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Abstract

Conjugation spaces are spaces with involution such that the fixed point set
of the involution has Z2-cohomology isomorphic to the Z2-cohomology of
the space itself, with the little difference that all degrees are divided by two
(e.g. CPn with the complex conjugation). One also requires that a certain
conjugation equation is fulfilled.

I give a new characterization of conjugation spaces and apply it to the
following realization question: given M , a closed orientable 3-manifold, is
there a 6-manifold X (with certain additional properties) containing M as
submanifold such that M is the fixed point set of an orientation reversing
involution on X? My main result is that for every such 3-manifold M there
exists a simply connected conjugation 6-manifold X with fixed point set M .

Konjugationsräume sind Räume mit Involution, so dass der Raum selbst
und die Fixpunktmenge der Involution isomorphe Z2-Kohomologie aufweisen,
mit dem Unterschied, dass alle Grade durch zwei geteilt werden müssen (z.B.
CPn mit der komplexen Konjugation). Für die genaue Definition verlangt
man, dass zusätzlich eine sogenannte Konjugationsgleichung erfüllt ist.

Ich zeige zunächst eine alternative, einfachere Charakterisierung von Kon-
jugationsräumen und wende diese dann auf die folgende Realisierungsfrage
an: Gegeben sei eine geschlossene orientierbare 3-Mannigfaltigkeit M . Gibt
es eine 6-Mannigfaltigkeit X (mit gewissen zusätzlichen Eigenschaften), die
M als Untermannigfaltigkeit besitzt, und eine Involution auf X, deren Fix-
punktmenge genau M ist? Mein Hauptresultat ist, dass für jede solche 3-
Mannigfaltigkeit M eine einfachzusammenhängende Konjugations-6-Mannig-
faltigkeit X mit Fixpunktmenge M existiert.
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Introduction

This thesis has its origin in the search for simply connected asymmetric ma-
nifolds. Asymmetric manifolds are manifolds not admitting any non-trivial
finite group action. If we try to apply cohomological methods to show that a
given manifold (for example a six-dimensional spin manifold) is asymmetric,
we see that some Zp-actions are easier to exclude than others. V. Puppe’s
method excludes in certain cases all Zp-actions except orientation reversing
involutions, since it says that the cohomology of the fixed point set of a Zp-
action must be very similar to the cohomology of the manifold itself. In fact,
Puppe’s results show that such a manifold would have to be a “conjugation
space”.

Conjugation spaces are spaces with involution such that the fixed point
set of the involution has Z2-cohomology isomorphic to the Z2-cohomology
of the space itself, with the little difference that all degrees are divided by
two (as is the case for the complex conjugation on CPn with fixed point set
RPn).

The actual definition requires an additional property that is more com-
plicated: we need the existence of a “conjugation frame”. This means that
we also need to find a map of the ordinary cohomology of the space to
its equivariant cohomology, such that a so-called “conjugation equation” in
equivariant cohomology must be fulfilled.

The first important achievement in our work is to give an alternative
definition for conjugation spaces, which is in some sense much easier to work
with. Our main result is that for every closed oriented 3-manifold M there
exists a simply connected conjugation 6-manifold X with fixed point set M .

The first chapter gives the necessary information about equivariant coho-
mology, defines conjugation spaces and mentions some of the theorems about
conjugation spaces. It compares realization questions for conjugation spaces
with the corresponding classical questions for real algebraic varieties. Fi-
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INTRODUCTION

nally we explain Puppe’s approach that excludes on some simply-connected
6-dimensional manifolds every non-trivial finite group action except conju-
gations, and we discuss Kreck’s result that in some cases, also conjugations
are not possible.

The second chapter contains the new characterization of conjugation
spaces:

Theorem 0.0.1 Let X be a topological space equipped with an involution τ ,
such that dimZ2

H i(X; Z2) < ∞ for all i. Then X is a conjugation space if
and only if the restriction map in equivariant cohomology

r : H∗
C(X, Y ; Z2)→ H∗

C(Xτ , Y τ ; Z2) ∼= H∗(Xτ , Y τ ; Z2)[u]

induces an additive isomorphism

H∗
C(X, Y ; Z2)→ H∗(Xτ , Y τ ; Z2)[u]/

⊕

j>k

Hj(Xτ , Y τ ; Z2) · u
k.

Furthermore, we give some applications of this theorem.
In chapter three, we ask the following question: given M , a closed ori-

entable 3-manifold, is there a 6-manifold X that contains M as submanifold
such that M is the fixed point set of an involution τ on X? Which additional
properties may we impose on X? For example we may want X to be simply
connected, and a spin manifold. Using the existence of a tubular neighbour-
hood of the fixed point set we look for a manifold with a decomposition of
the form X = M ×D3 ∪ V . In fact we have to find such a manifold V with
the right boundary, so we have to solve a certain bordism problem.

We will see that we can realize M as fixed point set of involutions on
“simple” manifolds X:

Theorem 0.0.2 Every closed orientable 3-manifold M is the fixed point set
of an involution on a connected sum of S2×S4’s, and also the fixed point set
of an involution on a connected sum of S3 × S3’s.

The fourth chapter contains the construction of 6-dimensional conjuga-
tion spaces. It begins with the direct application of theorem 0.0.1 to mani-
folds, which does not involve equivariant cohomology any more:

Theorem 0.0.3 Let X be a closed 2n-dimensional manifold, with a differen-
tiable involution τ that has the n-dimensional submanifold M as fixed point
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INTRODUCTION

set. Let ν be the normal bundle of M in X. Let D(ν), S(ν) and P (ν) denote
respectively the disk bundle, sphere bundle and projective bundle of ν. Using
the equivariant tubular neighbourhood theorem, write X = D(ν) ∪ V , such
that W = V/τ is a manifold with boundary P (ν).

Then X is a conjugation space iff

H∗(W ; Z2)→ H∗(P (ν); Z2)

induces an isomorphism:

H∗(W ; Z2)→ H∗(P (ν); Z2)/
⊕

i>j

H i(M ; Z2)u
j

We continue by finding W such that this condition is fulfilled in small de-
grees, which comes down to a bordism problem, using surgery below the mid-
dle dimension. We apply the Atiyah-Hirzebruch spectral sequence and the
Adams spectral sequence to compute the relevant bordism groups. Poincaré
duality will suffice for high degrees, and finally in the middle dimension, we
use again surgery theory.

Theorem 0.0.4 For every orientable connected 3-manifold M , there exists
a simply connected spin 6-manifold which is a conjugation space and has M
as its fixed point set.

In the appendix, we extend one of Puppe’s results about non-existence of
Zp-actions to a larger class of six-manifolds, and we prove a theorem about
non-existence of codimension 1 fixed point sets.
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Chapter 1

Conjugation spaces, real

algebraic varieties and

asymmetric manifolds

1.1 Equivariant cohomology

Definition 1.1.1 Let G be a topological (e.g. discrete) group. A G-space X
is a topological space X together with a G-action on X, i.e. a continuous
map G×X → X, (g, x) 7→ g · x such that for all g, g ′ ∈ G, x ∈ X, we have
(gg′) ·x = g · (g′ ·x). If G and X are differentiable manifolds, we may require
that the map G×X → X is differentiable. X is then called a differentiable
G-space.

For each topological group G, there exists a classifying space BG which
is unique up to homotopy equivalence, and is characterized by the fact that
there is a natural bijection between homotopy classes of maps from a CW-
complex to BG and principal G-bundles over this CW-complex. This bijec-
tion is given by pulling back a universal principal G-bundle over BG, whose
total space is called universal free G-space EG. It follows that BG = EG/G.
For the exact definition of a principal G-bundle and proofs of these results
we refer to Switzer’s book [Swi75]. We just recall the easiest construction of
the universal free G-space EG and the classifying space BG for finite cyclic
groups G (of order p ∈ N):

For the groups G = Z/pZ = Zp, one can define EG and BG in the
following way: Let S∞ be the union of S0 ⊂ S1 ⊂ S2 ⊂ . . .. We consider
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CHAPTER 1. CONJUGATION SPACES, REAL ALGEBRAIC
VARIETIES AND ASYMMETRIC MANIFOLDS

S1 as the unit sphere in C, S3 as the unit sphere in C2, . . . and S∞ as a
subspace of C∞. There is an action of G = Zp on S∞ given by:

(z0, z1, . . . zn, 0, 0, . . .) 7→ (e2πi/pz0, e
2πi/pz1, . . . e

2πi/pzn, 0, 0, . . .)

We can define EG = S∞ and BG = S∞/(Zp). There is an obvious quotient
map EG→ BG. For G = Z2, we have BG = RP∞, the real projective space;
for odd primes, the spaces BG are infinite-dimensional lens spaces.

The Borel construction associates to a G-space X (with G-action on the
right) the following fibre bundle:

X
i
→ XG = (EG×X)/G

pr1→ BG

(where G acts on EG×X by the diagonal action and pr1 is the map induced
by projection on the first factor.)

The idea behind this construction is that the complexity of the space X
and of the action of G on X is described by the space XG, and that the study
of XG and of the associated fibre bundle allows to draw conclusions about
the action of G on X (for example about the fixed point set). We will be
especially interested in the cohomology of XG.

Example 1.1.2 If F is a trivial G-space, i.e. g ·x = x for all g ∈ G, x ∈ F ,
then FG = BG × F is the trivial fibre bundle, i.e. the product of the base
space and the fibre. For a non-trivial action, the fibre bundle is in general
non-trivial, and could be described as a “product twisted by the G-action”.

Remark 1.1.3 XG may also be considered as a “homotopy quotient” of X,
since for G = Zp, X × EG → XG is a covering space, and X is homotopy
equivalent to X × EG. This generalizes the following fact: If the action of
G = Zp on X is free, then XG is homotopy equivalent to X/G since we have
a fibre bundle EG→ XG → X/G with contractible fibre.

Definition 1.1.4 Let us define H∗
G(X) = H∗(XG) (any coefficients), then

the functors Hn
G form a G-equivariant cohomology theory, that is, a cohomol-

ogy theory on the category of G-spaces. We simply call H ∗
G(X) the equivari-

ant cohomology of X. (Clearly, it depends on the G-space structure on X,
i.e. on the G-action on X.)
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1.1. EQUIVARIANT COHOMOLOGY

Remark 1.1.5 If X is a G-space, then H∗
G(X) is a ring, but also a module

over H∗
G(pt) = H∗(BG). If f : X → Y is a G-equivariant map between G-

spaces, then f ∗ : H∗
G(Y )→ H∗

G(X) is a H∗(BG)-module homomorphism (and
a ring homomorphism). For G ∼= Z2, we have H∗(BG; Z2) ∼= Z2[u], where
u has degree one. In this case, equivariant cohomology with Z2-coefficients
is a functor from the category of G-spaces and G-equivariant maps into the
category of graded Z2[u]-modules and module homomorphisms.

We mention at this point that for the computations of equivariant co-
homology in the following sections, we will make use of the following two
theorems:

• The Serre spectral sequence is a spectral sequence for any Serre fibra-
tion, hence we may apply it to the Borel construction. We get a spectral
sequence (that involves in general cohomology with local coefficients):

Ep,q
2
∼= Hp(BG; Hq(X))⇒ Hp+q

G (X)

• The Localization theorem in equivariant cohomology gives (for exam-
ple if the G-space X is compact) a relation between the equivariant
cohomology of X and the equivariant cohomology of the fixed point set
XG of the G-action. We explain this in one of the next sections.
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CHAPTER 1. CONJUGATION SPACES, REAL ALGEBRAIC
VARIETIES AND ASYMMETRIC MANIFOLDS

1.2 Conjugation spaces

The definition of a conjugation space [HHP05] has its origin in the observation
that there are many examples of spaces where the following phenomenon
appears:

Example 1.2.1 Consider the complex projective space CPn. Its cohomology
ring (with Z2-coefficients) is H∗(CPn; Z2) ∼= Z2[a]/an+1 where a has degree 2.
On CPn, we have the complex conjugation, which is an involution τ : CPn →
CPn. We know the fixed point set of the involution: it is (CPn)τ = RPn.
Now the cohomology ring of the fixed point set is H∗(RPn; Z2) ∼= Z2[b]/b

n+1

where b has degree 1.
We see that the only change from the cohomology of the space to the

cohomology of the fixed point set is that degrees are divided by two, i.e. there is
an isomorphism from the cohomology of CPn to the cohomology of (CPn)τ =
RPn dividing the degree by two.

The same situation comes up for all complex Grassmannians Grk(C
n),

where again the involution is a complex conjugation, the fixed point set is
the real Grassmannian Grk(R

n), and there is a ring isomorphism between
the cohomologies dividing degrees by two.

But there are other examples without a natural “complex structure”, in-
cluding natural involutions on smooth toric manifolds [DJ91], and on polygon
spaces [HK98]. There is always a degree-halving isomorphism between the
cohomologies of the space and its fixed point set.

In some examples from analytic geometry, already Borel and Haefliger
discussed the significance of this isomorphism [BH61]. Hausmann, Holm and
Puppe [HHP05] discovered that in all these examples, there is an even richer
structure in the (equivariant) cohomology of the space itself and the space
of fixed points of the involution. So, in the definition of a conjugation space,
we require more than the existence of such an isomorphism:

Definition 1.2.2 Let X be a topological space together with a continuous
involution τ . We may view this as an action of the cyclic “conjugation group”
C = {id, τ} ∼= Z2 on X and denote the natural restriction maps in equivariant
cohomology by:

ρ : H∗
C(X; Z2)→ H∗(X; Z2),

r : H∗
C(X; Z2)→ H∗

C(Xτ ; Z2) ∼= H∗(Xτ ; Z2)[u]

12



1.2. CONJUGATION SPACES

X is a conjugation space if the following conditions are satisfied:

• Hodd(X; Z2) = 0,

• there exists an additive isomorphism κ : H2∗(X; Z2) → H∗(Xτ ; Z2)
dividing the degrees in half,

• there exists an additive section σ : H∗(X; Z2)→ H∗
C(X; Z2) of ρ,

• the so-called conjugation equation is fulfilled for all x ∈ H 2k(X; Z2):

rσ(x) = κ(x)uk + terms of lower degree in u

(The definition generalizes immediately to pairs (X, Y ), where Y is a τ -
invariant subspace of X: we always consider the relative cohomology. (X, Y )
is then called a conjugation pair.)

Theorem 1.2.3 (Multiplicativity, naturality and uniqueness of the struc-
ture) [HHP05]

• κ and σ are automatically ring homomorphisms.

• κ and σ are natural for equivariant maps between conjugation spaces,
that is, if X,Y are conjugation spaces with maps κX , σX , κY , σY , and
f : X → Y is an equivariant map, then we have f ∗

C ◦ σX = σY ◦ f ∗ and
(f τ )∗ ◦ κX = κY ◦ f ∗.

From this it follows that κ and σ are unique.

So κ and σ are really part of the conjugation space structure of X. This
richer structure allows Hausmann, Holm and Puppe to prove several beautiful
theorems about conjugation spaces (which are not true if we would just
require the existence of an isomorphism between the ordinary cohomologies
dividing degrees by two):

Theorem 1.2.4 (Constructions that lead to conjugation spaces) [HHP05]

• – Direct limits,

– products,

– and (for manifolds) equivariant connected sums

of conjugation spaces are conjugation spaces.

13



CHAPTER 1. CONJUGATION SPACES, REAL ALGEBRAIC
VARIETIES AND ASYMMETRIC MANIFOLDS

• Every “conjugation cell complex” is a conjugation space. A “conjuga-
tion cell complex” is a cell complex which has cells of even dimension
2n only, namely unit disks in Cn with the complex conjugation as in-
volution, and such that the glueing maps are equivariant.

There are two questions that we will discuss in the following sections:

1. In the definition of a conjugation space, we require the existence of the
whole conjugation space structure. If we wanted to know whether a
space X with Hodd(X; Z2) = 0 is a conjugation space, we would have
to check for all possible pairs κ, σ whether they fulfill the conjugation
equation. We will find a much simpler criterion that allows to decide
whether a space is a conjugation space or not.

