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born in Schwäbisch Gmünd

Oral examination: July 18, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32580195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Dispersion in laser-driven

relativistic quantum systems

Referees: Prof. Dr. C. H. Keitel

Prof. Dr. O. Nachtmann





Abstract

The wave packet dynamics of electrons driven by strong laser fields is examined with
the objective to both describe and manipulate the spreading dynamics. Having estab-
lished analytical methods based on either classical or quantum mechanics, the quantum
approach is first applied to free, laser-driven electrons. Intuitive results are found for
both the relativistic and the nonrelativistic regime beyond the dipole approximation.
In order to generalize the concept of recollisions to relativistic energies where magnetic
field effects are important, the electron dynamics in standing laser fields with linear and
circular polarization are analyzed and compared. Furthermore, a novel scheme of two
consecutive laser pulses is introduced, which allows for recollisions with the maximum
electron energy accessible in propagating laser fields. In this scheme, the Lorentz drift
is employed both to separate electrons from atoms or molecules and to drive them back
for recollisions. Aiming to increase the reaction probabilities of recollisions, two meth-
ods to inverse wave packet spreading are introduced. Both approaches, i.e. refocusing
with a harmonic potential and magnetic refocusing, can be implemented in the scheme
with two consecutive laser pulses to enable effective, relativistic recollisions.

Zusammenfassung

Es wird die Wellenpaketdynamik von Elektronen in starken Laserfeldern unter-
sucht mit dem Ziel, das Zerfließen von Wellenpaketen sowohl zu beschreiben als auch
zu beeinflussen. Nach der Einführung analytischer Methoden, die entweder auf der
klassischen Mechanik oder der Quantenmechanik beruhen, wird die quantenmechanis-
che Beschreibung zuerst auf freie, lasergetriebene Elektronen angewandt. Es werden
einfach zu interpretierende Ergebnisse sowohl für den relativistischen Fall als auch für
den nichtrelativistischen gefunden, der über die Dipolnäherung hinaus geht. Um das
Konzept der Rekollisionen auf relativistische Energien zu erweitern, bei denen Magnet-
feldseffekte nicht vernachlässigt werden können, wird die Dynamik der Elektronen in
stehenden Feldern mit entweder linearer oder zirkularer Polarisation analysiert und ver-
glichen. Außerdem wird ein neues Modell mit zwei aufeinander folgenden Laserpulsen
eingeführt, welches Rekollisionen mit der höchsten Energie ermöglicht, die Elektronen
in einem propagierenden Laserfeld erreichen können. In diesem Modell wird die Drift-
bewegung ausgenutzt, um Elektronen von Atomen oder Molekülen zuerst zu separieren
und dann zur Kollision zu bringen. Mit dem Ziel, die Reaktionswahrscheinlichkeit
von Rekollisionen zu erhöhen, werden zwei Methoden vorgestellt, mit denen das Zer-
fließen von Wellenpaketen wieder rückgängig gemacht werden kann. Beide Methoden,
die magnetische Refokussierung und die Refokussierung mit harmonischen Potentialen,
können in das Rekollisionsmodell mit zwei Laserpulsen integriert werden, was effektive,
relativistische Rekollisionen ermöglicht.



In connection with the present work, the following articles have been published in
refereed journals:

• M. Verschl and C. H. Keitel,
Analytical Approach to Wave-Packet Dynamics of Laser-Driven Particles beyond

the Dipole Approximation

Laser Physics 15, 529 (2005)

• M. Verschl and C. H. Keitel,
Relativistic classical and quantum dynamics in intense crossed laser beams of

various polarizations

Phys. Rev. ST AB 10, 024001 (2007)

• M. Verschl and C. H. Keitel,
Relativistic recollisions with two consecutive laser pulses

J. Phys. B 40, F69 (2007)

• M. Verschl and C. H. Keitel,
Refocussed relativistic recollisions

Europhys. Lett 77, 64004 (2007)



Contents

Introduction 7

1 Classical and quantum description of wave packets 13

1.1 Phase-space averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.1 Analytical implementation . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Superposition of solutions with constant modulus . . . . . . . . . . . . . 20
1.2.1 Gaussian wave packets . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Laser-driven wave packets 25

2.1 Nonrelativistic dynamics beyond the dipole approximation . . . . . . . . 25
2.1.1 Laser field expansion . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Classical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3 Quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Relativistic wave packets . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Gaussian superpositions . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 Time dilation and Lorentz contraction . . . . . . . . . . . . . . . 39

3 Electron dynamics in crossed laser beams 43

3.1 Laser configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Relativistic classical particle dynamics . . . . . . . . . . . . . . . . . . . 45

3.2.1 Simplified equations of motion . . . . . . . . . . . . . . . . . . . 45
3.2.2 Nonrelativistic limit . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Highly relativistic case . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Quantum mechanical treatment . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Solution of the Schrödinger equation . . . . . . . . . . . . . . . . 57
3.3.2 Relativistic effects . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Relativistic wave packet approach . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Linear polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Circular polarization . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Relativistic recollisions 67

4.1 Collision energies in laser-driven recollisions . . . . . . . . . . . . . . . . 67
4.1.1 Recollisions in standing laser fields . . . . . . . . . . . . . . . . . 68
4.1.2 Recollision energy of laser-driven positronium . . . . . . . . . . . 69
4.1.3 Electron core collisions in propagating laser fields . . . . . . . . . 70

5



6

4.2 Relativistic recollisions with two consecutive laser pulses . . . . . . . . . 71
4.2.1 Classical trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Wave packet dynamics . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Refocused wave packets 81

5.1 Magnetic refocusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Refocusing by a harmonic potential . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Classical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Quantum mechanical analysis . . . . . . . . . . . . . . . . . . . . 85
5.2.3 Harmonic potentials in laser beams . . . . . . . . . . . . . . . . . 85

6 Refocused relativistic recollisions 89

6.1 Recollisions with magnetic refocusing . . . . . . . . . . . . . . . . . . . . 89
6.1.1 Classical trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.2 Wave packet dynamics . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Refocused recollisions with harmonic potentials . . . . . . . . . . . . . . 104
6.2.1 Relativistic wave solution . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2 Gaussian superposition . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3 Restrictions of ponderomotive refocusing with laser beams . . . . 111
6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Summary 117

A Relativistic dynamics of laser-driven particles 121

A.1 Classical particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Quantum dynamics of spinless particles . . . . . . . . . . . . . . . . . . 122

B Atomic units 125



Introduction

Since the first laser has been built in 1960, the achievable intensity of laser light has
increased by many orders of magnitude up to 1022 W/cm2 at present. Therefore, the
interaction of laser light with matter comprises different regimes from linear to highly
nonlinear optics, including the case of relativistic electron dynamics. Typical nonlin-
ear effects in the nonrelativistic regime are the ionization of atoms via tunneling or
multiphoton absorption, where possibly more photons are absorbed than necessary for
ionization [above threshold ionization (ATI)]. For reviews of the physics of atoms in
laser fields see [1, 2, 3, 4, 5, 6].

Many applications of laser-matter interactions are based on the important concept
of recollisions. First, an atom or molecule is ionized by a laser field, then the electron
is accelerated, and finally, when the laser phase has reversed, it is driven back to the
core. The recolliding electron can, for instance, be scattered, further ionize the atom
or molecule (nonsequential double ionization [7, 8]) or it can give rise to the emission of
radiation which is dominated by high harmonics of the laser frequency [high harmonic

generation (HHG)]. In the process of HHG [1, 9], a small fraction of the bound wave
packet tunnels out of the barrier which is formed by the superposition of the laser
electric field and the binding Coulomb potential. Then, it gains energy in the laser
field, and the superposition of the returning wave with the bound wave packet creates
a radiating charge oscillation. As this process repeats every half laser period, the
emitted light of odd high harmonics of the laser frequency interferes constructively and
therefore produces a discrete spectrum. In this way, coherent radiation can be created
with frequencies several hundred times higher than the laser frequency. The emission of
radiation can also be considered as the energy which is released by the recombination of
the electron with the atom or molecule. The maximum frequency of the emitted light
is therefore given by the sum of the ionization energy plus the maximum kinetic energy
which the electron can gain in the laser field from the instant of tunneling ionization
to recollision. Besides employing this process for a coherent, ultraviolet light source
[10, 11], the radiation offers various other applications. For example, the information
on atomic orbitals or the nuclear distance of molecules are encoded in the radiation
spectrum, which enables probing the nuclear dynamics of simple molecules [12, 13]
(a different approach based on the analysis of recollisions is shown in [14]) or the
tomographic imaging of molecular orbits [15]. Furthermore, the superposition of parts
of the high-frequency spectrum can be employed to create attosecond pulses [16, 17, 18]
which are much shorter than a single cycle of visible laser light. Thus, the time scale
of atomic and molecular physics is reached, which is a major requirement for analyzing
the dynamics of electronic processes such as chemical reactions.

The maximum energy of recollisions depends on the laser intensity. However, if the
fields are too intense (i.e., more than about 1017 W/cm2 for optical laser frequencies),
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8 INTRODUCTION

the motion of the electron becomes relativistic and recollisions are suppressed because
of the laser magnetic field, which is perpendicular to the motion in the polarization
direction and therefore exerts a force on the electron. The electron is then pushed in
the laser propagation direction (Lorentz drift) and consequently returns with a certain
distance to the core [3, 6]. As for this scheme, effective recollisions are limited to the
nonrelativistic regime. For recollisions with relativistic energies, which allow for probing
dynamics of nuclear processes [19], high-energetic γ-radiation or muon-antimuon pair
creation [20], other recollision schemes are required.

Various methods have been proposed to circumvent the problem of the Lorentz drift.
To some extent, additional electric fields pointing in the laser propagation direction
can be applied to cancel the drift [21]. Another option is to preaccelerate the ions such
that the laser light is Doppler-shifted to higher frequencies in the accelerated system
[22, 23]. Consequently, the laser periods are shorter and thus the drifting time of the
electrons is reduced. Furthermore, working with antisymmetric molecular states has
been proposed [24]. In this case, parts of the wave packet possess an initial momentum
after the ionization which partly cancels the Lorentz drift. If positronium is employed
for recollisions, both the electron and the positron are subject to the same drift such
that recollisions can occur [25, 26]. Another method is to employ counterpropagating
waves to eliminate the Lorentz drift [19, 27, 28, 29]. Finally, the drift can be minimized
if the laser pulse is tailored in such a way that ionization and recollision are initiated
by short and intense peaks with vanishing electromagnetic fields in between [30].

Today, laser intensities are available which can accelerate electrons to highly rela-
tivistic energies [31, 32]. The interaction of such intense laser pulses with solid targets
creates plasmas in which other effects such as electron-positron pair creation, electros-
timulated nuclear fission, or nuclear excitation by means of electron impact can occur
[33, 34, 35, 36, 37, 38, 39]. As opposed to controlled recollisions, those are random pro-
cesses in plasmas which are not suitable to drive coherent processes. In the relativistic
regime, the electronic motion in the laser fields is dominated by the drift in the laser
propagation direction. This effect can be employed to create strong electric fields. For
example, an intense laser pulse penetrating a thin foil separates electrons from the heav-
ier ions and thus creates an electric field which can be employed for the acceleration of
ions [40, 41, 42, 43] [target normal sheath acceleration (TNSA)]. A further possible pro-
cess is the production of energetic electrons by means of wakefield acceleration [44, 45]
in gases in which the separation of electrons and ions creates a plasma wave which can
efficiently accelerate electrons. The generation of monoenergetic electron beams of up
to 1 GeV based on wakefield acceleration has been demonstrated [46, 47]. Compared
to conventional accelerators, the advantage of particle acceleration by means of laser
beams is the compact dimensions of the facilities often fitting in usual laboratories.
Further applications of high-energetic laser pulses are the nuclear fusion from explo-
sions of laser-heated deuterium clusters [48] and the direct interaction of intense laser
fields with nuclei [49].

In order to create such intense laser pulses, the light has to be focused on a small
spot and the pulse length needs to be short. The limits for the size of the focus and
the pulse length are both given by the wave length of the laser. Presently, the shortest
pulses are a few cycles long (see e.g. [50, 51]). The amplification of short pulses to high
energies in a laser medium has been enabled with the implementation of chirped pulse

amplification (CPA) [31, 39, 52, 53] where the pulses are first stretched by dispersive
systems to reduce the intensity significantly in order to avoid damaging of the laser
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medium. After the amplification, the pulse is compressed again by another dispersive
system. With this method, intensities of 1022 W/cm2 have been achieved [32]. A large-
scale implementation of CPA may even allow to raise intensities up to 1028 W/cm2 in
the future [54].

A different concept to achieve higher laser intensities is to employ high-order har-
monics which are efficiently created by irradiating a solid surface with intense laser
pulses [55]. If the radiation is focused, extremely short pulses with intensities of
1029 W/cm2 might be obtained [18, 56], which is close to the Schwinger limit of
2.3 × 1029 W/cm2 where spontaneous electron-positron pair creation is expected.

This thesis—Dispersion in laser-driven relativistic quantum systems—deals with
the wave packet dynamics of laser-driven electrons, mainly in the relativistic regime.
Analytical methods are developed to describe the spreading dynamics of wave packets.
As opposed to previous numerical approaches, these allow for intuitive understanding
of relativistic wave packet dynamics over a vast range of parameters. First, one of
the formalisms is employed to construct analytical solutions of electrons driven by
a propagating laser field, where effects of the laser magnetic field and relativity are
recovered and described quantitatively. The methods are then applied to compare two
standing wave configurations allowing for recollisions in the relativistic regime. By
means of analytical results, effects are identified which give rise to different behaviors
of electrons in the two configurations. Thus, it is seen which configuration is more
favorable for an implementation of recollisions. For other problems where analytical
solutions are not available, a fast numerical approach is at hand for the description of
wave packet dynamics.

Furthermore, a novel relativistic scheme is introduced implying the new feature that
recollisions can be enforced at the highest electron energy achievable in propagating
laser fields. For example, collision energies in standing laser fields scale differently with
the laser intensity and therefore yield lower energies in the relativistic regime.

A general problem of recollisions is the dispersion of wave packets since spreading
reduces the reaction probabilities. Here, two methods are developed which can be
employed to reverse spreading, i.e., electron wave packets can thus be refocused to
their initial width. These ideas are then incorporated into the new recollision scheme
to combine refocusing with energetic recollisions. In this way, new schemes allowing
for effective relativistic recollisions are established.

The methods of describing wave packets include an analytical implementation of
phase-space averaging which is a classical Monte-Carlo method based on the uncertainty
of the initial conditions of the particle. Since the dynamics is deduced from classical
equations of motion, this method allows for an intuitive understanding of (relativistic)
wave packet dynamics, especially due to the analytical implementation. This formalism
of describing wave packets can as well be employed for a fast numerical implementation.
The second, fully quantum mechanical approach considered here can be applied to a
certain class of solutions of wave equations such as the quantum mechanical states
describing free, laser-driven particles (Volkov states). Both methods are described in
detail in Chapter 1.

In Chapter 2, the quantum mechanical approach is applied to construct wave pack-
ets of free electrons driven by intense laser fields. Different regimes are considered
where magnetic fields and relativistic effects are important. This problem has been
addressed previously by numerically solving the Dirac equation [57, 58, 59, 60, 61, 62],
the Schrödinger equation beyond the dipole approximation (see e.g. [63, 64]) or by su-
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perimposing a set of Volkov-states on a computer [65, 66]. However, there is no detailed
understanding of the occurring spreading and deformation dynamics of wave packets,
as computers are needed to evaluate the final results. In this thesis, analytical solu-
tions for the charge density are established and interpreted. One calculation is carried
out for the nonrelativistic regime beyond the dipole approximation in order to include
magnetic field effects (see also [67]). The second calculation concerns the relativistic
regime where effects like Lorentz contraction and time dilation are observed.

The dynamics of electrons in intense, crossed laser fields is examined in Chapter 3
(see also [68]). Two standing-wave configurations with different laser polarizations are
compared which have in common that they possess axes on which electrons can oscil-
late without experiencing any Lorentz force. Due to this feature, these configurations
are suitable for recollisions in the relativistic regime. For the case of linearly polar-
ized, counterpropagating laser fields with equal polarization direction (see [27, 28, 29]),
the standing wave has nodes where the magnetic field vanishes and the electric field
amplitude is maximal. For circularly polarized standing waves, the magnetic field is
antiparallel to the electric field [19], i.e., the Lorentz force vanishes if the electron os-
cillates in the direction of the electric field. This means that the magnetic fields are
different for the two configurations which gives rise to different electron dynamics in
the vicinity of the axes of vanishing Lorentz force, with consequences for the stability
of the motion.

In Chapter 4, a novel recollision scheme for the relativistic regime is introduced
(see also [69]). The displacement due to the Lorentz drift which is responsible for the
suppression of recollisions in propagating laser fields is canceled by a second, time-
delayed counterpropagating pulse. With suitable pulse shapes, recollisions can occur
with maximal kinetic energy. As also shown in that chapter, the recollision energy
scales differently with the laser intensity and can be much higher than in the discussed
approaches with standing waves or positronium.

Spreading of the electron wave packet reduces the efficiency of recollisions in the
model with two consecutive laser pulses. To address this general problem of spreading,
two methods are presented in Chapter 5 showing that the spreading of free wave packets
can be reversed. This can be achieved by applying a suitably strong and short magnetic
field pulse. The wave packet then refocuses in the plane perpendicular to the magnetic
field. The second method is the application of a harmonic potential for a certain
time. It is shown that such a potential can be realized by means of the ponderomotive
potential of a laser field run in the TEM01 mode. The electron is then shown to move
in an effective parabolic potential. In this case, laser fields can be crossed to implement
refocusing in all three spatial dimensions.

Finally, in Chapter 6, those ideas of refocusing wave packets are applied to the
relativistic recollision scheme of Chapter 4. The pulses which initiate refocusing, i.e.,
either the magnetic field pulse or the harmonic potential, are inserted in between the
two counterpropagating laser pulses. It is demonstrated that the wave packets refocus
and reach minimal widths at the instant of recollision. Thus, effective recollisions can
be achieved at highly relativistic energies (for magnetic refocusing see also [70]).

In Appendix A, the derivation of the analytical solutions for an electron driven by
a plane laser field with otherwise arbitrary vector potential is reviewed, for both the
classical and the quantum mechanical case. The electron trajectories are only slightly
influenced by the electron spin [6, 71]. For the case the spin vector is parallel to the
magnetic field direction of the laser field, there is no effect on the trajectory at all
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[72]. For these reasons, spin effects are not considered here and quantum mechanical
solutions for the problem of laser-driven particles are therefore derived from the Klein-
Gordon equation for spinless particles.

All equations in this thesis are given in atomic units, i.e., Gaussian units are em-
ployed with Planck’s constant ~, the electron mass m and the unit charge e equal to
unity. This system of units is discussed in Appendix B, where also a table is given to
restore constants and to convert results to SI units.
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Chapter 1

Classical and quantum

description of wave packets

The description of localized wave packets needed in the following chapters is based on
two approaches. The first one—phase-space averaging—is a classical method where
spreading is considered as a consequence of uncertain initial conditions of the particle.

Whereas this method has previously been implemented by numerical Monte-Carlo
simulations [73, 74, 75, 76, 77, 78], here, an analytical approach is developed. An
analytical integral expression for the probability density is established which often can
be integrated for Gaussian distributions of the initial conditions if the classical equations
of motion are known. Since this approach is based on the classical equations of motion,
it is very intuitive, and it allows for insight into the wave packet dynamics in both the
relativistic and the nonrelativistic regime.

In some cases, solutions of quantum mechanical wave equations are known which
have to be superimposed to yield localized wave packets. For the common case where
only the phase of the solution depends on the initial momentum and the modulus is
constant, a Gaussian superposition can often be carried out analytically. As opposed
to phase-space averaging, this is a fully quantum mechanical method.

In both approaches, it is employed that the dependence of the initial momentum
can be expanded, which then allows for an analytical description. This simplification
is justified if the width of the distribution of the initial velocity is small compared to
the speed of light. The results of this chapter are the basis for determining the wave
packet dynamics of the subsequent chapters.

1.1 Phase-space averaging

The method of phase-space averaging is a classical Monte-Carlo approach to describe
wave packets. It has first been applied in the year 1978 to describe the ionization
of Rydberg atoms by microwaves [79, 80]. From that time on, it has been employed
successfully in describing various laser-atom processes [73, 74, 75]. The approach has
also been applied in the relativistic regime [76, 77, 78].

The basic idea is to represent the probability distribution of a particle by an ensem-
ble of particles which move on classical trajectories, whereas the initial conditions are
varied. The probability to find the particle in a certain volume can then be determined
from the number of classical particles found in this volume.

13



14 CHAPTER 1. CLASSICAL AND QUANTUM DESCRIPTION . . .

This classical approach requires much less computational power than numerically
solving wave equations on grids. Numerical codes are available to solve the time-
dependent Schrödinger equation (see e.g. [63, 64]) for nonrelativistic and the Dirac
equation for relativistic problems [57, 58, 59, 60, 61, 62]. In the relativistic regime,
high electron energies require extremely small spacing in the time domain. Limited
computing power therefore restricts the range of parameters. So far, energies have been
limited to the lower MeV-regime and calculations have been restricted to one particle
in two spatial dimensions. The solution of classical equations of motion required for
phase-space averaging is less time consuming and it can be implemented for more
general parameters.

Phase-space averaging cannot describe intrinsic quantum mechanical effects like
tunneling or interferences, but it is suitable to describe spreading of wave packets
because this can as well be understood in classical terms. For a classical particle, the
probability density is a moving delta-peak if the initial conditions are known exactly.
However, if the initial momentum is subject to an uncertainty, the location of the
particle usually becomes more and more unclear, i.e., the probability distribution of its
position spreads. According to Heisenberg’s uncertainty principle there is always an
uncertainty in momentum space for a localized initial state which consequently causes
spreading.

1.1.1 Analytical implementation

Usually, this approach is implemented by propagating the ensemble of classical particles
with different initial conditions numerically. Here, it is shown how this scheme can be
implemented in a different way allowing for an analytical treatment if the classical
equations of motion can be solved. This method can also be implemented if analytical
solutions of the equations of motion are not available. In this case, they need to be
solved numerically only for a small set of different initial conditions.

Probability density

The first step of a quantitative description consists in calculating the probability of a
classical particle to propagate from the initial position to some other point at a certain
time, where the initial momentum ~p0 is subject to a probability distribution ρ̃(~p0). The
classical equations of motion need to be solved for the initial momentum ~p0 = ~g(~x, ~x0, t),
i.e., ~g denotes the function which gives the initial momentum needed for the classical
trajectory to run from the initial position ~x0 through the point ~x at time t. Now, the
probability ρ′(~x, ~x0, t)d

3x to find the particle at the point ~x within the volume element
d3x is equal to the probability that the required initial momentum ~p0 is within the
volume element d3p0 of momentum space:

ρ′(~x, ~x0, t) d
3x = ρ̃(~g(~x, ~x0, t)) d

3p0 . (1.1)

The volume elements are related via the Jacobi determinant. The probability density
is then given by

ρ′(~x, ~x0, t) = ρ̃(~g(~x, ~x0, t))

∣

∣

∣

∣

∂~g(~x, ~x0, t)

∂~x

∣

∣

∣

∣

. (1.2)

This expression still depends on the initial position which is subject to some proba-
bility distribution ρ0(~x0). The next step is to sum up the probabilities ρ′ for different
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initial positions, i.e., the following weighted integral has to be carried out to yield the
probability density of the particle:

ρ(~x, t) =

∫∫∫

ρ′(~x, ~x0, t)ρ0(~x0) d
3x0 =

∫∫∫

ρ̃(~g(~x, ~x0, t))

∣

∣

∣

∣

∂~g(~x, ~x0, t)

∂~x

∣

∣

∣

∣

ρ0(~x0) d
3x0 .

(1.3)

Current density

In the same way, a term for the current density can be derived which is based on
classical trajectories. First, consider the initial position of the particle to be fixed.
The current density ~j′(~x, ~x0, t) is then given by the product of the probability density
ρ′(~x, ~x0, t) and the velocity ~v(~x, ~x0, t) at which the particle travels if it is found at the
position ~x at time t, because the current is given by the probability per unit time that
the particle flows through the surface perpendicular to its velocity. The velocity at
some point ~x at the instant t is not unique, because it depends on the initial position
~x0 of the particle as well. The current density ~j′(~x, ~x0, t) therefore needs to be summed
over the different initial positions according to the initial probability density ρ0 in order
to obtain the current density ~j(~x, t):

~j(~x, t) =

∫∫∫

~j′(~x, ~x0, t)ρ0(~x0) d
3x0 =

∫∫∫

ρ′(~x, ~x0, t)~v(~x, ~x0, t)ρ0(~x0) d
3x0 . (1.4)

Generally, the velocity depends on the initial momentum which is determined by the
classical trajectories via ~p0 = ~g(~x, ~x0, t), but in the relativistic case, this dependence
usually becomes very weak. This is seen if the absolute value of the velocity v is
expressed by the relativistic γ-factor according to

γ =
1

√

1 − v2

c2

⇔ v = c
√

1 − γ−2 , (1.5)

where c is the speed of light. The relative variation of the velocity with respect to the
initial momentum is given by

~∇~p0
v

v
=

~∇~p0
γ

γ

γ2(1 − γ−2)
, (1.6)

which scales like γ−2 in the relativistic case. This becomes a small number already
for moderately relativistic values of the order γ ∼ 10. The weak dependence on the
initial momentum is simply understood, because once the particle is accelerated to high
energies, its velocity is always similar to the speed of light. Equation (1.6) also depends
on the relative variation of the γ-factor on the initial momentum. Usually, this is not
a big number but it needs to be checked once a specific term is given. With the weak
dependence of the velocity on the initial momentum, it is justified to neglect the initial
momentum. The intuitive interpretation of this approximation is to neglect the current
due to wave packet spreading with respect to the current of the relativistically moving
particle, because in this case, the velocities of the different trajectories which form the
wave packet are considered to be equal.

There is another approximation which is very useful. The initial wave packets are
usually very small compared to the laser wave length. Typical values are several atomic
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units for the spatial widths of the initial wave packet as compared to 15000 a.u. for the
wave length of 800 nm. This means that the particles of the ensemble see almost the
same laser phase and the dependence of the particle velocity on the initial position is
therefore very small. In this case, the velocity can be pulled out of the integral in Eq.
(1.4) and with Eq. (1.3) the current density simplifies to

~j(~x, t) = ~v(~x, t) · ρ(~x, t) . (1.7)

Linearization and numerical implementation

As already discussed in connection with particle velocities, the initial position for a
particle which is localized on an atomic scale is of minor importance for the dynamics
in a laser field with wave lengths in the visible regime. Therefore, it is sufficient to
work with classical solutions which are linearized with respect to the initial position. A
linearization can also be applied with respect to the initial momentum whose variations
are responsible for spreading. With variations of the order of a few atomic units or less,
quadratic terms of initial momentum deviation over the velocity of light (c ≈ 137 a.u.)
can usually be neglected. In this case, the equations of motion simplify to

~x(~p0, ~x0, t) ≈ G(t)
~p0 − ~pm

c
+ H(t)

~x0 − ~xm

λ
+ ~m(t) . (1.8)

Here G(t) and H(t) are 3×3-matrices, ~pm and ~xm are the points about which the series
is expanded and λ is the laser wave length. The vector ~m(t) describes the motion for
vanishing deviations of the initial momentum and position, which can be considered
as the motion of the center of the wave packet. Now, the linearized expression for the
particle position can easily be solved for the initial momentum in order to obtain the
function ~g(~x, ~x0, t) = ~p0 and the corresponding Jacobian which are needed to construct
the probability density and current:

~g(~x, ~x0, t) = cG−1(t)

(

~x(~p0, ~x0, t) − H(t)
~x0 − ~xm

λ
− ~m(t)

)

+ ~pm , (1.9a)

∣

∣

∣

∣

∂~g(~x, ~x0, t)

∂~x

∣

∣

∣

∣

=
c3

detG
. (1.9b)

These general expressions in Eqs. (1.8) and (1.9) can simplify considerably for
specific applications. For example, H(t) can reduce to the unit matrix when a different
initial position effects only a spatial shift of the trajectory, or G(t) becomes (partly)
diagonal if the motion in different dimensions are independent of each other. This is
important once the integrals in Eqs. (1.3) and (1.4) need to be carried out.

If the equations of motion are not known explicitely, the coefficients of G(t̃), H(t̃)
and m(t̃) can easily be determined numerically for any instant of time t̃. After nu-
merically calculating the position for several times with different initial conditions,
the coefficients are fixed. For example, by setting ~p0 = ~pm and ~x0 = ~xm one finds
~m(t̃) = ~x(t̃). Then, with ~p0 − ~pm = (1, 0, 0) and ~x0 = ~xm the first column of G(t̃) is
determined, etc. In this way, wave packets can be propagated with rather little compu-
tational effort by determining the coefficients (21 at the most) and solving the integrals
in Eq. (1.3).
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Initial states

In order to construct the wave packet or the current density, the initial momentum
distribution ρ̃ and the initial probability distributions ρ0 are needed. These distribu-
tions are often given by a microcanonical ensemble, where the initial electron state is
represented by a set of classical trajectories with side conditions, e.g. on the energy
or angular momentum to mimic some initial quantum state (for details see e.g. [75]).
A further possibility is to derive the probability distributions for the initial conditions
from the initial quantum mechanical state. Here, the initial distributions are chosen to
be the following spherically symmetric Gaussians with arbitrary widths:

ρ0(~x0) = (
√
π∆w)−3 exp

[

−~x0 · ~x0

∆w2

]

, (1.10a)

ρ̃(~p0) = (
√
π∆p)−3 exp

[

−~p0 · ~p0

∆p2

]

. (1.10b)

∆w and ∆p are the widths in coordinate and momentum space, respectively. Here,
the width of a Gaussian (centered at the origin) is defined by the absolute value of the
vectors yielding values which are by the Euler number smaller than the maximum of
the distribution. The parameters ∆w and ∆p can be adapted to mimic the localization
of some initial state in both coordinate and momentum space. Choosing Gaussians
for the initial distributions has the great advantage that this allows for an analytical
description of wave packet dynamics.

As discussed previously, spreading originates from the uncertainty of the initial
momentum, i.e., large widths ∆p generally imply quick spreading. Due to Heisen-
berg’s uncertainty principle, the widths in momentum and coordinate space cannot
both be arbitrarily small. For the widths used here, the uncertainty relation is given
by1 ∆w · ∆p ≥ 1. This means that on an atomic scale, small spatial widths imply
large uncertainties in momentum space and thus spreading generally becomes faster
for strongly localized particles. The other way round, slow spreading involves large
spatial uncertainties.

There is a useful approximation which can be applied to study the long-term behav-
ior of wave packets. Once the wave packet has spread to a size much bigger than the
initial wave packet, small variations of the initial position of the classical trajectories
often become insignificant. In this case, the initial probability density can be approx-
imated by a delta-function ρ0(~x0) ≈ δ(~x0). The integrals in Eqs. (1.3) and (1.4) can
then be carried out and one finds simplified expressions for the current and probability
density:

ρ(~x, t) ≈ ρ′(~x, ~x0 = 0, t) = ρ̃(~g(~x, ~x0 = 0, t))

∣

∣

∣

∣

∂~g(~x, ~x0 = 0, t)

∂~x

∣

∣

∣

∣

, (1.11a)

~j(~x, t) ≈ ρ′(~x, ~x0 = 0, t)~v(~x, ~x0 = 0, t) . (1.11b)

Correlations of initial conditions

The distributions of the initial positions and momenta (1.10) are not correlated, i.e., the
initial momentum distribution is independent of any given initial position. However,
this does not necessarily have to be the case. For instance, consider a wave packet

1If a Gaussian f(x) is given via f(x) ∝ exp
ˆ

−x2/(2σ2)
˜

, where the width is defined by σ, the
uncertainty relation has the common form ∆w · ∆p ≥ 1/2.
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which has broadened in the course of time. In the classical picture, where wave packets
are mimicked by ensembles of classical trajectories, the particle has some different
momentum if it is found at the margin of the wave packet than if it is found at the
center. Such a correlation is found as well for quantum mechanical wave packets.

Here, an argument is given to show, under which circumstances the initial position
and momentum distributions following from some quantum mechanical initial state are
uncorrelated such that the initial distributions (1.10) can be applied.

Consider the following one-dimensional model: First, the particle be in some state
ψ(x). Then, it is detected to be at the position x0 with a spatial uncertainty of ∆x.
Thus the wave function is projected on the subspace between x0−∆x/2 and x0+∆x/2.
Now, the spatial uncertainty be small enough that the collapsed wave function ψp(x)
can be considered to linear approximation in the interval of interest:

ψp(x) = n[ψ(x0) + ψ′(x0)(x− x0)][Θ(x− x0 + ∆x/2) − Θ(x− x0 − ∆x/2)] . (1.12)

Here, Θ is the Heaviside step function and n is a normalization constant. The following
calculation is carried out consistently to linear order in (x − x0). The wave function
ψp(x) is then found to be normalized for |n|2 = (|ψ(x0)|2∆x)−1. The goal is to find
an expression for the momentum expectation value < p > of this wave function which
is localized in the vicinity of x0. < p > is the pendant of the classical momentum
and it will be seen under which conditions the momentum is independent of the initial
position. The expectation value is given by

< p >=

∫

ψ∗
p(x)

(

−i ∂
∂x
ψp(x)

)

dx . (1.13)

Considering that the derivative of the step function is the δ-function, this expression
reduces to

< p >= −i|n|2
[

ψ∗(x0)ψ
′(x0)∆x

+

∫ ∆x/2

−∆x/2

[

|ψ(x0)|2 + (ψ∗(x0)ψ
′(x0) + ψ(x0)ψ

′∗(x0))(x− x0)
]

× [δ(x− x0 + ∆x/2) − δ(x− x0 − ∆x/2)] dx
]

. (1.14)

To carry out the integral, the following property of the δ-function needs to be taken
into account:

∫ η

−∞
xδ(x− η)dx =

∫ 0

−∞
(y + η)δ(y)dy = η

∫ 0

−∞
δ(y)dy =

η

2
. (1.15)

Finally, the following result for the momentum expectation value is found:

< p >= Im
ψ′(x0)

ψ(x0)
. (1.16)

According to this simple result, the momentum is found to be independent of the initial
position if the wave function ψ(x0) is real. Note, that this result becomes exact in the
limit that the particle position is determined exactly since the accuracy of the first
order approximation increases as ∆x decreases.

