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Abstract. In many types of media, and in particular within living cells or within their
membranes, diffusing species do not follow Fick’s laws, but instead show transient subdiffusive
behavior. Formulating spatiotemporal models that take this behavior into account is a delicate
matter, as one is faced with the choice of resorting either to fractional calculus or to microscopic
descriptions. In this article, we provide an alternative designed to be easier to tackle analytically and
numerically than the existing approaches. Specifically, starting from the Continuous Time Random
Walk model, we construct linear reaction diffusion systems that can be used as components within
such a model, and which capture the defining properties of subdiffusion. We show how to impose
physically relevant parameters, and prove stability and mass conservation. While applications to
cellular biology are our main motivation, our approach is abstract, and should thus be applicable to
any situation where anomalous subdiffusion is observed.
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1. Introduction. In media with nontrivial, disordered microscopic substruc-
tures, one observes a special type of anomalous diffusion called subdiffusion [2]. While
a particle diffusing according to Fick’s laws has a mean square displacement that scales
linearly with time,

〈x(t)2〉 ∼ K1t,

in the case of subdiffusive anomalous diffusion one observes a behavior of the type

〈x(t)2〉 ∼ Kαtα, (1.1)

with 0 < α < 1. (Superdiffusion, a close cousin of subdiffusion, follows (1.1) with
α > 1.) Within living cells, (1.1) is often observed only for limited, although eventually
quite long, time scales. For longer time scales, the behavior is normally diffusive [12].
The time scale is determined by the shape and size of the particles.

The reason for subdiffusive behavior within cells is that cells are tightly packed
with a variety of organelles and proteins, yielding a somewhat porous, gel-like medium
[12]. This phenomenon is called “molecular crowding” in the literature. Indeed, the
cytosol (the interior of the cell), which is usually thought of as a watery solution, has
about 40% of its volume taken up by proteins of a vast variety of sizes and shapes.
And it is the size and shape distribution of these proteins, and the size and shape
of the species under study, that give rise to subdiffusive behavior. And since only a
finite range of sizes is present, this subdiffusive behaviour is transient [11].

For the purpose of constructing spatiotemporal models of intracellular dynamics,
the importance of subdiffusion lies in the fact that it influences reaction rates [10],
and, in our opinion, in the fact that it is non-Markovian. By introducing memory
to the mix, it has the potential of significantly enriching the nonlinear dynamics of
even simple models. But studying and formulating such models is relatively difficult.
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One may use fractional calculus, in the form of the subdiffusive fractional diffusion
equation, which has the drawback of not reproducing a return to Fickian diffusion,
and of having infinite memory. The only alternative we are aware of are atomistic,
particle by particle descriptions. While easy to construct, such models tend to be
hard to tackle analytically, and very expensive to simulate numerically for realistic
system sizes.

The starting point for a mathematically rigorous understanding of subdiffusion
is the Continuous Time Random Walk (CTRW) model, which we briefly review in §
2. In contrast to the classical random walk model of Brownian motion, in the CTRW
particles move and wait in an alternating fashion, and the jump length and waiting
time are random variables. Depending on the choice of PDFs, one can obtain a whole
spectrum of different diffusive behaviors, including Fickian diffusion, superdiffusion,
and subdiffusion.

In § 3 of this article, we propose and derive an additional option, designed to be
easier to handle numerically and analytically. We start by introducing a fairly simple
modification of the CTRW, which we call the Robotic Continuous Time Random
Walk, and where a State appears as an additional random variable. This additional
variable allows us to generate a family of different waiting time PDFs from simple
exponential (Poisson) distributions. From this we derive a system of reaction diffusion
equations where the pseudospecies uk, k = 1, . . . , N (which represent the concentration
of particles in state k) diffuse normally, and where the switching between states is
accounted for by a suitable reaction term. The concentration profile of the species
that shows subdiffusive behavior is given by the sum of the pseudospecies, u(t) =
∑N

k=1 uk(t).
The system we obtain from this construction is stable and conserves mass. It

also has the desired property of showing return to normal diffusion for long time
scales. In § 4 we give a precise recipe to construct such systems with a desired
set of natural phenomenological parameters, which are, maximum average diffusion
coefficient, essential time of return to Fickian diffusion, and long-term, or minimum,
diffusion coefficient. Finally, in § 5, we show how this construction performs in
numerical experiments. It is our hope that this tool will generally simplify the
inclusion of subdiffusive effects in spatiotemporal models of intracellular dynamics.

2. Anomalous Diffusion. Before developing the reaction diffusion model, we
give a brief introduction to the fundamentals of anomalous diffusion, focusing mainly
on subdiffusion. The material in this section follows, unless otherwise stated, the
account by Klafter and Metzler [8].

Diffusive transport refers to the movement in space of an ensemble of particles
of a given species, accomplished by random motions caused by thermodynamic fluc-
tuations. The best known example of diffusive transport is the one caused by Brownian
motion and which is described by Fick’s laws, leading to the well known parabolic
diffusion equation

∂u

∂t
= △u.

