-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Heidelberger Dokumentenserver

Ruprecht-Karls-Universitit Heidelberg
Institute of Computer Science
Research Group Parallel and Distributed Systems

Bachelor’s Thesis

Performance Analysis of the PVFS2 Persistency Layer

Name: Julian Martin Kunkel
Matrikelnummer: 2233273
Betreuer: Prof. Thomas Ludwig

Abgabe Datum: 15.02.06

https://core.ac.uk/display/32579736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ich versichere, dass ich diese Bachelor-Arbeit selbststindig verfasst und nur die angegebenen Quellen
und Hilfsmittel verwendet habe.

Datum: February 14, 2006

Acknowledgments

My grateful thanks to Prof. Dr. Thomas Ludwig for his guidance and support during the whole project
period. I also wish to thank Stephan Krempel, who set up the GNU-arch repository and provided
guides for arch and Dulip Withanage, who provided a latex template for the Bachelor’s thesis. My
thanks also go to the whole PVFS2-development team for their help in many occasions.

Last but not least, I want to appreciate the valuable support of my parents Ursula and Paul Kunkel
and my sister Simone.

Abstract

In this thesis the persistency layer of the Parallel Virtual File System 2 (PVFS2) is analyzed in
order to argue about the limitations in the architecture. Therefore, a new module is introduced that
replaces the current module responsible for the persistency layer. This module operates in memory
and provides an upper bound for the achievable performance of the persistency layer.

The basics of the persistency layer and the internal request processing are documented to help the
reader to understand the servers’ workflow. Some simple theoretical thoughts lead to estimated upper
bounds for the performance of various operations. These estimated upper bounds are later compared
with measured performance values.

Different benchmarks are run to determine the I/O and the metadata performance of several con-
figurations. The measured data is evaluated and discussed in order to improve the implementation.
Within the framework of the thesis some bottlenecks could already be found. It turns out that there
is much room for further improvement in the metadata handling of PVFS2.

Contents

(1 _General Goals of the Thesis|

2 System Overview|

[2.1 'The Parallel Virtual File System PVES2

(3 An In-Depth Look at Trove |

[3.1 System Level File Ssystem Representation|.

BI1

Example collection |

3.3 Modularity]

[3.4 Explanation of Some Client Operations|.

[3.4.1 Get the attributes of a file system object|

B43

Create a directory |

BA4

Read content of a directory| o

B45

File open/get object reference|

B.4.6

Delete a file system object|o oo oo oo L

BA7

Flushing ot a file| .

B4.38

Dol/Of......

B49

Test the availability

of afilesystem|. L.

T - Perf Evaluation]

4.1 Resources Limiting the Performance]

11

1/0 subsystem| . .

[4.2 Scalability and Estimated Upper Bounds|.

I21

Example hardware specification | 0 0L L.

f22

Metadata operations| L

4.2.3

Large 1/0O requests

4.2.4

Small 1/0 requests

12
12
15
17
17
18
18
19
20
21
21
22
23
24
25

Contents

[5 Software Design|

.1 Project Phases|
B2 DeCSIONS -+« « v v e e e e
5.3 Enhancement of Trove Module Support|
[5.4 Trove Analyzation Stub (TAS)
0.4.1 OVEIVIEW| o o e e e e e e e e
0.4.2 Dataspace objects| L
[0.4.3 Detailed tunction description| oo 0oL
[5.5 ALTernative Implementation (ALT)|
.01 OVerviewl e e e e e e
[5.5.2 Dataspace objects|o
[0.5.3 Detailed tunction description| o Lo
5.6 Keyval iteration|.o

[6 Benchmark Programs|

6.1 mpi-io-test| L
0.2 mpi-md-more |.
0.0 pvfs2-bench |. Lo
[z__Evaluation |
[7.1 Small Contiguous I/O Requests|
(1.1 One metadata and one data server|
Ii .1.2 [211‘: IIls:l ;!gl;!l ;! i!ll!l fi !g: !lill ;! { g:l !s:ll
[7.1.3 Comparison of the throughput for one and five data servers|
[7.1.4 Access of large files with small contiguous I/O requests|.
. arge Contiguous equests| oL L e
7.2 Large Contig 1/O Req
(£.2.1 One metadata and one data server|
[(.2.2 One metadata and five data.serverd
[7.3 Metadata Operations|. e e
[(.3.1 One metadata and one data.serverd
[7.3.2 Comparison of the performance for one and five data server|
Ii .;i.;i l i!s: Ills lil!];!l;l s l !g:l: i!llgl [i!!: glilli! {i!:l &s:l |
[7.3.4 Comparison of the performance for one and five metadata servers|
7.4 Large Scale Metadata Requests|
. uggestions tor a New lrove lmplementation|
75 S i New T Impl |
9__Future Works|
[10.1 Comparisons of ALT| o
0.2 Difficulties| o e
[10.3 PVFES2 file system configuration files|0 L.
10.3.1 One metadata and one data serverl
10.3.2 One metadata and five data servers/.
Il[).;i.;i l i!s: Illslil!];!lil ;!ll!i liys Sli!l;! {sl&gl{il
[10.3.4 Server configuration| e

[List of Figures|

35
35
36
37
37
37
38
39
40
40
40
41
41

43
43
44
44

46
47
47
56
62
67
69
69
73
78
78
84
85
87
92
93

95

96

97
97
98
99
99
100
102
103

104

106

1 General Goals of the Thesis

Performance of complex software with a layered architecture is strongly limited by the capabilities of
each single layer. An analysis of a single layer can be done by implementing a simple stub which has
a well known complexity for the functions provided by the layer. Furthermore, the performance of
the remaining layers and even the whole software architecture can be measured with an efficient stub
to find bottlenecks.

As the Parallel Virtual Filesystem Version 2 (PVFS2) has such a layered architecture, an examination
of the different layers can help to improve performance. The goal of this thesis is the analysis of the
PVFS2 persistency layer E In addition, concepts for further improvement of the layers are derived
from this analysis.

The thesis is structured as follows: Chapter 2 gives an overview of PVFS2 and its environment.
Chapter 3 describes the persistency layer and the workflow of common file system operations in
detail. Some simple considerations lead to estimated upper bounds for the performance of the file
system operations in chapter 4. Chapter 5 introduces and discusses the source code modifications
made during this project, especially the new persistency modules. Chapter 6 describes the operating
modes of the benchmark programs which are used to evaluate the performance of PVFS2 in chapter
7. Chapter 8 summarizes the proceeding and main results of the project. Possible future works are
shown in chapter 9.

'Tn terms of PVFS2 the persistency storage layer is referred to as TROVE

2 System Overview

This chapter gives a general overview of the PVFS2 server and client components.

2.1 The Parallel Virtual File System PVFS2

Client Server
Application
Main loop
Kernel
VFS
FLOW

BMI | TROVE

Client 1

Client 2 Network

Client 3 Server 2

Figure 2.1: PVFS2 software architecture

Large computer clusters are now widely used for scientific computation. In these clusters, I/O subsys-
tems consist of many disks located in many different nodes. The software that organizes these disks
into a coherent file system is called a "parallel file system". Using the parallel file system software,
applications can access files that are physically distributed among different nodes in the cluster.

The Parallel Virtual File System PVFS2 is one of the popular open source parallel file systems

2 System Overview

developed for efficient reading and writing of large amounts of data across the nodes. To achieve this,
PVFS2 is designed as a client-server architecture as shown in figure [2.1

In the context of the file system the following terms are important:

Collection: A PVFS2 collection corresponds to a logical file system which is distributed among the
available PVFS2 servers.

PVFS2 server A PVFS2 server holds exactly one so-called Storage-space, which may contain a part
of several collections. According to the type of storage provided for a file system, servers can be
categorized into data servers and metadata servers. data servers store data in a round robin man-
ner, typically striped over multiple nodes using the UNIX file system. Metadata servers store object
attributes. This is all the information about files in the UNIX sense, i.e. object type, ownership,
permissions, timestamps and filesize. Additional information like extended attributes and the direc-
tory hierarchy, is stored on metadata servers, too. A compute node can be configured as either a
metadata server, a data server, or both at once.

PVFS2 client Clients are nodes that access the virtual file systems provided by the PVFS2 servers.
Applications can use one of the available userlevel-Interfaces to interact with the file system.

Filesystem objects Objects which can be stored in a PVFS2 file system are files, directories and
symbolic links. Internally PVFS2 knows additional system level objects: metafiles, which contain
metadata for a file system object, datafiles which contain a part of a UNIX file data and directory
data objects, which store the mapping of a filename to a handle. PVFS2 stores a file system object
as one or multiple system level objects.

As a concrete example a logical file is stored as a metafile and the file data is split into one or more
datafiles, which can be distributed over multiple or even all available data servers. The metadatafile
containing the object’s attributes and other metadata for a single PVFS2 file system object is located
on exactly one of the available metadata servers. The internal file system organization is further
described in section B.1.1]

handle A handle is a number identifying a specific internal object and is similar to the ext2 inode
number.

2.2 Software Architecture

PVFS2 uses the layer model illustrated in figure 2.1} Interfaces for the layers use a non-blocking
semantics. Desired operations are first posted and then their completion status is tested. A unique
identifier is created for every post, which is used as an input for all test calls. In case the operation is
not very complex and time consuming, it is possible that the operation immediately completes during
the post call. This has to be checked by the caller. For a more detailed description see [§].

2.2.1 Userlevel-interface

The userlevel-interface provides a higher abstraction to the PVFS2 file systems. There are currently
two userlevel-interfaces available: a kernel interface and an MPI interface. The kernel interface is
realized by a kernel-module integrating PVFS into the kernel Virtual Filesystem Switch (VFS) and a
user-space daemon which does communicate with the servers. PVFS2 is specially designed to provide
an efficient integration into any implementation of the Message-Passing Interface specification MPI-2,

2 System Overview

which is an interface standard for high performance computing. An ADIO device for ROMIO enables
MPICHﬂ to access PVFS2 file systems.

2.2.2 System interface

The system interface API provides functions for the direct manipulation of file system objects and
hides internal details from the user. Applications can use the 1ibpvfs functions to access the PVFS2
file systems. A program using this interface is considered as client. Invoking a system interface
function starts a statemachine which processes the operation in small steps.

Statemachines In the PVFS2 context, statemachines run a specified function in each of their states.
The return value of this function determines which transition of the state should be taken. Modeling
of a complex request is possible, therefore a complex operation is represented as a sequence of several
states. State functions require two qualities: they should need little time and must not influence the
results of different statemachines. Using time division multiplexing, statemachines enable a degree of
parallelism, simply running the active state’s functions for each statemachine in a round robin fashion.
PVFS2 statemachines can be nested to model and simplify the handling of common subprocesses.
Statemachines are used on clients and on servers.

Client-side caches Several caches are part of the system interface and try to minimize the number
of requests to the server processes. The attribute cache (acache) manages metadata, like timestamps
and handle number.

The name cache (ncache) stores a file system object’s filename and related handle number. To prevent
the caches from storing invalid information, data is set invalid when a defined time is over [or when
the server signals the client that the object does not exist.

2.2.3 Job

The job layer consolidates the lower layers BMI, Flow and Trove into one interface. It also maintains
threads and callback functions, which will be given as input to called functions. On completion of an
operation the lower layers can simply run the callback function, which knows the next working step
necessary to finish the operation. This can be used in the persistency layer, for example, to initiate
a transmission when data was read. Furthermore, a request scheduler is part of the Job layer, which
manages complex client requests as statemachines.

2.2.4 Flow

A flow is a data stream between two endpoints. An endpoint is one of memory, BMI or Trove. The
user can choose between different flow protocols defining the behavior of the data transmission. For
example, buffer strategy and number of parallel transferred messages may be different for two flow
protocols. To initiate a data transfer, flow has to know the data definition (size, position in memory,
...) and the endpoints. Flow then takes care of the data transmission. Complex memory and file
datatypes are automatically converted to a simpler data format, convenient for the lower level 1/O
interfaces.

IMPI Chameleon 2, an MPI-2 implementation
®Timeout does correspond to the storage hint HandleRecycleTimeoutSecs

10

2 System Overview

2.2.5 BMI

The Buffered Message Interface provides a network independent interface. Clients communicate with
the servers by using the request protocol, which defines the layout of the messages for every opera-
tion. BMI can use different communication methods, currently TCP, Myricom’s GM and Infiniband.
Similar to MPI, BMI requires to announce the receiving of a message before the message is expected
to arrive. Any announcement includes the sender of the message, expected size of the message and
identification tag. The transmitted message fits into the buffer, so no memory copy is necessary. This
improves overall performance, which is only one of the incorporated optimizations.

Sometimes it is not possible to know the origin of the message. Then, it is called unexpected message.
A client starts a file system operation by sending an operation specific request message to the server.
However, the server cannot know that there will be a request or cannot even be aware of the client’s
existence. So the server buffers a pool of unexpected messages, which have the maximum initial
request size possible.

2.2.6 Trove

Trove provides and administrates the persistent storage space for system level objects. Data is either
stored as a keyword/value pair or as a bytestream. Keyword value pairs are used to store arbitrary
metadata information while bytestreams store a logical file’s data. Bytestream data is accessed using
a size from an offset, while keyval data can be accessed by resolving the key.

Like BMI and Flow, Trove can switch between different methods, which are actually different imple-
mentations of the whole interface.

2.2.7 Server main loop

The server’s main loop checks the completion of a statemachine processed by threads. If a statema-
chine’s current state is finished, the next state is assigned for work and the state function is called.
This either completes the current states operation or enqueues the operation for the threads. In case
the function does complete immediately, the next state of the statemachine is called directly. There is
a BMI and a Trove thread, which takes care of the unfinished operations depending on the operations’

type.

In addition, unexpected messages from BMI are decoded. For each message the appropriate statema-
chine is started and a buffer for a new unexpected message is provided.

Summary: This chapter describes the components of the PVFS2 server and client. Furthermore, it
outlines the tasks of the different layers, due to the access to the file system.
In the following the PVFS2 persistency layer Trove is reviewed more detailed.

11

3 An In-Depth Look at Trove

Documentation about the internals of Trove are rare - hence it is my concern in this section to
document internal file system representation and processing of several common requests. This is
important to understand to estimate PVFS2’s performance.

3.1 System Level File Ssystem Representation

This section shows how system level objects form a logical file system - remember the term collection
is used in the PVFS context. Filesystem objects are internally represented by using one or multiple
system level objects, which are maintained by Trove. A server can maintain multiple collections.
Therefore, a collection has a unique id, the collection id and a name which is mapped into the id by
a server. In order to access a collection a client needs a configuration file which has a similar syntax
than the /etc/fstab. This so-called pvfs2tab which can be incorporated into the common fstab
specifies for each file system a responsible server and collection name. In case the linux kernel module
is used the file system can be mounted on the defined mount point. If the application uses the MPI
interface or directly the system interface, the defined mount point is virtual. An access to a logical
file system object within a virtual path specified in the pvfs2tab is mapped to the corresponding
collection.

Each system level object stores either keyval or bytestream data and owns common attributes, i.e.
timestamps, object type, collection id, handle, keyval count and bytestream size. A stored object is
called dataspace and has a unique identifier within a collection, the handle. The handle together
with the collection id form the object reference which is used to identify the object. On the higher
level system interface, the object reference of a file system object consists of the object’s file system
id and its metadatafile handle.

Internally, the client decides which server is responsible for an object, by inspecting the object’s
reference. Within a file system every server is responsible for a disjunct handle range. The ranges
are set in the file system configuration. Therefore, the client can map the collection id and handle
number directly to the entity’s responsible server. The available handle numbers (8 Byte) are also
shared between meta- and data servers.

Filesystem objects and internal representation:

e Directory
attributes are stored in a directory object, while a separate directory data (dirdata) object holds
the directory entries. The value of a directory’s dir _ent key is the handle of the corresponding
dirdata object.

o File

A logical file is stored as a metafile, and the file’s data is split into one or several datafiles
which can be distributed over multiple or even all available data servers. How the data is split

12

3 An In-Depth Look at Trove

over the data servers is controlled by the file’s distribution function, for example splitting the
file in 64KByte chunks and placing them on the data servers in a round robin fashion. Other
distribution functions are possible and can be set for a file during creation. Information about
the distribution and datafile handles is held by the metadatafile as value of the keys meta dist
and datafile handles, which is an array of handles. Datafiles are the only objects located on a
data server, other objects are kept on a metadata server.

e Symbolic link
A symbolic link is similar to the UNIX pendant and internally represented by one object. Full
access to the link object is allowed for everybody and cannot be changed. Instead of checking
the links permissions, the permissions of the referenced object are checked. This is the same
behavior as in UNIX. The link target’s name is stored as a keyval pair.

Additional extended attributes can be stored as keyval pairs in a files metadata and in the directory
object for directories. The PVFS2 linux VFS interface, for example, maintains access control lists
using this mechanism.

The data distribution of a logical file The selected distribution function for a file defines the way
data is distributed among the different datafiles which are located on different servers typically. In
this paper the default distribution simple stripe is used with a block size of 64 KByte. Simple stripe
divides the logical file data into chunks with the length of the block size. These chunks then are
mapped into the datafiles in a round robin manner, which means chunk 1 is mapped into the first
datafile, chunk 2 into the second datafile and so on, until one chunk is mapped to each datafile.
The next chunk then gets assigned to the first datafile. This process continues until all chunks are
assigned. A mapping of a logical file with a size of 416 KByte into 5 datafiles is shown in figure [3.1]
If the logical file grows slowly, then, at first, datafile 2 is enlarged up to 128 KByte before datafile 3
is increased.

0 64 128 320 416 KByte

vy oy vy

Logical file data ?

Physical file data

Datafile 1 Datafile 2 Datafile 5

Figure 3.1: File distribution for 5 datafiles using the default distribution function which stripes data
over the datafiles in 64 KByte chunks in a round robin fashion

Additional collection attributes There are several collection hints, which can be set in the file
system configuration file. Most options are given to Trove while starting the server, before requests
are dealt and cannot be modified during runtime. Configuration parameters can be used to control
internal cache mechanisms, i.e. keyval pairs which could be cached and a server side attribute cache.
Attributes are currently cached in an array of lists by hashing the object reference to the number of
a linked list. The size of the hash array and the maximum number of elements of the attribute cache
can be set.

Also, there is a synchronous mode for meta and filedata, which forces data to be written to disk
during a modifying operation. The server sends the success of an operation after the data is written,

13

3 An In-Depth Look at Trove

otherwise the server may acknowledge before data is saved and the operation can be deferred to a
later time. Sync modes can be set during runtime using the user-space tool pvfs2-set-sync.

An important parameter is the collection handle range, which sets the handle range for metadata and
datafiles if the current server should maintain both. Otherwise only the range is set, which the server
should take care of.

There is also a handle timeout. This sets the time necessary to pass before a handle can be reused,

after the object has been deleted. This setting is transferred to the client during client initialization
and sets cache timeouts to avoid operating on an invalid (non-existent) object.

14

3 An In-Depth Look at Trove

3.1.1 Example collection

Filesystem
objects

/lost+found
/LINK -> README

/README

| System level objects

directory

‘ Handle: 12
fs Id: 1000

| UID: julian
GID: users

‘ mode: rwxr—r--
ctime/mtime/atime:

| 11.04.1982 12:15
dfile count: 0
\ dist size: 0

| dir_ent: 13

dirent ¥
| Handle: 13
fs Id: 1000
| uID: 0
GID: 0
mode: 0
ctime/mtime/atime:
0
‘ dfile count: 0
‘ dist size: 0

Type: directory

Handle: 10 o
fs Id: 1000 fad
UID: julian =5
GID: users =1
mode: rwxr—r- - o
ctime/mtime/atime:
11.04.1982 12:15
dfile count: 0
dist size: 0
B
dir ent: 11 <
3
2
dirent %
Handle: 11
fs Id: 1000
UID: 0
GID: 0
mode: 0
ctime/mtime/atime:
0

dfile count: 0
\dist size: 0

lost+found: 12

README : 16

LINK: 18
symlink i

Handle: 18

fs Id: 1000

UID: julian

GID: users

mode: rWX FrwWX rwx

ctime/mtime/atime:

11.04.1982 12:15
dfile count: 0
dist size: 0

symlink target:
README

Figure 3.2: Example collection

datafile
Handle: 2147483651
fs Id: 1000
UID: 0
GID: 0
mode: 0
ctime/mtime/atime:

metafile
Handle: 16 I
fs Id: 1000
UID: julian
GID: users
mode: rwxr—r- -
ctime/mtime/atime:

11.04.1982 12:15
dfile count: 1
dist size: 48

datafile_handles
2147483651

metafile dist:
simple stripe...

