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KURZFASSUNG

Perfusions-CT (Computertomographie) ist ein dynamisches Bildgebungsverfahren
für die Bestimmung der Durchblutung von Gewebe. Das begrentzte Sichtfeld jet-
ziger CT-Detektoren beschränkt die Anwendung auf Perfusionsstudien kleiner Volu-
men. Die Einführung von Oberflächendetektoren in CT wird es künftig ermöglichen,
Perfusionsstudien ganzer Organe durchzuführen, was die klinische Relevanz der Per-
fusions-CT steigern wird. Andererseits, wird dies die Patientenbelastung sowie auch
die Ansprüche an die Rekonstruktionshardware (aufgrund der großen generierten
Datenmenge) erhöhen. Diese Dissertation befasst sich mit dynamischen Rekon-
struktionsalgorithmen für Scanner mit Oberflächendetektoren im Rahmen der Per-
fusions-CT. Ihr Schwerpunkt liegt in der Entwicklung von Verfahren, die effizient
bezüglich der Patientendosis und des Rechenaufwands sind.

Der erste Teil der Arbeit ist der dynamischen Rekonstruktion von Objekten mit zeit-
abhängigem Dämpfungskoeffizienten gewidmet. Als Ergebnis einer theoretischen
Analyse stellt man fest, dass die Rekonstruktion aus Projektionen eines begrenzten
Winkelintervals über mehrere Rotationen als nicht-ideale Abtastung mit einem re-
gulären Abtastmuster interpretiert werden kann. Die dynamische Rekonstruktion er-
folgt dann durch die Schätzung eines kontinuierlichen Signals aus den Abtastwerten
mit einem effizienten Interpolationsverfahren. Es wird ein Zeitinterpolationsansatz
vorgeschlagen, der auf polynomialer Splineinterpolation beruht. Dieser Ansatz erhöht
die Zeitauflösung für eine gegebene Abtastrate und ermöglicht dadurch den Einsatz
von Scannern mit niedrigen Rotationsgeschwindigkeiten für dynamische Bildgebung.
Unter der Annahme, dass die maximale Frequenz des dynamischen Prozesses bekannt
ist, kann man die Abtastrate gemäß dieser Frequenz anpassen, um nur die notwendi-
gen Daten für die Schätzung des kontinuierlichen Signals aufzunehmen. Dies führt
zu einer Reduktion der aufgenommenen Daten und daher des Rechenaufwands der
Rekonstruktion.

Im Zeitinterpolationsansatz wird Rauschen nicht berücksichtigt. Der Rauschpegel
in CT ist umgekehrt proportional zur angewandten Röntgendosis. Gemäß der o.g.
Abtastungsinterpretation kann man Rauschen reduzieren, indem die Bandbreite des
geschätzten Signals auf die Bandbreite des schnellsten Perfusionssignals im zu rekon-
struierenden Volumen begrenzt wird. Dies wird als optimal-SNR Schätzung be-
zeichnet. Eine optimal-SNR Rekonstruktion kann unabhängig von der Anzahl der
durchgeführten Scans vollbracht werden, solange die Abtastbedingung erfüllt wird.
Auf diesem Prinzip aufbauend wird der Zeitinterpolationsansatz zu einem Zeitglät-
tungssansatz mit polynomialen Splines erweitert. Dieser Ansatz ermöglicht es, die
Bandbreite der rekonstruierten Sequenz anzupassen, so dass eine optimal-SNR Rekon-
struktion für die angewandte Dosis erzielt wird. Im Vergleich zum Standard-Rekon-
struktionsverfahren kann dies zweifach genutzt werden. Entweder reduziert man die
Dosis, während die Bildqualität erhalten bleibt, oder man verbessert die Bildqualität
bei Anwendung der gleichen Dosis.

Die Ergebnisse dieser Arbeit stellen den ersten Schritt in Richtung auf die Benutzung
von C-bogen Systemen in Perfusionsbildgebung dar.





ABSTRACT

Perfusion CT (Computed Tomography) is a dynamic imaging technique whose aim is
to assess the blood supply to tissue. The limited field of view of current CT detectors
restricts its use to perfusion studies of a small volume. The introduction of large area
detectors in CT, however, will allow perfusion studies of entire organs, increasing
the clinical relevance of perfusion CT. On the other hand, this will also increase
patient exposure and requirements for the reconstruction hardware as a consequence
of the huge amount of acquired data. This thesis deals with dynamic reconstruction
algorithms for scanners with large area detectors within the framework of perfusion
CT. Its main focus lies on the development of methods efficient in terms of both the
X-ray exposure and the computational cost.

The first part of the thesis is devoted to the problem of dynamic reconstruction of
objects with time dependent attenuation. Theoretical analysis reveals that the recon-
struction from projections in a limited angular interval over several rotations can be
interpreted as a non-ideal sampling on a regular grid. Dynamic reconstruction can
then be performed by estimating a continuous signal from the samples using an effi-
cient interpolation scheme. A temporal interpolation approach based on polynomial
spline interpolation is proposed. This approach increases the temporal resolution for
a given sampling rate and thus enables the use of slow rotating scanners for dynamic
imaging purposes. Assuming that the maximum frequency of the dynamic process is
known, the sampling rate can be adapted according to this frequency in order to ac-
quire only the necessary data to estimate the continuous signal accurately. This leads
to a reduction of the acquired data and therefore of the computational complexity.

The temporal interpolation approach does not consider noise. The noise level in the
images is inversely proportional to the applied dose. According to the sampling inter-
pretation, noise can be reduced by limiting the bandwidth of the estimated continuous
signal to the bandwidth of the fastest perfusion signal in the volume of interest. This
is denoted as optimal-SNR estimation. Optimal-SNR reconstruction can be carried
out independently of the number of scans performed during acquisition as long as the
sampling condition is fulfilled. Based on this principle, the temporal interpolation is
extended to a temporal smoothing approach with polynomial splines. This approach
allows adapting the temporal bandwidth of the reconstructed sequence, yielding an
optimal SNR reconstruction for a given total applied dose. This can be used either
to reduce dose while preserving image quality as in standard reconstruction, or al-
ternatively to increase image quality while using the same dose as in the standard
procedure.

Finally, the results obtained in this thesis represent the first step towards the use of
C-arm systems for perfusion imaging purposes.
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CHAPTER 1.

INTRODUCTION

1.1. MOTIVATION. A CONTRIBUTION TO PERFUSION CT IMAGING

Perfusion CT is a dynamic imaging technique based on Computed Tomography whose aim is
to assess the blood supply to tissue. In perfusion CT a series of CT scans is performed after
the injection of a contrast agent. The reconstructed sequence of images contains information
about the temporal evolution of the concentration of contrast agent. This information is used to
compute image maps of functional parameters that describe the state of the blood supply. This
technique has already found its way into clinical routine. Together with perfusion MRI (Magnetic
Resonance Imaging), they represent the primary imaging techniques for patients with symptoms
of stroke [Wiesmann et al., 2004]. Perfusion CT enables diagnosis in the majority of the cases
and presents a series of advantages compared to perfusion MRI; these include higher availability
of CT scanners, shorter protocol times and lower cost. On the other hand, perfusion MRI allows
more reliable diagnosis of some pathologies. However, the diagnostic capabilities of perfusion CT
are not yet fully exploited as indicate the results of several clinical studies in the last years, e.g.
[Wintermark et al., 2002] and [Schramm et al., 2004]. One of the main limitations of perfusion
CT is that it produces functional maps of only a limited number of slices, i.e. only a small
volume. The advent of large area detectors will enable perfusion CT studies of a volumetric
region of interest which will lead to an increase in the clinical relevance of this method.

The high number of scans together with the dynamic nature of the process of contrast agent
flow cause a series of limitations in perfusion CT. Some of these aspects will gain in importance
with the introduction of large area detectors. One of the most constraining aspects is the exposure
of the patient to X-ray radiation. X-rays are ionising radiation so that the dose applied should
be kept as low as possible. Unfortunately, the noise level in CT images is inversely proportional
to the dose applied. In perfusion CT, the amount of dose is due to not only one but several CT
scans. For this reason, the dose in each of them has to be kept low and therefore images are very
noisy. This strongly constrains the computation of functional parameters. Another limiting issue
is the huge amount of data obtained during the scans. These data must be processed fast by the
reconstruction algorithm to a sequence of images. This sequence is the input for the software
package that computes the functional parameters. With large area detectors, the amount of input
data increases dramatically and becomes a very restrictive aspect for the reconstruction algorithm.
On the algorithmic side, a point to consider is the time dependence of the attenuation coefficient.
Standard CT reconstruction algorithms are usually based on the assumption that the object does
not change during the scan time. After an injection of contrast agent, however, the attenuation
value of blood is time dependent. For this reason, only CT imaging devices with high rotational
speeds can be used for perfusion imaging purposes. Finally, due to the long acquisition times of
typically 40 s, the patient might move on the patient bed. This is a major problem since without
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correction, the acquired dataset becomes useless and the patient is exposed to ionising radiation
in vain.

This thesis deals with dynamic reconstruction algorithms for perfusion CT. Its main focus is on
the development of reconstruction algorithms for large area detectors which are efficient in terms
of both X-ray exposure and computational cost.

1.2. DESCRIPTION OF THE CONTENTS

The first part of this thesis is composed of two review chapters which provide the fundamentals
for the work developed. Chapter 2 is devoted to the description of the biomedical context. It
describes the function of microcirculation and shows how it can be assessed using dynamic CT. It
finishes with a discussion about the limitations of this procedure. The following chapter describes
the principles of Computed Tomography from the physical principles of X-ray generation to 3D
reconstruction from cone-beam projections. It is designed as a reference for the CT concepts used
in the following chapters.

Chapters 4 to 6 contain the original contribution of this thesis. In chapter 4, we concentrate
on the problems caused by the dependence of the attenuation coefficient on time. We first pro-
pose a model for the temporal evolution of the concentration of contrast agent which will be used
throughout the thesis. Subsequently, we provide a theoretical analysis of reconstruction from pro-
jections of an object with time dependent attenuation. Following, we use the obtained theoretical
results to propose a temporal interpolation approach for dynamic reconstruction which efficiently
exploits the acquired data. This approach can be used either to attain a high temporal resolution
or to reduce the necessary input data and thus the computational complexity of the reconstruction.
We finalise this chapter by presenting numerical simulations both to verify the theoretical analysis
and to assess the performance of the presented approach.

In chapter 5 we address the problem of dynamic reconstruction in the presence of noise. We
first introduce a model for the temporal behaviour of noise in dynamic CT. Based on this model
we propose a method to obtain an optimal noise level in the reconstructed sequence for a given
applied total dose. These results are used to extend the temporal interpolation to a temporal
smoothing approach. This new method enables dynamic reconstruction with an optimal signal to
noise ratio for a given total dose even with slow rotating systems.

The used software tools are described in chapter 6. The central part of this chapter is concerned
with the description of the CT Project library, a C++ library for dynamic reconstruction from cone-
beam projections developed during this thesis. All static and dynamic reconstruction algorithms
appearing in the text are implemented in this library. This library implements all the static and
dynamic reconstruction algorithms that appear in the text.

In chapter 7 we provide a general conclusion about the results obtained in this thesis and some
proposals for further research.

Finally, a series of appendices completes the text. Appendix A contains a list of abbreviations
and a explanation of the notational conventions. The fundamentals of signal processing used in
chapters 4 and 5 are presented in appendix B. Appendix C gives a description of the phantoms
used in the numerical simulations. The last appendix, provides an analysis of the computational
complexity for the proposed algorithms.

The main original contributions of this thesis are:
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• A theoretical analysis of the effect of rebinning and FDK-like reconstruction with projec-
tions from a time dependent object (sections 4.3.3 to 4.3.5).

• The TIA-TFDK and TIA-CFDK algorithms for dynamic reconstruction from cone-beam
projections (section 4.4.3).

• An analysis of the temporal behaviour of noise in dynamic CT (section 5.2).

• The TSA-TFDK and TSA-CFDK algorithms for dynamic reconstruction with optimal SNR
from noisy cone-beam projections (section 5.3.2).
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CHAPTER 2.

FUNCTIONAL IMAGING WITH CT

This chapter provides a description of the biomedical context of this thesis. First, perfusion
CT is introduced in the context of functional imaging as a technique that allows to assess
the state of the microcirculation of a tissue. After a short introduction in the physiology of
circulation, the concept of perfusion is discussed and its relevance to assess the state of a tissue
is stressed. A method is presented to compute perfusion and other functional parameters from
the temporal evolution of the concentration of a tracer in blood. We describe the clinical
procedure followed to obtain a sequence of CT images containing the temporal evolution of
the concentration of a tracer (perfusion CT protocol). Finally, we discuss the limitations of
this technique.

2.1. INTRODUCTION. MEDICAL IMAGING TECHNIQUES

Medical imaging was born with the discovery of X-rays by Röntgen in 1895. For the first time it
was possible to examine the interior of the body with non-invasive techniques. X-ray projection
imaging became immediately an essential tool for medical diagnostics where they are still widely
used. An X-ray beam with constant intensity experiments a different attenuation depending on the
tissue it goes through, the detected intensity provides then information about morphology. Despite
their relevance in diagnostics, their limitation was early identified. The attenuation effects of the
traversed tissues are superposed, so that only the tissues which cause a very high attenuation
are represented well in the image. This drawback could be first overcome with the introduction of
Computed Tomography in the early seventies. The presentation of the first Computed Tomography
scanner by Hounsfield in 1972 and the publication of his work one year later [Hounsfield, 1973]
marked the beginning of a new era in the field of medical imaging. This technique allowed to
obtain images of a transversal section of the body with non-invasive methods. The introduction
of spiral CT at the late 80s extended the use of computed tomography to fast volumetric imaging
[Kalender, 2000].

In the middle 80s an alternative imaging modality was introduced in the medical field: Magnetic
Resonance Imaging (MRI). Contrary to CT, MRI does not use X-rays but a strong magnetic field
and radio wave pulses in the MHz frequency range. By exciting certain molecules (typically
water) of a tissue in a constant magnetic field by radio wave pulses of a certain frequency, these
molecules emit themselves radio waves which are appropriately detected. The measured signals
are used to compute an image.

Both imaging techniques provide detailed information about morphology and have been widely
used since their introduction for the identification of pathologies based on changes of the morphol-
ogy. The X-ray attenuation coefficient depends mainly on the density of the tissue. For this rea-
son, CT images provide detailed information about tissues with high physical density as bone and
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calcifications. On the other hand, since the excited molecules are usually water, MRI provides
a higher sensitivity to differentiate soft tissue. The clinical application areas of both methods
overlap in many cases.

This short introduction to morphological imaging in medical applications cannot be closed
without mentioning ultrasound imaging. While CT and MRI use electromagnetic radiation in
different frequency ranges for imaging purposes, ultrasound imaging uses pressure waves. In
ultrasound imaging, the different reflexion properties of tissues are exploited to generate slice or
3D images. Among all imaging techniques, ultrasound is the less invasive and is therefore widely
used for fetal imaging and also in pediatric radiology. It exhibits, however, a very poor spatial
resolution compared to other techniques as CT or MRI.

2.1.1. FUNCTIONAL IMAGING

An alternative to morphology imaging, nuclear medicine, appeared at the end of the 60s with a
different aim: visualising function. The principle of nuclear medicine consists in injecting an
organ specific radiopharmaceutic contrast agent to the patient and measuring the decay quanta
emitted from the body. From these measurements an image is reconstructed which gives informa-
tion about organ activity. The result is the visualisation of a biochemical process. Two methods
are differentiated depending on the radionuclides used. In Single Photon Emission Computed
Tomography (SPECT) the radionuclides decay emitting gamma quanta. In Positron Emission
Tomography (PET) they decay emitting positrons [Oppelt, 2005]. The measured activity is asso-
ciated with a position in space but no information about morphology is delivered. For this reason
these methods are often superimposed to morphological information from CT or MRI data.

During the last two decades the field of functional imaging has stopped being exclusive to nu-
clear medicine. The introduction of functional MRI (fMRI) and the whole variety of techniques
of molecular imaging have made functional imaging an active area of research which has led to
numerous new applications. Several imaging modalities that were initially used for the visuali-
sation of morphology have found their way into this growing field. These have the advantage to
provide both functional and morphological information in a unique procedure but, on the other
hand, they only cover a small range of applications. Within this context, techniques both with
CT and MRI have been developed to assess the state of microcirculation; these techniques are
commonly known as perfusion CT and perfusion MRI. The methods developed in this thesis are
situated within the context of perfusion CT.

2.2. OVERVIEW OF CIRCULATION AND MICROCIRCULATION

In this section the physiological concepts used throughout this thesis are presented. If not other-
wise indicated, the information was extracted from [Schmidt et al., 2000, Guyton and Hall, 1996].

The main purpose of the circulation is the delivery of nutrients to the tissues and the removal
of cellular excreta. The transport of nutrients is performed by blood that circulates in the vascular
system. This system consists of vessels of different types; these are classified in arteries, arterioles,
capillaries, venules and veins (see figure 2.1). The function of arteries is to transport blood under
high pressure to tissues. They end in arterioles which are the last small branches of the arterial
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Figure 2.1. Types of vessels in the vascular system and a capillary network. Image from [Parker, 2006].

system. Blood flows further to the capillaries where the exchange of nutrients and other substances
with cells takes place. Finally, the outflow is collected by venules which converge to veins.

Blood circulates through the vascular system in a continuous cycle. A scheme of this cycle is
shown in figure 2.2. Oxygenated blood leaves the lungs and flows towards the right side of the
heart through the pulmonary vein. From there it is pumped into the aorta and distributed through
the arteries towards all tissues of the body. After it transits the capillaries, blood is collected by
veins and flows finally through the venae cavae to the left side of the heart from where it is pumped
towards the lungs. There it is oxygenated and starts its cycle again.
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Figure 2.2. Scheme of the blood cycle. Image from [Teachnet, 2006].
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Vessel type Cross sectional area Velocity

Aorta 2.5 cm2 33 cm/s
Arterioles 40 cm2 2.06 cm/s
Capillaries 2500 cm2 0.03 cm/s
Venules 250 cm2 3.3 cm/s
Venae cavae 8 cm2 10.3 cm/s

Table 2.1. Approximate total cross sections of vessels of each type and average velocity of blood.

Due to the different elasticity of vessels and the continuous adaption of vessels to tissue needs,
blood flow in vessels is a very complex process. There are though some general facts that can
be outlined. The different types of vessels have different typical cross-sectional areas. If we put
all vessels of the same type together we get a total cross-sectional area for each type of vessel
which is given in table 2.1. The same volume of blood that leaves the vessels of one type, i.e.
arteries, in a given time interval, flows into vessels of the next type, i.e. arterioles. The volume
of blood per unity of time equals the velocity of blood times the cross-sectional area. Since the
total cross-sectional areas are different for each vessel type, it follows that the velocity of blood in
each vessel type is inversely proportional to the corresponding total cross-sectional area. Typical
values are given in table 2.1.

Another important aspect is that blood flows, in general, parallel to the axis of the vessel, i.e.
blood is a laminar fluid. There are some situations where blood flow becomes turbulent, e.g. when
blood is pumped by the heart into the aorta or arteria pulmonalis or in partially blocked vessels
(stenosis). This disturbances are, however, very localised both in space and in time.

2.2.1. MICROCIRCULATION IN TISSUE

The concept of microcirculation applies to the fragment of the circulatory path from the arterioles
to the venules (see figure 2.1). Here, the most important function of the circulation occurs: the
delivery of nutrients to the tissues and the removal of cellular excreta.

The human body is composed of tissues, i.e. substances made up of cells that perform a similar
function. The space between cells in tissue is called interstitium and the fluid in these spaces
interstitial fluid. The capillary networks through the tissues are sufficiently dense for every cell
to be ”close” to a capillary. This ensures that every cell can receive nutrients carried by blood
and deliver residual substances to it. This exchange process is principally carried out by diffu-
sion through the thin capillary walls. Tissue supply needs are not constant; the vascular system
provides mechanisms to adapt the blood flow in the capillary network to its needs by dilation and
contraction of blood vessels. We will use hereafter the term tissue to denote the cells and the
capillary network that supplies them.

The walls of the capillaries are composed of an unicellular layer of endothelial cells surrounded
by a membrane. These cells are connected to each other in such a way that an intercellular cleft
between cells is left. The exchange takes place both through the cell walls and through the cellular
clefts. Big molecules are transfered through the latter. The intercellular space between cells differ
in some organs to meet their special needs. In particular in the brain, the junctions between cells
are tight so that only very small molecules pass into the brain tissue. This is known as the blood-
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brain barrier. In the liver, the clefts are wide open and therefore big molecules can freely diffuse
to the extravascular space (interstitium).

The fundamental physiological parameter that describes the process of blood supply to a tissue
is perfusion. It describes the nutritive blood supply to an element of tissue. Quantitatively, in the
context of perfusion imaging, it is defined as the millilitres of arterial blood delivered per minute
per millilitre of tissue [Edelman et al., 1996]; hence, it has units of rate (min−1). Another impor-
tant parameter is blood volume which represents the fraction of tissue volume occupied by blood.
Tissue function is critically dependent on blood supply. Hence, perfusion levels provide valuable
information about the state of a tissue. However, their combination with blood volume measure-
ments extends dramatically the diagnostic possibilities [Miles and Griffiths, 2003]. A reduction
in perfusion leads to a compensatory dilatation of blood vessels. Continuated low perfusion lev-
els though lead to irreversible tissue damage (infarct). Infarction is associated with loss of the
autorregulatory dilatation of vessels. Therefore reduced perfusion with increased blood volume
indicates a reversible damage, whereas a matched reduction in perfusion and blood volume sug-
gests infarction.

2.3. MEASUREMENT OF PERFUSION WITH CT

In this section, methods to derive perfusion measurements from CT data are presented, technical
details about CT will be given in chapter 3.

Computed Tomography (CT) produces slice images representing the spatial distribution of an
X-ray attenuation coefficient. By injecting certain chemical substances intravascularly, the X-ray
absorption of blood can be increased, enhancing thus its contrast in the image. As a consequence,
these substances receive the name of contrast agents. Contrast agents exist for any medical imag-
ing modality. In the case of CT, these agents are iodine-containing organic compound solutions
which are transported by blood [Miles et al., 1997].

The methods used to perform perfusion measurements with CT are based on tracking the con-
centration of a tracer transported by blood. A very attractive property of CT is that the grey value
in the images, i.e. the X-ray attenuation coefficient, is proportional to the concentration of contrast
agent [Miles et al., 1997]. This suggests to use a contrast agent as tracer and, after the injection,
obtain a series of CT images of a given region and subtract from every image the background, i.e.
a CT image of the region obtained without contrast agent. In the sequence obtained, the evolution
of the signal intensity of a pixel in the CT image over time is proportional to the temporal evolu-
tion of the concentration of contrast agent. The total amount of contrast agent that flows through
a vessel is denoted as bolus. For this reason, this method is also known as bolus tracking.

2.3.1. FROM TRACER CONCENTRATION TO FUNCTIONAL PARAMETERS

A wide variety of approaches have been proposed to compute blood supply related functional
maps from the temporal evolution of a tracer transported by blood [Miles and Griffiths, 2003].
The aim of this section is to illustrate the kind of information that these models need as input in
order to provide quality requirements for the sequences of CT images. Since these requirements
are similar for all approaches, this section is restricted to a compartmental analysis-based approach
for cerebral perfusion: the slope method. This is the method implemented in the Perfusion CT
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a(t)

c(t)

v(t)

a(t) c(t) v(t)

t t t

Figure 2.3. One compartment model. a(t) denotes the concentration of contrast agent in the input artery at
time t, c(t) in tissue and v(t) in the output vein. Image from [Farabee, 2006].

software (Siemens AG, Medical Solutions, Forchheim, Germany) which is used in chapter 5. The
presentation follows [Klotz and König, 1999].

The main aspect to be considered before deriving a model is whether contrast agent remains
within the vessels or it can diffuse to the interstitial fluid. In the case of the brain, molecules
of contrast agent are large in the sense described in section 2.2.1 and cannot pass through the
blood-brain barrier; hence, they remain intravascular if the blood-brain barrier is not disrupted.

In a compartmental analysis approach, the regions where the tracer distributes are divided in
compartments. Typically a one compartment model is used if the agent remains intravascular and
a two compartment model is used if it diffuses into the interstitium. One compartment is in any
case the intravascular space in the tissue. In the two compartment model the second compartment
is the interstitium. Compartmental analysis is based on three main assumptions ([Zierler, 1965]
and [Miles et al., 1997]):

• The tracer does not affect blood flow.

• The tissue is homogeneous, i.e. it contains no concentration gradients.

• Tracer and blood mix instantaneously after inflow.

We describe here the so-called slope method which is based on a one compartment model. This
method is used for cerebral perfusion CT and assumes that the tracer remains intravascular.

Figure 2.3 shows a scheme of the one compartment model. It is composed of an input artery,
the tissue supplied by this artery and finally the output vein. From the quantitative definition of
perfusion given in section 2.2.1 perfusion can be computed as a flow per unit volume

f =
F

V
. (2.1)

Blood flow might change during the time the study is performed, but the quantity measured is an
average [Shephard et al., 1983]. Hence, f and F are quantities averaged in a time interval [0, ts].
Applying conservation of mass

F

ts∫

0

a(t)dt− F
ts∫

0

v(t)dt = V c(ts). (2.2)
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This leads to the following formula to compute perfusion

f =
F

V
=

c(ts)
∫ ts
0 a(t)dt−

∫ ts
0 v(t)dt

(2.3)

This formula is the starting point for a wide variety of methods to compute perfusion. In order to
derive the slope method, the differential form of (2.3)

f =
dc(t)
dt

a(t)− v(t) (2.4)

is considered. Since this relationship holds for any time, it holds also for tms, the time of maxi-
mum slope for the tissue concentration curve

f =
dc(tms)

dt

a(tms)− v(tms)
. (2.5)

The time at which contrast agent outflow through the output vein starts is denoted as tvout. As-
suming tvout > tms, v(tms) ≈ 0 (no venous wash-out), then

f =
dc(tms)

dt

a(tms)
. (2.6)

Rearranging (2.6) and differentiating

d2c(t)

dt2
= f

da(t)

dt
for t < tvout. (2.7)

The left part of (2.7) vanishes at the time the slope c(t) is maximum, i.e. t = tms, therefore also
does da(t)/dt. As a conclusion, a(t) reaches its maximum at t = tms and the maximum slope
formula to compute perfusion can be computed as

f =
max

{
dc(t)
dt

}

max {a(t)} . (2.8)

Many software packages provide the related parameter CBF (cerebral blood flow) which can be
calculated as CBF = fV .

An expression for the computation of cerebral blood volume (CBV) can be derived in a similar
way

CBV =
max{c(t)}
max{v(t)} . (2.9)

The temporal evolution of the concentration of contrast agent is the decisive quantity for the
computation of functional parameters. Throughout this thesis we refer to this temporal evolution
as the dynamic process. Since it is proportional to the attenuation value, we also refer to it as
time-attenuation curve (TAC) or simply perfusion signal.
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2.3.2. PERFUSION CT PROTOCOL

A perfusion CT protocol is the clinical procedure followed with each patient to obtain blood
supply-related functional maps with CT. It consists of three steps:

1. Injection of contrast agent.

2. Acquisition/reconstruction: generation of a sequence CT images.

3. Computation of perfusion parameters.

Contrast agent is injected intravenously in the cubital vein. As shown in the previous section
the maximum value of the concentration in an output vein is needed for the computation of CBV.
If the curve extends over a too long period of time, it might happen that the maximum is not
registered by the CT sequence. Moreover, it is easier to fulfil the no venous wash-out assumption
if the bolus is short in time. For these reasons the contrast agent should be injected at a high
injection rate (ml/s). On the other hand, too high injection rates might not be well tolerated by
some patients. In practice, injection rates up to 20 ml/s are used [Klotz and König, 1999]. Another
important factor is the quantity of contrast agent injected. A higher amount of contrast agent will
increase the level of the time-attenuation curves and make them therefore easier to detect in the
presence of noise. On the other hand, it will make the bolus expand over a longer period of time
which, as described above, might cause problems as well. Furthermore, a high amount of X-ray
contrast agent might have toxic side effects so that its quantity should be minimised. Typically,
values around 40− 50 ml are used [Miles and Griffiths, 2003]. Following the blood cycle (figure
2.2), contrast agent passes through the left side of the heart, through the lungs and through the
right side of the heart before it reaches the brain. The transit through the heart and lungs makes
the bolus expand over a long period of time.

During the time contrast agent flows, a series of CT scans of a region of interest is performed.
The main parameters for the acquisition and reconstruction of these images are the following:

• Total protocol time: Ttot.

• Time between image frames of the output sequence: Tfr.

• Rotation time of the X-ray tube: T2π.

• X-ray tube voltage: V .

• X-ray tube current: I .

• Slice thickness: ∆.

The first three parameters are self-explanatory; the last three are CT specific parameters and will
be discussed in chapter 3. There is no standard choice for these parameters. Since they are
determinant for the calculation of the X-ray dose applied to the patient (see sections 3.1.4 and
5.1) we provide in table 2.2 the values used at the Department of Neuroradiology (University of
Heidelberg Medical School); these values will be referred to as the standard perfusion CT protocol
throughout the thesis.

The reconstructed sequence of images is used as input for the computation of functional param-
eters. As stated in the previous section, there is a wide variety of methods to calculate functional
parameters from the temporal evolution of the concentration of a tracer. One of these methods,
the so-called slope method, was described in the previous section.
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Parameter Value Units

Ttot 40 s
Tfr 1 s
T2π 0.5 s
V 120 kV
I 220 mA
∆ 10 mm

Table 2.2. Parameters for the reference perfusion CT protocol.

2.4. DISCUSSION. LIMITATIONS OF PERFUSION CT

State-of-the-art Computed Tomography scanners use detectors which cover a very small volume
so that the region of interest for perfusion studies is very limited. As a consequence of this, it may
happen that crucial information for the diagnosis is left out of the visualised region. The actual
trend in Computed Tomography is the development of large area detectors. With these detectors,
perfusion studies of a much larger region of interest will be possible which will overcome the
problem of the limited field of view.

There are, however, other constraining aspects which limit this procedure. These are mainly a
consequence of the acquisition over a long period of time and of the dynamic nature of the process
of contrast agent flow. The most important are the following:

Patient exposure/noise CT is an X-ray-based imaging modality. Since X-rays are ionising radia-
tion, the X-ray dose applied should be kept as low as possible. Unfortunately the noise level
in CT images is proportional to the dose applied. In perfusion CT, the amount of dose is
due to not only to one CT scan but to several ones. For this reason, the dose in each of them
has to be kept low and therefore images are very noisy. The measurement of the temporal
evolution of the concentration of contrast agent in tissue becomes a challenging issue in the
presence of high noise. With large area detectors the exposed region will become larger
which will increase the constraining aspect of this dose/noise trade-off.

Measured data/reconstruction time The acquisition of data over several rotations generates a
huge amount data. These data have to be processed fast by the reconstruction algorithm to
generate a sequence of CT images which is the input for the software package that com-
putes the functional parameters. The introduction of large area detectors will dramatically
increase the amount of input data. As a result, the computational time of the reconstruction
will become a very limiting issue.

Non-constant attenuation values Typically 1 image/s is reconstructed from the measured data
during 40 s. The reconstruction algorithms used to compute the image frames are based
on the hypothesis that the object of the scan does not change during the time the necessary
data to reconstruct an image frame are acquired. However, contrast agent flow is a dynamic
process so that the object does change. Hence, acquired data are inconsistent. This is a
limiting aspect for scanners with a low rotational speed.

Motion and deformation Due to the long acquisition times of typically 40 s, the scanned region
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of interest (ROI) might move or be deformed. Typical cases are deformation through patient
breathing or movement of the patient on the patient bed.



CHAPTER 3.

COMPUTED TOMOGRAPHY

This chapter deals with both the physical and the mathematical principles of Computed To-
mography. It introduces concepts that will be used throughout this thesis. CT is an X-ray-
based imaging modality; images are computed from measurements of the attenuation of an
X-ray beam going through the patient. The first part of the chapter is devoted to the physical
principles of X-ray generation and detection as well as the interaction of X-ray radiation with
matter. Within this context, the X-ray attenuation coefficient and the CT image as spatial
distribution of the attenuation coefficient are introduced. The concept of patient exposure to
ionising radiation (dose) and its interdependency with image quality is discussed. The sec-
ond part of the chapter is concerned with mathematical methods to compute images from the
measurements of the attenuation of the X-ray beam. The discussion is limited to the so-called
analytical reconstruction methods and among them, to the filtered backprojection algorithm,
which is the most widespread method in medical applications. The filtered backprojection
algorithm is deduced from Radon’s inversion formula for one dimensional projections in
parallel and fan-beam geometry. Finally, the discussion is extended to 3D reconstruction
algorithms from 2D projections.

3.1. PHYSICAL PRINCIPLES: X-RAY RADIATION

The presentation given in this section has the objective to provide the basic physical principles
needed to understand CT concepts used throughout this thesis. Its content, if not otherwise indi-
cated, was extracted from [Oppelt, 2005], [Dössel, 2000] and [Barret and Myers, 2004].

3.1.1. X-RAY GENERATION

X-ray radiation are electromagnetic waves of wavelength in the range from 0.006 to 1.25 nm.
Their energy is in the range from 1 to 500 KeV. Figure 3.1 shows a scheme of a typical X-ray tube
used for the generation of X-rays in medical applications. It is mainly characterised by the tube
voltage U the tube current I and the anode material (typically molybdenum, tungsten or copper).
Electrons leave the cathode due to thermo-electrical effects, are accelerated in vacuum by the
electric field and acquire a kinetic energy Ekin = eU (where e = 1.6 ·10−19 As). The accelerated
electrons then penetrate the anode where they lose their energy. The loss of energy can be caused
by three kinds of interaction. If a penetrating electron collides with a bound electron of the inner
shell of an anode’s atom with enough energy, the bound electron is knocked out of its shell. As a
result, an electron from a higher energy level fills up the vacancy and X-ray quanta are emitted.
The emitted energy corresponds to the energy difference between levels. E.g. if an electron from
the K-shell is knocked out and an electron of the L-shell fills its vacancy, the emitted radiation

15
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Figure 3.1. Scheme of an X-ray generator.

has the energy ~ν = EK − EL. Hence, the produced spectrum is discrete. The energy level
corresponding to each shell is characteristic to every material. The radiation caused by this kind
of interaction is therefore denoted as characteristic radiation.

In the second type of interaction, the incident electron is decelerated by the electric field of the
nuclei in the anode; this results in the emission of radiation. The braking process takes place in
multiple stages at which radiation is emitted until all energy is lost. Hence, radiation of every
possible energy below the maximum eU is generated, i.e. the spectrum of the emitted radiation
is continuous. Radiation generated by this effect receives the name of bremsstrahlung. Figure
3.2 shows the bremsstrahlung and the characteristic K-radiation for a Tungsten anode and a tube
voltage of U = 150 kV.

At this point it should be remarked that only a very small proportion of the incident electrons
interact with the anode’s structure in one of the two ways described above. Over 99% of the
kinetic energy is lost in electron collisions and is converted to heat. This makes the cooling of the
anode a crucial issue in the design of the X-ray tube. The X-ray energy emitted corresponds to
less than 1% of the input electrical energy; this proportion is further reduced by the fact that only
a small solid angle of the generated X-ray beam is used to generate an image.

The generated X-ray beam consists of X-ray quanta of different energies according to the spec-
trum of the target material and the tube voltage U . The number of quanta is a measure of energy
therefore the number of quanta per unit time (flux) is a measure of power. Finally, an important
magnitude for the rest of the chapter is the flux density, i.e. the energy per unit time and area. We
denote the flux density by %(E) which indicates that it depends on the energy E. The total flux
density, i.e. the flux density integrated over all energies, is denoted by %t. It depends on

%t ∝ Z · I · Un, (3.1)

where Z is the atomic number of the target material and n depends on how the beam is filtered
after leaving the X-ray source.
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%(E)

Figure 3.2. Bremsstrahlung and characteristic K-radiation for Tungsten in an X-ray tube operated at U =
150kV. From [Oppelt, 2005].

3.1.2. INTERACTION OF X-RAY WITH MATTER

X-ray radiation suffers an attenuation when going through matter. This attenuation is due to the
absorption of energy by the tissue and the deviation of the beam from its original straight trajectory
(scattering). Both effects can be summarised in an attenuation coefficient µ. This attenuation
coefficient represents the amount of attenuation per unit length due to a given material. Let us
assume that quanta of a given energy E pass through an infinitesimal layer of thickness dl of a
material. According to Beer’s law, the proportion of interacting quanta (i.e. of lost quanta) d%/%
is

d%

%(E)
= −µdl. (3.2)

If the object the beam passes through is composed of different materials, the attenuation coefficient
depends on the position in space x ∈ R

3, i.e. µ(x). The linear attenuation coefficient µ is the
decisive magnitude in Computed Tomography since its spatial distribution forms the CT image.
Its value depends on the density and atomic number of the material and on the energy of the
incident quanta. Therefore, for a given energy E, only materials with a different density or atomic
number can be differentiated in the CT image.

Assuming that the quanta follow a trajectory L after leaving the X-ray source, (3.2) can be
integrated to compute the flux density after travelling along the path described by L

%(E) = %0(E)e−
R

L
µ(x,E)dl (3.3)

where %0(E) is the flux density for a given energyE in the X-ray beam leaving the tube. The total
flux density, %t, is obtained by integrating over all energies

%t =

eU∫

0

%0(E)e−
R

L
µ(x,E)dldE. (3.4)
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3.1.3. X-RAY DETECTION: QUANTUM NOISE

Modern CT detectors are based on solid state devices; a radiation sensitive solid state material
converts the absorbed X-ray quanta into visible light. The light is then detected by a photodiode
that converts it to an electrical signal. The electrical signal is then amplified and digitised. The
produced signal is proportional to the number of incident quanta. There a two main sources
of noise in this detection process. The first is due to the quantum nature of the incident X-ray
radiation and is denoted as quantum noise. The second one is the electronic noise generated by
the data acquisition system. We will limit the presentation in this section to the description of
quantum noise. Throughout this thesis it is assumed that the detectors used are quantum limited,
i.e. that only the quantum nature of radiation has a significant influence in image statistics.

As stated previously, the flux density at the detector in (3.4) is energy per unit time and area.
Hence, in order to collect quanta to generate an output signal, a certain area is required. For this
reason, the surface of the detector is composed of pixels of a certain area S. The amount of quanta,
q, that reach a given pixel during a time interval of length T , can be calculated as

q =

∫

T

∫

S

%tdsdt. (3.5)

This value, fluctuates around an average value with a variance equal to the average number of
quanta q̄. The probability of counting m quanta when the average is q̄ is given by the Poisson
distribution

Pr(m) =
q̄m

m!
e−q̄. (3.6)

Since the variance is equal to the mean, the signal to noise ratio (SNR) is

SNR =
q̄√
q̄

=
√
q̄. (3.7)

Hence, the effect of noise decreases with increasing number of incident quanta.
Expressions (3.5) and (3.7) show the interdependency of noise, pixel size and measuring time.

