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Abstract

We consider parameter estimation in panels of intercorrelated time series. By a fac-
torisation of the conditional log-likelihood function we obtain a new estimafor

for panels of intercorrelated autoregressive time series. We generalise this model to a
factor model, where a single underlying background process is responsible for the com-
mon behaviour of the time series in the panel, and derive the corresponding conditional
maximum likelihood estimators. Consistency and asymptotic normality are proved for
the estimators in both models. It turns out that is asymptotically equivalent to the
estimatoray7 given in Hjellvik and Tjgstheim (1999a) if the number of time series

in the panel tends to infinity. It is more efficient if only the length of the time series
increases. Furthermore the mean squared errors of the dominant terms in the stochastic
expansions of these estimators have the fatio 1) /n, which indicates that already the
small sample bias af,, r is smaller than that of ;. These properties are confirmed

in the simulations.

The second part of the thesis is concerned with robust estimation in panels of autore-
gressive time series. We investigate three different approaches. Firstly we robustify the
above estimators in a direct way. Furthermore we generalise the robust autocovariance
estimator of Ma and Genton (2000) to the panel case. We define a panel breakdown
point for time series in two ways depending on the type of outliers assumed and com-
pute its value for the panel autocovariance estimator. The estimated autocovariances
are then used for the robust parameter estimation. Finally we propose an outlier test
based upon the phase space representation of the time series in the panel, which can be
used for eliminating outliers from the data set before using a non-robust method of es-
timation. We derive the asymptotic distribution of the test statistic and define a robust
version of the test. For comparison we include other estimators in the analysis. The
performance of the proposed robust procedures is investigated in a simulation study.
For assessing the applicability of the above methods we analyse two sets of empirical
data.






Kurzfassung

Die vorliegende Arbeit befasst sich mit Parameterschéatzung in Panels interkorrelierter
Zeitreihen. Durch eine Faktorisierung der bedingten Log-Likelihood-Funktion erhal-
ten wir einen Schatzer, - in Panels von interkorrelierten autoregressiven Zeitreihen.
Dieses Modell wird zu einem Faktormodell verallgemeinert, in dem ein einzelner im
Hintergrund ablaufender Prozess fur das gemeinsame Verhalten der Zeitreihen im Panel
verantwortlich ist. Hierflr entwickeln wir den zugehérigen Maximum-Likelihood-
Schéatzer. Fur die Schatzer in beiden Modellen werden Konsistenz und asymptotische
Normalitat bewiesen. Es stellt sich heraus, dgss asymptotisch aquivalent zu dem
Schéatzer g aus Hjellvik and Tjgstheim (1999a) ist, wenn die Zahl der Zeitreihen im
Panel gegen Unendlich strebt. Wenn nur die Lange der Zeitreihen waclistyistf-
fizienter. Zudem stehen die quadratischen Fehler der Hauptterme in der Entwicklung
dieser Schéatzer im Verhaltnis — 1)/n, was nahelegt, dass schon der Bias ugm

kleiner als derjenige voay ist. Diese Eigenschaften werden durch die Simulationen
bestétigt.

Der zweite Teil der Arbeit beschaftigt sich mit robuster Schatzung fur Panels von au-
toregressiven Zeitreihen. Wir untersuchen drei unterschiedliche Anséatze. Zunachst
robustifizieren wir die obigen Schatzer direkt. Des weiteren verallgemeinern wir den
robusten Autokovarianzschatzer von Ma and Genton (2000) auf die Panel-Situation.
Wir definieren einen Breakdown Point fur Zeitreihen in Abhangigkeit von der Art
der angenommenen Ausreif3er und berechnen seinen Wert fir den Panel-Autokova-
rianzschatzer. Die geschatzten Autokovarianzen werden dann fur die robuste Parame-
terschatzung eingesetzt. Zuletzt schlagen wir einen Test fur Ausreil3er vor, der auf
der Phasenraumdarstellung der Zeitreihen im Panel beruht. Dieser kann dazu ver-
wandt werden, Ausreil3er vor Anwendung einer nicht robusten Schatzmethode aus dem
Datensatz zu entfernen. Wir bestimmen die asymptotische Verteilung der Teststatistik
und definieren eine robuste Version des Tests. Zum Vergleich schlieBen wir weitere
Schatzer in die Untersuchung mit ein. Das Verhalten der vorgeschlagenen robusten
Verfahren wird in einer Simulationssstudie untersucht.

Um die Anwendbarkeit der obigen Methoden zu beurteilen, analysieren wir zwei Daten-
satze aus empirischen Studien.
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Introduction

Panel data analysis has a wide range of applications, including econometrics, the social
sciences, population dynamics or medical studies. In contrast to repeated measurements
of cross-sectional data, panel methods are used for analysing repeated measurements
on the same individuals. Here the term “individuals” stands for example for workers,
countries, regions or patients. If a longer period is covered, the focus is often on the
individual development, and the data is also called longitudinal data. However panels
also may consist of a small number of large cross-sectional samples. Thus two kinds of
asymptotic behaviour are of interest: increase in the length of the measurement period
or increase in the size of the cross-section.

In the present thesis we consider panels of intercorrelated time series. This means that
we assume the individual measurements to be serially correlated. Furthermore we do
not exclude correlation across the panel. This double structure of correlation implies
that standard methods for panel data analysis are not directly applicable. Nevertheless
such models are of interest in practice: the initial motivation for this thesis came from

a study conducted at the University Hospital of Heidelberg, Department of Internal and
Psychosomatic Medicine. The aim of the study was to investigate the therapy process
in a multimodal therapy for fibromyalgia syndrome patients. This is a chronic pain
disease which is characterised by widespread pain and a reduced pain threshold. The
therapy’s main focus is on helping patients to cope better in their daily life. Based
on a bio-psycho-social approach, the distinct modules combine information, medica-
tion, physical therapy and a psychotherapeutic group therapy. Thus the question arises
whether the therapy processes of different patients still can be modelled as independent
when they participate in the same therapy group. More general, it can be asked whether
undergoing the same treatment may already cause a dependency.

As data collected in an experiment always may contain outliers, we were furthermore
led to investigate robust methods for panel data. One source of contamination lies of
course in the recording of the data. However in the above study the data was collected
by the patients themselves using a handheld computer. Thus the patients filled in their
guestionnaires without being able to see previous values. Moreover retrospective en-
tries could easily be identified and excluded from the data. Therefore we focus on a
second type of panel data outliers, namely those where one complete time series is ge-
nerated by a different model. Such a situation arises for example if a patient has been
wrongly assigned to a therapy group which otherwise is homogeneous.
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Intercorrelation in panels of time series

A quite general linear dynamic model for panel observations is given in (Hsiao 1986,
p. 71): LetXt(Z), t=1,...,7,i = 1,...,n, be a panel of time series observations,
wheret denotes time andthe individual series in the panel. Then the observations are

modelled as
p

Xt(i) = Z ay Xt(i)k +m+ N+ Wt(i) + ef) .
k=1

HereWt(i) is a possibly vector series of explanatory variables. The random varjable
denotes a cross-sectional effect influencing all series in the panel simultaneously and
A; stands for the individual effects not taken into account by the explanatory variables.
Finally the individual error terms\”, ¢ = 1,...,T,i = 1,...,n, are assumed to be
independently and identically distributed.
In the analyses; often is excluded. Hsiao writes on the following page that “for ease of
exposition, we assume that the time specific effegigjo not appear”. Other standard
textbooks, e.g. Diggle et al. (1994), Arellano (2003), and the collection of Matyas and
Sevestre (1992) do also not include this term. In the book of Baltagi (2001), interindi-
vidual correlation is only considered briefly for regression models, not for dynamic
models. Maddala (1971) discusses random time effects but concludes that his estima-
tors are biased in the presence of lagged dependent variables. A variable corresponding
to n, already is ignored in the basic papers on dynamic models by Holtz-Eakin et al.
(1988) and Nerlove (1971). In the special framework of a large number of small sam-
ples, Cruddas et al. (1989) investigate approximate conditional likelihood estimation
for short first-order autoregressive processes; Cox and Solomon (1988) test for serial
correlation and Karioti and Caroni (2002) give a method for detecting outlying time
series characterised by a level shift. Kiviet (1995) derives an approximate small sample
bias for various estimators in dynamic models containing exogenous variables. Still, in
each of these cases the time series are assumed to be independent.
To our knowledge, parameter estimation in a dynamic model incluglihgs first been
investigated by Sethuraman and Basawa (1994). They regard a panel of autoregressive
processes with mean zero. In the analyses it is treated as a multivariate time series
where the covariance structure of the innovations is accordingly restricted. The asymp-
totic distributions of the estimators are derived under the assumption that the length of
the time series tends to infinity. Hjellvik and Tjgstheim (1999a,b) essentially consider
the same model but distinguigih and the individual error ternéi), i=1,...,n.1In
Hjellvik and Tjgstheim (1999a) they discuss parameter estimation for this model and
derive asymptotic distributions forT — oo. This also includes the case that only the
number of time series tends to infinity, whereas their length remains fixed. In the subse-
quent paper (Hjellvik and Tjgstheim 1999b) they consider estimation of the variances
and order determination. Their line of research has been continued by Fu et al. (2002)
who are concerned with model selection criteria.
Forni et al. (2000, 2001) propose a so-called “generalised dynamic factor model” which
includes the above model as a special case. They are mainly concerned with determi-
ning the number of common factors in a panel model, but their method also allows
estimating the parameters in a second step. The underlying idea is to investigate the
behaviour of thex x n)-covariance matrix if the number of time series in the panel
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tends to infinity.

Tests for intercorrelation can be obtained in various ways. Brillinger (1973,1980) pro-
poses a test for intercorrelation derived from the frequency domain representation of
the processes. Frees’ nonparametric test (Frees 1995), which is based on a U-statistic,
Is also valid in the case of short time series.

We have not included Bayesian approaches to parameter estimation in the above over-
view. However it seems that also in the Bayesian framework dynamic models with a
common time effect are not commonly used (Congdon 2004, Bauwens et al. 1999).

Robust Methods

Itis generally acknowledged that real data always may contain outliers. Hampel (1973),
for example, states that their proportion reaches 10 — 15%. Thus we need robust proce-
dures which permit inference even in the presence of outliers. In the case of single time
series, many different methods have been proposed for robustly estimating autoregres-
sive parameters. An overview of the classical estimators can be found in Martin and
Yohai (1985). Generalised M-estimators (Denby and Martin 1979, Bustos 1982, Kin-
sch 1984) are commonly used, see also Martin and Yohai (1991). Here the estimator
is defined in an indirect way and has to be obtained through numerical minimisation.
Rousseeuw and Leroy suggest using a robustified least squares procedure, the least me-
dian of squares. A similar method is the least trimmed squares estimator (Rousseeuw
and Leroy 1987). Because of the computational complexity of these estimators, a sub-
sampling algorithm is needed for computation. They are examples of S-estimators
which have been introduced in Rousseeuw and Yohai (1984). The above estimators
have been implemented in software packages such as R (Gentleman and Ihaka 2004)
and can therefore be employed directly. Furthermore we want to mention R-estimators
for parameter estimation in autoregressive models which were discussed in Koul and
Saleh (1993) and generalised in Koul and Ossiander (1994). Ferretti et al. (1991) intro-
duce RAR-estimators which are also rank-based in nature. A more recent generalisation
are the so-called weighted Wilcoxon estimators (Terpstra et al. 2001). Depending on
the weight used, they e.g. correspond to Jaeckel’s dispersion function (Jaeckel 1972)
with Wilcoxon scores, or in the AR(1) case to the median of pairwise slopes (Theil
1950, Sen 1968). The RA-estimators of Bustos and Yohai (1986) are obtained by mo-
difying the residuals used in the conditional maximum likelihood estimation equations.
For the computation an iterative procedure has to be used.

A more direct strategy is to use robust estimators of the covariance riagnid the
corresponding vector of autocovarianées the the least squares or Yule-Walker equa-
tionsd = I'"*4. In the first case each element of the matrix and vector is estimated se-
parately, whereas in the second cise (¥(i — 9))ijer..pandy = (3(1),....9(p))"

The autocovariances in the above equation may be replaced by autocorrelations. It is
also possible to estimate the covariance matrix directly in a robust way. Famous exam-
ples are the generalised M-estimators proposed by Maronna (1974) and Tyler (1987) or
the projection method advocated in Maronna et al. (1992). Also the minimum volume
ellipsoid or the minimum covariance determinant estimators yield robust covariance es-
timates (Rousseeuw and Leroy 1987). A simulation study comparing the performance
of various estimators of these types can be found in Lo and Li (1990).



v INTRODUCTION

A third, entirely different possibility for obtaining robust estimators is to identify out-
liers in a first step. After deleting these data from the sample, non-robust methods
can be used for the estimation. One example is the above mentioned reweighted least
squares procedure (Rousseeuw and Leroy 1987). It is often stressed (Rousseeuw and
Leroy 1987, Huber 1981) that for the diagnostic step a robust estimator should be cho-
sen since otherwise masking effects (Becker and Gather 1999) cannot be excluded.

As far as we know, there exist no methods which have been designed explicitely for
robust parameter estimation in panels of time series. In particular the case that one or
more time series are generated by a different autoregressive model, whereas the panel
otherwise is homogeneous, has never been investigated. The standard procedure is to
test for homogeneity first (Hsiao 1986, p. 11). If this assumption is rejected, the data
are modeled as heterogeneous.

Outline of the Thesis

We consider panels of dependent time series. More specifically we assume that the
individual time series have an autoregressive structure, but that the innovations allow for
a common random shock. This is also the model investigated by Hjellvik and Tjgstheim
(1999a,b). Their method is to treat the common shdeks$,c; as a nuisance parame-

ter, which allows them to derive a conditional maximum likelihood estimator for the
autoregressive parameters. However this results in a loss of information since only
the deviations from the mean process are taken into account. By a factorisation of
the conditional likelihood function we obtain a new estimator which also includes the
information of the mean process. As it is based on a weighted average of two separate
terms, we propose a recursive algorithm for its calculation.

Furthermore the factorisation allows us to generalise our results. We assume that the
panel is generated by a single underlying process and that the individual time series
are fluctuating around it. To be more specific, we assumeXlﬁ%t: Y: + Zt(i) for

t ez i=1,..n where{Y,}er and{Z},cz, i = 1,...,n, are independent
autoregressive processes. It turns out that the generalised process is a special case of
the factor model proposed by Forni et al. (2000).

For proving asymptotic normality of the parameter estimators, we have to distinguish
the cases ofi — oo, T fixed, andT’" — oo. In the first case, we can use the stan-
dard central limit theorem for independently and identically distributed observations.
ForT — oo we however have to employ a central limit theorem for martingale ar-
rays. It is shown that in the case of a finite number of time series the new estimator is
more efficient than the one of Hjellvik and Tjgstheim. Moreover we derive the rates of
convergence of the estimators. We also briefly discuss the bias terms.

In the second part of the thesis we investigate robust parameter estimation for panels of
time series. As mentioned in the beginning, we are especially interested in the case that
entire time series are outliers. Concentrating on some basic robust methods which can
easily be generalised to the panel case, we analyse three different approaches.

The first one is to robustify an estimator by replacing all non-robust parts with a robust
method in a way similar to Haddad (2000). We use this method for the parameter
estimator discussed in the previous chapter. To enhance numerical stability we propose
an iterative procedure for averaging over matrices. Since bootstrap methods can be
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used to assess the empirical bias of parameter estimators, we discuss two versions of
time series bootstrap exemplarily for this estimator.

Secondly, autocovariances may be estimated using the identity

1
cov(X,Y) = o (var(aX + bY) — var(aX — bY))

which is valid for any square integrable random variablesindY. Here the vari-

ance can be replaced with a robust alternative, see Huber (1981). We generalise the
estimator proposed by Ma and Genton (2000), which is based on the robust scale esti-
mator(@),, (Rousseeuw and Croux 1993), to the panel case. A panel breakdown point
Is defined in two ways depending on the type of outliers assumed. We compute its
value for the robust panel autocovariance estimator. The estimated autocovariances are
used as the components of the covariance matrix and the autocovariance vector. In
contrast to this elementwise robustification, we then study the behaviour of the para-
meter estimator derived from another method where the covariance matrix is estimated
directly using the minimum covariance determinant (MCD) estimator (Rousseeuw and
Leroy 1987). Next we treat as a reference two methods designed for robust regres-
sion: an M-estimator proposed by Huber (1996) and the least trimmed squares proce-
dure (Rousseeuw and Leroy 1987). These methods are investigated as alternatives to
the robustified version of the parameter estimator derived in the first chapter.

Finally we discuss two methods for outlier detection in panels of time series. We focus
on the case that entire time series may be generated by another model. The first one is
derived from a likelihood ratio test for panel homogeneity which has been proposed by
Basawa et al. (1984). We include it in order to illustrate how outliers affect a non-robust
test in our setting. The second method is based on a phase space representation of the
time series in the panel. It generalises the procedure for fast outlier detection developed
by Gather, Imhoff and Fried (2002). All of the proposed robust panel estimators are
compared in a simulation study.

As the thesis has been motivated by a medical study, applicability is an important aspect
for us. We thus use our methods for analysing two empirical data sets. First we consider
the grey-sided voles data which already served Hjellvik and Tjgstheim (1999a) as an

example. Then we analyse the data from the fibromyalgia syndrome study mentioned
at the beginning. This chapter also illustrates the behaviour of the parameter estimators
depending on the strength of the intercorrelation.

Thus the thesis is structured as follows: First we introduce our notation and summarise
some basic results. Then we regard the theoretical properties of our parameter estima-
tors in the intercorrelated model and its generalisation. We prove asymptotic normality
in both cases and derive the rates of convergence. For numerical simulations we refer to
the Appendix. The third chapter is concerned with robust estimation in the panel case.
We propose several methods based on the different concepts and investigate their be-
haviour with simulated data. In the last chapter, we apply our methods to the empirical
data. Each chapter concludes with a discussion. The Appendix contains additionally
some basic calculations which we include for reference.
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Notation

General notations

I
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backward shift operator (section 1.1)

process for which the stationarity condition
a(z) # 0for all z with |z| <1 (ass. 1.1.1) is fulfilled

convergence in distribution
X, is asymptotically normal (see e.g. Brockwell and Davis (1991))

panel ofn time series

mean process

ith residual process,=1,...,n
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pointwise limit of £,, 7(#) for ' — oo, n fixed (def. 2.5.3)
pointwise limit of £,, 7(#) for n — oo (def. 2.5.3)

The intercorrelation model (ICM) is defined in section 2.2 and its generalised version (GICM)

insection2.3. Fot € Z,i =1, ...,

e in the ICM:

n, we have

T (£ ) = B ()
with €§Z) N N(O, 0_2)7 Ny ~ N(O,TQ), ft =&+~ N(O,w%), WherewTQL = 7'2 -+ %
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Always let > |ihy| < oo and Yo7 |ou| < oo

and denote ¥(h) =

ZZO:O (2 1/Ju+\h\ and ®(h) =
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Chapter 1

Preliminaries

The topic of this thesis are special panels of autoregressive time series. Depending
on the context, we use different notations for representing the processes. These are
introduced in the first section. Furthermore we present some fundamental properties of
stationary autoregressive time series here and state our basic assumptions.

A tool employed several times throughout the thesis is the panel covariance estimator
() = wizsis Sy Yotone X1 X}, wheren denotes the number of time series

in the panel and’ their length. Under some regularity conditions on the correlation
structure of the time series in the panel it is mean-square consistenffer co. We

prove this result in section 1.2.

1.1 Basic Results

In order to represent autoregressive time series, we often use backward shift operators
for ease of notation. The one-step backward shift opefatsdefined by

L(Zf) - Zt—l

for an arbitrary proces§Z, };cz. Then the ARf) process with innovation&:, },z,

p
Xi=> arXyp+e, teZ,
k=1

can be written in the form
p
a(L) X, = Z a,LF(X,) =¢, forallteZ.
k=0

Hereay = 1 anday, = —ay forall k = 1,...,p. We refer to the linear operatafL)
as thebackward shift operator

Throughout this thesis we impose the following assumptions (see e.g. Brockwell and
Davis 1991).
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1.1.1 ASSUMPTION
Let { X, }.cz be a zero meaocausalAR(p) process. This means that

p
X, = Z ap Xer + & forall ¢t € Z,
k=1

wherea,, # 0 and the{e, },c7 form a white noise process with(s?) = o2 for all t € Z.
Furthermore the coefficients fulfil

a(z) =1—ayz—--—ay? #0 forall z € Csuchthatz| < 1.

The above condition implies that the process is (weakly) stationary (see e.g. Shiryayev
1984, p. 392). A second consequence is that in this case the autoregressive process can
be written as an MAfo) process with absolutely summable coefficients.

1.1.2 LEMMA
Under assumption 1.1.1 the procés$, }.., admits a MA(o) representation, i.e. for
allt € Z we haveX, = >~y £1—y, Wwherey > 1, | < co.

PROOF.
See e.g. Lutkepohl (1991). O

The proof of this well-known fact is based upon the representation of the univariate
AR(p) process as a vector autoregressive process of order one which is obtained as

follows. If a4, . .., a, are the coefficients of the autoregressive pro¢esg;cz, let
Ao aq Qp ’
]p—l Qp—l

where [, , is the identity matrix of orde(p — 1) and0, , = (0,...,0)". Denote
x¢ = (Xi,..., Xi—pp1) andg, = (&,0,...,0). Then fort € Z the process can be
written as

xt=Axi1 +¢;.

Since it can easily be seen théit (I, — z4) = 1 — >_7_, a,2", the condition in
assumption 1.1.1 implies that all eigenvaluesf A fulfil |\|] < 1. This leads to a
stronger result. The proof follows the reasoning of Kiinsch (1995).

1.1.3 RROPOSITION
The MA(xc) coefficients{, }.,~o of an AR{p) process as in assumption 1.1.1 fulfil

|ty < cp*  foru>0,

with constants > 0 andp < 1.

PROOF.
For any matrixM let \,,.. (M) = max{|\|; A eigenvalue of\/}.
It is known that for every matrix\/ and every: > 0 there exists a matrix norm.||
such that
Amaa(M) < |[M| € Aaa(M) + € (1.1)
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(see e.g. Lutkepohl 1996, 8.4.1 (15)).

Let A be the matrix in the vector autoregressive representatiofnXef,c;. As all
eigenvalues ofA have modulus less than 1, we can choese 0 andp < 1 such
that \,...(A) + ¢ < p. Denote the matrix norm which fulfils (1.1) by|[5;. Then
Al < p < 1.

Moreover, for any two matrix norms||, and||.||, there exists a positive constant R
such that

1A[la < cllAlo
for all (m x m) matricesA (see e.g. Lutkepohl 1996, 8.3 (15)). Therefore we get

[ul = 1(A")1al < 141y < el|A"[ly < ellAlly < cp”,

wherec > 0 is constant. HeréA"),; denotes thek, [)th component of the matriX*
and||A"||; = max{(A“)k; k,l=1,...,p}. O

This means that the autocovariance function of a Gaussiap)AR¢cess is square
summable.

1.1.4 LEMMA

Let {X;}:cz be a causal ARY) process withe; ~ N(0,02) for all t € Z. Then the
autocovariance functiofix (h) = cov (X, Xyi), h € Z, fulfils 332 |vx (h)| < oo,
which implies thad ;> , vx(h)* < .

PrROOF

We have seen in lemma 1.1.2 that the procgss}cz has a MA(©) representation
such thatX, = > "7 ¢, e, forall t € Z, whered" ” /|¥,| < co. Because of the
orthogonality properties of the innovatiofis, },-7 we thus have foh € Z that

yx(h) = cov (Xy, Xegn) = Y tu ugin 07 < 00.

Furthermore the preceding lemma shows that the coefficients, o fulfil |, < ¢ p*
for all w > 0, wherec > 0 and0 < p < 1. Therefore for alh € Z

1
2utlh| 2 52 |R| 2 2
[rx(h |<Z|wu||¢u+|h||a <Zp =T

The result follows directly. O

Finally we want to emphasise the important relation between thesh)Afoefficients
or the autocovariance function of an autoregressive process and its autoregressive pa-
rameter.

1.1.5 REMARK

Let {¢, }.>0 be the coefficients in the MA() representation of an autoregressive pro-
cess{ X, }ez fulfilling assumption 1.1.1 and denotgh) = >"°° 1), ¢4 fOr b € Z,
Due to the absolute summability we get that(h) = cov (X;, Xiyn) = ¥(h) o? for
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h € Z, whereg? = var(g;). Thus (see e.g. Brockwell and Davis 1991, p. 93) the

autoregressive parameter= (a4, . .., a,)’ of the process fulfils, if we denotg = —1,
p p p
S aU(k-1)=0 forallk>0 and » a¥(-1)=)» a¥(l)=-1,
=0 =0 =0

which is just another form of the Yule-Walker equations. This implies in particular that

Xp:akalﬁl(k—l):—i:al@(—l) =1.

k,1=0

Because of the structure of the autocovariance function, these statements can directly
be transferred to autocovariance functions of any stationary autoregressive process with
the same autoregressive parameters.

The basic properties of the preceding remark are used frequently in this thesis. Further-
more we can employ the following result for calculating higher order mixed moments,

as these can be reduced to products of covariances if the underlying processes are Gaus-
sian.

1.1.6 RROPOSITION
Let{X,}:cz be a causal autoregressive process as in assumption 1.1.1 with autoregres-

sive parameter = (a4, . .. ,a,)" and autocovariance functiorih) = V(h) 0%, h € Z.
Denoteny = —1. Then for any: € Z,

Zakal Z Y(s—t—k+1)y(s—t+2)=(T—p)o*v(z)

k,l=0 s,t=p+1

and for anyzy, zs € 7 such that, + z, > 0,

P T
Zakal Z Y(s—t+z—k)y(s—t—2+1)=0.
k=0 s, t=p+1
PROOF.
We have mentioned in the preceding remark that the Yule-Walker equations for autoco-
variances lead t§"7_a;v(k — 1) = 0forall k > 0 and}"]_, a;y(—l) = —o>. Thus
foranyz € Z

kz;oakal ilv(s—t—k—l—l)v(s—t+z)
= h:_%p;l_l) (T = p) — ) gp;oakaz Y(h=k+1)~(h+2)
IT;:l((T—p)—h) li:oaz (;am(hﬂ—k)) v(h+2)
+ThZ;1((T—p)—h) ki;oak (éam(thk—l)) v(h — 2)
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= (T —p)ag (
k=0
= (T —p)o*~(2),

since with exception ok = [ = 0 all terms vanish.
Moreover, for any:; andz; such that; + z; > 0, the same reasoning leads to

aj, 7(—@) (%)

P T
Zakal Z Y(s—t+z1—k)y(s—t—20+1)

k,1=0 s,t=p+1
T p p
=y (Zaky((s—t+zl) - k:)) X (Zaw((s—t—ZQ)H))
sit=p+1 \ k=0 11=0
T P p
= > (Zaw((s—wzl)—k))x(Zaw((t—st)—l))
sit=p+1 \ k=0 l1=0
s—t+21<0
T 4 p
= Z (Zakfy((t—s—zl)—l—k))X(Zal’Y((t—S‘FZQ)—Z))
s,t=p+1 k=0 l1=0
s—t+21<0
t—s+22<0
p— 0,
as the last sum is empty. O

1.2 The Panel Autocovariance Estimator

In this thesis we are concerned with identically distributed but dependent time series.
In order to investigate the asymptotic behaviour of the parameter estimators, we need
an estimator of the autocovariance function of the time series which is consistent if

nT — oo. Indeed it is not necessary that the time series are independent. We only
have to assume that the cross-sectional correlation is bounded/ (i~ oc) or tends

to zero (ifn — oo, T fixed). More precisely, we impose the following:

1.2.1 ASSUMPTION
Let {X"Viez, i = 1,...,n, be a panel of identically distributed weakly stationary
time series such that
X ~N(0,072),
Vi(h) = cov(X, X,) = yu(h) forall t € Z;
and fori # j 77 (h) = cov(X{", X)) = upn(h),

wherey, (h), h € Z, andu,, € R are independent afand;.
Furthermore assume that the autocovariance function is square summable, i.e. that

Y 7a(h) < oo,
h=0
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This is motivated by the intercorrelation modelG@M”) we will investigate in this the-

sis (definition 2.2.2). In this model the time series in the panel are not independent. By
subtracting the pointwise sample mean from each time Séﬁé@}tez, 1=1,...,n,

we obtain residual proceSS{ait(i)}teZ, ¢t =1,...,n. The covariance function for two
residual processesY\” },cz and{ X" },cz is in the example of the ICM

3 () = cov (X, X,) = ((Lj - 1) W(h)o?,
n
whereo? and¥ (h), h € Z, (which is independent afand;) do not depend on.

1.2.2 REMARK
1. In this section, the assumption of a centred process is mainly for notational con-
venience. The subsequent proposition remains valid if we suppase) and
change the atuocovariance estimator accordingly, using the overall mean as an
estimator ofu. However, the models investigated later on are always panels
formed of autoregressive processes with zero mean or linear combinations of
such processes.

2. The intercorrelation coefficient, could also be defined as a function of the lag
h. However, this would complicate the notations in the following lemma. As
can be seen from its proof, we would have to assume a common upper bound for
the u, (h) in the case of, 7 — oo. And if n — oo, T fixed, the convergence
should be uniform irh. In practiceu,, will mostly be chosen independent fof
Very often we moreover assume that = O (%) In the example of the ICM,
un(h) = —1/(n — 1) for all lagsh.

We always consider panel autocovariance estimators of the following form.

1.2.3 DEFINITION

LetXt(”, t=1,...,7,7=1,...,n, be observations from a panel of time series as in
assumption 1.2.1. Fdr > 0 we define thepanel autocovariance estimatpy,(h) as
the estimator ofy, (h) obtained by

n T
. 1 (@) ()
Ar(h) = ——— x® x@
mEEnPIPIEEE

Forh < 0, Iet’A}/mT(h) = "AynyT(—h).

Now we prove mean-square consistency for this estimator. If the intercorrelation coef-
ficient u,, decreases fast enough, it even holds if only the number of time series tends
to infinity. As the conditions of the lemma are fulfilled by the residual processes in the

ICM, the result is used several times in the subsequent proofs. It is the main tool for
establishing the asymptotic properties of our parameter estimators.
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1.2.4 LEMMA
Let{Xt(Z)}teZ, 1=1,...,n, be a panel of time series as in assumption 1.2.1. Then we
have for|h| < T that

. 2 1 up
B o) ~ (1) =0 () +0 ().
PROOF.
Letn,7e NO< h<T,andl ={h+1,...,T} x {1,...,n}. Due to the linearity
of the expectation we had& (4, r(h)) = v,(h). Since by assumptioﬁf") ~ N(0,02)
foralli = 1,...,n, all cumulants of third and higher order are zero. Therefore we get
analogously to (Shiryayev 1984, p. 290) that

E (.0 (h) = ()’

1 .
" 2 (T — h)? Z (7"%1 — )"+l (=t + h) 7l (=t = h)
(tl,z),(tg,_])EI
() (B) ) = (R
1 T

t1,ta=h+1
X ((ti = t2)? + yu(ts — ta + h) Yu(ti — t2 — b))
T—h—-1

< 2 Tkl (14 (= 1))

s=—(T—h-1)
X (%(s)2 + V(s + h)2 + V(s — h)2) )

The last inequality is just an application of the second binomial formula. Since by

assumption 1.2.1 we have tha}; _, 72(h) = O(1), this concludes the proof. O

1.2.5 REMARK
1. The above result illustrates in particular the important role of the strength of
intercorrelation induced by,,. If n is fixed, u,, obviously is a constant. How-
ever in the case of — oo the lemma only yields mean-square convergence if
lim,, oo |un| < e < oo (ifalsoT — oo) orif lim, . u, = 0 (if T is fixed).

2. The first case]” — oo, n fixed, could also be obtained directly using the Min-
kowski inequality. It is a direct consequence of the mean-square convergence of
the original autocovariance estimator.

3. Note that the statement of the theorem remains unchanged if we replace the factor
1/(T — h) in the definition of the panel autocovariance estimatot byI" — p),
wherep < T is fixed, and start the summation with= p + 1. This is the form
of the lemma used from now on, as we focus on AR{rocesses.

4. For proving convergence of the panel autocovariance estimator it is not neces-
sary that the autocovariance function is square summable. As all processes are
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Gaussian by assumption, they admit continuous spectral functions. This is equi-
valent to the fact thaf Zfzo y2(h) — 0 for T — oo (Shiryayev 1984, p. 414),
which is sufficient for proving the mean-square convergence. However, we have
shown in lemma 1.1.4 that in the case of GaussianpAB(ocessesy, (h) is al-

ways square summable, and these are the models we regard in this thesis. The
assumption allows the direct computation of the rate of convergence.

As we see from the proof of the above lemma, the rate of convergenae foroco
depends on the behaviour of the intercorrelation coefficient,.~,. Thus we get a
V/n-rate of convergence under restrictions@n As in particular the interest is on
convergence to a fixed limit autocovariance function, we state the result as follows.

1.2.6 GMROLLARY
If in the above setting there exists an autocovariance functisurch that for alh € 7
[7(h) — (k)| = O (%) and if furthermorei2 = O (1), we get that

B (o) ~ (1) =0 ()
PROOF

This is an direct conclusion from the mean-square convergenég gfh) — . (h),
which has been proved in the preceding lemma 1.2.4. O



Chapter 2

The Intercorrelation Model

2.1 Motivation

There are applications in which the hypothesis that the time series in a panel are inde-
pendent is artificial. The following data illustrates this nicely. It also served Hijellvik
and Tjgstheim (1999a,b) as an example of intercorrelated time series.

Figure 2.1 shows the yearly catches of grey-sided voles at 41 different locations on
Hokkaido, Japan, on a logarithmic scale. The measurements cover the span of 31 years,
from 1962 to 1992. We can see that there are years where most of the time series
simultaneously attain a local minimum or maximum respectively; this suggests a strong
intercorrelation of the time series.

year

Figure 2.1: Vole datalog(V,"”) + 1), where{V,'”, 1962 < ¢ < 1992,1 < i < 41} is
the number of grey-sided voles captured each year from 1962 to 1992 in 41 different
locations in Hokkaido, Japan.

If we take the number of trapped voles as an indicator for the size of the population,
we can, for example, think of climatic influences such as exceptionally hot summers or
cold winters invoking this pattern. Another possibility is the existence of some predator
which hunts the voles and is more mobile than they are. It is easy to imagine even more
complex settings. Often it may be difficult to find the right covariates. Moreover, these
data might not be available. This indeed is the case for the voles data where we were
not provided with further information. Thus our approach is to model the common
effects as random influences.

10
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We now first introduce one specific model for a panel of intercorrelated time series,
the ICM. Then we investigate a generalisation thereof, where the background process
and the individual processes are allowed to have different autoregressive coefficients
a=(a,...,a,) andb = (by,...,b,)". We call this model the GICM. In section 2.4

we derive conditional maximum likelihood estimators for both models. It turns out
that the estimator developed by Hjellvik and Tjgstheim (1999a) is the same as the pa-
rameter estimatof, obtained from the general model under the restriction ¢hatb
(remark 2.4.8). Subsequently, we prove asymptotic normality for these estimators. We
show that ifn — oo, the estimator of the autoregressive parameters in the ICM and the
estimator obtained frori, are asymptotically equivalent. Howeverifis fixed and

T — oo, the ICM estimator has a higher relative efficiency. Finally, we discuss the rates
of convergence and the bias. Itis shown that in the casdigéd, the mean squared er-

ror of the dominating term in the stochastic expansion is smaller for the ICM estimator
than for the estimator of Hjellvik and Tjgstheim (1999a). The chapter concludes with
an evaluation of the obtained results and an outlook on possible extensions. Simulations
illustrating the performance of the estimators can be found in the Appendix A.

2.2 The Model (ICM)

We consider a panel of intercorrelated time series

P
Xt(z) :ZakXt(i)k —I—z—:gl)—knt, i=1,...,n, teZ,
k=1

wherep denotes the order of the autoregressive process. éﬁférie a random shock
specific for the time seriegswhile n;, denotes the common cross sectional influence. We
only investigate the case of real valued time series. Moreover we assume that all time
series admit the same dynamical structure, i.e. that the coefficigrits=1, ..., p, are
independent of. This is the model also treated by Hjellvik and Tjgstheim (1999a,b).

Altogether, we assume the following:

2.2.1 ASSUMPTION
(i) The processe$ec\’}cz, i = 1,...,n, and {n,}:cz, are independent Gaussian
white noise processes with

gf) ~N(0,0%) forteZ,i=1,...,n,

and
n: ~N(0,7%) forteZ.

(i) The processe«th(i)}tGZ, i=1,...,n,aregiven by
p

X S X0+ 04 forteZim1n
k=1
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They are causal (see assumption 1.1.1) with MAfepresentation
X9 = Z@/}ug‘t@u forallteZ,i=1,...,n,
u=0

where ¢ =c" 4y, and Z |t < 0.

u=0

(i) The parameteé = (ay,...,a, 0%, 7%) € O, where® C RP™? is a compact
parameter space. Furthermore we have fof all (o', 02, 77)" € 6 thatr? > 0
and that there exists@a> 0 such that> > cforall § € ©.

Thus the model is a panel of identically distributed autoregressive time series sharing a
common intercorrelation factor.

2.2.2 DEFINITION
If assumption 2.2.1 is fulfilled, we call the panel of time series described above the
intercorrelation model (“ICM”) From the ICM we derive thenean process

_ I~
Xt:HZXt(), tez, (2.1)
=1

and then residual processes

XPV=x"_X,, tez,i=1,...n (2.2)
2.2.3 EMARK
1. Using the backward shift operatafL) (section 1.1), equations (2.1) and (2.2)
can be writtenfot € Z,i=1,...,n, as
_ ) 1&g
(L) X, = + &, where z, = EZ;EE)’
and a(L) X =&, whereg! =&V — ¢,

2. &, andéf) are independent for adl, ¢t € Z since the processeg), i=1,...,n,
are independent and Gaussian. Thus &8p}.c; and{X\"},cz, i = 1,...,n,
are independent Gaussian processes.

3. As the processe’@Xt(i)}tez, ¢ = 1,...,n, are causal, this is also the case for
{X,}iez and {Xt(l)}tez, i = 1,...,n. They admit representations &8A (co)
processes with the same coefficiefits, }.>o (see lemma 1.1.2).

Soforallt € Z,i=1,...,n,

Xt(i) = Z Py (77t7u + 5§i—)u) ) Xt = Z Yy (77t7u + étfu)
u=0

u=0



2.2. THE MODEL (ICM) 13

and X" =",

u=0

This means that the proces’sfi) = X\ — X, can be viewed as a sum of two
MA(o0) processes having the same coefficients.

We can easily derive the autocovariance functions. The next lemma serves as reference
as we use these representations throughout the entire thesis.

2.2.4 LEMMA

LetW(h) =307 tuCuspn-
The autocovariance functions in the ICM are givenifat Z,i,j = 1,...,n, by

Yn(h) = cov <Xt(i), Xt@h) = VU(h) (7’2 + 02) ,
2

Yn(h) = cov (Xt, Xt+h) = U(h)w?, wherew? = var(n, +&) =1>+ 0_7
n

o () s -1
and~,(h) = cov <Xt(l),Xt(jr)h> = W(h) (n - ) o?.

Fori # j, % (h) = cov(X", X9 ) = w(n) <_a_2> '

Y t+h n
If {Z},y, is the processes generated{b' Ve, wherei € {1,...,n}, i.e. if

Z) =" ,e, foralltel
u=0

its autocovariance functions is given &éy.) = cov (Zfi), Zt(i)h> = U(h)o?
PROOF,
The assertions can be derived directly from the MA{epresentations of the processes
as the coefficient§y, }.,>o are absolutely summable (lemma 1.1.2). O
2.2.5 REMARK .

1. Note that the processdsZ\”},cz, i = 1,...,n, are not observable. However

they are used e.g. as a tool in the proof of asymptotic normality of the parameter
estimators in the ICM in the case of— oo, T fixed. We can also represefi
by 4, (h) = %=L ¢(h) for all b € Z.

2. Inlemma 1.2.4 we have shown mean-square convergence of the autocovariance
parameter estimator. The rateds(-L) if u2 = O (1) (see corollary 1.2.6).

This is fulfilled by the processe{sf’(t(i)}tez, i =1,...,ninthe ICM: as can be
seen from the above considerations, there
Y (h)

1
n = — = — forall heZ.
b Yn(h) n—1 <
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3. The processe{SXt(i)}teZ, i =1,...,n, themselves do not fulfil the condition of
u? = O (%) . For the mean procegs\, },z we however get with the methods of
lemma 1.2.4 that

T 2
1 5 S _
E (TT Y XX, - %(h))
pt:p+1
1 T

(T -p2 > (U(s—t)+U(s—t—h)U(s —t+h)) w)

of3)

since all higher order cumulants are zero as the progEsk.; is Gaussian. As
w2 = 72+ 2, we thus even have mean-square convergence of &@%) if
72 = varn, = 0, i.e. in the degenerate case of no intercorrelation.

2.3 Generalisation (GICM)

Up to here, we have divided the proces$K§)}teZ, i=1,...,n,into a mean process
andn residual processes following the same dynamics. A more general class of models
is given by decompositions of the form(i) = Zt(i) +Y, Where{Zt(i)}tez, i=1,...,n,

and{Y; }.z are stationary autoregressive processes: we now assume that the “mean”
or “background” proces§Y; } <z is responsible for the common structure of the panel,
and that the time serigsX” },cz, i = 1, ..., n, fluctuate aroundY; };cz.

More specifically, our assumptions are as follows:

2.3.1 ASSUMPTION
(i) The background proce$%’}.c7 is a causal Gaussian autoregressive process (as-
sumption 1.1.1), such that

b(L)Y;=v, forallteZ,
whereL is the backward shift operator an(.) =1 — b, L —--- — b, L¢.

(i) Fori =1,....n,t € Z, let X? = Z% +Y,, where the residual§Z"},,
t=1,...,n, are causal and obey

a(L) 2 =¢9 foralltez, i=1,...,n,
witha(L)=1—a; L —---—a,LP.

(i) The innovations{v, },<7 and {Ct(i)}tez, i = 1,...,n, are Gaussian white noise
processes such that
v ~N(0,w?) forallt ez,

wherelim,, ., w? = w? > 0, and

¢! ~N(0,0%) forallteZ,i=1,...,n,
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wherelim,, ., 02 = 02 > 0.

¢! andu, are independent forallt € Z, i = 1,...,n.
(iv) Fori # j, letaii = cov (¢, (") . We assume thatm,, . o/ = 0.

(v) Moreover assume that, = (ai,...,a,,02) € O, C R? x RS and that analo-

gouslyd, = (by,...,b,,w?) € ©, C R? x R}, where®, and©, are compact
parameter spaces.

Based on these assumptions, we define a generalised model of intercorrelated time
series.

2.3.2 DEFINITION

If assumption 2.3.1 is fulfilled, we call the panel of time series described above the
generalised intercorrelation model (“GICM"From the GICM we derive thenean
processes

_ 1 <& A _ 1 & ,
Xt:EZXt(’) and Zt:EZZt(Z), tez,
=1 i=1

and theresidual processes

XO=20=x"_X, tez i=1,...,n.
Moreover we let> = o2 — o, (, = 15" ¢V and(!) = ¢ — ¢ fort € Z,
1=1,...,n.

2.3.3 REMARK

1. Note thato” does not depend ohand; as the innovations are assumed to be
identically distributed. However, we have not assurﬁ,@dandgﬁ) to be inde-
pendent fori # j. We just have to guarantee that the intercorrelation is “not
too large”, because we want to use the mean-square consistency of the panel
covariance estimator (lemma 1.2.4) for proving asymptotic normality of our pa-
rameter estimators. Usually we moreover assumedfat= O (1). We will
see in lemma 2.3.6 that thén can be approximated by, for all t € Z since
E (X, — Yt)2 = O (%). This approximation is used in section 2.4.3 for the esti-
mation of#,.

2. Secondly, as all processes are causal, we can represent themas) lgidCesses
(lemma 1.1.2):

o0 o0
Zt(l) = Z % Ct(i)u and Y, = Z Pu Vt—u 5
u=0 u=0

where{, } >0 and{y, },>o are absolutely summable. This means that the panel

{Xt(i)}tez, i=1,...,n,isaspecial case of a factor model as investigated in Forni
et al. (2000):

Xt(l):ZwUCt(l—)u—i—nguvtfua fort€Z7i:17""n7
u=0 u=0
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where}">* | ¢, v;_, is the common ani_ -, ¢, Ct(i)u is the idiosyncratic com-
ponent. Forni et al. (2000) show that their estimator of the common component
is consistent fom,T — oo. In the present case of only one common factor,
their method yields X, },c7 as the estimator of the common factor. However,
their focus is on estimating the common components and in particular their num-
ber, whereas here the main interest is on parameter estimation. Nevertheless,
the consistency result for the estimatyrof 6, obtained in theorem 2.4.15 re-
flects the convergence properties{df, } ;7 to the common component (see re-
mark 2.4.16): the convergence behaviour of the estimator of the common factor is
discussed in Forni et al. (2001). In particular the authors show that if/batid

T tend to infinity, the estimator is consistent, even if the length of the time series
grows arbitrarily slow. This behaviour can also be observed in theorem 2.4.15; in
the special case treated here the result can be proved directly.

