2

 and ligand L5.[a] 
Entry Allylic 

substrate 
Ligand 

 
Solvent 

 
Temp. 
[°C] 

Conv[b] 
[%] 

1 20 - acetonitrile rt <1 
2 20 L5 acetonitrile rt <1 
3 20 - dioxane rt <1 
4 20 L5 dioxane rt <1 
5[c] 20 - 3:7 dioxane/water rt <1 
6[c] 20 L5 3:7 dioxane/water rt <1 
7[c] 21 - 3:7 dioxane/water rt 96 
8[c] 21 L5 3:7 dioxane/water rt 98 
9[c] 20 L5 3:7 dioxane/water 50 5 
[a] Reaction conditions: 0.05 mmol 20 or 21, 0.15 mmol 22 (3.0 equiv), 1.4 mol% L5, 0.5 mM [Ir] 
catalyst, 1.0 mL reaction volume, r.t., 14 hours, unless otherwise stated. [b] Conversion determined by 
gas chromatography. [c] 6 hours reaction time. 
 

The reaction rate was significantly higher for the branched substrate 21, and complete 

conversion was achieved in 70% aqueous solvent, in 6 hours (Table 3.8, entries 7 and 

8), while the isomeric linear substrate was found in all cases unreacted even after 14 

hours reaction time (entries 1-6). The attempt to enhance the reaction rate at elevated 

temperature failed: the amination of the linear substrate remained sluggish, even at 

50°C, leading to only 5% conversion (entry 9). 

 
Scheme 3.14. Ir(I)-catalyzed allylic amination of branched and linear substrates via σ- and π-allyl 
intermediates. 
 

Differences in reaction rates between branched and linear substrates have been 

generally observed in Ir(I)-[77] and Rh(I)[286]-catalyzed allylic substitutions. They have 

been attributed to the SN2’ mechanism occurring in the formation of the π-allyl 

intermediate during the catalytic cycle proposed by Helmchen et al.[67] (Scheme 3.14). 

Therefore, the oxidative addition of the substrate to Ir(I) and Rh(I) species is expected 

to be faster in the case of the branched isomer due to a less sterically congested 
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environment imposed by the substituents at the end of the allylic system.[286] 

Our results were in good agreement with the only one reported example of amination 

reactions with Ir-PHOX complexes. Helmchen et al. observed that the Ir-catalyst 

generated from [Ir(cod]Cl]2 and the phosphinooxazoline ligand (S)-i-Pr-PHOX (L4) was 

ineffective in the intramolecular amination of linear allyl acetates, whereas high yield 

and moderate to high enantioselectivity were obtained with the branched homologues 

(albeit after long reaction times: 4-6 days).[71]  

These observations prompted us to evaluate the above-described catalyst mixture of 

[Ir(cod)Cl]2 and classical PHOX ligand L4,[67] extensively used in Ir(I)-catalyzed 

asymmetric allylic substitutions, versus the structurally-related L5. The aminations of 

the branched allyl acetate 21 were performed in neat dioxane or 3:7 dioxane/water 

mixture containing 100 mM NaClO4 and 5 mM Mg(ClO4)2 (the presence of salts is later 

required by the use of nucleic acid-based systems). In addition, test reactions were 

carried out in order to assess the reactivity of Ir-PHOX system at low catalyst 

concentration that is an essential condition for creating DNA-based catalysts. The 

results are presented in Table 3.9. 
 
Table 3.9. Allylic amination of branched substrate 21 with morpholine 22 according to Scheme 3.12, 
using PHOX ligands (S)-L4 and (S)-L5.[a] 

Entry PHOX Ligand 
 

[Ir] 
[mM] 

Solvent[b] 

 
Time 
[h] 

Conv[c] 
[%] 

Ee[d] 
[%] 

1 L4 1.0 dioxane 1.5 <2 n.d. 
2 L4 1.0 3:7 dioxane/water 1.5 99 n.d. 
3 L5 1.0 3:7 dioxane/water 1.5 99 6 
4[e] L4 1.0 3:7 dioxane/water 13 50 3 
5 - 0.1 3:7 dioxane/water 13 73 - 
6 L4 0.1 3:7 dioxane/water 13 71 5 
7 L5 0.1 3:7 dioxane/water 13 67 1 
[a] Reaction conditions: 0.05 mmol 21, 0.15 mmol 22 (3.0 equiv), 2.5 mol% L5 (entries 1-4) and 0.25 
mol% L5 (entries 5-7), 1.0 mL reaction volume, r.t., unless otherwise stated. [b] 100 mM NaClO4, 5 mM 
Mg(ClO4)2 aqueous solution. [c] Conversion determined by gas-chromatography with dodecane as 
internal standard. [d] Determined by HPLC, tR(24) = 10.8, 12.4 min. [e] Kinetic resolution conditions: 0.5 
equiv 22. 
 

Although dioxane is a common solvent in allylic substitutions, reaction in neat dioxane 

with the standard Ir-L4 catalyst gave almost no product (entry 1). At the same catalyst 

concentration, reaction in 3:7 dioxane/water mixture proceeded smoothly, affording 

complete conversion with both L4 and L5 ligands, in only 1.5 hours (entries 2 and 3). 

Under these conditions, the amination proceeded efficiently even at lower catalyst 

concentration (0.1 mM), affording 67-73% conversion (entries 5-7). However, no effect 
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on the catalyst activity due to L4 or L5 ligand could be observed, since similar 

conversion was obtained also with only [Ir(cod)Cl]2 precursor (entry 6). 

The isolated branched amine product 24 obtained with chiral phosphinooxazolines L4 

and L5 was submitted to chiral separation. The very low observed enantioselectivities 

(Table 3.9, entries 3 and 6,7) are consistent with a strong memory effect of the Ir-

catalyst obtained from a racemic starting material, as previously observed in similar 

transformations with malonate nucleophile.[298] We therefore attempted to use such 

memory effects in a kinetic resolution reaction, either by allowing the reaction to 

proceed only to 50% conversion or using half equivalent of amine nucleophile. 

Disappointingly, treatment of the racemic starting material 21 with half equivalent of 

morpholine 22 gave the branched amine product 24 in only 3% ee (Table 3.9, entry 4). 

As already mentioned in the introduction of this chapter, allylic aminations can be 

accelerated by polar solvents (e.g. alcohols, acetonitrile). It was argued that such 

solvents were involved in the stabilization of transition states of the oxidative addition 

to Ir(I) species and the nucleophilic attack of the amine.[76] Because of these solvent 

effects, both oxidative addition and nucleophilic attack might be enhanced. Intriguingly, 

Ir(I)-catalyzed intramolecular aminations with L4 PHOX ligand became slower and 

also less selective when polar solvents (e.g., dimethylformamide or acetonitrile) were 

used as alternative to toluene.[71] 

The results collected in Table 3.9 clearly show that in our system water is a better 

solvent than dioxane, and likely a “participating” solvent in catalysis.[299] The unique 

solvating properties of water, and its potential contribution to the electronic properties 

as well as the steric environment of the catalytic system, exerted through direct binding 

to iridium ion, or/and second coordination sphere interactions, might account for the 

outcome of the allylic amination. However, the precise reason for the effect of water on 

the steric course of the reaction remains unclear. 

Beside the solvent effect, the lack of stereoselectivity observed in our catalytic attempts 

(Table 3.9, entries 3,4 and 6,7) might be attributed to ligand, or/and amine[76] 

nucleophile. Although in the majority of asymmetric allylic substitutions with PHOX 

ligands, the relative bulkyness of the oxazoline substituent at the chirality centre appears 

one of the decisive factors for achieveing selective catalysts, with L4-based complex 

being one of them,[57, 304] in our case the enantioselectivity induced by L4 was 
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unsatisfactory. The structurally related chiral PHOX ligand L5 also displayed weak 

selective properties. The steric effect of the amine nucleophile might additionally 

influence the stereocontrol of the reaction, as previously observed by Takeuchi:[76] the 

stereoselectivity decreases as the steric bulk of the amine decreases. 

Unlike most transition metal catalyzed processes, allylic aminations do not exclusively 

rely on a single mechanism as a source of asymmetry. A possible catalytic cycle for the 

Ir(I)-catalyzed allylic amination is illustrated in Figure 3.23. The following general 

steps have been proposed by Helmchen et al.[67]: 1) in situ formation of the Ir(I) catalyst 

(complex A), 2) oxidative addition of the substrate to the metal centre and formation of 

π-allyl complexes (complex B/B’), and c) attack of the nucleophile (Nu), trans to 

phosphorus. It has also been proposed that these reactions proceed with double 

inversion, via σ-allyl or π-allyl complexes, which undergo σ-π-σ isomerisation [57, 77] 

(Scheme 3.15). 

 
Figure 3.23. Proposed mechanism for the allylic amination of a branched racemic allyl substrate using 
Ir(I)-L5 complex. 
 

Although the preference for one of the allylic substrate faces (kinetic control) (Scheme 

3.15 I) could be one possible mechanism,[57] the source of the enantioselectivity is 

complicated by the possibility that one or more steps in the catalytic cycle may be the 

enantiodiscriminating step(s). Enantioselection can also derive from a certain degree of 

isomerisation between the π-allyl intermediates (thermodynamic control), or/and a 

stereospecific nucleophilic attack (kinetic control) (Scheme 3.15 II and III, 

respectively). 
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Scheme 3.15. Enantiocontrol in Ir(I)-catalyzed allylic amination.   
 

Our attempt to reduce the rate of the nucleophilic attack by lowering the nucleophile 

concentration (Table 3.9, entry 7), and thereby install the stereocontrol likely promoted 

by the enantioface preference of our catalyst, was so far unsuccessful. At this stage, the 

mechanism by which the Ir-PHOX catalyst imposes its chirality upon the branched 

amination product is difficult to understand.  

However, our results lead to the following conclusions: 1) the Ir(I)-catalyzed allylic 

amination is compatible with the use of nucleic acids; 2) the in situ formed Ir(I)-L5 

complex is active in 70% aqueous mixtures, in the presence of salts, at room 

temperature and at low catalyst concentration (100 μM); 2) the Ir(I)-catalyst generated 

with a chiral PHOX ligand, either L4 or L5, does not provide enantioselectivity in 

amination of racemic branched alyllic substrate with morpholine. Nevertheless, these 

promising findings represent a convenient starting point for the development of DNA- 

or RNA-based asymmetric catalysts, in which the nucleic acid fold can possibly 

contribute to the stereoselectivity of the process. 

3.2.3.3 Allylic Amination with DNA-Appended Phosphinooxazoline 

Ligands 
 

Iridium(I)-phosphinooxazoline complexes are among the most powerful catalysts 

employed in allylic substitutions, albeit never used in combination with DNA or RNA 

scaffolds.  

The promising results obtained with the catalyst formed with [Ir(cod)Cl]2 and ligand L5 

led us to investigate the ability of DNA-appended PHOX conjugates to generate 

enantioselective catalysts for amination of racemic branched allyl acetate with 
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morpholine, assuming that the DNA chirality would provide the stereocontrol of the 

reaction. 

To limit the non-specific binding of [Ir(cod)Cl]2 to the DNA, maximum one equivalent 

of iridium precursor has to be used for complex formation with DNA-based PHOX 

ligands. However, since the DNA strands are anionic, non-specific electrostatic 

attractions between these strands and cationic species, including the iridium ion, might 

occur. More importantly though, the DNA heterocyclic bases have a variety of nitrogen 

and oxygen donor atoms which can coordinate iridium and influence its catalytic 

properties. It has been reported that adenine derivatives, for example, can form 

rhodium-complexes with N1, N6 and N7 as binding sites.[305]  

Control experiments were conducted to determine if in our case DNA interferes with 

iridium binding and leads to catalytically inactive species. Amination reactions were 

performed in the presence of 1.1-1.4 equivalents of synthetic unmodified DNA (23 mer, 

cDNA2: 5’-GG AGC TCA CAA GTC CTT CAC TGC-3’), which was either firstly 

combined with the L5 ligand, followed by addition of [Ir(cod)Cl]2 precursor, or directly 

added to the pre-formed Ir-L5 complex. The experiments were carried out on 100 μL 

scale and the catalyst concentration was maintained in the range of 50-100 μM. Early 

assays showed that the solution of metal precursor [Ir(cod)Cl]2 must be freshly prepared 

each time. A stock solution of metal precursor [Ir(cod)Cl]2 in the presence of 

phosphinooxazoline ligand L5, in dioxane, could be instead used for at least one month 

when stored at -20° C without noticing any difference in catalytic activity. All reactions 

were performed in water/dioxane 7:3, and/or in the presence of 100 mM NaClO4 and 5 

mM Mg(ClO4)2. This solvent mixture ressembles the conditions used in the stability 

assays of double-stranded DNA (Chapter 3.1.2.2), the presence of the salts being 

important for maintaining DNA/DNA or DNA/RNA constructs in helical conformation. 

Moreover, since the amount of mono- and divalent cations is relatively high, we assume 

that the charged phosphate connecting units are compensated by metal ions. Localizing 

metal ions along the DNA phosphodiester backbone may increase the chance that DNA 

will be shielded from the iridium ion. In this case, the potential interactions of the 

iridium ion with the DNA would be restricted to nucleobase coordination.  
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Table 3.10. Effect of DNA on Ir(I)-catalyzed amination of branched allylic substrate 21 with morpholine 
22.[a] 

 
Entry Ligand [Ir] 

[μM] 
[DNA][b] 

[μM] 
Salts Time 

[h] 
Conversion[c] 

[%] 
1 L5 50 - - 19 20 
2 L5 50 53.3 - 19 24 
3 L5 50 - + 16.5 37 
4 L5 50 53.3 + 16.5 33 
5 - 100 - + 6 75 
6 - 100 135 + 6 67 
7 L5 100 - + 6 67 
8[d] L5 100 135 + 6 72 
[a] Reaction conditions: 5 μmol 21, 15 μmol 22 (3.0 equiv), 100 μL reaction volume, r.t., unless 
otherwise stated. [b] Pre-formed Ir-L5 catalyst was added to the DNA (1.1-1.4 equiv) solution. 
Experiments performed at least in duplicate. [c] Conversion determined by gas chromatography with 
dodecane as internal standard. [d] [Ir(cod]Cl]2 was added to a 1:1 PHOX/DNA solution. 
 

The results shown in Table 3.10 confirmed that the catalytic activity of both [Ir(cod)Cl]2 

precursor and pre-formed Ir-L5 complex was preserved in the presence of DNA (entries 

2, 4, and 6). Interestingly, the presence of salts in the reaction milieu led to a slight 

increase in rate acceleration (entry 3 versus 1). However, no significant salt-dependent 

effect on the reaction conversion could be observed when the DNA was added to the 

reaction mixture (entry 4 versus 2). This finding indicated that the DNA phosphate 

groups, apparently available for interactions with the iridium ion, did not trigger 

formation of catalytically inactive species. Furthermore, it appeared that the catalytic 

complex in situ generated from [Ir(cod)Cl]2 and L5 was formed in the presence of one 

equivalent of DNA per PHOX ligand, since no decrease in conversion was observed 

(entry 8 versus 7). On the other hand, this result can also be argued by the high catalytic 

activity of the [Ir(cod)Cl]2 precursor without additional ligand (shown in the previous 

chapter: Table 3.9, entry 5 versus 6 and 7), which anyway is not disturbed by the 

presence of DNA (Table 3.10, entry 5 versus 6). Therefore, under these conditions, the 
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ability of the DNA coordinating sites to compete with the PHOX ligand in iridium-

binding could not be entirely excluded, although a bidentate phosphinooxazoline is 

expected to be a superior ligand relative to the nucleobases and the phosphate groups 

are likely to be shielded by the mono- and divalent ions present in the reaction mixture.   

Importantly, our data clearly demonstrated that the interactions, if any, between the 

umodified synthetic 23mer DNA and the [Ir(cod)Cl]2 precursor or the pre-formed Ir-L5 

complex, were negligible since they did not alter the catalytic properties of the system. 

Encouraged by these results, we then tested the DNA-based PHOX ligands in our model 

reaction with the branched allyl acetate 21 and morpholine nucleophile 22. It has been 

assumed that the DNA-appended PHOX ligand would provide chelating control on the 

iridium ion, and favour its precise positioning into the DNA chiral environment. We 

screened DNA-PHOX constructs containing diverse linker units, four-carbon, two-

carbon, and 13-atom spacer (ODN11a-c) (Chapter 3.1.2.4), and attempted to study the 

influence of the linker length on the catalytic properties of the resulting DNA-tethered 

iridium complex as well as on the transfer of chirality from the DNA scaffold.[146, 199]  

The Ir(I) complexes were prepared by mixing 2.2-2.6 equivalents of HPLC purified 

ODN11a-c conjugates with [Ir(cod)Cl]2 in a degassed aqueous solution of 143.0 mM 

NaClO4 and 7.0 mM Mg(ClO4)2 (see Materials and Methods, Chapter 5.9.2.3). In order 

to rule out decomposition of DNA-PHOX ligands caused by the oxidation of the 

phosphinooxazoline moiety during the reaction, as well as possible side reactions of 

DNA with components of the reaction mixture, the DNA-appended Ir(I) complexes 

were incubated with the allyl substrate 21 and morpholine 22, under the same 

conditions used for the amination reaction, and then analyzed by HPLC. The 

presumably formed Ir(I)-PHOX complex is expected to be stable towards oxidation. 

Figure 3.24 illustrates the HPLC chromatograms obtained for the ODN11a under the 

above-described conditions. The oxidation proceeded slowly, from <10% (A) 

immediately after addition of [Ir(cod)Cl]2 to the DNA to 54% after overnight incubation 

in the presence of the substrates (B). Similarly, slight amount of oxidized DNA-PHOX 

conjugate (<10%) was also obtained in the case of ODN11b and ODN11c soon after 

treatment with [Ir(cod)Cl]2, while high levels of oxidation, 50% and 70%, respectively, 

were observed after carrying out the amination reaction. However, the amount of the 

observed oxide ODN11a-c(O) in the HPLC assays is probably overestimated. Beside 
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the long incubation time, a certain level of oxidation that might occur during HPLC 

sample preparation (outside a glove-box) and due to the oxygen dissolved in the HPLC 

solvents must be also considered.  

Figure 3.24. HPLC chromatograms of the phosphinooxazoline-derivatized DNA conjugate ODN11a. A) 
HPLC purified product immediately after redissolving in aqueous salt solution and addition of 0.5 
equivalent [Ir(cod)Cl]2. B) Overnight incubation at room temperature with allylic substrate and 
morpholine. DNA sequence: 5’-GC AGT GAA GGC* TGA GCT CC-3’, C* = N4-PHOX-appended 2’-
deoxycytidine. 
 

We assumed that in all cases the remaining amount of non-oxidized DNA-PHOX 

conjugate (approx. 50%) was high enough to ensure appropriate conditions for carrying 

out allylic amination reactions in the presence of ODN11a-c. The reactions were 

performed on a 50 or 100 μL scale, in 7:3 water/dioxane, at room temperature. The 

concentration of DNA-appended PHOX ligand was maintained between 66 and 130 

µM, considering 1.1-1.3 equivalents of ligand per iridium and only 90% purity of the 

DNA-conjugate due to inevitable oxidation. The results are shown in Table 3.11. 

Disappointingly, in all cases when the DNA-tethered PHOX ligand was used, the 

catalyst activity was highly reduced (<28% conversion) compared to both [Ir(cod)Cl]2 

precursor (entry 1) and pre-formed Ir-L5 complex  (entry 2) and additionally, no 

enantioselectivity was observed (entries 3, 4, and 6-8). The best conversion (28%) was 

obtained with the DNA conjugate containing the longest spacer between the PHOX 

moiety and the DNA scaffold, ODN11c (entry 8). This result reflects the higher 

flexibility introduced by the Ir(I)-PHOX-tethered linker, apparently important for 

preventing coordination of the iridium ion with the DNA electron donor atoms, and 

finally preserving the catalytic activity. 
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Table 3.11. Iridium(I)-catalyzed allylic amination of branched allyl acetate 21 with morpholine 22 with 
DNA-appended PHOX ligand ODN11a-c.[a] 

 
Entry Ligand [Ligand] 

[μM] 
[Ir] 

[μM] 
Conversion[b] 

[%] 
Ee[c] 
[%] 

 - - 100 73 - 
2[e] L5 140 100 82 <1 
3 ODN11b 130 100 12 5 
4 ODN11a 130 100 <1 n.d. 
5 - 75 60 84 n.d. 
6 ODN11b 78 60 10 2 
7 ODN11a 78 60 9 <1 
8 ODN11c 78 60 28 <1 
[a] Reaction conditions: 5 μmol 21, 5.5 μmol 22 (1.1 equiv), 100 mM NaClO4, 5 mM Mg(ClO4)2, 100 μL 
reaction volume, r.t., 16 hours. [b] Conversion determined by gas chromatography with dodecane as 
internal standard. [c] Determined by HPLC, detection wavelength λ = 254 nm, tR(24) = 10.8, 12.4 min. 
[e] 0.5 mol% L5.  
 

These results were inconsistent with our previous findings that clearly supported the 

assumption that (unmodified) DNA does not participate in iridium coordination (Table 

3.10), or at least the existing interactions are not detrimental for catalytic activity. To 

explain the results obtained with PHOX-carrying DNA sequences, one could consider 

that the formation of the DNA-appended Ir(I)-PHOX complex would result in close 

localization of the metal centre relative to the DNA and, consequently, in proximity to a 

plethora of ligands, such as the nonbridging phosphoryl oxygens and the 19 hydroxyl 

groups of the backbone, as well as the nitrogens and oxygens of the purine or 

pyrimidine bases. In this case, new iridium-DNA interactions, that haven’t been 

observed so far, might emerge. Based on reasons discussed before, it was reasonable to 

assume that such interactions would preferentially involve the nucleobases. In order to 

prevent undesirable coordination, we chose to use double-stranded DNA constructs, 
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where the complementary strand sequesters most of the heteroatoms of the nucleobases 

through Watson-Crick base-pairing, making them no more available for metal 

coordination.  