According to (3.7), the number of photons should be as high as possible. In order to achieve this,
(3.5) suggests three possible alternatives. The area of the pixels S can be increased, but this leads
to a loss of spatial resolution (see section 3.2.4.1). Increasing the acquisition time T leads to a loss
of temporal resolution. Finally, the density of incident quanta %t can be augmented by increasing
the tube current (see section (3.1.1)); as we will see in the next section, both longer acquisition
times and higher tube currents have the undesired effect of increasing patient exposure. The final
parameter choice depends on each particular application.

As commented above, a way to increase the SNR is to increase the area of the pixels. In
some applications, this is done by combining the measurements of several slices of the detector
to a unique signal. The resulting measurements, however, correspond to a slice with a certain
thickness, which implies a loss of spatial resolution in the axial direction. As a consequence,
artifacts may appear in the reconstructed image. These are known as partial volume effects.

In section (3.1.1) we saw that the flux density is proportional to the tube current. Therefore,
according to (3.5) and (3.7),

SNR ∝
√
I · T . (3.8)
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3.1.4. PATIENT EXPOSURE: DOSE

The attenuation of the X-ray beam passing through matter has as a consequence the ionisation
of single atoms and therefore the modification of their chemical properties. This might lead,
depending on the amount of energy delivered by the beam, to irreparable damage in cells. As a
consequence of this, cells are repaired or destroyed as a natural result of the healing process of
the biological tissue. In less probable cases, cells might survive with modifications which might
lead in short or long term to the development of cancer.

As stated above, the potential damage depends on the amount of energy deposited in the tissue.
This leads to the definition of energy dose

D =
energy deposited in tissue

mass of the tissue
, (3.9)

measured in Gray: Gy=J/kg. The measurement of dose according to (3.9) for the methods devel-
oped is out of the scope of this thesis. However, since dose is a crucial aspect in CT, we derive in
the following a simple rule of thumb that will allow us in later chapters to discuss the efficiency
of the developed methods in terms of dose in a simple way.

The energy deposited in the tissue is related to the energy emitted by the X-ray source. The
energy delivered by the X-ray beam during a period of time of duration T is, according to (3.1)

%tT ∝ I · T · Z · Un. (3.10)

This expression cannot be directly interpreted as an estimate for dose. According to it, increasing
the tube voltage would increase the dose, which is not true since radiation of lower energies is bet-
ter absorbed than radiation of higher energies and therefore using low energy radiation increases
the dose. Nevertheless, for a certain tube voltage U expression (3.10) shows that there is a linear
relationship between the delivered energy and the product I · T . This product, is usually denoted
as the mAs product and is frequently used to estimate the dose. Note that this estimation does not
correspond to the definition given in (3.9) since it does no consider the spectrum of the radiation
and the mass of the tissue. It is, however, a practical magnitude in order to compare algorithms in
terms of dose efficiency. For this reason, we will use hereafter the mAs product as an estimation
for the dose applied

D ∝ I · T. (3.11)

In clinical practice, this estimation must be handled with care. It only makes sense in order to
compare examination protocols with the same CT scanner [Kalender, 2000].

Expressions (3.8) and (3.11) reveal a typical trade-off situation. While increasing the tube
current by a factor of a has the positive effect of increasing the SNR by a factor of

√
a, it has at

the same time the negative effect of increasing the dose by a factor of a. Note that we are talking
here about noise in the measured data, the effect of noise in the image will be discussed in section
3.2.4.2.

3.2. 2D RECONSTRUCTION

While in classical radiographs the measured attenuation pattern constitutes the X-ray image, in
Computed Tomography these measurements are the input data for a reconstruction algorithm that
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Figure 3.3. Scheme of a CT scanner of the first generation.

computes the CT image. The computation of the CT image from the acquired measurements is
denoted as reconstruction algorithm.

In an article published in 1917 [Radon, 1917], J. H. Radon stated that a 2D function is, under
certain conditions, uniquely determined by the values of integrals along all possible straight lines
passing through it. We denote these values as Radon values. Keeping this in mind, consider a
setting as the one described in figure 3.3. The source can be translated along a line parallel to the
detector and both the detector and the source can be rotated synchronously around the origin of
coordinates. A pencil beam is emitted from the source and is detected by a continuous detector.
The beam is assumed to be monochromatic, i.e. all quanta have the same energy. Furthermore,
the detector is assumed to have an infinitely short temporal response. Under these conditions the
detector will measure the flux density %. This density is given by (3.3). By rotating the source-
detector arrangement by an angle β and translating the source by u at each β position we obtain

%(β, u) = %0e
−

R

L(β,u) µ(x)dl (3.12)

where the trajectories L(β, u) are straight lines in all directions passing through the object. Di-
viding by %0 and taking the logarithm, we obtain the so-called projections

Pβ(u) = − ln

(
%(β, u)

%0

)

=

∫

L(β,u)

µ(x)dl. (3.13)

Hence, projections are the values of the integrals of the attenuation coefficient along lines passing
through the object. If β ∈ [0, π], u ∈ [−umax, umax] and µ(x) = 0 for ‖x‖ > umax, Pβ(u) rep-
resents the values of all line integrals passing through the object, i.e. all Radon values. Therefore,
according to Radon’s result, it is possible to determine µ(x) from such projections.
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3.2.1. CT RECONSTRUCTION AS AN INVERSE PROBLEM

The reconstruction of µ(x) from the measured data Pβ(u) is a typical example of an inverse
problem

Ξ{µ(x)} = Pβ(u) → µ(x)? (3.14)

The function Ξ, defined by (3.13), is applied to µ(x) and it produces the measured data Pβ(u);
from these measurements we want to recover µ(x). There are many different approaches to tackle
(3.14), they are mainly divided in:

Analytical methods An analytical expression for the reconstruction is derived from properties of
the Radon transform [Natterer, 1986]. This usually entails a series of physical assumptions
(see section 3.2.4).

Iterative methods The problem is discretised and an approximate solution is computed by it-
erative methods. In the so-called Algebraic Reconstruction Technique (ART), expression
(3.13) is discretised yielding a huge linear system of equations [Kak and Slaney, 1988].
Statistical reconstruction methods otherwise take into account the random nature of the
measurements; they are based on the minimisation of the distance between the measured
data and the estimations given by a statistical model [Natterer and Wübbeling, 2001].

Analytical methods have the advantage to be fast and deliver good quality results under standard
scanning conditions. Iterative methods on the other hand are more robust against problems as
missing projections, projection angles that are not regularly distributed on [0, π] or non-standard
acquisition geometries. Furthermore, iterative methods are more flexible from the modelling point
of view, i.e. they can be modified to include physical effects which are neglected to obtain (3.13).
All this is, however, at the cost of computational complexity. For this reason, the most widespread
CT reconstruction method for medical applications is nowadays an analytical method: the filtered
backprojection [Natterer and Wübbeling, 2001]. In other medical imaging modalities as PET or
SPECT though the effect of noise is much more constraining. Here statistical reconstruction
methods are widely applied [Fessler, 2000].

3.2.2. CT IMAGES

In section 3.1.2 we introduced the concept of CT image as the spatial distribution of the attenuation
coefficient µ(x). We also saw in the same section that this quantity depends on the energy of the
incident quanta. Hence, for different values of the voltage in the X-ray tube, we will obtain
different values in the image. In order to have a reference value, CT images are displayed as
so-called CT values [Kalender, 2000]. These, are computed as

CT value = 1000× µ− µwater
µwater

(3.15)

and are measured in HU or Hounsfield Units. Hence, the attenuation of water is always 0 HU by
definition. Since the attenuation value of air is µair ≈ 0 cm−1 independently of the energy, its
value in the CT image will be ≈ −1000 HU. Therefore, the CT values of water and air serve as a
reference in any CT image.

CT images have typically a pixel depth of 12 bits and the CT value range goes from−1024 HU
to 3071 HU. The human visual system cannot discern more than (typically) 80 grey levels. For
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this reason, for the visualisation of CT images, the complete grey scale is assigned to an interval of
interest or window [Kalender, 2000]. The values under the lowest window value are displayed as
black, whereas the values over the highest window value are displayed as white. As an example, in
order to visualise bone, a window of [−250, 2250] HU can be used, whereas for the differentiation
of soft tissue in the brain typically values around [20, 80] HU are used. A very wide window is
appropriate for the visualisation of tissues with great differences in their attenuation values. A
narrow window allows the differentiation of small attenuation differences. With a narrow window
also artifacts and noise become more patent. In this thesis, the window is given in form of a grey
value interval: [Vmin, Vmax] HU.

3.2.3. RADON TRANSFORM

The 2D Radon transform maps a function on R
2 into the set of integrals along lines of R

2

[Natterer, 1986]. For f ∈ S (R2) (see appendix B), the Radon transform is defined as

R(θ, s) =

∫

L(θ,s)

f(x)dl =

+∞∫

−∞

+∞∫

−∞

f(x, y)δ(−x sin(θ) + y cos(θ)− s)dxdy, (3.16)

with θ ∈ [0, 2π] and s ∈] − ∞,+∞[. Figure (3.4) illustrates the meaning of the parameters θ
and s; s is the signed distance (θ = 0, s = y) from the origin to each line, whereas θ is the
angle of the line passing through the origin with the x-axis. If f ∈ S (R2) then, for a given θ,
R(θ, s) ∈ S (R). Under these conditions, f is uniquely determined by R(θ, s) and a formula for
the inversion of the Radon transform can be given

f(x) =
1

4π2

2π∫

0

+∞∫

−∞

1

−x sin(θ) + y cos(θ)− s
∂R(θ, s)

∂s
dsdθ. (3.17)
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3.2.4. ANALYTICAL METHODS: THE FILTERED BACKPROJECTION

If we compare (3.13) and (3.16), we conclude that the projections computed from the measured
data correspond to the Radon transform, i.e.

Pβ(u) = R(β, u). (3.18)

However, it should be kept in mind that (3.13) is the result of several simplifications. The most
important among them are ([Kalender, 2000] and [Hiriyannaiah, 1997]):

• Beer’s law does not consider the possibility of the incident quanta being deviated from their
trajectory (scattering).

• Quanta of lower energies are better absorbed than quanta of higher energies. Hence, while
passing through the object the proportion of quanta of higher energies in the X-ray beam
increases. This effect is known as beam hardening. This effect is not taken into account in
(3.13).

• The X-ray beam has been assumed to be monochromatic.

These approximations have an impact on image quality in form of artifacts and loss of accuracy.
The effects on the image might be, in some cases, alleviated by using correction algorithms but
they cannot be eliminated; their importance depends on the application. In practice, these image
artifacts rarely prevent from diagnosis in clinical routine [Kalender, 2000].

While the approximations listed above cause effects that cannot be easily modelled, there are
other approximations that allow a theoretical analysis. We refer particularly to the random nature
of the detection process (noise) and the finite number of detector elements and projection angles
(sampling). The effect of these approximations is discussed in the next sections.

The filtered backprojection algorithm is the most widespread reconstruction algorithm for Com-
puted Tomography in medical applications; it can be derived from Radon’s inversion formula
(3.17). According to figure (3.3), we can calculate the distance from the origin to the ray that
passes through a certain point x as

u′(x, β) = −x sin(β) + y cos(β). (3.19)

Assuming that Pβ(u) are projections from a function f ∈ S (R2) we can rewrite (3.17) as

f(x) =
1

4π2

2π∫

0

+∞∫

−∞

∂Pβ(u)

∂u

1

u′(x, β)− ududβ. (3.20)

The inner integral is the convolution of 1
u with ∂Pβ(u)

∂u evaluated at u′(x, β). In Fourier domain
the convolution is the product of the corresponding Fourier transforms (see appendix B)

(
1

· ∗
∂Pβ(·)
∂u

)

(u′(x, β)) =

+∞∫

−∞

(−iπsign(ς))(i2πς)P̂β(ς)ei2πςu′(x,β)dς, (3.21)
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where we used the following Fourier transform pairs

1
u

FT←→ −iπsign(ς)

∂Pβ(u)
∂u

FT←→ i2πςP̂β(ς).

(3.22)

Substituting (3.21) in (3.20) leads to

f(x) =
1

2

2π∫

0

+∞∫

−∞

|ς|P̂β(ς)ei2πςu′(x,β)dςdβ. (3.23)

Note that (3.23) only holds under the assumption that f ∈ S (R2). In practice, however, f must
not be smooth; moreover, it may not even be continuous. Indeed, a more realistic assumption
on f is that it be piece-wise smooth, i.e. it may contain discontinuities [Natterer, 1986]. In this
case (3.23) becomes an approximation. Furthermore, the inner integral in (3.23) suggests that the
projections are filtered with a filter whose Fourier transform is |ς|. As we saw in section 3.1.3,
the surface of the detector is discretised and the discrete pixels are situated at a certain distance
from each other. This limits the spatial resolution to a certain maximum frequency ςmax (see next
section). For this reason the filter is modified so as to have a frequency response whose maximum
frequency equals that of the detector. For this purpose, the filter |ς| is substituted by

ĝ(ς) = v̂(
ς

ςmax
)|ς| (3.24)

where v̂(ς) is a weighting function that is zero for ς > 1. Substituting this new filter in (3.23)
yields the filtered backprojection formula

µr(x) =
1

2

2π∫

0

+∞∫

−∞

v̂

(
ς

ςmax

)

|ς|P̂β(ς)ei2πςu′(x,β)dςdβ

=
1

2

2π∫

0

(Pβ(·) ∗ g(·)) (u′(x, β))
︸ ︷︷ ︸

Filtering

dβ

︸ ︷︷ ︸

Backprojection

, (3.25)

where µr(x) denotes the reconstructed spatial distribution of the attenuation coefficient. The way
the algorithm works is better understood if (3.25) is expressed in two steps

FPβ(u) =

umax∫

−umax

Pβ(s)g(u− s)ds (3.26)

µr(x) =
1

2

2π∫

0

FPβ(u′(x, β))dβ, (3.27)

where 2umax is the width of the detector. The reconstruction then works as follows: all projections
are filtered with g(u), yielding the filtered projections FPβ(u); subsequently, for a given point
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Figure 3.5. Frequency response of the Ram-Lak (black) and the Shepp-Logan (grey) filters.

x, the filtered values of all rays (one for every β) going through x are averaged, yielding the
reconstructed value µr(x). This last operation is known as backprojection.

The choice of the window v̂(ς) is a trade-off between sharpness and noise. As an example, the
Ram-Lak filter with

v̂(ς) =

{
1 for ς ≤ 1

0 for ς > 1
(3.28)

preserves well the edges but produces more noisy images than the Shepp-Logan filter with

v̂(ς) =

{
sinc

(
ς
2

)
for ς ≤ 1

0 for ς > 1
. (3.29)

This is due to the fact that the former preserves better the frequencies close to ςmax (see figure
3.5). The value of the integral of µ(x) along a line is independent of the sense of integration.
For this reason, the parameters (β, u) describe the same ray as (β + π,−u) (the same Radon
value). These are rays are equivalent . In a full-rotation, the projections in the angular interval
[π, 2π] contain rays that are equivalent to the rays in the projections in the angular interval [0, π].
Hence, the integral in (3.27)

∫ 2π
0 can be substituted by 2

∫ π
0 to obtain the same resulting image

with half of the input data. The reconstruction from data in [0, 2π] is often referred to as full-scan
reconstruction, whereas the reconstruction from data in [0, π] is referred to as short-scan recon-
struction. In practice, these reconstruction modes are not equivalent since different measurements
of the same rays will carry different values of the fluctuation due to the random nature of the
quanta detection process. Therefore, averaging over a longer angular interval will reduce noise
in the image. Indeed, since two measurements of the same ray are statistically independent, the
variance of the noise in the image will be reduced by a factor of 2 (see section 3.2.4.2).

As a marginal note, we remark that in CT literature the term short-scan is usually reserved for
the reconstruction in fan-beam geometry (see section 3.2.5). In this thesis, however, we will use it
also in parallel-beam geometry to indicate reconstruction from projections in an angular interval
of length π.
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3.2.4.1. DISCRETISATION OF THE FBP: SAMPLING THE RADON TRANSFORM

As described in section 3.1.3 CT detectors are composed of pixels with a certain area S. We
denote by Nu the number of pixels in the detector, and by ∆u the distance between pixels. Nu

is often referred to as the number of channels of the detector. The object of the scan is situated
within a circle of radius ‖xmax‖. The detector has a width of 2umax, with umax ≥ ‖xmax‖.
Under these conditions, the projections are sampled in u with a sampling interval

∆u =
2umax

Nu
. (3.30)

In practice, the number of projection angles in a rotation is also finite. We denote the number of
projections in the angular interval [0, 2π] by Nβ . Nβ is often referred to in the literature as the
number of views. The sampling interval is thus

∆β =
2π

Nβ
. (3.31)

In order to attain a given spatial frequency ςmax, the number of channels Nu and the number of
projections per rotation Nβ have to fulfil [Natterer and Wübbeling, 2001]

∆u ≤ 1

2ςmax

∆β ≤ 1

2ςmaxumax
(3.32)

which leads to

Nu ≥ 4ςmaxumax

Nβ ≥ 4πςmaxumax. (3.33)

3.2.4.2. NOISE IN CT IMAGES

The output signal of every detector pixel is affected by a random error, i.e. noise (see section
3.1.3). In this section, we analyse the effect that the noise in the detector measurements has in the
final reconstructed image.

Since the detection of X-ray quanta requires a certain area, the analysis of noise must be per-
formed with the discretised magnitudes. We denote by qβi

(uj), the number of quanta collected
by the pixel situated at position uj in the detector when the detector is situated at the position de-
termined by the projection angle βi. According to the quantum noise model, the first and second
moments of the measurements are

E[qβi
(uj)] = q̄ij (3.34)

σ2
qij

= q̄ij , (3.35)

where E[] denotes expected value. With this notation we can express the discretised projections
as

Pβi
(uj) = − ln

(
qβi

(uj)

q0

)

, (3.36)



3.2. 2D Reconstruction 27

where q0 is the number of quanta detected without an object between source and detector. In
order to characterise the projections statistically, we calculate their first and second moments. As
a result, we get [Barret and Swindell, 1981]

E[Pβi
(uj)] ≈ − ln

(
q̄ij
q0

)

σ2
Pij

≈ 1

q̄ij
. (3.37)

The propagation of noise through the algorithm is rather complex. It is, however, of practical
interest to have an analytical expression for the variance of a pixel value in the image σ2

I in order
to understand the influence of the different parameters involved in the acquisition-reconstruction
process. A way to achieve that, is to consider projections of a geometrically simple object; the
most simple case is to choose an object with radial symmetry. We consider therefore the projec-
tions of an homogeneous cylinder. In such a case, an approximate expression can be obtained
[Dössel, 2000]:

σ2
I =

1

q̄

2umax

NβNu
fg, (3.38)

where fg is a constant that depends on the interpolation kernel and q̄ is the average number of
quanta detected by the central pixel of the detector q̄ = q̄i0 for all i (due to the radial symmetry).

Since the number of quanta is proportional to the mAs product, we deduce from (3.38) that the
noise in the image is inversely proportional to the dose.

3.2.4.3. FBP RECONSTRUCTION: A NUMERICAL EXAMPLE

In order to illustrate the principle of FBP reconstruction, we present in this section a numerical
example. The aim is to reconstruct the central slice of the head phantom described in appendix
C. The output image should have 256 × 256 pixels with ∆x = ∆y = 1 mm; the distance
between detector pixels is ∆u = ∆x. This choice determines both ςmax = 1

2∆x
= 0.5 mm−1 and

umax = 128 mm. With these detector dimensions, a circular region of interest of radius 128 mm
is reconstructed. Using (3.33) with these values we get

Nu ≥ 256

Nβ ≥ 804.25. (3.39)

Hence, we simulated 800 projections per full rotation with a 256 pixel detector of width 256
mm. The attenuation of the x-ray beam was calculated using the software package DRASIM
(Deterministic Radiological Simulation) by Karl Stiersdorfer (Siemens AG, Medical Solutions).
The simulations were carried out without noise. For the reconstruction the Ram-Lak filter was
used. Figure 3.6 shows the reconstruction process. In the initial image matrix all pixels have the
value 0. Then, for each angular position β, the value of the filtered projection determined by the
detector pixel u is added to all the points along a straight line perpendicular to the detector and
intersecting the detector at pixel u. Accumulating the values of projections in the angular interval
[0, π] produces the reconstructed image.
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Figure 3.6. Example of FBP reconstruction in parallel-beam geometry.
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Figure 3.7. Scheme of a CT scanner with fan-beam geometry. The projections are characterised by the
angular position of the source α and the fan-angle γ.

3.2.5. FILTERED BACKPROJECTION IN FAN-BEAM GEOMETRY

The acquisition of projections with a rotation-translation scheme as described in figure 3.3 causes
long scan times; indeed, such a scanning geometry was only used in the first generation of CT
scanners [Kalender, 2000]. Since the X-ray beam leaving the source is not parallel but divergent,
scanning directly in fan-beam geometry spares the translation of the source decreasing thus the
acquisition time.

There are two possible ways to use the filtered backprojection algorithm with fan-beam projec-
tions. The first consists in reordering the measured data in such a way that they form a parallel
beam; the second consists in adapting the algorithm to the geometry. Figure 3.7 shows a scheme
of a CT scanner with fan-beam geometry. Fan-beam projections Pα(γ) are characterised by the
angular position of the source α and the fan-angle γ, whereas parallel-beam projections are char-
acterised by the angle the rays form with the x-axis β and the distance from the ray to the origin,
u. The following change of coordinates relates the parallel-beam to the fan-beam parameters

β = α− γ
u = Γ sin(γ) (3.40)

where Γ is the distance between the source and its rotation axis. This relationship is illustrated in
figure 3.7. The ray (α, γ) (grey) forms an angle β = α − γ with the x-axis. The distance of the
ray to the origin determines the second parameter in parallel-beam coordinates: u = Γ sin(γ).

3.2.5.1. FAN-BEAM RECONSTRUCTION BY REBINNING

Rebinning can be viewed as adapting not the algorithm but the projections to a new geometry.
That is, projections acquired in fan-beam geometry are transformed to parallel-beam geometry
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y

x

Figure 3.8. Rebinning from a fan-beam to a parallel-beam. The fan-beam rays α = 15◦, γ = −15◦,
α = 0◦, γ = 0◦and α = −15◦, γ = 15◦are used to compound the parallel projection β = 0◦.

and then a reconstruction for parallel-beam geometry (see (3.26) and (3.27)) is applied. In order
to do this we apply the inverse transform of (3.40) to Pα(γ)

Pα(γ) −→ Pα(β,u)(γ(u)). (3.41)

Since in practical scanners only a finite number of rays are measured, rebinning consists in
reordering the measurements from a fan-beam projection data set to a parallel-beam projection
data set. For each discrete value of the parallel projection angle β the rays of the fan-beam projec-
tions whose angle with the x-axis is equal to β are grouped together. These rays are identified by
β = α − γ. The principle is illustrated in figure 3.8. Since α and γ are discrete too, there might
be no ray whose angle with the x-axis is exactly β, so that the value must be interpolated from the
values of the closest rays.

3.2.5.2. FAN-BEAM RECONSTRUCTION BY ADAPTING THE FBP

In order to adapt the FBP algorithm to fan-beam geometry, we introduce the transformation de-
scribed by (3.40) in (3.26) and (3.27). It yields [Kak and Slaney, 1988]

FPα(γ) =

γmax∫

−γmax

(Pα(κ)Γ cos(κ))h(γ − κ)dκ (3.42)

µr(x) =
1

2

2π∫

0

1

L2(x, α))
FPα(γ′(x, α))dα. (3.43)

Hence, the FBP in fan-beam geometry is also a convolution backprojection algorithm. Projections
are weighted with a factor depending on γ and are then filtered with a modified version of the filter
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used in parallel geometry g:

h(γ) =

(
γ

sin(γ)

)2

g(γ). (3.44)

Subsequently, for a given point x, the values of all rays (one for every α) going through x are
weighted with a factor 1/L2(x, α) and averaged. The factor L corresponds to the distance be-
tween the source and the point x (see figure 3.7):

L(x, α) =

√

(Γ cos(α)− x)2 + (Γ sin(α)− y)2. (3.45)

Finally, for a given projection angle α, the ray that passes through the point x is determined by

γ′(x, α) = arctan

( −x sin(α) + y cos(α)

Γ− x cos(α)− y sin(α)

)

. (3.46)

3.2.5.3. RECONSTRUCTION FROM DATA ACQUIRED IN A SHORT-SCAN

As in the parallel geometry case, a reconstruction with data from less than a full-rotation is pos-
sible. In order to find the minimum angular interval necessary for the reconstruction of an image,
we use the relationship between parallel-beam rays and fan-beam rays (3.40). According to this
equivalence, the extreme cases are given by

{
β = 0
u = −umax

−→
{
α = −γmax

γ = −γmax

{
β = π
u = umax

−→
{
α = π + γmax

γ = γmax
.

(3.47)

Hence, a short-scan reconstruction in fan-beam geometry requires projections in an angular inter-
val of length π + 2γmax.

However, contrary to the parallel-geometry case, simply substituting the interval of integration
in (3.43) leads to strong artifacts in the reconstruction. The reason for this is explained as follows.
In fan-beam geometry, the ray equivalent to (α, γ) is (α+π−2γ,−γ); hence, an angular interval
of length π + 2γmax contains equivalent rays. These rays contribute twice to the reconstruction,
which causes an unbalance since most of the rays only contribute once. In order to overcome this,
Parker proposed in [Parker, 1982] weighting the projections with a smooth weighting function

wα(γ) =







2 sin2
(

π
4

α
γmax+γ

)

0 ≤ α < 2γmax + 2γ

2 2γmax + 2γ ≤ α ≤ π + 2γ

2 sin2
(

π
4

π+2γmax−α
γmax−γ

)

π + 2γ ≤ α < π + 2γmax

. (3.48)

This function ensures that two equivalent rays are weighted in such a way that the sum of the
weights equals 2. Figure 3.9 shows an example of FBP reconstruction from fan-beam projections
with and without Parker weighting.

Note that other weighting functions might be used. Smoothness is, however, a desirable prop-
erty since using non smooth functions might lead to artifacts due to filtering over a sharp edge
[Turbell, 2001].
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(a) No weighting (b) Parker weighting

Figure 3.9. Example of short-scan reconstruction in fan-beam geometry. Left: without weighting. Right:
with Parker weighting. Window: [0, 100] HU.

3.3. 3D RECONSTRUCTION FOR CIRCULAR TRAJECTORIES

In the previous sections we presented methods to reconstruct 2D images from 1D data. These
2D images represent slices of the object. By shifting the object in z direction a slice at any z
position can be reconstructed; thus, if the acquisition reconstruction process is performed for
different shift values z, a 3D image is obtained. This is the most straightforward method to
obtain 3D images with CT; it often referred to as as sequential CT scanning [Kalender, 2000].
The main drawback of this approach lies in the fact that the acquisition (full or short-scan) is
repeated for every slice leading thus to long acquisition times. An improvement was introduced
with spiral CT at the end of the 80s. The object is continuously translated in z direction while
the source-detector arrangement rotates around it. The translation is performed in such a way that
after a half-rotation, it is at most equal to the slice thickness. The value of the projections for
the reconstruction of a slice at a given position z are obtained by interpolation of the acquired
projections along the z axis. With spiral CT the acquisition time is strongly reduced with respect
to sequential CT scanning but still several rotations are necessary to reconstruct a volume. A
further improvement was introduced in the middle of the nineties with multi-row detectors. These
enable the acquisition of several slices simultaneously. The simultaneous acquisition of M slices
allows to increase the speed with which the object is translated, approximately by the same factor,
keeping image quality. Hence, the acquisition time for a given volume is reduced. At the time
of the writing of this thesis the main manufacturers of CT scanners for medical applications offer
models with up to 64 rows.

Future CT scanners will be equipped with large area detectors. These detectors will cover en-
tire organs [Oppelt, 2005] which will make it possible to reconstruct 3D images of organs with
data acquired in a single rotation. The corresponding reduction of the acquisition time will en-
able dynamic volume scanning (4D Computed Tomography). The methods developed during this
thesis work under the assumption that we have such a system at our disposal. The 2D detector
is assumed to cover the whole region of interest and the source-detector arrangement turns about
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Figure 3.10. CT scan with ideal fan-parallel geometry.

the z axis in a circular trajectory. In this section we discuss 3D reconstruction methods from 2D
projections acquired on a circular trajectory.

3.3.1. TUY-SMITH CONDITION

We saw in section 3.2 that for 2D reconstruction all integrals along lines intersecting the object
must be known in order to reconstruct an image. The values of these line integrals are often de-
noted as 2D Radon values. In the 3D case, Radon values are integrals on planes intersecting the
object. Again, all Radon values must be known in order to reconstruct a 3D image. However,
it is not possible to measure all Radon values with a circular trajectory. In order to acquire all
Radon values the source trajectory must intersect all planes intersecting the object. This state-
ment is known as the Tuy-Smith condition [Tuy, 1983]. Even if not all Radon data are acquired,
there exist approximate reconstruction methods for circular trajectories. These algorithms are of-
ten referred to in the literature as non-exact reconstruction algorithms. The algorithms presented
in this chapter are all based on the FDK approach presented by Feldkamp, Davis and Kress in
[Feldkamp et al., 1984]. These algorithms can be seen as an extension of the Filtered Backprojec-
tion to 2D projection data and are all based on the convolution-backprojection principle.

3.3.2. FDK PRINCIPLE

We present in this section a description of the principle proposed by Feldkamp, Davis and Kress
in [Feldkamp et al., 1984] to reconstruct a 3D volume from data acquired on a circular trajectory.
The idea we would like to stress is that this principle allows to extend 2D FBP reconstruction
to 3D reconstruction from data from a 2D detector acquired on a circular trajectory. For this
reason we do not follow the presentation in [Feldkamp et al., 1984] but rather use an idealised
acquisition geometry which is the natural extension of a parallel-beam in 2D to 3D acquisition on
a circular trajectory. We denote this geometry as ideal fan-parallel beam geometry. A scheme of
a CT scanner with this geometry is shown in figure 3.10. An extended source positioned along
a straight line parallel to the detector rotates about the z-axis. The plane z = 0 that contains the
circular trajectory is denoted as the midplane. Each of the source positions emits a fan-beam in
the direction orthogonal to the midplane. The fans are parallel to each other. The projections
Pβ(u, v) are characterised by the projection angle β and the Cartesian coordinates of the detector
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(u, v). The distance from the central source position to the rotation axis is Γ and to the detector
ΓD. For v = 0 we are in the same case as in section 3.2.4; therefore for an x in the midplane, we
can write, from (3.25)

µr(x) =
1

2

2π∫

0

umax∫

−umax

Pβ(u, 0)g(u′(x, β)− u)dudβ (3.49)

where u′(x, β) = −x sin(β) + y cos(β). The outer integral can be decomposed in differential
contributions (DC), corresponding to the contribution to the reconstruction from the projection
data for a small increment dβ of the rotation angle [Feldkamp et al., 1984]. These contributions
can be expressed as

DC(x, β) =
1

2

umax∫

−umax

Pβ(u, 0)g(u′(x, β)− u)dudβ. (3.50)

For each value β of the projection angle, each row of the detector determines a tilted plane that
intersects the detector along a straight line at z = v and the midplane at the extended source.
Let n̂ denote the normal of this tilted plane, ŝ a unit vector on the tilted plane along the central
ray from the axis to the source and t̂ a unit vector along the detector. The three vectors form a
right-handed orthonormal set. The tilted plane can be treated as if it were the midplane of another,
tilted 1D source-detector arrangement. Hence, for an x situated on the tilted plane, we can write
the differential contribution as

DC(x, βt) =
1

2

umax∫

−umax

Pβ(u, v′(x, βt))g(u
′(x, βt)− u)dudβt (3.51)

where βt is the angle between projection of the x-axis on the tilted plane, and the line from the
z-axis to the central source position on the tilted plane. The idea of the FDK approach is to choose
dβt such that a differential rotation of dβ about the z-axis is equivalent to a differential rotation
dβt about the normal of the tilted plane n̂. The rotation of ŝ about ẑ can be written as

ŝ′ ≈ ŝ+ dβẑ × ŝ = ŝ+ dβ cos(φ)t̂, (3.52)

where × indicates a vector product. The rotation of ŝ about n̂ is

ŝ′ ≈ ŝ+ dβtn̂× ŝ = ŝ+ dβtt̂; (3.53)

therefore, we choose
dβt = dβ cos(φ). (3.54)

If we substitute (3.54) in (3.51), we obtain the expression of the differential contribution for the
points x on the tilted plane that intersects the detector at z = v as a function of the projection
angle of the circular trajectory

DC(x, β) =
1

2

umax∫

−umax

Pβ(u, v)g(u′(x, β)− u) cos(φ)dudβ. (3.55)
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Using cos(φ) = ΓD√
Γ2

D
+v2

, the FDK reconstruction algorithm for any x is obtained by integrating

over [0, 2π]:

FPβ(u, v) =

umax∫

−umax



Pβ(s, v)
ΓD

√

Γ2
D + v2



 g(u− s)ds (3.56)

µr(x) =
1

2

2π∫

0

FPβ(u′(x, β), v′(x, β))dβ (3.57)

The values u′ and v′ determine for each projection angle β the ray that passes through x, and can
be calculated as

u′(x, β) = −x sin(β) + y cos(β) (3.58)

v′(x, β) =
ΓDz

Γ− x cos(β)− y sin(β)
. (3.59)

If we compare (3.56) to (3.26), we observe that FDK simply adds a weighting factor to the
projections before filtering. This weighting factor is equal to one for the midplane, so that FDK
and FBP are equivalent for z = 0. For points outside this plane the algorithm is an approximation
and results become worse with increasing distance to the midplane. Expression (3.54) represents
the essence of the FDK approach. The same principle can be applied to extend the FBP algorithm
in other 2D geometries to 3D reconstruction from data acquired on a circular trajectory. Special
attention, however, has to be paid to the filtering step. As we have seen, the FDK approach is based
on the fact that on every tilted plane we find again the same 2D geometry as in the midplane. In
the artificial setting used in this section, the tilted plane intersects the detector along a straight
line (grey line in figure 3.10) that coincides with the direction of the rows in the detector. Since
the geometry of the intersection is equal to the geometry in the equivalent 2D setting the filtering
operation must not be modified. As we will see in the next sections this is not the case when the
detectors are curved.

This approach leads to a whole family of 3D reconstruction algorithms from data acquired in
a circular trajectory which are based on convolution and backprojection. Throughout this the-
sis we denote 3D reconstruction algorithms based on this principle as FDK-like reconstruction
algorithms.

3.3.3. CONE-BEAM FDK-LIKE RECONSTRUCTION WITH CYLINDRICAL

DETECTORS

The geometry used to illustrate the FDK principle is an idealised one. As in the 2D case, it is
much more efficient to exploit the divergent nature of X-ray radiation. For this reason, commercial
scanners use an X-ray beam that is divergent in 3D, i.e. a cone-beam. Figure 3.11 shows a scheme
of a CT scanner with cone-beam geometry. Cone-beam projections acquired with a cylindrical
detector Pα(γ, φ) are characterised by the projection angle α, the fan-angle γ and the cone-angle
ϕ. Every row of the detector is determined by a value of the cone-angle ϕ. Again, the radius of
the circular trajectory is Γ. The radius of the cylindrical detector is ΓD; the centre of the cylinder
is situated on the source. We present here two approaches to apply the FDK principle to such
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Figure 3.11. Scheme of a CT scanner in cone-beam geometry with a cylindrical detector.

a geometry that lead to two different reconstruction algorithms. In a similar way as in section
3.2.5, the first one is based on rebinning, whereas the second one uses directly the cone-beam
projections.

3.3.3.1. FDK RECONSTRUCTION BY REBINNING: THE T-FDK ALGORITHM

In this section we present the T-FDK algorithm as described in [Grass et al., 2000]. The algorithm
consists of two parts: rebinning of the measured projections, and FDK-like reconstruction from
the rebinned data.

Since we have a two dimensional detector, so that rebinning is performed in two dimensions.
First, rebinning is performed along the horizontal component of the projections γ. We denote this
step as row-wise rebinning; it is identical to the rebinning from a fan-beam to a parallel-beam in
2D reconstruction as described in section 3.2.5.1 except that it is performed for every value of the
cone-angle ϕ

Pα(γ, ϕ)→ P b
β(u, ϕ). (3.60)

In the 2D case, we interpret the reordered rays as data from a straight line detector. Since pro-
jections have now two dimensions, we interpret them as data from a planar detector situated at a
distance ΓD from the central source position. We denote this detector as virtual detector. Figures
3.12 a) and b) show the 2D dimensional detector before and after rebinning. The curved form of
the rebinned detector illustrates that, for a given value of the cone-angle ϕ, the distance from the
source to the detector (the ”length of the ray”) is the same for all values of u. The distance from
the rebinned detector to the virtual detector plane depends on u. Hence, the rays with a cone-angle
ϕ (i.e. the rays corresponding to a row in the rebinned detector) will intersect the virtual detector
at different heights depending on u. As a consequence of this, the rows of the rebinned detector
are not parallel to z = 0 but go along slightly bent lines, with the exception of the rays with ϕ = 0.
This is shown in figure 3.12 c). The dashed line follows the direction of the rows of the rebinned
detector, whereas the solid line is parallel to the z = 0 plane. The second rebinning step consists,
precisely, in calculating the value of the projections along lines parallel to the z = 0 plane. This
can be expressed as

P b
β(u, ϕ)→ P b

β(u, v). (3.61)

These values are calculated by interpolation from the values of the ϕ rows. The maximum height
is determined by the minimum height of the virtual detector, which corresponds to the extreme
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(a) Cone-beam geometry (b) After row-wise rebinning

(c) Virtual detector (d) After column-wise rebinning

Figure 3.12. Steps of the 2D rebinning from cone-beam projections to fan-parallel beam projections

positions ±umax; it can be calculated as

vmax = ΓD tan(ϕmax) cos(γmax). (3.62)

The rays above this value are not used which leads to a rectangular detector which is slightly
smaller than the rebinned detector (see figure 3.12 c)). These rays can be easily suppressed in the
original cone-beam in order to avoid unnecessary X-ray exposure.