The above assumptions allow for a much broader modelling as we can see in the fol-
lowing examples:

2.3.4 EXAMPLES

1. Obviously, we obtain the ICM described in the last section as a special case:

letY; = X, forall t € Z andb(L) = a(L). In the notation of the GICM, we
have¢” = &9 andv, = n, + &, i.e. herez” = X In particular, this im-
plies thatZ,” = Z" because in the ICMZ; = 1 37 | XY = 0. Moreover it

can be seen that? = varv, = 72 + %2 wherer? = varn, ando? = var sgi).

Thus the notation is consistent. The varian¢e= var ¢{” in the GICM cor-
responds t0vars°§i) = 1% in the ICM, whereas foi # j we have that
ol = cov (Ot(i),cft(j)) in the GICM corresponds toov (éi“,é’ﬁ”) = —142

This shows in particular that? = lim,, .., 02 = 02 = var 55“.

. Starting from the ICM, where(L) Xfi) = 59 +n,forteZ,i=1,...,n,we

can derive the simplest form of the GICM by settibd.) = a(L), a(L)Y; = n,

anda(L)Zt(i) = &\ for ¢ € Z. Here, we cannot derivgY; ez directly from the
data. However, if2 is large, we can approximate’; };cz by { X, }:cz. Because

the{ef)}tez are independent for= 1, ..., n, in this caser’y = 0.

. By assumption we always have

a(L) X = aL) 2" + a(L) Y, = ¢ + a(L) Y,

Thusn;, in the ICM corresponds to(L) Y; in the GICM.

We can additionally assume that the processes are linked. Let for example
and
b(L) = c(L) a(L)
withe¢(L) =1—¢ L —---—¢,-, LTP, ¢(L) invertible.
Then, since

a(L) X7 = ¢(L) v, + ) fortez,i=1,...,n,
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c(L)~1 v corresponds ta; andg’t to 5t Hence this case is a generalisation of
the ICM allowingn;, to be an autoregressive process.

Of course we can also regard the “inverse” linkin@.) = ¢(L) b(L). We need
p > g and get

a(L)Xt(i) :c(L)thrCti) forteZ,i=1,...,n

..
Here{n, },cz corresponds to a finite moving average process.

This last class of examples allows for a large variety of common shpghs-z, as
autoregressive processes can be used to model very different data. Therefore, also the
GICM is very flexible. Since in general L) # b(L), estimation in the GICM is done

separately fod, = (a1, ...,a,,02) andf, = (by,..., b, w?). The first parameter is
estimated using the residua{lit(”}tez, i =1,...,n; the second one is obtained from
{Yitiez.

2.3.5 REMARK

1. Ifwe are only interested in the parameter of the individual processes, the structure
of n, = a(L) Y, does not play a roIe in the estimation procedure. It is eliminated
by the transformatlod( X — X,. This will be discussed in more detail
in section 2.4.3 (remark 2.4.8), where we derive the conditional log-likelihood
functions. We however want to infer about the structur¢¥of .z, too; thus the
assumption ofY;, ¢ € 7Z, being a causal autoregressive process. Furthermore,
in the special case of the ICM, includifgy, };cz into the analysis leads to an
improvement of the estimators. We discuss this effect at the end of section 2.6,
which is concerned with the asymptotic properties of the different estimators, in
remark 2.6.10.

2. For X" = x!V — X, = 7! we now obtain for € Z, i = 1,...,n, that
° (i i 1~ G ¢
o(L) X" = a(lL) 2" ~a(L) Z 70 =¢"-4=40.

3. The variance of,, t € Z, is

- 1 n—1 ..
var ¢, = — o + al
n n

whereo? = var (" andoi = cov ((t(i), Ct(j)), i

For(" = ¢ —(,teZ,i=1,...,n wehave sincé? = o2 — ¢ that

n n

s 0o (51, 428) - 40 (£8).

oy ol o 1 1\
cov (Ct( )7@(])) =d0ijon+ (1=6;;) o) — =05 — “ - o) = <5z’j - —) an,

whereU (h) = 3" | by sin)-
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Note that due to Hoélder’s inequality we get fiog j that

o = cov (¢7,¢7) =E (¢ ¢?) < E YE? = 2

Thusa? > 0 for all n.

4. The autocovariance function of the procgss, };c; depends on? as well. As
we have assumed thdt;},.; is a stationary autoregressive process, we have
Y, = D00, puti—y forall t € Z, with 3 °°° || < oo (see lemma 1.1.2).
Due to the independence ¢¥,},c; and {Y;};cz we obtain with the notation

D(h) = D07y PuPusin that

n(h) = cov (Xt, XHh) = WU(h)var((;) + ®(h) w?
=7z(h) + v (h),

wherey;(h) andy (h), h € Z, are the autocovariance functions{df},-; and

{Viter.
If 05 = O (%), we can approximatéY; },c; by {X,},cz. We conclude this section
with two results which illustrate the nature of this approximation.
2.3.6 LEMMA
Let{d’)}tez, i=1,...,n,asinassumption 2.3.1. If the covariances fulfil

ol = cov (¢7.¢7) = 0 <—> fori#j,
n
then |
E(X,-Y)*=EZ?=0 (-) :
n

PROOF,

Becaus€[ X, — Y;}icz = {Z;}+cz is @ causal autoregressive process, we can represent
it as a MA(x) process. Using the notations of the preceding remark we get that

- Z VoG forallt € Z,

u=0

where{v, },>o are absolutely summable.
By assumptionc!” and ¢\ are independent fos # ¢, E¢” = 0 for all t € Z,
i=1,...,n,andlim, .. 02 = o2

If 77 = O (1) , we thus obtain

E(X, - Y)?=EZ! = Z wuwv— Z cov (¢2,.¢9,)

u,v=0 i,j=1

> 1 . 1
zzwi (—ai—i—n afj):O(—). O
—0 n n n
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We can use this approximation in many important models. The condition is trivially
fulfilled if gt(’) and(t“) are independent far # j. But it is also possible to approxi-
mate a variety of cases where the intercorrelation between different time series in the
panel is small enough, e.g. in the ICM. There (see example 2:3.4prresponds to

cov (éf),égj)) = —Lvarel) = O (L) fori # j and in this case evef, = 0 for all

teZ.

We also can compute the varianceb@if) X, in the GICM.

2.3.7 RROPOSITION
Under the assumptions of the GICM (2.3.1), we obtain

2

. ¢ - 2 T n—laij 1" |b(exp(—i\))|?
var (b(L) X,) = w + (n L ”) o /_ﬁ la(exp(—in))E P

wheres? = var Ct(i), 04 = cov (Ct(i), Ct(j)> andw? = var v;.

n

PROOF,
As we have assumeZ"},c; = {X{” — Yi}iez, i = 1,...,n, to be causalg(L) is
invertible. Therefore, we get fdrX, }icz = {Y; + Z; }1ez that

b(L) X, =v; +b(L)a(L)"'¢, forallteZ.
vy and(;, are independent, thus

E(b(L) X,)? = w2 + var(b(L) a(L) '¢)

1T blexp(—in)P
T / la(exp(—ix)

(see for example Brockwell and Davis 1991, p. 123).
From remark 2.3.5 above we know that ¢, = X 02 + =1 ¥ 0

n n:

= w? + var(§)

2.3.8 REMARK
1. The backward shift operatorgL.) and b(L.) do not depend on the number of
time seriesn. Denotingw? = var (b(L) X,), the proposition thus shows that
wh —w? =0 (%) if 67 = O(2). In this case we therefore can approximate
w% ~ wi = vary if n — co. So we have an explicit expression of the error
term in the approximation which we will use for the parameter estimation in the

GICM (see section 2.4.3).

2. In the ICM, wheren = b, we haveu? = varv; = var(n; + &) = 7° + 2, where
72 = varn, ando? = vare!” (example 2.3.4). Thus the notation is consistent
with the previous section where we have denatéd- % = w?. As in this case

both 2=t gd = =1 (—"—5) and—% =l x (—”—nz) the second term in the

n

above representation ofir (b(L) X,) cancels out.



20 CHAPTER 2. THE INTERCORRELATION MODEL

2.4 Conditional Maximum Likelihood Estimation

2.4.1 Factorisation of the Log-Likelihood in the ICM

In the ICM &, and&\” and therefore als§.X, }.cz and{X\”},c; are independent for

i =1,...,n (remark 2.2.3). This implies a possible factorisation of the conditional
likelihood function. We indeed obtain a closed form of the conditional log-likelihood,
which is one of our main results. It allows including the information contained in the
mean proces$X, },cz into the estimation procedure, and thus to improve the estima-
tor in the setting of the ICM. The original procedure used in Hjellvik and Tjgstheim
(1999a) is based only on the residual proceiﬁg)}tez, 1 = 1,...,n. There the
estimators are obtained by minimising the conditional log-likelihood funafipn(6),

which we use for estimation in the GICM (see section 2.4.3). The differences between
these estimators are discussed in remarks 2.4.8 and 2.6.10.

2.4.1 NOTATIONS
In order to facilitate the notation, let

/
X, = (Xf”,...,X,f")) for ¢ € Z
and denote the parameter of the ICMby- (a4, ..., a,,c% 7%). We study the condi-
tional log-likelihood
2
n(T —p)

derived fromL(X,11, ..., X7|Xy,...,X,), the conditional likelihood function given
X, ..., X,

Ln,T(Q) = lOg,C(Xp+1,...,XT | Xl,...,Xp)

We can obtain the factorisation of the conditional likelihood function in the following
way; the proof is based upon an idea of Dahlhaus (1999).

2.4.2 THEOREM

Under assumption 2.2.1 and using the above notations, we obtain the conditional log-
likelihood function depending on the parameter (ay, ..., a,,o% %) of the inter-
correlation model as

n 1 2
wr(6) = log o2 + — L X(”)
L.2(6) 080"+ T p)ZZ a(L) X,
1 1 1 d 2
+ —logw? + — ———— a(L) X
wlosnt gy 2 (10X

1
+ —logn + log (27) ,
n

2 _ 2,1 _2
where w;, = 7° + - 0.

PrROOF,
In the trivial case of. = 1, we haveX " = 0, X, = X" andvar(X,) = 02+ 72 = w?.
It is easily seen thaf,, (¢) can be written in the above form.
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Forn > 1 we regard thén — 1)-dimensional vectoK, = (X", ..., X""), since

n—1 '
IETES
=1
Furthermore observe that
(1 (n—1 Y 1 n
(X, XY X)) = s (xY L x )

where the transformation matrifulfils |S| = <
The transformation theorem therefore leads to

T
LXpat, - Xy | Xy X)) = [T (X [ X Xoo)

t=p+1
T
= I —fe e (XX | X, X))
t:p+1n
T
= JI =, (X 1 X0, X)) £, (K | Xy, Xo)
t:p+1n

A
= _]'111 \/%\/_ m <Xt — ;akXt_k>
1 ~ o b .
exp Z aka> - <Xt - Z aka>> ,
\/ (27) (1) \/E ( ( k=1

p p
E(X, [ Xy, Xe) =Y aX, , and EX, | Xy, . Xiq) =) aX,.
k=1 k=1
Here,w? = var(X, | Xi,...,X;1) = 72 + 2 0% and® = var(X, | Xu, ..., X;1) is
the conditional covariance matrix &t The factorisation of the conditional densities
is due to the mdependenceﬁt andX forallt e Z,i=1,.
Itis easily seen thatov(X”, X7 | X, ..., X,_1) = cov <5§’),5§ )> = (6;; — 1) 0%

Therefore we get, if we denote the — 1) x (n — 1)-matrix consisting of ones by,,_;,

since

- 1 ~ 1
Y= (In—l — _ﬂn—l) o2 ; and thus »l = ([n—l + ]ln—l) -
n o
By recursively calculating the determinantXfwve furthermore obtain
. 1 1 1
%l = ( (1 ) _) —(n— 2>—> o?0Y = 2 g,
n n n
Taking the logarithm leads to the stated form of
2
Lor(0)=————10gL(X11,...,. X7 | Xq,...,X,). 0
7T( ) n(T _p) 0g ( p+1 T | 1 p)
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Minimising £, r, we obtain the conditional maximum likelihood estima@ng. In
the subsequent sections, we present an algorithm for the computation and derive its
asymptotic properties.

2.4.2 The Minimisation Algorithm

We want to estimate the parameters of the ICM by minimising-. This cannot be
achieved directly, as we can see from its derivatives.

2.4.3 REMARK
Following the notations of the preceding theorem 2.4.2, denote

1 A\ 2
Anir() = s Z Z a(D)X")
and  B,r(a) = %_p (a(L)Xt)Q :
t=p+1

Sincew? = 7° + Z ° the partial derivatives of,, r areforl =1,...,p

0
%EmT(Q): 02 T ) ZZ( XU) t(—)l

t=p+1 i=1
2 1 d
- —— a(L)X,) X,
T 2, D)
0 1 1
aratnr®) = g = g Berla)
0 n—1 1 1 1
and 5 zbnr() = T — G Anr(a) + 250 (1 2 B"’““)) ‘
If a = (ay,...,a,) is given, minimising leads to the estimator
C:)Z = Bn,T(a) s
and by plugging inv? for w?, we can calculate
2 n
= A, )
7 n—1 (@)

72 then can be obtained froAt and@?. Note that if62 is fixed, choosing? such that
L, () is minimal corresponds to choosidg such thatZ,, () is minimal. We then
can calculaté conditional ons? andw? as

R CRE 3) SRt ﬂzxﬂxﬂ)

t=p+1 i=1 "thrl

<0222X>o(>1+ = >

t=p+1 i=1 “n t=p+1

-1

Q>

a =

wherex”, = (X@,..., X" L) i=1,...,n,andx,_; = (X;_1,..., X))
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For the estimation we thus use the following recursive algorithm, which is similar to the
multistep procedure suggested in (Hsiao 1986, p. 55). As initial values for the variances
we sets? = @270 = 1 and calculate estimates of the coefficiemtsk = 1,...,p. From

the values we get we can in turn derive new estimafendc;, | of the variances. This
procedure then is iterated.

2.4.4 ALGORITHM

Let © C RP*2 be a compact parameter space suchd#fiat ¢ > 0 and7r? > ¢, > 0
forall & = (a1,...,a, 0% 7%) € ©. Denotea = (ay,...,a,)'. Furthermore let the
conditional log-likelihood functiorC,, 1-(#) for § € © be as defined in theorem 2.4.2.
Thend,, = argming.o L, () can be obtained as follows:

N N N N 2
1. Lety = 0,63 = a2, = Land?® = oz, — %.

2. Leta,,, suchthat, ., = (&),,,02,7,) = argmin{eg@‘ozz&g7T2:%3}L’n7T(6).

N N ~2
3. Let&; ., =7, + 2= such that
A /\2 A _ .
(a/u+17 Oys TV+1)/ - argmln{9€@|a:&y+1,02:&g}£n7T(9)’

. . N 52 N A~
i.e.if By r(dyy1) > o+ %, thend? | = Byr(duyg1).

A~ A A 2 A~ .
4. Leto, ,, suchtha(d) ,,,6,.1,7T1) = Argmin peeja=a, ,, r2=+2, ,}Ln1(0),

i.e.if Ay r(Gy41) > ¢, we haves? | = L= A, r(y41).
5. Iterate step 2) to 4) until convergence is attained.

6. Computer? as7? = @2  — % and denote the obtained conditional maximum

likelihood estimator by, ; = (d/,,62,72) = argming g L. (6).
2.4.5 REMARK

1. Our criterion for stopping the algorithm is that the distance between two con-
secutive estimates becomes small. To be more specific, we use the conditions
41 — au]| < 0 and||(67, 4,95 1) — (65, @7 ,)'|| < e for somes > 0 and
e > 0. In the simulations we have sét= ¢ = 1073. If this condition is not
fulfilled after a fixed number of iterations, the algorithm stops with an error mes-
sage. Note that due to the restriction of the parameter space, werhaver,
72 > 0andw? > <.

2. The algorithm is based on a successive minimising of the log-likelihood function,
thusEmT(éy) decreases monotonically for— oo. In order to eliminate the risk
that the algorithm stops in a saddle pofhtwe could perform more iterations
with slightly pertubed parametefis+ 6. This guarantees that we reach a (local)
minimuményT, but it cannot easily be excluded by theoretical arguments that the
algorithm oszillates between several local minima (Drton and Eichler 2004). We
prove however in section 2.5.3 that asymptotically the minimum is unique if the

parameter space is chosen appropriately.
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3. Numerical simulations have shown that this algorithm works well. Even without
taking saddle points into account, the algorithm usually converged in our simula-
tions after 6 or 7 iterations to the true value. The simulation results are discussed
in the Appendix in section A.

2.4.3 Parameter Estimation in the GICM

In the case of the generalised model, where the coefficients of the common factor and
the residuals are not necessarily identical, the situation is different. Here we can calcu-
late the likelihood functions separated& (al, ...,a,,c2) can be estimated directly
from the transformed process{aKt ez = {Z }tez;, i=1,...,n. Ifthe background
procesyY; },cz is not observable, we must u§&, },cz as an approximation toY; ez

in order to estimaté, = (b1, ...,b,,w?)". We show that in this case we get consistent
estimators if, besides their IengIh the numbenr of the time series in the panel tends

to infinity and if o’/ = O (). Of course, ifn = 1, X, = X, = Z, + Y, and parameter
estimation just makes sensdf, ..., a,) = (b1,...,b,). Thus we assume throughout

this section that, > 2.

Estimation of 4,

First, we consider the parameters of the individual effects. Here, éi’lﬁi&& Zt(’) we
havea(L) X" = (' = ¢\ — G, forallt € Z,i = 1,...,n. As in section 2.4.1 denote
X, = (XM,..., X" VY. We can derive the conditional log-likelihoodsifis large
enough.

2.4.6 FROPOSITION
Under the assumptions of the GICM (2.3.1), there exista@ag N such that for all

n > ng the conditional log-likelihood of tth, p<t<T, glvenXl, . ,Xp is

ZT(QG) (T _ ) 10g ‘C()o(p+17 7XT ’ X17 JXP)
T n
n—1 1 1 2
_ log 2 + — <a(L) X(Z))
a2, 2 10X
+ —— log(27) — = logn,

wherec? = 02 — o4,

PrROOF
Sincecov ( @) f”) = (6;; — +) o2 (remark 2.3.5), the conditional covariance matrix

of X,, glvenX1, . ,)o(H, is> = (In—1 — —IL) . As we have shown in remark 2.3.5
thats2 > 0 for all n € N and as by assumptlorﬁ — 02> 0andc¥ — 0forn — oo,
there exists &, such that? > 0 for all n > ny.
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Analogously to the proof of proposition 2.4.2, we therefore obtain that

L’(XPH,...,XT | Xl,...,Xp>

d 1 1 < )\ 2
= H exp (—FZ <a(L)Xt(Z)> ) :
t=p+1 /(271')(”_1) %5.7%(%71) o, P

Itis easily seen that this yields the form &f ,-(¢,) stated above. O

Minimising £;, ; leads to consistent estimatorsaoéinda;,.

2.4.7 BROPOSITION

In the setting of the preceding propositidlj, r is minimised by, = (ay,...,a,,062),
wherea = (a4, ..., a,)" is given by
T n . ‘ -1 7 n ' .
o= ( S Ziﬁ”ﬁ?{) SN x0%0,,
t=p+1 i=1 t=p+1 i=1

denoting%\”, = (X%, XD Y. i=1,... n.

)y “X—p
The variance is obtained as

= o 2, ()

Then the estimatdt, = (&', 52) is consistent:

e-on()

and 62—&3_Op(\/:l_).

PROOF,
The above stated form of the estimators is directly obtained by minimising the con-
ditional log-likelihood functionZ;, ,.(¢). Thus it remains to show consistency. By

) = (6;; — L) W(h)5?2 (see remark 2.3.5). Therefore
o = cov ()O(,f“,)o((j) ) for i # j fulfils 0¥/ = O (1). We thus get due to the mean-

assumptioncov ( D x,

t+h
square convergence of the panel covariance estimator (lemma 1.2.4) that

T n
1 ° (1) (i n—1 1
N XD XD - =Wk 1) 52 = .
n (T — p) Z t—k i1 . (k—1)a;=0p —

t=p+1 i=1

For ease of notation let
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n—1 9
n

Y

E

o
I

A
and B

E

Then the above implies that — A = Op (F) andB — B = Op <F> Standard

theory (e.g. Brockwell and Davis (1991)) yields that the true parameteffils the
Yule-Walker equatiolBa = A. As Ba = A and moreovef; = Op(1) due to the
compactness a@b, we thus get that

Ao “ A 1
B(&—a):Bd—A—l—A—B&:(B—B)&—l—A—A:Op( )
vnT

Thusa —a = Op ( ) From the consistency af— a« we can in turn conclude that,
choosingiy = —1 = &o,

T n P
“2  ~2 (i @ n-—1
U_J”_(n—l T —p) ;1 Zaka[th =y

t= i=1 k,[=0

Wk — 1)53]

a 1
+ Z(&k&l—akaﬂ\l’(k‘—l)a’i:Op(\/ﬁ) s

k,1=0

which completes the proof. O

2.4.8 REMARK
1. In general, usingC; ; we cannot estimatear ¢ = 62, buts? = o2 — o,
which forn — oo tends tos? > 0. However, in the speC|al case of the ICM,
=(1-23)o?—(—=2)0o? =0* > 0foralln € N, whereo? = = varc!” (see

example 2.3.4(i)). Thus her&g is a consistent estimator of the true parameter
0, = (ai,...,a,,0°%) evenifT — oo andn is fixed. a = (ay,...,a,) = anr

is the estimator; of Hjellvik and Tjgstheim (1999a). Their model is the ICM,
but they obtain their estimator by treatlngas a nuisance parameter which they
eliminate using the transformatloki() = X, @ — X,. This leads to the con-
ditional likelihood functionZ; ;. The advantage of their procedure is that no
assumptions on the structure:gfhave to be made. It even can be deterministic,
which corresponds to the casedf= 0. If we are interested in the structure of
the background process, assumptions on the distributidrn,$f-7 are however

needed. Hjellvik and Tjgstheim furthermore assume that the individual innova-
tion processes are independent, which means that the cross-correlation is entirely

induced by{7n; }+cz. This assumption is relaxed in the GICM.

2. Asymptotic normality ofd, is studied in section 2.5.3. If we restrict our model
to the ICM, asymptotic normality can be directly obtained by employing the in-
dependence of the processr@g)}tez, 1 =1,...,n. If n - oo, T fixed, the
proof is an application of the standard central limit theorem for independently
and identically distributed observations.1If — oo, asymptotic normality is due
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to the a-mixing property of autoregressive processes. Hjellvik and Tjgstheim
(1999a) have already stated these properties. For proving asymptotic normality
in the general case, we however use a similar method as for the ICM. This is
necessary due to the more complicated intercorrelation structure. We here cannot
write the random variable§” as¢” = &9 = ¢ —z, i =1,...,n, wherez\"

andgij) are independent far# j. Thus it is impossible to exploit the indepen-
dence property in the proof. In the present work, the asymptotic distribution of
the parameter estimators in the special case of the ICM is then deduced from the
general case in corollary 2.5.35.

Estimation of 6,

The background proceds;}:cz is not observable in general. In this case, inference
about its parameters is based on approximations. The conditional log-likelihood of the
background procesgY; },c7 itself can be derived easily and the asymptotic properties
follow from standard theory.

2.4.9 LEMMA
The conditional log-likelihood of the proce3% = 5 " ¢, vy, t € Z, (@ssump-
tion 2.3.1) is

2
EXT(QI’):_T log‘c(YZJ+17"'7YT’lea---Y:1)

—q
1 T
oe 2 2
t=q+1
andfy, = (by, ... by, &2) = argming.e LY () is a consistent estimator of the true

parameteb, = (by, ..., b,,w?2) = (V/,w?).
Furthermoreéy = (by, ..., b,)" is asymptotically normal with

T—q (l;y—b>:>Ny for T — oo,

whereNy ~ N(0, Xy) with Xy = (®(k — 1)), ,_

1,....q"
PROOF,
Minimising L) ., we get as estimator &f= (b, ..., b,)’
T -1
by = ( Z Y1 st-l) Z iy,
t=p+1 t=p+1
wherey, ; = (Y;_1,...,Y;—,)’; and as estimator of?
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As {Y; }1ez is causal by assumption, its autocovariance functipth), h € Z, fulfils
> (k)] < oo (lemma1.1.4). Thus

T 2
1 1
E(T— Eth_kYt_l—W(k—zO :0(:7) forall k,i=1,...,q.

9,25

Thereforeby and thuso?, too, are consistent. The asymptotic normality is also due to
standard theory (see e.g. Brockwell and Davis 1991, theorem 8.11.1.). O

If {Y:}icz is not observable, estimators of its parameters can only be obtained via ap-
proximations. By formally replacingy; by X, in L) (), we getZ; (6;).

2.4.10 CEFINITION i
In analogy taC) ,(6,) of the preceding lemma, defig ;.(6,) for 6, = (V',w?)' € O,
as

T
_ 1 _
X 2
L, 7 (0y) = logw, + log(2m) + (T —q) t_EqH (b(L) X,)" .

We already have seen in lemma 2.3.6, thatpif (Ct(i), Ct(j)> = O (%) fori # j, then

E(X, - Y;)? =EZ} = O (}). Therefore in this case we can indeed 1igg.(f) as an
approximation taC) .(6) for any§ € ©,.

2.4.11 LEMMA
If we have in the setting of the GICM (assumption 2.3.1) that fgrj

o = cov (gf“,gﬁ’) =0 <%) ;

then for all) = (by, ..., b,,w?) € O, C R? x R}

oy YgyryWn

E (L}QT(@) - ng(e)f ~0 (1> .

n

PROOF

The statement is a corollary of the above mentioned lemma 2.3.6. SineeZ, + Y,
for all t € Z, we can express the mean squared error in terfggf.cz:

T

E(£0n(0)~ £5:0)) =E (= 3 [(b(L)¥)? - (b(L) X,)?
T—q

- (ﬁ S (L) Z)” + 2 (B(L) Z) (b(L) Ytﬂ)
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:ﬁ > [E(GT) 2.2 (6(1) 2)%)
+4E ((b(L) Z,)* (b(L) Z,) (b(L) V7))

+AE ((O(L) Z,) (L) Z) (b(L) Ya) (B(L) V) |

-t X w2 E e 2
1

s,t=

Z,) (h(L) Z,)))*

+ 2 (E ((b(L
2B ((b(L) Z) (b(L) Z) |

)
+ 4 5St u}n ]E ((
Here we used the fact thafl.) 7, is Gaussian since tliéi) are Gaussian. Therefore, the
mixed 4th order moments can be calculated via the 2nd order cumulants as all higher
order cumulants are zero. The second term vanishes $¥ée., and {7}, are
independent anil Y; = 0. Finally, the last line is due to the fact thdf.) Y; = v, for

allt € Z, wherev, andv, are independent for # ¢t andE v, = 0 by assumption.
Furthermore we have (see remark 2.3.5) that

E ((b(L) Zs) ( Zbkbl Zsﬂu% (CotuCimiv)
k,l=0 u,v=0
= Z bi. by Z@u Put|s—t— k:+Z|ECt
k,1=0
n—1 ..
_Zbkbl s—t—k+l)< 2y a;g).
k,1=0 " n

Altogether we get it/ = O (1) that also
E(L200)~ £320) =05 ) + -o() =0 ) .
n,T n,T T — n n

Consistency and asymptotic normality&}i = argmingeebﬁfT(e) can be obtained if
bothn andT tend to infinity. We first introduce some notations which then can be used
to simplify the proofs of the subsequent theorems showing consistency and asymptotic
normality.

2.4.12 NDTATIONS
Let ¢ be the order of the autoregressive procgsg,cz. Fork,l =0, ..., q, denote

R _ _
g (k1) = —— Z X1 X = T _a p Z (Yt_k + Zt—k) (Yt—l + Zt—l) ,
t= q+1 t=q+1

. 1 1 _
Yy (kD) = Z YiorYir and gz(k0) = 7— > ZivZi.

kA S— s



30 CHAPTER 2. THE INTERCORRELATION MODEL

~

Thenl'y = 7= >, .1 % 1%, can be written ad'y = (x(k, 1))y,

Yx = ﬁ ZtT:qH Xt Xp 1 = (%’((Oal))gzl ..... q° denOtingit—l = (Xt—la---v)_(t—q)l-
Analogously let

----------

.....

Minimising £ ,.(6), we obtain fordg = (E’X, 2 ) = argminge, £ 1(0) that

wX n
. . 1 r .. N2
t=q+1

In order to facilitate the proofs of the theorems, we first investigate the behaviour of the
bias term.

2.4.13 LEMMA
Using the notations of the preceding remark, we get under the assumptions 2.3.1 of the

GICM that the bias terms, = I'! (&Z —T; ’A}/y> fulfils for T — oo

anop(l) if a;'g:O(l) .
n n
PrRoOOF

The autocovariance functiop,(h), h € Z, of the procesg§ X, } <z can be represented
asv,(h) = vy (h) +vz(h) = ®(h) w2+ V¥ (h)var (; forall h € Z (remark 2.3.5), where

vy (h) andvz(h), h € Z, are the autocovariance functions f; },c; and{Z;},cz.

Since the processes are causal by assumption, the autocovariance functions are abso-
lutely summable (lemma 1.1.4) and therefgréh) is square summable. Thus we get

as in the proof of lemma 1.2.4 that

E (4 (k1) — Fu(k — 1))
1 T—q—1

B mh__(;q_l)@—q— h]) (Fu(h)? + Fn(h =k + 1) n(h — 1+ k)

1
= — f lk1=0,...q.
O(T) orall £, 0,...,q

I =T =op(l) andl'y! = Op(1).
In a similar way it can be easily seen that forfall = 0, ... ¢
4

B iv(hd) = (k= 0 = 0 ()

thus we get in particular that (k,1) = Op(1).
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Moreover we know from lemma 2.3.6, where we have proved mean-square convergence
of the procesg X, — Y; }wez = {Z:}:icz, that the autocovariance functiop; fulfils

Yz(k, 1) = U(k —l)var Z, = O () forall k,l = 0....,¢if 67 = O (). Therefore

we obtain fory;(k, 1) that, ifc’ = O (1),

n

E(%(’fal))z :E< Z Zis 21 l)

1 T—q—1
= yz(k—1)"+ T h:(TZqU@ —q—|h])
X (’yz(h —k+ l) VZ(h -+ k‘) + ’YZ(h)Q) =0 (%) .

Sincel'' = Op(1) for T — oo andjy = Op(1), we thus can conclude that the bias
term fulfils for 7" — oo that

o 1\ . 1
By =T% (72 —FZ’}/y> =0Op (E) if 07/ =0 (E) . O

Now we are in the position to prove the consistency result.

2.4.14 THEOREM
Assume that the assumptions 2.3.1 of the GICM are fulfilled andotfiat= O (+).

Then we get with the notations of the preceding remarkéthat argminge@bﬁf (0),
R /
whered 5 (b’ 0% ) is a consistent estimator of the true parametet (', w?)':
é)‘(—ebZOP(l) for TL,T—>OO.

PROOF,
The processe$Z; },cz and{Y;},cz are independent. Thus we get for each(k, [),
k,l=0,...,q,using the notatiok — [ = d, that

E(yx(k: 1) — Ay (k, 1) — A(k, z))

T 2
SE < Z Yiok Zy—y + Yy Zt—k))
g1

t=

q—1

:(qu)Q Z (T =g = [h]) G () 72(R) + 3y (b 4 d) 72(h = )
h=—(T—q~1)

1
=0 (ﬁ) '
As in the proof of the preceding lemma, this is due to the absolute summability of the

autocovariance functions and the fact thath) = O (%) for all h € Z (lemma 2.3.6).
This means thatx — 'y — 'z = O, (F) and alsoix — 4y — 4z = O, <\/%7T> :
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In the proof of lemma 2.4.9, we have shown that=I';! 4y. Thus we get

~

by — by

I
’1>

% — I 4y F;(1 (g =) + (05 - 15') 4
% (ix

Ay) + (ry . FX) by .

><|

Now let 3, = I'}! < ~Ty 7y> as in the preceding lemma. This gives
bi_bY_ﬁn—< by>—f}(1 <7z—f2i)y>
=I5 (G =4y = 92) — 15 (Dx =Ty = 7) by

As shown in the proof of the preceding Iemr‘ﬁ@,1 = Op(1) andyy = Op(1). There-

fore we get that
; 1
c — b " .
v bh=0r (=)

Moreover we have proved in lemma 2.4.9 that-b = Op <%> Slnceﬁn =0Op ( )
if 0% = O (1) (lemma 2.4.13), this leads to

Eg—b:EX—By—Bn+(By—b)—|—Bn:0p(1) forn,T — oo.
All that remains to be proven now is the consistencyvgf As &% is obtained (see
. _\2 _ N
remark 2.4.12) byo} = T%q ZtT:qH (bX(L) Xt> , the consistency df; implies that
it ol = O (%)

A———Z =op(l) for n,T — oo.

t q+1

Furthermore we can derive as above that
R i 1
— 2 —
E (T— > (b(L)X,)" — var (b(L) Xt)) =0 <?) .
Finally, in proposition 2.3.7 we have shown that we have under the assumptions of the
GICMandifo = O (1) thatvar (b(L) X,) —w2 = O (+) . Summarising, this implies
thatifo’ = O (%)

0} —w2=o0p(1) forn,T — . O

This enables us to finally obtain asymptotic normality for the estiméagtor

2.4.15 THEOREM R
In the setting of the preceding theorem and widthgiven in lemma 2.4.13 we get

\/T——CJ<BX—Bn—b>:>N for T — oo,

whereN ~ N(0, Xy ) with £y = (®(k — 1)),
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PROOF. A
In lemma 2.4.9 we have shown asymptotic normalityof

\/CF——c1<By—b>:>N for T — oco.

From the proof of the preceding theorem we can see thdt i O (1)

- s 2 1
n

This implies that

\/T——q<l3)—(—3n—b>:>N for T — . O

2.4.16 REMARK
1. Note that the asymptotic variance @in the preceding theorem is independent
of o2, the variance of the increments.

2. We have mentioned in remark 2.3.3 that the above result can be viewed as a
consequence of the consistency properties of the estimator of the common com-
ponent in a one-factor model as treated in Forni et al. (2000). However, here the
theorem can be proved in a direct way. The same authors determine the rates of
convergence in their model in Forni et al. (2001). They show thinding to
infinity guarantees consistency for an arbitrarily slow growth of the time series
lengthT". This is reflected in the convergence behaviour of the parameter esti-
mator obtained above, where consistency depends on the convergence of the bias
termg,.

2.5 Asymptotic Theory for the MLE

The aim of this section is to show asymptotic normality for the parameter estimators in
all three casesy — oo, T fixed; T — oo, n fixed, andn, T’ — oo.

For 6, = argmin(,e@bﬁi}(ﬁ) we already have discussed consistency and asymptotic
normality in the last section. Thus it remains to prove asymptotic normality for the
ICM parameter estimator and fdf, = argming.q L, 7(0). Asymptotic normality

can be derived from uniform convergence conditions on the log-likelihood function.
However, as in the conditional log-likelihood function of the ICM all terms depending
on the mean process are weighted withthey vanish asymptotically for — oo.

Thus we obtain for the last component of the parameter estimator a different rate of
convergence. This implies that we can prove asymptotic normality only by adapting
the uniform convergence result mentioned above accordingly. We therefore proceed
as follows: first we present the classic theorem. After deriving the pointwise limits of
the conditional log-likelihood functions, we turn to our model and prove that conditions
corresponding to those of the theorem are fulfilled in the ICM. We conclude by showing
asymptotic normality fob, = argming.q L7 +(0), which can be obtained analogously.
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2.5.1 A Classic Theorem on Asymptotic Normality

We now state the theorem our results are based on. Its content is well known but as the
proof is short, we include it here for completeness. The proof is split in two steps. The
central idea is to apply the mean value theorem in order to obtain a setting where the
convergence of the gradient can be used. But first we show that condition (i) already
implies consistency of the parameter estimators as this simplifies the proof afterwards.

2.5.1 THEOREM

Let® C R¢,© compact, and lef,, : © — R be a sequence of functions with pointwise
limit £(0) = lim,,_.o £,(0) such that)y = argmin, o L(0) € Int®© and#, is unique.
Moreover we assume thétandV>L are continuous of®, and that® = V2L(6,) is
positive definite, i.e. invertible. DenotegminL,,(6) byén.

If for n — oo

(i) suppee | Ln(0) = L(0) | = op(1)
(i) supsee | V2L, (0) — V2L(0) | = 0p(1)  and
(i) \/nVL,(6h) = N with N~ N(0,X),
thend,, is asymptotically normal fon — oo:

Vn (0, —0,) = N, whereN'=T"'N ~N(0,T'ST}).

For consistency, we just need condition (i).

2.5.2 RROPOSITION
In the setting of the preceding theorem the condition of uniform convergence,

sup [£,(0) — L(0)] = op(1) for n — oo,
60

implies consistency of the parameter estimatof,, — 6, = op(1) for n — oc.

PROOF,
By definition, f, = argmin, o £(0) andd,, = argminy.o L, (). The uniform conver-
gence property gives

A~

Lo(0) — L(0) =op(1) and L,(6,) — L(0,) = op(1) for n — cc.

~ A A

SinceL,,(6,) < L,(0y) andL(6) < L(0,), we get that als&(0,,) — L(6h) = op(1)
for n — oo, with the same rate of convergence. Asis compact, the serie§(6,)
converges to a cluster point = L(6,). SinceL is continuous and, is the unique

minimum of £ on ©, this implies that), — 0, = op(1) for n — oc. O

We can now use this proposition to prove the above theorem.

PROOF OF2.5.1:
Sinced € R?, the mean value theorem leads to

VAV L (0,) = V'V Ly (00) = v/ M, (0, — 0p) (2.3)
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whereM, is given by

8»(:1,11(91,"71,) .. aﬁl,n(el,n)
o1 oxg
Mg, = : . :
9Landn) .. 9Ldn(0dn)
ox1 Oxg

with intermediate points;,, = 6y + #; (0, — 0,), r; € [0,1],i = 1,...,d, andL; .,
i =1,...,d, denoting theth coordinate function of,,.
First we look at the entries df/._ . We have that

M, — (Man_x(@n)) V2L (0h) + V2L (Brn) — V2L (G) + VL) -
J i,j=1,....d

.....

Condition (ii) implies that

(M) — V2L(0;,) = op(1) for n — .

Ox; ij=1,..,d

Since for alli = 1,...,d we have that|f;,, — 6,|| < ||, — 6o||, we get from the
consistency ob,, (proposition 2.5.2) that forall=1,...,d also

bin — 0o =o0p(l) for n — oo.
Furthermorev2. is continuous o® by assumption. This yields forall=1, ..., d
V2L(0;,) — V2L(0) = op(1) for n — .
Thus we have altogether that
My, —T =op(l) forn— oo, wherel'=V2L(6,).
The second term we treat¥&.,,(6,,). If 6, lies in the interior 0, thenV L,,(6,,) = 0.
If 6,, is on the border 0B, we get that|0,, — ;|| > ¢ for somes > 0 asb, lies in the
interior of © by assumption. The consistency@fthen implies that for alt > 0
P(|[v/n VLo (0,)]| > ) <P(||8, — b5]| > 6) — 0 for n — oo.
Sincel is assumed to be invertible, we therefore can transform equation (2.3) such that
Vi (0, —0) +nT 7 VL, (00) = op(1)  for n — oo,
Because of condition (iii) we then directly get

Vn(0, —60,) = N for n — oo, whereN' ~N(0,T'2T7}). O
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2.5.2 Asymptotic Properties of the Conditional
Log-Likelihood-Function

Depending on whether we regard the asymptotic behaviour,gf(#) for n — oo or

for T — oo, n fixed, the limits of the conditional log-likelihood function differ. #f,

the number of time series in the panel, tends to infinity, the terms depending on the mean
process vanish asymptotically, which means its information loses weight. Therefore
in this case our estimator is asymptotically equivalent to the one derived by Hjellvik
and Tjgstheim (1999a), which is the same as our GICM estinfatogstricted to the

ICM case (see remark 2.4.8). This estimator is only based on the residual processes
{)O(t“)}tez, i =1,...,n. Inthe case of' — oo, n fixed, however, we can use all of

the information and thus are able to improve the estimator. We discuss the implications
of this fact more thoroughly at the end of this section in remark 2.5.36. In the present
subsection we derive the pointwise limit of the conditional log-likelihood function in
each case. This can be achieved easily due to the mean-square consistency of the panel
covariance estimator (lemma 1.2.4).

The conditional log-likelihood function for the ICM @& = (o/,0% %) € © was
obtained in theorem 2.4.2 as

2
Lor(0)=————log L(Xps1,. .., X | Xq,..., X
x(0) n (T —p) 0g L(Xp+1 | X4 »)
1 1
= ; AmT(Oé) + —n wg Bn’T(Oé)

-1 1 1
+ n log o® + — logws + — logn + log (27)

n n

wherea = (ay,...,q,) andw? = 72 + <. By assumptiow? > ¢ > 0 andr? > 0,
thus alsav; > 0 for all n € N. A, r(a) andB,, 7(«) are given in remark 2.4.3 as

1 2\ 2
Auir(@) = oy 303 (o) X)
and
Bur(a) = ﬁ (a(L) X,)° .

Thus it is natural to define the limits of the log-likelihood functions as follows.

2.5.3 DEFINITION
Forf = (o/,0% 72) € O letcy andd, be derived from the autocovariance functions
given in lemma 2.2.4 such that

P q
co = Zakalc(k—l) and dy = Zakal’yﬂ(k—l),

k,1=0 k,1=0
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denotingay = —1. Using these notations, let

1 —1 1 —1
L,0)=EL,r(0)=— <n > co+ —dg + o log o

o2 n nwp n
1., 1
+ —logwy + —logn + log (27) ,
n n

wherew; = 72 + 2, and denote
1 2
L(0) = — cp +1ogo” +log (27) .
o

We prove next that the functions defined above are indeed the pointwise limits of
L, r(0) for T — oo, nfixed, andn — oo, respectively. These then are used for

establishing asymptotic normality for the parameter estim%;@r Note that the au-
tocovariance functiong(h) = U(h) oz andy,(h) = VU(h)w? = U(h) <73+%§>,

n

h € Z, depend only on the true parametigr= (d/, o2, 72)’ of the panel.

2.5.4 THEOREM

Under the assumptions of the ICM (assumption 2.2.1) and using the notations intro-
duced in the preceding definition we get for@k (o, 02, %) € © such that? > 0

that

E(L,r(0) — L,(0))> =0 <i> and E(L,r(0)—L(6)>=0 (1) .

nT n

If 72 =0, we still have that

E(L,7(0) — L.(0)) =0 (%) and E(L,7(0) — L(0))* =0 (w2) ,

2, .
wherew? = 73 + % is derived from the true parametiy= (d', 03, 73) .

PROOF

Let A, r(a) and B, r(«) be as in remark 2.4.3 and note that the autocovariance func-
tion of the residuals fulfilgy, (k) = cov (Xt(’),Xt(Z_)h) = 21U (h) o} = =L ¢(h) for

all h € Z (lemma 2.2.4). Since in the ICM,, = —-1. = O (%) (remark 2.2.5),

we get from lemma 1.2.4 and its corollary 1.2.6, where we have proven mean-square
convergence of the autocovariance estimator, that

p 2

E (An,T<Oé) — Z g, g Yn(k — l)) =0 (%) and
k,l=0 n

(,()4

E(B,r(a) —dg)”> =0 ( - ) (see remark 2.2.5).

If 72 > 0, we have thatwl—2 < 7—12 for all n € N. This proves the first assertion. Further-
0

more it is obvious that all single terms 6f,(0) — £(#) are mean-square convergent of

orderO (\%) which implies the second result.
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If 6 is such that? = 0, thenw} = %2 andilogw? = & log 0? — < log n. In this

case# = 0—12 does not decay to zero any more for— oo, which implies that the
6

convergence properties of the teif () depend only onv2. The above notation

covers both of the caseg > 0 andr? = 0. 0

2.5.5 EMARK

The theorem shows that far — oo all terms of £,, +(6) depending onu? and thus

on the mean process, vanish asymptotically fon — oo if 72 > 0. If n — oo and

T is fixed, 7% indeed cannot be consistently estimated as we then only have a finite
number of observations for the proc€ss}.cz. However we can consistently estimate

w2 = var(n; + &) from the mean process if — oo. Thus the estimate? = 2 — &,
which we obtain by the minimisation algorithm 2.4.4, is consisterit #~ oco. The
asymptotic behaviour of is discussed in more detail in remark 2.5.21 after having

derived the convergence properties of the parameter estimators explicitly.

2.5.3 Asymptotic Normality
of the Parameter Estimators in the ICM

For showing asymptotic normality we follow the lines of the proof of the classic theo-
rem 2.5.1. However we have to adapt the theorem such that we can assess the asymp-
totic behaviour of the parameter estimator for both~ co andT” — oo, n fixed. If

n — oo, the componentwise limitm,, .., V2L, (6y) is not positive definite any more.
Therefore we regard instead the mafifix= D, V2L, (6,) D,,, whereD,, is given by

I 0 . , . .
D, = pgl . We prove inlemma 2.5.10 thhtn,, ., I',, is positive definite and

NZD
thus invertible. These considerations imply that we cannot use the mean value theorem
onynVL,r(0nr)—/nVL,r(6) buton the same expression multiplied By, i.e.

