
Ruprecht-Karls Universität Heidelberg
Institute of Computer Science

Research Group Parallel and Distributed Systems

Bachelor’s Thesis

Tracing the Connections Between MPI-IO Calls and
their Corresponding PVFS2 Disk Operations

Name: Stephan Krempel
Matriculation number: 2377365
Supervisor: Prof. Dr. Thomas Ludwig
Date: March 31, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32579795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ich versichere, dass ich diese Bachelor-Arbeit selbstständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

March 30, 2006, ..

Abstract

Fast and efficient input/output is a very important aspect of today’s high performance com-
puting. Often these systems are very complex so no prediction can be made what an I/O call
at the program level will trigger at the system level. One kind of such complex systems are
parallel programs based on MPICH2 for message passing and PVFS2 as parallel file system.
This thesis is about enhancing the environment in a way that we can find the necessary infor-
mation in the traces of a program run. MPI-IO calls can now be related to disk operations.
The concept of our extension of the involved software packages is to generate a unique ID for
every MPI-IO call and to pass it along to the I/O-servers. After they got written into the
corresponding traces we can find matching events in them and visualize them in the Jumpshot
trace viewer. An easy to follow example is presented and detailed hints for future work are
given.

3

Contents

1. Introduction 6

2. System Overview 7
2.1. MPICH2 . 8

2.1.1. ROMIO . 8
2.2. MPE2 . 8

2.2.1. Logging Facilities . 8
2.2.2. SLOG-2 Software Development Kit . 9

2.3. PVFS2 . 10
2.3.1. PVFS2 Client Library . 11
2.3.2. PVFS2 Server . 12

2.4. Trace Analysis Tools . 12
2.4.1. Merging Traces . 13
2.4.2. Getting Better Visual Access . 13
2.4.3. Nicely Colored Pictures . 13

3. Specification of the Goals 14
3.1. Starting Point . 14
3.2. Goal of this Thesis . 14
3.3. Approach . 15

4. Design 17
4.1. General Issues . 17
4.2. Getting the Necessary Information . 18

4.2.1. Logging of MPI-IO Function Calls . 18
4.2.2. Logging of PVFS2 Trove Events . 18
4.2.3. Making Connections Possible . 19

4.3. Making Information Visible . 20
4.3.1. Text Based Analysis . 21
4.3.2. Graphical Analysis . 22

4.4. Limitations of Design . 23

5. Implementation 24
5.1. General Issues . 24
5.2. Creation of CallID for MPI-IO Function Calls 26
5.3. Getting the ID to the Right Place . 33

5.3.1. Client Side: From MPE2 to BMI . 33
5.3.2. From Client Side to Server Side . 36
5.3.3. Server Side: From BMI to Event Manager 38

4

Contents

5.4. Statistic and Visualisation Tools . 47
5.4.1. Tool for Analyse Output of Slog2print 47
5.4.2. Tool Creating Arrows for Visualisation in Jumpshot 51

5.5. Limitations of Implementation . 57
5.6. Implementation Problems . 58
5.7. Summary . 60

6. Example 61
6.1. Installation of the Environment . 61

6.1.1. Patching the Sources . 62
6.1.2. Installing Plain MPICH2/MPE2 for Building PVFS2 63
6.1.3. Installing PVFS2 with MPI and MPE 63
6.1.4. Installing MPICH2 with PVFS2 Support for Logging 63
6.1.5. Setting Up MPD Ring . 64
6.1.6. Setting Up PVFS2 Servers . 64
6.1.7. Installing Slog2tools . 66

6.2. Running a Small Demo Program . 67
6.2.1. Writing the Program . 67
6.2.2. Compiling the Program . 67
6.2.3. Running the Program with Event Logging 67
6.2.4. Preparing the Created Logs for Visualization 68
6.2.5. Examination of the Results . 69

6.3. Evaluation . 71

7. Summary and Conclusions 72

8. Future Work 73
8.1. Work in Progress . 73

8.1.1. Avoiding the Visualisation Problem with More than One Client 73
8.2. Necessary Enhancements . 73

8.2.1. Take Care of Collective Calls . 73
8.2.2. Enable Small I/O . 74

8.3. Ideas for technical enhancements . 74
8.3.1. Make PVFS2 Code Even More Flexible 74
8.3.2. Better Inclusion of the Changes . 76

A. List of MPI-IO Functions 77

B. Code for callid-demo (callid-demo.c) 80

Listings 83

List of Figures 84

References 86

5

1. Introduction

Fast and efficient I/O is still a rising aspect of today’s high performance computing. One
alternative to deal with that is a combination of MPICH2 for message passing and PVFS2
as parallel filesystem, resulting in an easy to use and very flexible I/O software system. The
flexibility comes from a high modularity that considerably increases the system’s complexity.
Every data to be written to or read from a disk has to pass through several layers, so that at
the end we cannot see easily what operation at the program level has triggered what operation
at the system level. This circumstance makes is very difficult to do performance optimisation
and to find bottle-necks in the system.

There already exist some tools for analysing MPI programs. Vampir1 for example is capable
of writing out a trace of an MPI program run. It can then be used to visualize and analyse
these traces. But, it only shows high level MPI function calls and gives no deep view into the
underlying system behaviour. Another approach is TAU2 which is a toolkit for instrumentation
of parallel programs for performance analysis. It comes with an automatic instrumentor tool
that can be used with MPI for analysing message passing, but there is nothing to read yet
about automatic instrumentation for I/O analysis. On the other side we can find Karma that
is part of the PVFS2 package [1]. Its purpose is to show PVFS2 system characteristics live at
runtime but isn’t able to save them permanently. None of the mentioned tools can be used
easily to make connections between I/O request and I/O operations. Even if we cannot give
the names of all existing tools here, we are not aware of one having this capability.

Therefore our idea is to take a trace tool and write all relevant data at each level into traces at
the program runtime. So we get one trace for the clients making I/O requests and one trace for
the servers making I/O operations. We then merge these traces and see what information we
can get in that way. The last step is to visualize as much information as possible and analyze
the I/O behavior.

This thesis is structured as follows: Chapter 2 gives an in detail overview about the system that
we use and modify. The goals of the thesis are specified in Chapter 3. Chapter 4 describes
the design ideas and methods for our changes of the system before Chapter 5 shows the
implementation of all modifications and enhancements described. Chapter 6 guides through
the installation of the used environment and describes a small example to see the results of
the work. Chapter 7 finally summarizes the work and gives a short conclusion. At the very
end in Chapter 8 some ideas for future work are presented.

1Visualisierung und Analyse von MPI-Resourcen, developed by ZAM Jülich and TU Dresden, distributed by
Pallas GmbH, Germany, now called Intel® Trace Analyzer

2Tuning and Analysis Utilities, a joint project between the University of Oregon, the LANL, and the ZAM
Jülich - http://www.cs.uoregon.edu/research/tau/home.php

6

http://www.cs.uoregon.edu/research/tau/home.php

2. System Overview

In this chapter we will give an overview over our system environment. From a global point
of view this is a GNU/Linux Cluster with MPICH2 as the message passing environment and
PVFS2 as the parallel filesystem. Here we take a closer look at the functional context of the
relevant parts. A detailed description how to install and setup this environment is given in
chapter 6 “Example” on page 61.

Trace
clog2 slog2

Trace

Trace
clog2 slog2

Trace

slog2

Trace

MPI−IO

LAN
Jumpshot

slog2tools

clog2TOslog2MPE

PVFS2

Server

PVFS2

Server

PVFS2

Server

MPI

PVFS2

Client

MPI

PVFS2

Client

Visualisazion

Figure 2.1.: Schematic plan of the system environment

We run parallel programs using MPI1 for message passing. These programs do parallel in-
put/output (I/O) using MPI-IO. The data is stored in a distributed way on hard disks using
the Parallel Virtual Filesystem Version 2 (PVFS2). The operations in the clients (MPI) as
well as in the servers (PVFS2 servers) are logged using the MPI Parallel Environment (MPE).
The produced traces become merged and prepared using slog2tools2 and finally get visualized
with the tool Jumpshot. A schematic diagram is presented in figure 2.1.

1Message Passing Interface - http://www.mpi-forum.org/
2see section 2.4 “Trace Analysis Tools” on page 12 for details on the slog2tools package

7

http://www.mpi-forum.org/

2. System Overview

2.1. MPICH2

The MPI standard [2] is the most commonly used programming method for parallel programs
with message passing in our days. MPI-2 [3] including MPI-IO extends this standard with
everything needed for efficient I/O in parallel programs. MPICH23 [5, 6] is the popular open
source implementation by the Argonne National Laboratory that has attained wide acceptance
in the world of high performance computing. It is not just a library, but it comes with an own
compiler frontend (mpicc), daemon (mpd) and execution wrapper (mpiexec).

We are using MPICH2 version 1.0.3 released on November 23, 2005.

2.1.1. ROMIO

The part of MPICH2 that contains the functions specified in MPI-IO is called ROMIO4 [8].
There is already support for many common filesystems and ROMIO has a modular structure to
facilitate adding further ones. To support a filesystem ROMIO uses a so called ADIO5 device
implementing a couple of interface functions for one specific filesystem. An ADIO device for
PVFS2 is already included.

2.2. MPE2

MPE6 is a collections of tools for MPI programmers. A complete list of the many available
tools under MPE2 can be obtained from [9]. The parts important for our development are the
logging facilities at the one hand and the SLOG-2 SDK on the other.

Although MPE2 1.0.3 is included in MPICH2 1.0.3 we use the slightly newer version 1.0.3p1
from November 23, 2005.

2.2.1. Logging facilities

MPE2 provides a set of profiling libraries to collect information about the behavior of MPI
programs.

3MPI Chameleon 2 - http://www-unix.mcs.anl.gov/mpi/mpich2/ [4]
4http://www-unix.mcs.anl.gov/romio/index.html [7]
5Abstract-Device Interface for I/O
6MPI Parallel Environment - http://www-unix.mcs.anl.gov/perfvis/download/index.htm#MPE

8

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www-unix.mcs.anl.gov/romio/index.html
http://www-unix.mcs.anl.gov/perfvis/download/index.htm#MPE

2. System Overview

The two of them we will use are

libmpe - providing a general logging interface for manual usage

liblmpe - providing wrappers around all MPI functions to log every MPI function call
in a program.

The traces generated by MPE are written at the end of execution time for postmortem analysis.
The writing is triggered by the call of MPE_Finalize.

2.2.2. SLOG-2 Software Development Kit

The SLOG-2 SDK provides both the Software Development and Runtime environments for
SLOG-2 and Jumpshot-4.

SLOG-2

SLOG-27 is a visualization oriented logfile format for event logging. The data is represented
by drawables internally organized in a tree structure [10]. Each drawable belongs to a category
defining its type. Each time stamp (for example the start time of an event) has the time value
as offset to the beginning time of the file and belongs to one time line. There can and almost
always will be many time lines in as SLOG-2 formatted file. For example when MPE merges
the traces from all MPI processes it creates one time line for each process.

There are four different kind of drawables:

event - event occurring at one single point in time
state - event taking a fraction of time
arrow - event taking a fraction of time and optionally beginning and ending on

different time lines
composite - container to compose any drawables

The first three kinds are also called primitive drawables.

Jumpshot-4

Jumpshot8 is a logfile viewer written in Java. It is able to show SLOG-2 formatted files.

Figure 2.2 on the next page shows the visualization of an slog2 file displayed by Jumpshot-4.
The slog2 file is created using the scheme in figure 2.1 on page 7. Each of the time lines 1-4
represents one process. The rectangles on the time lines are the events that have occurred
in the respective processes. For example these can be calls of MPI-IO functions (listed in

7http://www-unix.mcs.anl.gov/perfvis/software/log_format/index.htm [9]
8http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm [9]

9

http://www-unix.mcs.anl.gov/perfvis/software/log_format/index.htm
http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm

2. System Overview

Figure 2.2.: Jumpshot program windows

appendix A on page 77). By doing a right click on such an event a pop-up window shows some
information about the event. Each event has the color of its category as shown in the legend
window on the left side. The legend window also provides the option to set the visibility and
searchability of each category. For a more in detail description see [11].

2.3. PVFS2

PVFS29 is an open source parallel file system to be used on clusters running Linux Systems.
It is a completely rewritten version of the first PVFS, both being developed at the Argonne
National Laboratory.

PVFS2 has a modern modular layered design [12, 13, 14] to be flexible to changes and exten-
sions. It provides to its clients an abstract view to a file system, hiding the real distributed
nature of the data storage on multiple data servers. All the management is done by one or
more metadata servers. For PVFS2 it does not matter where the client and server processes
run physically.

In figure 2.3 on the following page we can see the layered design of PVFS2. The implementation
of PVFS2 is based on state machines handling separate tasks. Each layer is implemented by
at least one state machine, often with several sub state machines. For a detailed description

9Second Parallel Virtual Filesystem - http://www.pvfs.org/pvfs2 [1]

10

http://www.pvfs.org/pvfs2

2. System Overview

LAN

BMI Trove

Myrinet
Infiniband

TCP/IP

Client

Client

Client

Client

Server

Server

Job

Flow

Flow

Job

Kernel VFS ...MPI−IO

ncacheacache

User Level Interface

Application

System Interface

BMI

Main Loop

Disk

Figure 2.3.: Layer structure design of PVFS2

of the layers and their interfaces please refer to the documentation in the source package10.

2.3.1. PVFS2 client library

The client side of PVFS2 is a library that is linked to a parallel program, providing methods
to do all the usual stuff you wish to do with a filesystem. The library by itself does not use
threads, every request is handled after the preceding request completed.

An application can either implement a new User Level Interface or use an already existing
one such as the PVFS2 ADIO device for ROMIO in MPICH2. The second important User
Level Interface implementation is the PVFS2 Linux kernel module connecting to the Linux
kernel Virtual Filesystem Switch (VFS) and thus providing POSIX conform access to PVFS2.
This feature uses an additional daemon on the client side providing the library functions for
the kernel module to communicate with the servers. We do not consider this feature in the
framework of this thesis.

The layers we can see for the client in figure 2.3 are much more important for the already
mentioned daemon version than for the library we use. Job, Flow and BMI are similar to
10The documentation is in ${PVFS2-SRC}/doc, for the design first take a look at io-api-terms.

11

2. System Overview

the layers we will see described for the PVFS2 server below. Client-side specific are only the
caches in the system interface for minimizing the number of requests to the servers. For a
more in detail description see the documentation included in the PVFS2 source code package
and also [15, section 2].

2.3.2. PVFS2 server

The PVFS2 server is a daemon, writing the data received from a client to the underlying
filesystem or reading and sending requested data to a client. The server needs specially pre-
pared space to use as data storage. It is statically configured so no configuration changes are
supported at runtime.

The server daemon runs four threads11 trying to parallelize request handling:

• The main thread started first during server start-up and in the parent of all others.
Later it manages the interworking of all parts by controlling the state machines.

• One thread is in charge of the kernel device interface, testing for the presence of
unexpected messages and handles them.

• One thread is in charge of Trove, managing all disk operations, meaning all operations
on the underlying filesystem.

• One thread is in charge of the Buffered Message Interface (BMI), handling all
network communication.

In the server two important parts are not realized as own threads:

• The Flow layer handles data transfers between Trove, BMI and the memory.

• The Job layer composes BMI, Flow and Trove operations into one API giving direct
access to logical tasks.

2.4. Trace Analysis Tools

In 2005 Julian Kunkel and Dulip Withanage in Thomas Ludwig’s group at the Universität
Heidelberg developed several tools to prepare SLOG-2 formatted files for a better visualisa-
tion in Jumpshot. In particular, these tools are developed to bring MPE created logs from
MPICH2+PVFS2 client and PVFS2 servers together and make them visible in a usable form

11The server threads are mapped onto pthreads in our environment

12

2. System Overview

for performance analysis. The tools got packed and endued with a make system by the author
of this document into one package called slog2tools12.

2.4.1. Merging traces

MergeSlog2 is written by Julian Kunkel. It merges together two slog2 files in a way that the
time lines from the second input file appear below the time lines of the first input file. It also
provides the option to give a time difference to adjust the time lines of the two files. A simple
automatic calculation of time difference is provided too, it just takes the first time in each file
and set them as common time zero.

2.4.2. Getting better visual access

The three tools Slog2ToCompositeSlog2, CompositeSlog2ToLineIDMap and Slog2Arrows are
developed by Dulip Withanage [16]. They change the inner structure of an slog2 file for better
visualisation.

Slog2ToCompositeSlog2 puts together primitive drawables into composites. The user decides
on the used criteria.

CompositeSlog2ToLineIDMap scans the input file for overlapping events on the same time
line and splits the relevant time lines into sub time lines.

Slog2Arrows is intended only to be a reference to show how to create arrows. It simply creates
time line spanning arrows from each drawable to the next in time.

2.4.3. Nicely colored pictures

To get visual access to our SLOG-2 formatted files we use the already described Jumpshot-4
by Anthony Chan at Argonne National Laboratory (see section 2.2.2 “SLOG-2 Software De-
velopment Kit” on page 9).

12The package will become available at the Internet in the near future.

13

3. Specification of the Goals

3.1. Starting Point

An MPICH2/PVFS2 system is a complex piece of software. The overall modularity guarantees
great flexibility in development and usage, but it also makes it hard to understand what exactly
happens with the data from a global perspective.