0
dfile count: 0
dist size: 0

I'm a readme file.......

On the left you can see some logical PVFS2 file system objects, accessible through the system inter-
face and on the right the internal representation and mapping into low-level objects. Let us assume
1111 as collection id and MYCOLL as collection name. The example collection uses the range 4 to
2147483650 for metadata handles and 2147483651 to 4294967297 for datafiles. Depending on the
configuration, objects can be located on different servers or on the same server. A higher dfile count
for the README file’s metafile would have created more datafiles, which could be spreaded over
miscellaneous servers to increase parallelism.
It is important to distinguish between the collection and its persistent representation on the par-

15

weaJls

3 An In-Depth Look at Trove

ticipating servers, which depends on the selected Trove module. As an illustrating example for the
current implementation, the directory /tmp/pvfs2-server is displayed in figure In this example
the directory keeps the persistent representation of the system level objects of one server. Each file
system object has a dedicated file for bytestreams and keyval pairs. Note that the names of the
files and directories are based on the handle number. As an example the directory with the number
00000457 is the hexadecimal number of 1111. This is the collection id. A detailed discussion of the
mapping is spared in this paper.

|
k- 00000457

:- = bstreams

1== 00000000

1== 00000001

. L =100000001.bstream
1-= 00000002

1
== 00000063
== keyvals
1== 00000000

== 00000010
L =0000000a.keyval

'
== 00000031

= = collection_attributes.db
I. = dataspace_attributes.db
r= collections.db

L. storage attributes.db

-~

Figure 3.3: Example directory storing a part of a collection

The following pvfs2tab file specifies that the (virtual) mount point /pvfs2 is used to access the col-
lection MYCOLL. The machine master2 runs a PVFS2 server participating on a collection with the
name MYCOLL and the server is configured for TCP on the port 3334. A client requests from this
server the vital file system configuration.

Example pvfs2tab:

tcp://master2:3334/MYCOLL /pvis2 pvEs2 default,noauto 00

16

3 An In-Depth Look at Trove

3.2 Interface

The functions provided by the Trove-interface can be grouped into the following categories:

e Trove management
Initialization and finalization of Trove.

e Storage management
Creation and removal of the storage space.

e Collection management
There are functions to create or remove a collection, to lookup the collection id by the name
of the collection, iterate through all existent collections, get/set additional configuration pa-
rameters for a collection (i.e. cache size and handle range) and getting or setting extended
attributes.

e Dataspace management
Dataspaces can be created and removed. The existence and type of an object can be verified.
It can be iterated over all existent handles and handle attributes (metadata) can be get/set.
Also, there are some completion test functions to test for one, for multiple or for all unfinished
jobs within a context and a function to cancel posted operations.

e Context functions
Create or delete a context which restricts a test function to operate only on the unfinished
operations of a context.

e Key/value access
Possible operations are: to read/write one or a list of key/value pairs assigned to an object, the
removal of a pair, to iterate over the key/value pairs or only the keys, or to flush the modified
key /value pairs to disk.

e Bytestream access
Data can be read /written at a position or multiple positions at once, a bytestream can be resized
and the bytestream’s data can be flushed to disk.

Most Trove operations take the collection id and handle number as input parameters to identify a
system level file object. See [10] for detailed explanation of various functions.

3.3 Modularity

Trove is designed to support multiple methods, which are actually implementations of the inter-
face. Most trove functions are wrappers, which determine the method to use calling the function
map _ coll id to method, which maps the collection id to the method id. There are only a few
management functions that do additional work. The correct function can be resolved from method
tables by knowing the method id. Method tables store function pointers to the method’s functions.
Multiple methods are not fully supported. There is only one implementation yet, called Database plus
File (DBPF). DBPF uses multiple Berkeley databases to store keyval data and collection information.
Normal UNIX files are used to store bytestream data. By now the interface intends the selection of
only one active method handling all the requests. The selection is made during the trove initialization

17

3 An In-Depth Look at Trove

on server startup. The mapping function is only a dummy function returning zero all the time, which
is the DBPF’s method id.

3.4 Explanation of Some Client Operations

These explanations point out the sequence of operations triggered by calling a specific system interface
function. Also, the client-server communication pattern and the called functions can be used to
analyze the theoretic operation throughput. The illustrated requests reflect the state of the source
code. PVFS2 is designed to retain consistency of the file system in case that a client crashes during an
operation. Therefore, underlying sub operations of more complex requests are processed in a special
order.

Normally, a system interface functions starts a request-specific statemachine on the client. Until the
request is completed the system interface blocks. During the processing of the statemachine, several
states communicate with the pvfs2-servers by using the request protocol. Message data is normally
filled by a macro. Every message contains the current operation number, user credentials (user and
group id) and parameters depending on the operation.

Messages sent to a server initiate a statemachine, corresponding to the operation number. The
message content gets assigned to the statemachine. This allows each state to access the message data
needed.

Many operations start the nested statemachine prelude, which posts the job to the request scheduler
and checks the permissions depending on the operation type. If the request is processed, the nested
statemachine final_response creates the response message, fills in the return code and sends it back
to the client. This process is not mentioned explicitly.

The next subsections show the processing of some requests. This includes the required input param-
eters, client and server operations triggered by the request. Input and output of the operations are
given when needed to illustrate the data flow. Client states are labeled with a C and the state number.
Server statemachines are shown if a client state starts a server operation. Some actions done by the
layers are mentioned, especially trove operations. If there are functions mentioned which are invoked
during the request, they will normally have the prefix job_trove_ like job_trove_keyval_read.
These functions are part of the Job layer and invoke the Trove operation suggested by the name.
Sometimes processing will be simplified, states will be merged together or not shown when they are
not instructional for the reader. A reader eager to know the detailed internal steps should look at the
source code.

Statemachines are referred to by their name. The naming scheme is straightforward and is indicated
for a few requests.

3.4.1 Get the attributes of a file system object

This request is processed by the statemachine pvfs2 client getattr sm. It may be invoked by the
system interface function PVFS_sys_getattr or as a part of some other complex functions.

Input: credentials, Object reference and attribute mask (specifies the requested metadata
information of the object)

C1 Check whether the object reference is in the acache and the bytestream size of the object is not
requested. If that is the case, return the acache data and the request is finished.

18

3 An In-Depth Look at Trove

C2 Request from the metadata server the object’s attributes, specified in the attribute mask, by
sending a request of the type PVFS SERV GETATTR

S1 A PVFS SERV GETATTR request starts a get attr statemachine. This starts the
nested prelude sm, which does the next two steps.

S2 Get the object’s attributes using dspace_getattr

S3 Permission check (for getattr access is always allowed)

5S4 Start a nested get attr work statemachine

S5 If the object is a symlink, its target is read using keyval_read.

S6 In case the object is a metafile, read the datafile handles and the distribution with
keyval_read

S7 If the object is a directory, read the handle of the dirdata object with keyval_read and
the key number from the dirdata object with dspace_getattr. Note: For a directory data
object the key-size does correspond to the number of directory entries.

C3 Store attributes in the acache

C4 1If the logical size of a file is not required, we are done. Otherwise request the datafile size from
each data server holding a part of the file, by sending a PVFS SERV GETATTR message with
PVFS ATTR_DATA SIZE as a parameter. With the help of the distribution function the
logical size of the file can be calculated. This step consists actually of several states processed
by another statemachine. Note: Determination of the filesize is expensive, but the requests to
multiple data servers are processed in parallel.

S1 Every data server runs the same machine as invoked in step C2. To determine the size of
a datafile the fstat system call is invoked.

3.4.2 Create a file

System interface function: PVFS sys create

Input: credentials, parent directory reference, object name, attributes, distribution (can
be set, otherwise default distribution is used. The distribution has to be resolved using the distribu-
tions name)

C1 Get the parent directory’s attributes
C2 Inspection. Set the object’s group id (GID) if the parent directory has SetGID mode enabled

C3 Send an object creation request (PVFS_ SERV _CREATE) with the metadata handle range to
a random metaserver to initiate creation of a metafile

S1 Start prelude sm to insert the object into the request scheduler

S2 Create a metafile, which has it’s handle within the metadata handle range, by using
dspace create,

19

3 An In-Depth Look at Trove

C4 Request the creation of the datafiles (PVFS_SERV _CREATE). Therefore start with a random
data server number. Send a create request to each data server with the collection’s datafile
handle range. All create requests are processed parallelly.

S1 Start prelude sm to insert the object into the request scheduler

S2 Create a datafile with dspace create and use the datafile handle range as a parameter
C5 Set the metafile attributes

S1 Start the prelude statemachine to fetch attributes and verify permissions.

S2 Write the datafile handle keyval pair in conjunction with the array of created datafiles

S3 Add distribution keyval

S4 Set the attributes using dspace setattr
C6 Insert the attributes into the acache

C7 Initiate creation of a directory entry, which points to the metafile’s handle (PVFS_SERV _CRDIRENT)

S1 Read the value for the dir _ent key. If the dir _ent handle does not exist, create one (This
does not happen in the current implementation).

S2 Try to add the new directory to the dirdata object’s keyval pairs. If there is already an
entry, abort

S3 Update the timestamps of the parent object using dspace setattr

S4 Check whether there exists a key for the new directory. If not, abort

A request is not successful if the directory entry could not be added to the parent directory’s dirdata
object, or when it already exists. In this case the client tries to remove the created objects. Client
failure or crash before step C4 may leave unusable objects. However, the objects are not visible for the
user, thus consistency of the file system is guaranteed. Inaccessible objects can be detected during a file
system check. The number of datafiles is limited to 1024 (PVFS_REQ_ LIMIT DFILE COUNT).

3.4.3 Create a directory

The system interface function PVFS_sys_mkdir starts the statemachine pvfs2 client mkdir sm.
Input: credentials, parent directory object reference, directory name, attributes

C1 Fetch the parent directory’s attributes (see [3.4.1)

C2 Inspect attributes. This step modifies the GID of the object if the parent directory’s SetGID
mode is enabled

C3 Choose a random metadata server and send a PVFS SERV _MKDIR request with the input
parameters and the collections metadata handle range

20

3 An In-Depth Look at Trove

S1 Create the directory object with dspace create, which chooses a free handle within the
metadata handle range

S2 Set the attributes with dspace setattr
S3 Create the dirdata object
S4 Add the dir_ent keyval entry to the directory

C4 Request addition of the directory entry to the parent directory
(operation type PVFS SERV CRDIRENT)

S1 This request is the same as for the file creation, see step C4.

The notes for directory creation are the same as for file creation.

3.4.4 Read content of a directory

Multiple directory entries are read by calling PVFS_sys_readdir. This operation returns the directory
mtime as a version to figure out if a modification was made to the directory while the content was
read. Clients can compare the returned versions while iterating over the directory content. If the
version is different, another client has manipulated the directory. For example, a client application
can decide to re-read the directory to ensure that all entries were read.

Input: credentials, directory reference, read position (number of already read directory en-
tries), incount (signals the maximum amount of entries, which can be processed per function call)

C1 Get the directory attributes

C2 Request the directory read (PVFS_SERV_READDIR)
S1 Start prelude sm to fetch object’s attributes
S2 Verify that the object is a directory and set the response directory version
S3 Read dirdata handle

S4 Use the function keyval iterate to get the requested number of entries and their corre-
sponding handles

S5 Set the directory version and send the response

C3 Put the received handles in conjunction with their names in the ncache

3.4.5 File open/get object reference

PVFS2 does not explicitly open and close a file. To initiate I/O a client only needs the ob-
ject reference. The reference can be acquired with PVFS_sys_lookup (absolute filename) or
PVFS_sys_ref_lookup (relative filename). Starting with the root-handle, clients try to resolve
the reference of the remaining path component from the responsible metadata server. The root handle

21

3 An In-Depth Look at Trove

is part of the file system configuration, which is requested by every client on initialization. Therefore,
it is known by every client.

Metadata servers are capable to resolve multiple path components at once. This happens when the
server is responsible for the directory handles of a subsequent path. However, if a server does not
maintain a handle, the client has to request the path resolving from the metadata server responsible
for the next unresolved path component. Symbolic links are resolved by the client too. Lookup can
be expensive if every directory within the path is owned by a different metadata server. Thus a server
request for every directory is required.

C1 In case the ncache holds the filename we are done, else proceed

C2 Lookup the remaining path in the ncache. If it does not exist, request the lookup of the
remaining segments:

S1

S2

S3

S4

S5

S6

ST

S8

Start prelude sm to fetch attributes of the current unresolved path segment
Allocate memory to store handles and attributes of all resolved segments during the lookup
Get the attributes of the current path segment

If the object is not a directory, return all resolved segments and attributes to the client
and cleanup, else continue

The directories permissions are checked against the credentials
Read the dirdata object handle
Get the next segments handle in case the directory entry exists

Try to lookup the next segment in, go to step S3. If all segments are resolved, send the
response to the client

C3 Memorize all resolved handles and attributes

C4 1If the last resolved segment is a symlink, we request the attributes to get the target. In case
the attributes are not available, this indicates we have to ask a different metadata server.

C5 In case we did not finish resolving, go to C2

C6 Insert the filename with the parent into the ncache

Notes: The resolved attributes in step C3 could be inserted into the acache. Furthermore, sub-paths
could be inserted into the ncache to improve lookup for multiple objects within a common directory.

3.4.6 Delete a file system object

System interface call: PVFS sys_remove
Input: credentials, object name, parent reference

C1 Request object removal from the parent directory

22

3 An In-Depth Look at Trove

S1 Start prelude sm to fetch directory’s attributes and check permissions
52 Read dir _ent value from directory object
S3 Get the handle of the object to remove from the dirdata object
S4 Remove the keyval using keyval remove
S5 Update parent directory’s timestamps especially mtime
S6 Return the removed object’s handle to the client
C2 Get object attributes
C3 Check object type. Depending on the type do the following:
e metafile: remove datafiles parallelly using PVFS SERV _REMOVE requests
S1 start prelude sm
S2 remove datafile dspace

e directory: if the directory is not empty create the directory entry again and abort. Note:
it is not allowed to remove a non-empty directory.

C4 Remove the object with a PVFS SERV REMOVE request
S1 Start the pelude sm

S2 Check object type. In case the object is a metafile or symlink simply remove the object
with dspace remove and the work is done, else we have a directory and proceed.

S3 Read dir _ent value
S4 Read dirdata attributes

S5 If the dirdata object has keys inside, we abort the removal because the directory is not
empty. The client then creates the object’s directory entry again

S6 Remove the directory
Notes: Client failures during a directory removal after step C1 and before the processing of C3 result
in a directory which is not accessible. Therefore, all the objects inside are lost. A better way to delete
an object would be to check the directory state first. This should be done to prevent non-empty

directories to be inaccessible. After the creation, check it again to handle races between multiple
clients.

3.4.7 Flushing of a file

The PVFS_sys_flush call forces the server to synchronize metadata and bytestreams belonging to a
file with the persistent storage.

23

3 An In-Depth Look at Trove

Input: credentials, object reference
C1 Get the attributes. This includes distribution and handles of the datafiles

C2 Send a parallel request to the metadata server, responsible for the object’s metafile, and all
data servers holding file’s data.

S1 In case the object is a metafile run keyval flush, else invoke bstream flush

3.4.8 Do I/O

Depending on the access pattern, an I/O operation will usually only require a subset of the datafiles.
The server’s I/O statemachine is interlocked with the client’s I/O statemachine. There is a perfor-
mance counter that can be used to analyze the bandwidth of transferred data within a period. For
example, by the karma tool. The value of the performance counter is processed and stored by a
different state machine.

This operation can be triggered trough PVFS sys io
Input: credentials, file reference, request (can be a simple or complex data type), offset, buffer,
memory request, IO type (read or write)

C1 Get the attributes (see

C2 Find the datafiles needed for the I/O using the distribution function

C3 Send a message to every data server holding a datafile participating during IO to initiate flow
S1 Run prelude sm
S2 Send a positive acknowledgement to the client, if the object exists, else a negative

C4 Start a flow to a server if we get a positive acknowledge, else abort

S3 setup a flow calling the function job flow which does the following:
Post the flow, probe for the flow protocol which does handle the specified transfer type
and call flowproto post for that protocol.
In our case the protocol is flowproto-mulitqueue, which initializes several buffers (currently
8). It makes a setup depending on the flow’s endpoints and runs the appropriate callback
function to start the flow.
Now a flow will be established between client and server, transferring a maximum of
256KBytes data per message.
Depending on the endpoints two callback functions are selected, one for Trove, responsible
for reading or writing, and one for BMI, sending or receiving the data. In case a function’s
operation is finished, it invokes the partner function until the I/O request ends.

Concrete processing:

For a write, the source is BMI and the target is Trove. The callback trove write callback fn
announces the client’s connection to BMI. It is called again when a trove write is done
and updates the performance counter. When BMI receives data, bmi_ recv callback fn
is called, which calls trove bstream write list and the process starts from the beginning.
Currently only one buffer is used at a time.

24

3 An In-Depth Look at Trove

A read operation has Trove as source and BMI as target endpoint. Here for every
buffer bmi send callback fn is called, which initiates a communication and updates
the performance counter. This also runs trove bstream read list to read data. The
trove_read callback fn is executed when a trove read has completed. It starts a BMI
send operation for the data read. When the data is sent the BMI send callback is invoked
again until all data is transferred.

S4 If the flow completes and we did a write operation, acknowledge the success to the client.

C5 The client sticks in this state until the transmission has completed or a transfer error occurred
during the flow. Then we try do to the unprocessed I/O again: go to C3

C6 Analyze the success of the I/O operation and the amount of data transferred by using the
distribution function.

C7 For a read operation it can be necessary to get the sizes of all datafiles to detect the correct

file size read. This happens when a hole is within the requested file area. Hole means our read
request touches a logical offset which is not within a datafile but within the file. It has to be
detected if the read request is beyond the end of the file or does hit a hole. Logical filesize can
be calculated using the size of each datafile and the distribution function.
Imagine to stripe data in 50 KByte blocks between two datafiles. One datafile is 100 KByte,
holding the file data between 0-50 KByte and 100-150 KByte. The other is currently 1 KByte,
storing the logical data of 50-100 KByte. If you try to read 2 KByte from the offset 50 KByte,
you hit only the second datafile, which contains 1 KByte data by now. In order to determine
that you have read 2 KByte data (with a lot of zeros) you have to verify that the first datafile
stores data beyond the logical offset of 52 KByte.

Permissions are currently not checked during I/O. The data server does not know the file’s permissions
because they are only stored in the metafile.

There were recent changes of the I/O handling for small requests. In case the data can be piggybacked
to the I/0O initiating unexpected message for writes, or to the servers response for reads, this is done
(this type of request is called eager read or write). Therefore, flows are not necessary for small
requests. The maximum size of the unexpected message depends on the BMI method used, which
is 16 KByte for TCP. This modification was made only recently, so is not considered in this paper.
However, due to the reduced overhead, this should improve small IO requests significantly.

3.4.9 Test the availability of a file system

The availability test has a special role. It is not triggered trough a system interface call, but instead
a sequence of operations executed by the user-space tool pvfs2-ping. The test is mentioned to show
some management functions and the current way of file system verification.

C1 Check the pvfs2tab configuration file and request the file system configuration from the server
mentioned in the pvfs2tab.

C2 Send a noop request (PVFS_ SERV_MGMT NOOP) to every server in order to check the
server’s availability from the client

S1 Responds

25

3 An In-Depth Look at Trove

C3 Send a PVFS_SERV_PARAM_ FSID CHECK message to verify that all servers responsible
for the file system know the file system id.

