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Zusammenfassung

Die Anwendung des tomographischen Prinzips auf die aktive DOAS Fernerkundung stellt eine neue
Meßtechnik von atmosphärischen Spurengasverteilungen dar, für die analytische Standardmethoden
zur Rekonstruktion von skalaren Feldern aus ihren Wegintegralen wegen der wenigen (10-50), un-
regelmäßig angeordneten Strahlen nicht anwendbar sind. Stattdessen wird die Verteilung durch eine
begrenzte Zahl von lokalen, hier stückweise konstanten oder linearen, Basisfunktionen parametrisiert
und das diskrete lineare inverse Problem durch einen Least Squares - Minimum Norm Ansatz gelöst.

Für räumlich stark begrenzte 2-D Konzentrationsspitzen wird in Abhängigkeit ihrer Ausdehnung
gezeigt, wie die Rekonstruktion durch optimierte Wahl der Parametrisierung, d.h. Zahl und Art der
Basisfunktionen, sowie des A Prioris erheblich verbessert werden kann. Die Regularisierung der Lösung
spielt eine untergeordnete Rolle. Vorschläge zur Rekonstruktion von Konzentrationsspitzen durch
Kombination verschiedener Parametrisierungen werden systematisch untersucht, wobei deren Erfolg
stark von der am meisten interessierenden Eigenschaft der Verteilung abhängt. Vergleich verschiedener
2-D Strahlgeometrien ergibt, daß lineare Unabhängigkeit des resultierenden Systems entscheidend ist.
Eine detaillierte Analyse des Rekonstruktionsfehlers stellt Besonderheiten der Tomographie mit weni-
gen Strahlen heraus und argumentiert, daß dessen Abschätzung ohne A Priori nicht möglich ist.
Unter dieser Voraussetzung wird ein numerisches Schema zur Berechnung des Rekonstruktionsfehlers
vorgestellt.
Die Methoden werden auf ein Innenraumexperiment zur Simulation von Emissionsfahnen, sowie auf
2-D Modellverteilungen über einer Straßenschlucht angewendet, wobei für letztere gezeigt wird, wie
Modellevaluation trotz weniger Lichtstrahlen möglich sein kann. Anders als für räumlich begrenzte
Maxima besteht hier starke Abhängigkeit vom Grad der Regularisierung.

Abstract

Applying the tomographic principle to active DOAS remote sensing leads to a novel technique for the
measurement of atmospheric trace gas distributions. Standard analytical methods for the reconstruc-
tion of a scalar field from its line integrals cannot be used due to low numbers of light paths (10-50)
and their irregular arrangement, so that the concentration field is expanded into a limited number
of local (piecewise constant or linear) basis functions instead. The resulting discrete linear inverse
problem is solved by a least squares-minimum norm principle.

For sharp 2-D concentration peaks it is shown systematically with respect to their extension how the
optimal choice of parametrisation (in terms of number and kind of basis functions) and a priori can
tremendously improve the reconstruction. Regularisation plays a minor role. Proposals for retrieving
peak distributions by combining different parametrisations are again examined systematically showing
that their usefulness heavily depends on the features one is most interested in. Comparison of different
2-D light path geometries reveals that linear independency within the associated systems is pivotal.
A detailed analysis of the reconstruction error points out special issues of tomography with only few
integration paths and argues that a complete error estimation is not possible without a priori as-
sumptions. Based on this discussion a numerical scheme for calculating the reconstruction error is
suggested.
The findings are applied to an indoor experiment simulating narrow emission puffs and 2-D model
distributions above a street canyon, respectively. For the latter case it is demonstrated how model
evaluation can be possible even with a relatively small number of light paths. Contrary to the recon-
struction of peak distributions regularisation becomes crucial.
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1. Introduction

Trace gases form only a tiny part of ambient air – their volume fractions range from less than 10−9

to some 10−6 – but their actual amounts can be both vital and threatening to the life-forms of our

ecosystem. On the one hand, it is their direct impact on the radiation budget of the earth which makes

them so important, the so-called greenhouse effect, e.g. of water vapour, CO2, O3 or CH4. On the

other hand, it is their chemical reactivity which, besides making themselves or their reaction products

a risk to creatures and plants, can change the composition of the atmosphere and thus indirectly af-

fects its natural radiation balance. All these effects could or still can be observed since anthropogenic

activities have started to increase trace gas levels locally or globally beyond their natural values: smog

caused by harmful amounts of industrially emitted SO2, photochemical smog as a noxious mixture of

trace gases such as NOx, O3 and VOCs (volatile organic compounds), acid rain formed from emis-

sions of SO2 and NOx, destruction of the ozone layer, e.g. by CFCs (chlorofluorocarbons), and finally

– with deepest impact and on a global scale – the anthropogenic greenhouse effect. It has taken

decades to understand some of these phenomena because of their complex chemistry. In view of the

rapid industrialisation taking place in some densely populated parts of the world and with the most

serious consequences of the anthropogenic greenhouse effect yet to emerge, it is beyond doubt that

measurement and understanding of atmospheric trace gas concentrations is of paramount interest. In

contrast to the principal constituents of the air, these concentrations depend on emission sources and

the chemical environment, so that, in fact, we are speaking of trace gas concentration distributions,

varying spatially and temporally.

Depending on the trace gas species and the part of the atmosphere one is concerned with, the con-

centration distributions are more or less well understood – or relevant, so that motives to deal with

them may be, e.g., to understand their chemistry, to allocate emissions, for pure monitoring purposes

or to evaluate models and so forth. These reasons have gained significance on a wide range of spatial

scales. For example, global CO2 distributions in the context of worldwide emission trading have to

be monitored just as air pollution at different sites on a communal level. Global chemical transport

models designed to ultimately predict future trends have to be validated by measurements just as

disperion models allowed by EU regulations for monitoring air pollution on a local scale down to

traffic hot spots [e.g. Schatzmann et al., 2006; Trukenmüller et al., 2004].

Measurements of trace gas concentrations are either in situ, i.e. local, or remote sensing, which here

means using the interaction of molecules with electromagnetic waves to infer atmospheric parameters

along the propagated path. A single measurement of the former kind provides the value of the

concentration field at the measurement location.1 A single measurement of the latter kind gives a

line integral along the propagated path over a functional of the concentration field – ideally over the

field itself. Either method bears more or less apparent drawbacks. Interpreting in situ measurements

1Measurements that restrict the wave propagation to a small volume by multiple reflections are regarded as point
measurements in this context.

14



15

always raises the question of their representativeness, especially if the variability of the concentration

field is unknown. Remote sensing methods give information only on line integrals involving the desired

concentration distribution.

While getting spatial information from point measurements simply needs the experimental act of

taking enough samples, in order to obtain the same from any number of remote sensing measurements

additionally requires mathematical techniques to retrieve the concentration field from the integrals.

The combination of taking the right remotely sensed samples and subsequent inversion techniques to

unravel the integrals is commonly referred to as tomography. Naturally, it has become an extremely

elaborate technique in disciplines where taking samples of the object of investigation is impossible or

prohibitively expensive. Medical tomography benefits from small regions of interest and it is relatively

easy to handle source-detector configurations, so that large numbers (of the order 105) of integrals can

be measured. Huge numbers of data (106 − 108) for acoustic travel time tomography of the earth’s

interior are conveniently provided by earthquakes or explosions.

There is a variety of spectroscopic techniques applied to the remote sensing of trace gases in the at-

mosphere, differing either in the wavelength range or the physical principle they exploit for detection,

with natural or artificial radiation sources (passive or active remote sensing). The most important

ones are infrared spectroscopy (IR), the light detection and ranging (LIDAR) technique and the dif-

ferential optical absorption spectroscopy (DOAS). Although these methods are able to detect various

trace gases with high sensitivity for certain spatial ranges, in general, they have not been used for

tomographic measurements of atmospheric trace gas distributions. Byer and Shepp [1979] put for-

ward the idea to reconstruct 2-D atmospheric trace gas distributions near ground from tomographic

absorption LIDAR measurements with a rather elaborate setup. About the same time Fleming [1982]

proposed tomographic satellite measurements of IR and microwave emissions for 2-D reconstruction

of temperature and trace gas distributions by increasing the number of viewing directions from one

to five. While the latter proposal for passive measurement has been realised in a smiliar manner in

aircraft DOAS measurements using sunlight [Heue, 2005], so far no active experiment has been per-

formed in the atmosphere that comes near the number of integration paths considered by Byer and

Shepp [1979]. Comparable optical setups for 2-D tomographic reconstruction of indoor air contami-

nants have been studied mostly in simulations – light path numbers in actual gas chamber experiments

using the Fourier transform IR (FTIR) spectroscopy were between around 30 and 200.2 Active DOAS

tomographic measurements along 16 light paths were used by Laepple et al. [2004] to reconstruct the

NO2 distribution perpendicular to a motorway. Belotti et al. [2003] reconstruct volcanic CO2 from

horizontal open-path IR measurements along 15 paths.

On the one hand, active DOAS measurements allow precise detection of a variety of important trace

gas species for light paths between a few and up to 10− 20 km at the same time. On the other hand,

almost 30 years after first proposals of tomographic remote sensing, this technique still has not been

used for genuine tomographic DOAS measurements – motivation enough to advance both experimental

techniques and theoretical insight. As a theoretic contribution to these efforts, this thesis investigates

the possibility to reconstruct 2-D distributions of tropospheric trace gas concentrations from active

DOAS measurements along a moderate number of about 10 to 40 light paths. The mathematics of

computerised tomography (CT) with regular geometries and large numbers of integration paths, as

they appear, for example, in medical image processing, is well understood. The application at hand –

2See sec. 3.3 for references.



16 1. Introduction

with only few light paths which are unlikely to be arranged in a regular fashion – requires consideration

beyond the existing literature because

• analytic inversion methods that are standard in CT cannot be applied (due to the irregular

geometry),

• estimation of the error of the reconstruction result is not standard and contributions that are

negligible elsewhere become important,

• smooth atmospheric distributions may differ from absorption patterns in the human body or

layer structures in the earth,

• disciplines like computerised tomography, geophysics and atmospheric profiling have developed

powerful concepts for their inverse problems and sometimes quite different retrieval techniques.

It is not always obvious why this is the case and which methods can be adopted. Existing studies

with small numbers of integration paths are scarcely systematic.

The lack of a ‘standard literature’ that our methods could refer to is reflected by the structure of

this work, being split into three parts. The first part reviews basic facts on trace gases, their remote

sensing and the mathematics of tomography, while the second part contains the methodology – partly

developed in this thesis – for the calculation of the reconstruction error, for the reconstruction itself

and the planning of a tomographic experiment. It also contains all analytical results. The third part

consists in numerical applications.

Not only is there no standard approach to atmospheric tomography, emissions, transport and chemical

transformation make the situation also far too complex to admit a standard picture of atmospheric

trace gas distributions. Therefore, after presenting some of the most important trace gases relevant for

DOAS, chapter 2 considers two scenarios of trace gas distributions that will be relevant for the third

part: dispersion from a point source and the complexity of urban trace gas distributions. Chapter 3

gives an introduction to the tomographic principle and the most important remote sensing methods

that potentially could make use of it. The DOAS technique is discussed in more detail. Finally, pre-

vious tomographic measurements of atmospheric parameters are presented and put into the context

of standard tomographic applications. Chapter 4 justifies the discretisation and reformulation of the

tomographic reconstruction problem as a least-squares least-norm problem. Apart from the very com-

mon box discretisation, linear parametrisation is considered for the 2-D case. Special attention is paid

to the question how known instabilities of this problem (so-called ill-posedness) affect different kinds

of solutions. The optimal estimate that is commonly used to solve inverse problems in atmospheric

science is presented both as a regularisation method (to stabilise the least-squares solution) and as a

probabilistic approach. The iterative solution of the least-squares least-norm problem that has been

adopted from computerised tomography is discussed in comparison with other iterative algorithms

before the chapter closes with brief sketches of alternative reconstruction principles.

The detailed discussion of the reconstruction error in chapter 5 includes the error related to the finite

representation of the solution that is usually not covered in the tomographic literature. We present

a method for numerical estimation of the reconstruction error from test distributions that differs in

several points from the one employed by Laepple et al. [2004]. The final section reviews and compares

quality criteria used in image processing and atmospheric modelling. The discussion up to then will be

irrespective of the concentration distributions or the dimensions of the reconstruction. The schemes
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proposed in chapter 6 use several grids for parametrisation and reconstruction and are especially in-

tended for 2-D reconstruction of peak distributions as they arise from point sources. The discussion

of a priori information and background concentrations is also specific for atmospheric trace gas dis-

tributions. Chapter 7 deals with experimental design issues like the signal to noise ratio, including

additional point measurements and how tomographic measurements can be used to evaluate model

results.

Concepts and methods of the first two parts are applied to the scenarios introduced in chapter 2:

to 2-D Gaussians peaks representing sections through atmospheric emission puffs (chapters 8 & 9)

and to model distributions of a highly polluted city street canyon (chapter 10). The simulations of

chapter 8 investigate the 2-D reconstruction of concentration peaks systematically with respect to the

parametrisation of the problem and the reconstruction scheme. Two iterative algorithms are com-

pared to study the effect of regularisation. Finally, different kinds of path geometries are investigated

in detail and the role of background concentrations is discussed. Chapter 9 applies the simulation

results to data from a tomographic indoor experiment [Mettendorf et al., 2006] and contains a de-

tailed estimation of the complete reconstruction error. The final chapter 10 highlights the challenge

of reconstructing trace gas concentration fields in a complex urban environment by means of high

resolution model distributions and shows how model evaluation could be carried in a real experiment

even with low spatial resolution of the reconstructed distributions.



Part I.

Basics
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2. Trace Gas Distributions in the

Atmosphere

This chapter starts with a brief motivation of the experimental efforts to measure the spatial distri-

bution of trace gases. The discussion is not as general as the chapter title may suggest but, like the

complete work, it is restricted to near ground trace gases detectable by DOAS and to spatial (and

temporal) scales relevant to a special kind of this technique, the long-path DOAS, i.e. scales from

a few 100m up to around 10 km. The remaining sections try to give an idea of how distributions

actually arise on these scales from chemical and – maybe more important – transport processes. We

concentrate on two special scenarios. Point emission (sec. 2.4) is important for practical applications

like stack emission from industrial complexes or power plants or, in fact, for any distinct source. But

because it is such a simple scenario, it is also ideal to study the nature of turbulent concentration

fluctuations. Urban trace gas distributions, on the other hand, are of great public interest but far

too complex to allow a universal picture. Therefore sec. 2.5 highlights some aspects of urban model

development. The reconstruction of point source emissions will be the subject of simulations in chap. 8

and of a tomographic experiment in chap. 9, while results from the model system M-SYS designed for

urban micro environments will be used in chap. 10.

2.1. The need for measured trace gas distributions

Apart from pure scientific curiosity directly measured trace gas concentration distributions are desir-

able in the following situations:

• Emission sources are unclear.

• Chemical transformation processes are not well known.

• For model evaluation and input.

• For air pollution monitoring.

The first point can mean that a source is suspected but not identified or characterised for all atmo-

spheric conditions. Examples might be the yet not completely understood chemistry of halogen oxides

in maritime areas [Von Glasow et al., 2004; Peters et al., 2005], the allocation of biogenic emissions

[Kesselmeier and Staudt , 1999] or exploration of geological sources such as volcanoes or lava flows

[Bobrowski et al., 2003]. As emission into the atmosphere always implies transport, the easiest way

to get a comprehensive picture of emission sources is to produce a concentration map for the region

of interest. A second reason for unclear emissions might be that, although the source is known, it

19
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may be hard to measure directly under real world conditions. This is the case for traffic emissions on

a motorway [e.g., Corsmeier et al., 2005b], take-off and regular emissions of air planes are another

example.

Certainly, the chemical transformation of reactive species is extremely complex and can be studied in

the laboratory only to a limited extent, especially if precipitation or surfaces play a role. An important

area of ongoing research is dealing with the details of the chemistry of photo smog as it occurs in

heavily polluted urban areas and cities during summer. The situation concerning both the emissions

and the effects of transport and turbulent mixing are too complicated to be simulated in a smog

chamber. Complicated flow patterns in urban areas due to buildings make allocation of point-like

sampled concentration values extremely difficult and time series of concentration fields combined with

wind data would increase the information content tremendously.

The verification of models that – in their most complex form – are designed to simulate emission,

transport and chemical evolution of trace gases and particles on different atmospheric scales is impor-

tant. Even if emissions and reaction paths are modelled with sufficient precision there still remains the

transport calculation. While describing dispersion of pollutants over even terrain and on mesoscales

(∼ O(102) km) might be a relatively easy task if one does not look into spatial details, complex terrain

and flow patterns on microscales (∼ O(102)m) are more of a problem both conceptually and compu-

tationally. Boundary conditions for pollution transport models are pre-processed by meteorological

models. But while nobody will ask what the weather is like next street, concentration variations on a

street scale are important, for example when it comes to accumulation of traffic emissions in a street

canyon or whether the NOx plume of a power plant meets a near surface VOC plume and locally

forms ozone or not. In view of the fact that building effects can change concentration values by an

order of magnitude [Schatzmann and Leitl , 2002], both meteorological and chemical transport models

have to meet rather challenging requirements on urban scales (see sec. 2.5). The experimental proof

that a model predicts concentrations with enough accuracy is thus indispensable and itself an intricate

matter as discrepancies have to be traced back to either wrong emission data, incomplete chemical

mechanisms, faulty transport calculations or insufficient parametrisation of atmospheric turbulence.

Point measurements are in general not suited due to high concentration fluctuations both with time

and location whereas concentration maps with sufficient temporal and spatial resolution give infor-

mation on the location of emissions, their transport and concentration variability. The discussion of

model evaluation will be resumed in sec. 7.4.

Addressing the last point, air pollution monitoring, it can be remarked that despite technical progress

in reducing emissions factors – that is the average amount of a pollutant per amount of fuel or for a

specific process – for example, by improved filtering of industrial discharge or by catalytic converters

for cars, absolute amounts of emission can still be high in regions with extensive industry. They can

be even growing if the absolute numbers of cars increase to a higher degree or if countries radically

intensify their industrial production. Within the EU, air pollution and its monitoring on a national

level is regulated by EU laws. As a matter of fact, the European Air Quality Guideline 96/62/EU and

its daughter directives reach down to the municipal level by requiring concentration maps from mem-

bers not only for the state in total and larger conurbations (more than 250 000 habitants) but also for

heavily polluted micro environments [Schatzmann et al., 2006]. If provided by point measurements,

the EU directives regulate that measurements at urban background sites should be representative for

an area of several km2 and at traffic-orientated sites for at least 200m2 [Trukenmüller et al., 2004].
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pollutant quality indicator model quality objective

SO2, NO2, NOx hourly mean 50-60%
daily mean 50%
annual mean 30%

Ozone 8 h daily maximum 50%
1 h mean 50%

Benzene annual mean 50%

CO 8 h mean 50%

Table 2.1: Modelling quality objectives established by the EU direc-
tives 1999/30/EC, 2000/69/EC and 2002/3/EC. ‘Qual-
ity objective’ is defined as the maximum deviation of
measured and calculated concentration values within the
period given by the quality indicator (to which the limit
values refer, too).

Applying an obstacle resolving chemical transport model with high spatial resolution (up to 1m) to

a heavily polluted street canyon, Schlünzen et al. [2003] show that point measurements at ground

level barely fulfil these requirements even under stationary meteorological conditions. Effective ex-

perimental techniques to obtain concentration maps rather than point samples would be invaluable

for air pollution monitoring. Legislation acknowledges the current state of measurement technique

and the costs of monitoring stations by permitting modelled concentration maps for monitoring pur-

poses (see also table 2.1) which brings us back to the evaluation of these models by measurements.

Even if chemical dispersion models eventually reach a level allowing them to be used for operational

air quality predictions, experimental concentration distributions become by no means obsolete. One

reason is that models (at least in the short run) depend on the quality of the input, i.e. initial values

and boundary conditions. Another reason of universal significance lies in the fact that models usually

allow a large choice of parameters and different settings. For transport models this could be the grid

size, grid spacing, turbulence closure scheme etc. and

“this gives the user additional degrees of freedom and makes it unlikely that two users apply-

ing the same complex numerical model to the same problem will produce the same results.

This was demonstrated in the European project, Evaluation of Modelling Uncertainty (EMU)

(Hall, 1997) in which four experienced user groups predicted the dispersion of dense gas re-

leases around simply shaped buildings by using the same commercially available CFD [com-

putational fluid dynamics] code. The variability between different modeller’s results was

shown to be substantial. Depending on the quantity under consideration, differences up to

an order of magnitude were reported.” [Schatzmann and Leitl , 2002]

2.2. Selected trace gases

Trace gases, occurring with number densities way below the main constituents of unpolluted air

nevertheless play an important role because of their chemical reactivity, for the radiation budget of

the earth (greenhouse effect) and for the human health. Following up the preceding discussion, here

we are interested only in species that emerge in near ground air pollution and which can be detected

with DOAS measurements relevant for this work. Some of these trace gases are listed in table 2.2



22 2. Trace Gas Distributions in the Atmosphere

trace gas major sources major sinks mixing ratios [ppb]
remote rural-urban polluted-urban

O3 photochem. production, deposition, hydrolysis, 30 − 40 80 − 150 up to 300
free radicals photolysis,

NO2 fossil fuel, soil emission, oxidation by OH or O3 0.03 − 5 1 − 60 50 − 200
biomass burning, lightning to HNO3

SO2 fossil fuel, volcanoes, dry deposition, 0.01 − 0.05 1 − 200 up to a few 100
sulphide oxidation oxidation to H2SO4,

wet deposition

HONO het. formation on photolysis 0.01 − 1 0.01 − 10 0.03 − 30
surfaces

CH2O, traffic, incomplete photolysis (CH2O), 0.3 − 2 0.1 − 10 1 − 60

Benzene, combustion, photochem. reaction with OH, 0.008 − 0.2 0.1 − 0.6 0.9 − 26
& Toluene production (CH2O) dry/wet depos. 0.01 − 0.25 0.05 − 0.8 2 − 39

Table 2.2: Sources, sinks and approximate mixing ratios for selected trace gases occurring in near ground air
pollution and that are detectable with long-path DOAS. Mixing ratios are taken from [Finlayson-
Pitts and Pitts, 2000, sec. 11.A.4].

with typical concentrations1 in polluted and unpolluted air.2

Starting to investigate the tomographic reconstruction of trace gas distributions from DOAS measure-

ments, we concentrate only on the most important atmospheric processes responsible for the spatial

patterns of the concentrations. Transport processes are addressed in the next section, very basic

textbook facts on the chemical behaviour of important species are given now. Further details can be

found, for example, in [Seinfeld and Pandis, 1998; Finlayson-Pitts and Pitts, 2000].

Nitrogen oxides and ozone

The largest source of NO and NO2 is fossil fuel combustion in industrial processes, power generation

and traffic. Relative amounts of NO and NO2 in the exhaust depend on the details of the combustion

process. For power plants the ratio of NO2 to NO varies between less than 10% and 40%, with typical

values between 5−10% [Bland et al., 2000]. For traffic emissions, the ratio takes values around 5−10%

[e.g. Kohler et al., 2005; Bäumer et al., 2005; Stern and Yamartino, 2001; Berkowicz et al., 1997].

NO quickly reacts with ozone to NO2, so that they are usually combined to NOx by [NOx] = [NO] +

[NO2]. NO2 photodissociates for wavelengths ≤ 420nm, leading to the formation of ozone. In total

NO + O3 −−→ NO2 + O2 (R 2.1)

NO2
hν−−−−−−−→

λ ≤ 420 nm
NO + O(3P) (R 2.2)

O(3P) + O2
M−→ O3 , (R 2.3)

where the collision partner M enables the recombination. In the absence of any other chemical

transformations, reactions (R 2.1)–(R 2.3) lead to an approximate steady state described by the so-

1To be correct, concentrations (amounts of trace gas per volume) should be distinguished from so-called mixing ratios
which are amounts of trace gas per amount of air, both referring to volume, mole or mass and the corresponding
units being parts per million (ppm) or billion (ppb) by volume, mass or mole. But we will make a distinction only
if crucial and use the same symbol c for both quantities.

2Following the definition in [Seinfeld and Pandis, 1998, p. 49], a substance – benign or harmful – is regarded as
pollutant, if normal ambient concentrations are exceeded due to anthropogenic activities with measurable effect on
the environment or humans.
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called photostationary state relation

[NO]

[NO2]
=

j(R 2.2)

k(R 2.3) [O3]
.

Here k(R 2.3) is the rate constant of reaction (R 2.3) and j(R 2.2) the photolysis frequency of NO2. For

typical O3 mixing ratios of a few 10 ppb, at daytimes the ratio [NO]/[NO2] takes values of the order

one.

The above system of reactions offers only an insufficient description if stronger oxidants play a role.

In fact, these are usually present in the form of radicals, most importantly the hydroxyl (OH) and

the hydroperoxyl (HO2) radicals. They are photochemically produced, predominantly from ozone,

HONO and formaldehyde (CH2O).

On the one hand, the oxidation of NO by HO2

NO + HO2 −−→ NO2 + OH

instead of reaction (R 2.1) leads together with reactions (R 2.2) and (R 2.3) to a net production of O3.

On the other hand, there is a cycle between OH and HO2 in which the radical HO2 is formed by the

reaction of OH with oxidisable gases like CO or CH2O. The reaction of HO2 back to OH via

O3 + HO2 −−→ OH + 2 O2

plays a role for low NOx concentrations and results in a net destruction of ozone. Whether the

coupled NOx and HOx (= OH + HO2) cycles eventually produce or destroy O3 depends on the NOx

concentrations. For higher NOx, levels O3 production exceeds the destruction by radicals. Lower

levels result in net destruction of O3.

Apart from its role in the HOx cycle, the highly reactive OH radical constitutes also a day time sink

of NO2 by the reaction

NO2 + OH
M−→ HNO3 ,

which is important for high NOx levels, while at night the oxidation by O3 becomes a NO2 sink. In

both cases the product is HNO3, which is finally removed by precipitation and dry deposition.

Volatile organic compounds

The large class of volatile organic compounds (VOCs) comprises hydrocarbons such as alkanes, alkenes

and alkines, aromatic hydrocarbons and oxidised compounds (aldehydes, ketones, alcohols, organic

acids). Some occur naturally, like methane (CH4) or terpenes which are produced by certain trees.

The dominant anthropogenic source for VOCs like benzene (C6H6), toluene (C7H8) or formaldehyde

(CH2O) is (incomplete) combustion in traffic, domestic fuel or industry.

Some VOCs, like benzene, play prominant roles in air pollution because of their severe toxic character.

But in any case, VOCs are important for the production of HO2 and thus for the ozone production,



24 2. Trace Gas Distributions in the Atmosphere

as illustrated here for the group of alkanes (written as RH)

OH + RH −−→ R + H2O

R + O2
M−→ RO2 .

In polluted areas, the reaction of the peroxy radical RO2 with NO is most likely so that

RO2 + NO −−→ RO + NO2

RO + O2 −−→ R
′

OHO + HO2 .

Similarly, other VOCs drive the HOx–NOx system to produce ozone, while the VOCs themselves are

reacted to aldehydes and finally to CO2. The interplay between the HOx and NOx cycles results in an

intricate dependency of the O3 production on inital VOCs and NOx concentrations (for details and the

so-called VOC- and NOx-limited ozone production see the references mentioned in the introduction).

Sulphur dioxide

Sulphur compounds enter the atmosphere both naturally (volcanoes, biological sources) and anthro-

pogenically. In the latter case they are emitted predominantly as SO2 when burning sulphur containing

coal or fuel. In the context of air pollution, the reaction of SO2 to sulphuric acid (H2SO4) and sub-

sequent emergence of acid rain has been a major issue.

Concentrating on emissions in the form of SO2, the most important gas phase reaction is oxidation

by OH

SO2 + OH
M−→ HOSO2

HOSO2 + O2 −−→ SO3 + HO2

SO3 + H2O
M−→ H2SO4 ,

but SO2 is also removed from the atmosphere by liquid phase oxidation and dry deposition. Depletion

by the above oxidation process is quite moderate. For a relatively clean urban environment and a

cloudless summer day, the 24h averaged rate of SO2 oxidation amounts to 0.7% /h assuming [OH]∼
1.7 · 106 molecules · cm−3 [Seinfeld , 1986, p.167].

In conclusion, it has to be emphasised that the picture of the reactions of trace gases just given does

not even contain all basic mechanisms – for example, the NO3 radical and the nitrous acid HONO

were omitted, the sulphur compounds were reduced to SO2 and so forth. But nevertheless, besides

conveying insight into the complexity of air pollution, it explains important characteristic features

of trace gases like diurnal cycles for some of them and gives an idea about when certain simplifying

assumptions may be valid and when not. For example, on time scales of a few hours the evolution

of a SO2 plume may be approximated by wind transport and dispersion, neglecting its chemical

transformation. In constrast, freshly emitted NO–NO2 in the emissions, for instance, of a power plant

undergo rapid transformation during their dispersion until they level off at some ratio more or less

given by the photostationary state relationship. As there are no point sources for O3 as such, spatial

variations of the ozone concentration can only result from high local production rates, as in the so-
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Figure 2.1: Temporal and spatial scales of turbulent atmospheric processes and lifetimes of some species in
the atmosphere. Transport of the latter is characterised by spatial scales according to the turbulent
scales. The precise definition of the terms micro-, meso- and macroscale is not always the same
in the literature but this of no concern here [combined from Stull, 1988; Wayne, 2000].

called photo-smog, or depletion, for example by reaction with freshly emitted NO. Ozone distributions

show little spatial variation at low concentration levels in unpolluted background air, but enhanced

values can occur downwind of urban centres where the O3, gradually formed in the NOx and VOC

enriched city plume, reaches its maximum.

The life time of a species in the atmosphere is of great interest for transport and dispersion processes.

Figure 2.1 gives an idea about the time scales for some trace gases. But while these average values

might be useful for species with only few reaction paths (as seen for SO2), they become less meaningful

for complex systems where not only emissions vary, but also factors like sunlight or cloud cover

affect chemical transformations. For NO2 Neophytou et al. [2005] specify diurnal variations of the

transformation time scale between a few minutes and up to 104 minutes.

2.3. Dispersion by turbulent diffusion

The temporal evolution and spatial distribution of a scalar quantity like the concentration ci(r, t) of

a trace gas species i is governed by a continuity equation of the form

∂ci

∂t
+ ∇ · (u ci) = Di ∆ci + Ri(c1, . . . , T ) + Si(r, t), (2.1)
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where u denotes the velocity field, Di the molecular diffusion constant for species i, Ri its rate of

generation or destruction by chemical reaction and Si is a source term. Here and in the following it

is assumed that this equation for ci is independent of the equations for u, the temperature T and all

other meteorological quantities. But even in the most simple case of a chemically inert gas without

source and sink (the molecular diffusion term is of the order 10−5–10−6 smaller than the advection

term ∇· (·)), eq. (2.1) cannot be solved because u contains an unknown, stochastic component related

to turbulences in the atmosphere. Turbulent eddies can be thermally generated by the heating of the

atmosphere or mechanically caused when air moves past an obstruction. Turbulence occurs under

all circumstances and on the whole time and length scale of atmospheric phenomena (fig. 2.1). The

velocity field u is of course not totally erratic so that it makes sense to write it as a sum of the

deterministic mean ū and a random part u′

u = ū + u′.

As a consequence the concentration field, too, consists of a deterministic and a random contribution

in a sense illustrated in fig. 2.2a. The (hypothetical) average 〈ci(r, t)〉 for species i can be regarded as

the ensemble mean of all measurable, real distributions ci(r, t). It can be obtained by time averaging

over measurements if the meteorological conditions for ū are stable and the chemical generation

and destruction processes are more or less stationary compared to the turbulent time scales for the

velocity field. Put in other words, these time scales give a clue to what degree the distribution ci(r, t)

is representative for the mean meteorological conditions. For this reason and without going into the

details of the statistical representation of turbulence, I would like to point out the following with

regards to the turbulent variations of the velocity and concentration fields.

• The time scale for the velocity turbulence can be defined by the time integral of the Lagrangian

autocorrelation function of the velocity field, that is the autocorrelation in a system moving

along with the velocity field. This function is hard to measure and an exact relation with the

corresponding Eulerian function in usual fixed-point coordinates is not known. Often they are

assumed to be of the form ∼ e−t/T with different times TL, TE for the Lagrangian and Eulerian

function. Based on the Taylor (frozen eddy) assumption one finds the estimates

TL ∼ (repetition rate around dominant eddies of size l)−1 ∼ l

σv
(2.2a)

TE ∼ (repetition rate of dominant eddies)−1 ∼ l

ū
(2.2b)

TL

TE
= C

ū

σv
(2.2c)

with mean velocity ū, standard deviation σv of the vertical velocity component and C ∼ 0.7

inferred from observations [e.g., Blackadar , 1997]. Empirical values for TL and σα = σv/ū can

be found in appendix A.

• Time scales for the concentration turbulence can be defined in a similar manner. But there is no

reason why they should match the velocity time scales. On the contrary, for the concentration

fluctuations in time series obtained from a number of smoke plume experiments, Hanna and

Insley [1989] find that the time scale of the concentration spectra is ∼ 2 – 5 times less than for

the wind speed and ∼ 10 – 20 times more than that of the vertical velocity. Turbulent patterns
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Figure 2.2: (a) A concentration field c(r, t) under turbulent conditions as a member of a stochastic ensemble
with mean 〈c(r, t)〉 which is assumed to be a Gaussian distribution here. (b) Emission from a point
source at an effective height h with source strength q [kg s−1]. (c) Evolution of a plume depending
on the eddy size [adapted from Seinfeld and Pandis, 1998].

in the time series translate into variances σc of the concentration around the ensemble mean

(see next section).

As a deterministic approach to turbulence is not possible, the aim must be to describe the mean fields

for the concentration 〈ci(r, t)〉 as accurately as possible. Inserting the decompositions for u and the

corresponding one

ci(r, t) = 〈ci(r, t)〉 + c′i(r, t) (2.3)

into eq. (2.1) and averaging over the turbulent realisations leads to

∂〈ci〉
∂t

+ ∇ · (ū 〈ci〉) + ∇ · 〈u′ c′i〉 = Di ∆〈ci〉 + Ri(〈c1〉 + c′1, . . . , T ) + Si(r, t) (2.4)

with two unknown quantities. The fact that the unwanted flux 〈u′c′i〉 cannot be substituted without

introducing combinations of higher order in u′
j and c′i is known as the closure problem of turbulence.3

There are ways of varying complexity to solve the closure problem leading to more or less involved

numerical models. The most simple of them is to assume a diffusion like relationship for the turbulent

flux and the gradient of the mean field, i.e.

〈u′c′i〉 = −K ∇〈ci〉 with eddy diffusity tensor K, here Kjk = Kjj δjk.

This approach, known as K-theory, mixing-length theory or gradient transport theory, results in equa-

tions that describe the turbulent dispersion of a pollutant as a diffusive process parametrised by the

eddy diffusities Kjj (if molecular diffusion is again neglected and the mean velocity field is taken to

be incompressible). They are referred to as atmospheric diffusion equations.

2.4. The Gaussian plume model

Assuming a constant mean velocity field ū and negligible chemical reaction, it is straightforward to

show that the atmospheric diffusion equation has solutions in the form of Gaussian distributions. To

3More precisely the closure problem of the Eulerian approach as in eq. (2.1).
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Figure 2.3: (a) Horizontal dispersion coefficients (σx = σy) for the Pasquill-Gifford (thin lines) and the urban
Briggs (thick lines) parametrisation. For the latter the dispersion coefficients for stability classes
A and B and the ones for E and F are identical.
(b) The same as (a) for the vertical dispersion. The functional forms and further details can be
found in appendix A.

get more specific, consider the situation depicted in fig. 2.2b, i.e. a point source at the origin, emitting

at a rate q (in units kg s−1) at an effective height h and a wind field ū = (ū, 0, 0). For instantaneous

release of the total amount Q =
∫

q dt one gets the Gaussian puff formula

〈c(x, y, z, t)〉 =
Q

8(π t)3/2(K11K22K33)1/2
exp
(
− (x − ūt)2

4K11t
− y2

4K22t

)

×
[
exp
(
− (z − h)2

4K33t

)
+ exp

(
− (z + h)2

4K33t

)]
, 0 ≤ z ≤ ∞,

while the stationary concentration field resulting from continuous release is described by the Gaussian

plume equation

〈c(x, y, z)〉 =
q

8 π (K22K33)1/2x
exp

(
− ū

4x

y2

K22

)

×
[
exp
(
− ū

4x

(z − h)2

K33

)
+ exp

(
− ū

4x

(z + h)2

K33

)]
, 0 ≤ z ≤ ∞, (2.5a)

provided that the dispersion in the direction of the flow can be neglected, i.e. that the distance x a

particle has travelled since its release is large compared to the spread at that time
√

K11t or K11 ≪ ū x

(so called slender plume approximation). Both formulas are for boundary conditions corresponding to

total reflection of the plume at ground (z = 0). Similar expressions can be derived for total or partial

absorption at ground and additional reflection at an inversion layer above the plume [e.g., Seinfeld

and Pandis, 1998].

Based on large numbers of observations (like the legendary prairie grass experiment [Barad , 1958] and

the urban dispersion study in St. Louis [McElroy and Pooler , 1968]) several parametrisations of the

plume dispersion coefficients σx = σy =
√

2K22x/ū and σz =
√

2K33x/ū have been proposed. They
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usually refer to a classification of atmospheric stability proposed by Pasquill [1961] and distinguish six

(sometimes seven) classes ranging from extremely unstable (A) to moderately stable (F) (or extremely

stable (G)). Appendix A contains details about this classification in terms of meteorological observ-

ables. For the widely used Pasquill-Gifford scheme [Gifford , 1961] fig. 2.3 shows σy, σz for the classes

A – F as a function of the downwind distance x. Briggs [1973] gave different parametrisations for open

country and urban conditions (fig. 2.3). Explicit formulas can be found in appendix A. Although

these schemes have been introduced more than 40 years ago and new ones are being proposed [e.g.,

Hanna et al., 2003] the original curves are still in use [Barratt , 2002]. When applying the Gaussian

plume or puff model, apart from the steady state conditions assumed above, one should notice:

• The models are not fit for complex terrain.

• It is the effective emission height h that enters the formula (important if the gas is emitted with

initial momentum, see [Barratt , 2002; Seinfeld and Pandis, 1998] for correction terms).

• The parametrisations are not reliable

near the source [see also Venkatram et al., 2004],

too far away from the source (& 10 km), i.e. the uncertainty of σy, σz increases with x,

for elevated sources higher ∼ 100m [Barratt , 2002].

• Strictly speaking, the σy, σz are valid only for the averaging times for which they have been

derived (3 – 10min and 1h for the parametrisations mentioned above, see appendix A for

details).

• A single measurement over a limited period will not see a Gaussian concentration distribution,

c.f. fig. 2.2a.

A few remarks on the last point which refers again to the context of fig. 2.2a and is especially critical

for the meandering plume in fig. 2.2c. Loosely speaking this is the case if the effective eddy size is

much larger than the size of the plume. Turbulent eddies of a size comparable to the plume change

its size and disperse it diffusion-like while very small eddies mix the plume within. The size of the

dominant eddies can be estimated with eqs. (2.2) by consulting empirical values for TL and σα.

For example, using Draxler’s specification for TL in appendix A one gets:

For a surface source and stability class C (slightly unstable)

TL =

8

<

:

60 s lateral

10 s vertical
, σα = 15◦ eq. (2.2c)⇒ TE =

8

<

:

22 s lateral

7.5 s vertical

and for a wind speed of ū = 5 m
s

thus roughly l ∼ 100 m.

If the measurement time T is shorter than necessary to reproduce the ensemble mean, the expected

deviation of the mean concentration c̄T during T at a specific location from the ensemble mean 〈c〉 at

the same place is according to Venkatram [1979] given by

E
[
(c̄T − 〈c〉)2

]

〈c〉2 ∼





var[〈c〉2]
〈c〉2

T
TE

→ 0

2(Γ − 1)TE

T else



30 2. Trace Gas Distributions in the Atmosphere

where Γ = cmax

〈c〉 with cmax being the maximum concentration detected at the location and TE the

Eulerian time scale for the concentration turbulence. For the moderate example Γ = 10, T/TE = 10

one gets E
[
(c̄T −〈c〉)2

]
∼ 1.4〈c〉2, i.e. the deviation is of the same size as the ensemble mean value. For

the special case of a Gaussian plume the author gives a further theoretical expression for the expected

deviation at the centreline of the plume in [Venkatram, 1984]. Ma et al. [2005] give an estimate for the

same quantity by analysing experimentally obtained crosswind sections through plumes. They find

that the crosswind fluctuation σc(y)/c(y) along y increases at the edges of the plume and gets smaller

towards the centreline. For distances further away from the source and averaging times around 1h,

values at the edges of the plume amount to σc(y)/c(y) ∼ 10 and at the centreline to σc(0)/c(0) ∼ 0.1.

Near the source the fluctuations increase dramatically. In fact, the authors propose a fit of the form

σc(0)/c(0) ∼ a + b
x for the fluctuation at the centreline depending on the downwind distance to the

source x.

In principle, the Gaussian plume model can be applied to line and area sources, too [e.g., Barratt ,

2002; Seinfeld and Pandis, 1998]. Simple analytic corrections of the Gaussian solution concern the

initial plume size, plume rise and exponential chemical decay of the emitted substance. More in-

volved chemical transformations have to be implemented numerically [e.g. Olcese and Toselli , 2005;

Song et al., 2003; Von Glasow et al., 2003]. The limitation to stable atmospheric conditions can be

lifted by using a series of puffs instead of a continuous plume. The frequently employed numerical

model SCIPUFF [Sykes and Gabruk , 1997] is based on this approach. Other numerical multi-plume

dispersion models incorporating more or less directly the Gaussian plume model are mainly applied

to impact assessment of regular or accidental emissions from industrial complexes, power plants etc.

There is a large variety of these dispersion models employed by environmental institutions, national

agencies and companies. The classic industrial source complex (ISC) model4 was developed by the US

Environmental Protection Agency (EPA) for source types from point to volume sources. It describes

the dispersion by the Pasquill-Gifford parametrisation and accounts for deposition when concentration

hits the ground. The further developed model AERMOD includes calculation of vertical profiles for

meteorological parameters and treats dispersion under convective conditions more accurately. Apart

from the input of emission and meteorological data it requires specification of the topography to

correct flow patterns. Likewise other state of the art models like the often mentioned Atmospheric

Dispersion Model System (ADMS) have modules for processing terrain data, meteorological param-

eters (e.g. the mesoscale meteorological model MM5), plume rise (e.g. PRIME) and so forth. The

Lagrangian Atmospheric Dispersion Model (LADM) from the CSIRO Division of Atmospheric Re-

search (Australia) is capable of modelling photochemical formation and dispersion of gases such as

O3 and NO2, but in general model systems designed to predict atmospheric dispersion do not include

reaction mechanisms. Short descriptions for some of the latest dispersion model systems can be found

in [Barratt , 2002] which also contains a list of related internet sites.

2.5. Urban trace gas distributions

Here, we are interested in concentration distributions from a tomographic point of view, i.e. mainly

in their spatial patterns, not so much in their chemistry. The latter aspect has been very briefly

4The model is available in the long term version ISCLT and the sort term version ISCST, the current version being
ISCST3.
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addressed above in sec. 2.2 and we restrict ourselves here to the following observations concerning

emission source types.

• Traffic is an important primary source for NOx, CO and VOCs (possibly SO2). It can show

strong temporal variability in terms of daytime or rush hours. The simplest way is to treat it as

a line source, a more involved approach includes traffic induced turbulences (which according to

Tsai and Chen [2004] can in street canyons be as important as wind induced turbulences for the

mixing of the pollutants). The source strength does not only depend on the traffic frequency

but also on the emission factors. These are far from well-known as pointed out by Corsmeier

et al. [2005b] who report underestimations for the CO and NOx emission factors used by models

of around 20%.

• Domestic heating constitutes a seasonal source of SO2, CO and CO2 (with diurnal variations,

see [Rippel , 2005] for measurements in Heidelberg) and can be regarded as an area source, at

least in densely populated downtown and residential areas.

• Factories, industrial complexes as well as power plants or block power stations are sources for a

variety of species like NOx, SO2, CO, VOCs and CH2O. As gases are discharged via more or

less high chimneys they represent the most typical case for the Gaussian plume model. Impact

of the emission can be estimated once the effective stack height and the stability class have been

specified. According to Barratt [2002] the stack height is usually chosen at least 2.5 times the

height of any building within a radius of twice the stack height to make sure that downdraught

of the emissions does not occur. The rule of thumb quoted in this context that the airflow is

disturbed up to a height of ∼ 2.5 times the building height agrees with the observation that

mechanically induced turbulences usually cause nearly neutral stabilities over urban areas up to

heights around two times the average building height [Hanna et al., 2003].

• Not only emissions from within the town and its suburbs make up the urban trace gas distribu-

tions. Polluted air or air with a special composition like ozone rich air imported from outside

add to the concentrations and react in a way they might not do in unpolluted air.

Turning from the emissions to the immissions: What kind of measurements are there to give insight

into the spatial distribution of urban concentration distributions? We would like to characterise these

efforts in the following manner:

• Intensive measurements aiming at the concentration distributions on a mesoscale, e.g. the

chemical composition for particular meteorological or topographical conditions or the chemi-

cal development of a city plume etc. This kind of campaigns typically comprises a variety of

measurement techniques like point or mobile in situ sampling, remote sensing measurements

and possibly airborne measurements and they usually address very specific questions. Examples

are the BERLIOZ study that investigated the evolution of the Berlin plume [e.g., Volz-Thomas

et al., 2003], the FORMAT project focussing on formaldehyde in and around Milano in the heav-

ily polluted Po valley [Hak et al., 2005] or a series of measurements in the extremely polluted

megacity of Mexico City to learn more about oxidation processes in the atmosphere [Shirley

et al., 2006].
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Figure 2.4: Different scales involved in urban modelling: from mesoscale models for background concentrations
and meteorological boundary conditions to models on the scale of a street canyon (shown here with
a typical rotor like flow pattern) [simplified from Fisher et al., 2006].

• Long-term in-situ measurements, especially operational air quality monitoring. They provide

important statistical data for individual sites but detectors are usually not installed in a way that

admits conclusions on the spatial distributions. The representativeness of these measurements,

even for a local neighbourhood, are questioned by [Schlünzen et al., 2003] on the grounds of

model calculations with very high spatial resolution.

• Hot spot measurements on a microscale like the measurement of concentrations and airflow

within a street canyon [e.g. Schatzmann et al., 2006; Vardoulakis et al., 2005] or around an

industrial complex.

On its proper scale, each of these setups might give a comprehensive picture of the concentration

fields, but very often they do not: Too few point measurements, too short time series of data, not

all relevant species measured and so on. Not least because data interpretation might be impossible

without model assumptions, some aspects of modelling trace gas distributions in an urban environment

are now introduced.

The problem with urban distributions is that any model describing them satisfactorily has to be multi-

scale, see fig. 2.4. On the spatial microscale building effects become important (and, as already said,

according to Schatzmann and Leitl [2002] can easily change concentrations by more than an order of

magnitude). Mesoscale conditions drive transport of airmasses to the town and away from it. A result

from long-term measurements at a heavily polluted street canyon in Hannover illustrates this: For a

period of two years it was found that NOx concentrations at roof level in the street canyon are to

30% due to regional transport [Schäfer et al., 2005]. But mesoscale conditions can also be responsible

for more complex patterns as shown in fig. 2.5. According to Fisher et al. [2006] the complexity of

urban meteorology is not fully acknowledged by modellers and “[...] there seems to be a reluctance

from model developers to move away from familiar concepts of the boundary layer even if they are

not appropriate to urban areas.” Time scales relevant for the model are not just given by transport

times but rather by chemical transformation times. These may range from 10−4 s for the OH radical

to 108 s for CH4 (see fig. 2.1) and can vary for one and the same species with mixing ratios of other

trace gases or physical parameters like radiation and temperature.

Among the different concepts for describing urban trace gas concentrations we are here interested only

in methods that can – at least in principle – reproduce spatial (and temporal) variability on scales



2.5. Urban trace gas distributions 33

Figure 2.5: Example of how mesoscale meteorological conditions can show up in the urban airflow patterns.
This illustrates both the complexity of urban meteorology and the necessity of applying models on
different scales [adopted from Fisher et al., 2006].

relevant for long-path DOAS measurements. This excludes all kinds of statistical models, for example

receptor models [e.g., Seinfeld and Pandis, 1998], or diagnostic models which use empirical functions

to simulate flow around buildings and leaves us mainly with chemical transport models (CTM) that

have a high enough resolution within the urban area. The problem of multiple scales can be tackled

by either of the following two ways:

• A single (Eulerian) model nested at different scales [e.g., Pielke et al., 1992].

• A system of models, each for a different scale [e.g., Trukenmüller et al., 2004; Soulhac et al.,

2003; Kessler et al., 2001].