The essential result is that the uncorrelated initial probability distributions (1.10)
can be employed if the initial quantum mechanical states are real.
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Example of a free electron wave packet

It is instructive to apply this analytical formalism of phase-space averaging to a simple
example which can be compared with the exact quantum mechanical result. Consider
a one-dimensional wave packet of a free electron. The motion of a free particle is given
by x = p0 · t+x0, which can be solved for the initial momentum p0 to yield the function
required to determine the probability density (1.3):

g(x, x0, t) ≡ p0 =
x− x0

t
, (1.17a)

∂g(x, x0, t)

∂x
=

1

t
. (1.17b)

With the one-dimensional analog of the initial Gaussian distributions2 (1.10), the prob-
ability density is given by

ρ(~x, t) =

∫ ∞

−∞

exp
[

− (x−x0)2

∆p2t2

]

√
π∆p t

·
exp

[

− x2

0

∆w2

]

√
π∆w

dx0

=
1

√
π
√

∆w2 + ∆p2t2
exp

[

− x2

∆w2 + ∆p2t2

]

. (1.18)

The quantum mechanical solution ψ(x, t) is given by a superposition of plane prop-
agating waves with momentum p0, which solve the free Schrödinger equation:

ψ(x, t) =

∫ ∞

−∞

1√
2π

exp

[

i(p0x− 1

2
p2
0t)

]

· ψ̃(p0) dp0 . (1.19)

The initial state in momentum space ψ̃(p0) is chosen in a way that the correspond-
ing initial probability distribution |ψ̃(p0)|2 matches the one-dimensional version of Eq.
(1.10b):

ψ̃(p0) =
1

√

∆p
√
π

exp

[

− p2
0

2∆p2

]

, (1.20a)

|ψ̃(p0)|2 =
1

∆p
√
π

exp

[

− p2
0

∆p2

]

. (1.20b)

Then, the following solution for the wave function and the probability distribution
|ψ(x, t)|2 is found:

ψ(x, t) =
1

4
√
π
√

∆p−1 − i∆p t
exp

[

−
∆p
2 x

2

∆p−1 − i∆p t

]

, (1.21a)

|ψ(x, t)|2 =
1

√
π
√

∆p−2 + ∆p2t2
exp

[

− x2

∆p−2 + ∆p2t2

]

. (1.21b)

It can be read off, that the initial spatial width of the probability density associated
with the initial state (1.20a) is given by ∆w = ∆p−1 and the quantum mechanical
result (1.21b) is identical to the result (1.18) obtained by phase-space averaging.

2Note, that the three-dimensional initial distributions are simple products of one-dimensional Gaus-
sians.
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Now, consider the approximation discussed in Sec. 1.1.1 (Initial states) where the
initial probability density distribution was considered to be point-like as compared to
the broadened wave packet. In this case, the probability distribution follows from Eq.
(1.11a):

ψ(x, t) ≈ 1√
π∆p t

exp

[

− x2

∆p2t2

]

. (1.22)

This result is also obtained from the exact result (1.18) in the limit of long evolution
times, i.e. for t→ ∞.

As discussed in Sec. 1.1.1 (Correlations of initial conditions), it is expected that
the particle position and its momentum become correlated as the wave packet evolves.
If the particle is detected in the vicinity at some point x0, then the expectation value
for its momentum is given by Eq. (1.16). Applied to the spreading wave packet (1.21a)
one obtains

< p >=
x0t

∆p−4 + t2
=
x0

t
· 1

1 + 1
∆p4t2

≈ x0

t
. (1.23)

The approximation is valid for the long-term behavior. This result can be understood
in classical terms: If the particle is found at the point x0 at time t, the particle must
have had the initial momentum of x0/t to get there. In the long-term behavior, the
uncertainty of the initial position can be neglected.

1.2 Superposition of solutions with constant modulus

In many cases, solutions of wave equations, such as the Schrödinger or the Klein-Gordon
equation have the simple structure where only the phase depends on some momentum
variables, whereas the modulus is constant. The solution φ then has the form

φ(~x, ~p, t) ∝ exp if(~x, ~p, t) , (1.24)

where f is a real function depending on both the position and the momentum ~p. With
the linearity and the homogeneity of the corresponding equation of motion, these solu-
tions can be superimposed to construct a wave packet which is a solution of the wave
equation as well.

1.2.1 Gaussian wave packets

If the momentum distribution ψ̃ is a Gaussian, the superposition can be carried out
analytically. The following Gaussian is chosen:

ψ̃(~p) =
(√
π∆p

)−3/2
exp

[

−(~p− ~pm)2

2∆p2

]

, (1.25)

where ~pm is the maximum of the distribution and ∆p is again the width. The distri-
bution is normalized according to

∫

|ψ̃(~p)|2 d3p = 1 . (1.26)

The functions φ(x, p, t̃) be subject to the following normalization condition at some
time t̃:

∫

φ∗(~x, ~p, t̃)φ(~x, ~p ′, t̃)d3x = δ3(~p− ~p ′) . (1.27)
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With these conditions, wave packets can be shown to be normalized in coordinate space.
The Gaussian superposition is simply given by

ψ(~x, t) =

∫

φ(~x, ~p, t)ψ̃(~p)d3p , (1.28)

where the spatial integral over the modulus squared of this wave function is equal to
unity at time t̃ which is seen by means of Eqs. (1.26) and (1.29):

∫

|ψ(~x, t̃)|2d3x =

∫

φ∗(~x, ~p, t̃)φ(~x, ~p ′, t̃)ψ̃∗(~p)ψ̃(~p ′)d3p d3p′ d3x = 1 . (1.29)

In nonrelativistic quantum mechanics, the modulus square of the wave function rep-
resents the probability density. With Eq. (1.29) it has been shown that the wave
function is normalized at time t̃, but since φ(~x, ~p, t) is the solution of a wave equation
which conserves the probability distribution, the normalization holds for all times t.
This is not a surprise for the nonrelativistic case, however, the same argument can be
employed if φ(~x, ~p, t) is a solution of a relativistic wave equation. In this case, the nor-
malized charge distribution is not given by the modulus square of the wave function.
However, if the dynamics is nonrelativistic at the instant t̃, the charge density may re-
duce to |ψ(~x, t̃)|2. With Eq. (1.35), this will be shown explicitly for the Klein-Gordon
equation. This means that the normalization can be shown for an instant t̃ when the
dynamics is nonrelativistic and the normalization for arbitrary times t is ensured by
charge conservation of the wave equation.

The Gaussian superposition ψ(~x, t), requires a three-dimensional integral to be car-
ried out:

ψ(~x, t) ∝
∫∫∫

exp

[

if(~x, ~p, t) − (~p − ~pm)2

2∆p2

]

d3p . (1.30)

In general, this integral cannot be solved, but for small widths ∆p in momentum space,
the function f(~x, ~p, t) can be expanded to second order about the maximum ~pm of
the momentum distribution, which renders the superposition in Eq. (1.30) a Gaussian
integral. The function f(~x, ~p, t) reduces to the following quadratic form:

f(~x, ~p, t) ≈ f(~x, ~pm, t)+(~p−~pm, t)~∇f(~x, ~pm, t)+
1

2

(

(~p− ~pm, t) · ~∇
)2
f(~x, ~pm, t) . (1.31)

How well this approximation works, depends on both the widths ∆p and the function
f(~x, ~p, t). Generally, the accuracy increases with decreasing widths ∆p. The behavior
of f(~x, ~p, t) can be analyzed when the formalism is applied.

With the expansion of f(~x, ~p, t), the integrals in Eq. (1.30) can be solved directly.
However, for the applications considered here, it is easier to reduce the problem to
three one-dimensional integrals. This is always possible, because with the expansion
(1.31) the exponent in Eq. (1.30) is a quadratic form which can be diagonalized by
means of a coordinate transformation in momentum space. The wave function ψ(~x, t)
can then be written as a product of three one-dimensional integrals and the formalism
introduced in the following can be applied.
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One-dimensional Gaussian superpositions

The one-dimensional functions be given by

φ(x, p, t) =
1√
2π

exp if(x, p, t)

≈ 1√
2π

exp

[

i

(

f(x, pm, t) + f ′(x, pm, t)(p− pm) +
1

2
f ′′(x, pm, t)(p − pm)2

)]

, (1.32)

where the function f(x, p, t) has been expanded to second order about the momentum
pm as seen in Eq. (1.31) for the three-dimensional case. The Gaussian superposition can
then be carried out to yield the wave function of the wave packet, where the momentum
distribution is chosen to be the one-dimensional version of Eq. (1.25):

ψ(x, t) =

∫

φ(x, p, t)(
√
π∆p)−1/2 exp

[

−(p− pm)2

2∆p2

]

dp

=
exp if(x, pm, t)

4
√
π
√

∆p−1 − i∆pf ′′(x, pm, t)
exp−

∆p
2 f

′(x, pm, t)
2

∆p−1 − i∆pf ′′(x, pm, t)
. (1.33)

This expression shows that f ′(x, pm, t) determines the maximum of the wave packet,
f ′′(x, pm, t) affects the width and f(x, pm, t) appears only in a phase factor3. The
absolute square of the wave function is found to be

|ψ(x, t)|2 =
1

√
π
√

∆p−2 + ∆p2f ′′(x, pm, t)
exp− f ′(x, pm, t)

2

∆−2 + ∆p2f ′′(x, pm, t)2
. (1.34)

For nonrelativistic quantum mechanics, |ψ(x, t)|2 represents the probability distribu-
tion, but this expression will be useful for the relativistic case as well.

Charge density for the Klein-Gordon equation

The charge density ρ(~x, t) of a relativistic particle whose dynamics is described by the
Klein-Gordon equation is given by the following expression (e.g., see [81]):

ρ(~x, t) =
i

2c2

[

φ∗
(

∂

∂t
+
i

c
Φ

)

φ− φ

(

∂

∂t
− i

c
Φ

)

φ∗
]

, (1.35)

where φ(~x, t) is the wave function and Φ(~x, t) the scalar electromagnetic potential. To
show that this expression reduces to the absolute square of the wave function in the
nonrelativistic limit, the operator for the particle energy Ê (kinetic energy plus rest
energy) is approximated by the rest energy of the particle4, i.e., the kinetic energy is
neglected with respect to c2:

Ê = i
∂

∂t
− 1

c
Φ = c2

(

1 +

(

i ∂
∂t − 1

cΦ
)

− c2

c2

)

≈ c2 . (1.36)

3Note that in the classical approach of the previous section, wave packet spreading is obtained from
the terms proportional to the initial momentum, whereas here, quadratic terms are required. For this
reason, the second order approximations of the initial momentum dependence in the quantum approach
corresponds to the linear approximation of the classical method, i.e., it does not yield higher accuracy.

4Note that in the Hamilton-formalism, the particle energy (kinetic energy+rest energy) is given by
H −Φ/c = (p−A/c)2/2 where H is the Hamilton function representing the total energy including the
potential energy. The replacement of H by ∂/∂t yields the operator for the particle energy.
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In this nonrelativistic limit, the charge density reduces to the well known form

ρ(~x, t) ≈ φ∗φ . (1.37)

As discussed above, this can be employed to ensure the normalization of wave packets
(1.30), because the charge density of a laser-driven electron is given by the nonrela-
tivistic expression (1.37) before the (intense) laser pulse hits the electron and gives rise
to relativistic dynamics.



24 CHAPTER 1. CLASSICAL AND QUANTUM DESCRIPTION . . .



Chapter 2

Laser-driven wave packets

The objective of this chapter is to establish analytical expressions for Gaussian wave
packets of laser-driven electrons. First, the wave equation has to be solved and second,
the solutions need to be superimposed which is accomplished by means of the quantum
formalism developed in Sec. 1.2.

In dipole approximation where the spatial dependence of the laser field is neglected,
the problem of laser-driven particles can easily be solved (see Sec. 2.1.3). However, in
this case, the laser magnetic field is neglected. To include magnetic field effects which
are important for strong laser fields, the dependence of the vector potential on the
spatial position is considered to first order in an expansion. This analysis is carried out
in Sec. 2.1 for the Schrödinger equation, i.e. for the regime where the dynamics is still
nonrelativistic but magnetic fields are non-negligible.

For higher intensities which involve relativistic electron dynamics, the solutions of
the Klein-Gordon equation need to be superimposed to yield a relativistic wave packet.
This case is discussed in Sec. 2.2. As opposed to previous attempts of numerically
solving the Schrödinger equation beyond the dipole approximation (see e.g. [63, 64]),
the Dirac equation [57, 58, 59, 60, 61, 62] or the computational superposition of Volkov-
states [65, 66], the results are completely analytical.

2.1 Nonrelativistic dynamics beyond the dipole approxi-

mation

2.1.1 Laser field expansion

In the following, the laser pulse is chosen to propagate in the z direction with linear
polarization in the x direction. The laser fields are described by the vector potential:

~A = x̂A(ωt− kz) ≡ x̂A(ϕ) . (2.1)

ϕ is the laser phase, ω the angular laser frequency and k the wave vector. If the region
of interest remains close to the plane z = 0, i.e., if the electron stays in a region where
kz is small, then the spatial dependence of the vector potential can be expanded:

~A ≈ x̂
[

A(ωt) − kz ·A′(ωt)
]

. (2.2)

The prime denotes the derivative with respect to the laser phase. Often, the spatial
dependence can be neglected completely, e.g., an electronic wave packet in an atom

25
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has extensions of the order of several atomic units whereas a laser wave length of
800 nm=̂15000 a.u. is much higher. However, the dipole approximation of the vector
potential cannot describe magnetic field effects, because the vector potential needs a
spatial dependence to yield a nonvanishing magnetic field ~B = ~∇ × ~A. For example,
an important effect caused by the magnetic field is the electron drift in the laser prop-
agation direction which occurs in strong laser fields. To consider magnetic field effects,
the expansion (2.2) includes one term more than the dipole approximation. To keep
the linear term kz smaller than 10−1 at the laser wave length of 800 nm, the z position
may reach values of up to a few hundred atomic units.

The electric and magnetic fields follow from the vector potential:

~E = −1

c
~̇A = −ω

c
(A′ − kz · A′′)x̂ , (2.3a)

~B = ~∇× ~A = −kA′ŷ . (2.3b)

2.1.2 Classical solutions

Before solving the Schrödinger equation, the classical solution is presented. This is
interesting for a comparison with the quantum mechanical wave packet dynamics.

The classical equations of motion are given by

~̈x = ~E +
~̇x

c
× ~B , (2.4)

which yields the following equations if the fields (2.3) are inserted:

ẍ = −ω
c
(A′ − kz · A′′) +

k

c
żA′ , (2.5a)

ÿ = 0 , (2.5b)

z̈ = − ω

c2
ẋA′ . (2.5c)

With ωA′(ωt) = Ȧ(ωt) and c = ω/k, the equation for the x direction can be integrated.
The dynamics in the y direction is simply a free motion. Then, the following equations
are found:

ẋ = −1

c
A+

ω

c2
zA′ + px0

, (2.6a)

y = py0
t+ y0 , (2.6b)

z̈ =
ω

c2

(

1

c
A− kz

1

c
A′ − px0

)

A′ . (2.6c)

The initial conditions are defined by ~x(t = 0) = ~x0 = (x0, y0, z0) and ~̇x(t = 0) = ~p0 =
(px0

, py0
, pz0

).
From Eq. (2.6a), it is seen that the terms A/c2 and px0

/c have to be small (A/c2 ∼
px0

/c . 0.1) to keep the dynamics nonrelativistic (ẋ/c ≪ 1). Usually, the maximum
values of A(t) and A′(t) are of the same order of magnitude which is shown by the
following example. For a typical laser pulse of sinusoidal shape with an envelope R(t)
one finds

A(t) = R(t) sin(ωt) , (2.7a)

A′(t) =
Ṙ(t)

ω
sin(ωt) +R(t) cos(ωt) . (2.7b)
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A laser pulse which is not too short reaches its maximum R0 only after several quarters
of a period T , i.e., the slope of the envelope fulfills the condition Ṙ(t) ≪ R0/(T/4) ≈
ωR0. By means of Eqs. (2.7), it is seen that the maximum values of A(t) and A′(t)
are of the same order of magnitude. Thus, the amplitudes of the vector potential
A0 and the electric field E0 are related according to Eq. (2.3a): The dimensionless
expressions A0/c

2 and E0/(ωc) have similar values and can be used to indicate whether
the electron dynamics in laser fields is relativistic (A0/c

2 ∼ E0/(ωc) & 1), weakly
relativistic (A0/c

2 ∼ E0/(ωc) ∼ 0.5) or nonrelativistic (A0/c
2 ∼ E0/(ωc) . 0.1).

Now, expressions which are higher than second order in the small terms A/c2, A′/c2,
px0

/c and kz are neglected. After dividing Eq. (2.6c) by ωc such that the terms become
dimensionless, it is seen that the term on the right hand side containing the z position
is a third order term which can be neglected. The equation for the z position (2.6c)
can then be integrated. The result is inserted into the equation for the x position
(2.6a), which can be integrated as well if higher order terms are neglected. Finally, the
following solutions of the classical equations of motion are found:

x = −1

c

(

1 +
pz0

c

)

∫

Adt +
1

c2
(pz0

t+ z0)A+ px0
t+ x0 , (2.8a)

y = py0
t+ y0 , (2.8b)

z =
1

2c3

∫

A2dt − px0

c2

∫

Adt+ pz0
t+ z0 . (2.8c)

2.1.3 Quantum dynamics

The quantum mechanical solutions are determined by Schrödinger’s equation. For the
vector potential (2.2), it reads:

i
∂

∂t
ψ =

1

2

[

−i~∇− 1

c
~A

]2

ψ =
1

2

[

−~∇2 +
2i

c
(A− kz · A′)

∂

∂x
+

1

c2
A2 − 2

c2
AA′

]

ψ .

(2.9)
To solve this equation, the electron is assumed to be found in the vicinity of the plane
z = 0, as employed in the classical solution. This means that terms of second order in
kz are assumed to be small. In the following ansatz, the dependence on the z position
appears only to linear order in the exponential:

ψ = (2π)−3/2 exp i [~p0 · (~x− ~x0) + u(t) · kz + w(t)] . (2.10)

With this ansatz, the Schrödinger equation is solved separately for each order of kz.
That way, the partial differential equation reduces to two ordinary differential equa-
tions, one for each order of kz:

u̇ = −px0

c
A′ +

1

c2
AA′ , (2.11a)

ẇ = −1

2

[

~p0
2 + 2kpz0

u+ k2u2 − 2px0

c
A+

1

c2
A2
]

. (2.11b)

These equations are easily integrated. The small terms of fourth order in px0
and A/c2

then are neglected, and the solution is found to be

ψ = (2π)−3/2 exp i

[

~p0 · (~x− ~x0) −
1

2
~p0

2t+

(

−px0

ωc
A+

1

2ωc2
A2

)

kz

+
px0

c

(

1 +
pz0

c

)

∫

Adt − 1

2c2

(

1 +
pz0

c

)

∫

A2dt

]

. (2.12)
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These solutions are only valid for small values of kz, but they can be superimposed to
construct wave packets which are localized in the valid area. Due to the mixed term
px0

pz0
, the exponential function cannot be separated to assume the form

ψ(px0
, py0

, pz0
) = exp f1(px0

) exp f2(py0
) exp f3(pz0

) where the functions f1,2,3 depend
on one momentum variable only. This form is needed to apply the one-dimensional
formulas in Eqs. (1.33) and (1.34). However, such a separation can be accomplished
by means of a coordinate transformation. The sum of the terms Eq in the exponent of
Eq. (2.12) which are quadratic in px0

and pz0
can be written in the following form:

Eq = −1

2

(

px0

pz0

)T (
t − 1

c2

∫

Adt
− 1

c2

∫

Adt t

)(

px0

pz0

)

, (2.13)

where T denotes the transpose of a matrix. The 2 × 2-matrix in Eq. (2.13) has the
following eigenvalues λ1,2 with the corresponding eigenvectors v1,2:

v1 =
1√
2

(

1

1

)

, λ1 = t− 1

c2

∫

Adt ,

v2 =
1√
2

(−1

1

)

, λ2 = t+
1

c2

∫

Adt .

(2.14)

The eigenvectors immediately yield the following transformation law, which diagonal-
izes the quadratic form Eq:

x̃ =
1√
2

(x+ z) , x =
1√
2

(x̃− z̃) ,

z̃ =
1√
2

(−x+ z) , z =
1√
2

(x̃+ z̃) .

(2.15)

This transformation is a rotation of the coordinate system about the y axis by 45
degrees. It is applied to both the momentum and the spatial coordinates. The solutions
(2.12) can then be separated:

ψ = (2π)−3/2 exp i

[

py0
(y − y0) −

1

2
p2

y0
t− 1

2c2

∫

A2dt

]

× exp i

[

p̃x0

(

x̃− x̃0 −
1

2c2
A(x̃+ z̃) +

1√
2c

∫

Adt− 1

2
√

2c3

∫

A2dt

)]

× exp i

[

p̃z0

(

z̃ − z̃0 +
1

2c2
A(x̃+ z̃) − 1√

2c

∫

Adt− 1

2
√

2c3

∫

A2dt

)]

× exp i

[

−1

2
p̃2

x0

(

t− 1

c2

∫

Adt

)

− 1

2
p̃2

z0

(

t+
1

2c2

∫

Adt

)]

.

(2.16)



2.1. NONRELATIVISTIC DYNAMICS BEYOND THE DIPOLE APPR. 29

Now, the probability density for a Gaussian wave packet can be determined by means
of Eq. (1.34). The following result is found:

|ψ(x, y, z, t)|2 = π−3/2(∆w+∆wy∆w−)−1 exp

[

− f ′2x
∆w2

+

−
f ′2y

∆w2
y

− f ′2z
∆w2

−

]

,

f ′x ≡ x̃− x̃0 −
1

2c2
A(x̃+ z̃) +

1√
2c

∫

Adt− 1

2
√

2c3

∫

A2dt − p̃mx

(

t− 1

c2

∫

Adt

)

,

f ′y ≡ y − y0 − pmyt ,

f ′z ≡ z̃ − z̃0 +
1

2c2
A(x̃+ z̃) − 1√

2c

∫

Adt − 1

2
√

2c3

∫

A2dt− p̃mz

(

t+
1

c2

∫

Adt

)

,

∆wy ≡
√

∆p−2 + ∆p2t2 , ∆w± ≡

√

∆p−2 + ∆p2

(

t∓ 1

c2

∫

Adt

)2

.

(2.17)
The initial momenta pmx , pmy and pmz are the maxima of the momentum distributions.
The motion of the wave packet maximum is given by f ′x = f ′y = f ′z = 0. If these
equations are rewritten with the original coordinates by means of Eqs. (2.15), the
classical equations of motion (2.8) are recovered. The equations have to be solved for
x, y and z, and third order terms of A/c2 and pmx/c are neglected as in the classical
analysis. As expected, the maximum of the wave packet moves like a classical particle.

To further analyze the wave packet dynamics, the spatial widths and the directions
of its principle axes will be determined. First, the wave packet is shifted such that the
maximum is located at the origin. One then finds

|ψ(x, y, z, t)|2 = π−3/2(∆w+∆wy∆w−)−1

exp

[

−
(

x̃− 1
2c2A(x̃+ z̃)

)2

∆w2
+

− y2

∆w2
y

−
(

z̃ + 1
2c2A(x̃+ z̃)

)2

∆w2
−

]

. (2.18)

The distribution with respect to the y coordinate is a Gaussian, whereas the dependence
on x̃ and z̃ cannot be written as a product of two Gaussians because mixed terms x̃z̃
occur. Therefore, the quadratic form QF in the exponent

QF ≡
(

x̃− 1
2c2
A(x̃+ z̃)

)2

∆w2
+

+

(

z̃ + 1
2c2
A(x̃+ z̃)

)2

∆w2
−

(2.19)

needs to be diagonalized. This can be rewritten in matrix-form:

QF =

(

x̃
z̃

)T (
a b
b d

)(

x̃
z̃

)

,

a =
1 − 1

c2
A+ 1

4c4
A2

∆w2
+

+
1

4c4
A2

∆w2
−
, d =

1 + 1
c2
A+ 1

4c4
A2

∆w2
−

+
1

4c4
A2

∆w2
+

,

b =
1

2c2
A

[

(

∆w−2
− − ∆w−2

+

)

+
1

2c2
A
(

∆w−2
− + ∆w−2

+

)

]

.

(2.20)

The symmetric matrix in this equation is diagonalized by the orthogonal transformation

(

x̃
z̃

)

=
1

√

(a− λ−)2 + b2

(

a− λ− −b
b a− λ−

)(

X
Z

)

, (2.21)
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where the columns of the transformation matrix are the normalized eigenvectors. X
and Z are the new coordinates, and λ− is one of the two eigenvalues

λ± =
a+ d

2
± a− d

2

√

1 +
4b2

(a− d)2
. (2.22)

The new coordinate system is related to the old one by a rotation about the y axis with
the rotation angle α. To make this structure more explicit, it is convenient to rewrite
the transformation (2.21) in the following form:

(

x̃
z̃

)

=

(

cosα sinα
− sinα cosα

)(

X
Z

)

, tanα = − b

a− λ−
. (2.23)

If the off-diagonal terms b in Eq. (2.20) vanish, the rotation angle approaches zero, i.e.,
the quadratic form is already diagonal. For this reason, the eigenvalue λ− is needed in
the above expressions rather than λ+ which ensures that the denominator a − λ− in
the expression for the angle (2.23) does not vanish as the numerator approaches zero.

With the new coordinates, the quadratic form QF is diagonal and the probability
density (2.18) reduces to a product of three Gaussian distributions:

|ψ(x, y, z, t)|2 = π−3/2(∆wX∆wy∆wZ)−1 exp

[

− X2

∆w2
X

− y2

∆w2
y

− Z2

∆w2
Z

]

. (2.24)

The widths are related to the eigenvalues via w2
X = 1/λ+ and w2

Z = 1/λ−.
If the term b/(a − d) is small such that quadratic orders can be neglected with

respect to one, the eigenvalues reduce to λ+ ≈ a and λ− ≈ d. The widths can then be
further simplified if only linear terms in A/c2 are considered:

wX ≈
(

1 +
1

2c2
A

)

w+ , wZ ≈
(

1 − 1

2c2
A

)

w− . (2.25)

Furthermore, with the simplified eigenvalues, the formula for the rotation angle becomes

tanα ≈ − b

a− d
. (2.26)

With the expressions in Eq. (2.20), one finds

b

a− d
= − 1

4c2
A

[

1 +
w2
− − w2

+

w2
− −w2

+ − 1
c2
A(w2

− + w2
+)

]

, (2.27a)

w2
− −w2

+ = 4t
∆p2

c2

∫

Adt , (2.27b)

w2
− +w2

+ = 2

[

∆p−2 + ∆p2

(

t2 +

(

1

c2

∫

Adt

)2
)]

. (2.27c)

In most cases, the term b/(a − d) is small because it is proportional to A/c2 which is
a small number in the nonrelativistic regime considered here. The rotation angle then
turns out to be

α ≈ tanα =
1

4c2
A

[

1 +
t∆p2

c2

∫

Adt

t∆p2

c2

∫

Adt − 1
2c2
A(∆p−2 + ∆p2t2)

]

, (2.28)
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where quadratic terms of A/c2 are again neglected with respect to one.
However, for certain times when a = d and b 6= 0, the term b/(a − d) becomes

infinite. In this case, one has to deal with the exact expressions (2.22) and (2.23). The
eigenvalues (2.22) then reduce to λ± = a± b and according to Eq. (2.23) the rotation
angle becomes α = −π/4. With Eq. (2.20) and considering that a = d, one finds for
the eigenvalues

λ± = a± 1

4c2
A
w2

+ − w2
−

w2
−w

2
+

≈ a∓ 1

4c2
A

4t∆p2

c2

∫

Adt

(∆p−2 + ∆p2t2)2
≈ a . (2.29)

Here, quadratic terms of A/c2 have been considered to be small again. Since the two
eigenvalues reduce to the same value, the wave packet is spherically symmetric at the
instant when a = d, i.e., there is no unique direction for the principal axes. The value
for the rotation angle α therefore becomes meaningless. Note that the eigenvalues and
thus the widths have the same limit λ+ = λ− = a = d as for the previously discussed
case where b/(a− d) is small. This means, nothing special happens to the wave packet
as b/(a− d) becomes infinite, except that it becomes symmetric.

The results simplify for the case that the widths w+ and w− become equal. From
the definitions in Eq. (2.17), it is read off that this occurs for the following limits:

w± = ∆p−1 , for ∆p−2 ≫ ∆p2
(

t∓ 1
c2

∫

Adt
)2
,

w± =
√

∆p−2 + ∆p2t2 , for t≫ 1
c2

∫

Adt .
(2.30)

The upper limit is valid for short times. The lower limit applies to the long-term
behavior because the steadily growing time t becomes much greater than the integral
over the vector potential which usually is an oscillating function with a small amplitude
in the nonrelativistic regime. It is possible, e.g., if ∆p is small, that the two regimes
overlap such that w+ = w− holds for all times. Of course, equal widths are found as
well at the instants when the integral over the vector potential becomes zero. For these
cases, when w+ = w−, Eq. (2.27a) simplifies and the rotation angle given in Eq. (2.26)
reduces to the very simple result [compare Eq. (2.28)]

α =
1

4c2
A . (2.31)

Together with the previous coordinate transformation [see (2.15)], the angle α̃ between
the principle axes and the axes of the original coordinate system is given by

α̃ = −π
4

+
1

4c2
A . (2.32)

Furthermore, the ratio of the widths in Eq. (2.25) turns out to be

wX

wZ
= 1 +

1

c2
A . (2.33)

Example

In the following example, a Gaussian-shaped laser pulse of a few cycles with the wave-
length of 800 nm is considered (see FIG. 2.1). It is given by

A(t) = Rc2 sin(ωt− ϕ0) exp

[

−
(

ωt− ϕ0

∆z

)2
]

,

R = 0.25 , ∆z = 6 , ϕ0 = 3.5 · ∆z , ω = 0.057 .

(2.34)
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Figure 2.1: The vector potential in the dimensionless form A/c2 is shown, which rep-
resents the laser pulse shape. Except for a factor of four, this curve also represents
the time-dependent angle between the principle axes of the electron wave packet in the
x-z plane and the diagonals of the coordinate system (x = ±z).

The dynamics of the particle in the x and z direction is depicted in FIG. 2.2,
where part (a) shows the motion of the maximum of the wave packet according to
Eqs. (2.8). The initial conditions are chosen such that the particle rests at the origin,
at the beginning. The width in momentum space is chosen to be ∆p = 0.05 a.u.
The wave packet is shown in (b) for the times when the maximum is located at the
positions marked in (a). These correspond to the times ti = 0, ωtii,vi − ϕ0 = ±π,
ωtiii,v −ϕ0 = ±π/2 and ωtiv = ϕ0, where ϕ0 determines the maximum of the envelope
[see Eq. (2.34)]. It is seen that the wave packet, while spreading, deforms according to
Eq. (2.33).

Dipole approximation

It is instructive to compare the results of this approach to the corresponding results if
the dipole approximation is applied. In this case, the spatial dependence of the vector
potential is neglected and it is approximated by [compare Eq. (2.2)]

~A ≈ x̂A(ωt) . (2.35)

The vector potential describes a homogeneous oscillating electric field. It is clear,
that the magnetic field vanishes for this vector potential because there is no spatial
dependence [compare Eq. (2.3b)].

The Schrödinger equation has the form

i
∂

∂t
ψ =

1

2

[

−~∇2 +
2i

c
A
∂

∂x
+

1

c2
A2

]

ψ , (2.36)

and it is solved by

ψ = (2π)−3/2 exp i

[

~p0 · (~x− ~x0) −
1

2
~p0

2t+
px0

c

∫

Adt − 1

2c2

∫

A2dt

]

. (2.37)

Employing Eq. (1.34), one arrives at the probability density which is a three-dimensional,
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Figure 2.2: Part (a) shows the trajectory of the maximum of the wave packet. The
labels (i) to (vi) mark the positions for which the wave packets are plotted in (b). The
sides of each of the squares have a width of 70 a.u. In the pictures (iii) and (v), the
principle axes of the wave packets are shown. The directions deviate from the diagonals
by an angle of A(tiii,v)/(4c

2). The other wave packets in (b) are axially symmetric.

spherically symmetric Gaussian distribution:

|ψ(x, y, z, t)|2 = π−3/2
(

∆p−2 + ∆p2t2
)−3/2

× exp−
(

x− x0 − pmxt+ 1
c

∫

Adt
)2

+
(

y − y0 − pmy t
)2

+ (z − z0 − pmz t)
2

∆p−2 + ∆p2t2
. (2.38)

The maximum of this wave packet moves like a classical particle, and the spreading
dynamics is identical to a free, symmetric Gaussian wave packet [see Eq. (1.21b)].

In dipole approximation, there is no drift in the laser propagation direction because
of the vanishing magnetic field. Furthermore, there are no shearing effects which deform
the wave packet. The probability distribution remains spherically symmetric.
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2.2 Relativistic wave packets

For the case, the driving laser fields become so intense that the charged particles move
relativistically, one needs to work with a relativistic wave equation such as the Dirac-
or the Klein-Gordon equation. Electrons are particles with spin 1/2, i.e., they are
described by the Dirac equation. However, if spin dynamics is not considered, it is
sufficient to work with the simpler case of the Klein-Gordon equation for spinless par-
ticles.