2. The core of this work: We ask whether there exist many “conjugation
manifolds”, that is, conjugation spaces that are differentiable manifolds
with a differentiable conjugation. The examples we have seen yet are
spheres of even dimensions (conjugation cell complexes with two cells),
complex projective spaces, and equivariant connected sums and prod-
ucts of conjugation manifolds. (In the Hausmann, Holm, Puppe article,
also other methods of obtaining conjugation manifolds are described.)

We will concentrate on closed conjugation manifolds of small dimen-
sions and try to give an answer to the question whether there exist
many conjugation manifolds of small dimensions. Dimension 6 will be
especially interesting.

14



1.3. “REAL PARTS”

1.3 “Real parts”

In the easiest examples of the complex Grassmannians, the involution of the
conjugation space is really the complex conjugation. The fixed point space
is the “real part” or “real locus” of the manifold.

We have a similar situation if we consider real projective varieties (or
rather their complex points): That is, given finitely many homogeneous poly-
nomials with real coefficients in n + 1 variables, we consider their common
zero set X(C) ⊂ CPn. Since the coefficients of the polynomials are real,
X(C) is invariant under complex conjugation, and we have (as fixed point
set) the “real part” X(R) = X(C) ∩ RPn.

We may also ask if there are many real projective varieties X(C). More
precisely, if we are interested in differential topology, we may restrict to non-
singular varieties - then X(C) will be a manifold. The question we ask is:
Are there many manifolds M that can be described as X(C), where X is a
real, smooth, projective variety ?

Actually the answer is that there are only “few” manifolds that can be
written as X(C). M must be a complex manifold, which is already a large
restriction. In order to be projective, M must be a Hodge manifold, that
is, M must have a Kähler structure with integral Kähler fundamental class
(According to a theorem of Kodaira’s, this is also sufficient.) There are
further restrictions if we require X to be real. In another direction, most
finitely presented groups can not be the fundamental group of a projective
smooth variety.

The answer for conjugation spaces should be similar: Only even-dimensio-
nal manifolds with Hodd(M ; Z2) = 0 might be given a conjugation space
structure, and this is not the only restriction. It is a difficult problem to
give further restrictions. In fact, it seems that conjugations are those non-
trivial actions of a finite group that are most difficult to exclude, for example
with further homological methods. We will discuss this question in the next
section.

So the problem of realizing a given manifold as a conjugation space (or
the proof that this is impossible) seems to be hard. If we go back to real
projective varieties, there is another realization problem that is completely
solved by work of Nash and Tognoli:

15



CHAPTER 1. CONJUGATION SPACES, REAL ALGEBRAIC
VARIETIES AND ASYMMETRIC MANIFOLDS

Theorem 1.3.1 [Nas52], [Tog73] For every closed differentiable manifold
M there is a real smooth projective variety X such that M is diffeomorphic
to X(R).

Nash conjectured further that one could choose X rational (over R), that
is, X birationally equivalent to some projective space. This is false already
in dimension 2. (A beautiful introduction to the question of realizing 3-
manifolds as X(R), where X is a variety that satisfies some of the properties
above (rational, smooth, projective), is [Kol94].)

We want to ask the same question for conjugation spaces:

Is every closed manifold the “real part” of a conjugation space?

We restrict to manifolds of small dimension. In dimensions 0, 1 and 2, the
remarks from the preceding sections indicate how to realize every closed
manifold as fixed point set of an involution on a conjugation space (of twice
the dimension). Indeed, from spheres and real projective spaces, using con-
nected sums and products, one can construct all manifolds of dimension
smaller than 3. We want to answer the question positively also for oriented
three-dimensional manifolds, which will require a lot more work.

16



1.4. TWISTED BORDISM

1.4 Twisted bordism

Let ξ : E → B be a real vector bundle of rank k. Define ΩSO
n (B; ξ) to be

the set of bordism classes of triples (X, f, o), where X is a closed n-manifold,
f : X → B is a continuous map, and o is an orientation of the stable bundle
νX −f ∗ξ = νX ⊕ (f ∗ξ)−1 where νX is the stable normal bundle of X, and the
inverse is the K-theory inverse. (ξ and X do not have to be orientable.) One
says that elements of ΩSO

n (B; ξ) are “manifolds with an orientation twisted
by the vector bundle ξ”.

Let ⊕ : BO(k)×BO → BO denote the “sum” map, that is, the map that
classifies η(k) � η, where η(k) is the universal k-plane bundle over BO(k), η
the universal stable bundle over BO, and � the outer direct sum of vector
bundles.

Then ΩSO
n (B; ξ) is the set of bordism classes of lifts of maps νX : X → BO

to B ×BSO, where the map B × BSO→ BO is the composition:

B × BSO
ξ×Bi

BO(k)×BO
⊕

BO

(Bi is the natural map from BSO to BO, which one obtains applying the
functor B to the inclusion SO → O. More exactly, in the above one has to
replace B×BSO by a homotopy equivalent space such that the map to BO
becomes a fibration.)

Here (f : X → B, o) corresponds to the lift X → B × BSO whose first
component is f and whose second component is given by o: a map to BSO
up to homotopy corresponds to an oriented (stable) vector bundle. We must
check that this is a lift (up to homotopy) of the normal bundle map. For
this, we can compare the pull-back bundles of the universal stable vector
bundle over BO. Under the normal bundle map, the universal bundle pulls
back to the normal bundle of X. Under the map B × BSO → BO, the
universal bundle pulls back to ξ � ηSO, where ηSO is the universal oriented
bundle. Under the lift described above, the pull-back of the latter bundle is
the stable bundle νX ⊕ (f ∗ξ)−1 ⊕ f ∗ξ = νX .

Applying the Pontrjagin-Thom isomorphism (between bordism groups
and homotopy groups of the corresponding Thom spectrum) twice, we get:

ΩSO
n (B; ξ) ∼= πn(M(ξ � ηSO)) ∼= πn(Tξ ∧ Σ−kMSO)

∼= πn+k(Tξ ∧MSO) ∼= ΩSO
n+k(Dξ, Sξ)

17
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VARIETIES AND ASYMMETRIC MANIFOLDS

Here Tξ is the Thom space of ξ, M denotes the Thom spectrum, and ΩSO
∗ is

usual bordism of oriented manifolds. We have just proven a Thom isomor-
phism for oriented bordism (which holds for all bundles because we allow
twisted coefficients):

ΩSO
n+k(Dξ, Sξ) −→ ΩSO

n (B; ξ)

[f : (X, ∂X)→ (Dξ, Sξ)] 7−→ [f−1(B)→ B]

(for maps f that are transversal to the 0-section B of ξ).

This allows us to compute ΩSO
n (B; ξ) via the Atiyah-Hirzebruch spectral

sequence: We use the homology Thom isomorphism (that also uses twisted
coefficients in the general case) to write

Hp+k(Dξ, Sξ; ΩSO
q )

∼=

ΩSO
p+q+k(Dξ, Sξ)

∼=

Hp

(

B; ΩSO
q

)

ΩSO
p+q(B; ξ)

Here the underlining means that the coefficients ΩSO
q are local coefficients

twisted by the first Stiefel-Whitney class w1(ξ), which we can consider as a
homomorphism π1(B)→ {±1}.

We can make the analogous definitions and constructions for twisted
spin bordism instead of twisted oriented bordism, and get bordism groups
ΩSpin

q (B; ξ).
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1.5. ASYMMETRIC MANIFOLDS

1.5 Asymmetric manifolds

We are also interested in the realization of six-dimensional conjugation ma-
nifolds because work of V. Puppe excludes on some simply-connected six-
manifolds all possible (effective, nontrivial) actions of finite groups, except
possibly conjugations. Furthermore, M. Kreck proved that some of these six-
manifolds are not conjugation manifolds, hence asymmetric. In this section
we discuss these ideas.

A theorem of Ebin [Ebi70] states that for every closed manifold M (of
dimension > 1), the set of Riemannian metrics which do not admit any non-
trivial isometry, is open and dense in the set of all Riemannian metrics on
M . We ask whether the reason for the non-existence of symmetry is often
already the topology of the manifold.

Definition 1.5.1 A (closed, differentiable) manifold M is called asymmet-
ric, if every (differentiable) action of any finite group on M is trivial.

Remark 1.5.2 Or, what is equivalent, we require that there is no non-trivial
action of a compact Lie group on M . Or we require that there is no non-
trivial Zp-action on M , where p runs through all prime numbers. Non-trivial
R-actions always exist: just take the flow generated by any vector field. There
are even “more” Z-actions: any self-diffeomorphism of M gives a Z-action.

Alternatively, an asymmetric manifold is a manifold such that for all
Riemannian metrics, the isometry group is trivial.

If one considers non-simply-connected manifolds, one can find groups G
and manifolds K(G, 1) with no non-trivial action of a finite group. A result of
Borel (see [Bor83] or [CRW72]) says that a manifold K(G, 1) is asymmetric,
if G has trivial center, and the group of outer automorphisms of G is torsion-
free. (An action of a finite group on a manifold induces an action on its
fundamental group, which is well-defined only up to inner automorphisms in
general.) This result is known for more than 30 years, but the question if
there exist simply-connected manifolds with no non-trivial action of a finite
group remained open. The problem in finding asymmetric manifolds is that
probably any explicit construction has a symmetry in it. Hence, a good idea
is to use classification results, for example Wall’s following theorem:
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Theorem 1.5.3 [Wal66] Diffeomorphism classes of six-dimensional mani-
folds which are simply-connected, spin, have free integer cohomology, and
zero odd cohomology, correspond bijectively to isomorphism classes of the
following invariants:

1. the rank m of the second cohomology with integer coefficients H 2,

2. a trilinear form µ on H2 corresponding to the evaluation of triple cup
products on the fundamental class,

3. and a linear form P1 on H2 corresponding to the Poincaré dual of the
first Pontrjagin class,

subject to the conditions:

µ(x, x, y) ≡ µ(x, y, y) (mod 2) for all x, y ∈ H2,

P1(x) ≡ 4µ(x, x, x) (mod 24) for all x ∈ H2.

So let M be a simply-connected spin 6-manifold with free integer and
zero odd cohomology, together with a (differentiable) Zp-action on it. There
is a classical theorem that relates the equivariant cohomology of M with the
equivariant cohomology of the fixed point set: For simplicity we state the
theorem only for p = 2.

Theorem 1.5.4 (The Localization Theorem) [Hsi75] Let M be a com-
pact space with a Z2-action. Then

H∗(BZ2; Z2) = Z2[u] where deg(u) = 2,

and the restriction map r to the fixed point set in equivariant cohomology
becomes an isomorphism after localising away from u:

H∗
Z2

(M ; Zp)[u
−1]

r
→ H∗

Z2
(MZ2 ; Z2)[u

−1] ∼= H∗(MZ2 ; Zp)⊗ Z2[u, u−1]

The Serre spectral sequence gives a relation between the ordinary cohomology
of M and the equivariant cohomology of M , we have:

Hp(BZ2; H
q(M ; Z2))⇒ Hp+q

Z2
(M ; Z2)

If we can assure the following two assumptions:
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• The action of Z2 on M is homologically trivial.

• All the differentials in the Serre spectral sequence vanish.

then we know (using for example the Leray-Hirsch theorem) that as modules
H∗

Z2
(M ; Z2) ∼= H∗(M ; Z2)[u], but maybe with a different multiplication (a

“deformation” of the standard multiplication).
If we further assure that no non-trivial deformations are possible, we can

show [Pup88] that the cohomologies of M and of the fixed point set are
isomorphic as non-graded algebras (we get the same result also for p 6= 2).
We remark that it follows from this that the fixed point set is connected.

In most cases the cohomology of M can not be isomorphic to the coho-
mology algebra of a manifold of even dimension smaller than 6. Thus under
all the assumptions made, M does not admit any non-trivial orientation pre-
serving action of a finite group (because the codimension of the fixed point
set is even in this case). The only possibly non-trivial (effective) actions
that remain are orientation-reversing involutions. But the condition that the
cohomologies of M and of the fixed point set are isomorphic as non-graded
algebras excludes in most cases also fixed point sets of dimension 1 and 5 (see
also Theorem A.1 in the appendix) and imply that if the action is non-trivial,
there must be an isomorphism between the cohomologies of M and of the
fixed point set dividing the degree by two.

Further investigation of the Serre spectral sequence and comparison with
the Serre spectral sequence with integer coefficients leads to the following
theorem. (Puppe uses for the proof the new characterisation of conjugation
spaces given in the next chapter.)

Theorem 1.5.5 [Pup06] Let M be a simply-connected spin 6-manifold with
free integer and zero odd cohomology. Suppose that H ∗(M ; Z2) is generated
as an algebra by H2(M ; Z2), and suppose the only non-trivial involution on
H∗(M ; Z) is induced by multiplication with -1 on H2(M ; Z). Suppose fur-
ther that H∗(M ; Z2) does not admit non-trivial derivations of degree -2. (A
derivation is a linear map d : H∗(M ; Z2)→ H∗(M ; Z2) satisfying the Leibniz
rule.) Let τ be an orientation-reversing involution on M . Then (M, τ) is a
conjugation space.

Puppe also gives examples of a manifold for which all the assumptions of
the preceding theorems hold, i.e. such that the only non-trivial (effective)
actions of a finite group are conjugations: All manifolds with the following
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invariants fulfill all the assumptions. (This gives infinitely many different
manifolds, one for each possible choice of the first Pontrjagin class.) The
invariants are H2 ∼= Z6, and the trilinear form µ which is determined by
the following equation, where e1, . . . , e6 is a basis for H2, and x =

∑6
i=1 xiei

(where xi ∈ Z) is any element of H2:

µ(x, x, x) = 6(x1x
2
4 − x2

1x4 + x2x
2
4 + x2

2x4 − x2
2x5 + x2

3x4 − x3x
2
4

+x2
3x6 + x3x

2
6 + x2

5x6 + x5x
2
6 + x1x2x4 + x1x2x5

+x1x3x6 + x2x4x6 + x3x5x6 + x4x5x6 + x3
4 + x3

6)

Kreck [Kre06] has been able to exclude conjugations with a more geo-
metrical approach: His first observation is that for a simply-connected 6-
manifold M with free second homology group of rank k, involution τ on M
inducing multiplication with −1 on H2(M ; Z), and non-empty fixed point
set, the second space in the Postnikov tower for the Borel construction MC is
((CP∞)k)C , where the involution on (CP∞)k is complex conjugation on each
of the factors. We get the following diagram:

M M × S∞ F1 (CP∞)k × S∞ F2
CP∞ × S∞

M/τ MC
f1p1

((CP∞)k)C
f2

(CP∞)C

Here p1 is induced by projection on the first factor, f1 is the map from
the Postnikov tower, hence an isomorphism on π2. And f2 comes from an
equivariant map (CP∞)k → CP∞, that may be any prescribed map on π2.
F1 and F2 are the maps of the universal covers corresponding to f1 and
f2. We observe that we can realize by such a diagram any homomorphism
π2(M)→ π2(CP∞×S∞), that is we may realize any element of H2(M ; Z) ∼=
[M, CP∞ × S∞] in such a diagram.

