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Summary 

1. SUMMARY 
 

 
The Wnt/β-catenin signaling pathway plays pivotal roles during embryonic development 

and adult tissue homeostasis; these include the regulation of cell fate decisions during germ 

layer induction, axial patterning and organogenesis, as well as cell proliferation and stem 

cell maintenance. Wnt signaling is antagonized by Dickkopf (Dkk) proteins, which play an 

important role in antero-posterior patterning of the central nervous system. Dkks function 

by inhibiting the Wnt receptor LRP5/6. They act in conjunction with transmembrane 

proteins of the Kremen family (Krm1 and 2, collectively termed Krms). Dkk binds to both 

LRP5/6 and Krm and induces formation of a ternary complex, which is cleared from the 

cell surface by endocytosis, leading to shut down of Wnt signal transduction.  

 

This study was initiated by several open questions: How do Krms function to mediate LRP6 

clearance from the cell surface? Are there other proteins involved in this process? Do Krms 

have Dkk-independent roles during Xenopus development? 

  

Towards a mechanistic analysis of Krm/Dkk mediated Wnt inhibition, several screens for 

Krm interaction/binding partners were undertaken which led to the identification and 

characterization of Erlectin, a novel secreted protein which (i) binds to N-glycans linked to 

Krm2; (ii) is a member of the endoplasmic reticulum (ER) synexpression group in Xenopus; 

(iii) is localized in the ER lumen; and (iv) is essential for normal Xenopus development. As 

a second major result of this study, I observed and established that Krm2 plays a Dkk1-

independent role during Xenopus neural crest formation. The experimental data revealed 

that Krm2 (i) is co-expressed with Wnts and regulated by zygotic Wnt signaling; (ii) shows 

differential expression in the neural crest and can induce neural crest tissue when 

overexpressed; (iii) is required for neural crest formation; and (iv) promotes cell surface 

localization of LRP6, as well as LRP6-mediated Wnt signaling in cultured cells. Based on 

these findings I developed a model in which Krms may be considered as context-dependent 

inhibitors or activators of Wnt/LRP6 signaling, which are regulated by the presence or 

absence of Dkk, respectively. 
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Zusammenfassung 

2. ZUSAMMENFASSUNG 

 

 
Der Wnt/β-catenin Signalweg hat als bedeutender Regulator der Embryonalentwicklung, 

aber auch der Gewebshomöostase im adulten Organismus, eine Schlüsselrolle inne; er 

kontrolliert Prozesse wie Keimblattinduktion, Musterbildung der Körperachsen, 

Zellproliferation und Stammzellerneuerung. Der Wnt Signalweg selbst wird streng 

reguliert, unter anderem von Proteinen der Dickkopf (Dkk) Familie, die als Inhibitoren 

wirken und die Signaltransduktion blockieren. Diese durch Dkk1 vermittelte Inhibition des 

Wnt Signalweges ist essentiell für die Entwicklung des Kopfes als Teil der Musterbildung 

entlang der antero-posterioren Körperachse. Dkk1 bindet an den Wnt Rezeptor LRP5/6 und 

blockiert ihn; dabei arbeitet Dkk1 mit einem weiteren Korezeptor zusammen, dem 

Transmembranprotein Kremen (Kremen1 bzw. 2, abgekürzt Krm1 bzw. 2). Zusätzlich zu 

LRP5/6 bindet Dkk1 auch an Krm, und gemeinsam bilden Dkk1, LRP5/6 und Krm einen 

ternären Komplex, der durch Endozytose von der Zelloberfläche entfernt wird – nun kann 

das Wnt Signal nicht mehr übermittelt werden.  

 

Am Anfang dieser Studie standen folgende Fragen: Wie reguliert Krm die Entfernung bzw. 

den Abbau des Wnt Rezeptors LRP5/6 von der Zelloberfläche? Sind andere Proteine an 

diesem Prozess beteiligt, und wenn ja, welche? Weiters: Arbeitet Krm immer mit Proteinen 

der Dkk Familie zusammen, oder hat es auch eigene, Dkk-unabhängige Funktionen 

während der Embryonalentwicklung von Xenopus? 

 

Ein Ziel dieses Arbeit ist die mechanistische Analyse der durch Krm und Dkk mediierten 

Inhibition des Wnt Signalweges. Es wurden mehrere Suchansätze unternommen um Binde- 

und Interaktionspartner von Krm zu finden; diese führten zur Isolierung und 

Charakterisierung von Erlectin, einem neuartigen sekretierten Protein. Erlectin (i) bindet an 

N-Glykangruppen auf Krm2; (ii) ist ein Mitglied der Synexpressionsgruppe des 

Endoplasmatischen Retikulums (ER); (iii) ist im Lumen des ER lokalisiert; und (iv) ist 

essentiell für die normale Entwicklung von Xenopus Embryonen.  
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Zusammenfassung 

Das zweite bedeutende Ziel dieser Arbeit umfasst die Analyse der Rolle von Krm2 während 

der Neuralleistenentwicklung in Xenopus. Meine Experimente zeigten dass Krm2 (i) mit 

Wnt Genen koexprimiert ist, und weiters dass die Expression von Krm2 vom Wnt 

Signalweg regulirt wird; (ii) differenziell in der Neuralleistenregion exprimiert wird und 

selbst Neuralleistengewebe induzieren kann; (iii) für die Neuralleisteninduktion unbedingt 

nötig ist; und (iv) in Zellkulturzellen sowohl den Wnt Signalweg stimulieren, als auch die 

vermehrte Lokalisierung von LRP6 an der Zelloberfläche bewirken kann. Aus diesen 

Ergebnissen habe ich ein hypothetisches Modell abgeleitet, in dem Kremen Proteine als 

kontextabhängige Inhibitoren oder Aktivatoren der Wnt Signalweges verstanden werden 

können, deren Wirkweise durch An- oder Abwesenheit von Dkk1 reguliert wird.  
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Introduction 

3. INTRODUCTION 

 

 
Animal development progressively transforms a single cell (zygote) into a complex 

multicellular organism. Several closely interconnected processes form the basis of 

development; these include cleavage, embryonic pattern formation, morphogenesis, cell 

differentiation and growth [1]. Pattern formation lays down the body plan of an animal, and 

involves the induction of the main body axes and germ layers as well as the spatial and 

temporal organization of cell differentiation. Variations in pattern formation mainly account 

for the existing multitude of animal forms. 

  

Cell to cell signaling is an essential and characteristic feature of all multicellular organisms, 

and core signaling pathways regulate most aspects of pattern formation. Such pathways are 

highly conserved throughout the animal kingdom, and thus must have evolved before the 

divergence of most of the modern phyla [2]. Only very few signaling pathways lie at the 

heart of all developmental regulation; they are repeatedly reused at different places and 

times during animal development to induce specific cellular responses, and ultimately 

establish the body plan [3]. The main signaling systems guiding early animal development 

are the TGFβ (including Nodal/BMP) [4], Hedgehog [5], Notch [6], receptor tyrosin kinase 

(EGF/FGF) [7] and Wnt [8] pathways; frequently, two or more of these pathways function 

cooperatively to elicit specific developmental responses [9-11]. The Wnt pathway - a main 

theme in this study – will be discussed in detail below. 

  

To assure an orderly progression of development, these signaling pathways are themselves 

regulated at many levels by a variety of control mechanisms. To gain understanding of such 

regulatory mechanisms is a central question in developmental biology. Whereas 

phylogenetic variations in pathway regulation may account for evolutionary change, 

pathway misregulation during ontogeny inevitably leads to aberrant embryonic 

development, as well as disease, for example cancer. 
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Introduction 

A relatively small number of model organisms is used for experimental studies in 

developmental biology; theses include invertebrates such as the fruit fly (D. melanogaster) 

and roundworm (C. elegans), and vertebrate species such as amphibians, fish (D. rerio) and 

mice. 

 

Traditionally, amphibians have been the model organisms of choice to address questions of 

embryology [12]. Their large and numerous embryos can be easily obtained, are accessible 

to manipulation already prior to fertilisation, and develop rapidly. The African clawed frog 

Xenopus laevis (X. laevis), an easy-to-keep freshwater animal, is today’s prevalent 

amphibian model system in developmental biology; a combination of traditional 

experimental manipulations, such as microdissection, transplantation, microinjection and 

fate mapping, and advanced molecular methods, such as analysis of gene expression/protein 

expression patterns, transgenesis and manipulation of gene expression, is available to study 

its early development [13-15]. A major disadvantage of X. laevis is the lack of accessibility 

to genetic analysis; this frog has a long generation time (1-2 years) and is tetraploid 

(containing 4 homologous chromosomes). This prevents rapid breeding and entails the 

drawback of pseudoallelic compensation in loss-of-function studies. Recently, the diploid 

frog Xenopus (Silurana) tropicalis, a petite brother of X. laevis, is emerging as a useful 

alternative for genetic approaches in amphibians [16-18]. In the last decade, extensive 

analysis of complex developmental processes such as determination and patterning of the 

primary body axes, as well as induction of the neural crest, led to a comprehensive 

understanding of early X. laevis development. 

 

 

Early Xenopus development I: Axis induction & patterning 
 

The Xenopus egg is radially symmetrical along its animal-vegatal axis. Embryonic 

development starts with sperm entry, which breaks the egg’s radial symmetry and initiates a 

directional cytoplasmic movement (referred to as cortical rotation). This movement 

translocates maternal components of the Wnt signaling pathway from the vegetal pole to the 

future dorsal side of the embryo, where Wnt signaling is activated. Simultaneously, the 

Nodal signaling pathway induces the mesodermal germ layer at the interface of animal 

(ectodermal) and vegetal (endodermal) hemispheres of the embryo. Dorsally, overlapping 

Wnt and Nodal pathway activation induces formation of the Spemann organizer (named 
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Introduction 

after its discoverer Hans Spemann [19]), a signaling center which establishes the dorso-

ventral (d-v), and subsequently antero-posterior (a-p) body axes (Fig. 1) [20-22].  

 
 

 

 
Figure 1. Establishment of the Spemann organizer. Activation of a maternal Wnt pathway on the 

dorsal side of the embryo leads to stabilization of the Wnt-mediator β-catenin. Nodal signals are 

induced by the maternal genes VegT and Vg1, and are secreted from vegetal cells to induce 

mesoderm. Dorsally, at the intersection of Nodal and Wnt signaling, the Nieuwkoop center forms 

and induces the Spemann organizer. CNS, central nervous system. Picture adapted from [21].  

 

 

The Spemann organizer (dorsal blastopore lip) is the main signaling center of the early 

embryo and patterns all three germ layers along the d-v and a-p body axes [21, 23-25]. It 

initiates gastrulation and lengthens the a-p axis by undergoing extensive morphogenetic 

movements (convergent extension), which transform the ball-shaped organizer into a long, 

narrow rod [26, 27]. Based on distinct inductive abilities and gene expression domains the 

elongated organizer is subdivided into three main regions along the a-p axis: The anterior 

mesendoderm, which induces e.g. balancers, cement gland and heart, and differentiates into 

liver and foregut; the prechordal plate (PC), which e.g. induces forebrain and eyes, and 

differentiates into head mesenchyme and muscle; and the chordamesoderm, which e.g. 

induces mid-, hindbrain and spinal cord, and differentiates into notochord [24].  

 

Molecularly, the organizer is defined by expression of a set of transcription factors as well 

as a ‘cocktail’ of secreted proteins, which mediate organizer activity. Albeit initially a 

surprise, it is now well established that these secreted proteins are mostly not instructive 

inducers, but act as inhibitors of major signaling pathways, namely the Wnt, BMP and 
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Nodal pathways [21, 24, 28]. They include: The Wnt inhibitors Dickkopf1 (Dkk1) [29] and 

secreted Frizzled-related proteins (sFRPs), including Frzb-1 [30, 31], sFRP2 [32] and 

Crescent [32, 33] (reviewed in [34-36]); the BMP inhibitors Chordin [37], Noggin [38], 

Follistatin [39] and Xenopus Nodal-related3 (Xnr3) [40, 41]; the Nodal inhibitors 

Lefty/Antivin proteins [42, 43] (reviewed in [44, 45]); and Cerberus, an inhibitor of all three 

(Wnt, BMP, Nodal) pathways [46, 47] (Fig. 2A).  

 

         

A B Xnr3 

 
Figure 2. Overview of the Spemann organizer. (A

organizer. Left: Scheme of a late blastula stage embryo 

lateral view, with dorsal to the right. Indicated are the 

which includes the organizer (grey), and ectoderm, which

(CNS). Right: The organizer secretes mainly Wnt, BM

adapted from [21]. (B) Antagonistic gene expression do

mesoderm. Early gastrula stage embryo shown in vegeta

double in situ hybridization visualizes expression of the 

mesodermal gene Wnt8. Picture taken from Xenbase [48];

49]. 

 

 

The distinct subregions of the organizer secret 

antagonists [24]: Anterior mesendoderm and PC pro

are required for anterior (head) development (two i

50], and anti-Nodals, the requirement of which in he

[47, 51]. The chordamesoderm secretes mainly BMP

are actively signaling here; this induces posterior (

 

   
Wnt8 

) Secreted antagonists of the Spemann 

before the onset of gastrulation, shown in 

three germ layers: endoderm, mesoderm, 

 includes the future central nervous system 

P and Nodal inhibitors (see text). Picture 

mains define organizer and ventro-lateral 

l view, with dorsal oriented to the top. A 

organizer gene Xnr3 and the ventro-lateral 

  expression patterns first published in [41, 

a specific combination of pathway 

duce BMP and Wnt antagonists, which 

nhibitor model of head induction) [11, 

ad induction is still a matter of debate 

 antagonists, whereas Nodals and Wnts 

trunk) development [22]. Finally, tail 
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development is regulated by active BMP, Nodal and Wnt signaling, as shown for zebrafish 

[52].   

 

The antagonism between dorsal, organizer-mediated inhibition and ventral activation of the 

Wnt and BMP pathways is well reflected by gene expression domains. Whereas organizer 

genes are expressed dorsally in a localized fashion, BMP and Wnt pathway ligands are 

expressed in the remaining ventro-lateral mesoderm, in a horseshoe-like pattern (Fig. 2B). 

 

The secreted pathway antagonists of the organizer are expressed locally and form protein 

gradients; thereby, they create a counter-gradient of BMP and Wnt signaling, which in turn 

regulates tissue patterning in a concentration-dependent manner. The BMP gradient patterns 

ectoderm and mesoderm along the d-v axis; thereby, high signaling levels promote ventral 

fates (epidermis, blood), whereas low levels of BMP signals permit development of dorsal 

fates (neural plate, notochord) [21, 53]. Wnt signaling cooperates with BMP signaling in 

patterning of the ventral and lateral mesoderm, where it inhibits notochord formation and 

promotes muscle development [54-57].  

 

Along the a-p axis, a Wnt gradient patterns the neuroectoderm in a direct and dose-

dependent fashion [58-60]. Anteriorly, Wnt levels are kept low by secreted Wnt inhibitors 

emanating from the PC (see above) [61], and thereby anterior neuroectodermal cell fates 

(forebrain) are established; towards posterior, successively higher levels of Wnt signaling 

mediated by Wnts emanating from ventro-lateral mesoderm (candidates are Wnt8 and 

Wnt3a [58, 62]) specify midbrain, hindbrain and spinal cord fates [58].  

 

Experimentally, inhibition of zygotic Wnt signaling leads to a prevalence of organizer-

mediated effects, and thus to promotion of dorsal and anterior cell fates. Such embryos 

show enlarged notochord and forebrain, but reduced muscle tissue, and are generally termed 

‘anteriorized’. Conversely, ectopic Wnt activation leads to reduced organizer function, and 

thus to promotion of ventral and posterior cell fates. Such embryos have enlarged muscle 

tissue, but reduced notochord and forebrain (termed ‘posteriorized’) [55, 56]. 

Phenotypically, perturbations of the zygotic Wnt pathway can be readily recognized as a 

‘shift’ in a-p positional identity (Fig. 3). 
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BA 

 
Figure 3. Phenotypes of embryos with perturbed zygotic Wnt signaling. (A) Wnt inhibition leads 

to anteriorization, characterized by increased head and cement gland (cg) tissue and shortened, 

towards ventral bent tail. Embryos were injected with increasing doses of dominant negative (dn) 

Wnt8 mRNA; pictures were taken at tailbud stage (st. 34). (B) Wnt activation leads to 

posteriorization, characterized by missing head and cement gland tissue. The embryo shown in the 

lower panel was injected with anti-Dkk1 antibody, which blocks endogenous Dkk1 protein; pictures 

were taken at tadpole stage (approx. st. 43). Pictures adapted from: (A) my unpublished data; (B) 

[29] and [63]. 

 

 

Early Xenopus development II: Neural crest formation 
 

Besides induction and patterning of the neural plate another event important for this study 

takes place in the ectoderm of the gastrulating embryo: Induction of the neural crest (NC). 

 

Phylogenetically, the appearance of the NC was a key step in chordate evolution; it allowed 

formation of a new head and subsequent adaptation to an active predatory life style, 

ultimately giving rise to the vertebrate clade [64-66]. Thus, NC tissue is a defining feature 

of vertebrates and distinguishes them from non-vertebrate chordates (such as lancelets and 

ascidians).  

 

The NC is a multipotent tissue arising at the border of neural plate and non-neural 

ectoderm. NC cells migrate throughout the embryo and differentiate into a variety of 

tissues, such as bone, cartilage and connective tissue of the head, melanocytes, peripheric 

nervous system (neurons and glia), epinephrine-producing cells of the adrenal gland, and fin 
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(in amphibians and fish) [67-69]. Due to its developmental importance, the NC has also 

been denominated the ‘fourth germ layer’. 

 

According to the variety of NC-derived tissues, perturbed NC development results in a set 

of pathological conditions, collectively termed neurocristopathies. These include facial 

abnormalities, pigmentation defects, heart defects and intestinal insufficiency (due to 

absence of enteric ganglia) [70-72]. 

 

Induction of NC. Since the discovery of NC [73] biologists have been interested in the 

process of its embryonic induction. Three tissues lie in close proximity to the future NC 

territory: Neural plate, non-neural ectoderm, and the underlying paraxial mesoderm, which 

later will form somites (Fig. 4). Initial embryological experiments established a pivotal role 

for interactions of these tissues during NC induction [74, 75]. In amphibians, experimental 

juxtaposition of paraxial mesoderm is sufficient to induce NC cells and derivatives in 

ectoderm, and paraxial mesoderm is required for NC induction in vivo [76, 77]. Similarly, 

juxtaposition of neural plate and non-neural ectoderm induces NC cells; interestingly, in 

this experiment both ectodermal tissues can generate NC, suggesting reciprocity of the 

inductive event [78].  

 
 

 

B CA 

 

Figure 4. Overview of neurulation and neural crest formation. (A) The neural plate border forms 

at the interface of neuroectoderm and non-neural ectoderm, and (B) gives rise to the neural folds 

during neurulation. (C) Around the time of neural tube closure, NC cells undergo epithelial-to-

mesenchymal transition, delaminate from the neural tube and start migrating along defined 

pathways. Picture taken and modified from [75]. 

 
 

In the last two decades, molecular studies have revealed the identity of signals emanating 

from NC inducing tissues. In Xenopus, induction of NC at the border of neural and non-
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neural ectoderm takes place during late gastrulation and relies on the combined action of 

BMP, Wnt and FGF type signals (Fig. 5) [79-85].  

 

It is well established that BMP signals pattern the ectoderm along the doso-ventral axis in a 

graded fashion [21]. Ventrally, high levels of BMP signaling establish epidermal cell fates. 

Dorsally, low levels of signaling activity, due to BMP inhibition by antagonists secreted 

from the dorsal mesoderm, permit induction of the neural plate (see above). At the interface 

of neural plate and ectoderm, intermediate levels of BMP activity provide the basis for NC 

induction [77, 79, 86, 87]. 

 

The pivotal role of Wnt/β-catenin signaling during NC induction is well established due to 

evidence coming from studies in Xenopus, as well as zebrafish [88], chicken [89] and 

mouse [90]; for reviews see [91-93]. In Xenopus, ectopic activation of the Wnt pathway, in 

conjunction with intermediate BMP levels, leads to NC induction in naïve ectoderm; 

similarly, Wnt activation in whole embryos expands the NC territory [81, 92, 94, 95]. 

Conversely, Wnt inhibition, e.g. by application of dominant negative constructs, or knock-

down of pathway components, prevents NC formation [96-98].  

 
 

 
 

Figure 5. Signals involved in NC induction. NC is induced at the junction of neural plate and non-

neural ectoderm, where intermediate levels of BMP signaling are present. Wnt signals emanating 

from paraxial mesoderm and/or non-neural ectoderm are required for NC induction. Furthermore, 

the FGF pathway regulats NC induction. Picture taken from [67]. 

 

 

NC induction by Wnts is a direct effect and not coupled to the posteriorizing influence of 

Wnts on the neural plate, since low levels of ectopic Wnt signals promote NC fates without 

affecting a-p patterning [97, 99]. It is yet unclear which Wnt ligand mediats NC induction in 
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Xenopus. Wnt8 ranks first as candidate, since it is expressed at the right time (throughout 

gastrulation) and place (in the paraxial mesoderm underlying the future NC region) [100]. 

In support of this, Wnt8 knock-down in zebrafish results in loss of NC tissue [88].  

 

How are multiple signals from the BMP, Wnt and FGF pathways integrated to induce NC? 

It is emerging that sets of transcription factors are activated consecutively, and specify the 

prospective NC region in a successive manner. Initially, BMP, Wnt and FGF signals induce 

a set of transcription factors which broadly defines the prospective NC region (neural plate 

border specifiers); it includes Zic, Msx1/2, Dlx5 and Pax3/7 proteins, respectively. These 

transcription factors, in turn, activate a set of genes expressed only in the NC territory (NC 

specifiers); examples are Slug/Snail, the SoxE family members Sox9 and Sox10, Twist and 

FoxD3. As a next step, NC effector genes are activated; these regulate delamination, 

migration and lineage specific differentiation of the NC (Fig. 6) (e.g., Mitf, RhoB and 

Collagen 2a) [101-103]. In addition, various cross-regulatory events within the same level, 

as well as between different levels of this regulatory network exist, thus increasing 

complexity considerably (Fig. 6) [103]; a well-established example is the direct induction of 

slug transcription by Wnt signaling [104]. 

 

Migration of NC. After establishment of the NC cell fate and towards the end of 

neurulation (neural tube closure), NC cells delaminate from the neural tube and start 

migrating along defined routes throughout the embryo. Besides many other signals, both 

BMP and Wnt pathways have been implicated in these processes [91, 105, 106]. 

 

Differentiation of NC. NC cells are pluripotent and give rise to numerous differentiated 

cell types (see above), depending on their final location within the embryo. Both BMP and 

Wnt signals are involved in NC differentiation. Several studies suggest that during NC 

differentiation Wnt signals specify melanocytes at expense of neuronal cell fates [107, 108]. 

Wnt signaling activates transcription of mitf, a key regulator of the pigment cell lineage 

[109, 110], and sox10, a NC specifying transcription factor (see above) [111], which is also 

implicated specifically in melanocyte development (reviewed in [92, 112]). Conversely, 

BMP signals promote neuronal fates and inhibit pigment cell formation [91, 113].  

 

 12



Introduction 

 
 
Figure 6. The putative gene regulatory network at the neural plate border is highly complex. 

At the neural plate border, Wnt and FGF signals, as well as intermediate levels of BMPs, induce 

expression of neural plate border genes, which subsequently induce NC specifiers. Extensive 

regulatory crosstalk between NC genes maintains their expression until migration and 

differentiation, when NC effector genes are expressed. Red arrows indicate direct regulatory 

interactions, whereas black arrows indicate genetic interactions suggested by gain- and loss-of-

function analyses largely in Xenopus. Gray lines indicate repression. Picture taken from [103]. 

 

 

The Wnt signaling pathway in animal development 
 

The above presented description of early Xenopus development highlights a prime role of 

Wnt signaling in vertebrate axis formation and patterning, as well as NC induction. The 

Wnt pathway is evolutionary highly conserved and ancient, and plays fundamental roles in 

the regulation of early developmental processes in most animal phyla. 