Both approaches rely on further components that provide emissions, meteorological data and the

topography within each model/nesting domain as input, as sketched in the cartoon fig. 2.6. Here

the meteorological models provide flow fields (where the mesoscale model processes meteorological

observations) that enter the (on- or offline) calculation of concentration fields by the chemical transport

models. Any details depend on the specific model system. For example, the emission component can

depend on the meteorological conditions or contain a more or less complex model to simulate traffic

emissions. Measured background concentrations or values interpolated from monitoring stations could

be used as immission constraints for the chemical models and so on. The scales regional, urban and

street in fig. 2.6 are not universally defined.5 Domain size and grid resolution at each scale (nesting)

depend on the model and, of course, on the problem. A typical horizontal resolution for an area

∼ 200×200 km2 (regional scale) is around 2−5 km. To be more specific, model domains and and grid

resolutions for the first two model systems mentioned above are as follows (the system in [Kessler et al.,

2001] lies somewhere between the former two). Soulhac et al. [2003] use a square area of 208×208 km2

with a grid spacing of 4 km for the mesoscale model around Lyon and a resolution of 500m within an

5Britter and Hanna [2003] suggest the definition of street scale for less than 100− 200 m, neighbourhood for scales up
to 1 − 2 km, city up to 10 − 20 km and regional up to 100 − 200 km.
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Figure 2.6: Simplified sketch of an urban model system. The scales street, urban and regional do not have
a fixed meaning. The industrial scale is given by the range of typical industrial emissions, e.g.
up to 10 km. The corresponding transport model could be a Gaussian dispersion model. Model
systems can have more or less scales than shown. Meteorological and chemical calculations can be
done by the same models on different scales or by different models for different scales. Immission
data could enter at any level of the system to nudge the CTM components towards observations.
Emission data are supplied by inventories, models for point and line sources and possibly emission
models for vegetation, traffic etc. Topographic data include surface elevation, buildings and any
other obstacles.

area of 32 × 32 km2 centred on the city. The vertical extension of the domains is 10 km and 2.5 km,

respectively, with 22 grid points in the first case and spacing between 20m (bottom) and 400m (top)

in the second. The model system M-SYS presented in [Trukenmüller et al., 2004] has been developed

to provide concentration distributions on all scales relevant for EC air pollution regulation. For the

model setup described in this publication all model domains are centred on a street canyon in the city

of Hannover with the largest domain being 2000 × 2000 km2 with grid spacing 16 km and a domain

size of the innermost model of 1 × 1 km2. In this small area the grid is chosen non-uniformly such

that the highest resolution (1.5m) is within the street canyon and the grid spacing at the boundary is

15m. Input of meteorological and emission data as well as forcing of the lower scale models happens

on an hourly basis in both model systems. The street canyon calculations in [Trukenmüller et al.,

2004] use a stationary flow field.

There are, of course, many other mesoscale transport models and applications on the regional scale

and quite a few on the street scale, bur far less simulations on an urban scale as comprehensive and

highly resolved as M-SYS. In particular, the Eulerian CTM CALGRID [Yamartino et al., 1992] should

be mentioned at this point for its popularity. Originally developed for regional and urban scales, it

has been modified for use within the EU framework directives for applications on street scale, micro-

CALGRID or MCG. For a first evaluation point measurements of O3, CO, NO and NO2 in a street

canyon (Schildhornstrasse, Berlin) were compared with highly resolved calculations (horizontal domain

of 1000× 300m2 with grid cells of ∼ 12× 3m2 and vertical spacing from 3m to 24m up to an height

of 100m) and showed good agreement [Stern and Yamartino, 2001]. It should be noted though that

the model was adjusted to measured background concentration during the 5 day model run. Finally,

for the sake of completeness, I would like to mention that concepts from computational fluid dynamics

(CFD) have proven increasingly useful to describe flow around buildings and in street canyons [e.g.,

Pullen et al., 2005; Riddle et al., 2004; Tsai and Chen, 2004], in particular large eddy simulation

models that are capable of describing at least larger turbulent structures. However, these models are

computationally too expensive to be applied on urban scales [Schatzmann and Leitl , 2002].



3. Tomography and Remote Sensing of

Atmospheric Trace Gases

This chapter describes the experimental foundations of this thesis. After a very basic introduction of

the tomographic principle, common remote sensing methods are briefly reviewed with respect to their

potential for tomographic measurement of atmospheric trace gases. Here it has to be emphasised that

instrumental development is ongoing in all areas and we do not attempt an outlook. DOAS is covered

in more detail – not least to make the origin of the detection limits and measurement errors clearer –

although the theoretical and simulation results in the following basically apply to any remote sensing

technique with well defined optical paths. A straightforward application of the tomographic principle

to measurements with scattered sun light is not possible and a proper discussion unfortunately beyond

the scope of this work. While the advantages of tomographic remote sensing are evident and have led

to detailed proposals for atmospheric measurements (sec. 3.3), none of the existing applications can

be called a well established technique. Finally, sec. 3.4 describes first tomographic DOAS experiments

and sums up a comparison with other tomographic applications in table 3.2.

3.1. The principle of tomographic measurements

To start with an illustration consider the following

Example

An observer sends out two light beams A and B that travel on straight lines to two mirrors at different

height above ground. From the spectra of the reflected light beams he can by some clever method

deduce average concentrations of a trace gas along the light paths. What are the average concentrations

in the two layers 1, 2 in fig. 3.1a?

layer 2, c̄2

lamp+detector

LB

LA

mirror

layer1, c̄1

(a) (b)

Figure 3.1: The principle of tomography. Local properties of a field are retrieved from path integrated quanti-
ties. (a) From average concentrations along the beams, the mean concentrations in two layers can
be inferred. (b) In the same way, two dimensional properties can be reconstructed.

35
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detectorsource

(a) Parallel scanning

detectors

source

(b) Fan-beam scanning (c) left: 128 × 128 image pixels, right: 512 × 512

Figure 3.2: X-ray tomography. (a) and (b) show two kinds of scanning in transmission tomography [Adopted
from Natterer, 2001]. (c) Axial CT scan of the brain from around 1975 and a state of the art scan
using a scanning method as sketched in (b) [Siemens company]. Typical sizes of image pixels are
around 0.1 − 1 mm. Detector arrays consist of about 500 − 1000 detectors of size ∼ 1 mm. A fan
is made of about 500 rays and, depending on the application, the source-detector system is rotated
for O(100) −O(1000) projection angles.

The average concentrations along the light paths are

c̄I =
1

lI

Z

LI

ds c(s) I = A, B,

and if lAi and lBi are the lengths of the light paths in layer i = 1, 2 , respectively, then one gets a simple

system of equations for the average concentrations c̄i in box i

c̄A =
lA1

lA
c̄1

c̄B =
lB1

lB
c̄1 +

lB2

lB
c̄2.

Despite its simplicity this example reveals the basic principle of a tomographic reconstruction. Ex-

tending it to two dimensions works obviously by adding integration or light paths in further directions

and asking for the two dimensional dependency of the desired quantity as in fig. 3.1b. Three di-

mensional reconstructions can be obtained correspondingly or by adding slices of two dimensional

reconstructions.1

The principle of tomography

can be characterised by either of the two ways as:

• A non-invasive measurement technique that from the propagation of waves along a sufficient

number of paths through a medium reconstructs local properties of this medium.

• The reconstruction of a function from a set of integral equations given by the line integrals of

the function along a sufficient number of integration paths.

In practice, tomographic measurements are made using either acoustic waves or electromagnetic fields

(mainly X-ray, microwaves, radiowaves). Depending on the phenomenon under investigation and the

mechanical/electrical properties of the medium, the acoustic/electromagnetic waves can be emitted,

absorbed or transmitted and possibly be reflected and diffracted. The associated tomographic tech-

niques are called emission tomography, transmission tomography and so forth. The classic example of

1This is where tomography got its name from: tomos meaning slice and graphia describing.
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a tomographic measurement is the X-ray absorption tomography applied to the human body, fig.3.1.

Passage of X-rays through the body can be described by straight lines and an intensity attenuation

along the way x obeying Lambert-Beer’s law ∆I/I = −f(x)∆x, where the attenuation coefficient

f(x) depends on the tissue, bone structure etc. In its integrated form ln(I ′/I0) =
∫

L
dx f(x) this can

readily be seen to be a line integral along a straight line L. Parallel scanning as shown in fig. 3.2a was

introduced by A. Cormack in 1963 and also applied in the first commercial scanner. Later fan-beam

scanners were used (fig. 3.2b). The field of X-ray tomography has coined the expression computerized

tomography (also computed tomography) (CT) for computer assisted tomographic reconstruction in

the widest sense and (together with later developments like the single particle emission CT (SPECT)

or the positron emission tomography (PET)) it has produced numerous techniques and algorithms

for tomographic reconstruction (see chapter 4, especially sec. 4.9). Another highly developed tomo-

graphic discipline is seismology that tries to infer the earth’s interior from travel time differences of

earth quake signals due to different material along their way (travel time tomography)[e.g., Nolet ,

1987]. This technique is also pursued actively by acoustic or electromagnetic emitters in boreholes

or on the surface as well as in oceans [e.g., Munk et al., 1995] using either varying transmittance or

reflectivity to learn something about the structures within the medium. There are numerous other ex-

perimental methods like the nuclear magnetic resonance imaging (NMRI) or the electrical impedance

tomography (EIT) developed for medical use and tomographic applications in areas different from

medicine and earth science, e.g. biology, material testing or plasma physics. Even a short survey of

experimental techniques is beyond scope, therefore we will concentrate on atmospheric applications

in sec. 3.3.

Remark on the effect of measurement errors in the example on page 35

Trivial as they may be, the example reveals another characteristic feature of tomographic mea-

surements. Suppose that the observer intends to make a very precise measurement for a very

thin layer 2, i.e. lB2/lB1 ≪ 1. If the relative measurement errors for the average concentrations

c̄A and c̄B are ǫ̃ ∼ ∆c̄A/c̄A ∼ ∆c̄B/c̄B then straightforward error propagation yields the relative

errors for the reconstructed concentrations

∆c1

c1
= ǫ̃

∆c2

c2
∼ l

∆l

√
2 ǫ̃ with l = lA ∼ lB ,

i.e. the relative error of the reconstructed concentration for the thin layer gets magnified by

l/∆l ≫ 1. Anticipating the discussion in sec. 4.4, we remark here that the instable behaviour

occurs also in two and three dimensional problems and can in general not be avoided by special

choices of the integration paths.

3.2. Atmospheric remote sensing

Among the many experimental techniques to analyse the chemical composition of the atmosphere some

methods like spectroscopic methods (gas spectroscopy, mass spectroscopy, optical spectroscopy) are

fairly universal while others can be only applied to a group of species or just one species. Following up

the preceding section, the most important remote sensing methods are now reviewed, having in mind



38 3. Tomography and Remote Sensing of Atmospheric Trace Gases

(a) Vertical scanning of a NO2 plume. (b) Horizontal scan of O3 over Berlin at 100 m height.

Figure 3.3: Examples for the range resolving capacity of LIDAR measurements (Courtesy of K. Stelmaszczyk,
FU Berlin).

their potential to provide maps of concentration distributions either directly as a range resolving

technique or by tomographic measurements. The role of in-situ, i.e. point like measurements for

examining concentration distributions will be briefly addressed in sec. 7.4. All remote sensing methods

to detect atmospheric trace gases use optical spectroscopy differing either in the wavelength range or

the physical phenomenon they exploit. The method is denoted as active if it provides an artificial

radiation source, passive if it uses a natural one. Current experiments use wavelengths from the

infrared (IR) to the ultraviolet (UV). Active microwave sensing does not play a role for the detection

of trace gases (at least up to now).

3.2.1. IR spectroscopy

Infrared spectroscopy was originally used to detect CO2. The development of the Fourier transform

IR spectroscopy (FTIR) allows the measurement of path averaged concentrations for trace gases like

NO, CH4, HNO3, CH2O, HCOOH and H2O2. This technique was used recently by Belotti et al. [2003]

with spatially separated source and detectors to make a tomographic measurement of volcanic CO2

emissions. The maximum length of the optical paths for this technique is roughly ∼ 1 km. Another

development is the use of tunable diode laser spectrometers (TDLS) for measurements of NO, NO2,

HNO3, CH2O and H2O2. Both FTIR and TDLS have been used in a variety of tomographic chamber

experiments to study indoor gas dispersion by means of tracer gases such as SF6 and CH4 [Fischer

et al., 2001; Samanta and Todd , 1999; Drescher et al., 1997].

3.2.2. LIDAR

The light detection and ranging (LIDAR) technique works similar to the probably better known

RADAR (radiowave detection and ranging). By sending out short pulses of (laser) light into the

atmosphere and comparing them to the back-scattered signals, in principal, the spatial distribution

of aerosols and trace gases along the light path can be retrieved. Because the back-scattered signal

is too weak for confident detection of trace gases, measurement at two wavelengths is necessary: at
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SO2 O3 NO NO2

λon [nm] 300.05 291.40 226.8 448.10
λoff [nm] 299.40 300.55 226.83 446.50

lower (upper) DL [ppm] ([ppb]) 4 (270) 4 (250) 2 (65) 10 (800)

accuracy [ppm] ([ppb]) ±10 (±10) ±10 (±10) ±5 (±5) ±15 (±15)

max. spatial resolution [m] 3 (500) 3 (500) 3 (250) 3 (1000)

best range [km] 1 (10) 1 (10) 0.5 (1.2) 3 (19)

mean range [km] 3 (-) 3 (-) 0.5 (-) 5 (-)

Table 3.1: Specifications for the mobile LIDAR given in [Kölsch, 1990]. Values in brackets (·) refer to mea-
surements with topographical targets. DL stands for detection limit, see sec. 3.2.3. Wavelengths
are listed for completeness only.

λon for which the species absorbs and at λoff for which it does not (so-called differential absorption

lidar (DIAL)). If mirrors or topographic targets are used to reflect the laser signal, the sensitivity of

the method is greatly enhanced but the range resolving power gets lost. The pure back-scattering

DIAL can be used for measurement of strong emissions (with a limited range) or vertical immissions.

Horizontal and vertical sections of SO2 plumes from power plants with high spatial resolution have been

obtained with a mobile instrument in [Beniston et al., 1990; Kölsch, 1990]. Simultaneous measurement

of NO and NO2 from an artificial source (maximum values in the plume around 10 ppm for both

species) was reported in [Kölsch et al., 1989], see fig. 3.3a. The same system was used to measure

horizontal path averaged concentrations of SO2, NO and NO2 in various European cities and horizontal

distributions of O3 at 100m above ground over the city centre of Berlin, see fig. 3.3b. Table 3.1 gives an

idea about ranges and resolutions for the instrument used. Vertical profiles of O3 have been obtained

in similar experiments [e.g., Duclaux et al., 2002]. In conclusion it can be said that the current state

of LIDAR technology allows measurements with

• high spatial resolution in the metre range for distances up to ∼ 1 km only for high trace gas

concentrations of the order ppm,

• long range (up to 10 km) and poor spatial resolution for concentrations on the ppb level.

3.2.3. DOAS

The differential optical absorption spectroscopy (DOAS) [e.g., Platt , 1994] is based on Lambert-

Beer’s law retrieving integrated concentrations of trace gases along a light path from their narrow

band absorption structures. In principle, it can be applied if these have a smaller width than ∼ 10nm

which is the case for many trace gases like O3, SO2, NO2, HONO, CH2O and BrO. The technique

is used both with direct or scattered sunlight and with artificial light sources in the UV, visible and

near IR wavelength range. The focus will be on the active DOAS method as the experimental results

for this thesis were obtained by this technique.

Method

The Lambert-Beer’s law applied to the case of a single gaseous absorber with homogeneous con-

centration c describes the attenuation of radiation at wavelength λ after passing the distance L by
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I(λ,L) = I0(λ) e−L σ(λ) c (3.1a)

where I0(λ) is the initial intensity and σ(λ) the wavelength-dependent absorption cross section of

the trace gas. Knowledge of the distance, the cross section and measurement of I and I0 allows to

determine the concentration as

c =
τ

σ(λ)L
, where τ = ln

I0(λ)

I(λ)
(3.1b)

is the so-called optical density of the layer of thickness L. For the wavelengths of interest here –

the UV and visible – trace gases in the atmosphere exhihibit absorption bands due to rotational,

vibrational and electronic excitations, so that a variety of species contribute to absorption at a given

λ. Furthermore the light is attenuated also by scattering at the air molecules (essentially through

Rayleigh scattering with wavelength dependency ∼ λ−4) and at aerosol particles (usually described

by Mie scattering ∼ λ−n with n often taken around ∼ 1.3). Finally atmospheric turbulences lead to

an intensity loss by widening the beam. Taking into account spatial dependencies, Lambert Beer’s

law in the atmosphere thus takes the form

I(λ,L) = I0(λ)A(λ) exp
[
−
∫ L

0

ds
∑

j

σj(λ, p, T )cj(r(s)) + ǫR(λ, r(s)) + ǫM (λ, r(s))
]

(3.2)

where I(λ,L) is the intensity at the detector, cj(r(s)) the number density of species j at position r(s)

along the light path and σj(λ, p, T ) its absorption cross section depending also on air pressure p and

temperature T . ǫR(λ, r) and ǫM (λ, r) are the extinction coefficients for Rayleigh and Mie scattering,

respectively and the factor A(λ) stands for intensity loss due to turbulences. The Lambert-Beer’s law

describes the statistical behaviour of photons along a straight line from the source to the detector

and does not apply straightforwardly to photons that reach the detector via scattering processes,

as is the case in scattered sun light experiments. In any case, to infer the cj from eq. (3.2) in

addition to the absorption cross sections at least I0 and the extinction coefficients have to be known,

which is extremely difficult to achieve. Aerosol concentrations are usually not known. I0 for passive

measurements is not known exactly, for artificial light sources it might fluctuate in time, and so forth.

The basic principle common to all applications of DOAS relies on the observation that the unknown

or unwanted quantities vary only slowly with λ while the absorption cross sections have characteristic

narrow band structures unique for each species, see fig. 3.4. Dividing the absorption cross sections

into broad band and narrow band contributions σ0j
, σ′

j such that for the exponentials in eq. (3.2)

exp[− . . . σj ] = exp[− . . . σ0j
] exp[− . . . σ′

j ], one gets

I(λ,L) = I0(λ)A(λ) exp
[
−
∫ L

0

ds
∑

j

σ0j
(λ, p, T )cj(r(s)) + ǫR(λ, r(s)) + ǫ(λ, r(s))

]

︸ ︷︷ ︸
I ′0(λ,L, p, T )

×

exp
[
−
∫ L

0

ds
∑

j

σ′
j(λ, p, T )cj(r(s))

]
.
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Figure 3.4: Illustration of the char-
acteristic structures of the differen-
tial absorption cross sections σ′ for
selected trace gases that can be mea-
sured by DOAS. Detection limits of
the mixing ratios for the given light
paths length L are only examples (as
the detection limits, eq. (3.6), depend
amongst others on the instrumental
details). [Adopted from Volkamer,
2001].

The last exponential in this equation represents intensity loss by narrow band absorption only, so-

called differential absorption, while I ′0(λ,L, p, T ) is the intensity as it would be without differential

absorption. Assuming that the absorption cross sections in the lower troposphere, where measurements

take place, do not vary with pressure and temperature (which is not vital but simplifies things) leads

thus to

I(λ,L) = I ′0(λ,L) exp
[
−
∑

j

σ′
j(λ) c̄j L

]
where c̄j =

1

L

∫ L

0

ds cj(r(s)). (3.3)

Inference of the path-integrated concentrations c̄j as in eqs. (3.1) is still not possible because I ′0(λ,L)

is not available and the species are not separated. But if the wavelength dependency of I(λ,L) is

measured within the range where the trace gases of interest show absorption structures, the distinct

functional form of the differential cross sections σ′
j(λ), see fig. 3.4, allows to find the concentrations c̄j

by fitting the σ′
j(λ) for the relevant trace gases simultaneously to I(λ,L). However, to carry out this fit

the impact of the measurement system on I(λ,L) – that up to now refers to the intensity as it would be

before entering the detector – has to be taken into account. First, the wavelength analysis, typically by

a grating spectrograph, has only limited spectral resolution. This can be expressed mathematically by

convolution with a so-called instrument function H(λ), i.e. I(λ,L)⊗H(λ) =
∫∞
−∞ dλ I(λ−λ′, L)H(λ′).

Second, the continuous wavelengths get mapped to pixels or channels i of the recording system. The
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further procedure for finding c̄j from the recorded spectrum I ′(i, L) depends largely on the following

factors: The size of the so-called differential optical density τ ′ = L
∑

j σ′
j(λ) c̄j deciding whether the

exponential in eq. (3.3) can be Taylor expanded, the spectral resolution of the detector compared to

the width of the trace gas absorption bands and finally, structures in the spectrum of the light source

I ′0(λ,L) compared to the resolution of the instrument.

In the case of a weak absorber, i.e. small optical densities, the exponential can be expanded and,

assuming a smooth spectrum of the light source, one gets (after a number of steps omitted here)

J(i) = ln I ′(i) =
∑

Sj σ′
Hj(i) + broad band variations + noise + pixel sensitivity (3.4)

with

Sj = L c̄j (3.5)

and σ′
Hj

(i) being the differential cross section convoluted with the instrument function and mapped

to the channels. Broad band variations mean contributions from the lamp, from Rayleigh and Mie

scattering etc. Pixel sensitivity refers to variations of the spectral sensitivity of the detector within

the pixels or channels. The Sj are called column densities (more precisely column number densities

or column mass densities).

The fit problem in the special case of weak absorbers is now linear in the Sj and could be solved, for

example, by a least squares principle. In practice, the fit is complicated by a number of uncertainties.

We mention just two of them. The broad band variations in eq. (3.4) can be taken care of by an

additional polynomial in a way that preserves the linearity of the problem. Misalignment of the

wavelengths on both sides of eq. (3.4) is a more awkward matter as even a mere shift between the

zero positions of the wavelengths enters nonlinearly. It can be caused by inaccurate positioning of

the grating, unwanted dispersion or wrong calibration of the absorption cross sections and has to be

corrected. In the end, the fit problem is linear with respect to the Sj and the parameters of the

broad band correction polynomial, but nonlinear in the parameters for the wavelength alignment.

Correspondingly, the fit algorithm consists of a least squares fit for the linear parameters and a

nonlinear fit for the wavelength alignment, where for the latter the Levenberg-Marquardt iteration

has proven useful.

The case of weak absorption and smooth spectrum of the light source described above is the one most

relevant within this work. A general discussion can be found in [Platt , 1994], but as the tomographic

reconstruction only depends on the column densities as end products, it is of minor importance

here. We would just like to point out the rigorous formulation of DOAS in terms of operators (for the

convolution with the instrument function, the discretisation of the spectrum etc) in [Wenig et al., 2005]

which becomes useful to keep track of various approximations, especially for passive measurements.

Applications

DOAS is applied on various platforms ranging from ground based experiments over airplane and bal-

loon measurements to satellite observations. Measurements on ground employ both artificial light

sources and the sun, while air and space borne applications use either direct or scattered sun light

(we neglect sources as the moon or stars).

Among the passive techniques notably the so-called multi-axis (MAX) measurements have found ap-
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plication on ground [e.g., Heckel et al., 2005; Hönninger et al., 2004a,c,b; Wagner et al., 2004] and

on airplanes [e.g., Heue et al., 2005; Petritoli et al., 2002]. Here, scattered sun light is detected in

several lines of sight and allows thus conclusions on the vertical distribution of trace gas, in particular

the distinction of tropospheric and stratospheric contributions, or on concentration and extension of

emission plumes [e.g., Bobrowski et al., 2003].

Active DOAS measurements relevant in our context typically consist of a telescope emitting light

from a broad band light source (e.g., a Xenon arc lamp) and retro-reflectors that send the light beam

back to the instrument where the receiving part of the optics transmits the light to the detector. As

the detection of trace gases like O3, NO2 or SO2 typically requires light paths of the order of a few

hundred m up to 10 – 20 km this kind of technique is referred to as long-path (LP) DOAS [e.g., Stutz

and Platt , 1997]. Among other things, it has been very important for the detection of radicals like

OH and NO3 [Perner et al., 1976; Platt et al., 1980; Geyer et al., 2001], the important point being

that it is a non-contact measurement.

Active measurements have the advantage of being conceptionally simple as the light travels along a

defined path but they have the disadvantage of of being logistically expensive and being restricted

by the setting up of the very sensitive telescope and the arrangement of the retro-reflectors. Passive

measurements like MAX-DOAS, on the other hand, are easily set up with the instruments getting

smaller and cheaper. But the technique itself is less sensitive than the active method and data inter-

pretation is in general not possible without employing numerical models that simulate the transport

of solar radiation through the atmosphere, so-called radiative transport models (RTMs).

Measurement errors and detection limits

The smallest amount of trace gas detectable with a given method, the detection limit, is a key value for

the sensitivity of this method. As only the combination σ′
j c̄j L, i.e. the optical density τ ′, enters the

argument of the exponential in eq. (3.4) there is no universal concentration limit, but only detection

limits for specific species and lengths of the light path. A proper estimate of the detection limit has

to be based on actual measurement errors, which are either of statistic or systematic nature. Random

noise can be caused by the photon statistics or the electronic components of the instrument etc. While

it is trivial to calculate its propagation from the recorded spectrum to the column densities in the

case of the linear absorption least squares fit for the linear case eq. (3.4) (namely as in eq. (4.40)), the

effect of the nonlinear wavelength alignment has to be found from simulations. The following estimate

for the detection limit of the retrieved Sj = c̄j L takes into account the linear fit only and defines that

a species is detectable if for the relative error ∆Sj/Sj = ∆c̄j/c̄j > 0.5 [Stutz and Platt , 1996]. The

detection limit δSj for the Sj is then

δSj ∼ 6√
m − 1

σj (3.6)

where σ2
j ∼ var[Sj ] and m is the number of degrees of freedom for the measurement, i.e. the number

of channels or pixels of the detector. The order of the detection limit for some of the trace gases

important for DOAS are contained in fig. 3.4.

The impact of systematic errors is more difficult to estimate in a general fashion. Systematic errors

can be introduced by faulty reference cross sections, but often their origin remains unclear. Common
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sources are stray light in the spectrograph, an offset of the measured intensities etc. Systematic errors

will not be considered anywhere in the following.

3.3. Tomographic applications in the atmosphere
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Figure 3.5: Geometry of optical paths for some tomographic applications in the atmosphere. (a) Ionospheric
tomography, three ground receivers are shown. (b) Proposal for IR or microwave emission to-
mography from space by [Fleming, 1982], here with three lines of sight. (c) Multi-axis airplane
measurements [Heue, 2005], shown three downwards and two upwards looking telescopes with ar-
bitrary lines of sight. For ∆s, h see text. (d) Principle of tomographic measurements by (passive)
multi-axis DOAS with defined light paths ∆LP as suggested in [Frins et al., 2006]. (e) Vertical
2-D projection of the geometry with two telescopes and eight reflectors used for long-path DOAS
measurements at a motorway [Laepple et al., 2004]. (f) Tomographic FTIR measurements of vol-
canic CO2 [Belotti et al., 2003]. (g) Measurement geometry for a gas chamber FTIR experiment
[Fischer et al., 2001] and (h) a theoretical study [Verkruysse and Todd, 2004].

Having briefly sketched the principle of tomography and presented the most important atmospheric

remote sensing methods, we turn now to the combination of both techniques. The reconstruction of

atmospheric parameters like temperature, pressure or concentrations from tomographic remote sensing

instead of conducting, for example, a corresponding number of point measurements can be motivated

by various reasons.

• The advantages of the remote sensing method can be used. This could be contactless measure-

ment of reactive gases or the simultaneous measurement of species for the special case of DOAS

etc.

• Point measurements providing the same spatial resolution and/or quality are too expensive. The

best example here are probably global maps of trace gas columns from satellite observations.

Air pollution monitoring on a microscale has been addressed in sec. 2.1.

• In-situ sampling is difficult or impossible. Volcanic emissions have been mentioned, wood fire

or noxious gas are further examples.
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• Although not primarily intended, tomography in the atmosphere profits from the fact that

stochastic variations of the concentration field due to turbulent fluctuations are reduced by

integrating, i.e. averaging, over the optical path (see also sec. 7.4).

Some measurements and proposals using tomography with different remote sensing techniques are

now being presented in the order of the spatial scale involved. DOAS tomographic applications will

be introduced in the next section.

An application on the largest scale is the ionospheric tomography that tries to reconstruct the spatial

distribution of the electron number density in the ionosphere, i.e. the atmospheric layer roughly

between 80–1000 km, by its influence on the propagation of radio waves through changes in the

diffraction index [e.g., Kunitsyn et al., 1995]. Frequency dispersion, Doppler shifting, angle of arrival

or signal attenuation can be used to measure the total electron content, that is the integral of the

electron density along the line between emitter and receiver as in the example in fig. 3.5a [Fehmers,

1996]. Here, an orbiting satellite sends out radio signals to ground receivers and the total electron

content along all lines of sight derived by the differential Doppler technique allows reconstruction of

two dimensional vertical distributions.

While the first proposal for ionospheric satellite measurements was made in 1986 [Austen et al., 1986],

Fleming [1982] simulates (in a to my opinion extraodinarily intelligible paper) the two dimensional

reconstruction of temperature distributions from IR (or microwave) radiation measured by satellite and

suggests similar measurements to retrieve concentration fields, see fig. 3.5b. He compares temperature

profiles reconstructed from hypothetical measurements along three and five viewing angles (zero degree

zenith, ±45◦ and additionally ±60◦) to conventionally retrieved profiles and finds improvements of

the accuracy up to 34%. It should be noted that he assumes measurements at five different frequencies

(channels) for each line of sight. To my knowledge, satellite observations of this kind have not been

realised so far.

Somewhat earlier than these travel time and emission tomographic satellite measurements Byer and

Shepp [1979] proposed absorption LIDAR for (horizontal) two dimensional tomographic measurement

of air pollution. The reflector-LIDAR system assumed for the simulations in [Wolfe and Byer , 1982]

consists of a laser source and mirrors that reflect fan beams2 through the area of interest (∅ ∼ 3 km)

to a detector array. With around 100 virtual sources and 70 detectors, the authors find that a spatial

resolution of less than 200m becomes realistic (an adjective that might not apply to the setup – as

far as I know, this setup has not been realised with anything near the number of optical sources and

detectors assumed here).

Horizontal temperature distributions on an area of about 200×200m2 obtained by acoustic travel time

measurements are compared in [Weinbrecht et al., 2004] with highly resolved results from large eddy

simulations. The measurements used a moderate number of six acoustic sources and five receivers at

a height of 2m above ground.

The tomographic IR measurements in an active volcanic region have already been mentioned [Belotti

et al., 2003]. They were performed on an area of ∼ 100 × 100m2 measuring CO2 absorptions suc-

cessively along 15 optical paths given by the laser transmitter/receiver system and a retro-reflector

(fig. 3.5f). The detection limit for the column density is stated as 1000 ppm ·m and the sampling time

per path was chosen between 5–10min. Reconstructed CO2 varies between ∼ 350 ppm (background)

2Buildings, trees or topographic objects could also be used at the expense of intensity.
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and 3 700 ppm.

Finally, the indoor gas dispersion studies already mentioned try to reconstruct gas distributions on

a metre scale from IR measurements. Although not really being atmospheric applications they are

among all studies listed the most relevant from a geometrical point of view as some of their light path

configurations are very similar to what can be expected from tomographic LP-DOAS experiments

(figs. 3.5g, 3.5h). For the same reason their approach to reconstruction of concentration fields is

worth looking at.

Todd and Leith [1990] start ambitiously with a theoretical study to detect contaminants like ammonia,

benzene, tri- and perchloroethylene by FTIR spectroscopy for parallel projection like beam geometries

with as many as 400 paths. This boils down to 136 paths actually realised in an experiment [Samanta

and Todd , 1999] with four spectrometers by rotating the sources successively towards different mirrors

and eventually down to 40 rays in a series of theoretical studies on path configurations and reconstruc-

tion algorithms [Todd and Leith, 1990; Todd and Ramachandran, 1994a,b; Todd and Bhattacharyya,

1997]. For similar experiments Drescher et al. [1996] present an approach especially suited for the

reconstruction of point emissions (SBFM, see sec. 4.9.3) and find from a detailed time series analysis

that the evolution of an indoor gas emission shows far more variability than expected [Drescher et al.,

1997]. The method is adopted in [Philip, 1999; Hashmonay et al., 1998] to investigate the possibility of

reconstructing point sources by radial scanning with one rotating optical source only. SBFM is given

up in [Fischer et al., 2001] for the reconstruction of CH4 tracer distributions released in a chamber

experiment for being too slow (see footnote 3, p. 101).

3.4. First tomographic DOAS measurements

The idea to infer information on the spatial distribution of trace gases from DOAS remote sensing

along more than one light path has been realised in profile measurements with retro-reflectors on

mountain sites [Platt , 1978] or mounted on towers [e.g., Stutz et al., 2004], c.f. fig. 3.1a on p. 35, and

also in balloon experiments [Veitel et al., 2002].

A genuine tomographic experiment aimed at the 2-D vertical reconstruction of the exhaust plume

perpendicular to a motorway from LP-DOAS measurements [Pundt et al., 2005]. The experiment was

part of a joint campaign including in-situ measurements and model studies [Corsmeier et al., 2005a].

It utilised two LP telescopes each sending successively one light beam along the motorway to one of

eight retro-reflector arrays mounted on two towers next to the carriage way (fig. 3.5e). Scanning all

reflectors to achieve the complete geometry of 16 light paths took about 45min. With optical path

lengths around 800m, NO2 concentrations could be measured most reliably and were thus considered

for tomographic reconstruction in [Laepple et al., 2004]. For a time averaging interval of 3h, the pure

DOAS error on the column densities was about 2 – 5%, while the error due to the successive scanning

was estimated from time series of the column densities about to be 2%. Maximum reconstructed NO2

concentrations in the plume lie around 20 ppb and the maximum of the mean reconstruction error

was estimated to be roughly 5 ppb which is about as much as the maximum deviation from model

predictions.

The motorway experiment pointed out a major problem of active DOAS tomography: To generate

as many light paths as possible within an acceptable time one has to either employ as many light
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sources (telescopes) as possible or direct the telescopes successively at the reflectors (‘scanning ’) or

a combination of both. The first is (at least at the moment) prohibitively expensive, the second not

easy to accomplish as conventional LP instruments are rather heavy and have to be installed stable.

This led to the construction of a telescope that emits up to four light beams at once [Mettendorf ,

2005; Pundt and Mettendorf , 2005]. Three instruments have been tested in a tomographic indoor

experiment [Mettendorf et al., 2006] that used one or two cylindric containers filled with NO2 to

mimic puff emissions. A geometry corresponding to 36 integration paths was realised in three steps à

4 beams per telescope. While spatial dimensions can be scaled up to atmospheric experiments this is

not true for the time scales of the measurement. As the reconstruction from the column densities of

this experiment was part of this thesis, further details will be presented in chap. 9. The instruments

are currently used for 2-D horizontal measurements over the centre of Heidelberg.

The tomographic principle can be applied straightforwardly to DOAS measurements of sun light if

scattering can be neglected, i.e. for observations of direct or directly reflected sun light, which restricts

possibilities somehow, unless some kind of mirrors are used. For tomographic measurements of scat-

tered sun light – depending on the degree of homogeneity assumed – 1-D, 2-D or 3-D simulations have

to model the light paths. These radiative transport models are predominantly 1-D as calculations in

two and three dimensions are quite involved. The Monte-Carlo algorithm TRACY-II [Wagner et al.,

2006] is one of the very few RTM capable of both 2-D and 3-D simulations.

First passive tomographic measurements have been attempted by installing multi-axis DOAS instru-

ments onto an airplane (AMAX-DOAS) with three telescopes looking upwards and seven looking

downwards [Heue, 2005]. Thus sun light from above the airplane and reflected from ground can be

used for tomographic reconstruction, see fig. 3.5c. Flying at heights h between 500–2 000m above

ground at a speed of about 200 km
h together with integration times around 30 s for the visible wave-

length range and 11 s in the UV results in measurement points every ∆s ∼ 1.7 km (VIS) and ∼ 600m

(UV). The method was used to examine the emission plume of a power plant in the Po valley. Pre-

liminary 2-D vertical recontructions of the NO2 plume were obtained from 2-D RTM calculations.

A very interesting idea put forward in [Frins et al., 2006] amounts to using passive MAX-DOAS in

a way similar to LP-DOAS, thus combining the benefits of the former (simple setup, no reflector

arrays necessary) and the latter (simple concept, especially for tomographic measurements). As for

LP-DOAS, the objective is to measure near-surface concentrations and this is achieved by pointing

the telescope at a target in a way that the light reflected from it passes the region of interest. This

part of the light path is well defined and all one has to do is to subtract the remaing part from the

top of the atmosphere to the target (fig. 3.5d), which can be done almost routinely. With several

(relatively cheap) mini MAX-DOAS instruments and suitable targets tomographic experiments iden-

tical to LP-DOAS measuremets can be set up. Drawbacks coming along with the passive technique

are that measurements depend, of course, on the sun light, they might not be as sensitive as LP-

DOAS measurements and if scattering between target and instrument cannot be neglected, radiative

transport modelling gets involved.
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integration paths model params. area time reconstruction
m n m/n [km2] [min] methoda

Axial X-ray O(105) O(105) m > n O(102) cm2 transf. meth.

typical ∼ 500 rays× ∼ 512 × 512 ∼ 4 FBP
(102 − 103) proj. pixels

Seismology ∼ (106 − 108) ∼ (105 − 106) m ≫ n (non)lin. LS
(LSQR, CG)

2-D Satellite ∼ 2000 10 constrained
tomography ∼ 500 100 × 20 1/4 × . . . LS,
of ionosphereb 600 20 constr. opt.

AMAX-DOASc 60 20 × 2 ∼ 6

LP-DOAS O(10) O(10) (0.5 . . . 10)× O(1)
(0.5 . . . 10) . . .O(10)

motorwayd 16 5 × 4 0.8 160 × 40 m2 ∼ 45 SIRT

Indoor FTIRe 28 63 ∼ 0.4 7 × 9 m2 7 s general. LS

f 56 6 − 18 m > n ∼ 6 × 7 m2 6 SBFM

aSee chap. 4.
b[Fehmers, 1996]
cFor the flight around a power plant reported in [Heue, 2005] and a single scattering approximation.
d[Laepple et al., 2004]
eSimultaneous measurement with 28 instruments by Fischer et al. [2001].
fSequential measurement with one source and fix mirrors [Drescher et al., 1996].

Table 3.2: Dimensions of some tomographic applications.



4. Tomography and Discrete, Linear

Inverse Problems

The previous chapter has clearly shown that tomographic DOAS measurements lie beyond classical

applications of tomography. Consequently, there is no standard method to gain the concentration

distribution from the measured line integrals. Indeed, it is not exaggerated to say that there are as

many suggestions for reconstruction methods as there are potential or actual applications. It will

become clear in parts II and III that the choice of the reconstruction procedure for a limited set

of measurement data is a delicate matter and we prefer to discuss it on the background of conven-

tional methods. This implies jargon, concepts and algorithms from computerised tomography, image

processing, inverse theory and atmospheric profiling and, as I am not aware of a suitable synoptic

reference, I have tried to treat the matter as concise as possible in a common, uniform context. Still

the coverage is by no means complete and especially the discussion of regularisation only scratches

the surface.

First we relate the tomographic problem to other inverse problems given by integral equations and, by

considering continuous tomographic inversion methods, are then led to a discretisation of the problem.

The reconstruction method chosen here within the discrete approach is essentially least squares min-

imisation which on the one hand has the advantage of leading to linear systems of equations. On the

other hand, the least squares formalism arises naturally if the underlying statistics are assumed to be

normally distributed. We briefly review solution strategies for the least squares problem and elaborate

on a family of iterative algorithms well known in computerised tomography and image reconstruction,

but not common in atmospheric sciences. If not self evident or stated explicitely in this chapter,

justification of the approach will be given in sec. 6.1. The chapter concludes by brief descriptions of

alternative approaches for later reference.

4.1. Forward model and inverse problem

The formulation and solution of the tomographic reconstruction problem is carried out for the con-

centration distribution of each species seperately and we write

d ≡ Sj , see eq. (3.5),

for the column densities obtained by the DOAS analysis for the species under consideration (d standing

for the input data of the inverse problem). As starting point we assume that an ideal long-path (LP)

DOAS measurement along a light path LP with parametrisation LP : r = r(p) ∈ R
3, p ∈ [a, b],

provides a column density d measured at time t which simply is the line integral of the concentration

49
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distribution c at the same time. That is

d(t) =

b∫

a

dp |dr(p)
dp | c (r(p), t) (4.1a)

=

∫

LP

ds c(r, t), (4.1b)

where in the shorthand notation eq. (4.1b) ds denotes the line element along LP and r = r(s).

The model eq. (4.1) represents a measurable cause-effect relationship between a given concentration

field and the column densities that result from it – in contrast to the pure mathematical backward

inference of the unknown concentration field from the measured integrals – so that it is commonly

referred to as a forward model . It relies on the assumptions:

• The light path is known.

• The beam diameter is negligible.

• There is no significant time delay between absorption process and the recording of the absorption

spectrum.

In this work we do not take into consideration any modifications that arise from relaxing the above

assumptions except for errors that ultimately can be expressed as random noise on the column den-

sities:

dǫ = d + ǫ. (4.2)

Here dǫ is the error afflicted measured column density, d the ideal one and ǫ an (unbiased) random

quantity. Time averaging does not cause trouble as long as it acts consistently on both sides of eq. (4.1)

d(t)T =

∫

LP

ds c(r, t)T , (4.3)

T indicating the time averaging interval T = [t; t+∆t]. This is the case, for example, when averaging

over subsequent spectra to reduce stochastic noise. If data is taken by the same instrument (e.g. the

multi-beam instrument, see sec. 3.4, that emits several light beams simultaneuously) the question of

correlated measurement errors has to be addressed. The (idealised) tomographic inverse problem can

now be stated as follows.

lp-doas tomographic reconstruction problem

Given the column densities di of LP-DOAS measurements along m light paths LPi and a compact set

Ω ⊂ R
3 containing the LPi, find a function c(r) over Ω satisfying the forward model

di =

∫

LPi

ds c(r), i = 1, . . . ,m, (4.4)

where the column densities refer to a particular time: di = di(t), or time averaging interval: di =

di(t)Ti
that is the same for all measurements (Ti ≡ T ).
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Figure 4.1: Parallel beams in the plane for
the projection angle θk. The circle indicates
the region of interest.
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4.2. Continuous inversion methods

The most elegant way to solve problem eq. (4.4) would be analytic inversion of the integral equations.

This is indeed possible under certain conditions. But before addressing these transform methods, it is

instructive to compare the tomographic inverse problem with another large class of inverse problems

given by the integral equation

g(q) =

∫ 1

0

dp k(q, p) f(p), 0 ≤ p ≤ 1. (4.5)

Here the integral value is a function of the parameter q of the kernel function k (see [Groetsch, 1993]

for an elementary introduction). These so called Fredholm equations of the first kind appear in

numerous applications. A prominent example in atmospheric research is the integral equation given

by the solution of the atmospheric radiative transfer equation and the two textbooks [Twomey , 1997;

Rodgers, 2000] practically exclusively deal with the inversion of this equation. If the discrete light

path index i in eq. (4.1) can be transformed into a continuous parameter q, the tomographic problem

becomes a Fredholm equation. Consider the 2-D example of parallel light paths in fig. 4.1. Their

parameter representation for the projection angle θ is

ri(p) = i∆d
( cos θ

sin θ

)
+ p
( − sin θ

cos θ

)
, i = 0,±1,±2, . . . , p ∈ R. (4.6)

If the distance ∆d of the beams is small against all relevant scales (i.e. the length of the area of

interest, the length of typical structures within the area etc.), q = i∆d effectively becomes a continuous

parameter and the line integrals are now

dθ(q) =

∞∫

−∞

dp c(x, y), with

(
x(p, q)

y(p, q)

)
=
( q cos θ − p sin θ

q sin θ + p cos θ

)
. (4.7)

Apart from the fact that the unknown function depends on two parameters instead of one as in eq. (4.5)

the kernel is trivial so that inference from the one dimensional dθ(q) to the two dimensional c(x, y) is

impossible. Providing further projections, it turns out that the kernel is both problem and cure as its
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special form allows the use of very efficient transform methods. Discrete methods treat c(x, y) as a

one dimensional object and the resulting discrete system is formally identical to the system obtained

from discretising a Fredholm equation – but only formally, as will be discussed in sec. 4.4.

4.2.1. Transform methods

Transform methods rely on a quasi-continuous representation of the measurement results while the

parametrisation itself depends crucially on the configuration of the integration paths, i.e. the kind of

projection. We resume the example of the parallel projection, fig. 4.1, for its simplicity, although this

kind of projection is not realistic for a DOAS tomographic measurement. Other cases like fan beam

projections (fig. 3.2b) and incomplete projections can be found in the application-oriented introduction

by Kak and Slaney [2001] and in the extensive, mathematical coverage [Natterer , 2001].

The transform from the 2-D space for the (concentration) field to the space of projections of c with

its two dimensions θ and q in eq. (4.7) is called Radon transform. If the projections along the q-

axis are measured for sufficiently many angles θ, inversion of the Radon transform becomes feasible.

Straightforward Fourier transformation does the job, but does not take into account the geometry of

the problem to simplify the solution. There is a number of formulations of the inverse Radon transform

that do exploit the nature of the projection, but they are numerically not very stable. By far the

most widespread way to invert the Radon transform in practical and commercial applications is the

so called filtered backprojection (FBP). It was also used in the theoretical study on the reconstruction

of ambient trace gas distributions from tomographic LIDAR measurements [Wolfe and Byer , 1982]

that was mentioned in sec. 3.3.

The filtered backprojection can be motivated by considering the 2-D Fourier transform

c̃(kx, ky) =

+∞∫∫

−∞

dx dy e−i2π(kxx+kyy) c(x, y)

which in the case ky = 0, i.e. no dependence in y, takes the form

c̃(kx, 0) =

+∞∫

−∞

dx e−i2πkxx
[ +∞∫

−∞

dy c(x, y)
]
.

The term in brackets is the line integral along the y-axis dθ=0(q). Thus one gets the relation

c̃(kx, 0) = d̃θ=0(kx) for the Fourier transforms. Obviously this result cannot depend on the choice

of the coordinate system and by rotating the axis one gets more generally the so called Fourier slice

theorem

c̃(k cos θ, k sin θ) = d̃θ(k) .

In other words, the 2-D transform of c along the projection is given by the 1-D Fourier transform of

the projection. This reduces the number of integrations in the inverse Fourier transform for c(x, y) to

only two:

c(x, y) =

∫ π

0

dθ

∫ ∞

−∞
dk |k| ei 2π q k d̃θ(k) =

∫ π

0

dθ D(q). (4.8)

where as above q = x cos θ + y sin θ. D is up to the so called filter factor, here |k|, the inverse Fourier
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transform of d̃ and hence called filtered projection. For a given x, y in the image plane there is a

unique tuple θ, q, but eq. (4.8) shows that in fact all points on the line with equal distance q to the

origin contribute the same for a given θ. The reconstruction seems to project each filtered projection

D(q) back into the image plane along the line of constant q. This is why the transform is called

filtered backprojection. In practice, the theoretical filter |k| does not work and has to be modified.

One reason is the inherent instability of the inverse problem discussed in sec. 4.4.

4.2.2. Remark on existence and uniqueness

The questions of existence and uniqueness of the solution for the tomographic inverse problem eq. (4.4)

are mathematically rigorously discussed by Natterer [2001, chap. 2]. He shows irrespectively of the

inversion method that for an arbitrary function c and a compact region there is always another function

c′ for which any finite number of line integrals have the same values on this arbitrary small region. As

this holds even with both functions being C(∞) this sounds rather discouraging. However, c′ is a highly

oscillating, artificial function and if its variation is restricted in terms of some norm the agreement

of c and c′ cannot always be achieved and the solution becomes unique. In the framework of the

transform method just sketched the question of uniqueness is addressed by sampling theorems similar

to the well-known Nyquist theorem. The conditions for the norm of the function of c correspond

now to bounds on the frequency range of c, i.e. it has to be band-limited [Natterer , 2001; Kak and

Slaney , 2001, chap. 2]. Further discussion is beyond the scope of this work, as it will deal only with

the discretised version of the reconstruction problem.

4.3. The discrete, linear inverse problem

It is clear from the preceding discussion that we are not addressing the kind of discretisation that is

eventually necessary for the computational solution by any numerical algorithm, but the reformulation

of the problem in terms of a limited number of parameters. For either way of looking at it, there are

essentially two ways of discretising integral equations [Hansen, 1998].

