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Abstract

We consider parameter estimation in panels of intercorrelated time series. By a fac-
torisation of the conditional log-likelihood function we obtain a new estimatorân,T

for panels of intercorrelated autoregressive time series. We generalise this model to a
factor model, where a single underlying background process is responsible for the com-
mon behaviour of the time series in the panel, and derive the corresponding conditional
maximum likelihood estimators. Consistency and asymptotic normality are proved for
the estimators in both models. It turns out thatân,T is asymptotically equivalent to the
estimatorâHT given in Hjellvik and Tjøstheim (1999a) if the number of time series
in the panel tends to infinity. It is more efficient if only the length of the time series
increases. Furthermore the mean squared errors of the dominant terms in the stochastic
expansions of these estimators have the ratio(n−1)/n, which indicates that already the
small sample bias of̂an,T is smaller than that of̂aHT . These properties are confirmed
in the simulations.
The second part of the thesis is concerned with robust estimation in panels of autore-
gressive time series. We investigate three different approaches. Firstly we robustify the
above estimators in a direct way. Furthermore we generalise the robust autocovariance
estimator of Ma and Genton (2000) to the panel case. We define a panel breakdown
point for time series in two ways depending on the type of outliers assumed and com-
pute its value for the panel autocovariance estimator. The estimated autocovariances
are then used for the robust parameter estimation. Finally we propose an outlier test
based upon the phase space representation of the time series in the panel, which can be
used for eliminating outliers from the data set before using a non-robust method of es-
timation. We derive the asymptotic distribution of the test statistic and define a robust
version of the test. For comparison we include other estimators in the analysis. The
performance of the proposed robust procedures is investigated in a simulation study.
For assessing the applicability of the above methods we analyse two sets of empirical
data.





Kurzfassung

Die vorliegende Arbeit befasst sich mit Parameterschätzung in Panels interkorrelierter
Zeitreihen. Durch eine Faktorisierung der bedingten Log-Likelihood-Funktion erhal-
ten wir einen Schätzer̂an,T in Panels von interkorrelierten autoregressiven Zeitreihen.
Dieses Modell wird zu einem Faktormodell verallgemeinert, in dem ein einzelner im
Hintergrund ablaufender Prozess für das gemeinsame Verhalten der Zeitreihen im Panel
verantwortlich ist. Hierfür entwickeln wir den zugehörigen Maximum-Likelihood-
Schätzer. Für die Schätzer in beiden Modellen werden Konsistenz und asymptotische
Normalität bewiesen. Es stellt sich heraus, dassân,T asymptotisch äquivalent zu dem
Schätzer̂aHT aus Hjellvik and Tjøstheim (1999a) ist, wenn die Zahl der Zeitreihen im
Panel gegen Unendlich strebt. Wenn nur die Länge der Zeitreihen wächst, istân,T ef-
fizienter. Zudem stehen die quadratischen Fehler der Hauptterme in der Entwicklung
dieser Schätzer im Verhältnis(n − 1)/n, was nahelegt, dass schon der Bias vonân,T

kleiner als derjenige von̂aHT ist. Diese Eigenschaften werden durch die Simulationen
bestätigt.
Der zweite Teil der Arbeit beschäftigt sich mit robuster Schätzung für Panels von au-
toregressiven Zeitreihen. Wir untersuchen drei unterschiedliche Ansätze. Zunächst
robustifizieren wir die obigen Schätzer direkt. Des weiteren verallgemeinern wir den
robusten Autokovarianzschätzer von Ma and Genton (2000) auf die Panel-Situation.
Wir definieren einen Breakdown Point für Zeitreihen in Abhängigkeit von der Art
der angenommenen Ausreißer und berechnen seinen Wert für den Panel-Autokova-
rianzschätzer. Die geschätzten Autokovarianzen werden dann für die robuste Parame-
terschätzung eingesetzt. Zuletzt schlagen wir einen Test für Ausreißer vor, der auf
der Phasenraumdarstellung der Zeitreihen im Panel beruht. Dieser kann dazu ver-
wandt werden, Ausreißer vor Anwendung einer nicht robusten Schätzmethode aus dem
Datensatz zu entfernen. Wir bestimmen die asymptotische Verteilung der Teststatistik
und definieren eine robuste Version des Tests. Zum Vergleich schließen wir weitere
Schätzer in die Untersuchung mit ein. Das Verhalten der vorgeschlagenen robusten
Verfahren wird in einer Simulationssstudie untersucht.
Um die Anwendbarkeit der obigen Methoden zu beurteilen, analysieren wir zwei Daten-
sätze aus empirischen Studien.
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Introduction

Panel data analysis has a wide range of applications, including econometrics, the social
sciences, population dynamics or medical studies. In contrast to repeated measurements
of cross-sectional data, panel methods are used for analysing repeated measurements
on the same individuals. Here the term “individuals” stands for example for workers,
countries, regions or patients. If a longer period is covered, the focus is often on the
individual development, and the data is also called longitudinal data. However panels
also may consist of a small number of large cross-sectional samples. Thus two kinds of
asymptotic behaviour are of interest: increase in the length of the measurement period
or increase in the size of the cross-section.

In the present thesis we consider panels of intercorrelated time series. This means that
we assume the individual measurements to be serially correlated. Furthermore we do
not exclude correlation across the panel. This double structure of correlation implies
that standard methods for panel data analysis are not directly applicable. Nevertheless
such models are of interest in practice: the initial motivation for this thesis came from
a study conducted at the University Hospital of Heidelberg, Department of Internal and
Psychosomatic Medicine. The aim of the study was to investigate the therapy process
in a multimodal therapy for fibromyalgia syndrome patients. This is a chronic pain
disease which is characterised by widespread pain and a reduced pain threshold. The
therapy’s main focus is on helping patients to cope better in their daily life. Based
on a bio-psycho-social approach, the distinct modules combine information, medica-
tion, physical therapy and a psychotherapeutic group therapy. Thus the question arises
whether the therapy processes of different patients still can be modelled as independent
when they participate in the same therapy group. More general, it can be asked whether
undergoing the same treatment may already cause a dependency.

As data collected in an experiment always may contain outliers, we were furthermore
led to investigate robust methods for panel data. One source of contamination lies of
course in the recording of the data. However in the above study the data was collected
by the patients themselves using a handheld computer. Thus the patients filled in their
questionnaires without being able to see previous values. Moreover retrospective en-
tries could easily be identified and excluded from the data. Therefore we focus on a
second type of panel data outliers, namely those where one complete time series is ge-
nerated by a different model. Such a situation arises for example if a patient has been
wrongly assigned to a therapy group which otherwise is homogeneous.

i



ii INTRODUCTION

Intercorrelation in panels of time series

A quite general linear dynamic model for panel observations is given in (Hsiao 1986,
p. 71): LetX(i)

t , t = 1, . . . , T , i = 1, . . . , n, be a panel of time series observations,
wheret denotes time andi the individual series in the panel. Then the observations are
modelled as

X
(i)
t =

p∑

k=1

ak X
(i)
t−k + ηt + λi + β′W (i)

t + ε
(i)
t .

HereW (i)
t is a possibly vector series of explanatory variables. The random variableηt

denotes a cross-sectional effect influencing all series in the panel simultaneously and
λi stands for the individual effects not taken into account by the explanatory variables.
Finally the individual error termsε(i)

t , t = 1, . . . , T , i = 1, . . . , n, are assumed to be
independently and identically distributed.
In the analysesηt often is excluded. Hsiao writes on the following page that “for ease of
exposition, we assume that the time specific effects,ηt, do not appear”. Other standard
textbooks, e.g. Diggle et al. (1994), Arellano (2003), and the collection of Mátyás and
Sevestre (1992) do also not include this term. In the book of Baltagi (2001), interindi-
vidual correlation is only considered briefly for regression models, not for dynamic
models. Maddala (1971) discusses random time effects but concludes that his estima-
tors are biased in the presence of lagged dependent variables. A variable corresponding
to ηt already is ignored in the basic papers on dynamic models by Holtz-Eakin et al.
(1988) and Nerlove (1971). In the special framework of a large number of small sam-
ples, Cruddas et al. (1989) investigate approximate conditional likelihood estimation
for short first-order autoregressive processes; Cox and Solomon (1988) test for serial
correlation and Karioti and Caroni (2002) give a method for detecting outlying time
series characterised by a level shift. Kiviet (1995) derives an approximate small sample
bias for various estimators in dynamic models containing exogenous variables. Still, in
each of these cases the time series are assumed to be independent.
To our knowledge, parameter estimation in a dynamic model includingηt has first been
investigated by Sethuraman and Basawa (1994). They regard a panel of autoregressive
processes with mean zero. In the analyses it is treated as a multivariate time series
where the covariance structure of the innovations is accordingly restricted. The asymp-
totic distributions of the estimators are derived under the assumption that the length of
the time series tends to infinity. Hjellvik and Tjøstheim (1999a,b) essentially consider
the same model but distinguishηt and the individual error termsε(i)

t , i = 1, . . . , n. In
Hjellvik and Tjøstheim (1999a) they discuss parameter estimation for this model and
derive asymptotic distributions fornT →∞. This also includes the case that only the
number of time series tends to infinity, whereas their length remains fixed. In the subse-
quent paper (Hjellvik and Tjøstheim 1999b) they consider estimation of the variances
and order determination. Their line of research has been continued by Fu et al. (2002)
who are concerned with model selection criteria.
Forni et al. (2000, 2001) propose a so-called “generalised dynamic factor model” which
includes the above model as a special case. They are mainly concerned with determi-
ning the number of common factors in a panel model, but their method also allows
estimating the parameters in a second step. The underlying idea is to investigate the
behaviour of the (n × n)-covariance matrix if the numbern of time series in the panel
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tends to infinity.
Tests for intercorrelation can be obtained in various ways. Brillinger (1973,1980) pro-
poses a test for intercorrelation derived from the frequency domain representation of
the processes. Frees’ nonparametric test (Frees 1995), which is based on a U-statistic,
is also valid in the case of short time series.
We have not included Bayesian approaches to parameter estimation in the above over-
view. However it seems that also in the Bayesian framework dynamic models with a
common time effect are not commonly used (Congdon 2004, Bauwens et al. 1999).

Robust Methods

It is generally acknowledged that real data always may contain outliers. Hampel (1973),
for example, states that their proportion reaches 10 – 15%. Thus we need robust proce-
dures which permit inference even in the presence of outliers. In the case of single time
series, many different methods have been proposed for robustly estimating autoregres-
sive parameters. An overview of the classical estimators can be found in Martin and
Yohai (1985). Generalised M-estimators (Denby and Martin 1979, Bustos 1982, Kün-
sch 1984) are commonly used, see also Martin and Yohai (1991). Here the estimator
is defined in an indirect way and has to be obtained through numerical minimisation.
Rousseeuw and Leroy suggest using a robustified least squares procedure, the least me-
dian of squares. A similar method is the least trimmed squares estimator (Rousseeuw
and Leroy 1987). Because of the computational complexity of these estimators, a sub-
sampling algorithm is needed for computation. They are examples of S-estimators
which have been introduced in Rousseeuw and Yohai (1984). The above estimators
have been implemented in software packages such as R (Gentleman and Ihaka 2004)
and can therefore be employed directly. Furthermore we want to mention R-estimators
for parameter estimation in autoregressive models which were discussed in Koul and
Saleh (1993) and generalised in Koul and Ossiander (1994). Ferretti et al. (1991) intro-
duce RAR-estimators which are also rank-based in nature. A more recent generalisation
are the so-called weighted Wilcoxon estimators (Terpstra et al. 2001). Depending on
the weight used, they e.g. correspond to Jaeckel’s dispersion function (Jaeckel 1972)
with Wilcoxon scores, or in the AR(1) case to the median of pairwise slopes (Theil
1950, Sen 1968). The RA-estimators of Bustos and Yohai (1986) are obtained by mo-
difying the residuals used in the conditional maximum likelihood estimation equations.
For the computation an iterative procedure has to be used.
A more direct strategy is to use robust estimators of the covariance matrixΓ̂ and the
corresponding vector of autocovariancesγ̂ in the the least squares or Yule-Walker equa-
tions θ̂ = Γ̂−1γ̂. In the first case each element of the matrix and vector is estimated se-
parately, whereas in the second caseΓ̂ = (γ̂(i− j))i,j=1,...,p andγ̂ = (γ̂(1), . . . , γ̂(p))′.
The autocovariances in the above equation may be replaced by autocorrelations. It is
also possible to estimate the covariance matrix directly in a robust way. Famous exam-
ples are the generalised M-estimators proposed by Maronna (1974) and Tyler (1987) or
the projection method advocated in Maronna et al. (1992). Also the minimum volume
ellipsoid or the minimum covariance determinant estimators yield robust covariance es-
timates (Rousseeuw and Leroy 1987). A simulation study comparing the performance
of various estimators of these types can be found in Lo and Li (1990).
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A third, entirely different possibility for obtaining robust estimators is to identify out-
liers in a first step. After deleting these data from the sample, non-robust methods
can be used for the estimation. One example is the above mentioned reweighted least
squares procedure (Rousseeuw and Leroy 1987). It is often stressed (Rousseeuw and
Leroy 1987, Huber 1981) that for the diagnostic step a robust estimator should be cho-
sen since otherwise masking effects (Becker and Gather 1999) cannot be excluded.
As far as we know, there exist no methods which have been designed explicitely for
robust parameter estimation in panels of time series. In particular the case that one or
more time series are generated by a different autoregressive model, whereas the panel
otherwise is homogeneous, has never been investigated. The standard procedure is to
test for homogeneity first (Hsiao 1986, p. 11). If this assumption is rejected, the data
are modeled as heterogeneous.

Outline of the Thesis

We consider panels of dependent time series. More specifically we assume that the
individual time series have an autoregressive structure, but that the innovations allow for
a common random shock. This is also the model investigated by Hjellvik and Tjøstheim
(1999a,b). Their method is to treat the common shocks{ηt}t∈Z as a nuisance parame-
ter, which allows them to derive a conditional maximum likelihood estimator for the
autoregressive parameters. However this results in a loss of information since only
the deviations from the mean process are taken into account. By a factorisation of
the conditional likelihood function we obtain a new estimator which also includes the
information of the mean process. As it is based on a weighted average of two separate
terms, we propose a recursive algorithm for its calculation.
Furthermore the factorisation allows us to generalise our results. We assume that the
panel is generated by a single underlying process and that the individual time series
are fluctuating around it. To be more specific, we assume thatX

(i)
t = Yt + Z

(i)
t for

t ∈ Z, i = 1, . . . , n, where{Yt}t∈Z and {Z(i)
t }t∈Z, i = 1, . . . , n, are independent

autoregressive processes. It turns out that the generalised process is a special case of
the factor model proposed by Forni et al. (2000).
For proving asymptotic normality of the parameter estimators, we have to distinguish
the cases ofn → ∞, T fixed, andT → ∞. In the first case, we can use the stan-
dard central limit theorem for independently and identically distributed observations.
For T → ∞ we however have to employ a central limit theorem for martingale ar-
rays. It is shown that in the case of a finite number of time series the new estimator is
more efficient than the one of Hjellvik and Tjøstheim. Moreover we derive the rates of
convergence of the estimators. We also briefly discuss the bias terms.

In the second part of the thesis we investigate robust parameter estimation for panels of
time series. As mentioned in the beginning, we are especially interested in the case that
entire time series are outliers. Concentrating on some basic robust methods which can
easily be generalised to the panel case, we analyse three different approaches.
The first one is to robustify an estimator by replacing all non-robust parts with a robust
method in a way similar to Haddad (2000). We use this method for the parameter
estimator discussed in the previous chapter. To enhance numerical stability we propose
an iterative procedure for averaging over matrices. Since bootstrap methods can be
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used to assess the empirical bias of parameter estimators, we discuss two versions of
time series bootstrap exemplarily for this estimator.

Secondly, autocovariances may be estimated using the identity

cov(X,Y ) =
1

4ab
(var(aX + bY )− var(aX − bY ))

which is valid for any square integrable random variablesX andY . Here the vari-
ance can be replaced with a robust alternative, see Huber (1981). We generalise the
estimator proposed by Ma and Genton (2000), which is based on the robust scale esti-
matorQn (Rousseeuw and Croux 1993), to the panel case. A panel breakdown point
is defined in two ways depending on the type of outliers assumed. We compute its
value for the robust panel autocovariance estimator. The estimated autocovariances are
used as the components of the covariance matrix and the autocovariance vector. In
contrast to this elementwise robustification, we then study the behaviour of the para-
meter estimator derived from another method where the covariance matrix is estimated
directly using the minimum covariance determinant (MCD) estimator (Rousseeuw and
Leroy 1987). Next we treat as a reference two methods designed for robust regres-
sion: an M-estimator proposed by Huber (1996) and the least trimmed squares proce-
dure (Rousseeuw and Leroy 1987). These methods are investigated as alternatives to
the robustified version of the parameter estimator derived in the first chapter.

Finally we discuss two methods for outlier detection in panels of time series. We focus
on the case that entire time series may be generated by another model. The first one is
derived from a likelihood ratio test for panel homogeneity which has been proposed by
Basawa et al. (1984). We include it in order to illustrate how outliers affect a non-robust
test in our setting. The second method is based on a phase space representation of the
time series in the panel. It generalises the procedure for fast outlier detection developed
by Gather, Imhoff and Fried (2002). All of the proposed robust panel estimators are
compared in a simulation study.

As the thesis has been motivated by a medical study, applicability is an important aspect
for us. We thus use our methods for analysing two empirical data sets. First we consider
the grey-sided voles data which already served Hjellvik and Tjøstheim (1999a) as an
example. Then we analyse the data from the fibromyalgia syndrome study mentioned
at the beginning. This chapter also illustrates the behaviour of the parameter estimators
depending on the strength of the intercorrelation.

Thus the thesis is structured as follows: First we introduce our notation and summarise
some basic results. Then we regard the theoretical properties of our parameter estima-
tors in the intercorrelated model and its generalisation. We prove asymptotic normality
in both cases and derive the rates of convergence. For numerical simulations we refer to
the Appendix. The third chapter is concerned with robust estimation in the panel case.
We propose several methods based on the different concepts and investigate their be-
haviour with simulated data. In the last chapter, we apply our methods to the empirical
data. Each chapter concludes with a discussion. The Appendix contains additionally
some basic calculations which we include for reference.
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Notation

General notations

In identity matrix of dimensionn× n

1n matrix of dimensionn× n consisting of ones

tr(A) trace of the matrixA

|A| determinant of the matrixA

||X|| = (∑n
k=1X

2
k

)1/2
euclidian norm of the vectorX = (X1, . . . , Xn)′

R+
0 = {x ∈ R | x ≥ 0} set of non-negative real numbers

bxc largestz ∈ Z such thatz ≤ x

δij Kronecker delta

a(L) backward shift operator (section 1.1)

causalAR(p) process process for which the stationarity condition
a(z) 6= 0 for all z with |z| ≤ 1 (ass. 1.1.1) is fulfilled

Xn ⇒ X convergence in distribution

Xn is AN(0,Σn) Xn is asymptotically normal (see e.g. Brockwell and Davis (1991))

Panels of time series

{X(i)
t }t∈Z, i = 1, . . . , n panel ofn time series

X̄t = 1
n

∑n
i=1X

(i)
t , t ∈ Z mean process

X̊
(i)
t = X

(i)
t − X̄t, t ∈ Z ith residual process,i = 1, . . . , n

xt−1 = (Xt−1, . . . , Xt−p)
′ vector of past values derived from an AR(p) process{Xt}t∈Z

Ln,T (θ) cond. log-likelihood function in the ICM (theorem 2.4.2)

Ln(θ) = limT→∞ Ln,T (θ) pointwise limit ofLn,T (θ) for T →∞, n fixed (def. 2.5.3)

L(θ) = limn→∞ Ln,T (θ) pointwise limit ofLn,T (θ) for n→∞ (def. 2.5.3)

The intercorrelation model (ICM) is defined in section 2.2 and its generalised version (GICM)
in section 2.3. Fort ∈ Z, i = 1, . . . , n, we have

• in the ICM:

X
(i)
t =

∑∞
u=0 ψu

(
ε
(i)
t−u + ηt−u

)
=

∑∞
u=0 ψu

(
ε̊
(i)
t−u + ξt−u

)

with ε
(i)
t ∼ N(0, σ2), ηt ∼ N(0, τ2), ξt = ε̄t + ηt ∼ N(0, ω2

n), whereω2
n = τ2 + σ2

n

• in the GICM:

X
(i)
t = Z

(i)
t + Yt =

∑∞
u=0 ψu ζ

(i)
t−u +

∑∞
u=0 ϕu υt−u,

whereζ(i)
t ∼ N(0, σ2

n), υt ∼ N(0, ω2
n);

σ2 = limn→∞ σ2
n, ω2 = limn→∞ ω2

n, σij
n = cov

(
ζ
(i)
t , ζ

(j)
t

)
, i 6= j; σ̃2

n = σ2
n − σij

n

Always let
∑∞

u=0 |ψu| <∞ and
∑∞

u=0 |ϕu| <∞
and denote Ψ(h) =

∑∞
u=0 ψu ψu+|h| and Φ(h) =

∑∞
u=0 ϕu ϕu+|h|.



Chapter 1

Preliminaries

The topic of this thesis are special panels of autoregressive time series. Depending
on the context, we use different notations for representing the processes. These are
introduced in the first section. Furthermore we present some fundamental properties of
stationary autoregressive time series here and state our basic assumptions.
A tool employed several times throughout the thesis is the panel covariance estimator
γ̂n,T (h) = 1

n(T−h)

∑n
i=1

∑T
t=h+1 X

(i)
t X

(i)
t−h, wheren denotes the number of time series

in the panel andT their length. Under some regularity conditions on the correlation
structure of the time series in the panel it is mean-square consistent fornT →∞. We
prove this result in section 1.2.

1.1 Basic Results

In order to represent autoregressive time series, we often use backward shift operators
for ease of notation. The one-step backward shift operatorL is defined by

L
(
Zt

)
= Zt−1

for an arbitrary process{Zt}t∈Z. Then the AR(p) process with innovations{εt}t∈Z,

Xt =

p∑

k=1

ak Xt−k + εt , t ∈ Z,

can be written in the form

a(L)Xt =

p∑

k=0

αk Lk
(
Xt

)
= εt for all t ∈ Z .

Hereα0 = 1 andαk = −ak for all k = 1, . . . , p. We refer to the linear operatora(L)
as thebackward shift operator.

Throughout this thesis we impose the following assumptions (see e.g. Brockwell and
Davis 1991).

2
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1.1.1 ASSUMPTION

Let {Xt}t∈Z be a zero meancausalAR(p) process. This means that

Xt =

p∑

k=1

ak Xt−k + εt for all t ∈ Z,

whereap 6= 0 and the{εt}t∈Z form a white noise process withE (ε2
t ) = σ2 for all t ∈ Z.

Furthermore the coefficients fulfil

a(z) = 1− a1z − · · · − apz
p 6= 0 for all z ∈ C such that|z| ≤ 1.

The above condition implies that the process is (weakly) stationary (see e.g. Shiryayev
1984, p. 392). A second consequence is that in this case the autoregressive process can
be written as an MA(∞) process with absolutely summable coefficients.

1.1.2 LEMMA

Under assumption 1.1.1 the process{Xt}t∈Z admits a MA(∞) representation, i.e. for
all t ∈ Z we haveXt =

∑∞
u=0 ψu εt−u, where

∑∞
u=0 |ψu| <∞.

PROOF:
See e.g. Lütkepohl (1991). ut

The proof of this well-known fact is based upon the representation of the univariate
AR(p) process as a vector autoregressive process of order one which is obtained as
follows. If a1, . . . , ap are the coefficients of the autoregressive process{Xt}t∈Z, let

A =


a1 · · · · · · ap

Ip−1 0p−1


 ,

whereIp−1 is the identity matrix of order(p − 1) and 0p−1 = (0, . . . , 0)′. Denote
xt = (Xt, . . . , Xt−p+1)

′ andεt = (εt, 0, . . . , 0)′. Then for t ∈ Z the process can be
written as

xt = Axt−1 + εt .

Since it can easily be seen thatdet (Ip − zA) = 1 − ∑p
k=1 akz

k, the condition in
assumption 1.1.1 implies that all eigenvaluesλ of A fulfil |λ| < 1. This leads to a
stronger result. The proof follows the reasoning of Künsch (1995).

1.1.3 PROPOSITION

The MA(∞) coefficients{ψu}u≥0 of an AR(p) process as in assumption 1.1.1 fulfil

|ψu| ≤ c ρu for u ≥ 0 ,

with constantsc > 0 andρ < 1.

PROOF:
For any matrixM let λmax(M) = max{|λ|; λ eigenvalue ofM}.
It is known that for every matrixM and everyε > 0 there exists a matrix norm||.||
such that

λmax(M) ≤ ||M || ≤ λmax(M) + ε (1.1)
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(see e.g. Lütkepohl 1996, 8.4.1 (15)).
Let A be the matrix in the vector autoregressive representation of{Xt}t∈Z. As all
eigenvalues ofA have modulus less than 1, we can chooseε > 0 andρ < 1 such
that λmax(A) + ε ≤ ρ. Denote the matrix norm which fulfils (1.1) by||.||M . Then
||A||M ≤ ρ < 1.
Moreover, for any two matrix norms||.||a and||.||b there exists a positive constantc ∈ R
such that

||A||a ≤ c ||A||b
for all (m×m) matricesA (see e.g. Lütkepohl 1996, 8.3 (15)). Therefore we get

|ψu| = |(Au)1,1| ≤ ||Au||1 ≤ c ||Au||M ≤ c ||A||uM ≤ c ρu ,

wherec > 0 is constant. Here(Au)k,l denotes the(k, l)th component of the matrixAu

and||Au||1 = max{(Au)k,l; k, l = 1, . . . , p}. ut

This means that the autocovariance function of a Gaussian AR(p) process is square
summable.

1.1.4 LEMMA

Let {Xt}t∈Z be a causal AR(p) process withεt ∼ N(0, σ2) for all t ∈ Z. Then the
autocovariance functionγX(h) = cov (Xt, Xt+h), h ∈ Z, fulfils

∑∞
h=0 |γX(h)| < ∞,

which implies that
∑∞

h=0 γX(h)2 <∞.

PROOF:
We have seen in lemma 1.1.2 that the process{Xt}t∈Z has a MA(∞) representation
such thatXt =

∑∞
u=0 ψu εt−u for all t ∈ Z, where

∑∞
u=0 |ψu| < ∞. Because of the

orthogonality properties of the innovations{εt}t∈Z we thus have forh ∈ Z that

γX(h) = cov (Xt, Xt+h) =
∞∑

u=0

ψu ψu+|h| σ
2 <∞ .

Furthermore the preceding lemma shows that the coefficients{ψu}u≥0 fulfil |ψu| < c ρu

for all u ≥ 0, wherec > 0 and0 < ρ < 1. Therefore for allh ∈ Z

|γX(h)| ≤
∞∑

u=0

|ψu| |ψu+|h|| σ2 ≤
∞∑

u=0

ρ2u+|h| c2 σ2 = ρ|h|
1

1− ρ2
c2 σ2 .

The result follows directly. ut

Finally we want to emphasise the important relation between the MA(∞) coefficients
or the autocovariance function of an autoregressive process and its autoregressive pa-
rameter.

1.1.5 REMARK

Let {ψu}u≥0 be the coefficients in the MA(∞) representation of an autoregressive pro-
cess{Xt}t∈Z fulfilling assumption 1.1.1 and denoteΨ(h) =

∑∞
u=0 ψu ψu+|h| for h ∈ Z.

Due to the absolute summability we get thatγX(h) = cov (Xt, Xt+h) = Ψ(h)σ2 for



1.1. BASIC RESULTS 5

h ∈ Z, whereσ2 = var (εt). Thus (see e.g. Brockwell and Davis 1991, p. 93) the
autoregressive parametera = (a1, . . . , ap)

′ of the process fulfils, if we denotea0 = −1,
p∑

l=0

al Ψ(k − l) = 0 for all k > 0 and
p∑

l=0

al Ψ(−l) =

p∑

l=0

al Ψ(l) = −1 ,

which is just another form of the Yule-Walker equations. This implies in particular that
p∑

k,l=0

ak al Ψ(k − l) = −
p∑

l=0

al Ψ(−l) = 1 .

Because of the structure of the autocovariance function, these statements can directly
be transferred to autocovariance functions of any stationary autoregressive process with
the same autoregressive parameters.

The basic properties of the preceding remark are used frequently in this thesis. Further-
more we can employ the following result for calculating higher order mixed moments,
as these can be reduced to products of covariances if the underlying processes are Gaus-
sian.

1.1.6 PROPOSITION

Let {Xt}t∈Z be a causal autoregressive process as in assumption 1.1.1 with autoregres-
sive parametera = (a1, . . . , ap)

′ and autocovariance functionγ(h) = Ψ(h)σ2, h ∈ Z.
Denotea0 = −1. Then for anyz ∈ Z,

p∑

k,l=0

akal

T∑
s,t=p+1

γ(s− t− k + l) γ(s− t+ z) = (T − p)σ2 γ(z)

and for anyz1, z2 ∈ Z such thatz1 + z2 > 0,

p∑

k,l=0

akal

T∑
s,t=p+1

γ(s− t+ z1 − k) γ(s− t− z2 + l) = 0 .

PROOF:
We have mentioned in the preceding remark that the Yule-Walker equations for autoco-
variances lead to

∑p
l=0 al γ(k − l) = 0 for all k > 0 and

∑p
l=0 al γ(−l) = −σ2. Thus

for anyz ∈ Z
p∑

k,l=0

akal

T∑
s,t=p+1

γ(s− t− k + l) γ(s− t+ z)

=

T−p−1∑

h=−(T−p−1)

((T − p)− |h|)
p∑

k,l=0

akal γ(h− k + l) γ(h+ z)

=

T−p−1∑

h=0

((T − p)− h)

p∑

l1=0

al

(
p∑

k=0

ak γ(h+ l − k)

)
γ(h+ z)

+

T−p−1∑

h=1

((T − p)− h)

p∑

k=0

ak

(
p∑

l1=0

al γ(h+ k − l)

)
γ(h− z)
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= (T − p) a0

(
p∑

k=0

ak γ(−k)
)
γ(z)

= (T − p) σ2 γ(z) ,

since with exception ofh = l = 0 all terms vanish.
Moreover, for anyz1 andz2 such thatz1 + z2 > 0, the same reasoning leads to

p∑

k,l=0

akal

T∑
s,t=p+1

γ(s− t+ z1 − k) γ(s− t− z2 + l)

=
T∑

s,t=p+1

(
p∑

k=0

ak γ ((s− t+ z1)− k)

)
×

(
p∑

l1=0

al γ ((s− t− z2) + l)

)

=
T∑

s,t=p+1
s−t+z1≤0

(
p∑

k=0

ak γ ((s− t+ z1)− k)

)
×

(
p∑

l1=0

al γ ((t− s+ z2)− l)

)

=
T∑

s,t=p+1
s−t+z1≤0
t−s+z2≤0

(
p∑

k=0

ak γ ((t− s− z1) + k)

)
×

(
p∑

l1=0

al γ ((t− s+ z2)− l)

)

= 0 ,

as the last sum is empty. ut

1.2 The Panel Autocovariance Estimator

In this thesis we are concerned with identically distributed but dependent time series.
In order to investigate the asymptotic behaviour of the parameter estimators, we need
an estimator of the autocovariance function of the time series which is consistent if
nT → ∞. Indeed it is not necessary that the time series are independent. We only
have to assume that the cross-sectional correlation is bounded (ifn, T → ∞) or tends
to zero (ifn→∞, T fixed). More precisely, we impose the following:

1.2.1 ASSUMPTION

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of identically distributed weakly stationary

time series such that

X
(i)
t ∼ N(0, σ2

n) ,

γii
n (h) = cov(X

(i)
t , X

(i)
t+h) = γn(h) for all t ∈ Z;

and fori 6= j γij
n (h) = cov(X

(i)
t , X

(j)
t+h) = unγn(h) ,

whereγn(h), h ∈ Z, andun ∈ R are independent ofi andj.
Furthermore assume that the autocovariance function is square summable, i.e. that

∞∑

h=0

γ2
n(h) <∞ .
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This is motivated by the intercorrelation model (“ICM”) we will investigate in this the-
sis (definition 2.2.2). In this model the time series in the panel are not independent. By
subtracting the pointwise sample mean from each time series{X(i)

t }t∈Z, i = 1, . . . , n,
we obtain residual processes{X̊(i)

t }t∈Z, i = 1, . . . , n. The covariance function for two
residual processes{X̊(i)

t }t∈Z and{X̊(j)
t }t∈Z is in the example of the ICM

γ̊ij
n (h) = cov

(
X̊

(i)
t , X̊

(j)
t+h

)
=

(
δij − 1

n

)
Ψ(h)σ2 ,

whereσ2 andΨ(h), h ∈ Z, (which is independent ofi andj) do not depend onn.

1.2.2 REMARK

1. In this section, the assumption of a centred process is mainly for notational con-
venience. The subsequent proposition remains valid if we supposeµ 6= 0 and
change the atuocovariance estimator accordingly, using the overall mean as an
estimator ofµ. However, the models investigated later on are always panels
formed of autoregressive processes with zero mean or linear combinations of
such processes.

2. The intercorrelation coefficientun could also be defined as a function of the lag
h. However, this would complicate the notations in the following lemma. As
can be seen from its proof, we would have to assume a common upper bound for
theun(h) in the case ofn, T → ∞. And if n → ∞, T fixed, the convergence
should be uniform inh. In practice,un will mostly be chosen independent ofh.
Very often we moreover assume thatun = O

(
1
n

)
. In the example of the ICM,

un(h) = −1/(n− 1) for all lagsh.

We always consider panel autocovariance estimators of the following form.

1.2.3 DEFINITION

LetX(i)
t , t = 1, . . . , T , i = 1, . . . , n, be observations from a panel of time series as in

assumption 1.2.1. Forh ≥ 0 we define thepanel autocovariance estimatorγ̂n,T (h) as
the estimator ofγn(h) obtained by

γ̂n,T (h) =
1

n (T − h)

n∑
i=1

T∑

t=h+1

X
(i)
t X

(i)
t−h .

Forh < 0, let γ̂n,T (h) = γ̂n,T (−h).

Now we prove mean-square consistency for this estimator. If the intercorrelation coef-
ficient un decreases fast enough, it even holds if only the number of time series tends
to infinity. As the conditions of the lemma are fulfilled by the residual processes in the
ICM, the result is used several times in the subsequent proofs. It is the main tool for
establishing the asymptotic properties of our parameter estimators.
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1.2.4 LEMMA

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of time series as in assumption 1.2.1. Then we

have for|h| ≤ T that

E (γ̂n,T (h)− γn(h))2 = O

(
1

nT

)
+O

(
u2

n

T

)
.

PROOF:
Let n, T ∈ N, 0 ≤ h < T , andI = {h + 1, . . . , T} × {1, . . . , n}. Due to the linearity
of the expectation we haveE (γ̂n,T (h)) = γn(h). Since by assumptionX(i)

t ∼ N(0, σ2
n)

for all i = 1, . . . , n, all cumulants of third and higher order are zero. Therefore we get
analogously to (Shiryayev 1984, p. 290) that

E (γ̂n,T (h)− γn(h))2

=
1

n2 (T − h)2

∑

(t1,i),(t2,j)∈I

(
γij

n (t1 − t2)
2 + γij

n (t1 − t2 + h) γij
n (t1 − t2 − h)

+ γii
n (h) γjj

n (h)
)
− γn(h)2

=
1

n (T − h)2

T∑

t1,t2=h+1

(
1 + (n− 1)u2

n

)

× (
γn(t1 − t2)

2 + γn(t1 − t2 + h) γn(t1 − t2 − h)
)

≤ 1

n (T − h)2

T−h−1∑

s=−(T−h−1)

(T − h− |s|) (
1 + (n− 1)u2

n

)

× (
γn(s)2 + γn(s+ h)2 + γn(s− h)2

)
.

The last inequality is just an application of the second binomial formula. Since by
assumption 1.2.1 we have that

∑T−1
h=0 γ

2
n(h) = O(1), this concludes the proof. ut

1.2.5 REMARK

1. The above result illustrates in particular the important role of the strength of
intercorrelation induced byun. If n is fixed,un obviously is a constant. How-
ever in the case ofn → ∞ the lemma only yields mean-square convergence if
limn→∞ |un| ≤ c <∞ (if alsoT →∞) or if limn→∞ un = 0 (if T is fixed).

2. The first case,T → ∞, n fixed, could also be obtained directly using the Min-
kowski inequality. It is a direct consequence of the mean-square convergence of
the original autocovariance estimator.

3. Note that the statement of the theorem remains unchanged if we replace the factor
1/(T − h) in the definition of the panel autocovariance estimator by1/(T − p),
wherep < T is fixed, and start the summation witht = p + 1. This is the form
of the lemma used from now on, as we focus on AR(p) processes.

4. For proving convergence of the panel autocovariance estimator it is not neces-
sary that the autocovariance function is square summable. As all processes are
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Gaussian by assumption, they admit continuous spectral functions. This is equi-
valent to the fact that1

T

∑T
h=0 γ

2
n(h) → 0 for T → ∞ (Shiryayev 1984, p. 414),

which is sufficient for proving the mean-square convergence. However, we have
shown in lemma 1.1.4 that in the case of Gaussian AR(p) processes,γn(h) is al-
ways square summable, and these are the models we regard in this thesis. The
assumption allows the direct computation of the rate of convergence.

As we see from the proof of the above lemma, the rate of convergence forn → ∞
depends on the behaviour of the intercorrelation coefficient{un}n≥0. Thus we get a√
n-rate of convergence under restrictions onun. As in particular the interest is on

convergence to a fixed limit autocovariance function, we state the result as follows.

1.2.6 COROLLARY

If in the above setting there exists an autocovariance functionγ such that for allh ∈ Z
|γn(h)− γ(h)| = O

(
1
n

)
and if furthermoreu2

n = O
(

1
n

)
, we get that

E (γ̂n,T (h)− γ(h))2 = O

(
1

nT

)
.

PROOF:
This is an direct conclusion from the mean-square convergence ofγ̂n,T (h) − γn(h),
which has been proved in the preceding lemma 1.2.4. ut



Chapter 2

The Intercorrelation Model

2.1 Motivation

There are applications in which the hypothesis that the time series in a panel are inde-
pendent is artificial. The following data illustrates this nicely. It also served Hjellvik
and Tjøstheim (1999a,b) as an example of intercorrelated time series.
Figure 2.1 shows the yearly catches of grey-sided voles at 41 different locations on
Hokkaido, Japan, on a logarithmic scale. The measurements cover the span of 31 years,
from 1962 to 1992. We can see that there are years where most of the time series
simultaneously attain a local minimum or maximum respectively; this suggests a strong
intercorrelation of the time series.

1965 1970 1975 1980 1985 1990

0
1

2
3

4

year

Figure 2.1: Vole data:log(V
(i)
t + 1), where{V (i)

t , 1962 ≤ t ≤ 1992, 1 ≤ i ≤ 41} is
the number of grey-sided voles captured each year from 1962 to 1992 in 41 different
locations in Hokkaido, Japan.

If we take the number of trapped voles as an indicator for the size of the population,
we can, for example, think of climatic influences such as exceptionally hot summers or
cold winters invoking this pattern. Another possibility is the existence of some predator
which hunts the voles and is more mobile than they are. It is easy to imagine even more
complex settings. Often it may be difficult to find the right covariates. Moreover, these
data might not be available. This indeed is the case for the voles data where we were
not provided with further information. Thus our approach is to model the common
effects as random influences.

10
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We now first introduce one specific model for a panel of intercorrelated time series,
the ICM. Then we investigate a generalisation thereof, where the background process
and the individual processes are allowed to have different autoregressive coefficients
a = (a1, . . . , ap)

′ andb = (b1, . . . , bq)
′. We call this model the GICM. In section 2.4

we derive conditional maximum likelihood estimators for both models. It turns out
that the estimator developed by Hjellvik and Tjøstheim (1999a) is the same as the pa-
rameter estimator̂θa obtained from the general model under the restriction thata = b
(remark 2.4.8). Subsequently, we prove asymptotic normality for these estimators. We
show that ifn→∞, the estimator of the autoregressive parameters in the ICM and the
estimator obtained from̂θa are asymptotically equivalent. However, ifn is fixed and
T →∞, the ICM estimator has a higher relative efficiency. Finally, we discuss the rates
of convergence and the bias. It is shown that in the case ofn fixed, the mean squared er-
ror of the dominating term in the stochastic expansion is smaller for the ICM estimator
than for the estimator of Hjellvik and Tjøstheim (1999a). The chapter concludes with
an evaluation of the obtained results and an outlook on possible extensions. Simulations
illustrating the performance of the estimators can be found in the Appendix A.

2.2 The Model (ICM)

We consider a panel ofn intercorrelated time series

X
(i)
t =

p∑

k=1

akX
(i)
t−k + ε

(i)
t + ηt, i = 1, . . . , n, t ∈ Z ,

wherep denotes the order of the autoregressive process. Hereε
(i)
t is a random shock

specific for the time seriesi, whileηt denotes the common cross sectional influence. We
only investigate the case of real valued time series. Moreover we assume that all time
series admit the same dynamical structure, i.e. that the coefficientsak, k = 1, . . . , p, are
independent ofi. This is the model also treated by Hjellvik and Tjøstheim (1999a,b).

Altogether, we assume the following:

2.2.1 ASSUMPTION

(i) The processes{ε(i)
t }t∈Z, i = 1, . . . , n, and{ηt}t∈Z are independent Gaussian

white noise processes with

ε
(i)
t ∼ N(0, σ2) for t ∈ Z, i = 1, . . . , n,

and
ηt ∼ N(0, τ 2) for t ∈ Z .

(ii) The processes{X(i)
t }t∈Z, i = 1, . . . , n, are given by

X
(i)
t =

p∑

k=1

ak X
(i)
t−k + ε

(i)
t + ηt for t ∈ Z, i = 1, . . . , n .
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They are causal (see assumption 1.1.1) with MA(∞) representation

X
(i)
t =

∞∑
u=0

ψu ξ
(i)
t−u for all t ∈ Z, i = 1, . . . , n,

where ξ
(i)
t = ε

(i)
t + ηt and

∞∑
u=0

|ψu| <∞.

(iii) The parameterθ = (a1, . . . , ap, σ
2, τ 2)′ ∈ Θ, whereΘ ⊂ Rp+2 is a compact

parameter space. Furthermore we have for allθ = (α′, σ2
θ , τ

2
θ )′ ∈ θ thatτ 2 ≥ 0

and that there exists ac > 0 such thatσ2 ≥ c for all θ ∈ Θ.

Thus the model is a panel of identically distributed autoregressive time series sharing a
common intercorrelation factor.

2.2.2 DEFINITION

If assumption 2.2.1 is fulfilled, we call the panel of time series described above the
intercorrelation model (“ICM”). From the ICM we derive themean process

X̄t =
1

n

n∑
i=1

X
(i)
t , t ∈ Z, (2.1)

and then residual processes

X̊
(i)
t = X

(i)
t − X̄t , t ∈ Z , i = 1, . . . , n. (2.2)

2.2.3 REMARK

1. Using the backward shift operatora(L) (section 1.1), equations (2.1) and (2.2)
can be written fort ∈ Z, i = 1, . . . , n, as

a(L) X̄t = ηt + ε̄t, where ε̄t =
1

n

n∑
i=1

ε
(i)
t ,

and a(L) X̊
(i)
t = ε̊

(i)
t , where ε̊(i)

t = ε
(i)
t − ε̄t .

2. ε̄s andε̊(i)
t are independent for alls, t ∈ Z since the processesε(i)

t , i = 1, . . . , n,

are independent and Gaussian. Thus also{X̄t}t∈Z and{X̊(i)
t }t∈Z, i = 1, . . . , n,

are independent Gaussian processes.

3. As the processes{X(i)
t }t∈Z, i = 1, . . . , n, are causal, this is also the case for

{X̄t}t∈Z and{X̊(i)
t }t∈Z, i = 1, . . . , n. They admit representations asMA(∞)

processes with the same coefficients{ψu}u≥0 (see lemma 1.1.2).

So for allt ∈ Z, i = 1, . . . , n,

X
(i)
t =

∞∑
u=0

ψu (ηt−u + ε
(i)
t−u) , X̄t =

∞∑
u=0

ψu (ηt−u + ε̄t−u)
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and X̊
(i)
t =

∞∑
u=0

ψu ε̊
(i)
t−u .

This means that the processX(i)
t = X̊

(i)
t − X̄t can be viewed as a sum of two

MA(∞) processes having the same coefficients.

We can easily derive the autocovariance functions. The next lemma serves as reference
as we use these representations throughout the entire thesis.

2.2.4 LEMMA

Let Ψ(h) =
∑∞

u=0 ψu ψu+|h|.
The autocovariance functions in the ICM are given forh ∈ Z, i, j = 1, . . . , n, by

γn(h) = cov
(
X

(i)
t , X

(i)
t+h

)
= Ψ(h) (τ 2 + σ2) ,

γ̄n(h) = cov
(
X̄t, X̄t+h

)
= Ψ(h)ω2

n , whereω2
n = var(ηt + ε̄t) = τ 2 +

σ2

n
,

and γ̊n(h) = cov
(
X̊

(i)
t , X̊

(i)
t+h

)
= Ψ(h)

(
n− 1

n

)
σ2 .

For i 6= j, γ̊ij
n (h) = cov(X̊

(i)
t , X̊

(j)
t+h) = Ψ(h)

(
−σ2

n

)
.

If {Z(i)
t }t∈Z is the processes generated by{ε(i)

t }t∈Z, wherei ∈ {1, . . . , n}, i.e. if

Z
(i)
t =

∞∑
u=0

ψu ε
(i)
t−u for all t ∈ Z,

its autocovariance functions is given byc(h) = cov
(
Z

(i)
t , Z

(i)
t+h

)
= Ψ(h)σ2.

PROOF:
The assertions can be derived directly from the MA(∞) representations of the processes
as the coefficients{ψu}u≥0 are absolutely summable (lemma 1.1.2). ut

2.2.5 REMARK

1. Note that the processes{Z(i)
t }t∈Z, i = 1, . . . , n, are not observable. However

they are used e.g. as a tool in the proof of asymptotic normality of the parameter
estimators in the ICM in the case ofn → ∞, T fixed. We can also representγ̊n

by γ̊n(h) = n−1
n
c(h) for all h ∈ Z.

2. In lemma 1.2.4 we have shown mean-square convergence of the autocovariance
parameter estimator. The rate isO

(
1

n T

)
if u2

n = O
(

1
n

)
(see corollary 1.2.6).

This is fulfilled by the processes{X̊(i)
t }t∈Z, i = 1, . . . , n in the ICM: as can be

seen from the above considerations, there

un =
γ̊ij

n (h)

γ̊n(h)
= − 1

n− 1
for all h ∈ Z .
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3. The processes{X(i)
t }t∈Z, i = 1, . . . , n, themselves do not fulfil the condition of

u2
n = O

(
1
n

)
. For the mean process{X̄t}t∈Z we however get with the methods of

lemma 1.2.4 that

E

(
1

T − p

T∑
t=p+1

X̄t X̄t−h − γ̄n(h)

)2

=
1

(T − p)2

T∑
s,t=p+1

(
Ψ(s− t)2 + Ψ(s− t− h) Ψ(s− t+ h)

)
ω4

n

= O

(
ω4

n

T

)

since all higher order cumulants are zero as the process{X̄t}t∈Z is Gaussian. As

ω2
n = τ 2 + σ2

n
, we thus even have mean-square convergence of orderO

(
1

n
√

T

)
if

τ 2 = var ηt = 0, i.e. in the degenerate case of no intercorrelation.

2.3 Generalisation (GICM)

Up to here, we have divided the processes{X(i)
t }t∈Z, i = 1, . . . , n, into a mean process

andn residual processes following the same dynamics. A more general class of models
is given by decompositions of the formX(i)

t = Z
(i)
t +Yt, where{Z(i)

t }t∈Z, i = 1, . . . , n,
and{Yt}t∈Z are stationary autoregressive processes: we now assume that the “mean”
or “background” process{Yt}t∈Z is responsible for the common structure of the panel,
and that the time series{X(i)

t }t∈Z, i = 1, . . . , n, fluctuate around{Yt}t∈Z.
More specifically, our assumptions are as follows:

2.3.1 ASSUMPTION

(i) The background process{Yt}t∈Z is a causal Gaussian autoregressive process (as-
sumption 1.1.1), such that

b(L)Yt = υt for all t ∈ Z,
whereL is the backward shift operator andb(L) = 1− b1 L− · · · − bq Lq.

(ii) For i = 1, . . . , n, t ∈ Z, let X(i)
t = Z

(i)
t + Yt , where the residuals{Z(i)

t }t∈Z,
i = 1, . . . , n, are causal and obey

a(L)Z
(i)
t = ζ

(i)
t for all t ∈ Z, i = 1, . . . , n,

with a(L) = 1− a1 L− · · · − ap Lp .

(iii) The innovations{υt}t∈Z and{ζ(i)
t }t∈Z, i = 1, . . . , n, are Gaussian white noise

processes such that
υt ∼ N(0, ω2

n) for all t ∈ Z,
wherelimn→∞ ω2

n = ω2 ≥ 0, and

ζ
(i)
t ∼ N(0, σ2

n) for all t ∈ Z, i = 1, . . . , n,
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wherelimn→∞ σ2
n = σ2

0 > 0.

ζ
(i)
s andυt are independent for alls, t ∈ Z, i = 1, . . . , n.

(iv) For i 6= j, letσij
n = cov

(
ζ

(i)
t , ζ

(j)
t

)
. We assume thatlimn→∞ σij

n = 0.

(v) Moreover assume thatθa = (a1, . . . , ap, σ
2
n) ∈ Θa ⊂ Rp × R+

0 and that analo-
gouslyθb = (b1, . . . , bq, ω

2
n) ∈ Θb ⊂ Rq × R+

0 , whereΘa andΘb are compact
parameter spaces.

Based on these assumptions, we define a generalised model of intercorrelated time
series.

2.3.2 DEFINITION

If assumption 2.3.1 is fulfilled, we call the panel of time series described above the
generalised intercorrelation model (“GICM”). From the GICM we derive themean
processes

X̄t =
1

n

n∑
i=1

X
(i)
t and Z̄t =

1

n

n∑
i=1

Z
(i)
t , t ∈ Z,

and theresidual processes

X̊
(i)
t = Z̊

(i)
t = X

(i)
t − X̄t , t ∈ Z, i = 1, . . . , n.

Moreover we letσ̃2
n = σ2

n − σij
n , ζ̄t = 1

n

∑n
i=1 ζ

(i)
t and ζ̊(i)

t = ζ
(i)
t − ζ̄t for t ∈ Z,

i = 1, . . . , n.

2.3.3 REMARK

1. Note thatσij
n does not depend oni andj as the innovations are assumed to be

identically distributed. However, we have not assumedζ
(i)
t andζ(j)

t to be inde-
pendent fori 6= j. We just have to guarantee that the intercorrelation is “not
too large”, because we want to use the mean-square consistency of the panel
covariance estimator (lemma 1.2.4) for proving asymptotic normality of our pa-
rameter estimators. Usually we moreover assume thatσij

n = O
(

1
n

)
. We will

see in lemma 2.3.6 that thenYt can be approximated bȳXt for all t ∈ Z since
E

(
X̄t − Yt

)2
= O

(
1
n

)
. This approximation is used in section 2.4.3 for the esti-

mation ofθb.

2. Secondly, as all processes are causal, we can represent them as MA(∞) processes
(lemma 1.1.2):

Z
(i)
t =

∞∑
u=0

ψu ζ
(i)
t−u and Yt =

∞∑
u=0

ϕu υt−u ,

where{ψu}u≥0 and{ϕu}u≥0 are absolutely summable. This means that the panel
{X(i)

t }t∈Z, i = 1, . . . , n, is a special case of a factor model as investigated in Forni
et al. (2000):

X
(i)
t =

∞∑
u=0

ψu ζ
(i)
t−u +

∞∑
u=0

ϕu υt−u , for t ∈ Z, i = 1, . . . , n,
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where
∑∞

u=0 ϕu υt−u is the common and
∑∞

u=0 ψu ζ
(i)
t−u is the idiosyncratic com-

ponent. Forni et al. (2000) show that their estimator of the common component
is consistent forn, T → ∞. In the present case of only one common factor,
their method yields{X̄t}t∈Z as the estimator of the common factor. However,
their focus is on estimating the common components and in particular their num-
ber, whereas here the main interest is on parameter estimation. Nevertheless,
the consistency result for the estimatorθ̂b of θb obtained in theorem 2.4.15 re-
flects the convergence properties of{X̄t}t∈Z to the common component (see re-
mark 2.4.16): the convergence behaviour of the estimator of the common factor is
discussed in Forni et al. (2001). In particular the authors show that if bothn and
T tend to infinity, the estimator is consistent, even if the length of the time series
grows arbitrarily slow. This behaviour can also be observed in theorem 2.4.15; in
the special case treated here the result can be proved directly.

The above assumptions allow for a much broader modelling as we can see in the fol-
lowing examples:

2.3.4 EXAMPLES

1. Obviously, we obtain the ICM described in the last section as a special case:

let Yt = X̄t for all t ∈ Z andb(L) = a(L). In the notation of the GICM, we
haveζ(i)

t = ε̊
(i)
t andυt = ηt + ε̄t, i.e. hereZ(i)

t = X̊
(i)
t . In particular, this im-

plies thatZ(i)
t = Z̊

(i)
t because in the ICM̄Zt = 1

n

∑n
i=1 X̊

(i)
t = 0. Moreover it

can be seen thatω2
n = var υt = τ 2 + σ2

n
, whereτ 2 = var ηt andσ2 = var ε

(i)
t .

Thus the notation is consistent. The varianceσ2
n = var ζ

(i)
t in the GICM cor-

responds tovar ε̊
(i)
t = n−1

n
σ2 in the ICM, whereas fori 6= j we have that

σij
n = cov

(
ζ̊

(i)
t , ζ̊

(j)
t

)
in the GICM corresponds tocov

(
ε̊
(i)
t , ε̊

(j)
t

)
= − 1

n
σ2.

This shows in particular thatσ2
0 = limn→∞ σ2

n = σ2 = var ε
(i)
t .