One first interesting point when we talk about performance analysis and program optimization
is what happens at the end (on the physical storage) if we call one MPI-IO function or another
in our program. We are already able to produce one single trace with all the MPI-IO calls
made in any process of our program using the MPE wrapper library liblmpe. We can also get
one single trace with events performing disk operations (Trove operations) from the PVFS2
data servers by executing them as MPI program. After the work of Julian Kunkel and Dulip
Withanage for the slog2tools we actually can bring these traces together, prepare them and
have a look at it in Jumpshot. But the only thing we can see is that some calls of MPI-IO
functions led to some disk operations, nothing about what disk operation was initiated by
what function call.

3.2. Goal of this Thesis

Our first goal is to become able to recognize connections between MPI-IO function calls and
the disk operations they trigger. The disk operations are represented by the Trove events we
get into the PVFS2 data server trace.

The second goal is to have an easy way to identify these connections in our visualization with
Jumpshot. More precisely we want to see arrows in Jumpshot connecting the events that
belongs together in that way. At the end this should look like in figure 3.1 on the next page.

As a third and last point it would be fine to have a tool producing some statistics about the
trace from our environment. General statistics would be interesting and especially statistics
concerning the connections possible due to the new CallID introduced here, for example the
average number of triggered disk operations per MPI-IO function call.

14

3. Specification of the Goals

Client 1

Client 2

Client 3

Server 1

Server 2

MPI_File_write

MPI_File_read

MPI_File_read

Trove Write Trove Read Trove Read

Figure 3.1.: The designated presentation of connections between events in Jumpshot

To reach this goals we first have to extend the tracing capabilities to give us enough information
for producing the intended connections. We need to have some kind of unique identification
that is only the same at all events causally belonging together.

After that we have to produce the arrows as arrow events in the SLOG-2 formatted trace. The
feature to display these arrows at the end is already available in Jumpshot-4.

3.3. Approach

The main idea is to create an ID with each function call in MPI-IO and put it into the trace.
Because it identifies the function calls in MPI-IO we will name it CallID. After creating it
we will push this CallID through the whole system to log it together with all Trove events
resulting of the MPI-IO function call it got created for.

Some relevant points that have to be discussed are

• There are many different MPI-IO functions (see appendix A “List of MPI-IO Functions”
on page 77) defined in the MPI-2 standard [3] which are intended to do I/O in very
different ways. To start we can care about only a few of them but in the future, research
should be done to cover all these functions.

• We have to reflect on how many single disk operations can be triggered by on call of an
MPI-IO function. The reverse case could also be possible, collective calls are designed
to combine more than one request from MPI processes to one request to the file system.

15

3. Specification of the Goals

• A very implementation specific decision to make is how it is possible to get the CallID
from MPI-IO function call to the Trove layer of the PVFS2 data servers.

All the here mentioned points we will discuss in the next chapter about the design.

16

4. Design

This chapter is about the general design of the enhancements getting realized within the scope
of this thesis. It describes the concept of what we will do.

4.1. General Issues

Different MPI-IO functions

Let us first discuss the differences between several MPI-IO functions. A complete list of
all MPI-IO functions is given in appendix A “List of MPI-IO Functions” on page 77. We
are especially interested in differences in the number of produces disk operation requests. An
aspect changing the number of operations triggered by one function call may be the size of data
to transfer. But as this should be the same with all functions we cannot use it as a criterium.
Supposably the second great difference is between collective and non-collective versions of
functions. Read and write should make little difference and also the kind of positioning (pointer
or explicit offset) should not altering the request scheme so much.

Collective functions in MPI-IO are functions that have to be called by several MPI processes
at almost the same time to do a collective I/O operation. With this kind of function we can
run into big trouble with our approach using a CallID. In theory many calls could produce
one request to the server and in that case one Trove event would have more than one CallID.
Therefore we will first concentrate on the non-collective calls to get a feeling of the attempt.

A little deeper discussion of the collective call problem we will do in section 4.4 “Limitations
of Design” on page 23.

Ratio of MPI-IO function calls to Trove events

Since we decided to begin with non-collective calls we will never come into the situation to
produce one Trove event with more than one MPI-IO function call. But the reverse case is
possible. Depending on the size of the data and the distribution function (see [15]) the data
we want to read or write using one call of an MPI-IO function are spread over several PVFS2
data servers.

17

4. Design

The distribution function is the algorithm used by PVFS2 to distribute the data over the
available PVFS2 data servers. The concept of the standard distribution is striping with a fix
stripe size. That means for a stripe size of X bytes, that the bytes 0 to X − 1 of the virtual
filesystem are handled by the first data server, the bytes X to 2X − 1 are handled by the
second data server and so on. Assuming we have n data servers, the bytes (n− 1)X to nX− 1
are handled by the last data server and the bytes nX to (n + 1)X − 1 are handled again by
the first data server1.

There is also another reason for one MPI-IO function call to become split into several requests.
The size of PVFS2 messages is limited to a size of 64KB so larger requests have to be split
over several messages to get the data from the client to one server and vice versa. This occurs
even if there is only one PVFS2 data server.

Summarizing we can say that if using only non-collective functions each Trove event will be
triggered by exactly one MPI-IO function call. But in the other direction one MPI-IO call can
and mostly will trigger several Trove events.

4.2. Getting the Necessary Information

Before we are able to show connections between MPI-IO function calls and resulting disk
operations we need to have the right information in the right places.

4.2.1. Logging of MPI-IO function calls

By linking our MPI program against liblmpe (see section 2.2 “MPE2” on page 8) we can get
a trace with all MPI-IO calls invoked during the program run. MPE takes care for logging all
invocations in each MPI process and puts this information together in one single trace.

4.2.2. Logging of PVFS2 trove events

In PVFS2 there is a separate part responsible for logging called event manager. Each part of
PVFS2 tells the event manager when an event occurred. The event manager already comes
with a backend for MPE2, so we can use the MPE capabilities to get a trace out of the system.
In order to get one single trace file from all servers, we need to run the PVFS2 server daemon
using MPI. This is possible with the method and patches developed by Julian Kunkel (see
section 2.3.2 “PVFS2 Server” on page 12). We are particularly interested in all Trove events
because they indicate real disk operations. The event manager innately logs trove read and
write separately.

1In general byte number a is handled by Server ba/Xc mod n

18

4. Design

4.2.3. Making connections possible

Now we do have one combined trace from all clients with all MPI-IO calls and one combined
trace from all servers with all Trove events. We can merge these two traces using MergeSlog2
written by Julian Kunkel and included in slog2tools package (see section 2.4.1 “Merging Traces”
on page 13). Subsequently we have one single trace with all the events of interest.

To make a logical connecting of the MPI-IO calls with the triggered Trove events possible we
need to have information about the triggering event in the triggered one. The MPI-IO call is
the triggering event and always happens first. Consequently we generate a CallID for every
MPI-IO function call and pass it through to whole system to Trove, finally doing the disk
operation. Trove then gives the ID together with the event notification to the event manager.
The same CallID then will get logged both with the MPI-IO function call and with all triggered
Trove events. As we can see, the issue that one MPI-IO call can trigger several Trove events
should make no problem, we just have to duplicate the CallID at the point of the system where
the MPI-IO request gets also split.

Figure 4.1 on the following page anticipate some implementation issues for consistency reasons
but we can already see some interesting things concerning the design in there:

I. The CallID becomes generated in the MPI-IO wrappers provided by MPE. MPE also
puts the CallID together with the MPI-IO event into the client trace. The CallID becomes
stored globally in the client address space.

II. The PVFS2 client takes the CallID and puts it together for each request into the server
request protocol. Since the whole client is not threaded the CallID cannot be overwritten
until the client has completed the request. Since the PVFS2 client is in the same address
space as MPE it can access the globally stored CallID directly.

III. The CallID becomes transferred with each request to all PVFS2 servers involved.

IV. The CallID becomes transferred through the PVFS2 server passing the layers. The
request comes over the network and is received by the networking layer BMI. Job becomes
aware of a new message takes it and starts an appropriate Flow. The Flow then transfers
the data from BMI to Trove (in case of a write request) or requests the data from Trove
and waits to transfer it to BMI (in case of a read request). Trove reports the operation
to the event manager. On each crossed layer boundary a reference is assigned making
it possible for the event manager to access the memory address where the right request
protocol containing the CallID is stored.

V. Trove handles the request and reads data from the disk respectively writes data to the
disk.

VI. Finally the event manager puts the CallID together with the Trove event into the server
trace.

19

4. Design

assign reference to

request protocol containing CallID

create CallID, store globaly,

log with MPI−IO event

Disk

MPE

(liblmpe)(mpicc, mpiexec)

MPICH2

MPI program

PVFS2

(libpvfs2)

address space server

address space client

PVFS2

(pvfs2−server)

read/write data

write ID with logged trove events

ROM−IO MPI−IO wrapper

MPE

BMI

Trove

Job

Flow

copy ID into server request protocol

transfer ID with request to server

event manager

(MPI process)

(PVFS2 server daemon)

V

VI

IV

III

II

I

Figure 4.1.: The way every MPI-IO call takes through the system

4.3. Making Information Visible

After having traces with CallIDs, we need to find ways how to make expedient use of it.

20

4. Design

4.3.1. Text based analysis

With the SLOG-2 SDK there comes a tool called slog2print. With this tool we can get all
information in an SLOG2 trace printed to the console. This enables us to write a Perl script
compiling some statistics about our SLOG2 trace. We will use Perl because it is an excellent
choice for scripts mainly doing text parsing and processing.

Since the exact statistical information a user wants to have can highly vary, it would be difficult
and intricate to write one tool for everyone. So we will confine ourself to just write a reference
implementation that can grow with the requirements.

Some requirements to resolve already in the reference implementation are:

• The reference script should read in and provide all category information. Since the
categories are extremely important in SLOG2 format this information will be needed
and used very often.

• It should be structured in a manner that extensions can be applied easily.

• There should be a few simple statistical functions implemented: a counting of the cate-
gories with CallID, a calculation of the average number of trove operations one MPI-IO
call produces.

The slog2print output is structured into five sections:

SLOG-2 Header:
2[...]

4CategoryMap:
[...]

6

SLOG-2 Tree Directory
8[...]

10LineIDMapList:
[...]

12

14

1: Primitive[infobox[TimeBBox(3.9186038970947266,3.9186408519744873) Category=
16Category[index=301, name=Job, topo=State, color=(255,0,0,255,true), isUsed=true

, width=1, vis=true, search=true, ratios=0.0890226,-0.3662462, count=76]:] (3.
18918604, 2) (3.9186409, 2)] bsize=32

2: Primitive[...
20[...]

Listing 4.1: Output sections of slog2print

21

4. Design

The script should read its input line by line because most information parts are given in one
single line. Each section contains other kinds of information and will need different parsing.
So it would be fine for the script to know from what section the current line is. It then can
restrict the parsing of the line to those rules valid in the current context. Each section border
has a headline to identify it but the last that is introduced with three blank lines. We will use
these border marks to let the script know in what context it is at every moment.

4.3.2. Graphical analysis

Also for graphical analysis there is already a Tool in the SLOG-2 SDK called Jumpshot-4 (see
section 2.2.2 “SLOG-2 Software Development Kit” on page 9). As already mentioned Jumpshot
can draw the in SLOG-2 format [10] defined arrows. So what we still need to do is adding
arrow primitives with the appropriate end points into our trace to represent the connection of
MPI-IO function calls with the respective triggered trove events. For adding arrows to slog2
traces Dulip Withanage has written a reference script Slog2ToArrowSlog2 in the course of his
bachelor thesis [16]. Unfortunately this is just a very rudimentary implementation, so the big
part of the work is still to be done, but there is a skeleton structure we can use as our basis.

The algorithmic principle we should use is:

FOR <all drawables in increasing start time order>
BEGIN
IF <current drawable has CallID and this CallID is never seen before>
BEGIN
FOR <all drawables after current>
BEGIN
IF <current inner drawable has the same CallID as current outer drawable>
BEGIN

<create arrow from current outer to current inner drawable>
END

END
END

END

Listing 4.2: Algorithm for creating arrows in Slog2ToArrowSlog2

The idea is that always the first occurrence in time must be the initiator of an operation and
with it the MPI-IO call that created the CallID will be found as first drawable. So all arrows
for one CallID will begin at the MPI-IO call and end at one Trove operation. Using this
method we get a worst case runtime complexity of O(n2−n

2) ≤ O(n2).

To have a additional visual attribute already to see at the start point of an arrow what kind of
trove operation it points to, the arrow should have the same color as the trove operation. That
means orange for “Trove Read” and blue for “Trove Write”. Arrows with unknown target type
should have the color white. To have an indicator what arrow it is without having its begin
or end in the viewport the CallID should become set for the arrow too.

22

4. Design

4.4. Limitations of Design

Of course there are limitations that we cannot break with the described concept. Let us shortly
discuss some critical aspects here:

Collective calls

MPI-IO provides so called collective calls. With them it is possible for multiple processes
to access data in one file in a coordinated way. The idea behind this is to put the MPI
implementation in a position for doing some optimization.

What happens with our CallID in that case? We already began this discussion in section 4.1
“General Issues” on page 17 at the beginning of this chapter. With collective calls it could
happen that one Trove event (and so disk operation) is triggered by multiple MPI-IO function
calls, or in other words by one collective call done in multiple MPI processes. The problem is
that the Trove event could so get multiple CallIDs, one per process participating. The question
in that case is which one the PVFS2 client takes to pass with the requests to the server. The
answer to this question depends completely from the algorithm the PVFS2 backend of ROMIO
uses. We will not analyse this here in detail. On the first view it seems not to be reasonable
for PVFS2 to handle collective calls different from non-collective because the filesystem and so
presumably the accessed data is spread over several PVFS2 data servers anyway. So perhaps
the ADIO device for PVFS2 just map collective to non-collective calls and let PVFS2 do the
complete optimization. This is a yet open issue in this context and will not be covered in this
thesis (see also section 8.2.1 “Take Care of Collective Calls” on page 73 in chapter “Future
Work”).

23

5. Implementation

This chapter describes in detail the implementation of the concepts discussed in the last chapter
about the design. There are many code fragments given so browsing the source code while
reading this document should not be necessary. Nevertheless, it can be helpful sometimes,
since the complex and geared structure especially of the PVFS2 server code makes it often
impossible to show every detail.

5.1. General Issues

What we want to do here is to modify an existing software system that is itself under constant
development. This circumstance leads to some potential problems, that we have to take care
about.

Avoid changing the standard behaviour of the Software Even with our new patches in-
cluded, the whole system should behave exactly as without. Moreover the user should have
the choice to deactivate our modifications in the case some problems arise for him. To achieve
that, we have several alternatives:

• We could try to produce an extra library. To get our functionality, someone would have
to bind it to his program, together with MPE2 and PVFS2 libraries.
This will not be practicable since our changes will not give dedicated extra functionality
but enhance some functions already anchored in the system.

• We could use preprocessor macros to include or exclude the changes we will make using
compiler flags.
This seems to be a good solution. We can enclose all code we modify with

#ifdef PVSHD_CALLID
[our new or changed code]
#else
[the original code]
#endif // PVSHD_CALLID

24

5. Implementation

PVSHD stands for “Parallele und Verteilte Systeme, Heidelberg” which is the German
name of our research group “Parallel and Distributed Systems” at the Universität Hei-
delberg, Germany.

Avoid producing name conflicts with existing or future changes Not to come into trouble
with that issue, we will use the prefix ’pvshd_’ for all global variable names. To use the same
proceeding for local variables too, would make the code more illegible than being helpfully.
We will not do that.

Hold modifications as minimal as possible As already mentioned the base systems PVFS2,
MPICH2 and MPE2 themselves are under permanent development. So unfortunately the risk
is relatively high, that patches will not work without producing conflicts after short time. To
keep that risk as small as possible, we should hold our modifications as small as possible.
In particular that means:

• Avoid modification of parameter lists.

• Avoid copying many lines of code.

Even though these principles will not guarantee patches to apply without conflicts in the future,
they will reduce the risk dramatically and make it even simpler to adjust the patches.

Now we start making a step by step modification of the system. We will begin in section 5.2
“Creation of CallID for MPI-IO Function Calls” on the following page with the CallID gener-
ation and logging in the wrapper functions for MPI-IO calls in liblmpe. After this, section 5.3
“Getting the ID to the Right Place” on page 33 will guide us through all modifications nec-
essary to pass the generated CallID through the System to the event manager in the PVFS2
servers where it is put into the trace. Section 5.3 is cut into three parts, each for one section of
the CallID’s path: “Client Side: From MPE2 to BMI”, “From Client Side to Server Side” and
“Server Side: From BMI to Event Manager”. This completes the modifications in this part
of the system so in section 5.4 “Statistic and Visualisation Tools” on page 47 we will develop
two trace analysis tools, one text-based to produce statistics about the trace and one to add
arrows to the slog2 file presenting the connections between MPI-IO function calls and Trove
operations. At the end we will shortly discuss the limitations caused by our implementation in
section 5.5 “Limitations of Implementation” on page 57, address some problems in section 5.6
“Implementation Problems” on page 58 and give a final summary in section 5.7 “Summary”
on page 60.

25

5. Implementation

5.2. Creation of CallID for MPI-IO Function Calls

The first decision to make is where exactly to implement the creation of our CallID. The only
purpose for our ID is tracing with MPE2. So this should be the best place to start. General
logging of MPI functions is done with liblmpe that consists mainly of wrappers around MPI
functions using the MPI profiling library. We are especially interested in the part for MPI-IO
functions (MPI_File_*). The related code is in log_mpi_core.c1 and log_mpi_io.c2.

In the MPE2 logging concept for start-stop events (in opposition to single events) the first step
is to declare the logging states (see section 2.2 on page 8 about MPE2). For logging the MPI
functions liblmpe innately uses logging states without the optional info statement. Indeed the
internal declaration function MPE_Describe_known_state has a parameter prepared for
passing the format of an info field, but currently set to NULL. To log information with the
events, we change the function call for all logging states. Later we are going to define NULL as
initial value for format, so for all states we do not set an info format nothing will change.