Now let us cheat and assume that τ was a free involution. Then the
quotient space M/τ is again a manifold, and it has a spin double cover; this
will eventually imply the existence of a spin structure twisted with a line
bundle L on M/τ . Furthermore the map from MC to M/τ is a homotopy
equivalence and has a homotopy inverse. Now we get that the map M →
CP∞ × S∞ is (up to homotopy) a double cover of a map M/τ → (CP∞)C .
We use this information to formulate a statement about bordism groups: any
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element x ∈ H2(M ; Z) gives a map M → CP∞ × S∞, hence a bordism class
in ΩSpin

6 (CP∞ × S∞) which is in the image of the transfer map:

ΩSpin
6 ((CP∞)C ; L)→ ΩSpin

6 (CP∞ × S∞)

Now Kreck computes the image of the transfer map and concludes: Since
the image of x is in the image of the transfer map, we must have for all
x ∈ H2(M ; Z):

〈−
1

24
p1(M)x +

1

6
x3, [M ]〉 ≡ 0 (mod 2)

This is the restriction: some of the manifolds considered by Puppe do
not satisfy this condition, hence they cannot be (smooth) conjugation man-
ifolds. (Let us remind the reader that we cheated at some point: M/τ is
not a manifold, and not homotopy equivalent to MG. The difficult part in
Kreck’s work is the “excision” of the fixed point set, in order to obtain a free
involution. If we excise a tubular neighbourhood N of the fixed point set,
this introduces boundaries, and one has to involve special bordism groups of
manifolds with boundaries (for example bordism groups with coefficients) in
order to get a non-trivial image, but also such that M represents the same
bordism class as M \N .) So Kreck has proven the following theorem:

Theorem 1.5.6 There exist infinitely many asymmetric simply-connected
spin 6-manifolds.
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Chapter 2

Conjugation spaces without

using conjugation equations

2.1 A definition of conjugation spaces with-

out a conjugation equation

Let X be a topological space equipped with an involution τ , and let Y be
a τ -invariant subspace. (The absolute case is given by setting Y = ∅.) We
consider X and Y as C-spaces, where C = {1, τ} ∼= Z2. As a general
assumption, suppose that pairs (X, Y ) satisfy

dimZ2
H i(X, Y ; Z2) <∞ for all i.

We denote the restriction maps by:

ρ : H∗
C(X, Y ; Z2)→ H∗(X, Y ; Z2),

r : H∗
C(X, Y ; Z2)→ H∗

C(Xτ , Y τ ; Z2) ∼= H∗(Xτ , Y τ ; Z2)[u]

Our result is:

Proposition 2.1.1 The following statements are equivalent:

1. (X,Y) is a conjugation pair, that is, Hodd(X, Y ; Z2) = 0, there exist
an additive section σ : H∗(X, Y ; Z2) → H∗

C(X, Y ; Z2) of ρ, and an
additive isomorphism κ : H2∗(X, Y ; Z2) → H∗(Xτ , Y τ ; Z2) dividing
the degrees in half, such that the conjugation equation holds for all
x ∈ H2k(X, Y ; Z2):

rσ(x) = κ(x)uk + terms of lower degree in u
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2. r induces an additive isomorphism

H∗
C(X, Y ; Z2)→ H∗(Xτ , Y τ ; Z2)[u]/

⊕

j>k

Hj(Xτ , Y τ ; Z2) · u
k

3. The following composition is an additive isomorphism:

⊕

j≤k

Hj(X
τ , Y τ ; Z2)⊗Hk(RP∞; Z2) ↪→ HC

∗ (Xτ , Y τ ; Z2)→ HC
∗ (X, Y ; Z2)

Remark 2.1.2 It follows that we can

(for pairs (X, Y ) satisfying dimZ2
H i(X, Y ; Z2) <∞ for all i)

define a conjugation pair as a pair s.t. r induces an additive isomorphism:

H∗
C(X, Y ; Z2)→ H∗(Xτ , Y τ ; Z2)[u]/

⊕

j>k

Hj(Xτ , Y τ ; Z2) · u
k

This new definition is helpful because it says under which circumstances the
pair (X, Y ) has a “conjugation frame” (κ, σ), and because it does not a priori
require the existence of such a structure in the (equivariant) cohomology.
Nevertheless, one has to know whether a given map in equivariant cohomology
is an isomorphism.

Proof:

1. =⇒ 2.:
By the Leray-Hirsch theorem, H∗

C(X, Y ; Z2) ∼= H∗(X, Y ; Z2)[u] as module
over H∗(RP∞; Z2) ∼= Z2[u]. A non-zero element in H i

C(X, Y ; Z2) may be
written as y =

∑

j≤j0
σ(yi−j)u

j, where yi−j ∈ H i−j(X, Y ; Z2) and yi−j0 6= 0,

hence r(y) = κ(yi−j0)u
(i+j0)/2+terms of lower degree in u, which implies that

r is injective and:

Im r ∩
⊕

j>k

Hj(Xτ , Y τ ; Z2) · u
k = 0

Now count dimensions to see that:

H∗
C(Xτ , Y τ ; Z2) ∼= Im r ⊕

⊕

j>k

Hj(Xτ , Y τ ; Z2) · u
k
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2. =⇒ 1.:
Since r is injective, (X, Y ) is totally nonhomologous to zero in (XC , YC), that
is, ρ is surjective (compare with Proposition 1.3.14 of [AP93]; for the part
we use, one needs only the very weak general assumption from above); by
the Leray-Hirsch theorem, H∗

C(X, Y ; Z2) ∼= H∗(X, Y ; Z2)[u] as H∗(RP∞; Z2)-
module. Comparing dimensions for the isomorphism gives us the dimension
equalities we need: From

i
∑

j=0

dimZ2
Hj(X, Y ; Z2) = dimZ2

H i
C(X, Y ; Z2) =

[i/2]
∑

j=0

dimZ2
Hj(Xτ , Y τ ; Z2)

for all i we get dimZ2
H i(X, Y ; Z2) = 0 if i is odd, and dimZ2

H2i(X, Y ; Z2) =
dimZ2

H i(Xτ , Y τ ; Z2).
We will define the maps σ : H2i(X, Y ; Z2) → H2i

C (X, Y ; Z2) and κ :
H2i(X, Y ; Z2)→ H i(Xτ , Y τ ; Z2) inductively for all i.
i = 0: ρ and r are isomorphisms in degree 0, and this defines σ and κ
uniquely.
i − 1 → i: Since (X, Y ) is totally nonhomologous to zero in (XC , YC),
there is some additive section σ : H2i(X, Y ; Z2) → H2i

C (X, Y ; Z2) of ρ; we
will “improve” it by the following procedure: Given a basis x1, . . . , xn of
H2i(X, Y ; Z2), if we have rσ(xk) = aui+j + terms of lower degree in u, and
j > 0, then, by induction hypothesis, there is y ∈ H2i−2j(X, Y ; Z2), such that
κ(y) = a. Now define σnew(xk) = σold(xk) + σold(y)u2j, σnew is a new section
of ρ. Repeating this procedure if necessary, we can assume σ is such that
rσ(x) = κ(x)ui +terms of lower degree in u, where κ is defined by this equa-
tion. κ is injective since r maps to a complement of

⊕

j>k Hj(Xτ , Y τ ; Z2) ·uk

and σ is injective, hence κ is an isomorphism since the dimensions are equal.
2.⇐⇒ 3.:
The third statement is the dual translation of the second to homology.
q.e.d.
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2.2 Applications

The new formulation has the advantage that some propositions are easier to
prove, namely:

Proposition 2.2.1 Let X be a C-space, with invariant subspaces Z ⊂ Y
of X (such that all pairs fulfill the general assumption from the beginning of
section 2.1).

a) Suppose that (X, Y ) and (Y, Z) are conjugation pairs. Then (X, Z) is
a conjugation pair.

b) Suppose that (X, Z) and (Y, Z) are conjugation pairs and that the map
H∗(X, Z; Z2) → H∗(Y, Z; Z2) is surjective. Then (X, Y ) is a conjuga-
tion pair.

c) Suppose that (X, Y ) and (X, Z) are conjugation pairs and that the map
H∗(X, Y ; Z2)→ H∗(X, Z; Z2) is injective. Then (Y, Z) is a conjugation
pair.

Proof: Applying the 5-lemma to the diagram below (exact sequences of
triples), we get the required isomorphism for part a).

⊕

j≤k+1 Hj(X
τ , Y τ ; Z2)⊗Hk(RP∞; Z2) HC

∗ (X, Y ; Z2)

⊕

j≤k Hj(Y
τ , Zτ ; Z2)⊗Hk(RP∞; Z2) HC

∗ (Y, Z; Z2)

⊕

j≤k Hj(X
τ , Zτ ; Z2)⊗Hk(RP∞; Z2) HC

∗ (X, Z; Z2)

⊕

j≤k Hj(X
τ , Y τ ; Z2)⊗Hk(RP∞; Z2) HC

∗ (X, Y ; Z2)

⊕

j≤k−1 Hj(Y
τ , Zτ ; Z2)⊗Hk(RP∞; Z2) HC

∗ (Y, Z; Z2)

For part b) the condition that H∗(X, Z; Z2) → H∗(Y, Z; Z2) is surjective
is by naturality of κ equivalent to H∗(Xτ , Zτ ; Z2) → H∗(Y τ , Zτ ; Z2) being
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surjective, which is equivalent to H∗(Y
τ , Zτ ; Z2) → H∗(X

τ , Zτ ; Z2) being
injective.

Now apply the 5-lemma to a similar diagram as in a) (but form on the
left side always the sum over all pairs (j, k) s.t. j ≤ k). Proceed in the same
way for part c). q.e.d.

The new criterion is also useful because it can be used together with
all kinds of exact sequences: exact sequences of a triple, Mayer-Vietoris se-
quences, . . . This will be an important tool in our construction of conjugation
manifolds, so we will see another application of the criterion in Proposition
4.1.1.
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Chapter 3

3-manifolds as fixed point sets

of involutions on 6-manifolds

3.1 2-connected 6-manifolds

We want to answer the following question: Given M , a closed orientable 3-
manifold, is there a 6-manifold X that contains M as submanifold such that
M is the fixed point set of an involution τ on X?

Let us suppose there is an orientable 6-manifold X that contains the ori-
entable 3-manifold M as submanifold with trivial normal bundle and as fixed
point set of an involution. (We do not suppose X to be simply-connected,
or spin.) By the equivariant tubular neighbourhood theorem, one may write

X = M ×D3 ∪ V,

where V is a 6-manifold with boundary ∂V = M × S2, and the involution
restricts to a free involution τ on V s.t. τ |∂V = (id,−id). Then W := V/τ
is a 6-manifold with boundary ∂W = M × RP2, and W has a double cover
(namely V ) with boundary M × S2.

Isomorphism classes of double covers of nice topological spaces correspond
bijectively to line bundles over the same space, and are (thus) classified by
maps to RP∞, indeed they are isomorphic to the pullback of the double cover
S∞ → RP∞ by their classifying map.

A double cover of W with boundary M ×S2 is given by the double cover
corresponding to the line bundle det(νW ), where νW is the (stable) normal
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bundle of W (corresponding to an embedding into Rn for some n� 0). (In
the following we will always use the same name for a bundle and its classifying
map.) Indeed the following diagram is commutative, and S∞ → RP∞ pulls
back to M × S2 →M × RP2:

∂W = M × RP2

pr
det(ν∂W )

W

det(νW )

RP2 RP∞

For any manifold N , the bundle νN−det(νN ) is an orientable bundle, since
w1(νN) = w1(det(νN )). Hence if we consider [M × RP2 → RP2 → RP∞] to-
gether with any orientation, as an element of ΩSO

5 (RP∞; L), it is zero if there
exists such an X. Here L is the canonical line bundle over RP∞.

Let us now compute ΩSO
5 (RP∞; L): We compute the E2

p,5−p-terms of the
Atiyah-Hirzebruch spectral sequence:

Hp

(

RP∞; ΩSO
q

)

⇒ ΩSO
p+q(RP∞; L)

The coefficients ΩSO
q for small q are [MS74]: ΩSO

0 = Z, ΩSO
1 = ΩSO

2 = ΩSO
3 =

0, ΩSO
4 = Z, ΩSO

5 = Z2. They are twisted by w1(L), i.e. Z2
∼= π1(RP∞)

acts on the coefficients by multiplication with ±1. We denote Z with this
π1-action by Z−. We obtain:

H5(RP∞; Z−) = 0

H4(RP∞; 0) = 0

H3(RP∞; 0) = 0

H2(RP∞; 0) = 0

H1(RP∞; Z−) = 0

H0(RP∞; Z2) = Z2

The Z2 on the diagonal corresponds to [Y 5 → pt → RP∞], where Y 5 is
orientable, and a generator of ΩO

5 , the unoriented bordism group. Hence this
non-zero element of E2 survives to E∞, as it is, considered as an unoriented
manifold, not null-bordant, and:

ΩSO
5 (RP∞; L) = Z2〈[Y

5 → pt→ RP∞]〉
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But M × RP2 is, considered as an unoriented manifold, not bordant to Y 5.
This is because it is nullbordant, since ΩO

3 = 0. Hence in ΩSO
5 (RP∞; L) one

has:
[M × RP2 → RP2 → RP∞] 6= [Y 5 → pt→ RP∞]

Hence
[M × RP2 → RP2 → RP∞] = 0 ∈ ΩSO

5 (RP∞; L)

for all oriented 3-manifolds M .
This implies that for any M as before, there is a nullbordism W of

M × RP2 → RP∞, and one finds a double cover V of W with ∂V = M × S2

(it is the cover classified by det(νW ), hence orientable) and a free involution
on V given by covering transformations. Finally one gets X = M ×D3 ∪ V
and one extends the involution to X, such that the fixed point set is M . This
answers our question.

We can even include a further condition on X: Suppose that we are given
a nullbordism:

RP∞ × BSO

⊕◦(id×Bi)

∂W = M × RP2 W

ν

ν
BO

By surgery below the middle dimension, in the interior of W , one can re-
place the nullbordism and the lift by (W, ν) with equal boundary, such that
ν : W → RP∞ ×BSO is a 3-equivalence. Hence π1(W ) ∼= Z2, and V , the
double cover of W , will be the universal cover. Finally, using the theorem of
Seifert-van Kampen, we get a simply-connected X = M ×D3 ∪ V .

Now let us see whether we can include that X is spinnable.

Lemma 3.1.1 Let X be a closed spin 6-manifold, and M be a closed ori-
entable 3-dimensional submanifold of X. Then M has trivial normal bundle
in X.

Proof: We first consider the tangent bundle of M . It has only one possibly
non-zero Wu class v1, since the k-th Wu class vk of an n-dimensional manifold
is defined by the identity 〈Sqk(x), [M ]〉 = 〈vk ·x, [M ]〉 for all x ∈ Hn−k(M ; Z2)
and Sqk(x) = 0 for k > n − k. For the Stiefel-Whitney classes this implies:
0 = w1 = v1 since M is orientable, w2 = v2

1 = 0, w3 = 0.
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We consider the fibration SO(3)→ ESO(3)→ BSO(3) and ask whether
the tangent bundle map M → BSO(3) lifts to ESO(3). Then the tangential
bundle must be trivial. We apply obstruction theory: the obstructions for a
lift are cohomology classes in H j+1(M ; πj(SO(3))). Now SO(3) ∼= RP3 has
fundamental group Z2 and the second homotopy group is trivial. Since all
Stiefel-Whitney classes of M are zero, the map to BSO(3) is trivial in Z2-
cohomology. Thus the obstruction in H2(M ; π1(SO(3))) is zero by naturality.
All other obstructions are zero because the group H2(M ; π1(SO(3))) is the
zero group. So M has trivial normal bundle. Since the total Stiefel-Whitney
class of a direct sum of vector bundles is the product of the total Stiefel-
Whitney classes of its summands, we obtain that the normal bundle of M in
X has w1 = w2 = 0. By the same argument as for the tangent bundle, the
normal bundle of M in X is trivial. q.e.d.

So we suppose now that there is a 1-connected spin 6-manifold X that
contains the given orientable 3-manifold M as submanifold with trivial nor-
mal bundle, and as fixed point set of an orientation-reversing involution.
Again we write X = M ×D3 ∪ V . V is 1-connected spin if and only if X is,
since M has codimension 3 and every spin structure on M × S2 extends to
M ×D3. The map π : V → V/τ = W is the universal cover of W , which is
classified by the unique (up to homotopy) non-trivial map W → RP∞, since
π1(W ) = Z2. We denote this map by w1, since (when identifying H1 with
maps to RP∞) this is the first Stiefel-Whitney class, as w1(∂W ) 6= 0.