 

In cnidarians, simple metazoans containing only two epithelial germ layers and one main 

body axis, the Wnt pathway is differentially activated along the body axis, and specifies the 

endodermal germ layer [114, 115]. Similarly, Wnts induce endoderm formation in the 

nematode C. elegans [116], pattern the endomesoderm along the animal-vegetal axis in sea 
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urchins (echinoderms) [117, 118], and regulate posterior specification and endoderm 

formation in protochordates, a basal non-vertebrate chordate group [119, 120]. Even 

sponges, which represent the simplest multicellular animals and completely lack body axes 

and differentiated tissues other than an epithelium, harbour homologs of Wnt signaling 

components, including a Wnt ligand. It was thus speculated that the Wnt pathway was 

already present in the last common ancestor of all multicellular animals [121]. 

 

Subsequent to their roles in early development, Wnts are extensively involved in the 

regulation of organogenetic processes such as myogenesis [122, 123], limb [124], lung 

[125], eye [126] and brain [127] development, and synaptogenesis [128, 129]. Throughout 

development, the Wnt pathway is furthermore an important regulator of cell survival and 

proliferation [130-133], as well as cell migration and polarity [134-136]. 

 

In adult animals, Wnt signaling is implicated in the regulation of tissue renewal, for 

example in the gut epithelium, skin, bone and hematopoetic system [137-140]. 

Misregulation of the Wnt pathway is a prime cause of several degenerative diseases and 

cancers, in  particular colon cancer [8, 133, 141-143]. To gain a thorough understanding of 

Wnt pathway regulation is therefore of genuine biological interest as well as of considerable 

medical relevance. 

 

According to different signaling mechanism and biological responses the Wnt pathway is 

divided into three branches: 

1) The canonical Wnt/β-catenin pathway, which operates through transcriptional control of 

target genes, and regulates induction and patterning of germ layers/body axes, cell fate 

specification during organogenesis, and cell proliferation [8, 141, 144-146];  

2) the non-canonical or Wnt/PCP pathway, which mainly elicits direct cytoskeletal changes, 

and is implicated in cell polarity and tissue movements [135, 136, 147-149]; and 

3) the Wnt/Calcium pathway, which activates Calcium-dependent cellular responses, and is 

thought to antagonize Wnt/β-catenin signaling and regulate cell migration [134, 150, 151].  

 

The Wnt/β-catenin pathway is the primary subject of this study, and its signaling 

mechanism and regulation will be discussed on the following pages. 
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The Wnt/β-catenin signal transduction pathway 
 

Mechanistically, the Wnt/β-catenin pathway proves to be extraordinarily complex, 

involving a multitude of components and several, possibly parallel, signaling events [8, 141, 

144, 146, 152, 153].  

 

The key mechanism in the canonical Wnt pathway is the modulation of the stability of β-

catenin, which acts as transcriptional co-activator. In the absence of a Wnt signal, cytosolic 

β-catenin is contained in a protein complex and constantly degraded. This so called 

degradation complex includes Glycogen synthase kinase3 (GSK3) and Casein kinase1α 

(CK1α), which phosphorylate β-catenin, and the scaffolding proteins Axin and 

Adenomatous polyposis coli (APC). Phosphorylated β-catenin is ubiquitinylated by β-TrCP, 

a component of the E3 ubiquitin ligase system, and rapidly degraded by the proteasome 

(Fig. 7A).  

 

Activation of Wnt signaling leads to dephosphorylation and subsequent stabilisation of β-

catenin, which translocates into the nucleus, where it replaces the transcriptional repressor 

Groucho and binds to LEF/TCF transcription factors to co-activate transcription of Wnt 

target genes. Signaling in initiated by binding of Wnt glycoproteins to Frizzled (Fz) and 

LRP5/6 (Low density lipoprotein receptor related protein) type receptors on receiving cells. 

Transduction of the signal induces recruitment of Axin to the cell membrane, where it binds 

to the cytoplasmic tail of LRP5/6. This event is dependent on LRP5/6 phosphorylation by 

GSK3β and CK1γ [154, 155], but how these kinases are activated in response to Wnts is 

still unknown. Axin recruitment disrupts the degradation complex, leading to stabilization 

of β-catenin. Wnts also induce phosphorylation of Dishevelled (Dvl), an essential 

cytoplasmic pathway component acting upstream of β-catenin. Phosphorylated Dvl is 

recruited to the membrane via interaction with Fz receptors (Fig. 7B). 

 

The prevailing model of Wnt signaling suggests that these two signaling events, namely the 

recruitment of Axin and Dvl to their respective receptors, converge on β-catenin 

stabilisation. This is in agreement with experiments showing that forced association of Fz 

and LRP6 can induce β-catenin stabilization in the absence of Wnt ligands [156, 157].  
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Overexpression of the membrane-bound cytoplasmic tail of LRP5/6 activates the Wnt 

pathway without Fz/Dvl, suggesting that Axin recruitment alone may be sufficient for 

signal transduction [158]. However, much in favour of a mutual requirement and 

interdependence of Fz and LRP5/6 mediated signaling branches are recent results showing 

that under physiological conditions, Axin is recruited to the membrane in a Dvl-dependent 

manner, in flies as well as mammalian cells ([159] and Bilic et. al., submitted).  

 

 
 

Figure 7. Overview of the Wnt/β-catenin signaling pathway. (A) In the absence of Wnt signals, 

cytoplasmic β-catenin is constantly degraded. (B) Binding of Wnt to Frizzled and LRP5/6 receptors 

induces recruitment of Axin and Dishevelled (Dvl) to the membrane, thereby disrupting the 

degradation complex. β-catenin can translocate into the nucleus and act as transcriptional co-

activator. Image taken and modified from [146]. 

 

 

Regulation of Wnt/β-catenin signaling 
 

Since the Wnt pathway elicits fundamental cellular responses it is not surprising that the 

pathway is under stringent regulatory control at various levels, including (i) upstream of 
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receptor-ligand interaction (biogenesis of receptors/ligands, see below), (ii) receptor-ligand 

interaction (extracellular space, see below), (iii) signaling in the cytoplasm, and (iv) target 

gene expression (feedback regulation) [8, 152, 153, 160, 161].  

 
Regulation of Wnt signaling at the level upstream of receptor-ligand 

interaction 
 

A variety of factors can regulate the Wnt pathway at a level upstream of receptor-ligand 

interaction, e.g. by specifically influencing maturation, secretion or stability of ligands or 

receptors, respectively (reviewed in [162-164]). 

 

Wnt ligands. Well established examples are Porcupine [165, 166] and Evi/Wls [167, 168], 

which are required for acylation and secretion of Wnt, respectively. Furthermore, the 

retromer complex, which has a general role in retrograde transport of proteins from 

endosomes to the Golgi apparatus, is specifically involved in Wnt secretion [169, 170].  

 

Wnt receptors. Shisa protein acts as Wnt antagonist by inhibiting Fz maturation in the 

endoplasmic reticulum (ER) [171].  

 

Until recently, relatively little was known about the biogenesis of the Wnt receptor LRP5/6. 

However, in 2003, two studies in mouse and fly simultaneously identified a gene essential 

for LRP5/6 protein maturation (and thus Wnt signaling), termed mesd/boca, respectively 

[172, 173]. LRP5/6 proteins are essential components for Wnt/β-catenin signal transduction 

and their inactivation phenocopies loss of Wnt signaling in vertebrates and invertebrates 

[174-176]. They are members of the LDLR (low density lipoprotein receptor) superfamily, 

a group of cell surface receptors with diverse functions in cell metabolism and signal 

transduction [177, 178]. LRP5/6 proteins are characterized by an extracellular domain 

containing LDLR repeats and four YWTD β-propeller/EGF modules, a transmembrane 

domain, and a cytoplasmic tail carrying conserved signal transduction motifs (Fig. 8) [176, 

179].  

 

Like most secreted and transmembrane proteins, newly synthesized LRP6 protein enters the 

secretory pathway via translocation into the ER; there, general modifications/processes such 

as disulfide bond formation, N- and O- glycosylation, and quality control are performed, 
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until mature protein is finally transported to the cell surface. Upon ER entry, the YWTD β-

propeller/EGF modules of LRP6 are prone to form inter-molecular disulfide bonds, thereby 

building aggregates and rendering LRP6 protein dysfunctional [180]. Here, Mesd/Boca 

protein comes into play; it is an ER resident chaperone and acts by specifically binding 

these YWTD β-propeller/EGF modules, thus reducing receptor aggregation and promoting 

LRP6 folding and surface localization [172, 173, 180]. Loss of Mesd/Boca function leads to 

reduced cell surface localization of LRP5/6 and thereby to a shut-down of Wnt signal 

transduction. Therefore, mesd/boca knock-out mice and flies display phenotypes mimicking 

the combined inactivation of several Wnts [172, 173]. 

 
 

   
 

Figure 8. Modular domain structure of LRP6. The four YWTD β-propeller/EGF modules are 

targeted by Mesd. Picture taken from [180]. 

 
Extracellular regulation of Wnt signaling 
 

In the extracellular space, Wnt signaling is mainly modulated by the regulation of Wnt 

ligand spread/availability, and receptor-ligand interaction. 

 

Wnt proteins are lipid modified and likely do not diffuse easily in the extracellular space 

[181]; however, as morphogens they form concentration gradients, and can act in a long-

range manner [58, 182, 183]. Several mechanisms have been suggested to explain how 

Wnts spread through tissues (reviewed in [184, 185]), including transport of Wnts by 

lipoprotein vehicles [186], transcytosis [187], and cytonemes, long membrane covered 

cellular protrusions [188]. The local concentration of Wnts on cell membranes is regulated 

by proteoglycans, low affinity Wnt co-receptors which are required for Wnt signaling in 

vivo (reviewed in [189]).  
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In vertebrates, a considerable set of secreted Wnt antagonists is present, which act by 

preventing ligand-receptor interaction; these include many of the classical Spemann 

organizer genes introduced above [34, 36]. According to their mechanism of function, 

secreted Wnt antagonists can be grouped in two classes (reviewed in [36]). 
  

Antagonists binding to Wnt proteins 

Secreted frizzled-related proteins (sFRPs) contain a domain similar to the cysteine-rich 

and Wnt binding domain of Fz receptors, which explains their function in sequestration of 

Wnts [190]. Of note, a sFRP (sFRP1) has been found to act both as Wnt antagonist and 

agonist in cultured cells, suggesting a dual, context-dependent mechanism of action [191]. 

Wnt inhibitory factor1 (WIF1) contains a unique, Wnt-binding WIF domain, inhibits Wnt 

signaling in vitro, and plays a role in Xenopus somitogenesis, a Wnt-dependent process 

[192]. The D. melanogaster ortholog of WIF is a regulator of Hedgehog signaling [193].  

Cerberus/Coco is a multivalent growth factor antagonist, which binds and sequesters Wnt, 

BMP and Nodal ligands [46, 47, 194]. 
 

Antagonists binding to Wnt receptors 

Wise (Wnt modulator in surface ectoderm) binds to LRP6 and can compete for Wnt 

binding, or alternatively mimic Wnt activity. It thus acts as context-dependent Wnt inhibitor 

or activator in Xenopus ectoderm, where it is also expressed [195]. 

Sclerostin (Sost) binds to LRP5/6 receptors and plays a role in Wnt antagonism during 

bone formation and remodelling [196]. 

Dickkopf (Dkk) proteins bind and antagonize LRP5/6 [197-199]; their developmental roles 

and mechanism of action will be discussed in the following chapter. 
 

 

Dickkopf proteins as Wnt antagonists 
 

In vertebrates, the Dkk family contains four members (Dkk1-4). All Dkks contain an N-

terminal signal peptide as well as two conserved cysteine rich domains, which are defining 

for the Dkk family. Functionally, Dkk1/2/4 are implicated in Wnt antagonism, whereas 

Dkk3 does not modulate Wnt signaling [35]. 
 

In the genomes of the protostome organisms D. melanogaster and C. elegans no Dkk 

homologs are present. Recently, however, a cnidarian Dkk1 homolog was shown to act as 
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Wnt inhibitor, pinpointing the ancient role of Wnt-Dkk antagonism [200]. Thus, the lack of 

Dkk1 homologs in protostome genomes is believed to be due to gene loss events during 

evolution [35]. 

 

Dkk1 is the founding member of the family and was first characterized in Xenopus, where it 

acts as Wnt inhibitor secreted from the Spemann organizer and is required for PC 

specification and maintenance as well as forebrain induction [29, 201, 202]. Since then, 

Dkk1 was shown to antagonize Wnt signaling in developmental processes as diverse as a-p 

patterning [29, 201, 203, 204], bone formation [205, 206], vertebral development [207] and 

limb formation [204, 208], in many species. 

 

Dkk2 is expressed during organogenesis stages in Xenopus and mouse; it acts as Wnt 

antagonist during eye formation in mouse [209]. While Dkk1 exclusively inhibits Wnt 

signaling, Dkk2 was also shown to act as Wnt agonist in Xenopus embryos and cultured 

cells [210]. However, since Dkk2-mediated Wnt agonism was only analyzed in 

overexpression studies, so far its physiological relevance is unclear.  

 

Dkk1 binds to LRP6 in a 1:1 stochiometric manner [197]. Simultaneously, Dkk1 binds as 

well to another transmembrane protein, Kremen. Thereby, Dkk1 forms a ternary complex 

with LRP6 and Kremen, which is cleared from the cell surface by endocytosis (Fig. 9) 

[211].  

 

 

Figure 9. Dkk1 forms a 

ternary complex with 

LRP6 and Kremen, which 

is removed from the cell 

surface by endocytosis.

(Left) In absence of Dkk1, 

Wnt binds to LRP5/6 and 

Frizzled receptors and 

activates signaling. (Right)

Dkk1 induces formation of a 

ternary complex containing 

 

 

 ii LRP5/6 and Kremen, which is removed from the cell surface by endocytosis. As a consequence,

Wnt signaling is inhibited. Picture taken from [211]. 
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Kremen proteins as Wnt antagonists 
 

Kremen was found in our laboratory in a screen for Dkk1 binding partners, and established 

as Wnt antagonist which cooperates with Dkk1 in LRP6 clearance [211]. 

 

Prior to that, Kremen (Kringle-coding gene marking the eye and the nose) proteins were 

first identified in a screen for Kringle domain containing proteins [212]. The two family 

members Kremen1 and 2 (Krm1 and 2, collectively termed Krms) are single-span 

transmembrane proteins characterized by an extracellular domain composition 

encompassing a Kringle, WSC and CUB domain (Fig. 10) [212]. Kringle [213] and CUB 

[214] domains are mainly involved in protein-protein interaction, and occur in several 

secreted structural proteins and growth factors of higher animals, respectively [215-217]. 

WSC [218] is a rarely occurring, carbohydrate-binding domain conserved from yeast to 

humans [219]. Of note, albeit all these domains are individually found in other proteins, the 

composition as well as organization of all three domains in Krm proteins is unique. The 

short cytoplasmic tail of Krms contains no conserved motives, but is highly conserved 

across species (Xenopus and  mouse) in case of Krm1 [220]. 

 

The extracellular domain architecture of Krms is evolutionary conserved in vertebrates, but 

no homologs are present in D. melanogaster and C. elegans [220]. Recently, Krm homologs 

have also been suggested for the sea urchin S. purpuratus  and the flatworm M. lignano 

[221, 222]; however, these genes only show similarity to one discrete domain of Krm, and it 

is unclear if they comprise the same domain composition and thus are true Krm orthologs.  

 

 
 

Figure 10. Domain structure of Krm proteins. KR, kringle domain.  

 

 

Krms are differentially expressed during embryonic development in mouse and frog. In the 

mouse, expression of krm genes during early development (prior to day 8 post fertilization) 

has not been analyzed. During later developmental stages, krm1 and 2 transcripts are 

 21



Introduction 

detected in limbs, brain, mesanephros, nose, otic and optic vesicle [212, 220]. In Xenopus, 

krm1 transcript is present maternally and is transiently downregulated during gastrulation, 

whereas krm2 expression starts at MBT (mid-blastula transition, the onset of zygotic 

transcription) and persists until tailbud stages at a similar level. During gastrulation, krm2 is 

strongly expressed in the ventro-lateral mesoderm. In neurula stage embryos, krm1 and 2 

transcripts similarly localize to the lateral neural plate and to the PC, where they co-localize 

with dkk1 transcript. During tailbud stages both krm1 and 2 are expressed in the hatching 

gland; krm1 transcript is also detected in the notochord, whereas krm2 is additionally 

expressed in branchial arches, otic vesicle and pronephric duct [220].  

 

Functionally, the main characteristic of Krm proteins is that they strongly enhance the 

potency of Dkk1 to inhibit Wnt/LRP6 in Xenopus embryos as well as cultured cells [211, 

223]. This was also nicely shown in an experiment in D. melanogaster, an organism devoid 

of Dkk and Krm homologs. Whereas ectopic expression of mouse Dkk1 in the developing 

fly wing is not able to perturb wing formation, a process dependent on Wnt signaling, 

ectopic co-expression of Dkk1 and Krm2 blocks wing formation due to Wnt inhibition 

[211]. However, since all these experiments involve overexpressed genes, they do not allow 

conclusions about the requirement of Krms for Dkk1 function. 

 

In Xenopus embryos, Dkk1 and co-expressed Krms in the PC cooperate in Wnt inhibition to 

regulate a-p patterning of the central nervous system (CNS). In this context, Krms are 

required for Dkk1-mediated Wnt inhibition and forebrain development [220]. Beyond that, 

it is yet unclear if Krms are generally essential co-receptors for Dkk1, in Xenopus and other 

species, or if they modulate Dkk1 activity more specifically during selected developmental 

processes.  

 

It is also unknown if Krms are involved in developmental processes independent of Dkk1/2-

mediated Wnt antagonism. Indeed, recently it was shown that Krm1 is required for 

formation of thymic architecture in mice by acting as Wnt inhibitor, possibly in a Dkk1-

independent manner [224].  

 

Furthermore, even though a function of Krms in Dkk-mediated LRP5/6 clearance is 

established, many open questions remain. For example, the cytoplasmic tail of Krms is 

dispensable for clearance of the ternary complex from the cell surface [211]. Thus, Krms 
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are likely not direct regulators of endocytosis, raising the question of the exact role of Krms 

in Dkk1 induced internalisation of LRP6. Membrane attachment of Krms is essential for 

functional cooperation with Dkk1 in Wnt inhibition [211]; this raises the possibility that 

further, so far uncharacterized proteins are recruited by Krm and contained in the ternary 

complex as well, contributing to the regulation of LRP5/6. 

 

 

Aims of the thesis 
 

The aim of this thesis was to address some of these open questions regarding the 

mechanistic function and developmental role of Kremen proteins. Towards this end I have 

followed two main lines of research:  

 

1) Identification and analysis of Krm interacting proteins. It was previously shown that 

Krm and Dkk1 recruit the Wnt receptor LRP6 into a ternary complex, which is cleared from 

the cell surface, and thereby inhibit Wnt signaling. Upon the beginning of this study, it was 

unclear i) which other proteins are involved in this process, and ii) how Krms mediate 

LRP6 clearance from the cell surface. To answer this, I employed an in vivo screen to 

identify functional Krm interaction partners, as well as in vitro approaches to isolate Krm 

binding proteins. The latter led to the identification of the Krm2 binding protein Erlectin. 

Further analysis of Erlectin included combined in vitro and in vivo experimental approaches 

and revealed that Erlectin, albeit not specifically involved in Wnt/Krm signaling, is a novel 

ER protein involved in N-glycan recognition and essential for Xenopus development.   

 

2) Analysis of the role of Krm2 during Xenopus development. In Xenopus, Krms have 

been shown to cooperate with Dkk1 in Wnt inhibition to regulate a-p patterning of the CNS. 

It was unknown if Krms have further roles during development. Thus, the second focus of 

this work was to characterize the developmental role of Krm2 during neural crest formation. 

This also included an extended analysis of Krm activity in Wnt pathway regulation. 

Together, in vivo and in vitro approaches revealed that Krm2 is required for neural crest 

formation in Xenopus, and than Krms can promote LRP6-mediated Wnt signaling in the 

absence of Dkk1. 
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4. RESULTS 

 

 
Bacterial and yeast two-hybrid assays to identify Krm 

binding proteins 
 

 

Bacterial two-hybrid assay 
 

To identify novel binding partners of Krm2 I employed a bacterial two-hybrid screen kit 

(BacterioMatch® I, Stratagene). Bacterial systems are thought to have several advantages 

over classical yeast two-hybrid assays, including more rapid transformation procedure and 

DNA isolation, as well as fewer false-positives and less toxic effects due to the reduced 

chance of bacteria harboring eukaryotic homologs (cited from [225]). In the 

BacterioMatch® system, bait and target clones are fused to the DNA binding domain of γcl 

protein and the catalytic α-subunit of RNA polymerase, respectively. Upon interaction of 

bait and target, transcription of a reporter is activated (for more details, see [225]).  

 

As krm2 is expressed in the brain of mouse embryos [212, 220], I screened a human fetal 

brain plasmid cDNA library, using the C-terminal cytoplasmic tail of human Krm2 as bait. 

In total, 6x106 colonies were screened, which corresponds to 1.8 fold coverage of clones 

present in the library (3,3x106 cfu). After reselection, 50 positive colonies were obtained 

and sequenced.  

 

45 clones (90%) show an incorrect open reading frame (ORF) due to out-of-frame fusion to 

the RNA polymerase subunit, and therefore do not result in correctly translated proteins. 

The 5 clones with correct ORF (10%) are: NADH dehydrogenase subunit III, Ribosomal 

protein L28, ATPase subunit 1, Actin γ1, and SRY-box 13. Importantly, for none of these 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 
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clones could an interaction with Krm2 be verified by retransformation within the bacterial 

system (not shown). I conclude that all isolated clones are false-positives. 

 

 

Yeast two-hybrid assay 
 

To identify novel binding partners of Krms in a well-established approach, we assigned a 

company (Dualsystems Biotech AG, Switzerland) to perform a yeast two-hybrid assay. A 

mouse whole embryo (11 days) library was screened for candidates, using the C-termini of 

mouse Krm1 and 2 as baits.  

 

Whereas screening of the bait Krm2 yielded no positive clones, for Krm1 one potential 

binding partner was identified, and verified within the yeast system. Tax1 binding protein1 

(TAX1BP1, GeneID 8887) contains a calcium binding and coiled-coil domain (Pfam: 

CALCOCO1) and two zink finger domains (SMART), and is likely localized in the 

cytoplasm. Its molecular function is not characterized.  

 

To analyze the role of TAX1BP1 in Wnt/Krm signaling in vivo, I injected TAX1BP1 mRNA 

in Xenopus embryos. Injected embryos are stunted and show various pleiotropic defects. 

Importantly, co-injection of TAX1BP1 and krm2 mRNA does not induce significant 

phenotypic changes, indicating that the two genes do not functionally interact. In cultured 

cells TAX1BP1 DNA co-transfection has no effect on a Wnt responsive reporter (results not 

shown). I conclude that very likely TAX1BP1 neither interacts with Krm2 in Wnt 

inhibition, nor elsewise regulates the Wnt pathway. 

 

Notably, TAX1BP1 has so far solely been studied as candidate retrieved from yeast two-

hybrid screens. It binds to a multitude of functionally diverse proteins including HTLV-1 

Tax protein [226], zinc finger protein A20 [227], TNF-receptor associated factor 6 [228], 

RhoGAP [229] and GABAC receptor [230]. Although it cannot be excluded that the binding 

promiscuity of TAX1BP1 is physiological, this rather suggests that TAX1BP1 may be a 

‘sticky’ protein in yeast two-hybrid assays, whose interactions with various unrelated 

proteins are not of physiological importance [231]. 
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A Xenopus injection screen to identify functional 

interaction partners of Krm2 
 

 

Xenopus embryos are a well suited system for expression cloning screens, in which a large 

number of cDNAs is assayed for a particular biological activity. Genes are easily 

overexpressed and evaluation of embryos for specific phenotypes is straightforward. 