2. Starting from the ICM, wherea(L)X
(i)
t = ε

(i)
t + ηt, for t ∈ Z, i = 1, . . . , n, we

can derive the simplest form of the GICM by settingb(L) = a(L), a(L)Yt = ηt

anda(L)Z
(i)
t = ε

(i)
t for t ∈ Z. Here, we cannot derive{Yt}t∈Z directly from the

data. However, ifn is large, we can approximate{Yt}t∈Z by {X̄t}t∈Z. Because
the{ε(i)

t }t∈Z are independent fori = 1, . . . , n, in this caseσij
n = 0.

3. By assumption we always have

a(L)X
(i)
t = a(L)Z

(i)
t + a(L)Yt = ζ

(i)
t + a(L)Yt .

Thusηt in the ICM corresponds toa(L)Yt in the GICM.

We can additionally assume that the processes are linked. Let for exampleq > p
and

b(L) = c(L) a(L)

with c(L) = 1− c1 L− · · · − cq−p Lq−p, c(L) invertible.
Then, since

a(L)X
(i)
t = c(L)−1 υt + ζ

(i)
t for t ∈ Z, i = 1, . . . , n,
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c(L)−1 υt corresponds toηt andζ(i)
t to ε(i)

t . Hence this case is a generalisation of
the ICM allowingηt to be an autoregressive process.

Of course we can also regard the “inverse” linkinga(L) = c(L) b(L). We need
p > q and get

a(L)X
(i)
t = c(L) υt + ζ

(i)
t for t ∈ Z, i = 1, . . . , n, .

Here{ηt}t∈Z corresponds to a finite moving average process.

This last class of examples allows for a large variety of common shocks{ηt}t∈Z, as
autoregressive processes can be used to model very different data. Therefore, also the
GICM is very flexible. Since in generala(L) 6= b(L), estimation in the GICM is done
separately forθa = (a1, . . . , ap, σ

2
n) andθb = (b1, . . . , bq, ω

2
n). The first parameter is

estimated using the residuals{X̊(i)
t }t∈Z, i = 1, . . . , n; the second one is obtained from

{Yt}t∈Z.

2.3.5 REMARK

1. If we are only interested in the parameter of the individual processes, the structure
of ηt = a(L)Yt does not play a role in the estimation procedure. It is eliminated
by the transformation̊X(i)

t = X
(i)
t − X̄t. This will be discussed in more detail

in section 2.4.3 (remark 2.4.8), where we derive the conditional log-likelihood
functions. We however want to infer about the structure of{Yt}t∈Z, too; thus the
assumption ofYt, t ∈ Z, being a causal autoregressive process. Furthermore,
in the special case of the ICM, including{X̄t}t∈Z into the analysis leads to an
improvement of the estimators. We discuss this effect at the end of section 2.6,
which is concerned with the asymptotic properties of the different estimators, in
remark 2.6.10.

2. For X̊(i)
t = X

(i)
t − X̄t = Z̊

(i)
t we now obtain fort ∈ Z, i = 1, . . . , n, that

a(L) X̊
(i)
t = a(L)Z

(i)
t − a(L)

1

n

n∑
i=1

Z
(i)
t = ζ

(i)
t − ζ̄t = ζ̊

(i)
t .

3. The variance of̄ζt, t ∈ Z, is

var ζ̄t =
1

n
σ2

n +
n− 1

n
σij

n ,

whereσ2
n = var ζ

(i)
t andσij

n = cov
(
ζ

(i)
t , ζ

(j)
t

)
, i 6= j.

For ζ̊(i)
t = ζ

(i)
t − ζ̄t, t ∈ Z, i = 1, . . . , n, we have sincẽσ2

n = σ2
n − σij

n that

cov
(
ζ̊

(i)
t , ζ̊

(j)
t

)
= δij σ

2
n + (1− δij) σ

ij
n −

1

n
σ2

n −
n− 1

n
σij

n =

(
δij − 1

n

)
σ̃2

n,

and γ̊ij
n (h) = cov

(
X̊

(i)
t , X̊

(j)
t+h

)
= Ψ(h) cov

(
ζ̊

(i)
t , ζ̊

(j)
t

)
,

whereΨ(h) =
∑∞

u=0 ψuψu+|h|.
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Note that due to Hölder’s inequality we get fori 6= j that

σij
n = cov

(
ζ

(i)
t , ζ

(j)
t

)
= E

(
ζ

(i)
t ζ

(j)
t

)
≤

√
E ζ(i) 2

t

√
E ζ(j) 2

t = σ2
n .

Thusσ̃2
n ≥ 0 for all n.

4. The autocovariance function of the process{X̄t}t∈Z depends onω2
n as well. As

we have assumed that{Yt}t∈Z is a stationary autoregressive process, we have
Yt =

∑∞
u=0 ϕu υt−u for all t ∈ Z, with

∑∞
u=0 |ϕu| < ∞ (see lemma 1.1.2).

Due to the independence of{Z̄t}t∈Z and {Yt}t∈Z we obtain with the notation
Φ(h) =

∑∞
u=0 ϕuϕu+|h| that

γ̄n(h) = cov
(
X̄t, X̄t+h

)
= Ψ(h) var(ζ̄t) + Φ(h)ω2

n

= γZ̄(h) + γY (h) ,

whereγZ̄(h) andγY (h), h ∈ Z, are the autocovariance functions of{Z̄}t∈Z and
{Yt}t∈Z.

If σij
n = O

(
1
n

)
, we can approximate{Yt}t∈Z by {X̄t}t∈Z. We conclude this section

with two results which illustrate the nature of this approximation.

2.3.6 LEMMA

Let {ζ(i)
t }t∈Z, i = 1, . . . , n, as in assumption 2.3.1. If the covariances fulfil

σij
n = cov

(
ζ

(i)
t , ζ

(j)
t

)
= O

(
1

n

)
for i 6= j ,

then

E(X̄t − Yt)
2 = E Z̄2

t = O

(
1

n

)
.

PROOF:
Because{X̄t − Yt}t∈Z = {Z̄t}t∈Z is a causal autoregressive process, we can represent
it as a MA(∞) process. Using the notations of the preceding remark we get that

X̄t − Yt =
∞∑

u=0

ψu ζ̄t−u for all t ∈ Z,

where{ψu}u≥0 are absolutely summable.
By assumptionζ(i)

s and ζ(j)
t are independent fors 6= t, E ζ(i)

t = 0 for all t ∈ Z,
i = 1, . . . , n, andlimn→∞ σ2

n = σ2.
If σij

n = O
(

1
n

)
, we thus obtain

E(X̄t − Yt)
2 = E Z̄2

t =
∞∑

u,v=0

ψuψv
1

n2

n∑
i,j=1

cov
(
ζ

(i)
t−u, ζ

(j)
t−v

)

=
∞∑

u=0

ψ2
u

(
1

n
σ2

n +
n− 1

n
σij

n

)
= O

(
1

n

)
. ut
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We can use this approximation in many important models. The condition is trivially
fulfilled if ζ(i)

t andζ(j)
t are independent fori 6= j. But it is also possible to approxi-

mate a variety of cases where the intercorrelation between different time series in the
panel is small enough, e.g. in the ICM. There (see example 2.3.4)σij

n corresponds to

cov
(
ε̊
(i)
t , ε̊

(j)
t

)
= − 1

n
var ε

(i)
t = O

(
1
n

)
for i 6= j and in this case even̄Zt = 0 for all

t ∈ Z.

We also can compute the variance ofb(L) X̄t in the GICM.

2.3.7 PROPOSITION

Under the assumptions of the GICM (2.3.1), we obtain

var
(
b(L) X̄t

)
= ω2

n +

(
σ2

n

n
+
n− 1

n
σij

n

)
1

2 π

∫ π

−π

|b(exp(−iλ))|2
|a(exp(−iλ))|2 dλ ,

whereσ2
n = var ζ

(i)
t , σij

n = cov
(
ζ

(i)
t , ζ

(j)
t

)
andω2

n = var υt.

PROOF:
As we have assumed{Z(i)

t }t∈Z = {X(i)
t − Yt}t∈Z, i = 1, . . . , n, to be causal,a(L) is

invertible. Therefore, we get for{X̄t}t∈Z = {Yt + Z̄t}t∈Z that

b(L) X̄t = υt + b(L) a(L)−1ζ̄t for all t ∈ Z.

υt andζ̄t are independent, thus

E(b(L) X̄t)
2 = ω2

n + var(b(L) a(L)−1ζ̄t)

= ω2
n + var(ζ̄t)

1

2π

∫ π

−π

|b(exp(−iλ))|2
|a(exp(−iλ))|2 dλ

(see for example Brockwell and Davis 1991, p. 123).
From remark 2.3.5 above we know thatvar ζ̄t = 1

n
σ2

n + n−1
n
σij

n . ut

2.3.8 REMARK

1. The backward shift operatorsa(L) and b(L) do not depend on the number of
time seriesn. Denotingω2

X̄
= var

(
b(L) X̄t

)
, the proposition thus shows that

ω2
X̄
− ω2

n = O
(

1
n

)
if σij

n = O
(

1
n

)
. In this case we therefore can approximate

ω2
X̄
≈ ω2

n = var υt if n → ∞. So we have an explicit expression of the error
term in the approximation which we will use for the parameter estimation in the
GICM (see section 2.4.3).

2. In the ICM, wherea = b, we haveω2
n = var υt = var(ηt + ε̄t) = τ 2 + σ2

n
, where

τ 2 = var ηt andσ2 = var ε
(i)
t (example 2.3.4). Thus the notation is consistent

with the previous section where we have denotedτ 2 + σ2

n
= ω2

n. As in this case

both n−1
n
σij

n = n−1
n
×

(
−σ2

n

)
and−σ2

n

n
= n−1

n
×

(
−σ2

n

)
, the second term in the

above representation ofvar
(
b(L) X̄t

)
cancels out.
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2.4 Conditional Maximum Likelihood Estimation

2.4.1 Factorisation of the Log-Likelihood in the ICM

In the ICM ε̄t and ε̊(i)
t and therefore also{X̄t}t∈Z and{X̊(i)

t }t∈Z are independent for
i = 1, . . . , n (remark 2.2.3). This implies a possible factorisation of the conditional
likelihood function. We indeed obtain a closed form of the conditional log-likelihood,
which is one of our main results. It allows including the information contained in the
mean process{X̄t}t∈Z into the estimation procedure, and thus to improve the estima-
tor in the setting of the ICM. The original procedure used in Hjellvik and Tjøstheim
(1999a) is based only on the residual processes{X̊(i)

t }t∈Z, i = 1, . . . , n. There the
estimators are obtained by minimising the conditional log-likelihood functionL◦n,T (θ),
which we use for estimation in the GICM (see section 2.4.3). The differences between
these estimators are discussed in remarks 2.4.8 and 2.6.10.

2.4.1 NOTATIONS

In order to facilitate the notation, let

Xt =
(
X

(1)
t , . . . , X

(n)
t

)′
for t ∈ Z

and denote the parameter of the ICM byθ = (a1, . . . , ap, σ
2, τ 2). We study the condi-

tional log-likelihood

Ln,T (θ) = − 2

n(T − p)
logL(Xp+1, . . . ,XT | X1, . . . ,Xp)

derived fromL(Xp+1, . . . ,XT |X1, . . . ,Xp), the conditional likelihood function given
X1, . . . ,Xp.

We can obtain the factorisation of the conditional likelihood function in the following
way; the proof is based upon an idea of Dahlhaus (1999).

2.4.2 THEOREM

Under assumption 2.2.1 and using the above notations, we obtain the conditional log-
likelihood function depending on the parameterθ = (a1, . . . , ap, σ

2, τ 2)′ of the inter-
correlation model as

Ln,T (θ) =
n− 1

n
log σ2 +

1

σ2

1

n (T − p)

T∑
t=p+1

n∑
i=1

(
a(L) X̊

(i)
t

)2

+
1

n
logω2

n +
1

ω2
n

1

n (T − p)

T∑
t=p+1

(
a(L) X̄t

)2

+
1

n
log n+ log (2π) ,

where ω2
n = τ 2 + 1

n
σ2.

PROOF:
In the trivial case ofn = 1, we haveX̊(1)

t = 0, X̄t = X
(1)
t andvar(Xt) = σ2+τ 2 = ω2

1.
It is easily seen thatLn,T (θ) can be written in the above form.
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Forn > 1 we regard the(n− 1)-dimensional vector̊Xt = (X̊
(1)
t , . . . , X̊

(n−1)
t ), since

n−1∑
i=1

X̊
(i)
t = −X̊(n)

t .

Furthermore observe that

(X̊
(1)
t , . . . , X̊

(n−1)
t , X̄t) = S (X

(1)
t , . . . , X

(n)
t )

where the transformation matrixS fulfils |S| = 1
n
.

The transformation theorem therefore leads to

L(Xp+1, . . . ,XT | X1, . . . ,Xp) =
T∏

t=p+1

fX(Xt | X1, . . . ,Xt−1)

=
T∏

t=p+1

1

n
fX̄t,X̊t

(X̄t, X̊t | X1, . . . ,Xt−1)

=
T∏

t=p+1

1

n
fX̄t

(X̄t | X1, . . . ,Xt−1) fX̊t
(X̊t | X1, . . . ,Xt−1)

=
T∏

t=p+1

1

n

1√
2π

√
ω2

n

exp


− 1

2ω2
n

(
X̄t −

p∑

k=1

akX̄t−k

)2



× 1
√

(2π)(n−1)

√
|Σ̃|

exp

(
−1

2

(
X̊t −

p∑

k=1

akX̊k

)′

Σ̃−1

(
X̊t −

p∑

k=1

akX̊k

))
,

since

E(X̄t | X1, . . . ,Xt−1) =

p∑

k=1

akX̄t−k and E(X̊t | X1, . . . ,Xt−1) =

p∑

k=1

akX̊k .

Here,ω2
n = var(X̄t | X1, . . . ,Xt−1) = τ 2 + 1

n
σ2 andΣ̃ = var(X̊t | X1, . . . ,Xt−1) is

the conditional covariance matrix of̊Xt. The factorisation of the conditional densities
is due to the independence ofX̄t andX̊(i)

t for all t ∈ Z, i = 1, . . . , n.

It is easily seen thatcov(X̊
(i)
t , X̊

(j)
t | X1, . . . ,Xt−1) = cov

(
ε̊
(i)
t , ε̊

(j)
t

)
=

(
δij − 1

n

)
σ2.

Therefore we get, if we denote the(n−1)× (n−1)-matrix consisting of ones by1n−1,

Σ̃ = (In−1 − 1

n
1n−1)σ

2 ; and thus Σ̃−1 = (In−1 + 1n−1)
1

σ2
.

By recursively calculating the determinant ofΣ̃ we furthermore obtain

|Σ̃| =
((

1− 1

n

)
− (n− 2)

1

n

)
σ2(n−1) =

1

n
σ2(n−1) .

Taking the logarithm leads to the stated form of

Ln,T (θ) = − 2

n(T − p)
logL(Xp+1, . . . ,XT | X1, . . . ,Xp) . ut
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Minimising Ln,T , we obtain the conditional maximum likelihood estimatorθ̂n,T . In
the subsequent sections, we present an algorithm for the computation and derive its
asymptotic properties.

2.4.2 The Minimisation Algorithm

We want to estimate the parameters of the ICM by minimisingLn,T . This cannot be
achieved directly, as we can see from its derivatives.

2.4.3 REMARK

Following the notations of the preceding theorem 2.4.2, denote

An,T (a) =
1

n (T − p)

T∑
t=p+1

n∑
i=1

(
a(L)X̊

(i)
t

)2

and Bn,T (a) =
1

T − p

T∑
t=p+1

(
a(L)X̄t

)2
.

Sinceω2
n = τ 2 + σ2

n
, the partial derivatives ofLn,T are forl = 1, . . . , p

∂

∂al

Ln,T (θ) = − 2

σ2

1

n (T − p)

T∑
t=p+1

n∑
i=1

(
a(L) X̊

(i)
t

)
X̊

(i)
t−l

− 2

ω2
n

1

n(T − p)

T∑
t=p+1

(
a(L) X̄t

)
X̄t−l ,

∂

∂τ 2
Ln,T (θ) =

1

nω2
n

− 1

nω4
n

Bn,T (a)

and
∂

∂σ2
Ln,T (θ) =

n− 1

nσ2
− 1

σ4
An,T (a) +

1

n2 ω2
n

(
1− 1

ω2
n

Bn,T (a)

)
.

If a = (a1, . . . , ap)
′ is given, minimising leads to the estimator

ω̂2
n = Bn,T (a) ,

and by plugging in̂ω2
n for ω2

n, we can calculate

σ̂2 =
n

n− 1
An,T (a) .

τ̂ 2 then can be obtained from̂σ2 andω̂2. Note that ifσ̂2 is fixed, choosinĝτ 2 such that
Ln,T (θ) is minimal corresponds to choosinĝω2 such thatLn,T (θ) is minimal. We then
can calculatêa conditional on̂σ2 andω̂2 as

â = â(σ̂2, ω̂2) =
( 1

σ̂2

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i) ′
t−1 +

1

n ω̂2
n

T∑
t=p+1

x̄t−1 x̄′t−1

)−1

×
(

1

σ̂2

T∑
t=p+1

n∑
i=1

X̊
(i)
t x̊

(i)
t−1 +

1

n ω̂2
n

T∑
t=p+1

X̄t x̄t−1

)
,

where̊x(i)
t−1 = (X̊

(i)
t−1, . . . , X̊

(i)
t−p)

′, i = 1, . . . , n, andx̄t−1 = (X̄t−1, . . . , X̄t−p)
′.
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For the estimation we thus use the following recursive algorithm, which is similar to the
multistep procedure suggested in (Hsiao 1986, p. 55). As initial values for the variances
we set̂σ2

0 = ω̂2
n,0 = 1 and calculate estimates of the coefficientsak, k = 1, . . . , p. From

the values we get we can in turn derive new estimatesσ̂2
1 andω̂2

n,1 of the variances. This
procedure then is iterated.

2.4.4 ALGORITHM

Let Θ ⊂ Rp+2 be a compact parameter space such thatσ2 ≥ c > 0 andτ 2 ≥ c2 ≥ 0
for all θ = (a1, . . . , ap, σ

2, τ 2)′ ∈ Θ. Denotea = (a1, . . . , ap)
′. Furthermore let the

conditional log-likelihood functionLn,T (θ) for θ ∈ Θ be as defined in theorem 2.4.2.
Thenθ̂n,T = argminθ∈ΘLn,T (θ) can be obtained as follows:

1. Let ν = 0, σ̂2
ν = ω̂2

n,ν = 1 andτ̂ 2 = ω̂2
n,ν − σ̂2

ν

n
.

2. Let âν+1 such that̂θν+1 = (α̂′ν+1, σ̂
2
ν , τ̂ν)

′ = argmin{θ∈Θ|σ2=σ̂2
ν ,τ2=τ̂2

ν }Ln,T (θ).

3. Let ω̂2
n,ν+1 = τ̂ 2

ν+1 + σ̂2
ν

n
such that

(α̂′ν+1, σ̂
2
ν , τ̂ν+1)

′ = argmin{θ∈Θ|a=âν+1,σ2=σ̂2
ν}Ln,T (θ),

i.e. if Bn,T (âν+1) ≥ c2 + σ̂2
ν

n
, thenω̂2

n,ν+1 = Bn,T (âν+1).

4. Let σ̂2
ν+1 such that(α̂′ν+1, σ̂

2
ν+1, τ̂ν+1)

′ = argmin{θ∈Θ|a=âν+1,τ2=τ̂2
ν+1}Ln,T (θ),

i.e. if An,T (âν+1) ≥ c, we havêσ2
ν+1 = n

n−1
An,T (âν+1).

5. Iterate step 2) to 4) until convergence is attained.

6. Computeτ̂ 2 as τ̂ 2 = ω̂2
n,ν − σ̂2

ν

n
and denote the obtained conditional maximum

likelihood estimator bŷθn,T = (â′ν , σ̂
2
ν , τ̂

2)
′
= argminθ∈Θ Ln,T (θ).

2.4.5 REMARK

1. Our criterion for stopping the algorithm is that the distance between two con-
secutive estimates becomes small. To be more specific, we use the conditions
||âν+1 − âν || < δ and ||(σ̂2

ν+1, ω̂
2
n,ν+1)

′ − (σ̂2
ν , ω̂

2
n,ν)

′|| < ε for someδ > 0 and
ε > 0. In the simulations we have setδ = ε = 10−3. If this condition is not
fulfilled after a fixed number of iterations, the algorithm stops with an error mes-
sage. Note that due to the restriction of the parameter space, we haveσ̂2 ≥ c,
τ̂ 2 ≥ 0 andω̂2

n ≥ c
n
.

2. The algorithm is based on a successive minimising of the log-likelihood function,
thusLn,T (θ̂ν) decreases monotonically forν →∞. In order to eliminate the risk
that the algorithm stops in a saddle pointθ̃, we could perform more iterations
with slightly pertubed parameters̃θ + δ. This guarantees that we reach a (local)
minimum θ̂n,T , but it cannot easily be excluded by theoretical arguments that the
algorithm oszillates between several local minima (Drton and Eichler 2004). We
prove however in section 2.5.3 that asymptotically the minimum is unique if the
parameter space is chosen appropriately.



24 CHAPTER 2. THE INTERCORRELATION MODEL

3. Numerical simulations have shown that this algorithm works well. Even without
taking saddle points into account, the algorithm usually converged in our simula-
tions after 6 or 7 iterations to the true value. The simulation results are discussed
in the Appendix in section A.

2.4.3 Parameter Estimation in the GICM

In the case of the generalised model, where the coefficients of the common factor and
the residuals are not necessarily identical, the situation is different. Here we can calcu-
late the likelihood functions separately.θa = (a1, . . . , ap, σ̃

2
n)′ can be estimated directly

from the transformed processes{X̊(i)
t }t∈Z = {Z̊(i)

t }t∈Z, i = 1, . . . , n. If the background
process{Yt}t∈Z is not observable, we must use{X̄t}t∈Z as an approximation to{Yt}t∈Z
in order to estimateθb = (b1, . . . , bq, ω

2
n)′. We show that in this case we get consistent

estimators if, besides their lengthT , the numbern of the time series in the panel tends
to infinity and ifσij

n = O
(

1
n

)
. Of course, ifn = 1,Xt = X̄t = Zt + Yt, and parameter

estimation just makes sense if(a1, . . . , ap) = (b1, . . . , bq). Thus we assume throughout
this section thatn ≥ 2.

Estimation of θa

First, we consider the parameters of the individual effects. Here, sinceX̊
(i)
t = Z̊

(i)
t , we

havea(L) X̊
(i)
t = ζ̊

(i)
t = ζ

(i)
t − ζ̄t for all t ∈ Z, i = 1, . . . , n. As in section 2.4.1 denote

X̊t = (X̊
(1)
t , . . . , X̊

(n−1)
t )′. We can derive the conditional log-likelihood ifn is large

enough.

2.4.6 PROPOSITION

Under the assumptions of the GICM (2.3.1), there exists ann0 ∈ N such that for all
n ≥ n0 the conditional log-likelihood of the̊Xt, p < t ≤ T , givenX̊1, . . . , X̊p is

L◦n,T (θa) = − 2

n (T − p)
logL(X̊p+1, . . . , X̊T | X̊1, . . . , X̊p)

=
n− 1

n
log σ̃2

n +
1

σ̃2
n

1

n (T − p)

T∑
t=p+1

n∑
i=1

(
a(L) X̊

(i)
t

)2

+
n− 1

n
log(2π)− 1

n
log n ,

whereσ̃2
n = σ2

n − σij
n .

PROOF:
Sincecov

(
ζ̊

(i)
t , ζ̊

(j)
t

)
=

(
δij − 1

n

)
σ̃2

n (remark 2.3.5), the conditional covariance matrix

of X̊t, givenX̊1, . . . , X̊t−1, is Σ̃ = (In−1 − 1
n
1) σ̃2

n. As we have shown in remark 2.3.5
thatσ̃2

n ≥ 0 for all n ∈ N and as by assumptionσ2
n → σ2 > 0 andσij

n → 0 for n→∞,
there exists an0 such that̃σ2

n > 0 for all n ≥ n0.
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Analogously to the proof of proposition 2.4.2, we therefore obtain that

L
(
X̊p+1, . . . , X̊T | X̊1, . . . , X̊p

)

=
T∏

t=p+1

1
√

(2π)(n−1)

√
1
n
σ̃

2 (n−1)
n

exp

(
− 1

2σ̃2
n

n∑
i=1

(
a(L)X̊

(i)
t

)2
)
.

It is easily seen that this yields the form ofL◦n,T (θa) stated above. ut

MinimisingL◦n,T leads to consistent estimators ofa andσ̃2
n.

2.4.7 PROPOSITION

In the setting of the preceding proposition,L◦n,T is minimised bŷθa = (â1, . . . , âp, σ̂
2
n)′,

whereâ = (â1, . . . , âp)
′ is given by

â =

(
T∑

t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i) ′
t−1

)−1 T∑
t=p+1

n∑
i=1

X̊
(i)
t x̊

(i)
t−1 ,

denotingx̊
(i)
t−1 = (X̊

(i)
t−1, . . . , X̊

(i)
t−p)

′, i = 1, . . . , n.
The variance is obtained as

σ̂2
n =

1

(n− 1)(T − p)

T∑
t=p+1

n∑
i=1

(
â(L) X̊

(i)
t

)2

.

Then the estimator̂θa = (â′, σ̂2
n) is consistent:

â− a = OP

(
1√
nT

)

and σ̂2
n − σ̃2

n = OP

(
1√
nT

)
.

PROOF:
The above stated form of the estimators is directly obtained by minimising the con-
ditional log-likelihood functionL◦n,T (θ). Thus it remains to show consistency. By

assumptioncov
(
X̊

(i)
t , X̊

(j)
t+h

)
=

(
δij − 1

n

)
Ψ(h) σ̃2

n (see remark 2.3.5). Therefore

σij
n = cov

(
X̊

(i)
t , X̊

(j)
t+h

)
for i 6= j fulfils σij

n = O
(

1
n

)
. We thus get due to the mean-

square convergence of the panel covariance estimator (lemma 1.2.4) that

1

n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t−k X̊

(i)
t−l −

n− 1

n
Ψ(k − l) σ̃2

n = OP

(
1√
nT

)
.

For ease of notation let

Â =
1

n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t x̊

(i)
t−1 , B̂ =

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i) ′
t−1 ,
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A = E Â =
n− 1

n
(Ψ(k))k=1,...,p σ̃

2
n

and B = E B̂ =
n− 1

n
(Ψ(k − l))k,l=1,...,p σ̃

2
n .

Then the above implies that̂A− A = OP

(
1√
n T

)
andB̂ −B = OP

(
1√
n T

)
. Standard

theory (e.g. Brockwell and Davis (1991)) yields that the true parametera fulfils the
Yule-Walker equationB a = A. As B̂ â = Â and moreover̂a = OP (1) due to the
compactness ofΘ, we thus get that

B (â− a) = B â− A+ Â− B̂ â =
(
B − B̂

)
â+ Â− A = OP

(
1√
nT

)
.

Thusâ− a = OP

(
1√
n T

)
. From the consistency of̂a− a we can in turn conclude that,

choosinga0 = −1 = â0,

σ̂2 − σ̃2
n =

1

(n− 1) (T − p)

T∑
t=p+1

n∑
i=1

p∑

k,l=0

âk âl

[
X̊

(i)
t−k X̊

(i)
t−l −

n− 1

n
Ψ(k − l)σ̃2

n

]

+

p∑

k,l=0

(âk âl − ak al) Ψ(k − l) σ̃2
n = OP

(
1√
nT

)
,

which completes the proof. ut

2.4.8 REMARK

1. In general, usingL◦n,T we cannot estimatevar ζ
(i)
t = σ2

n, but σ̃2
n = σ2

n − σij
n ,

which for n → ∞ tends toσ2 > 0. However, in the special case of the ICM,
σ̃2

n = (1 − 1
n
)σ2 − (− 1

n
)σ2 = σ2 > 0 for all n ∈ N, whereσ2 = var ε

(i)
t (see

example 2.3.4(i)). Thus herêθa is a consistent estimator of the true parameter
θa = (a1, . . . , ap, σ

2)′ even ifT → ∞ andn is fixed. â = (â1, . . . , âp)
′ = âHT

is the estimator̃a of Hjellvik and Tjøstheim (1999a). Their model is the ICM,
but they obtain their estimator by treatingηt as a nuisance parameter which they
eliminate using the transformation̊X(i)

t = X
(i)
t − X̄t. This leads to the con-

ditional likelihood functionL◦n,T . The advantage of their procedure is that no
assumptions on the structure ofηt have to be made. It even can be deterministic,
which corresponds to the case ofτ 2 = 0. If we are interested in the structure of
the background process, assumptions on the distribution of{ηt}t∈Z are however
needed. Hjellvik and Tjøstheim furthermore assume that the individual innova-
tion processes are independent, which means that the cross-correlation is entirely
induced by{ηt}t∈Z. This assumption is relaxed in the GICM.

2. Asymptotic normality ofθ̂a is studied in section 2.5.3. If we restrict our model
to the ICM, asymptotic normality can be directly obtained by employing the in-
dependence of the processes{ε(i)

t }t∈Z, i = 1, . . . , n. If n → ∞, T fixed, the
proof is an application of the standard central limit theorem for independently
and identically distributed observations. IfT →∞, asymptotic normality is due
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to theα-mixing property of autoregressive processes. Hjellvik and Tjøstheim
(1999a) have already stated these properties. For proving asymptotic normality
in the general case, we however use a similar method as for the ICM. This is
necessary due to the more complicated intercorrelation structure. We here cannot
write the random variables̊ζ(i)

t asζ̊(i)
t = ε̊

(i)
t = ε

(i)
t − ε̄t, i = 1, . . . , n, whereε(i)

t

andε(j)
t are independent fori 6= j. Thus it is impossible to exploit the indepen-

dence property in the proof. In the present work, the asymptotic distribution of
the parameter estimators in the special case of the ICM is then deduced from the
general case in corollary 2.5.35.

Estimation of θb

The background process{Yt}t∈Z is not observable in general. In this case, inference
about its parameters is based on approximations. The conditional log-likelihood of the
background process{Yt}t∈Z itself can be derived easily and the asymptotic properties
follow from standard theory.

2.4.9 LEMMA

The conditional log-likelihood of the processYt =
∑∞

u=0 ϕuυt−u, t ∈ Z, (assump-
tion 2.3.1) is

LY
n,T (θb) = − 2

T − q
logL(Yq+1, . . . , YT | Y1, . . . Yq)

= logω2
n + log(2π) +

1

ω2
n (T − q)

T∑
t=q+1

(b(L)Yt)
2

and θ̂b = (b̂1, . . . , b̂q, ω̂
2
n) = argminθ∈Θb

LY
n,T (θ) is a consistent estimator of the true

parameterθb = (b1, . . . , bq, ω
2
n)′ = (b′, ω2

n)′.
FurthermorêbY = (b̂1, . . . , b̂q)

′ is asymptotically normal with

√
T − q

(
b̂Y − b

)
⇒ NY for T →∞,

whereNY ∼ N(0,ΣY ) with ΣY = (Φ(k − l))k,l=1,...,q.

PROOF:
MinimisingLY

n,T , we get as estimator ofb = (b1, . . . , bq)
′

b̂Y =

(
T∑

t=p+1

yt−1 y′t−1

)−1 T∑
t=p+1

Yt yt−1 ,

whereyt−1 = (Yt−1, . . . , Yt−p)
′; and as estimator ofω2

n

ω̂2
n =

1

T − q

T∑
t=q+1

(
b̂Y (L)Yt

)2

.
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As {Yt}t∈Z is causal by assumption, its autocovariance functionγY (h), h ∈ Z, fulfils∑∞
h=−∞ |γY (h)| <∞ (lemma 1.1.4). Thus

E

(
1

T − q

T∑
t=q+1

Yt−k Yt−l − γY (k − l)

)2

= O

(
1

T

)
for all k, l = 1, . . . , q.

ThereforêbY and thuŝω2
n, too, are consistent. The asymptotic normality is also due to

standard theory (see e.g. Brockwell and Davis 1991, theorem 8.11.1.). ut

If {Yt}t∈Z is not observable, estimators of its parameters can only be obtained via ap-
proximations. By formally replacingYt by X̄t in LY

n,T (θb), we getLX̄
n,T (θb).

2.4.10 DEFINITION

In analogy toLY
n,T (θb) of the preceding lemma, defineLX̄

n,T (θb) for θb = (b′, ω2
n)′ ∈ Θb

as

LX̄
n,T (θb) = logω2

n + log(2π) +
1

ω2
n (T − q)

T∑
t=q+1

(
b(L) X̄t

)2
.

We already have seen in lemma 2.3.6, that, ifcov
(
ζ

(i)
t , ζ

(j)
t

)
= O

(
1
n

)
for i 6= j, then

E(X̄t − Yt)
2 = E Z̄2

t = O
(

1
n

)
. Therefore in this case we can indeed useLX̄

n,T (θ) as an
approximation toLY

n,T (θ) for anyθ ∈ Θb.

2.4.11 LEMMA

If we have in the setting of the GICM (assumption 2.3.1) that fori 6= j

σij
n = cov

(
ζ

(i)
t , ζ

(j)
t

)
= O

(
1

n

)
,

then for allθ = (b1, . . . , bq, ω
2
n) ∈ Θb ⊂ Rq × R+

0

E
(
LY

n,T (θ)− LX̄
n,T (θ)

)2

= O

(
1

n

)
.

PROOF:
The statement is a corollary of the above mentioned lemma 2.3.6. SinceX̄t = Z̄t + Yt

for all t ∈ Z, we can express the mean squared error in terms of{Z̄t}t∈Z:

E
(
LY

n,T (θ)− LX̄
n,T (θ)

)2

= E

(
1

T − q

T∑
t=q+1

[
(b(L)Yt)

2 − (b(L) X̄t)
2
]
)2

= E

(
1

T − q

T∑
t=q+1

[
(b(L) Z̄t)

2 + 2 (b(L) Z̄t) (b(L)Yt)
]
)2
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=
1

(T − q)2

T∑
s,t=q+1

[
E

(
(b(L) Z̄s)

2 (b(L) Z̄t)
2
)

+ 4E
(
(b(L) Z̄s)

2 (b(L) Z̄t) (b(L)Yt)
)

+ 4E
(
(b(L) Z̄s) (b(L) Z̄t) (b(L)Ys) (b(L)Yt)

) ]

=
1

(T − q)2

T∑
s,t=q+1

[
E

(
(b(L) Z̄s)

2
)
E

(
(b(L) Z̄t)

2
)

+ 2
(
E

(
(b(L) Z̄s) (b(L) Z̄t)

))2

+ 4 δst ω
2
n E

(
(b(L) Z̄s) (b(L) Z̄t)

) ]
.

Here we used the fact thatb(L)Z̄t is Gaussian since theζ(i)
t are Gaussian. Therefore, the

mixed 4th order moments can be calculated via the 2nd order cumulants as all higher
order cumulants are zero. The second term vanishes since{Yt}t∈Z and{Z̄t}t∈Z are
independent andEYt = 0. Finally, the last line is due to the fact thatb(L)Yt = υt for
all t ∈ Z, whereυs andυt are independent fors 6= t andE υt = 0 by assumption.
Furthermore we have (see remark 2.3.5) that

E
(
(b(L) Z̄s) (b(L) Z̄t)

)
=

q∑

k,l=0

bk bl

∞∑
u,v=0

ϕu ϕv E
(
ζ̄s−k−u ζ̄t−l−v

)

=

q∑

k,l=0

bk bl

∞∑
u=0

ϕu ϕu+|s−t−k+l| E ζ̄2
t

=

q∑

k,l=0

bk bl Φ(s− t− k + l)

(
1

n
σ2

n +
n− 1

n
σij

n

)
.

Altogether we get ifσij
n = O

(
1
n

)
that also

E
(
LY

n,T (θ)− LX̄
n,T (θ)

)2

= O

(
1

n2

)
+

1

T − q
O

(
1

n

)
= O

(
1

n

)
. ut

Consistency and asymptotic normality ofθ̂X̄ = argminθ∈Θb
LX̄

n,T (θ) can be obtained if
bothn andT tend to infinity. We first introduce some notations which then can be used
to simplify the proofs of the subsequent theorems showing consistency and asymptotic
normality.

2.4.12 NOTATIONS

Let q be the order of the autoregressive process{Yt}t∈Z. Fork, l = 0, . . . , q, denote

γ̂X̄(k, l) =
1

T − q

T∑
t=q+1

X̄t−kX̄t−l =
1

T − q

T∑
t=q+1

(
Yt−k + Z̄t−k

) (
Yt−l + Z̄t−l

)
,

γ̂Y (k, l) =
1

T − q

T∑
t=q+1

Yt−k Yt−l and γ̂Z̄(k, l) =
1

T − q

T∑
t=q+1

Z̄t−kZ̄t−l .
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Then Γ̂X̄ = 1
T−q

∑T
t=q+1 x̄t−1 x̄′t−1 can be written aŝΓX̄ = (γ̂X̄(k, l))k,l=1,...,q and

γ̂X̄ = 1
T−q

∑T
t=q+1 X̄t x̄t−1 = (γ̂X̄(0, l))′l=1,...,q , denotingx̄t−1 = (X̄t−1, . . . , X̄t−q)

′.
Analogously let

Γ̂Z̄ = (γ̂Z̄(k, l))k,l=1,...,q , γ̂Z̄ = (γ̂Z̄(0, l))′l=1,...,q ,

Γ̂Y = (γ̂Y (k, l))k,l=1,...,q and γ̂Y = (γ̂Y (0, l))′l=1,...,q .

MinimisingLX̄
n,T (θ), we obtain forθ̂X̄ =

(
b̂′
X̄
, ω̂2

X̄

)′
= argminθ∈Θb

LX̄
n,T (θ) that

b̂X̄ = Γ̂−1
X̄
γ̂X̄ and ω̂2

X̄ =
1

T − q

T∑
t=q+1

(
b̂θ(L) X̄t

)2

.

In order to facilitate the proofs of the theorems, we first investigate the behaviour of the
bias term.

2.4.13 LEMMA

Using the notations of the preceding remark, we get under the assumptions 2.3.1 of the

GICM that the bias term̂βn = Γ̂−1
X̄

(
γ̂Z̄ − Γ̂Z̄ γ̂Y

)
fulfils for T →∞

β̂n = OP

(
1

n

)
if σij

n = O

(
1

n

)
.

PROOF:
The autocovariance function̄γn(h), h ∈ Z, of the process{X̄t}t∈Z can be represented
asγ̄n(h) = γY (h)+γZ̄(h) = Φ(h)ω2

n +Ψ(h) var ζ̄t for all h ∈ Z (remark 2.3.5), where
γY (h) andγZ̄(h), h ∈ Z, are the autocovariance functions of{Yt}t∈Z and{Z̄t}t∈Z.
Since the processes are causal by assumption, the autocovariance functions are abso-
lutely summable (lemma 1.1.4) and thereforeγ̄n(h) is square summable. Thus we get
as in the proof of lemma 1.2.4 that

E (γ̂n(k, l)− γ̄n(k − l))2

=
1

(T − q)2

T−q−1∑

h=−(T−q−1)

(T − q − |h|) (
γ̄n(h)2 + γ̄n(h− k + l) γ̄n(h− l + k)

)

= O

(
1

T

)
for all k, l = 0, . . . , q.

SinceΓX̄ = (γ̄n(k − l))k,l=1,...,q is invertible, this implies that forT → ∞ we have

Γ̂−1
X̄
− Γ−1

X̄
= oP (1) andΓ̂−1

X̄
= OP (1).

In a similar way it can be easily seen that for allk, l = 0, . . . , q

E (γ̂Y (k, l)− γY (k − l))2 = O

(
ω4

n

T

)
;

thus we get in particular that̂γY (k, l) = OP (1).
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Moreover we know from lemma 2.3.6, where we have proved mean-square convergence
of the process{X̄t − Yt}t∈Z = {Z̄t}t∈Z, that the autocovariance functionγZ̄ fulfils
γZ̄(k, l) = Ψ(k − l) var Z̄t = O

(
1
n

)
for all k, l = 0. . . . , q if σij

n = O
(

1
n

)
. Therefore

we obtain forγ̂Z̄(k, l) that, ifσij
n = O

(
1
n

)
,

E
(
γ̂Z̄(k, l)

)2

= E

(
1

T − q

T∑
t=q+1

Z̄t−k Z̄t−l

)2

= γZ̄(k − l)2 +
1

(T − q)2

T−q−1∑

h=−(T−q−1)

(T − q − |h|)

× (
γZ̄(h− k + l) γZ̄(h− l + k) + γZ̄(h)2

)
= O

(
1

n2

)
.

SinceΓ̄−1
X̄

= OP (1) for T →∞ andγ̂Y = OP (1), we thus can conclude that the bias
term fulfils for T →∞ that

β̂n = Γ̂−1
X̄

(
γ̂Z̄ − Γ̂Z̄ γ̂Y

)
= OP

(
1

n

)
if σij

n = O

(
1

n

)
. ut

Now we are in the position to prove the consistency result.

2.4.14 THEOREM

Assume that the assumptions 2.3.1 of the GICM are fulfilled and thatσij
n = O

(
1
n

)
.

Then we get with the notations of the preceding remark thatθ̂X̄ = argminθ∈Θb
LX̄

n,T (θ),

whereθ̂X̄ =
(
b̂′
X̄
, ω̂2

X̄

)′
, is a consistent estimator of the true parameterθb = (b′, ω2)′:

θ̂X̄ − θb = oP (1) for n, T →∞.

PROOF:
The processes{Z̄t}t∈Z and{Yt}t∈Z are independent. Thus we get for eachγ̂X̄(k, l),
k, l = 0, . . . , q, using the notationk − l = d, that

E
(
γ̂X̄(k, l)− γ̂Y (k, l)− γ̂Z̄(k, l)

)2

=
1

(T − q)2
E

(
T∑

t=q+1

(
Yt−k Z̄t−l + Yt−l Z̄t−k

)
)2

=
2

(T − q)2

T−q−1∑

h=−(T−q−1)

(T − q − |h|) (γY (h) γZ̄(h) + γY (h+ d) γZ̄(h− d))

= O

(
1

nT

)
.

As in the proof of the preceding lemma, this is due to the absolute summability of the
autocovariance functions and the fact thatγZ̄(h) = O

(
1
n

)
for all h ∈ Z (lemma 2.3.6).

This means that̂ΓX − Γ̂Y − Γ̂Z̄ = Op

(
1√
n T

)
and alsôγX − γ̂Y − γ̂Z̄ = Op

(
1√
n T

)
.
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In the proof of lemma 2.4.9, we have shown thatb̂Y = Γ̂−1
Y γ̂Y . Thus we get

b̂X̄ − b̂Y = Γ̂−1
X̄
γ̂X̄ − Γ̂−1

Y γ̂Y = Γ̂−1
X̄

(γ̂X̄ − γ̂Y ) +
(
Γ̂−1

X̄
− Γ̂−1

Y

)
γ̂Y

= Γ̂−1
X̄

(γ̂X̄ − γ̂Y ) + Γ̂−1
X̄

(
Γ̂Y − Γ̂X̄

)
b̂Y .

Now let β̂n = Γ̂−1
X̄

(
γ̂Z̄ − Γ̂Z̄ γ̂Y

)
as in the preceding lemma. This gives

b̂X̄ − b̂Y − β̂n =
(
b̂X̄ − b̂Y

)
− Γ̂−1

X̄

(
γ̂Z − Γ̂Z̄ b̂Y

)

= Γ̂−1
X̄

(γ̂X̄ − γ̂Y − γ̂Z̄)− Γ̂−1
X̄

(
Γ̂X̄ − Γ̂Y − Γ̂Z̄

)
b̂Y .

As shown in the proof of the preceding lemma,Γ̂−1
X̄

= OP (1) andγ̂Y = OP (1). There-
fore we get that

b̂X̄ − b̂Y − β̂n = OP

(
1√
nT

)
.

Moreover we have proved in lemma 2.4.9 thatb̂Y −b = OP

(
1√
T

)
. Sinceβ̂n = OP

(
1
n

)

if σij
n = O

(
1
n

)
(lemma 2.4.13), this leads to

b̂X̄ − b = b̂X̄ − b̂Y − β̂n +
(
b̂Y − b

)
+ β̂n = oP (1) for n, T →∞.

All that remains to be proven now is the consistency ofω̂2
X̄

. As ω̂2
X̄

is obtained (see

remark 2.4.12) bŷω2
X̄

= 1
T−q

∑T
t=q+1

(
b̂X̄(L) X̄t

)2

, the consistency of̂bX̄ implies that

if σij
n = O

(
1
n

)

ω̂2
X̄ −

1

T − q

T∑
t=q+1

(
b(L) X̄t

)2
= oP (1) for n, T →∞.

Furthermore we can derive as above that

E

(
1

T − q

T∑
t=q+1

(
b(L) X̄t

)2 − var
(
b(L) X̄t

)
)2

= O

(
1

T

)
.

Finally, in proposition 2.3.7 we have shown that we have under the assumptions of the
GICM and ifσij

n = O
(

1
n

)
thatvar

(
b(L) X̄t

)−ω2
n = O

(
1
n

)
. Summarising, this implies

that if σij
n = O

(
1
n

)

ω̂2
X̄ − ω2

n = oP (1) for n, T →∞. ut

This enables us to finally obtain asymptotic normality for the estimatorb̂X̄ .

2.4.15 THEOREM

In the setting of the preceding theorem and withβ̂n given in lemma 2.4.13 we get

√
T − q

(
b̂X̄ − β̂n − b

)
⇒ N for T →∞,

whereN ∼ N(0,ΣY ) with ΣY = (Φ(k − l))k,l=1,...,q.
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PROOF:
In lemma 2.4.9 we have shown asymptotic normality ofb̂Y :

√
T − q

(
b̂Y − b

)
⇒ N for T →∞.

From the proof of the preceding theorem we can see that ifσij
n = O

(
1
n

)

b̂X̄ − β̂n − b̂Y = OP

(
1√
nT

)
.

This implies that

√
T − q

(
b̂X̄ − β̂n − b

)
⇒ N for T →∞. ut

2.4.16 REMARK

1. Note that the asymptotic variance ofâ in the preceding theorem is independent
of σ2, the variance of the increments.

2. We have mentioned in remark 2.3.3 that the above result can be viewed as a
consequence of the consistency properties of the estimator of the common com-
ponent in a one-factor model as treated in Forni et al. (2000). However, here the
theorem can be proved in a direct way. The same authors determine the rates of
convergence in their model in Forni et al. (2001). They show thatn tending to
infinity guarantees consistency for an arbitrarily slow growth of the time series
lengthT . This is reflected in the convergence behaviour of the parameter esti-
mator obtained above, where consistency depends on the convergence of the bias
termβ̂n.

2.5 Asymptotic Theory for the MLE

The aim of this section is to show asymptotic normality for the parameter estimators in
all three cases:n→∞, T fixed;T →∞, n fixed, andn, T →∞.
For θ̂b = argminθ∈Θb

LX̄t
n,T (θ) we already have discussed consistency and asymptotic

normality in the last section. Thus it remains to prove asymptotic normality for the
ICM parameter estimator and for̂θa = argminθ∈Θa

L◦n,T (θ). Asymptotic normality
can be derived from uniform convergence conditions on the log-likelihood function.
However, as in the conditional log-likelihood function of the ICM all terms depending
on the mean process are weighted with1

n
, they vanish asymptotically forn → ∞.

Thus we obtain for the last component of the parameter estimator a different rate of
convergence. This implies that we can prove asymptotic normality only by adapting
the uniform convergence result mentioned above accordingly. We therefore proceed
as follows: first we present the classic theorem. After deriving the pointwise limits of
the conditional log-likelihood functions, we turn to our model and prove that conditions
corresponding to those of the theorem are fulfilled in the ICM. We conclude by showing
asymptotic normality for̂θa = argminθ∈Θa

L◦n,T (θ), which can be obtained analogously.
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2.5.1 A Classic Theorem on Asymptotic Normality

We now state the theorem our results are based on. Its content is well known but as the
proof is short, we include it here for completeness. The proof is split in two steps. The
central idea is to apply the mean value theorem in order to obtain a setting where the
convergence of the gradient can be used. But first we show that condition (i) already
implies consistency of the parameter estimators as this simplifies the proof afterwards.

2.5.1 THEOREM

LetΘ ⊂ Rd,Θ compact, and letLn : Θ → R be a sequence of functions with pointwise
limit L(θ) = limn→∞ Ln(θ) such thatθ0 = argminθ∈ΘL(θ) ∈ IntΘ andθ0 is unique.
Moreover we assume thatL and∇2L are continuous onΘ, and thatΓ = ∇2L(θ0) is
positive definite, i.e. invertible. DenoteargminLn(θ) by θ̂n.
If for n→∞

(i) supθ∈Θ | Ln(θ)− L(θ) |= oP (1)

(ii) supθ∈Θ | ∇2Ln(θ)−∇2L(θ) |= oP (1) and

(iii)
√
n∇Ln(θ0) ⇒ N with N ∼ N(0,Σ),

thenθ̂n is asymptotically normal forn→∞:
√
n (θ̂n − θ0) ⇒ N ′, whereN ′ = Γ−1N ∼ N(0,Γ−1 Σ Γ−1) .

For consistency, we just need condition (i).

2.5.2 PROPOSITION

In the setting of the preceding theorem the condition of uniform convergence,

sup
θ∈Θ

|Ln(θ)− L(θ)| = oP (1) for n→∞,

implies consistency of the parameter estimator:̂θn − θ0 = oP (1) for n→∞.

PROOF:
By definition,θ0 = argminθ∈ΘL(θ) andθ̂n = argminθ∈ΘLn(θ). The uniform conver-
gence property gives

Ln(θ0)− L(θ0) = oP (1) and Ln(θ̂n)− L(θ̂n) = oP (1) for n→∞.

SinceLn(θ̂n) ≤ Ln(θ0) andL(θ0) ≤ L(θ̂n), we get that alsoL(θ̂n) − L(θ0) = oP (1)
for n → ∞, with the same rate of convergence. AsΘ is compact, the seriesL(θ̂n)
converges to a cluster pointx = L(θ0). SinceL is continuous andθ0 is the unique
minimum ofL onΘ, this implies that̂θn − θ0 = oP (1) for n→∞. ut

We can now use this proposition to prove the above theorem.

PROOF OF2.5.1:
Sinceθ ∈ Rd, the mean value theorem leads to

√
n∇Ln(θ̂n)−√n∇Ln(θ0) =

√
nMLn (θ̂n − θ0) , (2.3)
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whereMLn is given by

MLn =




∂ L1,n(θ1,n)

∂x1
· · · ∂ L1,n(θ1,n)

∂xd
...

. ..
...

∂ Ld,n(θd,n)

∂x1
· · · ∂ Ld,n(θd,n)

∂xd




with intermediate pointsθi,n = θ0 + κi (θ̂n − θ̂0), κi ∈ [0, 1], i = 1, . . . , d, andLi,n,
i = 1, . . . , d, denoting theith coordinate function ofLn.
First we look at the entries ofMLn. We have that

MLn =

(
∂ Li,n(θi,n)

∂xj

)

i,j=1,...,d

−∇2L(θi,n) +∇2L(θi,n)−∇2L(θ0) +∇2L(θ0) .

Condition (ii) implies that

(
∂ Li,n(θi,n)

∂xj

)

i,j=1,...,d

−∇2L(θi,n) = oP (1) for n→∞.

Since for alli = 1, . . . , d we have that||θi,n − θ0|| ≤ ||θ̂n − θ0||, we get from the
consistency of̂θn (proposition 2.5.2) that for alli = 1, . . . , d also

θi,n − θ0 = oP (1) for n→∞.

Furthermore∇2L is continuous onΘ by assumption. This yields for alli = 1, . . . , d

∇2L(θi,n)−∇2L(θ0) = oP (1) for n→∞.

Thus we have altogether that

MLn − Γ = oP (1) for n→∞, whereΓ = ∇2L(θ0).

The second term we treat is∇Ln(θ̂n). If θ̂n lies in the interior ofΘ, then∇Ln(θ̂n) = 0 .
If θ̂n is on the border ofΘ, we get that||θ̂n − θ0|| > δ for someδ > 0 asθ0 lies in the
interior ofΘ by assumption. The consistency ofθ̂n then implies that for allε > 0

P(||√n∇Ln(θ̂n)|| > ε) ≤ P(||θ̂n − θ0|| > δ) → 0 for n→∞.

SinceΓ is assumed to be invertible, we therefore can transform equation (2.3) such that

√
n (θ̂n − θ0) +

√
nΓ−1∇Ln(θ0) = oP (1) for n→∞.

Because of condition (iii) we then directly get

√
n (θ̂n − θ0) ⇒ N ′ for n→∞, whereN ′ ∼ N(0,Γ−1 Σ Γ−1) . ut
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2.5.2 Asymptotic Properties of the Conditional
Log-Likelihood-Function

Depending on whether we regard the asymptotic behaviour ofLn,T (θ) for n → ∞ or
for T → ∞, n fixed, the limits of the conditional log-likelihood function differ. Ifn,
the number of time series in the panel, tends to infinity, the terms depending on the mean
process vanish asymptotically, which means its information loses weight. Therefore
in this case our estimator is asymptotically equivalent to the one derived by Hjellvik
and Tjøstheim (1999a), which is the same as our GICM estimatorθ̂a restricted to the
ICM case (see remark 2.4.8). This estimator is only based on the residual processes
{X̊(i)

t }t∈Z, i = 1, . . . , n. In the case ofT → ∞, n fixed, however, we can use all of
the information and thus are able to improve the estimator. We discuss the implications
of this fact more thoroughly at the end of this section in remark 2.5.36. In the present
subsection we derive the pointwise limit of the conditional log-likelihood function in
each case. This can be achieved easily due to the mean-square consistency of the panel
covariance estimator (lemma 1.2.4).
The conditional log-likelihood function for the ICM atθ = (α′, σ2, τ 2)′ ∈ Θ was
obtained in theorem 2.4.2 as

Ln,T (θ) = − 2

n (T − p)
logL(Xp+1, . . . ,XT | X1, . . . ,Xp)

=
1

σ2
An,T (α) +

1

nω2
θ

Bn,T (α)

+
n− 1

n
log σ2 +

1

n
logω2

θ +
1

n
log n+ log (2π)

whereα = (α1, . . . , αp)
′ andω2

θ = τ 2 + σ2

n
. By assumptionσ2 ≥ c > 0 andτ 2 ≥ 0,

thus alsoω2
θ > 0 for all n ∈ N. An,T (α) andBn,T (α) are given in remark 2.4.3 as

An,T (α) =
1

n (T − p)

T∑
t=p+1

n∑
i=1

(
α(L) X̊

(i)
t

)2

and

Bn,T (α) =
1

T − p

T∑
t=p+1

(
α(L) X̄t

)2
.