3.2.3.4 Allylic Amination with Double-stranded DNA-appended 

Phosphinooxazoline Ligands 
 

We envisaged the Watson-Crick base-pairing of DNA as a tool to provide a particular 

steric environment for the transition metal. In this case, the flexibility of the single-

stranded DNA given by a substantial degree of bond rotation occuring in the 

phosphodiester backbone linkages is considerably reduced. As a result, the structural 

constraints generated upon duplex formation are expected to facilitate the transfer of 

chirality from the DNA helix to the catalytic centre. 

A series of oligonucleotides (19mers) containing the phosphinooxazoline ligand moiety 

attached to the deoxycytidine-19 residue (direction 5’-3’) via three different spacers 

(ODN11a-c) were hybridized with the complementary DNA strand cDNA1 (Figure 

3.25 A). Two additional complementary oligonucleotides cDNA2 and cDNA3 were 

chosen, that upon hybridization generated small bulges (3-4 nt) on either the unmodified 

(cDNA2) or the PHOX-tethered DNA strand (ODN11a-c), in close vicinity to the 

ligand attachment site (Figure 3.25 B and C). This design based on introducing elements 

of flexibility of particular size and location within the duplex was anticipated to bring 

about shape changes and provide more complex structures for catalysis.  

Confident to our previous observations regarding the B-DNA duplex stability in 

mixtures containing 30% water-miscible organic cosolvents in aqueous buffers (Figure 

3.7), all double-stranded DNAs were used in Ir(I)-catalyzed allylic amination of 

branched acetate substrate 21 with morpholine 22, in 70% aqueous solvent. Treatment 

of DNA-PHOX conjugates with equimolar amounts of complementary strands 

(typically 2.0-4.0 nmol) at room temperature, in aqueous salt solution, results in 

spontaneous assembling of DNA duplexes. After complexation with [Ir(cod)Cl]2 

precursor and in situ formation of Ir(I)-catalyst (1.1-1.3 equivalents of DNA-appended 

PHOX ligand per iridium), the amination reactions were started by addition of acetate 

substrate 21 and morpholine nucleophile 22. Parallel test reactions with single-stranded 
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DNA-PHOX conjugates were also performed, as previously described, to allow a more 

accurate comparison of the catalytic systems. Some results are shown in Table 3.12. 

 

 
Figure 3.25. Double-stranded DNA-appended Ir(I)-phosphinooxazoline complexes. L denotes solvent 
molecule, chloride ion (from the [Ir(cod)Cl]2 precursor), or other coordinating species. 
 

Contrary to our expectations, the catalytic activity of DNA-bound Ir-PHOX complexes 

could not be restored by blocking the oxygens and nitrogens on the Watson-Crick edge 

of the purine or pyrimidine bases by DNA duplex formation (entries 6-14 vs 3 and 4). It 

seems that all designed double-stranded DNA constructs still provide coordinating 

moieties responsible for formation of catalytically inactive species (entries 6-14 vs 1 
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and 2). At first glance, we assumed that the only available donor atoms after Watson-

Crick base pairing are the N7 nitrogen atoms of deoxy-adenosine and -guanosine 

residues. Moreover, these sites are localized at the floor of the major groove of the B-

DNA duplex (one example of dG=dC base-pair positioning towards the B-DNA major 

and minor grooves is shown in Figure 3.5). It is known that a functional tether attached 

at the N4-exocyclic amine of deoxycytidine residue protrudes out into the major groove 

space.[255, 306, 307] Therefore we expect that the phosphinooxazoline moiety and its 

resulting iridium-complex would be specifically positioned in the major groove in close 

proximity to the presumably coordinating N7 atoms of adjacent dG and dA 

nucleobases[305] (Figure 3.26 A).  
 
Table 3.12. Iridium(I)-catalyzed allylic amination of branched allyl acetate 21 with morpholine with 
double-stranded DNA-appended PHOX ligand.[a] 

Complementary DNA Entry PHOX 
Ligand 

DNA-PHOX 
Ligand cDNA1 cDNA2 cDNA3 

Conversion[b] 
[%] 

Ee[c] 
[%] 

1 - - - - - 44 n.d. 
2 L4 - - - - 65 <1 
3 - ODN11a - - - 8 3 
4 - ODN11b - - - 14 2 
5 - ODN11c - - - 23 <1 
6 - ODN11a + - - 8 <1 
7 -  - + - 3 3 
8 -  - - + 7 2 
9 - ODN11b + - - 22 <1 
10 -  - + - 7 7 
11 -  - - + 15 <1 
12 - ODN11c + - - 18 <1 
13 -  - + - 3 6 
14 -  - - + 6 n.d. 
[a] Reaction conditions: 0.25 μmol 21, 0.63 μmol 22 (1.1 equiv), 100 mM NaClO4, 5 mM Mg(ClO4)2, 50 
μL reaction volume, 0.5 mol% [Ir(cod]Cl]2,  1.2 mol% L4 (entry 2), 1.4 mol% ODN11a-c (entries 3-14), 
r.t., 19 hours. [b] Conversion determined by gas-chromatography with dodecane as internal standard. [c] 
Determined by HPLC, detection wavelength λ = 220 nm, tR(24) = 10.8, 12.4 min. 
 

Molecular modelling was further used to gain insight into possible intramolecular 

interactions within these molecules. Theoretical models based on quantum mechanical 

calculations have been proposed for the amino tether-functionalized Ir-L5 complexes. 

The energy-minimized structures, that fairly resemble the published X-ray crystal 

structure of homologues π-allyl Ir(III)-complexes,[68] were then used to estimate the 

distance between the iridium atom and the carbon C1 of the linker, directly attached at 

the dC nucleobase (Figure 3.26 B). This measurement gives the theoretical, linker-

dependent distance of the metal centre within the DNA duplex, and consequently the 
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maximal interaction sphere with nucleobases. Based on these calculations, we assumed 

that the iridium ion can reach either the deoxyguanosine residues present above and 

below the modified deoxycytidine (5’ → 3’, dG = dC base pairs 9, 10, and 13) or the dG 

directly involved in Watson-Crick pair with the PHOX-tethered dC (dG = dC base pair 

11) (Figure 3.26 A).   

 
Figure 3.26. A) Localization of the Ir(I)-L5 complex inside the B-DNA duplex (left). B) Theoretical 
model of the dC-tethered-Ir(I)-L5 complex within the DNA. The model of the Ir-PHOX complex was 
constructed in Chem3DDraw and MM2+ minimized (two coordinating chlorine atoms were chosen for 
simplicity of the model). The theoretical maximal free rotation (r) allowed by the spacer was estimated in 
Chem3DDraw using energy-minimized structures.  
  

To confirm this hypothesis, we focused on applying specific structural changes in the 

nucleotide sequence of the DNA-based PHOX ligands. Two new sets of DNA-PHOX 

conjugates were prepared, in which the above-mentioned potentially coordinating 

residues located on the sense strand were replaced by either the weakly coordinating 2’-

deoxyadenosine or the non-coordinating 7-deaza-riboguanosine. Moreover, the base 

composition was slightly changed in the former case, in order to ensure a dG/dC content 

and a subsequent thermal stability comparable to the initial duplexes. For the second 

type of substitution, the remaining DNA sequence was conserved. 
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The aminoalkyl-modified ODN precursors ODN4a-c and ODN5a,b were prepared 

using the convertible nucleoside strategy, followed by deprotection, cleavage and 

substitution with aliphatic diamines, as described in section 3.1.2.1. Carbodiimide 

coupling with the carboxylate PHOX-derivative L6 in the presence of N-

hydroxysuccinimide, according to Scheme 3.4, afforded the DNA-PHOX conjugates 

ODN12a-c and ODN13 in 42-78% yield (Table 3.13). 
 
Table 3.13. Post-synthetic functionalization of amino-modified ODN4a-c and ODN5a,b with 
phosphinooxazoline L6.[a] 
ODN Sequence Ligand Linker R Yield 

[%] 
 

ODN12a 5'-GC AGC GAT AACR TAA GCG CT-3'  L6 H2N  42 
ODN12b 5'-GC AGC GAT AACR TAA GCG CT-3'   H2N  65 
ODN12c 5'-GC AGC GAT AACR TAA GCG CT-3'   H2N O

O2  
78 

ODN13 5'-GC AGT GAA XXCR TXA GCT CC-3'   H2N  47 

 
[a] Reaction conditions: 39-80 μM amino-modified ODN, 33.3 mM L6, 0.1 mM NaCO3 1:2 DMF/H2O, 
r.t., overnight. 
 

The DNA-PHOX conjugates were then tested in allylic amination reactions using the 

previously described procedure. To introduce more structural variation, DNA/RNA 

hybrids were also prepared, in addition to DNA/DNA duplexes. Such DNA/RNA 

duplexes are known to adopt an A-DNA structure that results in a deep and narrow 

major groove and a very shallow and wide minor groove (Figure 1.13, Chapter 1.2.1). 

Such structural features might induce more structural constraints and thus afford more 

selective nucleic acid domains for catalysis. Moreover, these DNA/RNA hybrids can be 

seen as appropriate models to approximate the system designed for the in vitro selection 

of RNA-based hybrid catalysts. 

The DNA-Ir(I) complexes were prepared in situ by combining [Ir(cod)Cl]2 with a 

degassed solution of single- or double-stranded DNA/DNA or RNA/DNA-appended 

PHOX ligand (1.3 equivalents of DNA-PHOX conjugate per iridium, typically 1.3-2.6 

nmol). In all cases, the final concentration of Ir(I) catalyst was maintained between 20-
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40 μM and the reactions were carried out on a 50 μL scale. The results of the catalysis 

attempts are given in Table 3.14. 
 
Table 3.14. Iridium(I)-catalyzed allylic amination of branched allyl acetate 21 with morpholine 22 with 
single- and double-stranded DNA-appended PHOX ligand ODN12a-c and ODN13.[a] 

Complementary DNA or RNA[b] Entry 
 

DNA-PHOX 
Ligand 

[Ir] 
[μM] cDNA3 cDNA4 cRNA 

Conversion[c] 
[%] 

1 - 40 - - - 34 
2 ODN12a 40 - - - 30 
3 ODN12b 40 - - - 24 
4 ODN12b 40 - + - 20 
5 ODN12b 40 - - + 18 
6[d] ODN12a 20 - + - 16 
7[d] ODN12a 20 - - + 11 
8[d] ODN12c 23 - + - 8 
9[d] ODN12c 23 - - + 18 
10[e] ODN13 30 + - - 36 
[a] Reaction conditions: 0.25 μmol 21, 0.63 μmol 22 (1.1 equiv), 100 mM NaClO4, 5 mM Mg(ClO4)2, 50 
μL reaction volume, r.t., 19 hours, 1.0 mol% ODN12a,b, unless stated otherwise. [b] cDNA3: 5’-GG 
AGC TCC TTC ACT GC-3’; cDNA4: 5’-AG CGC TTA GTT ATC GCT GC-3’; cRNA: 5’-AG CGC 
UUA GUU AUC GCU GC-3’. [c] Conversion determined by gas-chromatography with dodecane as 
internal standard. [d] 0.5 mol% ODN12a,c. [e] 0.8 mol% ODN13. 
 

The data show that by substituting the dG nucleotides on the sense strand in close 

proximity to the metal complex attachment site, the catalytic activity of the DNA-

tethered Ir-PHOX complexes attached to DNA could be generally restored. 

Nevertheless, it appears that the dA residue exhibits weak iridium binding strength 

through its N7 site, as indicated by the slightly lower conversion obtained with the 

ODN12a,b conjugates (entries 2-7 versus 1). The DNA domain controlled by the long 

tether carrying the phosphinooxazoline moiety in ODN12c includes several remote dG 

residues that, beside those involved in the dG=dC base-pairs 9, 10, and 13, are 

apparently in charge of interactions with the iridium ion, leading to reduced catalytic 

activity, as observed with the ODN12c/cDNA4 duplex (entry 8). However, the 

DNA/RNA analogue, generated from ODN12c and its complementary cRNA apperead 

to behave differently and higher reaction conversion was attained (entry 9). Since these 

two constructs adopt distinct helical forms, one can speculate that the specific 

accommodation of the attached Ir-L5 complex in the A-DNA duplex rules out to some 

extent the unfavourable interactions with the DNA coordinating sites. Notably, the best 

result was achieved with the 7-deaza-riboguanosine-containing DNA construct 

ODN13/cDNA3 (entry 10). In this case, the two-carbon linker-appended Ir-PHOX 

complex positions itself into the bulge, approaching only the nucleobases that can not 
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compete for metal coordination: 7-deaza-G above and dT below the tethering site. This 

results in no observable inhibition effect on the catalytic activity. All these studies need 

to be reconciled in order to fully understand whether all three 9dG, 10dG, and 13dG 

nucleobases or combinations of them are responsible for disrupting the distinct binding 

motif provided by the bidentate DNA-appended phosphinooxazoline ligand.  

The enantioselectivity was in all cases very poor (<3%). The length of the linker 

carrying the iridium complex seems to play an important role in the stereoselectivity of 

the catalytic species.[146, 200] At this point, we believe that all three chosen tethers are too 

long and they presumably mimimize the interactions between the DNA and the bound 

iridium(I) catalyst, yielding a weak transfer of chirality from the DNA backbone to the 

metal active site. 
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4 Conclusions and Outlook 
 

The incorporation of transition metal complexes into DNA and RNA is an important 

objective for the development of functional biomolecules with potential applications as 

therapeutics, artificial nucleases, and as nanotechnology construction material. Inspired 

by the seminal work of Whitesides, who showed that asymmetric catalytic 

hydrogenations could be performed by anchoring an achiral RhI complex in a chiral 

cavity of the protein avidin, we aimed at embedding transition metal complexes in 

nucleic acids folds in order to generate nucleic acid-based hybrid catalysts. In addition, 

the use of combinatorial methods in the later stages of the project is expected to assist 

the quick development of artificial metallo-DNAzymes and -ribozymes with the desired 

activity and selectivity.  

 
Figure 4.1. In vitro selection of RNA-based hybrid catalysts with DNA-appended transition metal 
complexes. 
  

In this respect, a SELEX-type strategy devised for screening combinatorial libraries of 

up to 1015 metal-binding nucleic acids, followed by PCR amplification (Figure 4.1) 

(and, in some cases, diversification), would be a valuable tool towards hybrid catalysts, 

exclusive of the high-throughput-screening systems required by the evolutive 
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development of enantioselective enzymes. In vitro selection of RNA-hybrid catalysts 

remains probably a difficult approach since it requires a proper combination of 

structural and functional information from both nucleic acids and organometallic 

chemistry. In order to establish a robust selection scheme, several strategies were sought 

to allow for a precise positioning of the metal complex within the RNA fold. As 

discussed in the first part of Chapter 3.1, the most suitable way to provide the system 

with the necessary ligand for transition metal coordination consists of employing short 

DNA/RNA hybrids, with the DNA acting as a metal chelator-carrier oligonucleotide. 

This is the key step in the selection cycle, where a modified RNA library is creating by 

simply carrying out a hybridization step with a suitably functionalized DNA strand 

(Figure 4.1). 

At the moment we started this work, there was no precedent for nucleic acid-based 

hybrid catalysts. The major challenges in the development of hybrid catalysts based on 

DNA or RNA and transition metal complexes are in the field of asymmetric catalytic 

carbon-carbon and carbon-heteroatom bond forming reactions. Since the most powerful 

catalysts for these reactions are based on phosphorus ligands, we attempted to 

covalently attach achiral phosphite units at the 5’-terminus of the DNA sequences. 

Despite the successful assembling of such DNA conjugates using solid-phase synthesis 

and phosphoramidite ligand precursors, the desired DNA-appended phosphite could not 

be isolated due to its very low stability under the conditions used in purification. 

However, the problematic isolation of these conjugates could be overcome by the pre-

formation of the corresponding rhodium(I) complex that was reasonably stable during 

the deprotection and cleavage of the resin-bound, functionalized oligonucleotide 

(Chapter 3.1.1) 

The derivatization of DNA with a second class of phosphorus based ligands, namely 

phosphines, has been then envisioned as a suitable approach to modifying 

oligonucleotides with versatile ligands for transition metal coordination. An efficient 

post-synthetic strategy for the site-specific incorporation of mono- and bisphosphine, as 

well as phosphinooxazoline ligands into DNA sequences has been established. Parallel 

synthesis of various DNA precursors bearing a primary alkylamino functionality that 

can be selectively addressed was achieved by the one-pot conversion, deprotection and 

cleavage of convertible nucleoside-containing oligomers with diamines (Chapter 
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3.1.2.1). The subsequent coupling of amino-modified oligonucleotides with PYRPHOS, 

BINAP and PHOX ligands equipped with a carboxyl group allowed the attachment of 

the phosphine moieties at defined predetermined internal sites (Figure 4.2) (Chapter 

3.1.2). Phosphine-containing oligonucleotides and their phosphine sulfide analogues 

were characterized by mass spectrometry (MALDI-TOF and FT-ICR-ESI) and their 

stability after purification and isolation systematically investigated. While the DNA-

appended PYRPHOS ligand was quickly oxidized, BINAP and PHOX conjugates 

showed high stabilities, making them useful precursors for the development of metal-

containing oligonucleotides. The approach described here provides new chelating 

functionalities for introducing metal centres at well-defined positions in DNA or RNA 

sequences and a unique collection of DNA-based phosphine ligands for creating 

efficient catalysts (Chapter 3.2.3). In addition, the combination with spacers differing in 

length and structure (Figure 4.2) might be relevant for the interactions between the 

transition metal complex and the biopolymer backbone.  

 
Figure 4.2. Site-specific incorporation of phosphine ligands into DNA sequences. 
 

In addition to the synthetic challenges for incorporation of transition metal complexes, 

one barrier to expanding the applications of DNA and RNA in asymmetric 

organometallic catalysis stems from finding suitable target reactions that proceed in the 

presence of water and are compatible with the use of nucleic acids. Although an 

increasing number of transition metal-catalyzed transformations in aqueous mixtures are 

being reported, several reaction parameters and conditions had to be systematically 

examined and revised in order to achieve proper model systems compatible with the 

structure and properties of nucleic acids. Our studies on the preparation and stability of 
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mono- and bisphosphine- and phosphinooxazoline-based complexes with transition 

metals (e.g., palladium, platinum, rhodium, iridium) demonstrated that these systems 

tolerated well water as cosolvent and could be easily handled in the laboratory 

atmosphere (Chapter 3.2.1). These findings together with the high affinity for transition 

metals make phosphorus ligands certainly the entities of choice for embedding 

transition metal complexes in DNA and RNA folds and creating metal-based catalytic 

nucleic acids.  

From the wide range of homogeneous processes that phosphine- and phosphino-

oxazoline-transition metal complexes can accelerate, commonly in neat organic solvent, 

two model reactions were selected. The rhodium(I)-catalyzed 1,4-addition and 

iridium(I)-catalyzed allylic amination proceeded efficiently in aqueous medium (e.g., up 

to 70% water in allylic aminations), at room temperature, even with low catalyst 

concentration (e.g. 0.1 mM concentration of iridium catalyst). These findings were a 

successful event in our long-standing efforts to establish optimal systems, which 

wellmatch nucleic acids properties. In our hands, the ligand of choice for the 1,4-

addition of phenyl boronic acid to 2-cyclohexen-1-one (Scheme 3.10) appeared to be 

the BINAP ligand L8. The best conversion was obtained with the isolated 

[Rh(nbd)BINAP]BF4 catalyst which was found superior to the related complex 

generated from the PYRPHOS ligand (Chapter 3.2.2). Our preliminary results using 

mono- and biphosphine ligands stimulate the applications of the DNA-appended 

BINAP in rhodium-catalyzed conjugate additions. For the convenient test of the DNA-

based systems, additional optimization of the reaction conditions (concentration of the 

catalyst and substrates, water content) and investigation of the degree of 

enantioselectivity induced by the BINAP itself have still to be done.   

In the second model reaction employed in this work, the in situ prepared Ir(I)-PHOX 

complexes afforded amination products in good yields, starting from the branched 

racemic phenyl allyl acetate, while the catalyst was found ineffective with the isomeric 

linear substrate (Scheme 3.12). Significant rate accelaration was observed when 70% 

water was used as cosolvent in aminations of the branched substrate with morpholine. 

Under the same conditions, the linear acetate remained unreactive, albeit slight 

enhancement of the reaction rate was observed at elevated temperature.  Although the 

achieved conversion is very modest by conventional catalysis’ standards, this system 
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introduces an interesting approach towards in vitro evolution of nucleic acid hybrid 

catalysts on the basis of stability and activity at high temperature. More in detail, 

SELEX-type techniques could aid to the isolation of thermostable nucleic acid 

sequences that, upon recruiting the Ir(I)-PHOX complex, are capable of complementing 

its catalytic activity and finally make unreactive substrates accessible.  

The very good conversions (>98%) afforded by Ir(I) complexes in the aminations of the 

branched starting material, under environmetally friendly conditions, and at low catalyst 

loading (0.5 mM) (Chapter 3.2.3.2) contribute to the continued efforts of expanding the 

scope of biocatalysis. In addition, the novel chiral PHOX derivatives L5 and L6 

reported in this work are attractive candidates for applications in organometallic 

catalysis, such as hydrogenations, Heck reactions or hydrosilylations. The ligand L6 

possesses suitable functionality for further derivatization, such as dendrimer fixation, 

and finally generation of metallodendrimer catalysts. By the virtue of the so called 

“dendrimer effect”, high levels of selectivity in asymmetric transformations can be 

enforced. On the other hand, this PHOX derivative can undergo functionalization with 

solid supports and assist formation of immobilized catalysts. This approach would allow 

new applications of PHOX ligands in heterogeneous catalysis.  