Furthermore, expression screens can be adapted to make use of the fact that functional 

interaction between two genes can lead to a strongly enhanced, or even unprecedented 

phenotypic effect [232-236]. A major advantage of such functional interaction screens, 

when compared to classical binding assays, is that a wide range of candidates can be 

identified. These include not only physical but also genetic interaction partners, e.g. 

components of other signaling pathways. In addition, the use of an in vivo system such as 

the Xenopus embryo increases the likeliness of identifying physiologically relevant 

interactions. This principle has been successfully used to discover numerous genes 

(summarized in [237]).  

 

 

Overview of the injection screen 
 

To screen for functional interaction partners of Krm2, mRNA pools of a cDNA library were 

injected with or without Xkrm2 mRNA and embryos were analyzed at various stages. The 

functional interaction of Krm2 and a clone contained in a library pool was expected to 

become manifest in a specifically enhanced or different phenotype, in comparison to the 

phenotype induced by the library pool on its own (Fig. 11). Xkrm2 mRNA was used at low 

dose which does not induce a phenotype. In proof of principle, co-injection of a similarly 

low dose of krm2 and dkk1 mRNA results in a strikingly enhanced phenotype, due to 

functional cooperation (not 

shown and [223]), indicating that 

Krm2 is a suitable bait for this 

type of screen. 
 

 
 

Figure 11. Scheme of the injection screen. 
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In total, 96 pools of a X. laevis eye library and 33 pools of a X. tropicalis embryonic library 

were screened for Krm2 interacting candidates. In addition, 76 eye library pools and 33 X. 

tropicalis library pools were screened for candidates interacting with Rspo-2, a novel 

secreted Wnt activator [238]. For a summary of general features of the screen, see Fig. 12.  

 

 

Figure 12. General features 

of the injection screen. 

 

 

Identification of a library pool interacting with Krm2 and Dkk1 
 

Only one pool (pool 5A) showed, albeit weak, functional interaction with Krm2, leading to 

embryos with enlarged cement glands (Fig. 13C, arrows). Importantly, embryos injected 

with pool 5A mRNA alone (Fig. 13B), or krm2 mRNA alone (not shown), had similarly 

sized cement glands as control embryos (Fig. 13A). Rspo-2 did not interact with any pool 

tested. 

  

 

A B C

 

 

 

 

 

 

Figure 13. Functional interaction of a library pool with Krm2. Tailbud embryos shown in

ventral view. (A) Uninjected control embryos. (B) Embryos injected with 4-5 ng pool 5A mRNA

look normal. (C) Embryos co-injected with pool 5A mRNA and low amounts (200 pg) of krm2

mRNA display enlarged cement glands (arrows). 
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To identify the single clone conferring activity to the pool interacting with Krm2, a sib 

selection process was performed. Thereby, a pool is repeatedly split into smaller subpools, 

which are each selected for activity, until a single active clone is isolated [239]. During sib 

selection of the pool interacting with Krm2, the activity was lost, and could not be detected 

in any of the subpools tested (~50 clones/subpool).  

 

Such a loss of an active clone during sib selection can have several causes: 1) The 

interaction with the protein of interest may be weak and therefore insignificant; 2) the clone 

can be physically lost; 3) the activity of the pool may be based on the effect of two genes 

within the same pool, which become separated during sib selection; or 4) some smaller 

subpools may start giving pronounced phenotypes by themselves, which would mask a 

weak interaction phenotype. One or a combination of several of these causes may explain 

why the active clone of the Krm interacting pool was lost; the precise reason, however, 

remains unknown. 

 

Krms and Dkk1 functionally cooperate and act in the same pathway [220]; I therefore 

reasoned that a factor interacting with Krm2 may also interact with Dkk1. Since the original 

pool 5A containes a clone (or a combination of clones) weakly interacting with Krm2, I 

tested if pool 5A also functionally interacts with Dkk1. Co-injection of low doses of dkk1 

mRNA with mRNA of pool 5A results in strongly anteriorized embryos, with strikingly 

expanded cement glands and shortened body axes; in contrast, embryos injected with dkk1 

mRNA alone are only weakly anteriorized (Fig. 14A). Based on this robust phenotypic 

readout I performed sib selection and successfully identified a single active clone, Xenopus 

nodal-related 3 (Xnr3).  

 

 

Xenopus nodal-related 3 functionally interacts with Dkk1 
 

Dkk1 and Xnr3 cooperate to induce strongly anteriorized embryos (Fig. 14B). However,  

Krm2 and Xnr3 do not functionally interact (not shown). 

 

Xnr3 is expressed in the Spemann organizer epithelium in response to early Wnt signals 

[41]. Several studies have shown that Xnr3 acts as neural inducer through inhibition of 

BMP signaling [40, 236, 240]. It is well established that simultaneous inhibition of Wnt and 
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BMP signaling leads to strong anteriorization, and induction of complete secondary 

embryonic axes (two inhibitor model of head induction, see also Introduction, p. 7) [11]. 

Thus, the enhanced anteriorization resulting from co-injection of Xnr3 and dkk1 mRNAs is 

likely due to simultaneous inhibition of BMP and Wnt signaling by these genes, 

respectively. The functional interaction of Xnr3 and Dkk1 was therefore not studied any 

further. 
 

  
A 

 
 

 

B 

 

 

 

 

 

Figure 14. Xnr3 functionally interacts with Dkk1. Tailbud embryos shown in lateral view. 

Control, uninjected embryos. (A) Functional interaction of the Krm2-interacting library pool with 

Dkk1. Embryos were injected with 4-5 ng pool mRNA (top right) or 10 pg dkk1 mRNA (bottom 

left). Embryos co-injected with pool mRNA and dkk1 mRNA are strongly anteriorized (bottom 

right). (B) Functional interaction of Xnr3 with Dkk1. Embryos were injected equatorially with 100

pg Xnr3 mRNA (top right) or 10 pg dkk1 mRNA (bottom left). Embryos co-injected with Xnr3

mRNA and dkk1 mRNA are strongly anteriorized (bottom right). 
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Analysis of factors modifying LRP6, Krm2 and Wnt3a 

proteins  
 
 

Overview of the modification screen 
 

To identify novel genes that specifically regulate the Wnt pathway at the level of receptor/ 

ligand biogenesis, a cell-based modification screen for factors that affect protein expression 

of LRP6, Krm2, and Wnt3a (baits) was carried out in the lab (by G.D) [154]. In brief, 

plasmids encoding baits were co-transfected with library pools in cultured cells, and bait 

protein expression was analyzed by Western blotting (Fig. 15). Any alteration of a bait 

protein band induced by a co-transfected library pool, e.g. up- or downshift, increase, 

decrease, or appearance of additional bands, was monitored, and pools conferring activity 

were further analyzed by sib selection. 
 

In total, 106 clones (in pools of 96) of a X. tropicalis embryonic library were screened; 37 

single clones were identified by sib selection, and after subtraction of duplicates 28 

candidate clones were selected for further study (Table 1).  
 

 A 

 
 

B 

 
 

Figure 15. Overview of the modification screen. (A) Scheme of the screen. (B) Western blot 

analysis as readout of the screen (example). The three baits LRP6, Krm2 and Wnt3a were co-

transfected and analyzed in the same sample. Note that LRP6 protein is detected as two bands: An 

upper band (cell surface form) and a lower band (intracellular form) [173]. 
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No Pool/ 
clone 

Gene name Protein modification R R
T 

mRNA overexpression Morpholino injection REFs 

1 79-4,A3 Xenopus laevis Hatching enzyme E/ 30 kDa - l n /  
2 80-4,B6 Ubiquit. carboxyl-terminal hydrolase family2  E/ 50, 55 kDa i m n /  
3 253-1,G5 Embryonic serine protease-1 (Xesp-1) E/ 35, 100, 180 kDa i g gd, short embryos, deformed Tdelayed development [241] 
4 103-3,F9 Embryonic serine protease-2 (Xesp-2) Loss/ uLRP6; Red/ Krm2 i l strong gd, pleiot. /  
5 199-3,H1 Sim. to far upstream element binding prot.1, FUSE Loss/ Wnt3a - / strong gd, d /  
6 72-1,C11 X.laevis nuclear orphan receptor XGCNF Loss/ Wnt3a - g n /  
7 24-2,H1 hnRNA binding protein  Loss/ Wnt3a - / gd, pleiot.                                       F     /  
8 146-1,A1 RNA-binding protein XlhnRNPL Loss/ Wnt3a i / strong gd /  
9 153-1,C11 Cold-inducible RNA binding protein 2 (CIRP2)  Loss/ uLRP6, Red/ others - / pleiot.                                             F / [242] 

10 153-1,H11 Serine/threonine-protein kinase ANKRD3  Red/ all i m extended abdomen, head defects   F / [243] 
11 130-2,D7 Receptor tyrosine kinase, c-mer like Incr/ LRP6; E/ 30 kDa i g posteriorized, extra tails n [244] 
12 199-3,F11 Protein transport protein SEC61 alpha subunit Red/ Krm2 i / pleiot. /  
13 48-1,D8 Protein transport protein SEC61 beta subunit Red/ Krm2 - / n  
14 20-4,H7 Small GTPase; ADP-ribosylation factor 4, ARF-4 Loss/ uLRP6; Red/ Krm2 i m enlarged head and cg                     F Nelong; Thead defects [245-248] 
15 146-1,B4 Similar to arfaptin 1  Loss/ uLRP6 i / pleiot., slightly bigger cg / [249] 
16 96-1,G4 Glycosyl transferase Up-shift/ LRP6 i m n /  
17 238-4,H2 Sialyltransferase Up-shift/ LRP6 i m n /  
18 36-3,H1 Signal peptide peptidase-like 3, SPP-like 3 Loss/ uLRP6; Red/ others i m pleiot.                                             F Nelong; Tventralized [250, 251] 
19 24-2,B2 Similar to DnaJ (Hsp40) homolog Loss/ uLRP6 i m blisters                                          Gd  [252, 253] 
20 47-1,B4 Embryonic 7-span transmembrane protein-like   Loss/ uLRP6, Red/ others i m mildly anteriorized; growth on belly Gd  [254, 255] 
21 42-4,F10 Similar to thioredoxin domain containing 4  Red/ uLRP6 - m n /  
22 74-2,H6 Weak sim. to putat. G-prot. coupled receptor TRC8 Loss/ uLRP6, Krm2 i m blisters, protrusions Nelong; Tstunted axis [256, 257] 
23 20-4,G1 Potential novel G-protein-coupled receptor Loss/ uLRP6; Red/ others i m bent; otherwise n /  
24 30-3,H1 Uncharacter. multi TM protein - hemolytic activity Loss/ uLRP6, Krm2 i m pleiot.                                             F  Nelong; [258] 
25 179-3,E2 Similar to presenilin stabilisation factor b, APH1 Loss/ uLRP6, Red/ Krm2 i m n / [259] 
26 44-3,H10 Hypot. Vitamin K-dependent carboxyl. dom. cont.  Loss/ Wnt3a; Red/ others i / n /  
27 12-1,B7 Unknown WD40 repeat containing protein Incr/ Wnt3a s m pleiot.                                             F Tventrally bent tails [260] 
28 199-3,B12 No significant match  E/ 50, 55 kDa i / reduced cg; altered body shape /  

    
F 

 

 

 

Table 1. Overview of clones identified in the modification screen. The colors mark different functional classes of clones (compare Table 2). No, running number. 

Pool/clone refers to identity within X. tropicalis library. Gene names were assigned by sequence BLAST and database search. Protein modifications as determined by 

G.D.: E, extra band; Loss/Red, loss/reduction of band, respectively; Incr, quantitative increase of band; Up-shift, up-shift of band; uLRP6, upper (cell surface) band of 

LRP6; others refers to both other baits not mentioned. R, Wnt reporter assay stimulated with Wnt1/Fz8 (by W.W.): -, no effect; i, inhibition of signal; s, stimulation of 

signal. RT, RT-PCR analysis, indicated is onset of expression: m, maternal; g, gastrulation; l, late tailbud stages; /, not determined. mRNA overexpression: n, normal; 

gd, gastrulation defects; pleiot, pleiotropic defects; d, dead; cg, cement gland; F, picture contained in Fig. 16. Morpholino injection: G, N, T, gastrula, neurula, tailbud 

stage, respectively; n, normal; d, dead; elong, elongation defects; /, not determined. REFs, relevant references. 
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Results 

Functional classes of identified clones. The 28 identified clones can be grouped into 

several classes according to gene function: 1) Proteases, 2) DNA/ RNA binding proteins, 3) 

kinases, 4) proteins involved in protein modification and transport, and 5) others (Table 2).  

 
Total 29 

Proteases 4 

DNA/ RNA binding 6 
Kinases 2 

Prot. modif. & transport 10 

Others 7 

 

Proteases    4

DNA/ RNA binding    6

Kinases     2

Protein modification & transport  10

Others     7

Total                 29

 

28 
Table 2. Functional classes of identified 

clones. Indicated is the number of clones per 

class. Data were extracted from Table 1. The 

color code is the same as in Table 1. 

5 

 
Effect of clones on protein expression of LRP6, Krm2, and Wnt3a. Since all three baits 

were co-expressed in the same sample, it is possible to distinguish between clones affecting 

one, two, or all three baits (Table 3).  

 
Modified baits  

 LRP6 Krm2 Wnt3a Two baits 
LRP6+Krm2 

Two baits 
(other) 

All 
baits 

Unknown/ 
extra bands 

Clones 5 2 5 5 1 6 4 

 
 
 
 
T

•

 

 

 
Table 3. Overview of numbers of clones affecting each of the baits. Data were extracted from 

Table 1.  
ypes of bait modifications 

 LRP6 (16 clones). The most prevalent type of LRP6 protein modification is the 

loss/reduction of the upper band, which represents the cell surface-localized protein 

([173] and Hassler et. al., submitted). Cell surface LRP6 is affected either solely (three 

clones) or in combination with a reduction of Krm2 and/or Wnt3a protein (10 clones). 

Loss/reduction of cell surface LRP6 is mainly induced by protein modification/transport 

components, and uncharacterized genes. Further modifications are: Up-shift of LRP6 

protein bands (two clones, both are glycan transferases), and increase of LRP6 protein 

amount (one clone, a tyrosine kinase) (Table 1). 
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• Modifications of Krm2 (13 clones). The only modification of Krm2 protein is reduction, 

mostly in combination with loss of surface LRP6 (five clones), or reduction of both other 

baits (six clones). Specific reduction of Krm2 protein expression is induced by two 

clones; both are components of the SEC61 translocon. Krm2 modifying clones are mainly 

members of the protein modification/transport group, and uncharacterized genes (Table 

1).  
 

• Modifications of Wnt3a (11 clones).  The most prevalent modification type of Wnt3a 

protein is loss or reduction, often in combination with reduction of other baits (six 

clones). Four clones specifically reduce Wnt3a protein expression; all are members of the 

DNA/ RNA binding class. One clone (class ‘others’) induces an increase of Wnt3a 

protein (Table 1). 
 

 

In vivo analysis of identified clones 
 

Since inhibition of zygotic Wnt signaling in Xenopus leads to anteriorization, whereas Wnt 

activation results in headless embryos, axial patterning defects provide a specific 

phenotypic readout for genes affecting the Wnt pathway. Therefore, to analyze the 

identified clones regarding their role in the Wnt pathway in vivo, I performed mRNA 

overexpression and Morpholino-mediated loss-of-function experiments in Xenopus 

embryos, and screened for phenotypes mimicking Wnt activation or inhibition. 

 

Gain-of-function analysis. I first injected mRNA of each of the 28 genes in X. laevis 

embryos, and evaluated phenotypes for axial patterning defects at various stages. See Table 

1 for overview of all obtained phenotypes.  
 

In summary, overexpression of nine genes has no effect; 11 genes induce pleiotropic or 

gastrulation defects (Fig. 16a’, b’’, c’, c’’, d’’). Of the remaining eight genes, several induce 

specific phenotypes like blisters, extra tails, or extended abdomen (Fig. 16a’’, d’); one gene, 

identified as ADP-ribosylation factor 4 (ARF4), induces anteriorized embryos with enlarged 

heads and cement glands, thus mimicking Wnt inhibition (Fig. 16b’). Therefore, phenotypes 

are randomly distributed throughout functional gene classes as grouped above (Table 2), 

and related gene function is not reflected in similar phenotypes.  
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Figure 16. Gain-of-function analysis of selected genes in X. laevis. (a-d) Uninjected control

embryos relate to experimental embryos shown in the same column. (a’-d’’) 2-cell stage embryos

were injected equatorially with titrated mRNAs of the indicated genes. Bottom left, clone numbers

as defined in Table 1 as ‘No’. Arrows indicate phenotypic features mentioned in the main text. 
 

 

Loss-of-function analysis. In a complementary approach, I performed Morpholino (MO)-

mediated loss-of-function analyses of selected genes. As a purchase of MOs for each of the 

28 genes was not feasible, nine candidate genes were chosen according to 1) phenotypic 

analysis by gain-of-function 2) onset of expression during early development (as 

determined by RT PCR, Table 1) and 3) research of literature with main focus on novelty of 

genes (Table 1). MOs were targeted against X. tropicalis genes to avoid redundancy of 

pseudoalleles, which is common in X. laevis; however, several MOs target at least one X. 

laevis allele as well (see Materials & Methods for details; see Table 1 for overview of all 

obtained phenotypes).  
 

In summary, injection of one MO does not alter the embryonic phenotype (not shown), 

whereas the remaining eight MOs induce phenotypic changes. Injection of two MOs is 

lethal at gastrula stages (not shown). Injection of four MOs leads to elongation defects 

during neurula stage (not shown); at tadpole stage these embryos show a variety of 

phenotypic changes, including ventralization, stunted axis and head defects (Fig. 17A, B). 

Injection of two MOs affects phenotypes only at late tailbud stage, leading to ventrally bent 

tails and generally delayed development, respectively (Fig. 17A). Injection of one MO 

induces a phenotype partially reminiscent of Wnt pathway perturbation. The MO targeting 

ADP-ribosylation factor4 (ARF4) induces elongation defects during neurula stage and head 
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defects at tadpole stage (Fig. 17B), thus in part mimicking Wnt pathway activation. 

However, ARF4 MO injected embryos show a range of other defects as well, including 

impaired gastrulation and generally delayed development.  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Conclusion: Of the 28 candidates analyzed in gain- and loss-o

gene, ARF4, partially mimics the effects of a Wnt regulator in X
 

 

Selection of ADP-ribosylation factor4 for further
 

ADP-ribosylation factor4 (ARF4) was chosen for further

Overexpression of mRNA, which leads to anteriorized embryo

(Fig. 16b’); 2) MO mediated knock-down, which induces ga

possibly due to Wnt activation (Fig. 17B); 3) inhibition of W

assays by ARF4 (by W.W., Table 1), suggesting that it may 

transfection in cultured cells, where ARF4 leads to loss of

suggesting a possible mechanism for Wnt inhibition (by G.D., 

initial results, my working hypothesis was that ARF4 may spec

by negatively regulating the amount of cell surface-localized LR

 

ARFs are highly conserved, ras-like cytoplasmic GTPases wid

of protein/vesicle traffic, endocytosis and organelle maint

 

Figure 17. Loss-of-function

analysis of selected genes in

X. tropicalis. 2-cell embryos

were injected equatorially

with 10-25 ng MO targeting

the indicated gene (numbers/

names on panel bottom refer

to Table 1) and photographed

at tadpole (A) and tailbud (B)

stages. Control, control MO

injected embryos.  
f-function analysis, only one 

enopus embryos. 

 study 

 study on account of: 1) 

s, suggesting Wnt inhibition 

strulation and head defects, 

nt1/Fz8 stimulated reporter 

act as Wnt inhibitor; 4) co-

 cell surface LRP6 protein, 

Table 1). In the light of these 

ifically inhibit Wnt signaling 

P6. 

ely implicated in regulation 

enance. Inhibition of ARF 
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function efficiently blocks protein transport through the early secretory pathway [245-248, 

261, 262]. Since ARFs mediate such broad effects on the general cell machinery, it is 

possible that they indirectly co-affect Wnt signaling, e.g. by influencing homeostasis of the 

membrane compartment, where LRP6 is localized. Thus, my prime focus was the analysis 

of the specificity of ARF4-mediated effects on Wnt/LRP6 signaling. 

 

Analysis of the role of ARF4 in Wnt signaling: Selected results 

As main tools to study ARF4 function, I constructed constitutive active (Q71L; GTP 

associated) and dominant negative (T31N; GDP associated) mutants of ARF4, which are 

well established to activate and inhibit ARF4 function, respectively [247]. The following 

results were obtained: 

• Xenopus embryos injected with ARF4 T31N as well as ARF4 Q71L mRNA show 

gastrulation defects and stunted body axes, but do not mimic phenotypes induced by 

Wnt activation and inhibition, respectively (not shown). This indicates that ARF4 

mutants do not specifically affect the Wnt pathway in vivo.                                                          

• ARF4 MO injection does not affect a Wnt reporter in embryos, indicating that MO-

induced effects are not due to Wnt pathway perturbation (not shown). 

• In cultured cells, a Wnt reporter (stimulated with Wnt1/LRP6) is mildly inhibited by 

wild type ARF4, whereas co-transfection of either mutant strongly inhibits the reporter 

(not shown). Since the Q71L and T31N mutants have opposing molecular functions, 

this result is in contrast to a hypothesis suggesting specific Wnt regulation by ARF4. 

• Co-transfection of ARF4, or either mutant, in cells reduces expression of cell surface 

LRP6 (Table 1), but also expression of several control proteins, indicating an unspecific 

effect on protein trafficking rather that a specific effect on LRP6 (not shown). 

• Co-transfection of ARF4, or either mutant, in cells reduces expression of cell surface 

LRP6∆C, an LRP6 construct which lacks the cytoplasmic C-terminus [176], indicating 

that the effect is not mediated through the C-terminus of LRP6, and thus indirect (not 

shown).  

 

Conclusion. The hypothesis that ARF4 may be a specific Wnt inhibitor, acting by 

negatively regulating the amount of cell surface-localized LRP6, could not be validated. 

Rather, my results are in agreement with a general function of ARF4 in membrane/protein 

traffic. Therefore, this project was not continued further. 
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Characterization of the Krm2 binding protein Erlectin  
 

 

Identification of Erlectin as binding partner of Krm2 in a proteomic 

approach 
 

To identify binding partners of Krm2, C.C. performed a large-scale affinity purification of a 

Krm2 protein complex from cellular membrane lysates [263]. One of the proteins found 

was a novel protein we termed Erlectin (for ER lectin, see below; other GenBank 

designations are XTP3-B, C2orf30, CL25084). 
 

 

Domain structure and homologies of Erlectin  
 

The open reading frame of erlectin (GeneID 27248) consists of 483 amino acids with a 

calculated molecular weight of 53 kDa (Fig. 18A). Database searches revealed homologs of 

erlectin in deuterostomes (chordates, echinoderms) and protostomes including D. 

melanogaster and C. elegans (Fig. 18B). Erlectin contains a signal peptide and two 

Mannose-6-phosphate receptor homology (MRH) domains (Fig. 18C). MRH domain 

containing proteins represent a subfamily of the Mannose-6-phosphate receptor 

superfamily and include four members [264-266] (Fig. 18C), three of which have been 

described before: OS-9 [267-272], the gamma subunit of N-Acetylglucosamine-1-

Phosphotransferase (GNPTAG) [273, 274] and Glucosidase II beta subunit (PRKCSH) 

[275-280]. Interestingly, the latter two play a role in N-glycan recognition and processing in 

the secretory pathway. 
 