The final rebinned geometry, shown in figure 3.13, is very similar to the geometry described in
the previous section. In order to distinguish them, we denote it as fan-parallel beam geometry. As
in the ideal fan-parallel beam geometry, the projections P b

β(u, v) are determined by the projection
angle β and the Cartesian coordinates of the detector, but now the extended source is not situated
along a straight line but on the circular trajectory. We can now formulate the FDK reconstruction
algorithm for the rebinned projections; the starting point is the FBP in parallel geometry. The
geometry of the detector is the same as in the previous section, i.e. the tilted plane intersects the
detector along straight lines which are parallel to the detector rows. Hence, no modification of
the filtering step is required. Note that this is the reason for the second rebinning step. As stated
previously, after row-wise rebinning, the rows of the virtual detector go along slightly bent curves.
A filtering in this geometry would require change of coordinates in the convolution integral; with
the column-wise rebinning this is eluded in an elegant way. The difference with respect to the
previous section is on the backprojection step. Since the extended source is situated on the circular
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Figure 3.13. Scheme of a CT scanner in fan-parallel beam geometry.

trajectory, the distance from each of the source positions to the detector depends on u. Therefore,
every ray in a given row v is on a different tilted plane. The angle of the tilted plane on which the
ray u is included is given by

cos(φ) = w(u, v) =
d(u)

dt(u, v)
=

√
Γ2 − u2 + ΓD − Γ

√
(√

Γ2 − u2 + ΓD − Γ
)2

+ v2

. (3.63)

where d(u) is the distance from the source position determined by u to the detector on the mid-
plane and dt(u, v) is the distance from the source position determined by u to the detector on the
tilted plane (see figure 3.13). Using this result in (3.54) and following the same approach as in the
previous section, we obtain the FDK reconstruction algorithm for fan-parallel geometry

FPβ(u, v) =

umax∫

−umax

(

P b
β(s, v)w(u, v)

)

g(u− s)ds (3.64)

µr(x) =
1

2

2π∫

0

FPβ(u′(x, β), v′(x, β))dβ. (3.65)

The values u′ and v′ determine for each projection angle β the ray that passes through x, and can
be calculated as

u′(x, β) = −x sin(β) + y cos(β) (3.66)

v′(x, β) =
z
(√

Γ2 − u2 + ΓD − Γ
)

√
Γ2 − u2 − x cos(β)− y sin(β)

. (3.67)

3.3.3.2. THE C-FDK ALGORITHM FOR CYLINDRICAL DETECTORS

The derivation of an FDK algorithm for projections acquired with a cylindrical detector is some-
what more complicated. Figure 3.14 shows that the tilted plane forming an angle of φ with the
midplane intersects the cylindrical detector along curves (solid line) which are not parallel to the
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Figure 3.14. Scheme of a CT scanner in cone-beam geometry with a cylindrical detector. The solid line
shows the intersection of the tilted plane forming an angle of φ with the midplane with the detector. The
dashed line follows the direction of the detector rows.

rows of the detector (dashed). A precise formulation of the algorithm is given by Schaller in his
thesis [Schaller, 1998]. The author proposes a simplification of the algorithm by simply ignoring
the intersection of the tilted plane and filtering along the rows of the detector. This leads to an
FDK-like algorithm which can be interpreted as an extension of the FBP for fan-beam geometry
to cylindrical detectors. We adopt the nomenclature proposed by Turbell in [Turbell, 2001] and
denote the algorithm as C-FDK algorithm. Its expression is

FPα(γ, ϕ) =

γmax∫

−γmax

(Pα(κ, ϕ)Γ cos(ϕ) cos(γ))h(γ − κ)dκ (3.68)

µr(x) =
1

2

2π∫

0

1

L2(x, α)
FPα(γ′(x, α), ϕ′(x, α))dα, (3.69)

where γ′(x, α), L(x, α) and h(γ) are the same as in section 3.2.5.2 and ϕ′(x, α) determines the
cone-angle for the ray that passes through x (see figure 3.11)

ϕ′(x, α) = arctan

(
z

L(x, α)

)

. (3.70)

3.3.3.3. FDK RECONSTRUCTION: A NUMERICAL EXAMPLE

As an example, we reconstruct in this section a 3D image of the head phantom in appendix C.
We wish to obtain an image with isotropic resolution, i.e. with the same spatial resolution in
all directions. For this purpose we first concentrate on the midplane; here, we have a fan-beam
geometry as described in section 3.2.5. The radius of the circular trajectory is Γ = 570 mm and
the radius of the detector ΓD = 1040 mm. Since the object is situated within a circle of radius
umax, we can use (3.40) to compute the maximum fan-angle of the detector

γmax = arcsin
(umax

Γ

)

= 0.2265 rd, (3.71)



40 Chapter 3. Computed Tomography

where we have used that umax = 128 mm as in section 3.2.4.3. For the number of pixels of
the detector and the number of angular positions of the source, we use the same values as in the
parallel geometry case:

Nγ = 256

Nα = 800. (3.72)

Using the sampling conditions for parallel-beam geometry for a scanner with fan-beam geometry
is a rather heuristic approach. A detailed analysis of the sampling of the Radon transform in fan-
beam geometry is given in [Natterer and Wübbeling, 2001]. The distance between rows is equal
to the height of the detector pixels. Hence, using the sampling condition (see appendix B)

∆z ≤ 1

2ςmax
= 1 mm, (3.73)

where ςmax is the maximum spatial frequency (see section 3.2.4). Note that this height corre-
sponds to the pixel height for a detector situated at the origin. Since our detector is situated at a
distance of the source of ΓD, and the beam is divergent in axial direction as well, we have to ap-
ply a magnification factor of ΓD/Γ. The detector pixels have then a height of 1.825 mm. For the
simulation we used a scanner with 128 rows an have reconstructed a volume of 256× 256× 127
voxels. The odd number of slices ensures that the central one corresponds to the midplane. In
order to illustrate the effect of the FDK approximation, we show in figure 3.15 the yz plane of the
phantom and of the reconstructions with T-FDK and C-FDK. The price for reconstructing from
an incomplete set of Radon values can be clearly observed; the images exhibit strong artifacts
that do not appear in an 2D FBP reconstruction on the trajectory plane. The internal structures of
the phantom can be nevertheless well identified. Even elements with low contrast as the ventricle
insert (number 12 in the description in Appendix C) are well outlined. The image quality in the
T-FDK reconstruction and the C-FDK reconstruction is very similar. T-FDK attains a slightly bet-
ter quality which can be observed by comparing the artifacts around the sinus insert (7 in figure
C.2). This can be explained by the approximation done in the filtering step in C-FDK. However,
the main source of error is the incomplete sampling of the 3D Radon space.

3.3.3.4. RECONSTRUCTION FROM DATA ACQUIRED IN A SHORT-SCAN

The cone-beam geometry reduces to fan-beam geometry in the midplane. Likewise, reduce the
T-FDK and C-FDK algorithms to rebinning and parallel-beam FBP and fan-beam FBP respec-
tively. As in the 2D case, a short-scan reconstruction can be performed. The principle is the same
as in the corresponding 2D cases. For T-FDK it suffices to substitute the backprojection integral
by 2

∫ π
0 . For C-FDK, projections are weighted with the same weighting function as in the 2D

case, and then the outer integral is substituted by
∫ π+2γmax

0 . Performing short-scan reconstruction
with an FDK-like reconstruction algorithm entails, however, two additional approximations to the
FDK principle itself. The first concerns the sampling of the 3D Radon space. In parallel-beam
geometry, we saw in section 3.2.4 that the rays (β, γ) and (β+π,−γ) are equivalent. In fan-beam
geometry the pairs of equivalent rays are given by (α, γ, ϕ) and (α+π− 2γ,−γ, ϕ). These pairs
of equivalent rays represent the same 2D Radon value so that in a full-scan all Radon values are
measured twice. For cone-beam projections, this only holds for the midplane. As an example con-
sider projections in cone-beam geometry Pα(γ, ϕ). The rays (α, γ, ϕ) and (α + π − 2γ,−γ, ϕ)
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are only equivalent if ϕ = 0. Hence, if we only perform a short-scan we are measuring less 3D
Radon values than in a full-scan since the projections left out are not equivalent to the measured
ones. The second assumption concerns the weighting of projections in cone-beam geometry. In
section 3.2.5.3, we introduced the principle of weighting for short-scan reconstruction from fan-
beam projections. In a short-scan some line integrals are measured twice, the idea of weighting is
to average the rays measured twice in order to compensate their double contribution to the recon-
struction of the image. In cone-beam though these rays are only equivalent on the midplane so
that rays are averaged which do not really correspond to the same line integral. As a consequence
of these two assumptions short-scan FDK-like reconstructions exhibit much stronger artifacts out
of the midplane than full-scan FDK-like reconstruction. This is illustrated in figure 3.16. The er-
ror for the planes z 6= 0 is higher than in the corresponding full-scan reconstruction. This can be
clearly observed at the upper and lower end of the frontal sinus insert (number 7 in the description
in Appendix C).

Finally, we introduce the concepts of quasi-equivalent rays and of quasi-equivalent rays ap-
proximation which will be used throughout the thesis. For a given value of the cone-angle ϕ0, the
rays (α1, γ1, ϕ0) and (α2, γ2, ϕ0) are quasi-equivalent if the rays (α1, γ1, 0) and (α2, γ2, 0) are
equivalent. For small cone-angles, it may be assumed that these rays represent the same line inte-
gral; we denote this approximation as quasi-equivalent rays approximation. The two assumptions
discussed previously in this section imply this approximation.

3.4. DISCUSSION. IMAGE QUALITY

In this chapter we provided a short introduction to CT imaging from the physical principles to 3D
reconstruction. All along the chapter we described several factors that influence image quality.
These are mainly due to approximations of physical or mathematical nature in the reconstruction
process or to noise. We did, however, provide any quantitative estimation for the quality of the
produced images. The reason for this is that the assessment of the quality of CT images depends
strongly on the application. As an example consider the examples of short-scan reconstruction
with the T-FDK and C-FDK algorithms shown in figure 3.16. The images exhibit strong artifacts
which might lead to the conclusion that they have a very low quality. Before coming to this
conclusion, we should take into account that the window used for the visualisation is very narrow.
In some applications, i.e. for the visualisation of bone, windows of a width over 1000 HU are
used so that these artifacts become negligible.

Throughout the next chapters, we will try to keep the results as general as possible. In some
cases, however, for the assessment of error measurements or to adjust the values of reconstruction
parameters of the algorithms, we will use as a reference application perfusion CT.
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Figure 3.15. Examples of reconstructions with FDK-like algorithms. The images show the yz plane of the
head phantom. Top: phantom, middle: T-FDK and bottom: C-FDK. Window [0, 100] HU.
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Figure 3.16. Examples of short-scan reconstructions with FDK-like algorithms. The images show the yz
plane of the head phantom. Top: phantom, middle: T-FDK and bottom: C-FDK with Parker weighting.
Window [0, 100] HU.
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CHAPTER 4.

DYNAMIC RECONSTRUCTION FOR OBJECTS

WITH TIME DEPENDENT ATTENUATION

We start here the presentation of the original work carried out during this thesis. The chapter
is devoted to the problem of reconstructing a sequence of images of an object whose attenua-
tion changes during acquisition time. It addresses two of the main limitations of perfusion CT:
the time dependence of the attenuation coefficent and the fast reconstruction from the input
data. We first formulate the problem and discuss the state-of-the-art algorithms for dynamic
reconstruction. All these approaches have in common that they ignore the time dependence
of the attenuation coefficient during certain periods of time. For this reason, we present in
the next section an analysis of dynamic acquisition and static reconstruction with projections
of an object with time dependent attenuation coefficient. The results of this analysis are the
starting point for the derivation of two dynamic reconstruction algorithms based on partial
block backprojection with the T-FDK and the C-FDK algorithms respectively, and time inter-
polation with polynomial splines. These reconstruction algorithms can be adapted according
to the maximum frequency of the dynamic process, optimising thus the amount of data ac-
quired. For slow processes, fewer data are acquired reducing dose and computational cost.
For fast processes, the algorithms reach a high temporal resolution. In the last section, we
present numerical simulations both to verify the theoretical analysis provided and to assess
the performance of the algorithms.

4.1. INTRODUCTION. DYNAMIC CT

The reconstruction methods presented in chapter 3 make implicitly the assumption that the object
does not change while the projections in a full-scan (or a short-scan) are acquired. For most
clinical applications of Computed Tomography, this is a reasonable assumption. However, this
assumption is eventually violated if the patient moves during acquisition time. In dynamic CT,
the objective is to reconstruct a time sequence of two or three-dimensional CT images which
contains the changes in a region of interest over a period of time. Hence, the assumption that the
object is static during acquisition time does not hold anymore.

During acquisition time, two kinds of dynamic changes might take place: changes due to mo-
tion or deformation and changes due to temporal evolution. If we consider an infinitesimal vol-
ume in the object, motion or deformation imply its change of position whereas temporal evolution
entails the change of its composition. Dynamic changes due to motion or deformation include
among other cases the movement of an extern object as a needle or a catheter in the region of
interest, breathing in lung imaging or muscle contraction in cardiac imaging. Several approaches
have been proposed to overcome the problem of motion or deformation during acquisition time.
Algorithmic approaches try to estimate motion or deformation in order to compensate it in the

45
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reconstruction [Li et al., 2006, Grangeat et al., 2002]. Other approaches include the fixation of
the patient to avoid motion during scan time. This procedure is followed in some applications in
neuroradiology where the position of the patient must be determined with high accuracy because
the acquired images will be used for a guiding system during an intervention. For this purpose,
the patient is fixed with a stereotactic frame and cannot move.

Temporal evolution is typically due to the flow of contrast agent; this causes no structural
change in the region of interest but a change of the attenuation value. In section 2.3.2 we described
a typical perfusion CT protocol. After injection of a contrast agent, projections are acquired over
a period of time comprising several full-rotations. During acquisition time, contrast agent flows
in and out of the region of interest so that the attenuation value in blood vessels depends on time.

In this thesis we concentrate on dynamic changes due to temporal evolution and assume that
neither motion nor deformation occur. The methods developed might be combined with a mo-
tion/deformation compensation algorithm if necessary for a particular application.

As discussed in section 3.3, the trend in Computed Tomography is the development of large
area detectors that cover the whole region of interest. Under these conditions, it is possible to
reconstruct the volume of interest from data acquired in a single rotation or less. In a typical
perfusion CT protocol 40 full-scans are performed during 40 s. As an example, consider a state-of-
the-art scanner which typically delivers pro rotation 1800 projections with 1400 channels (pixels
per row) each. Each pixel in the detector codes the detected intensity with 20bits. The total
amount of acquired data in 40 full-scans is ≈ 240MB. The same acquisition protocol with a
scanner with 256 rows would yield≈ 60GB. This huge amount of data is the input for the dynamic
reconstruction algorithm. In medical applications, the reconstruction takes place in the CT scanner
or in an accompanying standard PC and the reconstruction time is a crucial issue. This claims for
reconstruction algorithms which are efficient in terms of computational cost. For this reason we
concentrate on dynamic reconstruction based on analytical methods (see discussion in section
3.2.1).

4.1.1. PROBLEM SETTING

The dynamic reconstruction problem for objects with time dependent attenuation can be formu-
lated as follows. A source-detector arrangement with a cylindrical detector as described in figure
3.11 rotates with a constant angular speed ω on a circular trajectory. The plane containing the
source trajectory is denoted as xy plane. We assume that the source is situated at α = 0 at t = 0;
hence, the projection Pα(γ, ϕ, tα) is acquired at tα = α/ω. The object is represented by a time
dependent distribution of an attenuation coefficient µ(x, t) where x ∈ R

3 denotes the spatial
coordinate and t denotes time. The object is located within a cylinder of radius ‖xmax‖, i.e.

µ(x, t) ≈ 0 for ‖x‖ ≥ ‖xmax‖. (4.1)

The goal of dynamic CT is the estimation of µ(x, t) in time intervals of Tfr during a total time of
Ttot. For this purpose, the source rotates continuously on the same plane during a period of time
of Ttot. During this continuous rotation the source may be switched off during regular periods of
time.

In some of the approaches presented in this thesis acquisition parameters as the number of
scans performed during Ttot or the rotation time T2π are part of the algorithm. These methods
should be therefore denoted as dynamic acquisition and reconstruction algorithms. In order not
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Figure 4.1. Circular trajectory in dynamic CT.

to complicate the terminology unnecessarily we use the term dynamic reconstruction algorithm
to denote the computation of a sequence from projections of a time dependent object, even if
acquisition parameters are involved in the algorithm.

4.1.2. INCONSISTENT PROJECTION DATASETS

The main limitations of dynamic CT comes from the simultaneous time dependence of the scanned
object and the position of the source-detector arrangement. For every value of t, µ(x, t) describes
a different spatial distribution of the attenuation coefficient; hence, from the CT point of view, a
different object. This is illustrated in figure 4.1. The trajectory of the source depends on time.
If we include the temporal dimension in the description of the source trajectory, the circular tra-
jectory becomes a spiral with a step equal to the rotation time of the scanner T2π. In the static
case discussed in the previous chapter, the spiral reduces to a circle because the density of the
object does not depend on time. In order to perform a full-scan reconstruction of the object
at a given time t0 we need projections from all angular positions at this time. This projection
dataset is represented by the grey curve in figure 4.1. However, at time t0, only one projection
is acquired, namely α0 = ωt0. The spiral trajectory represents the acquired projection dataset,
whereas the grey trajectory represents the necessary projection dataset for the reconstruction at
t0; they intersect only at α0. A dataset containing projections acquired at different times is said
to be inconsistent because the projections it contains do not correspond to the same object or at
least do not correspond to the object in the same state. Static reconstruction algorithms require
consistent projection datasets. Using static reconstruction with inconsistent projection datasets
yields two kinds of errors. First, the value of the reconstruction at a given position deviates from
the real value of the attenuation at this position at the desired reconstruction time. Second, the
time dependence at a given position cause an error in form of artifacts in the area around this
position. Figure 4.2 shows an example of such artifacts; it shows a reconstruction of phantom A
(described in appendix C). The reconstruction was performed by rebinning a parallel-beam from
the acquired fan-beam projections and then using short-scan FBP as described in section 3.2.5.1.

The basic principle of dynamic reconstruction is to remove or at least reduce the inconsistencies
in the data in order to use results from static reconstruction [Bonnet et al., 2003b]. Note that the
degree of inconsistency depends on the rotational speed of the source. Indeed, in the idealised
case of a source with infinite rotational speed, all projections would be acquired at the same time
and inconsistency would disappear; in figure 4.1 the step would be equal to 0 and the trajectory
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Figure 4.2. Example of artifacts due to data inconsistencies. Short-scan FBP reconstruction from rebinned
projections of phantom A (see appendix C). Window [30, 70] HU.

would reduce to a circle. On the other hand, the frequency of the dynamic changes plays also a
crucial role. Very slow changes will cause almost no inconsistency and therefore almost negligible
artifacts, whereas fast changes cannot be ignored. Of course, the meaning of ”slow” has to be
interpreted relative to the rotation time.

4.2. STATE-OF-THE-ART DYNAMIC RECONSTRUCTION ALGORITHMS

As stated at the beginning of the chapter, the aim of dynamic reconstruction is to compute a
sequence of CT images (frames) from projection data acquired over a period of time comprising
several full-rotations. Since each projection is acquired at a different time, any projection dataset
containing more than one projection is inconsistent. Several methods have been proposed in the
literature to tackle the reconstruction problem. We provide in this section a brief survey in order
to motivate the work presented in this chapter. The methods described are all based on FDK-like
reconstruction (see section 3.3.3).

Standard Reconstruction The most straightforward approach for dynamic reconstruction con-
sists in ignoring data inconsistencies and use a static reconstruction algorithm for every
frame. In order to reconstruct a frame at a given time t0, projections in an angular interval
of length 2π around α0 = ωt0 are used. As a result, the images exhibit a bias in the time
dependent values and artifacts around them. However, these errors are negligible if the rate
of change of the attenuation values is low compared to the rotation time of the scanner. This
is the method used in perfusion CT.

Generalised Parker Weighting Taguchi observed in [Taguchi, 2003] that including redundant
data in an appropriate way, the artifacts due to data inconsistencies can be reduced. He
proposes to reconstruct a sequence frame by frame using static reconstruction by weighting
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Figure 4.3. Generalised Parker weighting functions. Top: angular interval [0, π + 2γmax] (short-scan),
bottom: angular interval [0, 2π] (full-scan). The black curves represent the weights for the central ray
γ = 0.

the projections. Taguchi, compares several weighting schemes for dynamic reconstruction
purposes. They are all based in the weighting principle presented in sections 3.2.5.3 and
3.3.3.4, i.e. projections are weighted with a weighting function wα(γ) before the filtering
step. Among the proposed weighting schemes, the best results are obtained by using the
generalised Parker weighting scheme proposed in [Silver, 2000]. This weighting scheme
allows to include projections from an angular interval of flexible length; it is a generalisa-
tion of the Parker weighting used for short-scan reconstruction. For the case of an angular
interval of length π + 2γmax (short-scan), it reduces to Parker weighting; using Taguchi’s
naming convention we denote this algorithm as HS-FDK. The other interesting case is given
for an interval of length 2π (full-scan). The resulting dynamic reconstruction algorithm
is denoted as NHS-FDK. Taguchi observed that the reconstructions from projections in a
full-scan (NHS-FDK) presented a stronger reduction of the artifacts than the short-scan
reconstruction (HS-FDK). The reason for this can be better understood if we take into ac-
count the form of the weighting functions for both cases; these are shown in figure 4.3.
Since the sum of the weights of quasi equivalent rays (see section 3.3.3.4) is constant, the
weighting can be interpreted as the averaging of rays. Rays that are weighted with the max-
imum value 2 are not averaged. It can be observed that much more rays are averaged in the
full-scan reconstruction than in the short-scan reconstruction and so, artifacts are stronger
reduced. However, there are other factors which play an important role in the quality of
the reconstructed frames. As we discussed in section 3.3.3.4, the short-scan reconstruction
from cone-beam projections uses less Radon data and this leads to stronger artifacts than
in full-scan reconstruction for the planes z 6= 0. On the other hand, the weighting function
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for full-scan reconstruction extends over a longer angular interval and the projection dataset
used is therefore less localised in time. This results in a worse temporal resolution than in
the short-scan case.

kπ-mode Linear Regression Grangeat and co-workers presented in [Grangeat et al., 2002] a more
sophisticated approach for dynamic reconstruction. The dynamic reconstruction algorithm
is based on short-scan reconstruction with the T-FDK algorithm presented in section 3.3.3.1.
First, cone-beam projections are rebinned to fan-parallel beam projections. In a second
step, projections are filtered as described by (3.64). The backprojection integral is di-
vided in 3 angular intervals of length π/3. These incomplete backprojections are denoted
as partial block backprojections (PBBs). The PBB corresponding to the angular interval
[j π

3 , (j+1)π
3 ] is associated to the time at which the central projection (2j+1) π

6 is acquired
t(2j+1) π

6
. Thus, the expression of the jth PBB is

PBBj(x, t(2j+1) π
6
) =

1

2

(j+1) π
3∫

j π
3

FPβ(u′(x, β), v′(x, β), tβ)dβ for j = 0, 1, 2. (4.2)

As a consequence of the dynamic acquisition scheme, the values of each PBB are known
every half-rotation. Hence, for every voxel in the PBB, we have a time series of values ob-
served every Tπ. In order to reconstruct a frame at a given time t0, we must know the values
of the three PBBs at this time. The estimated values of the jth PBB at t0 PBBj(x, t0) are
calculated for every voxel by performing linear regression on the closest k values of the
time series. A frame at time t0 is then computed as

µr(x, t0) = 2
2∑

j=0

PBBj(x, t0). (4.3)

This approach introduces two new aspects: the concept of partial block backprojection and
the temporal estimation of the value at the frame time from the values of a time series.
The partial block backprojection approach reduces the data inconsistency in the projection
dataset. Even if the projections in a block are acquired at different times, the effect is
less critical since the angular intervals are shorter than in short-scan reconstruction. The
estimation by linear regression compensates for the temporal evolution.

4.2.1. DISCUSSION AND MOTIVATION

All these approaches for dynamic reconstruction have in common that they are strongly based on
FDK-like static reconstruction. Indeed, the first two of them consist in applying a static recon-
struction algorithm frame by frame. Let us consider for a moment the input cone-beam projections
Pα(γ, ϕ, tα); if we use them with the C-FDK algorithm what we notice first is that the filtering
step is not affected by the time dependence of the projections. The data inconsistency problem is
only patent at the backprojection step, since the acquisition time of each projection depends on
the projection angle. In order to illustrate this aspect, we reproduce here the backprojection step
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of the C-FDK algorithm for full-scan reconstruction:

µr(x) =
1

2

2π∫

0

1

L2(x, α)
FPα(γ′(x, α), ϕ′(x, α), tα)dα. (4.4)

In both the standard reconstruction and the generalised Parker weighting approach the recon-
structed frame is associated to the time at which the projection in the middle of the interval has
been acquired, i.e. tπ. By doing this, we are implicitly assuming that

FPα(γ′(x, α), ϕ′(x, α), tα) ≈ FPα(γ′(x, α), ϕ′(x, α), tπ) for 0 < α < 2π. (4.5)

This approximation is present in some way or another in all the approaches presented in the
previous section. In short-scan reconstruction, the assumption is restricted to a time interval
of length Tπ+2γmax , whereas in the kπ-mode linear regression approach it is restricted to time
intervals of length Tπ

3
. We denote this approximation as dynamic backprojection approximation.

This is, however, not the only situation where the acquisition times of the projections are ig-
nored. The first step of the kπ-mode linear regression approach is to rebin a fan-parallel beam
from the acquired cone-beam projections. As we saw in section 3.2.5.1, in order to compound the
projection P b

β(u, v, tβ), we use cone-beam projections in the angular interval [β−γmax, β+γmax].
Hence, we have a similar situation as in (4.5) since, for a given β, we implicitly assume that

Pα(γ, ϕ, tα) ≈ Pα(γ, ϕ, tβ) for β − γmax < α < β + γmax. (4.6)

We denote this approximation as dynamic rebinning approximation.
While these both approximations are surely reasonable under certain conditions, there might be

situations where they lead to non-negligible errors. Intuitively, this will occur when the dynamic
changes are fast compared to the rotational speed of the source. The questions that remain open
are: when are these approximations acceptable and which are their effects? Another important
issue is to determine which kind of dynamic processes can be reproduced with the proposed recon-
struction algorithms and, more general, which kind of dynamic processes can be reproduced from
the acquired data. Moreover, the presented approaches have all the common drawback that they
cannot be adapted to a dynamic process, even if we had of some prior information about it. In this
chapter we address all these aspects of dynamic reconstruction. We first present a theoretical anal-
ysis of dynamic acquisition and static reconstruction with projections of a dynamically changing
object. Based on these theoretical results, we propose a dynamic reconstruction approach which
exploits the acquired data efficiently. Finally, we present numerical simulations both to confirm
the theoretical analysis and to assess the performance of our approach.

4.3. THEORETICAL ANALYSIS OF DYNAMIC ACQUISITION AND

RECONSTRUCTION

In this section we present a theoretical analysis of dynamic acquisition of projections of an object
with time dependent attenuation; and of reconstruction from these projections with an FDK-like
algorithm. The goal is to provide a theoretical foundation that serves in the next section to derive
an efficient dynamic reconstruction algorithm proposed in the next section. Our analysis of the



52 Chapter 4. Dynamic Reconstruction for Objects with Time Dependent Attenuation

problem concentrates on the error caused by the time dependence of the attenuation coefficient,
i.e. the errors due to finite spatial resolution of the scanner or to the static reconstruction algorithm
are not taken into account. For this purpose, we exploit the fact that both the projection and the
reconstruction with FBP are considered as linear operations. In such a case, the acquisition-
reconstruction process can be characterised by a point spread function. This point spread function
is the output of the system when the input is a density situated at the origin of coordinates, i.e.
when the input spatial distribution of the attenuation coefficient is of the form

µ(x) = δ(x), (4.7)

where δ(x) is the three-dimensional Delta function. Ideally, the acquisition-reconstruction system
should deliver as output the same input density. This is in practice, however, not possible since
we do not have an infinite spatial resolution. For this reason, the reconstruction will be a smooth
function with a maximum spatial frequency limited to ςmax (see section 3.2.4.1). This function,
converges to a Delta function in distribution sense when ςmax →∞ [Ye et al., 2003].

As stated previously in this section, the aim of the analysis is to describe the effects of the time
dependence of the attenuation coefficient. In order to evaluate dynamic reconstruction algorithms,
we take as a reference the quality obtained with static reconstruction. This can be interpreted
equivalently as the reconstruction from projections acquired with a source rotating with infinite
angular speed.

4.3.1. DYNAMIC ACQUISITION AS TEMPORAL SAMPLING

Projections of a time dependent object depend themselves on time. As we saw in section 4.1.1, the
projection characterised by the projection angle α is acquired at tα = α/ω. After a full rotation
of the source, a projection is acquired from the same projection angle but T2π later. Hence, what
we acquire is, for each angular position α, a discrete sequence in time

Pα(γ, ϕ, k) = Pα (γ, ϕ, tα + kT2π) . (4.8)

This dynamic acquisition process can be interpreted as the sampling of a time dependent projec-
tion Pα(γ, ϕ, t) with a sampling period of Ts = T2π. This is illustrated in figure 4.4. The black
curve represents the trajectory of the source during three full-rotations. For a given projection
angle α, the grey arrow represents the values of the projection characterised by this projection
angle at any time. This line intersects the source trajectory in a regular pattern every Ts = T2π.
According to the sampling condition (see appendix B), the maximum frequency that can be repro-
duced from regularly sampled data is equal to the half of the sampling frequency 1/(2Ts). Hence,
the maximum frequency of Pα(γ, ϕ, t) should be lower than 1/(2T2π).

In section 3.3.3.4 we introduced the quasi-equivalent rays approximation. In the context of
dynamic acquisition, this assumption yields a reduction of the sampling interval. However, due
to the cone-beam scanning geometry, the time interval between samples is different for each ray
and the sampling scheme is not regular. According to the correspondence between equivalent
rays given in section 3.2.5.3, the resulting sampling scheme can be described by two alternating
sampling intervals which can be expressed as

Ts1(γ) = tα+π−2γ − tα
Ts2(γ) = tα + T2π − tα+π−2γ . (4.9)
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Figure 4.4. Dynamic acquisition as temporal sampling.

Some estimation techniques can be very efficiently implemented in the case where the samples
are equidistant. In order to be able to use these approaches we can make use of the dynamic
rebinning approximation and rebin the cone-beam projections to a fan-parallel beam as described
in section 3.3.3.1. In fan-parallel beam geometry, the sampling becomes regular with a sampling
interval equal to a half rotation time Ts = Tπ. With rebinned projections the maximum frequency
of Pα(γ, ϕ, t) can be increased, but it should be lower than 1/T2π.

Note, however, that we have made two approximations to get to this result. As we saw in
section 3.3.3.4, the quasi-equivalent rays approximation reduces the quality of the reconstructed
images at planes with increasing distance to the midplane. The effect of the dynamic rebinning
approximation is analysed in the next section.

Before continuing with our analysis, let us introduce a simplification on the notation. The
cone-beam projection Pα(γ, ϕ) is acquired at tα = α/ω, i.e. the acquisition time depends only
on the projection angle α. If we perform rebinning as in section 3.3.3.1, the acquisition time of
each ray of the rebinned projection is different. That is, the acquisition time of the rays depends
on the transaxial coordinate as well. However, the acquisition time does not depend on the axial
coordinate of the detector in any case. For this reason, we skip in the following analysis the
axial coordinate without loss of generality. The presented analysis is thus made for fan-beam or
parallel-beam projections in the midplane. In the cases where the axial coordinate may have an
influence, this will be appropriately indicated.

4.3.2. MODEL FOR THE DYNAMIC PROCESS

Before we start with the analysis of the approximations, we make here a short digression to char-
acterise the kind of dynamic processes we are interested in. In section 2.3.1 we saw that the
estimation of functional parameters is based on the measurement of the temporal evolution of
the concentration of contrast agent at every point of the region of interest. This temporal evo-
lution was denoted as time-attenuation curve (TAC). We also saw that TACs are proportional to
the temporal evolution of a pixel value in a sequence of CT images. Hence, the goal of the dy-
namic reconstruction step in the perfusion CT protocol is to measure the time-attenuation curves
in the region of interest as accurately as possible. For this purpose, it is of practical interest to
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Figure 4.5. Typical impulse response of tissue in the linear systems approach.

characterise these TACs.
We derive here a model for time-attenuation curves based on the linear systems approach for

the modelling of tracer kinetics [Miles and Griffiths, 2003]. The idea of this approach is that a
tissue can be modelled as a linear time invariant system. Such systems can be characterised by
an impulse response which represents the output of the system to an idealised impulse input.
The impulse response of a tissue represents the distribution of transit times in the tissue. Figure
4.5 shows a typical impulse response of a tissue. It raises instantaneously to a plateau and then
falls smoothly to zero. According to the linear systems approach, the time-attenuation curve of a
tissue is obtained by convolution of the time-attenuation curve of the input artery with the impulse
response of the tissue.

Contrast agent is normally injected with an automatic injector so that the injection rate can be
considered to be constant. The temporal evolution of the concentration of contrast agent at the
point of the injection is then a rectangular pulse of a certain duration. If we assume that 50 ml are
injected at an injection rate of 20 ml/s then the pulse has a duration of 2.5 s. The flow through
the cardiopulmonary system has a low-pass filtering effect, with a response which depends on
each individual [Blomley and Dawson, 1997]. This low-pass filtering effect is a consequence of
the transport process in blood and the flow through the heart and the lungs. As a consequence,
the time-attenuation curve of an input artery has typically a fast raise and a slower decay. This
is illustrated in figure 4.6. The time-attenuation curve of an input artery will change from one
patient to another but the changes concern mainly the arrival time of the bolus and its width but
not the form. As an example, in old patients the TAC of an input artery tends to arrive later and to
extend over a longer period of time.

This linear systems approach for the modelling of the propagation of time-attenuation curves
through tissues entails less constraining assumptions than the compartment model used to derive
the slope method in section 2.3.1 [Zierler, 1965]. As a direct consequence of the linear systems hy-
pothesis, the process of flow through a tissue makes that TACs in and after the tissue are smoother
than the TACs of the input artery. Furthermore, since the time-attenuation curves of tissue are the
result of successive convolution of an initial curve we can deduce that TACs are smooth curves.

Our previous discussion might give the false impression that the form of time-attenuation curves
can be easily modelled by a parametric curve. However, even if we assume that the linear systems



4.3. Theoretical Analysis of Dynamic Acquisition and Reconstruction 55

Time

E
nh

an
ce

m
en

t(
H

U
)

Figure 4.6. Typical time-attenuation curve of an input artery.

approach applies, we do not know the impulse responses of the individual systems between the
injection point and the tissue. The general impulse response described in figure 4.5 is only a
sketch and even for this sketch the parameters that describe it would be different for every tissue.
Furthermore, it only refers to a single tissue so that the effect of transport in blood and flow
through the heart are not included. Last but not least, the perfusion CT protocol covers a certain
period of time; it may happen that during this time the outflow phase is not reached so that the
curve only grows or reaches a plateau and remains constant. This is for example typical in areas
where the blood-brain barrier is damaged since the contrast agent diffuses to the interstitium and
remains therefore longer in the tissue. Hence, finding a parametric model that describes the form
of all possible time-attenuation curves is not a simple task. We can nevertheless exploit the linear
systems approach to formulate a simple mathematical model for time-attenuation curves. We
denote by c(t) the temporal evolution of the concentration of contrast agent in blood. This TAC
might correspond to a tissue or a large vessel (e.g. input artery or output vein) after flow through
the cardiopulmonary system. The injection function is a rectangular pulse, i.e. it concentrates its
energy in the frequencies around 0 Hz. According to the linear systems approach, the function c(t)
is the result of successive convolutions with low-pass filters. Hence, c(t) concentrates its energy
in the low frequencies as well. Furthermore, as a consequence of the successive convolutions, c(t)
is a smooth function, which is several times differentiable; therefore, its Fourier transform, ĉ(ν)
fulfils [Mallat, 1998]

ĉ(ν) < C
1

1 + |2πν|α , (4.10)

where α is the order of differentiability. This indicates that the Fourier transform of c(t) has a
fast decay. We can exploit this fact and neglect the values of the Fourier transform over a certain
threshold. This leads to the formulation of our model for time-attenuation curves in form of the
following hypothesis:

Hypothesis 4.1 The temporal evolution of the concentration of contrast agent at one point c(t)
is a low-pass dynamic process and is essentially band-limited. That is, its energy is concentrated
in the low frequencies and the value of its Fourier transform can be neglected over a certain
frequency νmax:

ĉ(ν) ≈ 0 for |ν| > νmax. (4.11)

The threshold νmax should be defined in an appropriate way for every application.
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We now analyse the implications of this hypothesis within the framework of dynamic acquisi-
tion. According to the discussion in the previous section the temporal evolution of the projections
can be reproduced if they fulfil

P̂α(γ, ϕ, ν) ≈ 0 for ν ≥ 1

T2π
. (4.12)

The condition (4.11) applies to every point in the time dependent spatial distribution of the atten-
uation coefficient. This can be expressed as

µ̂(x, ν) ≈ 0 for ν ≥ νmax. (4.13)

If we assume that Beer’s law applies (see section 3.1.2), projections are integrals along lines of
the spatial distribution of the attenuation coefficient. Hence, their Fourier transform is calculated
as

P̂α(γ, ϕ, ν) =

+∞∫

−∞






∫

L(α,γ)

µ(x, t)dl




 e−i2πνtdt

=

∫

L(α,γ)

µ̂(x, ν)dl. (4.14)

As a consequence, if µ(x, t) fulfils (4.13) then it follows from (4.14) that the projectionsPα(γ, ϕ, t)
fulfil (4.12) as long as νmax < 1/T2π. This shows that the essentially band-limited model for the
temporal evolution suits well to the dynamic acquisition process and provides an expression for
the maximum temporal resolution of any dynamic reconstruction algorithm. This is formulated in
the following statement.

Statement 4.1 The maximum temporal resolution of a dynamic reconstruction algorithm ν id
max is

defined as the maximum frequency of the dynamic process µ(x, t) that it is able to reproduce. For
a given scanner, it is limited to

νid
max <

1

Tmin
2π

, (4.15)

where Tmin
2π is the minimum rotation time of the scanner.

