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ZUSAMMENFASSUNG

In-vivo Bildaufnahmen der Netzhaut sind in der Ophthalmologie die Grundlage
zur Diagnose retinaler Erkrankungen. Die Auflésung der Bilder ist jedoch — neben
der unvermeidbaren Beugungsbegrenzung aufgrund der endlichen Pupillengrofie —
durch die nicht perfekten, Aberrationen hervorrufenden, optischen Elemente des
Auges eingeschrinkt. In der Astronomie bestitigten erste Testmessungen von at-
mosphérischen Aberrationen mit dem neuartigen 4-seitigen Pyramidensensor die
Vorteile dieses Sensors gegeniiber konventionellen Wellenfrontsensoren. Diese Ar-
beit stellt einen Pyramiden-Wellenfrontsensor vor, der die Messung von Aberratio-
nen und ihre Kompensation an einem konfokalen Laser Scanning Ophthalmoskop
ermdglicht. Hierfiir wird jedoch ein 3-seitiges Pyramidenprisma verwendet und ex-
perimentell gezeigt, daf dieses Prisma, das einfacher in der Herstellung ist als das
4-seitige Prisma, einen gleichwertigen Sensor darstellt.

Die Steuerung des deformierbaren Spiegels, welcher die Aberrationen kompensieren
kann, wird durch ein kiinstliches neuronales Netz auf Basis der Sensordaten re-
alisiert. Mit dem trainierten neuronalen Netz konnten Aberrationen von 150nm
RMS bereits auf die Halfte reduziert werden. Das neuronale Netz setzt sich zusam-
men aus einem 2x4-schichtigen convolutional S C-Netz, das Merkmale aus den
Signalbildern der Pyramide extrahiert, und einem 3-schichtigen, iterativen Back-
propagation-Netz, das die bené6tigte Deformation des Spiegels zur Korrektur einer
gegebenen Aberration ermittelt.

ABSTRACT

In-vivo imaging of the eye’s fundus is the basis for the diagnosis of retinal diseases
in ophthalmology. However, the resolution of the images is limited — besides the in-
evitable diffractive limitation by the finite size of the pupil — by the imperfect optical
elements of the eye, causing aberrations. In astronomy, first test measurements of
atmospheric aberrations with the novel 4-sided pyramid sensor have confirmed the
benefits of this sensor compared with conventional wavefront sensors. This work
presents a pyramid wavefront sensor for the measurement of aberrations and their
compensation on a confocal laser scanning ophthalmoscope. By contrast, a 3-sided
pyramid prism is used and it is demonstrated experimentally, that this prism, which
is easier to manufacture than the 4-sided prism, reveals to be an equivalent sensor.
The control of the deformable mirror which can compensate the aberrations is im-
plemented by an artificial neural network based on the acquired sensor data. With
the trained neural network, aberrations of 150nm RMS could already be reduced
to half the error. The neural network is composed of a convolutional S _C-net of
2x4 layers, which extracts feature information out of the signal images of the pyra-
mid, and a 3-layer, feed-forward backpropagation net, that determines the required
deflection of the mirror in order to compensate for a given aberration.






”...alle Dinge ziehen durch eure Seele in bestédndiger Umarmung:
das Erwiinschte und das Gefiirchtete,

das Verabscheute und das Geliebte,

das Angestrebte und dasjenige, dem ihr entrinnen mdochtet.
Diese Dinge bewegen sich in euch

als untrennbare Paare von Licht und Schatten.

Und wenn ein Schatten verblasst und verschwindet,

wird das verbleibende Licht

zum Schatten eines anderen Lichtes.”

Khalil Gibran - Von der Freiheit
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Chapter 1

Introduction

Wavefront aberrations play an important and yet negative role during the
acquisition of high resolution images. In cell microscopy this is due to the
surrounding inhomogeneous aqueous; in astronomy due to turbulences in the
atmosphere; in retina imaging due to the non-perfect optical apparatus: mea-
suring the aberrations that distort the image quality and pre-compensating
them, increases significantly the resolution of the desired image. The prin-
ciple of such an adaptive optical system is the same in all cases: Wavefront
aberrations that diminish the image quality of the object under investigation
(cell, star, eye, etc.) are measured by a sensor. A controlling device translates
this signal to an actuator which then compensates the aberrations. Thus,
theoretically, the image’s resolution can become just diffraction-limited.
For an application in ophthalmology adaptive optics have to be compact,
handy and low-priced compared to systems used for example in astronomy.

A 3-sided pyramid prism was tested in this work as a wavefront sensor,
where its signal was translated for correction not analytically but by an
artificial neural network. The control unit thus was a computer which, via a
trained neural net, calculates the must value of the actuator from the signals
which have been measured before by the sensor.
4-sided pyramid prisms for aberration measurements were introduced 1996
for astronomy by Ragazzoni [Rag96|. First investigations for ophthalmology
with a pyramid sensor were done by Artal [Igl02] and recently by Dainty
[Cha06]. First tests with a 3-sided prism were made at the Max-Planck
Institute for Astronomy [Cos05].

This work presents a 3-sided prism pyramid wavefront sensor used in the
most sensitive mode, the so-called unmodulated mode, and with a controller
for the servo-loop being an artificial neural network.

The advantage of the pyramid sensor compared with other sensors such as

1



2 CHAPTER 1. INTRODUCTION

the Hartmann-Shack sensor, the Twyman-Green interferometer or the curva-
ture sensor is its adjustable resolution by varying the sampling of the image
signal and its adjustability of the gain, that is of the sensitivity. In modu-
lation modus the pyramid sensor is less sensitive but able to measure even
big aberrations. Modulation modus is when the wavefront - which is focused
to the pyramids tip - is moved periodically around the tip. Diminishing the
modulation amplitude while correcting, that is diminishing the aberrations,
makes the pyramid sensor more sensitive as its gain is increased. For very
small aberrations the amplitude can be zero. A calculation of the aberration
in this non-modulating, sensitive regime is more complex than in the modu-
lating mode and smallest misalignments or deviations from the parameters
that were assumed in the calculation lead to inconsistency between theoret-
ical prediction and experimental result. Thus if an adequate neural network
can be found and trained to recognize the aberrations out of the pyramid
sensor’s signal (i.e. out of the three pupil images), any small misalignment
or imperfection of the system optics and even noise would be taken into
account.

This thesis shows how a neural network can be used for regulation of an
adaptive optical system with a 3-sided pyramid prism as a wavefront sensor
to integrate it in a laser scanning ophthalmoscope. Although the adaptive
optical system can be used nearly identically in other scientific fields, this
work was evolved for the application on in-vivo imaging of the human retina.
It was developed for the integration in a scanning laser ophthalmoscope with
a pre-compensator for aberrations of big amplitudes with a pair of lenses
in a telescopic set-up for defocus and a phase-plate system [Zha05] for the
remaining aberrations of big amplitude.

A wavefront sensor for integration in an adaptive optics scanning laser

ophthalmoscope is presented in this work. With images of the retina of
higher resolution, diseases can be recognized sooner by a medical doctor.
In accordance with the current work done in our group (phase plates cor-
rection, new methods of investigating properties of the retina) this is one
more component to a low-price, simple-to-handle and optically high-quality
adaptive optics scanning laser ophthalmoscope.

A brief introduction explaining the advantages and the idea of adaptive
optics in ophthalmology will be given in the next chapter expounding the
definition and description of wavefront aberrations. The third chapter begins
with the geometrical description of the pyramid wavefront sensor before the
precise formulation with diffractive optics is derived afterwards. Chapter 4 is



devoted to the actuators that are used in this work: a deformable membrane
and a deformable segmented mirror.

The theoretical background about artificial neural networks which is neces-
sary in order to understand the network that was constructed and trained,
is presented in chapter 5.

In chapter 6 the laboratory set-up, consisting of the optical, the electronic
and the software components and their interface that were developed are
specified. The results of the work, the measurements with the pyramid sen-
sor, the neural network training and the work done on a laser scanning oph-
thalmoscope at Moorfields Hospital in London are presented in chapter7. In
the last chapter a discussion of the results and their relevance is given. The
work finishes with an outlook.






Chapter 2

Adaptive Optics for the
Human Eye

Knowledge about the human eye, including the retina, is available in great
detail through post mortem eyes in-situ imaging. Here, the histology of the
retina or retinal diseases in their end-phase can be described in detail by
microscopy up to a level of intra-cellular resolution.

This resolution cannot be achieved in a living eye by simple fundus imaging.
The aberrations — introduced by the imperfect optics in addition to the finite
entrance pupil of the iris — impede a similar resolution as attained with in-situ
imaging. To overcome the former restriction, adaptive optics (AO) have to be
integrated in intra-ocular imaging in order to compensate the deterioration
by aberrations.

2.1 Application of Adaptive Optics in
Ophthalmology

Scanning laser ophthalmoscopes (SLO) are frequently used in ophthalmol-
ogy in a standard procedure to identify numerous diseases like glaucoma,
diabetic retinopathy, macular holes, macular oedema or age related macu-
lar degeneration (AMD) |Bin06, Hud03, Rue98|. To obtain an image of the
eye’s fundus, pictures are recorded typically with a rate of 25 pictures per
second. Afterwards noise reduction can be accomplished by a software pro-
gram which averages over a set of e.g. 30 pictures returning an enhanced
image. Investigation in adaptive optics for ophthalmology is done worldwide
to reach maximum, i.e. diffraction limited, resolution of retinal images so
that retinal diseases can be detected in their early stage of development and
to obtain more detailed knowledge about the evolution of the diseases.

5



6 CHAPTER 2. ADAPTIVE OPTICS FOR THE HUMAN EYE

Figure 2.1: Averaged SLO images of the retina; left: fluorescine image of a fundus
with AMD; right: papilla with glaucoma (both images courtesy of E.Jalil, Hospital
Barros Luco, Santiago de Chile)

2.1.1 Scanning Laser Ophthalmoscope

A Scanning Laser Ophthalmoscope (SLO) scans a collimated laser beam ho-
rizontally and vertically. This is done with the scanner being conjugated to
the pupil of the eye. It is the unaccommodated eye itself, that focuses the
beam onto the retina to a spot. In this way, the spot intensity of the light
that is back reflected from the retina is measured point by point obtaining
a complete picture of the retina after one scanning cycle by means of a re-
construction software.

In the case of an optically perfect eye, 84% of the beam intensity [Ber03]
would reach and be focused onto the retina to a spot of the size of the cor-
responding Airy-disc, thus being only diffraction-limited by the size of the
pupil. However, for a normal eye, even an emmetrope one, imperfections

Figure 2.2: One single image from a z-scan (i.e. axial-scan), unaveraged, of the
low temporal part of the optic nerve, taken with our laboratory Heidelberg Retina
Tomograph.

of the optical components produce aberrations, so that the beam is focused
to a bigger and misshapen spot which will consequently decrease the image
resolution. Attempts to reach a better diffraction-limited resolution by in-
creasing the pupil to its maximum size of 7 to 8mm diameter fail because of
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the stronger distorting area more distant from the eye’s optical axis.
The beam can reach diffraction-limited size only by pre-compensating these
aberrations with an actuator in an AO system (see Sec. 2.3).

2.1.2 The light’s path through the eye

Pictures of the retina are acquired by 2-dimensional scanning of a low power
laser beam focused on the retina. "Pixel by pixel” the intensity of the back-
scattered light is measured by a photodetector (photodiode or photomulti-
plier) forming a picture after one scanning cycle. The beam or any light
that enters the eye when looking at an object has to pass various media of
the eye before reaching the retina. The back reflected light has to pass the
same eye components just in the opposite order before being measured by
an apparatus after it exits the eye.

Light first passes through the cornea (Fig.2.3) that gives the eye a power
of refraction of 43 diopter. The cornea is covered with a tear film of 10um,
protecting the eye from drying out and giving the cornea an optically smooth
surface. Each blinking renews the tear film distribution [Dub04]. The cornea
itself is approximately 700um thick, formed of 5 layers, the stroma with
around 500pm being the thickest layer.

sclera
choroid
retina

iris

cornea
macula/fovea

optic nerve

arteries and veins

Figure 2.3: Anatomy of a right eye, cut vertically. (Modified from [InsAl])

After the cornea the light passes the anterior chamber filled with an
aqueous humor before going through the pupil (the iris’ aperture, with a
diameter that varies between 1.5 and 8mm when adapting to bright or dark
light) and reaching the lens. The lens is curved more on its back than on
its front side. Its index of refraction is not homogeneous but increases from
the surface to the core from 1.39 to 1.41. By changing the shape of the lens,
accommodation to see far or near is accomplished. The possible variation in
power of refraction by accommodation is 14 diopter in adolescents, decreasing
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to 6 diopter and less for adults at an age above 40 [Kor94, Pat03].
The last path the light crosses before reaching the retina is the vitreous body,
a viscid and transparent hydro-gel with a water consistency of 99%.

The retina itself consists of 10 layers. Their order is called ’inverse’, as

the photoreceptor layer with the colour distinguishing cones and the rods
for seeing under low intensities is in the second to last layer (Fig. A.1). The
light has to traverse first all inner lying layers before being detected by the
photoreceptors and being converted into an electrical signal. This signal
is transported in the opposite direction from the outer plexiform layer (a
fiber layer with a multitude of synapses between the photoreceptors and the
bipolar and horizontal cells of the inner nucleus layer) over the inner nucleus
layer (also containing the amacrite cells and the cores of the Miiller cells) to
the layer of the ganglion cells where it is partly preprocessed. Finally, the
signal reaches the nerve fiber layer, the axons of the ganglion cells. These
fibers bundle to form the optic nerve where the signal is lead to the visual
cortex of the brain.
The pigment epithelial layer has appendices and the ability to retract them
in darkness and to protrude them in bright light to suppress light scattering.
A more detailed description of retina layers’ histophysiology can be found in
standard textbooks of ophthalmology (e.g.[Jun96]).

Simple optical eye model

When making theoretical calculations, the approaches are usually done using
an eye model having a length of 22.6mm from cornea to fundus. The term
fundus is used for the layers of the retina, the choroid, and the sclera.

The cornea and the lens can be dealt with as one single optical system
with its nodal point 17mm before the retina, and the principal point at the
cornea, 5.6mm away from the nodal point; one focal point is located at the
retina (fovea), the other focal point 17mm before the cornea.

Ocular and fundus reflection

Many fundus reflection models have been developed, an overview can be
found in [Ber03]. To summarise, the following can be said:

At all interfaces of layers with different index of refraction a part of the
beam intensity will be reflected. Ocular reflectors are the cornea, the lens
and the fundus. The fundus has a reflectivity of approximately 4%, that is
the added up reflectivity of the interfaces of sclera, of choroid, and of the
retinal layers - being less for dark and more for bright eyes. The receptors
reflectivity is said to originate from the disc stack [Kra96].
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The reflected intensity of cornea and lens is higher than the intensity reflected
at the fundus. Experimental set-ups for retinal imaging avoid this problem
by confocal imaging. Thus, hardly any light reflected from a plane not
originating from the retina passes the confocal pinhole to the detector.