The homotopy fiber of w1 : W → RP∞ is π : V → W . From the
corresponding Serre spectral sequence, we get an exact sequence (consider
the terms on the second diagonal: E2,0

∞
∼= E2,0

2
∼= H2(RP∞; Z2) and E0,2

∞ ⊂
E0,2

2 ⊂ H2(V ; Z2)):

0→ H2(RP∞; Z2)
w∗

1−→ H2(W ; Z2)
π∗

−→ H2(V ; Z2)
w2(νW ) = w2(W ) + w2

1(W ) 7→ w2(νV ) = 0

One has w2(νV ) = w2(V )+w2
1(V ) = 0 since V is spin. Since w2(∂W ) 6= 0

and w2
1(∂W ) 6= 0, we get w2(W ) 6= 0 and w2

1(W ) 6= 0, but their images under
π are 0. Hence w2(W ) and w2

1(W ) are in the image of w∗
1, and necessarily

w2(W ) = w2
1(W ) since both are nonzero. This implies that w2(νW ) = 0. For

the total Stiefel-Whitney class, we get:

w(νW ) = 1 + w1(νW ) + 0 + w3(νW ) + . . .

w(νW − det(νW )) = 1 + 0 + 0 + w3(νW ) + . . .
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Hence νW − det(νW ) is spinnable, and we obtain that

[M × RP2 → RP2 → RP∞] = 0 ∈ ΩSpin
5 (RP∞; L)

if such a 1-connected spin X exists. One can try to compute ΩSpin
5 (RP∞; L)

by the Atiyah-Hirzebruch spectral sequence. The coefficients ΩSpin
q for small

q are [Mil63]: ΩSpin
0 = Z, ΩSpin

1 = ΩSpin
2 = Z2, ΩSpin

3 = 0, ΩSpin
4 = Z,

ΩSpin
5 = ΩSpin

6 = ΩSpin
7 = 0. They are twisted by w1(L), i.e. Z2

∼= π1(RP∞)
acting on the coefficients by multiplication with ±1. The following diagram
describes the relevant part of the E2-term.

0

1

2

3

4

5

q

0 1 2 3 4 5 p

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

We use the following result of Kirby-Taylor [KT90]:

Theorem 3.1.2 ΩSpin
4 (RP∞; L) = 0.

If one considers now the spectral sequence, one sees that all terms on
the fifth diagonal of the E2-term are needed to kill elements on the fourth
diagonal, since on the fourth diagonal, we have four Z2’s, while on the third
and fifth diagonal, there are two Z2’s respectively. Hence we get:

Theorem 3.1.3 ΩSpin
5 (RP∞; L) = 0.

Again, [M × RP2 → RP2 → RP∞] = 0 ∈ ΩSpin
5 (RP∞; L) allows us to

construct a suitable manifold X: Given a nullbordism

RP∞ ×BSpin

⊕◦(id×Bp)

∂W = M × RP2 W

ν

ν
BO
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one may replace it by a nullbordism (W, ν) such that ν : W → RP∞×BSpin
is a 3-equivalence. This implies that π1(W ) ∼= Z2 and π2(W ) = 0. We
construct V and X as in the orientable case. We obtain that V is spin: Since
the map from W to RP∞ must be the first Stiefel-Whitney class, we get that
V is the orientable cover, i.e. det(νV ) is trivial. But νV − det(νV ) is the
pullback of νW −det(νW ), and this implies that the first two Stiefel-Whitney
classes of νV are zero. Furthermore π1(V ) = π2(V ) = 0. Finally also X is
spin and π1(X) = π2(X) = 0 (since M has codimension 3 in X). Hence X is
a 2-connected 6-manifold, which implies that X is a connected sum of copies
of S3 × S3.

So our theorem becomes very simple:

Theorem 3.1.4 Every orientable 3-manifold M is the fixed point set of an
orientation reversing involution on #rS

3 × S3 for some r.

Remark 3.1.5 One has r ≥ dimZ2
H1(M ; Z2) by a theorem of P.A.Smith

[Bre62].
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3.2 6-manifolds with no odd cohomology

Our next goal is the following: Can we find X with all odd cohomology
groups equal to zero? Then X has free integer homology. Our previous result
considered 1-connected manifolds X, so H1(X; Z) = 0; we should try to find
conditions that induce H3(X; Z) = 0. Actually there is an easier construction
here: Since the bordism group of stably framed 3-manifolds is generated by
the 3-sphere with various framings, we find a stably framed 4-manifold W ′

with boundary M . By framed surgery below the middle dimension, we can
assume that W ′ is 1-connected. Now we take W = W ′ × RP2. On S2, there
is a stable framing that extends to D3. This implies that if we glue in the
right way, X = M×D3∪W ′×S2 is a stably parallelizable 6-manifold, hence
spin and with zero Pontrjagin class. By the theorem of Seifert-van Kampen:
π1(X) = π1(M) ∗π1(M) π1(W

′) = 0.
Let us consider the Mayer-Vietoris sequence:

H3(M × S2; Z)→ H3(M ×D3; Z)⊕H3(W
′ × S2; Z)→ H3(X; Z)

→ H2(M × S2; Z)→ H2(M ×D3; Z)⊕H2(W
′ × S2; Z)→ H2(X; Z)→ 0

The group H3(W
′ × S2; Z) is zero, since H1(W

′; Z) = 0 and H3(W
′; Z) ∼=

H1(W ′, M ; Z) = 0 by Poincaré duality. Thus the map H3(M × S2; Z) →
H3(M×D3; Z)⊕H3(W

′×S2; Z) is surjective, and the map H2(M×S2; Z)→
H2(M × D3; Z) ⊕ H2(W

′ × S2; Z) is injective, hence H3(X; Z) = 0. Hence
the integer cohomology of X is concentrated in even degrees and a free
abelian group (using the Universal Coefficient Theroem and Poincaré du-
ality). The involution on X is orientation-reversing, so it is multiplication
with −1 on H6(X; Z) ∼= Z. From the Mayer-Vietoris sequence above we see
that H2(W

′; Z) ∼= H2(X; Z), and this implies that the involution acts triv-
ially on H2(X; Z) and also trivially on H2(X; Z). As a consequence, all triple
cup products H2(X; Z)×H2(X; Z)×H2(X; Z)→ H6(X; Z) are zero. Now
we apply the Wall classification to see that X is diffeomorphic to a connected
sum of S2 × S4. We have proved:

Theorem 3.2.1 Every orientable 3-manifold M is the fixed point set of an
orientation reversing involution on #rS

2 × S4 for some r. Again, we have
r ≥ dimZ2

H1(M ; Z2).
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Chapter 4

Constructing conjugation

6-manifolds

4.1 When do we get a conjugation manifold?

Up to now, we saw that every orientable 3-manifold was realizable as fixed
point set of an involution on a 6-manifold, but there was almost no relation
between the 3-manifold and the 6-manifold. (One could take the same given
6-manifold for many different 3-manifolds.) Now we want to get closer to
our goal: given M 3, find a 6-dimensional conjugation manifold X with fixed
point set M3. (X must be a spin manifold: Under the conjugation space
isomorphism κ of Z2-cohomology algebras dividing the degree by two, the
second Wu class of X will be mapped to the first Wu class of M , since we
have κ(Sq2k(x)) = Sqk(κ(x)), see [FP05].)

We follow our basic approach: we make the ansatz X = M × D3 ∪ V ,
W = V/τ and try to find W . Now we develop easily a necessary and sufficient
condition for X to be a conjugation space. (Here our new definition of
conjugation spaces shows its strength.)

We just consider the Mayer-Vietoris sequence in equivariant cohomology
with Z2 coefficients. (Recall that on M ×D3 the involution is (id,−id) and
on V it is free.)

H∗
C(X; Z2)

∼=

H∗
C(M ×D3; Z2)⊕H∗

C(V ; Z2)

∼=

H∗
C(M × S2; Z2)

∼=

H∗
C(X; Z2) H∗(M × RP∞; Z2)⊕H∗(W ; Z2) H∗(M × RP2; Z2)
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The isomorphism H∗
C(M × D3; Z2) → H∗(M × RP∞; Z2) comes from the

equivariant deformation retraction M ×D3 → M and example 1.1.2. Since
the actions on the other spaces are free, the other isomorphisms follow from
remark 1.1.3. Now in the lower row, the map H∗(W ; Z2)→ H∗(M×RP2; Z2)
is just the usual restriction to the boundary, and H∗

C(X; Z2) → H∗(M ×
RP∞; Z2) ∼= H∗(M ; Z2)[u] is the restriction to the fixed point set in equivari-
ant cohomology. Now consider the map p : H∗(M × RP∞; Z2) → H∗(M ×
RP2; Z2). We have that H∗(M ; Z2) is mapped identically to H∗(M ; Z2) since
all maps

M × RP∞ ← (M ×D3)C → (M × S2)C →M × RP2

commute with the projection to M , and u ∈ H1(RP∞; Z2) is mapped to u ∈
H1(RP2; Z2) since all the above maps are isomorphisms on the fundamnetal
group. So the map is given by dividing out the ideal generated by u3. This
is surjective, hence we have for all k a short exact sequence:

0→ Hk
C(X; Z2)→ Hk(M×RP∞; Z2)⊕Hk(W ; Z2)→ Hk(M×RP2; Z2)→ 0

Now we apply the new definition of a conjugation space. X is a conjuga-
tion space iff r : H∗

C(X; Z2) → H∗(M × RP∞; Z2) ∼= H∗(M ; Z2)[u] induces
an isomorphism r̄ : H∗

C(X; Z2)→ H∗(M ; Z2)[u]/
⊕

i>j H i(M ; Z2)u
j.

We combine this with the information from the short exact sequence: r
is injective if and only if the map j : H∗(W ; Z2) → H∗(M × RP2; Z2) is
injective, and Im(r) = p−1(Im(j)). Hence j must be injective and the image
must be a complement of

⊕

i>j H i(M ; Z2)u
j:

Theorem 4.1.1 X is a conjugation space iff

H∗(W ; Z2)→ H∗(M × RP2; Z2)

induces an isomorphism:

H∗(W ; Z2)→ H∗(M × RP2; Z2)/
⊕

i>j

H i(M ; Z2)u
j

Translated to homology this is equivalent to the condition that

H∗(M × RP2; Z2)→ H∗(W ; Z2)

induces an isomorphism:
⊕

i≤j

Hi(M ; Z2)⊗Hj(RP2; Z2)→ H∗(W ; Z2)
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We can generalize this theorem to conjugation manifolds X of any even
dimensions, and with fixed point submanifold M having any normal bundle
in X (the proof is the same as above):

Theorem 4.1.2 Let X be a 2n-dimensional manifold, with a differentiable
involution τ that has the n-dimensional submanifold M as fixed point set.
Let ν be the normal bundle of M in X. Let D(ν), S(ν) and P (ν) denote
respectively the disk bundle, sphere bundle and projective bundle of ν. Using
the equivariant tubular neighbourhood theorem, write X = D(ν) ∪ V , such
that W = V/τ is a manifold with boundary P (ν).

Then X is a conjugation space iff

H∗(W ; Z2)→ H∗(P (ν); Z2)

induces an isomorphism:

H∗(W ; Z2)→ H∗(P (ν); Z2)/
⊕

i>j

H i(M ; Z2)u
j

Here we use the theorem of the projective bundle / the construction of the
Stiefel-Whitney classes described in [Hat02]: There is a class u ∈ H 1(P (ν); Z2)
such that

H∗(P (ν); Z2) ∼= H∗(M ; Z2)[u]/ (un + w1(ν)un−1 + · · ·+ wn(ν))
∼=

⊕

j≤n−1 H i(M ; Z2)u
j

Hence, in order to find conjugation manifolds with given fixed point set M
of dimension n, one has to find manifolds W of dimension 2n with boundary
P (ν), where ν is some n-dimensional vector bundle over M such that W
satisfies the property from the theorem.

Let us now describe the strategy to find such manifolds W . (Let us
assume the normal bundle of M in X shall be trivial.)

We start by trying to find a manifold W such that the isomorphism above
holds below the middle dimension n. For this, we consider the (n− 1)-type
of W , denoted by Bn−1(W ). Bn−1(W ) is the (n − 1)-th stage of a Moore-
Postnikov factorization of the stable normal bundle map W → BO. It follows
that W → Bn−1(W ) is n-connected, hence an isomorphism in cohomology
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for degrees smaller than n. Hence the composition M × RPn−1 → W →
Bn−1(W ) must induce an isomorphism

⊕

i≤j,i+j=k

Hi(M ; Z2)⊗Hj(RPn−1; Z2)→ Hk(B
n−1(W ); Z2)

for all k ≤ n−1. So the first step is to find a candidate for the (n−1)-type for
W , and the second step, to find a candidate for the map F : M × RPn−1 →
Bn−1(W ), that has this isomorphism property. In a third step, we prove that

[F ] = 0 ∈ Ω
Bn−1(W )
2n−1 , which is clearly necessary. If [F ] = 0, then we find

a nullbordism W0 of M × RPn−1 together with a lift of its normal bundle
to Bn−1(W ), and by surgery below the middle dimension we may assume
that this map W0 → Bn−1(W ) is n-connected. Then it follows that below
dimension n, we have the required isomorphism.

We will see that above the middle dimension, Poincaré duality does the
job: we get also in dimension bigger than n the required isomorphism. Fi-
nally, in the middle dimension, we will use a surgery-theoretic argument.
This step can in fact alter the (n − 1)-type of W , but we still obtain the
required isomorphism in Z2-cohomology, now in all degrees, and so, we end
up with a conjugation manifold X with fixed point set M .

We work through this program step by step in the following sections.
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TOWER FOR W

4.2 The 2-type and the second stage of the

Postnikov tower for W

We keep the condition that in the end, we want to obtain a simply-connected
spin 6-manifold X. Then it remains true that W must carry a spin structure
twisted by L, that is, the normal bundle map W → BO factors over RP∞×
BSpin. Since the action must be orientation-reversing, the first factor W →
RP∞ is the first stage of the Postnikov tower for W . Hence this map factors
over the second stage of the Postnikov tower, P2(W ). Thus the normal
bundle map can be written as a composition W → P2(W )× BSpin→ BO.
Since BO is 3-connected, the map W → P2(W ) × BSpin is 3-connected,
and P2(W ) × BSpin → BO is 3-coconnected. Hence the 2-type for W is
B2(W ) = P2(W ) × BSpin (together with the fibration P2(W ) × BSpin →
BO), and we are interested in P2(W ).

Now let us make additional hypotheses:

1. Let us restrict to connected 3-manifolds M . (Clearly if M is non-
connected, X must have one component for each component of M).

2. We would ideally want to obtain X with free integer homology.

3. We prescribe that the involution acts by −1 on H2(X; Z). Clearly the
involution must induce a Z2-action on the integer homology that is
multiplication with −1 on H6(X; Z). We choose the easiest involution
on H2(X; Z) that could work in all cases.

It will turn out that these assumptions determine P2(W ) (and so B2(W ))
uniquely. As we already mentioned, we will not be able to keep the assump-
tions in the final surgery step – we will see this later.

We consider the following Mayer-Vietoris sequence:

→ H4(X; Z)→ H3(M × S2; Z)→ H3(M ×D3; Z)⊕H3(V ; Z)
→ H3(X; Z)→ H2(M × S2; Z)→ H2(M ×D3; Z)⊕H2(V ; Z)→ H2(X; Z)

In order to obtain H3(X; Z) = 0, the map

H2(M × S2; Z)→ H2(M ×D3; Z)⊕H2(V ; Z)

must be injective, which means that the map g∗ : H2(S
2; Z) → H2(V ; Z)

must be injective, where g : S2 ↪→M × S2 ↪→ V . V shall be 1-connected, so
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g∗ = g∗ : π2(S
2)→ π2(V ) and this implies that Z ∼= π2(S

2)→ π2(V ) must be
injective. The same holds then for the map Z ∼= π2(RP2)→ π2(W ). Actually
the map should better be split injective, since its cokernel shall be the free
group H2(X; Z). Then it also follows that π2(W ) ∼= H2(V ; Z) ∼= Z⊕H2(X; Z)
is free. The involution on H2(V ; Z) is multiplication with −1 since this is
true for both summands. Hence Z2

∼= π1(W ) acts by multiplication with ±1
on π2(W ).