S1 Start setparam sm

S2 Use trove _collection iterate to get the names of collections and their corresponding id.
Verify that a collection exists with that id.

C4 Verify that root handle is owned by exactly one server. Therefore, send a management setparam
message to all servers with the root-handle as parameter and check the result

S1 Start setparam sm

S2 Run dspace_ verify(root handle)

There are a few more important operations: handling of extended attributes and renaming of objects.
Also, there are several more management operations, but these operations are not discussed in this

paper.

Summary: In this chapter details about the persistency layer Trove are given. The internal repre-
sentation of logical objects is pointed out and common requests accessing these objects are illustrated.
In particular, triggered network communication and I/O operations are mentioned. The knowledge
about the behavior is used in the next chapter to estimate the expected performance.

In the next chapter some theoretical reflections are made. The theoretic results are compared with
practical experience later.

26

4 Theoretic Performance Evaluation

In this chapter some simple considerations lead to estimated upper bounds for the aggregated through-
put, which is the sum of all connected clients’ throughput. Estimated upper bounds are determined
for metadata operations, small contiguous I/O requests and large contiguous I/O requests. Therefore,
the influence of the I/O subsystem, network and CPU are discussed. These resources limit strongly
the performance of a parallel file system. However, it is not possible to get the resources’ concrete
performance behavior. As an illustrating example the performance of the I/O subsystem varies de-
pending on the access pattern and position of the hard disk’s head. As a consequence, average values
are used for the performance of the hardware to determine a non-strict upper bound. The term esti-
mated upper bound is used for this bound in order to clarify that we expect it to limit the throughput
of the parallel file system and that it may be surpassed by practical results. The term throughput is
used for either the I/O throughput or for the number of operations of a specific type which can be
done per second (operation throughput or rate). The performance evaluation in chapter [7|shows that
these simple estimated upper bounds are close to PVFS2 real-world throughput.

4.1 Resources Limiting the Performance

4.1.1 1/0O subsystem

A hard disk needs a few milliseconds to move the hard disk heads to the correct position (seek time)
and to wait until the sought block rotates by. The time needed to place the head over the correct
block is the access time. The track-to-track seek time is the time a disk drive’s head needs to
move to the adjacent track. Once the head is placed, subsequent blocks can be read or modified very
fast, which results in a higher transfer rate. Depending on the file system used, the throughput is
less than the possible transfer rate. In order to improve performance, a disk typically prefetches and
caches blocks.

Additionally, the operating system buffers a fair amount of an I/O operation. The buffer size depends
on the server memory. A write operation can be buffered efficiently so it can complete before data
is actually written to disk. A read operation can completely omit an I/O operation if the data is in
memory. Otherwise, the operation has to wait.

4.1.2 Network

A message sent over a network interconnection needs some time until it arrives. Also, some time is
needed for the message content to be given to the operating system by the network interface card.
This is the latency. Twice the latency is the round-trip-time (RTT), which is the shortest amount
of time expected to receive a response to a request. Bandwidth is the number of bits which can be
transferred in a specific time. This is a real upper bound to the throughput. Because protocols like
TCP have some overhead, the throughput is smaller than the bandwidth.

27

4 Theoretic Performance Evaluation

Latency and bandwidth depend on the used network technology. Latency is also influenced by the
distance, network topology and the connection type (copper-cable, fibre, wireless, ...).

4.1.3 CPU

CPU speed and architecture defines the time needed to process instructions. PVFS2 mostly uses
efficient data structures like huge hash tables. In comparison to the network latency and storage
subsystem’s access time, the CPU is the fastest component. Especially if we connect various clients
to one server, CPU is not expected to limit operation throughput. Assume that each request needs
the same time for processing. Then the number of requests which can be processed in a time interval
is determined by the CPU’s capabilities.

4.2 Scalability and Estimated Upper Bounds

Scalability in terms of a parallel file system’s capabilities means:
1. the required resources and provided performance grow proportional to the number of clients

2. equal increase in the number of clients and in the number of servers preserves per client through-
put

3. extra clients should increase overall performance if possible, but never decrease throughput

Requests from additional clients can saturate the network or I/O system, on the other hand a server’s
CPU can be kept busy. In the next paragraphs we will calculate estimated upper bound for the
throughput of some operations. Therefore, concrete hardware data of our cluster is used. The
analysis is kept very simple, only concerning the three bounds known from the former section.

4.2.1 Example hardware specification

The calculations use the following facts which are taken from the hardware we have on our cluster:
e Configuration: One metadata server and five data servers.

e Network architecture: Gigabit Ethernet, interconnected with copper cable linked to a switch.
Between two machines the round-trip time is 0.52ms and a throughput of 107 MByte/sec can
be achieved. Performance evaluation was done using netperf and its TCP stream and TCP
request /response tests. Netperf’s tests use a single TCP connection. A PVFS2 client-server
interconnection uses one persistent TCP connection as well. Therefore, PVFS2’s behavior is
expected to be comparable with netperf’s results. An ICMP echo reply takes on average 0.2 ms
which is much slower than netperf’s round-trip time. And the maximum bandwidth for 1
GBit/sec Ethernet is 125 MByte/sec.

e Hard disk: The specification from [2]: the disk’s transfer rate is between 29 and 56 MByte/sec,
average access time is 8.5ms, maximum access time is 15ms and the track-to-track seek is
1.1ms.

The effective read throughput of 39.8 MByte/sec respective 38.4 MByte/sec for write were

28

4 Theoretic Performance Evaluation

measured using dd and a 5 gigabyte file to eliminate kernel buffering effects. For simplicity, 40
MByte/sec is assumed.

Kernel cache behavior is tested with a 250 MByte file and results in 473 MByte/sec for an in-
memory read and 171 MByte/sec for a write.

The underlying file system is ext3 mounted with the options commit=60 and data=writeback.

e Machines: The machines are equipped with two Intel Xeon 2000 Mhz processors which have
the Hyperthreading option deactivated by the kernel’s boot parameters.

4.2.2 Metadata operations

The expected metadata performance depends on the internal processing of the request. Remember,
an operation is internally divided into multiple small steps. Normally, the steps have to be executed
in serial because later steps depend on data of the former steps.

Messages transferred and data written during a metadata request are only a few bytes, so we ignore
them. Also, we ignore instruction processing time. The network latency and the disk’s access time
have the major influence on the performance of metadata requests. Thus, only the communication
behavior and number of I/O requests necessary for an operation are considered in this paper.

The analysis of different metadata operations is quite similar, as a consequence we analyse only one
operation as representative for metadata operations which is the create operation. First, we analyse
the processing of a create operation to determine the number of I/O operations and network messages.
The realization of the file creation is described in section 3.4.21

Client side states and expensive operations are as follows:

e Cl: Assume the client already has the parent directories attributes in the acache, thus no
request is necessary.

e C3: One network message between client and server to create metafile. This initiates one I/O
operation on the server.

e C4: Datafile creation: for each data server, another network message and one I/O operation
per datafile.

e C5: Set metafile attributes and keyvals. This requires one network message resulting in 4 I/0O
operations. Three operations modify objects’ states.

e CT7: Creation of the directory entry requires a request over network and triggers up to 4 I/O
operations. The parent directory’s attributes are updated and a new keyval is added. Thus,
two modifying operations occur.

Regarding the internal operation processing a sequential file creation needs 4 times network RTT and
in the worst case up to 10 I/O operations. In case the modifying operations were synchronized and
read operations were buffered, we could save only 3 operations.

With the knowledge of the number of I/O operations and network messages an estimated upper bound
for the creation rate can be calculated based on the hardware assumptions. This will be done for a
given example in the next paragraphs.

In the worst case a file creation needs 10 I/O operations and 4 network messages. Therefore, the total
time for an operation is 10 - 8.5 ms + 4 - 0.52 ms = 86.08 ms, resulting in an average of 11.6 create
operations per second. In the worst case of the disk, 10-15ms+4-0.52 ms = 152.08 ms are needed,

29

4 Theoretic Performance Evaluation

so 6.6 creates are possible. Of course, the access time may be smaller, especially if the actuator has
to move the disk’s heads only a bit. Therefore, we use the track-to-track seek as an optimistic bound.
This results in 10- 1.1 ms +4 - 0.52 ms = 13.08 ms respective a rate of 76.5 creates per second.

Normally, the caching mechanisms implemented in the hard disk and operation system reduce the
number of I/O operations significantly. Let us assume we don’t need I/O operations at all. Then
we would only have the network latency for 4 messages which is 2.08 ms. This would result in 480.8
operations per second.

Clearly it is necessary to reduce the number of I/O operations, due to domination of the I/O access
time. However, sometimes we cannot prevent I/O. In particular, a read request for uncached data is
always necessary. For writes and modifying operations a non-syncing mode is expected to be much
faster.

Additional clients, hosted on different machines, should be able to create at the same rate until the
servers are busy or the network is saturated, which is expected to happen later. In syncing mode, one
client ends up with an average rate of 11.6 and an optimistic rate of 76.5. Multiple clients increase
the overall rate only a bit, by eliminating the network latency. Another effect which might improve
performance for multiple clients is the disk elevator algorithm, which can reorder the requests to reduce
disk access time. These effects are not considered in this paper. Because of the PVFS2 metadata
server randomization, servers share the clients requests. Thus multiple servers reduce the load to
every server. For non-syncing configuration, increasing the servers improves their disk throughput
i.e. one server average rate 11.6, two server rate 23.2 and so on.

3500
3000
2500
e}
c
8 2000 -
Y
(2]
c
K]
©
S 1500 |
Q.
e}
1000 +
network latency ——
500 - CPU limit
sync 1/0O mode, optimistic
sync I/O mode, average access time
0 | | | | | |
0 1 2 3 4 5 6

Number of clients

Figure 4.1: Estimated upper bounds for the create operation

Figure [A.1] is a diagram that shows the aggregated estimated performance for a variable number of
clients. For the CPU, a limit of 2800 creates/sec is used as an example. This is the creation rate
that is measured on our cluster. Then the CPU is busy processing the clients’ requests. The diagram
shows that it is vital to use caching mechanisms if possible.

30

4 Theoretic Performance Evaluation

For the other meta operations the graph looks similar. However, the amount of network and I/O
requests may be different. This modifies the non-synchronizing gradient and alters the y-coordinate
of the synchronizing variants.

4.2.3 Large 1/0 requests

I/O of larger amounts of data, requested by one interface call should be handled efficiently by the
file system. Due to the continuous data transfer we can ignore network latency and disk access
time. The throughput is now the limiting factor. If the server-side buffer is too small to store
the amount of data, the I/O subsystem defines the maximum measured throughput. Otherwise the
network throughput limits performance. The diagram [4.2] shows the estimated upper bounds for 5
data servers aggregated throughput. Thus, the approximate network throughput for the servers is
535 MByte/sec and for the servers’ I/O system 200 MByte/sec. The theoretically achievable network
bandwidth is 700 MByte/sec. As long as the servers have unused network capacity, additional clients
increase the overall throughput. It is assumed that data is distributed equally between the different
data servers.

800
700
600
e}
c
3
@ 500 -
o)
s
o
= 400 |
£
5
o
<
S 300 -
o
<
'_
200
100 1/0 throughput
B client network throughput
servers network throughput
servers network bandwidth limit
0 \ \ \ \ \ \
0 1 2 3 4 5 6

Number of clients

Figure 4.2: Estimated upper bounds for large I/O requests

4.2.4 Small 1/0 requests

This request type represents a mixed form, influenced by latency as well as by the components
throughput. In difference to the large I/O requests this request type invokes a system interface
function for a small amount of contiguous data. The amount of data requested is called block size.
If we do a subsequent request to the same file, PVFS2’s caching mechanisms are expected to reduce
the metadata communication. However, setup of an I/O request takes some time for the client as

31

4 Theoretic Performance Evaluation

well as for the server. The whole process needs at least round-trip time in order to piggyback the
data with the initiating message and to acknowledge a successful write. The analysis is split into two
parts. First, the estimate performance of one client is analysed and then performance of multiple
clients.

For one client The parallel file system’s achievable I/O throughput can be calculated using the
following formula, which takes the network latency as well as the network throughput into account.

s
s/n+1

t(s,l,n) =

The variable s is the block size, 1 is the latency and n is the network throughput.

Remember the 0.52ms network latency and assume we transfer 1 KByte per request. Therefore, by
using the formula we get a maximum throughput of 1.9 MByte/sec per client! This shows that it
is very inefficient to access files of a parallel filesystem with small block sizes directly. In order to
achieve a better throughput in this case additional concepts like client-side buffering have to be used.
For 1 MByte of data the network interface needs about 9.35 ms to set it on the wire. Thus, about 101.3
single messages can be sent in a second, resulting in a throughput of 101.3 MBytes/sec. However,
network protocol overhead and behavior decrease the rate.

I/O subsystem’s access time can be simply incorporated into the network latency. Assume a synchro-
nizing operation and that the server has to move the hard disk’s mechanic for every request exactly
once. Throughput for the I/O subsystem is slower than for the network, thus the disk throughput
limits overall performance. The calculated throughput is an upper bound for every parallel file sys-
tem. The diagram [£.3] shows the expected throughput depending on the block size. The figures [4.4]
and [£.5] are subdiagrams displaying the throughput for smaller block sizes.

120

100 -

Throughput in MByte/second

20 ’> network throughput ———
network latency + network throughput ——

network latency + network throughput + average 1/0O access time ——

network latency +‘network throughput + ayerage 1/0 access time ‘+ 1/O throughput ———

0 2000 4000 6000 8000 10000

Block size in KByte

Figure 4.3: Estimated upper bounds for one client using small I/O requests with a varying block size
between 0 and 10 MByte

32

4 Theoretic Performance Evaluation

140
120 + —
100 + —
e}
c
o
[&]
()
£
5‘;’\ 80 |-
)
=
£
§_ 60 |-
<
()}
>
o
£
40 +
20 network bandwidth limit ——
network throughput ——
network latency + network throughput ———
network latency + network throughput + average 1/0 access time ——
0 | | | | |
0 100 200 300 400 500

Block size in KByte

Figure 4.4: Estimated upper bounds for one client using small I/O requests with a varying block size
between 0 and 512 KByte

40

35 |- B

30 |- B

25 —

20 |- —

Throughput in MByte/second

10 - .

network latency + network throughput ———
network latency + network throughput + average 1/0 access time

0 \ \ \ \ \
0 5 10 15 20 25 30

Block size in KByte

Figure 4.5: Estimated upper bounds for one client using small I/O requests with a varying block size
between (0 and 32 KByte

33

4 Theoretic Performance Evaluation

For multiple clients In that case the calculation of the overall throughput is more complicated.

If the server caches data efficiently and due to the serial request processing by the client, the network
latency remains the bottleneck. This effect can be seen for 1 KByte requests in figure [£.6] More
clients increase the overall throughput, due to parallel execution on the server. However, it is hard
to analyze the I/O access pattern in this case as it depends on the servers’ workflow. Therefore, this
analysis is omitted in this paper.

The servers I/O limits for doing only 1 KByte requests are also shown in the diagram. A clever non-
syncing implementation can combine several write operations into one lowlevel I/O request by writing
all data at once and also prefetch more data in the read case. This strategy is used for example in
ROMIO and is known as data-sieving. Additionally, the linux kernel buffers files, thus the I/O limits
shown won’t yield in the real world, but show the necessity of such caching methods.

A larger request size using multiple clients leads to saturation of either the server’s I/O subsystem,
the network interface card or the CPU.

50

45 - -

40 L .

35 |- —

30 |- -

25 |- -

20 |- —

Throughput in MByte/second

15 - -

client network throughput
10 - optimistic I/O throughput -
average I/O throughput

0 \ \ \ \
5 10 15 20 25

Number of clients

Figure 4.6: Estimated upper bounds for multiple clients using 1 KByte I/O requests

Summary: Network architecture, I/O subsystem and CPU provide limits for a parallel application,
especially for a parallel file system. Network latency and disk latency restrict small operations,
whereas throughput is the limiting factor for large I/O requests. A machine’s CPU limits the number
of requests processed in parallel. In order to facilitate a qualitative analysis of practical data, it is
important to take these estimated upper bounds into account.

The next chapter introduces modifications to the PVFS2 source code that result in two new Trove
modules.

34

5 Software Design

This chapter discusses at first the phases of the project and then introduces the new components that
are designed, implemented and evaluated.

5.1 Project Phases

The idea to create a upper bound for PVFS2’s performance by using a Trove module emerged. With
such a bound bottlenecks of the architecture can be found. Furthermore, it allows to evaluate the
efficiency of the persistency layer.

The new module should coexist with the current Trove module. Therefore, the Troves module support
is enhanced. This divides the trove layer into storage management method and collection method.
The storage method manages the collections including their attributes. The collection method takes
care of the persistent representation of the file system objects and may be selected on the collection’s
creation.

A new method is implemented, the Trove Analyzation Stub (TAS), which uses queues as basic data
structure. This method should provide a upper bound for specific metadata operations. A bench-
marking of create operation with MPI points out that creation slows down. This happened because
the object’s directory entry is checked before the object is created, thus all keyval elements were
compared. In order to improve overall throughput for the test cases several configuration options
were added. However, this breaks the correct handling of metadata.

TAS gets adapted to use red-black-trees as underlying data structure. This implementation stores
metadata correct. A performance comparison between the two basic data structures shows that
the red-black-tree is not worse than the optimized queue implementation which does not handle all
metadata correct. Hence, the red-black-tree version is used for further analysis.

A benchmarking of the file creation points out that the creation of more than 10240 files per clients
dramatically decreases the performance. In order to eliminate the influence of PVFS2’s ADIO driver
and ROMIO pvfs2-bench was programmed. This is a program which uses the system interface to
benchmark the creation, deletion and I/O throughput. Further debugging shows a problem with the
clients acache implementation. The acache tries to free entries during creation if it is full. This is
not possible because the cached object’s timeout is not reached. Due to the slowdown a new acache
implementation was done. It uses red-black-trees and least-recently-used as crowding out strategy.
Also, this should figure out whether the red-black-tree overhead does impact the performance. This
was not the case.

A reduction of the cache-timeout in the file system configuration also prevents the bad results.

The I/O throughput is benchmarked for some test cases. It shows that the achieved I/O throughput
is close to the TAS results. On the other hand the metadata throughput of DBPF on tmpfs is only
one tenth of TAS throughput and decreases with additional files in the same directory.

A DBPF code inspection point out multiple possible reasons:

35

5 Software Design

e Each system level object has a own database for keyval entries, which has to be opened and
closed.

e Operations are enqueued and processed from another thread.

e There is additional overhead of the handle management. A handle manager maintains the
handles of the removed objects to guarantee the handle is not reused until the recycle time
passed.

Currently, the C files of DBPF are 8000 lines of code and share some code fragments with other
PVFS2 components. This makes it hard to figure out the reasons of the slow down.

In order to analyse different strategies the alternative implementation ALT is created, which stores
metadata persistent like DBPF. The new module is a simple research prototype, which is used for
evaluation of different approaches.

During the implementation some bugs are revealed and feedback is given to the developers concerning
several issues.

The performance evaluation of the different modules is presented in the next chapter.

5.2 Decisions

The next few paragraphs summarize the crucial decisions that were made to push the project.

e Division of Trove into storage and collection method
It is not possible for different methods to manage the same storage space. Collection man-
agement does not influence the servers run-time efficiency, but requires to implement some
functions. Separation makes it possible to implement a new collection method, by using the
existing DBPF storage management. This reduces the programmers effort.

e Implementation of a correct metadata handling
Section [3.4] shows that most operations either check the result of a request afterwards or operate
on manipulated objects. Thus, it is necessary to memorize the manipulation of the dataspace
for some time. Also complex benchmarking application may access the metadata randomly.
However, the method’s internal data structures should handle requests efficiently.

e Focus to analyze MPI
The analyzation is focused on the MPI layer. The VFS integration is not examined, because
PVFS2 is especially developed for MPI use. Also performance is important for parallel scientific
applications and there are less layers in between.

e Benchmarking
The efficiencies of the new approaches are compared with different DBPF configurations, namely
syncing and non-syncing option and DBPF using tmpfs as storage, which is a linux file system
for main memory. Tmpfs efficiency is a good bound for every underlying I/O subsystem, hence
shows bottlenecks of the DBPF implementation.