The declaration of the logging states for MPI functions is done in the wrapper MPI_Finalize
in log_mpi_core.c:

int MPI_Finalize()
2{

MPE_State *state;
4[...]

if (procid_0 == 0) {
6fprintf(stderr, "Writing logfile....\n");

for (idx = 0; idx < MPE_MAX_KNOWN_STATES; idx++) {
8if (totcnt[idx] > 0) {

state = &states[idx];
10MPE_Describe_known_state(CLOG_CommIDs4World, 0,

state->stateID,
12state->start_evtID,

state->final_evtID,
14state->name, state->color,

#ifdef PVSHD_CALLID
16state->format);

#else
18NULL);

20#endif
}

22}
}

24[...]
}

Listing 5.1: Modified MPI_Finalize in log_mpi_core.c

1${MPE2-SRC}/src/wrappers/src/log_mpi_core.c
2${MPE2-SRC}/src/wrappers/src/log_mpi_io.c

26

5. Implementation

For this to become working, we need to add the field format to the structure MPE_State
which is the type of state. In addition we adjust the initialization of state in the wrapper
MPI_Init. As already indicated we make NULL the default value of format.

All these code is in log_mpi_core.c:

typedef struct {
2int stateID; /* CLOG state ID */

int start_evtID; /* CLOG Event ID for the beginning event */
4int final_evtID; /* CLOG event ID for the ending event */

int n_calls; /* Number of times this state used */
6int is_active; /* Allows each state to be selectively switched off */

int kind_mask; /* Indicates kind of state (message, environment) */
8char *name; /* Pointer to name */

char *color; /* Color (or B&W representation) */
10#ifdef PVSHD_CALLID

char *format; /* Info format */
12#endif

} MPE_State;

Listing 5.2: Modified struct MPE_State in log_mpi_core.c

/*
2* Replacement for MPI_Init. Initializes logging and sets up basic

* state definitions, including default color/pattern values
4*/

int MPI_Init(argc, argv)
6int * argc;

char *** argv;
8{

MPE_State *state;
10[...]

/* Initialize all states */
12for (idx = 0; idx < MPE_MAX_KNOWN_STATES; idx++) {

state = &states[idx];
14state->stateID = MPE_Log_get_known_stateID();

state->start_evtID = MPE_Log_get_known_eventID();
16state->final_evtID = MPE_Log_get_known_eventID();

state->n_calls = 0;
18state->is_active = 0;

state->name = NULL;
20state->kind_mask = 0;

state->color = "white";
22#ifdef PVSHD_CALLID

state->format = NULL;
24#endif

}
26[...]

}

Listing 5.3: Modified MPI_Init wrapper in log_mpi_core.c

27

5. Implementation

The next step is to set a format of the info field for the MPI-IO functions. The filling of
the state structures for MPI-IO logging is done in function MPE_Init_MPIIO defined in
log_mpi_io.c.

As an example we take the one for MPI_File_write:

void MPE_Init_MPIIO(void)
2{

MPE_State *state;
4[...]

state = &states[MPE_FILE_WRITE_ID];
6state->kind_mask = MPE_KIND_FILE;

state->name = "MPI_File_write";
8state->color = "brown:gray2";

#ifdef PVSHD_CALLID
10state->format = "CallID=0x%x";

#endif
12[...]

}

Listing 5.4: Modified MPE_Init_MPIIO in log_mpi_io.c

The format tag ’%x’ means to print the CallID in hexadecimal notation. Unfortunately the
printf style tag for leading zeros is not supported by MPE.

As we now have the format, it is time to fill something into the field. To get a unique ID for
each function call we will use a global counter. But as MPI is for parallel use and so there
is usually more than one process with independent address spaces, we also should include
something unique for each process. MPI provides exactly what we need, the process id. In
MPE it is stored globally in procid_0.

We implement our counter as an unsigned int to have a larger range of positive values.
It can be static because we will only use it in log_mpi_io.c and we do not want it to be
changed from somewhere else.

#ifdef PVSHD_CALLID
2/* counter for function calls to create unique ids */

static unsigned int pvshd_callcounter = 0;
4//TODO: find better place for that

#include "mpe_misc.h"
6#endif

Listing 5.5: Modified head of log_mpi_io.c

Note the #include "mpe_misc.h" in line 5 for now, we will need that later in section 5.3.1
“Client Side: From MPE2 to BMI” on page 33.

Now the wrapper for each function has to be modified to create and log the CallID. As each
wrapper has a similar structure we use again MPI_File_write as example:

28

5. Implementation

This is the original wrapper:

int MPI_File_write(MPI_File fh,
2void * buf,

int count,
4MPI_Datatype datatype,

MPI_Status * status)
6{

int returnVal;
8

/*
10MPI_File_write - prototyping replacement for MPI_File_write

Log the beginning and ending of the time spent in MPI_File_write calls.Col80
12*/

MPE_LOG_STATE_DECL
14

MPE_LOG_STATE_BEGIN(MPE_COMM_NULL, MPE_FILE_WRITE_ID)
16

returnVal = PMPI_File_write(fh, buf, count, datatype, status);
18

MPE_LOG_STATE_END(MPE_COMM_NULL)
20

return returnVal;
22}

Listing 5.6: Original MPI_File_write wrapper in log_mpi_io.c

The MPE way of getting the info value into the traces is to first pack it into a buffer in the
format defined while state declaration and then assign a pointer to that buffer to the logging
function.

Let us take care about the second issue first: As we can see in lines 15 and 19 there are macros
used to expand the real logging function calls at preprocessing time.

These macros are defined in log_mpi_core.c:

#define MPE_LOG_STATE_BEGIN(comm,name) \
2if (trace_on) { \

state = &states[name]; \
4if (state->is_active) { \

commIDs = CLOG_CommSet_get_IDs(CLOG_CommSet, comm); \
6MPE_Log_commIDs_event(commIDs, 0, state->start_evtID, NULL); \

} \
8}

#define MPE_LOG_STATE_END(comm) \
10if (trace_on && state->is_active) { \

MPE_Log_commIDs_event(commIDs, 0, state->final_evtID, NULL); \
12state->n_calls += 2; \

}

Listing 5.7: Original macros MPE_LOG_STATE_* in log_mpi_core.c

29

5. Implementation

These macros are also used in wrappers for non MPI-IO functions, so changing them would
require many other changes, too. It is better to define two new macros for our purposes.
Later on, to integrate the whole things deeper into the code, one more parameter in the
common macros would be a much better solution, in particular since the last argument of
MPE_Log_commIDs_event currently set to NULL is exactly for assigning an info value.

For now we define two new macros:

/*
2These macros are to use in log_mpi_io.c instead of the ones above for

assigning the info value holding the CallID.
4TODO: Think about changing the originals to pass the info buffer through

*/
6#define MPE_PVSHD_LOG_STATE_BEGIN(comm,name,bytebuf) \

if (trace_on) { \
8state = &states[name]; \

if (state->is_active) { \
10commIDs = CLOG_CommSet_get_IDs(CLOG_CommSet, comm); \

MPE_Log_commIDs_event(commIDs, 0, state->start_evtID, bytebuf); \
12} \

}
14#define MPE_PVSHD_LOG_STATE_END(comm,bytebuf) \

if (trace_on && state->is_active) { \
16MPE_Log_commIDs_event(commIDs, 0, state->final_evtID, bytebuf); \

state->n_calls += 2; \
18}

Listing 5.8: New macros MPE_PVSHD_LOG_STATE_* in log_mpi_core.c

We still have to create a buffer, pack the CallID into it and assign it using our new macros.

The new wrapper should then look like that3:

int MPI_File_write(MPI_File fh,
2void * buf,

int count,
4MPI_Datatype datatype,

MPI_Status * status)
6{

int returnVal;
8

/*
10MPI_File_write - prototyping replacement for MPI_File_write

Log the beginning and ending of the time spent in MPI_File_write calls.
12*/

MPE_LOG_BYTES bytebuf; // buffer for logging of CallID
14int bytebuf_pos; // position pointer for buffer

3For readability, in this code fragment all lines are already removed that the preprocessor would remove due
to PVSHD_CALLID compiler flag set.

30

5. Implementation

16// set CallID as described in src/misc/include/mpe_misc.h
pvshd_callid = (procid_0 << PVSHD_COUNTBITS) |

18(++callcounter << PVSHD_PROCBITS >> PVSHD_PROCBITS);

20MPE_LOG_STATE_DECL

22// pack callid into buffer
bytebuf_pos = 0;

24MPE_Log_pack(bytebuf, &bytebuf_pos, ’x’, 1, &pvshd_callid);

26// log start of operation including callid into trace
MPE_PVSHD_LOG_STATE_BEGIN(MPE_COMM_NULL, MPE_FILE_WRITE_ID, &bytebuf)

28

// call true function in MPI profiling library
30returnVal = PMPI_File_write(fh, buf, count, datatype, status);

32// log end of operation including callid into trace
MPE_PVSHD_LOG_STATE_END(MPE_COMM_NULL, &bytebuf)

34

return returnVal;
36}

Listing 5.9: Modified MPI_File_write in log_mpi_io.c

The setting of pvshd_callid (line 17 et seq.) looks somewhat strange. What the ex-
pression does is just to create one single integer structured like shown in figure 5.1. Even
pvshd_callid is not declared now, we will care about that later in section 5.3.1 “Client
Side: From MPE2 to BMI” on page 33.

PVSHD_PROCBITS PVSHD_COUNTBITS

0

PVSHD_PROCBITS PVSHD_COUNTBITS

B = (++callcounter << PVSHD_PROCBITS >> PVSHD_PROCBITS)

A = (procid_0 << PVSHD_COUNTBITS)

PVSHD_PROCBITS PVSHD_COUNTBITS

0

A | B

++callcounter

++callcounter

process id

process id

Figure 5.1.: Structure of integer containing CallID

To avoid the necessity of modifying each single wrapper and state declaration by hand we
now write a short sed script4 to do that all at once (change_log_mpi_io.sed, listing 5.10
on the following page). In addition this enables us to react on changes faster and less work
intensive.

4For those not familiar with sed script syntax please refer to sed manual page [17] or accept that this script
just does the job.

31

5. Implementation

The script is to be called as described at its beginning:

#!/bin/sed -f
2

use: $1 origfile > changedfile
4# or: $1 -i origfile

6/^void MPE_Init_MPIIO(void)$/i\
\#ifdef PVSHD_CALLID\

8\/* counter for function calls to create unique ids *\/\
static unsigned int pvshd_callcounter = 0;\

10\/\/TODO: find better place for that\
\#include "mpe_misc.h"\

12\#endif\
\

14

/^ state->color = ".*";$/a\
16\#ifdef PVSHD_CALLID\

state->format = "CallID=0x%x";\
18\#endif

20/^ MPE_LOG_STATE_DECL$/i\
\#ifdef PVSHD_CALLID\

22MPE_LOG_BYTES bytebuf; // buffer for logging of callid\
int bytebuf_pos;\

24\
\/\/ set callid as described in src/misc/include/mpe_misc.h\

26pvshd_callid = (procid_0 << PVSHD_COUNTBITS) |\
(++pvshd_callcounter << PVSHD_PROCBITS >> PVSHD_PROCBITS);\

28\#endif

30/^ MPE_LOG_STATE_BEGIN(MPE_COMM_NULL,/{
i\

32\#ifdef PVSHD_CALLID\
\/\/ pack callid into buffer\

34bytebuf_pos = 0;\
MPE_Log_pack(bytebuf, &bytebuf_pos, ’x’, 1, &pvshd_callid);\

36\
\/\/ log start of operation including callid into trace

38h
s/MPE_LOG_STATE_BEGIN/MPE_PVSHD_LOG_STATE_BEGIN/

40s/)/, \&bytebuf)/
p

42g
i\

44\#else
a\

46\#endif
}

48

/^ returnVal = PMPI_File_/i\
50// call true function in MPI profiling library

32

5. Implementation

52/^ MPE_LOG_STATE_END(MPE_COMM_NULL)$/{
i\

54\#ifdef PVSHD_CALLID\
\/\/ log end of operation including callid into trace\

56MPE_PVSHD_LOG_STATE_END(MPE_COMM_NULL, &bytebuf)\
\#else

58a\
\#endif

60}

Listing 5.10: sed script to automatically modify original log_mpi_io.c

5.3. Getting the ID to the Right Place

We have created one unique CallID for every MPI-IO function call and taken care of getting it
into the trace. Now we need to bring that very same CallID to the PVFS2 server trove layer
and event manager so we can see what disk operations are triggered by each call.

5.3.1. Client side: From MPE2 to BMI

As we can see in figure 5.2 on the next page the PVFS2 server request in libpvfs2 is set up in
sys-io.sm5, so we need the CallID to be transferred to this place.

One clear way to do that is to pass it from function to function all the way shown in figure 5.2
on the following page. Unfortunately this would require many changes of parameter lists and
could become very complicated in certain cases (see section 5.1 “General Issues” on page 24).

Since our MPI program with all its linked libraries (liblmpe, libpvfs2) is not multithreaded
and moreover has one single address space, we have another alternative: putting the ID into
a global variable. For now it should be sufficient just to find an adequate place to put this
variable in, later a better implementation should be developed (also see section 8.3.2 “Better
Inclusion of the Changes” on page 76).

Such a place for now is mpe_io.c6 and mpe_misc.h7:

• The CallID is to be set in log_mpe_io.c. mpe_misc.h itself is very small. It can be
included into log_mpe_io.c without producing any conflicts.

As you remember we already did that in the last section (listing 5.5 on page 28).

5${PVFS2-SRC}/src/client/sysint/sys-io.sm
*.sm files contains mostly native C code and are used to generate the code for state machines

6${MPE2-SRC}/src/misc/src/mpe_io.c
7${MPE2-SRC}/src/misc/include/mpe_misc.h

33

5. Implementation

src/mpi/romio/adio/include/adioi.h

ADIO_ReadContig

ADIOI_xxx_ReadContig

ADIO_ReadStrided

ADIOI_xxx_ReadStrided

ADIOI_PVFS2_ReadContig

src/mpi/romio/adio/ad_pvfs2/ad_pvfs2_read.c

src/io/description/pvfs−request.c

MPIOI_File_read

MPI_File_read == PMPI_File_read

src/mpi/romio/mpi−io/read.c

src/proto/pvfs2−req−proto.h

PVFS_Request_hindexed

struct PVFS_servreq_io

ADIOI_PVFS2_ReadStrided

PVFS_Request_contiguous

include/pvfs2−sysint.h

src/client/sysint/sys−io.c

PVFS_sys_io

PVFS_sys_read

(function pointer in ADIOI_Fns_struct) (function pointer in ADIOI_Fns_struct)

(macro) (macro)

(macro)

R
O

M
IO

P
V

F
S

2
 c

li
en

t

Figure 5.2.: The way of function calls from liblmpe to libpvfs2

• The situation in libpvfs2 is a bit more complicated. Since PVFS2 is to be compiled alone
after MPE2 we must have our variable in a header to be included in the libpvfs2 code.
With mpe_misc.h this is possible as it becomes a part of mpe.h (the header for libmpe,
see below). At the moment, including mpe.h in the appropriate places in libpvfs2’s code
makes no problems, but this is a point to take care of in the future. Furthermore this
makes libpvfs2 depend on libmpe after our changes. That is also no problem for us since
without MPI and MPE the changes do not make sense at all.

Both of these files, mpe_misc.h and log_mpe_io.c are part of libmpe8.

8We will link our programs against liblmpe and libmpe.

34

5. Implementation

Not to have a double declared variable pvshd_callid, we mark it as extern in mpe_misc.h.
So libpvfs2’s sys-io.sm and liblmpe’s log_mpi_io.c will know about it but no extra memory will
be reserved:

[...]
2#ifndef _MPE_MISC

#define _MPE_MISC
4

#ifdef PVSHD_CALLID
6#include <stdint.h>

/* choose a multiple of 4 here to get process id separated in hex notation */
8#define PVSHD_PROCBITS 8 /* max #processes is 256 */

#define PVSHD_COUNTBITS (sizeof(uint32_t) * 8 - PVSHD_PROCBITS)
10extern uint32_t pvshd_callid;

#endif
12[...]

#endif

Listing 5.11: Modified mpe_misc.h

The #include <stdint.h> in line 6 is necessary for using uint32_t type. The macros
PVSHD_PROCBITS (line 8) and PVSHD_PROCBITS (line 9) we have already seen in figure 5.1
on page 31 and used in the wrapper modifications (listings 5.6 to 5.10 on pages 29–32). Their
purpose is to set the number of bits from the whole integer to use for the process and the
counter. Since the sum is definite, setting one is sufficient.

In our case we always set the process bits and calcu-

00 00 0 00 0 0 0 0 0 00 011111111111111111

2 5 2 B 7 A 9 E

process counter

Figure 5.3.: CallID in binary and hexa-
decimal notation

late the counter’s proportion. In general the num-
bers to take are not limited within the space of bits
used for uint32_t ([0, 32]), but taking a multiple
of four has one great advantage because we will have
the CallID in hexadecimal notation in the trace:
With a split on a multiple of four in binary nota-
tion there is also a split between two digits in hexa-
decimal, since always four digits are combined. (see
figure 5.3)

We still need to declare the real variable pvshd_callid in mpe_io.c:

#include "mpe_misc_conf.h"
2#include "mpe_misc.h"

[...]
4#ifdef PVSHD_CALLID

//TODO: Find a better place for that
6uint32_t pvshd_callid;

#endif
8[...]