This form of diffusion can be found, for instance, in the diffusion of ink in water.
Under Fickian diffusion, the mean square displacement of a particle scales linearly
with time; that is,

〈x(t)2〉 ∼ K1t. (2.1)
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Any diffusive transport phenomenon which does not follow (2.1) is considered to be
anomalous diffusion.

There are, of course, many possible deviations from (2.1), but it is sufficient for
the description of many phenomena to consider diffusive transport obeying

〈x(t)2〉 ∼ Kαtα (2.2)

for α > 0, which includes Fickian diffusion as a special case. If 0 < α < 1, the diffusion
process is called subdiffusive, or subdiffusion, and if 1 < α it is called superdiffusion.

This type of diffusion can be recovered, for all values of α, from the continuous
time random walk (CTRW) model which we review briefly in § 2.1. From this
model one obtains continuum evolution equations called fractional diffusion equations
(FDE), that have the form

∂u

∂t
= 0Dt

1−αKα△u (2.3)

for subdiffusion (0 < α < 1), and

∂u

∂t
= Kα

−∞D
α

xu (2.4)

for superdiffusion (1 < α). In (2.3), the operator 0D
α
t is the Riemann-Liouville time

derivative, and −∞D
α

x is the Riesz-Weyl operator. We will not go into further details
concerning these operators, or indeed of fractional calculus in general. We note,
however, that other fractional differential operators can be used in both cases. See
[5, 6].

As mentioned in the introduction, our main focus of interest in this article is
subdiffusion. Still, we mention superdiffusion a few times, but mostly to put sub-
diffusive behavior in perspective.

2.1. The Continuous Time - Random Walk (CTRW) model. The conti-
nuous time - random walk (CTRW) model is a generalization of the Brownian motion
model of diffusion, and was introduced first by Montroll and Weiss in 1965 [9]. In the
CTRW, a particle moves (in zero time) a given distance, and then waits for a certain
time before moving again. The jump length r, and the waiting time t, are random
variables drawn from a joint probability density function Ψ(r, t). For our purposes,
it is sufficient to consider only the case where the jump length and the waiting time
are independent random variables, so that

Ψ(r, t) = λ(r)ω(t)

with λ(r1) = λ(r2) whenever r1 and r2 have the same Euclidean norm.
Of particular importance for the characterization of the diffusion process are the

characteristic waiting time,

τ∗ =

∫ +∞

0

tω(t)dt

and the jump-length variance

Σ2 =

∫

Rn

|r|2λ(r)dr,
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each of which may diverge, depending on the situation considered.
If both τ∗ and Σ2 are finite, the long term behavior of the system is described by

Fick’s laws. A diverging characteristic time with finite jump-length variance gives rise
to subdiffusion. In contrast, a finite characteristic time, with divergent jump length
variance, gives rise to superdiffusion.

The assumption of independence of waiting time and jump length causes problems
in the superdiffusive case, as it allows for arbitrarily long jumps in finite time. Since
this assumption of independence is crucial for our construction, we have chosen to
avoid superdiffusion.

The subdiffusive behavior we are interested in, i.e., a behavior governed by (2.2),
appears when the jump-length has a finite variance, and the waiting-time PDF has
the asymptotics

ω(t) ∼ t−(1+α), (2.5)

with the same α.
An important case that will be useful later on is when both τ∗ and Σ2 are finite.

In this case, diffusive behavior of the particles can be described by normal diffusion,
and the diffusion coefficient is given explicitly by

D1 =
Σ2

2τ∗
.

2.2. Time scales. To obtain the fractional diffusion equation from this micros-
copic model, one considers, for a particular incarnation of the CTRW model, on the
propagator W (x, t), which is the PDF that describes the probability for a particle that
was at x0 = 0, t0 = 0 to be at position x at time t. Then one considers a series of
CTRW models where the PDFs are scaled, as in

λh(r) := h−1λ(h−1r), ωs(t) = s−1ω(t/s),

and then proceeds to the limit h → 0, s → 0, while keeping h = Kαsα. One obtains
that the limit in distribution of these propagators, which we again denote by W ,
satisfies

∂W

∂t
= 0D

1−α
t Kα△W where (x, t) ∈ R

n × (0, +∞), (2.6)

with W (·, 0) = δ0 being the Dirac delta at zero. The constant Kα is the generalized
diffusion coefficient for the subdiffusive fractional diffusion equation. For further
details, and for a full account of this derivation we refer to [5].

This passage to the limit has as a consequence that the details of the PDFs λ and
ω are removed, and only the convergence or divergence of the jump-length variance
and/or the characteristic time, together with the asymptotic behavior in (2.5), play
a role. One quickly realizes that an intermediate subdiffusive behavior, with return
to normal diffusion for longer time scales, is not within the scope of (2.6).

We will return to the issue of time scales again later, when we have the machinery
in place to construct a reaction diffusion model of subdiffusion.

