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Abstract

In this thesis, fast and highly accurate interferometric metrology systems for both
smooth and rough surfaces are presented. First, high-speed algorithms for white-light
interferometry (WLI) and line scanning WLI are developed and their performance is
compared. For large height differences, multiple wavelength interferometry is signif-
icantly faster, though, as in this approach the number of frames required for a surface
estimate does not increase with surface height range.
A system based on a tunable diode laser is discussed in detail, and new sampling
schemes and estimation algorithms for the device are derived. An approximation to
the theoretically optimal sampling pattern is given and a corresponding fast estimation
algorithm is presented. As a building block for that algorithm, accurate and fast phase
and frequency estimation from a low number of samples is discussed, and a new ap-
proach based on an interpolated FFT is presented. The influence of laser speckle on
rough surfaces is investigated. A robust, adaptive filtering algorithm is developed. It
takes spatial relationships into account — without imposing strong smoothness con-
straints — and uses additional knowledge on the signal from the raw data to improve
performance significantly, especially on rough surfaces.



Zusammenfassung

In dieser Dissertation werden interferometrische Messverfahren für glatte und raue
Oberflächen vorgestellt. Zunächst werden Hochgeschwindigkeits-Auswerteverfah-
ren für Weisslichtinterferometrie (WLI) und zeilenscannende WLI hergeleitet und
miteinander verglichen. Bei größeren Höhenmessbereichen kann jedoch Mehrwellen-
längeninterferometrie deutlich schneller sein, weil bei diesem Verfahren die Anzahl
der erforderlichen Messpunkte unabhängig vom Höhenbereich ist.
Ein Messsystem mit einer durchstimmbaren Laserdiode wird im Detail analysiert,
und neue Abtast- und Auswerteverfahren dafür werden hergeleitet. Es wird dabei
eine Annäherung an die theoretische optimale Abtastung entwickelt und ein zuge-
höriges Auswerteverfahren vorgestellt. Dazu sind schnelle und hochgenaue Phasen-
und Frequenzschätzverfahren auf Basis weniger Datenpunkte erforderlich. Ein neues
Verfahren zur schnellen Frequenzschätzung mittels einer interpolierten FFT wird vor-
gestellt. Der Einfluss von Laser Speckle bei rauen Oberflächen wird untersucht und
ein Verfahren zur robusten, adaptiven Filterung der Höhendaten wird gezeigt. Dieses
verwendet räumliche Nachbarschaften — ohne dabei scharfe Anforderungen an die
Glattheit der Oberfläche zu stellen — und zusätzliches Wissen über das Messsignal
aus den Rohdaten, um die Ergebnisse insbesondere auf rauen Oberflächen deutlich zu
verbessern.
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CHAPTER 1. INTRODUCTION

THE KNACK OF FLYING IS LEARNING
HOW TO THROW YOURSELF TO THE
GROUND AND MISS.

(Douglas Adams, Hitchhiker’s
Guide to the Galaxy)

1. Introduction

1.1. Overview

Tolerances in industrial production get smaller and smaller. This in turn leads to a
demand for more and more accurate metrology systems and more in-line process con-
trol. While in a laboratory environment measurement time is usually not that critical,
in a production line a measurement system has to meet the line clock cycle, typically
a few seconds only. For parts tolerances of 1µm a measurement repeatability better
than 100nm is required. For larger fields of view this can only be achieved with in-
terferometric systems. However, many precision parts have relatively rough surfaces
or steps and therefore classic laser interferometry cannot be used. A description of
available interferometric measurement systems and ways to optimize them for use in
production environments, especially with respect to measurement time, constitutes the
central part of this dissertation.

In the first chapter of this thesis, a brief review of available measurement principles
is given, and the currently (April 2007) available commercial systems are summarized.
Fundamental properties of rough surfaces and the speckle field caused by illumination
with coherent light are introduced. Important basic concepts for data acquisition, data
processing and parameter estimation are summarized.

In the second chapter, two different types of coherence based systems are dis-
cussed, a high-speed white-light interferometry system for surface measurements and
a line-scanning white-light interferometry system. The focus of this work lies on the
derivation of algorithms for hardware integration in order to deal with the tremendous
amount of data that can be acquired with high speed cameras. Is is shown that good
results can be obtained with algorithms that can easily be implemented on today’s
framegrabbers or intelligent cameras.

The third chapter discusses an alternative concept: multiple wavelength interferom-
etry, in particular a system that uses a tunable laser to scan over a range of illumination
frequencies. This system is analyzed in detail, both theoretically and in practice with
measurements on both smooth and rough surfaces. In a first step, the hardware config-
uration and the resulting limitations on signal acquisition are discussed and theoretical
limits on the accuracy are derived. An optimum sampling pattern for the system is pre-
sented. Signal processing in this case has to solve a frequency estimation problem. A
fast algorithm for use with a nearly optimum sampling pattern is derived, and its per-
formance is verified in simulations. As a building block for this algorithm, fast and

1



1.2. MEASUREMENT PRINCIPLES

accurate frequency and phase estimation from a low number of samples is needed, and
for that purpose a new, optimized interpolated FFT and a time-saving implementation
of a linear least squares phase estimator are developed. These results can be applied to
a wide variety of applications, some of which are presented in chapter four. The com-
putational effort and the accuracy of the new algorithms are compared to alternative
frequency estimation algorithms. Next two actual implementations of the algorithms
for the given measurement system are presented, taking into account additional issues
such as system calibration and offering insight into the trade-offs between processing
time and accuracy. A new method for spatial filtering to deal with lower signal modu-
lation, especially in the case of laser speckle, is shown. It uses additional information
from the raw data and knowledge about the noise characteristics of the evaluation algo-
rithm. Simulations and measurement results are presented that confirm the theoretical
results above, and the influence of speckle in frequency scanning interferometry is
discussed

In chapter four, further applications for the new algorithms that have been derived
in the context of multiple wavelength interferometry are discussed. As an example,
the use of phase and frequency estimation in the context of polarization imaging is
presented. The results show that these algorithms can significantly reduce hardware
requirements and increase the flexibility of polarization imaging systems.

In chapter five, the results are summarized, and the three systems from chapter two
and three are compared with respect to their use in production environments.

1.2. Measurement Principles

There are several basic measurement principles for acquiring 3-D information [Schwartz
et al., 1999]. The most important ones are discussed below with respect to their appli-
cability for measuring rough surfaces quickly and accurately:

• Triangulation: This includes depth from focus, shape from shading, fringe pro-
jection, laser line, deflectometry and stereo camera systems.

• Interferometry: using coherent light. Single (classical laser interferometry),
multiple (multiple wavelength interferometry) or a continuum of wavelengths
(white-light interferometry) can be used. The height can be determined based
on the relative phase, coherence or a combination of both [Häusler, 1999]. Holo-
graphic interferometry and electronic speckle pattern interferometry also belong
to this category.

• Time of flight: measuring the time it takes for the light to travel to the object
and back, based on the group velocity, typically incoherent.

Time of flight will not be discussed any further as the currently available systems
are far too inaccurate (typical standard deviation is on the order of millimeters), and
even though improvements are expected in the future, it is unlikely that sub-micron
resolutions will be available any time soon, if at all.

2



CHAPTER 1. INTRODUCTION

1.2.1. Triangulation

The accuracy of triangulation depends on the triangulation angle θ. The physical limit
on the z-accuracy for a laser line based triangulation system is given by the following
equation:

δz = C λ

2π sin(u) sin(θ) (1.1)

with δz height resolution, λ wavelength, sin(u) aperture of the imaging system and
θ triangulation angle. C is the speckle contrast, essentially the signal-to-noise ratio
(SNR) for the pixel under investigation. In practice, a highly accurate triangulation
system with a short working distance and a small field of view can reach a z-resolution
of about 1 micron. For larger fields of view and larger working distances the resolution
is lower, typically tens of microns. The same applies to fringe projection techniques.

Similar physical limits apply to depth from focus:

δz ∝ λ

sin(u)2 (1.2)

There are a number of passive (i.e. not using a light source) triangulation based
systems, including stereo cameras and photogrammetric approaches. At least for fast
measurements these typically have a lower resolution as the SNR is worse.

1.2.2. Interferometry

Light emitted by a laser is (at least approximately) monochromatic and polarized, and
can be described as a plane electro-magnetic wave. In interferometry, this light is split
into a reference and an object wave, and is later recombined and superimposed on
a detector, e.g. a photo diode or a camera. Depending on the path difference there
can be constructive or destructive interference, and based on this interference, one can
in turn determine the path difference. As the signal is periodic and repeats with ev-
ery height difference of λ/2, this method can only be used for smooth objects with
very small height differences between neighbouring pixels, where a spatial unwrap-
ping procedure (assuming that neighboring pixels are less than λ/2 apart) can be used
to reconstruct the surface. There are multiple possible optical configurations, two of
which are shown here (Figure 1.2.2 and Figure 1.2.2). Another possible setup is pre-
sented in section 2.2.

Light and every other electro-magnetic wave have to fulfill Maxwell’s equations.
This leads to the following equations (slightly simplified: In reality, the amplitude A
might be complex and k is a vector perpendicular to A. This can be neglected as in
typical interferometric configurations reference and object beam are parallel and both
beams have the same polarization):

Eref (t, x) = Arefei(ωt−kz0)

Eobj(t, x) = Aobjei(ωt−kz1) (1.3)

with wave number k = 2πfn/c, where f is the laser frequency and n the index of
refraction of the medium — in the following n = 1 will be assumed. The electric field

3



1.2. MEASUREMENT PRINCIPLES

(a) Michelson Interferometer (b) Fizeau Interferometer

Figure 1.1.: Optical configurations for interferometric measurement systems

at the sensor is given by the superposition

E = Eref + Eobj . (1.4)

The sensor records the intensity only, the time average of the squared absolute value:

I(x) = 〈EE∗〉 =
〈(
Arefe

i(ωt−kz0) + Aobjei(ωt−kz1)
)

·
(
Arefe

−i(ωt−kz0) + Aobje−i(ωt−kz1)
)〉

= A2
obj + A2

ref + AobjAref
(
eik(z1−z0) + eik(z1−z0)

)
= A2

obj + A2
ref + 2AobjAref cos(k(z1 − z0))

= Iobj + Iref + 2
√
IobjIref cos(k(z1 − z0))

= Iobj + Iref + 2
√
IobjIref cos

(2πf
c

(z1 − z0)
)

(1.5)

As the path length difference z1−z0 corresponds to twice the surface height difference
∆h, one can rewrite the equation as follows with offsetC = Iobj+Iref and modulation
A = 2

√
IobjIref :

I = A cos
(4π
c
· f ·∆h

)
+ C (1.6)

In this equation the relationship between offset and modulation is not directly visible
any more, but this is usually not a problem as it is very hard to use that relationship
in practice. It can only be used if there is no scattered or otherwise incoherent light
present, and the camera has to be highly linear. Even then, the possible improvement
is small [Wieler, 2006].

In phase shifting interferometry, the reference is moved in order to vary the phase
difference. The signal phase is then determined from a low number of frames. There
have been numerous discussions of optimum algorithms for processing of these signals

4



CHAPTER 1. INTRODUCTION

with respect to vibration and stability. The surface can then be reconstructed using
spatial unwrapping.

The signal model above does not take into account different reflection properties
of the surface. For reflection on a smooth reference mirror and object, the equation
above is correct, but on a rough surface the phase of the reflected light might change.
A more complete signal model is therefore:

I = A cos
(4π
c
· f ·∆h+ φ0

)
+ C (1.7)

1.2.3. Coherence

For measurements of rough surfaces, classic interferometry cannot be used. Here the
concept of coherence plays an important role. With its help the absolute distance of
the object from the virtual reference plane can be determined. There are two main
applications: Multiple wavelength interferometry and white-light interferometry. The
interferometer types and the basic equations from the previous section also apply to
coherence based methods; the advantages and disadvantages and the specific signal
processing algorithms will be detailed in chapters 2.1, 2.2 and 3.

White-Light Interferometry

In white-light interferometry, a light source with a certain bandwidth is chosen, i.e. not
a laser but a light emitting diode (LED) or a halogen lamp. There is direct relationship
between the so called coherence length and the bandwidth of the light source:

lc = c · λ
2

∆λ (1.8)

with bandwidth ∆λ and central wavelength λ. Definitions of the coherence length
differ slightly in the literature. With the spectral full width for half maximum λH and
lc the length for which the modulation of the correlogram exceeds 1/e, the constant is
c = 2

√
ln(2)/π [Pavlíček, 1999].

The full signal model is more complex now than the equation for classical inter-
ferometry: The autocorrelation of the light enters into the modulation term. The co-
herence function, often called correlogram, is the autocorrelation of the light. If the
spectrum of the light source is symmetric, the result can be split into an envelope
function and a modulation with a carrier frequency. For the commonly used Gaussian
spectrum, this leads to the following equation:

I(z) = Iobj+Iref+2
√
IobjIref exp

(
4(z − z0)2

l2c/2

)
cos

(2πf
c

(z − z0) + ϕ0

)
(1.9)

The maximum of the envelope of the coherence function indicates the position of
the virtual reference plane. In general, the accuracy increases with increasing band-
width [Seiffert, 2007], but for rough surfaces there are limitations due to speckle: The
coherence length must be larger than the surface height variation, otherwise the cor-
relograms will be distorted. A commonly used threshold is

lc ≥ 2π
√

2σobj ≈ 9σobj . (1.10)

5



1.3. STATE OF THE ART IN INDUSTRIAL OPTICAL METROLOGY

In case of a surface measurement, a scan in the z-direction is required. This usually
requires a mechanical stage, and the accuracy of this stage plays an important role.
There are three options for the scan: The object, the reference mirror or the whole
measurement system can be moved. These are not quite equivalent from a theoretical
point of view. If the measurement system or the object is moved, the speckle field
changes during the scan; but it has the advantage that the system is always optimally
focused at the true height. If the reference mirror is moved, the speckle field remains
the same, but the scanning range is limited by the focal depth.

A high speed system for surface measurements is discussed in chapter 2.1.
It is possible to replace the z-scan with a spatial phase shift by reducing the sensor

from 2-D to 1-D. Such a line sensor and its optical setup are described in chapter 2.2.

Multiple wavelength interferometry

Instead of using a continuous spectrum of light, one can also use multiple well-defined
frequencies.

There are two possible system configurations:

• Multiple frequencies can be applied at the same time. They can either be sep-
arated optically, e.g. by using a grating, and therefore be detected by multi-
ple detectors, or they can be detected together with a single sensor, when a
time-dependent change in the detected intensity is introduced, e.g. by using an
acousto-optic modulator in the reference beam.

• Alternatively, different frequencies can be applied consecutively, e.g. by using
a tunable laser. This will be the focus of this thesis.

This increases the ambiguity interval from λ/2 in case of classical interferometry
to ∆/2, where ∆ is the synthetic wavelength given by

∆ =
∣∣∣∣∣ 1

1
λ1
− 1
λ2

∣∣∣∣∣ (1.11)

The same ambiguity also applies if more than two frequencies are used from a uni-
formly spaced grid of frequencies.

For a continuous change of the light source frequency f , a sinusoidal signal in f is
obtained:

I(f) = Iobj + Iref + 2
√
IobjIref cos

(2π(z1 − z0)
c

· f + ϕ0

)
(1.12)

1.3. State of the Art in Industrial Optical Metrology

As the focus of this thesis is on optical metrology systems for industrial applications,
this brief overview is limited to a number of commercial system that are currently
(April 2007) available to the author for measurements. Only systems with both high
accuracy for height measurements while still offering large fields of view are men-
tioned here. This is by no means a complete list and only for illustrative purposes.
Only systems that can be used for rough surfaces are considered.

6



CHAPTER 1. INTRODUCTION

• There are a large number of companies offering WLI systems, including Zygo,
Veeco, 3D-Shape, Polytec, Mahr, . . .

To the knowledge of the author, the fastest commercially available system to
date is a system from 3D-Shape (High-Speed Korad). This system, which was
modified and presented internally at Bosch in early 2005, reaches more than
230µm/s at 512 × 512 resolution, without a significant increase in standard
deviation (absolute numbers depend on surface roughness); up to 150µm/s are
possible without subsampling. This was partly developed in the context of this
thesis.

• Alicona offers a system called InfiniteFocus which is based on depth from focus.
This system features nice color images even on rough and steep surfaces, but
height resolution is only comparable to white-light interferometry or multiple
wavelength interferometry for very small fields of view, on the order of 100µm.

• Nanofocus offers a confocal microscope for surface measurements. Height res-
olution is good, but the largest available field of view is currently 1.6mm ×
1.6mm.

• Siemens offers the SiScan system, another system based on confocal microscopy.
This line sensor is essentially a point sensor replicated 64 times. It is very fast
(up to 500,000 measurements per second), and its accuracy especially on “diffi-
cult” (i.e. high-contrast) surfaces is good. This system is a direct competitor to
the line scanning white-light interferometer presented in chapter 2.2.

• A large number of fringe projection systems are available. They offer good
performance, but are subject to the limitations discussed previously, i.e. the res-
olution for larger fields of view is lower than that of interferometric systems.

1.4. Laser Speckle

When measuring rough surfaces, laser speckle have to be considered.
Speckle are caused by the superposition of light from many scatterers on a rough

surface, and lead to two main issues:

• The intensity of a speckle field follows a negative exponential distribution.

• The phase is uniformly distributed.

Properties of speckle are discussed in [Goodman, 1975]. There is no way around these
effects, but there are several aspects to be taken into account in order to minimize their
influence on measurement accuracy. Options include using a superposition of multiple
independent speckle patterns to improve the intensity distribution as well as adjusting
the pixel size of the camera such that it corresponds to the speckle size and no addi-
tional loss of contrast due to spatial integration occurs. In order to optimize measure-
ment systems, the properties of the speckle field have to be known. For white-light
interferometry, the issue has been discussed in detail by [Ettl, 2001] and [Pavlíček,
1999]. For multiple wavelength interferometry, [George & Jain, 1973] and [Salvadé,

7
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1999] have analyzed the influence. This thesis adds some measurement results and
discusses consequences for the algorithms in multiple wavelength interferometry.

1.5. Digital Signal Processing and Estimation Theory

Metrology today usually involves digitizing analog data and processing it on some
kind of computer. The main objective of signal processing in metrology is reducing
the dimensionality of the raw data to something that can be analyzed by a human or
even automatically using classification methods, often leading to a binary decision:
“good” or “bad” part. In case of interferometry, a series of frames taken by a camera
has to be converted to a height map, which can later on be compared to e.g. CAD
data. This is a parameter estimation problem. Both data acquisition and parameter
estimation will be discussed next. Classification is outside the scope of this thesis.

1.5.1. Data Acquisition

The first step to digital signal processing is digitizing the data — which is done by
analog-to-digital converters (ADCs). ADCs necessarily exhibit two types of noise,
electronics noise and quantization noise [Seiffert, 2007]. In optical metrology for
surface measurements, the sensor is usually a camera. Noise here includes electronics
and readout noise (approximately Gaussian), and — as for all optical measurements
— photon noise (which follows a Poisson distribution). Conversion to a digital signal
introduces quantization noise (uniformly distributed).

The two main types of sensors currently used are CMOS and CCD imagers, with
various subtypes. Several chapters on sensor concepts can be found in [Jähne et al.,
1999] and will not be repeated here. Five main aspects which are relevant for interfer-
ometry will be highlighted here:

• Camera electronics and readout noise should be low. This noise is mainly ther-
mal and can be reduced by cooling. This is most important for applications
where the light intensity is low, which is generally not a problem in laser inter-
ferometry. It is very important to have a large dynamic range, and a low noise
level obviously helps there, but more importantly, a large full well capacity is
desirable. At the same dynamic range, a camera with higher noise and higher
photon capacity is better because of lower relative photon noise.

• Camera speed is extremely important for white-light interferometry systems, but
less important for other interferometric applications. CMOS sensors tend to be
faster than CCD sensors overall, and a second speed advantage of some CMOS
sensors is the ability to select arbitrary regions of interest, and thus reduce the
data volume and increase speed if only a part of the field of view is needed. In
case of CCD cameras, full camera lines have to be read.

• Camera spectral efficiency is also important for fast measurements when the
available light intensity is limited. Both the active area (fill factor) and the
quantum efficiency of the detection play a role. Quantum efficiency depends on
the sensor and on the wavelength of the light. It can be very high at optimum
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wavelength, more than 70% are common and some cameras reach more than
90%. Most CCD cameras use microlens arrays to increase the effective fill
factor to close to 100%. CMOS cameras usually do not have microlenses and
often only reach 30-40% fill factor.

• The camera spectral sensitivity must be a good match to the wavelength of the
light source used (see quantum efficiency above). If the light source is in the
near infrared, it is important that there are no filters used to limit the camera
to the visible range (as done for consumer cameras to reach a natural looking
image).

• Both CCD and CMOS cameras are available with different interfaces, includ-
ing USB, Firewire, GigE (Gigabyte Ethernet) and Cameralink as well as several
analog interfaces. For further processing on a PC, a digital interface is conve-
nient. USB and Firewire offer reasonable speed at low cost, while Cameralink
offers higher performance at a fairly high cost; GigE is a new standard which is
just arriving in volume.

Based on these considerations, a fast CMOS camera with Cameralink interface was
chosen for the white-light interferometry system discussed in chapter 2.1, a fast and
highly linear CCD camera with Cameralink interface interface was chosen for the line
scanning WLI system in chapter 2.2, and a CMOS camera with higher bit depth and
USB interface was chosen for the frequency scanning system discussed in chapter 3.

1.5.2. Data Processing

Once the data is digitized, it has to be processed: For reasons of flexibility, most of the
work in this thesis was performed on a standard PC. For high speed applications there
are faster options though, especially if the problem can be parallelized.

Many framegrabbers and some cameras offer the opportunity to process data di-
rectly, using specialized signal processors of field programmable gate arrays (FPGAs).
Most signal processors in intelligent cameras have been optimized for filtering indi-
vidual images or for video compression and are of little use for the analysis of image
sequences, as the memory access patterns and available memory bandwidth are insuf-
ficient for that task. FPGAs are freely configurable (though more difficult to program),
and provided they have sufficient internal memory or sufficiently fast external memory
banks, almost all current FPGAs are fast enough to (pre-)process camera data in real-
time. In the case of both white-light and multiple wavelength interferometry, there is
an individual time series for every pixel which has to be analyzed, and in an FPGA
a large number of pixels can be processed in parallel (limited only by the number of
logic elements).

The basic structure of an FPGA is shown in Figure 1.2. Several concepts for using
an FPGA in white-light interferometry are discussed in detail in chapter 2.1.

A new alternative to using dedicated hardware is the use of PC graphics cards,
which are essentially highly parallel signal processors, but with typically lower ac-
curacy and some limitations on data structures and access patterns. Most of the lim-
itations can be overcome with the newest generation of graphics cards with several
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Figure 1.2.: Structure of a Xilinx Stratix II FPGA (taken from the manual). Left:
Overall structure. Middle: Intermediate building blocks, so called LABs.
Right: Basic building blocks, so called ALMs. An FPGA can have more
than 100000 ALMs, several hundred dedicated multipliers for filter im-
plementations and several megabytes of embedded memory.

hundred freely programmable shaders. Some compilers and mathematical libraries
for these cards are already available.

1.5.3. Estimation Theory

Once the data has been acquired (and maybe filtered or pre-processed), algorithms
are needed to extract an estimate of the desired parameters from the data. The fol-
lowing introduction to estimation theory gives a short summary of some important
methods that will be used later on. A more detailed introduction can be found in many
textbooks, including [Poor, 1994] and [Moon & Stirling, 2000]. The description and
notation in this chapter closely follows [Poor, 1994]. In all cases considered in the
following section, it is assumed that the data is discrete (i.e. sampled) and that the
parameter to be estimated is continuous.

There are two general approaches to parameter estimation:

• Bayesian parameter estimation: The parameter is treated as a random variable
statistically related to the observation.

• Non-random parameter estimation: The parameter is unknown, but no statistical
properties are assumed explicitly.

Bayesian estimation determines the parameter estimate that minimizes the posterior
cost given the distribution of the parameter, the distribution of the observations, a cost
function defining the cost of estimation errors and an observation. This is described in
detail in [Poor, 1994] on page 142.

There are multiple possible criteria and requirements for an estimator. In case of
Bayesian estimation, commonly used criteria include:

• Minimum-Mean-Squared-Error (MMSE), also called conditional mean estimate.

C(a, θ) = (a− θ)2 (1.13)

• Minimum-Mean-Absolute-Error (MMAE), also called conditional median esti-
mate.

C(a, θ) = |a− θ| (1.14)
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• Maximum A Posteriori Probability (MAP), also called conditional mode esti-
mate (obtained for ∆ → 0). This is not really a Bayesian estimate, but it fits
into this framework.

C(a, θ) =
{

0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆

(1.15)

These differ only in the cost function, the names and definitions are self-explanatory.
A Bayesian approach is preferable if prior knowledge on the parameter distribution
is available. It offers an intuitive method to introduce knowledge on surface proper-
ties into processing of the raw data by specifying a prior on the spatial distribution
[Hissmann, 2005].

In nonrandom parameter estimation a prior distribution on θ is not needed. Without
a prior, averaging can only be performed with respect to the conditional mean-squared
error. There is no solution that minimizes the variance for all parameter values, and
this would not make sense anyway — for any parameter value θ0 one could choose
the estimator θ̂ = θ0 to get zero variance, but for all other parameter values such an
estimator would obviously not be good. The restriction to unbiased estimators avoids
this problem: The desired estimator is usually a minimum-variance unbiased estimator
(MVUE). It has to be noted that it is often hard to find such an estimator, it does not
always exist, and it is not always the best choice either, as for some examples a much
lower variance can be obtained with a biased estimator.

Nevertheless, there are some important and useful results associated with this ap-
proach. The so-called information inequality gives a lower bound on the variance of
an estimator:

Varθ ≥

[
∂
∂θEθ(θ̂(Y ))

]2

Eθ

[(
∂
∂θ log pθ(Y )

)2
] (1.16)

The denominator is also called the Fisher information Iθ. For unbiased estimators this
simplifies to

Varθ ≥
1
Iθ

= 1

Eθ

[(
∂
∂θ log pθ(Y )

)2
] (1.17)

This result is known as the Cramér-Rao Bound (CRB).
The Cramér-Rao bound as a lower bound on the variance of an unbiased estimator

can often be determined even though it is very difficult to find a good estimator and
might be very hard or impossible to find any of the estimators discussed above in a
given estimation problem. This is a highly useful result if an available estimator is
close to this bound, because it shows that the estimation cannot be improved much
further, and therefore the current algorithm is a reasonable choice. The opposite does
not hold true: The CRB is not necessarily a tight bound, and an algorithm might
be good even though it is quite far from the CRB. The signal model might imply
a threshold effect for larger noise, and therefore a bound based on looking at local
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curvature might not be the best approach. There are a number of other bounds, for
example [Bell et al., 1997]. For the frequency estimation problem in the presence
of low noise, the CRB is a reasonably tight bound though, and the assumption of
approximate unbiasedness of the estimator is valid.

Not every estimator can be found easily, and especially for a finite number of sam-
ples the problem can get highly complex for the Bayesian and nonrandom approaches
discussed so far. A frequently used alternative with good asymptotic properties is
Maximum Likelihood estimation. It can be seen as MAP estimation with a uniform
prior, or as finding the value of θ that makes the observations most likely. An estimator
that reaches the CRB is a maximum likelihood estimator; the inverse is not true, but
for the number of observations n → ∞ and independent and identically distributed
noise, it reaches the CRB asymptotically.

For Gaussian noise with zero mean, maximum likelihood estimation is equivalent
to classical least squares estimation:

θ̂ = arg min
θ

N∑
k=1

[Yk − sk(θ)]2 (1.18)

The discussion above can be extended to the estimation of vector parameters as
they occur in optical metrology. The notation in the following follows [Wieler, 2006].
We investigate performance bounds for an estimator T (X) (whereX denotes the data
vector) of a (vector) parameter θ, given a probability density function f(X, θ).

The information inequality can be rewritten in vector form using this notation and
with the estimator bias b(T, θ):

Var(T, θ) ≥ 1
I(θ) ·

(
1 + ∂b(T, θ)

∂θ

)2
(1.19)

I(θ) = E
[(
d

dθ
log f(X, θ)

)2
]

(1.20)

In case of an unbiased parameter, this simplifies to

Var(T, θ) ≥ 1
I(θ) (1.21)

If we look at the signal model, we can write the actual detected data vector x as a
sum of the “true” signal (characterized by the sampling points t and the true parame-
ters θ) and noise:

x = y(t, θ) + n (1.22)

As given above, an element of the Fisher information matrix can be written as

Ij,k(y; t, θ) = E
[(
∂

∂θj
(log f(x; θ)) · ( ∂

∂θk
(log f(x; θ)))

)]
(1.23)
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In case of multivariate Gaussian noise with covariance matrix Σ, the probability den-
sity function is given by

f(x, θ) = 1√
(2π)N det(Σ)

· e−
1
2 [x−y(t,θ)]TΣ−1[x−y(t;θ)]

(1.24)

Then the elements of the Fisher information matrix can be computed:

Ij,k(y; t, θ) = E
[(
∂

∂θj
(log f(x; θ))

)
·
(
∂

∂θk
(log f(x; θ))

)]
(1.25)

∂

∂θj
(log f(x; θ)) = ∂

∂θj

(
−1

2 [x− y(t, θ)]T Σ−1 [x− y(t; θ)]
)

= −1
2

(
− ∂y
∂θj

)T
Σ−1 [x− y(t; θ)]− 1

2 [x− y(t; θ)]T Σ−1
(
− ∂y
∂θj

)

=
(
∂y

∂θj

)T
Σ−1 [x− y(t; θ)]

(1.26)

Ij,k(y; t, θ) = E

( ∂y
∂θj

)T
Σ−1 [x− y(t; θ)] [x− y(t; θ)]T Σ−1

(
∂y

∂θj

)
=
(
∂y

∂θj

)T
Σ−1E

[
[x− y(t; θ)] [x− y(t; θ)]T

]
Σ−1

(
∂y

∂θj

)

=
(
∂y

∂θj

)T
Σ−1E

[
nnT

]
Σ−1

(
∂y

∂θj

)

=
(
∂y

∂θj

)T
Σ−1ΣΣ−1

(
∂y

∂θj

)

=
(
∂y

∂θj

)T
Σ−1

(
∂y

∂θj

)

(1.27)

Up to now, this is a general approach with no constraints on the signal model or
the number of parameters. The only limitation is the assumption that the noise is
multivariate Gaussian.

In order to determine the CRB, the Fisher information matrix has to be inverted. If
there is only a single parameter or if the parameters are independent, one can simply
invert the diagonal elements directly. Usually, when there are multiple parameters a
matrix inversion will be required. The computational effort can be reduced for nui-
sance parameters: As we are not interested in the full CRB matrix, but only in the
entries corresponding to the θi we would like to estimate, a full matrix inversion can
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be avoided. This is shown in [Wieler2006a] but will not be discussed in detail in this
thesis.

Getting back to optical metrology, two estimation problems can be stated:

• In the first case, the available data is evaluated for each pixel individually. This
type of problem lends itself to parallel processing. Usually an underlying signal
model is available, but no informative prior on the distribution. This leads to
nonrandom parameter estimation, and for tractable results maximum likelihood
or least squares estimation are usually used.

• In case of surface measurements, reasonable assumptions for the prior are typ-
ically spatial relations, which can be used in Bayesian estimation approaches
[Restle, 2003; Hissmann, 2005]. A signal model is required as discussed above.
The additional prior depends on the measurement task, ranging from the as-
sumption of a perfectly smooth surface to a weak preference for smoothness.

In practice both approaches are often combined by using the result from the first ap-
proach as an initial value for the second one, for example by filtering a height map to
suppress outliers [Restle, 2003]. It is sometimes possible to directly use the second
approach, thereby reaching a better result [Hissmann, 2005].

The best feasible approach for many applications is a maximum likelihood estima-
tor. If not even that is possible, least squares estimation can be used. The Cramér-Rao
bound is not a bound on the mean squared error but a bound on the minimum variance
of an unbiased estimator. Unbiasedness is not an issue for the applications discussed
in this thesis — most frequency estimators are quite good, and show very little bias if
the SNR is high. All estimators in the following are designed to be (almost) unbiased.
While they are not perfectly unbiased in practice, their performance is good enough
that the bias term in the information inequality above is small and therefore the CRB
alone yields useful results. The CRB can then, for example, be used to rate the perfor-
mance of estimators obtained by heuristic methods. For stronger noise this is not true;
estimators show threshold effects and performance decreases rapidly. These cases are
not discussed here, as these noise levels are irrelevant for the metrology applications
discussed in this thesis.
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2. White-Light Interferometry

The first approach to interferometric measurements on rough surfaces discussed in this
thesis is white-light interferometry. This is a relatively mature technology, and there
are several commercial products available. Most of these are designed for laboratory
use and not for in-line inspection, though. The key differences between these dif-
ferent fields of application are robustness and measurement speed. Ways to increase
measurement speed are discussed in this chapter.

2.1. High-Speed White-Light Interferometry

2.1.1. Setup

Optical Setup

As mentioned in the introduction, there are multiple possible configurations for an
interferometric measurement system. For the high-speed white-light interferometry
system discussed next, a Michelson setup was chosen where the whole measurement
system is moved relative to the measured object. This way, the area of the correlogram
is always in focus, and a large working distance is possible. Additionally, the intensity
of object and reference beam can be adjusted by simply inserting different filters into
the reference beam. For measurements with a Piezo-driven stage, the reference mirror
only instead of the whole measurement system was moved.

Light Source

Three different light sources have been investigated. The choice of light source has a
direct influence on the signal processing, as the coherence width and the general shape
of the correlogram correspond to the autocorrelation of the light source:

• a LED with approximately Gaussian spectrum,

• a fiber coupled high pressure Na-lamp and

• a halogen lamp.

For most applications a high intensity while keeping the spatial extent of the light
source sufficiently small (to keep spatial coherence) is desirable. Signal processing is
easiest if the envelope and thus the spectrum is a “nice” and smooth function, e.g. a
Gaussian. The optimum coherence length depends on the surface roughness, in gen-
eral a shorter coherence length yields more accurate results but it also makes subsam-
pling difficult, causing longer measurement times.

15



2.1. HIGH-SPEED WHITE-LIGHT INTERFEROMETRY

The LED offers the highest luminance in this comparison, mainly due to its small
size compared to the other sources. Its spectrum is smooth and its coherence length is
quite long at more than ten microns.

The Na-lamp has an interesting spectrum with several strong lines, resulting in a
very long coherence length and a spectrum that looks like a modulated sinusoid with
a fairly complex envelope. This lamp has the highest overall intensity, but due to its
lower luminance, the remaining intensity after fiber coupling and using a pinhole for
spatial coherence was lower than that of the LED. This kind of spectrum offers some
additional possibilities: Due to the continuously present sinusoidal signal, the position
of the stage can be monitored from the camera signal (as in a laser interferometer).
Finding the maximum of the envelope and thus the object height is more difficult, and
might be the object of future research as in theory a high accuracy should be possible.