Listing 5.12: Declaration of pvshd_callid in mpe_io.c

35

5. Implementation

and to make our variable known in the PVFS2 client state machine (sys-io.sm):

[...]
2#ifdef PVSHD_CALLID

#include "mpe.h"
4#endif

[...]

Listing 5.13: Modified head of sys-io.sm

5.3.2. From client side to server side

Now that we have the CallID at the place where the server requests are created, we should
modify the I/O server request protocol defined in pvfs2-req-proto.h9. The protocol as a whole
consists of a structure holding the data and some functions for filling and encoding.

First we extend struct PVFS_servreq_io:

struct PVFS_servreq_io
2{

PVFS_handle handle; /* target datafile */
4PVFS_fs_id fs_id; /* file system */

/* type of I/O operation to perform */
6enum PVFS_io_type io_type; /* enum defined in pvfs2-types.h */

8/* type of flow protocol to use for I/O transfer */
enum PVFS_flowproto_type flow_type;

10

/* relative number of this I/O server in distribution */
12uint32_t server_nr;

/* total number of I/O servers involved in distribution */
14uint32_t server_ct;

16/* distribution */
PINT_dist *io_dist;

18/* file datatype */
struct PINT_Request * file_req;

20/* offset into file datatype */
PVFS_offset file_req_offset;

22/* aggregate size of data to transfer */
PVFS_size aggregate_size;

24#ifdef PVSHD_CALLID
/* mpiio function call id created by function wrapper in liblmpe */

26uint32_t pvshd_callid;
#endif

28};

Listing 5.14: Modified struct PVFS_servreq_io in pvfs2-req-proto.h

9${PVFS2-SRC}/src/proto/pvfs2-req-proto.h

36

5. Implementation

The PVFS2 requests have to become encoded to deal with the requirements of heterogeneous
environments. Of cause they also have to become decoded after transmission, but as this
is exactly the same flow as encoding except of the names we will only take a closer look at
encoding.

At the moment there comes only one encoding type with PVFS2: little endian bytefield (lebf),
implemented in PINT-le-bytefield.c10. The call succession when using this encoding type for
I/O server requests is diagrammed in figure 5.4.

IO state machine : src/client/sys−io.sm

io_datafile_setup_msgpairs

io_datafile_post_msgpairs

src/proto/PINT−reqproto−encode.c

PINT_encode

*encode_req

(function pointer in PINT_encoding_functions)

src/proto/PINT−le−bytefield.c

lebf_encode_req

encode_PVFS_servreq_io

Figure 5.4.: Flow of encoding I/O server request

We now have to adjust this macro. We have luck as there already exists an encoding function
for uint32_t11 and we can simply use it.

#define encode_PVFS_servreq_io(pptr,x) do { \
2encode_PVFS_handle(pptr, &(x)->handle); \

encode_PVFS_fs_id(pptr, &(x)->fs_id); \
4encode_skip4(pptr,); \

[...]
6encode_PVFS_offset(pptr, &(x)->file_req_offset); \

encode_PVFS_size(pptr, &(x)->aggregate_size); \
8encode_uint32_t(pptr, &(x)->pvshd_callid); \

} while (0)

Listing 5.15: Modified macro encode_PVFS_servreq_io in pvfs2-req-proto.h

pptr is a pointer to the particular current position in the encoded protocol and is increased
by the correct value with every encoded component. x is the respective structure holding the
request data to be encoded.

10${PVFS2-SRC}/src/proto/PINT-le-bytefield.c
11encode_uint32_t is a macro in ${PVFS2-SRC}/src/proto/endecode-funcs.h

37

5. Implementation

So we have adjusted the protocol data structure and the encoding for it. Still outstanding is
the filling of the data structure. For this task there is a macro (Fancy that!). But for the
moment we will not use it since we would have to copy it for having two independent versions
then. If the changes sometimes become fully integrated the macro should be modified.

For now we set the CallID at the server request protocol structure in sys-io.sm after the call
for PINT_SERVREQ_IO_FILL in io_datafile_setup_msgpairs:

static int io_datafile_setup_msgpairs(PINT_client_sm *sm_p,
2job_status_s *js_p)

{
4[...]

PINT_SERVREQ_IO_FILL(
6sm_p->u.io.contexts[i].msg.req,

*sm_p->cred_p,
8sm_p->object_ref.fs_id,

sm_p->u.io.contexts[i].data_handle,
10sm_p->u.io.io_type,

sm_p->u.io.flowproto_type,
12sm_p->u.io.datafile_index_array[i],

attr->u.meta.dfile_count,
14attr->u.meta.dist,

sm_p->u.io.file_req,
16sm_p->u.io.file_req_offset,

PINT_REQUEST_TOTAL_BYTES(sm_p->u.io.mem_req));
18

#ifdef PVSHD_CALLID
20// set pvshd_callid in server request protocol after macro for not

// having to copy/change it. (TODO: fully integrate into fill macro?)
22(sm_p->u.io.contexts[i].msg.req).u.io.pvshd_callid = pvshd_callid;

#endif
24[...]

}

Listing 5.16: Modified io_datafile_setup_msgpairs in sys-io.sm

5.3.3. Server side: From BMI to event manager

Before handling the last step on the CallID’s long way up-down through the whole system
let us take a deeper look into the PVFS2 servers structure. Here are some facts that will be
helpful to remember:

• The PVFS2 server is doing its work with multiple threads, so the use of global variables
is not advisable.

• There is one thread for each of the layers BMI, MainLoop/Job and Trove.

38

5. Implementation

• For every task in the server the MainLoop/Job thread starts a state machine. It then do
permanent checks for completed steps and and puts the respective state machine to the
next state. Each state is implemented as a function that’s return value decides about
the following state.

• Each layer provides a data structure from which every instance represents one piece of
work to be handled by the layer. An instance of such a struct in this document is called
one data object. In each layer there can be multiple data objects at the same time.

• The layers make use of each other. This is where the name user pointer comes from. In
the data object of the used layer it points to the responsible data object for the using
layer.

Once a request is received by an PVFS2 server process a reference to it is available at the
server’s I/O state machine in io.sm12. From there on this request data is accessible from
within each layer the request passes, since we can always climb up using the user pointers.
The way an I/O request takes through the layers is illustrated in figure 5.5 on the next page.
On the left side we see the important functions that are called in bottom-up order. On the
right the data objects structure in each layer is shown. The arrows on the right side represent
the references in the user pointers of the data objects. To get the reference to the CallID we
have to go on the right side top-down through the user pointers and data objects.

One could think now we can easily get the CallID at least until the Trove layer. As we can
also see in figure 5.5 on the following page this is unfortunately not as easy because all user
pointers (and differently named pointers with the same functionality) are of the type *void.
That means we need exactly one cast for each layer boundary the request passed. In addition
we need to have all layer’s data object structure to be known in the same place. This is
normally neither the case nor intended.

First let us collect all the necessary information about structures by following the path in
figure 5.5 and make the modifications necessary to get all the information into the Trove layer
functions.

12 ${PVFS2-SRC}/src/server/io.sm

39

5. Implementation

P
I
N
T
_
t
h
r
e
a
d
_
m
g
r
_
t
r
o
v
e
_
c
a
l
l
b
a
c
k

r
e
s
u
l
t
_
c
h
a
i
n
_
e
n
t
r
y

v
o
i
d

*
d
a
t
a

b
m
i
_
s
e
n
d
_
c
a
l
l
b
a
c
k
_
f
n

f
p
_
q
u
e
u
e
_
i
t
e
m

*
q
_
i
t
e
m

f
l
o
w
_
d
e
s
c
r
i
p
t
o
r

*
p
a
r
e
n
t

v
o
i
d

*
u
s
e
r
_
p
t
r

f
p
_
q
u
e
u
e
_
i
t
e
m

*
q
_
i
t
e
m

f
p
_
m
u
l
t
i
q
u
e
u
e
_
p
o
s
t

P
I
N
T
_
f
l
o
w
_
p
o
s
t

P
I
N
T
_
s
e
r
v
e
r
_
o
p

*
s
_
o
p

j
o
b
_
d
e
s
c

*
j
d

sr
c/

io
/f

lo
w

/f
lo

w
p

ro
to

−
b

m
i−

tr
o

v
e/

fl
o

w
p

ro
to

−
m

u
lt

iq
u

eu
e.

c

sr
c/

io
/f

lo
w

/f
lo

w
p

ro
to

−
b

m
i−

tr
o

v
e/

fl
o

w
p

ro
to

−
m

u
lt

iq
u

eu
e.

c

sr
c/

io
/f

lo
w

/f
lo

w
.h

sr
c/

io
/j

o
b

/t
h

re
ad

−
m

g
r.

h

i
o
_
s
t
a
r
t
_
f
l
o
w

sr
c/

se
rv

er
/i

o
.s

m

*
t
r
o
v
e
_
b
s
t
r
e
a
m
_
r
e
a
d
_
.
.
.

*
t
r
o
v
e
_
b
s
t
r
e
a
m
_
w
r
i
t
e
_
.
.
.

sr
c/

io
/f

lo
w

/f
lo

w
p

ro
to

−
b

m
i−

tr
o

v
e/

fl
o

w
p

ro
to

−
m

u
lt

iq
u

eu
e.

c

f
p
_
q
u
e
u
e
_
i
t
e
m

*
f
l
o
w
_
d
a
t
a

f
l
o
w
_
d
e
s
c
r
i
p
t
o
r

*
f
l
o
w
_
d

r
e
s
u
l
t
_
c
h
a
i
n
_
e
n
t
r
y

*
r
e
s
u
l
t
_
t
m
p

sr
c/

io
/f

lo
w

/f
lo

w
p

ro
to

−
b

m
i−

tr
o

v
e/

fl
o

w
p

ro
to

−
m

u
lt

iq
u

eu
e.

c

sr
c/

io
/f

lo
w

/f
lo

w
.c

f
l
o
w
_
d
e
s
c
r
i
p
t
o
r

*
f
l
o
w
_
d

j
o
b
_
f
l
o
w

j
o
b
_
d
e
s
c

v
o
i
d

*
j
o
b
_
u
s
e
r
_
p
t
r

P
I
N
T
_
s
e
r
v
e
r
_
o
p

P
V
F
S
_
s
e
r
v
e
r
_
r
e
q

*
r
e
q

u
i
n
t
3
2
_
t

u
.
i
o
.
p
v
s
h
d
_
c
a
l
l
i
d

sr
c/

io
/j

o
b

/j
o

b
−

d
es

c−
q

u
eu

e.
h

sr
c/

se
rv

er
/p

v
fs

2
−

se
rv

er
.h

sr
c/

p
ro

to
/p

v
fs

2
−

re
q

−
p

ro
to

.h

sr
c/

io
/j

o
b

/j
o

b
.c

flow of control
final variable resolution

fu
n

ct
io

n
s

d
a
ta

 o
b

je
ct

s

v
o
i
d

*
u
s
e
r
_
p
t
r

v
o
i
d

*
u
s
e
r
_
p
t
r

Fi
gu

re
5.

5.
:I

m
po

rt
an

t
fu

nc
tio

ns
on

an
I/

O
re

qu
es

t’s
pa

th
th

ro
ug

h
a

PV
FS

2
se

rv
er

an
d

ac
ce

ss
ib

ili
ty

of
th

e
C

al
lID

.

40

5. Implementation

As we can see, we will need the definitions for

• result_chain_entry located in
${PVFS2-SRC}/src/io/flow/flowproto-bmi-trove/flowproto-multiqueue.c

• job_desc located in ${PVFS2-SRC}/src/io/job/job-desc-queue.h

• PINT_server_op located in ${PVFS2-SRC}/src/server/pvfs2-server.h

The filename extension of flowproto-multiqueue.c implies that this file is not designed to be
included into other files. So it will be best to move the structure definitions into a new header
file flowproto-multiqueue.h.

The newly created header looks like this:

#ifdef PVSHD_CALLID
2/* put in header for easier inclusion in other files */

#ifndef __FLOWPROTO_MULTIQUEUE_H
4#define __FLOWPROTO_MULTIQUEUE_H

6#include "pvfs2-types.h" // for PVFS_id_gen_t, PVFS_size, PVFS_offset
#include "pint-request.h" // for PINT_Request_result

8#include "thread-mgr.h" // for PINT_thread_mgr_trove_callback,
// PINT_thread_mgr_bmi_callback

10#include "quicklist.h" // for qlist_head
#include "src/io/flow/flow.h" // for flow_descriptor

12

#define MAX_REGIONS 64
14

struct result_chain_entry
16{

[...]
18};

20extern struct PINT_perf_counter* PINT_server_pc;

22/* fp_queue_item describes an individual buffer being used within the flow */
struct fp_queue_item

24{
[...]

26};

28#endif /* __FLOWPROTO_MULTIQUEUE_H */
#endif /* PVSHD_CALLID */

Listing 5.17: New header flowproto-multiqueue.h

41

5. Implementation

We can include this header now into the original file instead of the outsourced definitions:

1#ifdef PVSHD_CALLID
#include "src/io/flow/flowproto-bmi-trove/flowproto-multiqueue.h"

3#endif
[...]

5#ifndef PVSHD_CALLID
struct result_chain_entry

7{
[...]

9};
[...]

11struct fp_queue_item
{

13[...]
};

15#endif

Listing 5.18: Modified head of flowproto-multiqueue.c

All the other headers are simple to include into the file we want to have the CallID in.

In figure 5.5 on page 40 we can also see that the interesting functions in Trove layer
are those *trove_bstream_read_* and *trove_bstream_write_* point to. In
fact the only two really used function pointers are *trove_bstream_read_list and
*trove_bstream_write_list. The only trove implementation currently in the re-
lease is DBPF (DB Plus Files). So the functions we are looking for in there are
dbpf_bstream_read_list and dbpf_bstream_write_list. They both just call the
function dbpf_bstream_rw_list in dbpf-bstream.c13.

We include the ascertained headers in the file and initialize a new variable pvshd_callid in
the function:

[...]
2#ifdef PVSHD_CALLID

/* for result_chain_entry */
4#include "src/io/flow/flowproto-bmi-trove/flowproto-multiqueue.h"

/* for job_desc */
6#include "src/io/job/job-desc-queue.h"

/* for PINT_server_op */
8#include "src/server/pvfs2-server.h"

#endif
10[...]

Listing 5.19: Modified head of dbpf-bstream.c

13${PVFS2-SRC}/src/io/trove/trove-dbpf/dbpf-bstream.c

42

5. Implementation

static inline int dbpf_bstream_rw_list(TROVE_coll_id coll_id,
2TROVE_handle handle,

char **mem_offset_array,
4TROVE_size *mem_size_array,

int mem_count,
6TROVE_offset *stream_offset_array,

TROVE_size *stream_size_array,
8int stream_count,

TROVE_size *out_size_p,
10TROVE_ds_flags flags,

TROVE_vtag_s *vtag,
12void *user_ptr,

TROVE_context_id context_id,
14TROVE_op_id *out_op_id_p,

int opcode)
16{

[...]
18#ifdef PVSHD_CALLID

/* getting callid directly from request protocol */
20struct PINT_thread_mgr_trove_callback *pvshd_trove_callback = user_ptr;

struct result_chain_entry *pvshd_result_tmp = pvshd_trove_callback->data;
22struct job_desc *pvshd_jd = pvshd_result_tmp->q_item->parent->user_ptr;

struct PINT_server_op *pvshd_sd = pvshd_jd->job_user_ptr;
24uint32_t pvshd_callid = pvshd_sd->req->u.io.pvshd_callid;

#endif
26[...]

}

Listing 5.20: Modified trove_bstream_rw_list in dbpf-bstream.c

In the function dbpf_bstream_rw_list we can also find a call of the macro
DBPF_EVENT_START. This is to tell the event manager the start of a new Trove operation.
It calls the event manager’s entry function PINT_event_timestamp. The event manager
already gets informed of start and stop events occurring in Trove (and also in other layers) and
it is enabled to log these events using MPE. What we want it to do in addition is for Trove
events to put our CallID into the MPE info field. Fortunately it is sufficient to pass the ID
only with the start event. The assignment between start and stop events belonging together
would be difficult.

The mentioned function PINT_event_timestamp provides no possibility to pass the CallID
to it. Now we are in a real bad situation: We cannot change the parameter list because the
function is also used by the other layers and we do not want to touch everything in the PVFS2
code for now. After we will know about the benefit of all the things we are implementing at
the moment, some deeper changes could be an option. Indeed since Frank Panse in our group
in Heidelberg is still working on a new structure for the whole tracing this definitely will be an
option (see also section 8 “Future Work” on page 73, [18]). For the moment however we have
no good alternative and thus will copy the whole function and rename it to pass our CallID
to the event manager.

43

5. Implementation

Exactly the same problem is occurring in the event manager again with the function
__PINT_event_mpe originally called from PINT_event_timestamp, so we have to copy
and rename it too. The event managers functions are placed in pint-event.c14

Here are the copied and renamed macro ...

