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Abstract. The focus of interest is the Cauchy problem of the nonlinear transport equation
d
dt µ + divx(f(µ, ·) µ) = g(µ, ·) µ (in RN× ]0, T [)

together with its distributional solutions µ(·) : [0, T [ −→M+
c (RN ) whose values are positive

Radon measures on RN with compact support. The coefficients f(µ, t), g(µ, t) are assumed
to be uniformly bounded and Lipschitz continuous vector fields on RN .

Sufficient conditions on the coefficients f(·, ·), g(·, ·) for existence, uniqueness and even for
stability of these distributional solutions are presented. Starting from the well-known results
about the corresponding linear problem, the step towards the nonlinear problem here relies
on Aubin’s mutational equations, i.e. dynamical systems in a metric space (with a new slight
modification).
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1 Introduction

The scalar transport equation d
dt u + divx(b̃ u) = c̃ u (in RN × [0, T [) is the classical

analytical tool for describing a real–valued quantity u = u(x, t) while “flowing” (or, rather,

evolving) along a given vector field b̃ : RN × [0, T ] −→ RN and exploiting a form of source

(described by the scalar field c̃ : RN × [0, T ] −→ R). Thus, it is playing a key role in many

applications of modelling like fluid dynamics and, it has been investigated under completely

different types of assumptions about b̃(·, ·), c̃(·, ·).

Due to well-known difficulties in regard to smooth solutions, the values of all solutions

considered here are positive finite Radon measures on RN with compact support (whose set is

abbreviated as M+
c (RN )) and, we are interested in (structurally) simple sufficient conditions

on the coefficients for proving existence, uniqueness and stability of a distributional solution of

the nonlinear transport equation{
d
dt µ(t) + divx(F1(µ(t), t) µ(t)) = F2(µ(t), t) µ(t) in RN×]0, T [

µ(0) = µ0 ∈M+
c (RN )

with given F = (F1, F2) : M+
c (RN )× [0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R).

As a main result in this paper, suitable continuity of the coefficients F (·, ·) implies existence:

Proposition 1.1 (Existence)

Let F : M+
c (RN )×[0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R) satisfy the following conditions:

1.) sup
µ0,t

(‖F1(µ0, t)‖W 1,∞ + ‖F2(µ0, t)‖W 1,∞) < ∞

2.) F1, F2 are continuous with respect to narrow convergence in M+
c (RN ) and

L∞ norm of spatial fields.

Then, for any initial datum ν0 ∈M+
c (RN ), there exists a narrowly continuous weak solu-

tion µ : [0, T [−→M+
c (RN ), t 7−→ µt of the nonlinear transport equation{
∂t µt + divx (F1(µt, t) µt) = F2(µt, t) µt in [0, T ]

µ0 = ν0

(1)

This global existence result has three essential advantages in common with the subsequent

statements about uniqueness and stability: Firstly, the structural conditions on the considered

measures are rather weak. In particular, these positive Radon measures with compact support

need not be absolutely continuous with respect to Lebesgue measure. We can apply all results

of this paper to the evolution of lower dimensional Hausdorff measures (with compact support),

for example. Secondly, there is no restriction imposed on the initial datum – such as “small

norm” (in any sense). Thirdly, the coefficient function F = (F1, F2) is assumed to be defined

on M+
c (RN ) × [0, T ] in a very general way obeying merely continuity hypotheses. So in

particular, nonlocal information about the Radon measures can be taken into consideration

explicitly (such as nonlinear functions of weighted integral means).
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Solving this nonlinear Cauchy problem (1) is based on a decomposition: The first step

focuses on the corresponding autonomous linear problem{
∂t µt + divx (b µt) = c µt in [0, T ]

µ0 = ν0 ∈M+
c (RN )

(2)

for given b ∈ W 1,∞(RN ,RN ) and c ∈ L∞(RN ,R). Here we investigate the regularity of

the weak solution with respect to time, initial datum ν0 and coefficients b(·), c(·). The bridge

to the nonlinear Cauchy problem is then gapped by a form of “feedback”, i.e. the coefficients

are prescribed as a function of current measure and time. Let us discuss this decomposition in

more detail:

The solution of the corresponding autonomous linear problem can be characterized explicitly

in a rather easy way. Indeed, the Lipschitz continuity of the spatial vector fields implies that

the characteristics are well-defined. So considering the Cauchy problem (2), the weak solution

µ : [0, T [−→M+(RN ), t 7−→ µt is uniquely described by∫
RN

ϕ dµt =
∫

RN

ϕ(Xb(t, x)) · exp
(∫ t

0
c(Xb(s, x)) ds

)
dµ0(x) for all ϕ ∈ C0

c (RN )

with Xb(·, ·) : [0,∞[ ×RN −→ RN denoting the flow along the bounded Lipschitz continu-

ous vector field b. Thus, the autonomous linear Cauchy problem induces a C0 semigroup on

M+(RN ) (with respect to narrow convergence).

The crucial step to the nonlinear transport equation is now based on a tool that is hardly

known in the PDE community, but we regard it as very useful indeed : Aubin’s concept of

mutational equations [5, 6, 7]. Its goal is to extend ordinary differential equations to any metric

space (E, d) so that the “derivative” of the wanted curve can be prescribed as a function of

the current state. Thus, it has many similarities with the so-called quasidifferential equations

or funnel equations introduced independently by Panasyuk and others (see e.g. [21, 22, 23]).

For dispensing with any vector space structure, Aubin’s starting point is to introduce “maps

of elementary deformation” ϑ : [0, 1]×E −→ E. Such a so–called transition specifies the point

ϑ(t, x) ∈ E to which an initial point x ∈ E has been moved after time t ∈ [0, 1]. It can be

interpreted as a generalized derivative of a curve ξ : [0, T [−→ E at time t ∈ [0, T [ if it provides

a first–order approximation in the sense of lim sup
h ↓ 0

1
h · d(ξ(t+ h), ϑ(h, ξ(t))) = 0.

So correspondingly to ordinary differential equations in a vector space, such a transition is

prescribed as a function of state and time, i.e. f : (x, t) 7−→ ϑ, and, we are then interested in

a continuous curve ξ(·) satisfying the condition

lim sup
h ↓ 0

1
h · d(ξ(t+ h), f(ξ(t), t) (h, ξ(t))) = 0 at each time t.

For succeeding in such a construction, each transition ϑ : [0, 1] × E −→ E is to satisfy some

continuity conditions (in both arguments), of course. They will be specified in § 2. As the

new point here in comparison with Aubin’s original version, the continuity parameters of a

transition need not be uniform in the whole set E, but they are the same for all initial elements
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in “closed balls” Br := {x ∈ E | TxU ≤ r} (for each r ≥ 0) where some given function

T·U : E −→ [0,∞[ is to play the role of a norm (but it does not have to satisfy any structural

conditions like homogeneity or triangular inequality).

For applying this abstract tool to nonlinear transport equations, we need both a metric and

an appropriate “absolute magnitude” T·U for the positive Radon measures that we want to

consider. The linear Wasserstein metric has proven to be a very powerful tool for probability

measures µ, ν on RN in connection with the optimal mass transportation problem and gradient

flows (see e.g. [4]). Its dual representation for measures with bounded support, however,

d1(µ, ν) = sup
{∫

RN

ψ d(µ− ν)
∣∣∣ ψ ∈ Lip (RN ,R), Lip ψ ≤ 1

}
reveals that this supremum might be ∞ whenever µ(RN ) 6= ν(RN ) (independently from the

additional assumption of compact support). As an extension of d1(·, ·), we propose here

ρ(µ, ν) := sup
r>0

{
1
er

∫
RN

ψ d(µ− ν)
∣∣∣ ψ ∈ Lip (RN ,R), Lip ψ ≤ 1, inf |ψ−1(0)| ≤ r

}
= sup

r>0

{
1
er

∫
RN

(ϕ− ϕ(x0)) d(µ− ν)
∣∣∣ ϕ ∈ Lip (RN ,R), Lip ϕ ≤ 1, |x0| ≤ r

}
.

It is finite if µ, ν have finite first moments and, it coincides with d1(µ, ν) if µ(RN ) = ν(RN ).

Moreover, for all positive Radon measures with compact support in an arbitrarily fixed ball

Br(0) := {z ∈ RN | |z| ≤ r}, r ≥ 0, the convergence with respect to ρ proves to be equivalent to

narrow convergence. This property – together with an easy compactness criterion – has been

the key motivation for restricting our considerations to positive Radon measures with compact

support and for defining T·U : M+
c (RN ) −→ [0,∞[ as

TµU := |µ(RN )| + inf{r > 0 | supp µ ⊂ Br(0)} for µ ∈M+
c (RN ).

Indeed, each “ball” {µ ∈ M+
c (RN ) | TµU ≤ R} (with R ≥ 0) is sequentially compact with

respect to narrow convergence (due to Prokhorov criterion) and thus with respect to ρ.

After supplying M+
c (RN ) with the metric ρ and the “absolute magnitude” T·U, the Cauchy

problem (2) of the autonomous linear transport equation lays the basis for transitions ϑb,c(·, ·)
on M+

c (RN ) depending on the coefficients b(·), c(·). For ensuring appropriate continuity prop-

erties, we assume b ∈W 1,∞(RN ,RN ) and (slightly stronger than before) c ∈W 1,∞(RN ,R).

