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Summary 
 

Sonic hedgehog (Shh) a vertebrate homolog of the Drosophila melanogaster gene hedgehog, is a 

secreted protein that controls numerous differentiation processes during vertebrate 

development. In the vertebrate retina, Shh controls neurogenesis and its expression spreads in a 

wave like manner. 

             The shh locus has been well characterised in vertebrates and the regulatory regions 

driving the expression in the notochord and the midline of the CNS were identified. In 

zebrafish, shh transgenes were established that drive GFP reporter expression very similar to 

that of the endogenous shh gene in the central nervous system including the retina. The cis-

regulation behind shh expression in the retina was not known. This prompted me to map the 

region responsible for retina expression. I found it to be distinct from the previously described 

enhancers controlling expression in the midline of the neural tube and in the notochord. This 

novel regulatory region mediates expression of a GFP reporter cassette in the ganglion cell layer 

(GCL) and inner nuclear layer (INL) of the retina. The expression is initiated in a ventronasal 

patch and later spreads across the GCL and INL in a wave like pattern. 

           A deletion approach identified a 300 bp region to be sufficient and necessary for driving 

expression in the retina. By a second series of mutations across this region using a linker 

scanning approach, a minimal 40 bp core important for expression was identified. While one 

clusters of point mutation impaired expression in both GCL and INL, another region was 

mapped that affected expression exclusively in the GCL. Thus, expression in the two layers can 

be separated.  

        Pea3 and Erm factors were predicted to bind to the retinal enhancer. In vitro protein 

binding and morpholino studies prove that they are key regulatory factors responsible for 

driving expression in the retina. Pea3 and Erm are factors known to act downstream of Fgf 

signals. Earlier studies have demonstrated that Fgf signalling from the optic stalk is responsible 

for initiation of retinal neurogenesis. Moreover, shh was shown to be required for the spread of 

the shh expression wave in an auto-regulatory manner. Pharmacological inhibition and 

morpholino studies were performed to study the the role of Fgfs and Shh in the propagation of 

the expression. My results suggest that several distinct Fgfs and Hedgehogs act sequentially at 

several levels and that the propagation of the expression wave is dependent on a co-operation 

between FGF and Shh signalling pathways. This is reminiscent to the spread of the expression 

of the Drosophila hedgehog gene through the eye imaginal disc.   
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Zusammenfassung 
 

Sonic hedgehog (Shh) ist ein Wirbeltier-Homolog des Drosophila melanogaster Gens Hedgehog. Es ist ein 

sekretiertes Protein, das zahlreiche Differenzierungsprozesse während der Wirbeltierentwicklung 

kontrolliert. In der Retina von Wirbeltieren kontrolliert Shh die Neurogenese und seine Expression breitet 

sich in wellenähnlicher Art aus.               

               Der Shh Lokus wurde in Wirbeltieren ausführlich beschrieben und die regulatorischen Elemente, 

die die Expression in der Chorda und der ventralen Mittellinie des ZNS steuern, wurden identifiziert. Im 

Modelorganismus Zebrafisch wurden transgene Tiere erzeugt, die Reporter-GFP in einem Muster 

exprimieren, das dem des endogenen Shh im Zentralnervensystem sehr ähnlich ist, inklusive der Retina. 

Dieses Cis-regulatorische Element des Shh Locus war bis dahin nicht bekannt. Dies veranlasste mich 

dazu, die Region, die für die Expression in der Retina verantwortlich ist, zu kartieren. Ich fand heraus, 

dass sie sich von zuvor beschriebenen Enhancern unterscheidet, welche die Expression in der Mittellinie 

des Neuralrohrs und in der Chorda kontrollieren. Diese neue regulatorische Region vermittelt die 

Expression einer GFP-Reporterkassette in der Ganglienschicht (GCL) und der inneren nuklearen Schicht 

(INL) der Retina. Die Expression wird in einem ventronasalen Fleck initiiert und breitet sich später 

wellenartig über die GCL und die INL aus. 

                Durch Deletionen konnte eine 300 bp lange Region identifiziert werden, die hinreichend und 

notwendig ist, um die Expression in der Retina zu steuern. Eine zweite Serie von Mutationen in dieser 

Region mittels der „linker scanning“ Methode führte zur Identifizierung einer minimalen 40 bp 

Kernsequenz, die wichtig für die Expression ist. Eine Anhäufung (Cluster) von Punktmutationen 

beeinträchtigte die Expression sowohl in der GCL als auch in der INL und es konnte eine weitere Region 

kartiert werden, die die Expression ausschließlich in der GCL beeinflusste. Somit kann die Expression in 

diesen zwei Schichten aufgetrennt werden. 

              Es wurde vorhergesagt, dass Pea3/Erm Faktoren an den retinalen Enhancer binden. In vitro 

Proteinbindungsexperimente und Morpholino-Injektionen bewiesen, dass sie Schlüsselfaktoren für die 

Regulation der Expression in der Retina sind. Es ist bekannt, dass Pea3 und Erm stromabwärts von FGF 

Signalen wirken. Frühere Studien zeigten, dass FGF Signale vom Augenstiel verantwortlich für die 

Initiation der retinalen Neurogenese sind. Weiterhin wurde gezeigt, dass Shh auf autoregulatorische 

Weise für die Ausbreitung der Shh Expressionswelle notwendig ist. Es wurden pharmazeutische 

Hemmung und Morpholino-Studien angewendet, um die Rolle von FGFs und Shh in der Ausbreitung 

der Expression zu untersuchen. Meine Ergebnisse lassen darauf schließen, dass mehrere verschiedene 

FGFs und Hedgehogs aufeinanderfolgend auf mehreren Stufen wirken und dass die Ausbreitung der 

Expressionswelle abhängig von der Kooperation zwischen FGF- und Shh-Signalwegen ist. Dies erinnert 

an die Ausbreitung der Expression des Drosophila Hedgehog Gens über die Imaginalscheibe des Auges.
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Introduction 

 

1. The Cis regulatory network 

 

Metazoan genes contain highly structured regulatory elements that direct complex 

patterns of expression in the different cell types during development. For proper 

expression of a gene, a 5' promoter element with a proper transcriptional start site is 

required to assemble a protein complex for RNA synthesis. Most of the genes require 

additional elements located immediately upstream or downstream of this minimal 

promoter called the regulatory promoters for the robust expression of the gene (Butler 

and Kadonaga, 2002). Apart from these promoter elements, some genes require certain 

other cis-regulatory elements for proper gene expression in a spatio-temporal manner. 

Some cis-regulatory elements function as enhancers, but they also function as silencers 

and insulators (Dillon and Sabbattini, 2000) (Fig 1). 

     An enhancer is an element that physically interacts with the core promoter via 

protein-protein interactions through the transcription factors bound to it to enhance the 

activity of the promoter (Dillon and Sabbattini, 2000). A typical gene is likely to contain 

several enhancers that can be located in 5' and 3' regulatory regions as well as introns. 

Each enhancer can be responsible for a subset of the total gene expression pattern; they 

frequently mediate expression only within a specific tissue or cell type. A typical 

enhancer is something around 100-500 bp in length and contains many protein binding 

sites. For example the seven stripes of the even-skipped expression in the Drosophila 

embryo depend on five separate enhancers; two located on the 5' of the transcription 

site and three located 3' of the gene (Fujioka et al., 1999; Small et al., 1993). These 

enhancers function in an autonomous fashion owing to short range repression: 

sequence-specific repressors bound to one enhancer do not interfere with the activities 

of neighbouring enhancers. These repressors must bind within 50-100 bp of an 

upstream activator region or the core promoter in order to inhibit expression 

(Mannervik et al., 1999). A silencer exhibits similar structural features of an enhancer 

but suppresses the promoter activity (Cook, 2003). 

     Insulators also called boundary elements are known to restrict the activities of 

enhancers and silencers so that they do not affect the expression of the neighbouring  
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genes in an unspecific manner (Bell et al., 2001). They execute their activities by 

blocking the enhancer/silencer-promoter interactions (Burgess-Beusse et al., 2002). 

Locus control regions are thought to control at the level of local chromatin environment, 

making it accessible to transcription factors (Wood WI, 1982). Genomic regions 

harbouring these regulatory elements can stretch as much as 1 Mb in either direction of 

the transcriptional unit (Kimura-Yoshida C, 2004) Some of these enhancers can also 

reside in the introns of the neighbouring genes, without interfering with their 

expression (Kleinjan et al., 2002; Lettice et al., 2003). 

 

 
Figure 1: Representation of a typical metazoan transcription unit and its control modules that 
consist of multiple enhancers in combination with silencer(s) and insulators. INR and DPE 
represent initiator and downstream promoter elements respectively. The control module 
interacts with the basal transcriptional unit for proper gene expression in a spatio-temporal 
manner (Modified from Levine M and Tjian R 2003, Nature, 424(10):147-151). 
 

     Comparative genomics is a new branch of biology employing comparison based 

strategies to identify functional features of genomes (Nobrega and Pennacchio, 2004). 

During recent years, whole genome sequences of many vertebrates such as human, 

mouse, zebrafish, fugu, rat, chicken, frog and many others have become available 

(ENSEMBL). This will help the scientific community to access the sequences of all genes  

of these species (Aparicio et al., 2002; Lander et al., 2001; Venter et al., 2001). Genome 

comparisons are crucial tools to annotate whole-genome sequences and will provide 

insight into the cis-regulatory architecture of gene loci. In simple words, functional 

DNA would have less changed than non-functional DNA during the course of 

evolution (Jukes and Kimura, 1984). Comparison of distally related species can be used 
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to annotate conserved expressed features such as protein-coding genes and to identify 

regulatory elements controlling gene expression (phylogenetic footprinting) (Ahituv et 

al., 2004; Hardison, 2000; Muller et al., 2002; Tagle et al., 1988). 

     To derive insights into central biological processes through comparative genomic 

analysis, the first challenge is the choice of species to compare. Comparison of genomes 

of related species was shown to provide a possible shortcut in the identification of 

regulatory regions as they form islands of partially conserved sequence in non-coding 

regions (Hardison, 2000; Pennacchio et al., 2006; Wasserman et al., 2000). Within the 

vertebrate lineage, the teleost genomes such as those of pufferfish (Takifugu rubripes), 

medaka (Oryzias latipes), and zebrafish (Danio rerio) represent promising tools to 

elucidate the regulatory architecture. High expectations have been put into the 

comparative analysis of the pufferfish (Takifugu, Tetradon). However, also 

comparisons of teleosts with mammalian genomes have led to the identification of 

several functional enhancers, for example, in paired box (pax) genes  (Santagati et al., 

2003)), homeo box (hox) genes (Anand et al., 2003; Aparicio et al., 1995; Marshall et al., 

1994), the pro-neural gene neurogenin1 (Blader et al., 2003), distal-less (dlx) genes 

(Ghanem et al., 2003) (Zerucha et al., 2000) and the sonic hedgehog homolog (shh) 

(Goode et al., 2003; Goode et al., 2005; Muller et al., 1999). Multi species DNA sequence 

comparison has become a common methodology to identify and characterise the 

functional elements that are strictly conserved over a large evolutionary distance.  

     Alignment of the sequences is the core process in comparative genomic analysis. A 

number of alignment programs are available to align 2 or more DNA sequences. A list 

of commonly used databases and tools in comparative genomics is given in the table 1 

(Frazer et al., 2004; Loots and Ovcharenko, 2004; Ovcharenko et al., 2004; Wasserman 

and Sandelin, 2004). These websites and alignment tools can be used separately, or in 

combination to answer various question related to the comparative aspects of the 

genomics. The ones which are of particular interest are the UCSC, ENSEMBL and ECR 

genome browsers. The first two contain reference sequences and working draft 

assemblies for a large collection of vertebrate and invertebrate genomes and provide 

various interactive tools for the analysis of these genome data. The ECR browser on the 

other hand is a dynamic whole-genome navigation tool for visualizing and studying the 

evolutionary relationship between vertebrate and invertebrate genomes. This graphical 

browser presents Evolutionary Conserved Regions (ECRs) that have been mapped 
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within alignments of the orthologous and syntenic genomes and also depicts color 

coded evolutionary conserved regions in relation to known genes that have been 

annotated in the base genome (Fig 2). 

 

 

Figure 2: The ECR browser coordinates for the shh gene, the conservation has been shown 
individually between various species. Blue lines represent the known exons, yellow ones show 
the non-coding exons while pink/red depict non-coding, non-genic evolutionary conserved 
elements which represent the putative cis-regulatory elements. Width in the conservation panel 
tells the size, while the height shows the degree of conservation. 
 

     In addition to accessing pre-computed alignments for the available genomes, the 

ECR browser can also be used as an alignment tool. Pre-computed annotation of 

conserved transcription factor binding sites in human and mouse genomes is also 

available in the browser (Ovcharenko et al., 2004), which is based on the in-silico 

techniques of phylogenetic footprinting. The technique involves the multi-species DNA 

sequence comparison to a finer scale of highly conserved 6-12 bps that is comparable to 

the size of a single transcription factor binding module. This provides the footprints of 

various transcription factors binding at various elements within the genome (Gumucio 

et al., 1996; Kappen and Yaworsky, 2003). 
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Tool / Database Website 

ECR genome browser      http://www.ecr-browser.dcode.org/ 

ENSEMBL       http://www.ensembl.org 

UCSC genome browser      http://genomeucsc.edu 

PIPMAKER      http://bio.cse.psu.edu/pipmaker 

VISTA      http://www.gsd-lbl.gov/VISTA/index.html 

NCBI Blast      http://www.ncbi.nlm.nih.gov/BLAST/ 

 

Table 1: Websites/ databases for sequence alignment and comparative genomic tools 

 

     Identification of the regulatory elements by comparative genomic analysis seems to 

be less obvious than the identification of genes and exons owing to the very small size 

and degenerative DNA sequence of the transcription factor binding site (6-10 bp) and 

renders a genome wide computational analysis very difficult as not only the binding 

sites but the context in which it is placed, plays an important role (Nobrega and 

Pennacchio, 2004). However, functionality of most of the metazoan enhancers is 

established by a combination of multiple factors binding in a modular fashion. This 

results in an enhancer element being comparable to or generally even larger than 

individual exons. But contrary to the coding region they lack intron/exon junction 

features and are not expressed. These elements are coined conserved non-genic 

sequences (CNSs) or conserved non-genic elements (CNGs). Once a putative regulatory 

region has been identified by comparative genomic analysis the next step is to evaluate 

its biological relevance. 

      Recently zebrafish has emerged as a popular model system for a number of 

disciplines including vertebrate development and modelling human disease (Dooley 

and Zon, 2000; Ingham, 1997; Ishikawa, 2000; Lin, 2000; Talbot and Hopkins, 2000; 

Udvadia and Linney, 2003; Zon, 1999). It has a smaller genome than the human. At the 

same time, zebrafish is distant in evolutionary terms from mammals making them 

suitable for comparative genomics. More importantly, transgenic technologies are 

readily applicable allowing functional analysis of cis-regulatory elements in the 

transparent, ex-utero developing, live embryo (Amacher, 1999). The recent boom in 

transgenic applications in zebrafish is mainly due to two reasons: (1) the fast-growing 
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database of information on zebrafish promoters and other cis-regulatory elements and 

their increasing availability (Amacher, 1999) application of the green fluorescent protein 

(gfp) reporter gene, which is easily detectable in vivo in the transparent embryo. In 

addition to GFP, a whole series of colour-shifted fluorescent proteins were shown to be 

readily detectable in the transparent zebrafish embryo (Shaner et al., 2005). Signal from 

fluorescent proteins may be further enhanced using a Gal4-VP16 binary system (Koster 

and Fraser, 2001). 

     A technically undemanding protocol of micro-injection of DNA constructs with the 

putative regulatory region fused to a reporter such as green fluorescent protein into 

fertilised egg results in at least 2–5% of founders transmitting the reporter gene with 

detectable activity into the F1 generation (Lin, 2000). Co-injection with SceI 

meganuclease has become popular recently where the plasmids are designed with two 

flanking SceI sites. This technique increases the rate of integration with several 

transgenic lines generated (Thermes et al., 2002). Alternative gene transfer methods 

have also been attempted in fish with variable success. Among them, transposon 

(Urasaki et al., 2006) and retrovirus-mediated gene insertion (Ellingsen et al., 2005) 

methods have the potential to become alternatives to conventional microinjection of 

purified DNA fragments as they allow single copy integration into the recipient 

genome. The function of the regulatory region can then be studied very elaborately in 

these stable transgenic animals. In addition to the stable transgenic lines, regulatory 

elements can be assayed directly in micro-injected transient transgenic fish by the 

analysis of mosaic expression of reporter activity (Ertzer et al., 2007; Muller et al., 1999). 

This reduces the several months period normally required for obtaining the F1 

generation of transgenic lines to a matter of days, making the system a suitably high- 

throughput bioassay for genes expressed in the developing embryo. Also the use of 

antisense oligonucleotides morpholinos for knock down of a gene is very effective in 

zebrafish (Nasevicius and Ekker, 2000). 
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2. Sonic hedgehog gene 

 

The original hedgehog gene, identified in Drosophila (Nusslein-Volhard and 

Wieschaus, 1980) is named after its mutant phenotype: the embryo is covered with 

pointy denticles resembling a hedgehog. The vertebrate hedgehog family is represented 

by at least three members: Desert hedgehog (Dhh), Indian Hedgehog (Ihh) and Sonic 

hedgehog (Shh) possibly resulting from two major gene duplication events during the 

evolution of vertebrates, the first gave rise to Dhh and the second produced Ihh and Shh. 

Both duplication occured before the emergence of vertebrates and probably before the 

evolution of chordates (Kumar et al., 1996; Zardoya et al., 1996). All the three have been 

cloned in different animals. In zebrafish, shh, tiggy-winkle hedgehog (Twhh) and 

echidna hedgehog (Ehh) have been characterised (Currie and Ingham, 1996; Ekker et al., 

1995; Ertzer et al., 2007; Krauss et al., 1993; Muller et al., 2002). Tiggy winkle hedgehog 

is considered to have originated from a more recent duplication of the shh gene in the 

zebrafish. Shh is the most extensively characterised vertebrate homolog, and has 

multiple roles like patterning of the neural tube (Stecca and Ruiz i Altaba, 2005) axis 

symmetry (Sampath et al., 1997), somite patterning (Munsterberg and Lassar, 1995) eye 

development (Esteve and Bovolenta, 2006; Russell, 2003) and many others. It can act as 

both a short range, contact dependent factor and a long range diffusible morphogen 

(Chuang and Kornberg, 2000; Johnson and Tabin, 1997).      