#define DBPF_PVSHD_EVENT_START(__op, __id, __callid) \
2PINT_PVSHD_event_timestamp(PVFS_EVENT_API_TROVE, __op, 0, __id, \

PVFS_EVENT_FLAG_START, __callid)
4#endif

Listing 5.21: New copied macro DBPF_PVDHS_EVENT_START in dbpf.h

... and functions:

#ifdef PVSHD_CALLID
2void __PINT_PVSHD_event_timestamp(enum PVFS_event_api api,

int32_t operation,
4int64_t value,

PVFS_id_gen_t id,
6int8_t flags,

void* pvshd_ptr)
8{

gen_mutex_lock(&event_mutex);
10

#if defined(HAVE_PABLO)
12__PINT_event_pablo(api, operation, value, id, flags);

#endif
14

#if defined (HAVE_MPE)
16__PINT_PVSHD_event_mpe(api, operation, value, id, flags, pvshd_ptr);

#endif
18

__PINT_event_default(api, operation, value, id, flags);
20

gen_mutex_unlock(&event_mutex);
22

return;
24}

#endif

Listing 5.22: New copied PINT_PVSHD_event_timestamp in pint-event.c

14${PVFS2-SRC}/src/common/misc/pint-event.c

44

5. Implementation

#ifdef PVSHD_CALLID
2void __PINT_PVSHD_event_mpe(enum PVFS_event_api api,

int32_t operation,
4int64_t value,

PVFS_id_gen_t id,
6int8_t flags,

void* pvshd_ptr)
8{

MPE_LOG_BYTES bytebuf; // buffer for logging of callid
10int bytebuf_pos;

uint32_t callid = *((uint32_t *) pvshd_ptr);
12

switch(api) {
14case PVFS_EVENT_API_BMI:

// never coming here
16break;

case PVFS_EVENT_API_JOB:
18// never coming here

break;
20case PVFS_EVENT_API_TROVE:

if (flags & PVFS_EVENT_FLAG_START) {
22bytebuf_pos = 0;

MPE_Log_pack(bytebuf, &bytebuf_pos, ’x’, 1, &callid);
24if (operation == PVFS_EVENT_TROVE_READ_LIST) {

MPE_Log_event(PINT_event_trove_rd_start, 0, bytebuf);
26} else if (operation == PVFS_EVENT_TROVE_WRITE_LIST) {

MPE_Log_event(PINT_event_trove_wr_start, 0, bytebuf);
28}

} else if (flags & PVFS_EVENT_FLAG_END) {
30// never coming here

}
32break;

case PVFS_EVENT_API_ENCODE_REQ:
34case PVFS_EVENT_API_ENCODE_RESP:

case PVFS_EVENT_API_DECODE_REQ:
36case PVFS_EVENT_API_DECODE_RESP:

case PVFS_EVENT_API_SM:
38break; /* XXX: NEEDS SOMETHING */

}
40}

#endif

Listing 5.23: New copied __PINT_PVSHD_event_mpe in pint-event.c

In lines 22 to 27 in listing 5.23 we try to give MPE an info value for trove states that it does
not expect yet. As we know (see section 5.2 “Creation of CallID for MPI-IO Function Calls”
on page 26) the first step to put something into the info field is to set the format in MPE state
declaration.

45

5. Implementation

In the event manager that means to modify the state describing function calls in
init_mpeLogFile defined in pint-event.c:

void init_mpeLogFile(void)
2{

[...]
4#ifdef PVSHD_CALLID

MPE_Describe_info_state(PINT_event_trove_rd_start, PINT_event_trove_rd_stop,
6"Trove Read", "orange", "CallID=0x%x");

MPE_Describe_info_state(PINT_event_trove_wr_start, PINT_event_trove_wr_stop,
8"Trove Write", "blue", "CallID=0x%x");

#else
10MPE_Describe_state(PINT_event_trove_rd_start, PINT_event_trove_rd_stop,

"Trove Read", "orange");
12MPE_Describe_state(PINT_event_trove_wr_start, PINT_event_trove_wr_stop,

"Trove Write", "blue");
14#endif

[...]
16}

Listing 5.24: Modified init_mpeLogFile in pint-event.c

Only to play safe after adding an info tag to the MPE state declaration, we will also modify
the original __PINT_event_mpe to pass a CallID to MPE. We cannot be sure that it is not
still called with Trove signature from somewhere else in the system, although this should not
be the case. We take ’-1’15 to identify these cases in the trace.

void __PINT_event_mpe(enum PVFS_event_api api,
2int32_t operation,

int64_t value,
4PVFS_id_gen_t id,

int8_t flags)
6{

#ifdef PVSHD_CALLID
8MPE_LOG_BYTES bytebuf; // buffer for logging of callid

int bytebuf_pos;
10uint32_t nocallid = -1;

#endif
12switch(api) {

case PVFS_EVENT_API_BMI:
14[...]

case PVFS_EVENT_API_JOB:
16[...]

case PVFS_EVENT_API_TROVE:
18if (flags & PVFS_EVENT_FLAG_START) {

#ifdef PVSHD_CALLID
20bytebuf_pos = 0;

MPE_Log_pack(bytebuf, &bytebuf_pos, ’x’, 1, &nocallid);
22if (operation == PVFS_EVENT_TROVE_READ_LIST) {

MPE_Log_event(PINT_event_trove_rd_start, 0, bytebuf);

15’-1’ is the highest unsigned integer available, if CallID reaches that value it runs our of range anyway

46

5. Implementation

24} else if (operation == PVFS_EVENT_TROVE_WRITE_LIST) {
MPE_Log_event(PINT_event_trove_wr_start, 0, bytebuf);

26}
#else

28if (operation == PVFS_EVENT_TROVE_READ_LIST) {
MPE_Log_event(PINT_event_trove_rd_start, 0, NULL);

30} else if (operation == PVFS_EVENT_TROVE_WRITE_LIST) {
MPE_Log_event(PINT_event_trove_wr_start, 0, NULL);

32}
#endif

34} else if (flags & PVFS_EVENT_FLAG_END) {
if (operation == PVFS_EVENT_TROVE_READ_LIST) {

36MPE_Log_event(PINT_event_trove_rd_stop, value, NULL);
} else if (operation == PVFS_EVENT_TROVE_WRITE_LIST) {

38MPE_Log_event(PINT_event_trove_wr_stop, value, NULL);
}

40}
break;

42case PVFS_EVENT_API_ENCODE_REQ:
case PVFS_EVENT_API_ENCODE_RESP:

44case PVFS_EVENT_API_DECODE_REQ:
case PVFS_EVENT_API_DECODE_RESP:

46case PVFS_EVENT_API_SM:
break; /* XXX: NEEDS SOMETHING */

48}
}

Listing 5.25: Modified __PINT_event_mpe in pint-event.c

Now we created a CallID for each MPI-IO function call and pushed it through the whole
system. The same CallID value becomes logged with the MPI-IO event and all resulting Trove
events. So we are able to produce one trace containing all client MPI-IO function calls and
all Trove events having CallIDs and connecting them is now possible. The time has come to
make the connections really visible.

5.4. Statistic and Visualisation Tools

First we write a text-based tool to process statistics from the output of slog2print. Afterwards
we create another tool to put arrows representing our connections into the merged slog2 trace
file. These arrows are for visualization in Jumpshot.

5.4.1. Tool for analyse output of slog2print

As described in section 4.3.1 “Text Based Analysis” on page 21 we will write a reference Perl
script in order to make it easy for users to get exactly that statistical information they really

47

5. Implementation

need. For that, they just have to use our reference implementation and extend some functions
to make it collecting the data they require.

We start with a inline description of the script and declare some global variables:

#!/usr/bin/perl -tw
2#

###
4#

This script is to create statistics from the output of slog2print.
6# It reads in the output of slog2print from stdin and writes some statistics to

stdout. It is designed to process the output slog2print creates by default.
8#

Call: slog2print <SLOG2_TRACE> | slog2stats
10#

For the moment this should just be a reference for easy implementation of
12# further statistic generating functionality:

#
14# * The categories get read into a hash of hashes to make them easy to access.

* The categories containing the CallID info tag get counted.
16# * The drawables get counted (this should result the same number as the last

output line from slog2print)
18# * The arrows Slog2ToArrowSlog2 would create are counted for each different

CallID value and an average number is calculated.
20#

###
22[...]

24use strict;
use warnings;

26use diagnostics;

28# currently parsing part
my $currentPart = "";

30

for counting the categories with CallID info type
32my $infocat_counter = 0;

34# for counting drawable objects
my $drawable_counter = 0;

36

for counting of occurrence of each CallID
38my %arrow_counters;

40# hash of hashes for categories
my %categories;

42

count consecutive blank lines, after three we are in drawables list
44my $blcount;

48

5. Implementation

Now the script reads from stdin line by line. First it checks if the line identifies the start of a
new section in the slog2print output. If so the section identifier is set to the new section and
it goes to process the next line, else the normal line content processing starts:

read stdin line by line
46while(<STDIN>) {

chomp;
48

if ($_ =~ /SLOG-2 Header:/) { $currentPart="Header"; }
50elsif ($_ =~ /CategoryMap:/) { $currentPart="CategoryMap"; }

elsif ($_ =~ /SLOG-2 Tree Directory/) { $currentPart="TreeDirectory"; }
52elsif ($_ =~ /LineIDMapList:/) { $currentPart="LineIDMapList"; }

elsif ($_ =~ /^$/) { $currentPart="DrawableList" if ++$blcount==3; next; }
54else { $blcount = 0; goto contentcheck; }

$blcount = 0;
56next;

The script does only the processing specified for the current section. This improves speed and
avoids mismatches if there are similar lines in different sections with different meanings.

In the Header section we only check if the SLOG2 version is the one the script is written for
and print a warning if not the case:

contentcheck:
58

if ($currentPart eq "Header") {
60if ($_ =~ /^version/) {

$_ =~ /= SLOG 2.0.6$/ || print "Warning: Input has wrong version\n";
62}

}

In Category Map section we fill the categories hash to have this information still in later sections
available. Also we increase the counter for categories with CallID for each found one.

64if ($currentPart eq "CategoryMap") {
next unless $_ =~ /^[0-9]+: Category\[(.*) \]$/;

66

my %category;
68my $category_tmp = $1;

special handling for info_fmt, it could contain ’,’ or ’=’
70if ($category_tmp =~ /info_fmt=< (.*) >, vis/) {

$category{"info_fmt"} = $1;
72$category_tmp =~ s/$&/vis/;

}
74my @keyvalues = split /, /, $category_tmp;

49

5. Implementation

foreach (@keyvalues) {
76my ($key, $value);

($key, $value) = split /=/, $_, 2;
78$category{ $key } = $value;

}
80# count all categories with CallID info type

if (exists $category{"info_fmt"}) {
82$infocat_counter++ if $category{"info_fmt"} =~ /CallID/;

}
84# add reference to that category to categories

$categories{$category{"index"}} = \%category;
86}

In the sections TreeDirectory and LineIDMapList the script will do nothing for the moment,
although we prepare them for later processing:

elsif ($currentPart eq "TreeDirectory") {
88# nothing to analyse here for the moment

}
90

elsif ($currentPart eq "LineIDMapList") {
92# nothing to analyse here for the moment

}

In DrawableList section we use the same algorithm as described for the use in Slog2ToArrowSlog2
in section 4.3.2 “Graphical Analysis” on page 22 listing 4.2 on page 22. The difference is that
we do not create arrows here but count how many we would create for each CallID.

94elsif ($currentPart eq "DrawableList") {
next unless

96$_ =~ /^[0-9]+: (?:Primitive)|(?:Composite)\[(.*) \] bsize=[0-9]+$/;

98# count the drawables
$drawable_counter++;

100

count arrows of each CallID value
102# the first occurrence becoming number 0 is the begin of all arrows

if ($_ =~ /CallID=0x([0-9A-F]+)/) {
104if (exists $arrow_counters{$1}) { $arrow_counters{$1}++; }

else { $arrow_counters{$1} = 0; }
106}

}
108}

50

5. Implementation

Finally we calculate how many arrows would be created on average for each CallID and print
out the compiled statistics:

calculate average number of arrows per CallID
110my $arrows = 0;

my $arrowstarts = 0;
112foreach my $callid (keys %arrow_counters) {

$arrowstarts++ if $arrow_counters{$callid} > 0;
114$arrows += $arrow_counters{$callid};

}
116

print statistics
118print "\nStatistics:\n";

print "Found ".$infocat_counter." categories with CallID info key.\n";
120print "Counted ".$drawable_counter." drawables.\n";

print "Found ". keys (%arrow_counters) ." different CallID values.\n";
122if ($arrowstarts != 0) {

print "On average there are ". $arrows/$arrowstarts
124." arrows per CallID having any.\n";

} else {
126print "There could no arrow be found.\n";

}
128print "\n";

5.4.2. Tool creating arrows for visualisation in jumpshot

For implementing Slog2ToArrowSlog2 we will use the functionality of the SLOG2-SDK Java
API. Since we do not have any API documentation we can use as a reference only the imple-
mentations of several tools16 and some comments is the SDK code itself. For our part we will
make extensive use of Javadoc, and code annotation in general to make our implementation
as well documented as possible, even the parts adopted form other code. Here we will only
discuss some code fragments essential for the core functionality of Slog2ToArrowSlog2 to create
arrows connecting CallIDs.

16slog2filter, slog2print, MergeSlog2, Slog2ToCompositeSlog2 etc.

51

5. Implementation

After reading the input slog2 file and having all the contents accessible we create new categories
for the arrows. We need three types, one for arrows pointing to "Trove Read", one for arrows
pointing to "Trove Write" and one for arrows pointing to unknown:

// generate new categories for the arrows and put them into maps
2String[] arrowInfoKeys = { "CallID=0x" };

InfoType[] arrowInfoTypes = {InfoType.BYTE4};
4

Category readArrowCategory = getNewArrowCategory("Read Path",
6new ColorAlpha(255, 165, 0));

readArrowCategory.setInfoKeys(arrowInfoKeys);
8readArrowCategory.setInfoTypes(arrowInfoTypes);

category.put(new Integer(readArrowCategory.getIndex()), readArrowCategory);
10

Category writeArrowCategory = getNewArrowCategory("Write Path",
12new ColorAlpha(0, 0, 255));

writeArrowCategory.setInfoKeys(arrowInfoKeys);
14writeArrowCategory.setInfoTypes(arrowInfoTypes);

category.put(new Integer(writeArrowCategory.getIndex()), writeArrowCategory);
16

Category miscArrowCategory = getNewArrowCategory("Misc Path",
18new ColorAlpha(255, 255, 255));

miscArrowCategory.setInfoKeys(arrowInfoKeys);
20miscArrowCategory.setInfoTypes(arrowInfoTypes);

category.put(new Integer(miscArrowCategory.getIndex()), miscArrowCategory);

Listing 5.26: Slog2ToArrowSlog2: Creating new categories for arrows in main()

We use the method getNewArrowCategory to create a new arrow category. There exists
no such method yet, so we also have to implement it:

/**
2* Returns a new category with arrow topology. Takes care about getting an

* unused category index.
4*

* <P>Better to put this in Category class, at least the part to get the index.
6* Perhaps better to get _one_ unused index, not the lowest higher than all

* used ?!?</P>
8*

* @param topo_name
10* name for the new category

* @param arrow_color
12* color for the arrows

* @return the created category
14*/

private static Category getNewArrowCategory(String topo_name,
16ColorAlpha arrow_color) {

18// find unused category index, take lowest higher than all existing
Iterator category_itr;

20Category objdef;
int new_idx = 0;

52

5. Implementation

22category_itr = category.values().iterator();
while (category_itr.hasNext()) {

24objdef = (Category) category_itr.next();
if (new_idx <= objdef.getIndex())

26new_idx = objdef.getIndex() + 1;
}

28

// create new arrow category
30Category newCategory = new Category(new_idx, topo_name, Topology.ARROW,

arrow_color, 1);
32return newCategory;

}

Listing 5.27: Slog2ToArrowSlog2: Method implementation of getNewArrowCategory

Having categories for the arrows we will now implement our algorithm to find where to create
arrows (see listing 4.2 on page 22) developed in section 4.3.2 “Graphical Analysis” on page 22:

// sort drawables in start time order
2// arrows should go from start to start

Collections.sort(drawObject, Drawable.INCRE_STARTTIME_ORDER);
4

// create arrows from the first occurrence of each CallID to all
6// following.

ArrayList newArrows = new ArrayList();
8ArrayList handledIds = new ArrayList();

Drawable currentStart;
10Drawable currentEnd;

Integer currentStartCallId;
12Integer currentEndCallId;

for (int idx_start=0; idx_start < drawObject.size(); ++idx_start) {
14// get CallID of current start drawable, if none test next

currentStart = (Drawable) drawObject.get(idx_start);
16currentStartCallId = getCallIdFromDrawable(currentStart);

if (currentStartCallId == null)
18continue;

// if id is already handled we found an endpoint, try next
20if (handledIds.contains(currentStartCallId))

continue;
22// save id as handled

handledIds.add(currentStartCallId);
24// search for all following with same CallID and create arrows

for (int idx_end=idx_start+1; idx_end < drawObject.size(); ++idx_end) {
26// get CallID of current end drawable, if none test next

currentEnd = (Drawable) drawObject.get(idx_end);
28currentEndCallId = getCallIdFromDrawable(currentEnd);

if (currentEndCallId == null)
30continue;

// if current end CallID doesn’t match current start CallID
32// test next

if (currentEndCallId.compareTo(currentStartCallId) != 0)
34continue;

53

5. Implementation

// create arrow according to arrow end category
36if (currentEnd.getCategory().getName().compareTo("Trove Read") == 0) {

newArrows.add(getNewArrowDrawable(readArrowCategory, currentStart,
38currentEnd, currentEndCallId));

}
40else if (currentEnd.getCategory().getName().compareTo("Trove Write") == 0) {

newArrows.add(getNewArrowDrawable(writeArrowCategory, currentStart,
42currentEnd, currentEndCallId));

}
44else {

newArrows.add(getNewArrowDrawable(miscArrowCategory, currentStart,
46currentEnd, currentEndCallId));

}
48}

}

Listing 5.28: Slog2ToArrowSlog2: Finding where to create arrows in main()

In lines 16 and 28 in listing 5.28 on the preceding page we use the method
getCallIdFromDrawable to get the CallID value for one drawable. In the lines 37, 41 and 45
we use getNewArrowDrawable to create a new arrow drawable. These are both methods
we have to implement by ourself, too.