3. Modeling subdiffusion by reaction diffusion systems. Let us first give
an outline of our goals. Write u(x, t) : R

n × (0, +∞) → R for the concentration of a
species at the point x at time t. Choose some integer N > 1, and write

u =
N
∑

k=1

ui
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with u1, u2, . . . , uN : R
n × (0, +∞) → R. We will call the ui, i = 1, 2, . . . , N

pseudospecies. We now think about the evolution of a parabolic system of the form

∂u

∂t
= D△u + Au, (3.1)

where D and A are real N ×N matrices, and D is diagonal. Our plan is to construct
these matrices in such a way that u =

∑N
k=1 ui diffuses anomalously, at least within

a given range of time scales. This means that, if we observe the behavior of

ξ(t) =
〈x(t)2〉

tα
,

with an adequate initial condition, we should see a flat region for values of t within
that range of time scales.

To construct the matrices D and A needed in (3.1), we will start by modifying the
CTRW model slightly, which we do in the next subsection. Then, we will approximate
the waiting time PDF by exponentials using the techniques from [1].

3.1. The Robotic Continuous Time Random Walk (RCTRW) model.
Suppose that instead of opaque particles moving randomly, we had robots. These
robots move by repeating the following steps over and over.

1. Draw at random a number k ∈ {1, . . . , N} with P (k = n) = wn.
2. Wait, drawing the waiting time from the PDF ωk.
3. Move, drawing the distance and direction from the jump-length PDF λk(r).

The movement of the robots in this model is the same as in the CTRW with
PDFs

λ =

N
∑

k=1

wkλk and ω =

N
∑

k=1

wkωk.

It does, however, add some flexibility which will turn out to be crucial, as it allows
us to approximate the PDFs λ and ω by simpler PDFs, and thus move some of
the difficulties to an additional variable: the state of the robot. And indeed, the
pseudospecies in (3.1) will represent robots in the corresponding state.

3.2. From the RCTRW to a reaction diffusion system. Suppose we have a
jump-length PDF λ with variance Σ2, and a waiting time PDF that can be expressed
as

ω(t) =

N
∑

k=1

wk
e−t/τk

τk
=

N
∑

k=1

wkωk(t), (3.2)

where of course
∑N

k=1 wk = 1. Let us set up the RCTRW with jump-length PDFs
λk = λ, and waiting time PDFs ωk.

Note that the average time a robot spends in a given state i ∈ {1, 2, . . . , N} is τi.
It may then change to state j with probability wj . It follows that robots change from
state i to state j at the average rate

cij =
wj

τi
. (3.3)

We now make the following model assumption.
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Assumption 3.1. As robots in state i move with a jump-length variance Σ2 and a
characteristic waiting time τk, that movement follows Fick’s laws for all time scales.

Form this assumption we obtain the diffusion constant for robots in state i,

Di =
Σ2

2τi
.

Thus, given an expression of the form (3.2) we can fill the blanks in the system
(3.1). The matrix D ∈ R

N×N is given by

D = diag(D1, . . . , DN )

and the matrix A ∈ R
N×N takes entries

aij = cji for i 6= j (3.4)

aii = −
N
∑

k=1,k 6=i

aki. (3.5)

Assumption 3.1 is necessary because particles moving with appropriate PDFs
can only be described safely by Fick’s laws for long time scales (with respect to
the corresponding characteristic time), while we use this description also for small
time scales. It is not clear to us how large or small this error is, but based on the
encouraging numerical results, we conjecture that it is small.

3.3. Approximating the subdiffusive PDF. We now turn to the problem of
finding wk and τk, k = 1, 2, . . . , N , such that

ω(t) =

N
∑

k=1

wk
e−t/τk

τk
=

N
∑

k=1

wkωk(t) (3.6)

produces subdiffusive behavior for a range of time scales. To that end, we will try to
arrange things in such a way that

∣

∣

∣

∣

∣

1

tα+1
−

N
∑

k=1

Cwk
e−t/τk

τk

∣

∣

∣

∣

∣

<
ǫ

tα+1
(3.7)

for some ǫ > 0, and for all t in some interval Iτ = [a, b] ⊂ (0, +∞). The normalization

factor C > 0 is used to impose
∫ +∞

0 ω(t)dt = 1.
Fortunately, it is known how to produce this type of approximation for arbitrary

ǫ > 0 and any finite It ⊂ (0, +∞). We refer to [1] where approximation by exponen-
tials is developed for a large class of functions. From there we learn that (3.7) is a
special case, as

1

tα+1
=

1

Γ(α + 1)

∫ +∞

−∞

e−tes+(α+1)sds. (3.8)

For a given t, the integrand decays rather fast. As a consequence, to compute
approximately t−(1+α) using (3.8), we can use quadrature on an appropriate interval
of integration [P, Q]. Furthermore, if the interval is long enough, and the quadrature
accurate enough, we can use (3.8) to produce an approximation of the form (3.7) for
a whole range of t. It is possible to achieve this with good accuracy on rather large
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intervals with a remarkably low number of terms. In fact, in [1], p. 41, it is proved
that

Theorem 3.2. For any β > 0, 0 < δ ≤ 1, and 0 < ǫ ≤ min{ 1
2 , 4

β }, there exist
positive numbers τm and wm such that

∣

∣

∣

∣

∣

r−β −
M
∑

m=1

wm
e−τmt

τm

∣

∣

∣

∣

∣

≤ r−βǫ for all δ ≤ r ≤ 1.