2.1.3 Frequency dependence and eye tremors

To measure the aberrations of a human eye the patient is asked to fix his
view to a target. A patient fixating on a target will still be moving his eye
involuntarily, performing rotational and transversal movements.

Saccades are very fast movements of the eye with velocities up to 500° /sec
when looking at an object and scanning all parts of importance so that they
fall at the fovea for a sharp view. While for a patient with good fixation
abilities saccades can be discarded, microsaccades, micro-fluctuations and
involuntary small tremors, cannot. The origin of these small fluctuations of
the eye’s optics is not completely clear, but accommodation movements of the
lens, pulsation and micro-movements preventing saturation of the receptors,
among others, play a major role.

Hofer et al. [Hof01] measured a frequency dependence of the eye’s aber-
rations for up to 10Hz and for Zernike modes (see Sec.2.2) up to the 5th
order. They obtained a spectrum decreasing with approximately 4dB per
octave, that is, for the frequency increasing by a factor of 10, the power of
the aberrated light diminishes by a factor of 103.

Another factor that can suddenly change the amount of aberration is a
break-up of the tear film which happens after the break-up time ¢ gy =1045s
in normal eyes if the patient does not blink. Directly after blinking the tear
film is distributed homogeneously over the cornea. Lin et al. [Lin05] showed
on a study with 50 emmetropic subjects, that with normal eyes having an
average of 0.2um the root mean square error (RMS) directly after blinking,
RMS increases from 0.23um at ¢t = %tBUT to 0.3um at the moment of tear
film break-up. Thus, it is important to encourage the patient to blink nor-
mally to avoid this source of aberrations; otherwise the amplitude spectrum
will get higher values for a extended width of the spectrum.

Ocular micro-tremor are very small, irregular movements of the eye be-
tween 150nm and 2um (cornea displacement). This movements are caused
by extra-ocular muscle stimulation. The ocular micro-tremor has a peak to
peak mean frequency of 84Hz [Boj01].

According to the Nyquist theorem, a measurement of the micro-tremors
and all other eye movements requires a wavefront sensing of at least double
their frequency (around 200Hz). This shows the importance of sensors being
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fast enough to follow signals of these frequencies.

2.1.4 Polarizing effects of the eye

When entering with a linear polarized beam into the eye, the reflected
beam is not totally polarized anymore in the same direction. Reflected light
generally changes its polarization according to Fresnel equation. However, in
the case of a human eye the main contribution comes from the birefringence
of the cornea, lens and retina. A measure for quantifying the change of
polarization when the incident beam is linear polarized, is the so called degree
of polarization dp. It is defined as

I pol
I

dp= ————
pol + Iunpol

(2.1)
with I,,; being the intensity of the polarized light, and I, the intensity
of the unpolarized light.

The stroma of the cornea consists of around 100 parallel aligned sheets

causing the birefringent effect. The retardation is highest for a polarization
oriented 15° in nasal-down direction. The lens birefringence is very small
and can be neglected.
In the retina it is the retina nerve fiber layer (RNFL) which causes retar-
dation. The RNFL consists of parallel ordered axon bundles containing mi-
crotubes. They have cylindrical organelles with a diameter smaller than an
visible wavelength. The optical axis of the RNFL is parallel to its bundles,
the optical axis being the slow axis of birefringence. Retardation is propor-
tional to the thickness of the birefringent layer. As the RNFL is thicker above
and below the optic disc and the axons are ordered radially, the retardation
will be larger above and below the disc and will have a radial symmetry.

A similar effect happens at Henle’s fiber layer. Henle’s fiber layer is the
outer plexiform layer in the region of the macula. It consists of elongated
photoreceptor axons extending radially from the fovea. The layer is more
uniform than the peripapillary RNFL [Hua03, Zho02]. The retardation effect
of polarized light around the fovea can be observed with a polarizer-analyzer
set-up, that is a polarizer in the input and output beam, respectively, with
their axes in crossed orientation. It results in a double-brush like distribution
of the intensity distribution, the so-called Haidinger brushes [Gre02].

The added retardation from the retina (measured at the fovea) and the cornea
is around %)\ [Bue00], considering that all effects are wavelength dependent
and differ particularly from person to person.
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2.2 Wavefront Characterization

To pre-compensate the aberrations of the eye, the wavefront of the back-
reflected light is measured. The wavefront is described mathematically by a
set of Zernike coefficients.

2.2.1 Wavefront definition
From Maxwell’s equations the wave equation

2 92, (=
9 n® 0°u(7,t)

can be derived, where the scalar u(7,t) represents any vector component of
the electric field E or of the magnetic field ﬁ, n is the index of refraction,
and c the velocity of light in free space. Regarding a monochromatic wave

u(7,t) = Re {ur(?’) . e*i“’t}

we can substitute u(7,¢) in Eq. 2.2 and get the Helmholtz equation
n2
(V2 + Zwu, = (V2 + E)ur = 0 (2.3)

To describe a monochromatic wave in an inhomogeneous medium we rewrite
the space dependent factor u,(7) of the above wave to

w(F) = (7))
.27 g
= 04 (F) e (2.4)
using (7)) = ?\—25(?) for the phase of the wave; Ao is the wavelength in

free space of the monochromatic wave and S(7) is the so-called eikonal.
Planes with S(7) = const are called wavefronts. We can depict wavefronts
as those planes which have constant phase, or — in terms of geometrical optics
— those planes formed by all points with the same optical path distance of
the corresponding ray from the source point.

Substituting Eq.2.4 in the Helmholtz equation, and using the geometrical

approximation szr ~ 0 it can be shown [Goo05] that the so-called eikonal

equation
IVS(7)? = n*(7) (2.5)

emerges. The eikonal equation quantifies the relation between the wavefront
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and the index of refraction of a medium. In the case of a human eye this
explains not only the desired refraction of light on the surfaces of the cornea
or of the lens but also the undesired arising of wavefront deformations caused
by media or by surfaces which are not perfectly homogeneous or even by
particles with a totally different index of refraction as they can be found e.g.
in the vitreous body.

Hence, in the idea of light as wave, the wavefront is that surface in space
where the electric (or magnetic) field has the same phase, which is in accor-
dance with the geometrical formulation. A point source in free space would
thus form the well known spherical wavefronts.

When talking about aberrations, one usually refers to the deviation of a
wavefront from the ideal plane wavefront
E(7,t) = Re(Ege’ @~ K 748 = Re(Ege( " 1)
or the ideal spherical wavefront
E(7,t) = Re(%el(“’t_ r ) — Re(%ew( 1)

T T
where the phase ¢(7,t) forms flat planes and spherical surfaces, respectively,
of constant value for ¢ = const (Ey: amplitude, &: constant phase factor, %
wave vector, w: wave frequency).
In this work we will refer to the plane wavefront when talking about aberra-
tions.

2.2.2 Zernike polynomials

To describe mathematically a wavefront, we have to find a function mapping
from the 2-dimensional space to the 1-dimensional space. This function can
be decomposed in any complete set of orthogonal functions. For wavefront
aberrations with circular aperture and specially for application in ophthal-
mology, the representation by Zernike polynomials Z]' is very convenient
as the first polynomials include defocus and astigmatism, with which the
biggest part of an eye’s aberration [Cas02| can be formulated. The indices m
and n represent the azimuthal frequency and the radial order, respectively.
The general formulation of the Zernike polynomials in polar coordinates with
radius p and angle ¢ is
R™(p)sin(me); m <0
Zy'(ps @) =4 R (p); m =0 (2.6)
RE™(p)cos(me); m >0

with the term R, which depends only from the radius, being
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m( oy — (=1)'(n —)! L on—2i
R (p) go Sy 2.7)

A function f(p, ¢) can now be represented with this polynomial set using the

corresponding coefficients c;':

o
flpo)= > et Zy(p.9) (2.8)
n,|m|=0
In Appendix B the first 14 Zernike polynomials are formulated and illustrated
graphically. The indexation is changed there from Z" to one index Zj, with
k = (n(n +2) +m). The defocus polynomial Z3 for example, changes to
Zy.

A single number to quantify, obviously very roughly, the magnitude of
aberrations of a wavefront is the Strehl ratio S. It is the ratio between the
intensity of the image at the optical axis (z' = 0,3’ = 0) and the intensity
at the same point in the case of an ideal, aberration-free image.

Ip(2' =0,y =0)

S =
Iideal(x/ =0, y/ = 0)

(2.9)

2.3 Closed-loop Systems in Ocular Adaptive Optics

Adaptive optics (AO) have been developed since the 1970’s with the aim
to apply them for military and astronomic purpose, obviously starting with
much simpler devices than today [BiN73, Mik73]. It was not before the
middle of the 1990’s [Lia97]| that AO were implemented in ophthalmology
after progress had been made in ocular wavefront sensing [BiL94].

As for any closed-loop, 3 modules are necessary to improve the image
quality (Fig. 2.4): a sensor measuring the variable of the control path to
be controlled, an actuator that compensates the deviation of the variable
from its must-value, and a controller which extracts from the signal that the
sensor has measured the behaviour which the actuator has to follow. For
AOQ, to correct wavefront aberrations, there are several possible closed-loop
systems, as there are different combination possibilities, depending on which
type of actuator (membrane mirror, segmented mirror, liquid crystal mod-
ulator (Chap. 4)), which kind of sensor (Hartmann-Shack, curvature sensor,
interferometer, pyramid sensor (Chap.3)) or which kind of controller is used.
The controller is usually a computer, which either can supervise the loop by
analytical or numerical calculation from the sensor’s signal, or by a trained
neural network.
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Figure 2.4: Closed-loop diagram

Although one of the 3 components may be quite fast, the slowest compo-

nent determines the bandwidth of the overall system. Besides, the correction
of the wavefront is not done in one cycle. Even if the exact aberration could
be measured at once, control theory shows [Sch03], that for stability reasons,
the correction is not possible with any arbitrary frequency and especially it is
not possible to correct the deviation in one step. Therefore several loops are
required to correct the wavefront to the optimum. The system’s bandwidth
is thus given by the bandwidth of one loop divided by the number of loops
required to reach full correction.
That is the reason why in all works done until now, closed-loop for ocu-
lar systems achieved bandwidths of 5Hz [Fer0l, Hof01] and 12Hz [Dia03]
although the wavefront measurement can be done with frequencies up to
50Hz and 240Hz respectively, and even >300Hz [Nir(5] using in all cases a
Hartmann-Shack sensor.

This work is done for developing an AO system with a 3-sided pyramid
prism as sensor, a neural net as controller and a membrane mirror as ac-
tuator, to integrate it in the Heidelberg Engineering Tomograph (HRT), a
confocal scanning laser ophthalmoscope (¢SLO). The first implementation of
an AO system in a ¢SLO was done by Roorda et al. [Roo02]| with a single
loop frequency of 30Hz. They achieved a RMS of 0.12um over a 7Tmm pupil
with a lateral resolution of 2.5um which is double the resolution that is given
by a conventional cSLO (HRT) without AO [HE(04].

The pyramid sensor was first applied for ophthalmology by Iglesias et
al. [Igl02]. They used a modified 4-sided pyramid to measure the optical
aberrations up to 4th order of Zernike polynomials. Chamot et al. [Cha06]
presented recently the first application of the pyramid sensor (also a 4-sided
one) in AO for the eye, achieving a RMS of 0.14um over a 6mm pupil.



Chapter 3

The Pyramid Wavefront Sensor

Different sensors are available to measure the aberrations of a wavefront:
The curvature sensor, the Hartmann-Shack sensor, the Twyman-Green in-
terferometer, and the pyramid sensor. Apart from the pyramid sensor, the
sensors shall be described briefly here.

Hartmann-Shack sensor

Measurement of a wavefront with the Hartmann-Shack sensor (HSS) is car-
ried out by a two dimensional array of micro-lenses which focuses the wave-
front in the focal plane of the lenslet array in as many spots as the number
of microlenses the wavefront has illuminated. According to the mean tilt
Qp = %—V;/ in x-direction and o, = %—IZ in y-direction of the wavefront over

the subaperture of one lens, the focused spot will be shifted by

A oW ' 1144
Adly = frre, Ayp = [ (3.1)

* dxt’

away from the center! for small aberrations; 7 is the corresponding microlens,
f the focal length of the microlens, zr and yr are the coordinates in the
focal plane, x and y the coordinates in the plane of the lens array. W is the
wavefront deviation from the plane wave and is just the eikonal S of section
2.2, denominating it here W. Thus, the spot displacement is proportional to
the mean local wavefront slope and a reconstruction of the wavefront can be
processed with the exception of the irrelevant piston value. For large mean
w

tilts the exact relation o, = 7 = arctan % (and accordingly for the y-

direction) has to be applied.
If the unexpanded beam is illuminating the lenslet array, the spacial resolu-
tion of the HSS is given by the size of the micro-lenses. Phase information

the position of the spot for an unaberrated wavefront

15
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is retrieved from the discrete values of local wavefront tilts.

Interferometric sensor

In a Twyman-Green wavefront sensor, similar to the Michelson-interferometer,
one plane wavefront is divided by a beamsplitter into two. One of them is
aberrated by crossing or being reflected at the optical medium to be tested.
The aberrated wavefront is then superimposed with the reference plane wave-
front. The resulting interference pattern depends on the phase differences of
both wavefronts. Non-linear numerical calculations provide the aberrations
of the deformed wavefront (see 6.2.2).

Curvature sensor

In a curvature sensor, the relation between signal and phase is a non-linear
one as in the interferometric sensor. It measures the Laplacian of the wave-
front distortion [Rod90]. For that purpose a perfect lens is placed in the
wavefront which is being tested. The intensity profiles in two complemen-
tary planes, located at a distance d before and at the same distance after the
focal plane are detected. The difference of the intensities is approximately
proportional to the local wavefront curvature. But the sensor’s validity is
restrained to the case of a uniform intensity distribution in the plane where
the phase is desired to be known [Sot03]. The phase ¢ can be calculated
from

V2(z,y) - Io = — [ 25|

0z
if z is the direction of propagation. To reconstruct the wavefront, the Poisson
equation must be solved.
The gain (that is the response of the sensor relative to the aberration) can
be changed ”on the fly” by regulating the amount of defocus which is used
to retrieve the wavefront Laplacian.