 

2.1 Secretion 

 

     Newly synthesized Hh protein undergoes a series of posttranslational modifications 

within the secretory pathway that lead to the presentation at the cell surface of the 

mature and signalling active lipid-modified Hh (Mann and Beachy, 2004; Torroja et al., 

2005). Following cleavage of an aminoterminal signal sequence upon entering the 

secretory pathway, the Hh protein undergoes an autocatalytic processing reaction that 

involves internal cleavage between Gly–Cys residues (Bumcrot and McMahon, 1995; 

Lee et al., 1994; Tabata and Kornberg, 1994). The amino-terminal product of this 

cleavage receives a covalent cholesteryl adduct (Porter et al., 1996a) giving rise to the 

active signalling molecule (Lee et al., 1994; Marti et al., 1995; Porter et al., 1996a; Pringle 



                                                                                                                                    Introduction                          

 11

et al., 1996; Tabata and Kornberg, 1994)(Fig. 3). The carboxy-terminal domain of the Hh 

precursor, which has no known additional function, mediates the autoprocessing 

reaction (Lee et al., 1994; Porter et al., 1995). The importance of autocatalytic processing 

in the biogenesis of active Hh proteins is revealed by missense mutations in the 

Drosophila Hh gene (Porter et al., 1995) and in the human shh gene, here associated 

with holoprosencephaly (Roessler et al., 1996). These mutations can be classified as 

alterations in the amino-terminal signalling domain, which affect either the secretion or 

activity of the signalling domain, or in the carboxy-terminal processing domain, 

demonstrating the requirement for processing in the release of the active signal. The 

second lipophilic modification of the Hh signalling protein is a fatty acid, palmitate, in 

the aminoterminal cysteine, which is exposed by signal sequence cleavage (Chamoun et 

al., 2001; Pepinsky et al., 1998).  The cholesterol moiety is thought to direct Hedgehog 

protein traffic in the secretory cell (Ingham, 2000; Lewis et al., 2001; McMahon, 2000; 

Porter et al., 1996b). 

 

 

 

Figure 3: Shh secretion: The shh precursor is processed to generate the N-shh morphogen, to 
which two modifications are introduced; a cholesterol group at the C-terminal and a palmitate 
moiety at the N-terminal (Modified from Marti & Bovolenta 2002). 
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     It has been demonstrated that the N-terminal 19 kD peptide stays tightly associated 

with the surface of cells in which it was synthesised, while the C –terminal peptide is 

freely diffusible (Lee et al., 1994; Marti et al., 1995; Porter et al., 1995; Roelink et al., 

1995). This close association with the cell surface is mediated by the covalent association 

of the 19 kD form to cholesterol. By tethering the 19 kD peptide to the surface, a high 

local concentration of N-terminal Hh peptide is generated on the surface of the Hh 

expressing cells. From a number of studies, it is clear that the N-terminal peptide is the 

active molecule which is responsible for short and long range Hh signalling activities in 

Drosophila and vertebrates (Marti et al., 1995; Porter et al., 1995; Roelink et al., 1995). 

Very long range signalling is possible because the association with the cell membrane 

may not be so strong and low levels of the 19kD form may diffuse away from the 

secreting cell. 

     Vertebrate embryonic development utilises both short and long range mechanisms of 

shh signalling. Short range signalling by shh is apparent during floorplate induction by 

the notochord within the neural tube (Johnson and Tabin, 1995). Long range signalling 

by shh occurs during motor neuron formation in the neural tube, sclerotome induction 

and proliferation in the somites, and limb patterning along the anterior-posterior axis 

(Chuang and Kornberg, 2000; Goetz et al., 2002; Zeng et al., 2001). 

 

2.2  Shh signalling 

          

The shh signalling cascade is conserved from invertebrates to mammals (Goodrich et al., 

1996; Ingham and McMahon, 2001; Marigo et al., 1996; Nybakken et al., 2002) with some 

recently reported divergences (Huangfu and Anderson, 2006; Varjosalo et al., 2006). Shh 

signalling involves the two multiple-pass, transmembrane proteins Patched (Ptc) and 

Smoothened (smo) that can interact with one another at the cell surface. Ptc is a twelve 

pass transmembrane protein that binds the ligand (Marigo et al., 1996; Pepinsky et al., 

1998) and Smo is a seven transmembrane protein that acts as a signal transducer 

(Alcedo et al., 1996; Ingham et al., 2000). In the absence of Hh, Ptc inhibits the positive 

signalling activity of Smo and further downstream targets of Hh signalling. The binding 

of Hh to Ptc regulates Smo trafficking to the plasma membrane and it has also been 

established that in the absence of Hh, Ptc downregulates the activity of Smo (Alcedo et 

al., 2000) (Denef et al., 2000; Ingham et al., 2000). Within the nucleus of the shh 
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responding cell, zinc finger transcription factors of the Ci (Cubitus interruptus) family 

act at the last step of the Hh signal transduction pathway (Altaba, 1999 ; Hynes et al., 

1997; Ruiz i Altaba, 1999).     

 

          
Figure 4: In the presence of Hh, Ptc inhibition of Smo is relieved, smo then signals through 
unknown mechanisms to the Fu/Cos2/Ci complex, causing hyperphosphorylation of Fu and 
Cos2 and causing the complex to loosen its hold on microtubules. This leads to the stabilization 
of full length Ci, which can then travel to the nucleus and function as a transcriptional activator, 
upregulating transcription of Hh target genes (Modified from Nybakken & Perrimon 2002). 
 
    Upon secretion, Hh binds to Ptc and relieves the inhibitory effects that Ptc normally 

has on Smo. Active Smo regulates the bifunctional transcription factor Ci. Full-length Ci 

protein is stabilised in response to Hh to become a transcriptional activator (CiA). In the 

absence of Hh ligand, Ci is proteolytically processed into a shorter form (CiR) that acts 

as a transcriptional repressor of target genes. Both the proteolytic processing and the 

nuclear translocation of Ci are tightly regulated processes that involve a microtubular 

protein complex containing the atypical kinesin protein Costal 2 (Cos2), the serine 
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threonine kinase Fused (Fu) and the novel protein Suppressor of fused (Sufu). Cos2 

regulates the production of both CiR and CiAct (Lum et al., 2003; Sisson et al., 1997; 

Wang et al., 2000b; Wang and Holmgren, 2000). 

     In order to activate the Hh pathway, Smo has to be stabilized at the plasma 

membrane (Zhu et al., 2003). Recent data suggest that mouse Smo is localized to cilia in 

response to Hh signalling (Corbit et al., 2005).  Signal transmission from the membrane 

to cytoplasm proceeds through recruitment, by Smo, of Cos 2, which routes pathway 

activation by interaction with other components of the cascade (Jia et al., 2003; Lum et 

al., 2003; Ogden et al., 2003; Ruel et al., 2003). The mechanism of sorting and 

stabilization of Smo at the plasma membrane is still unclear.  

     In the absence of Hh signalling, Cos2 forms a complex with Fu, Sufu and the Ci 

transcription factor and they promote cleavage of the full-length Ci to CiR and keep 

full-length Ci out of the nucleus. In response to low levels of Hh, the Smo-Cos2 complex 

is recruited to the membrane, and this relieves the inhibitory effect of Cos2 on Ci, which 

may lead to dissociation of Ci from the Smo-Cos2 complex (Ruel et al., 2003). However, 

Ci is not fully activated and cannot enter the nucleus, because Ci is tethered by Sufu in a 

complex that also includes Cos2. At high levels of Hh signalling, this final restriction is 

removed, and CiA can move into the nucleus to activate the pathway to a high level 

(Methot and Basler, 2001; Wang and Holmgren, 2000). 
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Figure 5: In the absence of Hh signalling, the multiple-pass, transmembrane proteins Patched 
(Ptc) inhibits the positive signalling activity of Smoothened (Chen et al.). The costal2 (Cos2), 
Fused (Fu), and Cubitus interruptus (Ci) proteins are bound together in a high molecular 
weight complex which is attached to microtubules, PKA phosphorylates Ci and it is then 
cleaved into the repressor form CiR which moves to the nucleus and represses Hh target genes 
(Modified from Nybakken & Perrimon 2002). 
 

          Further regulators of the pathway which act at the surface of cells responding to 

shh have been identified in the vertebrate CNS. Hedgehog interacting protein (Hip) is a 

type 1 transmembrane protein that attenuates shh signalling by binding N-shh with an 

affinity similar to that of Ptc (Coulombe et al., 2004; Jeong and McMahon, 2005; Olsen et 

al., 2004) whereas vitronectin, an extracellular matrix glycoprotein, enhances shh 

activity during motor-neuron differentiation, also by binding shh directly (Pons and 

Marti, 2000). 

     In Drosophila, Ci is phosphorylated by several kinases: the cAMP-dependent protein 

kinase (PKA), Shaggy Sgg/GSK3 — the Drosophila Glycogen Synthase Kinase3 (GSK3) 

homolog and Casein Kinase 1(CK1) (Chen et al., 1999; Jia et al., 2002; Jiang and Struhl, 

1998; Price and Kalderon, 1999; Wang et al., 1999). These kinases phosphorylate Ci at 

multiple sites in three clusters in its C-terminal region (Zhang et al., 2005) and each 
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phosphorylation site contributes to the proteolysis of Ci. Moreover, it has been recently 

shown that Costal-2 recruits these kinases to efficiently phosphorylate Ci and it has 

been proposed that Hh inhibits Ci phosphorylation by specifically interfering with 

kinase recruitment (Zhang et al., 2005). 

     Fully phosphorylated Ci can be recognized by Slimb, a component of the SCF 

ubiquitin ligase that allows proteasome-dependent processing of Ci (Price and 

Kalderon, 1999). Recent studies show that PKA is also responsible for phosphorylation 

of smo at multiple sites and this is necessary for Hh signal transduction (Apionishev et 

al., 2005; Jia et al., 2004; Zhang et al., 2004). It has been demonstrated that PKA 

antagonizes hedgehog signalling by partly regulating the Ci mediated transcription of 

shh target genes (Concordet et al., 1996).  

     Cyclopamine, modified Vitamin D3 and Forskolin are potent inhibitors of Hh 

signalling acting at different levels of the cascade. Cyclopamine interacts directly with 

Smo and blocks signalling (Chen et al., 2002), (Taipale et al., 2000) and this has been 

shown in zebrafish and mammals (Chen et al., 2002; Neumann and Nuesslein-Volhard, 

2000) Vitamin D3 acts similarly (Bijlsma et al 2006). Another pharmaceutical compound, 

Forskolin, stimulates adenyl cyclase and thereby leads to the increase of cellular cAMP 

levels which in turn negatively regulates Hh signalling in zebrafish through PKA 

(Barresi et al., 2000; Masai et al., 2005).  

     Vertebrates have two Ptc homologs Ptc1 and Ptc2 and has been characterised 

(Carpentar et al., 1998; (Motoyama et al., 1998; Pearse et al., 2001). Ptch1 appears to be 

the major receptor during mouse embryonic development (Goodrich et al., 1997) (Wolff 

et al., 2003). Zebrafish ptc2 mutants (lepre-chaun) have a relatively mild phenotype 

(Koudijs et al., 2005). There are three Ci homologs Gli1, Gli2 and Gli3 in vertebrates 

each with distinct function and a single smo protein that mediates all Hh signalling by 

regulating the three homologs (Bai et al., 2004; Motoyama et al., 2003). Gli genes from 

chicken, zebrafish, Xenopus and mouse have been isolated (Marigo et al., 1996) 

(Karlstrom et al., 2003; Lee et al., 1997; Platt et al., 1997). In the neural tube and lymph 

buds, Gli and Ptc are expressed in similar domains (Platt et al., 1997). A gradient of gli 

activity mediates shh signalling in the neural tube (Jacob and Briscoe, 2003; Stamataki et 

al., 2005). Ectopic expression of shh induces Gli1 transcription and widespread 

expression of Gli1 that results in the ectopic differentiation of floor plate cells and 

ventral neurons within the neural tube (Lee et al., 1997). 
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     Like Ci, all three vertebrate Gli proteins have five highly conserved zinc finger DNA 

binding domains and C-terminal activation domains, with Gli2 and Gli3 also having N-

terminal repressor domains (Dai et al., 1999; Sasaki et al., 1999). Shh signalling regulates 

Gli2 transactivation by suppressing its processing and degradation (Pan et al., 2006). 

Like Ci, Gli3 can be processed to form a repressor isoform, and this proteolytic 

processing is inhibited by Hh signalling (Litingtung et al., 2002; Wang et al., 2000a).  In 

zebrafish, Gli1 is the major activator of Hh target genes while Gli2 and Gli3 play both 

activator and repressor roles in different regions of the embryo (Karlstrom et al., 2003; 

Tyurina et al., 2005). Zebrafish Gli1 (detour) and Gli2 (you-too) mutants show disrupted 

Hh signalling (Karlstrom et al., 2003). These suggest that Gli is a target of shh and at the 

same time an intracellular mediator of shh signal in target cells. 

 

2.3  Shh in vertebrate development 

 

The Hh family of secreted proteins regulates many developmental processes in both 

vertebrates and invertebrates (McMahon et al., 2003). Shh acts as a morphogen and has 

multiple roles during neural development (Ashe and Briscoe, 2006; Briscoe and 

Therond, 2005; Fuccillo et al., 2006). It is involved in the determination of cell fate and 

embryonic patterning during early vertebrate development. The shh signalling pathway 

functions throughout development. During early vertebrate embryogenesis shh is 

mainly expressed in the node, notochord, floor plate and limb (Chang et al., 1994; 

Johnson et al., 1994); (Marti et al., 1995; Riddle et al., 1993). During embryonic 

development, shh is expressed in many epithelial tissues, like the teeth, hair follicles, 

lung epithelium, in the endoderm during early stages of gut formation, in the retina, in 

dorsal CNS cortical structures like cerebral cortex, optic tectum, cerebellar cortex (Iseki 

et al., 1996; Neumann and Nuesslein-Volhard, 2000; Traiffort et al., 2001; Urase et al., 

1996; Wall and Hogan, 1995). 

     The best characterised function of shh is the neuronal specification in the ventral CNS 

(Jessell, 2000; Marti and Bovolenta, 2002; McMahon et al., 2003; Patten and Placzek, 

2000; Stecca and Ruiz i Altaba, 2005). Signalling by a shh gradient establishes distinct 

progenitor domains in the neural tube by regulating the expression of a set of 

homeodomain proteins that comprises members of the Pax, Nkx, Dbx and Irx families 

(Briscoe and Ericson, 2001; Pierani et al., 1999). By induction or repression of these 
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transcription factors shh defines five progenitor domains in the neural tube through the 

mediation of Gli activity (Stamataki et al., 2005).  Shh also plays a later role in the 

ventral CNS in the specification of oligodendrocytes (Davies and Miller, 2001; Orentas 

et al., 1999; Poncet et al., 1996; Pringle et al., 1996; Trousse et al., 1995) and subsequently 

is required for specification of optic nerve oligodendrocyte precursors (Gao and Miller, 

2006; Orentas et al., 1999). 

     Shh from Purkinje cells is essential for the growth of the external germinal layer 

(EGL) in the cerebellum (Dahmane and Ruiz i Altaba, 1999; Wallace, 1999; Wechsler-

Reya and Scott, 1999). The level of shh signalling regulates the complexity of cerebellar 

foliation (Corralis et al 2006). The Shh pathway also independently controls patterning, 

proliferation and survival of neuroepithelial cells by regulating Gli activity (Cayuso and 

Marti, 2005). 

      Hh signalling has also been implicated in patterning the left right (LR) axis 

asymmetry (Pagan-Westphal and Tabin, 1998; Sampath et al., 1997; Schilling et al., 

1999). In the chick embryo, asymmetric expression of shh in the node is required for the 

development of left-right asymmetry of the heart (Levin et al., 1995).  

      In vertebrates, Shh signalling is required for patterning of mesodermal structures 

like the limbs and somites. Shh signalling from the zone of polarizing activity is 

involved in establishing the antero-posterior patterning of the limb (Riddle et al., 1993). 

Shh secreted from the notochord controls determination of sclerotome and somite 

patterning (Bumcrot and McMahon, 1995; Lassar and Munsterberg, 1996; Munsterberg 

and Lassar, 1995). 

     Loss of activity of the Hh signalling in human embryos can cause severe ventral CNS 

developmental anomalies, including holoprosencephaly, polydactyly, craniofacial 

defects and skeletal malformations (McMahon et al., 2003; Muenke and Beachy, 2000; 

Roessler et al., 1996; Zhang et al., 2006). Inappropriate activation of Hh signalling is 

responsible for nearly all basal cell carcinomas, some medulloblastomas and 

rhabdomyosarcomas and has been implicated in other tumors (Bale and Yu, 2001; 

Marino, 2005; Pasca di Magliano and Hebrok, 2003; Stecca and Ruiz i Altaba, 2005). In 

addition, recent findings about the relationship between primary cilia and the mouse 

Hh pathway (Huangfu et al., 2003) suggest that Hh signalling may be affected in human 

syndromes caused by defects in cilia, including Bardet-Biedl syndrome, Kartagener 

syndrome, polycystic kidney disease and retinal degeneration (Pan et al., 2005). 
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     Mice with shh mutations are cyclopic and lack motor neurons, floor plate and ventral 

forebrain (Chiang et al., 1996). By contrast, zebrafish sonic-you (syu, an ortholog of 

mammalian shh) mutants develop normal medial floor plate and motorneurons and 

have relatively normal ventral forebrain patterning (Schauerte et al., 1998), although 

they lack lateral floor plate. A possible explanation is that in zebrafish, additional Hh 

family members, twhh (Ekker et al., 1995) and ehh (Currie and Ingham, 1996) may act 

redundantly with shh to pattern the ventral neural tube (Nasevicius and Ekker, 2000; 

Zardoya et al., 1996).      

    

3. Vertebrate eye development 

                           

The development of the vertebrate eye is first seen as a pair of bilateral depressions 

called optic pits in the developing forebrain (Kumar, 2001) (Fig. 6). These pits 

eventually become pouches called optic vesicles (OV; step 1). Subsequently, they bend 

ventrally and rotate slightly in an anterior direction. These changes serve to bring the 

primordia from a horizontal to a more vertical orientation in relation to the embryonic 

neural axis. The optic lumen and optic stalk are formed at this stage. As the overlying 

lens placode (LP) invaginates (step 2) to form the lens vesicle (LV; step 3) (and 

ultimately the lens (L); step 4), the underlying outer surface of the optic vesicle also 

invaginates to form the optic cup (OC) that now has two closely apposed layers; the 

inner layer becomes the neural retina and the outer layer forms the retinal pigmented 

epithelium. The overlying cornea is derived from the surface ectoderm and neural crest 

cells. The developing neural retina (step 5) undergoes an ordered series of births and 

migrations of individual cell types, ultimately giving rise to an adult retina (Fig 4) 

organized into several layers. 
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Figure 6: The development of the vertebrate retina shown in series (Adapted from 
Kumar 2001).         
 

     The vertebrate retina consists of six major classes of neurons and one class of glial 

cells, which are organized into distinct layers (Wawersik and Maas, 2000; Zucker and 

Dowling, 1987). The lineage of the cells in the retina is known: all of the cells, except for 

astrocytes, are derived from multipotential retinal precursor cells (RPC) (Holt et al., 

1988; Livesey and Cepko, 2001; Turner et al., 1990; Wetts and Fraser, 1988). The 

different cell types are generated in an invariant sequence, with retinal ganglion cells 

(RGCs), cone photoreceptors, horizontal cells and the majority of the amacrine cells 

generated first, followed by bipolar cells, Müller glia and the remaining amacrine cells 

generated in a second wave of histogenesis, which extends into the postnatal period 

(Young, 1985). Rod photoreceptors are generated throughout the retina development. 