The halogen lamp also had a reasonably looking spectrum, but with a much shorter
coherence length (on the order of two microns). While this is a good choice for highly
accurate measurements, combined with the lowest intensity of the sources investigated
here it slows down measurements as the signal has to be closely sampled and the
exposure time has to be relatively long.

The LED was chosen for all further measurements as luminance is very important
for a high-speed system, and because measurements with the high pressure Na-lamp
spectrum turned out to be difficult to analyze. A more detailed analysis of light sources
for interferometry can be found in [Höfer, 1994].

Motion Stage

Another important issue is the use of high precision stages for the mechanical scanning
procedure. Any error in the stage position directly causes an error in the resulting
height map. There are two main concepts: For small height ranges, a Piezo-driven
stage can be used to move the reference mirror only. For larger height ranges, a linear
stage (direct linear motor or spindle driven) can be used to move the whole system or
the measurement object. Four stages have been analyzed in detail for this application:

• Newport XML-350 (linear motor, high-precision glass scale encoder, up to
300mm/s, 1nm resolution, bi-directional repeatability 50nm)

• PI M-511DG.K029 (spindle-driven, rotary encoder, gear, nominal resolution
6nm, up to 6mm/s, bi-directional repeatability 2 microns)

• PI M-511DD stage (“ActiveDrive”, glass scale, 100nm resolution, up to 100mm/s,
bi-directional repeatability 0.1 microns)

• PI P-625.1CD, Piezo-driven stage with capacitive sensor

The characteristics above as given by the manufacturers are of little use for the de-
sired application though: For high-speed white-light interferometry, it is not possible
to move the stage to a position, acquire a frame, move it to the next position and so on.
Instead, the stage has to be moved continuously while the images are being acquired.
This is a totally different requirement on the behavior of the stage and its controller.
The absolute difference between stage nominal and actual position is not a problem as
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long as the actual position can be read whenever a frame is acquired. With the current
software architecture, this is easily possible with the controller C-843 from PI, but
more difficult with the XMS controller from Newport.

A number of measurements at different velocities were performed using a SIOS
laser interferometer. The results and a more detailed discussion of the stages are given
in appendix A.

Of the large stages, the Newport XML-350 stage offered the highest accuracy (com-
parable to the Piezo), but as it is also the most expensive stage (mainly due to the
relatively expensive controller) and turned out to be more difficult to integrate into
existing software, it was not used in the following.

The PI M-511DD stage turned out to be unsuitable for application in white-light
interferometry. First of all, at 100nm the reported resolution of the encoder is not
high enough to use it in the evaluation algorithms, and secondly, there was an issue
with vibration (on the order of more than a micron). This may have been a calibration
problem with that specific stage.

The PI M-511DG.K029 stage works reasonably well, but there is significant sam-
pling jitter that gets worse with increased velocity. As the rotary encoder is at the
motor, it cannot “see” errors caused by the transmission gear. These errors are clearly
visible as frequency components in the analyzed data. Bidirectional repeatability is
very poor, but for a white-light interferometry system unidirectional repeatability is
more important, as returning to the same initial position before performing the next
measurement is possible. These results were pretty good, and noise was much lower
than for the table with the glass scale. For large distances on the order of centimeters
this is not true any more, but for a white-light interferometry system a scanning range
of millimeters is sufficient for most measurements. Especially results at 150 microns/s
velocity were surprisingly good.

As expected, the piezo-driven stage P-625.1CD offers the best performance, but
measurements showed that the velocity did not keep constant during the movement at
first. This has since been fixed by PI. The capacitive sensor yields results that match
the results of the laser interferometer very well (less than 15nm standard deviation).

The sampling jitter observed has a significant influence on the choice of the most
appropriate algorithm. One option to reduce this error is using a high-speed-camera
that can be triggered by an accurate position source, i.e. an integrated laser interfer-
ometer.

Camera

For a high speed system, the camera and its interface are important. As already men-
tioned in chapter 1.5.1 for that purpose a fast CMOS camera with Cameralink interface
was chosen. The camera model Photonfocus MV-D1024-160-CL features a 160 MHz
pixel clock, dual tap Cameralink connection (2×80 MHz) and a frame rate of 150fps at
1024× 1024 with 8 bit resolution. As long as the available light intensity is sufficient,
the frame rate can be increased almost linearly with a reduction in resolution, so that
for most measurements a resolution of 512×512 at 480fps was used. An arbitrary field
of view can be chosen without changes to the setup or the algorithms. An even lower
resolution offers little benefit as the exposure time cannot be reduced any further for
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rough metal surfaces with the LED light source described above, and therefore higher
frame rates are not possible. For even higher frame rates, a stronger light source or a
camera with higher quantum efficiency would be required (see Figure 2.1). Camera
readout noise is about one gray level, but there is fairly strong fixed pattern noise. This
is not a problem for this application as all pixels are analyzed individually and spatial
relationships are not needed. The camera features an external trigger input and can
thus be synchronized to the movement of a mechanical stage. Additionally, the cam-
era characteristic can be modified between linear and logarithmic sensitivity, which
is mainly useful for high contrast surfaces. Signal processing with non-linear cam-
era characteristics is difficult, therefore whenever possible the linear setting should be
used.

Synchronizing the camera to an external trigger input was implemented and tested,
but while it did improve the correlogram shape, the cost in reduced scan velocity (as
the speed has to be lowered such that the trigger interval is large enough even if two
triggers closely follow each other due to jitter caused by the stage) was too high (about
a factor of two in actual measurements). The implementation used an external “trigger
box” that counted the increments of the step motor from the stage M511DG.K029
and used it to trigger the framegrabber (and therefore the camera) every N pulses.
Using a free running camera, a significantly larger number of samples (about a factor
of two) can be acquired in the same measurement time (i.e. closer spaced sampling
or faster measurements), which more than compensates for the sampling jitter if the
stage M511DG.K029 is used. Results might be different for other stages.

The data is transferred to a PC using a SiliconSoftware MicroEnable III Camer-
aLink framegrabber. The fastest currently available PC chipsets at that time (2005)
did not offer PCI-X interfaces (except for a few expensive and less compatible server
mainboards), therefore a normal PCI slot was used. This limits throughput and thus
camera pixel clock to approximately 118 MB/s (theoretical limit 133MB/s, but there
is some bus overhead). Today, almost all mainboards feature PCIe interfaces and
framegrabbers for PCIe are readily available, so this is not a problem any more. The
PC itself was using a Pentium 4 processor running at 3.6GHz and had 2 GB of RAM.

2.1.2. Signal Processing

This chapter briefly summarizes a number of possible algorithms for finding the max-
imum of the envelope of the correlogram. The theoretical accuracy of the estimation
has been discussed by [Seiffert, 2007], and some algorithms are described in detail
in his thesis. In the following several additional algorithms are considered, and all
algorithms are analyzed with respect to hardware acceleration.

The optimum algorithm strongly depends on the noise characteristics and on the
signal properties; these in turn depend on the illumination, the stage, and the camera.
Part of this analysis was performed together with Sébastien Wagner and is described
in more detail in [Wagner, 2005].

For faster image acquisition, subsampling can be applied. This reduces the number
of available samples on the correlogram and therefore increases relative noise. This
is not discussed here as all algorithms remain applicable, they just “see” a different
signal frequency and become more sensitive to noise and sampling jitter.
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Figure 2.1.: Quantum efficiency of Photonfocus MV-D1024-160 CL vs. wavelength
[Photonfocus, 2005]

The algorithms described below are usually not used individually, but in a combi-
nation of multiple steps:

1. First, the relevant part (i.e. the range of the correlogram) of the signal for every
pixel has to be determined quickly, in order to reduce the amount of data. This
is called pre-processing in the following.

2. Next, the envelope of the correlogram has to be reconstructed.

3. Then the maximum has to be found, and an interpolation can be performed to
reach sub-pixel accuracy.

The first two steps can be combined if there is a fast way to get an accurate estimate of
the envelope; the last step is usually separate as it requires knowledge on the position
of the maximum and a local interpolation.

Pre-Processing

Several methods exist to find the range of the correlogram quickly. They are simple,
and implementation is usually fast. Four of them are mentioned here:

• Minimum or maximum search in the raw data: Requires just one comparison
per incoming pixel, and only three images are needed in memory at a time
(current frame, maximum values so far, position of the maximum). Minimum
search performs better than maximum search for two reasons: Additional inco-
herent light that might be temporarily present will always lead to an increase in
intensity, only coherent light might decrease intensity. Second, photon noise is
stronger for higher intensities.
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• Contrast search: Finds the maximum difference between consecutive frames.
Performance depends on the sampling interval, it is usually more robust than
minimum or maximum search as incoherent light cancels out. Requires four
images in memory and at least two comparisons.

• As the algorithms above are sensitive to noise, smoothing is helpful. A very
good option is a sliding average of the contrast values, which needs two ad-
ditional additions per frame. A much larger number of frames has to be kept
in memory though (in a typical application approximately 30 frames are used,
but that depends on sampling distance and coherence length), which imposes a
significantly higher load on the memory subsystem.

Envelope Detection

There is a gradual transition from pre-processing to algorithms that reconstruct the true
signal envelope: A sliding average reconstructs the envelope, and even the contrast
method offers a coarse estimate. It is possible to do that much more accurately though
- either directly in the time domain, possibly without additional pre-processing, or
in the frequency domain. For longer measurements in a high speed application it is
obviously not possible to perform an FFT on the whole set of data, but an FFT can be
applied once the interesting range of the signal has been found by pre-processing.

Matched Filter and Correlation-Based Techniques

Correlation based techniques can offer higher accuracy than pure envelope based tech-
niques, as they use the signal phase, too. A matched filter is the best choice here and
is discussed in detail in [Seiffert, 2007]. The main disadvantage is its high compu-
tational complexity. However, if instead of a true matched filter the correlation is
computed with a sine and cosine only (a good approximation for light sources with
long coherence length), the effort can be reduced significantly. The implementation
is then similar to the sliding average, just that now there are two running sums, one
obtained by multiplying the incoming signal with a sinusoid and the other obtained
by multiplying it with the same sinusoid shifted by 90◦. The envelope is then given
by the squared sum of the values of the two running sums for every position. This
requires just one additional value in memory and two additional multiplications (orN
more values in memory and one additional multiplication) compared to the sliding av-
erage and will be described in more detail below and in Figure 2.6. Seiffert uses three
sinusoids, but there is no reason for doing so as his formula can be simplified to the
one given here (which is also used for example for demodulation in communication
and radio systems). The performance of this algorithm is excellent if position jitter is
low. For higher position jitter, the correlation length has to be shortened (at the cost
of poorer noise suppression), but in this case N-bucket algorithms tend to be better
(see below). If computational complexity is not an issue, [Seiffert, 2007] has shown
methods to reconstruct the actual sampling positions and take them into account.
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N-Bucket Algorithms

The so-called N-bucket algorithms are well known from phase shifting interferome-
try. Their properties have been studied extensively, and their primary purpose is the
estimation of the phase of a signal sampled at known phase shifts. These algorithms
can also be used in white-light interferometry, and they are very attractive due to their
low memory requirements: A fairly accurate estimation of the envelope is possible
using a small number of samples at a time (resulting in much lower memory require-
ments compared to FFT-based algorithms). This is an important aspect for hardware
implementation.

This class of algorithms uses certain well-defined angles for the phase shifter in
order to obtain simple closed form expressions for the phase, for example using 60◦
or 90◦ increments. This limits the possible measurement velocities. The simple and
frequently used 3-frame algorithm is briefly derived next: it requires three images
sampled every 90◦.

Let I1 = C +D cos(ϕ − α), I2 = C +D cos(ϕ), I3 = C +D cos(ϕ + α). Then
we obtain

I3 − I1
I1 − 2I2 + I3

= cos(ϕ+ α)− cos(ϕ− α)
cos(ϕ− α)− 2 cos(ϕ) + cos(ϕ+ α) . (2.1)

For α = 90◦, this yields

− sin(ϕ)− sin(ϕ)
sin(ϕ)− 2 cos(ϕ)− sin(ϕ) = sin(ϕ)

cos(ϕ) = tan(ϕ). (2.2)

Therefore, in this case, the phase can be determined by

ϕ = arctan
(
I3 − I1

I1 − 2I2 + I3

)
. (2.3)

Similar tricks can be applied for other distances and larger numbers of samples.
A simple 4-bucket algorithm is given by [Wyant, 1982]:

ϕ = arctan
(
I2 − I4
I3 − I1

)
. (2.4)

A 5-bucket algorithm is given by [Carre, 1966; Cheng & Wyant, 1985; Larkin,
1996]:

ϕ = arctan
( 2(I2 − I4)
−I1 + 2I3 − I5

)
. (2.5)

Instead of estimating the phase one can also use these algorithms to estimate the
amplitude of the signal:

A2, 3−Bucket = (I3 − I1)2 + (I1 − 2I2 + I3)2 (2.6)

A2.5, 4−Bucket = (I2 − I4)2 + (I3 − I1)2 (2.7)
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A3, 5−Bucket = 4(I4 − I2)2 + (I1 − 2I3 + I5)2 (2.8)

For three samples, there is a unique solution, but for more than three samples there
are different options for making the resulting algorithms e.g. more robust to vibration
[de Groot, 1995]. One modifications to make the 5-bucket algorithm more robust to
sampling jitter is given by [Larkin, 1996]:

A3, 5−Bucket corrected = |(I2 − I4)2 + (I1 − I3)(I3 − I5)| (2.9)

There are algorithms using more frames, in phase shifting interferometry (PSI)N is
between 3 and 11 [Larkin, 1996; Hariharan et al., 1987] in most cases. Algorithms for
much larger N can be derived (e.g. 101 bucket [de Groot, 1997]), which is interesting
from a theoretical point of view as it shows a relationship to algorithms in the Fourier
domain.

These algorithms can be implemented in hardware quite easily, therefore their im-
plementation is described in more detail below and shown in Figure 2.5.

Single Side Band

Theoretically, the envelope of a sinusoidal signal can be obtained by applying the
Hilbert transform, which creates a 90◦ shifted version of the original signal and can be
used to obtain the instantaneous phase and frequency of a signal. This is also called
“Single Side Band Transform” which will become clear when looking at the imple-
mentation in the Fourier domain. In the time domain the Hilbert transform requires
convolution of the input values f(z) with 1

iπz :

H(z) = f(z) ∗ 1
iπz
. (2.10)

The so-called “analytic signal” is then given by

F (z) = f(z) + iH(z) = A(z) · eiϕ(z) (2.11)

with the signal phase

ϕ(z) = tan−1
(
H(z)
f(z)

)
(2.12)

and signal amplitude

A(z) =
√
f2(z) +H2(z). (2.13)

A more efficient implementation is possible in the Fourier domain: The analytical
signal can be obtained directly by performing a Fourier transform of the signal, setting
the “negative frequencies” to zero and then performing an inverse Fourier transform.
The results can be further improved by combining this with filtering in the Fourier
domain, i.e. setting all frequencies to zero except those expected to be non-zero for
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the given sampling distance and spectrum of the light source. This way noise can be
suppresed. Instead of transforming the signal back, one can obtain the desired result
directly by determining the slope of the phase in the Fourier domain — this algorithm
(known as Frequency Domain Analysis, FDA) is not discussed further as it has been
patented by P. de Groot from Zygo.

The computational complexity of these algorithms is relatively small as long as the
number of points N used for the FFT is not too large. While the complexity of the
other algorithms is linear inN , for the FFT it typically increases withO(N logN ). For
PCs there are very fast FFT implementations, but correlation or N-bucket algorithms
are still simpler to implement, especially on signal processors or in hardware, even
though the total number of multiplications might not be much different.

Results

The following results were obtained using the algorithms described above on two sets
of simulated data. In the first case, only additive white noise was taken into account.
In the second case, correlated position noise with the sampling positions according to
the following equation was assumed:

s(ti) = s(ti−1) + δpos,i
δpos,i = c1 · deltapos,i−1 + ni,

(2.14)

with n AWGN (simulated for varying standard deviation) and c1 a measure of corre-
lation (chosen to be 0.9 for this simulation).

For the first case, the results according to Figure 2.2 have been obtained. The corre-
lation based approach performs best, which is not surprising because it uses the actual
sampling positions and the known modulation frequency. In case of correlated noise
caused by sampling jitter, however, the result is totally different (Figure 2.3). Correla-
tion based techniques fail as the assumptions on the sampling positions are not correct
any more. It should be noted that both FFT and correlation based algorithms can be
easily tuned and optimized for specific noise properties, for example by adjusting the
length of the correlation or by filtering in the Fourier domain. This has not been done
in this example, and it is not easily possible for N-Bucket algorithms.

Both of these models are not very realistic, as noise in practice will always be a
combination of multiple sources. This is described in detail in [Seiffert, 2007]. The
influence of laser speckle was neglected as well. However, the results obtained for the
two cases above illustrate the fact that optimum estimation strongly depends on the
correct choice of evaluation algorithm, and it shows that simple N-point algorithms
that can easily be implemented in hardware offer fairly good performance in both
cases. Using recorded actual sampling jitter as shown in appendix A shows similar
results. A more detailed description of the software platform used and some additional
simulations as well as results from measurements can be found in [Wagner, 2005].

2.1.3. Hardware Acceleration

For a significant improvement in performance, the PC as a bottleneck for data pro-
cessing has to be removed. Parallel processing of the data is possible, but simply
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Figure 2.2.: Comparison of WLI algorithms in the presence of white noise, full view
(top) and low noise only (bottom).
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Figure 2.3.: Comparison of WLI algorithms in the presence of sampling jitter, mod-
eled as correlated noise, full view (top) and low jitter only (bottom).
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transferring the data to multiple PCs is difficult, as the amount of raw data is very
large. Faster cameras (more than 600 million pixel per second) are readily available
(though expensive), the same applies to faster framegrabbers. A higher camera speed
can be used to increase lateral resolution significantly while keeping the exposure time
constant. Alternatively, together with a higher intensity illumination (using new de-
velopments in LED technology), the exposure time can be reduced and thus the frame
rate increased.

For that purpose, algorithms are analyzed with respect to their implementation on
digital signal processors (DSPs), field programmable gate arrays (FPGAs), graphics
processing units (GPUs) or multi-core systems, and their properties in the presence of
sampling jitter and additive noise are investigated. In particular, several strategies for
sharing the load between more specialized hardware and a standard PC are discussed.
A true hardware implementation is not discussed here, as this is cost-prohibitive for a
relative small number of measurement systems.

For hardware acceleration, all of the algorithms above have one thing in common:
Each pixel is processed individually, which means that parallelization is trivial. This
does not apply to spatial filtering, e.g. Bayesian methods [Hissmann, 2005], or to
phase unwrapping (as used in classic phase shifting interferometry). These algorithms
can still be parallelized quite well, but the pixels are not completely independent of
each other any more. The focus in this thesis is on algorithms suitable for rough
surfaces, and spatial relationships are typically not applicable there.

FPGA Implementation

As many framegrabbers and cameras have integrated FPGAs, the following discus-
sion focuses on that aspect. Field programmable gate arrays provide very high com-
putational power. Unlike a PC or a DSP, these are programmed using a hardware
description language (e.g. VHDL), and a synthesis tool maps the logic to the elements
physically available on the given FPGA. Large FPGAs today offer several hundred
dedicated multipliers and hundreds of thousands of logic elements as well as several
megabytes of fast embedded memory. Implementing a ring buffer as described above
would only be possible using fast external memory, though — and while adding ad-
ditional memory banks is possible, it increases system cost, and most current designs
of cameras and framegrabers using FPGAs have limited memory bandwidth. This is
by far the most parallel concept, thousands of operations can and will be performed in
parallel.

There are significant differences between the algorithms discussed above:
For the minimum method, processing consists of one comparison per pixel and of

finding the position of the smallest value. This only requires storage for two images
(current minimum value for every pixel, and an “image” containing the index position
of that minimum, which corresponds to the height value) and it is easy to handle for
most memory architectures; on current processors cache sizes may be large enough to
keep these values in the cache such that only the incoming pixels have to be loaded
from system memory. For the contrast method, one more image has to be available
and one additional subtraction is needed per pixel. For the sliding average, the number
of operations increases only slightly (one more addition per pixel), but a much larger
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number of images has to be kept in memory, and these images will definitely not all
fit in the system cache, leading to at least twice the required memory bandwidth.

The accuracy of the methods described above is normally not sufficient, though.
They are used for finding the approximate position of the optimum while still keep-
ing the raw data in a ring buffer (in practice, a simple ring buffer is not sufficient, as
there will be local maxima before the real global maximum occurs, so a somewhat
more complex memory buffer structure using at least 1.5 times the number of desired
elements is needed). This ring buffer is different for every pixel (i.e. memory access
patterns depend on the position of the maximum of each correlogram). Such a com-
plex structure is relatively well suited for processing on a PC, but very difficult to
implement efficiently in hardware.

Typical FFT-based processing algorithms are not desirable either: They suffer from
the large amount of memory accesses to data scattered all over the available mem-
ory (resulting from the ring buffers described above). It is obvious that FFT-based
algorithms and in general all approaches that need to find and keep a range of pixels
surrounding the optimum by pre-processing (as commonly used in PC-based system)
are not a useful approach in an FPGA. First of all, the complexity is high and sig-
nificantly increases development costs. Additionally, these algorithms will be mem-
ory limited, and most affordable framegrabbers have much less sophisticated memory
management and smaller memory than a standard PC today. It is certainly possible to
build a system with a very high memory bandwidth (there are enough I/O pins, and
FPGA based systems are used for many applications requiring highly demanding I/O
tasks), but the system cost is high in that case.

Therefore it is important to find alternative methods: If the pre-processing filter
returns good estimates of the envelope itself, the ring buffer and the additional pro-
cessing are not necessary, and only interpolation is needed to find the optimum posi-
tion. Additionally, the data rate can be reduced significantly by lowering the number
of frames used for the final interpolation. If the prefiltering uses a large number of
frames, the individual estimates get fairly robust and are highly correlated, making
subsampling of the filtered data possible and thus reducing the amount of data which
has to be post-processed (and e.g. transferred to the PC).

Two possible algorithms are described in detail in the following: A structure for im-
plementing N-bucket algorithms (Figure 2.5), and a concept for implementing correlation-
based algorithm (Figure 2.7 and Figure 2.6).

The basic structure of both algorithms is shown in the next chapter, as they can
be implemented much easier in line scanning white-light interferometry. All the data
required for processing is easily available there, while it is spread over the whole
measurement sequence in normal white-light interferometry, leading to memory band-
width issues.

N-Bucket implementation

An N-bucket algorithm can be seen as filtering the input twice with an FIR filter,
squaring the results and adding them up (Figure 2.5). But there is only one of the
desired pixels in every camera frame, i.e. the pixels to be processed are spread far apart
in the data stream, there may be a million unrelated pixels in between. The simple
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approach of directly loading the relevant values from previous frames from memory
must fail, as this would require a huge memory bandwidth: If the camera pixel clock is
500MHz (=500MB/s, if 8 bit/pixel are used) and a memory line has 128 bit (normally
it is not possible — or at least not faster — to individually address 8 bits of data) and
we would like to filter with 16 taps, we would need to read 500, 000, 000× 16× 15 =
120GB/s. This does not take possible latency or addressing issues into account. And
while this number is not completely impossible (as shown by current graphics cards),
the author is not aware of any framegrabber getting even close to that.

It is very easy to reduce the effort, though: A number of N-bucket processing blocks
can work in parallel, so that whole memory lines (e.g. 16 pixels, or preferably even
larger blocks) can be processed at the same time. This might be limited by the number
of multipliers on the FPGA, but for N-bucket algorithms almost no “real” multiplica-
tions are necessary. The “filter taps” can typically be implemented using additions and
bit shifts, and only the squaring operations need two multipliers per pixel. If two or
more memory banks are available, the frames can be written in a way that is alternating
through the memory banks, making it possible to use the full memory bandwidth. It is
also possible to re-order the data in memory while writing it by splitting the original
frames and forming new frames that contain a range of spatial and temporal neighbor-
ing pixels in one block of memory. If these blocks contain all data from N consecutive
frames for a certain number of pixels, only two such blocks have to be read for each
filtering operation. This may be helpful to balance the complexity of read and write
accesses, but its efficiency depends on the actual framegrabber hardware which cannot
be discussed here.

This approach can be used to get accurate estimates of the envelope, and with some
additional effort phase estimates can be obtained as well. The framegrabber does not
perform all the processing, but is essentially a pre-processor, with the main difference
being that the envelope detection is good and therefore the original data does not have
to be preserved: no pixelwise ring-buffers are needed. The PC gets the resulting data
at a significantly reduced data rate: As the filter output is highly correlated, downsam-
pling is possible. Additionally, one can introduce arbitrary regions of interest, using a
binary mask on the framegrabber to select interesting regions. The PC then searches
for the maximum, implements the ring buffer, and finally performs e.g. a least squares
curve fit to the data around the maximum. This is much faster than filtering all the data
on the PC. It is also possible to search for the maximum directly on the frame grabber
and directly return the height value, but this reduces accuracy.

The main disadvantage of such an approach is its lack of flexibility: It is not pos-
sible to change the number of taps or the sampling distance on the fly. A whole new
compilation and place-and-route procedure is required as the N-bucket algorithms will
have to be fixed (unless a very large number of multipliers is available on the FPGA,
then it might be possible to keep some flexibility by changing the “filter taps” only).

Correlation implementation

Correlation based approaches are very attractive, too. Again, the straightforward im-
plementation is shown in the chapter on line scanning WLI. Of the two concepts shown
there, Figure 2.6 is usually more attractive due to the memory bandwidth issues in
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white-light interferometry. In this case, a ring buffer containing the desired number of
frames (equal to the correlation length) has to be implemented. For every pixel, there
are two sliding averages which should be stored in internal memory of the FPGA
as they have to be accessed very frequently. Six multiplications are needed for each
pixel, but only one memory read (oldest frame in ring buffer) and one memory write
(overwrite oldest frame with current frame data) is needed. The same values for sine
and cosine are used for every pixel in a frame, but their value depends on the sampling
pattern. They can e.g. be stored in an internal ring buffer (as the sampling pattern
will usually be periodic). Again, multiple correlations can be computed in parallel,
limited by the number of multipliers available. If a larger amount of internal memory
and additional memory bandwidth is available, the number of multiplications can be
reduced to four, at the cost of roughly four times the internal memory usage and twice
the external memory bandwidth. In that case, two filtered values (with a higher bit
depth) are stored instead of the raw pixel data as shown in Figure 2.7.

Further processing and additional options are similar to N-bucket algorithms. Cor-
relation based approaches need more memory (as their correlation length is typically
larger than the number of filter taps in N-bucket algorithms), but fewer memory ac-
cesses (two vs. N). They need less multipliers, but they need multiplications which
cannot be easily replaced with bit shifts and additions (this is possible for certain sam-
pling intervals, but this reduces flexibility and some of these intervals are known to
perform poorly). Their main advantage is higher flexibility: Adapting the size of the
ring buffer is easy, and the coefficients for the multiplication with sine and cosine can
be changed easily.

Alternative Fast Implementations

There are several alternatives to FPGAs which are easier to program. First of all,
multi-core systems become cheaper and more efficient every day; in 2004 almost all
processors were single-core, and boards and processors with support for more than two
processors were expensive. In 2007, some quad-core processors cost less than EUR
500, and systems using two quad-core processors are readily available. With the IBM
“cell processor” (mainly known as the processor used by the Sony Playstation 3) an
8-core system with very good performance in many scientific applications is readily
available [Williams et al., 2006]. Using multiple threads one can easily accelerate
processing. Depending on the specific architecture, the system might be limited by
memory bandwidth or PCI bus bandwidth (for the camera data) though. Nevertheless,
a significant improvement at low cost can be expected from using such a system.

Dedicated signal processors usually offer very long instruction words and can per-
form the same operation on multiple blocks of data at once. Many are optimized
for “multiply-accumulate” operations, can perform them in a single clock cycle and
therefore perform very well at filtering. Several of these systems have been consid-
ered for this application, but there is one crucial problem: The order of the data and
the required memory access create a bottleneck. If a whole series of measurements
arrived in a single camera image, using a DSP would be easily possible, but with the
current memory access patterns, there are no performance advantages over PCs, even
though these are slower on raw multiply-accumulate operations. But the more flexible
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Nominal depth in µm Standard deviation in nm Bias in nm
1 25 -12
5 28 -13

20 59 -90
50 56 95

200 88 566
600 105 -208
900 120 208

Table 2.1.: Standard deviation and bias obtained from 25 measurements of a height
standard. Heights for each of the steps have been averaged first, and then
the standard deviation of the height across all 25 measurements has been
computed. The standard deviation of the pixels within each height step in a
single measurement is on the order of 40nm. The bias has been computed
using the calibration values from the PTB (not shown in this table).

memory access and better prefetch hardware help PCs.
A very special type of signal processor is highly interesting though: graphics pro-

cessing units (GPUs). In 2004, their performance was high, but their flexibility was
limited by short programs and low accuracy, and returning data from the GPU to the
PC using AGP was slow. Today’s (May 2007) graphics processors are able to perform
all required filtering operations. They are typically integer only, but 32 bit accuracy is
sufficient for WLI applications. They are highly parallel (320 shaders on ATI R600,
128 on nVidia G80), run at high clock frequencies (740 MHz ATI, 1450 MHz nVidia),
have vast memory bandwidth (>100GB/s for both ATI and nVidia) and with PCIe x16
quick data transfer e.g. from a framegrabber to the graphics card and then to main
memory is possible. Even multiple GPUs can be used in one system (called “SLI” by
nVidia, “Crossfire” by ATI), and special systems for scientific applications are avail-
able.

2.1.4. Results

First a system using the components described above, but with the signal processing
performed on a PC, was set up and optimized. Optimization included the choice of
the best sampling intervals. These sampling intervals were chosen due to their high
resistance to sampling jitter caused by the mechanical stage M511DG.K029, and have
been found experimentally. A very large number of settings were used for repeatabil-
ity measurements of a flatness standard, and the algorithms reaching the best accuracy
were selected for further investigations. The influence of the stage is visible in repeata-
bility measurements of a step height standard: In this case, the pixels on every height
step were averaged to reduce other sources of error apart from the stage. Results are
shown in Table 2.1.

Data analysis was performed by 3D-Shape’s Korad software, which is able to pre-
process more than 100MB/s of data on a 3Ghz Pentium 4. Final processing was per-
formed using an SSB-based algorithm and least squares curve fitting for interpolation.
In addition, measurements were performed using an implementation of the algorithms
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Velocity in
µm/s

Samples per signal
period

Camera frame rate
in fps

Standard deviation
in nm

4.1 5 50 28.5
53.2 3.5 454 31.3

148.9 1.25 454 38.5
232.6 0.8 454 > 50.0

Table 2.2.: Standard deviation of flatness values based on repeated flatness measure-
ments of 25 objects (absolute flatness values between 0.9 and 1.3 microns).

in Heurisko for comparison of the different possible algorithms. In this case, measure-
ment speed had to be reduced by about a factor of 5, or — in order to analyze identical
data — Korad was used to record videos which could then be analyzed off-line in
Heurisko.

Subsampling reduces the number of data points and it reduces the signal contrast
due to the camera integration time, but a faster measurement velocity can be reached
with continuous stage movement and continuous illumination. The camera integration
time has to be adjusted to avoid too much integration; there is a trade-off between re-
duced contrast due to integration and high relative noise due to camera characteristics
and photon noise. This issue could be solved altogether by synchronizing the camera
to the light source and using a high-intensity flashing illumination, but no such light
source was available. The lower number of samples on the correlogram and the influ-
ence of the changing speckle field further reduce accuracy when subsampling, but for
the values investigated sub-micron repeatability was still achieved.

The resulting system was tested extensively on various types of surfaces at measur-
ing speeds of 4 microns per second (with 5 samples per signal period, 50 Hz camera),
53 microns per second (3.5 samples per signal period, 454 Hz camera) and 149 mi-
crons per second (1.25 samples per signal period and 454 Hz camera). At the slowest
speed, the accuracy was comparable to the original system that used a CCD camera.
Reducing the number of samples per signal period from 5 to 3.5 and increasing the
camera frame rate to 454 Hz had no negative impact on the accuracy (in particular,
performance with 3.5 samples per signal period was better than for e.g. 4 samples per
signal period). Reducing the sampling rate further, to 1.25 samples per signal period
turned out to be another good choice when looking at both speed and accuracy (values
in between were significantly slower or did not perform better). The fastest setting
with significantly lower but still reasonable accuracy was reached at 0.8 samples per
signal period (230 micron/s with a 454 Hz camera). The system as discussed here is
not ideal for further subsampling: Due to limited light intensity, the camera frame rate
would have to be reduced significantly to avoid reduced contrast caused by signal in-
tegration. This was therefore not studied any further. For this analysis, the flatness of
a flatness standard was measured. That way, the (maximum) error of a single pixel is
found, and the influence of systematic errors caused by the stage is minimized as only
a very small height difference is measured. This shows differences between various
sampling strategies and algorithms. These results are summarized in Table 2.2.

The system as described above is not limited by any single component: The frame
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rate is limited by the exposure time (caused by light source and camera quantum ef-
ficiency), transfer rate (limited by frame grabber interface) and processor speed for
preprocessing of the data at the same time. Replacing a single component therefore
cannot offer increased performance, and improving all components is significantly
more expensive. The objective of optimizing all the components of the system by up-
dating everything with fast but readily available components was therefore reached,
and this part of the project finished.

In a second step, a closer look at hardware acceleration as described in the pre-
vious section showed that it is possible to adopt the algorithms for implementation
on an FPGA. This way, a camera with higher pixel clock can be used. The perfor-
mance of the algorithms has been demonstrated in a Heurisko implementation, and
several concepts for hardware implementation have been developed in cooperation
with framegrabber manufacturers. Their performance was simulated in detail (in-
cluding aspects such as the influence of integer arithmetic, necessary bit depth in the
individual processing steps etc.). No fundamental difficulties have been found.

While the expected performance benefit compared to other systems previously avail-
able was huge, the advantage in speed compared to the system developed in the first
step was only about a factor of two, and it was obvious that this advantage would
vanish rather soon when looking at alternative approaches (multi-core systems and
GPUs), which were already on the horizon in 2005. While faster FPGAs will become
available in the future as well, porting code to a new FPGA is much more difficult than
porting code to a faster PC, which makes the FPGA option less flexible and therefore
less attractive. In the end, the expected cost was too high for the anticipated temporary
performance advantage (as mentioned above, almost all system components would
have had to be changed), and therefore development was focused on other systems.

