
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for
Mathematics

of the Ruperto-Carola Univertsity of Heidelberg, Germany
for the degree of

Doctor of Natural Sciences

presented by
Dipl. phys. Johannes Fieres

born in Fulda, Germany

Oral examination: November, 29, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32579992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A METHOD FOR IMAGE CLASSIFICATION USING

LOW-PRECISION ANALOG COMPUTING ARRAYS

Referees: Prof. Dr. Karlheinz Meier
Prof. Dr. Bernd Jähne

Eine Methode zur Bildklassifikation mit analogen Recheneinheiten beschränk-
ter Genauigkeit

Zusammenfassung
Das Rechnen mit analogen integrierten Schaltkreisen kann gegenüber der weit
verbreiteten Digitaltechnik einige Vorteile bieten, z.B.: geringerer Fläche- und
Stromverbrauch und die Möglichkeit der massiven Parallelisierung. Dabei
muss allerdings aufgrund unvermeidlicher Produktionsschwankungen und
analogen Rauschens auf die Präzision digitaler Rechner verzichtet werden.
Künstliche neuronale Netzwerke sind hinsichtlich einer Realisierung in paral-
leler, analoger Elektronik gut geeignet. Erstens zeigen sie immanente Paralleli-
tät und zweitens können sie sich durch Training an eventuelle Hardwarefehler
anpassen. Diese Dissertation untersucht die Implementierbarkeit eines neu-
ronalen Faltungsnetzwerkes zur Bilderkennung auf einem massiv parallelen
Niedrigleistungs-Hardwaresystem. Das betrachtete, gemischt analog-digitale,
Hardwaremodell realisiert einfache Schwellwertneuronen. Geeignete gradi-
entenfreie Trainingsalgorithmen, die Elemente der Selbstorganisation und des
überwachten Lernens verbinden, werden entwickelt und an zwei Testproble-
men (handschrifltiche Ziffern (MNIST) und Verkehrszeichen) erprobt. In Soft-
waresimulationen wird das Verhalten der Methode unter verschiedenen Arten
von Rechenfehlern untersucht. Durch die Einbeziehung der Hardware in die
Trainingsschleife können selbst schwere Rechenfehler, ohne dass diese quan-
tifiziert werden müssen, implizit ausgeglichen werden. Nicht zuletzt werden
die entwickelten Netzwerke und Trainingstechniken auf einem existierenden
Prototyp-Chip überprüft.

A Method for Image Classification Using Low-Precision Analog Computing
Arrays

Abstract
Computing with analog micro electronics can offer several advantages over
standard digital technology, most notably: Low space and power consumption
and massive parallelization. On the other hand, analog computation lacks the
exactness of digital calculations due to inevitable device variations introduced
during the chip production, but also due to electric noise in the analog signals.
Artificial neural networks are well suited for parallel analog implementations,
first, because of their inherent parallelity and second, because they can adapt
to device imperfections by training. This thesis evaluates the feasibility of
implementing a convolutional neural network for image classification on a
massively parallel low-power hardware system. A particular, mixed analog-
digital, hardware model is considered, featuring simple threshold neurons.
Appropriate, gradient-free, training algorithms, combining self-organization
and supervised learning are developed and tested with two benchmark
problems (MNIST hand-written digits and traffic signs). Software simulations
evaluate the methods under various defined computation faults. A model-free
closed-loop technique is shown to compensate for rather serious computation
errors without the need for explicit error quantification. Last but not least,
the developed networks and the training techniques are verified on a real
prototype chip.

Contents

Introduction 1

1 Background 7
1.1 Biological Inspiration . 7

1.1.1 The Nervous System . 7
1.1.2 Rate-Based Neuron Model 9
1.1.3 Activity-Driven Learning Mechanisms 10
1.1.4 Visual Processing in the Brain 11
1.1.5 Biological Implications for Artificial Systems 12

1.2 Convolutional Neural Networks 13
1.2.1 Overview . 14
1.2.2 Invariant Recognition: From Local to Global Invariance . 14
1.2.3 Neural Implementation of Convolutional Filters 16
1.2.4 Hierarchical Sets of Convolution Filters 17
1.2.5 Boosting Invariance by Blurring and Sub-sampling . . . 18

1.3 Training Methods . 20
1.3.1 The Curse of Dimensionality 20
1.3.2 Supervised Approaches 22
1.3.3 Un-Supervised Approaches 23
1.3.4 Hybrid Approaches . 25

1.4 Analog VLSI Implementations 26
1.4.1 Motivation . 26
1.4.2 Massively Parallel Computing Arrays 27
1.4.3 Recent Array-Based Neuro Chips 28

2 Working Environment 31
2.1 Software . 31

2.1.1 The HElement C++ Library 33
2.1.2 User Interfaces . 43

2.2 Hardware . 48
2.2.1 The HAGEN Chip . 48
2.2.2 Distributed Operation of Multiple Chips 50

3 A Neural Network for Object Recognition 53
3.1 Neuron Model . 53
3.2 Topology . 54
3.3 Training . 55

3.3.1 Hidden Layers: Self-Organization by Clustering 55

3.3.2 Output Layer: Supervised Perceptron Learning 58
3.4 Image Preprocessing . 59
3.5 Meta Parameters . 59

4 Results With Ideal Neurons 63
4.1 Two Benchmark Problems . 63

4.1.1 Hand-Written Digits . 63
4.1.2 Traffic Signs . 69

4.2 Properties of the Training Method 73
4.2.1 Self-Organization Produces Linear Separability 73
4.2.2 Network Size: The Bigger the Better 74
4.2.3 Size of the Training Data Set 76
4.2.4 Scalability . 77

4.3 Starting Points for Performance Improvement 77
4.3.1 Using Multi-Valued Inputs 77
4.3.2 Expanding the Training Set 78
4.3.3 Using Larger Networks 79
4.3.4 Suggestions for Further Optimization 79

5 Robustness Against Computation Faults 81
5.1 Error Compensation With Chip-in-the-Loop

Training . 81
5.1.1 Hidden Layers . 82
5.1.2 Output Layer . 82

5.2 Results . 83
5.3 Discussion . 84
5.4 Additional Result: Computing Without Algebra 88

6 Hardware Implementation 91
6.1 General Approach . 91
6.2 Implementation Details . 94

6.2.1 Adjusting the Neuron Model 94
6.2.2 Weight and Threshold Scaling 95
6.2.3 Calibration of Fixed Offsets 96
6.2.4 Optimizing Training Speed by Cumulative Weight Update 98

6.3 Limitations of the Prototype System 99
6.3.1 Size Limitations of the Chip 100
6.3.2 Data Handling and Transfer 103

6.4 Actual Array Layout . 103
6.5 Results . 106

6.5.1 Optimal Hardware Operation 106
6.5.2 Artificially Degraded Hardware 113

Summary and Conclusions 119

Appendix 123

Bibliography 127

Index 133

Acknowledgments 137

Introduction

Most of today’s data processing tasks are efficiently and economically solved
by digital computing machines based on the principles described by John von
Neumann in 1945. In fact, the von Neumann architecture has proven to be so
universal that, today, digital computers are found in virtually every sector of
private and professional life.

The enormous success of digital technology has pushed the pursue of al-
ternative computing approaches away from the public view, although some
of them have the potential to offer advantages in various terms. Examples
are computing with analog electric signals, or new emerging technologies like
DNA computing or quantum computing. Two of the following limitations of
digital computers were foreseen already by von Neumann himself1:

Fault-Intolerance “The desired automatic functioning must, of course, assume that
it [i.e., the computer] functions faultlessly. ... Any error may vitiate the entire
output of the device”. Everybody knows this truth from their recent hard
drive crash. But also, for example, during the chip production, manu-
facturing faults constitute a serious issue: With constantly growing chip
areas and circuit densities the probability of defects increases, boosting
production costs.

Explicit Programming “The instructions ... must be given to the device in abso-
lutely exhaustive detail. ... [requiring] some code to express the logical and
algebraic definition of the problem under consideration”. A problem the solu-
tion of which cannot be put down in exact instructions cannot be solved
by a computer. Modern so-called machine learning techniques can partly
account for this problem. However, for many of these methods, von Neu-
mann computers are actually not the optimal substrate. E.g., the parallel
execution in artificial neural networks or the multi-valued logic of fuzzy
systems can only be simulated with digital processors.

Sequential Computing Algorithms implementable on von Neumann ma-
chines are inherently sequential processes. Attempts of simulating truly
parallel systems (e.g., hydro-dynamic processes or realistic brain models)
on such machines require massive equipment (super computers, cluster
computers) and highly sophisticated programming.

Power Consumption The trend to ever higher device densities and clock fe-
quencies goes along with a considerable amount of power dissipation.

1Quotes taken from his 1945 publications [42]

1

2 INTRODUCTION

Besides paying the high electricity bill, cooling down the systems re-
quires more and more effort. Today, for the private user this problem
becomes apparent mainly by a higher number of air fans in the PC, but
for the maintainer of a super computing center, cooling can in fact consti-
tute a major item of expenses.

Computing with analog electric circuits—in contrast to digital—constitutes
one of the alternative techniques mentioned at the beginning. Digital comput-
ers operate on abstract symbols represented within a complex electronic ma-
chinery. In analog computing circuits, basic laws of physics are exploited for
performing calculations. Examples are the Kirchhoff rules for currents or the
electrical properties of solid matter boundaries. This difference makes analog
micro electronics usually occupy way less silicon area and consume factors less
power compared to digital devices performing an equivalent task.

Space and power efficiency enable the design of massively parallel systems
where a large arrays of equivalent computing elements are integrated on one
micro chip. Such devices are quite different from conventional computers and
using them requires to leave common patterns of sequential algorithmics be-
hind for the search of new, truly parallel computing techniques.

When performing computations with analog elements, one of the major
properties of digital technology is to be sacrificed: preciseness. Quantities
coded by analog signals are inherently limited in precision. An upper limit
of accuracy is constituted by noise present in the system, e.g., by thermal fluc-
tuations or undesired electro-dynamical side effects. Another source of un-
certainty are random device variations inevitably occurring during the man-
ufacturing process. Although some of the variations can be compensated for
by sophisticated circuitry and calibration procedures, the software running on
analog devices must be tolerant against imperfect calculations.

Artificial neural networks are a promising application for a massively par-
allel analog implementation: First, they consist of a large number of identical,
parallelly working, computing units which makes the employment of a par-
allel device a natural approach. Second, artificial neural networks are adap-
tively trainable for a given task, and can thus be supposed to be able to cope
with substrate imperfections and precision limitations. Although the comput-
ing paradigm is very different from conventional algorithms, the concept has
already proven to be successfully applicable to many problems.

So-called convolutional neural networks are a special type of artificial neural
networks which are applied for recognizing objects in images. Inspired by bi-
ological research on the mammalian visual cortex, such networks implement a
hierarchical set of feature extraction stages, allowing to learn object representa-
tions invariant of many modes of appearance, e.g., position, scale, deformation,
or illumination. Convolutional networks require very large network sizes and
are thus considered to benefit especially from a massively parallel implemen-
tation.

The by far most popular training method for neural networks, back-
propagation, works excellent for networks of small and medium sizes. For
very large network scales it becomes more and more impractical due to its
high computational complexity. It is necessary to development training meth-

INTRODUCTION 3

ods which scale well together with the network size. Self-organization and
local learning are promising approaches.

This thesis presents a convolutional neural network application for object
recognition and evaluates its feasibility of being implemented in analog hard-
ware. A prototype realization of a massively parallel analog neural network
architecture was available for experiments. Topics covered in this thesis in-
clude the development of a training method adequate for the network model
featured by this particular hardware system, computer simulations of the net-
work behavior under various computation faults, and the investigation of the
network when running on the prototype hardware system.

4 INTRODUCTION

Organization

The thesis is organized in the following chapters.

1 Background The fields relevant for this thesis are shortly reviewed. Pre-
ceded by a section about biological foundations of neural networks, the con-
cept of object recognition with convolutional networks is introduced. Previ-
ously reported training methods are covered. The chapter is closed by a review
of analog hardware implementations of neural networks. p. 7

2 Working Environment The hardware and software setup used to conduct
the experiments are described. Special emphasis is given to the software tools
developed as part of this thesis. p. 31

3 A Neural Network for Object Recognition This chapter presents the
main contribution of this thesis. A convolutional neural network, suited for
implementation on the present hardware system is described. Adequate train-
ing methods, based on both local self-organization and supervised learning,
are developed. p. 53

4 Results With Ideal Neurons The methods described in chapter 3 are
tested in a computer simulation on two problems: The recognition of hand-
written digits and the recognition of traffic signs on photographs. The prop-
erties of the system are investigated and suggestions for further performance
improvement are presented. p. 63

5 Robustness Against Computation Faults An application implemented in
analog hardware should be robust against computation inaccuracies. The ro-
bustness of the developed convolutional network is evaluated. Two chip-in-
the-loop training strategies are suggested which take possible errors into ac-
count already during training. Simulation results with and without applying
the chip-in-the-loop techniques are presented. p. 81

6 Hardware Implementation The methods developed in chapter 3 and 5
are tested on the neuro-chip prototype HAGEN and compared with software
simulations. Particular implementation details required by the used hardware
are described. The size limitation of the prototype chip imposes restrictions
on the implementable networks. Pruning strategies are applied for fitting the
networks onto the chip. p. 91

5

6 ORGANIZATION

Chapter 1

Background

1.1 Biological Inspiration

1.1.1 The Nervous System

Biological organisms use their perception of the environment to generate be-
havior, which in turn acts upon the environment. This process requires some
sort of information processing taking place within the organism’s body. In ani-
mals and humans, this task is for a large part accomplished by a special type of
cells, the nervous cells or neurons. These cells are known to be able to generate
electric signals in response to external stimuli. Usually, the cell body possesses
long appendices, the dendrites and the axon, which are able to propagate the
signals over a certain distance (up to in the order of meters) from and to other
cells (see Figure 1.1). This way, large and heavily connected networks of neu-
rons are formed. In the human brain, each of the approcimately 5 Billion cells
connects on average to about 10,000 other cells. These neural networks are are
believed to provide the basis for purposeful behavior and intelligence.

Let us characterize the nature of the neural electrical signals in more detail:
A nervous cell in living tissue resides floating in an electrolytic solution. The

Dendrites

Axon

Cell body

Nucleus

Synapse

Figure 1.1: A nervous cell

7

8 CHAPTER 1. BACKGROUND

Na
+

Na
+Na

+

Na
+

Na
+

Na
+Extra−cellular

Intra−cellular

K channel (open)

Na channel (closed)

V

K
+

K
+

K
+K

+ K
+

K
+

Figure 1.2: A cell’s membrane consists of a double lipid layer. Diffusion of ions
through membrane channels results in an electric potential between the inner and the
outer space of the cell.

inner and outer part of the cell are separated by the cell’s membrane, a double
lipide layer, see Fig. 1.2. Mechanisms which are not covered here maintain a
concentration difference of various charged particles between the inside and
the outside. Only the most important ions, K+ (Potassium) and Na+ (Sodium),
are considered in the figure. Ion channels, complex molecules penetrating
the membrane, permit or deny certain types of ions to pass and follow their
concentration gradient. By this controlled diffusion process, charge is carried
across the membrane, resulting in an electric potential which in turn leads to an
ion flow in the opposite direction, along the electric field. These two processes
settle at a dynamic equilibrium state corresponding to a membrane potential
of typically about Uin −Uout = −70mV.

Most ion channels can change between an open and closed state, influenced
by external parameters (e.g., the current membrane voltage), or by internal
mechanisms (e.g., implicit time dependence). This is the basis for an important
feature of nervous cells: The actual membrane potential can vary within a rel-
atively wide range, between -90mV and +40mV, at every point in time defined
by the current permeability of the various channel types.

The particular dynamics of the different sorts of ion channels provide the
mechanisms for the phenomenon of action potentials: As soon as the membrane
potential exceeds a given threshold (usually around -55mV) a transient voltage
break-out is triggered, as shown in Fig. 1.3. The temporal evolution of the volt-
age spike is stereotypical: It is exactly the same for every action potential. An
action potential causes the voltage in adjacent regions of the membrane to grow
above the threshold, too. This way, once triggered, action potentials propagate
along the cell’s membrane, thus carrying information to remote areas. Because
all action potentials are identical, no information is carried in the form of an
action potential, but only in the instance of time when it was triggered.

As a mechanism of passing information between cells in neural networks,
action potentials are able to influence the membrane potentials of other neu-
rons. This happens primarily at structures called synapses (see Fig. 1.1). There
are two main sorts of synapses: On arrival of an action potential, excitatory

1.1. BIOLOGICAL INSPIRATION 9

synapses de-polarize (i.e., increase the voltage of) the membrane of the tar-
get (or post-synaptic) cell, while inhibitory synapses polarize the same. Simply
speaking, the post-synaptic cell integrates over all incoming voltage changes
received over a period of time, and, if the firing threshold is exceeded, gener-
ates an action potential itself. This behavior is described by the Integrate-and-
Fire neuron model [].

1.1.2 Rate-Based Neuron Model

In order to describe communication in larger networks of neurons, a simple
rate-based model is often used which has proven to be adequate for describ-
ing many basic phenomena. In this model, the train of spikes produced by
a given neuron is represented by a time-dependent continuous value being
equal to the current firing rate (e.g., measured in spikes per second). The firing
rate is computed by counting the number of spikes occurring within a moving
time window. The size of this window is chosen large compared to the mean
time between spikes, but small compared to the time scale of the investigated
phenomena. Let a spike train be approximated by a sequence of delta peaks
S(t) = ∑i δ(t− ti), where ti is the time of the ith spike. The firing rate r is then
defined by:

r(t) =

∫ ∞

t′=−∞

k(t′ − t)S(t′)dt′, (1.1)

where k(t) is a bounded kernel function representing the moving window. In
the most simple case, k is chosen as a function being equal to 1 in a given
interval [−a, a], and 0 otherwise.

A cell usually receives input spike trains from a large number (typically in
the order of 104) of other cells. If the input rates stay constant over time, the
output rate O will saturate at a steady state:

O = F
(

∑ wi Ii

)

(steady state), (1.2)

where wi is the efficacy of the ith input synapse and Ii is the ith input spike rate
arriving at the ith synapse. The efficacy wi of a synapse is also called its strength
or its weight. The activation function F is not explicitely defined here. It allows

+40

0

−55

−70

Threshold

Undershoot

Peak

210 3 4 5
Time [ms]

M
em

b
ra

n
e

V
o

lt
ag

e
[m

V
]

Resting potential

Figure 1.3: Action potentials are stereotypical fluctuations of the membrane voltage,
constituting the basic signals for inter-neuron communication.

10 CHAPTER 1. BACKGROUND

to model non-linear dependence on the input. For a thorough derivation of
equation (1.2), read for example chapter 7 of the textbook [6].

1.1.3 Activity-Driven Learning Mechanisms

The nervous system of an organism is under constant development throughout
its entire lifespan. Activity-dependent synaptic plasticity is believed to consti-
tute the basic mechanism for learning [6, 12]; synaptic plasticity means that the
weight of a given synapse is subject to modification. Many widely accepted
models of plasticity are based on a principle formulated by Donald Hebb in
1949: He stated that if a neuron repeatedly contributes to the firing of another
neuron, then the synapses between both neurons are strengthened.

The processes of synaptic plasticity are usually much slower than the dura-
tion of one spike. If we further assume that the pre-synaptic firing rates change
slowly enough, we can well use the steady-state formula (1.2). In addition, we
will replace the activation function F by the identity function. This corresponds
to looking at a linearized version of (1.2), which is a reasonable simplification
as long as the considered changes in wi are small. Using vector notation where
w = [w1, w2, . . .]T and I = [I1, I2, . . .]T , the output firing rate reads:

O = wT(t)I (linearized). (1.3)

The weight vector is written as a function of time in order to emphasize our
interest in synaptic changes.

The learning rule of Hebb, stated above, might be now expressed as

ǫ
dw(t)

dt
= IO, (1.4)

where the constant ǫ determines the speed of learning. This formula implies
that simultaneous activity of the pre-synaptic and the post-synaptic cell causes
an increase of the connecting synaptic weight. Usually, a cell receives many
different input stimuli (patterns) during the learning process. So, the effective
weight change may be written as the average change over many patters. Let
〈·〉 denote the average over many patterns I:

ǫ∆w = 〈IO〉, (1.5)

and replacing O = wTI,

ǫ∆w = 〈IwTI〉 = 〈IITw〉 = 〈IIT〉w. (1.6)

From the last line in (1.6), one important property of Hebbian-style learn-
ing can be derived. The matrix 〈IIT〉 represents nothing less than the statistical
correlations among the inputs. So, where does the weight vector w saturate?
One theoretical solution is to require ∆w = 0, which means that 〈IIT〉 has zero
rank and w is pointing into a direction where the inputs have no correlation.
However, this solution can be shown to be unstable against small weight fluc-
tuations [34], and in practice, with large and diverse input pattern sets, 〈IIT〉
has usually full rank. The remaining solution are diverging weights, where the
modulus of w keeps growing, and the direction of w will approach the direc-
tion of the largest eigenvector of 〈IIT〉. To see this, suppose the initial weight

1.1. BIOLOGICAL INSPIRATION 11

(a) (b) (c) (d)

Figure 1.4: Receptive field geometries, as found by Hubel and Wiesel 1962, of four typ-
ical “simple cells”. × - areas giving excitatory responses; � - areas giving inhibitory
responses. (After [18])

vector be de-composed into the Eigen-components of 〈IIT〉. Then, by means of
(1.6), the component with the largest eigenvalue will grow faster than all the
other components, and, in the limit t → ∞, dominate. This way, a simple rate-
based neuron, together with Hebbian-style learning, is capable of performing
a principal component analysis of the input data (see also [44]).

The above discussion only accounts for excitatory synapses and synaptic
potentiation (weight increase). Various models following the spirit of equa-
tion 1.4 have been proposed to include inhibitory synapses and synaptic de-
pression (weight decrease in response to low input/output correlation). The
interested reader is referred to textbooks [6, 12]. In this thesis, inhibition and
depression are incorporated into (1.4) by allowing all quantities (inputs, out-
puts, weights) to assume negative values, thereby abandoning a strictly bio-
logical model.

1.1.4 Visual Processing in the Brain

The visual systems of human beings and higher animals exhibit a remarkable
ability to recognize seen objects. Recognition is accomplished robustly and
with high speed, tolerant of many variances in, for example, positional shift,
view angle, or illumination conditions, and unaffected by deviations from a
learned prototype object or partial occlusion. What mechanisms are these out-
standing capabilities based on? In fact, the visual cortex of mammals belongs
to the best-known regions of the brain today. In addition to investigating small
pieces of dissected living neural tissue, or studying whole brains post-mortem,
modern techniques allow to observe neural activity in behaving organisms.
Starting with the Nobel-Prize winning work of Hubel and Wiesel with living
cats in 1962 [18], elaborate models of early visual processing have been estab-
lished.

Hubel and Wiesel recorded the activities of cells in a cat’s primary visual
cortex (anatomical area V1) while presenting stimuli to the respective cell’s re-
ceptive field. The receptive field of a neuron is the area on the retina which,
by stimulation, can influence the activity of this neuron. Hubel and Wiesel
classified the cells they observed into several groups. One class, which they
called “simple cells”, has receptive fields arranged into well-defined excitatory
and inhibitory regions (cf., Figure 1.4). Obviously, the stimuli which make
these neurons fire strongly are dark/bright straight lines or edges before a
bright/dark background. A slight change in the optimal position or orien-

12 CHAPTER 1. BACKGROUND

Effective Stimuli Ineffective stimuli

Figure 1.5: Behavior of a typical “complex” cell: A dark bar of a certain orientation
(here: horizontal) evokes activity independently if the exact position. Tilting the stim-
ulus away from its optimal orientation renders it ineffective. (After [18])

Figure 1.6: Simple neural model explaining the emergence of invariant recognition:
Many cells with simple receptive fields make excitatory connections to a more complex
cell. In this example, the cell to the right will respond to an oblique bar, invariant to
local shift.

tation of the stimuli results in a significant decrease in firing activity. Another
class of cells responds to specific line orientations, but independent of the ex-
act position (Figure 1.5). These kind of neurons were termed “complex cells”.
Later, more cell types with increasing complexity were discovered in higher
visual areas by the same authors and by other scientists (e.g., [19, 62]). Exam-
ples range from neurons responding to line combinations (corners, angles) to
neurons responding selectively to shapes as complex as faces. One observation
is that neurons responding to more complex shapes usually show a higher de-
gree of invariance to shift, scale, orientation, or illumination of the presented
shape.

One possible explanation for how this hierarchical set of feature detectors
emerges in the brain is that complex cells receive excitatoty input connections
from a range of simpler cells detecting similar features, as shown in Figure 1.6.
Although this simple model is not able to explain all mechanisms of visual
perception, it is widely accepted as playing an important role for early visual
processing [48].

1.1.5 Biological Implications for Artificial Systems

When designing artificial neural vision systems, nature can provide several
guidelines about the approach to choose. Usage of hierarchical feature detec-
tors has been discussed in the previous section as one example. Another hint
regards the required amount of computation resources [45]: From measure-

1.2. CONVOLUTIONAL NEURAL NETWORKS 13

unrestricted layered, feed-forward layered, recurrent
network network network

Figure 1.7: Artificial neural networks are directed graphs of processing units. Input
nodes are drawn in white. Depending on the connection topology, different classes of
networks can be distinguished.

ments, the delay between stimulus onset and recognition during the perception
process in the brain is known. Dividing this time span by the time necessary
for one neuron to transmit a spike to another restricts the number of possible
neural relays having occurred during the recognition process to not more than
eight. Anatomical studies of the visual areas and their inter-connections show
that this is indeed the approximate number of neurons involved in a path from
the primary visual cortex to the recognition stage. As a conclusion, basic object
recognition cannot rely on lateral or feed-back connections, since this would
not be consistent with the measured latency. For an artificial system, a purely
feed-forward solution with approximately eight processing stages should be
sufficient.

Interestingly, the mentioned time limit does not allow for neurons in the
brain to saturate at a defined firing rate. In order to match the measurements,
information must be passed on the basis of the first spike. During the first mo-
ments of recognition, the neural information seems to be entirely determined
by whether a neuron is active or silent, “on” or “off”. This implies that in fact
a simple threshold neuron model, as employed in this thesis, can be expected
to be sufficient to mimic at least some of the recognition capabilities present in
the brain.

1.2 Convolutional Neural Networks

In order to read this thesis, basic knowledge about the general concepts of arti-
ficial neural networks is assumed. A few facts are shortly reviewed: . Basically,
neural networks are directed graphs where the nodes (neurons) are process-
ing units and the edges transport information between them. In the networks
used in this thesis, the information is numerical data. A neuron computes a
weighted sum of the afferent signals, and provides a scalar function of this
sum as its output (cf., equation (1.2)). The scalar function is usually chosen as
a bounded sigmoid or a step function, in which case one speaks of threshold
neurons. The behavior of such a network is defined largely by the weights of
the individual connections.

Networks can be divided into several classes, depending on the connection
topology (examples in Figure 1.7). Different update schemes of the neuron out-

14 CHAPTER 1. BACKGROUND

puts are possible, i.e., synchronous or asynchonous update, time-continuous or
clocked operation. Further detail are found in a number of excellent text books
on this topic [17, 3, 49].

1.2.1 Overview

We have learned in section 1.1.4 that hierarchical feature detectors are believed
to play an important role in the brain’s visual system. In the following, it will
be discussed how the principle of hierarchical structures are taken advantage
of in artificial vision systems. In particular, the focus will be on so-called con-
volutional neural networks, a special type of artificial neural networks with a
specific connection topology. Such networks have been successfully employed
for industrial image analysis applications (character recognition [32], face iden-
tification [29, 67]), but are also used as models in computational neuroscience
[34, 38, 48].

Convolutional neural networks belong to the class of layered, feed-forward
networks.1 The first layer usually detects simple features, e.g., oriented line
segments. By successive feature extraction through the layer hierarchy, more
and more complex shapes, and finally entire objects can be recognized in
higher layers. In contrast to many standard feed-forward networks, adjacent
layers are not fully connected. Rather, a particular local connectivity scheme
implements topology-preserving feature maps which are the basis for the hier-
archical image analysis.

Among the many authors who have contributed to the promotion of con-
volutional networks for image processing applications, the two probably most
original are Kunihiko Fukushima and Yann LeCun. Fukushima invented a con-
volutional neural network for shift-invariant object recognition in 1980, which
he named the “Neocognitron”. It could be trained by both self-organization
and supervision. The supervised training yielded better results but involved
time-consuming manual training (cf., section 1.3.4). In 1989, Yann LeCun in-
troduced a system for hand-written digit recognition based on a convolutional
neural network trained by back-propagation which was utilized commercially
for post office zip-code recognition. Parts of the computations were accelerated
by a custom-made hardware device (see also section 1.4).

Although LeCun’s work appeared years after the “Neocognitron”, LeCun
never cited Fukushima (neither did Fukushima cite LeCun in his later work).
Therefore it is likely that the two authors, even though their methods have
strong overlap, worked completely independent.

1.2.2 Invariant Recognition: From Local to Global Invariance

An ideal vision system is able to identify and classify objects invariant of po-
sitional shift, view angle, or illumination conditions, and unaffected by devi-
ations from a learned prototype object. However, experience shows that such
functionality is not easily programmed into artificial systems. The reason is
that, in pixel space, different views of the same object are usually not close to
each other (cf., Figure 1.11). Defining the common characteristics of the various

1Although feed-back or lateral connections were sporadically proposed in more theoretical
work, most real-life applications do without recurrent connections.

1.2. CONVOLUTIONAL NEURAL NETWORKS 15

Figure 1.8: Hierarchical feature detectors facilitate invariant object recognition. Small
invariances in each hierarchy level result in a large invariance of the whole system.

possible views of, say, a face in terms of pixel values would require prohibitively
many rules of the form: ”If pixel A is brighter than pixel B and pixel C is ap-
proximately as bright as pixel D, and ... then the shown object is a face”.