 

4. Development of zebrafish retina 

 

The development of the zebrafish retina is similar to that of other vertebrates Fig. 7. 

Early eye morphogenesis in the zebrafish occurs between 12 and 36 hours 

postfertilization (hpf), and is well studied (Chuang and Raymond, 2001; Kimmel et al., 

1990; Li et al., 2000; Schmitt and Dowling, 1994; Woo and Fraser, 1995). During 
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gastrulation, the developing eye is a single eyefield that separates into two lateral optic 

vesicles (Varga et al., 1999; Woo and Fraser, 1995). The next step is the formation of the 

optic primordia that evaginate from the forebrain as solid masses of cells (step A). After 

initial evagination (6-7 somite stage [SS]), the optic primordia take on a wing-like shape 

(8-9 SS, step B) (Rubenstein and Beachy, 1998; Schmitt and Dowling, 1994; Varga et al., 

1999) Subsequently, they bend ventrally and rotate slightly in an anterior direction (10-

12 SS, step C) as in other vertebrates. The choroid fissure forms by an involution along 

the anterior region of the eyecup (18-20 SS, step D). By 24 hours postfertilization the 

eyecups are well formed. Between 24 and 36 hpf, the eyes rotate further in relation to 

the axis of the embryo, and this repositions the choroid fissure to a typical ventral 

location by 36 hpf (step E). Because of the two rotations of the eye during early 

morphogenesis, particularly the later one, the anterior-posterior orientation of the 

emerging optic primordium ultimately becomes the ventral-dorsal axis of the 

completed eyecup. Axonal outgrowth are seen around 36 hpf (step F). 
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Figure 7: Eye morphogenesis in zebrafish embryo between 12-36 hpf (hours post fertilisation) 
involving six major steps as shown above (Adapted fom Schmitt & Dowling 1994). 
 

     The zebrafish eye is well developed around 72 hpf and is highly laminated (Fig.8) 

into layers, the ganglion cell layer (GCL) consisting of retinal ganglion cells (RGC), the 

inner nuclear layer (INL) consisting of amacrine cells, horizontal cells, bipolar cells and 

Müller glial cells, the outer nuclear layer (ONL) or the photoreceptor layer consisting of 

rods and cones and the retinal pigmented epithelium. The axons of the retinal neurons 

also form the plexiform layers in between these layers. 
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Figure 8: Section of a zebrafish larval eye at 76 hpf, showing the characteristic lamination of a 
vertebrate retina.  
  

     Several signalling pathways have been implicated in instructing different 

uncommited cell types to proliferate, differentiate and organise into tissue-specific 

lineages in the eye. These include the hedgehog (Hh), wingless (Wnt), Fibroblast growth 

factors (Fgf), bone morphogenetic protein (BMP), Nodal and the Transforming growth 

factor β (TGF- β) families (Cavodeassi et al., 2005; Dominguez and Hafen, 1997; 

Martinez-Morales et al., 2005; Moore et al., 2004; Neumann and Nuesslein-Volhard, 

2000; Yang, 2004). Members of these families activate specific intracellular cascades that 

control gene transcription, ultimately determining the behaviour of the responding cell. 

Especially Hh and Fgfs play an important role in eye development (Esteve and 

Bovolenta, 2006; Russell, 2003) and their functions are cited in detail next. 

 

4.1  Shh and retinal neurogenesis  

                        

 Shh plays an important role as a morphogen in vertebrate eye development (Esteve and 

Bovolenta, 2006; Russell, 2003). The earliest known function of shh secreted from the 

ventral midline is the splitting of the eye field into two lateral optic primordia followed  

by induction of optic stalk tissue at the expense of neural retina (Ekker et al., 1995; 

Macdonald et al., 1995; Perron et al., 2003; Take-uchi et al., 2003). Shh mutations cause 

severe cyclopia in mice and humans (Belloni et al., 1996; Chiang et al., 1996; Roessler et 
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al., 1996). Slightly later, neurogenesis is initiated in the retina by a signal originating 

from the optic stalk (Masai et al., 2000) 

     Hh and retinal neurogenesis has been well studied in Drosophila (Dominguez and 

Hafen, 1997). The photoreceptors differentiate in a wave that moves from posterior to 

anterior, beginning adjacent to the stalk of the eye imaginal disc (Fig. 9). Expression of 

the proneural gene atonal moves anterior to the wave of differentiation and is required 

for neurogenesis in the Drosophila eye. Hh is expressed slightly posterior to atonal and 

diffuses ahead of atonal expression to promote atonal expression and therefore the 

forward movement of the wave of differentiation (Heberlein and Treisman, 2000; 

Jarman, 2000). 

 

 

Figure 9: Hh’s and progression of the neurogenic wave in the eye. In Drosophila, a 
wave of atonal expression precedes Hh expression, and neurogenesis begins after atonal 
expression. Hh signalling is perceived in front of the wave and promotes atonal 
expression, causing it to spread into the undifferentiated epithelium (Modified from 
Russell 2003). 
 

     In zebrafish, the retinal differentiation process is strikingly similar. The first patch of 

post mitotic neurons is found close to the optic stalk (Fig. 10). Two waves of gene 

expression spread from these newly formed RGCs: a wave of ath5 and a wave of shh. 

Ath5 is an atonal homologue that transiently sweeps across the differentiating 

retinoblasts and then is maintained in the periphery of the retina, where cells keep 

differentiating (Masai et al., 2000).  Shh expression is initiated first in differentiated 

RGCs and then extends as their differentiation proceeds (Neumann and Nuesslein-

Volhard, 2000). Both shh and ath5 waves are necessary for the propagation of 

neurogenesis: blocking the Hh cascade with cyclopamine results in a severe arrest of 

retinal differentiation (Neumann and Nuesslein-Volhard, 2000) and lakritz embryos that 
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completely lack ath5 proteins do not develop RGCs (Kay et al., 2001). Interactions 

between Hh signalling and ath5 expression have been recently investigated by blocking 

Hh signals at different developmental stages in zebrafish embryos (Stenkamp and Frey, 

2003). 

 

 

 

Figure 10: Shh wave in zebrafish. Wave is initiated in the ventral-nasal position and then 
spreads throughout the retina. The wave of neurogenesis is blocked by cyclopamine, but 
differentiation still occurs in cells that have already been exposed to shh (Modified from Russell 
2003).      
 

     After retinal differentiation has occurred, Hh has an opposite role on RGCs; it 

inhibits the ultimate differentiation of retinal precursors, thereby controlling the 

number of RGCs (Zhang and Yang, 2001a). This process has been highlighted in chick 

where a dual role has been proposed for Hh signalling depending on the protein 

concentration: retinal progenitors that have not yet been reached by the differentiation 

wave receive low levels of shh because they are still distant from the secreting cells. At 
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this concentration, shh would stimulate the differentiation of one fraction of these 

progenitors as RGCs, while the other cells would remain in the progenitor state to 

adopt later cell fates. Behind the wave of differentiation, shh concentration becomes 

higher. This would inhibit the remaining progenitors from adopting the RGC fate, 

maintaining in this way a correct cell number in the RGC layer. Again, the similarities 

between vertebrate and Drosophila neurogenesis are remarkable. Before this dual role 

mechanism was characterized in chick, a work from Dominguez demonstrated that a 

similar mechanism also takes place in Drosophila (Dominguez and Hafen, 1997). In fact, 

atonal activation by Hh occurs at 5–7 ommatidial rows from the morphogenesis furrow 

(MF), the front of the differentiation wave. In contrast, at closer distances, atonal 

expression is inhibited by Hh. This response is crucial for the correct establishment of 

the ommatidial arrays of the Drosophila’s eye. As is true in the neural tube, the fact that 

different retinal fates result from different Hh concentrations demonstrates that cells 

can read and interpret very precisely Hh protein levels. 

      Several other roles for shh in the retina has been identified. Shh also acts as a mitogen 

in the developing mammalian retina (Amato et al., 2004; Jensen and Wallace, 1997; 

Levine et al., 1997; Roy and Ingham, 2002) and brain (Dahmane et al., 2001). It directs 

cell-cycle exit by activating p57Kip2 in the zebrafish retina (Shkumatava and Neumann, 

2005). Astrocyte proliferation in the rodent optic nerve is regulated by shh secreted from 

the RGCs (Wallace and Raff, 1999). Shh from the midline also plays an important role in 

regulating the growth of RGC axons and at the optic chiasm border in guiding the optic 

nerve across the midline (Kolpak et al., 2005; Trousse et al., 2001). Hh signalling has 

recently been shown to be essential for chick retinal regeneration, most likely through 

the stimulation of progenitor cell proliferation (Spence et al., 2004).  

     Shh signalling within the developing eye is required for structural maturation of 

Müller glia and maintainance of a properly laminated retina (Wang et al., 2002).In the 

zebrafish retina, shh secreted by amacrine cells acts as a short range signal to direct 

differentiation and lamination (Shkumatava et al., 2004).  

     In zebrafish, the initiation of neurogenesis is not dependent on shh signalling 

(Neumann and Nuesslein-Volhard, 2000; Shkumatava et al., 2004). Masai et al 2000 

have reported an optic stalk signal to be the source of neurogenesis in the retina. The 

source could be a Fgf signal as Fgfs are expressed in the optic stalk of zebrafish 

(Crossley and Martin, 1995; Herzog et al., 2004; Reifers et al., 2000; Tsang et al., 2002; 
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Walshe and Mason, 2003) and also they play a variety of roles in eye development 

(Russell 2003, Yang 2004). Recently it was proven in fish that indeed Fgf is the signal 

emanating from the optic stalk that is responsible for species-specific initiation of retinal 

neurogenesis (Martinez-Morales et al., 2005). 

                      

4.2 Fgf signalling and retinal neurogenesis 

                           

The FGF family of neurotrophic signalling proteins is made up of 23 ligands, some 

having several isoforms (Itoh and Ornitz, 2004; Nishimura et al., 1999; Xu et al., 1999). 

Fgfs signal through four receptor tyrosine kinases via the MAP kinase pathway 

(Basilico and Moscatelli, 1992). A pharmacological compound, SU5402 inhibits Fgf 

signalling by blocking the tyrosine kinase activity of the Fgf receptor (Mohammadi et 

al., 1997). 

     The ETS family of transcription factor members Erm (Ets related molecule) and Pea3 

(Polyoma enhanced activator virus 3) are believed to give a read out of the Fgf 

signalling as both genes are expressed around all early Fgf signalling sources.  They are 

down regulated in Fgf mutant embryos in all tissues known to require Fgf function, a 

pharmacological inhibitor (SU5402) of the Fgf pathway completely abolishes expression 

of all Fgf genes, and ectopic expression of Fgf is sufficient to induce both genes (Raible 

and Brand, 2001; Roehl and Nusslein-Volhard, 2001). The Ets family of transcription 

factors is defined by an evolutionarily conserved 85-aminoacid ETS domain (Karim et 

al., 1990). Generally, these proteins activate transcription, but several members of the 

family are known to repress this process. DNA binding is achieved by interaction 

between the ETS domain and a 10-base pair sequence element termed the Ets binding 

site comprising a highly conserved central core sequence, 5'- GGA(A/T)-3' (Brown et 

al., 1998). 

     Fgfs are involved in many aspects of development including gastrulation, neural 

induction and terminal differentiation, and each member of the family has its own 

specific roles in different tissues, regulated both by their receptor specificity and 

expression profiles (Goldfarb, 1996). Fgfs are upregulated in many tumours and are 

associated with craniofacial abnormalities (Nie et al., 2006) and abrogation of Fgf 

activity leads to disrupted patterning of midline tissue between eyes, including the 

optic chiasma  (Shanmugalingam et al., 2000). Fgf signals have been implicated in 
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various aspects of eye development including the segregation of neural from 

pigmented retina, initiation of neurogenesis, lens induction and differentiation, lens 

regeneration, retinal cell fate specification, photoreceptor survival, RGC axon 

outgrowth and axon guidance (Esteve and Bovolenta, 2006; Martinez-Morales et al., 

2005; Russell, 2003; Sapieha et al., 2003; Webber et al., 2005; Yang, 2004). 

     It has been reported, however, that Fgf 2, 3, 5, 11, 12, 13, and 15 are all expressed in 

the retina of various vertebrates (Ford-Ferris et al 2001), and Fgf1 and Fgf2 in the 

murine lens (Govindarajan and Overbeek, 2001). Fgfr1 and 2 are expressed in the chick 

retina (Tcheng et al., 1994) and Fgfr1, 3 and 4 in the Xenopus retina (Launay et al., 1994). 

Fgf1 accelerates ganglion cell differentiation from the unpatterned epithelium in the 

chick retina (McCabe et al., 1999). Four zebrafish Fgfs are known to be expressed in the 

optic cup and/or eye (Crossley and Martin, 1995; Herzog et al., 2004; Reifers et al., 2000; 

Tsang et al., 2002; Walshe and Mason, 2003). These are Fgf3, Fgf8, Fgf19 and Fgf17. 

Zebrafish Fgf3, 8 and 17 are all expressed in the optic stalk from early stages on while 

Fgf19 and Fgf8 is expressed in the neural retina (Miyake et al., 2005). An optic stalk 

source was believed to be the source of neurogenesis (Masai et al., 2000) and the 

complete lack of neuronal differentiation in the retina of zebrafish Fgf3/Fgf8 double 

mutants suggest a crucial role for Fgf signalling in the initiation of neurogenesis 

(Martinez-Morales et al., 2005). 

     Temporal and spatial information is also provided by Fgf the onset of retinal 

neurogenesis. The onset and spreading of differentiation seems, however, to have 

species-specific spatial organization (Fig. 11).       
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Figure 11: Fgf Signalling determines the origin of morphogenesis in the Vertebrate Retina. Fgfs 
released by species-specific organizing centers initiate RGC differentiation. Later in 
development, RGC (ath5) differentiation progress through the neural retina (Modified from 
Martinez-Morales et al 2005).    
                              

     In zebrafish, the first RGCs are generated in the ventral retina close to the optic stalk 

and differentiation spreads in the nasodorsal direction, unfolding in a fan shaped 

gradient (Hu and Easter, 1999). This pattern is different in Xenopus, in which RGCs 

differentiation starts in a central position a little dorsal to the choroid fissure (Holt et al., 

1988). In the chick, RGC appearance is initiated dorsal to the optic stalk in a central zone 

of the retina and differentiation spreads as an expanding circle in the centro peripheral 

direction (McCabe et al., 1999). The FGFs produced in a strategically localized, species- 

specific position provides a common molecular mechanism for the onset of RGC 

differentiation (Martinez-Morales et al., 2005) (Fig. 11). 
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5. Zebrafish Sonic hedgehog locus 

 

The zebrafish Sonic hedgehog gene is a well characterised genomic locus (Chang et al., 

1997; Ertzer et al., 2007; Muller et al., 1999) and therefore, suited for comparative 

analysis with its mouse and human orthologs (Goode et al., 2003; Goode et al., 2005; 

Jeong et al., 2006; Jeong and Epstein, 2003). Shh genes are highly conserved and have 

been identified within a variety of species, including human, mouse, frog, fish and 

chicken. Mouse and human shh proteins are 92% identical at the aminoacid level 

(Marigo et al., 1995). The importance of the shh gene in development renders it a prime 

candidate for comparative studies in order to isolate potential control elements. 

Examination of the zebrafish shh promoter region identified two retinoic acid response 

elements (RAREs), two HNF3β binding sites, and a putative TATA box (Chang et al., 

1997). Further detailed deletion mapping of zebrafish shh resulted in the isolation of 

three intronic enhancer regions (Muller et al., 1999). Deletion mapping and Bac reporter 

assay have also been employed to isolate control regions in mouse shh locus (Epstein et 

al., 1999) (Jeong et al., 2006). 

     Enhancers that drive expression in the ventral neural tube and notochord of the 

developing embryo reside in the two introns and upstream sequences of both the 

zebrafish and the mouse shh gene (Epstein et al., 1999; Ertzer et al., 2007; Jeong et al., 

2006; Muller et al., 1999). In a sequence comparison of human and zebrafish shh loci, 

exonic regions are clearly discernible as conserved islands (Muller et al., 2002). Apart 

from exons, only a few sequence stretches in the intronic regions and the upstream 

promoter show significant conservation. The conserved intronic regions include the 

enhancers ar-A and ar-C (ar: Activating region, see below) which were previously 

mapped by functional assays using transient transgenic zebrafish (Muller et al., 1999). 

Interestingly, both enhancer-containing regions retained sequence identity as well as 

orientation and relative position, suggesting importance of the position of regulatory 

elements within diverged intronic sequences (Ertzer et al., 2007). 

     In zebrafish, activating regions (ar-A, ar-B, ar-C, ar-D) that direct floor plate and 

notochord expression are located in two intronic regions of the shh locus (Ertzer et al., 

2007). The promoter (including sequences up to -2.4 kb) drives expression in the floor 

plate of the midbrain, hindbrain and anterior spinal cord. Enhancers ar-A and ar-B, 
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which are located in the first intron, mediate expression in the notochord and the floor 

plate, respectively. A fourth region, ar-C in the second intron directed expression in the 

notochord, zona limitans, hypothalamus and weakly in the posterior floor plate (Ertzer 

et al., 2007; Muller et al., 2002) (Fig. 12).     

     In mouse, two floorplate enhancers, SFPE1 and SFPE2, were identified that regulated 

reporter activity in the ventral midline of the spinal cord and hindbrain similar to the 

endogenous shh expression pattern. A third regulatory element, Shh brain enhancer 1 

(SBE1) directed reporter activity to the ventral midbrain and caudal region of the 

diencephalon (Jeong and Epstein, 2003). By coupling Bac reporter assay with 

comparative sequence analysis, three novel enhancers (SBE2, SBE3 and SBE4) located 

over 400 kb from the shh transcription start site directing expression to the ventral 

forebrain were recently identified (Jeong et al., 2006) (Fig. 12). Shh enhancers are also 

capable of exerting long range activity (Lettice et al., 2003; Sagai et al., 2005; Sagai et al., 

2004). The enhancer mediating expression of shh in the limbs lies 1 Mb away from the 

shh transcription start site and is located in the intron 5 of the Lmbr1 gene (Lettice et al., 

2003; Sagai et al., 2005; Sagai et al., 2004).  

   

                  

Figure 12: Scheme of the zebrafish shh locus. The black boxes represent the exons, circles 
indicate the identified activating regions in the zebrafish and mouse. Dotted lines indicate the 
conservation of enhancers relative to sequence and orientation in the locus. (Ar-activating 
region, SPFE-Shh floorplate enhancer, SBE-Shh brain enhancer). Adapted and modified from 
Ertzer et al 2007. 
 