2.2. Line Scanning WLI

A line scanning approach has a number of advantages: As the measurement is now
“single-shot”, it is much more robust to vibration and can be used to measure dynamic
processes. For a measurement of a surface a lateral scan is now needed though, which
makes it less attractive for planar objects. If the measured object is cylindrical or if
a number of measured lines on the object is sufficient, a line scanning system offers
many advantages. All the algorithms and design options discussed for normal white-
light interferometry can be applied to this system as well, therefore the following
description will only highlight a number of important differences and a few results
from optimization of the algorithms. For a more detailed description especially of the
optical setup and laser speckle it is referred to [Hering, 2007].

2.2.1. Optical Setup

The optical setup for a line scanning system is more complicated; it is shown in Fig-
ure 2.4. This is a modified Mach-Zehnder interferometer. The optical aspects are
discussed in much more detail by [Hering, 2007]; this analysis is not repeated here.
The key idea of the setup is to introduce a spatial phase shift between object and ref-
erence path, perpendicular to the measured line (using cylinder lenses and a tilt of the
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Figure 2.4.: Optical setup of a line scanning white light interferometer, using a spatial
phase shift [Hering, 2007].

mirror M). The superposition is then recorded by a 2-D sensor array (camera), and
therefore one obtains a correlogram for every measured pixel of the line directly, in a
single shot.

As a sensor, the same CMOS camera as used in the previous chapter was used at
first, which was later replaced by a CCD camera (SVCAM-svs2020U from VISTEK,
using a Kodak KAI-2020 CCD chip) with more homogeneous pixels and higher res-
olution (1600 × 1200, yielding a larger measurement range). This camera is slower
though, and a freely configurable field of view (to adjust the desired line width and
height range) would be very nice in this application. The recently released succes-
sor to the original CMOS camera, the Photonfocus MV-D1024E-CL-160, looks very
promising for that application (higher bit depth, lower noise, more homogeneous,
camera read-out and exposure of the next frame in parallel), but its lower resolution
(1024× 1024) and thus measuring range might be a problem for some applications.

2.2.2. Sampling and Signal Properties

There are two key differences to the high-speed WLI system discussed in the previous
sections:

• The system by design has no random sampling jitter. This makes an analysis of
the data using correlation based algorithms easier.

• Now a single correlogram is recorded by multiple different pixels, which leads
to much stronger requirements on the linearity of the camera across all pixels.
This makes it necessary to calibrate the system.
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In addition to that, there is significant additive noise and correlated noise due to laser
speckle. The properties are different from a normal WLI system and are discussed in
detail in [Hering, 2007].

2.2.3. Algorithms

Implementing signal processing algorithms is generally easier for that system than for
“normal” white-light interferometry, as all the data that has to be processed is available
at the same time in a single frame. This reduces memory requirements and makes
processing right in the camera or on the framegrabber much easier. The approaches
described for classic white light interferometry can all be used; the optimum algorithm
again depends on the light source used and on the speckle field. In his work Hering
looked at algorithms working in the Fourier domain for signal analysis: SSB and FDA
(see section 2.1.2). These are both good and flexible, but difficult to implement in
hardware - therefore work here focuses on the application of N-bucket or correlation
based approaches instead.

2.2.4. Hardware Acceleration

In this case, hardware implementation is possible using off-the-shelf components: All
data for the measured pixels is contained in a single camera frame, and some of the
algorithms can be described as filters. Many cameras and frame grabbers offer the
ability to directly filter the input data, which can be used to directly transfer an estimate
of the signal envelope to the PC, possibly already subsampled.

The two examples from the previous chapter will be shown again, now adopted to
line scanning white-light interferometry.

Implementation

N-bucket algorithms can be (partially) implemented using standard image processing
filters (Figure 2.5). Using two Nx1 filter masks, one can simply convolve the input
image with each of the filters and obtain two filtered images. This is a standard im-
age processing operation and supported by many cameras and framegrabbers, even
for relatively large filter sizes. Then each pixel in the two resulting images has to
be squared and the two images can be added to obtain an image containing an esti-
mate of the envelope in every line. While squaring a pixel is not a standard image
processing operation, it is quite simple and can easily be implemented on an FPGA.
The resulting image can be transferred to the PC where a maximum search and local
interpolation (optionally using a least squares fitting procedure and/or Bayesian esti-
mation) follow. If a freely configurable system is available, an implementation with
a much lower computational effort is possible. N-bucket algorithms do not need real
multiplications, but typically use small integers only to keep computational effort low.
These “multiplications” can be implemented using bit shifts and additions.

The same approach can also be used for correlation-based algorithms, using two
Nx1 filter masks with sinusoidal weights (shifted 90circ relative to each other), where
N now corresponds to the desired length of the correlation. As the correlation can be
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Figure 2.5.: N-bucket algorithm for LSWLI. The incoming data from the camera is
placed in a shift register of length N. In every clock cycle, two FIR filter
values are computed (typically hardcoded as no real multiplications but
only bit-shifts and additions are needed). These values are then squared
and added up. The resulting value Envn will have very small latency and
higher bit depth than the input values. In order to reduce computational
effort and data rate to the PC, the shift register can sometimes be shifted
without computing a new output value, returning a filter values every two
or three pixels only. 2 “real” and 2N “simple”multiplications are required
per pixel, storage requirement is a shift register of length N, some input
and output buffers and storage for intermediate values in the computation.

implemented as a running sum, one can use that property to reduce the computational
effort in the implementation. There are two possible solutions (Figure 2.7 and Fig-
ure 2.6). The first of these uses less memory, the other uses less multipliers. Both
need to know the sampling intervals, which can be stored in a ring buffer.

Both approaches should be very fast and need very little memory (as long as all
pixels of a correlogram arrive consecutively; some buffers might be needed in case of
some multi-tap Cameralink cameras), so that they can be used with high-speed cam-
eras. The diagrams only show the processing needed for one correlogram (essentially
a pipelined structure that outputs one output for every input value); in an actual FPGA
implementation it might be better to implement multiple such blocks and run them in
parallel, but at a reduced clock frequency.

It is possible to go one step further: If a camera with an integrated FPGA is used,
the algorithms described above as well as the maximum search can be integrated.
Adding a ring buffer and a least squares fitting procedure around the maximum is
difficult, though. However, if a relatively large N for N-bucket algorithms or a large
correlation length is selected, an interpolation is already performed implicitly (though
limited to the sampling grid), and the maximum of the obtained envelope is a good
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Figure 2.6.: Correlation-based algorithm for line scanning white-light interferometry.
This implementation is very similar to the N-bucket algorithm described
previously, but it uses the fact that the filter mask does not have to be
shifted with the data in this case: A “sliding average” is sufficient. Again,
the input data is put into a shift register, but now only the first and the
last element have to be multiplied with a coefficient, which can be taken
from an internal ring buffer. The entries of this buffer can be set ac-
cording to the sampling pattern. This approach reduces the number of
multiplications to six per pixel. In this algorithm, the computation has
to be performed every clock cycle, but in order to reduce the data rate,
downsampling at the output is possible. This algorithm is very attractive
for standard white-light interferometry as well.

measure of the height. The disadvantage of that approach is that the resolution is
limited to the spatial phase shift between neighboring pixels (on the order of 100nm).
For measurements on smooth surfaces, this is not acceptable, but for measurements of
rough surfaces this leads to a relatively small increase in measurement error (which
is then dominated by laser speckle). Such a system constitutes a line camera that
measures height values instead of intensities. It is therefore easy to integrate into an
automatic inspection system and less prone to errors compared to a PC that requires
an operating system, network communication and a lot of other overhead.

2.2.5. Results

Only a prototype system exists right now. Its properties (especially the bandwidth of
its light source) are currently far from optimal for rough surfaces. A sample mea-
surement taken from [Hering, 2007] is shown in Figure 2.8. FDA was used for signal
processing.

In Figure 2.9 the raw data for a camera line is shown. The resulting envelope func-
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Figure 2.7.: Correlation-based algorithm for line scanning white-light interferometry.
The algorithm described previously can be optimized further, but whether
this solution is really better depends on the hardware used. The number of
multipliers needed can be reduced to four by storing the cumulative sums
instead of the raw data. This requires additional storage and higher bit
depth in the additions, though. It is sufficient to choose a bit depth that en-
sures that the maximum value of the correlations can be accommodated,
an overflow then simply leads to a “wrap around” that can be detected
and corrected when the difference at the end is negative. This configu-
ration makes it possible to implement more parallel processing elements
on small FPGAs with a limited number of multipliers. At the output,
an additional low-pass filter can be implemented (FIR or IIR), and then
the position of the maximum can be recorded (which just needs a global
frame counter and one additional register for the index of the maximum
per pixel). Then this system is a compact, single-shot line camera that
directly returns height information with interferometric accuracy (though
limited to the sampling grid in this implementation).

tion using two different algorithms with two different settings each is also shown. SSB
is used with a narrow filter and a wide filter in the Fourier domain; the simplified cor-
relation as described above is computed using 100 and 27 pixels respectively. It is
clearly visible that the results are slightly different, and the correlation based envelope
is slightly noisier than SSB using a narrow filter. However, without ground truth it is
not possible to tell which one is better. The coherence length of the light source used
here is very large, which leads to a very broad envelope and decreases the accuracy of
the results. Based on that data, it is impossible to predict which algorithm will per-
form better in a future improved system: The performance of the algorithms strongly
depends on the signal properties, as described in the previous chapter. Using a better
camera, better optics, adjusting the system for better speckle properties etc. will have

37



2.2. LINE SCANNING WLI

Figure 2.8.: Step height standard measured by line scanning WLI; the visible steps
have calibration values of 0.97, 4.96, 19.90, 49.76 and 199.73 micron.
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Figure 2.9.: Analysis of a single correlogram in line scanning WLI, using single side
band and correlation based algorithms with different parameters.

a significant influence on that.
As this has not been pursued any further yet, no detailed quantitative analysis of the

system and the performance of hardware accelerated algorithms can be given here.
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3. Multiple Wavelength Interferometry

The main focus of this thesis is not on white-light interferometry but on fast interfer-
ometric measurement system for use in a production line. The principle of multiple
wavelength interferometry, in particular frequency scanning multiple wavelength in-
terferometry, is particularly interesting. A basic overview on key components and the
signal model has already been given in the introduction.

In this chapter, several different aspects of the system will be discussed in detail.
There are eleven sections describing all important aspects of modeling, simulation,
implementation and results. In the first section, the special hardware required for a
frequency scanning interferometer is described in more detail. Based on the infor-
mation in the introduction and the description of the hardware, the signal model is
derived in section two. This signal model is the basis for a derivation of the theoreti-
cal limits on accuracy in section three. Section four discusses the optimum sampling
for the derived signal model, using the theoretical accuracy and ambiguity constraints
as basis for the optimization. In section five, an approximation to the theoretically
optimum sampling pattern is presented and a multi-step algorithm for frequency es-
timation based on that approximation is derived. In section six, very fast algorithms
for frequency and phase estimation from short blocks of data are discussed, and new
estimation algorithms developed. This is also an optimization problem, and the re-
sults are compared to the appropriate theoretical limits. In chapter seven, the aspect
of monitoring the actual sampling positions (i.e. the actual wavelengths of the tunable
laser in case of frequency scanning interferometry), is discussed and a method for cal-
ibration is presented. In chapter eight, approaches for using spatial information are
discussed, and a fast, filter-based concept for improving the results is presented. At
this point, all key components of the processing algorithm have been described, and
therefore in chapter nine two specific implementations are described and compared.
In chapter ten, simulations and measurement results obtained on various surfaces with
different settings are described and the accuracy of the system is discussed. Based on
these results, in chapter eleven the influence of speckle on the measurement of rough
surfaces is discussed.

3.1. Hardware

In this chapter the key hardware components of a multiple wavelength interferometry
system are described. The basic optical configuration of an interferometer has been
discussed previously, therefore it is not repeated here. The other important component
is the light source, in this case a tunable laser. For the camera the explanations from
chapter 1.5.1 apply; the main difference is that for the multiple wavelength system a
high camera speed is less relevant than a good dynamic range and a high SNR, as the
number of frames needed is much lower.
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Figure 3.1.: Fabry-Pérot resonator

3.1.1. Tunable Lasers

For a multiple wavelength interferometry system, either a number of fixed wavelength
laser sources or a tunable laser is required. The following analysis focuses on the latter,
but in principle other configurations are possible. This subsection uses some material
and graphs created by Francisca Klenke as part of her diploma thesis [Klenke, 2007].

Basic Laser Principles

The central part of a laser is the active laser medium where energy is added by a so
called pumping process. Energy can be added e.g. by applying a voltage or using
another light source, through which the electrons of the active laser medium reach a
stimulated state. Passing photons with corresponding energy (i.e. the energy differ-
ence the electrons have to a lower energy state), can cause the electrons to return to
a lower state and send out the surplus energy as a photon with the same frequency
and phase as the passing one (stimulated emission). In addition to that, a resonator is
needed which couples the light back into the active laser medium, such that the light
can be amplified several times.

The simplest form of a resonator is the Fabry-Pérot resonator (Figure 3.1), which
consists of two parallel mirrors surrounding the active laser medium.

For the laser to work, the amplification of a photon passing through the active laser
medium must be more probable than its absorption (inversion). The reflection indices
of the partially transmitting mirrors R1 and R2 have to be sufficiently high to keep
enough light inside the resonator and the active laser medium. Additionally, the light
that is coupled back into the laser must have the correct phase to avoid destructive
interference. Because of this condition there is only a set of frequencies possible,
which have an equidistant spacing between each other. Those frequencies are called
modes and their frequencies are given by the following equation:

fq = q c2L, q ∈ N (3.1)

with L = L + Lm(n − 1) and fq distance between two adjacent frequencies, c speed
of light, L length of the resonator, Lm length of the active laser medium and n index
of refraction of the active laser medium.
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Figure 3.2.: Laser gain and possible laser modes

Theoretically, the number of the possible laser modes according to this equation is
infinite. But the gain is only high enough in a certain frequency range (depending on
properties of the active medium, especially the possible energy states of the stimulated
electrons). Only if the gain is higher than the resonator losses (laser threshold), the
laser works (Figure 3.2). The assumption that a laser sends out only one frequency (or
mode) at a time is often incorrect, this depends on the configuration of the laser.

For application in an industrial measurement system, the tunable laser has to be
compact and low cost. Laser power is not important as very little intensity is needed
for imaging in this case. A laser diode as commonly used in CD writers is chosen in
our case. The output power of such a laser is typically limited to about 100mW (only
about 0.1mW are needed). The active laser medium is the pn-junction of the diode.
Pumping is performed by applying a voltage and therefore causing a current through
the diode. This laser diode does not emit a single mode, but several equally spaced
modes (as explained above). The spacing ∆λ is given by

∆λ ≈ c

2nL (3.2)

with c speed of light, n index of refraction of the laser medium and L length of the
resonator. This is a simplified model, more details and other aspects can be found in
[Nagengast, 1995].

There are a number of disadvantages of laser diodes: They are very sensitive to
temperature changes (for AlGaAS, a change in temperature of ∆T ≈ 0.1K causes a
frequency drift of ∆f ≈ 3GHz). The amplification also changes with temperature.
Beam quality is generally not good, but can be improved with vertical cavity surface-
emitting lasers (VCSELs), and diodes are sensitive to back-reflections - this is used
for tuning. In addition to that, continuous tuning over a larger frequency range is
not possible - but this can actually help for the measurement application as will be
discussed later.
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(a) Littrow configuration (b) extended Littrow configu-
ration

(c) Littman-Metcalf configu-
ration

Figure 3.3.: Possible configurations for tunable lasers with external cavity and grating.

Laser Tuning

Standard laser diodes can be tuned by changing the temperature or the current through
the diode. The modulation of the temperature offers a fairly large (several hundred
GHz) hop-free tuning range, but it is quite slow. With modulation of the current the
frequency range is much smaller (10kHz – MHz), but the modulation can be done
faster. High currents or high temperatures decrease the lifetime of the diode, and
aging might lead to gaps in the tuning range.

An alternative approach is using an external cavity. In that case, the reflection on
one side of the laser diode is reduced (using anti-reflective coating). The diode is not a
laser any more, as there is no resonator left. This is then introduced using an external
cavity with a mirror, grating or prism. Changing the optical length of the resonator
L = nLLD + L0 can be used to change the laser frequency. The distance between
adjacent modes depends on the new resonator length.

In practice, the laser is usually tuned not by changing the resonator distance, but by
coupling back light of a certain frequency using a grating. This is possible as the angle
of the reflected light beam depends on the wavelength, and therefore the grating can
be used to selectively couple light of a specific wavelength back into the diode. This
can only work if the diode dimensions permit it, so in addition to that feedback the
laser voltage and temperature have to be adjusted accordingly. With this configuration
mode jumps occur. For a continuous tuning the angle of the grating and the length of
the resonator would have to be changed at the same time, which requires more effort
(and is not necessary for our application).

For tuning with an external grating there are several common configurations (Fig-
ure 3.3). Using the so called Littrow design is the easiest option, but the extended
Littrow design and the Littman-Metcalf design help resolve the problem of a moving
beam when the laser frequency is changed.

The Littrow configuration is inexpensive and easy to realize, but the beam angle
changes when tuning. The extended Littrow configuration keeps the beam angle con-
stant, but there is a parallel shift of the beam, which complicates e.g. fiber coupling.
The Littman-Metcalf configuration keeps the beam angle and position constant. The
additional reflections in this configuration increase resonator losses, though.
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3.1.2. Monitor Cavity

As the laser diode is very sensitive to temperature changes, the actual frequency of the
laser has to be monitored. This can be done by using a special type of interferometer.
It consists of a glass plate which reflects a part of the laser beam at the top and another
part at the bottom surface. The two reflected beams interfere, and a line along the
diameter of the resulting circular interference pattern can be recorded by a line camera.
This interference pattern changes with the laser frequency, and this change can be
detected and analyzed. A very high sensitivity can be reached by using a relatively
thick glass plate; in order to resolve the resulting closely spaced fringes the line camera
can be tilted. Many options to monitor and stabilize the laser for use in a multiple
wavelength system are presented by [Salvadé, 1999].

The analysis of this signal and the laser properties are discussed in detail in chapter
3.7.

3.1.3. Interferometer Setup

There are several types of interferometers, but this will not be discussed in detail
here. Two important concepts have already been presented in the introduction (Fizeau
and Michelson setup). The most important differences between these for a multiple
wavelength system will be highlighted here.

A Fizeau configuration has a common path, and therefore the interferometer itself
is highly robust to vibration: The same effects occur in both reference and object path,
and therefore cancel out. This is very useful for a multiple wavelength system, as the
data evaluation is highly sensitive to vibration. However there are two disadvantages:
The reference plane is always in the same, fixed position right at the measurement
head. This means that the working distance for many measurements is limited, as
with increasing distance to the reference plane the processing becomes more and more
sensitive to laser frequency variations.

In case of a Michelson setup, the virtual reference plane can be chosen to be in
the middle of the object height range, with the working range available on both sides.
Therefore a Michelson system can have a much larger working distance and measure
objects of roughly twice the height. In addition to that, in a Michelson system it is
easier to adjust the reference and object intensity by introducing a changeable filter
into the reference path (and a clear glass plate to correct for dispersion effects in the
object path). In a Fizeau setup, the Fizeau plate has to be changed, which is typically
harder to do.

The optimum choice depends strongly on the laser properties and on the expected
vibrations: For low vibrations and a less stable laser, the Michelson setup is preferable.
For stronger vibrations or a highly stable laser, a Fizeau configuration is better.

3.1.4. Camera

The data is acquired by a camera. In contrast to white-light interferometry, the max-
imum frame rate of the camera is less important, as the number of frames is much
lower. Spatial relations between neighboring pixels are not needed either. Sensitivity
is less important than a good SNR, therefore a CMOS camera with a comparatively
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Figure 3.4.: Camera characteristic of the CMOS camera used for frequency scanning
interferometry. This graph shows relative sensitivity, therefore the num-
bers cannot be compared directly to the ones in Figure 2.1.

large full well capacity is used. Its characteristic shows a very high sensitivity in the
desired frequency range of about 790nm, which makes the system less sensitive to the
influence of other light sources.

3.2. Signal Model

In this section, the signal model for a frequency scanning interferometer and its most
important properties are derived. The relationship to the well known frequency estima-
tion problem is shown. A theoretical limit on the accuracy based on the Cramér-Rao
lower bound is given in the next section. This constitutes the basis for the optimization
of the signal acquisition in chapter 3.4.2 and the reference the algorithms presented in
chapters 3.5.1 and 3.6 are compared to.

Light emitted by a laser is (at least approximately) monochromatic and polarized,
and can be described as a plane electro-magnetic wave. The camera records the in-
tensity of the superposition of the waves coming from the object and the reference
plane.

If the wavelength is changed linearly, the signal recorded by the camera is a sinusoid
(cf. 1.7):

I(f) = A cos
(4π
c
· f ·∆h+ φ0

)
+ C (3.3)

with modulation A, phase φ0, offset C and frequency ω = 4π
c · ∆h. The signal

frequency ω is proportional to the desired parameter, the true object height.
With the tunable diode laser discussed here, continuous frequency tuning is not

possible. This can be taken into account by replacing f with f0 + n∆f with n =
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−(N − 1)/2 . . . (N − 1)/2:

I(n) = A cos
(4π
c
· (f0 + n∆f) ·∆h+ φ0

)
+ C,

with n = −(N − 1)/2 . . . (N − 1)/2, N ∈ N
(3.4)

f0 is the mean laser frequency, ∆f represents the frequency increments due to the
laser mode jumps. Using that we obtain the following equation for the object height:

∆h = ωc

4π∆f (3.5)

There are a number of observations that are very important for the system design
and signal analysis later on:

• If there is an unknown phase jump at the surface, there is an additional phase
offset of the signal. This offset can be estimated from the signal, as will be
discussed later. It is zero if reflection occurs at a smooth surface and the absolute
signal frequency is known exactly.

• If the absolute laser frequency is not known exactly, there is a height-dependent
phase variation. It is proportional to the object height range and the frequency
error. This imposes requirements on the accuracy of the laser frequency moni-
toring.

• There is an ambiguity issue as the laser frequencies are on a fixed grid given by
the laser mode jumps. There is no way to distinguish between ω and 2π − ω or
2π + ω. This is well known from sampling theory: only frequencies up to half
the sampling frequency (Nyquist frequency) can be sampled without aliasing.
This leads to a corresponding ambiguity interval size d of

d = c

4∆f ≈ 1.6mm (3.6)

for the laser diode used here. If there is prior knowledge available on the part
position, larger heights do not pose a problem as the height can be mapped to the
correct interval. The change in the sign of ω above leads to the height map being
inverted in every second interval, which has to be taken into account as well.
There should be no measurements on the border of the intervals (i.e. at zero
or Nyquist frequency), as in these areas measurement accuracy is very low (as
shown below). The interval size can only be increased by using closer spaced
frequencies. Theoretically, a single frequency not on the same grid would be
sufficient, but this setup would be very sensitive to noise.

• A systematic error in the measurement of the frequency increments has no di-
rect influence on the frequency estimation, but when the frequency is mapped
to the absolute height, the result might be incorrect as the correct value of ∆f is
required for this conversion. This error is proportional to the absolute height and
limits the working distance of the measurement system. It will also influence
relative distances as the same error might lead to both increases and decreases
in estimated height values, depending on the ambiguity interval (Nyquist fre-
quency).
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3.3. Theoretical Accuracy

The height estimation problem leads to a frequency estimation problem as has been
shown in the previous chapter. Frequency estimation is a very well known problem,
but the author has not found a derivation for the exact same problem (real-valued
single tone frequency estimation with unknown phase, offset and amplitude). First, the
derivation for the complex valued signal model according to [Rife & Boorstyn, 1974]
is briefly repeated, and then the CRB for the real valued signal model as required in
this application and some approximations to it are discussed.

If the noise is assumed to be independent and identically distributed and no offset
C is present, the complex signal model leads to a very compact and simple result
due to the rotational symmetry in the complex plane. As the CRB for the real signal
model approaches these results asymptotically, this result is useful for all frequency
estimation tasks. The following is summarized from [Rife & Boorstyn, 1974] with the
notation adopted to match the other parts of this thesis.

x = y(t; θ) + nx; y(t;ω, φ,A,C) = A · cos(ωt− φ)
v = w(t; θ) + nv; w(t;ω, φ,A,C) = A · sin(ωt− φ)

(3.7)

f(x, θ) =
( 1

2πσ2

)N
· e−

1
2σ2
∑N−1
n=0 (x−y(t;θ))2+(v−w(t;θ))2 (3.8)

With equation 1.27 the following result for the first element of the Fisher information
matrix is obtained:

I11 =E

(− 1
2σ2
∂

∂ω

N−1∑
n=0

(xn − yn(tn;ω))2 + (vn − wn(tn;ω))2
)2

=E

(− 1
σ2

N−1∑
n=0

(xn − yn(ω)) · (−tnwn(ω)) + (vn − wn(ω)) · (tnyn(ω))
)2

= 1
σ4

N−1∑
n=0

(
E
[
(xn − yn)2

]
tn

2wn
2 + E

[
(vn − wn)2

]
tn

2yn
2

− 2E [(xn − yn) (vn − wn)] tn2wnyn
)

+ 1
σ4

N−1∑
n=0

N−1∑
m=0
m6=n

E [(xn − yn) (vm − wm)] · (. . .)

(3.9)

This derivation is only valid for uncorrelated noise, and the noise on the real and
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imaginary parts has to be independent. Then we can simplify the result:

I11 = 1
σ4

N−1∑
n=0

(
σ2tn

2wn
2 + σ2tn

2yn
2 − 0

)
+ 0

= 1
σ2

N−1∑
n=0
tn

2 · (wn2 + yn2)

= 1
σ2

N−1∑
n=0
tn

2 ·
(
A2 sin2(ωtn + φ) + A2 cos2(ωtn + φ)

)

=
(
A

σ

)2
·
N−1∑
n=0
tn

2

(3.10)

The original paper [Rife & Boorstyn, 1974] is slightly misleading here: If nx, nv
are Hilbert transforms of each other and only one of them is actually measured, the
results above do not apply (the expectation over the mixed term does not yield zero).
Independent measurement data of both the real and the imaginary part of the complex
signal is needed for this relationship to hold. One cannot just take the real signal,
perform a Hilbert transform and apply the equations above to the result.

The other elements of the Fisher information matrix can be computed similarly, and
yield

I = 1
σ2

A2∑N−1
n=0 t

2
n 0 A2∑N−1

n=0 tn
0 N 0

A2∑N−1
n=0 tn 0 A2N

 (3.11)

Based on that result, one can easily derive various bounds for frequency and phase
estimation accuracy. These are given in [Rife & Boorstyn, 1974]. For frequency
estimation with unknown phase and amplitude, the case most relevant to multiple
wavelength interferometry, one obtains:

Var(ω) ≥ σ2A2N2

A4N2∑N−1
n=0 tn

2 − A4N
(∑N−1
n=0 tn

)2

= σ
2

A2 ·
1∑N−1

n=0 tn
2 −

(∑N−1
n=0 tn

)2
/N

(3.12)

For uniform sampling, centered around zero, this leads to a simple and well known
bound. Inserting

tn = (n+ n0)T, with n0 = −N − 1
2 , n = 0 . . . N − 1 (3.13)
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in equation 3.12 yields:

Var(ω) ≥ σ2

A2T 2 ·
1

N−1∑
n=0

(n+ n0)2 − 1
N

(
N−1∑
n=0

(n+ n0)
)2

= σ2

A2T 2 ·
1

N−1∑
n=0
n2 + 2n0

N−1∑
n=0
n+Nn02 − 1

N

(
N−1∑
n=0
n

)2
− 2n0

N−1∑
n=0
n−Nn02

= σ2

A2T 2 ·
1

N(N−1)(2N−1)
6 − N(N−1)

2 · N(N−1)
2 · 1

N

= σ2

A2T 2 ·
12

N(N − 1)(2(2N − 1)− 3(N − 1))

= σ2

A2T 2 ·
12

N(N2 − 1)
(3.14)

If the signal model is a real-valued sinusoid, the solution gets more complicated.
Therefore some approximations are derived as well.

Inserting equation 3.21 into equation 1.27 and assuming independent but not nec-
essarily identical noise yields the following Fisher information matrix:

I =



A2
N−1∑
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tn
σn2 s
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σn2 s c A

N−1∑
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n=0

1
σn2 s c

N−1∑
n=0

1
σn2 c2

N−1∑
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1
σn2 c

−A
N−1∑
n=0

tn
σn2 s A

N−1∑
n=0

1
σn2 s

N−1∑
n=0

1
σn2 c

N−1∑
n=0

1
σn2


(3.15)

s = sin(ωtn − φ) (3.16)
c = cos(ωtn − φ) (3.17)

Inverting this matrix yields the Cramér-Rao bounds for estimation of the parameters
(given by the diagonal elements). This looks rather ugly and is therefore not shown
explicitly here, but there are two important results:

• The CRB for frequency estimation is proportional to 1
A2 . The CRB for fre-

quency estimation is also proportional to the noise level (scaling all σn with the
same scaling factor c yields a change in CRB by c2). For uniform noise σ, the
CRB is directly proportional to

(
σ
A

)2, and all other remaining terms only de-
scribe the position of the sampling points relative to the signal. Aσ will therefore
be called signal-to-noise ratio in the following.

• The value of C has no influence on the result at all; it only matters whether there
is an unknown offset present or not.
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Figure 3.5.: Theoretical lower limit on the relative standard deviation of a frequency
estimate for a single noisy tone (equation 1) using 16 equispaced sam-
ples and a SNR of 10, based on a numerical evaluation of the CRB. The
plot underlines the fact that estimation becomes unreliable for frequencies
close to zero or the Nyquist frequency, where the scale has been truncated.

If the signal is sampled uniformly and if the noise is independent and identically
distributed, some simplifications are possible. These are not the main focus of this
thesis, therefore only one especially important aspect is shown next. If there are no
nuisance parameters present (i.e. φ, A, C known), the first diagonal element can be
inverted directly. Together with the assumptions on sampling and noise this yields

I11 = A
2

σ2

N−1∑
n=0
tn

2 sin2(ωtn − φ)

= A
2

2σ2

(
N−1∑
n=0
tn

2 −
N−1∑
n=0
tn

2 cos(2ωtn − 2φ)
) (3.18)

Numerical evaluation yields Figure 3.5, showing the relative accuracy of the parame-
ters for uniform sampling (16 samples, symmetric around 0) and σ = 0.1A. A and C
are set to 1 (their values have no influence on the frequency estimation accuracy). The
CRB is shown for all frequencies from zero to the Nyquist frequency and all phases.

This looks very different from the results given by [Rife & Boorstyn, 1974], but one
can easily show that the results are closely related: The second sum is much smaller
than the first one for almost all combinations of sampling points and frequencies,
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and the more samples the bigger the difference gets. In the worst case, the second
sum is equal to the first one and therefore the Fisher information becomes zero; in
the best case the absolute value is identical, but the sign reversed, leading to twice
the value. In this case the accuracy for the complex signal model is reached, even
though only the real part of the signal was available (see below). On average across
all possible signal phases, the second sum is zero; the first sum is the average Fisher
information in this sense. A closed form expression can be given for this part, using
tn = (n+ n0)T, with n0 = −N−1

2 .

I11 = A
2

2σ2

N−1∑
n=0
tn

2

= A
2T 2

2σ2

N−1∑
n=0

(
n− N − 1

2

)2

= A
2T 2

2σ2

[
N(N − 1)(2N − 1)

6 − 2N − 1
2
N(N − 1)

2 +N
(
N − 1

2

)2
]

= A
2T 2

2σ2
N(N2 − 1)

12

(3.19)

This can be used as a rough estimate for the CRB:

Var(ω) ≥ I−1 ≈ σ2

A2T 2
24

N(N2 − 1)
(3.20)

This is exactly twice the value compared to the complex valued case above, which is
not surprising as the number of independent noisy measurements available is half that
of the complex valued case.

3.4. Optimum Sampling

Fast and accurate frequency estimation for a noisy sinusoid is required not only in
optical metrology (not limited to frequency scanning interferometry, there is also
e.g. [Vanlanduit et al., 2004]), but is needed in many other applications as well, ranging
from acoustic [Christensen & Jensen, 2006] to radar [Teague, 2002] signal processing.
In the previous chapter, a lower bound on the theoretical accuracy of frequency esti-
mation has been derived. The resulting accuracy for uniform sampling is well known,
but it is an open question how the sampling should look like in order to reach the most
accurate results in a frequency scanning interferometry system. In such a system, the
chosen laser frequencies correspond to the sampling points the sinusoidal signal for
each pixel is sampled at, and the desired height map corresponds to the frequency
estimates for each one of these sinusoidal signals.

In most cases, uniform sampling is used as this is the easiest way to acquire data, for
example if an electrical signal is recorded with an analog-to-digital-converter. Such
systems have a constant sampling rate and acquire the signal for a given time period.
Continuous broadband signals must be band-limited by the Nyquist frequency to allow
for exact reconstruction from the samples and avoid aliasing [Oppenheim & Schafer,
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1989]. In case of single tone frequency estimation, this aliasing is not necessarily a
problem: It causes ambiguity, but the frequency estimates are still accurate, and the
actual frequency can be determined if prior knowledge is available. The accuracy of
such a system largely depends on the sampling time, i.e. on the number of samples
and the noise level of these.

In some cases, however, the situation is different:

• For some applications (e.g. anti-aliasing in computer graphics [Cook, 1986]),
better (in the case of computer graphics: visually more pleasing) results can
be obtained with random sampling instead of uniform sampling. This is not
discussed here.

• The sampling operation itself and the signal processing may be expensive, and
therefore a low number of samples (but not necessarily uniform or close to each
other) might be desirable. For instance, in frequency scanning interferometry,
and more generally in all applications where the sinusoidal signal is explicitly
sampled by choosing specific sampling points, there is a cost associated with
the number of samples rather than with their spacing.

In the latter cases, sampling can be accelerated and costs reduced by carefully choos-
ing the optimum sampling points. An optimum sampling scheme for a limited sam-
pling range and sampling time with an arbitrary distribution of the sampling time
across the samples has been introduced in [Wieler et al., 2006]. While the proposed
sampling design is optimal given the above constraints, it does not, by itself, suggest
an algorithm to efficiently estimate the frequency from the resulting data.

3.4.1. Optimization Criteria

There are three main objectives that define the optimality of the sampling pattern:

• Short measurement time: A low number of samples and a short measurement
time per sample are desirable.

• Accurate results: The frequency and phase estimates should be as accurate as
possible given the other constraints.

• Short processing time: A fast algorithm for obtaining the frequency estimates
must exist.

Additionally, if possible there should be a continuous trade-off between accuracy and
measurement time that can be easily adjusted depending on the actual measurement
conditions.