Consider now the first spaces of the Postnikov tower for W . We have
P1(W ) = RP∞ since π1(W ) ∼= Z2. Furthermore π2(W ) ∼= Zm for some m,
and π1(W ) acts by multiplication with −1 on π2(W ). We want to know

P2(W ). Following Baues [Bau77], such fibrations (CP∞)m i
→ E

p
→ RP∞ are

given up to equivalence by their k-invariant

k(i, p) ∈ H3(RP∞; π2((CP∞)m)−) ∼= π2((CP∞)m)⊗ Z2
∼= (Z2)

m,

which is the obstruction for a section. The last isomorphism is given by the
inclusions of the m factors - we will use it to identify a k-invariant with a
vector in (Z2)

m.

Two fibrations (CP∞)m i
→ E

p
→ RP∞ and (CP∞)m i′

→ E ′ p′

→ RP∞ are
equivalent here, if one has a fibre homotopy equivalence h : E → E ′ such
that hi is homotopic to i′.

Lemma 4.2.1 There is a 3-dimensional vector bundle over HP∞ whose
sphere bundle is S2 → CP∞ → HP∞.

Proof: We can consider S∞ also as unit sphere in H∞, and consider the
right action of the group of unit quaternions on it. This group is isomorphic
to SU(2) ∼= S3. The action of the subgroup S1 can be interpreted as the
action on the unit sphere of C∞. The quotient spaces are S∞/S3 = HP∞

and S∞/S1 = CP∞, respectively. We get a fiber bundle S3/S1 → S∞/S1 →
S∞/S3, which is exactly S2 → CP∞ → HP∞.

Now the fiber bundle S3/S1 → S∞/S1 → S∞/S3 can be seen as a bundle
with structure group S3: Over {qi = zi + J · z′i 6= 0} ⊂ H∞, the bundle
is trivial with section si mapping an element q ∈ HP∞ with representative
[q1 = z1 + J · z′1 : q2 = z2 + J · z′2 : . . .] such that qi ∈ R>0 (there is a unique
such representative since we consider only elements of norm 1 in HP∞) to
the corresponding element [q1 : q2 : . . .] or [z1 : z′1 : z2 : z′2 : . . .] ∈ CP∞

(depending on whether one considers S∞/S1 as quotient of H∞ or C∞). Over
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{qi 6= 0} ∩ {qj 6= 0}, the two sections si and sj differ in the point q ∈ HP∞

by the action of
qiq̄j

‖qi‖·‖qj‖
, which gives a well-defined transition function to S3.

Now under the action of S3 on the fibers, −1 acts trivially, so we can
also equip the fiber bundle with structure group S3/{±1} ∼= SO(3), and
this implies that the fiber bundle is the sphere bundle of the corresponding
(oriented) vector bundle with the same transition functions. q.e.d.

Denote the corresponding projective space bundle by RP2 → CP∞/τ →
HP∞. Here τ is the free Z2-action on CP∞ which is multiplication with −1
on each fiber of the sphere bundle. We also know a non-free Z2-action on
CP∞: the complex conjugation c. Now consider the spaces:

Pm = ((CP∞)m × S∞) /(cm,−1)

Qm = ((CP∞)m × S∞) /(τm,−1)

They are the quotient spaces of the diagonal Z2-action which is τ (resp. c)
on the first m factors, and multiplication with −1 on S∞. There are maps to
P1(W ) induced by projection onto the last factor, and these are fibrations of

the type described above. (CP∞)m i
→ Pm

p
→ RP∞, where i is induced by the

inclusion into the first m components, corresponds to the k-invariant zero,
since it has a section: map x ∈ RP∞ to the class of (x, x, . . . , x, x̃), where

x̃ is any preimage in S∞. (CP∞)m i
→ Qm

q
→ RP∞, where i is induced by

the inclusion into the first m components, has a non-zero k-invariant. (This
follows from the classification results and the fact that Qm is not homotopy
equivalent to Pm.)

Now [(CP∞)m, (CP∞)m] ∼= Mat(m ×m, Z); let A ∈ GL(m, Z), denote a
corresponding representative (CP∞)m → (CP∞)m again by A. Then the

fibration (CP∞)m i◦A
→ Qm → RP∞ has k-invariant k(i ◦ A, q) such that

(A mod 2) · k(i ◦ A, q) = (k(i, q)) since the modification corresponds to a
map on the coefficients.

Let P be a permutation matrix. Then there is a fibre homotopy self-
equivalence h : Qm → Qm such that i◦P is homotopic to h◦i: we just permute
the components in Qm = ((CP∞)m × S∞)/(τm,−1) with the corresponding
permutation. This implies that k(i ◦ P, q) = k(i, q), i.e. P · k(i, q) = k(i, q)
for all permutation matrices P . It follows that k(i, q) = (1, . . . , 1) ∈ (Z2)

m

and that, given A ∈ GL(m, Z), there is a fibre homotopy self-equivalence
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h : Qm → Qm such that i ◦A is homotopic to h ◦ i if and only if (A mod 2) ·
(1, . . . , 1) = (1, . . . , 1).

Lemma 4.2.2 SL(m, Z)→ GL(m, Z2) is surjective.

Proof: Induction: for m = 1 this is obvious, and for an invertible m × m-
matrix A with Z2-coefficients we must find an integer lift with determinant
1. Now develop the determinant of A by the last column.

1 = det A =

m
∑

i=1

ain · det Ain

Since the sum is 1, there must be an i such that ain = 1 and det Ain = 1. By
induction, we find an integer lift Bin of Ain with determinant 1. Now let B
the integer lift of A where one chooses the same lifts as in Bin of the entries
that appear in Ain, one takes arbitrary integer lifts for the remaining entries,
except ain, and chooses bin such that the matrix B has determinant 1 (i.e.
bin = 1−

∑m
j=1,j 6=i bjn · det Bjn). q.e.d.

We apply this to our situation: Since the map GL(m, Z)→ GL(m, Z2) is
surjective, we can realize every non-zero k-invariant by the fibration Qm →
RP∞, with different inclusions of the fibre (CP∞)m. If we forget about the
inclusion of the fiber, there are just two fibrations Pm → RP∞ and Qm →
RP∞ that have the right properties.

Now consider the composition ḡ : RP2 ↪→ W → P2(W ). This is an
isomorphism on π1 and a split injection on π2. We identify π2(Pm) and
π2(Qm) with π2((CP∞)m) ∼= Zm using the maps i.

There is a map RP2 → Pm which is an isomorphism on π1. In fact, com-
pose the inclusion RP2 → RP∞ with the section RP∞ → Pm. The generator
of π2(RP2) is mapped to 0 ∈ Zm ∼= π2(Pm), as one sees by considering univer-
sal coverings and the second homology group: it is a map S2 → (CP∞)m×S∞

such that the first m components factor through RP2.
Obstruction theory tells us that for two lifts of RP2 → RP∞ to Pm,

there is only one obstruction for a homotopy between them, and given by
an element in H2(RP2; π2((CP∞)m)−). (This first obstruction is always re-
alized.) The difference between the two maps is, up to homotopy, a differ-
ence of the maps restricted to the 2-cell of RP2, namely the difference is
some element φ ∈ C2(RP2; π2((CP∞)m)−) ∼= C2

Z2
(S2; π2((CP∞)m)), which
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means the equivariant cellular cochains, where S2 has the cell decompo-
sition with two cells in each dimension, and the involutions on S2 and
on π2((CP∞)m) are multiplication with −1. Now the change in the map
π2(S

2) ∼= π2(RP2)→ π2((CP∞)m) is by 2x, where x is the value of φ on one
of the 2-cells of S2. But this implies that every map from RP2 to Pm inducing
an isomorphism on π1 maps the generator of π2(RP2) to a class divisible by
2, so this map cannot be split injective.

Hence there does not exist a map RP2 → Pm which satisfies all conditions.
This implies that we must have P2(W ) = Qm.

There is a map f : RP2 → Qm which is an isomorphism on π1. Identify
S2 with CP1, and map [y] ∈ RP2 (where y ∈ S2 = CP1) to the class of
(y, . . . , y, y). This works because under the identification S2 = CP1, multi-
plication with −1 is identified with τ .

The generator of π2(RP2) is mapped to (1, . . . , 1) ∈ Zm ∼= π2(Qm), as one
sees by considering universal coverings and the second homology group. By
obstruction theory (as above), homotopy classes of maps RP2 → Qm which
are an isomorphism on π1 correspond bijectively to elements of π2(Qm) of the
form a = (1, . . . , 1) + 2b, by taking the image of the generator of π2(RP2).

So there are several maps RP2 → Qm satisfying all conditions. But, given
such a map f ′ : RP2 → Qm corresponding to a vector a = (1, . . . , 1) + 2b
that is part of a basis (a, v2, . . . vm) of Zm, we find an automorphism A of Zm

sending a to (1, . . . , 1).
Using what we have said above, we can find a fiber homotopy self-

equivalence h : Qm → Qm such that hf ′ is homotopic to f . Hence we
may assume that the map RP2 → P2(W ) is f .
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4.3 The homology of Qm

For Qm, one has a homotopy equivalence Q1 ' CP∞/τ and the bundles
RP2 → CP∞/τ → HP∞ and (CP∞)m−1 → Qm → Q1, where the last map is
induced by projection onto the first and last factor. In both cases the action
of the fundamental group of the base space on the Z2-cohomology of the
fiber is trivial. The Serre spectral sequences with Z2-coefficients collapse due
to multiplicativity and degree reasons, and one may apply the Leray-Hirsch
theorem, that is

H∗(Qm; Z2) = Z2[q, x1, . . . xm−1, t]/t
3

where deg(q) = 4, deg(xi) = 2 and deg(t) = 1. (We do even get the full
multiplicative structure.)

Let us now consider homology with integer and with Z−-coefficients. Qm

has the double cover (CP∞)m × S∞, and standard transfer arguments (i.e.
we use the long exact sequences involving the transfer maps of integer and
Z−-homology of Qm to the integer homology of the double cover coming from
the short exact sequences Z+ → Z[Z2]→ Z− and Z− → Z[Z2]→ Z+, as well
as the fact that composition of transfer and projection is multiplication with
2, while composition of projection and transfer is equal to 1 ± τ∗, and the
fact that the integer homology of the double cover is free over Z) show that
all torsion elements in H∗(Qm; Z) and in H∗(Qm; Z−) have order 2, and that:

H∗(Qm; Z)free ∼=

{

H∗((CP∞)m; Z) if ∗ ≡ 0 mod 4
0 else

H∗(Qm; Z−)free ∼=

{

H∗((CP∞)m; Z) if ∗ ≡ 2 mod 4
0 else

Together with the universal coefficient theorem, and using the Z2-calculations,
this suffices to compute the integer and Z−-homology of Qm:

48



4.3. THE HOMOLOGY OF Qm

In low dimensions we get:

∗ H∗(Qm; Z2) H∗(Qm; Z) H∗(Qm; Z−)
0 Z2 Z Z2

1 Z2 Z2 0
2 (Z2)

m (Z2)
m−1 Zm

3 (Z2)
m−1 0 (Z2)

m−1

4 (Z2)
(m+1

2 ) Z(m+1

2 ) (Z2)
(m

2 )+1

5 (Z2)
(m

2 )+1 (Z2)
(m

2 )+1 0

6 (Z2)
(m+2

3 ) (Z2)
(m+1

3 )+m−1
Z(m+2

3 )

7 (Z2)
(m+1

3 )+m−1 0 (Z2)
(m+1

3 )+m−1
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4.4 The map to Qm

Now we are interested in an extension of f to M×RP2 such that the diagram
below commutes. (If we had a nullbordism W of M × RP2 with 2-type Qm,
then ∂W →W → P2(W ) would be such an extension.)

RP2

i2

f
Qm

M × RP2

F

i◦pr2

RP∞

And such an extension exists: just put F = f ◦ pr2.
But as we saw in Proposition 4.1.1, if we want to produce a conjuga-

tion manifold, we need an isomorphism
⊕

i≤j Hi(M ; Z2) ⊗ Hj(RP2; Z2) →
H∗(W ; Z2). Since W → P2(W ) = Qm is 3-connected, we need that F in-
duces isomorphisms

H0(M ; Z2)⊗H0(RP2; Z2)→ H0(Qm; Z2),

H0(M ; Z2)⊗H1(RP2; Z2)→ H1(Qm; Z2),

H0(M ; Z2)⊗H2(RP2; Z2)⊕H1(M ; Z2)⊗H1(RP2; Z2)→ H2(Qm; Z2).

(There are more conditions that we care about later.) Let us call an extension
F with these properties a “good” extension. (The first two conditions are
fulfilled by any extension F of f making the diagram commute.)

So we ask if there exists a good extension, and how many good ex-
tensions exist. The answer is given again by obstruction theory: without
the additional properties, the extensions are classified up to homotopy by
H2(M × RP2, RP2; (π2(CP∞)m)−).

Lemma 4.4.1

H2(M × RP2, RP2; Z−) ∼= H1(M ; Z2)⊗H1(RP2; Z2)

and one finds cocycle representatives supported on cells “generating”

H1(M ; Z2)⊗H1(RP2; Z2).

Proof: We calculate this group “by hand” using cellular decompositions.
C2(M × RP2, RP2; Z−) is isomorphic to the group of equivariant cochains
C2

Z2
(M × S2, S2), where the Z2-action on Z is multiplication with −1.
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Now let us describe an equivariant cell decomposition of M × S2: we
construct it as a product of some cell decomposition of M with the standard
Z2 = {1, T}-equivariant cell decomposition of S2. Let the two 0-, 1- and
2-cells of this cell decomposition of S2 be denoted by a, Ta, b, Tb, and c, Tc
respectively. (One has ∂a = 0, ∂b = Ta − a, ∂c = Tb − b.) We may find a
cell decomposition of M with exactly one 0-cell d, 1-cells ei, 2-cells fi and
3-cells gi.

Then M × S2 has 1-cells d× b, d× Tb, ei × a and ei × Ta, 2-cells d× c,
d× Tc, ei × b, ei × Tb, fi × a and fi × Ta, and 3-cells ei × c, ei × Tc, fi × b,
fi × Tb, gi × a and gi × Ta.

C2
Z2

(M × S2, S2) consists of the functions that are equivariant and zero
on d× c, hence an element is determined by its value on the ei× b and fi×a.
Similar statements about Cj

Z2
hold for j = 1 and j = 3.

Let φ2 be an equivariant 2-cocyle. Then by considering its coboundary
one finds that it can have any prescribed value on the cells ei×b such that for
all i the value φ2(∂fi× b) is even, since this value must equal 2φ2(fi× a). So
the values on ei × b describe φ2 uniquely. The coboundary of an equivariant
1-cochain φ1 can be any prescribed function on the chains ei × b with even
values since δφ1(ei × b) = 2φ1(ei × a).

We obtain that the group of equivariant 2-cocycles modulo equivariant
coboundaries is isomorphic to the group of all integer-valued functions φ2 on
the cells ei × b such that for all i the value φ2(∂fi × b) is even, modulo all
such functions with even values.

So only the value of such a function modulo 2 is relevant, and the group
is isomorphic to H1(M ; Z2) ⊗ H1(RP2; Z2). Furthermore, one finds cocy-
cle representatives corresponding to cocycle representatives of H 1(M ; Z2) ⊗
H1(RP2; Z2), hence supported on cells “generating” H1(M ; Z2)⊗H1(RP2; Z2).
q.e.d.

It follows that

H2(M×RP2, RP2; (π2(CP∞)m)−)) ∼= H1(M ; Z2)⊗H1(RP2; Z2)⊗π2(CP∞)m

and that these different possibilities for the map F correspond to changes of
the map on the 2-cells that generate H1(M ; Z2) ⊗H1(RP2; Z2) by elements
in π2((CP∞)m)⊗ Z2

∼= H2((CP∞)m; Z2). Hence given any extension F of f ,
we may already change the map H1(M ; Z2) ⊗ H1(RP2; Z2) → H2(Qm; Z2)
by elements from the image of H2((CP∞)m; Z2) → H2(Qm; Z2), using a dif-
ferent extension F . We know that H2(Qm; Z2) has rank m and generators
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t2 := f∗([RP2]) and xj, where j = 1, . . . , m − 1, and xj is in the image
of H2((CP∞)m; Z2) ∼= (Z2)

m → H2(Qm; Z2). Under the map Qm → RP∞,
t2 7→ t2, xj 7→ 0.