     The sequences of both ar-A and ar-C are highly conserved in the mouse and human 

shh genes (Ertzer et al., 2007; Jeong and Epstein, 2003; Muller et al., 2002). The ar-C 

harbours a 240-bp sequence that shares sequence similarity with the SFPE2 of the 

mouse shh gene (Muller et al., 2002; Muller et al., 1999). A striking feature of ar-C is that 
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it controls expression in different structures of the zebrafish and mouse embryo (Jeong 

et al., 2006) despite its structural conservation. In zebrafish, ar-C predominantly 

mediates notochord expression while in mouse SFPE2 directs floorplate expression. In 

contrast to zebrafish ar-C, intron 2 of the mouse does not have regulatory activity in the 

hypothalamus (Jeong et al., 2006). Instead, in the mouse Shh locus, regulatory sequences 

that reside 400 kb upstream of the promoter mediate expression in the hypothalamus 

(Jeong et al., 2006). The mouse Shh intron 1, despite its striking sequence conservation 

with ar-A (Muller et al., 2002) does not direct notochord expression in the mouse (Jeong 

et al., 2006). Thus, there can be dramatic changes in the tissue-specific activity of 

structurally conserved enhancer sequences (Ertzer et al., 2007). 

 

6.  Shh expression pattern in zebrafish 

 

  In zebrafish as in higher vertebrates, expression of shh is highly restricted to regions 

with organiser activity (Krauss et al., 1993; Scholpp et al., 2006; Strahle et al., 1996). In 

the zebrafish embryo, shh is expressed initially in the embryonic shield, and 

subsequently in the notochord, prechordal plate and the floor plate (Fig. 13). In the 

brain, shh expression is detected in the ventral midbrain, the hypothalamus, the zona 

limitans intrathalamica (zli) and in a small patch of cells in the telencephalon (Ertzer et 

al., 2007; Krauss et al., 1993). In the 2-day-old embryo, expression of shh is also found in 

the endoderm and its derivatives (Strahle et al., 1996) and in the retina (Neumann and 

Nuesslein-Volhard, 2000). The expression of tiggy-winkle hedgehog (twhh) is restricted to 

the medial floor plate and the ventral midline of the brain during early somitogenesis 

(Ekker et al., 1995) and in the retina (Neumann and Nuesslein-Volhard, 2000), whereas 

echidna hedgehog (ehh) is transcribed in the notochord exclusively (Currie and Ingham, 

1996). 
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Figure 13: 48 hpf old transgenic zebrafish carrying full length shh gene showing expression in 
the zona limitans, hypothalamus, retina, floorplate and notochord (Modified from Strahle et al 
2004). 
 

      

 

Figure 14: Transgenic zebrafish expressing green flouresent protein in the ganglion cell layer 
(GCL) and inner nuclear layer (INL) in the retina under the influence of sonic hedgehog 
regulatory elements (Adapted from Shukumutava et al 2004). 
 
In the zebrafish, a shh wave is required for patterning of the retina (Neumann and 

Nuesslein-Volhard, 2000). Shh expression is initiated at the ventronasal position at 30 

hpf and reaches the temporal region by 48 hpf (Neumann and Nuesslein-Volhard, 

2000). Shh is expressed in the ganglion cell layer and amacrine cells of the inner nuclear 

layer (Fig. 14) while twhh is expressed only in the ganglion cell layer (Shkumatava and 

Neumann, 2005).  
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 7. Scope of the project 

 

     Shh is expressed in the GCL and INL of the zebrafish retina, however the cis-

regulation behind shh expression in the retina has not yet been unravelled. The main 

goal of this study is focussed at the identification and functional characterisation of the 

retinal enhancer. This will provide deep insights into the regulatory elements that are 

responsible for propagation of the shh wave in the zebrafish retina. Because the 

initiation of neurogenesis in the zebrafish retina is dependent on Fgfs secreted from the 

optic stalk it would be interesting to explore the effect of these Fgfs on shh propagation 

and the interplay between Shh and Fgf signalling in patterning the zebrafish retina.  
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Results 

1. Two downstream enhancer regions contribute to retina expression of the shh:gfp 

transgene  

 

Previously carried out enhancer screens in the zebrafish shh gene by transient co-

injection experiments (Muller et al., 1999) led to the identification of four activating 

regions (ar-A, B, C, D) that direct floorplate and notochord expression. Ar-D was 

detected upstream and ar-A, ar-B and ar-C in two intronic regions of the shh locus (Fig. 

15). The promoter and ar-D (including sequences up to -2.4kb ) drove expression in the 

floorplate of the midbrain, hindbrain and anterior spinal cord (Chang et al., 1997); 

(Muller et al., 1999). Enhancers ar-A and ar-B which are located in the first intron, 

mediated expression in the notochord and floorplate respectively. Ar-C in the second 

intron drives expression in the notochord and weakly in the posterior floorplate. For 

detailed analysis of the identified regulatory regions, stable transgenic lines were 

generated with shh sequence from -2432 to +221 relative to the shh transcription start 

site inserted upstream of the green fluorescent protein (GFP) reporter gene and shh 

sequences from +549 to +5366 inserted downstream of GFP (Chang et al., 1997). 

Figure 15: An outline of the enhancer constructs. The −2.4shh:gfp construct lacking the intronic 
activating regions served as a promoter control. The −2.4shh:gfpABC construct carrying all three 
activating regions ar-A, B and C represented the wildtype mini shh locus. Exon 1 was replaced 
by GFP. E2 and E3 are exons 2 and 3 respectively. A series of deletion constructs was generated 
to test the activating regions −2.4shh:gfpA, −2.4shh:gfpB and−2.4shh:gfpC individually. Ar-D is 
located within the -2.4 kb promoter sequence. 
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     Transgenes carrying individual enhancers or combination of them were generated 

(Fig. 15). Expression of the transgene which contains all three intronic enhancer 

sequences ar-A, B and C is detected in the notochord, floorplate, hypothalamus, zona 

limitans and the retina. The enhancers responsible for shh expression in the midline and 

brain were studied elaborately (Ertzer et al., 2007) but the regulatory region specifying 

retina function in the zebrafish was yet to be identified. The main focus of this study is 

aimed at the identification and functional characterisation of the retina enhancer. 

     Transgenic lines that express GFP under the control of different shh regulatory 

sequences were analysed for expression in the retina. The line -2.4shh:gfpABC  (3/3lines) 

drives expression in the retina in both ganglion cell layer (GCL) and  in amacrine cells 

of the inner nuclear layer (INL) similar to the previously documented shh:gfp line 

(Neumann and Nuesslein-Volhard, 2000). Deletion of regulatory regions ar-A, ar-B, and 

ar-C (-2.4shh:gfp), resulted in complete loss of retina expression in  two independent 

transgenic lines (Fig. 16A). Thus the same intronic sequences to which previously 

notochord, floorplate and brain enhancers were mapped seem to be crucial for driving 

expression in the retina as well. 

     To map the location of the retina regulatory region, deletion constructs that 

contained either ar-A, ar-B or ar-C alone downstream of the −2.4shh:gfp reporter  were 

created (Fig .15). The transgenes -2.4shh:gfpA (4/4 lines) and -2.4shh:gfpB (2/4 lines) 

mediated both expression in the retina (Fig. 16C, D). The latter transgenic line 

expressed, however, only in the ganglion cell layer and gave more frequently mosaic 

expression and reduced penetrance. The -2.4shh:gfpC (2/2 lines) did not drive any 

expression in the retina (Fig. 16E). Only 2 out of the 4 stable lines of-2.4shh:gfpB  showed 

GFP expression in the GCL but all the 4 lines of -2.4shh:gfpA  showed similar expression 

in two layers of the retina. These findings uncovered two enhancer regions ar-A and ar-

B with overlapping but different expression patterns that contribute to the expression in 

the retina. Ar-A mediated more robust expression and was active in both GCL and INL, 

therefore a systematic analysis was further performed in the ar-A region.  

                  

 

 



                                                                                                                                              Results                         

 37

                      
Figure 16: Expression pattern of the shh enhancers in the retina. Stable transgenic lines -
2.4shh:gfpABC and -2.4shh:gfpA drive expression in the ganglion cell layer (GCL) and inner 
nuclear layer (INL) of the zebrafish retina (B, C), in the -2.4shh:gfpB expression is seen only in 
the GCL (D) while the -2.4shh:gfp and -2.4shh:gfpC (A, E) does not drive any GFP expression. 
Anterior to the top in all images. Confocal images taken at 72 hpf. 
 

2. Identification of a novel retina enhancer mediating shh:gfp expression in the retina 

 

The ar-A enhancer mediated shh:gfp expression in the GCL and INL of the retina. 

Previous studies in our lab (Ertzer et al., 2007) revealed that the ar-A is essential for 

regulating shh expression in the notochord. The ar-A enhancer is around 1.9 kb long 

(+549 to +2381). Sequence analysis revealed that a 350 bp (+2021 to +2381) of ar-A 

exhibited a high degree of conservation among several species and is sufficient to drive 

notochord expression (Muller et al., 1999) (Fig. 17A).  In order to check if the 350 bp 

mediates retina expression , deletion constructs carrying only the 350 bp region of ar-A 

(+2021 to +2381) (Fig. 17C) and another construct carrying all the upstream intronic 

sequences +549 to +2021 (Fig. 17B) were cloned downstream of the -2.4shh:gfpSce I 

construct. SceI sites were introduced into the plasmid as previous reports showed a 

higher efficiency for obtaining stable transgenics (Thermes et al., 2002). The ar-A 

construct carrying both conserved and non-conserved sequences from +549 to +2381 

was also injected as an experimental control.  
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Figure 17:   A scheme outlining the cloning of the plasmids to -2.4shh:gfp. A novel 1.5 kb retinal 
enhancer RetE drives shh:gfp expression in the GCL and INL of the zebrafish retina (E) similar to 
full length ar-A (D). The highly conserved 350 bp notochord enhancer of ar-A (light blue box) is 
not capable of driving any expression (F). Confocal images at 72 hpf. Anterior to the top in all 
the images. 
 

     These constructs were micro-injected into one cell stage zebrafish embryos. At 24 

hpf, the embryos were sorted for GFP expression in the anterior floorplate, mediated by 

the shh promoter (-2.4shh:gfp). This served as an internal control for all injections 

performed in this entire study. Transient analysis displays a mosaic pattern of 

expression and not all embryos injected show a similar expression profile, making it 

important to validate these results by proper quantification and repetition of injections.   

     Expression analysis revealed that the 350 bp ar-A (+2021 to +2381) alone was not able 

to drive shh:gfp expression in the retina (Fig. 17F). The other 1.5 kb construct (+549 to 

+2021) with the intronic sequences mediated the expression in both the GCL and INL of 

the retina (Fig. 17E) identical to that of the embryos injected with the full length ar-A 

construct (+549 to +2381) (Fig. 17D). The injections were repeated thrice and results are 

presented in Table 2. Taken together, these results led to the identification of an 

enhancer responsible for driving shh:gfp expression in the retina located between +549 

and +2021 of the shh locus and was designated as RetE (Retinal Enhancer). In order to 

better understand the regulation of shh:gfp expression by RetE and for further studies, 

transient assay was not ideal. Therefore the injected embryos were raised to adulthood  
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and screened for stable transgenics and 4 independent lines were obtained for -

2.4shh:gfpRetE that recapitulated transient results.  These results confirm that RetE is 

enhancer mediating shh:gfp expression  in the retina. 

 

CONSTRUCT RETINA 

EXPRESSION 

NUMBER OF RETINAL EXPRESSING 

EMBRYOS/TOTAL NUMBER OF 

INJECTED EMBRYOS 

1.9 kb ar-A (+549 to +2381) +++ 65/108 

1.5 kb RetE (+549 to +2021) ++ 75/123 

350 bp ar-A (+2021 to +2381) - 0/50 

 

Table 2: Results of injections for each deletion construct are performed thrice and are tabulated. 
+/- indicates the presence or absence of retina expression. RetE enhancer were scored ++ as 
there were fewer ganglion cells that were GFP positive when compared to the 1.9 kb construct 
(+549 to +2381). 
 

3. A 300 bp region is sufficient and necessary to drive shh:gfp expression in the retina 

 

To further characterise the minimal region of the RetE required for retina expression, a 

deletion scan of 200 bp steps  from the 5' and 3' of RetE (Fig. 18A) was performed. These 

constructs were cloned into the -2.4shh:gfpSceI, injected into zebrafish embryos and 

monitored for the transient expression. The results from the injections are presented in 

Table 2. From the 5' deletion series, only the construct that had a deletion from +549 to 

+729 was able to drive GFP expression in the retina (Fig. 18B). All the other deletion 

constructs failed to show any GFP expression in the retina (Table 3). 
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Figure 18:  A series of deletion constructs were generated (A) to identify the minimal region 
required for shh:gfp expression in the retina. Two constructs carrying shh sequence from +729 to 
+2021 and +549 to + 1035 shown in asterisks were able to drive expression in the retina (B, C). 
Construct carrying shh sequences from +549 to +829 was not able to mediate retina expression 
(D).  Anterior to the top in all images and imaged at 72 hpf. 
 

The results presented above suggests that a region between +729 to +955 carried the 

regulatory information needed for shh:gfp expression in the retina. To further confirm 

this analysis, two corresponding 3' deletion constructs with the sequence + 549 to +1035 

and +549 to + 829 were investigated. According to their expression pattern (Fig. 18C, D) 

it was evident that only the construct carrying the sequence +549 to +1035 was able to 

mediate shh:gfp expression in the retina. This deletion scan narrowed down the 

functional enhancer RetE between +829 to +955 of the shh locus. 
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CONSTRUCT RETINA 

EXPRESSION 

NUMBER OF RETINAL 

EXPRESSING 

EMBRYOS/TOTAL NUMBER 

OF INJECTED EMBRYOS 

PERCENTAGE 

+ 729 to +2021 ++ 78/128 59.3 

+ 955 to +2021 - 3/109 2.7 

+1154 to +2021 - 0/108 0.0 

+1360 to +2021 - 0/107 0.0 

+1559 to +2021 - 0/102 0.0 

+ 549 to +1035 + 27/56 48.2 

+ 549 to +829 - 0/98 0.0 

       
Table 3: Results of injections for each deletion construct are performed thrice and are tabulated. 
+/- indicates the presence or absence of retina expression. 
 
 
     With the rough deletion scan, the activity of flanking sequences could have been 

missed so a larger fragment from +729 to +1035 was tested for retina expression (Fig. 

19A). This was cloned downstream of -2.4shh:gfpSceI, injected and monitored for their 

expression. Expression analysis, indicate that the 300 bp region alone (+729 to +1035) 

was able to drive retina expression (Fig. 19B, 72% n=40).  To evaluate the functional 

significance of this 300 bp region, another construct with an internal deletion of this 300 

bp was generated. This was cloned as above and tested for retina expression. The 

construct that carried the 300 bp deletion failed to drive any GFP expression in the 

retina (Fig. 19C, 0% n=85). Taken together these data indicate that the 300 bp (+729 to 

+1035) RetE enhancer region is sufficient and necessary for shh:gfp expression in the 

zebrafish retina. 
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 Figure 19: A 300 bp region is sufficient and necessary to drive expression in the retina. An 
outline of constructs generated are shown in the scheme A. Embryos injected with the -
2.4shh:gfp plasmid carrying the minimal region +729 to +1035 drives expression in the retina (B). 
Embryos injected with the -2.4shh:gfpRetE plasmid with an internal deletion from +729 to +1035 
failed to drive GFP expression in the retina (C). Embryos injected with the heterologous 
promoter -37tk:gfpRetE is also able to drive GFP expression in two layers (D) but the control 
embryos injected with -37tk:gfp does not show any GFP expression in the retina (E). Anterior to 
the top in all images and pictures taken at 72 hpf. 
 

        To test, if the regulatory activity of RetE is dependent on the -2.4shh promoter, the 

RetE enhancer was cloned downstream of a TATA box containing a minimal thymidine 

kinase promoter with gfp as reporter gene (Rastegar et al., 2002). The construct was 

injected and expression monitored at 72 hpf. The -37tk:gfpRetE was able to drive 

expression in both layers of the retina (Fig. 19D, 44% n=47). The control embryos 

injected with -37tk:gfp showed no GFP expression in the retina (Fig. 19E, 0% n=42 

embryos). These results indicate that the enhancer activity is independent of the shh  

promoter. 
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4. A 40 bp core region of the RetE enhancer is required for shh:gfp expression  

 

To define precisely the key regulatory sequence within the 300 bp region required for 

enhancer activity, a mutational screen over the entire region was performed. Non-

overlapping mutations of 20 bp constructs termed M1 to M15 (Fig. 20A) were generated 

via a PCR based approach. The 15 constructs were cloned downstream of -2.4shh:gfp, 

injected, and the transient expression was monitored in the retina at 72 hpf. The  -

2.4shh:gfp alone drove expression in the anterior floor plate and this served as an 

internal control.  Injections were repeated thrice and the statistics are shown in Table 4. 
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Figure 20: Fine mapping of region +729 to +1035. A mutational scan of 20 bp(A). 
Mutation M12 led to the complete loss of shh:gfp expression (M) whereas mutation M13 
abolished shh:gfp expression in the GCL but not in the INL (N). Anterior to the top in all 
images and pictures taken at 72 hpf. 
 

     Two regions important for shh:gfp expression in the retina were identified from the 

mutation scan. The mutation termed M12 (+957 to +976) (Fig. 20M) lead to complete 

loss of expression in the GCL and INL of the retina. These embryos still show 

expression in the anterior floorplate which serves as a positive control for the injections  
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(Table 4). Another adjacent 20 bp mutation M13 (+977 to +996) (Fig. 20N) retained only 

the INL expression, with the GCL expression lost (Table 4). All other mutant constructs 

showed expression in both GCL and INL of the retina (Fig. 20 B-L, O, P). The numbers 

of the injections are presented in Table 4. To validate the data, the embryos injected 

with M12 and M13 were raised to adulthood and then screened for stable transgenics. 

Two independent lines for each of the constructs were identified and they recapitulated 

an expression pattern (Fig. 21A, B) similar to that seen in transient expression studies. 

The data presented in this section suggest that a 40 bp core region (+957 to +996) is 

crucial for enhancer activity in the GCL and INL of the zebrafish retina. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Injections of mutant constructs are performed thrice and the embryos expressing GFP 
in specific layers are tabulated. Expression in the floorplate served as the positive control for the 
micro-injections. 
 

 

 

 

 

 

 

Mutant 
construct 

Floorplate GCL 
and 
INL 

Only 
INL 

Total number 
of  GFP 
embryos 

Percentage 

M1 84 84 - 109 77 
M2 55 55 - 87 63.2 
M3 56 56 - 70 80 
M4 73 73 - 119 61 
M5 56 56 - 78 71.3 
M6 50 50 - 68 73.5 
M7 33 33 - 50 66 
M8 44 44 - 69 63.7 
M9 46 46 - 88 52.2 
M10 47 47 - 91 51.6 
M11 47 47 - 80 58.7 
M12 105 0 - 105 0 
M13 47 0 47 80 58.7 
M14 45 45 - 96 46.8 
M15 43 43 - 102 42.1 
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Figure 21: Shh expression pattern in the stable M12 and M13 transgenes. Transgenes carrying 
the M12 mutation failed to drive expression in the retina (B) while the transgene carrying the 
M13 mutation drive expression only in the INL (C) when compared to -2.4shh:gfpRetE (A). The 
M13 stable line had an overall weak GFP expression and had background expression in the 
lens. 
 