36

5 Software Design

5.3 Enhancement of Trove Module Support

In order to allow the selection of a Trove method for each collection the following modifications are
made:

e A new file system configuration keyword is introduced: TroveModule, which specifies the name
of the method to use for the collection. Internally, the method name is converted to the method
id.

e During the initialization with trove initialization, the method id sets the storage module which
a global variable. Instead of using the method for all requests, this module will be used only to
manage collection information.

e The storage method support is unfinished. The modules implemented during this work are not
able to administrate collections. The storage administration is done by DBPF.

e The collection method can be selected during creation (trove collection create) and has to
be saved by the storage method. DBPF is adapted to save the collection’s method id in the
collection attribute database.

e Extension of the trove interface with a new function get collection method id which is ex-
pected to return the id of the responsible method from the storage method.

e Implementation of the function map coll id to method:
This function invokes the storage method’s get collection method id function and caches the
result in a linked list to reduce overhead. This reflects that normally only a few file systems are
hosted, which is enough for benchmarking.

5.4 Trove Analyzation Stub (TAS)

5.4.1 Overview

The Trove Analyzation Stub is written to provide a fast in-memory file system representation. Several
compile-time options have been added to control the internal behavior in order to design a fast
realization. Basic data structures are double linked lists and red-black-trees. During compile time
one of the data structures can be chosen to administrate the keyval pairs and dataspace objects.
During the server shutdown metadata is saved on disk in a simple text based file format to allow
offline inspection and manipulation. The metadata is loaded on server startup to preserve the state
of the file system. Furthermore, the approximate memory usage is printed on shutdown.

Only the interface methods needed to handle requests used during the benchmarking are implemented.
These routines provide a basic file system support for most operations. TAS fakes bytestream I/0
operations and does no real I/O. Instead for reads the buffer is returned unmodified and for writes
the transmitted data is discarded.

For one or the other reason the following functions were not implemented:

e bstream read at, bstream write at, keyval iterate keys...
PVFS2 upper layers do not use all low-level functions specified. These unused routines are not

37

5 Software Design

implemented.

e Collection management
Collection management is done by DBPF.

e Context and test completion functions
All TAS operations complete immediately. Also the functions are not needed when the imple-
mentation has thread support.

e Manipulation of extended attributes
Extended attributes are not supported by TAS. However, they could be easily integrated.

e Flushing of files
There is no bytestream representation, thus flushing is not necessary.

5.4.2 Dataspace objects

Each dataspace object is stored in a structure holding the object’s handle, collection id, bytestream
size, number of keyval pairs, the objects attributes and a pointer to the objects key value pairs. The
global variable handleCache points to the data structure holding all dataspace objects.

Depending on the selected data structure during comile time, keyval pairs and dataspace objects
are linked in an unsorted queue or are maintained in a red-black-tree. Lookup of an object with its
objects reference is the most common operation, hence should be fast. Also searching the value for
an object key happens quite often.

If there exist n objects, the worst case lookup of a object is O(n) for the queue and O(log(n)) for
the red-black-tree. Clearly, using the queue is only useful for benchmarking if the tester knows that
the worst case is avoided during the tests. Then, the tests can benefit from the lower administration
overhead of the queue. Detailed implementation depends on the selected data structure.

Double linked list The double linked list has some optimizations that can be used to guarantee a
worst case time, especially for the create operation.

e Least-recently used objects have an early position in the queue, to reduce lookup time for
subsequent usage. This is realized by pushing the object to the lists head during a lookup. For
example an object creation benchmark which does not access created elements later, benefits a
lot from this strategy.

Newly created keyvals are inserted at the head of the objects keyval pair list.

Keys are first compared using a hash function to minimize the number of string comparisons.

Modification of a keyval does not overwrite or lookup the existent keyval, instead a new keyval
pair is added.

e The maximum number of search iterations during a keyval lookup can be set to guarantee the
running time. However, keyvals which are at the queue’s end would never found. This is a big
drawback, for example files in larger directories get inaccessible, because their handle cannot be
found.

38

5 Software Design

An evaluation of the queue and the red-black-tree showed that even for the creation of over 50000
files the red-black-tree is very close to the queue’s implementation. Thus, the red-black-tree is used
for further benchmarking.

Red-black-tree A red-black-tree is a nearly-balanced tree that uses an extra color attribute per node
to maintain balance. No leaf is more than twice as far from the root as any other. Insertion, lookup
and removal of objects can be done with a complexity of O(log(n)).

Red-black-trees need a comparison function being able to decide which of two objects is smaller or
if they are the same object. The function chosen for the dataspace objects defines that an object is
smaller if the handle is smaller or the handles are equal but the collection id is smaller. Key/value
pairs are sorted by length lexicographic order.

Keyval iteration is done using a additional double linked list. This operation is very expensive in
TAS, so it should be avoided for benchmarking. Normally, the iteration is used only for directory
listing. An interface modification can improve the situation; however it would be incompatible to the
current handling of DBPF and would require modifications of some statemachines. This is described
in detail, later.

Handle management Handle management ensures that handles are not reused for a specific time
to prevent operations on wrong objects. It is mainly used during dataspace creation and removal. It
can be used to verify an object’s existence during other operations, as well.

TAS never reuses handles. It simply increments the handle number each time a new handle is
requested and does not check an overflow. Once an overflow occurs the file system is invalid. But
this should only happen for long running servers.

5.4.3 Detailed function description

The next paragraphs clarify the implementation of the functions used during benchmark. This should
point out the methods’ overhead.

tas_collection setinfo This function is invoked on startup to set multiple parameters. When a
collection’s handle range is set, read all metadata from the persistent storage and set the values of
the next metadata and the next datafile correct.

tas bstream read list This function gets an array of memory regions and an array of file regions,
which should be read into the memory regions. TAS only summarizes the input stream size and sets
the number of bytes read to this value. This simulates reading and should be a real upper bound to
all read operations. Complexity is O(1).

tas_bstream write list Similar to the read function. Additionally, the datafile is searched in the
red-black-tree and the object’s stream size is adapted in case we wrote data to the end of the file.
Operation complexity for the tree is O(log(n)).

39

5 Software Design

tas dspace create Take the next handle number for the new object depending on the type (meta-
data or datafile). In case a fixed handle is selected, set the next usable handle number to the fixed
number + 1. Thus, slip handles in between. Normally, this is only used to enforce the number of the
root handle. Insert the newly created object into the data structure (i.e. red-black-tree or queue).
Therefore, the operation complexity is O(log(n)).

tas keyval write First, the object is searched within the data structure by the object’s reference.
Then, the key is searched within the keyval pairs. If it does not exist, it is inserted, else it is modified.
Overall complexity is O(log(n)).

Other operations Most operations work in a similar fashion: lookup of the object in the handle
cache data structure, search for the keyval object and modify data if necessary. The complexity for
keyval read, keyval remove, dspace remove and so on is O(log(n)).

5.5 ALTernative Implementation (ALT)

5.5.1 Overview

The aim of the ALTernative method is to provide a simple implementation for investigating the
impact of different strategies. It utilizes Berkeley DB with binary trees to store metadata and UNIX
files for bytestreams. Thus, it provides a persistent representation of the file system like DBPF.
Metadata requests are processed immediately while stream I/O is executed by additional threads.
Caching is not done explicitly, instead the mature Berkeley DB does this job.

5.5.2 Dataspace objects

A single database contains all objects and takes an object’s reference as a key. A key-lookup returns
the common object attributes, including the number of keyval pairs. Another database stores all
keyval pairs and uses the object reference and the pair’s key as database key.

Basic support for a three-keyval database version is implemented, which maintains separate databases
for the metafile’s keys datafile handles and metafile dist. Keyval names are defined by specific
databases, thus they need not to be stored on disk. Hence, outsourcing can reduce the required disk
space. However, a create request analysis shows that this decreases overall throughput a bit. On the
other hand the source code gets complicated.

Keyval iteration has the same problem as in TAS. Therefore, the issue is discussed in more detail in
the following section.

Handle management The free handle-ranges are maintained completely in memory in a red-black-
tree. During startup used handles are removed from the available pool. There is no handle reuse
timer, instead handles are free for reuse immediately. The memory usage of this solution depends on
the amount of disjunct ranges. Thus, it is a drawback when there are many small ranges.

40

5 Software Design

5.5.3 Detailed function description

alt _collection _setinfo If the function is invoked to set the collection handle range, the handle-
management-range is initialized. An iteration over all persistent objects removes their handles from
the available ones.

alt bstream resize, alt bstream read list, alt bstream write list Each function stores all
operation parameters in a structure and enqueues the operation in a double linked list which is shared
with the threads. A thread ready to process removes the first entry. The queue is protected by a
mutex. Note that the thread does not need any metadata of the object it is operating on. Each
bytestream is stored in one file which gets the name of the object handle. For each I1/O access the file
is opened again. Then, the I/O operation is performed and the file is closed. Thus, this realization is
very simple.

keyval write Lookup of the key. If it does not exist, read the object attribute, increment the keyval
count and write the attributes. Store the keyval pair.

Alternatively, a key’s existence could be checked by using the Berkeley DB’s put operation flag
DB _NOOVERWRITE.

keyval remove First, try to remove the keyval pair. Then, read the object attributes, decrement
the number of keyvals and write the attributes again.

dspace create Get an unused handle number from the handle manager. This is supported in linear
runtime, except in case the handle number is enforced. Put the object attributes into the database.

Other operations Perform the necessary metadata operations directly.

5.6 Keyval iteration

Currently, the Trove keyval iteration takes the position as a parameter. This is the number of already
processed pairs. In case that for each object a new database holding the keyvals is created, this makes
sense. Berkeley DB can maintain a database’s record numbers automatically.

The records of one object are arranged in ALT’s database in a sequential way to allow efficient keyval
iteration once the current key is located. But, it is necessary to find the object’s position. Therefore,
the iteration starts from the first keyval pair and continues reading until the number of already
processed entries is read. Hence, a pair might be read multiple times. This is expensive, of course.
Berkeley’s binary tree implementation (BTree) can support record numbers. However, overall write
performance suffers, thus this should be avoided.

Suggestion Lookup using the concrete key instead of the number is supported efficiently. It is possi-
ble to send the last processed key instead of the current position. However, the interface modification
require a lot of code changes. Furthermore, the consistence of directory listing would be given, even
if another client manipulates the directory.

Consider the following directory states and solutions for the new interface:

41

5 Software Design

e directory is deleted: lookup aborts

e another directory entry is added: if the entry is inserted within the already processed
entries, we can safely continue the iteration. The client can read the directory’s timestamps
after the iteration in order to ensure that the directory’s entries did not change.

In case the insertion takes place beyond the already read entries, we simply continue the itera-
tion. This will hit the new entry during processing.

e a directory entry is removed: if the entry was not read yet, the listing is still valid. Other-
wise, the client will detect the wrong entry either when it tries to access the non-existent object
or by checking the directory’s timestamp on iteration completion

e the iteration’s current object was deleted: Berkeley DB supports a search flag for BTree
access, that moves the cursor to the first database record whose key is greater or equal to the
specified key. [7]

Summary: This section gives a detailed discussion of the new modules that are developed within
the framework of this thesis. TAS is a module working without any I/O operation. It is especially
constructed to support a fast access to common metadata operations.

The ALT module uses Berkeley DB and UNIX files to store all file system objects. This are the same
underlying mechanisms as used by DBPF. I/O is handled in a straightforward way. The next chapter
introduces the programs that will be used for benchmarking.

42

6 Benchmark Programs

There are many benchmarks for file systems, which were approved by the community, for example
bonnie++. However, for parallel file systems no such common benchmark suite exists. There are sev-
eral programs which attempt to fill the gap, i.e. the Effective I/O Bandwidth Benchmark (b_eff io)
or the NASA Parallel Benchmarks or Metabenchﬂ These approaches are not suited to measure the
whole range of interesting performance characteristics. Instead, the benchmarks make assumptions
of access patterns used from the clients. Thus, a good result does not necessarily mean that a file
system is a good choice for a given application.

Often, a scientific application is used directly to measure the I/O system’s efficiency. However, the
overall performance of an application depends much from the cluster configuration.

Therefore, I decided to use simple benchmarks suited for PVFS2 in order to measure points of special
interests. These are I/O requests using a small data-amount (block-size) per access, large sequential
I/O requests and the file creation operation as representative for metadata operations. For each data
point the benchmarks run a program with a specific input. The next sections explain the programs’
operating modes in order to assess the benchmarking results.

6.1 mpi-io-test

This small program is part of the PVFS2 CVS version and its purpose is to test the MPI-I/O interface.
The program can be used for all ADIO modules, not only PVFS2.

In a single run each client accesses a a specified region in an MPI file. All clients use the same file and
the regions are non-overlapping. However, clients can also be configured to use overlapping regions
inside the file. Data is not synchronized during write.

Each processes of a program spawned with MPI gets a unique number assigned which is called
the rank. The rank can be used in the program in order to select a processes behavior and tasks
depending on its number. It is used in mpi-io-test to add an offset to the position of the I/O access
to guarantee that each process accesses its correct file region.

There are two important input parameters: the block size defines the amount of data which is
accessed per system interface function call and the iteration count which is the number of subsequent
I/O operations.

Client program:

1. For i=0 to (iteration count - 1):
Seek to the next write position which is calculated as follows
position = i x number of processes x block _size 4+ rank x block _size
Write an amount of data per MPI I/O call equal to the selected block size

2. Wait until all processes finished writing

! A parallelized version of the postmark benchmark

43

6 Benchmark Programs

3. For i=0 to (iteration count -1):
Seek to the next read position which is calculated with the same formula as for writes
Read an amount of data per MPI I/O call equal to the specified block size

4. Wait until all processes completed, calculate operations statistics including I/O throughput

6.2 mpi-md-more

This is a variant of mpi-md-test, which is also part of the PVFS2 CVS version. It is a simple program
which measures the throughput of the create operation for a specified number of files. Additionally,
the file resize operation can be benchmarked. The mpi-md-test is modified such that each processes
works on a disjunct set of files.

Client program:

1. For i=1 to number of files:
create a file in the test directory the name of which consists of the rank and i.

2. Wait for all processes to complete and calculate statistics

6.3 pvfs2-bench

The pvfs2-bench utility was developed in this thesis to measure operation throughput of the PVFS2
system interface on one client. Depending on the test selected, the system interface’s file creation
or deletion rate, as well as the contiguous read/write performance can be determined. In order to
detect throughput changes during operations, the program can print the throughput every second.
During an iteration only one system interface function is invoked. Hence, the client spends most time
in processing requests without additional overhead.

Client program for 1/O operation mode:

1. For i=1 to number of iterations:
do I/O with the selected block size and increment next operation’s file position

2. Calculate statistics

Client program for file creation mode:

1. For i=1 to number of files:
create a file in the test directory and append the iteration number i to the filename

2. Calculate statistics

44

6 Benchmark Programs

Client program for file deletion mode: Similar to the algorithm for file creation. However, the
iteration decrements the current file number instead of increasing it. In conjunction with a earlier
run of the creation mode this allows to benefit from the server’s internal caching mechanisms.

The utility supports additional tests, which should point out the benefit of client and server caching
mechanisms.

Therefore, in case of metadata in each iteration the file is first created and then deleted. For I/0
operations, data of one block is written and then read again.

Summary: There exists no general purpose benchmark for parallel file systems. Three simple pro-
grams are introduced, which measure PVFS2’s throughput of either data I/O or metadata. In the
next chapter these programs are run multiple times with different configurations in order to form
benchmarks for I/O and metadata.

45

7 Evaluation

In this chapter benchmarks of the different Trove modules are evaluated.

Mainly, the behavior of PVFS2 is analyzed for the following three cases: Small contiguous I/0
requests, large contiguous I/0 requests, and file creation throughput.

Most benchmarks are performed on the research group’s cluster. For hardware details refer to section
423} Thanks to Rob Ross I got access to the Chiba City cluster hosted at the Argonne National
Laboratory. The Chiba cluster is used to verify the results for a larger scale of nodes.

For each data point the appropriate benchmark program was run three times. The results are dis-
played in diagrams with error bars marking the minimum and maximum throughput of a run. If the
benchmark uses multiple clients. Then, the throughput of all clients is aggregated.

To ensure a similar environment for all tests the PVFS2 servers got restarted and the PVFS2 storage
space was recreated for each run.

The different lines of the diagrams refer to the Trove modules, i.e. TAS, ALT, DBPF and additional
configuration options. A tmpfs extension in the name means the test was run on the linux kernel’s in-
memory file system, no-sync refers to the non-syncing configuration of DBPF. In diagrams comparing
MPI and the system interface, sysint refers to a test done with pvfs2-bench.

Configurations Three different client-server configurations are used on the research group’s clus-
ter:

e One metadata server and one data server There is only one server, the clients are
distributed over 7 different machines for MPI. Clients and server are disjunct.

e One metadata server and five data servers The clients are distributed on the server
machines in a round robin fashion, beginning with the metadata server. One server acts as
both, metadata and data server.

e Five metadata servers and five data servers Each machine is configured to act as metadata
and data server. The clients are distributed on the same machines as the servers in a round
robin fashion.

The detailed PVFS2 file system configuration can be found in the Appendix. For an I/O test the
HandleRecycleTime is set to 5000, which is larger than the longest run. Hence, there are no additional
metadata operations necessary. The simple stripe distribution function is used, which stripes file data
over all data servers in 64 KByte chunks.

46

7 Evaluation

7.1 Small Contiguous I/O Requests

In this benchmark the clients access a 100 MByte file with different block sizes between 1 KByte and
10 MByte, which is the amount of data accessed per user-level-interface call. It is expected that the
performance varies only a bit for a small difference in block size. Therefore, up to 2048 KByte the
range is sampled with a block size equal to a power of 2 and then 5120 KByte and 10240 KByte are
sampled. The mpi-io-test and pvfs2-bench are run for each block size with a appropriate iteration
count.

The analysis of small contiguous I/O requests is structured as follows:

e Results for one metadata server and one data server
First, the performance of the system interface for one client is determined with pvfs2-bench and
then compared with the estimated upper bounds.
Then, the I/O throughput of the MPI-I/O interface is compared with the throughput of the
system interface in order to show the overhead of the MPI-I/O layer.
Performance is measured for 5 clients using a variable block size, too. This performance can be
used for comparison with later results. Also 5 clients are selected for this test because client
and servers of the other configurations share the same machine and there are 5 machines in this
case, each serving one client and one server.
In addition, multiple clients are run with MPI to determine the server’s behavior and maximum
throughput under a high load.

e Results for one metadata server and five data servers
With this configuration the same MPI tests are run as for only one data server. This allows a
comparison of the results.

e Comparison of the throughput for one and five data servers
The results for one and five data servers are compared.

e Access of large files with small contiguous I/O requests
It turned out that the 100 MByte files are cached very well by the linux kernel. In order to

reduce the influence of caching mechanisms this test case accesses a very large file to show the
behavior of enforced I/O operations.

7.1.1 One metadata and one data server

At first, the results of the system interface are presented and then, the results achieved with MPI.

System interface

The I/O throughput of the system interface is measured for one client and displayed in three diagrams.
The first diagram shows the throughput of the whole range and two others show the performance for
small block sizes up to 500 KByte.

In the following the observations are presented. They are always placed before the figures.

47

7 Evaluation

Observations:

e The kernel caching mechanisms work well for this test set. Therefore the I/O is not limited by
the hard disk’s capabilities (see figures 7.1 - 7.3).

e There is a massive cut in the read performance for 128 KByte. The read throughput does not
recover from this cut (see figure 7.2). All Trove modules perform similar, thus the I/O subsystem
is not the bottleneck. This issue is discussed in detail later.

e Up to 64 KByte the read performance is better than the write performance (see figures 7.2 and
7.3).

e Read performance of different implementations are close together (see figures 7.1 - 7.3).

e For writes TAS is a bit faster than the other modules (see figures 7.1 - 7.3), hence in the
architecture is room for improvement in this case. This might be achieved for example by
combining several requests into one larger request. Performance of read requests is similar for
all modules.

e The straightforward ALT I/O implementation is not worse than DBPF (see figures 7.1 - 7.3).