One approach of tackling this combinatorial explosion is to use hierarchical
structures [65, 48], where complex features are inferred from the presence or
absence of many simpler features (see Figure 1.8). The intuitive idea is that the
visual representation of a natural object is composed of a number of smaller
shapes which, each taken by themselves, appear more invariant under trans-
formations than the entire object as a whole. In each level of the hierarchy,
decisions are based on abstract concepts found in the previous level rather
than on raw pixel values. A face, for example, usually consists of two eyes,
a nose and a mouth, appearing in a defined relative arrangement. Once it is
known that a mouth is present somewhere in the lower part of the picture, the
raw pixel values with could have produced this information are not longer of
importance.

When using the hierachical approach, only a relatively small amount of
invariance must be computed in each hierarchy level. If local feature detectors
show invariance against small shifts, this will result in larger shift tolerances in
higher layers, and eventually in higher-order invariances like tolerance against
scale or deformation (section 1.2.5 and [11]).

16 CHAPTER 1. BACKGROUND

I x,y

w
0,0

w
1,0

w
1,1

w
−1,1

w
−1,0

w
1,−1

w
0,−1

w
0,1

w
−1,−1

(a) (b)

Figure 1.9: (a) A convolutional feature-plane: A grid of neurons with identical
weights, receives connections from shifted, partly overlapping, input regions. Only
the connections of two sample neurons are drawn. (b) The synaptic weights define the
convolution kernel.

1.2.3 Neural Implementation of Convolutional Filters

Convolution operations are widely used in the field of computational image
processing for extracting local information, e.g., edge positions, from digital
images. In this context, convolutions are also referred to as linear filters or local
neighborhood operations ([23] for an introduction). Convolutional neural net-
works use hierarchical sets of convolutions to detect not only edges, but all
sorts of abstract shape information, generally called features, in a given input
image (hence the name).

In convolutional neural networks, convolutions are implemented by par-
ticularly interconnected ensembles of neurons. Figure 1.9a shows the essen-
tial neural structure: a so-called feature-plane. All neurons in the plane are
equal with respect to their synaptic weights but they receive their input from
shifted, partly overlapping, local regions in the previous network layer. The
input region is often chosen as a square with an odd-numbered side length
S ≡ 2s + 1, s ∈ IN

+. For example, the input region in Figure 1.9b has S = 3,
or equivalently, s = 1. Let us, for a moment, refer to the synaptic weights by
double indices according to their spatial arrangement, as shown in Figure 1.9b.
Then, in accordance with equation (1.2), the output of a neuron at position x, y
writes

Oxy = F

(

s

∑
i=−s

s

∑
j=−s

wij · Ii+x,j+y

)

, (1.7)

where Ix,y is the two-dimensional field of input nodes. The term in parentheses
is equivalent to a two-dimensional discrete convolution applied to the function
I, using the convolution kernel w (cf. [23]). Thus, a feature plane computes
a convolution with the input data, and additionally scales the output by the
(generally non-linear) scalar function F.

The fact that all neurons in a feature plane are equal in terms of their
weights is a form of the general concept of weight sharing, cf., section 1.3.1.
Weight sharing drastically reduces the free parameters in a neural network:
Although a feature plane has a lot of computable input connections, the ac-
tual number of weights to be adjusted during training is only a small fraction
thereof.

1.2. CONVOLUTIONAL NEURAL NETWORKS 17

planes
Feature

K

1

Input region

Hyper−column

Layer 2

Input layer

Layer 1

F
ee

d
 f

o
rw

ar
d

 p
ro

ce
ss

in
g

Figure 1.10: In a convolutional network, each layer consists of a set of feature planes.
Each feature plane detects a different feature. A given neuron generally receives input
connections from all feature planes in the previous layer.

1.2.4 Hierarchical Sets of Convolution Filters

Figure 1.10 shows how the convolutional feature planes are used in a complete
convolutional neural network. A network layer consists of many equal-size
feature planes, each detecting a different feature. An exception is the input
layer, which has only a single plane representing the pixels of the image to be
processed. The neurons in one layer at the same grid position, but belonging to
different planes, are referred to as a hyper column throughout this thesis2. Neu-
rons usually receive connections from all (or, at least most [30]) planes in the
previous layer. The neural activities in a given hyper column form a feature
vector, where each component indicates whether the corresponding feature is
present in the image at that position. Obviously, the first network layer is trans-
forming the raw image pixels into a topology-preserving feature map. The next
layer transforms this feature map into another feature map with a higher de-
gree of abstractness, and so on. Accordingly, the shape features detectable in a
given layer are generally composed of features detected in the previous layer.
Traversing up the layer hierarchy, more and more complicated shapes can be
recognized.

A neuron, depending on its threshold (generally: depending on F in equa-
tion 1.7), is usually not only selective to a single point in the input space, but
responds to a range of input vectors within an extended volume. This prop-
erty is also referred to as generalization. A neuron in the first network layer
will therefore not only fire for one exact pixel combination being present in its
input region, but also for image patches whitch look similar. The same holds
for neurons in higher layers, where the input consists of abstract features. This
neural generalization provides the foundation for the hierarchical principle of
invariant recognition discussed in section 1.2.2.

2naming after [10]

18 CHAPTER 1. BACKGROUND

a b c

Figure 1.11: Images a and b have most pixels in common, so they are close to each
other in pixel space. On the other hand, the pixel distance between a and c is very
large, although, on an abstract level, the shapes look similar as well.

1.2.5 Boosting Invariance by Blurring and Sub-sampling

The invariance computable by one single neuron is restricted to certain modes
of variations. Consider, for example, a neuron connected to each pixel of an
8 x 8 image, tuned to respond maximally to the shape “H” shown in Figure
1.11a. Presenting this neuron the image in Figure 1.11b will result in a similarly
strong response, because most pixels are equal in both pictures. In contrast,
image c will yield a very weak neural response, although, in terms of abstract
shape features, the shown object has also much in common with image a. We
may conclude that a convolutional network as described in the previous sec-
tion might well cope with noisy images or slight illumination changes, but not
at all with shift, scaling, or rotations of the whole shape or parts of it. This
investigation gives rise to the introduction of special blurring layers (equiva-
lently called subsampling layers), which in fact generate the real abstraction
power of convolutional neural networks.

A blurring layer is very similar to a recognition layer, except for three dif-
ferences: First, a blurring layer has the same number of feature planes as the
preceding layer, and only corresponding planes are connected (e.g., neurons in
the third feature plane in the blurring layer receive only inputs from the third
feature plane in the preceding layer). Second, the convolution kernels imple-
ment blurring filters. In the most simple form, all weights are equal positive
numbers. Third: The spatial resolution of the feature planes decreases in the
blurring layer. This is usually accomplished by sub-sampling the feature plane
grid, i.e., by discarding some rows and columns of neurons.

In a typical convolutional neural network, recognition layers and blurring
layers are arranged in alternating order. When a feature is detected at one
position in the recognition layer, an extended neighborhood around this posi-
tion will be active in the following blurring layer. This in turn results in shift-
invariance in the subsequent recognition layer. Putting it in other words: As
soon as a feature is detected, its exact position does not matter any longer.
While traversing up the layer hierarchy, concrete positional information will
be gradually transformed into abstract, position-invariant information. Fig-
ure 1.13 illustrates how local blurring is used detect deformed instances of the
same shape.

A link to the biological paradigm should be emphasized here. A blurring

1.2. CONVOLUTIONAL NEURAL NETWORKS 19

Blurring &
sub−sampling

Blurring &
sub−sampling

RecognitionRecognitionRecognition
Input layer

Figure 1.12: A complete convolutional neural network consists of recognition layers
and blurring layers in alternating order. The presence of blurring layers is essential
for invariant recognition. Neurons in the blurring layers only receive inputs from the
corresponding feature plane in the preceding layer.

Figure 1.13: Local blurring can create global invariance. Solid circles represent local
features detected by S-neurons. Due to blurring, deviations within dashed circles are
tolerated. At the blurred level, the original and the deformed version of the letter “A”
can be recognized by the same neuron.

20 CHAPTER 1. BACKGROUND

layer acting on top of a recognition layer exhibits some analogy to the rela-
tionship between simple and complex cells observed in the visual cortex (cf.,
Figure 1.6). According to the terms simple and complex, recognition layers are
often referred to as “S”-layers , blurring layers as “C”-layers in the literature
[10, 41].

1.3 Training Methods

The previous section was concerned with the topology and functional prin-
ciples of convolutional neural networks. However, before being applicable
to a given problem, a neural network must be trained. in the context of neu-
ral networks, training usually refers to the adjustment of the synaptic weights
with the goal to reach a desired network behavior. Often, training methods are
based on a cost function

C(I , {wi}) (1.8)

which depends on a set of training input patterns I and the weights {wi}.
It measures the discrepancy between the actual network behavior and the
ideal, desired network response. The training algorithm tries to find the set
of weights such that C is minimal (I is usually constant for a given problem).

In this section, we will only discuss training methods that have been previ-
ously applied in the special field of convolutional neural networks. Compre-
hensive reviews of training algorithms for neural networks in general can be
found in text books, e.g., [17].

Before turning to concrete training methods in sections 1.3.2 et seqq., some
general considerations about the dimensionality of the problem are of interest.

1.3.1 The Curse of Dimensionality

A typical convolutional neural network possesses a huge number (in the or-
der of 106) of synaptic connections. Training a network like this corresponds
to finding the global minimum of a function of 106 variables, where the func-
tion is supposed to be highly non-linear. According to Bellman’s notion of
the “curse of dimensionality”, such a high-dimensional search space is virtu-
ally not coverable within reasonable time and resources, considering the expo-
nential growth of the hyper-volume with the number of space dimensions [2].
Training is also impractical from another point of view: Any machine-learning
system suffers from the effect of overfitting if the number of free parameters
is in the order of, or exceeds, the number of training samples (e.g., [3]). An
overfitted system does not generalize, i.e. it may work well on the training set
but it will fail when confronted with input patterns not seen during training.
For many visual recognition tasks it is difficult to get hold of a sufficiently large
number of training samples for proper generalization.

Thus, methods are required for large networks to restrict the search space
in advance. Three important strategies, applicable to convolutional networks,
shall be mentioned:

1) Weight Sharing This strategy comes for free in a convolutional neural net-
work. The convolutional nature of a feature plane requires that all its neurons

1.3. TRAINING METHODS 21

have equal weight vectors, in other words: they share the same weights. So,
even though there are a lot of computable connections present, the number of
actual free parameters is significantly reduced. For each feature plane, only one
representative weight vector is necessary. Besides simplifying the training, the
shared weights also turn out to enable fast evaluation in the analog hardware
environment evaluated in this thesis (cf., section 6.1).

2) Divide and Conquer Even after taking into account the reduction of pa-
rameters by weight sharing, a convolutional network can easily possess a few
thousand independent weight values. Although nowadays all these param-
eters can be trained at once by brute computing force (taking hours or even
weeks for one training run, [32, 60]), many approaches, including the one de-
scribed in this thesis, make use of divide and conquer techniques. The net-
work is split into multiple sub-networks which can be trained independently.
Assuming that the complexity of training depends exponentially on the num-
ber of free parameters, but only linearly on the number of sub-networks to be
trained, the divide and conquer approach will greatly simplify computations.
However, the challenge remains to find appropriate partitions, such that both
the sub-networks are trainable in isolation, and the overall network will be still
be close to optimal in the end.

One common partition policy is to divide the network vertically, i.e., to train
the network layers independently, one after another. As a consequence, the
global network task (e.g., the correct classification of images) cannot directly
guide the training, since the global error can only be assessed in the topmost
network layer. Therefore, intermediate layers are either trained for solving
pre-defined sub-problems [11], or unsupervised methods are employed [10,
67, 41]. Another possibility is to divide the network horizontally. Examples are
ensembles of experts [17] or partitioning a many-class problem into many 2-class
problems [22]. As an extreme example of divide and conquer, one can train
each single neuron in a network separately [11] which, however, shifts a large
part of the training intelligence from machine learning to the skill of the human
operator.

3) Self-Organization The term self-organization refers to phenomena where
simple, locally determined processes produce a complex global order. Applied
to neural networks, this means that a neuron, or a neighborhood of near-by
neurons, change their weight values depending on local parameters as for ex-
ample their own current activation. An example for a local weight update rule
is Hebbian-type reinforcement learning (equation (1.5)). In terms of the princi-
ple of splitting the global problem into many local problems, self-organization
is similar to the divide and conquer approach outlined above—with the crucial
difference that no cost-function (1.8) is explicitely given. Rather, the network
converges to a state implicitly defined by the used local learning scheme. Of
course, for many problems it is difficult—if not impossible—to define local up-
date rules which result in the desired global network behavior. However, some
data processing tasks can be very well accomplished by self-organization tech-
niques. This is done also in this thesis (section 3.3).

22 CHAPTER 1. BACKGROUND

1.3.2 Supervised Approaches

Supervised training methods subsume all strategies which rely on some sort
of external teacher who has sufficient a priori knowledge of the problem to be
solved.

Manual Weight Adjustment The most basic, albeit very laborious, super-
vised “training” method is to set each and every weight value by hand. This
method requires detailed knowledge about both the problem and about the
strategy by which the network will solve it. With convolutional neural net-
works, the solution strategy is known: Detect simple shape features in the first
layer and more complex features in subsequent layers. So, given a hierarchical
set of features, the corresponding network weights can be constructed analyti-
cally. The actual work consists in defining the features detectable in each layer.
This task requires a high degree of skill and intuition of the human supervi-
sor. Usually, a lot of trial-and-error adjustments are involved, since for many
problems it is not obvious which features are optimally suited for the detection
of the object(s) in question. Nevertheless, some authors were able to achieve
sound results with this method [11, 41].

Interactive Feature Learning This method adds some level of automation to
the plain manual setting of weights discussed above. The supervisor is still
responsible for defining the features detected in each layer, but it is no longer
necessary to think of raw pixel representations and to specify individual net-
work connections. Instead, the supervisor marks examples of the features in
the training images (e.g., using a mouse pointer on a graphical display), and
some sort of automatic learning identifies the optimal synaptic weights. In
one of Fukushima’s approaches, the supervisor explicitely appoints a single
neuron for each example, which is to alter its weights [11], i.e., the supervisor
assigns features to neurons beforehand. In other techniques, a winner-take-
all learning scheme automatically finds a suitable feature-to-neuron mapping,
and additionally may insert new feature planes as deemed necessary [64, 67].
Training normally proceeds bottom-up, i.e., complex features are learned after
the training for simple features is complete.

Global Training With Back-Propagation Back-propagation [51] is one of the
most prominent automatic supervised methods applied in the scope of neural
networks in general. It belongs to the family of gradient-based optimization
methods. A set of training input patterns I for which the correct network re-
sponse is known in advance must be given as a prerequisite. Then, the cost
function is defined as a distance measure between the desired (Od) and actual
network output (Oa):

C(I , {wi}) = ∑
j∈I
|Od(j)−Oa(j, {wi}|2. (1.9)

In each iteration, the weights of the network wi are updated by following the
negative gradient of the cost function:

wi ← wi − ǫ
∂C
∂wi

, for each i. (1.10)

1.3. TRAINING METHODS 23

 0 0 1 1 0 0

 0 0 1 1 0 0

Training Patte
rn

s
 1 0 0 1 1 0

 1 1 1 1 0 1

 1 1 1 1 0 1

321

Figure 1.14: Competitive learning. n neurons are connected to the same inputs (n =
3 in this drawing). For each training pattern, only the neuron with the strongest
response is reinforced. Sometimes this winner-take-all policy is implemented by lateral
inhibitory connections (drawn shaded).

By application of the chain formula, the gradient (1.10) can be evaluated not
only for synapses belonging to output neurons but also for neurons in hidden
network layers, provided the transfer function F in (1.2) is differentiable. This
technique was termed “error back-propagation” by its inventor D. Rumelhart
in 1986 [51]. In fact, back-propagation was the first algorithm to provide a
universal formula to train a multi-layer neural network by global supervised
training. For convolutional neural networks, this means that only the mapping
from full-scale images to object labels must be given by the supervisor. All the
details of the features detected in the hidden layers are learned automatically
by the algorithm.

Examples of successful application of back-propagation in the field of con-
volutional neural networks include hand-writing recognition by LeCun and
successors [30, 60] and face recognition by another research group [29].

Although back-propagation is extremely popular and yields successful so-
lutions for many problems, it suffers from the following shortcomings: First,
like any gradient-based method, it is prone to get stuck in local minima of the
cost function. Second, back-propagation can get computationally very expen-
sive for large networks. Training times as long as many hours or even days for
just one training run are often reported. Third, as mentioned above, the neu-
ral transfer function (F in (1.2)) and its derivative must be exactly specified.
These preconditions can be easily realized in software simulations, but they
can constitute an issue in hardware implementations.

1.3.3 Un-Supervised Approaches

Un-supervised learning refers to training approaches which do not rely on a
priori knowledge about the task to be solved. Only the implicit structure con-
tained in the training data is used. Un-supervised methods are often used for
dimensionality reduction or for the automatic identification of pattern classes
implicitly defined by clusters. In the field of neural networks, un-supervised
is also called self-organization and is often based on Hebbian-style reinforce-
ment.

24 CHAPTER 1. BACKGROUND

 0 0 1 1 0 0

 0 0 1 1 0 0

 1 0 0 1 1 0

 1 1 1 1 0 1

 1 1 1 1 0 1

Training Patte
rn

s

Auto−association layer

321

Figure 1.15: Learning by auto-encoding: A 3-layer network is trained such that the
temporary auto-association layer (shaded) reproduces the input for all training pat-
terns. After training, the hidden neurons (1-3) represent the most significant compo-
nents of the input data.

Competitive Learning The term “competitive learning” was introduced by
Rumelhart et al. in 1985 [50], denoting a learning scheme where only the most
active neuron of an ensemble has its weight altered in each learning step. The
other neurons do not change their weights in this step. If topological informa-
tion is to be learned, neurons in the neighborhood of the winner neuron can
be updated as well, as, for example, done in Kohonen’s self-organizing maps.

The update rule itself is Hebbian-style reinforcement learning (cf. equation
(1.4)), followed by some sort of weight normalization. All neurons in the en-
semble receive the same inputs (see Figure 1.14). Ideally, for different training
inputs, a different neuron is the one with the strongest activation, so, during
training, every neuron in the ensemble gets the chance to be reinforced. After
a neuron was reinforced, the next time a similar training pattern is presented,
the same neuron will again be the one with the strongest activation. Gradu-
ally, the network will partition the input space into several classes, where each
neuron responds to patterns from its corresponding class (see also Figure 3.2,
p. 56). The success of this method can vary depending on the initial weight
values and the order in which the training patterns are presented. Competi-
tive learning is one example of vector quantization and it is very similar to the
K-means clustering method.

In his early work, Fukushima used a kind of competitive learning in his
“Neocognitron” in order to identify suitable feature sets detected by the feature
planes [10]. The training proceeded sequentially layer after layer. Fukushima
focused on supervised methods later because better results could be obtained.
Competitive learning is a key technique for the training procedure described
in this thesis (see section 3.3).

Auto-Encoding / Principal Components Like competitive learning, auto-
encoding is a method for dimensionality reduction. The aim is to transform

1.3. TRAINING METHODS 25

the N-dimensional input data into M-dimensional feature vectors (M < N)
while preserving as much of the information as possible. In Figure 1.15, the
7-neuron input layer is to be reduced to a 3-dimensional feature vector defined
by the activity of the neurons labeled “1”, “2”, and ”3”. During training, a
temporary N-dimensional association layer (shaded) is introduced, and the re-
sulting feed-forward multi-layer network is trained to reproduce the input as
close as possible. For this purpose, back-propagation is used in [41], but other
training methods are possible. After the training, the association layer is re-
moved. This training strategy ensures that a maximum of the information is
preserved in the middle layer. It can be shown that for a linear transfer func-
tion F (cf., equation (1.2)) the activities of the N neurons in the middle layer
correspond to the first N principal components of the training data [3]. In [41],
auto-encoding is used to identify the features for the hidden network layers.

Reinforcement Without Competition Some authors use self-organization by
reinforcement where, in contrast to competitive learning, the reinforcement is
not limited to the most active neuron in an ensemble. The decision whether a
neuron is reinforced by the current input or not depends on whether its activa-
tion exceeds a given threshold, either a global or a dynamically adjusted one.
Such a technique is useful if it is not known in advance how many distinct fea-
tures are needed in each layer (adaptive network size), or if multiple objects
should be detectable simultaneously in the same field of view. Examples are
the Cresceptron [67], the multiple-object recognizing network of McQuoid [38],
or the association network by Teichert [64].

1.3.4 Hybrid Approaches

Hybrid approaches, mixing supervised and un-supervised methods, are often
utilized. One approach is to train the lower convolutional network layers by
self-organization, and to train a classifier layer on top by a supervised method.
The classifier can be either another neural network layer [41] or other non-
neural machine learning systems [32, 29]).

An interesting hybrid approach is described by Weng et al. [67], where the
supervisor marks high-level objects in example images and assigns them class
labels. For each new class label, a new feature plane is added in the top-most
network layer while a self-organization process based on the marked input
field alters the structure of the network below. Thereby, the number of fea-
ture planes in each layer can grow adaptively when new features are detected.
Training is based on bottom-up analysis rather than on back-propagating er-
rors. Similar approaches are described in [38, 64]

In this thesis, the hidden layers are trained by self-organization without any
explicit class information, and only the output layer is trained by a supervised
optimization method.

26 CHAPTER 1. BACKGROUND

1.4 Analog VLSI2 Implementations

1.4.1 Motivation

The majority of today’s computing machines rely on digital general-purpose
processors, mostly based on the von Neumann architecture [42]. In contrast,
analog electronic circuits are not widely applied for complex computing tasks3

although they have the potential to offer advantages in various terms (cf., [33,
26, 66]):

Space efficiency. In analog computing circuits, basic laws of physics are ex-
ploited for performing calculations. Examples are the Kirchhoff rules
for currents or the electrical properties of solid matter boundaries (see
[66] and section 6). In contrast, digital solutions operate on abstract sym-
bols represented within a complex electronic machinery. This difference
makes analog VLSI implementations usually occupy way less silicon area
compared to equivalent digital devices.

Power efficiency. For the same reason, many analog solutions consume less
power than a digital implementation performing the equivalent compu-
tation. This holds especially for so-called sub-threshold designs where cur-
rents are low and are determined by Bolzmann statistics.

Massive parallelization. Space and power efficiency enable the design of mas-
sively parallel implementations where a large number of equivalent com-
puting elements are integrated on one micro chip.

However, when designing analog computers, the following drawbacks relat-
ing to the analog nature must be taken into account:

Limited computing precision. Quantities coded by analog signals are inher-
ently limited in precision. An upper limit of accuracy is constituted
by noise present in the system, e.g., by thermal fluctuations or electro-
dynamical side effects, e.g., crosstalk. Other sources of uncertainty are
random device variations which are characteristic for the manufacturing
process.

Limited application scope. Not all types of applications are equally well
suited for an analog implementation. First, precision requirements must
match the capabilities offered by the used analog system. Second, in
applications relying on algebraic computations, parallel processing can
only be exploited if the problem is partitionable into independent, sim-
ple, computing steps.

Feed-forward neural networks seem to be a promising application for analog
computing devices. The high degree of regularity and the natural fine-grained
partition into independent computing units makes a parallel implementation
straight-forward. This is true even more in the special case of convolutional
networks (see next section).

2Very Large-Scale Integration
3involving more than a single multiplication or addition

1.4. ANALOG VLSI IMPLEMENTATIONS 27

1I

1
1w 3

1w N
1w

N
2w3

2w2
2w1

2w

1
Mw 2

Mw 3
Mw N

Mw

2
1w

MO

2O

1O

2I 3I NI

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

F()

F()

F()

Figure 1.16: 2D parallel computing array. Each of the M rows constitutes a neuron
with N inputs. The input signals I1...IN are shared by all neurons. Shaded boxes
represent the atomic multiply-and-accumulate elements, the synapses. The weights
are stored in the synapses. The non-linear scaling function F() is computed once per
neuron.

Whether limited computing precision is an issue remains to be assessed in
each individual case. Techniques of limiting the precision problem exist on the
hardware level, e.g., using analog computing but digital signal transmission
[16, 4, 54], or incorporating calibration routines ([22] and section 6.2.3). It is a
main contribution of this thesis to tackle the issue of precision on the training
level. Methods are developed which yield reliable networks independent of
hardware inaccuracies (chapter 5).

1.4.2 Massively Parallel Computing Arrays

As pointed out in the previous section, massively parallel computing is one
of the applications where analog VLSI technology can promise efficient alter-
natives to digital processors. Neural networks are particularly well suited for
parallel implementations, since (at least for layered neural networks) each neu-
ron can be computed independently. Moreover, even the computation within
a single neuron can be further parallelized. Recall that a neuron computes the
dot-product with a given weight vector and scales the result (equation 1.2 re-
peated):

O = F

(

N

∑
i=1

wi · Ii − t

)

. (1.11)

28 CHAPTER 1. BACKGROUND

The N multiplications wi · Ii can be performed independently and can thus
be processed by parallel computing elements. Depending on the number of
inputs N, this can imply a significant performance gain compared to sequen-
tial processing. Kramer states in [26] that the most dense arrangement of such
multiplication units is a 2-dimensional array, as shown in Figure 1.16. The mul-
tiplication units (synapses) are laid out in a grid, where the shared inputs are
along one dimension (I1...IN), and the outputs are along the other dimension
(O1...OM). Each synapse holds a locally stored (but re-configurable) weight
and thus implements a single-instruction multiple-data element.

If reconfiguring of weights is to be avoided during the evaluation phase,
one row must be reserved for each neuron in the network. Convolutional
neural networks usually possess a huge absolute number of computable neu-
rons, but due to weight sharing (p. 20), large groups of neurons have identical
weights. If a distinct computing row is reserved only for every unique neuron
in the network, the required array size is thus limited to practical dimensions.
This makes convolutional networks especially well suited for parallel array
implementations. Indeed, all serious applications of array-based analog VLSI
known to the author are located in the field of image processing and involve
computing convolutions [5, 26, 31, 37].

1.4.3 Recent Array-Based Neuro Chips

A plethora of analog neural network implementations have been developed by
various research groups. Rather exhaustive overviews are given in [1] or [33].
Here, we will review some of the most-cited array-based VLSI solutions of the
recent years. Some of them are reviewed also in the book [68] and the paper
[25]. All these chips have configurable weights, but they do not include learn-
ing circuitry, so training is done either completely in software or in a closed
software/hardware loop. Except for the ETANN chip, which is purely analog,
the described chips combine analog computing with digital data transmission.
This mixed-signal approach enables convenient interfacing by standard digital
hardware and confines the noisy analog calculations into closed units.

ETANN (1989) The first commercially available analog chip was the Intel
i80170NX, or ETANN (Electrically Trainable Analog Neural Network), contain-
ing 64 neurons and 10280 weights (there are 128 inputs plus 32 bias weights per
neuron). Multiple configurations including multilayer networks using internal
feedback can be realized. The array can be split into two 64x64 banks. The
programming of the weight values is very slow compared to the other chips
drescribed below. The ETANN chip was used in various commercial devices,
including a music synthesizer.

NET32K (1990) The NET32K chip [16], developed by AT&T, implements 256
neurons with 8,192 synapses. The chip uses only 1-bit resolution for weights
and data, but several synapses can be used in conjunction to realize effectively
up to 4-bit weights and/or data. The chip was used for example on a commer-
cial extension board for use with standard workstations [5]. The board, con-
taining 2 NET32K chips and digital support logic was used to accelerate con-
volutions for image processing tasks. An interesting development by the same

1.4. ANALOG VLSI IMPLEMENTATIONS 29

research group was a similar architecture by Satyanarayana et al. (1992) which
allowed for more flexible connection topologies by equipping each synapse
with an own neuron body circuit.

ANNA (1992) Another development by AT&T is the ANNA chip (Analog
Neural Network Arithmetic) which implements 4,096 synapses which can be
configured as 8 neurons with 256 inputs each [4]. Other configurations with 64
or 128 inputs per neurons are possible as well. The activation function is piece-
wise linear, roughly approximating a sigmoid. The digital interface allows 6 bit
resolution for the weights and 3 bit for the input/output data lines. The ANNA
chip was used for the evaluation of convolutional networks for hand-written
character recognition [52].

MoneyPen (1999) One example of a VLSI neural network development
which matured into a commercial product is the chip presented by Masa et al.
[37]. The application-specific chip has a fixed connection topology with
three different-sized synapse arrays corresponding to three convolutional
network layers. Image data is directly fed in from an optical sen-
sor. The system is marketed as a mobile character recognition sys-
tem for check reading (“MoneyPen”) through a company in Switzerland
(www.csem.ch/fs/microelectronics.htm).

HAGEN (2003) The HAGEN chip, developed by J. Schemmel in Heidelberg
(HAGEN = Heidelberg AnaloG Evolvable Network) [54], implements 256 neu-
rons with 128 inputs each. The neurons are arranged in 4 synapse arrays of
64 neurons. Input/output lines have 1 bit precision, weights can be written
with 10 bit precision (+ 1 sign bit). Of all reviewed chips, HAGEN is manu-
factured using the most modern technology and outperforms its predecessors
in terms of operating speed, weight configuration speed, and power efficiency.
This chip is described in more detail in section 2.2.1. It is used for the hardware
experiments in chapter 6. Previous studies for utilizing this chip for image
recognition are described in [43].

30 CHAPTER 1. BACKGROUND

Chapter 2

Working Environment

This chapter covers the software tools and the hardware equipment used for
conducting the experiments described in chapters 3 through 9. The software
environment, comprising more than 100,000 lines of code, has been created in
the course of this thesis, in collaboration with other members of the research
group. The prototype neuro chip and a PC-based control system were available
as the result of previous research.

2.1 Software

The development of new algorithms commonly involves a considerable
amount computer programming. Constantly, new ideas must be implemented,
tested, and refined. In order to spend as much time as possible on conceptual
research rather than on crafting machine code, programming should be made
as simple as possible. Moreover, the software produced should exhibit a rich
set of convenience features, and also facilitate documentation of the research
history. Features considered most important are summarized here:

Modularity It should be easy to add and remove functional modules to and
from the software. Different variations of the same module should be eas-
ily interchangeable. Standardized ways for interaction among modules
are required.