Prescribing these coefficients as a function of the current measure and time

F = (F1, F2) : M+
c (RN )× [0, T ] −→ W 1,∞(RN ,RN )×W 1,∞(RN ,R),

leads to mutational equations whose solutions µ : [0, T [ −→ M+
c (RN ), t 7−→ µt prove to be

weak solutions of the nonlinear transport equation (1).

So in this setting, the existence of a weak solution mentioned in Proposition 1.1 results

directly from the counterpart of Peano’s theorem about mutational equations. Furthermore,

Gronwall’s inequality ensures that “local” Lipschitz continuity of the coefficient function F

implies uniqueness of the (mutational) solution. Exploiting now the well-known result that the

corresponding nonautonomous linear Cauchy problem has unique weak solutions [1, 4, 20], we

can even draw conclusions about the uniqueness of weak measure-valued solutions:
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Proposition 1.2 (Uniqueness)

Let F : M+
c (RN )×[0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R) satisfy the following conditions:

1.) sup
µ0,t

(‖F1(µ0, t)‖W 1,∞ + ‖F2(µ0, t)‖W 1,∞) < ∞

2.) for any R > 0, there is a constant LR > 0 and a modulus ωR(·) of continuity with

‖F1(µ, s)− F1(ν, t)‖∞ + ‖F2(µ, s)− F2(ν, t)‖∞ ≤ LR · ρ(µ, ν) + ωR(|t− s|)

for all µ, ν ∈M+
c (RN ) with TµU,TνU ≤ R.

Then the narrowly continuous weak solution µ : [0, T [ −→M+
c (RN ), t 7−→ µt of the Cauchy

problem (1) with supt TµtU <∞ is unique.

Last, but not least, solutions of mutational equations are stable with respect to the coefficients.

This rather simple consequence of Gronwall’s inequality implies an interesting statement about

the stability of weak solutions of the nonlinear transport equation:

Proposition 1.3 (Stability)

Assume for F,G : M+
c (RN )× [0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R) :

1.) MF := sup
µ0,t

(‖F1(µ0, t)‖W 1,∞ + ‖F2(µ0, t)‖W 1,∞) < ∞

MG := sup
µ0,t

(‖G1(µ0, t)‖W 1,∞ + ‖G2(µ0, t)‖W 1,∞) < ∞

2.) for any R > 0, there is a constant LR > 0 and a modulus ωR(·) of continuity with

‖F1(µ, s)− F1(ν, t)‖∞ + ‖F2(µ, s)− F2(ν, t)‖∞ ≤ LR · ρ(µ, ν) + ωR(|t− s|)

for all µ, ν ∈M+
c (RN ), TµU,TνU ≤ R.

3.) G1, G2 are continuous with respect to narrow convergence in M+
c (RN ) and

L∞ norm of spatial fields.
Let ν : [0, T [−→M+

c (RN ), t 7−→ νt be a narrowly continuous weak solution of

∂t νt + divx (F1(νt, t) νt) = F2(νt, t) νt
with supt TνtU <∞.

Then, for every initial measure µ0 ∈ M+
c (RN ), there exists a narrowly continuous weak

solution µ : [0, T [−→M+
c (RN ), t 7−→ µt of

∂t µt + divx (G1(µt, t) µt) = G2(µt, t) µt in [0, T ]

satisfying supt TµtU <∞ and for all t ∈ [0, T [

ρ(µt, νt) ≤
(
ρ(µ0, ν0) + t·const(MF ,MG,Tµ0U,Tν0U) · (‖F1−G1‖∞+‖F2−G2‖∞)

)
econst(F ) · t.

If the function G(·, ·) satisfies even a Lipschitz condition corresponding to hypothesis (2.),

then the weak solution µ is unique, of course, due to preceding Proposition 1.2.
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This stability with respect to coefficients belongs to the main results of this paper and

demonstrates an essential advantage of the presented approach. As mentioned before, it is

based on a decomposition of the nonlinear problem into the autonomous linear problem (being

easy to solve properly) and a form of “feedback”.

The characteristics lay the foundations for solving the linear Cauchy problem and thus, former

results about the Glimm scheme, wave-front tracking algorithm etc. are not used. We are

free to consider arbitrary space dimension instead. Although it is not presented explicitly in

this paper, all the following results can be extended to systems easily because the systems of

mutational equations can be solved in exactly the same way.

Furthermore, the form of decomposition reflects the key difference from the so-called Stan-

dard Riemann Semigroup (SRS) that considers a hyperbolic n×n system of conservation laws

∂tu + ∂xF (u) = 0 in one space dimension. In a word, the values of SRS are usually Lebesgue-

integrable functions R −→ RN of (sufficiently) small total variation. The existence of such an

appropriate semigroup (with additional continuity conditions) was first proved for 2×2 systems

in [13] and then extended to general n× n systems in [12]. The Standard Riemann Semigroup

takes the full nonlinearity into consideration immediately and thus, its stability with respect to

coefficients is not easy at all to investigate (e.g. [8, 16]). In [10], Bressan suggests how to com-

bine the Standard Riemann Semigroup with the quasidifferential equations of Panasyuk. His

goal there is to draw conclusions about uniqueness – rather than proving existence of solutions

(see also [15]). Due to SRS as starting point, however, Bressan needs a rather complicated met-

ric on the domain of SRS for obtaining a “locally nonexpansive” semigroup (roughly speaking)

and, he makes several suggestions seizing notions of Riemannian metrics on a manifold (see

also [9, 11, 14], for example). In this paper, we prefer a rather simple metric on M+
c (RN )

(independent of the transport equation) and exploit then the regularity of the linear Cauchy

problem as preparatory step for solving the full nonlinear problem. (To the best of the author’s

knowledge, mutational equations for solving PDEs were first proposed in [18, 19].)

Coming to the end of this introduction, we briefly sketch the next paragraphs: § 2 provides

a short, but self-contained survey of mutational equations. In § 3, we introduce the metric ρ on

M+
c (RN ) and investigate the relation between (M+

c (RN ), ρ) and the more popular topology of

narrow convergence. Finally, in § 4, more detailed results about the autonomous linear Cauchy

problem (2) lay the basis for solving the nonlinear Cauchy problem (1) by the means of § 2.

Notation C0
c (RN ) denotes the space of continuous functions RN −→ R with compact

support and C0(RN ) its closure with respect to the sup norm, respectively.

Furthermore,M(RN ) consists of all finite real–valued Radon measures on RN . As a consequence

of Riesz theorem, it is the dual space of C0(RN ) (see e.g.[3], Remark 1.57). M+(RN ) denotes

the set of all positive finite Radon measures on RN : M+(RN ) := {µ ∈M(RN ) | µ(·) ≥ 0}.

Finally, M+
c (RN ) consists of all positive Radon measures on RN with compact support

and M+
1 (RN ) :=

{
µ ∈M+(RN )

∣∣∣ ∫
RN

(1 + |x|) dµ(x) < ∞
}
.
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2 Mutational equations on a metric space

Assumptions of § 2 E is a nonempty set and d : E × E −→ [0,∞[ a metric on E.

Furthermore let T·U : E −→ [0,∞[ be an arbitrary function (that is to play the role of a norm

on E, but need not satisfy structural conditions like homogeneity or triangular inequality).

Now we specify the primary tools for describing deformations in the tuple (E, d,T·U). A map

ϑ : [0, 1]×E −→ E is to define which point ϑ(t, x) ∈ E is reached from the initial point x ∈ E
after time t. Of course, ϑ has to fulfill some regularity conditions so that it may form the basis

for a calculus of differentiation.

Definition 2.1 A function ϑ : [0, 1] × E −→ E is called transition on (E, d,T·U) if it

satisfies the following conditions:

1.) ϑ(0, ·) = IdE ,

2.) lim
h ↓ 0

1
h · d (ϑ(t+ h, x), ϑ(h, ϑ(t, x))) = 0 for all x ∈ E, t ∈ [0, 1[,

3.) there exists a parameter function α(ϑ; · ) : [0,∞[−→ [0,∞[ such that

lim sup
h ↓ 0

d(ϑ(h,x), ϑ(h,y)) − d(x,y)
h ≤ α(ϑ; r) · d(x, y) for all x, y ∈ E, r with TxU,TyU ≤ r,

4.) there exists a parameter function β(ϑ; · ) : [0,∞[−→ [0,∞[ such that

d(ϑ(s, x), ϑ(t, x)) ≤ β(ϑ; r) · |t− s| for all x ∈ E, r, s, t with TxU ≤ r,

5.) there exists a constant ζ(ϑ) ∈ [0,∞[ such that

Tϑ(h, x)U ≤ TxU · eζ(ϑ) h + ζ(ϑ) h for all x ∈ E, h ∈ [0, 1].

Remark. The first two conditions are very similar to the definition of a semigroup. The only

difference here is that a condition on the “first–order change” (with respect to time) suffices

completely.

Property (3.) is to ensure an appropriate form of continuity with respect to the initial element.

It implies that the initial distance of two points x, y ∈ E may grow at most exponentially

in time while evolving along the same transition ϑ and, the corresponding exponent can be

chosen uniformly on each “ball” {x ∈ E | TxU ≤ r}, r ≥ 0.

Property (4.) ensures Lipschitz continuity of ϑ(·, x) for each initial point x ∈ E. Similarly

to property (3.), the Lipschitz constant may depend on TxU and, these dependencies are the

new aspects of this paper in comparison with Aubin’s original definition of transitions [5, 6].