Pyramid sensor

Like the curvature sensor, the pyramid sensor (PS) can also change the gain
on the fly by changing the modulation amplitude. In modulation mode and
for small aberrations, the response is a good linear approximation to the
wavefront derivate. The resolution is given, as for the curvature sensor, by
the amount of sensor pixels used which can be changed easily. Although the
pyramid sensor is able to measure large aberrations it is also very sensitive
to smallest aberrations.
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3.1 Pyramid Sensor - The Geometrical Description

It was Ragazzoni in 1996 who proposed to use a prism with pyramidal form
for wavefront sensing in astronomy [Rag96]. His idea was based on a very
old method to test the focal point of a lens, the so-called Foucault knife test.

approximately

plane wave front tesklens

Knife edge

defocus spherical aberration

Figure 3.1: The Foucault knife test for a lens with the knife edge placed at the
expected but wrong focal point (top). The bottom pictures show the illumination
after the knife edge for a lens with defocus and for a lens with spherical aberration.

This test consists of illuminating the lens which is to be tested with a
plane wavefront and to place a knife blade in the supposed focal plane, so
that the knife edge is oriented for example horizontally and is 'touching’ the
optical axis (Fig.3.1). If the real focus is more distant from the lens than the
knife, the upper half of the rays is blocked resulting in an illuminated upper
half circle in the plane of observation. For a lens with spherical aberrations,
where the outer rays have a focal length f, closer to the lens than the focal
length f; of the inner rays, the blade introduced at a focal distance between
fo and f; will block the rays coming from the inner upper half and those
from the outer lower half resulting in the complementary image (Fig. 3.1).

If the knife edge is replaced by a roof prism, none of the rays will be
blocked, but the upper half of the rays will be separated spatially from the
lower half by refraction. With such a roof prism (see Fig.3.2) we only can get
information of the aberrations in one dimension, thus a pyramid prism with
at least three sides is needed to distinguish both dimensions. The pyramid
can have n > 3 sides? to get information about the aberrations in both
dimensions perpendicular to the optical axis [Cla03].

In the pyramid sensor a perfect lens with a well-known focal length focuses

2the so called number of "sides” always refers to the number of facets around the tip
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Figure 3.2: A roof prism, a 3-sided pyramid prism and a 4-sided pyramid prism.

the wavefront to be tested onto the pyramid’s tip which is placed exactly at
the focal point of the lens.

3.1.1 The 3-sided prism

We denote a coordinate system (z,y) at the pupil plane, that is the plane
of the lens, and a coordinate system (zf,yy) at the focal plane of the lens,
that is the plane perpendicular to the optical axis including the pyramid’s tip
position, with both x-coordinates horizontal, and both y-coordinates vertical,

the origin being on the optical axis. A ray emitted from a point Q(x’;y’) in the
BW(ax’,y’) and 8W(8a:’,y’)
w Y

entrance pupil that has a slope in x- and y-direction

respectively, will reach the point Qf(z;y}) in the focal plane with

P oW (x,y) OW (x,
@y yp) = [ < 8(m y), 8(y y)>

. (3.2)

v=v
A ray originating from a point in the lens pupil will either be displaced to
face Ay, Ay, or Az of the pyramid (Fig. 3.3) depending on the signs of the

b A3 e

Figure 3.3: Topview on the tip of the 3-sided pyramid prism with its 3 refracting
planes.

oW (z,y)

W and oy It will reach the corresponding pupil in the

derivates
image plane as can be seen in Fig. 3.4, where the ray reaches the lower facet
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according to its tilt and thus illuminates the corresponding point in image
pupil Ps, while the conjugate points in image pupil P; and image pupil P
remain dark.

So far, only information about the sign of the wavefront derivation can
be obtained as e.g. for a small positive defocus and a big positive defocus the
image is the same. To get an quantitative information about the aberrations
the pyramid can be moved circularly. This is done by moving the pyramid
with its symmetry axis remaining parallel to the optical axis, letting the tip
describe a circle of radius rp (the modulation amplitude) with the frequency
% around the origin of the (xf,ys)-plane. Alternatively the beam spot can

3-sided image plane
pyramid f P

— // 4
1 ‘ /Py
/ \ ‘A

|

—
|
|
|
- \‘ B
1=
==
~

entrance pupil lens image lens

Figure 3.4: A ray from a generic point in the entrance pupil with a tilt will
not be focused on the pyramid’s tip but will be displaced from the focus. It
will be refracted by one of the three pyramid’s planes to the corresponding
pupil. The vertex of the pyramid is positioned at the nominal focus point of
the pupil lens.

be modulated around the fixed tip with a piezo-driven motor. Assuming that

the intensities of the pupils are integrated over one period T, the intensity

BWB(x,y) and oW (z,y) )
z oy

pattern of the pupils now depends on

3.1.2 Modulation of a roof prism

To derive the signal in case of modulation, let’s consider the one dimensional
case with a roof prism. Assuming that the displacement of the ray from the
roof edge due to a slope %@f’y) iseg. f- %;’y) = h < 0 (Fig. 3.5); if
a sinusoidal modulation with amplitude a (corresponding to 7, for circular
movement) and frequency f = % of the pyramid moving parallel to the y-
axis is done, the spot will remain within a time interval At¢; in the upper
roof facet, and within a time interval Aty > At in the lower roof facet, with
Aty + Aty = T'. If the intensities of the two pixels in the two image pupils

are integrated over one period the ratio between the intensity [, and the
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intensity Iy, is equal to the ratio of the time the spot spends in each facet of

the roof-prism, that is
Aty _ I,

Atq Iy
if I,, is the intensity of one pixel measured in the pupil corresponding to the
upper facet and I, the intensity of the equivalent pixel in the lower pupil.

Y

B S

Figure 3.5: Sinusoidal modulation in one dimension of a roof prism. The beam
is focused at a distance h<0 from the roof edge when the prism is in its center
position.

If the blurred spot lies inside the modulation amplitude, the signal will
never be saturated; that means — regarding only one dimension — that
% < % If additionally the aberrations are small compared to the
modulation amplitude the signal is approximatively linear to the wavefront
derivative (right curve, Fig. 3.6), like it is the case in the HSS.

The gain of the sensor can be adapted in closed-loop. When starting
closed-loop with big aberrations, the modulation amplitude has to be big
enough, so that the signal is not saturated. While correcting and thus de-
creasing the aberrations, the amplitude is diminished and the sensor keeps

in this way a high sensitivity and maintains a good signal to noise ratio.

= —

v

72“ | | I J /
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<

0 0 0
slope slope slope
geometric optics Fourier optics with modulation

Figure 3.6: Intensity difference of conjugate pixels in the pupils, depending on
the tilt (slope) of the wavefront: in geometric optics for a static pyramid (left), in
Fourier optics for a static pyramid (middle) and for a modulated pyramid (right).

3.1.3 The 4-sided prism

To obtain the aberrations in x- and y-direction two roof prisms oriented
perpendicularly to each other are needed or, equivalently, a 4-sided pyramid
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prism is need. By defining the signals S, = S;(z,y) and S, = Sy(z,y) for
a pupil point at * = [ and y = m in the entrance pupil as the normalized
intensity differences that the corresponding pixels have in the four pupil
images, we can write this relation the following way:

ow\ — itl)—(a+ls)
9z |1 Sz(l,m) = Is Lm
oW ~ _ (h+I2)—(I3+14)
%y l,m Sy(l’m) - Is I,m

where I, is the intensity at the corresponding pixel (l,m) of pupil
n ={1,2,3,4} in the image plane; I, is the overall intensity of that pixel in
all 4 pupils. In the geometrical approximation S, and S, are proportional
to the slopes in x and y direction respectively.

The sampling (corresponding to the spatial resolution) is given by the
number of pixels on the detector (CCD-camera) that are used for each pupil.
So, to enhance resolution for a given sensor, the image pupil size has to
increase; this can be done easily by increasing the focal length of the image
lens in Fig. 3.4 assuming that the intensity is high enough to keep a tolerable
signal to noise ratio.

3.2 Edge and Tip Quality

The minimum necessary edge and tip quality is determined by the smallest
spot size, i.e. the Airy-disc of a diffraction limited wavefront for a circular
pupil. This means for a limiting pupil of radius r, and wavelength A and
lens of focal length f a spot size of radius
- A
T iy = 1.22 Y (3.3)

2-7°p

To get a quantitative value we anticipate here the parameters mentioned in
chapter 6.3; we get, for our wavelength, our focal length and our entrance
pupil, a diffraction limited spot of radius 44y = 80pum.

If a loss of 20% caused by scattering of light at the turned edges of the pyra-
mid is tolerated, the width of the edges has to be <18um. For a loss of less
than 10% on the edges the width has to be <9um wide. Producing pyramids
with such sharp edges and such flat facet angles® is very difficult, especially
taking into account that a further demand is that the facets should be as
plane as possible near the tip (that is at distances around the tip, where
the wavefront is focused) and at the pyramid’s base, where the beam(s) are

3around 3° are used in astronomy reaching a roof length of 9um and turned edges of

9.2um [Rag00]
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transmitted. The pyramids used at the moment in AO systems are 4-sided
pyramids. They have two additional inherent problems compared to 3-sided
pyramids. First, for an edge production of the same quality, i.e. the same
width as for the 3-sided pyramid, the amount of scattered light is (at least)
33% higher for the 4-sided just because of the additional edge. The second
disadvantage is that while polishing not a tip but usually a roof is created.
Consequently the area able to scatter light increases and the geometrical
symmetry is not given anymore. When polishing the last (two) side(s) it is
very difficult to avoid a roof, which happens when the lapping is stopped too
early or too late. Further, for flat pyramids the polishing agent can pass on
to already good polished faces, deteriorating them. When polishing a 3-sided
prism no lapping problems arise.

ratia of reflected intensity

i}

i . ; i i i . ;
0 005 01 015 02 025 03 035 04 045
degresirad

Figure 3.7: Signal loss when focusing on the pyramid’s tip. The cause is imperfect,
finite edge and tip size of the 3-sided (a) and the 4-sided (b) pyramid and loss of
light by reflection (right).

Additional signal loss is due to the reflected light on all surfaces. Anti-
reflection coatings that are used for other optics like lenses are avoided here
as the coating distribution on edges is critical and not as homogeneous as it
can be manufactured when having continuous, smooth surfaces.

A few years ago a group in Basovizza-Trieste, Italy, manufactured a pyra-
mid prism of plexiglass by means of deep x-ray lithography [Ghi03]. The
quality achieved with this method is easier to reproduce than with the hand
made’, polished prisms. The prism that they produced had a vertex angle of
178.3°(that is a facet angle of less than 1°) and turned edges of 35um which
is not as good as the turned edges achieved with polishing.

Fresnel equations quantify the amount of light that is reflected in de-
pendence of the polarization of the light. As can be seen in Fig. 3.7, for
small angles of incidence — as it is the case for the flat pyramid used — the
transparency is nearly the same for both polarizations. The curves are calcu-
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lated with n = 1.513 representing the refraction index of BK7 glass for both
wavelengths used in this work (ngse = 1.5151, nzgs = 1.5111 [Mel06]). If
the facets’ slope is too big, it will not only be difficult to capture the image
pupils with one sensor, but the signal attenuation through the pyramid will
depend on the polarization.

3.3 Beam Splitting by the 3-sided Pyramid

The splitting of the focused beam on the 3-sided pyramid happens at geo-
metrically symmetric facets Ay, As, and As. Mathematically we denote this
as transmission functions Ki, Ko, and K3 for each facet, with transmission
1 in the corresponding facet area and 0 outside.

1; m>0Ay>;1-m;
Kl(xvy):{ 0: else V3
1, 2<0Ay> L - T

=

0; else

1; <O0ANy< L o)A (z>0Ay < =+ 2);

0; else

The 3-sided pyramid thus splits the incoming beam into three beams. The
centre of these three beams has a deviation angle 7" from the optical axis
in three opposed directions, the so called splitting angle. ~” depends on
the angle between the facets. The deviation angle from the optical axis is,
applying Snell’s refraction law, derived as

1
siny” =n - sin(y — arcsin(siny - —)) (3.4)
n
with + being the angle of a pyramid facet relative to its base, which is equal
to the incidence angle of the center of the wavefront. For small « this can
be simplified to

7' = An-1).

If r, is the distance of the pupils’ center to the optical axis, the distance d,
between two of the three pupils will be d, = rp\/g. So at a distance D from
the vertex of the pyramid the distance between the pupils is d,, ~ v/3D-tany".
The approximation holds, as long as we can neglect the parallel shift inside
the pyramid.
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3.4 Diffractive Description of the Pyramid Sensor

The description in terms of geometrical optics depicts the basic idea of how
the PS works so it is understood intuitively. This geometrical approximation
can be used very well to describe the PS in modulation operation. However,
it is clear, that as soon as we deal with a static pyramid where the beam is
focused on the tip, diffraction can no longer be neglected.

The pyramid’s facets can be seen as 3 spacial filters, the tilt of the pyra-
mid’s facets only serving for separating the 3 images in space. When the
wavefront’s aberrations are quite small, the beam will be focused to a small
spot too, the interference and diffraction effects then playing an important
role. In the following, the relation between the electric field in the pupil
image plane and the electric field in the entrance pupil is derived.

Let the entrance pupil be defined by the opening of the perfect lens of
focal length f and of radius 1. We name the coordinates of the plane of the
entrance pupil (z,y) as in section 3.1.1. At a distance of one focal length, we
have the focal (or Fourier) plane (zf,%y), and at one additional focal length
we nominate the image plane with (z;, y;).

Fraunhofer diffraction describes the electric field distribution in an image
plane at infinity after diffraction of a wavefront on an aperture. With a lens
this image can be brought to a finite distance, that is, to the focal plane.

It can be shown [Goo05] that - apart from a constant factor - the electric field
Ag(xy,ys) in the focal plane is the Fourier transformation F of the electric
field A(x,y) of wavelength A in the aperture plane,

+oo 27
Ap(zsyp) = /[ Alw,y)eap | —im—

A = [ [ Atwyenp iz + g dedy
= FlA@ )} (3:5)

(xfr 4+ ypy)| dedy

replacing 2y and y; by the spatial frequencies 7y = % and gy = % in the

second line. If no optical component is placed at the focal plane the wave-
fronts will propagate to the image plane, where the electric field A;(x;,y;) is
the inverse Fourier transformation F~! of the electric field A¢(Zy,7¢) in the
focal plane:

Ai(ziyy) = F Y{Ap(Es,0p)}

—+oco
= / Ap(Zy,gg)exp [+i2m(T pz; + Ypyi)| dT s Ay
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If the 3-sided pyramid is placed at the focal plane, it acts as a spatial filter
there. To calculate the electric field distribution in image pupil P, we can
think of the pyramid as a transmission filter with transmission 1 in the area of
facet A; and transmission 0 for the remaining areas A and As as in section
3.3, but adding a phase term to take into account the tilts of the facets.
Further z is renamed to Zy and y to y; as the "filter” is located in the focal
plane. Grouping to one single transmission function K and re-expressing the
domain, we can write

i2ms(—V/3% p+3§ iy iy

ei2ms( 1+395) -5 < arctan(@—f) <3
K(Z¢,9f) = ei2ms(V3E+377) 5 < arctan(%:;) <z

i2ms (67 T 9ry o Ux

e12ms(635) 5 < arctan(jf) <5

where s is the slope of the facets and the term in brackets after s is the pro-
jected distance for a point on each facet to the tip, i.e. the distance between
the tip and the point’s projection onto the centre line of the corresponding
facet.