The optimization problem is constrained by the properties of the camera (exposure
time, frame rate, photon capacity, saturation) and the laser (tuning speed, intensity,
bandwidth, and possible grid) as well as by the available hardware for processing.
Optimizing these requirements together is a difficult problem as there are both theo-
retical and algorithmic aspects to consider. Therefore a three-stage approach is chosen:
First, the theoretically optimum sampling pattern for highest accuracy at a given mea-
surement effort is determined. Next the sampling pattern is modified such that a fast
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algorithm is applicable, while trying to stay close to the theoretical boundary. In the
third and last step, a fast algorithm is implemented and its performance is verified on
simulated data. This way it is possible to obtain a quantitative measure for the quality
of the final algorithm and compare it to the theoretical optimum.

Two different optimum sampling schemes will be discussed:

• The first sampling scheme allows assigning arbitrary weights to a fixed range
of uniformly spaced frequencies. The assumption of a fixed range of uniformly
spaced frequencies is dictated by the laser diode as described in chapter 3.1.1.
Assigning arbitrary weights to samples (and therefore achieving a different SNR
for different sampling points) is theoretically possible, but does not take camera
constraints into account. The derivation in chapter 3.4.2 summarizes results
from [Wieler et al., 2006] and mainly discusses the consequences for frequency
scanning interferometry.

• The second sampling scheme additionally introduces the constraint that sam-
pling should be done with uniform weights (i.e. the same SNR for all measure-
ments), as this is much easier to implement in practice. In addition to that, al-
gorithmic constraints are taken into account, leading to a multi-block approach
for frequency estimation, cf. chapter 3.5.

Getting back to the signal model described in the previous section, we would like to
accurately estimate, from as few samples as possible, the frequency of a noisy single
tone

I(t) =A · cos(ω · tn + ϕ) + C + εn,
tmin < tn < tmax, n = 1, ..., N

(3.21)

with amplitude A, offset C, frequency ω and εn independently and identically dis-
tributed Gaussian noise with zero mean and variance σ2.

The sampling points tn should be chosen such that the most accurate estimate for ω
can be obtained and they need not be spaced equidistantly in time. “Most accurate” is
here defined as minimizing the CRB while enforcing a minimum distance to secondary
minima (i.e. keeping results unambiguous).

3.4.2. Theoretically Optimum Sampling Pattern

It has been shown in [Oliphant, 2006] that the sampling points near the boundary of
the permissible sampling range are most important, and it has been shown in [Wieler
et al., 2006] that for real-valued sinusoids — taking ambiguity issues into account
— using several sampling points mainly at the borders yields optimum results. In
that case, the optimum sampling pattern for an application depends on the assumed
signal-to-noise ratio, as this ratio determines the ambiguity threshold that is required
to keep the probability of outliers (cases where a secondary minimum is lower than
the primary, correct solution) below a given level. Here the treatment is extended to
signals with unknown offset.

There are two criteria for the optimum sampling pattern:
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First, the (average) Cramér-Rao bound for frequency estimation is a measure of the
(average) curvature along the parameter ω of the four-dimensional manifold spanned
by the signal space in N -dimensional sampling space, where N is the number of
sampling points, and A, C and φ are nuisance parameters. When the signal quickly
changes with ω, ω can be determined accurately from the sampled noisy signal. In-
stead of minimizing the average CRB, one could also use other error criteria, i.e. mini-
mize the maximum CRB or minimize the mean squared CRB. Additionally, one could
maximize the Fisher information instead of minimizing the CRB.

An equation for the minimization of the CRB reads as follows

λopt(t;ωr) = arg min
ωNy−ωr∫
ωr

π∫
−π

I−1
ω;φ,A(t,λ;ω, φ) dφ dω

under the constraints

{
λj ≥ 0 ∀ j∑
j λj = Λ ,

(3.22)

where I−1
ω;φ,A is the first diagonal element of the inverse of the Fisher information ma-

trix as described in 1.5.3. A slightly more general description is found in [Wieler et al.,
2006]. The vector of possible sampling positions is denoted by t, and the weights as-
sociated which every position are denoted by λ.

In practice, the “relative weights” translate to “sampling effort”, where it is assumed
that the variance of a measured value is cut in half if the effort at that point is doubled.
In the case of frequency scanning interferometry, sampling effort is measured by the
acquisition time at a given point. The “total sampling effort” is given by Λ, and each
element of the vector λ is defined by the noise level of the corresponding sample tj :
λ(tj) = 1/σ2

j . The signal amplitude is assumed to be A = 1, which is not a restriction
as will be shown later. The offset C does not show up in this optimization, as has been
discussed previously. According to the equation above, the sampling distribution turns
out to be independent of the signal and the noise amplitude, and the “total sampling
effort” has no influence on the sampling scheme either (everything is just scaled).

However, that does not yet account for the issue of ambiguity — there might be
multiple minima in the error plane that are very close to each other in depth. This
causes two problems: First of all, it becomes very hard to find the correct one of these
algorithmically, and secondly, in the presence of noise the true minimum might not be
lower than the secondary ones, leading to an incorrect result. Such a highly non-linear
problem leads to a non-Gaussian error distribution: The small errors that might occur
when the position of the minimum is not found exactly due to some noise and the
finite curvature approximately follow a Gaussian distribution, but the errors that occur
due to being in the wrong local minimum show up as outliers. As long as the noise
on the signal is very small, the probability of such an outlier is close to zero, and the
optimum sampling pattern can be derived by just looking at the local curvature (which
dictates the width of the Gaussian). This leads to a sampling pattern with most of the
time spent on the borders of the sampling range.

Looking at this sampling pattern in more detail shows that the secondary minimum
for two blocks of samples with M samples each on a range of N samples in total
is approximately at the position

(
π
N−M ; 3π

N−M

)
for large N −M . All other minima
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are “less deep” (assuming appropriately chosen A, C and φ). Doing a brute force
comparison with all values of the signal would be too slow to implement in practice,
but checking this secondary minimum is feasible.

The optimum sampling pattern now depends on the acceptable probability of out-
liers for a given SNR. This is a constraint on the “depth difference” between the pri-
mary minimum and secondary minima. The relative difference is given by:

∆min,rel ≥
8
(
erf−1 (1− 2Pfalse)

)2
ΛA2 . (3.23)

Arbitrary values for A are taken into account with the normalization by A2. For uni-
formly weighted samples and noise, a more intuitive replacement for ΛA2 is given by

ΛA2 =M ·
(
A

σ

)2
, (3.24)

with number of samples M , signal amplitude A and additive Gaussian noise with
standard deviation σ. Pfalse, A and σ are closely related and always occur in the
same combination according to equation 3.23, yielding a one-dimensional field of
possible sampling patterns depending on ∆min,rel. Without loss of generality, one can
set Λ = 1 and does not have to take A or C into account in the optimization in 3.22.

Therefore this leads to just one additional constraint: ∆min,rel must be smaller than
the distance between primary and secondary minimum as described above. This con-
dition must always be fulfilled, but only for small ∆ ≤ 0.1 the simplified check of sec-
ondary minima as described above is possible, otherwise a full search for secondary
minima might be required.

Two examples are shown in Figure 3.6. The first one uses ∆ = 0.0068, the second
one uses ∆ = 0.0151, corresponding to a sampling effort of 3200 (i.e. 32 samples with
SNR 10 each) and Pfalse = 1% and Pfalse = 0.025% respectively. The weights in the
middle get more and stronger with increasing ∆min,rel, which leads to a reduction in
outliers at the cost of a slight increase in CRB.

Figure 3.6 demonstrates that the optimum weight distribution focuses on the sam-
pling points at the borders of the considered range, and few samples with very low
weights can be found in-between.

3.5. Near-Optimum Sampling for Multiple Wavelength
Interferometry

Now that the theoretically optimum sampling pattern has been determined, a practical
approximation to this sampling pattern is needed. Arbitrary weights are hard to imple-
ment in practice: For instance, while there may be a theoretical benefit in varying the
time dedicated to sampling at different frequencies in frequency scanning interferome-
try experiments, with a camera it is much easier to use the same camera exposure time
for all samples, as close as possible to the limit dictated by the full well capacity of the
sensor [Rhodes et al., 2004]. Additionally, optimum sampling might require a brute
force approach to find the best frequency estimate. A uniform weight distribution is
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Figure 3.6.: Optimum sampling pattern for frequency estimation forN = 128 equidis-
tant samples, probability of outliers Pe = 1% and Pe = 0.025%. The
weights indicate the effort that should be devoted to the acquisition of a
measurement at each sampling point. The total sampling effort is equiva-
lent to 32 samples of SNR 10.

far easier to implement, and the algorithm for frequency estimation should not require
iterative optimization algorithms. This is true for many applications, and therefore in
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the following description the problem is described in general, and only at the end the
specific implementation for multiple wavelength interferometry is presented.

An obvious approximation to the pattern in Figure 3.6 is given by simply using two
blocks of equally weighted samples at the borders of the range. The impact of the
distance and the size of these blocks is analyzed in detail in the next section, and the
results are compared to both uniform sampling and the optimum sampling pattern.

3.5.1. Derivation of a Fast Algorithm

For the reasons given above, an algorithm for evaluating experimental data that has
been sampled in multiple blocks is derived and its properties are analyzed. For a
sampling pattern that consists of multiple blocks of equally spaced and uniformly
weighted samples, there is a straightforward procedure: First, the frequency and phase
of the signal are determined for each block individually, and then the results are used
to initialize a final estimate based on all observations. Fortunately, there is a very
simple and highly accurate way of combining information from multiple blocks, as
detailed below. The key to the following algorithm is the simple observation that,
visually speaking, frequency is the slope of the phase. Considering the signal from eq.
3.21 sampled in two blocks centered at t1 and t2, ω and ϕ can be estimated separately
for each block. Then, the following relationship holds as illustrated by Figure 3.7:

ϕ1 + (t2 − t1) · ω = ϕ2 + 2πk, k ∈ N (3.25)

As k is unknown, there is no unique solution for ω.
As a first guess for the frequency, the mean value of the frequency estimates from

each of the blocks can be used (strictly speaking, only a frequency estimate from one
block is required, but multiple blocks are needed for the phase estimation anyway):

ω̂init = ω̂1 + . . .+ ω̂N
N

(3.26)

k is then chosen such that

∆ = ϕ̂1 − ω̂initt1 − (ϕ̂2 − ω̂initt2)− 2πk, k ∈ N (3.27)

is minimized:

k̂opt = arg min
k

(ϕ̂1 + ω̂init · (t2 − t1)− ϕ̂2 + 2πk) (3.28)

Ambiguities are resolved correctly as long as the combined error caused by frequency
and phase estimation errors as well as unknown sampling jitter does not exceed π.

Next, an improved frequency estimate can be computed. Its accuracy depends on
the accuracy of the phase estimation only.

ω̂new = ϕ̂2 − ϕ̂1 + 2πk̂opt
t2 − t1

(3.29)

The results of the phase estimation define a “ladder” of frequencies that are more or
less compatible with the observations; the initial rough frequency estimate is used to
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Figure 3.7.: Relationship between phase and frequency: Phase estimates from multi-
ple blocks of data can be combined to obtain a more accurate frequency
estimate. The phase values of the blocks define a grid of possible phase
slopes (=frequencies), the correct one is chosen based on the frequency
estimates from the individual blocks.

find k and thus identify the “right step on this ladder”. Provided that k, the number of
wavelengths between the sampling blocks, is correctly found, the accuracy of the final
result depends only on the accuracy of the phase estimates, the accuracy of the block
distance estimate (which might be influenced by sampling jitter) and the absolute dis-
tance of the blocks (a larger distance increases accuracy). The accuracy of the initial
frequency estimate and the distance between the blocks determine the probability of
outliers Pe, i.e. situations in which the estimate k is wrong (a smaller block distance
reduces this probability).

Processing is very fast for this algorithm due to two factors:

1. The number of samples 2·M is much lower thanN in case of uniform sampling,
and all computationally expensive steps can be done per block individually, re-
quiring only a very low number of samples and therefore little memory in every
step.

2. The computational complexity is not higher than that of any other frequency
estimation algorithm applicable to a low number of samples, i.e. O(N logN) in
case of a typical FFT based implementation. For two blocks with M < N/2
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k=2

k=3

k=4

Figure 3.8.: Possible frequencies based on the phase estimates and the frequency esti-
mate from the individual blocks. The signal at the sampling positions is
very similar for all three cases depicted here, which can lead to a wrong
k being chosen.

samples, the computational effort (2 ·M logM ) is lower than for the processing
of uniformly sampled data (N logN ). Combining the results from multiple
blocks needs a fixed low effort only.

In case of more than two blocks, the approach above can be applied iteratively, starting
out with the two blocks with the smallest distance, and then consecutively choosing
pairs of blocks with increasing distance, but using ω̂new obtained from the previous
two blocks instead of ω̂init. This procedure can be repeated until the two blocks with
maximum distance are used, and therefore this leads to the same accuracy as if only
the blocks with the largest distance were used, but with a lower probability of outliers
(incorrect k).

If a certain number of outliers must not be exceeded, there are three ways to reach
this goal, with different drawbacks:

• Increasing the number of sampling points per block increases measurement and
processing time.

• Increasing the number of blocks also increases measurement and processing
time.

• Reducing the distance between the blocks reduces accuracy.
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Figure 3.9.: Block diagram of the proposed algorithm for frequency estimation. Once
the optimum sampling pattern for the application has been chosen, the
raw data is acquired. Optionally the actual sampling positions might be
determined for use in the algorithm. Then a frequency and phase esti-
mate for each block of data is obtained, and a new frequency estimate
is computed using the algorithm described in this paper. Optionally, a
high precision phase estimate can be performed on the basis of the new
frequency estimate, and can then be used for a new frequency estimate.
Finally, the resulting frequency and phase estimates are returned. There
are multiple extensions possible, including amplitude estimation, iterative
approaches and using prior knowledge, but these are outside the scope of
this paper.
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3.5.2. Comparison to the Theoretical Bound

The performance of the proposed algorithm is compared to the theoretical lower bound
(CRB) of the variance for both the theoretically optimum sampling pattern and the
uniform sampling pattern. Data acquisition time, processing time and accuracy as
well as robustness to outliers are discussed. For that purpose, an approximation for
the probability of outliers Pe and for the accuracy of the algorithm given in section III
is derived.

For the frequency estimation accuracy of the individual blocks an (approximate)
lower bound is derived in [Rife & Boorstyn, 1974]. This bound applies to complex
signals only, in the real-valued case the bound depends on the true frequency and
phase of the signal. In addition, the bound in [Rife & Boorstyn, 1974] does not take
an unknown signal offset into account. Asymptotically though, the variance of the real
valued case with unknown offset approaches twice the variance of the complex valued
case (which is intuitively clear as only half the number of independent measurements
are assumed to be available). This is briefly shown in the appendix.

The relative standard deviation is then given by the square root of this approximate
variance divided by π,

sω̂ ≥
2
√

6
π
· σ
A
· 1
M
√
M
(
1− 1

M2

) (3.30)

Figure 3.10 (top) shows the lower bound on the standard deviation as a function of
true frequency and phase when taking the unknown offset and the real-valuedness of
the signal model into account.

For the phase estimation from a block of samples with known frequency or for the
phase in the center of a block of samples with unknown frequency, using the same
approximations as above, one obtains [Rife & Boorstyn, 1974] a relative standard
deviation of

sϕ̂ ≥
√

2
2π ·
σ

A
· 1√
M

(3.31)

Again, eq. 3.31 does not take the unknown offset and the real signal model into
account. The CRB can be computed exactly for the phase estimation, with an approach
similar to the one for the frequency estimation, see Figure 3.10 (bottom).

Returning to the algorithm described in section III, the probability of outliers (incor-
rect k̂opt in eq. 3.28) depends on the frequency and phase estimation accuracy as well
as on the inter-block distance. In the following, we assume there are two blocks with
M uniform samples each, and a total range (from one edge of one block to the other
edge of the other block) of N (uniform) samples. Then we can compute an approxi-
mate variance for ∆ defined in eq. 3.27, assuming independence of the frequency and
phase estimates:

var(∆) = σ2 ≈ 2 ·
(
2πsφ̂

)2
+ ((N −M) · πsω̂)2 (3.32)

Equation 3.32 is only an approximation, though; the real estimation accuracy depends
on the true signal frequency and phase and on the algorithms used for frequency and
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Figure 3.10.: Theoretical lower limit on the relative standard deviation of a frequency
(top, previously shown in Figure 3.5) and a phase (bottom) estimate for
a single noisy tone (eq. 1) using 16 equispaced samples and a SNR of
10, based on numerical evaluation of the CRB. The plot underlines the
fact that estimation becomes unreliable for frequencies close to zero or
the Nyquist frequency, where the color scale has been truncated.
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phase estimation. In the optimum case (if the true phase and frequency lead to a
minimum in the variance of the phase and frequency estimates), the variance is roughly
half the one given above; in the worst case (i.e. when the signal frequency is close
to the Nyquist frequency) it can be infinite. In addition, the phase and frequency
estimates are not independent of each other, hence the above approach that assumes
uncorrelated data is not exact. For frequencies far from zero or the Nyquist frequency
(cf. Figure 3.10, the exact range depends on the SNR and the number of samples
per block) the estimate above is good enough to show some general relations. If one
assumes that the distribution of the parameter estimates is approximately Gaussian
(which is a good approximation in case of low noise; for high noise the algorithm is
not applicable as then a combined analysis of all sampled blocks instead of an analysis
of the individual blocks is much better), one can easily compute the probability of
outliers Pe: For ∆, a Gaussian distribution with zero mean and variance according to
eq. 3.32 can be assumed. If the absolute value of ∆ is larger than π, the phase coupling
procedure fails. Thus the probability of outliers is approximated by

Pe = P (|∆| > π) = erfc
(
π√
2σ

)
(3.33)

This does not take into account outliers that are caused directly by the M -point fre-
quency estimation, but if the SNR is high enough for the coupling of blocks to work,
the probability of outliers occurring in theM -point frequency estimation step is neg-
ligible.

The standard deviation as given above is directly proportional to the noise level. For
a given number of samples per block and a given SNR, one can compute the maximum
(and therefore optimum) block distance N for a previously specified probability of
outliers Pe as demonstrated in Figure 3.11.

This strategy is easy to implement even if analytical treatment becomes difficult
in a practical application: One can simply implement the algorithm and look at a
histogram of the phase differences ∆ across all pixels in the image. It is then obvious
when the algorithm fails (i.e. if the distribution becomes too broad) and very simple to
adjust the parameters block sizeM and block distance N −M empirically such that
the desired performance and error probability for a given problem is reached. This
strategy can therefore be applied even when the noise is correlated, multiplicative or a
simple closed form solution does not exist for other reasons.

The accuracy of the result (disregarding outliers) is given by the accuracy of the
phase estimate and block distance only.

sωnew =
√

2 · 2πsφ
π(N −M) = 2

π
· σ
A
· 1

(N −M) ·
√
M

(3.34)

A lower bound for the error based on the CRB can be computed as shown in Fig-
ure 3.12.

For the values used in Figure 3.12, the root mean squared value of the theoretical
limit based on the CRB for the relative accuracy of the frequency estimation in the
center frequency range from 0.125 to 0.875 is 1.39 · 10−4. A numerical estimation on
simulated data (using a linear least squares estimator for the phase) yields a standard
deviation of approximately 1.40 ·10−4, which shows that this accuracy can be reached
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Figure 3.11.: Probability of outliers Pe as a function of sampling range N and block
sizeM , logarithmic scale.

in practice. Both of these values are very close to the approximation in equation 3.34,
which yields 1.42 · 10−4.

Going back to the theoretically optimum sampling pattern as described in [Wieler
et al., 2006], the following results are obtained: For Pe = 2.5·10−4 (approximately the
same theoretical probability of outliers as in the case of two blocks with 16 samples
each and a total range of 128 samples, according to Figure 3.11), a theoretical relative
accuracy of 1.35 · 10−4 is reached. The corresponding sampling pattern is shown in
Figure 3.6 (top). This comparison might be unfair as we have not shown that there is an
algorithm that can actually reach such a low probability of outliers, but the probability
of outliers of very simple implementations can easily be shown to be far below 1%.
With Pe = 1%, as assumed for Figure 3.6 (bottom), the theoretical accuracy improves
only slightly to about 1.34 · 10−4.

In contrast, using the same number of samples (2M = 32) distributed uniformly
across the measurement range N , the relative standard deviation is 2.15 · 10−4 (in
this case excluding the values at the border frequencies relative to the new Nyquist
frequency, otherwise the results would be even worse).

This shows that the accuracy of the procedure described here is very close to the
theoretical limit (to about 3% in this case): Even if arbitrary sampling weights are
allowed, a significantly better frequency estimation is not possible as long as the con-
straints on sampling range and sampling effort are kept.

A more systematic comparison of various possible sampling strategies yields the
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Figure 3.12.: Lower bound on the standard deviation of the frequency estimate from
two blocks with 16 samples each from a range of 128 samples (top);
for comparison the same bound is shown for the same total number of
samples (32), but now uniformly spaced over the same range of 128
samples (bottom). The areas of zero and Nyquist frequency are clearly
visible; and even in between the accuracy is more than 30% lower. The
scales for both graphs are different, the scale is truncated in the white
areas.
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results shown in Figure 3.13. The following four cases are compared:

1. Uniform sampling with a fixed number of samples 2M over a fixed range of
samplesM :

ti = i, 1 ≤ i ≤ 2M

2. Uniform sampling with a number of samples N , same sampling distance as
above, N increasing. This would require significantly longer measurements:

ti = i, 1 ≤ i ≤ N ≥ 2M

3. Uniform sampling with 2M samples, but increasing distance of the samples
such that the total range is identical to the case with N samples.1 In practice
this would cause ambiguity issues as the Nyquist frequency decreases.

ti = i

M
·N, 1 ≤ i ≤M

4. Sampling in two blocks with M samples each, the block distance increasing
with N such that the total range is N .

ti =
{

i, for 1 ≤ i ≤M
N −M + i, forM + 1 ≤ i ≤ 2M

This is the main strategy proposed in this paper.

As the results are proportional to the noise level for sufficiently small noise, an SNR
of 10:1 was chosen with little loss of generality. The results show that the proposed
algorithm has a very good theoretical accuracy if there is a sufficiently large block
distance (as long as the upper limit on the inter-block distance dictated by the accept-
able probability of outliers is not exceeded). Performance is necessarily worse than
using N >> 2M samples. A more detailed comparison between strategy 2) and 4) is
offered in Figure 3.14.

Sampling with 2 × 16 samples instead of 1 × 64 samples decreases measurement
time by 50% and processing time (if an FFT based algorithm is used in both cases) by
75%, at the cost of a reduction in accuracy of less than 10%. Even at a quarter of the
sampling time, the relative standard deviation increases by only 32% instead of the
100% one would expect from looking at the noise.

3.5.3. Extensions

Known sampling jitter

Phase estimation still works very well even if the samples are not equally spaced. If
the jitter is large, it calls for more sophisticated algorithms for frequency estimation. If
the jitter is not too large, it can simply be ignored in the frequency estimation step: For
moderate block distances a sub-optimal frequency estimation does not lead to many
outliers, and therefore the final result is still close to the theoretical limit.

1In addition, we investigated the case ofN uniform samples, with lower measurement effort for each,
such that the sum of relative weights amounts to 2M < N . However the results are so similar to
case 3) that they have been omitted in the graph of Figure 3.13.
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Figure 3.13.: Comparison of different sampling strategies: Three different ways for
uniform sampling (fixed number of samples and distance; fixed num-
ber of samples and increasing distance; increasing number of samples)
and sampling in two blocks with increasing distance are compared. The
sampling strategy depicted with a black line uses 32, . . . , 128 samples,
whereas all other strategies require 32 samples only. For a range of
N = 128 and 2M = 32 samples, the two-block strategy proposed here
has a standard deviation which is about 34% lower than that of uniform
sampling with the same number of samples and measurement range, at
a slightly reduced computational cost and with a larger unambiguous
range.

Multiple blocks of data

The algorithm can easily be extended to more than two blocks of data. This can be
done by using two blocks of data at a time, starting with the blocks with the smallest
distance, and then looking at increasing block distances. In this case the probability
of outliers decreases, and the accuracy is determined by the largest available distance.
Alternatively, a (weighted) least squares estimate could be obtained from all phase
values simultaneously (which is especially relevant if for some reason the outer blocks
do not offer good signal quality), but this is only applicable if the maximum distance
of the blocks is small enough to avoid outliers.
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Figure 3.14.: Relative error of dual block method (2M = 32 samples in total, but
increasing block distance N − 2M ) compared to single block method
(increasing range and number of samples N and therefore increasing
total sampling time).

Tracking frequencies

The proposed algorithm can be modified for tracking quickly changing frequencies: In
that case one can use the frequency and phase estimate from short blocks, and adjust
the block distance used for the final frequency estimate depending on the input data.
This can be done for example using a Kalman filter or a simple heuristic approach
that increases the distance when the correction based on the phase estimate is small,
and decreases it when the correction is larger. This is useful if the tracking is based
on blockwise information, e.g. blocks of pilot symbols embedded in a signal [Noels
et al., 2005].

Using prior knowledge on the signal phase

If prior knowledge on the signal phase is available for some t, a method for a more ac-
curate frequency estimation can be derived. This can be applied in optical metrology,
for example. For a smooth and continuous surface, the result of using this approach in
a multiple wavelength interferometry system is identical to that obtained with spatial
unwrapping, at a much lower computational cost. In addition to that, the phase es-
timation can also be used to obtain highly accurate measurement results for surfaces
that are not continuous as long as the surface properties and therefore the signal phase
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φ0 remain the same.
For this approach, first the frequency ω is determined as accurately as possible

with the algorithm described above. Next a single phase value is considered. This
phase value can be obtained from only one block or from the whole set of samples.
Once again the signal is given by eq. 3.21. Then in this special case we use our prior
knowledge on the phase φ0 and obtain

2πk = ϕ0 − (ω · t+ ϕ), k ∈ N. (3.35)

Again, there is no unique solution and therefore k is chosen such that the difference is
minimized:

k̂opt = arg min
k

(ϕ̂0 − (ω̂ · t+ ϕ̂) + 2πk) (3.36)

Then an improved frequency estimate can be computed (again, the accuracy depends
only on the phase estimate):

ŵnew = ϕ̂− ϕ̂0 + 2πk̂opt
t

(3.37)

This is very similar to the derivation above, but t is usually much larger than t2 − t1,
and therefore the “ladder” of frequencies is very fine and the results are more accurate;
but the probability of outliers increases.

If there are outliers, it is usually difficult to change the distance of the blocks (in
case of optical metrology this distance is given by the laser frequency). This issue can
only be resolved with a sufficiently accurate initial frequency estimate, which can be
obtained by the algorithm described earlier, or by using prior knowledge on spatial
relationships (e.g. smoothness constraints) to correct incorrect choices of k.

3.5.4. Summary and Conclusion

An efficient sampling scheme and algorithm for single tone frequency estimation has
been presented. An implementation of the proposed algorithm consists of the follow-
ing steps:

• Choice of sampling points (e.g. using two blocks of samples with maximum
feasible distance for a desired probability of outliers)

• Frequency estimation for one or more blocks (section 3.6)

• Phase estimation for each block (section 3.6)

• Determination of the actual sampling points (section 3.7, optional, if available
one can take sampling jitter into account)

• Improved frequency estimate by phase coupling

• Absolute phase estimation using prior knowledge (optional, if knowledge is
available)
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For a practical implementation, the block size and block distance have to be adjusted
to reach the desired accuracy and probability of outliers of the frequency estimation.

The proposed algorithm has three key advantages:

• First of all, it is very fast. Processing time depends mainly on the algorithms
used for phase and frequency estimation for the individual blocks, the rest of
the algorithm takes much less than a second on a current PC. If fast approaches
are used for phase and frequency estimation, a total processing time of less than
10s for 1 million frequency estimates using M = 32 frames can be achieved
in Matlab on an Intel Core 2 Duo E6600 processor. Processing with dedi-
cated hardware or more optimized software is expected to be significantly faster.
Computational complexity is usually lower than that of uniform sampling, given
the same number of sampling points. In particular, the algorithm is faster than
taking the FFT on a single block ofM uniformly sampled data points.

• The algorithm is also highly accurate: The performance of this algorithm by far
exceeds that of uniform sampling with the same number of samples and gets
very close to the theoretically optimum sampling scheme and theoretically best
frequency estimation. On the one hand, the sampling pattern is close to the
theoretically optimum sampling pattern, and on the other hand, the algorithm
almost reaches the CRB (to less than 1% for an SNR better than 1) for this
sampling pattern. Altogether, the result is within 3% of the theoretical limit on
the accuracy for the theoretically optimum sampling pattern, i.e. any possible
improvements are known to be very limited.

• The algorithm is highly flexible: It can easily be extended to take known sam-
pling jitter or multiple sampling blocks into account, without extra computa-
tional effort. In addition, one can easily apply the method even if the noise is
correlated or unknown by optimizing a histogram of phase differences as com-
puted from eq. 3.27. The proposed method can therefore be generalized to a
wide variety of applications.

3.5.5. Application to Multiple Wavelength Interferometry

The algorithm above is particularly well suited for multiple wavelength interferometry.
Acquiring the data with laser frequencies on a roughly uniform grid is possible even
if the laser exhibits longitudinal mode jumps, and in case of slight deviations from the
optimum sampling pattern the actual laser frequencies can be taken into account in
the phase estimation such that the accuracy does not decrease significantly. This will
be shown in the following sections. A convenient side effect of the data acquisition in
two blocks is that the exposure time can be adjusted such that intensity fluctuations of
the laser across its bandwidth or fiber coupling issues are compensated by adjusting
the exposure time per block.

The block distance is limited by the available laser bandwidth. For an application
in a production line, measurement time is usually limited by the line cycle time, and
therefore the number of frames is limited as well. A theoretical decision based on
the SNR is usually not possible as the properties of the measurement object are often
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not known precisely. Therefore ways to choose a near-optimum sampling pattern for
multiple wavelength interferometry are discussed here.

For measuring smooth surfaces, a large block distance is desirable for high accu-
racy. For a given limit on the measurement time (and therefore a given block size),
the bandwidth can be reduced (starting from the maximum laser bandwidth) until the
number of outliers is acceptable. This can be determined by looking at the distri-
bution of the difference in the phase coupling step, and is trivial to measure. If it
works fine with the maximum laser bandwidth, then the number of samples can be
reduced without significantly lowering measurement accuracy. For most applications
this setting offers the best compromise between accuracy and measurement time: If
the measurement time is the limiting factor, a smaller laser bandwidth can be chosen
(resulting in less frames required, reduced measurement time and reduced accuracy).
If the accuracy is not sufficient, the laser bandwidth should be increased. When this
is not possible, increasing the number of frames in the center is not a good option.
Repeating the measurement and averaging the results may lead to a larger increase in
accuracy.

For measuring rough surfaces, the situation is different. Here the accuracy does
not necessarily increase when the block distance increases, as the speckle field be-
comes decorrelated when the laser frequency changes. The same empirical method
to determine the optimum settings can still be used, but it is possible that the accu-
racy decreases when the bandwidth increases, and the optimum block distance may be
lower.

The optimization is complicated by the fact that a certain number of outliers might
be acceptable, as they can be corrected by filters (see chapter 3.8), even 20% outliers
might not be a problem. The optimum sampling pattern therefore depends on the
requirements of the further processing steps.

A theoretical comparison of the Cramér-Rao bound for the optimum sampling pat-
tern with uniform sampling and the proposed near-optimum sampling pattern, using
typical values for a practical measurement system, yields a large improvement com-
pared to uniform sampling: With the same ambiguity and measurement time, one can
reach about 97% of the accuracy of the true optimum sampling scheme, or a seven-fold
increase compared to uniform sampling!

This is still based on idealistic assumptions though — the derivation above assumes
optimum frequency and phase estimation, and this is not possible in practice with
limited processing time. However, it will be shown that even with sub-optimum signal
processing this result can be reached in practice. The key point to note here is that the
accuracy of the frequency estimation has no direct influence on the accuracy of the
result; it just influences the number of outliers or the maximum block distance for a
given number of outliers. For many tunable lasers the distance will be limited by the
usable laser bandwidth, so that a sub-optimum algorithm has no detrimental effect.
The accuracy of the phase estimation is very important for the result as seen above
— but fortunately this is a relatively simple problem. A good implementation that
uses knowledge on the actual sampling points to obtain the best possible results is
discussed in the next section.
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3.6. Frequency Estimation for a Low Number of
Uniformly Spaced Samples

In order to use the sampling scheme and algorithm derived in the previous chapter, a
large number of frequency and phase estimates from a very low number of samples are
needed. For each camera pixel two phase and two frequency estimates are required,
and with megapixel camera resolutions this quickly leads to millions of estimates. As
the total processing time should be on the order of a few seconds, this requires very
fast algorithms. This problem is discussed in this chapter in a more general context as
the algorithms are not limited to multiple wavelength interferometry.

3.6.1. Introduction

The problem of estimating frequency from a sampled signal arises in many applica-
tions. There is a large number of different aspects to this problem: Signals may be sta-
tionary or time-varying, the signal may have only a single or multiple frequency com-
ponents, it may be uniformly or non-uniformly sampled. It is therefore not surprising
that a large number of techniques has been developed. Methods include autocorrela-
tion based signal subspace techniques (Pisarenko’s method [Pisarenko, 1973], MUSIC
[Stoica & Soderstrom, 1991], ESPRIT [Lemma et al., 2003]), non-linear optimization
techniques (iterative, in both time [Brown & Mao Wang, 2002] and frequency domain
[Aboutanios & Mulgrew, 2005]), filter based techniques [Savaresi et al., 2003] and
(windowed) FFT based approaches [Jain et al., 1979; Rife & Boorstyn, 1974; Rife
& Vincent, 1970; Quinn, 1994]. Each of these readily available algorithms has ad-
vantages and disadvantages, and their (asymptotic) properties have been discussed in
detail in many papers and textbooks, including [Quinn & Hannan, 2001; Moon & Stir-
ling, 2000; Poor, 1994]. Some of them have been designed for single tone parameter
estimation (e.g. the maximizer of the periodogram), others for multi tone parameter
estimation (e.g. MUSIC).

However, without modifications these algorithms do not perform well for very few
samples. Depending on the specific application, it may be possible to obtain the de-
sired accuracy for the frequency estimate by taking a sufficient number of samples
from the signal. In some cases, increasing the number of samples is not feasible
though: There is a trade-off between noise suppression and good tracking of a quickly
changing signal, and there are applications where significant cost is associated with
sampling, such that a low number of samples is preferable. On the other hand, with a
limited number of samples it is often possible to employ relatively complex, iterative
approaches to estimate the frequency — but if a large number of frequency estimates
is required in a very short period of time, this might also be too expensive.