4.3.1. Discretisation by quadrature

Applying some quadrature rule like the midpoint rule, Simpson’s rule etc. leads to the following

representation

di =

∫

LPi

ds c(r) =

Ni∑

j=1

wij cij + ∆Ji(c), (4.9)

where the weights wij depend on the details of the quadrature (line segments ∆s in the simplest

case) and cij = c(ri(sj)) are the concentration values on the interpolation nodes sj along path i. The

functional ∆Ji stands for the error due to the discretised evaluation of the integral. To make use of

the tomographic character of the measurement concentration, values for different rays have to be set

to equal values so that the individual equations (4.9) get coupled. This can be done by identifying

concentrations in certain regions, e.g. cubes in three dimensions, and adjusting the interpolation nodes

to them. For the most simple case that approximates the integral as
∫

ds c(r(s)) ≈∑N
j=1 ∆sj c(r(sj))
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and uses n cubes in which concentrations are identical one gets:

di =

n∑

j=1

Aij cj + ∆discJi(c).

Here the sum is over the cubes and the weight Aij is the length of ray i in cube j. The number

∆discJi(c) represents the error that comes with the approximations of the integral and the function

c. Obviously, for a given level of discretisation, i.e. number of cubes, applying a very sophisticated

quadrature is somewhat pointless, if concentration values over a large region are forced to equal values.

Refined schemes involving 2-D or 3-D interpolation would be necessary, however, we do not pursue

this issue any further as there is a more elegant and consistent way of discretising the problem.

4.3.2. Finite element discretisation - local basis functions

Instead of approximating the integral one can discretise the function c first by representing it on a

finite set of so called basis functions1 {φj}n
j=1 :

c(r) =
n∑

j=1

xj φj(r) + ∆disc(c(r)), (4.10)

where xj ∈ R are the n parameters of the representation and ∆disc stands for the error related with

it. Inserting this into the forward model eq. (4.4) yields

di =

n∑

j=1

Aij xj + Ii

with

Aij =

∫

LPi

ds φj(r) and Ii =

∫

LPi

ds ∆disc(c(r)). (4.11)

Depending on the literature consulted this approach is mostly referred to as Galerkin’s method or

finite element method (FEM). The latter term implies that the basis functions have compact support.

Several aspects are relevant for the choice of the basis functions:

• continuity, smoothness etc.

• computational expense (m × n integrals Aij have to be calculated)

• regularisation behaviour (this will be discussed later in sections 4.6.3 and 8.2.2)

• other mathematical reasons (e.g., do derivatives appear in the problem ?)

For large problems computational economy will dominate over the aim to minimise discretisation

errors. In fact, at one end of the scale of this trade-off there are applications of computerised tomog-

raphy for which use of any other than piecewise constant basis functions is too expensive [Kak and

Slaney , 2001]. For moderate numbers of light paths, DOAS tomography finds itself at the other end

1This term is slightly misleading as, in general, the φj do not form a basis of the function space of the concentration
fields c.
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Figure 4.2: (a) The piecewise constant and linear basis function, or splines of degree 0 and 1, respectively. The
support (finite element) is defined by two and three nodes. (b) The (2-D) bilinear basis function
given by eq. (4.14) with contour lines in the bottom graph.

of this scale where computation time does not play any role – at least not for calculating the integrals

eq. (4.11) – and more expensive basis functions may lead to a better representation and solution of

the problem.

Turning to their explicit form, the basis functions are divided into two categories: A set of basis

functions {φj} is called local if the φj have compact support Ωj ⊂ Ω. It is called global if Ω ⊆
Ωj . Legendre and Chebyshev functions are examples of global polynomial basis functions in one

dimension, another example that relates closely to the tomographic reconstruction problem will be

met in sec. 4.9.3. A most simple example of a set of local basis functions is the aforementioned

piecewise constant basis (over the disjoint union of the Ωj)

φj(r) =





1 if r ∈ Ωj

0 else
, with Ωj ∩ Ωk = ∅ for j 6= k and ∪j Ωj = Ω.

A widely used class of local basis functions consists in functions built from piecewise polynomials,

motivated by the observation that smooth functions can be approximated to arbitrary accuracy by

polynomials of the right degree. In the widest sense, piecewise polynomial functions used for interpo-

lation and/or smoothing are called splines. Fig. 4.2a shows basis functions constructed from the most

simple splines of degree 0 and 1 for the case of one spatial dimension. The functional form φ0
j (x) for

the spline of degree 0 reads2

φ0
j (x) =





1 if x ∈ [xj , xj+1[

0 else.
(4.12)

The two parameters in b x + a for the representation of φ1
j (x) are given by demanding φ1

j (xj) = 1 and

2The nodes xj here must not be confused with the parameters xj in eq. (4.10). There will be no cause for confusion
in the following.
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φ1
j (xj−1) = 0 = φ1

j (xj+1) :

φ1
j (x) =





x − xj−1

xj − xj−1
if x ∈ [xj−1, xj [

xj+1 − x
xj+1 − xj

if x ∈ [xj , xj+1[

0 else.

(4.13)

Evidently, representation by the piecewise linear basis functions (also called hat or tent functions) is

equivalent to linear interpolation between two nodes. Higher order polynomials can be constructed

by including nodes other than the neighbouring ones or by providing conditions on the derivatives.

The next higher order basis function emerging naturally in this context is the cubic basis function,

basically because the four parameters in d x3 + c x2 + b x+a can be determined by the function values

plus slopes on two neighbouring nodes. An alternative construction leading to the so called natural

cubic spline with continuous first and second derivatives can be found in [Press et al., 1992].

A simple way to build higher dimensional basis functions is to form tensor products of lower dimen-

sional ones. In two dimensions this leads for the above cases to the piecewise constant

φ0
j (r) = φ0

j (x)φ0
j (y)

and bilinear basis functions (fig.4.2b)

φ1
j (r) = φ1

j (x)φ1
j (y), (4.14)

with support [xj , xj+1[×[yj , yj+1[ and [xj−1, xj+1[×[yj−1, yj+1[, respectively, i.e. rectangular areas for

both functions. As in the 1-D case, the piecewise constant basis is orthogonal (supports do not overlap)

whereas a piecewise linear basis function does overlap with its nearest neighbours. Representation by

this bilinear basis corresponds to 2-D interpolation (on a square grid). Piecewise constant and trilinear

basis functions in three dimensions with their supports being cubes can be constructed similarly.

Of course, there is a far larger variety of basis functions, e.g. piecewise Hermite polynomials or B-

splines (a generalisation of the Bézier curve) – just to mention polynomials. And disciplines like digital

image processing or the finite element method for solving differential equations use basis functions

with support chosen to optimally suit the problem at hand, e.g. in two dimensions triangular and

quadrilateral elements instead of the rectangular above. On the other hand, many of the examples of

tomographic reconstruction cited in chapter 3 that take a discrete approach do not use particularly

elaborate discretisation schemes. One reason might be the computational expense mentioned before,

especially if the spatial resolution given by the size of the meshes of the discretisation grid is high

anyway. For applications with low spatial resolution like the LP-DOAS tomography a different argu-

ment becomes important: Contrary to a problem of best function approximation where the number

of parameters is limited by computer memory or calculation time, for a discrete inverse problem every

free parameter coming along with the discretisation has to be determined from the limited amount of

data. And it is by no means clear that established discretisation schemes work here as well as for their

original application. Fig. 4.3 illustrates a very simple case. To parametrise a concentration field on

2-D finite elements given by rectangles as shown in the figure, one parameter per element is required

for the piecewise constant basis functions whereas the four nodes of the bilinear basis carry four pa-

rameters. In three dimensions, a cubic finite element still only needs one parameter, the trilinear basis
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Figure 4.3: Left: For the 2-D parametrisation on a rectangle the bilinear representation needs four concentra-
tion values on the nodes (•) as parameters. Taking the same rectangle as support for the piecewise
constant basis, only one paramater occurs. With four parameters, i.e. four finite elements (−−),
gradients within the rectangle can be described by the piecewise constant basis, too. Right: The
same for three dimensions, where the representation by trilinear basis functions on a cube requires
eight parameters.

eight. Of course, the bi-or trilinear representation, in principle, allows a far better approximation of

smooth fields – but only if the parameters can be reconstructed correctly. The remainder of this thesis

will almost exclusively deal with 2-D tomographic reconstruction and we will systematically compare

the piecewise constant and the bilinear basis functions, having in mind the points just mentioned, to

tackle the question whether more involved discretisation schemes are worth considering.

Using the discretisation by local basis functions and combining into vectors like3

d = (d1, . . . , dm)T ∈ R
m,

x = (x1, . . . , xn)T ∈ R
n, (4.15)

φ = (φ1, . . . , φn)T ∈ R
n

the discrete problem is now stated explicitly in two (or three) dimensions.

Discretised 2-d(3-d) lp-doas tomographic reconstruction problem

Given a vector of column densities d ∈ R
m of LP-DOAS measurements along m light paths LPi with

time dependency as in the continuous problem eq. (4.4), a compact set Ω ⊂ R
2 (R3) containing the

LPi and a set of n basis functions {φj(r)} with supports Ωj ⊂ R
2 (R3) so that ∪jΩj = Ω, then the

reconstructed concentration field represented by these basis functions is defined as

ĉ(r) = [φ(r)]T x, (4.16a)

where x ∈ R
n is a solution of

d = Ax (4.16b)

and A ∈ R
m×n is given by

Aij =

∫

LPi

ds φj(r).

x and φ are defined in eq.(4.15).

(i) Existence and uniqueness of the solution: In contrast to the conditions for the solution of the

3The – in this case discrete – spaces of all vectors d, x are usually referred to as data and model space, respectively.
The vector x is called state vector.
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original reconstruction problem eq. (4.4), existence and uniqueness for the discretised problem are

now clearly defined by the linear system of equations (4.16b):

solution exists ⇔ rank[A] = rank[(A d)]

unique solution exists ⇔ n = rank[(A d)]

where (A d) denotes the augmented matrix formed by adding d as a column to A. In practice,

classifying the system as

even-determined m = n no solution or infinitely many or exactly one

over-determined m > n no solution (or exactly one)

under-determined m < n infinitely many solutions (or none)

is more helpful. While a solution of the discretised problem will in general not be the same as a

solution of the original reconstruction problem eq. (4.4) due to the discretisation error related with

the finite representation (c.f. eq. (4.10)), the column densities can be reproduced exactly, if only

eq. (4.16b) is satisfied .

(ii) Interpretation of A: A is sometimes called weighting (function) matrix or kernel (function) matrix.

Its element Aij is the contribution of basis function with index j to the line integral along LPi and

in the case of the piecewise constant basis functions this is just the length of LPi within Ωj . For the

construction of the 2-D(3-D) basis functions used here, Ωj is a rectangle (cube), in the following called

box in both cases. The expressions pixel (picture element) and voxel (volume element) adopted from

image processing are also commonly used for the 2-D and 3-D cells. The piecewise constant basis

functions will also be referred to as box basis functions.

4.4. The question of ill-posedness

In the preceding section it was not assumed that the number of free parameters xj equals the number

of light paths, i.e. m = n. But even if one cared to design a discretisation in a way that assures a

square matrix A whose inverse exists, the solution A−1d might be useless because it is numerically

unstable. This means that very small changes in the data (measurement errors or even numerical

inaccuracies) have large effects on the reconstruction result. Before tracing its origin this instability

is illustrated by an

Example from [Twomey , 1997]. Let

d1 = x1

d2 = A21 x1 + A22 x2

with
A21 = 0.99995, A22 = 0.01

d1 = 1, d2 = 1.00995,
(4.17)

where all units are suppressed. The exact solution is x1 = 1, x2 = 1. Now assume an error on the data

around one percent:

d1 7→ d1 − 0.01

d2 7→ d2 + 0.01.

Then the resulting change of x2 amounts to 1.99995 or almost 200%.

The instability in this example can be understood by the almost linear dependency of the row vectors in

the above system (1, 0) and (0.99995, 0.01). Applying Cramer’s rule to solve the system a determinant
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Box 2
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Box 1
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Figure 4.4: (a) Two light paths and boxes (··· ) as in the example on p. 58 (but with different proportions
to make the figure clearer). Dividing into two boxes as indicated by the dashed line (--) makes
the problem perfectly well behaved. (b) Finer discretisation leads to under-determined systems of
equations but with linear independent rows.

appears in the denominator which gets small for almost linear dependent vectors (In two dimensions

this determinant is the (area)2 of the parallelogram the two vectors span, in general basically the

(volume)2 of the corresponding parallelopiped). Small perturbations get thus amplified by a large

factor. A nice geometrical explanation of this behaviour can be found in [Twomey , 1997, section 5.3].

An immediate question is whether this example with its near-singular system matrix A is at all relevant

for any inverse problem. We first show that it is and afterwards turn to the case of tomographic inverse

problems.

Assume for the moment that the system of equations was derived from discretising (by whatever

method described above) a problem like the Fredholm equation (4.5) with a smooth kernel function

k. For example, processes involving radiation attenuation in the atmosphere, i.e. processes that can

be described by the radiative transfer equation, would lead to an exponential kernel – something

very smooth. Unless the discretisation is very coarse, the row vectors of the system matrix A will

show a high degree of interdependency. In fact, the paradoxical situation arises that the finer the

discretisation, in other words the more accurate you try to be, the more unstable your solution

gets. Of course this is only a very superficial, yet plausible, argument and one could try to work

around the problem of instability by a more clever discretisation or choice of basis functions or by

orthogonalising the kernel functions etc. (see [Twomey , 1997] for a more elaborate, but still not

mathematically rigorous discussion). Nevertheless some inverse problems remain inherently unstable.

These are called ill -posed, a term going back to Hadamard [1902], who defined a problem as well-posed

if 1.) A solution exists, 2.) The solution is unique and 3.) The solution depends continuously on the

data. There are more and less clever ways to approach an ill-posed problem but in the end usually a

reformulation – also known as regularisation (c.f. section 4.6.3) – of the problem is necessary. Here, we

do not deal with general criteria for well- or ill-posedness of continuous and the related discrete inverse

problems (As one might expect they are closely related to the mathematical properties of the kernel:

compactness, its smoothing behaviour etc. [Groetsch, 1993; Hansen, 1998]). Instead, we focus on the

tomographic inverse problem. Take again the numerical example from above, this time understood as

a tomographic measurement (fig. 4.4a). The almost linear dependent rows in the matrix A are due to

a very inappropriate discretisation:

A =

 

length LP1 in box 1 length LP1 in box 2

length LP2 in box 1 length LP2 in box 2

!

=

 

1 0

0.99995. 0.01

!
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Dividing the area differently into two boxes yields a well behaved system. Choosing only one box

leads to an over-detemined system with exactly linear dependent rows. This is further illustrated in

fig. 4.4b. If the square area has a length of 2 in arbitrary units, one gets

A2 boxes =

0

B

@

2 0

2
√

2 2
√

2

1 1

1

C

A
, A4 boxes =

0

B

@

1 1 0 0

2
√

2 0 0 2
√

2

1 0 1 0

1

C

A
.

Coarse discretisation leads to over-determined systems with unstable solutions as the rows of A become

linear dependent. Finer discretisation results in under-determined systems of equations which are ill-

posed in the sense that the solution is not unique, but unless light paths and discretisation do not suit

each other and the rows in A become linear dependent there is no reason why the resulting system has

to be unstable. What if both the area coverage by the light paths and the discretisation become very

fine ? As suggested by the continuous approach in section 4.2, the kernel now turns into a smooth

function and the argument of interdependency becomes effective again. Indeed, it turns out that

tomographic measurements which provide such a high ray density lead to ill-posed inverse problems.

To quote Natterer [2001, p. 85]: “All problems in Computerised Tomography are ill-posed, even if

to a very different degree”. Assuming reasonable smoothness of the unknown function and further

properties of the operator (or matrix) norm of A, he shows that compared to other ill-posed inverse

problems tomographic problems are only mildly to modestly ill-posed (The exact definition of these

categories is beyond the scope of this work).

To sum up, the tomographic reconstruction problem is in principle ill-posed. Parametrisations for

measurements with an abundance of data that make use of high spatial resolution will lead to unstable

solutions. For measurement with only few data, like the LP-DOAS tomography, ill-posedness in the

sense of instability is not given per se. Instability crucially depends on the details of the discretisation

and is less likely to occur for under-determined systems. The next section introduces a tool that allows

to quantify the degree of instability of a discrete inverse problem.

4.5. The singular value decomposition

The Singular Value Decomposition (SVD) is a generalisation of the ordinary expansion of a square

symmetric matrix in terms of orthogonal eigenvectors. In fact, one way to motivate it is to look at the

eigensystems of the square symmetric matrices AAT and AT A. We do not derive it here (see [Golub

and van Loan, 1996] for a standard reference) and just mention its importance both theoretically

and practically for numerous areas such as signal and image processing, time series analysis, pattern

recognition etc. The usefulness of the SVD for the discrete tomographic problem will become evident

from frequent applications in the remainder of this thesis. It states as follows.

The singular value decomposition

Let A ∈ R
m×n be a matrix of rank r = rank[A]. Then there exist orthonormal matrices U, V ,

UUT = UT U = 1m and V V T = V T V = 1n, such that

A = UΣV T , Σ =

(
Σr 0

0 0

)
∈ R

m×n, (4.18)
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where Σr = diag(σ1, σ2, . . . , σr) and σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The σi are called singular values of A.

Without proof, we list some properties of the SVD for later use.

(i) Singular vectors: Writing U = (u1,u2, . . . ,um), V = (v1,v2, . . . ,vn) the orthonormal column

vectors ui and vj are associated with σi, i = 1, . . . , r, via

Avi = σiui . (4.19)

The SVD can be written as

A =

r∑

i=1

σiuiv
T
i . (4.20)

(ii) Related eigenvalue decomposition: In general, the singular values for square A do not agree with

the (ordinary) eigenvalues. This is the case only for symmetric A. However, the singular values are

eigenvalues of the following eigenvalue problems

AAT ui = σ2
i ui , (4.21a)

AT Avi = σ2
i vi . (4.21b)

(iii) Uniqueness: The σi are unique. Two singular vectors ui, vi are unique up to a common sign,

except for vectors associated with multiple singular values. Here only the spaces spanned by these

vectors are unique. Thus U and V are unique up to linear combination of the corresponding column

vectors.

(iv) Fundamental subspaces: All column vectors of U and V form a basis of the data and model space,

respectively. Defining the range (or column space) of A as

R(A) = {y = Ax | x ∈ R
n} (4.22)

and the nullspace (or kernel) as

N (A) = {x ∈ R
n | Ax = 0}, (4.23)

the column vectors of V associated with the zero singular values are a basis of N (A). More completely,

for the four fundamental subspaces of A :

N (A) = span[vr+1, . . . ,vn], R(A) = span[u1, . . . ,ur],

N (AT ) = span[v1, . . . ,vr], R(AT ) = span[ur+1, . . . ,um]. (4.24)

The importance of these seemingly abstract spaces lies in the fact that components of atmospheric

states that belong to the nullspace of the matrix A describing the measurement go unnoticed by the

experiment. Similarly, components of the data lying outside the range of A cannot be reproduced

exactly by any retrieval x.

(v) Characteristic features: The following two features are very common for discrete ill-posed problems

[Hansen, 1998] and will also appear later in the tomographic applications of this work.

• The singular values decay gradually to zero without particular gaps in between. Increasing the

dimensions of A will increase the number of small singular values.
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• The singular vectors have more sign changes in their components with increasing index i, i.e.

decreasing σi. If AAT and AT A are totally positive, then ui and vi have exactly i − 1 sign

changes.

Taking eq. (4.20) and (v) together allows the interpretation that high frequency components of the

state get damped by small singular values so that they add little information to the measurement. On

the other hand, the inversion will be dominated by these oscillating components (in the same way the

solution of a square system is unstable because of a small system determinant). Small singular values

lie at the heart of the ill-posed problem making it effectively rank-deficient. Obviously the absolute

size of the σi is irrelevant – otherwise rescaling of A would solve the problem of ill-posedness. Instead

one expects some relative expression for the instability. It can be derived by considering the perturbed

system

A(x + ∆x) = d + ǫ (4.25)

and assuming for the moment that A−1 exists. Then (choosing the induced norm of the vector norm)

from ‖∆x‖ ≤ ‖A−1‖‖ǫ‖ and ‖d‖ ≤ ‖A‖‖x‖ it follows for the relative error of the solution

‖∆x‖
‖x‖ ≤ ‖A−1‖ ‖A‖ ‖ǫ‖

‖d‖ . (4.26)

The factor ‖A−1‖ ‖A‖ measures the relative sensitivity of the solution against perturbations and is

called condition number. Using the 2-norm one gets

cond[A] = ‖A−1‖2 ‖A‖2 =
σ1

σr
(4.27)

where the last expression defines the condition number for any matrix A. The matrix in section 4.4

has singular values σ1 = 1.4142, σ2 = 0.0071, thus a condition number of about 200, meaning that

simple inversion magnifies the relative error on the data at worst by a factor 200. Typical condition

numbers for applications in CT are around 106!

4.6. The least squares problem

As pointed out in the preceding section, the discrete tomographic problem is ill-posed in the literal

sense: The formulation in the form Ax = d causes the trouble, problems with the solution are only

secondary. Reformulation depends on the origin of the ill-posedness – instability or lack of information

– and the physical nature of the underlying problem in terms of hard, empirical or statistical constraints

for admissible solutions. The solution method, i.e. the algorithm, depends on the mathematical and

numerical properties of the problem (linear/nonlinear, small/large systems of equations, sparse/dense

systems etc).4 The least squares approach is a mathematically well covered formalism which allows

simple formulation and solution of basic ill-posed problems irrespective of the cause of ill-posedness.

An extensive reference for a variety of least squares problems with focus on their numerical treatment

is [Björck , 1996]. Least square criteria in a wider conceptional context of inverse theory can be found

4And the working field. It seems that in geophysics, atmospheric profiling and image reconstruction people traditionally
employ different algorithms for the same problems, sometimes mathematically very similar ones, yet with different
names. The mathematical literature offers a more comprehensive treatment.
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in [Tarantola, 1987, 2005]. We start our discussion with the most simple cases.

4.6.1. Least squares and least norm solutions

There are certainly many ways to motivate the use of least squares methods, like the top-down

derivation from statistical properties of the model, here we take a rather pragmatic point of view and

distinguish two cases:

(i) Least squares minimisation (m > n):

Having more equations than unknowns cannot lead to unique solutions if measurement errors are

present. Instead, minimum discrepancy between data and forward calculated data in terms of a

vector norm is demanded. Choosing the 2-norm (see the discussion in section 4.6.5) gives the following

reformulation of the discrete inverse problem. For given d ∈ R
m and A ∈ R

m×n, find x ∈ R
n such

that

min
x

‖d − Ax‖2 or min
x

(d − Ax)
T

(d − Ax) . (4.28)

Derivation leads to the normal equations

AT Ax = AT d (4.29)

and the solution

x =
(
AT A

)−1
AT d, (4.30)

provided the inverse of the m × m matrix AT A exists. This is the case if and only if rank[A] = n

which can easily be shown using the SVD.

(ii) Least norm minimisation (m < n):

In the case where there are more parameters to determine than measurements available, conditions

have to be added to the measurement equations in a way that gives rise to a unique solution. Picking

the vector of smallest norm from all admissible solutions makes sense from an economic point of view

(unless you expect the solution to be very fluctuating). Also this least norm solution has attractive

mathematical properties (see below). But nevertheless it remains arbitrary and if it can be replaced

by physical constraints or statistical information, all the better. The mathematical implementation is

such that the equations Ax = d are regarded as constraints for the norm minimisation problem, i.e.

min
x

‖x‖2 , d = Ax. (4.31)

With a Lagrange multiplier λj for each of the n equations and writing λ = (λ1, . . . , λn)T , one gets

the normal equations of the second kind

AAT λ/2 = d, x = AT λ/2 (4.32)

with unique solution

x = AT
(
AAT

)−1
d (4.33)

if rank[A] = m. One might be familiar with the characteristics of the least square method as it is the

tool for any kind of regression, but the behaviour of the least norm solution may not be equally clear.
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Therefore, we would like to present a simple

Example based on fig. 4.4b, p. 59.

Assume a constant concentration in all four square boxes of length 1 (again we suppress all units for

the moment):

c = 1.

Neglecting any measurement errors yields the column densities

d = (2, 2
√

2, 2)T

and together with

A =

0

B

@

1 1 0 0√
2 0 0

√
2

1 0 1 0

1

C

A

this gives the least norm solution

xLN = (1.5, 0.5, 0.5, 0.5)T ,

i.e. overestimation in the box with three light paths, underestimation in the others. Why not a uniform

solution (1, 1, 1, 1)T ? Because xLN is compatible with the measurements and has a smaller norm:

‖xLN‖2 =
√

3 < 2 = ‖(1, 1, 1, 1)T ‖2.

In the following case, a concentration peak is located in one of the boxes which are crossed by one light

beam, here the upper left one in fig. 4.4b:

c = (1, 1, 10, 1)T ⇒ d = (2, 2
√

2, 11)T and xLN = (3.75,−1.75, 7.25,−1.75)T ,

i.e. underestimation of the peak. In this case negative concentrations compatible with the data lead to

smallest norm.

We finally address the cases of rank deficiency, i.e. rank[A] < min(m,n). To prepare the formal

solution, notice that the inverse of a square matrix A with rank[A] = m = n can easily be expressed

in terms of the SVD eq. (4.18)

A−1 = V Σ−1
r UT . (4.34)

A similar expression holds for the full-rank over-determined case eq. (4.30)

(
AT A

)−1
AT = V

(
Σ−1

r

0

)
UT , rank[A] = m (4.35)

and the full-rank under-determined case eq. (4.33)

AT
(
AAT

)−1
= V

(
Σ−1

r 0
)

UT , rank[A] = n. (4.36)

It is tempting to consider the expression V

(
Σ−1

r 0

0 0

)
UT as a generalised inverse in the rank

deficient case. Indeed, the following theorem holds:

Least squares-minimum norm solution

Let A ∈ R
m×n be of rank r ≤ min(m,n) and the SVD of A be given by eq. (4.18) then the general
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least squares problem

min
x∈S

‖x‖2, S = {x ∈ R
n | ‖Ax − d‖2 = min} (4.37a)

has the unique solution

x = A†d, (4.37b)

where the matrix

A† = V

(
Σ−1

r 0

0 0

)
UT (4.37c)

is called the pseudoinverse of A.

See [Björck , 1996] for a proof. Depending on the dimensions m, n the pseudoinverse (also called

generalised inverse or Moore-Penrose inverse) automatically generates a least squares, least norm or

the exact solution if A is full rank. Otherwise the result is a mixture referred to as least squares-

minimum norm solution.

4.6.2. Weighted least squares and weighted least norm with a priori

The least squares and least norm principles of the preceding section might need modification to

incorporate the underlying physics. To make the point clearer we assume rank[A] = min(m,n).

(i) Data weighting :

Imagine that the uncertainty differs substantially within the measured data di (something not too

hard to imagine). This means, for example, that a large data value which is large because of a large

measurement error enters the least squares minimisation problem eq. (4.28) in the same way as a

large value with a small measurement error. Therefore, it is common practice to weight the data

according to their errors, usually by the inverse of the error variances σǫ i or more general, the inverse

of the error covariance matrix Sǫ = E[(dǫ − d)(dǫ − d)T ]. Here E[·] denotes the expected values

and d = E[dǫ] according to eq. (4.2) with unbiased errors. The weighted least squares minimisation

replaces eq. (4.28) by5

min
x

(d − Ax)
T

S−1
ǫ

(d − Ax) . (4.38)

Sǫ is positive semidefinite. If none of the σǫ i equals zero it is positive definite and the inverse exists.

It is straightforward to obtain the solution

x =
(
AT S−1

ǫ
A
)−1

AT S−1
ǫ

d (4.39)

and, employing the relation Sx = BSyBT for the covariances that holds for any linear relation x = By,

the covariance of x is

Sx =
(
AT S−1

ǫ
A
)−1

. (4.40)

(ii) A priori :

Data weighting has no effect on the least norm solution (apart from unintended numerical implications)

as the equations Ax = d are fulfilled exactly. But the minimisation principle for ‖x‖2 might not be

a good choice for cases like the following. Assume that the concentration field shows local variability

5Another way to look at it is that the 2-norm gets replaced by a norm defined as ‖·‖2

S−1
ǫ

= (·)S−1
ǫ (·)T .
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on an otherwise constant but high background that is more or less known. Instead of demanding

that the norm is small, it would make far more sense in this case to demand that the deviation

from this background is minimal, i.e. min‖x − xa‖2, where xa stands for this known, estimated or

assumed concentration. It is usually referred to as a priori because whatever information is used

for its construction, in general, it has to be known beforehand and cannot be gained as a product or

byproduct of the reconstruction process. Inserting a weighting matrix as in eq. (4.38) the minimisation

principle with a priori reads now

min
x

(x − xa)
T

S−1
a (x − xa) , d = Ax. (4.41)

There is another drawback of the least norm principle eq. (4.31) which becomes apparent from

eq. (4.36). Whenever a component of the retrieval lies in the nullspace of A it is set to zero. One

could argue that naturally the principle cannot produce values that are not given by the data, but

zero is as arbitrary as any other guess. Solving eq. (4.41) makes this clearer:

x = xa + S−1
a AT

(
AS−1

a AT
)−1

(d − Axa) . (4.42)

Obviously, eq. (4.33) is a special case of this with xa = 0, i.e. it contains an a priori, too.

In principle, a solution similar to eq. (4.37b) could be given for the modified least squares - minimum

norm problem

min
x∈S

(x − xa)
T

S−1
a (x − xa) , S = {x ∈ R

n | (d − Ax)
T

S−1
ǫ

(d − Ax) = min}, (4.43)

with a priori xa ∈ R
n, measurement error covariance Sǫ and an a priori weighting matrix Sa, but for

the remainder only the explicit form of the solutions eqs. (4.39,4.41) for the full-rank case is important.

4.6.3. Regularisation and constrained least squares problems

The least squares-minimum norm principle solves the problems of non-uniqueness and non-existence

but does not make any difference for the instability of the solution because of small singular values.

This is very clear for the solutions written in the form of eqs. (4.34-4.36) (see also [Twomey , 1997,

chap. 6.2]). Although ill-posedness due to instability is not the main issue for the under-determined

reconstruction problems focused on in this work, several strategies to regularise (as this stabilising

is called) the least squares-least norm solution are briefly sketched in the following for two reasons.

Firstly these methods are widely used, indispensable reference and starting points for any discussion

and future development. Secondly, while some regularisation methods are purely mathematical, others

aim to involve physical constraints related to the actual measurement to generate a stable and unique

solution. These latter approaches are attractive alternatives to methods that contain arbitrary ad

hoc parameters and are especially interesting for under-determined problems – provided that there is

enough information to formulate these physical constraints.

(i) Tikhonov regularisation:

Notice that the instability of the least squares and least norm solution lies in the expressions
(
AT A

)−1
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and
(
AAT

)−1
, respectively. Making the substitution

(
AT A

)−1 7−→
(
AT A + λ21n

)−1
(4.44a)

or
(
AAT

)−1 7−→
(
AAT + λ21m

)−1
, (4.44b)

i.e. adding a term proportional to the unit matrix, changes the singular values in the decompositions

eqs. (4.35,4.36) to

σ−1
i 7−→ σi

σ2
i + λ2

. (4.45)

For the right choice of λ small singular values are suppressed as desired. Following Tikhonov a choice

α = α(λ) is said to result in a regular solution xλ of Ax = d if

λ → 0 ⇒ α(λ) → 0, xλ → A†d

with A† as in eqs. (4.37). There is a minimisation problem that leads to the same result as the

substitutions eqs. (4.44):

min
x

‖Ax − d‖2
2 + λ2‖x‖2

2 (4.46)

(Mind that λ is not a Lagrange-multiplier here). The reasoning for this ansatz in the over-determined

case is that minimisation of the discrepancy ‖Ax − d‖2 alone leads to oscillating solutions while the

addition of ‖x‖2 favours smooth solutions. Allowing additionally weighting and an a priori as in

section 4.6.2 one has the more general regularised (also called damped or generalised6) least squares

principle

min
x

(Ax − d)
T

S−1
ǫ

(Ax − d) + λ2 (x − xa)
T

DT D (x − xa) (4.47)

with the straightforward solution

x = xa +
(
AT S−1

ǫ
A + λ2DT D

)−1
AT S−1

ǫ
(d − Axa) (4.48a)

=
(
AT S−1

ǫ
A + λ2DT D

)−1 (
AT S−1

ǫ
d + λ2DT D xa

)
(4.48b)

= xa +
(
DT D

)−1
AT
(
A(DT D)−1AT + λ2Sǫ

)−1
(d − Axa) . (4.48c)

Here D ∈ R
n×n can be the identity matrix, a diagonal weighting matrix or a discrete approximation of

a derivative operator to influence the smoothness of x etc. In the last step it was assumed that DT D

is regular. Following from the normal equations, the solution is unique if N (S
−1/2
ǫ A) ∩ N (D) = {0}.

Calculation of the covariance Sx can be carried out as in eq. (4.40). The generalised least squares

solution formally contains the least squares and least norm solution in the limits

generalised least squares

λ→0−−−→ least squares
λ2Sǫ→0−−−−−→ least norm

. (4.49)

This method is generally attributed to Tikhonov [1963] but sometimes also referred to as Twomey-

Tikhonov approach [Twomey , 1963]. While there exist estimations for the effect of the regularisation,

i.e. bounds on how much the solution changes compared to the unregularised (see sec. 5.2.3), there

6The term constrained least squares used by Twomey [1997] is not common in this context. The nomenclature is far
from uniform.
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is nothing telling what exact value the regularisation parameter λ ought to take. If λ is chosen too

small there is no regularisation, if it is too large the solution is oversmoothed. There is a variety of

suggestions for the parameter choice, some of them are very intuitive like the discrepancy principle

that chooses λ such that the perturbation bounds are smaller than the residual norm ‖Ax−d‖. This

is not pursued any further, instead we refer to [Hansen, 1998, chap. 7] and quote Linz [1984]:

“There are no general criteria by which different algorithms can be compared. Consequently,

many methods are proposed which, on the evidence of a few special cases, are claimed to be

effective”.

(ii) Constrained least-squares:

The following least squares problems with quadratic constraints are dual to each other in that – for the

right choice of parameters δ, ǫ ∈ R – their solutions are identical to the Tikhonov-regularised solution

min
x∈S

‖Ax − d‖2, S = {x ∈ R
n | ‖D(x − xa)‖2 ≤ δ} (4.50a)

min
x∈S

‖D(x − xa)‖2, S = {x ∈ R
n | ‖Ax − d‖2 ≤ ǫ}. (4.50b)

This time the constraints can be taken into account by Lagrange multipliers as the inequalities are

almost always fulfilled as equalities for quadratic constraints. The advantage of this formulation lies

in the fact that it allows to express the regularisation in terms of bounds on physical quantities like

gradients in the case of eq. (4.50a) or measurement errors for eq. (4.50b). For some inverse problems,

like the tomographic problem, a further inequality constraint is necessary to assure nonnegativity of

the solution:

min
x∈S

‖D(x − xa)‖2, S = {x ∈ R
n | ‖Ax − d‖2 ≤ ǫ ∧ x ≥ 0}. (4.51)

While there are standard methods to solve least squares problems with linear inequality constraints or

quadratic constraints like eqs. (4.50a,4.50b) [e.g., Björck , 1996, chaps.5.2,3], solving the optimisation

problem eq. (4.51) is rather more involved [e.g., Fehmers, 1998].

(iii) Truncated singular value decomposition and iterative regularisation:

Both methods rely on the SVD. The truncated SVD exploits the fact that the generalised inverse

eq. (4.37c) has an expansion similar to A eq. (4.20):

A† =

r∑

i=1

σ−1
i uiv

T
i (4.52)

with r = rank[A] and increasing contributions as i increases. So cutting off the sum at some ic < r

will stabilise the inverse. Basically it amounts to replacing the ill-conditioned, full-rank matrix A by

a well-conditioned, rank-deficient matrix. Because ui, vj are orthonormal, the solution will also have

a smaller norm than the unregularised. Again there is no canonical choice for the cut-off parameter.

It could be given by an upper bound fǫ for the relative error magnification eq. (4.27), i.e. σ1/σic
< fǫ

or σic
> σ1/fǫ.

Regularisation by means of iterative algorithms that are – for reasons to be discussed later – used

to generate least squares solutions works very similar to the cut-off of small singular values. If the

algorithm initially picks up components in the SVD that belong to large singular values or converges

faster for these, then stopping the iteration prematurely will suppress small singular values. The role
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of the regularisation parameter is played by the iteration number. Relevant details will be discussed

in chap. 4.8.

(iv) Parametrisation of the continuous problem:

There are other factors that influence the stability of the problem although it might be hard to formu-

late them according to the mathematical definition of regularisation given by Tikhonov. For example,

in section 4.4 it was argued that the number of basis functions influences the conditioning of the

system matrix. The same holds for the kind of basis functions. We would like to mention a thorough

study by Doicu et al. [2004] who theoretically investigated the reconstruction of 1-D temperature

and concentration profiles from far infrared airborne observations and infrared limb emission spectra,

respectively. Apart from using a regularised algorithm, the authors show that different basis func-

tions (Chebyshev, Hermite polynomials and B-splines in this case) clearly have different regularising

properties. Another approach totally ignored here is to regularise before discretising. In fact, this

approach is related to the choice of basis functions [see Groetsch, 1993, section 5.2]. And one could

still think of other reconstruction schemes involving a finite number of paramaters that circumvent

the problem of instability and lead to possibly not ideal, yet stable solutions.

4.6.4. Resolution matrix and averaging kernels

Assume that the retrieval is given by the linear map Ainv, so that x = Ainvd. If all errors in the

discrete forward model are neglected, the column densities can be calculated from the true state of

the system xtrue as d = Axtrue. Inserting this into the previous equation yields

x = AinvAxtrue = Rxtrue. (4.53)

R is called resolution matrix as it quantifies how well a state is resolved by the measurement plus

retrieval process. Its column vectors describe to what degree the components xtruei
are averaged

over, i.e. for the tomographic reconstruction: how the original box concentrations are spread over the

retrieval grid and finally give rise to the concentration xi in box i. The rows of R are called averaging

kernels. R takes a simple form for the unweighted least norm solution (i.e. m < n) eq. (4.33):

R = AT (AAT )−1A =

r=rank[A]∑

j=1

vjv
T
j . (4.54)

This is just the projection matrix onto the orthogonal complement of the nullspace of A, that is the

subspace where the retrieval is completely given by the measurement data. The matrix

P = 1n − R = 1n − AT (AAT )−1A (4.55)

projects onto the nullspace of A.
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In the same way, inserting d = Axtrue into the generalised least squares solution eq. (4.48a) leads to

x = xa +
(
AT S−1

ǫ
A + λ2DT D

)−1
AT S−1

ǫ
A

︸ ︷︷ ︸
R

(x − xa) (4.56a)

= Rxtrue + (1n − R)xa (4.56b)

= Ainvd + (1n − R)xa (4.56c)

with similar expressions for eq. (4.48c). This formulation shows nicely that the information from the

measurement is mapped to the retrieval x by R while anything else (1n − R) has to come from the a

priori.

For the over-determined case (m > n) the projector in eq. (4.54) becomes R = 1n if r = rank[A] ≥ n.

In this case definition of a corresponding data resolution matrix would be appropriate. But as we do

not make use of it, we leave the matter to it.

4.6.5. Remark on the norm

Finally, a justification for our choice of norm is mandatory, even if only very briefly. In principle,

any norm could be used in the above minimisation problems, e.g. any member of the lp norm family

defined by

‖x‖lp =
( n∑

i=1

|xi|p
)1/p

, p ≥ 1.

But the choice of a norm very different from the standard ones requires firm knowledge of the analytic

and algebraic implications. For example, on the one hand the problem

min
x

‖Ax − d‖lp , rank[A] = n

has a unique solution for p > 1 only, while on the other hand solutions with norms near p = 1 have

more stable numerical properties [Scales and Gersztenkorn, 1988]. Furthermore, the norm is closely

related to the statistics of the problem (see [Tarantola, 1987] for an extensive discussion). Here, we

assume all relevant quantities to be Gaussian distributed which naturally leads to the 2-norm. In

other words, the choice is dictated by the statistical nature of the measurement, not by the details

of the retrieval method. There might be norms which are better suited for the inversion of certain

problems or concentration fields, even if the statistics behind is Gaussian. Then all mathematical

tools that are based on the 2-norm, e.g. the SVD, would have to be modified. The choice of the norm

is a fundamental matter under several aspects and with no indication against the conventional 2-norm

at hand, a reconsideration is beyond the scope of this work.

4.7. Statistical approach to the least squares problem

The statistical approach to the inverse problem describes all quantities involved by probability densi-

ties, i.e. P (x) and P (d) for x and d in our notation (see [Tarantola and Valette, 1982] for a concise

yet general formulation of the approach). The forward model and thus ideally the measurement is

expressed as conditional probability P (d|x), the reconstruction by the a posteriori conditional prob-
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a) c)b) d)

P (d|x)

Figure 4.5: Schematic picture of how the measurement can update the a priori information about the system.
(a) The measurement P (d|x) increases the knowledge about the a priori P (x) but does not confine
the a posteriori estimate completely. (b) The measurement constrains the a priori completely. (c)
The measurement does not provide any new information and the retrieval distribution is basically
given by the a priori estimate. (d) A priori and measurement are inconsistent in some user-defined
sense.

ability P (x|d). As both are related via Bayes’ theorem

P (x|d)P (d) = P (d|x)P (x), (4.57)

the statistical approach is also referred to as Bayesian approach. To infer the a posteriori conditional

probability P (x|d) from eq. (4.57) both P (d|x) and P (x) have to be known. P (d|x) is given by

the forward model, the measurement data and its statistics. The a priori probability density is a

more intricate matter as it asks for (statistical) knowledge about the system before the measurement.

If the Bayesian approach is intended to increase the information on the actual state of the system

after the measurement, the a priori has to be based on either theoretical insight or empirical ground

that is firm enough to allow for a statistical description of it. This could be certain knowledge like

“concentrations are always positive” or a climatology, for example confining the temperature profile

of the atmosphere from past measurements etc. Whether the a priori is useful for the reconstruction

is a different matter, as sketched in the cartoon in fig. 4.5. Another way to use the Bayesian method is

the following: An assumption about the state model is formulated as a probabilistic statement which

serves as a priori probability for the Bayesian inversion. Here the point is to constrain the a priori

model assumption more tightly by the a posteriori estimate (see also fig. 4.5). The measurement data

can also help to construct the a priori but then the uncertainties have to be corrected. This method

is known as empirical Bayes approach [e.g., Carlin and Louis, 1998]. As we will see, yet another way

is to (mis)use the statistical inversion as a regularisation method.

An attractive feature of the statistical inversion is that by its nature it provides an uncertainty for

the retrieval, i.e something like an error estimate. The Bayesian method is widely used for any of

the questions just mentioned in geophysics [e.g., Scales and Snieder , 1997; Tarantola, 2005] and

atmospheric research, here mostly in the very popular form of the optimal estimate for Gaussian

probability densities [Rodgers, 2000].

4.7.1. The optimal estimate

To get a specific retrieval one has to choose a state from the a posteriori distribution. The optimal

estimate is the solution that maximises the a posteriori probability. It is therefore more correctly

called maximum a posteriori (MAP) or less correctly maximum likelihood (ML) solution. Assuming
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a Gaussian distribution

P (d|x) ∼ e(d−Ax)T S−1
ǫ

(d−Ax)

for the measurement is plausible (here Sǫ denotes again the measurement error covariance). The

statistics of the a priori is less evident. If it is obtained from some kind of climatology, then a

Gaussian distribution makes sense. But if, for example, it consists in an educated guess based on

model results, choice of Gaussian statistics is more than questionable. Nevertheless we assume a

Gaussian probability density

P (x) ∼ e(x−xa)T S−1
a (x−xa)

where xa is again the a priori (state vector) and Sa its covariance. The MAP solution coincides with

the expected mean E[P (x|d)] and takes the following forms [Rodgers, 2000; Tarantola and Valette,

1982]:

x = xa +
(
AT S−1

ǫ
A + S−1

a

)−1
AT S−1

ǫ
(d − Axa) (4.58a)

=
(
AT S−1

ǫ
A + S−1

a

)−1 (
AT S−1

ǫ
d + S−1

a xa

)
(4.58b)

= xa + SaAT
(
ASaAT + Sǫ

)−1
(d − Axa) . (4.58c)

with covariance

Sx =
(
AT S−1

ǫ
A + S−1

a

)−1
(4.59a)

= Sa − SaAT
(
ASaAT + Sǫ

)−1
ASa. (4.59b)

The solution is formally identical with the generalised least squares solution eq. (4.48) if one sets

S−1
a = λ2DT D. And this is exactly how the optimal estimate regularises or can be used to regularise

the least squares solution, as becomes especially clear for diagonal Sa = σ2
a1n. σ−1

a plays now the

role of the regularisation parameter λ. For completely non-committal a priori σa → ∞ (see fig. 4.5b)

or infinitely precise measurement, the optimal estimate turns into the unregularised least squares

solution. If the a priori state of the system is known exactly σa → 0 (fig. 4.5c) or the data error is

extremely large, the solution is just the a priori xa (oversmoothing). For the standard case (fig. 4.5a)

the optimal estimate can be seen as the weighted mean of what is known from the measurement and

the a priori. In fact, treating the a priori as an additional measurement by building the augmented

measurement vector, system matrix

d =

(
d

xa

)
∈ R

m+n, A =

(
A1n

)
∈ R

(m+n)×(m+n) (4.60a)

and covariance

S−1 =

(
S−1

ǫ
0

0 S−1
a

)
∈ R

(m+n)×(m+n) (4.60b)

eqs. (4.58) can be obtained from the weighted least squares problem

min
x

(d −Ax)
T S−1 (d −Ax) .

Conditions for the uniqueness of the solution are as for eqs. (4.48).
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4.7.2. Degrees of freedom and information content

A further benefit of the Bayesian approach is that it allows to adopt concepts from any other context

that uses a stochastic description like statistical physics, information theory etc. Two quantities are

introduced here for later use without deriving them or putting them into proper context [c.f. Rodgers,

2000, chap. 2.4].

The optimal estimate minimises the expression (x−xa)T S−1
a (x−xa)+ǫT S−1

ǫ
ǫ where ǫ = d−Ax. The

first term provides information about x, the second contribution is just noise. Their actual average

values are interpreted as degrees of freedom for the signal ds and noise dn, respectively. For the

optimal estimate one gets

ds = tr[R] =

rank[Ã]∑

i=1

σ̃2
i /(1 + σ̃2

i ), (4.61a)

m = ds + dn, (4.61b)

where Ã = S
−1/2
ǫ AS

1/2
a and σ̃i are the singular values of Ã. The resolution matrix R for the optimal

estimate is given as in eq. (4.56), again with the substitution λ2DT D → S−1
a :

R =
(
AT S−1

ǫ
A + S−1

a

)−1
AT S−1

ǫ
A. (4.62)

The ds and dn add up to the degrees of freedom of the measurement, as expected. Identifying

dsi
= σ̃2

i /(1 + σ̃2
i ) as the degree of freedom associated with the ith singular value, one would say

that it increases the information about the system if dsi
> dni

or σ̃i > 1. Otherwise its contribution

to the measurement cannot be distinguished from noise. Consequently, these quantities can be used

to evaluate the measurement setup and reconstruction for different levels of noise. Expressing the

resolution matrix with the a posteriori covariance Sx (eq. 4.59) gives

R = 1n − SxS−1
a (4.63a)

or n = ds + tr(SxS−1
a ), (4.63b)

where the trace term can be interpreted as the number of parameters resolved by the a priori.

Up to now, expressions like ‘increase of information’ or ‘knowledge’ have been used only in a very loose

sense. They can now be given a specific meaning in terms of entropy S. In thermodynamics S is given

by the logarithm of the number of microstates compatible with a given macrostate.7 So the difference

between the entropy before and after the measurement agrees perfectly with what intuitively would

be described as the effect of the measurement: Exclude states of the system that, in principle, are

possible. The information content of the measurement is thus defined as

H = S (P (x)) − S (P (x|d)) .

The probability densities replace probabilities in the formal definition of the entropy and for Gaussian

7Provided that all microstates are equally probable.
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density functions this yields

H = − 1
2 ln |1n − R| = 1

2

rank[Ã]∑

i=1

ln
(
1 + σ̃2

i

)
. (4.64)

which agrees with a calculation from the difference S (P (d)) − S (P (d|x)).

ds and H represent two different ways to calculate a single number with concrete physical meaning

from the rather unhandy resolution matrix or averaging kernels.

4.8. Iterative solution of the least squares problem

After formulating a number of least squares problems and presenting the formal solution for the

unconstrained cases, we turn now to the actual computation of these solutions.

4.8.1. Iterative versus direct methods

Numerical algorithms for least squares problems are based on either type of the normal equations

(4.29,4.32), not on matrix inversion as in x = (AT A)−1AT d. (The SVD for which calculation of the

inverse is trivial, may be regarded as an exception). They are either direct methods, i.e. they generate

a solution in a finite number of steps, or iterative, i.e. converging towards the solution in a sequence

{x(k)}, k = 1, . . . ,∞. A direct method could be any method for solving systems of equations that leads

to stable solutions of the normal equations, like the QR or Cholesky decomposition or the Householder

transformation. For ill-conditioned problems the system with a regularised matrix has to be solved.