For fixed β and ǫ, it holds M = O(log δ−1).
It should be mentioned that in [1] rather precise upper bounds for M are given

which have been omitted here.
These approximations are obtained by computing suitable bounds of integration

P < Q, and then approximating the integral on the right of (3.8) using a summed
trapezoidal rule on an equidistant grid. In a departure of [1], we use a summed
midpoint rule instead, as all knots have then the same weight. Recall also that the
midpoint rule has the same order of accuracy with a slightly more favorable constant.

We add that to obtain an approximation on It = [a, b] from theorem 3.2, it is
enough to take an approximation on It = [a

b , 1] and perform a change of variable.
The next question is, of course, how to choose ǫ and It. It will turn out that,

to impose physically relevant parameters on the system, it is more convenient to
specify the interval of integration [P, Q]. Furthermore, it is observed that for purposes
of achieving subdiffusive behavior, relatively few terms, and thus a rather coarse
approximation, is enough. Full implications of the accuracy of the approximation
shall be studied elsewhere.

Having chosen [P, Q], and the number of knots N (which coincides with the
number of pseudospecies) we write h = (Q − P )/N , define the quadrature knots
xk := (k − 1)h + h/2 + P , and obtain the approximation

1

t1+α
≈

N
∑

k=1

Cwk
e−t/τk

τk

with

τk = e−xk and Cwk =
heαxk

Γ(1 + α)
. (3.9)

It is easy to check that the wk needed for (3.6) are given by

wk =
eαxk

∑N
j=1 eαxj

=
eαhk

∑N
j=1 eαhj

, (3.10)

where we have used that they must satisfy
∑N

k=1 wk = 1.
The question on how to choose P and Q can only be answered after gaining some

additional understanding of the properties of the system (3.1).

3.4. The Reaction Diffusion System. Here, we give a characterization of the
behavior of the reaction diffusion system (3.1). We assume that an interval [P, Q] has
been chosen, and that the wk, τk, k = 1, 2, . . . , N have been computed as above. We
establish existence and uniqueness of the solution, long term behavior, and stability
of (3.1). We start by proving some simple results on the reaction matrix A.
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Lemma 3.3. Let A be as in (3.4). Then all eigenvalues of A are either zero or
have negative real part.

The proof is a straight-forward application of Gerschgorin’s Circle Theorem (see
for instance [4], p. 320) to (3.4), and is thus omitted.

Lemma 3.4. The dimension of the kernel of the matrix A is 1. This kernel is
spanned by the vector s = (sk) ∈ R

N with entries

sk =
eh(1−α)(N−k+1)

∑N
k=1 eh(1−α)k

.

Here, h is the width of the quadrature mesh as used above. The normalization of
sk was chosen in such a way that

∑N
k=1 sk = 1, a detail that will be useful later on.

Proof. We start by writing vT := (1, 1, . . . , 1) ∈ R
N , and observe that vT A = 0.

It follows that the kernel of A is nontrivial.
Let us now rewrite A in the following way. Let

vT
τ = (τ−1

1 , τ−1
2 , . . . τ−1

N ) and vT
w = (w1, w2, . . . , wN ).

Then A = F+K, with K = vτvT
w , and F = diag(f1, f2, . . . , fN) with fk = −∑N

k=1
wk

τk
.

The matrix K has rank one, and it is easy to compute its single nontrivial
eigenvalue and eigenvector pair λ0 ∈ R and v0 ∈ R

N . Let {u1, u2, . . . , uN} be a
basis of R

N such that u1 = v0 and {u2, u3, . . . , uN} is a basis for the kernel of K.

Now, if u ∈ R
N is such that Au = 0, we write u =

∑N
k=1 αkuk, and observe that

Au = (F + K)u = Du + α1λ
0u1 = 0,

from where we conclude that

u = α1F
−1u1.

This proves that the kernel of A has dimension one.
To prove that s is in this kernel, we start by noting that A = cA0, with A0 = (a0

ij)
given by

a0
ij = eh(αi+j) if i 6= j, and

a0
ii = −

N
∑

j=1,j 6=i

eh(αj+i).

Thus, As = A0s = 0 if for each i,

N
∑

j=1,j 6=i

sje
h(αi+j) −

N
∑

j=1,j 6=i

sie
h(αj+i) = 0,

which, dropping the normalization in the definition of s, reduces to showing that

∑

j=1,j 6=i

eh[(1−α)(N−j+1)+αi+j] − eh[(1−α)(N−i+1)+αj+i] = 0.