In the following, the issue of very fast single tone frequency estimation from very
few (typically 8–32) samples in the presence of additive noise is discussed; for even
shorter signals the computational effort does not play such an important role any more,
and for more samples the known algorithms perform quite well already. The follow-
ing analysis is based on a signal model assuming a real-valued sinusoid with unknown
frequency, phase, amplitude and offset; often the offset is not taken into account, but
for a low number of samples its influence becomes important, and its inclusion does
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not complicate the results much. Exactly uniform sampling is assumed, and the main
objective besides accuracy is fast computation. The issues discussed here are an ex-
tension to the treatment in [Schoukens et al., 1992], made possible by the limitation
to very short windows on the one hand and increases in available processing power on
the other hand. The focus and therefore the visual presentation is different though —
for a very low number of samples, systematic errors of the methods play a more im-
portant role. A more rigorous treatment of the asymptotic properties of interpolators
can be found in [Quinn & Hannan, 2001], and it should be noted from the beginning
that the new algorithms discussed in this paper are known to have poor asymptotic
properties as they only use the absolute value of three Fourier coefficients. Neverthe-
less, the proposed strategy offers better performance under the given constraints than
the methods described in [Quinn & Hannan, 2001].

First, the system model is described in detail and the design objectives are defined.
Next, the new algorithm is derived. Then its performance is analyzed and compared
to alternative approaches. Estimation of the remaining signal parameters phase, am-
plitude and offset is discussed, and finally the results are summarized.

3.6.2. Signal Model and Problem Description

Once again, the signal is assumed to be a real-valued noisy sinusoid

I(n) = A · cos(ω · n · T + φ) + C + εn, n = 1 . . . N (3.38)

with amplitude A, offset C, frequency ω and εn independently and identically dis-
tributed Gaussian noise with zero mean and variance σ2 (repeated from eq. 3.21).
For a continuous periodic signal (or an infinite number of samples), the maximizer
of the periodogram is the maximum likelihood estimator. It can be approximated by
the power spectral density (PSD), which can in turn be computed quickly by using
the FFT. However, for a low number of samples there are several problems with this
approach:

• The signal is implicitly windowed with (i.e. multiplied by) a rectangular win-
dow. The Fourier transform of that window is a sinc function. A real valued
signal can be seen as the sum of two complex exponentials in the time domain
or two Dirac pulses in the frequency domain. Convolving those with the sinc
function yields two overlapping sinc functions in the frequency domain, and
the side lobes of each can shift the maximum of the other. In addition, there is
aliasing as the sinc function is not band-limited and the side lobes of the peaks
can hence interfere with the main lobes due to aliasing.

• The FFT returns results on a discrete grid of frequencies and interpolation is
simple, but either not very good or computationally expensive. There has been
extensive treatment on how to interpolate as well as possible [Quinn & Hannan,
2001], however none of these interpolators works very well for a low number of
samples. Quadratic or center of gravity interpolation between the Fourier coef-
ficients is commonly used in practical applications, but suffers from systematic
errors.
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One approach to alleviate the aliasing problem is windowing: It can reduce the side
lobes and therefore decreases phase dependent bias in the frequency estimation. Com-
monly used window shapes include the Hamming and Hanning windows. Unfortu-
nately though, reducing the side lobes increases the width of the main lobe, and this
makes the results more sensitive to additive noise.

The issue of correct interpolation in the Fourier domain can be solved by zero-
padding before taking the FFT or by explicitly computing the Fourier transform for a
number of frequencies close to the probable maximum. For band-limited signals this
is the correct interpolation, but it is too slow for the application considered here.

3.6.3. Optimization of an Estimation Algorithm

In many applications a windowed FFT (using a Hamming or Hanning window) and
interpolation in the Fourier domain is used if a fast algorithm is needed [Vanlanduit
et al., 2004; Jain et al., 1979; Zhang et al., 2001]. Windowing reduces sidelobes and
increases the width of the main lobe. The appropriate interpolating function depends
on the shape of the main lobe; sometimes a closed-form solution exists. For a con-
tinuous signal and a Gaussian window, the main lobe in the frequency domain is also
Gaussian, and the appropriate Gaussian interpolation could be implemented by taking
the logarithm of the data and subsequent quadratic interpolation. Such an approach
does not take aliasing or additive noise into account and is not applicable to a very
low number of samples. More extensive treatment of this problem can be found in
[Schoukens et al., 1992], [Quinn & Hannan, 2001] and [Rife & Boorstyn, 1974]. Most
of the approaches in the literature focus either on optimization of the interpolation for
non-windowed data, or on derivation of an optimum window. The new approach now
combines these two optimization problems, and attempts to find an optimum solution
for the frequency estimation problem. As it is impossible to consider all possible in-
terpolation functions in an automated optimization procedure, a fixed set of simple
interpolation functions has been selected and a look-up-table based bias correction
has been added as a final step. A detailed description of the algorithm follows below.
The “best” solution within the given set of constraints (basic structure, computational
and memory constraints) is then compared to other algorithms and the theoretical op-
timum.

The modified algorithm is structured into five steps:

1. The signal offset is removed first. As this offset is not known, the easiest solu-
tion is to remove the sample mean from the data. This is not exact as a sampled
sinusoid has a small, but non-zero mean for most sampling patterns. In addition
to that, the discrete Fourier transform is only exact if there is an integer num-
ber of wavelengths on the uniformly sampled support. These two aspects are
the reason that evaluating this signal with a Fourier transform introduces phase
dependent errors due to the implicit rectangular windowing in the time domain.
These errors are minimized in the following optimization, while at the same
time keeping noise sensitivity low.

2. In order to reduce these phase dependent errors, the signal is multiplied with a
more suitable window function in the time domain instead of the implicit rect-
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angular window. The window shape is subject to optimization: Qualitatively, it
has to reduce the side lobes of a truncated sinusoid considered in the frequency
domain while keeping the width of the main peak as narrow as possible.

3. The FFT is taken, and a first estimate of the frequency based on the DFT coeffi-
cients is computed. As an initial step, the squared absolute value of the Fourier
coefficients is computed and the position of the maximum is determined, as this
is the area where most of the signal information can be found. Using only this
data is a first step to reduce the dimensionality of the estimation problem, at the
cost of a slightly reduced accuracy.

4. A more refined estimate of the true frequency is determined based on interpo-
lation between the maximum Fourier coefficient and its two neighbors. For a
fast computation, it is desirable to use only the Fourier coefficients and/or their
squared absolute values as input to a simple interpolating function. This func-
tion is also subject to optimization.

5. Finally, a non-linear transform is applied to the end result in order to remove
any remaining bias. When both interpolator and window have been chosen, a
one-dimensional non-linear correction is defined by the frequency bias (aver-
aged across all phase values) of the estimate (for a given signal-to-noise ratio).
This step could be integrated into the interpolator: Using an arbitrary nonlinear
transform as an interpolator is slightly more flexible and might offer slightly
better performance, but it yields an optimization problem that is very hard to
handle. The non-linear transform can be multidimensional (an extreme exam-
ple would be a look-up table with N-dimensions for N samples); but more than
one dimension is not desirable due to the memory requirements. Nevertheless,
a two-dimensional example (using phase and frequency of the estimate) will be
included for comparison.

The optimization of window and interpolating function is based on prior knowledge
of the system and on the desired properties of the frequency estimate. Optimization
parameters include:

• known frequency range and weighting of different frequencies,

• signal to noise ratio,

• desired error norm,

• sampling positions and sampling jitter (optional).

Commonly used windows include the Hamming, Hanning and Kaiser windows; often
quadratic or center of gravity interpolation is used.

While steps 1, 3 and 5 are self-explanatory, there are several things to take into
account in steps 2 and 4:

When optimizing the window function, the number of degrees of freedom is equal
to the number of sampling points. However, the problem is symmetric as long as the
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Figure 3.15.: Block diagram: Data flow of the proposed estimation algorithm.

phase is assumed to be unknown and uniformly distributed, which it is in many ap-
plications. Simulations have shown that convergence of the optimization algorithm
is accelerated a lot when enforcing a symmetry constraint on the window. A further
degree of freedom is eliminated by the normalization of the window. This results in
a total of N/2 − 1 degrees of freedom. An iterative optimization algorithm based on
a line search has been implemented, and convergence has been verified by compar-
ing the results of the optimization for random initial values. For faster convergence
a number of modifications including adaptive step sizes and initial smoothness con-
straints have been added as well; these do not influence the final result. The resulting
optimum window depends on a number of system parameters and on the optimization
criteria as illustrated below.

There are many degrees of freedom for the interpolation; arbitrary functions could
be conceived. Known good interpolators are sometimes fairly complex and are based
on the complex-valued Fourier coefficients, e.g. Quinn’s second interpolator [Quinn
& Hannan, 2001]. An analytical discussion of asymptotic properties of some inter-
polators can be found in [Quinn & Hannan, 2001]. A closed form expression for an
optimum interpolator when an arbitrary window size is allowed does not seem feasi-
ble, though.

There are four requirements due to the signal model:

1. Interpolation has to be independent of the signal offset. This means that the zero
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frequency component of the FFT cannot be used.

2. Interpolation should be as independent as possible of the signal phase; therefore
coefficients where the main lobes of the peaks overlap are difficult to use. This
can be taken into account in iterative algorithms, but is not desirable for a simple
and fast algorithm.

3. Very few Fourier coefficients contribute almost all the information: In case of
single tone frequency estimation, most of the signal energy is concentrated in
a small range coefficients, and for white noise the noise energy is uniformly
distributed across the spectrum. Therefore the signal to noise ratio of most
coefficients is very poor, and it is possible to constrain the interpolation to a few
coefficients next to the maximum.

4. Interpolation has to be independent of scaling as the signal amplitude is un-
known. This limits interpolators to (possibly non-linear) functions of quotients
of linear combinations of Fourier coefficients ci, their real and imaginary parts
or any norm. The coefficients can also be taken to the power of k. An arbitrary
k can be used, but linear combinations of norms with other elements are limited
to even k. li,mi, ni and oi,p are constants;

Hence we only investigate the following type of function for use in the interpolation:

f(g1, g2, ...), with gk = hi,k
hj,k

hi,k =
∑
i

(
li · cik +mi · Re(ci)k

+ni · Im(ci)k
)

+

 ∞∑
p=1

∑
i

oi,p · |ci|p

k
(3.39)

This is still a fairly general approach, and only part of this space can be investigated.
Using the squared absolute value (required for finding the maximum position) or the
real or imaginary part of the Fourier coefficients is most attractive, as these values
are available anyway at this point and do not have to be computed. The angle of the
coefficients can be used as well; phase information might be useful later and helps
if there is only one neighboring coefficient available due to the requirements 1. and
2. given above.

It is not necessary to consider all possible interpolation functions: If the maximum
found by interpolation is a strictly monotonous function of the true signal frequency
ω at least locally for every interval given by the respective maximum position, all
systematic errors can be removed with a nonlinear transformation at the end, which
could be implemented by a look-up table.

Using different interpolating functions has an influence on the optimum window
shape, therefore the investigation has been performed (results not shown) with a large
number of interpolating functions, including center of gravity, quadratic and Gaussian
interpolation, applied to arbitrary powers of the absolute value of the Fourier coeffi-
cients.
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Quadratic interpolation (i.e. fitting a parabola) to the squared absolute value of the
Fourier coefficients turned out to perform best in these comparisons (although only
slightly better than several others) and has the lowest computational effort. Therefore
quadratic interpolation was used for the following performance comparisons. The
optimum window shapes shown next depend directly on this interpolating function,
results look differently if another interpolating function is chosen. A performance
advantage over center of gravity interpolation was consistently present, but on the
order of less than 5%.

3.6.4. Simulation Results

For the signal model according to eq. 2 and additive white Gaussian noise, the Cramér-
Rao bound (CRB) has been computed: It gives a lower bound on the variance of any
unbiased estimator [Poor, 1994]. This bound is applicable to the algorithm discussed
above as it is by design almost unbiased 1. Therefore the mean squared error can be
directly compared to the CRB. The CRB is not necessarily a tight bound though, as
it does not take threshold effects into account [Bell et al., 1997]. These occur in the
highly non-linear frequency estimation problem in the presence of significant amounts
of noise.

With the given real-valued signal model, both the CRB and the actual estimator per-
formance depend on the true values of the parameters; in this model, though, the value
of the offset C has no influence 2, and the amplitude A is taken into account indirectly
by defining the SNR as A/σ. The resulting errors for a given SNR can therefore be
plotted in the (ω, φ)-plane; and the most significant effects are in the ω direction. In all
cases the square root of the variance or the mean squared error respectively are shown
in the graphs due to the easy and direct connection to measurement accuracy in the
optical metrology application this optimization was performed for.

In Figure 3.10 (top) the color scale is chosen such that the minimum corresponds
to the CRB one would obtain for the complex signal model as described in [Rife
& Boorstyn, 1974], and the maximum corresponds to three times this variance. In
the white areas the CRB exceeds the scale, which shows that good results cannot be
obtained for very low or very high frequencies, therefore one has to focus on a defined
frequency range. In the following, the frequency range from 0.125 to 0.875 (relative
to the Nyquist frequency), an SNR of 10, N=16 and φ = 0, . . . , 2π are used, and an
optimization according to Figure 3.16 is performed.

Figure 3.17 shows the phase averaged mean squared error vs. true frequency. It
includes the CRB, the optimum window according to the algorithm described above,
the best “standard” window (in this case a Hanning window) and an optimum window
with a multi-dimensional look-up-table (using both the amplitude of the coefficients
and their phase).

A more complete comparison of windows can be found in table 3.1, character-
ized by the mean squared error taken across all phases and frequencies. The main

1Due to the look-up table used at the end, frequency dependent bias is removed. There may be some
phase dependent bias, but due to windowing this is very small.

2It is important whether there is an unknown offset or not, but the specific value of the offset is
irrelevant.
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Figure 3.16.: Block diagram: Algorithm for finding the optimum window shape for a
given set of criteria.

windows from [Schoukens et al., 1992], as well as several other windows in use in
various applications have been investigated, but only a selection of well performing
windows is included in the table. For windows characterized by continuous parame-
ters, the parameter value was optimized. A much larger number of interpolators and
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Figure 3.17.: Comparison of different algorithms (Hanning window, optimum win-
dow with 1D-LUT, optimum window with 2D-LUT) and the theoretical
limit (CRB).

Window Interpolation Hamming Bartlett Hanning Kaiser Optimum
Gravity 0.65% 0.64% 0.62% 0.45% 0.43%
Gravity+LUT 0.48% 0.47% 0.45% 0.39% 0.36%
Quadratic+LUT 0.46% 0.46% 0.43% 0.40% 0.35%

Table 3.1.: Relative RMS error of FFT based frequency estimates for various common
window and interpolation functions and a look-up-table for bias correction,
all using N=16 and SNR=10, frequency range 75%. The results for the
Kaiser window were obtained using a 1-D optimization of the parameter
β, the optimum window was freely optimized.

windows than shown in table 3.1 has been analyzed. This includes Gaussian inter-
polation with and without look-up-table bias correction and quadratic interpolation
without bias correction. The Hann, Blackman, Blackmann-Harris, Nuttall, Parzen and
Bohman windows and a number of windows with adjustable parameters, including
Tchebychev and Gaussian windows, were considered. These performed worse than
the Kaiser window included in the table above.

For N=16, SNR 10, and a frequency range of 75%, the “best” (using the L2-norm)
commonly used windowed FFT (Hanning window, 3-point center of gravity interpo-
lation on squared absolute values of the Fourier coefficients) yields a relative root
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Figure 3.18.: Optimum window shape for N=16 and 75% frequency range, for various
noise levels.

mean squared error for the frequency estimate of 0.62%. If the non-linear correction
is enabled with this window, the error can be reduced to 0.45%. The window ob-
tained from the optimization proposed in this paper has a root mean squared error of
0.35% (using quadratic interpolation in this case) and with considerably more difficult
2D-interpolation an error of 0.32% can be reached, while the CRB is at 0.25%.

The shape of the optimum window according to the algorithm above strongly de-
pends on the SNR (Figure 3.18) and the desired frequency range (Figure 3.19). The
higher the noise, the broader the window becomes, and the “dent” in the center gets
smaller as well. Using a window that keeps more data improves the SNR of the esti-
mate, at the cost of stronger systematic errors due to aliasing. There are two different
basic window shapes, one with a single “dent” in the middle and the other with three
“dents”. Their performance is very similar, the second shape performs slightly better
when the frequency range is smaller and ends at Fourier frequencies.

The resulting root mean squared error for each combination of SNR and frequency
range is shown in Figure 3.20.

In addition to the parameters discussed above, the result of the optimization depends
on the error norm. For implementation and comparison the mean squared error is very
useful; for use in a measurement system a higher order norm might be preferable as
outliers can be more critical than the standard deviation. The influence on the resulting
window is quite small though and therefore this issue is not discussed any further.

The results as summarized in Figure 3.17 and Figure 3.20 show that the perfor-
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Figure 3.19.: Optimum window shape for N=16 and SNR=10, for various frequency
ranges.

mance does not reach the CRB, but the discrepancy is not very large either. An advan-
tage of the approach above is its high flexibility: For any set of parameters, one can
quickly find a new optimum window, without any manual interaction. The more that
is known about the system and noise parameters, the more the result can be improved.
Compared to “normal” windows with the same computational effort for the frequency
estimation itself, the improvement is significant. If the accuracy is still not sufficient,
the frequency estimate can be used as an initial value for further optimization by other
algorithms.

3.6.5. Estimation of Phase and Amplitude

The theoretical limit on the accuracy of phase estimation is shown in Figure 3.10 (bot-
tom, the square root of the CRB is given, settings are chosen as for the frequency
estimation in Figure 3.10 (top)). There is a problem with very low or very high fre-
quencies, similar to the frequency estimation issues. Other than that, the theoretical
accuracy is almost constant and does not depend much on the true signal frequency or
phase.

It is possible to estimate the signal phase and amplitude directly based on the FFT
coefficients. This is an option if processing time is very limited, but while it works
reasonably well for the non-windowed case, performance is not very good with the
optimum windows derived above. In any case, it is best to estimate the phase in the
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Figure 3.20.: Root Mean Squared (RMS) error of the optimum window for different
SNR and frequency ranges. A lower limit based on the CRB for the
estimation of real-valued sinusoids averaged across the frequency range
is included for comparison. The difference in the average CRB for the
various frequency ranges considered here is very small and therefore
only the values for a frequency range of 75% are included in the graph.

center of the block of samples. If one uses the coefficients of the windowed FFT,
the best (but still far from optimal) results can be obtained by using the phase of the
coefficient with the largest absolute value only, as this peak has the best SNR. Inter-
polation between two peaks in the Fourier domain — as is frequently used elsewhere
— is significantly more sensitive to noise.

It is also possible to use linear least squares estimation. Uniform sampling is not
required in this case. The performance using this algorithm has recently been ana-
lyzed for the estimation of phase in [So, 2005]. A very fast and simple algorithm is
derived below which further reduces complexity. It is designed for zero-mean data,
as removing the mean is necessary for the frequency estimation above anyway. The
signal model can be rewritten as follows:

I(tn) = A1 ·
(

cos(ω · tn)−
1
N

N∑
k=1

cos(ω · tk)
)

+ A2 ·
(

sin(ω · tn)−
1
N

N∑
k=1

sin(ω · tk)
)

+D
(3.40)
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with amplitude A =
√
A2

1 + A2
2 and phase φ = tan−1 A1

A2
.

If ω is known, then the equation above is linear in A1,2 and D corresponds to the
sample mean, which can be removed. Based on that we can define the linear least
squares estimation problem:

A · x = b,
with b = ~I, x = [A1 A2], and

A =

c(t1) s(t1)
c(t2) s(t2)
· · · · · ·


c(tn) = cos(ω · tn)−

1
N

N∑
k=1

cos(ω · tk)

s(tn) = sin(ω · tn)−
1
N

N∑
k=1

sin(ω · tk)

(3.41)

The linear least squares solution x = (ATA)−1AT b requires inversion of a 2×2 matrix
only, and due to the symmetry this yields:

[
a b
b c

]−1
= 1

ac − bb

[
c −b
−b a

]
(3.42)

For phase estimation, only the ratio of the two elements of x is needed, therefore
the denominator does not have to be computed. (ATA)−1AT can be computed very
quickly, and it can be stored in a table for the applicable frequency range (requiring
2N values per frequency). From this table, the best set of entries for phase estimation
can be chosen based on the frequency estimate. The signal only needs to be multiplied
with a matrix consisting of the corresponding 2N table entries; this yields two coeffi-
cients which can be used to compute phase and amplitude. Even with a very coarse
precomputed grid (less than 100 frequencies), excellent results can be obtained (cf.
Figure 3.21).

For high signal to noise ratios, results are within 1% of the theoretical limit, the
Cramér-Rao bound. When the signal energy is equal to the noise energy, the error
caused by least squares estimation reaches about 5%, for higher noise the difference
increases further, as can be seen in Figure 3.22.

The amplitude of the signal can also be determined both in the Fourier domain or
by linear least squares estimation. In the Fourier domain, the squared absolute value
of all coefficients is needed for finding the position of the maximum anyway, and the
signal energy can be found by summation of these values. However, not the signal
energy but the amplitude of the sinusoidal part of the signal (also called modulation)
is the desired quantity. Estimation based on linear least squares is also possible as
described above (A =

√
A2

1 + A2
2) and more accurate.
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Figure 3.21.: Comparison of FFT based phase estimation and linear least squares
(LLS) phase estimation with the theoretical limit, the CRB (for N=16,
SNR=10).

3.6.6. Conclusion

An improved frequency estimation algorithm based on the well-known concept of an
interpolated FFT has been discussed. This algorithm can easily be adapted to the
specific conditions of a given estimation problem (number of samples, SNR, etc.); a
simple procedure for that has been described. Some system parameter settings yield
rather unexpected window shapes (Figure 3.19), but they consistently offer good per-
formance and the results have been verified in extensive simulations (Figure 3.20 and
Table 3.1). In all cases considered, the resulting estimation algorithm offers good
performance for frequency estimation and often reduces the RMS error compared to
standard approaches (such as a Hanning window with center of gravity interpolation
in the frequency domain) by a factor of two while keeping the computational effort
low. Optimizing a parametrized window such as a Kaiser window leads to a standard
deviation of the resulting frequency estimates that is about 10% higher than with an
optimum window.

The only drawback of the new approach is the required optimization procedure for
adopting the window to the system parameters, but this is only needed once and can
be stored for many possible parameter combinations. This optimization procedure has
a key advantage though: It makes the algorithm highly adaptive. Depending on the
application, the results can be optimized for different error criteria, different frequency
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Figure 3.22.: RMS error of LLS phase estimation relative to the CRB (N=16, SNR
variable).

ranges, different types of noise, or even for e.g. a low-precision fixed point hardware
implementation. The computational effort of the estimation remains the same and the
implementation of the estimation algorithm does not need to be changed at all, just
the window and look-up-table have to be replaced. In addition, the optimization pro-
cedure can be modified to deliver a detailed characterization of the performance of the
desired frequency estimator, including the distribution of errors (possibly resolved by
frequency and phase) and the influence of various noise levels on estimation accuracy.
This makes it easy to determine if the accuracy of this fast frequency estimation pro-
cedure is sufficient for a given application or if another algorithm should be preferred.

If both frequency and phase estimates are required, a very fast way to obtain accu-
rate phase estimates has been shown which almost reaches the theoretical limit and
can be integrated into any algorithm. Both approaches are drop-in replacements for
existing frequency and phase estimators for short blocks of data, and can therefore be
used in a large number of applications.

3.7. Laser Frequency Estimation

So far, in all discussions the laser frequencies (= sampling points) have been assumed
to be known. There are several ways to measure the actual laser frequencies, e.g. by
using a wavemeter, but it is not possible to record these once and for all: The laser
frequencies change due to a variety of reasons, most importantly temperature fluctu-
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Figure 3.23.: Raw monitor cavity signal for a single laser frequency. The full line
sensor signal before calibration is shown.

ations. Therefore a continuous monitoring of the laser frequencies is required. The
physical setup of the monitor cavity has been discussed in chapter 3.1.2, in this chapter
the focus is on the interpretation of this data.

The monitor cavity is a simple and compact interferometer. Theoretically, the sig-
nal is sinusoidal: The frequency of the signal changes slightly when the laser is tuned,
and the phase of the signal changes significantly. For the current setup, a wavelength
increment of 0.1nm corresponds to a change in phase of multiple signal periods, there-
fore this phase measurement is highly sensitive and offers a resolution on the order of
a few MHz. In contrast to the analysis of the head data, in this case the computational
effort is irrelevant as only a single measurement has to be analyzed, and due to the
increased number of available samples the estimation accuracy can be much higher.
However, the signal quality of the integrated line camera and its illumination are poor,
and therefore calibration is an important issue and will be discussed next. While the
principle is quite simple, accurate estimation is fairly difficult.

An example for the original recorded signal is shown in Figure 3.23. There is a
large offset caused by incoherent light (which varies across the sensor), the modulation
changes, and at the beginning and at the end additional artifacts are visible.

Correcting these distortions is possible when a large number of measurements with
different phases are available, but this has to be done with care. It would obviously
be pointless to force the shape of each measurement individually to be sinusoidal in
order to improve the frequency and phase estimation later on, as for that one would
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first need to estimate phase and frequency . . .
The following calibration approach therefore only performs operations that are in-

dependent of signal frequency and phase. The algorithm then works as follows for
the estimation of frequency and phase for a set of laser frequencies belonging to one
measurement:

1. A range of samples from the line sensor is chosen (same for all laser frequen-
cies). This eliminates areas with bad artifacts, especially at the beginning or end
of the sensor array, and it forces the signal to have a (roughly) integer number
of signal periods (not exact as the signal frequency is changing slightly).

2. The known offset (from calibration) due to incoherent light is subtracted for
each pixel (same for all laser frequencies).

3. As the signal of the line sensor (for every laser frequency) should have zero
mean, any remaining mean value is subtracted (different for different laser fre-
quencies, same for all pixels fo the sensor).

4. The modulation of the signal is normalized (per pixel, from calibration, same
for all laser frequencies).

5. The mean is removed once again (different for different laser frequencies, same
for all pixels of the sensor).

6. The modulation is normalized per frequency (same for all pixels, different for
different frequencies).

The result is shown in Figure 3.24.
The modulation per pixel and the offset per pixel are determined in a calibration

procedure from a large number of measurements with all possible phase values. This
step is more complex as it involves use of the Hilbert transform to obtain an envelope
of the signal as well as a phase difference from sample to sample. The resulting
estimates are averaged across many measurements and smoothed along the sensor
array.

Additionally, the sampling positions known from calibration will be used for the
phase estimation. These might or might not be uniformly spaced, depending on the
position and alignment of the line sensor.

Now that the signal has been improved by this calibration procedure, frequency
and phase estimation can be performed. Given the relatively large number of samples
(about 100), the algorithm used to perform the estimation is less critical, the modeling
error and the calibration procedure described above have a much larger influence on
accuracy. Several methods have been implemented. One of them uses a windowed
FFT (similar to the data processing for the measurement head). All the results of
chapter 3.6 can be applied here as well, the implementation and optimization of the
window is identical. A nonlinear least squares fitting routine has been implemented
for comparison, as a FFT on the distorted signal might not yield a fit that minimizes the
error in the least squares sense. In addition to that, an iterative FFT was implemented
that corrects both its parameters and the sampling points in order to obtain the best fit.
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Figure 3.24.: Corrected monitor cavity signal for a single laser frequency. A selected
range of the line sensor signal after calibration is shown.

It turns out that the differences in the results between these approaches are very small,
on the order of a few MHz.

For further analysis of the system, the ratio of the detected sinusoidal signal to the
residual was determined in addition to frequency and phase of the signal. The first
result obtained is easy to explain: In the center of the frequency range this ratio is
much higher, toward the borders a low frequency component shows up. This can be
explained by the change in signal frequency: Only in the center region the choice of
sampling points leads to an integer number of signal periods, and only then the mean
removal is exact. Additionally, for some of the measurements outliers occur. These
measurements also show outliers in the phase. During 200 measurements with 128
laser frequencies each (Figure 3.25), eleven outliers occurred. Visual inspection of
the signal shows that these are not failures of the algorithm, but the signal is actually
different there. Using a spectrum analyzer and manually playing with the laser param-
eters explains the reason: In these cases, the laser had multiple longitudinal modes
simultaneously. The frequency is therefore not accurately estimated using a single
tone model — but the single-tone method is sufficient to detect that there is a prob-
lem. Another issue that sometimes shows up is the laser not tuning at all, and therefore
showing a completely different phase than expected. Therefore the cavity should be
chosen such that the phases for different laser frequencies are different and a typical
mode jump leads to a different phase value. This monitoring function is highly useful
to decide whether the measurement results can be used.
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Figure 3.25.: Monitor cavity phase estimates for 200 measurements with 128 laser
frequencies each. Both thermal drift (especially at the beginning) as
well as occasional outliers can be seen.

In the measurement shown in Figure 3.25, one can see thermal effects when the laser
is warming up causing changes in laser frequency (or monitor cavity dimensions). A
statistical analysis (taking the physical properties of the laser into account) shows a
standard deviation of about 0.2% of the phase for a given laser mode, which converts
to about 37MHz (value based on the last 100 measurements); differences between the
different algorithms discussed above are one order of magnitude smaller and therefore
irrelevant. Looking at the phase differences, the frequency increments between differ-
ent laser frequencies show significantly larger jitter, on the order of 150 MHz. These
differences can be taken into account in the signal processing. Multimoding or tuning
errors can be detected as well.

For actual height measurements and especially for using the absolute signal phase,
the true absolute laser frequencies are needed. Obtaining them is theoretically simple,
but difficult in practice. There is a simple relationship between cavity phase and fre-
quency, but this requires knowledge of the physical dimensions of the cavity. These in
turn can be found by measuring the laser frequency with a wavemeter and comparing
the results. Unfortunately, no wavemeter of sufficient accuracy was available to ana-
lyze that in detail: Most wavemeters and spectrum analyzers are much less sensitive
than the monitor cavity. Additionally, the cavity has to be very stable mechanically
and must not change if the temperature changes.
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3.8. Spatial Filtering

In every kind of measurement some noise is present. Reducing noise during the mea-
surement is often impossible or time-consuming, and therefore it is desirable to obtain
the best estimates of the desired parameters in the presence of noise by using all avail-
able knowledge. In case of surface measurements, the most obvious approach is using
additional spatial knowledge in addition to the individual data for each pixel. This
approach attempts to determine the posterior distribution based on prior knowledge
(e.g. surface smoothness) and the data. The influence of the data depends on the
quality of the data, which can, for example, be determined based on the distance be-
tween the signal model and the actual measured data. The general approach leads to
Bayesian estimation.

In case of frequency estimation, there are two types of noise imposed on the esti-
mates:

• For low noise on the data, the noise on the estimates is approximately propor-
tional to the noise on the input data.

• For noise above a certain threshold, the estimation might fail “catastrophically”:
the estimation error suddenly increases rapidly.

This is a fundamental property of phase and frequency estimation, and has been dis-
cussed in chapter 3.4. With the algorithm presented in chapter 3.5 the same effect
occurs, though somewhat earlier than theoretically necessary. On the other hand, the
“catastrophic failure” now occurs in two well-defined steps and causes a very regular
structure of the noise that can be exploited using spatial relationships: First, the phase
coupling between the two (or more) sampled blocks fails, and (much) later the fre-
quency estimation for the individual, uniformly sampled blocks fails as well. Using
that, one can derive a simple filter procedure that performs comparable to Bayesian
estimation for reasonable priors.

3.8.1. Filtering in Case of High Signal-to-Noise Ratio

If the signal quality is good, the noise can be roughly approximated as additive Gaus-
sian noise, which is confirmed by measurements and simulations. Reducing this noise
is easy and methods are well-known, for example by using a Gaussian lowpass filter.
For discontinuous surfaces, edge-preserving filters can be used, including rank order
filters and anisotropic diffusion filters, e.g Perona-Malik. All filters from standard
image processing can be applied.

Results can be improved if the signal quality is taken into account by a weighting of
the pixels within the filter mask. The signal quality can be approximated by the signal
modulation: The noise level can be assumed to be uniform across the field of view,
and then the signal modulation is proportional to the SNR for each individual pixel.
While this is a good approximation, there are several additional properties of the noise
that can be taken into account if desired: A more precise estimate can be obtained by
taking the ratio between modulation and residual into account. Additionally, the SNR
for two signals with the same modulation but different offset is usually better for the
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signal with the lower offset (due to the properties of photon noise). Saturated pixels
will yield very poor results, even though the modulation might be high.

Weighted Gaussian Filter

A more detailed discussion of optimum filters for noise suppression can be found in
[Restle, 2003]. For the following measurements a very simple and very fast filter was
used: A Gaussian filter (as the noise is approximately Gaussian) with the cut-off fre-
quency adjusted to the measurement noise, but constant across the field of view. The
quality of the pixels was taken into account by simple thresholding, i.e. low quality
pixels were simply excluded. This filter is extremely fast, as it can be implemented as
a linear filter: The invalid pixels can be set to zero, and the scale can be corrected by
filtering the binary map of valid and invalid pixels with the same Gaussian filter mask,
and dividing the two resulting images pixel by pixel. For regions with many invalid
pixels, the result is obviously not very useful, therefore such areas were excluded and
the pixels set to “not-a-number” (NaN). A more involved implementation can take the
quality of the individual pixels within the filter mask into account by weighting the
samples appropriately and by adjusting the filter mask dynamically.

Kriging

One way of taking the quality of individual pixels and a more complex surface model
than just “smoothness” into account is kriging. The autocovariance function of the
surface can be specified, and depending on its structure, this method will permit steps.
The surface estimate will not necessarily go through the measurement points (nugget
model), which is appropriate for smoothing. However, this is more suitable for the
interpolation of values given a low number of measurements with large distances; on
a closely sampled height map the advantages are small and the computational effort is
high.

3.8.2. Filtering in Case of Low Signal-to-Noise Ratio

If the phase coupling between two blocks fails, the error consists of choosing an in-
correct k in equations 3.28 or 3.36. If prior knowledge on spatial properties of the
surface is available, one can detect and correct these errors. A simple approach could
use a linear or a rank order filter as described above, but this would ignore the specific
characteristics of the data and the noise on the estimates. Knowledge on the phase
coupling error and the signal modulation for each pixel can be used to improve the
results. The phase coupling error is a property specific to the algorithm described, and
it is simply based on the observation that the approximately Gaussian noise gets either
reduced to almost 0 or increased to (multiples of) 2π by an implicit modulo 2π opera-
tion limiting the phase to the interval from −π to π. Most outliers therefore occur for
pixels that are close to the borders of this interval. The error probability for a pixel
close to the borders (simply based on looking at this distribution) is 50%, while it is
much lower towards the center (exact values depend on the width of the distribution,
but typically less than 1%). The signal modulation can be taken into account as well
as it typically coincides with the SNR.

91



3.8. SPATIAL FILTERING

Adaptive Median Filter

For a fast filter implementation one can use a standard median filter. Its performance
can be improved by adding adaptive thresholds based on the signal quality to deter-
mine which pixels will be changed at all and which pixels will be used as input values.
The logic is fairly simple:

• If the input quality is larger than an upper threshold: output = input→ done.

• Determine the median of the pixels within the filter mask, only using pixels
above a defined minimum quality.