VD,V Ly 1(bnr) — /D, V Ly r(00) = /i D, Mg, (0) D, D" (émT - 90) ,

where
6‘Cn,T;l(el,n) . 6£n,T;1(91,n)
o0z Oxpi2
My, .(0) = : :
9 L, 1ip+2(0pr2.n) - 9L 1ipt+2(0pt2.m)
ox1 Oxpy2

with intermediate points,,, = 6y + x; (0,7 — 0o), k; € [0,1],i = 1,...,p+ 2, and
L.ri @ = 1,...,p+ 2, denoting theith coordinate function of,, . Consistency

~

of the parameter estimator yields thgt. D, VL, r(6,,7) = op(1). Eventually we
obtain that the asymptotic distribution @fn D! (én,T - 00> is identical to that of

\/ﬁl“;l Dn V‘an((go).

In order to structure the proof, we prove the conditions of the theorem in separate

steps. First of all we have to verify the general premises. We therefore show next that
0o = argming oL, (0) € RPT2 is a unique minimum and that, andr" are positive de-

finite. At least this is true if the parameter space is chosen small enough. Subsequently
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we prove each of the three conditions of theorem 2.5.1 for the ICM. Asymptotic nor-
mality of the gradient, which is the last condition, has to be proved differently for
n — oo, T fixed, andT" — oc. In the first case we can employ the standard central
limit theorem for independently and identically distributed observations, whereas the
serial correlation of the time series implies that we have to use a central limit theorem
for martingale arrays in the case’bf— oo.

Preliminaries

In the proof of asymptotic normality we use the fact that the true parameter minimises
the pointwise limit functions of theorem 2.5.4. This is stated in the following lemma.
Note that we here regarfl as a function on the smaller parameter space R?t!

as %5(0) = (0 forall# € © c RP*2. Subsequently we change between the two
viewpoints according to the actual situation.

2.5.6 LEMMA

In the setting of the ICM (assumption 2.2.1) denote the true parametgyr €)0. If
0o = (d',02,72), letfy = (da/,02)" € © c RP*'. Then the pointwise limits o, 1 (6),
0 € ©, given in definition 2.5.3 fulfil

6y = argming oL, (0) and 6, = argming.gL(0) .

PROOF.

Ford € O, let ¢y anddy be as in definition 2.5.3. In the ICM the true parametger
fulfils ¢y, = 02 anddy, = w? = 78 + %g (see remark 1.1.5). Thus it can be easily
seen from the derivatives df,(#), # € ©, and£(f), § € O, which are given in the
Appendix C.1 (lemmas C.1.2 and C.1.3) that these functions are minimisggdand

0, respectively. O

The parameter spaces used for the minimisation can be restricted such that the true
parameter becomes a unique minimum of the log-likelihood function.

2.5.7 LEMMA
Denote the true parameter in the ICM (assumption 2.2. B by (¢, 02, 72) € © and

letfy = (a’,02)" € © C RP*1. Then one can choose compact subsp&@tes © and

@' C © such thab, andd, are unique minima of.,(0), 6 € ©', andL(f), 6 € &/,
whereL,, andL are given in definition 2.5.3.

PROOFE
We have shown in the preceding lemma thaljife ©, thend, = argmingg L, (¢)

andd, = argming_g L, (). Using the Yule-Walker relations of remark 1.1.5 we can
prove that we have on a neighbourhg@dof 6, thath‘é(e) < 0forall§ ¢ @, where

z; = — (0 — 6y). Thush, is a unique minimum of. on ©’. Analogously we obtain that

0y is a unique minimum ofZ,, on ©’. As © is compact by assumption, the subspaces

@’ and®’ can be chosen such that they are compact as well. Since the calculations are
elementary but lengthy, we refer to the Appendix C.1 for details. O
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This implies that without loss of generality the compact parameter spaaesO can
be chosen such thé§ andd, are unique minima. For ease of notation we therefore use
from now on the conventions of the subsequent assumption.

2.5.8 ASSUMPTION
The true parameter in the ICM & = (d/, 02, 72) € ©. The parameter spacésand

© are compact such thég € © andd, = (a’,02)" € © are unique minima of the limit
functions£,, and £ given in definition 2.5.3. Furthermore there exists,a> 0 such
that we have for all = (¢/,0?,7%)' € @ thatw? = 7% + < > ¢, foralln € N,

2.5.9 REMARK
Note that we have alreaw > ¢ > 0 due to the assumptions of the ICM (assump-

tion 2.2.1). Asw? = 72 + Z, the last condition ensures thég is uniformly bounded

in the case ofi — oco. This i |s for example needed for proving the uniform convergence
properties in the next subsection. If we regard the ease oo, the condition implies
the restriction ofr? > ¢, > 0 on the parameter space.Tif— oo, n fixed, this can be
relaxed tor? > 0.

We can conclude from the proof of lemma 2.5.7 that the second derivaTRES),)
andVZ2L, (6,) are positive definite. However this can also be seen directly.

2.5.10 LEMMA )
In the setting of the preceding lemma, the matricé£ (0,) andV>L,,(6,) are positive
- I
definite. If we letD,, = pgl \3_ the transformed matrik,, = D, V2L, (6y) D
n

Is positive definite as well. Under assumption 2.5.8 we havdthatim,, ., I, exists.
It is positive definite and fulfils7>L£(0y) = (T'), ., All of the above matrices
are continuous o8.

----- p+1-

PROOF.
Straightforward calculations give (see the Appendix C.1, corollary C.1.4) that

vzﬁ@o):(z Uk =) (1)>

0 ok
0
and that
2 (W(k - l))k,l:l ..... p 0 /
V2L (60) = 0 v wa |
0 2 ik

wherew? = 78 + "73 As U (h), h € Z, is derived from the autocovariance functions

(see lemma 2.2.4), we obtain directly that£(6,) and V2L, (6,) are positive definite
and continuous. For the transformed matrix we get that

2 (W(k = 1)pimr.p 0 0
T, = D, V2L, (00) D, = 0 it waroT

1 1
0 ny/nwt wi
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It can easily be seen th&t, and also the componentwise lindit = lim,, ., I',, are

positive definite and that moreoveP L () = (D )pimtpin - O

After having verified the general premises, we now prove the adapted versions of con-
ditions (i) to (iii) of theorem 2.5.1.

Condition (i)

The intercorrelation structure in the ICM implies that the conditional maximum-like-
lihood estimatoémT = argming oL, 7(#) cannot be directly estimated from the data

but has to be obtained through a recursive algorithm (see section 2.4.2). Thus we also
cannot prove consistency in a direct way. We need the concept of equicontinuity in
probability, which e.qg. is defined in Dahlhaus (2000b):

2.5.11 DEFINITION
We call a sequence of random variableg6), 6 € ©, equicontinuous in probability
if for eachn > 0 andes > 0 there exists & > 0 such that

lim sup P ( sup  |Z,(01) — Z,.(62)| > n) <e.
1161

n—o0 ~0s]|<8

On a compact space equicontinuity in probability and pointwise convergence in proba-
bility imply uniform convergence. Thus, in order to prove condition (i) we first show
thatZ, r(0), 0 € ©, is equicontinuous in probability. This is achieved if we restrict the
parameter space such thdtandw? are bounded away from zero.

2.5.12 LEMMA

Under assumption 2.5.8, i.e. if we have that> ¢ > 0 andw? = 72+ % > ¢, > 0 for
all = (a',0% 72)" € O, the conditional log-likelihood functiod,, () is equiconti-
nuous in probability fon T — oc.

PrROOF,
The derivatives ofZ,,  are given in remark 2.4.3. For facilitating the notation, denote

_ _ . o [+ o [+ !/
w=(~La,. .. a) % =(X,... X_) andz!) = (X}”, o ,X§?p> fort € Z,
i = 1,...,n. Then all termsy, x; andaef’cf), t € Z,i = 1,...,n, which appear
in V £,.r(0) are bounded bylag|| ||| and ||ae| [|%\”]], i = 1,...,n. Due to the
assumption tha® is compact||ag|| < supyeg ||ag|| < M, for somel, < oco. Fur-

thermore the restriction of the parameter spac€te c andw? = T2+§ > ¢y implies
that there exists &/. < oo such thatl; < M. and—; < M,. Because of the norm

inequalities supyce || VL, (0)|| thus is bounded by a functiofy;, 1. <)_(t,f(t(")> of

the processesX, }iez and{X\"}iez, i = 1,...,n, depending onV/, and},. As the
processe$X, }icz and{Xt(Z)}teZ, i =1,...,n, are Gaussian by assumption, all higher
moments exist. Using the Holder inequality we therefore obtain that

E||sup fu . (X, X{7) [P < M < oo,
€
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whereM is a bound independent of 7", andé.
By the mean value theorem and the Chebyshev inequality we thus get that

P ( sup  |Ln7(01) — Ln7(02)] > 77)
1161 —62]|<5
52

_ el 52 _ e
< P sup | fasoon. (Ko X > ) < S EI[sup fug, (X, X < 2501
€

=)
SinceM does not depend amor 7', this is also true for the limit. Therefore
52
limsupP [ sup [Lor(0h) — Loz(02)] >n | < 5 M. 0
nT—o0 [|61—62]|<6 n

This enables us to establish uniform convergencefor(6).

2.5.13 THEOREM
If © is chosen as in the preceding lemma, we get that

sup | L, 7(0) — L,(8)] = 0op(1) for T — oo, n fixed,
90

and
sup |L,r(0) — L(0)] = op(1) for n — oo, T fixed, andn,T — oo .
=)

PROOF.

The proof is based on the fact that equicontinuity in probability and mean-square con-
vergence imply uniform convergence.

We first treat the casé — oo, n fixed. Due to the equicontinuity in probability we
can choose for each> 0 andn > 0 ad > 0 such that

nT—o0 [|61—02]|<8

lim sup P ( sup |Lnr(6h) — L,1(62)] > 77) <e.

Since® is compact, we can covéd by a finite number of open balls of radius< 4,
i.e. there exist,, ..., v, € © such tha® c |, B,(¥,).
Therefore

P(sup|L,r(0) — £a(0)] > 3n)
0cO

= max sup | L, 2(0) — La(0)] | > 3n
i€{L,...k} \ pe B, (9;)nO

<P| max sup  |Lnr(0) — Lor(Di)| ]| >n
i€{1,...k} \ peB, (¥;)n©
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+P( max sup  |L,(0;) — L,(O)] | >n ] .
ie{l.k} \ 6eB, (9;)NO

This leads to

lim sup P (sup |L,.r(0) — L,(0)] > 377>
fcO

T—o00

< limsupP ( sup |Lyr(01) — Lnr(02)] > 77)

T—o0 [|01—02]|<T

k
+ Zlim sup P (|L,r(¥:) — L,(0;)] > n)

i—1 T—oo
+P ( sup |L,(01) — L.(02)] > 77)
[|01—02||<r

The first of these terms is bounded bylue to the equicontinuity of,, r(6), 6 € O,
which has been proved in the preceding lemma.

Due to the mean-square convergence&gf-(¢) for ' — oo, n fixed (theorem 2.5.4),
there exists g} such that

P (|£n,T(19z) — En(ﬁz” > T]) < forall T’ > To, 1=1,..., k.

€
k
The limiting functionZ,, (see definition 2.5.3) is deterministic and continuougorif
r < ¢ is small enough, we therefore have

sup  |Ln(01) — L,(62)] <n

[[01—02||<r
and thus

P ( sup |L,(01) — L,(62)] > 77) =0.
(|61 —02]|<r

Altogether we obtain the result if the radius of the covering balls¥s) such that the

last term vanishes.

For the cases of — oo, T fixed, andn, T — oo, the proof is analogous. The limiting
function forn — oo, £ (see definition 2.5.3), is deterministic and continuous=on
Furthermore we have that for @le ©

P(|L,7(0) — L(O)|>n) —0 forn— oo

due to the pointwise mean-square convergencg,af(¢) (theorem 2.5.4). The result
follows as above. O

From the uniform convergence we can conclude consistency of the parameter estimator
,.r. This enables us to prove convergence in probabilityay, (6, ) and later for
D, M, () D, in the expansion used for establishing asymptotic normality.
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2.5.14 LEMMA R
Denote the ICM parameter estimator@yyr = (a', 62, 72)" = argming oL, 7(0) and
the true parameter W = (a’, o2, 72)’. Then we get under assumption 2.5.8 that

(@,6%) — (d,02) = op(1) for nT — oo
and 7 — 13 =op(1) for T'— oo.

PROOF,
We have shown uniform convergence®f r(6) in the above theorem 2.5.13. By as-
sumption the two limiting function&,,(¢) and £(9) are continuous on the compact
parameter spacés and©, with unique minima atl = ¢, andd = 6,, respectively. As
in the proof of proposition 2.5.2, this yields directly the consistenay,gf in the case
of T — oo, n fixed, and of(a’, 62)" if n — oo.
It now remains to prove the statement fdr= &? — %2 in the case of,, 7" — oco. Here

@? is estimated a§? = max <B(d), ey + %) with B(a) = 7 ZtT:p+1 (a(L) Xlt)2
(see section 2.4.2). Furthermore

E (TL_p ZT: X o X — Al — l)>2 =0 (%)

t=p+1

duetolemma 1.2.4. As(k — 1) = U(k — ) (TZ + %) (lemma 2.2.4), we thus have

due to the consistency afands? that 72 — 72 = 0p(1) evenin the case of, ' — .
O

We however do not get any asymptotic resultsfan the case ol — oo, T fixed,
as we then have only a finite number of observations{fp},cz. The consistency
properties thus imply convergence of the gradiet, ~(6,, ) in the following sense.

2.5.15 @WROLLARY

In the setting of the ICM (assumption 2.2.1), fet; = argming.oL,r(0). If the
true parametef, = (d’,0%,72) € Int©, we obtain under assumption 2.5.8 that the
gradienty L,, 1(0,,.7) fulfils

V(T =p)D, VLnr(Opr) =o0p(1) for T — oo
and /n(T —p)VL,r(0,1) =o0p(1) for n — oo, T fixed

HereV L, 1(0n.1) = (VLH,T(QA”,T)) is the vector consisting of the first+ 1

R k=1,...,p+1
components oN L,, r(6,,.7).

PROOF,

The statement follows from the consistency propertieéngf as in the proof of the
classic theorem 2.5.1: &, € Int®, thenVL,, 1(0, r) = 0. Otherwise we have for
¢ > 0 due to the consistency that

i (H\/n (T —p) D, ViLnr(bnr)| > €> <P (Hén,T — G| > 5) for somed > 0



2.5. ASYMPTOTIC THEORY FOR THE MLE 45

as by assumptiofy, € Int©. Due to the consistency properties proved in the preceding
lemma,P (||én7T — 00| > 6) — 0 if T"— oo, which proves the first statement. In the

case ofn — oo, T fixed, we have to restrict ourselves to the first componen%@f
andd,. Altogether this yields the result as stated. O

Condition (ii)

For assessing the asymptotic behaviourpfi/,, .(6) D,, we can proceed as in the
preceding subsection and prove equicontinuity for each component of the matrix. Ap-
plying the mean value theorem, we get from the mean-square convergence together
with equicontinuity in probability thaD, M. ,.(0) D, is uniformly convergent. This

then can be used for showing convergence in probability to the nigtriklowever we

can also prove convergence in probability/of M., ..(¢) D, directly, as it is possi-

ble to compute an explicit representation\stL,, 7-(¢) and as we have already shown
consistency of the parameter estimators in the last subsection.

2.5.16 THEOREM
Denote the true parameter in the ICM tyy= (d’, 02, 7¢) € © and the corresponding

estimator by, » = (&', 62,72)" = argmingo L, 7(6). Furthermore let

aﬁn,T;l(el,n) .. 8L"n,T;l(el,n)
8CE1 ox +2
L 0 !
o p+1 o .
. = < 0 um and M, . (0) = : :
8Ln,T;p+2(0p+2,n) . 8£n,T;p+2(9P+2,n)
o1 Oxpi2

with intermediate point8; ,, = 0y + k; (émT — éo), ki €10,1],7=1,...,p+ 2, and
L,ri%=1,...,p+ 2, denoting theth coordinate function of,, ;.
Under assumption 2.5.8 we have that

D, M, .(0)D, =T, =o0p(l) forT — oo, n fixed,
D, M, .(0)D, =T =o0p(1) forn,T — oo
and D, M, ,.(0)D, T =op(l) forn— oo, T fixed,

wherel',, = D, V2L, (6y) D,, andl’ = lim,, .., T, are given in lemma 2.5.10 and

2 W’(k - l))k,l:l ,,,,, P 0 0 2,00
“ . P :<V£(90) o>’
2 0 Y
0 0 Y

Y being independent of.

PROOF.
An explicit representation of the second derivativesCgf;(6) can be found in the
Appendix C.1 in lemma C.1.1. A8, = 6y + x; (0 — 0) With k; € [0,1], the
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consistency of the parameter estimator shown in lemma 2.5.14 implies consistency of
all intermediate pointg, ,,: foralli = 1,...,p + 2 we have that

Qi,n — 0y = Op(].) for T — oo

and (0in)ier..pr1 — (@',08) = o0p(1)  for n, T — co.

Due to the well-known mean-square convergence of the panel autocovariance estima-

tor (lemma 1.2.4) we thus get for each entrylaf M., ..(¢) D,, the above stated con-
vergence. This is straightforward except for the last compomeg%ﬁm(@p”m),

in the case of — oo, T fixed. Denotingd,,on = (Wpt21,- - - Upr2p, Ooyas Toys) s
2
api10 = —1 andw,,2 = 72,, + 222, we get here that
T P
0? 1 2 _ _
" (0 2)2£naT(9p+27n) T + (T — p)wb Z Qpta Opr21 Xy Xy
T pt2 P)%pt2 %4 ki=o

Now let {Y,}iez and {Z,},cz be the processes defined by = Yoo Y M- @Nd
Zy = Y0 gUuéi—y, forall t € Z. Then we have{X,}icz = {Y, + Zi}iez. As
Yy (h) = cov (Ys,Yin) = U(h)7¢ andryz(h) = cov (Zy, Zin) = \I/(h)%g for all
h € Z, this yields

_ 2 _ _ _ _
E(X, Xy = YirYia) =E(ZaYiu+ Y Zoa+ ZesZi)”

=272(0) 1w (0) + 27z(k = D)y (k= 1) +72(0)* + 27z(k = 1)* = O (l> :

n

Denotingay = —1, let Yy = e Zf:pﬂ S ok a Y Y, where(ay, ... a,) is
the true autoregressive parameter in the ICM. Then we obtain from the consistency of
a that

82
n W‘CH,T(Qp—i—Q,n) —Y =o0p(1) forn— oo,
whereY = ——— + —2-¥;. This completes the proof. O

p+2 p+2

2.5.17 EMARK )
Moreover the random variablé- defined in the proof of the preceding theorem fulfils

thatYy = Op(1) for T — oc:
~ 2
E (YT2 - 7'02> = O (%) due to the mean-square convergence of the autocovariance

estimator (lemma 1.2.4) and the fact t@ﬁ,z:o apa; vy (k — 1) = 78 (remark 1.1.5).
Thus in particular alsé” = Op(1) ands- = Op(1) for T — oo.

Condition (iii)
Here we have to study the asymptotic properties of the gradig\t £,  at the true
parameter,. In the case of. — oo, T fixed, asymptotic normality of the firgt+ 1
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components oV L,, 7(6,) follows from the standard central limit theorem for indepen-
dently and identically distributed data. In this case we do not obtain a result for the
last component. 1" — oo, we have to use a central limit theorem for martingale ar-
rays due to the double (serial and cross-sectional) correlation structure. Altogether we
obtain asymptotic normality as follows. We start with the non-degenerated case where
¢ > 0. The special case of independent time serigs= 0) is treated afterwards in
theorem 2.5.22.

2.5.18 THEOREM

The gradient of the conditional log-likelihood functidn -, which has been derived in
proposition 2.4.2, fulfils at the true paramegr= (a', 02, 72) that

for T'— oo, n fixed,

V (T - p) \/EDHVETL,T<80) = Zn, Where Zn ~ N(O, En) ;

and, if 12 > 0, for n,T — oo,
VT —p\/nD,VL,1(0y) = Z, where Z ~ N(0, ).
In the case ofv — oo, T fixed, let Vﬁn,:r’(éo) = <Vﬁn,T(90))k . We get that

VT —p/nVL,1(60) = Zp, where Z; ~ N(0, 27).

Here we have, denoting? = 72 + ‘%3 that

=l1,...

(@]
o - o
:Eﬁl’_‘ o o :E»l'_'

2W(k —1 0
and Yr=2 (( ( 0>)k,l:1 ..... D > .

PROOF,

Due to the double nature of correlation in the ICM we have to distinguish between the
casesn — oo, T fixed, andT" — oo. In the first case we can employ the standard
central limit theorem for independently and identically distributed observations for the
proof, whereas we have to use a martingale limit theorem in the second case. In order
to enhance readability, we have moved the proof to the separate section 2.5.4, which
can be found after the main result. O

2.5.19 REMARK
It can be easily be seen from the explicit representations,o& D, V3L, (6,) D,,,

I'=1lim,_... I, andvzﬁ(éo) in lemma 2.5.10 that the above matrices fuifjl = 2T,,,

x=2T andET =2 V2£(90)
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Conclusion

We now have verified all conditions of the classic theorem 2.5.1 stated at the beginning
of the chapter. This implies asymptotic normality of the parameter estimator in the
ICM. Summarising, we obtain our main result:

2.5.20 THEOREM (ASYMPTOTIC NORMALITY OF THE MLE)
Let £, r(0) be the conditional log-likelihood function in the ICM derived in proposi-

tion 2.4.2 and let assumption 2.5.8 on the parameter sgaceR?+? and® c Rr+!

be fulfilled. Letf, ; = (&, 62,72) = argming oL, r(0) and denote the reduced vec-
tor by6,, » = (&',52)'. Analogously, le, = (a',02,72)" € Int© be the true parameter
in the ICM and denoté, = (d/, 52)" € Int®O.

. I 0
Furthermore leD,, be the transformation matrix, = ( pgl \/_) .
n

Then we have fofl' — oo, n fixed,
n (T —p) D (ényT - 90) = N,,  whereN, ~N(0,2T;");
for n,T — oo
n (T —p) D! (én;f - 90> = N,  whereN ~N(0,2T1),
and forn — oo, T fixed,
n (T —p) <§n,T — §0> = Np, where Ny ~ N (0, 2F°71> .
HereT',, = D, V2L,(0,) D,, T = lim, ., I, andT® = V2L(6,), whereL,, is the

pointwise limit of the log-likelihood functioit,, r in the case o’ — oo, n fixed, and
L the limit forn — oo.

PrOOF,
The mean value theorem leads to

vn(T —p)D, VEn,T<én,T) —/n(T —p) D, VL, 1(0)
= V(T =p) D, M, ;(0) D, D;* (nz—60) .

where
aLn,T;l(el,n) 8Ln,T;1(91,n)
Ox1 U 0xpi2
M'cn,T (0) = . .
8»C'n,T;pw% (9p+2,n) . 8Ln,T;p+2(9p+2,n)
o0x1 O0xpi2

with intermediate points,,, = 6y + x; (0,7 — 0o), ki € [0,1],i = 1,...,p + 2, and
L.ri i = 1,...,p+ 2, denoting theith coordinate function oL, . The result is
obtained by reasoning analogously to the proof of the classic theorem 2.5.1:
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we have seen in lemma 2.5.6 that the true parameter félfils argming oL, (0)
and (a’,03)" = argming_gL(#). From the subsequent results we know due to the
consistency of,, - (condition (i), lemma 2.5.14) that

V/n (T =p)D, VLur(0n1) =0p(1) for T — oo (corollary 2.5.15).

In the case ofn — oo, T fixed, we do not get a statement 6fwith the above me-
thods. However(a’, 62)’ is a consistent estimator ¢f’, o2)’; and we thus have that

V(T = p)VLpr(bnr) = op(1) for n — oo, T fixed.

whereV L, r(6) denotes the reduced vectov £,, 7(6)) bl pil-
In theorem 2.5.16, which corresponds to condition (ii), we have shown that consistency
together with mean-square convergence lead to

D, M, (0) D, —Tpr=o0p(l) fornT — oo,

o

~ I o0 . .
wherel’,, » stands fotl",,, I' andI’ = 0y according to the casE — oo, n fixed,

n, T — oo andn — oo, T fixed, respectively.T",,, I' andI'° are given in theo-
rem 2.5.16; they are invertible (lemma 2.5.10).
We therefore obtain from the above equation in the casg e oo that

W(T =) D" (Onr = 00) + /(T = p) T D, VLir(f) = op(1),

and in the case of, — oo, T fixed, where only/n (T — p) VL, 17 (0,1) = op(1), we
have due to the structure bfgiven in theorem 2.5.16 that

W (T =) (Bur =) + V0 (T = p)T° 7 VLyr(6) = op(1).
Finally the preceding theorem yields f6r — oo that/n (T" — p) D, VL, 1(6) is

AN(0, X,,) (condition (iii); notation as in Brockwell and Davis (1991)). Bg = 2T,
(remark 2.5.19), this implies that

n (T —p) D! (én,T - 00> is AN(0,2171).
In the case ofi — oo, T fixed, we get analogously from the preceding theorem that
Vi (T =p) ((@,6%) — (.02)) is AN(0,2T°7Y).
This completes the proof. O

These properties can be observed nicely in the simulations presented in the Appendix A.

2.5.21 EMARK
1. The theorem shows that converges with a different rate than the other esti-

mators. IfT — oo, 72 is only v/T-consistent, whereas the other parameter
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estimators are/n T-consistent. A$? is the estimator of the variance of the sin-
gle procesg, }.ez, this is a natural result. In the caserof— oo, T fixed, we
cannot infer about the asymptotic behaviourréf as we then only have a finite
number of observations for the common influedgge;cz; 72 is not a consistent
estimator ofr in this case.

2. We can investigate the asymptotic behaviour of the parameter estimators more
closely. Since\/n (T — p) D, (én,T — «90) is AN(0,2T1), this means that

(T =) (bur — ) ISAN(0,D, 2T, D,),

whereD, Tt D, = V2L, (6y)!

It is easily seen that fonT — oo, the variance of the estimators decreases.
DenoteB = (¥(k —1));,,—,.,- As (compare lemma 2.5.10)

,,,,,

B! 0 0
2V2L,(00) = [ 0 2 2o
4 4
_% n(QnU—Ol) + an?z

~ Bt 0
and 2V?L(0y) ' = 4> :
0 20

we obtain that the asymptotic variancedofs not influenced by the strength of
intercorrelationp = cov (X,f“,Xf”) /var (Xf“) = 2+ > (i # j). However
the variances of? and7? vary with the size o2 and Tg The variance of»?
can be obtained from@ V2L, (6,) "' as

52 52
~2 ~2 g 2 0 4
varw, = var7- +var — +2cov | 77, — | = 2nw,, .
n n

We see in the Appendix A that the simulation results are close to the theoretical
values.

3. The factor 2 in the asymptotic variance is due to the standardisation used in theo-
rem2.4.2. There we have multiplied the conditional log-likelihood function with
the factor— ( ; for convenience. This standardisation has simplified the nota-
tion in our proofs Thus the asymptotic varianeds,! and2 ! are the same as
those we would have obtained without using the factor 2 in the standardisation. In
particular the asymptotic variance®fs var a = T B!, which corresponds
to standard theory (see e.g. Brockwell and Davrs 1991 theorem 8.1.1).

The above theorem proves asymptotic normality of the parameter estiéggtomder
assumption 2.5.8. In particular it requiré;;‘ to be uniformly bounded in probability

for nT — oo, implying the conditionr? > ¢, > 0 forall = (o/,02,7%) € O if

n — oo (remark 2.5.9). This is necessary for proving equicontinuity in probability for
L, r, which in turn is needed for obtaining consistency of the parameter estimators.
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The latter property cannot be assessed directly due to the recursive structure of the
parameter estimator (remark 2.4.8). However we can omit the conditiorl dirthe
intercorrelation in the panel is zero, i.e. if the time series in the panel are independent.
This case is addressed in the following theorem. The notation follows Brockwell and
Davis (1991).

2.5.22 THEOREM
Letoy = (d/,02,72)" € O be the true parameter in the ICM (assumption 2.2.1). Assume

that® C © x R{, where® is such that®> > ¢ > 0 forall § = (/,0%) € O,
Furthermorda’, 02)' € Int© andr? = 0. In this special case of no intercorrelation, we

get for the ICM parameter estimattyr = (¢',6%,7%) = argming.o L, 7(0) that
n(T —p) ((@,6%) —(d,08)) = N, whereN ~ N(0,2I°7"),

- 2B 0
with T° = V2L(6,) = < 0 > andB = (¥ (k — l))k,l:l ..... p*

~2 1
Furthermorer* = Op <—n vis

PROOF.

We first treat the casé€ — oo, n fixed, using the notations of the preceding theorem
and adapting its proof to the present setting. »Ais fixed, we do not need to ugde,

for deriving the asymptotic distribution. Furthermore the restriction of the parameter
space tay? > ¢ > 0 implies that— and - L are uniformly bounded if. is fixed, such

that all steps of the preceding proofs can be performed analogously. Thus we have that
supgpeo || VL, 1(0)]| < oo, which yields that the functioif,, »-(6) is equicontinuous

in probability forT — oo, nfixed. Using the pointwise mean-square convergence
of £, 7(0) — L,() (theorem 2.5.4) we therefore get that; — 6, = op(1). As
(a,0d) € Int® by assumptlon we then can conclude as in the proof of theorem 2.5.1
that\/ (T —p) VﬁnT 1) = op(1). Since we allow for7? = 0, we have that

W £n7T(0n,T) = 0 by construction (remark 2.4.3). Furthermore the matix_ () in

the mean value theorem fulfils thaf, . (9) — V2L, (6y) = op(1) due to the consis-
tency oféan and the mean-square convergence of the panel autocovariance estimator
(compare the proof of the preceding theorem). In section 2.5.4 we prove asymptotic
normality of VL, r(6y), the gradient at the true parameter, for agy> 0. We get

from corollary 2.5.33 that in the case Bf— oo, n fixed,

V(T —p)VL,r(0) = Z, whereZ, ~N(0,2V>L,(6p)).

The matrixV2L,,(6,) is positive definite (lemma 2.5.10). These considerations allow
us to conclude from the mean value theorem as in the proof of the preceding theorem
that )
n(T —p) (Onr—0o) = N, for T — oo, n fixed,

whereN,, ~ N(0,2V2L,(6p)"1). As7Z = 0, we have that? = %3 and therefore
<V2L(é )-1) — o1,

kl=1,...p+1
Now we have to consider the case— co. Here— is not uniformly bounded any more
as the parameter space is not restricted’to- 0. Thus we do not obtain consistency



52 CHAPTER 2. THE INTERCORRELATION MODEL

in the same way as before, because we cannot prove equicontinuity in probability of
L, r(0) on the given parameter space. We however can employ a more direct procedure

in thls case, based on the fact ti&( Zt pil X, . X, l) = O (w}) (compare
remark 2.2.5). For ease of notation let

T n
Alzﬁ > SR B s Z 350, 2

t=p+1 =1 t= p+1 =1
1 T
Ay = T g X, X, 4 and E X, 1 X, 1,
L — t=p+1

. o [+ o [+ / _ _
wherex”, = (Xt(’)l,... sz)p) fori = 1,...,n, andx, ;| = (Xt 1y Xt »)
Thena fulfils the equatlonBa = A (remark 2.4. 3) wherd = 31 + — 32 and

A= A1 + — A If we letay = —1, the estimatoé? is given by

&2_nﬁ1A"’T(&)_(n—1 T —p) ZZZGM X0 X0

t=p+1 i=1 k,l=0

Denote the estimator based on the equafBQﬁHT = Al by ay7; the corresponding
variance estimator 6%, = - A, r(ayr). Thend, = (dyy,6%) is the estimator
of the parametefa’, 02) of the individual effects in the GICM (proposition 2.4.7) and
is the same as the one of Hjellvik and Tjgstheim (1999a) (see remark 2.4.8).

As © is assumed to be compact such that> ¢ > 0 for aII 6= («,0%7%) € O,we
know thatd, 62 and, aso? = 72 + - > £, that—; < 1 are bounded in probablllty

Moreover we have here that- Zt S Xt WX = Op( ) sincew? = 70 in the
special case of? = 0. These considerations yield that

~2

A . 1 A 1
5‘2A—A1: JAQAQZO]D(E) and &QB_BIZOP(E>

nw?

As cov ()%ﬁ“,)@”) = —%03 if ¢ # j, we furthermore get from the mean-square

convergence of the panel autocovariance estimatothat »=! B o2 = Op (\/:TT> :
where the matrixim,, .. ”T‘l B isinvertible (lemma 1.2.4).

ThereforeB; ! = Op(1). Since
A A A A - - - PN 1
Bi(a—anr) = Bra—A+62 A—62 Ba = (Bi—52 B)a+ (62 A—Ay) = Op (—) ,

we have thati—ayr = Op (1) . This yields for the estimators of the variances that also
6% —063, = Op (£) . Thus(d’, 62)" has the same asymptotic distribution(@ ., 6%1)
if n — oo. Hijellvik and Tjgstheim (1999a) have shown that their estimator fulfils
n (T —p) ((agr,0%7) — (a,02)') is AN(0,2T2~!) and we conclude the same re-
sult as a special case of theorem 2.5.34 in the next section, where we prove asymptotic

3
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normality of the estimatof, = (&, 6%)’ in the GICM, see corollary 2.5.35. There-
fore 0,, 1 fulfils that forn — oo

V(T —p)((@,6%) —(d,05)) = N, whereN ~ N (0,2T°7") .

Finally we consider the behaviour of the estimatofs= 72 + ";2 and+2. The minimi-
sation algorithm 2.4.4 yields thaf = 73" >0 ana X, , X, ;, where we
denotei, = —1. Moreover we can write? = Y 7, a, a ¥ (k — ) w2 with ag = —1

(remark 1.1.5). From the consistencydfve know thati, @, — a,a; = Op (\/:TT>

_ 2 iy B
AsE (T%p St Xk Xy = Ak — l)) =0 (ﬁ) whered,(h) = ¥(h)w? for
all h € Z (remark 2.2.5), this leads to

p T

. Lo 1 S o
Wy —wp, = Uk Al D Z (Xeor Xooy = Uk =D wy)
k,1=0 t=p+1
+ (dkdl—akal) \I’(/{Z—l)u)n:Op (_n) .
k,l=0 \/T

Therefore we have due to the consistencyothat also

52 2 2

. . o° o w

o= =2 )=0p &),
noon VT

i.e. forrg = 0we geti? = Op (ﬁ) sincew? = 72 + Z. 0

2.5.23 EMARK

1. In contrast to the preceding theorem, here the terms depending on the mean pro-

cess vanish asymptotically if — oo. This implies that the information con-
tained in the mean proces$s, },; is asymptotically not used in the estimation
anymore. The proof shows that in this cdées?)’ indeed has the same asymp-
totic distribution as the parameter estimatoy,r, 5%)'. The latter is derived
in the present work in corollary 2.5.35 after proving asymptotic normality in the
GICM.

2. The last part of the proof of the preceding theorem shows that the asymptotic

behaviour of? and@? is only based on the consistencyfinds?. Thus we

get the same results also under the assumptiorr¢hat 0, i.e. we have for any
2>0th

5 = at

9 2 wp 2 2 wi
T—TOZOP ﬁ and wn—wn:Op ﬁ y

N A 52 2
where &2 = 7 + < andw? = 77 + 2.

n n
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2.5.4 Proof of Theorem 2.5.18

As the proof requires distinguishing the cases- oo, T fixed, andl’ — oo, we have
decided to present it in this separate section. First recall the basic properties of the true
parametep, in the ICM.

2.5.24 REMARK
We know that in the ICM (assumption 2.2.1) the true paranmtgter (a’, o2, 72)’ fulfils

aL) XY =&" and (L)X, =n+ & (seeremark.2.3),

whereay(L) is the backward shift operator defined in section 1.1. In order to simplify
the notation let; = 7, + &, andw? = 72 + %3 = var &.

The gradient of the conditional log-likelihood functidh -, given in proposition 2.4.2,
atb, is therefore

T n (‘G% (giz) Xt(i)k> - ﬁgt Xt7k>

1 ) k=1,...p
- - 1 o(i)2 ~1 1 ¢2 1
v£”7T<90) - (T - ) Z Z = + 202 T onZwi gt + n?w?
" P) o im 0 0 " n
_ 1 52 + 1
nwi St nw2

For showing convergence of vectors, we useG@namér-Wold-Device

2.5.25 RROPOSITION(CRAMER-WOLD-DEVICE)
A sequence af-dimensional random vectofs\,, }.~o converges weakly toé&dimen-
sional random vectaX if and only if for all A € R?

NX, = VX for n — oo.

PROOF,
See for example Brockwell and Davis (1991), proposition 6.3.1. O

We split the proof of the theorem in two parts. The first case+s oo, T fixed. Here

we can use the central limit theorem for independently and identically distributed data.
In the second parf]’ — oo, we employ a central limit theorem for martingale arrays
taken from Hall and Heyde (1980).

Case n — oo, T fixed

If n — oo, T fixed, we do only have a finite number of observations for the process
{n: }+ez. Therefore it is not possible to obtain the asymptotic distribution’df this
case. The variance? however can consistently be estimated, eveh i$ fixed. Thus

we here regar@ L, (0y) = (VLyn1(60)) i.e. we omit;Z; £, +(6,) from the
analysis.

In the following we construct a sequence of independently and identically distributed
random vectorssg), i > 1, to which we apply the standard central limit theorem.
We then show that/n (T — p) VL, r(6,) has the same asymptotic distribution as

k=1,...p+1’
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\/Lﬁ Yoy ng) . In order to motivate the choice S(Yf), i > 1, we preliminarily con-
sider some asymptotic properties of the entrieg/ef (1" — p) Vﬁn,T(OO). In particular
the terms of\/n (T — p) VL, r(6,) depending on{X,},cz vanish asymptotically if

n — oQ.

2.5.26 LEMMA
The entries of\/n (T — p) VL, r(0y), whereV L, 1(0,) is given in remark 2.5.24,
fulfilforall k =1, ..., p that

2 2 5o )20@ |

Furthermore

(WZ a (¢ “))20 ()

We moreover have, if we It = Yo W e\ asin lemma 2.2.4, that

2
o(i) (i i) (i 1
2t X3 (5 (0 2)) <o (1)
T p t=p+1 =1 UO n

and
11 ’ 1
s S A1) o)
T—p) 5= nog n
PROOF
The proof of the above statements is straightforward. In order to enhance readability,
we have moved it to the Appendix C.2.1. O

Now we can prove asymptotic normality in the case~ oo, T fixed. We apply the
central limit theorem to the independently and identically distributed seqy&hgecy
defined below.

2.5.27 THEOREM
In the setting of the ICM described in assumptlon 2.2.1 deﬁé?e Yoo Y st u

(seelemma2.2.4). Far=1,...,n, letS ﬁ ST pi1 Z\", where
_2 () )
Zgi) _ ( o2 Ct Ztk>1g1 ..... P
— LW

t 2
=) 90

and denot®, = 1 7 sl
Then

\/ESn = N, with Np ~ N (O, ET) , for n — oo, T ﬁxed,

2U(k —1 0
WhereZT:2<( ( Diiz,.co 1).
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PROOF.

Let A € RPFL ThenXS and\' Sy U) are identically distributed and independent for
i#jwith E (V' S) = 0 andvar (X D) =4 S0 AT — 1) + A2, 2 for

all i = 1,...,n. Therefore the standard central limit theorem for mdependently and
identically distributed observations directly gives that

T n
ST ST NZP = Ny, where Ny~ N(0, X 573

1
V(T —p) 535

with X7 as stated above. Using the Cramér-Wold device (proposition 2.5.25) we obtain
the result. O

VNS, =

This allows us to show asymptotic normality fgfn(7 — p) VL, (6).

2.5.28 WROLLARY (THEOREM2.5.18,CASEn — oo, T FIXED)
Let 6y = (d',0%,72) be the true parameter in the ICM. Then the reduced gradient

VE,LT(HO) = (VL,7(0)),_, whereV L, r(6y) is given in remark 2.5.24, is

N A RAPYE=1,., p+17
asymptotically normal:

V(T = p)VLur(0) = Ny, with Ny ~N(0,%7), for n — oo, T fixed

whereX is as stated in the above theorem.

PROOF,
We use the notations of the preceding theorem. Then

=i (\/<T = 1) VL r(6) - S0)
S0 -02)

s S e

99

.....

B0 P Gy

2
n w2

Z (_%&Xt_k)kzl P

Lemma 2.5.26 shows that we hag\' A,)* = O (1) for all A € Rr+'. Thus

/n (T —p) VL, 1(6y) has the same asymptotic distribution @8 S,, in the case of
n — oo, 1 fixed O

Case T'— o0

In the ICM, not only X" and X”) are correlated fo,j = 1,...,n. Due to their
autoregressive structure, alsg” and)o(t(i) are dependent for # t. Therefore, in the
case ofl’ — oo we cannot reduce the proof of the theorem to the central limit theorem
for independently and identically distributed data as before. However, the conditions
of the following central limit theorem for martingale arrays are fulfilled.
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2.5.29 THEOREM (HALL AND HEYDE)

Let{Sr:, Fr:,T > 1,1 <t < T} be a martingale array witfr, C Fri1., such that
E(Sr:) = 0 andE(S7,) < oo forallT > 1,1 < t < T. Denote the differences by
Dr,. If the differences fulfil

(i) the conditional Lindeberg condition that for alt> 0
T
> E (D7, I(|Dry| > €) | Fry-1) = op(1) for T — oo
t=1
(i) and an analogous condition for the conditional variance,
T
> E (D7, | Fre1) —n* =op(1) for T — oo,
we get that fofl' — oo

T
Sr = ZDU = N, whereN ~ N(0,7%).

t=1
PROOF,
Hall and Heyde (1980), theorem 3.2 and corollary 3.1. O

For proving asymptotic normality we now construct a martingale array fulfilling the
conditions of the preceding theorem. It is defined in the next lemma; the convergence
properties of the martingale differences are derived in the subsequent proposition. By
regarding the transformed gradienf, V£, r(6,) we obtain the asymptotic normality
result for both of the casés — oo, n fixed, andn,T — oo in one step.

2.5.30 LEMMA
Assume that the assumptions of the ICM (assumption 2.2.1) are fulfilled and let the
sequenc€l’,nr)r>,+1 be such thatr, > ny > 1.
Define thes-field Fr . by
Fr. = U{Ef),m; —co<t<Ti=1,...,nr}
and let

ST,T

NZY
vrnr (T = p) t%u 1 t

where)\ € RP*? and the variabIer ,p+1<t<T,i=1,...,np, are such that

D VL, 17(00) = T 5 ZZzt ,

t=p+1 i=1

Iy 0
0 n)

Then{Sy.,Fr., T >p+ 1,7 =p+1,...,T} is a martingale array with Sr, = 0
andvar Sy, < oo. Furthermord—“TT C Fri+1-. The martingale differences, depending

on the givem\, areDr; = \/T SN Z(Z Jt=p+1,....T.
P)

whereV L, r(6y) is given in remark 2.5.24 and,, =
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PrROOF
The assertions are a direct consequence of the chozﬁ)cﬁnd}}ﬁ. O

The martingale differences fulfil the conditions of the above theorem of Hall and Heyde
(1980).

2.5.31 RROPOSITION
In the setting of the preceding lemma we get for the martingale differences that

T
S B(Dhun| Frat) = NS A =op(1) for T— oo,

t=p+1

wherey,, is as stated in theorem 2.5.18. If the true parantter (a', o2, 73) fulfils
thatri > 0, we furthermore have for afl > 0 that

T

> B(D3n I(1Dral > ) | Fryt) =op(l) for T — oo,

t=p+1
In the case ofl' — oo, n fixed, it is sufficient to require thaf > 0.

PrROOF
Straightforward calculations give that

Z E<DTt)\ | J:T,t—1>

t=p+1

- X [T

t=p+1 k=1

[ e (o) e o)

2 (np —1) 2 2
+)\p+1< + 3 >+)\]2)+2_

2
2011 Aprg —— .
T 2Apt1 Apt2 nr g A
Due to the mean-square convergence of the first terms, we thus get that
T
Z E(D?P,t,/\ | Frio1) = NE, A =op(1)
t=p+1

with X, as stated in theorem 2.5.18. The details can be found in the Appendix C.2.2
(proposition C.2.2).

It remains to prove the second assertion. Applying the Holder and Chebyshev inequa-
lities we obtain

E( S B(D% 11Dl > ) | Fra 1)) = E (D} (1Dl > )

t=p+1
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T
1
<3 BB 5B D).

t=p+1

Note that because of

(T'-pE (D?Rt,)\) =E ( Z E (D%,t,)\ | FT,tl)) )

t=p+1

we have(T — p)E (D7, ,) = N E, A If & =0(1) fornT — oo, i.e.ifrg > 0 orif
T — oo, n fixed, we therefore getthat

1

E(D2,,) = O (f) .