At this point a remark must be made. In sections 3.2.4 and 3.2.4.1, we saw that due to the dis-
cretised acquisition of projections (finite number of detector pixels and finite number of projection
angles), the reconstructed spatial distribution of the attenuation coefficient is limited to a certain
spatial frequency ςmax. For this spatial frequency we used the unit mm−1. In order to characterise
the spatio-temporal distribution of the attenuation coefficient µ(x, t), we now introduce the tem-
poral frequency ν, with units of s−1 =Hz. Thus, according to the spatial and temporal sampling
conditions, the spatio-temporal distributions of the attenuation coefficient that can be reproduced
are limited by the spatial and temporal frequencies ςmax and νmax respectively. Mathematically
this can be expressed as

µ̂(ςx, ςy, ςz, ν) ≈ 0 for ςx, ςy, ςz ≥ ςmax, ν ≥ νmax, (4.16)

where ςx, ςy and ςz are the spatial frequencies corresponding to the axes x, y and z.
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4.3.3. EFFECT OF THE DYNAMIC REBINNING APPROXIMATION

Rebinning of fan-beam projections to parallel-beam projections was discussed in section 3.2.5.1
as a method to adapt the projections to the FBP algorithm in parallel-beam geometry. In the
light of dynamic acquisition and reconstruction, it offers the additional advantage to increase the
sampling rate to 1/Tπ (see section 4.3.1). However, in the rebinned set of projections every ray
in a projection is acquired at a different time. In an approximation, this is ignored by associating
each rebinned projection to the time at which its central projection is acquired. We present in this
section an analysis of the error committed when ignoring the individual time of each ray in the
rebinning step. A similar analysis can be found in [Bonnet et al., 2003a].

Let us denote by Pα(γ, tα) the acquired fan-beam projections and with P b
β(u, tα(β,u)) the re-

binned parallel-beam ones. The expression of the fan-beam coordinates as a function of the
parallel-beam coordinates can be calculated from (3.40):

γ(u) → arcsin
(u

Γ

)

α(β, u) → β + γ(u). (4.17)

The correspondence between fan-beam rays and parallel-beam ones is shown in figure 3.7. The
maximum extension of the rebinned detector can be obtained from (4.17)

umax = Γ sin(γmax). (4.18)

Since µ(x, t) is localised in a circle of radius ‖xmax‖, umax ≥ ‖xmax‖.
Let us now consider an object consisting of a density point following a temporal law c(t) and

situated at a given position x0 = (x0, y0),

µ(x, t) = c(t)δ(x− x0). (4.19)

Its corresponding fan-beam projections will be

Pα(γ, tα) = c(tα)
cos(α− γ)

Γ cos(γ)− x0
δ(γ − γ0(α)), (4.20)

where tα = α/ω is the time at which the projection is acquired and γ0(α) is the fan-angle corre-
sponding to the ray that goes through x0 for each projection angle α

γ0(α) = α− arctan

(
Γ sin(α)− y0

Γ cos(α)− x0

)

. (4.21)

Applying the transformation defined by (4.17) to (4.20),

P b
β(u, tα(β,u)) = Pα(β,u)

(
γ(u), tα(β,u)

)

= c

(
β

ω
+

1

ω
arcsin

(u

Γ

))

δ (u− u0(β)) (4.22)

where u0(β) = −x0 sin(β) + y0 cos(β).
Therefore, if we associate the rebinned projection P b

β(u) with the time tβ = β/ω, we have an
error produced by a time delay ∆(u0(β)) that depends on the position of the density point and the
angular position of the source

∆(u0(β)) =
1

ω
arcsin

(
u0(β)

Γ

)

. (4.23)
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Since |u0(β)| < Γ, the maximum time delay will occur for the maximum value of u0(β). This
maximum is attained for β = arctan (y0/x0) ± π

2 and its value is |u0(β)|max = ‖x0‖. We
summarise these results in the following statement:

Statement 4.2 As a consequence of the dynamic rebinning approximation, each ray in a rebinned
projection has a delay with respect to the central ray of the projection. This time delay is different
for every point in the plane and for every angular position of the source. The maximum time delay
at a given point x0 is given by

max{|∆(u0(β))|} =
T2π

2π
arcsin

(‖x0‖
Γ

)

. (4.24)

Hence, the delay is small with

• a small distance from the point to the origin, ‖x0‖ → 0,

• a large source-origin distance, Γ→∞,

• a low rotation-time, T2π → 0.

4.3.4. EFFECT OF THE DYNAMIC BACKPROJECTION APPROXIMATION

In this section we analyse the effect of the dynamic backprojection approximation (see section
4.2.1) in temporal resolution. For the sake of simplicity the analysis is carried out for parallel-
beam geometry, but the obtained conclusions can be applied to fan-beam geometry as well.

In section 4.1.2 we saw that the level of inconsistency depends both on the angular speed of the
source and on the rate of change of dynamic process. An additional factor that plays a decisive
role is the length of the backprojection interval. The use of partial backprojections (PBB) in the
kπ-linear regression approach reduces data inconsistency problems by integrating over angular in-
tervals of length π/3. In order to avoid problems caused by data inconsistencies one might think
of increasing the number of intervals in a full-rotation. If we observe the kπ-mode linear regres-
sion approach, we easily identify that this should not be done unnecessarily since for every further
interval the estimation step must be repeated and, depending on the implementation, the memory
requirements might increase. Hence, for the sake of efficiency the number of angular intervals
in a full-rotation should be kept as low as possible. For the purpose of the following analysis,
we consider partial block backprojections over angular intervals of length 2π/N . Similarly as in
section 4.2, these are defined as

PBBj(x, t π
N

(2j+1)) =
1

2

2π
N

(j+1)
∫

2π
N

j

FPβ(u′(x, β), tβ)dβ for j = 0, 1, . . . N − 1. (4.25)

It is clear from (4.25) that for a static object:

µr(x) =
N−1∑

j=0

PBBj(x), (4.26)

for a full-scan reconstruction (for a short-scan reconstruction, 2
∑N/2−1

j=0 ). Note that the jth PBB
is associated to the time at which the central projection of the corresponding angular interval
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is acquired t π
N

(2j+1). The inconsistency in the projection dataset corresponding to the angular

interval [2π
N j, 2π

N (j + 1)] depends on the length of the angular interval 2π/N , on the rotation time
of the source T2π and on the maximum frequency of the dynamic process νmax. Let us consider
again the density point object described by (4.19). Its parallel-beam projections are

Pβ(u) = c

(
β

ω

)

δ(u− u0(β)) (4.27)

with u0(β) = −x0 sin(β) + y0 cos(β). We first develop (4.25) using (3.25)

PBBj(x, t π
N

(2j+1)) =
1

2

2π
N

(j+1)
∫

2π
N

j

+umax∫

−umax

Pβ(u, tβ)g(u′(x, β)− u)dudβ. (4.28)

If we evaluate the PBB at the point where the density is situated x = x0 (4.28) reduces to

PBBj(x0, t π
N

(2j+1)) =
g(0)

2

2π
N

(j+1)
∫

2π
N

j

c

(
β

ω

)

dβ. (4.29)

Using the transformation rule with τ = β/ω and dβ
dτ = ω we get

PBBj(x0, t π
N

(2j+1)) =
2π

N

g(0)

2

ωN

2π

2π
ωN

(j+1)
∫

2π
ωN

j

c(τ)dτ

︸ ︷︷ ︸

. (4.30)

The under-braced part of (4.30) is a temporal average over the time interval [t 2π
N

j , t 2π
N

(j+1)]. We

now define the average filter ξT (t) as a filter that is constant equal to 1/T during a time interval
of length T , i.e.

ξT (t) =
1

T
rect

(
t

T

)

, (4.31)

where rect(t) is the rectangular pulse (see appendix B). According to this definition, (4.30) can
be expressed as a low-pass filtering with ξ T2π

N

(t)

PBBj(x0, t π
N

(2j+1)) =
2π

N

g(0)

2

+∞∫

−∞

c(t)ξT2π
N

(t π
N

(2j+1) − τ)dτ

=
2π

N

g(0)

2
c ∗ ξT2π

N

(t π
N

(2j+1)). (4.32)

Thus, the value of the jth PBB at x = x0 is, except for a constant, the result of filtering c(t) with
a low-pass filter ξT2π

N

(t) and sampling at t π
N

(2j+1). In the ideal case, the filter ξ T2π
N

(t) should be a

delta function. Since this is not the case, it is clear that the samples obtained will contain a certain
bias. This bias can be expressed as

b(t) =
2π

N

g(0)

2
(c(t)− c ∗ ξT2π

N

(t)). (4.33)
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Figure 4.7. Plot of χ(ϑ,N) for increasing values of N (N = 6, 8, 10, 12, 16, the grey arrow indicates the
increasing direction). On the right: detail of the interval ϑ ∈ [0, 1].

In frequency domain the bias becomes

b̂(ν) =
2π

N

g(0)

2
ĉ(ν)

(

1− ξ̂T2π
N

(ν)
)

︸ ︷︷ ︸

χ(ν,T2π ,N)

. (4.34)

Hence, the multiplicative factor χ(ν, T2π, N) is responsible for the bias. We can express this
factor analytically as

χ(ν, T2π,N ) = 1− sinc

(
T2πν

N

)

. (4.35)

The first remarkable aspect of (4.35) is that it shows that the term that is responsible for the bias
does not depend directly on the frequency ν but on the product T2πν. Hence, if we consider
a scanner with a rotation time T2π and a dynamic process with maximum frequency νmax, the
error due to the backprojection approximation will be the same as if we use a scanner that is K
times slower as long as the maximum frequency of the process is also K times lower. In order to
simplify notation, we introduce ϑ = T2πν. The multiplicative factor becomes then

χ(ϑ,N) = 1− sinc

(
ϑ

N

)

. (4.36)

We now make use of the model for perfusion signals introduced in section 4.3.2. According to
it, ĉ(ν) ≈ 0 for |ν| > νmax and νmax should not exceed 1/T2π (see section 4.3.1). Hence, it is
sufficient to ensure that χ(ϑ,N) is small in the interval [0, 1].

Figure 4.7 shows χ(ϑ,N) for different values of N . For ϑ = 0, χ(0, N) = 0 and the bias is
zero which is not surprising since ϑ = 0 corresponds to a static process. For ϑ 6= 0, χ(ϑ,N)
increases monotonically in the interval of interest [0, 1]. Hence, it reaches its maximum value at
ϑ = 1. It is clear that the value of χ(1, N) decreases for increasing values of N . It can be easily
shown that

lim
N→∞

χ(1, N) = 0 (4.37)
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since ξT2π
N

(t) is a sequence that approximates the Delta function. If χ(ϑ,N) = 0 then b̂(ν) = 0

and therefore the error due to the dynamic backprojection approximation is zero. Another way
to see this is that, for a given value of ϑ ∈ [0, 1] and a ε > 0, we can always find a value Nmin

such that if N > Nmin then χ(ϑ,N) < ε. The threshold Nmin is of the form Nmin = Cϑ where
C = ϑ/sinc−1(1− ε).

We summarise the results in the following statement:

Statement 4.3 The temporal backprojection approximation causes a bias in the reconstruction of
a time dependent density value. This bias depends in frequency domain on a multiplicative factor
of the form

χ(ϑ,N) = 1− sinc

(
ϑ

N

)

(4.38)

where ϑ = T2πν. According to this, we can affirm that

• the bias goes to 0 when ϑ→ 0,

• the bias goes to 0 when N →∞, and

• for any ε > 0 we can find, by appropriate choice of a constant C, an Nmin = Cϑ such that

χ(ϑ,N) < ε for N ≥ Nmin. (4.39)

In our analysis of the effect of the temporal backprojection approximation we only took into
account the error at the point where the time dependent density is located. We showed that this
error is due to temporal averaging during the duration of each PBB. Therefore, the error at x0 is
a good indicator for temporal resolution. But the time dependent density also causes an error at
other points x 6= x0. In the following we analyse this error. The value of the PBB in (4.29) is
exact when c(β/ω) = c(t π

N
(2j+1)) in the PBB interval. Hence, the error caused by the temporal

averaging at x0 can be expressed as

e(x0) =
g(0)

2

2π
N

(j+1)
∫

2π
N

j

∣
∣
∣c(t π

N
(2j+1))− c(β/ω)

∣
∣
∣ dβ. (4.40)

In a similar way, we can express the error at x 6= x0 as

e(x) =
g(0)

2

2π
N

(j+1)
∫

2π
N

j

∣
∣
∣

(

c(t π
N

(2j+1))− c(β/ω)
)

g(u(x, β)− u0(β))
∣
∣
∣ dβ, (4.41)

where u(x, β) = −x sin(β) + y cos(β) and u0(β) = −x0 sin(β) + y0 cos(β). Using the Hölder
inequality

∫

Ω

|fg| ≤





∫

Ω

|f |p




1
p




∫

Ω

|g|q




1
q

(4.42)
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with p = 1 and q =∞

e(x) ≤ 1

2
sup {g(u(x, β)− u0(β))}

2π
N

(j+1)
∫

2π
N

j

∣
∣
∣c(t π

N
(2j+1))− c(β/ω)

∣
∣
∣ dβ. (4.43)

g(u) can be computed as the inverse Fourier transform of (3.24) and is therefore continuous and
bounded. Additionally, for the usual choices of v̂(ς), g(u) ≤ g(0). Hence, we obtain

e(x) ≤ g(0)

2

2π
N

(j+1)
∫

2π
N

j

∣
∣
∣c(t π

N
(2j+1))− c(β/ω)

∣
∣
∣ dβ = e(x0). (4.44)

Therefore, we can conclude that, since the error at x 6= x0 is bounded by the error at x0, we can
concentrate on the error at x0 for the choice of N .

4.3.5. EFFECT OF BACKPROJECTION WITH REBINNED PROJECTIONS

In the previous sections we separated the effect in temporal resolution of the dynamic rebinning
and backprojection approximations. We now combine them for the case of backprojection with
rebinned projections of a time dependent object.

The starting point is the expression of the jth PBB for parallel-beam geometry given in (4.28).
We apply it to the rebinned projections of the density point described by (4.22) and evaluate it at
x0

PBBj(x0, t π
N

(2j+1)) =
g(0)

2

2π
N

(j+1)
∫

2π
N

j

c (τ(β)) dβ (4.45)

with

τ(β) =
β

ω
+

1

ω
arcsin

(
u0(β)

Γ

)

, (4.46)

and u0(β) = −x0 sin(β) + y0 cos(β). We apply again the transformation rule

PBBj(x0, t π
N

(2j+1)) =
g(0)

2

τ( 2π
N

(j+1))
∫

τ( 2π
N

j)

c(τ)
dβ

dτ
(τ)dτ. (4.47)

Equation (4.46) shows that the dependence of τ on β is non linear. This means that in some
intervals there will be a contraction of time whereas in others there will be an expansion. The
term dβ/dτ acts as a weighting function that compensates for these distortions, it weights more
the intervals where the time is contracted and less the ones where it is expanded. This is illustrated
in figure 4.8. The distortion effect depends on the ratio ‖x0‖

Γ ; the smaller this ratio, the less the
distortion effect, and the less dβ/dτ deviates from a constant value. For ‖x0‖ = 0, dβ/dτ = ω
as with non-rebinned projections.
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As in the previous section, we would like to express (4.47) as a filtering operation. This can
be easily done by interpreting dβ/dτ in the jth interval as a low-pass filter. Both the temporal
duration of the filter Tj and its central time τcj

depend on the interval. Their expressions are

Tj = τ

(
2π

N
(j + 1)

)

− τ
(

2π

N
j

)

τcj
=

τ
(

2π
N (j + 1)

)
+ τ

(
2π
N j
)

2
. (4.48)

We define now the filters λj(τ) as

λj(τ) =
N

T2π

dβ

dτ
(−τ + τcj

)rect

(−τ + τcj

Tj

)

. (4.49)

The factor N
T2π

ensures that
Tj

2∫

−
Tj

2

λj(τ)dτ = 1. (4.50)

In order to express (4.47) in terms of these filters, we must take into account that the central times
of the intervals τj are no longer t π

N
(2j+1). Each interval is delayed by a quantity

∆j = τcj
− t π

N
(2j+1). (4.51)

Using (4.49) and (4.51) we can now rewrite (4.47) as

PBBj(x0, t π
N

(2j+1)) =
2π

N

g(0)

2

+∞∫

−∞

c(τ)λj(t π
N

(2j+1) + ∆j − τ)dτ

=
2π

N

g(0)

2
c ∗ λj(t π

N
(2j+1) + ∆j). (4.52)
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As an example, figure 4.9 shows the filters λj for N = 6 and a point situated at x = (0, r) with
r
Γ = 0.2265. With respect to the non-rebinning case, we identify several differences:

a) The averaging filters are not constant.

b) Each interval has a different length.

c) Each interval has a different delay.

In order to study the implications of a), we compare the frequency response of the filters λj(τ)
with the frequency response of ξTj

(τ). The last are constant filters as defined in (4.31) with a
duration equal to the duration of the jth interval, i.e. Tj . On the left part of figure 4.10, the
frequency responses of λ1(τ) (top) and λ4(τ) (bottom) are plotted in blue in the Nyquist band
(ν ′ ∈ [0, 0.5]) for N = 6 and a point situated at x = (0, r) with r

Γ = 0.2265. As can be
seen in figure 4.9, 1 and 4 correspond to the shortest and the longest interval respectively for this
parameter choice. The frequency responses of the filters ξT1(τ) and ξT4(τ) are plotted in grey in
figure 4.10. Finally, the black curves represent the frequency response of ξT 2π

N

(τ). The frequency

responses of λ1(τ) and ξT1(τ) (λ4(τ) and ξT4(τ)) can only be differentiated in the detail of the
plots shown on the right. On the other hand, the frequency response for the shortest interval λ1(τ)
lies clearly over the response of ξT 2π

N

(τ) whereas the frequency response of the longest interval

λ4(τ) lies clearly under it. Hence, we conclude that the deviation from a constant of the filters
λj(τ) has no significant effect in the frequency band of interest whereas the difference of duration
of the intervals has a strong influence in the frequency response. This can be empirically shown
to hold for values of N and ρ in the range of our application, i.e. N > 1 ∈ N and ρ < 0.4 ∈ R.
For this reason, we can substitute the filters λj(τ) by ξTj

(τ) for analysis purposes. As a result,
we can write the bias as

bbj(t) =
2π

N

g(0)

2
(c(t)− c ∗ ξTj

(t+ ∆j)). (4.53)
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In frequency domain it becomes

b̂bj(ν) =
2π

N

g(0)

2
ĉ(ν)

(
1− sinc(νTj)e

i2πν∆j
)
. (4.54)

As in the non-rebinning case discussed in the previous section, a multiplicative factor is respon-
sible for the bias. This factor is now, as the bias itself, different for every interval. It depends
on the length of the interval Tj and the delay ∆j which are a priori not known since they depend
on the position of the point x0. The dependence of Tj and ∆j on the position of the point x0

comes from the dependence of τ on u0(β). In section 4.3.3 we saw that the closer the point to
the origin, the lower the range of the values of u0(β) and therefore the smaller the delay. In order
to determine the value of u0(β) it is not enough to know the distance to the origin but we need
to know the exact position of the point. This is illustrated in figure 4.11 with two points located
at a distance r from the origin; for the same angular position β = 0, the values u(x0, 0) and
u(x1, 0) are different. Our goal is to derive an expression for the bias that depends on the distance
to the origin. For this purpose, we express the points at a given distance r in polar coordinates
(r, θ) and consider the angle θ as a random variable uniformly distributed in [−π, π]. Substituting
(x0, y0) = (r cos(θ), r sin(θ)) in (4.46) yields

τ(β) =
β

ω
+

1

ω
arcsin

(−r sin(β − θ)
Γ

)

. (4.55)

More than the distance to the origin r, the significant quantity is the distance normalised to the
source-origin distance r/Γ. Hence, in order to simplify the notation we introduce ρ = r/Γ.
Substituting (4.55) in (4.48) we obtain expressions for Tj

Tj =
T2π

N
− T2π

2π

(

arcsin

(

ρ sin

(
2π

N
(j + 1)− θ

))

− arcsin

(

ρ sin

(
2π

N
j − θ

)))

, (4.56)
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and ∆j

∆j = −1

2

T2π

2π

(

arcsin

(

ρ sin

(
2π

N
(j + 1)− θ

))

+ arcsin

(

ρ sin

(
2π

N
j − θ

)))

. (4.57)

Since Tj and ∆j depend on the random variable θ, the bias is a random value for every value of
N , T2π and ν. Hence, we are interested in computing the expected value of the bias

E[b̂bj(ν)] =
2π

N

g(0)

2
ĉ(ν)

(
1− E

[
sinc(νTj)e

i2πν∆j
])

︸ ︷︷ ︸

χb(ν,T2π ,N,ρ)

. (4.58)

Note that the multiplicative term depends on νTj and ν∆j ; hence, according to (4.56) and (4.57),
it is clear that the term depends on ϑ = T2πν as in the non-rebinning case. We use therefore ϑ for
the rest of the analysis. As in the previous section, our aim is to explain the behaviour of the error
by analysing the multiplicative factor χb(ϑ,N, ρ) in (4.58). However, the complexity of (4.56)
and (4.57) does not allow to give an analytical expression for χb(ϑ,N, ρ). It is possible though
to obtain an approximate expression. For this purpose, we remark that for a point situated at the
origin, ρ = 0 and therefore (4.56) and (4.57) do no longer depend on θ. Their values are then
same as in the non-rebinning case and therefore

χb(ϑ,N, 0) = χ(ϑ,N). (4.59)

This suggests to expand χb(ϑ,N, ρ) as a Taylor series around χ(ϑ,N). Using (4.59) we can write

χb(ϑ,N, ρ) = χ(ϑ,N) +

M∑

m=1

∂mχb

∂ρm
(ϑ,N, 0)

ρm

m!
+RM+1(ρ

M+1). (4.60)

Since the terms of first and third order vanish, a third order approximation adds only a ρ2 term to
χ(ϑ,N). The error term is of fourth order which is a reasonable approximation since the functions
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involved in (4.58) are smooth and ρ is small, with typically ρ < 0.4. With this approximation we
get

χb(ϑ,N, ρ) ≈ χ(ϑ,N) +
1

4
sinc

(
ϑ

N

)

ϑ2ρ2

+

(
N2

2π2
cos

(
πϑ

N

)

− N3

2π3ϑ
sin

(
πϑ

N

))

sin2
( π

N

)

ρ2. (4.61)

A plot of χb(ϑ,N, ρ) as a function of ϑ is shown in figure 4.12 for ρ = 0.2265 and different
values of N . The curves are similar as in the non-rebinning case with χ(ϑ,N), but the bias is
now larger (see figure 4.7). The left part of figure 4.13 shows the behaviour of χb(ϑ,N, ρ) as a
function of N for ϑ = 1 and different values of ρ. For low values of N all curves are very close.
This indicates that the most restrictive effect is temporal averaging. For higher values of N , all
curves fall but they do it at different rates. A fundamental difference with the non-rebinning case
is that the curves fall slower and converge to a minimum value which is different from zero. The
limit of χb(ϑ,N, ρ) whenN →∞ can be calculated directly from the original expressions (4.56),
(4.57) and (4.58) by exchanging the limit and the expectation integral. It yields

lim
N→∞

χb(ϑ,N, ρ) =
1

2π

π∫

−π

(

1− eiϑ arcsin(ρ sin(θ))
)

dθ. (4.62)

Since ρ < 0.4, we can approximate arcsin(x) ≈ x to obtain

lim
N→∞

χb(ϑ,N, ρ) ≈ 1− J0(ρϑ), (4.63)

where J0(x) denotes the Bessel function of the first kind of order 0. This is illustrated in the right
part of figure 4.13. The blue curve represents χb(ϑ,N, ρ) for ϑ = 1 and ρ = 0.2265, the black
curve corresponds to the term χ(ϑ,N) and the grey curve to second order term. The approximate
limit value is shown as a dashed line.
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In the non-rebinning case, the error can be made arbitrarily small by increasing the number
of intervals in a full-rotation N . With rebinned projections, the error due to temporal averaging
predominates for low values of N , so that it behaves similarly as in the non-rebinning geometry
case. For higher values of N , however, the error due to the time delay becomes more significant
and it makes it useless to increase N over a certain threshold Nmax. This threshold depends, of
course, on the value of ρ. We provide a heuristic approach to estimate this threshold. The idea is
to exploit the decomposition of the bias shown in figure 4.13 and find the value of N for which
the second order term is equal to the bias without rebinning χ(ϑ,N)

χ(ϑ,N) =
∂2χb

∂ρ2
(ϑ,N, 0)

ρ2

2
. (4.64)

This value is a good compromise since at this point the second order term has almost reached its
maximum and the total bias is close to the limit given by (4.63). In the right part of figure 4.13,
this is shown as the point where the black and the grey curves meet. Our purpose is to find an
analytical expression forNmax which serves as a guideline for the choice of the number of angular
intervals N . Hence, we do not need an exact solution of (4.64). In order to find an approximate
analytical solution of (4.64), we first simplify the second order term. This is fortunately a simple
task since the sum of the terms in the second line of (4.61) converge fast to 0 when N → ∞.
Indeed, for N > 5 the value of the sum can be neglected. After this approximation the equation
to solve is

1− sinc

(
ϑ

N

)

=
1

4
sinc

(
ϑ

N

)

ϑ2ρ2, (4.65)

which leads to

sinc

(
ϑ

N

)

=
1

1 + 1
4ϑ

2ρ2
. (4.66)

Substituting the function sinc by its second order Taylor approximation yields

1− π2ϑ2

6N2
=

1

1 + 1
4ϑ

2ρ2
. (4.67)
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The solution is then

N = π

√

2

3

(
1

ρ2
+
ϑ2

4

)

. (4.68)

Since 1/ρ2 � ϑ2/4, we get a simplified expression for Nmax

Nmax ≈
√

2

3

π

ρ
. (4.69)

Finally, we summarise the results of the analysis in the following statement:

Statement 4.4 The combination of the temporal backprojection and the rebinning approxima-
tions causes a bias in the reconstruction of a time dependent density value. This bias depends on
the distance from the point to the origin relative to the source-origin distance, i.e. ρ = r/Γ. It is
caused by a multiplicative factor which can be approximated by

χb(ϑ,N, ρ) ≈ χ(ϑ,N) +
∂2χb

∂ρ2
(ϑ,N, 0)

ρ2

2
,

= χ(ϑ,N) +
1

4
sinc

(
ϑ

N

)

ϑ2ρ2

+

(
N2

2π2
cos

(
πϑ

N

)

− N3

2π3ϑ
sin

(
πϑ

N

))

sin2
( π

N

)

ρ2. (4.70)

where ϑ = νT2π. Where χ(ϑ,N) is the multiplicative factor obtained without rebinning and

∂2
ρχ

b ρ2

2 is an additional term that describes the dependence with the position of the point.

The following results were derived from χb(ϑ,N, ρ):

• the bias goes to 0 when ϑ→ 0.

• for ρ = 0, i.e. for the central ray, χb(ϑ,N, 0) = χ(ϑ,N), and the bias behaves as in the
parallel-beam geometry case.

• the bias cannot be made arbitrarily small by increasing N , since

lim
N→∞

χb(ϑ,N, ρ) ≈ 1− J0(ρϑ), (4.71)

where J0(x) is the Bessel function of the first kind of order 0.

• for high values of N , the time delay effect predominates so that increasing N does almost
not reduce the values of the bias. The threshold over which the time delay effect predomi-
nates can be used as an upper bound for N . It can be estimated as

Nmax ≈
√

2

3

π

ρ
. (4.72)
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4.3.6. DISCUSSION

We have seen that dynamic acquisition can be seen as a temporal sampling of time dependent
projections and that this acquisition scheme limits the temporal resolution to ν id

max = 1/T2π (see
statement 4.1). This projection sampling can be interpreted as an ideal sampling with a Delta comb
(see appendix B). In section 4.3.4, we analysed the partial block backprojection of projections
of a density point in parallel-beam geometry. We saw that the value of the reconstruction at the
position of the density point x0 is obtained by filtering the temporal evolution of the attenuation at
this point with a constant filter ξ T2π

N

(t) and then sampling at the central time of the PBB interval.

We also showed that, if the error due to the time dependence of the attenuation value can be
neglected at x0, then it can be neglected as well at x 6= x0. In general we do not only have
a time dependent density value at x0 but rather a time dependent spatial distribution µ(x, t).
Since all operations involved in the acquisition and PBB reconstruction are linear, the spatial
distribution can be considered as a spatial distribution of density points. The output will be then
the accumulation of the contributions of all density points. For a certain point x0, the value of
the PBB reconstruction will consist of its own contribution plus the contribution of the rest of
the points. As we have seen, its own contribution corresponds to the temporal average of the
attenuation value. According to this, the reconstruction of the jth PBB can be expressed as

PBBj(x0, t π
N

(2j+1)) =
2π

N

g(0)

2
µ(x0, ·) ∗ ξT2π

N

(t π
N

(2j+1)) + Φj(x0, t π
N

(2j+1)), (4.73)

where Φj(x0, t π
N

(2j+1)) is the contribution of other points to the value of the PBB at x0. As we
have shown, if the first term in 4.73 is close to µ(x0, t π

N
(2j+1)), then the contribution of other

points will be very close to the value that it would have if all projections had been acquired at
t π

N
(2j+1). Since we acquire several rotations, we have a time series of PBBs acquired at different

times

PBBj(x0, t π
N

(2j+1) + kT2π) =
2π

N

g(0)

2
µ(x0, ·) ∗ ξT2π

N

(t π
N

(2j+1) + kT2π)

+ Φj(x0, t π
N

(2j+1) + kT2π). (4.74)

The first term of (4.74) indicates that we are performing a non-ideal sampling of the time depen-
dent attenuation value µ(x0, t) every T2π with a filter ξT2π

N

(t). Hence, if we can ensure that the

effect of filtering with ξT2π
N

is negligible, the dynamic reconstruction problem reduces to the prob-

lem of reconstructing a continuous signal from its samples. The same argumentation is valid for
the case of backprojection with rebinned projections, just that the filters ξ T2π

N

(t) are substituted

by ξTj
(t) and have an additional delay (see previous section).

4.4. DYNAMIC RECONSTRUCTION ALGORITHMS

We provided in section 4.3 the necessary information to tackle the problem of the design of a dy-
namic reconstruction algorithm. Our main goal is to develop an algorithm that is able to compute
accurately a dynamic sequence with a minimum of input data. For this purpose, we exploit the
fact that the dynamic process is essentially band-limited and the temporal sampling nature of the
dynamic acquisition process.
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4.4.1. TEMPORAL INTERPOLATION OF PROJECTIONS

In section 4.3.1 we saw that the dynamic acquisition process can be interpreted as a temporal
sampling of time dependent projections. Based on this interpretation we determined the max-
imum temporal resolution of a dynamic acquisition-reconstruction process as a function of the
full-rotation time of the scanner: ν id

max = 1/T2π. According to this interpretation the most
straightforward approach for dynamic reconstruction is to estimate for every projection a con-
tinuous function from the projection samples.

In order to reduce the amount of necessary input data, we can use the maximum frequency
of the dynamic process as prior information and adapt accordingly the sampling rate. From the
sampling condition, we can calculate the maximum sampling interval in order to be able to recover
a signal from its samples as

Ts <
1

2νmax
. (4.75)

The continuous signal is computed by ideal interpolation (see appendix B). In such a case, the
sampling interval can be chosen as the maximum value that fulfils (4.75) and the projections can
be expressed as

Pα(γ, φ, t) ≈
∑

k∈Z

Pα(γ, φ, k)ψ

(
t− tα − kTs

Ts

)

(4.76)

using ψ(t) = sin(πt)
πt = sinc(t), i.e. the ideal interpolator. Hence, we propose to use (4.76) to esti-

mate the value of the projections at any time. With the temporal interpolation of projection data,
the data inconsistencies are compensated; therefore, a time series of reconstructed 3D images at
any desired time can be obtained with any static reconstruction algorithm for circular trajectories.
We denote this general theoretical approach as temporal interpolation approach (TIA).

An additional advantage of the proposed method is that for very fast processes the sampling
rate can be increased up to 1/Tπ and therefore the frequency range than can be reconstructed is
[0, 1/T2π]. That is, the maximum frequency that the algorithm can reproduce coincides with the
maximum temporal resolution determined by the dynamic acquisition scheme (see section 4.3.1).

The interpolation of projections is useful to illustrate the reason for an efficient estimation
scheme. It is not, however, of practical interest. The reason for this is twofold. First, ideal
interpolation is very inefficient from the computational point of view; second, due to the high
number of acquired views, performing interpolation on the projections is also inefficient. The
first aspect can be improved by substituting ideal interpolation by a more efficient interpolation
scheme. A reduction of the number of interpolations performed can be achieved if we exploit some
of the approximations discussed in section 4.3. We address these aspects in the next sections.

4.4.2. TEMPORAL INTERPOLATION WITH POLYNOMIAL SPLINES

Let us consider a signal f(t) that is sampled every Ts producing the samples f(mTs). The sam-
pling rate or sampling frequency is νs = 1/Ts. The ideal interpolator is an ideal low-pass filter
and calculates an estimate of f(t) as (see appendix B)

f(t) =
∑

k∈Z

f(kTs)ψ

(
t− kTs

Ts

)

, (4.77)
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where ψ(t) = sinc(t). If f(t) is strictly band-limited, i.e. f̂(ν) = 0 for |ν| ≥ 1
2Ts

, then
f(t) = f(t). The ideal interpolator has an infinite support and decays very slowly (∝ 1/|t|)
so that samples that lie far from the position of the point to interpolate will still make a sig-
nificant contribution to its value. This makes it very inefficient for practical purposes. An ef-
ficient interpolation scheme should have a frequency response close to the ideal low-pass filter
and be nevertheless well localised around the point to interpolate. Polynomial splines have been
shown to be a very good compromise [Unser, 2000]. The nth polynomial spline interpolator is
a piece-wise polynomial of order n. A polynomial is fitted in every interval between two sam-
ples in such a way that the connection with the polynomial in the next interval is smooth. The
resulting function is n − 1 times differentiable at the connecting points. Polynomial spline in-
terpolation can be implemented in a very efficient way in the case where the sampling scheme
is regular, i.e. the distance between samples Ts is constant. We follow here the presentation in
[Unser et al., 1993a] and [Unser et al., 1993b]. As usual in digital signal processing the distance
between samples is normalised to 1 without loss of generality [Oppenheim and Schafer, 1998].
The corresponding normalised time and frequency are t′ = t/Ts and ν ′ = νTs respectively. Note
that, in the general case the functions in each interval between samples do not have to be polyno-
mials [Unser and Blu, 2005a]. In this thesis we refer in most of the cases to polynomial splines.
Hence, in order to simplify formulation, the term splines will be used for polynomial splines if
not otherwise indicated.

According to Schönberg’s theorem, any spline function sn(t) can be represented as linear com-
bination of shifted elementary functions:

sn(t′) =
∑

k∈Z

c[k]βn(t′ − k). (4.78)

The elementary functions βn(t) are the so-called B-splines of order n. B-splines are, for a given
order n, the splines with smallest support; they are localised in the interval ]−(n+1)/2, (n+1)/2[.
For a given set of samples of a continuous function f [m] = f(mTs), the spline interpolation
problem consists in finding a spline function that takes the values f(mTs) at the sampling points,
i.e. sn(m) = f [m]. Using (4.78), this can be expressed as

f [m] =
∑

k∈Z

c[k]βn(m− k). (4.79)

If we interpret βn(m) as a discrete sequence, bn[m] = βn(m), (4.79) can be expressed as a
discrete convolution

f [m] = c ∗ bn[m]. (4.80)

In Fourier domain, (4.80) becomes a product (see appendix B)

F̂
(

ei2πν′

)

= Ĉ
(

ei2πν′

)

B̂n
(

ei2πν′

)

, (4.81)

so that the coefficients of the B-spline decomposition can be easily found as

Ĉ
(

ei2πν′

)

=
F̂
(

ei2πν′

)

B̂n (ei2πν′)
. (4.82)
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Figure 4.14. Polynomial spline interpolator for n = 3 (light blue), n = 9 (dark blue) and n → ∞ or ideal
interpolator (grey).

Hence, the coefficients c[m] can be calculated by filtering the samples with the filter 1/B̂(ei2πν′

)
or in time domain (bn)−1[m]. The filter (bn)−1[m] has an infinite support but can be efficiently im-
plemented as a recursive filter (IIR filter, see [Oppenheim and Schafer, 1998]). Since B̂n(ei2πν′

)
does not vanish, the problem is well-posed. Knowing the coefficients of the B-spline decomposi-
tion, the value of the interpolated spline function at any time can be computed using (4.78). For
the case where we want to evaluate the function at a fixed time before or after every sample, the
computation can be performed in a more efficient way. Assume that we want to evaluate the inter-
polated spline at times shifted by δ after every sample. The time can be expressed as t′ = m+ δ.
If we evaluate the B-spline at times shifted by δ from the sampling positions, we obtain again a
discrete filter bn,δ[m] = βn(m+δ). Since the B-splines have a compact support, the filter bn,δ[m]
has a finite length (FIR filter, see [Oppenheim and Schafer, 1998]). Hence, for the computation
of every sample, only few operations are needed. We do not develop the technical details of the
implementation (they can be found in [Unser et al., 1993b]). In appendix D we give a description
of the computational complexity of the algorithm.

In order to compare spline and ideal interpolation it is interesting to express the estimated spline
function sn(t′) as a linear combination where the coefficients are the samples of the continuous
function f [k]. The simplest way to do this is in Fourier domain. We first calculate the Fourier
transform of (4.78)

ŝn(ν ′) = Ĉ
(

ei2πν′

)

β̂n(ν ′). (4.83)

an then substitute (4.82) in (4.83)

ŝn(ν ′) =
F̂
(

ei2πν′

)

B̂n (ei2πν′)
β̂n(ν ′)

= F̂
(

ei2πν′

) β̂n(ν ′)

B̂n (ei2πν′)
︸ ︷︷ ︸

η̂n(ν′)

. (4.84)
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Figure 4.15. Fourier transform of the spline interpolator ηn(t′) for different orders n (n = 1, 3, 5, 7, 9, 11),
the grey arrow indicates the direction of increasing n. The dashed line indicates 80% of the Nyquist band.

In time domain this becomes
sn(t′) =

∑

k∈Z

f [k]ηn(t′ − k). (4.85)

ηn(t′) is the spline interpolator of order n. It is shown in figure 4.14 for orders n = 3 and 9 and
compared with the ideal interpolator. Even for n = 9, the spline interpolator decays much faster
than the ideal interpolator. Nevertheless, as shown in the left side of figure 4.15, the frequency
response of the spline interpolator approaches the one of the ideal interpolator as n increases.
It has indeed been proven that the spline interpolator converges to the ideal interpolator when
n → ∞ [Aldroubi et al., 1992]. The convergence is very fast for the low degrees. Convergence
to the ideal interpolator is a very comfortable property for our purposes since we can use n as a
parameter that controls how close we are from ideal interpolation.

For practical purposes, we denote hereafter by p the proportion of the Nyquist band that can be
reproduced from a given set of samples. This leads to a modified sampling condition

νmax ≤
p

2Ts
. (4.86)

The value of p depends on the order n. For the purpose of this thesis we use as criterion that the
frequency response deviates less than 2% from a constant in the frequency band [0, p/(2Ts)]. For
n = 9, p ≈ 0.8. This corresponds in figure 4.15 to the frequency band until the dashed line. In the
following, we propose to substitute the ideal interpolator ψ(t), by an nth order spline interpolator
ηn(t) in the interpolation step.