Importantly for our purposes, the Ir(I)-PHOX(L5) complex (0.05-0.10 mM) remained 

highly active in the allylic amination reaction in the presence of unmodified DNA and 

high concentration of salts. This observation led to the conclusion that no undesired 

interactions between the transition metal ion and the DNA coordinating sites occured 

that could shut down the reaction. Interestingly, no kinetic resolution on the branched 

racemic substrate and, implicitly, enantioselectivity could be achieved, despite the 

stereogenic nature of the PHOX-based catalysts. Since allylic amination reactions do 

not exclusively rely on a single mechanism as source of asymmetry, the origin of 

stereoselectivity remains difficult to understand at this stage. The mechanism by which 

the ligand can transfer its chirality with high fidelity to the amination product, or by 

which the steric effects of the amine nucleophile contribute to enantiodiscrimination 

make definitely the object of interesting upcoming studies. 

Nevertheless these data open the way for exploring the catalytic potential of nucleic 

acids. As already outlined in the “Objectives” section of this work, the low levels of 

enantioselectivity induced by conventional transition metal catalysts could be surpassed 
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by making use of biopolymers. Two possibilities may arise: 1) the biopolymer exerts 

exclusive stereocontrol on the reaction outcome, or 2) the steric information carried by a 

chiral ligand is enriched by that of the biopolymeric part.  

We attempted to assess to what extent synthetic 19mer DNA sequences may asssist the 

transfer of chirality in allylic amination reactions. We considered that the DNA-based 

ligands were attractive scaffolds for transition metal catalysts due to the fact that they 

could be easily engineered and well-defined secondary structures based on Watson-

Crick base pairing could be designed. Single-stranded DNA-PHOX conjugates were 

initially tested in the allylic amination of the branched racemic allyl acetate with 

morpholine, in 70% water, as model reaction. Preliminary attempts, in which DNA 

sequences containing a 2’-deoxyguanosine-rich domain in close proximity to the ligand 

attachment site were employed, yielded lower conversions compared to those obtained 

when the non-bound iridium(I)-PHOX complex was used instead (Chapters 3.2.3.2 and 

3.2.3.3). A similar trend was observed for all tethered DNA-PHOX systems, 

independently of the length of the spacer carrying the ligand. These results evoked 

several key questions: 1) Can the iridium(I) complex be selectively formed with the 

DNA-appended bidentate PHOX ligand? 2) Can other binding sites for the transition 

metal be found in the DNA molecule? 3) Can the phosphate units and nucleobase 

heteroatoms contribute to the first coordination sphere? One possible answer might 

come from our early observations discussed above, on conserved catalytic activity of 

both [Ir(cod)Cl]2 precursor and pre-formed Ir(I)-PHOX complex in the presence of 

unmodified DNA. According to these results, one could assume that complex formation 

between the iridium(I) precursor and the DNA-appended PHOX ligand rendered a more 

precise and closer localization of the metal ion next to potential coordinating sites of the 

DNA backbone. As a result, the adjacent phosphate units or/and the nucleobase 

heteroatoms might directly participate in coordination and drastically influence the 

catalytic properties of the transition metal complex. Since mono- and divalent cations 

were used in large excess in the catalytic reactions, it has been assumed that the 

phosphodiester linkages were apparently shielded. In this case, it is mainly the 

nucleobase nitrogen and oxygen donor atoms to compete for the free metal coordination 

sites. To support this hypothesis, we have selected DNA/DNA and DNA/RNA hybrid 

systems (Chapter 3.2.3.4) in which the complementary strand sequesters most of the 
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nucleobase heteroatoms through Watson-Crick base-pairing, making them inaccessible 

for metal coordination. In addition, structural diversity has been introduced in the DNA 

systems and oligonucleotide sequences have been designed that upon simple 

hybridization induced the formation of three or four nucleotides bulge motifs. In these 

constructs, the transition metal complex is embedded in the double helix structure, and 

additionally located within the bulge in the sense strand or flanked by the bulge of the 

antisense strand (Figure 3.25). In all cases, no observable catalytic effect of the DNA-

anchored iridium(I)-PHOX complex was obtained (Chapter 3.2.3.4). Based on these 

results we concluded that the N7 nitrogen atoms from the non-Watson Crick edge of the 

purines might be the single sites prone to direct coordination and formation of 

catalytically inactive species. To shed light on these observations, we evaluated the 

putative interaction sphere of the iridium ion with the nucleobases within the DNA 

helical model, based on the translational and rotational mobility induced by the covalent 

tethering of the metal complex (Figure 3.26). Indeed, several 2’-deoxyguanosine 

residues are directly located within this domain, in close proximity to the ligand 

attachment site. Notably, by exchanging particular neighbouring dGs for either the 7-

deaza-riboguanosine or 2’-deoxyadenosine, the catalytic performance of the Ir-PHOX 

complexes anchored to the DNA could be restored (Chapter 3.2.3.4). Interestingly, the 

dG nucleotide directly involved in Watson-Crick base-pairing with the complementary 

PHOX-appended dC is apparently accepted for maintaining efficient catalytic 

properties. However, in all cases, no chiral induction was obtained starting from 

racemic substrates, probably owing to the lack of structural constraints and also intimate 

contact between the DNA helix and the catalytic metal centre. This might be explained 

by the flexibility and rather long distance introduced by the linkers carrying the metal 

complex, although a two-carbon spacer was expected to confer stereodiscriminating 

abilities on the system.  

The results presented here are the first examples on applications of oligonucleotides-

based ligands in organometallic catalysis and they contribute to the fundamentals of 

exploring the potential of nucleic acids in asymmetric transformations. Several 

possibilities could therefore be considered for the future. Firstly, the catalytic 

performance of the DNA-based ligands can be improved by rationally designing the 

nucleotide sequence, the modification position, the tether length and the secondary 
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structure elements. For example, DNA constructs ranging from simple, structurally 

distinct DNA/DNA and DNA/RNA hybrids to nucleic acid systems containing highly-

structured motifs (e.g. branched DNA, hairpins, internal loops, three- and four-way 

junctions) (Figure 4.3) offer access to a large variety of chiral, readily available targets 

for covalent anchoring of transition metal complexes.  

 
Figure 4.3. Proposed structures for embedding transition metal complexes and construction of DNA-
based catalysts. A) DNA/DNA or DNA/RNA duplexes. B) Double helix structure with internal loop. C) 
Three-stem junction DNA structure. D) Four-strem junction DNA structure. E) DNA G-Quadruplex. F) 
Hydrogen bonding pattern of the G-tetrad. 
 

Our modular synthetic strategy of DNA-ligand assembling from convertible nucleotide, 

diamine and functionalized ligand components could be further tuned for introducing 

shorter or conformationally constrained tethers and, finally creating selective DNA-

based catalysts. Moreover, the data described above provide valuable information 

regarding the nucleobase requirements for adequate DNA sequence design and 

minimization of the critical first sphere coordination interactions that lead to inhibition 
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of the catalytic activity. Nevertheless, the distinct structural features of the G-

quadruplexes (structural elements found in the telomere ends of the chromosomes) 

(Figure 4.3) might offer an intriguing alternative approach to the design of G-poor 

stretches as a tool of preventing purine coordination. More in detail, one poly(G) strand 

can assemble in a three-dimensional structure containing two (or more) G-quartets (or 

G-tetrads), the strand contributing four G residues to each G-tetrad. The guanine tetrads 

can stack upon each other to form four-stranded structures with a guanine tetrad core. 

This type of intermolecular arrangement may adopt a basket-like confomation, in which 

a distinct loop connecting diagonally related strands is formed (Figure 4.3). This 

particular structural element could be engineered to accomodate a phosphine ligand-

tethered dC residue and to allow for subsequent location of the transition metal ion in a 

precise, resourceful cavity. Since each G residue of the core is involved in both Watson-

Crick and Hoogsteen base-pairing (Figure 4.3), one might assume that a G-quadruplex 

would also provide a favourable coordination environment. The excellent recognition 

properties of G-quadruplexes could then be used for effecting transfer of chirality to the 

metal-catalyzed reaction.  

The de novo synthesis of nucleic acid catalysts entirely based on rational design, 

combined with the rather time-consuming screening for activity and selectivity can be a 

difficult task. Combinatorial techniques, often called “shotgun” techniques, offer a 

valuable alternative based on the probability that the desired catalyst is represented in a 

library of randomly synthesized molecules. The experimenter’s efforts required by the 

conventional screening of rationally designed sequences are eliminated in a SELEX-

type strategy, by the use of “column chromatography” methods to isolate the 

catalytically active species, as described at the beginning of this chapter. Hence, 

conducting in vitro selection of RNA hybrid catalysts, assisted by the ligand-DNA 

carrier and the transition metal precursor, is anticipated to facilitate the discovery of 

novel catalysts for organometallic transformations. The capacity of RNA to fold, 

provide particular coordination cavities and binding pockets and thereby to exquisitely 

tailor the first- as well the second coordination sphere of the active site is expected to be 

explored through combinatorial strategies. The optimal transfer of chiral information 

from the RNA scaffold to the chemical reaction can be then achieved. The RNA catalyst 

could be subsequently evolved to a more selective/active species to generate artificial 
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ribozymes with custom-made properties. The SELEX scheme proposed in this work 

implies selection of RNA species exclusively based on their ability of accelerating the 

desired transformation. The isolated catalysts will be then submitted to screening 

systems for determining the level of stereoselectivity. Ideally, besides effecting control 

on the electronic properties, the selected RNA molecules will also be able to impart the 

desired steric information. Alternatively, a methodology that allows for simultaneous 

selection for stereoselectivity has to be implemented.  

With only little precedent in the field of nucleic acid-based hybrid catalysts, the results 

reported here represent a step forward in the development of metallo-ribozymes and -

deoxyribozymes and allow new research at the interface between the fields of transition 

metal catalysis and biocatalysis. 
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5 Materials and Methods 

5.1 Standard Methods and Reagents 

 

Standard methods, such as DNA/RNA ethanol precipitation, polyacrylamide gel 

electrophoresis (Rotiphorese DNA sequencing system), NAP G25 - gel filtration, 

spectrophotometric quantification of oligonucleotides, gel elution of nucleic acids, UV-

shadowing, were carried out according to published protocols.[308, 309] All reagents were 

purchased from Aldrich, Fluka, Acros Organics or Proligo (for oligonucleotide 

synthesis) and used without further purification. DMF and THF were purchased from 

Fluka in septum sealed bottles and kept under inert atmosphere (dry solvents over 

molecular sieves).  

Reactions with air-sensitive compounds were performed under argon atmosphere using 

standard Schlenk techniques. Degassing of solvents and reaction mixtures containing 

O2-sensitive phosphines was achieved through a minimum of three successive freeze-

pump-thaw cycles.  

TLC analyses were carried out using silica gel plates Polygram® Sil G/UV254 

(40×80 mm) from Macherey-Nagel. Flash chromatography was carried out on silica gel 

40 μm from J.T. Baker. NMR spectra were recorded on Mercury Plus 300, Varian 

VNMR S 500, Bruker AC-300, or DRX-300 spectrometers. 1H and 13C{1H} NMR 

spectra were calibrated to TMS on the basis of the relative chemical shift of the solvent 

as an internal standard. 31P{1H} NMR spectra were calibrated to an external standard 

(85% H3PO4). Abbreviations used are as follows: s = singlet, d = doublet, t = triplet, m 

= multiplet, bs = broad singlet, bd = broad doublet. FAB and EI mass spectra were 

recorded on a JEOL JMS-700 sector field mass spectrometer. MALDI-TOF mass 

spectra were recorded on a Bruker BIFLEX III spectrometer. ESI MS analysis for small 

compounds was performed on a Finnigan MAT TSQ 700 spectrometer.
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5.2 Synthesis of Phosphorus Ligands and their Transition 

Metal Complexes 

 

(2-Diphenylphosphine)-4-benzoic acid L1 and disodium bis(4-sulfonato- 

phenyl)phenylphosphine (TPPDS) L7 were purchased from Sigma-Aldrich. 

Bisphosphines L2[18, 19] and L3[50, 310] are derivatives of the well-known ligands pyrphos 

and BINAP, and were prepared according to literature procedures. Compound L2 was 

synthesized starting from (R,R)-3,4-bis(diphenylphosphano)pyrrolidine. For L3 and L8 

preparation, the commercially available (S)-2,2’-dihydroxy-1,1’-binaphthalene was 

used.[250] Phosphinooxazoline ligand (S)-2-[2-(diphenylphosphino)phenyl]-4-(1-

methylethyl)-4,5-dihydrooxazole) (L4), [Pt(cod)Cl]2, PdCl2(PhCN)2, [Rh(cod)Cl]2, 

[Rh(nbd)Cl]2, [Rh(C2H4)2Cl]2 and [Ir(cod)Cl]2 were purchased from Strem Chemicals. 

Rhodium(I)-complex [RhL8(nbd)]+BF4
- was prepared in our group.[250] Compounds L1-

4 and L7-8 are shown in Figure 5.1. 

 
Figure 5.1. Phosphines L1 and L7, bisphosphines L2-3 and L8, and phosphinooxazoline L4 ligands. 

 

5.2.1 Synthesis of Phosphoramidite Ligands 

 
The synthesis of phosphoramidite ligands P1-3 (Figure 5.2) was accomplished 

according to published procedures,[311, 312]  by heating the commercially available 

neopentyl glycol (for P1) or 2,2´-biphenol (for P2 and P3) with phosphorus trichloride, 

followed by treatment with appropriate amines (diethylamine, or N,N’-
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diisopropylamine) according to Scheme 3.1. 

 
Figure 5.2. Phosphoramidites P1-3. 
 

General procedure for the synthesis of phosphoramidites P1-3. A solution of diol 

(5.1 mmol), neopentyl glycol for P1 (1a), or 2,2´-biphenol for P2,3 (1b) in PCl3 (4 mL, 

45 mmol, 8.8 equiv) was refluxed for 4 h. The excess of PCl3 was removed by 

distillation and the residual foam consisting of the phosphoryl chloride of the diol was 

diluted with toluene and concentrated (3 x 5 mL) to remove the excess of PCl3. The 

resulting yellow oil was dissolved in dry toluene (4 mL) and added to a solution of 

diamine (6.6 mmol, 1.3 equiv DEA (680 µL) for P1,2 or DIPA (920 µL) for P3) and 

TEA (3 ml, 21 mmol, 4.1 equiv) in 5 mL dry THF. After being stirred for 16 h at room 

temperature, the reaction mixture was concentrated under vacuum and the crude product 

was purified by flash chromatography (column preconditioned with the eluent 

containing 1% TEA). 

1,3-Propanediol-2,2-dimethyl-N,N’-diethylphophoramidite (P1) The crude product 

was purified by flash chromatography (elution with EA/n-hex 3:97). Yield: 32%. 

Colorless oil. 1H NMR (300 MHz; acetone-d6) δ 3.81 (bd, 2H), 3.62 (dd, 2H), 3.13 (m, 

4H), 1.21 (s, 3H), 1.07 (t, 6H), 0.75 (s, 3H). 31P NMR (122 MHz; acetone-d6) δ 147.62.  

O,O’-(1,1’-Biphenyl-2,2-diyl)-N,N’-diethylphophoramidite (P2) The crude was 

purified by flash chromatography (elution with EA/n-hex 4:96). Yield: 42%. White 

solid. 1H NMR (300 MHz; DMSO-d6) δ 7.07 (d, 2H), 6.95 (t, 2H), 6.82 (t, 2H), 6.73 (d, 

2H), 2.50 (m, 4H), 0.54 (t, 6H). 31P NMR (122 MHz; DMSO-d6) δ 149.67.  

O,O’-(1,1’-Biphenyl-2,2-diyl)-N,N’-diisopropylphophoramidite (P3). The crude 

product was purified by flash chromatography (elution with EA/n-hex 5:95). Yield: 

46%. White solid. 1H NMR (300 MHz; acetone-d6) δ 7.58 (d, 2H), 7.44 (m, 2H), 7.28 

(dd, 4H), 3.58 (m, 2H), 1.25 (d, 12H). 31P NMR (122 MHz; acetone-d6) δ 152.12. 
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5.2.2 Synthesis of PHOX Ligands 

 
Phosphinooxazolines L5,6 (Figure 5.3) were synthesized starting from commercially 

available 2-(diphenylphosphino)-benzoic acid 2a and L-serine methyl ester 

hydrochloride (H-L-Ser-OMe) 3, followed by oxazoline ring formation in the presence 

of Burgess’s reagent (Route A). An alternative synthetic route was also employed, 

starting from commercially available 2-iodo-benzoic acid 2b and H-L-Ser-OMe (Route 

B), followed by oxazoline ring formation and palladium-catalyzed P-C cross coupling 

reaction with diphenylphosphine,[270] according to Scheme 3.5. 

 
 

Figure 5.3. Phosphinooxazolines L5-6. 
 

Route A 
 
Preparation of (S)-N-(2-Hydroxy-1-carboxymethyl-ethyl)-2-(diphenylphosphino)-

benzamide (4). To a stirred solution of 2-(diphenylphosphane)benzoic acid 2a (1.5 g, 

4.9 mmol, 1.1 equiv) and L-serine methyl ester hydrochloride 3 (0.693 g, 4.45 mmol) in 

CH2Cl2 (40 mL) were added TEA (0.68 mL, 4.9 mmol, 1.1 equiv) and EDC (0.94 g, 4.9 

mmol, 1.1 equiv). The reaction mixture was stirred for 4 h at r.t., until the starting 

material was consumed according to TLC (EA/n-hex 1:1). The mixture was diluted with 

100 ml CH2Cl2, washed with 5% NaHCO3 (50 mL), 1 M HCl (50 mL) and brine (2 × 50 

mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The product 

was chromatographed on silica gel eluting with EA/n-hex 1:1 to yield the amide 4 (1.6 

g, 3.92 mmol, 80%) as a white, amorphous solid. 1H NMR (500 MHz; CDCl3) δ 7.65 

(dd, J = 7.4, 3.7 Hz, 1H), 7.42-7.29 (m, 12H), 7.01 (dd, J = 7.6, 4.3 Hz, 1H), 6.87 (bd, J 

= 7.0, 1H), 4.71 (m, 1H), 3.88 (m, 2H), 3.74 (s, 3H), 2.82 (bs, 1H). 13C NMR (126 

MHz; CDCl3) δ 170.62, 168.88, 140.79 (d, JC,P = 25.3 Hz), 136.38 (d, JC,P = 18.9 Hz), 

136.31 (d, JC,P = 19.1 Hz), 135.58 (d, JC,P = 18.3 Hz), 134.23, 133.98, 133.82, 133.66, 

130.52, 129.14, 129.03, 128.97, 128.79, 128.74, 128.66, 128.61, 127.87, 127.83, 62.86, 

55.35, 52.73. 31P NMR (202 MHz; CDCl3) δ -10.51. FAB MS: m/z 408.1 [M]+ (calcd 
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for [C23H22NO4P]+ 408.13). 

Preparation of (S)-Methyl-2-(2-diphenylphosphino-phenyl)-4,5-dihydrooxazolo-4-

carboxylate (L5). To a stirred solution of 4 (1.0 g, 2.5 mmol) in dry THF (20 mL) was 

added (methoxycarbonylsulfamoyl)triethylammonium hydroxide, inner salt[313] 

(Burgess’ reagent, 0.703 g, 2.95 mmol, 1.2 equiv). After being refluxed for 4 hours 

(TLC control:  EA/n-hex 3:7), the reaction mixture was allowed to cool down to room 

temperature and diluted with 200 mL EA. The resulting solution was washed with water 

(2 × 100 mL) and brine (100 mL), and dried over Na2SO4. Removal of the solvent under 

reduced pressure afforded the crude product as brownish oil. Purification by flash  

chromatography (elution with EA/n-hex 3:7, column preconditioned with the eluent 

containing 1% TEA) gave phosphinooxazoline L5 as colorless oil (0.401 g, 1.13 mmol, 

42%). 1H NMR (500 MHz; CDCl3) δ 7.92 (ddd, J = 7.5, 3.5, 1.5 Hz, 1H), 7.36-7.30 (m, 

12H), 6.91 (ddd, J = 7.6, 4.3, 1.0 Hz, 1H), 4.69 (dd, J = 10.6, 8.2 Hz, 1H), 4.38 (t, J = 

8.4 Hz, 1H), 4.26 (dd, J = 10.5, 8.6 Hz, 1H), 3.68 (s, 3H). 13C NMR (126 MHz; CDCl3) 

δ 171.08, 166.45, 139.30 (d, JC,P = 25.9 Hz), 137.69 (d, JC,P = 11.9 Hz), 137.50 (d, JC,P 

= 10.4 Hz), 134.28, 134.11, 134.02, 133.85, 133.67 (d, JC,P = 1.9 Hz), 130.95 (d, JC,P = 

19.0 Hz), 130.94, 130.36 (d, JC,P = 2.8 Hz), 128.74, 128.61, 128.52, 128.46, 128.41, 

128.35, 128.00, 69.10, 68.45, 52.50. 31P NMR (202 MHz; CDCl3) δ -4.80. EI MS: m/z 

389.0 [M]+ (calcd for [C23H20NO3P]+ 389.12). 