As the calculations needed to show tiiatD7, ,) remains bounded ifi; — oo are
too lengthy to be included here, the proof also has been moved to the Appendix C.2.2
(proposition C.2.3). Indeed we have that

1
E (D7) =0 (ﬁ) :

This yields, in both of the cases- — oo andn fixed, that

T

1

IE< > E (D} \I(IDraal > €) | Fry-1) ) =0 (ﬁ) forall e > 0.
t=p+1

AsE (D%,m I(|Dryp] > ¢) | }"Ti_l) > 0, we just have shown that the term converges
to zero in thel.! norm. This completes the proof. O

Theorem 2.5.18 is now a direct conclusion from Hall and Heyde’s theorem (notation as
in Brockwell and Davis (1991)).

2.5.32 THEOREM

In the setting of the ICM (assumption 2.2.1), the gradient of the conditional log-likeli-
hood function at the true paramebgr= (¢, o3, 73)’, given in remark 2.5.24, is asymp-
totically normal forT — oo if 7& > 0:

vn (T —p)D,VL,r(6p) is AN(0,%,) forT — oo,

. . I 0
wherey.,, is as stated in theorem 2.5.18 aing = ( ptl > .
0 n

In the case ofl — oo, n fixed, the condition onZ can be relaxed tg? > 0.

PrROOF,
First note that we have fof = lim,, ., >,, that

NEAN=NEZXN=0p (%) (see lemma 2.5.10)
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which implies that

T
3 IE(D%M | fT,t_l) CNEA=o0p(1) forn,T — oo

t=p+1

(see also the proof of the preceding proposition). Depending on ttfeosen in the
(4)

1 n
Vi i L

definition of Dy, = X
that

), we thus obtain from theorem 2.5.29

T
Sr= Y Dryxis AN(O,X'%, )) for T — oc.

t=p+1

This means that; = ZtT:pH Dr,x = N, where the random variabl), is dis-
tributed asN, ~ N(0,\ X)) in the case oh, T — oo and asN, ~ N(0,\ X, \)
if T — oo, n fixed. Using the Cramér-Wold device (proposition 2.5.25), this leads

to asymptotic normality of% Yoy Zﬁ“. Sincer) has been chosen such that
n(T'—p

=

VLu1(00) = st Dtepit ot Z\", result follows directly. O

Distinguishing the two cases— oo andn fixed, we get the following explicit version
of the theorem.

2.5.33 WROLLARY (THEOREM2.5.18,CASE T' — o0)
In the above setting, we obtain for the gradient of the conditional log-likelihood func-
tion at the true parametég = (a’, o2, 72) that for T — oo, n fixed,

vn(T —p)D,VL,r(6h) = Z, whereZ, ~N(0,%,),

and forn, T — oo, if 73 > 0,

V(T —p) D, VL, 7(0)) = Z whereZ ~ N(0,%).

. I 0
Herey:,, andX = lim,,_,., X,, are as stated in theorem 2.5.18 dnd— ( ”0“ \/_) .
n
PROOF.
The above statements are the longer expressions foAtN&-hotation. O

2.5.5 Asymptotic Normality in the GICM

In the GICM, the parametet, = (ay, ... ,ap,52)’ of the individual effects and the
parameted, = (b, ... ,bq,w,%)’ of the background process are estimated separately.

Thus we can also investigate their asymptotic properties separately.
We have already discussed asymptotic normality for the estimiatdtained by mini-

mising £itT in theorem 2.4.15. Asymptotic normality éf derived fromL;, ;. follows
in a similar way as in the case of the ICM:
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2.5.34 THEOREM
Under the assumptions of the GICM (assumption 2.3.1), we gét i O (1) that

V(T —p) (éa - 0a> is AN(0,2T°71)

(notation as in Brockwell and Davis (1991)), i.e. we have tbr— oo, n fixed, that

Vn (T —p) (éa —0a> = N,,
and forn — oo A
n(T —p) <9a—9a> = N,
whereN,, ~ N(0,2T¢ 1) andN ~ N(0,2T° 1) with

—1 (2B 0 2B 0
o = E (VL5 0(6)) = = 1( ) and T° = lim r;:< 1),

n 0 &% n—oo 0 vy
n 0

whereB = (V(k — 1)), ,_

=1,

cesses (see remark 2.3.5).

PROOF,
In the case of the GICM, the estimation of the parameter is based solely on the indivi-

dual time seriest”) = 2 t € Z,i = 1,...,n. The estimator of the autoregressive
parameter is obtained as (see proposition 2.4.7)

T n -1 7 n
. (Z Sk, s&;) S ROS,,

t=p+1 i=1 t=p+1 i=1
where we denot&”, = (X{”, ..., X" ) i =1,...,n. The estimator of the innova-
tions’ variance is given by
1 T n - 9
~92 ~ o (4
52 = <a(L) X )
T ) 2, 2 U

. y e oy .
We have already proved in proposition 2.4.7 thédts;) — (¢/,67) = Op <ﬁ)
By assumptions’y = cov (f‘fi),@j)) = O (L) fori # j. Due to the mean-square

consistency of the panel covariance estimator (lemma 1.2.4) it is easy to see that

1
V2L, r(6.) = T5 =0 :
n,T( ) P (\/n_T)

the second derivatives df, ,.(¢) are given in the Appendix C.1, lemma C.1.5.

~

As VL; +(0,) = 0 by construction, we obtain from the mean value theorem that

V(T =p) VL, 7(0a) = /1 (T —p) Me=(0) (0 — 6a)
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DL 1 (01,n) DL 7 (01,n)
8161 U 8zp+1
where  M,.(6) = : :
OLnrperOprrn) o 0Ly Oriiin)
8121 8.Z'p+1
with intermediate point®;,, = 6, + #; (0, — 0.), ks € [0,1],i = 1,...,p + 1, and

L, rii=1,...,p+ 1, denoting theith coordlnate function of? ;. (compare proof

of theorem 2.5.20, where we have proved asymptotic normallty of the estimators in the
ICM). Due to the consistency of the parameter estimator and/th&-consistency of
VQC;;,T(QG) we can reason as in the proof of condition (ii) of the preceding theorem

(theorem 2.5.16) that alst/ - (0) — I\ = Op (F) It thus only remains to prove

asymptotic normality of the gradieﬁthT (Oa), which then yields the result. Here we
have to proceed as in the case of the ICM (theorem 2.5.18). The gradient at the true
parameter is

T n 2 (1) ()
| (42
V[%T(ea): Z 2 6t ik k:l 77777 o

() 2
t=p+1 i=1 Ct n02

which can formally be obtained froMi £, () by replacings\” by ¢, 62 by 52 and
by omitting all terms dependent af. Recall thatZ” = X” is given for allt € Z
by 2 = 3% 4, (!, (assumption 2.3.1) and thatv (ft(i), f,f”) = (65— 1) &2

(remark 2.3.5). Proceeding as in the proof of theorem 2.5.18, we get in the case of

T — oo that
V(T —p) VL, 1(0,) is AN(0,2T5 7).

The factor®= in Ty is induced by omitting the terms dependingwh In the remai-
ning case ofi — oo, T fixed, we have been able to employ the independen@:é)of
andg fori # j in the ICM case (see theorem 2.5.27). This however cannot be mi-

micked for the GICM as we aIIovyt and(t to be correlated foi # j. Therefore we
must again use the above central limit theorem for martingale arrays. EoN and

v=1,...,nletF,, = a{g‘t(“,z' =1,...,v}, which implies¥, , C F,1,. Instead of
¢!” we now regard” = ¢! — E <Ct(i) | fm-,l). Then we have foi 7é j thatft(i) and
(V) are independent. Additionally replacg” by Z" = S°°° 4, (.. As ZY and
¢!” are independent forall < ¢,4,j = 1,...,n, alsoZ{” and(” are mdependent for
s < t. Using these notations, we form

(1)
7 _ < Ct % k)k —1,.p
t C()2

and letS,,, = \/ﬁ S it o N Z\" whereX € RP*1,

Then{S, ., F.,,n € Nyv = 1,...,n} is a martingale array witft S,,, = 0 and
i (2)

var.S,, < oo. Furthermore, the differenceS, ; = \/n(T—pZt pt1 )\’Z fulfil

the other two conditions of Hall and Heyde’s theorem 2.5.29. Thus Zizl D, ;is
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asymptotically normal with asymptotic varians& I'° \. Asin the ICM, cases — oo,
. 2 .
it can be shown thdt (\/n (T —p) VL 1(0a) — Sn> =0 () (lemma 2.5.26). This

proves asymptotic normality for the gradient in the case % oo, T fixed.
Therefore we can conclude from the mean value theorem that

V(T —p) (éa . ea) is AN(0,20°71),
covering all three casés — oo, n fixed;n, T — oo, andn — oo, T fixed. O

We now can deduce the asymptotic distribution of the estimator of the parameter of the
individual effects in the ICM, which allows us comparing the relative efficiencies of the
ICM parameter estimator to the estimator of Hjellvik and Tjgstheim (1999a).

2.5.35 @ROLLARY
In the special case of the ICM, the above theorem yields that

vn (T —p) (éa—(a',ag)’> is AN ((),2 " 1F°_1) ,

n —

‘ 2B 0 ~
whereo? = vare\ andl™ = 0 l4) = V2L(0y) with B = (V(k — 1)),

99

(compare lemma 2.5.10).

PROOF

The random variableg”’ in the GICM correspond té(” in the ICM for all ¢ € Z,
i = 1,...,n. Thus we get in particular thaf” = &% — LD gD = g0 — )
wherecov (éf), &‘?Ej)) = (65— 1) 02, i.e. heres? = 03 = lim,,_o 62 (remark 2.3.5).
Thus the above theorem yields directly that

V(T —p) (éa - (a’,aé)’) is AN (0,2 (" —! r°> 1) . 0

n

2.5.36 EMARK
We have discussed in remark 2.4.8 that, if the model is restricted to the ICM case, the

estimator of Hjellvik and Tjgstheim (1999a) equals the GICM estimtof 6,, which

is obtained from the individual effectsZ" },ez = {X”}1ez, i = 1,...,n. We can
derive the asymptotic relative efficiencies of the autoregressive parameter estimators
from the asymptotic variances obtained in theorem 2.5.20 and in the above theorem.
For this, denotd),, ; = (&/,62 7%) andd, = (a}y;,6%;). Forn — oo the ICM
parameter estimatdgr’, 52)" and the estimatof, are asymptotically equivalent. Thus

we could have obtained asymptotic normality@gﬁn the special case of the ICM also

in a direct way fromZ;, .(6,), as it has been done in Hjellvik and Tjgstheim (1999a),
see also remark 2.4.8. However,7if — oo, n fixed, the asymptotic results in the

ICM are based orcC, (f), which includes the information contained {X, };cz. In

this case we get that the asymptotic varianc (T —p) (a —a) is B~!, where

77777
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If we denote the upper left block dT;—l I'° by B°, we thus have tha%;—1 B = B°,
i.e. B°~! = -2 B~!, Therefore the relative asymptotic efficiencydfo - is for

T — oo, n fixed,
n—1

eff ¢ (da&HT) = 0

This effect is also illustrated in the simulations in the Appendix A.

2.6 Properties of the Parameter Estimators

In the last section we have proved consistency of the parameter estimators and have
proved asymptotic normality in both the ICM (theorem 2.5.20) and the GICM (theo-
rem 2.5.34). These results yieldya T-rate of convergence. Now we investigate the
asymptotic behaviour more closely. It is generally known (compare also remark 2.6.13
at the end of this section) that determining the mean squared error of the parameter
estimators is a difficult task. We thus restrict ourselves to a stochastic expansion and
examine the mean squared error of its dominating term. The calculation is straight-
forward for the parameter estimators in the GICM; in theorem 2.6.9 we derive the
term responsible for the asymptotic behaviout.gf- — a, wherea g is the estimator

of Hjellvik and Tjgstheim (1999a) anddenotes the true autoregressive parameter. We
however begin with the case of the ICM parameter estimatarhere the structure of

the estimators is more complex. Here we give an explicit expression of the dominating
term in theorem 2.6.5.

Comparing the mean squared errors of the dominating terms we obtain the main result
of this section: the ICM estimatarhas not only a higher relative efficiency compared

to ayr (see remark 2.4.8), but also the mean squared error of the dominating term
is smaller. In order to enhance readability, some proofs have been moved to the Ap-
pendix C.3.1. The section concludes with a short discussion of the bias in the ICM and
GICM. In particular we prove the mean-square rate of convergence of the bias term.

Rates of Convergence

For reference we first recall some results obtained previously.

2.6.1 REMARK
1. We see from remark 2.4.3 and the algorithm 2.4.4 that, if the ICM parameter

estimatord,, ; = (&',62,72) = argming oL, r(f) € IntO, it fulfils Ba = A
with

1 1 . 1 1 T
B=——K01m— SAIE S R—— N S
0'2n<T_p>t:;1; t—1 -1 W?Ln<T_p>t:;1 t—1 -1
and

T n
i1 1 ) @, L1 c %
A=GEnm—p > > whX| *@MT—_th X1 Xy,

t=p+1 i=1 =p+1
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9 t—p

(1) ¢ () 0\ % ¢ Y
wherex?, = (Xt_l,... X ) i=1..n %= (X, X))

72 is obtained froms? and &2 by 72 = 2 — 2.
In the ICM (assumption 2.2.1) we assume that the parameter §psosompact
and that there exists@> 0 such that for alb = (¢/, 0%, 7%) € © we have that

o2 >c.

2. Inthe ICM, {X Mz, i = 1,...,n, and{X,},c;, are autoregressive processes

with the same autoregressive parameter (ay, ..., a,)". Forh € Z their auto-
covariances arg, (h) = =1 63 ¥(h) and?,(h) = w2 ¥ (h) = (702 - "—f) U(h),
whereo? andr? denote the true variances {Hﬁi)}tez, i=1,...,n,and{n ez

(see lemma 2.2.4). Therefore we know from standard theory (e.g. Brockwell and

Davis 1991, p. 239) that fulfils the Yule-Walker equatio®3 « = A, where
B = (‘I’(kf - l))k,l:l

As B is derived from the autocovariance function, it is obvious Bas positive
definite and thus invertible.

3. Since in the ICMu,, = — -1 = O () (remark 2.2.5), the mean-square conver-
gence property shown in lemma 1.2.4 gives forkall= 0, . . . , p, that

T n 2
1 c0) ) ( 1 )
E|—— XX == =0 —) .
(n@—mt;%; X aT
Furthermore we have seen in remark 2.2.5 that
1 T 2 w4
El— > Xt_kXt_l—w—l)) ~0 (—) |
(T_ptp-H T

where againy, (h) = 2= 02 ¥(h) and¥,(h) = w2 ¥(h), h € Z.

n

Consistency of the parameter estimators can be obtained as a conclusion from the cen-
tral result of the preceding section, where we have established asymptotic normality of

the parameter estimators.

2.6.2 LEMMA ,
Let the true parameter in the ICM Bg= (d/, 05, 73)’, and leto’ = 7§ + 2. Then the

~

components of the ICM estimatéy,; = (&, 52,72) = argmingo L, r(0) admit the
following rates of convergence:
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Furthermore we have fot,? = 72 + ® that

PROOF.

We have proved asymptotic normality Qfn (T — p) D, * én,T — ) in the case

of T" — oo in theorem 2.5.20 under assumption 2.5. 8 There we furthermore have

got in the case ofn — oo, that still \/n (T — p) ((a’,6%) — (d’,03)") is asympto-

tically normal. Assumption 2.5.8 |mpI|es a restrlctlon of the parameter space as it

requires7; € Int®© andw? > ¢ > 0. For eachd, with 77 > 0 we can choose

a subspac®’ € O such that this assumption is fulfilled (lemma 2.5.7). The case

7¢ = 0 has been treated in theorem 2.5.22. There we get asymptotic normality of
n (T —p) ((@',62) — (d’,02)"). Furthermore we can conclude from the proof of the

theorem that

2 2 w; 2 2 w;
T —TO_OP(\/—%) and wn—wn_Op(\/—%),

2
99

where @2 = 7 + andw = 75+22. This expression is derived from the consistency
of a anda and is also valld ifr2 > 0 (see remark 2.5.23). The notation includes the
dependence oy via w? and covers the already proved caselbf- oo, too. O

In particular the following conclusions are of practical interest.

2.6.3 GOROLLARY
In the setting of the above lemma we hae= Op(1), — = Op (#) and more-
over

L1, (] g L1, 1
62 o2 "\\nT ne? nw? nw2VT)

The estimatoi3 of the covariance matrix, given in remark 2.6.1, fulfils that

. 1
B-B=0
P(vnT)
whereB is the matrixB = (V(k — 1)), ,_,

PROOF.

For the proof of this lemma is straightforward. In order to enhance readability we have
moved it to the Appendix C.3.1. O

2.6.4 REMARK

The asymptotic behaviour af?> and+? in the case ofi — oo, T fixed is determined

by the actual realisation of the procesg}icz. LetY; = > > (v, n—, forall ¢t € Z

and denoté&’y = 7 S it Yoo @ @y Yooy, Yy, Whereag = —1 and(ay, . .., a,)’

is the true autoregressive parameter in the ICM. In the proof of theorem 2.5.16 we
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have seen thak (X, , X, , — Y, 4+ Y,;)" = O(L). Since? is estimated through
0} = B,r(a) = ﬁth i1 Dona—o Gk X, X, ; (remark 2.4.3), the consistency

n

of & implies thaty? — Y = Op ( ) (see the proof of lemma 2.6.2). Therefore also
2% _Yr=0p (\f) Note thatY; — 72 = Op ( ) (remark 2.5.17).

P Vr=0

We now identify the main term responsible for the convergence behavmjny)pro-

ving that there exists a, 1 such thata — a can be written ag — a = 1CnT +

Op ( ) with dominating termB~ 1CnT Since the bias is of lower order, the asymp-
totic behawour mainly depends on the dominating term in the stochastic expansion.
Thus the explicit expression for the dominating term enables us to compare the large
sample properties of the ICM parameter estimégqr to those of the GICM estimator

0,. The proof of the theorem is based on a recursive representati@n-af similar

to the one in Dahlhaus and Giraitis (1998), where the rates of the single terms can be
obtained using the above consistency results.

2.6.5 THEOREM

In the setting of the ICM (assumption 2.2.1) ety = (&', 62, 72)' = argming Ln 7(6)
be obtained as described in remark 2.4.3. Denote the true paraméteebia’, o2, 72)
and let w? = 72 + %3 Furthermore let

T
A o (1 A 1 < =
CEEREES § VN RIS e

t=p+1 i=1 p t=p+1

wherex”), = ()O(t(i)l, XD

t—p

/ _ _
) and %, = (X;1,...,X,,) forallt > p+1,
i =1,...,n; and define, ; as

?
—_
>
—_
>

Cy.

ag nw?
Then |
G—a=B'Cor+0p|— ).
a—a T+ P(nT)

with dominating termB=" C,, 7 = Op (ﬁ)

PROOF,

Throughout this proof we use the notations of remark 2.6.1. There we have seen that
Ba= A, Ba = A and furthermore thaB is invertible. In the ICM the true parameter
a=(a,...,a,) fulfils

Xt()—xgl)la—i—gy) and X, =%, ,a+(n+&) foralteZi=1,...,n

~

Thus it is straightforward that also fulfils the equationi? a=A—-C,r, WhereC‘n,T
is given byC,,» = & 01 + == CZ This means that,; = A — Ba = B (a — a),
which leads to
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As we know from corollary 2.6.3 thaB — B = Op (ﬁ) we get from the rate of

convergence of that(B—B) (a—a) = Op (-1). The termC,, r can be split further. It
is straightforward to show that Cy = Op (ﬁ) and L Cy = Op ( f> which

also means that;, = Op (ﬁ) andC, = Op <n%> . The details of the proof can
be found in the Appendix C.3.1, lemma C.3.1. Under the assumptions on the parameter
space it thus is easily seen from lemma 2.6.2 and its corollary 2.6.8thatulfils

N L P R

~2 A 2
OnT U_(Z)Cl—’_nw%OZ—i_é'Q—(TS(O-O_O—)OI—'—m(W —w)CQ
~ 1
=C, Op|—].
T+ P(nT>
and thatOnT_Op (F) This yields the result. O

2.6.6 REMARK )
It is not surprising tha€,, r = 01 + == 02 is closely related t&/L,, r(6y). Indeed

we have that-2 C“mT = %Eﬂ(e) for 9 = (d/,62%,7%), wherea denotes the true au-
toregressive parameter in the ICM, la&tttand7? are the parameter estimators obtained
from the recursive algorithm. F«ﬁ‘mT we even have that2 C”mT = %EmT(@O). Note

that the factor 2, which was only introduced into the likelihood function for computa-
tional convenience, cancels out in the representatiena = B~ C,, 1 + Op (%)

becauseB = (U(k — 1)), -, , = 3 7z L(00) (see remark 2.5.21). AB is the esti-

..... 2 @
mator of B = (6‘3‘%5(90), the equatiorC*mT — B(a — a) is an empirical counterpart
of the often used representation based on the mean value theorem (see e.g. the proof of
theorem 2.5.20). However it cannot directly be employed for the parameter estimation
due to the intercorrelation present in the ICM. For example, it is not possible to obtain
consistency ofi in a direct way because of the recursive estimation procedure needed.
This implies in turn that we e.g. cannot easily identify with a direct method the lower
order terms in the above representatiolCgf, = C,, r + Op (=)

We can moreover give an explicit formula for computing the mean squared error of the
dominating term.

2.6.7 FROPOSITION
Using the notations of the preceding theorem, we get for the mean squared error of

m = B~ C, that

1
E||m|? = ————tr (B7") .
lnll* = gy (B7)
PROOF, ) A )
CnT was defined in the preceding theorerr(asf 2 C+ ﬁ@. In the ICM, C;
a4 n
and(, are independent because the proce$§,§é>s}tez, 1=1,...,n, are independent

of {m + & }1ez (See remark 2.2.3). Denoting the entriesof! by by, k, L =1,...,p
we therefore get

E|[m|* =E||B~ Ci||* + E||B~! Co|?
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:Zp:zp:bkbl L=l et -t
PESPE N og n2 (T — p) %0+ n2wi 0

9=1 k=1 0
p p
-1
aFyia pZZbgkbglxp —1) = (T p>tr(B ).
g=1 k,l=1
asB = (V(k—1)),-,.. ,and thUSZi,zz1 bk W(k — 1) bgr = D271 Sgrbgi = by g,
whereé,;, denotes the Kronecker delta. O

In particular we now have an explicit formula in the AR(1) case.

2.6.8 GOROLLARY
As a special case of the last proposition we get for a panel of AR(1) processes with
autoregressive parameteria| < 1, that

1—a?

E||m|? = ————.
il = s

PROOR
In the AR(1) casel(0) = > o 2 = > a* = (1 — a®)~!. This yields

2 1 B 1 —a?
BllilF = oo =3 = 2T 0

We can use the same method for investigating the convergence properties of Hjellvik
and Tjgstheim’s estimataiy .

2.6.9 RROPOSITION A
Let By = “1o} B. Then the estimato, = (d},0%) = argminge L9 7(0)
obtained in proposition 2.4.7 fulfils

R 1
&HT—a:Bl_lCl—i—Op (n_T) y

where the mean squared error of the dominating term is

1
(n=1) (T =p)

E|By'Cy|)? = tr (B7') .

PROOE
We know from proposition 2.4.7 thatyr fulfils B, agr = A;, where

Bi=——— ( sztlxt,l

—p+1 =1

and A =——— ( Z th )

tp+lz 1
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. o [+ o /s / A
with x,EZ_)l = Xt(’_)l, o ,X,fi)p . Itis easily seen thdf B; = B;. Thus we get similar
to the proof of theorem 2.6.5 that

dHT—a:Bl_lél+Bl_1 (Bl—Bl) (&HT—G),

with C; as in theorem 2.6.5. Due to the mean-square convergence of the panel auto-
covariance estimator (see remark 2.6.1), we haveBhat B, = Op (ﬁ) Since
agr —a= Op (\/%) (lemma 2.5.34), we get as in the proof of theorem 2.6.5 that

A 1
agr —a= By C1 4+ Op (n_T> '

As we can see from the proof of lemma C.3.1 in the Appendix C@3, ulfils that

BIICIF = B ot wo).

Analogously to the proof of proposition 2.6.7 we furthermore obtain that

2 p p
1 A2 n n—1 4
E|[By Cil|” = mz > e by, m‘l’(kf —1) o,
g=1 k,l=1
1
= tr (B™1) ,
wna—p )
if we again denote the entries 8f ! by b, ;, k,l =1,...,p. O

These differences in the asymptotic behaviour of the ICM parameter estimatuit

the estimatofi ;1 of Hjellvik and Tjgstheim (1999a) are the main result of this section.
They show that the dominating term in the stochastic expansion has a smaller mean
squared errof than the corresponding term baset.gn

2.6.10 REMARK )
The above results illustrate again the differences between the ICM estifhat@nd

0., which is the estimator of Hjellvik and Tjgstheim (1999a) (see remark 2.4.8). We
have already seen in theorem 2.5.20, where we have summarised the results on the
asymptotic normality oi@n,T in the ICM, that in the case df' — oo, n fixed, the
asymptotic variance of the ICM estimaiois B!, whereas in the GICM itis” B~

(see theorem 2.5.34). Thus the relative asymptotic efficienéyaimpared to Hjell-

vik and Tjgstheim’s estimatary, which is the same estimator as the estimatos of

in the GICM, is in this caseft,(a, agr) = ”7*1 This already has been discussed in
remark 2.5.36. The above considerations further show that already the ratio of the mean
squared errors of the respective dominating terms e@%élsThese properties also are
illustrated by the simulations (Appendix A).
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Bias in the ICM and GICM

We conclude with some considerations on the bias of

2.6.11 EMARK R
In the proof of theorem 2.6.5 we have seen tﬁmp = A — Ba. We thus get

A 1 o s o
B 1 Cn,T =B~ 1 CnT + = 0_(2) (O'O — 0'2) Cl + o WTQL (wz - CUTQL) CQ
where B~'C,,; = Op <ﬁ> and the other terms are of ordé (-1-). As also

B—-B = 0p <ﬁ) (corollary 2.6.3), the third term in the expansion is of lower

B (B - B) B! (B - B) B~ Cor = Op (W) .

The orthogonality properties of the innovations imply tlﬁa(B‘l énj) = 0. Thus
the main bias term is

Bor = B! <B B) B G,y

1 R A 1 . R
+62—0_3 (0(2)—0'2) 01+ n@%wz (w2 —w2) OQ

and fulfils 3,7 = Op (-%) but ES,r #0.
In the GICM, we do not have weighted averages in the estimator. Here simply

. . 1
i—a=Br'Cy+ B <Bl—Bl> Br cl+op( )
nT
~ A - A 1
and b—b=DBy'Cy+ By (Bg — BQ> By Cy + op (?) :
Thus we get analogously to the above cosiderations that the bias/teams 3, are
B = By (Bl — Bl) Bi'¢, and B = By (B2 — BQ) Byl Gy,

whereC; andC, are given in lemma C.3.13; = —— = DD DARE % 0 £,
By = = Zf:pﬂ %, ,X,_,, and furthermore3, = E B, andB, = IEB2.
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Due toB andC”mT being weighted averages with random weights, it is difficult to obtain

E (.1 or E||3.1||? inthe ICM. Therefore we restrict ourselves in the following to the
case of the GICM, where the variances cancel out in the computation of the estimators.
Here we obtain the mean-square rates of convergence.

2.6.12 LEMMA R R
Using the notations of the preceding remark, we get for the bias teyasdj; in the
GICM that

A 1 A 1
EIAIE =0 () and ElGI=0 (7).

PROOF,

The proof requires some results on cumulants and some considerations on the relations
between the autoregressive parametesad the autocovariance functionh), h € Z,

of an autoregressive proces, },cz. These are developed in the Appendix C.3.2. As

the proof of the lemma involves some lengthy calculations, we have moved it to the end
of the Appendix C.3.2. ad

2.6.13 REMARK

1. The rates derived in this section correspond to the standard theory for Yule-
Walker and least squares estimation, where the bias is of erdein the num-
ber of observations, while the asymptotic standard deviation is of arde?.
Tjgstheim and Paulsen (1983) have shown that for Yule-Walker estimators the
coefficient of the bias term may become large as it depends on the roots of the
characteristic polynomial of the autoregressive process. Thus here the bias term
can become appreciably larger than thé/?-term of the standard deviation for a
wide range of.. However this is not the case for least squares estimators, which
we get in the conditional maximum likelihood estimation under the assumption
of Gaussianity. Therefore we do not need to derive the coefficient of the bias
term as in our setting it is sufficient to regard the behaviour ofithé>-term.

2. In the case of the ICM it would already have been very difficult to derive the
mean-square rate of convergence of the main bias term in the stochastic expan-
sion, as the method used in the preceding lemma for calculating the mean squared
error of 3, andg, cannot be directly applied to the case of the ICM. We have seen
in remark 2.6.11 that the main bias term in the IQ&[,T, has a more compli-
cated structure. Since the different terms are weightedavimdw?, one would

have to find a representation B,LT which makes a Taylor expansion possible.

This is not easily obtained. Furthermore it is not clear under which conditions

the Taylor expansion of e.g; around=; can be obtained a&” in turn depends
0

on the estimator of the autoregressive parameter,

3. Directly calculating the large sample bias for the maximum likelihood estimator
in an autoregressive process is a difficult task in general. This is shown by the
existing literature. Shaman and Stine (1988) give formulae for the bias of Yule-
Walker and least squares estimators of the autoregressive parameiéeir
proof is based on the assumption tigai 3! — B~!||3 _ is bounded, where

spec
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||A||spec = max{|A]; X eigenvalue ofA} denotes the spectral norm of a matrix.
This cannot easily be verified. Tjgstheim and Paulsen (1983) derive an explicit
formula of the bias based on the zeros of the autoregressive polynomial. However
they focus on the AR(2) case, and their method cannot be generalised to higher
autoregressive orders in a straightforward way.

2.7 Discussion

The ICM (assumption 2.2.1) and its generalisation, the GICM (assumption 2.3.1), are
two models which include a common effect influencing all time series in a panel si-
multaneously. In particular the GICM is very flexible as it allows the common effect
to have e.g. an autoregressive structure. Possible applications include the investigation
of panels of time series in medical studies, in population dynamics or even the mo-
delling of business cycles (if it can be assumed that a single cycle is responsible for
the common structure). The latter model is a special case of the dynamic factor model
developed by Forni et al. (2000). However the focus here is on parameter estimation,
whereas Forni et al. are predominantly concerned with finding the number of common
factors. For a more detailed comparison see remark 2.3.3.

The ICM has been investigate before by Hijellvik and Tjgstheim (1999a), who treat
the common influence; as a nuisance parameter which they eliminate by subtracting
the mean procesgX, },c; from each time series. The factorisation of the conditional
likelihood obtained in theorem 2.4.2 now makes it possible to obtain a log-likelihood
function which uses the information containedXn as well. The corresponding es-
timator is based on weighted averages of two sample covariance matrices. Thus we
have to employ a recursive algorithm for the estimation. Due to this structure, we fur-
thermore are not able to obtain an asymptotic normality result directly but have to use
a proof based on a uniform convergence conditiongr-. Additionally we need in

the case ofl’ — oo a martingale limit theorem for the last step of the proof. Hjel-
Ivik and Tjgstheim’s estimatai ;- can be computed by minimising;, -(0) (see re-

mark 2.4.8). If the number of time series in the panel tends to infinify, — 0, which

means that the information contained in the mean process loses weight. In this case the
ICM estimatora is asymptotically equivalent té;7; but in the case of small, a is

more efficient thara . Indeed we have seen that the relative asymptotic efficiency is
eff.e(a, apr) = "T’l (remark 2.5.36). This is also the ratio of the mean squared errors
of the dominating terms in the stochastic expansion (remark 2.6.10). Simulations show
that in practice the ICM parameter estimator performs as well as the estimator of Hjel-
lvik and Tjgstheim in spite of the iterative algorithm employed for its computation (see
the Appendix A and the discussion in section A.4). Moreover they illustrate the theo-
retical properties of the estimators. Thus we conclude that if the data can be modelled
using the ICM and if» is not very large, the ICM algorithm should be usednlis

large, or if the order of the autoregressive process is high, it is computationally more
convenient to calculatey, which is sufficiently accurate. We must always use the
GICM if there is no theoretical reason why the underlying background process should
have the same dynamical structure as the residual processes, i.e. if we cannot assume
that the common errofn, },cz is a white noise process. If necessary, one could test
whethera andb coincide, which can be achieved using a bootstrap procedure.
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We only have briefly discussed the calculation of the bias in section 2.6 as it is very
difficult to derive. In the ICM the computation is complicated by the complex structure

of the estimator which makes it necessary to use a recursive procedure for estimation.
However it is in general difficult to calculate the bias for a conditional maximum like-
lihood estimator. This is due to the fact that in contrast to the Yule-Walker procedure
all components of the estimated covariance matrix and the corresponding autocova-
riance vector are distinct. Thug — || cannot be bounded as it is done in Dahlhaus
and Giraitis (1998) (see also Whittle (1963) cited therein). Moreover the influence of
the bias term on the asymptotic behaviour of the parameter estimator is small for least
squares estimators (see remark 2.6.13). Therefore it is hot necessary to calculate the
bias explicitely in our case. These effects are discussed in the literature on large sample
bias estimation (Tjgstheim and Paulsen 1983, Shaman and Stine 1988). There formulae
for the asymptotic bias are given. However the complexity of the problem is reflected
by the restrictions used. Tjgstheim and Paulsen (1983) focus on the AR(2) case and

~ 8
Shaman and Stine (1988) rely on the assumptionIﬂI‘JMaéB—1 — B—1> || spee < 00,

which means that the 8th moment of the eigenvalues is bounded. This cannot easily
be verified. Kiviet (1995) derives an approximate small sample bias in a model also
containing exogenous variables, but the dynamic part is restricted to first-order autore-
gressive models.

There are several possible extensions of the above models. A generalisation to non-
parametric intercorrelated models is discussed in Hjellvik et al. (2004). However this

is beyond the scope of the present thesis, as we here contend ourselves to parametric
models. Besides including more than one common factor in the GICM as in Forni et al.
(2000), one could assume that the autoregressive parameters of the residual processes
are not fixed but for example normally distributed with ~ N(a, ,). Similarly one

could investigate a model with a common autoregressive parameter where the residual
processes are allowed to have distinct variané¢es = 1, . .., n. Furthermore we have

not included explanatory variables in the model. However the proofs cannot directly
be generalised to any of those cases. Another question is whether we can omit the con-
dition of Gaussianity. This should be possible, but then the conditional log-likelihood
function in the ICM would lose its convenient structure. The estimator of Hjellvik and
Tjostheim (1999a) is consistent for any distributiompés they treat), as a nuisance
parameter which is eliminated in the analysis (remark 2.4.8). Thus in the non-Gaussian
case the possible gain in information by includifg in the ICM procedure is out-
weighed by the additional complexity.

Throughout the thesis we have assumed that the order of the autoregressive process is
known. For practical applications we need a model selection criterion. This can be
obtained from the residual variances as in Hjellvik and Tjgstheim (1999b). Further-
more, e.g. in population dynamics, clustering is an important aspect. Yao et al. (2000)
propose a method for detecting common structure in panels of uncorrelated time series
and use it for clustering mink and muskrat data. If this could be extended to the inter-
correlated case, it would allow for a broader modelling of biological processes where
geographic conditions, which locally imply a spatial homogeneity, affect the structure

of the intercorrelated time series.



Chapter 3

Robust Estimation

3.1 Introduction

The second part of this thesis is concerned with the question of finding robust estimates
for parameters in the case of a panel of time series. Here two major types of outliers can
occur. The first kind are arbitrary outliers, which are e.g. due to measurement errors. In
the panel case we furthermore consider the case that an entire time series is generated
by a different model. This is motivated by our applications. In a medical study, outliers
can be due to false recordings. But it also can occur that some patient has been wrongly
assigned to the treatment group. Then the time series obtained from this patient may
be driven by a different dynamical structure and the entire time series can be viewed as
outlying. If it is not possible to identify and exclude the outliers prior to a data analysis,
we need procedures which remain stable under contamination.

We propose in this chapter several robust methods based on three different concepts.
Our main focus is on the second type of outliers. First we describe possible robusti-
fying procedures for the parameter estimator derived in the first chapter and evaluate
their performance. Moreover we investigate exemplarily for these estimators how boot-
strap can be used to improve the estimates. Then we discuss some methods based on
robustifying the autocovariance matrix and the autocovariance vector used in the Yule-
Walker / least squares equations. Here the focus is on the parameter estimator derived
from the robust scale estimatqr, » introduced by Rousseeuw and Croux (1993), as

it allows us to obtain a breakdown point for the panel estimator. As a reference we in-
clude two methods designed for robust regression. Finally we investigate two methods
for outlier detection which can be used to find and exclude outliers in a first step before
performing a non-robust analysis. The chapter concludes with a comparative evalua-
tion of the different methods described. The various estimators have been evaluated in
a simulation study which can be found in the Appendix B.

3.2 Outliers

Robust inference is concerned with estimation in the presence of outliers. Measured
data may contain 10 — 15% of outlying data (Hampel 1973), but this proportion can
even reach 30% (Huber 1981). In the time series context one can distinguish several
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types of outliersinnovation outliers (IO)re due to contamination in the innovations,

i.e. of the time serie$e, },7 which drives the process. In least squares estimation and
thus also in conditional maximum likelihood estimation under assumption of Gaus-
sianity, they lead to “good” leverage points: Since a large outlier in the innovations
also influences the subsequent values due to the autoregressive structure of the time
series, the least squares estimate for an autoregressive parameter can even be improved
in the presence of an innovation outlier (Rousseeuw and Leroy 1987). Therefore, we
are more concerned with the so-calledditive outliers (AQ) They appear when one

point of the time series itself is changed directly. They can be modelled as genuinely
“additive” outliers, i.e. thatX; is replaced byX; + W;, where e.gW; ~ N(0,0?)

for someo? > 0. We here regard them as “replacement” outliers, which are obtained
by replacing some valu&; by a value from a second time serid§. This is also

called “epsilon-contamination” as the observed procEsss generated according to

X, = (1 =0) X, + 6,W,, whereP(§, = 1) = ¢ = 1 — P(§, = 0). Detection be-
comes more complicated if there are patches of additive outliers, i.e. if the outliers are
dependent. For a brief discussion see Rousseeuw and Leroy (1987).

In the panel case, one also can assume that the single time series in the panel do not
contain outliers, but that entire time series may be generated by another model. This
depends on the application intended. In econometrics, the standard procedure is testing
panels of time series for homogeneity first (Hsiao 1986). If this test does not reject
the null hypothesis of homogeneity, one common parameter is estimated for all time
series of the panel. In the heterogeneous case, the parameters are estimated separately
for each time series. Depending on the context it is however justified to make the
above assumption, for example if the model states that time series of patients having the
same affliction follow the same dynamics. Here a patient who suffers from a different
disease could have been wrongly assigned to the therapy group. Since we are not
interested in the dynamical structure of the outlying time series, we focus on robust
procedures for parameter estimation. Thus we now assume that outliers can either
be single replacement outliers or generated by replacing complete time series by time
series following another model.

3.2.1 ASSUMPTION o
Let {Xt(’)}tez, i =1,...,n, be a panel of time series and I{e‘(t(“}tez, i=1,...,n,
be the observed panel. Outliers are generated either

1. by replacing single points of the data:
XV =1 =6,)X"+6,,,VY, tezi=1,...n

where the processdd/; '}z, i = 1,...,n, are independent of theX"},cz,

i =1,...,n. We assume that they are independently and identically distributed
with V) ~ N(0,02) forallt € Z,i = 1,...,n. Fori = 1,...,n, the pro-
cesseq 0+ }ez are independent Bernoulli processes which are independent of
(X er and {V;},e;, for all j = 1,...,n. They are identically distributed
with P(d1;, = 1) =1 —P(01+; = 0) = &, for somes; > 0.

2. or by replacing entire time series:

(XM = (1= 00) {X ez + 00 (W ez, i=1,....n,



3.3. ROBUSTIFYING THE ICM PARAMETER ESTIMATOR 1

where the{Wt(i)}teZ, 1 = 1,...,n, are independent autoregressive processes
which are independent of th@(t(i)}tez, i = 1,...,n. The random variables
84,1 = 1,...,n, are independent of the proces4es”'} ez and {W, "'} ez,
jg=1,...,n,and fulfilP(dy; = 1) =1 — P(2;, = 0) =5 > 0.

All further investigations on contaminated data are based on this assumption.

3.3 Robustifying the ICM Parameter Estimator

In sections 2.4.2 and 2.4.3, parameter estimators have been derived for the intercorre-
lated time series model ICM (definition 2.2.2) and its generalisation, the GICM (defi-
nition 2.3.2). In the first case we employ an iterative procedure for estimating, whereas
in the GICM the parameters can be obtained in a single step. In order to simplify the
notation in the subsequent considerations, we introduce the following:

3.3.1 NOTATIONS
For ease of notation let

T T n
=2 Z , Bi= 3y > &
t=p+1 i=1 t=p+1 i=1
T
t=p+1 t=p+1
Wherefcft )1 = ()O(t(i)l, . ,)O(t(i)p)’, i=1,...,n,andx, ; = (X;_1,..., X;,), t € Z.

3.3.2 REMARK
1. In the ICM the parameter estimator= (a,...,a,)" of the autoregressive pa-
rametera given the estimate$? andaw? of o2 andw? is

1 «
@5’42) .

Conditional onz, the variances? andw? can be estimated by

1 1 -1 1 -
d—( Bl+ BQ) X(A—2A1+
o

n

= >3 (sif)’ ana
o
( T p i=1 t=p+1
2o Ly (d(L)X>2
n_T_pt:p+1 t .

Starting withé? = &2 »o = 1, these steps are repeated until convergence (see
section 2.4.2).



78 CHAPTER 3. ROBUST ESTIMATION

In the GICM, we get for the parameters of the residual processes and the mean
process, respectively, that (see section 2.4.3)

L 1
a=Br'A,, 52 = (&(L)X(’)) ,
| CEETRIPS
1 < 2
o L, o
b=By'A,,  and wn_—T_pt:Zpgl b(L)Xt> .

2. As systematic errors can only occur when a complete time series is outlying, a
heuristic approach is to replace each cross sectional mean by the corresponding
median. ThusX, is substituted byX/" = med,—; Xt( , X' py the pro-
cessX” = x!” — Xm, and the meas >0 ST o1 x X by the median

med;—; . Zt_pﬂ t(z)kX . This causes problems since taklng medians over

Zt b1 Xpo kXt( )l means taking componentwise medians over matrices. There-
fore the resulting matrix is not necessarily positive definite any more. So the
procedure will not be numerically stable, in particular if the ondef the autore-
gressive process grows.

We use the following procedure for robustifyingl;, A,, and B, are estimated as in

the heuristic approach mentioned in the preceding rem&sk.however, is obtained

by a recursive algorithm. The underlying idea is that the transformed matBices

i = 1,...,n, are diagonally dominated such that the median is essentially taken over
their eigenvalues. It turns out that in practice very few iterations (often only two) are
needed until the procedure converges.

Robust estimation ofa

1. Fort € Zlet X* = med;—y,_, X, andx}*, = (X*,..., X;",)". Replace

T T
Ay by Ay = > X"xj", and By by By'= > x/" x").
t=p+1 t=p+1

2. Fori=1,...,nlet X = x) — xpandx!”, = (X,,..., X))

A, is robustified by taking the componentwise median:

3. ReplaceB; by a robust covariance matrix obtained from the following algorithm:

(a) Lety = 0andy, = medi—1_.n >/, %\ %

-----

(b) LetU be the orthonormal matrix consisting of the eigenvectors,of
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(c) Transform the sample covariance matrices of each single time s“éﬁes
separately withU:

T
B® :U’< > i521i§2;)U fori=1,....n

t=p+1

(d) Take the componentwise median of the transformed covariance matrices:

~ N

B =med,_, , BY.

.....

(e) Transform backX,., = U BU'.
(f) Iterate step (b) to (e) until convergence is attained, e.g. until

15,11 — Xl <e for some givens > 0.
(0) Let By =%,,.
4. Estimate the parameters using the robustified vectors and matrices.

This means that in the case of the ICM these matrices together with the robust vari-
ance estimates described below are inserted in the recursive algorithm described in
section 2.4.2. If there is no contamination and the number of observations per time

seriesI’ tends to infinity, each elemee{—p ZtT:pH X,fi)kX,fi)l of the sample covariance
matrix B is asymptotically normal. This was the motivation for taking the median
over the robustified sample covariance matrices.

The variances could be derived as mentioned in remark 3.3.2. For estimating
however employ a reweighted estimator.

Robust estimation of the variances

We use the above notationg” and X" Givena andb, the variances are estimated as
follows:

1. Fora?, replaceX, by X™:

In the ICM, p = g anda;, = b, forall k = 1,...,p. Thus here we use the
common estimatod instead ofb.

2. 62 is estimated using a rewelghtlng step foIIowmg Rousseeuw and Leroy (1987).
Denote the residuals by” = — 5P X

First, leto§ = med;—y, 7+ pzt i 2,

.....

Compute a finite sample correction factorsas= 1.4826 (1 + -5 ) 0o. Here the

constant is for consistency aaﬁ; is a correction term for the smaII sample bias
(Rousseeuw and Leroy 1987, p. 44).
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As cutoff value we chos2.5 x so: Fori = 1,...,nletw” = 1if |r? /so| < 2.5,
elsew” = 0. Then

n T i) (1)2
Zizl Zt:p+1 wt( )Tt( )

n T 7
Zi:l therl Wy ) - p
wherep is the order of the autoregressive process.