4.4.3. TIA-FDK ALGORITHMS

The temporal interpolation of projections proposed above, estimates the value of every projection
at every frame time. The estimated values are used to compute every frame with static recon-
struction methods. Intuitively, the computational cost of CT reconstruction is much higher than
the cost of interpolation. Since all operations involved in FDK-like reconstruction are linear, we
could perform the interpolation after backprojection. Furthermore, in section 4.3.6 we saw that
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the reconstruction of PBBs over several full-rotations in dynamic CT can be seen as a non-ideal
sampling. Hence, the reconstruction can be performed by interpolating in the PBBs and the inter-
polated values only have to be accumulated. In this section, we use these ideas to derive efficient
dynamic reconstruction algorithms.

A remark should be made before we start with the derivation of the algorithms. In section
4.4.1, we assumed that we can adapt the sampling rate with arbitrary precision. In practice,
however, there are several possibilities to do this. We consider in the following a continuous
and a discontinuous scanning mode. In continuous scanning mode, the rotation time is set to the
largest value such that the time between samples fulfils the modified sampling condition (4.86). In
discontinuous scanning mode, the rotation time is set to the minimum value Tmin

2π . The source is
then regularly switched off during several full-rotations. In the following sections the algorithms
are formulated for continuous scanning mode. The differences to discontinuous scanning mode
are commented in section 4.4.3.4 when we discuss the choice of the parameters.

4.4.3.1. TIA-TFDK ALGORITHM

The TIA-TFDK algorithm is a dynamic acquisition-reconstruction algorithm that exploits the
dynamic acquisition process in order to use the maximum sampling rate for a given sampling
interval Ts = Tπ. It is based on the T-FDK reconstruction algorithm described in section 3.3.3.1.
We start thus its derivation with the rebinning of the acquired cone-beam projections Pα(γ, ϕ, tα)
to a fan-parallel beam (see section 3.3.3.1). This first step can be expressed as

Pα(γ, ϕ, tα) −→ P b
β(u, v, tβ), (4.87)

and corresponds to the dynamic rebinning approximation discussed in section 4.3.3. According
to the dynamic acquisition scheme, the projections are sampled every T2π

P b
β(u, v, k) = P b

β(u, v, tβ + kT2π). (4.88)

For the estimation of the projection values, we use spline interpolation of order n; the interpolation
order is left as an input parameter of the algorithm. Projection β and projection β + π are quasi-
equivalent (see section 3.3.3.4) so that the sampling interval is actually Tπ. For this reason, we
use for the estimation shifted versions of ηn(t/Tπ). This yields

P b
β(u, v, t) =

∑

k∈Z

P b
β(u, v, tβ + kT2π)ηn

(
t− tβ − kT2π

Tπ

)

. (4.89)

Note that this is not a good estimation of P b(u, v, t) since the samples are every T2π and the
interpolating function vanishes every Tπ; but this will be compensated later by combining the
quasi-equivalent projections. With an estimation of the projection values at any time, we can use
(3.64) and (3.65) to compute a frame at any time. In order to simplify notation we introduce

wt(u, v) =

√
Γ2 − u2 + ΓD − Γ

√
(√

Γ2 − u2 + ΓD − Γ
)2

+ v2

, (4.90)
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and write u′(x, β) and v′(x, β) simply as u′ and v′. The complete expressions are given in section
3.3.3.1. Using (4.89) in (3.64)

FP β(u, v, t) =

umax∫

−umax

(
P r

β(s, v, t)wt(s, v)
)
g(u− s)ds

=
∑

k∈Z





umax∫

−umax

P b
β(s, v, tβ + kT2π)wt(s, v)g(u− s)ds





︸ ︷︷ ︸

FPβ(u,v,tβ+kT2π)

ηn

(
t− tβ − kT2π

Tπ

)

=
∑

k∈Z

FPβ(u, v, tβ + kT2π)ηn

(
t− tβ − kT2π

Tπ

)

. (4.91)

Hence, the estimated value of the filtered projections does not change if the filtering is performed
before or after interpolation. The next step is now the backprojection with (3.65)

µr(x, t) =
1

2

2π∫

0

FP β(u′, v′, t)dβ

=
1

2

2π∫

0

(
∑

k∈Z

FPβ(u′, v′, tβ + kT2π)ηn

(
t− tβ − kT2π

Tπ

))

dβ. (4.92)

According to (4.92), every projection is interpolated. Due to the high number views, it would be
desirable to reduce the number of interpolations to carry out. For this purpose we make use of the
dynamic backprojection approximation discussed in section 4.3.4

FPβ(u, v, tβ) ≈ FPβ(u, v, t π
N

(2j+1)) for
2π

N
j < β <

2π

N
(j + 1) (4.93)

that is, we assume that the value of the filtered projections is almost constant during a time interval
of length 2π/N . We leave the number of PBB intervals in a full rotation N as an input parameter.
If we rewrite (4.92) for an angular interval of length 2π/N we get a partial block backprojection
as (see section 4.2)

PBBj(x, t) =
1

2

2π
N

(j+1)
∫

2π
N

j

(
∑

k∈Z

FPβ(u′, v′, tβ + kT2π)ηn

(
t− tβ − kT2π

Tπ

))

dβ

≈
∑

k∈Z






1

2

2π
N

(j+1)
∫

2π
N

j

FPβ(u′, v′, t π
N

(2j+1) + kT2π)dβ






︸ ︷︷ ︸

PBBj(x,t π
N

(2j+1)+kT2π)

ηn

(
t− t π

N
(2j+1) − kT2π

Tπ

)

=
∑

k∈Z

PBBj(x, t π
N

(2j+1) + kT2π)ηn

(
t− t π

N
(2j+1) − kT2π

Tπ

)

. (4.94)
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The jth and the (j +N/2)th PBB are quasi-equivalent, so that we can write

PBBj+N/2(x, t) ≈
∑

k∈Z

PBBj(x, t π
N

(2j+1) + Tπ + kT2π)ηn

(
t− t π

N
(2j+1) + Tπ − kT2π

Tπ

)

.

(4.95)
If we combine (4.95) and (4.94), we get

PBBj(x, t) ≈
∑

k′∈Z

PBBj(x, t π
N

(2j+1) + k′Tπ)ηn

(
t− t π

N
(2j+1) − k′Tπ

Tπ

)

. (4.96)

The final reconstruction is obtained by accumulating the values of the PBBs at the desired recon-
struction times:

µr(x, t) = 2

N/2−1
∑

j=0

PBBj(x, t) (4.97)

The dynamic reconstruction algorithm is summarised in the following steps:

Algorithm 4.1 (TIA-TFDK) Steps for dynamic reconstruction with TIA-TFDK:

1st Reconstruction of N PBBs for Ttot/T2π rotations with T-FDK:

FPβ(u, v, tβ + kT2π) =

umax∫

−umax

P b
β(s, v, tβ + kT2π)wt(s, v)g(u− s)ds

PBBj(x, t π
N

(2j+1) + kT2π) =
1

2

2π
N

(j+1)
∫

2π
N

j

FPβ(u′, v′, tβ + kT2π)dβ (4.98)

2nd Combination of the samples of the jth and the (j +N/2)th PBBs.

3rd Interpolation of PBB values:

PBBj(x, t) =
∑

k∈Z

PBBj(x, t π
N

(2j+1) + kTπ)ηn

(
t− t π

N
(2j+1) − kTπ

Tπ

)

(4.99)

4th Accumulation:

µr(x, t) = 2

N/2−1
∑

j=0

PBBj(x, t) (4.100)

Due to the underlying continuous spline model, the TIA-FDK algorithm returns a continuous
function. In practice, however, we are only interested in reconstructing frames every Tfr during a
certain time Ttot (see 4.1.1).
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The parameters Ts and n determine the temporal resolution of the algorithm, whereas N con-
trols the level of inconsistency in the PBBs. As we saw in section 4.1.2, these concepts depend on
each other. In section 4.4.3.4 we discuss about the choice of the input parameters.

Using a sampling rate of 1/Tπ means that we make the further approximation that quasi equiv-
alent rays represent the same line integral (see section 3.3.3.4). Hence, one should expect that the
error increases fast out of the midplane.

4.4.3.2. TIA-CFDK ALGORITHM

For processes that do not require a sampling rate of 1/Tπ, the rotation time can be adjusted in
such a way that T2π < 1/(2νmax) and therefore a sampling rate of 1/T2π can be used. The
advantage of this is twofold. First, there is no need to rebin the cone-beam projection dataset to a
fan-parallel beam geometry so that the dynamic rebinning approximation is spared. Second, since
the time between samples is equal to the rotation time we do not need the quasi-equivalent rays
approximation. The result is a dynamic reconstruction algorithm based on the C-FDK algorithm
presented in section 3.3.3.2. In order to simplify notation, we introduce

wc(γ, ϕ) = Γ cos(γ) cos(ϕ) (4.101)

and write γ′(x, α) and ϕ′(x, α) simply as γ′ and ϕ′. The complete expressions are given in section
3.3.3.2.

The derivation of the algorithm is very similar to the one in the previous section but simpler
since no combination is needed. The resulting algorithm is summarised in the following steps:

Algorithm 4.2 (TIA-CFDK) Steps for dynamic reconstruction with TIA-CFDK:

1st Reconstruction of N PBBs for Ttot/T2π rotations with C-FDK:

FPα(γ, ϕ, tα + kT2π) =

γmax∫

−γmax

Pα(κ, ϕ, tα + kT2π)wc(κ, ϕ)h(γ − κ)dκ

PBBj(x, t π
N

(2j+1) + kT2π) =
1

2

2π
N

(j+1)
∫

2π
N

j

1

L2(x, α)
FPα(γ′, ϕ′, tα + kT2π)dα

(4.102)

2nd Interpolation of PBB values:

PBBj(x, t) =
∑

k∈Z

PBBj(x, t π
N

(2j+1) + kT2π)ηn

(
t− t π

N
(2j+1) − kT2π

T2π

)

(4.103)

3rd Accumulation:

µr(x, t) =
N−1∑

j=0

PBBj(x, t) (4.104)

The input parameters of the algorithm are given in table 4.2.
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4.4.3.3. DISCUSSION

The dynamic reconstruction algorithms presented in the previous sections have in common that
they are based on temporal interpolation of partial block backprojections, i.e. that they make
use of the temporal backprojection approximation. The main difference between them is that the
TIA-TFDK algorithm exploits better the acquisition scheme to use a shorter sampling interval. In
order to illustrate the consequence of this, consider a dynamic process with a maximum frequency
νmax; if we assume that n = 9 the frequency range that can be reproduced from samples taken
every Ts is 0.8/(2Ts) (see section 4.4.2). Hence, the rotation times for each of the algorithms will
be

TIA-CFDK : Ts = T2π ⇒ T2π = 0.8
2νmax

TIA-TFDK : Ts = Tπ ⇒ T2π = 0.8
νmax

.
(4.105)

A longer rotation time implies that less rotations are performed during the protocol time and
therefore less data are acquired, with the corresponding reduction of computational complexity.
Another interpretation of the shorter sampling interval is that if we take the minimum rotation
time of a scanner Tmin

2π , the TIA-TFDK algorithm is able to reproduce higher frequencies, that is

TIA-CFDK : Tmin
2π ⇒ νmax ≤ 0.8

2T min
2π

TIA-TFDK : Tmin
2π ⇒ νmax ≤ 0.8

T min
2π

.
(4.106)

On the other hand, TIA-TFDK makes use of the dynamic rebinning approximation and of the
quasi-equivalent rays approximation which are not necessary for the derivation of the TIA-CFDK
algorithm. Hence, while in the TIA-CFDK algorithm the error induced by the temporal backpro-
jection approximation can be reduced arbitrarily by increasing N , in the TIA-TFDK algorithm
this error cannot be made smaller than a certain threshold depending on the size of the object
(see section 4.3.5). Furthermore, as a consequence of the quasi-equivalent rays approximation the
error in the planes z 6= 0 will be larger for the TIA-TFDK algorithm.

Table 4.1 summarises the differences between the TIA-TFDK and the TIA-CFDK algorithms.

TIA-TFDK TIA-CFDK

Sampling interval Tπ T2π

Max. temporal resolution p
T min
2π

p
2T min

2π

Reconstruction mode short-scan full-scan
Approximations dyn. backpr. appr. dyn. backpr. appr.

dyn. rebinning appr.
quasi-eq. rays

Table 4.1. Summary of the differences between the TIA-TFDK and TIA-CFDK algorithms (continuous
scanning mode).

4.4.3.4. CHOICE OF THE PARAMETERS

In this section we provide a short guide for the choice of the parameters for dynamic acquisition-
reconstruction with the TIA-TFDK and TIA-CFDK algorithms. The input parameters for the
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Parameter Meaning

νmax maximum frequency
Tmin

2π minimum rotation time
Ttot total acquisition time
Tfr time between reconstructed frames
T2π rotation time
n order of the spline interpolation
N number of PBB intervals in a full-rotation

Table 4.2. Input parameters for the TIA-FDK algorithms. The last three are computed from the first four.

TIA-FDK algorithms are listed in table 4.2. Hence, we assume that the we have at our disposal
an estimation of the maximum frequency of the dynamic process νmax and that we know the
minimum rotation time of the scanner Tmin

2π , the total protocol time Ttot and the time interval
between output frames Tfr.

The first parameter to adjust is the spline interpolation order n. This determines the frequency
band that can be recovered from the samples which is decisive to adjust the rotation time T2π and
therefore N as well. According to this choice of n we will be able to reconstruct the frequency
band [0, p/(2Ts)] (see section 4.4.2).

Before we choose the parameters, we have to choose between both algorithms. The choice
of one algorithm or the other depends on the particular application. As a general rule we might
formulate the following procedure to choose between both:

• If νmax ≤ p
2T min

2π

– If the object is large or a very high precision is required⇒ TIA-CFDK.

– If the amount of input data is constraining⇒ TIA-TFDK.

• If p
2T min

2π

< νmax ≤ p
T min
2π

⇒ TIA-TFDK.

The rotation time is adjusted so that the modified sampling condition (4.86) is fulfilled. This
yields, as already shown in the previous section:

TIA-CFDK : Ts = T2π ⇒ T2π = p
2νmax

TIA-TFDK : Ts = Tπ ⇒ T2π = p
νmax

.
(4.107)

Finally, the number of partial block backprojections N has to be adjusted. For this purpose
we use the results of sections 4.3.4 and 4.3.5. For the TIA-CFDK algorithm, we only have to
consider the temporal backprojection approximation so that we can use the results summarised in
statement 4.3. According to these results, we can always find a value Nmin such that the term
responsible for the bias χ(T2πν,N) is smaller than a given ε for any value of T2πνmax ∈ [0, 1];
the threshold Nmin is of the form

Nmin = CT2πνmax. (4.108)

The analysis given in section 4.3.4 is not of quantitative nature, so that we cannot derive from
it a particular value of the constant C. Nevertheless, it is possible to derive a value of C using
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an heuristic argument based on efficiency considerations. For this purpose, we consider the worst
case where T2πνmax = 1. Figure 4.16 shows that χ(1, N) decreases non-linearly. It falls fast to
values around 0.01, after that, large increases of N produce only small reductions of χ(1, N). We
take therefore as a reference ε = 0.01. In order to illustrate the implications of this choice, let
us consider a temporal evolution c(t) which is essentially band-limited with maximum frequency
νmax. Among all signals of this kind, the worst case concerning temporal resolution corresponds
to a signal that concentrates all its frequency components in |νmax|, e.g. c(t) = sin(2πνmaxt).
According to (4.34), for such a signal the bias would be

b̂(ν) =
2π

N

g(0)

2
ĉ(ν)ε, (4.109)

and in time domain

b(t) =
2π

N

g(0)

2
c(t)ε. (4.110)

Hence, in our example, ε = 0.01 implies a maximum bias of 1%. According to the model
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Figure 4.16. Minimum number of angular intervals in a full-rotationN as a function of ε for νmax = 1/T2π

in [0, 1/T2π].

introduced in hypothesis 4.1, perfusion signals concentrate their energy in the low frequencies so
that for our application, ε = 0.01 implies a maximum bias much smaller than 1%. Taking as a
reference the value 0.01, we find χ(1, N) = 0.01⇒ N = 12.8 and

12.8 = CT2πνmax = C ⇒ C = 12.8. (4.111)

In this section we use this value as a reference in order to illustrate the differences between the
algorithms concerning the choice of the parameter values. We will revisit the discussion about the
choice of N in section 4.5.4.1 in the light of the results of the numerical simulations.

According to (4.107), for TIA-CFDK

Nmin = 12.8× 0.4 = 5.12. (4.112)
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The temporal resolution of the TIA-TFDK algorithm is additionally affected by the effect of the
temporal rebinning approximation. In section 4.3.5, we saw that the bias behaves for low values
of N as in the previous case but it does not converge to 0 with increasing values of N . We
derived a threshold over which the value of N has almost no more influence on the bias. This
threshold depends on the size of the object through the normalised distance to the origin ρ. It can
be calculated as

Nmax =

√

2

3

π

ρmax
, (4.113)

where ρmax is the normalised radius of a circle enclosing all points with time dependent density.
The final choice of N is the smallest value such that

N ≥ min {Nmin, Nmax} with N ∈ N and even. (4.114)

Since for TIA-TFDK the sampling interval is Tπ

Nmin = 12.8× 0.8 = 10.24. (4.115)

In section 4.4.3 we mentioned that an alternative way to adapt the sampling rate is to use
the discontinuous scanning mode. In this mode, the source rotates with the minimum rotation
time and is regularly switched off during periods of time of several full-rotations. The sampling
interval is thus Ts = mTmin

2π for both T-FDK and C-FDK-based approaches. The corresponding
formulation for TIA-CFDK is obtained from algorithm 4.2 by substituting T2π by Ts. In the
case of TIA-TFDK, we exploit the fact that for m ≥ 1 we can use full-scan reconstruction.
We therefore eliminate the 2nd step and perform interpolation on every PBB without combining
them. Note that this way we spare the quasi-equivalent rays approximation. The sampling interval
is chosen as

TIA-FDK : Ts =
p

2νmax
⇒ m = b p

2T2πνmax
c. (4.116)

Since now the minimum rotation time of the scanner is used, the number of angular intervals for
TIA-CFDK is calculated as

Nmin = 12.8Tmin
2π νmax. (4.117)

For TIA-TFDK, we use again (4.114) with the new value for Nmin with the difference that N
does not need to be even. This approach has the advantage that it requires less angular intervals.
On the other hand, it has the main disadvantage that the sampling interval can only be adapted in
steps of T2π.

We finalise this section with some examples of parameter sets for a scanner with minimum
rotation time Tmin

2π = 0.5 s and a total acquisition time is Ttot = 40 s. With such a scanner we
want to reconstruct a sequence of image frames of a dynamic process with a maximum frequency
νmax. We assume for the computation of the parameter values that the object is small enough
for Nmax to be larger than Nmin, so that N = Nmin is used for the number of angular intervals.
Table 4.3 shows the parameter values for a fast process with νmax = 1.6 Hz while table 4.4
shows the parameters for a slow process with νmax = 0.16 Hz. The parameter values were
calculated using n = 9 for the spline interpolation. The fast process can only be reproduced
using the TIA-TFDK with the minimum sampling interval Ts = Tmin

2π /2. This can only be
achieved in continuous acquisition mode. For the slow process the parameters for TIA-CFDK
and TIA-TFDK are slightly different. In continuous scanning mode, we see that less rotations
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Continuous scanning Discontinuous scanning
TIA-CFDK TIA-TFDK TIA-CFDK TIA-TFDK

n − 9 − −
T2π (s) − 0.5 − −
Ts (s) − 0.25 − −
N − 12 − −
Num. rotations − 80 − −

Table 4.3. Example of reconstruction parameters for νmax = 1.6 Hz.

Continuous scanning Discontinuous scanning
TIA-CFDK TIA-TFDK TIA-CFDK TIA-TFDK

n − 9 − 9
T2π (s) 2.5 5 0.5 0.5
Ts (s) 2.5 2.5 2.5 2.5
N 6 12 1 1
Num. rotations 16 8 16 16

Table 4.4. Example of reconstruction parameters for νmax = 0.16 Hz.

are needed with TIA-TFDK which reduces the computational time. An interesting aspect is also
that the rotation time is increased up to 5 seconds which means that using this algorithm the
process can be reproduced using a slow rotating system. In discontinuous scanning mode, the
parameters are the same for TIA-CFDK and TIA-TFDK. Indeed, as we discussed previously in
this section, for m ≥ 1 TIA-TFDK is used in full-scan mode so that the algorithm becomes very
similar to TIA-CFDK except for the use of T-FDK to reconstruct the PBBs. The effect of the
dynamic rebinning approximation is only significant when we need large values of N . Since we
use the minimum rotation time Tmin

2π , the values of N are small so that the bound is not reached
and therefore the effect of the dynamic rebinning approximation can be neglected. The decision
to use TIA-CFDK or TIA-TFDK depends only on the preference for the corresponding static
reconstruction algorithms C-FDK or T-FDK. A remarkable aspect is that the number of intervals
N is equal to 1. Only one interval means a full-rotation, so that the algorithms reconstruct image
frames using static reconstruction with C-FDK or T-FDK and then compute the rest of the output
frames by spline interpolation.

In appendix D we show that in order to calculate the computational complexity we can ignore
the interpolation step compared to the computational cost of FDK-like reconstruction. In order to
compare the computational efficiency we can use the number of acquired rotations and interpret
it as ”number of equivalent FDK-like reconstructions”. Since the number of rotations depends
on νmax, the computational complexity depends on νmax as well. Furthermore, since the cost of
interpolation can be neglected, the number of output frames can be increased without increasing
the computational complexity. In other words, the computational complexity only depends on
νmax and is independent of the number of output frames.
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4.5. NUMERICAL SIMULATIONS

The aim of this section is to provide numerical simulations both to verify the theoretical results
presented and to assess the performance of the TIA-FDK algorithms. All simulations were per-
formed using the software package DRASIM (see chapter 6). For the simulations with noise, a
random signal was added to the projections according to the Poisson law. All dynamic reconstruc-
tions were computed with the C++ library CT Project described in chapter 6. The phantoms used
for the simulations are described in appendix C.

4.5.1. SIMULATION AND RECONSTRUCTION PARAMETERS

The simulations were performed in cone-beam geometry for a scanner with a cylindrical detector
as described in figure 3.11. The dimensions of the scanner are determined by the source-origin
distance Γ and the source-detector distance ΓD. These are

Γ = 57 cm (4.118)

ΓD = 104 cm. (4.119)

ΓD is at the same time the radius of the cylindrical detector. On the midplane, the area recon-
structed is situated within a circle of radius ‖xmax‖ = 12.8 cm. The image matrix had 256× 256
pixels of 1× 1 mm2. The detector has a height of 23.36 cm. With these dimensions, the scanner
has the following maximum fan and cone-beam angles:

γmax = arcsin
(

12.8
57

)
= 0.2265 rd

ϕmax = arctan
(

23.36/2
57

)

= 0.2021 rd
(4.120)

If not otherwise indicated the following parameters were used

• Number of views: Nα = 800.

• Number of channels of the detector: Nγ = 256.

• Number of detector rows: Nsl = 128.

The derivation of these values is given in section 3.3.3.3.
In each case 18 full-rotations were simulated; hence, Ttot = 18T2π. The time interval between

frames of the reconstructed sequence is Tfr = T2π/4. The frequency of the signals in the simula-
tions is given relative to the rotation time T2π. In terms of the discussion in section 4.4.3.4, this is
equivalent to adapting the rotation time to the continuous scanning mode.

The input noise levels are given in terms of the standard deviation that they produce in a static
short-scan reconstruction.

4.5.2. DYNAMIC RECONSTRUCTION ALGORITHMS

Our aim was to simulate the most constraining case, i.e. when the maximum frequency of the
dynamic process is close to 1/T2π. In such a case, the TIA-TFDK algorithm must be used (see
section 4.4.3.4). This is, in addition, the most interesting case since in the derivation of the
TIA-TFDK algorithm more approximations are used than in the derivation of TIA-CFDK. We
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compare the results obtained with the TIA-TFDK algorithm with two other algorithms presented
in section 4.2: the generalised Parker weighting for dynamic reconstruction approach by Taguchi
and the kπ-mode linear regression approach by Grangeat. If not otherwise indicated, the following
parameters are used for the reconstruction algorithms.

TIA-TFDK We choose a high interpolation order for the splines interpolation n = 9 in order to
achieve a high temporal resolution. In section 4.4.2 we saw that with n = 9 we can recover
≈ 0.8/(2Ts). Since the frequencies of the phantoms are close to 1/T2π, we choose the
parameters of the algorithm for the maximum frequency 0.8/T2π. For the TIA-TFDK in
continuous scanning mode, N must be even. In our implementation of the algorithm Nα

must be a multiple of N .

Generalised Parker Weighting According to [Taguchi, 2003], a short-scan reconstruction (HS-
FDK) provides better temporal resolution whereas a full-scan reconstruction (NHS-FDK)
exhibits less noise and stronger artifact reduction. Our aim is to compare it with the TIA-
TFDK approach which uses short-scan reconstruction and has a high temporal resolution.
For this reason we use HS-FDK.

kπ-mode Linear Regression The first two steps are identical as in the proposed time interpo-
lation approach. Hence, we choose the same values for N as for the reconstruction with
TIA-TFDK. The strength of this algorithm lies in its de-noising effect, however, this is with
detriment to temporal resolution. The higher k is, the stronger de-noising effect has the lin-
ear regression. Note that the TIA-TFDK approach with n = 1 is equivalent to the 2π-mode
linear regression. In order to have a de-noising effect at least 4π must be chosen. How-
ever, choosing a higher mode would limit too much the temporal resolution. Therefore, we
choose 4π for our simulations.

4.5.3. ERROR MEASUREMENTS

Regions of interest (ROI) were defined within the inserts (4 × 4 pixels) and around them (a rect-
angular ring of width 4 pixels), avoiding the discretisation error on the edges due to finite spatial
resolution. This way we concentrate on the error due to dynamic reconstruction.

For each reconstructed frame j, mean square error (MSEj), bias (εj) and standard deviation σj

were measured with respect to the phantom within the regions of interest. These errors are related
by

MSEj = ε2j + σ2
j . (4.121)

εj indicates how well the mean is estimated and can be interpreted as an indicator for the time
resolution of the algorithm. σj indicates how large the variations around the mean are and can be
interpreted as an indicator for the noise level. Finally the total error

√
MSEj takes both effects

into account.
In order to present the error measurements in a more compact way these values were averaged

over all frames to obtain an average total error (
√
MSE), an average of the absolute value of the

bias (ε̄) and an average standard deviation (σ̄).
For the simulations without noise, the error is given in terms of the average total error (

√
MSE).

For the simulations with noise, average absolute value of the bias ε̄ and average standard deviation
σ̄ are given separately. All errors are measured in Hounsfield Units (HU).
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4.5.4. RESULTS

The first part of the simulations is devoted to verify the theoretical results provided in sections
4.3.4 and 4.3.5. Following, we compare the performance of the TIA-TFDK algorithm with the
generalised Parker weighting approach and the kπ-mode linear regression approach. We finalise
the section studying the behaviour of the algorithm in the presence of noise.

Before we start with the presentation of the results, we should pay attention to the fact that the
errors due to the temporal backprojection and rebinning approximations are not the only possible
sources of error in the dynamic reconstruction. The interpolation error should be taken into ac-
count as well as the error due to FDK-like reconstruction. Finally, noise is, in practice, a crucial
factor but in our simulations it is only relevant for the last section. We summarise the possible
sources of error in the following list:

a) Dynamic backprojection approximation.

b) Dynamic rebinning approximation.

c) Spline interpolation.

d) Discretisation of the reconstruction algorithm.

e) Noise.

4.5.4.1. THEORETICAL ASPECTS

In section 4.3.4 we showed that a time dependent density point located at x0 causes an error
in the reconstruction that is maximum at x = x0. The error caused by the density point at
x 6= x0 is a data inconsistencies error in the sense explained in section 4.1.2. In order to study
this error we used phantom D. It consists of a single insert with a time dependent attenuation
value which follows a sinusoidal law of frequency 0.8/T2π (see appendix C). This frequency
is the maximum frequency that can be reconstructed with the TIA-TFDK algorithm (see section
4.4.3.3) and represents therefore the worst case. Figure 4.17 a) shows the error vs. distance to the
origin for a reconstruction with TIA-TFDK. In grey we represent as a reference the discretisation
error of a static short-scan reconstruction of the same phantom with the T-FDK algorithm. The
black curve is the error of the TIA-TFDK reconstruction measured along rings with increasing
radius. It can be clearly seen that the error has its maximum at distance 0, i.e. within the insert
itself, and decreases fast outside. This is in accordance with the estimation provided in (4.44)
and confirms that if we decide that the error at 0 can be neglected, then it is clear that it can be
neglected also elsewhere. Even if this error is small, it is distributed all over the image. This can
be observed in figure b), where an image frame of the reconstruction is shown with an extremely
narrow window of 2 HU. The darker and brighter areas in the pattern indicate that the error takes
both positive and negative values. The star form of the artifact is due to the fact that every PBB
is sampled and interpolated independently so that every PBB carries a small but different error
than the rest. Since every PBB contributes spatial resolution in a preferential direction, when they
are accumulated a star-shaped pattern with as many rays as PBBs are used in the reconstruction
appears. Note, however, that the pattern in figure 4.17 b) has been made visible by using a window
of 2 HU. In practice, the error is much smaller than the error due to data inconsistencies caused
by the other dynamic reconstruction algorithms as will be shown later.
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Figure 4.17. Error due to data inconsistencies in dynamic reconstruction with the TIA-TFDK algorithm
with phantom D, the grey line shows the error due to discretisation of the reconstruction algorithm. Right:
error vs distance. Left: error artifacts, window [49, 51] HU.

Next we analyse the effect of the dynamic rebinning approximation. For this purpose we use
phantom B which consists of a series of inserts with the same frequency, situated at different
distances from the origin. In order to better illustrate the effect, the frequency of the inserts is
again the highest frequency that can be reproduced by the TIA-TFDK algorithm with n = 9, i.e.
ν = 0.8/T2π. Figure 4.18 shows the error vs. distance to the origin normalised to the source-
origin distance Γ. As expected, the error increases with the distance to the origin. The behaviour
of this error can be explained using (4.70). According to it, the bias increases approximately with
the square of the normalised distance ρ = ‖x‖/Γ. The blue curve represents a fit of a function of
the form a+ bρ2. The fit explains the error quite well, although in order to verify the dependence
with ρ2 more accurately the distance range should be much larger.

Finally, we analyse the dependence of the error with ρ and with N . For this purpose we
performed reconstructions of phantom B with the TIA-TFDK algorithm with values of N =
2, 4, 8, 16 and 32. The results are shown in figure 4.18 b). Note the similarity of this figure with
the left part of figure 4.13. For small values of N , the predominant effect is the temporal averag-
ing due to the dynamic backprojection approximation. For large values of N , the error converges
to a certain value which increases with ρ. Note that this value is reached in all cases for values of
N between 8 and 16. According to the theoretical analysis of section 4.3.5, the value of N over
which the error due to the dynamic backprojection approximation is smaller than the error due to
the dynamic rebinning approximation is

Nmax ≈
√

2

3

π

ρ
. (4.122)

For the outer insert of phantom B ρ = 0.1535 so that Nmax = 16.71. In figure 4.18 b), however,
the error curve for ρ = 0.1535 clearly reaches its minimum already for N = 8. Moreover, the
error curve for ρ = 0 does not converge to 0 as expected. The reason for this is that in the analysis
of section 4.3.5 we only considered the error due to the dynamic backprojection and rebinning
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Figure 4.18. Error due to the dynamic rebinning and backprojection approximations. Left: error vs nor-
malised distance on phantom B. Right: error vs. N for different values of ρ ∈ [0, 0.1535] (see appendix
C). The grey line shows the error due to discretisation of the reconstruction algorithm.

approximations. As we stated above, there are other possible sources of error which include
the spline interpolation and the error due to discretisation of the reconstruction algorithm. These
errors are not reduced by increasing N so that they should be taken into account in the derivation
of a practical value for the threshold Nmax. We propose in the following a heuristic approach to
modify (4.122) empirically. It consists in considering in (4.64) that there is a background error
due to interpolation and discretisation and that it is independent of the errors due to the dynamic
backprojection and rebinning approximations. Indeed, as can be observed in figure 4.18 b), the
error due to discretisation is very small and in practical applications is even lower since a higher
spatial resolution is used. Hence, we can assume that the error is only due to interpolation. This
interpolation error is constant for a given frequency ε(ν). Thus, we can assume that we have a
constant error due to interpolation and add a constant ε(ν) to the right side of (4.64). Solving in a
similar way as in section 4.3.5 we get

Nmax ≈
π√
6

1
√

ε(ν)
(νmaxT2π)2

+ 1
4ρ

2
. (4.123)

For ε(ν) = 0, (4.123) becomes (4.122). We now use the curves in figure 4.18 b) to estimate ε(ν)
for spline interpolation with n = 9. For ρ = 0, Nmax is close to 10 while for ρ = 0.1535, Nmax

is close to 8. Hence, we get ε(0.8) ≈ 0.013. We can thus provide a guideline to choose N so that
the error is the smallest possible given a maximum frequency νmax = 0.8/T2π and a maximum
normalised radius ρ

N = Nmax ≈
π√
6

1
√

0.02 + 1
4ρ

2
. (4.124)

Note that this expression is valid for TIA-TFDK in continuous scanning mode, since in this case
with n = 9, the sampling rate is adjusted in such a way that νmaxT2π = 0.8. For discontinuous
mode or TIA-CFDK, the corresponding value of ε(ν) for the different frequencies is needed. This
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Figure 4.19. Error vs frequency with phantoms A and C for the three algorithms: TIA-TFDK (black),
4π-mode linear regression (blue) and HS-FDK (grey).

might be obtained by repeating the same procedure as above for every frequency, i.e. perform-
ing simulations with phantom B and finding a value of ε(ν) that explains the curves. For the rest
of the simulations we used phantoms A and C for which ρ ≈ 0.1. Using (4.124) we getN = 8.55,
so that we took the next possible value > 8 according to our implementation: N = 16.

4.5.4.2. COMPARISON OF DYNAMIC RECONSTRUCTION ALGORITHMS

In order to compare the performance of the three algorithms, we used phantoms A and C. Phantom
A is designed on the same principle as phantom C but it contains 16 frequencies in the interval
[0, 1/T2π]. Figure 4.19 a) shows the error vs. frequency within the inserts for the three algorithms
for phantom A. Figure 4.20 shows the mean value within two inserts for sequences reconstructed
with the three algorithms. The error curve for the TIA-TFDK approach follows qualitatively the
frequency response of the polynomial spline interpolation of order n = 9 (see figure 4.15); it
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Figure 4.20. Mean value of the reconstruction within two inserts (grey) compared to the phantom (black).
a) 4π-mode linear regression, b) HS-FDK and c) TIA-TFDK.

grows slowly until approximately 0.8/T2π, from this point on, the slope of the error curve
changes and the error increases much faster.

The error for HS-FDK reconstruction grows faster than for TIA-TFDK but with an almost
constant slope. For this reason it is smaller than the error for TIA-TFDK close to the Nyquist fre-
quency. The reconstruction with the 4π-mode linear regression algorithm exhibits a dramatically
huge error because within the interval of four half-rotations the exact time curves significantly de-
viate from the linear assumption. The error increases for the low frequencies and for frequencies
above 1/(2T2π) becomes random.

We saw in the previous section that a time dependent density point causes a data inconsistencies
error on the whole image. This error is small compared to the error at the position of the density
point itself. In phantoms A and C we have several inserts with time dependent density so that it is
interesting to study how this error behaves in such a case. For this purpose, the error around the
inserts is a good indicator; it is shown in figure 4.19 c). The black curve is almost constant for all
frequencies which indicates that the error is the result of the data inconsistencies error caused by
all inserts, so that it can be seen as a background error. The reason why the curve is not totally
constant is that the closest insert has more influence than the rest. This background error is larger
than in the static reconstruction but it is lower than the error within the inserts. This indicates that
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(a) HS-FDK (b) TIA-TFDK

Figure 4.21. Frames of the reconstruction of phantom C with HS-FDK and TIA-TFDK. Window: [30, 70]
HU.

the error due to data inconsistencies caused by the different inserts is not accumulative.
For the other two algorithms the error grows with the frequency. The 4π-mode linear regression

approach exhibits a much better behaviour around the inserts than within them, causing even less
error than the HS-FDK approach. This can be explained by the fact that the value there is constant
and the linear regression estimation constrains the variability of the estimated values.

The non-monotone behaviour of the error curves for the lower frequencies in phantom A can
be explained by the proximity between the insert with the highest frequency and the insert with
the lowest frequency (see figure C.3). The former causes a considerable error since its frequency
is out of the frequency range [0, 0.8/T2π], the later exhibits a very small error since its frequency
is very low. The error induced by the insert with the highest frequency is therefore comparable to
the error within the insert with the lowest frequency.

Algorithm Rec. time

4π-mode LR 420 s
HS-FDK 977 s
TIA-TFDK 466 s

Table 4.5. Reconstruction times for the three algorithms.

We observe that for low frequencies the error for HS-FDK might be considered acceptable so
one could argue that there is no need to use TIA-TFDK. There are, however, other significant
aspects than the mean square error to take into account. Figure 4.21 shows two frames of the
reconstructions with HS-FDK and with TIA-TFDK. The HS-FDK frame exhibits strong artifacts
around the time dependent inserts which are due to the use of highly inconsistent datasets in
the reconstruction. With the same window value, these artifacts are not visible in the TIA-TFDK
frame. Furthermore, for the reconstruction of the output sequence with HS-FDK, 18×4 short-scan
reconstructions are performed so that the computational complexity is 36 equivalent FDK-like
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Figure 4.22. Bias and standard deviation within insert 5 (ν = 0.8/T2π) of phantom C for different noise
levels.

reconstructions (see appendix D). For the TIA-TFDK, however, the complexity is 18 equivalent
FDK-like reconstructions, i.e. 2 times lower. This is confirmed by the computation times given
in table 4.5. The computations were performed in a PC with a Pentium IV processor at 2.8 GHz.
Furthermore, for lower values of νmax the rotation time would be correspondingly adapted which
would reduce the number necessary rotations for TIA-TFDK. Finally, we saw in section 4.4.3.4
that the computational complexity of TIA-TFDK depends on νmax but not on the number of output
frames whereas with HS-FDK every computed frame increases the computational complexity.