As a corollary we get that there are good extensions F : given a basis
e1, . . . em−1 of H1(M ; Z2)⊗H1(RP2; Z2), we can modify the extension f ◦ pr2

to an extension F such that F∗(ej) = xj, hence a good extension.
Now let F ′ be any other good extension. Then F ′

∗(ei) is a linear com-
bination of the xj, We find an integer matrix A with determinant ±1 such
that A · (1, . . . , 1) = (1, . . . , 1), and such that a fibre homotopy equivalence
corresponding to A maps F ′

∗(ei) to xi.
There is enough freedom in the choice of A to include also the changes

on the cells generating H1(M ; Z2)⊗H1(RP2; Z2)→ H2(Qm; Z2) by elements
from the kernel of of π2((CP∞)m) ⊗ Z2

∼= H2((CP∞)m; Z2) → H2(Qm; Z2).
The kernel is generated by (1, . . . , 1) ∈ H2((CP∞)m; Z2) since this can be
represented by a map from S2 to (CP∞)m such that the composition with
the covering map (CP∞)m×S∞ → Qm factors over RP2, in fact the map will
be the double cover of f . We change A such that it adds a given multiple of
(1, . . . , 1) to the image of an integer lift of F ′

∗(ei).
This implies that there is a fibre homotopy self equivalence h : Qm → Qm

such that hf is homotopic to f and such that hF ′ is homotopic to F .

It follows (using the fact that the map W → P2(W ) is unique only mod-
ulo fiber homotopy self-equivalences of P2(W )) that we have a unique map
(modulo fiber homotopy self-equivalences) F : M × RP2 → Qm that can be
the map ∂W →W → P2(W ).

Thus [F : M × RP2 → Qm] should be the zero element in the bordism
group ΩSpin

5 (Qm; L), where L is the pullback of the canonical line bundle over
RP∞. This is just another way of saying that we should now check whether:

[F × (ν − F ∗L) : M × RP2 → Qm × BSpin = B2(W )] = 0 ∈ ΩQm×BSpin
5 ?
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4.5 Computation of ΩSpin
5 (Q1; L) and ΩSpin

6 (Q1; L)

We use two spectral sequences to compute ΩSpin
5 (Q1; L) and ΩSpin

6 (Q1; L):
the Atiyah-Hirzebruch spectral sequence from section 1:

Hp

(

Q1; Ω
Spin
q

)

⇒ ΩSpin
p+q (Q1; L)

and the Adams spectral sequence (we consider the prime 2 only, which will
be justified later):

Exts,tA (H∗(TL ∧MSpin; Z2), Z2) ⇒ πt−s(TL ∧MSpin)/non-2-torsion
∼= ΩSpin

t−s−1(Q1; L)/non-2-torsion

where A is the mod 2 Steenrod algebra.

One can compute the relevant part of the E2-term of the Atiyah-Hirzebruch
spectral sequence directly from the (co)-homology of Q1 (see 4.3) and the
knowledge of the Spin-bordism groups.

The differential of the Atiyah-Hirzebruch spectral sequence d2 : E2
p,1 →

E2
p−2,2 is the dual of Sq2 +w1(L)Sq1, and the differential d2 : E2

p,0 → E2
p−2,1 is

reduction mod 2 composed with the dual of Sq2 +w1(L)Sq1, see for example
[Tei93].

We can compute the action of the Steenrod squares on the generators of
H∗(Q1; Z2): Sq q = q + q2 by comparing with HP∞, Sq t = t + t2. So we see
that the d2-differential is zero in the lower diagonals.

So we have the following E2-term, together with possible higher differen-
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tials:

0

1

2

3

4

5

6

7

q

0 1 2 3 4 5 6 7 p

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

Z2

ZZ

Z

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · ·

· · · · · ·

· · ·

The arrows denote the only possibly non-trivial differentials in the range
p + q ≤ 5. From the Atiyah-Hirzebruch spectral sequence we see that the
only torsion appears at the prime 2. So it suffices to consider the Adams
spectral sequence for the prime 2.

For the Adams spectral sequence, we first need to calculate H∗(TL ∧
MSpin; Z2). Since we are interested only in the first nine columns, it suffices
to compute H∗(TL ∧MSpin; Z2) for ∗ ≤ 8.

Let us start by computing the low degree part of H̃∗(TL; Z2): Here we use
the Thom isomorphism φ : H∗(Q1; Z2) ∼= H̃∗+1(TL; Z2) which is cup product
with the Thom class u1 ∈ H1(Q1; Z2): Recall that H∗(Q1; Z2) ∼= Z2[q, t]/t

3.
Since u2

1 = Sq1(u1) = w1(L)∪u1 = t∪u1 (this is one definition of the Stiefel-
Whitney classes!), we get the following generators for H̃∗(TL; Z2), ∗ ≤ 8:

u1 = φ(1), u2
1 = φ(t), u3

1 = φ(t2), u5 := φ(q), u1u5 = φ(tq), u2
1u5 = φ(t2q)

We have

Sq(u1) = u1 + u2
1, Sq(u2

1) = u2
1,

Sq(u3
1) = u3

1, Sq(u5) = u5 + u1u5 + . . . ,
Sq(u1u5) = u1u5 + . . . , Sq(u2

1u5) = u2
1u5 + . . . ,

where . . . denotes elements of degree > 8.
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H̃∗(MSpin; Z2) has the following generators for ∗ ≤ 7: v0, the Thom class
in degree 0, and v4, v6, v7, the images of the corresponding Stiefel-Whitney
classes under the Thom isomorphism. (The notation is chosen such that
the index of an element always corresponds to its degree.) One has modulo
elements of degree > 7:

Sq(v0) = v0 + v4 + v6 + v7 + . . . , Sq(v4) = v4 + v6 + v7 + . . . ,
Sq(v6) = v6 + v7 + . . . , Sq(v7) = v7 + . . . .

By the Künneth theorem, we get the following generators for H∗(TL ∧
MSpin; Z2), ∗ ≤ 8:

a1 := u1v0, Sq1a1 = u2
1v0, a3 := u3

1v0, a5 := u5v0,
Sq4a1 = u1v4, Sq5a1 = u2

1v4, Sq1a5 = u5u1v0,
a7 := u5u

2
1v0, Sq4a3 = u3

1v4, Sq6a1 = u1v6,
Sq61a1 = u2

1v6, Sq7a1 + Sq61a1 = u1v7

We can easily compute the Steenrod squares on these elements (modulo el-
ements of degree > 8). As a module over the Steenrod algebra, we have in
degrees ≤ 8 the generators a1, a3, a5, a7 and relations:

Sq2a1 = Sq3a1 = Sq21a1 = Sq31a1 = Sq51a1 =
= Sq42a1 = Sq52a1 = Sq421a1 = Sq5a1 + Sq41a1 =

= Sq1a3 = Sq2a3 = Sq3a3 = Sq21a3 = Sq31a3 = Sq5a3 =
= Sq41a3 = Sq2a5 = Sq3a5 = Sq21a5 = Sq1a7 = 0

By the procedure described in Hatcher [Hat04] and Stolz [Sto85], one can
now compute the Exts,tA (H∗(TL ∧MSpin; Z2), Z2) terms for t − s ≤ 7 and
t−s = 8, s = 0, together with parts of the multiplicative structure (or rather
module structure over the Steenrod algebra).

On the next page we display the diagram which describes the resolution
used for the computation of the Exts,t

A -terms. It is the analogue of the di-
agram on page 24 of chapter 2 of [Hat04], but we use also the technique
described by Stolz that recognizes “vertical columns”, i.e. uses almost-free
resolutions in order to get an algorithm terminating after finitely many steps.

We also checked our results using a computer program of Bruner’s [Bru93],
[Bru].
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0 1 2 3 4 s

1

2

3

4

5

6

7

8

9

t− s

α1

Sq1α1 β3

α3

Sq2α1

Sq1β3

β4

γ5

Sq3α1

Sq21α1

Sq2β3

Sq1β4

β5

Sq1γ5

γ6

Sq31α1

Sq4α1

Sq2α3

α5

Sq3β3

Sq21β3

Sq2β4

Sq1β5

Sq2γ5

Sq1γ6

γ7

δ8

Sq5α1

Sq41α1

Sq3α3

Sq1α5

Sq31β3

Sq21β4

Sq3β4

Sq4β3

Sq2β5

β7

Sq21γ5

Sq3γ5

Sq2γ6

Sq1γ7

Sq1δ8

Sq51α1

Sq42α1

Sq4α3

Sq6α1

Sq2α5

α7

Sq5β3

Sq41β3

Sq31β4

Sq3β5

Sq4β4

Sq21β5

Sq1β7

β8

Sq3γ6

Sq21γ6

Sq4γ5

Sq31γ5

Sq2γ7

γ9

Sq2δ8

δ10

Sq52α1

Sq421α1

Sq5α3

Sq3α5

Sq7α1

Sq61α1

Sq21α5

Sq5β4

Sq41β4

Sq42β3

Sq51β3

Sq31β5

Sq6β3

Sq4β5

Sq2β7

Sq1β8

. . .

Sq31γ6

Sq5γ5

Sq41γ5

Sq4γ6

Sq3γ7

Sq21γ7

Sq1γ9

. . .

Sq3δ8

Sq21δ8

. . .

. . .

Sq521α1

Sq62α1

Sq42α3

Sq31α5

. . .

Sq51β4

Sq52β3

Sq42β4

Sq5β5

Sq41β5

Sq3β7

. . .

Sq51γ5

Sq5γ6

Sq41γ6

. . .

. . . . . .
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Hence the E2-term of the Adams spectral sequence, together with the
possible differentials, is in low degrees described by the following diagram:

0

1

2

3

4

5

6

7

s

0 1 2 3 4 5 6 7 8 t− s

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Again, the arrows denote the only possibly non-trivial differentials with
image in the range t− s ≤ 7.

Now we compare both spectral sequences: In the Adams spectral sequence
picture one sees that either none or both of the differentials are trivial. There-
fore, the same holds in the Atiyah-Hirzebruch spectral sequence. The lower
differential is non-trivial if and only if the edge homomorphism

ΩSpin
4 (Q1; L) → H4(Q1; Z−) ∼= H4(Q1; Z2) ∼= Z2

[f : M → Q1] 7→ f∗([M ]Z2
)

is trivial.
Now suppose there is an element [f : M → Q1] such that f∗([M ]Z2

) 6= 0.
We may again use surgery below the middle dimension, and suppose that
f is an isomorphism on π1. Hence we may suppose π1(M) ∼= Z2, and M
non-orientable, since the map M → Q1 → RP∞ is an isomorphism on π1

and describes the first Stiefel-Whitney class.
Now we use a result from [HKT94]: There are only very few possibilities

for M , we have necessarily:

M = RP2 × S2#k · S2 × S2
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with k ≥ 0. (One of the reasons for this is that the universal cover must be a
1-connected differentiable 4-manifold with zero signature, since it admits an
orientation-reversing diffeomorphism.) Now since π3(Q1) = 0, we may apply
surgery to replace the map f ′ from the connected sum by a bordant map
from the disjoint sum,

f : RP2 × S2 + k · S2 × S2 → Q1

such that:

f∗([RP2]Z2
) +

k
∑

i=1

f∗([(S
2 × S2)i]Z2

) = f ′
∗([M ]Z2

) 6= 0

But every map from S2×S2 → Q1 lifts to CP∞×S∞, hence it is zero on H4.
(The map is zero on H4 since the square of the generator of H2(CP∞; Z2) is
mapped to a square in H4(S2 × S2; Z2).)

This means we may suppose M = RP2 × S2. But every such map f :
RP2 × S2 → Q1 is a lift of the map i ◦ pr1 : RP2 × S2 → RP∞ and as
such homotopic to the map RP2 × S2 → RP2 → Q1, where the first map is
projection onto the first factor and the second map is x 7→ f(x, (1, 0, 0)). The
reason for this is that the obstructions for a homotopy between these two lifts
lie in Hk(RP2 × S2, RP2; πk(CP∞)), which is zero for all k. (The proof for
k = 2 is Lemma 4.4.1, with minimal changes. All other obstruction groups
are zero.) Since f factors over RP2, it is trivial on the fourth homology.

So the edge homomorphism is zero, and both of the differentials in the
spectral sequence are non-trivial, and we get the result:

ΩSpin
5 (Q1; L) = 0

For ΩSpin
6 (Q1; L) we see that there cannot be any differentials in the first

columns of the Adams spectral sequence, since Ext8,0 = 0, thus any differen-
tial from the eighth column to the seventh would have to kill a Z summand,
which is impossible considered the E2-term of the Atiyah-Hirzebruch spectral
sequence. Hence:

ΩSpin
6 (Q1; L) ∼= Z2 ⊕ Z4

As a result we also get that there is no non-zero differential ending or starting
on the sixth diagonal of the Atiyah-Hirzebruch spectral sequence.
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4.6 Computation of ΩSpin
5 (Qm; L) and ΩSpin

6 (Qm; L)

We apply the Atiyah-Hirzebruch spectral sequence.

We start with the action of the Steenrod squares on the generators of
H∗(Qm; Z2): Sq q = q + q2 by comparing with HP∞, Sq t = t + t2, more
difficult is the Sq1-term in Sq xi = xi + txi + x2

i . We know that Sq1 is
the Bockstein map - and from the corresponding long exact sequence and
our computations of the integer and Z2-homology we see that Sq1 maps the
linear space spanned by the xi isomorphically to H3(Qm; Z2). Finally one
has to compare (using the right projection) with Q2, where we necessarily
have Sq1 x1 = tx1.

The differential of the Atiyah-Hirzebruch spectral sequences d2 : E2
p,1 →

E2
p−2,2 is the dual of Sq2 +w1(L)Sq1, and the differential d2 : E2

p,0 → E2
p−2,1 is

reduction mod 2 composed with the dual of Sq2 +w1(L)Sq1, see for example
[Tei93]. We compute Sq2 + tSq1 on H∗(Qm; Z2) in the relevant dimensions:

t2 7→ 0, xi 7→ x2
i +t2xi, txi 7→ tx2

i , t2xi 7→ t2x2
i , xixj 7→ x2

i xj+xix
2
j +t2xixj,

q 7→ 0, txixj 7→ tx2
i xj + txix

2
j , tq 7→ 0.

We get that

d2 : E2
4,1
∼= (Z2)

(m+1

2 ) → E2
2,2
∼= (Z2)

m has rank m− 1,

d2 : E2
5,1
∼= (Z2)

(m
2 )+1 → E2

3,2
∼= (Z2)

m−1 has rank m− 1,

d2 : E2
6,1
∼= (Z2)

(m+2

3 ) → E2
4,2
∼= (Z2)

(m+1

2 ) has rank
(

m
2

)

,

d2 : E2
6,0
∼= Z(m+2

3 ) → E2
4,1
∼= (Z2)

(m+1

2 ) has rank
(

m
2

)

,

d2 : E2
7,0
∼= (Z2)

(m+1

3 )+m−1 → E2
5,1
∼= (Z2)

(m
2 )+1 has rank

(

m−1
2

)

.

What remains after the d2 - differential on the fifth diagonal is a single
Z2 in E3

4,1. This Z2 will kill the Z2 in E3
0,4 by a d4-differential by naturality of

the spectral sequence, since this happens in the spectral sequence for Q1, and
there is a lift of the projection Qm → Q1 to the first and the last factor: map
the class of (x, y), where x ∈ CP∞, y ∈ S∞ to the class of (x, x, . . . , x, y). So
we have shown that ΩSpin

5 (Qm; L) = 0.
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For ΩSpin
6 (Qm; L), we use a similar Adams spectral sequence computation

as for Q1. We get that E7+∗,∗ has one part that “would lead to a Z4 torsion”

(as Q1), and one part that “would lead to Z(m+2

3 )+m”. We see by naturality
of the Adams spectral sequence that there may be no differential ending up
in the “torsion part” of the seventh column, since for Q1, E0,8 = 0. Again the
comparison with the Atiyah-Hirzebruch spectral sequence implies that there
may be no differential ending up in the “free part” of the seventh column.