Thus it is natural to define the limits of the log-likelihood functions as follows.

2.5.3 DEFINITION

For θ = (α′, σ2, τ 2)′ ∈ Θ let cθ anddθ be derived from the autocovariance functions
given in lemma 2.2.4 such that

cθ =

p∑

k,l=0

αk αl c(k − l) and dθ =

q∑

k,l=0

αk αl γ̄n(k − l) ,
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denotingα0 = −1. Using these notations, let

Ln(θ) = ELn,T (θ) =
1

σ2

(
n− 1

n

)
cθ +

1

nω2
θ

dθ +
n− 1

n
log σ2

+
1

n
logω2

θ +
1

n
log n+ log (2π) ,

whereω2
θ = τ 2 + σ2

n
, and denote

L(θ) =
1

σ2
cθ + log σ2 + log (2π) .

We prove next that the functions defined above are indeed the pointwise limits of
Ln,T (θ) for T → ∞, n fixed, andn → ∞, respectively. These then are used for
establishing asymptotic normality for the parameter estimatorθ̂n,T . Note that the au-

tocovariance functionsc(h) = Ψ(h)σ2
0 and γ̄n(h) = Ψ(h)ω2

n = Ψ(h)
(
τ 2
0 +

σ2
0

n

)
,

h ∈ Z, depend only on the true parameterθ0 = (a′, σ2
0, τ

2
0 )
′ of the panel.

2.5.4 THEOREM

Under the assumptions of the ICM (assumption 2.2.1) and using the notations intro-
duced in the preceding definition we get for allθ = (α′, σ2, τ 2)′ ∈ Θ such thatτ 2 > 0
that

E (Ln,T (θ)− Ln(θ))2 = O

(
1

nT

)
and E (Ln,T (θ)− L(θ))2 = O

(
1

n

)
.

If τ 2 = 0, we still have that

E (Ln,T (θ)− Ln(θ))2 = O

(
ω2

n

T

)
and E (Ln,T (θ)− L(θ))2 = O

(
ω2

n

)
,

whereω2
n = τ 2

0 +
σ2
0

n
is derived from the true parameterθ0 = (a′, σ2

0, τ
2
0 ) .

PROOF:
LetAn,T (α) andBn,T (α) be as in remark 2.4.3 and note that the autocovariance func-

tion of the residuals fulfils̊γn(h) = cov
(
X̊

(i)
t , X̊

(i)
t−h

)
= n−1

n
Ψ(h)σ2

0 = n−1
n
c(h) for

all h ∈ Z (lemma 2.2.4). Since in the ICMun = − 1
n−1

= O
(

1
n

)
(remark 2.2.5),

we get from lemma 1.2.4 and its corollary 1.2.6, where we have proven mean-square
convergence of the autocovariance estimator, that

E

(
An,T (α) −

p∑

k,l=0

αk αl γ̊n(k − l)

)2

= O

(
1

nT

)
and

E (Bn,T (α) − dθ )2 = O

(
ω4

n

T

)
(see remark 2.2.5).

If τ 2 > 0, we have that1
ω2

θ
≤ 1

τ2 for all n ∈ N. This proves the first assertion. Further-

more it is obvious that all single terms ofLn(θ)−L(θ) are mean-square convergent of

orderO
(

1√
n

)
, which implies the second result.
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If θ is such thatτ 2 = 0, thenω2
θ = σ2

n
and 1

n
logω2

n = 1
n

log σ2 − 1
n

log n. In this
case 1

n ω2
θ

= 1
σ2 does not decay to zero any more forn → ∞, which implies that the

convergence properties of the termBn,T (α) depend only onω2
n. The above notation

covers both of the casesτ 2
0 > 0 andτ 2

0 = 0. ut

2.5.5 REMARK

The theorem shows that forn → ∞ all terms ofLn,T (θ) depending onω2
θ and thus

on the mean process̄Xt vanish asymptotically forn → ∞ if τ 2 > 0. If n → ∞ and
T is fixed, τ 2 indeed cannot be consistently estimated as we then only have a finite
number of observations for the process{ηt}t∈Z. However we can consistently estimate
ω2

n = var(ηt + ε̄t) from the mean process ifT →∞. Thus the estimatêτ 2 = ω̂2
n − σ̂2

n
,

which we obtain by the minimisation algorithm 2.4.4, is consistent ifT → ∞. The
asymptotic behaviour of̂τ is discussed in more detail in remark 2.5.21 after having
derived the convergence properties of the parameter estimators explicitly.

2.5.3 Asymptotic Normality
of the Parameter Estimators in the ICM

For showing asymptotic normality we follow the lines of the proof of the classic theo-
rem 2.5.1. However we have to adapt the theorem such that we can assess the asymp-
totic behaviour of the parameter estimator for bothn → ∞ andT → ∞, n fixed. If
n→∞, the componentwise limitlimn→∞∇2Ln(θ0) is not positive definite any more.
Therefore we regard instead the matrixΓn = Dn∇2Ln(θ0)Dn, whereDn is given by

Dn =

(
Ip+1 0

0
√
n

)
. We prove in lemma 2.5.10 thatlimn→∞ Γn is positive definite and

thus invertible. These considerations imply that we cannot use the mean value theorem
on
√
n∇Ln,T (θ̂n,T )−√n∇Ln,T (θ0) but on the same expression multiplied byDn, i.e.

√
nDn∇Ln,T (θ̂n,T )−√nDn∇Ln,T (θ0) =

√
nDnMLn,T

(θ)DnD
−1
n

(
θ̂n,T − θ0

)
,

where

MLn,T
(θ) =




∂ Ln,T ;1(θ1,n)

∂x1
· · · ∂ Ln,T ;1(θ1,n)

∂xp+2

...
. . .

...
∂ Ln,T ;p+2(θp+2,n)

∂x1
· · · ∂ Ln,T ;p+2(θp+2,n)

∂xp+2




with intermediate pointsθi,n = θ0 + κi (θ̂n,T − θ̂0), κi ∈ [0, 1], i = 1, . . . , p + 2, and
Ln,T ;i, i = 1, . . . , p + 2, denoting theith coordinate function ofLn,T . Consistency
of the parameter estimator yields that

√
nDn∇Ln,T (θ̂n,T ) = oP (1). Eventually we

obtain that the asymptotic distribution of
√
nD−1

n

(
θ̂n,T − θ0

)
is identical to that of√

nΓ−1
n Dn∇Ln,T (θ0).

In order to structure the proof, we prove the conditions of the theorem in separate
steps. First of all we have to verify the general premises. We therefore show next that
θ0 = argminθ∈ΘLn(θ) ∈ Rp+2 is a unique minimum and thatΓn andΓ are positive de-
finite. At least this is true if the parameter space is chosen small enough. Subsequently
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we prove each of the three conditions of theorem 2.5.1 for the ICM. Asymptotic nor-
mality of the gradient, which is the last condition, has to be proved differently for
n → ∞, T fixed, andT → ∞. In the first case we can employ the standard central
limit theorem for independently and identically distributed observations, whereas the
serial correlation of the time series implies that we have to use a central limit theorem
for martingale arrays in the case ofT →∞.

Preliminaries

In the proof of asymptotic normality we use the fact that the true parameter minimises
the pointwise limit functions of theorem 2.5.4. This is stated in the following lemma.
Note that we here regardL as a function on the smaller parameter spaceΘ̃ ⊂ Rp+1

as ∂
∂τ2L(θ) = 0 for all θ ∈ Θ ⊂ Rp+2. Subsequently we change between the two

viewpoints according to the actual situation.

2.5.6 LEMMA

In the setting of the ICM (assumption 2.2.1) denote the true parameter byθ0 ∈ Θ. If
θ0 = (a′, σ2

0, τ
2
0 )
′, let θ̃0 = (a′, σ2

0)
′ ∈ Θ̃ ⊂ Rp+1. Then the pointwise limits ofLn,T (θ),

θ ∈ Θ, given in definition 2.5.3 fulfil

θ0 = argminθ∈ΘLn(θ) and θ̃0 = argminθ̃∈Θ̃L(θ̃) .

PROOF:
For θ ∈ Θ, let cθ anddθ be as in definition 2.5.3. In the ICM the true parameterθ0

fulfils cθ0 = σ2
0 anddθ0 = ω2

n = τ 2
0 +

σ2
0

n
(see remark 1.1.5). Thus it can be easily

seen from the derivatives ofLn(θ), θ ∈ Θ, andL(θ̃), θ̃ ∈ Θ̃, which are given in the
Appendix C.1 (lemmas C.1.2 and C.1.3) that these functions are minimised byθ0 and
θ̃0, respectively. ut

The parameter spaces used for the minimisation can be restricted such that the true
parameter becomes a unique minimum of the log-likelihood function.

2.5.7 LEMMA

Denote the true parameter in the ICM (assumption 2.2.1) byθ0 = (a′, σ2
0, τ

2
0 )
′ ∈ Θ and

let θ̃0 = (a′, σ2
0)
′ ∈ Θ̃ ⊂ Rp+1. Then one can choose compact subspacesΘ′ ⊆ Θ and

Θ̃′ ⊆ Θ̃ such thatθ0 and θ̃0 are unique minima ofLn(θ), θ ∈ Θ′, andL(θ̃), θ̃ ∈ Θ̃′,
whereLn andL are given in definition 2.5.3.

PROOF:
We have shown in the preceding lemma that ifθ0 ∈ Θ, thenθ0 = argminθ∈ΘLn(θ)
and θ̃0 = argminθ̃∈Θ̃Ln(θ̃). Using the Yule-Walker relations of remark 1.1.5 we can
prove that we have on a neighbourhoodΘ̃′ of θ̃0 that ∂ L

∂xθ̃
(θ̃) < 0 for all θ̃ ∈ Θ̃′, where

xθ̃ = −(θ̃− θ̃0). Thusθ̃0 is a unique minimum ofL on Θ̃′. Analogously we obtain that
θ0 is a unique minimum ofLn on Θ′. As Θ is compact by assumption, the subspaces
Θ′ andΘ̃′ can be chosen such that they are compact as well. Since the calculations are
elementary but lengthy, we refer to the Appendix C.1 for details. ut
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This implies that without loss of generality the compact parameter spacesΘ andΘ̃ can
be chosen such thatθ0 andθ̃0 are unique minima. For ease of notation we therefore use
from now on the conventions of the subsequent assumption.

2.5.8 ASSUMPTION

The true parameter in the ICM isθ0 = (a′, σ2
0, τ

2
0 )
′ ∈ Θ. The parameter spacesΘ and

Θ̃ are compact such thatθ0 ∈ Θ andθ̃0 = (a′, σ2
0)
′ ∈ Θ̃ are unique minima of the limit

functionsLn andL given in definition 2.5.3. Furthermore there exists ac2 > 0 such
that we have for allθ = (α′, σ2, τ 2)′ ∈ Θ thatω2

n = τ 2 + σ2

n
≥ c2 for all n ∈ N.

2.5.9 REMARK

Note that we have alreadyσ2 ≥ c > 0 due to the assumptions of the ICM (assump-

tion 2.2.1). Asω2
n = τ 2 + σ2

n
, the last condition ensures that1

ω2
n

is uniformly bounded
in the case ofn→∞. This is for example needed for proving the uniform convergence
properties in the next subsection. If we regard the casen → ∞, the condition implies
the restriction ofτ 2 ≥ c2 > 0 on the parameter space. IfT → ∞, n fixed, this can be
relaxed toτ 2 ≥ 0.

We can conclude from the proof of lemma 2.5.7 that the second derivatives∇2L(θ̃0)
and∇2Ln(θ0) are positive definite. However this can also be seen directly.

2.5.10 LEMMA

In the setting of the preceding lemma, the matrices∇2L(θ̃0) and∇2Ln(θ0) are positive

definite. If we letDn =

(
Ip+1 0

0
√
n

)
, the transformed matrixΓn = Dn∇2Ln(θ0)Dn

is positive definite as well. Under assumption 2.5.8 we have thatΓ = limn→∞ Γn exists.
It is positive definite and fulfils∇2L(θ̃0) = ( Γ )k,l=1,...,p+1 . All of the above matrices
are continuous onΘ.

PROOF:
Straightforward calculations give (see the Appendix C.1, corollary C.1.4) that

∇2L(θ̃0) =

(
2 (Ψ(k − l))k,l=1,...,p 0

0 1
σ4
0

)

and that

∇2Ln(θ0) =




2 (Ψ(k − l))k,l=1,...,p 0 0

0 n−1
n σ4

0
+ 1

n3 ω4
n

1
n2 ω4

n

0 1
n2 ω4

n

1
n ω4

n


 ,

whereω2
n = τ 2

0 +
σ2
0

n
. As Ψ(h), h ∈ Z, is derived from the autocovariance functions

(see lemma 2.2.4), we obtain directly that∇2L(θ̃0) and∇2Ln(θ0) are positive definite
and continuous. For the transformed matrix we get that

Γn = Dn∇2Ln(θ0)Dn =




2 (Ψ(k − l))k,l=1,...,p 0 0

0 n−1
n σ4

0
+ 1

n3 ω4
n

1
n
√

n ω4
n

0 1
n
√

n ω4
n

1
ω4

n


 .
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It can easily be seen thatΓn and also the componentwise limitΓ = limn→∞ Γn are
positive definite and that moreover∇2L(θ̃0) = ( Γ )k,l=1,...,p+1 . ut

After having verified the general premises, we now prove the adapted versions of con-
ditions (i) to (iii) of theorem 2.5.1.

Condition (i)

The intercorrelation structure in the ICM implies that the conditional maximum-like-
lihood estimator̂θn,T = argminθ∈ΘLn,T (θ) cannot be directly estimated from the data
but has to be obtained through a recursive algorithm (see section 2.4.2). Thus we also
cannot prove consistency in a direct way. We need the concept of equicontinuity in
probability, which e.g. is defined in Dahlhaus (2000b):

2.5.11 DEFINITION

We call a sequence of random variablesZn(θ), θ ∈ Θ, equicontinuous in probability,
if for eachη > 0 andε > 0 there exists aδ > 0 such that

lim sup
n→∞

P

(
sup

||θ1−θ2||≤δ

|Zn(θ1)− Zn(θ2)| > η

)
< ε .

On a compact space equicontinuity in probability and pointwise convergence in proba-
bility imply uniform convergence. Thus, in order to prove condition (i) we first show
thatLn,T (θ), θ ∈ Θ, is equicontinuous in probability. This is achieved if we restrict the
parameter space such thatσ2 andω2

n are bounded away from zero.

2.5.12 LEMMA

Under assumption 2.5.8, i.e. if we have thatσ2 ≥ c > 0 andω2
n = τ 2 + σ2

n
≥ c2 > 0 for

all θ = (a′, σ2, τ 2)′ ∈ Θ, the conditional log-likelihood functionLn,T (θ) is equiconti-
nuous in probability fornT →∞.

PROOF:
The derivatives ofLn,T are given in remark 2.4.3. For facilitating the notation, denote

aθ = (−1, a1, . . . , ap)
′, x̄t =

(
X̄t, . . . , X̄t−p

)′
and̊x

(i)
t =

(
X̊

(i)
t , . . . , X̊

(i)
t−p

)′
for t ∈ Z,

i = 1, . . . , n. Then all termsa′θ x̄t anda′θ x̊
(i)
t , t ∈ Z, i = 1, . . . , n, which appear

in ∇Ln,T (θ) are bounded by||aθ|| ||x̄t|| and ||aθ|| ||̊x(i)
t ||, i = 1, . . . , n. Due to the

assumption thatΘ is compact,||aθ|| ≤ supθ∈Θ ||aθ|| ≤ Ma for someMa < ∞. Fur-
thermore the restriction of the parameter space toσ2 ≥ c andω2

n = τ 2+ σ2

n
≥ c2 implies

that there exists aMc < ∞ such that 1
σ2 ≤ Mc and 1

ω2
n
≤ Mc. Because of the norm

inequalities,supθ∈Θ ||∇Ln,T (θ)|| thus is bounded by a functionfMa,Mc

(
X̄t, X̊

(i)
t

)
of

the processes{X̄t}t∈Z and{X̊(i)
t }t∈Z, i = 1, . . . , n, depending onMa andMc. As the

processes{X̄t}t∈Z and{X̊(i)
t }t∈Z, i = 1, . . . , n, are Gaussian by assumption, all higher

moments exist. Using the Hölder inequality we therefore obtain that

E || sup
θ∈Θ

fMa,Mc

(
X̄t, X̊

(i)
t

)
||2 ≤M <∞ ,
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whereM is a bound independent ofn, T , andθ.
By the mean value theorem and the Chebyshev inequality we thus get that

P

(
sup

||θ1−θ2||≤δ

|Ln,T (θ1)− Ln,T (θ2)| > η

)

≤ P(δ sup
θ∈Θ

||fMa,Mc(X̄t, X̊
(i)
t )|| > η) ≤ δ2

η2
E || sup

θ∈Θ
fMa,Mc(X̄t, X̊

(i)
t )||2 ≤ δ2

η2
M .

SinceM does not depend onn or T , this is also true for the limit. Therefore

lim sup
nT→∞

P

(
sup

||θ1−θ2||≤δ

|Ln,T (θ1)− Ln,T (θ2)| > η

)
≤ δ2

η2
M . ut

This enables us to establish uniform convergence forLn,T (θ).

2.5.13 THEOREM

If Θ is chosen as in the preceding lemma, we get that

sup
θ∈Θ

|Ln,T (θ)− Ln(θ)| = oP (1) for T →∞, n fixed,

and

sup
θ∈Θ

|Ln,T (θ)− L(θ)| = oP (1) for n→∞, T fixed, andn, T →∞ .

PROOF:
The proof is based on the fact that equicontinuity in probability and mean-square con-
vergence imply uniform convergence.
We first treat the caseT → ∞, n fixed. Due to the equicontinuity in probability we
can choose for eachε > 0 andη > 0 a δ > 0 such that

lim sup
nT→∞

P

(
sup

||θ1−θ2||≤δ

|Ln,T (θ1)− Ln,T (θ2)| > η

)
< ε .

SinceΘ is compact, we can coverΘ by a finite number of open balls of radiusr ≤ δ,
i.e. there existϑ1, . . . , ϑk ∈ Θ such thatΘ ⊂ ⋃k

i=1Br(ϑi).
Therefore

P
(

sup
θ∈Θ

|Ln,T (θ)− Ln(θ)| > 3η
)

= P

(
max

i∈{1,...,k}

(
sup

θ∈Br(ϑi)∩Θ

|Ln,T (θ)− Ln(θ)|
)
> 3η

)

≤ P
(

max
i∈{1,...,k}

(
sup

θ∈Br(ϑi)∩Θ

|Ln,T (θ)− Ln,T (ϑi)|
)
> η

)

+ P
(

max
i∈{1,...,k}

|Ln,T (ϑi)− Ln(ϑi)| > η

)
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+ P

(
max

i∈{1,...,k}

(
sup

θ∈Br(ϑi)∩Θ

|Ln(ϑi)− Ln(θ)|
)
> η

)
.

This leads to

lim sup
T→∞

P
(

sup
θ∈Θ

|Ln,T (θ)− Ln(θ)| > 3η

)

≤ lim sup
T→∞

P

(
sup

||θ1−θ2||<r

|Ln,T (θ1)− Ln,T (θ2)| > η

)

+
k∑

i=1

lim sup
T→∞

P (|Ln,T (ϑi)− Ln(ϑi)| > η)

+ P

(
sup

||θ1−θ2||<r

|Ln(θ1)− Ln(θ2)| > η

)

The first of these terms is bounded byε due to the equicontinuity ofLn,T (θ), θ ∈ Θ,
which has been proved in the preceding lemma.
Due to the mean-square convergence ofLn,T (θ) for T → ∞, n fixed (theorem 2.5.4),
there exists aT0 such that

P (|Ln,T (ϑi)− Ln(ϑi)| > η) ≤ ε

k
for all T ≥ T0, i = 1, . . . , k.

The limiting functionLn (see definition 2.5.3) is deterministic and continuous onΘ. If
r ≤ δ is small enough, we therefore have

sup
||θ1−θ2||<r

|Ln(θ1)− Ln(θ2)| < η

and thus

P

(
sup

||θ1−θ2||<r

|Ln(θ1)− Ln(θ2)| > η

)
= 0 .

Altogether we obtain the result if the radius of the covering balls isr ≤ δ such that the
last term vanishes.

For the cases ofn→∞, T fixed, andn, T →∞, the proof is analogous. The limiting
function forn → ∞, L (see definition 2.5.3), is deterministic and continuous onΘ.
Furthermore we have that for allθ ∈ Θ

P (|Ln,T (θ)− L(θ)| > η) → 0 for n→∞

due to the pointwise mean-square convergence ofLn,T (θ) (theorem 2.5.4). The result
follows as above. ut

From the uniform convergence we can conclude consistency of the parameter estimator
θ̂n,T . This enables us to prove convergence in probability for∇Ln,T (θ̂n,T ) and later for
DnMLn,T

(θ)Dn in the expansion used for establishing asymptotic normality.
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2.5.14 LEMMA

Denote the ICM parameter estimator byθ̂n,T = (â′, σ̂2, τ̂ 2)′ = argminθ∈ΘLn,T (θ) and
the true parameter byθ0 = (a′, σ2

0, τ
2
0 )′. Then we get under assumption 2.5.8 that

(â′, σ̂2)′ − (a′, σ2
0)
′ = oP (1) for nT →∞

and τ̂ 2 − τ 2
0 = oP (1) for T →∞.

PROOF:
We have shown uniform convergence ofLn,T (θ) in the above theorem 2.5.13. By as-
sumption the two limiting functionsLn(θ) andL(θ̃) are continuous on the compact
parameter spacesΘ andΘ̃, with unique minima atθ = θ0 andθ̃ = θ̃0, respectively. As
in the proof of proposition 2.5.2, this yields directly the consistency ofθ̂n,T in the case
of T →∞, n fixed, and of(â′, σ̂2)′ if n→∞.
It now remains to prove the statement forτ̂ 2 = ω̂2

n − σ̂2

n
in the case ofn, T →∞. Here

ω̂2
n is estimated aŝω2

n = max
(
B(â), c2 + σ̂2

n

)
with B(â) = 1

T−p

∑T
t=p+1

(
â(L) X̄t

)2

(see section 2.4.2). Furthermore

E

(
1

T − p

T∑
t=p+1

X̄t−k X̄t−l − γ̄n(k − l)

)2

= O

(
1

T

)

due to lemma 1.2.4. As̄γ(k − l) = Ψ(k − l)
(
τ 2 + σ2

n

)
(lemma 2.2.4), we thus have

due to the consistency ofâ andσ̂2 that τ̂ 2−τ 2 = oP (1) even in the case ofn, T →∞.
ut

We however do not get any asymptotic results forτ̂ in the case ofn → ∞, T fixed,
as we then have only a finite number of observations for{ηt}t∈Z. The consistency
properties thus imply convergence of the gradient∇Ln,T (θ̂n,T ) in the following sense.

2.5.15 COROLLARY

In the setting of the ICM (assumption 2.2.1), letθ̂n,T = argminθ∈ΘLn,T (θ). If the
true parameterθ0 = (a′, σ2

0, τ
2
0 )′ ∈ IntΘ, we obtain under assumption 2.5.8 that the

gradient∇Ln,T (θ̂n,T ) fulfils

√
n (T − p)Dn∇Ln,T (θ̂n,T ) = oP (1) for T →∞

and
√
n (T − p)∇L̃n,T (θ̂n,T ) = oP (1) for n→∞, T fixed.

Here∇L̃n,T (θ̂n,T ) =
(
∇Ln,T (θ̂n,T )

)
k=1,...,p+1

is the vector consisting of the firstp+ 1

components of∇Ln,T (θ̂n,T ).

PROOF:
The statement follows from the consistency properties ofθ̂n,T as in the proof of the
classic theorem 2.5.1: if̂θn,T ∈ IntΘ, then∇Ln,T (θ̂n,T ) = 0. Otherwise we have for
ε > 0 due to the consistency that

P
(
||
√
n (T − p)Dn∇Ln,T (θ̂n,T )|| > ε

)
≤ P

(
||θ̂n,T − θ0|| > δ

)
for someδ > 0
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as by assumptionθ0 ∈ IntΘ. Due to the consistency properties proved in the preceding

lemma,P
(
||θ̂n,T − θ0|| > δ

)
→ 0 if T →∞, which proves the first statement. In the

case ofn → ∞, T fixed, we have to restrict ourselves to the first components ofθ̂n,T

andθ0. Altogether this yields the result as stated. ut

Condition (ii)

For assessing the asymptotic behaviour ofDnMLn,T
(θ)Dn, we can proceed as in the

preceding subsection and prove equicontinuity for each component of the matrix. Ap-
plying the mean value theorem, we get from the mean-square convergence together
with equicontinuity in probability thatDnMLn,T

(θ)Dn is uniformly convergent. This
then can be used for showing convergence in probability to the matrixΓn. However we
can also prove convergence in probability ofDnMLn,T

(θ)Dn directly, as it is possi-
ble to compute an explicit representation of∇2Ln,T (θ) and as we have already shown
consistency of the parameter estimators in the last subsection.

2.5.16 THEOREM

Denote the true parameter in the ICM byθ0 = (a′, σ2
0, τ

2
0 ) ∈ Θ and the corresponding

estimator bŷθn,T = (â′, σ̂2, τ̂ 2)
′
= argminθ∈ΘLn,T (θ). Furthermore let

Dn =

(
Ip+1 0

0
√
n

)
and MLn,T

(θ) =




∂ Ln,T ;1(θ1,n)

∂x1
· · · ∂ Ln,T ;1(θ1,n)

∂xp+2

...
. ..

...
∂ Ln,T ;p+2(θp+2,n)

∂x1
· · · ∂ Ln,T ;p+2(θp+2,n)

∂xp+2




with intermediate pointsθi,n = θ0 + κi (θ̂n,T − θ̂0), κi ∈ [0, 1], i = 1, . . . , p + 2, and
Ln,T ;i, i = 1, . . . , p+ 2, denoting theith coordinate function ofLn,T .
Under assumption 2.5.8 we have that

DnMLn,T
(θ)Dn − Γn = oP (1) for T →∞, n fixed,

DnMLn,T
(θ)Dn − Γ = oP (1) for n, T →∞

and DnMLn,T
(θ)Dn − Γ̃ = oP (1) for n→∞, T fixed,

whereΓn = Dn∇2Ln(θ0)Dn andΓ = limn→∞ Γn are given in lemma 2.5.10 and

Γ̃ =




2 (ψ(k − l))k,l=1,...,p 0 0

0 1
σ4
0

0

0 0 Y


 =

(
∇2L(θ̃0) 0

0 Y

)
,

Y being independent ofn.

PROOF:
An explicit representation of the second derivatives ofLn,T (θ) can be found in the
Appendix C.1 in lemma C.1.1. Asθi,n = θ0 + κi (θ̂n,T − θ̂0) with κi ∈ [0, 1], the
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consistency of the parameter estimator shown in lemma 2.5.14 implies consistency of
all intermediate pointsθi,n: for all i = 1, . . . , p+ 2 we have that

θi,n − θ0 = oP (1) for T →∞
and (θi,n)k=1,...,p+1 − (a′, σ2

0)
′ = oP (1) for n, T →∞.

Due to the well-known mean-square convergence of the panel autocovariance estima-
tor (lemma 1.2.4) we thus get for each entry ofDnMLn,T

(θ)Dn the above stated con-
vergence. This is straightforward except for the last component,n ∂2

(∂τ2)2
Ln,T (θp+2,n),

in the case ofn → ∞, T fixed. Denotingθp+2,n = (αp+2,1, . . . , αp+2,p, σ
2
p+2, τ

2
p+2)

′,

αp+1,0 = −1 andωp+2 = τ 2
p+2 +

σ2
p+2

n
, we get here that

n
∂2

(∂τ 2)2
Ln,T (θp+2,n) = − 1

ω4
p+2

+
2

(T − p)ω6
p+2

T∑
t=p+1

p∑

k,l=0

αp+2,k αp+2,l X̄t−k X̄t−l .

Now let {Yt}t∈Z and {Z̄t}t∈Z be the processes defined byYt =
∑∞

u=0 ψu ηt−u and
Z̄t =

∑∞
u=0 ψu ε̄t−u for all t ∈ Z. Then we have{X̄t}t∈Z = {Yt + Z̄t}t∈Z. As

γY (h) = cov (Yt, Yt+h) = Ψ(h) τ 2
0 andγZ̄(h) = cov

(
Z̄t, Z̄t+h

)
= Ψ(h)

σ2
0

n
for all

h ∈ Z, this yields

E
(
X̄t−k X̄t−l − Yt−k Yt−l

)2

= E
(
Z̄t−k Yt−l + Yt−k Z̄t−l + Z̄t−k Z̄t−l

)2

= 2 γZ̄(0) γY (0) + 2 γZ̄(k − l) γY (k − l) + γZ̄(0)2 + 2 γZ̄(k − l)2 = O

(
1

n

)
.

Denotinga0 = −1, let ỸT = 1
T−p

∑T
t=p+1

∑p
k,l=0 ak al Yt−k Yt−l, where(a1, . . . , ap)

′ is
the true autoregressive parameter in the ICM. Then we obtain from the consistency of
â that

n
∂2

(∂τ 2)2
Ln,T (θp+2,n)− Y = oP (1) for n→∞ ,

whereY = − 1
ω4

p+2
+ 2

ω6
p+2

ỸT . This completes the proof. ut

2.5.17 REMARK

Moreover the random variablẽYT defined in the proof of the preceding theorem fulfils
thatỸT = OP (1) for T →∞:

E
(
Ỹ 2

T − τ 2
0

)2

= O
(

1
T

)
due to the mean-square convergence of the autocovariance

estimator (lemma 1.2.4) and the fact that
∑p

k,l=0 ak al γY (k − l) = τ 2
0 (remark 1.1.5).

Thus in particular alsoY = OP (1) and 1
Y

= OP (1) for T →∞.

Condition (iii)

Here we have to study the asymptotic properties of the gradientDn∇Ln,T at the true
parameterθ0. In the case ofn → ∞, T fixed, asymptotic normality of the firstp + 1
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components of∇Ln,T (θ0) follows from the standard central limit theorem for indepen-
dently and identically distributed data. In this case we do not obtain a result for the
last component. IfT → ∞, we have to use a central limit theorem for martingale ar-
rays due to the double (serial and cross-sectional) correlation structure. Altogether we
obtain asymptotic normality as follows. We start with the non-degenerated case where
τ 2
0 > 0. The special case of independent time series (τ 2

0 = 0) is treated afterwards in
theorem 2.5.22.

2.5.18 THEOREM

The gradient of the conditional log-likelihood functionLn,T , which has been derived in
proposition 2.4.2, fulfils at the true parameterθ0 = (a′, σ2

0, τ
2
0 )′ that

for T →∞, n fixed,
√

(T − p)
√
nDn∇Ln,T (θ0) ⇒ Zn, whereZn ∼ N(0,Σn) ;

and, if τ 2
0 > 0, for n, T →∞,

√
T − p

√
nDn∇Ln,T (θ0) ⇒ Z, whereZ ∼ N(0,Σ).

In the case ofn→∞, T fixed, let∇L̃n,T (θ̃0) =
(
∇L̃n,T (θ0)

)
k=1,...,p+1

. We get that

√
T − p

√
n∇L̃n,T (θ̃0) ⇒ ZT , whereZT ∼ N(0,ΣT ).

Here we have, denotingω2
n = τ 2

0 +
σ2
0

n
, that

Σn = 2




(2 Ψ(k − l))k,l=1,...,p 0 0

0 n−1
n σ4

0
+ 1

n3 ω4
n

1
n
√

n ω4
n

0 1
n
√

n ω4
n

1
ω4

n




Σ = lim
n→∞

Σn = 2




(2 Ψ(k − l))k,l=1,...,p 0 0

0 1
σ4
0

0

0 0 1
ω4

n




and ΣT = 2

(
(2 Ψ(k − l))k,l=1,...,p 0

0 1
σ4
0

)
.

PROOF:
Due to the double nature of correlation in the ICM we have to distinguish between the
casesn → ∞, T fixed, andT → ∞. In the first case we can employ the standard
central limit theorem for independently and identically distributed observations for the
proof, whereas we have to use a martingale limit theorem in the second case. In order
to enhance readability, we have moved the proof to the separate section 2.5.4, which
can be found after the main result. ut

2.5.19 REMARK

It can be easily be seen from the explicit representations ofΓn = Dn∇2Ln(θ0)Dn,
Γ = limn→∞ Γn and∇2L(θ̃0) in lemma 2.5.10 that the above matrices fulfilΣn = 2 Γn,
Σ = 2 Γ andΣT = 2∇2L(θ̃0).
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Conclusion

We now have verified all conditions of the classic theorem 2.5.1 stated at the beginning
of the chapter. This implies asymptotic normality of the parameter estimator in the
ICM. Summarising, we obtain our main result:

2.5.20 THEOREM (ASYMPTOTIC NORMALITY OF THE MLE)
Let Ln,T (θ) be the conditional log-likelihood function in the ICM derived in proposi-
tion 2.4.2 and let assumption 2.5.8 on the parameter spacesΘ ⊂ Rp+2 andΘ̃ ⊂ Rp+1

be fulfilled. Let θ̂n,T = (â′, σ̂2, τ̂ 2)′ = argminθ∈ΘLn,T (θ) and denote the reduced vec-
tor by θ̃n,T = (â′, σ̂2)′. Analogously, letθ0 = (a′, σ2

0, τ
2
0 )′ ∈ IntΘ be the true parameter

in the ICM and denotẽθ0 = (a′, σ2
0)
′ ∈ IntΘ̃.

Furthermore letDn be the transformation matrixDn =

(
Ip+1 0

0
√
n

)
.

Then we have forT →∞, n fixed,

√
n (T − p)D−1

n

(
θ̂n,T − θ0

)
⇒ Nn , whereNn ∼ N

(
0, 2 Γ−1

n

)
;

for n, T →∞
√
n (T − p)D−1

n

(
θ̂n,T − θ0

)
⇒ N , whereN ∼ N

(
0, 2 Γ−1

)
,

and for n→∞, T fixed,

√
n (T − p)

(
θ̃n,T − θ̃0

)
⇒ NT , whereNT ∼ N

(
0, 2 Γ◦

−1
)
.

HereΓn = Dn∇2Ln(θ0)Dn, Γ = limn→∞ Γn andΓ◦ = ∇2L(θ̃0), whereLn is the
pointwise limit of the log-likelihood functionLn,T in the case ofT →∞, n fixed, and
L the limit for n→∞.

PROOF:
The mean value theorem leads to

√
n (T − p)Dn∇Ln,T (θ̂n,T )−

√
n (T − p)Dn∇Ln,T (θ0)

=
√
n (T − p)DnMLn,T

(θ)DnD
−1
n

(
θ̂n,T − θ0

)
,

where

MLn,T
(θ) =




∂ Ln,T ;1(θ1,n)

∂x1
· · · ∂ Ln,T ;1(θ1,n)

∂xp+2

...
. . .

...
∂ Ln,T ;p+2(θp+2,n)

∂x1
· · · ∂ Ln,T ;p+2(θp+2,n)

∂xp+2




with intermediate pointsθi,n = θ0 + κi (θ̂n,T − θ̂0), κi ∈ [0, 1], i = 1, . . . , p + 2, and
Ln,T ;i, i = 1, . . . , p + 2, denoting theith coordinate function ofLn,T . The result is
obtained by reasoning analogously to the proof of the classic theorem 2.5.1:
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we have seen in lemma 2.5.6 that the true parameter fulfilsθ0 = argminθ∈ΘLn(θ)
and (a′, σ2

0)
′ = argminθ̃∈Θ̃L(θ̃). From the subsequent results we know due to the

consistency of̂θn,T (condition (i), lemma 2.5.14) that
√
n (T − p)Dn∇Ln,T (θ̂n,T ) = oP (1) for T →∞ (corollary 2.5.15).

In the case ofn → ∞, T fixed, we do not get a statement onτ̂ 2 with the above me-
thods. However(â′, σ̂2)′ is a consistent estimator of(a′, σ2

0)
′; and we thus have that

√
n (T − p)∇L̃n,T (θ̂n,T ) = oP (1) for n→∞, T fixed.

where∇L̃n,T (θ) denotes the reduced vector(∇Ln,T (θ))k=1,...,p+1.
In theorem 2.5.16, which corresponds to condition (ii), we have shown that consistency
together with mean-square convergence lead to

DnMLn,T
(θ)Dn − Γn,T = oP (1) for nT →∞,

whereΓn,T stands forΓn, Γ andΓ̃ =

(
Γ◦ 0

0 Y

)
according to the caseT →∞, n fixed;

n, T → ∞ and n → ∞, T fixed, respectively. Γn, Γ and Γ◦ are given in theo-
rem 2.5.16; they are invertible (lemma 2.5.10).
We therefore obtain from the above equation in the case ofT →∞ that

√
n (T − p)D−1

n

(
θ̂n,T − θ0

)
+

√
n (T − p) Γ−1

n,T Dn∇Ln,T (θ0) = oP (1) ,

and in the case ofn→∞, T fixed, where only
√
n (T − p)∇L̃n,T (θ̂n,T ) = oP (1), we

have due to the structure ofΓ̃ given in theorem 2.5.16 that

√
n (T − p)

(
θ̃n,T − θ̃0

)
+

√
n (T − p) Γ◦−1∇L̃n,T (θ0) = oP (1) .

Finally the preceding theorem yields forT → ∞ that
√
n (T − p)Dn∇Ln,T (θ0) is

AN(0,Σn) (condition (iii); notation as in Brockwell and Davis (1991)). AsΣn = 2 Γn

(remark 2.5.19), this implies that

√
n (T − p)D−1

n

(
θ̂n,T − θ0

)
is AN(0, 2 Γ−1

n ) .

In the case ofn→∞, T fixed, we get analogously from the preceding theorem that
√
n (T − p)

(
(â′, σ̂2)′ − (a′, σ2

0)
′) is AN(0, 2 Γ◦−1) .

This completes the proof. ut

These properties can be observed nicely in the simulations presented in the Appendix A.

2.5.21 REMARK

1. The theorem shows that̂τ 2 converges with a different rate than the other esti-
mators. IfT → ∞, τ̂ 2 is only

√
T -consistent, whereas the other parameter
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estimators are
√
nT -consistent. Aŝτ 2 is the estimator of the variance of the sin-

gle process{ηt}t∈Z, this is a natural result. In the case ofn → ∞, T fixed, we
cannot infer about the asymptotic behaviour ofτ̂ 2, as we then only have a finite
number of observations for the common influence{ηt}t∈Z; τ̂ 2 is not a consistent
estimator ofτ 2

0 in this case.

2. We can investigate the asymptotic behaviour of the parameter estimators more

closely. Since
√
n (T − p)D−1

n

(
θ̂n,T − θ0

)
is AN(0, 2 Γ−1

n ), this means that

√
n (T − p)

(
θ̂n,T − θ0

)
is AN(0, Dn 2 Γ−1

n Dn) ,

whereDn Γ−1
n Dn = ∇2Ln(θ0)

−1.

It is easily seen that fornT → ∞, the variance of the estimators decreases.
DenoteB = (Ψ(k − l))k,l=1,...,p. As (compare lemma 2.5.10)

2∇2Ln(θ0)
−1 =



B−1 0 0

0
2 n σ4

0

n−1
− 2 σ4

0

n−1

0 − 2 σ4
0

n−1

2 σ4
0

n (n−1)
+ 2nω4

n




and 2∇2L(θ̃0)
−1 =

(
B−1 0

0 2σ4
0

)
,

we obtain that the asymptotic variance ofâ is not influenced by the strength of

intercorrelationρ = cov
(
X

(i)
t , X

(j)
t

)
/var

(
X

(i)
t

)
=

τ2
0

σ2
0+τ2

0
(i 6= j). However

the variances of̂σ2 and τ̂ 2 vary with the size ofσ2
0 andτ 2

0 . The variance of̂ω2
n

can be obtained from2∇2Ln(θ0)
−1 as

var ω̂2
n = var τ̂ 2 + var

σ̂2

n
+ 2 cov

(
τ̂ 2,

σ̂2

n

)
= 2nω4

n .

We see in the Appendix A that the simulation results are close to the theoretical
values.

3. The factor 2 in the asymptotic variance is due to the standardisation used in theo-
rem 2.4.2. There we have multiplied the conditional log-likelihood function with
the factor− 2

n (T−p)
for convenience. This standardisation has simplified the nota-

tion in our proofs. Thus the asymptotic variances2 Γ−1
n and2 Γ−1 are the same as

those we would have obtained without using the factor 2 in the standardisation. In
particular the asymptotic variance ofâ is var â = 1

n (T−p)
B−1, which corresponds

to standard theory (see e.g. Brockwell and Davis 1991, theorem 8.1.1).

The above theorem proves asymptotic normality of the parameter estimatorθ̂n,T under
assumption 2.5.8. In particular it requires1

ω̂2
n

to be uniformly bounded in probability
for nT → ∞, implying the conditionτ 2 ≥ c2 > 0 for all θ = (α′, σ2, τ 2)′ ∈ Θ if
n → ∞ (remark 2.5.9). This is necessary for proving equicontinuity in probability for
Ln,T , which in turn is needed for obtaining consistency of the parameter estimators.
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The latter property cannot be assessed directly due to the recursive structure of the
parameter estimator (remark 2.4.8). However we can omit the condition onτ 2 if the
intercorrelation in the panel is zero, i.e. if the time series in the panel are independent.
This case is addressed in the following theorem. The notation follows Brockwell and
Davis (1991).

2.5.22 THEOREM

Let θ0 = (a′, σ2
0, τ

2
0 )′ ∈ Θ be the true parameter in the ICM (assumption 2.2.1). Assume

that Θ ⊆ Θ̃ × R+
0 , whereΘ̃ is such thatσ2 ≥ c > 0 for all θ̃ = (α′, σ2)′ ∈ Θ̃.

Furthermore(a′, σ2
0)
′ ∈ IntΘ̃ andτ 2

0 = 0. In this special case of no intercorrelation, we
get for the ICM parameter estimatorθ̂n,T = (â′, σ̂2, τ̂ 2)′ = argminθ∈ΘLn,T (θ) that

√
n (T − p)

(
(â′, σ̂2)′ − (a′, σ2

0)
′) ⇒ N, whereN ∼ N(0, 2 Γ◦−1) ,

with Γ◦ = ∇2L(θ̃0) =

(
2B 0

0 1
σ4
0

)
andB = (Ψ(k − l))k,l=1,...,p.

Furthermoreτ̂ 2 = OP

(
1

n
√

T

)
.

PROOF:
We first treat the caseT → ∞, n fixed, using the notations of the preceding theorem
and adapting its proof to the present setting. Asn is fixed, we do not need to useDn

for deriving the asymptotic distribution. Furthermore the restriction of the parameter
space tôσ2 ≥ c > 0 implies that 1

σ̂2 and 1
ω̂2

n
are uniformly bounded ifn is fixed, such

that all steps of the preceding proofs can be performed analogously. Thus we have that
supθ∈Θ ||∇Ln,T (θ)|| < ∞, which yields that the functionLn,T (θ) is equicontinuous
in probability for T → ∞, n fixed. Using the pointwise mean-square convergence
of Ln,T (θ) − Ln(θ) (theorem 2.5.4) we therefore get thatθ̂n,T − θ0 = oP (1). As
(a′, σ2

0)
′ ∈ IntΘ̃ by assumption, we then can conclude as in the proof of theorem 2.5.1

that
√
n (T − p)∇L̃n,T (θ̂n,T ) = oP (1). Since we allow forτ̂ 2 = 0, we have that

∂
∂τ2Ln,T (θ̂n,T ) = 0 by construction (remark 2.4.3). Furthermore the matrixMLn,T

(θ) in
the mean value theorem fulfils thatMLn,T

(θ) − ∇2Ln(θ0) = oP (1) due to the consis-

tency of θ̂n,T and the mean-square convergence of the panel autocovariance estimator
(compare the proof of the preceding theorem). In section 2.5.4 we prove asymptotic
normality of∇Ln,T (θ0), the gradient at the true parameter, for anyτ 2

0 ≥ 0. We get
from corollary 2.5.33 that in the case ofT →∞, n fixed,

√
n (T − p)∇Ln,T (θ0) ⇒ Zn whereZn ∼ N(0, 2∇2Ln(θ0)) .

The matrix∇2Ln(θ0) is positive definite (lemma 2.5.10). These considerations allow
us to conclude from the mean value theorem as in the proof of the preceding theorem
that √

n (T − p) (θ̂n,T − θ0) ⇒ Nn for T →∞, n fixed,

whereNn ∼ N(0, 2∇2Ln(θ0)
−1). As τ 2

0 = 0, we have thatω2
n =

σ2
0

n
and therefore(

∇2L(θ̃0)
−1

)
k,l=1,...,p+1

= Γ◦−1.

Now we have to consider the casen→∞. Here 1
ω̂2

n
is not uniformly bounded any more

as the parameter space is not restricted toτ 2 > 0. Thus we do not obtain consistency
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in the same way as before, because we cannot prove equicontinuity in probability of
Ln,T (θ) on the given parameter space. We however can employ a more direct procedure

in this case, based on the fact thatE
(

1
T−p

∑T
t=p+1 X̄t−k X̄t−l

)2

= O (ω4
n) (compare

remark 2.2.5). For ease of notation let

Â1 =
1

n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t x̊

(i)
t−1 , B̂1 =

1

n (T − p)

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i)′
t−1 ,

Â2 =
1

T − p

T∑
t=p+1

X̄t x̄t−1 and B̂2 =
1

T − p

T∑
t=p+1

x̄t−1 x̄′t−1 ,

wherex̊
(i)
t−1 =

(
X̊

(i)
t−1, . . . , X̊

(i)
t−p

)′
for i = 1, . . . , n, and x̄t−1 =

(
X̄t−1, . . . , X̄t−p

)′
.

Thenâ fulfils the equationB̂ â = Â (remark 2.4.3), wherêB = 1
σ̂2 B̂1 + 1

n ω̂2
n
B̂2 and

Â = 1
σ̂2 Â1 + 1

n ω̂2
n
Â2 . If we let â0 = −1, the estimator̂σ2 is given by

σ̂2 =
n

n− 1
An,T (â) =

1

(n− 1) (T − p)

T∑
t=p+1

n∑
i=1

p∑

k,l=0

âk âl X̊
(i)
t−k X̊

(i)
t−l .

Denote the estimator based on the equationB̂1 âHT = Â1 by âHT ; the corresponding
variance estimator iŝσ2

HT = n
n−1

An,T (âHT ). Thenθ̂a = (â′HT , σ̂
2
HT )′ is the estimator

of the parameter(a′, σ2
0) of the individual effects in the GICM (proposition 2.4.7) and

is the same as the one of Hjellvik and Tjøstheim (1999a) (see remark 2.4.8).
As Θ is assumed to be compact such thatσ2 ≥ c > 0 for all θ = (α′, σ2, τ 2)′ ∈ Θ, we
know thatα̂, σ̂2 and, aŝω2

n = τ̂ 2 + σ̂2

n
≥ c

n
, that 1

n ω̂2
n
≤ 1

c
are bounded in probability.

Moreover we have here that1
T−p

∑T
t=p+1 X̄t−k X̄t−l = OP

(
1
n

)
sinceω2

n =
σ2
0

n
in the

special case ofτ 2
0 = 0. These considerations yield that

σ̂2 Â− Â1 =
σ̂2

n ω̂2
n

Â2 = OP

(
1

n

)
and σ̂2 B̂ − B̂1 = OP

(
1

n

)
.

As cov
(
X̊

(i)
t , X̊

(j)
t

)
= − 1

n
σ2

0 if i 6= j, we furthermore get from the mean-square

convergence of the panel autocovariance estimator thatB̂1 − n−1
n
B σ2

0 = OP

(
1√
n T

)
,

where the matrixlimn→∞ n−1
n
B σ2

0 is invertible (lemma 1.2.4).
ThereforeB̂−1

1 = OP (1). Since

B̂1 (â−âHT ) = B̂1 â−Â1+σ̂
2 Â−σ̂2 B̂ â = (B̂1−σ̂2 B̂) â+(σ̂2 Â−Â1) = OP

(
1

n

)
,

we have that̂a−âHT = OP

(
1
n

)
. This yields for the estimators of the variances that also

σ̂2−σ̂2
HT = OP

(
1
n

)
. Thus(â′, σ̂2)′ has the same asymptotic distribution as(â′HT , σ̂

2
HT )

if n → ∞. Hjellvik and Tjøstheim (1999a) have shown that their estimator fulfils√
n (T − p) ((âHT , σ

2
HT )′ − (a, σ2

0)
′) is AN(0, 2 Γ◦−1

n ) and we conclude the same re-
sult as a special case of theorem 2.5.34 in the next section, where we prove asymptotic
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normality of the estimator̂θa = (â′HT , σ̂
2
HT )′ in the GICM, see corollary 2.5.35. There-

fore θ̂n,T fulfils that forn→∞
√
n (T − p) ((â′, σ̂2)′ − (a′, σ2

0)
′) ⇒ N, whereN ∼ N

(
0, 2 Γ◦−1

)
.

Finally we consider the behaviour of the estimatorsω̂2
n = τ̂ 2 + σ̂2

n
andτ̂ 2. The minimi-

sation algorithm 2.4.4 yields that̂ω2
n = 1

T−p

∑T
t=p+1

∑p
k,l=0 âk âl X̄t−k X̄t−l, where we

denotêa0 = −1. Moreover we can writeω2
n =

∑p
k,l=0 ak al Ψ(k − l)ω2

n with a0 = −1

(remark 1.1.5). From the consistency ofâ we know that̂ak âl − ak al = OP

(
1√
n T

)
.

As E
(

1
T−p

∑T
t=p+1 X̄t−k X̄t−l − γ̄n(k − l)

)2

= O
(

ω4
n

T

)
, whereγ̄n(h) = Ψ(h)ω2

n for

all h ∈ Z (remark 2.2.5), this leads to

ω̂2
n − ω2

n =

p∑

k,l=0

âk âl
1

T − p

T∑
t=p+1

(
X̄t−k X̄t−l −Ψ(k − l)ω2

n

)

+

p∑

k,l=0

(âk âl − ak al) Ψ(k − l)ω2
n = OP

(
ω2

n√
T

)
.

Therefore we have due to the consistency ofσ̂2 that also

τ̂ 2 − τ 2
0 = ω̂2

n − ω2
n −

(
σ̂2

n
− σ2

0

n

)
= OP

(
ω2

n√
T

)
,

i.e. for τ 2
0 = 0 we getτ̂ 2 = OP

(
1

n
√

T

)
sinceω2

n = τ 2
0 + σ̂2

n
. ut

2.5.23 REMARK

1. In contrast to the preceding theorem, here the terms depending on the mean pro-
cess vanish asymptotically ifn → ∞. This implies that the information con-
tained in the mean process{X̄t}t∈Z is asymptotically not used in the estimation
anymore. The proof shows that in this case(â, σ̂2)′ indeed has the same asymp-
totic distribution as the parameter estimator(âHT , σ̂

2
HT )′. The latter is derived

in the present work in corollary 2.5.35 after proving asymptotic normality in the
GICM.

2. The last part of the proof of the preceding theorem shows that the asymptotic
behaviour ofτ̂ 2 andω̂2

n is only based on the consistency ofâ and σ̂2. Thus we
get the same results also under the assumption thatτ 2

0 > 0, i.e. we have for any
τ 2
0 ≥ 0 that

τ̂ 2 − τ 2
0 = OP

(
ω2

n√
T

)
and ω̂2

n − ω2
n = OP

(
ω2

n√
T

)
,

where ω̂2
n = τ̂ 2 + σ̂2

n
andω2

n = τ 2
0 +

σ2
0

n
.
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2.5.4 Proof of Theorem 2.5.18

As the proof requires distinguishing the casesn →∞, T fixed, andT →∞, we have
decided to present it in this separate section. First recall the basic properties of the true
parameterθ0 in the ICM.

2.5.24 REMARK

We know that in the ICM (assumption 2.2.1) the true parameterθ0 = (a′, σ2
0, τ

2
0 )′ fulfils

a(L) X̊
(i)
t = ε̊

(i)
t and a(L) X̄t = ηt + ε̄t (see remark2.2.3),

whereaθ(L) is the backward shift operator defined in section 1.1. In order to simplify

the notation letξt = ηt + ε̄t andω2
n = τ 2

0 +
σ2
0

n
= var ξt.

The gradient of the conditional log-likelihood functionLn,T , given in proposition 2.4.2,
at θ0 is therefore

∇Ln,T (θ0) =
1

n (T − p)

T∑
t=p+1

n∑
i=1




(
− 2

σ2
0

(
ε̊
(i)
t X̊

(i)
t−k

)
− 2

n ω2
n
ξt X̄t−k

)
k=1,...,p

− 1
σ4
0
ε̊
(i) 2
t + n−1

n σ2
0
− 1

n2 ω4
n
ξ2
t + 1

n2 ω2
n

− 1
n ω4

n
ξ2
t + 1

n ω2
n


 .

For showing convergence of vectors, we use theCramér-Wold-Device:

2.5.25 PROPOSITION(CRAMÉR-WOLD-DEVICE)
A sequence ofd-dimensional random vectors{Xn}n≥0 converges weakly to ad-dimen-
sional random vectorX if and only if for all λ ∈ Rd

λ′Xn ⇒ λ′X for n→∞ .

PROOF:
See for example Brockwell and Davis (1991), proposition 6.3.1. ut

We split the proof of the theorem in two parts. The first case isn→∞, T fixed. Here
we can use the central limit theorem for independently and identically distributed data.
In the second part,T → ∞, we employ a central limit theorem for martingale arrays
taken from Hall and Heyde (1980).