Runtime Control / Interactivity Interactive use of the sofware is desirable.
For example, it may be necessary to test different parameter settings in
order to get a feeling for resulting effects. This ideally involves graphical
control and display.

Serialization and Logging In order to facilitate documentation and repro-
ducibility, settings and results must be storable in a persistent form.

Automation In practice, a thorough evaluation of new algorithms requires au-
tomated control over the software, typically in the form of batch scripts.

Rapid prototyping It should be possible to implement new ideas fast and with
a minimum of effort while still including all the above features. Ideally,

31

32 CHAPTER 2. WORKING ENVIRONMENT

Framework
HANNEE
Provided by

Developer
Algorithm
Provided by

Graphical
User
Interface

Commandline
and Scripting
Interface

Network access
(WWW browser,
telnet)

Serialization, Networking, Multi−Threading,
Hooks for User−Interfaces, Hardware access

User−Defined Algorithms

HElement Library

User Interfaces

Figure 2.1: Overview of the HANNEE software framework. Higher-level compo-
nents make use of the components below. The programmer focuses solely on algorithm
development. User interfaces, hardware access, and other required functionality are
provided by HANNEE.

the researcher focuses on the algorithms rather than the implementation
of convenience functionality.

Efficiency Last but not least, performance issues cannot be neglected. The
speed of development progress is often limited by the computation time
needed for testing algorithm implementations.

Commercial tools providing some of the desired features are available, e.g.,
MATLAB. Nevertheless, in order to remain most flexible and still being able
to produce high-performing code, an own C++ software-framework, called
HANNEE1, was created in the course of this thesis. This happened in close
collaboration with fellow lab members, most notably Steffen Hohmann. HAN-
NEE provides a general basis for the development and the evaluation of new
algorithms.

The overall structure of the software is shown in Fig. 2.1. The HElement
library which constitutes the core of HANNEE consists of useful base classes
and tools for developing algorithm modules. It realizes many of the desired
features discussed above, ready to be used by the algorithm programmer, and
it contains functionality particularly suited for interfacing the various custom-
developed hardware devices used by the research group.

Another part of HANNEE provides various user interfaces for controlling
the user-written algorithms graphically or text-based, possibly via a network
connection. As long as the programmer makes proper use of the HElement li-
brary, the user interfaces are generated automatically without any further pro-
gramming effort.

The rest of the software section covers the components of the HANNEE
framework in more detail. Therefore, it is assumed that the reader is famil-
iar with object-oriented programming techniques. For a comprehensive docu-

1Originally HANNEE was an acronym for “Heidelberg Analog Neural Network Evolution En-
vironment”. In the meanwhile, it has developed into a general algorithm development environ-
ment.

2.1. SOFTWARE 33

mentation the reader is referred to the documents in the hannee++/docs/2 and
hannee++/hannee++-api/ directories and, of course, to the source code of the
software.

2.1.1 The HElement C++ Library2

Library Features
Runtime Control . page 33
Actions. .page 37
Modularity . page 37
Serialization . page 39
Event Handling . page 40
Logging . page 41
Multi-Threading . page 41
Exception Handling . page 42
Run-time Type Information . page 42

The HElement library constitutes the core of the HANNEE software. It defines
general functionality useful for algorithm development. Most of this function-
ality is contained in the classes derived from HElement. A class diagram is
shown in Fig. 2.2.

HElement objects can be arranged in tree-like graphs. HValues, constitut-
ing the leaves, represent actual information, while tree nodes are represented
by objects derived from HGroup. Each HElement has a name by which it can
be identified, and it can be assigned a (human-understandable) description.
It provides methods to manipulate itself and sub-elements through a string-
based control API. Moreover, HElements can be set up to notify each other of
certain events. All these functions will be covered in detail below. The partic-
ular relationship between HElement, HValue, and HGroup is a straight-forward
implementation of the canonical Composite design pattern [15].

The benefits of using the HElement library are best illustrated by means of
a demonstration. Therefore, in the rest of the software section, it will be shown
how a simple sorting algorithm, depicted in Fig. 2.3, is implemented using the
HElement library. This example will be discussed from several points of view,
illuminating the various benefits of the library:

Runtime Control

Most algorithms depend on a set of parameters defining the actual behavior.
Thus, when developing new algorithms, a range of parameter settings must be
evaluated in order to assess a method’s capabilities. The straight-forward (or,
better: quick-and-dirty) method is to hard-code parameter values in the pro-
gram source code. When exercising this practice, every time a parameter is var-
ied, the program source must be changed, possibly requiring re-compilation.

2All paths refer to the workgroup’s CVS repository. Please contact the author for material.
2This section is part of the software documentation. Knowledge about object-oriented program-

ming techniques is assumed. The reader interested in the results may skip this section.

34 CHAPTER 2. WORKING ENVIRONMENT

HElement

name() : string
description() : string
save(string xmlFile)
initialize(string xmlFile)
addElementListener(...)
...

HGroup
addElement(HElement)
removeElement(HElement)
...

*

HValue
template< type >

get() : type
set(type value)
value() : string
setValue(string value)
...
type : c++ data type

HObject
base class for algorithms

execAction(string action)

HIntValue
max : int
min : int

type=int

HStringValue

type=string

HFloatVector
size() : int
get(int index) : float

type=vector<float>

Many more...

type=...

Figure 2.2: Core classes of the HElement library. HObject serves as base class for new
algorithms. HValues encapsule parameters. The HElement classes are a realization of
the classic composite design pattern [15]

2.1. SOFTWARE 35

Algorithm

BEGIN
LOAD data file
SORT data
SAVE data file

END

Parameters

- Input File
- Output File
- Data compression (yes/no)
- Column by which to sort
- Sorting order (ascending, descending)
- Sorting method (Quicksort, Heapsort, ...)

... more params, depending on sorting method

Figure 2.3: Example sorting algorithm with parameters

Therefore, parameters are preferably made specifiable at run-time: by com-
mand line parameters, via a settings file, or in some interactive fashion, e.g.,
through the command prompt or a graphical interface.

The HValue classes provide a convenient infrastructure for working with
parameters that are changeable during run-time. The example sorting algo-
rithm specified in Fig. 2.3 might be declared like this:/* Listing 2.1: De
laring an algorithm using HElements */

class SortingAlgo : public HObject{

// declare parameters as HValuesHBoolValue*
ompression;HIntValue*
olumn;HChoi
e* order;
public:

SortingAlgo(){

// define parameters (name and initial value)
ompression=new HBoolValue("
ompression",true);
olumn=new HIntValue("
olumn",0);order=new HChoi
e("order","as
","as
,des
");
// add them as children to this SortingAlgoaddElement(
ompression);addElement(
olumn);addElement(order);

}

void sort(){

// do the work

}

...

};

SortingAlgo is declared to inherit HObject. As such, is it a HGroups and
thus can have children. Instead of using native int, float, or std::string

member variables, the algorithm’s parameters are declared in the variables
compression, column, and orderwhich are of types derived from HValue. Each
HValue encapsules one native variable which is accessed by get() and set()

methods:

36 CHAPTER 2. WORKING ENVIRONMENT

HElement

C
o

n
tr

o
l

A
P

I

Automatically gener-
ated GUI

Scripting and comman-
dline control

Persistent file storage

Figure 2.4: HElements provide a standardized control API which is the basis for au-
tomatically created graphical user interfaces, script control, or file I/O./* Listing 2.2: Set and get methods */
void SortingAlgo::sort(){

// ...

if(
olumn->get()>99)
olumn->set(99);
// ...

}

Accessing HValues by their get() function is nearly as efficient as accessing a
native variable.

The main feature is that HValues, like all HElements, provide a standard-
ized control API which can be thought of as “control handles” to the out-
side world (see Figure 2.4). This API constitutes the basis for automatically
generating interactive graphical user interfaces, for controlling the HValues
via batch scripts during runtime, or for storing algorithm settings in struc-
tured data files. The string-based access functions setValue() and value()

are example members of the control API. They allow to change, respec-
tively read, all types of HValues via the same string-based interface:/* Listing 2.3: Control API example */
SortingAlgo a;

// string argument is parsed and converted to bool

a.setValue("compression","true");
// string argument is parsed and converted to int

a.setValue("column","3");
// value of column is returned as string

std::string order=a.value("column");
Other control API methods, not shown here, include querying the type of an
HElement, accessing children (for HGroup), or, in the case of HObject (see nect
section), invoking defined actions.

2.1. SOFTWARE 37

Actions

Specifying parameters alone does not make a useful program. Functions must
be invoked interactively, too. For this purpose there exists the class HObject,
which is also the recommended base class for new algorithms. HObjects are
HGroups with the additional feature that so-called actions can be declared. An
action binds a name to a no-argument member function, by which this function
can be referred to from the user interfaces. Actions are declared by macros, one
in the header file, the other in the source file:/* Listing 2.4: De
laring a
tions */

/// h-file ///

class SortingAlgo : public HObject{DECLARE_ACTIONS // this object defines actions

public:

void sort();

};

/// cpp-file ///DEFINE_ACTIONS(SortingAlgo,HObje
t)ACTION("sort",sort) // bind name to function

// ... more actions ad lib.END_DEFINE_ACTIONS
The DEFINE ACTIONS macro expects the class name and the name of the super-
class as arguments. Figure 2.6 and the commandline interpreter example on
page 45 demostrate how the sort() function can be invoked interactively.

Modularity

Using the HGroup element, which can have HValues or other HGroup ob-
jects as children, hierarchical tree structures can be arranged using the
HGroup::addElement() function. Every element in the tree is uniquely iden-
tified by a hierarchical name of the form grandparent.parent.element with
an arbitrary number of parent levels. These names can for example be used in
the get/set functions introduced in listing 2.3. Thus, following object oriented
design principles, semantically related entities can be pooled into integrated
units.

Turning to our SortingAlgo example, let us assume the actual sorting
method is to be encapsuled in such an independent unit. We define an abstract
interface SortingMethod, which can be realized by various implementations.
The SortingAlgo only interacts with the general interface./* Listing 2.5 */

// abstract interface:

class SortingMethod : public HObject {

public:virtual void sort() = 0;

};

// one possible concrete implementation:

38 CHAPTER 2. WORKING ENVIRONMENT

class HeapSort : publi
 SortingMethod {

// method-specific parameter:HIntValue* numHeaps;
public:

HeapSort(){

numHeaps=new HIntValue("numHeaps",2);

addElement(numHeaps());

}

// implement SortingMethod::sort()void sort();
};

// sorting algo class

class SortingAlgo : public HObject {SortingMethod* my_method;
public:

SortingAlgo(){

my_method=getSortingMethod();addElement(my_method);
}

sort(){

// call actual sorting method:my_method->sort()
}

};

Note that implementations of SortingMethodmay define own method-specific
parameters (here: numHeaps). The HElement control API allows these param-
eters to be dynamically queried and accessed from the SortingAlgo without
further programming effort.

Up to this point, the choice of the actual sorting method is done in the
source code (for instance in the constructor of SortingAlgo). Using HElements,
we can go one step further and choose the method dynamically at run-time.
The necessary code is here:/* Listing 2.6: Using HObje
tChooser */
class SortingAlgo : public HObject {

// object chooser for dynamically switching modulesHObje
tChooser* my_method;
public:

SortingAlgo(){

// allow to choose among SortingMethod subclasses:my_method=new HObje
tChooser("method",
HObjectMap::classNames("SortingMethod"));addElement(my_method);

}

sort(){

((SortingMethod*)my_method->obje
t())->sort();
}

};

2.1. SOFTWARE 39

SortingAlgo a;

// sorting with HeapSorta.setValue("method","HeapSort"); a.sort();

// sorting with QuickSorta.setValue("method","Qui
kSort"); a.sort();

In the graphical interface (section 2.1.2), the HObjectChooser will appear as
a drop-down box. The phrase HObject::classNames("SortingMethod") in
the constructor tells the object chooser to allow all known sub-classes of
SortingMethod as possible choices (this construct relies on the HObject run-
time type information system, see page 42). For this purpose, the c-style cast
in SortingAlgo::sort() is safe. As soon as the value of the HObjectChooser

changes, a new object of the chosen class will be created (and added as a child
of SortingAlgo). From within the SortingAlgo, the current SortingMethod
instance is accessed via my method->object().

Serialization

The control API allows entire HElement trees to be converted into a serial form,
i.e., a sequence of bytes, and restored again. This feature is useful for persistent
archiving of experimental setups, but also for temporarily storing HElement

structures in the system clipboard, enabling copy/paste functionality.
The Extensible Markup Language (XML) was chosen as the serial data format

for its natural ability to represent tree-like data structures. Here is an exam-
ple showing how our SortingAlgo object looks like in its serial form. Every
HElement is represented by a corresponding XML tag:

<?xml version="1.0" encoding="iso-8859-1" ?>

<HObject class="SortingAlgo" name="SortingAlgo">

<Bool name="compression" value="true" />

<Integer name="column" value="3" />

...

<HObject class="HeapSort" name="HeapSort">

<Integer name="numHeaps" value="2" />

</HObject>

</HObject>

Due to the hierarchical structure of the the XML language, old setup files
remain readable even if the software has changed in the meanwhile. The de-
serialization routines ignore unrecognized XML elements, and data elements
that are present in the software but which cannot be found in in the XML file are
assigned default values. Compatibility of setup files between software versions
turns out to be of great value while algorithms are still under construction.

Last but not least, XML files are human-readable, making in-place edits
possible without the need of starting the software program.

The data overhead imposed by the XML data structure can result in rela-
tively large file sizes. Therfore, if space requirements are an issue, the produced
setup files may be compressed using the gzip method [14]. Input streams are
automatically de-compressed if gzip-compression is detected.

40 CHAPTER 2. WORKING ENVIRONMENT

Event Handling

The HElement library implements a modern, simple-to-use, event handling
system. For example, whenever a HValue is assigned a new value it emits
a signal which notifies registered callback object, so-called listeners, about
this change. In general, HElements provide a standardized way to regis-
ter user-defined callback functions which are notified in pre-defined situa-
tions. In terms of canonical design patterns, this technique corresponds to
the Observer pattern [15].3 An event handler must inherit the library class
EventListener4:/* Listing 2.7: EventListener */
class MyListener : publi
 EventListener{publi
: void elementChanged(ElementEvent &e);

// implement callback functionality here

}

};

// ...

HIntValue wert("wert",0); // initialize with 0

MyListener listener;

// register the listener

wert.addElementListener(&listener);
In this example, the elementChanged() function of MyListenerwill be invoked
every time the value of wert changes. The ElementEvent passed as argument
to the callback function contains information about the type of the event (e.g.,
value changed, child added) and about the HElement which sent the event. An
event can be marked as handled by calling ElementEvent::consume() in the
callback function. This will prevent the ElementEvent to be sent to any further
listeners. Listeners are automatically unregistered when the emitting element
or the listener itself is destroyed.

If an HElement is part of an HElement tree, generated events are by default
passed up the hierarchy. Therefore, a listener registered with the root HElement
will receive all events generated within the sub-tree below. This feature is very
convenient, but on the other hand it can produce a lot of overhead function
calls when HValues are frequently changed. Methods are provided to tem-
porarily suspend event sending within HElement sub-trees.

One important application of the event handling system is the separation of
the graphical user interface (GUI) from the HElement worker classes. Since the
communication between the HElements and the GUI is implemented via the
standardized event system, in most cases the programmer of a new HElement

does not need to care for user interface issues. Moreover, the HElement classes
can be used with or without a GUI present. For more details see section 2.1.2.

3Not to be confused with the HANNEE class Observer which provides fast read-only access to
internal algorithm parameters.

4Usage of the HElement event handling is similar to the event handling known from the
Java(TM) programming language.

2.1. SOFTWARE 41

HTask

handler : ExceptionHandler*
virtual run()
activate()

HObject
see Fig. 2.1

MyAlgorithm
run()

Figure 2.5: Inheriting HTask is a convenient way to write multi-threaded applica-
tions. Invoking activate() will start the run() function of MyAlgorithm in a separate
thread.

Logging

A convenient and flexible logging system is provided. Messages of various
types (e.g. warning, info) can be created and directed to files, onto the screen,
or over network connections. The originating program module and the time
of the message are automatically recorded in the style of the following short
example:

14:50:15, SortingAlgo: calling sort routine...

14:50:15, SortingAlgo.Heapsort: starting sort

14:50:17, WARNING, SortingAlgo.Heapsort: data already sorted

In the source code, creating log messages is done by sending data to a dedi-
cated std::ostream object named log. Each HObject has its own log stream
object./* Listing 2.8: Writing to the log stream */

class HeapSort {

void sort(){

// ...log<<"data already sorted"<<hwarn;
// ...

}

}

Multi-Threading

The HElement library is designed to be thread-safe. To be precise, event
handling, logging, HElement access, and the various user interfaces are cor-
rectly synchronized respectively serialized, and thus can be used within multi-
threaded programs without interference A convenient interface is provided to

42 CHAPTER 2. WORKING ENVIRONMENT

set up new threads: If HTask class is inherited and its run() function is imple-
mented, a call to activate() will start run() in an own thread (cf., Figure 2.5)
. An optional exception handler defines how exceptions occuring during the
execution should be treated. The default is displaying them to the user (see
also the paragraph about exception handling below). Only a small set of rules
must be obeyed when writing multi-threaded applications using the HElement
library. Detailed information can be found in the file Multithread HOWTO in
the hannee++/ directory.

Exception Handling

The HElement library provides a convenient way to report runtime errors
to the user. Within algorithm source code, objects of type Exception can be
thrown to indicate an erroneous situation:/* Listing 2.9: throwing an Ex
eption */
void sort(){

if(column->get()<0)

throw Exception("Negative column index in sort()");

// ...

}

If an exception is encountered, the normal program flow will stop and the pro-
gram will return to the point of the most recent user interaction. Before user
interaction can be resumed, the the error message will be by default presented
to the user in a way depending on the context: If the graphical user interface
was used to issue the most recent command an error dialog will pop up show-
ing the message. If the user is interacting via the command line interpreter the
error message will be written to the terminal together with the source (e.g, file
name and line number) of the erroneous line. More details on error reporting
can be found in the document hannee++/docs/commandlinemode doc.pdf.
In addition to the default behavior, user-defined exception handlers can alter
the way exceptions are handled.

Run-time Type Information

Many of the HElement convenience functions, most notably: serialization, dy-
namic class instantiation, and automatic generation of user interfaces, rely on
run-time type information (RTTI). The particular class of an HValue object
can be queried by using its tag() function. For HObject subclasses, a more
elaborate RTTI mechanism based on the library class HObjectMap is provided.
This class features static member functions for querying the class name of a
given HObject and for obtaining information about inheritance dependencies.
HObjectMap also serves as an object factory for instantiating objects by class
name. In conjunction with the GuiMap class, the appropriate graphical repre-
sentation for a given HObject can be determined.

For the RTTI to work, each newly implemented HObject subclass
must be registered with the HObjectMap (similarly, each custom GUI
must be registered with GuiMap). The registration process is very sim-
ple. It involves only a one-line definition of one global variable per

2.1. SOFTWARE 43

HObject, respectively per GUI class, indicating the class name and its
inheritance chain. For example, to register the SortAlgo object de-
fined in Listing 2.1, add the following line to the source file:/* Listing 2.10: Registering HObje
ts */

#include "hobjectmap.h"

HObjectMapEntryImpl<SortALgo> _SortAlgo_("SortAlgo","HObject");

2.1.2 User Interfaces

A number of user interfaces to the HElement library exist, suited for differ-
ent modes of operation. While for interactive work, the graphical user inter-
face is the preferred choice, script control is appropriate for systematic, time-
consuming experiments. On embedded systems not featuring any graphics
support, the slim commandline interpreter can be used in interactive mode.
For controlling the software in distributed environments, two network-based
interfaces are provided.

Thanks to the HElement’s control API (cf., page 36), all the mentioned user-
interfaces are generated automatically at run-time for any HElement. The user
interfaces allow to monitor and manipulate HValues and to invoke functions
that have been declared as actions (see page 37). For most applications, these
default interfaces are sufficient. Nevertheless, if special interface functional-
ity is required, custom user-interfaces can be implemented for any HElement

subclass.

Graphical User Interface

The graphical user interface is implemented on top of the commercial open-
source Qt library [47] which is available for most common operating sys-
tems. The example in Figure 2.6a shows the screen representation of the
SortingAlgo declared in listings 2.1 and 2.6. The hierarchical structure is re-
flected in the expandable tree-view to the left. The HValues of the currently
selected (sub-)HGroup are displayed in a type-specific way (e.g., check-boxes
for boolean values, text fields for string values) on the right-hand side. If ac-
tions are defined for the current object, they can be invoked via a drop-down
or context menu (Figure 2.6b).

Commandline Interpreter

Additionally to the access to HElement functions, the commandline interpreter
provided by HANNEE features control structures (for, while, if...else con-
structs), the definition of user-defined functions and local variables, inclusion
of nested batch files, system calls, access to system environment variables,
and many other convenience functions. In the following short demonstration,
HANNEE is started in console mode,

fieres@botanik:~> hannee -c

Welcome to the Hannee Console!

H->

a new SortingAlgo is instantiated,

44 CHAPTER 2. WORKING ENVIRONMENT

(a)

(b)

Figure 2.6: Automatically generated graphical representation of the example algo-
rithm defined in listings 2.1 through 2.6. (a) (Sub-) HGroups are selected in the left
area of the window. Parameters of the selected HGroup are displayed to the right. (b)
Defined actions are invoked in the main menu. A context-menu is available for each
HGroup, providing copy/paste functionality among other things.

2.1. SOFTWARE 45

H-> set sortalgo new SortingAlgo()

its children are listed,

H-> sortalgo children

Groups:

HeapSort

Values:

method

compression

column

order

and a few things are done with it:

H-> sortalgo compression = true

H-> sortalgo method = "HeapSort"

H-> sortalgo HeapSort numHeaps = 2

H-> sortalgo sort()

The commandline interpreter can be run either in interactive mode as shown
above or in batch mode from a script file. Script files can be invoked from
the interactive prompt, from the GUI, or scripts can passed to HANNEE as
commandline parameters:

fieres@botanik:~> hannee -b myscript.txt

A more detailed documentation of the commandline syntax and a func-
tion reference can be found in the file commandline doc.pdf in the han-
nee++/docs/ directory.

Network Access via Http and Telnet

A running instance of HANNEE can act as a network server, providing con-
trol via IP. The network interface has been designed to rely only on standard
software on the client side, so no special application has to be installed on the
terminal machine. The following commands set up HANNEE as a server:

fieres@botanik:~> hannee -c

Welcome to the Hannee Console!

H-> new Httpserver() connect()

Listening for connections on port 2080

H-> new CliServer() connect()

Listening for connections on port 2000

H->

Of course, the server modules can also be set up in GUI mode or directly from
C++ code.

A remote console session is initiated simply by opening a telnet session on a
specific network port to the computer running HANNEE (default port is 2000).
Since the usual commandline interpreter (p. 43) is involved, the remote console

46 CHAPTER 2. WORKING ENVIRONMENT

HANNEE

C
o

n
tr

o
l

A
P

I

H
E
l
e
m
e
n
t

li
b

ra
ry Http

Server

Console
Server

Network

Commandline Interpreter

Figure 2.7: Network interface. The server modules communicate with the HElement
library via the control API and the commandline interpreter. On the remote side,
standard client software, as present on almost every PC, is used.

is, from the user’s view, effectively the same as is this software was run locally
in console mode.

Connecting via the Http protocol is evenly simple. Just direct a web
browser to the computer running HANNEE on port 2080. Figure 2.8 shows
the web representation of our SortingAlgo example.

Besides enabling remote control (which can be essential if the software runs
on an embedded system without an own terminal), the network access can
be used to create a duplicate user interface. To see why this may be useful,
consider the situation in which the regular user interface (console or GUI) is
blocked because an active calculation takes much longer than expected. Usu-
ally the only chance is to kill the program, losing all the results so far. If, how-
ever, network access is enabled, a new user interface is quickly created allow-
ing the user to call a possible interrupt function, or at least to save settings and
results to disk before shutting the program down. Each network connection
runs in an own thread, so it is not affected by the main thread being blocked.

2.1. SOFTWARE 47

Figure 2.8: The Http interface allows to control the software with a standard web
browser.

48 CHAPTER 2. WORKING ENVIRONMENT

128 inputs

6
4

 o
u

tp
u

ts

digital/analog converters

64x128

array
synapse

Figure 2.9: The neural network prototype chip “HAGEN” (micro-photograph). Each
of the four synapse arrays constitutes a single-layer perceptron fully connecting 128
inputs to 64 outputs. Neural computations are carried out by analog electronics.

2.2 Hardware

2.2.1 The HAGEN Chip

The neuro chip used in this thesis is a prototype implementation of a general
array-based analog VLSI5 architecture [54]. The chip, named by the acronym
HAGEN (Heidelberg AnaloG Evolvable Neural network), is divided into four
synapse arrays, each containing 64 binary threshold neurons, computing their
output according to

O = θ

(

∑
i

wi Ii

)

(cf. eq. 1.11) (2.1)

where θ(·) is the step function. A neuron threshold t, as present in equa-
tion 1.11, is not explicitely defined, but it can be be realized by using one of
the regular inputs as a constant bias. The neurons of one array share the same
128 binary inputs, forming a fully connected single-layer Perceptron. The 8,192
synapses of each array are laid out in a 64 x 128 array (see Figures 2.9 and 2.10,
as well as Figure 1.16 on p. 27 for more detail).

The neural computations are carried out by analog electronics. The idea is
to take advantage of simple laws of physics, e.g., the Kirchhoff laws for cur-
rents, to perform the calculations, rather than employing the complex machin-
ery of a digital processor. That is why analog circuits can be designed to require
less chip area compared to digital solutions doing the same calculations. For
the HAGEN chip this pays off in a high synapse density. Moreover, analog im-

5Very Large-Scale Integration

2.2. HARDWARE 49

Inputs

O
u

tp
u

ts

Synapse Array

Outputs

Inputs

(a) (b)

Figure 2.10: One synapse array is equivalent to a fully connected single-layer net-
work. a) Hardware schematic. b) Equivalent “usual” abstract network representation.
The hardware system features on-chip and off-chip configurable feedback connections
(dotted lines) which allow for time-discrete recurrent operation. In this thesis however,
only feed-forward networks are considered.

plementations are usually more economic in terms of power dissipation (see
also section 1.4).

As a major drawback of analog computing, the results are usually not exact
due to device variations and statistical noise influencing the computation re-
sults in unpredictable ways. In order to avoid the accumulation of errors, the
analog computations are confined within the synapse arrays. Input and output
connections are interfaced digitally, and the analog synaptic weights are gen-
erated by digital-to-analog converters on the chip. Thus, all communication
outside the synapse array is digital, ensuring data integrity while still exploit-
ing the advantage of fast and highly integrated analog computing units. The
analog circuits in the computing arrays

In order to make the architecture scalable, the network operates at a con-
stant frequency, with the outputs of all neurons being updated synchronously
once each network cycle. For setting up multi-layered or recurrent networks,
some of the outputs can be fed back to inputs of the same or of a different array
via physical on-chip, or virtual off-chip, configurable feedback lines. In such
synchronously updated networks, a feedback connection introduces a time de-
lay of multiples of a network cycle. All hardware feedbacks within the chip
have a delay of one cycle. External inter-chip connections can be set up with
delays of arbitrary multiples of one cycle.

Operation Principle

Figure 2.11 illustrates the operation principle of the analog neuron computa-
tions. The figure displays the block diagram of one neuron, corresponding to
one row of a synapse array. The main idea is that the inhibitory and excitatory
activations are summed as currents in the two electric lines Ipos and Ineg. A
comparison of the two signals in the neuron body circuit determines the out-
put state of the neuron.

The synapses act as current sinks, connected either to the Ipos or the Ineg

line, depending on the sign of the synaptic weights. If the input signal is off,
the sink is connected to a third line, Ipark to keep the synapse circuit at its

50 CHAPTER 2. WORKING ENVIRONMENT

R pos R neg

Vc

negI

Ipos

Ib
pos negIb

negI

Ipos

parkI

Ipos

negI

−

+

Comparator

Vdd

M Mnegpos

fr
o

m
 s

y
n

ap
se

s

Bias current sinks

body circuit

128 synapse circuits

Voltage−
controlled

current sink

Input signal

Weight sign

Weight capacitor

Figure 2.11: Operation principle of the the analog neuron computations in the HA-
GEN chip. (After [54])

operating point. The current sink is implemented as a current memory. The
controlling capacitor is charged during the programming phase such that the
a current proportional to the modulus of the weight value is sustained.

In the neuron body circuit, the resistors Rpos and Rneg convert the inhibitory
and excitatory current into voltages which are compared in order to determine
wether the neuron should fire or not. Two equal bias currents Ib keep the body
circuit at its working point even if no input synapse is active. The cascode tran-
sistors M decouple the comparator from the large capacitances of the current
lines and thus enables faster operation.

2.2.2 Distributed Operation of Multiple Chips

HAGEN’s modular block-based design and its digital interface make the ar-
chitecture well scalable. Larger scales can be realized either by building a new
chip with more or larger network arrays, or by using several of the existing
chips in combination. The latter path is followed by some members of the re-
search group who developed a platform for the distributed operation of large
networks using up to 256 neural net chips in parallel [7, 13]. The system both
extends the capabilities of the current HAGEN chip and is flexible enough to
be used with future chips of various kinds.

The central components of the parallel system are highly integrated net-
work modules (Figure 2.12), each containing all necessary components to op-
erate one neural network chip: programmable logic, a local CPU, memory, and
the HAGEN chip itself.