 

Binding of Erlectin to Krm2 is N-glycan-dependent 
 

Since other MRH domain proteins are implicated in N-glycan recognition, C.C. analyzed if 

binding of Erlectin to Krm2 is glycan-dependent. Deglycosylation of Krm2 by treatment 

with N-glycosidase F leads to a shift in apparent molecular weight of Krm2, indicating that 

it is indeed N-glycosylated. Furthermore, deglycosylated Krm2 fails to bind Erlectin in 

vitro (not shown) [263]. These results suggest that Erlectin recognizes and binds to 

oligosaccharides linked to Krm2. Consistent with this, the Krm2 kringle domain contains 

one potential N-glycosylation site (N48 in mouse, N55 in X. laevis).  
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Figure 18. Erlectin is a novel protein related to oligosaccharide processing proteins. (A) Amino 

acid sequence of Erlectin. Highlighted in red are peptides identified in the Krm2 affinity purification. 

(B) Erlectin homology tree and matrix showing amino acid identity between indicated species. (C) 

Structure of Erlectin and comparison with domain relatives (adapted from SMART). Erlectin 

contains a signal peptide and two MRH domains (PRKCSH by SMART/InterPro, indicated as D1, 

D2). The scheme shows a comparison of all four human proteins containing an MRH domain. Also 

shown is an alignment of a conserved region of the MRH domains, with conserved residues labeled 

in black and grey. A point mutation in a conserved residue (G106S, arrow) of GNPTAG leads to a 

lysosomal storage disease [273]. Abbreviations: hu, human; mo, mouse; ch, chicken; X.t., Xenopus 

tropicalis; D.r., Danio rerio; C.i., Ciona intestinalis; S.p., Strongylocentrotus purpuratus; D.m., 

Drosophila melanogaster; PRKCSH, β-subunit of Glucosidase II; GNPTAG, γ-subunit of GlcNAc-

1-phosphotransferase. 
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A point mutation of Erlectin abolishes binding to Krm2 
 

Since Erlectin contains two MRH domains, C.C. and I combined our efforts to test the 

requirement of either MRH domain for Krm2 binding. Deletion of the MRH domain 2 but 

not 1 impairs binding of Erlectin to Krm2, indicating that MRH domain 2 alone mediates 

Krm2 binding (Fig. 19, lanes 1-3).  
 

A point mutation in the MRH domain of GNPTAG (see Fig. 18, arrow) leads to the 

lysosomal storage disease mucolipidosis type III in humans [273]. It affects a conserved 

residue (G106S) which is present in the MRH domains of OS-9 and PRKCSH as well as in 

MRH domain 2 of Erlectin (G379S), but not MRH domain 1 (Fig. 18, arrow). Therefore, 

C.C. and I tested if the homologous mutation of Erlectin affects binding to Krm2. 

Interestingly, this mutation abolishes binding of Erlectin to Krm2 (Fig. 19, lane 5). 
 
 

 
 

 

 

 

 

 

 

 

 

Figure 19. A point mutation of Erlectin abolishes binding to Krm2. In vitro binding assay with

flag-Erlectin constructs as indicated. IPs were performed with anti-V5 antibody and analyzed by

SDS-PAGE and Western blotting. D1/D2, MRH domains 1 and 2, respectively. Top panel: Protein

expression, lower two panels: IPs.  The binding assay was performed by C.C. I discovered the point

mutation and cloned all Erlectin deletion constructs. 

 

 39



Results 

Erlectin is a member of the ER synexpression group in Xenopus 
 

I studied the expression pattern of erlectin during Xenopus development by in situ 

hybridization and RT-PCR. Two alleles are present in X. laevis showing 82% identity in 

their open reading frames. I therefore designed PCR primer pairs as well as in situ probes 

specific for each allele. RT-PCR analysis shows no difference in the expression pattern of 

both alleles. Likewise, in situ hybridization indicates a comparable expression pattern of 

both alleles.  

 

RT-PCR analysis shows that erlectin is expressed maternally. Levels of mRNA decrease 

during gastrulation (stages 10.5 – 13) and are then increasingly upregulated during 

neurulation (st. 17 – 21) and tailbud stages (Fig. 20A). By whole-mount in situ 

hybridization, erlectin expression is observed in the animal hemisphere of blastula stage 

embryos (Fig. 20C). During neurula stages expression is seen in the notochord (Fig. 20E). 

At late neurula stage strong expression is also detected in the anlagen for cement gland and 

hatching gland and is very similar to the expression of XAG, a marker for this tissues [281] 

(Fig. 20F, G). In tailbud embryos erlectin expression occurs in otic vesicle and pronephros 

and continues in cement and hatching gland (Fig. 20I). A weak ubiquitous expression of 

erlectin is observed at all stages. This expression is highly reminiscent of the expression 

pattern of the endoplasmic reticulum (ER) synexpression group [282], which comprises a 

group of genes characterized by predominant expression in actively secreting tissues. The 

ER synexpression group so far includes 38 annotated members [263], of which the KDEL 

receptor is one example (Fig. 20H). These genes are not only co-expressed in a 

characteristic pattern encompassing organs with high secretory activity, but also function in 

ER-related processes [282, 283]. I conclude that erlectin is a member of the ER 

synexpression group, which strongly suggests that the protein plays a role in secretory 

protein traffic. 

 

The expression pattern of Erlectin is conserved in zebrafish (D. rerio)  

Expression of the zebrafish erlectin homolog is detected in notochord and hatching gland 

(Fig. 21) as well as the otic vesicle (not shown) [284], thus being spatially conserved in 

Xenopus and zebrafish (compare Figs. 20E and 21D).  
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Figure 20. Erlectin is a member of the 

endoplasmic reticulum synexpression 

group. (A) Expression of erlectin

analyzed by RT-PCR at the indicated 

stages. Histone H4 was used for 

normalization. (C) Blastula stage embryo 

(st. 8) showing erlectin expression in the 

animal hemisphere. (E) During neurula 

stages erlectin is expressed in the 

notochord. Embryo was sagittally cut, 

anterior (a) towards the left. (p), 

posterior. (F, G) Anterior view of late 

neurula stage embryos showing 

expression of XAG and erlectin, 

respectively. (I) Tailbud stage (st. 28). 

The inset shows the same embryo in 

anterior view. (H) Expression of the 

KDEL receptor, member of the ER 

synexpression group. (B, D) Control 

hybridizations using sense riboprobe. 

Abbreviations: Cg, cement gland; hg, 

hatching gland; no, notochord; ov, otic 

vesicle; pn, pronephros. 

 
 
 

Figure 21. Erlectin expression in the 

zebrafish Danio rerio. Whole mount in 

situ hybridizations. (A-C) Dorsal view, 

anterior to the left. During gastrula (A)

and segmentation (B-D) stages erlectin is 

expressed in axial chordamesoderm (cm) 

and notochord (no), respectively. (D)

Sagittal section, anterior to the left. 

Expression is also detected in the 

hatching gland (hg). Pictures taken from 

[284]. 
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Erlectin transcription is not induced by ER stress 
 

Cells with high unfolded protein load of the ER (ER stress) due to disturbed homeostasis  or 

professional secretory activity (e.g. plasma cells, pancreatic cells, hepatocytes) activate an 

intracellular signal transduction cascade, which leads to transcription of numerous target 

genes (in particular ER chaperones) and is termed unfolded protein response (UPR) [285-

288]. Members of the ER synexpression group in Xenopus are mainly expressed in tissues 

that show a high demand for secretory activity [282]; I therefore hypothesized that 

regulatory elements of ER synexpression group genes may be shared with ER stress 

inducible genes. 

  

Indeed, the 5’ UTR of the erlectin gene contains a conserved binding site for ATF6 (in 

mouse, zebrafish, X. tropicalis, not shown), a transcription factor mediating UPR [286, 287, 

289]. Hence, I tested if erlectin transcription can be activated by ER stress in Xenopus 

animal cap explants (ACs). Treatment of ACs with the glycosylation inhibitor tunicamycin 

induces transcription of the ER stress-inducible chaperone BiP/GRP78 (glucose-regulated 

protein, 78kDa) in a dose-dependent manner [290], whereas transcription of the cytoplasmic 

chaperone Hsp70 is not affected (Fig. 22); this indicates that induction of ER stress by 

tunicamycin is specific. However, transcription of erlectin is not induced by tunicamycin 

treatment, indicating that erlectin is not a direct ER stress target (Fig. 22). 
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explants. H4 was used for normalization. The expression of keratin  

as further control. 

 

 

Figure 22. Erlectin trans-

cription is not induced by ER

stress. RT PCR analysis of

tunicamycin treated ACs using

the indicated primers. Explants

were cut at stage 9, grown for 9

hours and then incubated with

indicated amounts of

tunicamycin for 12 hours.

Samples were prepared in

duplicates. Control, untreated

ddd, integrin and krm2 was analyzed
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Erlectin is a luminal protein of the ER 
 

To further corroborate an involvement of Erlectin in ER function, we next studied its 

subcellular distribution in cultured cells.  
 

C.C. showed by immunofluorescence analysis that Erlectin co-localizes with the ER-

marker Calnexin, but not with the trans-Golgi marker TGN38 [291] or the endosome 

marker EEA1 [292] (not shown). To clarify the membrane topology of Erlectin, I 

performed a protease protection assay with membranes prepared from transfected cultured 

cells. I compared the protease accessibility of the luminal domain of the ER chaperone 

Calnexin [293] and Erlectin. Erlectin is protease resistant in the absence of non-ionic 

detergent as is Calnexin, while both are degraded in the presence of Triton X-100 (Fig. 23). 

The change of the gel migration of Calnexin upon protease treatment in the absence of 

detergent reflects the removal of its short (87 amino acids) cytoplasmic domain [293]. 

Together, these results indicate that Erlectin is ER-localized and resides on the luminal side 

of the ER membrane.  
 
 

 

 

 

 

 

 

Figure 23. Erlectin is localized in the ER lumen. Protease protection assay followed by SDS-

PAGE analysis and Western blotting. Microsomal membranes from HEK293T cells transfected with

Erlectin-HA were subjected to Proteinase K (PK) digestion in the presence or absence of TritonX-

100 (TX-100).  
 
Role of Erlectin during Xenopus development 
 

To study the function of Erlectin in vivo I first overexpressed mRNA in Xenopus embryos. 

Analysis of tagged Erlectin protein by Western blotting confirmed that the injected mRNA 
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was translated into protein (not shown). Embryos injected with up to 4 ng of mRNA 

develop normally (not shown). 
 

To further investigate the role of Erlectin during development I focused on a MO-mediated 

loss-of-function approach. I designed two MOs targeting each of the two alleles found in X. 

laevis. Both MOs also target the X. tropicalis erlectin allele (two mismatches each) (Fig. 

24).  
 

Injection of both MOs at 4-cell stage leads to a very similar, characteristic phenotype in X. 

laevis and X. tropicalis embryos, although at different doses (Fig. 25A). Embryos develop 

morphologically normal until late tailbud stage. Tadpole embryos show axial defects 

including anterior head defects and shorter, bent tails, as well as retarded development and 

consequently reduced size. Histological analysis of MO injected embryos shows reduced 

size of axial organs including somites and notochord. Embryos exhibit microcephaly, with 

reduced brain tissue which lacks a ventricle. The cement gland is present but abnormally 

shaped and the heart is absent (Fig. 25B). The specificity of this phenotype is supported by 

two different MOs that give the same characteristic phenotype in both X. laevis and X. 

tropicalis. I next asked if the observed axial defects in Erlectin MO injected embryos are 

due to a requirement of Erlectin during early a-p patterning. I injected Erlectin MO1 into 

Xenopus embryos and analyzed bf1 (forebrain) [294] and krox20 (hindbrain) [295] 

expression (Fig. 25D). Neither of these markers is affected by Erlectin MO1 injection. 

Likewise, other a-p markers such as XAG (cement/hatching gland) [281], otx2 

(fore/midbrain) [296] and Xnot2 (notochord) [37] are unaffected (not shown). Taken 

together, these results indicate that Erlectin plays an essential, pleiotropic role during late 

Xenopus development, after initial a-p patterning is established. 

 
 

 

Figure 24. Homology tree of erlectin alleles in X. laevis (X.l.) and X. tropicalis. Also shown is an 

alignment of nucleotide sequences around the ATG (red), which are targeted by two Morpholinos as 

indicated. 
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A Figure 25. Erlectin 

Morpholino (MO) 

injection induces head 

and axial defects in 

Xenopus embryos. (A)

MO1 and MO2 injected 

embryos show similar 

phenotypes. X. laevis and 

X. tropicalis embryos 

were injected with 30 ng 

and 10 ng of MO1 and 60 

ng and 20 ng of MO2, 

respectively. Control 

embryos were injected 

with 60 ng (X. laevis) and 

20 ng (X. tropicalis) 

control Morpholino. (B)

Histological analysis of 

MO1 injected X. laevis 

embryos. Note that 

notochord (no) and 

somites (so) are reduced 

and the brain (br) and 

heart (he) are virtually 

absent. Cg, cement gland, 

fo, foregut. (C) Statistical 

overview of one 

representative MO 

injection experiment. 

Shown is the percentage 

of embryos with the 

indicated phenotype. (n), 

total number of embryos.

(D) Early anterior neural

markers are not affected 

 

 

B 

 

 

C 

 

 

D 

 
  

 

 

eeee by injection of MO1. 8-cell stage embryos were injected with 10 ng MO1 or control MO into

one dorsal animal blastomere. Embryos were harvested at stage 20 and processed for in situ

hybridization. Co-injected ß-gal was used as lineage tracer. 
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Erlectin does not cooperate with Krm2 in Wnt inhibition in Xenopus 
 

As Erlectin specifically binds to the Wnt inhibitor Krm2, I analyzed a potential functional 

interaction of these proteins in Wnt inhibition during Xenopus development. A summary of 

approaches and obtained results is presented below. 
 

• Erlectin and Krm2 do not interact in gain-of-function. Since Krm2 overexpression 

anteriorizes embryos [220], I tested if overexpression of Erlectin can modify this Krm2 

gain-of-function phenotype by co-injecting erlectin and krm2 mRNA. Neither an 

enhancement nor a rescue of the embryonic phenotype was observed (not shown).  

• Erlectin loss-of-function does not mimic Krm2 loss-of-function. Krm1+2 MO injected 

embryos show microcephaly and reduced expression of the forebrain marker bf1 due to a 

role of the proteins in early a-p patterning [220]. As detailed above, early a-p markers are 

unaffected by Erlectin MO1 injection in embryos (Fig. 25D) and animal caps (not 

shown). 

• Erlectin and Krm2 do not interact in loss-of-function. Co-injection of Erlectin MO1 

and Krm2 MO [220] does not lead to a significantly and specifically enhanced 

phenotype; rather, the phenotype of co-injected embryos is a superimposition of 

independent effects induced by Erlectin MO1 and Krm2 MO (not shown). 

• Erlectin loss-of-function is not rescued by Krm2 overexpression. If two genes 

cooperate in the same pathway, loss-of-function of one gene may be compensated by 

overexpression of the other. Co-injection of krm2 mRNA does not rescue the phenotype 

induced by Erlectin MO1 injection. Furthermore, co-injection of several other Wnt 

inhibitors, including dkk1 or dnWnt8 mRNA, or β-catenin MO [297], does not rescue the 

phenotype induced by Erlectin MO1 injection (not shown). 
 

Taken together, these results clearly indicate that although Erlectin binds to Krm2 in vitro, 

in Xenopus embryos Erlectin (i) does not mimic Krm2 in gain- and loss-of-function 

analysis, and (ii) does not functionally interact with Krm2 in Wnt inhibition. 
 

However, my MO-mediated knock-down experiments clearly indicate that Erlectin 

function is required during Xenopus development. Since Erlectin is a member of the ER 

synexpression group, localizes to the ER lumen and binds N-glycans, this strongly suggests 

an essential, possibly general role of Erlectin in an ER-related process. 
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Kremen is required for neural crest induction in Xenopus 

and promotes LRP6-mediated Wnt signaling 
 

 

Xkrm2 is co-expressed with and regulated by Wnts 
 

This laboratory previously reported that Xkrm1 and 2 are co-expressed with dkk1 in the 

Xenopus prechordal plate during mid-neurula stages, where they cooperate to regulate a-p 

CNS patterning [220]. However, krm2 shows additional expression in regions devoid of 

dkk1 transcripts. At gastrula stages Xkrm2 expression occurs in the ventro-lateral marginal 

zone of the embryo (Fig. 26A). During neurula stages krm2 is expressed in the lateral neural 

plate, overlapping with the neural crest marker slug (Fig. 26B). Furthermore, krm2 is co-

expressed with Wnt genes such as Wnt8 and Wnt3a (Fig. 26A), raising the possibility that 

krm2 expression is regulated by Wnt signaling. Indeed, local inhibition of Wnt signaling by 

injection of dominant negative XWnt8 mRNA abolishes the expression of krm2 in the 

marginal zone (Fig. 27A, C). Conversely, injection of Wnt8 and Wnt3a DNA leads to 

ectopic expression of krm2 (Fig. 27B, C). 
  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 26. Xkrm2 is co-expressed with Wnts and neural crest (NC) markers. Whole mount in

situ hybridizations. (A) Comparison of Xkrm2, XWnt8 and XWnt3a expression patterns in gastrula

and early neurula stage embryos. Top, gastrula stage. Vegetal view, dorsal is up. Bottom, neurula

stage. Dorsal view, anterior is up. (B) Comparison of Xkrm2 and slug expression patterns at the

indicated stages. Dorsal view, anterior is up. Lowermost panel: View of frontally cut stage 16

embryos, dorsal is up. Brackets indicate overlapping expression domains of krm2 and slug. This

experiment was done by R. Mayor lab members. 
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igure 27. Xkrm2 expression is regulated by Wnt signaling. (A-C) Effect of Wnt pathway 

erturbations on krm2 expression. (A, B) Whole mount in situ hybridizations. (A) 32-cell stage 

embryos were injected equatorially in two opposite blastomeres with 1 ng PPL or dnWnt8 mRNA 

and analyzed at gastrula stage. Arrowheads indicate ß-gal lineage tracer staining (blue). Vegetal 

iew, dorsal is up. (B) 4-cell stage embryos were injected animally with 200 pg pCS2-PPL or 

CSKA-Wnt8 DNA or 100 pg pCS2-Wnt3a DNA in one blastomere and analyzed at gastrula stage. 

ateral view, dorsal to the right. (C) Statistical overview of experiments shown in (A) and (B). (D) 4 

 8-cell stage embryos were injected animally with 100 pg XWnt8 or Wnt3a mRNA, or 1 or 2 ng 

MP4 mRNA. Animal caps were cut at stage 8-9, cultured until stage 20 equivalent, and analyzed 

y RT-PCR for expression of the indicated genes. (E) 32-cell stage embryos were treated with 120 

M LiCl for 50 min, cultured until stage 11.5, and analyzed by RT-PCR. (D, E) Histone H4 was 

sed for normalization. –RT, minus reverse transcriptase control. 

 
I furthermore analyzed the effect of Wnt and BMP pathway activation on krm2 expression 

in animal caps. In control caps krm2 is expressed at moderate levels. Wnt8 and Wnt3a 

mRNA injections increase krm2 expression, whereas BMP mRNA has no effect (Fig. 27D). 
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LiCl treatment of early embryos, which leads to dorso-anteriorization, downregulates krm2 

expression along with Wnt8 and other ventro-laterally expressed genes (Fig. 27E, and not 

shown). I conclude that (i) krm2 at gastrula stages is expressed and regulated like a classical 

ventro-lateral gene; (ii) krm2 is co-expressed with Wnts and regulated by zygotic Wnt 

gnaling; (iii) krm2 at neurula stages shows differential expression in the neural crest. 

sion of krm2 induces NC markers and NC-derived 

tructures 

al 

orphology (Fig. 28E). Embryos frequently also show eye and tail defects (not shown).   

ons, where Dkk1 is absent, 

rm2 has a stimulatory effect on NC development.  

 

si

 

 

Overexpres

s
 

To study potential Dkk1-independent roles of Krm2, I first analyzed gain-of-function 

effects. Localized injection of krm2 mRNA into anterior embryonic regions induces ectopic 

cement glands (Fig. 28A, arrowhead) and retinal pigment epithelium (Fig. 28B, arrowhead). 

Ventral injection of krm2 mRNA leads to induction of protrusions containing melanocytes 

and fin-like structures (Fig. 28C, arrowhead). Widespread krm2 overexpression leads to 

hyper-pigmented embryos due to overproduction of melanocytes, which have norm

m

 

Melanocytes are neural crest (NC) derivatives, which in Xenopus are characteristically 

overproduced when NC regulators such as slug or sox10 are overexpressed [81, 111, 298]. I 

therefore tested if krm2 overexpression can induce NC markers. Localized krm2 injection 

leads to ectopic expression of the NC marker sox10 (Fig. 28F, G, arrowheads). Krm2 

overexpression affects NC markers in a region-specific fashion: Posterior krm2 injection 

leads to expansion of slug and sox10 (Fig. 28L, N, black arrowheads). In contrast, anterior 

krm2 injection reduces slug and sox10 expression (Fig. 28M, O, black arrowheads). Thus, 

the region of krm2 expression determines its effect on NC markers (summarized in Fig. 

28P). This may be explained by the local interaction of injected Krm2 with Dkk1 anteriorly, 

to inhibit Wnt signaling and NC induction. In posterior regi

K
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Figure 28. Xkrm2 over-

expression induces NC-derived 

structures and NC markers. (A-

E) Phenotypic analysis of krm2

overexpression. Anterior to the 

left. (A-C) 16-cell stage embryos 

were injected in a single animal 

(A, B) or ventral equatorial (C)

blastomere with 400 pg krm2

mRNA and photographed at 

tadpole stages. Arrowheads 

indicate ectopic pigment 

containing structures. (D)

Uninjected control embryo at 

tadpole stage.  (E) 4-cell stage 

embryos were injected 

equatorially in both dorsal 

blastomeres with 400 pg krm2

mRNA each. (F, G) 16-cell stage 

embryos were injected in a single 

ventral equatorial blastomere with 

400 pg krm2 mRNA and sox10

expression was analyzed at 

tailbud stage by in situ

hybridization. Arrowheads 

indicate ectopic sox10 expression. 

Co-injected ß-gal was used as 

lineage tracer (red). (H-O)

Neurula stage embryos, shown in 

anterior view. Embryos were 

injected with 400 pg PPL (H-K)

or krm2 (L-O) mRNA into one 

ventral equatorial blastomere at 

d.. 

 

 
16-cell stage (H, J, L and N) or one dorsal animal blastomere at 8 to 16-cell stage (I, K, M and O). 

In situ hybridizations were performed using slug and sox10 probes as indicated. ß-gal lineage tracer 

is stained in red. (H-O) Circles indicate lineage tracer positive cells. Black and white arrowheads 

indicate altered and control marker gene expression, respectively. (P) Scheme and statistical 

overview of experiment shown in (H-O). Red area indicates region of krm2 injected cells. 
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Morpholino-mediated knock-down of Krm2 inhibits NC formation 
 

Since krm2 is expressed in the prospective NC region and is sufficient to induce NC tissue, 

I next asked if it is also required for NC development. I made use of the previously 

characterized Morpholino antisense oligonucleotide targeting the ATG codon of Xkrm2 

(MO-1) [220].  
 

Besides the previously described microcephaly I found that Krm2 MO-1 injection strongly 

reduces the pigmentation of embryos (Fig. 29A). Furthermore, Krm2 MO-1 inhibits slug 

expression (Fig. 29B, C). This is also the case for a second Krm2 MO (Krm2 MO-2), which 

targets the 5’ untranslated region of krm2 (Fig. 29B, C), thus corroborating the specificity of 

the effect. 

 

 

Figure 29. Morpholino-mediated knock-

down of krm2 expression. (A) 8-cell stage 

embryos were injected animally with 20 ng 

control MO (CoMO) (left panel) or Krm2 

MO-1 (right panel). (B) 4 to 8-cell stage 

embryos were injected animally with 10 ng 

Krm2 MO-1 or 20 ng Krm2 MO-2 or 

(CoMO), respectively. Shown are whole-

mount in situ hybridizations for slug

expression at neurula stage in anterior view. 

ß-gal lineage tracer is stained in red. (C)

Statistical overview of MO injection 

experiment. 