Preparation of (S)-2-(2-diphenylphosphino-phenyl)-4,5-dihydrooxazolo-4-

carboxylic acid sodium salt (L6). Compound L5 (0.35 g, 0.90 mmol) was stirred in a 

0.5 M solution of NaOH (3 mL) 6 hours at r.t.  The reaction mixture was diluted with 

water (3 mL) and the product was precipitated by slow addition of acetone. After 

filtration and drying under vacuum, 0.34 g of the sodium salt L6 was recovered (0.85 

mmol, 95%, white solid). 1H NMR (500 MHz; D2O) δ 7.66 (dd, J = 7.4, 3.0 Hz, 1H), 

7.10 (t, J = 7.5 Hz, 1H), 6.98-6.78 (m, 10H), 6.70 (t, J = 7.5 Hz, 1H), 6.55-6.50 (m, 

1H), 4.17-4.11 (m, 1H), 3.97 (t, J = 8.3 Hz, 1H), 3.88-3.81 (m, 1H). 13C NMR (126 

MHz; D2O) δ 178.16, 166.89, 137.24 (d, JC,P = 19.7 Hz), 136.11 (d, JC,P = 7.9 Hz), 

135.87 (d, JC,P = 7.6 Hz), 133.88, 133.75, 133.72, 133.59, 133.15, 131.73, 131.39, 

131.23, 130.91, 130.24, 129.06, 128.73, 128.61, 128.59, 128.56, 71.20, 69.56. 31P NMR 

(202 MHz; D2O) δ -6.57. ESI MS: m/z 374.2 [M-Na]- (calcd for [C22H17NO3P]- 

374.10). Acidification results in oxazoline ring opening.[271] 
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Route B 

 

Preparation of (S)-N-(2-Hydroxy-1-carboxymethyl-ethyl)-2-iodo-benzamide (5). To 

a stirred solution of 2-iodo-benzoic acid 2b (1.5 g, 6.05 mmol, 1.1 equiv) and L-serine 

methyl ester hydrochloride 3 (0.856 g, 5.50 mmol) in CH2Cl2 (40 mL) were added TEA 

(0.84 mL, 6.05 mmol, 1.1 equiv) and EDC (1.16 g, 6.05 mmol, 1.1 equiv). The reaction 

mixture was stirred 2 h at r.t., until the starting material was consumed according to 

TLC (EA/n-hex 3:7). The mixture was diluted with 100 ml CH2Cl2, washed with 5% 

NaHCO3 (50 mL), 1 M HCl (50 mL) and brine (2 × 50 mL), dried over Na2SO4, filtered 

and concentrated under reduced pressure. The product was chromatographed on silica 

gel eluting with EA/n-hex 3:7 to yield the amide 5 (1.8 g, 5.16 mmol, 93%) as a white, 

amorphous solid. 1H NMR (300 MHz; CDCl3) δ 7.87 (m, 1H), 7.46-7.36 (m, 2H), 7.23 

(ddd, J = 8.0, 7.2, 1.9 Hz, 1H), 6.77 (bd, 1H), 4.86 (td, J = 7.2, 3.4, 1H), 4.11 (d, J = 

3.2, 2H), 3.83 (s, 3H), 2.51 (bs, 1H). 13C NMR (126 MHz; CDCl3) δ 170.52, 169.31, 

144.18, 139.93, 131.49, 128.37, 128.24, 92.41, 63.11, 55.13, 52.90. FAB MS: m/z 349.9 

[M]+ (calcd for [C11H12INO4]+ 349.98). 

Preparation of (S)-Methyl-2-(2-iodo-phenyl)-4,5-dihydrooxazolo-4-carboxylate (6). 

To a stirred solution of 5 (1.5 g, 4.3 mmol) in dry THF (25 mL) was added 

(methoxycarbonylsulfamoyl)triethylammonium hydroxide, inner salt (Burgess’ reagent, 

1.23 g, 5.16 mmol, 1.2 equiv). After being refluxed for 4 hours (TLC control:  EA/n-hex 

1:4), the reaction mixture was allowed to cool down to room temperature and diluted 

with 200 mL EA. The resulting solution was washed with water (2 × 100 mL) and brine 

(100 mL), and dried over Na2SO4. Removal of the solvent under reduced pressure 

afforded the crude product as brownish oil. Purification by flash  chromatography 

(elution with EA/n-hex 1:4, column preconditioned with the eluent containing 1% TEA) 

gave oxazoline 6 as colorless oil (0.852 g, 1.13 mmol, 60%). 1H NMR (300 MHz; 

CDCl3) δ 7.93 (dd, J = 8.0, 1.2 Hz, 1H), 7.66 (dd, J = 7.7, 1.7 Hz 1H), 7.38 (dt, J = 7.6, 

7.6, 1.2 Hz, 1H), 7.09-7.15 (m, 1H), 5.00 (dd, J = 10.6 Hz, 8.0 Hz, 1H), 4.62 (dd, J = 

10.6, 8.8 Hz, 1H), 3.83 (s, 3H). 13C NMR (126 MHz; CDCl3) δ 171.22, 166.87, 140.49, 

132.79, 132.01, 131.02, 127.78, 94.49, 69.79, 68.67, 52.72. EI MS: m/z 331.0 [M]+ 

(calcd for [C11H10INO3]+ 330.97). 

Preparation of (S)-Methyl-2-(2-diphenylphosphino-phenyl)-4,5-dihydrooxazolo-4-
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carboxylate (L5). In a Schlenk flask, 6 (800 mg, 2.42 mmol), dry DMF (4 mL) and 

TEA (370 µL, 2.66 mmol, 1.1 equiv) were charged together and the resulting solution 

degassed. After addition of diphenylphosphine 7 (500 µL, 2.90 mmol, 1.2 equiv), the 

solution was heated up to 80°C. A solution of Pd(OAc)2 (10.87 mg, 48.4 µmol) in 2 mL 

DMF was separately prepared and degassed. 1 mL from this solution (1 mol% final 

concentration of Pd catalyst) was added to the reaction mixture. The deep purple 

solution was further heated at 80°C until completion (monitored by TLC: EA/n-hex 3:7; 

4 h). The reaction mixture was allowed to cool down at room temperature and diluted 

with 100 mL EA. The resulting solution was washed with brine (2 x 50 mL), the 

organic phase transferred via a stainless steel cannula in a Schlenk flask, and dried over 

Na2SO4. The solvent was removed under vacuum, and the residue loaded onto a 

silicagel column (elution with EA/n-hex 3:7, column preconditioned with the eluent 

containing 1% TEA) to obtain phosphinooxazoline L5 a colorless oil (1.77 mmol, 688 

mg, 73%).  

5.2.3 Synthesis of Palladium(II)- and Platinum(II)-Phosphine 

Complexes 

 
Dichlorobis[(4-carboxphenyl)diphenylphosphine]-palladium(II) (8). Reaction of L1 

(49.0 mg, 0.16 mmol, 2.0 equiv) with PdCl2(PhCN)2 (30.7 mg, 0.08 mmol) in 4 mL 

acetonitrile, overnight, at room temperature, gave a yellow powder. The solid was 

filtered, washed with diethylether and dried, yielding 46.0 mg (0.06 mmol, 73%) 

Pd(L1)2Cl2 complex 8. 1H NMR (300 MHz; DMSO-d6) δ 13.71 (bs, 2H), 7.99-7.97 (d, 

4H), 7.76-7.31 (m, 24H). 31P NMR (122 MHz; DMSO-d6) δ 24.58.  

Dichlorobis[(4-carboxphenyl)diphenylphosphine]-platinum(II) (9). The platinum 

complex was synthesized according to published procedure,[314] using [Pt(cod)Cl]2 and 

monophosphine L1. 1H NMR (300 MHz; CD3OD) δ 7.80-7.73 (bd, 4H), 7.60-7.57 (m, 

8H), 7.47-7.40 (m, 8H), 7.32-7.29 (m, 8H). 31P NMR (122 MHz; CD3OD) δ 14.34 

(satellite due to 34% 195Pt, JPt,P = 1852.2 Hz). 

A similar procedure was used to prepare Pt(L1)2Cl2 complex 9 in 9:1 acetonitrile/H2O. 

[Pt(cod)Cl]2 (29.9 mg, 0.08 mmol) was dissolved in 0.6 ml acetonitrile and then treated 

with 3.4 mL aqueous solution (1:0.7 acetonitirile/100 mM TEAA in 80% acetonitrile 
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(buffer B)) of L1 (98.0 mg, 0.32 mmol, 4.0 equiv) overnight, at room temperature, until 

a yellow precipitate was formed. The mixture was filtered, the resulting pale yellow 

solid washed with diethylether and dried, yielding 82.5 mg (0.10 mmol, 62%) 

Pt(L1)2Cl2 complex 9. 1H NMR (300 MHz; DMSO-d6) δ 8.04-6.55 (m, aromatic). 31P 

NMR (122 MHz; DMSO-d6) δ 18.44.  

5.2.4 Synthesis of Platinum(II)-, Palladium(II)- and Rhodium(I)-

PYRPHOS Complexes 

 
Dichlorobis[(R,R)-N-(4-carboxylbutanoyl)-3,4-bis(diphenylphosphino)pyrrolidine]-

palladium(II) (10). To a solution of Pd(PhCN)Cl2 (38.4 mg, 0.1 mmol) in 

dichloromethane (2 mL), under argon, was added solid PYRPHOS L2 (55.3 mg, 0.1 

mmol) (1.0 equiv bisphoshine unit per Rh). The resulting yellow-orange solution was 

stirred at room temperature for 18 h. After filtration over Celite (2 cm), the solution was 

concentrated to 0.5 mL under reduced pressure. Upon addition of diethyl ether, an 

orange solid precipitated which was then filtered, washed with diethyl ether, and dried 

under vacuum (10: yield 78%, 56 mg, 0.07 mmol). 1H NMR (250 MHz; DMSO-d6) δ 

7.96-7.48 (m, 20H), 3.46-3.31 (m, 4H), 2.90 (m, 1H), 2.65 (m, 1H), 2.12-1.88 (m, 4H), 

1.52 (m, 2H). 31P NMR (101 MHz; DMSO-d6) δ 42.45. 

Dichlorobis[(R,R)-N-(4-carboxylbutanoyl)-3,4-bis(diphenylphosphino)pyrrolidine]-

platinum(II) (11). To a solution of [Pt(cod)Cl]2 (37.4 mg, 0.10 mmol) in 

dicholoromethane (2 mL), under argon, was added solid PYRPHOS L2 (110.6 mg, 0.20 

mmol). The resulting yellow mixture was stirred at room temperature for 18 h and then 

passed through Celite (2 cm). The solvent was partially removed under reduced pressure 

and an identical amount of diethyl ether was added. The resulting yellow solid was 

filtered, washed with ether and dried under vacuum (11: yield 83%, 68 mg, 0.08 mol). 
1H NMR (250 MHz; CD3OD) δ 7.77-7.39 (m, 20H), 3.61-3.39 (m, 4H), 2.88 (m, 1H), 

2.68 (m, 1H), 2.09-1.89 (m, 4H), 1.61-1.46 (m, 2H). 31P NMR (101 MHz; CD3OD) δ 

26.38 (satellite JPt,P = 1162.5 Hz). 

Dichlorobis[(R,R)-N-(4-carboxylbutanoyl)-3,4-bis(diphenylphosphino)pyrrolidine]-

rhodium(I) (12). To a degassed solution of [Rh(cod)Cl]2 (24.6 mg, 0.05 mmol) in 

acetonitirile (1 mL) was added a solution of L2 (55.3 mg, 0.1 mmol, 1.0 equiv 
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bisphosphine unit per Rh) in degassed acetonitirile/water (6:4, 1 mL). The resulting 

solution was stirred overnight, at room temperature. An orange solid precipitated which 

was then filtered, washed with diethylether and dried, yielding 52.0 mg (0.07 mmol, 

72%) Rh(L2)2Cl2 complex 12. 1H NMR (250 MHz; CD3OD) δ 7.66-7.21 (m, 20H), 

3.43-3.38 (m, 4H), 2.82 (t, 1H), 2.64 (t, 1h), 2.08-1.91 (m, 4H), 1.60-1.54 (m, 2H). 31P 

NMR (101 MHz; CD3OD) δ 38.16 (m, 1P), 36.84 (m, 1P). 

[(Bicyclo[2.2.1]hepta-2,5-diene)-[(R,R)-N-(4-carboxylbutanoyl)-3,4-bis(diphenyl-

phosphino)pyrrolidine]-rhodium(I) (13). [Rh(nbd)Cl]2 (20.8 mg, 45.2 µmol) and 

AgBF4 (17.6 mg, 90.3 µmol, 2.0 equiv) were dissolved in freshly degassed acetone (5.5 

mL) and stirred for 45 min at room temperature. The precipitated AgCl was filtered off 

(G4) and the filtrate was immediately degassed. To the resulting yellow solution was 

added solid PYRPHOS L2 (50.0 mg, 90.3 µmol, 2.0 equiv). The solution turned 

immediately deep orange. After stirring for 2 h at room temperature, the mixture was 

concentrated under reduced pressure and treated with diethyl ether until weak turbidity 

appeared. After overnight storage at -20°C, an orange solid was formed. The precipitate 

was filtered, washed with ether, and dried under vacuum. The desired [Rh(nbd)L2]+BF4
- 

complex 13 was obtained as yellow-orange powder, in 72% yield (60 mg, 71 µmol). 1H 

NMR (300 MHz; Acetone-d6) δ 10.43 (bs, 1H), 8.07-7.24 (m, 20H), 5.66 (bs, 1H, nbd), 

5.11 (bs, 1H, nbd), 4.22-3.86 (m, 2H, nbd), 3.40 (dd, 4H), 3.05 (bs, 1H), 2.83 (bs, 2H, 

nbd), 2.61 (bs, 1H), 2.25-2.18 (m, 4H), 1.95-1.64 (m, 2H), 1.19 (m, 2H, nbd). 31P NMR 

(122 MHz; Acetone-d6) δ 36.92 (m, 1P), 35.63 (m, 1P). ESI MS (sample dissolved in 

acetonitrile): m/z 738.15 [M]+ (calcd for Rh(L2)(acetonitrile)2
+ [C37H39N3O3P2Rh]+ 

738.16). 

5.2.5 Synthesis of Rhodium(I)- and Iridium(I)-PHOX Complexes 
 

[(Bicyclo[2.2.1]hepta-2,5-diene)-[(S)-methyl-2-(2-diphenylphosphino-phenyl)-4,5-

dihydrooxazolo-4-carboxylate]rhodium(I)]-tetrafluoroborate (14). In a Schlenk 

flask (under argon), 2,5-norbornadiene-rhodium(I) chloride dimer, [Rh(nbd)Cl]2 

(115.3 mg, 0.25 mmol), was dissolved in degassed acetone (20 mL). After addition of 

AgBF4 (97.84 mg, 0.5 mmol, 2.0 equiv), the mixture was stirred at room temperature for 

1 hour and then AgCl was filtered off. The resulting solution of [Rh(nbd)Solv2]+BF4
- 
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was immediately degassed. Separately, PHOX ligand L5 (101 mg, 0.26 mmol, 1.04 

equiv) was dissolved in degassed acetone (2 mL) and pre-formed [Rh(nbd)Solv2]+BF4
- 

in acetone (10 mL, 0.25 mmol) added. The resulting mixture was stirred at room 

temperature, for 14 hours, and then concentrated to small volume under reduced 

pressure.  
 

 
Figure 5.4. Phosphinooxazoline-rhodium(I) and -iridium(I) complexes. 
 
Addition of diethyl ether resulted in precipitation of an orange solid that was filtered in 

air, without protection against oxygen, washed with ether and dried under vacuum, 

affording [Rh(nbd)L5]+BF4
-  complex 14 in 65% yield (95 mg, 0.16 mmol). 1H NMR 

(300 MHz; CDCl3) δ 8.20 (m, 1H), 7.83 (m, 1H), 7.34-7.63 (m, 11H), 7.12 (m, 1H), 

5.92 (bs, 1H, nbd), 5.73 (bd, 1H, nbd), 5.06 (t, 1H), 4.95 (m, 1H), 4.70 (m, 1H), 3.96 

(bs, 2H, nbd), 3.58 (bs, 1H, nbd), 3.44 (m, 1H, nbd), 1.50 (m, 2H, nbd). 31P NMR (122 

MHz; CDCl3) δ 31.91 (d, JP,Rh = 168.9 Hz). ESI MS: m/z 584.09 [M]+ (calcd for 

[C30H28NO3PRh]+ 584.09). 

[(1,5-cycloctadiene)-[(S)-methyl-2-(2-diphenylphosphino-phenyl)-4,5-dihydro-

oxazolo-4-carboxylate]iridium(I)]-tetrafluoroborate (15). Similar procedure as for 

the preparation of the complex 14: [Ir(cod)Cl]2 (215.3 mg, 0.32 mmol) and AgBF4 

(250.1 mg, 0.64 mmol, 2.0 equiv) dissolved together in acetone (28 mL), then stirring 

for 1 hour at room temperature. After filtration of AgCl, the resulting solution of 

[Rh(nbd)Solv2]+BF4
- (23 mL) was added to L5 (300 mg, 0.77 mmol, 1.2 equiv per 

iridium ion). The complex formation was carried out at room temperature, for 1 hour. 

The workup was performed as described (see complex 14), affording [Ir(cod)L5]+BF4
-  

complex 15 as red solid, in 78% yield (384.1 mg, 0.50 mmol). 1H NMR (500 MHz; 

DMSO-d6) δ 8.70-8.68 (m, 1H), 8.28-8.26 (m, 2H), 8.12-7.92 (m, 9H), 7.54-7.50 (m, 

2H),  5.60 (dd, J = 10.1, 4.1 Hz, 1H), 5.42 (dd, J = 9.3, 4.1 Hz, 1H), 5.24 (m, 1H), 3.97
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(s, 2H, cod), 3.75 (bs, cod), 2.92 (m, 4H, cod). 31P NMR (122 MHz; DMSO-d6) δ 14.95. 

General procedure for the in situ preparation of (phosphinooxazoline)iridium(I) 

complexes in 100% dioxane and 3:7 dioxane/H2O . Under argon atmosphere, 2.5 

µmol [Ir(cod]Cl]2 (6.7 mg) were added to a solution of  5.5 µmol phosphinooxazoline 

ligand (8.2 mg L4 or 8.5 mg L5, 2.2 equiv) in 0.5 ml degassed dioxane or 3:7 

dioxane/H2O mixture. The redish purple resulting solution was stirred for 30 min, at 

room temperature and then directly subjected to 31P NMR analysis. 

Phosphinooxazoline(L4)iridium (I) complex. 31P NMR (202 MHz) δ 10.27 (dioxane, 

10% CDCl3); 15.64 (3:7 dioxane/H2O, 10% D2O). 

Phosphinooxazoline(L5)iridium (I) complex. 31P NMR (202 MHz) δ 8.84 (dioxane, 

10% CDCl3); 15.16 (3:7 dioxane/H2O, 10% D2O). 

5.3 Oligonucleotides 

 

DNA and RNA sequences employed in this work for preparation of single and double-

stranded constructs carrying metal chelating moieties are shown in Table 5.1, in 5’ to 3’ 

orientation. Oligodeoxynucleotides ODN1-5 (19mer) and their complementary strands 

cDNA1-3 (19, 23, and 16mers) were prepared by standard automated solid-phase 

synthesis. Unmodified complementary 19mer sequences cDNA4 (ε = 195700 L·mol-

1·cm-1), cRNA1 (ε = 173 800 L·mol-1·cm-1), and cRNA (ε = 181900 L·mol-1·cm-1) were 

obtained from IBA in 1 µmol scale synthesis, as double HPLC purified solution. 
 
Table 5.1. Oligonucleotide sequences. 
ODN Sequence R 
ODN1a  H2N  
ODN1b 5'-GC AGT GAA GGCR TGA GCT CC-3' H2N  
ODN1c  H2N O

O2  
ODN2 5'-GC AGT GAA GGC TGA GCT CCT ACRC-3' H2N  
ODN3[a] 5'-GC AGT GAA GGC TGA GCT CCS CRC-3'  H2N  
ODN4a  H2N  
ODN4b 5'-GC AGC GAT AACR TAA GCG CT-3'  H2N  
ODN4c  H2N O

O2  
ODN5a[b] 5'-GC AGT GAA XXCR TXA GCT CC-3'  H2N  
ODN5b[b] 5'-GC AGT GAA XXCR TXA GCT CC-3'  H2N  
cDNA1 5'-GG AGC TCA GCC TTC ACT GC-3'  - 
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cDNA2 5'-GG AGC TCA CAA GTC CTT CAC TGC-3'  - 
cDNA3 5'-GG AGC TCC TTC ACT GC-3'  - 
cDNA4 5'-AG CGC TTA GTT ATC GCT GC-3'  - 
cRNA1 5'-GG AGC UCA GCC UUC UCA GC-3'  - 
cRNA 5'-AG CGC UUA GUU AUC GCU GC-3'  - 
[a] A decaethylene glycol spacer S was incorporated during solid phase synthesis. [b] X = 7-deaza-riboG 
 

5.3.1 Automated Solid-Phase Synthesis 
 

Solid-phase DNA synthesis was performed on an ExpediteTM 8909 automated 

synthesizer using the conventional phosphoramidite chemistry,[315] dC or dG (t-butyl-

phenoxyacetyl, TAC) controlled pore glass support (40 μmol/g, 500Å) and β-

cyanoethyl-phosphoramidites containing base-labile TAC-protecting groups (Proligo). 

The decaethyleneglycol phosphoramidite S was prepared in our lab.[250] 4-Triazolyl-

deoxyuridine phosphoramidite was purchased from Glen Research and 7-deaza-

guanosine phosphoramidite was obtained from ChemGenes. The exocyclic amine in 7-

deaza-guanosine phosphoramidite was protected with the standard iso-butyryl group. 

The 2’-hydroxyl group was protected as a t-butyldimethylsilylether. Standard reagents 

employed in DNA solid-phase synthesis (deblocking reagent - dichloroacetic acid in 

dichloromethane, activator - dicyanoimidazole, oxidizing reagent - iodine in THF/H2O, 

and capping reagent - t-butyl-phenoxyacetanhydride in acetonitrile), as well as 

acetonitrile (water content ≤10 ppm) were purchased from Proligo and Sigma Aldrich 

Fine Chemicals.  