Last, but not least, we need a bound of the “absolute magnitude” Tϑ(h, x)U depending on

both arguments. The combination of exponential and linear growth mentioned here has the

key advantage that for any continuous curve x : [0, T [ −→ E defined piecewise by finitely

many transitions ϑ1 . . . ϑn with ζ̂ := supj ζ(ϑj) <∞ (as in the proof of Theorem 2.7 later),

we conclude from Gronwall’s lemma: Tx(t)U ≤ Tx(0)U ebζ t + ζ̂ t for all t ∈ [0, T [.
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Definition 2.2 Θ(E, d,T·U) 6= ∅ denotes a set of transitions on (E, d,T·U) assuming

D(ϑ, τ ; r) := sup
{

lim sup
h ↓ 0

1
h · d(ϑ(h, x), τ(h, x))

∣∣∣ x ∈ E, TxU ≤ r
}

< ∞

for any ϑ, τ ∈ Θ(E, d,T·U) and r ≥ 0. (If {x∈E | TxU ≤ r} = ∅, set D( · , · ; r) := 0.)

Obviously, D(·, ·; r) : Θ(E, d,T·U) × Θ(E, d,T·U) −→ [0,∞[ is symmetric and satisfies the

triangular inequality for each r ≥ 0. Moreover, it lays the basis for estimating the distance

between two initial points x, y ∈ E after evolving along two transitions ϑ, τ ∈ Θ(E, d,T·U),

respectively, for some time h ∈ [0, 1]. The way how to derive this estimate from (a not very

popular form of) Gronwall’s Lemma is very characteristic for mutational equations and will be

reused for similar inequalities later (see Lemma 2.8).

Lemma 2.3 Let ϑ, τ ∈ Θ(E, d,T·U) be any transitions. Then for every time h ∈ [0, 1]

and initial points x, y ∈ E with TxU,TyU ≤ r, the distance between ϑ(h, x) and τ(h, y)

satisfies (with the abbreviation R := r emax{ζ(ϑ), ζ(τ)} + max{ζ(ϑ), ζ(τ)} )

d (ϑ(h, x), τ(h, y)) ≤
(
d(x, y) + h ·D(ϑ, τ ; R)

)
eα(τ ;R) h .

Proof. According to property (5.) of transitions, TxU, TyU ≤ r implies Tϑ(h, x)U ≤ R and

Tτ(h, y)U ≤ R for all h ∈ [0, 1].

The auxiliary function ϕ : [0, 1] −→ [0,∞[, h 7−→ d(ϑ(h, x), τ(h, y)) is continuous due to

property (4.) and the triangular inequality of d. Furthermore, we obtain for every h ∈ [0, 1[

and k ∈ [0, 1− t[

ϕ(h+ k) ≤ d(ϑ(h+ k, x), ϑ(k, ϑ(h, x))) + d(ϑ(k, ϑ(h, x)), τ(k, ϑ(h, x)))

+ d(τ(k, ϑ(h, x)), τ(k, τ(h, y))) + d(τ(k, τ(h, y)), τ(h+ k, y))

≤ o(k) + D(ϑ, τ ; R) · k + o(k)

+ ϕ(h) + k · α(τ ;R) ϕ(h) + o(k) + o(k)

and thus, lim sup
k ↓ 0

ϕ(h+k)− ϕ(h)
k ≤ α(τ ;R) · ϕ(h) + D(ϑ, τ ; R).

The claimed estimate results now directly from subsequent version of Gronwall’s Lemma. 2

Lemma 2.4 (Lemma of Gronwall for upper Dini derivatives)

Let ψ, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ f(t) · ψ(t) + g(t) for all t ∈ ]a, b[.

Then, for every t ∈ [a, b[, the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eµ(t) +
∫ t

a
eµ(t)−µ(s) g(s) ds

with µ(t) :=
∫ t

a
f(s) ds.
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Proof. Let δ > 0 be arbitrarily small. The proof is based on comparing ψ with the auxil-

iary function ϕδ : [a, b] −→ R that uses ψ(a) + δ, g(·) + δ instead of ψ(a), g(·) :

ϕδ(t) := (ψ(a) + δ) eµ(t) +
∫ t

a
eµ(t)−µ(s) (g(s) + δ) ds.

Then, ϕ′δ(t) = f(t) ϕδ(t) + g(t) + δ in [a, b[ and, ϕδ(t) > ψ(t) for all t ∈ [a, b[ close to a.

Assume now that there is some t0 ∈ ]a, b] with ϕδ(t0) < ψ(t0). Setting

t1 := inf {t ∈ [a, t0] | ϕδ(t) < ψ(t) },

we obtain ϕδ(t1) = ψ(t1) and a < t1 < t0 because

ϕδ(t1) = lim
h ↓ 0

ϕδ(t1 − h) ≥ lim sup
h ↓ 0

ψ(t1 − h) ≥ ψ(t1),

ϕδ(t1) = lim
h→ 0
h ≥ 0

ϕδ(t1 + h) ≤ lim sup
h→ 0
h ≥ 0

ψ(t1 + h) ≤ ψ(t1).

Thus, we conclude from the definition of t1

lim inf
h ↓ 0

ϕδ(t1+h)−ϕδ(t1)
h ≤ lim sup

h ↓ 0

ψ(t1+h)−ψ(t1)
h

ϕ′δ(t1) ≤ f(t1) · ψ(t1) + g(t1)

f(t1) ϕδ(t1) + g(t1) + δ ≤ f(t1) · ϕδ(t1) + g(t1)

— a contradiction. So ϕδ(·) ≥ ψ(·) for any δ > 0. 2

A transition ϑ ∈ Θ(E, d,T·U) can be interpreted as “time derivative” of curve x(·) :

[0, T [−→ E at time t ∈ [0, T [ if it induces a first-order approximation, i.e. the evolution of x(t)

along ϑ differs from the curve x(t+ ·) “up to order” 1
h : lim

h ↓ 0

1
h · d (ϑ(h, x(t)), x(t+h)) = 0.

This condition may be fulfilled by more than one transition, of course. So we collect all these

transitions in the so-called mutation of x(·) at time t. The main notion of a mutational equation

is then to prescribe a transition in the mutation (of the wanted continuous curve) as function

of the current state and time.

Definition 2.5 Let x(·) : [0, T [−→ E be a curve in E. The so-called mutation
◦
x(t) of

x(·) at time t ∈ [0, T [ consists of all transitions ϑ ∈ Θ(E, d,T·U) satisfying

lim sup
h ↓ 0

1
h · d (ϑ(h, x(t)), x(t+ h)) = 0.

Definition 2.6 For a given function f : E×[0, T [−→ Θ(E, d,T·U), a curve x(·) : [0, T [−→
E is called solution of the mutational equation

◦
x(·) 3 f(x(·), ·) in [0, T [ if it fulfills the

following conditions:
1.) for every t ∈ [0, T [, f(x(t), t) ∈ ◦

x(t), i.e. lim
h ↓ 0

1
h · d (f(x(t), t) (h, x(t)), x(t+ h)) = 0,

2.) x(·) is continuous with respect to d,

3.) sup
0≤ t<T

Tx(t)U < ∞.
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Remark. For any transition ϑ ∈ Θ(E, d,T·U) and initial element x0 ∈ E, the curve

[0, 1[ −→ E, h 7−→ ϑ(h, x) is a solution of the mutational equation
◦
x(·) 3 ϑ in [0, 1[ (with

constant right-hand side). This results directly from property (2.) of transitions in Def. 2.1.

Proposition 2.7 (Existence) Let (E, d) be a metric space and T·U : E −→ [0,∞[ such

that each “ball” {x ∈ E | TxU ≤ r}, r ≥ 0, is compact in (E, d).

Furthermore suppose f : (E, d)× [0, T [−→ (Θ(E, d), D(·, · ; r)) to be continuous with
α̂(r) := sup

x,t
α(f(x, t); r) < ∞,

β̂(r) := sup
x,t

β(f(x, t); r) < ∞,

ζ̂ := sup
x,t

ζ(f(x, t)) < ∞

for each r ≥ 0.

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0, T [ −→ E of the

mutational equation
◦
x(·) 3 f(x(·), ·) in [0, T [ with x(0) = x0.

Proof is based on Euler approximations xn(·) : [0, T ] −→ E (n ∈ N) in combination with

the Arzela–Ascoli theorem (see [17], for example). Indeed, for each n ∈ N, set

hn := T
2n , tjn := j hn for j = 0 . . . 2n,

xn(0) := x0, x0(·) := x0,

xn(t) := f(xn(t
j
n), t

j
n)

(
t− tjn, xn(t

j
n)

)
for t ∈ ]tjn, t

j+1
n ], j < 2n.

This piecewise construction of each xn(·) implies firstly Txn(t)U ≤ Tx0U · e
bζ T + ζ̂ T =: R

for all t ∈ [0, T ], n ∈ N. So all values of the Euler approximations xn(·), n ∈ N, are contained

in the compact set KR := {y ∈ E | TyU ≤ R}. Secondly, the triangle inequality ensures

d (xn(s), xn(t)) ≤ β̂(R) |t− s| for all s, t ∈ [0, T ], n ∈ N
and thus, the sequence (xn(·))n∈N is equicontinuous.