Case n→∞, T fixed

If n → ∞, T fixed, we do only have a finite number of observations for the process
{ηt}t∈Z. Therefore it is not possible to obtain the asymptotic distribution ofτ̂ 2 in this
case. The varianceσ2 however can consistently be estimated, even ifT is fixed. Thus
we here regard∇L̃n,T (θ0) = (∇Ln,T (θ0))k=1,...,p+1, i.e. we omit ∂

∂τ2 Ln,T (θ0) from the
analysis.
In the following we construct a sequence of independently and identically distributed
random vectorsS(i)

T , i ≥ 1, to which we apply the standard central limit theorem.
We then show that

√
n (T − p)∇L̃n,T (θ0) has the same asymptotic distribution as
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1√
n

∑n
i=1 S

(i)
T . In order to motivate the choice ofS(i)

T , i ≥ 1, we preliminarily con-

sider some asymptotic properties of the entries of
√
n (T − p)∇L̃n,T (θ0). In particular

the terms of
√
n (T − p)∇L̃n,T (θ0) depending on{X̄t}t∈Z vanish asymptotically if

n→∞.

2.5.26 LEMMA

The entries of
√
n (T − p)∇Ln,T (θ0), where∇Ln,T (θ0) is given in remark 2.5.24,

fulfil for all k = 1, . . . , p that

E

(
1√

n (T − p)

T∑
t=p+1

2

ω2
n

ξt X̄t−k

)2

= O

(
1

n

)
.

Furthermore

E

(
1√

n (T − p)

T∑
t=p+1

1

nω2
n

(
− 1

ω2
n

ξ2
t + 1

))2

= O

(
1

n3 ω4
n

)
.

We moreover have, if we letZ(i)
t =

∑∞
u=0 ψu ε

(i)
t−u as in lemma 2.2.4, that

E

(
1√

n (T − p)

T∑
t=p+1

n∑
i=1

(
− 2

σ2
0

(
ε̊
(i)
t X̊

(i)
t−k − ε

(i)
t Z

(i)
t−k

)))2

= O

(
1

n

)

and

E

(
1√

n (T − p)

T∑
t=p+1

n∑
i=1

(
− 1

σ4
0

(
ε̊
(i) 2
t − ε

(i) 2
t

)
− 1

n

1

σ2
0

))2

= O

(
1

n

)
.

PROOF:
The proof of the above statements is straightforward. In order to enhance readability,
we have moved it to the Appendix C.2.1. ut

Now we can prove asymptotic normality in the casen → ∞, T fixed. We apply the
central limit theorem to the independently and identically distributed sequence{Sn}n∈N
defined below.

2.5.27 THEOREM

In the setting of the ICM described in assumption 2.2.1 denoteZ
(i)
t =

∑∞
u=0 ψu ε

(i)
t−u

(see lemma 2.2.4). Fori = 1, . . . , n, let S
(i)
T = 1√

T−p

∑T
t=p+1 Z

(i)
t , where

Z
(i)
t =




(
− 2

σ2
0
ε
(i)
t Z

(i)
t−k

)
k=1,...,p

− 1
σ4
0
ε
(i)2
t + 1

σ2
0


 ,

and denoteSn = 1
n

∑n
i=1 S

(i)
T .

Then
√
nSn ⇒ NT , with NT ∼ N (0,ΣT ) , for n→∞, T fixed,

whereΣT = 2

(
(2 Ψ(k − l))k,l=1,...,p 0

0 1
σ4
0

)
.



56 CHAPTER 2. THE INTERCORRELATION MODEL

PROOF:
Let λ ∈ Rp+1. Thenλ′ S(i)

T andλ′ S(j)
T are identically distributed and independent for

i 6= j with E
(
λ′ S(i)

T

)
= 0 andvar

(
λ′ S(i)

T

)
= 4

∑p
k,l=1 λk λl Ψ(k − l) + λ2

p+1
2
σ4
0

for

all i = 1, . . . , n. Therefore the standard central limit theorem for independently and
identically distributed observations directly gives that

√
nλ′ Sn =

1√
n (T − p)

T∑
t=p+1

n∑
i=1

λ′ Z(i)
t ⇒ NT , whereNT ∼ N(0, λ′ ΣT λ)

with ΣT as stated above. Using the Cramér-Wold device (proposition 2.5.25) we obtain
the result. ut

This allows us to show asymptotic normality for
√
n(T − p)∇L̃n,T (θ0).

2.5.28 COROLLARY (THEOREM 2.5.18,CASEn→∞, T FIXED)
Let θ0 = (a′, σ2

0, τ
2
0 )′ be the true parameter in the ICM. Then the reduced gradient

∇L̃n,T (θ0) = (∇Ln,T (θ0))k=1,...,p+1, where∇Ln,T (θ0) is given in remark 2.5.24, is
asymptotically normal:

√
n (T − p)∇L̃n,T (θ0) ⇒ NT , with NT ∼ N(0,ΣT ), for n→∞, T fixed,

whereΣT is as stated in the above theorem.

PROOF:
We use the notations of the preceding theorem. Then

∆n =
√
n

(√
(T − p)∇L̃n,T (θ0)− Sn

)

=
1√

n (T − p)

T∑
t=p+1

n∑
i=1




(
− 2

σ2
0

(
ε̊
(i)
t X̊

(i)
t−k − ε

(i)
t Z

(i)
t−k

))
k=1,...,p

− 1
σ4
0

(
ε̊
(i) 2
t − ε

(i) 2
t

)
− 1

n
1
σ2
0




+
1√

n (T − p)

T∑
t=p+1




(
− 2

ω2
n
ξtX̄t−k

)
k=1,...,p

1
n

1
ω2

n

(
− 1

ω2
n
ξ2
t + 1

)

 .

Lemma 2.5.26 shows that we haveE (λ′ ∆n)2 = O
(

1
n

)
for all λ ∈ Rp+1. Thus√

n (T − p)∇L̃n,T (θ0) has the same asymptotic distribution as
√
nSn in the case of

n→∞, T fixed ut

Case T →∞
In the ICM, not onlyX̊(i)

t and X̊(j)
t are correlated fori, j = 1, . . . , n. Due to their

autoregressive structure, also̊X(i)
s andX̊(i)

t are dependent fors 6= t. Therefore, in the
case ofT →∞ we cannot reduce the proof of the theorem to the central limit theorem
for independently and identically distributed data as before. However, the conditions
of the following central limit theorem for martingale arrays are fulfilled.
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2.5.29 THEOREM (HALL AND HEYDE)
Let {ST,t,FT,t, T ≥ 1, 1 ≤ t ≤ T} be a martingale array withFT,t ⊆ FT+1,t, such that
E(ST,t) = 0 andE(S2

T,t) < ∞ for all T ≥ 1, 1 ≤ t ≤ T. Denote the differences by
DT,t. If the differences fulfil

(i) the conditional Lindeberg condition that for allε > 0

T∑
t=1

E
(
D2

T,t I(|DT,t| > ε) | FT,t−1

)
= oP (1) for T →∞

(ii) and an analogous condition for the conditional variance,
T∑

t=1

E
(
D2

T,t | FT,t−1

)− η2 = oP (1) for T →∞,

we get that forT →∞

ST =
T∑

t=1

DT,t ⇒ N, whereN ∼ N(0, η2) .

PROOF:
Hall and Heyde (1980), theorem 3.2 and corollary 3.1. ut

For proving asymptotic normality we now construct a martingale array fulfilling the
conditions of the preceding theorem. It is defined in the next lemma; the convergence
properties of the martingale differences are derived in the subsequent proposition. By
regarding the transformed gradientDn∇Ln,T (θ0) we obtain the asymptotic normality
result for both of the casesT →∞, n fixed, andn, T →∞ in one step.

2.5.30 LEMMA

Assume that the assumptions of the ICM (assumption 2.2.1) are fulfilled and let the
sequence(T, nT )T≥p+1 be such thatnT+1 ≥ nT ≥ 1.
Define theσ-fieldFT,τ by

FT,τ = σ{ε(i)
t , ηt; −∞ < t ≤ τ, i = 1, . . . , nT}

and let

ST,τ =
1√

nT (T − p)

τ∑
t=p+1

nT∑
i=1

λ′ Z(i)
t ,

whereλ ∈ Rp+2 and the variablesZ(i)
t , p+ 1 ≤ t ≤ T, i = 1, . . . , nT , are such that

Dn∇LnT ,T (θ0) =
1

nT (T − p)

T∑
t=p+1

nT∑
i=1

Z
(i)
t ,

where∇Ln,T (θ0) is given in remark 2.5.24 andDn =

(
Ip+1 0

0
√
n

)
.

Then{ST,τ ,FT,τ , T ≥ p + 1, τ = p + 1, . . . , T} is a martingale array withEST,τ = 0
andvarST,τ <∞. FurthermoreFT,τ ⊆ FT+1,τ . The martingale differences, depending
on the givenλ, areDT,t,λ = 1√

nT (T−p)

∑nT

i=1 λ
′ Z(i)

t , t = p+ 1, . . . , T.
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PROOF:
The assertions are a direct consequence of the choice ofZ

(i)
t andFT,τ . ut

The martingale differences fulfil the conditions of the above theorem of Hall and Heyde
(1980).

2.5.31 PROPOSITION

In the setting of the preceding lemma we get for the martingale differences that

T∑
t=p+1

E
(
D2

T,t,λ | FT,t−1

)
− λ′ Σn λ = oP (1) for T →∞,

whereΣn is as stated in theorem 2.5.18. If the true parameterθ0 = (a′, σ2
0, τ

2
0 )′ fulfils

thatτ 2
0 > 0, we furthermore have for allε > 0 that

T∑
t=p+1

E
(
D2

T,t,λ I(|DT,t,λ| > ε) | FT,t−1

)
= oP (1) for T →∞.

In the case ofT →∞, n fixed, it is sufficient to require thatτ 2
0 ≥ 0.

PROOF:
Straightforward calculations give that

T∑
t=p+1

E
(
D2

T,t,λ | FT,t−1

)

=
1

nT (T − p)

T∑
t=p+1

[ p∑

k,l=1

λk λl

×
(

4

σ2
0

nT∑
i,j=1

X̊
(i)
t−k X̊

(j)
t−l

(
δij − 1

nT

)
+

4

ω2
n

X̄t−k X̄t−l

) ]

+ λ2
p+1

(
2 (nT − 1)

nT σ4
0

+
2

n3
T ω

4
n

)
+ λ2

p+2

2

ω4
n

+ 2λp+1 λp+2
2

nT
√
nT ω4

n

.

Due to the mean-square convergence of the first terms, we thus get that

T∑
t=p+1

E(D2
T,t,λ | FT,t−1) − λ′ Σn λ = oP (1)

with Σn as stated in theorem 2.5.18. The details can be found in the Appendix C.2.2
(proposition C.2.2).
It remains to prove the second assertion. Applying the Hölder and Chebyshev inequa-
lities we obtain

E
( T∑

t=p+1

E
(
D2

T,t,λ I(|DT,t,λ| > ε) | FT,t−1

))
= E

(
D2

T,t,λ I(|DT,t,λ| > ε)
)
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≤
T∑

t=p+1

√
E

(
D4

T,t,λ

) √
1

ε2
E

(
D2

T,t,λ

)
.

Note that because of

(T − p)E
(
D2

T,t,λ

)
= E

(
T∑

t=p+1

E
(
D2

T,t,λ | FT,t−1

)
)
,

we have(T − p)E
(
D2

T,t,λ

)
= λ′ Σn λ. If 1

ω2
n

= O(1) for nT →∞, i.e. if τ 2
0 > 0 or if

T →∞, n fixed, we therefore get that

E
(
D2

T,t,λ

)
= O

(
1

T

)
.

As the calculations needed to show thatE
(
D4

T,t,λ

)
remains bounded ifnT → ∞ are

too lengthy to be included here, the proof also has been moved to the Appendix C.2.2
(proposition C.2.3). Indeed we have that

E
(
D4

T,t,λ

)
= O

(
1

T 2

)
.

This yields, in both of the casesnT →∞ andn fixed, that

E
( T∑

t=p+1

E
(
D2

T,t,λ I(|DT,t,λ| > ε) | FT,t−1

) )
= O

(
1√
T

)
for all ε > 0.

AsE
(
D2

T,t,λ I(|DT,t,λ| > ε) | FT,t−1

) ≥ 0, we just have shown that the term converges
to zero in theL1 norm. This completes the proof. ut

Theorem 2.5.18 is now a direct conclusion from Hall and Heyde’s theorem (notation as
in Brockwell and Davis (1991)).

2.5.32 THEOREM

In the setting of the ICM (assumption 2.2.1), the gradient of the conditional log-likeli-
hood function at the true parameterθ0 = (a′, σ2

0, τ
2
0 )′, given in remark 2.5.24, is asymp-

totically normal forT →∞ if τ 2
0 > 0:

√
n (T − p)Dn∇Ln,T (θ0) is AN(0,Σn) for T →∞,

whereΣn is as stated in theorem 2.5.18 andDn =

(
Ip+1 0

0
√
n

)
.

In the case ofT →∞, n fixed, the condition onτ 2
0 can be relaxed toτ 2

0 ≥ 0.

PROOF:
First note that we have forΣ = limn→∞ Σn that

λ′ Σn λ− λ′ Σλ = OP

(
1

n

)
(see lemma 2.5.10);
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which implies that

T∑
t=p+1

E
(
D2

T,t,λ | FT,t−1

)
− λ′ Σλ = oP (1) for n, T →∞

(see also the proof of the preceding proposition). Depending on theλ chosen in the

definition ofDT,t,λ = λ′
(

1√
(T−p) n

∑n
i=1 Z

(i)
t

)
, we thus obtain from theorem 2.5.29

that

ST =
T∑

t=p+1

DT,t,λ is AN(0, λ′ Σn λ) for T →∞.

This means thatST =
∑T

t=p+1DT,t,λ ⇒ Nλ, where the random variableNλ is dis-
tributed asNλ ∼ N(0, λ′ Σλ) in the case ofn, T → ∞ and asNλ ∼ N(0, λ′ Σn λ)
if T → ∞, n fixed. Using the Cramér-Wold device (proposition 2.5.25), this leads
to asymptotic normality of 1√

n (T−p)

∑n
i=1 Z

(i)
t . SinceZ

(i)
t has been chosen such that

∇Ln,T (θ0) = 1
n (T−p)

∑T
t=p+1

∑n
i=1 Z

(i)
t , result follows directly. ut

Distinguishing the two casesn→∞ andn fixed, we get the following explicit version
of the theorem.

2.5.33 COROLLARY (THEOREM 2.5.18,CASE T →∞)
In the above setting, we obtain for the gradient of the conditional log-likelihood func-
tion at the true parameterθ0 = (a′, σ2

0, τ
2
0 )′ that for T →∞, n fixed,

√
n (T − p)Dn∇Ln,T (θ0) ⇒ Zn whereZn ∼ N(0,Σn),

and for n, T →∞, if τ 2
0 > 0,

√
n (T − p)Dn∇L̃n,T (θ0) ⇒ Z whereZ ∼ N(0,Σ).

HereΣn andΣ = limn→∞ Σn are as stated in theorem 2.5.18 andDn =

(
Ip+1 0

0
√
n

)
.

PROOF:
The above statements are the longer expressions for the “AN”-notation. ut

2.5.5 Asymptotic Normality in the GICM

In the GICM, the parameterθa = (a1, . . . , ap, σ̃
2
n)
′ of the individual effects and the

parameterθb = (b1, . . . , bq, ω
2
n)
′ of the background process are estimated separately.

Thus we can also investigate their asymptotic properties separately.
We have already discussed asymptotic normality for the estimatorθb obtained by mini-
misingLX̄t

n,T in theorem 2.4.15. Asymptotic normality ofθ̂a derived fromL◦n,T follows
in a similar way as in the case of the ICM:
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2.5.34 THEOREM

Under the assumptions of the GICM (assumption 2.3.1), we get ifσij
n = O

(
1
n

)
that

√
n (T − p)

(
θ̂a − θa

)
is AN(0, 2 Γ◦−1

n )

(notation as in Brockwell and Davis (1991)), i.e. we have forT →∞, n fixed, that

√
n (T − p)

(
θ̂a − θa

)
⇒ Nn ,

and for n→∞ √
n (T − p)

(
θ̂a − θa

)
⇒ N ,

whereNn ∼ N(0, 2 Γ◦−1
n ) andN ∼ N(0, 2 Γ◦−1) with

Γ◦n = E
(∇2L◦n,T (θa)

)
=
n− 1

n

(
2B 0

0 1
σ̃4

n

)
and Γ◦ = lim

n→∞
Γ◦n =

(
2B 0

0 1
σ4
0

)
,

whereB = (Ψ(k − l))k,l=1,...,p is derived from the autocovariance function of the pro-
cesses (see remark 2.3.5).

PROOF:
In the case of the GICM, the estimation of the parameter is based solely on the indivi-
dual time series̊X(i)

t = Z̊
(i)
t , t ∈ Z, i = 1, . . . , n. The estimator of the autoregressive

parameter is obtained as (see proposition 2.4.7)

â =

(
T∑

t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i) ′
t−1

)−1 T∑
t=p+1

n∑
i=1

X̊
(i)
t x̊

(i)
t−1 ,

where we denote̊x(i)
t−1 = (X̊

(i)
t−1, . . . , X̊

(i)
t−p)

′, i = 1, . . . , n. The estimator of the innova-
tions’ variance is given by

σ̂2
n =

1

(n− 1)(T − p)

T∑
t=p+1

n∑
i=1

(
â(L) X̊

(i)
t

)2

.

We have already proved in proposition 2.4.7 that(â′, σ̂2
n)′ − (a′, σ̃2

n)′ = OP

(
1√
n T

)
.

By assumptionσij
n = cov

(
ζ̊

(i)
t , ζ̊

(j)
t

)
= O

(
1
n

)
for i 6= j. Due to the mean-square

consistency of the panel covariance estimator (lemma 1.2.4) it is easy to see that

∇2L◦n,T (θa)− Γ◦n = OP

(
1√
nT

)
;

the second derivatives ofL◦n,T (θ) are given in the Appendix C.1, lemma C.1.5.

As∇L◦n,T (θ̂a) = 0 by construction, we obtain from the mean value theorem that

√
n (T − p)∇L◦n,T

(
θa

)
=

√
n (T − p)ML◦(θ) (θ̂a − θa) ,
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where ML◦(θ) =




∂ L◦n,T ;1(θ1,n)

∂x1
· · · ∂ L◦n,T ;1(θ1,n)

∂xp+1

...
. ..

...
∂ L◦n,T ;p+1(θp+1,n)

∂x1
· · · ∂ L◦n,T ;p+1(θp+1,n)

∂xp+1




with intermediate pointsθi,n = θa + κi (θ̂a − θ̂a), κi ∈ [0, 1], i = 1, . . . , p + 1, and
L◦n,T ;i, i = 1, . . . , p + 1, denoting theith coordinate function ofL◦n,T (compare proof
of theorem 2.5.20, where we have proved asymptotic normality of the estimators in the
ICM). Due to the consistency of the parameter estimator and the

√
nT -consistency of

∇2L◦n,T (θa) we can reason as in the proof of condition (ii) of the preceding theorem

(theorem 2.5.16) that alsoML◦(θ) − Γ◦n = OP

(
1√
n T

)
. It thus only remains to prove

asymptotic normality of the gradient∇L◦n,T

(
θa

)
, which then yields the result. Here we

have to proceed as in the case of the ICM (theorem 2.5.18). The gradient at the true
parameter is

∇L◦n,T (θa) =
1

n (T − p)

T∑
t=p+1

n∑
i=1




(
− 2

σ̃2
n
ζ̊

(i)
t Z̊

(i)
t−k

)
k=1,...,p

− 1
σ̃4

n
ζ̊

(i) 2
t + n−1

n σ̃2
n


 ,

which can formally be obtained from∇Ln,T (θ0) by replacing̊ε(i)
t by ζ̊(i)

t , σ2
0 by σ̃2

n and
by omitting all terms dependent onω2

n. Recall thatZ̊(i)
t = X̊

(i)
t is given for allt ∈ Z

by Z̊(i)
t =

∑∞
u=0 ψu ζ̊

(i)
t−u (assumption 2.3.1) and thatcov

(
ζ̊

(i)
t , ζ̊

(j)
t

)
=

(
δij − 1

n

)
σ̃2

n

(remark 2.3.5). Proceeding as in the proof of theorem 2.5.18, we get in the case of
T →∞ that √

n (T − p)∇L◦n,T (θa) is AN(0, 2 Γ◦−1
n ) .

The factorn−1
n

in Γ◦n is induced by omitting the terms depending onω2
n. In the remai-

ning case ofn → ∞, T fixed, we have been able to employ the independence ofε
(i)
t

andε(j)
t for i 6= j in the ICM case (see theorem 2.5.27). This however cannot be mi-

micked for the GICM as we allowζ(i)
t andζ(j)

t to be correlated fori 6= j. Therefore we
must again use the above central limit theorem for martingale arrays. Forn ∈ N and
ν = 1, . . . , n letFn,ν = σ{ζ(i)

t , i = 1, . . . , ν}, which impliesFn,ν ⊆ Fn+1,ν . Instead of

ζ
(i)
t we now regard̃ζ(i)

t = ζ
(i)
t − E

(
ζ

(i)
t | Fn,i−1

)
. Then we have fori 6= j that ζ̃(i)

t and

ζ̃
(j)
t are independent. Additionally replaceZ(i)

t by Z̃(i)
t =

∑∞
u=0 ψu ζ̃

(i)
t−u. As Z(j)

s and
ζ

(i)
t are independent for alls < t, i, j = 1, . . . , n, alsoZ̃(j)

s andζ̃(i)
t are independent for

s < t. Using these notations, we form

Z̃
(i)
t =




(
− 2

σ̃2
n
ζ̃

(i)
t Z̃

(i)
t−k

)
k=1,...,p

− 1
σ̃4

n
ζ̃

(i) 2
t + σ2

n

σ̃4
n




and letS̃n,ν = 1√
n (T−p)

∑T
t=p+1

∑ν
i=1 λ

′ Z̃(i)
t , whereλ ∈ Rp+1.

Then{Sn,ν ,Fn,ν , n ∈ N, ν = 1, . . . , n} is a martingale array withESn,ν = 0 and
varSn,ν < ∞. Furthermore, the differencesDn,i = 1√

n (T−p)

∑T
t=p+1 λ

′ Z̃(i)
t fulfil

the other two conditions of Hall and Heyde’s theorem 2.5.29. ThusSn =
∑n

i=1Dn,i is
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asymptotically normal with asymptotic varianceλ′ 2 Γ◦ λ. As in the ICM, casen→∞,

it can be shown thatE
(√

n (T − p)∇L◦n,T (θa)− Sn

)2

= O
(

1
n

)
(lemma 2.5.26). This

proves asymptotic normality for the gradient in the case ofn→∞, T fixed.
Therefore we can conclude from the mean value theorem that

√
n (T − p)

(
θ̂a − θa

)
is AN(0, 2 Γ◦−1

n ) ,

covering all three casesT →∞, n fixed;n, T →∞, andn→∞, T fixed. ut

We now can deduce the asymptotic distribution of the estimator of the parameter of the
individual effects in the ICM, which allows us comparing the relative efficiencies of the
ICM parameter estimator to the estimator of Hjellvik and Tjøstheim (1999a).

2.5.35 COROLLARY

In the special case of the ICM, the above theorem yields that

√
n (T − p)

(
θ̂a − (a′, σ2

0)
′
)

is AN

(
0, 2

n

n− 1
Γ◦−1

)
,

whereσ2
0 = var ε

(i)
t andΓ◦ =

(
2B 0

0 1
σ4
0

)
= ∇2L(θ̃0) with B = (Ψ(k − l))k,l=1,...,p

(compare lemma 2.5.10).

PROOF:
The random variablesζ(i)

t in the GICM correspond to̊ε(i)
t in the ICM for all t ∈ Z,

i = 1, . . . , n. Thus we get in particular that̊ζ(i)
t = ε̊

(i)
t − 1

n

∑n
i=1 ε̊

(i)
t = ε̊

(i)
t = ζ

(i)
t ,

wherecov
(
ε̊
(i)
t , ε̊

(j)
t

)
=

(
δij − 1

n

)
σ2

0, i.e. herẽσ2
n = σ2

0 = limn→∞ σ̃2
n (remark 2.3.5).

Thus the above theorem yields directly that

√
n (T − p)

(
θ̂a − (a′, σ2

0)
′
)

is AN

(
0, 2

(
n− 1

n
Γ◦

)−1
)
. ut

2.5.36 REMARK

We have discussed in remark 2.4.8 that, if the model is restricted to the ICM case, the

estimator of Hjellvik and Tjøstheim (1999a) equals the GICM estimatorθ̂a of θa, which
is obtained from the individual effects{Z̊(i)

t }t∈Z = {X̊(i)
t }t∈Z, i = 1, . . . , n. We can

derive the asymptotic relative efficiencies of the autoregressive parameter estimators
from the asymptotic variances obtained in theorem 2.5.20 and in the above theorem.
For this, denotêθn,T = (â′, σ̂2, τ̂ 2)

′ and θ̂a = (â′HT , σ̂
2
HT )

′. For n → ∞ the ICM
parameter estimator(â′, σ̂2)

′ and the estimator̂θa are asymptotically equivalent. Thus
we could have obtained asymptotic normality ofθ̂a in the special case of the ICM also
in a direct way fromL◦n,T (θa), as it has been done in Hjellvik and Tjøstheim (1999a),
see also remark 2.4.8. However, ifT → ∞, n fixed, the asymptotic results in the
ICM are based onLn(θ), which includes the information contained in{X̄t}t∈Z. In
this case we get that the asymptotic variance of

√
n (T − p) (â− a) is B−1, where

B = (Ψ(k − l))k,l=1,...,p is obtained from the upper left block ofΓn (remark 2.5.23).
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If we denote the upper left block ofn−1
n

Γ◦ by B◦, we thus have thatn−1
n
B = B◦,

i.e. B◦−1 = n
n−1

B−1, Therefore the relative asymptotic efficiency ofâ to âHT is for
T →∞, n fixed,

effrel (â, âHT ) =
n− 1

n
.

This effect is also illustrated in the simulations in the Appendix A.

2.6 Properties of the Parameter Estimators

In the last section we have proved consistency of the parameter estimators and have
proved asymptotic normality in both the ICM (theorem 2.5.20) and the GICM (theo-
rem 2.5.34). These results yield a

√
nT -rate of convergence. Now we investigate the

asymptotic behaviour more closely. It is generally known (compare also remark 2.6.13
at the end of this section) that determining the mean squared error of the parameter
estimators is a difficult task. We thus restrict ourselves to a stochastic expansion and
examine the mean squared error of its dominating term. The calculation is straight-
forward for the parameter estimators in the GICM; in theorem 2.6.9 we derive the
term responsible for the asymptotic behaviour ofâHT − a, whereâHT is the estimator
of Hjellvik and Tjøstheim (1999a) anda denotes the true autoregressive parameter. We
however begin with the case of the ICM parameter estimatorâ, where the structure of
the estimators is more complex. Here we give an explicit expression of the dominating
term in theorem 2.6.5.
Comparing the mean squared errors of the dominating terms we obtain the main result
of this section: the ICM estimator̂a has not only a higher relative efficiency compared
to âHT (see remark 2.4.8), but also the mean squared error of the dominating term
is smaller. In order to enhance readability, some proofs have been moved to the Ap-
pendix C.3.1. The section concludes with a short discussion of the bias in the ICM and
GICM. In particular we prove the mean-square rate of convergence of the bias term.

Rates of Convergence

For reference we first recall some results obtained previously.

2.6.1 REMARK

1. We see from remark 2.4.3 and the algorithm 2.4.4 that, if the ICM parameter

estimatorθ̂n,T = (â′, σ̂2, τ̂ 2)′ = argminθ∈ΘLn,T (θ) ∈ IntΘ, it fulfils B̂ â = Â
with

B̂ =
1

σ̂2

1

n (T − p)

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i)′
t−1 +

1

ω̂2
n

1

n (T − p)

T∑
t=p+1

x̄t−1 x̄′t−1

and

Â =
1

σ̂2

1

n (T − p)

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 X̊

(i)
t +

1

ω̂2
n

1

n (T − p)

T∑
t=p+1

x̄t−1 X̄t ,
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where x̊
(i)
t−1 =

(
X̊

(i)
t−1, . . . , X̊

(i)
t−p

)′
, i = 1, . . . , n, x̄t−1 =

(
X̄t−1, . . . , X̄t−p

)′
.

τ̂ 2 is obtained from̂σ2 and ω̂2
n by τ̂ 2 = ω̂2

n − σ̂2

n
.

In the ICM (assumption 2.2.1) we assume that the parameter spaceΘ is compact
and that there exists ac > 0 such that for allθ = (a′, σ2, τ 2) ∈ Θ we have that
σ2 ≥ c.

2. In the ICM, {X̊(i)
t }t∈Z, i = 1, . . . , n, and{X̄t}t∈Z are autoregressive processes

with the same autoregressive parametera = (a1, . . . , ap)
′. Forh ∈ Z their auto-

covariances are̊γn(h) = n−1
n
σ2

0 Ψ(h) andγ̄n(h) = ω2
n Ψ(h) =

(
τ 2
0 +

σ2
0

n

)
Ψ(h),

whereσ2
0 andτ 2

0 denote the true variances of{ε(i)
t }t∈Z, i = 1, . . . , n, and{ηt}t∈Z

(see lemma 2.2.4). Therefore we know from standard theory (e.g. Brockwell and
Davis 1991, p. 239) thata fulfils the Yule-Walker equationB a = A, where

B = (Ψ(k − l))k,l=1,...,p and A = (Ψ(l))l=1,...,p .

AsB is derived from the autocovariance function, it is obvious thatB is positive
definite and thus invertible.

3. Since in the ICMun = − 1
n−1

= O
(

1
n

)
(remark 2.2.5), the mean-square conver-

gence property shown in lemma 1.2.4 gives for allk, l = 0, . . . , p, that

E

(
1

n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t−k X̊

(i)
t−l − γ̊n(k − l)

)2

= O

(
1

nT

)
.

Furthermore we have seen in remark 2.2.5 that

E

(
1

T − p

T∑
t=p+1

X̄t−k X̄t−l − γ̄n(k − l)

)2

= O

(
ω4

n

T

)
,

where again̊γn(h) = n−1
n
σ2

0 Ψ(h) andγ̄n(h) = ω2
n Ψ(h), h ∈ Z.

Consistency of the parameter estimators can be obtained as a conclusion from the cen-
tral result of the preceding section, where we have established asymptotic normality of
the parameter estimators.

2.6.2 LEMMA

Let the true parameter in the ICM beθ0 = (a′, σ2
0, τ

2
0 )′, and letω2

n = τ 2
0 +

σ2
0

n
. Then the

components of the ICM estimator̂θn,T = (â′, σ̂2, τ̂ 2)′ = argminθ∈ΘLn,T (θ) admit the
following rates of convergence:

(â′, σ̂2)′ − (a′, σ2
0)
′ = OP

(
1√
nT

)

and for the last entry we get that

τ̂ 2 − τ 2
0 = OP

(
ω2

n√
T

)
.
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Furthermore we have for̂ω2
n = τ̂ 2 + σ̂2

n
that

ω̂2
n − ω2

n = OP

(
ω2

n√
T

)
.

PROOF:
We have proved asymptotic normality of

√
n (T − p)D−1

n

(
θ̂n,T − θ0

)
in the case

of T → ∞ in theorem 2.5.20 under assumption 2.5.8. There we furthermore have
got in the case ofn → ∞, that still

√
n (T − p) ((â′, σ̂2)′ − (a′, σ2

0)
′) is asympto-

tically normal. Assumption 2.5.8 implies a restriction of the parameter space as it
requiresτ 2

0 ∈ IntΘ andω2
n ≥ c2 > 0. For eachθ0 with τ 2

0 > 0 we can choose
a subspaceΘ′ ∈ Θ such that this assumption is fulfilled (lemma 2.5.7). The case
τ 2
0 = 0 has been treated in theorem 2.5.22. There we get asymptotic normality of√
n (T − p) ((â′, σ̂2)′ − (a′, σ2

0)
′). Furthermore we can conclude from the proof of the

theorem that

τ̂ 2 − τ 2
0 = OP

(
ω2

n√
T

)
and ω̂2

n − ω2
n = OP

(
ω2

n√
T

)
,

where ω̂2
n = τ̂ 2+ σ̂2

n
andω2

n = τ 2
0 +

σ2
0

n
. This expression is derived from the consistency

of â andσ̂2 and is also valid ifτ 2
0 > 0 (see remark 2.5.23). The notation includes the

dependence onτ 2
0 via ω2

n and covers the already proved case ofT →∞, too. ut

In particular the following conclusions are of practical interest.

2.6.3 COROLLARY

In the setting of the above lemma we have1
σ̂2 = OP (1), 1

n ω̂2
n

= OP

(
1

n ω2
n

)
and more-

over

1

σ̂2
− 1

σ2
0

= OP

(
1√
nT

)
and

1

n ω̂2
n

− 1

nω2
n

= OP

(
1

nω2
n

√
T

)
.

The estimator̂B of the covariance matrix, given in remark 2.6.1, fulfils that

B̂ −B = OP

(
1√
nT

)

whereB is the matrixB = (Ψ(k − l))k,l=1,...,p.

PROOF:
For the proof of this lemma is straightforward. In order to enhance readability we have
moved it to the Appendix C.3.1. ut

2.6.4 REMARK

The asymptotic behaviour of̂ω2
n and τ̂ 2 in the case ofn → ∞, T fixed is determined

by the actual realisation of the process{ηt}t∈Z. Let Yt =
∑∞

u=0 ψu ηt−u for all t ∈ Z
and denotẽYT = 1

T−p

∑T
t=p+1

∑p
k,l=0 ak al Yt−k Yt−l, wherea0 = −1 and(a1, . . . , ap)

′

is the true autoregressive parameter in the ICM. In the proof of theorem 2.5.16 we
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have seen thatE
(
X̄t−k X̄t−l − Yt−k Yt−l

)2
= O

(
1
n

)
. Sinceω̂2

n is estimated through
ω̂2

n = Bn,T (â) = 1
T−p

∑T
t=p+1

∑p
k,l=0 âk âl X̄t−k X̄t−l (remark 2.4.3), the consistency

of â implies thatω̂2
n − ỸT = OP

(
1√
n

)
(see the proof of lemma 2.6.2). Therefore also

τ̂ 2− ỸT = ω̂2
n− σ̂2

n
− ỸT = OP

(
1√
n

)
. Note thatỸT − τ 2

0 = OP

(
1√
T

)
(remark 2.5.17).

We now identify the main term responsible for the convergence behaviour ofâ by pro-
ving that there exists ãCn,T such that̂a − a can be written aŝa − a = B−1C̃n,T +
OP

(
1

n T

)
with dominating termB−1C̃n,T . Since the bias is of lower order, the asymp-

totic behaviour mainly depends on the dominating term in the stochastic expansion.
Thus the explicit expression for the dominating term enables us to compare the large
sample properties of the ICM parameter estimatorθ̂n,T to those of the GICM estimator
θ̂a. The proof of the theorem is based on a recursive representation ofâ − a similar
to the one in Dahlhaus and Giraitis (1998), where the rates of the single terms can be
obtained using the above consistency results.

2.6.5 THEOREM

In the setting of the ICM (assumption 2.2.1) letθ̂n,T = (â′, σ̂2, τ̂ 2)′ = argminθ∈ΘLn,T (θ)
be obtained as described in remark 2.4.3. Denote the true parameter byθ0 = (a′, σ2

0, τ
2
0 )′

and let ω2
n = τ 2

0 +
σ2
0

n
. Furthermore let

Ĉ1 =
1

n (T − p)

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 ε̊

(i)
t and Ĉ2 =

1

T − p

T∑
t=p+1

x̄t−1 (ηt + ε̄t) ,

where x̊
(i)
t−1 =

(
X̊

(i)
t−1, . . . , X̊

(i)
t−p

)′
and x̄t−1 =

(
X̄t−1, . . . , X̄t−p

)′
for all t ≥ p + 1,

i = 1, . . . , n; and defineC̃n,T as

C̃n,T =
1

σ2
0

Ĉ1 +
1

nω2
n

Ĉ2 .

Then

â− a = B−1 C̃n,T +OP

(
1

nT

)
.

with dominating termB−1 C̃n,T = OP

(
1√
n T

)
.

PROOF:
Throughout this proof we use the notations of remark 2.6.1. There we have seen that
B̂ â = Â, B a = A and furthermore thatB is invertible. In the ICM the true parameter
a = (a1, . . . , ap)

′ fulfils

X̊
(i)
t = x̊

(i)′
t−1 a+ ε̊

(i)
t and X̄t = x̄′t−1 a+ (ηt + ε̄t) for all t ∈ Z, i = 1, . . . , n.

Thus it is straightforward thata also fulfils the equation̂B a = Â − Ĉn,T , whereĈn,T

is given byĈn,T = 1
σ̂2 Ĉ1 + 1

n ω̂2
n
Ĉ2. This means that̂Cn,T = Â − B̂ a = B̂ (â − a),

which leads to

B (â− a) = B (â− a)− B̂ (â− a) + B̂ (â− a) = (B − B̂) (â− a) + Ĉn,T .
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As we know from corollary 2.6.3 thatB − B̂ = OP

(
1√
n T

)
, we get from the rate of

convergence of̂a that(B−B̂) (â−a) = OP

(
1

n T

)
. The termĈn,T can be split further. It

is straightforward to show that1
σ̂2 Ĉ1 = OP

(
1√
n T

)
and 1

n ω̂2
n
Ĉ2 = OP

(
1

n
√

T

)
, which

also means that̂C1 = OP

(
1√
n T

)
andĈ2 = OP

(
ωn

n
√

T

)
. The details of the proof can

be found in the Appendix C.3.1, lemma C.3.1. Under the assumptions on the parameter
space it thus is easily seen from lemma 2.6.2 and its corollary 2.6.3 thatĈn,T fulfils

Ĉn,T =
1

σ2
0

Ĉ1 +
1

nω2
n

Ĉ2 +
1

σ̂2 σ2
0

(
σ2

0 − σ̂2
)
Ĉ1 +

1

n ω̂2
n ω

2
n

(
ω2

n − ω̂2
n

)
Ĉ2

= C̃n,T +OP

(
1

nT

)
,

and thatC̃n,T = OP

(
1√
n T

)
. This yields the result. ut

2.6.6 REMARK

It is not surprising that̂Cn,T = 1
σ̂2 Ĉ1 + 1

n ω̂2
n
Ĉ2 is closely related to∇Ln,T (θ0). Indeed

we have that−2 Ĉn,T = ∂
∂a
Ln,T (θ) for θ = (a′, σ̂2, τ̂ 2)′, wherea denotes the true au-

toregressive parameter in the ICM, butσ̂2 andτ̂ 2 are the parameter estimators obtained
from the recursive algorithm. For̃Cn,T we even have that−2 C̃n,T = ∂

∂a
Ln,T (θ0). Note

that the factor 2, which was only introduced into the likelihood function for computa-
tional convenience, cancels out in the representationâ − a = B−1 Ĉn,T + OP

(
1

n T

)

becauseB = (Ψ(k − l))k,l=1,...,p = 1
2

∂2

(∂a)2
L(θ0) (see remark 2.5.21). AŝB is the esti-

mator ofB = ∂2

(∂a)2
L(θ0), the equationĈn,T = B̂ (â − a) is an empirical counterpart

of the often used representation based on the mean value theorem (see e.g. the proof of
theorem 2.5.20). However it cannot directly be employed for the parameter estimation
due to the intercorrelation present in the ICM. For example, it is not possible to obtain
consistency of̂a in a direct way because of the recursive estimation procedure needed.
This implies in turn that we e.g. cannot easily identify with a direct method the lower
order terms in the above representation ofĈn,T = C̃n,T +OP

(
1

n T

)
.

We can moreover give an explicit formula for computing the mean squared error of the
dominating term.

2.6.7 PROPOSITION

Using the notations of the preceding theorem, we get for the mean squared error of
m̂ = B−1 C̃n,T that

E ||m̂||2 =
1

n (T − p)
tr

(
B−1

)
.

PROOF:
C̃n,T was defined in the preceding theorem asC̃n,T = 1

σ2
0
Ĉ1 + 1

n ω2
n
Ĉ2. In the ICM,Ĉ1

andĈ2 are independent because the processes{ε̊(i)
t }t∈Z, i = 1, . . . , n, are independent

of {ηt + ε̄t}t∈Z (see remark 2.2.3). Denoting the entries ofB−1 by bk,l, k, l = 1, . . . , p
we therefore get

E ||m̂||2 = E ||B−1 Ĉ1||2 + E ||B−1 Ĉ2||2
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=

p∑
g=1

p∑

k,l=1

bg,k bg,l

(
1

σ4
0

n− 1

n2 (T − p)
Ψ(k − l)σ4

0 +
1

n2 ω4
0

Ψ(k − l)ω4
0

)

=
1

n (T − p)

p∑
g=1

p∑

k,l=1

bg,k bg,l Ψ(k − l) =
1

n (T − p)
tr

(
B−1

)
,

asB = (Ψ(k − l))k,l=1,...,p and thus
∑p

k,l=1 bg,k Ψ(k − l) bg,l =
∑p

l=1 δgk bg,l = bg,g,
whereδgk denotes the Kronecker delta. ut

In particular we now have an explicit formula in the AR(1) case.

2.6.8 COROLLARY

As a special case of the last proposition we get for a panel of AR(1) processes with
autoregressive parametera, |a| < 1, that

E ||m̂||2 =
1− a2

n (T − p)
.

PROOF:
In the AR(1) caseΨ(0) =

∑∞
u=0 ψ

2
u =

∑∞
u=0 a

2u = (1− a2)−1. This yields

E ||m̂||2 =
1

Ψ(0)n (T − p)
=

1− a2

n (T − p)
. ut

We can use the same method for investigating the convergence properties of Hjellvik
and Tjøstheim’s estimator̂aHT .

2.6.9 PROPOSITION

Let B1 = n−1
n
σ2

0 B. Then the estimator̂θa = (â′HT , σ̂
2
HT )′ = argminθ∈Θa

L◦n,T (θ)
obtained in proposition 2.4.7 fulfils

âHT − a = B−1
1 Ĉ1 +OP

(
1

nT

)
,

where the mean squared error of the dominating term is

E ||B−1
1 Ĉ1||2 =

1

(n− 1) (T − p)
tr

(
B−1

)
.

PROOF:
We know from proposition 2.4.7 thatâHT fulfils B̂1 âHT = Â1, where

B̂1 =
1

n (T − p)

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i)′
t−1

and Â1 =
1

n (T − p)

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 X̊

(i)
t
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with x̊
(i)
t−1 =

(
X̊

(i)
t−1, . . . , X̊

(i)
t−p

)′
. It is easily seen thatE B̂1 = B1. Thus we get similar

to the proof of theorem 2.6.5 that

âHT − a = B−1
1 Ĉ1 +B−1

1

(
B1 − B̂1

)
(âHT − a) ,

with Ĉ1 as in theorem 2.6.5. Due to the mean-square convergence of the panel auto-

covariance estimator (see remark 2.6.1), we have thatB1 − B̂1 = OP

(
1√
n T

)
. Since

âHT − a = OP

(
1√
n T

)
(lemma 2.5.34), we get as in the proof of theorem 2.6.5 that

âHT − a = B−1
1 Ĉ1 +OP

(
1

nT

)
.

As we can see from the proof of lemma C.3.1 in the Appendix C.3.1,Ĉ1 fulfils that

E ||Ĉ1||2 =
p (n− 1)

n2 (T − p)
σ4

0 Ψ(0) .

Analogously to the proof of proposition 2.6.7 we furthermore obtain that

E ||B−1
1 Ĉ1||2 =

n2

(n− 1)2 σ4
0

p∑
g=1

p∑

k,l=1

bg,k bg,l
n− 1

n2 (T − p)
Ψ(k − l) σ4

0

=
1

(n− 1) (T − p)
tr

(
B−1

)
,

if we again denote the entries ofB−1 by bk,l, k, l = 1, . . . , p. ut

These differences in the asymptotic behaviour of the ICM parameter estimatorâ and
the estimator̂aHT of Hjellvik and Tjøstheim (1999a) are the main result of this section.
They show that the dominating term in the stochastic expansion has a smaller mean
squared errof than the corresponding term based onâHT .

2.6.10 REMARK

The above results illustrate again the differences between the ICM estimatorθ̂n,T and

θ̂a, which is the estimator of Hjellvik and Tjøstheim (1999a) (see remark 2.4.8). We
have already seen in theorem 2.5.20, where we have summarised the results on the
asymptotic normality of̂θn,T in the ICM, that in the case ofT → ∞, n fixed, the
asymptotic variance of the ICM estimatorâ isB−1, whereas in the GICM it isn

n−1
B−1

(see theorem 2.5.34). Thus the relative asymptotic efficiency ofâ compared to Hjell-
vik and Tjøstheim’s estimator̂aHT , which is the same estimator as the estimator ofa
in the GICM, is in this caseeffrel(â, âHT ) = n−1

n
. This already has been discussed in

remark 2.5.36. The above considerations further show that already the ratio of the mean
squared errors of the respective dominating terms equalsn−1

n
. These properties also are

illustrated by the simulations (Appendix A).
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Bias in the ICM and GICM

We conclude with some considerations on the bias ofâ.

2.6.11 REMARK

In the proof of theorem 2.6.5 we have seen thatĈn,T = Â− B̂ a. We thus get

â− a = B̂−1
(
Â− B̂ a

)
= B−1 Ĉn,T +

(
B̂−1 −B−1

)
Ĉn,T

= B−1 Ĉn,T + B̂−1
(
B − B̂

)
B−1 Ĉn,T

= B−1 Ĉn,T +B−1
(
B − B̂

)
B−1 Ĉn,T

+ B̂−1
(
B − B̂

)
B−1

(
B − B̂

)
B−1 Ĉn,T .

The first term fulfils, as we have seen in the proof of theorem 2.6.5, that

B−1 Ĉn,T = B−1 C̃n,T +
1

σ̂2 σ2
0

(
σ2

0 − σ̂2
)
Ĉ1 +

1

n ω̂2
n ω

2
n

(
ω2

n − ω̂2
n

)
Ĉ2

whereB−1 C̃n,T = OP

(
1√
n T

)
and the other terms are of orderOP

(
1

n T

)
. As also

B − B̂ = OP

(
1√
n T

)
(corollary 2.6.3), the third term in the expansion is of lower

order:

B̂−1
(
B − B̂

)
B−1

(
B − B̂

)
B−1 Ĉn,T = OP

(
1

(nT )3/2

)
.

The orthogonality properties of the innovations imply thatE
(
B−1 C̃n,T

)
= 0. Thus

the main bias term is

β̂n,T = B−1
(
B − B̂

)
B−1 Ĉn,T

+
1

σ̂2 σ2
0

(
σ2

0 − σ̂2
)
Ĉ1 +

1

n ω̂2
n ω

2
n

(
ω2

n − ω̂2
n

)
Ĉ2

and fulfils β̂n,T = OP

(
1

n T

)
but E β̂n,T 6= 0.

In the GICM, we do not have weighted averages in the estimator. Here simply

â− a = B−1
1 Ĉ1 +B−1

1

(
B1 − B̂1

)
B−1

1 Ĉ1 + oP

(
1

nT

)

and b̂− b = B−1
2 Ĉ2 +B−1

2

(
B2 − B̂2

)
B−1

2 Ĉ2 + oP

(
1

T

)
.

Thus we get analogously to the above cosiderations that the bias termsβ̂1 andβ̂2 are

β̂1 = B−1
1

(
B1 − B̂1

)
B−1

1 Ĉ1 and β̂2 = B−1
2

(
B2 − B̂2

)
B−1

2 Ĉ2 ,

whereĈ1 andĈ2 are given in lemma C.3.1;̂B1 = 1
n (T−p)

∑T
t=p+1

∑n
i=1 x̊

(i)
t−1̊x

(i)′
t−1,

B̂2 = 1
T−p

∑T
t=p+1 x̄t−1x̄

′
t−1, and furthermoreB1 = E B̂1 andB2 = E B̂2.
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Due toB̂ andĈn,T being weighted averages with random weights, it is difficult to obtain
E β̂n,T or E ||β̂n,T ||2 in the ICM. Therefore we restrict ourselves in the following to the
case of the GICM, where the variances cancel out in the computation of the estimators.
Here we obtain the mean-square rates of convergence.

2.6.12 LEMMA

Using the notations of the preceding remark, we get for the bias termsβ̂1 andβ̂2 in the
GICM that

E ||β̂1||2 = O

(
1

n2 T 2

)
and E ||β̂2||2 = O

(
1

T 2

)
.

PROOF:
The proof requires some results on cumulants and some considerations on the relations
between the autoregressive parametersa and the autocovariance functionγ(h), h ∈ Z,
of an autoregressive process{Xt}t∈Z. These are developed in the Appendix C.3.2. As
the proof of the lemma involves some lengthy calculations, we have moved it to the end
of the Appendix C.3.2. ut

2.6.13 REMARK

1. The rates derived in this section correspond to the standard theory for Yule-
Walker and least squares estimation, where the bias is of ordern−1 in the num-
ber of observations, while the asymptotic standard deviation is of ordern−1/2.
Tjøstheim and Paulsen (1983) have shown that for Yule-Walker estimators the
coefficient of the bias term may become large as it depends on the roots of the
characteristic polynomial of the autoregressive process. Thus here the bias term
can become appreciably larger than then−1/2-term of the standard deviation for a
wide range ofn. However this is not the case for least squares estimators, which
we get in the conditional maximum likelihood estimation under the assumption
of Gaussianity. Therefore we do not need to derive the coefficient of the bias
term as in our setting it is sufficient to regard the behaviour of then−1/2-term.

2. In the case of the ICM it would already have been very difficult to derive the
mean-square rate of convergence of the main bias term in the stochastic expan-
sion, as the method used in the preceding lemma for calculating the mean squared
error ofβ̂1 andβ̂2 cannot be directly applied to the case of the ICM. We have seen
in remark 2.6.11 that the main bias term in the ICM,β̂n,T , has a more compli-
cated structure. Since the different terms are weighted withσ̂2 andω̂2

n, one would
have to find a representation ofβ̂n,T which makes a Taylor expansion possible.
This is not easily obtained. Furthermore it is not clear under which conditions
the Taylor expansion of e.g.1

σ̂2 around 1
σ2
0

can be obtained aŝσ2 in turn depends
on the estimator of the autoregressive parameter,â.

3. Directly calculating the large sample bias for the maximum likelihood estimator
in an autoregressive process is a difficult task in general. This is shown by the
existing literature. Shaman and Stine (1988) give formulae for the bias of Yule-
Walker and least squares estimators of the autoregressive parametera. Their
proof is based on the assumption thatE ||B̂−1 − B−1||8spec is bounded, where
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||A||spec = max{|λ|;λ eigenvalue ofA} denotes the spectral norm of a matrix.
This cannot easily be verified. Tjøstheim and Paulsen (1983) derive an explicit
formula of the bias based on the zeros of the autoregressive polynomial. However
they focus on the AR(2) case, and their method cannot be generalised to higher
autoregressive orders in a straightforward way.

2.7 Discussion

The ICM (assumption 2.2.1) and its generalisation, the GICM (assumption 2.3.1), are
two models which include a common effect influencing all time series in a panel si-
multaneously. In particular the GICM is very flexible as it allows the common effect
to have e.g. an autoregressive structure. Possible applications include the investigation
of panels of time series in medical studies, in population dynamics or even the mo-
delling of business cycles (if it can be assumed that a single cycle is responsible for
the common structure). The latter model is a special case of the dynamic factor model
developed by Forni et al. (2000). However the focus here is on parameter estimation,
whereas Forni et al. are predominantly concerned with finding the number of common
factors. For a more detailed comparison see remark 2.3.3.
The ICM has been investigate before by Hjellvik and Tjøstheim (1999a), who treat
the common influenceηt as a nuisance parameter which they eliminate by subtracting
the mean process{X̄t}t∈Z from each time series. The factorisation of the conditional
likelihood obtained in theorem 2.4.2 now makes it possible to obtain a log-likelihood
function which uses the information contained in̄Xt as well. The corresponding es-
timator is based on weighted averages of two sample covariance matrices. Thus we
have to employ a recursive algorithm for the estimation. Due to this structure, we fur-
thermore are not able to obtain an asymptotic normality result directly but have to use
a proof based on a uniform convergence condition onLn,T . Additionally we need in
the case ofT → ∞ a martingale limit theorem for the last step of the proof. Hjel-
lvik and Tjøstheim’s estimator̂aHT can be computed by minimisingL◦n,T (θ) (see re-
mark 2.4.8). If the numbern of time series in the panel tends to infinity,X̄t → 0, which
means that the information contained in the mean process loses weight. In this case the
ICM estimatorâ is asymptotically equivalent tôaHT ; but in the case of smalln, â is
more efficient than̂aHT . Indeed we have seen that the relative asymptotic efficiency is
effrel(â, âHT ) = n−1

n
(remark 2.5.36). This is also the ratio of the mean squared errors

of the dominating terms in the stochastic expansion (remark 2.6.10). Simulations show
that in practice the ICM parameter estimator performs as well as the estimator of Hjel-
lvik and Tjøstheim in spite of the iterative algorithm employed for its computation (see
the Appendix A and the discussion in section A.4). Moreover they illustrate the theo-
retical properties of the estimators. Thus we conclude that if the data can be modelled
using the ICM and ifn is not very large, the ICM algorithm should be used. Ifn is
large, or if the order of the autoregressive process is high, it is computationally more
convenient to calculatêaHT , which is sufficiently accurate. We must always use the
GICM if there is no theoretical reason why the underlying background process should
have the same dynamical structure as the residual processes, i.e. if we cannot assume
that the common error{ηt}t∈Z is a white noise process. If necessary, one could test
whether̂a andb̂ coincide, which can be achieved using a bootstrap procedure.