The electric field in the image plane is thus given by the inverse Fourier
transformation of the field in the focal plane multiplied with the filter func-
tion K (Zf,7s). We then get the following expression describing the field in
the image pupil:

Ai(xiy) = {K(ﬂ«“f yr) - Ar(Tg,95)}
// K(@s,g5) - Ap(Z4,77) .e+i27f(57fri+3?fyi)} di ¢ dijy
= F YK (@5, g5) - F{A(z,9)}} (3.6)

Using the convolution theorem

Flaoby = Fla} F{b}
= A-B = F{FYAyoF YB}

we can rewrite Eq.(3.6) to

Ai(wi,yr) = FHF{k(z,y)} - F{A@, )} - (3.7)

As the convolution and the Fourier operator are linear operators we can
simplify this to
Ai(ziyi) = k(i yi) © A4, Y3) (3.8)

if k is the inverse Fourier transformation of K, k(z;,y;) = F {K (%, 9y)}.
So, the electric field of the pupil images is given by the convolution of the
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inverse Fourier transform of the filter function with the electric field in the
entrance pupil.



Chapter 4

Active Elements

Two different actuators are commonly used to correct the aberrated wave-
front in adaptive optics: liquid crystal transmission plates or deformable
mirrors.

Liquid crystal modulators alter polarized light passing through them with
a change of phase and amplitude. This technique has the disadvantage of
being only capable of a slow bandwidth comprising only a few Hertz. But
investigation is being done in this field [Pis06] and regarding the high pro-
duction quantities in the area of liquid crystal displays, it is probable that
fast and cheap crystal modulators will be available soon.

Deformable mirrors act independently of the light’s polarization and are
faster than the liquid crystal modulators. In this work a membrane mirror is
used as actuator in the optical set-up. In addition, also a segmented mirror
was tested.

4.1 Membrane Mirror

The deformable mirror consists of 37 hexagonal pistons lying under a silicon-
nitride membrane coated with aluminium. The membrane is stretched over
a frame with a round opening. Its deformation is caused by electrostatic
forces between the pistons and the membrane. The deformation is not linear
to the applied voltage between piston and membrane, but exhibits in good
approximation a quadratic dependence.

The electrostatic force F' is given by

F= g%v? (4.1)

A is the area over each piston, V is the voltage between a piston and the
membrane, d the distance between membrane and piston, and ¢ = ¢,.¢¢ is

27
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the permittivity.
If a bias voltage V; is applied and a much smaller control voltage V, is added
to it, so that V. <V}, then the sensitivity % of the mirror becomes linear:

A F A
F=e_(V+V.)? & —~2=V 4.2
d2( b+ C) ‘/c d2 b ( )
Complexity comes from the fact that the pistons are not independent, i.e.
putting a voltage on one piston moves the membrane over it but also over
the surrounding pistons (cross-talk). This is expressed mathematically by
the Poisson equation
P

where D is the deflection of the membrane, p = F/A is the load and T is the
tension of the membrane which is assumed to be constant. The load depends
on the distance d, which itself depends on the applied force: p = eV?2/d(p).
The boundary condition is given by the circular opening of the wafer.

The Poisson equation, describing the shape of the mirror, must be evalu-
ated under the condition D.(z.,y.) = 0, i.e. no deflection of the membrane
where it is fixed to the wafer at its contour (z.,y.) [VdoS95].

The order of magnitude of d is around 100um with a deflection of a few
wm (see chapter 6.1.1).

4.2 Segmented Mirror

The deformation of a micro-electromechanical system (MEMS) mirror is done
via electrostatic forces like in case of the membrane mirror. The MEMS mir-
ror consists of an array of many very small segmented mirrors (pixel mirrors).
It is fabricated using modified silicon technology production processes of the
integrated circuit industry. Photolithography is used making the production
very precise, producing devices of pum-size and reducing the costs per unit,
as huge fabrication amounts can be produced nearly at the same expenses
as smaller amounts.

The pixel mirrors have a squared shape and are connected to the substrate
by four thin legs, so a small force is needed to sink each mirror. The behaviour
of a pixel mirror depends amongst other things on the thickness § of the
squared pixel plate, the distance h between the plate and the substrate, and
the width d of a square. For a same deformation amplitude, a smaller voltage
has to be applied between the plate and the electrode on top of the substrate,
the bigger d and the smaller h and ¢ are.



Chapter 5

Neural Networks for the
Pyramid Sensor

Compared to the geometrical regime, the diffractive regime of the pyramid
sensor is mathematically more complex, especially not being linear in its
behavior. Smallest alignment errors cause big signal changes in this sensitive
region. So the idea of using an alternative controller emerged: to use an
individual neural network that perfectly fits the special set-up instead of
an approximated analytical calculation frame. Artificial neural networks
can learn and realize control algorithms which are mathematically difficult
or which cannot be derived analytically. Thus, assuming that a control
algorithm exists, a net can be built, letting the net generate the appropriate
control algorithm during network training.

Although neural networks have been developed for more than 4 decades,
it is still a fuzzy tool in the sense that there is no exact "recipe” for what
the neural network (NN) should look like for a given problem. For specific
problem types, like for example, face recognition, function approximation,
classification, and the like, a rough NN structure is recommended. But the
subtle details of the net, which make it the best fitting net for the specific
task, have to be improved step by step with "the experimentor’s experience”.

For an introductory explanation a neural network can be seen as a black
box having an input and an output: the input being for example an array
or vector of size n, and the output a vector of size m. Imagine the black
box being an unknown function f: R” — R™ with a multitude of adjustable
parameters, the so-called weights. Now the weights should have those values,
that — for all given input-output-pairs of a problem — f will map the input
vector onto the output vector. For the given task that the network shall

29
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inputs : Z f —> O output
--ac

Figure 5.1: Basic unit of a neural network

represent, many pairs are required; the more complex the problem, the more
examples have to be available. This is similar to the case of doing regression
of a data set. The search of the adequate weights is called training or learning.

Instead of an input vector we have a two dimensional matrix as input: the
image of the 3 pupils. Our output vector is the wavefront aberration, coded
as the height levels of the mirror pistons. Therefore f maps (R" x R") — R™
with n X n being the number of pixels of the pupils image and m the number
of pistons producing the aberration for compensation.

5.1 Structure of a Neural Network

A neural network is composed of many units, also called nodes or neurons,
which are connected by links. A number, the weight, is associated with each
link.

Neurons in an artificial neural network are usually structured in layers. The
network sketched in Fig. 5.2 as an example, consists of 4 layers: the input
layer (although this is a layer without calculating nodes as will be seen later)
with four inputs, the first neuron layer with 3 neurons, the second layer with
4 and the last layer, the output layer, with two neurons.

In a fully connected network each neuron of one layer is connected to all
neurons of the layer before (layer on the left side) and to all neurons of the
layer afterwards (layer on the right side) via links. The notation of a link’s
weight wﬁj stands for the weight to neuron ¢ of layer number [ from the j-th
neuron of the previous layer. The output value of a neuron is obtained from
a simple computation depending on the input values and the weight values.
Each input to a neuron (usually the outputs of the neurons of the previous
layer) is multiplied with the weight of the link it is passing through (Fig.5.1).
These assessed inputs are summed up in the neuron, adding optionally a bias
b; the sum is used as new input for the activation function f,.. The activation
function is a nonlinear function that calculates the neuron’s output value
from the weighted sum. Typical activation functions are the sign function,
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Figure 5.2: Adjustment of the weight coefficients in a fully connected network with
4 layers, 4 input values and two output values.

the sigmoid function or the hyperbolic tangent function.

1, z> 1 2]
+1,220 ;i sigmoid(r) = ————;  tanh(z) = R
~1, <0 1+e® e +1

sign(z) = {

The activation function can be in principle any function that is monotone,
continuously differentiable (the sign function being an obvious exception),
with a finite range. Usually all nodes of the network have the same activa-
tion function.

The calculation of the output values from the input values is executed straight
forward from layers on the left to the right. Networks with more than two
layers are called asynchronous networks because the activation of the neu-
rons of one layer is processed parallel (that is synchronous), but beginning
with the first layer on the left and following layer by layer to the right.

The outputs out; and outs in Fig. 5.2 are calculated as follows:

To refer to the different values of the net, it is convenient to represent all
inputs by an input vector %, the outputs by an output vector oul and the
weights of the links connecting layer (I — 1) and layer [ by the weight matrix
W'. W' is of size (t x s) if s is the number of neurons in layer (I — 1) and
t the number of neurons in layer [. We now can describe the output of the
net above by:

— —

oul = 0" = fae(W" - fac(W" - foc(W'in)))

Building a neural network requires a decision on which form the net should
have, that is, how many layers the net should have, how many units each
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layer should have and how they should be connected with each other.

In the example above the net is linked unidirectionally. This means, outputs
from one layer are connected only with layers to their right. Such networks
are called feed-forward networks. If on the contrary an output of a layer
serves as input of a neuron of the same layer or of any layer before it, forming
a cycle, the net is called recurrent.

The layers L’ and L” in Fig. 5.2 are called hidden layers as they have no
direct connection to the “outside world”, the inputs and the outputs, but
are connected indirectly over weights to them. A single hidden layer in
a network is enough to represent any continuous function, providing that
there is a sufficiently large number of nodes in the hidden layer. To represent
discontinuous functions two hidden layers are necessary [Rus95].

The challenge of finding an optimum network is not to take too small a
net, as it will not be able to represent the task, and not to take too big a net,
as it will represent the given examples very well but will tend to overfit and
thus perform poorly for inputs not presented for training. This is explained
in the next chapter in detail.

5.2 Training Methods

Training or learning means adjusting the weights so that the neural network
represents the given task. For that, the weights are changed in such a way,
that the net’s output out; for a given input in; matches the real must output
T, also called target; If our training set consists of N input-output (must-
outputs) examples, then i = 1,2,..., N.
Once the structure of the net is defined, the weights are initialized and af-
terwards adjusted by a learning algorithm using the input-output examples
of the given task.

One of the most popular learning types is gradient descent learning, where
an error or cost function FE(W) is defined, relating the error

— =

§; = t; — oul; to the weights.

5.2.1 Minimizing the error function

The simplest and most frequently used cost function is given by
1 2
E(w) = 3 > 16
i

1 — —
— izi:}ti—outi(m)

2
‘ (5.1)
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Other cost functions are possible. They should be differentiable functions of
0 with a minimum at § = 0. In the gradient descend algorithm the weights
are changed by Aw;, where Aw, is proportional to the error function,

OF
Aw;; - (5.2)

J Bwij
Wijnew = Wijold + Awyj (5.3)

with the proportional factor 7, called the training rate, and w;; being one
component of A—Z[}Z For one example of the set, and for z being the number
of weights (of the last layer for instance) this is the gradient at the point
Aw of the error plane in the (z + 1)-dimensional space. Searching for the
minimum of E(W) is done by sliding down the E-plane. If the chosen 7 is
too large, the “correction” lets W jump from one side of the valley of the
E-plane to the other; this happens for minima in valleys with contour lines
of cigar form: because of the derivation in steep gorges the point will jump
from one side of the gorge to the other, oscillating instead of gliding down.
Thus, approximation to the minimum goes in a zic-zac path, or, for a too
big! training rate 1, the weight vector will even move further away from the
minimum. Choosing a very small learning rate is secure, but makes training
very slow.

To deal with this problem Eq. (5.2) can be modified by adding a momentum

.

E
Aw;i o 4
aw@'j + LAW;j o1d (5 )

Awy; = -0

with 0 < p < 1, taking so into account the correction of the last update
Awij o1q- In this way a zic-zac path is smoothed out.

Updating the weights can be done in two modes: either by presenting all
input-output examples at once or by presenting subsets to the net and then
calculating the error. The former is called batch mode; doing presentation
pattern-by-pattern is called incremental mode. Each run in which the net
is presented a (sub)set of examples and new weights are calculated, is called
an epoch.

The description above is for an update of the weights of one layer, of the

"

s Where the index is now not

last layer. So we rewrite w;; in Eq. (5.2) to w
the pattern but just the weight we are looking at. Ignoring a momentum

!The training rate is ’too big’ if the gradient multiplied with the training rate is bigger
than the width of the valley in the (projected) direction of the gradient.



34 CHAPTER 5. NEURAL NETWORKS FOR THE PS

and using the activation function f,. we can write:

ok
)
a(l Zn(og’ _ tn))
)

We will simplify the net above, assuming it to have one hidden layer less,

letting the outputs o} correspond to the training inputs without loss of gen-

7

eralization. The dependence of the outputs o]

from the inputs in; = o] is
given by

oy = faC(Z Wiy, Opy)
= faC(Z w;;,mfaC(Z w;;mlzn;)) (5.6)
m l

Thus a weight in the (now) first hidden layer can be calculated using Eq.(5.6)
via:

OE doll,
—_— ”7 .
dolt, Oin

Awis (5.7)
In order to correct the weights of a layer, first the weights of all layers to its
right have to be calculated.

This algorithm for training a network is called back-propagation, because
the weights are corrected in the inverse direction as the direction in which
the calculation of the outputs from the input values is done. It is the most
frequently used algorithm. Many applied algorithms are just modifications
of it dealing with, for instance, the problem of local minima, plateaus, or
improving the speed of the training.

In a local minimum of the error function the weight vector can get stuck,
it will thus slow down training or it will even prevent the ability to find the
real minimum. One way to avoid or to get out of a minimum is to add a
small random value to the weights. Again, a compromise has to be made, as
adding too much "noise” will deteriorate the training.

5.2.2 Conjugate gradient descent

A similar training algorithm is the conjugate gradient algorithm. Instead
of moving along the negative direction of the gradient, the direction of the
gradient of the preceding update is also taken into account.

Consider the error function as a plane in the multidimensional space spanned
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by the weights (more precisely: the weight vectors). A point at the error
plane corresponds to one set of weights w. Let g be the gradient vector of
the plane at the point W. So the direction do = —(, where the weights
W=7y are corrected to,is given by W = Wy +n70 for the first update, i.e.
the first time the weights are modified. The conjugate gradient algorithm
modifies d for all following updates like:

7(1 = aq?q—l -4
where ¢ is the actual, ¢ — 1 the previous update and «y is a factor that takes
into account the difference between the previous and the present gradient.
One implementation for ay is

2
7|
Y = T2

g

After the first upgrade all directions of correction consider previous gradients.
If the difference is too big, it seems more convenient not to consider the
previous gradient, as it would slow down the gradient descent. This is done
by reseting d to the negative gradient. One condition which decides when
training has reached a reset point, is given by the Beale-Powell restart test.
If the condition

— — — 2

}gq— gq_l‘ > 0-2\gq‘

is satisfied, d is set to equal — .