The classical Theorem of Arzela–Ascoli states that the set {xn(·) | n ∈ N} ⊂ C0([0, T ],KR) is

precompact (with respect to uniform convergence) and so, there is a subsequence
(
xnj (·)

)
j∈N

converging uniformly to a function x(·) ∈ C0([0, T ],KR).

Finally, we verify that x(·) solves the mutational equation
◦
x(·) 3 f(x(·), ·) in [0, T [.

Indeed, x(·) is continuous with respect to d and, it satisfies supt Tx(t)U ≤ R due to its

construction. Furthermore, using the notation δn := sup
[0,T ]

d(xn(·), x(·)), we conclude from

subsequent Lemma 2.8 for any times t ∈ [0, T [, h ∈ [0, T−t[ and arbitrary n ∈ N

d (f(x(t), t) (h, x(t)), x(t+ h))

≤ d
(
f(x(t), t) (h, x(t)), xn(t+ h)

)
+ d (xn(t+ h), x(t+ h))

≤
(
δn + h · sup

−hn ≤ s≤h (t+s≥0)
y: d(y,x(t+s))≤δn

D (f(x(t), t), f(y, t+ s), R)
)
ebα(R) h + δn .
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Due to the continuity of f with respect to D(·, ·;R), the limit for n −→∞ implies

d
(
f(x(t), t) (h, x(t)), x(t+ h)

)
≤ h · sup

0≤ s≤h
D (f(x(t), t), f(x(t+ s), t+ s), R) ebα(R) h

and thus, lim sup
h ↓ 0

1
h · d

(
f(x(t), t) (h, x(t)), x(t+ h)

)
≤ 0. 2

Lemma 2.8 Assume for f, g : E× [0, T [−→ Θ(E, d,T·U) and the curves x, y : [0, T [−→ E

that x(·) is a solution of the mutational equation
◦
x(·) 3 f(x(·), ·) in [0, T [ and

y(·)
◦
y(·) 3 g(y(·), ·) in [0, T [.

Furthermore, let R > 0, M > 0 and ψ ∈ C0([0, T [) satisfy
Tx(t)U, Ty(t)U ≤ R

α(g(y(t), t); R) ≤ M

D (f(x(t), t), g(y(t), t); R) ≤ ψ(t)

for all t ∈ [0, T [.

Then, d(x(t), y(t)) ≤
(
d(x(0), y(0)) +

∫ t

0
ψ(s) e−Ms ds

)
eMt for any t ∈ [0, T [.

Proof follows exactly the same track as for Lemma 2.3 (comparing the evolutions along fixed

transitions): The auxiliary function ϕ : [0, 1] −→ [0,∞[, t 7−→ d(x(t), y(t)) is continuous due

to the triangular inequality of d. Furthermore, we obtain for every t ∈ [0, T [ and h ∈ [0, T − t[

ϕ(t+ h)

≤ d(x(t+ h), f(x(t), t) (h, x(t))) + d(f(x(t), t) (h, x(t)), g(y(t), t)(h, x(t)))

+ d(g(y(t), t)(h, x(t)), g(y(t), t)(h, y(t))) + d(g(y(t), t)(h, y(t)), y(t+ h))

≤ o(h) + D(f(x(t), t), g(y(t), t); R) · h + o(h)

+ ϕ(t) + h ·M ϕ(t) + o(h) + o(h)

and thus, lim sup
h ↓ 0

ϕ(t+h)− ϕ(t)
h ≤ M ·ϕ(h) + ψ(t). So the claim results from Gronwall’s

Lemma 2.4. 2

Proposition 2.9 (Uniqueness) Suppose f : (E, d)× [0, T [−→ (Θ(E, d), D(·, · ; r)) to be

λr–Lipschitz continuous in the first argument with α̂(r) := sup
x,t

α(f(x, t); r) <∞ for any r≥0.

Then for every initial element x0 ∈ E, the solution x(·) : [0, T [ −→ E of the mutational

equation
◦
x(·) 3 f(x(·), ·) in [0, T [ with x(0) = x0 is unique and, it depends on x0 in a

locally Lipschitz way.

Proof is based on the estimate in Lemma 2.8. Let x(·), y(·) : [0, T [−→ E be two solutions

of the same mutational equation
◦
x(·) 3 f(x(·), ·) in [0, T [ (but not necessarily with the

same initial element). Then, R := supt {Tx(t)U, Ty(t)U} < ∞ (due to the definition of

solutions) and, t 7−→ d(x(t), y(t)) is continuous. As a consequence of

D(f(x(t), t), f(y(t), t)) ≤ λR · d(x(t), y(t)),
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Lemma 2.8 implies for any t ∈ [0, T [

d(x(t), y(t)) ≤ d(x(0), y(0)) · ebα(R) · t +
∫ t

0
λR · d(x(s), y(s)) ebα(R) · (t−s) ds

and, Gronwall’s Lemma (in its well-known integral form) guarantees

d(x(t), y(t)) ≤ d(x(0), y(0)) · e(bα(R)+λR) · t for all t ∈ [0, T [. 2

Proposition 2.10 (Stability) Suppose f : (E, d) × [0, T [ −→ (Θ(E, d), D(·, · ; r)) to be

λr–Lipschitz continuous in the first argument with α̂(r) := sup
x,t

α(f(x, t); r) <∞ for any r≥0.

Assume for g : E×[0, T [−→ Θ(E, d,T·U) that sup
z,s

D(f(z, s), g(z, s); r) < ∞ for each r≥0.

(a) Let y(·) : [0, T [−→ E be a solution of the mutational equation
◦
y(·) 3 g(y(·), ·) in [0, T [.

Then, every solution x(·) : [0, T [−→ E of the mutational equation
◦
x(·) 3 f(x(·), ·) in [0, T [

satisfies the following estimate for all t ∈ [0, T [

d(x(t), y(t)) ≤
(
d(x(0), y(0)) + t · sup

z: TzU≤R
0≤ s < T

D(f(z, s), g(z, s); R)
)
· e(bα(R)+λR) · t

with the abbreviation R := supt {Tx(t)U,Ty(t)U} <∞.

(b) Let x(·) : [0, T [−→ E be a solution of the mutational equation
◦
x(·) 3 f(x(·), ·) in [0, T [.

Then, every solution y(·) : [0, T [−→ E of the mutational equation
◦
y(·) 3 g(y(·), ·) in [0, T [

fulfills for all t ∈ [0, T [

d(x(t), y(t)) ≤
(
d(x(0), y(0)) + t · sup

z: TzU≤R
0≤ s < T

D(f(z, s), g(z, s); R)
)
· e(bα(R)+λR) · t

using again the abbreviation R := supt {Tx(t)U,Ty(t)U} <∞.

Proof results from Lemma 2.8 similarly to the preceding Proposition 2.9 because D(·, · ;R)

satisfies the triangular inequality (as an obvious consequence of its Definition 2.2) and thus,

D
(
f(x(t), t), g(y(t), t); R

)
≤ D

(
f(x(t), t), f(y(t), t); R

)
+ D

(
f(y(t), t), g(y(t), t); R

)
≤ λR · d(x(t), y(t)) + sup

z: TzU≤R
0≤ s < T

D
(
f(z, s), g(z, s); R

)
2
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3 A metric for positive Radon measures on RN

with compact support

Motivated by the dual representation of the linear Wasserstein metric on probability measures

with compact support, we introduce

Definition 3.1 The distance function ρ : M(RN )×M(RN ) −→ [0,∞] is defined by

ρ(µ, ν) := sup
r>0

{
1
er

∫
RN

(ψ − ψ(x0)) d(µ− ν)
∣∣∣ ψ ∈ Lip (RN ,R), Lip ψ ≤ 1, |x0| ≤ r

}
= sup

λ,r>0

{
1
λ er

∫
RN

(ϕ− ϕ(x0)) d(µ− ν)
∣∣∣ ϕ ∈ Lip (RN ,R), Lip ϕ ≤ λ, |x0| ≤ r

}
.

Furthermore, set bµc :=
∫

RN

(1 + |x|) dµ(x) for µ ∈M+(RN ),

TµU := |µ(RN )| + inf{r > 0 | supp µ ⊂ Br(0)} for µ ∈M+
c (RN ).

Lemma 3.2

1.) ρ(µ, ν) <∞ for any µ, ν ∈M+
1 (RN ), i.e. Radon measures µ, ν ≥ 0 with bµc+bνc <∞.

2.) For probability measures µ, ν on RN with compact support, the distance ρ(µ, ν) coincides

with the linear Wasserstein distance (in its dual representation)

ρ(µ, ν) = sup
{∫

RN

ψ d(µ− ν)
∣∣∣ ψ ∈ Lip (RN ,R), Lip ψ ≤ 1

}
.

3.) For any sequence (µn)n∈N in M+
1 (RN ) and µ ∈M+

1 (RN ) with µn(RN ) −→ µ(RN ) > 0,

the convergence ρ(µn, µ) −→ 0 is equivalent to ρ
(

1
µn(RN )

µn,
1

µ(RN )
µ
)
−→ 0

4.) For any measures µ, ν ∈M+
c (RN ) and radius R > 0 with supp µ ∪ supp ν ⊂ BR(0),

ρ(µ, ν) = sup
λ>0

{
1

λ e|x0|

∫
RN

(ϕ− ϕ(x0)) d(µ− ν)
∣∣∣ ϕ ∈ Lip (RN ,R), Lip ϕ ≤ λ, |x0| ≤ 3R+2

}
≥ 1

eR+1

∣∣µ(RN )− ν(RN )
∣∣ .