And in fact, every term of this sum is zero.
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Using lemmas 3.3 and 3.4 we can start looking at dynamic properties of the system
(3.1). To this end we consider the initial value problem,

y′ = Ay with y : [0, +∞) → R
N , (3.11)

y(0) = y0 = (y0
k) ∈ R

N . (3.12)

Lemma 3.5. A solution y(t) = (y1(t), y2(t), . . . , yN (t)) of (3.11) satisfies

(

N
∑

k=1

yk(t)

)′

= 0. (3.13)

lim
t→+∞

y(t) =

(

N
∑

k=1

y0
k

)

s, (3.14)

Proof. The proof of (3.13) follows from y′ = Ay and the fact that
∑N

k=1 aki = 0
for each i. Assertion (3.14) follows from (3.13), and lemmas 3.3 and 3.4.

Next, we are interested in some basic properties of our reaction diffusion system
on a bounded domain. Specifically, we are interested in the stability of the system
and its long term behavior, as well as in conservation of mass.

Theorem 3.6. Let Ω ∈ R
n be a bounded, simply connected domain with Lipschitz

boundary, and consider the problem, find u ∈ C((0, +∞), [H1(Ω)]N ) such that

∂u

∂t
= D∆u + Au on Ω × (0, +∞) (3.15)

u(·, 0) = u0, (3.16)

∂u

∂n
= 0 on ∂Ω (3.17)

with u0 ∈ [H1(Ω)]N . This problem has a unique solution. Furthermore,
(i) Total mass is conserved over time. That is

∫

Ω

N
∑

k=1

uk(t)dµ =

∫

Ω

N
∑

k=1

u0
k

(ii) For each t > 0, and for each d ∈ N,

u(t) ∈ Hd(Ω).

(iii) The long time limit of u is a constant function of x. In fact,

(

lim
t→+∞

u(t)

)

(x) =

(

∫

Ω

N
∑

k=1

u0
k

)

s.

Thus, the system is stable.
The spaces Hd(Ω) are standard Sobolev spaces of d times weakly differentiable

functions.
Proof. We observe that the operator induced by the matrix A onto H1(Ω)n is

bounded, and thus Lipschitz, from where existence and uniqueness follow (see for
instance [3]).

9



To prove 1-3, let {ϕj , λj}j=0,1,...,∞ be the eigensystem of −∆ on the domain Ω
with homogeneous Neumann boundary conditions, normalized to be an orthonormal
basis of L2(Ω). Recall that if these eigenvalues are sorted so that λk ≤ λk+1, then λ0

is zero, is a simple eigenvalue, and the corresponding eigenfunction is a constant. As
a consequence, the integral of ϕj is zero wherever j ≥ 1.

The solution of (3.15) can be given explicitly in terms of this eigensystem. Indeed,
writing

u0 =

+∞
∑

j=0

ujϕj

we have that

u(t) =

+∞
∑

j=0

et(A−λjD)u0
jϕj .

But the eigenvectors of A−λjD have (again using Gerschgorin circles) real part smaller
than or equal to −λjDmin, where Dmin is the smallest of all diffusion coefficients.
Thus, if we write

u(t) =

+∞
∑

j=0

uj(t)ϕj

we obtain the estimate

‖uj(t)‖2 ≤ e−tλjDmin‖u0
j‖2, (3.18)

where the norm in question is the standard Euclidean norm. Given d, the function
u(t) is in [Hd(Ω)]N whenever

+∞
∑

j=0

‖uj(t)‖2λd
j < +∞. (3.19)

For a given m, we have

m
∑

j=0

‖uj(t)‖2λd
j ≤

m
∑

j=0

e−tλjDmin‖u0
j‖2 (3.20)

≤ C

m
∑

j=0

‖u0
j‖2, (3.21)

where the constant C depends on d but not on m. From our choice of u0 it follows
that the last expression of (3.20) converges when m → +∞. This shows (3.19) and
thus proves 2.

Another consequence of (3.18) is that if j ≥ 1, then uj(t) → 0 when t → 0. From
this, we obtain that

∫

Ω

u(t)dµ =

∫

Ω

N
∑

j=0

et(A−λjD)u0
jϕjdµ

=

∫

Ω

etAu0
0ϕ0dµ.

Now, 1 and 3 follow immediately from lemma 3.5.
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3.5. Remarks on memory and initial conditions. Subdiffusive processes
have memory, which means that the history of the system, and not only its current
configuration, determines its future. Subdiffusion is not a Markovian process. While
the future of the pseudospecies uk within our reaction diffusion system is, certainly,
determined by their present states, and not by their past states, the situation is
different for u =

∑N
k=1 uk. Information on the past of u is stored within the concentra-

tions profiles of the pseudospecies. A full discussion of this issue would be beyond the
scope of this article and shall be studied in detail elsewhere.