~2
g, = )

We propose two variations of this procedure:

(i) Another possibility for estimating? is to leto? = medgi—; . ni—pi1..73 7o~ i
the first step, leaving the procedure otherwise unchanged. The resulting estimator
is calledd,, (“overall median”).

(i) As an improvement, we repeat the weighting step with the estindateglacing
so, e fori=1,....n,t =p+1,...,T, we let@” = 1if |r{?/5] < 2.5,
else we lets\” = 0. Fort = 1,...,p, we let furthermores” = 1 for all
i =1,...,n. From these weights we determine the weighof the individual
time serieg,i =1,...,n.If Zthl u?t(i) < ¢T, wherec is a preliminarily chosen
constant, we letv; = 0, otherwisew; = 1. These weights can be used on the
original data. Then we perform a second, non-robust estimation on the remaining
time series. This method is the panel analogue to Rousseeuw’s reweighted least

squares estimator (Rousseeuw and Leroy 1987). We call the estifpator

(i) A modification of the last procedure also allowing for arbitrary outliers is to form
weightsw” = min{w;,w\”} fori =1,...,n,¢t = 1,...,T. Then we exclude
all time pointsX”,i = 1,...,n,t = 1,...,T, having weightv"’ = 0 from the
original panel before performing the second, non-robust estimation. The corre-
sponding estimator is callefl;le.

3.3.3 REMARK

Note that the above described procedure is a compromise between averaging over sin-
gle entries of a matrix and estimating one common robust matrix. It enables us to
exploit the characteristics of the ICM even in the contaminated case. There are no
standard methods for replacing the componentwise median of the matrices. Usually
robust covariance matrix estimators are used instead. For taking the median over vec-
tors, however, componentwise medians are commonly used. There exist a variety of
more sophisticated methods such as Oja’s median (Oja 1983), but in practice the com-
ponentwise median often performs well. This also is the case in the above parameter
estimation procedures, where the main point was deriving the robust covariance matrix.

Simulation results for the above described estimators can be found in section B.1 of the
Appendix B and are discussed in section B.4.

Bootstrap corrections

In parameter estimation, where the true values are not known, bootstrap can be used for
deriving the empirical bias. Thus we apply bootstrap procedures in order to compensate
for the bias. For comparison, we have implemented three versions: first the parameters
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were estimated with a residual bootstrap. In a second step this has been adapted to the
panel situation. As the innovations are normal by assumption 2.2.1, we also generated
samples of a simpler structure where the data was obtained from normally distributed
errors with variances? andw?. The procedure is based on a residual bootstrap for
autoregressions, whose properties are known (Kreiss 1997).

() Inthe ICM letd = (ay, ..., a,,62,7)', wherer? is given by? = 52 — w2, De-
note the residuals obtalned from thé by ﬁ(l yt=p+1,....T,i=1,...,n

and the residuals obtained from the§™ by r;*, ¢ = p + 1,...,7T (notations as
above). The bootstrap data then is generated by

p
X =N X Y i ) e, t=pal Toi=1, 0,

wherex;” = ... = X;@ = 0fori =1,...,n. The residuals are sampled with
replacement. In order to get stationary tlme seriés; 500 points are simulated
for each time series. For the estimation, we disregard the first 500 points.

In the GICM, the samples are generated analogously.

Comparing the estimatés(e.g.6,.;) from the original procedure argy, derived

from a bootstrap procedure based)and the corresponding residuals, we obtain
the empirical biag — 91,8 of the robust estimator. This then is used as approxima-
tion for the true biag § — 6,, wheref, denotes the true parameter of the model.
In order to adjust for the size of the underlying parameter, we multiply each com-
ponentd, of § by a factor derived from the relative size of the bias. Thus we get

ék,Q by ém = ék/ (ébs;k/ék> = éi/ébs;k-

(i) The above procedure does not take the correlation structure of the panel into ac-
count. For example in the ICM, the residuals are not independent, but correlated

with cov (rt(”,ﬁf )> = —+ for i # j. Thus the method can be modified such
that the readual%j’, i1=1,...,n,t =1,...,T, are sampled from the set of

/
vectors(#, ... ,ﬁﬁ’”) ,t =1,...,T. All further steps are performed as in the
preceding method.

(iii) For the third, simplified, procedure we sample from independent normally dis-
tributed innovations:gg’) ~ N(0,62),t = 1,...,500 + T, i = 1,...,n, and
n ~N(0,&2),t=1,...,500 4 T.

Let

X*(Z Z kth+€§)+nt7 t:p—i—l’"_’T,i:l,”"n’
k=1

whereX;® = ... = X;@ = 0fori = 1,...,n. Moreover we simulate again
T + 500 points per time series and disregard the first 500.

In the GICM, the generation of the sample is analogous.

As before, the empirical bias is used for correcting the estimates.
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Simulations show that the latter estimator, where we use the information on the distribu-

tion of the innovations, performs better than the other two. However these procedures,

being non-robust in nature, cannot completely compensate for the bias in the presence
of outliers. For details, see the Appendix B, subsection B.1.1, and the discussion in

section B.4.

3.4 The Robust Panel Autocovariance Estimator

As mentioned in the introduction, a second possibility is to derive robust parameter
estimators from the identityov(X,Y) = 1(var(X +Y) — var(X — Y)). We here

focus on one robust autocovariance estimator that can easily be adapted to the panel
situation. It is based on the robust scale estimatpwhich has been suggested by
Rousseeuw and Croux (1993). Ma and Genton (2000) have gener@ligedhe time

series case and have used it for deriving a robust autocovariance estimator as follows.

3.4.1 DEFINITION (MA AND GENTON (2000))
Let X = (Xy,...,X,) be an observation from a stationary time series. Define the
robust scale estimat@),, as the followingith order statistic:

Qn(X) =cX {’Xt—Xs’,l < 3<t§n}(k).

Herec = 2.219 is a factor for consistency armad= {%J + 1.

This means that we sort the set of égb inter-point distances in increasing order and
then compute it&th order statistic, which is approximately the 1/4-quantile for large
n. This scale estimator can be used to define a robust autocovariance estimator.

3.4.2 DEFINITION (MA AND GENTON (2000))

Letx = (Xy,...,X,) be a sample from a stationary time series.

Forh € {1,...,n—1} letu, = (X1,..., X, ), andvy, = (Xpni1, ..., Xp).
Then the robust autocovariance estimagtgy, is defined by

() = (@2 (un +vi) — Q2 (un — )

3.4.3 REMARK
We now summarise the main properties of these estimators.

1. Rousseeuw and Croux (1993) have investig@pedor independently and iden-
tically distributed data. They have shown that in the Gaussian case the estimator
is Fisher-consistent, i.e. th&(Q,,) = o if X; ~ N(0,0?). It has a smooth in-
fluence function and the efficiency at Gaussian distributiosg.&7%. Also, it
achieves the maximal possible asymptotic breakdown poinb@f. The effi-
ciency can be improved up to 91% at a trade-off for a lower breakdown point.
Furthermore),, is asymptotically normal. This follows from a result of Serfling
(1984) sinca?,, is a special case of Serfling’s generalised L-statistics. For their
computations, Rousseeuw and Croux (1993) introduce an empirical correction
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factor ofn/(n+ 1.4) for n even. We use this correction factor in our simulations,
too. ), is still consistent and asymptotically normal when the dependence in the
process is not too strong, e.qg. if the process-imixing (Ma and Genton 2000).

2. The robust autocovariance estimatey,, is consistent since€),, is consistent.
Moreover it is asymptotically normal. The asymptotic variance can be derived
from the influence functio F'(, @, F') of yg.,, where F is the distribution
function of the proces$X,}.cz. However, numerical integration is necessary
for the computation. For details, see Ma and Genton (2000).

3. Note that@,, does not rely on any location knowledge, it is therefore said to
be location-free. Thus also the robust covariance estimators baséy are
location-free.

The above estimators can easily be generalised to the panel case.

3.4.4 DEFINITION 4
LetT > 2 andx = {Xt(”; t=1,...,7T,i =1,...,n} be a panel of time series. The
panel scale estimat@p,, 1 is defined as théth order statistic

Qur=cx {IX0 = X1 <s <t <Ti=1n} .

wherec = 2.219 is a factor for consistency as in Rousseeuw and Croux (1993) and

k:LMJJrl.

4

Forh € {1,....T — 1} letu = (xV, ... x\, ... x" . xiM), and analo-
gouslyv = (X ,521, - ,Xf(pl), X ,S’fl, - ,Xf(p")). Then the autocovariance estimator

obtained front),, r is

1

o (,30) = 2 (@2t + Vi) = Q2 (= va) )

The orderk is chosen to guarantee a fast convergence to the 1/4-quantile.

3.4.5 REMARK
1. Note that the ordek of the statistia,, r fulfils & ~ n (}) /4. To be more specific,
elementary calculations show that

k 1 1
;15:z+0(mﬁ)'

2. The correlation in an autoregressive time series decreases exponentially. If we
exclude the differences of time poimg, X, with |s—t| small in the computation
of @, 7, we thus can eliminate effects due to a high correlation. The correspon-
ding panel scale estimator for a pasek {X”; t =1,...,T,i=1,...,n} of
time series then is

Y

fLT:cx{|Xs(i)—Xt(i)|;1§s<t§T,|5—t|>d,i:1,...,n}()
’ k
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wherec = 2.219 andk = L%J + 1. The scale estimata? ;. can be

used for constructing a modified panel autocovariance estinﬁtpras in the
preceding definition. We investigate both and&;fj in the simulations (sec-
tion B.2.1 in the Appendix B). There we choase- 0.1 7.

In the panel case, two kinds of breakdown points can be defined according to the type of
possible outliers. We use Huber’s view of the breakdown point as the maximal fraction
of outliers the estimator can cope with (Huber 1981).

3.4.6 DEFINITION

Let x be a sample from a time series panel as above and suppose that outliers are
generated as in assumption 3.2.1.

If x is derived fromx by replacingn entire time series, the sample breakdown point

of a scale estimatd$,, (x) is

€ (Sr(x)) = max {% - sup(S,,7(%)) < oo andinf(5,, (%)) > o} .

In the case of arbitrary outliers, whexdgs generated by replacing observations ok
by arbitrary values, the sample breakdown point is given by

€ (S r(x)) = max {% - Sup(S,,7(%)) < oo andinf(5,, (%)) > o} .

Thus we can derive the sample breakdown point9,0f.

3.4.7 LEMMA
With the above notations, we obtain for the panel scale estimator
if complete time series are outlying

€ (Qnr(x))

I
—
~1 3
| I

~

3

and for arbitrary outliers ifl’ > 2

o {[5] 0= 0} < e@uata) < (|3 43) % - n).

andifT =2
|2] +2

nT

|3

€ (@nr(x) =

PROOF,

The breakdown point is the maximal proportion of observations that can be changed
with supg (S, (X)) < oo andinfz (S, r(X)) > 0. SinceQ,, r is akth order statistic,
Snr(X) = 0 (“implosion”) if k£ differences are zerd,, r(X) = oo (“explosion”) occurs

if n (Z) — k + 1 differences are allowed to become arbitrarily largevas defined as
k= L%J + 1 (see definition 3.4.4).

Thus the first case of entire time series as outliers is clear. In the second case, we
have to investigate what the highest impactobutliers can be. The largest number
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of differences vanishes (implosion) if all outliers have the same value and occur in the
same time series Writem = a (7' — 1) + zwith0 < a <nand0 < z < (T —2).

Thenm outliers can influence up tb,, = a (:g) + 2ot differences. Fof’ > 2 the

2

conditionk,, < k, which implies thainfx (S, r(x)) > 0 is preserved, is equivalent to
m< 3] % (T = 1) + T

Herex,,.. is the maximal: such that the inequality

t(e+1) (T _§+F+2J’
2 T 4\2) 4 4

whereii = n mod (4) andz = n (}) mod (4), holds. For allT > 2, it fulfils

0 < onaw < (T —1)/2. Thusm x (T —1) < €(Qur(x)) < m X (T—1)+ 5L,

In the case of an explosion, the highest impact is reached if each time series contains
the same number of outliers."i = an+z with0 < a < (T'—1) and0 < z < n, the
(a+1)

maximal number of changed differencesgjs = naT —n*“5= + 2T — (a + 1) x.

As the outliers here induce very large differences, upgt))— k,, differences can be

affected without the estimator breaking down. From the inequality (g) — k,, we
obtain forT" > 2 by distinguishing several cases

o if Tis odd,m < | L] n + ||

o if Tisevenm < [54|n+ |22 ]

o exceptions have to be madelif= 3 andn = 1 or 2, orif 7" = 5 andn = 1.
Thenm < [ I n+ 2] — 1

All thesem fulfil m < e(Qur(x)) < L%J X 1.

Since for alll” > 2 we have that{ﬂ x (T — 1) is smaller than the right hand sides of

the above inequalities ar(({ﬂ - %) x(T—1) < {%J x n, we get the stated result.

If T = 2, the worst cases for implosion and explosion coincide. It is easy to see that
herem < |2£2]. 0

In analogy to the above breakdown points one could calculate breakdown points for the
autocovariance estimatgy,  derived from@),, r by adding the number of components

of u, + v, anduy, — v, Which can be replaced without causifig, to explode or

to implode. But this is not consistent with the characterypf as autocovariance
estimator, sincer;, andvy, are both derived from the same samglerhis led Ma and
Genton (2000) to define a breakdown point depending on the size of the original sample
and on the lag.

3.4.8 DEFINITION (MA AND GENTON (2000))
Letx = (X3,...,X,), be a sample from a stationary time series &rdcontaminated
version. Furthermore lét,, andvy, be vectors as derived in definition 3.4.2.
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The temporal breakdown point of a autocovariance estinidtorx) derived from a
scale estimata$ is

¢ (9(h, x)) = max {% :sup sup( St (lin + V) < oo and

Im X

inf iI}f(STfh(ﬁh + {/h)) >0 and

I, x
sup sup(Sy_p(ap — vp)) < oo and

I X

inf inf(Sy_ (T — ¥1)) > 0} ,
where the first supremum is over all sétsof m points which are to be replacedin
This definition is valid for the panel autocovariance estimafor if x, x, a, andvy
are as in definition 3.4.4 and#f is substituted by"=.

3.4.9 EMARK

The temporal breakdown point of,(h,x) is optimal: for each lag and eacH” Ma

and Genton (2000) have derived the maximal numbgr.(h, m, T') of differences af-
fected bym outliers. Asymptotically, the temporal breakdown pointief(h, x) is

' (vg(h,x)) = 25%, which is the maximal possible value. The procedure is analogous
in the panel case though the calculations become more cumbersome.

The robust autocovariance estimaigris very robust against outliers, especially against
arbitrary outliers (Ma and Genton (2000)). Thus alg@ is robust against randomly
distributed contamination, which is not the case for the previously discussed estima-
tor. We usey, r for estimating the covariance matrix and the autocovariance vector
robustly. The method is described in the next section. Although the autocovariance
estimators are moderately biased, the corresponding parameter estimates are satisfy-
ingly close to the true value. The simulations can be found in section B.2.1 of the
Appendix B, see also the discussion in section B.4.

3.5 Parameter Estimation via Robust Autocovariances

There are several possibilities for deriving parameter estimators which are robustified
versions of the least squares or Yule-Walker equatioasl'~'4. Each element of the
covariance matrix’ and the autocovariance vectpran be estimated separately or the
complete matrix can be replaced by a robust estimator.

We compare two procedures. First, we estimate each enthaotl¥ separately by the
robust panel autocovariance estimaggy- of the last section. As alternative we employ
the minimum covariance determinant (MCD) method for estimating the covariance ma-
trix robustly.

Robust panel autocovariance estimator

The robust panel autocovariance estimétoy derived from the scale estimatqr,
has been defined in definition 3.4.4. It can be employed for robustifying the parameter
estimation in the ICM and GICM as follows.
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LetT > 2 andx = {Xt(i); t=1,...,T,i =1,...,n}. Using the notations of sec-
tion 3.3, denote the panel of robust residualshby {)u(t(”; t=1,....,T,i=1,...,n}
and the median vector by = {X;"},_; _r. Forh =0,...,p, compute

gr(h) = Anr(h,%x) and g, (h) =Y, r(h,x™).

From these we obtain robust versiong of theAsampIe covariance malticasd B,
and the sample autocovariance vectdrsand A, which are used in the parameter
estimation (see remark 3.3.1): let

ALQ = (gr<1)v S 7gT(p)),7 BLQ = (gr(i _j>>i,j:1 P

-----

Asg = (gn(1),...,gm(p))  and By = (gm(i — §));jr..p -

As the method is based on componentwise robustification, the obtained matrices are
not necessarily positive definite.

Minimum covariance determinant

For comparison, we derive robust versionsAf B;, A, and B, directly from ro-

bust covariance matrices. L&tandx™ be as above. For both we estimate a robust
covariance matrix separately in the following way: if the order of the underlying pro-
cess i, we split each time series in the pasabr x™ itself into consecutive blocks of
lengthp+ 1, thus obtaining phase space representations of the time series. Such a set of
(p+1)-dimensional vectors then can be used for estimating a r¢pudt)-dimensional
covariance matriX'. If its entries are denoted by, =4(—j),i,7=1,...,p+1,we

get a robusp-dimensional covariance matrix iy, = (9i4); j-1...,- A robust autoco-
variance vector can be obtained from its first columf,as: (2.1, - - -, gpr11) - In this

way we estimate robust versions Bf and A; from the phase space representation of
thex, and of B, and A, from the phase space representation ofitie These matrices

are then used instead df, B;, A, and B, in the parameter estimation (remark 3.3.2).
Note that in the GICM, the matrices derived frotmand fromx™ can have different
dimensiong andq as the orders of the autoregressive processes may differ.

We have decided to consider the covariance estimator obtained from the minimum co-
variance determinant (MCD) method, as this is reported to be more stable than the
minimum volume ellipsoid and also is more efficient in high dimensions (Croux and
Haesbroeck 1999). Both estimators have an asymptotic breakdown point of 50%. They
are described in Rousseeuw and Leroy (1987) and have been implemented in R. For the
MCD, the fast algorithm suggested in Rousseeuw and Driessen (1999) is employed.
In principle any robust estimator of multivariate scatter such as the generalised M-
estimators proposed by Maronna (1974), Tyler’s estimator (Tyler 1987) or a method
based on projections (Maronna et al. 1992) could be used instead. However, the com-
putation of these estimators is more complicated and they have not been included in R
yet.

Simulation results comparing the estimatégs and éMCD described above can be
found in section B.2 of the Appendix B. They are also discussed in section B.4.
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3.6 Robust Regression

In order to evaluate the proposed methods, we compare them to two procedures derived
from standard robust regression methods. The first one is based on an M-estimator as
proposed by Huber (1981), the second one on the least trimmed squares method (Rous-
seeuw and Leroy 1987). Due to the nature of the estimators, which have been designed
for regression problems, we cannot mimic the procedure of the ICM estimation any
more. Either we have to perform an estimation on the original data, which is then not
robust against outlying time series, or we have to content ourselves with estimation as in
the GICM. To be more specific, we again transform the data in order to obtain the robust
residual pI’OCGSSQS)E't(i)}teZ, i =1,...,nand{X]"},cz (notations as in section 3.3),
which then are used for the estimation. This procedure yields estintatersd’, 52 )’

andd, = (B’,@Z)’, respectively. The two methods proposed subsequently have been
discussed in Rousseeuw and Leroy (1987) as robust estimators for time series analysis.

M-estimation

Letx = (z1,...,x,) be asetof observations. Any pair of statisti€s, .S,,) determined
by two equations of the form

;w(xsn >:0 and ;X(OCS” ):0

is called simultaneous M-estimate of location and scale. In most cassgl be an
odd andy an even function. A popular choice is Huber’s proposal 2, i.e.

¢(x) = max ( — k,min(k, z))
and x(z) = (o)~ B() with B = [ w(e) Bldo),

where® is the distribution function of the standard normal distribution (Huber 1981).
For the estimation we use the iterated re-weighted least squares procedure implemented
in R. Therek is chosen to bé = 1.345. The estimators based on this method are called
éM;a andéM;b (GICM procedure) anéM;di,, (direct procedure using the original data).

Least Trimmed Squares

Least squares estimates are obtained by minimising the sum of squared residuals. Many
robust estimators, e.g. M-estimators, are defined by replacing the square by another
function of the residuals. Rousseeuw’s approach is however to replace the sum in
the least squares approach by a more robust function. If the sum is exchanged with
the median, this leads to the least median of squares (LMS) method first described
in Rousseeuw (1984). Another possibility is to omit the largest residuals in the estima-
tion. The least trimmed squares estimator (LTS) is given by minimi@fgl(ﬂ)m

with b < n, where(r?)1.,, ..., (r*),.., are the ordered squared residuals (Rousseeuw
and Leroy 1987). The LMS estimation is of low efficiency, the estimator converges
at the raten'/?, whereas the LTS converges at the ratg/@f. Furthermore, the com-
putational difficulties, which led Rousseeuw and Leroy to recommend using LMS as
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preliminary estimator in a reweighted least squares procedure instead of employing the
LTS, are overcome. Both estimators have the same maximal breakdown value which
is attained e.g. ifs is chosen to beéy = |%] + [22]. In this case the asymptotic
breakdown point is 50%. We use this choice of the LTS in the simulations. The resul-
ting estimators are denoted By;s., andf, s, (GICM procedure) anérs.4, (direct

procedure).

The simulation results for these estimators are shown section B.2.3 of the Appendix B
and discussed in section B.4.

3.7 Outlier Detection

In this section we discuss two more methods for robust estimation in the panel model.
They both are concerned with outlier identification. After eliminating the outliers, the
parameters can be estimated with a non-robust method.

The first procedure is the heuristic approach of first identifying outliers by a (non-
robust) likelihood ratio test. We include this as a comparison. Since non-robust me-
thods can be substantially influenced by outliers (Rousseeuw and Leroy 1987, Becker
and Gather 1999), we want to investigate whether it is still possible to estimate the
panel parameters in this way.

The second method proposed is a new method of outlier identification. The idea is to
represent the time series in the phase space, as it is done in Gather, Bauer and Fried
(2002). By computing Mahalanobis distances for each time point, they were able to
discover outliers inside a single time series. We generalise this concept to panels of
independent time series and investigate its reliability.

3.7.1 Likelihood Ratio Test

A likelihood ratio test for homogeneity has been proposed by Basawa et al. (1984).
Their setting can be specialised to a panel of independent autoregressive processes.

3.7.1 ASSUMPTION
Let {Xt(z)}tEZ, i =1,...,n, be a panel of independent autoregressive time series such
that

XD =a® 2D 4D forall t e Z,

with 5t mdependently and identically d|str|buted @@ ~ N(0,0?) forall t € Z,
i=1,...,n. Herea”) = (ag), . ()) andxt .= (Xt(i)l, . ,Xt(z)p) :

Then, conditional on the initial observatlodél(l ,...,X,S"), i =1,...,n, the corre-
sponding likelihood function is

Lor(0) = (270%) 7% exp (— zazZZ ax)").

The vector of unknown parametefis= (a*’, .. .,a(”)’ 2)" can be part|t|oned into
0, = (aV', 0?) andfdy = (a?', ... o™, wherea) = a® —aMfori=2,...,n
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We consider testing the composite hypothégisd, = 0 against the sequence of local
alternativesk’,, : 0 = 6, ,,, wheref, ,, = Ln h with h an(n — 1)p-dimensional vector
of fixed real numbers. The likelihood ratio statistic then is

Ln T(éH>
QLR = -2 log _— 5
L,r(0)
whered andéH are the maximum likelihood estimatorstin the unrestricted case and
restricted byH.

Under these assumptions, the above panel belongs to a locally asymptotically normal
family. Thus it is possible to derive the asymptotic distributiorf)gfz.

3.7.2 THEOREM (BASAWA ET AL. (1984))

Let the panel of independent autoregressive time seri¢ise hypothesesl, K, and
the likelihood ratio statisti€); r be as in the above assumption.

Then the limit distribution of) 1 r underH is x*((n —1)p), and undelx,, it is noncen-
tralx?((n—1)p, 6%). The noncentrality paramet&r can be derived from the asymptotic
covariance matrix of) . underH andh, whereh is the vector which defines the local
alternativel,,.

PROOF,

See Basawa et al. (1984). The authors show that the model satisfies the conditions for
local asymptotic normality given in Basawa and Koul (1979). There it has been proven
that under these conditions the limit distribution(®f i is as stated in the theoreml

We apply this test in order to identify outliers in a panel of time series. Since the above
result is based on independent time series, we suppose the following in this section:

3.7.3 ASSUMPTION
Let {Xt“)}tez, i=1,...,n, be a panel of independent time series such that for £ach

p
X0 =3 X0, 4 &)
k=1

with independently and identically distributed innovatiai$ ~ N(0,52). Outliers
are generated by replacing entire time series by independent time series following a
different model.

For estimating the parameters, we employ an iterative procedure.

3.7.4 ALGORITHM

First, we test for homogeneity usidgy . If the hypothesis is not rejected, the parame-
ters are estimated from the conditional log-likelihood given above. Otherwise, the time
series with the smallest p-value is deleted from the sample. This is iterated until the
hypothesis is not rejected any more or until a certain proportion of the time series has
been classified as outlying. For the simulations we assume that not more than 20% of
the time series have been replaced.
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3.7.5 REMARK

As we use a multiple testing procedure, the significance laviels to be adjusted

in advance for obtaining a specified significance for the test. We use the adjustment
a, =1—(1- oz)u%l, which is equivalent tav = 1 — (1 — a,,)*"'. Herea is the
significance level we want to achieve ands the assumed maximal proportion of
outliers. Thus we have to fix the expected number of replaced time series beforehand.
In the simulations we have set= |n/5].

The results of the simulations are displayed in section B.3.1 of the Appendix B. We also
have applied the method to an intercorrelated panel with entire time series as outliers.
In both cases we can observe a massive masking effect if outliers are present. The test
statistic rejects the null hypothesis of homogeneity, butis influenced by the outliers such
that it identifies wrong time series as outlying with a high probability. For a detailed
discussion we refer to section B.4 and the end of section B.3.2, where the performance
of éLR is compared to that (ﬁps, the estimator introduced in the next subsection.

3.7.2 Phase Space Representation

Gather, Imhoff and Fried (2002) propose a method for identifying outliers in stationary
Gaussian time series by deriving a time series Mahalanobis distance. They represent
the time serie§ X, },— . r in anm-dimensional phase space, i.e. they consider the set

of vectorsx; = (X, Xiv1, .., Xeom1), t = 1,..., T — m + 1. When the ordep

of the autoregressive time series is known, they choose the dimensairthe phase

space ag + 1. If the order is unknown, they choose it@as= 1+ max{h;|p(h)| > 0},

wherep is the partial autocorrelation function. For estimatingrom the data, Gather,

Imhoff and Fried (2002) use. = 1+max{h; [p(h)| > ulfa\/g}, wheren is the length
of the time series and, _,, the (1 — «)-quantile of the standard normal distributigi.

is the sample partial correlation function. In this setting, they consider the following
analogue of the classical Mahalanobis distance outlier identifier.

3.7.6 DEFINITION

Let{X:}.—1. . r be asample from a stationary Gaussian time series and define the phase
space vectors as, = (X4, Xov1, .-, Xoymo1), t = 1,..., T — m + 1. Denote their

mean byr = tT:_lm“ x; and the corresponding.-dimensional sample covariance

matrix by S,,. The Mahalanobis distance for time series (MDTa&)pointt is defined
as

MDTS, = \/(x = #) S5 (x,—7) fort=1,....T—m+1.

In the above article, the authors also derive its asymptotic distribution.

3.7.7 THEOREM (GATHER, IMHOFF AND FRIED (2002))

Let(Xy,...,Xr) be a sample from a stationary Gaussian process with absolutely sum-
mable autocovariance functioyih), h € N, and denote the dimension of the phase
space bym. Then the asymptotic distribution of the Mahalanobis distance for time
series (MDTS) is given by

MDTS} =Y, for T — oo, whereY; ~ 2, .
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Since the MDTS is defined using a non-robust covariance estimator, the outlier iden-
tifier is susceptible to masking effects (Becker and Gather 1999). Therefore (Gather,
Imhoff and Fried 2002) suggest replacing the sample covariance matrix and the mean
by the robust alternatives obtained from the minimum volume ellipsoid (MVE) method
which is not affected by the dependencies in the time series.

We now extend their definition to panels of time series.

3.7.8 DEFINITION

LetXx”, t =1,...,T,i = 1,...,n, be observations from a panel of stationary time
series{ X" V,ez, i = 1,...,n, such thalt X" = u andvar X" = ¢ > 0, and let

m be the dimension of the chosen phase space. Denote the corresponding phase space
vectors by = (X ... x Y t=1,... . T—m+1,i=1,...,n. Let

) 1 « d i & 2
“:n_TZZXt() and S:(’VmT(k_l))k,l:l ..... m’

i=1 t=1

whered, r(h) = = S0 SF L (x = n) (X, — fi) is the panel covariance
estimator. Moreover let = (1,...,1) be them-dimensional vector consisting of
ones and denote= [ 1.

Then thesquared Mahalanobis distance for this panel of time sefié® P?) at the

time series is defined as

T—m—+1

MDP? = Y (x) - ) 57 (x) — ).

t=1

X_{t-1}

Figure 3.1: Phase space representation of a panel of 9 independent autoregressive time
series with autoregressive parameter 0.5 and variancer?> = 1 (grey lines), and one
autoregressive time series with parametgr = 0.9 and variancer?,, = 1 (dashed

black line). The length of the time serieslis= 72.
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Thus theM D P? essentially is the sum of the Mahalanobis distances oftthéme se-

ries, the only difference being that the univariate estimators are replaced by their panel
counterparts. The underlying idea is that the phase space vectarsdireensional
Gaussian random variables, although not independent; and that time series belonging
to different models possess different density ellipsoids (compare figure 3.1). The test
then measures the deviation of the single time series from the main behaviour.

If the single phase space vectors were independent, the resulting statistic would be
a sum of7" — m + 1 independent random variables which each are asymptotically
distributed as?,. As we are concerned with causal autoregressive processes where the
autocorrelations decay exponentially, the strong mixing property ensures asymptotic
normality.

3.7.9 THEOREM

Let {Xt(”}tez, i = 1,...,n, be a panel of identically distributed stationary Gaussian
time series with absolutely summable autocovariance funetibh. and letm be the
dimension of the chosen phase space. Using the notations introduced in the preceding
definition, the asymptotic distribution of the Mahalanobis distance for observations of
a panel of time series at time serigs given by

1
ﬁ(TMDHQ—1> =Y  forn,T — oo,

whereY ~ N(0, 03), the asymptotic variance;. being independent of andT .
In order to ensure the consistency of the estimgitardsS used for calculating the test
statistic, we furthermore assume that the intercorrelation in the panel is forzall.

determined byov (X", X fﬁ w) = uny(h) fori # j, whereu, = O(}).
PROOF,

.....

space vectorsgi) andy = 4 1 their true mean vector. Furthermore febe the sample
covariance matrix ang the overall mean as defined above. Due to lemma 1.2.4 the
entries ofS fulfil

E (37 (h) — v(h)* = O (%T)

since} ;" ___|y(h)| < oo and the intercorrelation factor in the panekis = O (1).
For the same reasons, also

Since foreach=1,...,n,

() =) ST = ) = () — ) S () — ) 2 (- ) ST (kY )
1
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whereY,” = (x{" — p)’ " (x{” — u) ~ x2, due to the assumption of Gaussianity.

For ease of notation choose {1,...,n} fixed and denot&; = V). ThenEY, = 1
forallt =1,...,7T —m+ 1. TheY, are dependent. Using the fact that for Gaussian
processes all cumulants of order larger than two are zero (Shiryayev 1984, p. 291), the

variance of >, 7" Y, can be calculated as

, 1 T—m+1 T—m ’hl m
= — Y, | = var(V;) +2 _ A
Or var (ﬁ ; t) Val"< t) Z ( T > Z Skl

h=—(T—m) k=1

X (yk+h=1),...,y(k+h—m) S (y(I+h—1),...,91+h—m)),

where s;; denotes thék, [)th entry of ©~1. Since by assumptiOtaarXt(i) > 0, we
haveo? > 0. Moreoversi = lims .., 0% exists because we have assumed the
autocovariance function to be absolutely summable.

For deriving the asymptotic distribution, we employ strong mixing theory. We regard

1

T—m+1 T—m+1
VT o2 (

5/;5_1>:CT Z Zt7
t=1

ie.cp = (To2) ?andZ, =Y, —1,t=1,... T —m+1.

Thus forallt =1,...,7 —m + 1, Z; is measurable and has mean zero. The choice
of the constant giveE S2 = 1. Furthermore, stationary Gaussian AR-processes are
strong mixing (Davidson 1994, p. 210). Theredeé,fi)}teZ is strong mixing for each

i =1,...,n. Bytheorem 14.1 of Davidson (1994), thidsis strong mixing of the same
order. Moreover it trivially is near-epoch dependent (Davidson 1994, definition 17.1)
in Ly-norm. Since{Xt(i)}teZ is assumed to be Gaussian fora 1, ..., n, all higher
moments oth(i) and thus ofY; and Z; exist. ThereforeE Z] = M, < oo for all
t=1,...,7T—m+ 1. This leads to

Sy =

t=1

T
Cp

ZI\ " 1
sup E <—t) =cr My < o0

for all fixed r > 0. As the coefﬁcie?tT is constant for fixed’, we moreover have
7777 remm TG =T = (03) < oo. Thus, all conditions of theorem 24.6 of
Davidson (1994) are fulfilled. It follows that faf — oo

T—m+1
Sr=cr Y Z, = Z  whereZ ~N(0,1).

t=1
Equivalently,

T—m+1

1
— Y. ¥i-1) =V, whereY ~ N(0,02).
VT 5
Altogether this means that in caseof— oo andn — oo

1
\/ZF(?MDPf—l) =Y. 0
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The most important point in this proof is that we only have used the factStiaaid i

arev/n T-consistent estimators of the covariance matrix and the mean vector. Thus any
otherv/n T-consistent estimator can be used for defining a Mahalanobis-type distance,
leading to the same asymptotic distribution. We employ the above result for deriving a
robust test for outliers in a panel of time series.

Robust outlier identification in the panel case

In the simulations we generate panels of Gaussian time series,mupto= (0.2 |

time series being replaced by outlying time series. These are assumed to be independent
of the time series in the panel and of each other.

For robustly testing whether a time series is an outlier and for eliminating these from
the data set we use the following procedure.

3.7.10 ALGORITHM
In order to obtain a robust estimaté/ D P?, we replace the sample covariance ma-
trix and the mean vector used in the computatiodbb P? by the covariance matrix

1
‘\/T (TTMDBQ —~ 1)‘ > o,

wherec, is the (1 — 22)-quantile of theN(0, o3 )-distribution. The adjusted signifi-
cance levely, is obtained fromx by o = 1 — (1 — a)'/". For approximating:? use a

robust estimate of the empirical variance of thei = 1,..., n:

.....

whereY® = L 51"+ y®) These outliers are deleted from the data set. The

parameter estimation then can be performed in a second step using a non-robust esti-
mator.

The significance levek has to be adjusted as the algorithm implies multiple testing:

for each time series we compute the test statistic, where the estimate of the covariance
matrix is based on all observations, and decide whether it is outlying or not. This
adjustment is the same as chosen in the likelihood ratio procedure described in the
previous subsection (see remark 3.7.5). As we here test for each time series separately,
we have to adjust with n, the number of time series in the panel, instead.of

3.7.11 EMARK
1. Replacing the termi = EY; by a robust estimate of this expectation in the
test statistic leads to more reliable results. In fact we have used the estimator

.....

pendix B.3.2.
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2. The above choice of the robust covariance matrix facilitates the comparison with
the parameter estimatéMCD of section 3.5 which is based on the MCD. In fact,
the two methods are closely connected. Robust methods allow to estimate the
parameters and to identify outliers as the data with the largest residuals in one
step. Here the MCD method is used to classify the outliers in order to be able to
perform a non-robust estimation on a smaller data set in a second step, whereas
f:,cp provides a robust estimator based on all data.

3. The definition of the Mahalanobis distance implicitly includes a transformation
of the Gaussiam-dimensional random vectors to standard normally distributed
random variables. Thus the test statistic yields a distance of the transformed
time series to a standard normally distributed process. This idea is similar to
that in Hallin and Puri (1988), where the authors test one ARMA against another
ARMA model by checking whether a transformed ARMA processes is a white
noise process. However here the focus is different. Hallin and Puri develop
the asymptotic properties of the procedure with unspecified densities. Our main
interest lies in methods adapted to the panel case which are robust and easily
applicable.

For the performance of the method see the simulation study in section B.3.2 of the

Appendix B and the discussion in the next section. In the simulations we also have

included the non-robust outlier identification procedure based on the sample covariance
and the sample mean for comparison. Thigrds estimated as

T—m+1 n

1 NN
52 = VAL _y(l)> '
1 n(T'—m+1) Z Z<t

t=1 =1

In these cases the parameters are estimated by eliminating all identified outliers from
the panel and then performing a non-robust estimation using the ICM parameter esti-
mator of chapter 2. We call the resulting parameter estimafergnon-robust method)
andéps;mb. In order to compare the estimators with those obtained using the likelihood
ratio procedure, we further include in the simulations a (non-robust) modification where
the time series are eliminated iteratively. The estimators obtained from this procedure
are denoted b§pg.,c..

3.8 Conclusion and Outlook

We have investigated several approaches for obtaining robust panel covariance estima-
tors and have evaluated their behaviour in a simulation study.

The first method is to robustify the conditional maximum likelihood estimators of the
first chapter by replacing all non-robust parts with a robust method as it has been done
e.g. in Haddad (2000). This leads to robust estimates of the autoregressive parame-
ter. However, the simulations show that the estimators of the residual variances are
biased (see section B.4), which is a known problem in robust estimation (Rousseeuw
and Leroy 1987). As bootstrap methods are non-robust in character, they reflect the
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empirical behaviour of the underlying parameter estimator and thus improve the esti-
mates only moderately. Here the method which exploits the normality assumption of
the model performs best (see section B.4).

As a second aspect we have investigated the effects of replacing the covariance matrix
and the autocovariance vector in the Yule-Walker equations by a robust counterpart.
We have focused on the panel scale estim@ot which generalises the robust time
series scale estimat@;,, proposed by Ma and Genton (2000). It was possible to define
and compute panel breakdown points &y . Some estimators with a high break-
down point such as the minimum volume ellipsoid (MVE) estimator have a large bias
which may be so high as to make the estimator unreliable, even for small amounts of
contamination (see Maronna et al. 1992). This seems not to be the cas@,with

The simulations in the Appendix B.2 suggest that the original standardisation constant
IS not appropriate in the panel case, though. As this factor cancels out in the calcula-
tion of the autoregressive parameter it does not affect the parameter estimation as such.
The drawback of estimating the separate components of the covariance matrix robustly
is that the estimate is not necessarily positive definite. The fast algorithm of Croux
and Rousseeuw (1992) could not be transferred to the panel case since it relies on a
procedure for efficient partial sorting of a single vector of observations. But the com-
putational speed posed no problem in the simulations.

Positive definiteness is ensured if we replace the entire covariance matrix by a robust
counterpart. We chose the minimum covariance determinant (MCD) covariance es-
timator because it is implemented in R, whereas other covariance estimators cited in
the introduction are not yet available. The MCD is reported to be more stable than
the minimum volume ellipsoid (MVE) method, and it is more efficient in high dimen-
sions (Croux and Haesbroeck 1999).

Although the approach of first identifying and then deleting outliers is very intuitive, it
poses two problems. If the procedure used for identification is not robust, this method
can lead to a masking effect (Rousseeuw and Leroy 1987, Becker and Gather 1999).
This means that the test statistic is influenced by the outliers such that they are not
recognised as outlying, whereas some of the original data may wrongly be identified
as outliers. This masking effect is evident for the non-robust likelihood ratio test of
section 3.7 (see the simulation study in section B.3.1 of the Appendix B). Secondly,
iterating the procedure implies multiple testing. Thus the significance level of the test
has to be adjusted. For this, the maximal proportion of possible outliers must be spec-
ified in advance. Furthermore this implies that the local tests are performed at a much
higher significance level, which makes rejections for the single time series less proba-
ble. Thus Rousseeuw and Leroy (1987) prefer genuinely robust estimators which allow
estimating the parameters and identifying outliers in the same time. There the outliers
are characterised by their large residuals. For example the least trimmed squares esti-
mator and the reweighted least squares estimator discussed in section 3.3 downweight
the observations which belong to the largest residuals in the estimation procedure. The
phase space method of outlier recognition is related to this class of estimators. The pro-
cedure starts with computing a robust covariance matrix using the MCD method. This
can then either be used directly in the the Yule-Walker equations (thus leading to the
estimator discussed in section 3.5) or in the robust outlier test treated in section 3.7.2.

For a more detailed comparison of the different properties of the above estimators we
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refer to the discussion of the simulation study in section B.4 in the Appendix. The final
recommendation is to use the reweighted robustified ICM parameter estifpator

the estimator obtained after a preliminary outlier detection using the the phase space
test,éps;mb, for the estimation if no arbitrary outliers are present. In the case of arbitrary
outliers, one should use the estimators derived from the robust covariance magrices

or §xcp, depending on the order of the autoregressive processes.

As the aim of this chapter was to survey which robust methods could be used for the
panel case, the character of our investigations is exploratory and we have not sought to
improve the single estimators as much as possible. Certainly there exist modifications
of some of the above parameter estimators which perform better than these. In particu-
lar it seems that the bias of the robust autocovariance estirfiatoan be lowered by
adapting the choice of the order statistic and the standardisation to the panel case.

For a more detailed discussion of the empirical behaviour of the proposed estimators,
we refer to the Appendix B, and in particular to section B.4.



Chapter 4

Real Data Examples

4.1 Introduction

This chapter is concerned with the analysis of data collected in experiments. We in-
vestigate how our methods can be applied in practice. The panels of intercorrelated
time series we analyse have already been mentioned several times throughout the the-
sis. The first one is the data set which was the motivation for the present thesis. It
originates from a therapy process study conducted at the Medical University Hospi-
tal of Heidelberg, Department of Internal and Psychosomatic Medicine. Fibromyalgia
Syndrome (FMS) patients were undergoing a treatment consisting of several modules,
including a psychotherapeutic group therapy. Therefore the assumption that the time
series obtained from these patients are independent cannot be made initially. A second
example, where the presence of intercorrelation is predominant, is the grey-sided voles
data set presented in section 2.1. It already served Hjellvik and Tjgstheim (1999a) and
Fu et al. (2002) as an example. These two data sets allow us to elaborate the features
of the parameter estimators in typical applications.

The chapter is structured as follows. We start with estimating the autoregressive para-
meters for the voles data. Then we investigate the FMS data. In such studies (and this
indeed has been the case) some patient may have been wrongly assigned to the therapy
group. Thus we employ an outlier identification step before analysing the remaining
data. All of the analyses are exploratory in character as we primarily want to illustrate
the properties of the different estimators. The chapter concludes with a discussion of
the obtained results.

4.2 Population Dynamics

The grey-sided voles data has already been briefly introduced in section 2.1. The data
set is plotted there, in figure 2.1. The data, which are also investigated in Hjellvik and
Tjgstheim (1999a) and Fu et al. (2002) as an example of intercorrelated time series,
consist of the yearly catches (from 1962 to 1992) of grey-sided voles at 41 different
locations on Hokkaido, Japan. They are measured on a logarithmic scale: if the number
of voles trapped each year is denoted{by(i),1962 <t <1992/1 < i < 41}, we
consider the transformed darét“) = log(m(;%m +1),1 <t <31,1< i <41,

99
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As we want to use the methods discussed in this thesis for the analysis, we first must
decide whether the assumptions 2.2.1 of the ICM or 2.3.1 of the GICM are fulfilled.
In the present case it is however justified to use only the GICM procedure, even if the
true model fulfils the assumptions of the ICM, since here 41. Thus the difference
between the ICM estimataﬁ;“T (calculated using the iterative algorithm 2.4.4) and the
GICM estimator obtained in lemma 2.4.7, is small (see remark 2.6.10). Noté,that
coincides with the estimator of Hjellvik and Tjgstheim (1999a) (see remark 2.4.8).

Preprocessing the data

Since the empirical mean of the datgiis= 1.7, we must preprocess the data prior to

the analysis. The main question is whether the mean term is common to all time series
in the panel or whether we have to subtract different means from the individual time
series. Regarding the empirical data both possibilities are reasonable. Hjellvik and
Tjgstheim (1999a) assume a common mean, stating that the data has been chosen from
a larger data set such that the difference in the individual means was minimised. This
assumption is sufficient for being able to employ their estimator, as then the residual
time seriesX\” = X! — X,,t € Z,i=1,...,n, have zero mean.

We here however do not want to make that assumption and thus preprocess the data in
the following way.

o We subtract the individual sample meaxs= 31 X,

tions of the corresponding single time ser{e’ét }tzl
resulting data set is calléd,,,.