2.2.1 Gaussian superpositions

In Sec. A.2, the solution of the Klein-Gordon equation for a laser-driven particle
has been derived. For a laser wave which is linearly polarized in the x direction and
propagates in the z direction, the solution reads

φ(xµ) = (2π)−3/2 exp i

[

−pµx
µ + (kµp

µ)−1

(

px0

c

∫

Adϕ− 1

2c2

∫

A2 dϕ

)]

. (2.39)

The dynamics becomes relativistic due to the laser fields, i.e., the initial momenta ~p0

are nonrelativistic. This is exploited to simplify Eq. (2.39) by expanding terms with
respect to px0

/c, py0
/c and pz0

/c to quadratic order:

pµx
µ = c2t

√

1 +
~p0

2

c2
− ~p0 · ~x ≈ c2t+

1

2
~p0

2t− ~p0 · ~x , (2.40a)

(kµp
µ)−1 =

1

ω

(
√

1 +
~p0

2

c2
− pz0

c

)−1

≈ 1

ω

(

1 +
pz0

c
+
p2

z0

c2
− ~p0

2

2c2

)

. (2.40b)

With these expansions, the wave function simplifies to the following form where the
dependence on the momenta is only of quadratic order:

φ(~x, t) = (2π)−3/2 exp i

[

−c2t+ ~p0 · ~x− 1

2
~p0

2t+
px0

ωc

(

1 +
pz0

c

)

∫

Adϕ

− 1

2ωc2

(

1 +
pz0

c
+
p2

z0

c2
− ~p0

2

2c2

)∫

A2 dϕ

]

. (2.41)

To construct a Gaussian wave packet, a coordinate transformation in momentum space
has to be carried out to eliminate the mixed term px0

pz0
. The problem then reduces

to three one-dimensional integrals which can be solved by means of Eq. (1.33). The
quadratic form to be diagonalized is given by

qf ≡
(

px0

pz0

)T (
a b
b d

)(

px0

pz0

)

,

a = − t

2
+

1

4ωc4

∫

A2 dϕ , d = − t

2
− 1

4ωc4

∫

A2 dϕ ,

b =
1

2ωc2

∫

Adϕ .

(2.42)

As seen in Sec. 2.1.3, such a quadratic form is diagonalized by the following rotation
[see Eqs. (2.20) and (2.23)]:

(

px0

pz0

)

=

(

cosα sinα
− sinα cosα

)(

p̃x0

p̃z0

)

, tanα = − b

a− λ−
. (2.43)
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p̃x0
and p̃z0

are the momenta in the transformed coordinate system and λ± are the
eigenvalues of the matrix in Eq. (2.42) given by

λ± =
a+ d

2
± a− d

2

√

1 +
4b2

(a− d)2
. (2.44)

With this coordinate transformation, the wave function is rewritten:

φ(~x, t) = (2π)−3/2 exp i

[

−c2t− 1

2ωc2

∫

A2 dϕ+ fx(p̃x0
) + fy(py0

) + fz(p̃z0
)

]

,

fy = py0
y − 1

2
p2

y0

(

t− 1

2ωc4

∫

A2 dϕ

)

,

fx = p̃x0

[

cosα

(

x+
1

ωc

∫

Adϕ

)

− sinα

(

z − 1

2ωc3

∫

A2 dϕ

)]

+ p̃2
x0
λ+ ,

fz = p̃z0

[

sinα

(

x+
1

ωc

∫

Adϕ

)

+ cosα

(

z − 1

2ωc3

∫

A2 dϕ

)]

+ p̃2
z0
λ− .

(2.45)
The terms for the eigenvalues and the rotation angle simplify considerably if the fol-
lowing condition is valid:

(

2b

a− d

)2

=

(

1
c2

∫

Adϕ
1

2c4

∫

A2 dϕ

)2

≪ 1 . (2.46)

In the relativistic limit, where A2/c4 ≫ 1, this approximation works very well. Fur-
thermore, the vector potential is an oscillating function, because it describes a laser
field. The denominator then increases steadily, whereas the numerator oscillates. This
means that the validity of the condition in Eq. (2.46) becomes better as the particle
propagates. With this condition, the eigenvectors reduce to

λ± ≈ a = − t

2
± 1

4ωc4

∫

A2 dϕ , (2.47)

and the rotation angle becomes

α ≈ tanα =
b

a− d
= c2

∫

Adϕ
∫

A2 dϕ
. (2.48)

Equations (1.33) and (2.45) yield the wave function of a Gaussian wave packet, where
the maximum of the initial momentum ~pm has been chosen to be zero which means
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that the wave packet is initially at rest:

φ(~x, t) = π−3/2 exp i

[

−c2t− 1

2ωc2

∫

A2 dϕ

]

×
[

∏

m=x,y,z

1
4
√
π
√

∆p−1 − i∆pf ′′m
exp−

∆p
2 f

′2
m

∆p−1 − i∆pf ′′m

]

,

f ′x = cosα

(

x+
1

ωc

∫

Adϕ

)

− sinα

(

z − 1

2ωc3

∫

A2 dϕ

)

,

f ′z = sinα

(

x+
1

ωc

∫

Adϕ

)

+ cosα

(

z − 1

2ωc3

∫

A2 dϕ

)

,

f ′′x = 2λ+ ≈ −t+ 1

2ωc4

∫

A2 dϕ , f ′y = y ,

f ′′z = 2λ− ≈ −t− 1

2ωc4

∫

A2 dϕ , f ′′y = f ′′x .

(2.49)

2.2.2 Charge density

According to Eq. (1.35), the charge density is given by

ρ(~x, t) =
i

2c2

[

φ∗φ̇− φ φ̇∗
]

= −c−2Im(φ∗φ̇) = −|φ|2Im φ̇

φc2
, (2.50)

and it can be calculated for the above expression. The following is found:

ρ(~x, t) =|φ|2
[

1 +
1

2c4
A2

+
∑

m=x,y,z





− 1
2c2
ḟ ′′m + ∆p2

c2
f ′mḟ

′
mf

′′
m + ∆p2

2c2
f ′2mḟ

′′
m

∆p−2−∆p2f ′′2
m

∆p−2+∆p2f ′′2
m

∆p−2 + ∆p2f ′′2m







 ,

|φ|2 =
∏

m=x,y,z

1
√
π
√

∆p−2 + ∆p2f ′′2m

exp− f ′2m
∆p−2 + ∆p2f ′′2m

.

(2.51)
This expression can be simplified because most of the terms are very small and can be
neglected with respect to others. To see this, the order of magnitude of the terms is
considered. First, one can utilize the limited range of the Gaussian distribution in Eq.
(2.51):

f ′2m
∆p−2 + ∆p2f ′′2m

≡ nm . 5 . (2.52)

The numbers nm can be estimated to be of the given order, since the Gaussian drops
off very quickly, i.e., for higher values of nm, the charge density approaches zero.
For nm = 5, the value for the charge density is already suppressed by a factor of
exp(5) ≈ 150. The fraction in the numerator of Eq. (2.51) which depends on ḟ ′′m is
a number qm between one and minus one. The charge density can then be written as
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follows:

ρ(~x, t) = |φ|2
[

1 +
1

2c4
A2

+
∑

m=x,y,z

(

−
∆p2

2c2
ḟ ′′m

1 + ∆p4f ′′2m

+
∆p

c

√
nm

ḟ ′m
c

∆pf ′′m
√

∆p−2 + ∆p2f ′′2m

+
∆p2

2c2
qmnmḟ

′′
m

)]

(2.53a)

≈ |φ|2
[

1 +
1

2c4
A2 +

∑

m=x,y,z

∆p

c

√
nm

ḟ ′m
c

∆pf ′′m
√

∆p−2 + ∆p2f ′′2m

]

(2.53b)

The approximation applies because ḟ ′′m is of the same order as the term [1 +A2/(2c4)]
and due to the small factor of ∆p2/c2 several terms can be neglected. To estimate the
magnitude of the remaining terms, the following expressions are needed:

ḟ ′x = −f ′zα̇+
1

c
A cosα+

1

c3
A2 sinα , (2.54a)

ḟ ′z = f ′xα̇+
1

c
A sinα− 1

c3
A2 cosα , (2.54b)

ḟ ′y = 0 , (2.54c)

α̇ =
1
c2
A− 1

c4
A2α

1
ωc4

∫

A2dϕ
. (2.54d)

For the last of these equations, the approximate angle in Eq. (2.48) was used. By
means of Eq. (2.52), the values of the following terms can be estimated:

f ′x ≤ √
nx∆p|f ′′x | =

√
nx∆p

∣

∣

∣

∣

−t+
1

ωc4

∫

A2dϕ

∣

∣

∣

∣

, (2.55a)

f ′z ≤ √
nz∆p|f ′′z | =

√
nz∆p

∣

∣

∣

∣

t+
1

ωc4

∫

A2dϕ

∣

∣

∣

∣

. (2.55b)

Since
∫

A2dϕ/(ωc4) grows faster than t in the relativistic case where A2/c4 ≫ 1, the
terms f ′mα̇ are shown to be smaller by a factor of ∆p/c compared to the other terms
in Eqs. (2.54a) and (2.54b). With this result, the terms ḟ ′m/c are seen to be of the
order A2/c4. This means, the remaining terms in Eq. (2.53b) proportional to ḟ ′m/c are
reduced by a factor of ∆p/c with respect to the leading order term A2/(2c4). Thus,
these terms are the biggest corrections since the other terms which have been neglected
have been suppressed by a factor of (∆p/c)2.

In all, if correction terms which are suppressed to first order in ∆p/c with respect
to [1 +A2/(2c4)] are kept, the result reads:

ρ(~x, t) = |φ|2
[

1 +
1

2c4
A2 +

∑

m=x,z

(

∆p2

c2
f ′mḟ

′
mf

′′
m

∆p−2 + ∆p2f ′′2m

)]

. (2.56)

Note that this result is obtained without the condition (2.46) and it is valid as long as
the condition (∆p/c)2 ≪ 1 applies.

If the lowest order corrections are neglected as well which can be a good approxi-
mation since ∆p/c is often a small number, one arrives at the rather simple form for
the charge density:

ρ(~x, t) =

(

1 +
1

2c4
A2

)

∏

m=x,y,z

1
√
π
√

∆p−2 + ∆p2f ′′2m

exp− f ′2m
∆p−2 + ∆p2f ′′2m

. (2.57)
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Example

To visualize the result for the charge density (2.57), wave packets are plotted for dif-
ferent laser intensities and for different times. The electron is driven by the following
laser pulse of 20 cycles with a cos2-like envelope:

A(ϕ) = A0 cos(ϕ− 20π) cos2[(ϕ− 20π)/40] , 0 ≤ ϕ ≤ 40π , (2.58)

The laser pulse is shown in Fig. 2.3. The initial width of the wave packet in momentum

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

A/A0

ϕ

Figure 2.3: In the following, the electron dynamics in this laser pulse of 20 cycles with
a cos2-like envelope is discussed.

space is chosen to be ∆p = 1 a.u., and the laser wave length is 800 nm, again. The laser
intensity is expressed by the maximum γ-factor which is reached when half of the laser
pulse has passed the wave packet maximum, i.e. γm = 1 + A2

0/(2c
4). Charge densities

are plotted in the x-z plane for the range between the maximal density and the density
which is by a factor of e4 smaller (with e being the Euler number).

Figure 2.4 shows the wave packets for different laser intensities as it is placed at the
turning point ϕ = 5.5π. The wave packet changes from a symmetric to a bent shape
as the laser intensity increases.

1000 a.u.

(a) (b) (c)

Figure 2.4: The charge densities for different energies [(a) γm = 10, (b) γm = 50,
(c) γm = 250] are plotted for the early turning point ϕ = 5.5π = 17.3. It is seen that
the wave packet changes its shape as the energy increases.

The plots at the instant when the maximum kinetic energy is reached are shown in
Fig. 2.5. It is seen that with higher energies, the wave packet widths become smaller
for one direction whereas they increase for the orthogonal direction. This behavior
explains why in the relativistic recollision model which will be introduced in Chapter 4,
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the yields of recollisions decrease for higher energies because the yields depend on the
widths perpendicular to the direction of motion.

7000 a.u.
x

z

(a) (b)

(c) (d)

Figure 2.5: The wave packets are plotted at the instants of maximal energy (ϕ = 20π =
62.8) and both 30 a.u. earlier and later to indicate the motion [(a) γm = 2, (b) γm = 10,
(c) γm = 25, (d) γm = 50]. This shows that the wave packets hardly change for high
energies during this period of time.

Phase effects can nicely be seen when the wave packet has evolved to extensions
comparable to the laser wave lengths. This is seen in Fig. 2.6, where the charge densities
are plotted at an instant when the laser pulse has almost passed completely. For high
energies, the charge distribution spreads quickly in the z direction and different parts
see different laser phases such that the oscillations of the laser field can be seen. The
amplitude of the curved charge density increases in the z direction since the passing
laser pulse has a higher intensity there.

2.2.3 Time dilation and Lorentz contraction

Some expressions in Eq. (2.57) have simple interpretations, which become obvious if
the classical physics of laser-driven particles is considered. According to the classical
solution (A.9), the relativistic γ-factor of an electron is given by

γ =
κ

2c
+
c2 + p2

x0
+ p2

y0

2κc
− px0

κc2
A(ϕ) +

1

2κc3
A2(ϕ) ,

κ ≡
√

c2 + p2
x0

+ p2
y0

+ p2
z0

− pz0
,

(2.59)

which reduces to the simple form

γ = 1 +
1

2c4
A2(ϕ) , (2.60)

if the initial velocity vanishes. Here, the wave packet consists of a Gaussian super-
position which is centered about the solution with vanishing initial momentum. The
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20000 a.u.x

z

(a) (b)

(c) (d)

Figure 2.6: As shown here, the charge distributions have spread more extensively for
higher energies [(a) γm = 2, (b) γm = 10, (c) γm = 50, (d) γm = 250] such that the
phase dependence can be seen over several laser periods. The laser pulse has almost
passed completely at the wave packet maximum (ϕ = 36π = 113.1).

expression in Eq. (2.60) is precisely the factor occurring in the probability density
(2.57). The physical interpretation is that the probability density is increased by the
γ-factor due to Lorentz contraction.

The electromagnetic laser fields do not exert a force on the particle in the y direction.
However, the dynamics is influenced if the motion in the x-z plane is relativistic. The
classical motion in the y direction is given by

y =
py0

c

κω
ϕ . (2.61)

The meaning of the dependence on the phase can be further analyzed. With the
equation of motion in the z direction

z =
c

2ω

(

c2 + p2
x0

+ p2
y0

κ2
− 1

)

ϕ− px0

κ2ω

∫

A(ϕ)dϕ +
1

2κ2ωc

∫

A2(ϕ)dϕ , (2.62)

the following relation between the γ-factor and the phase is found:

γ =
κ

c

d

dϕ

(

ϕ+
ω

c
z(ϕ)

)

=
ωκ

c

dt

dϕ
. (2.63)

This equation is employed to yield the proper time τ of the laser driven particle:

τ =

∫

γ−1dt =
c

κω
ϕ . (2.64)

Thus, the proper time is found to be proportional to the phase. The equation of motion
in the y direction (2.61) then reduces to the very intuitive form

y = py0
τ , (2.65)
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which is equal to a free, nonrelativistic motion, where the time t is replaced by the
proper time τ .

Such an effect is found for the wave packet dynamics, too. According to Eqs. (2.49)
and (2.57), the time-dependent width in the y direction is given by

∆wy =

√

∆p−2 + ∆p2

(

t− 1

2ωc4

∫

A2 dϕ

)2

. (2.66)

For vanishing initial momenta as for the maximum of the initial Gaussian superposition
[see Eqs. (2.62) and (2.64)], this reduces to

∆wy =
√

∆p−2 + ∆p2τ2 . (2.67)

This is the nonrelativistic expression for a freely spreading particle [compare Eqs.
(1.21b) and (2.17)], where again, the time t is replaced by the proper time τ . This
means that wave packet spreading is slowed down in the y direction due to time dila-
tion of the relativistically moving particle.

The same behavior is found in the x direction, whereas the spreading dynamics is
different for the z direction. The reason is that the time dilation occurs next to other
effects like the direct influence of the laser fields or Lorentz contraction.
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Chapter 3

Electron dynamics in crossed

laser beams

Crossed laser beams have been discussed in the context of various applications such
as particle acceleration [82], high harmonic generation [83] or stochastic electron accel-
eration [84, 85]. Furthermore, standing wave configurations of linear [27, 28, 29] and
circular [19] polarization have been proposed to overcome the problem of the Lorentz
drift which suppresses recollisions in intense, propagating laser fields. These standing
wave configurations are of interest here.

Experimentally, counterpropagating, strong laser fields have been created by means
of a beam splitter and mirrors [86]. In this setup, an intensity of the order 1019 W/cm2

was achieved which implies relativistic electron dynamics. Furthermore, a new laser
system, the Astra Gemini project which is currently under construction, will provide
two separate laser beams of intensities up to 1022 W/cm2 (for details see [87]). Thus,
crossed laser beams in the highly relativistic regime are expected to be available in the
near future.

Whereas previous work on the electron dynamics in standing waves is based on
numerical methods, it is examined analytically, in this chapter. This allows to gain
more insight into the electron dynamics in crossed fields.

The two configurations of interest both have the feature that the Lorentz force due
to the magnetic field vanishes on certain axes. However, the difference is that the
magnetic field itself is zero only in the case of linear laser polarization. This gives rise
to a different behavior of electrons moving in the vicinity of these axes.

In this chapter, the laser configurations are first introduced, before the classical,
relativistic dynamics is established. A quantum mechanical analysis is then carried out
for the nonrelativistic case. Finally, the results of the classical treatment are employed
for a relativistic wave packet approach.

3.1 Laser configurations

First of all, the two laser configurations are introduced. They are constructed by
the superposition of two counterpropagating plane waves which are either linearly or
circularly polarized. The two configurations are discussed separately.

43
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Linear polarization

The electromagnetic fields of two counterpropagating waves are superimposed as fol-
lows:

~El =
1

2
E0[cos(ωt− kz) + cos(ωt + kz)]x̂ = E0 cos(ωt) cos(kz)x̂ , (3.1a)

~Bl =
1

2
E0[cos(ωt− kz) − cos(ωt + kz)]ŷ = E0 sin(ωt) sin(kz)ŷ , (3.1b)

~Al = −E0
c

2ω
[sin(ωt− kz) + sin(ωt+ kz)]x̂ = −E0

c

ω
sin(ωt) cos(kz)x̂ . (3.1c)

Here, the light is polarized in the x direction and the propagation is in the ±z direction.
It is clear that the magnetic field vanishes for kz = nπ (with n being an integer)

whereas the electric field has maximal amplitude. Thus, the dynamics of electrons
moving in these planes will be dominated by the electric field. Figure 3.1 shows the
field configuration for the vicinity of z = 0, i.e. for (kz)2 ≪ 1. The fields do not depend
on x and y.

X

Y

Z

E-field

B-field

Figure 3.1: The field configuration for two counterpropagating laser fields with linear
polarization in the x direction is depicted. The laser fields are plane waves propagating
in the z direction. The fields are shown in the vicinity of z = 0, where the magnetic
field is small.

Circular polarization

The other field configuration of interest is the superposition of the following two coun-
terpropagating, circularly polarized waves:

~Ec =
1

2
E0{[cos(ωt− kz)x̂+ sin(ωt− kz)ŷ] + [cos(ωt+ kz)x̂− sin(ωt + kz)ŷ]}

= E0 cos(ωt)[cos(kz)x̂ − sin(kz)ŷ] , (3.2a)

~Bc =
1

2
E0 {[cos(ωt− kz)ŷ − sin(ωt− kz)x̂] + [− cos(ωt+ kz)ŷ − sin(ωt + kz)x̂]}

= −E0 sin(ωt)[cos(kz)x̂− sin(kz)ŷ] , (3.2b)

~Ac = −E0
c

ω
{[sin(ωt− kz)x̂− cos(ωt− kz)ŷ] + [sin(ωt+ kz)x̂+ cos(ωt+ kz)ŷ]}

= −E0
c

ω
sin(ωt)[cos(kz)x̂− sin(kz)ŷ] . (3.2c)

In this configuration, the magnetic field is antiparallel to the electric field, i.e., if an
electron moves in the E-field direction, the Lorentz force ~F = ~̇x/c× ~B vanishes despite
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the fact that the magnetic field is nonzero. The field configuration is shown in Fig. 3.2.
In contrast to the configuration of linear laser polarization, axes with vanishing Lorentz

X

Y

Z

E-field

B-field

Figure 3.2: The field configuration for two counterpropagating laser fields with circular
polarization are shown for the vicinity of z = 0. The plane laser waves propagate in
the z direction. In this configuration, the magnetic field is antiparallel to the electric
field.

force are given for any z position. This is a great advantage if the scheme is applied to
an extended sample where many recollisions are driven in parallel [19].

3.2 Relativistic classical particle dynamics

Before discussing the quantum mechanical behavior, the classical dynamics of an elec-
tron is examined, which moves in the vicinity of an axis with vanishing Lorentz force.
The classical electron dynamics is dominated by the simple one-dimensional oscillation
which is found if the particle is placed exactly on the axis with vanishing initial mo-
mentum. With slightly different initial conditions, the motion deviates from the ideal
oscillation. Different regimes of laser intensities are considered. Later on, the classi-
cal solutions are employed to describe the dynamics of wave packets by means of the
Monte-Carlo approach discussed in Sec. 1.1.1.

3.2.1 Simplified equations of motion

A classical particle which is driven by the standing laser fields introduced in the previous
section is described by three nonlinear coupled differential equations for which a general
analytical solution is not available. However, if the particle dynamics deviates only
slightly from the ideal one-dimensional motion along an axis, the equations can be
simplified, decoupled and partly solved analytically.

Linear polarization

The relativistic classical equations of motion are given by

d

dt

(

γ~̇x
)

= ~E +
~̇x

c
× ~B with γ =

(

1 − ~̇x · ~̇x
c2

)−1/2

. (3.3)
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For the case of linear laser polarization [see Eqs. (3.1)], they read

d

dt
(γẋ) = E0

(

cos(ωt) cos(kz) − ż

c
sin(ωt) sin(kz)

)

, (3.4a)

d

dt
(γẏ) = 0 , (3.4b)

d

dt
(γż) = E0

ẋ

c
sin(ωt) sin(kz) . (3.4c)

To simplify these equations, several approximations can be applied. First, kz is as-
sumed to be small. Consider the following example for visible laser light with the wave
length λ = 800 nm. The absolute value of the wave vector evaluates to k = 2π/λ
≈ 4.2 × 10−4 a.u. The particle is expected to move in the vicinity of the ideal plane
z = 0, i.e., as long as the displacement is not greater than a few hundred atomic units,
kz remains below a small number of the order 10−1. The case of higher displacements
means that the electron leaves the vicinity of the ideal axis. Thus, the trajectory cannot
be considered to be stable anymore and its further dynamics is no longer of interest.
However, the examples considered here are in the regime where kz remains small. Sec-
ond, the motion in the y and the z direction is assumed to be nonrelativistic, i.e., ẏ/c
and ż/c are small. This is reasonable, because the initial conditions are nonrelativistic
and the acceleration by the electric field is in the x direction. If these assumptions are
fulfilled, the small terms can be considered up to linear order and higher order terms
are only small corrections. The results of the examples considered later on will comply
with these assumptions, i.e., the following approximations are justified:

sin(kz) ≈ kz , cos(kz) ≈ 1 , (3.5a)
(

ẏ

c

)2

≈
(

ż

c

)2

≈ ẏ

c
· ż
c
≈ 0 , (3.5b)

ẏ

c
· kz ≈ ż

c
· kz ≈ 0 . (3.5c)

Now, the simplified set of equations adopts the following form:

d

dt
(γẋ) = E0 cos(ωt) , (3.6a)

d

dt
(γẏ) = 0 , (3.6b)

d

dt
(γż) = E0

ẋ

c
sin(ωt)kz , (3.6c)

γ =

(

1 − ẋ2

c2

)−1/2

. (3.6d)

From Eqs. (3.6a) and (3.6d) the γ-factor is found to be

γ =

√

1 +
(

R sin(ωt) +
px0

c

)2
≈
√

1 +R2 sin2(ωt) +
R sin(ωt)

√

1 +R2 sin2(ωt)
· px0

c
, (3.7)

with the definition R ≡ E0/(ωc) and the initial condition for the momentum
γ~̇x(t = 0) = ~p0 ≡ (px0

, py0
, pz0

). For nonrelativistic initial velocities considered here,
i.e. for px0

/c ≪ 1, the γ-factor can be expanded with respect to px0
/c and it is seen,

that the term of first order in px0
/c is only a small correction to the leading term.



3.2. RELATIVISTIC CLASSICAL PARTICLE DYNAMICS 47

With the expression for the γ-factor, the motion in the x direction is found to be

ẋ

c
=

R sin(ωt) +
px0

c
√

1 +
(

R sin(ωt) +
px0

c

)2
≈ R sin(ωt)
√

1 +R2 sin2(ωt)
+

px0
/c

(

1 +R2 sin2(ωt)
)3/2

, (3.8a)

x ≈ − c

ω
arcsin

[

R√
1 +R2

cos(ωt)

]

+ px0

∫

dt
[

1 +R2 sin2(ωt)
]3/2

+ x0 , (3.8b)

where the initial position is defined by ~x(t = 0) = (x0, y0, z0). The approximations are
again a first order expansion with respect to px0

/c.

Finally, the following equations of motion for the y and the z direction are found

ẏ =
py

√

1 +R2 sin2(ωt)
, (3.9a)

d

dt
(γż) = R2ω2 sin2(ωt)

√

1 +R2 sin2(ωt)
z , (3.9b)

where the small terms px0
/c, py0

/c and kz are again considered to first order.

Figure 3.3 shows the motion of an electron for one laser period according to Eqs.
(3.8) and (3.9). The diagrams depict the position depending on time for the moderately
relativistic case ofR = 1.5. It can be seen that the motion is dominated by an oscillatory
motion in the electric field direction. The motion in the z direction is unstable, i.e.,
the distance from the plane z = 0 grows rapidly.
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Figure 3.3: The motion of an electron in a linearly polarized standing laser field is shown
for the moderately relativistic parameter of R = 1.5. The dynamics is plotted for one
complete laser cycle with the initial momentum of the electron px0

= 0, py0
= pz0

=
0.05 a.u. Part (a) shows the time-dependent motion in the polarization direction. In (b)
the trajectory in the y-z plane is depicted. It is seen that the motion in the z direction
is unstable.

Before further investigating Eqs. (3.9) for certain limits of R, the analog procedure
is carried out for the case of circular laser polarization.
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Circular polarization

The equations of motion (3.3) for circular laser polarization [see Eqs. (3.2)] adopt the
following form:

d

dt
(γẋ) = E0

[

cos(ωt) cos(kz) − ż

c
sin(ωt) sin(kz)

]

, (3.10a)

d

dt
(γẏ) = −E0

[

cos(ωt) sin(kz) +
ż

c
sin(ωt) cos(kz)

]

, (3.10b)

d

dt
(γż) = E0

[

ẋ

c
sin(ωt) sin(kz) +

ẏ

c
sin(ωt) cos(kz)

]

. (3.10c)

With the same approximations (3.5) as applied in the previous case, one finds the
following simplified equations:

d

dt
(γẋ) = E0 cos(ωt) , (3.11a)

d

dt
(γẏ) = −E0

[

kz cos(ωt) +
ż

c
sin(ωt)

]

, (3.11b)

d

dt
(γż) = E0

[

ẋ

c
sin(ωt)kz +

ẏ

c
sin(ωt)

]

, (3.11c)

γ =

(

1 − ẋ2

c2

)−1/2

. (3.11d)

Comparing these equations with Eqs. (3.6), it is seen that the dynamics of the γ-factor
and the motion in the x direction are identical to the case of linear laser polarization
[see Eqs. (3.7) and (3.8)]. Now, Eq. (3.11b) can be integrated to yield

ẏ =
py −Rω sin(ωt)z
√

1 +R2 sin2(ωt)
. (3.12)

The dynamics in the z direction is then given by

d

dt
(γż) ≈ Rω sin(ωt)py

√

1 +R2 sin2(ωt)
, (3.13a)

ż ≈
pz − py

[

arcsin
(

R√
1+R2

cos(ωt)
)

− arcsin R√
1+R2

]

√

1 +R2 sin2(ωt)
. (3.13b)

Here, quadratic terms of px0
/c, py0

/c and kz have again been dropped.

The motion of an electron according to Eqs. (3.8), (3.12) and (3.13b) is shown
in Fig. (3.4) for the relativistic value R = 25. The diagram for the motion in the
electric field direction reduces to an inharmonic triangular shape, because the velocity
is limited by the speed of light. As compared to the case of linear polarization (see
Fig. 3.3), there is no instability in the z direction.

3.2.2 Nonrelativistic limit

The equations of motion derived above can be further simplified if the nonrelativistic
limit is considered. In this case, the velocity v of the particle is small compared to
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Figure 3.4: The motion of an electron in a circularly polarized standing laser field is
depicted for four laser cycles. Part (a) shows the dynamics in the x directions whereas
(b) shows the trajectory in the y-z plane, i.e. perpendicular to the electric field. With
the parameter R = 25 the motion is relativistic. The initial momentum is chosen to be
px0

= 0, py0
= pz0

= 0.05 a.u.

the speed of light and quadratic terms of v/c can be neglected. The γ-factor then
reduces to one and the equations of motion (3.3) simplify from the beginning. The
nonrelativistic limit can as well be obtained from the fully relativistic equations of
motion by considering the parameter R and the initial velocity over c to be small such
that quadratic terms thereof can be neglected.

Linear polarization

With the γ-factor equal to unity, the equations of motion (3.6) are rewritten:

ẍ = E0 cos(ωt) , (3.14a)

ÿ = 0 , (3.14b)

d

dt

ż

c
= Rω

ẋ

c
sin(ωt)kz ≈ 0 . (3.14c)

The approximation in Eq. (3.14c) applies since besides kz both ẋ/c and R are small
numbers in the nonrelativistic case. These equations are solved immediately and yield
the following result:

x = −Rc
ω

cos(ωt) + px0
t+ x0 , (3.15a)

y = py0
t+ y0 , (3.15b)

z = pz0
t+ z0 . (3.15c)

The motion in the y and the z direction is equal to that of a free particle. In the
polarization direction, one finds a harmonic oscillation caused by the electric field of
the laser and an additional drift term px0

t.

Circular polarization

As in the relativistic case, the dynamics in the x direction is equal to the case of linear
polarization. The motion in the other directions can be obtained with γ = 1 and by
neglecting terms of the order R2 in Eqs. (3.12) and (3.13a). The following equations
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are found:

ẋ = Rc sin(ωt) + px0
, (3.16a)

ẏ = py0
−Rω sin(ωt)z , (3.16b)

ż = pz0
+R[1 − cos(ωt)]py0

, (3.16c)

x = −Rc
ω

cos(ωt) + px0
t+ x0 , (3.16d)

y = py0
t+ y0 +R

(

t− 1

ω
sin(ωt)

)

pz0
−R(pz0

t+ z0)[1 − cos(ωt)] , (3.16e)

z = pz0
t+ z0 +R

(

t− 1

ω
sin(ωt)

)

py0
. (3.16f)

The dynamics in the y and the z directions differ slightly by the terms proportional to
R. This is due to the different magnetic fields of the two configurations.

3.2.3 Highly relativistic case

The fully relativistic equations of motion can also be simplified for the interesting
case that the motion in the x direction becomes highly relativistic. In this limit,
the approximation R2 ≫ 1 can be applied, i.e., terms of the order one are neglected
with respect to those of the order R2. With this approximation, the position can
be determined analytically at several interesting instants of time, e.g., after a quarter
of a period when the particle has reached its maximum speed or after a full period.
According to Eq. (3.7) the maximum value of the γ-factor becomes γm = R.

Linear polarization

To integrate the equation of motion for the y direction (3.9a) two different periods of
time are considered:

ẏ =
py

√

1 +R2 sin2(ωt)
=















py
√

1 + (Rωt)2
, sin2(ωt) ≪ 1

py

R sin(ωt)
, R2 sin2(ωt) ≫ 1 .

(3.17)

These terms can be integrated to yield

y =
py

Rω
arsinh(Rωt) + y0 , for sin2(ωt) ≪ 1 , (3.18a)

y =
py

Rω
log

(

tan
ωt

2

)

+ ỹ0 , for R2 sin2(ωt) ≫ 1 . (3.18b)

Now, the integration constant ỹ0 needs to be matched such that the function is contin-
uous. At the matching point t̃, which needs not to be specified here, both conditions
sin2(ωt̃) ≪ 1 and R2 sin2(ωt̃) ≫ 1 have to be valid. These are used for the following
approximations:

arsinh(Rωt̃) = log

(

Rωt̃+

√

1 + (Rωt̃)2
)

≈ log(2Rωt̃) , (3.19a)

log

(

tan
ωt̃

2

)

≈ log

(

ωt̃

2

)

. (3.19b)
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The condition that the function in Eqs. (3.18) is continuous gives

ỹ0 =
py

Rω
log(4R) + y0 . (3.20)

The error of this result decreases as R increases, because the requirements
R2 sin2(ωt) ≫ 1 and sin2(ωt) ≪ 1 can be better fulfilled simultaneously in the area
where the two functions (3.18a) and (3.18b) have to match. A comparison of this result
for y(ωt = π/2) = ỹ0 with a numerical integration of Eq. (3.9a) for the moderate value
of R = 10, gives a relative error of less than 0.2%.

Note, that the distance the particle travels in the y direction during the time given
by ωt = π/2 scales like log(4R)/R, i.e., the greater the laser intensity becomes, the
closer the electron stays to the initial position y0. This can be understood as follows.
According to Eq. (3.6b), the momentum in the y direction is constant: γẏ = py0

. This
means, if the γ-factor becomes high due to the relativistic motion in the x direction, ẏ
becomes small.

Since the equation of motion (3.9a) is both symmetric with respect to ωt0 = π/2
and periodic in π, the y position for any multiple n of t0 is given by

y
(

ωt = n
π

2

)

= n
py

Rω
log(4R) + y0 . (3.21)

To investigate the dynamics in the z direction, the differential equation (3.9b) has
to be analyzed. It can be rearranged to the form

[

1 +R2 sin2(ωt)
] z̈

ω2
= −R2 sin(ωt) cos(ωt)

ż

ω
+R2 sin2(ωt)z , (3.22)

where the dependence of px0
has been neglected in the γ-factor (3.7), because in the

relativistic regime, the term proportional to px0
is suppressed by the second order term

R−1 · px0
/c with respect to the leading order term. The resulting equation is exam-

ined separately for two different time domains and reduces to the following simplified
equations:

[

1 + (Rωt)2
] z̈

ω2
= −R2ωt

ż

ω
+ (Rωt)2z , for sin2(ωt) ≪ 1 , (3.23a)

z̈

ω2
= − cot(ωt)

ż

ω
+ z , for R2 sin2(ωt) ≫ 1 . (3.23b)

The first equation can be solved perturbatively:

[

R−2 + (ωt)2
] z̈

ω2
+ ωt

ż

ω
− (ωt)2z0 = λ(ωt)2(z − z0) , (3.24a)

z(t) = f0(t) + λf1(t) + . . . . (3.24b)

The parameter λ is equal to unity and serves only to count the orders of the perturbation
expansion. By inserting the ansatz (3.24b) into Eq. (3.24a), a differential equation is
found for each order of λ which can be solved successively. With the right hand side of
Eq. (3.24a) being a small perturbation, the series converges quickly. The dominating
part of the solution is given by the zeroth order term f0(t), whereas the first order
correction can be used to control the error.