5.) Let (µn)n∈N be a sequence in M+
c (RN ) with supn TµnU <∞. Then (µn)n∈N converges

to µ ∈M+
c (RN ) with respect to ρ if and only if µn −→ µ narrowly, i.e.∫

RN

ϕ dµn −→
∫

RN

ϕ dµ for all bounded ϕ ∈ C0(RN ).

6.) For each δ > 0, the set {µ ∈M+
c (RN ) | TµU ≤ δ} is sequentially compact w.r.t. ρ.

Proof. 1.) Let µ be any positive Radon measure with bµc <∞. Then we obtain for any

ϕ ∈ Lip (RN ,R) and x ∈ RN with Lip ϕ ≤ λ, |x| ≤ r∫
RN

(ϕ− ϕ(x0)) dµ ≤
∫

RN

Lip ϕ · |x− x0| dµ(x)

≤ λ ·
∫

RN

(|x|+ r) dµ(x)

and thus, ρ(µ, 0) ≤ 1
er ·

∫
RN

(|x|+ r) dµ(x) ≤ bµc < ∞.

Finally, statement (1.) results from the obvious triangle inequality of ρ(·, ·).
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2.) For any µ, ν ∈M+(RN ) with µ(RN ) = ν(RN ) <∞, we obtain

ρ(µ, ν) = sup
λ,r>0

{
1
λ er

∫
RN

(ϕ− ϕ(x0)) d(µ− ν)
∣∣∣ ϕ ∈ Lip (RN ,R), Lip ϕ ≤ λ, |x0| ≤ r

}
= sup

λ>0

{
1
λ

∫
RN

ϕ d(µ− ν)
∣∣∣ ϕ ∈ Lip (RN ,R), Lip ϕ ≤ λ

}
= sup

{ ∫
RN

ψ d(µ− ν)
∣∣∣ ψ ∈ Lip (RN ,R), Lip ψ ≤ 1

}
.

3.) results easily from Definition 3.1 of ρ(µn, µ) and the following relation for any measures

µn, µ ∈M+
1 (RN ) with µn(RN ), µ(RN ) > 0

1
λ er

∫
RN

(ϕ− ϕ(x0)) d
(

µn

µn(RN )
− µ

µ(RN )

)
= 1

λ er

∫
RN

(ϕ− ϕ(x0)) d
(

µn

µn(RN )
− µ

µn(RN )
+ µ

µn(RN )
− µ

µ(RN )

)
= 1

µn(RN )
1

λ er

∫
RN

(ϕ− ϕ(x0)) d(µn − µ)

+
(

1
µn(RN )

− 1
µ(RN )

)
1

λ er

∫
RN

(ϕ− ϕ(x0)) dµ

∈ 1
µn(RN )

1
λ er

∫
RN

(ϕ− ϕ(x0)) d(µn − µ)

+
(

1
µn(RN )

− 1
µ(RN )

)
1

λ er

∫
RN

λ (|x|+ r) dµ(x) · [−1, 1]

= 1
µn(RN )

1
λ er

∫
RN

(ϕ− ϕ(x0)) d(µn − µ) +
(

1
µn(RN )

− 1
µ(RN )

)
bµc · [−1, 1]

with arbitrary ϕ ∈ Lip (RN ,R) and x0 ∈ RN satisfying Lip ϕ ≤ λ, |x0| ≤ r.

4.) For µ, ν ∈M+
c (RN ) and R > 0, assume supp µ ∪ supp ν ⊂ BR(0).

The estimate 1
eR+1 |µ(RN )− ν(RN )| ≤ ρ(µ, ν) is an obvious consequence of Definition 3.1

due to

ϕ : RN −→ R, x 7−→


1 if |x| ≤ R

1 +R− |x| if R < |x| ≤ R+ 1

0 if |x| > R+ 1

.

Now choose ϕ ∈ Lip (RN ,R) and x0 ∈ RN arbitrarily with Lip ϕ ≤ λ, |x0| > 3R + 2,∫
RN

(ϕ − ϕ(x0)) d(µ − ν) ≥ 0. The key idea is to construct a Lipschitz continuous function

ψ : RN −→ R with compact support in B2R(0) and
1

λ e|x0|

∫
RN

(ϕ− ϕ(x0)) d(µ− ν) ≤ 1
Lip ψ · e2R

∫
RN

(ψ − ψ(2R, 0 . . . 0)) d(µ− ν).

Indeed, set ψ(x) :=


ϕ(x)− ϕ(x0) if |x| ≤ R

(ϕ(x)− ϕ(x0))
(

2R−|x|
R

)2
if R < |x| ≤ 2R

0 if |x| > 2R

.

Obviously, ψ ∈ C0(RN ) has compact support in B2R(0) and is differentiable almost everywhere

with

∇ψ(x) =

 ∇ϕ(x) if |x| < R

∇ϕ(x)
(

2R−|x|
R

)2
+ (ϕ(x)− ϕ(x0)) · 2 2R−|x|

R
−x
|x| if R < |x| ≤ 2R

.

Thus, ψ is Lipschitz continuous with Lip ψ ≤ λ+λ(2R+ |x0|) ·2. Due to supp (µ−ν) ⊂ BR(0),
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1
λ e|x0|

∫
RN

(ϕ− ϕ(x0)) d(µ− ν) = 1
λ e|x0|

∫
RN

ψ d(µ− ν)

= λ (1+4R+2|x0|) · e2R

λ e|x0|
1

λ (1+4R+2|x0|) · e2R

∫
RN

ψ d(µ− ν)

≤ 1 + 4R+ 2|x0|
e|x0|−2R

1
λ (1+4R+2|x0|) · e2R

∫
RN

ψ d(µ− ν)

The auxiliary function [3R+2,∞[−→ R, ξ 7−→ 1 + 4R+ 2ξ
eξ−2R has negative derivative and thus,

it is strictly decreasing. So its upper bound is 1 + 4R+ 2ξ
eξ−2R

∣∣∣
ξ=3R+2

= 10R+ 5
eR+2 < 1 for any R > 0.

5.) The assumptions supn TµnU <∞ and µ ∈M+
c (RN ) imply

(∗) supp µ ∪
⋃
n supp µn ⊂ BR(0) ⊂ RN for some R ∈ ]0,∞[.

So the property is obvious if µ ≡ 0. In case of µ 6= 0, the equivalence is based on the link

with the linear Wasserstein metric (in statement 2) and subsequent Proposition 3.3. Indeed,

ρ(µn, µ) −→ 0
(3.,4.)⇐⇒ ρ

(
1

µn(RN )
µn,

1
µ(RN )

µ
)
−→ 0 and µn(RN ) −→ µ(RN )

(2.)⇐⇒ 1
µn(RN )

µn −→ 1
µ(RN )

µ narrowly and µn(RN ) −→ µ(RN ) and(
1

µn(RN )
µn

)
n

has uniformly integrable first moments

(∗)⇐⇒ 1
µn(RN )

µn −→ 1
µ(RN )

µ narrowly and µn(RN ) −→ µ(RN )

µ(RN )>0⇐⇒ µn −→ µ narrowly

with the last step resulting from estimates similar to the preceding ones for statement (3.).

6.) results from statement (5.) and subsequent Proposition 3.3. Indeed, let (µn)n∈N be

any sequence in M+
c with TµnU ≤ δ. In particular, supp µn ⊂ Bδ(0) for all n ∈ N.

Then, either lim inf
n−→∞

µn(RN ) = 0 (and thus, µnj −→ 0 narrowly for some subsequence)

or lim inf
n−→∞

µn(RN ) > 0. In the latter case, there exists a subsequence (µnj )j∈N

such that µnj (RN ) −→ p > 0 and inf{r > 0 | supp µnj ⊂ Br(0)} −→ q ≤ δ− p for j −→∞.

According to Proposition 3.3,
{

1
µnj (RN )

µnj

∣∣∣ j ∈ N
}
⊂ P1(RN ) is relatively compact with

respect to the linear Wasserstein metric. So, there exists a probability measure ν ∈M+(RN )

and an infinite subset J ⊂ N with 1
µnj (RN )

µnj −→ ν narrowly for j −→∞ (j ∈ J).

In particular, this characterization implies supp ν ⊂ Bq(0) and, ρ
(

1
µnj (RN )

µnj , ν
)
−→ 0

due to statement (5.)

So finally, µ := p ν ∈M+
c (RN ) satisfies µ(RN ) = p = lim

j→∞
µnj (R

N ) > 0 and, statement (3.)

ensures ρ(µnj , µ) −→ 0 for j −→∞ (j ∈ J). 2

Proposition 3.3 The subset of probability measures on RN

P1(RN ) :=
{
µ ∈M+(RN )

∣∣∣ µ(RN ) = 1,
∫

RN

|x| dµ(x) <∞
}
⊂ M+

1 (RN )

endowed with the linear Wasserstein metric is a complete separable metric space.
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A set K ⊂ P1(RN ) is relatively compact if and only if it is tight and its first moments are

uniformly integrable. In particular, for a given sequence (µn)n∈N in P1(RN ), we have

µn −→ µ in P1(RN ) ⇐⇒ ∧

{
µn −→ µ narrowly for n −→∞
(µn)n∈N has uniformly integrable first moments.