@ from the observa-
31,0 =1,...,41. The

,,,,,

o For comparing our results to those of Hjellvik and Tjgstheim, we only subtract

the overall sample mean= - %' ™! XY from the set of observations

{Xt(”; t=1,...,31,i=1,...,41}. We denote this data set By

Data analysis

The data set has been used already in several studies (see e.g. Hjellvik and Tjgstheim
1999a). Thus we as well assume that the analyses are not influenced by outliers and
therefore employ non-robust estimators. This is further supported by the fact that robust
analyses here lead to qualitatively the same results. In order to simplify the presenta-
tion we omit these here. We proceed as follows. For both of the two transformed data
setsVyr andV;,, we compute parameter estimates using GICM parameter estimators
0, andd,. Furthermore, we give the results of the ICM parameter estmtat@rfor
comparison. Following the procedure of Hjellvik and Tjgstheim (1999a), we fit autore-
gressive processes of different orders to the data. The quality of the fits is assessed by
computing the residual processes and performing diagnostic checks on these. If there
are several competing models, those with a lower order are preferred. We first con-
sider the individual processes. The results of the estimation are displayed in table 4.1.
It turns out that for the modély indeed an AR(4) process yields the best fit. This
corresponds to the findings of Fu et al. (2002). In Hjellvik and Tjgstheim (1999a), the
authors only investigate processes up to order three. However they also do not propose
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data set model | estimated model parameters
. 0, | AR(4) | a=(0.136,—0.007,0.082,0.132)", 42 = 0.581
AT 10, | AR@) | a=(0.131,-0.012,0.085,0.136), 62 = 0.581
” O WN | 62 =0.553
md 1. | WN | 62 =0.553

'[able 4.1: Coefficients of the individual processes obtained from the estinfatansl
6, . computed for each of the two data sels; andVyr. The third column gives the
type of model chosen (WN=white noise).

a white noise model but an AR(3) process for fitting the data. Thus we see that the re-
sults obtained for the differently transformed datalggt, where we get a white noise
model, are clearly distinct from those based upgn.

For the estimation of the background process using theorem 2.4.14 we take the empi-
Vur andV;,,. The analyses yield that it is best approximated by a white noise process
with the variance? = 0.444.

Implications for modelling

The above analysis yield similar parameter estimates for the ICM estié;@tcand the
GICM estimatord,. However we have to take the structure of the background process

.....

If the ICM model (definition 2.2.2) is true, then the mean process fulfils

p
X, =) axX, y+&+m forteZ,i=1,...,n,
k=1
thus having the same autoregressive parameters as the individual processes. Note that
here{n, };cz is assumed to be a white noise process. This property is not fulfilled in the
case of the data sét;r. Indeed modelling the process with the parameters obtained
from the analysis of the individual processes leads to a fit which is much worse than
adapting a white noise model. Using a GICM model (definition 2.3.2) for the data, we
getthatforallt € Z,i =1,...,n,

X0 =20 4= 3 el 4 v = 3w (2, 4 all) v ).
u=0 u=0

wherea is the autoregressive parametell,.) the backward shift operator aga,, },>o
are the MA(o) coefficients corresponding to(see section 1.1). This is equivalent to

p
X =N ax? 4+’ +al)Y,  forteZi=1,..n
k=1
Thus the background procegs }.c7 being a white noise process correspondSié;c
having an autoregressive structure, whereas in the {@¥l <z is required to be a white
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noise process. This has already been discussed in the examples 2.3.4, but the grey-sided
voles data set illustrates this fact nicely. Indeed Hjellvik and Tjgstheim (1999a), who
estimate{#, },cz from the residual process = a(L) X, for t € Z, also conclude that

it may be autocorrelated, which contradicts the ICM assumption.

4.3 Fibromyalgia Syndrome Therapy Study

Our second real-data example comes from a therapy process study on fibromyalgia syn-
drome (FMS) patients conducted at the University Hospital of Heidelberg, Department
of Internal and Psychosomatic Medicine. This study was the original motivation for
the present thesis. FMS is a chronic pain disease which is characterised by widespread
pain and a reduced pain threshold (Wolfe et al. 1990). The therapy based on a psycho-
bio-social approach consists of several modules, combining information, medication,
physical therapy and a psychotherapeutic group therapy (Eich et al. 1998). This implies
that assuming independence is not justified in this setting, which led us to investigate
panels of intercorrelated time series.

FMS being a chronic pain disease, the therapy’s main focus is on helping patients to
cope better in their daily life. FMS patients often display a number of physical and
psychosomatic attendant symptoms, among these are sleep disorders, anxiety and an
elevated level of depressivity. Thus the parameters of main interest are, besides pain
intensity, the levels of depressivity (mood) and self-efficacy. The latter is a measure of
how much a patient believes that he or she can influence the symptoms of the disease
himself (Muller et al. 2003). Using graphical models for time series (Dahlhaus 2000a),

it has been shown that self-efficacy plays a central role in the therapy process and is
supposed to serve as a mediator between other parameters such as pain intensity, sleep
quality, anxiety and depression (Feiler et al. 2005).

Data

58 female patients participated in the study. They entered the data themselves into a
handheld computer (Psion 3mx) which served as an electronic diary. The data were
measured using visual analogue scales ranging from 1 to 10.

The data comprise 72 daily entries, i.e. they cover the span from the beginning of the
therapy until two weeks after its termination. As the patients were divided into sepa-
rate therapy groups, we here analyse the data of 11 patients participating in the same
group (group 1). Outlying values in the individual time series, which were e.g. due to
retrospective entries, were identified and eliminated preliminary to the analysis. Each
univariate time series was detrended using 5th order polynomial trends and standardised
with its empirical standard deviation. Missing values were replaced by a weighted ave-
rage of forward and backward predictions using univariate autoregressive processes.
For the analysis of the parameter depressivity we exclude the data of two patients from
the analysis who exhibit virtually no variation in this parameter over long stretches of
time. As an example, the data obtained for the parameters “pain intensity” and “self-
efficacy” are displayed in figure 4.1.
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Figure 4.1: Standardised data for the parameters “pain intensity” and “self-efficacy”
(group 1), measured over 72 days.

Intercorrelation

The plots of the data shown in figure 4.1 do not exhibit an obvious intercorrelation
pattern as it is the case for the voles data shown in section 2.1. Nevertheless we cannot
exclude intercorrelation due to theoretical reasons. The asymptotic results in this thesis
are valid whether or not intercorrelation is present. Thus we test for intercorrelation
first in order to get a clearer picture. For testing we use the method given in Brillinger
(1973). This is based on the spectral representation of the data and tests whether the
the spectrum of the random variable causing the common influence is different from
zero. Applied for the parameters of interest with significance level 0.05, it only

is significant for the self-efficacy. For the other parameters it does not reject the null
hypothesis of independence. The corresponding plots, again restricted to the parameters
“pain intensity” and “self-efficacy”, are displayed in figure 4.2.

Testing for outliers

Next we test for outliers in the data. We know that one person in the group (patient

no. 11) did not suffer from FMS. But as she already had been accidently admitted to
the study she was allowed to participate in the therapy group. For testing we use the
robust test based on the phase space representation described in section 3.7.

The test performed at the 5% significance level does not give any significant results. In
table 4.2 we list the p-values for those cases where the p-values are below 20%.

The results for the parameter “sleep quality” are not significant since we have to ad-

just for the multiple testing. Thus the individual tests have to be performed at a local

significance level of 0.005 in order to guarantee the 5% significance level for the test.
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pain intensity
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Figure 4.2: Results of the intercorrelation test for the parameters “pain intensity” and
“self-efficacy” (group 1). Solid line: test statistic. Dashed horizontal line: 5%-bound
for the test statistic. The curves were smoothed using a window of width 7.

For comparison we have performed the test also in its non-robust version, using the
sample covariance matrix instead of the robustly estimated one for testing. This leads
to qualitatively the same results.

Fitting autoregressive processes

In the case of independent time series we can estimate the parameters using ordinary
least squares, which corresponds to a conditional maximum likelihood procedure in
the case of Gaussian distributions. The intercorrelation test above did in most cases
not reject the hypothesis of independence. However this does not prove that these time
series indeed are independent. Therefore we now compare the estimates obtained under
the assumption of independence to those obtained using the GICM estinaiven

in proposition 2.4.7. Since the previous test does not indicate the presence of outliers
(with a possible exception in the case of sleep quality), it is sufficient to use non-robust
estimators. As in the last section, we fit autoregressive processes of different orders to
the univariate data and check which of these model the data best. We first present the
results of the direct least squares fit in table 4.3. Estimating the parameters with the
ICM procedure yields virtually the same parameters, thus we have omitted them form
this presentation. Table 4.3 furthermore shows that there is essentially no difference
between the estimates for sleep quality with or without the data of patients 7 and 8.

The models fitted using the GICM procedure are given in table 4.4.



4.3. FIBROMYALGIA SYNDROME THERAPY STUDY 105

parameter

pain and depressivity | no incidents

self-efficacy patient 11 (p=15.86%)
anxiety patient 5 (p=16.46%)
sleep quality patients 7 (p=1.62%) and 8 (p=7.06%)

Table 4.2: Results of the robust outlier tests. Cases with p-valuz3%.

parameter model | estimated model parameters

= (0.093, —0.003, —0.063, —0.141)", 62 = 0.949
=0.152, 62 = 1.019

pain intensity AR(4)
self-efficacy AR(1)
depressivity AR(1) = 0.141, 6% = 1.009
anxiety AR(1) =0.117, 6% = 0.938
sleep quality WN % =1.007

sleep quality
without 7 and 8

| |

>

WN 52 =1.063

Table 4.3: Coefficients of the autoregressive processes fitted using a least squares pro-
cedure. The second column gives the type of model chosen (WN=white noise).

Simulations

In order to explore whether the more complicated models obtained from the GICM pro-
cedure are due to overfitting, which implies that the models which have been identified
for the background processes are artefacts, we perform a small simulation.

We generate panels of independent autoregressive processes with identical parameters
a = (0.093,—0.003, —0.063, —0.141)" ando? = 0.949 (pain intensity) and with pa-
rametersa = 0.141 ando? = 1.009 (depressivity). Thus the variance of the mean
process will be approximately 0.1. Furthermore we simulate panels of white noise pro-
cesses with variance,, = 1 and a panel of intercorrelated autoregressive time series
with parameters = 0.141 ando? = 72 = 0.5. As size of the panel we choose= 10

andT = 72, such that the results are compatible to the above analyses. Thus we have
in the last model that? = 0.55. For each type of panel we compute the parameters
estimated from the mean process over 1,000 iterations. The results are

o in the AR(4) casein 154 of the 1,000 iterations indeed an AR(4) process has
been chosen. However, the average over the estimated autoregressive parameters
isa = (0.088,—0.027, —0.105, —0.289)" (mean taken over those cases where
an AR(4) process has been fitted), having a componentwise standard deviation
sd(a) = (0.125,0.152,0.112,0.064)". This means that the variance in the es-
timation is very high. The average variancesis = 0.111 (sd(6?%) = 0.019).
Moreover in 541 cases the chosen model was a white noise model with similar
variance.
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parameter model | estimated model parameters

pain intensity —

0, | AR4) | @ = (0.073,—0.014, —0.075, —0.154)', 62 = 0.97

0, | AR(1) | b=0.227, 02 = 0.08
_ 0, | AR(4) | @ = (0.187,0.090, —0.050, —0.121)’, 62 = 0.99
self-efficacy 2 | WN 22 =011
. a = (0.121, —0.003, —0.081, —0.086, 0.003, —0.125)’,
depressivity ba | AR(B) 52 =0.99
0, | AR(2) | b= (0.309,—0.173), &2 = 0.11
anxiety AR(1) | ICM: a = 0.117, 62 = 0.967, @2 = 0.097
6, |WN | s2=1.01
sleep quality 75 "AR@) | b = (0.165,0.229,0.072, —0.372)', &2 = 0.08
|6, |WN | 52=1.07
jﬁﬁsuﬂa;tnyda 6, | ARG) 22—_(0(_)'1(?;,0.164,0.085, —0.300, —0.213)’,

Table 4.4: Coefficients of the autoregressive processes fitted using the GICM proce-
dure. 0, and @, are the parameters of the individual processes and the background
process, respectively. The third column gives the type of model chosen (WN=white
noise).

o inthe AR(1) casein 626 of the 1,000 iterations the process was correctly identi-

fied as an AR(1) process and in 2 a white noise process has been chosen. However
there were for example 146 cases where an AR(4) model was fitted. The average
over the estimated autoregressive parameters (mean taken over those cases where
an AR(1) process has been fitted)iis= 0.380 (sd(a) = 0.140), the average va-

riance is5? = 0.109 (sd(5?) = 0.018).

in the white noise casanly in 733 cases the mean process was correctly identi-
fied as a white noise process. The mean of the estimated autoregressive parame-
tersisa = —0.010 (sd(a) = 0.095) and of the mean of the estimated variances it
is? =0.109 (sd(6?) = 0.018).

in the intercorrelated AR(1) caseonly in 90 cases a model of order three or
larger was fitted. In 73 case an AR(2) model and in 574 cases a white noise
model was fitted. The average over the estimated autoregressive parameters is
a = 0.038 (mean taken over those cases where an AR(4) process has been fitted),
with standard deviatiosd(a) = 0.091. The variance has been estimated as

&% = 0.550 (sd(w?) = 0.095).

This shows that the variance of the true mean process is always estimated quite accu-
rately, whereas the parameter estimations exhibit a large variation, in particular if the
time series in the panel are independent. In the case of the intercorrelated panel how-
ever the estimated order is not varying as much as in the panel of independent AR(1)
processes.
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Conclusion

The above analyses show that the intercorrelation in the present data sets is only weak.
Furthermore the simulations illustrate that the GICM procedure leads to an overfit in
this case. We therefore conclude that the FMS data are best modelled as panels of inde-
pendent time series with the parameters as given in table 4.3. There the pain intensity
is modelled as an AR(4) process. Indeed the therapy sessions showed that patients tend
to be more active in periods with a lower pain intensity, which often leads to an over-
load and thus to a higher pain level a few days later. This is an example which justifies
fitting a higher order process to the parameter “pain intensity”. The other parameters
are modelled as AR(1) processes, with exception of the sleep quality. This means that
the levels of the parameters on one day have some influence on their value the next
day, which is very plausible. The fact that sleep quality is best modelled as a white
noise process may have its reasons in physiological reality. However it could also be
due to the self-recording. It has been shown that self-recorded sleep quality may differ
from the actual one (Wilson et al. 1998). Testing robustly for outliers has not detected
the data of the patient not suffering from FMS as outlying. There are several possible
explanations for this fact. The data set could have been too small, such that the test
was not able to discover the (existing) differences. Another possibility is that the dy-
namical structures of the univariate time series do not differ. Then still the interaction
structure (Feiler et al. 2005) of the parameters can exhibit a distinct dynamic behaviour,
which is however not captured by the univariate analyses.

4.4 Discussion

The above examples illustrate various features of our methods. Applying the ICM and
GICM parameter estimator to the grey-sided voles data investigated by Hjellvik and
Tjgstheim (1999a), we can confirm the results of Fu et al. (2002) that at least four
autoregressive parameters should be included in the model of the individual processes.
We have however seen that the results depend critically on the assumptions on the data
set. If we allow the time series to possess different individual means, it is better to
transform the data by subtracting the individual means from each time series. Then the
above analysis yields a white noise model. Hjellvik and Tjgstheim (1999a) state that the
grey-sided voles data set already has been chosen from a larger one in order to minimise
individual differences. This justifies their procedure which assumes a common mean
for all time series in the panel.

For a robust analysis we cannot use the transformed dat&’setandV;,,; employed

above, as these are obtained by subtracting sample means which are not robust. We
here have to subtract the respective medians for generating the transformed data sets.
It has been shown in section B.1 of the simulation study in the Appendix B that robust
estimators as e.ﬁmb furthermore have a larger variance and therefore are less reliable.

In the present case these analyses lead however to qualitatively the same results as
the non-robust procedure. Thus we have omitted them here in order to simplify the
presentation.

At the end of section 4.2 we have discussed that forcing the data into the ICM scheme
yields misleading results. It implies that the background process has the same au-
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toregressive structure as the individual processes or in other words that the common
influence is a white noise process. In the presence of a strong background process it
is therefore not recommendable to employ the ICM parameter estimator alone. The
advantage of employing the GICM estimatyralso used by Hjellvik and Tjgstheim
(1999a) is that we need no assumptions on the structure of the background process. It
may even be deterministic (see remark 2.4.8).

The second example addresses the aspects of testing in panels of intercorrelated time
series and of the behaviour of the ICM and GICM parameter estimators in the case of
weak intercorrelation. In particular it illustrates that the results obtained from smaller
data sets have to be carefully interpreted. For example, the intercorrelation test of
Brillinger (1973) identifies the data set belonging to the parameter “self-efficacy” as
intercorrelated. This is not confirmed by the further analyses. As the test is an asymp-
totic test, the reason may be that the data set was too small for obtaining reliable results.
The robust test for outlying time series does not yield significant results either although
we know that one of the patients did not suffer from FMS. One problem, which is also
seen from section B.3.2 in the Appendix B, is that the test is rather conservative if
the difference in the dynamic structures in not large. Because of the implicit multiple
testing we must adjust the significance level (see remark 3.7.5). This implies that the
single tests have to be performed at a very high significance level in order to guarantee
a nominal significance level of 5%. Furthermorg, the variance of the asymptotic
distribution, can only be approximated and the covariance matrix used for the testing
also has to be estimated from the data (see theorem 3.7.9 and algorithm 3.7.10). Thus
the sample size is probably too small to yield significant results. It however can also
be the case that the time series obtained from the patient not suffering from FMS do
not differ in their univariate structure from those of the other patients. Nevertheless
the interaction structure of the parameters may be different (see e.g. Feiler et al. 2005),
which cannot be detected from the univariate analyses. For a more detailed discussion
of the interpretations of the results we refer to the last section.

The simulations performed in the last section demonstrate that using the GICM pro-
cedure indeed leads to an overfit if there is no or only a weak background process.
If the n processes in the panel are independent, each point of the mean process con-
verges almost surely to zero far— oo due to the strong law of large numbers. Thus

the autoregressive parameter of the mean process is asymptotically not identifiable. In
the situation of small panels we can however still infer about the mean process, which
makes the above overfit possible. If the variances given by the GICM are small (around
62 /n if 62 is the estimated variance of the individual processsattte number of time

series in the panel), the consequence is therefore that the analysis should be performed
using the ordinary least squares procedure or the ICM method instead. Employing the
ICM estimators implicitly means that the common influence is modelled as a white
noise process with variane€ > 0 or does not exist at all. In contrast, least squares
estimation is entirely based on the assumption on independence. Thus it is advisable
to use the ICM estimator if an intercorrelation cannot be excluded by theoretical ar-
guments but the GICM analysis indicates that this intercorrelation is weak. As can be
seen from the analysis of the FMS data, in the case of no intercorrelation this leads to
the same results as the least squares estimation.



Appendix A

Simulation Results for the ICM and
GICM parameter estimators

The following simulation study compares the performance of the ICM estimator ob-
tained using the minimisation algorithm of section 2.4.2 with the estimator of Hjellvik
and Tjgstheim (1999a). Thefe, },c7 is treated as a nuisance parameter. The estimator
agr is obtained by minimisingC? ;. under the restrictions of the ICM as described in
proposition 2.4.75%, andw?,- then can be derived from the corresponding residuals
(see remark 2.4.8).

The data is simulated from the ICM model (assumption 2.2.1). As variance of the
processe$ X" Vicz, i = 1,...,n, we always fixvar X\” = 1,i.e.02+ 72 = 1. The
examples considered correspond to those treated in Hjellvik and Tjgstheim (1999a).
The estimates are obtained by calculating the mean and standard deviation for each
parameter over 5,000 independent realisations per model.

In the tables, the upper rows contain the estimates obtained from the minimisation
algorithm. Subsequently follow the estimates from Hjellvik and Tjgstheim’s procedure,
indexed byHT'. The empirical standard deviations are displayed in brackets below the
estimated parameters.

We regard first small panels consistingof= 2 andn = 4 time series. Then we
investigate the behaviour faf — oo more closely, for a smalln( = 3) and a large

(n = 128) panel. Finally we regard an AR(6) process. The section concludes with a
brief discussion of the results.

A.1 Small Panels

Here we investigate the behaviour of the estimator in panels consisting of a small num-
ber of time seriesr(= 2 or n = 4). The size of the data isT = 200, n 7" = 2000 and

nT = 20000; the intercorrelation varies from na{ = 0) to strong intercorrelation

(2 = 0.9).

We regard an AR(1) process with parameter= 0.5. Three models with different
strengths of intercorrelation are simulated:

o 72 =0,i.e.02=1. Thusw? = 0.5 (n = 2) orw? = 0.25 (n = 4).
o 72 =0.5,i.e.0% = 0.5. Herew? = 0.75 (n = 2) orw? = 0.625 (n = 4).
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nT = 200 nT = 2,000 nT = 20,000
n =2 n=4 n =2 n=4 n=>2 n=4

0.4960 0.4957 0.4993 0.4994 0.4999 0.5000

(0.0620) | (0.0618) | (0.0195) | (0.0197) | (0.0062) | (0.0061)

0.9944 0.9967 0.9996 0.9998 1.0000 1.0001

(0.1423) | (0.1178) | (0.0439) | (0.0361) | (0.0141) | (0.0116)

0.4961 0.2483 0.4994 0.2502 0.5000 0.2500

2 _ 0 (0.0718) | (0.0507) | (0.0227) | (0.0161) | (0.0070) | (0.0050)
N 0.4909 0.4947 0.4989 0.4993 0.4999 0.5000
(0.0870) | (0.0710) | (0.0277) | (0.0228) | (0.0088) | (0.0072)

0.9895 0.9951 0.9992 0.9996 1.0003 0.9999

(0.1418) | (0.1176) | (0.0439) | (0.0361) | (0.0145) | (0.0117)

0.5036 0.2511 0.5002 0.2505 0.5001 0.2501

(0.0739) | (0.0513) | (0.0227) | (0.0162) | (0.0072) | (0.0051)

0.4953 0.4945 0.4999 0.5001 0.4999 0.5000

(0.0614) | (0.0617) | (0.0191) | (0.0193) | (0.0062) | (0.0061)

0.4966 0.4971 0.4998 0.4997 0.4999 0.4998

(0.0701) | (0.0580) | (0.0224) | (0.0182) | (0.0071) | (0.0058)

0.7491 0.6210 0.7493 0.6252 0.7497 0.6247

205 (0.1065) | (0.1273) | (0.0340) | (0.0400) | (0.0107) | (0.0125)
' 0.4905 0.4930 0.4995 0.4998 0.4998 0.4998
(0.0878) | (0.0707) | (0.0273) | (0.0223) | (0.0088) | (0.0071)

0.4942 0.4963 0.4996 0.4996 0.4997 0.5001

(0.0698) | (0.0579) | (0.0224) | (0.0182) | (0.0071) | (0.0057)

0.7604 0.6283 0.7505 0.6259 0.7500 0.6248

(0.1092) | (0.1290) | (0.0341) | (0.0400) | (0.0105) | (0.0126)

. 0.4961 0.4968 0.4996 0.4996 0.5000 0.5000

“ (0.0624) | (0.0619) | (0.0194) | (0.0194) | (0.0061) | (0.0062)

0.0994 0.0993 0.0998 0.0997 0.0998 0.0998

(0.0141) | (0.0116) | (0.0044) | (0.0037) | (0.0014) | (0.0011)

0.9429 0.9222 0.0997 0.9231 0.9502 0.9249

2 _009 (0.1325) | (0.1845) | (0.0425) | (0.0586) | (0.0133) | (0.0183)
' 0.4894 0.4957 0.4990 0.4992 0.5001 0.5000
(0.0877) | (0.0716) | (0.0273) | (0.0223) | (0.0087) | (0.0070)

0.0989 0.0991 0.0998 0.0997 0.0999 0.0999
(0.0140) | (0.0116) | (0.0044) | (0.0037) | (0.0014) | (0.0012)

5 0.9575 0.9326 0.9518 0.9242 0.9498 0.9249
“HT (0.1364) | (0.1874) | (0.0427) | (0.0587) | (0.0134) | (0.0188)

Table A.1: Simulation results obtained from the parameter estimé;;grsandéa in
intercorrelated panels of AR(1)-processes of various sizes, whete 0, 72 = 0.5,
72 =0.9 (a=0.5).
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nT = 200 nT = 2,000 nT = 20,000

n=2 n=4 n=2 n=4 n=2 n=4

=0 0.5079 | 0.7576 | 0.4956 | 0.7466 | 0.4964 | 0.7178
eff e; (G, dpT) 72=05 | 0.4890 | 0.7616 | 0.4895 | 0.7490 | 0.4964 | 0.7381
72=09 | 05063 | 0.7474 | 0.5050 | 0.7568 | 0.4916 | 0.7845

Table A.2: Empirical relative efficienciest,.; (a, ayr) of the estimator:énj andd,
in intercorrelated panels of AR(1)-processes of various sizes, whete0, 72 = 0.5,
72 =0.9 (a=0.5).

o 72 =0.9,i.e.0?=0.1. Thenw? = 0.95 (n = 2) orw? = 0.925 (n = 4).

The simulation results are displayed in table A.1. It can be seen that the ICM parameter
estimatorénj performs equally well if the panel consists of independent time series or

if they are intercorrelated. It is obvious that the variance of the estimators decreases
fornT — oco. We further can read off this table that the estimatorg ahday are

not affected by the strength of intercorrelation. The standard deviation of the variance
estimators however changes depending on the true variances. This corresponds to the
theorems 2.5.20 and 2.5.35, where we have derived the asymptotic distributions of the
ICM parameter estimat(ﬁmT andd,. The theoretical asymptotic variance @bnly
depends on via the sample size. In our case i0i§5/ (n (T — p)), which corresponds

well to the simulated values.

The theoretical asymptotic varianceddfis 2 (n—1) o3/ (n? (T — p)), which is also the
asymptotic variance @f%,.. The asymptotic variance 6£ is Ti_p wi. Forg? we get for

n = 2thatsd (6%) = 0.707 02 //T — pand forn = 4 thatsd (6%) = 0.61202/\/T — p.

Again, the simulated values correspond well to the theoretical ones. We can see from
the simulations that the standard deviationsydfand 6%, and of ©? andw?, are

a=0.5, n=4, T=50 a=0.5, n=4, T=500

0 2 4 6
o
:b—A
~

0 20 40 60

[ E——
0.49 0.51

~

Figure A.1l: Empirical densities foi (solid lines), ayr (dashed lines) and
N(0.5,4/0.75/v/nT), which is the theoretical density a@f, (dotted lines) in inter-
correlated panels of AR(1)-processes with true values 0.5, 0> = 72 = 0.5
(n=4,T =50 andn = 4, T = 500).
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compatible, which is also the case for their bias. Finally, the results for= 200
illustrate that the ICM parameter estimatdnas a smaller bias than;, which is seen
more clearly if the time series are short.

Table A.2 shows the empirical asymptotic efficiency for each model. As the theoretical
relative efficiency is given byft,.; (a,ayr) = "7‘1 (remark 2.5.36), the theoretical
values aré.5 for n = 2 and0.75 for n = 4. The simulations come close to these values.
The values become less exact fol" = 20,000, which is mostly due to rounding
effects.

In figure A.1 we see the empirical densitiesaofsolid line) anda g (dotted line) for
the two cases = 4,7 = 50 andn = 4,T = 5000, which again illustrate the higher
relative efficiency ofi.

A.2

Now we investigate the properties of the estimatoasida ;- dependent on the length
of the time series. Here = 0.5 ando? = 7% = 0.5 are fixed. We regard one small and
one large panel and various values of the time series lefgth

Increasing Length of the Time Series

o n = 3, thusw? = 2/3. The length of the time series increases frém-= 8 to
T = 500.

o n=128,i.e.w? =0.504. T increases froml’ = 2 to T' = 100.

It is obvious that the variance of the estimators decreases substantiallygfewing.
If the number of time series in the panel is small£ 3, see table A.3), one can again
see that the ICM estimator is more efficient thap-, in that the ratio of the variances

T=8 | T=16 | T=32 | T=64 | T=125 | T=250 | T =500
R 0.4623 | 0.4823 | 0.4921 | 0.4947 | 04976 | 0.4988 | 0.4993
“ (0.1989) | (0.1332) | (0.0912) | (0.0628) | (0.0453) | (0.0318) | (0.0220)
B 0.4776 | 0.4876 | 0.4943 | 0.4979 | 0.4990 | 0.4994 | 0.4993
7 (0.1883) | (0.1259) | (0.0904) | (0.0633) | (0.0451) | (0.0314) | (0.0223)
L 0.6524 | 0.6610 | 0.6585 | 0.6633 | 0.6642 | 0.6654 | 0.6660
“n | (0.3652) | (0.2438) | (0.1703) | (0.1218) | (0.0870) | (0.0615) | (0.0417)
R 0.4407 | 0.4726 | 0.4866 | 0.4920 | 0.4970 | 0.4983 | 0.4988
@HT | (0.2368) | (0.1612) | (0.1112) | (0.0767) | (0.0557) | (0.0391) | (0.0270)
B 0.4664 | 0.4823 | 0.4917 | 04967 | 0.4983 | 0.4991 | 0.4991
THT | (0.1836) | (0.1246) | (0.0900) | (0.0632) | (0.0451) | (0.0314) | (0.0223)
B 0.7326 | 0.6986 | 0.6766 | 0.6719 | 0.6687 | 0.6676 | 0.6670
“HT | (0.4394) | (0.2665) | (0.1775) | (0.1240) | (0.0880) | (0.0619) | (0.0418)

off.q | 07055 | 0.6828 | 0.6726 | 0.6704 | 0.6614 | 0.6614 | 0.6639 |

Table A.3: Simulation results for the parameter estima@gﬁs andd, in intercorre-
lated panels of AR(1)-processes fbrincreasing ¢ = 0.5,n = 3,02 = 72 = 0.5)
last row: empirical relative efficienoyt,.; (a, anr).
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T=2 T =10 T =100 T=2 T =10 T =100

) 05012 | 0.4992 | 04998 || _ 05015 | 0.4992 | 0.4998

“ | (0.0830) | (0.0261) | (0.0077) || “"T | (0.0769) | (0.0262) | (0.0078)

| 04956 | 04991 | 04998 || 04950 | 0.4991 | 0.4998
7| (0.0621) | (0.0207) | (0.0062) || “HT | (0.0619) | (0.0207) | (0.0062)
., | 05169 | 04990 | 05050 || 0.5244 | 0.4997 | 0.5051
“n | (0.7435) | (0.2367) | (0.0729) || “HT | (0.7438) | (0.2370) | (0.0729)

Table A.4: Simulation results for the parameter estimaégﬁsandéa in intercorrelated
panels of AR(1)-processes forincreasing ¢ = 0.5, n = 128,02 = 72 = 0.5).

tends to2/3 (see table A.3). However, fat large (@ = 128), there is virtually no
difference between the two estimators. This can be directly read off table A.4.

A.3 AR(6) Process

The process Hijellvik and Tjgstheim (1999a) use for investigating the effects of the
intercorrelation more closely for two estimators of theirs is the AR(6) process with
a = (1,-0.6,0.2,-0.2,0,0.4). Hjellvik and Tjgstheim (1999a) fix" = 100 and
regardn = 3,4,5 andp = % = 1/(n — 1). Furthermore they investigate far= 4

also the cases = 0.5 andp = 0.25.

The values for?, 72 andw? are in those cases

o 0?=72=0.5w2=2/3
o 0?=1/3,72=2/3,w=0.75
o 02 =10.251%=0.75,w? =0.8125

o 02 =7%=0.5w?=0.625

n

o 02 =0.2512=0.75w? = 0.8125

The tables A.5 and A.6 display the results for the ICM estimé,;grand the estimator

of Hjellvik and Tjestheimg,, respectively. For anday+ we give the mean-square
error in order to facilitate the comparison. A5 = 100, the bias is small in both
cases. The ratio of the mean squared errors (see table A.6) again illustrates that the
ICM parameter estimator has a higher relative efficiency, and that this does not depend
on the strength of the intercorrelation. Both estimators perform well.

A.4 Summary

As we have seen above, the simulation results are close to the true asymptotic values
given in theorems 2.5.20 (ICM) and 2.5.34 (GICM), even when the time series are
rather short. Moreover the simulations show thats an smaller bias than if n T
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n =3, n =4, n =25, n =4, n =4,

=05 | 712=1/3 | 72=025 | 72=05 | 72=0.25
ay 0.9980 0.9974 0.9980 0.9999 0.9988
do -0.6035 -0.6005 -0.6017 -0.6039 -0.6024
as 0.2032 0.2005 0.2012 0.2022 0.2015
ay -0.2060 -0.2035 -0.2019 -0.2034 -0.2039
as 0.0043 0.0024 0.0005 0.0025 0.0031
ag 0.3895 0.3932 0.3950 0.3922 0.3925

MSE@) | 0.0353 | 0.0257 0.0210 0.0262 | 0.0259
0.4894 | 0.3286 0.2469 0.4922 | 0.2464
(0.0517) | (0.0278) | (0.0181) | (0.0419) | (0.0212)
0.6532 | 0.7381 0.7935 0.6162 | 0.7993
(0.0981) | (0.1089) | (0.1163) | (0.0905) | (0.1194)

Table A.5: Behaviour oﬁmT in an intercorrelated panel of AR(6) processes with true
parameter.a = (1,—0.6,0.2,—0.2,0,0.4)" (I" = 100, intercorrelation and variances
varying withn).

n =3, n =4, n=>5, n =4, n =4,

=05 | 712=1/3 | 72=025 | 72=05 | 72=0.25
GHT 0.9966 0.9974 0.9977 0.9992 0.9980
GHT?2 -0.6053 -0.6019 -0.6024 -0.6040 -0.6024
GHT 3 0.2047 0.2013 0.2018 0.2024 0.2017
QHT A -0.2088 -0.2053 -0.2030 -0.2043 -0.2050
GHT5 0.0059 0.0040 0.0013 0.0031 0.0039
GHT, 0.3840 0.3900 0.3933 0.3900 0.3903

MSE@xr) 0.0533 0.03484 0.0261 0.0344 0.0350
0.4841 0.3269 0.2462 0.4896 0.2451

OHT (0.0511) | (0.0277) | (0.0180) | (0.0416) | (0.0211)
. 0.6939 0.7680 0.8175 0.6410 0.8323
“HT (0.1107) | (0.1158) | (0.1208) | (0.0962) | (0.1273)
MSE((a
W;H;) 0.6623 0.7385 0.8046 0.7616 0.7400

Table A.6: Behaviour of), in an intercorrelated panel of AR(6) processes with true
parameter. = (1,—0.6,0.2,—0.2,0,0.4)" (T" = 100, intercorrelation and variances
varying withn). The last row displays the relative efficiency ldta compared to
agT.

is small. Ifn T — oo, the differences between the two estimatéys = (d/, 52, &2)’

andd, = (agr, 6%, 0%,) vanish. For smalh and if T is not very large, however,

the higher relative efficiency af compared taiyr becomes important. In the last
section we have shown that even in the case of a higher order autoregressive process
both estimators perform well.
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In practice, both estimators are feasible. Although the ICM parameter estié;@ﬁds
calculated using an iterative algorithm, convergence is usually attained after 6 to 7 itera-
tions. As the computational speed is high, this does not have any practical implications
when the sample sizes are as investigated above.



Appendix B

Simulation Study (Robust Estimators)

We now study the performance of the above described robust estimators in simulations.
In order to make a comparison of the estimators possible, we employ a fixed set of
models. However the focus may vary in the different sections according to the specific
properties of the estimators, so we sometimes include further simulations or do not
display the full set of results. The chapter concludes with a comparative evaluation of
the estimators regarded. Before starting with the comparisons, we give a brief summary
of the estimators investigated and the main models used for the simulations.

Parameter Estimators

The various parameter estimators discussed in this thesis are summarised in table B.1.

Simulations

As models we choose intercorrelated AR(1) and AR(6) models (see table B.2). We

always leto? = 72 = 0.5, i.e. the variance of the innovationssisr <a9(L) Xt“)) =

o?+72=1forallt € Z,i = 1,...,n. The choice of the AR(6) model is as in Hjellvik

and Tjgstheim (1999a). They let= (1, —0.6,0.2, —0.2,0,0.4)" (see the Appendix A).
These models are denoted b and M.

Moreover we investigate the performance of the estimators under contamination (see
assumption 3.2.1). In the case of entire time series outlying, the outliers are independent
AR(1) processes with parameters,; = 0.9 ando?,, = 1 and Gaussian white noise
processes with variance 1. The corresponding models, where two time series in the
panel are replaced by the outlying time series, are cdllédandT'S,. For genera-

ting arbitrary outliers, we employ independent normally distributed random variables
V" ~ N(0,0%) whereo? = 9. The Bernoulli panel is such th&(é, ,; = 1) = 0.1,

i.e. the proportion of outliers is approximately 10%. Such models are for example
regarded in Ma and Genton (2000). We denote the latter models’hyand AOg. An
overview on these models is given in table B.2.

Each simulated panel consistsrof= 10 time series of lengtii’ = 50 in the AR(1) case

andT = 100 for AR(6) processes. Thus the true valuegfis w? = 72—1—%2 = (.55 and

in the case of entire time series outlying, thfeestimated only from the uncontaminated
data would bev? = 0.625.
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Non-robust parameter estimators described in the first chapter:

~

On,T ICM parameter estimator (section 2.4.2)
0,,0,  GICM estimators (section 2.4.3)

Robust version of these estimators, with modifications (section 3.3):

0rop algorithm given in section 3.3

Ooa similar to#,,; variance determined using the overall median

O, reweighted version

ém reweighted version also allowing for arbitrary outliers
Bootstrap approximations (section 3.3):

Orp residual bootstrap

Opp residual bootstrap adapted for panels

Onp sampling from normal distributions

Covariance estimators (section 3.5):
0o covariance matrix derived from the robust scale estim@tpf
OrieD minimum covariance determinant method

Robust regression (section 3.6):

O M-estimator

O;7g least trimmed squares estimator
Preliminary outlier detection (section 3.7):

éLR non-robust likelihood ratio test

Opg non-robust phase space method

éps;rob robust phase space method based on the MCD
épg;m phase space method, iterative elimination of the outliers

Table B.1: Overview of the parameter estimators compared in the simulation study.

Basic models:
M AR(1),a =0.5,n=10,T7 = 50,02 = 72 = 0.5
Mg AR(6),a = (1,—-0.6,0.2, -0.2,0,0.4),
n=10,T7 = 100,02 =72 =0.5
Entire time series outlying:

TS, M7, two time series replaced by ind. AR(1) witp,; = 0.9, 02, = 1
TS, M, two time series replaced by Gaussian WN wifl), = 1
TS Mg, two time series replaced by ind. AR(1) with,; = 0.9, 02, = 1

Arbitrary outliers:

A0y M7, 10% outliers, Gaussian WN withf,, = 9
AO1.100 My, 10% outliers, Gaussian WN withf,, = 100
AOg Mg, 10% outliers, Gaussian WN withf,, = 9

Table B.2: Models used for generating panels of intercorrelated time series.
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If not otherwise stated, we compute the mean and standard deviation (in brackets) over
5000 iterations. Exceptions are for example the bootstrap procedures which are not
applied to every model and where we have to restrict ourselves to 100 iterations due to
the high computation time.

B.1 Robustifying the ICM Parameter Estimator

We here compare the four robustifications of the parameter estiriaio#,., 6., and

~

.., Which have been derived in the section 3.3. We investigate these estimators in
various situations.

model O 0,00 0, 0,0 Ors,

) 0.4984 0.4661 0.4664 0.4978 0.4625

¢ (0.0394) | (0.0511) | (0.0521) | (0.0403) | (0.0463)

5 0.4989 0.5930 0.4489 0.4971 0.4460

M ’ (0.0338) | (0.0405) | (0.0413) | (0.0350) | (0.0375)
o 0.5487 0.5820 0.5769 0.5511 0.5060

“n | (01100) | (0.1195) | (0.1161) | (0.1122) | (0.1130)

) 0.3912 0.4188 0.4175 0.4725 0.4465

a (0.0541) | (0.0666) | (0.0672) | (0.0551) | (0.0550)

TS 52 0.7252 0.8561 0.5596 0.5446 0.4880
(0.0594) | (0.0722) | (0.0563) | (0.0787) | (0.0582)

o 0.3875 0.4618 0.4610 0.5187 0.4699

“n | (0.0779) | (0.0967) | (0.0970) | (0.1279) | (0.1186)

) 0.7219 0.5018 0.5015 0.5074 0.4830
a (0.0651) | (0.0542) | (0.0559) | (0.0552) | (0.0536)

s, 52 0.7469 1.0248 0.5765 0.5131 0.4784
(0.0623) | (0.1616) | (0.0600) | (0.0562) | (0.0533)

o 0.4058 0.5203 0.5220 0.5480 0.5089
“n | (0.0835) | (0.1098) | (0.1067) | (0.1187) | (0.1168)

) 0.2027 0.2171 0.1922 0.2333 0.3665
¢ (0.0545) | (0.0613) | (0.0626) | (0.0808) | (0.0913)

AQ 1.5046 1.7802 0.5919 1.2909 0.5225
A0 7 (0.2392) | (0.2876) | (0.0654) | (0.3486) | (0.1164)
o 0.6030 0.6161 0.6296 0.6319 0.5013
“n | (01316) | (0.1318) | (0.1439) | (0.1831) | (0.1473)

Table B.3: Simulation results for the robustified ICM parameter estimdtoss 0.,

Oy Oru; 0 included for referencein an intercorrelated panel of AR(1) processes
(n =10, T = 50). True parametersi = 0.5, 02 = 72 = 0.5, w? = 0.55.

From table B.3 we see that the non-robust estimator performs well if there are no out-
liers, but in presence of outliers it is much influenced by these. In this case it is advisa-
ble to use a robust estimator. Here the reweighted procedureperforms uniformly

best as long as there are no arbitrary outliers preséftt ). In the uncontaminated
case its behaviour is similar to that of the non-robust estimator. This is not surprising
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as the reweighting method coincides with the non-robust estimation if no time series
are identified as outlying. The estimatiy, underestimates, but overestimates?.

This is due to the method chosen for estimating the variariceWe use the robust
scale estimator employed in the least median of squares procedure, which is known to
overestimate the variance. However it remains bounded in situations where the vari-
ance obtained from the least squares procedure explodes (see Rousseeuw and Leroy
1987, p. 212). Estimating the variance with the overall median leads to the estimator
8,4, Which underestimatesbut which preventg? from exploding. As the method has
been developed for estimation in the presence of entire time series outlying and is based
on a transformation involving the median process, it is not suited if arbitrary outliers
may occur. Only, ., is constructed for coping with this kind of outliers, as it allows to
eliminate single outlying time points as well as entire time series from the estimation
procedure. In the other cases the latter estimator performs in an acceptable way. It is
a better estimator than both,, andé,,, but is clearly outperformed k., if the only

kind of outliers occuring are entire time series outlying. In practice it is preferable to
identify and eliminate the arbitrary outliers in the single time series in a first step, which

model On 1 0,00 Ooa 0,0 Or,y

ai 0.9994 0.7759 0.7782 0.9989 0.6664

Qs -0.6004 -0.2454 -0.2474 -0.5999 -0.1529

as 0.1993 -0.0682 -0.0638 0.1997 -0.1416

Qy -0.2001 -0.1558 -0.1518 -0.2002 -0.1506

as 0.0001 0.0341 0.0294 -0.0003 -0.0103

Mg ag 0.3971 0.3896 0.3947 0.3979 0.4104
MSE(@a) 0.0105 0.4268 0.4716 0.0103 0.4540

" 0.4968 2.5514 0.9518 0.4963 1.0781
’ (0.0244) | (0.4516) | (0.1845) | (0.0239) | (0.2582)

o 0.5470 1.0202 1.0581 0.5462 0.7913
“n (0.0802) | (0.2184) | (0.2400) | (0.0806) | (0.2564)

ai 1.0254 1.1359 1.2445 1.0197 0.7602

Qs -0.5237 -0.5998 -0.7174 -0.5336 -0.1896

as 0.1031 0.2137 0.2969 0.1147 -0.1104

ay -0.1386 0.0295 0.0789 -0.1469 -0.1247

as 0.0457 -0.0885 -0.1287 0.0382 0.0269

TSg ag 0.3540 0.5139 0.5454 0.3599 0.3988
MSE (@) 0.0412 0.7844 1.2246 0.0367 0.3580

5 0.7975 5.6531 2.2776 0.7488 1.2279

(0.0519) | (3.5547) | (1.6206) | (0.0982) | (0.2585)

- 0.3934 1.4185 1.7648 0.4161 0.6159

“n (0.0577) | (0.7901) | (1.2226) | (0.0800) | (0.2451)

Table B.4: Simulation results for the robustified ICM parameter estiméép% éoa,

O 1o, ém; én,T included for referenc)ein an intercorrelated panel of AR(6) processes
(n =10, T = 100). True parameterst? = 72 = 0.5, w? = 0.55.
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is possible (Rousseeuw and Leroy 1987, Gather, Bauer and Fried 2002).

The simulations for the AR(6) case displayed in table B.4 again illustrate the effects
seen in the AR(1) casé, ., 6., and alsd,.,, become more unreliable. However the
values obtained indicate th@t, seems not to detect the outlying time series, as it per-
forms very similar to the the non-robust estimator. This perhaps can be overcome by
adjusting the tuning factor used in the estimation according to the order of the underly-
ing process.