Solid-phase synthesis of ODNs was performed on 1 µmol or 15 µmol scale synthesis, 

usually leaving the terminal 4,4’-dimethoxytrityl (DMT) group on. The 

phosphoramidites were used as 0.067 M (DNA monomers), and 0.1 M (RNA monomer) 

acetonitrile solutions. The standard protocols provided by Applied Biosystems were 

optimized (Tables 5.2 and 5.3).  
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Table 5.2. Protocol for 1 µmol scale solid-phase DNA synthesis (dA cycle).[a]  

Step Function Mode[b] Amount 
(pulse) 

Time 
(sec) 

Description 

Deblocking 
 

144 /*Index Fract. Coll.     
 0 /*Default             
38 /*Diverted Wsh A       
141 /*Trityl Mon. On/Off  
16 /*Dblk 
0 /*Default           
16 /*Dblk  
38 /*Diverted Wsh A 
141 /*Trityl Mon. On/Off  
38 /*Diverted Wsh A 
144 /*Index Fract. Coll.  

NA 
WAIT 
PULSE 
NA 
PULSE 
WAIT 
PULSE 
PULSE 
NA 
PULSE 
NA 

1 
0 

15 
1 

20 
0 

40 
60 
0 

20 
2 

0 
1.5 
0 
1 
0 

20 
40 
0 
1 
0 
0 

“Event out ON” 
“Wait” 
“Flush system with Wsh A” 
“START data collection” 
“Dblk to column” 
“Default” 
“Deblock” 
“Flush system with Wsh A” 
“STOP data collection” 
“Flush system with Wsh A” 
“Event out OFF” 

Coupling 
 

1 /*Wsh 
2 /*Act 
18 /*A + Act 
18 /*A + Act   
2 /*Act   
18 /*A + Act   
2 /*Act  
0 /*Default      
1 /*Wsh    
1 /*Wsh 

PULSE  
PULSE   
PULSE 
PULSE   
PULSE  
PULSE 
PULSE 
WAIT  
PULSE 
PULSE 

8 
5 
5 
3 
3 
2 
3 
0 
7 

21 

0 
0 
0 

24 
24 
16 
24 
20 
56 
0 

“Flush system with Wsh” 
“Flush system with Act” 
“Monomer + Act to column” 
“Couple monomer” 
“Couple monomer” 
“Couple monomer” 
“Couple monomer” 
 “Default” 
“Couple monomer” 
“Flush system with Wsh” 

Capping 
 

12 /*Wsh A 
13 /*Caps   
12 /*Wsh A 
12 /*Wsh A    

PULSE 
PULSE 
PULSE 
PULSE 

20 
8 
9 

21 

0 
0 

23 
0 

“Flush system with Wsh A” 
“Caps to column” 
“Cap” 
“Flush system with Wsh A” 

Oxidizing 
 

15 /*Ox    
0 /*Default 
12 /*Wsh A 

PULSE 
WAIT   
PULSE 

35 
0   

60 

0 
20 
0 

“Ox to column” 
“Default” 
“Flush system with Wsh A” 

Capping 
 

13 /*Caps 
12 /*Wsh A  

PULSE 
PULSE  

7 
45  

0 
0 

“Caps to column” 
“End of cycle wash” 

[a] Debloking reagent = dblk, acetonitrile = Wsh, WshA, activator = act, capping regents = Caps, oxidizer 
= Ox. [b] 1 PULSE = 16 µL. 
 
Table 5.3. Protocol for 15 µmol scale solid-phase DNA synthesis (dA cycle).[a] 

Step Function Mode[b] Amount 
(pulse) 

Time 
(sec) 

Description 

Deblocking 
 

144 /*Index Fract. Coll.     
 0 /*Default              
141 /*Trityl Mon. On/Off  
38 /*Diverted Wsh A    
16 /*Dblk 
0 /*Default           
16 /*Dblk  
0 /*Default 
38 /*Diverted Wsh A 
141 /*Trityl Mon. On/Off   
144 /*Index Fract. Coll.  
12 /* Wsh A 

NA 
WAIT 
NA 
PULSE 
PULSE 
WAIT 
PULSE 
WAIT 
PULSE 
NA 
NA 
PULSE 

1 
0 
1 

50 
500 

0 
500 

0 
50 
0 
2 

400 

0 
1.5 
1 
0 
0 

20 
0 

20 
0 
1 
0 
0 

“Event out ON” 
“Wait” 
“START data collection” 
“Flush system with Wsh A” 
“Dblk to column” 
“Default” 
“Dblk to column” 
“Default” 
“Flush system with Wsh A” 
“STOP data collection” 
“Event out OFF” 
“Flush system with Wsh A” 

Coupling 
 

1 /*Wsh 
2 /*Act 
41 /*Gas B 

PULSE  
PULSE   
PULSE 

40 
35 
1 

0 
0 

20 

“Flush system with Wsh” 
“Flush system with Act” 
“Gas B” 
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18 /*A + Act 
0 /*Default 
18 /*A + Act 
0 /*Default 
2 /*Act 
1 /*Wsh 
41 /*Gas B   
18 /*A + Act   
0 /*Default 
2 /*Act   
1 /*Wsh 

PULSE 
WAIT     
PULSE  
WAIT 
PULSE 
PULSE 
PULSE 
PULSE 
WAIT 
PULSE 
PULSE 

25 
0 

25 
0 

20 
40 
1 
8 
0 

20 
100 

0 
60 
0 

60 
30 
0 

20 
0 

60 
30 
0 

“Monomer + Act to column” 
“Couple monomer” 
“Monomer + Act to column” 
“Couple monomer” 
“Couple monomer” 
“Flush system with Wsh” 
“Gas B” 
“Monomer + Act to column” 
“Couple monomer” 
“Couple monomer” 
“Flush system with Wsh” 

Capping 
 

12 /*Wsh A 
13 /*Caps 
13 /*Caps   
12 /*Wsh A 
12 /*Wsh A    

PULSE 
PULSE 
PULSE 
PULSE 
PULSE 

100 
75 
25 
15 

100 

0 
0 

15 
40 
0 

“Flush system with Wsh A” 
“Caps to column” 
“Cap” 
“Cap” 
“Flush system with Wsh A” 

Oxidizing 
 

15 /*Ox    
0 /*Default 
12 /*Wsh A 

PULSE 
WAIT   
PULSE 

125 
0   

100 

0 
20 
0 

“Ox to column” 
“Default” 
“Flush system with Wsh A” 

Capping 
 

13 /*Caps 
12 /*Wsh A  

PULSE 
PULSE  

50 
340  

0 
0 

“Caps to column” 
“End of cycle wash” 

[a] Debloking reagent = dblk, acetonitrile = Wsh and WshA, argon = Gas B, activator = act, capping 
regents = Caps, oxidizer = Ox. [b] 1 PULSE = 16 µL. 

5.3.2 General Procedure for the Synthesis of Amino-Modified ODNs 
 

For the preparation of amino-modified oligonucleotides (ODN), the “convertible 

nucleoside approach”[255, 256] was adapted and optimized. 4-Triazolyl-deoxyuridine 

phosphoramidite was assembled at varying internal positions on DNA during automated 

solid phase synthesis, in combination with other non-standard phosphoramidite building 

blocks (e.g., a decaethyleneglycol spacer molecule S as for ODN3). Base-labile TAC (t-

butyl-phenoxyacetyl) protecting groups were used for all natural nucleoside monomers. 

Treatment of the fully protected, resin-bound ODN with1 mL aqueous solution of 

ethylenediamine (5 M) or 1,4-butanediamine (5 M) at room temperature for 4 h, 

afforded the one-pot cleavage from support, deprotection and conversion of the 4-

triazolyl-dU to different 4-alkylamino-dC. In the case of 1,13-diamino-4,7,10-

trioxatridecane, the treatment with 0.8 mL neat amine (4 h) was followed by additional 

stirring in the presence of 0.5 mL water (5 h). The cleaved products were filtered (0.22 

μm membrane filter) and the CPG washed with H2O (3 × 0.5 mL). The resulting 

fractions (~2.5 mL) were combined, and after CHCl3 extraction (3 × 1 mL) the DNA 

material was passed through a Sephadex G-25 NAP column (Amersham Biosciences) 
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for removal of remaining organic residues, using water as eluent.  The crude ODN was 

then purified by reversed-phase HPLC. Fractions containing the tritylated ODN were 

collected and lyophilized. The terminal DMT group was removed by treatment with 2% 

v/v TFA (1 mL) for 2 min at room temperature. After quenching the acid with NaHCO3, 

the ODNs were ethanol precipitated. Desalting on Sephadex G-25 column afforded pure 

fully detritylated ODNs (>95% purity), as confirmed by analytical reversed-phase 

HPLC. The amount of DNA was quantified by UV spectroscopy (λmax = 260 nm, 

εODN1a-c = 181300 L·mol-1·cm-1, εODN2 = 220600 L·mol-1·cm-1, εODN3 = 195700 L·mol-

1·cm-1, εODN4a-c = 186000 L·mol-1·cm-1), resulting in overall yields of 21-42%.  
 
Table 5.4. Isolated yields and MALDI-TOF analysis of ODN1-4. 

m/z[a] Entry Isolated yield 
(%) calcd obsd 

ODN1a 35 5921 5928 
ODN1b 42 5895 5898 
ODN1c 40 6055 6059 
ODN2 32 7120 7125 
ODN3 33 7024 7029 
ODN4a 25 5866 5856 
ODN4b 21 5894 5887 
ODN4c 22 6026 6019 
[a] ODN1a, ODN2 and ODN3 detected in negative mode ([M-H]-), ODN1b-c and ODN4a-c in positive 
mode ([M+H]+). 
 

5.3.3 General Procedure for the Synthesis of 7-deaza-riboG -

containing Amino-Modified ODNs  
 

Chimeric DNA sequences were synthesized using extended coupling times (10 min) for 

for more efficient incorporation of the 7-deaza-riboG monomer. The 7-deaza-riboG 

coupling cycle performed for 1 µmol scale synthesis is shown in Table 5.5. 

Deprotection, cleavage from solid-support and conversion of the triazolyl group were 

carried out by treatment with 1 mL aqueous solution of ethylenediamine (5 M) or 1,4-

butanediamine (5 M) at room temperature, overnight.  
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Table 5.5. Coupling cycle of 7-deaza-riboG used in 1 µmol scale DNA synthesis.  

Step Function Mode Amount 
(pulse) 

Time 
(sec) 

Description 

Deblocking 
 

144 /*Index Fract. Coll.     
 0 /*Default             
38 /*Diverted Wsh A       
141 /*Trityl Mon. On/Off  
16 /*Dblk 
0 /*Default           
16 /*Dblk  
38 /*Diverted Wsh A 
141 /*Trityl Mon. On/Off  
38 /*Diverted Wsh A 
144 /*Index Fract. Coll.  

NA 
WAIT 
PULSE 
NA 
PULSE 
WAIT 
PULSE 
PULSE 
NA 
PULSE 
NA 

1 
0 

15 
1 

20 
0 

40 
60 
0 

20 
2 

0 
1.5 
0 
1 
0 

20 
40 
0 
1 
0 
0 

“Event out ON” 
“Wait” 
“Flush system with Wsh A” 
“START data collection” 
“Dblk to column” 
“Default” 
“Deblock” 
“Flush system with Wsh A” 
“STOP data collection” 
“Flush system with Wsh A” 
“Event out OFF” 

Coupling[a] 
 

1 /*Wsh 
2 /*Act 
23 /*6 + Act 
23 /*6 + Act   
2 /*Act   
23 /*6 + Act   
2 /*Act  
0 /*Default      
1 /*Wsh    
1 /*Wsh 

PULSE  
PULSE   
PULSE 
PULSE   
PULSE  
PULSE 
PULSE 
WAIT  
PULSE 
PULSE 

8 
5 
5 
5 
8 
2 
3 
0 
7 

21 

0 
0 
0 

150 
150 
120 
120 
20 
40 
0 

“Flush system with Wsh” 
“Flush system with Act” 
“Monomer + Act to column” 
“Couple monomer” 
“Couple monomer” 
“Couple monomer” 
“Couple monomer” 
 “Default” 
“Couple monomer” 
“Flush system with Wsh” 

Capping 
 

12 /*Wsh A 
13 /*Caps   
12 /*Wsh A 
12 /*Wsh A    

PULSE 
PULSE 
PULSE 
PULSE 

20 
8 
9 

21 

0 
0 

23 
0 

“Flush system with Wsh A” 
“Caps to column” 
“Cap” 
“Flush system with Wsh A” 

Oxidizing 
 

15 /*Ox    
0 /*Default 
12 /*Wsh A 

PULSE 
WAIT   
PULSE 

35 
0   

60 

0 
20 
0 

“Ox to column” 
“Default” 
“Flush system with Wsh A” 

Capping 
 

13 /*Caps 
12 /*Wsh A  

PULSE 
PULSE  

7 
45  

0 
0 

“Caps to column” 
“End of cycle wash” 

[a] In the coupling step, 6 stands for 7-deaza-riboG monomer. 
 
The cleaved products were filtered (0.22 μm membrane filter) and the CPG washed with 

acetonitrile/ethanol/H2O 3:1:1 (3 × 0.5 mL). 

The resulting fractions (~2.5 mL) were combined and passed through a Sephadex G-25 

NAP-25 column for removal of remaining organic residues, using water as eluent. After 

lyophilization, the 2´-O-TBDMS was removed by treatment with 1 ml of 0.1 M 

tetrabutylammonium floride in THF for 24 h at room temperature. The solution of the 

crude oligomer was diluted with 1.5 ml water, desalted on a Sephadex G-25 NAP 

column, and purified by reversed-phase HPLC. Tritylated oligonucleotides were 

collected and lyophilized. The terminal DMT group was removed using the protocol 

previously described. The purity of the detritylated oligomers was confirmed by 

analytical reversed-phase HPLC. The amount of DNA was quantified by UV 
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spectroscopy (λmax = 260 nm, εODN5a,b = 181300 L·mol-1·cm-1), resulting in overall yields 

of 14% ODN5a and 5% ODN5b, respectively. The MALDI-TOF MS analysis (positive 

mode [M+H]+) of the isolated oligomers is shown in Table 5.6. 
 
Table 5.6. Isolated yields and MALDI-TOF analysis of ODN5a,b. 

[M+H]+ Entry Isolated yield 
(%) calcd obsd 

ODN5a 14 5945 5945 
ODN5b 5 5973 5980 
 

5.3.4 General Procedure for the Synthesis of Complementary DNA 
 

Unmodified ODNs were prepared by 1 µmol scale synthesis. Treatment of the fully 

protected, resin-bound ODN with 1 mL ammonium hydroxide 28% for 1 h at room 

temperature afforded the cleavage from solid-support and removal of the protection 

groups. The cleaved products were filtered (0.22 μm membrane filter) and the CPG 

washed with H2O (3 × 0.5 mL). The resulting fractions (~2.5 mL) were combined, and 

after CHCl3 extraction (3 × 1 mL) the DNA material was passed through a Sephadex G-

25 NAP column for removal of remaining organic residues, using water as eluent. The 

crude ODN was then purified by reversed-phased HPLC. Fractions containing the 

tritylated ODN were collected and lyophilized. The terminal DMT group was removed 

by treatment with 2% v/v TFA (1 mL) for 2 min at room temperature. After quenching 

the acid with NaHCO3, the ODNs were ethanol precipitated. Desalting on Sephadex G-

25 column afforded pure fully detritylated ODNs (>95% purity), as confirmed by 

analytical reversed-phase HPLC. The amount of DNA was quantified by UV 

spectroscopy (λmax = 260 nm, εcDNA1 = 170200 L·mol-1·cm-1, εcDNA2 = 211700 L·mol-

1·cm-1, εcDNA3 = 140700 L·mol-1·cm-1), resulting in overall yields of 20-37%.  
 
Table 5.7. Isolated yields and MALDI-TOF analysis of cDNA1-3. 

[M+H]+ Entry Isolated yield 
(%) calcd obsd 

cDNA1 20 5765 5767 
cDNA2 37 6986 6982 
cDNA3 25 4834 4835 
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5.4 Synthesis of DNA-Based Ligands  

5.4.1 Incorporation of Phosphite Moiety by DNA Solid-phase 

Synthesis 

 
General procedure for solid-phase synthesis of DNA-phosphite conjugates. 

Synthesis of modified oligodeoxynucleotides sODN1-3 (Table 5.8) carrying a terminal 

phosphite moiety (Scheme 3.2) was attempted by the phosphoramidite approach on the 

Expedite synthesizer, on 0.2 µmole scale synthesis, using nucleotide precursor 

phosphoramidites with standard protecting groups (acetyl for dG, benzoyl for dA and 

dC). Phosphoramidite P2 precursor (0.1 M solution in acetonitrile) was assembled at the 

5’ terminus on short DNA sequences, using a modified coupling protocol. The coupling 

time was extended and the standard dicyanoimidazole activator was replaced with 5-

benzylthio-(1H)-tetrazole (BTT, 0.25 M solution in acetonitrile), and the oxidation step 

was omitted. Final deblocking was not necessary in this case.  
 
Table 5.8. 5’-Functionalization of ODN1-3 with phosphoramidite moieties.[a] 

ODN Sequence Coupling of R moiety to 
the 5’-end 

Spacer S 

 
O

O
P

 

 
- 

 
 
 
sODN1 
 

 

 
 
 
5'-TA CGC-3'  
 

P
O

O

 

- 

 
sODN2 

 
5'-STA CGC-3'  

P
O

O

 

O
O

10  

 
sODN3 

 
5'-TSA CGC-3'  

P
O

O

 

O
O

10  

[a] Attempted solid-phase coupling of P1 or P2 to oligonucleotides didn’t lead to the desired conjugates, 
and only 5’-OH unmodified sODN1-3 were obtained. sODN1-P2 could be isolated as DNA-phosphate 
conjugate sODN1-P2(O).  



5.4 Synthesis of DNA-based Ligands  145   

After the synthesis, the oligonucleotides were deprotected and cleaved from the solid 

support by treatment with 1 mL of 28% aqueous ammonia overnight at room 

temperature. 
 
Table 5.9. Isolated yields and MALDI-TOF analysis of sODN1-3.  

sODN[a] sODN-P2(O)[b] 
[M-H]- 

Entry Isolated yield 
(%) 

calcd obsd calcd obsd 
sODN1 43 1675 1462 1691 1710 
sODN2 28 2195 1982 - - 
sODN3 46 2195 1982 - - 
[a] Conjugates sODN1-3 were isolated as 5’-OH unmodified oligonucleotides, when no oxidation was 
performed after P2 coupling during solid phase synthesis. [b] sODN(O) was obtained by carrying out 
complete coupling cycle (including oxidation) for P2. Isolated yield refers to the DNA product obtained 
after solid phase synthesis and HPLC purification. 
 

The cleaved products were filtered (0.22 μm membrane filter) and the CPG washed with 

H2O (3 × 0.5 mL). The ammonia solution was removed by evaporation in a speedvac.  

The crude oligonucleotide was redissolved in 0.5 mL H2O and purified by reversed-

phase HPLC. The fractions containing the major peak were collected and lyophilized. 

The isolated DNA products corresponded to the 5’-unmodified oligonucleotides, as 

confirmed by MALDI-TOF mass spectrometry. The amount of DNA was quantified by 

UV spectroscopy (λmax = 260 nm, εsODN1-3 = 45900 L·mol-1·cm-1), resulting in overall 

yields of 28-46% of sODN1-3. 

Synthesis of DNA-appended biphenyl-phosphate ester conjugate sODN1-P2(O). 

The incorporation of P2 residue at the 5’-end sODN1 by solid phase synthesis was re-

attempted by carrying out the complete P2 coupling cycle, including oxidation step. 

After ammonia deprotection and cleavage from the solid support, the crude 

oligonucleotide was purified by reversed-phase HPLC. The fractions containing the 

major peak were collected, lyophilized, resuspended in H2O, and analyzed by MALDI-

TOF mass spectrometry. The isolated DNA conjugate corresponded to 5’-biphenyl-

phosphotriester-containing oligonucleotide sODN1-P2(O) (see Table 5.9). The amount 

of DNA was quantified by UV spectroscopy (λmax = 260 nm, εsODN1 = 45900 L·mol-

1·cm-1), resulting in an overall yield of 48%.  

Attempted solid-phase synthesis of sODN1-P2-rhodium(I) complex. DNA-phosphite 

oligonucleotide sODN1-P2 was prepared by standard solid-phase synthesis on a 0.2 

µmol scale as previously described. The phosphoramidite P2 was assembled on the 

solid support-bound DNA by automated coupling, no oxidation being performed. The 
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DNA-coated beads were transferred from the synthesis column to an Eppendorf tube 

and a solution of [Rh(cod)Cl]2 (9.8 mg, 20.0 nmol) in acetonitrile (0.2 mL) was added. 

After vigorously mixing the resulting suspension for 30 minutes at room temperature, 

the solution of metal complex was removed, the resin washed with acetonitrile (3 × 0.5 

mL) and dried. The beads-supported DNA was then combined with 1.0 mL 28% 

ammonium hydroxide. After 30 minutes of incubation at 65°C, an aliquot (50 µL) from 

the deprotection mixture was removed, cooled down to room temperature, filtered and 

analyzed by reversed-phase HPLC. Beside several peaks eluting in the time range of the 

unmodified DNA (tR = 18.0 min) and high-eluting organic residues (tR > 36.0min) 

released in the deprotection step, a distinct DNA peak was observed (tR = 27.8 min). 

The fraction corresponding to this DNA product was collected and liophylized. 