120

100

80

60

Throughput in MByte/second

TAS-Read +—+—
ALT-Read +—<— |
DBPF-Read +——
TAS-Write +—&—
ALT-Write

DBPF-Write +—o—1
|

| | |
0 2000 4000 6000 8000 10000

Block size in KByte

Figure 7.1: System interface I/O throughput for read and write using different block sizes

48

7 Evaluation

60

Throughput in MByte/second

TAS-Read +—+—
ALT-Read +—<—1

DBPF-Read +——
| | | | |

100 200 300 400 500
Block size in KByte

Figure 7.2: System interface read throughput using different small block sizes (data extracted from
figure 7.1)

100

80

70

50 ~

40 |

Throughput in MByte/second

20

10 |4 TAS-Write —+— _|
F ALT-Write +—<—
b DBPF-Write +——x—1
o & | | | | |
0 100 200 300 400 500
Block size in KByte

Figure 7.3: System interface write throughput using different block sizes (data extracted from figure
7.1)

49

7 Evaluation

Comparison of the measured throughput and the estimated upper bounds

The write performance is close to the network bound provided by netperf’s results for TCP-latency
and throughput. In the later metadata section is shown that the network latency derived from
netperf’s test is a bit too high. This can be seen for small block sizes and TAS read, too. However,
this bound is expected to be close to the real throughput.

Up to 64 KByte read is even better. However, the performance drops for 128 KByte. Here is still
investigation necessary, the reason might be the the flow-protocol or the handling of holes, which is
only necessary for read requests. These are the main differences for read and write. Refer to for
a description about the internal processing of I/O requests.

120

100

80

60

Throughput in MByte/second

40 -
20 |- -
/ network latency + network throughput
ko TAS-Read +——+—
E TAS-Write +——<—
0 t ! ! ! ! !

0 2000 4000 6000 8000 10000
Block size in KByte

Figure 7.4: Comparison of the system interface I/O throughput for read and write and the estimated
upper bounds using different block sizes

20

7 Evaluation

100

:
60 |- 7
50 7

\
\
40 b \ 4
\\
\

Throughput in MByte/second

\
\\
30 | \ -

20 |/ \ -

10 Lt \E._ network latency + network throughput J
TAS-Read +—+—1

? TAS-Write +—=<—1
0 | | | | |
0 100 200 300 400 500

Block size in KByte

Figure 7.5: Comparison of the system interface I/O throughput for read and write and the estimated
upper bounds using different small block sizes (data extracted from figure 7.4)

MPI-1/0 interface

First, the read and write performance for one client using either the system interface or the MPI
interface is compared. Then, the aggregated throughput for 5 clients accessing a file is presented. This
points out the servers behavior dealing with multiple clients, each hosted on a dedicated machine.
Furthermore, this figure is used for comparison with 5 data servers later. In addition, the I/O
throughput for a variable client number between 1 and 50 is measured for a block size of 32 KBytes.
The block size is chosen larger than 16 KBytes, which is the maximum amount of data able to be
piggy packed to the initial request message for TCP. It is chosen smaller than 128 KBytes on which
the performance drops for reads.

Observations:

e Due to the additional layer MPI lose a lot of performance for write operations (see figure 7.7).
This does only influence the client. Hence, overall throughput for multiple clients is expected to
be similar for both userlevel-interfaces. However, the system interface and MPI interface stick
close together for read operations (see figure 7.6).

e The read performance cut for a block size of 128 KByte is still visible for 5 clients (see figures
7.8 and 7.9).

e For small block sizes and 5 clients the read throughput grows faster than the write throughput
(see figures 7.9 and 7.11). For example the throughput of 100 MByte/sec is achieved for reads
with a block size of 64 KByte and for writes with 128 KBytes.

e Starting with a block size of 1024 KByte for I/O access about 120 MByte/sec of throughput
is measured for TAS and 5 clients (see figures 7.8 and 7.10). This throughput is close to the
servers network bandwidth limit of 125 MByte/sec. The block size is very similar for read and
write operations.

o1

7 Evaluation

e Throughput using a variable client count stabilizes for writes between 80 and 90 MByte/sec
while it oscillates for reads (see figures 7.13 and 7.14). Measuring the server’s load during the
test shows that the server is busy processing the requests.

90

80

70

60

50

40 if

Throughput in MByte/second

TAS-SYSINT-Read +——+—
10 ¥ TAS-MPI-Read +——<— —
H DBPF-SYSINT-Read +———

DBPF-MPI-Read +—3—
o't | | | | |
0 2000 4000 6000 8000 10000

Block size in KByte

Figure 7.6: Comparison of MPI and System interface read throughput for 1 client using different block
sizes

120

100 -

80

60

\
I
.
L /
—

40

Throughput in MByte/second

TAS-SYSINT-Write —+—
TAS-MPI-Write +—x—
DBPF-SYSINT-Write +—%—
PBPF—MPI—Write >—EI—‘<

! ! !
2000 4000 6000 8000 10000

Block size in KByte

Figure 7.7: Comparison of MPI and System interface write throughput for 1 client using different
block sizes

02

7 Evaluation

120
i
100 I
2
S 80 -
(5]
[}
2
o]
s
m
= 60 -
£
5
=3 |
<
(=2}
3
2 40 -
[
20 -
TAS-Read +——+—
ALT-Read +—<—
DBPF-Read +——%—
0 ! ! ! ! !
0 2000 4000 6000 8000 10000
Block size in KByte
Figure 7.8: Read throughput for 5 clients using different block sizes
120

100

80

60

40

Throughput in MByte/second

20

TAS-Read +—+—

ALT-Read +——<—
DBPF-Read —x—
|

0 ! ! ! !
0 100 200 300 400 500

Block size in KByte

Figure 7.9: Read throughput for 5 clients using different small block sizes (data extracted from figure
7.8)

93

7 Evaluation

120

100

80 H

60

Throughput in MByte/second

20 | -
k TAS-Write +——+—1
9 ALT-Write +——=<—
3 DBPF-Write +——%—1

|

SR

0 ! ! ! !
0 2000 4000 6000 8000 10000
Block size in KByte
Figure 7.10: Write throughput for 5 clients using different block sizes
120
100
2
S 80
(5]
[}
2
g
>
m
= 60
=
5
Q.
<
[=2]
3
2 40
=
20
TAS-Write ——+—1
ALT-Write +——<—
DBPF-Write +——%—1
0 ! ! ! ! !

0 100 200 300 400 500
Block size in KByte

Figure 7.11: Write throughput for 5 clients using different small block sizes (data extracted from figure
7.10)

54

Throughput in MByte/second

Throughput in MByte/second

7 Evaluation

100

DBPF-Write +——+— |
ALT-Write +——<—

TAS-Write +——%—
| |

20 30
Number of clients

40 50

Figure 7.12: Write throughput for a variable client number and 32 KByte block size

160

140

120 B -
AT
100] A
80 -
60 -
40 =
DBPF-Read —+—
ALT-Read +———
TAS-Read +——+—
20 | | | | |

10 20 30

Number of clients

Figure 7.13: Read throughput for a variable client number

95

40 50

and 32 KByte block size

7 Evaluation

160
140 + i
120 =
o
c
I}
Q
@
Q
€ 100 - .
i)
=
£ K X == % ~f=x x
‘g 80 L ”/X / %l\%f %’X"%—"X&%/Y\P—xﬂf xX"’\%X x|
g /
=}
°
£
60 - -
40 |4/ 4
K TAS-Read +——+—1
TAS-Write +——<—
20 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.14: Comparison of read and write for a variable client number and 32 KByte block size (data
extracted from figures 7.12 and 7.13)

7.1.2 One metadata and five data server

For this configuration only the MPI interface is analyzed. A comparison between one and five data
servers is made in the next subsection.

Observations:

e The performance cut for read now shifts to 512 KBytes, which is exactly the data server count
times 128 KByte (see figures 7.15, 7.16, 7.19 and 7.20). Remember, the requests to different
data servers are processed in parallel.

e Throughput of ALT and DBPF is close to the bound provided by TAS in all cases (see figures
7.15 - 7.24). Thus, the aggregated I/O throughput matches the network throughput.

e For writes there are more than 130 MByte/sec measured which is higher than the client’s network
bandwidth (see figure 7.17). The clients benefit from the locality of a data server.

e Read performance is better than write performance for small block sizes and worse for large
block sizes (see figures 7.15 - 7.22).

e The maximum aggregated network throughput of 5 network cards is not achieved for 5 clients
and servers. A maximum throughput of 420 MByte/sec is measured for writes (see figures 7.19
and 7.21) .

e For a variable client number the performance is similar for read and write (see figure 7.16).

e Throughput decreases a bit for a client number which is divisible by 5 (see figures 7.23 - 7.25).

It shows that the time needed to finish the read or write of a client’s file area varies a lot (up to
40%) in this case, depending on the rank of the client. For the other test cases the end times

o6

7 Evaluation

are nearby. A reason therefore might be the interaction between the clients’ access pattern and
the selected data distribution.

120

100

80

60

40 [F

Throughput in MByte/second

20 ¥ —
¥ TAS-Read +—+—
ALT-Read +—<—1
DBPF-Read +—x—
0 | | | | |
0 2000 4000 6000 8000 10000

Block size in KByte

Figure 7.15: Read throughput for 1 client using different block sizes

Throughput in MByte/second

10 TAS-Read —+—

ALT-Read ———
DBPF-Read +——%—
0 | | | | |

0 200 400 600 800 1000
Block size in KByte

Figure 7.16: Read throughput for 1 client using different small block sizes (data extracted from figure
7.15)

o7

7 Evaluation

140 ‘

o

120

100

80

60

Throughput in MByte/second

40 &

TAS-Write —+—
ALT-Write ——<—

DBPF-Write —x—
0% | | | | |

0 2000 4000 6000 8000 10000
Block size in KByte
Figure 7.17: Write throughput for 1 client using different block sizes
120
100
2
S 80
(5]
[}
2
g
>
m
= 60
=
5
Q.
<
[=2]
3
2 40
=
20
TAS-Write ——+—1
ALT-Write +——<—
] DBPF-Write +——%—1
0 |

0 200 400 600 800 1000
Block size in KByte

Figure 7.18: Write throughput for 1 client using different small block sizes (data extracted from figure
7.17)

o8

7 Evaluation

400

350

300

250

200

150

Throughput in MByte/second

100

50% TAS-Read 1 |
ALT-Read +——<—
X DBPF-Read +——%—
0% | | | | |
0 2000 4000 6000 8000 10000
Block size in KByte
Figure 7.19: Read throughput for 5 clients using different block sizes
350
300
250
e}
c
o
o
[}
Y
£ 200
m
=
£
?L 150
<
(=2
=1
o
£
100
50
TAS-Read +—+—
ALT-Read +——<—
DBPF-Read +—%—
o | | | | |
0 200 400 600 800 1000

Block size in KByte

Figure 7.20: Read throughput for 5 clients using different small block sizes (data extracted from figure
7.19)

29

7 Evaluation

450

400

350

300

250

200

150

Throughput in MByte/second

100

50 § TAS-Write +—+— -
f ALT-Write +——=<—
DBPF-Write +——%—1
|

ok ! ! ! !
0 2000 4000 6000 8000 10000

Block size in KByte

Figure 7.21: Write throughput for 5 clients using different block sizes

350

300 - -

250 -

200 -

150 —

Throughput in MByte/second

100 ~ / _

50 -/ -
/ TAS-Write +——+—
ALT-Write +——<—
DBPF-Write +———
01 | | | | |
0 200 400 600 800 1000

Block size in KByte

Figure 7.22: Write throughput for 5 clients using different small block sizes (data extracted from figure
7.21)

60

Throughput in MByte/second

7 Evaluation

250

200 |- / 7

150 |- % 2\, f - == L |

Throughput in MByte/second

100 B
& ”
¥
50 -/ .
X/ DBPF-Write +—+—
ALT-Write +——<—
TAS-Write +——%—
0 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.23: Write throughput for a variable client number and 32 KByte block size

300
250 + =
200 |- %~ %/E}&X i
150 - =
100 | 7 .
/’
¢ &
50 - /¥ -
/4
= DBPF-Read —+—
ALT-Read +——x—
TAS-Read +—+—
0 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.24: Read throughput for a variable client number and 32 KByte block size

61

7 Evaluation

300
250 + =
° X _ TR
s w0 7 j[i\f W[1
&
o]
s
3)
= 150 | 4
£
5
Q.
ey
(=2
3
2 100 |- 4
=
50 B
TAS-Read +—+—
TAS-Write +——<—
0 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.25: Comparison of read and write throughput for a variable client number and 32 KByte
block size (data extracted from figures 7.23 and 7.24)

7.1.3 Comparison of the throughput for one and five data servers

The diagrams in the earlier section showed that ALT and DBPF perform similar using small block
sizes and a 100 MByte file. In order to increase the understandability the results of ALT are omitted
in the diagrams of this subsection.

Observations:
e Throughput improves by the factor 3.5 by switching to 5 data servers (see figures 26 and 29).

e The benefit from multiple servers degrades for smaller block sizes (see figures 27 and 30). For
a smaller block size than 32 KByte the single server ist faster (see figures 28 and 31). This
must be the consequence of the selected data distribution. Remember, the data is striped in
64 KByte blocks, thus there is only one data server hit for smaller block sizes. All the datafiles
will be used for a block size larger than 256 KByte.

e In case of a variable client number and 32 KByte block size, read and write throughput fluctuates
in the same way for 5 data servers while write performance stabilizes for 1 data server (see figure
32 and 33) .

e Up to 5 clients, the throughput for 1 and 5 data servers and a variable client number look
similar (see figures 32 and 33). Starting with 6 clients, the aggregated throughput is higher
for the configuration with 5 data servers. Note that for the small block size only one datafile
should be hit per request due to the data distribution and data alignment. The throughput for
5 data servers improves for multiple clients because the requests are distributed between the
data servers. Thus, the load is reduced per server. However, the throughput only improves by
a factor of 3 for write operations and a factor of 2 for read operations.

62

7 Evaluation

400
B
350 |- % |
£/
a00 L / I I S |
¥
250 |- \

Throughput in MByte/second

TAS-1-Read —+—

TAS-5-Read <

DBPF-1-Read ——

DBPF-5-Read +—=—

I I I I
4000 6000 8000 10000

Block size in KByte

Figure 7.26: Comparison of the read throughput for 1 and 5 data servers accessed by 5 clients using
different block sizes

350

300 -

Throughput in MByte/second

TAS-1-Read +——+—

TAS-5-Read +—<—i

DBPF-1-Read +—x—

DBPF-5-Read —=—

I I I I
400 600 800 1000

Block size in KByte

Figure 7.27: Comparison of the read throughput for 1 and 5 data servers accessed by 5 clients using
different small block sizes (data extracted from figure 7.26)

63

Figure 7.28

Figure 7.29:

7 Evaluation

140

120

100

Throughput in MByte/second

TAS-1-Read
TAS-5-Read
DBPF-1-Read
DBPF-5-Read

——
i

a8

30 40
Block size in KByte

50

60

Comparison of the read throughput for 1 and 5 data servers accessed by 5 clients using
different very small block sizes (data extracted from figure 7.26)

450

Throughput in MByte/second

TAS-1-Write +—+—
TAS-5-Write ——<—i
DBPF-1-Write +———
DBPF-5-Write —&=—
I

4000 6000
Block size in KByte

Comparison of the write throughput for 1 and 5 data
different block sizes

64

8000 10000

servers accessed by 5 clients using

7 Evaluation

350
300 -
- /%/7/7 T
- =
- -
5 e
g -
2 -
w
3 -
>
i)
=
£
5
2 -
=
=)
=]
IS
[= [— —
% —F
TAS-1-Write +—+—
TAS-5-Write ——<—i
DBPF-1-Write +——%—
DBPF-5-Write +—=—
I I I I
400 600 800 1000

Block size in KByte

Figure 7.30: Comparison of the write throughput for 1 and 5 data servers accessed by 5 clients using
different small block sizes (data extracted from figure 7.29)

90

Throughput in MByte/second

TAS-1-Write +——+—
TAS-5-Write ———
DBPF-1-Write +——x—
DBPF-5-Write >TE—4

0 ! ! ! ! !
0 10 20 30 40 50 60

Block size in KByte

Figure 7.31: Comparison of the write throughput for 1 and 5 data servers accessed by 5 clients using
different very small block sizes (data extracted from figure 7.29)

65

7 Evaluation

250

,%% /
/}/%XJM/E :- usﬁﬁgﬂﬁ”ﬁﬂ““ﬁ ._“Eﬂ“-.-.

Ea gy sk |

Throughput in MByte/second

100 + i
e e = R e K
50 | ¥ ’\f‘* FrE |
TAS-1-Write +——+—1
TAS-5-Write ——<—
= DBPF-1-Write —%—
DBPF-5-Write +—&—
0 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.32: Comparison of the write throughput for 1 and 5 data servers accessed by a variable client
number and 32 KByte block size

300

s eyt
Nﬁ% 2 NK} Y

150 |- 7//1/”5 _‘:]) ‘ |

A

Throughput in MByte/second

100 +
50 - TAS-1-Read —+— |
& TAS-5-Read +——
DBPF-1-Read +——x—
DBPF-5-Read +—&—
0 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.33: Comparison of the read throughput for 1 and 5 data servers accessed by a variable client
number and 32 KByte block size

66

7

FEvaluation

7.1.4 Access of large files with small contiguous 1/O requests

The former diagrams show the throughput of only 100 MByte files. In order to reduce the impact of
the kernel buffer this testset is created. A 3200 MByte file is accessed with a block size of 32 KByte.

The configuration of one metadata and one dataserver is used.

Observations:

e The write throughput is close to the capabilities of the I/O subsystem (see figure 7.35). It seems
that the write operations are cached efficiently. Also, multiple small blocks might be combined
into one contiguous request to avoid a repositioning of the disk’s heads.

Throughput of ALT is comparable to DBPF (see figures 7.34 and 7.35). This is surprising
because ALT uses a straightforward way for file access while DBPF uses a more complicated

strategy. For example asynchronous I/O comes into play for DBPF and the file handles are
buffered.

Read throughput is much slower than write and degrades with additional clients (see figure
7.34) . The benefit of the prefetching strategy depends on the client number. Now, most of
the accesses require the hard disk’s head to be relocated. If you assume that the bytestream is
written as one contiguous block on the disk, then the distance of the necessary block depends on
the client number. However, it is hard to predict the behavior exactly because multiple clients
might proceed with a different speed.

160

140 | -

120 +~ —

100 ~ —

Throughput in MByte/second
[es]
o
T
|

40 TAS-Read +—+— |

gﬁmgﬁ@%&m ooer e

> OS2 o EX g
T e % K% g L ow
*FFy o g BE e LT TR

20 oh e]
SRR
0 ! ! ! ! !
0 10 20 30 40 50

Number of clients

Figure 7.34: Read throughput for a variable client number and 32 KByte block size (access of a

3200 MByte file)

67

7 Evaluation

90
80 —
70 + —
e}
c
5]
Q
(9]
0
€ 60l -
3)
=
£
2 50 ,
ey
(=2
=}
<]
=
40 L 4
30 |-+ 1
/i TAS-Write +——+—1
X/ ALT-Write —x<—
* DBPF-Write +———1
20 | | | | |
0 10 20 30 40 50

Number of clients

Figure 7.35: Write throughput for a variable client number and 32 KByte block size (access of a
3200 MByte file)

Summary

This paragraph summarizes the results of small contiguous I/O requests. The following results are
important:

e The performance of the ALT straightforward I/O implementation is not inferior to the DBPF
asynchronous I/O implementation. This is surprising but might be a consequence of the chosen
test cases.

e For most cases the throughput for TAS is close to the estimated upper bound derived from
netperf. There is some room for improvement for 5 data servers. However, further benchmarks
and investigation is necessary to determine bottlenecks for multiple servers.

e (Caching mechanisms work well for these test cases. The aggregated throughput is higher than
the I/O subsystem’s nominal throughput. The throughput of a large file breaks in for read
requests, due to the disk’s access time induced by the mechanical components of the disk.
Clever strategies are necessary to improve the situation in this case.

e The data distribution function influences the performance for small block sizes. It is suggested
that the influence of the data distribution is negligible for larger contiguous requests.

e Multiple servers achieve a smaller aggregated throughput for small contiguous requests than one

server. It is important to select a distribution function suitable for the applications requests in
order to get the maximum performance.