The inhomogeneous linear differential equation of zeroth order in λ is solved by the
ansatz

ḟ0

ω
=

p(t)
√

1 + (Rωt)2
. (3.25)
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This gives a condition for the function p(t) introduced in the ansatz:

ṗ

ω
=

(Rωt)2z0
√

1 + (Rωt)2
. (3.26)

With the integration of this expression one finds (to zeroth order of λ):

ż =
pz0

√

1 + (Rωt)2
+
ω

2

(

ωt− arsinh(Rωt)

R
√

1 + (Rωt)2

)

z0 , (3.27a)

z =
pz0

Rω
arsinh(Rωt) + z0

(

1 +
(ωt)2

4
− arsinh2(Rωt)

4R2

)

. (3.27b)

Note that Eq. (3.27b) yields the nonrelativistic solution (3.15c) if R becomes small such
that arsinh(Rωt) ≈ Rωt applies. This means that the lowest order of the expansion
(3.24b) reduces to the exact solution as R decreases. In order to estimate how well the
lowest order approximation works for high values of R, the correction term f1(t) of the
order λ1 is evaluated for the limit R≫ 1. Then, f0 reduces to

f0 ≈
(

1 +
1

4
(ωt)2

)

z0 . (3.28)

The first order correction is found to be

ḟ1

ω
=

a(t)
√

1 + (Rωt)2
, where

ȧ(t)

ω
=

R2(ωt)4

4
√

1 + (Rωt)2
z0 . (3.29)

With the estimate (Rωt)4/
√

1 + (Rωt)2 ≈ (Rωt)3, one finds

f1(t) =
1

64
(ωt)4z0 . (3.30)

For the times the differential equation (3.23a) is valid (sin2(ωt) ≪ 1), this correction
is small compared to the lowest order term (3.28). In fact, this correction term can
be neglected in accordance with the approximation applied to arrive at the equation
of motion (3.23a), because the original differential equation (3.22) is approximated by
negligence of terms of the order (ωt)3 or higher.

Now, the equation of motion has to be solved for the times when R2 sin2(ωt) ≫ 1
[see Eq. (3.23b)]. Linearity requires the solution to be of the form

z = h1(ωt)
p̃z0

ω
+ h2(ωt)z̃0 , (3.31a)

ż = ḣ1(ωt)
p̃z0

ω
+ ḣ2(ωt)z̃0 = h′1(ωt)p̃z0

+ h′2(ωt)ωz̃0 , (3.31b)

i.e., z(t) can be written as a linear combination of two time-dependent functions h1(t)
and h2(t), whereas the initial conditions at the initial time t̃ are given by z(t = t̃) = z̃0
and ż(t = t̃) = p̃z0

. The prime in Eq. (3.31b) denotes the derivative with respect
to (ωt). Since the differential equation does not depend on R, the coefficients can be
calculated numerically for some time t without specifying R. The constants h1,2 and
h′1,2 are fixed by calculating the solutions for two linearly independent pairs of initial
conditions. An interesting instant is reached when the particle reaches its maximum
velocity, i.e. for ωt = π/2. Eqs. (3.23a) and (3.23b) are coupled at time t̃, which
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needs to be chosen suitably such that the validity of both limits sin2(ωt) ≪ 1 and
R2 sin2(ωt) ≫ 1 is ensured. With ωt̃ = 0.1 good agreement with the original differential
equation (3.22) is expected for values R > 50, but as it will turn out, the results are
valid for values much smaller. The coefficients are found to be

h1

(

ωt = π
2

)

= 0.44 , h2

(

ωt = π
2

)

= 1.79 ,
h′1
(

ωt = π
2

)

= 0.38 , h′2
(

ωt = π
2

)

= 1.32 .
(3.32)

The initial velocity p̃z0
and the initial position z̃0 are determined by Eqs. (3.27) for the

preceding time domain. The results for z(ωt = π/2) and ż(ωt = π/2) can be written
in matrix form

(

z(π
2 )

ż(π
2 )/ω

)

= B

(

z(t̃)

ż(t̃)/ω

)

= B ·A
(

z0
pz0
/ω

)

, (3.33)

with the definitions

A ≡





1 − 1
4R2 log(R

5 )2 1
R log(R

5 )

0.05 − 5 log(R
5

)

R2

10
R



 , B ≡
(

1.79 0.44
1.32 0.38

)

. (3.34)

Matrix A follows from Eqs. (3.27), which can be simplified by means of the same
approximations already applied to decompose the original differential equation [see
Eqs. (3.22) and (3.23)], i.e. sin2(ωt̃) ≈ (ωt̃)2 ≪ 1 and R2 sin2(ωt̃) ≈ R2(ωt̃)2 ≫ 1. B

is determined by Eqs. (3.31) and (3.32).
In the same way, the position and the velocity can be calculated after half a period:

(

z(π)

ż(π)/ω

)

= D · C
(

z(π
2 )

ż(π
2 )/ω

)

= D ·C ·B ·A
(

z0
pz0
/ω

)

. (3.35)

The matrix C is again calculated numerically by solving the differential equation (3.23b)
in the interval π/2 < ωt < π − ωt̃. D can be constructed from Eq. (3.23a), because
the differential equation (3.22) looks the same for the intervals (π − ωt̃) < ωt < π and
0 < ωt < ωt̃ (a time shift of half a period leaves the equation invariant), i.e.,

(

z(π)

ż(π)/ω

)

= D

(

z(π − ωt̃)

ż(π − ωt̃)/ω

)

⇔ D−1

(

z(0)

ż(0)/ω

)

=

(

z(−ωt̃)
ż(−ωt̃)/ω

)

, (3.36)

where D−1 follows immediately from Eqs. (3.27) with the time given by t = −t̃. Then,
the following results are found:

C =

(

3.81 4.41
13.20 17.89

)

, D =

(

1 log(R/5)
10

1
20R

10
R

)

. (3.37)

To obtain D, a term log(R/5)/200 = log(2Rωt̃)ωt̃/2 has been considered to be small as
compared to one. In principle, this term could become large, but for the corresponding
high values of R the matching point t̃ can be chosen to be much smaller which increases
the precision and changes the matrix entries.

The coefficients of the differential equation (3.22) are periodic in ωt = π, i.e., z and
ż can be determined at any time ωt = n · π/2 (n being an integer) by subsequently
multiplying the matrices B · A and D · C.

The matrices which describe the particle state at ωt = π/2 and ωt = π are given by

B · A =

(

1.81 (1.53 + 1.79 logR)/R
1.33 (1.68 + 1.31 logR)/R

)

(3.38)
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and

D ·C ·B ·A =

(

5.11 + 4.78 logR 4.71(0.86 + logR)(1.28 + logR)/R
4.84R 5.11 + 4.78 logR

)

, (3.39)

respectively.
There is an important difference between the dynamics in the y and the z direction.

Whereas the motion in the y direction freezes as R becomes high [see Eq. (3.21)], the
motion in the z direction is unstable. From Eqs. (3.38) and (3.39) the following limits
for high values of R are read off:

z(π/2) = 1.81z0 , (3.40a)

z(π) ≈ (5.11 + 4.78 logR)z0 . (3.40b)

Thus, the distance to the plane z = 0 roughly doubles during a quarter of a period and
depending on R it increases further for half a period.

For R > 30, the entries of the matrices (3.38) and (3.39) deviate from the exact
results by less than about 1%. The error increases for smaller values, but for R = 10 it
is still of the order of only 5%. The essential result is that in the strongly relativistic
regime the motion in the z direction becomes unstable for times greater than half a
laser period. This instability originates from the nonvanishing magnetic field in the
vicinity of the plane z = 0. Obviously, the magnetic field in the y direction is directed
such that, together with the motion in the x direction, the Lorentz force pushes the
particle farther away from the plane z = 0.

Circular polarization

Now, the corresponding analysis will be carried out for circular laser polarization. The
location and the velocity of the electron will be calculated for ωt = π/2 such that a
direct comparison with the case of linear polarization will be at hand. A further instant
of interest is the time when the equations of motion adopt their original form again,
which is after a full laser period. Knowing the state of the particle after a period, this
allows for an analysis of the long-term behavior.

In the strongly relativistic case, i.e., for R2 ≫ 1 Eq. (3.13b) can be simplified by
means of

R√
1 +R2

≈ 1 , (3.41a)

arcsin[cos(ωt)] =







π

2
− ωt , 0 ≤ ωt < π

ωt− 3π

2
, π ≤ ωt < 2π .

(3.41b)

One then finds

ż =
1

√

1 +R2 sin2(ωt)
×
{

(pz0
+ py0

ωt) , 0 ≤ ωt < π
(pz0

+ py0
(2π − ωt)) , π ≤ ωt < 2π .

(3.42)

Considering that
∫ π
0 (ωt − π/2)[1 + R2 sin2(ωt)]−1/2d(ωt) = 0, the integration of Eq.

(3.42) over a whole period yields

z(2π) =

∫ 2π

0

(

pz0
+ π

2 py0

)

d(ωt)

ω
√

1 +R2 sin2(ωt)
= 4

(

pz0
+
π

2
py0

) log(4R)

Rω
+ z0 . (3.43)
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The integral in Eq. (3.43) has already been solved in the previous section [compare Eq.
(3.17)].

If the integration is only over a quarter of a period, the following integral is split
up into regions where either sin(ωt) ≈ (ωt) or R2 sin2(ωt) ≫ 1 can be exploited. ǫ is a
matching point where both conditions are valid.

∫ π/2

0
d(ωt)

ωt
√

1 +R2 sin2(ωt)

≈
∫ ǫ

0
d(ωt)

ωt
√

1 + (Rωt)2
+

1

R

∫ π/2

0
d(ωt)

ωt

sin(ωt)
− 1

R

∫ ǫ

0
d(ωt)

ωt

sin(ωt)

=
1

R2

(
√

1 + (Rǫ)2 − 1

)

+
1.832

R
− ǫ

R
≈ 1.832

R
− 1

R2
.

(3.44)

The first integral in the second line is carried out analytically, the second one can be
evaluated numerically without spoiling the dependence on R and the third one simplifies
because sin(ωt) ≈ (ωt) for t ≤ ǫ. Finally, employing both conditions at the matching
point R2 sin2(ǫ) ≈ (Rǫ)2 ≫ 1, the result becomes independent of ǫ.

In all, the z position after a quarter of a period is given by

z
(π

2

)

= pz0

log(4R)

Rω
+
py0

Rω

(

1.832 − 1

R

)

+ z0 . (3.45)

The position in the y direction is obtained by integrating Eq. (3.12). Therefor, the
following integral needs to be analyzed:

−
∫ ωt

0
z
R sin(ωt) d(ωt)
√

1 +R2 sin2(ωt)

= z(ωt) arcsin[cos(ωt)] − π

2
z0 −

∫ ωt

0
z′ arcsin[cos(ωt)] d(ωt) ,

where z′ =
pz0

+ py0

(

π
2 − arcsin cos(ωt)

)

ω
√

1 +R2 sin2(ωt)
. (3.46)

This is obtained by a partial integration and by employing Eq. (3.41a).

For a whole period, i.e., for ωt = 2π and by means of Eq. (3.41b) this reduces to

π

2
(z(2π) − z0) +

2py0

ω

∫ π

0

(

π
2 − ωt

)2

√

1 +R2 sin2(ωt)
d(ωt) . (3.47)

With the same reasoning as applied to Eq. (3.44), the occurring integral is rearranged
to

∫ π

0

π2

4 − ωt(π − ωt)
√

1 +R2 sin2(ωt)
d(ωt) ≈

∫ π

0

π2

4
√

1 +R2 sin2(ωt)
d(ωt) − 2

∫ ǫ

0

ωt(π − ωt)
√

1 + (Rωt)2
d(ωt)

− 2

R

[

∫ π/2

0

ωt(π − ωt)

sin(ωt)
d(ωt) −

∫ ǫ

0

ωt(π − ωt)

sin(ωt)
d(ωt)

]

≈ π2

2

log 4R

R
− 8.414

R
+

2π

R2
.

(3.48)
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The first integral has the same form as the one in Eq. (3.43). A term (2R3)−1arsinh(Rǫ)
has been dropped here, because the dependence on R−3 makes it only a minor correc-
tion. Summarizing these results, the y position after a whole period is found to be

y(2π) =
4 log 4R

Rω

[(

1 +
π2

2

)

py0
+
π

2
pz0

]

− py0

Rω

(

16.83 − 2π

R

)

+ y0 . (3.49)

Considering the y position after a quarter of a period, Eq. (3.46) becomes

−π
2
z0+

py0

ω

∫ π/2

0

(

π
2 − ωt

)2

√

1 +R2 sin2(ωt)
−pz0

+ π
2 py0

ω

∫ π/2

0

π
2 − ωt

√

1 +R2 sin2(ωt)
d(ωt) . (3.50)

The integrals have just been considered [see Eqs. (3.44) and (3.47)]. The final result
then reads

y(π/2) =
log 4R

Rω

(

py0
− π

2
pz0

)

− py0

Rω

(

7.085 − π

2R

)

+
pz0

Rω

(

1.832 − 1

R

)

− π

2
z0 + y0 .

(3.51)
Considering the limit of high values of R, this expression reduces to

y
(π

2

)

= −π
2
z0 + y0 . (3.52)

Here, the initial z position appears with a factor similar to the case of linear polarization
[compare Eq. (3.40)]. However, after a full period the particle returns to its initial
position (y0, z0) according to Eqs. (3.43) and (3.49). This means that the configuration
of circularly polarized light becomes superior to the other in the long-term behavior.
This can be further investigated. The particle state after a full period is given by
ẏ = py0

, ż = pz0
and by Eqs. (3.43) and (3.49). The equations of motion are periodic,

i.e., these results can be used to obtain the particle state after any complete period by
consecutively calculating the initial conditions of the next period. The following result
is found for the state after n full periods:

ẏ(ωt = 2πn) = py0
,

ż(ωt = 2πn) = pz0
,

y(ωt = 2πn) = n[y(ωt = 2π) − y0] + y0 ,

z(ωt = 2πn) = n[z(ωt = 2π) − z0] + z0 .

(3.53)

After any full period, the momentum takes its initial value whereas the distance to
the origin increases linearly, i.e., there is no rapidly growing instability as in the case
of linear polarization. The distance from the x axis even grows more slowly as the
laser intensity increases which is seen from the 1/R-dependence of y(ωt = 2π) and
z(ωt = 2π) [see Eqs. (3.43) and (3.49)].

3.3 Quantum mechanical treatment

In the following, a quantum mechanical description of the electron dynamics is devel-
oped. As opposed to classical mechanics, the wave character of the particle is taken
into account. With the quantum mechanical results at hand, it is seen how they are
related to the classical description. As the particle dynamics becomes relativistic, the
quantum mechanical treatment becomes rather complex. However, several relativistic
effects are pointed out in the weakly relativistic limit.
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3.3.1 Solution of the Schrödinger equation

The quantum mechanical dynamics of an electron in a laser field is determined by
Schrödinger’s equation:

i
∂

∂t
ψ = Ĥψ =

1

2

[

−i~∇− 1

c
~A

]2

ψ =
1

2

[

−~∇2 +
2i

c
~A · ~∇ +

1

c2
A2

]

ψ . (3.54)

The vector potential is assumed to be given in Coulomb gauge (~∇· ~A = 0). For the two
laser configurations defined by the vector potentials (3.1c) and (3.2c), this equation can
be solved for a spatially restricted area. It is assumed again, that the particle is found
close to the plane z = 0, i.e., the calculation is carried out to linear order in kz. Once
the solutions are known, wave packets describing localized particles can be constructed
which conform to this assumption.

Linear polarization

The vector potential for the case of linear laser polarization [see Eq. (3.1c)] reads

~A = −E0
c

ω
sin(ωt) x̂ , (3.55)

if terms of quadratic or higher order in kz are dropped. The following ansatz is then
inserted into the Schrödinger equation (3.54):

ψ = exp i[~p0 · (~x− ~x0) + w(t)] , (3.56)

which yields a condition for the time-dependent function w(t):

−ẇ(t) =
1

2
~p 2
0 +

E0

ω
px0

sin(ωt) +
E2

0

2ω2
sin2(ωt) . (3.57)

This is easily integrated and the solution is found to be

ψ = exp i

[

~p0 · (~x− ~x0) −
1

2
~p 2
0 t+

E0

ω2
px0

cos(ωt) − E2
0

4ω2

(

t− 1

2ω
sin(2ωt)

)]

. (3.58)

This solution can be written as a product of three factors, each depending only on one
momentum variable px0

, py0
or pz0

. Then, Eq. (1.34) with the maximum of the initial
momentum given by pm = px,y,z is applied to each of the factors to yield the following
result for the probability density:

|ψ(x, y, z, t)|2 = π−3/2
[

∆p−2 + ∆p2t2
]−3/2

exp−
f2

x + f2
y + f2

z

∆p−2 + ∆p2t2
,

fx ≡ x− x0 +
Rc

ω
cos(ωt) − px0

· t , fy ≡ y − y0 − py0
· t , fz ≡ z − z0 − pz0

· t .
(3.59)

The dynamics of the maximum of this wave packet is found by equating the functions
fx,y,z to zero. It is seen that the maximum describes the same trajectories as a classical
particle [compare Eqs. (3.15)].

The wave packet remains spherically symmetric, with the spatial widths ∆x2 =
∆p−2 + ∆p2t2. The spreading dynamics is identical to that of a free particle [compare
Eq. (1.21b)], i.e., in the configuration of linear laser polarization, wave packet spreading
is not affected by the laser fields.
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Circular polarization

The simplification that only linear terms of (kz) are considered reduces the vector
potential for circular laser polarization (3.2c) to the following form:

~A = −E0
c

ω
sin(ωt)

(

x̂− (kz)ŷ
)

. (3.60)

As opposed to the case of linear laser polarization, the vector potential does not become
independent of the z coordinate. The corresponding Hamiltonian reads

Ĥ =
1

2

[

−∇2 − 2i
E0

ω
sin(ωt)

(

∂

∂x
− (kz)

∂

∂y

)

+
E2

0

ω2
sin2(ωt)

]

. (3.61)

The solution to the Schrödinger equation is found in the same way as in the previous
case. Due to the dependence on kz, the ansatz (3.56) is extended by an additional term
g(t) · kz in the exponent:

ψ = exp i [~p0 · (~x− ~x0) + w(t) + g(t) · kz] . (3.62)

By inserting this ansatz into the Schrödinger equation (3.54), two conditions for the
unknown functions w(t) and g(t) are found, one for each order of kz:

g(t) =
E0

ω2
py0

[1 − cos(ωt)] , (3.63a)

−ẇ(t) =
1

2

{

p2
x0

+ p2
y0

+ [pz0
+ k · g(t)]2

}

+
E0

ω
px0

sin(ωt) +
E2

0

2ω2
sin2(ωt) ,

≈ 1

2
~p 2
0 +Rpy0

pz0
[1 − cos(ωt)] +

E0

ω
px0

sin(ωt) +
E2

0

2ω2
sin2(ωt) . (3.63b)

Here, the first equation contains all of the terms proportional to kz, the second one
contains the remaining terms, which are independent of kz. In Eq. (3.63b) a term in
R2 = (E/ωc)2 has been neglected with respect to unity, because R is a small number
in the nonrelativistic regime considered here. In all, the wave function ψ is given by

ψ = exp i

[

~p0 · (~x− ~x0) −
1

2
~p 2
0 t+

E0

ω2
px0

cos(ωt) − E2
0

4ω2

(

t− 1

2ω
sin(2ωt)

)

−Rpy0
pz0

(

t− 1

ω
sin(ωt)

)

+Rpy0
[1 − cos(ωt)]z

]

. (3.64)

This solution of the Schrödinger equation contains a mixed term py0
pz0

, i.e., it cannot
simply be written as a product of three exponentials where each depends only on one
momentum variable. In order to reduce the three-dimensional problem to three one-
dimensional ones, a coordinate transformation is carried out, i.e., the quadratic form
in the exponent of Eq. (3.64) is diagonalized. This is achieved by a rotation about the
x axis by an angle of π/4. The new coordinates ỹ and z̃ are related to the old ones by
the following time-independent transformation law:

ỹ =
1√
2

(y + z) , y =
1√
2

(ỹ − z̃) ,

z̃ =
1√
2

(z − y) , z =
1√
2

(ỹ + z̃) .

(3.65)
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This transformation is applied to both the spatial and the momentum variables py0
and

pz0
. The wave function (3.64) can then be separated according to ψ(px0

, p̃y0
, p̃z0

) =
exp(px0

) · exp(p̃y0
) · exp(p̃z0

). Now, Eq. (1.34) can be applied to each factor. With the
maximum of the initial momentum pm = px,y,z, the probability density turns out to be

|ψ(x, y, z, t)|2 = π−3/2(∆wx∆w+∆w−)−1 exp

[

− f2
x

∆w2
x

−
f2

y

∆w2
+

− f2
z

∆w2
−

]

,

fx ≡ −(x− x0) −
Rc

ω
cos(ωt) + px0

· t ,

fy ≡ −(ỹ − ỹ0) −
1

2
R[1 − cos(ωt)](ỹ + z̃) + p̃y0

· t+R p̃y0

(

t− 1

ω
sin(ωt)

)

,

fz ≡ −(z̃ − z̃0) +
1

2
R[1 − cos(ωt)](ỹ + z̃) + p̃z0

· t−R p̃z0

(

t− 1

ω
sin(ωt)

)

,

∆wx ≡
√

∆p−2 + ∆p2t2 , ∆w± ≡

√

∆p−2 + ∆p2

[

t±R

(

t− 1

ω
sin(ωt)

)]2

.

(3.66)
By equating the arguments of the exponential functions to zero, the motion of the
maximum of this Gaussian is found. If the result is transformed back to the origi-
nal coordinates by means of Eqs. (3.65), the classical equations of motion (3.16) are
recovered.

The exponents in Eq. (3.66) contain mixed terms ỹz̃, i.e., the widths of the wave
packet cannot simply be read off. Instead of carrying out a cumbersome coordinate
transformation which diagonalizes the quadratic form in the exponent, the widths are
examined only after full periods. At these times the mixed terms do not appear. Then,
the following widths after n laser cycles are found:

∆wx =

√

∆p−2 + ∆p2
(πn

ω

)2
, ∆wỹ,z̃ =

√

∆p−2 + ∆p2
(πn

ω
(1 ±R)

)2
. (3.67)

For full laser cycles, the wave packet widths are similar to those of the linear polarization
configuration [compare Eq. (3.59)]. Differences are given by the factors (1 ±R) which
only slightly deviate from unity in the nonrelativistic regime. The deviations originate
from the nonvanishing magnetic field of this laser configuration.

3.3.2 Relativistic effects

In order to examine how relativity alters the quantum mechanical wave packet dynam-
ics, the Schrödinger equation is extended by a correction term which is obtained from a
nonrelativistic reduction of the Klein-Gordon equation (see for example [81]). Although
the validity of this approach is restricted to the weakly relativistic regime this allows
to extract some relativistic effects. This approach is only applied to the simpler case
of linear laser polarization.

The Hamiltonian containing the lowest order relativistic correction is given by

Ĥ =
1

2

[

−i~∇− 1

c
~A

]2

− 1

8c2

[

−i~∇− 1

c
~A

]4

. (3.68)

The same ansatz (3.56) can be used to solve the Schrödinger equation. With the corre-
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sponding vector potential (3.55), the second term then yields the following expression:

[

−i~∇− 1

c
~A

]4

→
[

~p 2
0 + 2px0

E0

ω
sin(ωt) +

(

E0

ω
sin(ωt)

)2
]2

≈ 2
(

3p2
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+ p2
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+ p2
z0

)

(

E0

ω
sin(ωt)

)2

+ 4px0

(

E0

ω
sin(ωt)

)3

+

(

E0

ω
sin(ωt)

)4

.

(3.69)

The approximation applies for the regime where the relativistic correction terms are
small and the term E0/ω = cR is distinctly greater than px0

, py0
and pz0

. Then, those
terms are neglected which do not contain the factor E0/ω at least to quadratic order.
The purpose of using this approximation is to avoid mixed terms like p2

x0
p2

y0
, which

would spoil an analytical wave packet analysis.

After an analogous calculation as in Sec. 3.3.1, the solution turns out to be

ψ = exp i

{

~p0 · (~x− ~x0) −
1

2
~p 2
0 t+

E0

ω2
px0

cos(ωt)

− E2
0

4ω2

(
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0
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−E
3
0

ω4
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(

3 cos(ωt) − 1

3
cos(3ωt)

)]}

. (3.70)

Now, Eq. (1.34) is applied again (with pm = px,y,z) to yield the probability density of
a localized wave packet:

|ψ(x, y, z, t)|2 = π−3/2(∆wx∆wy∆wz)
−1 exp

[

− f2
x

∆w2
x

−
f2

y

∆w2
y

− f2
z

∆w2
z

]

,

fx ≡ −(x− x0) + px0
(t− 3χ) ,

− E0

ω2
cos(ωt) +

E0

8ω2
R2

(

3 cos(ωt) − 1

3
cos(3ωt)

)

,

fy ≡ −(y − y0) + py0
(t− χ) , fz ≡ −(z − z0) + pz0

(t− χ) ,

∆wx ≡
√

∆p−2 + ∆p2(t− 3χ)2 , ∆wy = ∆wz ≡
√

∆p−2 + ∆p2(t− χ)2 ,

χ ≡ 1

4
R2

(

t− 1

2ω
sin(2ωt)

)

.

(3.71)

Several relativistic effects appear. First of all, the oscillatory motion in the x direction
becomes inharmonic [note the additional term cos(3ωt)] as opposed to the nonrela-
tivistic case. The reason is that—given a certain external force—the acceleration of
the electron decreases as the electron approaches the speed of light, due to increasing
inertia.

Furthermore, time dilation becomes noticeable, i.e., the wave packet spreads at a
lower rate as the velocity of the electron becomes higher (see also Sec. 2.2.3 and [88]).
In the y and the z direction wave packet spreading is reduced since the time variable
t is replaced by (t − χ) [compare the nonrelativistic solution (3.59)]. This term has
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a simple interpretation. The weakly relativistic limit of the γ-factor (3.7), i.e., its
expansion to the order R2 is given by γ ≈ (1 +R2 sin2(ωt)/2). The time t is related to
the particle’s proper time τ by dt = γ dτ . Integration shows that (t−χ) is nothing but
the proper time τ . In the x direction, wave packet spreading is even suppressed further
[t is replaced by (t− 3χ)].

Here, it is seen that time dilation inhibits wave packet spreading also in the z
direction whereas no instability occurs. However, the term of the vector potential
which is linear in kz vanishes for the case of linear laser polarization [see Eq. (3.55)],
i.e., there is no magnetic field according to ~B = ~∇ × ~A. In order to see instabilities
caused by the magnetic field, the vector potential would have to be considered at least to
the order (kz)2. Therefore, the classical approach, where the magnetic field is included
explicitly in the equations of motion up to the first order of kz yields more information
about the dynamics in the z direction than considering the vector potential to the same
order as done in the quantum mechanical approach.

The instability which has been found in the classical, relativistic case will be in-
cluded in the next section where the wave packet is modeled by an ensemble of classical
particles.

3.4 Relativistic wave packet approach

For a fully relativistic quantum mechanical description of wave packets one has to deal
with relativistic wave equations. However, an analytical solution for crossed laser fields
is not available. Therefore, the problem is treated with the classical approach of phase-
space averaging. As described in Sec. 1.1, the basic idea is to calculate the initial
momentum which is needed for a classical particle to propagate from some initial to
some final point. Since both the initial position and the initial momentum are subject
to some probability distribution, the probability can be calculated for the particle to
be found at any point of interest.

3.4.1 Linear polarization

In the case of linear polarization, the classical equations of motion decouple and one
arrives at one-dimensional problems. Therefore, the general formula for the probability
density (1.3) is first applied to a general one-dimensional equation of motion with linear
dependence on the initial momentum p0 and position x0:

x(t) = a(t) · p0 + b(t) · x0 + d(t) . (3.72)

The coefficients a, b and d will be specified later on when the result are applied. From
this equation, one immediately arrives at the expressions needed to calculate the prob-
ability density ρ(x, t) according to Eq. (1.3):

g(x, x0, t) = p0 =
x− b(t)x0 − d(t)

a(t)
, (3.73a)

∂g

∂x
= a(t)−1 , (3.73b)

ρ(x, t) =

∫

ρ̃(g(x, x0, t))
∂g

∂x
ρ0(x0)dx0 . (3.73c)
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Here, ρ0 and ρ̃ are the initial distributions in coordinate and momentum space, respec-
tively, which are chosen to be the one-dimensional analogs of the Gaussians in Eqs.
(1.10). The resulting Gaussian integral in Eq. (3.73c) can then be carried out to yield
the following expression for the probability density:

ρ(~x, t) =

∫ ∞

−∞

exp− (x−b(t)x0−d(t))2

∆p2a(t)2√
π∆p a(t)

·
exp− x2

0

∆w2√
π∆w

dx0

=
1

√
π
√

∆w2b(t)2 + ∆p2a(t)2
exp− [x− d(t)]2

∆w2b(t)2 + ∆p2a(t)2
.

(3.74)

The initial widths in coordinate space ∆w and momentum space ∆p can be adapted
to mimic some localized initial state.

For the case of linear polarization, there are three one-dimensional, linear classical
equations of motion [see Eqs. (3.8b), (3.9a) and (3.22)] which determine the corre-
sponding coefficients a(t), b(t), d(t). An analytical solution for the highly relativistic
regime can be given for the time after a quarter of a period. From Eqs. (3.8b), (3.33),
(3.38) and (3.21), the following electron position is found:

x =
px0

ω
√

1 +R2
EllipticE

(

R2

1 +R2

)

+ x0 ≈ px0

Rω
+ x0 , (3.75a)

y =
py0

Rω
log(4R) + y0 , (3.75b)

z =
pz0

Rω
(1.53 + 1.79 logR) + 1.81z0 . (3.75c)

EllipticE denotes the complete elliptic function of the second kind [89]. The approxima-
tion applies in the relativistic regime where R2 ≫ 1. With these results, the following
probability density is found:

ρ(~x, t = π/(2ω)) = π−3/2(∆wx∆wy∆wz)
−1 exp

[

− x2

∆w2
x

− y2

∆w2
y

− z2

∆w2
z

]

,

∆wx ≡
√

∆w2 + ∆p2
1

(Rω)2
,

∆wy ≡

√

∆w2 + ∆p2

(

log(4R)

Rω

)2

,

∆wz ≡

√

3.28∆w2 + ∆p2

(

1.53 + 1.79 logR

Rω

)2

.

(3.76)

Figure 3.5 depicts the evolution of the wave packet in the y-z plane which is perpen-
dicular to its direction of motion. The wave packets are plotted for a full period based
on Eqs. (3.9a), (3.22) and (3.74). Two different parameters R have been chosen to
compare the nonrelativistic to the relativistic wave packet dynamics. It is seen that
wave packet spreading is inhibited in the relativistic case. However, for long times the
instability becomes dominant stretching the wave packet in the z direction.

3.4.2 Circular polarization

The solutions of the classical equations of motion in the y and the z direction (3.12)
and (3.13b) depend linearly on the initial momenta and positions. The dynamics in
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Figure 3.5: The nonrelativistic wave packet evolution (top row, R = 0.1) is compared
to the relativistic case (bottom row, R = 10) for linearly polarized crossed laser fields.
The probability densities in the y-z plane, i.e., perpendicular to the driving electric
field, are shown for the times ωt = {0, π/4, π/2, 3π/4, π} (from the left to the right)
with the initial widths ∆p = 0.5 a.u. As long as the wave packet is small, spreading is
suppressed in the relativistic case, but after some time the instability in the z direction
becomes dominant.

the x direction is identical to the case of linear polarization, i.e., these results can be
transferred immediately. The motion in the y and the z direction does not decouple.
Therefore, one has to deal with a two-dimensional problem. The equations of motion
have the following structure:

y(t) = g1(t) · py0
+ g3(t) · pz0

+ g5(t) · z0 + y0 ,

z(t) = g2(t) · pz0
+ g4(t) · py0

+ z0 .
(3.77)

These equations need to be inverted, such that the momentum is found which is needed
for a classical particle to travel from the initial position (y0, z0) to some other point
(y, z) at time t:

py0
(t) =

g2(t)(y − y0 − g5z0) − g3(t)(z − z0)

g1g2 − g3g4
,

pz0
(t) =

g1(t)(z − z0) − g4(t)(y − ỹ − g5z0)

g1g2 − g3g4
.

(3.78)

The function needed to determine the probability density ρ according to Eq. (1.34) is
~g = (py0

, pz0
) and one arrives at the following expression:

ρ(y, z, t) =

∫∫

ρ̃(g(y, y0, z, z0, t))

∣

∣

∣

∣

∂~g

∂(y, z)

∣

∣

∣

∣

ρ0(y0, z0) dy0dz0 . (3.79)

The initial probability distributions are two-dimensional Gaussians, analogous to Eqs.
(1.10). Note that the Jacobi determinant in this expression does not depend on the ini-
tial position (y0, z0). This means that the double integral is a two-dimensional Gaussian
integral which can be solved by means of the formula

∫∫

dx dy exp−
(

ax2 + by2 − dxy + fx+ gy
)

= h(a, b, d) exp
bf2 + dfg + ag2

4ab− d2
. (3.80)
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The calculation and the results simplify considerably if only the instants after n com-
plete laser cycles are considered, because with this restriction the coefficient g5 vanishes
and g3 and g4 become equal. Both is seen if the equation of motion in the y direction
(3.12) is partially integrated:

y(t) =

(
∫ t

0
ż(t′)dt′ + z0

)

arcsin

[

R√
1 +R2

cos(ωt)

]

− z0 arcsin

[

R√
1 +R2

]

−
∫ t

0
dt′ż(t′) arcsin

[

R√
1 +R2

cos(ωt′)

]

+

∫ t

0
dt′

py
√

1 +R2 sin2(ωt′)
. (3.81)

For full periods, the terms depending on z0 cancel. The equality of g3 and g4 is seen by
formally integrating Eq. (3.13b) and by comparing the terms proportional to py0

to the
terms of Eq. (3.81) which are proportional to pz0

. Furthermore, the initial spatial width
is chosen to be ∆w = 1/∆p, which corresponds to the minimal uncertainty allowed by
Heisenberg’s relation. After some algebra, the probability density can then be written
in the following way:

ρ(y, z, ωt = 2πn) ∝ exp−∆p−2(y2 + z2) + ∆p2[(g3z − g2y)
2 + (g3y − g1z)

2]
[

∆p−2 + ∆p2(g2
3 − g1g2)

]2
+ (g1 + g2)2

. (3.82)

The factor which renders this proportionality an equality can be found by normalizing
the probability density. This is accomplished by calculating the widths of the wave
packet. These are found by diagonalizing the quadratic form in Eq. (3.82). The
probability density can be rewritten with coordinates (Y,Z) which reduce the two-
dimensional Gaussian distribution to a product of two one-dimensional ones with the
widths ∆w±:

ρ(Y,Z) =
1

π∆w+∆w−
exp

[

− Y 2

∆w2
+

− Z2

∆w2
−

]

,

∆w2
± ≡

[

∆p−2 + ∆p2(g2
3 − g1g2)

]2
+ (g1 + g2)

2

∆p−2 + ∆p2
[

g2
3 + 1

2(g2
1 + g2

2) ± 1
2

√

(g2
1 − g2

2)
2 + 4g2

3(g1 + g2)2
] .