Iterative algorithms are chosen mainly for two reasons. First, it usually suffices to know the action of

the matrix during the iteration, one does not have to store the whole matrix itself. This is particularly

attractive if the matrix is very large or its action easily generated. The second application concerns

cases where the initially favourable form of the matrix is not utilised but instead worsened by a direct

method, e.g. fill-in of a sparse matrix. This is the case especially for reconstruction problems where A

is randomly sparse as in tomographic problems [Björck , 1996, §7.1.1]. While for small systems there

is still no urgent need to resort to iterative solvers for the normal equations, the situation may change

if constraints have to be taken into account. The least squares problem becomes now a constrained

optimisation problem

min
x∈S

f(x),

where S is the set of feasible solutions (e.g. positive solutions etc.) and the so called objective or cost

function is quadratic here. As mentioned in sec. 4.6.3, there are direct solutions for simple inequality

constraints, but their implementation is much easier for a certain class of iterative algorithms that

has been extensively studied in image reconstruction and signal processing, the so called projections

onto convex sets (POCS) [see Byrne, 2004, and references therein]. This is now illustrated for the

under-determined case, where the least squares-least norm solution satisfies Ax = d. Each of the m

equations can be regarded as a set Si (hyperplane in this case) in Rn. If their intersection S =
⋂

i Si is

nonempty then the sequence P k of the product of the projection operators Pi onto the sets P =
∏

i Pi

will converge towards a member of the feasible set S, fig. 4.6a. The details of convergence have to be
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Figure 4.6: (a) The projection onto convex sets (POCS) for two planes di =
P

j Aijxj, i = 1, 2 in the case
of a unique solution. The cycle of orthogonal projections P1, P2, P1, . . . shown here is equivalent
to the algebraic reconstruction technique (ART). Notice that the smaller the angle between the
planes (small singular values) the slower the convergence will be. (b) The projection P+ onto
{x ∈ Rn|x ≥ 0} acts by setting negative components to zero.

specified, of course, also this does not hold for arbitrary sets (it does for convex sets). Furthermore,

the operator P does not have to be a projection operator [for details Byrne, 2004] but the preceding

example is general enough for our purpose. The important point in favour of these iterative algorithms

is now that the implementation of inequality constraints like nonnegativity becomes trivial by just

inserting the corresponding operator into the above sequence of projections (e.g., fig. 4.6b for the

positivity constraint).

4.8.2. Typical convergence behaviour

Before comparing some important iterative methods used to solve least square problems, we mention

some characteristics common to their convergence behaviour when applied to ill-conditioned systems.

(i) Data residuum: For the iterative solution x(k) the residual

‖∆d(k)‖2 = ‖d − Ax(k)‖2 (4.65)

will typically be monotonically decreasing during the iteration because the iterative algorithms con-

sidered here are constructed to reduce ‖∆d(k)‖2, see fig. 4.7a. In the consistent under-determined case

‖∆d(k)‖2 can reach zero.

(ii) Convergence rates: Without any errors x(k) will converge to the exact least-squares solution

(or least squares-minimum norm to be more precise) x as k → ∞, fig. (4.7b). Convergence rates

are conveniently analysed with the help of the SVD. Similar to the decomposition of the generalised

inverse A† =
∑

σ−1
i uiv

T
i , eq. (4.34), one writes

x(k) =
∑

i

f (k)(σi,d) σ−1
i uiv

T
i d (4.66)

where the filter factors or response functions f (k) → 1 as k → ∞. For many iteration schemes they

do not depend on d. The filter factors quantify the behaviour necessary for iterative regularisation as

suggested in 4.6.3(iii), that is, they give information on the convergence rates of the frequency modes
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(k)
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Figure 4.7: (a) Data residual versus iteration number k for the consistent (–) and inconsistent (--) case.
(b) Without errors the iterative algorithm converges to the exact (least squares) solution. (c)
Typical behaviour of iterative algorithms if errors are present ( semiconvergence). The solid line
(–) corresponds to the ART algorithm, (--) to the CG method and (-·-) to the Landweber iteration
in the example [Hansen, 1998, p. 165].

of the solution.

(iii) Regularisation: In the presence of errors the convergence of ill-conditioned equations turns into

a behaviour denoted as semi-convergence. In the beginning x(k) approaches the exact solution but

deteriorates again for larger iteration numbers, see fig. 4.7c. The solution is regularised by stopping

the iteration before this happens – ideally at the optimal iteration number.

4.8.3. Brief comparison of some iteration methods

Dealing with iterative algorithms can be slightly confusing. For example, the very simple Landweber

iteration discussed extensively by Twomey [1997] is known under (at least) five different names in the

literature [Hansen, 1998]: Landweber, Richardson, Fridman, Picard and Cimino iteration. Although

limited to a minimum, a short, qualitative overview seems in order. The classical methods for least

squares problems like the mentioned Landweber, the Jacobi and Gauß-Seidel algorithms are all based

on different splittings AT A = M−N , M non-singular, leading to the sequences Mx(k+1) = Nx(k)+d.

Only one component of x is updated in one step which makes it easy to introduce constraints, e.g.

in the form of a projection P as discussed above. As their convergence is rather slow, the Gauß-

Seidel algorithm has been endowed with a so-called relaxation parameter, yielding the successive

over-relaxation (SOR) scheme. Thanks to its simplicity and flexibility it is being employed in appli-

cations for which this property is essential [e.g., Sauer and Bouman, 1993; Fessler , 1994]. Another

classical group of algorithms is the class of projection methods (not to be confused with the projec-

tions onto convex sets from above. The projections here have different meaning and target space).

Widespread projection methods are the gradient-based methods like the steepest descent and the

conjugate gradients (CG) algorithms. They can be viewed as optimisation schemes based on a local

search where the search directions are not random but depend on the local properties of the supposed

result, like its gradients. In the geophysical literature they appear to be the standard tool to solve

inverse problems, but they are not very stable for ill-posed problems, especially not for higher iteration

numbers. This led to the mathematically equivalent but more stable LSQR method [see Björck , 1996].

Furthermore, these methods “do not easily accommodate inequality constraints” [Fessler , 1994], see
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also [Calvetti et al., 2004] for a short discussion. Finally, there are the ART like methods, named after

the first algorithm the algebraic reconstruction technique, which was visualised in fig. 4.6a. These al-

gorithms belong to the POCS and, depending on whether the projections are performed successively

as in P ∼ ∏
i Pi or at once P ∼ ∑

i Pi, they are further classified as sequential or simultaneous.

Because their computation is very cheap in terms of computer memory space, these algorithms have

been widely used in image reconstruction. In passing, we note that the original ART is equivalent to

the Gauß-Seidel algorithm for the normal equations of the second kind, while the simultaneous version

SART is a special case of the Landweber iteration. Without giving proofs, we add some relevant facts

concerning the convergence and filtering to get the following picture

• SOR allows simple implementation of constraints.

Small singular values (high spatial frequencies) converge faster than large singular values [Sauer

and Bouman, 1993; Fessler , 1994].

• CG cannot easily be combined with inequality constraints.

Large eigenvalues converge faster.

It converges quickly with small residuals, but it is not apt for ill-posed problems. In the case of

semi-convergence it converges fast to the optimum, but deteriorates quickly past this point, too

[Björck , 1996].

• ART like methods can easily be augmented with constraints.

The filtering behaviour depends on the specific algorithm. ART favours smaller singular values,

the simultaneous methods large singular values.

The convergence behaviour of SOR is suspicious, in the sense that the faster converging small singular

values are more susceptible to noise. Indeed, it will be shown that the similarly behaving ART performs

worse than simultaneous methods. Requesting simplicity and flexibility for the implementation of

constraints rules out CG. Thus the next chapter will have a closer look at the ART like methods.

4.8.4. ART, SART and SIRT

The original method of these row acting methods, as they are also called because they act only on

one row of the matrix A at the same time, goes back to Kaczmarz [1937]. It was rediscovered

and generalised by Tanabe [1971], applied to image reconstruction by Herman et al. [1973] where

it has been widely used and further developed. A simultaneous version of ART, the simultaneous

image reconstruction technique, SIRT, was proposed by Gilbert [1972]. SART [Andersen and Kak ,

1984], a slightly different simultaneous analogue of ART, improved reconstructed images in medical

applications significantly. Numerous modifications of these algorithms concern the acceleration of

convergence speed, the application to constrained least squares problems and their formulation as

block-iterative (i.e. only parts of the matrix act simultaneously, the rest sequentially) and other

aspects. We refer to [Censor and Herman, 1987] for a brief review. Although being much slower than

direct methods like the filtered back projection (sec. 4.2.1), it appears that with increasing computer

power these iterative algorithms regain interest thanks to their flexibility [Leahy and Byrne, 2001],

especially for cases with inconsistent or incomplete data [e.g., Mueller and Yagel , 2000].
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Iteration step:

Introducing the row vectors of the m× n matrix A = (a1, . . . ,am)T , ART in its simplest form can be

written as

x(k+1) = Pix
(k) = x(k) + ω

ai

aT
i ai

(d − Ax(k))i, k = 0, 1, 2, . . . (4.67a)

i = k mod m + 1,

ω > 0,

where ω is a relaxation parameter and x(0) a user defined starting vector. Pi corresponds to the

projection onto the ith hyperplane, for ω = 1 illustrated in fig. 4.6a. More explicitly, the iteration

cycle looks like this:

x(1) = P1x
(0) x(m+1) = P1x

(m)

x(2) = P2x
(1)

...

... (4.67b)

x(m) = Pmx(m−1)

SIRT reads as

x(k+1) = Px(k) = x(k) + ω
∑

i

ai

aT
i ai

(d − Ax(k))i. (4.68)

SART was in [Andersen and Kak , 1984] experimentally motivated in order to reduce the impact of

noise and derived in the following form

x
(k+1)
j = Px(k) = x

(k)
j + ω

1∑
i1

Ai1j

∑

i

Aij∑
j2

Aij2

(d − Ax(k))i. (4.69)

In both cases the correction to the update is a weighted mean of the projections onto the individual

hyperplanes. The positivity constraint can be incorporated by inserting the projection P+ (fig. 4.6b)

for every iteration step in ART and SIRT/SART by substituting

Pi → P+Pi with P+xj = max(0, xj) , (4.70a)

P → P+P . (4.70b)

Convergence:

None of the three algorithms actually solves Ax = d or the related normal equations but rescaled

versions thereof. This can be seen [Van der Sluis and van der Vorst , 1987; Trampert and Lévêque,

1990] by introducing the weighting matrices

Lφ = diag[

m∑

i=1

(Aij)
α] ∈ Rn×n, (4.71a)

L = diag[
n∑

j=1

(Aij)
2−α] ∈ Rm×m (4.71b)
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with nonnegative parameter α and performing the transformation

Ā = L−1/2 AL
−1/2
φ , (4.71c)

x̄ = L
1/2
φ x , (4.71d)

d̄ = L−1/2 d . (4.71e)

The iteration steps now take the form:

ART (α = 0)

x̄(k+1) = x̄(k) + ω ĀT (d̄ − Āx̄(k))i ei , with (ei)j = δij (4.72a)

SIRT (α = 0) and SART (α = 1)

x̄(k+1) = x̄(k) + ω ĀT (d̄ − Āx̄(k)) . (4.72b)

Eqs. (4.72) show that a solution x(k) → x satisfies the rescaled normal equations

ĀT Āx̄ = ĀT d̄ or AT L−1Ax = AL−1d (4.73)

that correspond to a weighted least squares problem, c.f. eq. (4.39). A correct analysis using the SVD

yields:

Convergence of sirt and sart

The one parameter family of simultaneous algorithms eqs. (4.72b) with a nonnegativity constraint as

in eq. (4.70b) converges for 0 ≤ α ≤ 2, 0 < ω < 2 to the solution of the least square-minimum norm

problem

min
x∈S

(x − x(0))T Lφ(x − x(0)), S = {x ∈ R
n | (d − Ax)

T
L−1 (d − Ax) = min, x ≥ 0}. (4.74)

This means

• The iteration start x(0) is the a priori of the least squares problem.

• Implicit weighting of the a priori by

SIRT (α = 0): Lφ = m 1n, i.e. no weighting

SART (α = 1): Lφ = diag(
∑

i Aij), “sum of all light path lengths in box j,

i.e. sampling of box j”.

• Implicit weighting of the data by

SIRT (α = 0): L−1 = diag(
∑

j A2
ij)

−1, “inverse sum of (box LP lengths)2 for LPi”

SART (α = 1): L−1 = diag(
∑

j Aij)
−1, inverse length of LPi,

where the simple geometrical interpretation holds only for the box basis. Finally, the filter factors,

see eq. (4.66), of the nonzero singular values for the transformed system are

f (k)(σ̄i) =
(
1 − (1 − ω σ̄2

i )k
)
, i ≤ rank[Ā], (4.75)

where for the singular values of Ā holds 0 ≤ σ̄i ≤ 1. For the components of x̄ in the system of the

singular vectors, i.e. of x′ = V T x̄, the convergence rate is given by

x′(k)
j − x′(∞)

j = (1 − ω σ̄2
j )k(x′(0)

j − x′(∞)
j ), j ≤ rank[Ā]. (4.76)
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As the convergence is faster for larger values of ω σ̄2
i , the relaxation parameter ω can be used to speed

up the iteration process. Eq. (4.76) establishes the above statement for the frequency filtering of the

simultaneous ART methods.

For ART the simple SVD approach does not work because of the series of operator products. Basically

the method converges similarly to the simultaneous versions except for the inconsistent case. Here the

algorithm may not converge to a single fix point but to a cyclic subsequence. Comparing eqs. (4.67a),

(4.68) it follows an implicit weighting of ART like SIRT. For details see [Kak and Slaney , 2001] where

a geometrical illustration is given and [Jiang and Wang , 2003] for further mathematical references.

4.9. Other reconstruction methods

One could think of various other approaches to the tomographic inverse problem eq. (4.4) like genetic

algorithms, neural networks or Monte Carlo methods. While some of these approaches indeed occur

in the literatue and might be well justified, they are nevertheless black box methods that may not

bear great potential for further insight. This chapter concludes by sketching some important methods

that are also employed within the context of tomographic or discrete inverse problems.

4.9.1. Maximum entropy and maximum likelihood

The concept of entropy was applied in sec. 4.7.2 to calculate the information content of a measurement

under the assumption that all quantities involved can be described by Gaussian probability density

functions. But entropy can also be used constructively as a reconstruction principle based on the

assumption that the most probable reconstruction among all that reproduce the data (and possibly

further constraints) is the one with maximum entropy. This principle has the important property

that it does not introduce any new correlation in the reconstruction result that goes beyond the data

[Gull and Daniell , 1978]. Strictly speaking, the maxium entropy method MEM (or MaxEnt) requires

probability density functions but usually the configurational entropy S(x) =
∑

j xj lnxj is computed

directly in state space. The most simple formulation of the reconstruction problem then reads

max
x∈S′

S(x), S′ = {x ∈ R
n | (d − Ax)

T
(d − Ax) = min, x ≥ 0}. (4.77)

The maximum entropy method has found numerous applications, sometimes rigorously founded, but

in many cases on a mere empirical basis [see Censor and Herman, 1987, for references]. As for the

quadratic objective function several iterative algorithms have been proposed to solve eq. (4.77) for the

consistent, i.e. equality constrained case which is especially important in image reconstruction. The

multiplicative algebraic reconstruction technique MART was introduced by Gordon et al. [1970] and

has found a number of modifications including its simultaneous version SMART (see [Byrne, 2004; Reis

and Roberty , 1992] and references therein). The iterative step is as simple as for ART like methods

but the correction is applied multiplicatively, not additatively. Another maximum entropy method

sometimes used is MENT [Minerbo, 1979]. The entropy objective function in image reconstruction

has been especially successful for noisy images.

The maximum likelihood ML method applied in this context tries to estimate parameters x from an
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incomplete set of data d by maximising the likelihood L(x) = P (d|x), i.e. the probability that a given

x leads to the observed data d. Using the log-likelihood its most simple form states thus

max
x∈Rn

lnP (d|x)

A universal iterative algorithm converging towards the ML estimate, the expectation maximisation

EM, was developed by Dempster et al. [1977]. It was applied to the specific case of emission tomogra-

phy under the assumption that the measurement can be described as a Poisson process in [Shepp and

Vardi , 1982; Vardi et al., 1985]. The resulting iterative algorithm, usually referred to as EMML but

also as MLEM or EM, is frequently used in image reconstruction. It is also a very simple algorithm

but it seems to be quite sensitive to data noise [Censor and Herman, 1987; Byrne, 2001].

Although developed independently, the entropy maximising SMART and the likelihood maximising

EMML (and in fact further algorithms) can be obtained by minimising a functional of the form

KL(x,y) =
∑

j xj ln (xj/yj) + yj − xj [Byrne, 2001]. The Kullback-Leibler distance KL is closely

related to the cross entropy which is used in information theory to measure the overall difference

between two probability distributions.

4.9.2. Backus-Gilbert method

The Backus-Gilbert method (see [Backus and Gilbert , 1970] for the original paper) is often quoted in

geophysical and atmospheric science, as it represents a diagnostic formulation of the inverse problem

that also leads to a least squares solution. Hansen [1998] refers to in the context of mollifier methods.

Basically, it attempts to construct the inverse from a limited amount of data in a way that leads to

optimal resolution. Usually the presentation is for a forward model in the form of ordinary integral

equations di =
∫

dr Ki(r) c(r), here it is the discrete system Ax = d. First, it is assumed that the

reconstructed or estimated concentration ĉ at some r0 is given by a linear combination of the observed

data

ĉ(r0) =
∑

i

ainv

i (r0) di. (4.78)

Second, assume that there is a function, the averaging or resolving kernel R, relating the estimated

to the true concentration field c

ĉ(r0) =

∫
dV R(r, r0) c(r) . (4.79)

Ideally, R would be the δ-functional, in practice it is some smoothing or averaging functional (c.f.

sec. 4.6.4). The key idea is now to choose R as narrow as possible while still reproducing the mea-

surement data. To relate eqs. (4.78, 4.79) recall that c(r) ∼∑j xj bj(r) where from now on – merely

for simplicity – the basis functions are taken to be orthonormal. Then also

R(r, r0) =
∑

j

rj(r0) bj(r) (4.80)

and replacing di in eq. (4.78) by (Ax)i it follows

rj(r0) =
∑

j

AT
ji ainv

i (r0) . (4.81)
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The third assumption concerns the functional that measures the width of the averaging kernel R(r, r0).

Its generic form is to some extent arbitrary but typically something like

J(r0) = α

∫
dV R(r, r0)

2|r − r0|β .

Inserting eq. (4.80) leads with eq. (4.81) to a quadratic functional of ainv = (ainv
1 , . . . , ainv

m )T and thus

to the least squares problem

min
ainv

J .

The solution of this problem is simply a particular solution of the under-determined inverse problem

[see also Tarantola, 2005, pp.191–194]. It might have to be modified (regularised) not only if it

is unstable, but also for the following reason. The variance of the estimated concentration ĉ due

to measurement errors can with eq. (4.78) easily be seen to equal ainv(r0)
T Sǫa

inv(r0), i.e. it also

depends on the ainv
i . In order not to risk too large variances while tightening up the resolution, it

might be necessary to minimise a weighted mean of J and the variance. This amounts to a Tikhonov

regularisation.

4.9.3. Example of global optimisation – fitting Gaussian exponentials

So far the fit problem

min
x1,x2,...

‖di −
∫

i

ds c(r;x1, x2, . . . )‖2

with model parameters xj has been considered only for parametrisations that lead to discrete quadratic

minimisation problems which in turn yield linear equations. In cases where the functional form of the

concentration field is known to some extent it can make more sense to exploit this knowledge rather

than to use a completely unspecific parametrisation. If the resulting equations cannot be solved by

standard methods, global optimisation algorithms have to be employed. The disadvantage that a

black box algorithm is totally ignorant to the tomographic origin of the problem is not as critical as

the convergence behaviour and speed of the general purpose optimisation algorithm.

An example for this approach can be found in [Drescher et al., 1996] for the 2-D reconstruction of

indoor gas concentrations. Assuming that the indoor dispersion can be approximated by a Gaussian

diffusion equation, the authors make the following ansatz for the resulting concentration field in the

case of a limited number of point sources

ĉ(x, y;C1, x1, y1, σx1
, σy1

, φ1, C2, . . . )

=
∑

k

Ck e−
1
2

(
(cos φk (x−xk)+sin φk (x−xk))2/σ2

xk
+ ( x↔y )

)
, (4.82)

i.e. for each Gaussian six parameters for peak height, location, orientation and variances. The

optimisation problem arising is highly nonlinear and solved using the Amebsa routine from [Press

et al., 1992], a combination of the simplex and the simulated annealing method. A standard search

for one reconstruction takes about 2h according to the authors. As another way to look at the method

is that the discrete (local) basis functions have been replaced by smooth (global) basis functions, the

approach was named the “smooth basis function minimization” (SBFM) in the original work.
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An approach based on the fitting of symmetric Gaussians is also proposed by Giuli et al. [1999] and

applied to the reconstruction of volcanic CO2 distributions in [Belotti et al., 2003], c.f. sec. 3.3.
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5. The Error of the Reconstructed

Distribution

This chapter develops a closed methodology for the complete reconstruction error of the continuous

inverse problem eq. 4.4, p. 50. For reasons that will become clear from the first section, there is hardly

a standard treatment of the full error of the reconstruction result. While errors related to the discrete

system Ax = d are commonly covered (especially if the optimal estimate is employed, otherwise

very often merely in form of sensitivity studies) the error associated with the discretisation is rarely

addressed. I am not aware of my approach to it in sec. 5.2.1 for local basis functions appearing in

the literature on tomography with small numbers of light paths. The theoretical discussion of the

different error contributions in sec. 5.2 is neither restricted to tomographic inverse problems nor does

it depend on any specific inversion method. Sec. 5.3 treats the purely numerical estimation of the

total reconstruction error as it was more or less used in [Laepple et al., 2004]. Finally, the last section

on error norms (or overall errors) connects quality evaluation measures from image reconstruction and

atmospheric modelling.

5.1. The problem in defining the reconstruction error

Figure 5.1: The problem of quantifying the reconstruc-
tion error, illustrated here for the case where the 2-
D section through c(r) shows structures that cannot
be resolved by a measurement with the path geometry
shown. If the variability of c(r) is not confined, the re-
construction error can become arbitrary large. Using
the definitions of sec. 5.2 it is the sum of discretisa-
tion and inversion error that is unbounded if c(r) is
not constrained.

c(r)

y

x

The aim of an error calculation is to derive bounds for the deviation ∆ĉ(r) of the reconstructed

concentration field ĉ(r) from the true state c(r):

∆lĉ(r) ≤ c(r) − ĉ(r)︸ ︷︷ ︸
∆ĉ(r)

≤ ∆uĉ(r). (5.1)

These bounds can be hard constraints or probabilistic statements. An example for the former is the

85
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remainder term of the Taylor expansion, an example for the latter the 1σ declaration of a measurement

result. Neglecting all measurement errors for the moment, ideally, it should be possible to calculate

these bounds solely from the measured data d and the details of light path geometry and inversion

algorithm. It was pointed out in remark 4.2.2 that a finite number of measurements cannot pin down

the continuous function c(r). Unfortunetaly, the proof in [Natterer , 2001] is not constructive. That is,

it does not contain a recipe for the functions that give rise to exactly the same column densities and I

am not aware of any other work that does. Evidently the ambiguity of the solution is aggravated for

decreasing number of light paths and coarser discretisations (see fig. 5.1). On the other hand, it was

noticed in the same remark that the space of solutions can be reduced by further assumptions on the

properties of c(r). Thus, we find

• The reconstruction error cannot be estimated (at least not within this work) from the measure-

ment data d and reconstruction procedure only. Further information about the true concen-

tration c(r) is necessary or assumptions have to made. In the case of statistical inversion this

information consists in the a priori probability density function.

• In other words, the declaration of a reconstruction error as in eq. (5.1) only makes sense in

combination with the assumptions on the true solution c(r) it is based on.

• It is important to realise that this ambiguity is not an effect of the inverse problem’s instability.

This is taken care of by regularisation and the resulting change of the solution can be calculated

and expressed in terms of perturbation bounds (sec. 5.2.3).

A remedy of this dissatisifying situation, where not only the solution of the ill-posed problem involves

more or less arbitrary assumptions but also the estimate of its uncertainty, is beyond the scope of this

thesis. But not all contributions to the total reconstruction error ∆ĉ(r) imply hidden assumptions as

shown in the following.

5.2. Composition of the total error

Going through the logical steps of the reconstruction again, there appears first the approximation

of the continuous c(r) by a finite set of basis functions, c.f. eq. (4.10). We call this discrepancy

the discretisation error. Even if c(r) can be expressed exactly as a linear combination of the basis

functions, the inversion of Ax = d is in general not possible in a unique and/or stable way. This

inversion error is defined in R
n. Finally, the measurement error ǫ will affect the fit result xǫ and

propagate to the reconstructed field. The effect of the measurement error is controlled by regularising

the solution x 7→ xλ with regularisation parameter λ, giving rise to the regularisation error. The

deviation of the perturbed from the error free regularised solution is called perturbation error. In

formulas

∆ĉ(r) = c(r) − [φ(r)]T xid︸ ︷︷ ︸
∆cdisc(r)

+ [φ(r)]T (

∆xinv︷ ︸︸ ︷
xid − x)︸ ︷︷ ︸

∆ĉinv(r)

+ [φ(r)]T (

∆xreg︷ ︸︸ ︷
x − xλ)︸ ︷︷ ︸

∆ĉreg(r)

+ [φ(r)]T (

∆xpert︷ ︸︸ ︷
xλ − xǫ)︸ ︷︷ ︸

∆ĉpert(r)

, (5.2)
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continuous

recontruction

xid xid

[φ(r)]T

measurementinversion

−[φ(r)]T

+∆ĉreg(r) ∆ĉpert(r)

discretisation

xλ

[φ(r)]T

x − xλx−

+∆cdisc(r) +∆ĉinv(r)

xǫ−

total reconstruction error

. . . if ǫ ∼ 0

unknown c(r)
discrete Rn

known from

Figure 5.2: The composition of the total reconstruction error ∆ĉ(r).

see also fig. 5.2. Here xid is the ideal representation of the continuous c(r) for a given basis, i.e. the

x that leads to the smallest discretisation error in terms that yet have to be defined. [φ(r)]T x is

the reconstruction result as it would be without measurement errors and regularisation (e.g. a least-

squares or least-squares least-norm solution). [φ(r)]T xλ is the regularised solution without errors,

[φ(r)]T xǫ with. Before discussing the individual contributions in turn, we observe that:

• The different errors are usually related to each other. For example, choosing a coarser dis-

cretisation that makes the problem over-determined will lead to small or vanishing inversion

errors, but to larger discretisation errors and higher sensitivity to noise. Fine discretisation that

makes the problem under-determined implies larger inversion errors but the regularisation and

perturbation error may become less important (see sec. 4.4).

• The significance of each contribution to the total error largely depends on the application.

For tomographic measurements with large numbers of integration paths like X-ray tomography

the discretisation error is usually neglected (or not discussed). Likewise the error analysis for

atmospheric inversion problems is predominantly in Rn for the ∆xinv, ∆xreg and ∆xpert only.

• Statistical inversion in Rn (this is how the optimal estimate, sec. 4.7.1, is usually used) provides

an estimate of ∆xinv+∆xreg+∆xpert in terms of the a posteriori probability density function (or

the a posteriori covariance in the case of the optimal estimate where this function is a Gaussian

distribution) but it has to be specified, whether the discretisation error is contained in the a

priori uncertainty or neglected.

5.2.1. The ideal discretisation and the discretisation error

The ideal parameters are given as minimum of some objective function measuring the misfit between

continuous and parametrised field. Following remark 4.6.5, again the 2-norm is chosen so that xid is

given by

min
x

‖c(r) − [φ(r)]T x‖2, x ≥ 0 (5.3)
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Figure 5.3: (a) Horizontal profiles at 5 m above ground of the NO2 concentration field perpendicular to a
motorway [Bäumer et al., 2005] and its bilinear discretisation on grid of 4×3 boxes as used for
reconstruction in [Laepple et al., 2004]. ↔ indicates the position of the motorway. The maximum
discretisation error is ∼ 3 ppb. (b) Box discretisation of a Gaussian function with σ = 7 a.u..
The parabola shows the quadratic Taylor expansion around the peak maximum used in the text to
estimate the width of a general peak.

with

‖·‖2
2 =

∫

Ω

dV (·)2 (5.4)

and Ω being the volume or area for two and three dimensions, respectively. The normal equations can

be written as

Φxid = c (5.5a)

where

Φ =

∫

Ω

dV φ(r)[φ(r)]T , c =

∫

Ω

dV φ(r)c(r). (5.5b)

For the orthonormal box basis calculation of these quantities and inversion of the normal equation is

trivial:

Φij = Vi δij , ci = Vi c(r)i (5.6a)

where Vi is the area or volume of box i and (·)i denotes the spatial mean in it. Thus

xidi
= c(r)i, (5.6b)

i.e. the ideal discretisation parameters xid for the box basis are the box averages of c(r). For the box

basis it is easy to see that if Ax = d has a unique solution, it is xid. This is not obvious neither for a

more general local basis nor for the special case of bilinear basis functions. Also the inversion of the

normal equations for the bilinear basis is not so simple because Φ is not diagonal. Fig. 5.3a is the result

of a numerically calculated ideal bilinear discretisation for the NO2 distribution perpendicular to a

motorway modelled by Bäumer et al. [2005]. It shows horizontal profiles of the model concentration

and the ideally parametrised cid(r) = [φ(r)]T xid for a discretisation grid as it was used by Laepple

et al. [2004] to reconstruct the motorway plume from measurement data.

Before trying to estimate the discretisation error, we illustrate which properties of c(r) might be im-

portant by considering one dimension for simplicity. The gradient of c is a critical property for the box

basis functions. Only if the relative change ∆c/c within a box is much smaller than 1, we would say
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that the box basis is a good approximation of c. Thus for a box length ∆x: ∆c/c ∼ | ∂c
∂x

| ∆x/c ≪ 1

or ∆x ≪ c | ∂c
∂x

|−1. Linear basis functions can easily model gradients but not changes of the slope.

The change of the slope, essentially the curvature, characterises peaks (or valleys). Assuming that the

peak can locally be approximated by a quadratic Taylor expansion (c.f. fig. 5.3b), the peak width ∆ at

the baseline is ∆ ∼ 2
√

2
q

c | ∂2c
∂x2 |−1, where the function values refer to the maximum. The local basis

functions can mimic the peak appropriately only if the box length is small compared to the peak width,

thus ∆x ≪
q

c | ∂2c
∂x2 |−1.

As the above definition eq. (5.3) of the ideal discretisation involves collocation not interpolation, simple

estimates for interpolation errors cannot be used. Instead, we take the definition of the discretisation

error (ignoring the nonnegativity constraint for the moment)

∆cdisc(r) = c(r) − [φ(r)]T Φ−1c (5.7)

and approximate c(r) in c by a Taylor expansion to second order. For the 2-D box basis functions it

is shown in appendix C that

∆cdisc(r) ∼ c(r) −
n∑

i=1

(
c(ri) + 1

24

(
∆x2

i

∂2c

∂x2
+ ∆y2

i

∂2c

∂y2

)
(ri)

)
φ0

i (r) (5.8a)

where

ri : centre of box i,

r : chosen such that Taylor expansion around ri is valid,

∆xi : length of box i in x direction, ∆yi the same for y

and especially in the centre of the box

∆cdisc(ri) ∼ − 1
24

(
∆x2

i

∂2c

∂x2
+ ∆y2

i

∂2c

∂y2

)
(ri). (5.8b)

Fig. 5.3b shows the example of a Gaussian peak with σ = 7 a.u. for the piecewise constant discretisation

with 5 boxes. At the maximum the second derivative of a Gaussian peak is given by −σ−2. Inserting

this and the box length of 20 a.u. into eq. (5.8b) yields for one dimension ∆cdisc ∼ 0.3 a.u. which

roughly argrees with the actual values.

A similar estimate for the bilinear basis is complicated by the calculation of the inverse Φ−1 and not

pursued further1.

1 Trying to estimate discretisation errors from the textbook error bounds for interpolating quadrature in box i, again
for one dimension, in the form

1

∆xi
|

Z

box i

dx c − I0(c)| ≤ max
box i

˛

˛

˛

∂c

∂x

˛

˛

˛

1

∆xi
|

Z

box i

dx c − I1(c)| ≤ 1
2
∆xi max

box i

˛

˛

˛

∂2c

∂x2

˛

˛

˛

(with I0, I1 the integrals over the interpolation polynomials of degree 0 and 1, respectively) did not prove very useful
in that these bounds are too high.
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5.2.2. The inversion error

The inversion error was defined as ∆ĉinv(r) = [φ(r)]T (xid − x) for an error free retrieval x and can

only be estimated for appropriate xid. If the reconstruction is given by a linear map and we regard xid

as the true vector state of the atmosphere for a given discretisation, then by recalling the definition

of the resolution matrix eq. (4.56)

x − xa = R (xid − xa)

one has

∆xinv = xid − x = (1n − R )(xid − xa). (5.9)

and

‖∆xinv‖2 ≤ ‖1n − R‖2 ‖xid − xa‖2

=
√

n − rank[A] ‖xid − xa‖2 for the generalised inverse.
(5.10)

The difference −∆xinv is called smoothing error in [Rodgers, 2000, sec. 3.1.2] for reasons discussed in

sec. 4.6.4. Mind that the inversion error is ‘proportional’ to the discrepancy between R and the ideal

resolution matrix 1n and the difference of the guess xa and the true state. If xa happens to be the

true xid, the inversion error becomes zero despite a resolution matrix deviating from the ideal one. If

the reconstruction method is nonlinear ∆ĉinv(r) can only be inferred numerically.

5.2.3. The measurement error

Random noise

Only unbiased random noise is considered here. It appears on the right hand side of Axǫ = dǫ and

propagates through the inversion to the solution xǫ and further to ĉ(r). Regularisation controls the

effect of errors, e.g. by some parameter λ as in the Tikhonov method, λ = σ−1
a in the optimal estimate

or the iteration number k in the case of iterative regularisation.

We consider the case where the inversion is performed by a linear map Ainv

λ . Then

x − xǫ = Ainv

λ (d − dǫ) = Ainv

λ ǫ (5.11a)

with covariance

Sx = E[(x − xǫ)(x − xǫ)
T ] = Ainv

λ SǫA
inv

λ
T (5.11b)

(mind that for Bayesian least squares, e.g. the optimal estimate, eq. (4.59) holds instead) and variance

for the concentration field

σ2
ĉ (r) = var[ĉ(r)] = [φ(r)]T Sxφ(r). (5.11c)

Thus in principle, the impact of random noise can be estimated without any assumptions on the

unknown concentration c(r). But in practice the regularisation depends on the concentration field at

hand. For iterative solution the optimal iteration number, for example, takes quite different values

depending on the dimensions of the system Ax = d and the type of distribution, e.g. peaks or smooth

background etc. We look at the individual contributions ∆xreg and ∆xpert in more detail. Assuming

uncorrelated measurement errors Sǫ = σ2
ǫ
1m to simplify the formulas, a straightforward calculation
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Figure 5.4: (a) Contribution of the singular value σ̄ to the regularisation error ‖∆x̄reg‖2
2, eq. (5.13a), as a

function of the iteration number for four selected values of σ̄. (b) The same for ‖∆x̄pert‖2
2 in

eq. (5.13b).

by means of the SVD yields in general [Van der Sluis and van der Vorst , 1987]

‖∆xreg‖2
2 =

∑

i

x′
i
2
(f(σi,d) − 1)2 (5.12a)

E
[
‖∆xpert‖2

2

]
= σ2

ǫ

∑

i

(f(σi,d)

σi

)2

(5.12b)

E
[
‖x − xǫ‖2

2

]
= ‖∆xreg‖2

2 + E
[
‖∆xpert‖2

2

]
, (5.12c)

where f(σi,d) are the filter factors of the regularised solution, c.f. eq. (4.66), and x′ = V T x the vector

x in the system of singular vectors. Inserting the filter factors eq. (4.75) for SIRT like algorithms

eq. (4.72b) gives for the transformed system, eq. (4.71), Ā = L−1/2 AL
−1/2
φ , x̄ = L

1/2
φ x, d̄ = L−1/2 d

the bounds

‖∆x̄reg‖2
2 =

∑

i

x′
i
2
(1 − ω σ̄2

i )2k (5.13a)

E
[
‖∆x̄pert‖2

2

]
= σ̄2

ǫ

∑

i

(1 − (1 − ω σ̄2
i )k

σ̄i

)2

(5.13b)

with x′
i now as in eq. (4.76).

Their dependence on the iteration number k is sketched in fig. 5.4. Clearly, small singular values

have more impact on both errors than larger singular values (remember that 0 ≤ σ̄ ≤ 1). But

while the contribution to the regularisation error decreases in the course of the iteration (it has to

vanish for k → ∞, i.e. no regularisation), the perturbation error is monotonically increasing. The

perturbation error depends only on σ̄, i.e. the measuring system, while calculation of the regularisation

error requires the reconstructed state or the unperturbed column densities. Eqs. (5.12,5.13) are the

quantitative explanation for the semiconvergence of iterative algorithms in the presence of noise that

was mentioned in sec. 4.8.2.
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t
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Figure 5.5: Time series of a column density
showing stochastic variations that cannot be ex-
plained by the measurement error. The de-
viation around the mean can be used as an
estimate for the error ∆d associated with the
source of this error.

Errors if measurements do not refer to the same point or period of time

If not all light paths finally used for reconstruction measure at the same time, this will introduce an

error if the concentration distribution changes during the measurement interval. Examples of such

non-simultaneous measurements are setups where the complete geometry is obtained by scanning the

retro-reflectors in several steps (see secs. 3.4, 9.1) or aircraft and satellite measurements where the

geometry arises through the motion of the detector.

Temporal changes of the concentration field can be due to

1. varying sources, sinks or chemical transformation,

2. turbulent fluctuations,

3. changing meteorological conditions,

4. transport.

Concentrating on LP-DOAS measurements using multibeam instruments (see sec. 3.4), the measure-

ment cycle is of the order of minutes [Mettendorf et al., 2006] – details depending, of course, on the

number of steps necessary to generate the complete geometry, integration times etc. Variations in

1.-4. that are slow compared to this time scale can be neglected. If the variations are of stochastic

nature, like turbulences or traffic emissions in an urban environment, they will partly cancel when av-

eraging over the path. Otherwise, the error on the column densities related to them can be estimated

from column density time series, if all other factors remain stable (fig. 5.5). Errors due to changing

meteorology are best avoided by selecting stable periods.

For the tomographic reconstruction of concentration puffs that will be studied in part III changes of

the concentration field caused by wind transport are especially troublesome. The spatial scales, given

by ∆s = ū∆t and thus of the order of several hundred metres for wind speeds ū of a few metres per

second and measurement times ∆t of a couple of minutes, are comparable to the dispersion coefficients

for travel distances of a few hundred metres (c.f. fig 2.3). To quantify the error on the column densities,
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we consider two light paths which, if measured at the same time, would yield the column densities

d1(t) =

∫

LP1

ds c(r, t),

d2(t) =

∫

LP2

ds c(r, t).

If the actual measurement for LP2 takes place at t + ∆t, its column density is two first order in ∆t

given by

d2(t + ∆t) ∼
∫

LP2

ds c(r, t) + ∆t

∫

LP2

ds
∂c

∂t
.

Assuming that the dominant contribution to ∂c
∂t is given by advection with constant wind vector,

eq. (2.4) gives ∂c
∂t = −ū∇c = −ū∇ūc, where ∇ū is the directional derivative along the wind direction.

Writing the integrals as average quantities along the light path, one gets with ∆s = ū∆t

d2(t + ∆t) ∼ L c̄ − L∆s∇ūc.

The second term can be treated as small error ∆d, if

∆s
∇ūc

c̄
≪ 1,

or, in other words, if the relative average change of c along ū over the distance ∆s is much smaller

than one.

5.3. Numerical estimation of the reconstruction error

Even if the discretisation error can be neglected, an estimation of ∆ĉ(r) according to eq. (5.2) involves

assumptions about the unknown true state xid = xtrue. While the statistical impact of noise can easily

be estimated either analytically by eqs. (5.11) or by Monte-Carlo simulations, the calculation of the

inversion error is often reduced to a sensitivity analysis of the form: If my concentration profile is like

this, what does my retrieval look like?

Here, we refer to a statistical estimate of ∆ĉ(r) – including the discretisation error – based on a

sufficient number of simulated reconstructions for concentration fields cI(r), I = 1, 2, . . . , N , from a

suitable set (ensemble)

E = {admissible cI(r), I = 1, 2, . . . , N}. (5.14a)

If the cI are very similar, the sign of the individual reconstruction errors ∆ĉI(r) = cI(r) − ĉI(r) will

behave similar within the reconstruction area, too, and it makes sense to take the ensemble mean

〈∆ĉI(r)〉E . Otherwise one could use a positive quantity like 〈
√

(∆ĉI(r))2〉E , but then all information

about systematic over- or underestimation within the area gets lost. Instead of the mean reconstruction

error used by Laepple et al. [2004], we consider the error fields ∆+ĉ(r) and ∆−ĉ(r) as measures of



94 5. The Error of the Reconstructed Distribution

under- and overestimation, respectively, defined by

∆ĉ(r) = ∆+ĉ(r) + ∆−ĉ(r), where ∆±ĉ(r) =





∆ĉ(r) if ∆ĉ(r) ≷ 0,

0 else
. (5.14b)

Without measurement errors one gets thus the scheme:

c1(r) ∈ E forw. model−−−−−−−−→
di=

R

i
ds c(r)

d1
reconstruct−−−−−−−→ ĉ1(r) ⇒ ∆ĉ1(r) = c1(r) − ĉ1(r),

c2(r) ∈ E −→ d2 −→ ĉ2(r) ⇒ ∆ĉ2(r) = c2(r) − ĉ2(r),

...
...

...
...

⇒ ∆ĉ(r) ∼ 〈∆ĉI(r)〉E ,

or ∆ĉu/l(r) ∼ 〈∆±ĉI(r)〉E , (5.14c)

where ĉl,u(r) are the lower and upper bound of the reconstruction error as in eq. (5.1). In principle, an

ensemble of smooth, very similar random distributions can give rise to the same mean reconstruction

errors as an ensemble of highly fluctuating distributions (a less dramatic example will occur in chap. 9,

sec. 9.3). But the standard deviation will be much higher in the latter case. Therefore, we define the

lower and upper bounds of the reconstruction error as

∆ĉu/l(r) = 〈∆±ĉI(r)〉E ± stdE [∆±ĉI(r)]. (5.14d)

For simulated measurements, where the error free column densities d are known, the statistic contribu-

tion of an unbiased measurement error to the reconstruction error fields ∆±ĉ is given by the standard

deviation stdǫ[ĉ(r)], with ĉ retrieved from d. For linear reconstruction the standard deviation is given

by eqs. (5.11). The error bounds eq. (5.14d) take now the form

∆ĉu/l = 〈∆±ĉI(r)〉E ± stdE [∆±ĉI(r)] ± stdǫ[ĉ(r)]. (5.14e)

For actual measurements, where only the error afflicted column densities dǫ are known, one way to

get an estimate for the impact on the unknown column densities d is to calculate the mean impact

within the ensemble E by replacing the above simulation step with

cI(r) ∈ E −→ dI
+ǫ−−→ ĉI(r)

(·)
ǫ=⇒ ∆ĉI(r)ǫ

± stdǫ[ĉI(r)]

or ∆±ĉI(r)ǫ
± stdǫ[ĉI(r)] (5.14f)

to get the average

∆ĉ±(r) ∼ 〈∆ĉ±I(r)ǫ
〉E ± 〈stdǫ[ĉI(r)]〉E . (5.14g)

This approach was followed by Laepple et al. [2004]. But unless it can be shown that the synthetic

column densities obtained from the cI are a better estimate of d, there seems little reason to prefer

them to the measured column densities dǫ for the estimation, especially for small errors. Besides,

the ensemble estimate is computationally much more expensive if the standard deviations cannot be
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calculated analytically. In the following, the approach resulting in the bounds eq. (5.14e) will be

taken.

Strictly speaking only distributions consistent with the actually measured column densities d =

(d1, . . . , dm)T should be taken into account, i.e.

E = {admissible cI(r)
∣∣∣ |di −

∫

LPi

ds cI | ≤ σǫi, i = 1, . . . ,m}, (5.15)

but this is rather involved in practice. Instead it is assumed in the following that the ensemble means

〈∆(±)ĉI(r)〉E for suitably chosen E are good estimates for the reconstruction error of the concentra-

tion field ĉ retrieved from experiment, without demanding consistency of the column densities. The

test concentrations cI can be provided by model calculations, be based on the assumption that the

reconstruction is correct within certain bounds (see appendix B and also sec. 7.4) etc. One should

notice that, in general, the ensemble will be biased in the sense that

〈ĉI(r)〉E 6= ĉ(r). (5.16)

5.4. Overall reconstruction errors and quality criteria

The spatial dependency of the reconstruction error is not always of interest. A typical situation where

the error field is an inconvenient quantity is the following. You want to find optimal parameters of the

reconstruction procedure for a possibly large number of test concentration fields which hopefully come

close to the unknown real one. These parameters are then used for the actual reconstruction from the

measurement data (see sec. 6.4). For the processing of larger amounts of data you therefore want a

simple criterion, best a number Q, telling that if for two sets of parameters p1 and p2 Q1 > Q2 then

reconstruction with p1 is better (or worse) than with p2. Denoting the true (simulated) quantities as

c, d, the reconstructed ones as ĉ, x̂ and defining d̂ = Ax̂, then two cases can be distinguished.

(i) Quality criteria based on the measurements, i.e. Q = Q(d, d̂):

The most simple number constructed from d, d̂ is the data residual, c.f. eq. (4.65), i.e. the overall

agreement between measured and reconstructed data

‖∆d‖2 = ‖d − d̂‖2 (5.17)

or the relative data residuum if it is normed by the column densities. Another quantity that has

the advantage of being normalised is the correlation coefficient between the di and d̂i (see below).

However from the discussion so far it follows:

• In the under-determined case of an ill-posed problem, quality criteria based on the agreement

between measured (simulated) and reconstructed path integrals are not decisive as the measured

data can be reproduced by (in general) infinitely many solutions. A regularised solution with

higher residual can easily be better than an unregularised solution with vanishing residual. In

fact, for a measurement error ǫ it does not really make sense to strive for a residuum smaller

than ‖ǫ‖2.

• If the solution of the over-determined problem involves ‖d − Ax̂‖2 = ‖d − d̂‖2 in the cost
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function, as it does in the least squares fit, the residual can be regarded as a measure for the

quality of the solution – provided that the measurement errors are not too large. If they are, small

residual means fitting to noise. For the regularised solution the data residual is in general not

a useful indicator. We refer here to the discussion of the choice of the regularisation parameter

in [Twomey , 1997] and [Hansen, 1998, chap. 7]. In any case, forcing the data residuum to be

smaller than ‖ǫ‖2 is questionable.

To sum up, quality criteria based on data agreement possess the attractive feature that they do not

rely on the unknown concentration field. But for the (linear) ill-posed inverse problem they are of no

use in the under-determined case. In the over-determined case their significance depends on kind and

degree of regularisation.

(ii) Quality criteria based on unknown concentrations, i.e. Q = Q(c, ĉ) or Q(x, x̂) :

We consider criteria for the continuous c(r), ĉ(r) first. The average reconstruction error V−1
∫
Ω

dV∆ĉ(r) is not suitable because over- and underestimation cancel each other within the area or

volume Ω. Instead one could use
∫
Ω

dV|∆ĉ(r)| or
∫
Ω

dV[∆ĉ(r)]2 = ‖∆ĉ(r)‖2
2. The integrated square

of the reconstruction error is mathematically more appealing. Especially

E
[
‖∆ĉ(r)‖2

2

]
= ‖∆cdisc(r)‖2

2 + ‖∆ĉinv(r)‖2
2 + ‖∆ĉreg(r)‖2

2 + E
[
‖∆ĉpert(r)‖2

2

]
. (5.18)

This holds only if the discretisation error is defined as in eqs. (5.5). We note in passing that if Sx as

in eq. (5.11b) is known, it follows immediately that

E
[
‖∆ĉ

ǫ
(r)‖2

2

]
= tr [Sx Φ] .

These equations imply that the different contributions to the overall error defined by the 2-norm

can be calculated individually and added up later. And it means that one does not have to vary all

parameters at once, but can vary e.g. parameters for the discretisation first, then vary measurement

errors and so forth. The quasi normalised key figure nearness, built from ‖∆ĉ(r)‖2, was introduced

by [Herman et al., 1973; Herman and Rowland , 1973] into tomographic image reconstruction:

NEARN = ‖c(r) − c̄‖−1
2 ‖∆ĉ(r)‖2, with c̄ = V−1

∫

Ω

dV c(r). (5.19)

If the reconstruction ĉ(r) = [φ(r)]T x̂ equals the spatial mean c̄ of the unknown concentration field

(i.e. x̂ = const) then NEARN = 1. Vice versa, if NEARN = 1 then the retrieved field has the

same overall reconstruction error in terms of nearness as the spatial mean of c(r) would have.