Reasonable initial conditions for a particular situation should be obtainable from
modeling assumptions. We give two simple examples to illustrate the principle.

Returning to the RCTRW model, suppose that robots are distributed with a local
concentration given by u0. If the robots have been off, and are all turned on at once,
wku0 will end up in state k, as they choose it with probability wk. For this scenario,
it is reasonable to consider the initial conditions u0

k = wku0, k = 1, 2, . . . , N . We will
call this the jump-start initial conditions. Similarly, if the robots have been turned
on for a long time, the distribution of robots in a particular state will be very close to
the steady state distribution given by s. In this case, the initial conditions u0

k = sku0

would be more appropriate. We will call them equilibrium initial conditions.

4. Choice of parameters. The generalized diffusion coefficient Kα appearing
in (2.3) does not have an obvious interpretation within our reaction diffusion model.
The reason is that we never rescale the PDFs going to the limit as is described in §
2.2. We could of course try the brute force approach and fit P , Q, and Σ2 to give a
certain Kα within a certain time interval using relation (2.2).

One can derive other phenomenological parameters for the reaction diffusion
system (3.1) which seem more natural. Thus, for a return to normal diffusion for long
time scales, we are interested in specifying this long term diffusion coefficient, and
also the time of return. Another, less obvious implication of our modeling approach
is the existence of an initial, or maximal, diffusion constant.

In what follows we derive expressions for these phenomenological parameters. We
also show that these parameters completely specify the internal parameters P , Q, and
Σ2.

4.1. Average local diffusion coefficient. While the RCTRW was the starting
point for our derivation, to impose physical behavior we will come from a different
angle, treating the pseudospecies as diffusing by Brownian motion, i.e., canonically
obeying Fick’s laws. The reason for this is that we will have to characterize behavior
for a given time instant t. As the model is derived from a modification of the CTRW,
and we do not shrink the timescales as discussed in § 2.2, we do not have a description
for very short term behavior.

If we neglect the reaction term, and think of each pseudospecies as a separate
substance diffusing according to Fick’s laws, we can derive an average local diffusion
coefficient from the local concentrations. This local diffusion coefficient describes very
short term diffusive behavior.

Let u =
∑N

k=1 uk be a solution of problem (3.15). We assume that all uk are
positive, and define the average local diffusion coefficient by

D(x, t) :=

∑N
k=1 uk(x, t)Dk

u(x, t)
,

where Dk is the diffusion coefficient of the k-th pseudospecies. Note that because of
theorem 3.6, 2, point evaluation is well defined for t > 0.
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To motivate this definition, let us choose a particle that is at place x0 at time t0,
and let φ(t − t0) be its squared displacement at time t > t0. If the particle belongs
to the k-th pseudospecies, and we neglect the reaction term, then its mean square
displacement will be given by

〈φk(t − t0)〉 = 2(t − t0)Dk,

where the average is taken over all possible particle paths. The probability that it
belongs to the k-th pseudospecies is given by

uk(x0, t0)

u(x0, t0)
,

so that

〈φ(t − t0)〉 =

N
∑

k=1

uk(x0, t0)

u(x0, t0)
〈φ(t − t0)〉

= 2(t − t0)

N
∑

k=1

uk(x0, t0)

u(x0, t0)
Dk

= 2(t − t0)D(x0, t0).

Let u =
∑N

k=1 uk be a solution of problem (3.15) with constant initial conditions
on all Ω. For simplicity, we take u = 1. If we take jump-start initial conditions (see §
3.5), we obtain an initial average diffusion coefficient

D0 = D(x, 0) =

N
∑

k=1

wkDk.

As t → +∞, we obtain from theorem 3.6 that uk(x, t) → sk, so the long term average
diffusion will be

D∞ = lim
t→+∞

D(x, t) =

N
∑

k=1

skDk.

As w1 < w2 < · · · < wN , and s1 > s2 > · · · > sN , we can define a time of
“essential return to normal diffusion” τρ as the smallest t for which u1(t) ≥ u2(t) ≥
· · · ≥ uN (t) holds. It should be noted that a rigorous definition of a finite time of
return to normal diffusion makes little sense, as the limit u = s is not achieved in
finite time. The word “essential” in the name of τρ reflects the intuitive insight that
the anomalous diffusivity observed later in the numerical experiments is due to the
redistribution of bulk from fastly diffusing pseudospecies to slower ones. The time τρ

marks a time when this redistribution is, informally speaking, almost complete.
We will see later in the numerical results that, when the number of species is low,

this choice of τρ can cause problems, as in this case, redistribution of bulk is relatively
far from being finished at this time.