– If the number of pixels above the minimum quality is sufficient: output =
median→ done.

– If the number of pixels above the minimum quality is too low: output =
NaN→ done.

The first step ensures that pixels with high signal quality will not be modified at all.
This preserves fine surface structures. The second step replaces pixels of poor signal
quality with the median of the values in their neighborhood, if there are enough pixels
in this neighborhood of sufficient signal quality. Otherwise these pixels are removed
from the result, as there is not enough usable information and the probability of an
error is therefore too high.

Remapping of Pixels

Based on the same general idea, but without performing median filtering, a filter can be
implemented to specifically correct phase coupling errors. This slightly more complex
version of the algorithm above removes almost all outliers from the measurement data
without losing any details. This algorithm uses the special structure of the outliers as
described above. Only the coupling coefficient k is modified by the filter, leading to
very low requirements on spatial smoothness compared to other filters: At least half
the pixels in the filter mask are assumed to lie in a region of±15 microns for the typical
measurement settings. This is fulfilled by almost all surfaces where interferometric
measurements are useful, even rough ones. At surface edges a decision might be
impossible for some pixels (leading to NaN values if the signal quality is poor), but
outliers are very unlikely. The algorithm has the following structure:

• If the weight of the input pixel is larger than a maximum weight: output = input
→ done.

• If the weight of the input pixel is lower than a minimum weight: output = NaN
(The algorithm does not attempt to fill gaps or smooth data, this could be done
in a second step with standard image processing.) → done.

• Determine median of the region around the input pixel, and cluster data into
three bins: one bin centered around the median and the others centered on the
values corresponding to errors in k of±1; values outside this range are ignored.
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– If the number of pixels in the center bin is more than half the number of
pixels within the filter mask or if at least 70% of the pixels in all three
bins are in the center bin: Output = input*, mapped to the same interval
as the median. This step is not strictly necessary and the requirements
are heuristic, but it accelerates computation for the large number of cases
where the result is totally obvious→ done.

– If the number of pixels in all bins is less than a threshold: Output = NaN.
This step is also not strictly necessary and only helpful for acceleration of
the processing. → done.

– Compute weight (based on phase coupling error and signal modulation)
for each pixel. This can be an arbitrary function, in the simplest case it
could be the product of the signal modulation and the relative phase cou-
pling match (“1” if the phase difference is 0, and “0” if the phase coupling
difference is π).

– Determine a new median value based on the pixels in the three bins mapped
to the same interval.

– Choose a new interval based on the total weight of the pixels within each
of the bins.

* If the total weight of the pixels in the three bins is smaller than a
minimum weight: Output = NaN (insufficient data = no result) →
done.

* If the total weight of pixels in the three bins is larger than a minimum
weight: Output = input (but mapped to the interval centered around
the new median)→ done.

The current implementation uses nested for-loops in Matlab and is much slower
than a normal median filter, but with a more efficient implementation processing time
can be reduced significantly. It should be possible to reach almost the same processing
time (at least asymptotically for large filter sizes) as a normal median filter. The most
expensive operation in any median filter is the sorting of the pixels in the filter mask,
with a complexity of O(N logN), and for the new filter this can be implemented as
in any other median filter. The additional binning procedure is linear in time with the
number of pixels in the mask, as is the weight computation. The different thresholds
and conditions introduce a fixed and very small additional computational offset. The
algorithm does not require any global relationships and can therefore be partitioned for
parallel execution without any loss in accuracy. In contrast to unwrapping algorithms
it works perfectly well for discontinuous surfaces, and it still preserves all available
detail except for very small (depending on signal quality and the filter size, on the
order of less than five to fifty pixels) and at the same time very high (more than 15
microns) features with lower signal quality than the surrounding areas. Such features
(e.g. a dust particle) remain visible, but they might get mapped to an incorrect interval.

In a second step, the resulting height map can be processed as described in the
previous section in order to enforce spatial smoothness and reduce noise. Now that
outliers have been removed, anisotropic filters or linear filters can be used, and no
special robust filtering methods are needed any more.
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Filtering in Case of Very Poor Signal Quality

When the frequency estimation from the uniformly sampled blocks of data fails com-
pletely, the filtering approaches above do not work any more. This effect occurs at a
noise level that is much higher than the point of failure for the phase coupling proce-
dure. It might still be possible to use neighborhoods to improve the final result, but this
has to be done while the full raw data is available, analogous e.g. to [Hissmann, 2005]
in case of white-light interferometry. For multiple wavelength interferometry such
an approach is more difficult, as — unless uniform sampling is used, which would
defeat the purpose — the probability distribution does not have a single mode, but a
large number of modes (relatively narrow peaks) corresponding to each of the possible
choices for the phase coupling. Additionally, once the frequency estimation for indi-
vidual blocks of data breaks down, the noise is so high that there is little point in trying
to improve the result using spatial relationships, as the accuracy will be very low any-
way (as can be seen when looking at the CRB). It is therefore likely that other, better
suited measurement principles are available and should be used instead (e.g. fringe
projection or stereo camera systems).

Phase Unwrapping

If there is a very strong prior, accurate results are possible even in case of noisy mea-
surement data. Under the assumption of a completely smooth surface (i.e. a height
difference of less than λ/2 between neighboring pixels), spatial unwrapping can be
used. Then only the phase of the signal is needed. If the object distance and therefore
the signal frequency is not known, it can be determined by spatial averaging of the fre-
quency estimates, preferably using robust estimation and weighting according to the
estimated SNR of each pixel. Using that frequency, the phase can then be determined
and any of the known algorithms for spatial unwrapping can be used.

3.8.3. Performance of Quality Measures

Before any kind of weighted filtering can be applied, the correlation between signal
quality measures and estimation variance needs to be found. In theory, this is simple:
The modulation should be inverse proportional to the standard deviation (chapter 3.3)
if the noise is uniform and uncorrelated. However, the noise is not uniform, and it
is highly correlated. The system model does not take errors such as dispersion or
multiple reflections in the optical path into account.

The best method is therefore to measure this relationship directly. For the following
graphs, pixels were sorted using bins of size 10% with respect to signal modulation or
phase difference. For different values of the signal modulation the average RMS error
of the pixels in the measurement of a flatness standard is shown in Figure 3.26. This
result matches theoretical expectations very well. There seems to be a lower threshold
at about 100nm RMS error though that might to be caused by systematic errors that
are not reduced when the signal modulation increases. This may be caused by internal
reflections or by camera nonlinearities.

The same analysis can be performed for the phase coupling error. The correspond-
ing measurement results are shown in Figure 3.27. This relationship is slightly less
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Figure 3.26.: This graph shows the relationship between signal modulation (deter-
mined by a least squares fit) and the RMS error of the height values
(obtained by comparison with a reference measurement using spatial
smoothness). N=16 samples per block, based on a measurement of a
flatness standard.

pronounced, but it is still clearly visible. The standard deviation increases propor-
tionally to the phase coupling error. The standard deviation is never zero, as there is
always additive noise present which leads to errors in the frequency estimation, even
though these errors might cancel when looking at the phase difference only.

When looking at the error for various signal modulations, it is important to know
the histogram of the modulation for a typical measurement. This looks very different
for rough surfaces as will be seen in section 3.11. For a smooth surface, it is shown in
Figure 3.28. This result indicates that illumination is poor: As the surface has homo-
geneous reflectivity, this distribution is mainly caused by non-uniform illumination.

The same analysis can be performed for the phase coupling difference Figure 3.29.
This shows that for 16 samples the phase distribution is quite narrow, and therefore a
larger block distance or a smaller block size could be used.

3.8.4. Comparison of Results

Comparing the filters above on simulated data shows a significant reduction in noise
and outliers. Some results for simulated smooth surfaces are shown in the next section
in Tables 3.2 and 3.3.
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Figure 3.27.: This graph shows the relationship between the phase coupling error (us-
ing two blocks of data and least squares phase estimation) and the RMS
error of the height values (obtained by comparison with a reference mea-
surement using spatial smoothness). N=16, based on a measurement of
a flatness standard.

In the following, the application of the filters to real measured data of a smooth
object is shown. The different effects of the filters can be seen in Figure 3.31, Fig-
ure 3.32, Figure 3.33, and the unfiltered data is shown in Figure 3.30. A more detailed
look at measurement accuracy will be presented in chapter 3.10.

These results show that only the median and the remapping filter perform well -
which is not surprising as the noise mainly consists of outliers. The remapping pro-
cedure preserves much more detail though. The data without outliers can then be
filtered with e.g. a Gaussian filter. This is not useful if the absolute phase has been
used, though, as in these cases there is almost no noise present and the advantage of
filtering will never outweigh the loss of detail. However, if absolute phase estimation
is not used, e.g. on a (slightly) rough object, such filtering might be useful to reduce
measurement noise.

Spatial filtering on a rough object in general is questionable, but in some cases it
may be useful:

• If the roughness is small enough such that the weak smoothness constraint of
the adaptive remapping filter is acceptable.

• If the surface microstructure is not interesting, but instead the global shape or
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Figure 3.28.: This graph shows a histogram of the signal modulation for the measure-
ment of a flatness standard. N=16, the value at 0 corresponds to pixels
that have been excluded as they did not belong to the measurement ob-
ject.

the distance between various surfaces has to be measured.

For the following analysis the same set of data from a smooth flatness standard will
be used, but now only phase coupling between the two blocks is performed, without
using the absolute phase. This is the processing that can be applied to rough surfaces
or if the absolute laser frequency is not known exactly. For these results, the general
measurement noise level can be higher, and — as the highly sensitive step of going to
the absolute phase is not used — the probability of outliers (outliers now only consist
of pixels where the phase coupling step between the two blocks failed) is much lower.
Therefore much smaller filter kernels are sufficient to remove outliers (5× 5 was used
in the following; for real data of a rough object a larger filter size might be required
due to the higher noise level for many pixels caused by speckle). The different effects
of the filters can be seen in Figure 3.36, Figure 3.37, Figure 3.35 and the unfiltered
data is shown in Figure 3.34.

Both median filter and adaptive remapping are able to remove all outliers, while the
Gaussian filter performs poorly. The median filter obviously performs best for this
data set as the measured object is actually smooth, but for a rough object it would not
be appropriate. A combination of adaptive remapping and Gaussian filtering keeps
slightly more details while also reducing the noise. This does not work very well in
this example as the noise seems to be highly correlated and depends on the signal
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Figure 3.29.: This graph shows a histogram of the phase differences in the phase cou-
pling step. N=16, based on a measurement of a flatness standard.

phase, but on a real rough object the noise should be less correlated. If there are no
outliers (for example, due to a larger number of frames being acquired), the Gaussian
filter can be applied directly.

These results are not directly applicable to measurements of rough objects due to
speckle. A detailed analysis for rough objects is shown in chapter 3.11.

Appropriate filtering can improve measurement results significantly. The key to
good results is the notion that outliers still contain useful information, there is just an
incorrect mapping that can be corrected. Optimum filtering is an integral part of the
system configuration, and using filters to correct outliers can be much more efficient
than increasing the number of frames acquired. Often measurement time can be re-
duced by more than 50% without a noticeable impact on the accuracy of the results.
A good indication of the necessity of using filters is the width of the distribution of
the phase coupling differences. Whenever this distribution is not approximately zero
at the borders, filtering to remap outliers is needed.

3.9. Implementation

All building blocks for an interferometric system have been presented in previous
sections. There are multiple ways to combine them in an actual measurement system.
Two implementations have been realized in the context of this thesis:
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Figure 3.30.: Measurement of flatness standard, using 2x10 laser frequencies, absolute
phase and no further processing. Approximately 50,000 outliers occur
for the 220,000 pixels on the measurement object; about 1,000 outliers
have been removed from the graph as they exceeded the graph range.

Figure 3.31.: Measurement of flatness standard, using 2x10 laser frequencies, abso-
lute phase and Gaussian filtering (kernel size and cut-off frequency 9) to
remove noise. This filter is not suitable for this kind of noise distribution;
the graph has been truncated and does not show all outliers.
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Figure 3.32.: Measurement of flatness standard, using 2x10 laser frequencies, absolute
phase and median filtering (kernel size 9) to remove outliers. Most of
the fine structures on the surface are gone, artifacts are visible, and a few
outliers still remain. The graph shows all valid data points.

Figure 3.33.: Measurement of flatness standard, using 2x10 laser frequencies, absolute
phase and adaptive remapping (kernel size 9). Fine structures on the
surface are preserved, no visible artifacts. The graph shows all valid
data points.
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Figure 3.34.: Measurement of flatness standard, using 2x10 laser frequencies, no fur-
ther processing. Approximately 800 outliers occur for 230,000 pixels on
the measurement object; all outliers have been removed from the graph
as they were far outside the graph range.

Figure 3.35.: Measurement of flatness standard, using 2x10 laser frequencies, median
filtering (kernel size 3) to remove outliers. The signal is smoothed and
all outliers have been removed. On this smooth object larger filter sizes
would improve results; on a real rough object this would not be desir-
able.
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Figure 3.36.: Measurement of flatness standard, using 2x10 laser frequencies, adap-
tive remapping (kernel size 3). The height map is still very noisy, no
spatial smoothing. For measuring a rough object this is desirable.

Figure 3.37.: Measurement of flatness standard, using 2x10 laser frequencies, using
adaptive remapping (kernel size 3) and Gaussian filtering (kernel size 5
and cut-off frequency 3) to remove noise.
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1. A simulation environment that is able to synthesize data, run various types of
algorithms and can visualize the results (including a comparison to the CRB).
This was used to optimize the algorithms and to obtain most of the results de-
scribed and discussed in this thesis.

2. A bare-bone plug-in that only contains the parts most relevant for the estimation,
optimized for speed and directly integrated into the measurement system soft-
ware. Accuracy is identical to the full system, but flexibility is lower. It is faster
and requires less memory. This was used for the repeatability measurements
shown later, and is relevant for a practical implementation.

The structure and the components of both implementations are briefly described in
this chapter.

3.9.1. Full Implementation

The full implementation consists of

1. a wrapper program for running benchmarks,

2. a tool for creating test data with various kinds of noise,

3. a program for computing the CRB and the expected areas of outliers,

4. a program for determining the cavity phase from reference cavity data,

5. a program for converting cavity phase to laser frequency,

6. an external tool for creating the cavity calibration data from a large set of mea-
surements and

7. a main script that normalizes input data, calls various frequency and phase esti-
mation algorithms, determines the confidence values, performs phase coupling,
spatial filtering and offers a large number of visualizations and parameters.

The frequency estimation can be performed by

1. interpolated + windowed FFT (with various parameters which can be optimized
according to many criteria),

2. iterative FFT and

3. non-linear optimization.

Phase estimation algorithms include

1. interpolated FFT,

2. linear least squares estimation and

3. non-linear optimization.
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For spatial filtering,

1. an adaptive median filter,

2. a weighted Gaussian filter and

3. a filter for detecting and remapping incorrect height values

are available.
Phase and frequency estimation can be applied iteratively. Use of the absolute signal

phase φ0 is possible, and phase behavior at the surface can be given as prior knowledge
or it can be estimated from the data. Prior knowledge on the working distance and
phase can be used for improved accuracy of the phase estimation steps.

3.9.2. Plug-in Implementation

The plug-in implementation is optimized for speed and only contains the most impor-
tant algorithms. There is a single data flow, but intermediate results can be returned
and processing can be started later, i.e. not all steps have to be done sequentially.
This enables use in a software framework from Corning Tropel and supports multiple
applications with a single plug-in.

This includes the following steps

1. Get cavity phase

2. Convert phase to laser frequency

3. Interpolated FFT

4. Linear least squares phase estimate

5. Phase coupling

6. Confidence estimation

7. Spatial filtering by adaptive remapping

Prior knowledge on working distance and surface phase can be used in this algorithm
as well.

Memory usage is significantly lower than for the full program as all parts have
been optimized for low memory usage, use lower accuracy (single precision) wherever
possible and discard all intermediate results as soon as possible. The results have been
verified to be identical to the results of the full program.
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3.10. Measurement Results

Individual aspects of the estimation algorithm and the signal acquisition have been
discussed in the corresponding chapters. Now that all relevant parts of the estimation
algorithm have been discussed, an overview on system performance is given. In the
first section of this chapter, simulated data is used, while in the second section a set
of measurements of a smooth flatness standard is used. This is by no means a com-
plete analysis of all possible combinations of algorithms, only the most “interesting”
settings (i.e. the ones with the best properties with respect to speed and accuracy) are
shown.

3.10.1. Simulated Data

A simple sinusoidal signal model is used in this section. This is not a complete rep-
resentation of the real signal, but it is a first approximation. Adding more aspects to
the signal model and analyzing their influence is simple and would be useful in prin-
ciple, but it has to be done based on knowledge of the actual system characteristics,
otherwise there are simply too many degrees of freedom, and the results offer little
insight.

A full system characterization is currently not possible: Measurement data suf-
fers from strong noise due to poor and non-uniform illumination of the field of view,
the absolute laser frequency is unknown, and issues with thermal stability and fiber
coupling introduce additional errors. In addition, camera linearity is unknown and a
spinning disk in the measurement head as well as internal reflections are further un-
knowns. The properties of the optical components (dispersion, aperture, focal depth,
etc.) are also not known. Isolating individual influences has been (partially) possible
for the laser intensity fluctuations and the frequency jitter. For now, all other effects
are assumed to contribute to additive white Gaussian noise on the signal. An analysis
of the residuals shows that the noise is not white, but a large part of the currently visi-
ble correlated noise can probably be removed with relatively low effort by additional
calibration procedures (i.e. the camera could be calibrated before being mounted in
the measurement head) or can and should be reduced by system modifications (i.e. the
heating stability issues) before further characterizations are performed.

512 × 512 sinusoidal signals are simulated, their frequency uniformly distributed
across the desired frequency range (typically 2

N to 1− 2
N , as chosen for the optimiza-

tion of the frequency estimation algorithm). The phase term φ0 according to equation
1.6 is assumed to be constant for the simulation of smooth surfaces and is chosen
randomly (uniformly distributed in [0, 2π]) for the analysis of algorithms for rough
surfaces. The error metric used is the root mean squared (RMS) error of the estimates.

Processing steps cannot be treated individually as they depend on each other: Sev-
eral of the possible options (e.g. a non-linear fitting procedure) offer a significant im-
provement when used in conjunction with a very basic estimation procedure, but they
are actually a step backward when added after a phase coupling procedure using linear
least squares phase estimates. In order to find out the most useful and most accurate
combination of algorithms, simulations for a large number of possible building blocks
have been performed. Each possible algorithm was run in conjunction with multiple
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other algorithms, and the resulting performance was analyzed. If it improved perfor-
mance, it was kept as part of the estimation program. Therefore it is unlikely that a
particularly good optimization approach has been missed. This assumption is rein-
forced by the fact that the results are very close to the theoretical limit.

Then in a second part of the optimization, processing steps were removed in order
to find the essential parts of the algorithm. The resulting core algorithm was opti-
mized for speed and was implemented as a plug-in (see section 3.9). This procedure,
especially the first step of finding good algorithms, involved a large number of trial
runs, and a complete presentation would be much too long in this context. Therefore
only the parts used in the final algorithm will be presented in detail, alternative algo-
rithms will be briefly mentioned only. In addition to the influence on accuracy, the
computational effort for the steps is considered.

The main observations are summarized below. Unless otherwise noted, all numbers
are given for 16 samples in two blocks (on a grid of 128 possible laser frequencies, 47
GHz apart; center frequency 382.5 THz) and a SNR of 10. All algorithms have been
run for a range of 8 to 24 samples and a SNR from 10 to 40: no qualitative differences
in the behavior of the algorithms could be found.

• Results of the algorithm from section 3.5 are very close to the theoretical limit
if the noise level is low and if linear least squares phase estimation is used (less
than 5% difference). This confirms theoretical expectations.

• The influence of block size, block distance and the SNR on accuracy and prob-
ability of outliers have been discussed in detail in section 3.5. Extensive simu-
lations and actual measurements (see below) confirm the relationships derived
there.

• Fourier-based phase estimation according to the algorithm described in section
3.6 is less accurate compared to least squares phase estimation. Both the prob-
ability of outliers and the standard deviation increase significantly. Therefore
least squares phase estimation will be used; its complexity is O(N) and the al-
gorithm is simple.

• Fourier-based frequency estimation using an interpolated FFT as described in
3.6 is not optimal, but it has almost no influence on the accuracy as long as no
outliers occur. The number of outliers is higher than theoretically necessary,
though, especially if the distance between the two blocks is large or the noise
level is high. This can be resolved by choosing a slightly smaller block distance
or more samples for each block than theoretically necessary.

• Once an optimum block distance has been chosen such that the estimation al-
gorithm performs well (this depends on the signal quality and on the acceptable
level of spatial filtering), it performs better than almost all alternatives.

– Slightly different estimation settings (e.g. using an optimum window de-
signed for a SNR of 10 instead of 20) lead to a negligible increase in the
standard deviation, but can cause a significant increase in outliers. Again,
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this can be resolved by slightly reducing the block distance or by increas-
ing the number of samples per block. This leads to an increase in standard
deviation of about 1% in this case.

– Using a window that is significantly worse (e.g a Hamming window) in-
creases the number of outliers dramatically, or — when compensated by
reducing the block distance — typically increases the standard deviation
by more than 10%.

– Some alternative methods for frequency estimation for the individual blocks
can reduce the number of outliers, but these methods are much slower. An
iterative approach in the Fourier domain and a fitting algorithm in the time
domain have been implemented. Both are much slower, as each iteration
requires roughly the same amount of time as the interpolated FFT. Typi-
cally three to five iterations are needed. The improvements are very small,
and the algorithms seem to be more sensitive to noise caused e.g. by a slow
intensity variation of the laser. Attempting to incorporate such effects into
the signal model leads to even slower algorithms, and no noticeable per-
formance improvement has been found.

– A number of well known general frequency estimation algorithms have
been applied (including e.g. MUSIC). None of them offered good perfor-
mance with reasonable computational effort for the given sampling pattern
(see section 3.6).

– Non-linear optimization of the frequency estimation for all data points
could theoretically offer better performance than an analysis of the indi-
vidual blocks and then combining these results (this improvement must be
small as indicated by the theoretical limit). Both a single step of a Gauss-
Newton method and Matlab’s “nlinfit” function (with its large number of
tuning parameters and available algorithms) have been used. The author
has been unable to find settings that improved the results: Performance
degrades (slightly) compared to results obtained by the phase coupling
procedure.

• Results can be improved by iteratively repeating both phase estimation and
phase coupling to obtain a new frequency. This improvement in accuracy is
small, less than 1% for the configuration given above. There is no change in the
number of outliers. This is usually not an attractive option when looking at the
increased computational effort. If the number of outliers is not a problem at all
(i.e. if the block distance is small due to e.g. limited laser bandwidth), one can
choose to perform phase coupling with an FFT-based phase estimate first, use
the new frequency for a least squares phase estimate and repeat the phase cou-
pling. This yields a slightly lower standard deviation than the previous method
at a small increase in computational complexity.

• The algorithm is quite robust to several common sources of errors in a real
system: Simulations with photon noise (Poisson distribution) as well as a linear
change in signal amplitude with the laser frequency (20% change from first
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N S
N
R

CRB
in
nm

Number of
invalid
pixels

RMS
error in

nm

Number
of

outliers

RMS error
in nm

(filtered)

Number of
outliers
(filtered)

8 40 75.7 323 81.8 61 81.8 0
8 20 151.3 1387 159.6 5899 160.2 0
8 10 302.6 6106 312.1 53083 319.6 1436

16 40 57.1 340 59 0 59 0
16 20 114.2 789 116.2 0 116.2 0
16 10 228.3 6991 231.8 159 231.8 0

Table 3.2.: Simulation results for height estimation; the absolute signal phase is not
used. This is the algorithm that can be used for rough surfaces; the influ-
ence of speckle is not modeled in the simulation though. For the filtered
results, adaptive remapping with a 5× 5 filter mask was used. The number
of invalid pixels (which have been excluded from processing due to low
modulation or inconsistencies) could be reduced for the filtered data, but
that was not done in order to compare identical sets of data in the filtered
and unfiltered case.

to last frequency in this simulation) had little influence on the accuracy of the
results.

In Table 3.2 some example results for 8 and 16 samples are given. As the “true”
height values are available in these simulations, results can be compared easily. The
algorithms are rated by three criteria: The number of outliers, the number of invalid
pixels and the standard deviation of the estimates (excluding outliers and invalid pix-
els). Invalid pixels have been detected to be too noisy based on confidence measures
(as described in section 3.8). If spatial filtering is performed, the number of invalid
pixels could be reduced at the cost of a somewhat higher standard deviation. In order
to keep the standard deviations comparable, this was not done for the results shown
here. “Outliers” are all values for which the error exceeds half the error caused by
choosing an incorrect k in the phase coupling procedure. If outliers were not ex-
cluded, the results for the standard deviation would be much too sensitive to noise and
have little meaning.

For illustration, the histogram of the phase differences for the case shown in the sec-
ond row in Table 3.2 is shown in Figure 3.38, and a histogram of the estimation errors
is shown in Figure 3.39 (no spatial filtering) and Figure 3.40 (after spatial filtering).

If the absolute phase is used (examples given in Table 3.3), one assumes that φ0 is
constant over (at least a part of) the field of view. This is not true for rough surfaces,
but it can be used to improve results for smooth surfaces. No direct spatial relationship
is required, therefore this also works for surfaces with steps. The resulting accuracy
is much higher, as now the result has the same accuracy as the phase estimation,
typically on the order of 1nm. This is much more accurate than required for most
technical applications. The accuracy can be increased slightly by obtaining a phase
estimate using both blocks of data, but this improvement is irrelevant compared to the
error that is caused by an error in the absolute laser frequency (which can be more
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Figure 3.38.: Histogram of the phase differences in phase coupling (N=8, SNR: 20).

than an order of magnitude higher). Therefore it is more important to obtain accurate
knowledge of the laser frequencies.

For this case, an example of the phase coupling steps (now there are two steps) for
the fifth row in Table 3.3 is shown in Figure 3.41 and Figure 3.42, and a histogram
of the estimation errors is shown in Figure 3.43 (no spatial filtering) and Figure 3.44
(after spatial filtering).

Additionally, the algorithms have been analyzed with respect to the influence of a
particular type of error: sampling jitter. The tunable laser is not perfect, and therefore
the laser frequency increments are not constant. This error is particularly interesting
as there are several ways to deal with it. As a monitoring system is included, sampling
jitter is known (with some uncertainty due to the measurement, see section 3.7). In the
estimation algorithm discussed here, it is not taken into account in every step though.
The error caused by sampling jitter increases with working distance and therefore
limits the measurement range. Therefore it is interesting to see

• whether it is possible to improve the results by using the knowledge from the
monitor cavity and

• what the limit on the working range is that is imposed by the laser frequency
errors.

For the values in row five in Table 3.3, the influence of sampling jitter has been
simulated. A sampling jitter of 150 MHz (as determined in section 3.7) normally
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Figure 3.39.: Histogram of the estimation errors (N=8, SNR: 20, unfiltered). One
main and two side peaks are visible. The side peaks correspond to pixels
where the phase coupling step chooses the wrong k.

leads to a very small increase in the standard deviation (less than 10nm) as long as
the measurement distance is assumed to be small. Results are slightly better if the
laser frequency jitter is known. This knowledge can be taken into account in the lin-
ear least squares phase estimation (without additional effort), but it is not possible
to use it directly in FFT based algorithms. Iterative frequency estimation algorithms
might help, but these are much slower. When looking at the results for absolute phase
measurements and when looking at absolute distances, some issues become visible:
While the standard deviation is almost identical, systematic biases of the height mea-
surements show up due to the sampling positions not being quite correct. For larger
jitter or larger object distance, this bias can reach more than 100nm, but that depends
on the specific sampling pattern. The current software framework is not well suited
to perform simulations for different sampling jitter, therefore no precise values can be
given here. In real measurement data this bias can be found as well (cf. Table 3.5). A
possible solution to that problem would be a monitor cavity in the measurement head,
so that the actual frequency as seen by the measurement head can be determined and
used.
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Figure 3.40.: Histogram of the estimation errors (N=8, SNR: 20, filtered). Filtering
with an adaptive remapping filter with kernel size 5 × 5 removed the
side peaks visible in 3.39, and now only the main peak remains.

3.10.2. Real Data

A series of measurements of a smooth flatness standard has been performed. As a
reference measurement, the result obtained by adaptive remapping (which in this case
corresponds to the result one would obtain by spatial unwrapping) is used.

There are four main objectives of this analysis:

• The results for the near-optimum sampling scheme have to be verified on real
data. This is presented for various block sizes and block distances in this section.

• The performance of the optimized algorithms has to be compared on real data.
This is important as the signal model in the theoretical optimizations is not
complete, and therefore might not match reality. It has already been shown in
simulations that the preferred algorithm is fairly robust, though. A compari-
son of different algorithms is easy, as the height maps can be compared to the
reference, and the algorithm achieving a lower difference can be assumed to
perform better. These experimental results match the theoretical and simulation
results very well, but a quantitative statement is difficult as the noise character-
istics of the system are not known. This comparison does not add additional
insight, therefore the reader is referred to [Klenke, 2007] for a comparison of
various types of FFT-based phase and frequency estimation methods and for a
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N S
N
R

Number of
invalid
pixels

RMS
error in

nm

Number
of

outliers

RMS error in
nm (filtered)

Number of
outliers
(filtered)

8 40 230 0.82 4386 0.84 0
8 20 1184 1.37 61055 1.65 844
8 10 5852 2.39 168320 3.28 62627

16 40 206 0.57 235 0.57 0
16 20 788 1.03 23837 1.13 85
16 10 6895 1.75 112874 2.25 8359

Table 3.3.: Simulation results for height estimation; the absolute signal phase is used.
This is an algorithm that can be used for smooth (but not necessarily con-
tinuous) surfaces only. The phase φ0 is assumed to be constant for at least
part of the field of view. For the filtered results, adaptive remapping with a
9× 9 filter mask was used. The data set was created analogous to the one
used in Table 3.2, and the results illustrate the huge performance improve-
ment if the signal phase can be used. They also show that the adaptive
remapping filter is very powerful and very useful if smooth surfaces have
to be measured.
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Figure 3.41.: Histogram of the phase differences in phase coupling (N=16, SNR: 20).

comparison of filters. A comparison of multiple other algorithms for frequency
estimation, including MUSIC and a zero-padded FFT, can be found in [Pfaff,
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Figure 3.42.: Histogram of the phase differences in second phase coupling (N=16,
SNR: 20). This is needed to use the absolute signal phase.

2005].

• Signal properties for filtering have to be determined based on real data. These
results have already been presented in section 3.8.

• Long term stability and repeatability of the system have to be analyzed. This
has been done under laboratory conditions; the system is currently too sensitive
to vibration and changes in temperature for use in a production environment.
Results for measurements of a step height artifact are shown below.

• The influence of rough surfaces has to be analyzed. This is discussed in section
3.11.

In Table 3.4, the results obtained from real measurements of a flatness standard with
a depth of 4.7 microns for settings similar to the ones used in the simulations (Table
3.2) are given. The influence of varying block size is illustrated as well as the benefit
of filtering the data. In this case, a measurement obtained using the absolute phase
and adaptive remapping is used as a reference. The height map corresponding to that
measurement is shown in Figure 3.33. Without using the absolute phase, the RMS
error decreases with the number of samples used, but it does not go to zero. This is
not a matter of the SNR only as can be seen in Figure 3.26. This is probably caused
by systematic errors of the measurement system.
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Figure 3.43.: Histogram of the estimation errors (N=16, SNR: 20, unfiltered). One
main and two side peaks are visible. The side peaks correspond to pixels
where the phase coupling step chose the wrong k.

This is confirmed by the fact that repeatability measurements (by performing multi-
ple measurements without moving the object) show significantly lower variance. For
the flatness standard that is discussed here, a standard deviation of the flatness of about
36nm was determined (nominal flatness value 4.7 microns). This still holds true for
large measurement distances of 1cm and 2cm, which indicates that the laser tuning can
be quite stable. This is less than half the error the error seen when looking at the dif-
ferences to the true value, indicating that most of the error shown below is systematic
and can probably be reduced somehow.

The phase coupling differences for one such measurement are shown (Figure 3.45
and Figure 3.46), as well as the error distribution with (Figure 3.48) and without (Fig-
ure 3.47) spatial filtering. These results match the results obtained from simulations
quite well, and the analysis of the error for the different signal modulation levels in
Figure 3.26 also confirms the relationships between the SNR and the expected mea-
surement accuracy.

In order to investigate the long-term stability of the measurement system, more
than 500 measurements of a step height artifact have been performed. Due to the
large height differences, this is very sensitive to fluctuations in laser frequency. One
measurement per minute was acquired. The results are shown in Figure 3.49. The
standard deviation of the distance between two surfaces on the step height artifact is
approximately 22 nm (absolute height difference is several mm). The results show
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N Invalid
pixels

RMS error in
nm

Out-
liers

RMS error in nm
(filtered)

Outliers
(filtered)

8 19413 290 6904 231 0
10 19399 281 1010 219 0
12 19383 269 104 202 0
14 19380 261 45 190 0
16 19371 261 48 190 0

Table 3.4.: Measurement results of height estimation for a flatness standard; the ab-
solute signal phase is not used (except for the reference measurement the
results are compared to). For the filtered results, adaptive remapping with
a 5 × 5 filter mask was used. This filter removed all outliers. The invalid
pixels are mainly caused by data being unavailable in the corners of the
field of view.

N Invalid
pixels

Standard
deviation in nm

(phase)

Bias in
nm

(phase)

Number of
outliers
(phase)

Number of
outliers (phase,

filtered )
8 19413 1.33 113 66436 2815

10 19399 0.96 83 53832 768
12 19383 0.81 60 36097 148
14 19380 0.61 18 25432 1
16 19371 - - 24684 0

Table 3.5.: Measurement results of height estimation for a flatness standard; the abso-
lute signal phase is used. This is an algorithm that can be used for smooth
(but not necessarily continuous) surfaces only. For the filtered results,
adaptive remapping with a 9 × 9 filter mask was used. Most outliers are
removed by that filter. The standard deviation is obtained by comparison
of the results to a reference obtained using the same method and therefore
should be treated with care. It is clearly visible though that there is very
little noise on the results (cf. Figure 3.33). The bias shows that unknown
laser frequencies are problematic and that accurate monitoring is crucial.
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Figure 3.44.: Histogram of the estimation errors (N=16, SNR: 20, filtered). Filtering
with an adaptive remapping filter with kernel size 9× 9 reduces the side
peaks (they are almost invisible in this graph), but it does not completely
remove them. However, now the error is much lower, on the order of
1nm for the center peak as can be seen in Table 3.3.

some drift that is probably caused by temperature fluctuations.
Overall, these results show that the system is capable of accurate measurements

of smooth surfaces with arbitrary geometry (i.e. step heights). The level of accu-
racy found here cannot be beaten easily with alternative measurement techniques
(i.e. white-light interferometry), and measurement speed is expected to be significantly
faster than competing methods. In the next section, the influence of rough surfaces on
the measurement results is discussed.