So we get that ΩSpin
6 (Qm; L) ∼= Z(m+2

3 )+m ⊕ Z4, where the free part has
the same rank as the free group ΩSpin

6 (Q̃m,n
∼= (CP∞)m+n).
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4.7 The final step: Surgery

Now we know that [F : M ×RP2 → Qm] = 0 ∈ ΩSpin
5 (Qm; L) = 0. Then one

obtains a map G : W → Qm with W a 6-manifold with ν(W ) = G∗(L) ⊕ η,
where η is some spin bundle, ∂W = M ×RP2, and G|∂W = F . The diagram
corresponding to our situation is:

Qm × BSpin

⊕◦(π×Bp)

∂W = M × RP2 W

ν

ν BO

By surgery below the middle dimension, we may assume that ν is a 3-
equivalence, hence π1(W ) ∼= Z2 and π2(W ) ∼= Zm. Then we have assured
that we really have Qm = P2(W ) and that we obtain the isomorphism of
4.1.1 below the middle dimension, i.e. for dimension ≤ 2.

Since W → Qm is an isomorphism on π2, and RP2 → Q is split injective
on π2, RP2 ↪→ W is split injective on π2, and the same holds for S2 ↪→ V .
Hence H2(S

2; Z) → H2(V ; Z) is split injective, and the map in the Mayer-
Vietoris sequence starting in H3(X; Z) is the zero map.

Now we consider the exact sequence of the pair (∂W, W ) in Z2-homology
and cohomology. We have two isomorphisms to compare both sequences,
given by the universal coefficient theorem and by Poincaré duality. Poincaré
duality maps Hi(M ; Z2)⊗Hj(RP2; Z2) to H3−i(M ; Z2)⊗H2−j(RP2; Z2), the
universal coefficient theorem maps Hi(M ; Z2)⊗Hj(RP2; Z2) to (H i(M ; Z2)⊗
Hj(RP2; Z2))

∗, and this is the usual translation from homology to cohomol-
ogy that was already used in Theorem 4.1.1.

Using Poincaré duality, we see that isomorphisms

⊕

i+j=k,i≤j

Hi(M ; Z2)⊗Hj(RP2; Z2)→ Hk(W ; Z2)

induce isomorphisms:

⊕

i+j=k,i≤j

H3−i(M ; Z2)⊗H2−j(RP2; Z2)→ H6−k(W, ∂W ; Z2)

H6−k(W ; Z2)→ H6−k(M×RP2; Z2) /
⊕

i+j=k−1,i≤j

H3−i(M ; Z2)⊗H2−j(RP2; Z2)
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Now we add the universal coefficient theorem and see that the isomorphisms

H0(M ; Z2)⊗H0(RP2; Z2)→ H0(W ; Z2),

H0(M ; Z2)⊗H1(RP2; Z2)→ H1(W ; Z2),

H0(M ; Z2)⊗H2(RP2; Z2)⊕H1(M ; Z2)⊗H1(RP2; Z2)→ H2(W ; Z2)

imply that there are isomorphisms

0→ H5(W ; Z2),

H2(M ; Z2)⊗H2(RP2; Z2)→ H4(W ; Z2),

and

H1(M ; Z2)⊗H2(RP2; Z2)→ Im(H3(∂W ; Z2)→ H3(W ; Z2)).

The only problem that remains is that H3(W ; Z2) can be too large: we have
H3(W ; Z2) ∼= Im(H3(∂W ; Z2) → H3(W ; Z2)) ⊕ C where C is the cokernel,
which is also isomorphic to H3(W ; Z2)/rad. Here we have divided out the
radical of the Z2 intersection form. The Z2 intersection form on C is non-
degenerated. Consider the following diagram:

H1(M ; Z)⊗H1(RP2; Z) H2(∂W ; Z2)

H3(∂W ; Z2)
β̃

H2(∂W ; Z)

red

H2(W ; Z2)

H3(W ; Z)
red

H3(W ; Z2)
β̃

H2(W ; Z)

red

C

We want to show that the map H3(W ; Z) → C is surjective. The com-
position

H1(M ; Z)⊗H1(RP2; Z) ∼= H1(M ; Z)⊗ Z2 → H2(∂W ; Z)→ H2(∂W ; Z2)

is injective, since the first map is split injective by the Künneth theorem, and
the kernel of the second map consists of the classes divisible by 2.
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As ∂W → Qm was a good map, the composition of the above map
with H2(∂W ; Z2) → H2(W ; Z2) is still injective. Therefore the composition
H1(M ; Z)⊗H1(RP2; Z)→ H2(∂W ; Z)→ H2(W ; Z) is injective. But

H1(M ; Z)⊗H1(RP2; Z) ∼= H1(M ; Z)⊗ Z2
∼= H1(M ; Z2) ∼= (Z2)

m−1

and H2(W ; Z) ∼= H2(Qm; Z) ∼= (Z2)
m−1, so the map is a bijection. On

H1(M ; Z)⊗H1(RP2; Z), multiplication with 2 is the zero map, so all classes
come from classes in H3(∂W ; Z2). Therefore H3(∂W ; Z2) → H2(W ; Z) is
surjective, and now an easy diagram chase proves that H3(W ; Z) → C is
surjective.

This implies that the intersection product Λ(Y, Y ) of any element in C
with itself is zero, since the integer-valued intersection form on H3(W ; Z)
is skew-symmetric. Then it follows, that as a vector space with symmetric
bilinear form, C ∼= Hr, where the hyperbolic form H is given by ((Z2)

2; Λ),
where Λ(Y, Z) = Y1Z2 + Z1Y2.

We have π3(W ) ∼= π3(W̃ ) � H3(W̃ ; Z) by the extended Hurewicz theo-
rem which says that for an (n− 1)-connected space, not only πn

∼= Hn, but
also πn+1 � Hn+1. Now we look at the long exact sequence in homology
induced by the short exact sequence of coefficients Z− → Z[Z2]→ Z: we get:

H3(W̃ ; Z) H3(W ; Z) H2(W ; Z−)

∼=

H2(W̃ ; Z)

∼=

H2(W ; Z)

∼=

Zm Zm (Z2)
m−1

Since the rows are exact, the map Zm → Zm must have rank m, hence it is
injective. Therefore H3(W̃ ; Z)→ H3(W ; Z) is surjective.

We conclude that we have a surjective composition:

p : π3(W ) � H3(W ; Z) � C

If C is not zero, X will not be a conjugation space. But maybe we have
just chosen a wrong nullbordism W . There are two “degrees of freedom” for
W , if C is not zero: First, we may change W in its bordism class by surgery
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in its interior. Second, we may change the bordism class of W . The first
“degree of freedom” will be used.

If we do not want to allow a different 2-type for W , then W → BSpin×
Qm must be a three-connected map, i.e. a 2-smoothing. But if we just want
that to produce a conjugation space, this might be a condition that is stronger
than what we need. We could for example allow odd torsion in the second
homology!

Following Wall [Wal99], we have on π3(W ) = Ker(π3(W )→ π3(BO) = 0)
a (−1)-quadratic form (λ, µ̃) over the ring Z[Z2] with the involution a + bT =
a−bT given by intersections and self-intersections, compare also with [Kre99]:

λ : π3(W )× π3(W )→ Z[Z2]
µ̃ : π3(W )→ Z[Z2]/Z · 1 ∼= Z · T

(We will identify the subgroup Z · T with the quotient Z[Z2]/Z · 1.)
We know that λ(x, x) = µ̃(x)− µ̃(x) ∈ Z[Z2]. Therefore, under the above

identification, λ(x, x) = 2µ̃(x) and each one of λ(x, x), µ̃(x) determines the
other one.

Since we count in both cases the intersections (but for C, we do not
remember the sign and the element of the fundamental group corresponding
to an intersection point), we get for y, z ∈ π3(W ) with images Y, Z ∈ C:

ε(λ(y, z)) = Λ(Y, Z),

where ε : Z[Z2]→ Z2 maps a + bT to a + b modulo 2.
Suppose C ∼= (Hr, Λ), with basis E1, F1, . . . , Er, Fr, such that Λ(Ei, Fj) =

δij, and Λ(Ei, Ej) = Λ(Fi, Fj) = 0.
We want to find lifts ei ∈ π3(W ) of Ei such that λ(ei, ej) = 0 (and

therefore also µ̃(ei) = 0).

We will obtain this by the following procedure:
Choose any lifts e0

i , f
0
i ∈ π3(W ).

Now do the following for i = 1, . . . , r:

• Let λ(ei−1
i , ei−1

i ) = 2aT , λ(ei−1
i , f i−1

i ) = b + cT .

• Let ei = ei
i = (−b + cT )ei−1

i + (a− aT )f i−1
i .

(This is still a lift for Ei since p(ei
i) = (−b + c)p(ei−1

i ) + (a− a)p(f i−1
i )

and −b + c is congruent to 1 modulo 2, since ε(b + cT ) = Λ(Ei, Fi).
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The advantage is that we have λ(ei
i, e

i
i) = (−b + cT )(−b − cT )2aT +

(−b+ cT )(a+aT )(b+ cT )+(a−aT )(−b− cT )(−b+ cT )+(a−aT )(a+
aT )λ(f i−1

i , f i−1
i ) = 0.)

• Let λ(ei
i, f

i−1
i ) = g + hT .

• Let f i
i = (g + hT )f i−1

i .
(This is still a lift for Fi since g + h is congruent to 1 modulo 2.)

• Then we have λ(ei
i, f

i
i ) = (g − hT )(g + hT ) = g2 − h2 ∈ Z.

• For j = i + 1, . . . , r:

– Let λ(ei
i, e

i−1
j ) = p + qT , λ(ei

i, f
i−1
j ) = r + sT .

– Let ei
j = (g2−h2)ei−1

j +(−p+ qT )f i
i , and let f i

j = (g2−h2)f i−1
j +

(−r + sT )f i
i . (These are still lifts for Ej, Fj. Then we have

λ(ei
i, e

i
j) = (g2 − h2)(p + qT ) + (−p − qT )(g2 − h2) = 0 and

λ(ei
i, f

i
j) = 0. So ei

i will also be orthogonal to all linear combi-
nations of these elements, such that in the end, the ei’s will be
pairwise orthogonal.)

Now we have lifts ei ∈ π3(W ) such that λ(ei, ej) = 0 and µ̃(ei) = 0. This
implies that we can do surgery on those elements.

The result W ′ doesn’t have to be a 3-smoothing for Qm × BSpin any
more. One cannot easily obtain its homotopy or integer homology groups,
because we did not get lifts fi of the elements Fi such that λ(fi, fj) = 0 and
such that λ(ei, fj) = δij.

But we can compute its Z2-homology easily since we have the elements
Fi. Namely, for example following Ranicki [Ran02], p.49, we get that the
change in the Z2-homology between W and W ′ is exactly that we have killed
C.

Therefore W ′ (although, let us repeat this, it doesn’t have to be a 3-
smoothing for Qm × BSpin any more) fulfills the condition of proposition
4.1.1. At least the 3-surgeries didn’t change the fundamental group, and the
twisted spin structure.

Now we can exactly proceed as we wanted: we take the double cover, and
glue in M × D3. We obtain a simply connected spin manifold, which is a
conjugation space.
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Theorem 4.7.1 For every orientable connected 3-manifold M , there exists
a simply connected spin 6-manifold which is a conjugation space and has M
as its fixed point set.

Remark 4.7.2 The conjugation spaces (the conjugation is constructed from
reflections and complex conjugations)

• pt with trivial involution,

• S2 with fixed point set S1,

• S4 with S2 as fixed point set,

• the connected sum of r copies of S2 × S2 with fixed point set the con-
nected sum of r copies of S1 × S1,

• and the connected sum of r copies of CP2 with fixed point set the con-
nected sum of r copies of RP2

show that every closed manifold of dimensions 0, 1 and 2 is the fixed point set
of a (simply-connected, and spin in the orientable case) conjugation space.
Hence the above theorem holds also in smaller dimensions.
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Fixed point sets

of codimension 1

Theorem A.1 Let M be a simply connected closed n-dimensional differen-
tiable manifold, and suppose that Zp acts smoothly on M such that the fixed
point set contains a component of codimension 1. Then the action must be an
orientation reversing involution, and there is a compact n-dimensional man-
ifold M1 with boundary F such that M = M1 ∪F −M1, and the involution
maps x ∈M1 to x ∈ −M1 and inversely, with fixed point set F .

Proof: By considering the differential of the action at a point in the codi-
mension 1 fixed point component, one obtains that the action is an ori-
entation reversing involution τ . Smith theory [Bre62] implies that F has
only one component of codimension 1, say F0. Let N be a small (open)
tubular neighbourhood of F0, and consider the Mayer-Vietoris sequence for
M = N ∪ (M \ F0):

. . .→ Hn(N ; Z2)⊕Hn(M \ F0; Z2)→ Hn(M ; Z2)→ Hn−1(N \ F0; Z2)

→ Hn−1(N ; Z2)⊕Hn−1(M \ F0; Z2)→ Hn−1(M ; Z2)→ . . .

N is homotopy equivalent to the (n−1)-dimensional manifold F0. M \F0

is homotopy equivalent to M \N , an n-dimensional manifold with boundary.
This implies Hn(N ; Z2) = Hn(M \ F0; Z2) = 0 and Hn−1(N ; Z2) ∼= Z2. M is
an n-dimensional closed simply connected manifold, hence Hn(M ; Z2) ∼= Z2

and, by Poincaré duality, Hn−1(M ; Z2) = 0. N is homeomorphic to a line
bundle over F0 (its normal bundle in M), so N \ F0 is isomorphic to a line
bundle over F0 without the 0-section, hence homotopy equivalent to a double
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cover of F0, hence to an (n− 1)-dimensional closed manifold. By the Mayer-
Vietoris sequence, Hn−1(N \ F0; Z2) has rank ≥ 2, hence the normal bundle
of F0 is trivial.

It follows that M \F0 is homotopy equivalent to M \N , an n-dimensional
manifold with boundary F0 t F0. Thus H0(M \ F0; Z2) ∼= Hn(M \ N, F0 t
F0; Z2) ∼= Hn(M, F0; Z2) by Poincaré duality and since (M \N)/(F0 t F0) ∼=
M/F0. Consider the exact sequence of the pair (M, F0):

. . .→ Hn(F0; Z2)→ Hn(M ; Z2)→ Hn(M, F0; Z2)

→ Hn−1(F0; Z2)→ Hn−1(M ; Z2)→ . . .

We obtain that the rank of H0(M \ F0; Z2) ∼= Hn(M, F0; Z2) is 2, hence
M \ F0 is disconnected. But then the involution must exchange the compo-
nents of M \ F0, and the theorem follows. q.e.d

Denote M2 := −M1. We have a Mayer-Vietoris sequence for M = M1∪M2

and a Mayer-Vietoris sequence for M = M2∪M1 and a commutative diagram
(for arbitrary coefficients):

Hk(M)
(i∗

1
i∗
2
)

τ∗

Hk(M1)⊕Hk(M2)
(j∗

1
−j∗

2
)

τ∗⊕τ∗

Hk(F ) d

τ∗=id

Hk+1(M)

τ∗

Hk(M)
(i∗

2
i∗
1
)

Hk(M2)⊕Hk(M1)
(j∗2 −j∗1 )

(−j∗
2

j∗
1
)

Hk(F )
d′=−d

−1

Hk+1(M)

Hk(F )

d

Hence, with the following action, the Mayer-Vietoris sequence is equiv-
ariant:

Hk(M)

τ∗

Hk(M1)⊕Hk(M2)

(0 1

1 0)

Hk(F )

−1

Hk+1(M)

τ∗

We want to apply our results to the following situation (that is, for ex-
ample, to the manifolds described in the last section of [Pup95]):

Proposition A.2 Let M be a 1-connected closed (n = 4k + 2)-manifold s.t.
H∗(M ; Z) is free, and H2(M ; Z) generates H∗(M ; Z) as an algebra. Suppose
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the only graded non-trivial involution on H∗(M ; Z) is given by (−1)j on
H2j(M ; Z) (this involution always exists!). Then there is no involution on
M with a codimension 1 fixed point component.