4.5.4.3. BEHAVIOUR IN THE PRESENCE OF NOISE

An aspect of major importance that was ignored throughout this chapter is quantum noise. In
order to study its effect in the reconstruction algorithms, we added noise of different levels to the
simulated projections of phantom C and measured the error in the reconstructed sequences.

The error was measured within insert 5 (ν = 0.8/T2π) and was decomposed into bias and
variance. The input noise levels are in the range 0 to ≈ 15 HU. Figures 4.22 a) and b) show
the bias and the standard deviation respectively. As can be observed, for the three algorithms the
bias is almost not affected by the input noise level. Only the standard deviation increases in the
reconstruction. While the reconstructions with the TIA-TFDK and HS-FDK algorithms do not
change the noise level, the 4π-mode linear regression approach reduces it by a factor of 2. Indeed,
this is where the strength of the linear regression approach lies: it has a strong de-noising effect
reducing the standard deviation of the noise by a factor of k/2 at the cost of temporal resolution.

4.6. CONCLUSION

The main difficulty of dynamic reconstruction comes from the fact that every projection is ac-
quired at a different time. This is an inherent problem of the rotational acquisition scheme in
Computed Tomography, so that it may be alleviated by increasing the rotational speed of the
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source-detector arrangement, but not eliminated. For a given rotation time T2π, the importance of
this effect strongly depends on the rate of change of the dynamic process that takes place in the
object. In the first part of this chapter we presented a theoretical analysis of the acquisition and
reconstruction for objects with a time dependent density. We saw that the reconstruction of par-
tial block backprojections from projections acquired during several rotations can be interpreted
as a temporal sampling. The continuous PBB is sampled with functions with a finite support.
The sampling interval corresponds to the rotation time T2π. In the case of parallel or fan-beam
geometry, the support of the filters can be made arbitrarily small by increasing the number of
backprojections in a full-rotation N . In the case of rebinned projections an additional error in
form of a time delay appears which cannot be reduced by increasing N and predominates when
N is increased over a certain threshold.

The second part of the chapter was devoted to the design of an approach for dynamic reconstruc-
tion which works with a minimum of input data. Based on the non-ideal sampling interpretation,
we proposed two dynamic reconstruction algorithms based on FDK-like reconstruction and spline
interpolation. By appropriately choosing N , the bias of the samples is small and then the values
of the partial backprojections are estimated at any time with a continuous spline model. Apply-
ing this principle to cone-beam projections yields the TIA-CFDK algorithm, which is based on
the C-FDK static reconstruction algorithm. If rebinned projections are used, we obtain the TIA-
TFDK algorithm, based on the T-FDK static reconstruction algorithm. The later allows to reduce
the sampling interval to Tπ at the cost of poorer image quality at planes z 6= 0. By adapting the
rotation time, the acquisition is adapted to the maximum frequency of the object. This allows to
minimise the necessary input data for the reconstruction of a given dynamic process. On the other
hand, the algorithms are designed to achieve a high temporal resolution for a given rotation time.
This opens new possibilities for the use of slow rotating scanners for dynamic imaging purposes.

In the last part of the chapter we provided numerical simulations both to validate the theoretical
results presented in the first part and to assess the performance of the proposed algorithms. For
this purpose the TIA-TFDK was chosen since it is the most constraining from both. The results
with the TIA-TFDK algorithm correspond to what was predicted in the theory except that in the
analysis of section 4.3 the error due to interpolation was not considered. Even for high frequen-
cies, the error due to the time delay is not significant. The algorithm can reproduce accurately
dynamic processes with νmax ≤ 0.8/T2π and was shown to behave well in the presence of noise.
This last aspect is decisive to tackle the problem of dynamic reconstruction in the presence of
noise in the next chapter.
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CHAPTER 5.

DYNAMIC RECONSTRUCTION WITH OPTIMAL

SIGNAL TO NOISE RATIO

This chapter deals with dynamic reconstruction in the presence of quantum noise. For this
purpose, we first introduce a simple approximative model for the temporal behaviour of noise
in dynamic CT. The model is kept as general as possible so that it can be applied to pro-
jections, partial block backprojections or images. According to this model, the noise is a
stationary random process of zero mean and the values of two samples of this process are
uncorrelated. Based on this, we introduce the concept of optimal-SNR estimation as the esti-
mation from noisy samples of a continuous signal with a bandwidth limited to the frequency
range of the dynamic process [−νmax, νmax]. We show that an optimal SNR reconstruc-
tion in dynamic CT can performed with any sampling rate, as long the sampling condition is
fulfilled, by adapting the dose according to the number of scans performed during the proto-
col time. We then use these results to extend the TIA-FDK approach presented in the previous
chapter to the TSA-FDK approach. The TSA-FDK approach uses spline smoothing instead
of interpolation so that the (temporal) frequency band of the output sequence can be adapted
to νmax independently of the number of scans performed. We finalise the chapter with a
numerical example and an example with clinical data.

5.1. INTRODUCTION. NOISE REDUCTION

In chapter 4 we proposed two dynamic reconstruction schemes that can be adapted to the max-
imum rate of change of a dynamic process. The algorithms exhibit a high temporal resolution
which, in the case of TIA-TFDK, is close to the upper bound given by the dynamic acquisition
scheme (see section 4.3.1). This enables the use of slow scanners for dynamic CT imaging. For
slow processes the number of scans can be reduced while keeping the necessary temporal res-
olution, with the corresponding reduction of computational cost. These results, however, were
obtained by ignoring the quantum noise in the X-ray detection process. In chapter 3, we saw that
the statistical nature of the detection process causes an error in the image in the form of noise. The
variance of this noise is inversely proportional to the dose applied. In section 3.1.4 we introduced
the mAs product as a measure for dose. According to this measure, the dose is proportional to
the exposure time. Hence, the total dose applied during a dynamic acquisition protocol can be
calculated as

Dtot = Nsc ×D2π, (5.1)

whereNsc is the number of scans, i.e. the number of full-rotations with the X-ray source switched
on, and D2π is the dose applied per scan.

95
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Figure 5.1. Examples of time-attenuation curves (TACs).

In the standard perfusion CT protocol described in section 2.3.2 the source rotates continu-
ously during 40 seconds with a rotation time T2π = 0.5 s and it is switched off every second
rotation. Therefore, in terms of the mAs product, the total dose is 40 times the dose of a single
scan. According to (5.1) there are two possibilities to reduce the total dose. The first is to reduce
the number of scans Nsc typically by increasing the time between sequence frames. The second,
consists in reducing the dose of every scan by turning the tube current down. As stated in sec-
tion 2.3.2 the aim of dynamic CT is to compute a sequence of images that contains the temporal
evolution of the concentration of contrast agent. For this purpose, both reducing the number of
scans and reducing the dose have negative effects. Increasing the time between frames entails
a reduction of the temporal resolution; this may lead to misestimations of functional parameters
[Wintermark et al., 2004]. On the other hand, a reduction of the tube current yields an increase of
the noise variance in the image. The increase of the attenuation value due to contrast agent flow in
large vessels can reach several hundreds of HU so that compared to it noise is negligible. In small
vessels and tissue, however, the enhancement due to contrast agent is very low. As an example,
typical enhancement in grey matter is about 10 − 15 HU and in white matter about 4 − 6 HU in
presence of noise with a standard deviation of 3−4 HU [Klotz and König, 1999]. Figure 5.1 illus-
trates this fact; it shows two time-attenuation curves from a perfusion CT dataset acquired with a
standard perfusion CT protocol and reconstructed using static reconstruction frame by frame (see
section 4.2). The enhancement curve on the left corresponds to the sinus sagittalis. This vein col-
lects the contrast after flowing through the brain; hence, the contrast agent concentration is very
high and the time-attenuation curve is much higher than noise. The curve on the right corresponds
to grey matter, an enhancement level of about 10 HU can be inferred from it. The noise level is
about 3.5 HU. The high level of noise makes it difficult to recognise the time-attenuation curve,
not to mention to derive any quantitative measurements from it. A further reduction of the tube
current would increase the noise level, yielding a degradation in the accuracy of the computed
physiological parameters [Murase et al., 2005].

This chapter is devoted to the problem of dynamic reconstruction, with the focus on noise
reduction. The goal is to provide a dynamic reconstruction algorithm that takes into account both
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the dynamic properties of the object and the random nature of the X-ray detection process.

5.1.1. CHARACTERISATION OF TACS

The computation of physiological parameters from time-attenuation curves is based on compart-
mental model analysis (see section 2.3.1). In section 4.3.2 we proposed a simple model for time-
attenuation curves which adapts well to the assumptions made to derive the compartmental anal-
ysis methods. The model is also the natural model which comes out when regarding the dynamic
acquisition process as a temporal sampling (see section 4.3.1). The idea is to consider the tempo-
ral evolution of the concentration of contrast agent c(t) as an essentially band-limited signal, i.e.
a signal whose Fourier transform is negligible for frequencies over a given frequency threshold,
νmax. This can be expressed as

ĉ(ν) ≈ 0 for |ν| > νmax. (5.2)

Since the temporal evolution is different for every tissue, νmax is taken to be the maximum among
the maximum frequencies of all tissues.

Wintermark et al. found in [Wintermark et al., 2004] that reducing the time between frames in a
perfusion CT protocol under 1 second did not contribute to improve the accuracy of the computed
physiological parameters. In their study, the curves obtained with Ts = 0.5 s did not provide more
information than the ones obtained with 1 s. Hence, we can conclude that perfusion signals are
fully characterised by samples taken every second and therefore that their maximum frequency
lies under νmax < 0.5 Hz.

The practical interest of the proposed model depends strongly on the fact that we have a good
estimation of νmax. In order to get an idea of the order of magnitude of νmax we analyse in this
section some examples of TACs extracted from clinical data. For this purpose we used 10 cerebral
perfusion CT datasets with 40 images acquired a rate of one image per second. The data were
obtained by courtesy of Dr. Peter Schramm (Department of Neuroradiology of the University of
Heidelberg Medical School). From each dataset a TAC was extracted containing the temporal
evolution of the pixel values of a small region of interest within the arteria cerebri anterior. This
is an input artery which is approximately orthogonal to the slice plane; it is shown in figure 5.2 a)
in a frame of one of the datasets. The normalised time-attenuation curves are shown in figure 5.2
b). As stated above, these signals are oversampled; hence, the discrete Fourier transform (DFT)
of the sequences can be used to approximate the Fourier transform of the signals in the frequency
interval [−0.5, 0.5] Hz [Oppenheim and Schafer, 1998]. We can estimate the energy of a signal
c(t) in a given frequency interval [−νc, νc] by accumulating the square of the absolute value of
the DFT coefficients corresponding to frequencies in this interval

E(νc) =
1

MTs

J∑

j=−J

|Ĉ
(
ei2πνj

)
|2 with νJ ≤ νc, (5.3)

where Ĉ
(
ei2πνj

)
are the coefficients of the DFT, νj = j/(MTs) and M is the number of points

of the DFT. If νc = 1/(2Ts) = 0.5 Hz, then we get a good approximation of the total energy of
the signal ET . Figure 5.2 c) shows the DFT of the sequences normalised by their total energy,
ET . For every frequency νc, we can calculate the percentage of the total energy of the signal that
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(c) Discrete Fourier transform of the TACs
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Figure 5.2. Estimation of νmax from the TAC of the arteria cerebri anterior for 10 clinical datasets. The
black curve represents the fastest perfusion signal. The red arrow in a) indicates the arteria cerebri anterior.

is contained in the frequency interval [−νc, νc] as

rE(νc) = 100
E(νc)

ET
. (5.4)

Figure 5.2 d) shows rE(νc) for all curves. As can be observed, 99% of the energy is contained, for
all signals, in the frequency range [−0.15, 0.15] Hz. The black curve in figures 5.2 b), c) and d)
represents the worst case among the studied TACs and is representative for a very fast perfusion
signal. Indeed, in c) can be observed that over ≈ 0.15 Hz, the spectrum reaches a ground level
and remains approximately constant. Hence, we can conclude that the rest 1% of the energy is
due to noise. We take this worst case as a reference and estimate therefore νmax = 0.15 Hz. We
will use this value as a reference throughout this thesis except in the case where a more precise
estimation is available. Note, however, that this is a rather conservative value. Indeed, figure 5.2
d) shows that for most of the signals over 99% of the energy is concentrated in [−0.12, 0.12] Hz.
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5.2. NOISE REDUCTION STRATEGIES

In the previous section we gave an estimation of the order of magnitude of νmax for perfusion
signals. Using this value with the TIA-TFDK algorithm, the rotation time T2π could be adjusted
as (see section 4.4.3.4)

T2π =
0.8

νmax
≈ 5.33 s, (5.5)

where we assumed an interpolation order of n = 9. With respect to the protocol used for the
acquisition of the data in the previous section, this would imply a reduction of the amount of
the acquired data by a factor of 5.33. But in the previous section we saw that the limiting factor
for the computation of functional parameters is noise. A possible strategy to increase the image
quality in the reconstructed sequence would be to use the TIA-TFDK approach and increase the
tube current in such a way that the total dose is the same as in the standard protocol. That is, in
(5.1), the number of scans is reduced by a factor of 5.33; increasing the tube current by this factor
yields a reduction of the variance of the projection noise by the same factor (see section 3.2.4.2).
Since the TIA-TFDK uses short-scan reconstruction, the variance of the image noise would be
then reduced by a factor 2.66.

If we observe (5.1) we can easily derive a second noise reduction strategy. The total dose is not
modified if we increase the number of scans by a certain factor and reduce the tube current by the
same factor. The obtained measurements will be very noisy but they will be strongly oversampled
as well. By performing a smoothing along the time axis, noise can be reduced.

In this section we try to give an answer to the question of which of these two strategies is more
efficient in terms of noise reduction. The analysis is based on a model for the temporal behaviour
of noise in dynamic CT which is described in the following section.

5.2.1. MODEL FOR THE TEMPORAL BEHAVIOUR OF NOISE

We provide in this section a heuristical argumentation based on empirical observations to derive a
mathematical model that describes the temporal behaviour of noise in dynamic CT. We formulate
the model at the end of the section.

The TIA-FDK algorithms estimate the value of the PBBs at times between samples by using
polynomial spline interpolation (see section 4.4.3). In the extreme cases of an infinite number
of angular intervals N and N = 1, the PBBs correspond to a unique filtered projection and a
full-scan reconstruction respectively. Hence, the presented noise model should be as general as
possible in order to be used in all these contexts. For this reason we consider an additive noise
model where the measured signal f(t) is composed of the searched unknown signal x(t) and an
additive noise term ε(t):

f(t) = x(t) + ε(t). (5.6)

The measured signal f(t) corresponds to a pixel (or voxel) value of a filtered projection, a PBB
or a reconstructed image. The noise ε(t) is assumed to be a continuous random process with zero
mean and mean square value ε2. Finally, x(t) is the value which would be obtained in the ideal
case without noise.

Let us concentrate on the temporal evolution of a single projection value which we denote by
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P . In section 3.2.4.2, we saw that P is a random variable characterised by

P̄ = − ln

(
q̄

q0

)

σ2 =
1

q̄
, (5.7)

where q̄ is the average number of quanta collected by the pixel and q0 is the average number
of quanta detected when there is no object between source and detector. The flow of contrast
agent increases the attenuation so that the value of q̄ and therefore both the mean and the variance
depend on time, i.e. P̄ = P̄ (t) and σ2 = σ2(t). In terms of the model described by (5.6), the time
dependent mean is represented by x(t) = P̄ (t) and ε(t) is the projection noise with zero mean
and time dependent variance.

The mean of the projection value can be decomposed into a static value that represents the
initial attenuation (without contrast agent) and a time dependent additive term which represents
the contribution of contrast agent to the total attenuation. The contribution of contrast agent to
the total attenuation is very small compared to the initial attenuation. This is illustrated with
an example in figures 5.3 a) and b). Figure a) shows the central part of the first frame of the
sequence (left) and of a frame after 20 s with high enhancement due to contrast agent flow (right).
A projection in parallel geometry was calculated by accumulating the attenuation values in the
direction indicated by the grey arrow. Figure b) shows, as a percentage, the increase of attenuation
on the right frame (with contrast agent) with respect to the left frame (without contrast agent).
Note that this corresponds (except for noise) to the percentage of attenuation due to contrast agent
enhancement. Although this central part of the projection covers the most significant vessels in the
scanned region (sinus sagittalis and arteria cerebri anterior marked in blue and red respectively
on the right frame), the attenuation due to contrast agent flow represents in the worst case 1.1%
of the total attenuation.

We denote the initial value of the attenuation as P̄ini and the value with enhancement corre-
sponding to the frame shown in figure 5.3 a) as P̄enh. In our example, we have

∆ = P̄enh − P̄ini ≤ 0.011P̄ini. (5.8)

The corresponding values for the average number of detected quanta can be derived using (5.7)

q̄(P̄ ) = q0e
−P̄ . (5.9)

This way we can find the values for the corresponding q̄ini and q̄enh. For values close to P̄ini,
(5.9) can be approximated using a first order Taylor series expansion

q̄enh = q̄(P̄ini + ∆) = q0e
−(P̄ini+∆) ≈ q0e−P̄ini − q0e−P̄ini∆ = q̄ini(1−∆). (5.10)

We can then use this approximation to calculate the ratio between the variances with and without
enhancement

σ2
enh

σ2
ini

≈ 1/q̄enh

1/q̄ini
=

q̄ini

q̄ini(1−∆)
=

1

(1−∆)
. (5.11)

From (5.8) we know that ∆ ≤ 0.011P̄ini. In medical applications the X-ray beam is usually
attenuated by a factor in the range 20 to 1000 [Barret and Swindell, 1981] so that P̄ ∈ [3, 7], and
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Figure 5.3. Percentage of the attenuation of the X-ray beam due to contrast agent enhancement.

therefore the product 0.011P̄ini is at least one order of magnitude smaller than 1. Using this in
(5.11), we conclude that

σ2
enh

σ2
ini

≈ 1. (5.12)

Hence, it is a reasonable approximation to neglect the time dependence of the variance.
Figure 5.3 refers to only one dataset but it is very representative. We can therefore make the

assumption that the flow of contrast agent does not affect the variance of noise in projections, i.e.
that the variance of the noise does not depend on time. If both temporal mean and variance are
constant, the process ε(t) is said to be a wide sense stationary process in time [Papoulis, 1965].

An additional important aspect that characterises the measurements of a projection value is that
the fluctuations around the mean at two time instants t1 and t2 are statistically independent if the
system is stable [Barret and Myers, 2004].

At the beginning of the section we stated that the proposed model should be general enough to
be applied to filtered projections, PBBs or reconstructed images. If we assume that the variances
of the projection values do not depend on time, it is straightforward to conclude that the same
holds for the rest. Similarly, the statistical independence of the fluctuations at different times
is guaranteed for filtered projections, PBBs and reconstructed images as long as the projection
datasets used are disjoint. This leads to the formulation of our model for the temporal behaviour
of noise in dynamic CT in form of the following hypothesis.

Hypothesis 5.1 The temporal evolution of projections, partial block backprojections (PBBs) and
images is affected by noise. This noise fulfils:

• It is additive.

• It is a wide sense stationary random process with zero mean.

• Two samples of it at different times are statistically independent random variables.

For both PBBs and reconstructed images, the last statement is only true if the projection datasets
for each PBB (or image) are disjoint.



102 Chapter 5. Dynamic Reconstruction with Optimal Signal to Noise Ratio

5.2.2. TEMPORAL SAMPLING OF NOISE

We now analyse the effect of sampling noise with different sampling rates using the model for
the temporal behaviour of noise given in the previous section. The presentation is kept general by
using the notation introduced in the previous section; the measured signal f(t) may represent a
projection, a filtered projection, a PBB value or a reconstructed image value.

We consider a discrete sequence ε1[n] of samples of the stationary process ε(t), described in
the previous section, obtained every Ts, i.e. ε1[n] = ε(nTs). As mentioned above, samples of
ε(t) at different times are statistically independent and therefore uncorrelated random variables.
Mathematically, this is expressed by the discrete autocorrelation function Rε1 as

Rε1 [n] = Rε(nTs) = E[ε1[k]ε1[k + n]] = ε2δ[n], (5.13)

where Rε(t) is the continuous autocorrelation function of ε(t) and δ[n] is the Kronecker sym-
bol (δ[0] = 1 and δ[n] = 0 if n 6= 0). The discrete power spectral density S ′

ε1
is defined as

[Oppenheim and Schafer, 1998]

S′
ε1

(

ei2πν′

)

=
∑

n∈Z

Rε1 [n]e−i2πν′n = ε2, (5.14)

where ν ′ = νTs is the normalised frequency with ν as the physical frequency in Hz. S ′
ε1

(ei2πν′

)
owes its name to the fact that integrating it over one period of the normalised frequency [−1/2, 1/2]
yields the mean square value or total noise power. Downsampling ε1[n] by a factor of K would
deliver a sequence with the same discrete autocorrelation as in (5.13) and therefore the same
discrete power spectral density as in (5.14).

Definition (5.14), however, does not provide any insight into the physical frequency of the
underlying continuous process. For this reason we define the discrete physical power spectral
density Sε1 of the samples of a continuous process sampled every Ts as

Sε1

(
ei2πνTs

)
= Ts

∑

n∈Z

Rε1 [n]e−i2πνnTs = ε2Ts. (5.15)

Integrating (5.15) over one period we obtain the total power or mean square value of the discrete
process

ε21 =

1
2Ts∫

− 1
2Ts

Sε1

(
ei2πνTs

)
dν = ε2. (5.16)

Therefore, Sε1(e
i2πνTs) describes the distribution of power density over one period of the physical

frequency axis. If we now change the sampling rate to TK
s = KTs, the corresponding discrete

physical power spectral density will be increased

SεK

(

ei2πνT K
s

)

= ε2TK
s = Kε2Ts, (5.17)

while the total power remains constant

ε2K =

1
2KTs∫

− 1
2KTs

SεK

(
ei2πνTs

)
dν =

Kε2Ts

KTs
= ε2. (5.18)
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Figure 5.4. Distribution of power density of uncorrelated sequences coming from the sampling of a contin-
uous stationary random process with sampling rates 1/Ts (top) and 1/(2Ts) (bottom).

From (5.16) and (5.18) we can deduce that when the sampling rate is reduced by a factor
of K, the total power remains the same but it is accumulated in a smaller frequency range ] −
1/(2KTs), 1/(2KTs)[. This is illustrated in figure 5.4. Note that this result is also valid for
K ∈ R.

5.2.3. OPTIMAL-SNR ESTIMATION

With the models for signal and noise introduced, we can now easily analyse the approaches pre-
sented at the beginning of the section. For this purpose, we use the notation introduced in section
5.2.1 and denote by f [n] the temporal samples of the measured signal every Ts. These samples
consist of samples x[n] of a deterministic signal x(t) plus samples ε1[n] of an additive noise ε(t).
Noise is modelled as a continuous wide sense stationary random process with zero mean. We
first concentrate on projection values, so that f(t) denotes the temporal evolution of a projection
value. We characterise the acquisition protocol by the total dose appliedDtot and its duration Ttot.
The dose is distributed uniformly among all scans so that the dose per scan can be calculated as
D2π = Dtot/Nsc with Nsc = Ttot/Ts. In section 3.2.4.2 we saw that the variance of projection
noise is inversely proportional to the dose applied. Hence, the value of D2π determines ε2. We
assume that x(t) is essentially band-limited and that its maximum rate of change is νmax. Since
we only know x(t) during the protocol time, we use as a measure of its power the average power
during the protocol duration Ttot

x2 =
1

Ttot

Ttot∫

0

x2(t)dt. (5.19)

As shown in the previous section, the mean square value of the sampled noise is ε2
1 = ε2. Since

ε(t) is a zero mean process, the mean square value is equal to its variance. Note that this value
depends indirectly on Ts, since for a different sampling rate a different dose per scan is applied.
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Hence, we can define a reference signal to noise ratio (SNR) for a sampling rate of 1/Ts as

SNRREF =
x2

ε2
. (5.20)

We can now exploit the prior knowledge about the dynamic process in terms of νmax to reduce
noise. We assumed that the chosen sampling rate 1/Ts fulfils the sampling condition so that the
signal is oversampled. On the other hand, we know that the power spectral density of noise is
constant over all frequencies. The natural conclusion is then that suppressing frequency compo-
nents over νmax, the signal is preserved and only noise is eliminated, increasing thus the signal
to noise ratio. The maximum enhancement of the SNR is obtained when the output signal only
contains frequencies in the frequency range of the signal, i.e. [−νmax, νmax]. Hence, we denote
the estimation of a continuous signal adapted to this frequency range as optimal SNR estimation
and the obtained signals as optimal SNR signals. Figure 5.5 illustrates this aspect. As long as
Ts < 1/(2νmax), the repetitions of the spectrum do not overlap (see sampling condition in ap-
pendix B). In this case, a continuous version of the signal with optimal SNR can be recovered by
adapting an ideal low-pass filter to νmax (see appendix B).

The reduction of the variance obtained by optimal-SNR estimation can be easily calculated. As
long as we satisfy the sampling condition, we can recover the signal from its samples. Hence,
the quantity x2 is preserved for different sampling rates. The variance of noise can be obtained
by integrating the noise power spectrum in the frequency band [−νmax, νmax]. Since the power
noise spectrum is constant equal to ε2Ts, it yields

σ2
Opt = 2νmaxε2Ts. (5.21)

The SNR is then

SNROpt =
x2

2νmaxε2Ts

. (5.22)

The ratio between the reference variance and optimal-SNR variance gives the factor by which the
variance is reduced

rσ2 =
1

2νmaxTs
. (5.23)

We can now analyse what happens if we use a different sampling rate TK
s = KTs with the

same total dose and protocol time. Again, as long as the sampling condition is fulfilled, the signal
x(t) can be recovered from the samples so that we can concentrate on the changes of the vari-
ance. As we saw in the previous section, the noise power distributes along the frequency interval
[−1/(2KTs), 1/(2KTs)] with a constant value. The number of rotations can be calculated as

NK
sc =

Ttot

KTs
=
Nsc

K
. (5.24)

Since the dose is distributed uniformly to all rotations,

DK
2π = K

Dtot

Nsc
= KD2π (5.25)

so that the variance in the projections is reduced by the same factor ε2/K. The value of the noise
power spectrum is then Kε2/KTs = ε2Ts and therefore the integral over the frequency interval
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Figure 5.5. Principle of low-pass filtering to obtain an optimal-SNR signal. The ideal low-pass filter
adapted to the signal covers the frequency band [−νmax, νmax] (black dashed). The shaded area indicates
the noise power density. Light shaded indicates masked out noise, whereas dark shaded indicates the noise
in the frequency band of the signal.

[−νmax, νmax] yields the same variance as in (5.21). Hence, we can conclude that the optimal
SNR is independent of the sampling rate as long as the sampling condition is fulfilled.

As we stated in the previous section, the model used for the temporal behaviour of noise can
also be applied to noise in partial block backprojections or reconstructed images. The same holds
for the frequency characterisation and the dependence of the noise level with the dose (see section
3.2.4.2). Hence, these results can be applied to the dynamic acquisition-reconstruction approaches
presented in the previous chapter. We can therefore conclude that

Statement 5.1 If in a dynamic acquisition process the total dose Dtot is uniformly distributed
among all scans, the following statements hold for the variance of the optimal-SNR estimation of
projection, partial block backprojection or image values:

• It depends on the total dose, Dtot, and on the maximum frequency of the dynamic process,
νmax.

• It does not depend on the number of scans performed.

5.3. DYNAMIC RECONSTRUCTION FOR OPTIMAL-SNR PERFUSION

SEQUENCES

In the previous chapter we saw that using an efficient interpolation scheme, dynamic acquisition
and reconstruction can be performed either with fewer input data or with higher temporal reso-
lution. We proposed a general approach, the TIA-FDK, which implements this principle using
polynomial spline interpolation. We address now the more general problem of dynamic recon-
struction in the presence of noise.

In the introduction to the previous section, we provided an example for noise reduction with
TIA-TFDK. The idea consists in concentrating the total dose in few scans so that the dose per
scan is higher and the projection noise is therefore reduced. In section 5.2, however, we saw
that this is just one of the possibilities to attain an optimal SNR in the reconstruction. If the
total dose Dtot is fixed, the number of scans is not relevant as long as the maximum (temporal)
frequency of the output sequence is limited to νmax. If our scanner is fast relative to νmax one
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can perform an oversampling and estimate a low-pass continuous signal of bandwidth 2νmax

from these samples. But with the algorithms of TIA-FDK approach, we always reconstruct the
frequency range [−1/T2π, 1/T2π] with TIA-TFDK or [−1/(2T2π), 1/(2T2π)] with TIA-CFDK.
We therefore propose an extension of the TIA-FDK approaches by substituting the interpolation
step by a temporal smoothing.

5.3.1. OPTIMAL-SNR ESTIMATION WITH POLYNOMIAL SPLINES

Let us consider a signal f(t) as in 5.2.2 which is sampled every Ts, producing the samples
f [k] = f(kTs). This signal consists of a deterministic signal x(t) contaminated with additive
noise ε(t) of zero mean. The process x(t) is assumed to be essentially band-limited with max-
imum frequency νmax. Our aim is to estimate a continuous function from the noisy samples
f(kTs) which is as close as possible to x(t). The only prior information we have, is its maxi-
mum frequency νmax. According to this prior information, the best approximation we can find
is obtained by eliminating the frequencies over νmax with an ideal low-pass filter with cut-off
frequency νmax. In section 5.2.3 we denoted this procedure as optimal-SNR estimation. As
in the case of ideal interpolation, the ideal low-pass filter decays very slowly (∝ 1/|t|) which
makes it very inefficient for practical purposes. An efficient alternative to ideal low-pass filter-
ing is the smoothing with polynomial splines. The presentation here follows the general lines of
[Unser et al., 1993a] and [Unser et al., 1993b]. As in section 4.4.2 we use in this section the time
normalised to the sampling interval t′ = t/Ts.

Smoothing with splines consists in finding a spline function that is smooth and close to the
sample values at the sample points. For a given order of the splines, n, the coefficients of the
B-spline decomposition (see (4.78)) are found by minimising the functional

F{c, f} =
∑

k∈Z

(f [k]− sn
λ[k])2 + λ

∥
∥DLsn

λ(t)
∥
∥

2

L2
, (5.26)

where n = 2L−1,DL denotes the Lth derivative and ‖·‖L2 the L2 norm. sn
λ(t) denotes the spline

function approximating the signal x(t). The first term in (5.26) forces that the estimated function
to be close to the samples at the sampling points. The second term is a regularity constraint which
favours a smooth estimation of the signal. It is controlled by the smoothing parameter λ. For
λ = 0, F{c, f} = 0 if sn

λ[k] = f [k], which is the condition for spline interpolation (see section
4.4.2). For large values of the smoothing parameter, the smoothness constraint does not allow
the curve to approach the sample values. It can be shown that the coefficients of the nth order
polynomial spline that minimise (5.26) can be computed as

Ĉ
(

ei2πν′

)

=
F̂
(

ei2πν′

)

B̂n (ei2πν′) + λ (−ei2πν′ + 2− e−i2πν′)
L
, (5.27)

where Ĉ(ei2πν′

), F̂ (ei2πν′

) and B̂n(ei2πν′

) denote the Fourier transform of the discrete sequences
c[k], f [k] and bn[k] respectively (see section 4.4.2). The Fourier transform of the B-spline repre-
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sentation is given in (4.83). Substituting the spline coefficients of (5.27) we obtain

ŝn
λ(ν ′) =

F̂
(

ei2πν′

)

B̂n (ei2πν′) + λ (−ei2πν′ + 2− e−i2πν′)
L
β̂n(ν ′)

= F̂
(

ei2πν′

) β̂n(ν ′)

B̂n (ei2πν′) + λ (−ei2πν′ + 2− e−i2πν′)
L

︸ ︷︷ ︸

η̂n
λ
(ν′)

. (5.28)

This equation is similar to (4.84) and defines the spline low-pass filter η̂n
λ(ν ′). In the time domain

it becomes
sn
λ(t′) =

∑

k∈Z

f [k]ηn
λ(t′ − k). (5.29)

Equation (5.29) shows that the smoothing operation can be interpreted as the discrete convolu-
tion of the samples of the signal f [k] with a continuous spline low-pass filter ηn

λ(t′). If λ = 0,
ηn
0 (t′) = ηn(t′) is the spline interpolator of order n described in section 4.4.2. We denote as

cut-off frequency the frequency ν ′c at which the frequency response of the filter falls to half of the
maximum, i.e. η̂λ(ν ′) = 0.5.

Figure 5.6 shows the frequency responses of spline low-pass filters ηn
λ(t′) for n = 9 and differ-

ent values of λ. By properly choosing these parameters we can obtain good approximations to the
ideal low-pass filters used in section 5.2.3. In practice, n is responsible for the sharpness of the
edges of the frequency response, i.e. how close the filter is to the ideal low-pass filter (see figure
4.15), and λ for the position of the cut-off frequency (see figure 5.6).

Even if λ is responsible for the position of the cut-off frequency, this dependence is different
for different orders n. This is illustrated in figure 5.7. For λ = 0, ν ′c = 0.5 for all orders. The
cut-off frequency decreases slowly for low orders until λ ≈ 1. After this value, the frequency for
low orders decreases much faster. For high values of λ the decay is very slow, and therefore large
increases in the smoothing parameter provide only a very small reduction of the cut-off frequency.
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λ for n = 3, 5 and 9.

The cut-off frequency as a function of n and λ can be calculated as [Unser and Blu, ]

ν ′c =
1

2π

(
λ+ π−n−1

) 1
−n−1 . (5.30)

The value of λ can be calculated as

λ =
(
2πν ′c

)−n−1 − π−n−1. (5.31)

For spline interpolation we denoted by p the proportion of the Nyquist band for which the
frequency response does not deviate more than 2% from a constant. The value of p depends on
the spline order n. Similarly, we denote by q the proportion of the frequency band [−νc, νc] that
can be reconstructed with the spline low-pass filter determined by n and λ. In the strict sense, q
depends on both n and λ. For practical purposes, however, we may assume that it only depends
on n, so that for a given q, the frequency band [−qνc, qνc] can be reproduced. Hence, for a signal
with maximum frequency νmax, the cut-off frequency is obtained as

νmax = qνc ⇒ νc =
νmax

q
, (5.32)

where q depends on n. In order to illustrate this, we show in figure 5.8 an example with two
perfusion signals from the example in section 5.1.1. The maximum frequency νmax was estimated
as the frequency for which 99% of the energy of the perfusion signal is contained in the interval
[−νmax, νmax]. For the filters, we used n = 9 and the value of λ was calculated from (5.31) with
q = 0.8. Note that ν ′c = νc since Ts = 1 s. The estimated signal on the right has still some low
frequency oscillations that are apparent after t = 17 s. The lower frequency of the signal on the
left allows to limit the estimation to a narrower frequency band eliminating more noise.

In section 5.2.3, we provided an estimation of the variance of the filtered sequence. The power
spectrum of a filtered stationary process is obtained by integrating the product of the power spec-
trum of the process with the square of the absolute value of the frequency response of the filter
[Barret and Myers, 2004]. Since we used an ideal low-pass filter, the integral from−νmax to νmax
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(a) νmax = 0.08 Hz, n = 9 and λ = 104
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(b) νmax = 0.15 Hz, n = 9 and λ = 0.194

Figure 5.8. Examples of TACs of the arteria cerebri anterior for two data sets (black) and their corre-
sponding optimal-SNR estimated versions (blue). Sampling interval Ts = 1 s.

could simply be substituted by 2νmax times the value of the power spectral density. If we use a
spline low-pass filter this is no longer true. We now have for (5.21)

σ2
Opt = ε2Ts

+∞∫

−∞

∣
∣η̂n

λ(ν ′)
∣
∣2 dν ′. (5.33)

The value of the integral depends on n and λ. In figure 5.7, we show the frequency response of
η9

λ(t′) for different values of λ. Qualitatively it is clear that all these filters are very close to an
ideal low-pass filter with the corresponding cut-off frequency. Hence, the value of the integral
must be close to 2ν ′c. In figure 5.9 we show the ratio

∫ +∞
−∞

∣
∣η̂9

λ(ν ′)
∣
∣2 dν ′

2ν ′c
(5.34)

for values of ν ′c ∈ [0.02, 0.5]. The values are all between 0.914 and 0.95. We calculate the cut-off
frequency as νc = νmax/q with q = 0.8 for n = 9. We would like to have a simple rule of thumb
to estimate the value of the variance of a sequence filtered with a low-pass spline filter. For this
purpose, we propose to use the average value of the curve in figure 5.9, 0.92 as a representative
value and then add the factor 0.92/0.8 to (5.21) as a correction factor for filtering with splines.
This yields

σ2
Opt ≈ 2.3ε2Tsνmax. (5.35)

5.3.2. TSA-FDK ALGORITHMS

We can now formulate the new algorithms as an extension of the TIA-FDK algorithms presented
in section 4.4.3. The idea is to substitute the interpolation by a smoothing in the estimation step.
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This way, an optimal-SNR sequence can be obtained independently of the sampling rate used
which adds a degree of freedom to the reconstruction algorithm. The algorithms receive therefore
the prefix TSA for temporal smoothing approach. For the formulation of the algorithms, we
assume that the scanning is performed in continuous scanning mode and that the sampling interval
is adjusted by adapting the rotation time. As in the TIA-FDK approach, discontinuous scanning
with the minimum rotation time is also possible. We discuss this aspect with the choice of the
parameters in the next section.

5.3.2.1. TSA-TFDK ALGORITHM

As the TIA-TFDK algorithm, the TSA-TFDK algorithms is based on the T-FDK algorithm pre-
sented in section 3.3.3.1. By exploiting the quasi-equivalent rays approximation (see section
3.3.3.4) it reduces the sampling interval to Tπ with detriment to image quality for planes z 6= 0.
The derivation of the algorithm is the same as for TIA-TFDK since the only difference lies in the
estimation step. The algorithm is formulated as:

Algorithm 5.1 (TSA-TFDK) Steps for dynamic reconstruction with TSA-TFDK:

1st Reconstruction of N PBBs for Ttot/T2π rotations with T-FDK:

FPβ(u, v, tβ + kT2π) =

umax∫

−umax

P b
β(s, v, tβ + kT2π)wt(s, v)g(u− s)ds

PBBj(x, t π
N

(2j+1) + kT2π) =
1

2

2π
N

(j+1)
∫

2π
N

j

FPβ(u′, v′, tβ + kT2π)dβ (5.36)

2nd Combination of the samples of the jth and the (j +N/2)th PBBs.
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3rd Smoothing of PBB values:

PBBj(x, t) =
∑

k∈Z

PBBj(x, t π
N

(2j+1) + kTπ)ηn
λ

(
t− t π

N
(2j+1) − kTπ

Tπ

)

(5.37)

4th Accumulation:

µr(x, t) = 2

N/2−1
∑

j=0

PBBj(x, t) (5.38)

The weighting function wt(u, v) is defined in (4.90) and the expressions for u′ = u′(x, β) and
v′ = v′(x, β) are given in section 3.3.3.1.