3.11. Influence of Speckle

While it is important to know that the system works on smooth surfaces (with or
without steps), the most interesting aspect of the system is its ability to measure rough
surfaces.

Unfortunately, an analysis of the influence of surface roughness on the measurement
results is difficult. There are three obvious ways to do that, but none of them is directly
applicable in this case:

• The roughness of a surface can be determined based on a surface measure-
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Figure 3.45.: Histogram of the phase differences in phase coupling for a measurement
of a flatness standard with N=16.

ment and can then be compared to results from tactile reference measurements.
While roughness standards and their parameters according to DIN are available,
a comparison with results obtained by the new system fails due to different lat-
eral resolutions. The new multiple wavelength system has a lateral resolution
on the order of 40 microns; for roughness measurements according to DIN a
measurement probe with 2 microns diameter has to be used. A comparison was
attempted anyway, but the correlation was weak and the method is questionable.

• Results could be obtained by repeated measurements of a rough surface. But
that does not yield an uncorrelated speckle field (if the object is not moved) or it
introduces a movement of the object, which makes pixelwise repeatability mea-
surements pointless as well. Due to system stability issues only a limited num-
ber of measurements is available, and there are plenty of other influences apart
from speckle, including inhomogeneous illumination and vibration. Therefore
there is no ground truth available and an isolation of the influence caused by
speckle is not possible.

• Measurement results could be compared to theoretical predictions. However,
most relevant optical parameters (e.g. aperture) and the surface parameters (for
the given lateral resolution) are unknown; by adjusting these unknown values
almost any simulation result can obtained, and therefore this approach cannot
be used to analyze the influence of speckle.
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Figure 3.46.: Histogram of the phase differences in the second phase coupling step for
a measurement of a flatness standard with N=16. This is needed to use
the absolute signal phase.

For the reasons given above, the question of speckle in this system remains an open
issue for future research. Nevertheless, an interesting approach for the analysis of
speckle has been found and will be presented in this section. First, some basic proper-
ties of speckle in case of a change in wavelength as discussed in scientific literature are
presented, and some results from related work in white-light interferometry are given.
Next some qualitative results obtained from measurements are shown. An analysis
based solely on intrinsic properties of the estimation algorithm is presented that could
be used obtain some quantitative results for the influence of speckle on the accuracy
of the results.

3.11.1. Theoretical Properties of Speckle

A derivation and a detailed analysis of the properties of laser speckle is outside the
scope of this thesis. An extensive discussion can be found in Goodman’s book [Good-
man, 1975], and in a large number of papers. Some of these are mentioned and briefly
summarized here, but this is not a complete review by any means. In [George & Jain,
1973] and [George et al., 1975], the issue of multiple wavelengths is discussed, and a
threshold for decorrelation of the intensity is given. In [Pavlíček & Soubusta, 2003]
the issue is discussed with respect to white-light interferometry, and [Hering, 2007]
analyzes the influence of speckle in line scanning white-light interferometry, taking
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Figure 3.47.: Histogram of the estimation errors for a measurement of a flatness stan-
dard (N=16, unfiltered). One main and two side peaks are visible. The
side peaks correspond to pixels where the phase coupling step chooses
the wrong k. A measurement using strong spatial filtering and absolute
phase evaluation was used as a reference.

second order statistics into account.
Only some simple results without proof or derivation are given here.

• In multiple wavelength interferometry, the statistical properties of the speckle
field seen in every frame are relatively simple, as the light is monochromatic.
The intensity distribution of a monochromatic speckle field can be described as
a random walk in the complex plane and consequently follows a negative ex-
ponential distribution. This is confirmed by measurement results shown below,
and illustrates the fact that the SNR for most pixels will be poor.

• An analysis based on first order statistics shows that the longitudinal uncertainty
δz of the measurement results for a pixel i with modulation Ai in white-light
interferometry is given by [Pavlíček & Soubusta, 2003]:

δz,i = 1√
2

√
Ei[Ai]
Ai
σz (3.43)

The uncertainty is proportional to the RMS surface roughness σz and the relative
modulation of the signal at pixel i and independent of the optical properties of
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Figure 3.48.: Histogram of the estimation errors for a measurement of a flatness stan-
dard (N=16, filtered). Filtering with an adaptive remapping filter with
kernel size 5× 5 removed the side peaks.

the system (this will change if second order statistics are taken into account, cf.
[Hering, 2007]).

• This assumption is only valid as long as

σz <
lc
4 . (3.44)

The coherence length lc for a source with Gaussian spectrum and bandwidth ∆ν
is given by

lc = c

4π∆ν . (3.45)

As this analysis is based on the phase slope, the same reasoning should be ap-
plicable to multiple wavelength interferometry.

• For multiple wavelengths, [George & Jain, 1973] derive the following threshold
for decorrelation of the resulting speckle pattern:

λ2 − λ1 ≥
λ2

0
2πn3h0

√√√√ 1− e−p2h2
0

1 + (N − 1)p2h2
0e
−p2h2

0
,

with p = 2πn3h0

λ0
; λ0 = λ1 + λ2

2

(3.46)
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Figure 3.49.: Fluctuation in measured step distance for a step height artifact, based on
500 measurements. Average standard deviation is 22 nm, most of that
probably caused by thermal drift.

This can be approximated asymptotically for a rough diffuser with (ph0)2 >>
0:

(λ2 − λ1) ≥ λ2
0/(2πn3h0) (3.47)

Applied to the multiple wavelength system discussed in this thesis, this indicates
that within each of the blocks, the phase change in the speckle field is probably
negligible, but that the frequency change between the blocks might lead to some
issues.

The influence of surface roughness and speckle contrast on the accuracy is not sur-
prising. In measurements using the algorithm described in section 3.5, a key property
that can be measured is the expected change in the phase of the electro-magnetic field.
Once this change exceeds π, there will be many outliers in the measurement results.
This is therefore a natural criterion for decorrelation of the speckle field, and it is
slightly different from the criteria used by Pavlicek and George. It may be possible to
derive a closed form expression for that value, but this is subject to future research. In
the next section, a method to determine this value experimentally is discussed.
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Figure 3.50.: This graph shows a histogram of the signal modulation for the measure-
ment of a roughness standard, N=16 samples.

3.11.2. Influence of Laser Speckle on Phase Coupling

As described above, it is not possible to directly determine the influence of the speckle
field by repeated measurements. However, the influence of speckle can be approxi-
mated based on a detailed analysis of an individual measurement, using theoretical
results from previous sections.

First of all, the intensity distribution for measurements of rough surfaces follows
the one expected from the theoretical analysis. This is shown in Figure 3.50. A corre-
sponding result for smooth surfaces is shown in Figure 3.28.

The signal standard deviation from repeated measurements can be determined and
the relationship between signal modulation and measurement error as well as be-
tween phase coupling error and measurement error can be shown (Figure 3.51 and
Figure 3.52). It has to be noted that the meaning of this standard deviation is ques-
tionable — on the one hand, some of the differences are caused by a slight movement
of the object, and on the other hand, the speckle field is not completely independent
between the measurements.

These results show that the adaptive remapping method for filtering is promising in
this case, too. This filtering can be applied as long as the surfaces roughness (peak
to peak) within the size of the filter mask is smaller than the first step phase coupling
error (in our case approximately 30 microns). This is true for many technical surfaces.

Additionally, the phase coupling histogram is an indication whether a surface can be
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Figure 3.51.: This graph shows the relationship between signal modulation (deter-
mined by a least squares fit) and the RMS error of the height values
(estimated by repeated measurements of a roughness standard), N=16
samples.

measured or not. As long as there is a peak visible in this histogram, the phase values
for the two blocks are correlated. For the available roughness standards (Ra between
0.21 and 1.7; Rz between 1.2 and 10.3 according to tactile measurements) this was the
case. The intensity distribution and the standard deviations above are given only for
the smoothest one of these (with a mean modulation of less than 0.1), for the others
the mean modulation was approximately 0.03 as the reflectivity was too low.

When using the two block algorithm presented in this thesis, the influence of speckle
on the phase and frequency estimate of the individual blocks can be neglected. This
follows from equation 3.47 above: This phase change should only play a role when
the surface is so rough that interferometric measurements are not likely to be useful
anyway, but not for technical surfaces with a roughness on the order of a wavelength.

Visual inspection of the residuals confirms this notion. Therefore one can expect the
accuracy of the phase and frequency estimates of the individual blocks in the presence
of speckle to be approximately identical to the accuracy obtained for these blocks
when a smooth surface is measured, as long as the SNR is comparable (in case of
speckle, the intensity distribution is very different, as shown above).

This in turn implies that the histograms of the phase differences in the coupling
step should look similar. The phase difference consists of errors caused by additive
noise and systematic errors of the frequency and phase estimation algorithms — and
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Figure 3.52.: This graph shows the relationship between the phase coupling error (us-
ing two blocks of data and least squares phase estimation) and the RMS
error of the height values (estimated by repeated measurements of a
roughness standard), N=16 samples.

an error caused by the phase change due to the variation of the speckle field when the
laser frequency is changed.

The standard deviation of this phase coupling distribution can be determined for
various values of the signal modulation, for both a smooth and a rough object. At the
same signal modulation, the difference between the rough and the smooth object can
then be attributed to a phase change: the increase in standard deviation corresponds
to the average phase change of the speckle field when the laser frequency is changed
from the first block to the second.

Unfortunately there is almost no overlap in signal modulation between the two mea-
surements analyzed here, as their reflectivity is quite different and the system cannot
be adjusted to that. If possible, such a measurement should be performed with both
standards having similar reflectivity and occupying half the available field of view at
approximately the same distance, such that errors in laser tuning are identical for both.
The expected phase change in case of the rough object is fairly small, therefore the
measurement noise needs to be very low. This is subject to further research.

Once the phase difference introduced by the speckle field is known, the influence
on measurement accuracy when using the two block algorithm can be derived easily:

∆h = ∆φ
π
· s
b

(3.48)
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with block distance b (in frequency increments) and ambiguity interval size s. This
could be rewritten to only use the laser frequencies, but for most applications the
equation above is more convenient.

For the laser parameters discussed so far, with a block distance of b = 112 and
ambiguity interval size s = 1.6mm, a phase change of ∆φ = π/40 (corresponding
to a difference of about 10nm in phase unwrapping) leads to a height error of about
350nm, so this can quickly lead to a significant error.

These results illustrate three main points:

• The error can be broken down into an error due to lowered signal contrast and an
error due to a phase change. Both can be determined. Lowered signal contrast
can easily be taken into account by appropriate filtering; the phase error is more
tricky, but outliers can be reduced by filtering quite well. It is clearly visible
that the standard deviation — at the same noise level — is significantly higher
for a rough surface than for a smooth surface. This is caused by changes in the
speckle field.

• This analysis also shows that the algorithm is applicable as long as a peak is
visible in the difference distribution, at least for pixels with higher confidence.
These measurements proof that the measurement principle and the multi-block
algorithm are applicable to measurements of rough surfaces. The optimum
block distance might be smaller than for smooth surfaces though.

• The phase change combined with poorer accuracy of the estimates caused by
the lower intensity (which follows a negative exponential distribution) leads to
lower accuracy and therefore indicates that stronger filtering would be useful.
Unfortunately, though, stronger spatial filtering automatically assumes surface
smoothness, and is therefore not the correct approach for rough surfaces. Meth-
ods such as Gaussian filtering are not very helpful. The remapping procedure
might still be applicable though, but this depends on the surface properties. The
most useful approach in practice is adjusting the number and the distance of
the wavelengths used such that the phase coupling histogram is narrow enough
to keep the number of outliers low enough for the remapping procedure (at the
maximum acceptable filter size, which in turn depends on the size of the sur-
face areas where the height differences do not exceed the coupling error). These
parameter values can be obtained by visual inspection of the results.

It has been shown that rough surfaces can be measured and that the influence of laser
speckle can be determined. The total error due to laser speckle consists of a phase error
and an increase in relative noise due to lower SNR. A more detailed investigation of
that aspect of the system is a topic for further research.
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4. Further Applications for the
Derived Algorithms

There are multiple applications where the algorithms for phase and frequency estima-
tion derived for multiple wavelength interferometry can be used.

The frequency estimation part alone can be used whenever fast frequency estimation
from short blocks of data is required. Due to the optimization procedure involved,
the properties of the resulting estimator will be known very well, which is useful for
many applications. The simplification for phase estimation discussed in chapter 3.6.5
can be applied to a significant number of problems, too: Among others, it is currently
being used for surface reconstruction by fringe reflection methods (which will not be
discussed in this thesis though).

As a group member is working in the field of polarization imaging, the author ap-
plied these results in this context, and it turned out to be possible to use both frequency
and phase estimation successfully in that field. Therefore this application is given as
an example for use of the algorithms outside the field of frequency scanning interfer-
ometry. Optical setup and measurements for the following section were performed by
Thomas Geiler, while the analysis of the data and the discussion of the algorithms has
been done by the author. Several figures in this chapter have been used previously in
this thesis, but will be repeated here (with captions tailored to polarization imaging)
in order to keep this chapter easily readable.

4.1. Polarization Imaging

4.1.1. Introduction

Polarization imaging can be used for image and contrast enhancement and material
distinction as well as surface reconstruction. It works particularly well for many
diffuse scattering surfaces that are very difficult objects for conventional imaging.
Therefore in recent years polarization has become an important approach to expand
capabilities of computer vision systems.

In contrast to classic metrology techniques such as spectroscopic ellipsometry or
single wavelength ellipsometry which are mainly used for film and material charac-
terization, the methods in computer vision usually avoid the typical calibration proce-
dures for linear polarizers by using just one of them.

It has been shown that illuminating the surface of dielectrics or metals with unpo-
larized light leads to partial polarization for specular and diffuse reflection [Wolff &
Boult, 1991]. Phase shifts caused by reflection cannot be measured with a single po-
larizing element, but in most cases the differences of reflectance between parallel and
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perpendicular polarization components can be used for a pixelwise estimation of the
surface orientation or for material classification.

Existing interpretation concepts for polarization imaging need to determine three
independent polarization parameters. Degree of polarization is a measure of the mod-
ulation of the intensity signal, the phase contains the angle of maximum intensity and
finally the mean intensity is needed for a full signal description.

For the interpretation of phase, degree of polarization and intensity a stable reflec-
tion model is needed which is robust to changes in microstructure and surface rough-
ness. Today there are approaches for different materials, using special illumination–
camera configurations, for example shape-from-diffuse-polarization [Atkinson & Han-
cock, 2006], shape-from-specular-polarization [Rahmann & Canterakis, 2001] and
surface reconstruction of transparent objects [Miyazaki & Ikeuchi, 2005].

Speed and accuracy of the image acquisition step are key aspects for optimizing
the performance of polarization imaging. A mechanically rotating linear polarizer, a
system using a beam splitter [Wolff, 1994] or a system using an electrically adjustable
polarizing element (e.g PLZT or liquid crystal mounted cameras) can be used. Three
different polarizer positions are, in principle, sufficient in order to determine the three
unknowns phase, degree of polarization and mean intensity. But the resulting polariza-
tion images suffer from noise, and this leads to performance degradation especially for
shape from polarization algorithms. Therefore a widely used approach to improve the
quality is based on blurring the raw images in order to reduce noise and the influence
of image shifts due to polarizer movement.

Here the focus lies on the comparison of different evaluation methods for the op-
timal interpretation of polarization series. Series acquisition conditions are analyzed
concerning number, accuracy and position of angular sampling points for the polarizer.

There is potential for a significant speed-up and cost reduction of polarization imag-
ing, which allows the use of this technique in a wider range of industrial and scientific
applications. The speed advantage is reached by optimization of the algorithms and
fast, unsynchronized image acquisition. Cost can be reduced because of dramatically
reduced requirements on the accuracy of the stage moving the polarizer.

The measurement and processing time, accuracy and sensitivity to noise is pre-
sented and compared for a number of different setups. The results are applicable to
the classical mechanical rotating polarizer setup as well as to the liquid crystal meth-
ods as there is no difference in the signal model. The polarizing element can be placed
in front of the camera or in front of the light source.

4.1.2. Polarization and Reflection

Propagation and interaction of light can be described using Maxwell’s equations. As
there is no analytical solution for this set of coupled differential equations for the gen-
eral case, light scattering has to be treated using numerical approaches. For reflection
or transmission at a plane surface, Maxwell’s equations reduce to boundary conditions.
Fresnel’s equations fulfill these conditions, and therefore light reflection and transmis-
sion can be treated easily in this case. Reflection coefficients for the amplitude of the
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Figure 4.1.: Fresnel reflection coefficient for ZrO2 [SOPRA, 2005] at λ = 633nm,
n = 2.21.

electrical field are given by [Born & Wolf, 1999]:

rTM = n2 cos(θ1)− n1 cos(θ2)
n1 cos(θ2) + n2 cos(θ1) (4.1)

rTE = n1 cos(θ1)− n2 cos(θ2)
n1 cos(θ1) + n2 cos(θ2) (4.2)

tTM = 2n1 cos(θ1)
n1 cos(θ2) + n2 cos(θ1) (4.3)

tTE = 2n1 cos(θ1)
n1 cos(θ1) + n2 cos(θ2) (4.4)

with angle of incidence θ1, transmission angle θ2 given by Snell’s law, n1 and n2
complex refractive index of medium 1 and 2, respectively.

The common nomenclature for the transversal electric (TE) and the transversal mag-
netic (TM) mode is used. For the TE component the electrical field is perpendicular
to the plane of incidence (defined by the incoming and the reflected ray). Usually, re-
flection and transmission coefficients are different for both components (Figure 4.1).
Therefore light becomes polarized upon reflection or transmission.

Atkinson and Hancock introduced a reflection model [Atkinson & Hancock, 2006]
that can be used for surface reconstruction based on diffuse reflection on ceramic
materials.
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Figure 4.2.: Optical setup for shape-from-polarization

4.1.3. Polarization Imaging

Polarization parameters

Rotating a polarizer in front of a camera causes the light intensity to change if the light
is at least partially polarized. The maximum and minimum observable intensities are
denoted Imax and Imin. The degenerate degree of polarization ρ is defined as

ρ = Imax − Imin
Imax + Imin

(4.5)

ρ is called “degenerate degree of polarization” because elliptical polarization can-
not be treated with a setup using one linear polarizer only. For ρ = 1, the light is
completely linearly polarized. The observed intensity changes when the polarizer is
rotated, and the angle for which the highest intensity occurs can be determined. The
degree and angle of polarization can be measured for each pixel. For a complete char-
acterization the mean intensity is determined, too.

Optical Setup

For the development of the algorithms image sequences obtained with a shape-from-
polarization setup as shown in Figure 4.2 are used. The algorithms can also be applied
to other polarization techniques as there are no special restrictions.
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The ceramic sample is illuminated by a halogen light source. A convex lens with
a focal length of 80mm is used to shape the beam and obtain uniform illumination.
The polarizer can be rotated using a high precision step motor. To improve the signal
to noise ratio, one can change the shutter time of the camera and merge a series of
radiometrically corrected images to obtain a highly dynamic, linear, low noise image.

Signal model

The interaction of light with the object surface and the linear polarizer can be described
by the Stokes formalism [Walker, 1954; Azzam & Bashara, 1987]. The Stokes vector
of the incident light has to be multiplied with the Mueller matrices of all elements in
the optical path. The Mueller matrix for a plane surface is given by:

M =


c1 c2 0 0
c2 c1 0 0
0 0 Re(rTEr∗TM ) 0
0 0 Im(rTEr∗TM ) Re(rTEr∗TM )

 (4.6)

c1 = |rTE |
2 + |rTM |2

2

c2 = |rTE |
2 − |rTM |2

2

The rotational matrix is given by:

T (2ϕ) =


1 0 0 0
0 cos(2ϕ) sin(2ϕ) 0
0 − sin(2ϕ) cos(2ϕ) 0
0 0 0 1

 (4.7)

The Mueller matrix of a rotated linear polarizer is given by:

P (θ) = 1
2


1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) 1
2 sin(4θ) 0

sin(2θ) 1
2 sin(4θ) sin2(2θ) 0

0 0 0 0

 (4.8)

Using these results one obtains the intensity

Sout = P (θ)T (−2θ0)MT (2θ0)


1
0
0
0

 (4.9)

And this yields the following signal intensity

I(θ) = c1 + c2 cos (2(θ − θ0)) (4.10)
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Sam-
pling

Uniform Approximately uniform Arbitrary

Known Table 2 fast: see Table 2, accurate: LLS (C) LLS (C),
others (D)

Un-
known

FFT (E) +
Table 2

fast: FFT (E) + Table 2, accurate: FFT
(E) + (F) + LLS (C)

(G)

Table 4.1.: Possible algorithms for various sampling patterns

Sampling Special angles Periodic Any phase
difference

Known +
Uniform

N-bucket
algorithms (A)

Fourier transform / QAM
demodulation (B) or LLS (C)

LLS (C)

Table 4.2.: Possible algorithms for known, uniform sampling

The intensity can be rewritten to obtain the following equation that is well known
from frequency and phase estimation theory. The samples ti correspond to the chosen
angular positions of the polarizer.

I(ti) = A cos(ωti + ϕ) + C (4.11)

Based on the measured intensity data the phase, modulation and mean have to be de-
termined for further processing. As the signal model is a sinusoid, there are many
possibilities for determining phase and amplitude. An overview of the possibilities
discussed in this paper is given in Tables 1 and 2. Iterative curve fitting procedures
have also been used sometimes [Brown & Mao Wang, 2002]. They offer more flex-
ibility, but are significantly slower than the algorithms discussed below, and they do
not necessarily offer better performance.

Much literature is available on the topics of phase and frequency estimation. This
paper does not attempt to give a comprehensive review, but focuses on fast and ro-
bust estimation techniques and their application to polarization imaging. Most of the
algorithms could be replaced by others, for a more in-depth discussion the reader is re-
ferred to section 3.6 and [Quinn & Hannan, 2001; Moon & Stirling, 2000; Oppenheim
& Schafer, 1989; Poor, 1994], where the frequency and phase estimation problems
are discussed in more detail. For reference a theoretical lower bound (the Cramér-
Rao bound) is included in the graphs, and in many cases it shows that the algorithms
derived in the following chapter are close to this theoretical limit.

4.1.4. Signal Processing Algorithms

The algorithms mentioned in Table 1 and 2 will be described briefly in this part:

N-bucket algorithms

This class of algorithms uses certain well-defined angles for the phase shifter in order
to obtain simple closed form expressions for the phase, for example using 60◦ or 90◦
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increments. The algorithms have been used for amplitude estimation in the context of
white-light interferometry, but here in polarization vision they can be used for their
original purpose, phase estimation. The following two algorithms have been used
here:

ϕ = arctan
(
I3 − I1

I1 − 2I2 + I3

)
(4.12)

and

ϕ = arctan
( 2(I4 − I2)
I1 − 2I3 + I5

)
(4.13)

They are discussed in more detail in chapter 2.1.

Fourier transform / QAM demodulation

For a simple sinusoidal signal model with an integer number of wavelengths on the
uniformly sampled support, one can compute the Fourier coefficient at the known sig-
nal frequency, and take its angle. This is identical to a demodulation by correlating
with a sine and a cosine and determining the phase based on the quotient (QAM de-
modulation, frequently used in communications, e.g. [Rice et al., 2001]).

Linear least squares phase estimation

The phase estimation problem can be rewritten

I(t) = A1 cos(ωt) + A2 sin(ωt) + C (4.14)

with the relation to eq. 4.11 given by

ϕ = arctan
(
A1

A2

)
and A =

√
A2

1 + A2
2 (4.15)

Estimating A1, A2 and C is obviously a linear problem if the frequency and the sam-
pling points are known, and there is a simple solution that can be applied to uniform
and non-uniform sampling. Written in vector form for a discrete number of samples
the following set of equations results:

Ax = b, with

A =

cos(ωt1) sin(ωt1) 1
cos(ωt2) sin(ωt2) 1
· · · · · · · · ·

 ,
x = [A1 A2 C]T and b = ~I.

(4.16)

In the presence of noise there is no exact solution to this system of equations, and
one way of dealing with that problem is searching for the solution with the minimum
mean squared error ||Ax − b||2. This solution is well known as linear least squares
estimation:

ATAx = AT b, or x = (ATA)−1AT b (4.17)
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Figure 4.3.: Relative accuracy of linear least squares phase estimation, averaged
across all phases and a large range of frequencies (excluding only frequen-
cies around zero and the Nyquist frequency), compared to the Cramér-
Rao bound. For the graph the frequency was assumed to be known, and
N=16 samples were used. “Noise level” is the standard deviation of the
Gaussian noise σ divided by the signal modulation A.

M = (ATA)−1AT needs to be computed only once, as the signal frequency is iden-
tical for all pixels. For phase estimation a multiplication of this 3×N matrix with the
vector b for every pixel along N frames is needed, i.e. three multiplications for each
pixel and frame. The properties of this algorithm for phase estimation have been dis-
cussed in detail in the literature [So, 2005]. This solution can be implemented quickly
and robustly, and it shows very good performance when compared to the theoretical
limit, the Cramér-Rao Lower Bound (CRB), as can be seen in Figure 4.3. If the signal
amplitude is larger than the noise standard deviation, the variance of this estimate is
less than 5% above the theoretical limit. Results are identical to the results from (B) if
an integer number of signal periods is sampled (or if N →∞).

Other phase estimation algorithms

Other algorithms for phase estimation are available and many of these could be applied
to polarization vision. A full review is outside the scope of this paper, though.
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Frequency estimation

If the samples are known to be uniformly sampled, but the sampling distance (i.e. the
velocity of the rotating stage for the polarizer) is unknown, one can reconstruct it from
the data using the assumption that the signal is a sinusoid with identical frequency for
all pixels. This is a frequency estimation problem, and here the algorithm described
in section 3.6 is used. For a very low number of samples this is inaccurate, but it does
work well in practice with eight or more samples as will be shown below. This still
holds true if the sampling is only approximately uniform: One can still determine an
average frequency as long as the difference does not exceed a few degrees or only
affects a few of the samples. The sensitivity of the phase estimation to an error in the
frequency estimate and limitations of this method are discussed below.

Sampling position estimation

When a rough estimate of the sampling positions is available e.g. from the frequency
estimation above, one can obtain an estimate for the angle of the polarizer at every
frame by first determining the phase for the whole time series for every pixel, and then
looking at the phase difference of every single pixel from the estimated signal model.
These differences can then be averaged across the whole frame in order to obtain a
mean phase deviation for every frame and thus the real position of the polarizer. This
only works well in the presence of low noise and fairly uniform polarization angle
distribution across the field of view, is computationally more expensive and not very
precise.

Direct phase difference estimation

Without estimating the signal frequency, one can try and obtain an estimate of the
phase differences directly. This works by associating each intensity value with a phase
value (based on a coarse modulation and offset estimate), computing the two possi-
ble phase differences (taking into account ambiguities caused by the unknown initial
phase), and then looking at the resulting distribution of differences across the whole
field of view. When using the mean of the estimated phase differences, the result re-
quires a uniform distribution of the original phase — which is usually not the case. If
the mode of the distribution is used instead, the result is independent of the distribu-
tion of the phase values, but becomes highly sensitive to noise. Figure 4.4 illustrates
these properties. This has not been investigated in detail as its practical relevance is
limited.

4.1.5. Experiments

Polarization measurements were performed using a ceramic object. An analysis of all
algorithms and setups above has been performed. Two cases seem to be most relevant
for practical applications as they are easy to implement in practice and offer the best
accuracy:

• Known uniform sampling (i.e. using a synchronized camera and a step motor to
rotate the polarization filter to known positions).
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mean 0.1 non−uniform
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mode 0.1 non−uniform
mode 0.1 uniform
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Figure 4.4.: Direct phase difference estimation accuracy for differences between 0◦
and 180◦. All possible combinations of uniform and non-uniform dis-
tribution of the phase across the field of view, with and without additive
noise of relative standard deviation σ/A = 0.1, using mean or mode of the
distribution as an estimate are shown. For the case of non-uniform phase
distribution, the phase was chosen to be uniformly distributed between
0.3π and 0.4π.

• Unknown uniform sampling (i.e. using a rotating polarization filter and a free-
running camera for reduced hardware cost and faster acquisition times).

In addition to these two configurations, a brief analysis will be presented for both
known and unknown non-uniform sampling. These configurations are described in
more detail in the subsections below. All results are compared to a reference measure-
ment using 120 samples with 3◦ distance from each other. This reference data was
analyzed using the least squares approach (C). In order to illustrate the robustness of
the algorithms used, a “worst case” scenario for polarization image acquisition was
included as well: A series of images was acquired using a hand-held power drill with
an affixed polarization foil, combined with a free running camera. No camera or setup
calibration was used, and no precautions at all were taken to reduce wobbling or other
sources of errors. Therefore there is significant additive noise as well as sampling jit-
ter, and the true signal frequency is unknown. No reference measurement for that part
exists, therefore no quantitative results can be given.
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Figure 4.5.: Accuracy of phase estimation for various frequencies, averaged across all
phases (N=16 samples, SNR 10). The LLS estimator almost reaches the
theoretical limit, the CRB. An FFT based estimator shows much poorer
performance in this case.

Known and unknown uniform sampling

The commonly used three frame algorithm is obviously the simplest and fastest op-
tion. A higher accuracy can be obtained by increasing the number of frames, though.
For this purpose some selected N-bucket algorithms and linear least squares estima-
tion are compared. For that purpose, the accuracy is normalized by the square root
of the number of frames such that improvements that could be obtained by simply
repeating the measurement are taken into account. The accuracy of phase estimation
asymptotically reaches the following limit for the relative standard deviation [Rife &
Boorstyn, 1974]:

sϕ =
√

2
2π ·
σ

A
· 1√
N

(4.18)

N corresponds to the number of images taken, σ is the noise level (additive white
Gaussian noise assumed) and A the modulation of the signal. For a low number of
images, this is not exact and the accuracy depends on both the signal frequency (which
can be adjusted) and the true phase of the signal. This is shown in Figure 4.6 for
16 images and all possible phase and frequency values. The colormap is centered
on the result from equation 4.18. The scale is truncated in the white areas where
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Figure 4.6.: Theoretical limit (CRB) on the phase estimation accuracy in case of N=16
samples, shown for all possible true frequencies and phases.

the accuracy becomes very low. Therefore it is important not to choose such a bad
frequency (e.g. sampling only once per rotation), but apart from that the graph shows
that a wide range of frequencies yields similar results. The estimation algorithm used
reaches the theoretical bound, as long as the estimate is not too noisy (Figure 4.5).

The same data can also be used to analyze performance for the case when the true
signal frequency is unknown. In this case, prior knowledge on the sampling positions
and rotational speed is simply not used. Instead, the frequency of the signal is esti-
mated using an interpolated FFT, and the resulting phase estimation is based on that
result. In practice, unknown uniform sampling will occur if a rotating polarization
filter is used without camera synchronization. Additionally, a continuously rotating
filter leads to a decrease in signal modulation due to camera integration across a range
of polarizer angles. This setup is significantly cheaper than using a step motor.

Figure 4.7 shows that the influence of camera integration is small. The upper line
assumes that there is no offset to the original sinusoidal signal, and that the light
source intensity or exposure time is adjusted such that the maximum intensity reaches
camera saturation. The lower line assumes that no such adjustments are made at all.
In practice, the influence of integration will be in-between. For a realistic integration
angle of 20◦, the contrast is reduced between 1% and 2%, depending on the offset of
the true signal.

138



CHAPTER 4. FURTHER APPLICATIONS FOR THE DERIVED ALGORITHMS

0 180 360 540 720
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Integration angle in degrees

P
o
la

ri
za

ti
o
n

si
g
n
a
l
co

n
tr

a
st

Polarization signal contrast vs. camera integration angle

 

 

illumination intensity readjusted, 
 no signal offset
illumination intensity fixed, 
 arbitrary signal offset

0 5 10 15 20 25 30 35 40 45
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Integration angle in degrees

P
o
la

ri
za

ti
o
n

si
g
n
a
l
co

n
tr

a
st

Polarization signal contrast vs. camera integration angle

 

 

illumination intensity readjusted, 
 no signal offset
illumination intensity fixed, 
 arbitrary signal offset

Figure 4.7.: Signal modulation (contrast) if a continuously spinning disk is used, both
with fixed and readjusted illumination intensity, for an integration range
of up to 720 degrees (top) and magnified for a range of up to 20 degrees
(bottom).
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Known and unknown non-uniform sampling

In this case the mechanical setup is identical to the previous section, but now a step
motor is used to deliberately cause “sampling errors”. Using the linear least squares
algorithm the results for known non-uniform sampling are shown, and compared to
the results for uniform sampling. Using a combination of frequency estimation and
sampling position estimation, the same data is analyzed assuming unknown sampling
positions. The accuracy of the results is compared to the case of known sampling.

4.1.6. Results

For the data set with uniform sampling, the number of frames N used for evaluation
was varied between three and sixty. For eachN all possible phase differences between
the samples were used, and the resulting variance was averaged across all subsets of
the data that fulfilled the conditions with respect to the number of samples and the
sampling distance. The phase was estimated using linear least squares estimation. The
difference to the reference measurement was computed and the variance of the differ-
ence across the field of view was determined. The resulting variance was multiplied
with the number of samples used in order to take improvements that could be obtained
by simply repeating the measurement into account as described above (Figure 4.9).
An example polarization image is shown in Figure 4.8 (top). For comparison, a nor-
mal image of the exact same object, with the same illumination and angle but without
polarization filter is shown in Figure 4.8 (bottom).

The results show that the performance of the linear least squares estimate improves
if more samples are used. If only additive white Gaussian noise is present, one would
expect a decrease in standard deviation with 1/

√
N , or constant results after normal-

ization in Figure 4.9. In practice, the improvement from repeated measurements is
somewhat lower (which can be seen when looking at the case with sampling distance
60◦, which corresponds to repeating a 3-bucket measurement), and the results for other
sampling patterns are slightly better. This is probably caused by systematic errors due
to an incomplete signal model and correlated noise. There are many settings which
perform close to each other, and therefore it is not very relevant how many samples
are used. This number can be adjusted such that the desired signal quality is reached.
As the computational effort increases linearly with the number of samples, perform-
ing repeated measurements or performing longer measurements makes no difference.
It is important, though, that the samples are spaced such that they are spread evenly
across at least one full signal period (i.e. 180◦ rotation of the polarizer). Measurements
show, however, that performance is significantly better if full rotations of the polarizer
(360◦) are sampled, which is probably caused by errors introduced by the polarizer.
It is obviously possible to obtain good results with samples spaced even further apart
(by adding multiples of 180◦ to the sampling distance), but part of the slight additional
improvements seen in the graph above might be caused by the reference measurement
being based on a longer part of the same sequence of frames.