Proof results directly from [4], Proposition 7.1.5. 2

4 The Cauchy problem for positive Radon measures on RN

with compact support

Assumptions of § 4 Let b : RN −→ RN , c : RN −→ R be bounded and Lipschitz

continuous. For given ν0 ∈ M(RN ), the linear problem here focuses on a measure–valued

distributional solution µ : [0, T ] −→M(RN ), t 7−→ µt of{
∂t µt + divx (b µt) = c µt in [0, T ]

µ0 = ν0

(3)

i.e.
∫

RN

ϕ(x) dµt(x) −
∫

RN

ϕ(x) dν0(x) =
∫ t

0

∫
RN

(
∇ϕ(x) · b(x) + c(x)

)
dµs(x) ds

for every t ∈ [0, T ] and any test function ϕ ∈ C∞
c (RN ,R).

Definition 4.1 Xb : [0, T ] × RN −→ RN is induced by the flow along b, i.e. Xb(·, x0) :

[0, T ] −→ RN is the continuously differentiable solution of the Cauchy problem

∧

{
d
dt x(t) = b(x(t)) in [0, T ],

x(0) = x0.

As a well-known result about ODEs, b ∈W 1,∞(RN ,RN ) and Gronwall’s Lemma imply

Lemma 4.2 Xb : [0, T ]× RN −→ RN is continuously differentiable with
Lip Xb(t, ·) ≤ eLip b · t,

‖Xb(t, ·)−Xeb(t, ·)‖∞ ≤ ‖b− b̃‖∞ · t et · Lip eb for any b̃ ∈W 1,∞(RN ,RN ).
2

Proposition 4.3 For any initial datum µ0 ∈ M(RN ), a solution µ : [0, T ] −→ M(RN ),

t 7−→ µt of the linear problem (3) (in the distributional sense) is given by∫
RN

ϕ dµt =
∫

RN

ϕ(Xb(t, x)) · exp
(∫ t

0
c(Xb(s, x)) ds

)
dµ0(x) for all ϕ ∈ C0

c (RN ).

If the initial Radon measure µ0 ∈ M(RN ) is positive with compact support then so are all

these measures µt and supp µt ⊂ B‖b‖∞· t(supp µ0) ⊂ RN .
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Proof. First, we verify that the right–hand side provides a distributional solution of the

linear problem with the initial datum µ0. In fact, it is absolutely continuous with respect to t

because for any subinterval [s, t] ⊂ [0, T ],∣∣∣ ∫
RN

ϕ dµt −
∫

RN

ϕ dµs

∣∣∣
=

∣∣∣ ∫
RN

(
ϕ(Xb(t, x)) · e

R t
0 c(Xb(r,x)) dr − ϕ(Xb(s, x)) · e

R s
0 c(Xb(r,x)) dr

)
dµ0(x)

∣∣∣
≤

∫
RN

(
|ϕ(Xb(t, x))− ϕ(Xb(s, x))| et ‖c‖∞+ |ϕ(Xb(s, x))|

[
e

R σ
0 c(Xb(r,x)) dr

]σ=t

σ=s

)
d|µ0(x)|

≤
(
‖∇ϕ‖∞ ‖b‖∞ (t− s) et ‖c‖∞+ ‖ϕ‖∞ et ‖c‖∞ ‖c‖∞ (t− s)

)
|µ0|(RN )

At Lebesgue–almost every time t ∈ [0, T ], the weak derivative of the right–hand side is∫
RN

(
∇ϕ(Xb(t, x)) · b(Xb(t, x)) + ϕ(Xb(t, x)) c(Xb(t, x))

)
e

R t
0 c(Xb(r,x)) dr dµ0(x)

=
∫

RN

(
∇ϕ(y) · b(y) + ϕ(y) c(y)

)
dµt(y).

and thus, it solves the linear problem (3).

In case of µ0 ∈ M+(RN ), the positivity of measures is obviously preserved. Finally, the pre-

ceding representation implies for all t ∈ [0, T ]

supp µt ⊂ Xb(t, ·)−1 (supp µ0) ⊂ X−b(t, ·) (supp µ0) ⊂ B‖b‖∞ t(supp µ0)

So in particular, the compactness of supp µ0 ⊂ RN is also preserved. 2

Remark. The uniqueness of this distributional solution and more details about its represen-

tation are given in [20], § 3 (quoted here in subsequent Lemma 4.8, see also [24]).

Lemma 4.4 For each b ∈W 1,∞(RN ,RN ), c ∈W 1,∞(RN ,R), the measure–valued solutions

of the linear problem d
dt µt + divx · (b µt) = c µt mentioned in Proposition 4.3 induce a map

ϑb,c : [0, 1]×M+
c (RN ) −→M+

c (RN ), (t, µ0) 7−→ µt satisfying the following conditions for any

µ0, ν0 ∈ M+
c (RN ), t, h ∈ [0, 1], b̃ ∈ W 1,∞(RN ,RN ), c̃ ∈ W 1,∞(RN ,R) with t + h ≤ 1,

supp µ0 ∪ supp ν0 ⊂ BR(0)

1. ϑb,c(0, ·) = IdM+
c (RN ),

2. ϑb,c(h, ϑb,c(t, µ0)) = ϑb,c(t+ h, µ0)

3. ϑb,c(h, µ0) (RN ) ≤ µ0(RN ) · e‖c‖∞ ·h

Tϑb,c(h, µ0)U ≤ Tµ0U · e‖c‖∞ ·h + ‖b‖∞ h

4. ρ (µ0, ϑb,c(h, µ0)) ≤ h (‖b‖∞ + ‖c‖∞) e‖c‖∞ (Tµ0U + ‖b‖∞ + 1)2

5. ρ (ϑb,c(h, µ0), ϑb,c(h, ν0)) ≤ ρ(µ0, ν0) · e4 (R+‖b‖∞+1) (‖b‖W1,∞+‖c‖W1,∞ ) · h

6. ρ
(
ϑb,c(h, µ0), ϑeb,ec(h, µ0)

)
≤ h · (‖b− b̃‖∞ + ‖c− c̃‖∞) · eLip eb+max{‖c‖∞,‖ec‖∞}+Lip ec

(Tµ0U+1+max{‖b‖∞, ‖b̃‖∞})2
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Proof. As a direct consequence of Proposition 4.3, ϑb,c : [0, 1] ×M+
c (RN ) −→ M+

c (RN )

satisfies the semigroup property and thus statements (1.), (2.).

Furthermore, the constant function ϕ ≡ 1 in a sufficiently large ball leads to

ϑb,c(h, µ0) (RN ) =
∫

RN

e
R h
0 c(Xb(s,x)) ds dµ0 ≤ e‖c‖∞ h µ0(RN )

and thus, statement (3.) results from supp ϑb,c(h, µ0) ⊂ B‖b‖∞ h(supp µ0).

For proving estimate (5.), choose any µ0, ν0 ∈ M+
c (RN ), λ,R > 0, h ∈ [0, 1], x0 ∈ RN ,

ϕ ∈ Lip (RN ,R) with Lip ϕ ≤ λ, supp µ ∪ supp ν ⊂ BR(0), |x0| ≤ rh := 3(R+ ‖b‖∞ h) + 2.

Then Proposition 4.3 implies supp ϑb,c(h, µ0) ∪ supp ϑb,c(h, ν0) ⊂ BR+‖b‖∞ h(0) and

1
λ · e|x0|

∫
RN

(ϕ(x) − ϕ(x0)) d (ϑb,c(h, µ0)− ϑb,c(h, ν0)) (x)

= 1
λ · e|x0|

∫
RN

(ϕ(Xb(h, x)) − ϕ(x0)) · e
R h
0 c(Xb(s,x)) ds d (µ0 − ν0) (x).

The latter integrand, ψh : RN −→ R, x 7−→ (ϕ(Xb(h, x)) − ϕ(x0)) · e
R h
0 c(Xb(s,x)) ds is

locally Lipschitz continuous for each fixed h ∈ [0, 1], x0 ∈ RN and, restricted to the closed ball

BR(0) ⊂ RN , its Lipschitz constant satisfies

Lip ψh|BR(0)

≤ Lip ϕ · Lip Xb(h, ·) · e‖c‖∞ h+ sup
BR(0)

|ϕ(Xb(h, ·))− ϕ(x0)| · e‖c‖∞ h

∫ h

0
Lip c · Lip Xb(s, ·) ds

≤ Lip ϕ · eLip b ·h · e‖c‖∞ h+ Lip ϕ · (R+ ‖b‖∞ h + rh) · e‖c‖∞ h Lip c · eLip b ·h h

≤ λ · eLip b ·h · e‖c‖∞ h+ λ · (R+ ‖b‖∞ h + rh) · e‖c‖∞ h Lip c · eLip b ·h h

≤ λ · e(Lip b+‖c‖∞) ·h
(

1 + h · Lip c · 4 (R+ ‖b‖∞ h+ 1)
)

as a consequence of the product rule (applied to the partial derivatives with respect to x) and

Lemma 4.2. Furthermore, ψh has a root at Xb(h, ·)−1(x0) = X−b(h, x0) ⊂ B|x0|+‖b‖∞·h(0).