 

 

To analyze if Krm2 is required specifically in the ectoderm for NC formation, or in the 

underlying, inducing mesoderm, members of the Mayor lab combined Krm2 MO-1 injected 

animal caps with uninjected dorso-lateral marginal zones (DLMZs) and analyzed NC 
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induction. Whereas DLMZs can induce slug in control caps in 62% of cases (n=42), slug 

induction is completely abolished upon injection of Krm2 MO-1 into the responding 

ectoderm (0%, n=43) (Fig. 30). These results indicate that Krm2 is required directly in the 

ectoderm for NC formation, where it is also expressed.  

 
Figure 30. Krm2 is required in the 

ectoderm for NC formation. Top left: 

Diagram of experiment. 2-cell stage embryos 

were injected animally with 10 ng CoMO or 

Krm2 MO-1 and animal caps (ACs) were 

explanted at stage 8-9 and combined with 

dorso-lateral marginal zones (DLMZs) of 

uninjected gastrula stage embryos. Conjugates 

were assayed at stage 20 for slug expression 

by in situ hybridization. Top right: 

Conjugates of DLMZs and CoMO injected 

 

 

 

 

 

l  

 
ACs. Arrowheads indicate slug expression. Bottom left: ACs injected with CoMO and processed for

slug in situ. Bottom right: Conjugates of DLMZs and Krm2 MO-1 injected ACs. This experiment

was performed by members of R. Mayor’s lab.  
 
 

Morpholino-mediated knock-down of LRP6 inhibits NC formation 
 

It is well established that canonical Wnt signaling is required for NC induction [69, 299, 

300]. In Xenopus, overexpression of Wnts or Wnt receptors, as well as downstream 

signaling components, can all induce NC. Conversely, inhibition of Wnts, Wnt receptors 

and β-catenin blocks NC induction [93, 97, 98, 299]. Since Krm2 is a negative Wnt 

modulator and is itself Wnt regulated, I therefore hypothesized that Krm2 may also play a 

positive role in Wnt/LRP6-mediated NC induction. Hence, I tested whether LRP6 knock-

down mimics Krm2 loss-of-function during NC development.  
 

I designed a MO targeting both X. laevis and X. tropicalis LRP6 genes. Injection of this 

LRP6 MO results in strongly anteriorized embryos with enlarged cement gland, shorter and 

ventrally bent tail and triangular body shape (Fig. 31A). This phenotype closely mimics the 

anteriorization induced by overexpression of the LRP6 antagonist dkk1 (Fig. 31A). Of note, 

a morphologically highly sensitive structure to injection of low doses of LRP6 MO is the 
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dorsal fin (Fig. 31D, arrowheads). The LRP6 MO phenotype is fully rescued by co-injecting 

human LRP6 mRNA (Fig. 31A, panels c, e), confirming specificity of the MO. 

Furthermore, injection of LRP6 MO in X. tropicalis embryos results in the same phenotype 

as in X. laevis (Fig. 31B). Similar to Krm2 MO, LRP6 MO inhibits slug expression (Fig. 

31C). Thus, MO mediated knock-down of both LRP6 as well as its modulator Krm2 results 

in inhibition of NC formation. 
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Figure 31. Morpholino-mediated knock-down of

LRP6 expression. (A, B) Phenotypic analysis of LRP6

MO in X. laevis (A) and X. tropicalis (B). All embryos

were injected equatorially at 2-cell stage. (A) (a) Injection

of 5 ng CoMO. (b, c) Co-injection of 5 ng LRP6 MO and

either 1 ng control (PPL) (b) or 400-600 pg human LRP6

mRNA (c). (e) Statistical overview. (d) Injection of 20 pg

dkk1 mRNA. (B) X. tropicalis embryos injected with 1.25

ng CoMO or LRP6 MO show the displayed phenotypes at

frequencies of 89%, n=38, upper panel and 98%, n=44,

lower panel. (C) 2-cell stage X. laevis embryos were

iiiiiiii e with 5 ng CoMO or increasing LRP6 MO doses as 
 

 

 

 

 

 

 
 

injected equatorially in one blastomer

indicated. Neurula stage embryos were processed for slug expression by in situ hybridization and

are shown in anterior view. ß-gal lineage tracer is stained in red. (D) Effect of mild LRP6 knock-

down on development of the dorsal fin. Upper panel, control embryos. Lower panel, phenotypes of

embryos injected animally with 1.5 ng LRP6 MO. Note reduction of the dorsal fin (arrows) in

embryos with otherwise normal morphology. 
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Krms stimulate LRP6-mediated Wnt signaling in 293T cells 
 

The results obtained so far suggest that Krm2, besides its well established role in Wnt 

inhibition, may also, in the absence of Dkk1, positively regulate Wnt signaling. Previously 

this lab found no effect of Krm1 or 2 in Wnt responsive reporter assays triggered by 

transfection of wnt/fz or wnt/fz/LRP6 in HEK293T cells. I now find that Xkrm1, but also 

Xkrm2, significantly stimulate Wnt signaling when co-transfected with LRP6 alone, 

whereas no effect is observed with fz8 or dvl (Figs. 32A, 33). I conclude that Krms can 

specifically promote LRP6-mediated signaling.  
 

 

 

BA  

 

DC 
 

 

 

 

 

  

Figure 32. Krm promotes LRP6-mediated Wnt signaling. (A-D) TOPFLASH luciferase reporter 

assays in HEK293T cells. RLU, relative light units. Co, empty pCS2 vector.  (A) XKrm1 cooperates 

specifically with LRP6. The inset shows the subcellular localization of transfected LRP6-GFP (left 

panel) and LRP6∆E1-4-GFP (right panel) in HEK 293T cells; co-transfected cytoplasmic dsRed 

(red) demarcates the cell shape. (B) Co-transfection of mesd and Xkrm1. (C) BMP luciferase 

reporter assay in HEK293T cells. (D) Effect of XKrm1 on LRP6 signaling is Dkk1 dependent. 
 
One possibility how Krm may stimulate LRP6 signaling is by promoting its trafficking or 

stability. I therefore compared its effects to Mesd, an LRP6 chaperone, which also 
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stimulates LRP6-mediated Wnt signaling [172, 173] (Fig. 32A). As previously shown, 

Mesd is required for maturation of β-propeller/EGF modules of LDLR family members 

[180]. Consequently, mesd transfection does not promote signaling stimulated by 

LRP6∆E1-4, a cell surface-localized constitutive active LRP6 construct with truncated 

extracellular domain (Fig. 32A). In contrast, krm1 does moderately stimulate LRP6∆E1-4-

mediated signaling (Fig. 32A). Co-transfection of krm1 and mesd shows a merely additive 

effect (Fig. 32B), suggesting that these genes do not functionally interact.   
 

To test the specificity of the Wnt promoting effect of Krm1, I analyzed a BMP responsive 

reporter and found it unaffected (Fig. 32C). 
 

I next analyzed the effect of XKrm1 and Mesd on Wnt signaling in presence of Dkk1. Co-

transfection of dkk1 expectedly reduces the Krm1/LRP6 signal to background levels, but it 

does not affect the Mesd/LRP6 signal (Fig. 32D), as previously shown [301]. When wnt1 is 

co-transfected additionally, the same result is observed (Fig. 32D).  
  
I furthermore compared the effect of different Krm constructs in Wnt reporter assay. 

Similarly to XKrm1, albeit to a lesser extent, mouse Krm1 and Xenopus Krm2 promote 

LRP6-mediated Wnt signaling; however, mouse Krm2 consistently does not (Fig. 33). This 

may be due to an unspecific inhibition of downstream Wnt components by mKrm2 

(unpublished observation). Interestingly, a mKrm1 construct with truncated cytoplasmic 

domain (mKrm1∆C) has reduced activity when compared to wildtype mKrm1, indicating 

that the cytoplasmic tail is partially required for Krm1 activity (Fig. 33).  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Taken together, these data indicate a context-dependent 

Together with Dkk1, Krms inhibit Wnt/LRP6 signaling; h

Krms promote LRP6 signaling.    

 

Figure 33. Krm constructs in

Wnt reporter gene assay. Left

panel: TOPFLASH luciferase

reporter assay in HEK293T cells.

RLU, relative light units. Co,

empty pCS2 vector.  Right panel:

SDS-PAGE and Western blot

analysis of krm constructs shows

that they are expressed at a

comparable level.  
role of Krms in Wnt signaling.

owever, in the absence of Dkk1, 
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Krms bind to LRP6 
  
This lab previously reported that Dkk1 binds to both Kremen and LRP6, thereby bridging 

the two receptors in a ternary complex, which is then removed from the cell surface [198, 

211]. Since my results indicate that Krms can also function without Dkk1, C.C. tested if 

they may bind directly to LRP6, in absence of Dkk1. She used HEK293T cells, which 

express very  low  levels of  dkk1 (unpubl. observation). In Co-immunoprecipitation  (CoIP) 

 

 

 r   

 

      antibody, to block any endogenous 

Dkk1 protein (unpublished observation 

of C.C.). To corroborate the directness 

of binding and to demonstrate 

extracellular interaction, C.C. also 

performed in vitro binding assays using 

secreted, recombinant proteins, which 

show that LRP6 co-precipitates with 

both Krm1 and 2, but not Dkk3 (Fig. 

34B). I conclude that Krm1 and 2 

specifically and directly bind to LRP6. 

experiments Krm1 and 2 are specifically precipitated with LRP6 (Fig. 34A, A’, lane 2), but 

not with the control transmembrane proteins FLRT3 and LDLR∆C (Fig. 34A, A’, lanes 3, 

4).  This is also the case in CoIPs with added anti-Dkk1 

A 

A’ 

B 
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Figure 34. Krms bind to LRP6 

specifically and directly. (A, A’) Co-

immunoprecipitation (CoIP) assays of 

HEK293T cell lysates transfected with 

krm1-V5 (A) or krm2-V5 (A’) and the 

indicated constructs. CoIPs were 

performed with anti-flag antibody and 

analyzed by SDS-PAGE and Western 

blotting. (B) In vitro binding assay with 

secreted recombinant proteins as indicated. 

IPs were performed with anti-V5 antibody 

and analyzed by SDS-PAGE and Western

blotting. (A, A’, B) Upper panel: Protein 

expression. Middle and lower panels: IPs. 

All experiments shown in this figure were 

perfomed by C.C. 
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Krm2 promotes cell surface localization of LRP6 
 

To explore the possibility that Krm may influence protein expression or trafficking of 

LRP6, I performed co-transfection experiments.  
 

In Western blot analysis of transfected HEK293T cell lysates, LRP6 is detected as an upper 

and a lower band, which are thought to correspond to the mature cell surface (ma), and 

immature cytoplasmic (im) forms of LRP6 (Fig. 35, lane 1) [173]. I confirmed this by 

treatment with Endoglycosidase H (EndoH), which cleaves immature glycans that have not 

yet traversed the Golgi apparatus. Only the lower band is EndoH sensitive and downshifts 

due to deglycosylation (dg) (Fig. 35, lane 2). Co-transfection of mesd increases mature 

LRP6, consistent with it being a reported chaperone [172, 173] (Fig. 35, lanes 5, 6). Co-

transfection of krm2 has a very similar effect on LRP6. Mature LRP6 increases at the 

expense of the immature form (Fig. 35, lanes 7, 8), the total amount of LRP6 protein being 

mostly unaffected. Co-transfection of empty vector (Fig. 35, lanes 1, 2) or dkk3 (Fig. 35, 

lanes 3, 4), a gene not affecting the Wnt pathway [35], has no effect on LRP6 protein 

expression. 

 

 
 

 

 

 

Figure 35. Krm promotes maturation of LRP6. Western blot analysis of HEK293T cells 

transfected with flag-LRP6 and the indicated constructs. Samples were treated with Endoglycosidase 

H (EndoH) as indicated. Arrows indicate the EndoH resistant mature (ma) and EndoH sensitive 

immature (im) forms of LRP6. dg, deglycosylated form.  

 
To corroborate this finding, I monitored plasma membrane levels of LRP6 by cell surface 

biotinylation. Following co-transfection with krm2, cell surface levels of LRP6 are 

increased, while the total LRP6 is mostly unaffected (Fig. 36A). This effect mimics mesd 

co-transfection (Fig. 36A). The cytoplasmic protein Nucleoside diphosphate kinase A 

(NME1) serves as control and is not biotinylated (Fig. 36A’). These data indicate that Krm2 

promotes cell surface localization of the Wnt receptor LRP6. 
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A A’ 

 

Fig. 36. Krm2 promotes cell surface localization of LRP6. (A, A’) Cell surface biotinylation 

assay. (A) HEK293T cells were co-transfected with flag-LRP6 and the indicated constructs. After 

cell surface biotinylation, cell lysates were immunoprecipitated with anti-flag antibody and subjected 

to SDS-PAGE and Western blot analysis. Membranes were probed with streptavidin-HRP to detect 

plasma membrane LRP6 (upper panel) and anti-flag antibody to detect total LRP6 (lower panel). 

(A’) The cytoplasmic protein NME1 is not biotinylated (upper panel). Lower panel: Total NME1 

protein. 

 

 

ER-localized Krm2 has little effect on LRP6 maturation 
 

As shown above, the effect of Krm2 on LRP6 protein localization closely resembles the 

effect of Mesd, an ER-localized chaperone (Figs. 35 and 36). I therefore considered the 

possibility that Krms may also promote LRP6 maturation in the ER. However, Krms are not 

ER resident; they lack a conserved di-lysine (KKXX) motif in their cytoplasmic tail, which 

mediates ER retention of transmembrane proteins [302, 303], and the presence of Krm2 

protein on the cell surface is established [211, 263]. I therefore tested if ER-trapped Krm2, 

which is prevented from leaving the ER, can still promote cell surface localization of LRP6.  

It is well established that a reporter protein tagged with the KKXX motif is retained within 

the ER [302-305]. Amino acids flanking the core KK motif (indicated as XX) additionally 

influence ER retention [304]. I therefore cloned three Krm2 constructs carrying different 

KKXX motifs (extracted from literature as indicated in Fig. 37) on the C-terminus (Krm2-

ER) (Fig. 37A). 
 

To test the ER-retention efficiency of the Krm2-ER constructs, I first analyzed their plasma 

membrane levels by cell surface biotinylation. While wildtype Krm2 is readily labeled at 

the cell surface by biotin, Krm2-ER constructs are undetectable (Fig. 37B). Note that a faint 

residual band detected by streptavidin-HRP is likely unspecific, as it is also present when 

the control protein NME1 is transfected (Fig. 37B). 
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BA 

 
 

Figure 37. Characterization of Krm2-ER constructs. (A) Domain structure of wildtype mouse 

V5-Krm2 (top) and constructs containing ER localization motifs on the C-terminus (DEKKMP 

[303], KKYL [304] , KKDE [305]). SP, signal peptide; V5, V5 tag; KR, WSC and CUB, kringle 

WSC and CUB domains; TM, transmembrane domain. (B) Cell surface biotinylation of Krm2-ER. 

Cells were transfected with the indicated constructs. After biotinylation, cell lysates were 

immunoprecipitated with anti-V5 antibody and subjected to SDS-PAGE and Western blot analysis. 

Membranes were probed with anti-V5 antibody to detect total Krm2 (upper panel) and Streptavidin-

HRP to detect plasma membrane Krm2 (lower panel). As control, NME1 was transfected (protein 

not shown); the lane is included to show unspecificity of the residual band. 

 

 

To test in a functional approach if Krm2-ER constructs are present at the cell surface, I 

made use of the fact that Krm2 and Dkk1 strongly cooperatively inhibit Wnt signaling in 

reporter gene assays [211, 223]. This cooperation depends on both Dkk1 and Krm2 being 

present in the same subcellular compartment. I performed Wnt reporter assays transfected 

with wnt1/LRP6 and wildtype krm2/krm-ER constructs, and either co-transfected dkk1 

DNA, or added Dkk1 protein as conditioned media. Importantly, transfected dkk1 is 

translated and traverses the ER to be finally secreted, whereas added Dkk1 protein is 

present only extracellularly. Thus, added Dkk1 protein can only cooperate with cell surface-

localized Krm2 in Wnt inhibition. 

 

Expectedly, wildtype Krm2 cooperates at a comparable level with co-transfected dkk1 and 

Dkk1 conditioned media in Wnt inhibition (Fig. 38). Krm2-ER constructs also cooperate 

with co-transfected dkk1 to various degrees, indicating that they are still functional despite 

altered subcellular localization (Fig. 38). However, no cooperation occurs between ER-

localized Krm2 and Dkk1 conditioned media, indicating that Krm2-ER is not present at the 

cell surface (Fig. 38). 
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Figure 38. Functional cooperation of 

Krm2-ER with Dkk1. TOPFLASH 

luciferase reporter assay in HEK293T 

cells. RLU, relative light units. Co, 

empty pCS2 vector. Note that Dkk1 

was either co-transfected as DNA or 

added as protein contained in 

conditioned media. 

 
 

 

I next asked whether ER-localized Krm2 promotes LRP6 maturation similarly to wildtype 

Krm2 and Mesd. To this end, I co-transfected HEK293T cells with flag-LRP6 and krm2-ER 

constructs and analyzed protein lysates by SDS-PAGE and Western blotting.  
 

Whereas Mesd and wildtype Krm2 induce an increase of the upper (cell surface) band of 

LRP6 at expense of the lower (intracellular) band (Fig. 39, lanes 2 and 4), Krm2-ER 

constructs hardly affect LRP6 localization (Fig. 39, lanes 5-7) in comparison to controls 

(Fig. 39, lanes 1 and 3). This suggests that Krm2 exerts its effect on LRP6 maturation in a 

subcellular compartment other than the ER.  

 

 

 

 

 

 

 

 

 P 

 

Figure 39. Krm2-ER has little 

effect on LRP6 maturation.

Western blot analysis of

HEK293T cells transfected with

flag-LRP6 and the indicated

constructs. Negative controls

are pCS2 vector and Xenopus

FLRT3. Middle panel: Co-

transfected V5-tagged

constructs are expressed at a

similar level. Bottom panel: Co-

transfected GFP serves as

further control.   
α-GF
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5. DISCUSSION 

 

 
This thesis work started out with the mechanistic analysis of Krm-mediated Wnt inhibition, 

which led to the identification of Erlectin, a novel N-glycan binding protein. Surprisingly, 

though, during the course of the study a novel role of Krm2 protein in Xenopus neural crest 

formation emerged.  

 

Mechanistic analysis of Krm-mediated Wnt inhibition. To identify and characterize Krm 

interaction partners, I followed three different approaches: i) An in vivo injection screen for 

functional interaction partners of Krm2 in Xenopus; ii) an in vitro screen for modifiers of 

Krm2/LRP6/Wnt3a protein expression (screen done by G.D. [154]); iii) screenings for 

binding partners of Krms, including bacterial and yeast 2-hybrid screens, and proteomic 

pull-down (pull-down done by C.C. [263]). Whereas the injection screen did not reveal any 

candidate interaction partner of Krm2, the modification screen led to the identification of 

various potential Krm2 and LRP6 modifying factors. These were further analyzed in vivo, 

but did not include a factor specifically involved in Wnt regulation in Xenopus (discussed 

below). Screenings for Krm binding partners resulted in identification of two novel Krm 

binding proteins, TAX1BP and Erlectin. Both did not cooperate with Krm in Wnt inhibition 

in Xenopus embryos. However, a comprehensive analysis of Erlectin function led to 

significant novel insights, the implications of which will be discussed below. 

 

Role of Krm proteins during development. The second main focus of my thesis was the 

characterization of the role of Krm2 during NC development. Using combined in vivo and 

in vitro approaches, I established that 1) in Xenopus, krm2 expression is positively regulated 

by zygotic Wnt signaling; 2) in Xenopus, Krm2 is required for NC formation, which is a 

Wnt-dependent process; and 3) in cultured cells, Krms promote LRP6-mediated Wnt 

signaling as well as cell surface localization of LRP6. The implications of these findings 

will be discussed below. 
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Screenings - advantages, disadvantages and conclusions 
 

The injection screen was characterized by the use of Xenopus embryos as in vivo system to 

identify novel interaction partners of Krm2. Such an approach is very promising to reveal 

biologically relevant, and functionally diverse (i.e., not limited to binding) interaction 

partners of baits; however, it is highly time-consuming, rendering a large-scale application 

difficult. In contrast, in vitro screens based on cultured cells are generally faster and more 

easily feasible. However, a major drawback of in vitro screens is that identified candidates 

may be not of physiological relevance, which means that the candidate’s function, or 

interaction with the bait, is not required when assessed in the context of an organism (in 

vivo). Thus, further analysis of in vitro identified candidates using in vivo systems is crucial 

for the evaluation of their biological significance.  

 

In his modification screen, G.D. used protein expression of the baits Krm2, LRP6 and 

Wnt3a as readout to identify novel and specific Wnt regulators at the level of 

receptor/ligand biogenesis. Of note, the kinase CK1γ was identified in the modification 

screen, and successfully characterized as specific Wnt regulator by G.D. et. al. [154]. 

However, my further analysis of the remaining 28 single clones did not lead to the 

identification of another specific Wnt regulator. Here, I want to discuss two circumstances 

which in my opinion contributed to this outcome. 

 

Foremost, I would like to state that the idea of the modification screen was novel and 

pioneering, and the screening protocol unprecedented in its design. Further, similar screens 

may include some minor improvements as suggested below.  

 

The identified candidates include numerous general cell components of transcription, 

translation, protein transport and degradation, which may be explained by the fact that 

protein expression is a very general screening readout. General cell components affect a 

broad range of target proteins, and likely are not specifically involved in bait modification. 

To optimize the screen output, it is therefore crucial to distinguish between general cell 

components and specific bait modifiers. Selectivity already at the level of the screen could 

be achieved by co-transfecting control proteins, which ideally closely mimic the bait of 

interest concerning structure and subcellular localization, but must remain unaffected by 

candidate clones. By co-transfecting three baits within the same sample in the modification 
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screen, this was done to some degree; however, the transmembrane proteins LRP6 and 

Krm2 are functionally linked and can form a complex [211], thus not being independent 

controls for each other. Furthermore, unlike LRP6, Krm2 does not show a clear distinction 

of cell surface (upper band) and intracellular form (lower band) in Western blot analysis, 

which impedes a direct comparison. Last, LRP6 and Krm2 are suboptimal controls for the 

secreted Wnt3a, and vice versa, due to distinct subcellular localization. Therefore, a 

possible improvement includes the incorporation of independent control proteins into the 

screen; this may facilitate the selection of bait-specific modifiers.  

 

Taking a closer look at the screen results (Table 1), the distribution of identified single 

clones within original pools is noticeable: Of the 28 single clones, six were not identified 

from independent pools, but from pools already containing another identified clone (Table 

1, same pool number). In other words, 4 pools contained 2, and 1 pool contained even 3 of 

the identified single clones. This is unlikely due to chance, as in total >1000 pools were 

screened, and only 28 single clones remained for analysis. One possible explanation is that 

additional, initially hidden single clones were found during sib selection of a given pool, 

when pool size decreased and single clones became more concentrated. Alternatively, it is 

possible that the initial pool effect was due to an accumulation of effects from several active 

single clones. In both scenarios, however, a single active clone is not concentrated enough 

in the initial pool to be detected. Of note, the specific bait modifier CK1γ is an enzyme, 

affecting baits in a catalytic manner (>>1:1 stochiometry). Other specific modifiers may act 

non-catalytically (approx. 1:1 stochiometry) and thus have a rather weak effect on bait 

expression; this is likely true for the chaperone Mesd, which was not found in the screen. 

Again, weak modification activity may be too diluted in the initial pool, therefore being 

undetectable. To minimize such intrinsic bias towards identification of highly active 

modifiers, a reduction of clone number per pool may be suggested; this eventually 

facilitates identification of less penetrant modifiers. 

 

Of final note, several identified clones comprise novel genes of unknown function; my 

gain- and loss-of-function analysis may provide first insight into their developmental role, 

and ideally spark further analysis.   