In order to see how the behaviour of the estimators changes wbeih’ become large,

we simulate the modelsd/; andT'S; with n = 10, 7' = 100 andn = 100,7 = 50.

In the latter case, we furthermore replace 20 out of the 100 time series by samples
from independent AR(1) processes with parametgr = 0.9 and the innovations’
variances?,, = 1. The results displayed in table B.5 confirm the properties of the
estimators shown in table B.3. Agaiﬁ,}T is drawn to the parameter of the outliers and
0,0 performs best. The variances of the estimators decreasenfl’ increase. The
simulations show that the increaselirhas a stronger relative effect thanncreasing.

This is due the the estimation procedure. After subtracting the median process, which
is better estimated if is large,a is estimated from the transformed processes using

a modified least squares method. Thus the estimate improves/ingtiowing. The
same can be seen from the mo@&,. Here the proportion of outliers % in each

case. The variance of the estimators improves wigrowing. But the larger absolute
number of outliers in the case af= 100 leads to a higher bias. However, the variance
estimatorsi? andw? are improved for bottd, ., andd,, although they still are biased.
Finally, it seems that if a larger absolute number of outliers are present, they are not all
detected by, .., resulting in a slightly worse estimate for= 100, 7" = 50 than in the

case of fewer observationém? is instable for the higher order autoregressive process.
We complete this section considering the behaviour of the GICM estimators. In the first
chapter we have seen that the non-robust ICM parameter estimator has a smaller bias
and is asymptotically more efficient than the GICM estimator i$ not too large (re-

mark 2.5.36, see also the simulations in the Appendix A). We now investigate whether
this effect is also visible in the robust estimators. As example weluse The sim-
ulation results are displayed in table B.6. Indeed the estimatés,oére better than
those byémb;a in the case of the uncontaminated modlgl and for7'S;. In these cases

the bias ofa is smaller and the estimator is more efficient. As the estim%rt;g;b; is

only based on a single time series of length- 50, the median process, its variance is
higher. Nevertheless, the estimatesah the model)M; is comparable to the one ob-
tained fromémb;a. ForT'S; the estimate of the variance is close to the true one, whereas
émb;a overestimates?. In the case oflO, however the results f(ﬁaob;b are comparable

to those in the uncontaminated modé{, since taking the median compensates for the
influence of the arbitrary outliers.

B.1.1 Improvement by Bootstrap Procedures

Most of the above robustified versions of the original ICM parameter estimator are bi-
ased. Thus we now investigate whether a bootstrap procedure can be used for assessing
the empirical bias and thus for improving the estimator. As example we take the esti-
mator#,., which underestimates and exhibits a large bias . The empirical bias
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model On. 0r-0p Ooa 0w Oras
. 0.4994 0.4742 0.4740 0.4991 0.4641
¢ (0.0273) (0.0360) (0.0373) (0.0278) (0.0325)
n = 10, 5 0.4994 0.5924 0.4485 0.4991 0.4477
T =100 7 (0.0237) (0.0284) (0.0297) (0.0236) (0.0263)
2 0.5479 0.5780 0.5806 0.5509 0.4991
M, " (0.0783) (0.0817) (0.0831) (0.0783) (0.0775)
. 0.4999 0.4811 0.4813 0.4997 0.4747
“ (0.0124) (0.0201) (0.0199) (0.0127) (0.0154)
n = 100, - 0.4997 0.5098 0.4570 0.4994 0.4640
T =50 7 (0.0101) (0.0101) (0.0115) (0.0103) (0.0118)
- 0.5072 0.5096 0.5121 0.5074 0.4593
“n (0.1027) (0.1033) (0.1042) (0.1007) (0.1016)
. 0.7259 0.5015 0.5018 0.5010 0.4789
@ (0.0474) (0.0379) (0.0389) (0.0340) (0.0354)
n = 10, 5 0.7483 1.0299 0.5737 0.5008 0.4688
T =100 7 (0.0441) (0.1179) (0.0417) (0.0325) (0.0329)
- 0.4072 0.5201 0.5224 0.5578 0.5123
“n (0.0602) (0.0772) (0.0749) (0.0807) (0.0812)
TS . 0.7459 0.5116 0.5129 0.5249 0.5000
“ (0.0219) (0.0219) (0.0218) (0.0240) (0.0209)
n = 100, - 0.7436 0.8638 0.5802 0.5257 0.5000
T =50 7 (0.0262) (0.0462) (0.0174) (0.0223) (0.0207)
- 0.3531 0.4365 0.4380 0.4828 0.4462
“n (0.0745) (0.0887) (0.0900) (0.1056) (0.1018)

Table B.5: Large sample behaviour of the robustified ICM parameter estin(ét,g;;s

Boar Orws Oruy; 0,7 included for referencein an intercorrelated panel of AR(1) pro-
cessesi{ = 10,7 = 100 andn = 100,7 = 50). True parametersu = 0.5,
02 =72 =05, w? = 0.55 (n = 10), w? = 0.505 (n = 100). T'S;: 2 (n = 10) and
20 (n = 100) time series replaced by independent AR(1) processesayjth= 0.9,

2 _
oo = 1.
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obtained by the bootstrap procedure is then used to calculate the factor by which the
parameter estimates are adjusted. As described in section 3.3, we compare three me-
thods: a residual bootstrap for autoregressions (RB), a modification thereof, where the
structure of the panel is conserved (PB), and sampling from normal distributions (NB).
Because of the computation time of the bootstrap procedure, the empirical mean and
variance are calculated only from 100 samples. Preliminary simulations have shown
that both bootstrap estimates remain stable if the bootstrap is itergtee: 300 times.

Table B.7 displays the estimated means and standard deviations (in brackéts) of
and the improved versions using the bootstrap procedures. The panel bocﬁsg)ap (
reflects the properties &f.,. In the estimatof 5, a is increased, but also slightéy,
whereasy? is downweighted. The estimatéy;  increases and downweights2. In

the uncontaminated case it leads to satisfying results. In the presence of outliers, this
estimator however also is biased. Nevertheless it gives the best results of these four
estimators. For arbitrary outliers all estimators are not valid.

Theoretically,épB should perform better thétRB in the case of intercorrelated time
series. However in the ICM procedure the intercorrelation does not have a strong effect,
since the correlation of the residual processes’js:, wheren is the number of time
series in the panel. The better performancé;of could also be due to the fact that the

set which is used for sampling only consistsofesidual vectors in the case éf,
whereas we sample from7" individual residuals in the first case. Thus we moreover
evaluate the behaviour of the estimators for larger panels. From table B.8 we see that
againd; outperformdp 5, which shows that the intercorrelation does not play a strong
role. A5 still has a tendency to downweight the estimate.ofltogetherfy 5 is again
preferable tdp; andfp .

model érab;a érob;b

) 0.4637 0.4657

y “ (0.0562) | (0.1263)

! 0.5924 0.5675
var

(0.0404) | (0.1162)

) 0.5022 0.4739

s ¢ (0.0594) | (0.1265)

! 1.0313 0.5112
var

(0.1640) | (0.1060)

] 0.1784 0.4509

0 “ (0.0649) | (0.1291)

! . 1.7803 0.5631

var (0.2938) | (0.1157)

Table B.6: Comparison of the GICM estimato%gb;a and émb;b obtained from the
residual processes and the median process. The panels are formed of intercorrelated
AR(1) processes with = 0.5, 02 = 72 = 0.5, n = 10, T' = 50. The true values for

the variances arear, = 0 = 0.5 andvar, = w? = 0.55.
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B.2 Robust Autocovariances

B.2.1 The Robust Panel Autocovariance Estimatof,, »

First we study the behaviour af, » as autocovariance estimator. The performance
of the resulting parameter estimator is discussed in more detail in the next subsection.
We compare the estimatdy, o derived from the robust scale estimat@y, » with its
modificationy¢ ;. obtained fromQ¢ ., where only the differences of time points whose
distance is at least1 x T are taken into account (see remark 3.4.5). The model used
for the comparison is an AR(1) process with parameter 0.5 and variancer? = 1.

For these preliminary considerations, we compute mean and standard deviation (given
in brackets) over 1,000 iterations.

Table B.9 shows that fdf = 100 andT" = 1,000 the behaviour of the two estimators is
similar but that)! . is slightly less efficient. In the case of sml| the estimatof/(0)
obtained frong,T is less biased. However here the variancé/,i;; is very large. It

model O, on Orp Opp Onp
) 0.4661 0.5067 0.4718 0.4954
“ (0.0511) | (0.0537) | (0.0574) | (0.0549)
a 2 0.5930 0.6178 0.5954 0.5101
(0.0405) | (0.0405) | (0.0406) | (0.0317)
B 0.5820 0.5228 0.5891 0.5446
v (0.1195) | (0.1184) | (0.1268) | (0.1290)
) 0.4188 0.4422 0.4037 0.4577
“ (0.0666) | (0.0751) | (0.0754) | (0.0706)
s , 0.8561 0.8938 0.8512 0.7025
" 7 (0.0722) | (0.0651) | (0.0603) | (0.0533)
B 0.4618 0.3874 0.4530 0.4132
v (0.0967) | (0.0797) | (0.1060) | (0.0983)
] 0.5018 0.5320 0.4870 0.5324
“ (0.0542) | (0.0583) | (0.0595) | (0.0638)
- 2 1.0248 1.0796 1.0531 0.8483
(0.1616) | (0.1670) | (0.1860) | (0.1490)
B 0.5203 0.4433 0.5201 0.4651
“ (0.1098) | (0.1138) | (0.1194) | (0.1083)
) 0.2171 0.2332 0.2139 0.2439
“ (0.0613) | (0.0586) | (0.0619) | (0.0654)
10, 2 1.7802 1.8254 1.7882 1.5800
(0.2876) | (0.3029) | (0.3382) | (0.2961)
B 0.6161 0.5167 0.6184 0.5587
“ (0.1318) | (0.1201) | (0.1420) | (0.1360)

Table B.7: Comparison of the bootstrap estimai@iss, 0r5, O g; 0,0 included for
referenc¢ in an intercorrelated panel of AR(1) processes=£ 10,7 = 50). True
parametersy = 0.5, 02 = 72 = 0.5, w? = 0.55,n = 10, T = 50.
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leads to estimates afwhich are more biased than those obtained ft@yn-.

In the next step we investigate how these estimators perform in the panel case. For
better comparison we start with a panel of independent time series and estimate the
autocovariances directly without the preliminary transformation used in the ICM-type
estimation. Comparing the simulation results of table B.10 with the case of a single time
series treated above, we can see that introducing more time series into the panel reduces
the variance of the estimator appreciably. However the autocovariance estimators are
even more biased downwards. The bias in the estimation of the autocovariance function

might be due to the choice of the quantile in the panel case, Whi@ +2J + 1.

This problem can probably be overcome by approaching the 1/4 quantile from above
for nT — oco. The effect that fory,, » the bias ofa is much smaller than that of the
autocovariance estimators themselves can be due to the underlying scale estimator. This

model érob éRB éPB éNB
R 0.4742 0.4977 0.4884 0.5012
“ (0.0360) (0.0347) (0.0387) (0.0387)
n = 10, - 0.5924 0.6189 0.5966 0.4971
T =100 (0.0284) (0.0314) (0.0333) (0.0202)
2 0.5780 0.5089 0.5835 0.5525
M, " (0.0817) (0.0835) (0.0880) (0.0936)
. 0.4811 0.5009 0.4794 0.5007
“ (0.0201) (0.0184) (0.0208) (0.0193)
n = 100, 5 0.5098 0.5118 0.5090 0.5001
T =50 7 (0.0101) (0.0105) (0.0095) (0.0109)
- 0.5096 0.5104 0.5223 0.4946
“n (0.1033) (0.0909) (0.1065) (0.0941)
R 0.5015 0.5198 0.4977 0.5341
“ (0.0379) (0.0408) (0.0395) (0.0383)
n = 10, - 1.0299 1.0622 1.0566 0.8296
T =100 (0.1179) (0.1116) (0.1300) (0.0913)
o 0.5201 0.4229 0.5455 0.4606
“n (0.0772) (0.0655) (0.0906) (0.0614)
T5 R 0.5116 0.5343 0.4838 0.5335
“ (0.0219) (0.0216) (0.0256) (0.0211)
n = 100, 5 0.8638 0.8581 0.8772 0.8451
T =50 (0.0462) (0.0461) (0.0430) (0.0435)
o 0.4365 0.4342 0.4565 0.4313
“n (0.0887) (0.0874) (0.0908) (0.0841)

Table B.8: Large sample behaviour of the bootstrap estimdtors, 0, Oxz; 0o
included for referenc)ein an intercorrelated panel of AR(1) processes. True parame-
ters:a = 0.5, 02 = 72 = 0.5, w? = 0.55 (n = 10), w2 = 0.505 (n = 100). T'S;: 2
(n = 10) and 20 . = 100) time series replaced by independent AR(1) processes with

_ 2
Aoyt = 09, Oout — 1.
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has been standardised by Rousseeuw and Leroy (1987) by an empirical constant, which
has not been specifically adapted to the panel case. In the last two cases the estimation

is based on 49,000 and 49,500 differences< 40, 7" = 50 andn = 10, T" = 100),

T =20 T =50 T =100 T = 1,000
] 1.0119 1.1620 1.2284 1.3238
7(0) (0.4896) | (0.3345) (0.2459) (0.0796)
] 0.5091 0.5876 0.6247 0.6622
(1) (0.4693) | (0.3106) (0.2221) (0.0724)
] 0.1302 0.2262 0.2809 0.3264
1(2) (0.3432) | (0.2530) (0.1877) (0.0640)

] 0.4602 0.4847 0.4978 0.4991
“ (0.3476) | (0.1681) (0.1032) (0.0317)
] 1.2347 1.2421 1.2764 1.3229

7(0) (0.8054) | (0.4020) (0.2610) (0.0850)
] 0.9605 0.7254 0.6921 0.6653

¥() (1.0922) | (0.4351) (0.2493) (0.0765)
y 0.5336 0.3584 0.3414 0.3325

¥(2) (0.9142) | (0.3643) (0.2258) (0.0668)

¥ 0.6804 0.5525 0.5304 0.5016
(0.4960) | (0.1986) (0.1134) (0.0315)

Table B.9: Comparison of the robust autocovariance estimatgrsand4¢ .. The
model is a single AR(1) process with parameters 0.5 ando? = 1. T varies from
T =20toT = 1,000. The true values of the autocovariance functiomdfg = 1.333,
~v(1) = 0.667 and~(2) = 0.333.

A 4

n = 50, n = 40, n = 10, n = 50, n = 40, n = 10,

T =20 T =50 T =100 T=20 T =50 T =100

R 0.8319 1.0975 1.2060 0.9402 1.1583 1.2401
7(0) (0.0570) | (0.0508) | (0.0773) | (0.0770) | (0.0594) | (0.0834)
R 0.3626 0.5299 0.5949 0.5735 0.6351 0.6519
¥() (0.0532) | (0.0469) | (0.0695) | (0.0924) | (0.0600) | (0.0793)
R 0.0626 0.1949 0.2603 0.2142 0.2879 0.3134
() (0.0370) | (0.0367) | (0.0566) | (0.0686) | (0.0490) | (0.0679)
. 0.4350 0.4823 0.4922 0.6081 0.5475 0.5244
@ (0.0492) | (0.0277) | (0.0346) | (0.0688) | (0.0320) | (0.0378)

Table B.10: Comparison of the robust autocovariance estimapgrsand&;‘ff in the
panel situation for various choices ofand7’. The model is a panel of independent
AR(1) processes with parameters= 0.5 ando? = 1. The true values of the autoco-
variance function are(0) = 1.333, v(1) = 0.667, v(2) = 0.333.
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so these sizes are comparable. This comparison again shows that a large number of
short time series leads to a higher bias than a smaller number of longer time series. The
two estimators exhibit the same differences as in the single time series¢asés
relatively more efficient thaf ;- and its estimates af are more accurate, whereas the
latter estimator is less biased.

The case of panels of intercorrelated time series and the behaviour of the panel autoco-
variance estimators in the presence of outliers are included in the next subsection. For
all further investigations we concentrate on the estimafor derived from@),, r, as

here the estimator of the autoregressive parameter, which is our main interest, is more
accurate.

B.2.2 Comparison offg and ¢

Inserting robust autocovariance estimates for the entries of the covariance matrix, we
obtain a robustified covariance matrix and a robust autocovariance vector which then
can be used in the ICM or GICM procedure. As alternative to the robust autocovari-
ance estimatofy,, r derived from the robust scale estimat@y » we have chosen the
covariance estimator obtained from the minimum covariance determinant method (see
section 3.5). There the covariance matrix is estimated directly and is positive definite
by construction. We compare the performance of the two estimators for our standard
examples. In order to illustrate whether the calculation using the ICM method and
the GICM procedure differ in the present case, we include the GICM estimators. The
estimators are calle@l, andf,,cp. The GICM versions thereof ar,., andf;cp.q
(estimators obtained from the residual processes)égmchndéMCD;b (obtained from

the median process).

Table B.11 compares the behaviour of the estimaé@randéMCD in intercorrelated
panels of AR(1) processes of size= 10,7 = 50. Here%,(0) = —"=L. 02 = 0.6

n (1—a?)
and~,(0) = 1_1a2 w? = 0.733. We have seen above théé is biased downwards
for these sizes of, andT'. The same effect is true for the estima&)yCD derived
from the MCD procedure. The estimators perform comparably to the robustified ICM
estimatorsd,, andé,, of section B.1; the estimators of the variances are similar to
those ofd,,. Both methods are however much more stable than these in the presence of
arbitrary outliers. In this case the estimates.@re much closer to the true value and
the variances are smaller than those of the latter estimators. Although the two methods
tend to underestimate,(0) as we can see from/;, the bias is positive in the extreme
case of arbitrary outliers with variance 100. This illustrates that here the estimators,
being derived from robust scale estimators, are more attracted by the variance of the
outliers than by the value of the autoregressive parameter.
The results for the larger sample sizes £ 40, T = 50 andn = 10,7 = 100)
are displayed in table B.12. Far = 40 the true variances arg,(0) = 0.65 and
7.(0) = 0.683. As the sample sizes are large, we here compute the mean and standard
deviation (in brackets) over 1,000 samples instead of 5,000. The estimators still are
biased,éMCD as well aséQ. As observed above for the robust panel autocovariance
estimatory,, r itself, we can see thaﬁg is, the sample size remaining constant, more
biased in the case of a large number of short time series than if the time series are
longer. Oricp IS improved in the case of = 40, T' = 50 in comparison ta: = 10,
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model b0 Oricn
) 0.4759 0.4351
¢ (0.0572) | (0.0640)
. 0.4607 0.5016
My n(0) (0.0467) | (0.0557)
i 0.6581 0.5934
7 (0) (0.1874) | (0.1845)
) 0.4266 0.3934
¢ (0.0598) | (0.0679)
s 5 ) 0.5451 0.5938
" " (0.0562) | (0.0655)
R 0.5026 0.4525
7 (0) (0.1472) | (0.1451)
) 0.5196 0.4759
¢ (0.0568) | (0.0640)
. 0.6044 0.6289
TS5 ¥ (0) (0.0652) | (0.0780)
R 0.5887 0.5335
7 (0) (0.1694) | (0.1666)
) 0.4394 0.3944
¢ (0.0674) | (0.0626)
. 0.6120 0.5917
A0 n(0) (0.0673) | (0.0665)
i 0.6394 0.5743
7 (0) (0.1819) | (0.1785)
) 0.5621 0.4205
“ (0.0831) | (0.0563)
A0y 3 0 0.6919 0.5912
* ’ (0.0843) | (0.0653)
. 0.6686 0.5997
7 (0) (0.1899) | (0.1846)

Table B.11: Simulation results fa% andd,cp in an intercorrelated panel of AR(1)
processes{ = 10, 7" = 50). True parametersi = 0.5, v,,(0) = 0.6, 7, (0) = 0.733.
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éQ Orcp

model n = 40, n = 10, n = 40, n = 10,
T =50 T = 100 T =50 T =100

0.4752 0.4897 0.4794 0.4389

(0.0276) (0.0373) (0.0324) (0.0445)

M, 5 (0) 0.5270 0.5063 0.5789 0.5048

’ (0.0251) (0.0346) (0.0298) (0.0392)

R 0.6105 0.7065 0.5409 0.6301

7 (0) (0.1788) (0.1392) (0.1673) (0.1388)

Table B.12: Behaviour cﬁQ andé,;cp in an intercorrelated panel of AR(1) processes
(n =40,T = 50 andn = 10,7 = 100). True parameters: = 0.5 ando? = 72 = 0.5.
The true values for the autocovariance functiong/@) = 0.6 and~,,(0) = 0.733 for

n = 10 and+,(0) = 0.65 and%, (0) = 0.683 for n = 40.

T = 100. This is due to the fact that the minimum covariance determinant estimator is
not based on the number of differences. It directly depends on the sampieisizad

this is twice as large in the first case than in the second one. We omit the results for the
contaminated models as there only the effects already discussed are illustrated again.

Next we compare the performance of the two estimators in a panel of AR(6) processes.
We already have mentioned above that the matr@@eis based on are not necessarily
positive definite. Thus the estimator does not give reliable results if the autoregressive
processes are of higher order. This can be seen from table Bi3p performs
comparably to the robustified ICM estimatérs, andd,, (see table B.4), with a slightly

éQ é]WC'D

aq 6.6044 0.7293 0.7578 0.5386
ao -7.9862 -0.2119 -0.2152 -0.0609
as 1.3502 -0.1023 -0.0996 -0.1933
Qg 8.0162 -0.1723 -0.1527 -0.1971
as -8.3292 0.0329 0.0402 0.0114
ag 3.2800 0.3799 0.3741 0.3647
MSE(a) 106 0.3745 0.3535 0.6853
s 3.9843 5.3759 5.7173 5.6200
n(0) (0.9561) | (1.4334) | (1.4627) | (1.2810)
N 7.2453 6.8111 4.9995 6.1022
7 (0) (5.0582) | (5.0960) | (4.0681) | (4.6112)

Table B.13: Performance (ﬁb andf,;cp in an intercorrelated panel of AR(6) pro-
cessesi{ = 10, 7' = 100). True parametersia = (1,0.6,—0.2,0.2,0,0.4),
Yn(0) = 5.747 and?y,, = 7.025.
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model éQ:a éQ;b OrrcDia Oricpi
] 0.4786 0.4696 0.4388 0.4376
o “ (0.0594) | (0.1699) | (0.0659) | (0.2206)
0.4616 0.6570 0.5022 0.5962
var (0.0462) | (0.1869) | (0.0570) | (0.1847)

) 0.5236 0.4761 0.4791 0.4397
s “ (0.0600) | (0.1708) | (0.0652) | (0.2272)
0.6029 0.5912 0.6295 0.5349
var (0.0656) | (0.1709) | (0.0786) | (0.1677)

) 0.4365 0.0298 0.3932 0.4219
10, “ (0.0723) | (0.1877) | (0.0644) | (0.2311)
0.6085 0.5187 0.5934 0.5780
var (0.0666) | (0.1230) | (0.0652) | (0.1795)

Table B.14: Comparison of the GICM estimators obtained frgm and the MCD

procedurefo.q, O, Orrcpe @andbycpe. The panels are formed of intercorrelated
AR(1) processesi(= 10, T' = 50) with a = 0.5, 0> = 72 = 0.5. The true values for
the variances are,(0) = 0.6 and~,(0) = 0.733.

smaller mean squared error. It estimatg8) closely, however with a variance which

is much larger than that of the estimator obtained flgmAs ¥,,(0) is estimated from a

single time series, the sample upon which the estimators are based is much smaller than
the one used for estimating,(0). This leads to the large variance of the estimators,

which is more visible here than in the AR(1) case.

Finally, we evaluate the corresponding GICM estimators. The simulation results are
displayed in table B.14. We can see that there is not much difference in the performance
of QQ a andQMCD a to the ICM-type esUmatoréQ and@MCD In the case of arbitrary

outllers,QQ;a and@MCD;(l perform well themselves. The result l@w;b in the AO; case

is however surprising as the estimaté@‘b andéMCD;b, being derived from the median
process, should be more stable against arbitrary outliersétbl,@randéMCD;a. This
effect has already been addressed for the robustified GICM parameter esimagor

in section B.1. A possible explanation is the small sample size which facilitates the

implosion of¥,, 7.

B.2.3 Robust Regression Methods

We now present the results from the robust regression methods as discussed in sec-
tion 3.6. There it has moreover been explained that we here only get estimators of the
GICM type or can perform a direct estimation without transforming the data. The latter
procedure is not adapted for the case of entire time series outlying. This means we
obtain in a panel fulfilling the assumptions 2.2.1 of the ICM two separate M-estimators
Orra = (@/,62) of (a/,02) andfy, = (a),&2) of (a/,w?). Analogously we get for

the two LTS estlmatoréLTs;a andGLTs;b. The variances of the transformed time series
ares? = "~ o? = 0.5 andw? = 0.55 if the variances in the panel of intercorrelated
time series are chosen to bé = 72 = (0.5. The estimators obtained from the direct
procedure are calleélM;dir and HALTS;dZ»T. There the variance for which we obtain an
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GICM dir.
model

éM;a é]\ff;b éLTS;a éLTS;b é]\f;dir éLTS;dir

) 0.4683 | 0.4659 | 02689 | 04723 | 04948 | 0.4931
M “ | (0.0422) | (0.1307) | (0.1264) | (0.3068) | (0.0709) | (0.1433)
05335 | 05687 | 04353 | 05225 | 1.0969 | 1.0189
VA1 0.0369) | (0.1174) | (0.0478) | (0.1560) | (0.1263) | (0.1338)

) 0.3771 | 04423 | 02276 | 04335 | 04197 | 0.4261
s “ | (0.0501) | (0.1311) | (0.1161) | (0.3128) | (0.0708) | (0.1522)
n 0.7645 | 04523 | 05327 | 04082 | 1.1421 | 1.0554
VA1 (0.0634) | (0.0967) | (0.0597) | (0.1251) | (0.1117) | (0.1239)

) 0.6863 | 0.4734 | 0.3653 | 04801 | 0.6825 | 0.6505
s “ | (0.0707) | (0.1298) | (0.1604) | (0.3180) | (0.0653) | (0.1481)
0.8205 | 05127 | 05490 | 04715 | 1.1897 | 1.1026
VA1 (0.0728) | (0.1089) | (0.0631) | (0.1409) | (0.1258) | (0.1377)

) 0.1896 | 0.4499 | 0.1619 | 04476 | 0.2926 | 0.4156
“ | (0.0528) | (0.1284) | (0.1164) | (0.3167) | (0.0740) | (0.1657)

A0 1.6067 | 05632 | 05470 | 05188 | 2.1506 | 1.2574
VA1 (0.2613) | (0.1172) | (0.0646) | (0.1523) | (0.2952) | (0.1739)

Table B.15: Comparison of the M- and LTS-estimators (GICM and direct procedure).
The model is an intercorrelated panel of AR(1) processes-(10, 7' = 50) with

a = 0.5ande? = 72 = 0.5. The true values of the variances ar& = 0.5 and

w2 = 0.55,

estimate israr = 0 + 7% = 1.

Table B.15 displays the results obtained from the simulatiéﬁsg;a is not valid at this
sample size. The parameter estima&gfs;b yields acceptable average values for the
autoregressive parameters and downward biased ones for the variances, but the variance
is very large. Thus the estimates are not reliable. (ﬁf}h{g;dir yields estimates which

are comparable to those of the M-estimators. However it is less eﬁicien@ﬁﬁ@n.

The latter estimator performs best in the uncontaminated case. If outliers are present, it
is influenced by these. Comparifig., andd,;.,, we see tha,.,, which is based on the
median process, is less efficient but more robust ﬂmg This means that taking the
median levels out the differences induced by another time series model or by arbitrary
outliers. The effect has already been observed in section B.1 for the robustified ICM
parameter estimators.

The large sample behaviour of the estimators is shown in table B.16. With the sample
size increasing the variance of the estimators is reducetl f@ndd ... Forf,rs., is

only decreases noticeably in the cas€ ajrowing, not if onlyn becomes larger. Thus
here again the results are not reliable due to the large variéﬂﬁgu is still not valid

forn = 10, T = 100. Forn = 100, T' = 50 the estimates improve although they are
biased.éLTs;di,, again yields estimates comparable to thoséj@gw, but it is still less

efficient. Similar toéLTS;b, éM;b becomes more efficient ¥f is increased, whereas the
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GICM dir.

model
él\f[;a éM;b éLTS;a éLTS;b é]\];dir éLTS;dir
- ) 04687 | 0.4765 | 02525 | 04736 | 0.4975 | 0.4969
i Jif 11’0 “ | (0.0297) | (0.0888) | (0.0895) | (0.2367) | (0.0483) | (0.1066)
; 05327 | 05758 | 04372 | 05305 | 1.1037 | 1.0167
T=100 | var | 0057y | (0.0831) | (0.0341) | (0.1061) | (0.0893) | (0.0932)
. . 04961 | 0.4777 | 04740 | 04771 | 04952 | 0.4949
o (0.0128) | (0.1271) | (0.0478) | (0.3090) | (0.0610) | (0.0849)
sy | | 05041 | 04997 | 0.4567 | 04644 | 09967 | 09189
(0.0103) | (0.1016) | (0.0120) | (0.1380) | (0.1029) | (0.1006)
_ ) 0.6904 | 04823 | 0.3521 | 04857 | 06901 | 0.6633
an 110 “ | (0.0517) | (0.0923) | (0.1237) | (0.2417) | (0.0480) | (0.1120)
’ 0.8227 | 05163 | 05529 | 04746 | 1.2000 | 1.0973
T=100 ) var | 0518) | (0.0751) | (0.0438) | (0.0972) | (0.0886) | (0.0941)
o ) 07140 | 0.4771 | 05687 | 04806 | 0.6921 | 0.6604
' (0.0229) | (0.1299) | (0.0582) | (0.3096) | (0.0327) | (0.0734)
7;::128' .| 07600 | 04271 | 05756 | 03958 | 10889 | 0.9984
(0.0280) | (0.0890) | (0.0174) | (0.1188) | (0.0912) | (0.0916)

Table B.16: Comparison of the M- and LTS-estimators (GICM and direct procedure).
The model is an intercorrelated panel of AR(1) processéslarge) witha = 0.5 and

o? = 72 = 0.5. The true values of the variances afe= 0.45 andw? = 0.55 for the
GICM procedure and? + 72 = 1 for the direct estimation.

effect is only weak ifn is growing. The estimato?}M;a is improved in both cases, but

here the effect is stronger farincreasing. In the case of the contaminated panels it is
again much influenced by the outlying time seriéﬁ.,b however remains stable under
contamination. For the investigated models it is thus the best estimator in this section.
We have included the simulation results for the non-contaminated AR(6) case (GICM
procedure) in table B.17. Here we can observe that both the M-estimatof and

are not stable if the order grows. Thus we have omitted displaying the results for
the contaminated AR(6) mod€lsS; and AOg. The performance of the estimators is
comparable to that ot described in section B.1. Fd, the mean squared error is
smaller, foréLTS larger than that of,,. In table B.18 we see the simulation results
obtained from the direct estimation procedure. In the uncontaminated casé\};;(@;‘.h
andéLTs;dir give good estimates. Here the mean squared error of the autoregressive
parameter estimator belonging to the latter one is smaller. If entire time series are
outlying, both estimators still perform better than e.g. the robustified ICM parameter
estimators. The variances are here more biased than in the uncontaminated case. Only
in the presence of arbitrary outliers the estimators become clearly unreliable. In this
case the variance estimate@ffs;dir is less biased than that éﬁd;dir. Altogether this
indicates that; ;¢ improves if the autoregressive order of the time series in the panel
increases. The result that the estimates in the case of entire time series outlying are not
as much influenced by the outliers as in the AR(1) case is surprising and probably due
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to the actually chosen models. This effect can also be observed in the behaviour of the
non-robust ICM parameter estimatdy, itself (see section B.1 and the discussion in

section B.4).

B.3 Outlier Detection

B.3.1 Likelihood Ratio Test

Finally we consider the methods based on a preliminary identification of outliers dis-
cussed in section 3.7. Table B.19 displays the results of the likelihood ratio procedure.

Table B.17: Comparison of the M- and LTS-estimators (GICM procedure).
model is an intercorrelated panel of AR(6) processes={ 10, 7" = 100) with

é]\ff;a é]\];b éLTS;a éLTS:b

i 0.7336 0.7401 0.7199 0.7389

o -0.2094 | -0.2379 | -0.2065 | -0.2333

ds -0.1014 | -0.0841 | -0.0954 | -0.0876
da -0.1733 | -0.1704 | -0.1783 | -0.1758

s 0.0398 0.0335 0.0488 0.0370
e 0.3796 0.3557 0.3646 0.3536
MSE(a) 0.3590 0.3796 0.5266 0.8625
0.9352 0.9026 0.9297 0.8435

var (0.1520) | (0.1797) | (0.1598) | (0.2423)

The

a = (1,0.6,-0.2,0.2,0,0.4)" ande? = 72 = 0.5. The true values of the variances
arec? = 0.45 andw? = 0.55.

éM;dir éLTS;dir
Mg TS AO¢ Mg TS AO¢

i 0.9983 | 1.0208 | 05863 | 0.9967 | 1.0119 | 0.8702
éa -0.6034 | -0.5478 | -0.0892 | -0.5977 | -0.5600 | -0.3417
da 0.2014 | 01355 | -0.1942 | 0.1958 | 0.1542 | -0.0663
da -0.2040 | -0.1569 | -0.1709 | -0.1992 | -0.1664 | -0.0815
as 0.0027 | 00343 | -0.0027 | 0.0022 | 0.0198 | -0.0113
de 0.3912 | 03676 | 0.3802 | 0.3919 | 0.3799 | 0.3926
MSE(a) | 05986 | 00368 | 0.0320 | 02672 | 02597 | 0.3174
10872 | 12278 | 46637 | 11092 | 12176 | 19723

var (0.0886) | (0.0890) | (1.0009) | (0.1148) | (0.1197) | (0.2735)

Table B.18: Comparison of the M- and LTS-estimators (direct estimation procedure).
The model is an intercorrelated panel of AR(6) processes-(10, 7" = 100) with

a = (1,0.6,-0.2,0.2,0,0.4) ando® = 72 = 0.5. The true value of the variances is
var = 1.
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The parameters are estimated by minimising the conditional log-likelihood function.
We see that the results do not differ much between intercorrelated panels and panels of
independent time series. The only effect is that the estimators are more efficient in the
latter case. In the uncontaminated model or if only arbitrary outliers are present, the
null hypothesis of homogeneity is not rejected and thus the estimates do not change. If
the outliers are independent white noise processes, the estimation is improved by the
preliminary detection and elimination of outliers. If however the outlying time series
are autoregressive time series with parameter0.9, the estimation is drawn towards

their parameter.

We now investigate the behaviour of the homogeneity test and of the outlier identifi-
cation procedure in more detail. The empirical rejection ratég @nd the number

nor, Of eliminated time series are given in table B.20. As the maximal proportion has
been fixed a20% beforehand, it may occur that the null hypothesis of homogeneity is
still rejected after terminating the estimation procedure. Note that we have to test at
an adjusted significance lewe), as the elimination procedure involves multiple testing
(see remark 3.7.5). Fer = 0.01 andn = 10, the adjusted level is = 0.0033. This

is reached in the uncontaminated model with independent processes. If the time series
in the panel are intercorrelated, the rate of rejection grows. In the case=0fl00,

T = 50, where only the number of the time series in the panel has been increased, it

corr. ind.
model
éum éLR;Q éLR;l éLR;Q
] 0.4929 0.4929 0.4974 0.4975
“ (0.0646) (0.0646) (0.0375) (0.0375)
M 0.9907 0.9908 0.9968 0.9968
var (0.1200) (0.1201) (0.0661) (0.0661)
) 0.4169 0.4451 0.4196 0.4520
s “ (0.0672) (0.0788) (0.0451) (0.0532)
” 1.0373 1.0222 1.0374 1.0231
var (0.1063) (0.1111) (0.0731) (0.0731)
) 0.6875 0.7129 0.6882 0.7195
s “ (0.0664) (0.0822) (0.0614) (0.0739)
1.0774 1.0941 1.0778 1.0923
var (0.1202) (0.1254) (0.0815) (0.0915)
) 0.2559 0.2572 0.2591 0.2601
10, “ (0.0690) (0.0709) (0.0580) (0.0601)
1.9496 1.9469 1.9577 1.956
var (0.2739) (0.2758) (0.2610) (0.2635)

Table B.19: Estimates beforéL(R;l) and after QLR;Z) a preliminary outlier detection
using the likelihood ratio testorr.: panels of intercorrelated autoregressive processes
with parameters = 0.5, 02 = 72 = 0.5. ind.: panels of independent autoregressive
processes with parameters= 0.5 ando? = 1. The size of the panels is = 10 and

T = 50, var=1.
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corr. ind.
model
éLR;l éLR;2 éLR;l éLR;Q
H, 0.0072 0.0006 0.0032 0.0002
M, nor, 0.0316 0.0314 0.0498 0.0492
H,y 0.0448 0.0012 0.0564 0.0008
AO nor 0.0508 0.0352 0.0662 0.0446
My, Hy 0.0072 6e-04 0.0022 0.0000
n = 10,7 = 100 nor 0.0290 0.0290 0.0434 0.0430
My; Hy 0.1320 0.0704 0.0006 0.0002
n =100,7 = 50 nor 0.0748 0.0696 0.1726 0.1724
H, 0.5012 0.0004 0.5800 0.0014
TS, nor 1.0722 0.6374 1.0974 0.5972
Dy 0.0047 - 0.0061 -
H, 0.8408 0.6782 0.8926 0.7200
TS, nor 1.5582 1.1646 1.6958 1.1842
Dy 0.9642 - 0.9814 -
TS, H, 0.9950 0.8708 0.9978 0.9102
= 10 T7: 100 nor, 3.4122 2.7836 3.4552 2.7658
’ Pr 0.9642 - 0.9389 -
TS H, 1.0000 0.9874 1.0000 0.9998
= 100 T _ 50 nor 7.9232 2.6562 9.3844 1.8052
’ Pr 0.9890 - 0.9814 -

Table B.20: Performance and power of the likelihood ratio test (at significance level
a = 0.01) in various modelscorr.: panels of intercorrelated autoregressive processes
with parameters = 0.5 ando? = 72 = 0.5. ind.: panels of independent autoregressive
processes with parameters= 0.5 ando? = 1. Unless stated otherwise, the size of
the panel is» = 10, T = 50. H,: empirical rate of rejections)o.: average number

of identified outliersp,: proportion of falsely identified outliers among the eliminated
outliers.

even reaches more than 13%. This is reduced after eliminating time series from the
panel. If outlying time series are present, the rejection rate also grows. However the
test only discovers that the panel is not homogeneous. In the riggethe null hy-
pothesis of homogeneity is rejected in only 50% of the cases. If outliers are detected,
they are mostly correctly identified. In the case of autoregressive time series with pa-
rametera = 0.9, the outliers are not identified correctly. Indeed the proportion of
falsely identified outliers is overproportionally large, which means that the test statistic
has been drawn to the outliers. This illustrates the masking effect outliers can have in a
non-robust procedure.
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B.3.2 Phase Space Representations

For the phase space procedure we compare the three different versions of the estimator
addressed in section B.ﬁps;mb is obtained from the robust method, which is based
upon the robust covariance estimator derived from the MER. itself is the non-

robust version using the sample covariance matrix. In both cases, the outlying time
series are detected in a first step and all are deleted from the sample. The estimation
Is then based on the remaining time series, where we use the non-robust ICM parame-
ter estimatoén,T. We assume that not more than 20% of the time series are outlying.
éps;m is obtained from a (non-robust) recursive procedure. In each step we only elim-
inate the time series with the smallest p-value from the panel until no further outliers
are identified or until the upper bound of 20% outlying time series is reached. This
procedure is included for comparison to the likelihood ratio method of the last sec-
tion. As the latter method originally is defined for panels of uncorrelated time series,
we also investigate this case. The results for the parameter estimators are displayed
in table B.21. As significance level we have chosen- 0.01. We can see that the
estimators behave in a similar way as the estim@ggrof the last section. There is no

large difference between the estimation in the correlated and the uncorrelated model.
In the case of arbitrary outliers the estimator is less biased if the panel consists of in-
dependent time series, nevertheless the bias is unacceptably large. If the outlying time
series are white noise processes or in the presence of arbitrary outliers the estimators
are downward biased, even more so tilap. However they all perform better than

6. if the outlying time series are autoregressive processes with a large coefficient.
Hereéps;m is more influenced by the outlying time series than the other estimators.
Table B.22 shows the large sample behaviour of the estimators. There is essentially no
difference between the estimation in the correlated and in the uncorrelated panel. In
the non-contaminated model the parameters become even more accurate. As we use
the non-robust ICM estimatcﬁn,T in the second step after the outlier detection, the
properties of the estimators are largely dependent on thoégjofln particular, this
explains the respective efficiencies (compare section A.1 in the Appendix A). In the
contaminated caséps;mb is slightly more biased if only the number of time series in

the panel is increased. This is due to the fact that the test detects more easily the two
outlying time series in a panel consisting of 10 time series than all 20 outliers in model
TS; with panel sizen = 100 andT = 50. The efficiency ofépg is much lower, and

in the case of, = 100 andT" = 50 also the bias is increased. This illustrates that the
non-robust estimator is indeed affected if outliers are preﬁmm is not improved

if only the length of the time series grows. However it competes favourably with the
other estimators if. = 100.

As the behaviour of the estimators depends on the number of identified and eliminated
outliers, these are given in table B.23. If the model contains outliers, furthermore the
proportion of wrongly identified outliers is displaye@os, being a non-robust estima-

tor, is more susceptible to masking effects. Therefore it yields the highest proportion
of falsely detected outliers. Nevertheless the masking effects are much weaker than for
6. r, Where the proportion of falsely identified outliers lies over 90%. Altogether the
estimatorépg;mb performs best. The comparison with the independent case shows that
the intercorrelation even helps to correctly identify the outliers. If the outlying time



136 APPENDIX B. SIMULATION STUDY (ROBUST ESTIMATORS)

model corr. ind.
éPS éPS;rob éPS;rec éPS;rob
. 0.4957 0.4959 0.4948 0.4920
“ (0.0394) (0.0405) (0.0397) (0.0416)
AL 52 0.4955 0.4957 0.4959 0.9848
(0.0343) (0.0347) (0.0338) (0.0738)
L 0.5441 0.5482 0.5469 0.1032
“n (0.1120) (0.1120) (0.1126) (0.0221)
R 0.3886 0.3923 0.3916 0.4105
“ (0.0547) (0.0554) (0.0564) (0.0489)
TS 5 0.7196 0.7145 0.7149 1.0236
" (0.0635) (0.0685) (0.0671) (0.0810)
L 0.3831 0.3881 0.3845 0.1075
“n (0.0792) (0.0814) (0.0770) (0.0230)
. 0.5501 0.5229 0.6187 0.5163
“ (0.1044) (0.0624) (0.0635) (0.0549)
T 52 0.5814 0.5424 0.6352 0.9939
(0.1180) (0.0770) (0.0558) (0.0809)
A2 0.5174 0.5182 0.4652 0.1224
“n (0.1330) (0.1123) (0.0945) (0.0268)
A 0.2190 0.2279 0.2180 0.2824
“ (0.0622) (0.0632) (0.0596) (0.0649)
40, 52 1.4059 1.3636 1.4074 1.8073
(0.2606) (0.2704) (0.2487) (0.2780)
- 0.6019 0.5921 0.5935 0.1971
“n (0.1319) (0.1287) (0.1292) (0.0456)

Table B.21: Estimates after a preliminary outlier detection using the phase space repre-
sentation. The size of the panelsis= 10 and7 = 50. Significance levela = 0.01.

corr.. panels of intercorrelated autoregressive processes with parameters).5,

0? = 72 = 0.5 andw? = 0.55. ind.: panels of independent autoregressive processes
with parametera = 0.5, 0% = 1 andw? = 0.1.