68

7 Evaluation

7.2 Large Contiguous I/O Requests

In this testset big files which have a size between 100 and 12800 MByte are accessed with a block
size of 10 MByte, which means each system interface call starts a data transfer for 10 MByte of data.
Remember, during an I/O request a maximum of 256 KByte is processed by the persistency layer
during one call. However, the setup of an I/O operation needs only little time compared to the data
transmission. The actual file size is a power of 2 times 100 MByte for a specific test. The testset shows
the impact of the cache. However, files grow larger than the cache size. It is important for the file
system to achieve a overall throughput equal to the disk throughput for large I/O requests because
the disk limits the performance. This testset measures the throughput only for the MPI interface.
Only the throughput of the network card and I/O subsystem are considered for the estimated upper
bounds. Therefore, these bounds are incorporated directly into some diagrams.

Large contiguous I/O requests are analyzed for the following configurations:

e One metadata server and one data server
First, throughput for one client is measured. The client creates a file, writes a specific amount
of data into the file and then reads the data again.
Then, the aggregated throughput is measured for five clients and different file sizes.
At last, a variable number of clients is run to access a big file with MPI to determine the server’s
behavior and maximum throughput under a high load.

e One metadata server and five data server
The tests run for this configurations are the same as for the configuration with only one data
server in order to be able to compare the results.
The results for the configurations with one data server and five data servers are not directly
comparable because the clients are disjoint for one data server while client and server share the
machines for five data servers.

7.2.1 One metadata and one data server

Starting with 1600 MByte the DBPF-thread hang up randomly during the write for DBPF. This
happens, for example, if node06 is the server. Using the machine master2 as PVFS2-server avoids
this problem. The problem remain for five data servers. However, the reason is unknown, several
tries to reproduce it on different machines failed.

Observations:

e Write performance is a bit better than read (see figures 7.36, 7.37 and 7.42). Especially the
achievable throughput with TAS is better.

e The kernel buffers the files up to 800 MByte well which is nearly the available memory (see
figure 7.36). It looks like the whole file is in the cache because the read performance sticks at
the same value up to 800 MByte. The write throughput decreases for 400 MByte (see figure
7.37), it might be the case that the kernel blocks some write operations while the cache gets
filled.

e Starting with two clients the network card of the server is nearly saturated (see figure 7.42).
The throughput is close to the available network bandwidth.

69

7 Evaluation

e ALT achieves the throughput of the I/O subsystem and performance does not degrade for an
increasing number of the clients (see figures 7.38, 7.39 and 7.42).

e DBPF slows down for multiple clients. For write this starts with 10 clients (see figure 7.40).
There is a dramatic cut for read and 2 clients (see figures 7.38 and 7.41). There might be a
problem with the asynchronous I/O on our machines because the machines load is asymmetric
for read and write. During the write phase the load is about 10 while for reads it is about 2.5.

120 +~

100 ~

80 74;(T
S i

Throughput in MByte/second

40
y 0 5 ——
network bandwidth ———
il 1/0 throughput
TAS-Read +——+—
ALT-Read +——<—
DBPF-Read
0 I) ‘ ‘ | ‘
0 2000 4000 6000 8000 10000 12000

File size in MByte

Figure 7.36: Read throughput for 1 client accessing a large file with a varying size

120 + B
T — %
100 |-F 4
° >2/§\
c £\
[=} \
8 sol |
2 ,
=2 \
[}
< 1 \
9) \
= !
= E
£ el \ ,
p}
o
Ky
(=2
=}
o T
E 40 — -
z —_—— S
network bandwidth ——
20 |- 1/0 throughput B
TAS-Write +——+—
ALT-Write +———
DBPF-Write
0 ! ! ! ! ! !
0 2000 4000 6000 8000 10000 12000

File size in MByte

Figure 7.37: Write throughput for 1 client accessing a large file with a varying size

70

Throughput in MByte/second

Throughput in MByte/second

120

100

80

60

40

20

Figure 7.38: Read throughput for 5 clients accessing a large file with

120

100

80

60

40

20

7 Evaluation

network bandwidth ———
1/0 throughput ———
TAS-Read +——+—1

DBPF-Read

ALT-Read +——<—

2000 4000 6000 8000 10000
File size in MByte

12000

a varying size

network bandwidth
1/0 throughput 7

DBPF-Write

TAS-Write +——+—
ALT-Write —x—

2000 4000 6000 8000 10000
File size in MByte

12000

Figure 7.39: Write throughput for 5 clients accessing a large file with a varying size

71

7 Evaluation

120 |- —

100 ~ —

80 —

network bandwidth ——
60 I/0 throughput —— o
TAS-Read +——+—
ALT-Read +——<—

Throughput in MByte/second

DBPF-Read
40
N 3
20 -
0 | | | | | | |
0 2 4 6 8 10 12 14

Number of clients

Figure 7.40: Read throughput for a variable client number accessing a large file with a total size of

12800 MByte
120 [4 4 <+ L 4 -+ 4 I . + 4 |
A bt t + } } } + + t t —t
-
e
100 -
e}
c
o
Q
& 80 - i
o]
S
i)
=
c
= 60 =
=1
Q.
<
(=2
=1
<}
Ky
F 40 o e e % » @ ¢ — X ——x
= s : =3 ¥ —F %% X% X% %
network bandwidth ———
20 + 1/0 throughput ———
TAS-Write ——+—
ALT-Write +———1
DBPF-Write
0 | | | | | |
0 2 4 6 8 10 12 14

Number of clients

Figure 7.41: Write throughput for a variable client number accessing a large file with a total size of
12800 MByte

72

7 Evaluation

120 + R
- e S e L e e N E
100 / i
e}
c
o
(5]
2 80 - -
o]
S
i)
=
c
= 60 - -
>
Q.
ey
(=2
>
<]
£ 40 —
B =5 5 5 e e em e e e —
TR jﬁ***ifffg — — — 1%722;,,% S— — — —E*f***’w—f—wx
network bandwidth
1/0 throughput
20 + TAS-Read +——+—
ALT-Read +——<—
TAS-Write
ALT-Write +—5—
0 | | | | | | |
0 2 4 6 8 10 12 14

Number of clients

Figure 7.42: Comparison of read and write throughput for a variable client number accessing a large
file with a total size of 12800 MByte

7.2.2 One metadata and five data server

The PVFS2 server’s DBPF thread hung up for files with a size larger than 1600 MByte. Therefore,
most DBPF results are missing for this configuration.

Observations:

e Real I/O for one client is now close to the limit provided by TAS (see figure 7.43 and 7.44).
DBPF’s throughput is a bit better for read of 1600 and 3200 MByte (see figure 7.43). Because
reads are processed by TAS as fast as possible, I conclude DBPF must benefit from the additional
thread processing the BMI callback function.

e The kernel’s caching mechanisms lift the aggregate throughput for 5 clients (see figures 7.45
and 7.46) .

o Write is faster than read (see figure 7.47).

e For multiple clients a throughput of about 200 MByte/sec can be measured. This is equivalent
to the estimated throughput of 5 disks (see figure 7.47).

e The estimated throughput of 5 network cards is not achieved (see figure 7.47). In the test
cases 430 MByte/sec can be achieved for 5 clients. However, the expected throughput is
535 MByte/sec. A reason for this might be that the servers and clients are hosted on the

same machines. Hence, client and server compete for the limited network and CPU time.

e Performance of write operations is higher for one client than the network bandwidth due to
locality of one PVFS2 server (see figure 7.44).

e The sawtooth shape which can be seen in the diagram for multiple clients result from the

73

7 Evaluation

distribution of the clients over the nodes (see figure 7.47). A maximum for TAS is achieved for
5 clients, then each machine hosts the same client number. If one machine hosts two clients while
the other host only one client, the network of the single machine is the bottleneck. Furthermore,
CPU time is shared between client and server processes. Due to the sharing overall performance
decreases for multiple clients hosted on one machine.

It is interesting that ALT’s performance is at the same level for 10 and 15 clients and lower for
5 clients (see figure 7.47). ALT’s read performance fluctuates whereas the write performance is
stable for a variable client number.

140 i
120 + i
e Y — +
A —
2 I
8 100 —_— 7
Q
w
o]
% 80
2 . i
£
5
Q.
5 60 _
=1
o
<
=
40 + m
20 L network bandwidth —— |
TAS-Read +—+—
ALT-Read +—<—
DBPF-Read +——%—
0 | | | | | |
0 2000 4000 6000 8000 10000 12000

File size in MByte

Figure 7.43: Read throughput for 1 client accessing a large file with a varying size

74

Throughput in MByte/second

Throughput in MByte/second

140

120

100

80

60

40

20

7 Evaluation

File size in MByte

o— . 7
%’\% e |
L network bandwidth ———— |
TAS-Write ——+—
ALT-Write +—=<—
DBPF-Write +—x—
| | | | | |
0 2000 4000 6000 8000 10000 12000

Figure 7.44: Write throughput for 1 client accessing a large file with a varying size

500

400

300

200

100

Figure 7.45: Read throughput for 5 clients accessing a large file with a varying size

SNy

1/0 throughput ———
TAS-Read +—+—
ALT-Read +———

DBPF-Read +—x—

2000 4000 6000
File size in MByte

75

8000

10000 12000

7 Evaluation

500

400

300

200

Throughput in MByte/second

100 -
1/0 throughput ———
TAS-Write +—+—
ALT-Write +—=<—
DBPF-Write +—%—
0 | | | | | |
0 2000 4000 6000 8000 10000 12000

File size in MByte

Figure 7.46: Write throughput for 5 clients accessing a large file with a varying size

500
400 - /x\ .
= % %
- .
= \ e
£ - \% -
2 = \ 77%// F
2300 - A B
g8 \ g
5 .=
=
£
=) 200 B T// B i(,,fffx
I ¥ _
£ *
100 - 1/0 throughput ——— |
TAS-Read —+—
ALT-Read +——<—
TAS-Write +—x—
ALT-Write
0 | | | | | | |
0 2 4 6 8 10 12 14

Number of clients

Figure 7.47: Comparison of read and write throughput for a variable client number accessing a large
file with a total size of 12800 MByte

76

7 Evaluation

Summary

The following results of this section are important:
e The available aggregated throughput for the I/O subsystem is fully exploited by PVFS2.

e Caching mechanisms improve overall throughput. However, the performance of the I/O subsys-
tem limits the throughput for files larger than the memory.

e Read performance is below write performance due to the additional access time. This result is
the same as for small contiguous I/O requests.

e In some cases the simple I/O mechanisms of ALT outperforms DBPF.

e If only one client is used, this client benefits from locality of the PVFS2 server.

7

7 Evaluation

7.3 Metadata Operations

The utilities mpi-io-md-more and pvfs2-bench are used to measure the performance for create
operations as representative for meta operations. For the system interface the performance for delete
operations is measured as well. In a single run a variable number of operations between 200 and
51200 is almost equally distributed between the clients. Each diagram shows the aggregated number
of operations which can be done per second.

To give the reader a impression of the size of the persistent representation the size of the ALT databases
is determined for 51200 files. In this case the size of the handle database is about 15.5 MByte and
the size of the keyval database about 17 MByte. Thus, in average a file system object including the
required internal data structures for Berkeley DB needs about 665 Bytes.

The testset for metadata requests is structured as following:

e Results for one metadata server and one data server
The system interface creation and deletion rate is measured for one client with pvfs2-bench.
In the next step the performance of the MPI interface is compared with the performance of the
system interface.
Then, these results are compared with the estimated upper bounds from chapter [4

e Comparison of the performance for one and five data server
This section evaluates the results of the configuration with one and five data servers. It turned
out that the diagrams look similar for these configurations. Therefore, the diagrams for the
configuration with one metadata server and five data servers are omitted in this paper. However,
some results are presented later, when the results of one and five metadata servers are analyzed.

e Results for five metadata servers and five data server
For this configuration the same tests are run as for the configuration with one metadata server
and one data server.

e Comparison of the performance for one and five metadata servers
In this section the results for the two configurations with one metadata and five metadata
servers are compared.

e Large scale metadata requests

The Chiba cluster is used to verify the results of the other configurations for a variable number
of clients and servers between 1 and 35.

7.3.1 One metadata and one data server

At first, the results of the system interface are presented and then results achieved with MPI. The
throughput of DBPF is measured for syncing and non-syncing mode, and on the underlying filesystems
ext3 and tmpfs. The results for DBPF using the in-memory file system tmpfs are expected to be an
upper bound for DBPF’s results.

System interface

With the help of pvfs2-bench the throughput for file creation and deletion is measured. Note that
deletion needs exactly four network messages, which is similar to the file creation. Thus, the estimated

78

7 Evaluation

upper bound for the deletion rate, which is based on the network latency, has the same value of 480
operations,/sec.

Observations:
e TAS forms a upper bound for the other implementations as expected (see figures 7.48 and 7.49).

e With an increase of the subsequent creations ALT and TAS stick to the same throughput
whereas DBPF’s throughput decreases (see figures 7.48 and 7.49).

e ALT is faster than the non-syncing DBPF on tmpfs (see figures 7.48 and 7.49).

e DBPF on tmpfs is much slower than TAS (see figures 7.48 and 7.49).

e The non-syncing operation mode lifts the performance only a bit (see figures 51-54).

e In creation mode, the non-syncing option improves the throughput slightly but is much worse
than DBPFs on tmpfs (see figure 7.48). This is an indicator that I/O operations are necessary for

the creation. However, the non-syncing option lifts the file deletion to the level of DBPF-tmpfs,
which means in this case there are no hidden I/O operations (see figure 7.49).

700 T
TAS —+—
ALT +———
DBPF +——%—
600 DBPF-nosync —8—
DBPF-tmpfs

DBPF-tmpfs-nosync +——o—

500 |
- /
c T f"
§ 400 |/ |
o 1
@
c
2
2 (
5 300 |
g £
o il
200 + \;\\\\\\;\ |
—e—
——————————————————————————e
100 - |
o= 55— . |
%%%77—%77***7*7777777+ B
0 ‘ ‘ ‘ ‘ ‘
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.48: System interface creation rate for 1 client creating a different total number of files

79

7 Evaluation

700 :
- TAS ——+—
ALT +———
DBPF —x—
600 - DBPF-nosync +—8—
DBPF-tmpfs

DBPF-tmpfs-nosync +——o6—

500

400 I

3004

Operations/second

200

100

0 10000 20000 30000 40000 50000

Number of operations

Figure 7.49: System interface deletion rate for 1 client creating a different total number of files
MPI-1/0 interface

For the MPI-1/O interface the performance of 1 and 5 clients, using a different total number of create
operations, is measured. In addition, the creation rate for a variable client number between 1 and 25 is
determined for a total of 6400 and 51200 files. Note that for this configuration clients are distributed
over 7 machines. No client is placed on the machine hosting the PVFS2 server. The results of the
MPT interface and the system interface are compared for 1 client to point out the overhead of the
additional MPI layer. Therefore, data is extracted from the other figures.

Observations:

e Results for 1 client are similar to the system interface results (see figure 52).However, it is
noticeable for TAS and DBPF on tmpfs that performance is lost due to request processing by
the client’s additional layer. DBPF’s throughput using the system interface is indistinguishable
from the results of the MPI interface.

e TAS overall performance increases proportionally up to 10 clients (see figures 53 and 54). Then
the server’s CPU is busy processing the requests. ALT aggregated creation rate increases linearly

up to 5 clients. However, the throughput never decreases for additional clients.

e DBPF-tmpfs throughput increases with additional clients non-linearly and is outperformed by
ALT (see figures 53 and 54).

e Once a resource limit is hit, the overall performance sticks on that level and does not decrease
(see figures 53 and 54).

80

7 Evaluation

700 T T
TAS-MPI +——+—
T TAS-sysint +—<—
DBPF-tmpfs-nosync-MPI +——x—
600 DBPF-tmpfs-nosync-sysint +—&—

DBPF-nosync-MPI
DBPF-nosync-sysint —e—

500

400

300

Operations/second

200

100

0 L L L L L
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.50: Comparison of the MPI and system interface creation throughput for 1 client creating a
different total number of files

700 :
TAS —+—
T ALT s
DBPF-tmpfs i
600 H DBPF-tmpfs-nosync —&—
+ DBPF
DBPF-nosync —e—i
500
e}
c
S 400
Y
1%}
c
k=]
IS
S 300
o
(o]
200
100
0 ! ! ! ! !
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.51: Creation rate for 1 client creating a different total number of files

81

7 Evaluation

2500 ‘
TAS —+—
ALT +—<—
T DBPF-tmpfs +—x—i
DBPF-tmpfs-nosync +—&—
DBPF
2000 DBPF-nosync —e— |
T +
T +
2
S 1500 -
@ P
% -4 _
c
k=]
©
g 1000 | -
(o]
500
0 | | I | !
0 10000 20000 30000 40000 50000
Number of operations
Figure 7.52: Creation rate for 5 clients creating a different total number of files
3000 ‘
TAS —+—
ALT +——
DBPF-tmpfs +——x—1
2500 | DBPF-tmpfs-ngséyS; [i
DBPF-nosync
2000 + —
e}
c
o
o
Q
kY
2 1500 -
K]
S
[}
j=3
e}
1000 - -
500 —
0 1 | 1 | 1
0 5 10 15 20 25

Number of clients

Figure 7.53: Creation rate for a variable client number creating a total number of 6400 files

82

7 Evaluation

3000 ‘
TAS —+—
ALT +——
DBPF-tmpfs +——x—1
DBPF-tmpfs-nosync —&—
2500 - DBPF 7
DBPF-nosync +—s—
2000 + —
e}
c
o
[S]
[}
2
2 1500 - x|
K]
<
Q
o
(e}
1000 + B
500 B
0
0 5 10 15 20 25

Number of clients

Figure 7.54: Creation rate for a variable client number creating a total number of 51200 files
Comparison of the measured performance and the estimated upper bounds

The data for the diagrams is extracted from earlier diagrams and is not measured again. Figure 7.55
shows that the network latency bound derived from netperf’s request-response test is exceeded by
TAS. This shows that netperf’s results are too high. However, the diagrams 7.55 and 7.56 show that
ALT and TAS performance are very close to each other. They must be close to the estimated bound
provided by netperf. Thus, there is only little overhead of the intermediate layers.

The throughput of DBPF is close to the optimistic I/O bound, under the assumption that each create
operation initiates 10 I/O operations on the server (see figures 7.55 and 7.56).

700 :
network latency
sync I/O mode, optimistic
TAS —+—
600 ALT ——<—
DBPF
/37,,,,,,,,77——%rr@,,,,ﬁmm%% DBPF-tmpfs-nosync +—&—
500 ||/ — ,;,,,}777777,,,,,,,,,,77777777——{
—3
o I T
< _
S 400 4
o
12}
c
k=]
= i
S 300 -
2 L
(o]
200 |- T 4
““*ﬂ—n,,,,,,,%%qw
—_—
100 + B
0 | | | | |
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.55: Comparison of the estimated upper bounds and the system interface creation rate for 1
client creating a different total number of files

83

7 Evaluation

5000
network latency
sync 1/0 mode, optimistic
| TAS +—+— -
ALT s
L DBPF-tmpfs-nosync |
4000 DBPF o
3500 |
2
S 3000 - |
[S]
[}
| 15
£ 2500 |- ww#iiii777_:
g //% I
é‘ 2000 - B |
_— — 7%777777*7777%% B
_— e /%,77777777
1500 |- o |
////// /y
1000 7
500 |
0 =] .) m D |
0 | | | i 10

Number of clients

Figure 7.56: Comparison of the estimated upper bounds and the MPI interface creation rate for a
variable client number creating a total number of 6400 files

7.3.2 Comparison of the performance for one and five data server

Remember, the clients and servers are now hosted on the same machines. The throughput is below
but the diagrams look similar to them for one data server. As a consequence, only the results of one
and five data servers are compared in this section. In the next section additional comparisons are
made with five metadata servers.