In addition to the evaluation above, two N-bucket algorithms were evaluated. The
following results were obtained: 3-bucket (equation 4.12) with 0.0390 relative stan-
dard deviation of the phase estimate (normalized by the number of samples), and
5-bucket (equation 4.13) with 0.0320 relative standard deviation. This performance
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Figure 4.8.: Polarization image of a ceramic object, obtained using 17 frames with
21◦ distance (top) and normal image of the same object (bottom). Signif-
icantly less detail is visible.

(especially that of the 5-bucket algorithm) is slightly better than that of the linear least
squares estimates, but N-bucket algorithms are less flexible in their implementation
(they only work for a fixed interval), and are more difficult to derive for large num-
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Figure 4.9.: Relative standard deviation of the phase estimate, normalized by the num-
ber of samples used (top), magnified to better show the results for a low
number of samples (bottom).

bers of samples. The absolute performance is still significantly higher with algorithms
using more frames, e.g. the 17 sample algorithm described next, and the linear least
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Number of
samples

Sampling
distance

Known
frequency

Unknown
frequency

9 42◦ 0.0366 0.0372
14 27◦ 0.0365 0.0369
17 21◦ 0.0364 0.0367

Table 4.3.: Relative root mean squared error (not taking systematic offset into account)
of the phase estimate for uniform sampling compared to the reference mea-
surement.

Number of
samples

Sampling
distance

Known
frequency

Unknown
frequency

9 42◦ 0.0371 0.0376
14 27◦ 0.0367 0.0372
17 21◦ 0.0370 0.0372

Table 4.4.: Relative root mean squared error (not taking systematic offset into account)
of the phase estimate for non-uniformly sampled data compared to the ref-
erence measurement.

squares approach is highly robust to errors as will be shown below. From a practical
point of view, it is desirable to keep the rotation of the polarizer as slow as possible and
the samples closely spaced: Then a free-running camera is possible, and integration
time does not play a significant role. Settings that fulfill these conditions can be seen
as dark squares in Figure 4.9 (bottom). For example, if we take 17 frames spaced by
21◦, the result is highly accurate and the influence of integration time is less than 2%
(cf. Figure 4.7), and therefore image acquisition can be performed with a continuously
rotating polarization filter in front of the camera. In the next step, the signal frequency
is assumed to be unknown, but the sampling is assumed to be uniform. This is the
typical case if there is a rotating filter that is not synchronized to the camera. Three
settings that performed well before were chosen (phase estimation using linear least
squares estimation, as N-bucket is not applicable for arbitrary phase differences).

The difference in phase estimation performance between known and unknown fre-
quency is very small, and it gets smaller for a larger number of samples. This has
two main reasons: First of all, many time series are available for the frequency es-
timation, as the frequency must be identical for all pixels. The frequency estimates
are not perfect, but for the measurement data available, the error is less than 1% of
the Nyquist frequency (using an interpolated FFT according to section 3.6). Secondly,
even if the frequency estimate is not quite correct, the resulting phase error is small:
The phase is computed relative to the center of the sampling points, and the influence
of the frequency estimates is very small at this position (it would be zero if there was
no unknown offset).

For non-uniform sampling the results are shown in the next graph. Every third
sample was moved by ±3◦ (alternating). 3◦ was chosen as this accuracy should be
easy to reach in practice.

The results in Table 4.4 differ very little from the results for uniform sampling. If
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Figure 4.10.: Estimated phase correction angle (deviation from uniform sampling) in
degrees. Based on a sampling pattern with 17 frames and distance 21◦;
with sample six shifted by 18◦.

the jitter is small even in case of unknown sampling there is hardly any difference,
and there is no need to modify the algorithms used. This shows that the described
system is very robust. Reconstructing the actual sampling positions does not work
very well, though. If the sixth sample only is moved by 18◦, the sampling position can
be reconstructed well on simulated data if all phase values of the signal are equally
likely. This is unrealistic in practical applications. For the data set used here, the
following results are obtained (Figure 4.10): It is clearly visible that there is something
wrong with sample six, but the sampling position estimates are quite noisy. Using this
estimated sampling pattern for phase estimation does not improve the results.

As a last experiment, the worst case scenario using a free-running camera, a hand
held power drill and some polarizing foil was used to acquire 17 frames. The resulting
polarization image is shown in Figure 4.11. As there is no ground truth available, the
noise level cannot be determined, but compared to a reference measurement obtained
using 11 frames in increments of 18◦, the image looks correct and shows that with
very little effort a polarization image with valuable phase information for every pixel
can be obtained. It is very hard to tell which one of these images is better; at least
for the noisy background, the one obtained with the power drill looks actually more
accurate. The curvature of the object can be determined from the phase, which could
possibly be used for shape from polarization algorithms.
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Polarization image of a plastic can (reference measurement) Polarization image of a plastic can (acquired using a power drill)

Figure 4.11.: Polarization phase images of a plastic can. The image on the left hand
side was obtained from a standard high-accuracy measurement using
11 frames 18◦ apart, while the image on the right hand side has been
acquired with a free running camera and a hand-held power drill. 17
frames were used in this case.

4.1.7. Computational complexity

For practical applications it is important that processing is fast. Computational com-
plexity of the N-bucket algorithms is lowest, but the linear least squares solutions are
very close and can still be computed very quickly on a standard PC (less than 0.5
seconds for 1 Million pixels and 8 frames on a Core 2 Duo at 2.4GHz). In a straight-
forward implementation, 3N multiplications, 3N − 3 additions, one division and one
table lookup are needed per pixel; for special sampling distances the effort is even
lower with N-bucket algorithms. If the signal frequency is known, most of the pro-
cessing can be performed frame-by-frame while the data is being acquired, and at the
end only a division and computation of the inverse tangent (typically using a look-up-
table) is needed. The algorithm for frequency estimation is also fast (about 5s for 1
million pixels, 8 frames), and in practice its performance is irrelevant as it does not
have to be applied to all pixels: processing a few hundred good pixels (which can be
chosen by looking at the modulation) is sufficient and takes a few milliseconds only.

4.1.8. Conclusion

Several algorithms known from other fields have been adapted for use in polarization
measurements. There are four main results:

• Algorithms from other fields can easily be applied to polarization imaging, this
includes both N-bucket algorithms and linear least squares estimation. These
algorithms have been analyzed and their performance has been shown experi-
mentally.

• The accuracy of polarization measurements has been improved significantly by
increasing the number of raw images. The increase is directly proportional to
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√
N if linear least squares estimation is used. The computational complexity re-

mains low: The number of multiplications and additions increases linearly with
the number of frames N , the computational cost for the rest of the algorithm is
fixed.

• The proposed algorithms offers higher flexibility with respect to the number of
samples and the sampling distance. The dependency of the accuracy on the
signal-to-noise ratio and on the number of samples was shown quantitatively.
This makes it possible to choose an optimum sampling pattern and algorithm
for the desired application. The fast algorithms mentioned above can be applied
to an arbitrary number of sampling points and arbitrary sampling distance.

• Furthermore, using the proposed algorithms for phase and frequency estimation
it is possible to obtain accurate measurements without the need for synchro-
nization of camera and polarizer rotation, significantly reducing the cost of such
systems. A step motor is not needed; a continuously rotating polarizer is suffi-
cient, and there are almost no requirements on the accuracy of the drive. The
only difficult case of rapidly changing angular velocity can usually be fixed me-
chanically by simply increasing the weight of the rotating parts.

The algorithms presented are not limited to polarization vision and frequency scan-
ning interferometry, but can be applied to other fields, including fringe projection, de-
flectometry, white-light interferometry, rotation sensors, radar signal processing and
communication systems.
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5. Summary

5.1. Comparison: WLI vs. FSI

Both white-light interferometry systems and frequency-scanning multiple wavelength
interferometry systems are suitable for the measurement of optically rough and opti-
cally smooth surfaces, and both systems offer similar performance theoretically. How-
ever, there are huge differences with respect to the properties of the specific systems
investigated here.

The high-speed scanning white-light interferometry system uses well known tech-
niques, and there is a significant number of robust and stable (albeit slower) systems
commercially available. Modifying hard- and software to reach higher measurement
speeds is a challenging engineering task and can be expensive, but there are no fun-
damental difficulties as the implementation performed in the context of this thesis has
shown. This type of system is ready for in-line production use. Its main disadvantage
is measurement time: This time is proportional to the height range that is to be mea-
sured. Roughly speaking, one image has to be acquired per 100 nm, which quickly
reaches huge numbers for large height differences (1cm: 100,000 frames). Even with
high speed cameras, high intensity light sources and very fast processing, this is still a
huge number and causes a measurement time of minutes instead of seconds. In some
cases, this problem can be avoided:

• For relatively small height ranges and well-known part positions, a white-light
interferometry system can be very fast. A scanning speed of more than 100
microns per second is possible, and this may be sufficient.

• Sometimes the object geometry has large height differences (e.g. the hull of a
cylinder), but using optical components such as conical mirrors it can be made
to appear plane. This has been investigated by the author, but it is not part of
this thesis. An example is given in appendix C. Again, in these cases white-light
interferometry is applicable right now.

• If there are multiple discontinuous surfaces that are far apart, one can easily
“skip” the range in between while scanning — there is no data in between. This
can be done as long as the stage is accurate enough (either using a glass scale
or with an additional laser interferometer for absolute distance measurement).
In these cases, only the much smaller effective height ranges where data is ex-
pected have to be scanned slowly. This method is also applicable right now.

The line scanning white-light interferometry system features a more complex opti-
cal setup, but its properties are now well understood [Hering, 2007]. There are two
major advantages of that system: It is highly robust to vibration, and a line sensor is
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very useful for scanning cylindric or free-form objects that would be difficult for an-
other sensor. Measurement speed (in terms of height values per second) can be high if
a high-speed camera is used, which also requires high-speed signal processing. Com-
pared to 2-D scanning white-light interferometry, implementation of such algorithms
on the camera or framegrabber is easier and requires less memory, but there is cur-
rently no such system commercially available. There is still significant development
needed to build a compact and fast sensor for industrial applications, therefore it is
currently not available for in-line application. A competing sensor with lower resolu-
tion, but better properties on high-contrast surfaces is the Siemens SiScan, which is
commercially available.

The frequency scanning system analyzed in chapter 3 is less mature than the scan-
ning WLI system and there are several open questions remaining, some of which will
be discussed in the next section. The measurement principle is well known and well
understood, but currently accurate laser tuning is still a serious issue. Additionally,
the system is more sensitive to vibration and there is limited experience with respect
to the long-term stability and reliability. The key advantage of this system is mea-
surement time when larger height ranges are needed. The measurement time is on the
order of a few seconds; it should be possible to reach a total measurement time of
about 3s for the system described in this thesis. There is a limitation to about 1.2 mm
continuous height range for the system discussed here, followed by 0.4 mm where the
system is “blind”, another 1.2 mm usable range, and so on. This is defined by the
laser frequency increments in the tuning procedure. Measurements on both smooth
and rough surfaces are possible, and the expected accuracy is comparable to white-
light interferometry. For smooth surfaces there is a very elegant way of getting from
using the signal frequency to using the signal phase. This could be particularly use-
ful for thickness measurements, where the large measurement range can be used to
automatically reference two measurement heads to each other with every single mea-
surement (if the measurement object does not fill the whole field of view). Due to the
much lower data rate, this system is interesting for high-resolution applications as the
measurement time is mainly limited by exposure time and laser tuning. The system
is currently not suitable for in-line application due to a number of stability issues, but
these can probably be resolved.

5.2. Ideas for Further Development

Development for industrial use of the systems described here is not finished for any of
the systems, but the systems are in very different states of development:

High-speed scanning white-light interferometry is ready for production use. A large
number of algorithms with well-known advantages and disadvantages are available.
Improvements are obviously possible and can and will occur when better components
(faster cameras, higher dynamic range, better light sources, more accurate stages,
faster computers etc.) become available. The impact of any such improvement can be
predicted quite well, and there are no fundamentally different approaches expected.
Apart from that there is a number of possible and useful improvements on a system
level. These include
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• Fully automated and robust self-calibration procedures (both lateral and in z-
direction, automatic adjustment of the reference mirror, using depth from focus
for finding the virtual reference plane, ...)

• Using special optics (e.g. conical mirrors) for measuring certain objects. Align-
ment and calibration are especially important for that.

• Flexible application and higher accuracy could by facilitated by more compact
optical setups and by additional monitoring of the stage (i.e. using an integrated
laser interferometer).

• Modular software frameworks that can be re-used for multiple sensors and offer
image processing for data with a large dynamic range (32 bit is not sufficient
for many height measurements, double precision might be required).

Some of solutions mentioned above have been developed by various manufacturers,
but they are currently not well tested or readily available.

While all the issues mentioned above are also applicable to the line scanning WLI
sensor and the multiple wavelength system, there is a large number of additional issues
that have to be solved for these. For the line-scanning setup, they have been discussed
by [Hering, 2007] and are not repeated here.

For the multiple wavelength system, a key issue is hardware stability:

• A fully automated system for tuning the laser is required. This includes auto-
matic adjustment of the laser current and the grating positions.

• The hardware must be able to determine the absolute laser frequency and laser
intensity fluctuations. A more accurate monitoring of the laser might be possible
using part of the measurement head field of view, e.g. by placing a tilted step
height artifact there. The relative change of the laser frequency can then be
determined based on the phase of the sinusoidal signal on the slope for each
individual frame, and the absolute frequency can be determined by looking at
the step height resulting from a complete measurement.

• The system needs better thermal control, e.g. by using a Peltier element which
can both heat and cool instead of the current simple heater with a binary on/off
switch.

• The laser box is very sensitive to vibration. This can be tolerated if the box is
stored in a protected environment (which is feasible as the fiber coupled laser
light can reach other places easily), but a robust laser box would obviously
reduce the overhead in implementing such a solution. A piezo instead of the
currently used voice coil for tuning the laser might help.

• Illumination of the measurement head is poor. A more uniform illumination is
required. This could be obtained with a better beam profile by using a different
configuration for laser. As the absolute laser intensity is not critical, this should
also be possible with optical changes in the measurement head.
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• For some applications, a Michelson setup might have advantages (as discussed
in chapter 3.1.3).

• The system needs some additional laser safety measures for easier usage. The
required laser intensity is low, therefore it is possible to reach a class 1 laser
designation without having to completely enclose the measurement head. The
laser diode used is class 3B though, therefore precautions have to be taken to
make sure that the emitted light does no exceed the limits of class 1. A concept
for laser safety involving a monitoring diode at the laser head that detects both
excessive intensity as well as a broken fiber has been implemented together with
an appropriate electronics circuit for switching off the diode in case of errors,
see appendix B.

Once the hardware improvements described above have been performed, both the
software and the system characterization need to be completed:

• A more complete characterization of the system accuracy can be performed
once the illumination is more homogeneous and the absolute laser frequencies
are known. This includes a more detailed analysis of the influence of speckle,
which would be most interesting if a system with a higher optical resolution was
available.

• A simple user interface and user guide is required in order to facilitate use of the
system. Several of the system properties are difficult to understand compared to
other measurement systems, in particular the notion of an “ambiguity interval”
and the alternating inverted height maps resulting from it.

• For filtering, the noise properties of the system need to be analyzed in more de-
tail so that the optimum filter size and parameters can be detected automatically
or at least with little user input.

• All algorithms described in this thesis need to be implemented in an appropriate
programming language (using available libraries), the current Matlab imple-
mentation is less stable and consumes more memory than necessary.

Once all the improvements listed above have been completed, extensive testing will
be needed before the system can be used for in-line applications; other issues might
show up at that point.

5.3. Summary

In this thesis, three different measurement systems have been analyzed and optimized
for in-line use in a production line. As the techniques used for this optimization in-
clude a variety of very different aspects, a detailed summary of the results has already
been given in each of the individual sections. The key results for the three systems are
briefly summarized here:
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• A scanning white-light interferometry system has been built that is faster than
any other system on the market at the time. Most of the work fell in the follow-
ing three categories:

– The hardware (in particular camera and framegrabber) was replaced with
high-speed components and these were integrated into the system. Var-
ious components and measurement strategies were tested and compared
(i.e. triggering the camera based on the stage position).

– Various algorithms were analyzed for hardware-supported acceleration of
the signal processing, and additionally a review of the properties of these
algorithms in the presence of various types of noise was performed. In par-
allel, 3D-Shape GmbH worked on accelerating their processing software
and added support for the new hardware components.

– The system was extensively tested and its components were characterized.
This included comparing various sampling strategies as well as different
stages, cameras or light sources. The sensor was integrated into an au-
tomation framework and algorithms for automatic defect detection were
developed.

• For the line scanning interferometry system, different algorithms were com-
pared and concepts for a hardware-based implementation were developed. This
way, a concept for a novel, highly integrated 3D-sensor has been created.

• The most extensive analysis and optimization has been performed for the frequency-
scanning multiple wavelength interferometry system:

– The hardware and the underlying physics were analyzed and a signal model
was derived. Various sampling strategies, including some using non-uniform
sampling, were analyzed for the first time for frequency scanning interfer-
ometry.

– In the next step, an optimization problem for the estimation of the signal
frequency was formulated. The theoretical aspect of that problem was
analyzed in detail by Matthias Wieler, and its solution is given in [Wieler
et al., 2006].

– An approximation to the theoretically optimal sampling scheme was de-
rived, and an estimation algorithm developed and analyzed. Performance
was compared to other sampling schemes and algorithms. This is a general
result, and can be applied to other fields as well.

– As a building block for the new algorithm, a method to quickly and ac-
curately estimate phase and frequency from short blocks of data was re-
quired. There was no readily available algorithm that satisfied the require-
ments on speed and accuracy. Therefore new approaches for very fast
phase and frequency from a low number of samples have been derived.
This is also a general result, and has been successfully applied to polariza-
tion imaging and other applications.
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– The properties of the laser have been analyzed in detail, and algorithms to
determine the laser frequency have been developed.

– Bayesian approaches to height map estimation have been investigated, and
a simple spatial filtering approach (“adaptive remapping”) using knowl-
edge on modulation and phase coupling from the estimation algorithm has
been implemented that is able to reach most of the benefits one would
expect from Bayesian estimation at a fraction of the effort.

– The algorithms described above have been implemented and extensively
tested and compared to other approaches (e.g. non-linear optimization).
Plug-ins for a software framework of the hardware manufacturer have been
written such that the algorithms could be used directly for measurements.

– Simulation and measurement results for both smooth and rough surfaces
have been acquired and used to optimize and verify the algorithms.

– The influence of laser speckle on rough surfaces on the measurement ac-
curacy has been discussed, and a method to measure the phase change of
a speckle field with changing laser frequency has been proposed.

The main challenge in performing this analysis has been the wide range of tech-
niques from different fields of science required to optimize these optical measurement
systems. Relevant fields include estimation theory (theoretical limits, CRB), clas-
sical optics (imaging properties), speckle statistics, hardware and sensor technology
(cameras, lasers), software architecture (automation, modular concepts for software),
algorithms (FFT, filtering, image processing) and computer architecture (efficient and
fast hardware-supported algorithms).

Work in this field is never going to be complete; there are a vast number of possible
improvements with advances in hardware and computer technology. However, in a
number of areas the improvements are going to be small: Given the assumptions on
the frequency scanning interferometry system used in this thesis, the combination of
the proposed new algorithms reaches a result that is less than 5% from the theoreti-
cal limit. For other results presented here, e.g. the performance benefit of hardware
implementations of some algorithms, such a limit cannot be given. However, these re-
sults will probably still be useful in the future, even though the hardware might change
significantly: Currently there is a strong trend towards parallelization (multi-core sys-
tems, GPUs), and such architectures impose requirements where both an analysis of
the data flow and the issue of parallelization as discussed in this thesis are important.

Alternative measurement methods are currently under development, most notably
electronic speckle pattern interferometry with multiple wavelengths. Only time will
tell which one of these techniques succeeds in practice.
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APPENDIX A. PROPERTIES OF LINEAR STAGES

A. Properties of Linear Stages

For any scanning white-light interferometer, the accuracy is not only limited by noise
and speckle field, but also by the accuracy of the stage. The following analysis does
not offer fundamental new insight, but it illustrates the importance of an analysis of all
components with respect to the specific issues in white-light interferometry. It shows
that specifications alone do not offer all the required information, and may help the
reader to perform a similar analysis for optimization of a white-light interferometry
system.

In white-light interferometry, there are two main influences coming from the motion
stage: Sampling jitter can lead to problems in analysis algorithms (particularly corre-
lation based ones) and any position error of the stage directly leads to an error in the
measured height. In order to deal with the first type of error, an appropriate algorithm
for the expected sampling jitter has to be selected; there is no universal best solution.
It is important to choose a stage with constant velocity and low vibration. The second
type of error can only be reduced by obtaining more accurate position information
from the stage or an additional measurement system. For high precision applications,
the stage will always be equipped with a high precision encoder, and its signal is usu-
ally more accurate than the assumption of uniform movement. Following error can be
eliminated that way — therefore it is helpful to record the encoder positions whenever
a frame is acquired. Then later interpolating the maximum of the correlogram on the
grid of recorded positions is possible. This obviously requires a controller that is able
to provide the current position in sync with the camera, which can require relatively
fast sampling (more than 10kHz for a high-speed system). In contrast to many other
applications, it is not important that the stage is at a specific position at a given time,
it is only important that the stage is moving with a constant velocity (low sampling
jitter) and that the actual position at any given point in time is well known. This has
been implemented by choosing control parameters to reach a very smooth movement,
even though this might result in a larger deviation from the setpoint positions.

For the stages discussed next, the position has been recorded by both the integrated
encoder as well as an external laser interferometer. The results presented next are
mainly for illustrative purposes to show the influence of the stage type on the two
sorts of errors described above. The results differ significantly from stage to stage; a
detailed optimization of the stage or controller is outside the scope of this thesis.

A.1. M-511DG.K029

For this stage, the difference between the setpoint position and the actual position
according to the rotary encoder is almost always close to zero during a movement.
An encoder increment corresponds to 6nm, and the controller is able to keep to this
position (except for the acceleration and deceleration phase) as there is a very small
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A.2. M-511DD

and constant load, an equally low constant velocity, and — most importantly — the
rotary encoder does not monitor the actual stage movement, but the motor position
instead, so there is a very short closed loop. Unfortunately, this encoder information
does not necessarily match the actual movement of the spindle driven stage, as can
be seen in the following graphs. The maximum velocity of this stage is low, about
1mm/s. There are two types of noise: high frequency noise mainly due to vibration
(on the order of 50nm peak-to-peak), and large position errors, mainly due to gears
and spindle not being perfect. Bidirectional repeatability is poor (more than a micron
difference), which indicates that the connection between the table and the motor is not
completely rigid. Unidirectional repeatability is quite good though, and it seems to
be possible to reduce errors by calibration. The resulting curves show a standard de-
viation of only about 60nm (400 nm peak-to-peak). The high frequency components
cannot be reduced though, and there have been no investigations to verify whether the
calibration remains valid over extended periods of time. These results only apply as
long as the control is active. Finding the home position is not as accurate as desir-
able, so once the stage has been moved without closed-loop control, it might not be
possible to find the exact same start position, and therefore the calibration data might
become invalid. A series of measurement results for the velocities of 4µm/s, 53µm/s
and 149µm/s is shown in the following. In all cases, the absolute position error (Fig-
ure reffig:poserror), the remaining position error after calibration (Figure A.2) and the
spectrum of the noise (Figure A.3) are shown. The presence of high-frequency noise
prevents the use of correlation based algorithms and seriously degrades performance
of most N-block and correlation based algorithms. FFT-based approaches perform
best for that kind of signal due to the possibility to easily filter out unwanted frequency
components.

A.2. M-511DD

Mechanically, the table of this stage is almost the same as the one described above,
but there are two key differences: The actual position is measured by a glass scale of
20 micron length; yielding a nominal resolution of 100nm. It uses a different type of
drive as well, and the maximum velocity is much higher than for the version above.

Measurements show that this stage has a much lower error for longer measurement
ranges and has less high frequency jitter, but there are two problems: Misalignment of
the encoder leads to periodic errors and system vibration, and the available resolution
is too low, quite often two consecutive camera images are assigned to the same nomi-
nal position, leading to difficulties in interpolation. When using that stage, the signal
turned out to be almost impossible to process - the vibration caused serious issues with
all estimation algorithms. For this stage, the position error is shown in Figure A.4, the
velocity error at 4µm/s is shown in Figure A.5 and the spectrum at 200µm/s is shown
in Figure A.6. A comparison to M511DG.K029 is given in Figure A.7.
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A.3. Newport XML-350

This stage offers a larger moving range (which is not needed for white-light inter-
ferometry, but no smaller version was available for testing) and is much faster than
the stages described above (up to 300mm/s). It also uses a glass scale encoder, but a
more accurate one (4 microns length) and internally the signal is subdivided by 32768,
yielding an internal resolution of 0.122 nm. Externally, a resolution of 1nm is avail-
able. The stage accuracy is obviously lower than the encoder resolution, but it offers
much better repeatability and accuracy than the stages described above. The data in
Figure A.8 and Figure A.9 shows the stage following error at 10µm/s and is taken
from measurement data supplied by Newport for the XMS-50 (a smaller version of
the stage). Measurements performed by the author for the XML-350 roughly con-
firmed these results, but due to limited time with the system a full documentation was
not possible.

A.4. PI P-625.1CD

Very accurate positioning is possible using piezo-driven stages. These have limited
moving range (typically less than a millimeter), and can only carry relatively small
loads. They cannot be used to move the whole measurement system, but they can move
the reference mirror. Their accuracy is very high, measurement results are shown in
Figure A.10 and Figure A.11. When moving the stage quickly, a problem with the
stage velocity showed up as the control did not seem to attempt to keep the velocity
constant. This has been fixed in the meantime. After correction of that error, the
remaining noise standard deviation is about 13.6nm. A comparison of the integrated
capacitive sensor with the laser interferometer shows that the difference between these
two sensors (after performing a linear correction as the absolute values were slightly
different) has a standard deviation of less than 10nm. Taking the measurement noise
into account it is hard to tell which one of them is more accurate.

In addition to accuracy considerations, the lifetime of the stages has to be taken
into account when using them for an application in a production line. Typically, in
a production line such a stage will have to repeat the same short movement over and
over again every few seconds. Most stages have not been designed for such short
movements, therefore in order to increase the lifetime of the mechanical components
(bearings etc.), one has to move the stage for a longer distance periodically to im-
prove lubrication. Piezo-driven stages are more suitable for that kind of application,
therefore if it is possible to use them they should be preferred.
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Figure A.1.: Position error of the stage M511DG.K029 at 4µm/s, 53µm/s and
149µm/s. Bidirectional movement (five measurements for each direc-
tion are shown in each graph).
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Figure A.2.: Position error of the stage M511DG.K029 at 4µm/s, 53µm/s and
149µm/s. Bidirectional movement (five measurements for each direc-
tion are shown in each graph). For each direction, an individual calibra-
tion has been applied. The calibration values were obtained by repeated
measurements.
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Figure A.3.: Spectrum of sampling jitter for M511DG.K029 at velocities of 4µm/s,
53µm/s and 149µm/s. The frequency of the jitter is inverse proportional
to the speed, which indicates that it is linked to the gear ratio of the stage.
A more detailed analysis confirms this guess.
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Figure A.4.: Position error of the stage M511DD at 4µm/s, 53µm/s and 200µm/s.
Bi-directional movement (two measurements for each direction are
shown in each graph).
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Figure A.5.: Actual velocity of the M511DD (nominal velocity 4µm/s). The result is
very poor.
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Figure A.6.: Spectrum of jitter for M511DD at 200µm/s. Most of the noise is due
to a single frequency component which corresponds to the length of the
glass scale. This indicates misalignment of the glass scale.
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Figure A.7.: Actual velocity of the M511DD (bottom) and M511DG.K029 (top).
Nominal velocity is 53µm/s. There is clearly something wrong with
the stage M511DD, as it performs much worse than M511DG and all
other stages investigated.
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Figure A.8.: Position error of the stage XMS-50 at 10µm/s. The error of the glass
scale is clearly visible and the noise level is extremely low. Such a mea-
surement is only possible under laboratory conditions, in a production
environment errors will be significantly larger due to external influences.
For larger distances the error increases (maximum about 500nm over a
range of 5 cm), but calibration is probably possible similar to the other
stages.
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Figure A.9.: Actual velocity of the XMS-50 (nominal velocity 10µm/s). The velocity
variation is much smaller than for the other tables.
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Figure A.10.: Actual velocity of the Pi Piezo P-625.1CD (nominal velocity 10µm/s).
The velocity is even more stable than in case of the Newport XMS-50, at
a much lower load and looking at a smaller measurement range though.
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Figure A.11.: Following error of the Pi Piezo P-625.1CD (velocity 100µm/s). There
was something wrong with the controller as it did not keep the veloc-
ity constant throughout the measurement. This has been fixed in the
meantime.
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B. Laser Safety

Measurements were complicated by the fact that the laser diode used for the multiple
wavelength system is a class 3 laser: Its power exceeds 1mW, and the frequency used
is barely visible at about 785 nm. Therefore it is in general not safe to look into the
laser beam, and protective measures have to be taken.

There are two possible approaches:

• First of all, the system could be put into an enclosure (which should not be a
problem for use in a production line, but is difficult for manual measurements)
such that its laser radiation is not accessible. Then the whole system can be
classified as laser class 1, like a CD player.

• The alternative is to make sure that the radiation emitted from the measurement
head is always below the limit for a class 1 laser system. This is possible as not
much light is needed for the measurements.

The first approach is trivial to implement, but the second one is more desirable. As
the measurement head is connected to the laser with a fiber, not only laser emissions
from the measurement head but also the risk of a possible fiber break has to be con-
sidered. The easiest approach therefore is to determine the laser power in the fiber and
make sure that this is low enough such that there is no risk.

Measurements show that the maximum power coupled into the fiber is approxi-
mately 1mW when using maximum intensity. For a typical measurement only a frac-
tion of that power (on the order of 20µW ) is needed.

There are two kinds of limits to be taken into account: One is based on the energy of
the light source and one is based on the irradiance as seen by the human eye. For that
consideration the output at the measurement head is considered (if the fiber breaks, the
resulting beam will be highly divergent and therefore only dangerous in a very short
distance of the output). The maximum time the laser is looked at is also considered
in the standards. A measurement will take a few seconds only, and the laser can be
blocked between measurements. Additionally, there is no good reason for looking
directly into the measurement head, so assuming an exposure time of 100s should be
sufficient.

A calculation based on IEC-825 shows that with wavelength 785nm, emission dura-
tion 100s, assuming 1mW laser power and the properties of the measurement head, the
laser energy and irradiance are far below the limits for laser class 1 (at 29% and 55%
respectively). This shows that the system can easily work as a class 1 laser system as
1mW is far more than needed for measurements.

However, one still has to make sure that this level of radiation cannot be exceed in
case of an error, and a system concept to realize that is presented here. There are two
approaches to ensure that this power cannot be exceeded in case of an error:
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• All possible faults can be discussed and it can be shown that the emission will
still be below the limits. The system has been optimized and aligned to reach
a high level of output, so it is unlikely that in case of a fault there will be more
output power - it is far more probable that intensity will decrease or that there
will be none at all. However, proofing that is almost impossible (as the diode
itself has higher power, but a large amount of intensity is lost in tuning, fiber
coupling, etc.).

• Alternatively, measures can be taken to ensure that no single fault can go un-
detected and will lead to an increase in radiation. This can be done with an
additional electronics circuit which will be described in the following.

In order to detect excessive radiation or a break in the fiber, the signal at the mea-
surement head has to be monitored. This can be done by coupling part of the light from
the fiber into a photo diode at the measurement head. The logic works as follows:

• If the laser intensity exceeds a set limit (which can be set and verified experi-
mentally and can typically be much lower than the 1mW used for the calcula-
tion above), an electronics circuit at the laser will detect that and block the laser
beam immediately.

• In order to detect damage to the fiber, there must a lower limit as well - if the
laser power is below that limit, the laser beam must be blocked as well.

• As this would make it impossible to turn the system on, the monitor can only be
active when the laser blocker is open.

• A simple implementation like that would lead to oscillation, therefore a short
time delay is needed to give the laser blocker time to open before closing it due
to violation of the lower limit. Once an error is detected, this state must be kept
when the laser blocker is closed.

• The time delay should not be there for the upper limit.

• Once an error occurs, the laser has to be blocked until a manual reset using a key
switch is performed (this ensures that e.g. in case of a broken fiber the system
cannot be turned on again without manual verification by the person responsible
for operation of the system).

This has been implemented and should be sufficient for classification as a class 1
laser system.
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C. Special Optics

For many objects, direct interferometric measurements are difficult or even impossi-
ble. This is true for some very rough objects or for objects with very high contrast; in
these cases depth from focus might work better. But relatively smooth objects can also
cause problems: If the slope of a smooth object is too steep, no light will be reflected
back onto the detector. Therefore the measurement direction should be perpendicular
to the surface. In case of a 1-D line sensor this is usually possible, but with a 2-D
sensor it is impossible to be perpendicular to the whole surface if that surface e.g. has
a strong curvature.

Sometimes it is possible to resolve this problem with an optimized optical setup.
For example, a cylindrical surface can be imaged using a conical mirror, and then
appears plane to the measurement system (Figure C.1 and Figure C.2). Then there
is no problem with lack of light returned and the height range becomes very small
(resulting in a short measurement time).

Key difficulties are the calibration of the mirror and the alignment of the system:
Not only the part has to be aligned relative to the measurement system, but also the
mirror has to be aligned correctly. This results in six additional degrees of freedom.
There are methods to perform the alignment automatically without requiring full mea-
surements and reconstruction of the height map. These are not discussed here.

Requirements on the mirror are very high, any surface roughness or deviation that
cannot be removed by calibration will lead to additional measurement errors (as the
light is reflected twice on the mirror, calibration is difficult and errors add up quickly).

To illustrate this principle, an example image of a cylindrical object measured by a
white-light interferometer using a conical aluminum mirror is shown in Figure C.3.

It is important to notice that after backprojection the sampling grid is not uniform.
Only a small part of the camera field of view can usually be used, therefore this method
is probably not preferred if a very high lateral image resolution is required. For this
application it is useful if the camera can be set to an arbitrary region of interest (e.g. a
ring): Especially in case of white-light interferometry the data rate can be reduced
significantly and thus the measurement can be accelerated. Such an optical setup can
be used with any measurement system, including multiple wavelength interferometry,
but it is most useful when white-light interferometry is to be used.
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Figure C.1.: As shown in the diagram above, the surface of cylindrical objects can
be measured with a white-light interferometry system by using a conical
mirror. The object then looks flat to the measurement system.

Figure C.2.: Measurement setup for a laser weld: Image of object and reference mirror
taken by a normal camera. The image of the weld is clearly visible on the
conical mirror.
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Figure C.3.: Measurement of the same laser weld as shown in Figure C.2, obtained
by using a white-light interferometry system. The height is color-coded,
the scale (in m) is given by the color bar. Height differences are clearly
visible where a welding error occurred.
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