The weights of the node connections are expected to be adjusted after train-
ing in such a way, that they provide the best overlapping of the calculated
control vectors with the applied ones from the measured input vector or
matrix. If the network is successfully trained, it is expected to predict the
output values for input values not presented to training.

It is possible, that a net has achieved a very good, small error after a
lot of epochs of training, but behaves very poorly when untrained data is
presented to the input. This is most probably the case for an overfitted net.
It happens either because the training set is too small or the net is too simple.
It can be compared to a curve fitting with a small number of representations,
where the fitted curve matches perfectly with the given points but does not
represent the real problem. Testing the net with examples that the net
has not been trained with is the crucial assessment of how well the net has
actually been trained.
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It should be mentioned that apart from training a net by modifying the
weights, there are also more complex models, trying to copy the behaviour of
biological neural cells. Deleting or creating new links and changing the acti-
vation function are some examples of possible additional features. However,
this is beyond the scope of this work.

5.3 Image Pre-processing

Feeding the feed-forward, back-propagation net for training with complex
images would enormously complicate the training and slow it down. A pre-
processing of the images which extracts characteristic features out of them
can be applied, in most cases minimizing the input number for the back-
propagation net. Any a-priori information about some characteristic of the
image features, especially about the contour, must be taken into account at
the designing stage of the NN as it will improve the speed of the training
immensely as well as the reproduction of the outputs even with noise.

5.3.1 Convolutional processing

This pre-processing is done by kernel convolution techniques and by auto
encoding training.

Convolution techniques include kernels, like the simple average kernels
or the border kernels, the same way as they are used for image processing
[Jae97]. A kernel is a matrix of size k x k, that runs over the 2-dimensional
images, with matrix values that correspond to the feature which shall be
filtered. The output is the convolution of the image pixel values with the
kernel values. In some way it is similar to the assessed inputs for the training
of the net, except that all values of one kernel are used for each pixel of the
corresponding sublayer. The number of sublayers (also called planes or maps)
in a hidden layer is given by the number of used features (kernels). From
the two sublayers of Fig. 5.3 to the first hidden layer there are three kernels
used, obtaining the three planes of the hidden layer.

5.3.2 Unsupervised Learning

A totally different way to train a net, is unsupervised learning by self-
organizing of the net. Totally different to supervised backpropagation learn-
ing, here no comparison of the output with any target is done. The network
must recognize, with the help of different algorithms to distinguish features
or categories of, or correlations between the input patterns. The learning rule
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3 sublayers

Figure 5.3: Sublayers in the feature extraction network for the pre-processing of
the input image

can enforce weights, so that patterns which appear often, are supported. Al-
ternatively the learning rule can change the network’s weights in a way that
it supports correlations between features of the example patterns.
Depending on what the output shall look like, different learning rules are
adequate: For deeper insight to the variety of possible learning rules consult
e.g. [ScE].

A special case of unsupervised learning is auto-encoding. Here the weights
of the net are changed in such a way, that the output is the same as the input
(or the same in the sense of its information content). In that way the trained
net will map the input to the output if the input is the same or quite similar
to one of the presented examples for training. This rather curious appearing
mapping of the inputs to themselves is a particular way to assort the input
set to groups.






Chapter 6

Laboratory Set-up

The first experimental set-up included all three sensors: the pyramid sensor,
the Hartmann-Shack sensor, and the commercial Twyman-Green interfer-
ometer, using the integrated HeNe-laser of the interferometer as the light
source. For the neural network training, the pyramid sensor was used with-
out the other two sensors. Thus, all optical parameters could be changed
easily without affecting the other sensors.

g

ASIC-HSS

PS
\

Figure 6.1: Parallel set-up of the 3 wavefront sensors: the Hartman-Shack-sensor
(ASIC-HSS), the pyramid sensor (PS) and the interferometer (IF).

In the parallel set-up (Fig. 6.1), the light source of the interferometer
served as a source for plane wavefronts. A beamsplitter (BS)) reflects the
beam to the deformable mirror (DM) where the wavefront suffers a phase
shift of twice the deformation amplitude of the mirror. On its way back
the aberrated beam is split at BS;. One part of the beam returns to the

39
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interferometer and the other is split at the second beam splitter BS5. The
transmitted beam passes the lenslet array (LL) and reaches the detection
ASIC-chip of the Hartman-Shack sensor. The reflected beam passes the
entrance pupil lens 1 (L) which focuses the beam onto the tip of the pyramid
prism (PP). The prism separates the focused spot in the Fourier plane into
three beams. After passing the imaging lens Ly a CCD camera records the
image of the entrance pupil in the conjugate plane. The interferometer, the
lens L; and the lenslet array are all placed at a distance D away from the
deformable mirror. This is done to avoid three 4f-setups — for each sensor
one — with which a wavefront measurement conjugate to the plane of the
DM would be realized; thus, the wavefront aberrations measured are those
of the wavefront at a distance D away from the mirror.

In the set-up which is used to train the neural network for the pyramid
sensor, the plane wavefront is supplied by a superluminescence diode. The
beam is reflected under a small angle on the deformable mirror, restricting
a bit the effective stroke range of the mirror but avoiding a beam splitter in
this way (see Fig.7.11). The aberrated beam is reflected on a mirror, which
serves only for the purpose of easier aligning, and then passes the entrance
pupil, which is given by the mounting of the lens L;. The beam is split again
in the focal plane by the pyramid into three beams. These three beams are
reflected at 3 mirrors, so that their directions are not diverging any more,
before passing through the imaging lens to the CCD camera.

In the following the optical and the electrical components of the set-up
are described in more detail.

6.1 Deformable Mirror

Two mirrors were available as active elements: a membrane mirror and a
recently delivered segment mirror.

6.1.1 OKO membrane mirror

The deformable membrane mirror (DM _m) from OKO Technologies in Delft,
Netherlands, with its 37 pistons (segments) has a diameter of 15mm, the pis-
tons forming an active area of 12mm diameter (Fig. 6.2).

When it is in a neutral position, that is when no voltage is applied, the
membrane shows an intrinsic astigmatism of <0.6um (peak value). This is
explained by a membrane attached inhomogeneously to the frame. Maxi-
mum deflection according to the manufacturer is achieced under a load of
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255V 1. This was controlled in our group [Wue99] with an interferometer.
The quadratic relation between control voltage and deflection was confirmed
and the deflection when applying 255V reached 1.1um. The cross-talk re-
lation was confirmed too; the bigger the difference of the voltages on two
neighbouring pistons, the bigger the cross-talk effect. Aggravation of the
mirrors behaviour or flexibility was measured four years later [Kie03] when
the peak-to-value deflection had decreased by more than 10% to under 1um.
Therefore we repeated this measurement (Sec. 7.3.2).

active area: 12mm

optical aperture: 15mm

Figure 6.2: Photo of the membrane mirror (left) and a sketch of the piston ar-
rangement under the membrane (right).

The electrostatic control of the deflection of the mirror membrane is only
possible unidirectionally, towards the pistons.
Not all 37 but only the inner 19 pistons of our mirror were addressed.

Amplifier for membrane mirror

In order to address the 19 inner mirror pistons plus the membrane, with
voltages between a piston and the membrane being up to 225V (staying
in that way around 12% below the recommended maximum voltage), an
amplifier is used as intermediary between the computer and the mirror. As
the computer has an output voltage range of +£5V, amplification by a factor
of 50 is necessary. The power supply for the amplifier is a Rohde&Schwarz
device providing a quite stabilized and low-noise output.

D/A converter

The interface between computer and amplifier is a digital-analog converter
with 4x20 channels and a bandwidth of 770Hz. Twenty channels are used
to address the 19 pistons plus membrane of the OKO mirror. The channel’s

'but it is recommendable to keep the applied voltage quite below it, to maintain a
durable membrane with unchanged elasticity
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output range used is 0V to +5V. The converter card is an ISA bus card
restricting its use to only relatively old computer mainboards.
For the MEMS mirror 2x20 channels of this card are used.

6.1.2 MEMS mirror

Our MEMS deformable mirror (DM _s) was developed in the Fraunhofer
Institute for Photonic Microsystems in Dresden.

Figure 6.3: Photo of MEMS mirror

The mirror consists of 8 x 8 squared pixel groups, that can be addressed
independently. 15 x 15 pixel mirror elements form one pixel group. Each
mirror element is 15um x 15um in size, so that the size of one controllable
pixel group is 600um x 600um. The quadratic relation between the applied

pixel width

arm length
- -
e ®E @ holding pile
etchport ~—_| deformation amplitude
mirror thickness § A\ ————— 7/— i
cavity height h ]
spacer

L:@ control electrode %%//////%%//////////Z

substrate

holding pile

Figure 6.4: Topview of one pixel of the MEMS mirror (left) and side view (right
picture) [FIP05].

voltage and the deflection of one pixel (group) can be seen in Fig. 6.5 . The
relation can be approximated very well by z = %U 2 where z is the deflection
(in nm) and U is the Voltage. By applying a maximum voltage of only <35V
the maximum deflection of 400nm is reached.
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Figure 6.5: Curve of the deflection of a mirror segment depending on the applied
voltage [FIPO5] .

Amplifier for MEMS

Out of the 8 x 8 pixel groups, 40 neighbouring pixel groups were chosen
to address them. First, the connections for the amplifier were prepared,
disentangling the pin ordering on the board of the mirror. An amplifier
with 40 channels, with an amplifying factor of 10 and a small rise time was
designed and manufactured (Fig. C.1). The voltage of 12V for the supply
of integrated circuits of the amplifier is delivered by a common computer
power supply unit. The additionally needed —5V come from a separate
supply source.

6.2 Wavefront Sensors

In principle, for a closed-loop there is no need to know the absolute value of
a wavefront aberration to correct it. It is sufficient to know how a wavefront
has to be altered from the signal to get a planer wavefront. But to quantify
the amount, that is the quality of the correction, a reference is needed. For
that, the commercial interferometer and our Hartmann-Shack sensor were
used serving as a reference for the new pyramid sensor.

6.2.1 Pyramid prism

The 3-sided pyramid prism was ordered in Changzhou, China. It is made of
BKT7 glass. The machining of this material benefits from most experiences
and a variety of available devices to work it.

No coating was deposited on the surfaces.

The side length of the prism is 20mm with a base height of 4.6mm. The
distance between base and tip measures 7mm. From this, the angle between
the edges and the horizontal (or equivalent the base surface) of 11° and an
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Figure 6.6: Dimensions of the 3-sided pyramid prism

angle between the symmetry axis line of the facets and the horizontal of
17.85° can be derived.

Figure 6.7: Topview on the tip of the 3-sided pyramid prism, unmounted and in
it’s holder.

Under a microscope, using an objective with long working distance, the
edges and the tip could be examined. The width of the edges and the tip
is smaller than 10um. A mounting which carefully holds the pyramid, was
made to facilitate the implementation of the prism into micro-bench mount-

ings.

Pupil collector

As the angle between the facets and the horizontal was chosen rather big
to facilitate the production of sharper edges, the three split beams diverge
stronger and cannot be imaged on one camera chip. Instead of taking the
more complex and expensive solution of using three cameras, three mirrors
were used as ”pupil collector”. Directly after the prism, the three mirrors
reflect the three beams, so that the beam centres do not diverge any more.
A compact mounting was made implementing three commercial beam splitter
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holders, onto which the mirrors were fixed. The main angle correction is
given by the mounting. Finer corrections can be done by means of the beam
splitter holders which feature small screws for adjustment.

6.2.2 Interferometer

As reference wavefront sensor, the compact interferometer p-Phase of Twy-
man-Green type from the company Fisba-Optik in St.Gallen, Switzerland,
was used. The integrated source is a HeNe laser that is coupled via

a glass fiber to the interferometer components. The beam is divided by
a beamsplitter, one beam being reflected at an internal mirror, the other
beam leaving the interferometer to pass or to be reflected at the optical
component of interest. Both beams are recombined by the same beamsplitter
and detected by an internal CCD-camera with a transversal resolution of
61 pixel/pm. From the interference pattern, the wavefront aberrations are
calculated by using a phase-shift procedure, where the internal mirror is
moved five equidistant steps with a piezo-crystal.

6.2.3 ASIC Hartmann-Shack sensor

The Hartmann-Shack sensor chip used in this work was developed in our
group by T.Nirmaier [Nir05]. A photodetector with an 8x8 subdetector array
chip based on complementary metal oxide semiconductor (CMOS) technol-
ogy was fabricated using silicon as photoelectric absorber. Each subdetector
consists of 21x21 pixels. Here the displacement is determined by searching
the centroid spot pixel. To obtain a high bandwidth, the deviation of the
spot positions from centre was processed on hardware through application
specific integrated circuits (ASIC). The sensor has thus the high frame rate of
362Hz. Defocus measurement with a resolution of 0.16 dioptre was achieved.
Readout is done over a parallel port on a computer working under Linux
operating system.

The lenslet array used has a focal length of f = 53mm. The lens arrangement
matches with the detector pitch distance.

6.3 Light Sources

Two light sources were used. One was the built-in source of the interferom-
eter, a HeNe laser working on the red line (A = 632.8nm). The intensity
of the coherent light is nearly continuously adjustable from 1uW down to
zero. The beam was used with a diameter of 6mm as it was set for the other
source, a superluminescence diode (SLD) with a bandwidth of 20nm and its
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mid-wavelength in the infrared at A = 783nm. While the HeNe laser has
a coherence length of a few meters, the SLD exhibits a coherence length of
only 30um, so that interference effects can almost be avoided.

The output power of the SLD had a fixed, non-adjustable value of 0.36uWV .

Focused beam radius
The focal length of the pyramid sensor’s lens L; is 500mm. According to
Eq. (3.3) we can calculate a smallest limit for the spot radius of the focused
beam onto the pyramid’s tip, assuming negligible aberrations, of

r airy = 1.22 - 500mm - 3100 & 0.08mm.