In order to use the network modules in parallel, groups of 16 are connected
via a high-speed backplanes. Since the HAGEN network chip accepts digi-
tal inputs and produces digital outputs, the data can be transported by digital
communication technologies. This way, the outputs of one chip can be fed to
another one on a different network module, each for example implementing

2.2. HARDWARE 51

Digital
support
circuitry

Network module

High−speed network (to other network modules)

Figure 2.12: Parallel operation of multiple HAGEN chips. Each single chip resides on
a compact network module featuring digital support circuity, including memory and
a small power-PC processor. A high-speed network carries neural network data and
configuration data between up to 16 connected modules.

one layer of a larger network. The connectivity has been carefully designed
in order to maintain a continuous signal stream necessary for the smooth op-
eration of a distributed neural network. Figure 2.13 shows a fully equipped
backplane residing in its rack-mounted case. The distributed hardware opera-
tion does not play a central role in this thesis. Nevertheless, the possibility of
distributing networks over parallel units should be kept in mind when think-
ing about future applications of the HAGEN architecture.

52 CHAPTER 2. WORKING ENVIRONMENT

Figure 2.13: The distributed system with 16 network modules mounted on a backplane
in a 19” rack. For the experiments presented in this thesis, a different system with only
a single HAGEN chip was used.

Chapter 3

A Neural Network for Object
Recognition

3.1 Neuron Model

Using a simple threshold neuron model is one of the approachess for realiz-
ing the high synapse density, evaluation speed, and low power requirements
found in the the HAGEN hardware system (section 2.2.1). Binary signals can
be conveniently and reliably transmitted, and the multiply-accumulate opera-
tions for the dot product between the weight vector and the binary input data
boil down to conditional additions. Moreover, a threshold activation function
can be realized by simple, fast, and reliable electronic circuits.

While offering advantages for the hardware implementation, a threshold
neuron model does not necessarily imply restrictions for possible applications:
In principle, more elaborate, e.g., continuous valued, neuron models can be ap-
proximated by ensembles of binary neurons (see [58]). Moreover, in the special
case of convolutional neural networks, there is evidence that a simple threshold
model might in fact be sufficient for object recognition (cf., section 1.1.5). Nev-
ertheless, a threshold activation function imposes certain restrictions on the
applicable training methods. Since a step function lacks a meaningful deriva-
tive, well-proven gradient-based methods like back-propagation cannot be ap-
plied. Most other supervised and non-supervised automated training methods
reported in the field of convolutional networks assume continuous neuron out-
puts and therefore cannot be applied without heavy modifications as well (cf.,
section 1.3). Developing a new training method suited for convolutional net-
works of threshold neurons is one of the main contributions of this thesis.

All neurons in the proposed convolutional network compute their output
according to

O = β (w · I− t) , (3.1)

where w = [w1, . . . , wN] and t are the neuron’s weights resp. threshold,
I = [I1, . . . , IN] are the current input values Ii ∈ {−1, 1}, and β(x) is the bipolar
step function (1 for x > 0, −1 otherwise). The hardware architecture featured
by the HAGEN chip uses {0, 1} as possible neuron states. This is no contra-
diction to the bipolar {−1, 1} neurons used in the formulas, since by a simple

53

54 CHAPTER 3. A NEURAL NETWORK FOR OBJECT RECOGNITION

5x5

Hidden
layer S1

Hidden
layer C1

Hidden
layer S2

Hidden
layer C2

Input
layer

Output
layer

45

3x3

150x7x7

30x28x28
30x14x14 150x14x14

1x28x28

11

11

Hyper Column

Figure 3.1: Detailed network topology. The network consists of the input layer, four
hidden layers, and one output layer. Layers are locally connected. Shown layer dimen-
sions and convolution kernel sizes refer to the MNIST experiments.

transformation of the weights and thresholds both neuron types can be con-
verted into each other (see section 6.2.1). Before transferring a trained network
onto the hardware, the weights and thresholds are converted accordingly.

3.2 Topology

The network developed in this thesis is a straight-forward implementation of
the general scheme of convolutional networks (section 1.2). It consists of the
input layer, four hidden layers, and one output layer, as shown in Figure 3.1.
Of the four hidden layers, two are recognition layers (or S-type layers), and
two are blurring layers (C-type), arranged in alternating order. The alternating
feature-extraction and sub-sampling stages carried out by the two layer types
enable invariant recognition, as explained in section 1.2.5. Each network layer
is divided into a number of equal-size feature planes which are regular grids
of neurons. A group of neurons from different planes within the same layer,
located at the same grid position, is referred to as a hyper column. The neurons
in a given hyper column receive input connections from the same local neigh-
borhood of neurons in the preceding layer (which we call their input region),
but are each tuned to detect a different feature.

All hyper-columns within a given layer are identical with respect to their
neurons’ synaptic weights (weight sharing), while receiving inputs from shifted
input regions, depending on their own grid position. In order to compute
cells at the layer border, two different strategies are applied: For the hand-
written digits (section 4.1.1), parts of the input region falling outside the pre-
vious layer’s dimensions are padded with the background value (-1). For the
traffic sign images 4.1.2, where pseudo line-endings occur at the image border,
border neurons in the S-layers are discarded. C-layers still use the the padding
technique.

3.3. TRAINING 55

S-layers. The purpose of an S-layer plane is to detect a specific feature. In
the current implementation, the input region of an S-layer neuron is chosen to
be a square portion of the hyper column grid in the previous layer. The side
length of the input region, denoted by dS, is uniform within a layer, but can
generally differ between layers S1 and S2. S-layer neurons connect to to all the
planes within their input regions, thus being able to combine features found
in preceding stages to find more complex features. The synaptic weights are
set by an unsupervised clustering process, driven by training data (details in
section 3.3.1).

C-layers. C-layers consist of the same number of feature planes as present in
the preceding S-layer. In contrast to S-layers, which are fully connected to their
input region, C-neurons receive input from corresponding planes only. All
weights of a C-neuron are fixed to 1. Such a uniform convolution kernel results
in spatial blurring of the previous S-layer’s activation pattern. The threshold
is set to a constant value TC ≥ 1, being the same for all planes in a layer, but
chosen separately for each of the two C-layers. The constant TC specifies the
neural sensitivity. The shape of the C-layer’s input regions are circles with
diameter dC.

In addition to blurring, C-layers subsample the spatial resolution of the
layer grid by a scaling factor α. This corresponds to transforming concrete,
local information to abstract, location-invariant information. Sub-sampling is
applied in the following way: First, a virtual full-size C-layer is constructed,
and then a fraction of the grid rows and columns is removed. For instance, at
a scaling factor of α = 1/2, each 2nd row and column is removed.

Output layer The output layer is fully connected to the last C-layer and is
trained in a supervised fashion to distinguish the desired image classes. The
coding scheme relating the firing pattern to image classes is chosen differently
for the two tested problems (details in section 3.3.2). From the topological point
of view, the output layer is just another S-layer with a 1 x 1 hyper column
“grid”, and an input region size equal to the dimensions of the previous layer.
The correspondence between planes (here: single neurons) and learned object
classes depends on the chosen coding scheme (see section 3.3.2).

3.3 Training

3.3.1 Hidden Layers: Self-Organization by Clustering

Of the hidden layers, only the S-layers are subject to training. The C-layers
have their weights fixed to 1, corresponding to a uniform blurring kernel (see
section 3.2). Training proceeds bottom-up, i.e., layer S2 is trained after the
training of layer S1 is complete. Assume that an S-layer consisting of K fea-
ture planes is to be trained. Because of the weight sharing policy by which all
neurons in a plane are equal, only the weights of one prototype hyper column
are identified which is duplicated to the full layer dimensions after training.

Given a training image and having evaluated all preceding layers, there is
one input vector to each hyper column in the trained layer. (Remember: in
S-layers, all neurons within a hyper column receive the same input vector.)

56 CHAPTER 3. A NEURAL NETWORK FOR OBJECT RECOGNITION

(a) (b)

Figure 3.2: Schematic visualization of the clustering process. Dots represent the input
vectors I , located on a hyper sphere, crosses represent the weight vectors wk. Input vec-
tors are clustered around typical shape features. (a) Before training, wk are initialized
with random members from I . (b) After training, wk have settled in cluster centers.

The dimension of this vector is the number pf pixels in the input region times

the number of feature planes in the preceding layer. We use the notation I
j
x,y

for the input vector to the hyper column at grid position (x, y), resulting from

training image j. Let I := {Ij
x,y/||Ij

x,y||} be the union set of all (normalized)
input vectors for all training images and all positions. These vectors lie on a
unit hyper-sphere in the input space, and, since the training images contain
the objects to be recognized, the vectors are likely to be clustered around shape
features which are typical for these objects and which can be recognized in that
layer. Consequently, the proposed training method identifies K clusters in I
(remember, K is the number of feature planes) and the cluster centers are used
as the weight vectors of the K neurons in the prototype hyper column. Figure
3.2 illustrates the idea. This consideration does not depend on certain shape
features to appear always at the same positions in the training images, since
I includes data from all grid positions. Input vectors where all components
equal -1 are not considered for clustering, since they are not assumed to contain
meaningful features.

A variation of the K-Means algorithm is used for clustering (see e.g. [24]
or [39]). The original version of this algorithm assumes that data points are
distributed in space like the sum of K Gaussians, where the positions of the
Gaussians are unknown. The positions of the Gaussians are also called “clus-
ter centers” in this context. The K-Means algorithm identifies the cluster cen-
ters maximally consistent with the given data set. The data we are interested
in lies on the surface of a hyper-sphere, so we choose the angle between two
vectors as the distance measure (abandoning the straight K-Means which uses
Euclidian distance). In detail, the procedure is as follows: At the start, the clus-
ter centers wk, k = 1 . . . K, are initialized with vectors randomly drawn from
I . Then, repeatedly, the following two steps are performed in each training
epoch:

1. For each vector I ∈ I , assign I to the cluster k̃ the center of which has the
smallest angle to I (k̃ = argmaxK

k=1(I ·wk)).

3.3. TRAINING 57

Reject

Accept
Accept

Reject

Large threshold Small threshold

Figure 3.3: A neuron’s threshold determines its selectivity. Bold arrows depict the
optimal stimulus for one sample neuron in the input space. Dashed arrows represent
candidate input vectors. Only input vectors within the acceptance region make the
neuron fire.

2. Update each cluster center wk to be the center of mass of all vectors being
assigned to the kth cluster. Re-normalize wk to unit length.

This variation of the K-Means algorithm is equivalent to competitive Hebbian
learning first described by Rumelhart 1985 [50] (see also section 1.3.3).

The algorithm stops if either only a small fraction (0.5%) of patterns had
their cluster assignments altered in the previous epoch or a maximum of
epochs (100) has elapsed. Experience collected during the experiments sug-
gests that the exact definition of the termination criterion is not very critical.

Interestingly, the clustering process requires only a comparably small num-
ber of training images. An evaluation of the performance of the trained net-
works using varying training set sizes is included in section 4.2.3.

Neuron Thresholds

The described training method identifies the weight vectors for the S-neurons,
but does not specify their thresholds. In other words, the optimal input vector
is given but the maximum allowed deviation from this vector still activating
the neuron remains to be specified (cf., Figure 3.3). Choosing high selectivities
(large thresholds) may prevent the network from responding to objects which
differ slightly from the learned prototype (bad generalization), choosing the
thresholds too low will decrease the network’s discrimination power. Finding
the thresholds for which the network performs optimally is a non-trivial task.
Extensive methods to adjust the thresholds in a similar convolutional network
were studied previously [35].

In this thesis, the neuron threshold t for S-neurons is set to a fraction of the
respective neuron’s maximally achievable activation:

t = TS ∑
i

|wi|. (3.2)

The meta parameter TS equal for all planes within a given layer. It is defined
separately for each of the two S-layers. TS does not need to be specified with
excessive accuracy in order to achieve good results (cf., Table 4.1).

58 CHAPTER 3. A NEURAL NETWORK FOR OBJECT RECOGNITION

3.3.2 Output Layer: Supervised Perceptron Learning

The output layer is a set of linear classifiers, trained in a supervised manner
where for each training image the desired output of every neuron is given. Two
different coding schemes for mapping the image class to an activation pattern
are used in this thesis.

Pairwise classifiers. Each output neuron is, trained to discriminate only two
classes. For n pattern classes, and considering every possible combina-
tion of two classes, there are (n2− n)/2 output units. When evaluating an
unseen pattern, each unit votes for one of the two classes it was trained
with. The class receiving the most overall votes wins. This voting scheme
is applied for the digits network (section 4.1.1).

Ensemble voting. For each of the n image classes, m neurons are trained to
distinguish this class from all the other classes, making an overall num-
ber of n · m neurons. Due to the stochastic nature of the training, the m
neurons of the same class will develop sightly differently. In the recogni-
tion phase, each neuron votes for the class is was trained with, either with
1 or with 0. The class receiving the most overall votes wins. This voting
scheme is applied for the traffic sign network network (section 4.1.2).

In both coding schemes, whenever two or more classes receive an equal
amount of votes the respective image is counted as misclassified.

Training is done using the well-known Perceptron learning rule, where
after each pattern presentation, a neuron’s weights and threshold v =
[w1, . . . , wN, t] are updated according to:

v←
{

v−OJ, if O is incorrect
v, if O is correct

, (3.3)

where J = [I1, . . . , IN,−1] is the current input vector plus an additional con-
stant component to account for the bias t in v, and O is the neuron’s current
output. Here, the weight vector dimension N equals the total number of neu-
rons in the last hidden layer (C2). The training patterns are presented in ran-
dom order and the procedure is terminated if the output is correct for a pre-
defined number of consecutive pattern presentations, or if a preset number of
iterations has passed.

Note that no explicit normalization step is involved in the training. The
weights and t are allowed to grow without constraint. However, as the length
of v in (3.3) increases, its change in direction will tend to decrease since vectors
J of fixed length

√
N + 1 are added in each iteration. Only after the entire

training process, v is re-normalized to unit maximum norm since the hardware
implementation requires weights bounded to [−1, 1].

The Perceptron rule is guaranteed to converge if the data to be learned is
linearly separable. For the large networks used in the software simulations,
convergence is always observed. When working with restricted network sizes
on the hardware, techniques are applied for dealing with oscillating solutions
(section 6.5.1, p. 107).

3.4. IMAGE PREPROCESSING 59

3.4 Image Preprocessing

Convolutional networks operate directly on raw pixel data. Elaborate pre-
processing methods are not necessary (only simple operations like scaling and
color normalization are commonly applied). However, the threshold network
used in this thesis requires binary input, so, grey scale images must be con-
verted into a binary representation before they can be processed. Two different
methods are applied:

Threshold segmentation In the experiments with hand-written digits good
results are obtained by simply applying a threshold to the original grey scale
images at half the maximum grey value. Pixels with grey value greater than
128 are regarded as black (binary value 1), pixels below this level are assigned
white (value -1). Additional experiments with varying threshold levels are
reported in section 4.3.1.

Hard edge detection For other pictures, such as the investigated pho-
tographs of traffic signs, an obvious background-object segmentation is not
possible. Additionally, the photos exhibit varying illumination conditions. In
this case, the images are first normalized to the full grey value range [0..255].
Then they are processed by a 5 x 5 Gaussian smoothing kernel and, subse-
quently, a 3 x 3 Laplacian filter. This Laplacian-of-Gaussian technique works
as a contrast-based edge detector [23]. The result of the Laplace filter is further
thresholded in order to obtain binary images. The same threshold value of 5
was used for all pictures in the described experiments.

3.5 Meta Parameters

In the above description of the network topology and the training methods,
several values remain unspecified. These are meta parameters defining the
details for a concrete network implementation. The meta parameters needed
to specify one adjacent S/C layer pair are summarized in Table 3.1.

Meta parameters are adjusted by a meta training process. This usually
involves performing several training runs with different meta parameter set-
tings, and choosing the meta parameters which yield the best results on the test
data. Depending on the nature of the meta parameters, a separate validation set
might be required for optimizing the meta parameters in addition to the test
set which is then only used to assess the classification performance of the final
system. When doing the meta training directly on the test set, one can run into
the problem that by the meta optimization, the system is tuned to perform well
on the test set, but will fail on new, unseen, data. In the reported experiments, a
validation set was used for the first benchmark problem (hand-written digits),
but in the second benchmark (traffic signs), meta optimization was done on the
test set due to the lack of sufficient training data.

Several systematic meta training techniques were developed. Eventually,
the last method described below (which is manual adjustment) yielded the net-
works reported in this thesis.

60 CHAPTER 3. A NEURAL NETWORK FOR OBJECT RECOGNITION

K The number of feature planes per layer (the same for
both the S and C layer)

dS For the S-layers, the input region is a square of hyper-
columns of size dS × dS

dC C-neurons have a circular input region with diameter
dC

TS The threshold parameter defining the threshold for S-
neurons (see eq. (3.2))

TC The threshold of C-layer neurons

α The scaling factor for sub-sampling the hyper column
grid in C-layers (0 < α ≥ 1)

Table 3.1: Meta parameters for one hidden S/C layer pair.

Systematic parameter sweeps. The most straight-forward and reliable
method to find the optimum parameter settings is a systematic sweep. The
parameter space is discretized into a grid and for each grid point, the system
is trained and tested. In order to statistically judge the differences between dif-
ferent parameter settings, several training-and-validate runs are conducted for
each grid point. This method yields a comprehensive picture of the parameter
space, and is easy to implement [20].

However, for this thesis, systematic parameter sweeps are not practical: If
only 3 discrete values of each of the 16 meta parameters (8 per S/C layer pair)
were to be tested, and for each grid point, 3 training runs were conducted, cov-
ering all possible parameter combinations would take approximately 15,000
years of computing time (3 × 316 hours), given that one training run takes
roughly an hour.

On the other hand, for a small subset of the parameters, this technique is
reasonably applicable. In Figure 4.11, results are shown for varying the number
of feature panes in the two S-layers.

Evolutionary optimization. Introductions to evolutionary and genetic algo-
rithms are given in the book [39] or the thesis [22]. For the particular parameter
search needed here, the genetic approach is applied as follows: For each meta
parameter PI , I = 1, ..., Q, a set of possible values PI is defined by heuristic rea-
soning and previous experiences (typically 2 ≤ ||PI || ≤ 10). Then, a randomly
initialized population of 10 individuals is evolved using single gene mutation,
no crossover, and 1-individual elitism. The fitness of one individual is given by
the average validation error of three independent training-and-validate runs.
This approach is consistently observed to converge at similar parameter sets af-
ter a reasonable number (50-100) of generations. However, since the evaluation
of the networks in software takes a long time (the MNIST data set consists of
70,000 images), a few days of computing time are necessary for meta training.

3.5. META PARAMETERS 61

Cyclic optimization along parameter axes. This approach is based on a sim-
ple iterative method found in [46]. Like in the evolutionary approach, a set
of possible values is defined for each meta parameter. Then, cyclically, every
parameter is optimized in turn:

1) For J = 1 to Q

• initialize PJ with a random element from PJ.

2) For J = 1 to Q

• Run weight training and validation for all PJ ∈ PJ while keeping
the other PI, I 6= J fixed.

• Replace PJ by that value ∈ PJ which yiels the best validation result.

3) Go to 2)

Manual adjustments layer by layer. In this approach, the two layer pairs
S1/C1 and S2/C2 are optimized separately by hand. The idea is to adjust each
layer pair such that, after weight training according to section 3.3.1, it trans-
forms the input data into a representation more easy to classify than the input
data itself. The error of a simple linear classifier was used as a measure of how
easy data is classifiable.

First, a temporary 10-class linear classifier directly connected to the input
layer is trained, yielding a (rather large) classification error E0. Then, the same
linear classifier is connected to the layer C1 and the meta parameters in layers
S1 and C1 are manually adjusted such that, after weight training of these lay-
ers, the classifier yields a good performance (classification error E1). Thereby,
comparing the classification errors E1 and E0 is a convenient hint for judging
whether layers S1 and C1 really transform the image data into a more abstract
representation. After this, the same procedure is repeated with the temporary
classifier connected to layer C2 and varying the meta parameters of layers S2
and C2 while keeping those of layers S1 and C1 fixed.

This manual method was in fact the one yielding the network settings re-
ported in the experimental chapters. The reason is not that the other meth-
ods were deemed inferior, but that external factors demanded a quick solution
which prohibited the use of one of the computationally time-consuming meth-
ods above. Also, for verifying the benefits of the developed training method,
strictly optimal meta parameters are not necessary.

For the two considered test problems meta settings were found which
decrease the linear classifier’s error in the first and second S/C layer pair
(E0 > E1 > E2). In the time spent it was not possible to find settings for an
additional, third, layer pair (layers S3 and C3) to further simplify the data. All
tested settings yielded E3 ≥ E2. For this reason it was obstained from using
networks with more than four hidden layers.

62 CHAPTER 3. A NEURAL NETWORK FOR OBJECT RECOGNITION

Chapter 4

Results With Ideal Neurons

4.1 Two Benchmark Problems

The methods developed in chapter 3 are verified on two test recognition prob-
lems. One is based on a publicly available data base of hand-written digits, the
other involves classifying photographs of traffic signs taken by the author. The
images are available on request.

All the experiments in the two following chapters are based on software-
simulations. This way, the properties of the developed algorithms can be tested
in a controlled setup, without the additional particularities of the hardware
system.

4.1.1 Hand-Written Digits

The recognition of hand-written digits is one of the most-reported applica-
tions of convolutional networks [11, 41, 31, 37]. In order to provide a means
of comparing the algorithms developed in this thesis with prior art, the pub-
licly available MNIST data base of hand-written digits [40] is used as the main
benchmark. It contains 70,000 28 x 28 pixel grey-value images of the hand-
written digits “0” through “9” from hundreds of different writers. Samples are
shown in Figure 4.1. There exists a standard partition into training and test
sets, provisioning 60,000 images for training and 10,000 for testing.

Classification performances of various machine learning approaches are
known for this data set. Figure 4.2 lists some of the reported test errors. The
test error specifies the percentage of test images wrongly classified after the
system was trained with the training set. More “high scores” can be found on
the web site http://yann.lecun.com/exdb/mnist [40]. Unfortunately, most
publications do not provide information about the uncertainty in the measured
recognition rates. E.g., it is unclear whether the authors report average recog-
nition rates or just the result of only one single training run. A comment in the
review paper [32] suggests that the uncertainty of the values in Figure 4.2 is
about 0.1 percent points.

For use in this thesis, the images are converted from grey scale to binary
by applying a threshold at half the maximum pixel value (cf., section 3.4). For
finding the optimal meta parameters of the used network, the 60,000 training

63

64 CHAPTER 4. RESULTS WITH IDEAL NEURONS

Figure 4.1: Sample images from the MNIST data base of hand-written digits
(threshold-binarized)

images are split further into a training set (50,000) and a validation set (10,000),
each with equal distribution of digit classes. With the meta parameters found
to perform best on the validation set (Table 4.1), 100 networks are trained with
the patterns of the training and validation set combined. The output layer
consists of 45 neurons, corresponding to a 10-class pairwise linear classifier
described in section 3.3.2.

Due to the size of the MNIST data set and to save computing time, only
a subset of the training images (200 per class) is considered for training the
hidden layers. Taking more training samples does not improve the results (cf.,
section 4.2.3). For training the output layer, however, all the 60,000 training
samples are used.

The average error rate obtained on the test set is 1.74%±0.10% over the 100
training runs (best network: 1.49%, worst network: 1.97%). Here, the error is

4.1. TWO BENCHMARK PROBLEMS 65

Linear class.

Pairwise lin. cl.

K−Nearest Neighb.

12.0

7.6

5.0

1000 RBF + lin. cl.

Support Vector Machine 1.1

3.6

3.3

4.7300−10 (MSE)

1000−10 (MSE) 4.5

Backpropagation 0.95

Linear classifiers

Non−neural techniques

Fully connected multi−layer perceptron

Convolutional neural networks

40 PCA + quadratic class.

3.05

2.95

300−100−10 (MSE)

500−150−10 (MSE)

1.6800−10 (CE)

5%0 % test images wrongly classified

1.26 +/− 0.02 *
Best setup in this

thesis (binary neurons)

Figure 4.2: Reported test errors for the MNIST data base. Only methods are consid-
ered which do not include sophisticated image preprocessing and which do not use ar-
tificial data set expansion. RBF=Radial basis function network, PCA=Principal com-
ponent analysis, MSE=square error cost function, CE=cross-entropy cost function.
Values (except the last) are taken from a review publication [32]. * see Section 4.3.3

66 CHAPTER 4. RESULTS WITH IDEAL NEURONS

1 15

16 30

Figure 4.3: Synaptic weights of the 30 neurons in a typical S1 layer after self-
organization (MNIST experiment). The 25 weights of each neuron are shown in a 5 x
5 grid according to their spatial arrangement. Grey-scale coding: black=1, white=-1.

given as the standard deviation within the ensemble.

In order to give an impression of how the applied training method yields a
hierarchical set of feature detectors, examples of detected features are shown in
Figure 4.3. The spatial distributions of the synaptic weights in the first network
layer (S1) of an arbitrary network are presented (other networks look similar).
The 5 x 5 weights of the 30 neurons are visualized in a grey-scale coded scheme,
(white=negative, black=positive). Obviously, oriented edges and lines are the
preferred stimuli in this network layer.

In the second recognition stage (layer S2), the plain weight values are incon-
venient to interpret. Instead, effective receptive field stimuli are shown for se-
lected neurons, i.e., image patches which cause strong activation. For this, the
internal activation (w · I in equation 3.1) of each neuron is recorded for 1,000
images. In Figure 4.4, for 30 selected neurons the five receptive field stimuli
are shown which evoke the strongest activations throughout the considered
data set. The network is the same as in Figure 4.3. Apparently, features charac-
teristic for digits (line-endings, loops, and other specific stroke segments) are
recognized in layer S2. Note that until this point, no explicit knowledge about
the classification task has entered the system. The investigations suggest that
the proposed method of feature extraction in the intermediate layers can be
very differentiated, such that—in the ideal case—the output layer merely has
to choose from the features presented to it.

In Figure 4.5, for one selected training run all misclassified images from the
test set are shown.

K DS TS DC TC α

MNIST

Layers 1-2 30 5 0.5 7 1 0.5
Layers 3-4 150 3 0.4 7 0 0.5
Traffic signs

Layers 1-2 25 5 0.7 11 1 0.33
Layers 3-4 100 3 0.6 11 3 0.33

Table 4.1: Meta parameter settings used in the experiments (cf., Table 3.1)

4.1. TWO BENCHMARK PROBLEMS 67

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

Figure 4.4: Detected features in layer S2 after self-organization (MNIST experiment)
for 30 selected neurons (of 150 total), five strongly activating receptive field stimuli are
shown. Neurons taken from the same network as in Figure 4.3

68 CHAPTER 4. RESULTS WITH IDEAL NEURONS

Figure 4.5: All 176 (out of 10,000) misclassified test images for one selected train-
ing run. Small numbers show the class predicted by the neural network. A dash (-)
indicates that two or more classes received an equal voting count.

4.1. TWO BENCHMARK PROBLEMS 69

Figure 4.6: Sample images from the data base of traffic sign photographs. Top: original
grey scale images. Bottom: after pre-processing (see section 3.4).

4.1.2 Traffic Signs

The hand-written digits exhibit a high degree of variations in shape and stroke
width, but the digits are all roughly the same size and are centered in the image.
Also, a clear discrimination between background and object is given. In order
to illustrate that the training method works invariant of position and scale, and
also in the presence of noise, the convolutional network approach is applied to
photographs of traffic signs. 400 pictures of 4 classes of traffic signs (100 per
class) were taken and cropped to 75 x 75 pixels dimension, while making sure
that the images still show variances in shift and scale.

The images are pre-processed by an edge detector as described in section
3.4. The preprocessed images are 73 x 73 pixels in size. Figure 4.6 shows ex-
amples of the original and preprocessed images. The data set is split into two
parts (300/100) serving as training and test data sets, respectively. Splitting
was done randomly with the constraint that both sets contain equal class dis-
tributions. The network meta parameters are shown in Table 4.1, bottom two

70 CHAPTER 4. RESULTS WITH IDEAL NEURONS

1 15

16 25

Figure 4.7: Synaptic weights of the 25 neurons in a typical S1 layer after self-
organization (traffic sign experiment). The 25 weights of each neuron are shown in a 5
x 5 grid according to their spatial arrangement. Grey-scale coding: black=1, white=-1.

rows. Parameter optimization was done on the test set. Although it is under-
stood that this is not 100% clean, introducing an extra validation set would
have decreased the already small training set even further.

Here, the pairwise linear classifier used for the MNIST images does not pro-
duce optimal results, probably due to the smaller number of image classes. In-
stead, a simple ensemble voting is employed where each output unit is trained
to separate one given class from all the others (cf. section 3.3.2). Per class, ten
units are trained, making an overall number of 4× 10 = 40 output units. On
the test set, voting among these units determines the answer of the network. If
two or more classes receive an equal number of votes, the image is supposed to
be misclassified. Training and evaluation of the network is conducted 20 times.
The average, best, and worst achieved classification errors are 2.2%, 0.0%, and
4.0%, respectively. The uncertainty in a single measurement is 1.0%.

The features detected in the S-layers as a result of the unsupervised learn-
ing procedure are visualized in Figures 4.7 and 4.8 in the same manner as for
the MNIST experiment. The same network, arbitrarily selected from the 20
conducted runs, is shown in both figures. Notable is the obvious similarity be-
tween Figure 4.7 and Figure 4.3, since they result from different training input.
Lines and edges of various orientations seem to be universal low-level image
features.

Figure 4.9 displays the images which were misclassified in at least one of
the 20 training runs.

MNIST Digits Traffic Signs

Training images 60,000 300
Test images 10,000 100
Training Runs 100 20
Avg. Test Error [%] 1.74±0.10 2.2±1.0
Best Network 1.49 0
Worst Network 1.97 4.0

Table 4.2: Summary of benchmark tests. Shown results for MNIST are not the best
ones obtained. They merely serve as a basis of reference for further evaluations. Given
deviations of avg. test errors correspond to the uncertainty of a single measurement.