So Definition 3.1 of ρ(µ0, ν0) implies∫
RN

ψh(x) d(µ0 − ν0)(x) ≤ Lip ψh|BR(0) e|x0|+‖b‖∞·h · ρ(µ0, ν0)

and thus,

1
λ · e|x0|

∫
RN

(ϕ(x) − ϕ(x0)) d (ϑb,c(h, µ0)− ϑb,c(h, ν0)) (x)

≤ e(‖b‖W1,∞+‖c‖∞) ·h
(
1 + h · Lip c · 4 (R+ ‖b‖∞ h+ 1)

)
ρ(µ0, ν0)

≤ e(‖b‖W1,∞+‖c‖∞) ·h eh ·Lip c · 4 (R+‖b‖∞+1) ρ(µ0, ν0)

≤ e4 (R+‖b‖∞+1) (‖b‖W1,∞+‖c‖W1,∞ ) · h ρ(µ0, ν0).

As a consequence of Lemma 3.2 (4.), ρ (ϑb,c(h, µ0), ϑb,c(h, ν0)) has the same upper bound,

i.e. estimate (5.) holds.

In regard to statement (6.), choose any b, b̃ ∈ W 1,∞(RN ,RN ) and c, c̃ ∈ W 1,∞(RN ,R).

Furthermore, let µ0 ∈ M+
c (RN ), λ, R > 0, h ∈ [0, 1], x0 ∈ RN and ϕ ∈ Lip (RN ,R) satisfy

Lip ϕ ≤ λ, supp µ ⊂ BR(0).
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Then,

1
λ · e|x0|

∫
RN

(ϕ(x) − ϕ(x0)) d
(
ϑb,c(h, µ0)− ϑeb,ec(h, µ0)

)
(x)

= 1
λ · e|x0|

∫
RN

(
(ϕ(Xb(h, x)) − ϕ(x0)) · e

R h
0 c(Xb(s,x)) ds −

(ϕ(Xeb(h, x)) − ϕ(x0)) · e
R h
0 ec(Xeb(s,x)) ds

)
dµ0(x)

For h ∈ [0, 1], x ∈ BR(0) fixed, the auxiliary function ψ : [0, 1] −→ R (in the last integrand)

ψ(t) :=
(
ϕ

(
t ·Xb(h, x) + (1− t) ·Xeb(h, x)

)
− ϕ(x0)

)
· et·

R h
0 c(Xb(s,x)) ds+ (1−t)·

R h
0 ec(Xeb(s,x)) ds

is continuously differentiable and using b̂ := max{‖b‖∞, ‖b̃‖∞}, ĉ := max{‖c‖∞, ‖c̃‖∞},

ψ′(t) = et·
R h
0 c(Xb(s,x)) ds+ (1−t)·

R h
0 ec(Xeb(s,x)) ds ·(

∇ϕ|t·Xb(h,x)+(1−t)·Xeb(h,x) ·
(
Xb(h, x)−Xeb(h, x)

)
+(

ϕ|t·Xb(h,x)+(1−t)·Xeb(h,x) − ϕ(x0)
)
·

∫ h

0

(
c(Xb(s, x))− c̃(Xeb(s, x)

)
ds

)
≤ ebc h (

Lip ϕ ·
∣∣∣Xb(h, x)−Xeb(h, x)

∣∣∣ +

Lip ϕ (R+ b̂ h+ |x0|) · h
(
‖c− c̃‖∞ + Lip c̃ · max

0≤ s≤h
|Xb(h, x)−Xeb(h, x)|

))
≤ ebc h (

Lip ϕ · h ‖b− b̃‖∞ eh · Lip eb +

Lip ϕ (R+ b̂ h+ |x0|) · h
(
‖c− c̃‖∞ + Lip c̃ · ‖b− b̃‖∞ eh · Lip eb h))

.

Thus,

1
λ · e|x0|

∫
RN

(ϕ(x) − ϕ(x0)) d
(
ϑb,c(h, µ0)− ϑeb,ec(h, µ0)

)
(x)

= 1
λ · e|x0|

∫
RN

ψ(1)− ψ(0) dµ0(x)

= 1
λ · e|x0|

∫
RN

∫ 1

0
ψ′(t) dt dµ0(x)

≤ 1
λ · e|x0|

µ0(RN ) ebc h (
λ · h ‖b− b̃‖∞ eh · Lip eb +

λ (R+ b̂ h+ |x0|) · h
(
‖c− c̃‖∞ + Lip c̃ · ‖b− b̃‖∞ eh · Lip eb h))

≤ h µ0(RN ) ebc+Lip eb (‖b− b̃‖∞ + ‖c− c̃‖∞) (R+ b̂+ 1) (1 + Lip c̃)

ensuring estimate (6.):

ρ
(
ϑb,c(h, µ0), ϑeb,ec(h, µ0)

)
≤ h · (‖b− b̃‖∞ + ‖c− c̃‖∞) · ebc+Lip ec+Lip eb (Tµ0U + b̂+ 1)2.

Statement (4.) is an immediate consequence (using b̃ ≡ 0, c̃ ≡ 0) due to ϑ0,0(h, ·) = IdRN .

2

This Lemma 4.4 lays the basis for identifying the parameters of ϑb,c as transition on(
M+

c (RN ), ρ, T·U
)
. So seizing the notation of Definition 2.1 (and taking the bounds of

Tϑb,c(·, µ0)U on [0, 1] into consideration properly), we obtain:
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Proposition 4.5 For any functions b ∈ W 1,∞(RN ,RN ), c ∈ W 1,∞(RN ,R), the map

ϑb,c : [0, 1]×M+
c (RN ) −→M+

c (RN ), (t, µ0) 7−→ µt defined by the solutions of the linear prob-

lem d
dt µt+ divx · (b µt) = c µt is a transition on (M+

c (RN ), ρ, T·U) in the sense of Def. 2.1

with

1.) α(ϑb,c ; r) ≤ 4 (r + ‖b‖∞ + 1) (‖b‖W 1,∞ + ‖c‖W 1,∞)

2.) β(ϑb,c ; r) ≤ (‖b‖∞+‖c‖∞) e‖c‖∞ (r · e‖c‖∞ + 2 ‖b‖∞ + 1)2

3.) ζ(ϑb,c) ≤ max{‖b‖∞, ‖c‖∞}

4.) D(ϑb,c, ϑeb,ec ; r) ≤ (‖b− b̃‖∞ + ‖c− c̃‖∞) · eLip eb+max{‖c‖∞,‖ec‖∞}+Lip ec
(r + 1 + max{‖b‖∞, ‖b̃‖∞})2 2

Theorem 4.6 (Existence) Let F : M+
c (RN )×[0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R)

satisfy the following conditions:

1.) M := sup
µ0,t

(‖F1(µ0, t)‖W 1,∞ + ‖F2(µ0, t)‖W 1,∞) < ∞

2.) ‖F1(µn, sn)− F1(µ0, t)‖∞ + ‖F2(µn, sn)− F2(µ0, t)‖∞ −→ 0 whenever ρ(µn, µ0) −→ 0,

sn −→ t (for n −→∞) and sup
n

TµnU <∞.

Then, for any initial datum ν0 ∈M+
c (RN ), there exists a narrowly continuous weak solu-

tion µ : [0, T [−→M+
c (RN ), t 7−→ µt of the nonlinear transport equation{
∂t µt + divx (F1(µt, t) µt) = F2(µt, t) µt in [0, T ]

µ0 = ν0

(4)

Remark. Due to Lemma 3.2 (5.), hypothesis (2.) of this existence theorem can be reformu-

lated in the following way: F : M+
c (RN )×[0, T ] −→

(
W 1,∞(RN ,RN )×W 1,∞(RN ,R), ‖ · ‖∞

)
is assumed to be continuous on all “cylinders” {µ ∈ M+

c (RN ) | TµU ≤ δ} × [0, T ], δ > 0,

with respect to narrow convergence on M+
c (RN ).

Proof. Choose the initial datum ν0 ∈ M+
c (RN ) arbitrarily. After identifying each value

F (µ, t) ∈W 1,∞(RN ,RN )×W 1,∞(RN ,R) with the corresponding transition on M+
c (RN )

ϑF1(µ,t),F2(µ,t) : [0, 1]×M+
c (RN ) −→M+

c (RN ),

Proposition 2.7 (about mutational equations) ensures the existence of a Lipschitz–continuous

solution µ : [0, T [−→ (M+
c (RN ), ρ), t 7−→ µt of the mutational equation

◦
µt 3 F (µt, t) with

µ0 = ν0, i.e. according to Definition 2.6

1.) lim sup
h ↓ 0

1
h · ρ

(
ϑF1(µt,t),F2(µt,t)(h, µt), µt+h

)
= 0 for every t ∈ [0, T [,

2.) there is a constant L > 0 with ρ(µs, µt) ≤ L |s− t| for any s, t ∈ [0, T [,

3.) sup
0≤ t<T

TµtU < ∞.

So µ : t 7−→ µt is narrowly continuous due to Lemma 3.2 (5.) and, we still have to verify that

µ is a weak solution of the nonlinear transport equation (4). Choose any ϕ ∈ C∞
c (RN ,R). Then,
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ψ : [0, T [−→ R. t 7−→
∫

RN

ϕ(x) dµt(x) is Lipschitz continuous since for any x0 ∈ RN \ supp ϕ,∣∣∣ ∫
RN

ϕ dµt −
∫

RN

ϕ dµs

∣∣∣ =
∣∣∣ ∫

RN

(ϕ − ϕ(x0)) d (µt − µs)
∣∣∣

≤ ‖∇ϕ‖∞ e|x0| · ρ(µt, µs)
≤ ‖∇ϕ‖∞ e|x0| · L |t− s|.