B.3. OUTLIER DETECTION

137

COrT. ind.
model
éPS éPS;rob éPS;rec éPS;rob
R 0.4979 0.4979 0.4976 0.4962
“ (0.0280) (0.0279) (0.0276) (0.0286)
n = 10, 5 0.4985 0.4977 0.4963 0.9923
T =100 7 (0.0243) (0.0243) (0.0242) (0.0519)
2 0.5480 0.5491 0.5476 0.1041
M, " (0.0793) (0.0787) (0.0783) (0.0165)
. 0.4980 0.4985 0.4973 0.4959
“ (0.0126) (0.0125) (0.0125) (0.0127)
n = 100, - 0.4980 0.4981 0.4973 0.9896
T =50 (0.0103) (0.0104) (0.0107) (0.0218)
s 0.5036 0.5040 0.5021 0.0102
“n (0.1016) (0.1034) (0.1020) (0.0021)
R 0.5309 0.5057 0.6334 0.5035
¢ (0.2050) (0.0401) (0.0494) (0.0359)
n = 10, 5 0.5523 0.5107 0.6422 1.0000
T =100 7 (0.2178) (0.0460) (0.0387) (0.0575)
2 0.5648 0.5519 0.4703 0.1270
TS, " (0.2287) (0.0813) (0.0678) (0.0206)
. 0.5898 0.5376 0.5256 0.5235
“ (0.0285) (0.0302) (0.0247) (0.0174)
n = 100, - 0.6036 0.5486 0.5356 0.9982
T =50 (0.0309) (0.0334) (0.0281) (0.0231)
A2 0.4263 0.4540 0.4659 0.0120
“n (0.0789) (0.0841) (0.0871) (0.0024)

Table B.22: Large sample behaviour £ 10,7 = 100 andn = 100,7 = 50) of the
estimates obtained after a preliminary outlier detection using the phase space represen-
tation. Significance levela: = 0.01. corr.: panels of intercorrelated autoregressive
processes with parameters= 0.5, 0> = 72 = 0.5 andw? = 0.55. ind.: panels of
independent autoregressive processes with parametels5, 02 = 1 andw? = 0.1.

series are white noise processes, in each case very few outliers are detected. In the
case of autoregressive processes outlying, the proportion of falsely identified outliers
decreases. I = 10, épsm has a low detection rate but those time series which are
detected as outliers are indeed outliers with a high probability. In the case-aff00,

T = 50, the proportion of falsely detected outliers is as high adfar Nevertheless

the estimator performs much better (see table B.22). This is due to the larger number
of outliers identified by the recursive procedure. Thus in absolute numbers more true
outliers have been eliminated from the panel before applying the ICM estimator in the
second step. Table B.23 moreover shows that the significancedewel).01 of the

test is not reached empirically in the smaller panels. If on the average 0.2 time series
are identified as outliers in a panel consisting of 10, this corresponds to a rejection rate



138 APPENDIX B. SIMULATION STUDY (ROBUST ESTIMATORS)

of 2%. However ifn = 100, fps..., has a rejection rate of 0.88%, and alse; is

very close to the significance level. This is caused by two effeg}s:the variance

of the asymptotic distribution, can only be approximated (see theorem 3.7.9 and algo-
rithm 3.7.10). Furthermore the underlying estimate of the covariance matrix used for
calculating the test statistic depends on the size of the panel. If there are outlying time
series in the panel, not necessarily all of these are detected. This is especially the case
if the difference in the dynamic structure is not very strong. The power grows with the
length of the time seri€s increasing: fofl'S; with the panel size of = 10 it is 83.9%

for " = 50 and 99.2 forl" = 100. If the proportion of outliers stays the same but the
number of time series in the panel grows, the probability that all of these are detected
sinks. Thus the power is onB0.0% if n = 100 andT" = 50 although here the overall
sample size is largest.

B.4 Comparative Evaluation of the Simulation Results

A non-robust estimator as the ICM parameter estimator investigated in chapter 2 is not
stable under contamination. Therefore we have to search for alternatives. The different
properties of the proposed estimators are illustrated by the above simulation study. Sim-

corr. ind.
model - - - -

Ops 0ps:rob 0ps.rec 0ps:rob

My norL 0.1902 0.2316 0.2078 0.4438

AO, norL 0.6679 0.8082 0.5534 0.8302
My;

n=10.T = 100 nor 0.1412 0.1982 0.1748 0.3986
My;

= 100,T = 50 nor 1.0618 0.8836 1.4360 2.1666

nor 0.2310 0.3096 0.2674 0.4718

T5n Dr 0.8061 0.6835 0.7861 0.8733

nor 1.9988 1.6786 0.9596 1.7658

TS Dr 0.3091 0.0487 0.0025 0.1108

TS, nor 2.8899 1.9844 0.9972 2.0966

n =10,T = 100 Dy 0.4161 0.0427 0.0000 0.0974

TSy, norL 13.919 16.0022 17.2240 16.0192

n = 100,7 = 50 Dy 0.1476 0.0128 0.1476 0.0383

Table B.23: Performance of the phase space outlier test (significancerlevel01) in
various modelscorr.: panels of intercorrelated autoregressive processes with parame-
tersa = 0.5 ando? = 72 = 0.5. ind.: panels of independent autoregressive processes
with parameters = 0.5 ando? = 1. Unless stated otherwise, the size of the panel is
n =10, T = 50. nor: average number of identified outliegs;: proportion of falsely
identified outliers among these.
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ply robustifying the parameter estimator by replacing all non-robust parts with robust
counterparts leads to the estimators of section B.1. The more basic robust estimators
0,., andd,, are outperformed by the reweighted procedures. These do not entirely be-
long to the class of directly robustified estimators as they use robust methods only for
detecting outlying data. Then a second, non-robust estimation step is performed with-
out these data. Her,, is less biased in the case of no contamination or entire time
series outlying tharérwz. The latter estimator has been designed to be robust against
arbitrary outliers (see section 3.3). However its performancel©n is not convin-

cing. With exception of),,, all of these robust estimators do not perform well in the
case of the AR(6) models. The behaviourdpf suggests that there were no outlying
data identified. Therefore in this case also the non-robust parameter estimator is not
influenced much by the outlying time series. As bootstrap methods are a non-robust
approach, the bias of the robust estimators cannot be substantially reduced. The pro-
cedure performing best is the one where the most detailed assumptions on the sample
distributions are made, namely the one based on sampling directly from normal distri-
butions. Although this reduces the biasof, to some extent, the main properties are
retained as bootstrapping reflects these (see the discussion in section B.1.1).

The second approach investigated in section B.2 consists of robustifying the covariance
matrices used in the estimationé;JfT. It turns out that the robust panel autocovariance
estimator and thuéQ is negatively biased. However the same is true for the estimator
based on the covariance matrix obtained from the minimum covariance determinant
method. Both estimators are relatively stable against the case of entire time series
outlying, comparably td,,. But they are very robust against arbitrary outliers, which

Is not the case for the other methods. Thus in particular the estiﬁ@ﬁerpromising

if the bias can be overcome. It may be possible to reduce the bias by adjusting the
order statistic employed or by modifying the correction used in the computation (see
section B.2.1). StilléQ only performs well if the autoregressive order is small. Since

all entries of the covariance matrix are estimated separately, it is instable. This can be
seen from the results for the AR(6) case. Thus here it is preferable to use the estimator
Onep-

For comparison we include estimators derived from standard robust procedures as de-
scribed in section 3.6. In the panel situation they are however in general not stable in
the presence of outliers. It is already stated in Rousseeuw and Leroy (1987) that M-
estimators are not robust against additive outliers. There the authors suggest using the
least median of squares estimator for the analysis of time series. However the simula-
tions show that also the estimathf-s, which is derived from the least trimmed squares
estimator, which in turn is closely related to the least median of squares estimator, does
not perform satisfyingly in the panel situation. In the case of the AR(6) processes the
estimators nevertheless yield improved results. This however can be due to the specific
combination of models chosen as the non-robust ICM parameter estimator performs
comparably. Thus we do not consider these estimators further.

Finally we have analysed the behaviour of outlier detection methods in section B.3. The
simulations illustrate that the non-robust likelihood ratio test is indeed much influenced

by outliers and thus not recommendable. The test based on the phase space represen-
tation however performs in an acceptable way if no arbitrary outliers are present. Its
behaviour is compatible ,, for the smaller panels. If the data set becomes larger, the
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bias of the variance estimators is smaller than that,of

Summarising we recommend a reweighted estimator if there are no arbitrary outliers.
Hered,,, andéps;mb perform in a very similar Wayém yields slightly better results,

but it is based on a heuristic procedure whereas we know the asymptotic distribution
of the test statistic fOéps;rob. In the case of arbitrary outliers it is better to use one

of the estimators derived from the robust covariance estimators as the other ones are
not reliable. If the autoregressive order is oég, is preferable. For higher order
autoregressive processéﬁc,g should be used. In practice, the arbitrary outliers can

be excluded from the data set in a preliminary analysis. One method which has been
mentioned in this thesis is the procedure of Gather, Bauer and Fried (2002).

For completeness we include an overview of the computation times needed by the dif-
ferent estimators. These are displayed in table B.24. It can be seen from the computa-
tion times that the non-robust estimators and their robustified versions are very fast to
compute. The procedure for the GICM estimatérsindé, is even faster as we here

do not need to compute the estimators iteratively. The computation of the reweighted
versions is slightly slower as one more iteration is necessary. Furthermore the compu-
tation of the M-estimatof,; (GICM procedure) and of the non-robust outlier detection
procedures are as fast as for the above estimators, and the least trimmed squares pro-
cedure is only a little bit slower. The estimationégj requires a sorting, and the fast

est. M, Mg
O 4.09 5.47
O, 0, 2.08 3.06
) o 4.11 6.52
Boa 4.11 5.98
0,0 452 7.01
Ors, 4.53 6.98
Ors 1085.29 _
Opp 1011.83 _
éNB 1020.44 —

0o 6.75 13.26
Orien 19.59 76.30
01 4.04 4.20
Orrs 5.13 8.49
Orr 4.10 5.29
Ops 5.34 5.23
0ps.rob 18.80 70.14
Opsiree 23.90 128.37

Table B.24: Approximate computation time of the parameter estimators discussed in
this chapter. Given is the time (in 1/100 sec.) needed for 10 iterations in m&dahd

Mg on a PC with a 2.8GHz processor. If possible, the estimation was performed using
an ICM-type estimator.
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algorithm proposed in Croux and Rousseeuw (1992) cannot be transferred easily to the
panel case. Therefore the computation@@fneeds around twice the time than that of

the first estimators. The estimatdtgcp, 0ps..os andfps... are based on the mini-

mum volume ellipsoid estimator which takes a longer computation timeﬁp,g\$€c is

a recursive estimator, its computation needs even more time. The computation of the
bootstrap procedures is around 250 times slower than the original estimator. Thus the
bootstrap corrections are not feasible if the sample size becomes large. Moreover the
estimation procedure becomes instable for the AR(6) case. Thus we were not able to
obtain bootstrap estimators for the AR(6) time and therefore cannot state the computa-
tion time.



Appendix C

Proofs and Auxiliary Results

C.1 Derivatives

We have computed the first derivatives®f » (the log-likelihood function of the ICM)

in section 2.4.2 because we needed them in order to construct the minimisation algo-
rithm. Theorem 2.5.16, which shows the convergenc®ofVi, ,.(0) D, to I',, is
proved by investigating the convergence properties of the second derivatives. In order
to simplify the notation, we have omitted to state these explicitly in the proof of the
theorem. For sake of completeness, we now present them and the derivatives of the
pointwise limits of the conditional log-likelihood functions in this section. We also
include the second derivatives of the conditional log-likelihood funcilpr obtained

from the individual effects in the GICM in proposition 2.4.6.

Furthermore we have moved the proof of lemma 2.5.7 to this section as it is elementary
but rather lengthy.

Derivatives of the log-likelihood functions

C.1.1 LEMMA
Under the assumptions of the ICM (assumption 2.2.1)) let (a’, 0%, 7%) € © and

denotew? = 72 + "72 Then the second derivatives of the conditional log-likelihood
functionL,, - derived in proposition 2.4.2 are

o? r (9) B 2 1 i i )%(i) X(i)
da,Oq, I 52 n(T —p) ~ 5 b=k T
T
2 1
Y thk thl )
wy n (T —p) t:,ZH
o2 2 1 n T o o .
Y )= ( L Xm) @
Da,00> r(0) ot n (T — p) - t§1 a(L) X; t—k
2 1 a
— a(L X X —k >
wi n? (T p)t_zp;rl(() ) &
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T
%;2 n1(6) —w% n<T1_ > t_ngl (a(L) X,) Xer,
: aiz)z Lor() = "1+ 2% Aur(a) n31wf; ngigBmT(a),
(8?'22)2 Lnir(9) = _niuﬁ nig nr()
and 0L, 0(6) = i+ gy Do),

whereA,, r(a) andB,, r(a) are defined in remark 2.4.3.

PROOF,
We get the statements by direct calculation, taking into accountthat 72 + %2 O

In theorem 2.5.4 we have derived the pointwise limitgf,(#) for n — oo as

1

o2

p
Z a ayc(k — 1) +logo® + log 27,
,1=0

£(6)

wherec(h) = ¥(h) o2, h € Z, is the true autocovariance function of the identically dis-

tributed unobservable process{éﬁ(i)}tez, i1=1,...,n,0flemma 2.2.4. Its derivatives
are given in the following lemma.

C.1.2 LEMMA 5 )
Letd = (ay,...,a, 0%) € © andL(f) be as in definition 2.5.3. Then

p

a%c(é) _ % ;; o el — 1)
and %c(é) - kio ek — 1) + 5
Furthermore
&zijhl L) = % k=1,
%{;c(é) _ —% ; a ek — 1)
and (8‘322)2 L£(0) = 03 é apay c(k — 1) — %
PrROOFE

Again the statements are obtained by straightforward calculation.
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In the case of' — oo, n fixed, we need the analogous results for the pointwise limit
of £, 7(6), which is (see definition 2.5.3)

1 -1 11 -1
L,(0)=EL,r(0)=— (nn >09+w——dg+(nn )log02

2
o n

1 1
+ —logw? + —logn + log(27) ,
n n
wherecy = Zi,l:o aia;c(k —1) anddy = Zg,lzo ag a; Yo (k —1).

C.1.3 LEMMA
Letd = (a1,...,a, 0% 72) € © andL, () be as in definition 2.5.3. Then, denoting

2
wi =72+ Z, we get

0 (n—1)
da En( n02 Zakc —l Zak7n _l
: =0 " k=0
9 n—1 n—1
wﬁn(e)_ ok Z CLkCLle—l) o2
k,1=0
1
n2w4zakal% a +7’
" k1=0 n
0
and — L,(0) = . _
o2 nwg MZO @ Yo )+ ne?
The second derivatives are
0 2(n—1) 2
8ak8al ( ) n o2 ( ) - nw2 7( )
0 2(n—1) < LA
8@1802 En(e) - n ot Z ak C(k - l> o n2 w;lL 73 f)/n(k' - l)v
k=0 k=0
92 9 2 )
aa—l(%-? En(‘g) - _nwé ;ak ’)/n(k — l) ,
82 2 p 1
002072 () = n2 ws k;o ag a Yn(k — 1) — N2l
o (n—1) n—1
k—1)
(802>2 ﬁn( TLO'G klzo akalc -
1
© 3wk ) - =1
n k,l1=0 n
o2
and (0712)2 £n(0) = nwﬁ Z ax@ Y (k = 1) nw4
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PROOF,
As before, the calculation is straightforward. O

In particular, this allows us to calculate the Hessian matrices at the truefgalue

C.1.4 GOROLLARY
Letty = (a/,02,72), witha = (a4, ..., a,), be the true parameter in the ICM and let
6o = (a’,02). Then the Hessian matrices ©fandL,, at the true values are

N QU (k —1 0
F — v2£(00) — (( ( ))kl:l ..... 4 ) >
0 ot
(2 \I’(k' - l))k,l:l ..... P 0 0
T, = V2L, (0) = 0 moi twor wer | =EVLur(),
0 # nc1u4

where noww? = 72 + %g denotes the true parameter in the ICM.

PROOF,
The derivatives ofZ(f) and £,,(6) can be found in the preceding lemmas C.1.2 and
C.1.3. The results are due to the fact that the true valuesJuffil_, a. ;¥ (k —1) = 1

if we denoteqy = —1 (remark 1.1.5). The last equalify, = E V2L, r(6) is a
consequence of the mean-square convergence of the panel autocovariance estimator
proved in lemma 1.2.4. O

Finally we include some considerations on the derivatives of the conditional log-likeli-
hood functionZ;,  in the GICM, which is based on the individual processes. Itis given
in proposition 2.4.6 as

o 2 v ¥ v %
n7T<0a):—mlogﬁ(xp+l7...,XT|X1,...7Xp)
T n
n—1 1 1 o i)\ 2
= log 52 + = —m—— L) X"
n Og0"+5%n(T—p)t:2p;1;<a( ) Xi >
-1 1
+ log(2m) — —logn,

whereg? = o2 — o,

C.1.5 LEMMA
In the setting of the GICM (assumption 2.3.1)fet= (a1, . .., a,, 0°) € ©, andL;, ;.
be as obtained in proposition 2.4.6. Then

9 ro 2 SN (S 0 ) g
9 Ly r(0.) = Zn (T =p) > (kzo ar Xy 7 | X2

t=p+1 i=1 =

o . n—1 1 SRR (i) ¢ 00)
and do? nr(0a) = no? otn (T —p) Z Z Z Ot Kick Xt

t=p+1 i=1 k,1=0
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Furthermore

82 ° () (%)
dapday Ln,T(GG):— Z ZXt kX1

—p+1 =1

0? o i
Wﬁn,T(ea): (T —p) T ) ZZZG th )

t=p+1 i=1 k=0

F o - 0 yo _n—1
and Wﬁn’T(QG) = 0_6 T p Z Z Z Qg Qg Xt k t 1 W

t=p+1 i=1 k=0

Denoting the true parametéy = (a1, - . ., a,0,52), we obtain that
V2L 1 (6) =T =0 ( ! )
n,T\Y0 n P \/ﬁ )

.....

2B 0
whereT? = E (V2L2 1(6y)) = ==L ( 0 1 ) with B = (W(k — 1)) 1.,
PROOF,

The derivatives are obtained by straightforward calculation. In the GICM, we have that
z = X! andE ()?f“,)ﬂ”) = (6;; — 1) &2 (remark 2.3.5). Thus the mean-square
convergence of the panel autocovariance estimator proved in lemma 1.2.4 implies the
result. O

Proof of lemma 2.5.7

Subsequently we show thét andd, are unique minima of,,, and £ if the parameter
spaces are small enough.

PROOF OF LEMMA2.5.7:

We prove the lemma first faf, = argminéeéﬁ(é). By the same method, the statement
can be shown fof,.

Recall that ford = (ay, ..., o, %) € © we have due to the assumptions of the ICM
(assumption 2.2.1) that> > ¢ > 0. The limit function£(6) has been given in defini-
tion 2.5.3 asC(f) = % ¢; + logo? + log (2m) wherec; = Y7 | o ay ek — 1) with

oo = —1. Now choosed’ C © such that eac € ©' can be written ad = 6, + v
with 6y = (ay,...,a,,02) andv = (vy,...,v,,602), 5 > —1. This condition ensures
thato? > 0. In order to simplify notations, denote = 0. We calculate the partial
derivative of£(f) in direction ofz; = (1, ..., 2, T,) = —V.

For the true parametéy and the covariance functiairih) we know (remark 1.1.5) that
> hi—o @k arc(k — 1) = a. Therefore

o -
a—xéﬁ(e 1+5 ZZ al+Vl l)l’k

k=1 =0
& 1
Z ak—i-yk al—i-yl)c(k—l) Ty +mxg

A1 152
1+5 Py
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1+5 ZZVZC —liEk——(11+5 Zakalc — ),

k=1 =0 k,l=0
1 1
A /1 . o _l g o 4 o\ g
od (1+6)? MZ:OWZC )20+ 2(1+0)"
2 )
- )
o3 (1+9) ,;OVMC ATEE
)
—1)
+5 klzoykl/lc ( 5)
7 Z’”’c 2496 52
- kv

Being a covariance functio¢(k — 1)),,,_, IS positive semidefinite. Sineg> —1,

.....

we thus get on a neighbourho&d C © of §, that

a—ﬁ(é) <0 forallde®.

81‘5
In the second case, choo®€ C © such that for alh = (ay,...,«q,, 0% 7%) € © we
haved = 0y + v with 6y = (a4, ..., a,,03,73) andv = (v, ..., v, 8108, 0278) = —,

where|d;| < 1( =1 2) Then the calculations are analogous. We only have to take
into account thav? = 72 + < andw? = 73 + "0 lead to

ol
2_ 2 0 2
w,,:we—wnzéln + 097 -

If we denotemin(dy, d) by 6_ andmax(dy, d») by 0., this implies that

5> (1+60_)w? andthus w, <d,w’ < O+ 5 wp .

This guarantees that analogous calculations as above lead to

%ﬁ: () <0 forallde @,

where®’ is a neighbourhood of,. Altogether this means thay andd, are unique
minima if the parameter spaces are chosen small enough. O

C.2 Auxiliary Results for Section 2.5.4

C.2.1 Proof of Lemma 2.5.26

For better readability we have omitted this straightforward proof from section 2.5.4.
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PROOF OF LEMMA2.5.26
The innovationg¢, }.c7 are independently and identically distributed Gaussian random
variables such thd ¢, = 0 andvar & = w?. Therefore we get, because we know that

var X; = U(0)w? (see lemma 2.2.4),

(mtzp;lwz& t— k:)

T

1 4 4 1

= o T=p Z ot E (& &) B (Xeme Xo) = H\IJ(O) =0 (H) :
s, t=p+1

As for Gaussian processes all cumulants of third and higher order are zero, we obtain

from the formula of (Shiryayev 1984, p. 290), tHa{¢2 ¢2) = w? (1 +24,), where

04 1S the Kronecker delta. This yields

1 R 1 2
E( n(T—P)t;ﬁd_% (_w_’?L t2+1)>
1 4 1 2
= T = p)wl Z (w—iE(ﬁng)_w_%E(fg)+l)

T
1 1
- T Z (1+258t_2+1)20(nwﬁ> .

s,t=p+1

Furthermore we have in the ICM = €t) ~1 > i1 5,5” and)oft(i) =2 oo Yu €§2u

n

fori =1,...,n (remark 2.2.3), where the mnovationg are independently and iden-
tically distributed for allt € Z andi = 1,...,n. Thus

<mt;;{——< o))

Z qu (( _%>2—2(5ij—%>2+5ij> ol

s,t=p+11i,7=1

Moreover, since theﬁ“ are assumed to be Gaussian and

n . . 1 O
o(2) 2 1) 2 %
S (- -l S,

. i=1 i,j=1
we obtain

3

(G S A S -4])

e 2 e ((S) (S0e))
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2 —~ o o), !
__*E j _]
nog (ZJZI AR op
1

s,t=p+1

C.2.2 Properties of the Martingale Differences

Proposition 2.5.31 proves the convergence conditions on the martingale differences
Dy, ». Two steps have not been entirely covered there as the conclusions are straight-
forward but require more extensive calculations. These can be found here. First note
the following.

C.2.1 REMARK
Summation over all possible indices yields

" 1\? " 1 1 1
S (o=5) = 2 (5) (-3 (0-3)
1,7=1 i,7,k=1
- 1 1 1 1
ACHIGRICHIC
n n n n
0,4,k =1

=n-—1.

We first prove the statement on the conditional variance.

C.2.2 RROPOSITION
The martingale differences constructed in lemma 2.5.30 fulfil

T
> E(Di | Frao) =N Ea A =op(1),
t=p+1
Uk —=1))r,..p 0 0
with %, = 2 0 nit o o
0 n2 \/150.)4 wl“

PrROOF
By construction the martingale differences dve,, =

1 T (@)
mztzpﬂ NZ;”,
where)\ € RP*? and the variableigl), p+1<t<T i=1,...,nr aresuch
that D,, VL, r(6h) = m ZtT:pH > Zf), whereV L, r(6y) is given in re-

0

L .
mark 2.5.24 and,, = [ "1 . This yields
0 vn

T
> E<D%,t,)\ | JTT,t—l)

t=p+1
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1
nr (T = p) tzsz;l
[ZAWZ _X(kj((j)l 51_L + : Xoi Xy
k=1 4,j=1
| o(i 2(np — 1 i
+/\;2>+1 Z (7[E<5§)25§])2/ o> )]E( ()2/ 0>
ij=1 0 nr
o1V g g 1))
w
np nhwh t
nr 1 )
A E(—&/w? +1
+ p+2;nTW% ( gt/wn_‘_ )
ny
+ 2 A1 Apto & Jwh +1 }
P P z;nT\/_w4 ( t )

nT—l 1

2\
2 (o

1 1
) +2)‘p+2 o JF4)\p+1)\p+2m-

The first two terms are mean-square convergent: as

(S (5,-0)) - 35 (- 5;) vee-oet

4,j=1 i,j=1
= (nT_ 1)¢(k’_l)08a
we obtain from the summation property %f — % (see the preceding remark) that

E<; XT: i 4 vy (5L _4"T_1¢(/{;_l)>2
nr (T —p) 2 2a gz ik i \ %6 = o0 =

b t=pt1i =1 0
T
T (736— p)? Stzpﬂ
3 (i) () (e 5p) (s 2)
X (P(s—t—k+Dp(s—t—1+k)+1(s—1)%)
— ﬁs’il(w— 1) (W(s—t—k+Dw(s—t—1+k)+uv(s—1t)?)
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Analogously we get that

1 4 - 4 2
E(m —pZ—i—l o Xy p X — . Y(k — l))
16 d
= V(s —t—k+D)w(s—t—1+k)+(s—1)°
a2, ) )+ wls — 1))
1
-0 (7).
Thus we have altogether thitjtT:p+1 E(D7 5 | Fri-1) =N XA = op(1). O

In the proof of proposition 2.5.31 we use that the 4th moment of the martingale diffe-
rencesDr, , is bounded. The proof of this statement involves rather lengthy calcula-
tions.

C.2.3 RROPOSITION
Let )\ € RP™2 and

as defined in lemma 2.5.30. Then

1
Ew%»:O(ﬁ).

PROOF,

The proof is based on the fact that the variabigs and & are independent for all

s;t € Z,i=1,...,n, with E (é’f) é’i”) = (0 — 1) 03 andvar¢, = w?. Due to

the Gaussianity assumption, the higher moments can be calculated using second order
cumulants. This means that we have to compute the values of the expectation for each
partition of the variables into cycles of length two. Thus the calculations are lengthy
but straightforward. The formula can e.g. be found in (Shiryayev 1984, p. 402). In
order to facilitate the notation we here omit the index.of

First recall (remark C.2.1) that

" 1\? " 1 1 1
S (o=5) = 2 (5) (-3 (o 3)
3,j=1 i,5,k=1
- 1 1 1 1
L n n n n
Z7J7k7l:1

=n-—1.
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For the most complicated term we thus obtain that
Z E(gyg €§12)2 gzg) éf‘*ﬂ)
11,12,13,i4=1
—1\* ~1\?2
:(n4 (n ) +12n? (n ) (n—1)
n n

—1
(n—1)+12(n—1)2+48(n—1))0
= (n*+8n° +14n* —8n —15) o

+32n

Similarily, we get

n

> E(aa)

11,02,83=1
—1\? 1
:<n3 (" ) r6n L (n—1)+8(n—1)>a

n

:(n3+3n2—n—3>08

n , . —1\?
and Z E<§§21)2 §£12)2> = <n2 (n ) +2(n— 1)) of = <n2 — 1) oy .
n

i1,i0=1

Since 1", (04 — 1) =0forall k =1,...,n, we furthermore have that

& 1
SE (ei)sfﬂ) 2Lk )2) (% 3 _)
n

ij,k=1
" rn—1 1\? 1 1 1
-3 [ (mn) 2 () (e-2) (90-7) ]
1 6

and Z E (51& 5t €t (k)2 El)2> ((5” — %)

4,9,k 0=1

:(<n2—1>(n—1>+4n"_
=(n—-1)(n*+4n+3)a]

(n—1)+8(n—1)) o
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As
E (—éi’”/aé + ”T_1> =E(-/wl+1) =0,
E(-& /w2 +1)" =E&/w) —2E&/w) +1=2,
E&/wt —2R&H w2 + R =w? (15 -2 x3+1) = 10w?
and  E(—&/w?4+1)" =105-4x154+6x3—4+1=060,
this yields

n

E (Dry») = m >

11,12,13,i4=1

p
16 o(i2) o(ia) o(i i i i3) (i
( > A A A [F <5§ gt i) ¢ 4)> E <Xt( DX X X )
0

k1,k2,l1,l2=1

16 i1) o(i o (1 % Y
+6- 34E<5“4”)Ecﬁjﬁmﬁg (&) E (X, X, )
( ) (Xt*kl Xt*/w Xt*ll Xt*lz) i|

8
i 7 (% % —1 i 7 o2
H;H[ [e (40 404 >/ao Mg (422 o
n—1\° 2. n—1\° )9 n—1\*
: E(’” ”) B(7°) Joi ]
+ (n) € /0 n € o5 + n
6 i1)2 o2 ]- 7 n—1 ?
+ o B () 5 (4% e+ () ]
0*n

< (E et B 1)

A 7 % —1 i 7 7
+6§;Mﬁlm4[ [l (e ) 0797 o 2L (604 97

n— 1 ? i1 192 i1 12
+(n )E(H<g}mqgéxgg

4 _ _
—E E (X k, X
@) (Y 5
4 i1) o(i i i 2
) () it
7 7 —1 % n—1 ?
<[ (52 2%) job -2 B (4 o+ (“) |
4 _ _
+ oo (B ey — 2B+ B X E (X, Xi) |
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46 Z Y p+2[ o (Egu) (m)) E <)‘gt(331 x(@2) ) E(_gf/wiJr 1)2

t—ko

ki1

4 _
+ oo B/~ 2BEl + Eéf] < E (X, Xip,) |

1 i 2(14 -1 o(i3) 2 n—1 2
+6)‘p+1>‘z+2[m[E<5t3 >/ 0 —2— E(sts )/og+ - ]
E (=& /wi +1)°
1

+ = E(-g}/wl+1)"]

n

08 e [ [B (4 47) st -2 (67) g *(ngl)z}
E (~&/w? +1)°

1
+ WE(—gf/wi—f— 1)4i|

1 4
4N Ao RENE E (—& /wy +1) )

1 p
:m( ST A e A A, 16

k1,k2,ly,l2=1

[(Wlﬁ — ko) V(I — lo) +p(k1 — L) (ke — l2) + (k1 — l2) Y(ky — 1))
x ([(n—1) +2(n—1)] +Z4)
Ul = k) ¥(l — L) n* (0 —1) |

1
+ AL [—8 ([n*+8n°+14n% — 87 — 15]

6 x 16

n(n®+3n®>—n—3)

n
—1\? -1\* - 1\*
—|—6<n > n2(n2—1)—4<n > n4—|—<n > n4>
n n n
4

p
+6 ) Amxﬁﬂw(/@—m[% ((n—l)(n2+4n+3)

a,
k=1 0

—2nn;1(n2—1)+n2 (”;1>2 (n-1))
(
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4n? 4nt

6 § YD 2 n—1)x2 10
+ a k l¢ ) p+2 [nw;t(” )X _I_n w% }
2 4
9 n 9 9 60n
+6>\p+1/\p+2 [m [(n —1)—(71—1)]X2—|—n5w78l}
—3n? 60 n*
3 2 2
A i (o (07 =D = (0= 1) x 2+ )
60 n*
R N
:2—[ E:Akkw —1) (n2+2(n—1))
n ( k,l=1

5 1
(n—1)+u?> +60>\p+2w n?

n

1 1
12\ — (n*+2(n—-1 —_
+ pt1 (0_(8) (n +2(n )) +a§wf§

+48 ) NN AL bk — 1) (i(n—1>(n+4)+wién+4)

2 2
k=1 %0 n
1
+482 e N A2 (K —D—gn(n+4)
k=1 n
1 30 1
2
+12)‘p+1)\p+2 (ﬂn(n—l)—i-w—%ﬁ)

1
> + 2400, 1 A0 — —~Vn

n

R P T
1
~o(m)- .

C.2.4 REMARK

A second possibility for proving the above statement is to distinguish between the two
casesny — oo andn fixed. In the latter case it is clear th&tD7,, , is bounded.

If n — oo, we can again employ the approach used for the ease oo, T fixed:

we define a new random vector by omitting the terms depending'oh;; from the

first p + 1 coordinates of the gradient vector. Defining martingale differences for the
new vector in a similar way as it has been done in lemma 2.5.30, we can again prove
proposition 2.5.31, but the length of the calculations is reduced. The considerations
used in the case — oo, T fixed, show that the gradient has asymptotically the same
distribution as the new vector.

C.3 Proofs for Section 2.6

C.3.1 Rates of Convergence

In this section we derive the rates of convergence of several terms which later on are
used for computing the rate of convergenceiofThe proofs are straightforward but
have been excluded from section 2.6 in order to enhance readability.



156 APPENDIX C. PROOFS AND AUXILIARY RESULTS

PROOF OF LEMMA2.6.3:
By assumptiorP is such that we have for al = (a/,02,7%) € © thato? > ¢ > 0.
Thus 5 < 1 . Therefore we get in any case that = Op(1) and

— = Op(1 ) If 7'0 > 0 thenw > (0 and the consistency df? yields that already

% = Op(1). This can be summarised té— Op ( ) The rates of convergence

1 o2—52

given in lemma 2.6.2 imply that; — 55 = 25z = Op (\/LT> and analogously

w57~ g = Or (siz) % Or () o = Or (77).
For provmg the second assertion dendﬁg = T — Zt i1 21 X 1xt 1 | and
By = 737,11 %, 1 X, (notation as in remark 2.6.1). Then

~ 1 ~ —1)0? 1 1 ~
Bop=Lt(p-ln=bop) (L 1) p
o2 n 62 o2
1 - 1 1 a
—f——(BQ—WTQLB)‘f‘ = B2-
nw? nw? nw?

Due to the mean-square convergence of the panel autocovariance estimator (compare
e.g. remark 2.6.1), we see directly that the first term in this expression is of order

Op (F) andthatB,—w? B = Op (\F> Thus the third term |soforde?P< ﬁ)

independent of¢ > 0 or 7§ = 0. Moreover the mean-square convergence yields that
B; =0p(1 )andBQ Op (w?). Altogether we obtain that

a0 ()

due to the rates of convergence of the different parameter estimators. O

The second result states the rates of convergenée ahdC,. We have omitted these
calculations in the proof of theorem 2.6.5.

C.3.1 LEMMA
In the setting of theorem 2.6.5, we have

1 - 1 1 . 1

—C,=0 and —Cy =0 .

5 P(vnT> nw2 P(n\/T)
PROOF,

By assumptionX!” ands!” are independent for < ¢. Furthermore lemma 2.2.4 states
that

o (s o (1 . . 1
cov (Xt(i)k,Xt@l) =U(k—1)cov (é’iz), 5?)) = (@-j — —) oo W(k—1),
n

whereo? = vare\”. Denote thekth entry of C; by Cy ;, and ofC, by Cy .. Then we
have forallk = 1,...,p that

2
Eéfk:E< (T —p) ZZth5t>

t=p+1 i=1
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- §35£<n(”;1)?+nm—1g§)a$wm

s, t=p+1

:#_jp)aé\lf(()).

Analogously, we get from lemma 2.2.4 thatforali=1,...,p

¥ (0) WrQL =

1 1,
T T—p -

As we have shown in corollary 2.6.3 thgt = Op(1) and -5 = Op (#) we
directly obtain that

1 - 1 1 - 1
—C1 =0 and — Cy, =0 ) O
52 ! P(\/nT) no2 P(nﬁ)

C.3.2 Some Remarks on Cumulants

Eéik -

We need some results on cumulants for determining the mean-square rates of conver-
gence of the bias term and g3, in the GICM. More premsely we want to get bounds

for cumulants of compound processes of the tyéé = t(l_)r Xt( )S, t € Z, where

{Xt }tez, 1 = 1,...,n, are causal Gaussian autoregressive time series as described
in section 1.1. For Gaussian processes all cumulants of order three and higher are
zero. Therefore all higher order cumulants of the compound procéfégé@, t € Z,
i=1,...,n,0 < r,s < p, can be reduced to functions of second order cumulants.
Thus all subsequent proofs are based on the following property:

C.3.2 THEOREM

Let {XMVez, i = 1,...,n, be a panel of stationary Gaussian autoregressive time
series as in assumption 1.2.1 such that X", X)) = w, cov(X!?, X fori +# ;

with u,, = O (). Furtherlet) < ry, s, <pforallk =1,...,m.

Then, identifyingn + 1 = 1, we get

DS [T E (X, X852,,) = 0 (n7)?)

B genes im=111,..., tm=p+1 k=1
for allm > 3.
PROOF ' ' ,
By assumptionpov(Xs(’),Xt(’)) = Yu(s — t) andcov(X, x% Xt(j)) = up (s —t) for

i # 7. Due to lemma 1.1.2, eack”, 1,...,n, admits a MA(c) representation
such that
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where for each = 1,...,n the {5t )}tEZ are independently and identically distributed
with E5§> = 0 andvar sg) = o2, This means that,,(h) = Y .-, Yu Yuip o for all

h € Z. Because of proposition 1.1.3 we know that,| < cp* for all u > 0, where
c>0and0 < p < 1.

For ease of notation I€}, = r, — sx1 anddy, = t, —t; fork = 1,...,m. This implies
that—(p—1) <& <p—land—(T—p—1)<dpy <T—p—1forallk=1,...,m
We therefore get

m

DS ITE (x5, xi,.)

yeim=11t1,...tm=p+1 k=1

T m
- Z Z H Uelk+1 - 5ik7ik+1> u”)

iyeim=11t1,... tm=p+1 k=1

X Yn(te — Tk — tis1 + Skt1)

oo m
2
S § , § : § : H C (6ik,ik+1 - (1 - 6ik7ik+1) un)
..... tm=11t1,....,tm=p+1 ui,...,um=0 k=1
% puk puk+|tk—rk—tk+1+8k+1\ 0-2
T m
~ E t—t
— CTL H p‘ k—Ulk+1— £/C|
t1yeeny tm=p+1 k=1
T T—p—1 m—1
~ da+ dm—Em di—d -
Scn§ p|2§1|p\ 5|Hp\k k16l
t=p+1 ds,..., m=—(T—p—1) k=2
T
<& T (2T —2p—1)" § j p'dz'p‘dm‘
=017,

For the last inequality we have used thait < 1. Furthermore we have enlarged the
sum in order to take the presence of thek = 1,...,m, into account.
The constang, is given by

2
N TR

as the product equals 1 if and onlyiif= - - - = i,,. Otherwise it is of orde© (u?),
because then at least two pairs{ifiy, ix1), k = 1,...,m} must fulfil thati, # ix.;.
This completes the proof. ad

In the above proof, we just have used the fact I]F[%t:_; pl—der1téel is pounded by
1. Since the factors in this term are interconnected, an explicit calculation does not
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lead to a further reduction of the order. We also can see from the proof that we get the
analogous result, of ordér(7"), if we constrain ourselves to the fact that the Mé)
coefficients are absolutely summable.

In order to simplify the notation, we deduce from the above result an analogous state-
ment on cumulants.

C.3.3 LEMMA '
In the setting of the above theorem 16, (t) = X\ X\"),t ¢ Z.
Then form > 3

S am () Y (1) = O (7))

T yeees tm=11t1,..., tm=p+1

PROOF,
For ease of notation, denojzét(l“_)j by X; ;. Theorem 2.3 of Brillinger (1981) gives

> e (VI (1), Y0 (t)

= Z Z cum (X5 (1,j) € vn)...cum (X, 5 (1, 5) € v)

t1,.tm=p+1 vi+-tvg=v

where the second summation runs over all indecomposable partitions of

V= {(l,jl),l € {1, e ,m},jl c {7”1, Sl}}.

As the processe$X§Z)}t€Z, i = 1,...,n, are Gaussian, all cumulants of order larger
than two are zero (Shiryayev 1984, p. 291). Thus if we identif- 1 = 1, the
remaining partitions are of the form, = {(k, %), (k + 1,s541);k = 1,...,m}. This
means that we sum over products of covariances which are of the form needed for the
preceding lemma. O

Up to here, we have derived bounds far > 3. The casen = 2 has to be treated
separately.

C.3.4 LEMMA
Under the assumptions of theorem C.3.2,

(1) (i2) (42)
Z Z cum ( g 7"1 X X2 Xt22—52>
i1,12=1 t1,t2=p+1

n

T
S Y [E(x ) B (x X2,

i1,02=1t1,ta=p+1
1 2 1 2
+ ]E’ (Xt(l ) -7l Xt(z)—82> E <Xt(1)7"2 Xt(2151> :|
=0(nT).
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PROOF.
Straightforward calculation gives

n T

SO e, x2,) E (XD, x2,)

i1,i9=111,ta=p+1

—p—1
S (TL""LLTQLTZ(TL— 1)) 02 0_4 Z Z pu u+|h— 7"1+31|pv pv+|h ro+s2|

Tpl)uv()

1
< 2 —1))ot ——- 2T -2p—1)=0(nT
<(n+uin(n—1))cc (1—p2)2< p—1)=0(nT)
if u, = O (%) As the first equality of the lemma’s statement is due to theorem 2.3
of Brillinger (1981), this already implies the result. O

Now we are in the position to prove lemma 2.6.12.

PROOF OF LEMMA2.6.12: ' ' '
Denote the entries B~ by by, k,1 = 1,...,p, and lety,))(t) = X", X", Fur-

t—g
thermore recall (see the proof of theorem 2.6.5) thaktheentry ofC fulfils

él,k::<A1_Bla)k: Zal T ?) ZZth tk

t=p+1 i=1
if we denotea, = —1. Therefore thenth entry ofBl is
p p
Blvm:zb Z[ T p Z Z}/gh /Yng h)}
g=1 s=p+1 i=1
x Z On 1 Z Z Z a Y
k=1 p t=p+1 j=1

AstheX” t € Z,i = 1,...,n, are Gaussian withov(X!”, X"} = %, (s — t) and
cov(XP, XY = u, 4 (s — t) for i # j, theorem 2.3 of Brillinger (1981) gives

E (YO0 (0) Y2 (82)) = Sl = 1) (ke — )
+ (0550 — (1= 0j,5) 1) [%(tl —ty — k1 + ko) Yty — ta — Iy + 1n)
+ At —te — ki + o) Yn(ts —ta+ ke — 1) .
Moreover we have by assumption thiat> 0, k» > 0 and thus als@; + k; > 0. As

(see lemma 2.2.4),,(h) = "T‘l WU (h) o2, we get using the relations given in proposi-
tion 1.1.6 that

p
>, ay, Aok — 1) Anlke — 1) =0,

l1,l2=0
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p T
Z ap, ay, Z S/n(tl — 19 — k'l —+ lz) %/n(tl — 19+ k’Q — l1> =0 and
l1,l2=0 t1,to=p+1
P T
dawan, Y Aulti—tr— ki + ko) Yu(ts — ta =l + 1)
l1,l2=0 t1,t2=p+1
T—p)(n—1 .
= ( ) )agfyn(krl—k‘z).
n
Therefore
Z ay, A, Z Z ( k1, l1 Yk(ghll( ))
l1,l12=0 t1,t2=p+1 j1,j2=1

_ (T—pil(n—l) 02 (n+uZn(n—1))An(ks — ka).

ThusE /32, reduces to

p

Eﬂ?m: Z ghk|: Z allalzzl(T;

91,92,h1,h2,k1,ka=1 11,lo=0 p)

Y B (e e Y ) Y0

81,82,t1,t2=p+1 1,i2,71,j2=1

2

- 111(21(; ?inp(;”b D) 2 5 An (g1 = 1) An(ga = o) An (k1 — ka) .
where the constant i, j, ;. = b4, bin.gs Ohy ey Oho s -
We now investigate the first term of this expression. As Leonov and Shiryayev (1959)
have shown, the expectation of a product of random variables can be represented as
a sum of cumulants of smaller or equal order. The formula also can be found in
(Shiryayev 1984, p. 293). We have derived the order of the cumulants: for 2
in theorem C.3.3 and lemma C.3.4. Thus forlall r;, s, <p,i=1,....4,

m Z Z cum (y( ) (1), Y(m) (¢ 2),K(?)i?)( )7}/7&48)4( D)

11,02,i3,ia=1t1,t2,t3,ta=p+1
1
=0\~ 2
n*(T —p)

Z Z Cum r t>Yr( ( )7Yr(31383( ))

i1,i2,23=1t1,t2,t3=p+1
1
o
<n2 =

and <Z Z Ynlty — 11 — (t2—52))’07n(t2—7”2—(tl—sl)))Q

i1,i2=111,t2=p+1
1
=0 ———= .
<n2(T—p)2>
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Furthermore we have due to the preceding proposition that

p T
Z a, ag, Z Yn(ts — k1 —ta + ko) Yn(ts —lh —ta+13) =0
11,l2=0 t3,ta=p+1
P T
and > aja, Y Aults — ki —ta+ 1) dults — L — ts+ ko)
l1,l2=0 t3,ta=p+1
n—1)(T — .

Thus the remaining terms, which are based on the second order cumulants, become

T

Z ay, ar, Z Yn(ts — ki — (ts = 12)) Yults — ko — (L3 — 1))

11,lo=0 t1,t2,t3,ta=p+1
X (g1 — h1) Yn(g2 — h2)

n—1)(T -p)? .. . .
_ )75 ) 05 (g1 — h1) n(g2 — h2) S (k1 — ko)
P T
and Z ay, ag, Z (g1 — h1) Yn(g2 — h2) /Oyn(kl — l1) (ko — 52) =0.
11,l2=0 t1,ta,t3,ta=p+1
Altogether we obtain that
p 2
5 n—1) (1+u,(n—1

EG,, = Z bg.nk ( ) ( ( ) ol

2 0
_ n?(T —p)
917927h1»h27k1ak2—1

% (dnlgr = 1) g2 = h2) A (kr = ko)

- 5/”<gl - hl) %/n(g2 - hZ) 7n(k1 - kg)) +0 (;>

n (T = pp?
ZO(W)- -

The proof forﬁ},m is analogous. As it only depends ervia X, = %Z?zl Xt(i), we
here getd,,, = O (ﬁ) . 0
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