4.1. TWO BENCHMARK PROBLEMS 71

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

Figure 4.8: Detected features in layer S2 after self-organization (traffic sign experi-
ment). For 30 selected neurons (of 100 total), five strongly activating receptive field
stimuli are shown. Same network as in Figure 4.7

72 CHAPTER 4. RESULTS WITH IDEAL NEURONS

⋄ (7x)
▽ (4x)
- (3x)

- (9x)
▽ (2x)
STOP (2x)

- (3x)
▽ (2x)
⋄ (2x)

▽ (1x)
- (1x)

▽ (1x)
⋄ (1x) - (2x)

STOP (1x) ▽ (1x) - (1x)

△ (1x) - (1x) - (1x)

Figure 4.9: The 12 (out of 100) test images which were misclassified in at least one of
the 20 training runs. Symbols to the right of each picture indicate the classes the image
was wrongly assigned to, and the number of times the misclassifications occurred. A
class of “-” means two or more classes received an equal number of votes.

4.2. PROPERTIES OF THE TRAINING METHOD 73
w

01
·I

n

1

0

w
89
·I

n

9

8

ŵ01 · In ŵ89 · In

Figure 4.10: Visualization of the high-dimensional feature space produced by the hid-
den network layers after self-organization. Each point represents a feature vector cor-
responding to one input image from the MNIST test set. Left: Feature vectors In of
images showing “0” or “1”, Right: Feature vectors In of images showing “8” or “9”.
In the feature space, the image classes are separable by a linear decision border (dashed
line).

4.2 Properties of the Training Method

The developed training method—self-organization in the hidden layers, and
Perceptron learning in the output layer—was shown in the previous sections
to produce satisfying results. The primary objective in developing this method
was its ability to train large networks of threshold neurons, as provided by the
present hardware system. However, the algorithm turns out to have more in-
teresting properties, among which are its robustness to computation errors and
its ability to be operated in a chip-in-the-loop fashion which will be examined
in detail in the next chapter, p. 81. Some other properties will be be highlighted
in this section. Only the MNIST data set is used for demonstrations. The traffic
sign problem is a poor basis for thorough evaluations due to the low size of its
training and test data sets. In the experiments, the setup was as in Table 4.1,
except when otherwise stated.

4.2.1 Self-Organization Produces Linear Separability

The hidden layers can be viewed as a feature extraction stage which transforms
the input images into a high-dimensional feature space. Ideally, the images
are transformed into a representation in which the different image classes are
linearly separable from each other. This basic principle is similar to the one
underlying support vector machines or liquid computing approaches [36, 59],
where, likewise, a pre-computing stage is used to transform the input data into
a linearly separable form.

From the good classification performance measured in the presented net-
works it can be inferred that an appropriate feature representation is found by
the self-organization process. Nevertheless, it is interesting to directly visual-
ize the transformed image data in the feature space. For this, the rather high-
dimensional feature vectors being produced by the last hidden layer must be
projected onto a 2-dimensional surface. In order to get the optimum impres-
sion of the linear separation, the projection is computed using the weight vec-
tors of the (trained) output layer because those represent the directions of max-

74 CHAPTER 4. RESULTS WITH IDEAL NEURONS

imum separation. A given neuron in the output layer of the digit-recognizing
network is responsible for discriminating only between two of the 10 image
classes (see section 3.3.2). The weight vector of the neuron trained for the dig-
its p and q shall here be denoted by wpq. In Figure 4.10, left side, the feature
vectors of images showing “0” and “1”, produced by an arbitrarily selected
trained network, are projected to the surface spanned by w01 and ŵ01, where
ŵpq is the component-wise absolute value of wpq (ŵi

pq = |wi
pq|). The the second

axis of projection is actually arbitrary. The particular choice of ŵpq yields vi-
sually nice plots. Figure 4.10, right side, shows the same plot for image classes
“8” and “9”. In both plots, the decision border defined by the respective output
neuron is depicted by a dashed line. Each plot shows only a random sub-set
(25%) of all test images available for the respective pair of digits for the purpose
of clearity.

The plots demonstrate nicely the linear separability of the image data in the
feature space. Note that separation between “0” and “1” is very pronounced,
while a decision between “8” and “9” does not seem 100% clear. This observa-
tion is in accordance with the intuitive impression that the digits “1” and “0”
are quite different in their appearance, but the digits “8” and “9” have many
shape features in common. These two examples have been selected because
they represent the upper and lower end of of the degree of linear separability
found in the network.

4.2.2 Network Size: The Bigger the Better

In neural networks, the number of free parameters can be controlled by the the
number of neurons in the network. The number of neurons must be adjusted
such that the network is on the one hand complex enough to capture the ab-
stract patterns hidden in the training data, but on the other hand it must be
simple enough to avoid fitting against noise (so-called overfitting). Think of
fitting a straight line, represented by 100 noisy (x, y) points, with a polynomial
of degree 100. The resulting curve will fit perfectly, but abstract knowledge
about the data is not discovered.

These considerations are often a critical factor in machine learning [17]. In
the presented system, overfitting is not supposed to be a major issue: The
output layer is a linear classifier, which is already the most simple classi-
fier known. The hidden layers are trained by self-organization, so strictly
speaking, over-fitting cannot occur. However, the number of feature planes
defines the granularity of the input space clustering: Too few planes won’t
develop discrimination power, too many planes will produce features which
are not abstract enough: In the extreme case, when the number of feature
planes approaches the number of distinct training patterns, each pattern will
be “grouped” into its own separate feature class, and no generalization will
take place at all.

Experiments are conducted to measure the influence of the number of fea-
ture planes in the hidden layers. The other meta parameters are kept as in
Table 4.1. Figure 4.11 shows the results. Data points are the average of 10
training runs, except for the three rightmost points, where only 5 runs were
conducted due to the large network size. The error bars correspond to the
uncertaincies of the average values. In general, more feature planes produce
equal or better generalization performance. The turning point, where more

4.2. PROPERTIES OF THE TRAINING METHOD 75

T
es

t
er

ro
r

[%
]

Feature planes S1

Fea
tu

re
 p

la
nes

 S
2

 10 20 30 40 50 60 300

 150
 75

1.5

1.7

1.9

2.1

2.3

2.5

Figure 4.11: Test error vs. number of feature planes in the hidden layers S1 and S2

T
es

t E
rr

or
 [%

]

output neurons per class pair

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 7 6 5 4 3 2 1

Figure 4.12: Test error vs. the number of output neurons per class pair.

feature planes start to impair generalization, is not reached in the tested cases.
Hereby it should be noted that largest networks tested (60, resp. 300, feature
planes in layers S1, resp. S2) are already huge (also compared to convolutional
networks reported in literature). They nearly approached the capacities of the
software training system.

In the output layer, the number of neurons is varied by simply replicating
the entire layer. Since the final output is obtained by voting, the votes of the
additional layer(s) can just be thrown in. During the stochastic training (ran-
dom initialization + random pattern order), the neurons will develop sightly
differently in each layer, and errors will cancel out statistically by virtue of the
voting process.1 The sizes of the hidden layers, and all other meta-parameters,
are kept constant at the values in Table 4.1. For each setting, 10 training runs

1This is in fact a combination of the two voting schemes described in section 3.3.2

76 CHAPTER 4. RESULTS WITH IDEAL NEURONS

Training images per class

T
rain

in
g

 tim
e (m

in
)T

es
t

er
ro

r
ra

te
 [

%
]

*

 0

 20

 40

 60

 80

 100

 120

 140

 160

1.65

1.7

1.75

1.8

 1.85

1.9

1.95

 0 400 600 800 1000200

Figure 4.13: Influence of the number training patterns in the hidden layers. 3: Error
rate on the test set (MNIST digits), ×: real training time needed for the hidden layers.
Measured x-axis values are 5, 10, 50, 100, 200, 400, and 800, in this order. *These
runs were executed on a different, slightly slower, computer.

are conducted. The average test errors, and their uncertaincies, are given in
Figure 4.12. The results are very interesting: Even numbers of output layers
consistently produce worse results than odd numbers of similar size. This phe-
nomenon is not completely understood. It can probably be ascribed to the fact
that a stale situation can occur with an even number of voters while with an
odd number a decision is always enforced. A software bug as the reason is
very unlikely since two independent implementations yield the same result.
The general trend however, more output neurons producing smaller test er-
rors, is obvious.

The simple rule “bigger is better” matches well the paradigm of massively
parallel analog computing, where additional network size imposes only few
space and power cost, and no time cost at all. As long as the network training
is done in software, a limit is given by the computing resources available.

4.2.3 Size of the Training Data Set

For the supervised training in the output layer, more training examples gener-
ally lead to a better test performance (cf., section 4.3.2). On the other hand, the
self-organization process in the hidden layers turns out to require only very
few training samples in order to produce a powerful feature extraction stage.
The diagram in Figure 4.13 shows the dependence of the test error of the dig-
its network to a varying number of training samples. The hidden layers are
trained using the number of training images indicated on the x-axis. Then, the
entire training set (60,000 images) is propagated through the already trained
hidden layers, yielding the training data for the output layer. Each data point
is the average of 10 training runs. Error bars correspond to the uncertainties of
the mean values.

The test error reported in section 4.1.1 (1.74%, indicated by dashed line)
is achieved at 200 training images per class. Adding more training data does
not improve the performance as the achievable classification error seems to

4.3. STARTING POINTS FOR PERFORMANCE IMPROVEMENT 77

saturate quite early. In fact, a significant deviation from the assumed optimum
at 1.74% can only be observed when decreasing the number of training samples
to 10 per class (as few as 100 training images altogether). This result suggests
that, when a new type of images is to be processed, the feature extraction stages
implemented by the hidden network layers can be re-trained with only a few
patterns, and thus very quickly, to adapt to the new task.

4.2.4 Scalability

The proposed training method has nice scaling properties compared to the fre-
quently used back-propagation algorithm. With back-propagation, the train-
ing data must be passed forward, and the errors must be passed back, through
the entire network many times, in a highly iterative manner. The number of iter-
ations needed until convergence depends on the number of layers and feature
planes in the network. In contrast, the method described in this thesis requires
only a single forward pass, and no backward pass at all.

Moreover, for the hidden layers, the cost for the actual training process
(clustering) is independent of the layer dimensions (i.e., the size of the input
images), since only one representative hyper-column is trained. With back-
propagation, on the other hand, the complexity of the training is at least pro-
portional2 to the number of image pixels.

4.3 Starting Points for Performance Improvement

The error rate achieved on the MNIST digits data set does not quite reach the
best rates reported for convolutional networks trained by back-propagation.
The best value found in the literature is 0.95% ([40], and see Figure 4.2),
only considering purely neural solutions not including eleborate data pre-
processing, e.g., slant normalization.

Tuning the system for a minimum error rate is not the primary goal of this
thesis. Rather, the focus is on the general properties of the training methods
and the applicablility to an analog hardware implementation. Nevertheless,
three example approaches of enhancing the network performance are tested
experimentally. The obtained results suggest that there is room for further im-
provements, given the need and the time.

4.3.1 Using Multi-Valued Inputs

The original MNIST data base consist of grey-scale images with continuous
pixel values in the range from 0 to 255. The threshold network presented in
this thesis however expects strictly back and white pixels. Thus, the images
are binarized before feeding into the network which implies a loss of infor-
mation. For comparison, a continuous-valued linear classifier trained using
MSE (mean square error function) was found to achieve about 14.5% error
rate on the binarized images in contrast to reported 12% for the unprocessed
grey-value images in the literature ([40], and see Figure 4.2). The drawback

2Super-linear dependence can arise due to the higher number of iterations required until con-
vergence.

78 CHAPTER 4. RESULTS WITH IDEAL NEURONS

grey values
0...255

Input layer

Layer S1

th = 0

th = 64

th = 128

th = 196

Figure 4.14: Preserving grey-value information. The original image is binarized with
four different thresholds. All four binary images are presented to the network.

in performance compared to the best back-propagation networks (which use
continuous-valued neurons), may hence be partly a result of the binarizing
step.

Therefore an attempt has been undertaken to preserve at least some of the
information present in the grey value images. The idea is that, principally,
the input layer is not restricted to one single plane. By using n planes instead
of one in the input layer, n bits of information can be provided at each pixel
position. An efficient method to feed binary coded integer values into a hard-
threshold network is described in [59], but for the proof of principle we use
a simple thermometer code here. The setup, including four input planes, is
shown in Figure 4.14. Each of the input planes represents a binarization of the
original image for a different threshold. Effectively, the grey scale information
is preserved at a 5-level resolution (0, 1, 2, 3, or 4 bits per pixel can be on).

Ten training runs are conducted with the rest of the setup kept as in Ta-
ble 4.1. The measured mean error rate of 1.67%±0.03% (Figure 4.16, middle
bar) is slightly better than for the binary only input (1.74%±0.01%). However,
the difference is only about 2 standard deviations, and thus a significant im-
provement cannot be strictly proven.

4.3.2 Expanding the Training Set

It has been stated that the MNIST training set may be too small to infer gener-
alization properly, which gives rise to expand the data set by applying spatial
deformations to the original training images [32, 60]. In the current experi-
ment, a deformation based on Gaussian displacement kernels is chosen. In
particular, each image from the MNIST training set is subject to the following
transformation: For each pixel position r′ = (x′, y′) of the transformed image,
the corresponding position in the source image r is computed according to

r = r′ +
G

∑
g=1

dg exp
(

−||r′ − rg||2/σ2
)

, (4.1)

4.3. STARTING POINTS FOR PERFORMANCE IMPROVEMENT 79

→ →

→ →

→ →

→ →

→ →

Figure 4.15: Expanding the training data set by elastic transformations. Shown are
examples of the original and transformed images (binarized versions).

where rg and dg are the positions and maximum displacements of each of the
G Gaussian kernels, and σ is the (uniform) kernel width. The pixel r′ in the
transformed image is assigned the grey-value of the original image at position
r. Grey-values at non-integer pixel positions are inferred by bi-linear interpo-
lation. The constants dg and rg are drawn from a uniform distribution, sepa-
rately for each image to be transformed. Every image from the training set is
transformed, doubling the training set from 60,000 to 120,000. The parameters

used are d
x,y
g ∈ [−3, 3] (3 pixels maximum displacement), r

x,y
g ∈ [0, 28] (every

position on a 28x28 image is a possible kernel center), σ = 8, and G = 3 (3
Gaussian kernels used). These values were chosen ad-hoc by visual judgment
of the transformation results, and have not been subject to optimization. Defor-
mation is applied to the original grey-value MNIST images before binarization.
Examples of the transformed images are shown in Figure 4.15. When training
the output units using the expanded training set, the average classification er-
ror on the test set goes significantly down to 1.48% (Figure 4.16).

4.3.3 Using Larger Networks

The systematic variation of the network size in section 4.2.2 has shown that,
as a general rule, larger networks produce better results. A limit is given at
present by the capacity of the computing equipment. The largest networks
evaluated during this thesis have 60 feature planes in layers S1/C1, and 300
feature planes in layers S2/C2. A 7-fold pairwise classifier was used as the
output layer. All the other meta-parameters are kept as in Table 4.1. This net-
work topology, consisting of altogether 132,615 (partly identical) neurons, has
82,500 free parameters in the hidden layers and 4,630,815 free parameters in the
output layer. In 10 independent training runs a mean classification error on the
test set of 1.26%± 0.02% is measured (Figure 4.16), which is also the best value
for the MNIST digits data set produced in this thesis.

4.3.4 Suggestions for Further Optimization

As stated above, tuning the absolute recognition rate is not within the scope
of this thesis. Nevertheless, three approaches for performance improvement

80 CHAPTER 4. RESULTS WITH IDEAL NEURONS

1% 2%
Error rate

Expanded train. set

Multi−val. input

Plain network

Larger network

1.48%

1.74%

1.67%

1.26%

Figure 4.16: Improving classification performance. Top bar: No improvement applied.
Remaining bars: Performance improvement as described in sections 4.3.1–4.3.3.

were presented on the previous pages. In case better performance is desired in
future work, this final section provides some more ideas of where to start with
optimizations.

A further enlargement of the training set appears promising. The technique
of adding artificial training patterns was frequently used in successful methods
before (see e.g., [60]). In section 4.3.2, the size of the training set was only
doubled. Other authors reported enlargements by a much larger factor [27, 28].

A search for better meta-parameters is probably worthwile. The actual pa-
rameters used in this thesis (4.1) are not guaranteed to be optimal (cf., sec-
tion 3.5).

Another action worth trying is adding more hidden layers (i.e., a third or
fourth S/C layer pair). In this thesis it was not possible to find meta-parameters
for a possible third layer pair which would result in a better classification per-
formance than when using just two layer pairs (see section 3.5).

Chapter 5

Robustness Against
Computation Faults

5.1 Error Compensation With Chip-in-the-Loop

Training

Before operating a neural network on the analog hardware, the pre-computed
weights are loaded onto the chip.1 Due to substrate imperfections and inherent
device variations the network response generally differs from the one expected
from exact computation. Some of the variations can be compensated for by
dedicated calibration circuitry on the hardware (see section 6.2.3). However,
the focus of this chapter is to evaluate the effects of assumed hardware faults
on the application, and to show ways to cope with them from the application
side.

For the following investigations it will be assumed that variations in the
weight values constitute the dominating distortion effect in the considered
hardware architecture. More specifically, we assume that the actual effective
weights on the chip differ from the explicitely programmed weights, according to
a distortion model to be specified. In this chapter, two chip-in-the-loop training
techniques are presented which take these weight perturbations into account
during training. Chip-in-the-loop training approaches are particularly suited
for compensating perturbations that do not vary over time, so called fixed-
pattern errors. Temporal noise, i.e., computing errors which occur and vanish
in an unpredictable manner, cannot explicitly be adapted to. However, a chip-
in-the-loop method may learn to simply ignore signals exhibiting an especially
large amount of noise.

The proposed chip-in-the-loop methods do not require quantification of the
hardware errors nor any other explicit calibration routine. Although the sug-
gested methods were developed for the specific convolutional network intro-
duced in the previous chapters, the ideas should be re-usable in other situ-
ations without much modification. This is especially assumed for the chip-
in-the-loop version of the Perceptron learning algorithm discussed in section
5.1.2, which cares for the inaccuracies in the output layer. The other method

1A dedicated on-chip learning circuitry is not present.

81

82 CHAPTER 5. ROBUSTNESS AGAINST COMPUTATION FAULTS

(section 5.1.1) deals with computation errors in the hidden network layers (S1
through C2).

5.1.1 Hidden Layers

As detailed in section 3.3, network layers are trained sequentially. Weight train-
ing (i.e., clustering) is based on the respective output of the already trained
previous layers. In this constellation, it is straight forward to incorporate the
hardware into the training, namely by using the hardware (in contrast to soft-
ware calculations) for passing the training data through the already trained
layers: After training a given layer, the trained weights are transfered onto the
hardware, and the chip’s output is used as training input for the consecutive
layer. This way, succeeding layers can adapt to the systematic imperfections of
the hardware; or, more precisely: higher-level features are extracted from the
actual, distorted, output rather than from the ideal one.

Since the hardware is included in the training loop, we refer to the de-
scribed procedure as the ”chip-in-the-loop” training method. In contrast,
loading a completely software-trained network onto the chip is called “pre-
computed weights” of “pure software training” during the rest of this thesis.
The chip-in-the-loop training is expected to be more robust against computa-
tion errors of the hardware.

Please note that, unlike some other chip-in-the-loop techniques, the method
just described is not highly iterative. The hardware is only used once per layer,
after (software-)training has completed, for passing the training data forward
to the next layer. Here is the entire procedure step by step:

1. Train layer S1 (in software); 2. Evaluate layer S1 and C1 in hardware2; 3.
Train layer S2 (in software) using the hardware output of layer C1; 4. Evaluate
layer S2 and C2 in hardware; 5. Train the output layer (see below) using the
hardware output of layer C2.

5.1.2 Output Layer

The straight-forward method just described does not work for the output layer
because no further layer exists which could adapt to, and thus compensate for,
possible errors. Thus, the output layer must be configured such that the effective
weights on the hardware (in contrast to the programmed weights) are optimal.
To achieve this, the Perceptron learning algorithm is applied in a highly iter-
ative chip-in-the-loop fashion: Let v̂ be the effective weight vector after the
hardware has been configured with the programmed weights v. Then, the up-
date rule (3.3) is applied, with the difference that the actual output O is now
computed on the hardware:

O = O(v̂(v)). (5.1)

If the algorithm converges, v̂ will be optimal. Note that no explicit knowledge
about v̂ is necessary, i.e., there is no need for quantitative error analysis.

Note that in contrast to Perceptron learning in pure software, convergence
of the algorithm it is not guaranteed, even if the data are linearly separable.

2Remember, C-layers do not require training.

5.2. RESULTS 83

This is a result of the distorted decision hyper-plane: It is generally not per-
pendicular to the weight vector any more; in fact the decision border cannot
even be assumed to be a straight plane at all. For example, a malfunctioning
synapse could cause the corresponding programmed weight to grow infinitely
if one ore more patterns keep being classified incorrectly due to this synapse
failure. However, no ill behavior is observed in the presented experiments if
the data are linearly separable. For non-separable cases, the algorithm seems
to behave similar to the software version where v̂(v) = v (see experiments sec-
tion 6.5.1). In the experiments with the artificially degraded hardware system,
this algorithm produces unexpected results (section 6.5.2).

5.2 Results

The influence of hardware errors and their compensation by the chip-in-the-
loop training methods are tested in a computer simulation. Simulations allow
to evaluate the effects of different error modes in isolation, and results are un-
affected by the particularities of a concrete hardware substrate. Experiments
on the real hardware are presented in chapter 6.

Like in section 4.2, only the MNIST data set is used for the measurements.
The traffic sign problem is poor a basis for thorough evaluations due to the low
size of its training and test data sets.

Three different modes of synaptic errors are artificially applied to the pro-
grammed weights:

“Noise” All effective synaptic weights are subject to adding normally dis-
tributed random offsets to the programmed weights.

“Delete” A given fraction of all weights is randomly selected and set to 0,
corresponding to disabled synapses.

“Clamp” A given fraction of all weights is randomly selected and set to the
extreme positive or negative value (−1 or 1, each 50% chance), corre-
sponding to clamped synapses, e.g., as caused by electric shortcuts.

These three error types are investigated separately. Each error type is applied
in turn to the hidden layers only, the output layer only, and, in a third setting,
to the entire network. In a first series of experiments, all these settings are eval-
uated when applying the synapse errors to a completely trained network. This
corresponds to loading a complete software-trained network onto the chip, and
is referred to as pre-computed weights. In a second series of experiments, the
chip-in-the-loop training method is employed, as detailed in section 5.1. In
particular, the synaptic errors are applied to a network layer immediately af-
ter having trained this layer (hidden layers), respectively after each Perceptron
learning epoch (output layer). Except for distorting the weights, all network
settings are the same as in Table 4.1.

In the real hardware implementation (section 6.2.2), the hidden C-layers are
not evaluated on the analog neuro chip. Because of their special connectivity
they are not as dedicated for parallel implementation as the S-layers, plus, the
simplicity of calculation needed (only 1-bit synaptic resolution) makes digital
(hardware-) implementations the appropriate choice. Therefore, when talking

84 CHAPTER 5. ROBUSTNESS AGAINST COMPUTATION FAULTS

about the “hidden layers” in this section, really only the hidden S-layers are
referred to. In particular, the C-layers are not subject to distortions.

Before applying the weight errors, the weight vectors are scaled such that
the strongest weight has an absolute value of 1, and the thresholds are realized
by one or many additional constant inputs with weights of absolute value not
larger than 1, in order to match the real hardware setup (cf., section 6.2.2).

The results are shown in Figures 5.1–5.3. Each data point represents the
average classification error of ten independently trained networks. For clarity,
all diagrams use the the same y-axis scale. As a result, some points with a
very high classification error are not displayed. Additional tables including all
measurements are given on page 123.

5.3 Discussion

As a general result, the chip-in-the-loop training methods seem to compensate
quite well for all the tested types of synaptic errors. However, it should be
noted that even without chip-in-the-loop training, which corresponds to spon-
taneous synaptic errors not seen during training, the performance degrades
gracefully (Figures 5.1–5.3, top diagrams). For example, even with 10% ran-
domly deleted synapses in all layers, still over 90% of all images are correctly
classified.

Among all error types, “clamp” seems to have the most serious effect on
the network. This is plausible since, unlike the other error types, clamping has
a high probability to turn a synapse from maximum exhibitory to maximum
inhibitory (or vice versa), thus reversing its sense.

It is interesting to observe that the hidden layers show relatively high sen-
sitivity to the deletion of synapses, but they can cope quite well with large
amounts of noise, while the output layer behaves the opposite way. This fact
can be understood from the different training strategies applied: The hidden
layers are trained by correlation-based learning, which is known to tend to pro-
duce extreme synaptic weights [34]. Figure 5.4, left hand side, shows a typical
weight distribution in the hidden layers as observed in the trained networks.
In such a bimodal weight distribution, adding noise will not easily destroy
the overall behavior of a neuron, while setting synapses to zero is in contrast
very likely to strongly affect a neuron’s behavior. On the right hand side of
Figure 5.4, a typical weight distribution in the output layer is depicted. Here,
most weights are close to zero, so deleting synapses will with a high probabil-
ity affect synapses which do not contribute much to the classification decision.
On the other hand, adding random offsets will likely alter a synapse’s strength
by a large relative factor given the width of the added noise exceeds the width
of the very narrow weight distribution.

The low sensitivity of the output layer to synapse deletion might also be
promoted by the large number of partly redundant connections to neuron:
Each output neuron receives several thousand inputs that are highly corre-
lated, because by virtue of the blurring C-layers neighboring pixels on a feature
plane tend to be in an equal state.

5.3. DISCUSSION 85

Noise (pre-computed weights)

Hidden layers

Output layer

All layers

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.02 0.05 0.1 0.2 0.5 1

T
es

t
er

ro
r

[%
]

Noise width [frac. of max. weight]

Noise (chip-in-the-loop training)

Hidden layers

Output layer

All layers

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.02 0.05 0.1 0.2 0.5 1

T
es

t
er

ro
r

[%
]

Noise width [frac. of max. weight]

Figure 5.1: Classification error with noisy synapses. Top diagram: Synaptic errors
are applied after training. Bottom diagram: Synaptic errors are incorporated in the
training (chip-in-the-loop approach). The horizonal line corresponds to network perfor-
mance with ideal synapses (1.74%± 0.01%). Error bars correspond to the uncertainty
of the mean. Data points are connected merely for clarity.

86 CHAPTER 5. ROBUSTNESS AGAINST COMPUTATION FAULTS

Delete (pre-computed weights)

Hidden layers

Output layer

All layers

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.02 0.05 0.1 0.2 0.5 1

T
es

t
er

ro
r

[%
]

Fraction of deleted synapses

Delete (chip-in-the-loop training)

Hidden layers

Output layer

All layers

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.02 0.05 0.1 0.2 0.5 1

T
es

t
er

ro
r

[%
]

Fraction of deleted synapses

Figure 5.2: Classification error with deleted synapses. Top diagram: Synaptic er-
rors are applied after training. Bottom diagram: Synaptic errors are incorporated in
the training (chip-in-the-loop approach). The horizonal line corresponds to network
performance with ideal synapses (1.74%± 0.01%). Error bars correspond to the un-
certainty of the mean. Data points are connected merely for clarity.

5.3. DISCUSSION 87

Clamp (pre-computed weights)

Hidden layers

Output layer

All layers

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.02 0.05 0.1 0.2 0.5 1

T
es

t
er

ro
r

[%
]

Fraction of clamped synapses

Clamp (chip-in-the-loop training)

Hidden layers

Output layer

All layers

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.02 0.05 0.1 0.2 0.5 1

T
es

t
er

ro
r

[%
]

Fraction of clamped synapses

Figure 5.3: Classification error with clamped synapses. Top diagram: Synaptic er-
rors are applied after training. Bottom diagram: Synaptic errors are incorporated in
the training (chip-in-the-loop approach). The horizonal line corresponds to network
performance with ideal synapses (1.74%± 0.01%). Error bars correspond to the un-
certainty of the mean. Data points are connected merely for clarity.

88 CHAPTER 5. ROBUSTNESS AGAINST COMPUTATION FAULTS

Hidden Layers Output Layer

Weight value

C
o

u
n

t
 [

re
la

ti
v

e
u

n
it

s]

−1 −0.5 0 0.5 1
Weight value

−1 −0.5 0 0.5 1

Figure 5.4: Distribution of synaptic weights typically observed in the hidden layers
and the output layer. Weights are forced to the interval [-1,1] by scaling each neuron’s
weight vector to unit maximum norm after training. Histograms include all weights
of one arbitrarily selected trained network.

5.4 Additional Result: Computing Without Algebra

The particular weight distribution observed in the hidden layers (Figure 5.4,
left) in conjunction with the strong robustness against weight perturbations
raises the question whether discrete weights that can only take extreme values
(-1, 0, +1) might be sufficient for efficient feature extraction.

Such rigorous weight quantization reduces a neuron’s task to calculate the
Hamming distance between the weight vector and the input vector which in
turn requires only most basic computing operations. A synapse with continu-
ous weight values in a continuous-valued network performs a multiply-and-
accumulate operation. In a binary-valued network with continuous weight
values, only the accumulate operation remains. Multiplication is replaced by
a hard condition: if input is active then accumulate. If further the weights lose
their continuous nature and are restricted to the discrete values {−1, 0, +1},
the synapses do not even need to perform a general accumulation of the form
a := a± b. Rather, only the special increment/decrement operation a := a± 1
must be performed, which is in fact basic counting: A neuron counts how many
of its inputs are equal to their corresponding weights. In the special case of the
first network layer, image pixels are pairwise compared to the pixels of a pro-
totype template.

An additional error mode “quantization” is tested where the weights of the
hidden layers are quantized using the following scheme:

w ←







+1 if w > 0.5
−1 if w < −0.5
0 else

.

Experiment Test Error [%]
No quantization (from sec. 4.1.1) 1.74± 0.10
Weight quantization 2.80± 1.06
Weight quantization (+ retraining) 1.80± 0.10

Table 5.1: Classification error with hard weight quantization in the hidden layers.
Given deviations are the uncertainties of a single measurement.

5.4. ADDITIONAL RESULT: COMPUTING WITHOUT ALGEBRA 89

Before quantization, the weight vectors are scaled such that the strongest
weight has an absolute value of 1, and the thresholds are realized by one
or more additional constant inputs with weights of absolute value not larger
than 1, like done in section 5.2.