74 CHAPTER 2. THE INTERCORRELATION MODEL

We only have briefly discussed the calculation of the bias in section 2.6 as it is very
difficult to derive. In the ICM the computation is complicated by the complex structure
of the estimator which makes it necessary to use a recursive procedure for estimation.
However it is in general difficult to calculate the bias for a conditional maximum like-
lihood estimator. This is due to the fact that in contrast to the Yule-Walker procedure
all components of the estimated covariance matrix and the corresponding autocova-
riance vector are distinct. Thus||â − a|| cannot be bounded as it is done in Dahlhaus
and Giraitis (1998) (see also Whittle (1963) cited therein). Moreover the influence of
the bias term on the asymptotic behaviour of the parameter estimator is small for least
squares estimators (see remark 2.6.13). Therefore it is not necessary to calculate the
bias explicitely in our case. These effects are discussed in the literature on large sample
bias estimation (Tjøstheim and Paulsen 1983, Shaman and Stine 1988). There formulae
for the asymptotic bias are given. However the complexity of the problem is reflected
by the restrictions used. Tjøstheim and Paulsen (1983) focus on the AR(2) case and

Shaman and Stine (1988) rely on the assumption thatE||
(
B̂−1 −B−1

)8

||spec < ∞,

which means that the 8th moment of the eigenvalues is bounded. This cannot easily
be verified. Kiviet (1995) derives an approximate small sample bias in a model also
containing exogenous variables, but the dynamic part is restricted to first-order autore-
gressive models.
There are several possible extensions of the above models. A generalisation to non-
parametric intercorrelated models is discussed in Hjellvik et al. (2004). However this
is beyond the scope of the present thesis, as we here contend ourselves to parametric
models. Besides including more than one common factor in the GICM as in Forni et al.
(2000), one could assume that the autoregressive parameters of the residual processes
are not fixed but for example normally distributed witha(i) ∼ N(a,Σa). Similarly one
could investigate a model with a common autoregressive parameter where the residual
processes are allowed to have distinct variancesσ2

i , i = 1, . . . , n. Furthermore we have
not included explanatory variables in the model. However the proofs cannot directly
be generalised to any of those cases. Another question is whether we can omit the con-
dition of Gaussianity. This should be possible, but then the conditional log-likelihood
function in the ICM would lose its convenient structure. The estimator of Hjellvik and
Tjøstheim (1999a) is consistent for any distribution ofηt as they treatηt as a nuisance
parameter which is eliminated in the analysis (remark 2.4.8). Thus in the non-Gaussian
case the possible gain in information by includinḡXt in the ICM procedure is out-
weighed by the additional complexity.
Throughout the thesis we have assumed that the order of the autoregressive process is
known. For practical applications we need a model selection criterion. This can be
obtained from the residual variances as in Hjellvik and Tjøstheim (1999b). Further-
more, e.g. in population dynamics, clustering is an important aspect. Yao et al. (2000)
propose a method for detecting common structure in panels of uncorrelated time series
and use it for clustering mink and muskrat data. If this could be extended to the inter-
correlated case, it would allow for a broader modelling of biological processes where
geographic conditions, which locally imply a spatial homogeneity, affect the structure
of the intercorrelated time series.



Chapter 3

Robust Estimation

3.1 Introduction

The second part of this thesis is concerned with the question of finding robust estimates
for parameters in the case of a panel of time series. Here two major types of outliers can
occur. The first kind are arbitrary outliers, which are e.g. due to measurement errors. In
the panel case we furthermore consider the case that an entire time series is generated
by a different model. This is motivated by our applications. In a medical study, outliers
can be due to false recordings. But it also can occur that some patient has been wrongly
assigned to the treatment group. Then the time series obtained from this patient may
be driven by a different dynamical structure and the entire time series can be viewed as
outlying. If it is not possible to identify and exclude the outliers prior to a data analysis,
we need procedures which remain stable under contamination.
We propose in this chapter several robust methods based on three different concepts.
Our main focus is on the second type of outliers. First we describe possible robusti-
fying procedures for the parameter estimator derived in the first chapter and evaluate
their performance. Moreover we investigate exemplarily for these estimators how boot-
strap can be used to improve the estimates. Then we discuss some methods based on
robustifying the autocovariance matrix and the autocovariance vector used in the Yule-
Walker / least squares equations. Here the focus is on the parameter estimator derived
from the robust scale estimatorQn,T introduced by Rousseeuw and Croux (1993), as
it allows us to obtain a breakdown point for the panel estimator. As a reference we in-
clude two methods designed for robust regression. Finally we investigate two methods
for outlier detection which can be used to find and exclude outliers in a first step before
performing a non-robust analysis. The chapter concludes with a comparative evalua-
tion of the different methods described. The various estimators have been evaluated in
a simulation study which can be found in the Appendix B.

3.2 Outliers

Robust inference is concerned with estimation in the presence of outliers. Measured
data may contain 10 – 15% of outlying data (Hampel 1973), but this proportion can
even reach 30% (Huber 1981). In the time series context one can distinguish several
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types of outliers:Innovation outliers (IO)are due to contamination in the innovations,
i.e. of the time series{εt}t∈Z which drives the process. In least squares estimation and
thus also in conditional maximum likelihood estimation under assumption of Gaus-
sianity, they lead to “good” leverage points: Since a large outlier in the innovations
also influences the subsequent values due to the autoregressive structure of the time
series, the least squares estimate for an autoregressive parameter can even be improved
in the presence of an innovation outlier (Rousseeuw and Leroy 1987). Therefore, we
are more concerned with the so-calledadditive outliers (AO). They appear when one
point of the time series itself is changed directly. They can be modelled as genuinely
“additive” outliers, i.e. thatXt is replaced byXt + Wt, where e.g.Wt ∼ N(0, σ2)
for someσ2 > 0. We here regard them as “replacement” outliers, which are obtained
by replacing some valueXt by a value from a second time seriesWt. This is also
called “epsilon-contamination” as the observed processX̃t is generated according to
X̃t = (1 − δt)Xt + δtWt, whereP(δt = 1) = ε = 1 − P(δt = 0). Detection be-
comes more complicated if there are patches of additive outliers, i.e. if the outliers are
dependent. For a brief discussion see Rousseeuw and Leroy (1987).
In the panel case, one also can assume that the single time series in the panel do not
contain outliers, but that entire time series may be generated by another model. This
depends on the application intended. In econometrics, the standard procedure is testing
panels of time series for homogeneity first (Hsiao 1986). If this test does not reject
the null hypothesis of homogeneity, one common parameter is estimated for all time
series of the panel. In the heterogeneous case, the parameters are estimated separately
for each time series. Depending on the context it is however justified to make the
above assumption, for example if the model states that time series of patients having the
same affliction follow the same dynamics. Here a patient who suffers from a different
disease could have been wrongly assigned to the therapy group. Since we are not
interested in the dynamical structure of the outlying time series, we focus on robust
procedures for parameter estimation. Thus we now assume that outliers can either
be single replacement outliers or generated by replacing complete time series by time
series following another model.

3.2.1 ASSUMPTION

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of time series and let{X̃(i)

t }t∈Z, i = 1, . . . , n,
be the observed panel. Outliers are generated either

1. by replacing single points of the data:

X̃
(i)
t = (1− δ1,t,i)X

(i)
t + δ1,t,i V

(i)
t , t ∈ Z, i = 1, . . . , n,

where the processes{V (i)
t }t∈Z, i = 1, . . . , n, are independent of the{X(i)

t }t∈Z,
i = 1, . . . , n. We assume that they are independently and identically distributed
with V

(i)
t ∼ N(0, σ2

V ) for all t ∈ Z, i = 1, . . . , n. For i = 1, . . . , n, the pro-
cesses{δ1,t,i}t∈Z are independent Bernoulli processes which are independent of
{X(j)

t }t∈Z and{V (j)
t }t∈Z for all j = 1, . . . , n. They are identically distributed

with P(δ1,t,i = 1) = 1− P(δ1,t,i = 0) = ε1 for someε1 > 0.

2. or by replacing entire time series:

{X̃(i)
t }t∈Z = (1− δ2,i) {X(i)

t }t∈Z + δ2,i {W (i)
t }t∈Z , i = 1, . . . , n,
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where the{W (i)
t }t∈Z, i = 1, . . . , n, are independent autoregressive processes

which are independent of the{X(i)
t }t∈Z, i = 1, . . . , n. The random variables

δ2,i, i = 1, . . . , n, are independent of the processes{X(j)
t }t∈Z and{W (j)

t }t∈Z,
j = 1, . . . , n, and fulfilP(δ2,i = 1) = 1− P(δ2,i = 0) = ε2 > 0.

All further investigations on contaminated data are based on this assumption.

3.3 Robustifying the ICM Parameter Estimator

In sections 2.4.2 and 2.4.3, parameter estimators have been derived for the intercorre-
lated time series model ICM (definition 2.2.2) and its generalisation, the GICM (defi-
nition 2.3.2). In the first case we employ an iterative procedure for estimating, whereas
in the GICM the parameters can be obtained in a single step. In order to simplify the
notation in the subsequent considerations, we introduce the following:

3.3.1 NOTATIONS

For ease of notation let

Â1 =
T∑

t=p+1

n∑
i=1

X̊
(i)
t x̊

(i)
t−1 , B̂1 =

T∑
t=p+1

n∑
i=1

x̊
(i)
t−1 x̊

(i)′
t−1 ,

Â2 =
T∑

t=p+1

X̄t x̄t−1 and B̂2 =
T∑

t=p+1

x̄t−1 x̄′t−1 .

where̊x(i)
t−1 = (X̊

(i)
t−1, . . . , X̊

(i)
t−p)

′, i = 1, . . . , n, andx̄t−1 = (X̄t−1, . . . , X̄t−p)
′, t ∈ Z.

3.3.2 REMARK

1. In the ICM the parameter estimatorâ = (â1, . . . , âp)
′ of the autoregressive pa-

rametera given the estimateŝσ2 andω̂2
n of σ2 andω2

n is

â =
( 1

σ̂2
B̂1 +

1

ω̂2
n

B̂2

)−1

×
( 1

σ̂2
Â1 +

1

ω̂2
n

Â2

)
.

Conditional on̂a, the variancesσ2 andω2
n can be estimated by

σ̂2 =
1

(n− 1)

1

T − p

n∑
i=1

T∑
t=p+1

(
â(L)X̊

(i)
t

)2

and

ω̂2
n =

1

T − p

T∑
t=p+1

(
â(L)X̄t

)2

.

Starting with σ̂2
0 = ω̂2

n,0 = 1, these steps are repeated until convergence (see
section 2.4.2).
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In the GICM, we get for the parameters of the residual processes and the mean
process, respectively, that (see section 2.4.3)

â = B̂−1
1 Â1 , σ̂2

n =
1

(n− 1) (T − p)

T∑
t=p+1

n∑
i=1

(
â(L)X̊

(i)
t

)2

,

b̂ = B̂−1
2 Â2 , and ω̂2

n =
1

T − p

T∑
t=p+1

(
b̂(L)X̄t

)2

.

2. As systematic errors can only occur when a complete time series is outlying, a
heuristic approach is to replace each cross sectional mean by the corresponding
median. ThusX̄t is substituted byXm

t = medi=1,...,nX
(i)
t , X̊(i)

t by the pro-
cessX̆(i)

t = X
(i)
t −Xm

t , and the mean1
n

∑n
i=1

∑T
t=p+1 X̊

(i)
t−kX̊

(i)
t−l by the median

medi=1,...,n

∑T
t=p+1 X̆

(i)
t−kX̆

(i)
t−l. This causes problems since taking medians over∑T

t=p+1 X̆
(i)
t−kX̆

(i)
t−l means taking componentwise medians over matrices. There-

fore the resulting matrix is not necessarily positive definite any more. So the
procedure will not be numerically stable, in particular if the orderp of the autore-
gressive process grows.

We use the following procedure for robustifying.̂A1, Â2, andB̂1 are estimated as in
the heuristic approach mentioned in the preceding remark.B̂2, however, is obtained
by a recursive algorithm. The underlying idea is that the transformed matricesB̂(i),
i = 1, . . . , n, are diagonally dominated such that the median is essentially taken over
their eigenvalues. It turns out that in practice very few iterations (often only two) are
needed until the procedure converges.

Robust estimation ofâ

1. For t ∈ Z letXm
t = medi=1,...,nX

(i)
t andxm

t−1 =
(
Xm

t−1, . . . , X
m
t−p

)′
. Replace

Â2 by Âm
2 =

T∑
t=p+1

Xm
t xm

t−1 and B̂2 by B̂m
2 =

T∑
t=p+1

xm
t−1 xm ′

t−1 .

2. For i = 1, . . . , n, let X̆(i)
t = X

(i)
t −Xm

t andx̆
(i)
t−1 = (X̆

(i)
t−1, . . . , X̆

(i)
t−p)

′.

Â1 is robustified by taking the componentwise median:

Ă1 = medi=1,...,n

T∑
t=p+1

X̆
(i)
t x̆

(i)
t−1 .

3. ReplaceB̂1 by a robust covariance matrix obtained from the following algorithm:

(a) Let ν = 0 andΣν = medi=1,...,n

∑T
t=p+1 x̆

(i)
t−1 x̆

(i)′
t−1.

(b) LetU be the orthonormal matrix consisting of the eigenvectors ofΣν .
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(c) Transform the sample covariance matrices of each single time seriesx̆
(i)
t−1

separately withU :

B̂(i) = U ′
( T∑

t=p+1

x̆
(i)
t−1 x̆

(i)′
t−1

)
U for i = 1, . . . , n.

(d) Take the componentwise median of the transformed covariance matrices:

B̂ = medi=1,...,n B̂
(i) .

(e) Transform back:Σν+1 = U B̂ U ′.

(f) Iterate step (b) to (e) until convergence is attained, e.g. until

||Σν+1 − Σν || < ε for some givenε > 0.

(g) Let B̆1 = Σν+1.

4. Estimate the parameters using the robustified vectors and matrices.

This means that in the case of the ICM these matrices together with the robust vari-
ance estimates described below are inserted in the recursive algorithm described in
section 2.4.2. If there is no contamination and the number of observations per time
seriesT tends to infinity, each element1

T−p

∑T
t=p+1 X̊

(i)
t−kX̊

(i)
t−l of the sample covariance

matrix B̂(i) is asymptotically normal. This was the motivation for taking the median
over the robustified sample covariance matrices.

The variances could be derived as mentioned in remark 3.3.2. For estimatingσ̂2, we
however employ a reweighted estimator.

Robust estimation of the variances

We use the above notationsXm
t andX̆(i)

t . Givenâ andb̂, the variances are estimated as
follows:

1. For ω̂2
n, replaceX̄t byXm

t :

ω̂2
n =

1

T − p

T∑
t=p+1

(
b̂(L)Xm

t

)2

.

In the ICM, p = q andak = bk for all k = 1, . . . , p. Thus here we use the
common estimator̂a instead of̂b.

2. σ̂2
n is estimated using a reweighting step following Rousseeuw and Leroy (1987).

Denote the residuals byr(i)
t = X̆

(i)
t −∑p

k=1 âkX̆
(i)
t−k.

First, letσ2
0 = medi=1,...,n

1
T−p

∑T
t=p+1 r

(i) 2
t .

Compute a finite sample correction factor ass0 = 1.4826 (1 + 5
n−1

)σ0. Here the
constant is for consistency and5

n−1
is a correction term for the small sample bias

(Rousseeuw and Leroy 1987, p. 44).
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As cutoff value we chose2.5×s0: For i = 1, . . . , n letw(i)
t = 1 if |r(i)

t /s0| ≤ 2.5,
elsew(i)

t = 0. Then

σ̂2
n =

∑n
i=1

∑T
t=p+1w

(i)
t r

(i) 2
t∑n

i=1

∑T
t=p+1w

(i)
t − p

,

wherep is the order of the autoregressive process.

We propose two variations of this procedure:

(i) Another possibility for estimatingσ2
n is to letσ2

0 = med{i=1,...,n;t=p+1,...,T} r
(i) 2
t in

the first step, leaving the procedure otherwise unchanged. The resulting estimator
is calledθ̂oa (“overall median”).

(ii) As an improvement, we repeat the weighting step with the estimatedσ̂ replacing
s0, i.e. for i = 1, . . . , n, t = p + 1, . . . , T , we let w̃(i)

t = 1 if |r(i)
t /σ̂| ≤ 2.5,

else we letw̃(i)
t = 0. For t = 1, . . . , p, we let furthermorew̃(i)

t = 1 for all
i = 1, . . . , n. From these weights we determine the weightwi of the individual
time seriesi, i = 1, . . . , n. If

∑T
t=1 w̃

(i)
t ≤ c T , wherec is a preliminarily chosen

constant, we letwi = 0, otherwisewi = 1. These weights can be used on the
original data. Then we perform a second, non-robust estimation on the remaining
time series. This method is the panel analogue to Rousseeuw’s reweighted least
squares estimator (Rousseeuw and Leroy 1987). We call the estimatorθ̂rw.

(iii) A modification of the last procedure also allowing for arbitrary outliers is to form
weightsw̃

(i)
t = min{wi, w

(i)
t } for i = 1, . . . , n, t = 1, . . . , T . Then we exclude

all time pointsX(i)
t , i = 1, . . . , n, t = 1, . . . , T , having weight̃w(i)

t = 0 from the
original panel before performing the second, non-robust estimation. The corre-
sponding estimator is called̂θrw2.

3.3.3 REMARK

Note that the above described procedure is a compromise between averaging over sin-
gle entries of a matrix and estimating one common robust matrix. It enables us to
exploit the characteristics of the ICM even in the contaminated case. There are no
standard methods for replacing the componentwise median of the matrices. Usually
robust covariance matrix estimators are used instead. For taking the median over vec-
tors, however, componentwise medians are commonly used. There exist a variety of
more sophisticated methods such as Oja’s median (Oja 1983), but in practice the com-
ponentwise median often performs well. This also is the case in the above parameter
estimation procedures, where the main point was deriving the robust covariance matrix.

Simulation results for the above described estimators can be found in section B.1 of the
Appendix B and are discussed in section B.4.

Bootstrap corrections

In parameter estimation, where the true values are not known, bootstrap can be used for
deriving the empirical bias. Thus we apply bootstrap procedures in order to compensate
for the bias. For comparison, we have implemented three versions: first the parameters
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were estimated with a residual bootstrap. In a second step this has been adapted to the
panel situation. As the innovations are normal by assumption 2.2.1, we also generated
samples of a simpler structure where the data was obtained from normally distributed
errors with varianceŝσ2

n and ω̂2
n. The procedure is based on a residual bootstrap for

autoregressions, whose properties are known (Kreiss 1997).

(i) In the ICM let θ̂ =
(
â1, . . . , âp, σ̂

2, τ̂ 2
)′

, whereτ̂ 2 is given byτ̂ = σ̂2− ω̂2
n. De-

note the residuals obtained from thĕX(i)
t by r̆(i)

t , t = p+ 1, . . . , T , i = 1, . . . , n,
and the residuals obtained from theXm

t by rm
t , t = p + 1, . . . , T (notations as

above). The bootstrap data then is generated by

X
∗ (i)
t =

p∑

k=1

âkX
∗ (i)
t−k + r̆

(i)
t + rm

t , t = p+ 1, . . . , T, i = 1, . . . , n ,

whereX∗ (i)
1 = · · · = X

∗ (i)
p = 0 for i = 1, . . . , n. The residuals are sampled with

replacement. In order to get stationary time series,T + 500 points are simulated
for each time series. For the estimation, we disregard the first 500 points.

In the GICM, the samples are generated analogously.

Comparing the estimateŝθ (e.g.θ̂rob) from the original procedure and̂θbs derived
from a bootstrap procedure based onθ̂ and the corresponding residuals, we obtain
the empirical biaŝθ− θ̂bs of the robust estimator. This then is used as approxima-
tion for the true biasE θ̂ − θ0, whereθ0 denotes the true parameter of the model.
In order to adjust for the size of the underlying parameter, we multiply each com-
ponentθ̂k of θ̂ by a factor derived from the relative size of the bias. Thus we get

θ̂k,2 by θ̂k,2 = θ̂k/
(
θ̂bs;k/θ̂k

)
= θ̂2

k/θ̂bs;k.

(ii) The above procedure does not take the correlation structure of the panel into ac-
count. For example in the ICM, the residuals are not independent, but correlated

with cov
(
r̆
(i)
t , r̆

(j)
t

)
= − 1

n
for i 6= j. Thus the method can be modified such

that the residuals̆r(i)
t , i = 1, . . . , n, t = 1, . . . , T , are sampled from the set of

vectors
(
r̆
(1)
t , . . . , r̆

(n)
t

)′
, t = 1, . . . , T . All further steps are performed as in the

preceding method.

(iii) For the third, simplified, procedure we sample from independent normally dis-
tributed innovations:ε(i)

t ∼ N(0, σ̂2), t = 1, . . . , 500 + T , i = 1, . . . , n, and
ηt ∼ N(0, ω̂2

n), t = 1, . . . , 500 + T .

Let

X
∗ (i)
t =

p∑

k=1

âkX
∗ (i)
t−k + ε

(i)
t + ηt , t = p+ 1, . . . , T, i = 1, . . . , n ,

whereX∗ (i)
1 = · · · = X

∗ (i)
p = 0 for i = 1, . . . , n. Moreover we simulate again

T + 500 points per time series and disregard the first 500.

In the GICM, the generation of the sample is analogous.

As before, the empirical bias is used for correcting the estimates.
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Simulations show that the latter estimator, where we use the information on the distribu-
tion of the innovations, performs better than the other two. However these procedures,
being non-robust in nature, cannot completely compensate for the bias in the presence
of outliers. For details, see the Appendix B, subsection B.1.1, and the discussion in
section B.4.

3.4 The Robust Panel Autocovariance Estimator

As mentioned in the introduction, a second possibility is to derive robust parameter
estimators from the identitycov(X, Y ) = 1

4

(
var(X + Y ) − var(X − Y )

)
. We here

focus on one robust autocovariance estimator that can easily be adapted to the panel
situation. It is based on the robust scale estimatorQn which has been suggested by
Rousseeuw and Croux (1993). Ma and Genton (2000) have generalisedQn to the time
series case and have used it for deriving a robust autocovariance estimator as follows.

3.4.1 DEFINITION (MA AND GENTON (2000))
Let X = (X1, . . . , Xn)′ be an observation from a stationary time series. Define the
robust scale estimatorQn as the followingkth order statistic:

Qn(X) = c× {|Xt −Xs|, 1 ≤ s < t ≤ n}(k) .

Herec = 2.219 is a factor for consistency andk =
⌊
(n

2)+2

4

⌋
+ 1.

This means that we sort the set of all
(

n
2

)
inter-point distances in increasing order and

then compute itskth order statistic, which is approximately the 1/4-quantile for large
n. This scale estimator can be used to define a robust autocovariance estimator.

3.4.2 DEFINITION (MA AND GENTON (2000))
Let x = (X1, . . . , Xn) be a sample from a stationary time series.
Forh ∈ {1, . . . , n− 1} let uh = (X1, . . . , Xn−h), andvh = (Xh+1, . . . , Xn).
Then the robust autocovariance estimatorγ̂Q,n is defined by

γ̂Q,n(h,x) =
1

4

(
Q2

n−h(uh + vh)−Q2
n−h(uh − vh)

)
.

3.4.3 REMARK

We now summarise the main properties of these estimators.

1. Rousseeuw and Croux (1993) have investigatedQn for independently and iden-
tically distributed data. They have shown that in the Gaussian case the estimator
is Fisher-consistent, i.e. thatE(Qn) = σ if Xt ∼ N(0, σ2). It has a smooth in-
fluence function and the efficiency at Gaussian distributions is82.27%. Also, it
achieves the maximal possible asymptotic breakdown point of50%. The effi-
ciency can be improved up to 91% at a trade-off for a lower breakdown point.
FurthermoreQn is asymptotically normal. This follows from a result of Serfling
(1984) sinceQn is a special case of Serfling’s generalised L-statistics. For their
computations, Rousseeuw and Croux (1993) introduce an empirical correction
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factor ofn/(n+1.4) for n even. We use this correction factor in our simulations,
too.Qn is still consistent and asymptotically normal when the dependence in the
process is not too strong, e.g. if the process isα-mixing (Ma and Genton 2000).

2. The robust autocovariance estimatorγ̂Q,n is consistent sinceQn is consistent.
Moreover it is asymptotically normal. The asymptotic variance can be derived
from the influence functionIF (γ,Q, F ) of γQ,n, whereF is the distribution
function of the process{Xt}t∈Z. However, numerical integration is necessary
for the computation. For details, see Ma and Genton (2000).

3. Note thatQn does not rely on any location knowledge, it is therefore said to
be location-free. Thus also the robust covariance estimators based onQn are
location-free.

The above estimators can easily be generalised to the panel case.

3.4.4 DEFINITION

Let T ≥ 2 andx = {X(i)
t ; t = 1, . . . , T, i = 1, . . . , n} be a panel of time series. The

panel scale estimatorQn,T is defined as thekth order statistic

Qn,T = c×
{
|X(i)

s −X
(i)
t |; 1 ≤ s < t ≤ T, i = 1, . . . , n

}
(k)
,

wherec = 2.219 is a factor for consistency as in Rousseeuw and Croux (1993) and

k =
⌊

n (T
2)+2

4

⌋
+ 1.

For h ∈ {1, . . . , T − 1} let u = (X
(1)
1 , . . . , X

(1)
T−h, . . . , X

(n)
1 , . . . , X

(n)
T−h), and analo-

gouslyv = (X
(1)
h+1, . . . , X

(1)
T , . . . , X

(n)
h+1, . . . , X

(n)
T ). Then the autocovariance estimator

obtained fromQn,T is

γ̂n,T (h,x) =
1

4

(
Q2

n,T−h(uh + vh)−Q2
n,T−h(uh − vh)

)
.

The orderk is chosen to guarantee a fast convergence to the 1/4-quantile.

3.4.5 REMARK

1. Note that the orderk of the statisticQn,T fulfils k ≈ n
(

T
2

)
/4. To be more specific,

elementary calculations show that

k

n
(

T
2

) =
1

4
+O

(
1

nT 2

)
.

2. The correlation in an autoregressive time series decreases exponentially. If we
exclude the differences of time pointsXs,Xt with |s−t| small in the computation
of Qn,T , we thus can eliminate effects due to a high correlation. The correspon-
ding panel scale estimator for a panelx = {X(i)

t ; t = 1, . . . , T, i = 1, . . . , n} of
time series then is

Qd
n,T = c×

{
|X(i)

s −X
(i)
t |; 1 ≤ s < t ≤ T, |s− t| > d, i = 1, . . . , n

}
(k)
,
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wherec = 2.219 andk =
⌊

n (T−d
2 )+2

4

⌋
+ 1. The scale estimatorQd

n,T can be

used for constructing a modified panel autocovariance estimatorγ̂d
n,T as in the

preceding definition. We investigate bothγ̂n,T andγ̂d
n,T in the simulations (sec-

tion B.2.1 in the Appendix B). There we choosed = 0.1T .

In the panel case, two kinds of breakdown points can be defined according to the type of
possible outliers. We use Huber’s view of the breakdown point as the maximal fraction
of outliers the estimator can cope with (Huber 1981).

3.4.6 DEFINITION

Let x be a sample from a time series panel as above and suppose that outliers are
generated as in assumption 3.2.1.
If x̃ is derived fromx by replacingm entire time series, the sample breakdown point
of a scale estimatorSn,T (x) is

ε?(Sn,T (x)) = max
{m
n

: sup
x̃

(Sn,T (x̃)) <∞and inf
x̃

(Sn,T (x̃)) > 0
}
.

In the case of arbitrary outliers, wherex̃ is generated by replacingm observations ofx
by arbitrary values, the sample breakdown point is given by

ε◦(Sn,T (x)) = max
{ m

nT
: sup

x̃
(Sn,T (x̃)) <∞and inf

x̃
(Sn,T (x̃)) > 0

}
.

Thus we can derive the sample breakdown points ofQn,T .

3.4.7 LEMMA

With the above notations, we obtain for the panel scale estimator
if complete time series are outlying

ε?(Qn,T (x)) =
⌊n

4

⌋
/n

and for arbitrary outliers ifT > 2

1

nT
min

{⌊n
4

⌋
× (T − 1)

}
≤ ε◦(Qn,T (x)) ≤ 1

nT
min

{ (⌊n
4

⌋
+

1

2

)
× (T − 1)

}
,

and if T = 2

ε◦(Qn,T (x)) =

⌊
n
2

⌋
+ 2

nT
.

PROOF:
The breakdown point is the maximal proportion of observations that can be changed
with supx̃(Sn,T (x̃)) < ∞ andinf x̃(Sn,T (x̃)) > 0. SinceQn,T is akth order statistic,
Sn,T (x̃) = 0 (“implosion”) if k differences are zero.Sn,T (x̃) = ∞ (“explosion”) occurs
if n

(
T
2

) − k + 1 differences are allowed to become arbitrarily large.k was defined as

k =
⌊

n (T
2)+2

4

⌋
+ 1 (see definition 3.4.4).

Thus the first case of entire time series as outliers is clear. In the second case, we
have to investigate what the highest impact ofm outliers can be. The largest number
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of differences vanishes (implosion) if all outliers have the same value and occur in the
same time seriesi. Writem = a (T − 1) + x with 0 ≤ a ≤ n and0 ≤ x ≤ (T − 2).
Thenm outliers can influence up tokm = a

(
T
2

)
+ x (x+1)

2
differences. ForT > 2 the

conditionkm < k, which implies thatinf x̃(Sn,T (x̃)) > 0 is preserved, is equivalent to

m ≤
⌊

n
4

⌋
× (T − 1) + xmax.

Herexmax is the maximalx such that the inequality

x (x+ 1)

2
≤ ñ

4

(
T

2

)
− x̃

4
+

⌊ x̃+ 2

4

⌋
,

where ñ ≡ n mod (4) and x̃ ≡ n
(

T
2

)
mod (4), holds. For allT > 2, it fulfils

0 ≤ xmax < (T − 1)/2. Thus
⌊

n
4

⌋
× (T − 1) ≤ ε◦(Qn,T (x)) <

⌊
n
4

⌋
× (T − 1) + T−1

2
.

In the case of an explosion, the highest impact is reached if each time series contains
the same number of outliers. Ifm = a n+ x with 0 ≤ a ≤ (T − 1) and0 ≤ x < n, the
maximal number of changed differences iskm = n aT − n a (a+1)

2
+ xT − (a + 1) x.

As the outliers here induce very large differences, up to
(

T
2

) − km differences can be
affected without the estimator breaking down. From the inequalityk ≤ (

T
2

) − km we
obtain forT > 2 by distinguishing several cases

◦ if T is odd,m ≤ ⌊
T−1

2

⌋
n+

⌊
n−1

4

⌋

◦ if T is even,m ≤ ⌊
T−1

2

⌋
n+

⌊
3n−1

4

⌋

◦ exceptions have to be made ifT = 3 andñ = 1 or 2, or if T = 5 andñ = 1.
Thenm ≤ ⌊

T−1
2

⌋
n+

⌊
n−1

4

⌋− 1.

All thesem fulfil m ≤ ε◦(Qn,T (x)) <
⌊

T+1
2

⌋
× n.

Since for allT > 2 we have that
⌊

n
4

⌋
× (T − 1) is smaller than the right hand sides of

the above inequalities and
(⌊

n
4

⌋
+ 1

2

)
× (T −1) ≤

⌊
T+1

2

⌋
×n, we get the stated result.

If T = 2, the worst cases for implosion and explosion coincide. It is easy to see that
herem ≤ ⌊

n+2
2

⌋
. ut

In analogy to the above breakdown points one could calculate breakdown points for the
autocovariance estimatorγ̂n,T derived fromQn,T by adding the number of components
of uh + vh anduh − vh which can be replaced without causingγ̂n,T to explode or
to implode. But this is not consistent with the character ofγ̂n,T as autocovariance
estimator, sinceuh andvh are both derived from the same samplex. This led Ma and
Genton (2000) to define a breakdown point depending on the size of the original sample
and on the lagh.

3.4.8 DEFINITION (MA AND GENTON (2000))
Let x = (X1, . . . , Xn), be a sample from a stationary time series andx̃ a contaminated
version. Furthermore let̃uh andṽh be vectors as derived in definition 3.4.2.
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The temporal breakdown point of a autocovariance estimatorγ̂(h,x) derived from a
scale estimatorST is

εt(γ̂(h,x)) = max
{m
T

: sup
Im

sup
x̃

(ST−h(ũh + ṽh)) <∞ and

inf
Im

inf
x̃

(ST−h(ũh + ṽh)) > 0 and

sup
Im

sup
x̃

(ST−h(ũh − ṽh)) <∞ and

inf
Im

inf
x̃

(ST−h(ũh − ṽh)) > 0
}
,

where the first supremum is over all setsIm of m points which are to be replaced iñx.
This definition is valid for the panel autocovariance estimatorγ̂n,T if x, x̃, ũh andṽh

are as in definition 3.4.4 and ifm
T

is substituted bym
n T

.

3.4.9 REMARK

The temporal breakdown point ofγQ(h,x) is optimal: for each lagh and eachT Ma
and Genton (2000) have derived the maximal numberνmax(h,m, T ) of differences af-
fected bym outliers. Asymptotically, the temporal breakdown point ofγ̂Q(h,x) is
εt(γQ(h,x)) = 25%, which is the maximal possible value. The procedure is analogous
in the panel case though the calculations become more cumbersome.

The robust autocovariance estimatorγ̂Q is very robust against outliers, especially against
arbitrary outliers (Ma and Genton (2000)). Thus alsoγ̂n,T is robust against randomly
distributed contamination, which is not the case for the previously discussed estima-
tor. We usêγn,T for estimating the covariance matrix and the autocovariance vector
robustly. The method is described in the next section. Although the autocovariance
estimators are moderately biased, the corresponding parameter estimates are satisfy-
ingly close to the true value. The simulations can be found in section B.2.1 of the
Appendix B, see also the discussion in section B.4.

3.5 Parameter Estimation via Robust Autocovariances

There are several possibilities for deriving parameter estimators which are robustified
versions of the least squares or Yule-Walker equationsθ = Γ̂−1γ̂. Each element of the
covariance matrix̂Γ and the autocovariance vectorγ̂ can be estimated separately or the
complete matrix can be replaced by a robust estimator.
We compare two procedures. First, we estimate each entry ofΓ̂ andγ̂ separately by the
robust panel autocovariance estimatorγ̂n,T of the last section. As alternative we employ
the minimum covariance determinant (MCD) method for estimating the covariance ma-
trix robustly.

Robust panel autocovariance estimator

The robust panel autocovariance estimatorγ̂n,T derived from the scale estimatorQn

has been defined in definition 3.4.4. It can be employed for robustifying the parameter
estimation in the ICM and GICM as follows.
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Let T ≥ 2 andx = {X(i)
t ; t = 1, . . . , T, i = 1, . . . , n}. Using the notations of sec-

tion 3.3, denote the panel of robust residuals byx̆ = {X̆(i)
t ; t = 1, . . . , T, i = 1, . . . , n}

and the median vector byxm = {Xm
t }t=1,...,T . Forh = 0, . . . , p, compute

gr(h) = γ̂n,T (h, x̆) and gm(h) = γ̂n,T (h,xm) .

From these we obtain robust versions of the sample covariance matricesB̂1 and B̂2

and the sample autocovariance vectorsÂ1 and Â2 which are used in the parameter
estimation (see remark 3.3.1): let

Â1,Q =
(
gr(1), . . . , gr(p)

)′
, B̂1,Q = (gr(i− j))i,j=1,...,p ,

Â2,Q =
(
gm(1), . . . , gm(p)

)′
and B̂2,Q = (gm(i− j))i,j=1,...,p .

As the method is based on componentwise robustification, the obtained matrices are
not necessarily positive definite.

Minimum covariance determinant

For comparison, we derive robust versions ofÂ1, B̂1, Â2 and B̂2 directly from ro-
bust covariance matrices. Letx̆ andxm be as above. For both we estimate a robust
covariance matrix separately in the following way: if the order of the underlying pro-
cess isp, we split each time series in the panelx̆ or xm itself into consecutive blocks of
lengthp+1, thus obtaining phase space representations of the time series. Such a set of
(p+1)-dimensional vectors then can be used for estimating a robust(p+1)-dimensional
covariance matrix̂Γ. If its entries are denoted bygi,j = γ̂(i− j), i, j = 1, . . . , p+1, we
get a robustp-dimensional covariance matrix bŷΓp = (gi,j)i,j=1,...,p. A robust autoco-
variance vector can be obtained from its first column asγ̂p = (g2,1, . . . , gp+1,1)

′. In this
way we estimate robust versions ofB̂1 andÂ1 from the phase space representation of
thex̆, and ofB̂2 andÂ2 from the phase space representation of thexm. These matrices
are then used instead of̂A1, B̂1, Â2 andB̂2 in the parameter estimation (remark 3.3.2).
Note that in the GICM, the matrices derived from̆x and fromxm can have different
dimensionsp andq as the orders of the autoregressive processes may differ.
We have decided to consider the covariance estimator obtained from the minimum co-
variance determinant (MCD) method, as this is reported to be more stable than the
minimum volume ellipsoid and also is more efficient in high dimensions (Croux and
Haesbroeck 1999). Both estimators have an asymptotic breakdown point of 50%. They
are described in Rousseeuw and Leroy (1987) and have been implemented in R. For the
MCD, the fast algorithm suggested in Rousseeuw and Driessen (1999) is employed.
In principle any robust estimator of multivariate scatter such as the generalised M-
estimators proposed by Maronna (1974), Tyler’s estimator (Tyler 1987) or a method
based on projections (Maronna et al. 1992) could be used instead. However, the com-
putation of these estimators is more complicated and they have not been included in R
yet.
Simulation results comparing the estimatorsθ̂Q and θ̂MCD described above can be
found in section B.2 of the Appendix B. They are also discussed in section B.4.
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3.6 Robust Regression

In order to evaluate the proposed methods, we compare them to two procedures derived
from standard robust regression methods. The first one is based on an M-estimator as
proposed by Huber (1981), the second one on the least trimmed squares method (Rous-
seeuw and Leroy 1987). Due to the nature of the estimators, which have been designed
for regression problems, we cannot mimic the procedure of the ICM estimation any
more. Either we have to perform an estimation on the original data, which is then not
robust against outlying time series, or we have to content ourselves with estimation as in
the GICM. To be more specific, we again transform the data in order to obtain the robust
residual processes{X̆(i)

t }t∈Z, i = 1, . . . , n and{Xm
t }t∈Z (notations as in section 3.3),

which then are used for the estimation. This procedure yields estimatorsθ̂a = (â′, σ̂2
n)′

and θ̂b = (b̂′, ω̂2
n)′, respectively. The two methods proposed subsequently have been

discussed in Rousseeuw and Leroy (1987) as robust estimators for time series analysis.

M-estimation

Letx = (x1, . . . , xn) be a set of observations. Any pair of statistics(Tn, Sn) determined
by two equations of the form

n∑
i=1

ψ

(
xi − Tn

Sn

)
= 0 and

n∑
i=1

χ

(
xi − Tn

Sn

)
= 0

is called simultaneous M-estimate of location and scale. In most cases,ψ will be an
odd andχ an even function. A popular choice is Huber’s proposal 2, i.e.

ψ(x) = max
(− k,min(k, x)

)

and χ(x) = ψ(x)2 − β(k) with β(k) =

∫
ψ(x)2 Φ(dx) ,

whereΦ is the distribution function of the standard normal distribution (Huber 1981).
For the estimation we use the iterated re-weighted least squares procedure implemented
in R. Therek is chosen to bek = 1.345. The estimators based on this method are called
θ̂M ;a andθ̂M ;b (GICM procedure) and̂θM ;dir (direct procedure using the original data).

Least Trimmed Squares

Least squares estimates are obtained by minimising the sum of squared residuals. Many
robust estimators, e.g. M-estimators, are defined by replacing the square by another
function of the residuals. Rousseeuw’s approach is however to replace the sum in
the least squares approach by a more robust function. If the sum is exchanged with
the median, this leads to the least median of squares (LMS) method first described
in Rousseeuw (1984). Another possibility is to omit the largest residuals in the estima-
tion. The least trimmed squares estimator (LTS) is given by minimising

∑h
i=1(r

2)i:n

with h < n, where(r2)1:n, . . . , (r
2)n:n are the ordered squared residuals (Rousseeuw

and Leroy 1987). The LMS estimation is of low efficiency, the estimator converges
at the raten1/3, whereas the LTS converges at the rate of

√
n. Furthermore, the com-

putational difficulties, which led Rousseeuw and Leroy to recommend using LMS as
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preliminary estimator in a reweighted least squares procedure instead of employing the
LTS, are overcome. Both estimators have the same maximal breakdown value which
is attained e.g. ifh is chosen to beh = bn

2
c + bp+1

2
c. In this case the asymptotic

breakdown point is 50%. We use this choice of the LTS in the simulations. The resul-
ting estimators are denoted byθ̂LTS;a andθ̂LTS;b (GICM procedure) and̂θLTS;dir (direct
procedure).

The simulation results for these estimators are shown section B.2.3 of the Appendix B
and discussed in section B.4.

3.7 Outlier Detection

In this section we discuss two more methods for robust estimation in the panel model.
They both are concerned with outlier identification. After eliminating the outliers, the
parameters can be estimated with a non-robust method.
The first procedure is the heuristic approach of first identifying outliers by a (non-
robust) likelihood ratio test. We include this as a comparison. Since non-robust me-
thods can be substantially influenced by outliers (Rousseeuw and Leroy 1987, Becker
and Gather 1999), we want to investigate whether it is still possible to estimate the
panel parameters in this way.
The second method proposed is a new method of outlier identification. The idea is to
represent the time series in the phase space, as it is done in Gather, Bauer and Fried
(2002). By computing Mahalanobis distances for each time point, they were able to
discover outliers inside a single time series. We generalise this concept to panels of
independent time series and investigate its reliability.

3.7.1 Likelihood Ratio Test

A likelihood ratio test for homogeneity has been proposed by Basawa et al. (1984).
Their setting can be specialised to a panel of independent autoregressive processes.

3.7.1 ASSUMPTION

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of independent autoregressive time series such

that
X

(i)
t = a(i)′ x(i)

t−1 + ε
(i)
t for all t ∈ Z,

with ε
(i)
t independently and identically distributed asε(i)

t ∼ N(0, σ2) for all t ∈ Z,
i = 1, . . . , n. Herea(i) = (a

(i)
1 , . . . , a

(i)
p )′ andx

(i)
t−1 =

(
X

(i)
t−1, . . . , X

(i)
t−p

)′
.

Then, conditional on the initial observationsX(i)
1 , . . . , X

(i)
p , i = 1, . . . , n, the corre-

sponding likelihood function is

Ln,T (θ) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

T∑
t=1

(
X

(i)
t − a(i)′x(i)

t−1

)2
)
.

The vector of unknown parametersθ = (a(1)′, . . . , a(n)′, σ2)′ can be partitioned into
θ1 = (a(1)′, σ2)′ andθ2 = (α(2)′, . . . , α(n)′)′, whereα(i) = a(i) − a(1) for i = 2, . . . , n.
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We consider testing the composite hypothesisH : θ2 = 0 against the sequence of local
alternativesKn : θ2 = θ2,n, whereθ2,n = 1√

n
h with h an(n− 1)p-dimensional vector

of fixed real numbers. The likelihood ratio statistic then is

QLR = −2 log

(
Ln,T (θ̂H)

Ln,T (θ̂)

)
,

whereθ̂ andθ̂H are the maximum likelihood estimators ofθ in the unrestricted case and
restricted byH.

Under these assumptions, the above panel belongs to a locally asymptotically normal
family. Thus it is possible to derive the asymptotic distribution ofQLR.

3.7.2 THEOREM (BASAWA ET AL . (1984))
Let the panel of independent autoregressive time seriesx, the hypothesesH, Kn and
the likelihood ratio statisticQLR be as in the above assumption.
Then the limit distribution ofQLR underH isχ2((n− 1)p), and underKn it is noncen-
tralχ2((n−1)p, δ2). The noncentrality parameterδ2 can be derived from the asymptotic
covariance matrix ofQLR underH andh, whereh is the vector which defines the local
alternativeKn.

PROOF:
See Basawa et al. (1984). The authors show that the model satisfies the conditions for
local asymptotic normality given in Basawa and Koul (1979). There it has been proven
that under these conditions the limit distribution ofQLR is as stated in the theorem.ut

We apply this test in order to identify outliers in a panel of time series. Since the above
result is based on independent time series, we suppose the following in this section:

3.7.3 ASSUMPTION

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of independent time series such that for eachi

X
(i)
t =

p∑

k=1

akX
(i)
t−k + ε

(i)
t

with independently and identically distributed innovationsε(i)
t ∼ N(0, σ2). Outliers

are generated by replacing entire time series by independent time series following a
different model.

For estimating the parameters, we employ an iterative procedure.

3.7.4 ALGORITHM

First, we test for homogeneity usingQLR. If the hypothesis is not rejected, the parame-
ters are estimated from the conditional log-likelihood given above. Otherwise, the time
series with the smallest p-value is deleted from the sample. This is iterated until the
hypothesis is not rejected any more or until a certain proportion of the time series has
been classified as outlying. For the simulations we assume that not more than 20% of
the time series have been replaced.
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3.7.5 REMARK

As we use a multiple testing procedure, the significance levelα has to be adjusted
in advance for obtaining a specified significance for the test. We use the adjustment
αn = 1 − (1 − α)

1
u+1 , which is equivalent toα = 1 − (1 − αn)u+1. Hereα is the

significance level we want to achieve andu is the assumed maximal proportion of
outliers. Thus we have to fix the expected number of replaced time series beforehand.
In the simulations we have setu = bn/5c.
The results of the simulations are displayed in section B.3.1 of the Appendix B. We also
have applied the method to an intercorrelated panel with entire time series as outliers.
In both cases we can observe a massive masking effect if outliers are present. The test
statistic rejects the null hypothesis of homogeneity, but is influenced by the outliers such
that it identifies wrong time series as outlying with a high probability. For a detailed
discussion we refer to section B.4 and the end of section B.3.2, where the performance
of θ̂LR is compared to that of̂θPS, the estimator introduced in the next subsection.

3.7.2 Phase Space Representation

Gather, Imhoff and Fried (2002) propose a method for identifying outliers in stationary
Gaussian time series by deriving a time series Mahalanobis distance. They represent
the time series{Xt}t=1,...,T in anm-dimensional phase space, i.e. they consider the set
of vectorsxt = (Xt, Xt+1, . . . , Xt+m−1)

′, t = 1, . . . , T − m + 1. When the orderp
of the autoregressive time series is known, they choose the dimensionm of the phase
space asp+1. If the order is unknown, they choose it asm = 1+max{h; |ρ(h)| > 0},
whereρ is the partial autocorrelation function. For estimatingm from the data, Gather,

Imhoff and Fried (2002) usem = 1+max{h; |ρ̂(h)| > u1−α

√
1
n
},wheren is the length

of the time series andu1−α the (1 − α)-quantile of the standard normal distribution.ρ̂
is the sample partial correlation function. In this setting, they consider the following
analogue of the classical Mahalanobis distance outlier identifier.

3.7.6 DEFINITION

Let{Xt}t=1,...,T be a sample from a stationary Gaussian time series and define the phase
space vectors asxt = (Xt, Xt+1, . . . , Xt+m−1)

′, t = 1, . . . , T − m + 1. Denote their
mean byx̄ =

∑T−m+1
t=1 xt and the correspondingm-dimensional sample covariance

matrix by Ŝm. The Mahalanobis distance for time series (MDTS)at pointt is defined
as

MDTSt =

√
(xt − x̄) Ŝ−1

m (xt − x̄) for t = 1, . . . , T −m+ 1 .

In the above article, the authors also derive its asymptotic distribution.

3.7.7 THEOREM (GATHER, IMHOFF AND FRIED (2002))
Let (X1, . . . , XT ) be a sample from a stationary Gaussian process with absolutely sum-
mable autocovariance functionγ(h), h ∈ N, and denote the dimension of the phase
space bym. Then the asymptotic distribution of the Mahalanobis distance for time
series (MDTS) is given by

MDTS2
t ⇒ Yt for T →∞, whereYt ∼ χ2

m .
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Since the MDTS is defined using a non-robust covariance estimator, the outlier iden-
tifier is susceptible to masking effects (Becker and Gather 1999). Therefore (Gather,
Imhoff and Fried 2002) suggest replacing the sample covariance matrix and the mean
by the robust alternatives obtained from the minimum volume ellipsoid (MVE) method
which is not affected by the dependencies in the time series.

We now extend their definition to panels of time series.

3.7.8 DEFINITION

Let X(i)
t , t = 1, . . . , T , i = 1, . . . , n, be observations from a panel of stationary time

series{X(i)
t }t∈Z, i = 1, . . . , n, such thatEX(i)

t = µ andvarX
(i)
t = σ2 > 0, and let

m be the dimension of the chosen phase space. Denote the corresponding phase space
vectors byx(i)

t =
(
X

(i)
t , . . . , X

(i)
t+m−1

)′
, t = 1, . . . , T −m+ 1, i = 1, . . . , n. Let

µ̂ =
1

nT

n∑
i=1

T∑
t=1

X
(i)
t and Ŝ =

(
γ̂n,T (k − l)

)
k,l=1,...,m

,

where γ̂n,T (h) = 1
n T

∑n
i=1

∑T
t=h+1

(
X

(i)
t − µ̂

) (
X

(i)
t−h − µ̂

)
is the panel covariance

estimator. Moreover let1 = (1, . . . , 1)′ be them-dimensional vector consisting of
ones and denotêµ = µ̂1.
Then thesquared Mahalanobis distance for this panel of time series (MDP 2) at the
time seriesi is defined as

MDP 2
i =

T−m+1∑
t=1

(
x

(i)
t − µ̂

)′
Ŝ−1

(
x

(i)
t − µ̂

)
.
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Figure 3.1: Phase space representation of a panel of 9 independent autoregressive time
series with autoregressive parametera = 0.5 and varianceσ2 = 1 (grey lines), and one
autoregressive time series with parameteraout = 0.9 and varianceσ2

out = 1 (dashed
black line). The length of the time series isT = 72.
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Thus theMDP 2
i essentially is the sum of the Mahalanobis distances of theith time se-

ries, the only difference being that the univariate estimators are replaced by their panel
counterparts. The underlying idea is that the phase space vectors arem-dimensional
Gaussian random variables, although not independent; and that time series belonging
to different models possess different density ellipsoids (compare figure 3.1). The test
then measures the deviation of the single time series from the main behaviour.
If the single phase space vectors were independent, the resulting statistic would be
a sum ofT − m + 1 independent random variables which each are asymptotically
distributed asχ2

m. As we are concerned with causal autoregressive processes where the
autocorrelations decay exponentially, the strong mixing property ensures asymptotic
normality.

3.7.9 THEOREM

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of identically distributed stationary Gaussian

time series with absolutely summable autocovariance functionγ(h). and letm be the
dimension of the chosen phase space. Using the notations introduced in the preceding
definition, the asymptotic distribution of the Mahalanobis distance for observations of
a panel of time series at time seriesi is given by

√
T

( 1

T
MDP 2

i − 1
)
⇒ Y for n, T →∞,

whereY ∼ N(0, σ2
Y ), the asymptotic varianceσ2

Y being independent ofn andT .
In order to ensure the consistency of the estimatorsµ̂ andŜ used for calculating the test
statistic, we furthermore assume that the intercorrelation in the panel is for allh ∈ Z
determined bycov

(
X

(i)
t , X

(j)
t+|h|

)
= un γ(h) for i 6= j, whereun = O

(
1
n

)
.

PROOF:
Let Σ =

(
γ(k − l)

)
k,l=1,...,m

be the truem-dimensional covariance matrix of the phase

space vectorsx(i)
t andµ = µ1 their true mean vector. Furthermore letŜ be the sample

covariance matrix and̂µ the overall mean as defined above. Due to lemma 1.2.4 the
entries ofŜ fulfil

E
(
γ̂n,T (h)− γ(h)

)2
= O

(
1

nT

)

since
∑∞

h=−∞ |γ(h)| < ∞ and the intercorrelation factor in the panel isun = O
(

1
n

)
.

For the same reasons, also

E
(
µ̂− µ

)2
= O

(
1

nT

)
.

Since for eachi = 1, . . . , n,

(x
(i)
t − µ̂)′ Ŝ−1 (x

(i)
t − µ̂) = (x

(i)
t − µ)′ Σ−1 (x

(i)
t − µ) + 2 (µ− µ̂)′ Σ−1 (x

(i)
t − µ)

+ (µ− µ̂)′ Σ−1 (µ− µ̂) + (x
(i)
t − µ)′

(
Ŝ−1 − Σ−1

)
(x

(i)
t − µ)

+ 2 (µ− µ̂)′
(
Ŝ−1 − Σ−1

)
(x

(i)
t − µ) + (µ− µ̂)′

(
Ŝ−1 − Σ−1

)
(µ− µ̂) ,

we thus have

1√
T

T−m+1∑
t=1

(x
(i)
t − µ̂)′ Ŝ−1 (x

(i)
t − µ̂) =

1√
T

T−m+1∑
t=1

Y
(i)
t +OP (

1√
n

) ,
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whereY (i)
t = (x

(i)
t − µ)′ Σ−1 (x

(i)
t − µ) ∼ χ2

m due to the assumption of Gaussianity.

For ease of notation choosei ∈ {1, . . . , n} fixed and denoteYt = Y
(i)
t . ThenEYt = 1

for all t = 1, . . . , T −m + 1. TheYt are dependent. Using the fact that for Gaussian
processes all cumulants of order larger than two are zero (Shiryayev 1984, p. 291), the
variance of 1√

T

∑T−m+1
t=1 Yt can be calculated as

σ2
T = var

(
1√
T

T−m+1∑
t=1

Yt

)
= var

(
Yt

)
+ 2

T−m∑

h=−(T−m)

(
1− |h|

T

) m∑

k,l=1

skl

× (
γ(k + h− 1), . . . , γ(k + h−m)

)′
Σ−1

(
γ(l + h− 1), . . . , γ(l + h−m)

)
,

whereskl denotes the(k, l)th entry ofΣ−1. Since by assumptionvarX
(i)
t > 0, we

haveσ2
T > 0 . Moreoverσ2

Y = limT→∞ σ2
T exists because we have assumed the

autocovariance function to be absolutely summable.
For deriving the asymptotic distribution, we employ strong mixing theory. We regard

ST =
1√
T σ2

T

T−m+1∑
t=1

(
Yt − 1

)
= cT

T−m+1∑
t=1

Zt ,

i.e. cT =
(
T σ2

T

)− 1
2 andZt = Yt − 1, t = 1, . . . , T −m+ 1.