 

The proteomic pull-down performed by C.C. led to the identification of the novel Krm 

binding protein Erlectin. Although the binding of Erlectin to Krm per se was well 
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established by C.C., we could neither show a functional interaction of these two proteins in 

Wnt inhibition in vitro (reporter gene assays performed by C.C.; not shown), nor in vivo 

(see Results, p. 46). Rather, our study of Erlectin enlightened its role as a general ER 

component involved in N-glycan recognition.  

 

 

Characterization of the Krm2 binding protein Erlectin 
 

In eukaryotic cells, the ER is the entry site for proteins destined for the secretory pathway, 

and the site where folding, disulfide bond formation, N- and O- glycosylation, 

oligomerisation and quality control of newly synthesized proteins occur [279, 306-309].  

 

MRH domain proteins are a small family of N-glycan recognizing proteins, which have 

been shown to reside in the ER or Golgi apparatus, respectively. Glucosidase II beta 

subunit (PRKCSH) functions in glycan processing in the ER, while yeast OS-9 functions in 

ER-associated degradation of misfolded proteins [269-272, 275-279]. GNPTAG is the non-

catalytic gamma subunit of GlcNAc-1-phosphotransferase, which is involved in the 

synthesis of Mannose-6-phosphate on lysosomal hydrolases and localizes to the Golgi 

apparatus [274]. Erlectin is the fourth and novel member of the MRH domain family, and 

the results presented in this study indicate that it also functions in the ER. It is member of 

the ER synexpression group, which strongly predicts an ER function, and it localizes to the 

ER lumen in transfected cells. The fact that it lacks a canonical KDEL or HDEL retention 

signal raises the possibility that Erlectin is part of a protein complex retained in the ER. 

Since binding of Erlectin is abolished by N-glycosidase F treatment of Krm2 this strongly 

suggests, that like other MRH domain proteins, Erlectin recognizes N-glycans. 

 

Erlectin contains two MRH domains that do not appear equivalent in substrate binding 

abilities. MRH domain 1 is dispensable for binding to Krm2 and it remains an open 

question if it is inactive in N-glycan recognition or if it has other specificities. Interestingly, 

a point mutation in the MRH domain 2, which mimics a homologous mutation in GNPTAG 

linked to mucolipidosis type III [273], abolishes binding of Erlectin to Krm2, indicating 

that this is a functionally conserved amino acid.  
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Co-transfection with Erlectin can specifically inhibit transport of Krm2 to the cell surface 

and induce its intracellular accumulation (experiment performed by C.C.; not shown; 

[263]). This is likely due to binding and trapping of Krm2 by ER-localized Erlectin. 

However, the physiological effect of this interaction is unclear. Since Krm2 in cooperation 

with Dkk1 is a negative regulator of Wnt signaling, one would predict that Erlectin 

derepresses Wnt signaling. However, in Wnt reporter assays erlectin co-transfection with 

krm2 is mildly inhibitory on Wnt signaling (not shown), suggesting that Erlectin 

overexpression may have other effects as well. On the other hand, knock down of Erlectin 

in Xenopus embryos results in disturbed axial development and head defects, which are 

generally associated with enhanced Wnt signaling. Phenotypically these embryos do 

resemble embryos depleted of Krm1/2. However, early a-p markers are unaffected, in 

contrast to Krm1/2 depleted embryos, in which reduction of the forebrain marker bf1 is 

observed [220]. Moreover, I could not rescue the Erlectin MO injected embryos with krm2 

mRNA or other Wnt inhibitors like dkk1, dnWnt8 mRNA or β-catenin MO, providing 

further evidence that this phenotype is not due to excessive Wnt signaling. Thus, Erlectin is 

not required for Wnt mediated early a-p patterning. Yet, the severe phenotypic defects 

observed after depletion of Erlectin indicate an essential, pleiotropic function of this gene, 

since multiple tissues, including brain, notochord and heart are affected. Maternal Erlectin, 

which would be unaffected by MO injection, may account for normal early development.  

 

What may be the physiological role of Erlectin? Since Erlectin is member of the ER 

synexpression group a specific role in any one given developmental pathway seems 

unlikely and this rather points to a more general involvement of the protein in ER mediated 

processes. Similar to Glucosidase II beta subunit, Erlectin may be part of an enzyme 

complex involved in recognizing and/or processing N-glycans. This would be supported by 

its lack of an ER retention signal as well as of any other functional protein domain.  

Erlectin was suggested as a possible functional homolog to Yos9p [269], an MRH protein 

playing a role in ER-associated degradation [269-272]. It is therefore an interesting 

possibility that the phenotype of Erlectin depletion in Xenopus embryos reflects disturbed 

protein degradation. Of note, two other MRH domain proteins, Glucosidase II beta subunit 

and GNPTAG cause human disease when mutated [274, 276], and my loss of function 

analysis suggests that Erlectin too, may be essential in humans as it is in frogs. 
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The role of Krm2 in Xenopus neural crest formation 
 

The expression pattern of krm2 in early Xenopus embryos is highly 

dynamic  
 

Krms have been shown to be co-expressed with dkk1 in the prechordal plate (PC) of neurula 

stage embryos, and to functionally cooperate with Dkk1 in a-p patterning. Interestingly, 

during gastrula and neurula stages krm2 is as well expressed in regions devoid of Dkk1 

transcript; these include ventro-lateral mesoderm and lateral neural folds, respectively 

[220]. In the light of the results presented in this study, an intriguing dynamics of krm2 

expression is emerging. 

 

A novel finding described here is that krm2 is co-expressed with zygotic Wnts, and that its 

expression is positively regulated by Wnt/β-catenin signaling and abolished upon Wnt 

inhibition (Fig. 27). Since at neurula stages krm2 is expressed in the PC [220], which is 

characterized by very low Wnt signaling activity [34, 61, 310], this suggests a fundamental 

switch in the regulation of krm2 expression with regard to Wnt responsiveness. Further 

analysis may reveal which specific transcription factors of the organizer are involved in the 

activation of krm2 expression in the PC. Furthermore, it will be of interest to in-depth 

analyze the onset of krm2 expression in the PC. So far, krm2 expression in the PC was only 

shown from early neurula stage (stage 14) onwards [220]. Since Dkk1 and Krms cooperate 

in CNS patterning, but neuroectodermal cells lose competence to induce anterior CNS in 

response to Dkk1 at stage 13 [202], this would predict that krm2 is expressed in dorsal 

mesoderm at earlier stages, albeit maybe at low levels. 

 

Of note, neither krm1 nor 2 are expressed in anterior neuroectoderm, although they regulate 

its a-p patterning [220]. Since Krms are transmembrane proteins and act cell-autonomously 

during Dkk1-mediated Wnt inhibition, this strongly suggests that Krms are required for 

maintenance of the PC, as shown similarly for Dkk1 [202]. This hypothesis deserves further 

testing.  

 

During neurula stages, krm2 is differentially expressed in the lateral neural plate [220]. In 

collaboration with R. Mayor and his lab, we show here that this expression domain of krm2 

 66



Discussion 

comprises the prospective NC region. This is consistent with the finding that Krm2 is 

required for NC formation.  

 

 

Krm2 is required and sufficient for NC formation 
 

An important finding of this study is that Krm2 is required for NC induction in Xenopus. 

What may be the function of Krm2 during this process? Since Krm2 is both regulated by 

Wnts and promotes LRP6 activity in cultured cells (discussed below), this suggests that in 

the context of NC induction Krm2 functions by promoting Wnt signaling. Consistent with 

this, depletion of LRP6 inhibits NC induction similar to Krm2 knock-down; this is, 

however, merely correlative evidence. A complete picture requires further experiments to 

determine the direct effect of Krm2 loss-of-function on Wnt/LRP6 signaling in the NC 

region. Of note, Krm1 and 2 null mutant mice do not show NC defects, indicating that the 

requirement of Krm2 for NC induction is likely not evolutionary conserved among 

anamniotes and mammals (unpublished data kindly provided by Kristina Ellwanger). 
 

Concerning the LRP6 Morpholino, I made two interesting observations: i) LRP6 knock-

down can completely block NC marker expression (Fig. 31C), indicating that LRP6 acts 

non-redundantly from LRP5 in NC formation in Xenopus. ii) Mild LRP6 knock-down has a 

highly specific inhibitory effect on development of the dorsal fin, a NC derivative, but does 

not (or very marginally; this has to be determined yet) affect NC marker expression and 

development of other NC derivatives, such as melanocytes (Fig. 31D). This raises the 

possibitity that different NC derivatives may show differential sensitivity to Wnt level 

perturbation during NC induction. Alternatively, this observation allows the speculation that 

the fin defect of LRP6 MO injected embryos may be caused by perturbation of a process 

subsequent to NC induction. Intriguingly, knock-down of Wnt11-R, a gene involved in 

migration of fin precursors, leads to fin defects reminiscent of LRP6 knock-down [311]. 
 

The finding that anteriorly overexpressed Krm2 inhibits, while posterior overexpression 

enhances NC formation suggests a dual Krm2 action. Anteriorly overexpressed Krm2 likely 

cooperates with Dkk1 in Wnt inhibition, while in posterior regions Krm2 on its own 

promotes Wnt signaling. This dual activity is also supported by my reporter assays in 

cultured cells.  
 

 67



Discussion 

Currently, I cannot exclude the possibility that Krm2 may act also on other pathways which 

are involved in NC formation, e.g. BMP signaling. However, in cell culture reporter assays 

BMP signaling is unaffected by Krms. 
  

Interestingly, based on EST (expressed sequence tag) expression data krm2 is significantly 

upregulated in several human cancers, e.g. brain, testis, kidney and gastrointestinal tract 

tumors [312]. Since Krm2 is a Wnt target (this study), this raises the possibility that it may 

be a tumor associated gene or may even have an oncogenic role.  
 

 

Krms promote LRP6 mediated Wnt signaling 
 

Another surprising finding of this study is that Krms not only act as negative, but also as 

positive Wnt regulators in cultured cells. In reporter gene assays, they specifically promote 

LRP6-mediated Wnt signaling in the absence of Dkk1; accordingly, Krm2 co-transfection 

promotes cell surface localization of LRP6. This is reminiscent of the LRP6 chaperone 

Mesd, which promotes LRP6 folding and cell surface localization ([172, 173]; this study). 

Since cell surface levels of LRP6 are rate limiting for Wnt signal transduction [156, 172, 

173], enhanced surface localization by either Mesd or Krms translates into more Wnt 

signaling.  
 

Do Krms then act as chaperones of LRP6? Three lines of evidence argue against this: i) 

Unlike Mesd, Krms are not ER-resident [172, 173, 263]; ii) Krms can, albeit weakly, 

promote Wnt signaling induced by LRP6∆E1-4 (Fig. 32A), a construct lacking all four ß-

propeller/EGF regions, which are the target of Mesd [180]. LRP6∆E1-4, in contrast to full 

length LRP6, is predominantly cell surface-localized (Fig. 32A and [156]), indicating that 

this construct does not require support in trafficking; iii) artificially ER-trapped Krm2 has a 

strongly reduced effect on LRP6 surface localization compared to wild type Krm2, 

indicating that a subcellular localization other than in the ER is required for Krm to exert its 

full effect on LRP6 (Fig. 39).  
 

As a sideline, the analysis of ER-trapped Krm2 led to the interesting observation that co-

transfection of Dkk1 and ER-localized Krm2 (foremost DEKKMP) can inhibit Wnt 

signaling, which, besides confirming functionality of ER-trapped Krm2 constructs, also 

indicates that transfected Wnt signaling components already signal within the ER (before 

reaching the cell surface) (Fig. 38). 
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What then could be the mechanism of action of Krms?  Krms may enhance cell surface 

localization by binding to LRP6 and attenuating endocytosis. This would be the reverse of 

their action in presence of Dkk1, which induces rapid LRP6 internalization [211]. Krms 

may therefore be context-dependent endocytosis regulators of LRP6. Indeed, a hallmark of 

LDLR family members is their regulated endocytosis [177, 178, 313]. 
 

 

A model of Krm2 function during NC induction 
 

Integrating both in vivo and in vitro data, currently the following model of the role of Krm2 

in Xenopus NC induction can be suggested (Fig. 40): Wnt signaling is activated in the 

prospective NC region, probably by Wnt8 secreted from the paraxial mesoderm [88, 100], 

and induces transcription of several target genes, including krm2. Krm2 may positively 

regulate protein expression of LRP6, probably by attenuating endocytosis and elevating 

surface levels of LRP6, which in turn facilitates Wnt signaling. Thus, in this scenario Krm2 

acts as positive feedback activator of Wnt signaling. Since Krm2 is predicted to act at the 

level of inductive signals in the NC induction cascade (Fig. 6), this explains why the krm2 

expression domain is broader than the prospective NC region as determined by slug staining 

(Fig. 26B). It remains an open question why Krm2 may be required for Wnt signaling 

particularly in the NC region; possibly, Krm2 compensates for absence of another LRP6 

stabilizing factor or antagonizes a NC-specific negative regulator of LRP6 stability. 
 

 

 
 

 
Figure 40. Model of the role of Krm2 during NC induction. Wnt signaling induces krm2

transcription. Krm2 protein may then positively feed back on Wnt signaling by promoting stability 

of LRP6 protein.  
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6. MATERIALS AND METHODS 

 

 
Equipment and Materials  
 

Equipment  

Stereomicroscopes (Nikon, Leica), microinjectors and micromanipulators (Inject+Matic, 

Harvard Medical Systems), gastromaster (Xenotek Engineering), needle puller (Sutter 

Instruments), glass vials (NeoLab), calibration glass (Gera GmbH), surgical knives (M.S.P. 

Medical Sterile Products, CAT 7503), rotators (IDL GMBH+CO.KG), homogenisers 

(embryos: Kontes; cells: B. Braun Melsungen, Wheaton), PCR thermocyclers, heating 

blocks, centrifuges and microcentrifuges, fluorescent microscop (Nikon), digital cameras 

(Sony, Visitron Systems), spectrophotometer, luminometer (Luminoscan Ascent, 

Labsystems), power supplies, gel UV photodocumentation system, electroporator (BioRad), 

waterbaths, balances, photolaboratory (Agfa), micropipettes, multi-channel pipettes, 

vortexes, agarose gel and PAGE minigel chambers, microwave oven, shakers. 

 

Chemicals

Acrylamide, ammonium persulfate, ampicilline, agarose, acetic acid, acetic anhydride, anti-

digoxigenin-AP (Fab fragment), Bouin’s fixative (ACCUSTAIN, Sigma-Aldrich), BSA, 

Boehringer Block, biotin, CaCl2, chloroform, chloramphenicol, CHAPS, cysteine, dNTPs, 

DTT, diethylpyrocarbonate (DEPC), digoxigenin (DIG) RNA labelling mix, EDTA, EGTA, 

ethanol, ethidium bromide, Fugene, freon, ficoll, formamid, formaldehyde, glycogen, goat 

serum, glycerol, HCl, hydrogen peroxide, HEPES, heparin, isopropanol, KCl, LB agar, 

LiCl, maleic acid, MgSO4, methanol, MOPS (3-(N-Morpholino)Propansulfonsäure), NaOH, 

NaCl, Na2HPO4, NaH2PO4, NaOAc, 8-oxychinoline, paraffin, phenol, paraformaldehyde 

(PFA), proteinase K, PMSF, RNA cap structure analog, RNA guard, sodium citrate, SDS, 

trypsin, Tween-20, Triton X-100, Trizol, Tris base, TEMED, triethanolamine. Suppliers: 

Biochrom AG, Bio-Rad, BioZym, Boehringer Mannheim, Eppendorf, Falcon, Fluka, Fuji, 

Gibco, Kodak, Nunc, Merck, Roche, Roth, Sarstedt, Serva, Sigma, Whatman and others. 
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Emzymes  

DNaseI, Super Script II RNase H- Reverse transcriptase, Polynucleotide kinase (PNK), 

Proteinase K, various restriction enzymes, Shrimp alkaline phosphatase, T4 DNA ligase, T4 

DNA polymerase, Taq DNA polymerase, Endoglycosidase H. Suppliers: New England 

Biolabs, Gibco, Promega, Fermentas and Roche. 

 

Antibodies  

ANTIBODY DILUTION SOURCE 
anti-Calnexin, mouse 1:5000 BD Biosciences Pharmingen 
anti-α-Tubulin, mouse 1:10000 Sigma, cl. B512 
anti-V5, mouse 1:5000 Invitrogen 
anti-flag, mouse 1:2000 Sigma 
anti-myc, mouse 1:2000 M. Eilers lab 
anti-HA, rat 1:10000 Roche 

P 
R 
I 

M 
A 
R 
Y 

anti-GFP, mouse 1: 5000 Dianova 
Streptavidin-HRP 1:15000 Pierce 
Anti-mouse HRP 1:10000 Dianova 
Anti-rat HRP 1:10000 Chemicon 

2nd

A 
R 
Y Anti-mouse TrueBlot 1:2000 eBioscience 

 
 
Kits 

QIAprep spin mini-prep kit, QIAex gel extraction kit, QIAquick PCR purification kit (all 

Qiagen); Expand High Fidelity PCR system (Roche); T3, T7, SP6 MEGAscript in vitro 

transcription kits (Ambion); TOPO TA cloning kit (Invitrogen); pGEM-T-Easy cloning kit 

(Promega), Dual-Luciferase Reporter Assay System (Promega). 

 

Buffers and solutions 

- Barth solution (10x): 880 mM NaCl, 10 mM KCl, 24 mM NaHCO3, 8.2 mM 

MgSO4·7H2O, 3.3 mM Ca(NO3)2·4H2O, 4.1 mM CaCl2·2H2O, 100 mM HEPES, pH 

7.6 

- Bleaching solution for embryos: 1% H2O2, 5% formamide, 0.5x SSC 

- DEPC-H2O: 0.01% (v/v) DEPC/ddH2O, mixed for 2 hours at room temperature (RT) and 

autoclaved 

- DNase buffer (10x): 50 mM MgCl2, 10 mM DTT, 200 mM Tris-HCl, pH 7.2 

- DNase mix: 100 mM Tris-HCl, pH 7.2, 25 mM MgCl2, 5 mM DTT, 5 U DNase I, 10 U 

RNA guard (MBI) 

- DNase stop mix: 5 mM EDTA, 100 mM Tris-HCl, pH 8.3 

- dNTP mix: 2 or 5 mM dATP, dCTP, dGTP, dTTP, stored at -20°C 
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- Ethanol/NaAc mix: 100 mM sodium acetate in absolute ethanol 

- Eosin stock solution: 2.5 g Eosin G (Roth) in 250 ml ddH2O 

- Eosin staining solution: 30 ml Eosin stock solution, 270 ml 70% ethanol, 3 ml acetic acid 

(100%) 

- Gurdon’s injection buffer (G+E): 88 mM NaCl, 1 mM KCl, 0.01 mM EDTA, 15 mM 

Tris-HCl, ph 7.5; ev. DEPC treated, autoclaved, stored at -20°C 

- HANKS’s buffer: Prepared separately: Hanks salts x10 (g/l): 1.85 CaCl2•2H2O*, 4 KCl, 

0.6 KH2PO4, 1 MgCl2•6H2O*, 1 MgSO4•7H2O*, 80 NaCl, 0.6 Na2HPO4•2H2O; 

NaHCO3 x10: 3.5 g/l; *mixed and dissolved separately; sterile filtered both 

solutions, stored at 4°C, mixed before use  

- Hybridization buffer for in situ: 5x SSC, 50% (v/v) deionized formamide, 1% (w/v) 

Boehringer Block: dissolved 1h at 65°C; 1 mg/ml yeast tRNA, 0.1 mg/ml heparin, 

0.1% (v/v) Tween-20, 0.1% (w/v) CHAPS, 5 mM EDTA, filtered, stored at -20°C 

- Hypotonic buffer: 1 mM EDTA, 5 mM HEPES, pH 7.5, 0.1 mM PMSF, one protease 

inhibitor cocktail tablet/ 25 ml (Roche) 

- Hypotonic ER isolation buffer: 10 mM HEPES pH 7.6, 25 mM potassium chloride, 1 mM 

EGTA (can be prepared as 10x stock and stored at 4 degrees) 

- Isotonic ER isolation buffer: 10 mM HEPES pH 7.6, 250 mM sucrose, 25mM potassium 

chloride, 1mM EGTA (can be prepared as 10x stock, and stored at 4 degrees) 

- Laemmli loading buffer (4x): 200 mM Tris-HCl, pH 6.8, 400 mM DTT, 8% SDS, 0.4% 

bromophenol blue, 40% glucerol 

- LB Broth (1 liter): 10 g NaCl, 10 g bactotryptone, 5 g yeast extract, 20 g agar, pH 7.0, 

autoclaved 

- Maleic Acid Buffer (MAB): 100 mM maleic acid, 150 mM NaCl, pH 7.5, autoclaved (can 

be prepared as 10x stock and stored at -20°C) 

- MEMFA fixative: 3.7% formaldehyde, 2 mM EGTA, 1 mM MgSO4, 0.1 M MOPS, ph 

7.4 (not autoclaved!) 

- Modified Ringer solution (MR): 0.1 M NaCl, 1.8 mM KCl, 2.0 mM CaCl2, 5.0 mM 

HEPES-NaOH, pH 7.6, 1.0 mM MgCl2 

- Murray’s clearing medium: 2:1 (v/v) benzyl benzoate:benzyl alcohol 

- NP-40 buffer: 150 mM NaCl, 50 mM Tris pH 7.4, 7.5% glycerol, 1 mM EDTA, 1 mM ß-

mercaptoethanol (or DTT), 25 mM NaF, one protease inhibitor cocktail tablet/ 25 

ml (Roche), 0.8-2% NP-40 
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- Phenol/Chloroform: 50% (v/v) phenol, saturated with 10 mM Tris-HCL, pH 7.8, 48% 

(v/v) chloroform, 2% (v/v) isoamyl alcohol, stored at 4°C 

- Phosphate-buffered saline (10x PBS): 1.36 M NaCl, 26.8 mM KCl, 14.7 mM KH2PO4, 

162.9 mM Na2HPO4, autoclaved, stored at RT 

- PTW: 1x PBS + 0.1% (v/v) Tween-20 

- Proteinase K mix: 75 µl proteinase K stock (2 mg/ml in H2O, this solution can be stored 

aliquotted at -80°C), before use add 30 µl EDTA (0.5 M) and 45 µl TE buffer 

- Ringer’s solution (10x): 1.16 M NaCl, 29 mM KCl, 18 mM CaCl2, 50 mM HEPES, pH 

7.2, stored at 4°C 

- SSC (20x): 3 M NaCl, 0.3 M sodium citrate, pH 7.5, filtered, autoclaved 

- Stain buffer (lacZ staining): Wash buffer + 30 mM K3Fe(CN)6, 30 mM K4Fe(CN)6·3H2O 

- TBS (20x): 3 M NaCl, 5.36 mM KCl, 1 M Tris-HCl, pH 7.4, autoclaved 

- TE buffer: 1 mM EDTA, 10 mM Tris-HCl, pH 7.5, autoclaved 

- Wash buffer (lacZ staining): PBS, pH 7.4 + 0.01 % (v/v) sodium deoxycholate, 0.02% 

(v/v) NP-40, 2 mM MgCl2   

 

 

General molecular biology methods 
 

General molecular biology methods such as preparation of electrocompetent XL1-blue E. 

coli cells, transformation, plasmid preparation, photometric quantification of DNA and 

RNA samples, restriction digests, dephosphorylation and ligation of DNA, agarose and 

SDS-PAGE gel electrophoresis and PCR were carried out essentially as described [314]. 

DNA isolation from bacteria, agarose gels and PCR reactions were done with kits from 

Qiagen; DNA oligonucleotides for PCR and sequencing were synthesized by Qiagen 

Operon. DNA samples were sequenced by SEQLAB Sequence Laboratories Göttingen 

GmbH.  