Again, the quantization is applied either to a completely trained network,
or applied successively to each layer. In the latter case, consecutive layers,
including the output layer, are retrained with the patterns produced by the
quantized previous layer(s) (chip-in-the-loop approach). This time, only the
hidden layers are subject to quantization. Apart from the quantization, all net-
work settings are the same as in Table 4.1. Ten runs are conducted without
and with chip-in-the-loop training, respectively. The results in Table 5.1 con-
firm that the network performance is not severely affected by the quantization.
As expected, the performance loss is smaller when using the chip-in-the-loop
training approach.

In conclusion, a powerful feature extraction stage corresponding to the hid-
den layers of the evaluated network can be built without any algebraic com-
puting units except for simple counters. A massively parallel implementation
of such a system has the potential to provide enormous capacities in terms of
data throughput rate at only moderate space and power requirements.

90 CHAPTER 5. ROBUSTNESS AGAINST COMPUTATION FAULTS

Chapter 6

Hardware Implementation

The development of the methods described in the previous chapters was mo-
tivated by the aim of presenting an example of a feasible application for mas-
sively parallel analog computing in hardware. A particular prototype chip (see
section 2.2.1) was available for this thesis together with a PC-interfaced operat-
ing environment. In the course of this work, it turned out that a powerful im-
age recognition system requires more resources than present in the prototype
chip (section 6.3.1 “Size Limitations”). Nevertheless, as a proof of principle,
smaller networks were evaluated on the prototype hardware and compared
to equivalent software implementations. The absolute recognition rates pre-
sented at the end of this chapter in section 6.5 are therefore not comparable to
the rates reported in chapters 4 and 5.

6.1 General Approach

The considered hardware, introduced in section 2.2.1, uses a massively par-
allel, array-based architecture. Synapses are laid out in grids where a row of
synapses contributes to one neuron. Inputs are fed into the array along the
horizontal side, a column of synapses sharing the same input. A synapse ar-
ray of this kind implements a fully connected single-layer Perceptron with the
number of inputs equal to the array width and the number of neurons equal to
the array height (see Figure 2.10 on p. 49).

Figure 6.1 illustrates how one S-layer can be computed on such a synapse
array. Since all neurons in one hyper column receive the same inputs, it is a
natural choice to have the synapse array implement one hyper column. The
hyper-columns in one layer have identical weights, so the same synapse array
can compute all the hyper columns in one layer without the need of weight
reconfiguration. The used neuro chip resides on a main board with an FPGA1-
based controller and local memory implementing data buffers for input and
output data (termed “memory queues” in the Figure 6.1).

The chip features four separate synapse arrays consisting of 64 neurons
each. Thus, network layers with more than 64 feature planes must be dis-
tributed on multiple blocks. One possible chip configuration is shown in Fig-

1Field programmable gate array; configurable hardware logic

91

92 CHAPTER 6. HARDWARE IMPLEMENTATION

Memory
Queue

Memory
Queue

Feature 1

Feature 2

Feature n

Postsynaptic
S−layer

Synapse Array

1 2 3 n

D
et

ec
te

d
 F

ea
tu

re
s

Neuro−Chip

Presynaptic
C−layer

Assemble
input data

Feature vectors

Figure 6.1: Hardware-implementation of one S-layer. Local patches from the previous
C-layer are extracted and stored in the input memory queue. One after one they are
fed into the synapse array in form of linear bit patterns. All the n features of one hyper
column are computed simultaneously.

6.1. GENERAL APPROACH 93

10x bias 108x feature data 10x bias 108x feature data

10x bias10x bias 108x feature data 25x intput data

10x bias 115x feature data

Layer S1 Feature 12

Array 3

0

64

0 128

Array 4

0

64

0 128

0

64

0 128

Array 2

0

64

0 128

Layer S1 Feature 1

Layer S2 Feature 150Layer S2 Feature 120

Layer S2 Feature 61

Layer S2 Feature 1

Layer S2 Feature 60

Layer S2 Feature 51

Array 1

Output Layer Neuron 1

Output Layer Neuron 45

Figure 6.2: Example usage of the four synapse arrays for the digits network (12 fea-
tures in layer S1, 150 features in layer S2, 45 output neurons). In this configuration,
roughly 75% of the available chip area is used. In the experiments (section6.5), the
layout was slightly different.

ure 6.2. The arrays on the chip accept up to 128 inputs, corresponding to 128
synapses per neuron. This limit imposes additional restrictions on the imple-
mentable number of feature planes per network layer (see section 6.3.1).

The preparation of the data that is fed into the synapse array, termed “as-
semble input data” in Figure 6.1, is done in software. In terms of time cost, this
step does in fact constitute a major part of the processing chain (time measure-
ments on page 110).

The C-layers are not considered for analog hardware implementation for
two reasons. First, their sightly different connectivity (all neurons in one hyper
column receive different inputs) prohibits an adequate exploitation of the par-
allel array-based system. Second, the simplicity of the C-layer’s computation
(all weights equal 1) makes them a good candidate for a fast digital solution,
e.g. FPGA or ASIC2 based.

Most of the remaining computations take place in the hidden layers S1 and
S2: The two S-layers of the MNIST network specified in chapter 4 perform
8,526,000 multiply-accumulate operations for each input image. In compari-
son, the output layer only needs to do 330,750 such operations. Therefore, in
the results section 6.5, the case where only the S-layers are computed in hard-
ware and the output layer remains software-implemented, receives special at-
tention. Nevertheless, it is shown that, in principle, a hardware implementa-
tion of the output layer is also possible.

2Application-specific integrated circuit; custom micro chip

94 CHAPTER 6. HARDWARE IMPLEMENTATION

6.2 Implementation Details

6.2.1 Adjusting the Neuron Model

The HAGEN chip features binary neurons with unipolar data signals I, O ∈
{0, 1}. In contrast, in the previous chapters a neuron model with bipolar signals
I, O ∈ {−1, 1} was used. This slightly different neuron model was chosen
in the software simulations mainly for a simpler formulation of the training
algorithms. For instance, when using bipolar neurons, both the weights and
input data can be represented in the same vector space.

The unipolar and bipolar representations are equivalent and are easily
transformed into each other by an adjustment of the neuron threshold. To see
how this is done we will look at the same neuron in both the bi- and the unipo-
lar representation. Let

Ou, Iu
i , wu

i , tu be the unipolar output, inputs, weights and threshold,

Ob, Ib
i , wb

i , tb be their bipolar equivalents,
θ(x) be the unipolar step function (1 for x > 0, 0 otherwise), and
β(x) be the bipolar step function (1 for x > 0, −1 otherwise).

The output signal of the bipolar neuron then writes

Ob = β
(

∑ wb
i Ib

i − tb
)

. (6.1)

The relation between a unipolar signal Xu and its corresponding bipolar signal

Xb is
Xb = 2Xu − 1, (6.2)

as is easily verified. Applying this to Ib
i , (6.1) can be written as

Ob = β
(

∑ wb
i (2Iu

i − 1)− tb
)

(6.3)

= β
(

2 ∑ wb
i Iu

i −∑ wb
i − tb

)

, (6.4)

and, since β(x) = β(ax) for all constants a:

Ob = β

(

∑ wb
i Iu

i −
∑ wb

i + tb

2

)

. (6.5)

Using again (6.2) and (β(x) + 1)/2 = θ(x),

Ou = (Ob + 1)/2 = θ

(

∑ wb
i Iu

i −
∑ wb

i + tb

2

)

. (6.6)

Comparing (6.6) with the standard form of the neuron equation Ou =
θ(∑ wu

i Iu
i − tu) we arrive at the transformation formulas:

wu
i = wb

i (6.7)

tu =
∑ wb

i + tb

2
(6.8)

As a conclusion, before loading a trained network onto the chip, the neuron
thresholds must be adjusted according to (6.8). The weights can be reused
without any change.

6.2. IMPLEMENTATION DETAILS 95

6.2.2 Weight and Threshold Scaling

The chip’s circuitry has a technical limit for synaptic strengths which, in the
used control software, corresponds to programmed weights of ±1. In order
to attain maximum computation accuracy, the weights should be as large as
possible while at the same time not violating this limit. Throughout this thesis,
each weight vector is therefore normalized to unit maximum norm (i.e., |wi| ≤
1 for all i, while wi = 1 for at leat one i) before loading it onto the hardware.

The neurons considered in the previous chapters compute their activation
according to ∑ wi Ii − t, where wi are the weights and t is the threshold. On the
network chip the threshold is fixed to t = 0. Neurons with t 6= 0 are therefore
realized by an additional, constantly active input with a weight of −t.

When calculating the scaling factor for weight normalization, only the wi,
but not t is considered, resulting in possible values of |t| > 1 after normaliza-
tion. The reason for not treating the threshold as a regular weight in the scal-
ing procedure is again accuracy. The proposed training methods often produce
neuron configurations where |t| exceeds the modulus of the strongest regular
weight. Thus, incorporating t in the calculation of the scaling factor would de-
crease the effective resolution of the regular weights. The problem of large t
can be easily solved by reserving a few hardware synapses (typically 5-10) for
bias inputs. For example, a threshold value of t = n + a, where n ∈ IN and

a ∈ [0, 1), is then realized by setting the first n bias weights to +1, the (n + 1)th

weight to a and the rest to 0. A situation where |t| is larger than the number of
bias weights is resolved by adjusting the scaling factor for all weights until |t|
is equal as or smaller than the number of bias synapses.

Another limit for synaptic strength is given by the fact that non-linear be-
havior is observed for high total activations. The underlying reason is the lim-
ited dynamic range of the circuit comparing the summation currents Ipos and
Ipos (see section 2.2.1). In test measurements, a linear behavior is observed un-
til Ipos + Ipos ≈ 660µA. In the used setup, a weight with maximum strength
(w = ±1) produces a synaptic current of±22µA. Thus, the sum of the absolute
values of all weights must not exceed 30, or, in a formula: ∑ |wi|Ii + |t| ≤ Amax

with Amax ≈ 30. This inequality must be ensured by additional weight scaling.
In summary: Given Nb reserved bias inputs, a preliminary scaling factor γ1

is computed as

γ1 =

{

1/ maxi |wi| if |t|/ maxi |wi| < Nb + ǫ
(Nb + ǫ)/|t| otherwise

, (6.9)

accounting for the condition |wi| ≤ 1 and the bias issue. Then, in order to
ensure the linear regime, the final scaling factor is:

γ2 =

{

γ1 if γ1(∑ |wi|+ |t|) ≤ Amax

Amax/(∑ |wi|+ |t|) otherwise
, (6.10)

The weights are then scaled according to

wi ← γ2wi, for all i (6.11)

t ← γ2t. (6.12)

The constant ǫ ≈ 1 makes sure that enough room is left for additional bias
needed due to possible device variations (see next section).

96 CHAPTER 6. HARDWARE IMPLEMENTATION

6.2.3 Calibration of Fixed Offsets

The algorithms developed in this thesis are claimed to work in the presence
of unspecified computing errors in the synapses. Effects of variations in the
neuron body computation, which is basically the computation of the threshold
function θ(x), have not been studied since offsets in the switching point (ideally
at x = 0) can be accounted for by calibration as described in the following
section.

Neuron Offsets. The switching point of a hardware neuron on the proto-
type chip is generally not at ∑ wi Ii − t = 0, where wi are the effective synap-
tic weights, but rather at a value ϑ slightly less or greater than zero, which
we call the neuron offset. As a simple approach, one might suggest to mea-
sure this displacement for each neuron and compensate it by a dedicated bias
input which is constantly active and has a weight of −ϑ. The scheme de-
scribed in [22] does exactly this. It works well if only a few synapses per
neuron are used, but it turns out to fail when evaluating networks with a
large number of synapses neuron. From experiments done together with the
lab member Steffen Hohmann, it became clear that the neuron offsets are not
constant but they actually depend on the overall amount of synaptic weight
used: ϑ = ϑ(∑ Ii|wi|). According to the chip’s developer Johannes Schemmel,
a simple linear model is in good accordance with the hardware design (cf., Fig-
ure 6.3), where

ϑ = ϑ0 + γ ∑ Ii|wi|. (6.13)

In order to understand why, it is necessary to discuss details of the hard-
ware implementation. A synapse whose input is active (input value equals
1) draws a current proportional to the absolute value of its weight from one
of two neuron-global electric lines (see also Figure 2.11, p. 50). Synapses with
positive weights use one line, synapses with negative sign use the other. The
positive and negative portions of the internal neuron activation are thus accu-
mulated by the Kirchhoff current law, the sums being represented by the total
currents Ipos and Ineg. Further, ∑ Iiwi corresponds to Ipos − Ineg and ∑ Ii|wi| to
Ipos + Ineg. The total positive and negative currents are separately converted
into voltages and compared by circuitry schematically shown in Figure 6.3,
right hand side. Basically, two two resistors R convert the total currents into
voltages

Upos = Rpos Ipos,
Uneg = Rneg Ineg,

(6.14)

and a comparison of these two voltages determines the output state of the neu-
ron. The transistors M are support circuitry (“cascodes”) for decoupling the
comparator from the large capacitances of the current lines with the aim of
speeding up the network operation. The two equal bias currents Ib keep the
whole circuit in saturation even if no synapse is active.

The constant term ϑ0 in (6.13) corresponds mainly to device variations in
the current sinks I

pos
b and I

neg
b which are slightly unequal. Differences between

Rpos and Rneg contribute to the term being proportional to the total synaptic
activation ∑ Ii|wi|.

The gain γ in (6.13) is found to be in the order of only a few per cent (given
ϑ0 and wi are both measured in the same units, e.g. in synaptic least significant

6.2. IMPLEMENTATION DETAILS 97

posI + I neg

ϑ0

posI − I neg

Switching point ϑ

Rpos Rneg

negI b I b
pos

V cnegI

I pos

−

+

Comparator

V dd

M Mnegpos

fr
o

m
 s

yn
a

p
se

s

Figure 6.3: A neuron’s switching point is dependent on the total synaptic current.
Left: The variation of the switching point can be approximated by a linear model.
Right: Schematic of the neuron circuit (after [54])

bits). So, if only a small number of synapses are used (implying Ipos + Ineg

being small), the neuron offset is dominated by ϑ0. With growing synaptic
currents, as more synapses are activated, the variable term can be well in the
order of magnitude of ϑ0.

As a conclusion, a general compensation of the switching point is not possi-
ble by just adding a constant offset through a bias input. For full compensation,
a way to fine-tune the neuron circuitry would be additionally required. Unfor-
tunately, this feature is not present in the current hardware, but it can be added
in future implementations.

In this thesis, calibration is performed only using a constant offset, but
care is taken that the chosen bias value is optimal for the range of activation
produced by the data actually processed. Therefore, the measurement of ϑ is
not done with artificially created input vectors, but with input vectors corre-
sponding to real receptive fields from the training data. The following program
shows how offset calibration is done when loading a neuron onto the chip.

0) For loading a neuron defined by its ideal weights wi and threshold t onto
the chip, do the following steps:

1) Load the synaptic weights wi (excluding the threshold t) onto the chip
while reserving space for a few (say, n) bias inputs.

2) Take the input data set T the weights were originally trained with.

3) Divide T into two subsets T + and T − depending on the response
of the ideal neuron. Call this partition the desired classification.
For any programmed bias tchip ∈ [−n, n] we define errors E+ =

(number misclassified patterns from T +)/||T +||, and similarly E−.

4) By the method of nested intervals find a tchip such that |E+ − E−| is min-
imal.

If there exists a tchip for which the desired classification is reproduced, this tchip

will be found. Otherwise, the result is a suitable approximation of the desired
classification. For an ideal neuron without computing errors, and sufficiently

98 CHAPTER 6. HARDWARE IMPLEMENTATION

dense input data, one would get tchip = t. Sometimes, the data is perfectly
separable, but not dense (e.g., in the experiments with the traffic sign data on
page 109). Then, |E+ − E−| = 0 within a range of t− < tchip < t+. In such cases

we set tchip = (t+ + t−)/2.
The described calibration routine is applied for the neurons of the hidden S-

layers only, and for output neurons when loading pre-computed weights onto
the chip. When using the chip-in-the-loop training for the output layer, cali-
bration is implicitly performed by training algorithm.

The input data set T in the above calibration routine is usually very large,
since it consists of every possible input region for each input image. For ex-
ample, in the first hidden layer with an input image size of 28 x 28 and 1000
training images, there are 784,000 training patterns. In order to reduce the data
set to a processable number, duplicates are removed from T , and then, from the
remaining unique patterns, the 10000 patterns are kept which are most close to
the neuron’s desired decision border.

6.2.4 Optimizing Training Speed by Cumulative Weight Up-
date

The output layer is trained using the Perceptron learning rule. In its stochastic
form as described in sections 3.3.2 and 5.1.2, a weight update is done after
each training pattern seen. The algorithm can in principle be conducted also in
“batch” mode, where the weight updates are not immediately applied, but the
weight increments are accumulated over an entire loop through the training
set, and applied at once. If the training patterns are highly correlated3, the
stochastic method converges usually much faster than the batch version [61].

When using the stochastic method in the chip-in-the-loop version, the
weights would have to be updated after every training pattern processed. In
theory, all the 32,000 synapses of the network chip can be reconfigured in about
a tenth of a millisecond. Still, updating the weights after each single pattern is
not very efficient, due to the necessary data transfer to and from the hardware,
and other overhead associated with one network run. In practice, the maxi-
mum training speed can be achieved by evaluating a number of training pat-
terns at once (but less than the whole training set, as in the classic batch mode)
and then updating the weights with the accumulated modification: Let v be
the weight vector of the neuron to be trained. In each training epoch, U train-
ing patterns {Ji, i = 1 . . . U} are selected randomly from the training set, and
are evaluated. Then, the weight vector v is updated according to (cf., equation
(3.3)):

v ← v +
U

∑
i=1

∆i, where (6.15)

∆i =

{

−OiJi, if Oi is incorrect
0, if Oi is correct

. (6.16)

Here, Oi, the outputs for the patterns Ji, are all computed using the same (old)
weight vector. As a result, a weight update is necessary only every Uth pattern.
Therefore we call U the update interval.

3This is the case in the tested benchmarks. E.g., two instances of the digit “3” look very similar.

6.3. LIMITATIONS OF THE PROTOTYPE SYSTEM 99

R
ea

l t
ra

in
in

g
tim

e
[m

s]

Real time per pattern*

Real training time
Total # patterns

2.5 M

0

1.25 M

Weight update interval [# patterns]

T
otal num

ber of patterns

0

10000

20000

30000

40000

50000

10 100 1000 10000

Figure 6.4: Chip-in-the-loop Perceptron learning. The fat line shows the total training
time on the used hardware setup for one output neuron until convergence. A minimum
exists for weight update after every 100-1000 patterns. Dashed curve: Total number
of training patterns seen until convergence. Dotted-dashed curve: training time per
pattern (quotient of the two other curves). Spline interpolations are merely for a clearer
visualization. *For this curve, divide the figures on the left y-axis by 12,000.

The effects of the size of the update interval were tested for several output
neurons, all giving similar results. Figure 6.4 shows the real time until conver-
gence for one of the tested output neurons of the MNIST experiments. Also
shown (dashed lines) are the total number of patterns processed until conver-
gence, and the mean time spent per training pattern (computed as the quotient
of the two other curves). Apparently, more patterns are necessary when larger
update intervals are used, being in accordance with the assumption that the
stochastic update policy converges faster. On the other hand, with larger up-
date intervals, more patterns can be processed per second because the fixed
operation costs of the hardware carry less weight.

For the particular software/hardware setup used the total training time
seems to be minimal for update intervals between 100 and 1000 patterns.
Throughout the hardware experiments an update interval of 1000 is used.

6.3 Limitations of the Prototype System

The entire hardware system used in this thesis does not consist only of the
neuro chip HAGEN. It is a complex aggregate composed of a control PC, a
custom-made PCI board including a configurable logic chip as a controller,
specifically developed communication protocols, and a software programming
interface. The HAGEN chip itself is mounted on another daughter board con-
nected to the PCI board. The various hardware and software components in
their present state are the result of a research program conducted by many sci-
entists during the course of several years. This implies that many features of
the system are still in a preliminary state and that the usage is not as care-free as
one would expect from a commercially available, well documented, apparatus.

One of the shortcomings of the HAGEN chip—a missing calibration func-

100 CHAPTER 6. HARDWARE IMPLEMENTATION

tion for the neuron gain—has been already discussed in section 6.2.3. Here,
more aspects of the system are described, as far as they are related to the re-
ported experiments. Thereby it is understood that these issues can be resolved
by investing sufficient amounts of time and money. Since the aim of this thesis
is not to deliver a final, marketable product, but rather to evaluate the general
applicability of analog computing, the reported experiments were conducted
using the hardware system in its current state.

6.3.1 Size Limitations of the Chip

The neurons featured by the prototype chip can receive up to 128 input connec-
tions (section 2.2.1). This is still not enough for the large-scale networks used in
this thesis. Although, in principle, the used VLSI architecture allows chip im-
plementations with in the order of 103 inputs per neuron, in the course of this
thesis experiments with smaller networks were done on the existent prototype
chip. A similar, but larger, network chip might be manufactured in the future.
In this section it is described which layers are affected by the size limitations
and how the problem is addressed in the experiments.

Hidden Layers

The number of inputs to a neuron in layer S2 is defined by the size of its input
region and the number of feature planes in the preceding layer C1 (see Fig-
ure 3.1). Defining the minimum reasonable input region size to be 3 x 3 hyper
columns, the number of feature planes in layer C1 (and thus also in layer S1)
is limited to 14, corresponding to 3 x 3 x 14 = 126 inputs to a layer S2 neuron,
where 128 is the maximum supported by the chip. In fact, some spare inputs
are required for the bias (section 6.2.2) and calibration (section 6.2.3) which
further decreases the number of effectively usable feature planes to only 12.

The number of hyper planes in layer S2 is, similarly, limited by the num-
ber of inputs to the output neurons. However, this limitation is solved in the
output layer (see below). The next upper limit is given by the total number of
neurons present on the chip, which is in theory 256 (64 neurons in each of the
four arrays). However, the two left arrays tend to produce unpredictable out-
put. The reason could not be determined in the course of this thesis. It is not
even clear whether the error is rooted in the software interface, in the support
system, or in the neural network chip itself. So, in practice, only two of the four
synapse arrays are reliably usable in the current setup. Avoiding the first and
last rows of each array due to undesired border effects, the maximum number
of feature planes for layer S2 is 120.

Output Layer

Each neuron in the output layer possesses several thousand input connections.
Even a hypothetical larger implementation of the VLSI architecture might be
technically limited to 1,000-2,000 inputs per neuron [56], so the problem of re-
ducing the number of output connections is a general one, not only present for
the prototype chip. Instead of just reducing the number of feature planes in
layers S2 and C2, similar to section 6.3.1, we keep the all feature planes but ask

6.3. LIMITATIONS OF THE PROTOTYPE SYSTEM 101

for statistical methods to prune away unimportant connections from layer C2
to the output layer.

How can we reduce the number of data dimensions while keeping as
much information as possible? At the first glance, PCA (principal compo-
nent analysis) seems the appropriate out-of-the-shelf solution. PCA projects
N-dimensional data onto an M-dimensional subspace (M < N) spanned by
the M first eigenvectors of the auto-correlation matrix of the data set. Since the
eigenvectors are generally rotated with respect to the original Cartesian axes,
the components of the new M-dimensional data vectors are likely to be linear
combinations of the components of the original N-dimensional vectors. How-
ever, when working with the hardware, input components are expected to be
strictly binary ∈ {0, 1}, so any method involving arbitrary linear combinations
is not applicable.

Instead, we keep the original coordinate axes and throw away the N−M of
them which contain the least information. The following task must be solved:
Given J N-dimensional labeled training data

T = {(I1, c1), ..., (IJ, cJ)}, (Ij , cj) ∈ {0, 1}N × IN, (6.17)

where cj ∈ IN are the class labels, find the M components of {0, 1}N which are
most useful for recovering the cj if only Ij were given. Two methods have been
tested.

Simple ad-hoc solution. Intuitively, a component of the training data which
has a constant value (0 or 1) throughout the data set does not contain any use-
ful information. On the other hand, a component which assumes both binary
values may be more adequate, especially if it changes its value simultaneously
with cj. Based on these thoughts, the following ad hoc method of selecting
components was perceived:

1. Bring the sequence of training patterns T into a random order.

2. Traverse T while counting for each component of Ij how often it changes
its value. In other words, for n = 1...N,

countn :=
J−1

∑
j=1

∣

∣

∣
(Ij)n

− (Ij+1)n

∣

∣

∣
, (6.18)

where (Ij)n
∈ {0, 1} denotes the nth component of Ij.

3. Select the M components with the highest counts.

The random order of T ensures that consecutive patterns Ij and Ij+1 belong
with a high probability to different classes (assuming the number of classes is
much greater than 1). If T would be ordered by classes, a component fluctu-
ating randomly between 0 and 1 would produce a much higher count than a
component perfectly correlated with the class labels.

Mutual information. The mutual information (see e.g., [17]), between two
discrete random variables X and Y is a measure for the certainty in Y after

102 CHAPTER 6. HARDWARE IMPLEMENTATION

Number of inputs M

Mutual Information

Ad−hoc method

E
rr

o
r

ra
te

 0.1

 0.05

 0.02
 0.0174

 0.01
 0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.5: Decreasing the number of input connections to the output layer using two
different pruning methods (software simulations). In the original network the number
of inputs is 7350 per neuron, yielding a test error of 1.74% (dotted line). The MNIST
digits problem was the basis for the test.

having observed X. Having X assume possible values x from an alphabet X ,
and similarly Y assume values y ∈ Y , the mutual information between X and
Y is computed as

I(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (6.19)

where p(x, y) is the probability distribution of the joint variables X and Y, and
p(x), p(y) are the distributions of each single variable. From the formula we
see that for two completely independent variables the mutual information van-
ishes (because then p(x, y) = p(x)p(y) and log 1 = 0). According to the sug-
gested method, those M components of Ij are kept which show the highest
mutual information with the class labels throughout the training set.

Both methods were applied to the MNIST digits network, which has, in its
original size, 7530 inputs for the output neurons (150 planes x (7 x 7) hyper-
columns in layer c(4)). From those inputs, sub-sets of varying size were se-
lected and the output layer was retrained. Figure 6.5 shows the measured test
errors. The network’s performance is expected to decrease with the number
of inputs remaining. Apparently, more than half of the inputs can be removed
without affecting the result. At 115 inputs (the value is regarded to be appro-
priate for the HAGEN chip), still roughly 90% of all test images are correctly
classified (10% error).

Remarkably, the simple ad-hoc method performs as well as (for number of
inputs < 1000 even better than) the computationally more expensive mutual
information approach. All results reported in section 6.5 have therefore been
produced using the ad-hoc method.

6.4. ACTUAL ARRAY LAYOUT 103

Figure 6.6: A 3 x 3 window moving across the image line by line. At each window
position, only one image pixel (marked with a cross) contains new information. The
remaining 8 pixels were already seen by the system before (shaded).

6.3.2 Data Handling and Transfer

The hardware system was developed with a different application in mind,
namely evolutionary training of the synaptic weights. For this, the weights
must be iteratively reconfigured at high rates. Dedicated logic elements are
present to manipulate the weights locally on the hardware system without any
interaction with the control PC [57]. Thus, the data traffic between the PC and
the hardware, which is a critical in terms of time consumption, is kept low. The
processed data is transfered once to the hardware system and stays constant
throughout one experiment. In contrast, in the present application, weights are
programmed only once per experiment and stay fixed during the data process-
ing (except in case of the chip-in-the-loop Perceptron algorithm, section5.1.2),
so the weight manipulation system is of no use. On the other hand, a high
data throughput rate is desired, which is complicated by the following fact:
The input data for the neurons consists of local, overlapping regions of hyper
columns in the previous layer. In order to be processed by the hardware ar-
ray, the moving input window is extracted and presented to the weight array
as a linear bit string. Since adjacent input fields are largely overlapping (see
Figure 6.6), a lot of redundant data is sent to the hardware system. The time
measurements in section 6.5.1 confirm that the time needed for data transfer is
in the same order of magnitude as the time spent on the actual processing.

If high data throughput should be of importance in the future, an appro-
priate data processor can be included in the configurable logic chip present in
the system, producing shifted variants of the input data. With an input region
window of size 5 x 5, as present in the network layer S1, the data traffic from
the PC to the hardware could be reduced by a factor 1/25.

6.4 Actual Array Layout

Figure 6.7 illustrates how the convolutional network structure is mapped onto
the chip’s synapse arrays in the actual experiments reported in section 6.5.
Shown are all the weights of one of the digit recognition networks. The net-
work dimensions correspond to Table 6.1, rightmost column. Although the

104 CHAPTER 6. HARDWARE IMPLEMENTATION

layout of the figure suggests that all four computing arrays of the chip are used,
in fact the implementation is realized with only two physical arrays. The other
two could not be reliably interfaced in the current hardware setup as stated
above. The networks are evaluated in a time-multiplexed way, where at one
point in time only one layer (S1, S2, or the output layer) is realized on the chip.
Before executing the next layer, the chip is reconfigured.

Interestingly, the properties of the weight histograms in Figure 5.4 can be
recognized in Figure 6.7: Ignoring the bias weights at the left border of each
array, we observe that the output layer exploits the entire range of possible
synapse values, where, however, only few synapses show a very strong abso-
lute value. This corresponds to the narrow, zero-centered distribution of Fig-
ure 5.4, right hand side. On the other hand, the hidden layers use basically
only two distinct weight values, one positive and one negative one. This cor-
responds to the bi-modal histogram in Figure 5.4, left hand side. The generally
lower contrast seen in the arrays for layer S2 is a result of down-scaling the
weights necessary to keep the chip in the linear domain (cf., section 6.2.2).