Thus for allt = 1, . . . , T − m + 1, Zt is measurable and has mean zero. The choice
of the constant givesES2

T = 1. Furthermore, stationary Gaussian AR-processes are
strong mixing (Davidson 1994, p. 210). Therefore{X(i)

t }t∈Z is strong mixing for each
i = 1, . . . , n. By theorem 14.1 of Davidson (1994), thusZt is strong mixing of the same
order. Moreover it trivially is near-epoch dependent (Davidson 1994, definition 17.1)
in L2-norm. Since{X(i)

t }t∈Z is assumed to be Gaussian for alli = 1, . . . , n, all higher
moments ofX(i)

t and thus ofYt andZt exist. Therefore,EZr
t = Mr < ∞ for all

t = 1, . . . , T −m+ 1. This leads to

sup
t=1,...,T−m+1

E
(
Zr

t

crT

) 1
r

= cT M
1
r
r <∞

for all fixed r > 0. As the coefficientcT is constant for fixedT , we moreover have
supt=1,...,T−m+1 T c

2
T = T c2T =

(
σ2

T

)−1
< ∞. Thus, all conditions of theorem 24.6 of

Davidson (1994) are fulfilled. It follows that forT →∞

ST = cT

T−m+1∑
t=1

Zt ⇒ Z whereZ ∼ N(0, 1).

Equivalently,

1√
T

T−m+1∑
t=1

(
Yt − 1

) ⇒ Y, whereY ∼ N(0, σ2
Y ).

Altogether this means that in case ofT →∞ andn→∞
√
T

( 1

T
MDP 2

i − 1
)
⇒ Y. ut
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The most important point in this proof is that we only have used the fact thatŜ andµ̂

are
√
nT -consistent estimators of the covariance matrix and the mean vector. Thus any

other
√
nT -consistent estimator can be used for defining a Mahalanobis-type distance,

leading to the same asymptotic distribution. We employ the above result for deriving a
robust test for outliers in a panel of time series.

Robust outlier identification in the panel case

In the simulations we generate panels of Gaussian time series, up tommax = b0.2nc
time series being replaced by outlying time series. These are assumed to be independent
of the time series in the panel and of each other.
For robustly testing whether a time series is an outlier and for eliminating these from
the data set we use the following procedure.

3.7.10 ALGORITHM

In order to obtain a robust estimaterMDP 2
i , we replace the sample covariance ma-

trix and the mean vector used in the computation ofMDP 2
i by the covariance matrix

obtained from the minimum covariance determinant (MCD) method and the overall
medianmedt=1,...,T ;i=1,...,nX

(i)
t . A time series{X(i)

t }t=1,...,T is classified as an outlier if

∣∣∣∣
√
T

(
1

T
rMDP 2

i − 1

)∣∣∣∣ > cα ,

wherecα is the
(
1− αn

2

)
-quantile of theN(0, σ2

Y )-distribution. The adjusted signifi-
cance levelαn is obtained fromα by α = 1− (1− α)1/n. For approximatingσ2

Y use a
robust estimate of the empirical variance of theYt, i = 1, . . . , n:

σ̂2
Y = medi=1,...,n

1

T −m+ 1

T−m+1∑
t=1

(
Y

(i)
t − Ȳ (i)

)2

,

whereȲ (i) = 1
T−m+1

∑T−m+1
t=1 Y

(i)
t . These outliers are deleted from the data set. The

parameter estimation then can be performed in a second step using a non-robust esti-
mator.

The significance levelα has to be adjusted as the algorithm implies multiple testing:
for each time series we compute the test statistic, where the estimate of the covariance
matrix is based on all observations, and decide whether it is outlying or not. This
adjustment is the same as chosen in the likelihood ratio procedure described in the
previous subsection (see remark 3.7.5). As we here test for each time series separately,
we have to adjustα with n, the number of time series in the panel, instead ofu.

3.7.11 REMARK

1. Replacing the term1 = EYt by a robust estimate of this expectation in the
test statistic leads to more reliable results. In fact we have used the estimator
medi=1,...,nMDP 2

i for calculatingθ̂PS;rob in the simulations shown in the Ap-
pendix B.3.2.
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2. The above choice of the robust covariance matrix facilitates the comparison with
the parameter estimatorθ̂MCD of section 3.5 which is based on the MCD. In fact,
the two methods are closely connected. Robust methods allow to estimate the
parameters and to identify outliers as the data with the largest residuals in one
step. Here the MCD method is used to classify the outliers in order to be able to
perform a non-robust estimation on a smaller data set in a second step, whereas
θ̂MCD provides a robust estimator based on all data.

3. The definition of the Mahalanobis distance implicitly includes a transformation
of the Gaussianm-dimensional random vectors to standard normally distributed
random variables. Thus the test statistic yields a distance of the transformed
time series to a standard normally distributed process. This idea is similar to
that in Hallin and Puri (1988), where the authors test one ARMA against another
ARMA model by checking whether a transformed ARMA processes is a white
noise process. However here the focus is different. Hallin and Puri develop
the asymptotic properties of the procedure with unspecified densities. Our main
interest lies in methods adapted to the panel case which are robust and easily
applicable.

For the performance of the method see the simulation study in section B.3.2 of the
Appendix B and the discussion in the next section. In the simulations we also have
included the non-robust outlier identification procedure based on the sample covariance
and the sample mean for comparison. Thereσ̂2

Y is estimated as

σ̂2
Y =

1

n (T −m+ 1)

T−m+1∑
t=1

n∑
i=1

(
Y

(i)
t − Ȳ (i)

)2

.

In these cases the parameters are estimated by eliminating all identified outliers from
the panel and then performing a non-robust estimation using the ICM parameter esti-
mator of chapter 2. We call the resulting parameter estimatorsθ̂PS (non-robust method)
andθ̂PS;rob. In order to compare the estimators with those obtained using the likelihood
ratio procedure, we further include in the simulations a (non-robust) modification where
the time series are eliminated iteratively. The estimators obtained from this procedure
are denoted bŷθPS;rec.

3.8 Conclusion and Outlook

We have investigated several approaches for obtaining robust panel covariance estima-
tors and have evaluated their behaviour in a simulation study.
The first method is to robustify the conditional maximum likelihood estimators of the
first chapter by replacing all non-robust parts with a robust method as it has been done
e.g. in Haddad (2000). This leads to robust estimates of the autoregressive parame-
ter. However, the simulations show that the estimators of the residual variances are
biased (see section B.4), which is a known problem in robust estimation (Rousseeuw
and Leroy 1987). As bootstrap methods are non-robust in character, they reflect the
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empirical behaviour of the underlying parameter estimator and thus improve the esti-
mates only moderately. Here the method which exploits the normality assumption of
the model performs best (see section B.4).

As a second aspect we have investigated the effects of replacing the covariance matrix
and the autocovariance vector in the Yule-Walker equations by a robust counterpart.
We have focused on the panel scale estimatorQn,T which generalises the robust time
series scale estimatorQn proposed by Ma and Genton (2000). It was possible to define
and compute panel breakdown points forQn,T . Some estimators with a high break-
down point such as the minimum volume ellipsoid (MVE) estimator have a large bias
which may be so high as to make the estimator unreliable, even for small amounts of
contamination (see Maronna et al. 1992). This seems not to be the case withQn,T .
The simulations in the Appendix B.2 suggest that the original standardisation constant
is not appropriate in the panel case, though. As this factor cancels out in the calcula-
tion of the autoregressive parameter it does not affect the parameter estimation as such.
The drawback of estimating the separate components of the covariance matrix robustly
is that the estimate is not necessarily positive definite. The fast algorithm of Croux
and Rousseeuw (1992) could not be transferred to the panel case since it relies on a
procedure for efficient partial sorting of a single vector of observations. But the com-
putational speed posed no problem in the simulations.

Positive definiteness is ensured if we replace the entire covariance matrix by a robust
counterpart. We chose the minimum covariance determinant (MCD) covariance es-
timator because it is implemented in R, whereas other covariance estimators cited in
the introduction are not yet available. The MCD is reported to be more stable than
the minimum volume ellipsoid (MVE) method, and it is more efficient in high dimen-
sions (Croux and Haesbroeck 1999).

Although the approach of first identifying and then deleting outliers is very intuitive, it
poses two problems. If the procedure used for identification is not robust, this method
can lead to a masking effect (Rousseeuw and Leroy 1987, Becker and Gather 1999).
This means that the test statistic is influenced by the outliers such that they are not
recognised as outlying, whereas some of the original data may wrongly be identified
as outliers. This masking effect is evident for the non-robust likelihood ratio test of
section 3.7 (see the simulation study in section B.3.1 of the Appendix B). Secondly,
iterating the procedure implies multiple testing. Thus the significance level of the test
has to be adjusted. For this, the maximal proportion of possible outliers must be spec-
ified in advance. Furthermore this implies that the local tests are performed at a much
higher significance level, which makes rejections for the single time series less proba-
ble. Thus Rousseeuw and Leroy (1987) prefer genuinely robust estimators which allow
estimating the parameters and identifying outliers in the same time. There the outliers
are characterised by their large residuals. For example the least trimmed squares esti-
mator and the reweighted least squares estimator discussed in section 3.3 downweight
the observations which belong to the largest residuals in the estimation procedure. The
phase space method of outlier recognition is related to this class of estimators. The pro-
cedure starts with computing a robust covariance matrix using the MCD method. This
can then either be used directly in the the Yule-Walker equations (thus leading to the
estimator discussed in section 3.5) or in the robust outlier test treated in section 3.7.2.

For a more detailed comparison of the different properties of the above estimators we
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refer to the discussion of the simulation study in section B.4 in the Appendix. The final
recommendation is to use the reweighted robustified ICM parameter estimatorθ̂rw or
the estimator obtained after a preliminary outlier detection using the the phase space
test,θ̂PS;rob, for the estimation if no arbitrary outliers are present. In the case of arbitrary
outliers, one should use the estimators derived from the robust covariance matricesθ̂Q

or θ̂MCD, depending on the order of the autoregressive processes.
As the aim of this chapter was to survey which robust methods could be used for the
panel case, the character of our investigations is exploratory and we have not sought to
improve the single estimators as much as possible. Certainly there exist modifications
of some of the above parameter estimators which perform better than these. In particu-
lar it seems that the bias of the robust autocovariance estimatorθ̂Q can be lowered by
adapting the choice of the order statistic and the standardisation to the panel case.
For a more detailed discussion of the empirical behaviour of the proposed estimators,
we refer to the Appendix B, and in particular to section B.4.



Chapter 4

Real Data Examples

4.1 Introduction

This chapter is concerned with the analysis of data collected in experiments. We in-
vestigate how our methods can be applied in practice. The panels of intercorrelated
time series we analyse have already been mentioned several times throughout the the-
sis. The first one is the data set which was the motivation for the present thesis. It
originates from a therapy process study conducted at the Medical University Hospi-
tal of Heidelberg, Department of Internal and Psychosomatic Medicine. Fibromyalgia
Syndrome (FMS) patients were undergoing a treatment consisting of several modules,
including a psychotherapeutic group therapy. Therefore the assumption that the time
series obtained from these patients are independent cannot be made initially. A second
example, where the presence of intercorrelation is predominant, is the grey-sided voles
data set presented in section 2.1. It already served Hjellvik and Tjøstheim (1999a) and
Fu et al. (2002) as an example. These two data sets allow us to elaborate the features
of the parameter estimators in typical applications.
The chapter is structured as follows. We start with estimating the autoregressive para-
meters for the voles data. Then we investigate the FMS data. In such studies (and this
indeed has been the case) some patient may have been wrongly assigned to the therapy
group. Thus we employ an outlier identification step before analysing the remaining
data. All of the analyses are exploratory in character as we primarily want to illustrate
the properties of the different estimators. The chapter concludes with a discussion of
the obtained results.

4.2 Population Dynamics

The grey-sided voles data has already been briefly introduced in section 2.1. The data
set is plotted there, in figure 2.1. The data, which are also investigated in Hjellvik and
Tjøstheim (1999a) and Fu et al. (2002) as an example of intercorrelated time series,
consist of the yearly catches (from 1962 to 1992) of grey-sided voles at 41 different
locations on Hokkaido, Japan. They are measured on a logarithmic scale: if the number
of voles trapped each year is denoted by{V (i)

t , 1962 ≤ t ≤ 1992, 1 ≤ i ≤ 41}, we
consider the transformed dataX(i)

t = log(V
(i)
1961+t + 1), 1 ≤ t ≤ 31, 1 ≤ i ≤ 41.

99
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As we want to use the methods discussed in this thesis for the analysis, we first must
decide whether the assumptions 2.2.1 of the ICM or 2.3.1 of the GICM are fulfilled.
In the present case it is however justified to use only the GICM procedure, even if the
true model fulfils the assumptions of the ICM, since heren = 41. Thus the difference
between the ICM estimator̂θn,T (calculated using the iterative algorithm 2.4.4) and the
GICM estimator obtained in lemma 2.4.7, is small (see remark 2.6.10). Note thatθ̂a

coincides with the estimator of Hjellvik and Tjøstheim (1999a) (see remark 2.4.8).

Preprocessing the data

Since the empirical mean of the data isµ̂ = 1.7, we must preprocess the data prior to
the analysis. The main question is whether the mean term is common to all time series
in the panel or whether we have to subtract different means from the individual time
series. Regarding the empirical data both possibilities are reasonable. Hjellvik and
Tjøstheim (1999a) assume a common mean, stating that the data has been chosen from
a larger data set such that the difference in the individual means was minimised. This
assumption is sufficient for being able to employ their estimator, as then the residual
time series̊X(i)

t = X
(i)
t − X̄t, t ∈ Z, i = 1, . . . , n, have zero mean.

We here however do not want to make that assumption and thus preprocess the data in
the following way.

◦ We subtract the individual sample meansλi = 1
31

∑31
t=1X

(i)
t from the observa-

tions of the corresponding single time series{X(i)
t }t=1,...,31, i = 1, . . . , 41. The

resulting data set is calledVind.

◦ For comparing our results to those of Hjellvik and Tjøstheim, we only subtract
the overall sample meanµ = 1

31×41

∑31
t=1

∑41
i=1X

(i)
t from the set of observations

{X(i)
t ; t = 1, . . . , 31, i = 1, . . . , 41}. We denote this data set byVHT .

Data analysis

The data set has been used already in several studies (see e.g. Hjellvik and Tjøstheim
1999a). Thus we as well assume that the analyses are not influenced by outliers and
therefore employ non-robust estimators. This is further supported by the fact that robust
analyses here lead to qualitatively the same results. In order to simplify the presenta-
tion we omit these here. We proceed as follows. For both of the two transformed data
setsVHT andVind we compute parameter estimates using GICM parameter estimators
θ̂a and θ̂b. Furthermore, we give the results of the ICM parameter estimatorθ̂n,T for
comparison. Following the procedure of Hjellvik and Tjøstheim (1999a), we fit autore-
gressive processes of different orders to the data. The quality of the fits is assessed by
computing the residual processes and performing diagnostic checks on these. If there
are several competing models, those with a lower order are preferred. We first con-
sider the individual processes. The results of the estimation are displayed in table 4.1.
It turns out that for the modelVHT indeed an AR(4) process yields the best fit. This
corresponds to the findings of Fu et al. (2002). In Hjellvik and Tjøstheim (1999a), the
authors only investigate processes up to order three. However they also do not propose
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data set model estimated model parameters

θ̂a AR(4) â = (0.136,−0.007, 0.082, 0.132)′, σ̂2 = 0.581
VHT

θ̂n,T AR(4) â = (0.131,−0.012, 0.085, 0.136)′, σ̂2 = 0.581

θ̂a WN σ̂2 = 0.553
Vind

θ̂n,T WN σ̂2 = 0.553

Table 4.1: Coefficients of the individual processes obtained from the estimatorsθ̂a and
θ̂n,T , computed for each of the two data setsVind andVHT . The third column gives the
type of model chosen (WN=white noise).

a white noise model but an AR(3) process for fitting the data. Thus we see that the re-
sults obtained for the differently transformed data setVind, where we get a white noise
model, are clearly distinct from those based uponVHT .
For the estimation of the background process using theorem 2.4.14 we take the empi-
rical mean process{ 1

41

∑41
i=1X

(i)
t }t=1,...,31. This process is the same for both data sets

VHT andVind. The analyses yield that it is best approximated by a white noise process
with the varianceτ 2 = 0.444.

Implications for modelling

The above analysis yield similar parameter estimates for the ICM estimatorθ̂n,T and the
GICM estimatorθ̂a. However we have to take the structure of the background process
into account, which is estimated from the empirical mean process{ 1

41

∑41
i=1X

(i)
t }t=1,...,31.

If the ICM model (definition 2.2.2) is true, then the mean process fulfils

X̄t =

p∑

k=1

ak X̄t−k + ε̄t + ηt for t ∈ Z, i = 1, . . . , n,

thus having the same autoregressive parameters as the individual processes. Note that
here{ηt}t∈Z is assumed to be a white noise process. This property is not fulfilled in the
case of the data setVHT . Indeed modelling the process with the parameters obtained
from the analysis of the individual processes leads to a fit which is much worse than
adapting a white noise model. Using a GICM model (definition 2.3.2) for the data, we
get that for allt ∈ Z, i = 1, . . . , n,

X
(i)
t = Z

(i)
t + Yt =

∞∑
u=0

ψuε
(i)
t−u + Yt =

∞∑
u=0

ψu

(
ε
(i)
t−u + a(L)Yt−u

)
,

wherea is the autoregressive parameter,a(L) the backward shift operator and{ψu}u≥0

are the MA(∞) coefficients corresponding toa (see section 1.1). This is equivalent to

X
(i)
t =

p∑

k=1

ak X
(i)
t−k + ε

(i)
t + a(L)Yt for t ∈ Z, i = 1, . . . , n.

Thus the background process{Yt}t∈Z being a white noise process corresponds to{ηt}t∈Z
having an autoregressive structure, whereas in the ICM{ηt}t∈Z is required to be a white
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noise process. This has already been discussed in the examples 2.3.4, but the grey-sided
voles data set illustrates this fact nicely. Indeed Hjellvik and Tjøstheim (1999a), who
estimate{η̂t}t∈Z from the residual procesŝηt = â(L) X̄t for t ∈ Z, also conclude that
it may be autocorrelated, which contradicts the ICM assumption.

4.3 Fibromyalgia Syndrome Therapy Study

Our second real-data example comes from a therapy process study on fibromyalgia syn-
drome (FMS) patients conducted at the University Hospital of Heidelberg, Department
of Internal and Psychosomatic Medicine. This study was the original motivation for
the present thesis. FMS is a chronic pain disease which is characterised by widespread
pain and a reduced pain threshold (Wolfe et al. 1990). The therapy based on a psycho-
bio-social approach consists of several modules, combining information, medication,
physical therapy and a psychotherapeutic group therapy (Eich et al. 1998). This implies
that assuming independence is not justified in this setting, which led us to investigate
panels of intercorrelated time series.
FMS being a chronic pain disease, the therapy’s main focus is on helping patients to
cope better in their daily life. FMS patients often display a number of physical and
psychosomatic attendant symptoms, among these are sleep disorders, anxiety and an
elevated level of depressivity. Thus the parameters of main interest are, besides pain
intensity, the levels of depressivity (mood) and self-efficacy. The latter is a measure of
how much a patient believes that he or she can influence the symptoms of the disease
himself (Müller et al. 2003). Using graphical models for time series (Dahlhaus 2000a),
it has been shown that self-efficacy plays a central role in the therapy process and is
supposed to serve as a mediator between other parameters such as pain intensity, sleep
quality, anxiety and depression (Feiler et al. 2005).

Data

58 female patients participated in the study. They entered the data themselves into a
handheld computer (Psion 3mx) which served as an electronic diary. The data were
measured using visual analogue scales ranging from 1 to 10.
The data comprise 72 daily entries, i.e. they cover the span from the beginning of the
therapy until two weeks after its termination. As the patients were divided into sepa-
rate therapy groups, we here analyse the data of 11 patients participating in the same
group (group 1). Outlying values in the individual time series, which were e.g. due to
retrospective entries, were identified and eliminated preliminary to the analysis. Each
univariate time series was detrended using 5th order polynomial trends and standardised
with its empirical standard deviation. Missing values were replaced by a weighted ave-
rage of forward and backward predictions using univariate autoregressive processes.
For the analysis of the parameter depressivity we exclude the data of two patients from
the analysis who exhibit virtually no variation in this parameter over long stretches of
time. As an example, the data obtained for the parameters “pain intensity” and “self-
efficacy” are displayed in figure 4.1.
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Figure 4.1: Standardised data for the parameters “pain intensity” and “self-efficacy”
(group 1), measured over 72 days.

Intercorrelation

The plots of the data shown in figure 4.1 do not exhibit an obvious intercorrelation
pattern as it is the case for the voles data shown in section 2.1. Nevertheless we cannot
exclude intercorrelation due to theoretical reasons. The asymptotic results in this thesis
are valid whether or not intercorrelation is present. Thus we test for intercorrelation
first in order to get a clearer picture. For testing we use the method given in Brillinger
(1973). This is based on the spectral representation of the data and tests whether the
the spectrum of the random variable causing the common influence is different from
zero. Applied for the parameters of interest with significance levelα = 0.05, it only
is significant for the self-efficacy. For the other parameters it does not reject the null
hypothesis of independence. The corresponding plots, again restricted to the parameters
“pain intensity” and “self-efficacy”, are displayed in figure 4.2.

Testing for outliers

Next we test for outliers in the data. We know that one person in the group (patient
no. 11) did not suffer from FMS. But as she already had been accidently admitted to
the study she was allowed to participate in the therapy group. For testing we use the
robust test based on the phase space representation described in section 3.7.
The test performed at the 5% significance level does not give any significant results. In
table 4.2 we list the p-values for those cases where the p-values are below 20%.
The results for the parameter “sleep quality” are not significant since we have to ad-
just for the multiple testing. Thus the individual tests have to be performed at a local
significance level of 0.005 in order to guarantee the 5% significance level for the test.
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Figure 4.2: Results of the intercorrelation test for the parameters “pain intensity” and
“self-efficacy” (group 1). Solid line: test statistic. Dashed horizontal line: 5%-bound
for the test statistic. The curves were smoothed using a window of width 7.

For comparison we have performed the test also in its non-robust version, using the
sample covariance matrix instead of the robustly estimated one for testing. This leads
to qualitatively the same results.

Fitting autoregressive processes

In the case of independent time series we can estimate the parameters using ordinary
least squares, which corresponds to a conditional maximum likelihood procedure in
the case of Gaussian distributions. The intercorrelation test above did in most cases
not reject the hypothesis of independence. However this does not prove that these time
series indeed are independent. Therefore we now compare the estimates obtained under
the assumption of independence to those obtained using the GICM estimatorθ̂a given
in proposition 2.4.7. Since the previous test does not indicate the presence of outliers
(with a possible exception in the case of sleep quality), it is sufficient to use non-robust
estimators. As in the last section, we fit autoregressive processes of different orders to
the univariate data and check which of these model the data best. We first present the
results of the direct least squares fit in table 4.3. Estimating the parameters with the
ICM procedure yields virtually the same parameters, thus we have omitted them form
this presentation. Table 4.3 furthermore shows that there is essentially no difference
between the estimates for sleep quality with or without the data of patients 7 and 8.
The models fitted using the GICM procedure are given in table 4.4.
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parameter

pain and depressivity no incidents

self-efficacy patient 11 (p=15.86%)

anxiety patient 5 (p=16.46%)

sleep quality patients 7 (p=1.62%) and 8 (p=7.06%)

Table 4.2: Results of the robust outlier tests. Cases with p-values≤ 20%.

parameter model estimated model parameters

pain intensity AR(4) â = (0.093,−0.003,−0.063,−0.141)′, σ̂2 = 0.949

self-efficacy AR(1) â = 0.152, σ̂2 = 1.019

depressivity AR(1) â = 0.141, σ̂2 = 1.009

anxiety AR(1) â = 0.117, σ̂2 = 0.938

sleep quality WN σ̂2 = 1.007

sleep quality
without 7 and 8

WN σ̂2 = 1.063

Table 4.3: Coefficients of the autoregressive processes fitted using a least squares pro-
cedure. The second column gives the type of model chosen (WN=white noise).

Simulations

In order to explore whether the more complicated models obtained from the GICM pro-
cedure are due to overfitting, which implies that the models which have been identified
for the background processes are artefacts, we perform a small simulation.
We generate panels of independent autoregressive processes with identical parameters
a = (0.093,−0.003,−0.063,−0.141)′ andσ2 = 0.949 (pain intensity) and with pa-
rametersa = 0.141 andσ2 = 1.009 (depressivity). Thus the variance of the mean
process will be approximately 0.1. Furthermore we simulate panels of white noise pro-
cesses with varianceσ2

WN = 1 and a panel of intercorrelated autoregressive time series
with parametersα = 0.141 andσ2 = τ 2 = 0.5. As size of the panel we choosen = 10
andT = 72, such that the results are compatible to the above analyses. Thus we have
in the last model thatω2

n = 0.55. For each type of panel we compute the parameters
estimated from the mean process over 1,000 iterations. The results are

◦ in the AR(4) case:in 154 of the 1,000 iterations indeed an AR(4) process has
been chosen. However, the average over the estimated autoregressive parameters
is â = (0.088,−0.027,−0.105,−0.289)′ (mean taken over those cases where
an AR(4) process has been fitted), having a componentwise standard deviation
sd(â) = (0.125, 0.152, 0.112, 0.064)′. This means that the variance in the es-
timation is very high. The average variance isσ2 = 0.111 (sd(σ̂2) = 0.019).
Moreover in 541 cases the chosen model was a white noise model with similar
variance.
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parameter model estimated model parameters

θ̂a AR(4) â = (0.073,−0.014,−0.075,−0.154)′, σ̂2 = 0.97
pain intensity

θ̂b AR(1) b̂ = 0.227, ω̂2
n = 0.08

θ̂a AR(4) â = (0.187, 0.090,−0.050,−0.121)′, σ̂2 = 0.99
self-efficacy

θ̂b WN ω̂2
n = 0.11

â = (0.121,−0.003,−0.081,−0.086, 0.003,−0.125)′,

depressivity
θ̂a AR(6)

σ̂2 = 0.99

θ̂b AR(2) b̂ = (0.309,−0.173)′, ω̂2
n = 0.11

anxiety AR(1) ICM: â = 0.117, σ̂2 = 0.967, ω̂2
n = 0.097

θ̂a WN σ̂2 = 1.01
sleep quality

θ̂b AR(4) b̂ = (0.165, 0.229, 0.072,−0.372)′, ω̂2
n = 0.08

θ̂a WN σ̂2 = 1.07
sleep quality,

b̂ = (0.193, 0.164, 0.085,−0.300,−0.213)′,
without 7 and 8 θ̂b AR(5)

ω̂2
n = 0.08

Table 4.4: Coefficients of the autoregressive processes fitted using the GICM proce-
dure. θ̂a and θ̂b are the parameters of the individual processes and the background
process, respectively. The third column gives the type of model chosen (WN=white
noise).

◦ in the AR(1) case:in 626 of the 1,000 iterations the process was correctly identi-
fied as an AR(1) process and in 2 a white noise process has been chosen. However
there were for example 146 cases where an AR(4) model was fitted. The average
over the estimated autoregressive parameters (mean taken over those cases where
an AR(1) process has been fitted) isâ = 0.380 (sd(â) = 0.140), the average va-
riance isσ̂2 = 0.109 (sd(σ̂2) = 0.018).

◦ in the white noise case:only in 733 cases the mean process was correctly identi-
fied as a white noise process. The mean of the estimated autoregressive parame-
ters isâ = −0.010 (sd(â) = 0.095) and of the mean of the estimated variances it
is σ̂2 = 0.109 (sd(σ̂2) = 0.018).

◦ in the intercorrelated AR(1) case:only in 90 cases a model of order three or
larger was fitted. In 73 case an AR(2) model and in 574 cases a white noise
model was fitted. The average over the estimated autoregressive parameters is
â = 0.038 (mean taken over those cases where an AR(4) process has been fitted),
with standard deviationsd(â) = 0.091. The variance has been estimated as
ω̂2 = 0.550 (sd(ω̂2) = 0.095).

This shows that the variance of the true mean process is always estimated quite accu-
rately, whereas the parameter estimations exhibit a large variation, in particular if the
time series in the panel are independent. In the case of the intercorrelated panel how-
ever the estimated order is not varying as much as in the panel of independent AR(1)
processes.
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Conclusion

The above analyses show that the intercorrelation in the present data sets is only weak.
Furthermore the simulations illustrate that the GICM procedure leads to an overfit in
this case. We therefore conclude that the FMS data are best modelled as panels of inde-
pendent time series with the parameters as given in table 4.3. There the pain intensity
is modelled as an AR(4) process. Indeed the therapy sessions showed that patients tend
to be more active in periods with a lower pain intensity, which often leads to an over-
load and thus to a higher pain level a few days later. This is an example which justifies
fitting a higher order process to the parameter “pain intensity”. The other parameters
are modelled as AR(1) processes, with exception of the sleep quality. This means that
the levels of the parameters on one day have some influence on their value the next
day, which is very plausible. The fact that sleep quality is best modelled as a white
noise process may have its reasons in physiological reality. However it could also be
due to the self-recording. It has been shown that self-recorded sleep quality may differ
from the actual one (Wilson et al. 1998). Testing robustly for outliers has not detected
the data of the patient not suffering from FMS as outlying. There are several possible
explanations for this fact. The data set could have been too small, such that the test
was not able to discover the (existing) differences. Another possibility is that the dy-
namical structures of the univariate time series do not differ. Then still the interaction
structure (Feiler et al. 2005) of the parameters can exhibit a distinct dynamic behaviour,
which is however not captured by the univariate analyses.

4.4 Discussion

The above examples illustrate various features of our methods. Applying the ICM and
GICM parameter estimator to the grey-sided voles data investigated by Hjellvik and
Tjøstheim (1999a), we can confirm the results of Fu et al. (2002) that at least four
autoregressive parameters should be included in the model of the individual processes.
We have however seen that the results depend critically on the assumptions on the data
set. If we allow the time series to possess different individual means, it is better to
transform the data by subtracting the individual means from each time series. Then the
above analysis yields a white noise model. Hjellvik and Tjøstheim (1999a) state that the
grey-sided voles data set already has been chosen from a larger one in order to minimise
individual differences. This justifies their procedure which assumes a common mean
for all time series in the panel.
For a robust analysis we cannot use the transformed data setsVHT andVind employed
above, as these are obtained by subtracting sample means which are not robust. We
here have to subtract the respective medians for generating the transformed data sets.
It has been shown in section B.1 of the simulation study in the Appendix B that robust
estimators as e.g.̂θrob furthermore have a larger variance and therefore are less reliable.
In the present case these analyses lead however to qualitatively the same results as
the non-robust procedure. Thus we have omitted them here in order to simplify the
presentation.
At the end of section 4.2 we have discussed that forcing the data into the ICM scheme
yields misleading results. It implies that the background process has the same au-
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toregressive structure as the individual processes or in other words that the common
influence is a white noise process. In the presence of a strong background process it
is therefore not recommendable to employ the ICM parameter estimator alone. The
advantage of employing the GICM estimatorθ̂a also used by Hjellvik and Tjøstheim
(1999a) is that we need no assumptions on the structure of the background process. It
may even be deterministic (see remark 2.4.8).
The second example addresses the aspects of testing in panels of intercorrelated time
series and of the behaviour of the ICM and GICM parameter estimators in the case of
weak intercorrelation. In particular it illustrates that the results obtained from smaller
data sets have to be carefully interpreted. For example, the intercorrelation test of
Brillinger (1973) identifies the data set belonging to the parameter “self-efficacy” as
intercorrelated. This is not confirmed by the further analyses. As the test is an asymp-
totic test, the reason may be that the data set was too small for obtaining reliable results.
The robust test for outlying time series does not yield significant results either although
we know that one of the patients did not suffer from FMS. One problem, which is also
seen from section B.3.2 in the Appendix B, is that the test is rather conservative if
the difference in the dynamic structures in not large. Because of the implicit multiple
testing we must adjust the significance level (see remark 3.7.5). This implies that the
single tests have to be performed at a very high significance level in order to guarantee
a nominal significance level of 5%. Furthermoreσ2

Y , the variance of the asymptotic
distribution, can only be approximated and the covariance matrix used for the testing
also has to be estimated from the data (see theorem 3.7.9 and algorithm 3.7.10). Thus
the sample size is probably too small to yield significant results. It however can also
be the case that the time series obtained from the patient not suffering from FMS do
not differ in their univariate structure from those of the other patients. Nevertheless
the interaction structure of the parameters may be different (see e.g. Feiler et al. 2005),
which cannot be detected from the univariate analyses. For a more detailed discussion
of the interpretations of the results we refer to the last section.
The simulations performed in the last section demonstrate that using the GICM pro-
cedure indeed leads to an overfit if there is no or only a weak background process.
If the n processes in the panel are independent, each point of the mean process con-
verges almost surely to zero forn → ∞ due to the strong law of large numbers. Thus
the autoregressive parameter of the mean process is asymptotically not identifiable. In
the situation of small panels we can however still infer about the mean process, which
makes the above overfit possible. If the variances given by the GICM are small (around
σ̂2/n if σ̂2 is the estimated variance of the individual process andn the number of time
series in the panel), the consequence is therefore that the analysis should be performed
using the ordinary least squares procedure or the ICM method instead. Employing the
ICM estimators implicitly means that the common influence is modelled as a white
noise process with varianceτ 2 > 0 or does not exist at all. In contrast, least squares
estimation is entirely based on the assumption on independence. Thus it is advisable
to use the ICM estimator if an intercorrelation cannot be excluded by theoretical ar-
guments but the GICM analysis indicates that this intercorrelation is weak. As can be
seen from the analysis of the FMS data, in the case of no intercorrelation this leads to
the same results as the least squares estimation.



Appendix A

Simulation Results for the ICM and
GICM parameter estimators

The following simulation study compares the performance of the ICM estimator ob-
tained using the minimisation algorithm of section 2.4.2 with the estimator of Hjellvik
and Tjøstheim (1999a). There{ηt}t∈Z is treated as a nuisance parameter. The estimator
âHT is obtained by minimisingL◦n,T under the restrictions of the ICM as described in
proposition 2.4.7;̂σ2

HT andω̂2
HT then can be derived from the corresponding residuals

(see remark 2.4.8).
The data is simulated from the ICM model (assumption 2.2.1). As variance of the
processes{X(i)

t }t∈Z, i = 1, . . . , n, we always fixvarX
(i)
t = 1, i.e.σ2 + τ 2 = 1. The

examples considered correspond to those treated in Hjellvik and Tjøstheim (1999a).
The estimates are obtained by calculating the mean and standard deviation for each
parameter over 5,000 independent realisations per model.
In the tables, the upper rows contain the estimates obtained from the minimisation
algorithm. Subsequently follow the estimates from Hjellvik and Tjøstheim’s procedure,
indexed byHT . The empirical standard deviations are displayed in brackets below the
estimated parameters.
We regard first small panels consisting ofn = 2 andn = 4 time series. Then we
investigate the behaviour forT → ∞ more closely, for a small (n = 3) and a large
(n = 128) panel. Finally we regard an AR(6) process. The section concludes with a
brief discussion of the results.

A.1 Small Panels

Here we investigate the behaviour of the estimator in panels consisting of a small num-
ber of time series (n = 2 or n = 4). The size of the data isnT = 200, nT = 2000 and
nT = 20000; the intercorrelation varies from no (τ 2 = 0) to strong intercorrelation
(τ 2 = 0.9).
We regard an AR(1) process with parametera = 0.5. Three models with different
strengths of intercorrelation are simulated:

◦ τ 2 = 0, i.e.σ2 = 1. Thusω2
n = 0.5 (n = 2) or ω2

n = 0.25 (n = 4).

◦ τ 2 = 0.5, i.e.σ2 = 0.5. Hereω2
n = 0.75 (n = 2) or ω2

n = 0.625 (n = 4).

109
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nT = 200 nT = 2,000 nT = 20,000

n = 2 n = 4 n = 2 n = 4 n = 2 n = 4

0.4960 0.4957 0.4993 0.4994 0.4999 0.5000
â

(0.0620) (0.0618) (0.0195) (0.0197) (0.0062) (0.0061)

0.9944 0.9967 0.9996 0.9998 1.0000 1.0001
σ̂2

(0.1423) (0.1178) (0.0439) (0.0361) (0.0141) (0.0116)

0.4961 0.2483 0.4994 0.2502 0.5000 0.2500
ω̂2

n (0.0718) (0.0507) (0.0227) (0.0161) (0.0070) (0.0050)
τ2 = 0

0.4909 0.4947 0.4989 0.4993 0.4999 0.5000
âHT (0.0870) (0.0710) (0.0277) (0.0228) (0.0088) (0.0072)

0.9895 0.9951 0.9992 0.9996 1.0003 0.9999
σ̂2

HT (0.1418) (0.1176) (0.0439) (0.0361) (0.0145) (0.0117)

0.5036 0.2511 0.5002 0.2505 0.5001 0.2501
ω̂2

HT (0.0739) (0.0513) (0.0227) (0.0162) (0.0072) (0.0051)

0.4953 0.4945 0.4999 0.5001 0.4999 0.5000
â

(0.0614) (0.0617) (0.0191) (0.0193) (0.0062) (0.0061)

0.4966 0.4971 0.4998 0.4997 0.4999 0.4998
σ̂2

(0.0701) (0.0580) (0.0224) (0.0182) (0.0071) (0.0058)

0.7491 0.6210 0.7493 0.6252 0.7497 0.6247
ω̂2

n (0.1065) (0.1273) (0.0340) (0.0400) (0.0107) (0.0125)
τ2 = 0.5

0.4905 0.4930 0.4995 0.4998 0.4998 0.4998
âHT (0.0878) (0.0707) (0.0273) (0.0223) (0.0088) (0.0071)

0.4942 0.4963 0.4996 0.4996 0.4997 0.5001
σ̂2

HT (0.0698) (0.0579) (0.0224) (0.0182) (0.0071) (0.0057)

0.7604 0.6283 0.7505 0.6259 0.7500 0.6248
ω̂2

HT (0.1092) (0.1290) (0.0341) (0.0400) (0.0105) (0.0126)

0.4961 0.4968 0.4996 0.4996 0.5000 0.5000
â

(0.0624) (0.0619) (0.0194) (0.0194) (0.0061) (0.0062)

0.0994 0.0993 0.0998 0.0997 0.0998 0.0998
σ̂2

(0.0141) (0.0116) (0.0044) (0.0037) (0.0014) (0.0011)

0.9429 0.9222 0.0997 0.9231 0.9502 0.9249
ω̂2

n (0.1325) (0.1845) (0.0425) (0.0586) (0.0133) (0.0183)
τ2 = 0.9

0.4894 0.4957 0.4990 0.4992 0.5001 0.5000
âHT (0.0877) (0.0716) (0.0273) (0.0223) (0.0087) (0.0070)

0.0989 0.0991 0.0998 0.0997 0.0999 0.0999
σ̂2

HT (0.0140) (0.0116) (0.0044) (0.0037) (0.0014) (0.0012)

0.9575 0.9326 0.9518 0.9242 0.9498 0.9249
ω̂2

HT (0.1364) (0.1874) (0.0427) (0.0587) (0.0134) (0.0188)

Table A.1: Simulation results obtained from the parameter estimatorsθ̂n,T and θ̂a in
intercorrelated panels of AR(1)-processes of various sizes, whereτ 2 = 0, τ 2 = 0.5,
τ 2 = 0.9 (a = 0.5).
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nT = 200 nT = 2,000 nT = 20,000

n = 2 n = 4 n = 2 n = 4 n = 2 n = 4

τ2 = 0 0.5079 0.7576 0.4956 0.7466 0.4964 0.7178

effrel (â, âHT ) τ2 = 0.5 0.4890 0.7616 0.4895 0.7490 0.4964 0.7381

τ2 = 0.9 0.5063 0.7474 0.5050 0.7568 0.4916 0.7845

Table A.2: Empirical relative efficiencieseffrel (â, âHT ) of the estimatorŝθn,T and θ̂a

in intercorrelated panels of AR(1)-processes of various sizes, whereτ 2 = 0, τ 2 = 0.5,
τ 2 = 0.9 (a = 0.5).

◦ τ 2 = 0.9, i.e.σ2 = 0.1. Thenω2
n = 0.95 (n = 2) or ω2

n = 0.925 (n = 4).

The simulation results are displayed in table A.1. It can be seen that the ICM parameter
estimator̂θn,T performs equally well if the panel consists of independent time series or
if they are intercorrelated. It is obvious that the variance of the estimators decreases
for nT → ∞. We further can read off this table that the estimators ofâ andâHT are
not affected by the strength of intercorrelation. The standard deviation of the variance
estimators however changes depending on the true variances. This corresponds to the
theorems 2.5.20 and 2.5.35, where we have derived the asymptotic distributions of the
ICM parameter estimator̂θn,T and θ̂a. The theoretical asymptotic variance ofâ only
depends onn via the sample size. In our case it is0.75/ (n (T − p)), which corresponds
well to the simulated values.
The theoretical asymptotic variance ofσ̂2 is2 (n−1)σ4

0/ (n2 (T − p)), which is also the
asymptotic variance of̂σ2

HT . The asymptotic variance of̂ω2
n is 2

T−p
ω4

n. Forσ̂2 we get for
n = 2 thatsd (σ̂2) = 0.707 σ2

0/
√
T − p and forn = 4 thatsd (σ̂2) = 0.612 σ2

0/
√
T − p.

Again, the simulated values correspond well to the theoretical ones. We can see from
the simulations that the standard deviations ofσ̂2 and σ̂2

HT and of ω̂2
n and ω̂2

HT are
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Figure A.1: Empirical densities for̂a (solid lines), âHT (dashed lines) and
N(0.5,

√
0.75/

√
nT ), which is the theoretical density of̂a, (dotted lines) in inter-

correlated panels of AR(1)-processes with true valuesa = 0.5, σ2 = τ 2 = 0.5
(n = 4, T = 50 andn = 4, T = 500).
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compatible, which is also the case for their bias. Finally, the results fornT = 200
illustrate that the ICM parameter estimatorâ has a smaller bias than̂aHT , which is seen
more clearly if the time series are short.
Table A.2 shows the empirical asymptotic efficiency for each model. As the theoretical
relative efficiency is given byeffrel (â, âHT ) = n−1

n
(remark 2.5.36), the theoretical

values are0.5 for n = 2 and0.75 for n = 4. The simulations come close to these values.
The values become less exact fornT = 20, 000, which is mostly due to rounding
effects.
In figure A.1 we see the empirical densities ofâ (solid line) and̂aHT (dotted line) for
the two casesn = 4, T = 50 andn = 4, T = 5000, which again illustrate the higher
relative efficiency of̂a.

A.2 Increasing Length of the Time Series

Now we investigate the properties of the estimatorsâ andâHT dependent on the length
of the time series. Herea = 0.5 andσ2 = τ 2 = 0.5 are fixed. We regard one small and
one large panel and various values of the time series lengthT :

◦ n = 3, thusω2
n = 2/3. The length of the time series increases fromT = 8 to

T = 500.

◦ n = 128, i.e.ω2
n = 0.504. T increases fromT = 2 to T = 100.

It is obvious that the variance of the estimators decreases substantially forT growing.
If the number of time series in the panel is small (n = 3, see table A.3), one can again
see that the ICM estimator is more efficient thanâHT , in that the ratio of the variances

T = 8 T = 16 T = 32 T = 64 T = 125 T = 250 T = 500

0.4623 0.4823 0.4921 0.4947 0.4976 0.4988 0.4993
â

(0.1989) (0.1332) (0.0912) (0.0628) (0.0453) (0.0318) (0.0220)

0.4776 0.4876 0.4943 0.4979 0.4990 0.4994 0.4993
σ̂2

(0.1883) (0.1259) (0.0904) (0.0633) (0.0451) (0.0314) (0.0223)

0.6524 0.6610 0.6585 0.6633 0.6642 0.6654 0.6660
ω̂2

n (0.3652) (0.2438) (0.1703) (0.1218) (0.0870) (0.0615) (0.0417)

0.4407 0.4726 0.4866 0.4920 0.4970 0.4983 0.4988
âHT (0.2368) (0.1612) (0.1112) (0.0767) (0.0557) (0.0391) (0.0270)

0.4664 0.4823 0.4917 0.4967 0.4983 0.4991 0.4991
σ̂2

HT (0.1836) (0.1246) (0.0900) (0.0632) (0.0451) (0.0314) (0.0223)

0.7326 0.6986 0.6766 0.6719 0.6687 0.6676 0.6670
ω̂2

HT (0.4394) (0.2665) (0.1775) (0.1240) (0.0880) (0.0619) (0.0418)

effrel 0.7055 0.6828 0.6726 0.6704 0.6614 0.6614 0.6639

Table A.3: Simulation results for the parameter estimatorsθ̂n,T and θ̂a in intercorre-
lated panels of AR(1)-processes forT increasing (a = 0.5, n = 3, σ2 = τ 2 = 0.5)
last row: empirical relative efficiencyeffrel (â, âHT ).
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T = 2 T = 10 T = 100

0.5012 0.4992 0.4998
â

(0.0830) (0.0261) (0.0077)

0.4956 0.4991 0.4998
σ̂2

(0.0621) (0.0207) (0.0062)

0.5169 0.4990 0.5050
ω̂2

n (0.7435) (0.2367) (0.0729)

T = 2 T = 10 T = 100

0.5015 0.4992 0.4998
âHT (0.0769) (0.0262) (0.0078)

0.4950 0.4991 0.4998
σ̂2

HT (0.0619) (0.0207) (0.0062)

0.5244 0.4997 0.5051
ω̂2

HT (0.7438) (0.2370) (0.0729)

Table A.4: Simulation results for the parameter estimatorsθ̂n,T andθ̂a in intercorrelated
panels of AR(1)-processes forT increasing (a = 0.5, n = 128, σ2 = τ 2 = 0.5).

tends to2/3 (see table A.3). However, forn large (n = 128), there is virtually no
difference between the two estimators. This can be directly read off table A.4.

A.3 AR(6) Process

The process Hjellvik and Tjøstheim (1999a) use for investigating the effects of the
intercorrelation more closely for two estimators of theirs is the AR(6) process with
a = (1,−0.6, 0.2,−0.2, 0, 0.4). Hjellvik and Tjøstheim (1999a) fixT = 100 and
regardn = 3, 4, 5 andρ = τ2

σ2+τ2 = 1/(n− 1). Furthermore they investigate forn = 4
also the casesρ = 0.5 andρ = 0.25.
The values forσ2, τ 2 andω2

n are in those cases

◦ σ2 = τ 2 = 0.5, ω2
n = 2/3

◦ σ2 = 1/3, τ 2 = 2/3, ω2
n = 0.75

◦ σ2 = 0.25, τ 2 = 0.75, ω2
n = 0.8125

◦ σ2 = τ 2 = 0.5, ω2
n = 0.625

◦ σ2 = 0.25, τ 2 = 0.75, ω2
n = 0.8125

The tables A.5 and A.6 display the results for the ICM estimatorθ̂n,T and the estimator
of Hjellvik and Tjøstheim,̂θa, respectively. For̂a and âHT we give the mean-square
error in order to facilitate the comparison. AsT = 100, the bias is small in both
cases. The ratio of the mean squared errors (see table A.6) again illustrates that the
ICM parameter estimator has a higher relative efficiency, and that this does not depend
on the strength of the intercorrelation. Both estimators perform well.

A.4 Summary

As we have seen above, the simulation results are close to the true asymptotic values
given in theorems 2.5.20 (ICM) and 2.5.34 (GICM), even when the time series are
rather short. Moreover the simulations show thatâ has an smaller bias than̂aHT if nT
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n = 3, n = 4, n = 5, n = 4, n = 4,
τ2 = 0.5 τ2 = 1/3 τ2 = 0.25 τ2 = 0.5 τ2 = 0.25

â1 0.9980 0.9974 0.9980 0.9999 0.9988

â2 -0.6035 -0.6005 -0.6017 -0.6039 -0.6024

â3 0.2032 0.2005 0.2012 0.2022 0.2015

â4 -0.2060 -0.2035 -0.2019 -0.2034 -0.2039

â5 0.0043 0.0024 0.0005 0.0025 0.0031

â6 0.3895 0.3932 0.3950 0.3922 0.3925

MSE(̂a) 0.0353 0.0257 0.0210 0.0262 0.0259

0.4894 0.3286 0.2469 0.4922 0.2464
σ̂2

(0.0517) (0.0278) (0.0181) (0.0419) (0.0212)

0.6532 0.7381 0.7935 0.6162 0.7993
ω̂2

n (0.0981) (0.1089) (0.1163) (0.0905) (0.1194)

Table A.5: Behaviour of̂θn,T in an intercorrelated panel of AR(6) processes with true
parameter:a = (1,−0.6, 0.2,−0.2, 0, 0.4)′ (T = 100, intercorrelation and variances
varying withn).

n = 3, n = 4, n = 5, n = 4, n = 4,
τ2 = 0.5 τ2 = 1/3 τ2 = 0.25 τ2 = 0.5 τ2 = 0.25

âHT,1 0.9966 0.9974 0.9977 0.9992 0.9980

âHT,2 -0.6053 -0.6019 -0.6024 -0.6040 -0.6024

âHT,3 0.2047 0.2013 0.2018 0.2024 0.2017

âHT,4 -0.2088 -0.2053 -0.2030 -0.2043 -0.2050

âHT,5 0.0059 0.0040 0.0013 0.0031 0.0039

âHT,6 0.3840 0.3900 0.3933 0.3900 0.3903

MSE(̂aHT ) 0.0533 0.03484 0.0261 0.0344 0.0350

0.4841 0.3269 0.2462 0.4896 0.2451
σ̂2

HT (0.0511) (0.0277) (0.0180) (0.0416) (0.0211)

0.6939 0.7680 0.8175 0.6410 0.8323
ω̂2

HT (0.1107) (0.1158) (0.1208) (0.0962) (0.1273)

MSE(â)
MSE(âHT ) 0.6623 0.7385 0.8046 0.7616 0.7400

Table A.6: Behaviour of̂θa in an intercorrelated panel of AR(6) processes with true
parametera = (1,−0.6, 0.2,−0.2, 0, 0.4)′ (T = 100, intercorrelation and variances
varying with n). The last row displays the relative efficiency ofhata compared to
âHT .

is small. IfnT → ∞, the differences between the two estimatorsθ̂n,T = (â′, σ̂2, ω̂2
n)
′

and θ̂a = (âHT , σ̂
2
HT , ω̂

2
HT ) vanish. For smalln and if T is not very large, however,

the higher relative efficiency of̂a compared tôaHT becomes important. In the last
section we have shown that even in the case of a higher order autoregressive process
both estimators perform well.
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In practice, both estimators are feasible. Although the ICM parameter estimatorθ̂n,T is
calculated using an iterative algorithm, convergence is usually attained after 6 to 7 itera-
tions. As the computational speed is high, this does not have any practical implications
when the sample sizes are as investigated above.



Appendix B

Simulation Study (Robust Estimators)

We now study the performance of the above described robust estimators in simulations.
In order to make a comparison of the estimators possible, we employ a fixed set of
models. However the focus may vary in the different sections according to the specific
properties of the estimators, so we sometimes include further simulations or do not
display the full set of results. The chapter concludes with a comparative evaluation of
the estimators regarded. Before starting with the comparisons, we give a brief summary
of the estimators investigated and the main models used for the simulations.

Parameter Estimators

The various parameter estimators discussed in this thesis are summarised in table B.1.

Simulations

As models we choose intercorrelated AR(1) and AR(6) models (see table B.2). We

always letσ2 = τ 2 = 0.5, i.e. the variance of the innovations isvar
(
aθ(L)X

(i)
t

)
=

σ2 +τ 2 = 1 for all t ∈ Z, i = 1, . . . , n. The choice of the AR(6) model is as in Hjellvik
and Tjøstheim (1999a). They leta = (1,−0.6, 0.2,−0.2, 0, 0.4)′ (see the Appendix A).
These models are denoted byM1 andM6.
Moreover we investigate the performance of the estimators under contamination (see
assumption 3.2.1). In the case of entire time series outlying, the outliers are independent
AR(1) processes with parametersaout = 0.9 andσ2

out = 1 and Gaussian white noise
processes with variance 1. The corresponding models, where two time series in the
panel are replaced by the outlying time series, are calledTS1 andTSn. For genera-
ting arbitrary outliers, we employ independent normally distributed random variables
V

(i)
t ∼ N(0, σ2

V ) whereσ2
V = 9. The Bernoulli panel is such thatP(δ1,t,i = 1) = 0.1,

i.e. the proportion of outliers is approximately 10%. Such models are for example
regarded in Ma and Genton (2000). We denote the latter models byAO1 andAO6. An
overview on these models is given in table B.2.
Each simulated panel consists ofn = 10 time series of lengthT = 50 in the AR(1) case
andT = 100 for AR(6) processes. Thus the true value ofω2

n isω2
n = τ 2+ σ2

n
= 0.55 and

in the case of entire time series outlying, theω2
n estimated only from the uncontaminated

data would beω2
n = 0.625.
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Non-robust parameter estimators described in the first chapter:

θ̂n,T ICM parameter estimator (section 2.4.2)

θ̂a, θ̂b GICM estimators (section 2.4.3)

Robust version of these estimators, with modifications (section 3.3):

θ̂rob algorithm given in section 3.3

θ̂oa similar to θ̂rob; variance determined using the overall median

θ̂rw reweighted version

θ̂rw2 reweighted version also allowing for arbitrary outliers

Bootstrap approximations (section 3.3):

θ̂RB residual bootstrap

θ̂PB residual bootstrap adapted for panels

θ̂NB sampling from normal distributions

Covariance estimators (section 3.5):

θ̂Q covariance matrix derived from the robust scale estimatorQn,T

θ̂MCD minimum covariance determinant method

Robust regression (section 3.6):

θ̂M M-estimator

θ̂LTS least trimmed squares estimator

Preliminary outlier detection (section 3.7):

θ̂LR non-robust likelihood ratio test

θ̂PS non-robust phase space method

θ̂PS;rob robust phase space method based on the MCD

θ̂PS;rec phase space method, iterative elimination of the outliers

Table B.1: Overview of the parameter estimators compared in the simulation study.