MALDI-TOF mass spectrometry confirmed the formation of the sODN1-P2 conjugate 

(calc. [M-H]- 1675, found 1685). 

 

5.4.2 Synthesis of DNA-Phosphine Conjugates 
 

General procedure for the functionalization of amino-ODNs with phosphine 

ligands. The phosphine derivatives L1-3 and L6 (1.0 equiv) were converted to the 

corresponding activated esters in degassed DMF in 45-60 min at room temperature by 

reaction with NHS (1.0 equiv) in the presence of EDC (1.2 equiv). In parallel, ODN1a-

c, ODN2,3, ODN4a,b, and ODN5a were dissolved in NaHCO3 (0.1 M, pH 8.3) and the 

resulting solutions were degassed. The coupling reactions were performed by 

combining the solutions of the in situ generated NHS-ester (200-600 equiv) and the 

amino-modified DNA (final DMF/H2O ratio 2:1 v/v) to achieve final ODN1a, ODN2, 

and ODN3 concentration of 115, 103, and 104 μM, respectively, for coupling with L1 

(22 mM), and final ODN1a concentration of 35, 45, and 45 μM, respectively, for 

coupling with L2, L3 and L6 (17 mM in all cases).  
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Table 5.10. Post-synthetic functionalization of amino-modified ODNs with phosphines L1-3 and 
phosphinooxazoline L6. 
ODN Sequence Ligand Linker R 
ODN6 5'-GC AGT GAA GGCR TGA GCT CC-3' L1 H2N  
ODN7 5'-GC AGT GAA GGC TGA GCT CCT ACRC-3' L1 H2N  
ODN8[a] 5'-GC AGT GAA GGC TGA GCT CCS CRC-3'  L1 H2N  
ODN9 5'-GC AGT GAA GGCR TGA GCT CC-3' L2 H2N  
ODN10 5'-GC AGT GAA GGCR TGA GCT CC-3' L3 H2N  
ODN11a 5'-GC AGT GAA GGCR TGA GCT CC-3' L6 H2N  
ODN11b 5'-GC AGT GAA GGCR TGA GCT CC-3' L6 H2N  
ODN11c 5'-GC AGT GAA GGCR TGA GCT CC-3' L6 H2N O

O2  
ODN12a 5'-GC AGC GAT AACR TAA GCG CT-3'  L6 H2N  
ODN12b 5'-GC AGC GAT AACR TAA GCG CT-3'  L6 H2N  
ODN12c 5'-GC AGC GAT AACR TAA GCG CT-3'  L6 H2N O

O2  
ODN13[b] 5'-GC AGT GAA XXCR TXA GCT CC-3'  L6 H2N  
[a] S = decaethylene glycol spacer; [b] X = 7-deaza-riboG 
 

The coupling of L6 with ODN1b,c, ODN4a-c, and ODN5a was carried out using 33.3 

mM ligand and 56 (ODN1b), 53 (ODN1c), 54 (ODN4a), 39 (ODN4b), 50 (ODN4c) 

and 80 (ODN5a) µM, respectively, oligonucleotide final concentrations. After stirring 

overnight, at room temperature, the reaction mixtures were diluted with water, extracted 

with chloroform (3 × 2 mL), and the crude products isolated by ethanol precipitation. 

The phosphine-DNA conjugates ODN6-13 were purified by reversed-phase HPLC, 

lyophilized, redissolved in degassed water and used immediately in catalytic 

experiments. Conversions were estimated by comparing the amount of conjugated 

oligonucleotide to the amount of unreacted ODN1-5 as shown in the chromatograms 

(52-98%) and isolated yields were calculated based on UV measurements (38-78%). 

ε260 for ODN6-13 were approximated to the ones of the corresponding starting 

materials. 
 
Table 5.11. Isolated yields and MALDI-TOF MS analysis of ODN6-11a. 

ODN(O)n
[a] ODN(O)(S) ODN(S)n

[a] 
m/z 

 
Entry 

 
Isolated yield 

[%] calcd obsd calcd obsd calcd obsd 
ODN6 60 6228 6234 - - 6244 6249 
ODN7 65 7424 7430 - - 7440 7447 
ODN8 68 7328 7332 - - 7344 7350 
ODN9 74 6489 6491 6508 6510 6524 6528 
ODN10 38 6605 6610 6621 6626 6637 6637 
ODN11a 78 6297 6296 - - 6313 6314 
[a] n = 2 for ODN9,10, and n = 1 for ODN6-8 and ODN11a. [b] ODN6-9 and ODN11a detected in 
negative mode ([M-H]-), ODN10 in positive mode ([M+H]+). 
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MALDI-TOF mass spectrometry of the HPLC purified ODN6-11a, however, gave in 

general only the mass of the oxidized products ODN6-8(O), ODN9,10(O)2, and 

ODN11a(O). While MALDI mass spectrometry was found unsuitable for the direct 

detection of phosphine conjugates, ESI-MS gave in the only attempted case (ODN9) the 

main peak corresponding to the non-oxidized phosphine. 

Sulphide-protection of the DNA-phosphine conjugates. To prove the identitity of the 

HPLC high-eluting oligonucleotides as phosphine-DNA conjugates ODN6-11a, the 

HPLC eluate was collected and immediately treated with elemental sulfur. After 

incubating the resulting mixture for 1h at room temperature, the solution was filtered 

(0.22 μm membrane filter), lyophilized and redissolved in water (20 µL), yielding the 

air-stable phosphine sulfide analogues ODN6-8(S), ODN9,10(S)2, and ODN11a(S) as 

confirmed by MALDI-TOF MS (Table 5.11).  

In case of bisphoshines L2 and L3 coupling, HPLC chromatograms showed the 

formation of a second oligonucleotide peak (<10%), eluting earlier than the main 

product. The fractions containing these oligonucleotides were also isolated and reacted 

with sulfur. They corresponded to byroducts generated by partial oxidation and were 

characterized by MALDI mass spectrometry as monoxide-monosulfide (Table 5.11). 

5.4.3 Synthesis of DNA-Appended N,N-bis(2-picolyl)amine 

Conjugates  
 

Chelating nitrogen ligand derived from N,N-bis(2-picolyl)amine, namely (PyCH2)2N-

CH2-p-C6H4-COOH (bpa) (Figure 5.5), obtained from Dr. Srecko Kirin, Prof. Dr. Nils 

Metzler-Nolte,[268] was reacted with alkylamino-modified oligonucleotides (ODN1a, 

ODN2 and ODN3).  
 

 
Figure 5.5. (PyCH2)2N-CH2-p-C6H4-COOH Ligand. 
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Bpa (1.0 equiv) was first dissolved in DMF and activated with NHS (1.0 equiv) in the 

presence of EDC (1.2 equiv.), for 1 h, at room temeperature. The in situ generated 

active ester (100-250 equiv) was then directly added to an ODN solution in NaHCO3 

(100 mM, pH 8.3) to achieve final DMF/H2O ratio 2:1 v/v and DNA concentrations of 

56.4 (ODN1a), 46.3 (ODN2), and 119.7 µM (ODN3) respectively. The final 

concentration of bipyridine ligand was maintained in all cases 11.11 mM. After slow 

shaking for 16 h at room temperature, the coupling solution was mixed with an equal 

amount of formamide-loading buffer and analyzed by 18% polyacrylamide gel 

electrophoresis (Figure 3.8, Chapter 3.1.2.3). The coupling reaction proceeded to 

completion, leading to only one band with lower electrophoretic mobility compared 

with the amino-modified oligonucleotide, as observed by UV illumination (λ = 254 nm) 

of the gel (UV-Transilluminator CAMAC Reprostar II). 

 
Table 5.12. Sequences and MALDI-TOF analysis of ODN14-16. 

[M-H]- Entry Sequence 
calcd obsd 

 
ODN14 

5'-GC AGT GAA GGC TGA GCT CC-3'

NH
4

O Bpa

 

 
6235 

 
6242 

 
ODN15 

5'-GC AGT GAA GGC TGA GCT CCT ACC-3'

NH
4

O Bpa

 

 
7434 

 
7440 

 
ODN16[a] 

5'-GC AGT GAA GGC TGA GCT CCS CC-3'

NH
4

O Bpa

 

 
7338 

 
7341 

[a] S = decaethylene glycol spacer  
 

The bands were excised and the DNA recovered by elution with ammonium acetate (0.5 

M, 0.5 mL) overnight, at room temperature. After ethanol precipitation, the DNA 

conjugates ODN14-16 (25% isolated yield) were redissolved in water (50 µL) and 

analyzed by MALDI-TOF mass spectrometry (Table 5.12). 
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5.5 High-Pressure Liquid Chromatography 

5.5.1 Reversed-Phase HPLC Purification of Oligodeoxynucleotides 

 
Oligonucleotides purification was performed on reversed-phase HPLC. By purifying 

with the DMT group still attached at the 5’-terminus of the synthetic oligonucleotide, 

failure sequences that contain no DMT groups are weakly bound to the column and 

easily separated from the product which is more strongly retained and eluted later. The 

buffers used in reversed-phase HPLC technique are volatile and the purified product can 

be rapidly recovered by lyophilization of the volatile solvent. 

HPLC analyses were performed on an Agilent 1100 Series HPLC system equipped with 

an diode array detector using a Phenomenex® Luna 5 μm C18 column (4.6 × 250 mm) 

and eluting with a gradient of 100 mM triethylammonium acetate (TEAA) pH 7.0 

(buffer A) and 100 mM TEAA in 80% acetonitrile (buffer B) at 1 mL/min flow-rate. 

Preparative HPLC runs were carried out using Phenomenex® Luna 5 μm C18 column 

(15.0 × 250 mm) and eluting with a gradient of buffer A and buffer B, followed by a 

gradient of water and acetonitrile, at 6 mL/min flow-rate. 

Reversed-phase HPLC analysis of ODN1 conversion, deprotection and cleavage 

(DMT-on). Treatment of the DMT-on resin-bound ODN1a with a 5 M aqueous solution 

of diaminobutane was monitored by reversed-phase HPLC (Gradient: 3 min at 15% B, 

increase to 29% B over 11 min, isocratic for 29 min; detection at 260 nm). Reaction 

times longer than 4 hours did not improve the yields of deprotection, cleavage and 

conversion (see Figure 3.4, Chapter 3.1.2.1). 

Reversed-phase HPLC purification of amino-modified ODN1a-c, ODN2,3, 

ODN4a-c, ODN5a,b, and their complementary strands cDNA1-3 (DMT-on). 

Gradient: 3 min at 2% B, increase to 29% B over 8 min, isocratic for 7 min; change 

elution system to water / acetonitrile: change to 23% acetonitrile over 1min, increase 

from 23% acetonitrile to 30%  acetonitrile over 6 min, isocratic for 3 min; detection at 

260 nm; 6 mL/min flow-rate; 55°C. 

Characterization of ODN1-5, and cDNA1-3 (DMT-off). The purity of detritylated 

amino-modified oligonucleotides ODN1-5 and of their complementary, unmodified 

DNA sequences cDNA1-3 was confirmed by analytical HPLC, using a gradient of 
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buffer B from 1% to 25% within 40 min. The observed retention times are shown in 

Table 5.13. 

 
Table 5.13. Retention times of ODN1-5 and cODN1-3.  
ODN Retention time (DMT-on) 

[min] 
Retention time (DMT-off) 

[min] 
ODN1a 23.7 25.5 
ODN1b 23.5 24.7 
ODN1c 24.0 25.9 
ODN2 - 26.5 
ODN3 - 32.8 
ODN4a 23.7 24.8 
ODN4b 23.6 24.9 
ODN4c 23.5 26.4 
ODN5a 23.9 22.8 
ODN5b 24.1 22.9 
cDNA1 26.5 24.3 
cDNA2 26.4 25.1 
cDNA3 23.4 27.2 
 

Reversed-phase HPLC purification of phosphine and phosphinooxazoline-

functionalized ODN6-13. Gradients used in the HPLC purification were as follows:  

1) increase from 5% B to 15% B over 20 min, increase from 15% B to 25% B over 10 

min, increase from 25% B to 40% over 5 min, increase from 40% B to 100% B over 10 

min (ODN6-8);  

2) increase from 10% B to 62% B over 52 min (ODN9,10); 

3) increase from 1% B to 75% B over 40 min (ODN11-13); detection at 260 nm, 1 

mL/min flow-rate, 45°C column oven.  

Retention times of ODN6-13 and their oxidized species are reported in Table 5.14. 
 
Table 5.14. Retention times of phosphine- and phosphinooxazoline-DNA conjugates ODN6-11. 

Retention time [min] Entry 
ODN(O)2 ODN(O) ODN 

ODN6 - 34.4 39.0 
ODN7 - 35.1 39.1 
ODN8 - 35.7 39.2 
ODN9 22.9 30.4 37.5 
ODN10 32.2 43.5 50.7 
ODN11a - 20.3 27.9 
ODN11b - 18.3 24.6 
ODN11c - 23.1 32.2 
ODN12a - 19.3 26.2 
ODN12b - 18.3 27.6 
ODN12c - 25.4 31.4 
ODN13 - 21.7 29.0 
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Reversed-phase HPLC analysis of the attempted coupling reaction between P1 or 

P2 phosphoramidites and sODN1-3.  Gradient: increase from 1%B to 15% B over 20 

min, increase from 15% B to 40% B within 10 min; detection at 260 nm). 

 
Table 5.15. Retention times of sODN1-3. 

Retention time [min] Entry 
5’-HO-ODN sODN-P2(O)[a] 

sODN1 18.0 27.9 
sODN2 26.5 - 
sODN3 26.2 - 
[a] sODN1-P2 was isolated in the oxidized form. 

5.6 Mass Spectrometry Analysis of Oligonucleotides 

 

Conditions for MALDI-TOF MS analysis. Oligonucleotides were dissolved in water 

to a final concentration of 10 μM (commonly 100 pmol, 10 µL) and desalted by using 

C18ZipTips (Millipore Corporation, Bedford, MA, USA). The C18 resin was wetted 

using 50% aqueous acetonitrile solution (2 x 10 µL) and then equilibrated by washing 

with 0.1 M TEAA (3 x 10 µL). For binding of the oligonucleotide to the resin, the 

sample was aspirated and dispensed (approx. 5-10 times). The salts were removed by 

washing with 0.1 M TEAA. The desalted DNA was eluted by aspirating and dispensing 

about 5 times 5 µL 50% acteonitrile/water in a separate vial.   

The samples for analysis were prepared using the dried droplet method with the 

following matrix solutions: 1) 6-aza-2-thiothymine/diammonium hydrogen citrate in 1:2 

v/v water/acetonitrile (detection in negative mode); 2) 3-hydroxy-picolinic 

acid/diammonium hydrogen citrate in 1.2:1 v/v water/acetonitrile (detection in positive 

mode). 

Conditions for ESI MS analysis of ODN9. ESI mass spectra were recorded in the 

negative mode on a Bruker APEX IV Fourier-transform ion cyclotron resonance (FT-

ICR) mass spectrometer with a 7.05 T magnet and an Apollo electrospray (ESI) ion 

source equipped with an off-axis 70o stainless steel spray needle. Typically, 50 μM 

analyte solutions (ACN/H2O 1:1) were introduced into the ion source with a syringe 

pump (Cole-Parmers Instruments, Series 74900) at flow rates of 3 to 4 µL/min. Ion 

transfer into the first of three differential pump stages in the ion source occurred 

through a glass capillary with 0.5 mm inner diameter and nickel coatings at both ends. 
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Ionization parameters were adjusted as follows: capillary voltage: 4.1 kV; end plate

voltage 3.6 kV; capexit voltage: -280 V; skimmer voltages: -5 to -7.5 V; temperature of 

drying gas: 40 oC. Nitrogen was used as tir ssive (25 psi) and drying gas (5 psi). The 

ions were accumulated in the instruments n-hexapole for 1-1.5 s, introduced into the 

FT-ICR cell which was operated at pressures below 10-10 mbar, and detected by a 

standard excitation and detection sequence. For each measurement, up to 128 scans 

were averaged to improve the signal-to-noise ratio. 

5.7 5’-Radioactive Labelling of Oligonucleotides 

Synthetic oligonucleotides are labelled in phosphorylation reactions catalyzed by 

bacteriophage T4 polynucleotide kinase (PNK). The γ-phosphate is transferred from 

ATP to the free 5’-hydroxyl group of the target oligonucleotide, affording the 

radioactive labelling of DNA. Standard 5’-kinase labelling reaction included the DNA 

to be labelled, [γ-32P]-ATP, T4 PNK, and buffer.  
 
Table 5.16. Standard 5’-radioactive labelling of oligonucleotides. 

 Amount 
(pmol) 

Volume 
(µL) 

Observations 

DNA 6-7.5 2-3 From chemical synthesis 
10xBuffer  1.5 Fermentas 
γ-32P-ATP  5 3000 Ci/mmol, 10 mCi/mL (Amersham) 
T4-PNK  1 10 U/µL (Fermentas) 
H2O  to 15 µL  
 

After incubation at 37°C for 2 h, the labelled oligonucleotide was purified by 20% 

polyacrylamide gel electrophoresis, under denaturing conditions, using a sequencing gel 

apparatus. The reaction mixture was mixed with an equal volume of formamide-loading 

buffer and loaded to the gel. After electrophoresis, the gel was exposed to 

autoradiographic film. The gel band corresponding to the desired product was excised, 

transferred to an eppendorf tube and incubated with ammonium acetate (pH 7, 0.5 M, 

0.4 mL) overnight, at 37°C. The resulting solution containing the oligonucleotide was 

then filtered (spin filters, 0.22 μm cellulose acetate membrane, 3 min centrifugation at 

12000 rpm), and the labelled oligonucleotide isolated by ethanol precipitation. After 

rinsing with 70% ethanol, the DNA pellet was resuspeded in water (0.4 mL) and the 

incorporated radioactivity estimated by scintillation counter measurements.
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5.8 Analysis and Quantification of DNA 

5.8.1 Quantification of Oligonucleotides by UV Absorbance 
 

The nucleobases in DNA and RNA absorb light with a maximum absorbance of 260 

nm. Oligonucleotides were the most accurately and conveniently quantified, after 

synthesis, by measuring their absorbance at 260 nm in a spectrophotometer.  

The DNA samples were measured with a Shimadzu UV-160A UV-spectrophotometer, 

in quartz cuvettes (Quarzglas HELLMA) or with NanoDrop ND-100 Specrophotometer 

(PeqLab Biotechnologie GmbH) and blanked with the same solution used to dissolve 

the oligonucleotide (usually water). The absorbance of a DNA sample at 260 nm was 

used to calculate the DNA concentration when the extinction coefficient ε was known. 

The molar extinction coefficient describes the amount of absorbance at 260nm (A260) of 

1 mol·L-1 DNA solution measured in 1 cm path-length cuvette. This definition is 

derived from the Beer-Lambert law showed in the following equation: 

 

( ) lcIIA ⋅⋅== ε0log    Equation 5.1 

 

where A is the absorbance, I0 and I are the intensities of incident and transmitted light, 

respectively, c is the molar concentration of the oligonucleotide (mol·L-1), l is the length 

of the light path trough the sample (cm), and ε is the molar extinction coefficient of the 

molecule (L·mol-1·cm-1). 

The extinction coefficient is a physical constant that is unique for each DNA sequence, 

since each nucleotide constituent has a different absorbance at 260 nm. The extinction 

coefficient was calculated for each oligonucleotide using an equation that incorporates 

the contribution of each base (Equation 5.2): 

 

( ) ( ) ( ) ( )4.801.1205.72.15 TGCA +++=ε   Equation 5.2 

 

at pH 8, where A, C, G, T are the numbers of dAs, dCs, dG, and dTs, respectively, and 

the numbers in parantheses are the molar extinction coefficients for each nucleotide. 



5.8 Analysis and Quantification of DNA  155 

5.8.2 Analysis of DNA Duplexes by Thermal Melting Curves 
 

The stability of a DNA-DNA duplex was measured by thermal denaturation 

experiments on a UV-visible spectrophotometer, by recording the absorbance at 260 nm 

as a function of temperature. Heating a DNA sample results in a change in absorbance 

properties, which reflects a conformational change of the molecule in solution, and 

allows the determination of DNA secondary structure stability. Duplex denaturation 

leads to a hyperchromism of 15-20%. Cooling the sample leads to a renaturation of the 

structure. 

A thermal denaturation experiment of duplex DNA yields the melting temperature value 

I, which corresponds to the temperature at which half of the sample is base-paired 

(double-helical state), and half is unwinded. Tm deteremination implies the 

measurement of the absorbance properties of the folded and unfolded forms as a 

function of temperature. 

Such an assay was used to study hybridization between an amino-modified 

oligonucleotide (ODN1a) and its complementary target (cDNA1). The stability of the 

resulting double-stranded structure was investigated in aqueous solutions containing 

various concentrations of dioxane. A final DNA concentration of 2 µM (strand 

concentration) and an optical pathlength of 1 cm were used in order to obtain an 

absorbance value around 0.6 (in the linearity range of the instrument). 

The samples were prepared by mixing equimolar amounts of the two DNA strands (2 

nmol) in Hepes buffer (15 mM, 0.64 mL, pH 7.5 at 25°C) containing 150 mM NaClO4 

and 7.5 mM Mg(ClO4)2, followed by addition of water or/and dioxane up to 0, 5, 10, 20, 

and 30% final concentration) and 1 mL final volume. The samples were degassed by 

sonication (15 min) in order to remove air bubbles eventually formed in solution, which 

might alter the absorbance measurements. The solutions were then placed in cuvettes 

and sealed by carefully adding a thin layer of mineral oil on the top of solution to 

prevent partial evaporation of the analyte solution occurring at high temeperature. The 

multisample cell holder accommodated 6 cuvettes. For each sample, a melting curve 

experiment consisted of one fast reversible heating/cooling cycle (15°C → 90°C → 

15°C with a thermal gradient of 5°C/min, maintaining 90°C for 5 min and, at the end, 

15°C for 5 min), followed by two cycles performed with 0.5°C/min thermal gradient.. 
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The heating (dissociation state) and cooling (initial state) profiles are superimposable, 

indicating that the transition is kinetically reversible. 