If the real and reconstructed concentrations are compared not on the entire area or volume V but on

a subset of points {ri}N
i=1, then evaluating the agreement between the real concentrations ci = c(ri)

and the reconstructed ĉi = ĉ(ri) corresponds to the problem of atmospheric model evaluation from

N measurements or from simulations for a fixed time. An exceeding number of measures (also called

indices or metrics) is used for this purpose, depending on whether the spatial evaluation concerns

meteorological parameters, chemical transport or air pollution models. In the context of dispersion

modelling a set of mostly statistical and relative2 measures suggested by Hanna [1989] frequently

2Air quality assessment usually uses relative numbers to evaluate model performance while for meteorological models
absolute numbers are prefered. The reason being that the significance of a relative error can be very different for
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metric Q analytical or statistical expression range best

overall error

nearness NEARN =
`

σ −2
c (∆ĉ)2

´1/2
0 ≤ NEARN 0

normalised mean

square error NMSE = (c̄ ¯̂c)−1 (∆ĉ)2 0 ≤ NMSE 0

index of agreement IOA = 1 − (|c − c̄| + |ĉ − ¯̂c|)2
−1

(∆ĉ)2 0 ≤ IOA ≤ 1 0

normalised mean

absolute error NMAE = c̄ −1 |∆ĉ| 0 ≤ NMAE 0

bias
normalised mean

bias NMB = c̄−1 ∆ĉ 0 ≤ NMB 0

fractional bias FB = 1
2
(¯̂c + c̄)−1 ∆ĉ −2 ≤ FB ≤ 2 0

correlation r = (σc σĉ)
−1 (c − c̄)(ĉ − ¯̂c) −1 ≤ r ≤ 1 1

other
fraction of factor 2 FA2 = %-age of data with 1

2
≤ ĉ

c
≤ 2 0 ≤ FA2 ≤ 100% 100%

peak prediction
accuracy PPA = c−1

max ĉmax −∞ ≤ PPA ≤ ∞ 1

peak integral

prediction accuracy PIPA = (
R

Peak
c)−1

R

Peak
ĉ −∞ ≤ PIPA ≤ ∞ 1

Table 5.1: Quality measures considered in this thesis. For evaluation of the tomographic reconstruction c
is the true, i.e. simulated field, ĉ the reconstructed. For model evaluation c refers to measured
concentrations and ĉ to the modelled ones. The mean (·) can be understood as (·) = V−1

R

Ω
dV (·)(r)

or N−1P

i(·)i, both being identical for N → ∞. In the same sense σ2
(·) =

`

(·) − (·)
´2

. cmax, ĉmax

are the absolute maximum values of c(r), ĉ(r) within Ω.
R

Peak
is the integral within the area of a

peak (eq. (5.20)) so that PIPA measures the precision of reconstructed total emissions (see text).

appears in the literature, some of which are listed in table 5.1 and will be used later. The normalised

mean square and absolute error NMSE and NMAE measure the overall discrepancy between the

measured or simulated concentrations ci and the values ĉi predicted by the model. Normalised mean

and fractional bias NMB and FB indicate how much the model average concentration value differs

from the observed mean. r is the common (Pearson) correlation coefficient so that a value of 1 means

perfect correlation, −1 perfect anticorrelation and a value of 0 no correlation. FA2 is self-explanatory.

The index of agreement IOA was defined by Willmott [1981] to include the variances between model

and measurement and between model, measurements and the model mean in one quantity. In contrast

to r it is sensitive to model and observed means. Values of 0 mean perfect agreement, 1 poor agreement.

The non-statistic peak prediction accuracy PPA refers to the (unpaired) absolute maxima of original

and reconstructed distributions within Ω.

For the 2-D simulations in part III one further index is introduced. Thinking of concentration peaks as

emission plumes or puffs, a measure for the precision of reconstructed total emissions suggests itself.

The peak integral prediction accuracy PIPA

PIPA =

∫
Peak

dA ĉ(r)∫
Peak

dA c(r)
(5.20)

different meteorological parameters. Just think of a 10% error on a wind speed of 10 m/s (1 m/s) versus the same
relative error on a temperature of 300 K (namely 30 K !).
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compares the concentration integrated over the area of the reconstructed peak with the one of the

original. For the evaluation of the integrals in the case of Gaussian peaks, 3×max(σx, σy) is taken as the

radius of the original peak distribution (at 3σ the peak value has fallen to 1%). For the reconstructed

peak, one pixel length of the reconstruction grid is added to this radius to take account of the spreading

within the pixels for the box basis and the interpolation between neighbouring grid points for the linear

basis functions, respectively. This, especially in the case of several large distributions with overlap

and for larger pixel sizes, will only be a rough estimate. If the concentration peak originates from

point source emission, then by writing the emission rate q̇ (in units kg · s−1) like

q̇ =

∮
dA u c(r) ∼ u⊥

∫

Plume

dA c(r),

it can be seen that PIPA = ˙̂q/q̇ = q̂/q provides a measure for the precision of emission rates or

total emissions (if the wind speed has a component perpendicular to the reconstruction area). For

horizontal cuts through the atmosphere this is the case, e.g., if the area contains a source with vertical

transport. For horizontal transport of a plume this number can be related to total emissions only

with further assumptions on the vertical dispersion since its release.

Finally, the case Q = Q(x, x̂) can be obtained by choosing the sample points ri such that they coincide

with the boxes for the piecewise constant discretisation or the grid nodes for the linear discretisation,

i.e. ci = xi, ĉi = x̂i. We conclude this chapter by some remarks

• Evidently, one measure is not enough to grasp the continuous field ∆ĉ(r) completely. Therefore,

depending on the application a variety of more or less specific criteria exists apart from the

ones in table 5.1. For higher resolved fields far more refined evaluation methods can be applied,

especially for time dependent analysis.

• Quality criteria can differ largely in their degree of sensitivity to error patterns. For exam-

ple, the correlation coefficient is insensitive to an overall offset between measured and mod-

elled/reconstructed values, no matter how large this offset is, whereas it would give a large

contribution to, e.g., NMSE.

• Above all, the significance of most quality measures is a relative one, because its rough size largely

depends on the concentration fields. For example, the best possible modelling or reconstruction

of a sharp concentration peak will in general have larger r values than a poorly modelled or

reconstructed smooth background concentration.
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The focus of this work with respect to the reconstruction method lies on improved parametrisation

of the discrete inverse problem as well as on the choice and implementation of a priori assumptions

as they might typically occur in atmospheric applications and not on algorithm development for

the inversion of the discrete system of equations itself. Therefore, after a brief summary of the

reconstruction method as far as it was described in chap. 4 and has been applied before in the theoretic

study [Fleming , 1982] for satellite tomography of trace gases, by Todd and Ramachandran [1994a] for

indoor gas concentrations1 and by Laepple et al. [2004] for the reconstruction of a motorway emission

plume in sec. 6.1, sec. 6.2 presents generalisations of the so-called grid translation method suggested

by Verkruysse and Todd [2004] that relies on reconstructions from several grids. The subsequent

sec. 6.3 introduces a priori constructions for the (under-determined) least-squares problem based on

the kind of concentration distributions discussed in chap. 2. After a discussion of additional linear

(in)equality constraints, the grid translation scheme is revisited in sec. 6.3.4 for peak concentrations to

introduce the maximum reconstructed value as constraint. Finally, sec. 6.4 reviews all variables of the

reconstruction method as it will be used in part III and how they are optimised through simulations.

6.1. Reconstruction principle and inversion algorithm

It was argued in sec. 4.2 that long-path DOAS tomography is not fit for the application of transform

methods like the filtered back projection (sec. 4.2.1). The alternative formulation in terms of a finite

number of parameters can lead to a linear or nonlinear problem. The former allows powerful concepts

from linear inverse theory like the resolution matrix (averaging kernels) and simpler discussion of

reconstruction errors (see secs. 5.2.2, 5.2.3), the latter in general requires global optimisation algo-

rithms, except for special cases where linearisation is possible or where particular algorithms exist

(c.f. sec. 4.9.1). For these reasons I have chosen the parametrisation by local basis functions described

in sec. 4.3.2 for this first systematic study of the possibility to reconstruct various forms of atmo-

spheric trace gas distributions from realistic long-path DOAS tomographic measurements. This does

not mean that for certain applications special schemes like the fit of Gaussian distributions (SBFM,

sec. 4.9.3) may not lead to better results, but we want to keep the discussion general and among other

drawbacks, the last example introduces unavoidable functional a priori that is not always appropriate

(for example not in the case of the motor way emission plume in [Laepple et al., 2004]2, see also

fig. 5.3a, p. 88).

The resulting linear discrete ill-posed problem is replaced by a least-squares least-norm principle as in

secs. 4.6.1, 4.6.2. Demanding a minimum norm of the solution is mathematically appealing. Alterna-

tively, often the weighted sum of the residual and the norm of the solution or discrete approximations

1Both only with piecewise constant basis functions.
2Private communication with T. Laepple.
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of its gradients or higher derivatives serves to regularise (Tikhonov regularisation, sec. 4.6.3). It can

thus be used as a selection criterion to smooth the solution for the right choice of the ad hoc weight.

For the applications in part III neither of these reasons appeared to be critical so that this approach

was not considered here.3

The least-squares least-norm problem plus nonnegativity constraint is solved iteratively as discussed

in secs. 4.8.1, 4.8.3 by row acting methods (sec. 4.8.4), where only ART and SIRT will be considered

as representatives for the sequential and simultaneous algorithms. The simultaneous SART was found

to be less appropriate for the reconstruction of Gaussian peaks in [Todd and Ramachandran, 1994a].

The implicit weighting of these algorithms according to eq. (4.74) will not be corrected and ignored

in the subsequent discussion because for ART and SIRT it only acts on the norm of d − Ax and in

the under-determined case, which is the most relevant in the following, this kind of weighting is not

or less effective. Furthermore, the relaxation parameter ω, usually used to speed up the convergence

for large systems of equations, will not be varied and set to one as the systems in the following are

rather small. Regularisation, if necessary, is carried out iteratively, as discussed in sec. 5.2.3.

6.2. Reconstruction grid

The development of the reconstruction procedure in chap. 4 tacitly assumed that the parameters of

the discretisation are the same as the ones entering the least-squares fit, in other words, that the

discretisation grid coincides with the reconstruction grid. For the over-determined case it is easy

to think of schemes for which this is not the case, especially if the discretisation is carried out by

quadrature as sketched in sec. 4.3.1 (see [Doicu et al., 2004] for a 1-D example). In this work they are

identical.

Piecewise constant and linear basis functions are constructed by tensor products of one dimensional

functions (sec. 4.3.2) so that the supports of the piecewise basis functions are rectangular (boxes).

For discretisation that is fine relative to the whole area this is not a problem, but for very coarse

discretisation this may become critical, e.g., if the region defined by the light paths is triangular.

Reconstruction grid means in the following the set of points consisting in the corner points of the

boxes (which are the discretisation nodes in the case of the bi(tri)linear basis functions). The number

of parameters, i.e. the number of boxes for the piecewise constant or the number of grid nodes in

the case of the linear basis functions, is refered to as grid dimension. The region of interest, the

reconstruction area or volume, is always such that it is defined by the outermost grid points.
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Figure 6.1: The ideal reconstruction grid. How has
the box length x of the lower box to be chosen so that
for the two light paths shown the singular values of
A, and therefore their information content, become
as equal as possible ?

LP1

l1

l2

x

LP2

6.2.1. The ideal reconstruction grid

We assume for the moment that no additional information enters the problem, i.e. there are as many

integration paths as parameters to be determined: m = n. The ideal parametrisation of c(r) by the

basis functions would be such that A becomes diagonal with entries of the same size. Then these

coincide with the singular values which are equal to the roots of the eigenvalues of AT A or AAT , see

eqs. (4.21), and thus carry all the same information content according to eq. (4.61). For typical light

path geometries as in fig. 3.5, p. 44, and basis functions with rectangular support diagonal A is in

general not feasible, but one can try to choose the grid such that singular values do not become too

different. To see how this can be accomplished Gerschgorin’s theorem4 is applied to the eigenvalue

system of AT A to give the following bounds on any singular value σ

∑

i

a2
ij ≤ σ2 ≤

∑

i

a2
ij +

∑

j′ 6=j

∑

i

aijaij′ (6.1a)

∨
∑

i

a2
ij −

∑

j′ 6=j

∑

i

aijaij′ ≤ σ2 ≤
∑

i

a2
ij (6.1b)

for some j. For the box basis
∑

i a2
ij measures the total square length of all light paths added up in

box j.
∑

j′ 6=j

∑
i aijaij′ is basically the overlap of the light paths. As tr[AAT ] =

∑
i,j a2

ij =
∑

j σ2
j

eqs. (6.1) imply that the grid has to be chosen such that the lengths of the light paths within the

boxes have to be similar and that the overlap has to be small compared to it. Conversely, a singular

value can become small if a light path’s length goes to zero (eq. (6.1a)) or, for arbitrary length, if the

grid is chosen in a way that results in large overlap with other light paths (eq. (6.1b)). To study the

question of the right grid quantitatively, we consider the following simple

Example: A =
` a11 a12

a21 a22

´

with box basis functions and light paths of lengths l1, l2 as in fig. 6.1, i.e.

a11 = x, a12 = l1 − x and a21 = x, a22 = l2 − x if x ≤ l2, a21 = l2, a22 = 0 otherwise. What value

x should the box length have to minimise the difference between the two singular values σ1, σ2? The

singular values are

σ2
1/2 = 1

2
tr[AAT ] ± 1

2

p

tr[AAT ]2 − 4 det[A]2. (6.2)

The general expression for x minimising the root is quite lengthy, so I give three examples instead for

l1 = 2 a.u. and the following values for l2:

3Price et al. [2001] have applied the Tikhonov approach minimising the discrete approximation of the third derivative
to the reconstruction of indoor gas concentrations. The method hardly needs the nonnegativity constraint and is
therefore linear. Unfortunately, this study is not systematic with respect to the shape of the distribution and does
not compare its method to other solutions like the minimum norm solution.

4Gerschgorin’s theorem sais that for each eigenvalue λ of a matrix M there is an i such that

|λ − mii| ≤
X

i′ 6=i

|mii′ |.
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combined grid

∆y

∆x ∆x/(2 + 1)

j

J

original grid subgrids (mx = my = 2)

Figure 6.2: 2-D grid translation scheme proposed by Verkruysse and Todd [2004] for a rectangular reconstruc-
tion area and grid, depicted here for a square area with identical spacing in x and y of the grid which
is shifted twice in both directions. The dimension of the final composite grid is N = [3·2+1]2 = 49.
Mind that the subgrids have different dimensions. Subgrids with small boxes near the boundaries
cause smaller singular values according to sec. 6.2.1.

l2 [a.u.] x [a.u.] σ2 [a.u.] σ2 [a.u.]

0.5 0.877 1.460 0.385

1 0.909 1.589 0.572

1.5 0.911 1.590 0.573

This may be not what one expects and illustrates the intricate interplay between the box-lengths of

the light paths (the trace term in eq. (6.2)) and their overlap (which leads to small determinants in

eq. (6.2)). For complex irregular light path geometries the design of an ideal grid from the singular

values’ point of view will become quite complicated and a constructive method needs further thought.

But one should be aware of the fact that the reconstruction method finally will not use the exact

singular values of A, if a priori (or constraints etc.) enters the problem.

6.2.2. Combining grids for the reconstruction

While the type of basis functions φj and the location of the grid nodes may be only of minor importance

for very fine discretisations, the shape of the reconstruction is mainly given by the φj(r) if c(r)

is represented only by a few basis functions. In this case, especially if the light path geometry is

irregular, the exact position of the grid nodes is to a large extent arbitrary, which suggests to take

into account representations based on different grids (provided that these are equally sensible).

Motivated by the fact that a reconstruction underestimates the maximum value of a sharp peak if

the position of the original peak lies unfavourable relative to the boxes of the reconstruction grid,

Verkruysse and Todd [2004] suggested to use several grids shifted against each other in the plane as

shown in fig. 6.2. The reconstruction result is then defined on the grid that arises from putting these

subgrids on top of each other and attributing to a box of this higher resolved grid the concentration

that corresponds to the ‘nearest’ of the boxes among all subgrids (nearest is defined by the grid lines

and if there are several equally near, the average concentration is taken). This ‘grid translation’

scheme was defined for box basis functions and a regular original grid that was shifted mx times in

x-direction and my times in y-direction like this: The first grid is generated by shifting the original

nodes by ∆x/(mx + 1) in x-direction, where ∆x is the x-distance between two nodes of the original
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grid. This is performed mx times, then the initial grid is shifted by ∆y/(my+1) in y and the procedure

is repeated, and so forth.

The idea was adopted in [Hartl et al., 2006] for bilinear basis functions. The reconstruction area is

assumed to be rectangular, as the applications in part III are all on rectangular areas. The shape

of the reconstruction area is not essential but, especially for the bilinear basis, the design of regular

shifted grids for irregular areas becomes difficult or impossible unless the number of basis functions

is increased significantly. As before, the final, higher resolved grid is given by the union of the nodes

from all subgrids and the parameter vector X = (X1, . . . ,XN )T for this grid is defined in two different

ways:

(i) In a composite scheme the component XJ for grid node rJ is taken from the Ith subgrid that has

a coinciding node there:

XJ = ĉI(rJ ). (6.3)

The boundary grid lines do not change and here the average of coinciding nodes is taken. This scheme

corresponds to the suggestion by Verkruysse and Todd [2004] for the box basis.

(ii) In the avaraging scheme XJ is taken as the average of all subgrid reconstructions evaluated on

grid node rJ :

XJ =
1

M

M∑

I=1

ĉI(rJ ), (6.4)

where M is the number of subgrids. This scheme is completely linear.

If the subgrids are generated by the translation of an original grid as sketched above and shown in

fig. 6.2, this results in M reconstructions for the subgrids and a total of N nodes for the composite

final grid given by

M = mxmy + mx + my + 1 (6.5a)

N = [(mx + 1)(nx − 1) + 1][(my + 1)(ny − 1) + 1], (6.5b)

where nx and ny are the numbers of nodes in x- and y-direction. Both schemes will be discussed in

detail in 8.2.3.

6.3. A priori and constraints

A priori knowledge is any information available prior to the reconstruction, in terms of probabilities,

equalities, inequalities etc. Here – as often done in the literature – we refer to a priori as an initial

guess xa of the parameter vector x with or without additional information about its uncertainty. Such

an a priori is always present for an under-determined least-squares problem and corresponds to the

iteration start x(0) for the iterative row acting algorithms discussed in sec. 4.8.4. We are now going

to specify it for the reconstruction of atmospheric concentration distributions in part III.
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6.3.1. Choice of the a priori

According to eqs. (4.56) the contribution of the a priori to the least-squares least-norm solution is

given by (1n−R)xa, where R is the resolution matrix of the linear inversion.5 We assume throughout

the following an a priori that is completely noncommittal with respect to the spatial distribution, i.e.

xa = ca(1, . . . , 1)T ⇒ [(1n − R)xa]j = ca(1 −
∑

j′

Rjj′). (6.6)

Following the discussion in chapter 2, two scenarios for the concentration ca are distinguished.

(i) Locally enhanced (or reduced) concentrations (e.g. emission puffs or plumes) where the concentra-

tion peaks or sinks are on confined areas within the total reconstructed region. A typical example for

a “negative peak” would be local ozone depletion due to strong emission of NO. ca is set to zero if the

background concentration of the trace gas of interest is negligible. The case of substantial background

concentrations is addressed in the next section.

(ii) Smooth concentration distributions without significant peaks. In this case an average concentration

is taken as a priori that is obtained from the measurements as

ca =
1

m

m∑

i=1

ci =
1

m

m∑

i=1

di

Li
, (6.7)

where Li is the length of LPi.

Using the definitions of chap. 5, an incorrect a priori is related with the inversion error according to

eq. (5.10). An estimated error ∆ca of ca leads to a contribution

(∆x)j = (1 −
∑

j′

Rjj′) ∆ca (6.8)

to the inversion error.

6.3.2. Background concentrations

We refer to the peak scenario in sec. 6.3.1(i). Background is understood in a graphical sense as what

remains of the distribution after subtracting the peak(s) and it does not have to agree with the natural

background or any other atmospheric offset concentration. Taking into account the limited resolution

of the tomographic experiments here, only constant background is considered

cBG(r) ≡ cBG, i.e. xBG = cBG(1, . . . , 1)T . (6.9)

(i) Fitting the background:

Inserting

c(r) = c′(r) + cBG (6.10a)

5And in the unweighted case P = (1n − R) is the projector onto the nullspace of A, see eq. (4.55).
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into the forward model di =
∫

i
ds c(r) leads to the discrete system

d = B y, with B = (A l) (6.10b)

y = (x′, cBG)T (6.10c)

and l = (L1, . . . , Lm)T is the vector of the light path lengths.

In the over-determined case a least-squares fit with the additional parameter cBG leads to (see appendix

C)

x′ = (AT LA)−1AT Ld = A†
Ld (6.11)

cBG =
lT

lT l
(1m − RL)d,

where L = lT l1m − llT and RL = AA†
L is the resolution matrix of the weighted inverse in eq. (6.11).

In the under-determined case the least-norm principle can be applied to the variation x′ alone, i.e. to

‖x′‖2. Minimisation of both variation and background can be obtained by ‖y‖2, while
∑

j(x
′
j − cBG)2

minimises the deviations from the background. All three cases can be written as yT Hy with suitable

matrix H, and the solution of the corresponding least-norm problem

min
y

yT Hy, d = B y

can be expressed as weighted least-norm solution for x′ with a priori x′
a (c.f. appendix C). For the

three special choices one gets

H =




1

. . .

1


 :

x′ = AT (AAT + llT )−1d

cBG = lT (AAT + llT )−1d,
(6.12a)

H =




1

. . .

1

0




:
x′ = AT

(1m − (AAT )−1
ll

T

lT (AAT )−1l

)
(AAT )−1d

cBG = l
T

lT (AAT )−1l
(AAT )−1d,

(6.12b)

H =




1 −1

. . .
...

1 −1

−1 . . . 1 n




:
x′ =

(
AT − AT (AAT )−1

ll
T − 1

2 ll
T

lT (AAT )−1l

)
(AAT )−1d

cBG = 1
2

l
T

lT (AAT )−1l
(AAT )−1d.

(6.12c)

The sum x = x′ + cBG(1, . . . , 1)T is the same for the last two cases. The background in eq. (6.12b)

can be written as

cBG =
lT

lT (AAT )−1l
(AAT )−1d =

1

rank[A]

∑

j

x†
j ,

with x† = A†d and for more or less constant c(r) ∼ c this is roughly the same as ca in eq. (6.7).6

6In fact, cBG in eq. (6.12b) can also be written as cBG = rank[A]−1
P

i
d′

i
l′i

e′i
2 where d

′, l
′ and e

′ are the vectors d,

l and e = (1, . . . , 1)T in the system of singular vectors. As the transformation to this system is orthonormal, the
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(ii) Subtracting the background:

The idea is to subtract the background as an offset on both sides of eq. (6.10b) and to solve the

reduced system

d′ = d − cBGl = Ax′. (6.13)

The rationale behind subtracting cBG rather than using it as a priori is that the reduced system

eq. (6.13) with zero a priori and positivity constraint allows finer discretisation as will be shown in

sec. 8.5. In principle, cBG can be taken from a fit as in (i), but the choice

cBG = min( d1

L1
, · · · , dm

Lm
) (6.14)

assures positive d′i. The case of a local sink can be treated accordingly, if after subtraction of the

background the reduced system is written as d′′ = −d′ = Ax′.

6.3.3. Additional constraints

Additional constraints to the system Ax = d can arise from further measurements (c.f. sec. 7.3), from

model estimates or they may occur in simulations. Linear inequality constraints can be implemented

in the same way as the positivity constraint through iterative projection (secs. 4.8.1, 4.8.4). Linear

equalities of the form

Fx = c, F ∈ Rf×n (6.15)

lead to the augmented system

(
A

F

)

︸ ︷︷ ︸
A ∈ R(m+f)×n

x =

(
d

c

)

︸ ︷︷ ︸
d ∈ R(m+f)

, (6.16)

where the rows should have similar weights, i.e. be multiplied with suitable factors if necessary. The

associated least-squares and least-norm problems can be solved iteratively for the system Ax = d in

the nonlinear constrained case or explicitly in the linear case as shown in appendix C:

x = (AT A + FT F )−1(AT d + FT c) if m + f ≥ n, (6.17)

see also eqs. (4.60), and

x = AT (AAT )−1d + PAxa

= xa + PF AT
(
APF AT

)−1
(d − Axa)

+ PAFT
(
FPAFT

)−1
(c − Fxa) if m + f ≤ n, (6.18)

with P as in eq. (4.55).
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Figure 6.3: Example showing how the recon-
structed peak height gets reduced by averaging
over shifted grids. The initial regular grid car-
ries five linear interpolation nodes and is shifted
twice in x-direction. The Gaussian peak is as
in fig. 5.3b. The solid lines show the ideal dis-
cretisation (sec. 5.2.1) for the shifted grids, the
dashed line is their average. x [a.u.]
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x
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6.3.4. Fitting peak maxima

The grid averaging scheme (sec. 6.2.2) will inevitably smear narrow peaks and reduce the maximum

value, c.f. fig. 6.3. Looking at the individual subgrid reconstructions of Gaussian peaks (chap. 8)

it was observed that the grid node of the absolute maximum of all subgrids correlates well with the

grid node next to the actual peak maximum. Furthermore, the grid nodes and the values of the

reconstructed absolute maximum among the subgrids agrees well with what can be expected from an

ideal parametrisation of the Gaussian peak (sec. 5.2.1). It thus makes sense to regard this absolute

maximum cmax = ĉI(rJmax) belonging to subgrid I and the node Jmax of the composite grid as a

better representation of the true maximum than the averaged value XJmax according to eq. (6.3).

Therefore, the grid averaging scheme is run a second time with the additional constraint

xI
Jmax = cmax (6.19)

for all subgrids I = 1, . . . ,M as described in the preceding section. Results for this procedure will be

presented in sec. 8.2.3. In principle, several local maxima could be treated in the same manner.

6.4. Finding optimal settings from simulations

The variables for the reconstruction procedure sketched so far are summarised in fig. 6.4. A specific

choice of these parameters leads to a reconstruction result and an error estimate, e.g. by the numerical

scheme eqs. (5.14), related to this particular setting. The aim is, of course, to find the optimal setting

in the sense that it leads to smallest possible reconstruction errors. Similar to the numerical error

estimation this can only be done by simulated reconstruction for suitable test distributions. As now

the reconstruction error averaged over the ensemble has to be compared for possibly many realisations

of the parameter set P, scalar quality measures Q as discussed in sec. 5.4 are evaluated rather than

the error field ∆ĉ(r). For a choice of parameters p ∈ P a simulation step for the test distribution cI

from the ensemble E takes the form

cI(r) ∈ E forward model−−−−−−−−−→
di=

R

i
ds c(r)

dI
reconstruct−−−−−−−→

p
ĉ(r) ⇒ Q(cI , ĉI , p). (6.20)

latter expression should be comparable to ca in eq. (6.7).
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nonnegativity x ≥ 0

gridcomposite
scheme

numb. boxes n,
boxes j

numb. nodes n,
nodes rj

fitting peak

discretisation

ART SIRT

algorithm

iteration number k

BG, mean0

a priori xa

subtract BG

constraints

bilinear φ1box φ0

averaging

Figure 6.4: Choices for elements of the reconstruction procedure applied in part III.

Taking the ensemble average and repeating the procedure for all parameters p1, p2, . . . ∈ P yields the

optimal parameters as those for which 〈Q(cI , ĉI , p)〉E shows the optimum.

In general, measurement errors should be taken into account – not only if the parameter varied is the

regularisation parameter (iteration number) – as in eqs. (5.14), so that finally the expression

〈Q(cI , ĉI , p)
ǫ
〉E (6.21)

has to be optimised with respect to the parameters p.



7. Designing a Tomographic Experiment

This chapter covers various aspects relevant for planning a tomographic measurement and its targets

but not affecting the reconstruction procedure as such. Secs. 7.1, 7.2 deal with the setup of the

path geometry and related questions like: How many light paths are minimally necessary? or How

much information will be lost due to noise? etc. The inclusion of additional (point) measurements

is discussed in sec. 7.3 depending on whether these are treated equally to the path measurements or

regarded as a priori that might be overridden by the latter. The last section examines how a tomo-

graphic reconstruction can be used for model evaluation (statistically, see sec. 5.4) or even verification

(deterministically, e.g. sec. 5.3), inevitably involving both the reconstruction error and the model un-

certainty. It briefly addresses the problem of relating concentration values from point measurements

to modelled values thus following up the discussion in secs. 2.3, 2.4.

7.1. Requirements for the setup – number of light paths

∆cdisc(r)

grid

mesh size
of light
paths

maximal
disc. error

maximal
rec. error

n

m ∼ n

e.g., eq. (7.1)

e.g., eqs. (5.8)∆cdisc ≤ ∆ĉ − ∆ĉinv

∆V

m

sec. 5.2.1

∆l

box size

∆s

∆V1/(2 or 3) or ∆l ≪ ∆s

V/∆V

∆ĉ(r)

size of
spatial

structures

number of
light paths

dimension

Figure 7.1: Estimation of the number of paths necessary for a maximally acceptable reconstruction error or
minimally resolvable spatial structures and vice versa, neglecting the measurement error and as-
suming the even-determined case.

Evident questions for a tomographic experiment are of the sort “Given a hypothesis or model as-

sumption on the spatial distribution of a certain trace gas, what experimental setup, i.e. essentially

what number of light paths is needed for its verification or falsification?”. This translates into a max-

imally acceptable error of the reconstructed distribution or a minimum resolving power for spatial

structures. Fig. 7.1 illustrates the conclusion to the number of light paths necessary to meet the

requirements under the assumptions that no further (a priori) information is included and that the

measurement error plays a minor role. The mesh size of the light paths in fig. 7.1 is understood as

the typical, smallest area enclosed by the crossing rays and, obviously, it can vary significantly within

the reconstruction area or for different directions. For DOAS measurements the complete geometry

109
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∆l

α

∆α
l

Figure 7.2: Illustration of the mesh size ∆l for a typi-
cal fan beam geometry generated by static emitting or
receiving instruments.

is generated by telescopes emitting (or receiving) light for different angles αi (elevations in the case

of vertical measurements).

For example, assuming a number of nt static instruments and ∆αi = αi+1 −αi ∼ ∆α to be more or less

the same for all instruments, then the size ∆l of the light path meshes in the centre of the reconstruction

area of size l × l and the number m of the light paths according to fig. 7.2 are related roughly via

∆l ∼ 1√
2

∆α l ∼ O(1) α nt l m−1, (7.1)

where the same number of rays and angle of beam spread α for all telescopes was assumed.

7.2. Light path geometry – degrees of freedom and influence

of the a priori

The preceding section related the light path geometry to the discretisation. Unless there is a continuous

a priori ca(r) the role of measurement error and a priori for the geometry can be discussed in the

discrete vector space in terms of linear algebra.

(i) Arguments based on the discrete forward model only :

Without measurement error the arrangement of the light paths for a given number of discretisation

parameters n is as good as it can be if

rank[A] = min(m,n).

Components of x in the n − rank[A]-dimensional nullspace of A are given by information other than

the measurement data. According to sec. 4.5, x can be represented in the basis of singular vectors as

x =
∑

j x′
jvj , where the vj with j = rank[A] + 1, . . . , n span the nullspace. Consequently, one gets

for the matrix V of the column vectors vj :

If
∑

j′>rank[A]

V 2
jj′ =

{
0

1

}
, then xj is fixed completely by the

{
data

a priori or constraints

}
. (7.2)

How this picture changes in the presence of measurement errors has been implicitly addressed in sec. 4.4

on the ill-posedness of the tomographic reconstruction and in sec. 6.2.1 on the ideal reconstruction

grid. The former discussion suggests that the light paths should be as linear independent as possible.

The latter discussion used the eigenvalues of AT A but it can be led in the same way for AAT , showing
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that the geometry should be such that the individual paths have similar length and as little overlap in

the boxes as possible to ensure singular values of similar size. To quantify how much interdependency

of the light paths is acceptable, it is helpful to look at the singular value decomposition of A:

d + ǫ = Ax = σ1u1v
T
1 x + · · · + σrurv

T
r x︸ ︷︷ ︸

≷|ǫ| ?

, r = rank[A]. (7.3)

As indicated, only those modes of the decomposition add information which give a contribution above

the noise level. The singular vectors are normalised to one so that this can be seen to be the case if

σj & ǫ / |vT
j x| ∼ ǫ / |x|, (7.4)

where ǫ is the root mean square error, i.e. |ǫ|/√m.1

(ii) Arguments based on the inversion:

Only the case of a linear inversion by a matrix Ainv is considered. In this case the resolution matrix R =

AinvA, sec. 4.6.4, can be used to study how for a given light path geometry the original concentration

values xtrue j are mapped to the whole reconstruction grid by xj =
∑

j′ Rjj′xtrue j′ . We note in

passing that (1n −R)jj =
∑

j′>rank[A] V
2
jj′ for the generalised inverse, eqs. (4.37), so that for the ideal

reconstruction (Rjj = 1) the sum over the nullspace indeed equals zero.

The Bayesian approach in the special form of the optimal estimate gives bounds similar to eq. (7.4)

(see sec. 4.7.2): A mode j of the SVD of A increases the information content of the measurement, if

for the singular value σ̃j of Ã = S
−1/2
ǫ AS

1/2
a holds

σ̃j & 1. (7.5)

It was remarked at the beginning of sec. 4.7 that, even if not feasible as a reconstruction method,

the Bayesian method can be used as a diagnostic tool for what-if scenarios, testing the outcome of

an experiment for an assumed a priori state of the system. In this sense the optimal estimate will be

used in sec. 8.4.2 to study the impact of measurement noise for different light path geometries.

7.3. Including point measurements and profile information

Planning a remote sensing experiment can involve point measurements in two ways

• The location of the point measurements is fixed – how should the light paths be chosen ?

• The light paths are fixed – where should the point measurements be performed ?

A point measurement at the location r0 with result c0 takes in the discrete framework the form

c(r0) = [φ(r0)]
T x = c0 (with measurement error σc0

). (7.6)

1A quite lengthy calculation without using the SVD for continuous kernel functions (and the over-determined case) in
[Twomey, 1997, sec. 8.4] can be adopted to the discrete case and gives the same threshold.
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If there are p such measurements at locations rip
, ip = 1, . . . p, their results can be joined in a vector

c ∈ Rp and a matrix F ∈ Rp×n as

Fx = c with
c = (c1, . . . , cp)

T

Fipj = φj(rip
)

. (7.7)

For the box basis or if the location of the point measurement coincides with the grid nodes in the case

of the bi-(tri)linear basis, the rows in the system become

xip
= cip

.

Concentration measurements along a profile Π : r = r(s) ∈ R3, s ∈ R, can be considered as a

series of point measurements c(r(sip
)) = cΠ(sip

), where the r(sip
) lie along the profile, and can thus

in principle also be expressed in the form of eq. (7.7).

There are principally two ways to incorporate information from point or profile measurements into

the tomographic reconstruction: (i) as additional constraints like in sec. 6.3.3 or (ii) as (additional)

a priori.

(i) Point measurements as additional constraints:

The augmented system Ax = d defined in eq. (4.60a) can again be solved explicitly. Assuming the

under-determined case m+p < n with a priori xa and no further inequality constraints, the least-norm

solution is given by eq. (6.18).

(ii) Point measurements as additional a priori :

The point measurement(s) will in general not provide an a priori for all components of x, so that

further a priori xa is still needed. The augmented a priori

xa = FT (FFT )−1c + PF xa (7.8)

draws rank[F ] degrees of freedom from the point measurement(s) Fx = c and the remaining n-rank[F ]

from xa (appendix C). PF is the projector onto the nullspace of F . The least-squares least-norm

solution of Ax = d without further constraints reads then as

x = AT (AAT )−1d + PA

(
FT (FFT )−1c + PF xa

)
. (7.9)

Case (i) treats remote sensing and point measurement in the same way. The (ad hoc) a priori xa

contributes only in the reduced n-rank[A] dimensional nullspace N (A). In (ii) the a priori xa adds

components in the intersection of N (A) and N (F ): PAPF xa.2

2The difference is best illustrated by an example: Let there be five boxes and one light path through two boxes, a

second one through the other three such that A =

„

1 1 0 0 0
0 0 1 1 1

«

. Let there further be a point measurement in the

first box, i.e. F = (1 0 0 0 0), c = (c)T . Then for the augmented system

x(i) =

0

B

B

B

B

@

c
d1 − c

1
3
(d2 + 2xa3 − xa4 − xa5 )

1
3
(d2 − xa3 + 2xa4 − xa5 )

1
3
(d2 − xa3 − xa4 + 2xa5 )

1

C

C

C

C

A

, while x(ii) =

0

B

B

B

B

@

1
2
(d1 + c − xa2 )

1
2
(d1 − c + xa2 )
as for x(i)

pp

pp

1

C

C

C

C

A

with augmented a priori xa = (c, xa2 , xa3 , xa4 , xa5 )T .
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Returning to the question of how both kinds of measurements should be set up, one finds that if they

are meant to be complementary, ideally the light paths or the location of the point measurement(s)

should be set up such that the nullspaces of A and F according to eq. (7.7) have as little in common

as possible, e.g. by choosing the row vectors of F as a linear combination of any p singular vectors

that span the nullspace of A. In practice, such a construction will be hard to realise and might be

corrupted by noise for the reasons discussed in the preceding section. Therefore, an estimate of the

degrees of freedom (or the information content) of different configurations of remote sensing and point

measurement for an expected level of noise as outlined in section 7.2 can be helpful. For the augmented

system of case (i) the measurement error and a priori covariances are given by Sǫ =
( Sǫ 0

0 L2Sc

)
and

Sa, where the system Fx = c was scaled with a typical length L of the light paths. The augmented

a priori covariance for the case (ii) is given as (appendix C)

Sa = FT (FFT )−1Sc(FFT )−1F + PF SaPF . (7.10)

7.4. Aspects of model evaluation

Motivation for evaluating the performance of dispersion or chemical transport models on very small

spatial scales was given in chap. 2 in the context of urban air pollution monitoring. Evaluation

is understood here as the comparison of modelled concentrations with corresponding experimental

values.3 According to sec. 2.3 this is more complicated than it sounds as both refer to fundamentally

different quantities: For given meteorological conditions models describe the mean field given by

eq. (2.3) plus, possibly, a more or less accurate approximation of the turbulent part c′:

cmod(r) ∼ 〈c(r, t)〉 + c′approx(r, t) for ū, T, p, etc. at time t,

whereas a point measurement averaging over the period T = [t; t + ∆t] yields the value

cexp(r, T ) ∼ 〈c(r, t)〉|T + c′(r, t)T , (7.11)

where 〈c(r, t)〉|T denotes the value of 〈c(r, t)〉 (assumed to be constant) during T . On the one hand,

cmod and cexp will differ substantially for short averaging times

cmod(r) 6= cexp(r, T ) for ∆t → 0.

On the other hand, for large enough ∆t

cmod(r) ≈ cexp(r, T ) for ∆t → ∞ and stationary ū, T, p, etc.

Because meteorological conditions are never stationary, a compromise must be found between averag-

ing times long enough to sufficiently reduce the randomness of the measured values and short enough

to guarantee the same constant atmospheric parameters to be comparable to the model prediction.

Averaging times of around 30min are common but according to Schatzmann and Leitl [2002], who

consider tracer measurements for a wind tunnel model of a street canyon for different averaging times,

3Whereas validation would mean a consistency check of the underlying physical concepts and their translation into
computer code.
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not always sufficient to obtain representative values. Scaling the averaging times corresponding to the

real dimensions of the street canyon, the conclusion on ambient measurements can easily be drawn be-

cause in a wind tunnel stationary boundary conditions for ∆t → ∞ can actually be realised. An even

more pessimistic estimation is inferred from long term time series of NOx concentrations measured

in the original street canyon where concentrations referring to the same boundary conditions scatter

largely. It should be added in this context that it is common practice to convert a mean concentra-

tion c1 for averaging time ∆t1 to another (usually shorter) ∆t2 by a relation (∆t2)
p c2 = (∆t1)

p c1

with p typically between 0.17 and 0.2 [Barratt , 2002]. This procedure is entirely empirical, giving no

information on the turbulent part for different times and it is furthermore controversial [Venkatram,

2002].

The discussion so far concerned the representativeness of measured concentration values at a fixed

place with respect to time. Interpretation of measurement results at different places r1, r2 and the

same time interval T is similarly difficult, as the random and mean contributions in eq. (7.11) cannot

be discriminated.

One way to deal with the stochastic uncertainty in eq. (7.11) in order to compare it with the cor-

responding model value is to use empirical or theoretical assumptions to relate the measured value

cexp(r, T ) to the unknown mean 〈c(r, t)〉 or to derive bounds for the size of the random contribution

c′(r, t)T . For example, for urban pollution where not only the dispersion, but also the emissions

follow more or less stochastic patterns, the experimental concentrations are often assumed to be dis-

tributed log-normally around the (model) mean (e.g., [Venkatram et al., 2005], see also [Seinfeld , 1986,

chap. 17]). The estimation of turbulent fluctuations has been shortly addressed in sec. 2.4 in terms

of variances of the turbulent concentration field within a plume. A more comprehensive approach is

a decription by probability density functions [e.g., Yee and Chan, 1996; Ma et al., 2005]. While these

value-by-value comparisons are necessary when it comes to judging model capability for individual

concentrations or special features of the distribution, for an evaluation of the overall model perfor-

mance the stochastic character of the measured values can be reduced by considering statistic quality

measures like the ones introduced in sec. 5.4.

It is a bit difficult to specify the size of typical model errors or values of statistic quality measures

because both heavily depend on the kind of application, the averaging times, atmospheric stability,

the kind of species, the number of measurements and where they took place etc. Also the way and

degree in which meteorological observations or immission measurements enter the model prediction

can be quite different (c.f. fig. 2.6 on page 34). In the context of roadway dispersion modelling Held

et al. [2003] regard an agreement between a dispersion model and measurement within 30% as perfect.

For extensive calculations with a CFD model, see sec. 2.5, Tsai and Chen [2004] find discrepancies

between modelled and measured concentrations over an averaging period of 21
2 h about 5 − 10% for

CO, ∼ 20 − 50% for NOx and ∼ 10 − 15% for SO2. Statistical evaluation of dispersion models on

urban scales, e.g. by means of concentration data from SF6 dispersion experiments like those men-

tioned in sec. 2.4, shows roughly the ranges listed in table 7.1 for statistical indices from table 5.1.

The values should be taken with a grain of salt. Especially NMSE and FB depend on the type of

distribution. They are generally higher for small scale plumes, higher for larger scale distributions

(see also sec. 8.2.1).

Turning from the point measurements implicitely referred to till now to tomographic remote sensing

measurements, one expects the reconstructed field to depend less on the turbulent field c′(r, t). For
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Table 7.1: Ranges for some metrics from table 5.1 as
found for dispersion and chemical transport models on ur-
ban scales [Seinfeld and Pandis, 1998, sec. 23.8], [Hurley
et al., 2005; Brandt et al., 2001; Moreira et al., 2005;
Venkatram et al., 2004, 2005] (In most cases for 1 h av-
erages).

NMSE & 0.2 %

IOA ∼ 0.5 - 0.7

|FB| ∼ 5 - 15%

r ∼ 0.3 - 0.8

FA2 ∼ 40 - 80 %

PPA ∼ 15 - 20%

the individual column densities, eq. (4.3),

d(t)iT =

∫

LPi

ds 〈c(r, t)〉|T +

∫

LPi

ds c′(r, t)T , i = 1, . . . ,m, (7.12)

the random part disappears for uniform fluctuations along the light path LPi if their length scale is

small against the length of LPi (c.f. sec. 2.4, especially the example on p. 29). A numerical justification

of this presumption could be carried out with a Monte-Carlo model as the one provided by Blackadar

[1997]. Having mentioned this agreeable property of path integrating measurements, scenarios for

model evaluation like the following ask for an estimation of the total reconstruction error.

(i) Given a modelled field cmod(r) and a field reconstructed from experiment ĉ(r), do both agree

within the reconstruction error, i.e.

|cmod(r) − ĉ(r)| ?
< ∆ĉ(r) (7.13)

(ii) Given a presumed uncertainty of the model, i.e.

cmin(r) . c(r) . cmax(r), (7.14a)

where c(r) is the unknown true distribution, could a tomographic experiment further constrain

the model (or verify the assumed uncertainty) ? That is

cmin(r)
?
< ĉ(r) + ∆lĉ(r)

and ĉ(r) + ∆uĉ(r)
?
< cmax(r) (7.14b)

in the sense of eq. (5.1).

While problem (i) requires estimation of ∆ĉ(r) independently of the model distribution, it is a con-

sistent approach to (ii) to use the model uncertainty for numerical error estimation as described in

sec. 5.3, based on the ensemble

E = {cI(r)
∣∣∣ cmin(r) . cI(r) . cmax(r) ∧ . . . , I = 1, . . . , N}, (7.15)

where the dots refer to further specifications for cI(r) as described in appendix B. The bounds cmin,
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cmax could be given by roughly known relative errors x of the model, i.e.

cmin/max(r) = (1 ± x) cmod(r). (7.16)

Alternatively, they could be based on empirical experience (comparison with other models etc) or be

derived from statistical indices like FA2. If, for example, FA2 ∼ 100%, then one gets the bounds

cmin(r) = 0.5 cmod(r), cmax(r) = 2 cmod(r). (7.17)
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Numerical Results

117



8. 2-D Simulation Results for Gaussian

Peaks

This chapter presents simulation results for the 2-D reconstruction of trace gas distributions emerging

from a point source by turbulent diffusion, which can be described by the Gaussian plume or puff

model (sec. 2.4). The case of emission puffs will be studied in the tomographic experiment of the

next chapter. To be precise, it is assumed that the 2-D concentration distribution on the section

through the plume or puff is Gaussian. The orientation of this section – that is, the reconstruction

area – is arbitrary, but for LP-DOAS experiments it is likely to be horizontal. Superposition of several

Gaussians can be used to mimic more complex concentration fields. It is assumed throughout that

the trace gas species occurs only as concentration puff, i.e. there is no natural or anthropogenic

background. This might be unrealistic for most trace gases relevant for DOAS measurements, but at

the very end of the chapter in sec. 8.5, it will be shown that the preceding results hold for a smooth

background, too, if subtracted before reconstruction.

The simulation results fall into three parts on the parametrisation of the problem (sec. 8.2), the

inversion algorithm (sec. 8.3) and the light path geometry (sec. 8.4). All three parts employ a set of

test ensembles defined in sec. 8.1. The first two parts use a fixed test geometry which is more or less

the one realised in the aforementioned experiment.

The influence of the parametrisation of the reconstruction result in terms of grid dimension and grid

combination schemes on different aspects of the reconstruction quality is examined systematically

with respect to the extension of the puffs. The focus is on the smaller puffs of the test ensembles,

for which box and bilinear parametrisation are compared in detail with respect to discretisation and

inversion errors. Finally, sample reconstructions are shown. Anticipating the results of the second

part (sec. 8.3) and in agreement with the literature, which generally finds SIRT superior to ART, all

reconstructions in sec. 8.2 use SIRT.

The comparison of ART and SIRT in sec. 8.3 thus serves mainly to compare the influence of the choice

of the algorithm to the influence of the parametrisation. Measurement noise and regularisation are

discussed only for a special case that will be needed for the analysis of the experiment in chap. 9.

The third part of the simulation results starts with a short section (8.4.1) – more of an outlook –

illustrating the SVD as a diagnostic tool. The main part consists of an analysis of different geometries

with the same light path number by explicit numerical simulation for Gaussian distributions on the

one hand (sec. 8.4.2(i)), and algebraic and Bayesian concepts on the other (sec. 8.4.2(ii)). The latter

is used in sec. 8.4.3 in an example to optimally include a point measurement in the sense of sec. 7.3.

Finally, a simple recipe is given to transfer simulation results for different numbers of light paths

(sec. 8.4.4), thus increasing the use of the special cases studied here tremendously.
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8.1. Test distributions and light path geometry

l = 100 a.u.

ensemble σx,y/l ∅2σ/l ∅2σ/∆l
E1 0.03 . . . 0.05 0.1 . . . 0.2 1 . . . 2
E2 0.05 . . . 0.1 0.2 . . . 0.4 2 . . . 4
E3 0.1 . . . 0.2 0.4 . . . 0.8 4 . . . 8
E4 0.2 . . . 0.3 0.8 . . . 1.2 8 . . . 12

Light path geometry with three 90◦-fans and 36 paths
in total.

Variances and 2 σ-diameters of the peaks within
the four ensembles. At 2 σ the exponential has
fallen to ∼ 14% of its peak value. The area integral
within 2 σ around the peak centre accounts for 95%
of the total integral. The last column presents
the ratio of the peak extension ∅2σ to the mesh
size ∆l at the center of the geometry given by eq. (8.1).

c(x, y) [a.u.]