Let us first take a look at implementing getCallIdFromDrawable:

/**
2* Returns value of CallID in the drawable’s info field. Returns

* null if no CallID exists in drawable.
4*

* @param in_draw
6* drawable to get CallID from

* @return CallID
8*/

private static Integer getCallIdFromDrawable(Drawable in_draw) {
10Integer info_idx;

InfoValue currentCallId;
12// if the drawable has no info field return null

if(in_draw.getInfoLength() < 1)
14return null;

// if categories with CallIDs are not identified yet do it
16if (callIdCategories == null) {

callIdCategories = new HashMap();
18identifyCallIdCategories();

}
20// if category of current has no CallID info return null

if(!callIdCategories.containsKey(in_draw.getCategory()))
22return null;

54

5. Implementation

24info_idx = (Integer) callIdCategories.get(in_draw.getCategory());
currentCallId = in_draw.getInfoValue(info_idx.intValue());

26return Integer.valueOf(currentCallId.toString(),16);
}

Listing 5.29: Slog2ToArrowSlog2: Method implementation of getCallIdFromDrawable

We use another method here in line 18 when the method is called for the first time. It then
calls identifyCallIdCategories to create a list of all these categories that actually have
a CallID info field:

/**
2* Identifies each category with CallID info field and map it to the index

* of the info value. This method fills the static variable
4* callIdCategories.

*
6* @see callIdCategories

*/
8private static void identifyCallIdCategories() {

System.out.println("identifyCallIdCategories()");
10Iterator itr_category = category.values().iterator();

Category checkCategory;
12String[] checkInfoKeys;

while(itr_category.hasNext()) {
14checkCategory = (Category) itr_category.next();

checkInfoKeys = checkCategory.getInfoKeys();
16// if has no info keys check next categorie;

if(checkCategory.getInfoKeys() == null
18|| checkCategory.getInfoKeys().length == 0)

continue;
20for(int i = 0; i < checkInfoKeys.length; ++i) {

// if is not a CallID info check next info key
22if (checkInfoKeys[i].compareTo("CallID=0x") != 0)

continue;
24// map category to index of CallID info

callIdCategories.put(checkCategory,Integer.valueOf(i));
26}

}
28

}

Listing 5.30: Slog2ToArrowSlog2: Method implementation of getCallIdFromDrawable

55

5. Implementation

There was a second method used in the code above (listing 5.28 on page 53). Let us implement
the method actually creating the arrows getNewArrowDrawable:

/**
2* Creates an arrow drawable of the given category and set its CallID. The

* arrow will begin at the start time of in_begin and end at the start time
4* of in_end. The info value is set to the given CallID.

*
6* @param in_category

* arrow category with first and only info key for CallID
8* @param in_begin

* drawable the arrow shell begin at
10* @param in_end

* drawable the arrow shell and at
12* @param callId

* CallID to fill info field
14*/

private static Primitive getNewArrowDrawable(Category in_category,
16Drawable in_begin, Drawable in_end, Integer callId) {

18// set begin and end time
double begintime = in_begin.getEarliestTime();

20double endtime = in_end.getEarliestTime();

22double[] time_coords = new double[2];
time_coords[0] = begintime;

24time_coords[1] = endtime;

26// set begin and end line
int[] y_coords = new int[2];

28y_coords[0] = in_begin.getStartVertex().lineID;
y_coords[1] = in_end.getStartVertex().lineID;

30

// reencode CallID to byte[]
32ByteArrayOutputStream bary_ous = new ByteArrayOutputStream();

DataOutputStream d_ous = new DataOutputStream(bary_ous);
34try {

d_ous.writeInt(callId.intValue());
36}

[...]
38byte[] byte_infovals = bary_ous.toByteArray();

40// have to do this for everything to be present in Primitive
// TODO: better way ???

42Primitive prime = new Primitive(in_category.getIndex(), begintime,
endtime, time_coords, y_coords, byte_infovals);

44Primitive prime2 = new Primitive(in_category, prime);
prime2.setInfoBuffer(byte_infovals);

46

return prime2;
48}

Listing 5.31: Slog2ToArrowSlog2: Method implementation of getNewArrowDrawable

56

5. Implementation

The somewhat strange looking creating of a temporary Primitive at line 42 is necessary due
to the fact that there is no constructor taking category reference and info value and also no
method to set category reference after creation.

Now we have got all the new arrows created and put in our list of arrows. Finally we merge
this list of arrows to the list of the drawables from the input file and write it together with
everything else, especially with the new category information into the output slog2 file:

// add arrows to output drawables
2drawObject.addAll(newArrows);

4// sort drawables in end time order
Collections.sort(drawObject, Drawable.INCRE_FINALTIME_ORDER);

6

// put all drawables into the tree for output
8for (int i = 0; i < drawObject.size(); i++) {

addDrawable(treetrunk, (Drawable) drawObject.get(i));
10}

12// write everything to output file
treetrunk.flushToFile();

14category.removeUnusedCategories();
slog_outs.writeCategoryMap(category);

16slog_outs.writeLineIDMapList(lineIDmap);
slog_outs.close();

Listing 5.32: Slog2ToArrowSlog2: Creating new categories for arrows in main()

All methods and parts of code not explicitly mentioned here we could copy and use without
or with only few modification from other tools in slog2tools package (see section 2.4 “Trace
Analysis Tools” on page 12). To this adapted code we mainly had to extend annotation.

5.5. Limitations of Implementation

Scalability

Due to the choice of the data type for our CallID we have a natural limitation in scalability.
With the uint32_t that we use to store and transfer, we have only 32 bits for our complete
CallID. We split these 32 bits into an 8 bit part for the process and an 24 bit part for the call
counter (see figure 5.1 on page 31). That means the maximum of MPI processes we can have
with unique CallIDs is 28 = 256. The maximum of MPI-IO function calls one process can
invoke until the counter overflows is 224 = 16.777.216. If someone use to run more processes,
he simply could increase the number of bits to use for the process part (PVSHD_PROCBITS).
But this automatically would decrease the number of bits for the counter part by the same
amount. So for example using the ratio 12 : 20 would result in 212 = 4096 potential processes
but therefore the counter would overflow after 220 = 1.048.576 yet.

57

5. Implementation

Another point is the amount of memory used for logging. All tools in the slog2tools
package using the SLOG-2 SDK (concerning Slog2Merge and Slog2ToArrowSlog2) are first
loading the whole input files into the memory. To make a good proposition about scalability
problems with that point, first some analysis of the resulting size of SLOG-2 formatted traces
have to be done. An important point that has to be handled when doing this analysis in the
future will be in what proportion the number of MPI-IO calls is to the number of resulting
Trace operations in real applications. With such information one can say if the memory or the
limitation in the CallID value range is the more serious scalability problem.

Overlapping events in the PVFS2 server

MPE2 creates the trace for the PVFS2 servers as a clog2 file. This is then to be converted into
SLOG-2 format using clog2TOslog2 (see figure 2.1 on page 7). The currently used method is
not able to correctly handle cases of overlapping events of the same type (like "Trove Read" or
"Trove Write"). This occures most notably if there are several clients sending requests to one
server in parallel. This is a very important point to take care about. Frank Panse has already
began to resolve this problem in the scope of his diploma thesis [18] (see also section 8.1 “Work
in Progress” on page 73).

5.6. Implementation Problems

While implementing the described functionality we also faced to some problems. Mainly they
come from a big lack of annotation in the code and detailed documentation of the code in its
current state. Here are a few words to the several modified parts:

MPE2

The modifications in MPE2 have not been very difficult. The code is easy to understand and
the documentation is sufficient.

PVFS2

An overall problem we had to deal with is the lack of annotation in the PVFS2 code.

To implement the modularity the programmers have used many preprocessor macros that
cannot be handled by common IDEs and are even difficult to trace by hand. Much time was
necessary to understand some single steps in the code. To point it, difficulties mainly arise at
the interfaces of the layers and modules.

58

5. Implementation

1.4.0 Issue: small I/O With the PVFS2 1.4.0 release a new request type was introduced:
small I/O. This request type is to be used for very small (<16KB using TCP) amount of I/O
data. The main difference to the normal I/O request is the handling in the PVFS2 server. The
state machine for small I/O does not create a Flow but passes the data that are all included
in one message directly to Trove.

This new feature is problematic for us because it creates a second path that an I/O request
can take through the server. That means for us at the end we cannot say which path to climb
up back through the data objects to get the CallID. Since our implementation had been too
advanced at the time of the new release we could not change the whole design anymore to meet
this new situation. So we decide to deactivate the new option now and add the section 8.2.2
“Enable Small I/O” on page 74 to chapter 8 “Future Work”.

The deactivation is done by disabling the creation of small I/O requests in the PVFS2 client
if PVSHD_CALLID is set:

[...]
2#ifndef PVSHD_CALLID // XXX: never do small I/O with CallIDs

4/* look at sio_array and sio_count to see if there are any

* servers that we can do small I/O to, instead of setting up
6* flows. For now, we’re going to stick with the semantics that

* small I/O is only done if all of the sizes for the target datafiles
8* are small enough (sio_count == target_datafile_count). This can

* be changed in the future, for example, if sio_count is some
10* percentage of the target_datafile_count, then do small I/O to

* the sio_array servers, etc.
12*/

if(sio_count == target_datafile_count)
14{

gossip_debug(GOSSIP_IO_DEBUG, " %s: doing small I/O\n", __func__);
16

sm_p->u.io.small_io = 1;
18js_p->error_code = IO_DO_SMALL_IO;

goto sio_array_destroy;
20}

#endif
22[...]

Listing 5.33: Deactivate small I/O in io_datafile_setup_msgpairs in sys-io.sm

slog2stats

There have been no problems with implementation. The output of slog2print is self-
explanatory.

59

5. Implementation

Slog2ToArrowSlog2

As already mentioned there is no documentation for the SLOG-2 SDK API. Also the annotation
in the source code is only insufficient and no use is made of the great documentation feature
for Java: Javadoc.

Furthermore the access methods for some object presenting classes in the SDK are deficient.
For example it seems to be impossible to set the category or the info file to a drawable after
creation time and even at creation time it is difficult to set both.

5.7. Summary

Despite these difficulties we now have an MPICH2+PVFS2 system that can produce traces
with CallID information in MPI-IO and PVFS2 server Trove events. This information is useful
to make connections between MPI-IO function calls and triggered disk operations. MPE is
used as logging facility. It produces clog2 files and merges the traces from the single MPI
processes as well as the traces from the single PVFS2 server processes for us since we already
run the PVFS2 server daemon as MPI program. The two traces, one from the client, one
from the server side, we can convert into the visualization oriented SLOG-2 format and merge
them together into one trace. We can then use slog2print and our new tool slog2stats to get
some statistical information about the trace, including the average number of Trove events
triggered by one MPI-IO function call. Furthermore, using the completely rewritten tool
Slog2ToArrowSlog2, we are able to create arrows in the trace that represent the connections
between MPI-IO function calls and the respectively resulting Trove operations.

Yet unclear issues are the handling of collective MPI-IO calls and a better integration of
the changes into the code in almost every part of the MPICH2+MPE2+PVFS2 system. Also
outstanding is the reactivation of small I/O requests in PVFS2 and their handling concerning
CallIDs.

60

6. Example

This chapter gives a step by step introduction to get a working system environment. After this
an example is described to illustrate the development made in the scope of this thesis.

The concept of installing and running MPI programs with MPE and PVFS2 in the manner
described here has been initially developed by Julian Kunkel1. The author of this thesis has
extended it by the use of VPATH concept and formalized and translated the description.

The software versions to start with:
MPICH2: 1.0.3
MPE2: 1.0.3p1
PVFS2: 1.4.0
slog2tools 0.9.1

Our test cluster is running Debian GNU/Linux 3.1 "sarge" i686 with original Debian kernel
image 2.6.8-2-686-smp in version 2.6.8-16sarge1.

6.1. Installation of the Environment

First we make some assumptions:

${MPICH2_SRC} – MPICH2 source tree
${MPICH2_PLAIN_BUILD} – build directory for MPICH2 without PVFS2
${MPICH2_PLAIN} – target directory for MPICH2 without PVFS2
${MPICH2_BUILD} – build directory for MPICH2 with PVFS2
${PVFS2_SRC} – PVFS2 source tree
${PVFS2_BUILD} – build directory for MPICH2 with PVFS2
${PREFIX} – target directory for MPICH2 with PVFS2 and for PVFS2
${JAVADIR} – toplevel directory of a working Java SDK (>=1.5)
${WORKDIR} – directory for configurations, the example and traces

The only important point to consider is that ${PREFIX} and ${WORKDIR} must be accessible
on every node in the same path.

1Many thanks to Julian for his work on that

61

6. Example

In MPICH2 1.0.3 there is MPE2 1.0.3 included. Since we use MPE2 1.0.3p1 the one in
MPICH2 needs to be replaced. To do this

1. unpack mpe2-1.0.3p1.tar.gz somewhere, thus creating the directory mpe2-1.0.3p1

2. delete or rename ${MPICH2_SRC}/src/mpe2

3. create a symbolic link ${MPICH2_SRC}/src/mpe2 pointing to the mpe2-1.0.3p1 directory

6.1.1. Patching the sources

The enhancement on PVFS2 was originally done on base of the CVS version from 2005/12/07
21:10:16 (see [1]). However when version 1.4.0 was released on 2006/02/15 we adapted ev-
erything to the new version. Nevertheless there are some patches needed in addition to our
modifications because some functionality we base our development on is not in official release
yet.

The necessary patches are2:

mpich2-1.0.3_fixmpdboot fixes a problem while starting MPD ring with mpdboot

mpe2-1.0.3p1_callid our changes for CallID logging in MPE2

pvfs2-1.4.0_fixevents fixes two issues in event logging: Trove Reads are no longer logged
also as Writes; BMI and Jobs are no longer logged repeatedly.

pvfs2-1.4.0_mpirun makes running as MPI program possible: adds --with-mpiexec
compiler option and host-specific server.conf

pvfs2-1.4.0_writelog enables trace writing after reset of event-mask

pvfs2-1.4.0_callid our changes for CallID logging in PVFS2

They can be applied as follows:

$ cd ${MPICH2_SRC}
$ gunzip -c mpich2-1.0.3_fixmpdboot.patch.gz | patch -Np1

$ cd ${MPICH2_SRC}/src/mpe2
$ gunzip -c mpe2-1.0.3p1_callid.patch.gz | patch -Np1

$ cd ${PVFS2_SRC}
$ gunzip -c pvfs2-1.4.0_fixevents.patch.gz | patch -Np1
$ gunzip -c pvfs2-1.4.0_mpirun.patch.gz | patch -Np1
$ gunzip -c pvfs2-1.4.0_writelog.patch.gz | patch -Np1
$ gunzip -c pvfs2-1.4.0_callid.patch.gz | patch -Np1

2Thanks again to Julian Kunkel for developing the mpirun and writelog changes

62

6. Example

6.1.2. Installing plain MPICH2/MPE2 for building PVFS2

The first step when installing the environment is to build and install a plain MPICH2 without
PVFS2. This is necessary to have the libraries to bind to PVFS2.

$ cd ${MPICH2_PLAIN_BUILD}
$ ${MPICH2_SRC}/configure --with-mpe \
$ --prefix=${MPICH2_PLAIN} \
$ CFLAGS="-DPVSHD_CALLID"
$ make; make install

6.1.3. Installing PVFS2 with MPI and MPE

Second we build PVFS2 with support for MPI and MPE. We use the just created plain
MPICH2 installation.

$ cd ${PVFS2_BUILD}
$ ${PVFS2_SRC}/configure --with-mpiexec=${MPICH2_PLAIN} \
$ --with-mpe=${MPICH2_PLAIN} \
$ --prefix=${PREFIX} \
$ CFLAGS="-DPVSHD_CALLID"
$ chmod 755 ${PVFS2_SRC}/maint/*.sh
$ make; make install

6.1.4. Installing MPICH2 with PVFS2 support for Logging

The third step is to build and install the MPICH2 version with PVFS2 support we will finally
use.

$ cd ${MPICH2_BUILD}
$ ${MPICH2_SRC}/configure --enable-romio \
$ --with-file-system=ufs+nfs+pvfs2 \
$ --prefix=${PREFIX} \
$ --with-java2=${JAVADIR} \
$ --with-mpe \
$ CFLAGS="-DPVSHD_CALLID \
$ -I${PREFIX}/include \
$ -L${PREFIX}/lib" \
$ LIBS="-lpvfs2"
$ make; make install

If we do have an appropriate Java version in our path we can omit the --with-java2
option.

63

6. Example

6.1.5. Setting up MPD ring

MPD is only working with a secret word set, so we have to set one:

$ echo "secretword=pvshd" > ~/.mpd.conf
$ chmod 600 ~/.mpd.conf

Moreover it needs to have the file mpd.hosts containing which nodes to use. We have to put
in there at least the hostnames of the nodes we want to use as PVFS2 servers, one per line.

For our example we use master1, node01 and node02:

$ cd ${WORKDIR}
$ echo -e "master1\nnode01\nnode02" > mpd.hosts

Now everything is prepared to start the MPD ring:

$ ${PREFIX}/bin/mpdboot --totalnum=3 --rsh=rsh --file=mpd.hosts

mpdboot starts the MPD ring using the first totalnum hosts entries in mpd.hosts. It uses the
remote shell to start the remote daemons, so rsh has to work non-interactively.