 

Cloning 

Cloning was performed using the Expand High Fidelity PCR system (Roche) according to 

the manufacturer’s instructions. Expression constructs were restriction digested and cloned 

into the vector pCS2. In situ probes were directly cloned into TOPO or pGEM-T vectors 

using the respective cloning kits. All constructs were sequenced. 
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Mutagenesis 

Site-directed mutagenesis (point mutations) was performed by including the desired 

mutation into a primer, and amplifying of the whole vector plus insert. Deletions were 

constructed by using PCR primers that amplify the whole vector plus insert excluding the 

region to be deleted. The following protocol was used: 

- PCR: Elongation time: approx. 1 min per 1000 bp; cycle number: either very low (16-18) 

with high amount of template (1 µg for 50 µl mix) or high (28) with low amount of 

template (200 ng). Note: Expand High Fidelity PCR system produces an A/T 

overhang; alternatively, Pfu polymerase does not produce an overhang. 

- After gel purification of band, elution in 50 µl elution buffer, then digest with DpnI 

overnight. This enzyme cuts only methylated DNA, so all template is removed. 

- PCR products containing A/T overhang were blunted with T4 DNA polymerase 

(otherwise frameshift): 1/10 vol. 2 mM dNTPs, 1-2 µl T4 DNA polymerase, 14°C 

for 15 min. Samples were kept on ice, and heat inactivation of was done at 75°C for 

10 min (very important) 

- Purification with PCR elution kit; elution in 30 µl elution buffer 

- Phosphorylation of DNA ends: 8 µl eluted DNA, 1 µl ligation buffer (same as for DNA 

ligase, contains ATP), 0.5 µl PNK, 37°C for 30 min 

- Addition of 1 µl DNA ligase, ligation at RT for 1-2 hours, then transformation of bacteria 

(plated up to 200-300 µl) 

- Usually, picking 5 colonies was enough. All deletion constructs were restriction digested 

and analyzed on agarose gels (compared size with wildtype), then sequenced. Note: 

Point mutations can be detected if new restriction site arises. 

 

cDNA libraries 

The following cDNA libraries were used: 

-  X. laevis eye library (constructed by Andrei Glinka). cDNA prepared from adult X. laevis 

eyes was cloned into the pCS2-SfiI vector using EcoRI/NotI restriction sites. 

Host: XL1-blue (AmpR). Total independent clones: 1 x 106; average insert size: 

1.6 kb. Pools à 200 clones were prepared and injected as mRNA. For sib selection 

of a single active clone, several successive steps involving plating and pooling of 

bacteria, preparation of mRNA and injection (of as many subpools as necessary 

until re-detection of activity) were performed.  
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- X. tropicalis embryonic library (constructed by W.W.). Normalized cDNA [315] was 

prepared from stage 10, 20 and 30 X. tropicalis embryos and cloned into the 

pRKW2 vector (modified from pRK5) using XhoI/BamHI restriction sites. Host: 

DH10B (AmpR). Total independent clones: 2 x 106; average insert size: 1.5 kb. 

106 primary transformants were arrayed in 261 384-well plates (RZPD Berlin); 

each 384-well plate was grouped into 4 x 96 clones (4 96-well plates); each 96-

well plate comprises a pool (96 single clones). Total number of pools: 1044 (11 

96-well plates).  

 
Constructs 
 

The following plasmids were obtained from external sources and subcloned into the pCS2 

vector. Abbreviations: X or X.l., X. laevis; X.t., X. tropicalis; m, mouse; h, human; ID, 

sequence identity in public database; RZPD, Deutsches Ressourcenzentrum fuer 

Genomforschung GmbH; the upper and lower sequences comprise the forward and reverse 

primer, respectively; both are in 5’ – 3’ orientation. ‘-‘ indicates that the primer sequence is 

continued in the next line. 

 

Obtained plasmids 

GENE NAME ID SOURCE VECTOR 
hTAX1BP1 BC024600; AL136586 RZPD pSPORT1 
herlectin NM_015701 RZPD pCMV-SPORT6 
X.t. erlectin MGC69308 RZPD pCMV-SPORT6 
X.l. erlectin AAH74469 RZPD pCMV-SPORT6 
X.l. erlectin CB558691 RZPD pCMV-SPORT6 
merlectin BC018468 RZPD pCMV-SPORT6 
X.l. sox10 XL053o11 NIBB pBS SK-

hARF4 BC022866 RZPD pDNR-LIB 
X.l. slug (0.8 kb)  H. Steinbeisser  SP72 

 
Cloned constructs

CONSTRUCT PRIMERS TEMPLATE 
pCS2-hTAX1BP1  GTCTTTCCACTGGATCCACAATG 

GCACTCGAGCTCTATGGTCTCCTC 
hTAX1BP1 
AL136586 

pCS2-erlectin 
(X.t.) 

ACGGATCCGCCGCCACCATGCGCAGAAGTGACCG-
CTTACG 
GTTCTAGACGTCAGTTGGGAATTGAAAGG 

X.t. erlectin 
MGC69308 

pCS2-erlectin-HA 
(X.t.) 

ACGGATCCGCCGCCACCATGCGCAGAAGTGACCG-
CTTACG 
TGTCTAGACTCGAGGTTGGGAATTGAAAGGAGTC- 
CGTTC 

X.t. erlectin 
MGC69308 
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pCS2-flag-
herlectin ∆D1  

ATCGAAGGTCAGATGACACCATAC  
TTGTTTAAATAGTGGCTCCAAAAGC 

pCS2-flag-
herlectin 

pCS2-flag-
herlectin ∆D2 

GATATTTGTGATATAACTGACAAAC 
ACCACTAAGAAACTCTTTTATGAG 

pCS2-flag-
herlectin  

pCS2-flag-
herlectin ∆D1/2  

GATATTTGTGATATAACTGACAAAC 
ACCACTAAGAAACTCTTTTATGAG 

pCS2-flag-
herlectin ∆D1  

pCS2-flag-
herlectin G379S  

AGCACATGGAACCAAGAAGAGC 
GACAACCACAGAGGTTTTCCCAC 

pCS2-flag-
herlectin  

pCS2-ARF4 (X.t.) AAGGATCCGCCGCCATGGGCCTCACCATCTCC 
GCTCTAGATTAGCGCTTGGAGAGTTCGTTTGAG   

pRKW2-ARF4 
(X.t.) 

pCS2-T31N (X.t.) AATACTATTCTGTACAAATTAAAG  
CTTGCCGGCAGCATCCAAAC  

pCS2-ARF4 (X.t.) 

pCS2-Q71L (X.t.) CTAGATAAAATCCGCCCCCT  
GCCACCCACGTCCCACACAG 

pCS2-ARF4 (X.t.) 

pCS2-Xkrm1∆C  CCCAAGCTTGATTTAGGTGACAC 
GGGTCTAGACTATGCCGAAATAGCAATGATGGT 

pCS2-Xkrm1 

pCS2-hLRP6∆E1-
4-GFP 

Constructed by restriction digest and ligation pCS2-hLRP6-GFP 

pCS2-V5-mkrm2-
DEKKMP 

CCCAAGCTTGATTTAGGTGACAC 
GGGTCTAGATCAAGGCATTTTCTTTTCATCGAGAG-
CAGAGACGAGCGAGCGCA 

pCS2-V5-mkrm2 

pCS2-V5-mkrm2-
KKDE 

CCCAAGCTTGATTTAGGTGACAC 
GGGTCTAGATCATTCATCCTTCTTGAGAGCAGAGA-
CGAGCGAGCGCA 

pCS2-V5-mkrm2 

pCS2-V5-mkrm2-
KKYL 

CCCAAGCTTGATTTAGGTGACAC 
GGGTCTAGATCAGAGATATTTCTTGAGAGCAGAG- 
ACGAGCGAGCGCA 

pCS2-V5-mkrm2 

 
 
Reverse transcriptase – polymerase chain reaction (RT-PCR) 
 

For RT-PCR experiments, RNA was isolated and reverse-transcribed to yield cDNA, which 

was then normalized by PCR amplification of the housekeeping gene H4. Subsequently, 

cDNA species of genes of interest were amplified using specific primers. All RT-PCR 

assays were carried out in the exponential phase of amplification, and PCR samples were 

loaded on the same agarose gel to compare intensity. 

 

RNA isolation 

- Embryos or explants were collected at the proper developmental stage in 1.5 ml 

Eppendorf  tubes (2 whole embryos, 10 DMZs and VMZs, or 20 animal caps)  

- Buffer was pipetted off as much as possible, and 0.5 ml Trizol (Gibco) were added; 

samples were vortexed for 5-10 min at RT, and stored at -20°C  

- After addition of 100 µl chloroform, samples were vortexed and spun at 4°C for 20 min 

with maximal speed 

- Precipitation of upper phase with 300 µl isopropanol, mixed, -20°C for at least 30 min 
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- Samples were spun  down  at 4°C for 20 min (always visible pellet) 

- Pellets were washed with 70% ethanol, kept at RT for 5-10 min 

- Samples were spun, ethanol was poured off, pellets were dried briefly and dissolved in 24 

µl DEPC-treated H2O  

- 6 µl DNase mix was added and samples were incubated at 37°C for 15 min 

- 33 µl DNase stop mix (and 2 µl of 4 mg/ml glycogen if less than 4 animal caps) were 

added, samples were vortexed and extracted with 60 µl phenol-chloroform 

- Precipitation of RNA with 3 volumes ethanol/NaAc mix at -20°C overnight   

- Samples were spun at 4°C for 15 min with max. speed (always visible pellet) 

- Pellets were washed in 70% ethanol at RT for 5-10 min, spun down, briefly dried at RT 

for 2-3 min  

- Pellets were dissolved in DEPC-treated H2O: 1 µl per animal cap, 40 µl per embryo 

- RNA  was denatured  at 70°C for 2 min, chilled on ice-water mix, and stored at -20°C 

 

Reverse transcription 

10 µl mixes were prepared (always prepared a master mix for all samples): 
 

2 µl  5 x RT buffer (Gibco)                                                 

          2 µl DEPC-H2O                                                              

          1 µl random primer dN(6) (100 pmol/µl)        

          1 µl dNTPs mix  (5 mM each)                                          

          1 µl DTT  (0.1 M)                                                       

          0.15 µl RNA guard (RNA guard, MBI)                             

          1 µl BSA acetylated (1 mg/ml, Promega)                                       
 

1 µl  Super Script II RNase H- reverse transcriptase, or H2O as -RT control                  
 

Then 1 µl denatured RNA was added, samples were mixed, spun briefly and incubated at 

45°C for 1 hour and subsequently at 55°C for 30 min. 

 

RT-PCR 

For normalization  with H4, samples giving  the weakest bands were kept, and H2O was 

added to those samples that gave stronger bands, until all  samples  showed  the  same  

amount  of  PCR  product  after  proper amplification (for H4, 18-20, maximal 22 cycles). 

Always 1 µl of RT-reaction was used in the PCR system. 
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PCR mix: 
 

18 µl H2O                                                

           1 µl primer mix (12.5 pmol/µl each)                

           2.5 µl dNTPs mix (2 mM each)                   

           2.5 µl 10 x PCR buffer (Perkin-Elmer)                              

           1 µl RT reaction (cDNA sample)                 

           0.3 µl Taq DNA polymerase (homemade) 
 

The PCR program settings were: 
 

95°C 1 min 

          55°C   1 min  depending on primers 

          72°C  1 min 

         20-35 cycles  depending on target 

         72°C  10 min 

       20°C   10 min 
 

After PCR, 5 µl of 6x loading buffer was added, and 20 µl of the mix was loaded on a 2% 

agarose gel, separated at 6V/cm for 20-30 min and visualized with ethidium bromide/UV 

staining. 

 

Primers used for RT-PCR  

The upper and lower sequences comprise the forward and reverse primer, respectively; both 

are in 5’ – 3’ orientation.  

 

GENE/PROTEIN NAME PRIMERS OR REFERENCE 
X. laevis  Hatching enzyme GCAGTGGCCAAAGAGGACATTC 

TCATCCCGGTCACTTCTGTTCTG 
Simil. to Ubiquit. carboxyl-terminal hydrolase 
family2 

TAACAGGGAGCGGTTGGCCTT 
CCAGCTTAGCCAGATACTAGGCCG 

Embryonic serine protease-1 (Xesp-1) GGCTTCTTTATGTGATGGGTC 
GCTGTCAGAATCCACTGGTCA 

Embryonic serine protease-2 (Xesp-2) TGAACCGCCTCCCTATACAA 
ATTGGGAAGACCGGACACAA 

X. laevis nuclear orphan receptor XGCNF GGGTTCTTCAAGCGCAGCATCT 
GCCGTAAGCAGCTGGTTAATGAGTG 

Serine/threonine-protein kinase ANKRD3  AAAACTTGGCTGGCCATCAA 
TTCACATGGTAATGGCCATC 

Receptor tyrosine kinase, c-mer like TGCCAGGCTGTTTGTCTTTT 
ATGCCCCAGGTTCTGCCA 
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ADP-ribosylation factor 4, ARF-4 TGCTTTACTGTGTGGGACGTGG 
GATGTTACGAGCCTAGGCCGATTC 

Glycosyl transferase TTATCCTGTTCCAGATGGGTT 
TTGCTCTCTCCTCTGCTTTCA 

Sialyltransferase GGTAGTAGCACCAAGAAGAGGAGCG 
GCCTAATTTGTGTCCAACGGAGTC 

Signal peptide peptidase-like 3, SPP-like 3 AAGACAAGGAGAAGGACAGCA 
CACAGCACCCAAAGGAAATT 

Similar to DnaJ (Hsp40) homolog GTGCCACAGAAGCTTTTAAA 
GGATATAAACTGTATGGTGGG 

Embryonic 7-span transmembrane protein-like   ATCTGTGGCTCGTGCGTTTTA 
TTCCTTCCTCCGAGCCGTA 

Similar to thioredoxin domain containing 4  TCTTCGTCCCTTACTTTTGCC 
CAGAATGTTGATCACAGTCCA 

Weak simil. to putat. G-prot. coupled receptor, 
TRC8 

GCTCAGACTGCTGGGTGTT 
ATGAGAACGAGGGCAGAAAT 

Potential novel G-protein-coupled receptor TGTGCATGGGAGCTTGGATA 
TGGGATATACCATTTGTGGG 

Uncharacterised multi TM protein - hemolytic 
activity 

TCTGCATGTTGTGTTCAGTGG 
ATCGAAGTTCCAACACCTCCA 

Similar to presenilin stabilisation factor b, APH1 AACAAGAATGACGCCAACCT 
AAGTAATACTGCGAGTCGCCA 

Unknown WD40 repeat containing protein TGACTTTAGTCCAACTGGTGA 
TGAACGTATCATCCACAGGA 

XH4 [316] 
Xerlectin, allele1 TGAAGGAGAAGTTCTCCAGT 

GTTTGCACTTTAGTTTCACTATC 
Xerlectin, allele2 TGAAAGAGAAGTTCTCCACC 

GTTTGCACTTTAATTTCACAACG 
XBiP CTGGGCACTTTTGACTTGACCGG 

GCATCCTGATGGCTTTCTAACCACTC 
XHsp70 AGACAGCAGGAGGAGTAATG 

GCCTTGTACTTTTCTGCCTC 
Xkeratin CACCAGAACACAGAGTAC 

CAACCTTCCCATCAACCA 
Xintegrin CCGGAGACGGAAAATTAGGCG 

ACACTTCCTTCCGTCTTCCCC 
Xkrm2 GGAACCAGACCACACAGCACTTG 

CCGCCTCCACACCTGCATACT 
Xbra CACAGTTCATAGCAGTGACCG 

TTCTGTGAGTGTACGGACTGG 
Xhox3 [317] 
Xchordin [37] 
XWnt8 [49] 

 
Preparation of mRNA for embryo injections 
  

mRNA for injections was prepared from linearized template using the MEGAscript in vitro 

transcription kits from Ambion. RNA cap structure analog was added to increase stability 

and translation efficiency of the mRNA. Since free cap analog is a potent translation 

inhibitor and toxic to cells, it must be removed carefully during RNA purification. 
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Linearization of DNA template 

- Plasmids were linearized by restriction digest. If 3’ protruding ends were generated, they 

were blunted by incubation with T4 DNA polymerase (in 0.2 mM dNTPs) at 16°C 

for 15 min 

- 2 µl of glycogen (4 mg/ml) and 0.1 volumes of proteinase K mix were added, and the 

mixture was incubated at 45°C for 30 min 

- After 2x phenol-chloroform extraction, the upper phase was precipitated with 3 volumes 

ethanol/NaAc mix at RT for 30 min 

- Precipitate was pelleted at max. speed for 2 min, washed in 75% ethanol, dried and 

resuspended in DEPC-H2O (10 µl for 1-2 µg of DNA) 

 

RNA synthesis by in vitro transcription 

20 µl mixes were prepared: 
 

2.25 µl  RNAase-free dH2O   

 2 µl 10x reaction buffer     

 2 µl ATP solution (75 mM for T3 and T7, 50 mM for SP6)   

 2 µl CTP solution (75 mM for T3 and T7, 50 mM for SP6)   

 2 µl UTP solution (75 mM for T3 and T7, 50 mM for SP6)   

 0.4 µl GTP solution (75 mM for T3 and T7, 50 mM for SP6)   

 1.6 µl RNAase-free dH2O     

 3.75 µl  RNA cap structure analog (40 mM)   

 2 µl RNA polymerase (10x stock)   

 2 µl DNA template   
 

Samples were incubated at 37°C for 2 hours, and subsequently treated with 1 µl DNase I 

(RNase free, Roche) at 37°C for 15 min. 

 

Purification of RNA transcript  

- Ammonium acetate (final 0.5 M) was added to the samples and filled with RNAase-free 

H2O to a total volume of 150 µl 

- Samples were extracted two times with 150 µl phenol/chloroform by vortexing for at least 

20 seconds; for a faster separation of the phases a short centrifugation step was 

performed 
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- RNA was precipitated by addition of 150 µl isopropanol; samples were kept at -20°C for 

at least 30 min 

- Precipitates were pelleted by centrifugation at 4°C for 15 min with 15000 rpm 

- The supernatant was removed with a pipette, and the pellets were washed once with 70% 

ethanol and dried briefly 

- Dried pellets were dissolved in 20 µl G+E buffer, concentrations were quantified 

photometrically, and RNA quality was checked on an agarose gel 

 
Preparation of DIG-labeled in situ probes 
 

Digoxygenin (DIG)-labeled RNA for in situ hybridizations was prepared using the 

MEGAscript in vitro transcription kits (Ambion) and a DIG-labeled nucleotide mix (Roche) 

instead of dNTPs, according to the following protocol: 
 

- Linearized DNA template was prepared as described for mRNA preparation 

- 20 µl transcription mix: 

2 µl 10x transcription buffer 

2 µl DIG-labeled nucleotide mix 

2 µl  RNA polymerase 

2 µl  DNA template  
 

- Samples were incubated at 37°C for 2 hours 

- Digestion with 1 µl DNase I at 37 °C for 30 min 

- Volume was filled up to 80 µl with DEPC-H2O 

- Addition of 8 µl EDTA (0.5 M, pH 8) to stop DNase 

- Addition of 10 µl 4 M LiCl and 250 µl absolute ethanol; samples were vortexed and put 

on -20°C over night 

- Samples were spun at 4°C for 15 min at max. speed, washed with 75% ethanol, dried and 

resuspended in 20 µl dH2O 

- After measuring concentrations photometrically and checking the samples on agarose gel, 

they were denatured at 95°C for 3 min and added to hybridization buffer to a final 

stock of 20 ng/µl 

- For final concentration of in situ probes: Dilution of this stock 1:100 (200 ng/ml) 
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Embryological methods 
 

In vitro fertilization, embryo culture, staging and microinjection of X. laevis embryos were 

generally carried out as described [13, 14, 318, 319]. LiCl treatment was carried out as 

described in [318]. 

 
Priming, fertilization and microinjection 
  

For priming, X. laevis females were injected with 600 U of human chorionic gonadotropin 

(Sigma). The next day, eggs were in vitro fertilized by mixing them with a piece of testis 

minced in 1x Ringer’s solution. After 3 min, eggs were covered with 0.1x Barth to promote 

sperm activation. After 20-30 min, embryos were dejellied in 2% cysteine in H2O, pH 7.8-8. 

Embryos were washed 3x in a tap:VE H2O mix (2/3:1/3), and cultivated in 0.3x Barth. 

Microinjections were performed in glass dishes containing 0.3x Barth using calibrated glass 

capillary needles. Embryos were injected at 2, 4 or 8 cell stage in 0.3x Barth. Generally, a 

volume of 5 nl was injected per blastomere. Embryos were cultured in glass petri dishes in 

0.1x Barth at temperatures between 14°C – RT. 
 

Constructs for mRNA injection 

PLASMID LINEARIZATION TRANSCRIPTION REFERENCE 
pCS2-Xkrm1 and 2 NotI SP6 [220] 
pCS2-XRspo-2 NotI SP6 [238] 
pCS2-Xdkk1 Asp718 SP6 [29] 
dnXWnt8 Asp718 SP6 [56] 
pRN-preprolactin SfiI T3 [236] 
pCS2-BMP4 Asp718 SP6  
pCS2-hLRP6 NotI SP6 [176] 
pCS2-ARF4       human   
pCS2-T31N        and  
pCS2-Q71L        X.t.  

 
NotI 

 
SP6 

 
this study 

pCS2-hTAX1BP1 NotI SP6 this study 
pCS2-erlectin (X.t.) NotI SP6 this study 
pCS2-herlectin-flag/V5  NotI SP6 [263] 
pCS2-mWnt3a injected as DNA [320] 
pBS-XWnt8 injected as DNA [321] 
pCS2-cβGal  NotI SP6 A. Braendli 

} 
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Morpholino injections 
 

Morpholinos (MOs) were designed according to the general guidelines suggested by Gene 

Tools, LLC; [322]; if possible, MOs targeting X. laevis as well as X. tropicalis alleles were 

chosen. All obtained MOs were dissolved in autoclaved dH2O (not DEPC-treated) to a final 

concentration of 5 ng/nl, aliquotted and stored at -20°C. Before use, MOs were thawed and 

briefly warmed to 50°C, and then kept on RT during injection. MO injected embryos were 

preferentially grown at RT, to minimize off-target effects of the MOs. 

 

Obtained MOs  

TARGET TARGETED GENE 
X.l. X.t. 

MORPHOLINO SEQUENCE 
(5’ – 3’ ORIENTATION) 

Embryonic serine protease-1 (Xesp-1) no yes TCACATAAAGAAGCCCTTGTCTCAT 
Receptor tyrosine kinase, c-mer like no yes ACATCATCAGCTGCAATAACACCGT 
ADP-ribosylation factor 4, ARF-4 no yes CTGCCCCGCTCGCCGCCTCTATCCG 
Signal peptide peptidase-like 3, SPP-like 3 yes yes CACTCAACGGCGGCTCTGTGATTCG 
Similar to DnaJ (Hsp40) homolog yes yes TCCCTATTGCTCTCCATGATGCCGG 
Embryonic 7-span transmembrane protein-
like   

no yes AAACTCTCCGTCCCCTTCCCTCCCT 

Weak simil. to putat. G-prot. coupled 
receptor, TRC8 

yes yes CTCCGGAATCCAATTGCCCCCTCAT 

Uncharacterised multi TM protein - 
hemolytic activity 

no yes CATTGTGCAGTTATTGGTGTTTTAA 

Unknown WD40 repeat containing protein no yes GCTTCATGATGACCCAATGTGCTGG 
Erlectin MO1 yes yes GAGAATGTGCAGGAGTTACCGGTTA 
Erlectin MO2 yes yes AGAGAATGCGCAGGAGCGACAGGTT 
Krm2 MO-1 yes yes [220] 
Krm2 MO-2 yes no ATCCTCACATGAAGACGTGCTGGAA 
LRP6 yes yes CCCCGGCTTCTCCGCTCCGACCCCT 

 
Explants 
 

Explants and conjugates were generally performed as described (Villanueva et al 2002). 