Basic models:

M1 AR(1), a = 0.5, n = 10, T = 50, σ2 = τ2 = 0.5
M6 AR(6), a = (1,−0.6, 0.2,−0.2, 0, 0.4)′,

n = 10, T = 100, σ2 = τ2 = 0.5

Entire time series outlying:

TS1 M1, two time series replaced by ind. AR(1) withaout = 0.9, σ2
out = 1

TSn M1, two time series replaced by Gaussian WN withσ2
out = 1

TS6 M6, two time series replaced by ind. AR(1) withaout = 0.9, σ2
out = 1

Arbitrary outliers:

AO1 M1, 10% outliers, Gaussian WN withσ2
out = 9

AO1;100 M1, 10% outliers, Gaussian WN withσ2
out = 100

AO6 M6, 10% outliers, Gaussian WN withσ2
out = 9

Table B.2: Models used for generating panels of intercorrelated time series.
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If not otherwise stated, we compute the mean and standard deviation (in brackets) over
5000 iterations. Exceptions are for example the bootstrap procedures which are not
applied to every model and where we have to restrict ourselves to 100 iterations due to
the high computation time.

B.1 Robustifying the ICM Parameter Estimator

We here compare the four robustifications of the parameter estimator,θ̂rob, θ̂oa, θ̂rw and
θ̂rw2 which have been derived in the section 3.3. We investigate these estimators in
various situations.

model θ̂n,T θ̂rob θ̂oa θ̂rw θ̂rw2

0.4984 0.4661 0.4664 0.4978 0.4625
â

(0.0394) (0.0511) (0.0521) (0.0403) (0.0463)

0.4989 0.5930 0.4489 0.4971 0.4460
M1 σ̂2

(0.0338) (0.0405) (0.0413) (0.0350) (0.0375)

0.5487 0.5820 0.5769 0.5511 0.5060
ω̂2

n (0.1100) (0.1195) (0.1161) (0.1122) (0.1130)

0.3912 0.4188 0.4175 0.4725 0.4465
â

(0.0541) (0.0666) (0.0672) (0.0551) (0.0550)

0.7252 0.8561 0.5596 0.5446 0.4880
TSn σ̂2

(0.0594) (0.0722) (0.0563) (0.0787) (0.0582)

0.3875 0.4618 0.4610 0.5187 0.4699
ω̂2

n (0.0779) (0.0967) (0.0970) (0.1279) (0.1186)

0.7219 0.5018 0.5015 0.5074 0.4830
â

(0.0651) (0.0542) (0.0559) (0.0552) (0.0536)

0.7469 1.0248 0.5765 0.5131 0.4784
TS1 σ̂2

(0.0623) (0.1616) (0.0600) (0.0562) (0.0533)

0.4058 0.5203 0.5220 0.5480 0.5089
ω̂2

n (0.0835) (0.1098) (0.1067) (0.1187) (0.1168)

0.2027 0.2171 0.1922 0.2333 0.3665
â

(0.0545) (0.0613) (0.0626) (0.0808) (0.0913)

1.5046 1.7802 0.5919 1.2909 0.5225
AO1 σ̂2

(0.2392) (0.2876) (0.0654) (0.3486) (0.1164)

0.6030 0.6161 0.6296 0.6319 0.5013
ω̂2

n (0.1316) (0.1318) (0.1439) (0.1831) (0.1473)

Table B.3: Simulation results for the robustified ICM parameter estimators
(
θ̂rob, θ̂oa,

θ̂rw, θ̂rw2; θ̂n,T included for reference
)

in an intercorrelated panel of AR(1) processes
(n = 10, T = 50). True parameters:a = 0.5, σ2 = τ 2 = 0.5, ω2

n = 0.55.

From table B.3 we see that the non-robust estimator performs well if there are no out-
liers, but in presence of outliers it is much influenced by these. In this case it is advisa-
ble to use a robust estimator. Here the reweighted procedure (θ̂rw) performs uniformly
best as long as there are no arbitrary outliers present (AO1). In the uncontaminated
case its behaviour is similar to that of the non-robust estimator. This is not surprising
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as the reweighting method coincides with the non-robust estimation if no time series
are identified as outlying. The estimatorθ̂rob underestimatesa, but overestimatesσ2.
This is due to the method chosen for estimating the varianceσ2. We use the robust
scale estimator employed in the least median of squares procedure, which is known to
overestimate the variance. However it remains bounded in situations where the vari-
ance obtained from the least squares procedure explodes (see Rousseeuw and Leroy
1987, p. 212). Estimating the variance with the overall median leads to the estimator
θoa, which underestimatesa but which preventŝσ2 from exploding. As the method has
been developed for estimation in the presence of entire time series outlying and is based
on a transformation involving the median process, it is not suited if arbitrary outliers
may occur. Onlŷθrw2 is constructed for coping with this kind of outliers, as it allows to
eliminate single outlying time points as well as entire time series from the estimation
procedure. In the other cases the latter estimator performs in an acceptable way. It is
a better estimator than botĥθrob andθ̂oa, but is clearly outperformed bŷθrw if the only
kind of outliers occuring are entire time series outlying. In practice it is preferable to
identify and eliminate the arbitrary outliers in the single time series in a first step, which

model θ̂n,T θ̂rob θ̂oa θ̂rw θ̂rw2

â1 0.9994 0.7759 0.7782 0.9989 0.6664

â2 -0.6004 -0.2454 -0.2474 -0.5999 -0.1529

â3 0.1993 -0.0682 -0.0638 0.1997 -0.1416

â4 -0.2001 -0.1558 -0.1518 -0.2002 -0.1506

â5 0.0001 0.0341 0.0294 -0.0003 -0.0103

M6 â6 0.3971 0.3896 0.3947 0.3979 0.4104

MSE(̂a) 0.0105 0.4268 0.4716 0.0103 0.4540

0.4968 2.5514 0.9518 0.4963 1.0781
σ̂2

(0.0244) (0.4516) (0.1845) (0.0239) (0.2582)

0.5470 1.0202 1.0581 0.5462 0.7913
ω̂2

n (0.0802) (0.2184) (0.2400) (0.0806) (0.2564)

â1 1.0254 1.1359 1.2445 1.0197 0.7602

â2 -0.5237 -0.5998 -0.7174 -0.5336 -0.1896

â3 0.1031 0.2137 0.2969 0.1147 -0.1104

â4 -0.1386 0.0295 0.0789 -0.1469 -0.1247

â5 0.0457 -0.0885 -0.1287 0.0382 0.0269

TS6 â6 0.3540 0.5139 0.5454 0.3599 0.3988

MSE(̂a) 0.0412 0.7844 1.2246 0.0367 0.3580

0.7975 5.6531 2.2776 0.7488 1.2279
σ̂2

(0.0519) (3.5547) (1.6206) (0.0982) (0.2585)

0.3934 1.4185 1.7648 0.4161 0.6159
ω̂2

n (0.0577) (0.7901) (1.2226) (0.0800) (0.2451)

Table B.4: Simulation results for the robustified ICM parameter estimators
(
θ̂rob, θ̂oa,

θ̂rw, θ̂rw2; θ̂n,T included for reference
)

in an intercorrelated panel of AR(6) processes
(n = 10, T = 100). True parameters:σ2 = τ 2 = 0.5, ω2

n = 0.55.
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is possible (Rousseeuw and Leroy 1987, Gather, Bauer and Fried 2002).
The simulations for the AR(6) case displayed in table B.4 again illustrate the effects
seen in the AR(1) case.̂θrob, θ̂oa and alsoθ̂rw2 become more unreliable. However the
values obtained indicate thatθ̂rw seems not to detect the outlying time series, as it per-
forms very similar to the the non-robust estimator. This perhaps can be overcome by
adjusting the tuning factor used in the estimation according to the order of the underly-
ing process.
In order to see how the behaviour of the estimators changes whenn or T become large,
we simulate the modelsM1 andTS1 with n = 10, T = 100 andn = 100, T = 50.
In the latter case, we furthermore replace 20 out of the 100 time series by samples
from independent AR(1) processes with parameteraout = 0.9 and the innovations’
varianceσ2

out = 1. The results displayed in table B.5 confirm the properties of the
estimators shown in table B.3. Again,θ̂n,T is drawn to the parameter of the outliers and
θ̂rw performs best. The variances of the estimators decrease ifn or T increase. The
simulations show that the increase inT has a stronger relative effect thann increasing.
This is due the the estimation procedure. After subtracting the median process, which
is better estimated ifn is large,a is estimated from the transformed processes using
a modified least squares method. Thus the estimate improves withT growing. The
same can be seen from the modelTS1. Here the proportion of outliers is20% in each
case. The variance of the estimators improves withn growing. But the larger absolute
number of outliers in the case ofn = 100 leads to a higher bias. However, the variance
estimatorŝσ2 andω̂2

n are improved for botĥθrob andθ̂oa although they still are biased.
Finally, it seems that if a larger absolute number of outliers are present, they are not all
detected bŷθrw, resulting in a slightly worse estimate forn = 100, T = 50 than in the
case of fewer observations.θ̂rw2 is instable for the higher order autoregressive process.
We complete this section considering the behaviour of the GICM estimators. In the first
chapter we have seen that the non-robust ICM parameter estimator has a smaller bias
and is asymptotically more efficient than the GICM estimator ifn is not too large (re-
mark 2.5.36, see also the simulations in the Appendix A). We now investigate whether
this effect is also visible in the robust estimators. As example we useθ̂rob. The sim-
ulation results are displayed in table B.6. Indeed the estimates ofθ̂rob are better than
those byθ̂rob;a in the case of the uncontaminated modelM1 and forTS1. In these cases
the bias of̂a is smaller and the estimator is more efficient. As the estimatorθ̂rob;b is
only based on a single time series of lengthT = 50, the median process, its variance is
higher. Nevertheless, the estimate ofa in the modelM1 is comparable to the one ob-
tained fromθ̂rob;a. ForTS1 the estimate of the variance is close to the true one, whereas
θ̂rob;a overestimatesσ2. In the case ofAO1 however the results for̂θrob;b are comparable
to those in the uncontaminated modelM1, since taking the median compensates for the
influence of the arbitrary outliers.

B.1.1 Improvement by Bootstrap Procedures

Most of the above robustified versions of the original ICM parameter estimator are bi-
ased. Thus we now investigate whether a bootstrap procedure can be used for assessing
the empirical bias and thus for improving the estimator. As example we take the esti-
mator θ̂rob which underestimatesa and exhibits a large bias in̂σ2. The empirical bias
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model θ̂n,T θ̂rob θ̂oa θ̂rw θ̂rw2

0.4994 0.4742 0.4740 0.4991 0.4641
â

(0.0273) (0.0360) (0.0373) (0.0278) (0.0325)

n = 10, 0.4994 0.5924 0.4485 0.4991 0.4477

T = 100
σ̂2

(0.0237) (0.0284) (0.0297) (0.0236) (0.0263)

0.5479 0.5780 0.5806 0.5509 0.4991
ω̂2

n (0.0783) (0.0817) (0.0831) (0.0783) (0.0775)
M1 0.4999 0.4811 0.4813 0.4997 0.4747

â
(0.0124) (0.0201) (0.0199) (0.0127) (0.0154)

n = 100, 0.4997 0.5098 0.4570 0.4994 0.4640

T = 50
σ̂2

(0.0101) (0.0101) (0.0115) (0.0103) (0.0118)

0.5072 0.5096 0.5121 0.5074 0.4593
ω̂2

n (0.1027) (0.1033) (0.1042) (0.1007) (0.1016)

0.7259 0.5015 0.5018 0.5010 0.4789
â

(0.0474) (0.0379) (0.0389) (0.0340) (0.0354)

n = 10, 0.7483 1.0299 0.5737 0.5008 0.4688

T = 100
σ̂2

(0.0441) (0.1179) (0.0417) (0.0325) (0.0329)

0.4072 0.5201 0.5224 0.5578 0.5123
ω̂2

n (0.0602) (0.0772) (0.0749) (0.0807) (0.0812)

TS1 0.7459 0.5116 0.5129 0.5249 0.5000
â

(0.0219) (0.0219) (0.0218) (0.0240) (0.0209)

n = 100, 0.7436 0.8638 0.5802 0.5257 0.5000

T = 50
σ̂2

(0.0262) (0.0462) (0.0174) (0.0223) (0.0207)

0.3531 0.4365 0.4380 0.4828 0.4462
ω̂2

n (0.0745) (0.0887) (0.0900) (0.1056) (0.1018)

Table B.5: Large sample behaviour of the robustified ICM parameter estimators
(
θ̂rob,

θ̂oa, θ̂rw, θ̂rw2; θ̂n,T included for reference
)

in an intercorrelated panel of AR(1) pro-
cesses (n = 10, T = 100 and n = 100, T = 50). True parameters:a = 0.5,
σ2 = τ 2 = 0.5, ω2

n = 0.55 (n = 10), ω2
n = 0.505 (n = 100). TS1: 2 (n = 10) and

20 (n = 100) time series replaced by independent AR(1) processes withaout = 0.9,
σ2

out = 1.
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obtained by the bootstrap procedure is then used to calculate the factor by which the
parameter estimates are adjusted. As described in section 3.3, we compare three me-
thods: a residual bootstrap for autoregressions (RB), a modification thereof, where the
structure of the panel is conserved (PB), and sampling from normal distributions (NB).
Because of the computation time of the bootstrap procedure, the empirical mean and
variance are calculated only from 100 samples. Preliminary simulations have shown
that both bootstrap estimates remain stable if the bootstrap is iteratednsim = 300 times.

Table B.7 displays the estimated means and standard deviations (in brackets) ofθ̂rob

and the improved versions using the bootstrap procedures. The panel bootstrap (θ̂PB)
reflects the properties of̂θrob. In the estimator̂θRB, â is increased, but also slightlŷσ2,
whereaŝω2

n is downweighted. The estimatorθ̂NB increaseŝa and downweightŝσ2. In
the uncontaminated case it leads to satisfying results. In the presence of outliers, this
estimator however also is biased. Nevertheless it gives the best results of these four
estimators. For arbitrary outliers all estimators are not valid.

Theoretically,θ̂PB should perform better that̂θRB in the case of intercorrelated time
series. However in the ICM procedure the intercorrelation does not have a strong effect,
since the correlation of the residual processes isσ2/n, wheren is the number of time
series in the panel. The better performance ofθ̂RB could also be due to the fact that the
set which is used for sampling only consists ofT residual vectors in the case ofθ̂PB,
whereas we sample fromnT individual residuals in the first case. Thus we moreover
evaluate the behaviour of the estimators for larger panels. From table B.8 we see that
againθ̂RB outperformŝθPB, which shows that the intercorrelation does not play a strong
role. θ̂PB still has a tendency to downweight the estimate ofa. Altogether,θ̂NB is again
preferable tôθPB andθ̂RB.

model θ̂rob;a θ̂rob;b

0.4637 0.4657
â

(0.0562) (0.1263)
M1 0.5924 0.5675

var
(0.0404) (0.1162)

0.5022 0.4739
â

(0.0594) (0.1265)
TS1 1.0313 0.5112

var
(0.1640) (0.1060)

0.1784 0.4509
â

(0.0649) (0.1291)
AO1 1.7803 0.5631

var
(0.2938) (0.1157)

Table B.6: Comparison of the GICM estimatorsθ̂rob;a and θ̂rob;b obtained from the
residual processes and the median process. The panels are formed of intercorrelated
AR(1) processes witha = 0.5, σ2 = τ 2 = 0.5, n = 10, T = 50. The true values for
the variances arevara = σ2 = 0.5 andvarb = ω2

n = 0.55.
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B.2 Robust Autocovariances

B.2.1 The Robust Panel Autocovariance Estimator̂γn,T

First we study the behaviour of̂γn,T as autocovariance estimator. The performance
of the resulting parameter estimator is discussed in more detail in the next subsection.
We compare the estimator̂γn,T derived from the robust scale estimatorQn,T with its
modificationγ̂d

n,T obtained fromQd
n,T , where only the differences of time points whose

distance is at least0.1 × T are taken into account (see remark 3.4.5). The model used
for the comparison is an AR(1) process with parametera = 0.5 and varianceσ2 = 1.
For these preliminary considerations, we compute mean and standard deviation (given
in brackets) over 1,000 iterations.
Table B.9 shows that forT = 100 andT = 1,000 the behaviour of the two estimators is
similar but that̂γd

n,T is slightly less efficient. In the case of smallT , the estimator̂γd(0)
obtained fromQd

n,T is less biased. However here the variance ofγ̂d
n,T is very large. It

model θ̂rob θ̂RB θ̂PB θ̂NB

0.4661 0.5067 0.4718 0.4954
â

(0.0511) (0.0537) (0.0574) (0.0549)

0.5930 0.6178 0.5954 0.5101
M1 σ̂2

(0.0405) (0.0405) (0.0406) (0.0317)

0.5820 0.5228 0.5891 0.5446
ω̂2

(0.1195) (0.1184) (0.1268) (0.1290)

0.4188 0.4422 0.4037 0.4577
â

(0.0666) (0.0751) (0.0754) (0.0706)

0.8561 0.8938 0.8512 0.7025
TSn σ̂2

(0.0722) (0.0651) (0.0603) (0.0533)

0.4618 0.3874 0.4530 0.4132
ω̂2

(0.0967) (0.0797) (0.1060) (0.0983)

0.5018 0.5320 0.4870 0.5324
â

(0.0542) (0.0583) (0.0595) (0.0638)

1.0248 1.0796 1.0531 0.8483
TS1 σ̂2

(0.1616) (0.1670) (0.1860) (0.1490)

0.5203 0.4433 0.5201 0.4651
ω̂2

(0.1098) (0.1138) (0.1194) (0.1083)

0.2171 0.2332 0.2139 0.2439
â

(0.0613) (0.0586) (0.0619) (0.0654)

1.7802 1.8254 1.7882 1.5800
AO1 σ̂2

(0.2876) (0.3029) (0.3382) (0.2961)

0.6161 0.5167 0.6184 0.5587
ω̂2

(0.1318) (0.1201) (0.1420) (0.1360)

Table B.7: Comparison of the bootstrap estimators
(
θ̂RB, θ̂PB, θ̂NB; θ̂rob included for

reference
)

in an intercorrelated panel of AR(1) processes (n = 10, T = 50). True
parameters:a = 0.5, σ2 = τ 2 = 0.5, ω2

n = 0.55, n = 10, T = 50.
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leads to estimates ofa which are more biased than those obtained fromQn,T .

In the next step we investigate how these estimators perform in the panel case. For
better comparison we start with a panel of independent time series and estimate the
autocovariances directly without the preliminary transformation used in the ICM-type
estimation. Comparing the simulation results of table B.10 with the case of a single time
series treated above, we can see that introducing more time series into the panel reduces
the variance of the estimator appreciably. However the autocovariance estimators are
even more biased downwards. The bias in the estimation of the autocovariance function

might be due to the choice of the quantile in the panel case, which is
⌊n (T

2)+2

4

⌋
+ 1.

This problem can probably be overcome by approaching the 1/4 quantile from above
for nT → ∞. The effect that for̂γn,T the bias of̂a is much smaller than that of the
autocovariance estimators themselves can be due to the underlying scale estimator. This

model θ̂rob θ̂RB θ̂PB θ̂NB

0.4742 0.4977 0.4884 0.5012
â

(0.0360) (0.0347) (0.0387) (0.0387)

n = 10, 0.5924 0.6189 0.5966 0.4971

T = 100
σ̂2

(0.0284) (0.0314) (0.0333) (0.0202)

0.5780 0.5089 0.5835 0.5525
ω̂2

n (0.0817) (0.0835) (0.0880) (0.0936)
M1 0.4811 0.5009 0.4794 0.5007

â
(0.0201) (0.0184) (0.0208) (0.0193)

n = 100, 0.5098 0.5118 0.5090 0.5001

T = 50
σ̂2

(0.0101) (0.0105) (0.0095) (0.0109)

0.5096 0.5104 0.5223 0.4946
ω̂2

n (0.1033) (0.0909) (0.1065) (0.0941)

0.5015 0.5198 0.4977 0.5341
â

(0.0379) (0.0408) (0.0395) (0.0383)

n = 10, 1.0299 1.0622 1.0566 0.8296

T = 100
σ̂2

(0.1179) (0.1116) (0.1300) (0.0913)

0.5201 0.4229 0.5455 0.4606
ω̂2

n (0.0772) (0.0655) (0.0906) (0.0614)
TS1 0.5116 0.5343 0.4838 0.5335

â
(0.0219) (0.0216) (0.0256) (0.0211)

n = 100, 0.8638 0.8581 0.8772 0.8451

T = 50
σ̂2

(0.0462) (0.0461) (0.0430) (0.0435)

0.4365 0.4342 0.4565 0.4313
ω̂2

n (0.0887) (0.0874) (0.0908) (0.0841)

Table B.8: Large sample behaviour of the bootstrap estimators
(
θ̂RB, θ̂PB, θ̂NB; θ̂rob

included for reference
)

in an intercorrelated panel of AR(1) processes. True parame-
ters: a = 0.5, σ2 = τ 2 = 0.5, ω2

n = 0.55 (n = 10), ω2
n = 0.505 (n = 100). TS1: 2

(n = 10) and 20 (n = 100) time series replaced by independent AR(1) processes with
aout = 0.9, σ2

out = 1.
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has been standardised by Rousseeuw and Leroy (1987) by an empirical constant, which
has not been specifically adapted to the panel case. In the last two cases the estimation
is based on 49,000 and 49,500 differences (n = 40, T = 50 andn = 10, T = 100),

T = 20 T = 50 T = 100 T = 1, 000

1.0119 1.1620 1.2284 1.3238
γ̂(0)

(0.4896) (0.3345) (0.2459) (0.0796)

0.5091 0.5876 0.6247 0.6622
γ̂(1)

(0.4693) (0.3106) (0.2221) (0.0724)

0.1302 0.2262 0.2809 0.3264
γ̂(2)

(0.3432) (0.2530) (0.1877) (0.0640)

0.4602 0.4847 0.4978 0.4991
â

(0.3476) (0.1681) (0.1032) (0.0317)

1.2347 1.2421 1.2764 1.3229
γ̂d(0)

(0.8054) (0.4020) (0.2610) (0.0850)

0.9605 0.7254 0.6921 0.6653
γ̂d(1)

(1.0922) (0.4351) (0.2493) (0.0765)

0.5336 0.3584 0.3414 0.3325
γ̂d(2)

(0.9142) (0.3643) (0.2258) (0.0668)

0.6804 0.5525 0.5304 0.5016
âd

(0.4960) (0.1986) (0.1134) (0.0315)

Table B.9: Comparison of the robust autocovariance estimatorsγ̂n,T and γ̂d
n,T . The

model is a single AR(1) process with parametersa = 0.5 andσ2 = 1. T varies from
T = 20 toT = 1, 000. The true values of the autocovariance function areγ(0) = 1.333,
γ(1) = 0.667 andγ(2) = 0.333.

γ̂n,T γ̂d
n,T

n = 50, n = 40, n = 10, n = 50, n = 40, n = 10,
T = 20 T = 50 T = 100 T = 20 T = 50 T = 100

0.8319 1.0975 1.2060 0.9402 1.1583 1.2401
γ̂(0)

(0.0570) (0.0508) (0.0773) (0.0770) (0.0594) (0.0834)

0.3626 0.5299 0.5949 0.5735 0.6351 0.6519
γ̂(1)

(0.0532) (0.0469) (0.0695) (0.0924) (0.0600) (0.0793)

0.0626 0.1949 0.2603 0.2142 0.2879 0.3134
γ̂(2)

(0.0370) (0.0367) (0.0566) (0.0686) (0.0490) (0.0679)

0.4350 0.4823 0.4922 0.6081 0.5475 0.5244
â

(0.0492) (0.0277) (0.0346) (0.0688) (0.0320) (0.0378)

Table B.10: Comparison of the robust autocovariance estimatorsγ̂n,T and γ̂d
n,T in the

panel situation for various choices ofn andT . The model is a panel of independent
AR(1) processes with parametersa = 0.5 andσ2 = 1. The true values of the autoco-
variance function areγ(0) = 1.333, γ(1) = 0.667, γ(2) = 0.333.
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so these sizes are comparable. This comparison again shows that a large number of
short time series leads to a higher bias than a smaller number of longer time series. The
two estimators exhibit the same differences as in the single time series case:γ̂n,T is
relatively more efficient than̂γd

n,T and its estimates ofa are more accurate, whereas the
latter estimator is less biased.
The case of panels of intercorrelated time series and the behaviour of the panel autoco-
variance estimators in the presence of outliers are included in the next subsection. For
all further investigations we concentrate on the estimatorγ̂n,T derived fromQn,T , as
here the estimator of the autoregressive parameter, which is our main interest, is more
accurate.

B.2.2 Comparison ofθ̂Q and θ̂MCD

Inserting robust autocovariance estimates for the entries of the covariance matrix, we
obtain a robustified covariance matrix and a robust autocovariance vector which then
can be used in the ICM or GICM procedure. As alternative to the robust autocovari-
ance estimator̂γn,T derived from the robust scale estimatorQn,T we have chosen the
covariance estimator obtained from the minimum covariance determinant method (see
section 3.5). There the covariance matrix is estimated directly and is positive definite
by construction. We compare the performance of the two estimators for our standard
examples. In order to illustrate whether the calculation using the ICM method and
the GICM procedure differ in the present case, we include the GICM estimators. The
estimators are called̂θQ and θ̂MCD. The GICM versions thereof arêθQ;a and θ̂MCD;a

(estimators obtained from the residual processes) andθ̂Q;b andθ̂MCD;b (obtained from
the median process).
Table B.11 compares the behaviour of the estimatorsθ̂Q and θ̂MCD in intercorrelated
panels of AR(1) processes of sizen = 10, T = 50. Hereγ̊n(0) = n−1

n (1−a2)
σ2 = 0.6

and γ̄n(0) = 1
1−a2 ω

2
n = 0.733. We have seen above thatθ̂Q is biased downwards

for these sizes ofn andT . The same effect is true for the estimatorθ̂MCD derived
from the MCD procedure. The estimators perform comparably to the robustified ICM
estimatorsθ̂rob and θ̂oa of section B.1; the estimators of the variances are similar to
those ofθ̂oa. Both methods are however much more stable than these in the presence of
arbitrary outliers. In this case the estimates ofa are much closer to the true value and
the variances are smaller than those of the latter estimators. Although the two methods
tend to underestimate̊γn(0) as we can see fromM1, the bias is positive in the extreme
case of arbitrary outliers with variance 100. This illustrates that here the estimators,
being derived from robust scale estimators, are more attracted by the variance of the
outliers than by the value of the autoregressive parameter.
The results for the larger sample sizes (n = 40, T = 50 andn = 10, T = 100)
are displayed in table B.12. Forn = 40 the true variances are̊γn(0) = 0.65 and
γ̄n(0) = 0.683. As the sample sizes are large, we here compute the mean and standard
deviation (in brackets) over 1,000 samples instead of 5,000. The estimators still are
biased,θ̂MCD as well asθ̂Q. As observed above for the robust panel autocovariance
estimatorγ̂n,T itself, we can see that̂θQ is, the sample size remaining constant, more
biased in the case of a large number of short time series than if the time series are
longer. θ̂MCD is improved in the case ofn = 40, T = 50 in comparison ton = 10,
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model θ̂Q θ̂MCD

0.4759 0.4351
â

(0.0572) (0.0640)

0.4607 0.5016
M1

ˆ̊γn(0)
(0.0467) (0.0557)

0.6581 0.5934
ˆ̄γn(0)

(0.1874) (0.1845)

0.4266 0.3934
â

(0.0598) (0.0679)

0.5451 0.5938
TSn

ˆ̊γn(0)
(0.0562) (0.0655)

0.5026 0.4525
ˆ̄γn(0)

(0.1472) (0.1451)

0.5196 0.4759
â

(0.0568) (0.0640)

0.6044 0.6289
TS1

ˆ̊γn(0)
(0.0652) (0.0780)

0.5887 0.5335
ˆ̄γn(0)

(0.1694) (0.1666)

0.4394 0.3944
â

(0.0674) (0.0626)

0.6120 0.5917
AO1

ˆ̊γn(0)
(0.0673) (0.0665)

0.6394 0.5743
ˆ̄γn(0)

(0.1819) (0.1785)

0.5621 0.4205
â

(0.0831) (0.0563)

0.6919 0.5912
AO1;100

ˆ̊γn(0)
(0.0843) (0.0653)

0.6686 0.5997
ˆ̄γn(0)

(0.1899) (0.1846)

Table B.11: Simulation results for̂θQ and θ̂MCD in an intercorrelated panel of AR(1)
processes (n = 10, T = 50). True parameters:a = 0.5, γ̊n(0) = 0.6, γ̄n(0) = 0.733.
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θ̂Q θ̂MCD

model n = 40, n = 10, n = 40, n = 10,

T = 50 T = 100 T = 50 T = 100

0.4752 0.4897 0.4794 0.4389
â

(0.0276) (0.0373) (0.0324) (0.0445)

0.5270 0.5063 0.5789 0.5048
M1

ˆ̊γn(0)
(0.0251) (0.0346) (0.0298) (0.0392)

0.6105 0.7065 0.5409 0.6301
ˆ̄γn(0)

(0.1788) (0.1392) (0.1673) (0.1388)

Table B.12: Behaviour of̂θQ andθ̂MCD in an intercorrelated panel of AR(1) processes
(n = 40, T = 50 andn = 10, T = 100). True parameters:a = 0.5 andσ2 = τ 2 = 0.5.
The true values for the autocovariance function areγ̊n(0) = 0.6 andγ̄n(0) = 0.733 for
n = 10 andγ̊n(0) = 0.65 andγ̄n(0) = 0.683 for n = 40.

T = 100. This is due to the fact that the minimum covariance determinant estimator is
not based on the number of differences. It directly depends on the sample sizenT , and
this is twice as large in the first case than in the second one. We omit the results for the
contaminated models as there only the effects already discussed are illustrated again.
Next we compare the performance of the two estimators in a panel of AR(6) processes.
We already have mentioned above that the matricesθ̂Q is based on are not necessarily
positive definite. Thus the estimator does not give reliable results if the autoregressive
processes are of higher order. This can be seen from table B.13.θ̂MCD performs
comparably to the robustified ICM estimatorsθ̂rob andθ̂oa (see table B.4), with a slightly

θ̂Q θ̂MCD

M6 M6 TS6 AO6

â1 6.6044 0.7293 0.7578 0.5386

â2 -7.9862 -0.2119 -0.2152 -0.0609

â3 1.3502 -0.1023 -0.0996 -0.1933

â4 8.0162 -0.1723 -0.1527 -0.1971

â5 -8.3292 0.0329 0.0402 0.0114

â6 3.2800 0.3799 0.3741 0.3647

MSE(â) 106 0.3745 0.3535 0.6853

3.9843 5.3759 5.7173 5.6200ˆ̊γn(0)
(0.9561) (1.4334) (1.4627) (1.2810)

7.2453 6.8111 4.9995 6.1022
ˆ̄γn(0)

(5.0582) (5.0960) (4.0681) (4.6112)

Table B.13: Performance of̂θQ and θ̂MCD in an intercorrelated panel of AR(6) pro-
cesses (n = 10, T = 100). True parameters:a = (1, 0.6,−0.2, 0.2, 0, 0.4)′,
γn(0) = 5.747 andγ̄n = 7.025.
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model θ̂Q;a θ̂Q;b θ̂MCD;a θ̂MCD;b

0.4786 0.4696 0.4388 0.4376
â

(0.0594) (0.1699) (0.0659) (0.2206)
M1 0.4616 0.6570 0.5022 0.5962

var
(0.0462) (0.1869) (0.0570) (0.1847)

0.5236 0.4761 0.4791 0.4397
â

(0.0600) (0.1708) (0.0652) (0.2272)
TS1 0.6029 0.5912 0.6295 0.5349

var
(0.0656) (0.1709) (0.0786) (0.1677)

0.4365 0.0298 0.3932 0.4219
â

(0.0723) (0.1877) (0.0644) (0.2311)
AO1 0.6085 0.5187 0.5934 0.5780

var
(0.0666) (0.1230) (0.0652) (0.1795)

Table B.14: Comparison of the GICM estimators obtained fromγ̂n,T and the MCD
procedure,̂θQ;a, θ̂Q;b, θ̂MCD;a and θ̂MCD;b. The panels are formed of intercorrelated
AR(1) processes (n = 10, T = 50) with a = 0.5, σ2 = τ 2 = 0.5. The true values for
the variances areγa(0) = 0.6 andγb(0) = 0.733.

smaller mean squared error. It estimatesγ̊n(0) closely, however with a variance which
is much larger than that of the estimator obtained fromθ̂Q. As γ̄n(0) is estimated from a
single time series, the sample upon which the estimators are based is much smaller than
the one used for estimating̊γn(0). This leads to the large variance of the estimators,
which is more visible here than in the AR(1) case.
Finally, we evaluate the corresponding GICM estimators. The simulation results are
displayed in table B.14. We can see that there is not much difference in the performance
of θ̂Q;a andθ̂MCD;a to the ICM-type estimatorŝθQ andθ̂MCD. In the case of arbitrary
outliers,θ̂Q;a andθ̂MCD;a perform well themselves. The result forθ̂Q;b in theAO1 case
is however surprising as the estimatorsθ̂Q;b andθ̂MCD;b, being derived from the median
process, should be more stable against arbitrary outliers thanθ̂Q;a and θ̂MCD;a. This
effect has already been addressed for the robustified GICM parameter estimatorθ̂rob;b

in section B.1. A possible explanation is the small sample size which facilitates the
implosion ofγ̂n,T .

B.2.3 Robust Regression Methods

We now present the results from the robust regression methods as discussed in sec-
tion 3.6. There it has moreover been explained that we here only get estimators of the
GICM type or can perform a direct estimation without transforming the data. The latter
procedure is not adapted for the case of entire time series outlying. This means we
obtain in a panel fulfilling the assumptions 2.2.1 of the ICM two separate M-estimators
θ̂M ;a = (â′, σ̂2

n)′ of (a′, σ2
n)′ andθ̂M ;b = (â′b, ω̂

2
n)′ of (a′, ω2

n)′. Analogously we get for
the two LTS estimatorŝθLTS;a andθ̂LTS;b. The variances of the transformed time series
areσ2

n = n−1
n
σ2 = 0.5 andω2

n = 0.55 if the variances in the panel of intercorrelated
time series are chosen to beσ2 = τ 2 = 0.5. The estimators obtained from the direct
procedure are called̂θM ;dir and θ̂LTS;dir. There the variance for which we obtain an
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GICM dir.
model

θ̂M ;a θ̂M ;b θ̂LTS;a θ̂LTS;b θ̂M ;dir θ̂LTS;dir

0.4683 0.4659 0.2689 0.4723 0.4948 0.4931
â

(0.0422) (0.1307) (0.1264) (0.3068) (0.0709) (0.1433)
M1 0.5335 0.5687 0.4353 0.5225 1.0969 1.0189

var
(0.0369) (0.1174) (0.0478) (0.1560) (0.1263) (0.1338)

0.3771 0.4423 0.2276 0.4335 0.4197 0.4261
â

(0.0501) (0.1311) (0.1161) (0.3128) (0.0708) (0.1522)
TSn 0.7645 0.4523 0.5327 0.4082 1.1421 1.0554

var
(0.0634) (0.0967) (0.0597) (0.1251) (0.1117) (0.1239)

0.6863 0.4734 0.3653 0.4801 0.6825 0.6505
â

(0.0707) (0.1298) (0.1604) (0.3180) (0.0653) (0.1481)
TS1 0.8205 0.5127 0.5490 0.4715 1.1897 1.1026

var
(0.0728) (0.1089) (0.0631) (0.1409) (0.1258) (0.1377)

0.1896 0.4499 0.1619 0.4476 0.2926 0.4156
â

(0.0528) (0.1284) (0.1164) (0.3167) (0.0740) (0.1657)
AO1 1.6067 0.5632 0.5470 0.5188 2.1506 1.2574

var
(0.2613) (0.1172) (0.0646) (0.1523) (0.2952) (0.1739)

Table B.15: Comparison of the M- and LTS-estimators (GICM and direct procedure).
The model is an intercorrelated panel of AR(1) processes (n = 10, T = 50) with
a = 0.5 andσ2 = τ 2 = 0.5. The true values of the variances areσ2

n = 0.5 and
ω2

n = 0.55.

estimate isvar = σ2 + τ 2 = 1.

Table B.15 displays the results obtained from the simulations.θ̂LTS;a is not valid at this
sample size. The parameter estimatorθ̂LTS;b yields acceptable average values for the
autoregressive parameters and downward biased ones for the variances, but the variance
is very large. Thus the estimates are not reliable. Onlyθ̂LTS;dir yields estimates which
are comparable to those of the M-estimators. However it is less efficient thanθ̂M ;dir.
The latter estimator performs best in the uncontaminated case. If outliers are present, it
is influenced by these. Comparingθ̂M ;a andθ̂M ;b we see that̂θM ;b, which is based on the
median process, is less efficient but more robust thanθ̂M ;a. This means that taking the
median levels out the differences induced by another time series model or by arbitrary
outliers. The effect has already been observed in section B.1 for the robustified ICM
parameter estimators.

The large sample behaviour of the estimators is shown in table B.16. With the sample
size increasing the variance of the estimators is reduced forθ̂M andθ̂LTS;a. For θ̂LTS;b is
only decreases noticeably in the case ofT growing, not if onlyn becomes larger. Thus
here again the results are not reliable due to the large variance.θ̂LTS;a is still not valid
for n = 10, T = 100. Forn = 100, T = 50 the estimates improve although they are
biased.θ̂LTS;dir again yields estimates comparable to those ofθ̂M ;dir, but it is still less
efficient. Similar toθ̂LTS;b, θ̂M ;b becomes more efficient ifT is increased, whereas the
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GICM dir.
model

θ̂M ;a θ̂M ;b θ̂LTS;a θ̂LTS;b θ̂M ;dir θ̂LTS;dir

0.4687 0.4765 0.2525 0.4736 0.4975 0.4969
M1; â

(0.0297) (0.0888) (0.0895) (0.2367) (0.0483) (0.1066)
n = 10,

0.5327 0.5758 0.4372 0.5305 1.1037 1.0167
T = 100 var

(0.0257) (0.0831) (0.0341) (0.1061) (0.0893) (0.0932)

0.4961 0.4777 0.4740 0.4771 0.4952 0.4949
M1; â

(0.0128) (0.1271) (0.0478) (0.3090) (0.0610) (0.0849)
n = 100,

0.5041 0.4997 0.4567 0.4644 0.9967 0.9189
T = 50 var

(0.0103) (0.1016) (0.0120) (0.1380) (0.1029) (0.1006)

0.6904 0.4823 0.3521 0.4857 0.6901 0.6633
TS1; â

(0.0517) (0.0923) (0.1237) (0.2417) (0.0480) (0.1120)
n = 10,

0.8227 0.5163 0.5529 0.4746 1.2000 1.0973
T = 100 var

(0.0518) (0.0751) (0.0438) (0.0972) (0.0886) (0.0941)

0.7140 0.4771 0.5687 0.4806 0.6921 0.6604
TS1; â

(0.0229) (0.1299) (0.0582) (0.3096) (0.0327) (0.0734)
n = 100,

0.7609 0.4271 0.5756 0.3958 1.0889 0.9984
T = 50 var

(0.0280) (0.0890) (0.0174) (0.1188) (0.0912) (0.0916)

Table B.16: Comparison of the M- and LTS-estimators (GICM and direct procedure).
The model is an intercorrelated panel of AR(1) processes (nT large) witha = 0.5 and
σ2 = τ 2 = 0.5. The true values of the variances areσ2

n = 0.45 andω2
n = 0.55 for the

GICM procedure andσ2 + τ 2 = 1 for the direct estimation.

effect is only weak ifn is growing. The estimator̂θM ;a is improved in both cases, but
here the effect is stronger forn increasing. In the case of the contaminated panels it is
again much influenced by the outlying time series.θ̂M ;b however remains stable under
contamination. For the investigated models it is thus the best estimator in this section.
We have included the simulation results for the non-contaminated AR(6) case (GICM
procedure) in table B.17. Here we can observe that both the M-estimators andθ̂LTS

are not stable if the order grows. Thus we have omitted displaying the results for
the contaminated AR(6) modelsTS6 andAO6. The performance of the estimators is
comparable to that of̂θoa described in section B.1. For̂θM the mean squared error is
smaller, forθ̂LTS larger than that of̂θoa. In table B.18 we see the simulation results
obtained from the direct estimation procedure. In the uncontaminated case bothθ̂M ;dir

and θ̂LTS;dir give good estimates. Here the mean squared error of the autoregressive
parameter estimator belonging to the latter one is smaller. If entire time series are
outlying, both estimators still perform better than e.g. the robustified ICM parameter
estimators. The variances are here more biased than in the uncontaminated case. Only
in the presence of arbitrary outliers the estimators become clearly unreliable. In this
case the variance estimate ofθ̂LTS;dir is less biased than that ofθ̂M ;dir. Altogether this
indicates that̂θLTS improves if the autoregressive order of the time series in the panel
increases. The result that the estimates in the case of entire time series outlying are not
as much influenced by the outliers as in the AR(1) case is surprising and probably due
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to the actually chosen models. This effect can also be observed in the behaviour of the
non-robust ICM parameter estimatorθ̂n,T itself (see section B.1 and the discussion in
section B.4).

B.3 Outlier Detection

B.3.1 Likelihood Ratio Test

Finally we consider the methods based on a preliminary identification of outliers dis-
cussed in section 3.7. Table B.19 displays the results of the likelihood ratio procedure.

θ̂M ;a θ̂M ;b θ̂LTS;a θ̂LTS;b

â1 0.7336 0.7401 0.7199 0.7389

â2 -0.2094 -0.2379 -0.2065 -0.2333

â3 -0.1014 -0.0841 -0.0954 -0.0876

â4 -0.1733 -0.1704 -0.1783 -0.1758

â5 0.0398 0.0335 0.0488 0.0370

â6 0.3796 0.3557 0.3646 0.3536

MSE(â) 0.3590 0.3796 0.5266 0.8625

0.9352 0.9026 0.9297 0.8435
var

(0.1520) (0.1797) (0.1598) (0.2423)

Table B.17: Comparison of the M- and LTS-estimators (GICM procedure). The
model is an intercorrelated panel of AR(6) processes (n = 10, T = 100) with
a = (1, 0.6,−0.2, 0.2, 0, 0.4)′ andσ2 = τ 2 = 0.5. The true values of the variances
areσ2

n = 0.45 andω2
n = 0.55.

θ̂M ;dir θ̂LTS;dir

M6 TS6 AO6 M6 TS6 AO6

â1 0.9983 1.0208 0.5863 0.9967 1.0119 0.8702

â2 -0.6034 -0.5478 -0.0892 -0.5977 -0.5600 -0.3417

â3 0.2014 0.1355 -0.1942 0.1958 0.1542 -0.0663

â4 -0.2040 -0.1569 -0.1709 -0.1992 -0.1664 -0.0815

â5 0.0027 0.0343 -0.0027 0.0022 0.0198 -0.0113

â6 0.3912 0.3676 0.3802 0.3919 0.3799 0.3926

MSE(â) 0.5986 0.0368 0.0320 0.2672 0.2597 0.3174

1.0872 1.2278 4.6637 1.1092 1.2176 1.9723
var

(0.0886) (0.0890) (1.0009) (0.1148) (0.1197) (0.2735)

Table B.18: Comparison of the M- and LTS-estimators (direct estimation procedure).
The model is an intercorrelated panel of AR(6) processes (n = 10, T = 100) with
a = (1, 0.6,−0.2, 0.2, 0, 0.4)′ andσ2 = τ 2 = 0.5. The true value of the variances is
var = 1.
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The parameters are estimated by minimising the conditional log-likelihood function.
We see that the results do not differ much between intercorrelated panels and panels of
independent time series. The only effect is that the estimators are more efficient in the
latter case. In the uncontaminated model or if only arbitrary outliers are present, the
null hypothesis of homogeneity is not rejected and thus the estimates do not change. If
the outliers are independent white noise processes, the estimation is improved by the
preliminary detection and elimination of outliers. If however the outlying time series
are autoregressive time series with parametera = 0.9, the estimation is drawn towards
their parameter.

We now investigate the behaviour of the homogeneity test and of the outlier identifi-
cation procedure in more detail. The empirical rejection rates (H1) and the number
nOL of eliminated time series are given in table B.20. As the maximal proportion has
been fixed at20% beforehand, it may occur that the null hypothesis of homogeneity is
still rejected after terminating the estimation procedure. Note that we have to test at
an adjusted significance levelαn as the elimination procedure involves multiple testing
(see remark 3.7.5). Forα = 0.01 andn = 10, the adjusted level isα = 0.0033. This
is reached in the uncontaminated model with independent processes. If the time series
in the panel are intercorrelated, the rate of rejection grows. In the case ofn = 100,
T = 50, where only the number of the time series in the panel has been increased, it

corr. ind.
model

θ̂LR;1 θ̂LR;2 θ̂LR;1 θ̂LR;2

0.4929 0.4929 0.4974 0.4975
â

(0.0646) (0.0646) (0.0375) (0.0375)
M1 0.9907 0.9908 0.9968 0.9968

var
(0.1200) (0.1201) (0.0661) (0.0661)

0.4169 0.4451 0.4196 0.4520
â

(0.0672) (0.0788) (0.0451) (0.0532)
TSn 1.0373 1.0222 1.0374 1.0231

var
(0.1063) (0.1111) (0.0731) (0.0731)

0.6875 0.7129 0.6882 0.7195
â

(0.0664) (0.0822) (0.0614) (0.0739)
TS1 1.0774 1.0941 1.0778 1.0923

var
(0.1202) (0.1254) (0.0815) (0.0915)

0.2559 0.2572 0.2591 0.2601
â

(0.0690) (0.0709) (0.0580) (0.0601)
AO1 1.9496 1.9469 1.9577 1.956

var
(0.2739) (0.2758) (0.2610) (0.2635)

Table B.19: Estimates before (θ̂LR;1) and after (̂θLR;2) a preliminary outlier detection
using the likelihood ratio test.corr.: panels of intercorrelated autoregressive processes
with parametersa = 0.5, σ2 = τ 2 = 0.5. ind.: panels of independent autoregressive
processes with parametersa = 0.5 andσ2 = 1. The size of the panels isn = 10 and
T = 50, var=1.
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corr. ind.
model

θ̂LR;1 θ̂LR;2 θ̂LR;1 θ̂LR;2

H1 0.0072 0.0006 0.0032 0.0002
M1

nOL 0.0316 0.0314 0.0498 0.0492

H1 0.0448 0.0012 0.0564 0.0008
AO1

nOL 0.0508 0.0352 0.0662 0.0446

M1; H1 0.0072 6e-04 0.0022 0.0000

n = 10, T = 100 nOL 0.0290 0.0290 0.0434 0.0430

M1; H1 0.1320 0.0704 0.0006 0.0002

n = 100, T = 50 nOL 0.0748 0.0696 0.1726 0.1724

H1 0.5012 0.0004 0.5800 0.0014

TSn nOL 1.0722 0.6374 1.0974 0.5972

pf 0.0047 – 0.0061 –

H1 0.8408 0.6782 0.8926 0.7200

TS1 nOL 1.5582 1.1646 1.6958 1.1842

pf 0.9642 – 0.9814 –

H1 0.9950 0.8708 0.9978 0.9102
TS1;

nOL 3.4122 2.7836 3.4552 2.7658
n = 10, T = 100

pf 0.9642 – 0.9389 –

H1 1.0000 0.9874 1.0000 0.9998
TS1;

nOL 7.9232 2.6562 9.3844 1.8052
n = 100, T = 50

pf 0.9890 – 0.9814 –

Table B.20: Performance and power of the likelihood ratio test (at significance level
α = 0.01) in various models.corr.: panels of intercorrelated autoregressive processes
with parametersa = 0.5 andσ2 = τ 2 = 0.5. ind.: panels of independent autoregressive
processes with parametersa = 0.5 andσ2 = 1. Unless stated otherwise, the size of
the panel isn = 10, T = 50. H1: empirical rate of rejections;nOL: average number
of identified outliers;pf : proportion of falsely identified outliers among the eliminated
outliers.

even reaches more than 13%. This is reduced after eliminating time series from the
panel. If outlying time series are present, the rejection rate also grows. However the
test only discovers that the panel is not homogeneous. In the modelTSn the null hy-
pothesis of homogeneity is rejected in only 50% of the cases. If outliers are detected,
they are mostly correctly identified. In the case of autoregressive time series with pa-
rametera = 0.9, the outliers are not identified correctly. Indeed the proportion of
falsely identified outliers is overproportionally large, which means that the test statistic
has been drawn to the outliers. This illustrates the masking effect outliers can have in a
non-robust procedure.
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B.3.2 Phase Space Representations

For the phase space procedure we compare the three different versions of the estimator
addressed in section 3.7.̂θPS;rob is obtained from the robust method, which is based
upon the robust covariance estimator derived from the MCD.θ̂PS itself is the non-
robust version using the sample covariance matrix. In both cases, the outlying time
series are detected in a first step and all are deleted from the sample. The estimation
is then based on the remaining time series, where we use the non-robust ICM parame-
ter estimator̂θn,T . We assume that not more than 20% of the time series are outlying.
θ̂PS;rec is obtained from a (non-robust) recursive procedure. In each step we only elim-
inate the time series with the smallest p-value from the panel until no further outliers
are identified or until the upper bound of 20% outlying time series is reached. This
procedure is included for comparison to the likelihood ratio method of the last sec-
tion. As the latter method originally is defined for panels of uncorrelated time series,
we also investigate this case. The results for the parameter estimators are displayed
in table B.21. As significance level we have chosenα = 0.01. We can see that the
estimators behave in a similar way as the estimatorθ̂LR of the last section. There is no
large difference between the estimation in the correlated and the uncorrelated model.
In the case of arbitrary outliers the estimator is less biased if the panel consists of in-
dependent time series, nevertheless the bias is unacceptably large. If the outlying time
series are white noise processes or in the presence of arbitrary outliers the estimators
are downward biased, even more so thanθ̂LR. However they all perform better than
θ̂LR if the outlying time series are autoregressive processes with a large coefficient.
Here θ̂PS;rec is more influenced by the outlying time series than the other estimators.
Table B.22 shows the large sample behaviour of the estimators. There is essentially no
difference between the estimation in the correlated and in the uncorrelated panel. In
the non-contaminated model the parameters become even more accurate. As we use
the non-robust ICM estimator̂θn,T in the second step after the outlier detection, the
properties of the estimators are largely dependent on those ofθ̂n,T . In particular, this
explains the respective efficiencies (compare section A.1 in the Appendix A). In the
contaminated case,̂θPS;rob is slightly more biased if only the number of time series in
the panel is increased. This is due to the fact that the test detects more easily the two
outlying time series in a panel consisting of 10 time series than all 20 outliers in model
TS1 with panel sizen = 100 andT = 50. The efficiency of̂θPS is much lower, and
in the case ofn = 100 andT = 50 also the bias is increased. This illustrates that the
non-robust estimator is indeed affected if outliers are present.θ̂PS;rec is not improved
if only the length of the time series grows. However it competes favourably with the
other estimators ifn = 100.

As the behaviour of the estimators depends on the number of identified and eliminated
outliers, these are given in table B.23. If the model contains outliers, furthermore the
proportion of wrongly identified outliers is displayed.θ̂PS, being a non-robust estima-
tor, is more susceptible to masking effects. Therefore it yields the highest proportion
of falsely detected outliers. Nevertheless the masking effects are much weaker than for
θ̂LR, where the proportion of falsely identified outliers lies over 90%. Altogether the
estimator̂θPS;rob performs best. The comparison with the independent case shows that
the intercorrelation even helps to correctly identify the outliers. If the outlying time
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corr. ind.
model

θ̂PS θ̂PS;rob θ̂PS;rec θ̂PS;rob

0.4957 0.4959 0.4948 0.4920
â

(0.0394) (0.0405) (0.0397) (0.0416)

0.4955 0.4957 0.4959 0.9848
M1 σ̂2

(0.0343) (0.0347) (0.0338) (0.0738)

0.5441 0.5482 0.5469 0.1032
ω̂2

n (0.1120) (0.1120) (0.1126) (0.0221)

0.3886 0.3923 0.3916 0.4105
â

(0.0547) (0.0554) (0.0564) (0.0489)

0.7196 0.7145 0.7149 1.0236
TSn σ̂2

(0.0635) (0.0685) (0.0671) (0.0810)

0.3831 0.3881 0.3845 0.1075
ω̂2

n (0.0792) (0.0814) (0.0770) (0.0230)

0.5501 0.5229 0.6187 0.5163
â

(0.1044) (0.0624) (0.0635) (0.0549)

0.5814 0.5424 0.6352 0.9939
TS1 σ̂2

(0.1180) (0.0770) (0.0558) (0.0809)

0.5174 0.5182 0.4652 0.1224
ω̂2

n (0.1330) (0.1123) (0.0945) (0.0268)

0.2190 0.2279 0.2180 0.2824
â

(0.0622) (0.0632) (0.0596) (0.0649)

1.4059 1.3636 1.4074 1.8073
AO1 σ̂2

(0.2606) (0.2704) (0.2487) (0.2780)

0.6019 0.5921 0.5935 0.1971
ω̂2

n (0.1319) (0.1287) (0.1292) (0.0456)

Table B.21: Estimates after a preliminary outlier detection using the phase space repre-
sentation. The size of the panels isn = 10 andT = 50. Significance level:α = 0.01.
corr.: panels of intercorrelated autoregressive processes with parametersa = 0.5,
σ2 = τ 2 = 0.5 andω2

n = 0.55. ind.: panels of independent autoregressive processes
with parametersa = 0.5, σ2 = 1 andω2

n = 0.1.
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corr. ind.
model

θ̂PS θ̂PS;rob θ̂PS;rec θ̂PS;rob

0.4979 0.4979 0.4976 0.4962
â

(0.0280) (0.0279) (0.0276) (0.0286)

n = 10, 0.4985 0.4977 0.4963 0.9923

T = 100
σ̂2

(0.0243) (0.0243) (0.0242) (0.0519)

0.5480 0.5491 0.5476 0.1041
ω̂2

n (0.0793) (0.0787) (0.0783) (0.0165)
M1 0.4980 0.4985 0.4973 0.4959

â
(0.0126) (0.0125) (0.0125) (0.0127)

n = 100, 0.4980 0.4981 0.4973 0.9896

T = 50
σ̂2

(0.0103) (0.0104) (0.0107) (0.0218)

0.5036 0.5040 0.5021 0.0102
ω̂2

n (0.1016) (0.1034) (0.1020) (0.0021)

0.5309 0.5057 0.6334 0.5035
â

(0.2050) (0.0401) (0.0494) (0.0359)

n = 10, 0.5523 0.5107 0.6422 1.0000

T = 100
σ̂2

(0.2178) (0.0460) (0.0387) (0.0575)

0.5648 0.5519 0.4703 0.1270
ω̂2

n (0.2287) (0.0813) (0.0678) (0.0206)
TS1 0.5898 0.5376 0.5256 0.5235

â
(0.0285) (0.0302) (0.0247) (0.0174)

n = 100, 0.6036 0.5486 0.5356 0.9982

T = 50
σ̂2

(0.0309) (0.0334) (0.0281) (0.0231)

0.4263 0.4540 0.4659 0.0120
ω̂2

n (0.0789) (0.0841) (0.0871) (0.0024)

Table B.22: Large sample behaviour (n = 10, T = 100 andn = 100, T = 50) of the
estimates obtained after a preliminary outlier detection using the phase space represen-
tation. Significance level:α = 0.01. corr.: panels of intercorrelated autoregressive
processes with parametersa = 0.5, σ2 = τ 2 = 0.5 andω2

n = 0.55. ind.: panels of
independent autoregressive processes with parametersa = 0.5, σ2 = 1 andω2

n = 0.1.

series are white noise processes, in each case very few outliers are detected. In the
case of autoregressive processes outlying, the proportion of falsely identified outliers
decreases. Ifn = 10, θ̂PS;rec has a low detection rate but those time series which are
detected as outliers are indeed outliers with a high probability. In the case ofn = 100,
T = 50, the proportion of falsely detected outliers is as high as forθ̂PS. Nevertheless
the estimator performs much better (see table B.22). This is due to the larger number
of outliers identified by the recursive procedure. Thus in absolute numbers more true
outliers have been eliminated from the panel before applying the ICM estimator in the
second step. Table B.23 moreover shows that the significance levelα = 0.01 of the
test is not reached empirically in the smaller panels. If on the average 0.2 time series
are identified as outliers in a panel consisting of 10, this corresponds to a rejection rate
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of 2%. However ifn = 100, θ̂PS;rob has a rejection rate of 0.88%, and alsoθ̂PS is
very close to the significance level. This is caused by two effects:σ2

Y , the variance
of the asymptotic distribution, can only be approximated (see theorem 3.7.9 and algo-
rithm 3.7.10). Furthermore the underlying estimate of the covariance matrix used for
calculating the test statistic depends on the size of the panel. If there are outlying time
series in the panel, not necessarily all of these are detected. This is especially the case
if the difference in the dynamic structure is not very strong. The power grows with the
length of the time seriesT increasing: forTS1 with the panel size ofn = 10 it is 83.9%
for T = 50 and 99.2 forT = 100. If the proportion of outliers stays the same but the
number of time series in the panel grows, the probability that all of these are detected
sinks. Thus the power is only80.0% if n = 100 andT = 50 although here the overall
sample size is largest.