The first client is started on the same machine as the metadata server. However, the locality of the
metadata server improves the throughput only a bit (see figure 57). The datafiles are created on every
server, thus there is still network communication necessary.

TAS and ALT reveal that the overall performance drops, due to the additional network communica-
tion. This cannot be measured for DBPF on tmpfs for the creation of 51200 files.

84

7 Evaluation

3000
TAS-1 —+—
TAS-5 ——<— . ; 1
ALT-1 % [
ALT-5 —=—
2500 - DBPF-tmpfs-nosync-1 N
DBPF-tmpfs-nosync-5
2000 | +
el
c
[=}
(5]
[}
2]
6 3
2 1500 -
1%
c
o
<
g 5
© 1000 |
500
o 88—
0 | | | |
0 5 10 15 20 25

Number of clients

Figure 7.57: Comparison of the creation rate for the configuration with 1 and 5 data servers using a
variable client number creating a total number of 51200 files

7.3.3 Five metadata servers and five data servers

Most observions are equal to them for one metadata server and one data server with on exception, the
rate of DBPF-nosync is now twice the rate of DBPF. A comparison between the two configurations
using 5 data servers is made in the next section. Therefore, the measured data of this configuration
is used.

500

450

400 -
350 i/
300 7 TAS —+— -
ALT +———

DBPF-tmpfs +——x—1
DBPF-tmpfs-nosync —=—

DBPF
DBPF-nosync +—o—

250 =

200

Operations per second

150

100

50 —

0 10000 20000 30000 40000 50000

Number of operations

Figure 7.58: Creation rate for 1 client creating a different total number of files

85

7 Evaluation

1400
1200 =
/%777/,,,,7}% -
_
1000 %‘ B
e}
c
[=}
Q
& 800 i
o
1%
S TAS —+—
b= 600 ALT <+ o
EI;J_ DBPF-tmpfs +——x—i
(e) DBPF-tmpfs-nosync —=—
DBPF
400 - DBPF-nosync —e—
200
0 ! ! ! ! !
0 10000 20000 30000 40000 50000
Number of operations
Figure 7.59: Creation rate for 5 clients creating a different total number of files
3000 ‘
TAS —+—
ALT +——
DBPF-tmpfs +——x—1
DBPF-tmpfs-nosync +—&—
2500 - DBPF 7
DBPF-nosync
o 2000 |- .
c
o
|5
Q
(2]
g
S 1500 4
j =
2
T
@
o
© 1000 | 4
500 —
0 | | | | |
0 5 10 15 20 25

Number of clients

Figure 7.60: Creation rate for a variable client number creating a total number of 6400 files

86

7 Evaluation

3000 ‘
TAS —+—
ALT +——
DBPF-tmpfs +——x—1
DBPF-tmpfs-nosync —&—
2500 - DBPF 7
DBPF-nosync +—o—i
5 2000 - :
c
o
|5
[}
2]
9] %%z X
o
21500 :
c
kel
S
[
j=3
© 1000 | 4
500 B
o —

Number of clients

Figure 7.61: Creation rate for a variable client number creating a total number of 51200 files

7.3.4 Comparison of the performance for one and five metadata servers

The following MPI-1/0O tests of the two configurations with one and five metadata servers are evaluated
in this subsection. The creation rate is measured for 1 and 5 clients using a different total number of
create operations and for a total of 51200 files using a variable client number between 1 and 25.

The data for the five metadata servers is extracted from the diagrams of the previous subsection
where these were already shown.

The performance of the DBPF variants is much lower than the performance of the new modules.
Therefore, the benchmark results of the DBPF variants are displayed in dedicated diagrams.

Observations:

e Less throughput for in-memory methods TAS and DBPF-tmpfs for one client and five metadata
servers (see figures 7.62 and 7.63). The same performance reduction is observed for ALT.

e For one client DBPF benefits only a bit from the additional hardisks (see figure 7.63). This is
due to the required synchronizing with the disk, which is done on all machines in the same way.
Remember, the requests are processed serially by a client.

e The creation rate improves for multiple metadata servers using the configuration with a deac-
tivated syncing mode (DBPF-nosync) (see figure 7.63). However, the performance of the two

different configurations converge for a higher number of create operation.

e TAS with one metadata server is faster until the CPU is busy processing the requests (see figure
7.66). Multiple servers then benefit from the sharing of the requests.

e For one metadata server the performance of ALT increases linear up to 5 clients, whereas it
increases linear for five metadata servers up to 10 clients (see figure 7.66).

87

7 Evaluation

e Performance of DBPF on tmpfs does not improve for 5 metadata servers (see figure 7.67).

e Throughput for DBPF doubles for five metadata servers, when accessed by multiple clients (see
figure 7.67).

For multiple metadata servers performance is less than for a single data server because in average
only every 5th request is processed locally for five data servers. Whereas for one data server and one
client all requests omit network communication, except the creation of the datafiles which require
communication.

Servers and clients share the same machines for this configuration. Therefore, the two CPUs are shared
between multiple processes, i.e. for 5 clients each server hosts an additional client, for 10 clients two
clients and so on. The clients and servers compete for the CPU, thus the overall performance is
reduced.

600 —
550 [|
500 T

450 {1

400 i

Operations/second

350 [

300 B

TAS-1 +——+—1

250 - TAS-5 i |

ALT-1 +—%—

ALT-5 5+
|

200 ! ! ! !
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.62: Comparison of the creation rate for the new modules using the configuration with 1 and
5 metadata servers accessed by 1 client creating a different total number of files

88

7 Evaluation

350 : :
DBPF-tmpfs-nosync-1 +——+—
DBPF-tmpfs-nosync-5 +——
DBPF-nosync-1 ———
300 - DBPF-nosync-5 —8—
XX”X*“ DBPF-1
[DBPF-5
250
e}
e
S 200
L]
1%}
c
R=]
IS
5 150
j=N
e}
100
50
0 | | | | |

0 10000 20000 30000 40000 50000

Number of operations

Figure 7.63: Comparison of the creation for the DBPF module using the configuration with 1 and 5
metadata servers accessed by 1 client creating a different total number of files

1400

1350 —

1300 (- f N 8

1250 | /LA _— -

1200 fif || -

Operations/second

1000 _
TAS-1 —+—
950 TAS-5 —=<— |
ALT-1 +—%—
ALT-5 —8—
900 | | | | |
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.64: Comparison of the creation rate for the new modules using the configuration with 1 and
5 metadata servers accessed by 5 clients creating a different total number of files

89

7 Evaluation

900 : :
DBPF-tmpfs-nosync-1 +——+—
&7 DBPF-tmpfs-nosync-5 +—<—
800 # DBPF-nosync-1 +———
DBPF-nosync-5 —=—
DBPF-1
700 DBPF-5 —o—
600
e}
c
3
o 500
wn
)
=
K]
® 400
[
j=3
o
300
200
100
0 ! ! ! ! !
0 10000 20000 30000 40000 50000

Number of operations

Figure 7.65: Comparison of the creation rate for the DBPF module using the configuration with 1
and 5 metadata servers accessed by 5 clients creating a different total number of files

3000
2500 e %% i
,,Jx///
2000 - i
©
c
o
Q
()
o
2 1500 B
S
<
[
Q.
e
1000 |- E
500 | TAS-1 —+— |
TAS-5 ——<—
ALT-1 —%—
ALT-5 —5—
0 ! ! ! ! !
0 5 10 15 20 25

Number of clients

Figure 7.66: Comparison of the creation rate for the new modules using the configuration with 1 and
5 metadata servers accessed by a variable client number creating a total number of 51200
files

90

7 Evaluation

180
160 I
140 | I
T 120 | I
c
o
[S]
[}
2
2 100 |- I
K]
<
g B i e e e
O 80| e I
e T s S SO S 0 S S SO S SO KK — K —K——x¢
60 - I
DBPF-tmpfs-nosync-1 +——+—
DBPF-tmpfs-nosync-5 +—x—
20 DBPF-nosync-1 —«—
= DBPF-nosync-5 —&—i |
DBPF-1
DBPF-5 —oc—
20 ‘ : ‘ ‘ ‘
0 5 10 15 20 25

Number of clients

Figure 7.67: Comparison of the creation rate for the DBPF module using the configuration with 1
and 5 metadata servers accessed by a variable client number creating a total number of
51200 files

Summary

The following results of the metadata analysis are important:

e There is much room for improvement for DBPF. The creation rate of DBPF is only one tenth
of ALT’s creation rate.

e With the help of the upper bound provided by TAS we get a impression about the capabilities
of the architecture and the performance which the persistency layer could exploit.

e It is vital to cache metadata operations in order to achieve a good performance.

e With an increasing number of operations, the creation rate decreases for the DBPF variants.
This observation is made especially for DBPF on tmpfs.

e The non-syncing variant improves the performance only slightly.
e Under most circumstances the aggregated performance of an environment providing multiple
metadata servers is lower than for a single metadata server. A small speedup for multiple servers

can be observed for a high number of clients. The maximum speedup is 2 which is measured
for 5 metadata servers. This is beyond the expected speedup of 5.

91

7 Evaluation

7.4 Large Scale Metadata Requests

The Chiba City cluster that we use to verify the large scale metadata throughput is build with
older hardware: dual-cpu Pentium III 500 MHz systems with 512 MB of memory. The nodes are
interconnected with Myrinet and a 100 MBit Ethernet, which is used as network for the tests.

MPT file creation throughput is measured for 1, 2 and 5 processes running on each client node.
However, the results of a different number of processes per node are similar. Therefore, only the
diagram for 1 client is presented and a diagram showing the results for 1 and 5 processes per node.
The client and server nodes are disjunct for the tests. Client and servers get the same node count.
Each client node creates exactly 1000 files which are shared between the processes per node.

ALT is not at the newest version and uses the default Berkeley DB cache size of 256 KByte for the
keyval and the dataspace database. The new version uses a database environment for both databases
with 1 MByte cache. This boosts overall performance.

The diagrams 7.68 and 7.69 point out that starting with 5 clients the creation rate is nearly constant.
This means PVFS2’s architecture scales well up to 35 servers. I got some single data points for 50
servers as well, which stick to the same throughput. However, it is not enough data to present the
results in a nice diagram.

1200
1000 + B
800 - —
e}
c
o
Q
(9]
0
2 600 |- R
o
k<
(]
joR
(@]
400 +— =
200 -~ TAS —+— -
ALT +—><—
DBPF +——x—
B O
"
0 | | | | | | |
0 5 10 15 20 25 30 35 40

Number of clients and servers

Figure 7.68: Creation rate for a variable number of clients and servers. Each client-node starts 1
process creating 1000 files

92

7 Evaluation

1200

1000

800

600

Operations/second

400

200

Number of clients and servers

Figure 7.69: Comparison of the creation rate for 1 and 5 processes per client-node. A variable number
of clients and servers gets started. Each client-node creates a total of 1000 files

Summary

The following observations are made for a larger number of clients:

e The aggregated creation rate is nearly constant for a different number of clients and servers.
This means the architecture of PVFS2 scales well for metadata operations up to 50 clients.

e DBPF is outperformed by ALT and TAS. The results are comparable to the results of newer
hardware.

7.5 Suggestions for a New Trove Implementation

In my opinion the following strategies look promising for a Trove module. Most strategies result
directly from the observations of the benchmarks.

Caching Caching is vital to lower the impact of the slow persistent storage. Consequently an efficient
caching is necessary.

e Berkeley DB caching mechanisms can be used to keep the code clear.

e Introduction of a file system configuration option for the cache size that users can set the DB’s
cache size to an appropriate value. It is advised to use as much cache as possible.

e Reduce the memory usage of the objects:
Store only necessary attributes. Not all objects need the whole range of attributes, e.g. the
datafile needs no timestamps.
Maybe it would be worthwhile to have a dataspace and keyval database per collection. Then,

93

7 Evaluation

the collection id has not to be part of the object’s persistent representation. However, Berkeley
DB does not store the whole key for each entity, thus the modifications might be useless.

e Store a datafile’s bytestream size in the datafile’s attributes to avoid the lookup with fstat. It
is expected that the file’s attributes are in the cache during the I/O because the server fetches
them for the request, thus no I/O operation would be necessary to lookup the size.

e Berkeley DB’s non-syncing writes should be used. A scratch file system is useful for some
users. In this case the metadata throughput should not suffer. To guarantee the databases
consistency, the user may select a transaction mode for single operations. The file system check
utility pvfs2-fsck fixes inaccessible objects and cleans the file system.

Threads All blocking I/O operations should be enqueued and handled by different threads. There
should be threads responsible for:

e Metadata operations
e 1/0 operations
e BMI callback function

DBPF already uses different threads. A separate handling of metadata processing and BMI callback
might improve the overall throughput. It is important to keep all limited resources busy to achieve
the best performance. A parallel processing of I/O and network access keeps the I/O subsystem and
the network busy. The benefit of such a strategy can be seen for large I/O and multiple servers in the
evaluation. I have seen this for small accesses and a large amount of clients, as well. However, this
results were not published in this paper. In order to achieve the best overall performance, it might
be necessary to choose the strategy depending on the server’s load.

Handle management Never free handles for a reuse explicitly. Instead all servers memorize only
one free handle range for each collection, which gets initialized with the servers responsible handle
range. When a server’s available handles are nearly exhausted, a thread can be started, which tries
to reclaim a set of contiguous unused handle numbers. If the server detects that the present range is
empty, it switches the present range with the threads’ determined range. So the handle reuse time is
controlled by the time difference between the thread determining a range for reuse and the time the
handles are actually exhausted, thus is implicit.

The calculation of the time difference depends on the server’s capabilities and the timeout. Assume
the following facts: The server can create file system objects at a rate of 2000 objects per second.
It takes 5 minutes to iterate over the present objects. Handle recycle timeout should be set to 5
minutes.

Then it takes 600 seconds to find the largest handle range available. During this time about one
million of files can be created. A handle number is a 64 Bit unsigned integer, thus it is seldom that
the range gets exhausted. Also, it is possible to start the reclaim thread early to guarantee enough
available handles for creation.

If every second handle is free, this realization is problematic because all ranges have the size of only
one handle. To prevent this uncommon situation an additional memory region can hold the required
amount of free handles. However, this is really unrealistic because there is not enough storage space
to hold all the objects. It is also unrealistic that the maximum possible rate is used for file creation.
However, this shows that such an approach is applicable. Another simple strategy is to reclaim less
handles and to delay the creation of new objects if there are no handles left.

94

8 Summary

This section summarizes the project and its results.

We have the idea to create a upper bound for the performance of the different operations. Therefore,
the new module TAS is created for the persistency layer, which is a low-level layer of PVFS2. This
module has a well known complexity for the performance relevant operations and is independent of
the I/O subsystem. Some simple considerations allow us to make a close estimate of the expected
performance of the operations.

Three test cases are evaluated: contiguous I/O requests using small block sizes per request, large
contiguous I/O requests and file creation as representative for metadata operations. There is no
common benchmark which is suitable for such an analysis of the parallel file system. It is necessary
to have reference results in order to estimate the use of an optimization. For this project some scripts
were developed which started the benchmark programs with different parameters in batch mode.

A comparison of the estimated upper bounds and the results provided by TAS shows bottlenecks of
the architecture i.e. the cut for a block size of 128 KByte and the acache. The author claims that
the flow-protocol is the reason for this. However, the achieved performance is very close to the upper
bounds for most test cases. Thus, the PVFS2 architecture exploits the available performance.

The TAS module acts as a reference for throughput achievable from the other Trove modules. With
the help of such an upper bound the real costs of a module’s I/O strategy are pointed out. As an
example this shows that the metadata is handled suboptimally by DBPF. There is much room to
improve the metadata handling. It can be seen that I/O operations reduce the metadata processing
significantly. The Trove module processing of the metadata should be optimized to avoid as many
I/O operations as possible.

An alternative module for Trove is designed for evaluating different strategies. Interestingly, results
show that a straightforward I/O handling of data is not worse than a more complex I/O handling.
In several aspects a detailed analysis is necessary to optimize the performance. It is important to
do performance analysis. Otherwise, complex mechanisms are developed that are not faster than
the simple strategies. However, such mechanisms complicate the source code, increase the effort for
maintenance and make it hard to introduce new algorithms.

95

O Future Works

The performance analysis of the Trove modules showed that different mechanisms may lead to a
higher overall throughput and revealed some bottlenecks. However, the work is not done. There are
still some unresolved issues with the modifications made. Also, much further evaluation is necessary,
in order to eventually come to an optimal implementation.

The following list provides ideas on major steps that could be made:

e Analysis of other critical operations like lookup of a file system object.

e Experimenting with different Trove strategies: e.g. figure out the impact of multiple threads
processing the callback function and a different handle management.

e Benchmarking of more systems and configurations. It is necessary to measure performance of
multiple servers which are disjunct to the clients.

e The performance of ALT should be measured for a very high number of files. To figure out the
impact of the cache size, it is necessary to access the metadata later. Therefore, a benchmark
is required. For further analysis a benchmark looking up existing and non-existing file system
objects, randomly or subsequent, might be useful.

e Evaluate a change to the interface for keyval iteration which is suited for ALT.

e Setup of a test environment to compare performance of different code revisions in order to reveal
unfavorable modifications.

e Adaption of the paper’s insights for a new module or adaption of DBPF. This should be done
when it is figured out which strategies optimize the performance.

The following are minor activities:

e Complete to divide Trove into storage method and collection method. Create a better mecha-
nism for the lookup of the responsible collection method.

e TAS and ALT can be modified to support all Trove functions i.e. extended attributes.
e Investigate the client’s I/O performance cut for read operation with 128 KByte. The author
claims that the flow protocol is involved in this issue. This is not so urgent because a server is

accessed by multiple clients normally.

e Improvement of the client side caches: the ncache does not store path efficiently and compares
the objects in a slow linear fashion.

96

10 Appendix

10.1 Comparisons of ALT

Multiple databases for key/value pairs In the creation benchmark the performance of multiple
databases for the key/value pairs achieve worse results than the single database. The two common
keys which specify the distribution and datafile handles for a PVFS2 file are placed in separate
databases.

1800

T
ALT —+—
ALT-multipleDBs +———

1600 -
1400 +
1200 +

1000 +

Operations/second

800

600 -

400

200 ! ! ! ! !
0 5 10 15 20 25

Number of clients

Figure 10.1: Comparison of ALT with one and three keyval databases for the configuration with 1
metadata and 1 data server. Creation rate for a variable client number creating a total
number of 51200 files

Different cache sizes of the databases The performance is comparable for file creation. In this
case metadata of an object is only needed during the creation. Thus, there is little impact due to
different cache sizes. The cache size is important if the benchmark operates on older files later. In
addition, it is likely that the kernel buffers the whole databases in memory because the databases
have a total size of about 30 MByte.

97

10 Appendix

1900 .
ALT-1MByte +—+—
ALT-20KByte +——<—

1800 - 4

1700 X . B
1600 {1 | -

1500 |\

Operations/second

1400 +

1300 +

1200 -

1100 L L L L L
0 10000 20000 30000 40000 50000

Number of operations

Figure 10.2: Comparison of ALT with different cache sizes for the configuration with 1 metadata and
1 data server. Creation rate for 5 clients creating a different total number of files

10.2 Difficulties

During the work, the following time consuming problems arose:

Some bugs in PVFS2 were revealed while some problems still remain. Especially, the acache expensive
cleanup of outdated entries needed a lot of time for investigation.

For large contiguous I/O operations the DBPF implementation hung-up on the testbed. This hap-
pened randomly and looked like a timing problem. Several tries to reproduce the problem on Chiba
and my local system were in vain.

The infrastructure of the clusters wasted a lot of time: First an initial setup with PVFS2 and MPI
has to be compiled.