In brief, removal of explants was performed in dishes covered with a layer of 1% agarose 

(dissolved in 0.5x Barth), and filled with 0.5x Barth. The vitelline membrane of embryos 

was removed with two watchman forceps (Dumont number 5), and explants were cut using 

self-made eyebrow knives. Explants were cultured in agarose coated dishes in 0.5x Barth 

until the desired stage. 
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Lineage tracing 
 

For lineage tracing, ß-gal mRNA (250 pg per blastomere) was co-injected with 

experimental samples. For LacZ staining, embryos were first fixed in MEMFA for max. 1 

hour in glass vials on a roller, then washed 2x 15 min with wash buffer, then washed 2x 15 

min with stain buffer. Next, embryos were incubated with stain buffer containing 0.8 mg/ml 

blue (X-gal; 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside) or red (Magenta-gal; 5-

Bromo-6-chloro-3-indolyl-β-D-galactopyranoside) substrate until the desired staining 

appeared (substrate stocks were dissolved in dimethylformamide and stored at -20°C). 

Embryos were washed several times in PBT, and refixed in MEMFA for 1 hour at RT. This 

protocol was adapted from [323]. 

 
Whole-mount in situ hybridization (WISH) 
  

The Xenopus WISH protocol [14, 324] was modified following suggestions of Prof. 

Thomas Pieler (Universitaet Goettingen). 

 

Preparation of embryos 

- Best results for WISH are obtained using albino embryos, but pigmented embryos are 

similarly suitable, since their pigment can be bleached at the end of the procedure 

- Fixation was performed in 5 ml glass vials with plastic screw caps (< 250 embryos) in 

freshly prepared 1x MEMFA buffer on a rotator for 1 to 1.5 hours (or overnight at 

4ºC) 

- The embryos were then processed through a series of methanol in PTW: 

  5 min 25% methanol 

   5 min 50% methanol 

   5 min 75% methanol 

   4 times 5 min 100% methanol 

- The embryos were stored at –20ºC up to one year 

 

Hybridization 

- The embryos were rehydrated by successive 5 min incubations (on a roller) in 5 ml of: 

100% methanol,  

75% methanol in PTW   
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50% methanol in PTW  

25% methanol in PTW 

4 times in PTW  

- A proteinase K step was included to increase the permeability for RNA probes and for 

antibodies; embryos were incubated with 10 µg/ml proteinase K in PTB for 5 min, 

without agitation 

- Embryos were washed 3x 5 min with 5 ml PTW to remove Proteinase K 

- Embryos were rinsed 2 times 5 min with 5 ml 0.1 M triethanolamine (pH 7.5) on the 

rotator; 12.5 µl acetic anhydride were added to the embryos per 5 ml 

triethanolamine, and vials were rolled for 5 min (acetic anhydride is an hydrophobic 

chemical that forms a bubble when added to aqueous solutions). Another 12.5 µl 

acetic anhydride were added, and vials rolled again for 5 min. 

-  Embryos were washed 3-5x 5 min with 5 ml PTW prior to refixation. Embryos were 

refixed for 20 min in 5 ml 4% paraformaldehyde (or formaldehyde) in PTW (freshly 

prepared solution) 

- Embryos were rinsed 5x 5 min with 5 ml PTW; all but 1 ml of PTW was removed, and 

250 µl of hybridisation buffer were added. When all embryos had settled, the 

solution was exchanged 2x with 500 µl hybridisation buffer. Embryos were 

incubated in hybridisation buffer for 30 min at 65ºC with gentle shaking in a water 

bath. Then the hybridisation buffer was renewed, and embryos were prehybridised 

for least 6-12 hours at 60ºC with gentle shaking in a water bath. 

- DIG RNA probes (200 ng/ml) were brought to 70ºC, exchanged with the prehybridisation 

buffer and hybridised overnight at 60ºC with gentle shaking in a water bath.  

 

Antibody incubation 

- RNA probe solutions were replaced with 500 µl prewarmed hybridisation buffer and 

samples were incubated at 65ºC for 10 min 

- 1 volume of prewarmed 4x SSC was added, and samples were incubate at 65ºC for 20 

min; embryos were washed 3 times 20 min with prewarmed 2x SSC + 0.1% 

CHAPS, at 65ºC 

- Embryos were washed 2 times 30 min with 0.2x SSC+ 0.1% CHAPS, at 65º 

- Embryos were rinsed 2x 15 min with 5 ml Maleic Acid buffer (MAB) and rolled gently at 

RT 

- MAB was replaced with 2.5 ml MAB + 2% BMB; embryos were rolled for 15 min 
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- The solution was exchanged with 2.5 ml MAB + 2% BMB + 10% goat serum, and 

samples were incubated for at least 2 hours, at RT, on a roller 

- The solution was replaced with 1ml MAB + 2% BMB + 10% goat serum including a 

1:12000 dilution of the affinity purified sheep anti-DIG antibody coupled to alkaline 

phosphatase (Roche), and samples were incubated overnight at 4ºC, on a roller  

- Embryos were washed 10-12x for 1 hour with MAB; at least one over night wash with 

MAB was included 

 

Chromogenic reaction 

- Embryos were rinsed 2 times 5 min with dH2O 

- Embryos were transferred to a plastic 24-well plate, and solution was replaced with 

Purple AP Substrate (Boehringer Mannheim); embryos were incubated at RT, or 

over night at 4°C, until desired staining appeared  

- Staining was stopped by rinsing the embryos several times with MAB, and 

subsequently PTW 

- Embryos were either stored in MEMFA at 4ºC, or, if subsequent bleaching of pigment 

was necessary, were fixed over night in Bouin’s fixative (ACCUSTAIN, Sigma-

Aldrich) at RT 

 

Bleaching of embryos 

For bleaching, pigmented embryos were first fixed in Bouin’s fixative, then extensively 

washed in 70% ethanol in TE buffer to remove dye, and finally incubated in bleaching 

solution on ice, under direct light. After bleaching, embryos were refixed in MEMFA. 

 

In situ probes

PLASMID LINEARIZATION TRANSCRIPTION REFERENCE 
pBS-Xkrm1 and 2 Anti-sense: EcoRI T3 [220] 
pGEM-T-Xerlectin 
(AAH74469) 

Anti-sense: NotI  
Sense: SphI 

T7 
SP6 

this study 

pGEM-T-Xerlectin 
(CB558691) 

Anti-sense: NcoI 
Sense: NotI 

SP6 
T7 

this study 

pGEM-T-Xsox10 Anti-sense: NcoI SP6 this study 
SP72-Xslug (0.8 kb) Anti-sense: ClaI SP6 H. Steinbeisser 
Xbf-1 was ready to use [294] 
Xkrox-20 was ready to use [295] 
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Histology 
 

Embryos were dehydrated in ethanol and xylene, and then embedded in paraffin wax. 

Samples were sectioned using a microtome and stained with Mayer’s hemalaun/Eosin 

solutions. 

 

Embedding of embryos in paraffin wax 

- Before harvest of embryos at desired stages: removed vitelline membranes manually  

- Fixed embryos over night at 4°C in 4% PFA in PBS 

- Washed embryos 2x 5 min in PBS 

- Washed embryos 3x 30 min in 70% ethanol (embryos can be stored at 4°C for up to 6 

months) 

- Washed embryos 1x 1 hour in 85% ethanol 

- Washed embryos 1x 1 hour in 95% ethanol 

- Washed embryos 3x 1 hour in 100% ethanol 

- Washed embryos 1x 1 hour in xylene (in glass cuvettes, under hood) 

- Exchanged xylene and left over night 

- Next day: exchanged xylene 

- Prewarmed cuvette for 30-60 min in the embedding machine 

- Washed embryos 3x 1 hour in paraffin 

- Embedded embryos in specific embedding molds (after orienting them), and let them cool 

down for 1 hour 

- Paraffin blocks were stored at 4°C 

 

Microtome sectioning 

Paraffin blocks containing embedded embryos were cut into 10 µm sections using the Jung 

Biocut microtom (Leica). Sections were immediately transferred to a water bath heated to 

42°C (to smoothen/stretch the paraffin). After 20-30 min, sections were mounted on 

microscope slides (SuperFrost Plus, Menzel-Glaeser), and dried at the rim of the water bath. 

Slides were then further dried in an oven at 55°C (best: horizontally; vertical drying may 

lead to small paraffin drops at lower edge of slides). 

 

Mayer’s hemalaun/Eosin staining 

- Slides were transferred through an ethanol series (in special glass containers for 

 87



Materials and Methods 

histology): 2x 10 min xylene; 2x 5 min 100% ethanol; 1x 5 min 96% ethanol; 1x 5 

min 80% ethanol; 2x 5 min 70% ethanol 

- Slides were rinsed briefly in H2O 

- Incubation in Mayer’s hemalaun (Roth) (solution must be filtered!) for 10 min 

- Transfer to H2O for 1 min, then ethanol-HCl (0.5% HCl in 70% ethanol) for 1 min 

- Put slides under running tap H2O for 10 min (or longer) 

- Transferred slides for 1 min to ddH2O, then to Eosin staining solution for 0.5-1 min  

- Dipped slides in H2O 

- Transferred slides to 70% ethanol for 3 min 

- Slides were again transferred through ethanol series: 70%, 80%, 96%, 100% ethanol (each 

very short), then again 100% ethanol for 1 min, then xylene (short) 

- Samples were embedded immediately (important; samples must not dry) in Roti-Histokitt 

II (Roth) and covered with cover glasses 

- After drying, samples were analyzed under microscope 

 
X. tropicalis methods 
 

X. tropicalis adults and embryos were usually kept at RT. Fertilization was also done at RT; 

after cysteine treatment, one batch was put on 18°C. Importantly, embryos were always 

grown/kept in petri dishes covered with 0.5-1 % agarose in 1/18 MR, in order to avoid 

embryos sticking to the dish. For a general description of X. tropicalis husbandry, as well as 

methods and protocols, see [325]. 

 

Priming, fertilization and microinjection

- Females were preprimed the evening before the experiment with 10 units human 

chorionic gonadotropin (Sigma); males were primed at the same time with 100 units 

of the hormone 

- The next morning, females were primed with 200 units of gonadotropin; frogs start laying 

eggs after 4-6 hours. 

- Females were first squeezed to obtain eggs, then testis was prepared. Prepared testis was 

stored in 1x Ringer at 18°C for a few hours. One whole testis was used per 

fertilization (3-4 egg batches, 100 µl minced testis per batch). After 3 min, 0.1x 

Barth was added to cover the eggs 

 88



Materials and Methods 

- Embryos were incubated for 20 min, then dejellied with 2% cysteine (or even 3%) in 1/9 

MR (pH 7.8-8) at RT 

- Embryos were washed 3x with 0.1x Barth and 2x with 1/9 MR, and kept in 1/9 MR at RT 

and 18°C, respectively. There was never much time difference; both batches are 

almost equally fast 

- Injections were carried out in 1/9 MR + 2% Ficoll; embryos were generally injected at 2, 

4 or 8 cell stage with a volume of 2.5 nl per blastomere 

- After injection, embryos were grown in 1/18 MR at RT 
 

 

Cell culture and transfection  
 

HEK 293T cells were maintained in DMEM (Bio Whittaker) supplemented with 1% L-

Glutamine, 1% PEN-STREP, and 10% FCS (all Bio Whittaker) and grown at 10% CO2. 

Cells were always seeded one day before transfection. All transfections were done using 

FuGENE6 transfection reagent (Roche) according to the manufacturer’s instructions. After 

transfection, cells were kept in DMEM and harvested after 24-48 hours, depending on the 

experiment. 
 

Constructs used for transfection of 293T cells

PLASMID REFERENCE 
pCS2-Xkrm1/2  [220]  
pCS2-V5-Xkrm2  [220] 
pCS2-V5-mkrm1/2  [211] 
pCS2-mkrm1/2-V5  [211] 
pCS2-mkrm1/2-∆TMC-V5  [211] 
pCS2-hLRP6 [176] 
pCS2-flag-hLRP6 [211] 
pCS2-6myc-hLRP6 [154] 
pCS2-hLRP6-GFP [211] 
pCS2-myc-hLRP6∆TMC [211] 
pCS2-flag-hLRP6∆E1-4 [198] 
pCMV-SPORT6-mmesd from RZPD; GenBank Accession BI657640 
pCS2-V5-mdkk3 constructed by Bingyu Mao 
pCS2-myc-mdkk3 constructed by Bingyu Mao 
pCS2-flag-hLDLR∆C Constructed by W.W. 
pCS2-flag-hNME1 [263] 
pCS2-flag-XFLRT3 constructed by Ralph Boettcher 
pCS2-Xdkk1 [29] 
pcDNA3.1-BMP4  
pRK5-mfz8 provided by J. Nathans 
mwnt1 provided by H. Clevers 
pCS2-hdvl [154] 
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pTK-Renilla Promega 
BREx4-E1b-dLuc plasmid (modified from [326]) 
TOPFLASH [327] 
 

 

Luciferase reporter gene assays  
 

Luciferase reporter gene assays were carried out in triplicates in 96-well plates using 

Promega’s Dual-Luciferase Reporter Assay System as described [210]. After transfection, 

cells were grown for 48 hours, then lysed in 50 µl passive lysis buffer (Promega) per well. 

Firefly and Renilla luciferase activities were measured using a Fluoroskan Ascent FL 

(Labsystems), and Firefly activity was normalized against Renilla activity.  
 

In all experiments a total of 50 ng DNA per well was transfected, and 1 ng pCMV-

SPORT6-mmesd or 5 ng pCS2-Xkrm1 DNA were used as indicated. For Wnt reporter 

assays transfected DNAs per well were: 10 ng TOPFLASH and 1 ng pTK-Renilla reporter 

plasmids; 12 ng (Fig. 32B) or 24 ng (Figs. 32A, D and 33) hLRP6; 2 ng mfrizzled8 (fz8); 

0.25 ng hdishevelled1 (dvl1); 0.5 ng hLRP6∆E1-4; 5 ng/ 3 ng mwnt1/ hLRP6 (Fig. 32D); 

0.5 ng Xdkk1. For experiment shown in Fig. 33, 5 ng were transfected of each krm 

construct. For BMP responsive reporter assays transfected DNAs per well were: 20 ng 

BREx4-E1b-dLuc plasmid and 1 ng pTK-Renilla; 10 ng pcDNA3.1-BMP4 as indicated.  

 
 

Biochemical methods 
 

SDS-PAGE and Western blotting 
 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were carried 

out as described in [314]. Signal detection was performed using the enhanced 

chemiluminescence system of Pierce. 

 

Co-immunoprecipitation and in vitro binding assays 
 

For Co-immunoprecipitation (CoIP) assays, HEK293T cells were transfected in 10 cm 

plates with 0.1 µg pCS2-mkrm1-V5 or pCS2-mkrm2-V5 together with 1.5 µg pCS2-flag-
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hLRP6, 0.5 µg pCS2-flag-XFLRT3, 0.1 µg pCS2-flag-hLDLR∆C or 1.5 µg empty vector 

pCS2 using Fugene6 (Roche). After 48 hours cells were washed in PBS and lysed in NP-40 

buffer containing 0.8% NP-40. Lysates were subjected to CoIP with anti-flag antibody 

beads (Sigma) over night at 4°C. CoIPs were washed with NP-40 buffer and analyzed by 

SDS-PAGE and Western blotting.  

 

In vitro binding assays were carried out essentially as described [263]. Recombinant 

proteins were produced as conditioned media by transient transfection of HEK293T cells 

with pCS2-mkrm1∆TMC-V5, pCS2-mkrm2∆TMC-V5, pCS2-V5-mdkk3 or pCS2-myc-

hLRP6∆TMC in serum-free media (Optimem I, Gibco). Media were concentrated about 50-

fold using Centricon Plus-20 filters (Millipore). Equal amounts of V5-tagged proteins were 

resuspended in NP-40 buffer containing 0.2% (w/v) NP-40, and incubated with anti-V5 

antibody beads (Sigma) under gentle shaking over night at 4oC. IPs were washed and 

incubated for five hours with media containing pCS2-myc-hLRP6∆TMC. CoIPs were 

washed again and analyzed by SDS-PAGE and Western blotting. 

 
Endoglycosidase H (EndoH) treatment 
 

For deglycosylation of LRP6, HEK293T cells were grown in 10 cm plates and transfected 

with 1 µg flag-LRP6 together with 0.4 µg pCS2-myc-mdkk3, pCMV-SPORT6-mmesd, 

pCS2-mkrm2-V5 or empty pCS2. After 2 days, cells were washed in Hank’s buffer and 

resuspended in 1 ml hypotonic buffer. Samples were dounced 25 times, and after removal 

of cell debris by centrifugation at 2500 rpm, membranes were pelleted by centrifugation at 

30.000 rpm. Pellets were lysed in NP-40 buffer (without NaF) containing 2% NP-40 and 

subjected to EndoH (Roche) treatment (0.25 U/ ml) in 100 mM NaOAc, pH 5.5, for 30 min 

at 37°C. Samples were analyzed by SDS-PAGE and Western blotting. 

 
Cell surface biotinylation 
 

For cell surface biotinylation of LRP6, HEK293T cells were transfected in 6 cm dishes with 

0.25 µg pCS2-flag-hLRP6 together with 0.1 µg pCS2-myc-mdkk3, pCMV-SPORT6-mmesd 

or pCS2-mkrm2-V5, or pCS2-flag-hNME. For cell surface biotinylation of ER-trapped 

Krm2 constructs, HEK293T cells were transfected in 6-well dishes with 0.1 µg pCS2-V5-
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mkrm2, pCS2-V5-mkrm2-DEKKMP, pCS2-V5-mkrm2-KKYL, pCS2-V5-mkrm2-KKDE, or 

0.4 µg pCS2-V5-hNME1. 

 

Special materials 

EZ-link Sulfo-NHS-LC-Biotin, No 21335, Mol weight 556,59 (Pierce) 

Anti-FLAG M2-Agarose from mouse, A2220-25ML (Sigma) 

Anti-V5-Agarose, Affinity gel, from mouse (Sigma) 

Complete, EDTA free protease inhibitor tablet, 11 873 580 001 (Roche) 

 

Protocol for cell surface biotinylation 

- Used poly-L-lysine plates for 293T cells (diluted 1 ml of Poly-L-Lysine hydrobromide 

(Sigma, P-5899) in 50 ml dH2O (not necessary to autoclave); incubated plates for 30 

min, then dried plates with open lid under hood with switched on UV light; plates 

were stored at RT) 

- Seeded cells very thin (maybe 1:15); after desired period of growth (2 days) cells should 

be max. 70% confluent; transfection of constructs was done as described above 

- Next day: exchanged 75% of supernatant with fresh DMEM  

- Harvest: After 2 days; everything on ice, all solutions were precooled 

- Washed 2x with HANK’s, 1x with HANK’s + 100 mM Hepes, pH 7.5 (HANK’s-Hepes) 

- Pre-weighed biotin (prewarmed tube in hand, so that it attracts less humidity when 

opened, prewarmed also falcon) 

- Dissolved biotin (final conc: 0.5 mM) in precooled HANK’s - Hepes, pH 7.5 and 

immediately put on cells;  

- Incubated ½ hour on ice; importantly, cells must be completely covered 

- Quenched reaction by adding HANK’s + 20 mM Monoethanolamine, incubated 10 min 

- Scraped cells in this solution using a gummy scraper  

- Spun 5 min, 4°C, 2000 rpm, to keep cells intact 

- Washed cells 2x in 5 ml HANK’s in a volume of 5 ml (spun 5 min, 4°C, 2000 rpm) 

- Resuspended cells in hypotonic buffer 

- Dounced 25 times in small homogenizer (on ice); transferred samples to Eppendorf tubes 

- Spun 5 min, 4°C, 2500 rpm, in Falcon centrifuge (to get rid of debris) 

- Transferred 0.9 ml to fresh tubes 

- Ultracentrifugation: 30 min, 4°C, 30 K (30.000 rpm), TLA-55 rotor, in tabletop 

ultracentrifuge 
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- Resuspended membrane pellet in 300 µl NP-40 buffer containing 2% NP-40 

- Lysed on ice for 1 hour, vortexed several times 

- Spun 2x 3 min, 4°C, max. speed, transferred and kept supernatant 

- Prewashed antibody-coupled beads 3x with NP-40 buffer containing 0.2% NP-40 in 

Falcon, spun 2 min, 500 rpm 

- Took pre-beads (load, input) aliquot, then added 40 µl beads to lysate, put on rotator for 4 

hours (when over night, a lot of LRP6 is degraded) 

- Took post-beads (flow-through) aliquot, then washed beads 5x in 1 ml NP-40 buffer 

containing 0.2% NP-40; always spun 2 min at 500 rpm, 4°C 

- Elution: 50 µl 4x Laemmli for 5 min, at 99°C, shaking  

- For pre- and post-beads aliquots: added same ratio of 4x Laemmli, e.g. for 15 µl added 5 

µl of 4x Laemmli 

- PAGE and Western blotting: for LRP6 normally 7.5% PA, and detection with anti-flag 

and Streptavidin-HRP antibodies; for Krm2 constructs 10-12.5 % PA, and detection 

with anti-V5 and Streptavidine-HRP antibodies 

 
Protease protection assay 
 

The microsomal fraction was isolated from HEK293T cells after transfection of Erlectin-

HA using an ER Isolation Kit protocol: SIGMA, Endoplasmic Reticulum Isolation Kit, 

Product Code ER0100. The endogenous ER protein Calnexin was used as control [293]. 

 

ER membrane isolation 

- Plated 293T cells in 15 cm dish; when confluent, harvested with gummi cell scraper in 10 

ml ice cold PBS, on ice 

- Transferred cells to 15 ml falcon, spun at 2500 rpm (600xg), 4°C 

- Resuspended pellet in 10x vol. ice cold PBS, spun again 

- Suspended pellet in 3x vol. hypotonic ER isolation buffer (1 ml), transferred samples to 

Eppendorf tubes 

- Rested for 20 min on ice (this helps to break up cells later by making cells unstable) 

- Spun for 5 min, 2000 rpm, 4°C 

- Resuspended pellets in 2x vol. isotonic ER isolation buffer (0.5 ml) and dounced 10x 

- Spun in Eppendorf cool centrifuge, 10 min, 4°C, 2200 rpm (1000xg) (this removes cell 

debris) 
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- Spun in Eppendorf cool centrifuge, 15 min, 7700 rpm (12000xg) (this removes 

mitochondria) 

- Spun in table top ultracentrifuge, TLA-55 rotor, 1h, 4°C, 41.000 rpm (approx. 100.000xg)  

- Resuspended pellet in isotonic ER isolation buffer (150 µl); (kept supernatant = cytosolic 

fraction) 

- Spun 1 min at 2500 rpm in Eppendorf cool centrifuge to remove clumps 

- Samples were used immediately or frozen at -80 

 

Proteinase K treatment 

- Aliquots were pretreated +/- 1% TritonX-100 for 30 min on ice, then incubated +/- 250 

µg/ml Proteinase K (Gerbu) (prepared very fresh from powder, since this enzyme 

eats itself), for 1 hour on ice  

- PMSF was added to a final concentration of 1 mM to inhibit Proteinase K, and samples 

were analyzed by SDS-PAGE and Western blotting  

 

 

Bioinformatics 
 

General webpages are (mainly Xenopus): AxelDB, Ensembl, JGI Xenopus, NCBI, NIBB 

XDB, Sanger Institute, XGI (TIGR), Xenbase. Xenopus EST sequences for alignments (MO 

design) were withdrawn from: Sanger Institute, JGI Xenopus and NCBI. 

 

Erlectin sequences were extracted from public databases, using browsers of the NCBI and 

Sanger centers: human (NM_015701, GeneID: 27248), mouse (NM_025745), chicken 

(XM_419295), D. rerio (BC044498), X. tropicalis (AAH67973), C. intestinalis 

(AK114497), S. purpuratus (XP_784270) and D. melanogaster (NM_135693). The two X. 

laevis alleles are: BC074469 (allele1) and CB558691 (allele2). CB558691 is a partial 

sequence of contig XGI TC228200. Alignments and homology trees were generated using 

the program DNAMAN (Lynnon Corporation). 
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