(3.83)

The normalization factor in front of the exponential is independent of the coordinate
system and therefore it normalizes the distribution (3.82) as well.

There is an important result which can be deduced from these complicated looking
terms ∆w±. In the relativistic limit of the classical equations of motion (3.43), (3.49)
and (3.53), one finds that all of the coefficients g1, g2, g3 are proportional to R−1:

g1 =
n

Rω

[

4

(

1 +
π2

2

)

log 4R− 16.83 +
2π

R

]

, (3.84a)

g2 =
4n log 4R

Rω
, (3.84b)

g3 =
2πn log 4R

Rω
. (3.84c)

This means that the greater R is chosen, the smaller the widths will be after n periods.
This behavior has an intuitive explanation. As the particle approaches the speed of
light, time dilation inhibits wave packet spreading. The theoretical limit for the minimal
widths is given by the initial widths of ∆w± = 1/∆p. As opposed to the case of linear
laser polarization, the dynamics is not unstable in the z direction.
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A comparison of the relativistic and the nonrelativistic regime is shown in Fig. 3.6.
The probability densities are plotted according to Eqs. (3.12), (3.13b) and (3.82). It is
seen, that wave packet spreading is reduced in the relativistic case.

R=25

R=0.1

120 a.u.

12
0 

a.
u.

y

z

Figure 3.6: The wave packets in the y-z plane, i.e., perpendicular to the electric field,
are depicted for counterpropagating circularly polarized laser fields at the initial time
and at four consecutive full periods. The initial widths are ∆p = 0.2 a.u. In the highly
relativistic regime (bottom row, R = 25), wave packet spreading is strongly suppressed
compared to the nonrelativistic case (top row, R = 0.1).

As already mentioned, the dynamics in the x direction is identical to the case of
linear laser polarization. In the previous section, the probability density has been de-
termined after a quarter of a laser period. Since the integral in Eq. (3.8b) is symmetric
with respect to t = π/(2ω) and periodic in π/ω, this result is immediately generalized
to the times t = mπ/(2ω) where m is an integer. With Eq. (3.74) the probability
distribution for the x direction in the relativistic limit is given by

ρ(x, t = mπ/(2ω)) =
1√
π∆wx

exp−
{

x+ c
ω arcsin

[

cos
(

mπ
2ω

)]}2

∆w2
x

,

∆wx ≡
√

∆w2 + ∆p2
( m

Rω

)2
.

(3.85)

Nonrelativistic limit

It is interesting to compare the nonrelativistic limit of the probability distribution (3.82)
with the corresponding quantum mechanical solution. According to Eqs. (3.16e) and
(3.16f) the coefficients are given by g1 = g2 = 2nπ/ω and g3 = Rg1 after n periods.
Rewriting the probability distribution with the coordinates ỹ, z̃ according to Eqs. (3.65)
and considering that R2 ≪ 1 in the nonrelativistic limit, Eq. (3.82) can be arranged
such that it reduces to a special case of Eq. (3.66):

ρ(y, z) ∝ exp−
[

ỹ2

∆p̃−2 + ∆p̃2
(

πn
ω

)2
(1 +R)2

+
z̃2

∆p̃−2 + ∆p̃2
(

πn
ω

)2
(1 −R)2

]

.

(3.86)
This means that in the nonrelativistic limit, the result of this classical wave packet
approach is in agreement with the result found by means of quantum mechanics.
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3.5 Conclusions

Summarizing, the dynamics of a laser-driven electron has been analyzed for two different
standing wave configurations with either linear or circular laser polarization. In both
cases, the electron oscillates close to an ideal axis where the Lorentz force vanishes.

For the case where the electron can be described nonrelativistically, i.e., the velocity
is small compared to the speed of light and terms of higher order than 1/c are negligible,
the systems have been described classically and quantum mechanically. It has been
shown that the maximum of a Gaussian wave packet moves like a classical particle. For
both configurations, wave packet spreading has been found to be similar to that of a
free particle.

To examine how relativity alters the wave packet dynamics, the case of linear laser
polarization has been analyzed for the weakly relativistic limit. The Hamiltonian has
been extended by a relativistic correction term which follows from the Klein-Gordon
equation. Besides the fact that the oscillation becomes inharmonic, it has been shown
that wave packet spreading is somewhat reduced on account of time dilation.

The strongly relativistic electron dynamics has been described analytically by pass-
ing over to the classical method established in Sec. 1.1 where wave packets are described
by an ensemble of classical trajectories. This Monte-Carlo approach requires the knowl-
edge of the classical particle dynamics. Considering a classical electron after a quarter
of a period, i.e., at the time when it reaches its maximum velocity for the first time,
both configurations yield similar results. However, if the time is chosen to be longer,
the configuration with linear laser polarization becomes highly unstable in the laser
propagation direction, i.e., the distance from the ideal axis increases quickly. This
behavior transfers to the wave packet dynamics in the Monte-Carlo approach. After
a quarter of a laser period when the electron has reached its maximum energy, both
configurations work equally well, whereas higher laser intensities reduce wave packet
spreading. However, for longer periods of time, the case of circular polarization turns
out to be much more effective. The reduction of wave packet spreading increases with
the strength of the driving laser fields. The configuration of linear laser polarization
shows a different behavior. For strong fields, the instability in the laser propagation
direction dominates over the positive effect of time dilation on spreading, i.e., the wave
packet is stretched. This effect increases with stronger laser fields.

In all, it has been found that the dynamics of electrons oscillating close to an axis of
vanishing Lorentz force, have similar properties in both configurations if the dynamics
is nonrelativistic. For short times like a quarter of a laser period, this even holds for
the highly relativistic case. Differences occur in the relativistic long-term behavior.
Opposite to the case of circular polarization the configuration with linear polarization
shows an instability in the direction of laser propagation.



Chapter 4

Relativistic recollisions

In the nonrelativistic regime, recollisions in bound systems are achieved by means of
simple propagating laser fields. First, electrons tunnel out of the Coulomb barrier,
then they are accelerated and finally, they are driven back to the core to recollide. The
recollision energy depends on the laser phase at which the electron leaves the core (see,
e.g., one of the reviews [1, 2, 3, 4, 5, 6]).

As shown in Sec. 2, the electron drifts in the laser propagation direction if the
motion becomes relativistic. Recollisions are therefore inhibited for intense laser fields
and consequently, the maximum collision energy is limited in this simple scheme. As
described in the introduction, there are several proposals to circumvent this problem,
e.g., via standing laser fields [27, 28, 29, 19] or by employing positronium as the initial
system [25, 26].

A further problem is the immediate ionization for weakly bound electrons by strong
laser fields (over the barrier ionization (OBI), see e.g. [5]). For the case OBI occurs, the
electron energy is higher than the barrier formed by the laser field and the Coulomb
potential. With the immediate ionization, recollisions generally do not occur with
maximal energy. The situation is different in the tunneling regime because the most
likely instant of ionization is the moment when the laser electric field is maximal.
By considering tightly bound electrons, the ionization process can be turned to the
tunneling regime for high laser intensities as well, but in this case, tunneled wave
packets spread very quickly which reduces the probability of recollisions.

In this chapter, a scheme is introduced which allows for relativistic recollisions with
two consecutive, counterpropagating laser pulses. The first pulse separates an electron
from the core, and the second one drives it back. The vector potential can be chosen
in a way that recollisions occur with the maximum kinetic energy which a laser driven
electron is able to reach in a propagating laser field.

But first, it is shown for different schemes, by means of a classical picture, what the
highest achievable energies are for given laser intensities.

4.1 Collision energies in laser-driven recollisions

In the following, the recollision energies in standing wave configurations and for laser-
driven positronium are discussed by means of a classical picture. The analysis holds for
the limit the binding potential can be neglected with respect to the strong laser fields
corresponding to the case of immediate ionization (OBI). Furthermore, the energy of
an electron colliding with a nucleus in a propagating laser field is determined. This

67
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case applies to the recollision model which will be introduced in Sec. 4.2.

4.1.1 Recollisions in standing laser fields

As discussed in Chapter 3, standing waves can be employed for relativistic recollisions.
If the electron is placed on an axis of vanishing Lorentz force, the classical motion is
one-dimensional. For a general time-dependence of the laser fields, the equation of
motion for an electron moving on this axis is given by

d

dt
(γẋ) = E(t) = −1

c
Ȧ(t) , γ =

ẋ
√

1 − ẋ2

c2

. (4.1)

This equation can be solved and one finds

γ =

√

1 +
1

c4
A2 , (4.2a)

ẋ = −c
1
c2
A

√

1 + 1
c4A

2
, (4.2b)

x = −c
∫ t

0

− 1
c2A(t′)

√

1 + 1
c4
A2(t′)

dt′ . (4.2c)

The initial conditions are chosen such that the electron is initially found at rest at
the origin. The highest kinetic energy is obtained when the vector potential reaches
its maximum. Now, this energy should be reached at the instant of recollision, i.e.,
at the moment when the electron returns to its initial position x = 0. In the highly
relativistic regime, it is easy to see how this can be accomplished. For A2/c4 ≫ 1,
the electron moves approximately with the speed of light ẋ = ±c and the shape of
the pulse is not important anymore. Then, recollisions occur when the time duration
with positive vector potential becomes equal to the period with negative potential.
To obtain recollisions with maximal energy, the vector potential needs to be at its
maximum. In Fig. 4.1, an example is given where this conditions is fulfilled. If the
motion is not highly relativistic, the solutions look slightly different because the velocity
of the electron cannot be approximated by the speed of light. In this case, the problem
has to be analyzed numerically.

For light nuclei, the total collision energy is somewhat different from the electron
energy, because the nucleus is accelerated as well. The energies and momenta of the
nucleus (EM and PM ) and the electron (Ee and Pe) are given by

Ee = c2
√

1 + 1
c4
A2 , Pe = ẋγ = −c 1

c2
A ,

EM = Mc2
√

1 + 1
M2c4

A2 , PM = Mc 1
Mc2

A = −Pe ,
(4.3)

where M is the nuclear mass in atomic units. Since PM = Pe, it is clear that the center
of momentum remains at the origin. The total recollision energy E is then found to be

E = Ee + EM =
(√

1 + 1
c4
A2 +M

√

1 + 1
M2c4

A2
)

c2 ≈ Ee +
(

M + 1
2Mc4

A2
)

c2 ,

(4.4)
where the approximation holds for [A2/(M2c4)]2 ≪ 1 which is the case for any laser
intensity of interest here (note that the mass of the core is at least as high as the proton
mass MP ≈ 1800).
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A

x

t

t1 t2

Figure 4.1: In the highly relativistic regime, recollisions with maximal kinetic energy of
the electron can be achieved with the vector potential depicted here. The times t1 and
t2 are equal and the vector potential reaches its maximum at the moment of recollision.
The dashed line shows the electron trajectory, which is a motion close to the speed of
light.

4.1.2 Recollision energy of laser-driven positronium

The advantage of employing positronium for recollisions is that the electron and the
positron have equal masses. Thus, the Lorentz drift in the propagation direction is
equal and relativistic recollisions can occur. However, in the highly relativistic regime,
the motion of the particles is strongly directed in the laser propagation direction. This
means that a lot of the collision energy is lost to kinetic energy in order to conserve the
total momentum. The recollision energy in the frame where the pair collides head-on
is therefore much smaller.

According to Eqs. (A.8) and (A.9), the dynamics of the particles is given by the
following equations:

γ = 1 +
1

2c4
A2 , (4.5a)

ẋ = ∓c ·
1
c2
A(ϕ)

1 + 1
2c4
A2(ϕ)

, (4.5b)

ż = −c ·
1

2c4A
2(ϕ)

1 + 1
2c4
A2(ϕ)

, (4.5c)

x = ∓ c

ω

∫

1

c2
Adϕ , (4.5d)

z =
c

ω

∫

1

2c4
A2dϕ . (4.5e)

The motions of the electron and the positron differ only by the signs in Eqs. (4.5b) and
(4.5d) for the motion in the polarization direction (the minus sign holds for the elec-
tron). Recollisions occur if the integral in this equation vanishes. Maximal recollision
energies can be obtained with different amplitudes of the positive and negative parts
of the vector potential. An example is given in Fig. 4.2.

The collision energy in the center of momentum frame is found via the following
argument. The collision has to be observed in a co-moving frame which moves in the
z direction. In this frame, the electron momentum in the z direction vanishes, whereas
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Figure 4.2: Recollisions with the highest energy are achieved if the vector potential has
a maximum when the surfaces of positive and negative potential are equal.

the momentum in the x direction Px is not changed by a Lorentz transformation. The
total electron energy E′ in the center of momentum frame is then given by

E′2 = c4 + c2P 2
x , (4.6a)

Px = γẋ = −1

c
A , (4.6b)

and the corresponding γ-factor is

γ′ =

√

1 +
1

c4
A2 . (4.7)

This is equal to the electron energy in a standing laser field [compare Eq. (4.2a)]. Note
that the positron holds the same energy and thus the total recollision energy is given
by

E′ = 2γ′c2 = 2c2
√

1 +
1

c4
A2 . (4.8)

4.1.3 Electron core collisions in propagating laser fields

The equations of motion for an electron which is driven by a propagating laser field are
equal to those discussed in the previous section on laser-driven positronium [see Eqs.
(4.5)]. The dependence of the electron energy in a laser field is quadratic in the vector
potential:

γ = 1 +
1

2c4
A2 . (4.9)

For high laser intensities A2/c2 ≫ 1, the electron energy is much higher than in the
previously discussed cases where the dependence becomes linear for high energies:

γ =

√

1 +
1

c4
A2 ≈ 1

c2
A . (4.10)

In the next section, a scheme will be introduced which allows for recollisions in propa-
gating laser fields with energies given by Eq. (4.9). The idea is to compensate the drift
in the laser propagation direction by a second, counterpropagating laser pulse which
drives the electron back to the core. In this scheme with two consecutive laser pulses,
the relativistic electron recollides with the core. Since the core is not fixed at the origin,



4.2. RELATIVISTIC RECOLLISIONS WITH TWO CONSECUTIVE . . . 71

the collision energy slightly changes for light nuclei in the strongly relativistic regime.
The particles have the following energies and momenta

Ee = c2
(

1 + 1
2c4
A2
)

, Pxe = −c 1
c2
A , Pze = −c 1

2c2
A2 ,

EM = Mc2
(

1 + 1
2M2c4

A2
)

, PzM
= −Pxe , PzM

= −Mc 1
2M2c2

A2 ,
(4.11)

where the index e holds for the electron and M for the nucleus. The total energy
E′ in the center of momentum frame is easily derived by exploiting the invariance of
the scalar quantity E2 − ~P · ~Pc2 = E′2 − ~P ′ · ~P ′c2 = E′2, where E and ~P denote the
total energy and the total momentum in the rest frame. The total momentum in the
transformed frame ~P ′ vanishes and one arrives at the following expression for the total
energy:

E′ = (M + 1)c2
√

1 + 1
Mc4

A2 ≈ Ee +
(

M + 1
2Mc4

A2
)

c2 . (4.12)

The approximation holds for [A2/(Mc4)]2 ≪ 1 which is the case if the electron energy
remains small compared to the rest energy of the nucleus.

As opposed to the other case [see Eq. (4.4) and (4.8)], the collision energy scales
quadratic with the vector potential. For strong laser fields A/c2 ≫ 1, this can be an
enormous gain of collision energy.

4.2 Relativistic recollisions with two consecutive laser

pulses

In this section, a double-pulse recollision scheme is introduced which enables relativistic
recollisions with the highest electron energy accessible in a propagating plane laser
wave (see the previous section). The first laser pulse separates an electron from the
core where the laser intensity is assumed to be so high that the ionization occurs
immediately. Then, a second, counterpropagating pulse drives it back for recollision
(see Fig. 4.3). The core moves similarly, but due to its high mass its excursion is very
small. Experimentally, the two laser pulses can be created by separating a single pulse
with a beam splitter and deflecting the pulses appropriately as demonstrated in [86]
for intensities of the order 1019 W/cm2. Laser pulses with the experimentally available
intensity of 1022W/cm2 [32] would enable recollisions approaching the GeV-regime.
Laser intensities of that order will also be provided at the Astra Gemini laser system
[87] for two separate laser beams.

4.2.1 Classical trajectories

In this scheme, the two laser-pulses act one after the other, i.e., the analytical solutions
of charged particles driven by a propagating, plane laser wave can be employed. The
equations of motion for laser fields which are linearly polarized in the x direction and
propagating in the z direction are derived in Sec. A.1. The motion for a counterprop-
agating laser wave is easily obtained by rotating the coordinate system by an angle of
π about the x axis, i.e., one has to replace all variables y and z by −y and −z, respec-
tively. Note that the initial momenta are redefined, too (py0

→ −py0
, pz0

→ −pz0
). For
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Figure 4.3: The first of two counterpropagating laser pulses ionizes an atom and the
second one drives the electron wave packet back to the nucleus. With different pulse
intensities, recollisions can be achieved when the kinetic energy reaches its maximum.
This may be realized by means of a single pulse and a beam splitter, where the separated
pulses are deflected and focused to different intensities. The laser pulses should be short
to keep wave packet spreading of the electron small.

the laser propagation in the ±z direction, the equations of motion then read

x =
px0

c

κω
ϕ− 1

κω

∫

A(ϕ)dϕ , (4.13a)

y =
py0

c

κω
ϕ , (4.13b)

±z =
c

2ω

(

c2 + p2
x0

+ p2
y0

κ2
− 1

)

ϕ− px0

κ2ω

∫

A(ϕ)dϕ +
1

2κ2ωc

∫

A2(ϕ)dϕ , (4.13c)

κ ≡
√

c2 + p2
x0

+ p2
y0

+ p2
z0

∓ pz0
, ϕ ≡ ωt∓ ω

c
z . (4.13d)

The initial momentum of the electron, which is placed at the origin at time t = 0, is
given by (px0

, py0
, pz0

), assuming the vector potential is zero at the beginning.

As discussed in Sec. 1.1.1 (Linearization), the equations of motion can be linearized
with respect to the initial momenta over the speed of light, because the initial momenta
originate from small quantum mechanical uncertainties of the initial state. If the phase
in the drift terms (those terms which do not contain the vector potential) is expressed
according to the definition in Eq. (4.13d), the equations of motion reduce to

x = px0

(

t− 1

2ωc4

∫

A2(ϕ)dϕ

)

− 1

ωc

(

1 ± pz0

c

)

∫

A(ϕ)dϕ + x0 , (4.14a)

y = py0

(

t− 1

2ωc4

∫

A2(ϕ)dϕ

)

+ y0 , (4.14b)

z = pz0
t∓ px0

ωc2

∫

A(ϕ)dϕ +
1

2ωc3

(

±1 +
pz0

c

)

∫

A2(ϕ)dϕ + z0 . (4.14c)

An initial position (x0, y0, z0) different from zero has been inserted at this point by
means of the following simple argument: The coordinates are shifted by the initial
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position, i.e., ~x is replaced by ~x − ~x0, and then the vector potential A(ϕ(z − z0)) is
replaced by A(ϕ((z − z0) + z0)) = A(ϕ(z)) to account for the change of the laser phase
due to the shifted initial position. In other words, the coordinates of the electron are
changed, whereas the laser wave remains at its former position.

Now, the classical dynamics can be determined for an electron which is driven by the
two consecutive, counterpropagating laser pulses denoted by the vector potentials A1,2.
In between the laser pulses, the electron propagates freely according to the equation

~x = ~p0t+ ~x0 . (4.15)

This expression is nonrelativistic since the particle moves with its initial velocity again
after the first pulse has passed completely. This is seen if Eqs. (4.14) are differentiated
with respect to time with A(0) = Ȧ(0) = 0. In order to find the equations of motion
during the second pulse, the initial conditions need to be adapted such that the location
after the first pulse matches the initial position of the free propagation etc.

If the three parts—separation, free propagation and recollision—are combined, the
following equations of motion for the returning electron are found:

x = px0
g1 + pz0

g3 + ∆x+ x0 , (4.16a)

y = py0
g5 + y0 , (4.16b)

z = pz0
g2 + px0

g4 + ∆z + z0 . (4.16c)

The abbreviations used are defined as follows:

∆x ≡ − 1

ωc

(∫ ∞

−∞
A1(ϕ1)dϕ1 +

∫

A2(ϕ)dϕ

)

, (4.17a)

∆z ≡ 1

2ωc3

(
∫ ∞

−∞
A2

1(ϕ1)dϕ1 −
∫

A2
2(ϕ)dϕ

)

, (4.17b)

g1 = g5 ≡ t− 1

2ωc4

∫

A2
2(ϕ)dϕ + t1 −

1

2ωc4

∫ ∞

−∞
A2

1(ϕ1)dϕ1 + tC , (4.17c)

g2 ≡ t+
1

2ωc4

∫

A2
2(ϕ)dϕ + t1 +

1

2ωc4

∫ ∞

−∞
A2

1(ϕ1)dϕ1 + tC , (4.17d)

g3 = g4 ≡ 1

ωc2

(∫

A2(ϕ)dϕ −
∫ ∞

−∞
A1(ϕ1)dϕ1

)

. (4.17e)

Here, t1 is the time after the first laser pulse, t is the time since the beginning of the
second pulse and tC denotes the propagation time in between the pulses.

4.2.2 Wave packet dynamics

The dynamics of the laser-driven electron is described by the analytical approach of
phase-space averaging. As discussed in Sec. 1.1.1, the equations of motion need to be
solved for the initial momentum to determine the probability for an electron to move
from some initial point (x0, y0, z0) to some other point (x, y, z) at time t. The initial
momentum distribution ρ̃ is again chosen to be the Gaussian in Eq. (1.10b). The
required function ~g ≡ (px0

, py0
, pz0

) follows from Eq. (4.16):

px0
= g−1

1 (x− x0 − ∆x− g3pz0
) ≈ g−1

1 (x− x0 − ∆x) , (4.18a)

py0
= g−1

5 (y − y0) , (4.18b)

pz0
= g−1

2 (z − z0 − ∆z − g4px0
) ≈ g−1

2 (z − z0 − ∆z) . (4.18c)
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The approximations apply if the initial width ∆p is small compared to c: For initial
momenta much greater than ∆p the Gaussian distribution drops off quickly, i.e., px0

∼
pz0

∼ ∆p and thus, the terms g3pz0
are by a factor of ∆p/c smaller than the terms of

∆x (see Eq. [4.17a)]. In the relativistic regime, where the terms of ∆z are greater than
those of ∆x, the same argument yields g4px0

≪ ∆z. With the vector potential which
will be chosen later on [see Eqs. (4.21)], the coefficients g3 and g4 vanish for the instant
of recollision and thus, the approximations become equalities for the time of interest.

The Jacobian which is needed in Eq. (1.3) to calculate the probability distribution
ρ is found to be
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∣
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2c4A
2
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g1g2g5
. (4.19)

For the approximation here, (z − z0 − ∆z) ∼ ∆pg2 was employed which follows from
ρ as Eq. (4.18c) is inserted into the Gaussian initial momentum distribution1 ρ̃. The
neglected term is then found to be suppressed by a small factor of ∆p/c.

With the Gaussian distribution (1.10a) for the initial position, the formula for the
probability density (1.3) then yields the following result:

ρ(~x, t) =
1 + 1

2c4A
2
2√

π
3

exp
[

− (x−∆x)2

∆w2+∆p2g2

1

− y2

∆w2+∆p2g2

5

− (z−∆z)2

∆w2+∆p2g2

2

]

√

∆w2 + ∆p2g2
1

√

∆w2 + ∆p2g2
5

√

∆w2 + ∆p2g2
2

. (4.20)

In the following, the vector potentials of the laser pulses are specified:

A1(ϕ) ∝
{

cosϕ · cos2(ϕ/l) |ϕ/l| ≤ π/2
0 |ϕ/l| > π/2

, (4.21a)

A2(ϕ) =
√

2A1(ϕ) , where l = 4, 6, 8, . . . . (4.21b)

These are sinusoidal pulses with a cos2-like amplitude, where the parameter l is related
to the pulse length. The number of laser cycles is given by l/2. Since the laser pulses
should drive the electron back to the origin, both ∆x and ∆z [see Eqs. (4.17a) and
(4.17b)] have to vanish at the same time. The maximum of the wave packet (4.20) is
then found at the origin. Furthermore, the recollision should occur when the electron
reaches its maximum kinetic energy. These conditions are fulfilled by the vector poten-
tials chosen here: The second pulse has twice the intensity of the first one such that
together with their symmetric shapes, the electron returns to its initial position in the
z direction (∆z = 0) when half of the second pulse has passed. This is the instant
when the vector potential and therefore the electron energy (4.9) reaches its maximum.
The return of the electron in the x direction (∆x = 0) at the same time is ensured by
the vanishing integrals

∫ 0
−∞A1,2dϕ =

∫∞
0 A1,2dϕ = 0. Of course, to apply these pulse

shapes which are centered about ϕ = 0, they need to be shifted in a way, that the
pulses arrive at the electron position at the desired instant of time.

If the laser pulses have a form where ∆x does not vanish exactly, it is still possible
to achieve recollisions by choosing a somewhat different laser propagation direction in
the x-z plane for the second laser pulse. One just has to make sure, that the two-
dimensional trajectory of the laser-driven electron runs through the origin again.

1The same argument has been discussed in more detail in Sec. 2.2.2.
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4.2.3 Reaction rates

To calculate the reaction probability N , the reaction rate Ṅ = σ · j needs to be inte-
grated over time, where j is the corresponding current density and σ denotes the total
reaction cross section of some recollision reaction. In Sec. 1.1.1, it has been shown
that the current density can be approximated by j = v(ϕ) · ρ [see Eq. (1.7)], where the
velocity v follows from the classical expression γ = (1 − v2/c2)−1/2. The dependence
on the initial velocity has been shown to be negligible in the relativistic regime with
the condition that the dependence of the initial momenta on the γ-factor is small [see
Eq. (1.6)]. The validity of this condition can be checked here. According to Eq. (A.9),
the γ-factor for an electron driven by a propagating field is given by

γ =
κ

2c
+
c2 + p2

x0
+ p2

y0

2κc
− px0

κc2
A(ϕ) +

1

2κc3
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≈ 1 +
1

2c4
A2(ϕ)2 − px0

c

1

c2
A(ϕ) +

pz0

c

1

2c4
A(ϕ)2 ,

κ ≡
√

c2 + p2
x0

+ p2
y0

+ p2
z0

− pz0
,

(4.22)

where the approximation applies since the quadratic dependences of the initial momenta
over the speed of light are negligible. It is seen that the terms depending on the initial
momenta are small with respect to the leading term A2/c4. Thus the relative variation
of the γ-factor with respect to the initial momentum is small, as required:
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(1 − γ−1) . (4.23)

The reaction rate for an electron driven by a strong propagating laser field can then be
approximated by

Ṅ = σ
c

√

1 −
[

1 + 1
2c4A

2
2

]−2
ρ . (4.24)

During the time of recollision, the time-dependent terms g1,2,5 in Eq. (4.20) which
determine the wave packet widths can be considered to be constant. This is reasonable
because the spreading time of the whole process, i.e., from ionization to recollision is
much longer than the time needed for the wave packet to pass the nucleus. Therefore,
the relative variation of the terms g1,2,5 is small. Furthermore, ∆x(t) and ∆z(t) can
be expanded linearly with respect to time which means that during the recollision, the
wave packet is considered to move along a straight line. In all, the reaction rate at the
origin during the time of recollision is found to be

Ṅ(t) = σ

1
cA2(t0)

√

1 + 1
4c4A2(t0)2

√
π

3√
∆w2 + ∆p2g1(t0)2
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∆w2 + ∆p2g5(t0)2
√

∆w2 + ∆p2g2(t0)2

× exp
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−
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1
cA2(t0)(t− t0)

]2

∆w2 + ∆p2g1(t0)2
−
[

1
2c3
A2(t0)

2(t− t0)
]2

∆w2 + ∆p2g2(t0)2

]

, (4.25)

where t0 denotes the time when the maximum recollides. The time dependence of the
vector potential vanishes to linear order because the wave packet recollides when the
vector potential has a maximum.



76 CHAPTER 4. RELATIVISTIC RECOLLISIONS

With this expression for the current density, the total reaction probability N is
found by carrying out a simple Gaussian integral which yields

N =
σ

π

√

1 +
1

4c4
A2

2
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(

3πl
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)2
]−1

×
[

∆w2 + ∆p2

(

3πl

2ω

(

1

2c4
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2
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+
1

4c4
A2

2

(

∆w2 + ∆p2

(

3πl

2ω
+ tC

)2
)]−1/2

. (4.26)

For calculating the reaction probability, it has been assumed that the nucleus is a
point-like object which is found at the origin during the recollision process. However,
these simplifications are justified as will be discussed in the following.

The laser fields act on the nucleus as well, but it returns to the origin at the same
time as the electron. In principle, the motion is similar to the electron trajectory with
the difference that the mass is much higher. The γ-factor for a laser driven nucleus is
given by [compare Eq. (4.9)]

γN = 1 +
1

2Mc4
A2 , (4.27)

where M is the nuclear mass in atomic units. Since even a proton, which is the lightest
nucleus, is by a factor of M ≈ 1800 heavier than an electron, the γ-factor remains of
the order of one for the laser intensities of interest here (i.e. for electron energies of
γ = 1+A2/(2c4) < 2000). Especially the motion of heavy nuclei as considered later on
remain nonrelativistic. For example, the velocity of a cesium nucleus (M = 133×1800)
at the moment of recollision is found to be only 0.035 a.u. if the electron has a maximum
energy of γm = 2000. If necessary, e.g., for very light nuclei and extremely high laser
intensities, the nuclear motion can be taken into account by considering the electron
current density at the location of the nucleus instead of considering it at the origin.

The extension of any nucleus is small on an atomic scale. The radius of a nucleus
is roughly given by 2× 10−5M1/3 a.u. If the reaction rate is calculated for an extended
object such as an electron bound to the nucleus, one needs to average over its probability
density ρ̃ to get the reaction rate:

Ṅ = σ

∫

j(~x)ρ̃(~x)d3x . (4.28)

This reduces to the previously used expression Ṅ = σ · j for point-like projectiles.
Deviations due to thermal initial velocities or the interaction of electrons in a thin

gas are negligible. These effects will be discussed in Sec. 6.1.3 for the recollision model
with magnetic refocusing, where the whole recollision process is much longer than here.

4.2.4 Results and discussion

For the following discussion, short laser pulses of two cycles (l = 4) are chosen to
minimize the time for wave packet spreading which reduces the reaction probability
[see the dependence on l in Eq. (4.26)]. Few cycle pulses are experimentally available,
where powers up to the petawatt regime seem to be feasible today [51].
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Figure 4.4: The reaction probability over the cross section N/σ is plotted versus the
distance ∆s between the initial z position of the electron and the plane where the time
interval between the laser pulses is zero. The curves (i), (ii) and (iii) correspond to the
recollision energies with the relativistic γ-factors of γm = 20, γm = 200 and γm = 2000,
respectively. The laser wavelength is taken to be λ = 800 nm and the initial widths in
momentum space are ∆p = 0.1 a.u.

Now, the initial electron wave packets should originate from a bound atomic system.
To mimic this situation, the initial wave packet widths in momentum and coordinate
space are chosen to be those of a spherically symmetric atomic s-orbital with the princi-
ple quantum number n. The mean square distance is given by r2 = n2(5n2 + 1)/(2Z2),
where Z is the nuclear charge number (e.g. see [90]). With r2 = 3∆w2 for a spherical
wave packet, one finds

∆w = n/Z ·
√

(5n2 + 1)/6 . (4.29)

Similar relations p2 = Z2/n2 and p2 = 3∆p2 hold for the mean square of the momentum.
This yields

∆p = Z/(n
√

3) (4.30)

for the width in momentum space.

Due to the finite velocity of light, the time interval between the laser pulses tC
depends on z0 which is the initial position of the atom in the laser propagation direction.
As the initial z position of the electron decreases, the first laser pulse arrives earlier
whereas the second one is retarded. The time difference is tC = 2∆s/c, where ∆s is
the distance from the plane with tC = 0. The highest recollision probability is achieved
for tC = 0, because in this case, the spreading time is shortest and therefore the wave
packet widths are smallest. For overlapping laser fields (i.e. tC < 0), the electrons miss
the nucleus as seen by means of a classical, numerical analysis.

Figure 4.4 shows how the reaction probability decreases as ∆s increases. The be-
havior is depicted for different laser intensities, i.e. for different electron energies which
are denoted by the relativistic γ-factor γm at the instant of recollision. For small values
∆s, the reaction probability decreases with high energies. As ∆s increases, the free
wave packet evolution between the two laser pulses becomes the dominant factor for
the wave packet widths, i.e., the reaction rates for different energies have the same
asymptotical behavior.