B.4 Comparative Evaluation of the Simulation Results

A non-robust estimator as the ICM parameter estimator investigated in chapter 2 is not
stable under contamination. Therefore we have to search for alternatives. The different
properties of the proposed estimators are illustrated by the above simulation study. Sim-

corr. ind.
model

θ̂PS θ̂PS;rob θ̂PS;rec θ̂PS;rob

M1 nOL 0.1902 0.2316 0.2078 0.4438

AO1 nOL 0.6679 0.8082 0.5534 0.8302

M1;

n = 10, T = 100
nOL 0.1412 0.1982 0.1748 0.3986

M1;

n = 100, T = 50
nOL 1.0618 0.8836 1.4360 2.1666

nOL 0.2310 0.3096 0.2674 0.4718
TSn

pf 0.8061 0.6835 0.7861 0.8733

nOL 1.9988 1.6786 0.9596 1.7658
TS1

pf 0.3091 0.0487 0.0025 0.1108

TS1; nOL 2.8899 1.9844 0.9972 2.0966

n = 10, T = 100 pf 0.4161 0.0427 0.0000 0.0974

TS1; nOL 13.919 16.0022 17.2240 16.0192

n = 100, T = 50 pf 0.1476 0.0128 0.1476 0.0383

Table B.23: Performance of the phase space outlier test (significance levelα = 0.01) in
various models.corr.: panels of intercorrelated autoregressive processes with parame-
tersa = 0.5 andσ2 = τ 2 = 0.5. ind.: panels of independent autoregressive processes
with parametersa = 0.5 andσ2 = 1. Unless stated otherwise, the size of the panel is
n = 10, T = 50. nOL: average number of identified outliers;pf : proportion of falsely
identified outliers among these.
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ply robustifying the parameter estimator by replacing all non-robust parts with robust
counterparts leads to the estimators of section B.1. The more basic robust estimators
θ̂rob andθ̂oa are outperformed by the reweighted procedures. These do not entirely be-
long to the class of directly robustified estimators as they use robust methods only for
detecting outlying data. Then a second, non-robust estimation step is performed with-
out these data. Herêθrw is less biased in the case of no contamination or entire time
series outlying than̂θrw2. The latter estimator has been designed to be robust against
arbitrary outliers (see section 3.3). However its performance onAO1 is not convin-
cing. With exception of̂θrw all of these robust estimators do not perform well in the
case of the AR(6) models. The behaviour ofθ̂rw suggests that there were no outlying
data identified. Therefore in this case also the non-robust parameter estimator is not
influenced much by the outlying time series. As bootstrap methods are a non-robust
approach, the bias of the robust estimators cannot be substantially reduced. The pro-
cedure performing best is the one where the most detailed assumptions on the sample
distributions are made, namely the one based on sampling directly from normal distri-
butions. Although this reduces the bias ofθ̂rob to some extent, the main properties are
retained as bootstrapping reflects these (see the discussion in section B.1.1).

The second approach investigated in section B.2 consists of robustifying the covariance
matrices used in the estimation ofθ̂n,T . It turns out that the robust panel autocovariance
estimator and thuŝθQ is negatively biased. However the same is true for the estimator
based on the covariance matrix obtained from the minimum covariance determinant
method. Both estimators are relatively stable against the case of entire time series
outlying, comparably tôθoa. But they are very robust against arbitrary outliers, which
is not the case for the other methods. Thus in particular the estimatorθ̂Q is promising
if the bias can be overcome. It may be possible to reduce the bias by adjusting the
order statistic employed or by modifying the correction used in the computation (see
section B.2.1). Still,̂θQ only performs well if the autoregressive order is small. Since
all entries of the covariance matrix are estimated separately, it is instable. This can be
seen from the results for the AR(6) case. Thus here it is preferable to use the estimator
θ̂MCD.

For comparison we include estimators derived from standard robust procedures as de-
scribed in section 3.6. In the panel situation they are however in general not stable in
the presence of outliers. It is already stated in Rousseeuw and Leroy (1987) that M-
estimators are not robust against additive outliers. There the authors suggest using the
least median of squares estimator for the analysis of time series. However the simula-
tions show that also the estimatorθ̂LTS, which is derived from the least trimmed squares
estimator, which in turn is closely related to the least median of squares estimator, does
not perform satisfyingly in the panel situation. In the case of the AR(6) processes the
estimators nevertheless yield improved results. This however can be due to the specific
combination of models chosen as the non-robust ICM parameter estimator performs
comparably. Thus we do not consider these estimators further.

Finally we have analysed the behaviour of outlier detection methods in section B.3. The
simulations illustrate that the non-robust likelihood ratio test is indeed much influenced
by outliers and thus not recommendable. The test based on the phase space represen-
tation however performs in an acceptable way if no arbitrary outliers are present. Its
behaviour is compatible tôθoa for the smaller panels. If the data set becomes larger, the
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bias of the variance estimators is smaller than that ofθ̂oa.

Summarising we recommend a reweighted estimator if there are no arbitrary outliers.
Here θ̂rw and θ̂PS;rob perform in a very similar way.̂θrw yields slightly better results,
but it is based on a heuristic procedure whereas we know the asymptotic distribution
of the test statistic for̂θPS;rob. In the case of arbitrary outliers it is better to use one
of the estimators derived from the robust covariance estimators as the other ones are
not reliable. If the autoregressive order is one,θ̂Q is preferable. For higher order
autoregressive processesθ̂MCD should be used. In practice, the arbitrary outliers can
be excluded from the data set in a preliminary analysis. One method which has been
mentioned in this thesis is the procedure of Gather, Bauer and Fried (2002).

For completeness we include an overview of the computation times needed by the dif-
ferent estimators. These are displayed in table B.24. It can be seen from the computa-
tion times that the non-robust estimators and their robustified versions are very fast to
compute. The procedure for the GICM estimatorsθ̂a and θ̂b is even faster as we here
do not need to compute the estimators iteratively. The computation of the reweighted
versions is slightly slower as one more iteration is necessary. Furthermore the compu-
tation of the M-estimator̂θM (GICM procedure) and of the non-robust outlier detection
procedures are as fast as for the above estimators, and the least trimmed squares pro-
cedure is only a little bit slower. The estimation ofθ̂Q requires a sorting, and the fast

est. M1 M6

θ̂n,T 4.09 5.47

θ̂a, θ̂b 2.08 3.06

θ̂rob 4.11 6.52

θ̂oa 4.11 5.98

θ̂rw 4.52 7.01

θ̂rw2 4.53 6.98

θ̂RB 1085.29 –

θ̂PB 1011.83 –

θ̂NB 1020.44 –

θ̂Q 6.75 13.26

θ̂MCD 19.59 76.30

θ̂M 4.04 4.20

θ̂LTS 5.13 8.49

θ̂LR 4.10 5.29

θ̂PS 5.34 5.23

θ̂PS;rob 18.80 70.14

θ̂PS;rec 23.90 128.37

Table B.24: Approximate computation time of the parameter estimators discussed in
this chapter. Given is the time (in 1/100 sec.) needed for 10 iterations in modelM1 and
M6 on a PC with a 2.8GHz processor. If possible, the estimation was performed using
an ICM-type estimator.
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algorithm proposed in Croux and Rousseeuw (1992) cannot be transferred easily to the
panel case. Therefore the computation ofθ̂Q needs around twice the time than that of
the first estimators. The estimatorsθ̂MCD, θ̂PS;rob and θ̂PS;rec are based on the mini-
mum volume ellipsoid estimator which takes a longer computation time. Asθ̂PS;rec is
a recursive estimator, its computation needs even more time. The computation of the
bootstrap procedures is around 250 times slower than the original estimator. Thus the
bootstrap corrections are not feasible if the sample size becomes large. Moreover the
estimation procedure becomes instable for the AR(6) case. Thus we were not able to
obtain bootstrap estimators for the AR(6) time and therefore cannot state the computa-
tion time.



Appendix C

Proofs and Auxiliary Results

C.1 Derivatives

We have computed the first derivatives ofLn,T (the log-likelihood function of the ICM)
in section 2.4.2 because we needed them in order to construct the minimisation algo-
rithm. Theorem 2.5.16, which shows the convergence ofDnMLn,T

(θ)Dn to Γn, is
proved by investigating the convergence properties of the second derivatives. In order
to simplify the notation, we have omitted to state these explicitly in the proof of the
theorem. For sake of completeness, we now present them and the derivatives of the
pointwise limits of the conditional log-likelihood functions in this section. We also
include the second derivatives of the conditional log-likelihood functionL◦n,T obtained
from the individual effects in the GICM in proposition 2.4.6.
Furthermore we have moved the proof of lemma 2.5.7 to this section as it is elementary
but rather lengthy.

Derivatives of the log-likelihood functions

C.1.1 LEMMA

Under the assumptions of the ICM (assumption 2.2.1), letθ = (a′, σ2, τ 2)′ ∈ Θ and
denoteω2

n = τ 2 + σ2

n
. Then the second derivatives of the conditional log-likelihood

functionLn,T derived in proposition 2.4.2 are

∂2

∂ak∂al

Ln,T (θ) =
2

σ2

1

n (T − p)

n∑
i=1

T∑
t=p+1

X̊
(i)
t−k X̊

(i)
t−l

+
2

ω2
n

1

n (T − p)

T∑
t=p+1

X̄t−k X̄t−l ,

∂2

∂ak∂σ2
Ln,T (θ) = − 2

σ4

1

n (T − p)

n∑
i=1

T∑
t=p+1

(
a(L) X̊

(i)
t

)
X̊

(i)
t−k

− 2

ω4
n

1

n2 (T − p)

T∑
t=p+1

(
a(L) X̄t

)
X̄t−k ,
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∂2

∂ak∂τ 2
Ln,T (θ) = − 2

ω4
n

1

n (T − p)

T∑
t=p+1

(
a(L) X̄t

)
X̄t−k ,

∂2

(∂σ2)2
Ln,T (θ) = −n− 1

nσ4
+

2

σ6
An,T (a)− 1

n3 ω4
n

+
2

n3 ω6
n

Bn,T (a) ,

∂2

(∂τ 2)2
Ln,T (θ) = − 1

nω4
n

+
2

nω6
n

Bn,T (a)

and
∂2

∂σ2∂τ 2
Ln,T (θ) = − 1

n2 ω4
n

+
2

n2 ω6
n

Bn,T (a) ,

whereAn,T (a) andBn,T (a) are defined in remark 2.4.3.

PROOF:
We get the statements by direct calculation, taking into account thatω2

n = τ 2 + σ2

n
. ut

In theorem 2.5.4 we have derived the pointwise limit ofLn,T (θ) for n→∞ as

L(θ) =
1

σ2

p∑

k,l=0

ak al c(k − l) + log σ2 + log 2π ,

wherec(h) = Ψ(h)σ2
0, h ∈ Z, is the true autocovariance function of the identically dis-

tributed unobservable processes{Z(i)
t }t∈Z, i = 1, . . . , n, of lemma 2.2.4. Its derivatives

are given in the following lemma.

C.1.2 LEMMA

Let θ̃ = (a1, . . . , ap, σ
2)′ ∈ Θ̃ andL(θ̃) be as in definition 2.5.3. Then

∂

∂al

L(θ̃) =
2

σ2

p∑

k=0

ak c(k − l)

and
∂

∂σ2
L(θ̃) = − 1

σ4

p∑

k,l=0

akal c(k − l) +
1

σ2
.

Furthermore

∂2

∂ak∂al

L(θ̃) =
2

σ2
c(k − l) ,

∂2

∂al∂σ2
L(θ̃) = − 2

σ4

p∑

k=0

ak c(k − l)

and
∂2

(∂σ2)2
L(θ̃) =

2

σ6

p∑

k,l=0

akal c(k − l)− 1

σ4
.

PROOF:
Again the statements are obtained by straightforward calculation. ut
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In the case ofT → ∞, n fixed, we need the analogous results for the pointwise limit
of Ln,T (θ), which is (see definition 2.5.3)

Ln(θ) = ELn,T (θ) =
1

σ2

(
n− 1

n

)
cθ +

1

ω2
n

1

n
dθ +

(
n− 1

n

)
log σ2

+
1

n
logω2

n +
1

n
log n+ log(2π) ,

wherecθ =
∑p

k,l=0 ak al c(k − l) anddθ =
∑p

k,l=0 ak al γ̄n(k − l).

C.1.3 LEMMA

Let θ = (a1, . . . , ap, σ
2, τ 2)′ ∈ Θ andLn(θ) be as in definition 2.5.3. Then, denoting

ω2
n = τ 2 + σ2

n
, we get

∂

∂al

Ln(θ) =
2 (n− 1)

nσ2

p∑

k=0

ak c(k − l) +
2

nω2
n

p∑

k=0

ak γ̄n(k − l) ,

∂

∂σ2
Ln(θ) = −n− 1

nσ4

p∑

k,l=0

ak al c(k − l) +
n− 1

nσ2

− 1

n2 ω4
n

p∑

k,l=0

ak alγ̄n(k − l) +
1

n2 ω2
n

,

and
∂

∂τ 2
Ln(θ) = − 1

nω4
n

p∑

k,l=0

akal γ̄n(k − l) +
1

nω2
n

.

The second derivatives are

∂2

∂ak∂al

Ln(θ) =
2 (n− 1)

nσ2
c(k − l) +

2

nω2
n

γ̄(k − l) ,

∂2

∂al∂σ2
Ln(θ) = −2 (n− 1)

nσ4

p∑

k=0

ak c(k − l)− 2

n2 ω4
n

p∑

k=0

ak γ̄n(k − l) ,

∂2

∂al∂τ 2
Ln(θ) = − 2

nω4
n

p∑

k=0

ak γ̄n(k − l) ,

∂2

∂σ2∂τ 2
Ln(θ) =

2

n2 ω6
n

p∑

k,l=0

ak al γ̄n(k − l)− 1

n2 ω4
n

,

∂2

(∂σ2)2
Ln(θ) =

2 (n− 1)

nσ6

p∑

k,l=0

akal c(k − l)− n− 1

nσ4

+
2

n3 ω6
n

p∑

k,l=0

ak alγ̄n(k − l)− 1

n3 ω4
n

,

and
∂2

(∂τ 2)2
Ln(θ) =

2

nω6
n

p∑

k,l=0

akal γ̄n(k − l)− 1

nω4
n

.
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PROOF:
As before, the calculation is straightforward. ut

In particular, this allows us to calculate the Hessian matrices at the true valueθ0.

C.1.4 COROLLARY

Let θ0 = (a′, σ2
0, τ

2
0 )′, with a = (a1, . . . , ap)

′, be the true parameter in the ICM and let
θ̃0 = (a′, σ2

0)
′. Then the Hessian matrices ofL andLn at the true values are

Γ = ∇2L(θ̃0) =

(
(2 Ψ(k − l))k,l=1,...,p 0

0 1
σ4
0

)

Γn = ∇2Ln(θ0) =




(2 Ψ(k − l))k,l=1,...,p 0 0

0 n−1
n σ4

0
+ 1

n3 ω4
n

1
n2 ω4

n

0 1
n2 ω4

n

1
n ω4

n


 = E∇2Ln,T (θ0) ,

where nowω2
n = τ 2

0 +
σ2
0

n
denotes the true parameter in the ICM.

PROOF:
The derivatives ofL(θ̃) andLn(θ) can be found in the preceding lemmas C.1.2 and
C.1.3. The results are due to the fact that the true values fulfil

∑p
k,l=0 ak alΨ(k− l) = 1

if we denotea0 = −1 (remark 1.1.5). The last equalityΓn = E∇2Ln,T (θ0) is a
consequence of the mean-square convergence of the panel autocovariance estimator
proved in lemma 1.2.4. ut

Finally we include some considerations on the derivatives of the conditional log-likeli-
hood functionL◦n,T in the GICM, which is based on the individual processes. It is given
in proposition 2.4.6 as

L◦n,T (θa) = − 2

n (T − p)
logL(X̊p+1, . . . , X̊T | X̊1, . . . , X̊p)

=
n− 1

n
log σ̃2

n +
1

σ̃2
n

1

n (T − p)

T∑
t=p+1

n∑
i=1

(
a(L) X̊

(i)
t

)2

+
n− 1

n
log(2π)− 1

n
log n ,

whereσ̃2
n = σ2

n − σij
n .

C.1.5 LEMMA

In the setting of the GICM (assumption 2.3.1) letθa = (a1, . . . , ap, σ
2)′ ∈ Θa andL◦n,T

be as obtained in proposition 2.4.6. Then

∂

∂al

L◦n,T (θa) =
2

σ2 n (T − p)

T∑
t=p+1

n∑
i=1

(
p∑

k=0

ak X̊
(i)
t−k

)
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(i)
t−l

and
∂

∂σ2
L◦n,T (θa) =

n− 1

nσ2
− 1

σ4 n (T − p)

T∑
t=p+1

n∑
i=1

p∑

k,l=0

akal X̊
(i)
t−k X̊

(i)
t−l .
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Furthermore

∂2

∂ak∂al

L◦n,T (θa) =
2

σ2 n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t−k X̊

(i)
t−l ,

∂2

∂al∂σ2
L◦n,T (θa) = − 2

σ4 n (T − p)

T∑
t=p+1

n∑
i=1

p∑

k=0

ak X̊
(i)
t−k X̊

(i)
t−l

and
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(∂σ2)2
L◦n,T (θa) =

2

σ6 n (T − p)

T∑
t=p+1

n∑
i=1

p∑

k,l=0

ak al X̊
(i)
t−k X̊

(i)
t−l −

n− 1

nσ4
.

Denoting the true parameterθ0 = (a1,0, . . . , ap,0, σ̃
2
n)′, we obtain that

∇2L◦n,T (θ0)− Γ◦n = OP

(
1√
nT

)
,

whereΓ◦n = E
(∇2L◦n,T (θ0)

)
= n−1

n

(
2B 0

0 1
σ̃4

n

)
with B = (Ψ(k − l))k,l=1,...,p.

PROOF:
The derivatives are obtained by straightforward calculation. In the GICM, we have that

Z̊
(i)
t = X̊

(i)
t andE

(
X̊

(i)
t , X̊

(j)
t

)
=

(
δij − 1

n

)
σ̃2

n (remark 2.3.5). Thus the mean-square

convergence of the panel autocovariance estimator proved in lemma 1.2.4 implies the
result. ut

Proof of lemma 2.5.7

Subsequently we show thatθ0 andθ̃0 are unique minima ofLn andL if the parameter
spaces are small enough.

PROOF OF LEMMA 2.5.7:
We prove the lemma first for̃θ0 = argminθ̃∈Θ̃L(θ̃). By the same method, the statement
can be shown forθ0.
Recall that forθ̃ = (α1, . . . , αp, σ

2) ∈ Θ̃ we have due to the assumptions of the ICM
(assumption 2.2.1) thatσ2 ≥ c > 0. The limit functionL(θ̃) has been given in defini-
tion 2.5.3 asL(θ̃) = 1

σ2 cθ̃ + log σ2 + log (2π) wherecθ̃ =
∑p

k,l=0 αk αl c(k − l) with

α0 = −1. Now choosẽΘ′ ⊆ Θ̃ such that each̃θ ∈ Θ̃′ can be written as̃θ = θ̃0 + ν
with θ̃0 = (a1, . . . , ap, σ

2
0) andν = (ν1, . . . , νp, δ σ

2
0) , δ > −1. This condition ensures

thatσ2 > 0. In order to simplify notations, denoteν0 = 0. We calculate the partial
derivative ofL(θ̃) in direction ofxθ̃ = (x1, . . . , xp, xσ) = −ν.
For the true parameter̃θ0 and the covariance functionc(h) we know (remark 1.1.5) that∑p

k,l=0 ak al c(k − l) = σ2
0. Therefore

∂

∂xθ̃

L(θ̃) =
2

σ2
0 (1 + δ)

p∑

k=1

p∑

l=0

(al + νl)c(k − l)xk

− 1

σ4
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k,l=0
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1

σ2
0 (1 + δ)

xσ
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=
2

σ2
0 (1 + δ)
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p∑

l=0

νl c(k − l) xk − 1

σ4
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σ4
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1
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= − 2

σ2
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δ
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+
δ

σ2
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(1 + δ)

= −
p∑

k,l=1
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σ2
0 (1 + δ)2

− δ2
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.

Being a covariance function,(c(k − l))k,l=1,...,p is positive semidefinite. Sinceδ > −1,

we thus get on a neighbourhood̃Θ′ ⊆ Θ̃ of θ̃0 that

∂ L
∂xθ̃

(θ̃) < 0 for all θ̃ ∈ Θ̃′.

In the second case, chooseΘ′ ⊆ Θ such that for allθ = (α1, . . . , αp, σ
2, τ 2) ∈ Θ′ we

haveθ = θ0 + ν with θ0 = (a1, . . . , ap, σ
2
0, τ

2
0 ) andν = (ν1, . . . , νp, δ1σ

2
0, δ2τ

2
0 ) = −xθ,

where|δi| < 1 (i = 1, 2). Then the calculations are analogous. We only have to take

into account thatω2
θ = τ 2 + σ2

n
andω2

n = τ 2
0 +

σ2
0

n
lead to

ων = ω2
θ − ω2

n = δ1
σ2

0

n
+ δ2τ

2
0 .

If we denotemin(δ1, δ2) by δ− andmax(δ1, δ2) by δ+, this implies that

ω2
θ ≥ (1 + δ−)ω2

n and thus ων ≤ δ+ω
2
n ≤

δ+
1 + δ−

ω2
θ .

This guarantees that analogous calculations as above lead to

∂ Ln

∂xθ

(θ) < 0 for all θ ∈ Θ′,

whereΘ′ is a neighbourhood ofθ0. Altogether this means that̃θ0 andθ0 are unique
minima if the parameter spaces are chosen small enough. ut

C.2 Auxiliary Results for Section 2.5.4

C.2.1 Proof of Lemma 2.5.26

For better readability we have omitted this straightforward proof from section 2.5.4.
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PROOF OF LEMMA 2.5.26
The innovations{ξt}t∈Z are independently and identically distributed Gaussian random
variables such thatE ξt = 0 andvar ξt = ω2

n. Therefore we get, because we know that
var X̄t = Ψ(0)ω2

n (see lemma 2.2.4),

E
( 1√
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ω2
n

ξt X̄t−k

)2

=
1

n (T − p)
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4

n
Ψ(0) = O

(
1

n

)
.

As for Gaussian processes all cumulants of third and higher order are zero, we obtain
from the formula of (Shiryayev 1984, p. 290), thatE (ξ2

s ξ
2
t ) = ω2

n (1 + 2 δst) , where
δst is the Kronecker delta. This yields
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Furthermore we have in the ICM̊ε(i)
t = ε

(i)
t − 1

n

∑n
j=1 ε

(j)
t andX̊(i)

t =
∑∞

u=0 ψu ε̊
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for i = 1, . . . , n (remark 2.2.3), where the innovationsε(i)
t are independently and iden-

tically distributed for allt ∈ Z andi = 1, . . . , n. Thus
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Moreover, since theε(i)
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− 2

nσ6
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. ut

C.2.2 Properties of the Martingale Differences

Proposition 2.5.31 proves the convergence conditions on the martingale differences
DT,t,λ. Two steps have not been entirely covered there as the conclusions are straight-
forward but require more extensive calculations. These can be found here. First note
the following.

C.2.1 REMARK

Summation over all possible indices yields

n∑
i,j=1

(
δij − 1

n

)2

=
n∑

i,j,k=1

(
δij − 1

n

) (
δjk − 1

n

) (
δik − 1

n

)

=
n∑

i,j,k,l=1

(
δij − 1

n

) (
δjk − 1

n

) (
δkl − 1

n

) (
δil − 1

n

)

= n− 1 .

We first prove the statement on the conditional variance.

C.2.2 PROPOSITION

The martingale differences constructed in lemma 2.5.30 fulfil

T∑
t=p+1

E(D2
T,t,λ | FT,t−1) − λ′ Σn λ = oP (1) ,

with Σn = 2




(2 Ψ(k − l))k,l=1,...,p 0 0

0 n−1
n σ4

0
+ 1

n3 ω4
n

1
n
√

n ω4
n

0 1
n2
√

n ω4
n

1
ω4

n


.

PROOF:
By construction the martingale differences areDT,t,λ = 1√

nT (T−p)

∑τ
t=p+1 λ

′ Z(i)
t ,

whereλ ∈ Rp+2 and the variablesZ(i)
t , p + 1 ≤ t ≤ T, i = 1, . . . , nT , are such

thatDn∇LnT ,T (θ0) = 1
nT (T−p)

∑T
t=p+1

∑nT

i=1 Z
(i)
t , where∇Ln,T (θ0) is given in re-

mark 2.5.24 andDn =

(
Ip+1 0

0
√
n

)
. This yields

T∑
t=p+1

E
(
D2

T,t,λ | FT,t−1

)



150 APPENDIX C. PROOFS AND AUXILIARY RESULTS

=
1

nT (T − p)

T∑
t=p+1

[ p∑

k,l=1

λk λl

nT∑
i,j=1

(
4

σ2
0

X̊
(i)
t−k X̊

(j)
t−l

(
δij − 1

nT

)
+

4

n2
T ω

2
n

X̄t−k X̄t−l

)

+ λ2
p+1

nT∑
i,j=1

( 1

σ4
0

[
E

(
ε̊
(i) 2
t ε̊

(j) 2
t /σ4

0

)
− 2 (nT − 1)

nT

E
(
ε̊
(i) 2
t /σ2

0

)

+

(
nT − 1

nT

)2 ]
+

1

n4
T ω

4
n

E
(−ξ2

t /ω
2
n + 1

)2
)

+ λ2
p+2

nT∑
i,j=1

1

nT ω4
n

E
(−ξ2

t /ω
2
n + 1

)2

+ 2λp+1 λp+2

nT∑
i,j=1

1

n2
T

√
nT ω4

n

E
(−ξ2

t /ω
2
n + 1

)2
]

=
1

nT (T − p)

T∑
t=p+1

[ p∑

k,l=1

λk λl

×
(

4

σ2
0

nT∑
i,j=1

X̊
(i)
t−k X̊

(j)
t−l

(
δij − 1

nT

)
+

4

ω2
n

X̄t−k X̄t−l

) ]

+ 2λ2
p+1

(
nT − 1

nT σ4
0

+
1

n3
T ω

4
n

)
+ 2λ2

p+2

1

ω4
n

+ 4λp+1 λp+2
1

nT
√
nT ω8

n

.

The first two terms are mean-square convergent: as

E

(
nT∑

i,j=1

X̊
(i)
t−k X̊

(j)
t−l

(
δij − 1

nT

))
=

nT∑
i,j=1

(
δij − 1

nT

)2

ψ(k − l)σ2
0

= (nT − 1)ψ(k − l)σ2
0 ,

we obtain from the summation property ofδij − 1
nT

(see the preceding remark) that

E
( 1

nT (T − p)

T∑
t=p+1

nT∑
i,j=1

4

σ2
0

X̊
(i)
t−k X̊

(j)
t−l

(
δij − 1

nT

)
− 4

nT − 1

nT

ψ(k − l)
)2

=
16

n2
T (T − p)2

T∑
s,t=p+1

nT∑
i1,i2,i3,i4=1

(
δi1i2 −

1

nT

) (
δi2i3 −

1

nT

)(
δi3i4 −

1

nT

) (
δi1i4 −

1

nT

)

× (
ψ(s− t− k + l)ψ(s− t− l + k) + ψ(s− t)2

)

=
16

n2
T (T − p)2

T∑
s,t=p+1

(nT − 1)
(
ψ(s− t− k + l)ψ(s− t− l + k) + ψ(s− t)2

)

= O

(
1

nT T

)
.



C.2. AUXILIARY RESULTS FOR SECTION 2.5.4 151

Analogously we get that

E
( 1

nT (T − p)

T∑
t=p+1

4

ω2
n

X̄t−k X̄t−l −
4

nT

ψ(k − l)
)2

=
16

n2
T (T − p)2

T∑
s,t=p+1

(
ψ(s− t− k + l)ψ(s− t− l + k) + ψ(s− t)2

)

= O

(
1

n2
T T

)
.

Thus we have altogether that
∑T

t=p+1 E(D2
T,t,λ | FT,t−1) − λ′ Σn λ = oP (1). ut

In the proof of proposition 2.5.31 we use that the 4th moment of the martingale diffe-
rencesDT,t,λ is bounded. The proof of this statement involves rather lengthy calcula-
tions.

C.2.3 PROPOSITION

Let λ ∈ Rp+2 and

DT,t,λ =
1√

nT (T − p)

nT∑
i=1

λ′




(
− 2

σ2
0
ε̊
(i)
t X̊

(i)
t−k − 2

nT ω2
n
ξt X̄t−k

)
k=1,...,p

− 1
σ4
0
ε̊
(i) 2
t + nT−1

nT σ2
0
− 1

n2
T ω4

n
ξ2
t + 1

n2
T ω2

n

− 1√
nT ω4

n
ξ2
t + 1√

nT ω2
n




as defined in lemma 2.5.30. Then

E
(
D4

T,t,λ

)
= O

(
1

T 2

)
.

PROOF:
The proof is based on the fact that the variablesε̊

(i)
s and ξt are independent for all

s, t ∈ Z, i = 1, . . . , n, with E
(
ε̊
(i)
t ε̊

(j)
t

)
=

(
δij − 1

n

)
σ2

0 andvar ξt = ω2
n. Due to

the Gaussianity assumption, the higher moments can be calculated using second order
cumulants. This means that we have to compute the values of the expectation for each
partition of the variables into cycles of length two. Thus the calculations are lengthy
but straightforward. The formula can e.g. be found in (Shiryayev 1984, p. 402). In
order to facilitate the notation we here omit the index ofnT .
First recall (remark C.2.1) that

n∑
i,j=1

(
δij − 1

n

)2

=
n∑

i,j,k=1

(
δij − 1

n

) (
δjk − 1

n

) (
δik − 1

n

)

=
n∑

i,j,k,l=1

(
δij − 1

n

) (
δjk − 1

n

) (
δkl − 1

n

) (
δil − 1

n

)

= n− 1 .
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For the most complicated term we thus obtain that

n∑
i1,i2,i3,i4=1

E
(
ε̊
(i1) 2
t ε̊

(i2) 2
t ε̊

(i3) 2
t ε̊

(i4) 2
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(
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)4
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+ 32n
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σ8

0

=
(
n4 + 8n3 + 14n2 − 8n− 15
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σ8

0 .

Similarily, we get
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E
(
ε̊
(i1) 2
t ε̊

(i2) 2
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(i3) 2
t
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σ6

0
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0

and
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E
(
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(i2) 2
t

)
=

(
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(
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+ 2 (n− 1)
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σ4

0 =
(
n2 − 1
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Since
∑n

i=1

(
δik − 1

n

)
= 0 for all k = 1, . . . , n, we furthermore have that

n∑

i,j,k=1

E
(
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(i)
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(j)
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(k) 2
t

) (
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n
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=
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(
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(
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=
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0

and
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E
(
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(i)
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(j)
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(k) 2
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=
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(
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)2 n∑
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E
(
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(k) 2
t ε̊

(l) 2
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) (
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) [ (
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n

) (
n− 1
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)
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(
δjl − 1

n

) (
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n
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=

(
(n2 − 1) (n− 1) + 4n

n− 1

n
(n− 1) + 8 (n− 1)

)
σ6

0

= (n− 1) (n2 + 4n+ 3) σ6
0 .
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As

E
(
−ε̊(i) 2

t /σ2
0 +

n− 1

n

)
= E

(−ξ2
t /ω

2
n + 1

)
= 0 ,

E
(−ξ2

t /ω
2
n + 1

)2
= E ξ4

t /ω
4
n − 2E ξ2

t /ω
2
n + 1 = 2 ,

E ξ6
t /ω

4
n − 2E ξ4

t /ω
2
n + E ξ2

t = ω2
n (15− 2× 3 + 1) = 10ω2

n

and E
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2
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= 105− 4× 15 + 6× 3− 4 + 1 = 60 ,

this yields
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=
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C.2.4 REMARK

A second possibility for proving the above statement is to distinguish between the two
casesnT → ∞ andn fixed. In the latter case it is clear thatED4

T,t,λ is bounded.
If n → ∞, we can again employ the approach used for the casen → ∞, T fixed:
we define a new random vector by omitting the terms depending on{X̄t}t∈Z from the
first p + 1 coordinates of the gradient vector. Defining martingale differences for the
new vector in a similar way as it has been done in lemma 2.5.30, we can again prove
proposition 2.5.31, but the length of the calculations is reduced. The considerations
used in the casen → ∞, T fixed, show that the gradient has asymptotically the same
distribution as the new vector.

C.3 Proofs for Section 2.6

C.3.1 Rates of Convergence

In this section we derive the rates of convergence of several terms which later on are
used for computing the rate of convergence ofâ. The proofs are straightforward but
have been excluded from section 2.6 in order to enhance readability.
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PROOF OF LEMMA 2.6.3:
By assumptionΘ is such that we have for allθ = (a′, σ2, τ 2)′ ∈ Θ thatσ2 ≥ c > 0.
Thus 1
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. Therefore we get in any case that1

σ̂2 = OP (1) and
1

n ω̂2
n

= OP (1). If τ 2
0 > 0, thenω2
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(
1

n ω2
n

√
T

)
.

For proving the second assertion denoteB̂1 = 1
n (T−p)

∑T
t=p+1

∑n
i=1 x̊

(i)
t−1 x̊

(i)′
t−1 and

B̂2 = 1
T−p

∑T
t=p+1 x̄t−1 x̄′t−1 (notation as in remark 2.6.1). Then

B̂ −B =
1

σ2

(
B̂1 − (n− 1) σ2

n
B

)
+

(
1

σ̂2
− 1

σ2

)
B̂1

+
1

nω2
n

(
B̂2 − ω2

nB
)

+

(
1

n ω̂2
n

− 1

nω2
n

)
B̂2 .

Due to the mean-square convergence of the panel autocovariance estimator (compare
e.g. remark 2.6.1), we see directly that the first term in this expression is of order

OP

(
1√
n T

)
and thatB̂2−ω2

nB = OP

(
ω2

n√
T

)
. Thus the third term is of orderOP

(
1

n
√

T

)
,

independent ofτ 2
0 > 0 or τ 2

0 = 0. Moreover the mean-square convergence yields that
B̂1 = OP (1) andB̂2 = OP (ω2

n). Altogether we obtain that

B̂ −B = OP

(
1√
nT

)

due to the rates of convergence of the different parameter estimators. ut

The second result states the rates of convergence ofĈ1 andĈ2. We have omitted these
calculations in the proof of theorem 2.6.5.

C.3.1 LEMMA

In the setting of theorem 2.6.5, we have

1

σ̂2
Ĉ1 = OP

(
1√
nT

)
and

1

n ω̂2
n

Ĉ2 = OP

(
1

n
√
T

)
.

PROOF:
By assumption̊X(i)

s andε̊(i)
t are independent fors < t. Furthermore lemma 2.2.4 states

that

cov
(
X̊

(i)
t−k, X̊

(j)
t−l

)
= Ψ(k − l) cov

(
ε̊
(i)
t , ε̊

(j)
t

)
=

(
δij − 1

n

)
σ2

0 Ψ(k − l) ,

whereσ2
0 = var ε

(i)
t . Denote thekth entry ofĈ1 by Ĉ1,k and ofĈ2 by Ĉ2,k. Then we

have for allk = 1, . . . , p that

E Ĉ2
1,k = E

(
1

n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t−k ε̊

(i)
t

)2
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=
1

n2 (T − p)2

T∑
s,t=p+1

n∑
i,j=1

E
(
X̊

(i)
s−k ε̊

(i)
s X̊

(j)
t−k ε̊

(j)
t

)

=
1

n2 (T − p)2

T∑
s,t=p+1

δst

(
n

(
n− 1

n

)2

+ n (n− 1)
1

n2

)
σ4

0 Ψ(0)

=
n− 1

n2 (T − p)
σ4

0 Ψ(0) .

Analogously, we get from lemma 2.2.4 that for allk = 1, . . . , p

E Ĉ2
2,k =

1

(T − p)
γ̄n(0)ω2

n =
1

(T − p)
ω4

n Ψ(0) .

As we have shown in corollary 2.6.3 that1
σ̂2 = OP (1) and 1

n ω̂2
n

= OP

(
1

n ω2
n

)
, we

directly obtain that

1

σ̂2
Ĉ1 = OP

(
1√
nT

)
and

1

n ω̂2
n

Ĉ2 = OP

(
1

n
√
T

)
. ut

C.3.2 Some Remarks on Cumulants

We need some results on cumulants for determining the mean-square rates of conver-
gence of the bias termŝβ1 andβ̂2 in the GICM. More precisely, we want to get bounds
for cumulants of compound processes of the typeY

(i)
r,s (t) = X

(i)
t−r X

(i)
t−s, t ∈ Z, where

{X(i)
t }t∈Z, i = 1, . . . , n, are causal Gaussian autoregressive time series as described

in section 1.1. For Gaussian processes all cumulants of order three and higher are
zero. Therefore all higher order cumulants of the compound processesY

(i)
r,s (t), t ∈ Z,

i = 1, . . . , n, 0 ≤ r, s ≤ p, can be reduced to functions of second order cumulants.
Thus all subsequent proofs are based on the following property:

C.3.2 THEOREM

Let {X(i)
t }t∈Z, i = 1, . . . , n, be a panel of stationary Gaussian autoregressive time

series as in assumption 1.2.1 such thatcov(X
(i)
s , X

(j)
t ) = un cov(X

(i)
s , X

(i)
t ) for i 6= j

with un = O
(

1
n

)
. Further let0 ≤ rk, sk ≤ p for all k = 1, . . . ,m.

Then, identifyingm+ 1 ≡ 1, we get

n∑
i1,...,im=1

T∑
t1,...,tm=p+1

m∏

k=1

E
(
X

(ik)
tk−rk

X
(ik+1)
tk+1−sk+1

)
= O

(
(nT )m−2

)

for all m ≥ 3.

PROOF:
By assumption,cov(X

(i)
s , X

(i)
t ) = γn(s − t) andcov(X

(i)
s , X

(j)
t ) = un γn(s − t) for

i 6= j. Due to lemma 1.1.2, eachX(i)
t , i = 1, . . . , n, admits a MA(∞) representation

such that
X

(i)
t =

∞∑
u=0

ψu ε
(i)
t−u ,
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where for eachi = 1, . . . , n the{ε(i)
t }t∈Z are independently and identically distributed

with E ε(i)
t = 0 andvar ε

(i)
t = σ2. This means thatγn(h) =

∑∞
u=0 ψu ψu+|h| σ2 for all

h ∈ Z. Because of proposition 1.1.3 we know that|ψu| ≤ c ρu for all u > 0, where
c > 0 and0 < ρ < 1.
For ease of notation letξk = rk− sk+1 anddk = tk− t1 for k = 1, . . . ,m. This implies
that−(p− 1) ≤ ξk ≤ p− 1 and−(T − p− 1) ≤ dk ≤ T − p− 1 for all k = 1, . . . ,m.
We therefore get

n∑
i1,...,im=1

T∑
t1,...,tm=p+1

m∏

k=1

E
(
X

(ik)
tk−rk

X
(ik+1)
tk+1−sk+1

)

=
n∑

i1,...,im=1

T∑
t1,...,tm=p+1

m∏

k=1

(
δik,ik+1

− (1− δik,ik+1
) un

)

× γn(tk − rk − tk+1 + sk+1)

≤
n∑

i1,...,im=1

T∑
t1,...,tm=p+1

∞∑
u1,...,um=0

m∏

k=1

c2
(
δik,ik+1

− (1− δik,ik+1
)un

)

× ρuk ρuk+|tk−rk−tk+1+sk+1| σ2

= c̃n

T∑
t1,...,tm=p+1

m∏

k=1

ρ|tk−tk+1−ξk|

≤ c̃n

T∑
t=p+1

T−p−1∑

d2,...,dm=−(T−p−1)

ρ|d2+ξ1| ρ|dm−ξm|
m−1∏

k=2

ρ|dk−dk+1−ξk|

≤ c̃n · T · (2T − 2p− 1)m−3

T∑

d2,dm=−T

ρ|d2| ρ|dm|

= O
(
Tm−2

)
,

For the last inequality we have used that|ρ| < 1. Furthermore we have enlarged the
sum in order to take the presence of theξk, k = 1, . . . ,m, into account.
The constant̃cn is given by

c̃n = σ2m

(
c2

1− ρ2

)m n∑
i1,...,im=1

m∏

k=1

(
δik,ik+1

− (1− δik,ik+1
)un

)
.

If un = O
(

1
n

)
, then

n∑
i1,...,im=1

m∏

k=1

(
δik,ik+1

− (1− δik,ik+1
)un

)
= O

(
nm−2

)

as the product equals 1 if and only ifi1 = · · · = im. Otherwise it is of orderO (u2
n),

because then at least two pairs in{(ik, ik+1), k = 1, . . . ,m} must fulfil thatik 6= ik+1.
This completes the proof. ut

In the above proof, we just have used the fact that
∏m−1

k=2 ρ|dk−dk+1+ξk| is bounded by
1. Since the factors in this term are interconnected, an explicit calculation does not
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lead to a further reduction of the order. We also can see from the proof that we get the
analogous result, of orderO(Tm), if we constrain ourselves to the fact that the MA(∞)
coefficients are absolutely summable.

In order to simplify the notation, we deduce from the above result an analogous state-
ment on cumulants.

C.3.3 LEMMA

In the setting of the above theorem letY
(ik)
rk,sk(t) = X

(ik)
t−rk

X
(ik)
t−s , t ∈ Z.

Then form ≥ 3

n∑
i1,...,im=1

T∑
t1,...,tm=p+1

cum
(
Y (i1)

r1,s1
(t1), . . . , Y

(im)
rm,sm

(tm)
)

= O
(
(nT )m−2

)
.

PROOF:
For ease of notation, denoteX(il)

tl−j byXl,j. Theorem 2.3 of Brillinger (1981) gives

T∑
t1,...,tm=p+1

cum
(
Y (i1)

r1,s1
(t1), . . . , Y

(im)
rm,sm

(tm)
)

=
T∑

t1,...,tm=p+1

∑
ν1+···+νq=ν

cum (Xl,j; (l, j) ∈ ν1) . . . cum (Xl,j; (l, j) ∈ νq) ,

where the second summation runs over all indecomposable partitions of
ν = {(l, jl), l ∈ {1, . . . ,m}, jl ∈ {rl, sl}}.
As the processes{X(i)

t }t∈Z, i = 1, . . . , n, are Gaussian, all cumulants of order larger
than two are zero (Shiryayev 1984, p. 291). Thus if we identifym + 1 ≡ 1, the
remaining partitions are of the formνk = {(k, rk), (k + 1, sk+1); k = 1, . . . ,m}. This
means that we sum over products of covariances which are of the form needed for the
preceding lemma. ut

Up to here, we have derived bounds form ≥ 3. The casem = 2 has to be treated
separately.

C.3.4 LEMMA

Under the assumptions of theorem C.3.2,

n∑
i1,i2=1

T∑
t1,t2=p+1

cum
(
X

(i1)
t1−r1

X
(i1)
t1−s1

, X
(i2)
t2−r2

X
(i2)
t2−s2

)

=
n∑

i1,i2=1

T∑
t1,t2=p+1

[
E

(
X

(1)
t1−r1

X
(2)
t2−s1

)
E

(
X

(1)
t1−r2

X
(2)
t2−s2

)

+ E
(
X

(1)
t1−r1

X
(2)
t2−s2

)
E

(
X

(1)
t1−r2

X
(2)
t2−s1

) ]

= O(nT ) .
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PROOF:
Straightforward calculation gives

n∑
i1,i2=1

T∑
t1,t2=p+1

E
(
X

(1)
t1−r1

X
(2)
t2−s1

)
E

(
X

(1)
t1−r2

X
(2)
t2−s2

)

≤ (
n+ u2

n n (n− 1)
)
c2 σ4

T−p−1∑

h=−(T−p−1)

∞∑
u,v=0

ρu ρu+|h−r1+s1| ρv ρv+|h−r2+s2|

≤ (
n+ u2

n n (n− 1)
)
c2 σ4 1

(1− ρ2)2
(2T − 2 p− 1) = O(nT )

if un = O
(

1
n

)
. As the first equality of the lemma’s statement is due to theorem 2.3

of Brillinger (1981), this already implies the result. ut

Now we are in the position to prove lemma 2.6.12.

PROOF OF LEMMA 2.6.12:
Denote the entries ofB−1 by bk,l, k, l = 1, . . . , p, and letY (i)

g,h(t) = X̊
(i)
t−g X̊

(i)
t−h. Fur-

thermore recall (see the proof of theorem 2.6.5) that thekth entry ofĈ1 fulfils

Ĉ1,k =
(
Â1 − B̂1 a

)
k

= −
p∑

l=0

al
1

n (T − p)

T∑
t=p+1

n∑
i=1

X̊
(i)
t−l X̊

(i)
t−k

if we denotea0 = −1. Therefore themth entry ofβ̂1 is

β̂1,m =

p∑
g=1

bm,g

p∑

h=1

[ 1

n (T − p)

T∑
s=p+1

n∑
i=1

Y
(i)
g,h(s)− γ̊n(g − h)

]

×
p∑

k=1

bh,k

p∑

l=0

1

n (T − p)

T∑
t=p+1

n∑
j=1

al Y
(j)
k,l (t) .

As theX̊(i)
t , t ∈ Z, i = 1, . . . , n, are Gaussian withcov(X̊

(i)
s , X̊

(i)
t ) = γ̊n(s − t) and

cov(X̊
(i)
s , X̊

(j)
t ) = un γ̊n(s− t) for i 6= j, theorem 2.3 of Brillinger (1981) gives

E
(
Y

(j1)
k1,l1

(t1)Y
(j2)
k2,l2

(t2)
)

= γ̊n(k1 − l1) γ̊n(k2 − l2)

+
(
δj1,j2 − (1− δj1,j2)u

2
n

) [
γ̊n(t1 − t2 − k1 + k2) γ̊n(t1 − t2 − l1 + l2)

+ γ̊n(t1 − t2 − k1 + l2) γ̊n(t1 − t2 + k2 − l1)
]
.

Moreover we have by assumption thatk1 > 0, k2 > 0 and thus alsok1 + k2 > 0. As
(see lemma 2.2.4)̊γn(h) = n−1

n
Ψ(h) σ2

0, we get using the relations given in proposi-
tion 1.1.6 that

p∑

l1,l2=0

al1 al2 γ̊n(k1 − l1) γ̊n(k2 − l2) = 0 ,
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p∑

l1,l2=0

al1 al2

T∑
t1,t2=p+1

γ̊n(t1 − t2 − k1 + l2) γ̊n(t1 − t2 + k2 − l1) = 0 and

p∑

l1,l2=0

al1 al2

T∑
t1,t2=p+1

γ̊n(t1 − t2 − k1 + k2) γ̊n(t1 − t2 − l1 + l2)

=
(T − p)(n− 1)

n
σ2

0 γ̊n(k1 − k2) .

Therefore

p∑

l1,l2=0

al1 al2

T∑
t1,t2=p+1

n∑
j1,j2=1

E
(
Y

(j1)
k1,l1

(t1)Y
(j2)
k2,l2

(t2)
)

=
(T − p)(n− 1)

n
σ2

0

(
n+ u2

n n (n− 1)
)
γ̊n(k1 − k2) .

ThusE β̂2
1,m reduces to

E β̂2
1,m =

p∑

g1,g2,h1,h2,k1,k2=1

bg,h,k

[ p∑

l1,l2=0

al1 al2

1

n4 (T − p)4

×
T∑

s1,s2,t1,t2=p+1

n∑
i1,i2,j1,j2=1

E
(
Y

(i1)
g1,h1

(s1)Y
(i2)
g2,h2

(s2)Y
(j1)
k1,l1

(t1)Y
(j2)
k2,l2

(t2)
) ]

− (n− 1) (1 + u2
n (n− 1))

n2 (T − p)
σ2

0 γ̊n(g1 − h1) γ̊n(g2 − h2) γ̊n(k1 − k2) .

where the constant isbg,h,k = bm,g1 bm,g2 bh1,k1 bh2,k2.
We now investigate the first term of this expression. As Leonov and Shiryayev (1959)
have shown, the expectation of a product of random variables can be represented as
a sum of cumulants of smaller or equal order. The formula also can be found in
(Shiryayev 1984, p. 293). We have derived the order of the cumulants form ≥ 2
in theorem C.3.3 and lemma C.3.4. Thus for all0 ≤ ri, si ≤ p, i = 1, . . . , 4,

1

n4 (T − p)4

n∑
i1,i2,i3,i4=1

T∑
t1,t2,t3,t4=p+1

cum
(
Y (i1)

r1,s1
(t1), Y

(i2)
r2,s2

(t2), Y
(i3)
r3,s3

(t3), Y
(i4)
r4,s4

(t4)
)

= O

(
1

n2 (T − p)2

)

1

n3 (T − p)3

n∑
i1,i2,i3=1

T∑
t1,t2,t3=p+1

cum
(
Y (i1)

r1,s1
(t1), Y

(i2)
r2,s2

(t2), Y
(i3)
r3,s3

(t3)
)

= O

(
1

n2 (T − p)2

)

and
1

n4 (T − p)4

( n∑
i1,i2=1

T∑
t1,t2=p+1

γ̊n(t1 − r1 − (t2 − s2)) γ̊n(t2 − r2 − (t1 − s1))
)2

= O

(
1

n2 (T − p)2

)
.
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Furthermore we have due to the preceding proposition that

p∑

l1,l2=0

al1 al2

T∑
t3,t4=p+1

γ̊n(t3 − k1 − t4 + k2) γ̊n(t3 − l1 − t4 + l2) = 0

and
p∑

l1,l2=0

al1 al2

T∑
t3,t4=p+1

γ̊n(t3 − k1 − t4 + l2) γ̊n(t3 − l1 − t4 + k2)

=
(n− 1) (T − p)

n
σ2

0 γ̊n(k1 − k2) .

Thus the remaining terms, which are based on the second order cumulants, become

p∑

l1,l2=0

al1 al2

T∑
t1,t2,t3,t4=p+1

γ̊n(t3 − k1 − (t4 − l2)) γ̊n(t4 − k2 − (t3 − l1))

× γ̊n(g1 − h1) γ̊n(g2 − h2)

=
(n− 1) (T − p)3

n
σ2

0 γ̊n(g1 − h1) γ̊n(g2 − h2) γ̊n(k1 − k2)

and
p∑

l1,l2=0

al1 al2

T∑
t1,t2,t3,t4=p+1

γ̊n(g1 − h1) γ̊n(g2 − h2) γ̊n(k1 − l1) γ̊n(k2 − l2) = 0 .

Altogether we obtain that

E β̂2
1,m =

p∑

g1,g2,h1,h2,k1,k2=1

bg,h,k
(n− 1) (1 + u2

n (n− 1))

n2 (T − p)
σ2

0

×
(
γ̊n(g1 − h1) γ̊n(g2 − h2) γ̊n(k1 − k2)

− γ̊n(g1 − h1) γ̊n(g2 − h2) γ̊n(k1 − k2)
)

+O

(
1

n2 (T − p)2

)

= O

(
1

n2 (T − p)2

)
.

The proof forβ̂2,m is analogous. As it only depends onn via X̄t = 1
n

∑n
i=1X

(i)
t , we

here get̂β2,m = O
(

1
(T−p)2

)
. ut
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