5. Critical region of the RetE enhancer is conserved but not sufficient for shh:gfp 

expression 

 

The mutational scan identified a 40 bp core region of the RetE enhancer required for 

shh:gfp expression in the retina. The 40 bp region was subjected to a comparative 

approach. Comparative genomics could provide insights into the evolutionary 

conserved nucleotides which may be more likely to be functionally relevant. Conserved 

blocks of non-coding sequences often represent functionally important domains that 

share function (Dickmeis and Muller, 2005). Shh intron 1 retinal enhancer sequence of 

sequence of chick, human and mouse corresponding to the zebrafish 40 bp (M12 and 

M13) were retrieved from ENSEMBL. Using the T-Coffee program, the sequences were 

aligned as in Fig. 22. The alignment revealed a block of conservation across the 40 bp 

with 24 out of the 40 nucleotides identical between zebrafish, mouse, human and chick 

(Fig. 22). 



                                                                                                                                              Results                         

 47

 

Figure 22: Multiple sequence alignment (T-Coffee software) of the 40 bp region. Astericks 
indicate the 100% conservation in M12 and M13 region between zebrafish and the other species.        
 

     To investigate whether the 40 bp region (+957 to +996) alone can recapitulate the 

RetE function in the retina, this fragment was cloned downstream of -2.4shh:gfp, injected 

into zebrafish embryos and the expression monitored at 72 hpf. Expression analysis 

revealed no detectable GFP expression in the retina (Fig. 23B, 0% n=76 embryos) 

suggesting that the highly conserved region alone is insufficient for retina expression.  

     A 300 bp (+729 to +1035) region of the RetE enhancer was sufficient for driving 

expression in the retina (Fig. 19B).  Availability of significant conservation with human 

and mouse sequences (Fig. 22) led to the speculation that evolution would have allowed 

retina function to be retained in these species too. To test this, mouse and human shh 

sequence corresponding to the zebrafish 300 bp region (+729 to +1035) were amplified 

from their genomic DNA respectively. These were then cloned downstream of -

2.4shh:gfp, injected and the retina expression monitored at 72 hpf. Expression analysis 

revealed that both mouse and human shh constructs failed to drive any GFP expression 

in the retina (Fig. 23D, 0% n=45 and 23E, 0% n=36).   Control embryos were injected 

with -2.4shh:gfpRetE729/1035 zebrafish sequence (Fig. 23B, 70% n=38). Taken together 

these data suggest a different mechanism for shh regulation in mouse and human or 

that sequences in the fish 300 bp could have been shuffled to other regions in other 

species. 
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Figure 23: Outline of constructs depicted in A. Embryos injected with the -2.4shh:gfpRetE40 bp 
failed to drive shh:gfp expression in the retina (B). Embryos injected with -2.4shh:gfpRetE300 bp 
drive shh:gfp expression in the GCL and INL of the retina (C) but embryos injected with the 
corresponding mouse and human 300 bp region show no detectable GFP in the retina (D, E). All 
images at 72 hpf. 
 

6. The conserved 40 bp region plus additional 5’ sequences are sufficient to drive 

expression  

 

The conserved 40 bp region (+957 to +996) alone was insufficient for mediating shh:gfp 

expression. Earlier 5’ deletion series revealed that sequences 3’ to the 40 bp region are 

not capable of driving shh:gfp expression in the retina (Fig. 18A). To determine if other 

non -conserved 5’ sequences of the 300 bp RetE are required for expression, two 

constructs with roughly an addition of 5’ 85 and 5’ 170 bp to the core 40bp were 

generated (Fig. 24A) The 85 bp+40bp and 170 bp +40bp constructs were cloned 

downstream of -2.4shh:gfp and injected into zebrafish embryos and transient expression  

studied at 72 hpf.   
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Figure 24:  Overview of deletion constructs in A. Embryos injected with the 40 bp +85 bp and 40 
bp+ 170 bp are able to drive GFP expression in both GCL and INL of the retina (B, C). Embryos 
injected with the 40 bp+ 170 bp with 85 bp internal deletion failed to drive any expression in the 
retina (D). Anterior to the top in B, C and D at 72 hpf. 
 

                    

CONSTRUCT RETINA 

EXPRESSION 

NUMBER OF RETINAL EXPRESSING 

EMBRYOS/TOTAL NUMBER OF INJECTED 

EMBRYOS 

85 bp + 40 bp + 51/91 

170 bp + 40 bp + 43/91 

170 bp del 85 bp 

+ 40 bp 

- 0/71 

 

Table 5:  Results of the injections performed thrice are tabulated. +/- indicate the presence or 
absence of retina expression. 
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     Expression analysis revealed that both the constructs were able to drive GFP 

expression in the GCL and INL of the retina (Fig. 24B, C) as construct -

2.4shh:gfpRetE729/1035 (Fig. 19). Addition of 85 bp could confer retina expression, to 

assess its functional importance it was deleted in the context of the +170 construct (Fig. 

24A). This was then cloned downstream of -2.4shh:gfp, injected and the retina 

expression monitored at 72 hpf. This construct failed to drive retina expression (Fig. 

24D). All the injections were performed thrice and the results are presented in Table 5. 

Altogether these data demonstrate that the conserved 40 bp region (+957 to +996) plus 

85 bp additional 5’ sequences are sufficient for enhancer activity both in the GCL and 

INL of the retina.                 

 

7. The Ets factors Erm/ Pea3 were predicted to bind to the RetE  

 

Regulatory regions are usually a composite of multiple transcription factor binding 

sites. To determine the transcription factors involved in the regulation of RetE, the 40 bp 

core region was analysed for binding site motifs using the PATCH program 

(TRANSFAC 6.0). Potential binding sites were identified by searching the genome with 

consensus sequences or using weight matrices. The PATCH program revealed binding 

sites for the ETS transcription factors Erm and Pea3. Erm and Pea3 possess a similar 

core consensus sequence “GGAA/T” (Brown et al., 1998). Three binding sites (BS1, BS2 

and BS3) for Erm and Pea3 were identified both in M12 and M13 region. The BS3 

exhibited a 100% matrix core which is well conserved among many species while BS1 

and BS2 showed 75% and 83% identity respectively (Fig. 25). Erm and Pea3 belong to 

the ETS family of transcription factors and are reported to be targets of Fgf signalling in 

the zebrafish (Raible and Brand, 2001; Roehl and Nusslein-Volhard, 2001). They possess 

a 85-aminoacid ETS domain (Karim et al., 1990) that binds to DNA and regulates 

transcription (Laudet et al., 1999). Earlier findings have not illustrated a clear role of 

Erm and Pea3 in the retina and are to be addressed in detail. 
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Figure 25: Predicted binding motifs for Erm and Pea3 in M12 and M13 region of the RetE 
enhancer. Three motifs identified are represented as BS1, BS2 and BS3 respectively and are 
indicated as pink boxes. The blue letters indicate the conserved nucleotides. Erm and Pea3 share 
a common core motif GGAA/T in their consensus binding sequence.(V = G/ A / C, R = A /G, 
S= G /C, W= T/A, Y= C/T). 
 

 8. Pea3/ Erm intact binding site is required for shh:gfp expression in the GCL 

 

The search for binding site motifs indicated that M13 possessed a strong core sequence 

for Erm/Pea3 transcription factors. To elucidate the functional significance, mutations 

targeting the core sequence in M13 (GGAT) were designed using a PCR based strategy. 

The mutations were introduced into the RetE (1.5 kb). This was then cloned 

downstream of -2.4shh:gfp, injected and the transient expression monitored at 72 hpf. 

The embryos displayed a complete loss of shh:gfp expression in the GCL while 

expression in the INL was intact (Fig. 26B, 62% n=81). This result is consistent with the 

earlier findings where mutations across the entire M13 also led to loss of GFP 

expression in the GCL (Fig. 20N). Control embryos injected with -2.4shh:gfpRetE showed 

expression in both layers of the retina (Fig. 26A, 63% n=39). Taken together, these 

findings suggest that shh:gfp expression  in the GCL is independently regulated from 

that of INL involving Pea3 and Erm factors. 
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Figure 26: Shh:gfp expression in the GCL requires an intact Erm/Pea3 binding site. Embryos 
injected with the plasmid -2.4shh:gfpRetE carrying mutations in the Erm/Pea3 core motif of M13 
show GFP expression only in the INL while expression in the GCL is lost (B) . Control embryos 
injected with -2.4shh:gfpRetE show GFP expression in both GCL and INL of the retina (A). 
Images taken at 72 hpf. 
 

9. Pea3 and Erm are expressed in the zebrafish retina 

 

Mutational studies suggest the importance of the binding motifs of Erm/Pea3 for 

driving expression in the GCL. To understand whether the expression of these factors 

coincides with that of the retinal enhancer, Pea3 and Erm mRNA expression in the 

zebrafish retina was studied using whole mount in-situ hybridisation with digoxigenin 

labelled antisense Pea3 and Erm probes. The in-situs were performed on two stages  of 

embryos one at 34 hpf when neurogenesis has already initiated and another at 72 hpf 

when retinal neurogenesis is complete. The expression of erm was ubiquitous in the 

retina at 34 hpf (Fig. 27A), at 72 hpf the expression was just limited to a single layer of 

lens epithelial cells surrounding the lens (Fig. 27B). The expression of Pea3 differed at 

34 hpf (Fig. 27C) with a faint staining in the GCL and central retina and in a layer of the 

lens epithelium, and at 72 hpf the expression was retained only in the lens epithelium 

(Fig. 27D). Taken together, in -situ results indicate that both Erm and Pea3 are expressed 

in the zebrafish when retinal neurogenesis is active. 
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Figure 27: Expression pattern of Erm and Pea3. Erm is expressed ubiquitously in the retina and 
lens at 34 hpf (A) and later only in the lens epithelium at 72 hpf (B). Pea3 is expressed faintly in 
the GCL and central retina and in the lens epithelium at 34 hpf (C) and later at 72 hpf (D) seen 
only in the lens epithelium. 
 

10. Pea3 and Erm act redundantly in promoting shh:gfp expression in the retina 

 

Pea3 and Erm are expressed in the zebrafish retina and mutation of their binding sites 

indicates that they are important for RetE activity in the retina. In order to elucidate 

their role in regulating shh expression in the retina, a knock-down approach using 

morpholinos (MOs) was performed. Morpholinos designed against the translation 

initiation site or splice site of the gene (Draper et al., 2001) were ordered from Genetools 

and prepared for microinjection as described (Nasevicius and Ekker, 2000). 

Morpholinos were injected into -2.4shh:gfpRetE transgenic embryos and the effect on the 

retina expression monitored at 48 hpf. Embryos injected with either Pea3 MO or Erm 

MO (1 µg/µl) showed normal GFP expression in GCL and INL of the retina (Fig. 28B 

n=30, Fig. 28C n=27).  
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Figure 28: Morpholino based downregulation of Pea3 and Erm. Control embryos injected with 
mismatch Erm MO + Pea3 MO show normal GFP expression in the GCL and INL (A). 
Transgenic embryos injected with either Pea3Mo or Erm Mo (1,0 µg/µl) had no effect on the 
expression pattern (B, C) while those injected with a mixture of both the morpholinos at the 
same concentration (1,0 µg/µl) showed a complete loss of GFP expression in the retina (D). 
Confocal pictures at 48 hpf and anterior to the top in all images. 
 

     To test whether Pea3 and Erm act redundantly in controlling shh:gfp expression, a 

cocktail of both Pea3 MO and Erm MO (1 µg/µl) were injected into -2.4shh:gfpRetE 

transgenic embryos. Expression analysis on the retina at 48 hpf revealed a complete loss 

of GFP expression in both GCL and INL of most of the injected embryos (Fig 28D n=51). 

Frequently only 1-2 dots of expression were seen at the initiation site. Embryos injected 

with a mixture of Pea3 and Erm control morpholinos (1 µg/µl) show normal GFP 

expression in the retina (Fig. 28A, n=28). These findings provide evidence that both 

transcription factors act redundantly for  regulating shh:gfp expression in the retina.                                 

    

11. PEA3 and ERM bind in-vitro to the binding motif in M13 region 

 

To investigate whether, the identified motifs in M13 bind ERM or PEA3, 

ElectroMobility Shift Assays (EMSA) using GST fusion proteins were performed.  Only 

the ETS domain which mediates the transcriptional activity of Erm and Pea3 (Brown et 

al., 1998) was cloned downstream of into the GST expression plasmid. The GST proteins 

were produced in E. coli, then purified using a Gluthathione Sepharose 4B resin and 

analysed on a SDS polyacrylamide gel. As shown in the Fig. 29, a 36 kDa and 32 kDa 

GST fusion protein of ERM and PEA3 were isolated, respectively. There were also 

several minor bands present in the elute which indicates partial degradation during 
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purification.  

 

 

Figure 29: Purification of GST-ERM and GST-PEA3 fusion proteins. The purified GST-ERM is 36 
kDa and purified GST-PEA3 is around 32 kDa indicated by arrows. The presence of multiple 
bands indicate the partial degradation during purification and this does not affect the DNA 
binding activity in latter experiments. 
 

     Synthetic oligonucleotides harbouring the M12+M13 region (RetE probe) were 

annealed and then 5’ end labelled with 32P using T4 kinase. ERM or PEA3 were 

incubated with the probe (Fig. 30B) and EMSA was performed. No specific complexes 

for Erm and Pea3 were observed when the reaction mixture contained only labelled 

probe (Fig. 30A, lane 1). However, the GST-ERM or GST-PEA3 protein formed a specific 

complex with the labelled probe in lane 2 and 5 respectively (Fig. 30A). In order to test 

the specificity of the binding, 50-100 fold molar excess of cold probe (RetE) were used 

for competition (Fig. 30B). The formation of the complex was completely hindered upon 

competition with the excess of cold RetE oligos in lane 3, 4, 6 and 7 respectively (Fig. 

30A). 
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Figure 30: In vitro binding of ERM and PEA3 to the M12+M13 motif (A). Lane 1 indicates the 40 
bp probe alone, Lanes 2 and 5 shows the DNA- Protein complexes that are retarded in the gel 
and Lanes 3,4,6,7 shows the successive competition through cold probes in a range of 50-100 
fold. Sequence of probe and competitor used are provided (B). P= free probe and SC= shifted 
complex. 
  

     The binding specificity was also further subjected to competition using M13 motif  

oligos, wildtype and mutant (Fig. 31C) in the range of 50-100 fold excess. Lane 2 

displays the shifted complex produced on binding of ERM and PEA3 (Fig. 31A, B). The 

binding specificity was reflected by the reduced amount of complex formed when M13 

wildtype cold oligos were added in lanes 3 and 4 (Fig 31A, B). However, complex 

formation was not inhibited by adding excess mutated M13 oligo in lane 5 and 6  
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respectively (Fig. 31A, B).  Altogether these data reveal that ERM and PEA3 can bind to 

motifs in the RetE region and these can be competed either with RetE or M13 wildtype 

oligos but not with the M13 mutant oligos. 

 

 
Figure 31: In vitro binding of ERM and PEA3 to RetE probe and specific cold competition using 
M13 wildtype and M13 mutant oligos, mutated nucleotides in violet (A, B). In both the gels, 
lane 1 carries only the probe, lane 2 shows the binding of ERM and PEA3 with a shifted 
complex produced. Lane 3 and 4 shows the cold competition (50-100 fold) using M13 wildtype 
oligos with a partial loss in the complex and lanes 5 and 6 shows the cold competition (50-100 
fold) using M13 mutant oligos where the competing potential is lost. Sequence of probe and 
competitor used are provided (C). P= free probe and SC= shifted complex. 
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12. PEA3 and ERM can also bind to weak motifs in M12 

 

In order to determine if ERM and PEA3 bound specifically only to the M13 motif of the 

RetE probe, EMSA was carried out using RetE probe carrying mutation in the M13 core 

motif (Fig. 32B). The RetE probe with M13 mutation was incubated with ERM or PEA3 

and EMSA were performed. Lane 2 and 3 (Fig. 32 A) display the shift produced upon 

binding of ERM and PEA3 to the mutant probe. This suggests that ERM and PEA3 can 

also recognise and bind the two other motifs in M12 region.  

                  

 
Figure 32: In-vitro binding of ERM and PEA3 with mutant RetE probe, mutated nucleotides in 
violet (B). Lane 1 shows the mutant probe alone, while lane 2 and 3 shows the mutant probe 
binding to ERM and PEA3 and thereby producing a shifted complex that is retarded in the gel. 
P= free probe and SC= shifted complex. 
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In order to verify this, EMSA was conducted using an oligo containing the M12 motif 

(Fig. 33C) as the probe. The M12 probe labelled with 32P was incubated with the 

proteins and subjected to EMSA. Both ERM and PEA3 can recognise the motifs in the 

M12 region (Fig. 33A, B- lane 2). To check the specificity of this binding, the shifted 

bands were competed using cold oligos of M13 wildtype and M13 mutant (Fig. 33C) in 

5-33 fold excess. The M13 wildtype oligo competed very efficiently at even 5 fold excess 

in lane 3 (Fig. 33A, B). The mutant M13 oligo also displayed competition at the range of 

10 to 33 fold excess in lane 8 and 9, respectively (Fig. 33A, B). Thus some unspecific 

competition was noted. This suggests that an excess of cold M13 wildtype in the 

reaction can readily compete with the weaker motifs in the M12 region and could 

displace the binding thus proving that M13 interaction with the proteins are much 

stronger than M12 in accordance with the PATCH results (Fig. 25). 
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Figure 33: In vitro binding of ERM and PEA3 to the M12 probe and competition using M13 
wildtype and M13 mutant oligos (A, B). In both the gels, lane 1 carries only the probe, lane 2 
and 6 shows the binding of protein with a shifted complex produced. Lane 3, 4 and 5 show the 
cold competition (5-33 fold) using M13 wildtype oligos with a complete loss in the formation of 
the complex and lanes 7, 8 and 9 shows the cold competition (5-33) using M13 mutant oligos 
where there is partial competition seen. Sequence of probe and competitor used are provided 
(C). P= free probe and SC= shifted complex. 
 

  Taken together, the EMSA studies reveal that both ERM and PEA3 can bind to both 

M12 and M13region of RetE, and competition results indicate that the M13 protein 

interaction is more efficient than the  M12 protein interaction. 
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13. Fgfs are required for the initiation and propagation of the  shh:gfp wave in 

zebrafish 

 

Erm and Pea3 act downstream of FGF signalling (Raible and Brand, 2001; Roehl and 

Nusslein-Volhard, 2001) and earlier studies have clearly indicated that Fgf from the 

optic stalk is required for the initiation of retinal neurogenesis (Martinez-Morales et al., 

2005). To decipher the influence of FGF signalling on the shh wave in the retina, 

transgenic embryos were exposed to SU5402 treatment, a potent inhibitor of Fgf 

signalling at the level of the receptor tyrosine kinases (Mohammadi et al., 1997). 