Melting temperatures were observed by following the change in UV absorbance as the 

temperature was increased and determined by computer fit, followed by calculation of 

the maximum of the first derivative of the absorbance signal (dA/dT). Uncertainty in Tm 

values was estimated to be ±0.6-0.8.  

5.8.3 Polyacrylamide Gel Electrophoresis (PAGE) 

 
Denaturing polyacrylamide gels were used for purification and separation of single-

stranded DNA. The gel was polymerized in the presence of urea as denaturing agent.  

Denaturing PAGE was used to purify 32P-radioactive labelled 19mer DNAs, cDNA1, 

ODN1a, ODN9(O)2, ODN9(O)(S) and ODN9(S)2 and to assay the synthesis of 

bipyridine-DNA conjugates ODN14-16. A 20% gel solution was prepared by diluting a 

stock solution of acrylamide: bisacrylamide (19:1 (% w/v), 120 mL) with 10 x TBE 

buffer (boric acid 0.89 M, Na2EDTA 0.02 M, TRIS 0.89 M, 15 mL), followed by 

addition of urea solution (7 M, 15 mL). The gel polymerization was initiated by 

addition of N,N,N’,N’-tetramethylene diamine (TEMED) (50 µL) and ammonium 

persulfate (APS) (10% in water, 0.75 mL) and was completed in 30-60 minutes at room 

temperature. The DNA samples (30 µL / well) were loaded together with gel tracking 

dyes (xylene cyanol and bromphenol blue) on the gel which has been pre-run for 15-20 

min at 240 V. The PAGE electrophoresis was carried out in TBE buffer, using a 

sequencing gel apparatus, at 1200 V, for 8 h, until the bromophenyl blue indicator dye 

that comigrates with the DNA sequence was about ¾ of the way to the bottom. The 

oligonucleotides were than visualized using the PhosphorImager instrument for 32P-5’-

radioactive labelled or by UV shadowing (shining 254 nm UV light from a hand held 

lamp). 

Nondenaturing polyacrylamide gel was used for analysis of double-stranded DNAs 

formed between ODN1a, ODN9(O)2, ODN9(O)(S) and ODN9(S)2 and the 

complementary cDNA1 and cRNA1, respectively. The duplexes were prepared by 

combining trace amounts of 32P-radioactive labeled 19mer DNA or RNA (100.000 cpm) 

with excess of the corresponding complementary strand (typically 100 pmol), and 

dissolving them in buffer (100 mM Hepes pH 7.5, 200 mM NaCl, and 1 mM EDTA).
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The final volume was adjusted to 20 µL by addition of water (5 μM final 

concentration). The oligonucleotides were heated for 10 min at 75°C, and allowed to 

hybridize by slowly cooling down first to 55°C and strirring for 20 min, followed by 

cooling down to 37°C within 1 h. After mixing with an equal volume of glycerol 20% 

containing traking dye, the duplex solutions were loaded on nondenaturing 16% 

polyacrylamide gel (60 mL solution acrylamide: bisacrylamide (19:1 (% w/v), 90 mL 1 

x TBE buffer, 50 µL TEMED, 0.75 mL APS, no urea). The gel was run at low voltage 

(400 V) to prevent heating that might cause melting of the strands, for 16 h, until 

complete migration of the bromphenolblue dye.  

5.9 Transition Metal-Catalyzed Reactions 

5.9.1 Conjugate Addition 
 

5.9.1.1 Synthesis of 3-Phenyl-1-cyclohexanone 
 

In a Schlenk flask, under argon, [Rh(cod)Cl]2 (60.4 mg, 0.12 mmol, 3 mol%) and 

trimethylphosphite (80.0 µL, 0.60 mmol, 2.8 equiv per Rh) were dissolved in 20 mL of 

dioxane. After addition of water (2 mL), the resulting mixture was stirred for 10 min at 

room temperature. Phenylboronic acid 16 (3.0 g, 24.0 mmol, 3.0 equiv) was added to 

the solution. The mixture was heated at 100°C and 2-cyclohexen-1-one 17 (0.8 g, 8.0 

mmol) was added. The resulting solution was additionally stirred for 2 hours at 100°C, 

then allowed to cool down to room temperature, quenched with saturated NaHCO3 (15 

mL) and extracted with diethyl ether (2 × 25 mL). The organic phase was then washed 

with brine (2 × 20 mL) and dried over Na2SO4. Removal of the solvent under reduced 

pressure afforded the crude product as brownish oil. Purification by flash 

chromatography (elution with EA/n-hex 1:9) gave compound 18 as colorless oil (0.9 

mg, 5.6 mmol, 70%). 1H NMR (300 MHz; CDCl3) δ 7.38-7.22 (m, 5H), 3.04 (m, 1H), 

2.64-2.33 (m, 4H), 2.02-2.21 (m, 2H), 2.06-1.74 (m, 2H). 
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5.9.1.2 General Procedure for 1,4-Addition of Phenylboronic Acid to 2-

Cyclohexen-1-one 

 
• Phosphoramidite ligands. For each catalytic experiment, [Rh(cod)Cl]2 (6.0 mg, 

12.0 µmol, 3 mol%) was added to a solution of phosphoramidite P1 (12.3 mg, 60.0 

µmol, 2.5 equiv per Rh) or P2 (17.3 mg, 60.0 µmol, 2.5 equiv per Rh) in 2.2 mL 

dioxane/water (10:1, 1:5 or 1:10) placed in a Schlenk flask containing, if the case, a 

reflux condenser. After being stirred for 10 min at room temperature, phenylboronic 

acid 16 (300.0 mg, 2.4 mmol, 3.0 equiv) was added. The resulting mixture was heated at 

60°C or stirred for 10 min at room temperature before addition of the enone substrate. 

The flask was then charged with 2-cyclohexen-1-one 17 (77.0 mg, 0.8 mmol). The 

progress of the reaction was monitored by TLC (elution with EA/n-hex 1:9). The 

reaction mixture was stirred for 24-72 hours at 60°C or at room temperature (36.4 mM 

final substrate concentration and 10.9 mM final [Rh] catalyst concentration) and then 

quenched by addition of saturated NaHCO3 (2 mL). The reaction product was extracted 

with diethyl ether (2 × 5 mL), washed with brine (2 × 5mL) and dried over Na2SO4. The 

residual solvent was evaporated under reduced pressure. The yields were estimated by 
1H NMR spectroscopy (CDCl3) with isopropanol as internal standard (5-80% 

conversion). 
Catalytic experiments using lower Rh catalyst loading,  [Rh(cod)Cl]2 (1.2 mg, 2.0 µmol, 

0.5 mol%), were preformed in the presence of P1 ligand (2.1 mg, 10.0 µmol, 2.5 equiv 

per Rh) in 1:10 dioxane/water (2.2 mL), following the previously described procedure. 

The reaction mixture was stirred for 24 hours at room temperature. In this case, the final 

[Rh] catalyst concentration was 1.8 mM, while the enone substrate 17 was maintained at 

36.4 mM concentration.  

Duplicated control experiments of 1,4-addition in the presence of only [Rh(cod)Cl]2 

precursor were also carried out. In a Schlenk flask, uder argon, [Rh(cod)Cl]2 (6.0 mg, 

12.0 µmol, 3 mol%) was dissolved in dioxane (0.2 mL). Upon addition of water (2 mL) 

and phenylboronic acid 16 (300.0 mg, 2.4 mmol, 3.0 equiv), the resulting solution was 

stirred for 10 min at room temperature. 2-Cyclohexen-1-one 17 (77.0 mg, 0.8 mmol) 

was then added and the reaction mixture stirred for 24 hours at room temperature. The 

product 18 formation was monitored by TLC (elution with EA/n-hex 1:9) (5% 
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conversion). 

• Monophosphine ligands. A solution of [Rh(cod)Cl]2 (0.5 mg, 1.0 μmol) in 

dioxane (0.2 mL) was added to a solution of commercially available phosphine TPPDS 

L7 (2.0 mg, 4.0 μmol, 4.0 equiv) in water (2.0 mL), containing K2CO3 (150.6 mg, 1.1 

mmol, 2.1 equiv), or Tris buffer (2.0 mL, 20 mM, pH 8.0) to achieve final [Rh] 

concentration of 9.1, 0.91 and 0.23 mM, respectively. The resulting mixture was stirred 

under argon for 30 min, at room temperature. After addition of sodium dodecyl sulfate 

SDS surfactant (78.0 mg, 0.27 mmol, 0.5 equiv), phenylboronic acid 16 (158.5 mg, 1.3 

mmol, 2.5 equiv) and 2-cyclohexen-1-one 17 (49.6 mg, 0.52 mmol), the reaction 

mixture was heated at 37°C and the stirring continued for 48 hours.  

Control experiment with [Rh(cod)Cl]2 catalyst and no ligand was also carried out. 

[Rh(cod)Cl]2 (6.2 mg, 12.5 µmol) was dissolved in dioxane (8 mL). From this solution, 

0.2 mL was diluted with Tris buffer (2.0 mL, 20 mM, pH 8.0) to achieve 0.23 mM final 

[Rh] concentration. After addition of SDS (78.0 mg, 0.27 mmol, 0.5 equiv), 

phenylboronic acid (158.5 mg, 1.3 mmol, 3.0 equiv) and 3-phenyl-1-cyclohexanone 18 

(49.6 mg, 0.52 mmol), the resulting mixture was stirred for 48 hours at 37°C. 

When phosphine L1 was used, the 1,4-addition reaction was performed in 50% water. 

[Rh(cod)Cl]2 (4.9 mg, 10.0 µmol, 3.85 mol%) was added to a solution L1 (12.2 mg, 

40.0 µmol, 2.0 equiv per Rh) in dioxane or methanol (1.1 mL). SDS (78.0 mg, 0.27 

mmol, 0.5 equiv) and water (1.1 mL) were added and the whole mixture stirred for 30 

min at room temperature. To the flask were then added successively phenylboronic acid 

16 (158.5 mg, 1.3 mmol, 3.0 equiv) and 2-cyclohexen-1-one 17 (49.6 mg, 0.52 mmol). 

The reaction mixture was heated at 50°C and then stirred at 50°C for 19 hours. After 

extraction with diethyl ether (2 × 2 mL), the organic phase was filtered through a short 

silicagel plug (20 × 6 mm, in a 6 mm pipette). After evaporation of the solvent under 

reduced pressure, the residue was dissolved in 2:1 acetonitrile/water (3 mL). The yields 

were determined by reversed-phase HPLC analysis (C18 column (4.6×250 mm), elution 

with 70% acetonitrile and 30% water, detection wavelength 254 nm; tR = 5.6 min (3-

phenyl-cyclohexanone)). A calibration curve was obtained by plotting the integrated 

peak area versus various product concentrations (2.25, 4.50, 9.00, 13.50 and 18 mM 

concentration 3-phenyl-1-cyclohexanone; cP = 0.0036·Area + 0.0929, R2 = 0.9902). 

Conversion: 7-42%. 
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• Bisphosphine L2 and L8 ligands. To a degassed solution of [RhL2(nbd)]+BF4
- 

complex 13 (27.1 mg, 0.03 mmol) or [RhL8(nbd)]+BF4
- (24.0 mg, 0.03 mmol) in 

dioxane (3.0 mL), phenylboronic acid 16 (183.0 mg, 1.5 mmol, 1.5 equiv) and water 

(0.5 mL) were added. The resulting mixture was further degassed by two freeze-thaw 

cycles. After stirring for 30 min at room temperature, TEA (0.14 mL, 1.0 mmol, 1.0 

equiv) was added and the reaction started by addition of 2-cyclohexen-1-one 17 (97.0 

µL, 1.0 mmol). The resulting mixture was stirred for 6 hours at room temperature. The 

final concentration of Rh complex was in all cases 10 mM, corresponding to 3 mol% 

catalyst loading. 
Test reactions were setup and preformed also in air. Control experiments only with 

[Rh(cod)Cl]2 pre-catalyst were carried out in the absence and presence of base (0.1 

equiv NaHCO3) under the conditions described above. Reactions with the in situ 

generated Rh complex were performed by addition of [Rh(nbd)Cl]2 (6.9 mg, 0.015 

mmol) to a degassed solution of BINAP ligand L8 (28.0 mg, 0.045 mmol, 1.5 equiv per 

Rh) in 6:1 dioxane/water (3 mL) and then similarly to the other catalytic reactions. 
In all cases, after filtration through a syringe filter (0.2 µm, PTFE), the crude product 

was diluted with water to 3.5 mL and analyzed by reversed-phase HPLC (C18 column 

(4.6 × 250 mm), elution with 50% water, 50% acetonitrile, detection wavelength 260 

nm, tR(18) = 11.0 min). Conversions: 0-80%. 

• PHOX L5 ligand. 1,4-Addition with the isolated Rh-PHOX complex 14 or with 

the in situ prepared complex was carried out in 3:7 dioxane/water. The following stock 

solutions in dioxane were used: 1) solution of 0.41 M 2-cyclohexen-1-one, 0.40 M TEA 

and 0.02 M benzophenone as internal standard, 2) 0.60 M phenylboronic acid 16, and 3) 

0.01 M [RhL5(nbd)]+BF4
- complex 14. Additionaly, Rh(I) complex was in situ prepared 

by weighing [Rh(C2H4)2Cl]2 pre-catalyst (3.9 mg, 0.010 mmol) and ligand L5 (8.6 mg, 

0.022 mmol, 1.1 equiv ligand per Rh) into a Schlenk flask, under argon atmosphere. 

Degassed dioxane was then added (2.0 mL) to generate 10 mM stock solution of 

catalyst. The resulting mixture turned immediately deep red and was used in catalytic 

reactions without further purification. 
For each catalytic experiment, a Schlenk flask was charged with degassed water (0.7 

mL). To the flask were added successively degassed solutions of [RhL5(nbd)]+BF4
- 

(0.01 mL, 1.0 µmol),  or the in situ prepared Rh(I) catalyst (0.1 mL, 1.0 µmol), 2-
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cyclohexen-1-one 17 and TEA (0.1 mL, 41.0  µmol enone substrate, 20.0 µmol internal 

standard and 40.0 µmol base, respectively), and finally phenlyboronic acid 16 (0.1 mL, 

60.0 µmol, 1.5 equiv), yielding 1.0 mM final catalyst concentration and 2.4 mol% 

catalyst loading, respectively. The reaction mixture was stirred for 4 hours at room 

temperature. After extraction with diethyl ether (2 × 1 mL), the organic phase was 

passed through a short silica gel plug (10 × 6 mm, in a 6 mm pipette). The eluate was 

then evaporated to dryness under reduced pressure. The residue was dissolved in 1:1 

water/acetonitrile and analyzed by reversed-phase HPLC (C18 column (4.6×250 mm), 

elution with 50% water and 50% acetonitrile, detection wavelength 260 nm, tR(18) = 

11.0 min).  

5.9.2 Allylic Amination 

5.9.2.1 Synthesis and Stability of the Allylic Substrate 
 

The branched monosubstituted allylic substrate, racemic mixture, was prepared by 

esterification of 1-phenylprop-2-en-1-ol 19. The linear allylic substrate, cinnamyl 

acetate 20, is commercially available.  

Synthesis of 1-phenyl-2-propenyl acetate (21). A solution of commercially available 

1-phenylprop-2-en-1-ol 19 (2.0 g, 14.9 mmol) and DMAP (0.18 g, 1.5 mmol, 0.1 equiv) 

at 0°C was slowly treated with acetic anhydride (7.1 mL, 74.5 mmol, 5 equiv) and then 

allowed to warm up to 25°C overnight. The conversion of allylic alcohol to allylic 

acetate was complete (TLC control 1:9 EA/n-hex). After quenching with saturated 

solution of NaHCO3 (60 mL), the resulting solution was further stirred for additional 30 

min at room temperature. The mixture was extracted with diethylether (2 × 60 mL) and 

the combined organic fractions were washed with 5% NaHCO3 (100 mL), 1 M HCl 

(100 mL) and brine (100 mL) before being dried (Na2SO4) and concentrated in vacuo. 

Chromatography on silica gel (column preconditioned with the eluent containing 1% 

TEA, elution with 5:95 EA/n-hex) afforded compound 21 as colorless oil (1.8 g, 10.4 

mmol, 82%). 1H NMR (300 MHz; CDCl3) δ 7.28-7.22 (m, 5H), 6.18 (td, J = 5.8, 1.3, 

1H), 5.92 (ddd, J = 17.2, 10.4, 5.9 Hz, 1H), 5.19 (m, 2H), 2.02 (s, 3H). 13C NMR (126 

MHz; CDCl3) δ 169.84, 138.81, 136.21, 128.47, 128.08, 127.06, 116.80, 76.09, 21.15. 

EI MS: m/z 176.1 [M]+ (calcd for [C11H12O2]+ 176.08). 
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Stability of the allylic substrate in aqueous (basic) environment. The stability of 

branched allyic acetate 21 in water and under basic conditions was investigated. Stock 

solutions of the two substrates were prepared by weighing 1-phenyl-2-propenyl acetate 

21 (35.2 mg, 0.2 mmol) into a vial and adding 10 mL acetonitrile. Samples from the 

resulting solution were diluted with an equal volume of water or aqueous 0.1 M 

NaHCO3 solution, affording 10.0 mM final concentration of 21. The resulting solutions 

were stored at room temperature for 9 hours. Aliquots (20 µL) were withdrawn at 

regular time intervals and analyzed by reversed-phase HPLC (C18 column (4.6×250 

mm), elution with 50% water and 50% acetonitrile, detection wavelength 260 nm, tR 

(21) = 14.4 min) (Figure 3.21, Chapter 3.2.3.1). 

5.9.2.2 Synthesis of Linear and Branched Allylic Amines 
 

Synthesis of 4-(1-phenyl-2-propenyl)-morpholine (24). Allyl substrate 1-phenyl-2-

propenyl acetate 21 (0.5 g, 2.8 mmol) was weighed into a Schlenk flask equipped with a 

reflux condenser, dissolved in ethanol (10 mL) and the resulting solution degassed (3 

cycles). [Rh(cod)Cl]2 (28.1 mg, 0.06 mmol, 4.3 mol%) and triphenyl phosphite (63.0 

µL, 0.24 mmol, 2.0 equiv/Rh) were then added and the mixture immediately degassed 

(one cycle). After addition of morpholine 22 (0.75 mL, 8.5 mmol, 3.0 equiv), the 

reaction mixture was heated at 40°C and stirred overnight until the ester was fully 

converted to the amine (TLC control 1:9 EA/n-hex). After cooling the solution at room 

temperature, the crude was extracted with diethyl ether (20 mL), and the organic layer 

washed with saturated aqueous NaHCO3 solution (ca 20 mL) until the pH of the organic 

layer was 8.0. The organic layer was then dried over Na2SO4, the solvent was 

evaporated under reduced pressure and the product purified by column chromatography 

(eluent 1:9 EA/n-hex). The allylic amine 24 was obtained as colorless oil (0.55 g, 2.7 

mmol, 96%). 1H NMR (300 MHz; CDCl3) δ 7.27-7.13 (m, 5H), 5.81 (ddd, J = 17.1, 

10.1, 8.8 Hz, 1H), 5.14 (ddd, J = 17.1, 1.6, 0.7 Hz, 1H), 5.00 (dd, J = 10.1, 1.8, 1H), 

3.59 (m, 4H), 3.53 (d, J = 8.8 Hz, 1H), 2.43-2.36 (m, 2H), 2.27-2.20 (m, 2H). 13C NMR 

(76 MHz; CDCl3) δ 141.48, 139.66, 128.47, 127.83, 127.13, 116.48, 75.39, 67.02, 

51.88. EI MS: m/z 203.2 [M]+ (calcd for [C13H17NO]+ 203.13). 

Synthesis of 4-(3-phenyl-2-propenyl)-morpholine (25). In a Schlenk flask, Pd(PPh3)4 

(0.11 mmol, 0.13 g, 2 mol%) was dissolved in degassed dry THF (15 mL).  Cinnamyl 
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acetate 20 (1.0 g, 5.7 mmol) and morpholine 22 (1.5 mL, 17.1 mmol, 3.0 equiv) were 

then added to the reaction mixture. The resulting solution was heated to 50°C and 

allowed to tir at 50°C for 6 hours until complete conversion of the allyic substrate 

(TLC control 3:7 EA/n-hex). After cooling down to room temperature, the crude 

product was extracted with diethyl ether (20 mL) and washed 5% aqueous NaHCO3 

solution (20 mL), and brine (20 mL). The organic phase was dried over Na2SO4, 

concentrated under reduced pressure and the product purified by flash column 

chromatography (elution 1:4 EA/n-hex) to give linear allylic amine 25 as colorless oil 

(0.97 g, 4.7 mmol, 84%). 1H NMR (300 MHz; CDCl3) δ 7.62-7.11 (m, 5H), 6.44 (dd, J 

= 15.9, 1H), 6.16 (td, J = 15.9, 6.8, 1H), 3.64 (m, 4H), 3.05 (dd, J = 6.8, 1.3, 2H), 2.40 

(m, 4H). 13C NMR (76 MHz; CDCl3) δ 136.65, 133.21, 128.43, 127.42, 126.17, 125.93, 

66.83, 61.33, 53.56. EI MS: m/z 203.3 [M]+ (calcd for [C13H17NO]+ 203.13). 