To calculate the number of reactions R which is expected in a gas sample with the
particle density n, the dependence of the single particle reaction probability N on the
initial z position of the electron needs to be taken into account. The total yield in a
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Figure 4.5: The function f in Eq. (4.31) which is proportional to the expected number
of reactions is plotted for different parameters. In (a) the dependence on the initial
momentum width ∆p is depicted. The electron energy is given by (i) γm = 20, (ii)
γm = 200 and (iii) γm = 2000, and the laser wave length is λ = 800 nm. In (b) it is
shown how the yield depends on the electron energy, i.e., the function f is plotted versus
the γ-factor. Furthermore, the dependence on the laser wave length is illustrated. The
curves (i), (ii) and (iii) correspond to the wavelengths λ = 200 nm, λ = 400 nm and
λ = 800 nm, respectively. It is seen that the yield decreases with higher energies and
longer wave lengths. The initial momentum width is taken to be ∆p = 0.1 a.u.

gas sample is given by

R = n · S
∫ ∆sm

0
N(z)dz ≡ n · S · σ · f , (4.31)

where S denotes the surface area of the sample in the x-y plane and ∆sm is its width
in the z direction. In the following, ∆sm will be taken to be ∆sm = 60000 a.u., which
corresponds to roughly 3 µm. n, S and σ will be kept general.

The yield depends on the initial widths in momentum space ∆p. For small values,
spreading is slow, but the initial spatial widths are large. On the other hand, small
initial spatial widths imply quick spreading. As shown in Fig. 4.5(a), there is an
optimum value in between these two limits which maximizes the yield.

The dependence of the yield on the electron energy is shown in Fig. 4.5(b). It is
seen that the yield decreases with increasing recollision energy. Higher yields can be
achieved by shorter laser wave lengths, because this implies shorter laser pulses which
reduces the spreading time of the electron wave packets.

Now, numbers can be specified to estimate the luminosity, or the reaction rates
for some reaction. The luminosity is defined by L = Ṙ/σ, i.e., by the ratio of the
reaction rate and the cross section. The averaged value for the reaction rate is given
by Ṙ = R · ν, where ν is the repetition rate of the laser system. With Eq. (4.31), the
luminosity is found to be

L = n · S · f · ν . (4.32)

For n = 1015 cm−3, S = (10 µm)2, f = 1.3 and ν = 100 Hz, the luminosity becomes
L = 7.1 · 1020cm−1s−1. The value for f is found for the parameters λ = 800 nm,
γm = 200 and ∆p = 0.1 a.u. (see Fig. 4.5), where the value for the momentum width
corresponds to an s-orbital with principal quantum number n = 6 as for the valence
electron of a cesium atom. The repetition rate of ν = 100 Hz is easily achieved for
nonrelativistic laser systems. For high intensities, repetition rates are smaller, but
rates of the order ν = 100 Hz are likely to be available in the nearer future. Consider
the process of bremsstrahlung. The differential cross section with respect to the photon
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energy which is found, e.g., in [91], can be integrated to yield the cross section for the
case that at least half of the electron kinetic energy is carried away by a photon. The
total cross section for this reaction is found to be σ = 1.9×10−23cm2 for cesium atoms.
This gives a reaction rate of Ṙ = 0.013 s−1, i.e., a photon of at least 50 MeV is expected
every 75 seconds.

However, for other reactions such as the creation of particle-antiparticle pairs, the
reaction rates are very small. For example, consider the creation of electron-positron
pairs by electron-nucleus collisions with the electron energy of 100 MeV. In this case,
the cross section is found to be σ = 6.3×10−25cm2 [92] which yields a rate of one event
in 37 minutes for the same luminosity as considered above.

The luminosity is small if the reaction probability is averaged over the time between
two laser shots, because of the small repetition rate of 100 Hz. If the average is only
taken over the time duration of the process, i.e., from ionization to recollision, the
luminosity reaches L = 1032 cm−1s−1 which is a typical value for a conventional particle
accelerator.

The luminosities could be increased with higher particle densities n, but then the
returning electrons would not only react with the original ion, but also with others of
the sample. The reaction probability for an electron to react with a particle in a gas
sample is given by the gas density n multiplied by the volume which is spanned by
the cross section σ and the distance s the electron travels in the sample. This needs
to be multiplied by the number of electrons in the gas volume n · S · d, where d is the
extension of the gas sample in the z direction. The expected number of reactions is
then given by

R̃ = σ · n2 · S · d · s . (4.33)

The number of these random reactions can be minimized if the sample width is given
by d = ∆sm, i.e. by the range of the initial z position which is relevant for recollisions
(see Fig. 4.4). The traveling distance in the sample s is also limited by ∆sm. In the
relativistic regime, s can be approximated by the distance ∆z an electron is carried
away by the laser field in the z direction. For electron energies corresponding to γm > 22
and λ = 800 nm, values of ∆z > ∆sm ≈ 60000 a.u. are found, i.e., in this case s is
given by ∆sm. With Eq. (4.31), the ratio of recollision reactions and random events is
then given by R/R̃ = f/(n ·∆s2m). It is seen that this ratio scales like 1/n, i.e., for high
gas densities, random collisions become dominant over recollisions. For the examples
given in the last paragraph, this ratio is given by R/R̃ = 6.3, i.e., 71% of the expected
events originate from electron collisions with the original ion.
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Chapter 5

Refocused wave packets

Spreading is a general problem occuring in recollision schemes. The more electron
wave packets spread, the more the probability of recollisions reduces. This has also
be seen in the relativistic recollision scheme introduced in Sec. 4.2 where wave packet
spreading inhibits effective recollisions. Therefore, it is of interest to consider ways of
manipulating the spreading dynamics of the electron. In this chapter, two methods
are discussed which allow for refocusing a spreading electron wave packet to its original
width. The spreading dynamics can be reversed by means of a magnetic field pulse or via
a harmonic potential which is turned on for a certain time. These ideas are introduced in
the following two sections before they will be applied in relativistic recollision schemes.

5.1 Magnetic refocusing

The basic idea of magnetic refocusing is to reverse the electron momentum, indepen-
dent of the initial conditions. The wave packet which is considered as an ensemble of
particles will then be restored because all electron trajectories revisit their points of ori-
gin at the same time. Such a momentum reversal can be achieved by a time-dependent
magnetic field. Figure 5.1(a) shows a trajectory where the electron momentum is re-
versed. The magnetic field which guides the electron along this trajectory is seen in
Fig. 5.1(b). Of course, refocusing can only be achieved in the plane perpendicular to
the magnetic field, because the Lorentz force vanishes in the field direction. Momen-
tum reversal can therefore be achieved in two dimensions, whereas the third one is not
affected by the magnetic field. In the absence of any electric field, the curvature of the
electron trajectory is proportional to the magnetic field B(t), i.e., the time-dependence
of the field represents the curvature of the trajectory. However, time-varying magnetic
fields induce disturbing electric fields. This can be accounted for but since the momen-
tum reversal is required to be independent of the direction of the electron momentum,
cylindrical symmetry of the induced electric field is required. For example, this can
be achieved if the magnetic field is created by a cylindrical solenoid. The cylindrical
symmetry also implies that the electron needs to be placed on the symmetry axis in
order to achieve refocusing. In the following, an example is given which can be treated
analytically. Momentum reversal can be achieved for two identical rectangular mag-
netic field pulses with proper timing. The electron can be guided along the trajectory
shown in Fig. 5.2. The field configuration has to be rotationally symmetric such that
the momentum reversal works for every direction of the initial momentum. The homo-
geneous magnetic field is turned on when the electron reaches point T and the electron
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Figure 5.1: Image (a) shows a schematic drawing of a classical electron trajectory in
a time-dependent magnetic field perpendicular to the y-z plane. The particle with
velocity v starts at point S and travels to T where the magnetic field is turned on.
The magnetic field pulse is chosen in a way that the momentum of the electron has
reversed when it arrives at T for the second time. Then, the electron will return
to its initial position S. If this is applied to an ensemble of particles representing an
electron wave packet, the original distribution can consequently be restored in the
planes perpendicular to the magnetic field. Such electron trajectories which imply a
momentum reversal can be achieved by two magnetic field pulses with proper widths
and time delay as depicted schematically in (b).

moves on a circular path. Additionally, the induced electric field changes the momen-
tum of the electron and an edge occurs in the trajectory. The induced electric field is
rotationally symmetric and the electron experiences a kick to the left. The magnitude
of the electric field is calculated from the following Maxwell equation:

∮

~Ed~s = −1

c
~̇B · ~F ⇒ E =

r

2c
Ḃ , (5.1)

where the line-integral is evaluated along the circular edge of the area denoted by ~F .
The equation on the right side is a relation for the absolute values of the fields. The
momentum kick ∆v is given by

∆v =

∫

Edt =
r

2c
B =

v0t1
2c

B . (5.2)

Here, t1 denotes the time interval which the electron needs to move from S to T with
velocity v0. In the following, it will be shown, that the relation between the magnetic
field and the time interval needs to be B/c = 2/t1. With this condition, one finds
∆v = v0. Thus, the direction of motion changes by 45 degrees and the velocity increases
from v0 to

√
2v0. The radius of the circular trajectory in the magnetic field is then

found to be

r′ =

√
2v0c

B
=

√
2

2
v0t1 =

√
2

2
r . (5.3)

From these results, it is seen, that the center of the circle is at the point M and the
electron motion is given as shown in Fig. 5.2.
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Figure 5.2: The electron moves upwards when the magnetic field is turned on and the
motion describes a circle until the magnetic field is turned off again. The kinks in the
trajectories are due to the induced electric fields. After two magnetic pulses with the
correct timing the electron has reversed its momentum.

When the magnetic field is turned off again as the electron arrives at the point U,
the induced electric field pushes the electron upwards. Since the kick has the same
strength as the first one, the electron is slowed down in a way that it moves with its
initial velocity v0 to the right.

The pulse length of the magnetic field is given by the time the electron needs to
travel from T to U which is found to be T = πt1/2.

The same procedure with a second magnetic pulse is repeated as the electron
reaches V. Finally, when the electron returns to S, it has reversed its momentum.
Note that the momentum reversal works for arbitrary initial velocities concerning both
the direction and the absolute value.

The whole process is summarized in Fig. 5.3.
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Figure 5.3: Two rectangular magnetic pulses with proper timing and amplitude can
be applied for a momentum reversal. These pulses give rise to the trajectory shown in
Fig. 5.2.

Other pulse shapes such as two Gaussian pulses [as depicted in Fig. 5.1(b)] are
possible for implementing magnetic refocusing, but the correct timing and the required
pulse widths have to be determined numerically.
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5.2 Refocusing by a harmonic potential

Wave packets can also be refocused by means of a harmonic potential which is turned
on for a certain time. This can be understood with the classical picture where the
wave packet is modeled with an ensemble of classical trajectories and it can as well be
verified quantum mechanically.

5.2.1 Classical analysis

In the following, the one-dimensional case is considered which can be applied to all
three dimensions separately. If a harmonic potential with the frequency Ω is turned on
for the time tC after the classical particle has propagated freely for some time t1, the
particle moves freely again with some other velocity. It moves either towards or away
from its initial position. Now, it is assumed that the particle will return to its initial
position x0 at some time t after the harmonic potential has been turned off again. If
the parameters t1, Ω and tC are chosen properly, the instant when the particle revisits
its initial position can become independent of the initial conditions x0 and p0. This
can be expected, since there are three parameters and only two independent initial
conditions. Note that the equations of motion after the harmonic field pulse can be
written as a linear superposition x(t) = f1(t)x0 + f2(t)p0 of two functions f1(t) and
f2(t) because both the free propagations and the dynamics in the potential follow from
linear equations of motion (ẍ = 0 and ẍ = −Ω2x).

The solutions are given by the following equations

x(t) = p2t+ x2 , (5.4a)

x2 = x1 cos ΩtC +
p1

Ω
sinΩtC , p2 = −x1Ω sin ΩtC + p1 cos ΩtC , (5.4b)

x1 = p1t1 + x0 , p1 = p0 . (5.4c)

The first and the third line describe the free propagations, whereas the second line
is the solution of the harmonic oscillator. These equations are coupled by the initial
conditions. One finds the following:

x(t) = [(1 − ΩtΩt1) sin(ΩtC) + (Ωt+ Ωt1) cos(ΩtC)]
p0

Ω
+ [cos(ΩtC) − Ωt sin(ΩtC)]x0 .

(5.5)
The condition that the particle revisits its initial position x = x0 independent of its
initial conditions yields two equations. The term proportional to p0 has to vanish and
the one proportional to x0 has to be equal to one. This reduces to these conditions:

cos(ΩtC) − Ωt sin(ΩtC) = 1 , (5.6a)

Ωt+ Ωt1 + [(Ωt)2 + 1] sin(ΩtC) = 0 . (5.6b)

These equations have a variety of solutions. Here, with ΩtC = 3π/2 and Ωt1 = 1, the
simplest one will be discussed. In this case, the particle revisits its initial position at
the instant when Ωt = 1. In the classical picture, any (one-dimensional) distribution of
an ensemble of classical particles will be restored at this moment since each ensemble
member revisits its origin, independent of its initial conditions. This mechanism can
be applied in three orthogonal directions to yield three-dimensional refocusing.
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5.2.2 Quantum mechanical analysis

The result of the last section is employed to verify that refocusing with a harmonic
potential is also found in quantum mechanics. The idea is to calculate the propagator
for the whole process and to show that the initial probability density distribution is
reproduced.

The propagator for a free particle DF and the one for the harmonic oscillator DH

are given by (see e.g. [93]):

DF (x′, t;x, 0) =
1√
2πit

exp i
(x′ − x)2

2t
, (5.7a)

DH(x′, t;x, 0) =

√

Ω

2πi
sin−1/2(Ωt) exp iΩ

(x′2 + x2) cos(Ωt) − 2x′x

2 sin(Ωt)
. (5.7b)

These functions propagate the amplitude of a wave function from some point x at time
t = 0 to some other point x′ at time t. For the special case with ΩtC = 3π/2 and
Ωt1 = Ωt = 1, where refocusing is expected, these propagators reduce to

DF (x′,Ω−1;x, 0) =

√

Ω

2πi
exp i

Ω

2
(x′ − x)2 , (5.8a)

DH(x′, 3π(2Ω)−1;x, 0) =

√

Ω

2πi
exp iΩx′x . (5.8b)

The propagator D for the whole process is found by coupling the propagators in Eqs.
(5.8):

D(x, x0) =

∫ ∞

−∞
DF (x, x2)

∫ ∞

−∞
DH(x2, x1)DF (x1, x0)dx1dx2

=

(

Ω

2πi

)3/2 ∫∫

exp i
Ω

2
[(x− x2)

2 + 2x2x1 + (x1 − x0)
2]dx1dx2 .

(5.9)

By means of the Fourier representation of the δ-function, the following propagator is
found:

D(x, x0) = i exp

(

i
Ω

2
x2

)

δ(x− x0) . (5.10)

If this result is applied to some arbitrary wave function ψ(x), it is found that the
propagator only changes the phase of the wave function:

ψ(x) →
∫

D(x, x0)ψ(x0) = i exp

(

i
Ω

2
x2

)

ψ(x) . (5.11)

The initial probability distribution |ψ(x)|2 is therefore recovered after the process. This
means that quantum mechanics yields the result in terms of magnetic refocusing which
has been expected on account of the classical analysis.

5.2.3 Harmonic potentials in laser beams

For implementing the idea of refocusing with harmonic potentials, strong harmonic
fields are needed which can be turned on and off very quickly. An idea to realize strong
harmonic potentials is to utilize the ponderomotive potential of an intense laser beam.
As will be shown below, an electron has some potential energy if it is placed inside of a
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laser beam, where the energy is related to the amplitude of the vector potential. With
the corresponding beam profile, various ponderomotive potentials can be realized. For
example, it has been demonstrated that electrons can be confined in the ponderomotive
potential of an intense laser beam [94]. The classical motion of the electron in the laser
beam can be considered as the superposition of a quick oscillation following the time-
dependent laser electric field and a slower motion which corresponds to the motion in
the ponderomotive potential. Thus, with a certain spatial laser profile, the motion of
an electron in an effective harmonic potential can be realized. The period of time the
harmonic potential is turned on is determined by the length of the laser pulse. The
physics of effective motions in oscillating fields is well-known from high-frequency traps,
where charged particles are confined in an effective potential (see, for instance, [95]).

Classical description

The equations of motion for a classical electron in a laser field are easily obtained from
the Hamiltonian equations:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, H =

1

2

(

~p− 1

c
~A

)2

, (5.12a)

⇒ ẍi = −1

c
Ȧi +

1

c
ẋk

(

∂Ak

∂xi
− ∂Ai

∂xk

)

. (5.12b)

Here, the Einstein sum convention is applied1, where the indices denote the components
of the vector potential ~A, the momentum ~p and the position ~x, respectively. In the
nonrelativistic regime, the motion is dominated by the electric field, i.e. by the term
−Ȧi/c. The electron position is therefore written as the sum xi = xE

i + xP
i , where

xE
i and xP

i denote the motion due to the electric field and due to the ponderomotive
potential, respectively. The amplitude of xE

i is assumed to be small, whereas there is
no restriction on xP

i . Thus, the spatial dependence of the electric field is expanded
about xP

i to linear order:

Ȧi(xk) = Ȧi(x
P
k ) +

∂Ȧi

∂xk′

(xP
k )xE

k′ . (5.13)

Since the Lorentz force depends on the velocity, the terms due to the magnetic field
(∂Ai/∂xj) are suppressed by a small factor of ẋi/c. Then, it is sufficient to approximate
the spatial dependence of the magnetic terms on xi = xE

i + xP
i by xi ≈ xP

i because
together with the small term ẋi/c the error is of quadratic order.

The time-dependence of the vector potential in a laser field is chosen to be an
oscillation with an optical frequency ω:

Ai(xk, t) = A0
i (xk) cos(ωt) . (5.14)

Such a sinusoidal time-dependence is exact for standing laser waves [compare e.g. Eq.
(3.1c)].

1If an index occurs twice in a product, it is summed over. For example, xipi+xipj is an abbreviation
for (

P

i xipi) + xipj .
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The oscillating motion xE
i is then given by

ẍE
i = −1

c
Ȧi(x

P
k ) =

ω

c
A0

i (x
P
k ) sin(ωt) , (5.15a)

ẋE
i = −1

c
A0

i (x
P
k ) cos(ωt) , (5.15b)

xE
i = − 1

ωc
A0

i (x
P
k ) sin(ωt) . (5.15c)

General initial conditions are included in the motion xP
i due to the ponderomotive

potential. This result is inserted into the equation of motion (5.12b) to yield

ẍP
i = − 1

c2
Ak(x

P
i )
∂A0

i

∂xk
(xP

i ) sin2(ωt)

+
1

c

(

ẋP
k − 1

c
A0

k(x
P
i ) cos(ωt)

)(

∂A0
k

∂xi
(xP

i ) − ∂A0
i

∂xk
(xP

i )

)

cos(ωt) . (5.16)

The quickly varying functions cos(ωt) and sin(ωt) can be averaged over several periods,
whereas factors depending on xP

i are considered to be constant during the time of
averaging. With

sin(ωt) = cos(ωt) = 0 , (5.17a)

sin2(ωt) = cos2(ωt) =
1

2
, (5.17b)

the following effective motion is then found:

ẍP
i = − 1

2c2
A0

k(x
P
i )
∂A0

k

∂xi
(xP

i ) , (5.18)

which in vector notation reads

~̈xP = −~∇Φp , ~∇Φp ≡ 1

4c2
~A0(~xP ) · ~A0(~xP ) , (5.19)

where Φp is the ponderomotive potential. This equation describes the classical motion
of a particle in a potential.

Quantum mechanical description

The same effective potential can be derived by means of the Schrödinger equation [96]
which reads

iψ̇ =
1

2

(

−i~∇− 1

c
~A

)2

ψ

= −1

2
∆ψ − i

c
~A0 · ~∇ cos(ωt)ψ +

1

2c2
~A0 · ~A0 cos2(ωt)ψ .

(5.20)

The same time-dependence as previously [see Eq. (5.14)] has been inserted, here. With
the averaging procedure as in Eqs. (5.17) and assuming that the wave function ψ varies
slowly, the Schrödinger equation for a particle in a potential is found:

iψ̇ = −1

2
∆ψ +

1

4c2
~A0 · ~A0ψ = −1

2
∆ψ + Φpψ . (5.21)
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Effective harmonic potentials in laser fields

The previous results can now be applied to construct a ponderomotive potential in
which the electron wave packet can be refocused. An effective harmonic potential can
be achieved by means of a laser which is run in the TEM01 mode2. Such a laser pulse
has the following beam profile perpendicular to the propagation direction [98]:

~Ex = E0(t)êx
x

wx
exp−

(

x2

w2
x

+
y2

w2
y

)

. (5.22)

The parameters wx,y determine the widths of the laser focus. As opposed to the usual
case where the beam profile is Gaussian, the electric field is proportional to x. Close to
the center of the beam, i.e. for x2/w2

x ≪ 1 and y2/w2
y ≪ 1, the electric field strength

depends linearly on x. The corresponding vector potential is then given by

~Ax ≈ A0(t)êx
x

wx
, (5.23)

which according to Eq. (5.19) yields an effective harmonic potential for the x direction.
This can be extended to three dimensions if three, mutually perpendicular laser beams
with the same mode ~Ax, ~Ay and ~Az are superimposed. The ponderomotive potential
then has the desired form:

Φp =
1

4c2

(

~Ax + ~Ay + ~Az

)2
=

1

4c2

[

(

A0
x

x

wx

)2

+

(

A0
y

y

wy

)2

+

(

A0
z

z

wz

)2
]

. (5.24)

With this potential, electron wave packets can be refocused in three dimensions.

2This way of creating a potential has been discussed in [97] for trapping electron bunches.



Chapter 6

Refocused relativistic recollisions

A relativistic recollision scheme with two consecutive laser pulses has been introduced
in Sec. 4.2. The luminosity has turned out to be rather low for currently available laser
systems which makes, for instance, the creation of electron-positron pairs rare events.
One reason for the low luminosity is the limited repetition rate of strong laser systems.
Additionally, there is the more fundamental problem of wave packet spreading which is
responsible for the low reaction rates. In the previous chapter, two different methods
have been introduced which can be employed to reverse the spreading dynamics of wave
packets. In the following, these ideas of magnetic refocusing and refocusing by means
of a harmonic potential are incorporated into the relativistic recollision scheme with
two consecutive laser pulses.

6.1 Recollisions with magnetic refocusing

The magnetic field pulse which reverses the spreading dynamics is applied between the
two laser pulses. This means that the wave packet refocuses in two dimensions when
it is driven back to the core. Since refocusing only works in the plane perpendicular
to the magnetic field direction there is one direction left in which refocusing does not
occur. For that reason, the orientation of the magnetic field has to be chosen in a way
that the reaction probability is maximized. This is the case if the orientation of the
nonrefocused direction of the wave packet coincides with the direction of motion.

Although the core is much heavier than the electron, it is still moved by the lasers,
but it returns to its original place at the same instant as the electron.

As in the double-pulse scheme of Sec. 4.2, the system can be tuned in a way that
the recollision occurs when the kinetic energy of the electron has reached its maximum.
Furthermore, the recollision takes place as the wave packet is refocused to its initial
width.

6.1.1 Classical trajectories

The wave packet is again described by means of the classical Monte-Carlo approach of
phase-space averaging. Therefore, the classical equations of motion need to be known.
The dynamics of the electron in the two laser pulses has been discussed in Sec. 4.2.
The solutions which are linearized in the initial momenta are given by the following

89
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(1)

(2)

(3)

Figure 6.1: The first intense laser pulse ionizes an atom (1). As the electron is separated
from the core, its probability density distribution spreads. A magnetic field pulse is
employed (2) to reverse spreading in two dimensions. Finally, the electron is driven
back to the core by means of another intense laser pulse (3). The system can be tuned
in a way that the electron recollides with maximal kinetic energy and the direction in
which the electron wave packet is not refocused is parallel to its velocity vector.

equations [see Eqs. (4.14)]:

x = px0

(

t− 1

2ωc4

∫

A2(ϕ)dϕ

)

− 1

ωc

(

1 ± pz0

c

)

∫

A(ϕ)dϕ + x0 , (6.1a)

y = py0

(

t− 1

2ωc4

∫

A2(ϕ)dϕ

)

+ y0 , (6.1b)

z = pz0
t∓ px0

ωc2

∫

A(ϕ)dϕ +
1

2ωc3

(

±1 +
pz0

c

)

∫

A2(ϕ)dϕ + z0 , (6.1c)

ϕ ≡ ωt∓ ω

c
z . (6.1d)

The laser propagation is again in the z direction for the first laser pulse and in the
−z direction for the second.

The effect of the magnetic field pulse is to reverse the initial momentum of the
electron in two dimensions, whereas the dynamics in the third dimension is a free
propagation. If the magnetic field points in the z direction, the classical particle state
after the magnetic pulse is given by the following equations in matrix notation:

















x
ẋ
y
ẏ
z
ż

















=

















1 0
0 −1

1 0
0 −1

1 tC
0 1

















·

















x0

px0

y0

py0

z0
pz0

















≡ M̃ ·

















x0

px0

y0

py0

z0
pz0

















. (6.2)

To align the broadening direction with the velocity vector at the instant of recollision,
the magnetic field needs to be tilted by an angle δ about the y axis. The matrix M̃ is
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transformed via the rotation matrix T :

M ≡ T · M̃ · T−1 , T =

















cos δ 0 sin δ 0
0 cos δ 0 sin δ

1 0
0 1

− sin δ 0 cos δ 0
0 − sin δ 0 cos δ

















. (6.3)

Eq. (6.2) then transforms to

















x
ẋ
y
ẏ
z
ż

















=

















1 tC sin2 δ 0 tC sin δ cos δ
0 − cos 2δ 0 sin 2δ

1 0
0 −1

0 tC sin δ cos δ 1 tC cos2 δ
0 sin 2δ 0 cos 2δ

















·

















x0

px0

y0

py0

z0
pz0

















= M ·

















x0

px0

y0

py0

z0
pz0

















.

(6.4)
Now, the dynamics of the electron in the two laser pulses and the magnetic field [see
Eqs. (6.1) and (6.4)] need to be connected by the corresponding initial conditions
in order to yield the trajectory of the returning electron. The following equations of
motion are found:

x = px0
g1 + pz0

g3 + ∆x+ x0 , (6.5a)

y = py0
g5 + y0 , (6.5b)

z = pz0
g2 + px0

g4 + ∆z + z0 , (6.5c)

with the abbreviations

∆x ≡ − 1

ωc

∫

A2(ϕ)dϕ , (6.6a)

∆z ≡ 1

2ωc3

(
∫ ∞

−∞
A2

1(ϕ1)dϕ1 −
∫

A2
2(ϕ)dϕ

)

, (6.6b)

g1 ≡ − cos 2δ

(

t− 1

2ωc4

∫

A2
2(ϕ)dϕ

)

+
1

ωc2
sin 2δ

∫

A2(ϕ)dϕ

+

(

t1 −
1

2ωc4

∫ ∞

−∞
A2

1(ϕ1)dϕ1 + tC sin2 δ

)

, (6.6c)

g2 ≡ cos 2δ

(

t+
1

2ωc4

∫

A2
2(ϕ)dϕ

)

+
1

ωc2
sin 2δ

∫

A2(ϕ)dϕ

+

(

t1 +
1

2ωc4

∫ ∞

−∞
A2

1(ϕ1)dϕ1 + tC sin2 δ

)

, (6.6d)

g3 ≡ sin 2δ

(

t− 1

2ωc4

∫

A2
2(ϕ)dϕ

)

+
1

ωc2
cos 2δ

∫

A2(ϕ)dϕ + tC sin δ cos δ , (6.6e)

g4 ≡ sin 2δ

(

t+
1

2ωc4

∫

A2
2(ϕ)dϕ

)

− 1

ωc2
cos 2δ

∫

A2(ϕ)dϕ + tC sin δ cos δ , (6.6f)

g5 ≡
(

t1 −
1

2ωc4

∫ ∞

−∞
A2

1(ϕ1)dϕ1

)

−
(

t− 1

2ωc4

∫

A2
2(ϕ)dϕ

)

. (6.6g)

The wave packet maximum is described by the trajectory with vanishing initial mo-
mentum ~p0 = 0 because this will be—according to the initial momentum distribution
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chosen later on—the most likely initial state. Recollisions therefore occur if ∆x and ∆z
vanish at the same time as seen from Eqs. (6.5). These recollision conditions are iden-
tical to the ones in the model without refocusing. Therefore, the same vector potentials
chosen previously can be applied which ensure recollisions with maximal kinetic energy
[see Eq. (4.21)]:

A1(ϕ) ∝
{

cosϕ · cos2(ϕ/l) |ϕ/l| ≤ π/2
0 |ϕ/l| > π/2

, (6.7a)

A2(ϕ) =
√

2A1(ϕ) , where l = 4, 6, 8, . . . . (6.7b)

Now, the classical dynamics is known and it can be employed to construct a wave
packet as shown in the next section.

6.1.2 Wave packet dynamics

The equations of motion have to be solved for the initial momenta to yield the func-
tion ~g = (px0

, py0
, pz0

) and the corresponding Jacobian needed in the formula for the
probability density (1.3). One arrives at

px0
=
g2(x− x0 − ∆x) − g3(z − z0 − ∆z)

g1g2 − g3g4
, (6.8a)

py0
=
y − y0

g5
, (6.8b)

pz0
=
g1(z − z0 − ∆z) − g4(x− x0 − ∆x)

g1g2 − g3g4
, (6.8c)

and

∣

∣

∣

∣

∂~g

∂~x

∣

∣

∣

∣

=
1 + 1

2c4A
2
2

(g1g2 − g3g4)g5
+

(g3g
′
4 − g1g

′
2)(z − z0 − ∆z) + (g4g

′
2 − g2g

′
4)(x− x0 − ∆x)

(g1g2 − g3g4)2g5
.

(6.9)
The initial position and momentum distributions ρ0 and ρ̃ are again chosen to be
the Gaussians (1.10), where the initial widths are related according to Heisenberg’s
relation by the minimal uncertainty of ∆w ·∆p = 1. Now, all ingredients are available
to calculate the probability density (1.3):

ρ(~x, t) =

∫∫∫

ρ′(~x, ~x0, t)ρ0(~x0) d
3x0 =

∫∫∫

ρ̃(~g(~x, ~x0, t))

∣

∣

∣

∣

∂~g(~x, ~x0, t)

∂~x

∣

∣

∣

∣

ρ0(~x0) d
3x0 .

(6.10)

Refocusing directions

Before carrying out the integrals, some useful and instructive information will be ex-
tracted from ρ′ which is the probability distribution if the initial probability density
of the wave packet is point-like, i.e., the particle is initially found at the point ~x0. If
magnetic refocusing works for laser-driven particles, the distribution ρ′ is expected to
become narrow again in two directions. In order to find out if and in which direc-
tions the probability density refocuses, it is analyzed in the vicinity of the wave packet
maximum.
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The motion of the maximum is described by the classical, implicit equations (6.5)
with zero initial momentum which according to ρ̃ is the most likely initial condition:

xm = − 1

ωc

∫ ω(t+zm/c)

0
A2(ϕ)dϕ + x0 , (6.11a)

ym = y0 , (6.11b)

zm =
1

2ωc3

(

∫ ∞

−∞
A2

1(ϕ1)dϕ1 −
∫ ω(t+zm/c)

0
A2

2(ϕ)dϕ

)

+ z0 . (6.11c)

The solution of these equations does not need to be known explicitly in order to find
the expression for the wave packet in the vicinity of its maximum.

The first step, is to expand the integral expressions in Eqs. (6.8) linearly about zm
according to

∫

A2(ϕ)dϕ ≈
∫ ω(t+zm/c)

0
A2(ϕ)dϕ +A2(t+ zm/c)

ω

c
(z − zm) . (6.12)

With a typical sin-like shape of the vector potential, the linear approximation works
well as long as (z − zm)ω/c is small compared to one. In the vicinity of interest for
refocused wave packets, this condition is fulfilled since ω/c ≈ 4 × 10−4 for the laser
wave length of 800 nm. Neglecting terms higher than linear order in (z − zm)ω/c and
(x− xm)ω/c, Eqs. (6.8) reduce to:

px0
=
g2(zm)

[

(x− xm) + 1
c2A2(z − zm)

]

− g3(zm)
[

1 + 1
2c4A

2
2

]

(z − zm)

g1g2 − g3g4
, (6.13a)

py0
=
y − y0

g5
, (6.13b)

pz0
=
g1(zm)

[

1 + 1
2c4
A2

2

]

(z − zm) − g4(zm)
[

(x− xm) + 1
c2
A2(z − zm)

]

g1g2 − g3g4
. (6.13c)

The probability density ρ′ then reads

ρ′(~x, t) ∝ exp−(y − ym)2

∆p2g2
5

× exp−a(zm)(x− xm)2 + 2b(zm)(x− xm)(z − zm) + d(zm)(z − zm)2

∆p2(g1g2 − g3g4)2
,

a = g2
2 + g2

4 ,

b = (g2
2 + g2

4)
1

c2
A2 − (g2g3 + g1g4)

(

1 +
1

2c4
A2

2

)

,

d =

[

g2
1

c2
A2 − g3

(

1 +
1

2c4
A2

2

)]2

+

[

−g4
1

c2
A2 + g1

(

1 +
1

2c4
A2

2

)]2

.

(6.14)

The width in the y direction is read off to be ∆pg5. With the recollision condition
∆z = 0 [see Eq. (6.6b)] which holds for the maximum, g5 is found to be zero for t = t1,
i.e., when the time duration of the electron in the second laser pulse equals the duration
in the first one. The probability density is then strongly focused in the vicinity of the
plane y = 0. Note that for outer parts of the distribution (z 6= zm), the recollision
condition is not fulfilled exactly and thus refocusing is not perfect (this effect is nicely
seen in Fig. 6.4(c) for the second refocusing direction).
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To analyze the wave packet in the x and the z direction, the density can be rewritten
with the coordinates of a rotated system (x̃, z̃) such that the following quadratic form
in Eq. (6.14) is diagonal:

a(zm)(x− xm)2 + 2b(zm)(x− xm)(z − zm) + d(zm)(z − zm)2

=

(

x− xm

z − zm

)T (
a b
b d

)(

x− xm

z − zm

)

. (6.15)

With the eigenvalues λ± of the matrix in Eq. (6.15)

λ± =
a+ d

2
±

√

(

a+ d

2

)2

− (g1g2 − g3g4)2
(

1 +
1

2c4
A2

2

)2

, (6.16)

the probability density reduces to the form:

ρ′(x, z) ∝ exp−
[

x̃2

w2
1

+
z̃2

w2
2

]

, w1,2 ≡
√

∆p2(g1g2 − g3g4)2

λ±
. (6.17)

Additionally to the y direction, the distribution is expected to refocus for one further
direction. Thus, one of the values ∆w1,2 should tend to zero whereas the other one
remains finite. With some algebra and by means of the recollision condition ∆z = 0
for the maximum, the following expression is found:

g1g2 − g3g4 = (t− t1)(t+ t1 + ∆t cos2 2δ) . (6.18)

As t− t1 becomes small, this yields the following limits:

∆w1 = 0 , ∆w2 =
∆p

√
a+ d

1 + 1
2c4
A2

2

. (6.19)

This means, refocusing occurs in the x̃ direction with the smallest width reached at the
same time t− t1 as for the y direction.