0

0.5

1

y [a.u.]
0

l/2

l

x [a.u.]

0

l/2
l

c(x, y) [a.u.]

0

0.5

1

y [a.u.]
0

l/2

l

x [a.u.]

0

l/2
l

Most narrow peak from E1 with σx = σy = 0.03 l Broadest peak from E4 with σx = σy = 0.3 l

Table 8.1: Light path geometry used for the simulations in sections 8.2 and 8.3 and Gaussian concentration
fields.

The reconstruction area is chosen as a square of side length l = 100 in arbitrary units (a.u.). The

complete geometry of 36 light paths is generated by three 90◦-fans with 12 beams each, emitted by

three telescopes sitting in the corners of the square (see table. 8.1). This number of optical paths

corresponds to the one of the indoor experiment and it is high enough to guarantee a certain degree of

regularity required for a meaningful comparison of different types of path geometries later (sec. 8.4.2).

The mesh size in the centre of the reconstruction area is according to eq. (7.1)

∆l ∼ 1√
2

α nt l m−1 = 1√
2

π
2 3 l

12 ∼ 0.1 l. (8.1)

The Gaussian test concentration distributions are located randomly within the reconstruction area.

According to their peak width, they are divided into four ensembles EI , I = 1, . . . , 4 :

EI =
{

cI(x, y), I = 1, . . . , N
∣∣∣ cI(x, y) = C0 e−

1
2

(
(x−x0)

2/σ2
x+(y−y0)

2/σ2
y

)
,

with random 0 ≤ x0, y0 ≤ l, 0.1Cmax ≤ C0 ≤ Cmax, σx,y as in table 8.1
}

, (8.2)
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where Cmax = 1 a.u. All random quantities are uniformly distributed and N is the number of random

samples.

Taking the radius of the peak as 2σ, ensemble E1 in table 8.1, with a smallest peak diameter similar to

the mesh size given by eq. (8.1), represents the lower limit of narrow peaks that are still detectable for

the coverage with light paths at hand. Here the aim is rather to locate the peaks and to reconstruct

total amounts of concentrations, i.e., total emissions, whereas for the broad peaks of ensembles E3 and

E4 reconstruction of the actual distribution should become feasible (see the lower panels in table 8.1).

If the test concentration field consists of more than one peak, maximum values for all Gaussians

vary randomly between 0.1Cmax . . . Cmax. Maximally four peaks are considered at the same time, as

reconstruction of any further, especially small peak becomes highly unreliable for the given number

of light paths.

8.2. Parametrisation

Referring to fig. 6.4 (p. 108), this section presents results for different choices within the discretisation

procedure. As said, background concentration distributions in the sense of sec. 6.3.2 are assumed to

be negligible or to have been subtracted as proposed in sec. 6.3.2(ii).

All results in this section are for optimised iteration number k in the sense of sec. 6.4. The dependence

on k will be addressed in sec. 8.3. The nonnegativity constraint is always implemented.

8.2.1. Grid dimension

Several quality criteria from table 5.1 are calculated within each ensemble depending on the grid

dimension n. To concentrate on the important point, only bilinear basis functions and the simultaneous

algorithm SIRT will be considered. Furthermore, the grids are regular with uniform spacing, so that a

grid of dimension n has nx = ny =
√

n nodes in each direction and grid spacing ∆x = ∆y = l/(
√

n−1).

Nearness NEARN , representing the overall reconstruction error, the quality of the reconstructed

mean concentration in the form of the normalised mean bias NMB and the accuracy of reconstructed

maxima of the highest peak PPA and of peak integrals/total emissions PIPA basically cover the

most relevant features one would be interested in when trying to retrieve peak distributions. They

are shown for one and four peaks of each ensemble in fig. 8.1. For ensembles E3 and E4 the mean a

priori xa according to eq. (6.7) was chosen as iteration start x(0), otherwise the a priori is zero. The

most important points emerging from these curves are

• For narrow peaks (E1 and E2) all error measures in fig. 8.1 can be tremendously reduced rel-

ative to the even-determined case n ≡ m = 36 by choosing discretisation grids that lead to

highly under-determined systems of equations. For absolute maxima and total emissions the

improvement amounts to more than 50%.

• This holds also for more (four) peaks. Here the ambiguity of individual quality measures becomes

apparent. While the overall reconstruction error for four peaks is always smaller than for one

peak (the reconstruction is less accurate, as one might expect), the relative error of the mean

concentration NMB behaves inversely. In the same way, the peak prediction accuracy is higher
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(d) Error of the peak integral prediction accuracy

Figure 8.1: Ensemble averages of different quality criteria for one and four random peaks depending on the
grid dimension. The number of light paths is 36, the geometry is as in tab. 8.1. The bilinear grid is
regular, so that dimension n means

√
n−1 pixels in each direction. Also shown is the grid spacing

∆x. The a priori is zero for E1, E2 and the mean eq. (6.7) for E3, E4. SIRT was used (see sec. 8.3
for iteration numbers). The number of random samples is N = 300. For the sake of clearness
only some standard deviations stdEI

(·) are shown. (a) Overall reconstruction error NEARN . (b)
Absolute error of the mean concentration |NMB|. A value of 0.25 means that the reconstructed
spatial mean deviates by 25% from the real one. (c) Absolute deviation of the reconstructed global
maximum from the real one (|1 − PPA|). A value of 0.5 means deviation by 50%. (d) The same
for the peak integral, i.e. a value of 0.1 means average over- or underestimation of total emissions
by 10%.

for four peaks, while the error of the reconstructed peak integral is lower than for one peak only

(suggesting that, with several peaks, the largest ‘accumulates’ concentration at the expense of

the others).

• While the errors decrease with increasing n, the standard deviations stdEI
(·) get larger, as one

might expect because the degrees of freedom of the picture increase with growing n (visible in

the form of artefacts, like bumps, in the reconstructed distribution).

• For broad peaks (E3 and E4) under- or even-determined discretisation grids lead to best results.

For the broadest peaks from E4 the overall reconstruction quality rapidly deteriorates for higher

dimensional grids (resulting in large artefacts).
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• The optimal grid dimension is not always the same, but similar for all quality criteria.

Solutions discretised by 10 × 10 pixels imply about 121/36 ∼ 3 more unknown parameters than

measured integrals! How can the resulting continuous distributions for narrow peaks still be better

approximations of the real peaks? The reasons are

1. For narrow peaks most of the grid nodes carry the concentration zero, and this is exactly the

value provided by the a priori (in the linear case through eqs. (4.56)).

2. The discretisation error as defined in sec. 5.2.1 decreases with increasing grid dimension. This

readily explains the decrease in the overall reconstrcution error (NEARN) and also the improved

estimate of maximum concentration values (PPA), as the peak is spread over smaller pixels

(mind that for 10 × 10 pixels the grid spacing ∆x becomes comparable to the peak diameter

∅2σ). For the total and peak area integrals (NMB,PIPA) it should be noticed that these may

increase if the original concentration peak is spread over more pixels by the reconstruction while

the column densities are kept constant, as illustrated by the figure below.
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Figure 8.2: For the original distribution ( left)
the column densities are d1 = d2 = c∆x and the
integral I over the complete reconstruction area
is I =

R

dx dy c(x, y) = (∆x)2c. For the recon-
struction ( right) d1 = d2 remain unchanged,
but the area integral is now 5

3
I.

3. The nonnegativity constraint becomes active around zero so that the nullspace is reduced by

the negative solutions.

Putting points 1. and 2. together means that, when increasing the grid dimension, a possible increase

of the inversion error –with a bad a priori being part of it– remains smaller than the decrease of the

discretisation error. This will be further investigated in the next section. An illustration of point 3.

will be given in sec. 8.4.1.

How can these findings be implemented to improve the reconstruction from real experiments, i.e.

when actual plume extensions are not known? First, the experimentalist is not as ignorant as a set of

equations and there might well be information that does not enter the formulation of the tomographic

reconstruction problem. For example, the dimension of an emission puff driven through the setup of

the light paths can roughly be inferred from the increase and decrease of column densities combined

with wind speed. Or empirical dispersion coefficients might be useful (sec. 2.4). A way to obtain

information about the true peak extension within the reconstruction itself is contained in tab. 8.3b,

p. 129, which shows sample reconstructions for each ensemble and various grid dimensions. The peak

in tab. 8.3b, reconstructed from a Gaussian belonging to E2, increases its height going from a grid

with 8×8 pixels to 10×10 pixels, but decreases again for larger grid dimension while artefacts appear.

Both features together might be interpreted as the optimal grid dimension being exceeded.
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Figure 8.3: Lower graph: Overall discretisation,
inversion plus regularisation and total reconstruc-
tion errors for piecewise constant (box) and bilinear
parametrisation of four (narrow) concentration peaks
from E1 ∪ E2 versus grid dimension. The grids are
regular and dimension n means n pixels for the box
and (

√
n − 1) × (

√
n − 1) pixels for the bilinear basis.

The under-determined solutions are practically unreg-
ularised, so that ∆creg(r) ∼ 0. The a priori is zero as
in fig. 8.1, again for SIRT and N = 300.
Upper graph: The same for the relative discrete in-
version error.
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∆ĉ
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8.2.2. Basis functions

The piecewise constant and bilinear basis functions are compared by explicitly calculating the dis-

cretisation error ∆cdisc(r) as proposed in sec. 5.2.1. The inversion error ∆ĉinv(r) immediately follows

as [φ(r)]T (xid − x) and if the solution is regularised we consider ∆ĉinv + ∆ĉreg = [φ(r)]T (xid − xλ)

(It turns out that, especially in the over-determined region, regularisation can improve the solution

even if there are no measurement errors. I postpone the discussion to sec. 8.3). Fig. 8.3 contains

in the lower graph the mean overall discretisation error ‖∆cdisc(r)‖2 and the inversion error of the

regularised solution ‖(∆ĉinv + ∆ĉreg)(r)‖2 for narrow peaks from ensembles E1 plus E2 for both types

of basis functions. In fact, here only the solutions with m & n are regularised and the regularisation

error hardly contributes for n & m.

As expected, the overall discretisation error, and therefore the total reconstruction error, is far larger

for the piecewise constant than it is for the piecewise bilinear parametrisation. Furthermore, fig. 8.3

shows that:

• The squares of the overall discretisation and inversion error do indeed add up to the reconstruc-

tion error according to eq. (5.18).

• For the concentration distributions considered in fig. 8.3 the discretisation and inversion error

are of similar size for the optimal grid dimension.

• The inversion error increases with grid dimension n. The decreasing total reconstruction error

is finally solely due to the faster decreasing discretisation error.

• In the under-determined regime the inversion error for the box basis is larger and faster growing

than for the bilinear basis.

Concentrating on the under-determined cases n > m for the narrow peaks (the over-determined case

applies to the broad peaks which are not part of these simulations), the last point is most remarkable

because the discrete systems for both parametrisations are combined with the same a priori xa = 0
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relative error box bilinear

mean concentration |1 − NMB| 4% 5%

total emission |1 − PIPA| 15% 10%

maximum concentration |1 − PPA| 40% 20%

Table 8.2: Relative errors of concentration integrals and
maxima for a bilinear grid of dimension n = 81.
Distributions and all parameters are as in fig. 8.3.

and it is not obvious why ∆ĉinv(r) should differ significantly. One has to be careful though when

carrying over conclusions from continuous solutions to Rn and vice versa. For the norm this step

takes the form ‖ĉ‖2
2 = xT Φx with Φ as in eqs. (5.5) yielding ‖ĉ‖2 =

√
∆A ‖x‖2 for the box basis and

regular discretisation grids, where ∆A is the area of a grid cell. The upper graph of fig. 8.3 shows that

the relative norm of the discrete inversion error for the bilinear basis is still smaller for highly under-

determined systems of equations, but less distinctive. The fact that the unregularised least norm

solution for the bilinear parametrisation is better in terms of inversion errors has to be attributed to

the a priori and/or constraints. For example, the bilinear basis functions have overlapping supports

so that the matrix A has less zero entries than the corresponding matrix for the box basis and the

nonnegativity constraint might become more effective.

So far error fields ∆c(r) have been considered, but with the piecewise constant basis representing box

average concentrations (see eqs. (5.6)) one might ask whether the box representation enables better

reconstruction of spatial mean concentrations. In general it does not, as illustrated by table 8.2 which

gives the relative error of reconstructed mean concentrations (NMB) and total emissions (PIPA) for

an under-determined parametrisation by 8×8 pixels. The standard deviations of these errors within the

test ensembles are of the size of the errors themselves, so that the difference in the mean concentration

is not really significant. Nevertheless the reconstruction errors of both mean concentration and total

emissions are persistently larger for the box than for linear parametrisation for all under-determined

grids. Recalling that for the calculation of the peak integrals the pixel size is taken into account (see

explanation to eq. (5.20)), the fact that – compared to the bilinear basis – the error of the peak

integrals for the box basis is relatively larger than the error of the mean concentration suggests the

interpretation that the concentration is distributed on a far larger area than the peak or elsewhere

within the reconstruction area (artefacts). In both cases the inversion error would become larger,

agreeing with the curves in fig. 8.3 which show a larger inversion error for the box parametrisation in

the under-determined case.

8.2.3. Grid translation

As in the previous sections the effect of combining grids on the reconstruction is examined statisti-

cally for quality indices measuring the overall square error (nearness), the error of the spatial mean

concentration (normalised mean bias NMB), the error of absolute maximum concentrations (peak

prediction accuracy PPA) and the error of total emissions PIPA). Fig. 8.5 shows averages within

ensembles E1 to E4 for the composite scheme (sec. 6.2.2(i)), the averaging scheme (sec. 6.2.2(ii)) and

the averaging scheme that uses the absolute maximum as additional constraint (sec. 6.3.4) compared

to the case of a single grid. The original regular grid (∆x = ∆y) is shifted four times in each direction,
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Figure 8.4: Condition number cond[A] =
σ1/σrank[A], see eq. (4.27), for subgrids gener-
ated by shifting the original bilinear grid of di-
mension n ten times in x and y (c.f. fig. 6.2).
Obviously, the variation of cond[A] within the
subgrids is less distinct than the variation with
n.
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i.e. m = mx = my = 4, resulting in
√

N = (5(
√

n − 1) + 1) grid nodes in each direction for the final

composite grid of higher resolution, see eq. (6.5b). The number of shifts is not critical in that choosing

m = 3 does not drastically deteriorate the reconstruction results, while shifting five or six times does

not improve them significantly – but increases calculation time considerably (according to eq. (6.5a)

with ∼ m2). Strictly speaking, different conditioning of the matrix A for each subgrid should be taken

into account by adjusting the iteration number accordingly as illustrated in fig. 8.4, but at least for

the averaging and composite scheme it affects the subgrid reconstructions in the same way and should

not matter for a comparison. Therefore the same iteration number for all subgrids is chosen.

First of all, general conclusions emerging from figs. 8.5a to 8.5d are:

• The performance of each reconstruction scheme heavily depends on both the kind of concentra-

tion distribution (ensemble) and the quality criterion used for evaluation.

• The relative amount of change for different schemes (relative to the single grid reconstruction)

varies strongly within the quality criteria.

The composite scheme reduces the overall root mean square error for narrow peaks (E1) by ∼ 8%

while the error of the reconstructed maximum concentration decreases by around 50% ! The fact

that, at the same time the accuracy of mean concentrations and emissions decreases by 30% and 25%,

respectively, can be understood as overestimation following from the construction of the scheme that

combines maximum node values from different grids. It cannot be expected to conserve concentration

integrals. Originally proposed by Verkruysse and Todd [2004] for better reconstruction of maximum

concentration values in the context of indoor air contamination, the composite scheme thus works well

for this purpose – as long as one is not interested in total amounts of emitted gas. The restriction to

narrow peaks is not addressed in a systematic manner in the aforementioned study. The authors use

piecewise constant parametrisation combined with the MLEM approach (c.f. sec.4.9.1) and consider

Gaussian peaks with σ/l ∼ 0.07 . . . 0.18, roughly corresponding to peaks from E2 and E3. For the

geometry with 40 integration paths shown in fig. 3.5h and four peaks they obtain mean values for

the overall error NEARN around 0.7 (single grid), 0.5 (translated grids) and for the peak prediction

error |1 − PIPA| around 0.35 (single grid) and 0.2 (translated grid). Comparing these to the values

for E2 (to take the narrower peaks) in fig. 8.5a and 8.5c, it follows that already the reconstruction

with a single bilinear grid leads to better results than the grid translation method for the box basis,

underlining again the importance of optimal parametrisation. The composite scheme does not work

reliably for peaks other than the narrow ones from ensemble E1.
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Figure 8.5: Ensemble averaged quality indices for different methods of combining reconstructions from several
bilinear grids, again for four peaks within each ensemble and all settings as in fig. 8.1. For each
ensemble the optimal grid in terms of NEARN was chosen. The grid dimension n refers either
to the actual grid dimension (when reconstructing from a single grid) or to the dimension of the
original grid used to generate the shifted grids. In the latter cases the grid was shifted four times
in each direction, see fig. 6.2.

The averaging method reduces the mean square error for all peaks and makes hardly any difference for

the concentration integrals – as to be expected for a linear method. It does underestimate the peak

maximum though as anticipated in sec. 6.3.4, fig. 6.3, leading to lower peak prediction accuracy for the

first three ensembles. For narrow peaks (E1) the averaging scheme increases the peak error by ∼ 50%,

taking us right to the modified approach where the maximum grid node value among all subgrids is

implemented as a constraint for each subgrid reconstruction. This scheme does indeed give better

estimates for the absolute maximum concentration for peaks from E1 and E2 but also worse values

for mean concentrations and total emissions, especially for very narrow peaks. This is not surprising

because for these an enhanced peak concentration has relatively more impact on area integrals (see

also fig. 8.2).

To conclude the statistic evaluation, it can be said that similar to the choice of the best reconstruction

grid discussed before in sec. 8.2.1, selection of the optimal reconstruction scheme requires some idea

about the extension of the peaks. The averaging scheme is safe in that it generally reduces the overall
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error, but at the expense of the peak reconstruction accuracy. For concentration peaks that lead

to under-determined optimal parametrisations the composite scheme and the averaging method with

peak constraint offer alternatives for better maximum values, where the composite scheme should be

preferred for very narrow peaks. Both schemes should not be used if one is interested in total emis-

sions. In fact, none of the multiple grid schemes discussed here improves the quality of reconstructed

integration integrals.

Finally, tables 8.3 and 8.4 illustrate the effect of the reconstruction schemes discussed.1 Some char-

acteristic features visible in all reconstructions like the peak reduction of the averaging scheme or

the noisiness of the composite scheme follow directly from the construction of the method. Despite

obvious shortcomings of individual schemes, it is hardly possible to make out an optimal method

among all sample reconstructions and it appears that the best qualitative picture arises by combining

the information from different approaches. Table 8.4a is a good example where use of a single grid

(the 9 by 9 nodes grid in this case) can give a rather misleading picture. Another important aspect is

contained in table 8.3b as mentioned earlier. All four reconstruction schemes show a decrease of the

maximum and a broadening of the peak for the very fine n = 13×13 grid which can only be interpreted

as the a priori not working any more and the grid dimension being too large. This behaviour might

thus be considered as a criterion for the choice of the parametrisation.

13-D surface graphs instead of, for example, 2-D contour graphs are used for this purpose simply because they visualise
structures more clearly.
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fixed peak scheme: n = 10 × 10 n = 11 × 11 n = 13 × 13

(a) c(r) from E1 with σx/l = σy/l = 0.04

Table 8.3: Sample reconstructions using a single grid or one of the translation schemes, respectively, for
one Gaussian from each ensemble and various grid dimensions. All reconstructions use bilinear
parametrisation and SIRT. The grids are translated four times in each direction (mx = my = 4).
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(b) c(r) from E2 with σx/l = σy/l = 0.07

Table 8.3: Sample reconstructions (continued).
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single grid, n = 6 × 6 comp. scheme, n = 6 × 6 averag. scheme, n = 6 × 6 fix. peak scheme, n = 6 × 6

(c) c(r) from E3 with σx/l = σy/l = 0.15

Table 8.3: Sample reconstructions (continued). Only the even-determined grid is shown.
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single grid, n = 5 × 5 comp. scheme, n = 5 × 5 averag. scheme, n = 5 × 5 fix. peak scheme, n = 5 × 5

(d) c(r) from E4 with σx/l = σy/l = 0.25

Table 8.3: Sample reconstructions (continued). Only the under-detemined grid is shown (according to
fig. 8.1a).
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single grid, n = 11 × 11 comp. scheme, n = 11 × 11 averag. scheme, n = 11 × 11 fix. peak scheme, n = 11 × 11

(a) Two Gaussians, one from E2 with σ/l = σx/l = σy/l = 0.06, Cmax = 1 a.u., the other from E3 with σ/l = 0.13, Cmax = 0.7 a.u.,
respectively.
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single grid, n = 9 × 9 comp. scheme, n = 9 × 9 averag. scheme, n = 9 × 9 fix. peak scheme, n = 9 × 9

(b) Four Gaussians from E2 to E4 with σ/l = 0.06, 0.08, 0.13, 0.2 and Cmax = 1, 0.5, 0.7, 0.2 a.u..

Table 8.4: Sample reconstructions for several peaks. Settings of the reconstruction as in table 8.3.
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8.3. Algorithms: ART versus SIRT

Solution of large over-determined least squares problems by row acting methods like ART and SIRT

has been (and is still) subject of extensive investigation in computerised tomography and there is little

need to go into much detail here. They have also been applied to small under-determined problems like

the one at hand in indoor gas tomography, but some of the respective studies [Drescher et al., 1996;

Todd and Ramachandran, 1994a; Laepple et al., 2004] lack systematics and mathematical background

necessary for a general conclusion. Therefore, some results comparing the performance of ART and

SIRT along the lines of the previous sections are presented, at the same time specifying details of the

iteration. At last, the sensitivity to measurement noise is discussed.

8.3.1. Optimal iteration number and reconstruction quality
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Figure 8.6: Singular values σ̄i of the matrix
Ā belonging to the rescaled system eqs. (4.71)
solved by ART and SIRT for regular bilinear
grids of dimension n.

The behaviour of the iteration numbers remains largely obscure in the aforementioned studies. Ac-

cording to sec. 4.8.2 we expect convergence like x(k) → x†, where x† is the (rescaled) least-squares

minimum-norm solution, for error free data. The rate of convergence for the state vector components

in the system of the singular vectors is given by eq. (4.76)

x′(k)
j − x′(†)

j

x′(0)
j − x′(†)

j

= (1 − ω σ̄2
j )k, j ≤ rank[Ā].

Rescaled singular values σ̄i for various grid dimensions are shown in fig. 8.6, while the square of the

right hand side was estimated in fig. 5.4a on page 91. Taking x′(0) = 0, iteration numbers around 103

are necessary for singular values of the order 0.01 to achieve relative deviations of the iterative solution

from the ideal x† of about 10−2. For narrow peaks the discrepancy between a priori and ideal solution

will in general be smaller than for broader peaks, so that smaller iteration numbers suffice. Increasing

the grid dimension will both lower the large singular values and enhance the smaller ones, where

the former leads to higher, the latter to smaller iteration numbers. It turns out, that for the peak

distributions considered here the iteration number increases with n. This is shown in tab. 8.5 which

also confirms the predictions made before. The size of the iteration numbers for ART can immediately

be estimated from the construction of the iteration cycles of ART and SIRT eqs. (4.67,4.68): One

projection step for SIRT corresponds to m (here 36) projections for ART so that one expects the

iteration numbers of ART to be by a factor of the order 1/m smaller than those of SIRT.
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n E1 E2 E3 E4

ART SIRT ART SIRT ART SIRT ART SIRT

5 × 5 5-7a 400 (400) 10-15a 400 (400) 15 500 (500) 30 1 500 (5 000)

6 × 6 15a 500 (500) 15-20a 500 (700) 20 500 (800) 60 2 000 (6 000)

7 × 7 20-25a 600 (600) 30 700 (900) 40 1 000 (2 000) 60 3 000 (3 000)

8 × 8 35 1 000 (900) 35 1 000 (1500) 60 -”- (3 000) 40 4 000 (1 000)

9 × 9 40 1400 (1500) 40 -”- (2 000) 80 2 000 (-”-) -”- -”-

10 × 10 50 1 400 (1 800) 50 1 200 (2 500) 120 3 000 (-”-) 50 5 000 (500)

11 × 11 60 1 600 (2 200) 80 2 000 (-”-) 125 4 000 (-”-) 60 -”-

aSemi-convergent case

Table 8.5: Approximate iteration numbers for which NEARN reaches convergence. The values are ensemble
means for one Gaussian peak, in the case of SIRT numbers in brackets (·) refer to four peaks.
Underlined figures indicate optimal grids in terms of nearness.

The case of convergence does not always apply to the error free case. Semi-convergence as discussed

in sec. 4.8.2 can occur even without substantial noise (a fact that has not been acknowledged in the

studies mentioned in the introduction). For the peak distributions considered so far, it occurs only

for ART and over-determined systems – as one would expect – but with additional background or

smooth distributions extending over the whole reconstruction area, semi-convergence is dominant for

small dimensional grids. With increasing grid dimension the iteration behaves convergent again.

As far as calculation time is concerned, ART is preferable to SIRT. But, as realised also by Todd

and Ramachandran [1994a] and Laepple et al. [2004], ART produces higher overall errors in terms of

nearness, visible in more noisy concentration maps with a tendency to artefacts. Here, I just want

to point out two further aspects following from evaluating the set of quality indices used before for

ART and SIRT, respectively. Fig. 8.7 is analogous to fig. 8.5, here for one peak only, but the following

conclusions remain valid for more peaks, too.

1. Combining complementary quality measures adds information. For example, from the fact that

ART shows a significantly higher mean bias than SIRT (fig. 8.7b) while maxima and peak

integrals are similar (figs. 8.7c,8.7d), it can be deduced that concentration is reconstructed

outside the region of the peak, where originally there has not been any, i.e. aardvarks. This

reliably confirms what has been guessed from inspecting a limited set of reconstructions.

2. Again, the systematic approach reveals that the performance for a specific setting of the recon-

struction – in this case the algorithm – depends on the distributions. For smooth distributions

(E4) ART and SIRT become very similar and, indeed, there are studies that report better results

for ART compared to SIRT.

More important for the applications of this work is the observation that the improvement by the

optimal parametrisation (type of basis function, grid dimension) outweighs by far what can be

gained by choosing one row acting method instead of another. This also holds for the MLEM

algorithm as the quantitative discussion on page 125 has shown.

8.3.2. Sensitivity to noise

As found in the preceding section, there is no clear cut distinction between the error free convergent

case and semi-convergence in the presence of noise. Following from the same discussion one expects
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Figure 8.7: Ensemble averages of different quality criteria for one random peak depending on the grid di-
mension for ART and SIRT. All settings as in fig. 8.1. Standard deviations are similar for both
algorithms and have been omitted for clarity.

the under-determined case to be less susceptible to noise than the over-determined one which is usually

dealt with in the literature. Here, I concentrate on the strongly under-determined case relevant for

the measurements presented in the next chapter.

Fig. 8.8 illustrates the mean impact of unbiased random noise on ART and SIRT for a sharp concen-

tration peak with ∅2σ/l = 0.05 located randomly within the reconstruction area. Clearly, random

noise affects ART more than SIRT, which is somewhat plausible because for the simultaneous iterative

update corrections from each light path are added up, thus cancelling stochastic errors to some degree.

While this observation remains generally true for other kinds of distributions, the very moderate ef-

fect of even large errors is special for the sharp peak distribution. Semi-convergence mildly occurs for

errors of about 20% and only for ART. Nearness values increase for all levels of noise but the choice

of the iteration number, i.e. the regularisation parameter, is not critical and its values can more or

less be taken like in the error free case. Fig. 8.9 shows how noise deteriorates the reconstruction

of plume properties like maximum concentrations and emissions for the same peak and SIRT. For

random noise up to 10% – a realistic size for measurement noise – the impact stays quite moderate.

The contribution of noise to the plume integral error can be estimated by means of eqs. (5.13b) as
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Figure 8.8: Sensitivity of SIRT and ART to random
noise versus iteration number for a narrow concen-
tration peak (∅2σ/l ∼ 0.05) located randomly in the
reconstruction area. For integration paths with zero
concentration an absolute error with variance of the
size of the one with largest column density was as-
sumed.
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follows (for the same iteration number the regularisation part in eq. (5.13a) is the same as in the error

free case). Assuming that the plume extends over np grid nodes with the same perturbation ∆x̄ for

each component, the left hand side of eq. (5.13b) takes the form

E
[
‖∆x̄pert‖2

2

]
∼ np m (∆x)2,

where the transformation eqs. (4.71) was taken into account. The scaling factor L for σ̄ǫ = σǫ/
√

L

on the right hand side can according to sec. 4.8.4 be written as l2/nφ, with l being the characteristic

length of a light path and nφ the number of basis functions (boxes) contributing to it. Assuming

furthermore a constant concentration level x within the plume of diameter ∅, one can rewrite the

absolute error with the help of the relative data error rǫ as σǫ = rǫ d = rǫ ∅ x. Putting the above LHS

of eq. (5.13b) and the RHS in the form

σ̄2
ǫ

∑

i

(1 − (1 − ω σ̄2
i )k

σ̄i

)2

∼ (rǫ
∅

l
x)2 nφ

∑

i

(1 − (1 − ω σ̄2
i )k

σ̄i

)2

together leads to the following estimate for the error perturbation of the plume concentration

∆x

x
∼ rǫ

√
nφ

np m

∅

l

(
∑

i

(1 − (1 − ω σ̄2
i )k

σ̄i

)2
)1/2

.

The sum involving the rescaled singular values takes for all discretisation grids shown in fig. 8.6 a

value around 3 · 103. The number of grid points covered by a plume with ∅/l ∼ 0.2 on an 12 × 12

grid is about 6. Combining this with nφ ∼ 10 and m = 36 results in a relative perturbation around

∆x/x ∼ 0.2 for data noise of 10%, agreeing nicely with the number in fig. 8.9d.

Two other aspects are worth mentioning. The first concerns the disproportionate sensitivity of the

total area integrated concentration (NMB) in fig. 8.9b. This is because the simulation puts an error

on all zero column densities, too. Due to the nonnegativity constraint, this can only lead to rising

concentration values outside the plume while the data residuals increase. Secondly, quality measures

and plume properties incorporated by them depend quite differently on the regularisation parameter.

While the overall error is hardly affected by the iteration number, the other properties show ambivalent

behaviour as indicated for the relative error of 20%. Stronger regularisation, i.e. smaller iteration

numbers, will smooth the picture (see the discussion in sec. 4.6.3). This means smearing the peak and

reducing the peak maximum, thus giving rise to higher errors of PIPA and PPA.
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Figure 8.9: Impact of random noise on the overall reconstruction error, on the reconstrction mean concentra-
tion, maximum concentrations and total emissions for the sharp concentration peak from fig. 8.8.
The standard deviation stdE refers to the variance within the reconstruction area, stdǫ to the en-
semble averaged variance from the random error.

8.4. Light path geometry

The discussion in the following is for bilinear parametrisation and a single reconstruction grid. Grid

combination schemes are disregarded because a) for the larger class of peaks considered shortly they

would not lead to significantly better results and b) for computational ease. Application of a grid

combination scheme should not change the essential points.

8.4.1. Singular value decomposition of the geometry

Scalar quantities like the degrees of freedom (eq. (4.61)) and the information content (eq. (4.64)) of the

measurement or the perturbation norm of the state vector (eqs. (5.12)) are governed by the singular

values σi only. But it can be instructive to look at the singular vectors ui (spanning the data space

of the d) and vi (spanning the state space of the x), relating the eigenmodes to the light paths and

the reconstruction area, respectively, too – especially, for very small systems, see table 8.6.

The singular vectors belonging to the largest and smallest singular values for the geometry used in
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grid

v5

x = A†A (1, 1, 1, 1, 1)T

Table 8.6: Under-determined problem with four light (in red) paths and different parametrisation by five box
basis functions (upper row). While the parametrisations are equally good in that they all lead to full
rank systems with similar singular values, the – in this case 1-D – nullspaces look quite different
(middle row) and leads to quite distinct retrievals (last row, for the generalised inverse and a
homogeneous field). Mind that the nullspace does not contribute to box 1 for the 2nd grid, to boxes
1 and 4 for the 3rd and to box 3 for the 4th grid, i.e. the retrieval in these boxes is exact.

the previous sections and a regular bilinear grid of dimension n = 6 × 6 are shown in table 8.7.

They show the oscillating behaviour of the ‘small’ singular vectors described as a general feature in

sec. 4.5(v) and illustrate how regularisation smoothes the retrieval by cutting off small singular values

and their vectors. The table also contains an example of how the map from the singular vectors ui

to the light paths can be used to identify certain modes, e.g. with small singular values. In this

particular example the regular grid with n = 6×6 shows an exceptionally high condition number (see

fig. 8.4 in which it corresponds to the subgrid with number 0). The small singular value of the order

10−4 that is responsible for it (see the figure for u36) can clearly be attributed to some light paths

whose arrangement for the given grid leads to an accidental linear dependency in the system matrix

A. Different choice of the boxes containing these light paths can improve the situation.

Finally, table 8.8 indicates how the singular value decomposition can help with the construction of the

grid for a given arrangement of light paths, especially if these cover the reconstruction area irregularly.

Following the discussion in sec. 6.2.1, the choice between different grids for two geometries shown can

be made by opting for the one which gives more balanced singular values. In both cases this choice give

rise to a nullspace, more precisely the sum
∑

j′>rank[A] V
2
jj′ according to sec. 7.2(i), that is more evenly

distributed within the reconstruction area. This is indeed desireable if the a priori is noncommittal.

More quantitative arguments need specification of the a priori and the noise level and will be presented
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u1 u2 u3 u4

v1 v2 v3 v4

u35 v35 u36 v36

Table 8.7: Singular vectors ui and vi spanning the space of column densities and state vectors, respectively,
for the largest four and smallest two singular values of a regular bilinear grid of dimension n = 6×6
(see also fig. 8.6). The components of ui are mapped to the light paths while those of vi are mapped
to the grid nodes. Values in between the nodes are linearly interpolated.

in the subsequent section.
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Table 8.8: Nullspaces and singular values for two geometries and bilinear regular or irregular grids, respectively,
of dimension n = 7 × 7. The vector

P

j′>rank[A] V
2

jj′ is defined only on the grid nodes and values
in between are merely interpolated. The singular values differ only slightly and the better balanced
sets of singular values correspond to better balanced nullspaces.
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8.4.2. Comparison of different geometries

(a) 2T90◦ (b) 3T90◦ (c) 4T90◦

(d) 2T180◦ (e) 3T180◦ (f) 4T180◦

Figure 8.10: Geometries with
two (a,d), three (b,e) and four
(c,f) telescopes and light emit-
ted in 90◦(upper row)- and
180◦ (lower row)- fan beams.
As before, the square area has
a length of l = 100 a.u. In all
cases m = 36. The geometry
labelled 3T90◦ is the one con-
sidered so far.

From a simplified theoretical point of view the question for the optimal arrangement of a given number

of integration paths has now been addressed on several occasions, especially in sec 7.2, and the answer

basically is: Diagonalise the matrix A as much as possible, i.e. make the integration paths as linear

independent as possible. Light paths get more independent if emitted (or received) by a larger number

of instruments or in wider angles. In practice, both strategies will increase the mesh size according

to eq. (7.1) and make the geometry more irregular. For peak distributions the resolution in terms

of the mesh size becomes crucial and it is by no means obvious that linear independency outweighs

a larger mesh size. Then again the answer to this question might depend on the level of noise, the

impact of which is given largely by the singular values, i.e. by the linear independency. The problem

was investigated by means of the geometries depicted in fig. 8.10, all generated by m = 36 light paths

emitted (or received) in either 90◦- or 180◦-fan beams by between 2 and 4 telescopes. The light paths

were chosen to cover the reconstruction area more or less regularly without claiming to present the

ideal solution (for example, with respect to the number of retro-reflectors that would be needed to

realise the light paths in an actual LP-DOAS measurement).

(i) First, the same statistical approach used earlier for the evaluation of different parametrisations and

algorithms was chosen, this time for different geometries and random peaks taken from the union of

the ensembles E1 to E3. These test distributions were chosen such that the mesh size should play a role

and the same a priori (zero) could be used for all peaks. Results for four random peaks reconstructed

on a single regular bilinear grid of dimension n = 7 × 7 are shown in fig. 8.11. Differences between

the geometries are substantial (the relative standard deviation lies between 15% for the overall error

NEARN and 50% for the error of the mean concentration), with a persistent trend showing that

1. increasing the number of emitting (or receiving) instruments generally enhances the reconstruc-

tion quality, provided that the coverage with light paths and their regularity can be maintained.

2. For the limited number of light paths considered here, large 180◦-fans lead to worse results.
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Figure 8.11: Ensemble mean values of the overall error (a) and the errors of mean concentration (b), maximum
concentrations (c) and total emissions (d) for the geometries in fig. 8.10 and four peaks from
ensembles E1 to E3. The reconstruction used a single bilinear grid with n = 7 × 7.

3. The performance of the configuration with two telescopes and 90◦-fans (2T90◦) is exceptionally

poor.

All in all the curves agree remarkably well with what one would expect from just looking at the

geometries – except maybe for the geometry called 2T90◦. The light path arrangement 3T90◦ used

in the preceding sections represents a good average of the geometries examined here.

To get an idea how the reconstruction quality varies within the reconstruction area for the individual

geometries the same quality criteria as before were evaluated for one peak on a fine grid of peak

positions (x0, y0) and mapped to the reconstruction area. The results are shown in the first three

columns of table 8.9 on page 142. Apart from the pattern of smaller nearness values if peak positions

coincide with grid nodes, there are spots of larger reconstruction errors where the coverage with light

paths is coarse. The maps of the mean concentration and total emissions show this pattern, too. Both

get underestimated in gaps between light paths and overestimated around the telescopes where mostly

similar light paths from the same fan contribute. Taking the plots of mean concentration NMB and

total emissions PIPA together gives information about where the reconstructed trace gas is located:

If the error of the mean concentration is distinctly larger than for the concentration within the peak,

the concentration is spread over a larger region (as is the case near the telescopes) or artefacts appear

somewhere else (which are here, for one peak, less pronounced).

The impact of random noise on the geometries was investigated for the very same peak distribution

and a noise level of 10%. Similarly to the findings in sec. 8.3.2, the impact on the reconstruction

quality for this special peak distributions is quite moderate. Furthermore, it turns out that the

average aggravation is comparable for all geometries. This is shown for the overall error NEARN in

fig. 8.12, other quality measures behave similarly. For individual geometries, the sensitivity to noise

does vary though within the reconstruction area, in particular for the special cases 2T90◦, 2T180◦

and 4T180◦, see tab. 8.10. While the geometries 2T90◦ and 2T180◦ (not shown) are less sensitive to

noise in parts of the reconstruction area with poor coverage, the arrangement 4T180◦ shows higher

sensitivity for these regions. An explanation for this opposed behaviour is that for the former two

geometries the corresponding light paths are highly linear dependent (almost parallel at the top of
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4T180◦

4T90◦

3T180◦

3T90◦

2T180◦

2T90◦

↑ y0 x0 → j →

NEARN(x0, y0) NMB(x0, y0) PIPA(x0, y0)
P

j′>rank[A] V 2
jj′

Table 8.9: First to third column: Overall error (NEARN), reconstructed mean concentration (NMB) and
total emissions (PIPA) as function of peak position for the geometries in fig. 8.10. The peak from
ensemble E2 with σx/l = σy/l = 7 was reconstructed for 30 × 30 positions using a single bilinear
grid with n = 9× 9. Fourth column: Components j of the sum V 2

jj′ over the nullspace of A mapped
to the nodes of the n = 9 × 9 grid. Values in between grid nodes are merely interpolated
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Figure 8.12: Mean nearness for
reconstruction of the peak as in
table 8.9 without and with 10%
noise.

2T90◦ 4T180◦

Table 8.10: Noise sensitivity of the nearness, defined as
(NEARNǫ − NEARN)NEARN−1 as a function of the peak po-
sition (x0, y0) for reconstruction of the peak as in table 8.9 and
selected geometries.

2T90◦ and in the centre of 2T180◦) whereas in the latter case of 4T180◦ they are totally independent.

In the first case the parts of the reconstruction area with poor coverage of light paths are related with

small singular values and are thus particularly affected by regularisation, in the other case they are

not. This is exactly what can be observed.

(ii) The results for the comparison of various light path arrangements have been obtained by explicit

simulated reconstruction. Especially the investigation of the reconstruction quality within the area

was restricted to a specific distribution. We are now going to show how the – mostly algebraic –

arguments presented in sec. 7.2 can be used to arrive at similar conclusions, at least qualitatively, and

start with an inspection of the nullspace according to eq. (7.2) like before in table 8.8. Results, given

in the fourth column of table 8.9 for a bilinear grid of dimension n = 9× 9, show indeed a correlation

between large values of
∑

j′>rank[A] V
2
jj′ , i.e. large nullspace, and high overall reconstruction error

(mind again that the sum equals 1−Rjj , where R is the resolution matrix of the generalised inverse).

The correlation is not very distinct and in the case of the geometry 3T90◦ hardly visible. But one has

to bear in mind that the first three columns of the table refer to reconstruction which is a) nonlinear

due to the nonnegativity constraint and b) for a specific distribution. The significance of both is nicely

↑ y0 x0 → j →
(a) activity(x0, y0) (b) average activity(j) (c) ‖x − x

†‖2/‖x‖2(x0, y0) (d)
P

j′>rank[A] V 2
jj′

Table 8.11: Activity of the nonnegativity constraint for reconstruction of the peak distribution as in table 8.9
and the geometry 3T90◦. (a) As function of the peak position (x0, y0). A value of, e.g., 0.9 at
(x0, y0) means that the constraint is active for 90% of the projections when the peak is at (x0, y0).
(b) Activity on node j averaged over all reconstructions. (c) Difference norm of state vectors x, x†

for reconstruction of the peak at (x0, y0) with and without constraint. (d) Nullspace as in tab. 8.9.
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Figure 8.13: Degrees of freedom ds and information H for the geometries of fig. 8.10 and different levels of
noise. The bilinear reconstruction grid has dimension n = 7 × 7. All covariance matrices are
diagonal. The area covered by the np grid nodes in example (b) corresponds to about 0.3× 0.3 l−2

and is located either in the centre or the upper left corner of the reconstruction area.

illustrated by table 8.11 showing the activity of the nonnegativity constraint during the reconstruction

of the peak in table 8.9 for the geometry 3T90◦. It is evident from the figure that the constraint is

active almost always and on all grid nodes with a tendency to ‘fill up the nullspace’. That is, the larger

the nullspace the more active the constraint becomes, thus explaining at least partly the difference in

the patterns of overall reconstruction error and the nullspace. The strong nonlinearity of the inversion

process following from table 8.11 is the reason why quantitative statements should rely on explicit

numerical calculations.

Nevertheless, for a qualitative comparison of the geometries, we proceed with the linear approach

and employ the Bayesian method as reasoned in sec. 7.2(ii) to see how individual geometries perform

for a given level of noise and a supposed uncertainty of the true state. Using the degrees of freedom

of the signal ds, defined by eq. (4.61a) in sec. 4.7.2, as measures of performance means looking at

the diagonal elements of the resolution matrix (or averaging kernel) R. We consider first a uniform

a priori covariance Sa = σ2
a 1n – corresponding to the case where the location of the peak within the

reconstruction area is unknown and everywhere equally probably – and uncorrelated measurement

errors of the same size σǫ. In this case only the ratio σa/σǫ enters. The limit σa/σǫ → ∞ corresponds

to the generalised inverse, for which ds = trace[R] = rank[A]. Fig. 8.13a shows how ds differ from the

maximally possible 36 for different levels of noise – or better, for different degrees of ignorance about the

true state vector. The parametrisation is the same as in fig. 8.11, i.e. a single bilinear grid of dimension

n = 7 × 7. Writing the variances in terms of relative errors r like σa ∼ ra cp, σǫ ∼ rǫ cp ∅, with a

representative peak concentration cp and peak diameter ∅, gives the estimate σa/σǫ ∼ ra/rǫ ∅
−1.

For the peaks considered in this section the ratio is thus of the order (O(0.1) . . .O(1)) × ra/rǫ l−1

(see table 8.1). The curves show substantial variation of ds for measurement with different geometries

and a ranking very similar to the one found from simulated reconstructions in fig. 8.11a. Subareas

of the reconstruction area can be compared by choosing the a priori variance correspondingly. To

examine the degrees of freedom of a plume measurement, e.g. in the centre, one would assume a large

a priori variance within this subarea and a small one outside. Fig. 8.13b illustrates this for a plume
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(a) ds (b)
P

j′>rank[A] V 2
jj′

Table 8.12: (a) Degrees of freedom ds as function of the position of
the point measurement for geometry 3T90◦ and the special
case that it lies on one of the nodes of the n = 9 × 9 bi-
linear recontruction grid. All variances are diagonal and
σa/σǫ l = 10 for all measurements. (b) Nullspace as in
tab. 8.9. Values between the grid nodes are merely interpo-
lations.

that extends over np = 9 grid nodes either in the centre or the upper left corner of the reconstruction

area. The a priori covariance is again diagonal with equal entries σ2
a for the nodes of interest and zero

else. Differences of up to one degree of freedom (out of nine) for the given level of noise occur both

with geometry and location of the plume. The figure suggests distinctly better reconstruction results

for the centre areas of the 90◦-fan geometries, in agreement with fig. 8.9. Finally, fig. 8.13c is the

counterpart of fig. 8.13a for the information content as defined by eq. (4.64). Both agree qualitatively

(mind that the real meaning of the information content lies in the number of states distinguishable

by the measurement and given by 2H), the same holds for the example with nonuniform a priori

covariance (not shown).

The important point following from comparing the geometries by means of (i) the overall reconstruc-

tion error on the one hand and (ii) the resolution matrix (averaging kernel) on the other is not that

they differ in details, but they agree so well. After all, evaluation of the former in continuous state

space takes fully into account the shape of the distribution and its discretisation, while the latter takes

place in discrete space, irrespective of the kind of distribution. This suggests that, in the end, it is the

property of the linear independence that matters most, at least for the average of peaks taken into

consideration here.

8.4.3. Point measurements

The conclusion in favour of the information concept at the very end of the preceding section justifies

to use the degrees of freedom (or the information content) to analyse the optimal place of one or more

additional point measurements in a given geometry of remote sensing paths by just comparing their

values for different positions. It was argued in sec. 7.3 that the measurement location should be such

that the associated equation(s) lie in the nullspace of A. Considering one measurement and treating it

as additional constraint (case (ii) in sec. 7.3) gives values of ds as shown in fig. 8.12 for reconstruction

on a n = 9 × 9 grid for the geometry labelled 3T90◦. All covariance matrices were again assumed to

be diagonal with equal entries and relative errors of the point and remote sensing measurement were

taken to be of the same size. The measurement points were put on the nodes of the reconstruction
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grid for simplicity, but this should not restrict the conclusion that emerges when comparing fig. 8.12

to the nullspace of 3T90◦ in tab. 8.9. The Bayesian approach indeed predicts a maximum increase

of ds, if the point measurement takes place where the nullspace associated with the remote sensing

measurements is largest. According to the last section, for noncommittal a priori this should hold

equally for the reconstruction quality.

8.4.4. Scaling with light path number

(a) 3T90◦ with m = 9
integration paths

(b) 3T90◦ with m = 18
integration paths

(c) 3T90◦ with m = 36
integration paths

Figure 8.14: The same generic type of geometry with light path numbers scaled by a factor f = 2.

Numerical results from the beginning of this chapter referred to a specific geometry (3T90◦) with a

fixed number of integration paths. The problem of transferring these numbers to arbitrary light path

configurations can be stated like this: If, for a certain geometry g with m light paths, simulations

involving test distributions c yield a value q for a quality Q, like the peak maximum precision, what

will the value q′ be for another geometry g′ consisting of m′ paths? I.e.,

Q (g(m), c) = q ⇒ Q (g′(m′), c) = q′ =?

Such a conclusion is easy, if the quality Q obeys simple scaling laws, for example with the meshsize ∆l.

But sec. 8.4.2, which dealt with Q (g(m), c) for different geometries and fixed m, has shown that at

least for the meshsize this is not the case. It was found that the generic type of the geometry, i.e. the

linear independency of the light paths, is more important than the meshsize for the same light path

number. Possible scaling with quantities related to the singular value decomposition of the geometry

was not investigated. Instead, I show how quality measures scale with the light path number m for

the same type of geometry.

The assumption goes like this: Scaling m with a factor f , so that m′ = f m, gives for a more or

less regular geometry a centre meshsize ∆l′ = f−1 ∆l (see eq. (7.1)). If the spatial dimensions of the

concentration distributions are scaled by the same factor f−1, the quantity Q should stay invariant.