6.4.
A

C
T

U
A

L
A

R
R

A
Y

L
A

Y
O

U
T

105

Layer S2 (neurons 60−120 of 120)

Layer S2 (neurons 1−60 of 120)Layer S1 (12 neurons)

Output Layer (45 neurons)

Figure 6.7: Example views weight arrays configured for the different layers. Layer S2 is distributed over 2 arrays. Synaptic values are color-coded:
•=-1, •=1. Each synapse row constitutes one neuron. At the left side of each array, the bias synapses can be seen. More details: see text.

106 CHAPTER 6. HARDWARE IMPLEMENTATION

6.5 Results

The two benchmark problems from chapter 4 are tested on the real hardware
setup. Due to size limitations of the prototype chip, the experiments have to
be conducted with smaller networks (details in section 6.3.1). Actual network
sizes are shown in Table 6.1.

As stated in section 6.1, the vast majority of the computation load is accom-
plished by the hidden network layers. On the other hand, it is the output layer
that must be pruned most severely in order to fit on the synapse arrays pro-
vided by the hardware. Therefore, it is a sensible choice to implement only the
hidden layers on the analog chip and fall back to digital techniques (software
or dedicated hardware) for the output layer. This strategy, which had been also
adapted by other authors before [52], is given special emphasis in the presented
experiments. Nevertheless, it is also shown that a full network, including the
output layer, can be implemented on the chip.

Section 6.5.1 shows results for the case that the chip is operated as intended.
In section 6.5.2, the chip’s accuracy is artificially degraded and the resulting
effects are investigated.

6.5.1 Optimal Hardware Operation

Hidden Layers

In a first experiment, only the hidden layers S1 and S2 are implemented on the
prototype chip. The output layer remains to be evaluated in software. Three
different training variants are evaluated:

Pre-computed weights. The weights obtained from software training are
transfered to the hardware (including offset calibration after section
6.2.3).

Chip-in-the-loop training. The network layers, including the output layer, are
trained in a chip-in-the-loop fashion (method in section 5.1.1).

Retrain output layer only. This setup could be called as well “chip-in-the-loop
light”. It is motivated by the fact that each exemplar of the chip shows

Full SW Hidden L. in HW, Full HW
(chapter 4) output L. in SW

Digits

feature planes L. S1/C1 30 * 12 * 12
feature planes L. S2/C2 150 * 120 * 120
conn. to output L. 7350 * 5880 * 115

* Traffic signs
feature planes L. S1/C1 25 * 12 * 12
feature planes L. S2/C2 100 100 100
conn. to output L. 3600 3600 * 115

Table 6.1: Network sizes in the hardware experiments. Values affected by the chip’s
size limitations are marked with stars. Abbreviations: #=number of, SW=software,
HW=hardware, L=layer, conn=connections

6.5. RESULTS 107

MNIST Digits
H

ar
d

w
ar

e

1.9 2.0 2.1 2.2
Test error [%]

Pre−comp. weights

Chip−in−the−loop

Retrain output L.

Software reference

Traffic Signs

H
ar

d
w

ar
e

Pre−comp. weights

Chip−in−the−loop

Retrain output L.

Software reference

Test error [%]
2 3 41

Figure 6.8: Hidden layers (S1 and S2) are evaluated in hardware. Shown are the
results for three training strategies and the software reference. Error bars depict both
the uncertainty of the average over all training runs (fat) and the uncertainty in a
single measurement (thin).

different device characteristics, implying that, in practice, the chip-in-the-
loop training must be repeated for every chip produced. In this setup,
instead of retraining both layers S1 and S2 using the hardware output,
only the output layer is retrained (as done also before in [52]).

As a reference setup, all layers are trained and evaluated in software, with
floating-point computing precision, i.e. without incorporating any model of
analog distortion.

The results are shown in Figure 6.8 for the two benchmark data sets. All
three training strategies produce classification errors not significantly different
from the software reference.

Output Layer

A second experiment is dedicated to the hardware implementation of the out-
put layer. The chip’s size limitation implies a maximum number of 115 input
connections to each neuron in the output layer (section 6.3.1). We will start with
the hand-written digits of the MNIST benchmark problem. It turns out that,

108 CHAPTER 6. HARDWARE IMPLEMENTATION

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 200000 400000 600000 800000 1e+06

C
la

ss
if

ic
at

io
n

 E
rr

o
r

[%
]

Iteration [# patterns]

Test data
Training data Training data (keep best)

Test data (keep best)

Training data
Test data

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 200000 400000 600000 800000 1e+06

C
la

ss
if

ic
at

io
n

 E
rr

o
r

[%
]

Iteration [# patterns]

Figure 6.9: Perceptron learning with inseparable data. Left: The algorithm does not
converge, but remains in an oscillating state. Right: Same training run, but the weight
configuration with the best training error is kept (curves from other plot inserted as
shaded lines for clarity) . Both plots show the training of the neuron discriminating
digits “0” and “6” in the output layer of one arbitrarily chosen network in a pure
software implementation. The update interval (see section 6.2.4) is 1,000.

with the restricted number of inputs, most of the 45 data sets to be learned are
not linearly separable any more as they were in the pure software implemen-
tations where many more input connections could be considered. As a result,
the Perceptron learning algorithm does not converge, but yields an oscillating
solution. In the observed training runs, the classification errors (of both the
training and test set) decrease very quickly to a temporary minimum and sub-
sequently enter a phase of strong fluctuations. The error curves of one typical
training run is shown in Figure 6.9, left hand side.

There is no text-book solution for handling this situation. In the experi-
ments presented in this thesis, a combination of two methods is used: First, the
weight configuration which yields the least error on the training set during the
entire training run is regarded as the final solution. Figure 6.9, right hand side,
shows the performance of the best weights on the training and the test data.
Now, the training error is a monotonously decreasing function of the iteration
number, as it represents the up-to-now minimum of the oscillating solution.
The independent test error also stays near the lower bound of its oscillating
version. However, the test error still seems to cross a minimum. Therefore, the
technique of early stopping [3] is additionally employed. The same fixed num-
ber of iterations is used for training all output neurons. Tests are conducted
with the digits images to identify the optimal number of training iterations.
For this test, a portion of the training data is reserved as a validation set, as
done before in section 4.1.1. For ten networks, the output layers are trained
with the remaining training data while recording the classification error on the
validation set as a function of the iteration number i.4 Due to software restric-
tions, the validation error is not tracked continuously, but is measured only for
a few discrete values of i. The validation error for network n after i iterations is
denoted by Cn

i . In order to detect a general trend, the Cn
i are normalized over i

and then averaged over the ten networks:

C̃i =
1

10

10

∑
n=1

Cn
i − 〈Cn

i′ 〉i′
maxi′ C

n
i′ −mini′ C

n
i′

(6.20)

4The neurons in one output layer are not trained one after another, but simultaneously, such
that at all times, every neuron has experienced the same number of training iterations

6.5. RESULTS 109

Pure Software Training Chip-in-the-loop Training

A
v

g
.v

al
id

.e
rr

o
r

C̃
i

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 50 100 150 200 250 300 350 400

A
v

g
.v

al
id

.e
rr

o
r

C̃
i

−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300 350

Iteration [1,000 patterns] Iteration [1,000 patterns]

Figure 6.10: Determining the best point for early-stopping the Perceptron learning. In
the average of all tested networks, there is a minimum of the validation error at stopping
after ≈ 125, 000 training patterns. Software (left) and hardware (right) results look
similar.

where 〈·〉x denotes the mean over all x. The average function C̃i, together
with its statistical uncertainty, is plotted in Figure 6.10. Apparently, at approxi-
mately 125,000 seen training patterns, the validation error is quite reliably near
its minimal value. Similar behavior is observed for both the pure software
training and the chip-in-the-loop training. The training set for one neuron con-
sists of only two classes of the total number of training images, so, 125,000
patterns correspond to approximately ten passes through the training set. The
update interval (section 6.2.4) was 1,000 in both the software and hardware
runs.

In the final experiments, the training of the output layer is conducted with
the entire training set (60,000 patterns) and the network’s performance is tested
with the test set (10,000 patterns). Training is stopped after 125,000 pattern pre-
sentations per neuron. The output layer is evaluated in hardware, both with
pre-computed weights and chip-in-the-loop training. In the pre-computed
weights setting, the output layer is trained in software and the weights are
transfered to the hardware (including calibration according to section 6.2.3).
The chip-in-the-loop method is described in section 5.1.2. In a control setting,
both training and evaluation of the output layer is done in software. The hid-
den layers of the network are always trained in software and evaluated in hard-
ware (pre-computed weights). An update interval of 1,000 patterns (see sec-
tion 6.2.4) and a defined pattern presentation scheme (repeated passes through
the training set with a different random order each time) are used for all set-
tings in order to make the results comparable.

The same experiment is also conducted for the traffic sign problem (300
training images, 100 test images). Probably due to the low number of train-
ing examples, the problem remains linearly separable in the output layer, even
with the restricted number of only 115 input connections. Therefore, early stop-
ping is not applied. The update interval is ad hoc set to 100.

The results are displayed in Figure 6.11. Each bar shows the average classi-
fication error of ten independent training runs. The generally very high classi-
fication error around 7% is the result of the severe pruning necessary for fitting
the output layer on the chip (Table 6.1). The performances of the hardware
implementations do not differ significantly from the software reference. As
observed also for the hidden network layers, the classification errors of the

110 CHAPTER 6. HARDWARE IMPLEMENTATION

MNIST Digits

H
ar

d
w

ar
e

Chip−in−the−loop

Software reference

7.0

Pre−comp. weights

Test error [%]
7.8 8.07.4 7.67.2

Traffic Signs

H
ar

d
w

ar
e

Pre−comp. weights

Chip−in−the−loop

Software reference

4 109875 6
Test error [%]

Figure 6.11: The output layer and the hidden layers (S1 and S2) are evaluated in
hardware. Shown are the results for two training strategies and the software reference.
The hidden layers are always run with pre-computed weights. Error bars depict both
the uncertainty of the average over all training runs (fat) and the uncertainty in a
single measurement (thin).

pre-computed weights and the chip-in-the-loop training are comparable.

The chip-in-the-loop training in case of the traffic sign problem might per-
form a little worse. It must be said here that the errors on the training data
is zero in all the observed training runs, for pre-computed weights, chip-in-
the-loop, and the software reference. In such a case, it is plausible that pre-
computed weights can perform better than the chip-in-the-loop training: The
calibration routine (section 6.2.3) ensures that the decision border maximizes
the distances to the two closest training data points, which is often regarded as
the optimal strategy. In the chip-in-the-loop training, where no calibration is
performed, the exact position of the decision border is determined by chance.
However, this consideration cannot explain a possible difference in classifica-
tion error between the chip-in-the-loop method and the software reference.

Time Measurements

Figure 6.12 show measured processing times spent on average for evaluating
one of the digit images (28 x 28 pixels). The total time is broken down into the
times spent in the first, respectively second, S/C layer pair, and within each
layer pair, into several subtasks. The computing time for the output layer is
0.11ms in software and 0.12ms in hardware, including all overheads. Since this
is neglectable compared to the hidden layers, the output layer is not treated in
detail. Tasks labeled SW (software) and HW (hardware) are only executed in

6.5. RESULTS 111

Layers S1/C1

Total: SW 7.8 ms; HW 5.7ms

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

����

HW

SW

SW+HW

1.1

1.8

3.8

0.52 0.73
0.39

1.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e/
im

ag
e

[m
s]

Mult/Acc (S1) MemCopy Assemble Inputs Software Overhead

Mult/Acc (S1) Data Transfer Blurring (C1)

Layers S2/C2

Total: SW 39.7ms; HW 8.7ms

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����

31.4

0.13 0.190.10

2.8

2.3

HW

SW

SW+HW

3.3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e/
im

ag
e

[m
s]

MemCopy Assemble Inputs Software Overhead

Mult/Acc (S2) Data Transfer Blurring (C2)

Mult/Acc (S2)

Figure 6.12: Measured times for processing one digit image (28 x 28 pixels), layers S1
through C2, broken down into separate sub-tasks. The three right-most tasks, labeled
SW+HW, are always performed in software, so they are the same for the hardware and
the software implementations. The computing time for the output layer is neglectable
and is thus not measured in detail. The uncertainties in the numbers are not larger
than than a change in the least significant digit.

the respective setup. The tasks that are labeled HW+SW are performed in both
the hardware and the software implementation.

All software parts are executed on a Pentium IV 2.4GHz machine with
512kB second-level cache. The software has been compiled without any
system-specific compiler flags. The subtasks itemized in Figure 6.12 are now
discussed in detail:

Multiply / Accumulate The multiply-accumulate operations in the S-layers
are the parts of the calculation which, in the hardware implementation, are ac-
tually performed on the analog chip. The pure software implementation shows
that these computations constitute the largest part (more than 70%) of the en-
tire work load. When executed in hardware, the S-layer operations become
almost neglectable compared to the other parts of the algorithm. One interest-
ing observation is that, when computed in hardware, layer S2 consumes only
roughly a quarter of the time of layer S1, although the number of performed
multiply and accumulate operations is more than 12 times as high. The expla-
nation for this is that the parallel chip resources are much better exploited in
layer S2. In Figure 6.7 it can be seen that in layer S1 most of the computing
array remains unused.

112 CHAPTER 6. HARDWARE IMPLEMENTATION

Memcopy and Data Transfer These two items are only relevant for the hard-
ware implementation and account for getting the data to and from the chip.
In the present system, the input data must be re-ordered into a form suited
for the neuro chip, and the output data coming from the chip must be treated
reversely. This process is termed Memcopy in the diagram. The time labeled
Data Transfer is the time necessary to transfer the data between the PC’s RAM
and the hardware system via the PCI interface.

Assemble Inputs The feature planes are stored in the PC’s RAM in a bit-
wise manner, each byte encoding 8 pixels. This saves memory, but makes data
access laborious and slow. Therefore, before processing a layer, the output data
of the previous layer is copied into a temporary field of floating point numbers
where four bytes encode one pixel. In the observed experiments, this field does
not exceed 30kB in size and thus fits easily into the processor’s second-level
cache. The input vector for a neuron consists of local, overlapping patches
of the feature planes in the previous layer. Since all the 2-D feature planes
are stored sequentially in the linearly addressed field, assembling a neuron’s
input involves a considerable amount of housekeeping of indices. These two
tasks, copying the feature planes and assembling the actual input vectors, are
summarized in the task labeled Assemble Inputs.

Blurring The C-layers (also called blurring layers in this thesis) are not con-
sidered for analog hardware implementation. As stated in section 6.1, they are
not well suited for an implementation on a parallel computing array.

Software Overhead This item is just the difference of the total measured com-
puting time and the sum of all separate parts. It is not related to the actual
algorithm. It accounts for the allocation and deletion of data objects, event
handling, writing to log files, and the like.

In the hardware implementation, the sub-tasks evaluated in software (assem-
bling the input data and blurring) make up the largest part of the processing
time. However, these operations are not very complex (mainly re-ordering
and counting is required), so a fast digital hardware implementation, e.g., with
an FPGA5, seems straight-forward. The realization was however not pursued
during this thesis, since it was not deemed to yield additional insight.

Discussion

The experiments demonstrate that the computing precision of the investigated
hardware architecture, if operated in an optimal setup and appropriately cal-
ibrated, is sufficient for evaluating the the developed neural networks using
pre-computed weights. However, the calibration routine as used in the current
setup (section 6.2.3) depends on the actual training data, so it must be re-run for
each specific problem. This shortcoming is rooted in a special type of analog
device mismatch (details in section 6.2.3) which can in principle be compen-
sated by additional calibration circuitry not present in the current prototype.

5configurable logic chip

6.5. RESULTS 113

Such calibration can be easily included in future implementations of the ar-
chitecture. Then, the chip calibration will most probably be data-independent
and networks will be transferable between different chip exemplars without
any problem-specific adjustments.

In a real-life application, probably only the hidden layers should be com-
puted on the analog chip. Although, in principle, a hardware implementation
of the output layer is in possible, it does not seem very efficient: First, the
output layer must be pruned severely in order to fit on the chip: The num-
ber of inputs to each neuron is limited to 128, compared to several thousand
in the software implementation. Even with similar chips 10 times larger as
the current prototype, the optimal number of inputs cannot be realized. This
pruning leads to a strong increase in the classification error in the observed ex-
periments. Second, the output layer is computationally very cheap (see Time
Measurements above) so a digital implementation will not destroy the speed
gain from evaluating the hidden layers on the parallel hardware.

6.5.2 Artificially Degraded Hardware

In order to give an impression of the application’s capability to cope with an
imprecise, or even impaired, hardware system, the network chip is operated
under non-optimal conditions. In particular, the magnitude of the synaptic
currents drawn from the summation lines are systematically decreased (the
chip’s operation principle is explained on page 49). Smaller currents are real-
ized by a combination of two methods: first, by physically lowering the refer-
ence current Iref used for programming the analog synaptic weights (cf., [54]),
second by scaling down the weight values before loading them on the chip6.
The current Iref directly translates to the current drawn by a synapse with a
weight of 1: Isyn = Iref/2 (Formula 3.3 in [59]). Denoting the optimal value of

Isyn by I0
syn, the total relative decrease of the synaptic current is thus calculated

as 1 − (weightscale · Isyn/I0
syn). The actually used values of Isyn and weight

scaling factors, together with the resulting fraction of the optimal synaptic cur-
rents, are listed in Table 6.2.

6This combined approach, instead of simply lowering the physical reference current, was moti-
vated by the chip developer Johannes Schemmel who advised against an operation with very low
reference currents

Percentage of
Isyn Weight Scale Optimal Current

22.08µA∗ 1 100%
7.78µA∗ 0.25 8.8%
7.78µA∗ 0.125 4.4%

7.78 µA∗ 0.0625 2.2%
4.03 µA∗ 0.0625 1.1%

Table 6.2: Hardware degradation. Synaptic currents are artificially decreased from
their optimal strength by lowering a physical reference current on the chip (Iref) and
applying a scale factor to the programmed weights. *Inferred from measured Iref after
formula 3.3 in [59]; uncertainty of Isyn: ±0.05µA

114 CHAPTER 6. HARDWARE IMPLEMENTATION

Generally, lower synaptic currents increase the influence of noise (both tem-
poral and fixed-pattern) relative to the signal. Additionally, since the weights
are transfered to the chip digitally, quantization effects become apparent when
scaling the weights down in software.

With each of the settings in Table 6.2 (all other settings are the same as in
section 6.5.1), the MNIST digits problem is trained and evaluated. This time,
the output layer remains trained and evaluated in software, so only computing
errors made in the hidden layers are assessed. The hardware weights of the
hidden layers are obtained using the three methods: pre-computed weights,
chip-in-the-loop, and retrain output layer (see section 6.5.1 for details). Fig-
ure 6.13 shows the results. Each point is the average of 10 training runs.
Error bars correspond to uncertainty of the mean. As expected, the chip-in-
the-loop training methods are able to compensate for errors present with the
pre-computed weights. However, no significant difference can be observed
between re-training the output layer, and the full chip-in-the-loop approach.

It is worth noting that the synaptic currents are the main factor contributing
to the chip’s power dissipation [54]. Thus, decreasing these currents results in
a drastic reduction of the power consumed.

Fixed-Pattern Versus Temporal Noise

Chip-in-the-loop training can compensate for so-called fixed-pattern errors, i.e.
errors which are caused by systematic device variations and thus do not vary
over time. With temporal noise, the chip-in-the-loop techniques are not sup-
posed to work as well, since the system can only adapt to errors which are
consistently reproduced for repeated computations. Still, a basic ability for
compensating for temporal noise can be expected: Since randomly fluctuating
signals do not contain reliable information, the training algorithms might just
learn to ignore them while giving more significance to signals which are not as
noisy. The effects of temporal noise on the convolutional network application
were not tested in the computer simulations (chapter 5) and are deferred to
future work.

However, additional measurements shall give an idea of how much both
fixed-pattern and temporal noise play a role in the considered hardware archi-
tecture. For this goal, first, the deviations between software-implemented and
hardware-implemented networks are measured: For a number of software-
implemented networks, the four hidden layers, S1 through C2, are evaluated
with the test data set, and all neural responses in layer C2 are recorded for later
reference. Then, the network weights are transfered to the hardware, including
calibration after section 6.2.3, and again the data set is evaluated, while count-
ing how often a neuron response differs from the recorded software reference.
The same experiment is repeated for all the degradation settings in Table 6.2.
In Figure 6.14, the data points labeled A show the average percentage of re-
sponses that disagree with the recorded responses. The measured differences
include both fixed-pattern and temporal variations.

The same experiment was conducted again, but now, another hardware run
of each network is taken as the respective reference. This way, the temporal
hardware fluctuations are measured in isolation (Figure 6.14, data points B).

One conclusion that can be drawn from Figure 6.14 is that, when loading
pre-computed weights onto the hardware, the software reference is reproduced

6.5. RESULTS 115

T
es

t
er

ro
r

[%
]

Percentage of optimal synaptic current

 0

 5

 10

 15

 20

 25

 30

 35

1.1%2.2%4.4%8.8%100%

pre−comp. weights

chip−in−the−loop

retrain output layer

Figure 6.13: Hardware degradation of the hidden layers by lowered synaptic currents
(cf., Table 6.2). The output layer is evaluated in software and is thus not subject to
degradation. Shown is the test error of the MNIST problem for three training methods
(pre-computed weights, chip-in-the-loop, and retrain output layer). The synaptic cur-
rents constitute the major part of the chip’s power consumption. Black line = software
reference from Figure 6.8.

Percentage of optimal synaptic current

D
if

fe
ri

n
g

 n
eu

ro
n

 r
es

p
o

n
se

s
[%

]

B

A

 0.1

 1

10

100

100% 8.8% 4.4% 2.2% 1.1%

Figure 6.14: Network noise with lowered synaptic currents. A: Percentage of neuron
responses in layer C2 differing between software and hardware implementation (pre-
computed weights). B: Percentage of neuron responses in layer C2 differing between
two equal hardware runs (temporal noise).

116 CHAPTER 6. HARDWARE IMPLEMENTATION

T
es

t
er

ro
r

[%
]

Percentage of optimal synaptic current

 0

10

20

30

40

50

60

70

1.1%2.2%4.4%8.8%100%

Pre−comp. weights

Chip−in−the−loop

Figure 6.15: Hardware degradation by lowered synaptic currents (cf., Table 6.2). Only
the output layer is subject to degradation. The hidden layers are evaluated on the opti-
mal hardware system. Shown is the test error of the MNIST problem for two training
methods (pre-computed weights, chip-in-the-loop). Black line = software reference from
Figure 6.11.

quite well7. In optimal conditions (100% synaptic current), only about 0.3% of
all outputs in layer C2 differ from the software calculation. This is particularly
worth mentioning because this includes the accumulated errors of two subse-
quently computed hardware layers (S1 and S2).

Comparing the points labeled A with the points B, the fixed pattern noise is
1-2 times as strong as the temporal noise (corresponding to A/B ≈ 2.5± 0.5).
From the fact that a significant fraction of the hardware errors is time-invariant,
it could have been predicted that the chip-in-the-loop training would be able to
compensate for at least part of the errors. This is in accordance with Figure 6.13.

Another, probably less relevant, conclusion is that a decrease of the synap-
tic current Isyn on does not seem to result in as much noise as decreasing the
weights in software: The degradation levels 8.8% through 2.2% which differ
only in weight scale produce monotonously increasing network noise. The
degradation levels 2.2% and 1.1% which differ only by the setting of Isyn, pro-
duce approximately the same amount of temporal noise and are only little dif-
ferent in fixed-pattern noise. In the measured domain, the noise introduced by
digital quantization seems to dominate.

Output Layer

In the above experiments, the degraded hardware was applied only to the hid-
den layers. Similar experiments are also conducted for the output layer. Now,
the hidden layers are evaluated with the optimal hardware configuration us-
ing pre-computed weights. The output layers are evaluated with the hardware

7With the limitations stated under Discussion on page 112

6.5. RESULTS 117

degradation levels listed in Table 6.2, both with pre-computed weights (includ-
ing chip calibration according to section 6.2.3) and with weights trained by the
chip-in-the-loop method (section 5.1.2).

In Figure 6.15 we observe that both training methods yield classification
performances equal to the software reference until decreasing the synaptic
current to 8.8%. For continued degradation the results are unexpected: The
chip-in-the-loop Perceptron learning rule, which was especially developed for
coping with computation errors, performs in fact worse than loading pre-
computed weights onto the chip. Looking at the performance of the single
neurons in the output layer (no plot shown) reveals that with lower synap-
tic currents, some neurons still work almost perfectly while others fire only
sparsely or do not fire at all, even if the programmed weight values indicate an
active state. The reason for this behavior remains ultimately unclear. The mea-
sured data for the pre-computed weights shows that synapse configurations
with much better performance do actually exist. They are just not found by the
chip-in-the-loop algorithm. One possible explanation includes a detail of the
chip’s design (the so-called dac offset; see [54, 22]): Small programmed weights
(positive or negative) can have a much larger absolute value on the chip. In
particular, weight values close to zero cannot be written. Normally, this unde-
sired behavior is prevented by a compensation routine, which might however
not work correctly with too small reference currents. The function translating
the programmed weight into the effective synaptic weight would then have a
non-continuous step near zero which might impair the functioning of the train-
ing algorithm. Also, the effect of the mentioned malfunction would be similar
to the clamp errors investigated in the software simulations, where weight val-
ues are randomly changed to a large positive or negative value. Such errors
were found to have a comparably strong influence on the network operation
(Figure 5.3).

118 CHAPTER 6. HARDWARE IMPLEMENTATION

Summary and Conclusions

This thesis demonstrates by means of an example application that massively
parallel computing with analog hardware can constitute a feasible alternative
to standard digital computers. In the particular test case studied, namely object
classification using large-scale neural networks, the considered parallel hard-
ware architecture has in fact advantages over the implementation on sequen-
tial, von Neumann-type machines: The parallel structure of the computing
problem is reflected in a physically existing substrate. This is fundamentally
different from simulating parallel processing in software. On the available pro-
totype chip, more than 32,000 synaptic operations are performed truly simulta-
neously. All computing units are integrated in one small micro chip, consum-
ing approximately two orders of magnitude less power than a single conven-
tional PC.

The application is based on a large-scale convolutional neural network fea-
turing a feed-forward multi-layer topology with a connectivity based on local
receptive fields (Figure 3.1). Effectively, each network layer computes a set of
convolutions on the previous layer with subsequent non-linear scaling. Thus,
a hierarchical feature extraction pyramid is implemented which provides the
basis of the recognition process (Figure 1.8).

The neuron model implemented by the considered hardware system fea-
tures a threshold activation function, prohibiting the straight-forward applica-
tion of gradient-based training methods which are commonly used to train
convolutional networks. A gradient-free training method was developed,
suited for both precomputing the weights in software and hardware-in-the-
loop training. The network layers are trained separately, one after another.
The training of the hidden layers is based on self-organization. Only linear
classifiers in the output layer are trained in a supervised way. The devel-
oped training method was tested on two recognition problems (chapter 4).
The classification rates obtained with the publicly available MNIST data set
of hand-written digits are comparable to other state-of-the-art methods (Fig-
ure 4.2). The separation of the training into independent phases, one for each
network layer, results in smaller search spaces within each sub-problem com-
pared to training the entire network as a whole. Thus, the proposed method
scales better with the network size than global training algorithms as for ex-
ample the back-propagation algorithm (section 4.2.4). Scalability of the train-
ing method is an important issue when using parallel hardware that allows
the realization of very large networks. The nature of the training approach
(self-organization combined with linear classifiers) also prevents overfitting:

119

120 CONCLUSION

In the experiments, using larger networks does never decrease the generaliza-
tion ability (section 4.2.2).

Analog computing does not offer the degree of precision provided by dig-
ital computers. It is a major concern of this thesis to assess how much this af-
fects the usability of analog computers in practice. The studied neural network
application was shown in software simulations to tolerate a wide range of com-
puting errors, especially when the inaccuracies are incorporated in the training
according to the developed chip-in-the-loop techniques (chapter 5, Figures 5.1–
5.2). The exceptional robustness observed in the hidden network layers when
adding random offsets to the synaptic weights is promoted by the chosen train-
ing approach (competitive learning) which tends to produce synaptic weights
with extreme (positive or negative) values (Figure 5.4). Such networks are very
stable under weight perturbations.

A prototype implementation of an analog array-based neural network archi-
tecture was available for experiments. The micro chip and the supporting
hardware system are the result of previous research. They were not particu-
larly designed for the presented application and, thus, certain restrictions are
imposed on the experiments that could be performed (section 6.3).

However, it was proven that the used analog computing architecture ac-
tually provides more precision than needed for an optimal operation of the
application (section 6.5.1). In fact, it was possible to operate the chip in a sub-
optimal regime, implying a drastic reduction in power consumption, without
sacrificing much of the recognition performance (Figure 6.13). This observation
supports the claim that analog computing can be a robust alternative to digital
technology. Furthermore, it can be concluded that in fact a very simple de-
vice featuring only very low computing resolution would be sufficient for the
tested application (section 5.4). In a conceivable dedicated appliance, the low
precision requirement could be traded off for a gain in synapse density, higher
processing speed, or for further power economy. Small size and low power
consumption are crucial prerequisites for mobile applications, as for example
tools for personal assistance or intelligent systems in the automotive domain.

Not all the aspects of the investigated application have been implemented on
the hardware system. The computing of the blurring layers (see Figure 3.1)
and much of the data handling remain to be done in software (Figure 6.12).
The network’s output layer can in principle be evaluated on the analog hard-
ware, but it must be severely pruned in order to fit on the chip (section 6.5.1).
This, together with its low computation cost, makes a digital implementation
of the output layer seem more efficient. It was not in the scope of this thesis to
optimize the hardware system, but rather to show the general applicability of
the underlying analog computing architecture. Given sufficient engineering ef-
fort, it seems to be straight forward to develop a hardware integration of all the
algorithm parts, possibly not even requiring the overhead of a separate control
PC. One idea for such a solution is given by the recently developed distributed
system where each network chip is integrated with digital logic and memory
in small independent modules (section 2.2.2). Moreover, for a real-life appli-
cation, some of the known, but uncritical, limitations of the current prototype
chip would have to be resolved, e.g., the size restriction (section 6.3.1) and the
shortcomings in the neuron calibration (section 6.2.3).