Overview of all devices

DEVICE SPECIFICATION

PC gotancad Win2000; AMD AthlonXP 1800+, 512MB RAM

PC femtos Win2000; x86 family6, 128MB RAM, 400MHz

PC everest SuSE Linux9.0; AMD AthlonXP 1800+, 256MB RAM, 1160MHz

PC mohicanus | Win2000; Intel P4, 1GB RAM, 2,8GHz

PC interfero Win98; Intel P I, 64MB RAM, 200MHz

D/A card Lothar Bockstaller GmbH, 40 channels, 770Hz

frame grabber | IDS Falcon, CVBS, 6 to 30 frame/s

DM amplifier home made

DM _m supply | Rohde&Schwarz Typ NGM 280/0.1

HSS supply Voltcraft DC power, 2x 0...30V / 2,5A

CCD-camera jAi Mechademic Company, CV-M300 monochrome, 8.8mm x
6.6mm, 752x582 pixel

ASIC-HSS 8X8 subdetectors, each with 21x21 pixels, >362Hz frame rate

DM s Fraunhofer Inst. IPMS ; 2,4 = 0, 4um, 40pmx40um each mirror,
15x15 mirror = one controllable mirror group, 8x8 groups

DM m OKO Techn. Delft, 37 pistons, membrane, 500Hz, 9um deflection

PP customized by DDM Company, Changzhou, China

lenslet array Adaptive Optics Associates; 400um pitch distance, f=53mm

6.4 Software

The controlling of the system had to be done using two computers. The
reason for this was, that it was not possible to integrate the available D/A-
card for controlling the mirror in the same computer as the Falcon frame
grabber video card due to restrictions of the Falcon’s driver software. Thus
two computers were connected with each other for data acquisition, that is
to obtain a training set of input and output values.
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Written in the programming-language C++ with Borland Builder 6, the
program camera. cpp controls the mirror from computerl (PC gotancad). In
a real-time image of the pupils the size and position of the 3 circles? can be
positioned manually. This defines the area that is saved out of the complete
CCD read-out frame in each data acquisition cycle. camera.cpp sends the
piston position information for each mirror deformation to computer2 (PC
femtos). Both computers are directly connected via a LAN-cable. The D/A-
card is addressed with a second program, called deformablemirror.cpp.
Random piston combinations were produced and saved before in a file.

One acquisition cycle (that is acquisition of one input-output pair for the
NN) consists of the following steps: From the mentioned file with the random
combinations, computerl reads out one piston combination; this data is sent
to computer2 controlling the D/A-card. The 20 output voltages (19 voltages
for the pistons and 1 for the membrane) are amplified and applied to the
mirror. The CCD-camera is then read out by the frame-grabber card in
computerl and the selected area is saved to a file. Having completed the last
step, the next cycle can start.

6.5 Structure and algorithm of the neural network

The NN was written under Matlab, version 7, with the Neural Network
Toolbox package.
The designed NN is a convolutional NN. It is composed of two subnetworks:
the preprocessing auto-encoding part of the net (the S C-net) and the feed-
forward backpropagation net (the BP-net).

The S C-net consists of 2 x 4 layers. Starting with the first layer being
a so called C-layer, the second being a so called S-layer, the third layer a C-
layer, and altering in that order until the 8th and last layer which is a S-layer.
The C-layers are layers with planes that were produced by simple averaging
kernels out of the corresponding previous layers. The S-layers emerge from
the previous layers by application of kernels, that have to be modified in the
auto-encoding process. The size of these kernels has to be defined like the
architecture of the net, but the values themselves emerge from training like
the weights of a BP-net.

The number of planes in each layer is 36 except the first C-layer having
3 layers. The number of kernels in each layer is the same, as to each plane
there is its corresponding kernel. The size of the planes varies between 2 and
22 (that means 2 x 2 and 22 x 22). The sizes of the kernels are 1 x 1, 2 x 2,

%instead of saving 3 circles, 3 squares fitting around the circle area are saved; this
simplifies the image pre-processing that follows
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\ layer [ 1(C) | 2(S) | 3(C) | 4(S) | 5(C) | 6(S) | 7(C) | 8(S) |
number of planes 3 36 36 36 36 36 36 36
size of plane 22 22 11 11 ) 5 2
size of kernel - 3 2 3 2 3 2 1

Table 6.1: Structure of the pre-processing network

or 3 x 3. In one and the same layer the size of all planes is identical and the
size of all kernels is identical.

First the kernels of the S C-net are modified by auto-encoding. When
this self-organization has finished the BP net is trained. The pre-processing
net has as output 36 small "planes” of size 2 x 2. This is the input of the
BP net. An exception are the kernels of the first S-layer. They are special
feature kernels (border kernels) and are not changed by the auto-encoding
process.

The BP-net is a 3-layer, fully-connected feed-forward network. The hid-
den layer has 30 neurons. The output layer has neps neurons, where ngeps
is the number of discrete height levels that are used for the mirror’s pistons
and was either 5 or 19. On the one hand 5 piston levels were chosen to have
a relatively small number of outputs and of piston combinations and to cover
in this way a larger part of all possible outputs with a the same amount of
training examples. On the other hand the representation of Zernike polyno-
mials was quite limited and taking a smaller number of levels would make
no sense.

19 piston levels were chosen as an approximation for continuous deflec-
tion of the pistons, but keeping at the same time the discrete output value
structure of the net.

The 5 or 19 output values are binary values in a so-called winner-take-
it-all configuration; hereby all outputs can take a temporary value between
0 and 1, but it is the output with the highest value that will have the actual
output 1, all other outputs becoming 0. This means, that only one of the 5
(or 19) outputs is “on”, representing the correct height level .

The above BP-net regulates one single piston. Seven equivalent nets are
trained, for each piston one BP-net.

The hyperbolic tangent sigmoid function tansig(x), which resembles the
sigmoid function, is used as transfer function in both neuron layers (the
hidden and the output layer) of the BP-net:

2

tanszg(x) = m —
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As learning procedure the conjugate gradient back propagation method is
used with the Beale-Powell reset condition.
The maximum epoch number is set to 10000.

The network presented here is one that showed best training results.
Other nets, with different sizes of planes in the S_C-net, with less S_C-
layers or with different numbers of neurons in the hidden layer of the BP-net
were also trained.

The used structure can be summarized as follows:

From the single input layer, the first of eight layers of the self-organizing net
emerges by convolution with twelve border shaping feature kernels. 2 x 2
subsampling is applied in between the four S-layers. The output of the last
layer of the self-organizing net is the input of each of the seven 3-layer BP-
networks. There will be only one ”on” output from each net, representing
the height level of the corresponding piston. The height levels of all 7 BP-
networks give the discrete piston values of the wavefront that was produced
(for training) or that has to be produced (for correction in closed-loop) by
the pistons of the deformable mirror.






Chapter 7

Results

First practical experience with a confocal scanning laser ophthalmoscope
(SLO) was made during a four month research stay in the Institute of Oph-
thalmology of the Moorfields Hospital in London.

Although the chronological order was different, the research which was
carried out in London will be shown first as a motivation for how image
acquisition can benefit from adaptive optics. Afterwards the work done on
the pyramid sensor in Heidelberg is presented.

7.1 Polarisation Differential Imaging

A Zeiss SLO has been altered to allow for polarization differential (PD)
imaging. The target is to investigate the possibility of recognizing diseases
that affect the birefringent components of the fundus: the retina nerve fiber
layer and the outer plexiform layer.

The modified SLO scans the eye with unpolarized light and is able to
compare the image of the retina acquired from light linear polarized in one
(arbitrary) direction with the image from light linear polarized perpendic-
ular to the polarization of the other image. This comparison is done by
subtracting one image from the other which means subtracting the recorded
digital intensity values (grey values) of both images pixel by pixel. This must
happen in real-time. For this reason, the back-reflected light was separated
by a polarization beam splitter in two perpendicularly polarized signals and
measured by two photomultipliers.

The SLO was a confocal SLO from Zeiss. The retina image acquisition
was done by scanning the laser spot on the retina with a frequency according
to PAL video standard, i.e. each second 25 pictures are scanned. One pic-
ture is composed of two frames: The first frame scans 313 lines, the second

51
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fiber 2 §

Figure 7.1: Photo of the optical part of the Zeiss SLO. A depolarizer, a polarizing
beam splitter (PBS) and a complete second detection path were added.

frame scans another 312 lines in between the lines of the first frame. The
fast horizontal and and the slow vertical scans are performed by a turning
polygon mirror and a vibrating galvanometer mirror, respectively. The ef-
fective electronic acquisition time for one horizontal line signal is 4.7us. If
a resolution of at least 200 points per line is desired, the bandwidth f; of a
device dealing with such a signal has to be f; > %Hz = 85.11MH 2!
This criterion had to be fulfilled by the differential amplifier (DA) which
had to generate the subtraction of both images. A differential amplifier from
LeCroy (DA1855A) with a bandwidth of 100MHz could meet this require-
ment. We used the DA without amplification, that is with an amplification
factor of 1. The image subtraction was done by inverting one of the two
input signals (negative input) and then adding both signals.

Depolarizing the red diode laser (A = 635nm) light was done using a
quartz wedge depolarizer. This pseudo-depolarizer does not depolarize the
beam completely. The degree of polarization dp (Eq. (2.1)) after the depo-
larizer depends on the beam intensity, on the beam diameter and on the
angle between beam polarization and optical axis of the wedge. The best
result is achieved when this angle is 45°. The used wedge depolarized a full
polarized beam of d5mm diameter, to a dp = 0.25; it depolarized a beam of
2.5mm diameter to a dp of only 0.41. As space in the SLO’s compact optical
assembly was limited, it was not possible to expand the beam diameter of
2.5mm without having to rebuilt a big part of the assembly.
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The red diode laser had an intrinsic dp of 0.53. This should result in a
dp = 0.53-0.41 = 0.22 after passing the wedge, which fitted to our measure-
ment of dp = 0.206 + 0.016.

The detectors were two photomultipliers from Hamamatsu (R928), one
from the modified SLO, the other taken from an identical SLO. Their signal
outputs were the two inputs of the DA.

Figure 7.2 shows the whole signal path. The light returning from the eye
is separated by a polarizing beam splitter into a beam with horizontal and a
beam with vertical polarization. After the confocal pinholes two collimator
lenses couple each beam into an optic fiber, leading the light to the photo-
multiplier. Their analog signals are compared by the differential amplifier
whose output signal is digitized by a video card to a picture of 768x576 pix-
els. Thus, the differential image can be seen in real-time. However, if not
only the differential image shall be recorded but also the two input images of
the DA —in order to compare them with the differential image — the output
channel of the DA has to be switched manually, causing a small time delay,
during which the eye will usually change its position a bit.

s
lgrabber
PM
source PM
PC :
Wedge [P+ condenser,
descanned confocal
signal lens&pinhole

eye

Figure 7.2: Scheme of the set-up for differential imaging. The reflected light of
each scanned spot is divided at the polarizing beamsplitter (PBS) according to its
polarization. Only light conjugated to the retina passes the confocal pinhole(s).
The light is guided by glass fibers and the two intensities are detected by two
photomultiplier (PM).

Measurements

Images of our own fundi and from eyes of colleagues were taken. This could
be done with a 20° x 20° or 40° x 40° scanning field. The 40° range serves
as an overview because the field includes the macula and the optic disc in
one picture. Images of a 20° field acquire only a smaller area of the retina,
but they have a higher resolution.
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Figure 7.3: Differential images from the macula of S. (blue eyes). The left and
middle image are the images from light of the two perpendicular polarizations. The
right image is the differential image.

Contrast and brightness were adjusted manually with the photomultiplier
electronics for each eye so that a good, not saturated or too dark, picture of
the imaged fundus was provided.

Figure 7.4: Images of the optic nerve of C. (brown eyes). The right picture is the
differential image of the left and middle picture.

The three images of Fig. 7.3 and the three images of Fig. 7.4 are taken
with a delay of approximately 4 seconds between two images. Therefore
the position of the eyes is not identical during the acquisition of the three
images. It must be pointed out that in all cases the differential image was
not calculated from the two images of perpendicular polarized light, but was
measured directly.

Above pictures are the averaged images from 32 single pictures. This is
done by a software that chooses a special feature of the pictures, a landmark
like a blood vessel and aligns all 32 pictures according to this landmark.
The vessel chosen should not be exactly straight, otherwise it is not possible
to correct for transversal shifts but only for rotational movements. This
averaging is the simplest way to improve signal to noise ratio. Still, the
images are far away from their possible diffraction-limited resolution, as long
as no adaptive optical system is compensating aberrations.

In the differential image of Fig. 7.3 the Haidinger brushes can be recog-
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nized. This shows that differential imaging exhibits also information that is
gained in standard polarimetry or ellipsometry! measurements. In the dif-
ferential image shown in Fig.7.4 features are brought out that are not visible
in the two polarization images and thus would not be seen in a normal fun-
dus image. The origin of these distinguished features is not clear but arouse
strong interest in the physicians. Clinical trials shall follow.

Although it can not be seen immediately in above pictures, the contrast
was increased by means of software in the later series, because the signal to
noise ratio of an image from a bright (blue) eye is considerable higher than
from a dark (brown) eye, as the former reflects more light.

7.2 First Sensing with a Pyramid Prism

A qualitative comparison between the ASIC Hartmann-Shack sensor and a
4-sided pyramid sensor in a modulation mode set-up was made on a short
visit at the Max-Planck Institute for Astronomy (MPIA). The pyramid prism
had turned edges of 12um width. The circular modulation path of the beam
around the prism tip was produced by a piezoelectric driven mirror with a
modulation frequency of 200Hz. In Fig. 7.5 the image pupils for a wavefront

Figure 7.5: Pupil image of the 4-sided pyramid prism at the MPIA | in the left
image unmodulated, in the right with modulation.

with coma can be seen: In the left image, taken with an unmodulated beam,
the upper and the lower pupil are only illuminated at their inner borders
where the pixels are saturated. The aberration amplitude of the coma is out
of the pyramid sensor’s range in unmodulated mode. Only when applying
the modulation mode the signal of the large aberration is lying inside the
linear range of the sensor.

'Ellipsometry is a special type of polarimetry (measurement of the polarization of
light), where the polarization of light that is reflected from a thin sample (e.g. a film of
layer) is investigated.
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The Hartmann-Shack sensor showed a too small radiance sensitivity com-
pared with a usual CCD camera even though the wavelength used was lying
in the spectral bandwidth of maximum absorption of the silicon photode-
tectors. Approximately 70% of the wavefront intensity was supplied to the
HSS and only 30% to the PS, but yet the signal to noise ratio of the HSS
remained critical. Nevertheless, the correlation of Zernike polynomials up to
the second order was given if the aberrations amplitude did not pass under a
certain limit. Below this limit, where the aberrations were too small and the
Hartman-Shack sensor was not sensitive anymore, the pyramid sensor was
still detecting a clear signal.

Quantifying this limit with the own pyramid prism was the challenge.

7.3 Wavefront Sensing with all 3 Sensors

The measurement of a wavefront with the 3-sided pyramid sensor, the inter-
ferometer and the Hartmann-Shack sensor working in parallel and a quanti-
tative comparison of their performance is not possible. The sensors exhibit
different working ranges that overlap in their limits but prohibit a direct
comparison. Their boundaries and limits are given in the following and it is
indicated how they complement each other.

The membrane mirror is used as source of wavefront distortions and as ac-
tuator. Having two deformable mirrors, the original idea was to use one
for producing random, temporally varying distortions and to use the other
deformable mirror as actuator in the closed-loop for correction. This could
not be realized as will be explained in the next section.