5.3.2.2. TSA-CFDK ALGORITHM

In a similar way, the TSA-CFDK algorithm is derived from the C-FDK algorithm presented in
section 3.3.3.2. The sampling interval is given by the rotation time T2π. Again, we give here only
the algorithm since the derivation is similar as for TIA-TFDK.

Algorithm 5.2 (TSA-CFDK) Steps for dynamic reconstruction with TSA-CFDK:

1st Reconstruction of N PBBs for Ttot/T2π rotations with C-FDK:

FPα(γ, ϕ, tα + kT2π) =

γmax∫

−γmax

Pα(κ, ϕ, tα + kT2π)wc(κ, ϕ)h(γ − κ)dκ

PBBj(x, t π
N

(2j+1) + kT2π) =
1

2

2π
N

(j+1)
∫

2π
N

j

1

L2(x, α)
FPα(γ′, ϕ′, tα + kT2π)dα

(5.39)

2nd Smoothing of PBB values:

PBBj(x, t) =
∑

k∈Z

PBBj(x, t π
N

(2j+1) + kT2π)ηn
λ

(
t− t π

N
(2j+1) − kT2π

T2π

)

(5.40)

3rd Accumulation:

µr(x, t) =
N−1∑

j=0

PBBj(x, t) (5.41)

The expression of the weighting function wc(γ, ϕ) is given in (4.101) and the expressions for
γ′ = γ′(x, α) and ϕ′ = ϕ′(x, α) are given in sections 3.3.3.2 and 3.2.5.2.
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5.3.2.3. CHOICE OF THE PARAMETERS

The input parameters for the TSA-FDK algorithms are shown in table 5.1. The last five parameters
are computed from the first five. The main difference from table 4.2 is the incorporation of the
total dose D2π to the input parameters. As parameters to adjust we include now the dose per
rotation D2π and the smoothing parameter λ.

The choice of the order of the splines n was already discussed in section 5.3.1. According to
the value of n, the cut-off frequency of the filter is

νc =
νmax

q
. (5.42)

In order to choose the smoothing parameter λ, we need first to know the sampling rate. If we
consider adapting the rotation time of the scanner, we can find a maximum value of the rotation
time Tmax

2π above which the modified sampling condition (see section 4.4.2) is no longer fulfilled

TSA-CFDK : Ts = T2π ⇒ Tmax
2π = p

2νmax

TSA-TFDK : Ts = Tπ ⇒ Tmax
2π = p

νmax
.

(5.43)

Above this values the For any rotation time T2π ≤ Tmax
2π the sampling condition is fulfilled and

we can therefore reconstruct an optimal-SNR sequence. The particular choice depends on the
application.

With the computed rotation time, we can now calculate λ using the sampling interval Ts accord-
ing to the used algorithm. For this purpose, we normalise the cut-off frequency by the sampling
frequency 1/Ts, i.e. ν ′c = νcTs, and then use

λ =
(
2πν ′c

)−n−1 − π−n−1. (5.44)

The total dose is distributed uniformly among the scans. With a rotation time of T2π, Nsc =
Ttot/T2π rotations will be performed during the protocol time. Hence, the dose per rotation can
be calculated as

D2π =
T2π

Ttot
Dtot. (5.45)

Finally, the number of partial block backprojections in a full-rotation N is calculated as for the
TIA-FDK algorithms (see sections 4.4.3.4 and 4.5.4.1).

Note that if T2π = Tmax
2π , then the normalised cut-off frequency is ν ′c = 0.5 and λ = 0;

hence, the TSA-FDK reduces to the TIA-FDK approach. The difference between both approaches
is that with TIA-FDK the only possibility of obtaining an optimal-SNR sequence consists in
concentrating the dose in few scans, whereas with TSA-FDK an optimal-SNR sequence can be
obtained independently of the number of scans as long as the sampling condition is fulfilled.

The noise reduction factor of the algorithms with respect to the standard protocol can be derived
from (5.23) by taking into account the correction for spline filtering given in (5.35). As a result
we get

rσ2 =
1

2.3νmaxT std
s

. (5.46)

If we take into account that the sampling interval T std
s = 1 (see section 2.3.2), we obtain a simple

expression for the reduction of the variance

rσ2 =
1

2.3νmax
. (5.47)
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Parameter Meaning

νmax maximum frequency
Dtot total dose
Tmin

2π minimum rotation time
Ttot total acquisition time
Tfr time between reconstructed frames
n order of the spline interpolation
λ smoothing parameter
T2π rotation time
D2π dose per rotation
N number of PBB intervals in a full-rotation

Table 5.1. Input parameters for the TSA-FDK algorithms. The last five parameters are computed from the
first five.

As with the TIA-FDK algorithms, a discontinuous acquisition mode with the minimum rotation
time can be used as well (see section 4.4.3.4). In this case, the sampling intervals are Ts =
mTmin

2π /2 and Ts = mTmin
2π for TSA-TFDK and TSA-CFDK respectively. The sampling rate is

adjusted as
TSA-CFDK : Ts = q

2νmax
⇒ m = b q

2T min
2π νmax

c
TSA-TFDK : Ts = q

2νmax
⇒ m = b q

T min
2π νmax

c. (5.48)

The values of λ and D2π are calculated as shown above except that the sampling interval is now
Ts = mTπ or Ts = mT2π for TSA-TFDK and TSA-CFDK respectively. Again, the number of
intervals N is calculated as in the TIA-FDK algorithms (see section 4.4.3.4).

We finalise this section revisiting the example given in section 4.4.3.4. With a scanner with
minimum rotation time Tmin

2π = 0.5 s we want to reconstruct a sequence of images of a fast
process with νmax = 1.6 Hz and a slow process with νmax = 0.16 Hz during Ttot = 40 s. Using
(5.43) for the fast process, we get that the reconstruction is only possible with TSA-TFDK and
the rotation time must be set to the minimum value T2π = Tmax

2π = Tmin
2π in continuous mode.

In this case, λ = 0 and therefore TSA-TFDK reduces to TIA-TFDK. Hence, the reconstruction
parameters are the same as in table 4.3. For the slow signal, we get a different parameter set
for every choice of the sampling rate and of the acquisition mode. In order to illustrate this,
we consider the extreme cases of the highest and lowest sampling rates that fulfil the sampling
condition, both in continuous and discontinuous acquisition mode. For the lowest sampling rate,
we have in continuous scanning mode T2π = Tmax

2π and in discontinuous scanning mode Ts =
5T2π. In both cases, λ = 0 since the signal is not oversampled and therefore the algorithms
reduce to the corresponding TIA-FDK approaches. The parameters for this case are given in
table 4.4. For the maximum sampling rate the parameters are given in table 5.2. In this case
the principle consists in oversampling and smoothing and the highest possible sampling rate in
continuous acquisition mode is used, Ts = Tπ for TSA-TFDK and Ts = T2π for TSA-CFDK.
The advantage of using the lowest rotation time is that for slow signals the number of partial
block backprojections is reduced to 1; hence, the individual frames can be reconstructed using
static reconstruction. In such a case, the smoothing reduces to a post-processing. On the other
hand, as we have seen, adapting the rotation time reduces the number of scans and consequently
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TSA-CFDK TSA-TFDK

n 9 9
λ 104 106783
T2π (s) 0.5 0.5
Ts (s) 0.5 0.25
N 1 2
Num. rotations 80 80

Table 5.2. Example of reconstruction parameters for νmax = 0.16 Hz with maximum sampling rate.

also the computational cost of the reconstruction.
In this example, we showed the two extreme cases according to the sampling rate. As discussed

above, the former is limited by the minimum rotation time of the scanner Tmin
2π whereas the later is

limited by the maximum frequency of the dynamic process νmax. We also argued that for a given
minimum sampling rate, there are several possibilities to adjust the parameters in order to obtain
an optimal-SNR sequence. It suffices to choose any sampling rate between the minimum and the
maximum and adjust the smoothing parameter correspondingly. The lowest sampling rate has
two main advantages. First, fewer data are acquired and thus the computational cost is reduced;
second, it allows the use of slow rotating scanners for dynamic CT imaging purposes. On the
other hand, for the use of motion correction algorithms it is in general better to have redundancy
in the data; hence a higher sampling rate is more appropriate. The final choice depends on the
constraints of every particular application.

Finally, an interesting parameter choice for the example above would be to keep the minimum
rotation time and adapt the sampling rate by source switching to 1 s. In such case, the TSA-
FDK approaches reduce to temporal smoothing of the reconstruction obtained with the standard
protocol.

5.3.2.4. DISCUSSION

In this section we discuss some aspects of the dynamic reconstruction algorithms of the TSA-
FDK approach. The first one concerns the choice between the algorithms. According to (4.105),
the rotation time corresponding to a certain νmax with the T-FDK-based algorithms (meaning
both TIA and TSA) is two times longer than for the C-FDK-based algorithms. The amount of
rotations acquired during the protocol time Ttot/T2π will be correspondingly two times lower.
An immediate consequence of this would be to think that with the T-FDK-based algorithms two
times less dose is applied. This is, however, not true since the T-FDK-based algorithms use short-
scan reconstruction whereas the C-FDK-based ones use full-scan. In section 3.2.4 we saw that
performing backprojection over a longer angular interval does not contribute new Radon values
but averages the existing ones, reducing thus the noise in the reconstruction. The reduction of the
variance from short to full-scan reconstruction is estimated in a factor of 2. Acquiring 2 times
less rotations would reduce the total dose by a factor of 2 but the variance of the noise would
be two times higher since the images are reconstructed in short-scan mode. In section 3.2.4.2
we saw that the variance of the noise is inversely proportional to the dose applied. Hence, in
order to compensate the increase of the noise variance we should increase the dose per rotation
by the same factor 2, so that at the end no dose reduction would take place. As a conclusion,
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the choice of TSA-TFDK has an influence in the computational cost but not on the total dose
needed to obtain a certain noise level. Additionally, TSA-TFDK allows for reconstruction for
faster dynamic processes or, equivalently, for reconstruction with slower scanners.

Another aspect which requires discussion is the chosen estimation method. In chapter 4 we con-
cluded that the reconstruction of PBBs over several scans can be interpreted as a non-ideal tempo-
ral sampling. This interpretation reduces the problem of dynamic reconstruction to the problem
of estimating a continuous signal from noisy samples. The algorithms proposed in this chapter
are based on the essentially band-limited model for perfusion signals presented in the chapter 4.
By limiting the frequency of the estimated continuous signal, the variance of the reconstruction is
reduced. This model has several advantages. First, it is very general: it can be applied to the tem-
poral evolution of projections, partial block backprojections or images. Second, it leads to very
efficient reconstruction algorithms. As a generalisation of this approach, we tried to substitute
the polynomial splines in the estimation by generalised exponential splines. The estimation with
generalised exponential splines did not improve the results and was cumbersome to parametrise.
A theoretical explanation for can be given for this. Generalised exponential splines are a general-
isation of polynomial splines. The functions in the intervals between samples are no longer poly-
nomials but functions in the null-space of a spline-admissible operator [Unser and Blu, 2005b].
Smoothing with generalised exponential splines is a quite general method that includes as partic-
ular cases Wiener filtering and some types of kriging. From the statistical point of view, these
methods are best unbiased linear estimators according to a certain statistical model. The model
assumes that the signal is a continuous stationary random process with a known autocorrelation
function. Intuitively, this is equivalent to assume that if we took all possible perfusion signals and
averaged them we would obtain a constant signal. This is, however, not true since in general the
bolus arrives at a certain time during acquisition so that the average signal would have the lowest
values at the beginning of the time interval. As a conclusion the underlying model does not apply
to perfusion signals. For this reason, we chose polynomial smoothing as the preferred estimation
technique.

5.4. NUMERICAL EXAMPLE

In this section we present an example of optimal-SNR reconstruction with the TSA-TFDK algo-
rithm and compare it to the standard protocol described in section 2.3.2. For the scanner the same
parameters as in section 4.5 were used. For the simulations we used phantom E (see appendix C).
In this phantom, the inserts follow the temporal law

µi(t) = Ci (t− p1)
p2 e

−
t−p1

p3 . (5.49)

This curve describes a typical temporal evolution of the concentration of contrast agent as can be
found in a large vessel and in some tissues. It is usually denoted in the perfusion CT literature
as gamma variate and is often fitted to the measured TACs for the computation of physiological
parameters [Miles et al., 1997]. The parameters chosen for the curve are given in table C.5. They
were chosen so as to obtain a physiologically representative curve. All inserts follow the same
law, except for the amplitude. Ci was chosen in such a way that the maximum values of the
enhancement are 10, 18, 26, 34, 42 and 50 HU.

We first simulated acquisition and reconstruction with the standard protocol as described in
sections 2.3.2 and 4.2. Hence, Nsc = 40 scans were simulated with a rotation time of T2π = 0.5
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Slow scanning Fast scanning

n 9 9
λ 0 1533
T2π (s) 5.33 0.5
Ts (s) 2.66 0.25
N 16 2
Num. rotations 8 80

Table 5.3. Reconstruction parameters for slow and fast scanning reconstruction.

s during 40 s. The source was switched off every second rotation. For the noise parameter, we
used a value of 6 which corresponds to a standard deviation in the image of about 6 HU for short-
scan reconstruction (see section 4.5.1). In order to set the input parameters for the reconstruction
with TSA-TFDK we used for νmax the value estimated in section 5.1.1, i.e. νmax ≈ 0.15 Hz.
With this value we simulated continuous acquisition and reconstruction with TSA-TFDK with the
highest and lowest possible sampling rates. The corresponding parameters are given in table 5.3.
The lowest sampling rate implies a slow rotation scanning, in which the signal is not oversampled
and therefore λ = 0. In this case, TSA-TFDK reduced to TIA-TFDK. The highest sampling
rate implies a fast rotation scanning such that the signal is strongly oversampled and therefore a
high value of λ is needed to adjust the cut-off frequency to νmax. The noise parameter for each
simulation was adjusted according to the number of scans in such a way that the total dose is kept
constant. We used the principle that increasing the value of the dose per rotation by a factor a
decreases the standard deviation by a factor

√
a (see section 3.2.4.2). With this rule, we obtained

the values
slow scanning: 6

√
8
40 ≈ 2.59

fast scanning: 6
√

80
40 ≈ 8.48.

(5.50)

Figures 5.10 a) and b) show a frame of the reconstructed sequence with the standard protocol
(left) and with TSA-TFDK with fast scanning (right); the later corresponds to an optimal-SNR
sequence. The noise reduction effect can be clearly observed. In figure 5.11, we show the tem-
poral evolution of the mean of the reconstructed attenuation values (ε in section 4.5.3) within two
inserts: with maximum enhancement 18 HU (top) and 34 HU (bottom) respectively. The black
curves represent the phantom value, the grey curves represent the values obtained with the stan-
dard protocol and finally the blue curves show the value of the reconstruction with TSA-TFDK
fast scanning (left) and slow scanning (right). The curves of the optimal-SNR sequences are
clearly smoother than the curves obtained with the standard protocol, but the temporal resolution
is preserved. The results with fast and slow scanning are qualitatively similar.

In table 5.4, we show the value of the standard deviation measured within the inserts (σ̄ in
section 4.5.3). As expected, the standard deviation in the TSA-TFDK reconstructions is lower
than in the standard protocol sequence. The TSA-TFDK reconstructions exhibit a similar noise
level, which is in accordance with statement 5.1. In section 5.3.2.3, we provided an expression
to estimate the reduction of the variance by optimal-SNR estimation with respect to the standard
protocol. For νmax, the variance is reduced by a factor

rσ2 ≈ 1

2.3νmax
= 2.898. (5.51)
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(a) Standard protocol (b) Optimal-SNR

Figure 5.10. Comparison between standard protocol and optimal SNR reconstruction. Left: frame of the
sequence reconstructed with the standard protocol. Right: the same frame of the sequence reconstructed
with fast scanning with TSA-TFDK. Window [30, 70] HU.

With these values, we can calculate the measured reduction of the variance for, e.g. TIA-CFDK
as 4.48/2.62 = 1.71 and (1.71)2 = 2.924. These results are in accordance with (5.51).

Algorithm Value

Std. protocol 4.48
TSA-TFDK fast scanning 2.60
TSA-TFDK slow scanning 2.62

Table 5.4. Standard deviation of the values within the inserts for the standard protocol and the TSA ap-
proaches.

5.5. EXAMPLE WITH CLINICAL DATA

In section 5.3.2.3 we saw that for perfusion signals and fast rotating scanners, the number of
partial block backprojections in the dynamic reconstruction with the TSA-FDK approach can be
reduced to one without significant loss of accuracy. Hence, the temporal smoothing is performed
on reconstructed images becomes a post-processing operation. In this section we show an example
of such post-processing with a perfusion CT clinical dataset.

5.5.1. DATA AND METHOD

The dataset used consists of a sequence of 40 images obtained with the standard perfusion CT
protocol described in section 2.3.2. The protocol parameters are given in table 2.2. The scan was
performed with a tube voltage of 120 kVp and at a tube current of 220 mA. Since the rotation
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time was T2π = 0.5 s, the dose per image in mAs was D2π = 110 mAs. The X-ray beam was
collimated to obtain a slice width of 10 mm (see section 3.1.3).
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(c) Max. enh.: 34 HU, fast scanning
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(d) Max. enh.: 34 HU, slow scanning

Figure 5.11. Time-attenuation curves of the inserts with maximum enhancement 18 HU (top) and 34 HU
(bottom). Left: fast-scanning, right: slow-scanning.

The advantage of smoothing a reconstructed sequence is that it avoids to use an a priori general
estimation of νmax since it can be easily estimated from the sequence itself. As already argued
in section 5.1.1, we can use for this purpose an ROI within the arteria cerebri anterior. The
temporal evolution of the concentration of contrast agent in this arteria can be assumed to be the
fastest in the dataset. Additionally, the arteria cerebri anterior is approximately orthogonal to
the slice plane so that partial volume effects are avoided (see section 3.1.3). With this TAC we
estimated νmax as the value for which [−νmax, νmax] contains 99% of the energy of the signal.
We obtained a value of νmax ≈ 0.0966 Hz.

According to the discussion in section 5.3.2.3 one of the possibilities of adjusting the sampling
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rate consists in using a discontinuous acquisition mode with the minimum rotation time. In such
a case the sampling interval is Ts = mTπ for TSA-TFDK and Ts = mT2π for TSA-CFDK. The
number of angular intervals N is chosen according to (4.117). For our example

N ≥ 12.8Tmin
2π νmax = 0.618. (5.52)

Therefore, the error due to static full-scan reconstruction of a time dependent object can be ne-
glected. The maximum value of m is calculated according to (5.48):

TSA-CFDK : m = 8

TSA-TFDK : m = 16.
(5.53)

Hence, we can interpret the clinical dataset as the first step of either the TSA-TFDK or the TSA-
CFDK algorithm with Ts = 2T2π. As we saw earlier in this section, the sampling interval can be
increased up to Ts = 8T2π while keeping enough temporal resolution for the reconstruction. Ac-
cording to the discussion in section 5.3.2.3, it is possible to reconstruct an optimal-SNR sequence
for any choice of m ≤ 8 if the total dose is kept constant. Since we cannot modify the dose per
image, if we downsample the dataset by a factor of K, the total dose applied is reduced by the
same factor. Hence, the theoretical estimation for the reduction of the variance given in (5.47)
must be divided by the factor K

rσ2 =
1

2.3νmaxK
. (5.54)

Sequences of different sampling rates were obtained by removing image frames from the orig-
inal series. Since m ≤ 8, we obtained four sequences downsampling by factors K = 1, 2, 3 and
4 respectively. For every sequence, a temporal estimation using a spline low-pass filter adapted
to νmax was performed. The corresponding parameters for each sequence are given in table 5.5.
With the continuous spline low-pass filter, an output sequence with the same number of frames as
the original series was calculated. Note that, since no increase of dose was carried out, the only
sequence with optimal SNR corresponds to K = 1.

5.5.2. RESULTS

In figure 5.12, we show some examples of time-attenuation curves of the original (grey) and the
optimal-SNR sequence (blue). The curves show the temporal evolution of the average value of
the pixels within a ROI in different tissues. As can be seen, the enhancement curve for the arteria
cerebri anterior in the optimal-SNR sequence is smooth but can still follow the original curve.
The same can be observed for the sinus sagittalis. In such large vessels, the enhancement due
to contrast agent flow is higher than in tissue or in small vessels, and the SNR is high enough to
ignore noise for the purpose of the computation of physiological parameters. In other regions,
enhancement is larger than noise but of the same order of magnitude. An example for such
regions is shown in curve c) where the TAC of an ROI within a tumour is shown. The TAC of
the optimal-SNR estimation clearly eliminates noise and delivers a curve which is physiologically
more plausible than the curve obtained with standard reconstruction. Finally, figure d) shows the
TAC of a ROI within grey matter. While in the original curve the enhancement cannot really be
perceived, the TAC of the optimal-SNR sequence clearly shows an increase in the concentration of
contrast agent. On the other hand, the TAC of the optimal-SNR sequence contains low frequency
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Sequence Num. inp. images Ts (s) ν ′c (Hz) n λ

Seq. 1 40 1 0.121 9 15.82
Seq. 2 20 2 0.241 9 0.0154
Seq. 3 13 3 0.362 9 2.57e− 4
Seq. 4 10 4 0.483 9 4.41e− 6

Table 5.5. Input sequence and filter parameters for every sequence.

oscillations which are not of physiological nature. These are due to low-frequency noise in the
frequency band [−νmax, νmax].
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(a) Arteria cerebri anterior
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(b) Sinus sagittalis
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Figure 5.12. Example of TACs in different tissues. The grey curve corresponds to the original dataset. The
blue curve corresponds to the optimal-SNR sequence.
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Sequence Measured Estimated

1 4.90 4.5
2 2.32 2.25
3 1.54 1.5
4 1.04 1.12

Table 5.6. Sequences and reduction of the variance.

We want now to verify if the reduction of the variance caused by the temporal smoothing is
in accordance with the predictions of our model. The variance in a certain region might be due
not only to quantum noise but also to pixels in the region of interest that correspond to different
tissues and have therefore a different temporal behaviour. Since our model concerns the temporal
behaviour of the statistical fluctuations caused by quantum noise, we must segment a region within
a tissue where all points have the same temporal behaviour. The easiest way to do this is to choose
a region in the image with constant attenuation, i.e. without contrast agent flow. We therefore
segmented an ROI within the ventricular system. But not all pixels within the ventricular system
are constant over all sequence frames. In some of them, partial volume effects caused by the large
slice thickness (see section 3.1.3) induce a temporal dependence. For this reason, we segmented
a region within the ventricular system by choosing the pixels with a temporal mean of 6 ± 0.5
HU and a temporal standard deviation < 7 HU. This delivered a set of 2300 pixels with the
same temporal behaviour. We used the whole 2300 × 40 pixels to estimate the variance in each
reconstructed sequence. The ratio of the variance of the original sequence to the variance of every
one of the post-processed sequences is shown in the first column of table 5.6. The second column
shows the values estimated using (5.54). The estimated values match approximately the measured
values. According to the proposed model for the temporal behaviour of noise, the reduction
of the variance should be inversely proportional to the sampling rate. This is approximatelyin
accordance with the values in table 5.6. The effect on image quality is shown in figures 5.13 and
5.14. The frame shown corresponds to t = 19 s and lies for sequence 4 between a sample at
t = 16 s and a sample at t = 20 s. The image quality of the frame estimated from the sequence
4 appears to be equivalent to the original frame although four times fewer input data were used
for the computation of the sequence. Certainly the noise levels are comparable since the dose
per frame was not increased in this experiment. The sequence with strong temporal smoothing
presents substantially reduced noise while visually preserving spatial resolution.

The reconstructed sequences were used as input for the Perfusion CT software (Siemens AG,
Medical Solutions, Forchheim, Germany) that computes the functional parameter maps. This
software first segments vessels and bone, performs a strong spatial smoothing and subsequently
computes the functional parameters. The segmented regions are excluded from the functional
maps and represented in black. The algorithm returns the lowest value (magenta) if it is not able
to compute a functional parameter value. Figure 5.15 shows cerebral blood flow maps computed
from the original sequence (a), sequence 4 (b), and sequence 1 (c). Map (a) presents many small
isolated segmented regions compared to map (c). These correspond to areas where the noise level
led to a wrong classification as vessels. Most of them disappear in map (c). Moreover, the magenta
areas are reduced in map (c) compared to map (a) which indicates that the algorithm was able to
deliver results on more points. Finally, map (c) is smoother in space which is physiologically
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more plausible. The quality of maps (a) and (b) is equivalent although (b) was computed from a
sequence reconstructed with four times fewer data (equivalent to four times less dose).

(a) Original (b) Sequence 4 (c) Sequence 1

Figure 5.13. Detail of the left hemisphere in a frame of the perfusion sequence with high contrast enhance-
ment (t = 19 s). Left: original sequence. Middle: sequence 4 (Ts = 4 s). Right: sequence 1 (Ts = 1 s).
Window [16, 56] HU.

(a) Original (b) Sequence 4 (c) Sequence 1

Figure 5.14. Detail of the right hemisphere in a frame of the perfusion sequence with high contrast en-
hancement (t = 19 s). Left: original sequence. Middle: sequence 4 (Ts = 4 s). Right: sequence 1 (Ts = 1
s). Window [16, 56] HU.

5.6. CONCLUSION

Quantum noise is one of the most limiting factors in perfusion CT. The enhancement due to con-
trast agent flow in tissue is low and often comparable to noise. The reconstruction of a sequence
with the standard procedure only allows the reduction of noise by increasing the total dose or con-
centrating the dose on fewer sequence frames. The former option is not of practical interest since
the dose levels applied in perfusion CT are much higher than in normal CT and dose is therefore
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(a) Original (b) Sequence 4 (c) Sequence 1

Figure 5.15. Cerebral blood flow maps computed from (a) the original sequence, (b) sequence 4 (T s = 4
s) and (c) sequence 1 (Ts = 1 s).

a limiting issue. The later option, implies the loss of temporal resolution since the time between
frames is increased.

In this chapter, we proposed a new approach for dynamic acquisition and reconstruction which
achieves an optimal SNR for a given applied total dose and a maximum frequency of the dy-
namic process. For this purpose, we introduced a simple model for the temporal behaviour of
noise in dynamic CT. According to it, noise can be approximately modelled as a zero mean wide
sense stationary random process, and samples of this process at different times are statistically
independent. If we have prior information about the dynamic process in form of a maximum
frequency νmax we can obtain an optimal SNR continuous estimation from the noisy samples by
limiting the frequency range of the estimation to [−νmax, νmax]. The application of this principle
to the estimation of a continuous signal from temporal samples of PBBs leads to the extension of
the TIA-FDK approaches based on interpolation to the TSA-FDK approaches based on smooth-
ing. With them it is possible to reconstruct a sequence of image frames with optimal SNR with
any sampling rate as long as the sampling condition is fulfilled. The temporal estimation step is
performed by smoothing with polynomial splines. As the TIA-FDK approaches, the TSA-FDK
approaches are based on the T-FDK and C-FDK static reconstruction algorithms.

With the TSA-TFDK algorithm an optimal-SNR sequence of dynamic process with a maximum
frequency of νmax = 0.15 Hz can be reconstructed by scanning with a rotation time of T2π = 5.33
s. With TSA-CFDK, the maximum rotation time is T2π = 2.66 s but the algorithm makes less
approximations and the reconstruction is more accurate for the planes z 6= 0. This opens the
possibility of using slow rotating scanners for functional CT imaging purposes. Indeed, as we saw
in section 5.1.1, in many cases the maximum frequency νmax is lower than 0.15 Hz and therefore
even slower scanners might be used for the reconstruction. The acquisition with a slower rotation
produces fewer scans during the protocol time which leads to a reduction of the input data and
thus of the computational cost. If the scanner used has a high rotational speed, the reduction of
the input data can be achieved by performing the acquisition in discontinuous scanning mode,
switching off the source during regular periods of time. On the other hand, for motion correction
algorithms, it is better if more data are available. For this reason, with fast scanners often a higher
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sampling rate might be preferred as long as computational cost is not a constraining issue.
Finally, for fast scanners we saw that the time dependence of the attenuation coefficient can

be neglected and the reconstruction of every frame of the sequence can be performed using static
reconstruction methods. In such a case, the sequence can be smoothed a posteriori. The estima-
tion becomes then a post-processing operation. In an example of post-processing with a clinical
dataset, we could observe a strong reduction of the noise in the optimal-SNR sequence. The time-
attenuation curves obtained were physiologically more plausible than in the original sequence
obtained with the standard procedure. However, on tissues where the enhancement due to con-
trast agent flow is very low and comparable to the noise level, the remaining low-frequency noise
was still comparable to the signal itself.



CHAPTER 6.

SOFTWARE TOOLS

This chapter is devoted to the description of the software tools used and developed within
the framework of this thesis. We first briefly describe the tools provided by Siemens AG,
Medical Solutions for the simulation of X-ray attenuation and noise. Following, we give
an overview of the software tools developed and describe the structure of the Matlab code
programmed. The kernel of the developed tools is CT Project, a C++ library for cone-beam
static and dynamic reconstruction. The main focus of the chapter is on the description of this
library.

6.1. OVERVIEW

The results presented in this thesis were all obtained by numerical computation. The aim of this
chapter is to provide a description of the software tools used for this purpose. The tools used can
be coarsely classified in

• X-ray simulation tools.

• Perfusion CT software.

• Reconstruction tools.

• Visualisation and error measurement tools.

The simulation tools and the Perfusion CT software were provided by Siemens AG, Medical
Solutions. The rest of the tools was developed during this thesis. The main focus of the chapter is
on the description of the CT Project C++ library for static and dynamic reconstruction.

The numerical computation of X-ray attenuation maps were performed with the software pack-
age DRASIM (Deterministic Radiological Simulation) by Karl Stiersdorfer (Siemens AG, Medical
Solutions). This software calculates the attenuation of the X-ray beam when passing through an
object which is defined in an appropriate scripting language. The computations are performed us-
ing X-ray transport equations; neither scattering nor beam-hardening are taken into account (see
section 3.2.4). The software computes the logarithm of the normalised attenuation and provides
as output projection files in binary format.

The functional maps in chapter 5 were obtained with the Perfusion CT software by Siemens AG,
Medical Solutions. This is a commercial software for the computation of functional parameters
from perfusion sequences. It implements the slope method described in section 2.3.1.

The simulation of Poisson noise in the computed projections was performed with a software
library developed within the framework of the Forbild project [Fuchs, 2006].
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The major part of the software tools developed during this thesis are devoted to the implemen-
tation of CT reconstruction algorithms from cone-beam projections. These tools were developed
in the form of a C++ software library which we called CT Project. This library is described in the
next section. The C++ code was complemented with a series of Matlab functions with different
purposes. These functions can be classified into three groups:

Visualisation and error measurement These tools include a series of Matlab GUIs (Graphical
User Interfaces) whose aim is the evaluation of the results obtained with the developed
algorithms. They include functions for the visualisation of 2D/3D images, 2D/3D sequences
and the quantification of the error by comparing with a reference (if available).

Interface to CT Project These functions were designed to convert input data to data formats
compatible with the CT Project library functions and to convert again the output to the
original format. Their aim is to use the CT Project library with clinical data in DICOM
format [NEMA, 2006].

Splines toolbox This toolbox is a collection of functions for interpolation and smoothing with
polynomial, exponential and generalised exponential splines for 1D data on a regular grid
[Unser and Blu, 2005b]. The toolbox was developed to test the performance of smoothing
with generalised exponential splines to further develop the TSA-FDK approach (see section
5.3.2.4).

Finally, an additional Matlab function performs the rebinning of fan-parallel beam projections
from cone-beam projections (see section 3.3.3.1).

6.2. CT Project LIBRARY

CT Project is a C++ library for static and dynamic reconstruction from cone-beam projections.
It implements all algorithms described in this thesis and is designed to be easily expanded. The
library was developed to be fully compatible with the functions of the Numerical Recipes in C++
library for scientific computing (NR library) [Press et al., 2002]. In this section, we first describe
the function modules, with the algorithms and the basic program flow. Subsequently, we describe
the class hierarchy of the library and include a short explanation about the aim of each class. As a
notational convention we use CTAsciiInputFile to denote a class and CTAlgInterface
to denote a module of functions. We use in the description of the library some basic concepts
of object oriented programming and particularly of the C++ programming language. We refer to
[Eckel, 2000] and [Stroustrup, 1997] for a detailed explanation of these concepts.

6.2.1. FUNCTION MODULES AND PROGRAM FLOW

The functions used for the implementation of reconstruction algorithms or particular tasks within
them are distributed in different modules. Each module contains functions with a similar task
(different algorithms with the same purpose) or functions that perform a part of an algorithm. The
modules are the following:

CTSplines This module contains functions for interpolation and smoothing with polynomial
splines. It implements the algorithms described in sections 4.4.2 and 5.3.1 and other related
tasks.
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Figure 6.1. Program flows in the CT Project library.

algCTStatCTRec Contains the implementation of the 3D static reconstruction algorithms for
cylindrical detectors, C-FDK and T-FDK, described in section 3.3.3. They can be used
as well for PBB reconstruction as needed in some dynamic reconstruction algorithms. The
implementation of the algorithms was adapted from the algorithm for planar detectors for C-
arm systems proposed in [Wiesent et al., 2000]. It uses projection matrices in homogeneous
coordinates in the backprojection step.

algCTDynCTRec This module contains dynamic reconstruction algorithms. These include the
algorithms developed during this thesis (TIA and TSA-FDK approaches) and the state-
of-the-art algorithms described in section 4.2 (standard reconstruction, generalised Parker
weighting and kπ-mode linear regression).

CTAlgInterface Provides an interface for the functions in the dynamic and static recon-
struction modules. The functions that implement the reconstruction algorithms perform the
reconstruction and return an object of the class CTVol (for static reconstruction) or CTSeq
(dynamic reconstruction). The interface functions additionally perform the measurement of
the computational time and create an output directory where the result and a parameter file
are stored.

6.2.1.1. PROGRAM FLOW

In this section we describe the typical program flow of a reconstruction with the CT Project library.
The program flow is shown in figure 6.1. The reconstruction algorithm is called using an interface
function in CTAlgInterface. The following input data are needed:

• Dynamic reconstruction parameters (function parameters).
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• Static reconstruction parameters (input file).

• Projections (input files).

• Detector-focus tables (input file).

The dynamic reconstruction parameters concern the number of acquired rotations, number of
frames per acquired rotation, etc. They are given in the function call. Static reconstruction param-
eters concern the size of the images, geometry of the detector, etc. They are given in a separated
input file. Projections are the result of the simulations of the X-ray attenuation through the object
at each projection angle. The projection corresponding to each angular position is stored in a
different file in binary format. Finally, the detector-focus table file contains information about the
position of the source and the detector for every projection angle. It is generated by the simulation
software.

The interface function calls the corresponding static or dynamic reconstruction function. In
the case of static reconstruction, a CTVol is returned and the interface function writes the result
to disk. If the reconstruction is dynamic, the corresponding dynamic reconstruction function
calls a static reconstruction function of algCTStatCTRec for the reconstruction of PBBs or
images along several full-rotations. Following, the temporal estimation step is performed. For this
purpose, the CTSplines (for TIA or TSA-FDK approaches) module or the NR library might be
required. Some functions of the CTSplines module need the NR library as well. Finally, the
reconstructed sequence is returned to the interface function which writes the result to disk. The
possible interactions between the different modules in a static reconstruction are shown with black
arrows in figure 6.1. For a dynamic reconstruction they is shown with grey arrows.

6.2.2. CLASS HIERARCHY

Figure 6.2 shows a scheme of the structure of the CT Project library. The solid arrows indicate
that the classes are related by inheritance. The dashed arrows indicate that they are related by
composition, i.e. the class contains member variables which are objects of the upper class. Apart
from inheritance and composition, a member function of a class might use objects of another one;
this is not indicated in the scheme in figure 6.2 in order not to complicate it unnecessarily. This is
for example the case of CTParamCFDK and CTParamTFDK which are not linked to any other
class because they simply use a CTAsciiInputFile object in their constructor. In order to
make CT Project fully compatible with the functions of the Numerical Recipes in C++ library,
its basic classes are derived (inherited) from the basic classes of the NR library. NRVec, NRMat,
NRMat3d are container classes for numerical data types, representing 1D vectors, 2D matrices
and 3D matrices respectively, with basic operations. The basic classes of the CT Project library,
CTVec, CTMat and CTVol, are derived from NRVec, NRMat, NRMat3d respectively. Since
we only work with real signals, the classes are restricted to double type. The only exception
are CTVecCplx and CTSig1DCplx used for the computation of spline coefficients. With this
principle, the derived classes can be directly used with the NR library functions. They preserve
the original structure of the original NR classes but are provided with extended capabilites such
as I/O interfaces for different binary and ASCII formats, additional operations or print on screen
functions. The rest of the classes are either derived from CTVec, CTMat or CTVol or related
by composition to them. The only exception to this are CTAsciiInputFile, CTParamCFDK
and CTParamTFDK which are used to read parameter files in ASCII format and only contain a
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CTAsciiInputFile object in their constructor. A description of the class hierarchy is pro-
vided in the following.

6.2.2.1. CLASSES

Figure 6.2 shows the class hierarchy of the library. Every class is defined in a separated header
file with the prefix ”class” followed by the name of the class itself and with the extension ”.h”.
This file contains the declaration and the member functions defined as inline functions. The
implementation of the member functions is provided in a separated file named as the header file
but with the extension ”.cpp”. In the following, we briefly describe the classes and their tasks.

CLASSES RELATED BY INHERITANCE

CTVec A container class for 1D vectors of double type derived from NRVec of the NR library.
The class contains extended functionalities with respect to NRVec. These include: several
constructors, extended operators, additional functions for the manipulation of the data and
extended I/O capabilities. Vectors are considered as column vectors except when they are
multiplied with another vector, where they are automatically treated as row vectors.

CTMat A container class for 2D matrices of double type derived from NRMat of the NR library
and expanded following the same philosophy as with CTVec.

CTVol A container class for 3D volumes of double type derived from NRMat3d of the NR
library and expanded following the same philosophy as with CTVec.

CTVecCplx This class is identical to CTVec except for the fact that it contains elements of
complex<double> type. It is derived directly from NRVec.

CTSig1D This class is derived from CTVec and is used to represent 1D signals of double type.
The main differences to CTVec is that an object of the class CTSig1D has ”signal charac-
ter”, meaning that operations such as product or division of signals are performed element-
wise and that a convolution operation is included. In the CTVec class the product is inter-
preted as a scalar product and division is only possible by a scalar. The product of a signal
with a vector is again interpreted as a scalar product.