Transgenic embryos -2.4shh:gfpRetE were exposed to 16 µM SU5402 at two different 

time points. In the first treatment, embryos were exposed from 24 hpf before shh:gfp 

expression is initiated in the retina whereas in the second treatment, embryos were 

exposed from 34 hpf when 2-3 dots of shh:gfp expression are already visible at the 

ventro-nasal region (Fig. 34A). Failure to express in the retina may be due to the loss of 

initiation of expression in Fgf blocked embryos. The effect of Fgf inhibition on the 

shh:gfp expression in the retina was monitored at 48 hpf. Control embryos were treated 

with DMSO in a similar way (Fig. 34B, D). 
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 Figure 34: The SU5402 inhibition assay shows that Fgfs are required for initiation and 
propagation of the shh:gfp wave. An outline of the treatment is shown in scheme A. Treatment 
of embryos with DMSO at any time frame does not show any alteration in shh:gfp transgene 
expression (B, E). Embryos treated with SU5402 from 24-48 hpf show a complete loss of GFP 
expression in the retina (C) while those treated from 34-48 hpf shows few GFP (arrowhead) cells 
at the initiation point (F). Expression is recovered when the embryos are removed from SU5402 
and after several washes in fish water allowed to grow until 72 hpf.  Confocal pictures at 48 hpf  
(B, C, E, F) and 72 hpf  (D, G) with anterior to the top in all images.            
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     Embryos exposed to SU5402 from 24-48 hpf blocked the initiation of shh:gfp and its 

subsequent spread in the retina (Fig. 34C, n=58). On the other hand, embryos exposed 

to SU5402 from 34 hpf allowed shh:gfp expression to be initiated at the ventronasal 

position but the propagation of the wave was completely blocked in these embryos (Fig. 

34F, n=35). After 48 hpf, both the experimental batch of embryos were removed from 

the inhibitor, followed by several washes in fish medium and allowed to grow in the 

same until 72 hpf. Expression analysis of these embryos at 72 hpf showed a complete 

recovery of shh:gfp expression in the GCL and INL of the retina (Fig. 34D, G). Control 

embryos treated with DMSO showed normal shh expression pattern (Fig. 34B, E, n=38). 

Thus this experiment demonstrates that Fgf signalling is required for both the initiation 

and propagation of the  shh:gfp wave in the zebrafish retina. 

 

14. Several Fgfs participate in the regulation of shh:gfp expression in the retina  

 

Fgfs are known to be expressed in the zebrafish eye. Fgf3 and Fgf8  are expressed in the 

optic stalk (Herzog et al., 2004; Reifers et al., 2000; Tsang et al., 2002) and are important 

for initiation of retinal neurogenesis (Martinez-Morales et al., 2005). To determine 

which of these Fgfs influence the shh:gfp expression in the retina, a knock-down 

approach using morpholinos (MO) were performed. Fgf3 and Fgf8 morpholinos 

designed against the translation initiation site of the gene were injected at a 

concentration of 0.5 -2.0 µg/µl into -2.4shh:gfpRetE transgenic embryos at the one cell 

stage and expression in the retina was monitored at 48 hpf. 

                                

 

 

 

 

 

 

 

 

 

 



                                                                                                                                              Results                         

 64

                                         
Figure 35: Several Fgfs are required for shh transgene expression in the retina. Embryos injected 
with either Fgf3 or Fgf8 MO show no effect on the transgene expression in the retina (A, B) 
while those injected with a mixture of Fgf8MO and Fgf3MO block the transgene expression 
completely (D). Control embryos injected with mismatch Fgf3 and mismatch Fgf8 MOs have a 
normal GFP expression pattern (C). Embryos injected with Fgf19MO show only initiation at the 
ventral nasal patch and subsequent spread is blocked (F). Control embryos injected with 
mismatch Fgf19 MO had normal GFP expression pattern (E). Confocal pictures at 48 hpf with 
anterior to the top in all images.            
 

     The injection of Fgf3 (0.8 µg/µl) and Fgf8 MOs (1.6 µg/µl) alone led to no loss of 

shh:gfp expression in the retina (Fig. 35A, n=31, Fig. 35B, n=39). However a mixture of 

both Fgf3 and Fgf8 MOs showed a complete loss of GFP expression in transgenic 

embryos (Fig. 35D, n=41). Those injected with a mixture of mismatch MOs of Fgf3 and 

Fgf8 show normal transgene expression pattern (Fig. 35C, n=45). This suggests that both 

signalling molecules are required for initiation and maintainance of shh:gfp expression 

in the transgene. Another Fgf molecule, Fgf19 is expressed in the neural retina (Miyake 

et al., 2005), to check if it could also be a candidate regulating shh:gfp expression, a 

similar knock down approach was performed. Fgf19 MO (1 µg/µl) was injected and the 

downregulation gave a significant result with only initiation of shh:gfp expression at the  
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ventronasal patch noticed in more than 50% of the injected embryos (Fig. 35F, n=58) 

when compared to those injected with mismatch Fgf19 MO (Fig. 35E, n=39). The 

subsequent spread of expression was blocked in the embryos thus demonstrating that 

Fgf19 is a key molecule required for the propagation and not for the initiation of the 

shh:gfp wave in the zebrafish retina. Fgf1 in chick  have been reported to be required for 

progression of neurogenesis (McCabe et al., 1999), but Fgf1 MO had no effect on the 

transgene expression pattern (data not shown). 

     Thus inhibitor and morpholino studies clearly indicate that multiple Fgfs play a 

crucial role in establishment and propagation of the shh:gfp wave in the zebrafish eye. 

 

15. Shh acts in an auto-regulatory manner to drive expression in the retina 

 

Previously it has been suggested that Shh is necessary for the propagation of the shh 

expression wave through the retina of the zebrafish embryo (Neumann and Nuesslein-

Volhard, 2000). The results from the earlier section of the thesis suggest that Fgfs play 

crucial roles in the initiation and propagation of RetE driven expression in the retina. To 

re-examine the role of Hh signalling in this process, inhibitor and mutant studies were 

performed. Cyclopamine is an inhibitor of shh signalling that acts at the level of the 

smoothened receptor and has been shown to block shh expression in the zebrafish retina 

(Neumann and Nuesslein-Volhard, 2000). Transgenic embryos -2.4shh:gfpABC#28 were 

treated with 100 µM  cyclopamine from 24 hpf to 48 hpf. When analysed for expression 

in the retina, however all the treated embryos showed normal GFP expression 

(discussed later).  

     Recent studies (Masai et al., 2005) have also reported that cyclopamine is inefficient 

to block shh:gfp transgene expression in the retina and have utilised another 

pharmacological compound Forskolin. This compound acts efficiently in blocking shh 

expression. Forskolin (Sigma) an activator of adenylcyclase activates PKA and thus 

negatively blocks shh signalling. Transgenic embryos (-2.4shh:gfpABC#28) were treated 

with Forskolin (0.3 µM) from 24-48 hpf. Forskolin treatment produced the characteristic  

phenotype of U-shaped somites and bending of the body axis (Barresi et al., 2000)(Fig. 

36B) and transgene expression in the retina at 48 hpf was restricted only to the initiation 

site at the ventro-nasal patch (Fig. 36D, n=24) and propagation of the wave was 

completely blocked in these embryos. Control embryos in DMSO show normal 
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expression with GFP in both GCL and INL of the retina (Fig. 36C, n=18). 

 

Figure 36: Inhibition of shh signalling using Forskolin from 24 hpf to 48 hpf. Treated embryos at 
48 hpf exhibit U-shaped somites and bend axis (B) and in the retina, transgene expression is 
limited to the initiation site at the ventronasal position  with propagation blocked (D). Control 
embryos in DMSO show normal phenotype and GFP expression in the retina (A, C).  
 

     To further confirm the role of shh signalling, two of the shh signalling mutants were 

analysed for retina expression.  Slow-muscle omitted (smu) has a mutation in the shh 

signal transduction receptor smoothened (Varga et al., 2001) and sonic-you (syu) has a 

deletion of the shh gene (Schauerte et al., 1998). The smub577 and syut4 fish were crossed 

into -2.4shh:gfpABC#15 transgenic line, allowed to grow and the F1 progeny screened to 

identify ABC15Smu-/- and ABC15Syu-/- fish respectively. The expression of shh:gfp 

transgene in these mutants was compared with that of -2.4shh:gfpABC#15 (Fig. 37A). 

The ABC15 Smu-/- showed no GFP expression in the retina (Fig. 37B) and this is 

consistent with earlier published results where it is reported that Smu-/- embryos do not 

possess a normal optic stalk (Varga et al., 2001). The ABC15 Syu-/- showed very weak 

GFP expression at the ventronasal position (Fig. 37C) in only 25% of the homozygous 

mutants while the other 75% had no GFP expression in the retina. This could potentially 

be due to the penetrance of the mutation in these embryos.  
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Figure 37: Role of shh signalling in retinal neurogenesis. shh signalling mutants sonic-you show a 
very faint expression at the initiation site (arrowhead) (B) when compared to wildtypeABC (A) 
while slow muscle omitted show complete loss of retina expression (C). Confocal images at 72 hpf 
with anterior to the top in all images. 
                                                                                                                                                                                    

Taken together forskolin and mutant studies support the auto-regulatory function of 

shh during its spread in the zebrafish retina. 
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I have identified a cis-regulatory enhancer RetE regulating shh:gfp expression in the 

zebrafish retina. This enhancer is located in the first intron of the shh locus and mediates 

expression in the GCL and INL of the retina. Deletion and mutation studies identified a 

40 bp region of the RetE important for retina expression. The 40 bp region by itself is 

insufficient and requires a neighbouring 85 bp sequence to confer retina expresssion. 

Search for transcription factors in this region identified three binding sites for Erm and 

Pea3 factors of the ETS family. Biochemical and morpholino studies suggest that both 

Erm and Pea3 regulate shh transgene expression in the eye. Erm and Pea3 are 

downstream of Fgf signalling and it was reported that Fgfs secreted from the optic stalk 

are responsible for the initiation of neurogenesis. Inhibitor and morpholino assays 

performed in this study indicate a co-operative role between several Fgfs for the 

initiation and propagation of the shh:gfp wave. Also shh was shown to be required for 

the spread of the wave in an auto-regulatory manner. The pharmacological inhibition 

and mutant studies carried out suggest that several distinct Fgfs and shh act 

sequentially and that the propagation of the shh:gfp wave depends on a co-operation 

between the Fgf and shh signalling pathways.                       

 

Discussion 

 

1. Cis-regulatory enhancers mediate shh:gfp expression in the retina 

 

In the zebrafish retina, shh spreads from the initiation site at the ventronasal patch in a 

wave-like manner (Neumann and Nuesslein-Volhard, 2000). Shh is expressed in the 

GCL and amacrine cells of the INL in the retina (Shkumatava et al., 2004). A novel cis-

regulatory enhancer (RetE) located in the first intron of the shh gene responsible for 

driving its expression in the retina was identified. Systematic deletion analysis of the 

enhancer led to the identification of a 300 bp region that is both sufficient and necessary 

for driving shh expression. By a second series of mutations across this region using a 

linker scanning approach, a minimal 40 bp enhancer region required for shh:gfp 

expression in specific layers was identified. Sequence alignment among several species 

showed considerable homology across the 40 bp core region but is not sufficient to for 

the enhancer function in the retina. The core 40 bp region requires an additional 85 bp 

of 5' sequences for enhancer activity. This observation is similar to recent reports 
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(Poulin et al., 2005) for the Dc2 enhancer (424 bp) of the dachshund gene in mice 

driving expression in the hindbrain, forebrain and retina. In vivo analysis showed that a 

100% conserved 144 bp minimal region of the enhancer is necessary but insufficient to 

recapitulate the expression.  

     The additional 85 bp sequence included in the construct is conserved with 39 out of 

85 nucleotides identical between zebrafish and human. However, no candidate 

transcription factor sites are apparent. In a similar investigation, Hutcheson et al have 

shown that the bHLH transcription factor ath5 is regulated by an enhancer harbouring a 

pair of highly conserved E-boxes in the Xenopus retina (Hutcheson et al., 2005). These 

highly conserved E-boxes are necessary but insufficient for transgene expression and 

require an additional 48 bp to confer tissue specific expression (Hutcheson et al., 2005). 

But why should gene regulatory sequences require hundreds of base pair long 

sequences when most transcription factors (TFs) are capable of recognising short 6-12 

bp degenerate sites? It may be due to clustering of multiple transcription factor binding 

sites since enhancers are modular. TFs have a combinatorial role that leads to the tissue 

specificity of the enhancer. Thus, it is intriguing to speculate that multiple factors 

interact with RetE and participate in shh gene regulation.  

     RetE requires a minimal 40 bp core and additional 5’ 85bp for retina expression. 

Clearly not all of this sequence is conserved. TF-binding modules are rather flexible in 

their orientation. It may be that they got rearranged so they would not be detected by 

pairwise comparisons. Why are some stretches such as that including the Erm and Pea3 

binding sites strongly conserved and the others not? Perhaps strict spatial requirements 

for protein protein interaction exist between neighbouring TFs in these cases, 

maintaining a particular sequence through evolution.  

 

2. Pea3 and Erm regulate RetE activity in the retina 

 

Mutational and protein binding assays in this study have identified Pea3/Erm binding 

sites in the RetE enhancer, necessary for its activity in the retina. Erm and Pea3 activate 

RetE activity in the retina through the binding sites located in both the M12+M13 region 

of the RetE enhancer.  

     Erm, Er81 and Pea3 are members of the PEA3 subfamily of ETS transcription factors 

(Chotteau-Lelievre et al., 2001; Chotteau-Lelievre et al., 2003). They are co-expressed in 
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several tissues and organs and are generally described as transactivators (de Launoit et 

al., 1997; de Launoit et al., 2000). PEA3 subfamily members have been shown to be 

involved in a number of processes including neuronal path finding (Arber et al., 2000; 

Livet et al., 2002) and to play an important role in HER2/Neu- mediated mammary 

oncogenesis (Shepherd et al., 2001). Their role and function are not precisely known, but 

deregulation of their expression is often associated with carcinogenesis (Oikawa, 2004; 

Oikawa and Yamada, 2003). Erm and Pea3 are important recipients of Fgf signalling 

(Firnberg and Neubuser, 2002; Munchberg et al., 1999; Raible and Brand, 2001; Roehl 

and Nusslein-Volhard, 2001) but Er81 is not dependent on Fgf signalling (Roussigne 

and Blader, 2006). Fgf signalling activates the ERK/MAP kinase pathway and leads to 

the upregulation of the expression of PEA3 subfamily members. Erm and Pea3 both 

possess ETS domain that are 95% conserved and share a similar consensus sequence 

(Brown et al., 1998). Their combined activity could regulate the enhancer activity. 

      In this study, several lines of evidence favour the notion that both Erm and Pea3 are 

required for regulating RetE activity in the retina. First the expression of Erm and Pea3 

precedes that of shh in the zebrafish retina (Neumann and Nuesslein-Volhard, 2000). 

Erm is expressed ubiquitously while Pea3 is expressed in the GCL and in the central 

region of the retina at 34 hpf. In contrast, Pea3 was reported to be exclusively expressed 

in the GCL of the chick retina (McCabe et al., 2006). Second, knockdown using Erm and 

Pea3 completely abolished the RetE activity in the retina. Third, in-vitro binding assays 

demonstrate that both Erm and Pea3 could bind to the motifs in the RetE sequence. 

Taken together all these suggests that the retinal enhancer requires  Erm and Pea3 in 

controlling RetE mediated shh:gfp expression  in the retina. 

     Point mutations in the M13 binding site for Erm and Pea3 lead specifically to the loss 

of shh:gfp expression in the GCL. Thus, the Erm and Pea3 site in the M13 sequence is 

specifically required for GCL expression. This is in agreement with the different 

mechanism of regulation in the GCL and INL suggested by the analysis of the lakritz 

mutant. lakritz mutants (lak) carry mutations in the ath5 gene and lack RGCs (Kay et al., 

2001). It was also shown that in lak mutants, the Shh wave in the INL is independent on 

the shh wave in the GCL (Shkumatava et al., 2004).  It is tempting to speculate that Erm 

and Pea3 are not sufficient to drive expression in GCL but require GCL specific 

cofactors to cooperate with. Mutation of the Erm and Pea3 binding site in the M13 
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region would abolish this interaction with this unknown GCL specific cofactor, thereby 

leading to loss of shh:gfp expression specifically in the GCL. 

     In contrast, the interaction of Erm and Pea3 with the weaker less conserved M12 

binding motifs are required for expression in both layers of the retina. Mutation in the 

M12 region led to the complete loss of shh:gfp expression in both GCL and INL while 

that in M13 retained only expression in the INL. Thus shh:gfp expression in the GCL and  

INL can be seperated. The mutational data indirectly provide evidence that in addition 

to Erm and Pea3 several other cofactors have to interact with the retinal enhancer to 

render it functional in the retina. No candidate transcription factor binding sites were 

identified in the M12 region. The complexity of this enhancer is further underscored by 

the fact that the 40 bp marked by the M12 and M13 core is not sufficient to drive 

expression and requires in addition 85 bp upstream of this core region.  

     Comparison of the expression profile of zebrafish Pea3 with known embryonic 

genes, suggests potential partner proteins and/or target genes for PEA3. For example, 

pax-2.1 appears to be coexpressed with PEA3 in neural cells and at the mid-hindbrain 

border (Krauss et al., 1991). A direct interaction between Pax and ETS-domain proteins 

has previously been demonstrated on the murine MB-1 promoter (Fitzsimmons et al., 

1996). Thus, Pax 2 or Pax6 are candidates that could interact with Erm and Pea3 as both 

factors are key players for retina patterning (Ekker et al., 1995; Macdonald et al., 1995; 

Take-uchi et al., 2003). However, motif search identified no binding sites for these 

factors in the RetE sequence and therefore a role for them is unlikely in regulating the 

retinal enhancer.            

     Very few PEA3 group member target genes have been currently reported. Most of 

them encode proteinases required for extracellular matrix degradation, such as MMP-1, 

MMP-9 and MMP-3, MT1-MMP and MMP-7 (Bosc et al., 2001; Crawford et al., 2001; 

Habelhah et al., 1999; Lynch et al., 2004) or adhesion molecules such as Icam-1 (de 

Launoit Y, 1998), Osteopontin (El-Tanani et al., 2004) or Cyclooxgenase-2 (Funaoka et 

al., 1997). Neu and glutathione peroxidase (Drevet et al., 1998; Xing et al., 2000) are also 

targets of the PEA3 group members. AP-1 is a transcription factor consisting of Jun/Fos 

family proteins interacting with adjacent Ets domain factors in a large number of 

promoter/enhancer elements (Wasylyk et al., 1993; Westermarck and Kahari, 1999). 