7.3.1 The MEMS mirror

Working with the HeNe laser as source for plane wavefronts in combination
with the MEMS mirror produced a prominent interference pattern as strong
side-effect.

Figure 7.6: Pictures of a video sequence showing the interference effect of
the MEMS mirror with a HeNe laser as light source.
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The distance of the spots which form the interference pattern are mea-
sured in horizontal as well as in vertical direction for small angles from the
normal direction to the mirror surface. A spot distance of 3+1mm is deter-
mined at a distance of 20045 mm away? from the mirror. This is equivalent
to an angle between two spots of 0.86°4+0.15°. For the theoretically expected
interference pattern from a mesh grid of infinite size, the interference maxi-
mum of n-th order is located at an angle «,, = arcsin "T)‘, with g being the
grid constant. Inserting A=633nm and g=40um yields - for small angles,
i.e. small orders - an angle difference of Aa=a,,+1 — a,, ~ 0.91. This value
confirms the mirror elements being the origin of the interference effect.

Both pictures in Fig.7.7 show the pupil images made with this mirror for
two different and arbitrary wavefronts. A pattern change is recognizable, but
the interference pattern dominates the whole image, making it impossible to
use this signal for the training of a NN.

This pupil images look completely different — compared to the pupil image

Figure 7.7: CCD-camera images of the MEMS mirror with different deformations.
The interference pattern dominates as the mirror is illuminated by a high coherent
HeNe laser.

made at the MPIA (Fig.7.5) and to that made with the own set-up (Fig.7.10)
— due to two different set-up features, apart from using a segmented mirror
(which still does not change the above statement): The image pupil beams
were not separated with mirrors like it has been done in the own set-up
(Fig. 7.10) and nearly overlapped in the image plane, making it possible to
capture them with one CCD chip. Furthermore, the beam having a diameter
of 6mm was illuminating the whole MEMS mirror. This is the reason for the
pupils being of square shape. The MEMS mirror images were made with a 4-
sided pyramid, by courtesy of the MPIA, before the ordered 3-sided pyramid
prism has been delivered.

With the same optical set-up but the light source being the SLD the
interference pattern faded but did not vanish completely. The coherence

Zbecause of the built-up it was not possible to measure the distance to the mirror more
precise
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length of the SLD of approximate 30um is still not short enough to avoid
the interference effect caused by the segmented mirror. That is the reason
why the idea of using the segmented mirror was abandoned.

7.3.2 Membrane mirror performance

For translating the applied piston height values on the membrane mirror to
Zernike polynomials or, vice-versa, in order to know which positions the pis-
tons have to take for a desired Zernike polynomial combination, a numerical
least-square fit for non-linear functions under Matlab is used. The discrete
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Figure 7.8: Relation between D/A converter output and mirror amplifier output
(left) and D/A converter output and membrane mirror deflection (right).

piston positions of the inner 19 pistons are fitted to the first 10 Zernike poly-
nomials, with the pistons 8 to 19 (see Fig.6.2) having always one constant
value.

At first, the deflection of the mirror in dependence on the driver software
command value MMPQ (also called MMPOutpw) must be known. Therefore
the range of the amplifier was verified measuring its output voltage in rela-
tion to the MMPQ values (Fig. 7.8, left curve). The curve on the right-hand
was measured by means of the interferometer. One piston from the inner
segment circle was chosen and different MMPQ values were applied to it
and the peak-to-valley (pv) deflection between the raised piston and the sur-
rounding circle was noted. The curve looks the same for every piston of the
inner circle. If a piston from the outer circle is chosen, deflection can not be
read out from the interferometer plot with exactitude. The reason of this
and also of the big error bars in Fig. 7.8, is the uncertainty when reading the
exact peak-to-valley value from the line plot (Fig. 7.9).

The quadratic relation between applied voltage and mirror deflection as
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Figure 7.9: Interference pattern of the aberrated wavefront with the reference
plane wave (top left) and the calculated contour plot of the wavefront deformation
(right). The line plot (down left) is a selected vertical cut through the 2-dimensional
colour-coded contour plot.

stated theoretically holds for MMPQ<6900. Above 6900 the amplifier is
out of its linear range. That is why the output voltage from the amplifier
saturates for higher values just as the deflection does.

7.3.3 Pyramid sensor images

For a plane, undistorted wavefront at the entrance pupil lens, the light in-
tensity is evenly distributed over the pupil circles. The more aberrated the
wavefront, the more the signal saturates according to the the pyramid’s signal
range.

Regardless of the sensor range, saturation can also arise from an incon-
venient combination of beam intensity and camera read-out time. When
using the HeNe laser, the intensity is adjusted by looking on wavefronts with
aberrations at the limit of the sensor’s measurable range, so that the signal
is just not (completely) saturated. Since the SLD can not be adjusted, the
read-out time of the CCD camera is adapted when using this light source.
The infrared SLD light of the three beams after passing the pyramid prism
has an intensity of less than 60nW. Read-out time of the CCD camera can
be selected between 1/2000sec, receiving hereby a nearly saturated signal,
or 1/4000sec, which yields a rather weak signal. We settled on a read-out
time of 1/2000sec as it proved to be easier to train the net with pictures that
show partly saturated pupil areas.

Figure7.10 shows the complete read-out of the CCD-camera capturing the
three image pupils. In the left image the image pupils for a plane wavefront
are shown. The right image is the sensor signal for an aberration with trefoil
as main Zernike component. Three details can be seen:
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First, the area between the pupils is not illuminated as the beams are
separated and re-collected with the pupil collector. One gets rid of the light
scattered from the edges into the area between the pupils of Fig. 7.5 (left).

Second, an interference pattern can be made out, which disturbs the
pupil image. This pupil images were taken with the HeNe laser as wavefront
source and the membrane mirror as actuator. Although the pupil images
show clear and striking feature changes when applying different deformations
on the membrane mirror, the interference pattern would make necessary a
more complicate neural network in order to deal with this additionally given
but useless information. Hence, the source was changed and the SLD was
used as new source. Parallel reference measurements with the interferometer

were not possible anymore, but the interference pattern — originating from

Figure 7.10: Pyramid pupil images, for a nearly plane wavefront (left) and for an
aberrated wavefront (right).

diffraction on the entrance pupil and on the 6mm filter pupil directly after
the source — disappeared.

The third noticeable detail is that the pupils are not homogeneously
illuminated. The tip not being at the focal distance, as reason for this, can
be excluded: the Rayleigh length (that is the length where the focused beam

3 is approximately lcm for

is the smallest and does hardly change its form)
the given wavelength, focal length and beam radius.

The reason for the inhomogeneous illumination is the astigmatism and
defocus deflection of the mirror when the used pistons are addressed to move
to the same height. This deformation exists, because the outer piston ring is
not used (resulting in an aberration with a defocus as main Zernike compo-
nent) and because of the intrinsic, astigmatic deformation of the membrane
as mentioned in section 4.1. Taking advantage of the neural network, the pis-
ton combination that would eliminate the astigmatism contribution was not

applied, but this image was kept as corresponding NN input of the "plane”

3Rayleigh length b is given by b = #;\n, where ) is the wavelength, 6 is the angle of
divergence of the beam and n the index of refraction [Mes99].
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piston output values. Thus, in closed-loop mode this is given as target. In the
same way, the closed-loop system implemented in a SLO will be calibrated,
i.e. an AQO system with not perfect optics will have three not homogenous
image pupils resulting from a given plane wavefront.

Besides, having for all pistons the same constant piston height as target has
the (subjective) advantage that the mean square error (MSE) is calculated
relatively to the same height for all pistons.

7.3.4 Comparison of the three sensors

Three criteria have been chosen to compare the sensors:

e the intensity range of the sensor that provides a signal to noise ratio
in which the respective sensor can work

e the bandwidth, that is the time, the sensor needs to acquire the signal
and to calculate the aberrations out of it and

e the spatial resolution and the resolution of the aberration’s amplitude
that the sensor is able to detect.

The signal intensity that the interferometer needs is given by the intensity
of the reference arm. This can be altered in coarse steps by changing the
internal reflection mirror or the objective. By doing so, the range can be
adjusted in principle. The sensitivity is given by the internal camera, which
can deal with intensities down to a few nWW.

The resolution of the interferometer is Wlo)‘ ~ 0.6nm. Although the inter-
ferometer is the sensor with the best resolution, it is beyond all question to
use it for adaptive optics. The time to acquire the five required images for
the 5-phase-algorithm and the additional calculation takes over 2 seconds.
Some details (software implementation, mechanical stepping for the 5 im-
ages) that are obsolete could be improved. But still, the bandwidth that
would be reached would be under the range of the fast Hartmann-Shack sen-
sor or the pyramid sensor, both only requiring one image read-out and no
mechanical parts to be moved.

The pyramid sensor in its actual configuration shows a bandwidth of less
than 6Hz. Although a CCD-camera with a standard read-out frequency of
25Hz is used, this is not the limiting factor, but the very slow calculation
and data process by Matlab that takes more than 90ms per wavefront, from
data loading until the piston levels are calculated. The intensity sensitivity
of the pyramid sensor is given by the camera and was in our set-up less than
15nW for an entrance pupil diameter of 6mm and an image pupil diameter
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of 2mm. The spatial resolution is given by the diameter of the image pupils
and is therefore not limited and adjustable to the resolution the mirror can
deal with. The higher the desired or required resolution, the bigger is the
number of inputs to the neural net and the training is more demanding.

The Hartmann-Shack sensor offers the fastest sensor by far with a band-

width of over 300Hz. Its spacial resolution is given by the size of the mi-
crolenses of the lenslet which is 400um. Its aberration amplitude sensitivity
or resolution is given by the focal length of the microlenses and the 21 x 21
pixels of a subdetector, resulting in a smallest mean deflection of 0.02°0f the
wavefront that can be detected over one subaperture.
The limiting feature of the Hartmann-Shack sensor in its actual configuration
in order to use it for application on the eye is its relative low light sensitiv-
ity. For an entrance pupil of 6mm diameter and an intensity of 70nW the
signal-to-noise ratio is already quite critical.

7.4 Training of the Neural Network

For the acquisition of the training set the three selected pupil areas of the
camera read-out frame were saved (as detailed in section 6.4) together with
the piston voltage values applied therefore, these values being coded in units
of the D/A converter driver software (MMPQ).

CCD with L2 pupil collector

Figure 7.11: Photo of the set-up for acquisition of the training set and for the
open loop tests.

The input values, that is each pixel grey value, had a range from 0 to
255. Any dependency on intensity fluctuations was avoided by normalizing
this value. The output values, that is the piston heights, ranged between
4300 and 6200 (see Fig.7.8). The range of the mirror was expanded into the
lower range at the cost of partially leaving the linear interval of the mirror.
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Only the 7 inner pistons were varied to obtain the training set and con-
sequently, to correct the aberrations later on. The first tests were made

Figure 7.12: Extract from a sequence of the pupil image signals while different
piston voltage combinations are applied to the mirror for acquisition of the training
set.

with the 7 pistons being addressed with only 5 different discrete height
levels (4700, 5000, 5300, 5600, 5900). This limited selection already of-
fers 57=78125 combination possibilities. Afterwards, wavefronts of more
continuous-like piston level combinations were presented to the net, with
MMPQ=4300,4400, 4500, ..., 6100 (19 levels).

The voltage applied to the 12 pistons, piston 8 to 19, of the surround-
ing piston circle (actually a hexagon) was either for all MMPQ=4300 or
MMPQ=5300. The outer circle formed by piston 20 to 37 was not defined,
that is no voltages were applied to these 18 pistons.

When only 5 piston height levels (discrete levels) are used, performance is
much ’smoother’ than for 19 pistons heights (quasi continuous levels). With
19 piston heights, the performance improves greatly in the first epochs of
training, afterwards the improvement becomes very slow, that is, the curve
becomes quite flat (Fig. 7.13). Although training for both cases, with discrete
and with quasi continuous levels, reaches a performance of similar values, the
development of the training for 19 piston heights shows that the net is not
optimal. Mean square errors between 0.17 and 0.21 are typically for the
developed network architecture, but also MSE values of even 0.11 and 0.14
were achieved. This best performance was achieved in one of the latest set-
ups with quasi continuous height levels.
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Performance and beam alignment

The optical set-up was kept for all training sets gathered as shown in Fig. 7.11
and as explained at the beginning of chapter 6.

The pyramid prism is mounted on 3 micro-bench stages for translation in
the direction parallel to the optical axis and in both transversal directions.
This makes the positioning of the pyramid tip comfortable. The correct po-

End performance 0.187075 (10000 epochs) End performance is 0.133405 (10000 epochs)
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Figure 7.13: Training performance with 5 discrete height levels (left) and with 19
height levels (right).

sition, i.e. the position where the tip is in the middle of the focused beam
spot, is found by looking at the appearance of the pupils in the image
plane. The position of the symmetry axis of the pyramid which should be
collinear to the optical axis can not be controlled. Further, its absolute po-
sition, that is the angle between the optical axis and the pyramid symmetry
axis (or equivalent: the angle between the pyramid’s base and the plane
perpendicular to the optical axis) can only be estimated with a precision of
+3°.

A disadvantage of the micro-benches is their drifting after they are po-

sitioned. Especially the vertical micro-bench drifts noticeably due to gravi-
tation. This was tried to evade by positioning the pyramid iteratively, with
smaller and smaller steps to its end position. Data acquisition for the train-
ing set takes many hours and a drifting between up to 2um in one hour
could be observed and compensated with fine readjustment by means of a
reference picture of the image pupils at the starting position.
Obviously, training sets where the drifting was large and not controlled impli-
cated a worse learning performance. One training, where the vertical drifting
reached 2um deviation from the starting position while the acquisition of the
training set yield a performance MSE of 0.29.
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The option to use an additional tilt mounting to align the symmetry
axis of the pyramid is not recommendable. A superimposed drifting of this
mounting to those of the micro-benches can not be distinguished, and thus,
not be corrected definitely.

The training performances with MSEs between 0.11 and 0.21 stem from
3 different (re)alignments of the pyramid prism and the optics following
the pyramid and are independent of the applied height levels on the piston
(i.e. discrete or quasi continuous heights). Remarkable is the fact, that the
best MSEs stem from that alignment with the (subjectively) worst looking,
because less homogeneous, pupil images for a plane wavefront.

Performance and noise

Above drifting can be regarded as a kind of mechanical noise. The net is
presented slightly different pictures for the same piston heights combination.
Data acquisition with different room light conditions were tested. Images
were taken in a completely shaded room with normal room light and with
variation of both within a set. Although the illumination conditions could
be distinguished in the images, this did not affect distinctly the neural net-
work’s training performance (the MSE variance of three training runs was
0.01). This insensitivity to illumination noise can be attributed to the fea-
ture extraction by the image pre-processing and to the scaling of the pupil’s
pixel grey values.