CTSig1DCplx This class is identical to CTSig1D except for the fact that it contains elements
of complex<double> type. It is derived directly from CTVecCplx.

CTSig2D This class is derived from CTMat and is used to represent 2D signals of double type.
As in CTSig1D, operations as multiplication and division with another signal are defined
element-wise and it includes a 2D convolution operation.

CTProj This class is designed to be used as projections in FDK-like reconstruction. It is derived
from the CTSig2D class. Every row of the 2D signal is at the same time a 1D signal,
i.e. an object of the class CTSig1D. This way, the row-wise convolution in FDK-like
reconstruction can be performed by simply calling the corresponding member function of
CTSig1D. This class is therefore also related by composition to CTSig1D.
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CLASSES RELATED BY COMPOSITION

CTDftMat This class reads the information in the detector-focus table file and stores it in a set of
four vectors for each angular position. These vectors describe the position of the source, the
position of the centre of the detector and the orientation of the detector coordinate system.

CTProjMatCFDK Contains projection matrices in homogeneous coordinates for every angular
position. The projection matrices are computed by the constructor of the class from the
parameters for static reconstruction stored in a CTParamCFDK object and the information
about source and detector position stored in a CTDftMat object.

CTProjMatTFDK Is the same class as CTProjMatCFDK but for T-FDK reconstruction pa-
rameters. Therefore, it takes the static reconstruction parameters from a CTParamCFDK
object.

CTBlocks This class is used to store the reconstruction of N PBBs over several rotations. Each
PBB is a CTVol object.

CTSeq Represents a sequence of CTVol. It is used to store the result of dynamic reconstruction.

OTHERS

CTParamCFDK Stores the parameters for static reconstruction with C-FDK. The constructor of
the class reads the parameter file and stores the values in member variables.

CTParamTFDK The equivalent to CTParamCFDK for T-FDK.
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Figure 6.2. Structure of the CT Project C++ library.
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CHAPTER 7.

CONCLUSION AND OUTLOOK

7.1. CONCLUSION

The introduction of large area detectors in Computed Tomography will enable to perform perfu-
sion studies of a volume of interest. This will on the one hand increase the clinical relevance of
perfusion CT but on the other hand it will also increase patient exposure and the requirements for
the reconstruction hardware as a consequence of the huge amount of acquired data. Within this
context, the aim of this thesis was the development of efficient dynamic reconstruction algorithms
for perfusion Computed Tomography.

Under the assumption that no motion or deformation occurs, we showed in a theoretical analysis
that the partial reconstruction from projections acquired over several rotations can be interpreted
as a non-ideal sampling on a regular grid. The maximum rate of change of the dynamic process
νmax that can be reproduced by a dynamic reconstruction algorithm is the Nyquist frequency
corresponding to the sampling interval. The dynamic reconstruction can then be performed by
estimating a continuous signal from the samples using an efficient interpolation scheme. We
proposed a temporal interpolation approach based on polynomial spline interpolation that allows
to reproduce 80% of the Nyquist band accurately. This approach increases the temporal resolution
for a given sampling rate enabling the use of slow rotating scanners for dynamic imaging purposes.
Assuming that we have an estimation of the maximum frequency of the dynamic process, we can
adapt the sampling rate according to this frequency in order to acquire only the necessary data to
estimate the continuous signal accurately. This leads to a reduction of the acquired data and thus
of the computational complexity.

The temporal interpolation approach does not take noise into account. The noise level in the
images is inversely proportional to the applied dose. According to our sampling interpretation,
we can minimise noise if we limit the maximum frequency of the estimated continuous signal to
the frequency range of the fastest perfusion signal in the volume of interest. We denoted this as
optimal-SNR estimation. Based on this principle, we substituted interpolation by smoothing with
polynomial splines. In the temporal interpolation approach the only way to adapt the temporal fre-
quency range of the reconstruction is by adapting the sampling rate. With the temporal smoothing
approach the frequency range of the reconstruction becomes independent of the sampling rate. It
includes the temporal interpolation approach as a particular case.

The presented reconstruction algorithms can be adapted to a wide variety of scanners and sit-
uations. State-of-the-art CT scanners have high rotational speeds relative to the typical rate of
change of perfusion signals. In such a case, either a fine or a coarse sampling can be used. A
fine sampling provides an acquired dataset with a lot of redundancy which is appropriate for mo-
tion correction algorithms. On the other hand, due to the huge amount of input data it entails a
high computational cost. A coarse sampling reduces the input data and the computational cost
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but it requires a good estimation of νmax to avoid undersampling. In both cases, an optimal-SNR
sequence is obtained. Such a sequence exhibits a reduced variance with respect to a sequence
obtained with standard reconstruction. The reduction of the variance with respect to standard re-
construction depends on the maximum frequency of the dynamic process, the reduction factor is
in the range 3 to 5.5. This efficient use of the acquired data can be exploited in two ways. If the
applied dose is not modified with respect to the standard protocol, the obtained sequences exhibit
a lower noise level and therefore the precision in the computation of the functional parameters
is increased. If the noise level in the reconstruction is kept as in the standard protocol, less dose
needs to be applied.

Additionally to the aspects of reduction of noise and computational complexity, the algorithms
proposed in this thesis make it possible to use scanners with rotation times of 5 s or even more for
perfusion imaging purposes. This result might find immediate application in prototype scanners
with large area detectors. Such detectors generate huge amounts of data which must be transmit-
ted from the detector system to the image reconstruction unit. The high transmission rates force
a limitation of the rotation time with the corresponding loss of temporal resolution. An alterna-
tive method which has been proposed to increase the volume covered in perfusion CT, consists in
shifting a multislice detector on the z-axis between two positions after every rotation. In such a
case, the rotation time is fast, but the sampling interval is increased anyway so that standard recon-
struction methods are not appropriate. The algorithms presented in this thesis provide solutions
for the reconstruction with an optimal noise level in both cases.

7.2. OUTLOOK

As in any research project there is a number of aspects which were not treated and that shall be
the object of future research. We discuss here briefly some of them.

On the reconstruction side, one of the aspects concerns the estimation step. We showed in this
thesis that the dynamic reconstruction problem can be reduced to static reconstruction plus the
estimation of a continuous signal from noisy samples. In this thesis, we proposed to use estimation
methods based on the assumption that perfusion signals are essentially band-limited. This has the
advantage to be a very general model with high applicability and which leads to computationally
efficient algorithms. In a further development, other possible models should be investigated.
With an appropriate model it might be possible to further reduce the input data or equivalently
to increase the dose efficiency. The second interesting aspect is the further development of the
algorithms to use them with C-arm systems. C-arm systems have been successfully used in the last
five years for CT imaging purposes. Their mechanical structure allows them a rotation of 220◦so
that dynamic acquisition is only possible by rotating the C-arm in forward-backward mode. This
leads to a non-regular sampling scheme in time. With minimal forward-backward rotation times
of about 8 s, the projections are sampled with an average sampling interval of about 4 s. An
interesting research topic would be the analysis of the temporal resolution that can be achieved by
using a temporal estimation technique for samples on a non-regular grid. Finally, for the sake of
completeness the algorithms should be combined with a motion correction algorithm in a unified
framework. On the application side, an interesting research topic would be to try to influence the
maximum frequency νmax by modifying the injection profile of contrast agent.



APPENDIX A.

ABBREVIATIONS AND NOTATIONAL

CONVENTIONS

A.1. ABBREVIATIONS

ART Algebraic Reconstruction Technique
CBF Cerebral Blood Flow
CBV Cerebral Blood Volume
C-FDK Cylindrical FDK, reconstruction algorithm by Schaller
CT Computed Tomography
DFT Discrete Fourier Transform
FBP Filtered Backprojection
FDK Static reconstruction algorithm by Feldkamp, Davis and Kress
FIR Finite Impulse Response
FP Filtered Projection
HS-FDK Half-scanning FDK, dynamic reconstruction algorithm by Taguchi
HU Hounsfield Unit
IIR Infinite Impulse Response
MRI Magnetic Resonance Imaging
NHS-FDK New half-scanning FDK, dynamic reconstruction algorithm by Taguchi
NR Numerical Recipes
PBB Partial Block Backprojection
PET Positron Emission Tomography
ROI Region Of Interest
SNR Signal to Noise Ratio
SPECT Single Photon Emission Computed Tomography
TAC Time Attenuation Curve
TIA Temporal Interpolation Approach
TIA-CFDK Temporal Interpolation Approach for dynamic reconstruction based on C-FDK
TIA-TFDK Temporal Interpolation Approach for dynamic reconstruction based on T-FDK
T-FDK Tent FDK, static reconstruction algorithm by Grass, Köhler and Proksa
TSA Temporal Smoothing Approach
TSA-CFDK Temporal Smoothing Approach for dynamic reconstruction based on C-FDK
TSA-TFDK Temporal Smoothing Approach for dynamic reconstruction based on T-FDK
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A.2. NOTATIONAL CONVENTIONS

The following notational conventions are used in the text:

• The spatial coordinates are denoted by x ∈ R
3 where x = (x, y, z).

• The temporal variable is denoted by t ∈ R. A particular time instant is denoted with a
subindex, e.g. tx. If x is an angle, tx indicates the time at which the X-ray source is at
position x, i.e. tx = x/ω, where ω denotes the rotational speed of the X-ray source.

• The length or duration of a time interval is denoted by T ∈ R. The duration of a particular
time interval is denoted with a subindex, i.e. Tx. If x is an angle, Tx is the time the source
takes to run through an angular interval of length x, i.e. Tx = x/ω, where ω denotes the
rotational speed of the X-ray source. Here is a list of the most used time interval lengths in
the text:

Ts sampling interval
Ttot total scan time
T2π rotation time
Tmin

2π minimum rotation time

• The temporal frequency is denoted by ν ∈ R whereas the spatial frequency is denoted by
ς ∈ R.

• Functions are denoted by f(t) meaning f : t → f(t). We use indistinctly f(t) to denote a
function value or the function itself.

• Continuous signals (meaning non-discrete) in time are represented as f(t).

• For discrete signals (or sequences) we use the square bracket convention from the signal
processing literature [Oppenheim and Schafer, 1998], e.g. f [k]. Again, f [k] is used to
denote a sequence value or the sequence itself.

• Discrete signals are usually the result of sampling a continuous signals with a sampling
interval Ts, i.e. f [k] = f(kTs). For signals which are discrete in only one variable, we
use parenthesis. As an example, f(x, k) denotes a sequence of signals continuous in space
and discrete in time. This can be again represented as a sampled continuous function,
f(x, k) = f(x, kTs).

• The time normalised by the sampling interval Ts is denoted by t′ = t/Ts.

• The temporal frequency normalised by the sampling frequency is denoted by ν ′ = ν/νs =
νTs.

• The Fourier transform of a continuous signal f(t) is denoted as f̂(ν). The Fourier transform
of one variable of a function depending on two or more variables µ(x, t) is written as
µ̂(x, ν).

• The Fourier transform of a discrete signal f [k] is denoted as F̂ (ei2πν′

). If the signal comes
from the sampling of a continuous signal and the sampling interval is known f [k] = f(kTs),
the Fourier transform might be equivalently written as F̂ (ei2πνTs).
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• The average value of a continuous or discrete function f over a period time is denoted as f̄ .

• The continuous temporal estimation of a signal from a set of samples is indicated by f .

• The expected value of a random variable x is denoted by E[x].

• The estimation of the spatial distribution of the attenuation coefficient µ(x) with a CT
reconstruction algorithm is denoted by µr(x).

• The estimation of the time dependent spatial distribution of the attenuation coefficient
µ(x, t) with a dynamic CT reconstruction algorithm is denoted by µr(x, t).



138 Appendix A. Abbreviations and Notational Conventions



APPENDIX B.

SIGNAL PROCESSING PRINCIPLES

The purpose of this appendix is to provide a short description of some signal processing tools used
in the text.

B.1. CONTINUOUS AND DISCRETE SIGNALS

We interpret discrete signals (sequences) as the result of evaluating a continuous function at reg-
ularly distributed sampling points. In order to formulate this mathematically we make use of the
following property of the Delta function

∫

f(t)δ(t)dt = f(0)

∫

δ(t)dt. (B.1)

In order to simplify notation, we leave the integral and write

f(t)δ(t) = f(0)δ(t) (B.2)

or simply f(0). In order for (B.1) to make sense, we have to impose some constraints on the
function f(t). It is sufficient to assume that it is piece-wise continuous and that it has a finite
number of bounded discontinuities or jumps. Without loss of generality for our purposes, we
assume that at any point t, the function fulfils

f(t) =
f(t+) + f(t−)

2
. (B.3)

In such a case, (B.2) makes sense even at a point t0 where f(t) is discontinuous, since

f(t)δ(t− t0) =
f(t+0 ) + f(t−0 )

2
δ(t− t0). (B.4)

With these conventions, we can now interpret the sequence f [k] as values of f(t) taken every
Ts, i.e. f [k] = f(kTs). The values f(kTs) are interpreted in the sense of (B.1)

f(t)δ(t− kTs) = f(kTs)δ(t− kTs). (B.5)

We can therefore express the sequence f [k] as

f [k] = f(kTs) = f(t)
∑

k∈Z

δ (t− kTs) . (B.6)
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The functional
∑

k∈Z
δ(t − kTs) is usually denoted in the signal processing literature as Delta

comb. Other names as Dirac comb or Shah functional are common as well.
The Fourier transform of a signal f(t) is defined as

f̂(ν) =

+∞∫

−∞

f(t)e−i2πνtdt. (B.7)

Its inverse is

f(t) =

+∞∫

−∞

f̂(ν)ei2πνtdν. (B.8)

In principle, the Fourier transform is defined for absolutely integrable functions. The validity
of expressions (B.7) and (B.8), however, can be generalised to expressions of the kind of (B.6)
[Mallat, 1998].

In order to define a Fourier transform for discrete signals, we use the following result known as
Poisson formula

∑

k∈Z

e−i2πνkTs =
1

Ts

∑

k∈Z

δ

(

ν − k

Ts

)

. (B.9)

This equality holds in the sense of distribution equalities [Mallat, 1998]. Based on (B.9) it is easy
to derive the following Fourier transform pair

∑

k∈Z

δ (t− kTs)
FT←→ 1

Ts

∑

k∈Z

δ

(

ν − k

Ts

)

. (B.10)

The representation of a discrete signal as the product of a continuous signal with a Delta comb
(B.6) is exploited to define the Fourier transform of a sequence. Substituting (B.6) in (B.7) yields

F̂
(
ei2πνTs

)
=
∑

k∈Z

f(kTs)e
−i2πνkTs . (B.11)

The notation (ei2πνTs) indicates that it is a periodic function with period 1/Ts. Since the nota-
tion f [k] does not provide any information about the sampling interval Ts, often a normalised
frequency is used ν ′ = νTs. In this case the Fourier transform is

F̂
(

ei2πν′

)

=
∑

k∈Z

f [k]e−i2πν′k. (B.12)

The Fourier transform of the convolution of two continuous signals is

f ∗ g(t) =

+∞∫

−∞

f(τ)g(t− τ)dτ FT←→ f̂(ν)ĝ(ν). (B.13)

Using (B.12) and (B.6), this result can easily be generalised to the convolution of discrete signals

f ∗ g[k] =
∑

n∈Z

f [n]g[k − n]
FT←→ F̂

(

ei2πν′

)

Ĝ
(

ei2πν′

)

(B.14)

and to the convolution of a discrete signal with a continuous signal

f ∗ g(t) =
∑

k∈Z

f [k]g(t− k) FT←→ F̂
(

ei2πν′

)

ĝ(ν). (B.15)
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B.2. BASIC FUNCTIONS

Some basic functions which are frequently used in the text:

Rectangular pulse Also known in the literature as indicator function

rect(t) =







1 for −1
2 < t < 1

2

1
2 for |t| = 1

2

0 otherwise

(B.16)

Sinc function We use here the normalised version which is typically used in the signal processing
literature [Bracewell, 1978]

sinc(t) =
sin(πt)

πt
(B.17)

These two functions form a Fourier transform pair

rect(t)
FT←→ sinc(ν). (B.18)

B.3. SAMPLING AND INTERPOLATION

With ideal regular sampling we get, given a continuous function f(t), a sequence of values of
the function every Ts. Ts denotes the sampling interval. The term ideal means that the values
obtained correspond exactly to f(kTs) while the term regular indicates that the sampling interval
is constant. In section B.1, we showed that ideal sampling can be represented by a weighted
sum of Delta functions. In this section, we exploit this representation to illustrate the process of
recovering the original continuous function from its samples.

For this purpose, we reinterpret the Fourier transform of a sequence using the Fourier transform
of a Delta comb. If we consider (B.6) and (B.10), we can express the Fourier transform of a
discrete signal as

F̂
(
ei2πνTs

)
=

1

Ts
f̂ ∗
∑

k∈Z

δ

(

ν − k

Ts

)

=
1

Ts

∑

k∈Z

f̂

(

ν − k

Ts

)

. (B.19)

Hence, the Fourier transform of a sampled signal is a periodic signal obtained by summing shifted
versions of f̂(ν) every 1/Ts. The quantity 1/Ts is denoted as sampling frequency or sampling
rate. This is illustrated in figure B.1. In order to recover the continuous signal from the samples,
we must eliminate the repetitions of the spectrum by filtering. For this purpose the signal and the
sampling rate must fulfil two conditions:

• The Fourier transform of the signal has a compact support, i.e. if f̂(ν) = 0 for |ν| > νmax.
The signal is then said to be band-limited with a maximum frequency νmax.

• The sampling rate must be high enough for the spectra not to overlap. From figure B.1 a),
we can easily discern that this happens for

νmax <
1

2Ts
. (B.20)

This condition is known as the sampling condition or the Nyquist condition. The frequency
1/(2Ts) is often referred to as the Nyquist frequency νNyq = 1/(2Ts).
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ν

One period

. . .. . .

1
Ts

νmax

F̂
“

ei2πνTs

”

−νmax
− 1

Ts

νNyq

(a) Sampling

ν

One period

. . .. . .

1
Ts

νmax
− 1

Ts

−νmax

f̂(ν)
Ts

(b) Ideal interpolation

Figure B.1. Sampling and ideal interpolation in Fourier domain.

Figure B.1 b) shows the corresponding filter to recover the original function. Note that the
Fourier transform of the filter is not periodic so that the filter is a continuous signal. We denote
this filter as ψ(t), its Fourier transform is

ψ̂(ν) = Tsrect(νTs), (B.21)

and in time domain

ψ(t) = sinc

(
t

Ts

)

. (B.22)

This filter is known as the ideal interpolator. The original signal is then obtained by multiplying
F̂ (ei2πνTs) and ψ̂(ν), or in time domain (using (B.15))

f(t) =
∑

k∈Z

f(kTs)sinc

(
t− kTs

Ts

)

. (B.23)

If the maximum frequency of the signal νmax is lower than the Nyquist frequency, the signal
can be recovered with any filter of the form

ψ̂c(ν) = Tsrect

(
ν

2νc

)

for νmax < νc ≤ νNyq. (B.24)
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This is a filter which is constant equal to 1/Ts in the frequency band ] − νc, νc[. We denote such
filter as ideal low-pass filter.

B.4. SCHWARTZ SPACE

The Schwartz space S (Rn) is the space of smooth and rapidly decreasing functions. It is defined
as [Natterer, 1986]

S (Rn) =

{

f ∈ C∞| sup
x∈Rn

‖f‖α,β <∞ ∀α, β
}

, (B.25)

where
‖f‖α,β = ‖xαDβf‖∞ (B.26)

‖ · ‖∞ is the supremum norm and α and β are multi-indices. The functions f ∈ S are denoted as
Schwartz functions. Other names can be found in the literature such as particularly well-behaved
functions [Bracewell, 1978] or good functions [Barret and Myers, 2004].
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APPENDIX C.

PHANTOM DEFINITIONS

C.1. HEAD PHANTOM

The head phantom used in the simulations is a simplified version of the head phantom described
in [Lauristch and Bruder, 2006]. The phantom imitates a head and consists of an ellipsoid of bone
(800 HU) filled with soft tissue (50 HU). Several inserts distributed in the interior of the ellipsoid
represent different parts of the anatomy. The external ellipsoid representing the skull has the
following dimensions:

• x-axis: 19.2 cm.

• y-axis: 24 cm.

• z-axis: 25 cm.

Figure C.1 shows a 3D visualisation of the phantom obtained by surface rendering with MATLAB.
Figure C.2 shows the central slice of the phantom (z = 0). The attenuation values of the inserts
are given in table C.1.

Figure C.1. 3D visualisation of the head phantom.
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Figure C.2. Central slice (z = 0) of the head phantom. Window [0, 100] HU.

Label Geometry CT-Number Anatomical relation

1 sphere 60 eye
2 sphere 60 eye
3 sphere 52.5
4 sphere 47.5
5 ellipsoid 800 calotte
6 ellipsoid 50 homogeneous brain matter
7 ellipsoid -1000 frontal sinus
8 ellipsoid 800 bone surrounding frontal sinus
9 ellipsoid 800 bone surrounding frontal sinus

10 elliptical cylinder 800 bone surrounding frontal sinus
11 elliptical cylinder 800 bone surrounding frontal sinus
12 ellipsoid 45 ventricle
13 ellipsoid 55 subdural hematoma
14 elliptical cylinder 800 bone surrounding frontal sinus
15 elliptical cylinder 800 bone surrounding frontal sinus
16 cone 800 internal occipital protuberance
17 cone 800 internal occipital protuberance

Table C.1. Attenuation values for the inserts in the head phantom. From [Lauristch and Bruder, 2006].

C.2. TIME-DEPENDENT PHANTOMS

In this section we describe a series of dynamic phantoms used for the numerical simulations in
chapter 4. They all consist of a cylinder of 50 HU with cylindrical inserts of a much smaller
radius. The attenuation value within each insert µi(t) depends on time according to the following
sinusoidal law
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Figure C.3. A slice of phantom A. Window [0, 100] HU.

µi(t) = 50(1 + sin (2πνit)) HU. (C.1)

The values of the frequencies νi are different for each phantom.

C.2.1. PHANTOM A

The purpose of this phantom is to produce a plot of the temporal resolution of a dynamic re-
construction algorithm. The phantom consists of a cylinder of 50 HU with 15 cylindrical inserts
situated at the same distance from the origin. It is shown in figure C.3. The cylindrical inserts fol-
low an attenuation law with increasing frequency. The highest frequency corresponds to the upper
bound of the temporal resolution limited by the acquisition scheme (see section 4.3.1). The fre-
quencies of the inserts are linearly distributed on the frequency interval [1, 1/T2π]. The phantom
geometry is determined by the phantom radius RP , the radius of the inserts RI and the distance
from the origin to the centre of the inserts RC . These are respectively

• RP = 8 cm.

• RI = 0.5 cm.

• RC = 5.5 cm.

The position of the inserts corresponds to points at equiangular intervals on a circle of radius RC .
It is calculated as follows

{
xi = RC cos(θi)

yi = RC sin(θi)
with θi = (i− 1)

2π

15
for i = 1 . . . 15. (C.2)

The frequencies of the inserts are given in table C.2.
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Label Frequency (νi) × 1
Tπ

Label Frequency (νi) × 1
T2π

1 0.068 9 0.6
2 0.134 10 0.668
3 0.2 11 0.734
4 0.268 12 0.8
5 0.334 13 0.868
6 0.4 14 0.934
7 0.468 15 1
8 0.534

Table C.2. Frequencies for the inserts in phantom A.

C.2.2. PHANTOM B

This phantom is used to illustrate the effect of the dynamic rebinning approximation (see section
4.3.3). It consists of a cylinder of 50 HU with 10 cylindrical inserts situated at increasing distances
from the origin. It is shown in figure C.4. All inserts follow the sinusoidal law described by (C.1)
with the highest frequency that can be reproduced with TIA-TFDK, i.e. 0.8/(2Tπ). The phantom
geometry is determined by the phantom radius RP the radius of the inserts, RI and the distance
from the origin to the centre of the inserts RC . These are respectively

• RP = 10 cm.

• RI = 0.5 cm.

• RC : ‖xi‖.

The position of the inserts corresponds to points at equiangular intervals on a spiral. It is calculated
as follows

{
xi = θi

4.125
2π cos(θi)

yi = θi
4.125
2π sin(θi)

with θi = i
2π

15
for i = 0 . . . 15. (C.3)

In the phantom, the values i = 1 . . . 5 are skipped. Table C.3 shows the values of the distances
for each insert. In section 4.3.3, we saw that the decisive parameter is the distance normalised to
the source detector distance Γ. In the second column, we give this normalised distance with the
value used in the simulations of chapter 4, i.e. Γ = 57 cm.

C.2.3. PHANTOM C

Phantom C is a reduced version of phantom A. Its purpose is to provide error measurements for
different frequencies without direct influence of the closest inserts. For this reason, the distance
between inserts is increased so that error caused by an insert does not directly affect its neighbours.
The phantom consists of a cylinder of 50 HU with 6 cylindrical inserts situated at the same distance
from the origin. It is shown in figure C.5. The phantom geometry is determined by the phantom
radius RP , the radius of the inserts, RI and the distance from the origin to the centre of the inserts
RC . These are respectively



C.2. Time-dependent Phantoms 149

1

2

3

4
5

6

7

8
9

10 x

y

Figure C.4. A slice of phantom B. Window [0, 100] HU.

Label Distance ‖xi‖ (cm) Distance ‖xi‖/Γ
1 0 0
2 3.536 0.062
3 4.125 0.072
4 4.714 0.083
5 5.304 0.093
6 5.893 0.103
7 6.482 0.114
8 7.071 0.124
9 7.661 0.134

10 8.25 0.145

Table C.3. Distance from each insert to the origin in phantom B.

• RP = 8 cm.

• RI = 0.5 cm.

• RC = 5.5 cm.

The position of the inserts corresponds to points at equiangular intervals on a circle of radius RC .
It is calculated as follows

{
xi = RC cos(θi)

yi = RC sin(θi)
with θi = (i− 1)

2π

6
for i = 1 . . . 6. (C.4)
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Figure C.5. A slice of phantom C. Window [0, 100] HU.

Label Frequency (νi) × 1
T2π

1 0.134
2 0.268
3 0.4
4 0.534
5 0.668
6 0.8

Table C.4. Frequencies for the inserts in phantom C.

C.2.4. PHANTOM D

This phantom is used to measure the error due to data inconsistencies. It consists of a cylinder
with an attenuation value of 50 HU with a single cylindrical insert situated at the origin. The insert
has a time dependent attenuation value following the sinusoidal law (C.1). The frequency of the
insert is highest frequency that can be reproduced with the TIA-TFDK algorithm, i.e. 0.8/T2π.
The phantom geometry is determined by the phantom radius RP and the radius of the insert RI .
These are respectively

• RP = 8 cm.

• RI = 0.5 cm.

C.2.5. PHANTOM E

Phantom E has the geometry of phantom C. The difference lies in the attenuation law of the
cylindrical inserts which now follows

µi(t) = Ci (t− p1)
p2 e

−
t−p1

p3 . (C.5)
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Parameter Value

p1 5
p2 2.3
p3 3

Table C.5. Parameters for the gamma variate temporal law.

The values of the parameters p1, p2 and p3 are chosen so that the curve represents a physiological
time attenuation curve. They are given in table C.5.

Each insert has a maximum value of the enhancement which is determined by the parameter
Ci. The values of Ci are chosen so that the maximum value of the enhancement is 10, 18, 26, 34,
42 and 50 HU.
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APPENDIX D.

COMPUTATIONAL COMPLEXITY ANALYSIS

D.1. INTRODUCTION

In this appendix we provide detailed expression for the computational cost of the temporal inter-
polation approach presented in section 4.4.3. Our goal is to show that the contribution of the in-
terpolation step to the total computational cost in the TIA-FDK algorithms can be neglected when
compared to the cost of FDK-like reconstruction. As a consequence of this, the computational
complexity of these algorithms can be expressed in terms of equivalent FDK reconstructions as
stated in section 4.4.3.4. We derive the result for the TIA-TFDK algorithm. The derivation for
TIA-CFDK and the TSA-FDK approaches follows the same general lines.

The computational complexity is expressed in terms of the elementary operations given in table
D.1 and of the reconstruction parameters given in table D.2.

Operation Symbol

Product P
Addition S
Division D

Table D.1. Elementary operations for the computational cost analysis.

Parameter(s) Symbol(s)

Number of pixels of the detector Nu ×Nv

Number of acquired views Nβ

Size of the reconstructed image Nx ×Ny ×Nsl

Number of frames in the output sequence Lfr

Number of performed scans LS

Efficiency factor η = Lfr/(2LS)
Order of the polynomial splines n
Number of angular intervals for TIA N

Table D.2. Reconstruction parameters for the computational cost analysis.
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D.2. COMPUTATION COST OF PBB RECONSTRUCTION AND

INTERPOLATION

The TIA-TFDK algorithm, described in section 4.4.3.1, is composed of two main steps. The first
one consists in the reconstruction of N partial block backprojections using the T-FDK algorithm.
Subsequently intermediate values of the PBBs are estimated by interpolating a polynomial spline.
In this section we provide expressions for the computational cost of these steps. For the sake of
simplicity, the detailed expression of the computational cost is only given for the steps which are
relevant for the derivation in the next section.

COST OF T-FDK RECONSTRUCTION

The algorithm is described in section 3.3.3.1. Backprojection is performed with projection matri-
ces in homogeneous coordinates as presented in [Wiesent et al., 2000].

We denote byCReb the cost of rebinning theNβ projections in a full-rotation and byCF the cost
of filtering them. For every voxel and every projection the backprojection step can be decomposed
into the following parts:

• Find the filtered value by multiplying the voxel coordinates with a 4 × 3 projection matrix
in homogeneous coordinates:

C1
B = 12× P + 9× S. (D.1)

• Weighting the obtained value: CW .

• Bilinear interpolation of 4 projection values:

C2
B = 4× P + 3× S + 1×D. (D.2)

• Accumulation:
C3

B = 1× S. (D.3)

The cost of backprojection for ×Nx ×Ny ×Nsl voxels and Nβ projections is

CB =
(
C1

B + 4× CW + C2
B + C3

B

)
×Nx ×Ny ×Nsl ×Nβ

= (16× P + 13× S + 1×D + 4× CW )×Nx ×Ny ×Nsl ×Nβ . (D.4)

Finally, the total cost of T-FDK reconstruction for LS scans is

CTFDK = (CReb + CF + CB)× LS . (D.5)

COST OF SPLINE INTERPOLATION

The approach for efficient computation of polynomial spline interpolation is described in section
4.4.2. Details on particular parts of the algorithm can be found in [Unser et al., 1993b].

In the TIA-TFDK algorithm, the samples of the jth PBB are combined with the samples of the
(j +N/2)th PBB. Since LS scans are performed, the sequence to interpolate has length 2× LS .
The output sequence has length Lfr. Therefore, for every scan η = Lfr/(2LS) interpolated
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values are computed. The spline interpolation algorithm consists in two main steps. First, the
spline coefficients are computed by IIR filtering of the input samples with the filter 1/B̂(ei2πν′

).
Second, the interpolated values are computed by FIR filtering. Filtering the obtained coefficients
with the FIR filter B̂n,δ(ei2πν′

), a sequence of values of the continuous spline at positions shifted
by δ from the last sample is obtained. This operation is repeated η times to obtain the PBB values
for all output frames. Finally, the interpolated PBBs are accumulated. This process is repeated
for every voxel in every partial block backprojection.

The IIR filtering step consists of the following parts:

• Computation of the zeros of B̂(ei2πν′

) for a given n: Cz . This is performed only once in
the dynamic reconstruction algorithm.

• For a given interpolation order n, the IIR filter 1/B̂(ei2πν′

) is decomposed into bn/2c
symmetric elements. The computational cost of every symmetric element filtering is

– for the first term:

C1
SE = (2× LS − 2)× 2× P + (2× LS − 1)× S + P, (D.6)

– and for the rest of the terms:

C2
SE = 2× [(2× LS − 1)× P + (2× LS − 1)× S] . (D.7)

The total cost of filtering bn/2c with a symmetric element is

CSE = (C1
SE + C2

SE)× bn
2
c

= (8× LS × P − 5× P + 6× LS × S − 3× S)× bn
2
c. (D.8)

The obtained coefficients are then multiplied by a constant c0

Cc0 = 2× LS × P. (D.9)

The cost of IIR filtering for Nx ×Ny ×Nsl voxels and N/2 PBBs is

CIIR = (CSE + Cc0)×Nx ×Ny ×Nsl ×
N

2
+ CSp

z

= [(8× LS × P − 5× P + 6× LS × S − 3× S)× bn
2
c

+ 2× LS × P )]×Nx ×Ny ×Nsl ×
N

2
+ CSp

z . (D.10)

The FIR filtering step consists of the following parts:

• Computation of the coefficients of the FIR filter B̂n,δ(ei2πν′

) for every interpolated value

C1
FIR = Cδ × η. (D.11)

This is performed only once for every PBB (N/2 times).
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• Computation of Lfr filtered values

C2
FIR = (n× P + (n− 1)× S)× Lfr. (D.12)

The cost of FIR filtering for all voxels and all PBBs is

CFIR = C1
FIR ×N + C2

FIR ×Nx ×Ny ×Nsl ×N
= Cδ × η ×N + (n× P + (n− 1)× S)× Lfr

× Nx ×Ny ×Nsl ×N. (D.13)

The total cost of interpolation is

CINT = CIIR + CFIR. (D.14)

D.3. COMPUTATIONAL COST OF TIA-TFDK

The computational cost of the TIA-TFDK algorithm is the sum of the costs of the PBB recon-
struction, interpolation and accumulation steps:

CTIA−TFDK = CTFDK + CINT + CAC , (D.15)

where

CAC = 2× S × LS ×Nx ×Ny ×Nsl ×
N

2
. (D.16)

In order to be able to compare CTFDK , CAC and CINT we need first to simplify CINT . For
this purpose, we use the following information

• Nx, Ny and Nβ are of the same order of magnitude. Typically > 500.

• n, η and N are of the same order to magnitude. Typically < 16.

• The number of scans is typically LS > 8.

In (D.10), the term Cz is not affected by the factor Nx × Ny × Nsl and the terms within the
parentheses not multiplied by LS can be neglected. This leads to

CIIR ≈
[

(8× P + 6× S)bn
2
c+ 2× P

]

× LS ×Nx ×Ny ×Nsl ×
N

2
. (D.17)

In a similar way, we can simplify (D.13)

CFIR ≈ [n× P + (n− 1)× S]× 2× η × LS ×Nx ×Ny ×Nsl ×
N

2
. (D.18)

With these approximations we get the following expression for the cost of the interpolation step
and accumulation

CINT + CAC ≈
[

(8× bn
2
c+ 2× n× η + 2)× P + (6× bn

2
c+ 2× (n− 1)× η + 2)× S

]

× LS ×Nx ×Ny ×Nsl ×
N

2
. (D.19)
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We rewrite the cost of T-TFDK reconstruction of LS scans using (D.4) and (D.5)

CTFDK = CReb × LS + CF × LS

+ (16× P + 13× S + 1×D + 4× CW )

× LS ×Nx ×Ny ×Nsl ×Nβ . (D.20)

If we compare (D.20) and (D.19) we observe that the term in second line of (D.20) and the term
in the first line of (D.19) are of the same order of magnitude. These terms, however, are affected
by multiplicative factors which only differ in the last term which is Nβ for CTFDK and N/2 for
CINT . Since in general Nβ is at least one order of magnitude larger than N , we can conclude that
the CINT + CAC is negligible compared to CTFDK . Hence, we can write

CTIA−TFDK ≈ CTFDK = (CReb + CF + CB)× LS . (D.21)

Equation (D.21) proves that the computational cost of the TIA-TFDK algorithm can be esti-
mated as the cost of performing LS full-scan reconstructions with the T-FDK algorithm. Further-
more, the expression obtained does not depend on the number of frames of the output sequence.
This results can be easily generalised to TIA-CFDK and the TSA-FDK algorithms. This is sum-
marised in the following statement

Statement D.1 The computational cost of the TIA-FDK and TSA-FDK approaches

• is approximately the cost of the full-scan FDK-like reconstructions of the data acquired,
and

• it is independent of the number of frames of the output sequence.

We finalise this appendix with a comparison of the computational cost of reconstruction with
the TIA-TFDK algorithm and with standard reconstruction as described in section 4.2. In standard
reconstruction each frame is computed independently using static reconstruction techniques. For
the purpose of our comparison, we assume that every frame is reconstructed with the T-FDK
algorithm from projections in a half-scan. The cost of the reconstruction of Lfr is then

CSTD = (CReb + CF + CB)× Lfr/2, (D.22)

where the factor 1/2 comes from the short-scan reconstruction. If we compute the ratio between
(D.22) and (D.21), we get

CSTD

CTIA−TFDK
≈ Lfr

2LS
= η. (D.23)

Hence, the computational cost of the reconstruction with TIA-TFDK is η times lower than with
the standard reconstruction algorithm. This justifies the name of efficiency factor for η.
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backprojection, 25
blood-brain barrier, 9, 10
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C-FDK algorithm, 38
channels, detector, 26
compartment model, 10
cone-beam geometry, 35
continuous scanning mode, 75, 110
contrast agent, 9

discontinuous scanning mode, 75, 110
dose, 19, 95
dyn. backprojection approximation, 51, 58
dynamic CT, 45
dynamic process, 11
dynamic rebinning approximation, 51, 57
dynamic reconstruction algorithm, 47

equivalent rays, 25, 31

FDK-like reconstruction algorithms, 35
filtered backprojection (FBP), 23
full-scan reconstruction, 25, 41

generalised Parker weighting, 48

ideal interpolation, 71, 142
ideal low-pass filter, 104, 143
inconsistent projection datasets, 47
interstitium, 8, 10
iterative reconstruction methods, 21

mAs product, 19, 95

Nyquist condition, 141

optimal-SNR estimation, 104
optimal-SNR signals, 104

Parker weighting, 31
partial block backprojection, 50
partial volume effects, 18
perfusion, 9
perfusion signal, 11
polynomial spline interpolation, 72
polynomial spline smoothing, 106
projections, 20

quantum noise, 18
quasi-equivalent rays, 41
quasi-equivalent rays approximation, 41

Radon transform, 22
Radon values, 20, 33
Ram-Lak filter, 25
reconstruction algorithm, 20

sampling condition, 141
Shepp-Logan filter, 25
short-scan reconstruction, 25, 40
signal to noise ratio (SNR), 104
slope method, 9
statistical reconstruction, 21

T-FDK algorithm, 36
temporal interpolation approach (TIA), 71
temporal smoothing approach (TSA), 110
TIA-CFDK algorithm, 78
TIA-TFDK algorithm, 77
time-attenuation curve (TAC), 11
tissue, 8
Tuy-Smith condition, 33

views, number of, 26
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