For Gaussian distributions with variances σ this takes the form:

Q
(
g(f m), c(f−1 σ)

)
= Q (g(m), c(σ)) . (8.3)

It was assumed here that Q has an appropriate normalisation, which is the case for all relative quality

measures in table 5.1 on page 97, except for the normalised mean square error NMSE. Taking both

test distribution c and retrieval ĉ to be Gaussians, it is easy to see that the transformation σ 7→ f σ

implies NMSE 7→ f−1 NMSE.
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∅2σ/∆l m n/m NEARN NMSE IOA |1 − NMB| r FA2 |1 − PIPA|
One peak

9 2.8 0.39 2.9 0.94 0.07 0.84 0.11 0.09
1 . . . 2 18 3.6 0.39 0.8 0.94 0.07 0.84 0.31 0.08
(E1) 36 > 3.5 0.55 - - 0.36 - - 0.1

9 1.8 0.22 0.08 0.99 0.03 0.95 0.70 0.03
2 . . . 4 18 2 0.24 0.32 0.98 0.04 0.95 0.36 0.05
(E2) 36 2.3 0.25 - - 0.03 - - 0.04

9 1.8 0.23 0.035 0.98 0.03 0.94 0.91 0.03
4 . . . 8 18 1.4 0.15 0.036 0.99 0.02 0.98 0.75 0.02
(E3) 36 1.8 0.15 - - 0.02 - - 0.02

8 . . . 12 18 0.9 0.15 0.037 0.99 0.02 0.98 0.75 0.02
(E4) 36 0.7 0.13 - - 0.013 - - 0.013

Four peaks

(E1 ∪ E2 ∪ E3) 9 1.8 0.38 0.09 0.95 0.04 0.84 0.85 0.04
18 1.4 0.37 0.14 0.95 0.03 0.85 0.75 0.04
36 2.3 0.39 - - 0.04 - - 0.07

Table 8.13: Invariance of quality indices Q, if light path number and peak distribution are scaled according to
eq. (8.3). The E1, etc. refer to the ensembles from table 8.1 for m = 36. All values are ensemble
averages for one or four random peaks and reconstruction on a single, regular bilinear grid of
dimension n. Some indices were taken into account later for m = 9, 18, but simulations were not
rerun for m = 36. These values are missing.

To test the above scaling relation, we take again the geometry with three telescopes and 90◦-fans

3T90◦ and a scaling factor f = 2 as shown in fig. 8.14. The test distributions arise from the original

ensembles E1 to E4 by scaling the variances with f , so that the ratio ∅2σ/∆l is the same within each

ensemble for the geometries with 9, 18 and 36 light paths, respectively. In other words, σ/l ranges in

E1 from 0.03 to 0.05 for m = 36 (see table 8.1), from 0.06 to 0.1 for m = 18 and so forth. Simulation

results for reconstruction of one and four peaks on a single bilinear grid are given in table 8.13.

For comparison with typical values of quality indices achieved by dispersion models that have been

presented in table 7.1, it contains some indices beyond the ones used so far. Apart from confirming

the expected scaling behaviour for all measures except NMSE, the table exhibits large variations

in the sensitivity of different indices (for example, the index of agreement IOA seems to be rather

insensitive). Whether the quality of the reconstructed peak distribution can keep up with dispersion

models depends on the extension of the peaks relative to the meshsize (and the quality index), as the

comparison with table 7.1 shows.

The invariance eq. (8.3) was found for other geometries, too, so that, in conclusion, the recipe for

applying simulation results for peak distributions from one geometry to a similar geometry with a

different number of light paths simply states:

Suitably normalised quality indices for peak distributions with the same ratio ∅2σ/∆l have equal values.

8.5. Background concentrations

The simulations in this chapter have assumed that the concentration values go down to zero (or

arbitrary small values) far away from the peaks, i.e. that there is no background concentration in the

sense of sec. 6.3.2. This precondition is of little significance for broad peaks, as long as the background

is not too large. But for narrow peaks, the a priori xa = 0, supported by the nonnegativity constraint,

has been seen to be essential. Instead of incorporating the background concentration into the a priori
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Figure 8.15: Same as fig. 8.1 for four random peaks and additional random background concentration (see
text), reconstructed either using a mean priori or by subtracting the background.

xa, it was therefore suggested in sec. 6.3.2(ii) to use it as a nonnegativity constraint after subtracting

the associated path integrals from the measurement data.

Both methods are compared again for random peaks from each ensemble and an additional non-

uniform background distribution (see appendix B) with values varying randomly in the reconstruction

area between 5% and 25% of the maximum peak value Cmax and maximum gradients of about Cmax/l.2

Fig. 8.15 shows the results for the special case where the a priori is given by the mean concentration

of all light paths eq. (6.7), while the value being subtracted is the minimum mean concentration

eq. (6.14). Because the iteration number partly serves as regularisation parameter, it is given for

completeness in table 8.14. Except for the broadest peaks from ensemble E4, the reconstruction

errors obtained by subtracting the background are in almost all cases smaller than those using the

mean a priori. Figs. 8.15a, 8.15b and 8.15d cannot be directly compared with the corresponding

subfigures in fig. 8.1 for the case without background because, here, norm and integrals contain also

the background. Details on how much the reconstruction of peak properties is deteriorated by the

presence of a background concentration field will depend on its variability and thus the quality of the

a priori (e.g., eqs. (6.10)). This has not been investigated systematically, but, at least for the situation

2For narrow peaks the contributions to the total column density from the peak and the background are thus of similar
size. For broad peaks the contribution from the peak can be maximally 15 times that of the background.
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n E1 E2 E3 E4

subtract. b.g. mean a priori subtr. mean subtr. mean subtr. mean

5 × 5 ∼ 200 ∼ 40 ∼ 400 − 500 120 400 400 ∼ 2 000 2 000

6 × 6 -”- ∼ 60 ∼ 800 150 800 600 ∼ 3 000 3 000

7 × 7 -”- ∼ 80 -”- 300 2 000 -”- ∼ 2 000 2 000

8 × 8 ∼ 400 ∼ 100 1 600 ∼ 400 -”- 500 ∼ 500 600

9 × 9 ∼ 500 ∼ 150 2 000 600 -”- 400 ∼ 400 -”-

10 × 10 -”- -”- -”- -”- -”- -”- -”- 400

11 × 11 -”- 150 -”- 400 -”- -”- -”- -”-

Table 8.14: Iteration numbers for fig. 8.15. The ‘∼’ indicates optimal values of NEARN for semi-convergence.
Values without ‘∼’ mean that NEARN has approximately reached convergence for this iteration
number.

considered here, the peak maximum (fig. 8.15c) can be reconstructed with similar accuracy as in the

case without background (fig. 8.1c). With the background distribution modelled here being rather

unspecific, it seems thus fair to say that

1. Subtracting a moderately variable background field as formulated in eqs. (6.13), (6.14) rather

than using a mean a priori in the least-squares minimum-norm scheme leads to significantly

better results for narrow peaks (from ensembles E1 to E3), provided the solution is regularised

appropriately.

2. For the ’differential’ system that remains after subtraction of the background, the findings of

the preceding sections apply, at least qualitatively. Details depend on the actual background

variability.

8.6. Discussion

Some aspects concerning the comparison with existing studies are discussed here in brief, while a

further, concluding discussion is held in chap. 11. Unlike for routine applications of computerised

tomography (CT), there is not a standard problem and no common way of evaluating reconstruction

methods in atmospheric science. For applications of CT in indoor gas dispersion, which come closest

to our kind of reconstruction problem, there are no publications by different authors among all referred

to in this thesis that use the same evaluation method (Despite the fact that there is a large set of

standard metrics used in atmospheric modelling, see sec. 5.4).

Furthermore, none of these indoor studies examines the parametrisation systematically, neither in

terms of the number of parameters, nor in terms of basis functions (Although most of them deal

with Gaussian peaks as well, where these issues matter). The possibility of highly under-determined

parametrisation is special to narrow peaks on a negligible or, as I have suggested, sufficiently smooth

or known background. The fact that for this special kind of distribution the representation by bilinear

basis functions not only leads to smaller discretisation errors, but also inversion errors, does not seem

to be a regularisation effect because, in general, the conditioning of A for bilinear functions is not

better than for piecewise constant ones. On the other hand, for over-determined discrete inverse prob-

lems, e.g. in atmospheric profiling, the impact of the basis functions on the quality of the retrieval has
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been attributed to different regularisation behaviour (e.g., [Doicu et al., 2004] and references therein).

For either case, the choice of parametrisation of the discrete inverse tomographic problem certainly

requires further attention.

Most of the tomographic studies dealing with problems similar to ours are concerned with algorithms,

i.e. either with inversion algorithms for the same reconstruction principle (like ART and SIRT) or

with different principles altogether (like the least-squares and the maximum entropy principles). In

many cases, the comparison with other algorithms remains insufficient or unsystematic with respect

to the kind of distribution (However, it was argued in sec. 8.3.1 that the kind of distribution does play

a role, explaining some seeming contradictions in the literature). For example, Drescher et al. [1996]

finds better results for her method SBFM (see sec. 4.9.3) compared to ART on the grounds of less

noisy concentration maps, but does not compare it to SIRT which is known to give less noisy results.

Price et al. [2001] introduce a method, basically the Tikhonov approach with the third differences

used for regularisation, but compare it only to SBFM using the data residual. The first method

being over-determined and their discrete parametrisation being under-determined, there is hardly a

point in comparing the data residual as argued in sec. 5.4. Furthermore, the authors do not show

any sample reconstruction with original distribution. Doing this for Gaussian peaks suggests that the

method is not only smoothing, as intended by the authors, but oversmoothing in terms of sec. 4.6.33.

Samanta and Todd [1999] have found that the MLEM principle (sec. 4.9.1) gives better results for

the reconstruction of Gaussian peaks than the least-squares least-norm principle. This algorithm

combined with box basis functions and a grid translation scheme was quantitatively compared to our

approach on p. 125, in favour our method.

This does obviously not mean that the pure least-squares least-norm reconstruction principle is the

ultimate choice. In fact, for over-determined problems, experience from 1-D profile reconstruction

suggests that it is not. But according to our findings, any (new) principle or inversion algorithm should

be compared to others systematically with respect to the kind of distribution and parametrisation.

The same holds for the regularisation approach.

Light path geometries have been investigated by Todd and Bhattacharyya [1997]; Todd and Ramachan-

dran [1994b] for indoor gas reconstruction, but – apparently inspired by X-ray tomographic setups

– they use an excessive number of 120 − 400 light paths, combining fan beams and projection paths

by additional mirrors. By and large, carrying out numerical simulations similar to sec. 8.4.2(i), the

authors come to the same conclusions, except for our geometries that are especially irregular.

3Cehlin, M., Computed tomography for gas sensing indoors using a modified low third derivative method. Submitted
to Atmospheric Environment.



9. 2-D Reconstruction of NO2 Peaks from

an Indoor Test Experiment

The indoor experiment referred to in this chapter was carried out to study the performance of the

multibeam instrument, especially developed for tomographic measurements [Mettendorf , 2005; Pundt

and Mettendorf , 2005]. The experimental conditions are highly artificial (see [Mettendorf et al., 2006;

Mettendorf , 2005] for details of the experiment and its complications), therefore it is not used here

to discuss atmospheric measurements of trace gas plumes, but rather to illustrate the reconstruc-

tion procedure for an experimental situation without further knowledge about the true concentration

distribution. Only one of the distributions measured and reconstructed is considered in sec. 9.2, as

variations basically are contained in the simulations of the previous chapter (see [Mettendorf et al.,

2006; Mettendorf , 2005] for a discussion of all results). In particular, the reconstruction error is

estimated and re-estimated in sec. 9.3 in a consistent way from the reconstructed distributions and

the simulations of chap. 8. Finally, sec. 9.4 examines the detectability of trace gas plumes in general

and for the largest point sources near Heidelberg for illustrative purposes and as a case study for

tomographic measurements currently taking place in Heidelberg.

9.1. The experiment

Figure 9.1: Light path geometry of the indoor ex-
periment with 39 rays in total. Beams, simultane-
ously emitted by the telescopes (T), are redirected
by mirrors (M) towards individual retro-reflectors.
The test distributions consist of polycarbonate
cylinders with radius 1 m and NO2 concentrations
c1 = (1.95 ± 0.15) 1014molec/cm3, c2 = (3.35 ±
0.1) 1014molec/cm3.
(This arrangement of the cylinders was labelled dis-
tribution no. 16 in [Mettendorf et al., 2006; Metten-
dorf, 2005].)

c2

T2M1 M3

15 m

10 m

T3 M2T1x

y

c1

The experiment was carried out on a factory floor on an area of 15×10m2 with three of the multibeam

instruments. Emission puffs were simulated by placing one or two polycarbonate cylinders, each filled

with NO2 and a radius of 1m, at various positions in the area (fig. 9.1).

The design of the light path geometry was mainly dictated by instrumental factors. Light beams leave

the multibeam telescope basically in the same direction and have to be redirected by external mirrors

(one per beam) to the final destination. To appear separately on the mirrors the rays have to pass a

151
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Figure 9.2: NO2 column densities ob-
tained from the experiment [Metten-
dorf et al., 2006; Mettendorf, 2005]
and from integration over the known
test distribution of fig. 9.1. The opti-
cal and integration path are twice the
way from the telescope to the reflec-
tor. The location error in the simula-
tion takes into account an uncertainty
of the cylinder position of about 5 cm.

distance of several metres. A further restriction is given by the fact that each mirror can be turned

horizontally by maximally ±30◦, resulting in fans of maximally 120◦. These requirements led to the

arrangements of telescopes and mirrors as shown in fig. 9.1, i.e. three 90◦-fans sitting in the corners

of the test area. The number of light paths that can be realised at the same time is given by the

number of rays emitted by each telescope (four in this case). To increase the number of light paths in

atmospheric measurements, the external mirrors are successively directed to different targets, so that

the final geometry used for reconstruction consists of more integration paths, yet not all referring to

the same time (see the discussion in sec. 5.2.3). This scanning was carried out in the indoor experiment

in three steps, each with 3 × 12 light paths, so that the complete geometry comprises 36 paths. All

beams emitted by the same telescope share the distance TM within the reconstruction area, which

would not be the case in real atmospheric measurements – or more precisely, this distance would be

completely negligible compared to the remaining distance to the reflector. Besides, it is unfavourable

for the tomographic reconstruction. Therefore, one optical path from the telescope to a retro-reflector

at M has been added for each telescope, thus removing the ambiguity introduced by the common

path TM. The final composite geometry with 39 light paths is essentially identical to the one labelled

3T90◦ in chap. 8. The three intermediate geometries with 12 light paths (see [Mettendorf et al., 2006;

Mettendorf , 2005] for details) were set up under static conditions, i.e. the concentration distribution

did not change. Contrary to the geometry with 12 light paths in fig. 8.14, they were not intended to

serve for reconstruction individually, so only the complete geometry of fig. 9.1 will be considered in

the following.

Due to the short distances and the polycarbonate in the optical path, the DOAS measurement and

its analysis differ considerably from an atmospheric measurement (see again [Mettendorf et al., 2006;

Mettendorf , 2005] for details in the following). In general, column densities obtained from the DOAS

analysis agree well with expectations, as illustrated by fig. 9.2 for the concentration distribution with

two puffs shown in fig. 9.1. In the simulations the finite beam diameter of around 6−30 cm is neglected

and the error of the experimental column densities is given by eq. (3.6), without taking into account

any systematic errors, e.g. like the one coming along with an incorrect absorption cross section of

NO2. The average measurement error for all test distributions is about 0.05 · 1017 molec/cm2 for

beams passing through a cylinder and 0.025 · 1017 molec/cm2 for beams that do not. For ‘nonzero’
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ĉ(x, y) [1014molec/cm3]

a) n = 6 × 6 b) n = 7 × 7 c) n = 8 × 8 d) n = 9 × 9
I1 = 2.9, I2 = 5.3 I1 = 5, I2 = 3.5 I1 = 3, I2 = 6 I1 = 6.2, I2 = 7.1

e) n = 10 × 10 f) n = 11 × 11 g) n = 12 × 12 h) n = 13 × 13
I1 = 5.3, I2 = 7 I1 = 6.2, I2 = 8.4 I1 = 5.4, I2 = 9.9 I1 = 5.8, I2 = 9.5

i) n = 11 × 11, aver. j) n = 11 × 11, comp. k) n = 13 × 13, aver. l) n = 13 × 13, comp.
I1 = 5.6, I2 = 8.9 I1 = 5.6, I2 = 9.8 I1 = 5.8, I2 = 9.0 I1 = 5.6, I2 = 9.8

Table 9.1: Reconstruction of the column densities of fig. 9.2 using SIRT, x(0) = 0, k = 2 000, a single bilinear
grid (a-h) and the averaging (i,k) or composite (j,l) grid translation scheme.
I1 and I2 are given by the integrals over peaks 1 and 2: Ii = (1018molec/cm)−1

R

Peaki
dA ĉ(r).

column densities in fig. 9.1 this amounts to relative errors between 3% and 10%.

9.2. Sample reconstruction

The reconstruction procedure is illustrated for the measurement shown in fig. 9.2, using the simulation

results of the previous chapter but no information other than what is provided by the measured column

densities themselves.

The fact that most of the column densities have zero (or negligible values) suggests the a priori xa = 0

as iteration start x(0). Starting the reconstruction with a single regular bilinear grid of dimension

n = 6 × 6 – i.e. the over-determined case – leads to the concentration map shown in tab. 9.1a1.

According to table 8.5 an iteration number of several thousand steps should be chosen to assure

convergence. Assuming the convergent and not the semi-convergent case which needs regularisation

is justified by the following.

1Colour maps are a bit clearer than 2-D contour plots for the narrow peaks here.
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The reconstructed map clearly shows two distinct peaks (and a hardly visible, weak accumulation

in the upper half) which, on the grounds of the results of chap. 8, encourages to increase the grid

dimension n. Even up to n = 13 × 13 the reconstruction shows the same structure of two peaks

and a very flat peak present in all maps except g, raising the question whether it genuinely belongs

to the true distribution or whether it is an artefact of the reconstruction. The fact that no further

artefacts appear when the grid dimension gets larger is an indicator for the a priori still working

and the peaks indeed being very narrow. But while the area integrals over the individual peaks for

higher dimensional grids give a fairly consistent picture, reconstruction of the peak maximum values

– ranging from 2.5 to 6.7 · 1014molec/cm3 for the higher peak – is not conclusive.

To get a clearer picture of shape and maximum values, we note that in terms of the previous chapter

the peaks belong to E1, so that according to fig. 8.5 the averaging grid translation scheme is likely to

lead to a smaller overall error, while the composite scheme should give a more precise value for the peak

maxima. The corresponding concentration maps are shown in tab. 9.1i-l. Again the peak integrals,

especially of the lower peak, agree fairly well, but the maxima differ considerably. Trusting that the

results of fig. 8.5 apply here, too, the maxima of the composite scheme ought to be more accurate.

Further evidence is provided by an explicit estimation of the reconstruction error as suggested in

sec. 5.3.

9.3. Discussion of the reconstruction error
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Figure 9.3: Examples of random fields cI(x, y, ) ∈ E created by convoluting Gaussian peaks with totally random
fields as described in the text.

The numerical estimation of the reconstruction error is based on the following assumptions

I. The true distribution consists of two peaks with negligible background concentration.

II. Taking the reconstructed peak maxima of peak 1 and 2, Ĉ0,1 ∼ 2 · 1014molec/cm3, Ĉ0,2 ∼
(3 − 6) · 1014molec/cm3 and the statistical scattering from fig. 8.5c, the true peak maxima are
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assumed to lie between

1 · 1014molec/cm3 ≤ C0,1 ≤ 4 · 1014molec/cm3,

1.5 · 1014molec/cm3 ≤ C0,2 ≤ 8 · 1014molec/cm3. (9.1)

III. From the peak extensions reconstructed with the averaging and the composite grid translation

scheme and from the meshsize of the geometry bounds for minimum and maximum 3σ-extension

of the real peaks, respectively, are estimated as

100 cm ≤ 3σx,y ≤ 400 cm.

IV. The location (x0, y0) of the peak centre reconstructed with the averaging and composite scheme

is to ±50 cm correct.

For the case of the real atmosphere, it is reasonable to generate the ensemble E for the error estimation

from Gaussians. Here the random peaks are created by convoluting Gaussians with random fields as

described in appendix B such that the resulting field cI(x, y) ∈ E fulfils requirements I-IV and has

at every point a maximum absolute gradient of |∇cI | ≤ 10 · |∇cGaussian|. The latter bound is not

physically motivated but intended to impose some variability on the otherwise smooth Gaussian.

Samples of this procedure are shown in fig. 9.3.

Tab. 9.2 shows the mean error fields ∆−ĉ(x, y, ) (overestimation) and ∆+ĉ(x, y, ) (underestimation) as

defined by eq. (5.14b) for reconstruction on a single 10×10 pixel grid and the averaging and composite

scheme, respectively. The maps look very similar, with overstimation smeared around the peaks and

underestimation concentrated mainly on the maximum of the higher peak. According to sec. 5.3

the contribution from the measurement error is calculated by adding random errors with variances

given by the meaurement errors to the actually measured column densities and taking the standard

deviation stdǫ[ĉ] around the reconstructed mean..

We notice first that the very weak concentration peak in the reconstructions from experimental data

found in the previous section is very likely an artefact, caused either by the imperfect inversion

(tab. 9.2a-c) or by errors of the measurement data (tab. 9.2i-k). Second, calculation of the area

integrals of ∆±ĉ, i.e. the mean errors, shows smaller values for the averaging scheme, followed by

the single grid reconstruction. The difference between averaging and composite scheme amounts to

∼ 7%. Reconstruction of the peaks on a single grid is significantly more susceptible to measurement

noise. Finally, mean errors for reconstruction on a 12 × 12 pixel grid are throughout larger than the

corresponding ones for the 10 × 10 pixel grid, without changing the ranking of the methods.

Disregarding the results of the composite scheme on grounds of larger reconstruction errors fits neatly

into the picture obtained from the reconstructed maps in tab. 9.1, where maximum values of the single

grid and the averaging scheme generally are in much better agreement compared to the composite

method.

To get a clearer picture of the reconstructed distribution and its error, fig. 9.4 shows concentration

profiles along the x-axis through the centre of the true peaks. For the cross section considered here, the

reconstruction errors ∆±ĉ (long dashed line) are largest at the peak maxima, which for the Gaussian

error ensemble from above tend to be underestimated, especially for single grid reconstruction of
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∆ĉ(x, y) [1014molec/cm3]

〈∆−ĉ(x, y)〉E
(a) single grid (b) averaging scheme (c) composite scheme

I = −7.1 (−7.5) I = −6.8 (−7.3) I = −7.3 (−8.0)

〈∆+ĉ(x, y)〉E
(e) single grid (f) averaging scheme (g) composite scheme
I = 5.6 (5.9) I = 5.4 (5.7) I = 5.8 (6.3)

stdǫ [ĉ(x, y)]
(i) single grid (j) averaging scheme (k) composite scheme
I = 2.6 (3.1) I = 1.8 (2.3) I = 1.9 (2.0)

Table 9.2: Mean error fields ∆−ĉ, indicating overestimation, (a-c) and ∆+ĉ, indicating underestimation, (d-
f) for reconstruction of the random distributions from the ensemble E described in the text and
illustrated in fig. 9.3 (N = 200 samples) on a 10 × 10 pixel grid. The impact of the random
measurement error (i-k) is calculated for the experimental column densities using the estimated
measurement error.
I is given by the integral over the entire reconstruction area A: I = (1018molec/cm)−1

R

A
dA ĉ(r).

Values in brackets (·) refer to a 12 × 12 pixel grid.

the peak 2 (fig. 9.4d). While the impact of the measurement error (dotted line) is indeed small, the

standard deviations of ∆±ĉ are of similar size as the errors themselves. Taking the standard deviations

into account as they suggested in sec. 5.3 gives in the case of the averaging scheme for the peaks with

Ĉ0,1/2 =

{
1.9

3.1

}
· 1014molec/cm3,

∫

Peak,1/2

dA ĉ =

{
5.6

8.9

}
· 1018molec/cm, (9.2)
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Figure 9.4: Profiles along the x-axis through the centres of the peaks in tab. 9.1 reconstructed on a 10 × 10
grid and successive addition of the reconstruction errors ∆±ĉ, their standard deviations stdE [∆±ĉ]
and the propagated measurement error stdǫ[ĉ]. Also shown the true cylinder distribution (the
uncertainty of about ±5 cm in the cylinder position is not taken into account).

the following bounds on the peak maximum values and the peak integrals (total emissions):

{
1.5 (1.8)

2.5 (2.9)

}
· 1014molec/cm3 ≤ C0,1/2 ≤

{
2.5 (2.2)

5.0 (4.0)

}
· 1014molec/cm3,

{
3.1 (4.3)

5.3 (7.1)

}
· 1018molec/cm ≤

∫

Peak,1/2

dA c ≤
{

8.8 (6.8)

16.3 (11.9)

}
· 1018molec/cm, (9.3)

where the numbers (·) in brackets refer to ĉ ± ∆±ĉ without standard deviations stdE [∆±ĉ].

The wide ranges, particularly for the second peak with lower and upper bounds for the maxima and

integrals differing by factors two and three, respectively, are quite dissatisfying. They are to a certain

extent caused by the very pessimistic bounds on the random ensemble eqs. (9.1). The ranges in

eqs. (9.1) can be narrowed down, for example, by assuming instead of I-IV on page 154 that

I′. In agreement with the error bounds calculated from I-IV, the distribution reconstructed on a

10×10 pixel grid by the averaging scheme (tab. 9.1i and fig. 9.4a,b) is within ±50% of its values

correct.
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(b) profile along the x-axis through the centre of peak 2

Figure 9.5: Examples of random concentration fields generated from the field reconstructed on a 10 × 10 pixel
grid using the averaging scheme under the assumptions I′ and II′, p. 157, (a) and reconstruction
errors for peak 2 (b). The measurement error is not included in the figure.

II′. The peak centre is reconstructed with an accuracy of ±50 cm as before.

Generating again random distributions agreeing with I′ and II′ (see fig. 9.5a) leads to mean reconstruc-

tion errors ∆±ĉ and standard deviations shown for peak 2 in the profile fig. 9.5b. Notably the bound

on the underestimation ∆+ĉ and – as expected – its standard deviation stdE [∆+ĉ] are considerably

reduced. The new bounds on the reconstructed peaks are now (including the measurement error as

in eq. (9.3))

{
1.5 (1.8)

2.6 (2.8)

}
· 1014molec/cm3 ≤ C0,1/2 ≤

{
2.2 (2.1)

4.2 (3.6)

}
· 1014molec/cm3,

{
3.7 (4.8)

5.9 (8.1)

}
· 1018molec/cm ≤

∫

Peak,1/2

dA c ≤
{

7.5 (6.4)

11.6 (10.5)

}
· 1018molec/cm (9.4)

with values in brackets again for the case without the standard deviation of ∆±ĉ. Under the assump-

tions made, the estimated error of the peak maxima in eqs. (9.2) are thus maximally 20%(10%) for

peak 1 and 35%(15%) for peak 2, whereas those of the integrals are 30%(15%) at most in both cases.

Finally, comparing the reconstructed fields and their error estimates to the known cylinder distribu-

tions with

C0,1/2 =

{
1.95 ± 0.15

3.35 ± 0.1

}
· 1014molec/cm3,

∫

Peak,1/2

dA c =

{
6.1 ± 0.5

10.5 ± 0.3

}
· 1018molec/cm,

one finds that

• On the one hand, the true peak maxima and total emissions lie not only within the larger error

bounds that take the scattering of the reconstruction errors ∆±ĉ into account, but also within

the ranges based on the mean errors 〈∆±ĉ〉E (and the measurement error) only.
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• On the other hand, the profiles in figs. 9.4 and 9.5 clearly show that the reconstructed distribu-

tions do not agree with the true fields within their error bounds.

Both observations reflect fundamental problems of the error estimation for the inverse problem already

discussed qualitatively in the introductory section 5.1.

The scattering of the error fields ∆±ĉ(r), i.e. the standard deviations stdE([∆±ĉ(r)], is to a large

extent given by the variability of the test distributions used for the statistical estimate. As pointed

out in sec. 5.3, an ensemble of smooth concentration fields and one containing highly fluctuating fields

can, in principle, give rise to the same mean error fields 〈∆±ĉ(r)〉E , but their standard deviations

stdE [∆±ĉ(r)] will be quite different. The variability of the random distributions above is mainly

controlled by the choice of the maximum gradient. The fact that the lower and upper error bounds

seem to be overestimated means that the arbitrary set variability of the ensemble is larger than the

variability of the true concentration field.

The inconsistency of the spatial distributions seen in the peak profiles is not due to an ensemble of

test functions that is chosen too small in terms of lower, upper bounds and variability, but it has

to be attributed to the generic form of the ensemble: continuous Gaussian peaks. Choosing discrete

step functions as generating distributions would have increased the reconstruction error such that the

real (cylinder) and the reconstructed distributions are compatible. However, in the atmosphere there

would be little evidence for such an artificial choice if turbulent dispersion plays a role.

Although the two issues are related, the problem of the unknown variability is likely to play a less

important role the longer the averaging time of the measurement is and thus the smoother the atmo-

spheric distribution becomes.

9.4. Some aspects of atmospheric measurements of emission

plumes

The results from the indoor experiment cannot be transferred to atmospheric measurements because

– apart from the quite different experimental conditions (see [Mettendorf et al., 2006; Mettendorf ,

2005] for details) – the experiment assumed static puffs during the measurement cycle, which is rather

unrealistic even for short times (see sec. 5.2.3), and the ratio of background to plume NO2 concen-

trations would not correspond to atmospheric measurements. Therefore, a realistic setup, similar to

measurements currently taking place over the centre of Heidelberg [Pöhler , 2006] is considered in the

following instead. The area is assumed to be a square of size l× l = 2×2 km2 and the number of light

paths generated by three multibeam instruments is taken to be 18, corresponding to the geometry in

fig. 8.14b, p. 146, so that the simulation results of the previous chapter can – at least approximately

– be adopted by downscaling as described in sec. 8.4.4. In particular, the smallest peak that can still

be reconstructed corresponds to the lower limit of ensemble E2 in tab. 8.1, p. 119, with a 2σ diameter

given by ∅2σ/l = 0.2, i.e. here, ∅min = 400m.

From a remote sensing point of view, the question whether locally enhanced concentrations can be

measured purely depends on the detection limit of the trace gas species. The emission puff with mean

concentration c̄′ on top of the background cBG depicted in fig. 9.6a can be detected, if the puff’s
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with m = 18 light paths (figs.8.10, 8.14) scaled by the
length l of the square reconstruction area. The thresh-
olds indicate the singular values above the detection
level for a plume concentration c̄′ according to eq. (9.5).

Figure 9.6: Detection of trace gas plumes.

contribution to the total column density is above the detection limit δ for the column densities

d − dBG > δ or c̄′ >
δ

2∅
,

where ∅ is the diameter of the puff. Detection limits of the multibeam instrument for a light path

length of 5 km are listed in tab. 9.3 for some trace gases (see also tab. 2.2, p. 22, for typical mixing

ratios of these trace gases.)

From the inversion point of view, actual values of detection limits and measurement noise become

important for the information content of the experiment and for the regularisation procedure. While

the latter has been argued in sec. 4.4 and demonstrated in secs. 8.3.2, 9.3 to be less critical for the

under-determined reconstruction of peaks than it would be for large over-determined problems, it is

instructive to see how many degrees of freedom of the measurement system do in fact contribute for a

given level of noise. According to sec. 7.2(i) it is given by the singular values with σj ≥ ǫ/‖x‖2, where

ǫ is the root mean square error of the measurements. Writing – similarly to the approximations made

on page 135 – ‖x‖2 ∼ √
np c̄′ for a plume with mean concentration enhancement c̄′ extending over np

grid nodes and taking ǫ as the detection limit δ, the inequality becomes

σj/l &
2

√
np

δ

d′
or σj/l &

2
√

np

c∅

c̄′
∅/l. (9.5)

Here, d′ is the column density of the plume like in fig 9.6a and c∅ the concentration minimally

detectable for a light path length of 2∅. For a narrow peak, e.g. ∅2σ/l = 0.3 or ∅2σ = 600m,

O3 NO2 SO2 HONO CH2O

detection limit [ppb] 2.2 0.2 0.07 0.15 0.3
for 5 km

Table 9.3: Detection limits of the multibeam instrument for a
light path of length 2L = 5 km [Mettendorf, 2005].
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tab. 8.13 suggests n/m = 2, corresponding to a 5 by 5 pixel grid and thus np something like three

or four. If the mean concentration c̄′ of the plume is around the detection limit c∅, only singular

values σj/l & 0.3 give contributions above the detection limit (fig. 9.6c, dashed line), for c̄′ ∼ 2c∅ the

threshold is 0.15 (dotted line) and so forth. The detection limit of NO2, SO2 and CH2O for the light

path length 2∅ = 2 × 600m is c∅ = 0.8, 0.3 and 1.25 ppb, respectively, so that for realistic pollution

levels (see tab. 2.2) practically all modes contribute (in the case of geometry 3T90◦).

If the total measurement error, including noise, systematic errors and errors arising from changes of

the concentration field during the measurement, is moderate, the decisive factors for the reconstruction

of trace gas peaks are the discretisation and inversion errors. For negligible background concentration

the relative discretisation and inversion errors do not depend on absolute peak concentrations and the

detectability of a plume can be inferred from the simulations in the previous chapter.

The situation, where a plume with mean concentration enhancement c̄′ is reconstructed by subtracting

the supposed column densities of a moderately variable background concentration cBG(r) is shown in

fig. 9.6b. The column densities after subtraction are up to a residual concentration field ∆c(r) given

by those of the plume

d − dBG = d′ + ∆d

= 2∅c̄′ + 2L∆c,

where ∆c is the average concentration of the residual field on the whole reconstruction area. On the

one hand, this procedure strictly speaking demands

∆d ≪ d′.

On the other hand, the presumably erratic character of the residual suggests to treat its column

densities as noise, and the simulations in sec. 8.3.2 have shown that reconstruction of a (single) plume

still makes sense for error levels below ∼ 10%. Taking into account that there are further measurement

errors, one gets the rough bound
∆d

d′
≪ 10%, (9.6a)

or
∆c

c̄′
≪ 0.1 ∅/L ∼ 0.1 ∅/l. (9.6b)

For example, for a local enhancement of NO2 around 10 ppb with ∅/l = 0.3 as above and cBG ∼ 1 ppb,

the inequality reads

∆c ≪ 0.3 ppb ∼ 1

3
cBG,

which seems to be a realistic requirement.

Finally, the up to now hypothetical dimensions of the plume ought to be put in context to realistic

dispersion of trace gas in the atmosphere. To this end, we consider a point source at distance x0

away from the optical path, which is perpendicular to the wind direction for simplicity (see fig. 9.7a).

The wind direction is assumed to be constant. The horizontal dimensions of the plume are given

by the horizontal dispersion coefficients σy. For the Pasquill-Gifford parametrisation (appendix A)

and the most frequent neutral stability class D, the 2σ-diameter at downwind distance, e.g., 5 km is

∅2σ ∼ 1 080m. Assuming a wind speed of ū = 5m/s for this class, the travel time for this distance



162 9. 2-D Reconstruction of NO2 Peaks from an Indoor Test Experiment

+L/2

z

q

h

ū
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(b) Column density d(x0, z0 = 20 m, h) for an inert tracer ac-
cording to eq. (9.7) for different stack heights and the urban
Briggs parametrisation of the dispersion coefficients. The ori-
entation of the optical path of length 4 km is as in figure a.

Figure 9.7: Measurement of a column density in a continuous plume emitted by a point source.

is ∼ 16min. For stability classes A (extremely instable) and F (extremely stable) the corresponding

values are ∅2σ ∼ 1 880m and 540m, but at lower and higher wind speeds, respectively. While the

plume passes the reconstruction area of length l = 2 km (in ∼ 7min at ū = 5m/s), the extension ∅2σ

increases to 2 530 m (A), 1 460m (D) and 730m (F ). In terms of the ensembles of chap. 8, the peaks

would thus belong to E2 to E4.

Turning to concentration levels in the plume, we take the most simple case of a continuous point

source and, neglecting reflection at the mixing layer, the column density d measured along the light

path for the geometry in fig. 9.7a can simply be calculated by integrating eq. (2.5a) along y

d(x0, z0, h) =

√
2

π

q

ū σz

[
exp
(
− (z − h)2

2σ2
z

)
+ exp

(
− (z + h)2

2σ2
z

)]
erf
( L

2
√

2σy

)
, (9.7)

with σy, σz evaluated at x0 and erf being the error function. Just as an example, we consider a

cement works which happens to be located at about 5 km distance south-east of Heidelberg and study

the impact on column densities measured in Heidelberg for the scenario of fig. 9.7a.2 The European

pollutant emission register (EPER)3 states mean annual emissions of

q̄SOx
∼ 3.75 · 105 kg/a = 12 g/s,

q̄NOx
∼ 5 · 105 kg/a = 16 g/s

for this plant. The actual direct emission of SO2 can be written as

qSO2
=

EFSO2

EFSOx︸ ︷︷ ︸
r

f∆t q̄SOx
,

where EF denotes emission factors and r is the ratio of directly emitted SO2 to SOx. The factor f∆t is a

2This wind vector does not represent the predominant wind direction.
3http://www.eper.cec.eu.int/
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dimensionless factor accounting for deviations from the annual mean and the corresponding expression

holds for NO2. Furthermore, the plume undergoes chemical transformation which in the case of NO2

can be characterised by the downwind NOx concentration and the Leighton ratio L = [NO]/[NO2]

(c.f. sec. 2.2) and for SO2 takes the simple form of an exponential decay by exp(−kx0/ū) with a value

of k = 4, 81 · 10−6s−1 suggested in [ISC-3 , 1995] for urban environment. For x0 = 5 km and a wind

speed of 2m/s, the exponential takes a value of 0.99, so that the SO2 plume can be treated as inert.

Including the downwind chemical decay by the factor D(x0), we write

dD(x0, z0, h) = D(x0) d(x0, z0, h) = D(x0) r f∆t d0(x0, z0, h). (9.8)

Except for the most instable conditions (A), the column density at x0 = 5 km does not depend

significantly on the effective stack height h, as shown in fig. 9.7b, where d(x0, z0, h) is calculated for

different stack heights for a length 2L = 4 km of the light path at height z0 = 20m, using the Briggs

urban parametrisation of the dispersion coefficients.4

Values of the column densities d0(x0 = 5 km, z0 = 20m,h = 100m) without the correction factors D,

r and f in eq. (9.8) and corresponding average concentrations c̄′0 along the light path amount to

SOx NOx

d0 c̄′0 d0 c̄′0 stab. class ū

[103µg/m2] [µg/m2] [ppb] [103µg/m2] [µg/m2] [ppb] [m/s]

6 1.5 0.6 8 2 1 A/B 2

7.5 2 0.7 10 2.5 1.3 D 5

30 7 2.6 40 10 5 E/F 2

Taking the factors D and r into account will reduce these concentrations further, while f∆t might

well be much larger than one. Average concentration values along a light path above the centre of

Heidelberg obtained by Rippel [2005] during measurements in December 2004/January 2005 range

from around 0.5 ppb to 14 ppb for SO2 and from ∼ 2 ppb to maximally 45 ppb for NO2. Whether the

plume could be detected as such depends – apart from the meteorological conditions, the activity of

the cement works and the chemical development of the plume – on the actual emission factors and on

the concentration levels in Heidelberg itself. For a plume with ∅/l ∼ 1 000m/2 km = 0.2 (stability

class D, c.f. p. 161) eqs. (9.6) require ∆c/c̄′ ≪ 0.05. Taking the corrected mean concentration c̄′

of SO2, for example, as a tenth of c̄′0 above, i.e. c̄′ ∼ 0.2 ppb, this means ∆c ≪ 10−3 – something

unachievable.

The same analysis can be carried out for a large coal fired power station, the GKM, Mannheim,

located ∼ 15 km north-west of Heidelberg. The EPER specifies

q̄SOx
∼ 3 · 109 kg/a = 70 g/s,

q̄NOx
∼ 3.8 · 109 kg/a = 120 g/s.

The ratio r = EFNO2
/EFNOx

takes values below 10% (see sec. 2.2), while according to the UK

emission database5 EFSO2/EFNO2 ∼ 2.7 for coal. Using the Pasquill-Gifford parametrisation (for

rural environment) and ignoring again the mixing layer, the uncorrected column densities d0 and

average concentrations c̄′0 are

4We use the units [µg/m2] common in air pollution monitoring.
5http://www.naei.org.uk/
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SOx NOx

d0 c̄′0 d0 c̄′0 stab. class ū

[103µg/m2] [µg/m2] [ppb] [103µg/m2] [µg/m2] [ppb] [m/s]

35 9 3 60 15 8 B 2

56-84 14-21 5-8 96-144 24-36 13-20 D 5

70-315 18-80 7-30 120-540 30-135 16-71 F 2

where first values refer to an effective stack height of 200m, the second to 100m.

With the more realistic higher effective stack height and having the values of the factors r in mind, these

concentrations can for highly above-average activity of the power station be a significant contribution

to Heidelberg’s pollution level, but in view of the plume extension ∅2σ ∼ 800m (F ) − 6 000m (A), it

would rather appear as an enhanced background than a distinct plume.

The two examples discussed represent the most important point sources for NO2 and SO2 in the vicin-

ity of Heidelberg. Therefore, it can be concluded that (narrow) plumes with concentration maxima

distinctly above the city level have to originate from within the area of Heidelberg.



10. 2-D Reconstruction of Model Trace

Gas Distributions above a Street

Canyon

This last chapter of numerical results focuses on tomographic reconstruction of trace gas distributions

in an urban environment. For lack of experimental data results from an elaborate model system,

ultimately designed to calculate concentrations within and in the vicinity of a highly polluted city

street canyon, will be employed to simulate measurements with a moderate number of light paths.

The reason for choosing these model distributions is simply that they cover a horizontal area large

enough and with sufficient spatial resolution to represent a realistic state of the atmosphere on the

scale of our tomographic measurement.

We are neither concerned with the particularities of the model, nor with the specific meteorological

situation or the emission scenario, but only with the spatial patterns of the distributions. The descrip-

tion of the model situation in sec. 10.1 is therefore kept rather brief, before turning to the exemplary

reconstruction of NO2 in sec. 10.2. The reconstruction procedure turns out to be far less flexible

than the one for peak distributions, instead regularisation becomes crucial. This becomes even more

evident in the error calculations of the subsequent sec. 10.3, which examines the possibility to verify

the model NO2 distribution by means of the tomographic setup. The evaluation procedure follows

the suggestion of sec. 7.4 on model evaluation.

10.1. Model system, set-up and results

Model results used for the simulations of this chapter were obtained by the model system M-SYS,

which was briefly referred to in sec 2.5 as a tool for the evaluation of ambient air quality according

to the EU framework directive 96/62/EC (see sec. 2.1). The trace gas distributions presented shortly

were calculated by D. Grawe1 for the street canyon Göttinger Straße in Hanover in the framework of

the VALIUM project, which was carried out especially for the development and validation of these

tools [Schatzmann et al., 2006]. Motivation for the development of M-SYS was the assumption that

contributions from all relevant scales have to be modelled properly to predict air pollutant concentra-

tions on the street scale. Although only the innermost model domain will be considered here, some

characteristics of the models should be mentioned for the sake of completeness. More details and

references can be found in [Trukenmüller et al., 2004].

Two models are used to calculate transport and chemistry of pollutants on the mesoscale: the

non-hydrostatic Mesoscale Transport and Stream Model METRAS [Schlünzen et al., 1996] and the

1Grawe, D., personal communication.
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Figure 10.1: Non-uniform model grid for the mi-
croscale street canyon calculations. The area is ∼
1050 × 1060 m2, resolved by 15 m near the bound-
aries and 1.5 m at the centre, where Göttinger
Straße heads towards the roundabout in the North.
Also shown the traffic emissions for the case study
used here. They are highest for Göttinger Straße
and the roundabout (The picture is misleading
because of the uneven grid) [IER, University of
Stuttgart. Courtesy of D. Grawe, now with the
Division of Environmental Health and Risk Man-
agement, University of Birmingham].

Mesoscale Chemistry Transport Model MECTM [Lenz et al., 2000]. For the case at hand they are

applied on three levels with horizontal domains of 2000× 2000 km2 (resolution 16 km), 352× 356 km2

(4 km) and 112 × 200 km2 (1 km), respectively, to assess air quality on a regional scale and pro-

vide boundary conditions for one way nesting of the models. All domains are centred on Hanover-

Brunswick, where the street canyon of Göttinger Straße is located. Boundary conditions for the

outermost model are given by interpolated observations in the case of meteorological parameters and

are partly based on climatologies in the case of background concentrations (see [Trukenmüller et al.,

2004] for details). The innermost mesoscale model includes major point and area sources (such as

motorways and cities etc.) that contribute to the background concentrations of the microscale en-

vironment of the street canyon. The latter is defined horizontally by a ∼ 1 × 1 km2 area with the

street canyon at its centre and vertically up to a height of about 400m. Flow fields are calculated on

a non-uniform grid using the obstacle-resolving microscale model MITRAS [Schlünzen et al., 2003].

The grid spacing varies horizontally from 15m at the lateral boundaries to 1.5m at the centre of the

street canyon, see fig. 10.1. The vertical grid consists of 50 layers with spacing 1.5m at the bottom

and 30m at the top. Concentrations within the street canyon environment are computed by the mi-

croscale modification of MECTM, called MICTM2. Both models are based on the gas phase chemical

mechanism RADM2 [Stockwell et al., 1990] and calculate concentrations of 59 species. Benzene (an

important pollutant subject to EU regulation, see also tab. 2.1, p. 21) is not modelled individually

because emission inventories are lacking.

The obstacle-resolving model MITRAS was evaluated using wind tunnel data. The comparison shows

adequate agreement for the flow fields in general, but near the edges of buildings and at roof top

results depend on the turbulence closure scheme chosen [Schlünzen et al., 2003]. The system M-

SYS was compared to experimental observations of background concentrations of SO2, NO2 and O3

on a regional scale with very good results for SO2 and NO2, but less accurate predictions for O3

[Trukenmüller et al., 2004]. The microscale performance of the model system was evaluated by in-

tensive field measurements within the street canyon during the VALIUM project and included point

and remote sensing measurements of important traces gases and the tracer SF6 [Schäfer et al., 2005].

Comparing 30min averages of point measurements taken at 2m above ground and the predictions by

2Grawe, D.: Verknüpfung von Modellen und Messungen zur Konzentrationsvorhersage, PhD-thesis, Fachbereich Ge-
owissenschaften, University of Hamburg (in German), in preparation, 2006.
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(a) Building height (street canyon at x ∼ 0) (b) Horizontal wind vector 30 m above ground

(c) Horizontal wind velocity 30 m above ground (d) Vertical wind velocity 30 m above ground

Figure 10.2: Buildings and wind field at 30 m above ground for the microscale models. The street canyon
is at x ∼ 0 [Courtesy of D. Grawe, now with the Division of Environmental Health and Risk
Management, University of Birmingham].

M-SYS shows mutual agreement well within a factor of 2.3

The trace gas distributions considered in the following were obtained from M-SYS under the assump-

tion that thermal influences can be neglected on the microscale, which leads to a stationary solution

for the street canyon. For the 30min run of the model system with 1min time steps it was further-

more assumed that background emissions in the mesoscale models do not change and that the only

emissions relevant for the microscale models originate from traffic.

As the highest buildings within the microscale model domain reach 30m, see fig. 10.2a, the optical

paths of the tomographic remote sensing measurement are taken to lie in a plane at around 30m

above ground. The associated wind field is shown in figs. 10.2b-d. Measuring column densities at

30m is admittedly somewhat high (for example, concentrations of NO2 are about ten times lower

than at ground). But there are several reasons why a tomographic measurement at this height yet is

interesting, especially from a modeller’s point of view.

3Grawe, D., personal communication.
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(d) CH2O at t = 0
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(e) SO2 at t = 0 and t = 30 min

Figure 10.3: M-SYS model distributions of selected trace gases on the section at 30 m above ground. The street
canyon is at x ∼ 0. Time steps of the model run are 1 min.

• First, it gives information about the background contribution to the street canyon pollution

level.

• Second, as mentioned before, at least for the microscale transport model MITRAS employed

here, vertical momentum fluxes way above roof top can depend significantly on the turbulence

closure [Schlünzen et al., 2003, especially fig. 2].

• And third, related to this topic, it has been observed in the field measurements mentioned above

that tracers were uplifted from the street canyon, over the roofs and down into the backyards.

This effect occurs in model simulations, too [Schlünzen et al., 2003] and it would be interesting

to test the quantitative agreement between measurement and model.