Although the analysis here is for Gaussian wave packets, it can be argued that re-
focusing occurs as well for other wave packets with different momentum compositions.
The minimum widths in the refocusing directions ∆w1 and ∆wy do not depend on ∆p,
i.e., if the spectrum of initial momenta is broadened by increasing ∆p, the minimum
widths remain zero. The initial momentum distribution does therefore not affect re-
focusing. However, since the width ∆w2 is proportional to ∆p, the initial momentum
distribution determines how the wave packet is distributed along the broadening di-
rection, which has a certain influence on the reaction rate of recollisions. As will be
seen in the next section, averaging over the initial position to get the final form for
the probability density ρ corresponds to a superposition of slightly shifted probability
densities, which does not spoil refocusing either. Refocusing is therefore independent
of the initial electron state.

Magnetic field direction

With the eigenvector corresponding to λ−, which is found to be (−b, a−λ−), the angle
α between the z and the z̃ direction is given by [compare the diagonalization of the
quadratic form (2.20)]:

tanα = − b

a− λ−
. (6.20)
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At the instant when the wave packet is refocused, λ− approaches zero, and with some
algebra the result for the angle α reduces to

tanα = − 1

c2
A2 +

tC + 2
(

t− 1
2ωc4

∫

A2
2(ϕ)dϕ

)

tC + 2
(

t+ 1
2ωc4

∫

A2
2(ϕ)dϕ

)

(

1 +
1

2c4
A2

2

)

tan δ . (6.21)

Note that the magnetic field direction (determined by δ) only coincides with the
broadening direction (given by α) in the nonrelativistic limit of weak fields A2/c

2 ≪ 1
where even magnetic field effects are negligible.

Now, the goal is to chose the angle δ in a way that the directions of minimal widths
are orthogonal to the velocity of the particle in order to maximize the current as the
maximum of the particle recollides. This calculation is accurate only for the maximum
of the wave packet. However, the influence of outer parts on the total reaction rate of
recollisions will be shown to be negligible (see Fig. 6.9).

The velocity is derived from the classical equations of motion (6.5) where the tra-
jectory of the wave packet maximum has no initial momentum. Differentiating with
respect to time yields the following result:

ẋ = −c ·
1
c2
A2(ϕ)

1 + 1
2c4
A2

2(ϕ)
, (6.22a)

ż = −c ·
1

2c4A
2
2(ϕ)

1 + 1
2c4
A2

2(ϕ)
. (6.22b)

With the condition that the wave packet has the desired orientation

tanα = ẋ/ż =
2c2

A2
, (6.23)

the optimum angle δm for the magnetic field direction is found to be:

tan δm =
2c2

A2
·
tC + 2

(

t+ 1
2ωc4

∫

A2
2(ϕ)dϕ

)

tC + 2
(

t− 1
2ωc4

∫

A2
2(ϕ)dϕ

) . (6.24)

Laser timing

There is another important point which needs to be addressed. The instant of maximal
refocusing t = t1 needs to coincide with the moment of recollision which is not trivial
since the two laser pulses have different intensities. This condition can be fulfilled
by the correct timing of the two laser pulses. The times t and t1 which elapse while
the lasers act follow from the phase (6.1d), where the motion of the maximum in the
z direction is given by z = ∆z [see Eq. (6.5c)]:

ωt1 = ϕ1 +
1

2c4

∫

A2
1(ϕ

′)dϕ′ , ωt = ϕ+
1

2c4

∫

A2
2(ϕ

′)dϕ′ . (6.25)

Together with the recollision condition ∆z = 0 the time difference reduces to

ω(t1 − t) = ϕ1 − ϕ . (6.26)

For the pulse shape chosen [see Eq. (6.7)] and considering that the recollision is sup-
posed to occur when half of the laser pulse has passed, the difference between the
periods of time in the laser fields is found to be

∆t = t1 − t =
πl

2ω
. (6.27)
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The time difference between recollision and maximal refocusing can be compensated
with a delay of ∆t between the magnetic field pulse and the second laser pulse, i.e., in
the theoretical description, the vector potential A2 simply remains equal to zero until
the second pulse arrives at t = ∆t.

Probability density

The expression for the probability density (6.10) contains a three-dimensional integral
which averages the density ρ′ over the initial probability distribution ρ0. However, with
a suitable approximation, the problem can be reduced to two one-dimensional integrals.
First, the integration with respect to y0 is a Gaussian integral which can be carried
out immediately. The idea to simplify the remaining double integral is to omit the
integration corresponding to the broadening direction because for this case, the width
of the initial probability density is small compared to the width of the wave packet. In
other words, the initial probability distribution can be approximated by a δ-function
and the integration becomes trivial. This leaves another one-dimensional integration.

To incorporate this idea, one needs to analyze how the probability density ρ′ depends
on the initial position. A variation of the initial position involves a shift of the maximum
whose position is given by the implicit Eqs. (6.11). For the time when the maximum
is close to the origin, i.e., at the time of recollision, they can be solved approximately.
The integral expressions are expanded about z = 0 (see Eq. (6.12) with zm = 0). With
the recollision conditions ∆x = ∆z = 0, the following result is obtained:

xm = x0 −
1
c2A2

1 + 1
2c4
A2

2

z0 , (6.28a)

zm =
z0

1 + 1
2c4A

2
2

. (6.28b)

These equations show how a shift of the initial position changes the location of the
maximum of the probability density when it recollides. To shift the wave packet along
the broadening direction characterized by the angle α, the initial position has to be
changed according to

tanα =
xm

zm
= − 1

c2
A2 +

(

1 +
1

2c4
A2

2

)

x0

z0
,

x0

z0
≡ tan η , (6.29)

where the corresponding angle η is different from α for non-negligible values of the
vector potential. The integration over the initial position should be carried out per-
pendicular to the direction defined by η, i.e., in the direction which corresponds to the
refocusing direction. To carry out the one-dimensional integral, the initial position is
replaced by

x0 = s0 sinβ , z0 = s0 cos β , (6.30)

where s0 is the new integration parameter and β denotes the angle between the in-
tegration direction and the z axis which is given by β = η + π/2. With Eq. (6.21),
the following relation is found for the angles of the magnetic field direction δ and the
integration direction β:

cot β = −
tC + 2

(

t− 1
2ωc4

∫

A2
2(ϕ)dϕ

)

tC + 2
(

t+ 1
2ωc4

∫

A2
2(ϕ)dϕ

) tan δ . (6.31)
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This equation is closely related to Eq. (6.21) which describes the connection of the
broadening direction (given by α) and the magnetic field direction (given by δ). If
the density distribution is considered at rest, it is not distorted by the laser field (by
retardation effects) and the broadening and the integration direction should be perpen-
dicular. In theory, the particle can be stopped if the vector potential drops off to zero
right after the maximum has reached the point of recollision. As expected with this
argument, Eq. (6.31) is reproduced if in Eq. (6.21) the vector potential drops off to
zero and α is replaced by β+π/2. With this argument it is easy to show that averaging
along the broadening direction can be neglected, simply by analyzing the probability
density with A2 = 0. ρ′ then reduces to a simple two-dimensional Gaussian distribution
with the widths ∆w1 = 0 and ∆w2 = ∆p

√
a+ d [see Eqs. (6.19)]. The smallest value

∆w2 = 2t1∆p is found for tc = 0 and γm → 1 which for the pulse shape given by
Eq. (6.7a) equals ∆w2 = 2πl∆p/ω. For a typical value ∆p = 0.5 a.u. and for a short
laser pulse with l = 6, one finds ∆w2 ≈ 330 which is much greater than the widths
∆x0 = ∆z0 = 1/∆p = 2 of the corresponding initial position distribution. With higher
laser intensities the width ∆w2 increases quickly, showing that the approximation of
a point-like initial probability distribution in the broadening direction becomes even
better. Of course, ∆w2 can be shown to be large for A2 6= 0 as well, i.e., without the
above argument by plugging in the parameters needed. Due to Lorentz contraction
∆w2 is smaller by a factor of γ, but the effect of different initial conditions on the
position of the maximum is reduced likewise [see Eqs. (6.28)].

Finally, with Eq. (6.30), the expression for the probability distribution (6.10) sim-
plifies to the following form which contains two one-dimensional integrals:

ρ(x, y, z) ≈
∫∫

ρ′(x, y, z, s0 sinβ, y0, s0 cos β)

(

∆p2

π

)3/2

exp−∆p2(y2
0 + s20) dy0ds0 .

(6.32)
After some algebra the result is found to be:

ρ(x, y, z) =
exp− y2

∆w2
y
− ∆p−4f2

5
+f2

1
+f2

3

∆w2
xz√

π
3
∆wy∆wxz∆p

[

1 +
1

2c4
A2

2 −
∆p−2f5(f2g

′
2 − f4g

′
4)

∆w2
xz

+
∆p2[(g3g

′
4 − g1g

′
2)(z − ∆z) + (g4g

′
2 − g2g

′
4)(x− ∆x)](g1g2 − g3g4)

∆w2
xz

]

, (6.33)

with the definitions

f1 ≡ g2(x− ∆x) − g3(z − ∆z) , (6.34a)

f2 ≡ g2 sin β − g3 cos β , (6.34b)

f3 ≡ −g4(x− ∆x) + g1(z − ∆z) , (6.34c)

f4 ≡ −g4 sin β + g1 cos β , (6.34d)

f5 ≡ −(x− ∆x) cos β + (z − ∆z) sin β , (6.34e)

∆wy ≡
√

∆p−2 + ∆p2g2
5 , (6.34f)

∆wxz ≡
√

∆p−2(f2
2 + f4)2 + ∆p2(g1g2 − g3g4)2 . (6.34g)

The structure of the dynamics in the y direction is very simple. It is a Gaussian
distribution with the width ∆wy. As found previously in Sec. 6.1.2 (Refocusing direc-

tions), the coefficient g5 vanishes at the instant of recollision. This means that in the
y direction, the wave packet refocuses to the initial width ∆wy = 1/∆p.
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6.1.3 Results and discussion

With the analytical expression for the probability density ρ, wave packets can be plotted
and the reaction probability of recollision reactions can be calculated. For a comparison,
it is useful to consider a nonspreading Gaussian wave packet with constant spatial
widths ∆w which moves in the z direction with velocity u:

ρref =
(√
π∆w

)−3
exp

x2 + y2 + (z − ut)2

∆w2
. (6.35)

With a target fixed at the origin, the following reaction probability is found:

Ñref =

∫ ∞

−∞
σuρref (~x = 0)dt =

σ

π∆w2
. (6.36)

Later on, results will be related to the yield Nref ≡ Ñref (∆w = 1) of a reference wave
packet with spatial widths of ∆w = 1.

The reaction rate of a laser-driven electron has been calculated in Sec. 4.2.3 and
was found to be

Ṅ = σ
c

√

1 −
[

1 + 1
2c4
A2(ϕ)2

]−2
ρ . (6.37)

This expression can be integrated numerically to yield the total reaction probability
N =

∫

Ṅdt.
In the following, the parameters for the laser wave length and the parameter for the

pulse length are chosen to be λ = 800 nm and l = 6, respectively. The corresponding
laser pulse shape is depicted in Fig. 6.2 according to Eq. (6.7a).
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Figure 6.2: The time-dependence of the laser pulse at the origin is shown with the
amplitude normalized to one. The shape is given by Eq. (6.7a) (with the parameter
l = 6).

The strength of the magnetic field B is related to the time tC . The order of magni-
tude required can be estimated by the time t = 3π/B needed by an electron to travel
one and a half loops in a constant magnetic field. This would roughly correspond to
the trajectory shown in Fig. 5.1(a). For example, tC = 4000 a.u. corresponds to a
magnetic field of the order B ≈ 600 T. Magnetic fields of this strength with the re-
quired rotational symmetry can be created [99, 100], however, the time scale of these
pulses are in the microsecond regime, whereas such pulses would require lengths of only
100 fs for refocusing. Short magnetic field pulses in the picosecond regime have been
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created with relativistically moving electron bunches [101, 102] with field strengths in
the lower Tesla-regime. However, such an implementation would require the electrons
to approach from different sides simultaneously to account for the rotational symmetry
of the induced electric field (see Sec. 5.1). The first results presented are obtained for
magnetic fields with similar length tC = 500000 a.u. and the corresponding strength
B ∼ 4.5 T. Figure 6.3(a) shows the reaction probability, where the plotted energy range
covers the relativistic regime up to 1 GeV. The reaction rate reached for ∆p0 = 0.1 a.u.

2 20 200 2000
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2 20 200 2000
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N/Nref

N/Nref

γmγm

(i)
(i)

(ii)
(ii)

(iii)(iii)

(a) (b)

Figure 6.3: The reaction probability is plotted for different parameters. The resulting
values N are related to the reaction probability Nref corresponding to a Gaussian wave
packet with spatial widths of one atomic unit. Part (a) shows the dependence on the
maximum energy for a long magnetic field pulse with tC = 500000 a.u. and the initial
momentum widths (i) ∆p0 = 0.1 a.u., (ii) ∆p0 = 0.25 a.u. and (iii) ∆p0 = 0.5 a.u. The
energy of 1 GeV corresponds to γm = 2000 which is reached at the laser intensity of
roughly 1022W/cm2. The results for a short pulse with tC = 4000 a.u. are depicted in
(b). The initial momentum widths are chosen to be (i) ∆p0 = 1 a.u., (ii) ∆p0 = 0.5 a.u.
and (iii) ∆p0 = 0.25 a.u.

and γm = 200 corresponds to the yield of a Gaussian wave packet with spatial widths of
∆x1,2 ≈ 17 a.u., which is of the order of the initial widths with ∆x1,2 = 1/∆p0 = 10 a.u.
More efficient refocusing can be achieved by means of shorter magnetic field pulses as
shown in Fig. 6.3(b). The time between the pulses tC = 4000 a.u. allows for yields
that are by roughly two orders of magnitude higher.

Figure 6.4 shows the wave packets for different laser intensities as they return to
the core. The orientations of the density distributions also represent the directions of
motion because the orientation of the magnetic field has been chosen such that these
directions are equal.

The time-dependent current density at the origin corresponding to the wave packets
of Fig. 6.4 is shown in Fig. 6.5. As seen in the plots for the probability density where
the wave packets become shorter for higher energies, i.e., the collision times of the wave
packet decrease. Although the maximum current density increases, the total current
decreases as seen in Fig. 6.3.

The yield N strongly depends on the initial wave packet widths. On the one hand,
the minimal widths of refocusing are limited by the initial widths but on the other
hand, smaller widths imply faster wave packet spreading due to greater widths ∆p0

in momentum space. Since refocusing works for two dimensions only, rapid spreading
in the third direction reduces the reaction probability. There is a value for the initial
momentum width which maximizes the total yield as seen in Fig. 6.6.

There is a dependence of the yield on the time between the laser pulses tC as already
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Figure 6.4: The plots show distributions of the probability densities (logarithmic scale
over the range of four orders of the Euler number e) for different energies [(a) γm = 5,
(b) γm = 20, (c) γm = 80] and tC = 4000 a.u. at the instant when the maximum
returns to the origin. The initial width in momentum space is ∆p0 = 0.5 a.u. which
corresponds to spatial initial widths of ∆x = 2 a.u. The orientations of the longest
extensions of the wave packets coincide with the directions of motion.
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Figure 6.5: The diagrams show the time-dependent current densities of the returning
wave packets at the origin for different energies [(a) γm = 5, (b) γm = 20, (c) γm = 80].
∆t = 0 denotes the time when the maximum reaches the origin. For higher laser
intensities the maxima of the current densities increase, whereas the collision times
become shorter. The surface of the distribution which is proportional to the reaction
probability decreases for higher energies [see Fig. 6.3(b)].

seen from the difference for the two cases in Fig 6.3. The probability density only
refocuses in two dimensions, i.e., one-dimensional wave packet spreading still occurs
whose effect on the yield can obviously be influenced by the time of evolution as shown
in Fig. 6.7. Shorter times give better results and require higher magnetic fields. If the
momentum reversal occurs immediately after the first laser pulse, i.e., for tC = 0, the
yield of a nonspreading Gaussian wave packet which keeps its initial widths Ñref (∆p =
0.5)/Nref = 0.25 is almost reached for lower collision energies.

The previous analysis is based on the short laser pulses shown in Fig. 6.2. Longer
laser pulses imply the disadvantage that there is more time for spreading in the broad-
ening direction, because both the laser pulses and the time delay after the magnetic
field pulse according to Eq. (6.27) are longer. Thus, the yield is expected to decrease
as shown in Fig. 6.8 for pulses five times as long as previously.

The angle δm for the direction of the magnetic field direction given by Eq. (6.24)
has been deduced from the wave packet maximum which yields the highest current
density. Although outer parts with lower current densities are of less importance, the
total reaction probability might be optimized by a slightly different choice of δ. The
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Figure 6.6: The yield N/Nref is plotted versus the initial width in momentum space
with tC = 4000 a.u. Large widths enable small widths in coordinate space but also
imply faster spreading. Depending on the energy [(i) γm = 5, (ii) γm = 20, (iii) γm = 80]
there is an optimum value which maximizes the reaction probability.
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Figure 6.7: The total reaction probability is plotted versus the time between the laser
pulses. A magnetic field of the order B = 600 T and B = 150 T corresponds to
tC = 4000 a.u. and tC = 15000 a.u., respectively, i.e., with stronger magnetic fields the
yield increases. Energies are chosen to be (i) γm = 5, (ii) γm = 20 and (iii) γm = 80.

dependence of the yield on deviating angles is shown in Fig. 6.9. It is seen that the
angle δm actually agrees with the position of the maxima of the curves, i.e., the analysis
of the wave packet maximum is shown to be sufficient.

Fig. 6.10 shows the current densities of the wave packet for the axis n̂ perpendicular
to the velocity and the y direction for the relevant time interval of recollision. Slight
deviations of the magnetic field direction have strong effects on the position n of the
maximum current density because the orientation of the wave packet changes. Obvi-
ously, high yields are achieved if the current density is concentrated on the axis n = 0
as for δ = δm.

The best choice for the magnetic field direction is determined by Eq. (6.24). It
depends on the laser intensity and the time tC between the laser pulses. The dependence
is shown in Fig. 6.11.

Spin effects have not been considered here. However, slight deviations of the electron
trajectories which may occur for high energies can be eliminated if the electron spins
are aligned in a way that they point into the magnetic field direction of the laser pulses
[72].

Finally, two effects should be considered which can disturb the recollision process
if it is applied to a gas sample. First, the coulomb interactions of the electrons in the
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Figure 6.8: The total reaction probability depending on γm is plotted in (b) for a laser
pulse shown in (a) (see Eq. (6.7) with l = 30) which is five times as long as the one
used previously (see Fig. 6.2). A comparison with Fig. 6.3(b) shows that the yield is
reduced by a factor of less than two. The initial widths are chosen to be (i) ∆p = 1 a.u.,
(ii) ∆p = 0.5 a.u. and (iii) ∆p = 0.25 a.u.
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Figure 6.9: The yield strongly depends on the magnetic field direction. Shown is the
behavior for angles deviating from the value δm which has been determined analytically
[see Eq. (6.24)]. The energy is given by (i) γm = 5, (ii) γm = 20 and (iii) γm = 80.

ionized gas and second, the initial thermal velocity of the atoms.
In order to keep the deviations due to Coulomb interactions small, the process needs

to be fast enough such that the electron positions are not altered too much. Otherwise
recollisions are inhibited. Especially the time between the two laser pulses can be long
if the magnetic fields are not sufficiently strong and short. To estimate the magnitude
of the magnetic field strength required to keep the deviations small enough to enable
recollisions, consider the distance ∆r which an electron travels in a Coulomb potential
of a singly charged core during the time interval between the laser pulses tC . The initial
distance r0 is taken to be the mean distance between particles in a gas. For ∆r ≪ r0
the Coulomb problem (r̈ = −r−2) is solved by the equation:

∆r =
t2

2r20
. (6.38)

With the time interval tC = 4000 a.u. corresponding to a magnetic field pulse of the
order B ≈ 600 T and the mean distance of r0 = 2000 a.u. which corresponds to the
particle density of about 1015 cm−3, a shift of ∆r = 2 a.u. is found. This means, if wave
packets are refocused to widths of a few atomic units in a gas with the above density,
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Figure 6.10: The current density (logarithmic scale) of the direction perpendicular to
the velocity and the y direction (denoted by n) is plotted as a function of time. ∆t = 0
is the time when the maximum is found at the origin. If the angle δ which defines the
magnetic field direction deviates from δm [(a) δ − δm=̂ − 1, (b) δ = δm, (c) δ − δm=̂1],
high density parts of the wave packet miss the point of recollision n = 0. For this
example, the energy is γm = 20.
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Figure 6.11: The optimal angle δm which defines the magnetic field direction is plotted
versus the maximum γ-factor. δm denotes the angle between the magnetic field and
the laser propagation direction. Different time intervals between the laser pulses have
been chosen [(i) tC = 1600 a.u., (ii) tC = 4000 a.u., (iii) tC = 15000 a.u.].

extremely strong and short magnetic fields are required to keep Coulomb interactions
small.

The motion of the core due to thermal kinetic energy might also play a role for the
long times of the recollision process. From the kinetic energy in thermal equilibrium
1
2Mv2 = 3

2kBT (with Boltzmann’s constant kB), the mean velocity of hydrogen atoms
at room temperature are v = 10−3 a.u. The distance ∆s which a proton can travel
during the time from ionization to recollision tP = 2t1+tC is of the order of ∆s ≈ 10 a.u.
for the electron energy of γm = 80 and the time of tC = 4000 a.u. Generally, the distance
∆s can always be reduced by heavier atoms or lower temperatures. For instance,
the temperature of liquid helium reduces the value of ∆s by a factor of almost ten.
Note that the effect of the thermal initial velocity of the bound system is different for
electrons, because first, they are subject to the refocusing dynamics, i.e., except for
the broadening-direction, they return to their initial position and secondly they move
relativistically. Therefore, the deviations of the electron and the core do not cancel.

The Coulomb interactions become important because of the long time tC which is
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needed for the momentum reversal by the magnetic field. If this part of the recollision
process is omitted as in the scheme of Sec. 4.2, the deviations become much smaller.
Furthermore, in this case, the wave packets are not refocused and the deviations are
much smaller than the widths of the wave packets. The same argument holds for the
effects due to the initial thermal motion. Consequently, these effects are not important
for that scheme.

6.2 Refocused recollisions with harmonic potentials

The mechanism of refocusing by a harmonic potential which has been introduced in
Sec. 5.2 can also be incorporated into the double pulse recollision scheme (see Fig.
6.12). Refocusing is initiated after the first laser pulse as for the case of magnetic
refocusing, such that the wave packet is small again when it is driven to the core by
the counterpropagating pulse.
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Figure 6.12: An atom is ionized by the first intense laser pulse (1). Then, a harmonic
potential is employed (2) which reverses the spreading dynamics. Finally, the electron
is driven back to the core by the second intense laser pulse (3). Recollisions occur when
the electron reaches its maximum kinetic energy.

The analysis is carried out quantum mechanically. The parts where the electron is
driven away and back to the core are described by means of the Klein-Gordon equation,
whereas refocusing is initiated by a nonrelativistic process which can be described by
the Schrödinger equation.

6.2.1 Relativistic wave solution

The electron dynamics of the first laser pulse which drives the electron away from the
core is described by the relativistic wave function given by Eq. (A.13). The initial
momenta are considered to quadratic order which allows for an analytical treatment.
Since the wave packet which will be constructed later on only contains solutions of a
small range of initial momenta, this simplification is sufficient. The same procedure
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has also been carried out in Sec. 2.2. The solution then reads

φ±(~x, t) = (2π)−3/2 exp i

[

−c2t+ ~p0 · ~x− 1

2
~p0

2t+
px

ωc

(

1 ± pz

c

)

∫

Adϕ

− 1

2ωc2

(

1 ± pz

c
+
p2

z

c2
− ~p0

2

2c2

)∫

A2 dϕ

]

. (6.39)

The negative signs of the terms ±pz apply if the laser pulse propagates in the negative
z direction. This will be needed later on for the counterpropagating laser pulse. After
the laser pulse has passed the electron, the dynamics is nonrelativistic again. This is
known from the classical solution [see the expression for the γ-factor (A.9)], but it can as
well be shown from the quantum mechanical solution. By means of the energy operator
Ê = ∂/∂t, it is seen that relativistic behavior is connected to the time-dependence of
the solution. After the pulse has passed, the vector potential in Eq. (6.39) is constant
and the only time-dependence is given by the term (−c2 + ~p0

2/2)t in the phase. The
initial momentum is nonrelativistic and the dependence on c2 originates from the rest
energy of the electron which does not imply relativistic dynamics.

Since the next step of the recollision model is described by means of nonrelativis-
tic quantum mechanics, it needs to be shown how the solution of the Klein-Gordon
equation is related to the wave function of nonrelativistic wave mechanics. To find the
connection, the Klein-Gordon equation needs to be reduced to the Schrödinger equa-
tion for small kinetic energies. The analysis is carried out for the free Klein-Gordon
equation, where interactions can be introduced at any point of the derivation by means
of the minimal substitution (6.40b):

φ̈ = c2△φ− c4φ , (6.40a)

∂

∂t
→ ∂

∂t
+ iΦ , ~∇ → ~∇ +

i

c
~A . (6.40b)

This equation can be rewritten in the following form which contains only first order
derivatives with respect to time:

iΘ̇ = −1

2
△(Θ + χ) + c2Θ , (6.41a)

iχ̇ =
1

2
△(Θ + χ) − c2χ , (6.41b)

Θ ≡ 1

2

(

φ+
i

c2
φ̇

)

, χ ≡ 1

2

(

φ− i

c2
φ̇

)

. (6.41c)

From these equations, the following relation for χ is found:
(

1 +
i ∂
∂t − c2

2c2

)

χ =
1

4c2
△(Θ + χ) . (6.42)

In the nonrelativistic limit, both the kinetic energy operator i ∂
∂t − c2 (the energy op-

erator minus the rest mass) and the square of the momentum operator △ yield small
numbers which are small1 compared to c2. One then finds

χ ≈ 0 , (6.43a)

iΘ̇ = −1

2
△Θ + c2Θ . (6.43b)

1The nonrelativistic limit of the Klein-Gordon equation can be carried out systematically in orders
of c as shown, e.g., in [81].
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Finally, with Θ ≡ exp(−ic2t)ψ, Eq. (6.43b) reduces to the Schrödinger equation

iψ̇ = −1

2
△ψ . (6.44)

Thus, in the nonrelativistic limit, the wave function of the Klein-Gordon equation φ
and the Schrödinger equation are related via

φ = exp(−ic2t)ψ . (6.45)

To describe the evolution of the wave function in a harmonic potential which is
envisaged to refocus the wave packet, consider the one-dimensional harmonic oscillator
propagator (for a derivation see e.g. [93]):

D(x′, t;x, 0) =

√

Ω

2πi
sin−1/2(Ωt) exp iΩ

(x′2 + x2) cos(Ωt) − 2x′x

2 sin(Ωt)
. (6.46)

This propagator describes how the amplitude of the wave function at some point x at
time t = 0 evolves with time. D(x′, t;x, 0) gives the amplitude at some other point x′

at time t. As found in Sec. 5.2, refocusing is achieved for Ωt = 3π/2. The propagator
is then given by

D

(

x′, t =
3π

2Ω
;x, 0

)

=

√

Ω

2πi
exp iΩx′x . (6.47)

The propagator is applied to ψ = exp(ic2t1)φ(~x, t1), where t1 denotes the time after the
first laser pulse. The new wave function is then rewritten in momentum space which
will be needed later on. These two steps can be carried out immediately by means of
the following equation:

√

Ω

2πi

∫

exp ipx exp iΩxx′dx = (iΩ)−1/2

∫

exp i
pp′

Ω
(2π)−1/2 exp ip′x′dp′ . (6.48)

The left hand side represents the propagation of a plane wave and the right hand
side which is found via the coordinate transformation Ωx = p′, is the solution written
as a superposition of plane waves. Furthermore, it needs to be considered that the
angular frequencies of the harmonic potentials are not equal for the three dimensions.
It will turn out that the angular frequency for the z direction Ωz is different from
the ones for the x and the y direction Ωxy. The harmonic potentials therefore have
to be turned on at different times. This means that the parts of the wave function
which correspond to the dynamics of the x and the y direction propagate longer (with
A1 = 0) until the harmonic potential is turned on. To consider the dynamics of the
three directions separately, it must be possible to separate the wave function according
to ψ(~p0) = ψ(px)ψ(py)ψ(pz). This can be done since—in order to enable recollisions—
the vector potential will be chosen as in Sec. 4.2 such that the integral

∫∞
−∞A1dϕ

vanishes [see Eqs. (4.21)]. Then, the mixed term pxpz in Eq. (6.39) does not occur
after the first laser pulse anymore. With Eq. (6.48), the wave function in momentum
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space after the application of the harmonic potential is found2:

ψ̃(~p ′) = (2πi)−3/2(Ω2
xyΩz)

−1/2 exp i

[

pxp
′
x + pyp

′
y

Ωxy
+
pzp

′
z

Ωz

−1

2

(

~p0
2t1 + (p2

x + p2
y)
td
2

)

− 1

2ωc2

(

1 +
pz

c
+
p2

z

c2
− ~p0

2

2c2

)
∫ ∞

−∞
A2

1 dϕ

]

. (6.49)

The harmonic potential for the z direction acts longer by the time td = 3π(1/Ωz −
1/Ωxy)/2. The potential for the x and the y direction is therefore turned on later by
td/2 and will be turned off early by the same period of time [see Eq. (6.52, later on)].

To arrive at the wave function of the returning electron φr, the solutions φ− of the
electrons in the counterpropagating laser field [see Eq. (6.39)] have to be superimposed
according to the momentum distribution (6.49):

φr(~x, t) = exp

[

−ic2
(

t1 +
3π

2Ωz
+ t

)]∫

ψ̃(~p ′, t)[exp(ic2t)φ−(~p ′)]d3p′ . (6.50)

Note that according to Eq. (6.45), the time duration of the whole process needs to
be considered in the phase factor to get back to the relativistic wave function of the
Klein-Gordon equation. Now, t denotes the time from the beginning of the final process
where the electron is driven back. The wave function φ−(~p ′) contains a mixed term
p′xp

′
z which complicates the integration. However, for the interesting time when the

electron recollides, the integrals can be reduced to three one-dimensional ones. The
expression which contains the mixed term can be approximated in the following way:

px

ωc

(

1 +
pz

c

)

∫

A2 dϕ ≈ px

ωc

∫

A2 dϕ . (6.51)

To enable recollisions, the integral over the vector potential of the second pulse A2 has
to vanish [see again Eqs. (4.21)]. The integral is therefore small during the recollision
process and it is sufficient to consider only the leading order term. The mixed term
is smaller by a factor of pz/c. The following expression is then found for the wave
function at the time of recollision:

φr(~x, t) = (2πi)−3/2(Ω2
xyΩz)

−1/2 exp i

[

−c2
(

t1 +
3π

2Ωz
+ t

)

−1

2

(

~p0
2t1 + (p2

x + p2
y)
td
2

)

− 1

2ωc2

(

1 +
pz

c
+
p2

z

c2
− ~p0

2

2c2

)
∫ ∞

−∞
A2

1 dϕ

]

×
∫

(2π)−3/2 exp i

[

~p ′ · ~x− 1

2

(

~p ′2t+ (p′2x + p′2y )
td
2

)

+
p′x
ωc

∫

A2 dϕ

− 1

2ωc2

(

1 − p′z
c

+
p′z

2

c2
− ~p ′2

2c2

)∫

A2
2 dϕ

]

exp i

(

pxp
′
x + pyp

′
y

Ωxy
+
pzp

′
z

Ωz

)

d3p′ . (6.52)

2Since the harmonic potentials do not end at the same times, this wave function contains different
times for the different dimensions. This is not problem because the wave function can be considered
for each dimension separately.
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These Gaussian integrals can be carried out and the following result is found:

φr(~x, t) = (2π)−3/2(−i)(α2
xyαzΩ

2
xyΩz)

−1/2 exp i

[

−c2
(

α(1)
z +

3π

2Ωz
+ αz

)]

× exp i

[

(

x+ 1
ωc

∫

A2dϕ
)2

2αxy
+

y2

2αxy
+

(

z + 1
2ωc3

∫

A2
2dϕ

)2

2αz

]

× exp i

[

px

Ωxyαxy

(

x+
1

2ωxyc

∫

A2dϕ

)

+
p2

x

2Ωxy

(

1

Ωxyαxy
− Ωxyα

(1)
xy

)]

× exp i

[

py

Ωxyαxy
y +

p2
y

2Ωxy

(

1

Ωxyαxy
− Ωxyα

(1)
xy

)

]

× exp i

[

pz

Ωzαz

(

z +
1

2ωzc3

∫

A2
2dϕ

)

− pz

2ωzc3

∫ ∞

−∞
A2

1dϕ+
p2

z

2Ωz

(

1

Ωzαz
− Ωzα

(1)
z

)]

,

α(1)
xy ≡ t1 −

1

2ωc4

∫ ∞

−∞
A2

1dϕ+
td
2
, α(1)

z ≡ t1 +
1

2ωc4

∫ ∞

−∞
A2

1dϕ ,

αxy ≡ t− 1

2ωc4

∫

A2
2dϕ+

td
2
, αz ≡ t+

1

2ωc4

∫

A2
2dϕ .