4.2. Imposing physical parameters. We have, thus, three physical parame-
ters we wish to impose on the system. Namely, the initial, or maximum diffusion
D0, the final, or long-term diffusion D∞, and the time of essential return to normal
diffusion, τρ. Once we have chosen the number of pseudospecies N , we have three
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internal parameters left. The bounds of the interval of integration in (3.8) (P and Q),
and the jump length variance Σ2. We will now show that for each physical parameter
set 0 < D∞ < D0 < +∞ and 0 < τρ < +∞, there exist corresponding internal
parameters −∞ < P < Q < +∞, and Σ2 > 0. It turns out that they can be obtained
without too much effort.

To simplify this endeavor, we will begin by observing that the factor of reduction
of the diffusion coefficient is independent of Σ2. Indeed, since Dk = Σ2/(2τk), it holds
that

Ddrop =
D∞

D0

=

∑N
k=1

sk

τk
∑N

k=1
wk

τk

.

Thus, we can try to manipulate P and Q to find the desired Ddrop and τρ, and obtain
Σ2 afterward from a simple algebraic expression.

From § 3.3, and from lemma 3.4 we have algebraic expressions for sk, wk, and τk

in terms of the quadrature nodes xk, which in turn can be expressed in terms of A
and h. We fix N and write

Φ(A, h) := Ddrop(A, h).

Lemma 4.1. The function Φ(A, h) depends only on h. In fact, writing Φ(h) =
Φ(A, h) we have

Φ(h) =

∑N
k=1 eh(α+1)k

∑N
k=1 eh(1−α)k

∑N
k=1 eh[(1−α)(N−k+1)+k]

∑N
k=1 ehαk

(4.1)

=
eh(1−α)(1+N)θ(h, α)2

θ(h, α + 1)θ(h, 1 − α)
, (4.2)

with

θ(h, κ) :=

N
∑

k=1

(

ehκ
)k

=
ehκ − ehκ(N+1)

1 − ehκ
.

The proof is a straightforward sequence of algebraic manipulations and is thus
omitted.

Lemma 4.2. For each Ddrop ∈ (0, 1) there exists∗ h > 0 such that Φ(h) = Ddrop.
Proof. The function Φ(h) is continuous for h > 0. If h → 0+, we observe that

Φ(h) → 1. The proof is finished if we can show that

lim
h→+∞

Φ(h) = 0. (4.3)

Indeed, using that
∑N

k=1 rk ≤ Crk+1 for fixed r > 1, for some C > 0 and for all
N ≥ 1, we obtain that

0 < Φ(h) ≤ C
eh(α+1)(N+1)eh(1−α)(N+1)

∑N
k=1 eh[(1−α)(N−k+1)+k]

∑N
k=1 ehαk

≤ C
eh(α+1)(N+1)eh(1−α)(N+1)

eNheh(1−α)Neh
≤ C

eh(1−α)N
,

∗We were not able to prove that this h is unique, although we certainly believe it is. The difficulty
is that it is not clear how to prove that Φ is a strictly monotone decreasing function. Our attempt
to show that Φ′(h) < 0 for h > 0 encountered their obstacle in the rather convoluted expression for
Φ′.
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which confirms (4.3) and thus finishes the proof.
Given P < Q, let us write A[P, Q] for the reaction matrix constructed according

to (3.3), (3.4), (3.10), and (3.9). We now define

τρ[P, Q] = inf{t : v = (vk) = etA[P,Q] satisfies vi−1 ≥ vi, i = 2, 3, . . . , N}. (4.4)

Lemma 4.3. It holds that τρ[P + δ, Q + δ] = e−δτρ[P, Q].
The proof of this lemma follows from observing that A[P +δ, Q+δ] = e−δA[P, Q],

and applying this knowledge to (4.4).
In sum, to set up the system, we start by finding h such that Φ(h) = Ddrop, which

can be done using Newton’s method. Then, we set

P = − log

(

τρ

τρ[0, Nh]

)

, Q = P + Nh, (4.5)

and finally

Σ2 =
2D0

∑N
k=1

wk

τk

.

With these parameters, the reaction diffusion system is completely specified.
Remark 4.4. For the numerical computation of P and Q, it is helpful if the

procedure summarized in (4.5) is modified to read

P = −PS − log

(

τρ

τρ[PS , PS + Nh]

)

, Q = P + Nh.

Mathematically, any choice of PS leads to the same P and Q, but numerically, PS

can be used to avoid overflows or underflows in τρ[PS , PS +Nh]. In our experiments,
we used PS = 10 − Nh.

5. Numerical experiments. In this section, we would like to test the system
we have set up so far. We will start by checking how well the systems we obtain
behave in the benchmark set up at the beginning of § 3. We will also produce a
few pictures of solutions and compare their shape with solutions of the subdiffusive
fractional diffusion equation. Finally, we will include a sequence showing the effects
of return to Fickian diffusion.

For simplicity, we will discretize (3.1) in space using second order, centered finite
differences, and integrate the resulting system of ordinary differential equations in time
using the implicit Euler formula. The resulting linear systems of equations are solved
using Gaussian elimination, which is fast and stable for the associated tridiagonal
matrices.