Two novel interacting partners for Pea3 and Erm were identified using a yeast one-

hybrid screen (Greenall et al., 2001; Guo et al., 2006). USF1 interacts with the Pea3 via its 
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HLH domain and enhances binding of Ets proteins (Greenall et al., 2001); the other 

factor LPP is a coregulatory protein that affects PEA3 function (Guo et al., 2006). 

However, except for AP1, there is no evidence for these factors being expressed in the 

zebrafish retina, and binding motifs for others were not identified in the RetE sequence. 

Mutation of a weak binding motif for AP1 did not lead to loss of the expression in the  

retina. 

     PEA3 interacting factors could be identified by yeast one-hybrid or two hybrid 

screens. One could potentially also use CHIP or mass spectrometry techniques but there 

is a limitation that they require a relatively large amount of retinal cells. Another 

possibility is to identify TFs from the large transcription factor screen going on in our 

lab. Candidates expressed in the retina at the right time could be selected and later 

examined in detail for possible interactions. 

 

3. Forskolin is more efficient than cyclopamine in blocking shh:gfp wave 

 

Shh plays an important role in specification of the optic stalk (Ekker et al., 1995; 

Macdonald et al., 1995; Perron et al., 2003). Shh has been implicated in the propagation 

of retinal differentiation while initiation of this process is independent of Hh signalling 

in vertebrates (Neumann, 2001; Neumann and Nuesslein-Volhard, 2000). In zebrafish, 

shh is initiated at the ventral nasal position and then spreads subsequently in a wave 

like manner (Neumann and Nuesslein-Volhard, 2000). When Hh signalling was 

inhibited at 26 hpf using the teratogenic compound cyclopamine, RGC differentiation is 

still initiated close to the optic stalk but further differentiation is blocked (Neumann and 

Nuesslein-Volhard, 2000). In contrast, Kay and his colleagues have reported that 

cyclopamine was inefficient in blocking shh expression when treated from 24 hpf (Kay 

et al., 2005). In order to understand the role of shh, cyclopamine treatment was also 

performed on -2.4shh:gfpABC15 and -2.4shh:gfpRetE transgenic embryos from 24 hpf to 

48 hpf. When analysed for GFP expression, all embryos displayed normal GFP 

expression in both the GCL and INL of the retina. I used Forskolin as it was reported by 

Masai et al (2005) that Forskolin treatment blocks neurogenesis more effectively than 

cyclopamine. Forskolin increases the activity of PKA thereby negatively regulating Hh.  

Embryos (-2.4shh:gfpRetE) treated with Forskolin from 24 hpf showed only initiation  of 

shh:gfp and a block in the spread of the wave. This result is in agreement with earlier 
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reports suggesting an autoregulatory function for shh in the retina. 

     Recently, it was reported that cyclopamine has a relatively low affinity for Smo 

(Romer et al., 2004; Williams et al., 2003) and furthermore, cyclopamine is a 

hydrophobic chemical and white precipitates form immediately after diluting and 

applying into embryo medium and this could also explain the incomplete inhibition of 

Hh signalling in the eye. Cyclopamine purchased from two different companies 

(BIOMOL and TRC) were ineffective in blocking Hh activity and these may not be as 

potent as the earlier source of cyclopamine (W. Gaffield) that are no longer available 

(Neumann et al., 1999). 

      Masai et al (2005) have reported that the level of PKA activity is much higher in 

forskolin-treated embryos using an antibody against phosphorylated CREB.  Although 

it still remains to be elucidated how exactly PKA inhibits the Hh signalling pathway in 

vertebrates, it is generally accepted that PKA negatively regulates Hh-dependent Gli 

activation by promoting the cytoplasmic sequestration of Gli1 and generating the 

repressor forms of Gli2 and Gli3 (Ingham and McMahon, 2001). It is possible that the 

ratio of the repressor form to the activator form of Gli proteins is higher following 

forskolin treatment than it is after cyclopamine treatment. High predominance of 

repressor activity of Gli proteins over activator activity may be necessary to inhibit 

progression of neuronal production. Progression of neurogenesis is more severely 

affected in Gli-MO-injected retinas (Masai et al., 2005). Another possibility is that the 

activation of CREB contributes to the forskolin-induced defects in neurogenesis. 

Because phosphorylation of CREB by PKA activates the transcription of cyclin D1 

(Lonze and Ginty, 2002), CREB-mediated activation of cyclin D1 expression may inhibit 

the cell-cycle exit of retinoblasts in concert with the blockade of Hh-mediated Gli 

activation.   

      

 4. Fgfs cooperate for the progression of the shh:gfp wave in the retina 

 

My results show that several Fgfs are required for the initiation and propagation of the 

shh:gfp wave in the retina. The impact of Fgf signalling on shh transgenes has not been 

reported in detail. The data from my work indicate that Fgf8 and Fgf3 are required for 

initiation and propagation of shh transgenes expression in the retina. This is consistent 

with the data shown earlier that Fgf signalling emanating from the optic stalk in 
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zebrafish to be sufficient and necessary to initiate retinal differentiation (Martinez-

Morales et al., 2005). The onset and spreading of differentiation seems, however, to 

have species-specific spatial organization.  In zebrafish, the first RGCs are generated in 

the ventral retina close to the optic stalk and differentiation spreads in the naso-dorsal 

direction, unfolding in a fan like manner (Hu and Easter, 1999) whereas in chick 

initiation is seen in central retina which then spreads peripherally (Martinez-Morales et 

al., 2005) .  

     My data also indicate a role for Fgf19 in the propagation of the shh:gfp wave in 

cooperation with that of Fgf3 and Fgf8 signalling. The cooperative activity of Fgf family 

members with overlapping expression domains seems to be a common theme for 

patterning in different regions of the nervous system. The sequential action of Fgf8 and 

Fgf17 during the development of the midbrain-hindbrain organiser illustrates this 

concept (Reifers et al., 2000). Fgf8/17/18 functions together with Fgf9/16/20 during 

notochord formation in Ciona embryos (Yasuo and Hudson, 2007). Using morpholino 

knockdown they have shown that Fgf signalling acts in two phases of notochord 

formation. The early induction step involves a choice between notochord and neural 

fates and this is mediated by Fgf9/16/20 alone while the second phase is required for 

maintainance of the notochord fate and this is mediated by the combined effect of 

Fgf9/16/20 and Fgf8/17/18 (Yasuo and Hudson, 2007).  

     A combinatorial activity of Fgf24 and Fgf8 is responsible for much of the Fgf 

signalling controlling posterior mesoderm development in zebrafish (Draper et al., 

2003). A morpholino knockdown approach had indicated that Fgf8 and Fgf3 cooperate 

in the patterning and neurogenesis of the hindbrain (Maves et al., 2002; Walshe et al., 

2002; Walshe and Mason, 2003), otic placode (Leger and Brand, 2002; Maroon et al., 

2002); forebrain and eye patterning (Picker and Brand, 2005). 

      Morpholino knockdown and inhibitor assays performed in this work support the 

notion that several Fgfs act together in promoting transgene expression in the retina. 

The results presented here show that the knockdown with a cocktail of Fgf3 and Fgf8 

MOs show a complete loss of shh:gfp expression in the retina. Zebrafish Fgf3 mutant (lia) 

and Fgf8 mutant (ace) have a normal optic stalk and retinal neurogenesis is normal in 

these embryos (Herzog et al., 2004; Shanmugalingam et al., 2000) as reported by the 

expression pattern of the early RGC marker ath5. Ath5 expression is similar in both 

wildtype and mutant embryos until 32 hpf thereafter showing a slight decrease in the 
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mutants (Martinez-Morales et al., 2005). Furthermore, no ath5 expression is detected in 

the retina of the zebrafish Fgf3 and Fgf8 double mutants which have an otherwise 

normal optic stalk (Martinez-Morales et al., 2005). Fgf3/Fgf8 morphants have no shh:gfp 

expression in the retina and this would support a reduntant role of Fgf8 and Fgf3 for 

the initiation of the transgene expression. There could exist a cooperative role with Fgf3 

and Fgf8 having an early function during initiation and Fgf19 required later for 

propagation of the shh:gfp wave in the zebrafish eye. 

 

5. Shh and Fgf act in concert for propagation of the shh:gfp wave in the retina 

 

In zebrafish, postmitotic cells are initially generated in the ventronasal retina adjacent to 

the optic stalk, and neuronal differentiation progresses to the entire neural retina (Hu 

and Easter, 1999). The progression of differentiation of retinal ganglion cells (RGCs) in 

the zebrafish retina requires the signalling molecule Hedgehog (Hh) (Neumann and 

Nuesslein-Volhard, 2000). The results from this study suggest an autoregulatory 

function for shh in the zebrafish retina. Initial studies in the zebrafish retina reported 

that initiation is independent of shh signalling (Neumann and Nuesslein-Volhard, 2000). 

This in agreement with the data presented in this work, where transgenic embryos (-

2.4shh:gfpABC15) treated with an inhibitor of Hh signalling (Forskolin) show only 1-2 

dots of GFP expression at the ventral nasal position with a block in the spread. -

2.4shh:gfpABC15Syu mutant embryos display a similar pattern with only transgene 

initiation in the retina. Mutant and inhibitor studies clearly show a requirement for shh 

during its propagation arguing for an interactive function between shh and Fgf in the 

zebrafish retina. 

     Hhs and Fgfs are closely expressed in many tissues of the developing embryo, 

including the telencephalon, optic vesicles and retina (Crossley et al., 2001). It has also 

been shown, specifically in the frontonasal process, that local retinoid signalling 

maintains local shh and Fgf8 expression, thereby coordinating forebrain and facial 

morphogenesis. When retinoid signalling is transiently disrupted, forebrain tissue is 

absent and the eyes are fused (Schneider et al., 2001). Retinoic acid also controls 

expression of shh and Fgf8 in the limb bud (Helms et al., 1996; Stratford et al., 1999). 

     A few examples of Hh and Fgf interactions are known, in the eye. In the Medaka eye 

and mid-hindbrain boundary, injected shh induces spalt gene expression in the proximal 
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optic vesicle, and this requires Fgf signalling, because dominant negative XFD co-

injections block spalt induction (Carl and Wittbrodt, 1999). It is thought that Fgf may 

specify a competence domain and Hh specifies the dorsoventral extent of spalt 

expression. In a similar manner, co-expression of Fgf8 and shh in the vertebrate mid-

hindbrain boundary and rostral forebrain induces dopaminergic neurons. When Fgf4 is 

also present, hindbrain 5HT neurons are induced (Ye et al., 1998). On the other hand, in 

the vertebrate limb, Fgf8 is required for the induction and maintenance of shh 

expression, via protein kinase C, which then leads to the upregulation of Fgf4 (Johnson 

and Tabin, 1997; Lu et al., 2001).  

     Fgf and Hh signalling have an intimate relationship and a positive feedback loop 

exists in forebrain patterning in zebrafish. In particular, they are implicated in ventral 

telencephalon and diencephalon patterning where shh expression depends on signalling 

by Fgf3 and Fgf8 in the hypothalamus, ventral thalamus and zona limitans 

intrathalamica (Walshe and Mason, 2003). Moreover, the expression of Fgf3 and Fgf8 is 

at least in part under the control of Hh signalling in the forebrain (Miyake et al., 2005). 

Recently, the zebrafish Fgf19 has been identified to function downstream of the Hh 

pathway in the forebrain patterning similarly to Fgf3 and Fgf8 (Miyake et al., 2005). It 

could be that both shh and Fgf19 act in parallel during the propagation of the shh:gfp 

wave in the retina. The shh signalling mutant smoothened (Varga et al., 2001) shows 

complete loss of shh transgene expression suggesting that Fgf3 and Fgf8 require midline 

shh for initiation of retinal neurogenesis. Smu mutants lack the optic stalk (Varga et al., 

2001). On the other hand inhibitor and morpholino studies show that shh:gfp expression 

is dependent on Fgf3, Fgf8 and Fgf19 for its initiation and propagation in the zebrafish 

retina. Thus an interplay between Fgf and shh signalling exists during the shh:gfp wave 

in the retina (Fig. 37).   

 

6. The mechanism controlling Shh expression in the zebrafish retina 

 

Shh plays an important role as a morphogen in vertebrate eye development (Esteve and 

Bovolenta, 2006; Russell, 2003).  Shh secreted from the midline is required for patterning 

of the retina (Ekker et al., 1995; Take-uchi et al., 2003; Varga et al., 2001). Blocking shh 

with cyclopamine from 26 hpf leads to initiation of shh transgene expression while the 

propagation of the wave is affected (Neumann and Nuesslein-Volhard, 2000), 
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indicating that shh is required for its own regulation in the zebrafish eye. However, 

recent studies argue against this role and have reported that only blocking shh early in 

zebrafish embryos around 13 hpf has an effect on retinal neurogenesis (Kay et al., 2005). 

 

 
Figure 38: A model for shh wave in the zebrafish retina. There exists a weak gradient of shh in 
the retina during the early stages of zebrafish development. Midline shh is required for Fgf3 
and Fgf8 to initiate neurogenesis in the retina. The newly formed RGCs secrete Hh which then 
acts parallely with Fgf19 and the wave spreads over the already established gradient.        
 
     Masai et al (2005) have documented a short range signalling activity of shh that is 

required for propagation of neurogenesis. Pharmacological inhibition and mutant 

studies from my thesis suggest an auto-regulatory function for shh during its expression 

in the eye. These results and the observations from others led to postulate the following 

model; early midline Shh signalling could create a gradient of shh in the retina. This 

midline source of shh is also required to induce Fgfs in the optic stalk to initiate 

neurogenesis in the retina. The Fgfs act as a gateway and once neurogenesis has been 

initiated the newly born RGCs secrete Hh creating a higher concentrated source of Hh 

similar to the observations seen in Drosophila and chick (Dominguez and Hafen, 1997; 

Zhang and Yang, 2001b). This Hh then acts in parallel with Fgf19 present in the neural 

retina to propagate the shh:gfp wave on the already established gradient leading to 

expression in specific layers of the retina. 
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Materials and methods 

Fish stocks 

 

Zebrafish (Danio rerio) were maintained at 28° C, referring to The Zebrafish Book 

(Westerfield, 1993). The developmental stages of the embryos were determined by the 

hours post fertilization (hpf) and by morphological features, as described by Kimmel et 

al (1995). Embryos analysed for retina were grown in fish water containing 0.003% 

Phenylthiourea (PTU) to prevent pigmentation. 

 

Whole mount in-situ hybridisation 

 

      Dixoxigenin whole mount in-situ hybridisation was carried out as described. 

Zebrafish embryos with the chorion at the desired stage were fixed in BT fix (4% 

paraformaldeyde, 4% sucrose, 0.12mM CaCl2, 0.1M NaPi pH 7.4) at 4°C overnight. After 

fixation, embryos were rinsed with PBS, 2x5 min and dechorinated with forceps. For 

storage, embryos were dehydrated stepwise through a series of methanol-PBS from 

30%-70% and kept at -20°C. For further use, embryos were rehydrated through the 

methanol series and then washed 4x5 mins in PTW (1xPBS, 0.1% Tween 20). Embryos 

were treated with Proteinase K (10 µg/ml) in PTW for 2-6 mins depending on the stage 

of the embryos, followed by two washes in PTW, refixation in BT fix for 20 mins and 

washes in PTW 2x5 mins. After this treatment, embryos were transferred to 

hybridisation buffer (HYB: 50% Formamide, 5x SSC, 0.5 mg/ml yeast RNA, 50 µg/ml 

heparin, 0.1 % Tween 20.9 mM citric acid). Pre-hybridisation for 3-4 hrs at 65°C, then 

the buffer was replaced by fresh HYB containing 1/400 dilution of the dixoxigenin 

labelled antisense RNA probe and embryos were incubated overnight at 65°C. For 

embryos older than 48 hpf there are some additional steps before proteinase K 

treatment as follows; after rehydration and PTW washes the embryos are washed in 

H2O for 1x5 min and then incubated at -20°C for 7 mins in acetone followed by a quick 

wash in H2O for 5 mins which causes the embryos to swell. These additional steps are 

aimed at providing better penetration of the probe into the older embryos.   

     Embryos were washed serially 2x30 min in 50% formamide/50% 2xSSC, 0.1% Tween  
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20; 1x15 min in 2x SSC, 0.1% Tween 20 ; 2x30 min in  0.2x SSC, 0.1% Tween 20 and 1x 5 

min blocking buffer( 1x PBS, 0.1% Tween 20, 5% sheep serum, 0.2% BSA, 1% DMSO). 

The embryos were kept in blocking buffer at room temperature for 2 hours and then 

incubated in 1/4000 dilution of the anti- dixoxigenin alkaline phosphatase Fab 

fragments. The antibody incubation was done overnight at 4°C. 

     Embryos are then washed in PTW 6x20 mins followed by 2x5 mins rinsing in 

staining buffer (100 mM Tris-HCl pH 7.9, 100mM NaCl, 0.1% Tween 20, 50mM MgCl2). 

The bound antibody was revealed by adding the substrates, NBT and BCIP (0.34 

mg/ml and 0.175 mg/ml). Reaction was stopped by repeated rinses in PTW. The 

antisense probes of Erm and Pea3 were in-vitro transcribed from the pCSII plasmids 

(Munchberg et al., 1999) which were linearised with Not1 and transcribed with T7 

polymerase along with DIG labelling mix.  

 

Plasmid Constructions 

 

 All cloning was done following standard procedures (Sambrook, 2001). The −2.4shh:gfp 

plasmid was constructed by inserting the −2.4shh promoter (Chang et al., 1997; Muller 

et al., 1999) as a Sal1, Xho1 fragment in the pCS2:gfp vector (Blader and Strähle, 

unpublished data). Plasmids −2.4shh:gfpA, −2.4shh:gfpB and −2.4shh:gfpC were 

constructed by inserting PCR-amplified NotI/KpnI fragments corresponding to 

positions +549 to +2381, +2382 to +3592, +3593 to +5366, respectively. Amplification 

primers contained in addition Spe1 and Sfi1 restriction sites. −2.4 shh:gfpAC and 

−2.4shh:gfpAB plasmids were created by inserting ar-A as NotI/SpeI PCR fragment into 

−2.4shh:gfpC and −2.4shh:gfpB. The −2.4shh:gfpABC plasmid harbours the ar-C fragment 

in the Sfi1/Kpn1 sites of −2.4shh:gfpAB (Ertzer et al., 2007). During the course of the 

work the SceI meganuclease protocol became available (Thermes et al., 2002). The 

efficiency of obtaining stable transgenics is higher with this approach. Thus the I-Sce1 

−2.4shh:gfpABC plasmid was constructed by inserting double-stranded oligonucleotides 

containing an I-Sce1 restriction site into the Sal1/Kpn1 restriction sites of 

−2.4shh:gfpABC. Plasmid -2.4shh:gfp RetE, were constructed by inserting PCR-amplified 

NotI/SpeI fragments corresponding to positions +549 to +2021 of shh gene into the -

2,4shh:gfp Sce I plasmid (Ertzer et al., 2007). The -37tk:gfpRetE were generated by  
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inserting digested NotI/ KpnI fragments of RetE from -2.4shh:gfp RetE and then ligating 

into the NotI/ KpnI sites of the -37tk:gfp (Rastegar et al., 2002) plasmid. 