(6.53)

6.2.2 Gaussian superposition

The result of the previous section can now be employed to construct a localized Gaussian
wave packet. With Eq. (1.33), the following wave function is found:

Φ(~x, t) = π−3/4(−i)(αxαyαzΩ
2
xyΩz)

−1/2 exp i

[

−c2
(

α(1)
z +

3π

2Ωz
+ αz

)]

×
exp i

(x+ 1

ωc

R

A2dϕ)
2

2αxy
√

∆p−1 − i∆p 1
Ωxy

(

1
Ωxyαxy

− Ωxyα
(1)
xy

)

exp−
∆p
2

[

1
Ωxyαxy

(

x+ 1
ωc

∫

A2dϕ
)

]2

∆p−1 − i∆p 1
Ωxy

(

1
Ωxyαxy

− Ωxyα
(1)
xy

)

×
exp i y2

2αxy
√

∆p−1 − i∆p 1
Ωxy

(

1
Ωxyαxy

− Ωxyα
(1)
xy

)

exp−
∆p
2

[

y
Ωxyαxy

]2

∆p−1 − i∆p 1
Ωxy

(

1
Ωxyαxy

− Ωxyα
(1)
xy

)

×
exp i

“

z+ 1

2ωc3

R

A2

2
dϕ

”2

2αz
√

∆p−1 − i∆p 1
Ωz

(

1
Ωzαz

− Ωzα
(1)
z

)

× exp−
∆p
2

[

1
Ωzαz

(

z + 1
2ωc3

∫

A2
2dϕ

)

− 1
2ωc3

∫∞
−∞A2

1dϕ
]2

∆p−1 − i∆p 1
Ωz

(

1
Ωzαz

− Ωzα
(1)
z

) .

(6.54)
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The charge distribution for a Klein-Gordon wave function is given by Eq. (2.50) which
can be calculated by means of Eq. (1.34):

Φ(~x, t) = −|φ|2Im Φ̇

Φc2
= −|Φ|2Im d

dt

(

ln Φ

c2

)

=
1 + 1

2c4
A2

2√
π

3
∆w2

xy∆wz

× exp−







(

x+ 1
ωc

∫

A2dϕ
)2

+ y2

∆w2
xy

+

(

z + 1
2ωc3

∫

A2
2dϕ− Ωzαz

2ωc3

∫∞
−∞A2

1dϕ
)2

∆w2
z






.

∆wxy ≡
√

∆p−2(Ωxyαxy)2 + ∆p2
(

1 − Ω2
xyαxyα

(1)
xy

)2
Ω−2

xy ,

∆wz ≡
√

∆p−2(Ωzαz)2 + ∆p2
(

1 − Ω2
zαzα

(1)
z

)2
Ω−2

z .

(6.55)
This rather simple result is obtained with the following approximation:

−Im
d

dt

(

lnφ

c2

)

≈ 1 +
1

2c4
A2

2 . (6.56)

Further terms are much smaller compared to the leading term in Eq. (6.56). To see
this, consider the terms which follow from the density in the z direction Φz, i.e. from
the last two lines in Eq. (6.54):

− Im
d

dt

(

lnφz

c2

)

=

[

Ωzα
(1)
z

2∆w2
zc

2
+

1

2α2
zc

2

(

1 − ∆p2

∆w2
zΩ

2
z

)(

z +
1

2ωc3

∫

A2
2dϕ

)2
]

×
(

1 +
1

2c4
A2

2

)

+

[

− 1

αzc
+

∆p2

∆w2
zΩzc

(

1

Ωzαz
− Ωzα

(1)
z

)](

z +
1

2ωc3

∫

A2
2dϕ

)

1

2c4
A2

2

− ∆p2

4∆w2
zΩzc2

(

1

Ωzαz
− Ωzα

(1)
z

)(

z +
1

2ωc3

∫

A2
2dϕ

)2 ˙∆wz

∆wz
. (6.57)

Due to the Gaussian distribution of the charge density (6.55), the terms
(z +

∫

A2
2/(2ωc

3)dϕ) are of the order ∆wz. The wave packet reaches the minimal

value ∆wz = ∆p−1 for Ωzαz = Ωzα
(1)
z = 1. Thus, the parameter Ωz will be chosen

correspondingly and the terms Ωzαz ≈ Ωzα
(1)
z are of the order one.

To analyze the magnitude of the term 1/(Ωzαz)−Ωzα
(1)
z , it is first expanded about

αz = α
(1)
z . The evolution of αz is then considered to linear order in t to arrive at

1

Ωzαz
− Ωzα

(1)
z ≈

(

1 +
1

2c4
A2

2

)

t− t1

α
(1)
z

∼ ∆wz

α
(1)
z c

. (6.58)

The maximum time difference t− t1 is only the time the wave packet needs to pass a
fixed point. The width of the wave packet in the z direction is given by ∆wz/γ, i.e., it
is Lorentz contracted by γ = 1 + A2

2/(2c
4). This is seen if the dependence on z of the

Gaussian in the charge density is expanded according to (z +
∫

A2
2/(2ωc

3)dϕ) ≈ zγ.
Since the velocity of the electron is of the order of c, the time needed for the electron
to pass is given by3 ∆wz/(γc). Note that the linearizations needed for this argument
have sufficient accuracy since the refocused wave packet is very small compared to the

3Here, it is explicitely seen that the wave packet it Lorentz contracted by the γ-factor.
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wave length of the driving laser field and consequently, the time the wave packet needs
to pass a certain point is small, too.

With these order of magnitude estimates, the terms on the right hand side of Eq.
(6.57) are shown to be of the order

− Im
d

dt

(

lnφz

c2

)

∼
[

∆p2

2c2
+

1

2c2
(

Ω2
z − ∆p2

)

](

1 +
1

2c4
A2

2

)

+

[

− Ωz

c∆p
+

∆p2

c2

]

1

2c4
A2

2 −
∆p

4c3

˙∆wz

∆wz
. (6.59)

The relative deviation of the width ˙∆wz/∆w is a number smaller than one, in particular
because the wave packet reaches a minimum at the instant of recollision. Ωz is a number
smaller than the optical laser frequency ω which—for visible light—is much smaller than
one. In all, it is seen that the terms of Eq. (6.59) are strongly suppressed at least by a
factor c with respect to the leading term given by Eq. (6.56). This analysis has been
carried out for the terms corresponding to the density in the z direction. However,
the same procedure can be carried out for the remaining terms to show that they are
negligible.

Refocused recollisions

It has been shown in Chapter 5.2 that freely spreading wave packets refocus after
applying the harmonic potential for a certain time. The time of minimal width has
been shown to be reached when the time after the application of the harmonic potential
t equals the spreading time t1 before the potential is applied. Further conditions have
been found stating that the product of the angular frequency and the duration of the
harmonic potential is given by ΩtC = 3π/2, and second, that Ωt1 = 1.

The refocusing condition for the laser-driven wave packet is similar. From Eq.
(6.54) it is read off that ∆wxy and ∆wz reduce to the initial width ∆p−1 for

Ωxyα
(1)
xy = Ωxyαxy = 1 , (6.60a)

Ωzα
(1)
z = Ωzαz = 1 . (6.60b)

Since the expressions α
(1)
xz and α

(1)
z are different [see Eq. (6.53)], the harmonic poten-

tials, i.e. Ωz and Ωxy, are not equally strong and harmonic potentials have to be turned
on for different periods of time. In the derivation, the time difference has been denoted
by td (see Sec. 6.2.1) which can be determined, now:

td =
3π

2

(

1

Ωz
− 1

Ωxy

)

=
3π

2

(

α(1)
z − α(1)

xy

)

,

⇒ td =
3π

2ωc4

∫∞
−∞A2

1dϕ

1 + 3π
4

.

(6.61)

From the probability density (6.54), it is seen that recollisions occur at the instant
of maximal refocusing if the following recollision conditions are fulfilled:

∫ ∞

−∞
A2

1dϕ1 =

∫

A2
2dϕ , (6.62a)

∫

A2dϕ = 0 . (6.62b)
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These conditions are identical to the ones of the previous recollision models [compare the
probability densities (4.20) and (6.33)]. This suggests that the same vector potentials
(6.7) for the two laser pulses can be chosen again:

A1(ϕ) ∝
{

cosϕ · cos2(ϕ/l) |ϕ/l| ≤ π/2
0 |ϕ/l| > π/2

, (6.63a)

A2(ϕ) =
√

2A1(ϕ) , where l = 4, 6, 8, . . . . (6.63b)

However, it needs to be made sure, that the conditions for maximal refocusing (6.60) are
not violated when the recollision conditions (6.62) are fulfilled. If Eq. (6.62a) is inserted
into Eqs. (6.60) one finds the condition t = t1. As in the case of magnetic refocusing,
this can be achieved despite the different intensities of the two counterpropagating laser
pulses if the second pulse is delayed by ∆t = πl/(2ω) [see Eq. (6.27)]. This result has
been derived in Sec. 6.1.2 (Laser timing).

In all, it is shown that the three dimensional wave packet refocuses and with the
choice of the vector potentials (6.63), it recollides with maximal energy.

6.2.3 Restrictions of ponderomotive refocusing with laser beams

It has been shown in Sec. 5.2.3 how harmonic potentials can be realized with laser
beams. However, there are restriction on the oscillator strength which need to be
considered.

First, the dynamics must be nonrelativistic for several reasons. If the inertia of the
electron increases for high velocities, the effective motion in the ponderomotive potential
will become inharmonic which would spoil the mechanism of refocusing. Furthermore,
the dynamics in the x, y and z direction would couple because the γ-factor depends
on the velocity components of each direction. Therefore, the wave packet could not be
refocused independently in the three directions as required.

Another restriction is that the spatial extension of the electron dynamics remains
within the range where the ponderomotive potential is linear. It will be seen that these
limitations restrict the laser intensity of the refocusing beam to an upper and lower
bound.

To keep the dynamics nonrelativistic, the quick oscillations in the laser field need
to be slow enough. From Eq. (5.15b) it is seen that the vector potential is restricted
to values A0/c2 . 0.1 to keep the maximal velocity below 10% of the speed of light.
From the ponderomotive potential (5.24), the angular frequencies of the oscillations in
the harmonic potential are found to be

Ωx,y,z =
A0

x,y,z√
2∆wx,y,zc

, (6.64a)

⇒ Ωx,y,z .
10

∆wx,y,z
. (6.64b)

If the laser beam is focused to the order of the theoretical limit of the laser wave length
(∆wx,y,z ≈ 15000 a.u.) then the maximal angular frequency is Ωm ≈ 6.6× 10−4 for the
laser wave length of 800 nm.

The amplitude of an oscillation in a harmonic potential p0/Ω [see e.g. Eq. (5.4b)]
depends on the initial momentum. With the notion that a wave packet can be de-
scribed by an ensemble of classical particles, the maximum extension of a wave packet,
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spreading in the harmonic potential, can be estimated with the initial momentum of the
order of the wave packet width in momentum space ∆p. The initial spatial extension
∆w is much smaller and does not need to be considered in this estimate. In order to
keep nonlinear terms of the ponderomotive potential small [compare the electric laser
field (5.22)], such that the dominating linear terms are always at least by a factor of 10
stronger than the next terms of third order, the amplitude has to fulfill the condition

(

∆p

Ωx,y,z

)2

. 0.1∆w2
x,y,z . (6.65)

With the relation (6.64b), a minimum for the vector potential is found which depends
on the initial momentum width of the wave packet:

1

c2
A0

x,y,z &
√

20
∆p

c
. (6.66)

For initial widths of ∆p = 1 a.u., one finds A0/c2 & 0.03, which is only by a factor of
roughly three smaller than the highest value allowed.

Since Ωz < Ωx [see Eq. (6.61)], one finds the following two conditions which follow
from Ωzα(1) = Ωxyαxy(1), Eq. (6.64a) and the two restrictions (6.64b) and (6.66):

1

Ωz
= t1 +

1

2ωc4

∫ ∞

−∞
A2

1dϕ .
∆wz√
10∆p

, (6.67a)

1

Ωxy
= t1 +

(

3π
4 − 1
3π
4 + 1

)

1

2ωc4

∫ ∞

−∞
A2

1dϕ &
∆wxy

10
. (6.67b)

In principle, the first condition can always be fulfilled by adapting ∆wz, whereas the
right hand side of the second condition cannot be arbitrarily small since ∆wxy has to be
greater than the laser wave length. However, the left hand side is not limited because
the time t1 can always be increased, i.e., one only has to wait for some time td after the
electron has been separated by the first pulse before the refocusing pulse is applied.

To further analyze this result, consider the laser pulses defined in Eqs. (6.63) which
is the same pulse as depicted in Fig. 6.2 of Sec. 6.1.3. The following integral can be
evaluated:

∫ ∞

−∞
A2

1dϕ =
3πl

16
(A0

1)
2 , (6.68)

where A0
1 is the maximal vector potential of the first laser pulse. The time t1 can be

calculated from the proper time τ according to t1−
∫∞
−∞A2

1/(2ωc
4)dϕ = τ = ϕ/ω. This

relation has been derived in Sec. 2.2.3 [see Eqs. (2.64), (2.66) and (2.67)]. With Eq.
(6.68), one then finds

t1 = td +
πl

ω

(

1 +
3

32c4
(A0

1)
2

)

. (6.69)

If the maximum vector potential is expressed by the γ-factor at the instant of recollision
γm = 1 + (A0

1)
2/(c4), the following results are obtained:

1

Ωz
= td +

πa

ω

[

1 +
3

16
(γm − 1)

]

, (6.70a)

1

Ωxy
= td +

πa

ω

[

1 +
9π

16(4 + 3π)
(γm − 1)

]

. (6.70b)
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For ω = 0.057 which corresponds to the laser wave length of 800 nm and with l = 6 for
a few cycle pulse, this reduces to

1

Ωz
= td + 331 + 62(γm − 1) .

wz√
10∆p

, (6.71a)

1

Ωxy
= td + 331 + 44(γm − 1) &

wxy

10
. (6.71b)

Remember, the smallest values which can be chosen for ∆wx,y,z are of the order of
15000 a.u. Now, the shortest time required to initiate refocusing which complies with
these conditions can be determined. The duration of the refocusing pulse is given by
tC = 3π/(2Ωz) (see Sec. 5.2.2) which is determined by td and γm. With Eq. (6.71b),
i.e. 1/Ωxy & 1500, the time td can be eliminated and one finds

tC & 7000 + 85γm . (6.72)

This means that the duration of the refocusing pulse increases linearly with the recol-
lision energy. The required time doubles for γm ≈ 80.

6.2.4 Results

To calculate the reaction probability, the current density is need for the short time of
recollision. Since the wave packet is refocused, this period is only a small fraction of
one atomic unit. Thus, the wave packet shape can be considered to be constant for the
time of interest. The charge density (6.55) then reduces to the simple form:

ρ(~x, t) =
∆p3

√
π

3

(

1 +
1

2c4
A2

2

)

exp−∆p2y2

× exp−∆p2

[

(

x+
1

ωc

∫

A2dϕ

)2

+

[

z +
1

2ωc3

(
∫

A2
2dϕ−

∫ ∞

−∞
A2

1dϕ

)]2
]

. (6.73)

This result can be further simplified if the integrals are linearly expanded about the
time and the location of recollision:

ρ(~x, t) =
∆p3

√
π

3

(

1 +
1

2c4
A2

2

)

exp−∆p2y2

× exp−∆p2

[

(

x+
1

c2
A2(c(t− t0) + z)

)2

+

[(

1 +
1

2c4
A2

2

)

z +
1

2c4
A2

2c(t− t0)

]2
]

.

(6.74)

Here, t0 denotes the instant when the maximum of the wave packet recollides. The
motion of the maximum is found by equating the exponent to zero. One then finds:

xm(t) = −
1
c2
A2

1 + 1
2c4
A2

2

c(t− t0) , zm(t) = −
1

2c4
A2

2

1 + 1
2c4
A2

2

c(t− t0) . (6.75)

With this result, the charge density can be rewritten with new coordinates (x̃, z̃) which
represent the position with respect to the maximum:

ρ(~x, t) =
∆p3

√
π

3 γm exp−∆p2

[

(

x̃+
1

c2
A2z̃

)2

+ y2 + γ2
mz̃

2

]

, (6.76a)

x̃ ≡ x+
1
c2
A2

γm
c(t− t0) , z̃ ≡ z +

1
2c4
A2

2

γm
c(t− t0) , γm = 1 +

1

2c4
A2

2 . (6.76b)
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To find the widths ∆w± of this wave packet in the x-z plane and its orientation, the
eigenvalues of the quadratic form in the exponent have to be determined. This quadratic
form has the same structure as the one in Eq. (2.20), i.e., the previous results can be
employed:

∆w± = λ
−1/2
± , λ± = ∆p2





1 + γ2
m

2
± 1 − γ2

m

2

√

1 +
4 1

c4
A2

2

(γ2
m − 1)2



 , (6.77a)

tanα =
1
c2
A2

λ−

∆p2 − 1
. (6.77b)

The orientation is characterized by the rotation angle α by which the old coordinate
system needs to be turned about the y axis such that the quadratic form is diagonal.
For relativistic recollision energies γm > 10, these results simplify because the square
root in Eq. (6.77a) can be approximated by one. Then, the following result is found:

∆w+ = ∆p−1 , ∆w− = (γm∆p)−1 , tanα =
1
c2
A2

γ2
m − 1

. (6.78)

This means that the wave packet has its initial widths ∆p−1 whereas it is Lorentz-
contracted in the direction of motion by the γ-factor.

Now, the absolute value of the current density is obtained by multiplying the charge
density by the velocity which can be derived from Eq. (6.76b). This yields the following
expression:

j(~x, t) =
∆p3

√
π

3

1

c
A2

√

1 +
1

4c4
A2

2

× exp−∆p2

[

(

x+
1

c2
A2(ct+ z)

)2

+ y2 +

[(

1 +
1

2c4
A2

2

)

z +
1

2c4
A2

2ct

]2
]

. (6.79)

The reaction rate of collisions with the nucleus at the origin is given by Ṅ = σ · j(0, t),
where σ is the total cross section of some recollision reaction. This expression can be
integrated and the following surprisingly simple result for the total reaction probability
is obtained:

N =
σ

π
∆p2 . (6.80)

This is exactly the same yield as for a colliding Gaussian wave packet with the initial,
spatial widths of ∆p−1 [see Eq. (6.36)], i.e., the reaction probability is equal to the one
of a nonspreading wave packet keeping its initial widths.

For strongly refocused wave packets, slight deviations of the electron trajectory
caused by the electron spin in strong laser fields may be important. As already stated
for the scheme with magnetic refocusing, spin effects can be eliminated with a proper
alignment of the spins [72].

If this scheme is applied to a gas sample, the same problems occur as for magnetic
refocusing. The time needed to initiate refocusing is long such that the electrons are
influenced by the Coulomb forces of the charged particles. The order of magnitude
estimate for singly charged particles of Sec. 6.1.3 [see Eq. (6.38)] yields a deflection
of 8 a.u. for the gas density of 1015cm−3 with tC = 8000 a.u. [compare Eq. (6.72)]
Furthermore, the distance a proton travels due to its initial thermal energy at room
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temperature has been found to be of the same order. It is clear, that these processes
limit the reasonable minimal wave packet widths of refocused recollisions in a gas
sample.
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Summary

In the present work, it has been shown how the dispersive relativistic dynamics of
electrons in intense laser fields can be described analytically and how wave packets can
be manipulated to enable effective, relativistic recollisions.

The basis for describing laser-driven wave packets was given in the first chapter,
where the methods have been established. An analytical approach to phase-space
averaging has been developed which allows to represent relativistic wave packets in
classical terms. This intuitive method is suitable to describe the spreading dynamics
of wave packets. Intrinsic quantum effects such as tunneling or interferences cannot
be described in this way, but those effects are often of minor importance as for the
applications discussed in this thesis. For cases where classical, analytical solutions
are not available, this approach can be implemented numerically to describe wave
packets with little computational effort. For each time in question, a limited number
of coefficients—21 for the most general case—need to be fixed by solving the classical
equations of motion for different initial conditions. In order to find the probability
density, a three dimensional integral then needs to be solved numerically. Furthermore,
an analytical quantum mechanical wave packet analysis was shown to be feasible for
complex solutions of wave equations with constant modulus.

In Chapter 2, this quantum approach was employed to describe free electrons driven
by a plane laser wave with arbitrary pulse shape. First, the system was analyzed by
solving the Schrödinger equation for nonrelativistic laser intensities. The analysis takes
magnetic field effects into account, as the calculation goes beyond the dipole approxi-
mation. Simple formulas for the orientation and deformation of laser-driven Gaussian
wave packets have been established. In a second calculation, relativistic Volkov solu-
tions have been superimposed to yield the probability density of relativistically driven
electrons. As a result, rather simple expressions have been found which allow to extract
relativistic effects like Lorentz contraction and time dilation.

The electron dynamics in standing laser waves was analyzed in Chapter 3, where
configurations of linear and circular laser polarization were considered. As opposed to
propagating laser fields, those setups enable recollisions up to relativistic energies. In
the nonrelativistic regime, analytical solutions for classical particles and quantum me-
chanical wave packets have been found for both configurations, where the wave packet
maxima were shown to move on classical trajectories. In this energy regime, both con-
figurations yield similar results for the electron dynamics. For relativistic parameters,
the classical equations of motion could be solved for some times of interest allowing
for an analysis of the long-term behavior. A quantum mechanical calculation for the
weakly relativistic regime was carried out for the case of linear laser polarization re-
vealing some interesting relativistic effects. A fully relativistic wave packet analysis
was carried out by means of the analytical phase-space averaging method of Chapter 1.
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It turned out that the circular laser polarization is much more stable for high ener-
gies than the configuration of linear polarization in which the wave packet is strongly
stretched in the laser propagation direction. Furthermore, it has been shown for the
circular polarization that due to time dilation, spreading is more and more suppressed
for increasing laser intensities.

The novel scheme of two consecutive counterpropagating laser pulses introduced in
Chapter 4 enables relativistic recollisions at the highest electron energy accessible in
propagating laser fields. The recollision energies in the other schemes with positro-
nium [25] and standing laser fields [27, 19] have been shown to be smaller for some
given laser intensity. Due to low repetition rates for currently available high-energy
laser systems, the luminosities are rather small compared to conventional accelerators.
Correspondingly, probabilities for particle reactions are also small. However, the pro-
cess of bremsstrahlung with photon energies of the order of 100 MeV was shown to be
observable for recollisions of electrons with their parent cesium atoms.

The general problem of wave packet spreading inhibiting effective recollisions has
been addressed in Chapter 5, where it was demonstrated that spreading can be reversed.
Two approaches—magnetic refocusing and refocusing by a harmonic potential—have
been introduced. Magnetic refocusing by means of a short and strong magnetic pulse
works for two dimensions, whereas the application of a harmonic potential allows for
three-dimensional refocusing. It was shown that the effective potential of a laser beam
in the TEM01 mode can be employed to provide the required harmonic potential.
Furthermore, an analytic solution for a possible magnetic field configuration which is
suitable for magnetic refocusing were given.

In Chapter 6, the concepts of refocusing were implemented in the recollision scheme
with two consecutive laser pulses in which refocusing is initiated after the electron is
separated. For magnetic refocusing, it was shown that efficient, relativistic recollisions
in the range of 100 MeV could be obtained for magnetic field pulses of currently available
intensities and pulse lengths. The efficiency could be further increased by means of
stronger and shorter magnetic field pulses. However, the experimental realization of
the strong and short magnetic fields needed, especially with the required symmetry of
the induced electric fields, appears challenging today. The study of the scheme where
refocusing is achieved by means of harmonic potentials shows that the wave packet
contracts in all three dimensions. The reaction probability is found to be equal to that of
a wave packet with the initial width, i.e., the effect of spreading is completely eliminated
in this case. However, recollisions of such small wave packets require very high precision
during the entire process and it is therefore a demanding task to implement this scheme
experimentally.

In all, analytical methods based on either classical or quantum mechanics have
been established. These can be applied to relativistic quantum systems to describe the
dispersion of wave packets which, for instance, is important for determining reaction
probabilities of laser-driven collisions. In this thesis, the methods have been applied
to various systems where intuitive understanding of relativistic wave packet dynamics
is gained from the analytical treatment. If problems cannot be solved analytically, the
classical approach provides a fast numerical method to describe wave packet dynamics.
Furthermore, a novel relativistic recollision scheme has been introduced allowing for the
highest collision energies reachable in propagating laser fields. This scheme has then
been combined with two different techniques of refocusing electron wave packets. As a
result, two schemes are establish which give rise to efficient relativistic recollisions.
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A future development would be to consider the deviations for strongly focused laser
pulses from the plane wave approximation and the consequences for the recollision
schemes considered here. This is important since the laser intensities depend on the
size of the focus which—in order to reach maximal laser intensities—can become as
small as the laser wave length. The analysis could be carried out by means of the
numerical implementation of the classical method established in Sec. 1.1.

Furthermore, it would be interesting to see whether the classical, relativistic Monte-
Carlo approach of phase-space averaging could be generalized to a semi-classical method
by extending the classical particle states by some quantum mechanical phase informa-
tion. This would allow for a description of interferences in laser-driven systems which
is, for instance, relevant for scattering processes. The relativistic recollision schemes
discussed here might then be applied to monitor the dynamics of atoms, molecules or
clusters after the impact of an intense laser pulse by analyzing the electron probability
distribution after the returning electrons have scattered.
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Appendix A

Relativistic dynamics of

laser-driven particles

A.1 Classical particles

The relativistic problem of a classical, charged particle in a propagating, plane laser
field can be solved analytically. An elegant way is to employ the Hamilton-Jacobi
method [103]. First, the Hamiltonian of a relativistic particle in an electromagnetic
field, characterized by the scalar potential Φ and the vector potential ~A, is needed. It
is equal to the energy of the particle [104]. For an electron it reads

H = c

√

(

~p+
1

c
~A

)2

+ c2 + Φ . (A.1)

Then with the momentum ~p = ∂S/∂~x, the Hamilton-Jacobi equation is given by:

∂S

∂t
+H

(

~x,
∂S

∂~x
, t

)

= 0 , (A.2)

where S is the generating function of the canonical transformation. For this Hamilto-
nian, this can be rewritten in an explicitly covariant form:

(

∂S

∂xµ
+

1

c
Aµ

)(

∂S

∂xµ
+

1

c
Aµ

)

= c2 . (A.3)

Since the vector potential is a plane wave, it depends only on the phase ϕ = kνx
ν ,

i.e. Aµ = Aµ(kνx
ν). Furthermore, it is assumed to be given in the Lorentz gauge

∇µA
µ = kµA

µ′ = 0 and the vector potential is chosen in way that the condition
kµA

µ = 0 is fulfilled.1 The wave equation for the laser field reads �Aµ = 0 in the
Lorentz gauge and therefore one finds kµk

µ = 0. Now, the solution for a free particle
with the four-momentum pµ

0 can be generalized by an additional term F which only
depends on the laser phase:

S = −pµ
0xµ + F (kµx

µ) . (A.4)

1If this condition does not hold, the vector potential can be transformed with the gauge trans-
formation Aµ

→ Aµ + ∇
µ(fνxν) = Aµ + fµ. With a proper choice for the vector fµ, one finds

kµAµ + kµfµ = 0.
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The vector potential is assumed to be zero, initially, and thus, the ansatz reduces to
the solution of a free particle for which the scalar p0µp

µ
0 is equal to the rest energy c2.

In all, the ansatz yields the following solution to the Hamilton-Jacobi equation (A.3):

S = −pµ
0xµ + (pµ

0kµ)−1

(

−1

c

∫

pµ
0Aµdϕ+

1

2c2

∫

AµA
µdϕ

)

. (A.5)

According to the Hamilton-Jacobi formalism, the derivatives ∂S/∂~p0 are equal to some
constants which can be chosen according to the initial conditions. Thus, the equations
of motion are determined. The canonical momenta are obtained by differentiating S
with respect to the coordinates x, y and z.

The equations of motion will now be deduced explicitly for the case that the laser
wave is polarized in the x direction and propagates in the z direction. Then pµ

0kµ

reduces to (p0
0−pz0

)ω/c and it is convenient to consider κ ≡ p0
0−pz0

as an independent
variable rather than pz0

. Consequently, pz0
needs to be replaced. From p0µp

µ
0 = c2, one

finds

pz0
= p0

0 − κ , p0
0 =

κ+ (p0
0 + pz0

)

2
=
κ

2
+
c2 + p2

x0
+ p2

y0

2κ
. (A.6)

Furthermore, the time t can be replaced by means of the laser phase ϕ = ω(t − z/c).
Then the generating function (A.5) reduces to the following form:

S = px0
x+ py0

y − κz − c

(

κ

2
+
c2 + p2

x0
+ p2

y0

2κ

)

ϕ

ω
+

1

ωκ

(
∫

px0
Adϕ− 1

2c

∫

A2dϕ

)

.

(A.7)
The derivatives of S with respect to the px0

, py0
and κ set equal to zero yields the

following equations of motion:

x =
px0

c

κω
ϕ− 1

κω

∫

A(ϕ)dϕ , (A.8a)

y =
py0

c

κω
ϕ , (A.8b)

z =
c

2ω

(

c2 + p2
x0

+ p2
y0

κ2
− 1

)

ϕ− px0

κ2ω

∫

A(ϕ)dϕ +
1

2κ2ωc

∫

A2(ϕ)dϕ . (A.8c)

Here, the initial position is chosen to be the origin, which is not a restriction as the
problem is translationally invariant.

The energy of the electron is derived according to E = H = −∂S/∂t. Expressed by
the relativistic γ-factor, it is given by

γ =
κ

2c
+
c2 + p2

x0
+ p2

y0

2κc
− px0

κc2
A+

1

2κc3
A2 =

p0
0

c
− px0

(p0
0 − pz0

)c2
A+

1

2(p0
0 − pz0

)c3
A2 .

(A.9)

A.2 Quantum dynamics of spinless particles

The problem of a charged particle driven by a plane laser wave can also be solved
quantum mechanically. The solutions are known as Volkov states. Here, the solution
of the Klein-Gordon equation is derived describing the dynamics of spinless particles.
Corresponding solutions to the Dirac equation are, e.g., found in [105].



A.2. QUANTUM DYNAMICS OF SPINLESS PARTICLES 123

The Klein-Gordon equation for an electron in an electromagnetic field is given by

(

∂

∂xµ
+

1

c
Aµ

)(

∂

∂xµ
+

1

c
Aµ

)

φ+ c2φ = 0 . (A.10)

With the same conditions as in the classical case, i.e., if the vector potential depends
only on the laser phase ϕ and the Lorentz gauge holds (kµA

µ = 0), this equation can
be solved by the free solution which is extended by some function F (ϕ):

φ = (2π)−3/2 exp i[−pµ
0xµ + F (ϕ)] . (A.11)

The initial four-momentum is given by pµ
0 , because the vector potential is equal to zero

at the beginning and the result reduces to the free solution. It turns out, that the
exponent in (A.11) is proportional to the classical solution given in Eq. (A.5). The
result reads:

φ = (2π)−3/2 exp i

[

−pµ
0xµ + (pµ

0kµ)−1

(

−1

c

∫

pµ
0Aµdϕ+

1

2c2

∫

AµA
µdϕ

)]

. (A.12)

For the case, the laser fields propagate in the z direction and the vector potential points
in the x direction, the result reduces to

φ = (2π)−3/2 exp i

[

−pµ
0xµ + (pµ

0kµ)−1

(

px0

c

∫

Adϕ− 1

2c2

∫

A2 dϕ

)]

. (A.13)
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Appendix B

Atomic units

For calculations, it is often useful to work with units being adapted to an appropriate
scale. For example, in atomic physics, numbers can be related to typical values occur-
ring in hydrogen atoms. Furthermore, it is helpful to drop some constants which keeps
expressions somewhat simpler. Finally, with the corresponding table, the constants can
be restored and any result can be converted to other units again.

Atomic units (a.u.) are obtained by employing Gaussian units to describe electro-
dynamics and additionally equating Planck’s constant ~, the electron mass m and the
unit charge e to unity. Since Gaussian units comprise three independent units (length,
time and mass), the missing constants can be uniquely restored. With ~ = m = e = 1,
any expression given in atomic units is dimensionless, but any Gaussian unit can be
expressed by a product of the factors ~, m and e. These combinations often have intu-
itive interpretations in terms of atomic properties. This means, with the simplification
of dropping the three constants, any expression is transformed to an atomic scale. Ta-
ble B.1 shows the relevant units, how they are expressed as a combination of the three
constants, their interpretations and their values in regular SI units.

For example, to restore the units of some expression of energy given in atomic
units which is proportional to some frequency ω, it has to be multiplied by ~ to get
back to Gaussian units (energy = [me4/~2]), because the units of ω are given by
[ω] = time−1 = [me4/~3]. If an explicit number is given in atomic units, it can be
multiplied by the corresponding entry of the right column to yield the result in SI
units.1

The speed of light is connected to the fine structure constant via α = e2/(~c)
(Gaussian units). Thus, in atomic units it is given by c = 137.04.

To convert the electric field E in atomic units of a sinusoidal laser wave to laser
intensities I in SI units, the following formula is helpful:

I[W/cm2] = 3.51 × 1016E2[a.u.] . (B.1)

1To convert complete formulas from Gaussian to SI units, see [104].

125



126 APPENDIX B. ATOMIC UNITS

unit

1 a.u. ex-
pressed by ~,
m and e

interpretation value in SI units

length ~
2

me2 radius of first Bohr orbit 5.292 × 10−11 m

time ~3

me4 the time needed for
(2π)−1 revolutions of
the electron in the first
Bohr orbit

2.419 × 10−17 s

mass m mass of the electron 9.109 × 10−31 kg

charge e unit charge 1.602 × 10−19 C

velocity e2

~
classical speed of the
electron in the first
Bohr orbit

2.188 × 105 m/s

energy me4

~2 twice the ionization en-
ergy of hydrogen

27.21 eV

momentum me2

~
classical momentum in
the first Bohr orbit

1.993 × 10−24 kg m/s

angular mo-
mentum

~ smallest quantum of an-
gular momentum

1.055 × 10−34 Js

electric field
(E)

m2e5

~4 nuclear field strength at
the first Bohr orbit

5.142 × 1011 v/m

magnetic flux
density (B)

m2e5

~4 1.715 × 103 T

Table B.1: This table is helpful for dealing with atomic units (a.u.). In the first column,
the units are listed. The constants ~, m and e can be restored by means of the second
column which converts expressions from atomic to Gaussian units. The entries of the
third column state the meaning of one atomic unit, while the corresponding values in
SI units are listed in the fourth column.
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