CONCLUSION 121

A chip-in-the-loop version of the Perceptron learning rule, not requiring any
model of the hardware variations, was proposed as part of the training method
(section 5.1.2). It shows to produce good results while being able to implicitly
compensate for computing errors. Complications were only observed when
operating the hardware system under conditions far away from the optimal
regime (Figure 6.15). This training method is not restricted to the special case
of convolutional neural networks. Therefore, when training linear classifiers
in general on the hardware system, the chip-in-the-loop Perceptron algorithm
can provide a simple and fast alternative for other approaches which have been
used previously for this purpose, e.g., genetic algorithms [22].

The developed methods include the training of a hierarchical feature extrac-
tion stage by self-organization, in particular, by applying a form of competitive
learning (section 3.3.1). The weight update rule is quite local: only a hyper col-
umn of neurons within the same layer is inter-dependent. This eases a possible
hardware integration. The good scaling property of the current hardware ar-
chitecture would not be impaired while analog computing errors would only
accumulate within a confined local domain. A Hebbian-style learning rule
(without competition) was already successfully implemented on a different
neuro chip developed in the work group [55]. Neural network chips includ-
ing competitive learning could serve as general feature extraction processors,
adapting themselves to changing input data in real-time.

122 CONCLUSION

Appendix
Complete measurements from section 5.2 (Figures 5.1–5.3).

Figure 5.1 (Noise)

measure-
σ of noise Avg. test Error Std.-dev Error of mean ments

Pre-computed weights (Hidden layers):
0.02 0.01894 0.00381 0.00121 10
0.05 0.02226 0.00415 0.00131 10

0.1 0.02481 0.00612 0.00194 10
0.2 0.03307 0.01127 0.00356 10
0.5 0.06733 0.01596 0.00505 10

Pre-computed weights (Output layer):
0.02 0.01713 0.00116 0.00037 10
0.05 0.01798 0.00094 0.00030 10

0.1 0.02027 0.00172 0.00054 10
0.2 0.03328 0.00436 0.00138 10
0.5 0.13512 0.02724 0.00862 10

Pre-computed weights (All layers):
0.02 0.01888 0.00315 0.00100 10
0.05 0.02353 0.00569 0.00180 10

0.1 0.02852 0.00752 0.00238 10
0.2 0.05944 0.02073 0.00656 10
0.5 0.26550 0.04515 0.01428 10

Chip-in-the-loop (Hidden layers):
0.02 0.01777 0.00109 0.00035 10
0.05 0.01754 0.00081 0.00026 10

0.1 0.01727 0.00120 0.00038 10
0.2 0.01813 0.00081 0.00026 10
0.5 0.01933 0.00133 0.00042 10

Chip-in-the-loop (Output layer):
0.02 0.01684 0.00122 0.00038 10
0.05 0.01764 0.00114 0.00036 10

0.1 0.01735 0.00139 0.00044 10
0.2 0.01805 0.00098 0.00031 10
0.5 0.02517 0.00111 0.00035 10

Chip-in-the-loop (All layers):
0.02 0.01752 0.00068 0.00021 10
0.05 0.01795 0.00123 0.00039 10

0.1 0.01777 0.00094 0.00030 10
0.2 0.01865 0.00068 0.00022 10
0.5 0.02882 0.00179 0.00056 10

123

124 CONCLUSION

Figure 5.2 (Delete)

Fraction of # measure-
deleted synapses Avg. test Error Std.-dev Error of mean ments
Pre-computed weights (Hidden layers):

0.02 0.03022 0.01338 0.00299 10
0.05 0.04446 0.02307 0.00516 10
0.1 0.08711 0.05298 0.01675 10
0.2 0.22527 0.10998 0.03478 10
0.5 0.60973 0.08030 0.02539 10

Pre-computed weights (Output layer):
0.02 0.01690 0.00118 0.00037 10
0.05 0.01761 0.00060 0.00019 10
0.1 0.01807 0.00107 0.00034 10
0.2 0.01929 0.00124 0.00039 10
0.5 0.02534 0.00270 0.00085 10

Pre-computed weights (All layers):
0.02 0.03460 0.01310 0.00414 10
0.05 0.04876 0.02500 0.00791 10
0.1 0.09920 0.06060 0.01916 10
0.2 0.23826 0.11998 0.03794 10
0.5 0.63167 0.07003 0.02214 10

Chip-in-the-loop (Hidden layers):
0.02 0.01682 0.00134 0.00042 10
0.05 0.01769 0.00080 0.00025 10
0.1 0.01827 0.00093 0.00029 10
0.2 0.02213 0.00214 0.00068 10
0.5 0.05944 0.01816 0.00574 10

Chip-in-the-loop (Output layer):
0.02 0.01745 0.00161 0.00051 10
0.05 0.01689 0.00078 0.00025 10
0.1 0.01758 0.00073 0.00023 10
0.2 0.01757 0.00121 0.00038 10
0.5 0.01842 0.00093 0.00030 10

Chip-in-the-loop (All layers):
0.02 0.01696 0.00081 0.00026 10
0.05 0.01817 0.00102 0.00032 10
0.1 0.01987 0.00157 0.00050 10
0.2 0.02276 0.00258 0.00082 10
0.5 0.12061 0.04418 0.01397 10

CONCLUSION 125

Figure 5.3 (Clamp)

Fraction of # measure-
clamped synapses Avg. test Error Std.-dev Error of mean ments
Pre-computed weights (Hidden layers):

0.02 0.02962 0.00647 0.00205 10
0.05 0.03848 0.00985 0.00311 10
0.1 0.05979 0.02059 0.00651 10
0.2 0.14525 0.05224 0.01652 10
0.5 0.75662 0.08861 0.02802 10

Pre-computed weights (Output layer):
0.02 0.02602 0.00488 0.00154 10
0.05 0.04420 0.01527 0.00483 10
0.1 0.08252 0.02841 0.00898 10
0.2 0.18443 0.05155 0.01630 10
0.5 0.45756 0.07441 0.02353 10

Pre-computed weights (All layers):
0.02 0.05222 0.01930 0.00610 10
0.05 0.08186 0.02615 0.00827 10
0.1 0.16599 0.04463 0.01411 10
0.2 0.35822 0.09062 0.02866 10
0.5 0.88936 0.03068 0.00970 10

Chip-in-the-loop (Hidden layers):
0.02 0.01713 0.00131 0.00041 10
0.05 0.01795 0.00105 0.00033 10
0.1 0.01905 0.00146 0.00046 10
0.2 0.02067 0.00206 0.00065 10
0.5 0.04436 0.02492 0.00788 10

Chip-in-the-loop (Output layer):
0.02 0.01777 0.00096 0.00030 10
0.05 0.01870 0.00065 0.00020 10
0.1 0.02103 0.00171 0.00054 10
0.2 0.03134 0.00186 0.00059 10
0.5 0.08398 0.00551 0.00174 10

Chip-in-the-loop (All layers):
0.02 0.01861 0.00096 0.00030 10
0.05 0.02018 0.00096 0.00030 10
0.1 0.02402 0.00328 0.00104 10
0.2 0.04605 0.00716 0.00226 10
0.5 0.27877 0.08590 0.02716 10

126 CONCLUSION

Bibliography

[1] V. Beiu, J. M. Quintana, M. J. Avedillo: VLSI implementations of threshold
logic—a comprehensive survey. IEEE Transactions on Neural Networks,
14(5) (2003)

[2] R.E. Bellman: Adaptive control processes. Princeton University Press,
Princeton, NJ (1961)

[3] C. M. Bishop: Neural networks for pattern recognition. Oxford University
Press Inc., New York (1995)

[4] B. E. Boser, E. Säckinger, J. Bromley, Y. LeCun, L. D. Jackel: An analog
neural network processor with programmable topology. IEEE Journal of
Solid-State Circuits, 26(12), 2017–2025 (1991)

[5] E. Cosatto, H.P. Graf: NET32K high speed image understanding system.
In Proceedings of the Fourth International Conference on Microelectronics
for Neural Networks and Fuzzy Systems, IEEE Computer Society Press,
413-421 (1984)

[6] P. Dayan, L.F. Abbott: Theoretical neuroscience: computational and math-
ematical modeling of neural systems, MIT Press (2001)

[7] J. Fieres, A. Grubl, S. Philipp, K. Meier, J. Schemmel, F. Schürmann: A plat-
form for parallel operation of VLSI neural networks. Conference on Brain
Inspired Cognitive Systems (BICS 2004), Stirling, Scotland (2004)

[8] J. Fieres, J. Schemmel, K. Meier: Training convolutional neural networks
of threshold neurons suited for low-power hardware implementation. Pro-
ceedings of the 2006 International Joint Conference on Neural Networks
(IJCNN 2006), 21–28, IEEE Press (2006)

[9] J. Fieres, J. Schemmel, K. Meier: A convolutional neural network tolerant of
synaptic faults for low-power analog hardware. Proceedings of 2nd IAPR
International Workshop on Artificial Neural Networks in Pattern Recogni-
tion (ANNPR 2006), Springer Lecture Notes in Artificial Intelligence 4087,
122–132 (2006)

[10] K. Fukushima, S. Miyake: Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position. Pattern Recog-
nition, 15(6), 455–469 (1982).

[11] K. Fukushima: Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural Networks 1, 119–130 (1988)

127

128 BIBLIOGRAPHY

[12] Y. Frégnac, D. Shulz: Models of synaptic plasticity and cellular analogs
of learning in the developing and adult vertebrate visual cortex. In: Ad-
vances in neural and behavioral development (Eds: V.A. Casgrande and
P.G. Shinkman), 4, 148–235, Ablex Publ. Corp., Norwood, New Jersey
(1994)

[13] A. Grübl: Eine FPGA-basierte Plattform für Neuronale Netze. Diploma
Thesis (German), Ruprecht-Karls-University, Heidelberg (2003)

[14] J.-L. Gailly, M. Adler: The gzip compression utility. On: The gzip home
page, http://www.gzip.org.

[15] E. Gamme, R. Helm, R. Johnson, J. Vlissides: Design patterns: El-
ements of reusable object-oriented software. Addison-Wesley, Reading,
Massachusetts (1995)

[16] H.P. Graf, R. Janow, D. Henderson, R. Lee: Reconfigurable neural net chip
with 32K connections. Proceedings Int. Conference of Information Process-
ing Systems (NIPS1992), 1032–1038 (1992)

[17] S. Haykin: Neural networks: a comprehensive foundation. 2nd ed., Pren-
tice Hall, New Jersey (1999)

[18] D. Hubel, T. Wiesel: Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. J. Physiology 160, 106–154 (1962)

[19] D. Hubel, T. Wiesel: Receptive fields and functional architecture in two
non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289
(1965)

[20] S. G. Hohmann, J. Schemmel, F. Schürmann, K. Meier: Exploring the pa-
rameter space of a genetic algorithm for training an analog neural net-
work. Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECKO 2002), 375–382, Morgan Kaufmann Publishers, San Francisco
(2002)

[21] S. G. Hohmann, J. Fieres, K. Meier, J. Schemmel, T. Schmitz, F. Schürmann:
Training fast mixed-signal neural networks for data classification. Pro-
ceedings of the 2004 International Joint Conference on Neural Networks
(IJCNN 2004), 2647–2652, IEEE Press (2004)

[22] S. G. Hohmann: Stepwise Evolutionary training strategies for hard-
ware neural networks. PhD thesis, Ruprecht-Karls-University, Heidelberg
(2005),
http://www.kip.uni-heidelberg.de/vision/publications

[23] B. Jähne: Digital image processing. 6th ed., Springer Verlag Berlin, Hei-
delberg, New York (2005)

[24] J.-S. R. Jang, C.T. Sun, E. Mizutani: Neuro-fuzzy and soft computing.
Prentice-Hall (1997)

[25] E. van Keulen, S. Colak, H. Withagen, H. Hegt: Neural network hardware
performance criteria. Proceedings of the IEEE International Conference on
Neural Networks 1994, 1885–1888 (1994)

BIBLIOGRAPHY 129

[26] A. H. Kramer: Array-based analog computation. IEEE Micro 16(5), 20-29
(1996)

[27] E. Kussul, T. Baidyk, D. Wunhsch II, O. Makeyev, A. Martin: Image recog-
nition systems based on random local descriptors. Proceedings of the 2006
International Joint Conference on Neural Networks (IJCNN 2006), 4722–
4727, IEEE Press (2006)

[28] E. Kussul, Lab of Micromechanics and Mechatronics, Universidad Na-
cional Autónoma De México: Oral conversation.

[29] S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back: Face recognition: a convo-
lutional neural network approach. Transactions on Neural Networks 8(1)
98–113 (1997)

[30] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard,
L.D. Jackel: Backpropagation applied to handwritten zip code recognition.
Neural Computation 1(4), 541–551 (1989)

[31] Y. LeCun, L. D. Jackel, B. Boser, J.S. Denker, H. P. Graf, I. Guyon, D. Hen-
derson, R.E. Howard, W. Hubbard: Handwritten digit recognition: Appli-
cations of neural net chips and automatic learning. IEEE Communications
Magazine, November 1989, 41–46 (1989)

[32] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324
(1998)

[33] T. Lehmann: Hardware learning in analogue VLSI neural networks. PhD
Thesis, Techincal University of Denmark, Lyngby, Denmark (1994)

[34] R. Linsker: From basic network principles to neural architecture. (Series
of 3 papers) Proc. Natl. Sci. USA 83, 7508–7512 (1983)

[35] D. R. Lovell, T. Downs, A. C. Tsoi: An evaluation of the Neocognitron.
IEEE Transactions on Neural Networks 8(5), 1098–1105 (1997)

[36] W. Maass, T. Natschläger, H. Markram: Real-time computing without sta-
ble states: A framework for neural computation based on perturbation.
Neural Computation 14(11) 2531–2560 (2002)

[37] P. Masa, P. Heim, E. Franzi et al.: 10 mW CMOS retina and classifier for
handheld, 1000 images/s optical character recognition system. Proceed-
ings of the IEEE International Solid-State Circuit Conference, 202– (1999),
see also
http://www.csem.ch/detailed/pdf/m 111 Handheld OCR for eBanking.pdf

[38] M. R. J. McQuoid: Neural ensembles: Simultaneous recognition of multi-
ple 2-D visual objects, Neural Networks 6, 907–917 (1993)

[39] T.M. Mitchell: Machine learning. International ed., McGraw-Hill Book Co,
Singapore (1997)

[40] Y. LeCun: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist

130 BIBLIOGRAPHY

[41] C. Neubauer: Evaluation of convolutional neural networks for visual
recognition. Transactions on Neural Networks 9(4), 685–696 (1998)

[42] J. von Neumann: First draft of a report on the EDVAC. manuscript,
Moore School of Electrical Engeneering Library, University of Pennsylva-
nia (1945). Transscript in: M. D. Godfrey: Introduction to “The first draft
report on the EDVAC” by John von Neumann. IEEE Annals of the History
of Computing 15(4), 27–75 (1993)

[43] D. Niedenzu: Aufbau eines binären Neocognitrons. Diploma Thesis (Ger-
man), Ruprecht-Karls-University, Heidelberg (2003)

[44] E. Oja: Principle components, minor components, and linear neural net-
works. Neural Networks 5, 927–936 (1992)

[45] M.W. Oram, D.I. Perret: Modeling visual recognition from neurobiologi-
cal constraints. Neural Networks 7, 945–972 (1994)

[46] W.H. Press , B.P. Flannery, S.A. Teukolsky, W.T Vetterling: Numerical
recipes in C: The art of scientific computing. Cambridge University Press,
Online ed. (1992)
http://www.nr.com

[47] Trolltech ASA, Norway: Qt - Cross-platform C++ development.
http://www.trolltech.com/products/qt

[48] M. Riesenhuber, T. Poggio: Hierarchical models of object recognition in
cortex. Nature Neuroscience 2, 1019–1025 (1999)

[49] R. Rojas: Theorie der Neuronalen Netze. Springer Verlag (1993)

[50] D. E. Rumelhart, D. Zipser: Feature discovery by competitive learning.
Cognitive Science, 9 75–112 (1985)

[51] D. E. Rumelhart, G. E. Hinton, R. J. Williams Learning representations by
back-propagating errors. Nature 323, 533–536 (1986)

[52] E. Säckinger, B. E. Boser, J. Bromley, Y. LeCun, L. Jackel: Application of
the ANNA neural network chip to high-speed character recognition. IEEE
Transactions on Neural Networks 3(3), 498–505 (1992)

[53] S. Satyanarayana, Y. P. Tsividis, H. P. Graf: A reconfigurable VLSI neural
network. IEEE Journal of Solid State Circuits 27(1), 67–81 (1992)

[54] J. Schemmel, S. Hohmann, K. Meier, F. Schurmann: A mixed-mode ana-
log neural network using current-steering synapses. Analog Integrated Cir-
cuits and Signal Processing 38, 233–244 (2004)

[55] J. Schemmel, A. Gruebl, K. Meier, E. Mueller: Implementing Synaptic
Plasticity in a VLSI Spiking Neural Network Model. Proceedings of the
2006 International Joint Conference on Neural Networks (IJCNN 2006), 1–
6 (2006)

[56] J. Schemmel: Oral communication

BIBLIOGRAPHY 131

[57] T. Schmitz: Evolution in Hardware – Eine Experimentierplattform zum
parallelen Training analoger neuronaler Netzwerke. PhD thesis (German),
Ruprecht-Karls-University, Heidelberg (2005),
http://www.kip.uni-heidelberg.de/vision/publications

[58] F. Schürmann, S.G. Hohmann, K. Meier, J. Schemmel: Interfacing bi-
nary networks to multi-valued signals. Supplementary proceedings of
ICANN/ICONIP 2003, IEEE Press, 430–433 (2004)

[59] F. Schürmann: Exploring liquid computing in a hardware adaption:
construction and operation of a neural network experiment. PhD thesis,
Ruprecht-Karls University, Heidelberg (2005)

[60] P.Y. Simard, D. Steinkraus, J.C. Platt: Best practices for convolutional neu-
ral networks applied to visual document analysis. Intl. Conf. Document
Analysis and Recognition, 958–962 (2003)

[61] P.Y. Simard, Microsoft Research: Email conversation.

[62] K. Tanaka: Inferotemporal cortex and object vision. Ann. Rev. Neuro-
science 19 109–139 (1996)

[63] L. Tao, M. Shelley, D. McLaughlin, R. Shapley: An egalitarian network
model for the emergence of simple and complex cells in visual cortex.
PNAS 101, 366–371 (2004)

[64] J. Teichert, R. Malaka: A component association architecture for image
understanding. Proceedings of the 2002 International Joint Conference on
Neural Networks (IJCNN 2002), Lecture Notes in Computer Science 2415,
125–130 (2002)

[65] S. Ullmann, S. Soloviev: Computation of pattern invariance in brain-like
structures. Neural Networks 12, 1021–1036 (1999)

[66] M. Valle: Analog VLSI implementations of neural network with super-
vised on-chip learning. Analog Integrated Circuits and Signal Processing
33, 263–287 (2002)

[67] J. Weng, N. Ahuja, T. S. Huang: Learning recognition and segmentation
using the Cresceptron. International Journal of Computer Vision 25(2), 109–
143 (1997)

[68] A. Zell: Simulation neuronaler Netze. 1st Ed. Addison-Wesley Germany
GmbH (1994)

132 BIBLIOGRAPHY

Index

A
action potential, 8
actions, 37
analog computing, 48
ANNA chip, 29
array-based computation, 48
artificial neural networks, 13
auto-encoding network, 24

B
back-propagation, 22, 77
batch weight update, 98
bimodal

distribution, 88
bipolar, 94
blurring layer, 18
border neurons, 54

C
C-layer, 20, 54
calibration, 96
cell membrane, 8
chip-in-the-loop, 81, 82
clustering, 55
competitive learning, 23, 57
complex cell, 12
control API, 36
convolution, 16
convolutional neural networks, 13
cost function, 20
curse of dimensionality, 20

D
degraded hardware, 113
digits, hand-written, 63
distributed operation, 50
divide and conquer, 21

E
early stopping, 108
edge detection, 59

effective weight, 81
elastic deformation, 78
ensemble voting, 58
ETANN chip, 28
event handling, 40
evolutionary algorithm, 60

F
feature, 16
feature map, 17
feed-forward network, 16
fixed-pattern errors, 81, 114
Fukushima, Kunihiko, 14

G
genetic algorithm, 60

H
HAGEN, 48
HAGEN chip, 48
hand-written digits, 63
HANNEE, 32
hardware implementation, 91
Hebb, Donald, 10
Hebbian learning rule, 10
HElement, 33
hierarchical features, 15, 17, 67
hierarchical model of vision, 12
HObject, 37
http protocol, 46
Hubel, David H., 11
hyper column, 17, 54

I
integrate-and-fire neuron model, 9
invariant recognition, 14, 18, 69
ion channel, 8

K
K-Means algorithm, 56
Kirchhoff current law, 48
Kohonen map, 24

133

134 INDEX

Kramer, Alan H., 28

L
Laplacian filter, 59
learning

back-propagation, 22
clustering, 55
competitive, 23, 57
Hebbian, 10
Perceptron, 58
supervised, 22
un-supervised, 23

LeCun, Yann, 14
linear classifier, 58, 61
linear separability, 58, 73, 108
listener, 40

M
massive parallelization, 26
membrane (cell), 8
meta parameters, 59, 60
meta training, 59
mixed-signal, 28
MNIST data base, 63
multi-threading, 41
multi-valued inputs, 77
mutual information, 101

N
Neocognitron, 14
network topology, 13
von Neumann architecture, 26
neuro chips, 28
neuron, 7
neuron model

integrate-and-fire, 9
rate-based, 9
threshold, 12, 53

neuron offset, 96

O
offset

neuron, 96
overfitting, 20, 74

P
pairwise classifier, 58
parallel operation, 50
parallelization, 26
Perceptron learning rule, 58

convergence of, 58

plasticity (synaptic), 10
power consumption, 26
pre-computed weights, 82
precision (computational), 26
principal components, 10, 24, 101
programmed weight, 81

R
rate-based neuron model, 9
receptive field, 11
reference current, 113
remote access, 45
resting potential (cell), 8
RTTI, see run-time type information
Rumelhart, David E., 23
run-time type information, 42

S
S-layer, 20, 54
scalability, 77
second-level cache, 112
segmentation, 59
selectivity, 57
self-organization, 21, 23
self-organizing map, 24
serialization, 39
single-instruction multiple-data, 28
size limitations, 100
stochastic weight update, 98
subsampling layer, 18
supervised training, 22
synapse, 8
synapse array, 49

T
test set, 59
thermometer code, 78
threshold neuron model, 12, 53
time measurements, 110
network topology, 54
traffic signs, 69
training, see learning

U
un-supervised training, 23
unipolar, 94
update interval, 98

V
validation set, 59
vector quantization, 24

INDEX 135

visual cortex, 11
VLSI (Very Large-Scale Integra-

tion), 26
voting schemes, 58

W
web browser, 46
weight (synaptic), 9
weight scaling, 95, 113
weight sharing, 16, 20
Wiesel, Torsten N., 11

X
XML, 39

136 INDEX

Acknowledgments
(Danksagungen)

Thanks for funding...

This work was funded in part by the European Union, grant numbers IST-2001-
34712 (SenseMaker) and IST-2004-2.3.4.2 (FACETS). The author was temporar-
ily supported by a scholarship of the Landesgraduiertenförderung, Baden-
Württemberg. Funds were also received by the state of Baden-Württemberg
and, last but not least, by the author’s parents. Thank is expressed to all the
donors.

...for scientific support...

Ein Werk wie das Vorliegende lässt sich nur schwerlich als Einzelperson voll-
bringen. Den Personen, die maßgeblich oder teilweise am Gelingen dieser Ar-
beit beteiligt waren, sei herzlich gedankt:

- Ich danke Herrn Prof. Meier für die freundliche Aufnahme in seine
Electronic Vision(s)-Gruppe. Er hat mir die Möglichkeit gegeben, eu-
ropaweit an einem internationalen Projekt mitzuarbeiten, hat stets für
den notwendigen Rahmen gesorgt (s.o.) und war immer erreichbar,
wenn Ratschläge vonnöten waren.

- Ich bedanke mich bei Herrn Prof. Jähne, der freundlicherweise das
Zweitgutachten dieser Arbeit übernommen hat.

- Großen Dank schulde ich Dr. Johannes Schemmel, einem der Mit-
begünder der Arbeitsgruppe und dem Entwickler des analogen neu-
ronalen Netzwerkchips, der die Grundlage und die Motivation für die
vorligende Arbeit darstellt. Johannes fällt ein großer Teil der inhaltlichen
Betreuung zu. Seine visionären Ideen in allen Bereichen der Tech-
nik haben regelmäßig zu inspririerenden Gesprächen geführt, sein er-
barmungsloser Scharfsinn hat viele Aussagen in dieser Arbeit auf den
eigentlichen Punkt gebracht, und seine Geduld, einem Elektronik-Laien
wie mir immer wieder die ausgeklügelte Funktionsweise des Chips na-
hezubringen, ist bewundernswert.

- Meinem (ehemaligen) Kollegen, Schreibtischnachbarn, Freund, Front-
man und Trauzeugen Dr. Steffen G. Hohmann gebührt an dieser Stelle
besonderer Dank. Seine Anwesenheit in der Arbeitsgruppe war nicht

137

138 ACKNOWLEDGMENTS

zuletzt einer der Faktoren, die die entgültige Entscheidung, dieses
Doktorarbeitsthema zu wählen, mitbestimmt haben. Die fruchtbare
Zusammenarbeit im Handwerk des Software-Engineerings war eine an-
genehme und lehrreiche Erfahrung. Insbesondere möchte ich ihm für die
Korrektur und Besprechung des Großteils dieser Arbeit danken.

- Bei den Kollegen aus dem Hardwarezimmer, besonders Stefan Philipp,
Tillmann Schmitz und Andreas Grübl, möchte ich mich für Un-
terstützung in Hardwarefragen und die ständige Verbesserung der Kom-
munikationsschnittstellen bedanken. Einiges an Arbeit wäre ihnen ohne
meine Wünsche und Probleme sicher erspart geblieben.

- Besondere Erwähnung verdienen die “Soft-Boyz”, mit denen ich das
Softwarezimmer teile: Daniel Brüderle, Lars Büsing und Eilif Mueller.
Ihnen danke ich für ein angenehmes Betriebsklima, tägliche Exkursionen
zum Unishop und für die Reisebetreuung in Kanada.

- Ich danke allen Mitgliedern der Arbeitsgruppe für eine freundliche At-
mosphäre, Hilfsbereitschaft, Kaffee-Sekt-und-Kuchen zu jedem Anlass,
erheiternde Gespräche zwischen Tür und Angel, und die gegenseit-
ige Bereicherung aller möglichen Festlichkeiten durch gutgelauntes Er-
scheinen.

- Vielen anderen Mitarbeitern des Kirchhoff Instituts für Physik, die mich
unterstützt haben, möchte ich meinen Dank aussprechen: Robert Weis
für die unermüdliche Aufrechterhaltung der IT-Systeme, Markus Dorn
für die Tag&Nacht-Adminstration der Fourofeight, Ralf Achenbach für
die psychologische Vermittlung zwischen mir und seinem Klimaschrank.
Ich möchte mich auch bei den Mitarbeitern in der Verwaltung für Hilfe
im bürokratischen Alltag bedanken, insbesondere bei Claudia Brüser,
Harald Jacobsen und Oscar Martin-Almendral.

- Diese Arbeit wäre unmöglich gewesen, wenn nicht unzählige Entwick-
ler ihre Freizeit darauf verwendeten, freie und nützliche Software zu
erstellen. Anstatt die mir größtenteils unbekannten Namen der Pro-
grammierer zähle hier ich die von mir meistverwendeten Werkzeuge auf:
Linux, KDE, g++, bash, emacs, grep, gawk, sed, gnuplot, xfig, latex und
gzip. Danke für diese exzellenten Programme.

...and for all the rest

Eine Doktorarbeit ist in erster Linie assoziiert mit der Erstellung einer wis-
senschaftlichen Arbeit. Darüber hinaus bezeichnet der Begriff aber, schon
aufgrund der zeitlichen Ausdehung einer Dissertation, einen kompletten Ab-
schnitt im Leben eines Menschen. Denjenigen, die mir in dieser Zeit persönlich
wertvolle Weggefährten waren (und hoffentlich noch eine zeitlang bleiben
werden) möchte ich hier meinen Dank aussprechen, insbesondere:

- der Band “Fake-It”, deren Schlagzeuger ich sein durfte, mit allen ihren
Mitgliedern: Ani, Franky, Fred, Mad, Merd und Stevo für die gemein-
same Entwicklung von einer Gruppe Musik-Laien und Halbmusikern

ACKNOWLEDGMENTS 139

zur rockigsten, groovigsten, swingigsten und eingeschworensten Party-
Kultband in der ich je gespielt habe. Die Proben waren ein Höhepunkt
der Woche, von den Auftritten ganz zu schweigen.

- dem Mensaclub und seinen (aktuellen und gegenwärtigen, regelmäßigen
und sporadischen) Mitgliedern, für die mittägliche Konstante im Arbeit-
salltag bei gutem wie bei schlechtem Essen, für angeregte Gespräche oder
entspanntes Schweigen, für außermensarische Kontakte – und das alles
über Jahre hinweg; besonders aber: Annika, Florian B., Florian F., Kristin,
Kristine, Martin, Nadine, Tom, Verena und Wieland.

- den wertvollen Freunden, die mir über die Studienzeit hinweg bis jetzt
treu geblieben sind, und die noch nicht anderweitig erwähnt wurden.

- meinen Eltern, die mich bis heute uneingeschränkt in allen Lebenslagen
und -fragen unterstützen.

- Das Beste soll man sich für den Schluß aufsparen. Deshalb gebührt diese
Stelle keiner anderen als Ana Fieres, geb. Kovatcheva, die ich während
meiner Promotionszeit erst richtig schätzen gelernt habe, und die ich,
als einzig sinnvolle Konsequenz, letztendlich geheiratet habe. Allein
ihretwegen wäre meine Promotion eine lohnende Sache gewesen.