7.5 Open Loop

Successful training performance lays in most cases between 0.17 and 0.21
MSE. But to know if the network really represents the given system, it has
to pass the significant test with new input-output pairs that have not been
part of the training set. Four hundred different test wavefronts have been
presented to each trained network, to test if each one is able to predict the
outputs of unknown inputs.

The network calculates for a given test wavefront the piston heights ac-
cording to the 'learned’ weights. The network’s output is used to calculate
the difference between current piston heights and the desired piston heights
for a plane wavefront. This is subtracted from the anterior piston values and
the following new wavefront signal is used as new input value. For closed-
loop the same procedure is used, except that there is an intermission between
evaluation of the signal and application of the new calculated deflection on
the mirror because of the two computers and the two software programs that
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Figure 7.14: Single piston error

have to be used.

Not being a real closed-loop — I call it open loop — the correction factor*
can be set to 1. In a real closed-loop realization the correction factor has
to be reset, as the membrane of the deformable mirror, like all mechanical
parts with inertia and the ability to oscillate, will affect the system’s perfor-
mance. The correction factor must be adjusted depending on the membrane
resonance frequencies and the applied closed-loop frequency.

Figure 7.14 shows the evolution of the correctness ratio of all 7 trained
pistons for 4 loops in the case of discrete piston height levels. The correctness
ratio is the ratio of the number of wavefronts where the respective piston
value was predicted right by the network and the total number of tested
wavefronts (that is 400). Figure 7.15 describes the loop performance of the
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Figure 7.15: Loop performance for a net trained with 5 discrete height levels

same trained network in terms of absolute deviation in MMPQ units. The

“The correction factor is a number between 0 and 1 that is multiplied to the difference
between the present actuator value(s) and the must value(s) to smooth the correction
process.
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plane wavefront was set to MMPQ=4300. Note that because of the quadratic
relation between the MMPQ value and the actual deflection of the piston as
shown in Fig. 7.8, the equivalent curve for absolute deviation performance in
length units will have a steeper slope.

The loop performance of a trained network for quasi continuous height
levels is shown in Fig.7.16. Two pistons exhibit a markedly worse perfor-
mance. This distinct behaviour was due to the pyramids position and re-
mained in similar way for all loops made with this beam alignment. The
reference plane wave was put at MMPQ=5300.

A very simple but strict evaluation figure is the total correctness ratio
shown in Fig.7.17. The total correctness ratio is the ratio of the number
of completely plane wavefronts, i.e. where all 7 pistons have the correct
height position, and the number of tested (i.e. corrected) wavefronts. The

absolute deviation value

15 2 2 il is z
AO loop number AO loop number

Figure 7.16: Loop performance of a net trained with 19 height levels

curve stems from the best achieved open loop performance in the discrete
piston height levels mode. For the quasi continuous case with 19 height
values for seven pistons, this is obviously a very demanding ratio and hardly
no wavefront of the 400 presented wavefronts could show to be completely
plane after the last open loop.

Calculating the RMS error of the test wavefronts before open loop and
after the last loop in units of um by taking into account the position of
the reference plane wavefront reveals that the correction of all successfully
trained nets is similar. The presented wavefronts exhibited a mean RMS
error of 1394+11nm for the discrete heights mode and a mean RMS error
of 164+13nm for the quasi continuous heights mode. After correction the
residual RMS was 51+11nm and 76+13nm respectively, where the RMS error
for quasi continuous height values included networks that were trained with
more noisy data.
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Figure 7.17: Ratio of the number of completely plane wavefronts to the number
of the corrected wavefronts

The wavefront deformation could be reduced in both cases in average to
less than half its starting RMS error.

“aber_07orig.dat’
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Figure 7.18: An aberrated wavefront as presented to the network (left), and after
4 correcting open loops (right). The z-axis’ unit is in pm, the x- and y-axis are
plotted in units of piston distances of the membrane mirror, that is 1.75mm.

Figure 7.18 shows as example one aberrated wavefront before and after
open loop correction. The wavefront is one of the 400 test wavefronts pre-
sented to a neural network for quasi continous height levels and is one of the
better corrected wavefronts. It was presented to the adaptive optical set-up
having a RMS error of 135+13um. After 4 loops the wavefront was corrected
to a RMS error of 50+13um.

7.6 Variations

Different parameters of the neural network can be changed, all affecting its
performance and its ability to predict new wavefronts. Enhancement of the
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first successfull networks was tried, first of all, by variation of the number of
neurons.

Hidden layer

The neural network was tested with a different number of neurons in the
hidden layer of the BP-net for the quasi continuous heights level mode. For
a hidden layer with 10 neurons the performance curve shows a multi-step-
like development within the first 20 epochs, passing then over to a very
flat, hardly improving curve performance with a MSE after 10000 epochs of
0.187. With 50 neurons, the performance yields a good progress in the first
6 epochs passing over to a flat, but still slightly falling curve part reaching
a MSE of 14.2 after 10000 epochs of training. The performance progress for
the networks with 70 and 100 neurons in the hidden layer is similar, also
reaching a similar final error, with a MSE of 0.13 (Fig. 7.13, right curve) and
a MSE of 0.12, respectively. Doubling the number of hidden layer neurons
from 50 to 100 brings only a slight improvement. It can be assumed that
with a number of neurons between 50 and 100 the net can represent the
task. As a too large number of neurons is a risk for overfitting too, a neuron
number below 70 neurons is a sufficient and more secure number.

Training set

Increasing the number of presented input-output examples can only improve
the network’s ability to predict a new pattern, provided that the example
set is randomly distributed and that it covers the complete possible range.
Training with 18000 input-output pairs was possible on a 1GB RAM com-
puter (mohicanus). Training time for 10000 epoches and 18000 examples
is 20 hours. An input-output set training of 20400 examples exceeded the
memory capacity and a computer with 1.5GB RAM had to be used.

First tests were also made where the learning rate was changed between
0.8 and 1. Also, a parameter that correlates adjoining pistons was intro-
duced. But no recognizable improvement was made out when varying this
two parameters.






Chapter 8

Discussion

8.1 Performance and Limits

The performance of the neural networks shows that a neural network can
learn the correlation between image signal of the pyramid sensor and the
corresponding piston elevations. The reduction of new arbitrary wavefront
distortions (laying within the sensitivity range of the sensor) to half the root
mean square error after four to five loops shows further, that the network
has actually been generalized to recognize the wavefronts for the correction
task. Training performance as well as the correction are not optimal, though.

As the training performance for the 19 heights modus shows a good en-
hancement in the beginning, slowing down enhancement abruptly, a possible
reason can be the limited or improper feature extraction from the S_ C-net.
The image pre-processing being able to extract the basic features but not
the finer ones is one possibility, or the kernels being of improper type.

Tests to improve the performance can be carried out, like the following

ones:
First of all the training set, that is the number of input-output examples, can
be increased. A longer lasting training time is not relevant, as the network
is trained only once, after the optic has been placed and does not need to
be repeated again as long as the optic is not moved. Obviously, the RAM of
the computer has to be of sufficient size. A translation of the neural network
software to another more adequate language would support this demand, as
calculations in a language which is not based on linear algebra expressions
will diminish memory space. In addition, the calculation of the outputs
would be performed faster after a successful training of the net, resulting in
a higher bandwidth of the whole closed-loop.

Generally spoken, nowadays the computation power is no limit anymore
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when applying neural networks for a closed-loop system, not even for a sensor
like the pyramid prism which requires time consuming image pre-processing.
In fact, a few years ago this was a limitation. Only sensors like the Hartmann-
Shack sensor, with a simple relation between the signal and the wavefront
aberration — a linear transformation in the case of the HSS — could be taken
into consideration. The first who built a neural network for controlling be-
tween an actuator and a sensor was Vdovin in 1995 [Vdo95|. He used a
network for the signal of a curvature sensor. With a limited spacial fre-
quency of the aberration (as it is the case in this work too) by using a
mirror with 4x4 pistons and two signal images of 5x5 pixel each, he already
achieved a MSE of 0.2 ym. He had used 3000 training examples and the hid-
den layer of his 3-layer BP-net contained 16 neurons. However, he did not
work with real, experimental input-output pairs, but with calculated pairs
from a numerical model.

The increase of the training set will 'prepare’ the network better for
unknown wavefronts, provided that the network offers a structure that is
capable to represent the task. In the BP-net the most effective parameter to
vary is the number of neurons in the hidden layer.

The structure of the preprocessing S _C-net offers more parameters to
be altered. Especially the kernels play an important role and have not been
tested, that is modified, in this work. The promising challenge is to find the
kernels matching to the characteristic feature of the signal image, so that a
considerable improvement of the training performance arises.

Instead of the proposed trial-and-error method by changing the param-
eters we can think of other ways for a network improvement based on an
examination of the learning process. It would consist in checking if the error
function has side minima that cause problems or if the cigar-effect mentioned
in section 5.2.1 is the reason for a flat performance curve. Further it would
be important to inspect if the architecture is oversized.

These training details are not available for the neural network implemented
in Matlab and therefore could not be checked.

The network was said to incorporate misalignments or aberrations inher-
ent to the optical set-up. Any additional inherent aberration, reduces the
remaining sensing range of the pyramid. For example, if the system exhibits
an internal tilt in (4x)-direction, the wavefronts to be measured can have a
larger tilt in (-x)-direction but only a small one in (+x)-direction, as it will
reach the sensor’s saturation range.

Likewise, imperfectness of the pyramid prism, like uneven surfaces or
wide edges, cannot all be reconciled by a training of the network. Loss
information on broad edges of the prism — that is loss of the information
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about the aberrations of the small spatial spectrum — cannot be retrieved.

8.2 Conclusion and Outlook

The reduction of aberrations of 150nm root mean square error over a 6mm
pupil to less than the half could be realized with this work with the first
implementation of an artificial neural network as controller and a 3-sided
pyramid prism as wavefront sensor of an AO system. The system shows a
good ability to correct to its optimum within 3 to 5 loop steps as well
as a high tolerance against background light noise.

A similarly correction can be expected in fast closed-loop performance.
However, this can only be verified through an upgraded experimental set-up
where the hardware controlling components, that is the frame-grabber card
and the D/A-converter, are implemented in a single computer. Further, it
is desirable to translate the actual neural network software to C or C++.
Exportation out of Matlab is imperative as otherwise no bandwidth higher
than a few Hertz will be achieved. With an additional integration of the
controlling software in one program, control frequencies can be expected,
that will just be limited by the read-out frequency of the CCD-camera.

The measurement and compensation of wavefront aberrations with the
high-sensitive neural network pyramid sensor (NN-PS) system presented here
has been shown for the unmodulated mode in order to measure dynamic
aberrations of small amplitude. However, dynamic aberrations of larger am-
plitude than those which lie in the range of the NN-PS have also to be
measured for an implementation of an AO scanning laser ophthalmoscope.
The static, and usually largest aberrations are no handicap as they are com-
pensated for each individual patient before image acquisition by positioning
lenses (usually for defocus and astigmatism aberration). Static aberrations
of Zernike orders above the second order can be compesated by phaseplates.
It can be thought of two possible solutions to incorporate both scales: either
to extend the actual neural network for application in the modulation modus
in addition to the non-modulation modus, or to detect larger amplitudes of
aberration with a second sensor measuring in that range, by construction of
a two-stage sensor system. The later represents a rather complex and more
expensive system, so that the former solution is the expedient one.

After a successful closed-loop operation, a transition of the NN-PS sys-
tem from the laboratory table set-up into a SLO is a rather simple mission. It
consists in adding a beamsplitter and two lenses (to measure in the conjugate
plane to the eye’s pupil) as 'connecting elements’ between the ophthalmo-
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scope and the neural network pyramid sensor system.



Appendix A

The layers of the retina

The retina is the inner coat of the eye ball with a thickness of approximately
250pum. It is separated from the vitreous body by the inner membrane and
from the choroidea by Bruch membrane (not indicated in Fig. A.1). Light
has to pass several layers before it reaches the layer of the photoreceptors.
In principle light is scattered at every layer. Focusing a confocal scanning
laser ophthalmoscope to one layer will assist an imaging of that layer. Light

. inner membrane
nerve fiber layer

“— ganglion cell layer
inner plexiform layer

] inner nucleus layer

] outer plexiform layer

outer nucleus layer

| receptors
*++ .pigrent epithel

choroidea

sclera

Figure A.1: The layers of the retina. Left: schematic picture; right: photo from a
sectional cut (modified from [Jun96]).
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that has been detected from the cones or from the rods is converted into an
electro-chemical signal. The signal passes all retina layers (where the signals
coming from the receptors are already preprocessed) in opposite direction
back to the nerve fiber layers and to the optic nerve.



Appendix B

Zernike polynomials

The Zernike polynomials up to the 4th radial order are presented here. The

nomination used in this work is the one established in ophthalmology, pro-
posed by Thibos [Thi01l]. Because it differs from the ISO-nomenclature,
leading often to confusion, both terms are given in the second and third

column respectively.

‘ order ‘ A ‘ ISO ‘ Zi(p, &) aberration
0 Z(] Co 1 piStOD
1 Z1 | Cq 2psin ¢ y-axis tilt
1 Zo | Cg 2p cos ¢ x-axis tilt
2 Zs | Cs V6p? sin(2¢) astigm. +45°
2 Zy | Cs V3(2p% — 1) defocus
2 Zs | Cy V6p? cos(2¢) astigm. 0°/90°
3 Ze | Cg V/8p? sin(3¢) trefoil 30°
3 Z7 | Cr V8(3p% — 2p)sin ¢ y-axis coma,
3 Zs | Cg V8(3p% — 2p) cos ¢ x-axis coma,
3 Zg | Cy V8p3 cos(30) trefoil 0°
4 | Zy | Ci7 V10p% sin(4¢)
4 Z11 | Ci1 | V10(4p* — 3p?)sin(2¢) | astigm. 0°, 2" order
4 Z1a | Cg V5(6p* — 6p? 4+ 1) spherical aber.
4 Z13 | C1a | V10(4p* — 3p?) cos(2¢) | astigm.45°, 2"¢ order
4 Zl4 C16 \/mp4 COS(4¢))

7
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Appendix C

Amplifier circuit diagram
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Figure C.1: Amplifier to address all 64 pixel groups of the MEMS mirror; built by
the electronic workshop of KIP.
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There are 64 integrated circuit (IC) amplification moduls integrated on
the amplifier board. A gain of 10 is sufficient to amplify the D/A board
signal between 0 and 5V to the control voltage of the segmented mirror of
up to 35V. +12V provide the supply voltage for the ICs. The connected
-5V shift the amplification range to negativ voltages in order to be able to
actually amplify from 0V. The third supply (HV) is the source for the output
gain voltage and should not exceed 35V to prevent a damage of the mirror.
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