Finally, fig. 10.3 shows examples of 2-D model distributions for the height ∼ 30m.4 All species show

concentration peaks (or sinks in the case of O3) rising at the street canyon and extending plume like

along the wind direction to the right hand side of the street canyon. They are caused by the building

structure5 and not very high at 30m, for example maximally 3 ppb for NO2. For some trace gases,

like NO2, the background concentration field on the left hand side of the street canyon is very smooth

4Again 3-D contour plots are chosen to make the spatial variability clearer.
5Grawe, D., personal communication.
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Figure 10.4: 2-D NO2 distributions 30 m above ground. (a) M-SYS model as in fig. 10.3a. (b) Ideal parametri-
sation on a regular bilinear grid of dimension n = 4× 4. (c) Distribution reconstructed on a grid
with n = 4 × 4 and mean a priori. The iteration number is k = 500 and values of the quality in-
dices are: NEARN = 0.57, NMSE = 1.6·10−3, IOA = 0.89, NMB = 2·10−3, FB = −4·10−4,
r2 = 0.67 and FA2 = 100%.

compared to the peak structure, others like O3 show more background variability. The concentration

fields shown in fig. 10.3 change only slightly during the 30min interval. The most significant change

occurs for SO2 due to a change in the background.

10.2. Sample reconstruction for NO2

We consider the reconstruction of NO2 from measurements with three telescopes and a moderate

number of 18 optical paths, arranged in 90◦-fans as in fig. 8.14b on page 146.

The meshsize ∆l in the centre is about ∼ 200 − 250m, the smallest peak structures have a size of

about ∆s ∼ 30m. It is thus pure chance, if such a peak is hit by a light path like the one in the

centre of fig. 10.4a. But even then a peak with ∅ ∼ 30m and concentration enhancement c̄′ ∼ 3 ppb

would give rise to a column density ∼ 180 ppb, which is far below the detection limit of the column

density δ = 1000 ppb · m according to tab. 9.3 (The minimal peak extension for an enhanced NO2

concentration of 3 ppb would be ∼ 170m).

The NO2 distribution with a smooth background to the left of the street canyon offers a good oppor-

tunity to illustrate different estimates of the background concentration cBG according to sec. 6.3.2(i).

Following eq. (6.11), the over-determined case of a single, regular 3 by 3 pixel grid with n = 4 × 4

leads to

cBG = 8.64 ppb for eq. (6.11),

coming very close to the values 8.3 − 8.5 ppb in figs. 10.3a, 10.4a.

Values for the under-determined cases eqs. (6.12) and a regular grid with n = 5 × 5 are

cBG = 8.77, 9.12, 4.56 ppb for eqs. (6.12a), (6.12b), (6.12c).

The last case does not reproduce the physical background, the first two lead to almost identical

reconstructions ĉ.
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(b) Evaluation of the model bounds

Figure 10.5: Consistency of the experimental retrieval ĉ with the model cmod and its bounds cmin/max, un-
derstood as 1σ check. Upper and lower bounds of the reconstructed distribution are given by
ĉl/u = ĉ + ∆l/uĉ. (a) Case (i). (b) Case (ii).

Simulating error free measurements of the model NO2 distribution with the above optical geometry of

18 light paths and reconstruction using SIRT with different grid dimension, a priori and reconstruction

schemes reveals that

1. The over-determined parametrisation gives smaller overall errors and better statistical indices

than the under-determined one.

2. Optimal iteration numbers, especially in the under -determined case, lie long before convergence.

3. The optimal choice for the a priori is the mean eq. (6.7).

4. Neither any of the the grid-shifting schemes, nor subtracting or fitting the background leads to

better results than reconstruction with a single n = 4 × 4 grid and mean a priori.

5. Except when subtracting the background, the nonnegativity constraint is not active.

Measurement errors have been neglected everywhere for the moment.

Point 4. is not too surprising as, even after ideal removal of the backgrund, the distribution does

not represent a genuine peak distribution like in chap. 8. Points 3. and 5. are plausible. However,

the second observation seems to be a sign of a crucial difference to the reconstruction of peaks.

The fact that the under -determined solutions have to be strongly regularised suggests that the least-

squares least-norm solution and thus the least-norm principle might not longer be the optimal selection

criterion for this kind of distribution.

The reconstruction result on an over-determined n = 4 × 4 grid shown in fig. 10.4c does not bear

much resemblance to the original distribution above the street canyon, but comparison with the ideal

parametrisation of the model distribution by the same grid (according to sec. 5.2.1) in fig. 10.4b makes

clear that a field of this kind has to be expected from the given spatial resolution .

10.3. Discussion of model evaluation

We examine the two questions raised in the context of model evaluation in sec. 7.4:
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Figure 10.6: Optimal
estimate using xid from
fig. 10.4b as a pri-
ori with relative vari-
ances of 50% and 10%
noise on the column
densities obtained from
the model distribution in
fig. 10.4a. (a) The state
vector. (b) A posteriori
variances. Values in be-
tween the grid nodes are
merely interpolated.
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(i) Given a distribution ĉ reconstructed from a tomographic experiment and a model prediction

cmod for the same situation, do they agree within the recontruction error ?

(ii) If not, do they agree within the uncertainty of the model ?

The first question is illustrated by fig. 10.5a with the reconstruction error given by its lower and upper

bounds ∆ĉl and ∆ĉu, the second by fig. 10.5b with the model uncertainty given by the bounds cmin

and cmax.

We take the NO2 distribution from figs. 10.3a,10.4a as model prediction cmod and assume its error

according to the specification for the street canyon calculations given above on page 167 to be a factor

of two. That is, we take it for granted in the following that the values of the true concentration field

c lie between

cmin(r) = 0.5 · cmod(r) ≤ c(r) ≤ 2 · cmod(r) = cmax(r), (10.1)

(Especially the upper bound might seem pessimistic, but we recall that building effects can change

concentration values to a high degree (see sec. 2.5) and that the model treatment of flows around

buildings is far from trivial. See the discussion above.)

Because we do not have experimental column densities, measurements will be simulated for ‘true’

concentration fields c that are obtained by randomly varying the model within its uncertainty. Case

studies for such simulated measurements will be presented in sec. 10.3.3. Before, the reconstruction

error has to be quantified. The next section 10.3.1 will show that an estimation based on eq. (10.1)

alone leads to reconstruction errors that are too large to allow any real evaluation of the model.

Therefore, further assumptions will be added to the above inequality bounds in sec. 10.3.2.

10.3.1. Estimation of the reconstruction error using the optimal estimate

To get a first idea about the predictive power of the tomographic measurement under the given cir-

cumstances, we employ the optimal estimate, which makes sense because the nonnegativity constraint

is not active (5. above). The ideal discretisation in fig. 10.4b is used as a priori xa and the data error

covariance is assumed to be of the form Sǫ = σ2
ǫ 1n with σǫ given by a relative measurement error of

10%. The asymmetric bounds in eq. (10.1) cannot be represented by a Gaussian a priori probability

density. Instead, we use the covariance Sa = diag(σ2
ai

) with σai
= 0.5 · xai

, that is a ±50% 1σ er-

ror. The state vector x̂ and the diagonal elements of its covariance matrix Sx̂ are shown in fig. 10.6.



172 10. 2-D Reconstruction of Model Trace Gas Distributions above a Street Canyon

Clearly, the 1σ uncertainty of the a posteriori lies within the bounds of eq. (10.1). But – also evident

– its minimum value of about 2 ppb is almost as high as the peak structures, and in fact all structues,

of the original model distribution. And the optimal estimate does not even include the discretisation

error arising from the finite representation of the continuous field. To be more precise, the optimal

estimate provides a measure for the reconstruction error using an ensemble of distributions that are

Gaussian distributed around the a priori, with a spatial variability given by the grid spacing. However,

the variability of the model distribution is much higher.

10.3.2. Estimation of the reconstruction error using a random ensemble

We now narrow down the true distribution further by assuming additionally to eq. (10.1) that not

only its concentration values c but also its gradients ∇c are confined by the model.

Generating random concentration fields as described in appendix B, it turns out that it is possible to

constrain ∇c such that the background behaviour to the upwind left hand side of the street canyon,

the increase of concentration downwind to its right and the appearance of the original peaks can be

reproduced with a variability of the concentration values that sufficiently exploits eq. (10.1). Peak

centres appear at the original sites. To account for model uncertainties of exact positions an arbitrary

shift of the whole distribution in the plane by maximally 10% (±100m) is allowed. To be precise, we

now assume that the true distribution c for the atmospheric state modelled by cmod lies within the

bounds:

I. 0.5 · cmod(x, y) ≤ c(x, y) ≤ 2 · cmod(x, y).

II. ∇c(x, y) is maximally f ′
max · ∇cmod(x, y) in the sense of eqs. (B.3), (B.4) with f ′

max = 5.

III. c(x, y) 7→ c(x + ∆x, y + ∆y) with 0 ≤ |∆x|, |∆y| ≤ 100m.

The exact value f ′
max = 5 for the factor constraining the gradient is arbitrary. For example f ′

max = 10

results in similar, yet very noisy concentration fields. Furthermore, as discussed at the end of sec. 9.3,

the choice of maximum gradients affects the bounds of the reconstruction error. Here, f ′
max is chosen

such that the variability of the model distribution is reproduced and that the bounds given by I are

exploited.

The ensemble E of distributions cI , I = 1, . . . N , for estimation of the reconstruction error is given by

random fields satisfying I-III. Samples are shown in fig. 10.7a to 10.7f, while figure 10.7c represents a

distribution that was obtained by a shift of more than 100m in the direction of negative y. (The 2-D

contour plots in bottom panel will be referred to later.) The standard deviation around the ensemble

mean 〈cI(x, y, )〉E is shown in fig. 10.8a. Indeed, it exhibits higher variabilty in the peak region to

the right of the street canyon and the ensemble created from I-III appears to be a sensible random

variation of cmod, reproducing a smooth background to the left of the street canyon and decreasing

peak concentrations towards the boundary right from it.6

6Mind that 〈cI(x, y, )〉E 6= cmod(x, y). In general, for a random number c uniformly distributed between cmax and
cmin

〈c〉 =
1

2
(cmax + cmin)

std[c] =
1

2
√

3
(cmax − cmin).

In particular for cmax = 2cmod, cmin = 1
2
cmod: 〈c〉 = 5

4
cmod and std[c] =

√
3

4
cmod.
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Figure 10.7: Random concentration fields generated from the model NO2 distribution (figs. 10.3a,10.4a) ac-
cording to points I-III, except c(x, y) in fig. 10.7c, which violates III in that ∆y > 100 m.
The bottom panel shows 2-D contour plots of c1, c2 and c for later reference.

Figures 10.8b and 10.8c show lower and upper bounds of the reconstruction error field ∆ĉ(x, y) cal-

culated for E according to eq. (5.14d)

∆u/lĉ(x, y) = 〈∆±ĉ(x, y)〉E ± stdE [∆±ĉ(x, y)]. (10.2)

Measurement noise was not taken into account. It follows that
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Figure 10.8: Random ensemble E generated from I-III (a) Standard deviation around the mean of E. (b) Lower
and (c) upper bounds of the reconstruction error without noise, i.e. ∆ĉ = ∆cdisc +∆ĉinv +∆ĉreg

and ∆l/u understood as ∆u/l = 〈∆±〉E ± stdE [∆±].

• If the true background shows a variability similar to the model (it is in fact higher for the

distributions from E , see fig. 10.7), it can be reconstructed with a precision of about ±0.5 ppb.

• Reconstruction of the peak structure is hardly possible, especially not for the peak at y ∼
−500m. If the location of the peaks within the reconstruction area is completely unknown, the

resulting reconstruction error of at least ±2 ppb will exceed the structures in cmod. Simulations

where III is released to a shift over the entire area yield bounds ∆l/uĉ between ∼ ±1.5 and

±4 ppb. Even without measurement error, this is already of the order of what was obtained from

the optimal estimate, see fig. 10.6b.

Additional information like II or III has to be provided to enable discrimination of the structures of

the unkwown true distribution within the reconstruction error of the above tomographic setup.

10.3.3. Case studies

Simulated measurements are now studied for the ‘true’ 2-D NO2 concentration being c1, c2 or c from

fig. 10.7 and the model prediction always being cmod from figs. 10.3a,10.4a. The fields c1 and c2

represent the case of true distributions consistent with the model bounds. The field c in fig. 10.7c

serves as an example of the inconsistent case. (As discussed in sec. 7.4, to be correct this inconsistent

case requires an independent estimate of the reconstruction error. With no such estimate available,

we will use the above estimate of the reconstruction error.)

Reconstructions with and without measurement errors are treated seperately in the following.

Measurement noise can be neglected

If the experimental error plays only a minor role in the tomographic measurement, the parameters of

the reconstruction are like in fig. 10.4c. 2-D maps reconstructed from simulated measurements of c1,

c2 and c are shown in the top panel of tab. 10.1 on page 175.

Ad (i): To find out whether these reconstructed fields ĉ1, ĉ2 and ĉ are consistent with the model

distribution cmod, differences according to fig. 10.5a are formed, indicating inconsistency whenever
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Table 10.1: Reconstruction of a simulated, error free measurement (1st panel from the top, parameters as in

fig. 10.4c), consistency with the model cmod (2nd& 3rd panel) and with the model bounds (bottom
panel) according to fig. 10.5 for the distributions c1, c2 and c from fig. 10.7. Red and yellow (and
green) indicate that the model overestimates, blue (and green) that it underestimates the ‘true’
distribution.
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Figure 10.9: Evaluation of (a) the model cmod and (b,c) the model 1σ bounds by infinitely many ideal point
measurements of c covering the whole reconstruction area. In (a) these measurements would find
a pattern of over-and underestimations above the street canyon (dashed line) and in the vicinity
from the right.

they become negative. Negative values of the field ĉu − cmod in the second panel from the top

show where model concentrations are too high to agree with the measurements. In the same way,

cmod − ĉl < 0 means that model values are too low.

Within the 1σ bounds of the reconstruction error defined by eq. (10.2) the model quite correctly

would agree with none of the ‘true’ distributions estimated from the measurement. The discrepancies

identified from the error analysis agree well with what one would expect from comparing the original

distributions in figs. 10.7g-10.7i with cmod in fig. 10.4a. But the absolute numerical values of the

differences below 1 ppb are rather small, except for the case of c1 where the background concentration

is considerably overestimated by the model cmod.

Ideal point measurements of the real distribution immediately allow to compare true and model

concentrations and thus model verification at the locations of the measurement. But a sufficient

number of these samples at the right places is crucial in order to get a consistent picture of the

model performance, as illustrated by fig. 10.9a where the concentration field c representing the ‘true’

distribution is compared to the model prediction. While point samples in the left half of the picture

and near the right boundary would be representative of a larger area round the place where they were

taken, the interesting region above the street canyon requires quite a few measurements to get the

pattern of over- and underestimation. This is exactly the problem of the representativeness of point

measurements in an area with complex buildings addressed by Schlünzen et al. [2003] (c.f. sec. 2.1).

Ad (ii): We define the lower and upper model bounds cmin, cmax of the ensemble defined by I-III

through the 1σ bounds

cmax/min = 〈cI(x, y, )〉E ± stdE [cI(x, y, )] (10.3)

with stdE [cI ] as in fig. 10.8a. It turns out that the distributions c1 and c2, which are in E , violate

the 1σ bounds, while the field c /∈ E is consistent with them (tab. 10.1, bottom panel). The seeming

inconsistency of the former, especially c1, in the region without peaks is due to the fact that their

background concentrations take values at the lower end of admissible values (see also the footnote on

page 172). The differences between the fields cmod and c appear mainly in the area of the peaks and

cannot be resolved by the tomographic setup, see also fig. 10.9.
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Figure 10.10: Regularised solutions for a simulated measurement of cmod (a-c) and their standard deviation
for a relative error of 10% on the synthetic column densities (d-f) for different values of the
iteration number. All other parameters are as in fig. 10.4. Subfigure (c) is the same as fig. 10.4c.

Measurement noise has to be taken into account

The impact of random noise on the reconstruction, i.e. the perturbation error in terms of sec. 5.2.3,

can be estimated along the lines of sec. 8.3.2. Equation (5.13b) takes again the form

E
[
‖∆xpert‖2

2

]
∼ nm (∆x)2 =

∑

i

(1 − (1 − σ̄2
i )k

σ̄i

)2

,

where ∆x represents the mean perturbation error of the state vector components, k is the iteration

number and, as usual, n, m are the number of grid points and light paths, respectively. Introducing

the mean relative error rǫ of the column densities, the spatial mean concentration c̄ and a typical

number nφ of basis functions contributing to a light path (∼ 3 − 5 in this case) gives

|∆x| ∼ rǫ c̄

√
nφ

nm

√∑

i

(1 − (1 − σ̄2
i )k

σ̄i

)2

.

For relative errors of about 10%, c̄ ∼ 9 ppb and nφ = 4 one gets

|∆x| ∼ 1, 1.4, 3.2 ppb for k = 25, 50, 500.



178 10. 2-D Reconstruction of Model Trace Gas Distributions above a Street Canyon

500

250

0

-250

5002500-250-500

y 
[m

]

x [m]

 -2-2

  -2

-2

   -2

 -2
-2

 -2

  -2

 -2

  -2.5

 -2.5

  -2.5

 -2.5

   -2.5

 -2.5

 -2.5

  -2.5

-2.5

  -2.5

 -2.5 -2.5

-2.5 -2.5

 -2.5

 -3

 -3-3

  -3
  -3

   -3  -3

 -3

 -3

  -3

 -3

 -3.5
-3.5

 -3.5
 -3.5

 -4
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Figure 10.11: Total reconstruction error including noise. (a,b) Upper and lower bounds ∆ĉu/l = 〈∆±ĉ〉E ±
stdE [∆±ĉ]±stdǫ(ĉ) of the reconstruction error for the distribution reconstructed from a simulated
measurement of cmod. (c) Consistency of cmod and the reconstruction from a measurement of
c1 (same as in tab. 10.1(a), but now with noise). The iteration number is k = 50.

One finds that the mean perturbation is substantial, its numerical value similar to the noiseless part of

the reconstruction error (fig. 10.8) and it strongly depends on the choice of the regularisation parameter

k.

For the model distribution cmod this is further pointed out in fig. 10.10, which shows regularised

solutions for a simulated measurement (a-c) and their standard deviations for 10% noise (d-e) for

different degrees of regularisation. Clearly, the iteration number in this case has more impact on the

perturbation than on the least-squares solution. Not only absolute values of the standard deviation,

but also the spatial patterns vary with k (for example, maximum values shift from the interior to

the boundaries of the reconstruction area with growing iteration number). The weaker regularised

case with k = 500 is very similar to the stochastic regularisation by the optimal estimate above

(see fig. 10.6, p. 171), agreeing with the fact that the a priori is not very well constrained. Adding

the perturbation error for the column densities from cmod to the reconstruction error without noise

(c.f. fig. 10.8) according to eq. (5.14e) leads to the bounds of the total reconstruction error shown

in fig. 10.11a and 10.11b. These now have become so large that model evaluation is hardly possible

within the bounds given by I-III, and among the distributions considered in the noisefree case only

distribution c1 with very low background concentrations can safely be distinguished from the model

cmod (fig. 10.11c).

Although evaluation of the specific model distribution here with low absolute concentration variations

in the reconstruction area was found to be hard, if not impossible for realistic measurement errors,

it appears fair to conclude that estimating the bounds of the reconstruction error from an ensemble

of suitable random disributions is a consistent numerical scheme not only helpful to narrow down the

uncertainty of the tomographic retrieval, but also a precise tool for the evaluation of models.
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11.1. Conclusions

This thesis theoretically investigates the possibility to retrieve 2-D distributions of trace gas concen-

trations from active DOAS measurements along a number of m light paths that is realistic at the

current experimental state (m ∼ 10 − 40).

The conventional aspects of the retrieval method can be summarised as follows: The approach

discretises the inverse problem of finding the concentration field for measured column densities by

parametrising the unknown distribution by a limited number of n local basis functions. The resulting

linear discrete inverse problem is replaced by a least-squares least-norm problem for the discrete state

vector, which is solved iteratively by the simultaneous iterative or algebraic reconstruction technique

(SIRT and ART), commonly used in computerised tomography. Reasons for this approach were given

in sections 4.2 and 6.1. The choice of the iterative solution was justified in section 4.8.1 by its flexibility

with respect to additional (in)equality constraints. It also implies a specific regularisation behaviour

depending on the iteration number.

The important novel contributions to tomography with a low number of integration paths are: A

systematic investigation of the parametrisation with respect to the shape of the concentration field,

including the number of parameters, the kind of basis function (piecewise constant and linear) and

new schemes that take into account several reconstruction grids. While the focus is usually put on

the inversion algorithm, it was shown here for peak distributions, which represent an important class

of atmospheric concentration fields, that the parametrisation plays an equally, if not more important

role. A second aspect that becomes vital for tomography with low spatial resolution, but which is

mostly ignored, is the treatment of the complete reconstruction error, including the discretisation.

The detailed approach of this thesis has revealed that the very common piecewise constant (box)

functions should be avoided whenever possible – even for the reconstruction of spatial mean values.

A systematic analysis of light path geometries using alternative arguments has pointed out not only

their tremendous impact on the quality of the reconstruction, but also given insight into the reasons,

including the role of measurement errors. Furthermore, it was suggested how numerical results can,

to a certain degree, be generalised for arbitrary numbers of light paths.

Besides, it was attempted throughout to present similar and alternative concepts from different disci-

plines in a common context in order to put them into perspective (e.g., sections 4.2, 4.8.1, 4.8.3, 4.9)

and to keep the discussion open for future developments (e.g., sections 4.6.3 and 4.7).

In more detail, the findings of this thesis can be stated in the following way.

The systematic approach to simulated tomographic measurements of 2-D Gaussian distributions

(‘peak distributions’) with respect to their extension and parametrisation in chapter 8 shows that

179
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1. for narrow emission peaks the reconstruction quality in terms of root mean square error, bias

and total emissions can be tremendously improved by choosing parametrisations that lead to

under-determined least-squares problems (m < n), provided that underlying background con-

centrations are known, negligible or smooth enough to be subtracted as proposed in section 6.3.2

(a quantification of ‘smooth enough’ was given in section 9.4) – in other words, that a zero con-

centration is a good a priori (after subtraction).

At the same time, this means that the least-norm selection criterion and the nonnegativity con-

straint becomes more, the perturbation error less important (sections 4.4, 8.3.2 and tab. 8.11).

2. for the under- or even-determined solutions of 1. the bilinear parametrisation not only gives rise

to smaller discretisation errors (which is evident) but also to smaller inversion errors (which is

not evident).

This holds also for bias and total emissions, i.e. for mean values of the concentration field.

3. the least-norm solution appears to be appropriate, at least no evidence against it was found.

4. the effectiveness of any of the schemes combining shifted grids by taking either the average,

the maximum node values or the average while keeping the absolute maximum fixed strongly

depends on the distribution and the feature of the reconstruction one is most interested in.

The averaging scheme is ‘safe’ in that it generally reduces the root mean square error of the

reconstruction.

5. from an experimental point of view, the temporal resolution of the measurement is as important

as the spatial resolution if the concentration peaks represent emission puffs subject to wind

transport (sec. 5.2.3).

The discussion of the fan beam geometries in section 8.4 reveals that

6. increasing the number of emitting and/or receiving systems while keeping the number of light

paths fixed generally leads to better reconstruction results (provided that the geometry does not

get too irregular, producing large gaps).

7. for the small numbers of light paths considered in this thesis, making the fans wider in general

deteriorates the reconstruction quality.

8. for the peak distributions according to 1. the sensitivity to measurement errors does not vary

much with the geometry, but can vary within the recontruction area.

9. numerical results of simulations for a certain geometry can be carried forward to geometries

with different numbers of light paths, but of a similar type, by scaling the distributions with the

mesh size of the geometry (section 8.4.4).

Furthermore, the discussion presents the singular value decomposition as a useful diagnostic

tool for the algebraic properties of the measurement system, independently of the distributions

(see also section 9.4, fig. 9.6), and the optimal estimate as a simple method to analyse different

physical scenarios without having to perform lengthy simulations (which in this case leads to

very similar results, c.f. section 8.4.2).
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Taking the indoor experiment (chapter 9) as an example of a ‘real world’ measurement of emission

puffs where the true concentration distribution is not known proves that

ad 1.&3. for peak distributions it is possible to optimise the discretisation grid in a consistent way without

knowing the true width of the peaks.

Comparing reconstructions from different grid combination approaches and from a single grid

can lead to a better picture of the true concentration field (because the schemes are sensitive to

different features of the peak) and thus to the a posteriori preference of a certain scheme.

10. the numerical approach to estimate the complete reconstruction error field from reconstructions

of admissible (random) distributions leads to sensible upper and lower bounds of this field and

allows to identify artefacts in the original reconstruction.

It is important to get the variability of these admissible distributions right in order to neither

over- nor underestimate the reconstruction error.

Finally, applying the same reconstruction schemes to highly resolved model distributions (‘smooth

distributions’1) above a city street canyon (chapter 10) suggests that

11. if the model distributions reflect the true variability of trace gas concentrations in the environ-

ment of complex buildings, their tomographic reconstruction is a rather challenging task.

12. contrary to the peak distributions, for the – on a larger scale – smooth model distribution

the over-determined solution achieves minimal overall reconstruction errors and neither grid

combination schemes nor subtraction of the background improves the reconstruction.

The severe semi-convergence of the under -determined solution suggests that the least-norm

selection criterion might not be appropriate for this kind of distribution, but comparison with

alternative reconstruction principles for realistic atmospheric distributions is necessary to clear

this point.

13. data errors have strong impact now and, therefore, regularisation becomes crucial. The influence

of the basis functions on individual contributions to the reconstruction error in the ill-posed over-

determined case has not been examined, but it is known, for example from atmospheric profile

retrieving [e.g., Doicu et al., 2004], that the choice of the basis functions affects regularisation

(c.f. 4.6.3(iv)).

Therefore, from an experimental point of view the ill-posedness of the problem demands minimal

data errors.

14. contrary to a point measurement that – within its errors – can directly be compared to a model

prediction at the measurement site, the interpretation of a tomographically reconstructed field

is not possible without information on the true variability of the atmospheric trace gas.

The numerical scheme proposed here, essentially parametrising the a priori concentrations by

functional bounds and bounds for the gradients, leads to distinct error patterns consistent with

the true distributions. Tomographic measurements with low spatial resolution can be used to

verify specific model predictions if only the uncertainty of the model can be narrowed down

sufficiently.

1Which here means they cannot be represented by narrow peaks on a moderately smooth background
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11.2. Outlook

The results of this work will be applied to the measurements presently taking place in Heidelberg

that were briefly addressed in sec. 9.4. Moreover, current and future technical development of active

DOAS instruments, making these smaller, cheaper and easier to handle, will reduce the expense to

set up tomographic experiments with eventually increasing numbers of light paths. With similar

progress of the passive technique and all results of this thesis equally holding for any remote sensing

method with well defined light paths, future tomographic MAX-DOAS measurements proposed by

Frins et al. [2006] (c.f. sec. 3.4) would represent an extremely versatile application. Tomographic

DOAS measurements from satellite similar to the suggestion by Fleming [1982] (sec. 3.3) are a further

example that allows straightforward use of our results. In principle, everything said holds for IR and

LIDAR remote sensing as well.

Given this perspective, certain aspects of the reconstruction procedure should be reconsidered, where

we only refer to the discrete approach using basis functions with local support. For applications

with regular light path geometries like satellite measurements – possibly air craft measurements –

c.f. fig. 3.5, transform methods might become feasible (sec. 4.2.1). Methods like the explicit fit of

Gaussian peaks to the measurement data (SBFM, c.f. 4.9.3) require further investigation, especially

with respect to the stabilty of their solution (but distributions like those in fig. 10.3 do not look very

promising for this special approach).

Basis functions

While it was explicitly shown in this thesis that linear parametrisation is superior to piecewise constant

parametrisation in every respect for a regular reconstruction area, the implementation of the bilinear

discretisation given by eq. (4.13) is not very flexible when it comes to parametrising concentration fields

on an irregular area with only few basis functions. Different schemes, like triangular discretisation,

might be more appropriate.

Another approach worth looking at is the parametrisation by higher order polynoms. This does make

the problem nonlinear, but B-splines, for example (c.f. sec. 4.3.2), have excellent approximation and,

as reported by [e.g., Doicu et al., 2004], regularisation properties. Furthermore, they are very flexible

with respect to their knots. [Baussard et al., 2004] use a small number of adaptively chosen B-splines

to parametrise their inverse problem, giving rise to the expectation of small discretisation and inversion

errors.

Reconstruction principle

In image reconstruction the least-norm principle is frequently replaced by a maximum-entropy prin-

ciple, or altogether by a maximum likelihood approach (sec. 4.9.1). Whether these would give better

results for atmospheric reconstruction problems remains to be shown. By the same token, the iterative

regularisation of the least-norm solution adopted here from image reconstruction should be compared

with alternative methods commonly used for atmospheric inverse problems. This would be, in par-

ticular, the Tikhonov method, which if augmented with a nonnegativity constraint is essentially the

constrained optimisation principle eq. (4.51). This formulation of the reconstruction problem would

become especially attractive if the regularisation parameter δ in eq. (4.51) for a given regularisation

matrix D could be quantitatively derived from atmospheric parameters. For example, if D is given

by the first differences from maximum gradients of the concentration field. Fehmers [1996] employed
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this method for tomographic reconstruction of the ionosphere (see also fig. 3.5a, p. 44).2

Estimation of the reconstruction error

The Monte Carlo estimation of the reconstruction error proposed in this thesis is simple and flexible,

but also time consuming and has the disadvantage of taking into account also distributions that do not

agree with the measurements. A scheme that is consistent in this respect would be highly desirable.

Using the a posteriori covariance of the discrete optimal estimate is only possible if the a priori can

be formulated in terms of Gaussian probability densities and the discretisation error can be neglected

(provided that the least-squares approach has been chosen as reconstruction principle).

2Computer code for an algorithm solving this and more general constrained optimisation problems is available, e.g.,
from the Numerical Algorithms Group [http://www.nag.co.uk/]
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A. Atmospheric Stability Classes and

Dispersion Coefficients

Stability classes

wind speed day night
@10 m [m/s] incom. solar radiation (insolation)

thinly overcast ≤ 3/8
strong moderate slight or ≥ 4/8 low cloud

cloud cover cover

< 2 A A − B B F F
2 − 3 A − B B C E F
3 − 5 B B − C C D E
5 − 6 C C − D D D D
> 6 C D D D D

Table A.1: Atmospheric stability categories based on wind speed and insolation (see text).

On the basis of experimental observations (the Nebraska Prairie Grass Project) Pasquill [1961] proposed to

describe different states of the atmosphere by means of six categories A to F derived from readily available

meteorological observables. Table A.1 defines them in terms of wind speed and insolation [e.g., Barratt , 2002].

Estimation of the insolation from solar elevation and sky cover can be found in [Barratt , 2002, table 3.9].

Table A.2 relates the classes to some meteorological parameters.

Pasquill classification phenomena freq. of mean wind boundary layer σα

stability occur. [%] speed [m/s] depth [m]

A extremely strong thermal 0.125 0.625 1 300 25
unstable instability, bright sun

A − B 1.25 1.25 1 080
B moderately transitional period 3.8 2.0 920 20

unstable moderate mixing
B − C 2.6 3.37 500

C slightly unstable transitional periods, 15 4.12 840 15
slight mixing

C − D - 5.0 600
D neutral strong winds, overcast 62.4 4.12 500 10

day/night transitions
E slightly stable transitional periods, 6.7 3.4 400 5

night-time mod. winds
F mod. stable clear night time skies, - 2.0 150 2.5

very lim. vert. mixing
F − G 8.4 1.2 50

G extremely stable

Table A.2: Selected meteorological parameters related to stability categories [Barratt, 2002, tables 3.7,13]. The
parameter σα was defined by eqs. (2.2) as σα = σv/ū. Values are taken from [Blackadar, 1997,
table 10.1].

Estimates of TL for various atmospheric stabilities have been given by several authors. Those proposed by
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Draxler are given in the following table (see Blackadar [1997] and references therein):

TL surface source elevated source

[s] stable unstable stable unstable

lateral 60 60 200 200

vertical 10 20 20 100

Dispersion coefficients

There are numerous parametrisations of the plume dispersion coefficients defined in sec. 2.4 [Seinfeld and

Pandis, 1998]. Tables A.3, A.4 give functionals forms known as Pasquill-Gifford and Briggs curves, respectively

[Barratt , 2002]. Sampling times are around 10 min.

Stability class x [m] σx(x) = σy(x) [m] σz(x) [m]

A 100 − 300 0.493 x0.88 0.087 x1.10

300 − 3 000 -”- log10σz = −1.67 + 0.902 log10x + 0.181 (log10x)2

B 100 − 500 0.337 x0.88 0.135 x0.95

500 − 20 000 -”- log10σz = −1.25 + 1.09 log10x + 0.0018 (log10x)2

C 100 − 100 000 0.112 x0.91 0.112 x0.91

D 100 − 500 0.128 x0.90 0.093 x0.85

500 − 100 000 -”- log10σz = −1.22 + 1.08 log10x + 0.061 (log10x)2

E 100 − 500 0.091 x0.91 0.082 x0.82

500 − 100 000 -”- log10σz = −1.19 + 1.04 log10x + 0.070 (log10x)2

F 100 − 500 0.067 x0.90 0.057 x0.80

500 − 100 000 -”- log10σz = −1.91 + 1.37 log10x + 0.119 (log10x)2

Table A.3: Pasquill-Gifford parametrisation of the dispersion coefficients.

Stability class σx(x) = σy(x) [m] σz(x) [m]

Open country

A 0.22 x (1 + 10−4 x)−0.5 0.20 x

B 0.16 x (-”-)−0.5 0.12 x

C 0.11 x (-”-)−0.5 0.08 x(1 + 2 · 10−4 x)−0.5

D 0.08 x (-”-)−0.5 0.06 x(1 + 1.5 · 10−3 x)−0.5

E 0.06 x (-”-)−0.5 0.03 x(1 + 3 · 10−4 x)−1

F 0.04 x (-”-)−0.5 0.016 x(1 + 3 · 10−4 x)−1

Urban

A − B 0.32 x (1 + 4 · 10−4 x)−0.5 0.24 x(1 + 10−3 x)+0.5

C 0.22 x (-”-)−0.5 0.20 x

D 0.16 x (-”-)−0.5 0.14 x(1 + 3 · 10−4 x)−0.5

E − F 0.11 x (-”-)−0.5 0.08 x(1 + 1.5 · 10−4 x)−0.5

Table A.4: Briggs parametrisation of the dispersion coefficients for rural and urban conditions.



B. Generation of Random Test

Distributions

We consider the case that the 2-D random scalar fields cI(r), I = 1, . . . , N , are generated from a given function

c(r) in the following way.

The cI(r) are defined on a finite number of grid nodes rJ , J = 1, . . . , nx × ny such that

1. for the function values on the nodes

cmin[c(rJ)] ≤ cI(rJ) ≤ cmax[c(rJ)], (B.1)

i.e. lower and upper bounds on each node are functions of c’s value on it.

For example,

fmin c(rJ) ≤ cI(rJ) ≤ fmax c(rJ), (B.2a)

like a factor of 2 uncertainty, or

c(rJ) − ∆[c(rJ)] ≤ cI(rJ) ≤ c(rJ) + ∆[c(rJ)], (B.2b)

like a ±50% uncertainty.

Depending on the spacing of the nodes rJ , this constraint on its own can result in much larger gradients than

the ones of the original field c, and for very fine grids it leads to unphysically fluctuating values. Therefore, it

is necessary to restrict the gradients and possibly higher derivatives of cI . Here, we restrict ourselves to the

first differences and a constraint of the special form

2. for the first differences

f ′
min/max

∂c(rJ)

∂x
≤ ∆cI(rJ)

∆x
≤ f ′

max/min

∂c(rJ)

∂x
for

∂c(rJ)

∂x
≷ 0 (B.3)

and the same for y. To generate variability where the original field is very smooth, e.g. |∇c| ∼ 0, this

sign preserving relation is relaxed to

f ′
min

˛

˛

˛

∂c(rJ)

∂x

˛

˛

˛ ≤
˛

˛

˛

∆cI(rJ)

∆x

˛

˛

˛ ≤ f ′
max

˛

˛

˛

∂c(rJ)

∂x

˛

˛

˛ if
˛

˛

˛

∂c(rJ)

∂x

˛

˛

˛ ≤ some treshold, (B.4)

and the same for y.

We further consider two different implementations of the constraints.

(i) Direct Monte-Carlo generation of the cI(rJ) such that one of the equations (B.2) and eq,. (B.3), (B.4) are

satisfied, starting on a certain grid node. The gradients of c have to be computed beforehand.

(ii) ‘Convolution’

cI(r) = r(r) · c(r)
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with a random field r constrained by

rmin ≤ r(rJ) ≤ rmax, (B.5)
˛

˛

˛

∆r(rJ)

∆x

˛

˛

˛ ≤ r′max and the same for y, (B.6)

such that eq. (B.2a) with f ′
min = f ′

max and eq. (B.3) are fulfilled. This implies

rmin/max = fmin/max,

r′max =
f ′

max − fmax

c(rJ)
max(

˛

˛

˛

∆r(rJ)

∆x

˛

˛

˛,
˛

˛

˛

∆r(rJ)

∆y

˛

˛

˛).

The field r is produced as in (i).

Both methods have been tested and, for the right choice of parameters, lead to similar results. In any case,

the mean and standard deviation of all cI should be checked for bias and actual variability within the above

bounds.

Unless stated differently, all random numbers are uniformly distributed.



C. Auxiliary Calculations

Proof of equation (5.8a): Estimate of the discretisation error

It is

∆cdisc(r) = c(r) − [φ(r)]T Φ−1
c

with

cj =

Z

Ωj

dV φj(r)c(r)

Φjj′ =

Z

Ωj

dV φj(r)[φj′(r)]
T

and Ωj the support of basis function φj . Expand cj around a point ρ = (xρ, yρ) in Ωj :

cj ∼ c(ρ)

Z

Ωj

dV φj(r)

+
∂c

∂x
(ρ)

Z

Ωj

dV φj(r)(x − xρ) + (x ↔ y)

+
1

2

∂2c

∂x2
(ρ)

Z

Ωj

dV φj(r)(x − xρ)
2 + (x ↔ y)

+
∂2c

∂x∂y
(ρ)

Z

Ωj

dV φj(r)(x − xρ)(y − yρ).

Taking ρ as the grid node rj in the case of the bilinear basis and as the box centre in the case of the box

basis, linear terms in x and y vanish for pixels entirely in the reconstruction area. The integral in the first

contribution is
Z

Ωj

dV φj(r) = ∆xi∆yi = ∆Ai,

where ∆Ai is the area of the rectangle formed by four grid nodes and in the case of the bilinear basis the grid

is assumed to be regular in both x-and y-direction merely for simplicity. Similarly, for the quadratic term

Z

Ωj

dV φj(r)(x − xj)
2 =

8

<

:

1
12

∆Aj(∆xj)
2 box

1
6

∆Aj(∆xj)
2 regular bilinear

,

and the same for y. The vector c gets thus

cj ∼

8

<

:

∆Aj

“

c(rj) + 1
24

“

(∆xj)
2 ∂2c

∂x2 + (∆yj)
2 ∂2c

∂y2

”

(rj)
”

box

∆Aj

“

c(rj) + 1
6

“

(∆xj)
2 ∂2c

∂x2 + (∆yj)
2 ∂2c

∂y2

”

(rj)
”

regular bilinear
,

which allows to estimate ∆cdisc(r) if Φ−1 is known explicitely. For the box basis Φ−1
ij = ∆A−1

i δij gives the

desired expression. The calculation of Φ−1 in the bilinear case is more involved and not considered here.

189



190 C. Auxiliary Calculations

Proof of equations (6.11) & (6.12): Fitting the background

In the over-determined case the least-squares problem of eq. (6.10b)

min‖d − By‖2, with B = (A l)

y = (x′, cBG)T

is given by

y = (BT B)−1BT
d

=

 

AT A AT l

(AT l)T lT l

!−1 

AT d

lT d

!

.

The inverse I =
` J j

jT j

´

in the last expression can be computed from

 

AT A AT l

(AT l)T lT l

!

I = 1,

giving

j = −
`

AT (lT
l − ll

T )A
´−1

AT
l,

J = l
T
l
`

AT (lT
l − ll

T )A
´−1

,

j = (lT
l)−1

“

1 + l
T A
`

AT (lT
l − ll

T )A
´

AT
l
”

.

Inserting these expressions into

x
′ = JAT

d + (lT
d)j,

cBG = j
T AT

d + (lT
d)j

yields equation (6.11).

The under-determined case

min
y

y
T Hy, d = B y

contains the norms ‖x′‖2
2, ‖y‖2

2 and
P

j(x
′
j − cBG)2 by the choices

H =

0

B

B

@

1

. . .

1

1

C

C

A

, H =

0

B

B

B

B

B

@

1

. . .

1

0

1

C

C

C

C

C

A

and H =

0

B

B

B

B

B

@

1 −1

. . .
...

1 −1

−1 . . . 1 n

1

C

C

C

C

C

A

,

respectively. The normal equations of the second kind for the above minimum-norm principle

Hy =
1

2
BT

γ, d = By

cannot be solved straightforwardly if H is singular, which is the case for the last two matrices H. Writing

H =

 

H h

hT h

!
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with non-singular H, the normal equations take the form

Hx
′ + hcBG =

1

2
AT

γ,

h
T
x
′ + hcBG =

1

2
l
T
γ,

Ax
′ + lcBG = d

with solution

cBG = N−1
v

T (AH−1AT )−1
d,

x
′ =

n

H−1AT − N−1
“

H−1AT (AH−1AT )−1
vv

T −H−1
hh

TH−1AT + H−1
hl

T
”o

(AH−1AT )−1
d,

where

N = v
T (AH−1AT )−1

v − h
TH−1

h + h,

v = l − AH−1
h

and γ = 2(AH−1AT )−1
`

(AH−1h− l) cBG + d
´

. Equations (6.12) follow for the special choices of H, h and h

above.

The sum x′ + cBG(1, . . . , 1)T = x′ + cBG e can be written as

x
′ + cBG e = H−1AT (AH−1AT )−1

d +
“1−H−1AT (AH−1AT )−1A

”

xa

where A e = l was used and xa = cBG H−1(He − h) can be interpreted as a priori (c.f., e.g. eq. (4.42)).

Particularly, xa = cBG e for the matrices H above.

Proof of equations (6.17) & (6.18): Additional constraints

In the over-determined case (m + f ≥ n), the least-squares solution of Ax = d, with A =

 

A

F

!

and

d =

 

d

c

!

, in the form of eq. (6.17) immediately follows from

x = (ATA)−1AT
d

by the matrix multiplication in blocks:

ATA =
“

AT F T
”

 

A

F

!

= AT A + F T F.

The under-determined case with a priori xa has the solution

x = xa + AT (AAT )−1(d −Axa),
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where the calculation of the inverse (AAT )−1 = I =
` I1 I3

IT
3 I2

´

is carried out as on page 190 and yields

I1 = (APF AT )−1,

I2 = (FPAF T )−1,

I3 = −(APF AT )−1AF T (FF T )T = −(AAT )−1AF T (FPAF T )−1,

with PA defined by PA = 1− AT (AAT )−1A, see eq. (4.55), and the same for PF .

For AT (AAT )−1 = ( AT I1 + F T IT
3 AT I3 + F T I2 ) one gets thus

AT I1 + F T IT
3 = PF AT (APF AT )−1,

AT I3 + F T I2 = PAF T (FPAF T )−1,

which completes the proof.

Proof of equations (7.8)-(7.10): Point measurements as

additional a priori

The augmented a priori xa is constructed such that f = rank[F ] of its degrees of freedom are determined by

the point measurements, expressed as Fx = c, and the remaining n − f degrees from the ad hoc a priori xa.

This is in fact a pure least-norm problem with solution according to eq. (4.56c)

xa = F T (FF T )−1
c + PF xa. (C.1)

As it provides an instructive approach to the least-norm problem, we derive eq. (C.1) explicitly by using the

singular value decomposition F = UΣV T and write

xaj =

f
X

j′=1

Vjj′x
′
aj′

+

n
X

j′=f+1

Vjj′x
′
aj′

. (C.2)

Inserting this into Fxa = UΣx′
a = c gives the unique solution

x′
aj

= Σ−1
j (UT

c)j for j = 1, . . . , f

by projecting onto the orthogonal complement of the nullspace. The remaining components are set to the

components of xa in the system of the singular vectors v

x′
aj

= (V T
xa)j for j = p + 1, . . . , n.

Inserting these equations back into eq. (C.1) gives

xaj = (Σ†UT
c)j + Σn

j′=f+1Vjj′V
T

j′kxak ,

where the matrix product in the second sum is the projector onto the nullspace of F and Σ† =
`

Σ−1
r 0

´

as

in eq. (4.36). Using the singular value decomposition, the first expression can be seen to be (F T (FF T )−1c)j ,

thus establishing eq. (7.8). Equation (7.9) follows immediately from eq. (4.36).

The augmented covariance matrix Sa can – like any matrix in Rn×n – be decomposed in the following way

Sa = P⊥
F SaP⊥

F + P⊥
F SaPF + PFSaP⊥

F + PFSaPF ,
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where PF is again the projector onto the nullspace of F and P⊥
F the projector onto its orthogonal complement.

The form eq. (7.10) follows from

1. c = Fxa ⇒ P⊥
F SaP⊥

F = F T (FF T )−1Sc(FF T )−1F, with Sc = E
ˆ

(c − c̄)(c − c̄)T
˜

.

2. No correlation between the physical and unphysical subspaces related to the point measurements and

the ad hoc a priori.

3. PFSaPF = PF SaPF .



D. Software & Numerics
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Figure D.1: The MFC Single Document/View architecture (simplified). Dashed boxes indicate code that re-
mains largely untouched, round boxes contain the actual C++ classes for calculations and display.

Most of the calculations were carried out within a programme based on code originally developed by T.

Laepple for reconstruction and display of experimental or simulated data [Laepple et al., 2004]. The code is

written in C++ and based on the Microsoft Foundation Classes (MFC), using the Single Document/View

architecture. MFC is a Microsoft C++ library providing, e.g., classes and methods for windows as they are

known from the operating software with the same name. The doc/view architecture is a special way to manage

the storage of data (in the document), its display in one or multiple windows (views), the user interaction and

the coordination and update of the views. Single doc/view means that there can be only one document in the

application, but still multiple views of it (In fact, this architecture has been declared obsolete by now). The

virtual algorithms represent only part of the complete code that is automatically created by Visual Studio’s

(the Microsoft programming interface) application wizard. Actual graphic display of the data uses the freeware

OpenGL classes.

While the particular architecture allows convenient visualisation, the whole code seems heavily overloaded for

purely scientific purposes and is sometimes hard to modify without some knowledge about MFC. Furthermore,

it relies on Visual Studio, which is only commercially available.

Practically all original classes have been modified for the simulations of this thesis. The algorithm for the

singular value decomposition (as well as vector and matrix classes) were adopted from the TNT/JAMA

library.1 Any other special routines have been taken from [Press et al., 1992].

All colour plots in this thesis have been generated by a programme developed by B.C. Song which essentially

does the same job as the earlier version by Laepple, but without using Microsoft’s or any other commercial

library. Contour plots have been created using the freeware gnuplot.

1Pozo, R., Mathematical and Computational Sciences Division, National Institute of Standards and Technology,
http://math.nist.gov/tnt/
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Research and Monitoring, edited by J. Bösenberg et al., pp. 370 – 378, 1997, Springer, Berlin, Heidelberg,

1997.

Stutz, J., B. Alicke, R. Ackermann, A. Geyer, A. White, and E. Williams, Vertical profiles of NO3, N2O5,

O3, and NOx in the nocturnal boundary layer: 1. observations during the Texas Air Quality Study 2000,

J. Geophys. Res., 109 (D12306), 1 – 14, 2004.

Sykes, R. I., and R. S. Gabruk, A second-order closure model for the effect of averaging time on turbulent

plume dispersion, J. Appl. Met., 36, 165 – 184, 1997.

Tanabe, K., Projection method for solving a singular system of linear equations and its applications, Numer.

Math., 17, 203 – 214, 1971.

Tarantola, A., Inverse Problem Theory, Elsevier, New York, 1987.

Tarantola, A., Inverse problem theory and model parameter estimation, SIAM, Philadelphia, 2005.

Tarantola, A., and B. Valette, Inverse problems: Quest for information, J. Geophys., 50, 159 – 170, 1982.

Tikhonov, A. N., Solution of incorrectly formulated problems and the regularization method, Soviet Math.

Dokl., 4, 1035 – 1038, 1963.

Todd, L., and R. Bhattacharyya, Tomographic reconstruction of air pollutants: Evaluation of measurement

geometries, Appl. Opt., 36 (30), 7678 – 7688, 1997.

Todd, L., and D. Leith, Remote sensing and computed tomography in industrial hygiene, Am. Ind. Hyg.

Assoc. J., 51 (4), 224 – 233, 1990.

Todd, L., and G. Ramachandran, Evaluation of algorithms for tomographic reconstruction of chemical con-

centrations in indoor air, Am. Ind. Hyg. Assoc. J., 55 (5), 403 – 417, 1994a.

Todd, L., and G. Ramachandran, Evaluation of optical source-detector configurations for tomographic recon-

struction of chemical concentrations in indoor air, Am. Ind. Hyg. Assoc. J., 55 (12), 1133 – 1143, 1994b.



References 203
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