Synthesis of N-(1-phenyl-2-propenyl) glycine ethyl ester (26). In a Schlenk flask, 1-

phenyl-2-propenyl acetate 21 (0.5 g, 2.8 mmol) was dissolved in acetonitirile (4 mL) 

and the solution degassed. To this solution were added [Rh(cod)Cl]2 (56.0 mg, 0.11 

mmol) and trimethylphosphite (70.5 mg, 71.0 µL, 0.57 mmol, 2.6 equiv per Rh). 

Separately, glycine ethyl ester hydrochloride 23 (0.6 g, 4.0 mmol, 1.4 equiv) was 

charged into a Schlenk flask. After addition of water (4 mL) and NaHCO3 (0.47 g, 5.6 

mmol, 2.0 equiv), the resulting solution was degassed, transferred to the reaction 

mixture and stirred at room temperature overnight (TLC control 3:7 EA/n-hex). The 

crude product was extracted with diethyl ether (2 × 20 mL) and the combined extracts 

washed with 1 M HCl (2 × 20 mL), 5% NaHCO3 (20 mL) and brine (20 mL). After 

adjusting the pH to 7 with 5% NaHCO3 (15 mL), the aqueous layer was one more time 

extracted with diethyl ether (40 mL). The combined organic phase was dried over 

Na2SO4. The solvent was evaporated and the residue chromatographed on silica gel 

(elution 1:9 EA/n-hex), affording amine 26 as colorless oil (0.26 mg, 1.2 mmol, 41%). 
1H NMR (300 MHz; CDCl3) δ 7.31-7.17 (m, 5H), 5.83 (m, 1H), 5.18 (d, J = 16.2 Hz, 

1H), 5.06 (m, 1H), 4.14 (m, 2H), 3.29 (s, 2H), 1.19 (t, 3H). 13C NMR (76 MHz; CDCl3) 

δ 172.52, 142.06, 140.24, 128.61, 127.45, 127.36, 126.37, 115.69, 65.45, 60.75, 48.54, 

14.22. 
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5.9.2.3 Allylic Amination Catalyzed by Ir-PHOX Complexes 
 

Stock solutions of [Ir(cod)Cl]2 (50 mM), and phosphinooxazolines L4 and L5 (6.3 mM) 

were prepared by weighing [Ir(cod)Cl]2 (33.6 mg, 0.05 mmol) into a volumetric flask 

and adding 1 mL dioxane, and L4 (4.5 mg, 12.0 µmol) and L5 (4.7 mg, 12.0 µmol) into 

Schlenk flasks and adding to each 1.8 mL degassed dioxane, respectively. Ir-catalyst 

was preparing by adding with a syringe 0.2 mL stock solution [Ir(cod)Cl]2  to each 

Schlenk flask containing the ligand (1.25 equiv ligand per Ir), affording a final volume 

of 2 mL. The resulting solutions turned immediately deep red indicating the in situ 

formation of Ir-L4 and Ir-L5 complexes (10.0 mM).  From each solution, 0.2 and 0.3 

mL were transferred into separate Schlenk flasks and diluted with degassed dioxane (up 

to 2.0 and 5.0 mL, respectively) to give 1.0 mM and 0.6 mM Ir-L4 and Ir-L5 stock 

solutions. The Ir-PHOX stock solutions were stored at -20°C and used for multiple 

catalytic experiments. 

Stock solutions of [Ir(cod)Cl]2 were prepared by weighing 4.9 mg (12.5 µmol) in 

volumetric flasks by adding the appropriate amount of dioxane to achieve a range of 

5.0, 0.5, 0.3, 0.25, and 0.1 mM final concentrations. [Ir(cod)Cl]2 stock solutions were 

each time newly prepared, degassed (by at least three freeze-thaw cycles) and used for 

single set of experiments. 

Allylic substrate stock solution was prepared by weighing dodecane (489.4 mg, 2.88 

mmol), as internal standard, together with 1-phenyl-2-propenyl acetate 21 (885.6 mg, 

5.0 mmol) or cinnamyl acetate 20 (885.6 mg, 5.0 mmol) into two vials and adding 10.0 

mL dioxane to each vial to make the final concentration of 0.50 M allylic substrate and 

0.28 M internal standard.  

Two aqueous stock solutions of morpholine 22 were prepared by weighing each time 

163.4 mg (1.88 mmol) into a volumetric flask and adding 1:7 dioxane/water or 

dioxane/aqueous 125 mM NaClO4, 6.25 mM Mg(ClO4)2 solution (10 mL), and yielding 

0.18 M final morpholine concentration. Stock solution of morpholine in neat dioxane 

was also prepared by dissolving 22 (480.0 mg, 5.5 mmol) in 10 mL dioxane to a final 

concentration of 0.55 M. 

Stock solution of glycine ethyl ester hydrochloride 23 containing NaHCO3 was prepared 

by weighing the aminoacid ester (195.4 mg, 1.4 mmol) and the base (176.4 mg, 2.1 
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mmol, 1.5 equiv) in a volumetric flask and adding water (10 mL) to give 0.14 M final 

concentration of glycine ethyl ester 23 in 0.21 M aqueous NaHCO3 solution. 

All stock solutions were then placed in Schlenk flasks, stored under argon (at -20°C) 

and degassed every time befor using in allylic amination reactions. 

Gas chromatography analysis. The course of the catalytic allylic aminations was 

monitored by gas chromatography performed with a Shimadzu GC-2014 instrument. 

Capillary column FS-Supreme-5, 30 m × 0.38 mm AD × 0.25 mm, carrier gas helium. 

GC-method: Tinjector = 200°C, Tdetector = 250°C, 1.03 mL/min flow rate, 120.0 kPa 

column pressure, 1 µL injected volume, split ratio 40.0. Temperature program: 2 min at 

150°C, increase to 230°C with 15°C/min; tR = 3.3 min (dodecane), 3.9 min (21), 5.5 

min (20), 6.4 min (24) and 8.0 min (25). The products and the substrates were 

quantified using internal standard. Internal standard (dodecane) concentration was 

maintained 1.44 mM in all cases, while concentrations of substrates and products were 

raging between 0.028-0.690 mM (21, fitted equation: A/Astandard = 0.8958·(c/cstandard) + 

0.0005, R2 = 0.9978), 0.051-2.537 mM (20, fitted equation: A/Astandard = 

0.8139·(c/cstandard) + 0.0127, R2 = 0.9976), 2.509-0.050 mM (24, fitted equation: 

A/Astandard = 0.9346·(c/cstandard) + 0.0122, R2 = 0.9977) and 0.625-0.025 mM (25, fitted 

equation: A/Astandard = 0.9825·(c/cstandard) – 0.0070, R2 = 0.9976).  

HPLC analysis. The determination of the enantiomeric excesses of 4-(1-phenyl-2-

propenyl)-morpholine 24 was effected by Agilent 1100 Series HPLC system equipped 

with an diode array detector, using a Diacel CHIRALCEL OJ-H (0.46 cm × 25 cm) and 

eluting with n-hexane/i-propanol = 99:1 at 0.7 mL/min flow-rate (detection wavelength 

= 220, 254 nm; tR (24)= 10.8, 12.5 min). 

General procedure for iridium(I)-catalyzed allylic amination reaction. All reactions 

were performed in the presence of 1.0 and 0.05-0.1 mM Ir catalyst, on 1.0 mL scale. 

Stock solution of Ir catalyst (0.1 mL) was added to 0.1 mL degassed stock solution of 

branched 21 or linear allylic substrate 20 (0.05 mmol, 8.8 mg) in a Schlenk flask 

containing a stirring bar. Aqueous solution of morpholine 22 (0.8 mL, 13.1 mg, 0.15 

mmol, 3.0 equiv) was added with a syringe, and the reaction was stirred at various 

temperatures (25, 37, 50°C) for 1-16 hours (TLC control 3:7 EA/n-hex). The crude 

product was extracted with diethyl ether (3 × 1 mL) and the combined organic layers 

were dried over Na2SO4. After partial removal of the solvent under reduced pressure, 
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the mixture was filtered over a layer of silica gel (20 × 6 mm, in a 6 mm pipette). The 

solvent was then evaporated under light vacuum and the residue was dissolved in 1,2-

dichloroethane (2 mL) and analyzed by gas chromatography. The crude reaction 

mixture was then purified by preparative TLC (elution 3:7 EA/n-hex) and the desired 

product was subjected to determination of enantiomeric excess by HPLC. 

The same general procedure was also used with 0.1 mL of the stock solution of Ir-L5 

complex (10.0 mM, in acetonitrile), 0.1 mL stock solution of branched allylic acetate 21 

(0.5 M, acetonitrile), 0.3 mL acetonitrile and 0.5 mL of the stock solution of glycine 

ethyl ester 23 (0.14 M, in 0.14 M aqueous NaHCO3). The amination reaction was 

conducted at room temperature for 16 hours. The crude reaction mixture was diluted to 

5 mL by addition of 1:1 water/acetonitrile, filtered (0.22 µm, PTFE) and analyzed by 

reversed-phase HPLC (injected volume 20 µL, C18 column (4.6×250 mm), elution with 

50% water and 50% acetonitrile, 1 mL/min flow rate, 25°C column temperature, 

detection wavelength 260 nm, tR(26) = 12.4 min). 

Irdium(I)-catalyzed allylic amination in the presence of unmodified DNA. All 

control reactions were carried out at 0.05-0.1 mM Ir catalyst, in 3:7 dioxane/water (100 

μL) and in the presence of 23mer cDNA2. Typically, in a PCR or Eppendorf tube 

placed under argon and containing a stirring bar (Figure 5.6), DNA (5.33-13.3 nmol) 

was dissolved in aqueous solution of morpholine 22 (80 μL, 15.0 μmol), containing 

NaClO4 and Mg(ClO4)2 (see preparation of morpholine stock solutions). The resulting 

solution was then mixed with 5-10 μL stock solution of [Ir(cod)Cl]2 (0.5 mM) or 

preformed catalyst Ir-L5 (1.0 mM) in a volume of 90 μL, yielding 1.1-1.3 equiv DNA 

per Ir. After stirring the resulting solution for 30 min at room temperature, the reaction 

was started with the addition of allylic substrate 21 (10 μL, 5.0 μmol) and mixed by 

continuous stirring for 14-18 hours at room temperature. After addition of diethyl ether 

(200 μL), the reaction mixture was passed over a silica gel plug (20 × 6 mm, in a 6 mm 

Pasteur pipette) and the crude product eluted with diethyl ether. The solvent was 

removed under light vacuum, the residue dissolved in 1,2-dichloroethane (0.5-0.7 mL) 

and analyzed by gas-chromatography for estimating the reaction conversion. The 

product was then purified by preparative TLC (elution 3:7 EA/n-hex, product recovery 

in ethyl acetate) and the enantiomeric excess determined by chiral HPLC. 
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Figure 5.6. Reaction set-up for Ir(I)-catalyzed amination using DNA-based PHOX ligands. 
 

Iridium(I)-catalyzed allylic amination with single-stranded DNA-PHOX ligands 

ODN11a-c and ODN12a,b. The HPLC fraction containing the desired DNA-PHOX 

conjugate was collected in a 25 mL Greiner tube, under argon atmosphere and 

immediately degassed. A known volume of eluate, typically 0.6-0.8 mL, was transferred 

in an Eppendorf tube (1.5 mL), purged several times with argon and lyophilized 

overnight. The remaining eluate was used in UV measurements to determine the amount 

of isolated DNA-PHOX conjugate and implicitly the amount of DNA-ligand to be used 

for the catalytic experiment (typically 1.5-5.2 nmol). The lyophilized DNA was then 

redissolved in thouroughly degassed 143.0 mM NaClO4, 7.0 mM Mg(ClO4)2 aqueous 

solution (35-70 µL) and combined with the corresponding amount of 0.5 mM, 0.3 mM, 

or 0.25 mM [Ir(cod)Cl]2 stock solution (5.0-10.0 µL, 1.5-5.0 nmol) to generate in situ 

the DNA-Ir catalyst (1.1-1.3 equiv DNA-PHOX/Ir). After stirring for 20-30 min under 

argon, an aliquot of stock solution of allylic acetate substrate 21 (5.0-10.0 µL) was 

added to the DNA solution to a final concentration of 50 mM and the stirring continued 

for 10 min. Finally, degassed solution of morpholine 22 (0.55 M, 5.0-10.0 µL, 1.1 equiv 

amine to the allylic substrate) was added and the amination reaction conducted for 16-

19 hours, at room temperature, with a final Ir catalysts concentration ranging between 

20 and 100 µM. The reaction mixture was then diluted with diethyl ether (0.2 mL) and 

the reaction vial washed with diethyl ether (2 × 0.2 mL). The resulting solution was 

filtered trough a short silica gel plug that was thouroughly washed with diethyl ether, 
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concentrated under light vacuum and subjected to GC and chiral HPLC analysis as 

described in the paragraph “General procedure for Ir-catalyzed allylic amination 

reaction”. 

In parallel, the stability of the DNA-PHOX conjugates upon addition of Ir precatalyst 

and under the conditions employed in allylic amination reaction was investigated. To a 

ODN11a-c solution (1.1-1.3 equiv per metal ion) was added stock solution of 

[Ir(cod)Cl]2 to a final volume of 0.1 mL 3:7 dioxane/water and 0.1 mM final Ir(I) 

catalyst concentration. The resulting mixture was sampled (approx. 25 µL) at various 

time points and analyzed by reversed-phase HPLC (gradient:  increase from 1% B to 

75% B over 40 min; detection at 260 nm, 1 mL/min flow-rate, 45°C column oven).  

Iridium(I)-catalyzed allylic amination with double-stranded DNA-PHOX ligands. 

Catalytic experiments using DNA/DNA or DNA/RNA duplexes were carried at room 

temperature, in 3:7 dioxane/water and 0.05-0.1 mL reaction scale. Concentrations of 

Ir(I) catalysts were maintained between 20 and 50 µM, unless otherwise stated. The 

double-stranded constructs were prepared by mixing equimolar quantities of DNA-

PHOX conjugate ODN11-13 and complementary cDNA1-4 or cRNA sequence in an 

aqueous solution containing 143.0 mM NaClO4 and 7.0 mM Mg(ClO4)2, at room 

temperature. Complementary DNA and RNA strands (2.0-4.0 nmol) were lyophilized, 

resuspended in degassed water with salts (35.0-70.0 µL) and added to an Eppendorf 

tube (Figure 5.6) containing the freshly lyophilized DNA-PHOX ligand. The resulting 

solution was immediately purged with argon. The two nucleic acid strands were then 

allowed to anneal at room temperature over 30-45 min and then treated with degassed 

[Ir(cod)Cl]2 solution (5.0-10.0 µL, 1.1-1.3 equiv DNA-PHOX per iridium ion). After 

stirring for 30 min at room temperature, stock solutions of allylic acetate 21 and 

respectively morpholine 22 substrates (5.0-10.0 µL each, final concentrations 50 mM 

and 55 mM respectively) were added and stirring continued for 16-19 hours, under 

argon atmosphere. Work-up of the crude reaction mixture followed the procedure 

described in the preceding paragraph. 
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6 Appendices 

6.1 List of Abbreviations 

δ Chemical shift 

ε Molar extinction coefficient 

λ Wavelength 

A Adenosine; Peak area 

A260 Absorbance at 260 nm 

Ac Acetyl 

ACN Acetonitrile 

ATP Adenosine triphosphate 

bd Broad doublet 

BINAP 2,2’-Bis(diphenylphosphino)-1,1’-binaphthyl 

BINOL 1,1’-Bi-2-naphthol 

bpa N,N’-Bis(2-picolyl)amine 

bpy 2,2’-Bipyridine 

bs Broad singlet 

BTT 5-Benzylthio-(1H)-tetrazole 

c Concentration 

C Cytidine 

cDNA Complementary DNA 

Ci Curie; 1Ci = 37 MBq 

CID Collision-induced dissociation 

cod 1,5-cyclooctadiene 

CPG Controlled pore glass 

d Doublet 

dA 2’-Deoxy-adenosine 

dC 2’-Deoxycytidine 

DCM Dichloromethane 
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DEA Diethylamine 

dG 2’-Deoxy-guanosine 

DIPA Diisopropylamine 

DMAP 4-(Dimethylamino)pyridine 

DMF N,N’-Dimethylformamide 

DMSO Dimethyl sulfoxide 

DMT 4,4’-Dimethoxytrytil 

DNA Deoxyribonucleic acid 

dppz Dipyridophenazine 

EA Ethylacetate 

EDC N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

EDTA Ethylenediamine tetraacetate 

ee Enantiomeric excess 

EI Electron impact 

equiv Equivalent 

ESI Electrospray ionization 

EtOH Ethanol 

FAB Fast atomic bombardment 

FT-ICR Fourier-transform ion cyclotron resonance 

g Gram 

G Guanosine 

h Hour 

Hepes 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

hex Hexane 

HPLC High Pressure Liquid Chromatography 

I Spin quantum number 

I Light intensity 

J Coupling constant 

K Reaction rate constant 

l Length of the light path 

L Liter; Ligand 

LG Leaving group 
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m Meter; Multiplet 

M Mol/L; Molar; Transition metal 

MALDI-TOF Matrix assisted laser desorption ionization time-of-flight 

Me Methyl 

Me2-dppz 7,8-Dimethyldipyridophenazine 

min Minute 

MS Mass spectrometry 

nbd Bicyclo[2.2.1]hepta-2,5-diene; norbornadiene 

NHS N-hydroxysuccinimide, N-hydroxysuccinimidyl 

nm Nanometer 

NMR Nuclear magnetic resonance  

Nu Nucleophile 

ODN Oligodeoxynucleotide 

Pa Pascal 

PAGE Polyacrylamide gel electrophoresis 

PCR Polymerase chain reaction 

PG Protecting group 

Ph Phenyl 

PhCN Benzonitrile 

phen  1,10-Phenanthroline 

phi 9,10-Phenanthrenequinone diimine 

PHOX 2-(2-Diphenylphosphino-phenyl)-4,5-dihydrooxazole 

PNK Polynucleotide kinase 

ppm Parts per milion 

Pr Propyl 

PTFE Polytetrafluoroethane 

PYRPHOS 3,4-Bis-diphenylphosphino-pyrrolidine 

RNA Ribonucleic acid 

rpm Rotations per minute 

rt Room temperature 

RT Reverse transcription 

s Singlet 
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SDS Sodiumdodecyl sulfate 

sec Second 

SELEX Systematic evolution of ligands by exponential enrichment 

SN Nucleophilic substitution 

Solv Solvent 

t Triplet 

T Thymidine; Temperature 

TAC (t-Butyl)phenoxyacetyl 

tap 1,4,5,8-Tetraazaphenantrene 

TBE Tris-borate-EDTA buffer 

TCA Trichloroacetic acid 

TEA Triethylamine 

TEAA Triethylammonium acetate 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TLC Thin layer chromatography 

Tm Melting temperature 

TPPDS Bis(4-sulfonatophenyl)phenylphosphine 

tpy 2,2′:6′,2″-Terpyridine 

tR Retention time 

Tris Trishydroxymethylaminomethane; 2-amino-2-hydroxymethyl-1,3-

propanediol 

U Uridine; Unit 

UV Ultraviolet 

 

6.2 Instruments and Special Materials 

Analytical balance AX 204 and B3001-S Mettler Toledo 

Centrifuges Eppendorf 5804 R and Mikro 120 Hettich 

Electrophoresis chamber GIBCO BRL Sequencing System LIFE 

TECHNOLOGIESTM 
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Eppendorf and PCR tubes, siliconized Biozym 

Exposure cassettes For 35 × 43 cm Kodak imaging screens 

Freeze dryer BenchTop K Series, VirTis Ismatec 

Gas chromatograph Schimadzu GC-2014 

- capillary column FS-Supreme-5, 30 m × 

0.38 mm 

 

Gel Documentation equipment AlphaImagerTM 2200 Alpha Innotech 

Greiner tubes CellStar 

HPLC  Agilent 1100 Series 

HPLC Columns: 

 - Luna C18, 5 µm, 4.6 250 mm and 15.0 × 

250 mm 

 

Phenomenex® 

 - Chiralcel OJ-H, 4.6 × 250 mm Daicel  

Mass Spectrometer:  

- MALDI-TOF Bruker BIFLEX III 

- FAB and EI  JEOL JMS-700 

- ESI  Finnigan MAT TSQ 700 

- ESI FT-ICR Bruker APEX IV 

Minicentrifuges Kiesker 

NAP columns, Sephadex G-25 GE Healthcare (Amersham Biosciences) 

NMR Spectrometer Mercury Plus 300, Varian VNMR S 500, 

Bruker AC-300, DRX-300 

pH-Meter MP 220 Mettler Toledo 

Phosphorimager Typhoon 9400 Amersham Biosciences 

Pipettes Abimed P2, P20, P200, P1000 

Scintillation counter Beckman LS 6500  

Silica gel 40 μm J.T. Baker 

Silica gel plates Polygram® Sil G/UV254 

40 × 80 mm  

Macherey-Nagel 

Speed vac Univapo 100 ECH 

Spin filters Nanosep® MF Centrifugal devices, 0.2 

μm PALL, Life Sciences 
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Syntheziser Applied Biosystems ExpediteTM 8909  

Syringe filters PTFE, 13 mm, 0.2 μm, Carl Roth 

Thermomixer Eppendorf, Thermomixer 5436 

Ultrapure Water Purification System Milli-Q, Millipore 

UV Cuvettes Quarzglas SUPRASIL, HELLMA 

UV-Lamp 254 nm Benda NU-8 KL 

UV-Transilluminator 254 nm, 300 × 200 mm Carl Roth 

UV/VIS Spectrophotometer  

- Ultrospac 2100 pro Amersham Pharmacia Biotech 

- NanoDrop ND-1000 Peqlab Biotechnologie 

- Cary 100 Bio Varian 

X-ray film Fuji, Medical X-ray Film RXOG (Safety) 

X-ray film cassettes Kodak, X-OMATIC 
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