To test if the MPD ring is running we use mpdtrace:

$ ${PREFIX}/bin/mpdtrace
master1
node01
node02

If the correct hostnames are listed the MPD ring is ready.

6.1.6. Setting up PVFS2 servers

Finally we setup the PVFS2 environment.

We need to make the following decisions:

• Which port shell the PVFS2 server use? ⇒${PVFS2_PORT}

• Which host shell become metadata server? (At the moment only one is supported.)
⇒${METASERVER}

• Which hosts shell become IO server? (The metadata server can also be IO server.)
⇒${IOSERVERS}

64

6. Example

For our examples the following values are used:

$ PVFS2_PORT="21435"
$ METASERVER="master1"
$ IOSERVERS="node01,node02"

Now we can run pvfs2-genconfig to automatically generate the configuration:

$ cd ${WORKDIR}
$ ${PREFIX}/bin/pvfs2-genconfig --protocol tcp \

--tcpport ${PVFS2_PORT} \
--ioservers ${IOSERVERS} \
--metaservers ${METASERVER} \
fs.conf \
server.conf \
--storage /tmp/pvfs2-callid \
--logfile /tmp/pvfs2-callid.log

The question about verifying the server list can be answered with ’n’. The script generates
one fs.conf and one server.conf-<hostname> for each server. These files contain the structure
of the PVFS2 environment.

Next the file pvfs2tab has to be created for specifying a virtual mount point:

$ echo "tcp://localhost:${PVFS2_PORT}/pvfs2-fs /pvfs2 pvfs2 default,noauto 0 0"\
> pvfs2tab

Before using it we have to create the storage space:

$ ${PREFIX}/bin/mpiexec -np 3 \
${PREFIX}/sbin/pvfs2-server -d -f \

fs.conf \
server.conf

Nearly the same command again but without the -f option starts our PVFS2 servers. Please
read ahead a few lines before running the command:

$ ${PREFIX}/bin/mpiexec -np 3 \
${PREFIX}/sbin/pvfs2-server -d \

fs.conf \
server.conf

Running the PVFS2 servers in the background does not work smoothly with MPD. So after
starting them we need to open a new console. Having xterm and, if using SSH, X forwarding
enabled we can use the following trick instead:

$ xterm -e bash -c "${PREFIX}/bin/mpiexec -np 3 \
${PREFIX}/sbin/pvfs2-server -d \

fs.conf \
server.conf" &

65

6. Example

Again we can test if everything is well, this time by using pvfs2-ping:

$ ${PREFIX}/bin/pvfs2-ping -m /pvfs2

(1) Parsing tab file...

(2) Initializing system interface...

(3) Initializing each file system found in tab file: pvfs2tab...

/pvfs2: Ok

(4) Searching for /pvfs2 in pvfstab...

[...]

(5) Verifying that all servers are responding...

meta servers:
tcp://master1:21435 Ok

data servers:
tcp://node01:21435 Ok
tcp://node02:21435 Ok

(6) Verifying that fsid 1661493072 is acceptable to all servers...

Ok; all servers understand fs_id 1661493072

(7) Verifying that root handle is owned by one server...

Root handle: 1048576
Ok; root handle is owned by exactly one server.

===

The PVFS filesystem at /pvfs2 appears to be correctly configured.

If the output looks somewhat like that, everything went right.

6.1.7. Installing slog2tools

The installation of the slog2tools package should make no problems at all. Just unpack it and
run the following commands in the package directory:

$./configure --with-mpe2=${PREFIX} --with-java2=${JAVADIR}
$ make; make install

66

6. Example

If there is a system-wide Java installation the script is able to detect it and this option can be
omitted. Assure to use a Java version supporting at least API 1.5

6.2. Running a Small Demo Program

We now will run a small program to see the results of our work.

6.2.1. Writing the program

What is does. Each process of our parallel program will first write something to its segment
of one big file, wait for all others to complete and then read something that another process
has written. To disperse the events, there are a few rest periods between the operations. So
we get a clearer visualisation.

The complete code can be found in appendix B on page 80.

6.2.2. Compiling the program

We now compile the program and link it to libmpe and liblmpe using mpicc:

$ ${PREFIX}/bin/mpicc callid-demo.c -o callid-demo -llmpe -lmpe

6.2.3. Running the program with event logging

We activate the servers event logging by setting the whole event-mask to one. In that way
every event from now on will get logged by the event manager:

$ ${PREFIX}/bin/pvfs2-set-eventmask -m /pvfs2 -a 0xFFFF -o 0xFFFF

Now we run the program and afterwards stop the PVFS2 logging by resetting the event-mask
to zero.

$ ${PREFIX}/bin/mpiexec -np 2 ./callid-demo -f pvfs2://pvfs2/test
$ ${PREFIX}/bin/pvfs2-set-eventmask -m /pvfs2 -a 0 -o 0

Due to the writelog patch the server writes the trace immediately when the event mask gets
reset. For the moment the position for the log is hard coded to /tmp/pvfs2-server.clog2.

67

6. Example

Since this is no good place to keep the trace, we move it to our working directory where the
trace from the client side is already located:

$ mv /tmp/pvfs2-server.clog2 ${WORKDIR}

If we want to, we can quit the servers now:

$ ps x | grep mpiexec | grep pvfs2-server | cut -d ’p’ -f 1 | xargs kill
$ sleep 3;
$ ${PREFIX}/bin/mpdallexit

6.2.4. Prepare the created logs for visualization

Since all our tools are working on SLOG-2 format, we first convert the traces:

$ cd ${WORKDIR}
$ ${PREFIX}/bin/clog2TOslog2 callid-demo.clog2
$ ${PREFIX}/bin/clog2TOslog2 pvfs2-server.clog2

The next step is to merge the logs using MergeSlog2. Unfortunately the auto time adjust
function implemented until now is not sufficient for our needs. We have to calculate the time
difference between the start points of both logs more accurately. The following commands are
one alternative, it sets the beginning of the first ’MPI_File_write’ event to the same time as
the beginning of the first ’Flow’ event.

$ T1=$(${PREFIX}/bin/slog2print callid-demo.slog2 \
| egrep "Primitive.*MPI_File_write" \
| line | sed -e "s/.*TimeBBox(//;s/,.*//" \

)
$ T2=$(${PREFIX}/bin/slog2print pvfs2-server.slog2 \

| egrep "Primitive.*Flow" \
| line | sed -e "s/.*TimeBBox(//;s/,.*//" \

)
$ ${PREFIX}/bin/MergeSlog2 -t1 $(perl -e "print $T2 - $T1;") \

-o merged.slog2 \
callid-demo.slog2 \
pvfs2-server.slog2

Now we are finally at the point to use Slog2ToArrowSlog2:

$ ${PREFIX}/bin/Slog2ToArrowSlog2 -o arrows.slog2 merged.slog2

68

6. Example

6.2.5. Examination of the results

First we will take a look at the output of our new tool slog2stats. Remember that is has to run
with the merged SLOG2 trace before the arrows are created to produce the correct output.

$ ${PREFIX}/bin/slog2print merged.slog2 | ${PREFIX}/bin/slog2stats.pl

Statistics:
Found 7 categories with CallID info key.
Counted 144 drawables.
Found 16 different CallID values.
On average there are 4 arrows per CallID having any.

Using jumpshot to have a look at the trace with arrows, we get some nicely colored pictures:

$ ${PREFIX}/bin/jumpshot arrows.slog2

Figure 6.1.: Jumpshot-4 visualisation of arrows.slog2 (complete)

On figure 6.1 the viewport contains the complete interesting part. All objects are hidden3

except MPI_File_write, MPI_File_read, Trove Write, Trove Read and the arrows Write Path
and Read Path. Note the third line, there are no elements shown because this is the time line
of master1, our metadata only server.

Figures 6.2 and 6.3 on the next page show the write and read part separately. As we can see
the CallID is displayed on all objects making it easy to connect all elements belonging together.
Also the separation of process and counter part is identifiable (see figure 5.3 on page 35 in
section 5.3.1 “Client Side: From MPE2 to BMI). For example the CallID 0x1000003 is the
third ID created in process 1 and 0x7 is the seventh ID created in process 0.

3Please refer to jumpshot manual [11] for handling.

69

6. Example

Figure 6.2.: Jumpshot-4 visualisation of arrows.slog2 (write part)

Figure 6.3.: Jumpshot-4 visualisation of arrows.slog2 (read part)

70

6. Example

6.3. Evaluation

In the example we could see that the goals described in chapter 3 “Specification of the Goals”
on page 14 have been achieved.

We were able to make the desired connections and also made them visible in Jumpshot-4.
Furthermore we could write a program to get statistical informations about the connections
that can be easily enhanced with more functionality.

Nevertheless there is still a lot to be done. The collective call issue (section 4.4 “Limitations
of Design” on page 23) is still open and also the reactivation of small I/O requests has to be
handled (section 5.6 “Implementation Problems” on page 58). Further some analysis about the
scalability issues have to be made (section 5.5 “Limitations of Implementation” on page 57).
With these and other working approaches for the future will be discussed in short in chapter 8
“Future Work” on page 73 after the summary and conclutions of our work in the following
chapter.

71

7. Summary and Conclusions

We are working with an environment for running parallel programs with medium to high
amounts of I/O. MPICH2 is used for message passing and PVFS2 as parallel filesystem. At
the beginning we were able to use MPE2 for creating traces from the calls of MPI-IO functions
as well as from the PVFS2 Trove events representing operations on the real disks. However
until this point it was not possible to say what MPI-IO function call is responsible for what
disk operations. So our intention was to make these connections possible.

To reach this goal we changed the MPE2 logging system to create a unique identification
number called CallID for every MPI-IO function call and write it into the client side trace
together with the MPI-IO events. We pass this CallID down to the PVFS2 client library by
using a global variable. This works since the client part of PVFS2 used with MPI-IO is not
yet realized in multiple threads. From the PVFS2 client we send the CallID together with
each request to the PVFS2 data servers. Now the data servers know about the MPI-IO call
responsible for every single request. We modified the PVFS2 server code to take the CallID
with the request handling through all its layers down to Trove and let the event manager write
the ID with the Trove events into the server side trace.

After having the same CallID in the client side trace for an MPI-IO function call and in the
server side trace for all resulting Trove operations, the basis for connections is created. With
the tool MergeSlog2 in the slog2tools package we are able to merge the two traces together
getting one trace with MPI-IO function calls and Trove events both with CallID to connect
them.

We wrote a statistics tool to get an overview about connections in the merged trace. At the
moment it calculates the average number of Trove events triggered by one MPI-IO function
call. The tool is prepared to become easily extended with further statistical functions.

To make the connections between MPI-IO function calls and the resulting disk operations
really visible, we created a new filter tool that searches the merged trace for all connections
and creates an arrow event for each one. These arrows can now be visualized using Jumpshot.

We could definitely show that connecting the MPI-IO function calls and the triggered disk
operations is possible and the results are in some simple test cased the expected. If this capa-
bility can be really useful for performance analysis and optimisation is still an open question.
Perhaps the amount of information in the traces of large programs is so high, especially the
number of connections, that further methods have to be developed to really benefit from the
new connections.

72

8. Future Work

8.1. Work in Progress

8.1.1. Avoiding the visualisation problem with more than one client

Within the scope of his diploma thesis [18], Frank Panse is working on some changes of the
PVFS2 logging. One of his goals is to deal with the problem occuring when requests from
several clients produce overlapping events of the same type in the PVFS2 server trace as
mentioned in section 4.4 on page 23. His approach it to only log single events instead of start-
stop states and assign an ID to find the matching start and stop events afterwards. Using the
CallID for this approach would not be a reasonable solution, since there could be more than
one event (esp. Trove events) initiated by the same MPI-IO function call and so having the
same CallID.

8.2. Necessary Enhancements

8.2.1. Take care of collective calls

We discussed this also in section 4.4 “Limitations of Design” on page 23. At the moment it is
not sure what happens to the CallID when using MPI-IO collective calls.

These collective calls are MPI-IO calls that are made by multiple processes together to access
data in a coordinated way. They are intended to enable the MPI-IO implementation to opti-
mize the low level data access. For example assume that we have five processes that all need
data stored in one file at almost the same point in time and these data are all in one contiguous
place in the file. Using single calls (e.g. MPI_File_read) will result in five single file system
access requests (forget about caches at the moment). In contrast using one collective call (e.g.
each process calls MPI_File_read_all) gives the MPI-IO implementation the chance to do
only one file system access request and then distribute the data to the processes.

This absolutely makes sense for environments where the file system with the file is physically
connected to only one node in the cluster. But in our case the file system is spread over all
nodes. Here requesting one contiguous part of a file will likely result in many disc operations
(perhaps as many as single requests) and the coordination of collective calls produces additional

73

8. Future Work

network traffic. We see, handling collective calls in this canonical manner does not ensure a
global optimization effect so perhaps with PVFS2, meaning with ROMIO using the ADIO for
PVFS2, there is another mechanism used to process collective calls, perhaps just a mapping
to non-collective calls.

This aspect should be addressed by first investigating the exact handling of collective calls in
PVFS2 and if necessary by developing a method to assure the correct and reasonable handling
of CallIDs.

8.2.2. Enable small I/O

As described in section 5.6 “Implementation Problems” on page 58 with PVFS2 release 1.4.0
a new request type was introduces. It is called small I/O as is intended to speed up very small
I/O requests by bypassing the Flow creation in the PVFS2 server. Without our deactivation
such a small I/O request is created for each I/O request with data smaller that 16KB (if using
TCP) instead. This kind of request becomes handled by another state machine at the PVFS2
server, taking a shorter path through the server layers by not creating a Flow but passing the
data directly to or from Trove. Here is not the place to start a deeper discussion of this, we
will only give some hints to future developers working on this issue.

Figure 8.1 on the next page illustrate the path a small I/O request takes through the PVFS2
server in a similar diagram as for normal I/O in figure 5.5 on page 40.

Comparing the figures 8.1 on the next page and 5.5 on page 40 we can see again the problem
with the void pointers referencing different structures. As far as I know at the moment there
is no possibility to recognize the type of the request and thus the path it has taken in Trove.

8.3. Ideas for technical enhancements

8.3.1. Make PVFS2 Code even more flexible

I suggest to add an extra field to the parameter list of some of the functions in the whole
PVFS2 system. All those functions should become modified through which someone could
want to pass information. This field should be a void pointer or better the pointer to a linked
list of key-value pairs. For the approach with the prepared linked list the access functionality
should become prepared, too.

The same idea refers to the user pointers. At the moment they are almost useless because no
way is given to find out what kind of data the pointer references. Here I suggest not to use a
void pointer but a pointer to a user structure. This structure should contain a void pointer to
reference the users data object as already done by the user pointer now. In addition it should
hold an enumeration field representing the type of the data the void pointer references. With

74

8. Future Work

P
I
N
T
_
s
e
r
v
e
r
_
o
p

*
s
_
o
p

j
o
b
_
d
e
s
c

*
j
d

P
I
N
T
_
s
e
r
v
e
r
_
o
p

P
V
F
S
_
s
e
r
v
e
r
_
r
e
q

*
r
e
q

u
i
n
t
3
2
_
t

u
.
i
o
.
p
v
s
h
d
_
c
a
l
l
i
d

sr
c/

se
rv

er
/p

v
fs

2
−

se
rv

er
.h

sr
c/

p
ro

to
/p

v
fs

2
−

re
q

−
p

ro
to

.h

sr
c/

io
/j

o
b

/j
o

b
.c

v
o
i
d

*
u
s
e
r
_
p
t
r

j
o
b
_
t
r
o
v
e
_
b
s
t
r
e
a
m
_
w
r
i
t
e
_
.
.
.

j
o
b
_
t
r
o
v
e
_
b
s
t
r
e
a
m
_
r
e
a
d
_
.
.
.

j
o
b
_
d
e
s
c

sr
c/

io
/j

o
b

/j
o

b
−

d
es

c−
q

u
eu

e.
h

v
o
i
d

*
j
o
b
_
u
s
e
r
_
p
t
r

flow of control
final variable resolution

P
I
N
T
_
t
h
r
e
a
d
_
m
g
r
_
t
r
o
v
e
_
c
a
l
l
b
a
c
k

v
o
i
d

*
d
a
t
a

sr
c/

io
/j

o
b

/t
h

re
ad

−
m

g
r.

h

*
t
r
o
v
e
_
b
s
t
r
e
a
m
_
r
e
a
d
_
.
.
.

*
t
r
o
v
e
_
b
s
t
r
e
a
m
_
w
r
i
t
e
_
.
.
.

fu
n

ct
io

n
s

d
a
ta

 o
b

je
ct

s

v
o
i
d

*
u
s
e
r
_
p
t
r

s
m
a
l
l
_
i
o
_
s
t
a
r
t
_
j
o
b

sr
c/

se
rv

er
/s

m
al

l−
io

.s
m

Fi
gu

re
8.

1.
:I

m
po

rt
an

t
fu

nc
tio

ns
on

a
sm

al
lI

/O
re

qu
es

t’s
pa

th
th

ro
ug

h
a

PV
FS

2
se

rv
er

an
d

ac
ce

ss
ib

ili
ty

of
th

e
C

al
lID

.

75

8. Future Work

this solution it would be easy to add additional user types and the used layer has the chance
to know who the user is.

8.3.2. Better inclusion of the changes

This is related to the point above. At the moment all my changes are more like a functional
hack than a really good enhancement of the existing code. I already described the reasons for
that at the corresponding places in this document. If these reasons are eliminated a better
sort if implementation of most of the new functionality should be made.