Proof: Suppose there is such an involution, which is orientation reversing,
hence in integer cohomology, it must be (−1)j on H2j(M ; Z). We consider
the above equivariant exact sequence with Q-coefficients. Every rational
representation of Z2 is a sum of representations of rank 1, namely Q+ and
Q− (where the action is by multiplication with +1 respectively −1).

Let mi = rk(H i(M)), fi = rk(H i(F )), ri = rk(H i(M1)).
In the equivariant sequence we know that H4j+1(M) = H4j+3(M) = 0,

(H4j+2(M), τ ∗) = Q
m4j+2

− , (H4j(M), τ ∗) = Q
m4j

+ , (H i(F ),−1) = Q
fi

− and
(H i(M1)⊕H i(M2),

(

0 1
1 0

)

) = Q
ri
+ ⊕Q

ri
−.

Now we can deduce a lot of relations: It follows that r4j−1 = 0, and since
H4j−1(F ) → H4j(M) must be the zero map, it follows that f4j−1 = 0. We
get m4j = r4j = f4j . We have that r4j+2 = 0, and hence f4j+2 = 0. Finally
r4j+1 = 0, which implies f4j+1 = m4j+2.

Now we consider Z2-cohomology, and we already know the dimensions
of H i(M ; Z2). H∗(F ; Z) has no 2-torsion by Smith theory (if H∗(F ; Z) had
2-torsion, one would obtain rk(H∗(F ; Z2)) > rk(H∗(M ; Z2))).

Hence we have rk(H∗(F ; Z2)) = rk(H∗(M ; Z2)), which implies that the
Serre spectral sequence for the Borel construction M → MG → BG col-
lapses and that H∗(F ; Z2) is a deformation of H∗(M ; Z2). But H∗(M ; Z2)
is generated as an algebra by m2 homogeneous elements, while H∗(F ; Z2) is
not. This gives a contradiction. (For the whole last paragraph, we refer to
[Pup78].) q.e.d.
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“Most” manifolds in N do not

admit orientation preserving

Zp-actions

We are interested in the following class of differentiable manifolds:

N = {closed 1-connected spin 6-manifolds with free integer cohomology}

(These manifolds have been classified by Wall in [Wal66], and this classi-
fication uses the result that for every M ∈ N , we have that rk(H3(M)) = r
is even and M ∼= M ′#

(

#r/2S
3 × S3

)

, with H3(M ′) = 0.)

Let us suppose that G = Z2 acts on M ∈ N preserving the orientation.
(We will look at the differences for Zp-actions, p odd, at the end.) We consider
the Borel construction, i.e. the fibration

M →MG = (M × EG)/G→ BG

where EG is the universal free G-space S∞ and BG the classifying space
S∞/G, where the action of G on S∞ ⊂ C∞ is by multiplication with a com-
plex unit root.

We consider the Serre spectral sequence for this fibration, i.e.:

Hp(BG;Hq(M)) =⇒ Hp+q(MG),
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where Hq(M) means that we have to consider Hq(M) as a local system, i.e.
the left side is cohomology with local coefficients. This means we have to
know the π1(BG) = G-action on Hq(M); this is just the induced action in
cohomology of the action of G on M , as one verifies easily.

“Most” manifolds M are such that G acts trivially on H even(M), and
such that H2(M) generates Heven(M), see [Pup95]. Puppe has also treated
the special case of our problem that G acts trivially on H∗(M), see [Pup06].
Here we want to generalize one step further, that is, we don’t want to “ex-
clude” non-trivial actions of G on H3(M).

We will consider integer cohomology first. We have a complete classifica-
tion result for integral G-representations, see for example [CR62], and what
we will use here is that we can write

H3(M ; Z) = H3(M ; Z)+ ⊕H3(M ; Z)0 ⊕H3(M ; Z)−,

where the decomposition is such that G acts trivially on H3(M ; Z)+, by
multiplication with −1 on H3(M ; Z)−, and H3(M ; Z)0 is isomorphic to a
direct sum of group rings Z[G]. This decomposition is not unique. Let the
projection of this direct sum decomposition under reduction mod 2 be

H3(M ; Z2) = H3(M ; Z2)+ ⊕H3(M ; Z2)0 ⊕H3(M ; Z2)−.

We want to apply the localization theorem, see for example [Hsi75], which
says that the restriction H∗(MG; Z)→ H∗(FG; Z), where F is the fixed point
set, after localizing in t ∈ Z[t]/2t ∼= H∗(BG; Z) (here deg(t) = 2), becomes
an isomorphism of H∗(BG; Z)[t−1]-modules. So we are interested in the
H∗(BG; Z)-module structure of H∗(MG; Z).

The H∗(BG; Z)-module structure of the E2-term of the Serre spectral
sequence is

E∗,∗
2
∼= (Z[t]/2t⊗H∗(M ; Z)+)⊕ (s · Z2[t]⊗H∗(M ; Z)−)⊕H∗(M ; Z)G

0

where deg(s) = 1, deg(t) = 2. (Here H∗(M ; Z)G
0 denotes the elements of

H∗(M ; Z)0 fixed by the G-action.) For this, one has to compute the coho-
mology of BG with the different local coefficients (as a module over ordinary
integer cohomology of BG).
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A non-zero differential in the spectral sequence would indeed define a
non-zero derivation of odd degree of H∗(M ; Z2), and this is not possible if
H2(M ; Z2) generates Heven(M ; Z2). Hence in most cases E∗,∗

2
∼= E∗,∗

∞ , and
the next thing we have to care about is the sequence of extensions of graded
Z[t]/2t-modules:

0→ Fq−1(H
∗(MG; Z))→ Fq(H

∗(MG; Z))→ E∗,q
∞ [−q]→ 0

Lemma B.1 All these extensions are split, hence the limit term H ∗(MG; Z)
has the same H∗(BG; Z)-module structure as the E∞-term.

Proof: We do induction over q. E∗,q
∞ is for all q a direct sum of summands

isomorphic to Z, Z2[t] or Z[t]/2t. One can split this extension problem into
extensions, where the quotient is always isomorphic to Z, Z2[t] or Z[t]/2t. If
the quotient is Z[t]/2t, i.e. free, the extension splits. For the quotients Z,
Z2[t], one can show by construction of a section, that as Z[t]/2t-modules, all
such extensions split. One only has to find a preimage of the generator of Z

that is annihilated by t, respectively a preimage of the generator of Z2[t] that
is annihilated by 2. This is possible since by hypothesis, the left side is a
direct sum of summands isomorphic to Z, Z2[t] or Z[t]/2t, and (important!)
that the maps are graded:

Let x be a preimage of 1 ∈ Z, then tx maps to zero, hence is the image
of an element y ∈ Fq−1(H

∗(MG; Z)). Since all maps are graded, y is divisible
by t: we find z such that y = tz. Thus x minus the image of z maps to 1 ∈ Z

and is annihilated by t.
Let x be a preimage of 1 ∈ Z2[t], then 2x maps to zero, hence is the

image of an element y ∈ Fq−1(H
∗(MG; Z)). One has ty = 0 since its image is

2tx = 0. Since all maps are graded, y is divisible by 2: we find z such that
y = 2z. Thus x minus the image of z maps to 1 ∈ Z2[t] and is annihilated
by 2. q.e.d

Remark B.2 The proof of the lemma applies to the following general case:
Let a Z2-action on X be given. If the integer cohomology of X is free over
Z, and all differentials in the Serre spectral sequence computing the equivari-
ant integer cohomology of X are trivial, then also all extensions split, and
H∗

G(X; Z) has the same H∗(BG; Z)-module structure as the E2-term of the
spectral sequence.

Hence our result is that as graded Z[t]/2t-module, we have:

H∗(MG; Z) ∼= Z[t]/2t⊗H∗(M ; Z)+ ⊕ s · Z2[t]⊗H∗(M ; Z)− ⊕H∗(M ; Z)G
0
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Here one may ask the question on which choices this isomorphism depends.
Indeed, (in addition to the choice of decomposition of H∗(M ; Z)) one has to
choose a certain lift of H∗(MG; Z)→ H∗(M ; Z)G, and finally one needs some
lift of H∗(MG; Z)→ H∗(MG; Z)/

(

Z[t]/2t⊗ (H∗(M ; Z)+ ⊕H∗(M ; Z)G
0 )

)

.

Now we apply the localization theorem in the form of an exercise of
[tDi87]: one has an isomorphism of Z2-graded algebras:

H∗(MG; Z)⊗H∗(BG;Z) Z2
∼= H∗(F ; Z2)

where Z2 is a (Z2-graded) Z[t]/2t-module by defining that t acts trivially on
Z2. (For the proof, one shows using the localization theorem that the left
hand side is isomorphic to H∗(F ×BG; Z)⊗H∗(BG;Z) Z2 and shows that this
fulfills all axioms of a cohomology theory, and that there is a multiplicative
natural transformation to ordinary Z2-cohomology.)

Hence, as Z2-graded Z2-vector spaces, we have:

H∗(F ; Z2) ∼= H∗(M ; Z2)+ ⊕H∗(M ; Z2)−[−1].

For the multiplicative structure, we look at the Serre spectral sequence with
Z2 coefficients. We get that

H∗(MG; Z2) ∼= Z2[s]⊗ (H∗(M ; Z2)+ ⊕H∗(M ; Z2)−)⊕H∗(M ; Z2)
G
0 .

As in the integer case, this identification depends on the corresponding lifts,
that may be chosen such that they commute with the lifts in the integer case
under reduction modulo 2, i.e. such that

H∗(MG; Z) −→ H∗(MG; Z2)

tn ⊗m+ 7−→ s2n ⊗m+

stn ⊗m− 7−→ s2n+1 ⊗m−

m0 7−→ m0

This finally gives the result (with the same proof as in [Pup78], [Pup79])
that the multiplication in H∗(F ; Z2) corresponds to the multiplication in
H∗(M ; Z2)+ ⊕ H∗(M ; Z2)− up to terms of lower degree. If we put together
our results from the integer and the Z2-case, this implies that there is a fil-
tration on Heven(F ; Z2) (namely the one corresponding to the filtration given
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by the degree on Heven(M ; Z2)+ ⊕ Hodd(M ; Z2)−) such that the associated
graded algebra is isomorphic to Heven(M ; Z2)+ ⊕Hodd(M ; Z2)−.

Since the action of G is orientation preserving, Heven(F ; Z2) is a product
of Poincaré algebras, as all components of F thus must have even codi-
mension. Hence, if the action of G on M is non-trivial, one can obtain
Heven(M ; Z2) as the even part of an associated graded algebra to a multi-
plicative filtration on a product of even Poincaré algebras of formal dimension
≤ 4.

Given m = rk(H2(M ; Z)), and n = rk(H3(M ; Z)−), one has

rk(Heven(F ; Z2)) = 2 + 2m + n.

The algebra structure on Heven(M ; Z2) may be given by a trilinear form µ
on Zm

2 , such that µ(x, x, y) = µ(x, y, y) for all x, y ∈ Zm
2 ([Wal66],[Pup95]).

Given m and n, and using exactly the arguments from [Pup95], there are

at most 2(2m+n+3

2 ) possibilities for the algebra structure of Heven(F ; Z2), and
at most (22m+n+1)m · (2m+n+1)n · 2m+1 filtrations on such an algebra, hence

at most 24m2+4mn+ 3

2
n2+7m+ 7

2
n+4 possibilities for Heven(M ; Z2) with a non-

trivial action. Given m = rk(H2(M ; Z)), and r = rk(H3(M ; Z)), one forms
the sum over all possibilities for the value of n and obtains that there are
≤ (r + 1) · 24m2+4mr+ 3

2
r2+7m+ 7

2
r+4 possibilities for the even part of the coho-

mology algebra of a manifold M ∈ N with the given parameters that admits
a non-trivial orientation preserving involution.

Now let S3(Zm; N) denote the set of symmetric 3-forms µ on Zm such
that all coefficients µijk = µ(ei, ej, ek) satisfy −N ≤ µijk < N , and let
R(m; N) denote the set of those 3-forms realisable by manifolds in N and
with rk(H2(M ; Z)) = m (i.e. the forms µ such that µijj = µiij mod 2; see
[Wal66] for the relation to a classification of N ), and let G2(m; r) denote
the subset of S3(Zm; N) which correspond to even algebras Heven(M ; Z2)
that can be obtained as associated graded algebra to a filtration on a prod-
uct of even Poincaré algebras of formal dimension ≤ 4, and of dimension
≤ 2 + 2m + r over Z2.

Then

#(G2(m; r) ∩ R(m; N))

#(R(m; N))
≤

#(G2(m; r) ∩ S3(Zm; N))

#(R(m; N))
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≤
(r + 1) · 24m2+4mr+ 3

2
r2+7m+ 7

2
r+4

2(m+2

3 )−(m
2 )

Hence, if r = o(m
3

2 ), then

lim
m→∞

#(G2(m; r) ∩ R(m; N))

#(R(m; N))
= 0

for any N and in this sense, “most” manifolds in N do not admit orientation
preserving involutions.

Now let us indicate the modifications for actions of G = Zp, where p is
odd. The classification result is that

H3(M ; Z) = H3(M ; Z)+ ⊕H3(M ; Z)0 ⊕H3(M ; Z)−,

Here G acts trivially on H3(M ; Z)+. H3(M ; Z)− is a direct sum of summands
that are isomorphic to finitely generated Z[θ]-ideals A of Q[θ], where θ is a
p-th unit root and the action is given by g · a = θa, where g is a generator
of G. Every summand A is a free Z-module of rank p − 1. Let n be the
number of summands, so H3(M ; Z)− is a free Z-module of rank n(p − 1).
H3(M ; Z)0 is a direct sum of summands that are isomorphic to A ⊕ Z · y
where A is as before, and the action is given by g · a = θa and g · y = y + a0

for some a0 ∈ A \ (θ − 1)A, (that may be different in different summands).
The cohomology computations become a little more difficult, but one still
gets that:

E∗,∗
2
∼= Z[t]/pt⊗H∗(M ; Z)+

⊕ s · Zp[t]⊗ (H∗(M ; Z)−/(1− g∗)H∗(M ; Z)−)

⊕ H∗(M ; Z)G
0

One has H3(M ; Z)−/(1−g∗)H3(M ; Z)− ∼= Zn
p . The same arguments as above

show that this is also the Z[t]/pt-module structure of H∗(MG; Z), and that
finally (an easier version of the exercise of [tDi87]) we have an isomorphism
of Z2-graded vector spaces:

H∗(F ; Zp) ∼= H∗(M ; Zp)+ ⊕H∗(M ; Zp)
G
−[−1].

Hence Heven(F ; Zp) ∼= Heven(M ; Zp)+ ⊕Hodd(M ; Zp)
G
−. (Here the identifica-

tion of the second factor (that is isomorphic to Zn
p ) with H∗(M ; Zp)

G
− is not
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natural.) Now one can consider the spectral sequence with Zp-coefficients to
get now the weaker result as in the Z2-case that still the degree on the right
hand side defines a multiplicative filtration on the left hand side and that at
least on the part corresponding to Heven(M ; Zp)+ multiplication corresponds
to multiplication in Heven(M ; Zp) up to terms of lower degree. (But the
whole is not a deformation any more.) Hence we still get that if the action
of G on M is non-trivial, one can obtain Heven(M ; Zp) as the even part of
an associated graded algebra to a multiplicative filtration on a product of
even Poincaré algebras of formal dimension ≤ 4. So, with the analogous
definition, we get:

#(Gp(m; r) ∩ R(m; N))

#(R(m; N))
≤

(r + 1) · p4m2+4mr+ 3

2
r2+7m+ 7

2
r+4

p(m+2

3 )−(m
2 )

if N is divisible by p, and a factor (1 + p/N)(
m+2

3 )−(m
2 ) that does not disturb

anything for general N , if N is sufficiently large. Hence, if r = o(m
3

2 ), then

lim
m→∞

#(Gp(m; r) ∩ R(m; N))

#(R(m; N))
= 0

for any sufficiently large N ; and in this sense, “most” manifolds in N do not
admit orientation preserving Zp-actions.
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