Benchmarks have to fit to the clusters job scheduling mechanisms. In order to get the tests to run on
a cluster, it was necessary to understand the underlying infrastructure and to create an appropriate
set of scripts capable to run the tests in batch mode.

On the working groups cluster, sometimes the hard disk’s DMA mode was switched off. The reason
for this behavior is the kernel’s IDE driver. This issue is resolved on newer kernels. However, a kernel
update is not so simple on the cluster. A deactivated DMA mode on an arbitrary node has more
or less impact on the benchmarks’ results, thus is not easy to detect. When I realized that there is
a DMA problem, I started to check the DMA modes on every node during the benchmarking and
restarted the tests whenever the problem was detected and resolved. To switch the DMA mode back
on, it was necessary to reboot the affected machine.

Also, for the disjunct configuration, rsh did not work properly sometimes. It happens that a host
could not be found. Then, no connection was possible for some time.

98

10 Appendix

10.3 PVFS2 file system configuration files

The configuration files are for the DBPF non-syncing case. For metadata synchronizing the storage
hint TroveSyncMeta is set to yes. The HandleRecycleTimeoutSecs for MPI-I/O operations is set to
5000 to avoid additional lookup of the file attributes and name. However, this has little influence on
the throughput.

10.3.1 One metadata and one data server

<Defaults>
UnexpectedRequests 50
LogFile /tmp/pvfs2-kunkel.log
EventLogging none
LogStamp usec
BMIModules bmi_tcp
FlowModules flowproto_multiqueue
PerfUpdateInterval 1000
ServerJobBMITimeoutSecs 30
ServerJobFlowTimeoutSecs 30
ClientJobBMITimeoutSecs 300
ClientJobFlowTimeoutSecs 300
ClientRetryLimit 5
ClientRetryDelayMilliSecs 2000
</Defaults>

<Aliases>
Alias master2 tcp://master2:6555
</Aliases>

<Filesystem>

Name pvfs2-fs

ID 48650554

TroveModule dbpf

RootHandle 1048576

<MetaHandleRanges>
Range master2 4-2147483650

</MetaHandleRanges>

<DataHandleRanges>
Range master2 2147483651-4294967297

</DataHandleRanges>

<StorageHints>
TroveSyncMeta yes
TroveSyncData no
AttrCacheKeywords datafile_handles,metafile_dist
AttrCacheKeywords dir_ent, symlink_target
AttrCacheSize 4093
AttrCacheMaxNumElems 32768
HandleRecycleTimeoutSecs 5

</StorageHints>

</Filesystem>

<Filesystem>
Name pvfs2-tas
ID 6187900
TroveModule tas
RootHandle 10

99

10 Appendix

<MetaHandleRanges>

Range master2 4-2147483650
</MetaHandleRanges>
<DataHandleRanges>

Range master2 2147483651-4294967297
</DataHandleRanges>
<StorageHints>

HandleRecycleTimeoutSecs 5
</StorageHints>

</Filesystem>

<Filesystem>
Name pvfs2-alt
ID 6000000
TroveModule alt
RootHandle 10
<MetaHandleRanges>
Range master2 4-2147483650
</MetaHandleRanges>
<DataHandleRanges>
Range master2 2147483651-4294967297
</DataHandleRanges>
<StorageHints>
HandleRecycleTimeoutSecs 5
</StorageHints>
</Filesystem>

10.3.2 One metadata and five data servers

<Defaults>
UnexpectedRequests 50
LogFile /tmp/pvfs2-kunkel.log
EventLogging none
LogStamp usec
BMIModules bmi_tcp
FlowModules flowproto_multiqueue
PerfUpdateInterval 1000
ServerJobBMITimeoutSecs 30
ServerJobFlowTimeoutSecs 30
ClientJobBMITimeoutSecs 300
ClientJobFlowTimeoutSecs 300
ClientRetryLimit 5
ClientRetryDelayMilliSecs 2000
</Defaults>

<Aliases>
Alias master2 tcp://master2:6555
Alias node05 tcp://node05:6555
Alias node06 tcp://node06:6555
Alias node07 tcp://node07:6555
Alias node08 tcp://node08:6555
</Aliases>

<Filesystem>
Name pvfs2-fs
ID 61878687
TroveModule dbpf
RootHandle 1048576

100

10 Appendix

<MetaHandleRanges>
Range master2 4-715827885
</MetaHandleRanges>
<DataHandleRanges>
Range master2 715827886-1431655767
Range node05 1431655768-2147483649
Range node06 2147483650-2863311531
Range node07 2863311532-3579139413
Range node08 3579139414-4294967295
</DataHandleRanges>
<StorageHints>
TroveSyncMeta yes
TroveSyncData no
AttrCacheKeywords datafile_handles,metafile_dist
AttrCacheKeywords dir_ent, symlink_target
AttrCacheSize 4093
AttrCacheMaxNumElems 32768
HandleRecycleTimeoutSecs 5
</StorageHints>
</Filesystem>

<Filesystem>
Name pvfs2-tas
ID 6187900
TroveModule tas
RootHandle 10
<MetaHandleRanges>
Range master2 4-715827885
</MetaHandleRanges>
<DataHandleRanges>
Range master2 715827886-1431655767
Range node05 1431655768-2147483649
Range node06 2147483650-2863311531
Range node07 2863311532-3579139413
Range node08 3579139414-4294967295
</DataHandleRanges>
<StorageHints>
HandleRecycleTimeoutSecs 5
</StorageHints>
</Filesystem>

<Filesystem>
Name pvfs2-alt
ID 6000000
TroveModule alt
RootHandle 10
<MetaHandleRanges>
Range master2 4-715827885
</MetaHandleRanges>
<DataHandleRanges>
Range master2 715827886-1431655767
Range node05 1431655768-2147483649
Range node06 2147483650-2863311531
Range node07 2863311532-3579139413
Range node08 3579139414-4294967295
</DataHandleRanges>
<StorageHints>
HandleRecycleTimeoutSecs 5
</StorageHints>
</Filesystem>

101

10 Appendix

10.3.3 Five metadata and five data servers

<Defaults>
UnexpectedRequests 50
LogFile /tmp/pvfs2-kunkel.log
EventLogging none
LogStamp usec
BMIModules bmi_tcp
FlowModules flowproto_multiqueue
PerfUpdateInterval 1000
ServerJobBMITimeoutSecs 30
ServerJobFlowTimeoutSecs 30
ClientJobBMITimeoutSecs 300
ClientJobFlowTimeoutSecs 300
ClientRetryLimit 5
ClientRetryDelayMilliSecs 2000
</Defaults>

<Aliases>
Alias master2 tcp://master2:6555
Alias node05 tcp://node05:6555
Alias node06 tcp://node06:6555
Alias node07 tcp://node07:6555
Alias node08 tcp://node08:6555
</Aliases>

<Filesystem>

Name pvfs2-fs

ID 61878687

TroveModule dbpf

RootHandle 1048576

<MetaHandleRanges>
Range master2 4-143165581
Range node05 143165582-286331158
Range node06 286331159-429496735
Range node07 429496736-572662312
Range node08 572662313-715827885

</MetaHandleRanges>

<DataHandleRanges>
Range master2 715827886-1431655767
Range node05 1431655768-2147483649
Range node06 2147483650-2863311531
Range node07 2863311532-3579139413
Range node08 3579139414-4294967295

</DataHandleRanges>

<StorageHints>
TroveSyncMeta yes
TroveSyncData no
AttrCacheKeywords datafile_handles,metafile_dist
AttrCacheKeywords dir_ent, symlink_target
AttrCacheSize 4093
AttrCacheMaxNumElems 32768
HandleRecycleTimeoutSecs 5

</StorageHints>

</Filesystem>

102

10 Appendix

<Filesystem>

Name pvfs2-tas

ID 6187900

TroveModule tas

RootHandle 10

<MetaHandleRanges>
Range master2 4-143165581
Range node05 143165582-286331158
Range node06 286331159-429496735
Range nodeQ7 429496736-572662312
Range node08 572662313-715827885

</MetaHandleRanges>

<DataHandleRanges>
Range master2 715827886-1431655767
Range node05 1431655768-2147483649
Range node06 2147483650-2863311531
Range node07 2863311532-3579139413
Range node08 3579139414-4294967295

</DataHandleRanges>

<StorageHints>
HandleRecycleTimeoutSecs 5

</StorageHints>

</Filesystem>

<Filesystem>

Name pvfs2-alt

ID 6000000

TroveModule alt

RootHandle 10

<MetaHandleRanges>
Range master2 4-143165581
Range node05 143165582-286331158
Range node06 286331159-429496735
Range node07 429496736-572662312
Range node08 572662313-715827885

</MetaHandleRanges>

<DataHandleRanges>
Range master2 715827886-1431655767
Range node05 1431655768-2147483649
Range node06 2147483650-2863311531
Range node07 2863311532-3579139413
Range node08 3579139414-4294967295

</DataHandleRanges>

<StorageHints>
HandleRecycleTimeoutSecs 5

</StorageHints>

</Filesystem>

10.3.4 Server configuration

The configuration for each server looks similar - only the hostname is changed e.g. node05 instead of
master2.

StorageSpace /tmp/pvfs2-kunkel
HostID "tcp://master2:6555"

103

List of Figures

2.1 PVFEDS2 software architecturel. o L 8
[3.1 File distribution for o datafiles using the default distribution tunction which stripes |

data over the datafiles in 64 KByte chunks in a round robin fashion| 13
3.2 Example collection| 15
3.3 Example directory storing a part of a collection| 16
4.1 Estimated upper bounds for the create operation| 30
4.2 Estimated upper bounds for large I/O requests| 31
4.3 Estimated upper bounds for one client using small 1/O requests with a varying block |

size between 0 and 10MByte] oo o o 32
[4.4 Estimated upper bounds for one client using small I1/O requests with a varying block |

size between 0 and 512KByte| oo oo 33
[4.5 Estimated upper bounds for one client using small I1/O requests with a varying block |

size between 0 and 32KBytel.o 33
[4.6 Estimated upper bounds for multiple clients using 1 KByte I/O requests| 34
[7.1 1 Metadata server(M)-1 Data server(D)-1 Client(C) - I/O using different block sizes - |

system Intertace|. L L L 48
(7.2 1M-1D-1C - read using small block sizes - system interface - extracted 49
7.3 1IM-1D-1C - write using small block sizes - system interface - extracted| 49

[7.4 1M-1D-1C-1/O using different block sizes - system interface and estimated upper bounds| 50
7.5 1M-1D-1C - I/0 using different small block sizes - system interface and estimated upper
g

bounds - extractedl L L L 51
[7.6 1M-1D-1C - read using different block sizes - system interface and MPI|. 52
[7.7 1IM-1D-1C - write using different block sizes - system intertace and MPI| 52
[7.8 1M-1D-5C - read using different block sizes| 53
7.9 1M-1D-5C - read using ditterent small block sizes - extracted|. 53
[7.10 1M-1D-5C - write using different block sizes| 54
[7.11 1M-1D-5C - write using different small block sizes - extracted| 54
[7.12 1M-1D-variable number of clients (v)C - write using a block size of 32 KByte] 55
[7.13 1M-1D-vC - read using a block size ot 32KBvytel 55
[7.14 TM-1D-vC - I/O using a block size of 32 KByte - read and write[. 56
[7.15 1M-5D-1C - read using different block sizes| 57
[7.16 1M-5D-1C - read using different small block sizes - extracted|. 57
[7.17 1M-5D-1C - write using different block sizes| 58
[7.18 1M-5D-1C - write using different small block sizes - extracted| 58
[7.19 1M-5D-5C - read using different block sizes|, 59
[7.20 1M-5D-5C - read using ditterent small block sizes - extracted|. 59
[7.21 1M-5D-1C - write using different block sizes| 60
[7.22 1M-5D-1C - write using different small block sizes - extracted| 60
[7.23 1M-5D-vC - write using a block size of 32KByte| 61
[7.24 1M-5D-vC - read using a block size ot 32KBvytel 61
[7.25 TM-5D-vC - 1/0O using a block size of 32 KByte - read and write[. 62

104

List of Figures

[7.26 1M-vD-5C - read using different block sizes - 1 and o data servers|. 63
[7.27 1IM-vD-5C - read using ditterent small block sizes - 1 and 5 data servers - extracted| . . 63
[7.28 1M-vD-oC - read using different very small block sizes - 1 and o data servers - extracted| 64
[7.29 1M-vD-5C - write using different block sizes - 1 and 5 data servers| 64

[7.30 1M-vD-oC - write using different small block sizes - 1 and 5 data servers - extracted . 65
[7.31 1M-vD-5C - write using different very small block sizes - 1 and 5 data servers - extracted| 65

[7.32 1M-vD-5C - write using a block size of 32 KByte - 1 and 5 data servers| 66
[7.33 1M-vD-5C - read using a block size ot 32 KByte - 1 and 5 data servers| 66
[7.34 1M-1D-vC - read using a block size ot 32 KByte - access ot a 3200 MByte file]. 67
[7.35 1M-1D-vC - write using a block size of 32 KByte - access of a 3200 MByte file] 68
[7.36 1M-1D-1C - read using large contiguous access| 70
[7.37 1M-1D-1C - write using large contiguous access| 70
[7.38 1M-1D-5C - read using large contiguous access| 71
[7.39 1M-1D-5C - write using large contiguous access| 71
[7.40 1M-1D-vC - read using large contiguous access - access of a 12800 MByte file]. 72
[7.41 1M-1D-vC - write using large contiguous access - access of a 12800 MByte file] 72
[7.42 1M-1D-vC - I/O using large contiguous access - read and write - 12800 MByte file|. . . 73
[7.43 1M-1D-1C - read using large contiguous access| 74
[7.44 1M-1D-1C - write using large contiguous access| 75
[7.45 1M-1D-5C - read using large contiguous access| 75
[7.46 1M-1D-5C - write using large contiguous access| 76
[7.47 1M-5D-vC - 1/O using large contiguous access - read and write - 12800 MByte file] . . . 76
[7.48 1M-1D-1C - creation of a different number of files - system interface|] 79
[7.49 1IM-1D-1C - deletion of a different number of files - system intertace|[. 80
[7.50 1M-1D-1C - creation of a different number of files - MPI and system interface| 81
-1D-1C - 1 1 les 81

-1D-5C - creation of a different number of files 82

-1D-vC - creation of 6400 filed Lo 82

-1D-vC - creation of 51200 files] 83

[7.55 1M-1D-1C - creation ot a different number of files - system interface and estimated |
upper bounds| Lo 83

[7.56 1M-1D-vC - creation ot 6400 files - MPI and the estimated upper bounds|. 84
-vD-vC - i les - T and 5 dataservers 85

-0D-1C - creation of a different number of files 85

-5D-5C - creation of a different number of filegl 86

-0D-vC - creation of 6400 files 86

-5D-vC - creation of 51200 files] 87

-oD-1C - - 1 and 5 metadata servers 88

-oD-1C - - 1 and 5 metadata servers 89

-5D-5C - - 1 and 5 metadata servers 89

-0D-5C - - 1 and 5 metadata servers 90

-5D-vC - i iles - 1 and 5 metadata servers 90

-0D-v(C - 1les - 1 and 5 metadata serversl 91

[7.68 vM-vD-vC - creation of 1000 files per node - 1 process per node| 92
[7.69 vM-vD-vC - creation of 1000 files per node - 1 and o processes per node| 93

[10.1 Comparison of ALT with one and three keyval databases for the configuration with 1 |

metadata and 1 data server. Creation rate for a variable client number creating a total |

[10.2 Comparison of ALT with different cache sizes for the configuration with 1 metadata |

and 1 data server. Creation rate for o clients creating a different total number of files| . 98

105

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

18]

9]

[10]

Withanage Don Samantha Dulip. Performance Visualization for the PVFS2 Environment. Bach-
elor’s thesis, Ruprecht-Karls-Universitdt Heidelberg, Institute of Computer Science, Research
Group Parallel and Distributed Systems, November 2005.

Trinity Logic Inc. IC35L090AVV207-0. Online-document http://www.tl-c.ru/pub/ccatalog?
1=0&v=34&typ=3240, 2003.

Julian Martin Kunkel. Das parallele Dateisystem PVFS2. PDF-document http://pvs.
informatik.uni-heidelberg.de/Teaching/BACC-0304/, January 2004. Slides of a talk at the
Ruprecht-Karls-Universitat Heidelberg.

Julian Martin Kunkel, Thomas Ludwig, and Hipolito Vasquez. Weit verteilt - Dateisystem fiir
parallele Systeme. iX - Magazin fiir professionelle Informationstechnik, (6):110-113, 2004.

Jeff Layton. Cluster Monkey - Benchmarking Parallel File Systems. Online-document http:
//www.clustermonkey.net//content/view/62/32/, 2003.

Sleepycat Sofware: Makers of Berkeley DB. Performance Metrics & Benchmarks: Berkeley DB.
PDF-document http://www.sleepycat.com/pdfs/wp_perf_0705cl.pdf.

Sleepycat Sofware: Makers of Berkeley DB. Getting Started with Berkeley DB for C. PDF-
document http://www.sleepycat.com/docs/gsg/C/BerkeleyDB-Core-C-GSG.pdf, september
2004.

PVFS Development Team. Parallel Virtual File System Version 2. PVFS2 Internal Documenta-
tion included in the source code package, 2003.

PVFS Development Team. Trove Database + Files (DBPF) Implementation. PVFS2 Internal
Documentation included in the source code package, 2005.

PVFS Development Team. Trove: The PVFS2 Storage Interface. PVFS2 Internal Documentation
included in the source code package, 2005.

106

http://www.tl-c.ru/pub/ccatalog?l=0&v=34&typ=3240
http://www.tl-c.ru/pub/ccatalog?l=0&v=34&typ=3240
http://pvs.informatik.uni-heidelberg.de/Teaching/BACC-0304/
http://pvs.informatik.uni-heidelberg.de/Teaching/BACC-0304/
http://www.clustermonkey.net//content/view/62/32/
http://www.clustermonkey.net//content/view/62/32/
http://www.sleepycat.com/pdfs/wp_perf_0705c1.pdf
http://www.sleepycat.com/docs/gsg/C/BerkeleyDB-Core-C-GSG.pdf

	General Goals of the Thesis
	System Overview
	The Parallel Virtual File System PVFS2
	Software Architecture
	Userlevel-interface
	System interface
	Job
	Flow
	BMI
	Trove
	Server main loop

	An In-Depth Look at Trove
	System Level File Ssystem Representation
	Example collection

	Interface
	Modularity
	Explanation of Some Client Operations
	Get the attributes of a file system object
	Create a file
	Create a directory
	Read content of a directory
	File open/get object reference
	Delete a file system object
	Flushing of a file
	Do I/O
	Test the availability of a file system

	Theoretic Performance Evaluation
	Resources Limiting the Performance
	I/O subsystem
	Network
	CPU

	Scalability and Estimated Upper Bounds
	Example hardware specification
	Metadata operations
	Large I/O requests
	Small I/O requests

	Software Design
	Project Phases
	Decisions
	Enhancement of Trove Module Support
	Trove Analyzation Stub (TAS)
	Overview
	Dataspace objects
	Detailed function description

	ALTernative Implementation (ALT)
	Overview
	Dataspace objects
	Detailed function description

	Keyval iteration

	Benchmark Programs
	mpi-io-test
	mpi-md-more
	pvfs2-bench

	Evaluation
	Small Contiguous I/O Requests
	One metadata and one data server
	One metadata and five data server
	Comparison of the throughput for one and five data servers
	Access of large files with small contiguous I/O requests

	Large Contiguous I/O Requests
	One metadata and one data server
	One metadata and five data server

	Metadata Operations
	One metadata and one data server
	Comparison of the performance for one and five data server
	Five metadata servers and five data servers
	Comparison of the performance for one and five metadata servers

	Large Scale Metadata Requests
	Suggestions for a New Trove Implementation

	Summary
	Future Works
	Appendix
	Comparisons of ALT
	Difficulties
	PVFS2 file system configuration files
	One metadata and one data server
	One metadata and five data servers
	Five metadata and five data servers
	Server configuration

	List of Figures
	Bibliography