76

A. List of MPI-IO Functions

MPI_File_open
open a file

MPI_File_close
close a file

MPI_File_delete
delete a file

MPI_File_set_size
resize a file

MPI_File_preallocate
preallocate storage space for a file

MPI_File_get_size
get the actual size of a file

MPI_File_get_group
get the group of the communicator used to open a file

MPI_File_get_amode
get the access mode of a file

MPI_File_set_info
set new values for the hints of a file

MPI_File_get_info
get the hints of a file

MPI_File_set_view
change the process’s view of the data in a file

MPI_File_get_view
get the process’s view of the data in a file

77

A. List of MPI-IO Functions

MPI_File_read_at
read data from a file using an explicit offset

MPI_File_read_at_all
collective read data from a file using an explicit offset

MPI_File_write_at
write data to a file using an explicit offset

MPI_File_write_at_all
collective write data to a file using an explicit offset

MPI_File_iread_at
read data from a file non-blocking using an explicit offset

MPI_File_iwrite_at
write data to a file non-blocking using an explicit offset

MPI_File_read
read data from a file using an individual file pointer

MPI_File_read_all
collective read data from a file using an individual file pointer

MPI_File_write
write data to a file using an individual file pointer

MPI_File_write_all
collective write data to a file using an individual file pointer

MPI_File_iread
read data from a file non-blocking using an individual file pointer

MPI_File_iwrite
write data to a file non-blocking using an individual file pointer

MPI_File_seek
set the individual file pointer to a new position using an offset

MPI_File_get_position
get the current position of the individual file pointer

MPI_File_get_byte_offset
convert a view-relative offset into an absolute byte position

MPI_File_read_shared
read data from a file using the shared file pointer

MPI_File_write_shared
write data to a file using the shared file pointer

MPI_File_iread_shared
read data from a file non-blocking using the shared file pointer

MPI_File_iwrite_shared
write data to a file non-blocking using the shared file pointer

MPI_File_read_ordered
collective read data from a file using the shared file pointer

MPI_File_write_ordered
collective write data to a file using the shared file pointer

MPI_File_seek_shared
set the shared file pointer to a new position using an offset

MPI_File_get_position_shared
get the current position of the shared file pointer

78

A. List of MPI-IO Functions

MPI_File_read_at_all_begin
begin a split collective read for a file using an explicit offset

MPI_File_read_at_all_end
finish a split collective read for a file using an explicit offset

MPI_File_write_at_all_begin
begin a split collective write for a file using an explicit offset

MPI_File_write_at_all_end
finish a split collective write for a file using an explicit offset

MPI_File_read_all_begin
begin a split collective read for a file using an individual file pointer

MPI_File_read_all_end
finish a split collective read for a file using an individual file pointer

MPI_File_write_all_begin
begin a split collective write for a file using an individual file pointer

MPI_File_write_all_end
finish a split collective write for a file using an individual file pointer

MPI_File_read_ordered_begin
begin a split collective read for a file using the shared file pointer

MPI_File_read_ordered_end
finish a split collective read for a file using the shared file pointer

MPI_File_write_ordered_begin
begin a split collective write for a file using the shared file pointer

MPI_File_write_ordered_end
finish a split collective write for a file using the shared file pointer

MPI_File_get_type_extent
get the extent of datatype in a file

MPI_Register_datarep
registers a user-defined data representation

MPI_File_set_atomicity
collective set consistency semantics for a collectively opened file

MPI_File_get_atomicity
get the current consistency semantics for collectively opened file

MPI_File_sync
collective synchronize the file on the disk

79

B. Code for callid-demo (callid-demo.c)

#include <stdio.h>
2#include <stdlib.h>

#include <unistd.h>
4#include <mpi.h>

#include <getopt.h>
6#include <sys/select.h>

8

int main(int argc, char **argv)
10{

MPI_Status status;
12int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];
14int myrank;

int nranks;
16

char opt_file[256] = "callid.demo"; // file to use
18MPI_File fh;

int64_t posptr = 0;
20

char *buffer;
22int readdata;

24int bufsize = 1*1024*1024; // size of buffer in MPI_CHAR
int blocksize = bufsize; // blocksize for each rank in MPI_CHAR

26

struct timespec rel_wait, abs_wait;
28

// startup MPI and determine the rank of this process
30MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &nranks);
32MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Get_processor_name(processor_name, &namelen);
34

printf("Process %d of %d is on %s\n", myrank, nranks, processor_name);
36

// parse arguments
38int opt;

40while ((opt = getopt(argc, argv, "b:f:h")) != EOF)
{

42switch (opt)
{

80

B. Code for callid-demo (callid-demo.c)

44case ’f’: // filename
strncpy(opt_file, optarg, 255);

46break;
case ’h’:

48if (myrank == 0)
printf("Usage: callid-demo [-f <FILENAME>] [-h]\n");

50exit(0);
default:

52break;
}

54}

56// setup wait times
rel_wait.tv_sec = 0;

58rel_wait.tv_nsec = myrank*(10000000);

60abs_wait.tv_sec = 0;
abs_wait.tv_nsec = 2000000;

62

// setup buffer
64buffer = malloc((size_t) bufsize*sizeof(MPI_CHAR));

66// open opt_file for writing
MPI_File_open(MPI_COMM_WORLD, opt_file,

68MPI_MODE_WRONLY | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);

70// set position pointer to appropriate position for this rank
posptr = myrank*blocksize;

72MPI_File_seek(fh, posptr, MPI_SEEK_SET);

74// synchronize
MPI_Barrier(MPI_COMM_WORLD);

76

// wait for rank*10 ms not to produce overlapping troves in PVFS2 server
78pselect(0, NULL, NULL, NULL, &rel_wait, NULL);

80// write data to file system
MPI_File_write(fh, buffer, blocksize, MPI_CHAR, &status);

82

// close file
84MPI_File_close(&fh);

86// synchronize
MPI_Barrier(MPI_COMM_WORLD);

88

// wait 2 ms before proceeding
90pselect(0, NULL, NULL, NULL, &abs_wait, NULL);

92// open opt_file for reading
MPI_File_open(MPI_COMM_WORLD, opt_file,

94MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

96// set position pointer to where rank+1 has written (rotating)

81

B. Code for callid-demo (callid-demo.c)

posptr = ((myrank + 1) % nranks) * blocksize;
98MPI_File_seek(fh, posptr, MPI_SEEK_SET);

100// synchronize
MPI_Barrier(MPI_COMM_WORLD);

102

// wait for rank*10 ms not to produce overlapping troves in PVFS2 server
104pselect(0, NULL, NULL, NULL, &rel_wait, NULL);

106// read data from file
MPI_File_read(fh, buffer, blocksize, MPI_CHAR, &status);

108

// close opt_file
110MPI_File_close(&fh);

112// synchronize
MPI_Barrier(MPI_COMM_WORLD);

114

free(buffer);
116MPI_Finalize();

return(0);
118}

Listing B.1: Small demo program used in example (callid-demo.c)

82

Listings

4.1. Output sections of slog2print . 21
4.2. Algorithm for creating arrows in Slog2ToArrowSlog2 22
5.1. Modified MPI_Finalize in log_mpi_core.c . 26
5.2. Modified struct MPE_State in log_mpi_core.c 27
5.3. Modified MPI_Init wrapper in log_mpi_core.c 27
5.4. Modified MPE_Init_MPIIO in log_mpi_io.c 28
5.5. Modified head of log_mpi_io.c . 28
5.6. Original MPI_File_write wrapper in log_mpi_io.c 29
5.7. Original macros MPE_LOG_STATE_* in log_mpi_core.c 29
5.8. New macros MPE_PVSHD_LOG_STATE_* in log_mpi_core.c 30
5.9. Modified MPI_File_write in log_mpi_io.c 30
5.10. sed script to automatically modify original log_mpi_io.c 32
5.11. Modified mpe_misc.h . 35
5.12. Declaration of pvshd_callid in mpe_io.c . 35
5.13. Modified head of sys-io.sm . 36
5.14. Modified struct PVFS_servreq_io in pvfs2-req-proto.h 36
5.15. Modified macro encode_PVFS_servreq_io in pvfs2-req-proto.h . . . 37
5.16. Modified io_datafile_setup_msgpairs in sys-io.sm 38
5.17. New header flowproto-multiqueue.h . 41
5.18. Modified head of flowproto-multiqueue.c . 42
5.19. Modified head of dbpf-bstream.c . 42
5.20. Modified trove_bstream_rw_list in dbpf-bstream.c 43
5.21. New copied macro DBPF_PVDHS_EVENT_START in dbpf.h 44
5.22. New copied PINT_PVSHD_event_timestamp in pint-event.c 44
5.23. New copied __PINT_PVSHD_event_mpe in pint-event.c 45
5.24. Modified init_mpeLogFile in pint-event.c 46
5.25. Modified __PINT_event_mpe in pint-event.c 46
slog2stats . 48
5.26. Slog2ToArrowSlog2: Creating new categories for arrows in main() 52
5.27. Slog2ToArrowSlog2: Method implementation of getNewArrowCategory . . . 52
5.28. Slog2ToArrowSlog2: Finding where to create arrows in main() 53
5.29. Slog2ToArrowSlog2: Method implementation of getCallIdFromDrawable . 54
5.30. Slog2ToArrowSlog2: Method implementation of getCallIdFromDrawable . 55
5.31. Slog2ToArrowSlog2: Method implementation of getNewArrowDrawable . . . 56
5.32. Slog2ToArrowSlog2: Creating new categories for arrows in main() 57
5.33. Deactivate small I/O in io_datafile_setup_msgpairs in sys-io.sm 59
B.1. Small demo program used in example (callid-demo.c) 80

83

List of Figures

2.1. Schematic plan of the system environment . 7
2.2. Jumpshot program windows . 10
2.3. Layer structure design of PVFS2 . 11

3.1. The designated presentation of connections between events in Jumpshot 15

4.1. The way every MPI-IO call takes through the system 20

5.1. Structure of integer containing CallID . 31
5.2. The way of function calls from liblmpe to libpvfs2 34
5.3. CallID in binary and hexadecimal notation . 35
5.4. Flow of encoding I/O server request . 37
5.5. Important functions on an I/O request’s path through a PVFS2 server and

accessibility of the CallID. 40

6.1. Jumpshot-4 visualisation of arrows.slog2 (complete) 69
6.2. Jumpshot-4 visualisation of arrows.slog2 (write part) 70
6.3. Jumpshot-4 visualisation of arrows.slog2 (read part) 70

8.1. Important functions on a small I/O request’s path through a PVFS2 server and
accessibility of the CallID. 75

84

List of Abbreviations

ADIO Abstract Device for Input/Output
API Application Programming Interface
BMI Buffered Message Interface
CallID Call Identification
I/O Input/Output
IDE Integrated Development Environment
LAN Local Area Network
MPE MPI Parallel Environment
MPI Message Passing Interface
MPI-IO Message Passing Interface - Input/Output
MPICH2 MPI Chameleon 2
PVFS2 Second Parallel Virtual Filesystem
PVSHD Parallele und Verteilte Systeme, Heidelberg
ROMIO Who nows? No Abbreviation!
SDK Standard Development Kit
VFS Virtual Filesystem Switch
acache address cache
ncache name cache

85

References

[1] PVFS2 Development Team. Parallel Virtual File System, Version 2. Internet.
http://www.pvfs.org/pvfs2/index.html

[2] Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface Standard,
Version 1.1. Tech. Rep., University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

[3] Message Passing Interface Forum (MPIF). MPI-2: Extensions to the Message-Passing
Interface. Tech. Rep., University of Tennessee, Knoxville, 1997.
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

[4] MPICH2 Development Team. MPICH2 Home Page. Internet.
http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm

[5] William Gropp, Ewing Lusk et al.. MPICH2 User’s Guide - Version 1.0.3. Argonne
National Laboratory, November 2005.
http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/
mpich2-doc-user.pdf

[6] William Gropp, Ewing Lusk et al.. MPICH2 Installer’s Guide - Version 1.0.3. Argonne
National Laboratory, November 2005.
http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/
mpich2-doc-install.pdf

[7] ROMIO Development Team. ROMIO: A High-Performance, Portable MPI-IO Implemen-
tation. Internet.
http://www-unix.mcs.anl.gov/romio/index.html

[8] Rajeev Thakur, Ewing Lusk and William Gropp. Users Guide for ROMIO: A High-
Performance, Portable MPI-IO Implementation. Technical Memorandum 234, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, May 2004. ANL/MCS-
TM-234.
http://www.mcs.anl.gov/~thakur/papers/users-guide.ps

[9] Laboratory for Advanced Numerical Software (LANS). Performance Visualization for
Parallel Programs. Internet. This is the website for MPE2, SLOG-2 and Jumpshot-4.
http://www-unix.mcs.anl.gov/perfvis/index.htm

86

http://www.pvfs.org/pvfs2/index.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm
http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-user.pdf
http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-user.pdf
http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-install.pdf
http://www-unix.mcs.anl.gov/mpi/mpich2/downloads/mpich2-doc-install.pdf
http://www-unix.mcs.anl.gov/romio/index.html
http://www.mcs.anl.gov/~thakur/papers/users-guide.ps
http://www-unix.mcs.anl.gov/perfvis/index.htm

References

[10] Anthony Chan, William Gropp and Ewing Lusk. Scalable Log Files for Parallel Program
Trace Data. Internet, 2000.
ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2-draft.pdf

[11] Anthony Chan, David Ashton, Rusty Lusk and William Gropp. Jumpshot-4 Users Guide,
December 2004.
ftp://ftp.mcs.anl.gov/pub/mpi/slog2/js4-usersguide.pdf

[12] PVFS2 Development Team. Parallel Virtual File System, Version 2. Argonne National
Laboratory, September 2003.
http://www.pvfs.org/pvfs2/pvfs2-guide.html

[13] Rob Lathan, Neill Miller, Robert Ross and Phil Carns. A Next-Generation Parallel File
System for Linux Clusters. Linux World Magazine, (pp. 56–59), January 2004. An
introduction to the second Parallel Virtual File System.
http://www.pvfs.org/pvfs2/files/linuxworld-JAN2004-PVFS2.ps

[14] Julian Kunkel, Thomas Ludwig and Hipolito Vasquez. Weit verteilt - Dateisystem für
parallele Systeme: PVFS, Version 2. iX - Magazin für professionelle Informationstechnik,
6/04: pp. 110–113, 2004.

[15] Julian Martin Kunkel. Performance Analysis of the PVFS2 Persistency Layer . Bachelor’s
thesis, Rubrecht-Karls-Universität Heidelberg, Institute of Computer Science, Research
Group Parallel and Distributed Systems, February 2006.

[16] Withanage Don Samantha Dulip. Performance Visualization for the PVFS2 Environment.
Bachelor’s thesis, Rubrecht-Karls-Universität Heidelberg, Institute of Computer Science,
Research Group Parallel and Distributed Systems, November 2005.

[17] Free Software Foundation, Inc. sed - manual page for sed version 4.1.2, 2004.

[18] Frank Panse. Extended Tracing Capabilities and Optimization of the PVFS2 Event Log-
ging Management. Diploma thesis, Rubrecht-Karls-Universität Heidelberg, Institute of
Computer Science, Research Group Parallel and Distributed Systems, 2006. This thesis
is not finished yet.

87

ftp://ftp.mcs.anl.gov/pub/mpi/slog2/slog2-draft.pdf
ftp://ftp.mcs.anl.gov/pub/mpi/slog2/js4-usersguide.pdf
http://www.pvfs.org/pvfs2/pvfs2-guide.html
http://www.pvfs.org/pvfs2/files/linuxworld-JAN2004-PVFS2.ps

	Introduction
	System Overview
	MPICH2
	ROMIO

	MPE2
	Logging Facilities
	SLOG-2 Software Development Kit

	PVFS2
	PVFS2 Client Library
	PVFS2 Server

	Trace Analysis Tools
	Merging Traces
	Getting Better Visual Access
	Nicely Colored Pictures

	Specification of the Goals
	Starting Point
	Goal of this Thesis
	Approach

	Design
	General Issues
	Getting the Necessary Information
	Logging of MPI-IO Function Calls
	Logging of PVFS2 Trove Events
	Making Connections Possible

	Making Information Visible
	Text Based Analysis
	Graphical Analysis

	Limitations of Design

	Implementation
	General Issues
	Creation of CallID for MPI-IO Function Calls
	Getting the ID to the Right Place
	Client Side: From MPE2 to BMI
	From Client Side to Server Side
	Server Side: From BMI to Event Manager

	Statistic and Visualisation Tools
	Tool for Analyse Output of Slog2print
	Tool Creating Arrows for Visualisation in Jumpshot

	Limitations of Implementation
	Implementation Problems
	Summary

	Example
	Installation of the Environment
	Patching the Sources
	Installing Plain MPICH2/MPE2 for Building PVFS2
	Installing PVFS2 with MPI and MPE
	Installing MPICH2 with PVFS2 Support for Logging
	Setting Up MPD Ring
	Setting Up PVFS2 Servers
	Installing Slog2tools

	Running a Small Demo Program
	Writing the Program
	Compiling the Program
	Running the Program with Event Logging
	Preparing the Created Logs for Visualization
	Examination of the Results

	Evaluation

	Summary and Conclusions
	Future Work
	Work in Progress
	Avoiding the Visualisation Problem with More than One Client

	Necessary Enhancements
	Take Care of Collective Calls
	Enable Small I/O

	Ideas for technical enhancements
	Make PVFS2 Code Even More Flexible
	Better Inclusion of the Changes

	List of MPI-IO Functions
	Code for callid-demo (callid-demo.c)
	Listings
	List of Figures
	References