Our domain will be the whole real line. As the initial condition we approximate
the Dirac delta (at zero) by a very slim and high hat function. While the support
of the continuous solution is infinite for all t, it decays rather fast with |x|, and thus
we track the solution by considering a sequence of growing domains. Whenever a
domain threatens to become too small, we increase its length by a fixed factor, and
interpolate the solution on the previous domain to the new grid after extending it by
zero.

In more concrete terms, the initial condition is given by u0
k = wku0, with

u0(x) =











104 + x108 if x ∈ (−10−4, 0],

104 − x108 if x ∈ (0, 10−4, and

0 otherwise.
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We solve this problem numerically, using 1024 knots on the domain of interest. We
start the computation on I0 = (−0.025, 0.025), and define Ik+1 = (1 + 0.25)Ik. We
solve in Ik until the solution at the endpoints exceed a factor of 10−12 times the
maximum of the solution on the domain. Then, we extend the solution by zero, and
use it as the initial condition for the same problem on the domain Ik+1.

We integrate from t = 0 until t = 105. The size of the time step is chosen using
the formula

ht = 10−7 + t · 5 · 10−3.

The parameters are as follows. We take α = 0.5, D0 = 10, D∞ = 0.01, and
τρ = 100. With N = 16 we obtain the integration interval P16 = −5.67, Q16 = 10.51,
and the jump length variance Σ2

16 = 1.78 · 10−3. Values for corresponding wk, τk, and
Dk can be found in table 5.1. With N = 4 we obtain P4 = −9.611, Q4 = 9.078, and
Σ2

4 = 2.61 · 10−2.

k Dk τk wk sk

1 5.086e-06 1.750e+02 2.019e-04 3.970e-01

2 1.398e-05 6.367e+01 3.347e-04 2.394e-01

3 3.843e-05 2.316e+01 5.550e-04 1.444e-01

4 1.056e-04 8.426e+00 9.201e-04 8.710e-02

5 2.904e-04 3.065e+00 1.526e-03 5.254e-02

6 7.982e-04 1.115e+00 2.529e-03 3.169e-02

7 2.194e-03 4.057e-01 4.193e-03 1.911e-02

8 6.031e-03 1.476e-01 6.953e-03 1.153e-02

9 1.658e-02 5.369e-02 1.153e-02 6.953e-03

10 4.558e-02 1.953e-02 1.911e-02 4.193e-03

11 1.253e-01 7.105e-03 3.169e-02 2.529e-03

12 3.444e-01 2.585e-03 5.254e-02 1.526e-03

13 9.467e-01 9.403e-04 8.710e-02 9.201e-04

14 2.602e+00 3.421e-04 1.444e-01 5.550e-04

15 7.153e+00 1.244e-04 2.394e-01 3.347e-04

16 1.966e+01 4.527e-05 3.970e-01 2.019e-04

Table 5.1

Parameter values, example with 16 pseudospecies

5.1. Diffusive behavior. If X(t) denotes the position of a particle that was at
x0 = 0 at time t = 0, and the probability distribution for X(t) is given by u(x, t) with
u(x, t) = u(−x, t), then the mean square displacement of the particle is given by

〈X(t)2〉 = 2

∫ +∞

0

y2u(y, t)dy.

Since our initial condition was chosen to approximate δ0, we will interpret the solution
obtained from the simulation in this manner. In figure 5.1 we show plots of 〈x(t)2〉/(tα)
(which is constant for pure subdiffusion with parameter α = 0.5) and 〈x(t)2〉/(2t),
which is constant for normal diffusion, and reflects the current diffusion coefficient.

We observe that for t approximately between 10−4 and 102, propagation is indeed
subdiffusive. Note also the return to normal diffusion for larger times.

Subdiffusive behavior is still observed for N = 4, although the details are some-
what different. See figure 5.3. The longer extent of the timescales with subdiffusive
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Fig. 5.1. Diffusive behavior of the reaction diffusion model
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behavior is due to the fact that the condition we have chosen to define the time of
essential return to normal diffusion (see § 4.1) is not adequate if only a few species
are present.

5.2. Solution shape. The solution of the subdiffusive fractional diffusion equa-
tion with such an initial condition has a characteristic cusp shape. We can obtain a
fairly similar shape if we have enough pseudospecies; see figure 5.2. The reference is
the fundamental solution, or Green function, of the subdiffusive FDE,

G(x, t) =
1

2
√

Dαtα/2
M(

|x|
2
√

Dαtα/2
,
α

2
),

with

M(z, ν) =
1

π

+∞
∑

n=1

(−z)n−1

(n − 1)!
Γ(nν) sin(nνπ);

see [7] for details. In figure 5.2(a), the parameters for the fundamental solution are
α = 0.5, Dα = 0.1, and t = 1.

In figure 5.3 we observe that the profile with N = 4 is somewhat different.

5.3. Return to normal diffusion. Finally, we show in figure 5.4 a sequence of
plots of the solution on its way through the subdiffusive regime towards a return to
normal diffusion.
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