So choosing now t ∈ [0, T [ as a point of differentiability of ψ, we obtain for h ∈ ]0, 1]∫
RN

ϕ dµt+h −
∫

RN

ϕ dµt

=
∫

RN

ϕ d
(
µt+h − ϑF (µt,t)(h, µt)

)
+

∫
RN

ϕ d
(
ϑF (µt,t)(h, µt)− µt

)
= ‖∇ϕ‖∞ e|x0| · ρ

(
µt+h, ϑF (µt,t)(h, µt)

)
+

∫ h

0

∫
RN

(
∇ϕ(x) · F1(µt, t)(x) + F2(µt, t)(x)

)
dϑF (µt,t)(s, µt) (x) ds

After dividing by h > 0, the first summand is tending to 0 for h ↓ 0 due to property (1.) of µ.

Thus, ψ′(t) = lim
h↓0

1
h ·

∫ h

0

∫
RN

(
∇ϕ(x) · F1(µt, t)(x) + F2(µt, t)(x)

)
dϑF (µt,t)(s, µt) (x) ds.

Finally, ψ′(t) =
∫

RN

(
∇ϕ(x) · F1(µt, t)(x) + F2(µt, t)(x)

)
dµt(x). Indeed, choose R > 0

such that
⋃

s∈[0,T [
τ∈[0,1]

supp ϑF (µs,s)(τ, µs) ∪ supp ϕ ⊂ BR(0) (depending only on Tν0U,M, ϕ).

Then, for any s ∈ ]0, 1] and x0 ∈ RN with |x0| > 3R+ 2, Lemmas 3.2 (4.) and 4.4 (4.) imply∫
RN

(
∇ϕ(x) · F1(µt, t)(x) + F2(µt, t)(x)

)
d

(
ϑF (µt,t)(s, µt) − µt

)
(x)

≤ const(M, ‖ϕ‖W 2,∞) e|x0| · ρ
(
ϑF (µt,t)(s, µt), µt

)
≤ const(M, ‖ϕ‖W 2,∞) e|x0| · const(M, supτ TµτU) s.

So the last representation of ψ′(t) at every point t of differentiability leads to∫
RN

ϕ dµt −
∫

RN

ϕ dν0 =
∫ t

0

∫
RN

(
∇ϕ(x) · F1(µt, t)(x) + F2(µt, t)(x)

)
dµs(x) ds

for every time t ∈ [0, T ] and any test function ϕ ∈ C∞
c (RN ,R), i.e. µ is a weak solution of

Cauchy problem (4). 2

Theorem 4.7 (Uniqueness) Let F : M+
c (RN )×[0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R)

satisfy the following conditions:

1.) sup
µ0,t

(‖F1(µ0, t)‖W 1,∞ + ‖F2(µ0, t)‖W 1,∞) < ∞

2.) for any R > 0, there is a constant LR > 0 and a modulus ωR(·) of continuity with

‖F1(µ, s)− F1(ν, t)‖∞ + ‖F2(µ, s)− F2(ν, t)‖∞ ≤ LR · ρ(µ, ν) + ωR(|t− s|)

for all µ, ν ∈M+
c (RN ) with TµU,TνU ≤ R.

Then the narrowly continuous weak solution µ : [0, T [ −→ M+
c (RN ), t 7−→ µt of Cauchy

problem (4) with supt TµtU <∞ is unique.
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Remark. Correspondingly to the remark about Theorem 4.6, assumption (2.) can be reinter-

preted in the following way: Local Lipschitz continuity of the vector fields F (·, ·) (with respect

to ρ and ‖ · ‖∞) implies uniqueness of the “bounded” weak solution with values in M+
c (RN ).

Proof. Let ν : [0, T [−→M+
c (RN ), t 7−→ νt be any weak solution of

∂t νt + divx (F1(νt, t) νt) = F2(νt, t) νt
that is narrowly continuous with R := 1 + sup

0≤ t<T
TνtU < ∞. Exploiting the uniqueness

statement about nonautonomous linear transport equations in subsequent Lemma 4.8, we now

prove that ν is a solution of the corresponding mutational equation
◦
νt 3 F (νt, t) in [0, T [

and thus, Proposition 2.9 ensures its uniqueness for the initial datum ν0 ∈M+
c (RN ).

ν is continuous with respect to ρ according to Lemma 3.2 (5.). So the composition

[0, T [−→
(
W 1,∞(RN ,RN )×W 1,∞(RN ,R), ‖ · ‖∞

)
, t 7−→ F (νt, t)

is continuous and, Theorem 4.6 provides a continuous solution µ : [0, T [−→ (M+
c (RN ), ρ) of

the mutational equation
◦
µt 3 F (νt, t) in [0, T [ with µ0 = ν0, supt TµtU < ∞ that is

also weak solution of the nonautonomous linear transport equation

∂t µt + divx (F1(νt, t) µt) = F2(νt, t) µt.

Subsequent Lemma 4.8 (2.) guarantees the uniqueness of weak solutions of the linear Cauchy

problem and thus, µ ≡ ν, i.e. ν is solution of the mutational equation
◦
νt 3 F (νt, t) in [0, T [.

Due to Proposition 2.9, Cauchy problems of this mutational equation have unique solutions. 2

Lemma 4.8 Let v : t 7−→ vt be a Borel vector field in L1
(
[0, T ]; W 1,∞(RN ,RN )

)
and c

a Borel bounded and locally Lipschitz continuous (w.r.t. the space variable) scalar function.

(1.) For each ν0 ∈ M+(RN ) with ν0(RN ) = 1, there exists a unique narrowly continuous

µ : [0, T ] −→M+(RN ), t 7−→ µt solving the initial value problem (in the distributional sense)

∂t µt + divx (vt µt) = ct µt in ]0, T [×RN , µ0 = ν0.

(2.) The comparison principle holds in the following sense: Let σ : t 7−→ σt be a narrowly

continuous family of signed measures solving ∂t σt + divx (vt σt) = ct σt in ]0, T [×RN

with σ0 ≤ 0 and ∫ T

0

∫
RN

(
|vt(x)| + |ct(x)|

)
d|σt|(x) dt < ∞∫ T

0

(
|σt|(B) + sup

B
|vt| + Lip vt|B

)
dt < ∞∫ T

0

(
|σt|(B) + sup

B
|ct| + Lip ct|B

)
dt < ∞

for any bounded closed set B ⊂ RN . Then, σt ≤ 0 for any t ∈ [0, T [.

Proof is given in [20], Lemma 3.5 and Proposition 3.6, for example (see also [1, 4]).
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Theorem 4.9 (Stability)

Assume for F,G : M+
c (RN )× [0, T ] −→W 1,∞(RN ,RN )×W 1,∞(RN ,R) :

1.) MF := sup
µ0,t

(‖F1(µ0, t)‖W 1,∞ + ‖F2(µ0, t)‖W 1,∞) < ∞

MG := sup
µ0,t

(‖G1(µ0, t)‖W 1,∞ + ‖G2(µ0, t)‖W 1,∞) < ∞

2.) for any R > 0, there is a constant LR > 0 and a modulus ωR(·) of continuity with

‖F1(µ, s)− F1(ν, t)‖∞ + ‖F2(µ, s)− F2(ν, t)‖∞ ≤ LR · ρ(µ, ν) + ωR(|t− s|)

for all µ, ν ∈M+
c (RN ) with TµU,TνU ≤ R.

3.) ‖G1(µn, sn)−G1(µ0, t)‖∞ + ‖G2(µn, sn)−G2(µ0, t)‖∞ −→ 0 whenever ρ(µn, µ0) −→ 0,

sn −→ t (for n −→∞) and supn TµnU <∞.

Let ν : [0, T [−→M+
c (RN ), t 7−→ νt be a narrowly continuous weak solution of

∂t νt + divx (F1(νt, t) νt) = F2(νt, t) νt
with supt TνtU <∞.

Then, for every initial measure µ0 ∈ M+
c (RN ), there exists a narrowly continuous weak

solution µ : [0, T [−→M+
c (RN ), t 7−→ µt of

∂t µt + divx (G1(µt, t) µt) = G2(µt, t) µt in [0, T ]

satisfying supt TµtU <∞ and for all t ∈ [0, T [

ρ(µt, νt) ≤
(
ρ(µ0, ν0) + t·const(MF ,MG,Tµ0U,Tν0U) · (‖F1−G1‖∞+‖F2−G2‖∞)

)
econst(F ) · t.

Proof results directly from Proposition 2.10 (b) about the stability of solutions of mu-

tational equations – in the combination with Proposition 4.5 (4.) estimating the “distance”

between two transitions here. Indeed, due to assumption (2.), ν solves the correspond-

ing mutational equation with the coefficient function F = (F1, F2) as shown in the proof of

Theorem 4.7. So there exists a solution µ of the mutational equation with the coefficients G

satisfying the claimed estimate, and finally, µ is a weak solution of the corresponding nonlinear

transport equation according to the proof of Theorem 4.6. 2
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