            

     Zebrafish shh, Mouse Shh and Human SHH corresponding to +729 to +1035 (of the 

zebrafish shh loci) were amplified by PCR from plasmid or genomic DNA and inserted 

into the Not1/ Spe 1 sites of the -2,4shh:gfp Sce I plasmid. The oligos used are as follows; 

        Z shh fwd                    TTA GCT GCG GCC GCG TCC GCG CGT TGA GAC G 

        Z shh rev                      AGT TAC GCA CTA GTA TTA AGT GTA ACC ATC  

       H SHH fwd                  TAT AAT GCG GCC GCG CTC AGA GCC CCC ACG TTT C 

       H SHH  rev                   GCA TCC ACT AGT GAA AAC TAA AGT GAT GCA A 

       M Shh fwd                    GTG CAT GCG GCC GCT CTA ACT ACC TGT ATT CT 

       M Shh rev                     CAT CCA CTA GTC TCG ATT TGG CTG GGA GAT TG 

 

     The 40 bp enhancer was cloned by designing oligos over the entire sequence with 

digested 5' Not1 and 3' Spe1 ends. The oligos were then annealed at 100 °C for 5 mins 

and then cloned into the -2,4shh:gfp Sce I plasmid. The sequence of the oligos are as 

follows; 

RetE  Fwd                ggc cgc T GAA CAT ATT GAC ATT TCT CCA AGG ATG      

                                    CTC TCC GAT TTG a 

RetE Rev          ctagt CAA ATC GGA GAG CAT CCT TGG AGA AAT GTC      

                                    AAT ATG TTC A gc 

 

Deletion Constructs 

 

     The 5' deletion constructs were generated with different 5' primers with Not 1 sites 

and a common 3' primer with SpeI site. The oligos are as follows  

+ 729 to +2021    TTA GCT GCG GCC GCG TCC GCG CGT TGA GAC G 

+ 955 to +2021   TGA TGA GCG GCC GCC ATG AAC ATA TTG ACA TTT 

+1154 to +2021  GAC TCA GCG GCC GCT TTA ATC TGA CTA ATA T 

+1360 to +2021  CGA TCA GCG GCC GCA GAT TTG TGT TGC TTA A 

+1559 to +2021  ATG TGA GCG GCC GCT TGA ACT TCT GAC CC  

3' PRIMER         TCT TAC ACT AGT CTC CCT TTG AAA GAC TGA G 

 

     Similarly the 3' deletion constructs were created with a common 5' primer with Not 1 
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site and different 3' primers with Spe1 site and cloned into the Not 1/Spe1 site of  the -

2.4shh:gfpSceI plasmid (Ertzer et al., 2007). PCR were performed as follows: 30 cycles of 

1min denaturation at 94°C, 1 min annealing at 58°C, 1 min elongation at 72°C and final 

elongation at 72°C for 10 mins. The constructs were all sequenced to avoid errors 

during amplification. The oligos used are as follows: 

+549 to +1035    AGT TAC GCA CTA GTA TTA AGT GTA ACC ATC    
+549 to +829      AGT TAC GCA CTA GTA CCA CCA CAG TCC C  
5'  PRIMER         TAT AAG CTA TGC GGC CGC GTA ATT CTT TCG CCT TTC GAA   ATC TG 

 

     The other deletion constructs were also cloned in a similar way. The oligos used are 

as follows: 

+778 to +1035  fwd      TTA GCT GCG GCC GCG GAT GTC CCG ACG GAT G 

+778 to +1035  rev       AGT TAC GCA CTA GTA TTA AGT GTA ACC ATC 

+875 to +1035  fwd      TTA GCT GCG GCC GCA CAT ACA TGT TCA TAT C 

+875 to +1035  rev  AGT TAC GCA CTA GTA TTA AGT GTA ACC ATC 

 

      For small internal deletion cloning, PCR amplication was carried out in two steps, 

the first PCR with the 5' outer primer and 3' deletion primer and 3' outer primer and 5' 

deletion primer. These initial PCRS were then mixed in equal amount and the final PCR 

carried out with the outer primers alone. The oligos used are as follows; 

Del +729 to +1035 

5' outer primer         TTA GCT GCG GCC GCG TCC GCG CGT TGA GAC G 

3 ' deletion primer   GTG TCT GAT TCT AAT CTG TCA AAT TCA CAC ATA TGA CCA G 

3' outer primer         AGT TAC GCA CTA GTA TTA AGT GTA ACC ATC 

5' deletion primer    CTG GTC ATA TGT GTG AAT TTG ACA GAT TAG AAT CAG ACA C 

Del +875 to +952 

5' outer primer         TTA GCT GCG GCC GCA CAT ACA TGT TCA TAT C 

3 ' deletion primer   CAT GCC CTA TAT TTC AAT CTA TAT TTA GC 

3' outer primer        AGT TAC GCA CTA GTA TTA AGT GTA ACC ATC 

5' deletion primer   GAA ATA TAG GGC ATG AAC ATA TTG 

 

Mutational constructs 

 

     The mutations were generated through PCR where the primers were designed with 

nucleotide transitions. The mutation was performed every 20 bp non-overlapping over 

the +728 to +1035 bp region of the shh gene. The PCR were performed in steps, first PCR 
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was done using 5' Wt primer and 3' mutated primer (designated as B), 3’ wt primer and 

5' mutated primer (designated as A). The PCR product from the above were then mixed 

in equal amounts and a final PCR was done using the 5' and 3' wt primers. The PCR 

were sequenced and then cloned into the -2.4shh:gfpSceI  plasmid. The sequences of the 

oligos used are as follows with the mutations underlined; 

5' wt primer  TAT AAG CTA TGC GGC CGC GTA ATT CTT TCG CCT TTC GAA ATC TG 

3' wt primer  TCT TAC ACT AGT CTC CCT TTG AAA GAC TGA G 

 

MUT1A 

ACT TAT ATA CCA GAG TAT ACC AGG CGC GCG TTA TCT GTT T 

MUT1B 

AAA CAG ATA TCG CGC GCC TGG TAT ACT CTG GTA TAT AAG T 

 

MUT2A 

GGG TGA GCG GTA TAT ATT CAA CGC GTC TCA ACG CGC GGA C 

MUT2B 

TGA ATA TAT ACC GCT CAC CCA TAA AAC GTG ATG TCC CGA 

 

MUT3A 

CAG GCG CGC GTT ATC TGT TTG CGG GGT ACA AGC ACT TTA G  

MUT3B 

TCA GGT GCG GCA CTC ATC CGC TAA AGT GCT TGT ACC CCG C  

 

MUT4A 

ATA AAA CGT GGA TGT CCC GAT AAG CAG ACA TTA TGT TCA G  

MUT4B 

TAA GCA GAC ATT ATG TTC AGT CTG AAG GGA CTG TGG TGG TCA GAA 

 

MUT5A 

CTC AGA AAG TCA CAA CAA CTG AGG TAT GTC AGT CTC GTG AGA GC 

MUT5B 

CCT CAG TTG TTG TGA CTT TCC TGA GTC AGG TGC GGC ACT CAT CCG 

 

MUT6A 

TCT GAA GGG ACT GTG GTG GTC AGA ACG CAC TGA CTC TAC AGT GAT  

MUT6B 

TAT ATT TCA A TC TAT ATT TAA TCA CTG TAG AGT CAG TGC G 
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MUT7A 

TAT GTC AGT CTC GTG ACA GCC GGG CGC GAG CCA GGG CGC G 

MUT7B 

AGC GAT ATG AAC ATG TAT GTC GCG CCC TGG CTC GCG CCC G 

 

MUT8A 

TAA ATA TAG ATT GAA ATA TAG TGC GTG CAC CTG CGC TAT C  

MUT8B 

GTG CGT GCA CGT GCG CTA TCT AGT CAG ACA GAC CGC AGC C 

 

MUT9A 

ACA TAC ATG TTC ATA TCG CTC GAC TGA GTG AGT TAT GAT T 

MUT9B 

CTC AGT CGA GCG ATA TGA ACA TGT ATG T 

 

MUT10A 

TAG TCA GAC AGA CCG CAG CCC GTT TAT CTA TCT ATC TAT G  

MUT10B 

TGC CCT GAT AAG CAG CCT GCC ATA GAT AGA TAG ATA AAC G  

 

MUT11A 

ATG AAT CAT CCG CTG AGG CAT GAA CAT ATT GAC ATT TCT C 

MUT11B 

GAG AAA TGT CAA TAT GTT CAC ATT TCA GCG GAT GAT TCA T 

 

MUT12A 

CAG GTG CGC CAG TGC CCT CTC AAG GAT GCT CTC CGA TTT G 

MUT12B 

CAA ATC GGA GAG CAT CCT TGA GAG GGC ACT GGC GCA CCT G 

 

MUT13A 

TGA ACA TAT TGA CAT TTC TCT GGA AGC ATC TCT TAG CCC A 

MUT13B 

TAG CCC ATT AAT AAG TAG AAA TGG GCT AAG AGA TGC TTC CA 

 

MUT14A 

CTC CAA GGA TGC TCT CCG ATT TGC CCT CGT CCG CCG GC 

MUT14B 

TCT GTC ATT AAG TGT AAC CAT CCC GAT TTG CCA GCG GAC GAG GG 
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MUT15A 

AAG CAA CCG TGT CCG GCG ACA GAT TAG AAT CAG ACA C  

MUT15B 

GCC GGA CAC GGT TGC TTT AGC CCA TTA ATA AGT AG 

 

     The Pea3/Erm binding site mutation in M13 was performed similarly, the oligos used are as follows; 

Mut A  CCA AAA GCA CTC TCC GAT TTG T 

Mut B  GGA GAG TGC TTT TGG AGA AAT G 

 

Construction of GST Pea3 and GST Erm plasmids 

 

     For GST constructs of Erm and Pea3, the ETS domain alone (Brown et al., 1998) was 

amplified using the following primers and cloned into the BamH1 –Xho1 site of the 

pGEX-4T3 expression vector (Promega). 

Erm forward  ATT AAT GGA TCC ACG GCC CTC CAT ATC 

Erm reverse  ATT AAT CTC GAG CAT CGG GAT CAC AGA C  

Pea3  forward           ATT AAT GGA TCC TTC GTG AAG GTG CCC 

Pea3 reverse  ATT AAT CTC GAG CTT CTG GCT CAC ACA C  

 

Microinjection and expression analysis 

 

Transgenes were excised from plasmids and separated by agarose gel electrophoresis 

followed by purification with the Qiaquick Kit (QIAGEN). Eggs were dechorionated 

using Pronase E as described (Westerfield, 1993). Dechorionated eggs were transferred 

to agar-coated plastic dishes containing 10% Hank's solution (Westerfield, 1993). Before 

injection, phenol red was added to 0.1% final concentration. DNA fragments were 

injected into the yolk of 1- to 2-cell stage zebrafish embryos at a concentration between 

50 and 100 ng/μl. Injections of I-Sce1-modified plasmids were performed as described 

(Thermes et al., 2002), with some modifications. Embryos were placed in 10% Hank's 

solution and injected at room temperature. DNA was injected through the chorion into 

the cytoplasm of one cell stage embryos. The injection solution contained 10 ng/μl 

plasmid DNA, I-Sce1 meganuclease buffer 0.5× (New England Biolabs), 1 μg/μl I-Sce1 

meganuclease (New England Biolabs) and 0.1% phenol red. GFP-expressing embryos 
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were raised to adulthood and transgenic carriers were identified by crossing with wild-

type fish. GFP expression was analysed with a Leica DMIRBE inverted microscope and 

Leica confocal microscope. 

 

Morpholino injections 

 

 Morpholino oligonucleotides (MOs) were synthesized by Gene-Tools, LLC (Corvallis, 

OR). The sequences of MOs used are as follows: 

 Pea3 MO         5’ AATCCATGCCTTAACCGTTTGTGGT 3’ 

Ctrl Pea3 MO   5’ AATCgATGCgTTAAgCcTTTcTGGT 3’ 

 Erm MO          5’ GTTCCTGCATGTGAGACTTATTTGG 3’ 

Ctrl Erm MO    5’ GTTgCTGCATcTGAcAgTTATTTcG 3’ 

 Fgf3 MO          5’ CATTGTGGCATGGCGGGATGTCGGC 

Ctrl Fgf3 MO    5’ CATTcTGGCATcGCcGGATaTCaGC 3’ 

 Fgf8 MO          5’ GAGTCTCATGTTTATAGCCTCAGTA 3’ 

Ctrl Fgf8 MO    5’ GACTCTGATCTTTATAGCgTCAcTA 3’ 

 Fgf19 MO        5’ CAGTGACAAAGAGTAAGAGGAGCAT 3’ 

Ctrl Fgf19 MO   5’ AGTcACAAAcAGTAAcAGcAGgAT 3’ 

 

     The MOs were injected at a concentration of 0,5-4 µg/µl at a volume of 0.15– 0.25 nl 

into one- to two-cell embryos. All morpholinos were prepared and injected as described 

(Nasevicius and Ekker, 2000).  

 

SU5402 and Forskolin treatment 

 

GFP transgenic embryos were dechorinated and were grown in PTU water. SU5402 

(Calbiochem) was diluted to stock concentration of 3 mM in DMSO. Embryos were 

incubated in a 16 µM working concentration from 24 hpf to 48 hpf and 34 hpf to 48 hpf 

respectively and later washed several times in fish water and were mounted for 

pictures.  Forskolin (Sigma) at a working concentration of 0.3 mM in DMSO was 

applied to dechorinated embryos from 24 hpf to 48 hpf and then analysed for 

expression. 
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Expression and purification of GST proteins 

 

One colony of E.coli (BL 21) transformed with plasmid GST-Pea3 and GST-Erm was 

grown in 3ml LB containing amphicillin (100 µg/ml) overnight at 37°C to provide a 

starter culture. The overnight culture was then added to 300 ml LB with 100 µg/ml 

amphicillin and grown to 37°C with agitation to A 600 of O.D 0.6. The expression of 

fusion proteins was induced by the addition of isopropyl-1-thio-β-D-galactopyranoside 

to 0.5 mM. The induction was done at 37°C for 3-4 hrs. The bacteria were then 

harvested by centrifugation at 4000 rpm for 20 mins. After freeze thawing in liquid 

nitrogen twice the pellet is suspended in 12,0 ml of extraction buffer (1X PBS, 0.1% 

Triton, 1 mM DTT, 0.3 mM PMSF, lysozyme (10 µg/ml) and sonicated on ice for 2 mins. 

The sonicate was then centrifuged at 4000rpm for 40 mins at 4°C.  

     For purification, the extract (6 ml) was incubated with 300 µl resin (Glutathione-

Sepharose 4B twice prewashed with 1X PBS, 0.1 % Triton and twice with 1X PBS, 0.1 % 

Triton, 0.5 M NaCl) at room temperature for 10 or 30 minutes. After this incubation, the 

unbound proteins were removed by washing with TEN (50 mM Tris-HCl pH 8.0, 1 mM 

EDTA, 100 mM NaCl, 0.5% NP40) and PBS. The bound proteins were eluted twice by 

incubation with 300 µl elution buffer containing Glutathione (2.5 mg/mL Glutathione in 

50 mM Tris-HCl pH 8, 20% Glycerol, 1 mM DTT, 0.5 mM PMSF) for 10 minutes at 4°C 

with mild shaking. The purity and protein contents were determined in Coomassie blue 

stained SDS-Polyacrylamide gel. 

 

Gel Retardation Assay 

 

 For preparation of the probe, 1 µg synthetic oligonucleotides were annealed in the 

presence of NEB buffer 3 at 100°C for 10 minutes. The probes were then slowly cooled 

to room temperature. For labelling, 1 µg of annealed oligo was end labelled in the 

presence of γ 32P ATP by T4 kinase.  100 to 200 ng of recombinant protein (GST-Pea3, 

GST-ERM) was incubated with binding buffer (20 mM HEPES pH 7.9, 40 mM KCl, 2 

mM MgCl2, 1 mM DTT, 0. 2 mg/ml BSA, 5 % FICOLL) and 1µl of probe (40,000 cpm) 

for 45 minutes as described previously (Chang et al., 1997; Overdier et al., 1994). In 

competitor experiments, 50 to 100 fold excess of cold oligo nucleotide was added.  
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Electrophoresis was performed in 6 % polyacrylamide gel. The gel was pre-run for 2 

hours at 100 voltage. Samples were loaded and the gel was run for 1 hour at 100 

voltage. The gel was then subsequently exposed to the x-ray film (Kodak X-Omat) at -

80°C overnight. The gel was then processed for autoradiography. The oligos used are as 

follows 5’ to 3’. 

RetE WT FWD          GGG CAT GAA CAT ATT GAC ATT TCT CCA AGG ATG      

                                    CTC TCC GAT TTG TTT 

RetE WT REV          AAA CAA ATC GGA GAG CAT CCT TGG AGA AAT GTC      

                                    AAT ATG TTC ATG CCC 

RetE MUT FWD       GGG CAT GAA CAT ATT GAC ATT TCT CCA AAA GCG    

                                    CTC TCC GAT TTG TTT 

RetE MUT REV         AAA CAA ATC GGA GAG CGC TTT TGG AGA AAT GTC  

                                    AAT ATG TTC ATG CCC 

13 WT FWD               TTT CTC CAA GGA TGC TCT CCG ATT TGT TTC T 

13 WT REV                AGA AAC AAA TCG GAG AGC ATC CTT GGA GAA A 

13 MUT FWD             TTT CTC CAA AAA CGC TCT CCG ATT TGT TTC T 

13 MUT REV              AGA AAC AAA TCG GAG AGC GCT TTT GGA GAA A 

12 WT FWD                GGC ATG AAC ATA TTG ACA TTT CTC 

12 WT REV                 GAG AAA TGT CAA TAT GTT CAT GCC 
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Rathnam, S., Rastegar, S., Ertzer, R. and Strahle, U. (under prep) 
Shh and Fgfs act sequentially for the propagation of the shh:gfp wave in the zebrafish 
retina. 
        I carried out all the experiment concerning cloning, microinjection, imaging, 
establishment of transgenic lines, protein expression, EMSA, knock down and inhibitor 
assays. Transgenic lines for midline expression studies were generated by Raymond 
Ertzer. I made the first draft of the manuscript that is under correction. 
 
Ertzer, R., Muller, F., Hadzhiev, Y., Rathnam, S., Fischer, N., Rastegar, S. and Strahle, 
U. 
(2007). Cooperation of sonic hedgehog enhancers in midline expression. Dev Biol 301, 
578-89. 
       I carried out the transient expression analysis for the ar-A and ar-C and AC 
fragments to confirm the synergistic effects of the enhancers. 
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